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Preface

Professor Sreenivasa Rao Jammalamadaka, formerly known as J.S. Rao and affec-
tionately known to most of us as JS, was born on December 7, 1944, at Munipalle,
India. Being under-aged for engineering studies was a blessing in disguise, and he
was among the first batch of students selected for the Bachelor of Statistics (B. Stat.)
degree at the Indian Statistical Institute (ISI), Kolkata. He received his Masters and
Ph.D. degrees also from the ISI, and has the distinction of being the first B.Stat.-
M.Stat.-Ph.D. of the ISI. He received his education from such legendary figures as
Professors P.C. Mahalanobis, J.B.S. Haldane, C.R. Rao, and D. Basu among others,
and worked with Professor C.R. Rao for his Ph.D. (1969) on path-breaking research
in the then newly emerging area of directional data analysis.

JS moved to the USA in 1969 and was a faculty member at the Indiana University
and then at the University of Wisconsin, Madison, before he moved to the Univer-
sity of California, Santa Barbara (UCSB) in 1976, where he has remained since
then. At UCSB he played a pivotal and leading role in creating the new Depart-
ment of Statistics and Applied Probability and was its first Chairman. He has been
a prodigious mentor to the graduate students in that department, having provided
guidance to as many of 35 Ph.D. students, at the last count. Throughout his career,
JS has been extraordinarily generous to his colleagues in India, inviting them to the
US and spending many of his sabbaticals helping Universities in India as well as in
other countries.

JS has published extensively in leading international journals. His research work
spans a wide spectrum which includes: goodness-of-fit tests, linear models, non-
parametric and semi-parametric inference, Bayesian analysis, reliability, spacings
statistics, and most notably, directional data analysis. He has written several books,
both for undergraduate students as well as for advanced researchers. He has collab-
orated with a large number of researchers from around the world in general, and
from India in particular. A Fellow of both the ASA and the IMS among other pro-
fessional organizations, he has served nobly the cause of statistics at many national
and international levels, including that of the President of the International Indian
Statistical Association.

The present volume consists of papers written by students, colleagues and collab-
orators of JS from various countries, and covers a variety of research topics which JS
enjoys and contributed immensely to. We are deeply thankful to these distinguished
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authors for their contributions. We thank the anonymous referees for their reviews
and suggestions. We also profoundly thank Dr. Kaushik Ghosh; his technical savvy,
editorial contributions, and deep dedication to this project was extremely impor-
tant in bringing this volume to fruition. Finally, it is a pleasure to acknowledge the
understanding, patience and cooperation of Springer-Verlag in bringing out this vol-
ume. It is with great pleasure and pride that we present to our readers this volume,
a Festschrift in celebration of the 65th birth anniversary of JS. We also take this
opportunity to wish JS many, many more years of active research which will enrich
the statistical sciences as well as foster further academic collaborations from far and
wide.

Ithaca, NY Martin T. Wells
Kolkata, India Ashis SenGupta
June 2010
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Chapter 1
Models for Axial Data

Barry C. Arnold and Ashis SenGupta

Abstract A variety of models have been proposed to accommodate data involv-
ing directional vectors in two-dimensions, with no identified start or end point. By
convention such directions are represented by points in the interval .0; �/. Data
of this kind is called axial data. A survey of symmetric and asymmetric models
for axial data is provided here. In addition, for certain models, parametric inference
issues are addressed. In some cases, bivariate and multivariate extensions are readily
envisioned.

1.1 Introduction

To model directions of vectors which do not have an identifiable start point or end
point, an angular distribution with support .0; �/ is required. It is customary that
such distributions are called axial distributions. Such axial data has often been ana-
lyzed by multiplying the observation values by two and then seeking a circular
distribution (often a circular normal density) that provides an acceptable fit. This
will be referred to as the “doubling” strategy, which is justifiable in many cases.
Some times alternative approaches can yield better results. An alternative approach
involves the recognition that in many cases axial variables can be viewed as circular
variables modulo� . Arnold and SenGupta [1] proposed use of this approach, begin-
ning with a circular normal density for the original directions. Wrapping strategies
can be used to generate axial models as can approaches involving projections of
points determined by a given bivariate distribution in R2. In the case of circular data,
the most popular model is the von Mises or circular normal density. Its popularity
can perhaps be traced to the fact that the model is a two parameter exponential fam-
ily with minimal sufficient statistics that are simply sums of sines and cosines of the
observed values. Only by a doubling approach can a similar convenient exponential

B.C. Arnold (B)
Department of Statistics, University of California, Riverside, CA 92521, USA
e-mail: barry.arnold@ucr.edu

M.T. Wells and A. SenGupta (eds.), Advances in Directional and Linear Statistics,
DOI 10.1007/978-3-7908-2628-9 1, c� Springer-Verlag Berlin Heidelberg 2011
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2 B.C. Arnold and A. SenGupta

family model be arrived at for axial data. This means that estimation and inference
for almost all axial models will be “computer intensive” to some degree.

It is time to begin the tour of “the world of axial modeling”.

1.2 Some Well-Known Circular Models

It will be useful to quickly review some of the more popular circular models (see
e.g., [6]). The first in our list (and undoubtedly the most frequently encountered) is
the circular normal distribution. A random variable � will be said to have circular
normal distribution with parameters � 2 Œ0; 2�/ and � 2 .0;1/ if its density is of
the form

f�.� I�; �/ / expŒ�.� � �/�I.0 � � < 2�/: (1.1)

The parameter � corresponds to the mode of the density while � is a precision
parameter. If a random variable has density (1.1), we write � � CN.�; �/: An
alternative parameterization is possible, as follows

f�.� I˛; ˇ/ / expŒ˛ cos � C ˇ sin ��I.0 � � < 2�/: (1.2)

In this version the parameters ˛ and ˇ can take on any real value. Representation
(1.2), makes it evident that we are dealing with a two parameter exponential family
of densities and that, if we have a sample of size n from this density, the complete
minimal sufficient statistic will be

�Xn

iD1 cos�i ;
Xn

iD1 sin�i
�
: (1.3)

An alternative approach to the construction of models for circular data involves
“wrapping” a real variable or equivalently evaluating that variable modulo 2� to
yield a variable with support Œ0; 2�/. Thus we begin with a random variable X with
support .�1;1/ and define the corresponding “wrapped” version of X by

� D X .mod 2�/: (1.4)

This is clearly a rich source of models since the distribution of X can be quite
arbitrary.

A popular choice for the distribution of the random variable to be “wrapped” is
a symmetric stable distribution. In particular, the normal distribution or the Cauchy
distribution is often selected. The wrapped normal distribution has a density express-
ible in the form of an infinite series, which complicates estimation and inference for
the model. On the other hand, a wrapped Cauchy distribution has a density of the
following relatively simple analytic form

f�.� I˛; ˇ/ / .1C ˛ cos � C ˇ sin �/�1I.0 � � < 2�/ (1.5)
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where ˛; ˇ are real valued parameters satisfying ˛2 C ˇ2 < 1. Note that the choice
˛ D ˇ D 0 yields the uniform distribution on Œ0; 2�/.

Another distribution which is sometimes considered for univariate directional
data is the cardioid distribution with density of the form

f�.� I˛; ˇ/ / Œ1C ˛ cos � C ˇ sin ��I.0 � � < 2�/ (1.6)

in which ˛; ˇ are real valued parameters satisfying ˛2 C ˇ2 < 1. A more general
model, introduced by [7] will be called a generalized Cardioid density. It is of the
form

f�.� I˛; ˇ/ / Œ1C ˛ cos � C ˇ sin ���I.0 � � < 2�/ (1.7)

in which ˛; ˇ; � are real valued parameters satisfying ˛2Cˇ2 < 1. The third param-
eter � results in a flexible family of models which includes the wrapped Cauchy, the
uniform and the cardioid distributions as special cases corresponding to � D �1; 0
and 1 respectively.

An alternative flexible family of circular distributions are those of the “angular”
form. For these , one begins with a arbitrary two-dimensional random vector .X; Y /
with support in the plane. We then consider the angle in the interval .0; 2�/ deter-
mined by the line joining the origin to the point .X; Y /, i.e., � D tan�1.Y=X/.
A popular choice for the distribution of .X; Y / in this construction is the classical
bivariate normal distribution.

The last entry in our list of general methods for creating flexible circular models,
is the technique of “restriction to the unit circle”. In this approach one begins with
an arbitrary joint density f0.x; y/ whose support includes an open set that includes
the unit circle. Then one considers the values taken on by this joint density at all
points on the unit circle. Parameterizing the unit circle by � 2 Œ0; 2�/; one obtains
in this way a circular density of the form:

f .�/ / f0.cos �; sin �/I.0 � � < 2�/: (1.8)

In fact, in this construction f0 can be replaced by a quite arbitrary function of
two variables, not necessarily a joint density.

1.3 Introducing Asymmetry

Most of the circular models described in Sect. 1.2 are symmetric about their modes.
But of course, many real world data configurations do not exhibit such symmetry. To
accommodate this situation a variety of asymmetric versions of the densities have
been proposed. We will return to discuss asymmetry in more detail in the context
of axial distributions in Sect. 1.5. In the circular context, only a few brief comments
will be presented.
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First note that some of the constructions introduced in Sect. 1.2 clearly do not
always produce symmetric models. Thus, restriction to the unit circle and angular
constructions can easily yield asymmetric models. Likewise, wrapping an asym-
metric density usually leads to asymmetry (examples in the literature include the
wrapped exponential [5] and the wrapped skew-normal [9]).

Umbach and Jammalamadaka [10], motivated by [4] construction of skewed
distributions on the real line, describe a general method of constructing skewed
circular distributions. They begin with two symmetric circular densities f and g on
Œ��; �/. Denote the distribution function of g byG and choose w to be an odd func-
tion with period 2� and satisfying jw.�/j � � . They then verify that the function
2f .�/G.w.�// is an asymmetric circular density.

Efforts to develop asymmetric versions of the circular normal distribution often
involve introduction of trigonometric functions of different frequencies. Thus, for
example, we might consider a model of the form

f�.� I˛; ˇ; �; ı/ / expŒ˛ cos � C ˇ sin � C � cos.2�/C ı sin.3�/�I.0 � � < 2�/:

(1.9)

Analogous adjustments can be made to the generalized cardioid density to obtain
asymmetric versions.

1.4 Axial Models

As mentioned in the introduction, axial distributions are appropriate for modeling
the directions of vectors without an identifiable beginning or end point. They typ-
ically will take on values between 0 and � . Two general strategies are considered
for generating axial models from available circular models: wrapping and doubling.
The doubling approach involves multiplying the axial variable by 2 and assuming
that the doubled variable has one of the available circular distributions described in
Sect. 1.2. Thus if our axial random variable is denoted by � and if g.�/ is a given
circular density, then the density for� will be of the form

f�.�/ D 2g.2�/I.0 � � < �/: (1.10)

Generally speaking such models will be suspect, because there seems to be little
reason to expect that two times an axial variable will be sensibly modeled by a well
known circular distribution. Nevertheless this technique does provide a very wide
ranging flexible array of possible models which might be useful for modeling and/or
prediction. There is an exceptional case in which doubling does seem to make sense,
to be described later.

The second approach for generating axial models involves wrapping, but in this
case wrapping around a half circle instead of a full circle as was done to generate
circular models. Thus one begins with an arbitrary real valued random variable X
and defines an axial variable� by setting
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� D X .mod �/: (1.11)

Generally speaking it is desirable that axial density f .�/ should have the property
that lim�!� f .�/ D f .0/, since the angles 0 and � are indistinguishable. In parallel
fashion it is reasonable to expect that a circular density will satisfy lim�!2� f .�/ D
f .0/. Such restrictions will limit the class of acceptable densities for the random
variable X that is to be wrapped.

Perhaps the most natural genesis for an axial variable involves envisioning a
circular random variable that is imperfectly visible in the sense that any pair of
values of the form � and � C � are indistinguishable. Thus if the original circular
variable is denote by ˚ the density of the observed axial variable will be of the form

f�.�/ D Œf˚ .�/C f˚ .� C �/� I.0 � � < �/: (1.12)

An alternative viewpoint, is that this density results from the fact that � D
˚ .mod �/:

A particularly popular version of this construction begins with circular normal
distribution for ˚ and results in what is called an axial normal distribution for � of
the form

f�.�/ / cosh.˛ sin � C ˇ cos �/ I.0 � � < �/: (1.13)

See [1] for more detailed discussion of such axial normal variables. These axial
normal variables, derived in a natural fashion from circular normal variables, are
somewhat more difficult to deal with because the corresponding collection of
densities does not comprise an exponential family.

In passing, it may be noted that beginning with a circular normal density and
using the doubling approach does lead to an exponential family of axial densities of
the form

f�.� I˛; ˇ/ / expŒ˛ cos 2� C ˇ sin 2�� I.0 � � < �/: (1.14)

The attraction of such models, with their conveniently available minimal sufficient
statistic, is undeniable. Despite the lack of logical justification for use of the dou-
bling approach in this context, it must be admitted that they comprise a flexible two
parameter family of axial distributions which merits consideration for use in fitting
data.

Instead of using the wrapping or the doubling approach, angular axial models
may be considered. To this end we, as in the circular case, begin by considering a
bivariate random vector .X; Y / with support in the plane. Then let � denote the
angle in the interval .0; �/ determined by the extended line joining the origin to
the point .X; Y /. Thus � D tan�1.Y=X/C .�=2/ where tan�1 is chosen to range
over the interval .��=2; �=2/ as is customary. Although the model is motivated
by consideration of angles determined by a random point in the plane, it can be
described in a slightly simpler fashion. The random vector .X; Y / only enters into
the model in terms of its ratio Y=X and since the distribution of .X; Y / is arbitrary,
so is the distribution of the real random variableW D Y=X: So the general angular
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axial model can be represented in the form

� D tan�1W C .�=2/ (1.15)

where W is an arbitrary real random variable.
A popular choice for the distribution of .X; Y / in this construction is the classical

bivariate normal distribution with mean vector� and variance covariance matrix˙:
With this choice of distribution for .X; Y / the random variableW D Y=X will have
a Cauchy distribution and as � and ˙ range over all possible values, the location
and scale parameters of the Cauchy random variableW will range over all possible
values, i.e., �1 < � < 1 and 0 < 	 < 1:

With such a choice for the distribution of .X; Y /, or equivalently of W , the
resulting axial distribution is known as the angular central Gaussian distribution [8].
There are several possible parameterizations but the one providing the most simply
interpretable parameters is of the form

f�.�/ /
�
1C ˛ sin

�
2
�
� C �

4
� ˇ

����1
I.0 < � < �/: (1.16)

The parameter ˛ controls the precision (or peakedness) of the density while ˇ
controls the location of the mode.

One obvious advantage of this model is that a simple transformation applied to
the density yields a Cauchy density so that inference techniques appropriate for
Cauchy distributed data may be directly used in analysis. But there is another,
perhaps unexpected special property of the angular central Gaussian (ACG) dis-
tribution. These features of the model become more apparent when alternative
parameterizations are considered.

A parameterization of the ACG density that highlights its linkage with a
Cauchy.�; 	/ density is as follows:

f�.�/ D 2	 I.0 � � < �/

�.1C 	2 C �2/Œ1 � 2�

1C�2C�2 sin.2� � �/ � 1��2��2

1C�2C�2 cos.2� � �/�
(1.17)

where �1 < � < 1 and 0 < 	 < 1:

Instead one might consider a version of the ACG density parameterized as
follows

f�.�/ D
p
1 � ı2 � �2 I.0 � � < �/

�.1C � sin.2�/C ı cos.2�//
: (1.18)

where the parameters � and ı are constrained by

0 � �2 C ı2 < 1:

Of course the choice � D ı D 0 leads to a uniform distribution on Œ0; �/. If � has
the density (1.18), it is clear that the doubled random variable 
 has a density of
the form
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f�/.�/ / .1C � sin�C ı cos�/�1 I.0 � � < 2�/; (1.19)

which is recognizable as a wrapped Cauchy distribution (c.f., (1.5)). It would thus
be possible to double data arising from an ACG distribution and analyze the doubled
data using a wrapped Cauchy model.

Remark. The double linkage between the ACG distribution and the Cauchy distri-
bution raises an interesting characterization problem. It is apparent from the above
discussion that if W has a Cauchy.0; 1/ distribution, then for some a; b the random
variables U D aC bW .mod 2�/ and V D 2.tan�1W C .�=2// D 2 tan�1W C�

are identically distributed. Is this only true in the case in which W has a Cauchy
distribution?

Parallel to the development of the generalized cardioid circular model, it is natu-
ral to extend the ACG distribution by introducing an additional parameter, say �, to
consider generalized ACG densities of the form

f�.�/ / Œ1C � sin.2�/C ı cos.2�/�	 I.0 � � < �/: (1.20)

Yet another manner in which an axial density can be constructed is by “restriction
to the unit half-circle”. As in the analogous method of generating a circular density,
one begins with an arbitrary joint density f0.x; y/ whose support includes an open
set that includes the unit half circle. Then one considers the values taken on by this
joint density at all points on the unit half circle. Parameterizing the unit half circle
by � 2 Œ0; �/; one obtains in this way an axial density of the form:

f .�/ / f0.cos �; sin �/I.0 � � < �/: (1.21)

1.5 Asymmetric Axial Models

For axial distributions, as was the case for circular models, the majority of the
popular densities are symmetric about their modal value. Asymmetric variations
are however available. Wrapping an asymmetric real random variable X around
the unit half circle will typically yield an asymmetric axial distribution. Such is
also the case if we make use of the angular projection approach, i.e., consider
� D tan�1W C .�=2/ where W is an arbitrary real random variable. In this con-
struction, the choice of a Cauchy distribution forW will lead to a symmetric density
for �, but other choices for the distribution of W lead to asymmetric axial densi-
ties. Even a standard normal choice for W leads to asymmetry! An intriguing open
problem is to characterize the class of distributions forW that will lead to symmet-
ric axial distributions. It is not difficult to verify that this class includes t-densities
with possibly fractional degrees of freedom, but presumably there are many more
possibilities.

Finite mixtures of symmetric axial densities will typically exhibit asymme-
try, as will finite logarithmic mixtures. More generally, if f1.�/; f2.�/; : : : ; fm.�/
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are m symmetric axial densities, then subject to non-negativity and integrability
constraints one may consider the following usually asymmetric axial models

f .�/ /
"
mX
iD1

ai fi .�/

#
=I.0 � � < �/; (1.22)

and

f .�/ /
"
mY
iD1

ffi .�/gai

#
=I.0 � � < �/: (1.23)

It is possible to develop asymmetric versions of the axial normal distribution
by the introduction of trigonometric functions of different frequencies. Thus, for
example, one might consider a density of the form

f�.� I˛; ˇ; �; ı/ / coshŒ˛ sin � C ˇ cos � C � sin.2�/C ı cos.3�/�I.0 � � < �/

(1.24)

Analogous adjustments can be made to the ACG and extended ACG model to obtain
asymmetric versions such as

f�.�/ / Œ1C � sin.2�/C ı cos.2�//C � sin.4�/C 
 cos.6�/�	 I.0 � � < �/:

(1.25)

1.6 Bivariate Axial Distributions

Bivariate (and multivariate) versions of the axial distribution (1.15) are readily
constructed by choosing .W1;W2/ to have a bivariate (or W to have a multi-
variate) Cauchy distribution with Cauchy.0; 1/ marginals and then applying a
transformation of the form (1.15) to each coordinate, i.e., define

�i D tan�1.�1 C 	1W1/C .�=2/

for each i .
For some applications it may be desirable to have a bivariate (or multivariate)

axial distribution with conditional densities belonging to specific axial families.
For example, if we wish to deal with bivariate distributions with conditionals in

the generalized ACG family (1.20), we may consider densities of the form

f�1;�2
.�1; �2/ / �

.1; sin 2�1; cos 2�1/A.1; sin 2�2; cos 2�2/0
�	

I.0 � �1 < �; 0 � �2; �/: (1.26)
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It is evident that (1.1) does indeed have all conditional densities of�1 given�2 and
of�2 given�1 in the family (1.20). The choice � D �1, yields densities with ACG
conditionals.

Similarly, it is possible to describe a bivariate density with all conditionals in the
axial normal family (1.13). It will be of the form;

f .�1; �2/ / coshŒ.sin �1; cos �1/B.sin �2; cos �2//0� I.0 � �1 < �; 0 � �2 < �/;

(1.27)
where B is a 2 � 2 matrix of parameters.

In the case of axial model (1.14), the fact that this is two parameter exponential
family allows us (using [3]) to identify the class of all bivariate axial densities with
conditional densities of the form (1.14). Such densities will be of the form

f .�1; �2/ D expŒ.1; sin 2�1; cos 2�1/A.1; sin 2�2; cos 2�2/0�
I.0 � �1 < �; 0 � �2; �/; (1.28)

where A is a 3 � 3 real matrix in which a11 is a normalizing constant that is a
function of the other aij ’s so that the density will integrate to 1. Multivariate versions
of this construction can be analogously defined.

Asymmetric multivariate axial models can be constructed using basically the
same devices that were used to construct asymmetric univariate axial models. More
details on these constructions may be found in [2].
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Chapter 2
Asymptotic Behavior of the Universally
Consistent Conditional U-Statistics
for Nonstationary and Absolutely Regular
Processes

Echarif Elharfaoui, Michel Harel, and Madan L. Puri

Abstract A general class of conditional U-statistics was introduced by W. Stute
as a generalization of the Nadaraya–Watson estimates of a regression function. It
was shown that such statistics are universally consistent. Also, universal consis-
tencies of the window and kn-nearest neighbor estimators (as two special cases
of the conditional U-statistics) were proved. Later, (Harel and Puri, Ann Inst Stat
Math 56(4):819–832, 2004) extended his results from the i.i.d. case to the absolute
regular case. In this paper, we extend these results from the stationary case to the
nonstationary case.

2.1 Introduction

Let fZi D .Xi ; Yi /I i 2 N
�g be a sequence of random vectors with continuous

distribution functions Hi .z/, i 2 N
�, z 2 R

d � R
s , defined on some probability

space .˝;A; P /.
Assume that Hi admits a strictly positive density and Hi has the two marginals

Fi and Gi .
Let h be a function of k-variates (theU kernel) such that for some r > 2, h 2 L�

r ,
which means that Efsupˇ jh.Yˇ /jrg < C1 (where sup extends over all permuta-
tions ˇ D .ˇ1; : : : ; ˇk/ of length k, that is, over all pairwise distinct ˇ1; : : : ; ˇk
taken from N

�) which implies that for all integers i1; i2; : : : ; ik .i1 < i2 < : : : <

ik/ h.Yi1 ; : : : ; Yik/ 2 Lr , the space of all random variables Z for which jZjr is
integrable. In order to measure the impact of a few X ’s, say .X1; : : : ; Xk/, on a
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Sciences El Jadida, Rte Ben Maachou, B.P. 20, 24000, Maroc, and IMT (UMR CNRS 5219),
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function h.Y1; : : : ; Yk/ of the pertaining Y ’s, set

m.x/ � m.x1; : : : ; xk/ WD EŒh.Y1; : : : ; Yk/jX1 D x1; : : : ; Xk D xk � (2.1)

where m is defined on R
dk .

For estimation of m.x/, [7] proposed a statistic of the form

un.x/ D un.x1; : : : ; xk/ D
P
ˇ h.Yˇ1

; : : : ; Yˇk
/
Qk
jD1KŒ.xj �Xˇj

/=hn�P
ˇ

Qk
jD1KŒ.xj � Xˇj

/=hn�
(2.2)

where un is defined on R
dk , K is the so-called smoothing kernel satisfying

R
K.u/

du D 1 and fhn; n � 1g is a sequence of bandwidth tending to zero at appropriate
rates. Here summation extends over all permutations ˇ D .ˇ1; : : : ; ˇk/ of length k,
that is, over all pairwise distinct ˇ1; : : : ; ˇk taken from 1; : : : ; n. Stute [7] proved the
asymptotic normality and weak and strong consistency of un.x/ when the random
variables f.Xi ; Yi /; i � 1g are independent and identically distributed. Harel and
Puri [3] extended the results of [7] from independent case to the case when the
underlying random variables are absolutely regular. Stute [9] also derived the Lr
convergence of the conditional U -statistics under the i.i.d. set up.

If a number of the Xi ’s in the random sample are exactly equal to x which can
happen if X is a discrete random variable, P Y .�jX D x/ can be estimated by the
empirical distribution of the Yi ’s corresponding to Xi ’s equal to x. If few or none
of the Xi ’s are exactly equal to x, it is necessary to use Yi ’s corresponding to Xi ’s
near x. This leads to estimators bP Yn .�jX D x/ of the form

bP Yn .�jX D x/ D
nX
iD1

Wni .x/1lŒYi 2�


where Wni .x/ D Wni .x;X1; : : : ; Xn/ .1 � i � n/ weights those values of i for
whichXi is close to x more heavily than these values of i for whichXi is far from x

and 1lA denotes the indicator function of A.
Let g be a Borel function on R

s such that g.Y / 2 Lr . Corresponding to Wn is
the estimator ln.x/ of l.x/ D E.g.Y /jX D x/ defined by

ln.x/ D
nX
iD1

Wni .x/g.Yi /:

More generally if we now consider the estimates ofm.x/ defined in (2.4), this leads
to weighting those values of ˇ for which Xˇ D .Xˇ1

; : : : ; Xˇk
/ is close to x more

heavily than the values of ˇ for which Xˇ is far from x.
This is why, as in [8], we study a fairly general class of conditional U -statistics

of the form
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mn.x/ D
X
ˇ

Wˇ;n.x/h.Yˇ / (2.3)

designed to estimate m.x/, where Wˇ;n.x/ is defined from a function Wn.x; y/ by
Wˇ;n.x/ D Wn.x;Xˇ /, Yˇ D .Yˇ1

; : : : ; Yˇk
/, and the summation in (2.3) takes

place over all permutations ˇ D .ˇ1; : : : ; ˇk/ of length k such that 1 � ˇi �
n; i D 1; : : : ; k:

Remark 2.1. The estimator defined in (2.2) is a special case of the estimator defined
in (2.3), see (2.23).

In order to make mn.x/ a local average,Wˇ;n.x/ has to give larger weights to those
h.Yˇ / is close to x. For this general class of conditional U -statistics (defined in
(2.3)) and for i.i.d. random variables, [8] derived the universal consistency. Harel
and Puri [4] extended his results from the i.i.d. case to the absolute regular case.
In this paper, we extend it to the nonstationary case and absolutely regular r.v.’s
which allow broader applications that include, among others, hidden Markov models
(HMM) described in detail in [4].

We shall call Wˇ;n universally consistent if and only if

mn.X/ ! m.X/ in Lr

under no conditions on h (up to integrability) or the distribution of f.Xi ; Yi /; i � 1g.
Here XD.X01 ; : : : ; X0k / is a vector ofX ’s with the same distribution as .X1; : : : ; Xk/
and independent of f.Xi ; Yi /; i � 1g.

2.2 Preliminaries

Let .Zi /i�1 be a stochastic process indexed by the positive integers, taking value
in a finite dimensional Euclidean space H. Identifying H with a product of a finite
number copies or the real line, we write Hi for the distribution function of Zi . We
will assume that the process has some form of asymptotic stationarity, implying that
the sequence Hi converges in a sense to be made precise to a limiting distribution
functionH .

For i � j , let Aji denote the 	-algebra of events generated by Zi ; : : : ; Zj . We
shall say that the nonstationary stochastic process is absolutely regular if

sup
n2N�

max
1�j�n�k

E

8
<
: sup
A2A1

j Ck

ˇ̌
P.A j Aj1/ � P.A/ˇ̌

9
=
; D ˇ.k/? # 0 as n ! 1

where N
� D f1; 2; : : :g:

All along the paper, we assume that .?/ holds with a geometrical rate;
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X
m�1

mˇ
ı

1Cı .m/ < 1 for some ı > 0: (2.4)

We consider a parameter � in H whose components can be naturally estimated by
U-statistics. To be more formal and precise, we assume that � is defined as follows.
Let k be an integer, to be the degree of the U-statistics. Let � be a function from H

k

into H, invariant by permutation of its arguments. We are interested in parameters
of the form

� D
Z

Hk

� dH˝k D
Z

Hk

�.z1; : : : ; zk/
kY
lD1

dH.zl/: (2.5)

and the function � is called the kernel of the parameter �:

Example 2.1. Take H to be R. The mean vector corresponds to taking k D 1 and �
is the identity.

Example 2.2. Take H to be R
2. Consider � to be the two-dimensional vector whose

components are the marginal variances. We take k D 2 and � is going to be
a function defined on .R2/2. It has two arguments, each being in R

2, and it is
defined by

�
�
.u; v/; .u0; v0/

� D
 

u2 C u02

2
� uu0;

v2 C v02

2
� vv0

!
:

Such a parameter can be estimated naturally by a U-statistics, essentially replac-
ing H˝k in .5/ by an empirical counterpart. By using the invariance of �, the
estimator of � is then of the form

b�n D
 
n

k

!�1X
ˇ

�.Zˇ1
; : : : ; Zˇk

/: (2.6)

To specify our assumption on the process, it is convenient to introduce copies
of H. Hence we write Hi ; i � 1, an infinite sequence of copies of H. The basic idea
is to think of the process at time i as taking value in Hi and we think of each Hi as
the i th component of H

1: We then agree on the following definition.

Definition 2.1. A canonical p-subspace of H
1 is any subspace of the form Hi1 ˚

: : :˚ Hip with 1 � i1 < � � � < ip. We write Sp for a generic canonical p-subspace.

Remark 2.2. For .i1; : : : ; ip/ ¤ .j1; : : : ; jp/, if we note Sp D Hi1 ˚ : : :˚ Hip and
S

0
p D Hj1

˚ : : :˚ Hjp
, we have Sp ¤ S

0
p, with Sp 	 H

1 and S
0
p 	 H

1:

The origin of this terminology is that when H is the real line, then a canonical
p-subspace is a subspace spanned by exactly p distinct vectors of the canonical



2 Asymptotic Behavior of the Universally Consistent Conditional U-Statistics 15

basis of H
1. We write

P
Sp�Hn for a sum over all canonical p-subspaces included

in H
n.

To such a canonical subspace Sp D Hi1 ˚ : : :˚ Hip we can associate the distri-
bution function HSp

of .Zi1 ; : : : ; Zip / as well as the distribution function with the
same marginals

H˝Sp D ˝1�j�pHij D ˝Hi �Sp
Hi : (2.7)

Clearly the marginal of H˝Sp are independent, while that of HSp
are not.

Consider two nested canonical subspace Sp and Sk�p where Sk�p 	 H
n 
 Sp:

For a function � symmetric in its argument and defined on Sp˚Sk�p , we can define
its projection onto the functions defined on Sp by

z 2 Sp ! �.z;Sk�p/ D
Z

Sk�p

�.z; y/ dH˝Sk�p .y/: (2.8)

Identifying Sp ˚ Sk�p with H
k and H

p with Sp; that allows to project functions
defined on H

k onto functions on H
p: However, with this identification, the projec-

tion depends on the particular choice of Sk�p in H
n: To remove the dependence in

Sk�p ; we sum over all choices of Sk�p in H
n 
 Sp by

�Sp
.z/ D

 
n � p

k � p

!�1 X
Sk�p�Hn	Sp

�.z;Sk�p/: (2.9)

Let k be an integer and for each n � k, consider a kernel �n � � of degree k
depending on n.

A U-statistics of degree k is defined by

Un D
 
n

k

!�1X
ˇ

�n.Zˇ1
; : : : ; Zˇk

/, (2.10)

we can then define an analogue of Hoeffding decomposition when the random vari-
ables come from a nonstationary process. For this purpose, consider, firstly, an
expectation of Un if the process had no dependence, namely,

Un;0 D
 
n

k

!�1 X
Sk�Hn

Z

Sk

� dH˝Sk : (2.11)

Then for any p D 1; : : : ; k, we define

Un;p D
 
n

p

!�1 X
Sp�Hn

Z

Sp

�Sp
d ˝Hi �Sp

.ıZi
�Hi / (2.12)

where ıf:g is the Dirac function.
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Finally, for p > k, we set
Un;p D 0: (2.13)

The analogue of Hoeffding decomposition is the equality

Un D
X

0�p�k

 
k

p

!
Un;p: (2.14)

Note that this decomposition makes an explicit use of convention (2.13), and this is
why this convention was introduced.

We now need to specify exactly what we mean by asymptotic stationary of a pro-
cess. For this, recall the following notion of distance between probability measures.

Definition 2.2. The distance in total variation between two probability measures
P andQ defined on the same 	-algebra A is

jP �QjA D sup
A2A

jP.A/�Q.A/j:

If Sp is a canonical subspace of H
1, we write 	Sp

the 	-algebra generated by the
Zi ’s with Hi 	 Sp . We write P the probability measure pertaining to the process
.Zi /i�1, which is a probability measure on H

1.

Definition 2.3. The process .Zi /i�1 with probability measure P on H
1 is geo-

metrically asymptotically stationary if there exists a strictly stationary process with
distributionQ on H

1, and a positive 
 less than 1, such that for i � 1,

jP �Qj�Hi
� 
 i : (2.15)

We suppose that there exists a strictly stationary process .Z�
i /i�1 with probabil-

ity measureQ on H
1, which is absolutely regular with the same rate as the process

.Zi /i�1. H is the distribution function of Z�
i , H admits a strictly positive density

and H has the two marginals F and G:
We define the function �� on H1 by

z 2 H1 7! ��.z;Hk 
 H1/ D
Z

Hk	H1

�.z; y/ dH˝.k�1/: (2.16)

Next, we denote

U �
n;1 D n�1

nX
iD1

Z

H1

��d.ıZ�

i
�H/:

2.3 Assumptions and Main Results

In this section, we identify H D H
0 � H

00 with R
d � R

s. For a generic canonical
p-subspace Sp of H

1, we write S1;k and S2;k its projections respectively in H
01

and H
001.
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We consider the nonstationary sequence of random vectors fZi D .Xi ; Yi /I i 2
N

�g with values in R
d � R

s and continuous distribution functions Hi and Hi has
the two marginals Fi and Gi .

We assume that the sequence fZi gi�1 is absolute regular with rates (2.4) and
(2.15) is satisfied with its associated stationary sequence feZi D .eX i ;eY i /I i 2 N

�g
of stationary random vectors.

For the ease of convenience, we shall write Wˇ forWˇ;n.
Consider the following set of assumptions:

(i) There exists functions Vn.x; y/ on R
2dk such that for each l 2 L�

r , z.n/ D
.z1; : : : ; zn/ 2 R

dn and y.n/ D .y1; : : : ; yn/ 2 R
sn

X
ˇ

Wn.x; zˇ /l.yˇ / D
P
ˇ Vn.x; zˇ /l.yˇ /P
ˇ Vn.x; zˇ /

where zˇ D .zˇ1
; : : : ; zˇk

/ and yˇ D .yˇ1
; : : : ; yˇk

/:

(ii) There exists a function V.x/ on R
dk such that for each scalar function q on R

dk

verifying Z
jV.x/q.x/jrdF˝k.x/ < 1

we have

lim
n!1

 
n

k

!�1 X

S1;k�H0n

Z

S1;k

q.z/Vn.x; z/dF˝S1;k .z/ D q.x/ Qf .x/
Z
V.z/dz

where Qf .x/ D Qk
jD1 f .xj / and f is the density function of F .

(iii) Define the kernel of degree k by

�n.z; y/ D h.y/Vn.x; z/
.Z

Vn.x;u/dF˝k.u/:

Suppose that

sup
Sk�H1

Z

Sk

j�nj2C2ı dP�Sk
< 1 (2.17)

sup
Sk�H1

Z

Sk

j�nj2C2ı dQ�Sk
< 1 (2.18)

where ı > 0.

Remark 2.3. Our conditions (i) and (ii) are completely different from conditions
(ii) to (v) in [8]. Our conditions are more general and more easy to verify. More, the
condition (i) in [8] is not necessary.

The following theorems generalize Theorems 2.1, 2.2, 2.3 and 2.4 in [4] from the
stationary dependent case to the nonstationary dependent case.
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Theorem 2.1. Assume that h 2 L�
r . Then under (i)–(iii), (2.4) and (2.15),

mn.X/ ! m.X/ in Lr ; as n ! 1;

where r D 2C 2ı, that is

E Œjmn.x/�m.x/jr�.dx/� ! 0 as n ! 1 (2.19)

where � denotes the distribution of .X1; X2; : : : ; Xk/.

Corollary 2.1. Under the conditions of Theorem 2.1 and (2.34) in Sect. 2.4, mn.x/
! m.x/ with probability one for �-almost all x.

Remark 2.4. In [4], we supposed that h is bounded, this condition is not necessary
now.

Theorems 2.2 and 2.3 deal with two special cases: window weights and NN-weights.
Consistency of window estimates for the regression function has been obtained
by [2] and [5]. NN-weights for the regression function have been studied in [6],
Theorem 2.

In what follows, j � j denotes the maximum norm on R
d . We also write

kXˇ � xk WD max
1�i�k

jXˇi
� xi j:

To define window weights, put (see [8])

Wˇ .x/ D
(

1lŒkXˇ�xk�hn
=
P
ˇ 1lŒkXˇ�xk�hn
 if well defined

0 otherwise:
(2.20)

Here hn > 0 is a given window size to be chosen by the statistician. Then we have
the following results:

Theorem 2.2. Assume hn ! 0 and nhdn ! 1 as n ! 1. Then, under the
conditions (2.4) and (2.15), we have

mn.X/ ! m.X/ in Lr ;

where Wˇ .x/ in (2.3) is given by (2.20).

For the NN-weights, recall that Xj is among the knNN of x 2 R
d if dj .x/ WD

kXj � xk is among the kn-smallest ordered values d1Wn.x/ � : : : � dnWn.x/ of the
d’s. Ties may be broken by randomization.

For a given 1 � kn � n, set

Wˇ .x/ D
�
k�d
n if Xˇi

is among the kn � NN of xi for 1 � i � k

0 otherwise:
(2.21)
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Theorem 2.3. Assume that kn ! 1 and kn=n ! 0 as n ! 1. Then, under the
conditions (2.4) and (2.15), we have

mn.X/ ! m.X/ in Lr ;

where Wˇ .x/ in (2.3) is given by (2.21).

We now consider as estimator of m.x/, the statistics of the form

mn.x/ D un.x/ (2.22)

where un.x/ is defined in (2.2). Then, in view of (2.3) we have

Wˇ;n.x/ D
Qk
jD1KŒ.xj � Xˇj

/=hn�P
ˇ

Qk
jD1KŒ.xj � Xˇj

/=hn�
(2.23)

where K.x/ is a so-called smoothing kernel satisfying
R
K.u/du D 1 and

limu!1 jujK.u/ D 0 and fhn; n � 1g is a sequence of bandwidths tending to
zero. This special case was studied by [7] for i.i.d. random variables, and from
Theorem 2.1, we can generalize his result for nonstationary dependent random vari-
ables. The following theorem establishes that the universal consistency still holds
for conditional U-statistics involving kernel K and a sequence of bandwidth hn.

Theorem 2.4. Assume that hn ! 0 and nhdn ! 1 as n ! 1. Then, under the
conditions (2.4) and (2.15), we have

mn.X/ ! m.X/ in Lr ;

where m.x/ is given (2.1).

2.4 Proof of Theorems and Corollary 2.1

First, we show thatmn is the ratio of two U -statistics. Let x D .x1; : : : ; xk/ be fixed
throughout. Let

Un.h; x/ D Un.x/ D Un D
 
n

k

!�1X
ˇ

h.Yˇ /Vn.x;Xˇ /
.Z

Vn.x;u/dF˝k.u/:

Hencemn.x/ D Un.h; x/
ı
Un.1; x/ and Un.h; x/, for each n � k, is a nonstationary

U -statistic as defined in (2.10) with a hind depending on n.
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Consider the sequence of functionals

�n.h; x/ � �n D
 
n

k

!�1 X
Sk�Hn

Z

Sk

�ndH
˝Sk

where �n is defined in (iii).
Note that �n D E.Un/:

The decomposition defined in (2.14) can be written as

Un D �n C
kX
pD1

 
k

p

!
Un;p

where Un;p is defined as in (2.12).
To prove Theorem 2.1, the following lemmas are needed.

Lemma 2.1. Under the conditions of Theorem 2.1

E.Un;p/
2 D O.n�2/:

Proof. We shall consider the case p D 2: The proofs in the cases c D 3; : : : ; k

are analogous and so they are omitted.
We first note that

Un;2 D
 
n

2

!�1 X
S2�Hn

Z

S2

�S2
d˝Hi �S2

.ıZi
�Hi /

so we have

E.Un;2/
2 D

 
n

2

!�1 X
1�i1<i2�n

X
1�l1<l2�n

J..i1; i2/; .l1; l2//

where

J..i1; i2/; .l1; l2// D E

	Z

S2

�S2
d˝1�j �2Hij

.ıZij
�Hij /

�
Z

S 0

2

�S 0

2
d˝1�m�2Hlm

.ıZlm
�Hlm/

!

S2 D Hi1 ˚ Hi2 and S 0
2 D Hl1 ˚ Hl2 :

So from condition (2.4) and condition (iii), we have from Lemma 2.1 in [10] the
inequalities:
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(i) If 1 � i1 < i2 � l1 < l2, then

J..i1; i2/; .l1; l2// � M fˇ.l2 � l1/g ı
1Cı I l2 � l1 � i2 � i1 (2.24)

and

J..i1; i2/; .l1; l2// � M fˇ.i2 � i1/g ı
1Cı I i2 � i1 � l2 � l1 (2.25)

where M is a finite positive constant.
Thus, using (2.24) and (2.25), we obtain

ˇ̌
ˇ̌
ˇ̌

X
1�i1<i2�l1<l2�n

J..i1; i2/; .l1; l2//

ˇ̌
ˇ̌
ˇ̌ D O.n2/: (2.26)

Similarly
(ii) If 1 � i1 < l1 < i2 < l2 � n, then

ˇ̌
ˇ̌
ˇ̌

X
1�i1<l1<i2<l2�n

J..i1; i2/; .l1; l2//

ˇ̌
ˇ̌
ˇ̌ D O.n2/: (2.27)

(iii) If 1 � i1 < l1 � l2 < i2 � n, then

ˇ̌
ˇ̌
ˇ̌

X
1�i1<l1�l2<i2�n

J..i1; i2/; .l1; l2//

ˇ̌
ˇ̌
ˇ̌ D O.n2/: (2.28)

From (2.26), (2.27) and (2.28), we obtain

E.Un;2/
2 D O.n�2/:

Thus the result for the case p D 2 is proved. ut
Lemma 2.2. Under the condition of Theorem 2.1, for �-almost all x

�n.h; x/
�n.1; x/

! m.x/; n ! 1:

Proof. By definition, we have

�n.h; x/ � � D
 
n

k

!�1 X
Sk�Hn

Z

Sk

�ndH
˝Sk :
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Put

� 0
n.h; x/ D

 
n

k

!�1 X

Sk�H0n

Z

Sk

h.y/Vn.x; z/dF˝Sk .y; z/:

From condition (2.15), we deduce

j�n.h; x/� � 0
n.h; x/j ! 0 as n ! 1: (2.29)

From condition (ii) in Sect. 2.3, we have

lim
n!1

 
n

k

!�1 X

S1;k�H0n

Z

S1;k

m.z/Vn.x; z/dF˝S1;k .z/ D m.x/ Qf .x/
Z
V.z/dz

(2.30)

and so

lim
n!1

 
n

k

!�1 X

S1;k�H0n

Z

S1;k

Vn.x; z/dF˝S1;k .z/ D Qf .x/
Z
V.z/dz: (2.31)

By definition, we have

�n.h; x/ D
 
n

k

!�1 X

Sk�H0n

Z

Sk

h.y/Vn.x; z/dF˝Sk .y; z/

D
 
n

k

!�1 X

Sk�H0n

Z

S1;k

 Z

S2;k

E.h.y/jX D z/Vn.x; z/dG˝S2;k .y/

!

� dF˝S1;k .z/

D
 
n

k

!�1 X

S1;k�H0n

Z

S1;k

m.z/Vn.x; z/dF˝S1;k .z/: (2.32)

From (2.29)–(2.32), we deduce easily that

�n.h; x/
�n.1; x/

! m.x/; n ! 1:

To prove Theorem 2.1, from Lemmas 2.1 and 2.2, we now have to show that for
�-almost all x,

Un;1.h; x/ ! 0 in probability:
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Since

Un;1.h; x/ D n�1 X
S1�Hn

Z

S1

�S1
d ˝Hi �S1

.ıZi
�Hi /

D n�1
nX
iD1

Z

Hi

�Hi
d.ıZi

�Hi /

we have

E.Un;1/
2 D n�2E

 
nX
iD1

Z

Hi

�Hi
d.ıZi

�Hi /

!2

D n�2
nX
iD1

E

	Z

Hi

�Hi
d.ıZi

�Hi /

2

C 2n�2 X
1�i<j�n

E

( 	Z

Hi

�Hi
d.ıZi

�Hi /




�
 Z

Hj

�Hj
d.ıZj

�Hj /
!)

:

From Lemma 2.1 of [10] and condition (iii), we have

E.Un;1/
2 � 2n�2nM.2; h/C 4n�2M

1
1Cı .r; h/

nX
pD1

.p C 1/ˇ
ı

1Cı .p/

D O.n�1/

where M.t; h/ D Efsupˇ j�n.Xˇ ;Yˇ /jt g, which implies

E.Un;1/
2 D O.n�1/: (2.33)

From Lemmas 2.1 and 2.2 and from (2.33), we have

Un.h; x/ ! m.x/ Qf .x/
Z
V.z/dz

and

Un.1; x/ ! Qf .x/
Z
V.z/dz in probability

as n ! 1 for �-almost all x.
It remains to prove the uniform integrability.
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It is an easy convergence of the Jensen’s inequality

sup
n2N�

E

8
<
:

2
4X

ˇ

Vn.X;Xˇ /jh.Yˇ /j=
X
ˇ

Vn.X;Xˇ /

3
5
r9=
;

� sup
n2N�

E

8
<
:
X
ˇ

Vn.X;Xˇ /jh.Yˇ /jr=
X
ˇ

Vn.X;Xˇ /

9
=
;

� E

(
sup
ˇ

jh.Yˇ /jr
)
< C1:

and Theorem 2.1 is proved.
The proof of Corollary 2.1 is a consequence of Lemma 2.1 and Lemma 2.3 below.
For a d -dimensional vector V , consider the norm kV k D max1�j�d jV .j /j. This

norm is equivalent to the Euclidian norm and easy to work with here. We will use
this norm in Lemma 2.3 below see also [1].

Lemma 2.3. Let .Vn/n�1 be a sequence of d -dimensional centered absolutely
regular and non necessarily stationary random vectors with rate satisfying

X
i�1
.i/

r�ı
2 Œˇ.i/�

ı
r < 1 (2.34)

sup
i�1

E.kVikr / < 1: (2.35)

Then

n�1
nX
iD1

Vi ! 0 with probability 1, as n ! 1:

Proof. For � > 0,

P

 
1

n

nX
iD1

��Vi
�� � �

!
D P

 
max
1�j�d

ˇ̌
ˇ̌
ˇ
1

n

nX
iD1

V
.j /
i

ˇ̌
ˇ̌
ˇ � �

!

�
X

1�j�d
P

 ˇ̌
ˇ̌
ˇ
1

n

nX
iD1

V
.j /
i

ˇ̌
ˇ̌
ˇ � �

!
: (2.36)

For all 1 � j � d , one has from Markov’s inequality that

P

 ˇ̌
ˇ̌
ˇ
1

n

nX
iD1

V
.j /
i

ˇ̌
ˇ̌
ˇ � �

!
� 1

�rnr
E

 ˇ̌
ˇ̌
ˇ
nX
iD1

V
.j /
i

ˇ̌
ˇ̌
ˇ
r!
: (2.37)
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By Lemma 5.2 of [3], one has that

E

 ˇ̌
ˇ̌
ˇ
nX
iD1

V
.j /
i

ˇ̌
ˇ̌
ˇ
r!

� Cnr=2: (2.38)

From the above two inequalities, one deduces that

E

 ˇ̌
ˇ̌
ˇ
nX
iD1

V
.j /
i

ˇ̌
ˇ̌
ˇ
r!

� C

�r
nr=2: (2.39)

Since r=2 > 1, the last inequality implies that for all 1 � j � d ,

X
n�1

P

 ˇ̌
ˇ̌
ˇ
1

n

nX
iD1

V
.j /
i

ˇ̌
ˇ̌
ˇ � �

!
< 1

which, in turn, implies that

X
n�1

P

 �����
1

n

nX
iD1

Vi

����� � �

!
< 1:

Lemma 4.3 then follows by Borel–Cantelli theorem.
The proofs Theorems 2.2 to 2.4 are also consequences of Theorem 2.1 by using

technics similar as in the proofs of Theorem 2.2 to Theorem 2.4 in [4]: that is to
verify that conditions (i)–(iii) are satisfied.
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Chapter 3
Regression Models with STARMA Errors:
An Application to the Study of Temperature
Variations in the Antarctic Peninsula

Xiaoqi Gao and T. Subba Rao

Abstract Motivated by spatio-temporal problems that occur in many areas such as
environment, geography etc., we propose multivariate regression models with space-
time ARMA errors. The methods of model identification and estimation are studied.
The asymptotic properties of the estimators have been derived and simulations are
provided. The methodology is applied to the analysis of monthly mean surface tem-
peratures at five locations in the Antarctic Peninsula. This area of Antarctic is of
great concern to climatologists, as it is believed that there is higher rate of warming
compared to the rest. During the period from January 1978 to December 1998, the
temperatures at all the five locations in the Antarctic Peninsula have increased. Sub-
stantial warming were detected at Faraday/Vernadsky and Rothera stations with the
warming rate of 1.07 ıC/decade and 1.08 ıC/decade respectively and both trends are
significant at level 1%.

3.1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) confirmed that the global
average surface temperature has increased by 0:6˙0:2 ıC since the late 19th century
(see [4]). Though the earth is unequivocally warming, the geographical patchiness
of the recent climate change is evident since it has been reported that the Antarc-
tic Peninsula (the northern most part of the mainland of Antarctica) is one of the
rapid warming areas in recent 50 years (see [4]). Since the temperature records
at industrial areas may be masked by both the increased concentrations of short-
lived sulphate aerosols and the heating of urban meteorological stations, it has
been suggested by [13] that the temperature trends of Antarctic stations are a par-
ticularly important indicator of climate change. Furthermore, the warming of the
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coastal areas in the Antarctic will lead to a collapse of ice shelves which results
in an increase of sea level. Therefore, the analysis of temperatures at the Antarctic
Peninsula is critical for understanding the dynamic behavior of climate change.

There are a number of recent studies concerned with the temperature trends of
the Antarctic Peninsula (see, e.g., [12, 13]). These studies agree that the Antarctic
Peninsula is warming and the statistically significant warming happened at Fara-
day/Vernadsky and Orcadas stations with the rates of 0.5 ıC/decade and 0.2 ıC/
decade respectively. These trends were obtained by fitting a simple least square
regression model with independent errors. Since the temperature series is obvi-
ously temporally autocorrelated, the significance of the trend using the adjusted
t-test [9, 11] is not appropriate.

It is widely believed that besides temporal autocorrelation in the temperatures
at each location, there is a strong correlation between spatial locations (see [5]). In
time series modeling, these facts need to be taken into account. In view of this, the
temperatures at different locations in the Antarctic Peninsula is obviously a spatio-
temporal problem. Based on the belief that we will have a better insight into the
dynamics by including spatial information in modeling rather than analyzing each
series separately, we propose a multivariate regression model with correlated errors
having spatio-temporal structure which takes into account both spatial dependen-
cies and temporal autocorrelations. Several approaches have been proposed for the
analysis of spatio-temporal processes but we prefer space-time autoregressive mov-
ing average (STARMA) models (see [7]) since these models are parsimonious and
have been widely used for the data analysis in many areas of research, such as
meteorology [9], criminology [7] and air pollution [1] etc.

The data we used in this paper is described in Sect. 3.2. Section 3.3 introduces
the multivariate regression models with STARMA errors. The model estimation,
selection of orders, and the diagnostic checking are also included in this sec-
tion. The asymptotic properties and simulations of the estimators are considered in
Sects. 3.4 and 3.5. The application of this model to the analysis of the temperatures
in the Antarctic Peninsula is considered in Sect. 3.6. The results are summarized in
Sect. 3.7.

3.2 Data

The Scientific Committee on Antarctic Research (SCAR), an inter-disciplinary com-
mittee of the International Council for Science (ICSU), established a Reference
Antarctic Data for Environmental Research project which produced a database
called READER. The database is posted on the following website: http://www.
antarctica.ac.uk/met/READER/

The database consists of monthly mean surface temperatures of several Antarc-
tic meteorological stations for recent decades. Temperatures are recorded in Celsius
scale. The monthly mean data are computed using the mean of the 6-hourly syn-
optic observations. The longitude and latitude of each station are also provided by

http://www.antarctica.ac.uk/met/READER/
http://www.antarctica.ac.uk/met/READER/
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READER. The details of the database and the quality control of the observations is
discussed by [12].

There are some missing values in the database. Each missing value is estimated
by taking the average of previous two observations and next two observations in the
same month of this location. For example, the estimate of the missing value in June
1995 can be obtained by taking the average of the observations in June 1993, June
1994, June 1996 and June 1997. To obtain reliable data, we only consider continuous
periods without many missing values.

The database includes records from research stations and automatic weather sta-
tions. Since most automatic weather stations only have very short records (since
1990), we will not include these stations in our analysis. Table 3.1 shows the
location and available records of the five meteorological stations in the Antarctic
Peninsula. In our spatio-temporal analysis, we use the same period for the temper-
atures analysis at different locations. To keep the balance between longer records
and more locations, we decide to use the temperatures at Bellingshausen, Maram-
bio, Faraday/Vernadsky, Orcadas and Rothera over the period from January 1978 to
December 1998 in our analysis (the observations from January 1999 to December
2000 will be used for the prediction purpose).

Suppose we have two locations A and B , with latitude .�1; �2/ and longitude
.�1; �2/ respectively, then the great circle distance between A and B is given by:

3693:0 arccosŒsin �1 sin �2 C cos�1 cos�2 cos.�1 � �2/�; (3.1)

where 3963:0 is the radius (in miles) of the spherical earth. Therefore, the pairwise
distances of the above five stations are given in Table 3.2.

Table 3.1 The list of selected locations
No. Meteorological station Period Latitude Longitude

1 Bellingshausen Jan 1969–Dec 2008 62.2S 58.9W
2 Marambio Jan 1971–Dec 2003 64.2S 56.7W
3 Faraday/Vernadsky Jan 1951–Dec 2006 65.4S 64.4W
4 Orcadas Jan 1904–Dec 2000 60.7S 44.7W
5 Rothera Jan 1978–Dec 2008 67.5S 68.0W

Table 3.2 Distances (in miles) between different sites at the Antarctic Peninsula
Site Bellingshausen Marambio Faraday/Vernadsky Orcadas Rothera

Bellingshausen 0.000 155.6 281.3 498.9 459.8
Marambio 155.6 0.000 248.3 465.5 402.1
Faraday/Vernadsky 281.3 248.3 0.000 713.7 179.3
Orcadas 498.9 465.5 713.7 0.000 860.2
Rothera 459.8 402.1 179.3 860.2 0.000
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3.3 Multivariate Regression Models with Space-Time
ARMA Errors

3.3.1 The Model

Let Yit denote the observation at time t at location i where i D 1; : : : ; N . Let
X t D .X1t ; : : : ; Xrt /

0 be a deterministic vector of covariates at time point t
.t D 1; 2; : : : ; T /. Let Y t D .Y1t ; : : : ; YNt /

0 then Y t follows multivariate regres-
sion models with space-time ARMA .p�1;:::;�p

; qm1;:::;mq
/ errors if it can be written

in the form:

8
<̂
:̂

Y t D f .X t ; ˇ/CZt

Zt D
pP
kD1

�kP
lD0

�klW
.l/Zt�k C

qP
kD1

mkP
lD0

�klW
.l/"t�k C "t

(3.2)

where t D hC 1; : : : ; T and h D max.p; q/.
Though the methodology to be described here can cope with nonlinear regres-

sion model, here we will restrict ourselves to the linear regression models. For
convenience, we assume:

Y t D BX t CZt

and we consider STARMA (p�1;:::;�p
; qm1;:::;mq

) models for Zt .
In model (3.2), p is the autoregressive order and q is the moving average order.

�k is the spatial order of the kth autoregressive term and mk is the spatial order of
the kth moving average term. The scalars �kl and �kl are the autoregressive and
moving average parameters at temporal lag k and spatial lag l respectively. W .l/

is a non-zero N � N known weighting matrix at spatial lag l . Furthermore, f"t g is
assumed to be i.i.d. random vectors, with:

E."t / D 0

and

E."t"
0
tCs/ D

�
˙"; s D 0

0; s ¤ 0:

It is further assumed that the zeros of

det

0
@IN C

pX
kD1

�kX
lD0

�klW
.l/zk

1
A and det

0
@IN C

pX
kD1

�kX
lD0

�klW
.l/zk

1
A
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are outside the unit circle, which ensure the invertibility and the existence of a
weakly stationary solution to the space-time ARMA models given by (3.2). We also
assume that the above polynomials have no common zeros.

We have to define the weighting matrix based on the knowledge of the physical
features of the spatial locations. Since the system under study is irregularly spaced,
one reasonable approach to define the weighting matrices is to assume the spatial
orders �k D 1 and mk D 1 for all k and we have:

W .0/ D IN and W .1/ D W

and the .i; j /th element of W is given by:

wij D
�
1=dij i ¤ j
0 i D j

(3.3)

where dij is the distance between the sites i and j . The weights are also scaled such

that
NP
jD1

wij D 1, for each i D 1; 2; : : : ; N .

Such a definition of the weighting matrix is based on a reasonable idea: the tem-
peratures from site i and j .i; j D 1; : : : ; N / which are close to each other will be
more correlated. Hence, a greater weight of the effect of temperatures at site j will
be considered when we want to estimate the temperatures at site i .

By considering the particular weighting matrix described above and by restricting
the function f .X t ; ˇ/ to be linear, the model we consider, as a special case of the
model (3.2), is given by:

8
<̂
:̂

Y t D BX t CZt

Zt D
pP
kD1

.�k0IN C �k1W /Zt�k C
qP
lD1
.�l0IN C �l1W /"t�l C "t

(3.4)

where t D h C 1; : : : ; T and h D max.p; q/. B is a N � r matrix of unknown
regression parameters. The Bm;n (m D 1; : : : ; N In D 1; : : : ; r) element of the
parameter matrixB represent the effect of the nth covariate on themth location. The
scalars �k0, �k1 and �k0, �k1 are the autoregressive and moving average parameters
at temporal lag k and spatial lag 0 and 1.W is a non-zeroN �N known weighting
matrix which is defined in (3.3). f"tg is assumed to satisfy the conditions stated
earlier. To ensure that there exists a weakly stationary solution and the invertibility
is satisfied, similar conditions as model (3.2) are imposed.

3.3.2 Model Estimation and Model Selection

The model selection is done in two stages. Firstly, we choose the appropriate covari-
ates in (3.4) under the assumption that fZtg are i.i.d. Then the residuals f OZtg
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are obtained by using least square estimation. We assume f OZt g follows a pure
STARMA models and the autoregressive order p and the moving average order
q are determined by minimizing BIC criterion given by:

T ln j Ȯ
"j C 2k ln.T / (3.5)

where k is the number of parameters in the STARMA model. T is the number of
observations and Ȯ

" is the estimate of the covariance matrix of f"t g obtained by the
methods of model estimation described later.

Suppose the autoregressive order p and the moving average order q have been
identified, to estimate the regression parametersBm;n; .mD 1; : : : ; N InD 1; : : : ; r/,
the autoregressive parameters �k0, �k1 .k D 1; : : : ; p/ and the moving aver-
age parameters �l0, �l1 .l D 1; : : : ; q/ in model (3.4), the weighted least square
estimation procedure is used. The weighted sum of squares is defined by:

S D
TX

tDhC1
"0
t

Ȯ �1
" "t ; t D hC 1; : : : ; T (3.6)

where

"tDY t�BX t�
pX
kD1

.�k0IN C �k1W /.Y t�k � BX t�k/�
qX
lD1
.�l0IN C �l1W /"t�l

and Ȯ
" is the current estimate of the covariance matrix of "t .

The weighted sum of squares can be minimized by using Newton–Raphson tech-
nique. This technique provides iterative estimates of the parameters (see [6]) but
good initial estimates are still necessary. The initial estimate of regression param-
eter B is obtained by assuming that Zt is a sequence of independent random
variables. For the regression model with STAR errors, the initial estimates of autore-
gressive parameters are obtained by regressing OZt on OZt�1, W OZt�1; : : : ; OZt�p,

W OZt�p. For the regression model with STARMA errors, we first generate fO"tg
through a regression model with high order STAR errors, then the initial esti-
mates of autoregressive and moving average parameters are given by regressing OZt
on OZt�1;W OZt�1; O"t�1;W O"t�1 : : : : The details of the procedure to find the initial
estimates for STARMA models was described in [10].

When the fitted model is obtained, it is important to test whether the residuals fO"tg
are independent. The sample space-time autocovariance function of O"t is defined by:

b� lk.s/ D trace

 
ŒW .k/�0W .l/ ḃ

".s/

N

!

where

ḃ
".s/ D

T�sX
tD1

.O"t � O"/.O"tCs � O"/0
T � s

:
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The sample space-time autocorrelation function is given by:

O�lk.s/ D b� lk.s/
Œb� l l.0/b�kk.0/�1=2

:

Pfeifer and Deutsch [7] suggested that specific patterns can be observed by plotting
O�l0.s/,.s D 1; 2; : : :/ for l D 0; 1, if residuals fO"t g are autocorrelated.

3.4 Asymptotic Properties and Simulations

Now we consider the model (3.4) described above. In this model, suppose "t D
."1t ; : : : ; "Nt /

0 and covariate vector X t D .X1t ; : : : ; Xrt /
0. Let wij denote the

.i; j /th element of the weighting matrix W. The weighted sum of squares in (3.6)
is denoted by S . To derive the asymptotic properties of the least square estimates of
the model (3.4), we make the following assumptions:


 f"tg are i.i.d. with mean zero and variance 	2IN .

 The zeros of

det

 
IN C

pX
kD1

.�k0 C �k1W /z
k

!
and det

 
IN C

pX
kD1

.�k0 C �k1W /z
k

!

are outside the unit circle.

 E.Z0

t�kZt�k0/ is finite for k; k0 D 1; : : : ; p.

 The covariates Xi t are bounded, and further for fixed i; j D 1; : : : ; r and k; l D
1; : : : ; p

lim
T!1

1

T

TX
tDhC1

Xi.t�k/Xj.t�l/

exists and the r � r matrix with .i; j /th element given by lim
T!1

1
T

TP
tDhC1

Xi tXjt ,

is positive definite.

Furthermore, we assume ˙" D 	2IN for simplicity. Under this assumption, the
sum of squares is given by:

S D 1

	2

TX
tDhC1

O"0
t O"t ; t D hC 1; : : : ; T:

Theorem 3.1. Suppose � D fBm;n; �k0; �k1; �l0; �l1g, with m D 1; : : : ; N In D
1; : : : ; r I k D 1; : : : ; pI l D 1; : : : ; q. The least squareestimates O� areasymptotically
normally distributed with mean � and with covariance matrix given by:
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2

T
C�1 D 2

T

2
666664

C11 0 0 0 0
0 C22 C23 C24 C25
0 C32 C33 C34 C35
0 C42 C43 C44 C45
0 C52 C53 C54 C55

3
777775

�1

where

C11 D lim
T!1

1

T

@2S

@Bm;n@Bm0;n0

D 2

	2
lim
T!1

1

T

TX
tDhC1

NX
iD1

@"i t

@Bm;n

@"i t

@Bm0;n0

with m;m0 D 1; : : : ; N In; n0 D 1; : : : ; r , and

C22 D E

	
1

T

@2S

@�k0@�k00



D 1

T	2

TX
tDhC1

2E.Z0
t�kZt�k0/

C33 D E

	
1

T

@2S

@�k1@�k01



D 1

T	2

TX
tDhC1

2E..WZt�k/0WZt�k0/

C23 D C32 D E

	
1

T

@2S

@�k0@�k01



D 1

T	2

TX
tDhC1

2E..WZt�k/0Zt�k0/

with k; k0 D 1; : : : ; p, and

C44 D E

	
1

T

@2S

@�l0@�l 00



D 1

T	2

TX
tDhC1

2E."0
t�l"t�l 0 C "0

t�l�l 0"t /

C55 D E

	
1

T

@2S

@�l1@�l 01



D 1

T	2

TX
tDhC1

2E..W "t�l/0W "t�l 0 C .W "t�l�l 0/0W "t /

C45DC54DE
	
1

T

@2S

@�l0@�l 01



D 1

T	2

TX
tDhC1

2E..W "t�l/0"t�l 0 C .W "t�l�l 0/0"t /
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with l; l 0 D 1; : : : ; q, and

C24 D C42 D E

	
1

T

@2S

@�k0@�l0



D 1

T	2

TX
tDhC1

2E.Z0
t�k"t�l/

C35 D C53 D E

	
1

T

@2S

@�k1@�l1



D 1

T	2

TX
tDhC1

2E..WZt�k/0W "t�l/

C25 D C52 D E

	
1

T

@2S

@�k0@�l1



D 1

T	2

TX
tDhC1

2E..WZt�k/0"t�l/

C34 D C43 D E

	
1

T

@2S

@�k1@�l0



D 1

T	2

TX
tDhC1

2E..Zt�k/0W "t�l/:

Proof. To prove Theorem 3.1, we follow the method of [8] given for univariate
regression models with ARMA errors. We will first show that the first order deriva-
tives of S with respect to � evaluated at true values asymptotically converge to zero
and the second and third derivatives evaluated at true values converge to some con-
stants in probability. Then we verify that the estimates O� are consistent and evaluate
the covariance matrix by a first order Taylor expansion of the equation:

1

T

@S

@ O� D 0:

Finally we will establish the normality of the estimates.
As the first step to the proof for Theorem 3.1, we will show that:

1

T

@S

@�
! 0 in probability as T ! 1

where � D fBm;n; �k0; �k1; �l0; �l1g, m D 1; : : : ; N In D 1; : : : ; r I k D 1; : : : ; pI
l D 1; : : : ; q and h D max.p; q/.

Differentiating S with respect of Bm;n, we have:

@S

@Bm;n
D 2

	2

TX
tDhC1

NX
iD1

@"i t

@Bm;n
"i t
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where

@"i t

@Bm;n
D

8
ˆ̂<
ˆ̂:

�Xnt C
pP
kD1

.�k1wi i C �k0/Xn.t�k/ if i = m

pP
kD1

.�k1wi i C �k0/Xn.t�k/ if i ¤ m

"i t are independent with mean zero and @"it

@Bm;n
are finite and independent of "t .

Consequently, from the weak law of large numbers, we have:

1

T

@S

@Bm;n
! 0 in probability as T ! 1:

Differentiating S with respect of �k0, we have:

@S

@�k0
D 2

	2

TX
tDhC1

NX
iD1

@"i t

@�k0
"i t

where

@"i t

@�k0
D �Yi.t�k/ C

rX
nD1

Bi;nXn.t�k/ D �Zi.t�k/; for all i D 1; : : : ; N:

Let Mt D 2
�2

NP
iD1

Zi.t�k/"i t , using the Markov’s inequality, we have:

P

0
@
ˇ̌
ˇ̌
ˇ̌
1

T

TX
tDhC1

Mt

ˇ̌
ˇ̌
ˇ̌ � "

1
A � 1

"2
.T /�2E

0
@

TX
tDhC1

Mt

1
A
2

; for all " > 0:

It is easy to prove thatZi.t�k/"i t have zero mean and uncorrelated over time t . Since
Mt is sum of Zt�k.i/"i t , E.Mt / D 0 and E.MtMs/ D 0 for t ¤ s and we have:

E

0
@

TX
tDhC1

Mt

1
A
2

D
TX

tDhC1
E.Mt /

2 C 2
X
t>t 0

E.MtMt 0/ D
TX

tDhC1
E.Mt /

2;

for t; t 0 D hC 1; : : : ; T:

Furthermore, since E.Mt /
2 < 1, we have:

P

0
@
ˇ̌
ˇ̌
ˇ̌
1

T

TX
tDhC1

Mt

ˇ̌
ˇ̌
ˇ̌ � "

1
A � 1

"2
.T /�2

TX
tDhC1

E.Mt/
2 � 1

"2
T�1max.E.Mt/

2/:
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Therefore:

lim
T!1P

0
@
ˇ̌
ˇ̌
ˇ̌
1

T

TX
tDhC1

Mt

ˇ̌
ˇ̌
ˇ̌ � "

1
A D 0 for all " > 0

and hence:

1

T

TX
tDhC1

Mt D 1

T

@S

@�k0
! 0 in probability as T ! 1; for k D 1; : : : ; p:

Differentiating S with respect of �k1, we have:

@S

@�k1
D 2

	2

TX
tDhC1

NX
iD1

@"i t

@�k1
"i t

where

@"i t

@�k1
D �

NX
uD1

wiu.Yut �
rX
nD1

Bu;nXn.t�k// D �
NX

uD1
wiuZu.t�k/:

SinceW is a known matrix, the asymptotic properties of 1
T

@S
@�k1

is similar to 1
T

@S
@�k0

.
Therefore, the proof will be omitted.

Differentiating S with respect of �l0, we have:

@S

@�l0
D 2

	2

TX
tDhC1

NX
iD1

@"i t

@�l0
"i t where

@"i t

@�l0
D �"i.t�l/:

Since f"tg is a sequence of zero mean i.i.d. random variables, we have
E."i.t�l/"i t/ D 0 for l D 1; : : : ; q.

We can also prove that E."i.t�l/"i t ; "i.s�l/"is/ D 0 for t ¤ s. Following a
similar procedure described above, we can show that:

1

T

@S

@�l0
! 0 in probability as T ! 1 for all l D 1; : : : ; q:

Similarly, since we have:

@S

@�l1
D 2

	2

TX
tDhC1

NX
iD1

@"i t

@�l1
"i t where

@"i t

@�l1
D �

NX
uD1

wiu"u.t�l/:
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we can prove:

1

T

@S

@�l1
! 0 in probability as T ! 1 for all l D 1; : : : ; q:

Therefore, the first derivatives of S with respect to all the parameters Bm;n; �k0,
�k1; �l0; �l1 converge to zero in probability.

Now we show:

1

T

@2S

@�@� 0 ! C in probability as T ! 1

where � D fBm;n; �k0; �k1; �l0; �l1g, m D 1; : : : ; N In D 1; : : : ; r I k D 1; : : : ; pI
l D 1; : : : ; q and all the elements in the matrix have been defined earlier.

Obviously, we have:

1

T

@2S

@Bm;n@Bm0;n0

! C11 in probability as T ! 1:

For 8" > 0, by Markov’s inequality, we have:

P

	
j 1
T

@2S

@�k0@�k00

� C22 j> "



� 1

"
E

	
j 1
T

@2S

@�k0@�k00

� C22 j


:

Since

C22 is defined as E

	
1

T

@2S

@�k0@�k00



; we have:

lim
T!1P

	ˇ̌
ˇ̌ 1
T

@2S

@�k0@�k00

� C22

ˇ̌
ˇ̌ > "



D 0:

Therefore, we have:

1

T

@2S

@�k0@�k00

! C22 in probability as T ! 1:

Similarly, we can prove that the other terms converge to their corresponding expec-
tations.

Differentiating S with respect to regression parameters Bm;n and autoregressive
parameters �k0, we have:

@2S

@Bm;n@�k0
D 2

	2

TX
tDhC1

NX
iD1

	
@2"i t

@Bm;n@�k0
"i t C @"i t

@Bm;n

@"i t

@�k0
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where

@2"i t

@Bm;n@�k0
D Xn.t�k/ and

@"i t

@�k0
D Zi.t�k/:

Since both @2"it

@Bm;n@�k0
and @"it

@Bm;n
are finite, it is easy to show that:

1

T

@2S

@Bm;n@�k0
! 0 in probability as T ! 1:

Now we consider:

@2S

@Bm;n@�k1
D 2

	2

TX
tDhC1

NX
iD1

	
@2"i t

@Bm;n@�k1
"i t C @"i t

@Bm;n

@"i t

@�k1




where

@2"it

@Bm;n@�k1
D wiiXn.t�k/ and

@"it

@�k1
D

NX
uD1

wiuZu.t�k/

and wij is the .i; j /th element of weighting matrix W for (i; j D 1; : : : ; m).

Obviously, the asymptotic properties for @2"it

@Bm;n@�k1
is similar to @2"it

@Bm;n@�k0
, so we

have:

1

T

@2S

@Bm;n@�k1
! 0 in probability as T ! 1:

Since:

@2S

@Bm;n@�l0
D 2

	2

TX
tDhC1

NX
iD1

	
@2"i t

@Bm;n@�l0
"i t C @"i t

@Bm;n

@"i t

@�l0




where

@2"i t

@Bm;n@�l0
D 0 and

@"i t

@�l0
D �"i.t�l/

by using the weak law of large numbers, we can easily show:

1

T

@2S

@Bm;n@�l0
! 0 and

1

T

@2S

@Bm;n@�l1
! 0 in probability as T ! 1:
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Therefore, all the second order derivatives converges to matrix C which is given
earlier.

Similarly, it is not difficult to prove that the third order derivatives of S are
uniformly bounded, i.e., we have:

1

T

@3S

@�i1@�i2@�i3
! Mi1i2i3 in probability

where � D fBm;n; �k0; �k1; �l0; �l1g; m D 1; : : : ; N In D 1; : : : ; r I k D
1; : : : ; pI l D 1; : : : ; q and i1; i2; i3 D 1; : : : ; mnC 2.p C q/. Mi1i2i3 is a constant
independent of t .

Now we derive the covariance matrix of the estimators.
For convenience, let u =mn C 2.p C q/. Suppose �0 is the true parameter and

O� is the least square estimate, also �� lie close to the true parameter. The Taylor
expansion for the first order derivatives of S with respect to � is:

1

T

@S

@�
j

D O
D 1

T

@S

@�
j
D
0

C 1

T
. O� ��0/ @2S

@�@� 0 j
D
0
C 1

2T
Q. O���0/ j
D
�

(3.7)
where the i1th row of Q is given by:

. O� � �0/0 1
T

@3S

@�i1@�i2@�i3
:

We have shown earlier that the first order derivatives on the right hand side of
(3.7) converge to zero in probability and the second and third order derivatives con-
verge to constants. Hence, by a theorem of [3], we have a consistent least square
estimate of � with probability approaching 1 as T ! 1. Because the consistency
of O� , Q in (3.7) converges to zero. We also know that:

1

T

@S

@�
j

D O
D 0 and

1

T

@2S

@�@� 0 j
D
0
! C in probability as T ! 1:

Hence, from (3.7), we have:

1p
T

@S

@�
j
D
0

Cp
T . O� � �0/C ! 0 as T ! 1:

Therefore:

1p
T

C�1 @S
@�

j
D
0
and

p
T . O� � �0/ have the same asymptotic distributions:

Since we have shown earlier that the expectation of 1
T
@S
@


j
D
0
equals zero, . O���0/

will also have asymptotically zero mean. The sample covariance matrix of O� is
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given by:

˙ D 1

T
C�1 lim

T!1E

	
1

T

@S

@�

@S

@�



C�1:

It is straightforward to show that:

E

	
1

T

@S

@�

@S

@�



D 2E.

1

T

@2S

@�@� 0 /

this implies:

˙ D 1

T
C�12CC�1 D 2

T
C�1:

We now establish the asymptotic normality of the estimates. We will first study
the asymptotic normality of the regression estimates Bmn.m D 1; : : : ; N In D
1; : : : ; r/. We note that @"it

@Bm;n
are finite and independent of "t . Therefore, @S

@Bm;n

is the sum of independent random variables with different variances. Since we have
finite @"it

@Bm;n
, it follows that:

max
1�t�T

	
@"i t

@Bm;n


2, TX
tDhC1

NX
iD1

	
@"i t

@Bm;n


2
! 0 as T ! 1:

Hence, the Lindeberg condition is satisfied and 1p
T

@S
@Bm;n

are asymptotically nor-

mal by using the Lindeberg Feller central limit theorem. Since 1p
T
I�1 @S

@Bm;n
andp

T . OBm;n � B.m;n/0/ (where B.m;n/0 is the true value of the regression parameter)
have the same asymptotic distribution, it is straightforward to conclude that the esti-
mate of regression parameters Bm;n is also asymptotically normally distributed and
any linear combination 1p

T

P
cm;n

@S
@Bm;n

is also normally distributed. Therefore,
1p
T

@S
@B

is distributed asymptotically as a multivariate normal.
We now establish the asymptotic normality of the autoregressive and moving

average estimates. From the previous proof, all the terms @S
@�k0

; @S
@�k1

; @S
@�l0

; @S
@�l1

are

linear sums of stationary and uncorrelated series. Moreover, they are linear sums of
martingale differences. Hence, by a theorem of Billingsley [2], 1p

T

@S
@�k0

; 1p
T

@S
@�k1

;

1p
T

@S
@�l0

; 1p
T

@S
@�l1

are asymptotically normal. Since any linear combination of above
terms are asymptotically normal, the first order derivatives of S with respect to
the autoregressive and moving average parameters are asymptotically multivariate
normal.

Therefore, the least square estimators of all the parameters are asymptotically
multivariate normally distributed and hence the results of Theorem 3.1. ut
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3.5 Simulation Study

The estimation methodology described above is used for simulated data. All the sim-
ulations were performed using pseudo-normal random numbers. Space-time data
sets were simulated from different regression models with different STAR.11/ and
STARMA.11; 11/ errors. We consider a system of five locations with the weighting
matrix given by:

W D

2
666664

0:0000 0:4539 0:2510 0:1415 0:1536

0:4260 0:0000 0:2669 0:1424 0:1648

0:2441 0:2766 0:0000 0:0962 0:3831

0:2984 0:3199 0:2086 0:0000 0:1731

0:1907 0:2181 0:4892 0:1019 0:0000

3
777775
:

This weighting matrix is calculated based on the real locations of the five sta-
tions (Bellingshausen, Marambio, Faraday/Vernadsky, Orcadas and Rothera) in the
Antarctic Peninsula.

3.5.1 Model 1

We have generated space-time data set from the model given by (the number of
locations is assumed to be 5):

�
Y t D BX t CZt
Zt D .0:4IN � 0:2W /Zt�1 C "t

t D 2; : : : ; T "t � MN.0; I5/ (3.8)

where:

X t D
	
1;
t

T
; cos

2�t

12
; sin

2�t

12


0
(3.9)

and

B D

2
666664

�5:0 2:0 3:0 3:0

�5:0 1:5 3:0 3:0

�5:0 2:0 3:0 3:0

�5:0 1:5 3:0 3:0

�5:0 2:0 3:0 3:0

3
777775
: (3.10)

3.5.2 Model 2

We have also generated another time series from a regression model with STARMA
errors which is given below:
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8
<
:
Y t D BX t CZt
Zt D .0:4IN � 0:2W /Zt�1

C.0:3IN C 0:2W /"t�1 C "t

t D 2; : : : ; T "t � MN.0; I5/ (3.11)

where the covariates and the regression parameters B are same as in model 1.

3.5.3 Model 3

Besides, we have generated time series from the following regression model with
STARMA errors:

8
<
:
Y t D BX t CZt
Zt D .0:3IN C 0:1W /Zt�1

C.0:2IN � 0:1W /"t�1 C "t

t D 2; : : : ; T "t � MN.0; I5/ (3.12)

where:

X t D
	
1;
t

T
; cos

2�t

12
; sin

2�t

12


0

and

B D

2
666664

�5:0 2:5 3:0 3:0

�5:0 2:5 3:0 3:0

�5:0 2:5 3:0 3:0

�5:0 2:5 3:0 3:0

�5:0 2:5 3:0 3:0

3
777775
:

Tables 3.3, 3.4 and 3.5 show the average estimates of the parameters of interest
from 100 replications for each T in the above three models. From the results of
the tables we observe that the accuracy of the estimates increase with the sample
size for all the models. Moreover, the standard deviations (given in the bracket of
estimates) of all the estimates, as expected, decrease with the sample size. Therefore,
the simulation results shows that the estimates are asymptotically consistent.

3.6 Real Data Analysis

In this section, we consider the analysis of the temperatures of Antarctic Penin-
sula by using multivariate regression models with space-time ARMA errors. The
data described earlier consists of 252 monthly mean surface temperatures recorded
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Table 3.3 Simulation results for model 1
Sample size T D 100 T D 200 T D 400

OB1;2 1.9998(0.1605) 2.0064(0.1224) 2.0047(0.0872)
OB2;2 1.5067(0.1948) 1.4951(0.1157) 1.5061(0.0934)
OB3;2 2.0317(0.1917) 1.9782(0.1200) 2.0039(0.0859)
OB4;2 1.4873(0.1724) 1.4825(0.1170) 1.4977(0.0854)
OB5;2 1.9980(0.1795) 2.0137(0.1150) 2.0122(0.0947)
O�10 0.3969(0.0114) 0.3978(0.0084) 0.3994(0.0055)
O�11 �0.2021(0.0207) �0.1991(0.0150) �0.2022(0.0113)

Table 3.4 Simulation results for model 2
Sample size T D 100 T D 200 T D 400

OB1;2 2.0159(0.2168) 2.0067(0.1472) 2.0044(0.1022)
OB2;2 1.5161(0.2238) 1.5122(0.1801) 1.4990(0.1086)
OB3;2 2.0042(0.2458) 2.0032(0.1552) 2.0067(0.1099)
OB4;2 1.5133(0.2016) 1.5013(0.1535) 1.4910(0.1005)
OB5;2 2.0233(0.2467) 1.9952(0.1604) 1.9822(0.1102)
O�10 0.3963(0.0203) 0.3966(0.0144) 0.3974(0.0095)
O�11 �0.2027(0.0370) �0.2020(0.0293) �0.1997(0.0183)
O�10 0.3016(0.0223) 0.3028(0.0148) 0.3024(0.0091)
O�11 0.2035(0.0363) 0.2014(0.0255) 0.2005(0.0157)

Table 3.5 Simulation results for model 3
Sample size T D 100 T D 200 T D 400

OB1;2 2.4904(0.1832) 2.4979(0.1093) 2.4938(0.0723)
OB2;2 2.5080(0.1694) 2.5050(0.1363) 2.4947(0.0792)
OB3;2 2.5066(0.1665) 2.4788(0.1240) 2.4965(0.0842)
OB4;2 2.5143(0.1731) 2.4915(0.1187) 2.5049(0.0792)
OB5;2 2.5015(0.1677) 2.5106(0.1440) 2.4969(0.0811)
O�10 0.2961(0.0268) 0.2989(0.0207 ) 0.2974(0.0146)
O�11 0.0995(0.0451) 0.0997(0.0330) 0.1062(0.0228)
O�10 0.1990(0.0274) 0.1990(0.0209) 0.2020(0.0159)
O�11 �0.0994(0.0489) �0.0983(0.0365) �0.1043(0.0253)

from January 1978 to December 1998 at the five meteorological stations (Belling-
shausen, Marambio, Faraday/Vernadsky, Orcadas and Rothera) The time series plots
of the temperatures for each station is given in Fig. 3.1. All the plots suggest strong
seasonality of the series with period 12 months.

It is reasonable to use the inverse distance between two sites as the correspond-
ing element of the weighting matrix since the correlation between the residuals

f OZt g after fitting the linear regression model in (3.13) from two sites seems to be
inversely related to the distances (see Fig. 3.2). The corresponding stations of each
correlation are shown in the label of each point and the number of each station
is given in Table 3.1. For example, the point labeled .2; 4/ represents the distance
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Fig. 3.1 Time series plots of Antarctic Peninsula
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between Marambio and Orcadas and also the correlation between the residuals from
the above two sites after fitting linear regression models.

The weighting matrix is calculated by the Definition 3.3, then it is standardized so
that all rows add up to one, thus the weighting matrix W given in (3.8) is obtained.
We use the following multivariate regression model with space-time ARMA errors
considered earlier to fit the data at the five locations of Antarctic Peninsula:

8
<
:
Y t D BX t CZt

Zt D
pP
kD1

.�k0IN C �k1W /Zt�k C
qP
lD1
.�l0IN C �l1W /"t�l C "t

(3.13)

where B5�4 is a matrix of parameters that need to be estimated. We have:

E."t / D 0

and

E."t"
0
tCs/ D

�
˙"; s D 0

0; s ¤ 0

Since the temperature series of all the five locations have mean and trend and
moreover they show strong seasonality with period 12, we use covariate vector
X t D Œ1; t

T
; cos 2�t

12
; sin 2�t

12
�0. Other assumptions of this model are same as (3.4).

The autoregressive order p and the moving average order q are determined by min-
imizing BIC criterion. From the results in Table 3.6, we observe that the BIC is
minimum when p D 1 and q D 1.

By using the estimation procedure described before, the estimates and corre-
sponding standard errors (shown in the bracket) are calculated and are given in the
following matrix:

OB D

2
666664

�2:4882.0:1723/ 0:3418.0:2925/ 3:1384.0:0829/ 2:6238.0:0835/

�8:5167.0:2403/ 0:0646.0:4089/ 5:6156.0:1267/ 2:2886.0:1276/

�4:5733.0:1807/ 2:2394.0:3070/ 3:0881.0:0896/ 3:5517.0:0900/

�3:6615.0:1875/ 0:5901.0:3186/ 4:2916.0:0943/ 3:1598.0:0949/

�5:7757.0:1978/ 2:2595.0:3362/ 4:4711.0:0993/ 4:0392.0:3169/

3
777775

Table 3.6 Model selection for STARMA models
Order p D 0 1 2 3

q D 0 705.9 715.8 724.2
1 695.7 667.2 678.2 684.5
2 679.5 674.9 680.7 681.3
3 686.5 685.2 680.7 691.3
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Fig. 3.3 Space time ACF for residuals fO"t g

O�10 D 0:3374.0:0607/ O�11 D 0:2594.0:0727/

O�10 D �0:0119.0:0541/ O�11 D �0:1084.0:0559/:

The results in the above table show that the estimates of mean (first column
of OB) and harmonic components (third and fourth column of OB) at all the loca-
tions are significant. The trends (second column of OB) are significant at level 1%
at Faraday/Vernadsky and Rothera. The trends are also significant at level 10% at
Orcadas but they are not significant at other locations. This analysis confirms that
the warming at Faraday/Vernadsky and Rothera are very significant, compared to
other stations. The results also show that the estimates of autoregressive parameters
and the moving average parameter at spatial lag 1 ( O�11) are significant.

Figure 3.3 shows that the residuals fO"tg obtained from the fitted model are
not autocorrelated since autocorrelations at most lags are not significant and there
are reasons that they are normal and hence the assumption that the residuals are
independent is satisfied.

After fitting the model to our temperature data, we are interested in forecasting
the temperatures of each site in the future. Let Y t be an vector of observations at
each site at time t . Let eY t .l/ be the predictor of Y tCl made at time t . The mean
square error of the l step predictor is given by:
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Fig. 3.4 Predictions of the temperatures from January 1999 to December 2000

M.l/ D EŒ.eY t .l/ � Y tCl/2�:

The optimum predictor of Y tCl which minimizes the mean square error is:

eY tCl D E.Y tCl jY t ; Y t�1; : : : :/:

For our model, the one step predictor for the temperatures is given by:

eY tC1 D OBXtC1 C . O�10I5 C O�11W /.Y t � OBX t /C . O�10I5 � O�11W /O"t :
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The one step prediction for the temperatures from January 1999 to December
2000 at the five stations are compared with the real data over the same period. The
comparisons of the predictions with the true values are given in Fig. 3.4 (the dash
line is the prediction line). The results show that all the predictions are close to the
true observations.

3.7 Conclusion

In this paper we examined the temporal and spatial variability of the temperatures
at the five locations in the Antarctic Peninsula. Besides fitting linear regression
models to temperatures, we consider multivariate regression models with space-
time ARMA errors to study the spatio-temporal variation. From our analysis, the
monthly mean surface temperatures at all the locations in the Antarctic Peninsula
are increasing over the period from January 1978 to December 1998. The largest
warming trends are found at the Faraday/Vernadsky and Rothera, with the warming
rate of 1.0664 ıC/decade and 1.0759 ıC/decade respectively. The trends at the above
two locations are also significant at 1% level. The temperatures at Orcadas is also
increasing at 10% significance level, with the warming rate of 0.5901 ıC/decade.

A warming rate of 1.01 ıC/decade at Rothera over the period from 1978 to 2000
is also reported by [12]. However, the estimated trend given in [12] is not signifi-
cant because of the lack of efficiency by using simple linear regression models to fit
temperature data. From our analysis, we believe the substantial warming occurred
at Rothera station is significant at level 1% since the seasonality and temporal
autocorrelations have been taken into account.
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Chapter 4
The Generalized von Mises–Fisher Distribution

Riccardo Gatto

Abstract In this chapter we introduce the broad class of generalized von Mises–
Fisher (GvMF) distributions on the unit hypersphere Sp�1, which arises from a
generalization of the von Mises–Fisher distribution. This class of distributions has
some important information theoretic properties. It is shown that, under constraints
on some moments along some fixed directions, and using Kullback–Leibler infor-
mation as measure, the closest distribution to any predetermined one on Sp�1, has
the GvMF form. Lower bounds for the Kullback–Leibler information in this con-
text are also provided. Several connections between GvMF and other directional or
linear distributions are given. GvMF distributions can be re-expressed in terms of
generalized von Mises distributions when p D 2. GvMF distributions arise as offset
multivariate normal distributions, as offset singular normal distributions and as off-
set distributions from an exponential spherical type of distributions. Various forms
of GvMF densities which feature uni- and multimodality, with different shape of
modes, girdle and with other particularities are graphically illustrated.

4.1 Introduction

In this chapter we introduce the generalized von Mises–Fisher (GvMF) direc-
tional probability distribution, motivated from its high flexibility, its information
theoretic properties and its characterizations in terms of other important distri-
butions. Directional data which are directions in Rp , p D 2; 3; : : : ; and can be
represented by points on the surface of the .p � 1/-dimensional unit hypersphere
Sp�1 D fx 2 RpjxTx D 1g. Most practical situations are for circular data, where
p D 2, and for spherical data, where p D 3. Many results of this chapter are given
for the general case of p > 3, because it is conceptually similar to the case of p D 3.
Spherical data arise in various fields such as physics, astronomy and earth sciences
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and can have experimental or observational origins. A probability distribution on
Sp�1 is a directional probability distribution. Two general references on directional
statistics are [10] and [6]. In the following we are only concerned with absolutely
continuous directional distributions with respect to (w.r.t.) the uniform distribution
on Sp�1. When p D 2 it is generally convenient to represent a random unit vector
by its angle w.r.t. a chosen null direction and with the radian measure, for example.
This random angle has a circular density, w.r.t. the Lebesgue measure on S1, which
is a non-negative 2�-periodic function on R integrating to one on Œ0; 2�/. In gen-
eral we can re-express x 2 Rpnf0g in angular coordinates by the diffeomorphism
x D g.r; �1; : : : ; �p�1/ which, for p � 3, is given by

x1 D r sin �1 sin �2 : : : sin �p�2 cos �p�1;
x2 D r sin �1 sin �2 : : : sin �p�2 sin �p�1;
:::

:::

xp�1 D r sin �1 sin �2;

xp D r cos �1;

where r > 0, 0 � �i � � for i D 1; : : : ; p�2 and 0 � �p�1 < 2� . For p D 3, �1 is
the co-latitude and �2 is the longitude. The determinant of the Jacobian of g is given

by J.r I �1; : : : ; �p�2/ D rp�1Qp�1
jD2 sinp�j �j�1, for p � 3, and it is equal to r for

p D 2. Jacobi’s theorem yields that for any continuous function f W Sp�1 ! R,

Z

Sp�1

f .x/d	.x/ D
Z 2�

0

Z �

0

: : :

Z 2�

0

f .g.1I �1; : : : ; �p�1//J.1I �1; : : : ; �p�2/d�1 : : : d�p�1;

where d	.x/ denotes the infinitesimal surface area on Sp�1 and around x on Sp�1.
From this, the surface area of Sp�1 is ap D R

Sp�1 d	.x/ D 2�p=2=� .p=2/, �
denoting the gamma function. Hence, the uniform or isotropic probability distri-
bution over Sp�1 is U ŒA� D R

A
d	.x/=ap , for A 	 Sp�1, which is the unique

invariant distribution under rotation and reflection. For a probability distribution P
over Sp�1 and for A 	 Sp�1, P ŒA� D R

A
.dP /=.dU /dU , where .dP /=.dU / is

the Radon–Nikodym derivative or density of P w.r.t. U . All directional densities
presented in this chapter are given w.r.t. U .

We now introduce a class of probability distributions on Sp�1 which generalizes
and unifies several other existing distributions. The generalized von Mises-Fisher
distribution of order k (GvMFk) is the probability distribution P on Sp�1 having
the density w.r.t. the isotropic distribution U at x 2 Sp�1

f .xjm1; : : : ; mk I c1; : : : ; ck I i1; : : : ; ik/ defD dP

dU
.x/ / exp

(
kX
rD1

cr .m
T
rx/

ir

)
;

(4.1)
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where mr 2 Sp�1, cr 2 R, for r D 1; : : : ; k, i1 � : : : � ik 2 f1; 2; : : :g and, to
avoid over indentification, 1; .mT

1x/
i1 ; : : : ; .mT

k
x/ik are linearly independent func-

tions of x 2 Sp�1. We denote as GvMFk.m1; : : : ; mkI c1; : : : ; ck I i1; : : : ; ik/ a
representative random direction of Rp with density (4.1). The particular case of
k D 1 and i1 D 1 in (4.1) yields the von Mises–Fisher (vMF) density which plays
an important role in directional statistics (see, e.g., [10, p. 168]), and we denote as
vMF.m1I c1/, m1 2 Rp ; c1 � 0, a representative random direction of Rp with this
density. Thus, a GvMFk with i1; : : : ; ik known belongs to the most general expo-
nential directional distribution of [2], with density proportional to the exponential
of polynomials in x 2 Sp�1. The reparametrization (4.1) leads however to intu-
itive interpretations of the parameters, to information theoretic optimalities and to
various characterization properties in terms of other important distributions.

In Sect. 4.2, we show that GvMF distributions possess some important informa-
tion theoretic properties. We first show that for some fixed moments along some
predetermined directions, the closest density, in the Kullback–Leibler sense, to a
given density f0, all of them on Sp�1, has the GvMF form (4.1). We also provide a
lower bound for the Kullback–Leibler information under these moment restrictions
as well as the entropy of GvMF distributions. In Sect. 4.3, we show that GvMF
distributions are closely related with other important directional and linear distri-
butions. When p D 2, any GvMF distribution admits a generalized von Mises
(GvM) reparametrization. The GvM distribution was introduced by [5]. GvMF2
distributions are closely related to the Fisher–Watson and the Fisher–Bingham direc-
tional distributions. GvMF distributions arise also as conditional offset distributions
from the multivariate normal, the singular normal and from a type of spherical
exponential distributions. Still in Sect. 4.3, we show various graphs of GvMF densi-
ties, which feature uni- and multimodality, different modal shapes, girdle and other
interesting forms.

4.2 Information Theoretic Results for Directional
Distributions

In this section we derive some optimal directional distributions w.r.t. directional
versions of Kullback–Leibler information and entropy, respectively defined by (4.2)
and (4.3) below. Under both criteria, either GvMF distributions or other directional
distributions having a GvMF part turn out to be the optima. An important con-
sequence is that these distributions are optimal solutions of a constrained prior
selection problem of Bayesian statistics. In our setting, an optimal directional prior
distribution is obtained by maximizing the entropy given some prior knowledge on
the moments along some directions.

The Kullback–Leibler information was introduced by [8] and plays a central role
in information theory. We suggest defining this quantity on Sp�1 also. Suppose P
and Q are two probability measures on Sp�1 w.r.t. the uniform distribution U and
that P is absolutely continuous w.r.t.Q, which is denoted P � Q. Then we define
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I.P jQ/ D
Z

Sp�1

log
dP

dQ
dP D

Z

Sp�1

log
f .x/

g.x/
f .x/dU.x/; (4.2)

where f and g are the directional densities of P and Q respectively w.r.t. U and
where 0 log 0 D 0 by assumption. I.P jQ/ is the mean logarithmic likelihood ratio
w.r.t. P or mean information per observation of P for discriminating of Q from P .
The Gibbs inequality implies that I.P jQ/ is positive semi-definite, i.e.,

I.P jQ/ � 0; (4.3)

for all P and Q such that P � Q, with equality iff P D Q a.s. I.P jQ/ is
sometimes referred to as relative entropy or Kullback–Leibler distance, even though
I.P jQ/ is not a metric: it violates the symmetry and the triangle rules. A related
quantity is the entropy of [12], which we suggest extending to Sp�1 by

H.P/ D �
Z

Sp�1

log
dP

dU
dP D �

Z

Sp�1

logf .x/f .x/dU.x/;

where 0 log 0 D 0 is assumed. H.P/ measures the uncertainty inherent in P or
in f . Equivalently,H.P/ measures the expected amount of information gained on
obtaining a direction fromP , based on the principle that the rarer an event, the more
informative its occurrence. We denote alternatively I.f jg/ for I.P jQ/ and H.f /
for H.P/.

We denote by DMr the r th directional moment condition on the density f given
by Z

Sp�1

.mT
rx/

irf .x/dU.x/ D ˛r ;

where i1 � : : : � ik 2 f1; 2; : : :g, mr 2 Sp�1, ˛r 2 R and r D 1; : : : ; k.
All densities in the next theorem and corollaries are on Sp�1 and w.r.t. the

isotropic distribution U on Sp�1.

Theorem 4.1. (a) The directional density f which satisfies DMr , for r D 1; : : : ; k,
and which minimizes the Kullback–Leibler information I.f jf0/, w.r.t. a given
directional density f0, is proportional to

exp

(
kX
rD1

cr .m
T
rx/

ir

)
f0.x/; (4.4)

for x 2 Sp�1. The parameters c1; : : : ; ck are the solutions in v1; : : : ; vk of

@

@vr
K.v1; : : : ; vkIm1; : : : ; mkI i1; : : : ; ikIf0/ D ˛r ; r D 1; : : : ; k; (4.5)

where K D logM and



4 The Generalized von Mises–Fisher Distribution 55

M.v1; : : : ; vkIm1; : : : ; mk I i1; : : : ; ikIf0/D
Z

Sp�1

exp

(
kX
rD1

vr .m
T
rx/

ir

)
f0.x/dU.x/:

(4.6)
(b) For any directional density f satisfying DMr , for r D 1; : : : ; k, we have the
following lower bound on the Kullback–Leibler information,

I.f jf0/ � �K.c1; : : : ; ck Im1; : : : ; mkI i1; : : : ; ikIf0/C
kX
jD1

cj˛j ; (4.7)

with equality iff f is proportional to (4.4).

Proof. The basic idea of this proof is due to [7].
(a) Define tr .x/ D .mT

rx/
ir , r D 1; : : : ; k. In order to minimize I.f jf0/ w.r.t. f

and under DMr , for r D 1; : : : ; k, we minimize w.r.t. f the Lagrangian

L.f / D
Z

Sp�1

(
log

f .x/

f0.x/
�

kX
rD1

vr tr .x/ � v0

)
f .x/dU.x/

D
Z

Sp�1

 .q.x//f0.x/dU.x/;

where

 .q/ D
 

log q �
kX
rD1

vr tr � v0

!
q

and q D f=f0. Define

q0 D exp

(
kX
rD1

vr tr C v0 � 1

)
:

We note that  .q0/ D �q0,  0.q/ D log q � Pk
rD1 vr tr � v0 C 1,  0.q0/ D 0,

 00.q/ D 1=q. For any function h on Sp�1 between q and q0, we have

L.f / D
Z

Sp�1

h
 .q0.x//C fq.x/� q0.x/g 0.q0.x//

C 1

2
fq.x/ � q0.x/g2 00.h.x//

i
f0.x/dU.x/

D
Z

Sp�1

�q0.x/f0.x/dU.x/C 1

2

Z

Sp�1

fq.x/� q0.x/g2h�1.x/f0.x/dU.x/:

(4.8)
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This implies

L.f / � �
Z

Sp�1

exp

(
kX
rD1

vr tr.x/C v0 � 1
)
f0.x/dU.x/; (4.9)

with equality iff the second integral in (4.8) vanishes, which happens iff

f D exp

(
kX
rD1

vr tr C v0 � 1

)
f0:

From the definition (4.6) and because f integrates to one w.r.t. U on Sp�1, we have
ev0�1 D M�1.v1; : : : ; vkIm1; : : : ; mk I i1; : : : ; ikIf0/. Hence we obtain

f .x/ D M�1.v1; : : : ; vk Im1; : : : ; mkI i1; : : : ; ikIf0/ exp

(
kX
rD1

vr tr .x/

)
f0.x/:

(4.10)
From DMr , r D 1; : : : ; k, follows that c1; : : : ; ck are the solutions in v1; : : : ; vk of
(4.5).
(b) From (4.8) and (4.9), we obtain that for any density f satisfying DMr , r D
1; : : : ; k, (4.7) must hold and it must hold with an equality iff we take the optimal
f given by (4.10). ut
Corollary 4.1. (a) For any k 2 f1; 2; : : :g, the directional density f maximiz-
ing the entropy H.f / under DMr , r D 1; : : : ; k, is the GvMFk.m1; : : : ; mk I
c1; : : : ; ckI i1; : : : ; ik/ density. The parameters c1; : : : ; ck are the solutions in
v1; : : : ; vk of

@

@vr
K.v1; : : : ; vkIm1; : : : ; mk I i1; : : : ; ikI 1/ D ˛r ; (4.11)

r D 1; : : : ; k.
(b) If f is a directional density satisfying DMr , r D 1; : : : ; k, then

H.f / � K.c1; : : : ; ckIm1; : : : ; mkI i1; : : : ; ikI 1/�
kX
rD1

cr˛r ;

with equality iff f is the GvMFk.m1; : : : ; mkI c1; : : : ; ckI i1; : : : ; ik/ density.

Proof. (a) By choosing f0 D 1 a.s. on Sp�1, we find I.f jf0/ D �H.f /. Hence
maximizing H.f / w.r.t. f under DMr , r D 1; : : : ; k, is equivalent to minimizing
I.f jf0/ w.r.t. f under these constraints. It follows from Theorem 4.1(a) that this
minimum is attained when f is a GvMFk density. The parameters c1; : : : ; ck which
satisfy the constraints are given by (4.11), which is exactly (4.5) with f0 D 1.
(b) This part follows directly from Theorem 4.1(b). ut
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As already mentioned, Corollary 4.1 can be used for prior selection in Bayesian
statistics. An appealing property of the GvMF class of distributions is its closure
w.r.t. directional moment restrictions in the following sense. All densities are again
given w.r.t. the isotropic measure U on Sp�1. The proof of the following corollary
is direct and omitted. In the next corollary, we relax the inessential restriction on the
ordering i1 � : : : � ij � ijC1 � : : : � ijCk .

Corollary 4.2. (a) Denote by f0 the GvMFj .m1; : : : ; mj I c1; : : : ; cj I i1; : : : ; ij /
density. Then the closest density f to f0, in the sense of minimizing I.f jf0/,
which satisfies DMr , r D j C 1; : : : ; j C k, is the GvMFjCk.m1; : : : ; mjCkI
c1; : : : ; cjCkI i1; : : : ; ijCk/ density. The parameters cjC1; : : : ; cjCk are solutions
in vjC1; : : : ; vjCk of

@

@vr
K.vjC1; : : : ; vjCkImjC1; : : : ; mjCkI ijC1; : : : ; ijCkIf0/ D ˛r ;

r D j C 1; : : : ; j C k:

(b) For any density f satisfying DMr , r D j C 1; : : : ; j C k,

I.f jf0/��K.cjC1; : : : ; cjCk ImjC1; : : : ; mjCkI ijC1; : : : ; ijCkIf0/C
jCkX
rDjC1

cr˛r ;

with equality iff f is the GvMFjCk density given in (a).

4.3 Other Properties

In this section we first provide some other properties of GvMF distributions, which
concern the invariance, the clustering around the mode and the antipodal symme-
try, and we show a few of the various possible shapes taken by GvMF densities.
Then we show various relationships between GvMF and other directional or linear
distributions.

The first property of GvMF distributions is their invariance under orthogo-
nal transformations. If X � GvMFk.m1; : : : ; mk I c1; : : : ; ck I i1; : : : ; ik/ on Sp�1
and A is a p � p orthogonal matrix, then Y D AX � GvMFk.Am1; : : : ; Amk I
c1; : : : ; ckI i1; : : : ; ik/, meaning that the class of GvMFk distributions with fixed
c1; : : : ; ck and i1; : : : ; ik is invariant under the group of orthogonal transformations
on Rp . As practical consequence, the choice of coordinate system is irrelevant.

Regarding the shapes taken by the GvMF densities we can provide the follow-
ing general statements. If ir is even, then the clustering around both directions
mr and �mr increases as cr increases, r D 1; : : : ; k. If i1; : : : ; ik are even, then
.dP /=.dU /.x/ D .dP /=.dU /.�x/ 8x 2 Sp�1, meaning that we have invariance
under x 7! �x, x 2 Sp�1, i.e., antipodal symmetry, and we have thus a distri-
bution for axial data. In general, the larger the values of c1; : : : ; ck , the larger the
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Fig. 4.1 GvMF1..0; 0; 1/I
1I 1/
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Fig. 4.2 GvMF1..0; 0; 1/I
1I 3/
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clustering around m1; : : : ; mk . If m1 D : : : D mk and c1; : : : ; ck > 0, then the
maximum of the density is at m1 and the minimum at �m1. If m1 D : : : D mk ,
then we have the rotationally symmetry around m1. Clearly, the GvMFk distribu-
tion with c1 D : : : D ck D 0 is the isotropic distribution. Any GvMFk distribution
with i1 D : : : D ik D 1 is simply the vMF.jj�jj�1�I jj�jj/ distribution, whenever
� D Pk

rD1 crmr ¤ 0.
Figures 4.1–4.12 show some particular GvMF densities on S2. The densities

are plotted around the unit sphere and up to unspecified proportionality constants.
GvMF1 densities with i1 D 1; 3 and 7 are respectively plotted in Figs. 4.1, 4.2 and
4.3, all other parameters being held fixed. These figures show hence the effect of
the increase of i1 in the GvMF1 density. Figures 4.2 and 4.4 have GvMF1 densities
with c1 D 1 and 2 respectively, all other parameters being equal. Figures 4.4 and
4.5 are GvMF1 densities with i1 D 3 and 4 respectively, all other parameters being
equal. Both Figs. 4.5 and 4.11 show antipodal symmetries, yielding distributions for
axial data. Figure 4.5 has i1 D 4 even and has hence a mode and a similar antimode.



4 The Generalized von Mises–Fisher Distribution 59

Fig. 4.3 GvMF1..0; 0; 1/I
1I 7/
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Fig. 4.4 GvMF1..0; 0; 1/I
2I 3/
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Figure 4.11 is a GvMF3 density with i1 D i2 D i3 D 4 and hence with three
modes and three similar antimodes. Due to the choice of the other parameters, all
six modes are in fact similar. Figures 4.6 and 4.7 show two GvMF2 densities and
Figs. 4.8–4.11 show four GvMF3 densities. Finally, Fig. 4.12 shows a girdle shaped
GvMF4 density.

Another existing generalization of the GvMF distribution is the Fisher–Bingham
distribution, whose density at x 2 Sp�1 is proportional to

expfcmTx C xTMxg;

where c � 0, m 2 Sp�1 and M is a p � p symmetric matrix standardized to have
null trace (see, e.g., [10, p. 174]). The restriction to matrices with null trace affects
the normalizing constant only. If we restrict M to have rank one and relax the null
trace condition, then both symmetry and unitary rank conditions are equivalent to
the existence of a vector a 2 Rp such that M D aaT. By setting a D p

c2m2,
where c2 � 0 and jjm2jj D 1, we see that the GvMF2 distribution with i1 D 1 and
i2 D 2 is the special case of the Fisher–Bingham distribution with rankfM g D 1.
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Fig. 4.5 GvMF1..0; 0; 1/I
2I 4/
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Fig. 4.6 GvMF2..0; 1; 0/;
.0; 0; 1/I 1; 1I 3; 5/
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This latter GvMF2 distribution is in fact known as Fisher–Watson distribution (see
[10, p. 177]).

Fig. 4.7 GvMF2..0; 1; 0/;
.0; 0; 1/I 1; 1I 3; 10/
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Fig. 4.8 GvMF3..1; 0; 0/;
.0; 1; 0/; .0; 0; 1/I 1; 1; 1I 3; 3; 3/
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Fig. 4.9 GvMF3..1; 0; 0/;
.0; 1; 0/; .0; 0; 1/I 1; 1; 1I 15; 15; 15/

−1
−0.5

0
0.5

1
1.5

−1
−0.5

0
0.5

1
1.5

−1

−0.5

0

0.5

1

1.5

x1
x2

x 3

For p D 2, a broad class of circular distributions which plays an important role
w.r.t. the information theoretic quantities defined in Sect. 4.2 is the generalized von
Mises of order k (GvMk). In terms of the angular coordinate and w.r.t. isotropic or
the Lebesgue measure on S1, the GvMk density is given by

f .� j �1; : : : ; �kI �1; : : : ; �k/ D
1

2�G
.k/
0 .ı1; : : : ; ık�1I �1; : : : ; �k/

exp

(
kX
rD1

�r cos r.� � �r /
)
; (4.12)

for � 2 Œ0; 2�/, �r � 0, �r 2 Œ0; 2�=r/, for r D 1; : : : ; k, and where
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Fig. 4.10 GvMF3..1; 0; 0/;
.0; 1; 0/; .0; 0; 1/I 1; 1; 1I 15; 15; 15/
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Fig. 4.11 GvMF3..0; 0; 1/;
.0; 1; 0/; .0; 0; 1/I 2; 2; 2I 4; 4; 4/

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

x1x2

x 3

Fig. 4.12 GvMF4..0; 1; 0/;
.1; 1; 0/=

p
2; .1; 0; 0/; .1;�1; 0/=p2I
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G
.k/
0 .ı1; : : : ; ık�1I �1; : : : ; �k/ D
1

2�

Z 2�

0

expf�1 cos � C �2 cos 2.� C ı1/C : : :C �k cos k.� C ık�1/gd�;

with ı1 D .�1��2/mod�; ı2 D .�1��3/mod.2�=3/; : : : ; ık�1 D .�1��k/mod
.2�=k/. We denote by GvMk.�1; : : : ; �k I �1; : : : ; �k/ a representative angle with
the density (4.12). This class of distributions was introduced by [9] and [5] as a
generalization of the circular normal or von Mises (vM) distribution, whose density
is given by

f .� j �I �/ D 1

2�I0.�/
expf� cos.� � �/g;

for �; � 2 Œ0; 2�/, � > 0, where In.z/ D .2�/�1
R 2�
0

cosn� expfz cos �gd� , z 2
C, is the modified Bessel function of the first kind and integer order n (see, e.g.,
[1, p. 376]). Compared to the vM, which is circular symmetric and unimodal, the
GvM2 distribution allows already for higher flexibility in terms of asymmetry and
bimodality.

When p D 2, many GvMFk densities with are indeed GvMk densities. The
following result we illustrates this fact for the case k D 3 and ir D r , r D 1; 2; 3.

Result 4.1. ConsiderX � GvMF3.m1; m2; m3I c1; c2; c3I 1; 2; 3/ on S1 and define
� D argfXg. Then � � GvM3.�1; �2; �3I �1; �2; �3/, where for �r D argfmrg,
r D 1; 2; 3, and arctan W R ! .��=2; �=2/, we have

�1D
	

arctan
4c1 sin �1 C 3c3 sin �3
4c1 cos �1 C 3c3 cos �3

C�I f4c1 cos �1 C 3c3 cos �3 < 0g



mod 2�;

(4.13)
�1 D fc21 C .9=16/c23 C .3=2/c1c3 cos.�1 � �3/g 1

2 ; (4.14)

�2 D �2; �2 D c2=2; �3 D �3 and �3 D c3=4.

Proof. Let us define � D argfxg, where x 2 S1, �r D argfmrg and �r D � � �r ,
for r D 1; 2; 3. From mT

1x D cos �1; .mT
2x/

2 D cos2 �2 D .1=2/ cos2�2 C 1=2

and .mT
3x/

3 D cos3 �3 D .1=4/ cos3�3 C .3=4/ cos�3 and from the fact that the
transformation from Cartesian to polar coordinates has Jacobian one, it follows from
(4.1) that the density of argfXg at � is proportional to

exp

�
c1 cos.� � �1/C 3

4
c3 cos.� � �3/C 1

2
c2 cos 2.���2/C 1

4
c3 cos 3.���3/

�
:

(4.15)
The first two summands of the above exponent can be re-written as

cos �

	
c1 cos �1 C 3

4
c3 cos �3



C sin �

	
c1 sin �1 C 3

4
c3 sin �3




D cos � .�1 cos�1/C sin � .�1 sin�1/ D �1 cos.� � �1/;
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with �1 and �1 given by (4.13) and (4.14). From this follows the GvM3 density at �

1

2�G
.3/
0 .ı1; ı2I �1; �2; �3/

expf�1 cos.���1/C�2 cos 2.���2/C�3 cos 3.���3/g;

where �1 is given by (4.13), �1 is given by (4.14), �2 D �2; �2 D c2=2; �3 D
�3; �3 D c3=4; ı1 D .�1 � �2/mod� and ı2 D .�1 � �3/mod.2�=3/. If �1 D
�3mod� then the cosine in (4.14) is equal to �1 and �1 D jc1 � 3=4 c3j. Hence
the square root in (4.14) is always real. If �1 D �3mod 2� , then �1 D c1 C 3=4 c3,
which is in fact clear from (4.15). ut

In this context note that a series expansion for the normalizing constant G.3/0
is provided by (24) in [4]. The precise relationships between the GvMFk and the
GvMk distributions are straightforward to obtain for the cases i1 D 1, k D 1 and
i1 D 1, i2 D 2, k D 2. The assertion that there is an analogue relationship between
GvMFk and GvMk densities for 1 � ik � k and k > 3 follows from the fact that
cosk can always be expanded into a sum of multiple angle cosines with multiples
lower than or equal to k. For example, cos5 ˛ D .cos 5˛C 5 cos 3˛C 10 cos˛/=16.
Hence, it must always be possible to re-express a GvMFk density (4.1) with 1 �
ik � k in terms of the GvMk density (4.12). However, general formulae for the
GvMk parameters in terms if the GvMFk parameters seem difficult to establish for
k > 3. So GvMF and GvM distributions are closely related and in fact, Theorem 4.1
and Corollaries 4.1 and 4.2 are the analogues of Theorem 2.1 and Corollaries 2.1
and 2.2 by [4], respectively, of the GvM distribution.

The next results provide characterizations of GvMF distributions in terms of well
known multivariate distributions, Result 4.2 is a characterization in terms of the
multivariate normal distribution. Let us remind that a conditional offset distribution
is the conditional distribution of a random vector given that it has norm equal to one.

Result 4.2. Assume X � N .�;˙/ in Rp , with ˙ positive definite. If � ¤ 0, then
X has a GvMFpC1 conditional offset distribution on Sp�1. More precisely,

X j jjX jj D 1 � GvMFpC1.m1; : : : ; mpC1I c1; : : : ; cpC1I 1; 2; : : : ; 2/;

where, given V D .vı1; : : : ; vıp/ nonsingular such that ˙�1 D V V T, we have
m1 D jj˙�1�jj�1˙�1�, c1 D jj˙�1�jj, mjC1 D jjvıj jj�1vıj , cjC1 D
�jjvıj jj2=2, for j D 1; : : : ; p. If � D 0, then

X j jjX jj D 1 � GvMFp.m2; : : : ; mpC1I c2; : : : ; cpC1I 2; : : : ; 2/:

Proof. The conditional random vector X j jjX jj D 1 has density at x 2 Sp�1
proportional to

exp

�
�T˙�1x � 1

2
xT˙�1x

�
: (4.16)



4 The Generalized von Mises–Fisher Distribution 65

Clearly,�T˙�1x D c1m
T
1x. If� ¤ 0, then we can definem1 and c1 as in Result 4.2.

If � D 0, then the term c1m
T
1x vanishes from the GvMFpC1 density. The three

following statements are equivalent: ˙ is positive definite, ˙�1 is positive definite
and, third, there exists V nonsingular such that ˙�1 D V V T. As vıj denotes the
j th column of V , j D 1; : : : ; p, we have V V T D Pp

jD1 vıj vTıj . With this,

�1
2
xT˙�1x D �1

2
xT

pX
jD1

vıj vT

ıjx D
pX
jD1

�1
2

jjvıj jj2
 

vTıjx
jjvıj jj

!2

D
pX
jD1

cjC1.mT
jC1x/2;

which terminates the proof. Note that because V is nonsingular, vı1; : : : ; vıp are
linearly independent and the same holds form2; : : : ; mpC1. ut

Result 4.3 below extends the characterization of the GvMF distribution given by
Result 4.2 to the situation where the covariance matrix is singular.

Result 4.3. Let˙ be a p�p semi-positive definite matrix of rank r < p and denote
by �1; : : : ; �r > 0 its non-zero eigenvalues. Let X 2 Rp have the singular normal
density at x 2 Rp given by

.2�/�
r
2 .�1 � : : : � �r/� 1

2 exp

�
�1
2
.x � �/T˙�.x � �/

�
; (4.17)

where ˙� is a generalized inverse of ˙ , i.e., a matrix satisfying ˙˙�˙ D ˙ .
Then, for � ¤ 0, X has the GvMFrC1.m1; : : : ; mrC1I c1; : : : ; crC1I 1; 2; : : : ; 2/
conditional offset distribution on Sp�1, where the parameters mj ; cj , for j D
1; : : : ; r C 1, have the same form as under Result 4.2, with ˙� replacing ˙�1.
If � D 0, then X has a GvMFr .m2; : : : ; mrC1I c2; : : : ; crC1I 2; : : : ; 2/ conditional
offset distribution on Sp�1.

Proof. For 
1 D diag.�1; : : : ; �r / and �1 D .�ı1; : : : ; �ır /, where �ıj is the

normed eigenvector of˙ associated to �j , j D 1; : : : ; r , we have˙� D �1

�1
1 �

T
1

(see, e.g., [11, p. 477]). Define V D .vı1; : : : ; vır/ D �1

�1=2
1 . Then ˙� D

V V T D Pr
jD1 vıj vTıj :As the conditional offset density at x 2 Sp�1 is proportional

to

exp

�
�T˙�x � 1

2
xT˙�x

�
;

it follows that �T˙�x D c1m
T
1x and
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�1
2
xT˙�x D �1

2
xT

rX
jD1

vıj vT

ıjx D
rX
jD1

�1
2

jjvıj jj2
 

vTıjx
jjvıj jj

!2

D
rX
jD1

cjC1.mT
jC1x/2:

ut
Note that the density (4.17) of X is defined on the translated sub-vector space

fx 2 RpjN T.x � �/ D 0g, where N is a p � .p � r/ matrix satisfying N T˙ D 0

and N TN D Ip�r . Given ˙ D �
� T, with 
 D diag.�1; : : : ; �r ; 0; : : : ; 0/ and
� D .�1; �2/ with orthogonal and normed columns, X can be expressed as X D
�1Y C �, where Y � N .0;
1/. Hence N can be taken equal to �2. For further
details refer e.g. to [11, p. 42].

Gatto and Jammalamadaka [5, Characterization 2, p. 348], shows that for the case
p D 2, the conditional offset distribution of a bivariate normal vector is a GvM2

distribution. As noted by Result 4.1 and by the paragraph following it, any GvM2

distribution can be re-expressed as a GvMF2 distribution, and hence Result 4.2
generalizes this characterization of the GvM2 distribution to dimensions p > 2.
Result 4.2 with � D 0 yields the GvMFp conditional offset distribution having p
quadratic summands only. In agreement with this, when p D 2, we can see from [5,
Characterization 2], that � D 0 leads to the bimodal von Mises conditional offset
distribution, i.e., to the GvM2 density given in (4.12) with �1 D 0.

We can also deduce directly from (4.16) that if ˙ D 	2I , for 	 > 0, and � ¤ 0,
then X j jjX jj D 1 � vMF(jj�jj�1�I 	�2jj�jj), which is well known.

The next result shows that the GvMF distribution arises also as conditional offset
distribution from the exponential spherical class suggested by [3] as a general-
ization of the multivariate normal distribution. This class consists of multivariate
distributions with densities at x 2 Rp proportional to

exp

�
�1
r
Œ.x � �/TW.x � �/� r

2

�
; (4.18)

where � 2 Rp , W is a p � p positive definite matrix and r > 1.

Result 4.4. Assume X 2 Rp has the exponential spherical density proportional to
(4.18) with W D wI , for w > 0, and k D r=2 2 f1; 2; : : :g. If � ¤ 0, then X has a
GvMFk conditional offset distribution on Sp�1. More precisely,

X j jjX jj D 1 � GvMFk.m; : : : ; mI c1; : : : ; ck I 1; : : : ; k/;

where m D jj�jj�1� and

cr D .�2/r�1wk

k

	
k

j



.1C jj�jj2/k�r jj�jjr ; (4.19)
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for r D 1; : : : ; k. If � D 0, then the conditional offset distribution of X is the
isotropic one.

Proof. The conditional random vector X j jjX jj D 1 has density at x 2 Sp�1
proportional to

exp

(
�wk

2k
Œ.x � �/T.x � �/�k

)
:

The above exponent can be expanded as

�wk

2k

kX
rD0

	
k

r



.�2�Tx/r.1C �T�/k�r ;

which is, up to an additive constant and for � ¤ 0, equal to
Pk
rD1 cr .mTx/r , with

m and cr as given above, for r D 1; : : : ; k. ut
From Result 4.1, the GvMF3 distribution can be reparametrized in the GvM3

form when p D 2 and thus Result 4.4 extends in some way the characterization
of the GvM2 distribution in terms of the bivariate normal distribution given in [5,
Characterization 2]. The case k D 3 is given precisely in Result 4.5 below.

Result 4.5. AssumeX 2 R2 has a density proportional to (4.18) withW D wI , for
w > 0 and k D r=2 D 3. Then

argfXg j jjXjj D 1 � GvM3.�1; �2; �3I �1; �2; �3/;

where for c1, c2 and c3 given by (4.19), �1 is given by (4.13) and �1 by (4.14) with
�1 D �3 D argf�g, �2 D �3 D argf�g, �2 D c2=2 and �3 D c3=4.
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Chapter 5
A New Nonparametric Test of Symmetry

Kaushik Ghosh

Abstract We present a new nonparametric test for symmetry about an unknown
location and investigate its large sample properties. Asymptotic normality of the test
statistic is established and an estimator of the asymptotic variance is also presented.
Results of a simulation study and data analysis are also presented.

5.1 Introduction

In many practical situations, it is important to determine whether the underlying
population has a symmetric distribution. For example, if one is interested in esti-
mating the measure of location, having a skewed distribution would give rise to
consideration of more than one such measure. In the case of a paired sample prob-
lem with “treatment” and “control”, the hypothesis of “no treatment effect” implies
that the paired difference Z D X � Y is symmetric about 0. Many robust statisti-
cal methods (see [35]) depend on the assumption of symmetry. In case symmetry
is not valid, one would need to determine a symmetrizing transformation before
applying the statistical procedures. Koziol [40] mentions using a test for symme-
try as a screening procedure before applying the modulus family of transformations
introduced by [36] for bringing data to be closer to normality.

The problem of testing univariate symmetry has received attention in the lit-
erature for quite some time. Past work in this area can be broadly classified
into two groups – one where the center of symmetry is known (without loss
of generality, this is then taken to be 0) and the other case is where the cen-
ter of symmetry is completely unknown. A common class of nonparametric tests
in the first category is the weighted sign test, which has been studied in detail
by many authors, such as [29, 30, 37, 59]. Special cases of the former include

K. Ghosh
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the popular sign test and the signed-rank test. Other examples include works by
[14, 20, 47, 53, 56]. Aki [3] proposed a new test of symmetry which generalized the
results of [14] and [53]. Ahmad [1] proposed asymptotically normal estimates of
symmetry statistic by [53]. Reynolds [51] and Rosenstein [52] developed a sequen-
tial signed-rank test for symmetry about a known value. Further work have been
done by [6, 8, 9, 17, 21, 31–33, 39, 41, 42]. Some of the recent work in this area have
been by [2, 15, 45, 46, 58].

The case of unknown center of symmetry is a more realistic and practical prob-
lem. One of the earliest articles in this area is by [34] where the authors use the
difference of the mean and median as a measure of skewness. One group of tests is
obtained by applying the tests with known center, where the center is estimated from
the data. Gastwirth [26] proposed the modified sign test, whereby the unknown point
of symmetry is estimated by the sample mean and a sign test is developed for sym-
metry around this point. Other articles in this category include those by [10,21,28].
Boos [13] propose a test for symmetry based on the Hodges–Lehman estimator of
location. Davis and Quade [19] and Randles [50] propose asymptotically distribu-
tion free tests of symmetry. Antille and Kersting [5], Antille et al. [6] and Finch [25]
propose tests based on symmetric differences of spacings. Csörgő and Heathcote
[18] and Koutrouvelis [38] use the empirical characteristic function to develop tests
for symmetry about an unknown location, that do not require estimation of the
unknown location. Koziol [40] propose using rank-based tests of symmetry with
known center where the center is estimated using asymptotically efficient methods.
Eubank et al. [23] also propose a class of rank-based tests of symmetry. Schuster and
Barker [54] proposed a symmetric bootstrap procedure for testing symmetry about
unknown center, which was later examined in further detail by [7] and extended to
the dependent case by [48]. Cabilio and Masaro [16] propose a test of symmetry
about an unknown location based on deviation of the sample mean from the sam-
ple median, similar to the lines of [34]. Some of the recent work in this area are
[22, 43, 44].

In this article, we develop a new test of symmetry for univariate distributions
when the center of symmetry is unknown. Our test is based on a new characteriza-
tion of symmetry. This article proceeds as follows. In Sect. 5.2, we propose the new
estimator and investigate its properties. In Sect. 5.3, we provide results of simulation
studies in support of the theoretical properties. In Sect. 5.4, we provide a real-life
example of use of the proposed statistic. Finally, we end with concluding remarks
in Sect. 5.5. The proofs of results presented here are presented in the Appendix.

5.2 Theory

Suppose X1; : : : ; Xn is a set of observations (not necessarily i.i.d.) from an under-
lying continuous distribution with cdf F and corresponding pdf f . We want to test
for symmetry of f about an unknown point � (say). For any p 2 .0; 1/, consider
the function
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g.p/ D F

	
F�1.p/C F�1.1 � p/

2



:

Note that g.p/ < 1
2

if f is left skewed, g.p/ > 1
2

if f is right skewed and g.p/ D 1
2

is f is symmetric. Also note that g.p/ D g.1 � p/. Consequently, we propose the
following quantity to characterize the symmetry of f :


 � 
.F / D
Z 1=2

0

g.p/dp: (5.1)

It follows from prior remarks that 
 D 1
4

for symmetric, 
 > 1
4

for right skewed and

 < 1

4
for left skewed distributions.

Suppose OF is an empirical-process based estimate of F , such that

p
n. OF � F /

d! WF ; (5.2)

where WF is a Gaussian process with covariance kernel KF .�; �/. We propose
estimating 
 using the quantity

O
 D
Z 1=2

0

OF
 OF�1.p/C OF�1.1 � p/

2

!
dp: (5.3)

Our goal is now to estimate the asymptotic distribution of O
 . Consider the map
� W DŒ0; 1� ! DŒ0; 1� given by

�.F /.p/ D F

	
F �1.p/C F�1.1 � p/

2



: (5.4)

We first present an important result.

Theorem 5.1. Suppose F is a distribution with pdf f and OF be an empirical-
process based estimate of F satisfying (5.2), where WF is a Gaussian process with
covariance kernel KF .�; �/. Suppose we define the functional G D �.F / and OG be
its empirical counterpart, where � is given by (5.4). We then have

p
n. OG �G/

d! WG ;

where WG is a Gaussian process with covariance kernel KG.�; �/ given by

KG.s; t/ D KF

	
F�1.s/C F �1.1 � s/

2
;
F�1.t/C F �1.1 � t/

2




�1
2
f

	
F�1.s/CF�1.1 � s/

2


�
1

fF �1.s/
KF

	
F�1.s/;

F�1.t/CF �1.1�t/
2
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C 1

fF �1.1 � s/
KF

	
F�1.1 � s/; F

�1.t/C F�1.1 � t/
2


�

�1
2
f

	
F�1.t/CF�1.1� t/

2


�
1

fF�1.t/
KF

	
F �1.t/;

F�1.s/CF�1.1�s/
2




C 1

fF �1.1 � t/
KF

	
F�1.1 � t/; F

�1.s/C F�1.1 � s/
2


�

C1

4
f

	
F�1.s/C F�1.1 � s/

2



f

	
F�1.t/C F�1.1 � t/

2




�
�

1

fF �1.s/fF �1.t/
KF

�
F �1.s/; F �1.t/

�

C 1

fF �1.1 � s/fF�1.t/
KF

�
F�1.1 � s/; F�1.t/

�

C 1

fF �1.s/fF �1.1 � t/
KF

�
F�1.s/; F �1.1 � t/

�

C 1

fF �1.1 � s/fF�1.1 � t/KF
�
F�1.1 � s/; F �1.1 � t/

��
:

Corollary 5.1. Suppose X1; : : : ; Xn are i.i.d. F , which is symmetric about � and
OF is the corresponding empirical distribution function. We then have

KG.s; t/ D 1

4
� 1

2
f .�/

�
s

fF �1.s/
C t

fF�1.t/

�
C 1

2

f 2.�/

fF �1.s/fF �1.t/
.s ^ t/:

Theorem 5.2. Suppose X1; : : : ; Xn are observations from a distribution F . Let 

and O
 be as defined earlier. We then have

p
n. O
 � 
/ d! N.0; !2/

where

!2 D
Z 1=2

0

Z 1=2

0

KG.s; t/dsdt:

Corollary 5.2. Suppose X1; : : : ; Xn are i.i.d. F which is symmetric about �. Fur-
ther, assume that F has finite second moment. We then have

p
n

	
O
 � 1

4



d! N.0; !2/;

where

!2 D 1

16
� 1

4
f .�/E.jX � �j/C 1

4
f 2.�/E.X � �/2: (5.5)
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Table 5.1 Asymptotic variance of the symmetry statistic for some special symmetric distributions

Distribution !2

Uniform 1
48

D 0:0208

Normal ��2
16�

D 0:0227

Laplace 1
16

D 0:0625

t� (� > 2) 1
16

�
�
� .

�C1
2 /

� . �2 /

� 2
��3

4�.��1/.��2/

Beta.m; m/ 1
16

� mC1
16mm.2mC1/

n
� .2m/

� 2.m/

o2

Logistic 12�24 log 2C�2

192
D 0:0273

Note that the expression for !2 is invariant with respect to location and scale
changes. Also note the similarity of the asymptotic variance formula to that of the
asymptotic variance of SK defined in [16].

Table 5.1 gives the asymptotic variance of the symmetry statistic for some special
distributions. It is interesting to note that the asymptotic variance for the case of
samples from t� distribution decreases with � and ! ��2

16�
as � ! 1. Similarly,

for samples from the Beta.m;m/ distribution, the asymptotic variance ! ��2
16�

as
m ! 1 and ! 1

16
as m ! 0. The minimum is attained at m D 1:66529.

5.2.1 Estimation of the Asymptotic Variance

The asymptotic variance !2 of the O
 statistic given in (5.5) depends on unknown
population quantities, which need to be consistently estimated. From [57] and [12],
we see that the variance of 1

n

Pn
iD1 jXi � X j is of bounded order O.n�1/ and

E 1
n

Pn
iD1 jXi � X j D EjX � �jf1 C O.n�1=2/g. Hence, 1

n

Pn
iD1 jXi � X j is

a consistent estimator of EjX � �j. Consequently, we can consistently estimate !
along the lines of [16] using

O!2 D 1

16
� 1

4
Of . O�/1

n

nX
iD1

jXi � O�j C 1

4
Of 2. O�/S2; (5.6)

where S2 D 1
n�1

Pn
iD1.Xi � X/2 is the sample variance. Here O� is the sample

median and Of . O�/ is the kernel density estimator of f .�/ obtained using

Of .x/ D 1

nhn

nX
iD1

K

	
x �Xi
hn



;

where K.�/ is the Epanechnikov kernel

K.t/ D
(

3

4
p
5
.1 � 1

5
t2/ for jt j < p

5

0 otherwise;
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and the bandwidth hn is chosen to be

hn D 1:06min.std. dev; IQR=1:34/n�1=5

(see [55, pp. 43–47] for more on these choices).
Note that for a given random sample X1; X2; : : : ; Xn, we can write

O
 D

8̂
ˆ̂<
ˆ̂̂:

1
n2

h
#
�
X�X.1/CX.n/

2

�
C #

�
X�X.2/CX.n�1/

2

�
C � � � C #

�
X � X.n=2/CX.n=2/C1

2

�i
if n is even

1
n2

h
#
�
X � X.1/CX.n/

2

�
C #

�
X � X.2/CX.n�1/

2

�
C � � � C #

�
X�X

.
nC1
2 /

�i
if n is odd:

Hence, a 2-sided test for symmetry at level of significance ˛ can be given as:

reject H0 if Z D p
n

ˇ̌
ˇ̌ O�� 1

4

O!

ˇ̌
ˇ̌ > Z˛=2.

5.3 Simulation Studies

We conducted a simulation study based on samples generated from a generalized
lambda distribution (GLD) considered in [42, 58]. The quantile function of the
generalized lambda distribution is given by (see [49])

x D F�1.u/ D �1 C u�3 � .1 � u/�4

�2
; 0 � u � 1:

Here �1 is the location parameter of the distribution, �2 the scale parameter and
�3; �4 determine the skewness, with symmetry when �3 D �4.

Dataweregenerated from14membersof theGLDfamily.Foreach .�1; �2; �3; �4/
combination, we considered 4 sample sizes (n D 30; 50; 100 and 500). For each
n, we generated a random sample of size n and performed four different tests of
symmetry about an unknown location: (i) the proposed test (denoted by 
), (ii) the
test proposed by [43] (denoted by T ), (iii) the test proposed by [44] (denoted by �1)
and (iv) the test proposed by [16] (denoted by C ).

Note that each of the 4 test statistics are asymptotically normal whose asymp-
totic variances depend on the underlying distribution. In practice, one may decide to
estimate this asymptotic variance along the lines of Sect. 5.2.1 to make these tests
completely distribution free. However, a brief simulation study (not presented here)
indicated that the resulting tests have poor behavior, especially for small samples.
This is possibly due to the slow convergence of the estimator of the asymptotic
variance and/or due to slow convergence to normality.

Consequently, we decided to follow the methodology used by [16, 43, 44],
whereby the critical values of the 4 tests are first empirically estimated based on 105

simulations from a normal distribution. The resulting critical values are then used to
study the power of the tests, with each power calculation based on 105 simulations.
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Table 5.2 Estimated type I error probabilities of the various tests of symmetry when data are
simulated from some symmetric members of the GLD family. Critical values are based on normal
reference distribution. Results are based on 105 simulations, with nominal ˛ D 0:05

Test P.type I error/
n D 30 n D 50 n D 100 n D 500

Case 1: � D .0; 2; 1; 1/


 0.0443 0.0495 0.0437 0.0411
T 0.0940 0.1029 0.1006 0.1064
�1 0.1151 0.1271 0.1308 0.1376
C 0.1173 0.1295 0.1314 0.1376
Case 2: � D .0; 0:19745; 0:134915; 0:134915/


 0.0539 0.0498 0.0507 0.0476
T 0.0531 0.0523 0.0518 0.0501
�1 0.0524 0.0491 0.0515 0.0496
C 0.0541 0.0505 0.0521 0.0496
Case 3: � D .0;�1;�0:08;�0:08/

 0.0928 0.0930 0.0938 0.0942
T 0.0609 0.0625 0.0635 0.0588
�1 0.0409 0.0446 0.0433 0.0382
C 0.0421 0.0457 0.0439 0.0381
Case 4: � D .0;�0:397912;�0:16;�0:16/

 0.1106 0.1229 0.1178 0.1344
T 0.0806 0.0827 0.0769 0.0773
�1 0.0459 0.0446 0.0444 0.0439
C 0.0476 0.0463 0.0449 0.0438
Case 5: � D .0;�1;�0:24;�0:24/

 0.1416 1475 0.1585 0.1820
T 0.1016 1069 0.1061 0.1074
�1 0.0457 0.0475 0.0454 0.0491
C 0.0478 0.0482 0.0461 0.0491
Case 6: � D .0;�5:11256;�1;�1/

 0.4300 0.4771 0.5413 0.6621
T 0.5364 0.5908 0.6663 0.7983
�1 0.0945 0.0864 0.0907 0.0991
C 0.0987 0.0895 0.0912 0.0989

Table 5.2 gives the results for the symmetric cases (�1 D �2). We see from
Table 5.2 that for case 1 (uniform), the only recommended test is 
 , since it is the
only one maintaining the type I error level. For cases 3, 4 and 5, tests 
 or T should
not be used – instead one should preferably use �1. For case 6, none of the four
tests are recommended. Finally, note that all the tests more or less maintain their
significance levels for case 2. This is expected, since case 2 gives rise to a normal-
like distribution.

Table 5.3 gives the results for the asymmetric cases. The density curves of the dis-
tributions are sketched in [42] and denoted there as case 2 to case 9. From Table 5.3,
we see that for case 11, all the tests have very low power, even for quite large sample
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Table 5.3 Estimated power of the various tests of symmetry when data are simulated from some
asymmetric members of the GLD family. Critical values are based on normal reference distribution.
Results are based on 105 simulations, with nominal ˛ D 0:05

Test Power
n D 30 n D 50 n D 100 n D 500

Case 7: � D .0; 1; 1:4; 0:25/


 0.1872 0.2759 0.4627 0.9884
T 0.2692 0.3756 0.5668 0.9908
�1 0.2808 0.4002 0.5993 0.9933
C 0.2851 0.4041 0.5994 0.9933
Case 8: � D .0; 1; 0:00007; 0:1/


 0.6048 0.8141 0.9812 1.0000
T 0.6563 0.8388 0.9815 1.0000
�1 0.5972 0.8111 0.9787 1.0000
C 0.6032 0.8145 0.9788 1.0000
Case 9: � D .3:586508; 0:04306; 0:025213; 0:094029/


 0.2482 0.3850 0.6368 0.9993
T 0.2375 0.3533 0.5952 0.9985
�1 0.2019 0.3201 0.5690 0.9984
C 0.2071 0.3256 0.5696 0.9984
Case 10: � D .0;�1;�0:0075;�0:03/

 0.3981 0.5979 0.8678 1.0000
T 0.3793 0.5748 0.8424 1.0000
�1 0.3035 0.5001 0.8058 1.0000
C 0.3107 0.5063 0.8064 1.0000
Case 11: � D .�0:116734; 0:351663;�0:13;�0:16/

 0.1350 0.1489 0.2021 0.5145
T 0.0995 0.1076 0.1339 0.4132
�1 0.0565 0.0636 0.0879 0.3290
C 0.0587 0.0648 0.0885 0.3285
Case 12: � D .0;�1;�0:1;�0:18/

 0.2628 0.3813 0.6058 0.9974
T 0.2224 0.3279 0.5345 0.9927
�1 0.1309 0.2217 0.4249 0.9874
C 0.1360 0.2259 0.4255 0.9873
Case 13: � D .0;D �1;�0:001;�0:13/

 0.7935 0.9490 0.9989 1.0000
T 0.8398 0.9624 0.9986 1.0000
�1 0.7545 0.9370 0.9981 1.0000
C 0.7608 0.9390 0.9981 1.0000
Case 14: � D .0;�1;�0:0001;�0:17/

 0.8260 0.9616 0.9998 1.0000
T 0.8724 0.9715 0.9999 1.0000
�1 0.7908 0.9491 0.9997 1.0000
C 0.7960 0.9502 0.9997 1.0000
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sizes. For cases 9, 10, 11 and 12, the test 
 seems to be slightly preferable over the
other choices. Note that in all these cases, the distribution is close to symmetric and
is thus hard to distinguish. In none of the 8 cases, the test �1 seems to be preferable.

5.4 An Example

We use the data from [20] to illustrate our proposed method. Table II of [20] (repro-
duced in Table 5.4) gives survival times (in days) of 72 guinea pigs that received a
dose of tubercle bacilli (see [11] for more details on the data). A plot of the kernel
density estimate of the data is given in Fig. 5.1.

Table 5.4 Survival times (in days) of guinea pigs. Data reproduced from [20]

10 33 44 56 59 72 74 77 92 93
96 100 100 102 105 107 107 108 108 108
109 112 113 115 116 120 121 122 122 124
130 134 136 139 144 146 153 159 160 163
163 168 171 172 176 183 195 196 197 202
213 215 216 222 230 231 240 245 251 253
254 254 278 293 327 342 347 351 402 432
458 555
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Fig. 5.1 Kernel density estimate of the guinea pig survival times
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Application of the proposed test resulted in a test statistic value of Z D
1:597538, which corresponds to a p-value of 0.0550 against the alternative hypoth-
esis of positive skewness. Thus, the data is close to significantly positively skewed
at 5% level.

5.5 Conclusion

We have proposed a new test of univariate symmetry about an unknown loca-
tion. From simulation studies, the test is seen to possess improved power over
other choices when the underlying distribution is close to symmetric. The results
presented here are based on estimating the critical values assuming a normal distri-
bution. Preliminary simulations have shown that the asymptotically distribution-free
version (obtained by estimating the asymptotic variance) has poor performance,
especially for small sample sizes. We believe that this is due to the slow conver-
gence to the limiting distribution. Methods to speed up convergence need further
investigation.

Although we have presented the expression for the asymptotic variance only for
the case of i.i.d sample, the same principle can be used for cases where one has
ranked set samples or its generalizations (see [27]). The case of testing symme-
try based on such generalized sampling schemes is currently ongoing and will be
presented in a later article.

Appendix

Lemma 5.1. Consider the map � W DŒ0; 1� ! DŒ0; 1� given by

�.F /.p/ D F

	
F �1.p/C F�1.1 � p/

2



:

Let �0
F .h/ be the Hadamard derivative of �.F / in the direction of h. Then, we have

�0
F .h/.p/ D h

	
F�1.p/C F �1.1 � p/

2



� 1

2
f

	
F�1.p/C F �1.1 � p/

2




�


h.F �1.p//
f .F�1.p//

C h.F�1.1 � p//
f .F �1.1 � p//

�
:

Proof of Lemma 5.1: The Hadamard derivative of �.F / in the direction of h is
given by
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�0
F .h/.p/ D lim

t!0

�.F C th/.p/� �.F /.p/

t

D lim
t!0

1

t
Œ�.F C th/.p/� �.F /.p/�

D lim
t!0

1

t



.F C th/

	
.F C th/�1.p/C .F C th/�1.1 � p/

2




�F
	
F �1.p/C F�1.1 � p/

2


�

D lim
t!0

1

t



F

	
.F C th/�1.p/C .F C th/�1.1 � p/

2




Cth

	
.f C th/�1.p/C .F C th/�1.1 � p/

2




�F
	
F �1.p/C F�1.1 � p/

2


�

D lim
t!0

1

t



F

	
.F C th/�1.p/C .F C th/�1.1 � p/

2




�F
	
F �1.p/C F�1.1 � p/

2


�

Ch
	
.F C th/�1.p/C .F C th/�1.1 � p/

2



:

Let u D F�1.p/; u C v D .F C th/�1.p/; a D F�1.1 � p/; a C b D .F C
th/�1.1 � p/. Then, F.u/ D p D F.u C v/ C th.u C v/ and F.a/ D 1 � p D
F.a C b/C th.a C b/. Note that as t ! 0, u ! 0 and v ! 0. Hence,

h

	
.F C th/�1.p/C .F C th/�1.1 � p/

2



D h

	
u C v C aC b

2




! h

	
u C a

2




D h

	
F�1.p/C F�1.1 � p/

2



:

(5.7)

Also,

1

t



F

	
.F C th/�1.p/C .F C th/�1.1� p/

2



� F

	
F�1.p/C F�1.1� p/

2


�

D
F
�

uCa
2

C vCb
2

�
� F

�
uCa
2

�

vCb
2

� v C b

2t

D T1 � T2 say:
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As t ! 0, we have

T1 ! f

	
u C a

2




D f

	
F�1.p/C F�1.1 � p/

2



: (5.8)

Also, as t ! 0,

t2 D v C b

2t

D 1

2



vh.u C v/

F.u/� F.u C v/
C bh.aC b/

F.a/ � F.a C b/

�

! 1

2

	�h.u/
f .u/

C �h.a/
f .a/




D �1
2



h.F�1.p//
f .F �1.p//

C h.F �1.1 � p//

f .F�1.1 � p//
�
: (5.9)

Combining (5.7), (5.8) and (5.9), we get the result. ut
Proof of Theorem 5.1: From (5.2) and the functional delta method (see [4, 24]), we
have p

n.�. OF /� �.F //
d! �0

F .WF / (5.10)

where

�0
F .WF /.p/ D WF

	
F�1.p/C F�1.1 � p/

2




�1
2
f

	
F�1.p/C F �1.1 � p/

2




�


WF .F

�1.p//
f .F �1.p//

C WF .F
�1.1� p//

f .F �1.1 � p//

�
:

The result follows from the above. ut
Proof of Theorem 5.2:

p
n

 Z 1=2

0

�. OF /.p/dp �
Z 1=2

0

�.F /.p/dp

!
d!
Z 1=2

0

Z 1=2

0

KG.s; t/dsdt:

ut
Proof of Corollary 5.2: Note that
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Z 1=2

0

Z 1=2

0

s

fF�1.s/
dsdt D 1

2

Z �

�1
.� � t/f .t/dt:

Also,

Z 1=2

0

Z 1=2

0

s ^ t
fF�1.s/fF�1.t/

dsdt D
Z �

�1
.� � t/2f .t/dt:

Combining, we get the result. ut
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Chapter 6
A Semiparametric Bayesian Method
of Clustering Genes Using Time-Series
of Expression Profiles

Arvind K. Jammalamadaka and Kaushik Ghosh

Abstract An increasing number of microarray experiments look at expression lev-
els of genes over the course of several points in time. In this article, we present two
models for clustering such time series of expression profiles. We use nonparametric
Bayesian methods which make the models robust to misspecifications and provide
a natural framework for clustering of the genes through the use of Dirichlet pro-
cess priors. Unlike other clustering techniques, the resulting number of clusters is
completely data driven. We demonstrate the effectiveness of our methodology using
simulation studies with artificial data as well as through an application to a real
data set.

6.1 Introduction

Rapid advances in genome-sequencing technology has made it possible to collect
data simultaneously on expression-levels of all genes of an organism relatively eas-
ily than it has been ever before. Usually, the number of genes is in the thousands
and the data might be very high-dimensional, thus requiring specialized statistical
tools for analysis. One of the natural questions that scientists have been pondering
over is how to use such expression data to cluster genes into functionally related
groups. The aim is thus to identify genes with similar expression patterns, which
can further lead to improved understanding of cell functioning – possibly opening
way for better treatment of diseases.

The expression data can be in the form of a single snapshot at a point of time or
can be in the form of multiple measurements of the genes, taken at several points
in time. The latter gives rise to time series of expression profiles and is naturally
more informative in clustering genes than if one were to use single time snapshots.
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Time series experiments are becoming increasingly common (see [2,8–10,12,13,15]
for some recent examples of work in this area) with the improvements in high-
throughput data collection techniques such as microarrays.

Analyzing such expression data present several special challenges, since one
needs to account for the correlation among several genes at a timepoint as well as
correlation among measurements on the same gene at different timepoints. Several
of the past methods dealing with such data have assumed that the expression profile
for each gene is a multivariate vector where the profile vector, given the parameters,
is assumed to be multivariate normal with independent components (see, e.g., [8–
10]). While such simpler models provide a first-cut, they fail to take into account the
dependence of the measurements on a gene at various timepoints and are thus not
realistic. In this paper, we in contrast, allow for potentially rich correlation struc-
tures between timepoints. Such dependence between expression values for the same
gene, is quite natural in our opinion, and is the main contribution of this paper.

This paper is organized as follows. In Sect. 6.2, we present two proposed models
for the time series of expression data. In Sect. 6.3, we discuss the techniques used to
estimate the model parameters. To demonstrate the ability of the proposed models
to correctly identify the underlying clusters, we present results of a short simulation
study in Sect. 6.4. In Sect. 6.5, we illustrate this method by an application to the
well-studied yeast cell-cycle data [14]. Finally, we present concluding remarks in
Sect. 6.6.

6.2 Model Description

Suppose that a microarray experiment consists of N genes. Each gene is repeat-
edly measured over time on p different occasions, resulting in a p-dimensional
measurement vector y i D .yi1; : : : ; yip/

0 for gene i (i D 1; : : : ; N ). Let �i be
the mean vector of y i and ˙i be the corresponding covariance matrix. In what
follows, we present two different models for the joint distribution of the measure-
ment vectors y i . The models differ in how the variance-covariance matrix ˙ i is
represented.

6.2.1 Heteroscedastic Model

In this model, we assume that the variance-covariance matrix for the measurements
on gene i is given by ˙i D 	2i H.�i /. Here 	2i and �i are gene-specific variance and
one-step correlation parameters respectively and H.�/ is a matrix-variate function
that is common to all genes. The matrix H.�/ provides the dependence structure
among the measurements at various timepoints on a particular gene and is assumed
to be completely known.
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Two possible forms of the H.�/ matrix are

H.�/ D ..�ji�j j//p�p

and
H.�/ D ..IfiDj g C �Ifi¤j g//p�p :

The first form assumes that the correlation between measurements at any two
timepoints decays exponentially as a function of the distance between the two time-
points, so points further away are less correlated with one another. The second form
assumes that the correlation remains the same between any two points of time.

We assume that conditional on the mean vector, the common variance and
one-step correlation, gene expression profiles for various genes are independent
multivariate normal random vectors. That is,

y i j.�i ; 	2i ; �i / indep� Np.�i ; 	
2
i H.�i //; i D 1; : : : ; N:

Let � i D .�i ; 	
2
i ; �i / be the vector of parameters used to describe the joint

distribution of the expression profile of i th gene. We will say two genes i and j
cluster together if their corresponding parameter vectors � i and �j are identical. To

this end, we assume that � i jG iid� G andGj.M;G0/ � D.M; G0/. Here D.M; G0/
denotes a Dirichlet process [5] with base measure G0 and concentrationM .

The reasons for such a choice of prior distribution are 2-fold. First, using a
Dirichlet process makes the distribution of the parameter vectors flexible and robust
to mis-specifications. Second, due to the natural clustering property of samples
from a distribution with a Dirichlet process prior [1], there is inherent data-driven
clustering among the model parameters.

We assume that under the baseline prior G0, .�i , 	
2
i , �i / are independent with

multivariate normal, inverted-gamma and beta distributions, respectively. In other
words,

G0 D Np.�0; ˙0/ � IG.a� ; b� / � Beta.a	; b	/

where
˙0 D diag.	201; : : : ; 	

2
0p/

with
	201; : : : ; 	

2
0p

iid� IG.a0; b0/

and
�0 D .�01; : : : ; �0p/

T :

We further assume
M � Gamma.aM ; bM /:

All the hyperparameters a� ; b� ; a0; b0; a	; b	, aM ; bM ; �01; : : : ; �0p are
assumed known and in practice, are chosen to make the priors as noninformative
as possible. Due to lack of closed form expressions for the posterior distribution
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and easy availability of univariate conditionals, we will use a Markov chain Monte
Carlo approach to estimate the model parameters. The natural clustering property of
the Dirichlet Process will lead to clustering of the values of � i .

6.2.2 Homoscedastic Model

In this case, we assume the variance of measurements is same across all genes and
across all timepoints. Hence, the clustering of genes is achieved based on the gene-
specific mean vector and one-step correlation. Thus, we have

y i j.�i ; 	2; �i / indep� Np.�i ; 	
2H.�i //; i D 1; : : : ; N;

where N D number of genes,

H.�/ D ..�ji�j j//p�p ;

or
H.�/ D ..IfiDj g C �Ifi¤j g//p�p :

is the correlation matrix, and p = number of observations per gene.
We further assume:

.�i ; �i / � �i
iid� G;

G � DP.M;G0/;

G0 D Np.�0; ˙0/ � Beta.a	; b	/;

˙0 D diag.	21 ; � � � ; 	2p/p�p ;

	21 ; : : : ; 	
2
p

iid� IG.a�; b�/;
�0 D .�01; : : : ; �0p/

0;
M � Gamma.aM ; bM /;

	2 � IG.a� ; b� /:

Note that this model differs from the heteroscedastic model by the fact that all
genes are assumed to have the same variability in their pointwise measurements and
cannot be obtained as a special case of the former model.

6.3 Model Fitting and Estimation

Due to lack of closed-form expressions of the posterior distributions, model fitting
is done using Markov chain Monte Carlo procedures. In particular, since univariate
conditionals of the model parameters are easily obtained, we use the Gibbs sampler.
Details of the implementation of the Gibbs sampler are outlined below.
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6.3.1 Heteroscedastic Model

We can update the model parameters according the following scheme:

1.

	20j j � � � � IG

0
@a0 C N

2
;

"
1

b0
C 1

2

NX
iD1
.�ij � �0j /2

#�11
A ;

j D 1; : : : ; p.
2. Due to the clustering property of samples generated from Dirichlet process,

not all values of �i are distinct. In any iteration, let there be k distinct values,
��
1 ; : : : ; �

�
k

. Let c D .c1; : : : ; cN / be the configuration vector where ci D j if
and only if �i D ��

j , j D 1; : : : ; k. Let nj be the number of occurrences of ��
j .

The configuration vector is updated every iteration using algorithms of [11].
3. Update the distinct values ��

j as follows .j D 1; : : : ; k/

f .��
j ; 	

�2

j ; �
�
j j � � � / /

Y
i Wci Dj

f .yi j��
j ; 	

�2

j ; �
�
j /f .�

�
j j�0; ˙0/

� f .	�2

j ja� ; b� /f .��
j ja	; b	/:

Consequently, it is easy to show that

(a) ��
j j � � � � N.��

j ; �
�
j / where

� �
j D

2
4
 
	�2

j

nj
H.��

j /
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0

3
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The components of ��
j can be updated one at a time using the above results.

Updating of ��
j using (6.1) can be done using Adaptive Rejection Sampling

(ARS) or Adaptive Rejection Metropolis Sampling (ARMS) (see [6, 7]).
4. M is updated using a mixture of Gammas as outlined in [4].

6.3.2 Homoscedastic Model

The parameter updates are done according to the following scheme:

1. Update the pointwise variance using

	2j � � � � IG

0
@a� C np

2
;

"
1

b�
C 1

2

NX
iD1
.yi � �i /H.�i /�1.yi � �i /

#�11
A :

2. Update the entries of the baseline covariance matrix ˙0 using

	2j j � � � � IG

0
@a� C N

2
;

"
1

b� C 1

2

NX
iD1
.�ij � �0j /

2

#�11
A ;

j D 1; : : : ; p.
3. As in the heteroscedastic model, let there be k distinct values, ��

1 ; : : : ; �
�
k

and
let c D .c1; : : : ; cN / be the configuration vector where ci D j if and only if
�i D ��

j , j D 1; : : : ; k. Let nj be the number of occurrences of ��
j . We update

the configuration vector using algorithms of [11].
4. Update the distinct values as follows:

��
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b��1:

Use ARS or ARMS to do the last update.
5. UpdateM using a mixture of Gammas, along the lines of [4].

6.4 A Simulation Study

Performance of both the heteroscedastic and homoscedastic models were evaluated
using a simulation study involving a synthetic data set. This data consists of expres-
sion onN D 60 genes measured at p D 10 equally-spaced timepoints, without loss
of generality which are taken to be t1 D 1; : : : ; t10 D 10. The 60 genes are divided
into 3 groups, each consisting of 20 genes. The data were generated according to
the following model

yij D  i .tj /C eij

where
 i .t/ D ıi0 C ıi1t C ˇi1.t � t1/C C � � � C ˇip.t � tp/C

is the mean trajectory of the i th group and eij is the random error in measuring the
expression level for gene i at timepoint tj . The parameters for the mean trajectories
for the three groups are given in Table 6.1. The errors for each group are assumed to
be normal with zero mean and variances given by 0.25, 1.0 and 0.04 respectively. In
addition, we also assumed that there is a correlation of � D 0:3 between time-points.

Once we generated the data, the Gibbs sampler was used to sample from the pos-
terior distribution for the fitted models. Both the homoscedastic and heteroscedastic
models were fitted to the simulated data. A burn-in of 10,000 iterations was found to
be enough to reach steady-state. An additional 10,000 iterations were used for the

Table 6.1 Synthetic data trajectory parameters

Group 1 Group 2 Group 3

ıi0 0 0 �1.0
ıi1 0.5 0.5 0.2
ˇi1 0 0 0
ˇi2 0 0 0
ˇi3 0 0 0
ˇi4 0 0 0
ˇi5 0 �1.5 0
ˇi6 0 0 0
ˇi7 0 0 0
ˇi8 0 0 0
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Fig. 6.1 Heatmap of clusters of the synthetic data based on the average incidence matrix from
the heteroscedastic model. Higher intensity (in deeper red) denotes more likelihood of clustering
together, while lower intensity (in lighter yellow) denotes less likelihood of clustering. Note that
the three original groups of 20 units each are fully recovered (denoted by the three large squares
on the diagonal)

purposes of posterior inference. For each iteration l , we obtained a configuration
vector c.l/ D .c

.l/
1 ; : : : ; c

.l/
N / of the cluster-structure of the genes. This gave rise to

an incidence matrix Q.l/
N�N , where Q.l/ D ..q

.l/
i;j // and q.l/i;j D 1 if c.l/i D c

.l/
j , 0

otherwise. The average incidence matrixQ D 1
L

P10;000
lD1 Q.l/ was then computed.

The heatmap routine in R was used on 1 � Q to generate a heatmap of the
clustering of the genes based on this average incidence matrix. The result for the
heteroscedastic model is shown in Fig. 6.1.

We note that these models generally seem to perform very similarly on the test
data. While both of them are able to isolate members of the same original group into
clusters, the clustering is not perfect in all the iterations.
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6.5 Application to Spellman Data

The proposed models were next applied to a standard subset of the well-known data
on time series of gene expression of yeast cells due to [14]. Details on the data and
how to access it can be obtained from http://genome-www.stanford.edu/cellcycle.
The subset consists of observations on N D 798 genes measured at p D 18 time-
points. Both the homoscedastic and the heteroscedastic models were fit to the data.
A burn-in of 10,000 iterations stabilized the sampler. After that, an additional 5,000
iterations were used to estimate the model parameters. Each iteration produced a
configuration structure of the genes that cluster together, giving rise to an incidence
matrix. The average incidence matrix was used to ascertain the “average cluster
structure” of the genes using the method of [3] or through heatmaps as described
earlier. The resulting heatmap for the heteroscedastic model is provided in Fig. 6.2.

Gene #

G
en

e 
#

Fig. 6.2 Heatmap of clusters of the 798 genes in the Spellman data based on the average incidence
matrix for the heteroscedastic model. Higher intensity of red denotes more likelihood of clustering
together

http://genome-www.stanford.edu/cellcycle
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Fig. 6.3 Histogram of number of clusters generated using the heteroscedastic model on the
Spellman data
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Fig. 6.4 Mean curves of top 5 clusters found by applying the heteroscedastic model to the
Spellman data
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The median number of clusters using the homoscedastic model is 5 with a 95%
credible interval being (1, 13) and the corresponding figures for the heteroscedastic
model were 7 and (2, 14) respectively. The histogram of the number of clusters in
the heteroscedastic model is given in Fig. 6.3. All the above models were coded in
C, and the code can be obtained from the authors upon request.

A plot of the mean expression profiles for the top 5 clusters corresponding to
the heatmap and the resulting dendrogram for the heteroscedastic model is given in
Fig. 6.4. To get a rough measure of cluster separation, we consider a rather crude
measure of distance achieved by each of the (cluster-specific) average trajectories
from the overall mean trajectory y, as measured by the sum across the 5 clusters and
the 18 timepoints using

5X
iD1

18X
tD1
.yit � yt /

2:

This measure has a value of 39.68 for the heteroscedastic model and 40.13 for the
homoscedastic model. Hence, in terms of the measure of separation, of the clusters
the two models are quite close.

As a check of how robust our choice of prior parameters on M are, we changed
these to yield an expected number of clusters that is closer to 5. The resulting mean
curves for the top 5 clusters are nearly indistinguishable from those obtained previ-
ously. This assures us that the hyperparameters do not play a very significant role,
which is often a point of concern in Bayes methods.

6.6 Conclusion

We have provided a semiparametric Bayesian approach to clustering genes based
on their expression profiles, which we assume have certain correlation structure.
This method is easily implemented using standard computer languages and produces
results in a reasonable period of time (it took about 2 hours to cluster the 798 genes
on an Apple MacBook Pro with 2.6 GHz Intel Core 2 Duo and 4 GB of RAM). One
can easily add additional steps to the Gibbs sampler to make the model more robust
to mis-specifications (e.g., using a multivariate t instead of multivariate normal).
The model can also be used to handle missing data by replacing them with their
imputed values or as an additional MCMC step.
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Chapter 7
On Implementation of the Markov Chain
Monte Carlo Stochastic
Approximation Algorithm

Yihua Jiang, Peter Karcher, and Yuedong Wang

Abstract The Markov Chain Monte Carlo Stochastic Approximation Algorithm
(MCMCSAA) was developed to compute estimates of parameters with incomplete
data. In theory this algorithm guarantees convergence to the expected fixed points.
However, due to its flexibility and complexity, care needs to be taken for imple-
mentation in practice. In this paper we show that the performance of MCMCSAA
depends on many factors such as the Markov chain Monte Carlo sample size, the
step-size of the parameter update, the initial values and the choice of an approx-
imation to the Hessian matrix. Good choices of these factors are crucial to the
practical performance and our results provide practical guidelines for these choices.
We propose a new adaptive and hybrid procedure which is stable and faster while
maintaining the same theoretical properties.

7.1 Introduction

We often face incomplete data such as censored and/or truncated data in sur-
vival analysis, and unobservable latent variables in mixed effects and errors-in-
variables models. It is difficult to compute estimates of parameters such as max-
imum likelihood estimates (MLE) with incomplete data because the likelihood
usually involves intractable integrals. For example, the likelihood function of the
generalized linear mixed models (GLMM) involves an integral with respect to the
random effects which usually does not have a closed form for non-Gaussian obser-
vations. Laplace approximation may lead to large bias and inconsistent estimates
[3, 7, 11]. McCulloch [13] modified the EM and the Newton–Raphson algorithms
for fitting GLMMs with integrals approximated by Monte Carlo (MC) methods. A
drawback of the MC approach is that the iterative scheme converges to a random
variable rather than to the expected fixed point. As a consequence, it is difficult

Y. Jiang (B)
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to decide the MC sample size and a stopping rule for such an iterative procedure.
Booth and Hobert [2] pointed out these potential problems and proposed an empiri-
cal approach to increase the MC sample size. However, it is unclear if their algorithm
converges in theory.

MCMCSAA proposed by [5] (Gu and Kong, 2000, Personal communication)
for incomplete data is a major breakthrough which guarantees convergence to the
expected fixed points in theory. MCMCSAA uses stochastic approximation (SA)
to update the parameters and Markov chain Monte Carlo (MCMC) to approximate
integrals at each iteration. In this article we investigate the performance of MCMC-
SAA using simulations. Our goal is to reveal some practical issues involved in the
implementation of MCMCSAA. We find that MCMCSAA can be sensitive to the
choices of (a) the initial values, (b) the MCMC sample size and step-size of the
parameter update, and (c) a matrix whose expected value approximates the Hes-
sian of the target function. We provide recommendations for implementation and
propose a hybrid algorithm which is stable and considerably faster.

We review the MCMCSAA in Sect. 7.2. We conduct simulations to illustrate
potential pitfalls in the implementation of the MCMCSAA in Sect. 7.3. We propose
a hybrid algorithm in Sect. 7.4. Concluding remarks are made in Sect. 7.5.

7.2 Markov Chain Monte Carlo Stochastic Approximation
Algorithms

In this section we briefly review MCMCSAA proposed by [5] (Gu and Kong,
2000, Personal communication). See also [6, 9, 10] (Gu and Zhu, 2002, Personal
communication).

Suppose that we want to solve the following estimating equations

Eh.E�/ D 0; (7.1)

where E� is a vector of parameters and Eh.E�/ is a vector valued function that can be
written as the expectation of a function EH.E�; Ee/ with respect to a random vector Ee
with density function fEe.Ee/:

Eh.E�/ D EEeŒ EH.E�; Ee/� D
Z

EH.E�; Ee/fEe.Ee/d Ee: (7.2)

In survival analysis, for example, data might be right censored. The score function
can be written in form (7.2) [14]. Another example is a GLMM when the random
effects are considered as missing data. Integrating respect to the vector of random
effects leads to form (7.2) [5, 13, 15].

To apply the MCMCSAA, one needs to find a matrix I.E�; Ee/ such thatEEeŒI.E�; Ee/�
� @Eh=@E� in the neighborhood of the solution. We consider the following three
different choices of I.E�; Ee/:
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I1.E�; Ee/ D �@ EH.E�; Ee/=@E�;
I2.E�; Ee/ D �@ EH.E�; Ee/=@E� � EH.E�; Ee/ EH.E�; Ee/T ;
I3.E�; Ee/ D �@ EH.E�; Ee/=@E� � EH.E�; Ee/ EH.E�; Ee/T C EEe Œ EH.E�; Ee/�EEeŒ EH.E�; Ee/�T :

(7.3)

Whenever the meaning is clear we will drop the dependence on E� and Ee from all
I -matrices. Also for brevity we will often refer to I1, I2, or I3 when we actually
mean the algorithm based on I1, I2, or I3. I1 used by [1], is usually well-behaved.
For example, it is positive definite for convex target functions. Gu and Kong (2000,
Personal communication) proposed I2 and claimed that it is more efficient. I3 moti-
vated by the actual derivative of Eh.E�/ with respect to E�T [12] is new. Convergence
of the algorithms are guaranteed for all three choices of I -matrices [1, 5]. (Gu and
Kong, 2000, Personal communication).

Let f�k; k � 1g be a sequence of real numbers, and fmk; k � 1g be a sequence
of positive integers which satisfy the following conditions:

(C1) �k � 1 for all k

(C2)
P1
kD1 �k D 1

(C3)
P1
kD1 �

1C�
k

=mk < 1; for some � 2 .0; 1/
(C4)

P1
kD1 j�k=mk � �k�1=mk�1j < 1

At iteration k, a MCMC sample of size mk with equilibrium distribution
fEe.Ee/ is drawn. See [4] for an overview of the Metropolis–Hastings algorithm.
Let Ee.1/

k
; : : : ; Ee.mk/

k
be the MCMC sample of size mk after some burn-in. The

MCMCSAA updates the parameter vector E� and a matrix � as follows:

�k D .1 � �k/�k�1 C �k NIk;
E�k D E�k�1 C � �1

k

NEHk ;
(7.4)

where

NEHk D
mkX
jD1

EH.E�k�1; Ee.j /k /=mk; (7.5)

NIk D
mkX
jD1

I.E�k�1; Ee.j /k /=mk: (7.6)

The I matrix in (7.6) may take any form in (7.3). �k acts as a proxy of the Hessian
matrix and is updated as parameters. �k is the step-size of the parameter updates.
The innovation of MCMCSAA is the introduction of two sequences f�kg and fmkg.
For a constant mk and �k D 1, the estimate of E� will maintain a certain amount
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of variation along iterations due to estimating EH and I by averaging over ran-
dom samples. By increasing the sample size mk , decreasing step-size �k , or both,
the MCMCSAA decreases the variation in E� as iteration increases. Gu and Kong
(2000, Personal communication) have shown that under some regularity conditions
and when mk and �k satisfy conditions (C1)–(C4), E�k converges to the solution of
(7.1) almost surely. The following are three combinations of mk and �k that satisfy
conditions (C1)–(C4):

G1 �k D 1 and mk D m0 C k2

G2 �k D 1=k and mk D m0

G3 �k D 1=
p
k and mk D m0 C k

where m0 is the starting MCMC sample size. We see that when �k D 1, mk needs
to increase quadratically. When mk is a constant, �k needs to decrease in the order
of 1=k. G3 is a compromise between G1 and G2.

The result of (Gu and Kong, 2000, Personal communication)provides the theo-
retical justification for the MCMCSAA. However, few research has been done to
investigate its performance in practice. The simulation results in the next section
are intended to show some potential problems that may occur in practice, and to
compare different choices of parameters of the algorithm. We propose a new hybrid
procedure and conduct more simulations in Sect. 7.4.

7.3 Simulations

To implement the MCMCSAA, one needs to decide (a) the initial values E�0, (b) the
MCMC sample size mk and step-size of the parameter update �k , and (c) the form
of the I -matrix. We will use simulations to show that the stability of the algorithm
and the speed of convergence depends critically on all three choices.

We use the following simple model to illustrate challenges and potential pitfalls
involved in the implementation of the MCMCSAA. Same issues arise in more com-
plex models. Consider an experiment with n D 10 binary observations from each
of m D 20 subjects. Binary observations are generate from the following simple
GLMM:

P.yij D 1jbi / D exp.bi /=.1C exp.bi //;

bi
iid� N.0; �/; i D 1; : : : ; mI j D 1; : : : ; n; (7.7)

where bi are random effects. Note that there is no fixed effects in model (7.7). The
problems we are going to show in this section are usually associated with the esti-
mation of variance components such as � , while the estimation of fixed effects is
stable and converges quickly. Thus we set them to zero to simplify the exposition.
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Let Ey D .y11; � � � ; y1n; � � � ; ym1; � � � ; ymn/T and Eb D .b1; � � � ; bm/. The log-
marginal distribution of Ey is

l Ey. EyI �/ D log
Z
f EyjEb.EbI �/ expflEb.EbI �/gdEb; (7.8)

where f EyjEb.EbI �/ is the conditional distribution of Ey conditional on Eb and lEb.EbI �/ is

the log-density of Eb. It can be shown that under some regularity conditions,

@l Ey. Ey; �/
@�

D
Z
@lEb.EbI �/
@�

fEbj Ey.Eb/dEb D EEbj Ey
@lEb.EbI �/
@�

;

where fEbj Ey is the posterior density of Eb given Ey. Thus we can apply MCMCSAA

with Ee D Ebj Ey and EH.�; Eb/ D @lEb.Eb; �/=@� . It is easy to check that for model (7.7),

EH.�; Eb/ D �m=.2�/C
mX
iD1

b2i =.2�
2/;

I1.�; Eb/ D �m=.2�2/C
mX
iD1

b2i =�
3;

I2.�; Eb/ D I1.�; Eb/ �
"

�m=.2�/C
mX
iD1

b2i =.2�
2/

#2
;

I3.�; Eb/ D I2.�; Eb/C .EEbj Ey EH.�; Eb//2:

(7.9)

Since � is non-negative, we set �k D �k�1 if the update �k�1 C �k� �1
k

NHk < 0.

We estimate EEbj Ey EH.�; Eb/ by NH.�; Eb/ D Pm
jD1 EH.�; Eb.j //, where Eb.j / are

MCMC samples. We use the single component Metropolis–Hastings algorithm to
sample from fEbj Ey.Eb/ with the length of burn-in set to 300 [4, 8]. Specifically, at the

pth iteration of the MCMC, we update each element b.p/1 ; : : : ; b
.p/
m one by one as

follows: generate X from N.b.p�1/
i ; 0:5�k�1/ as a candidate for b.p/i and U from

Unif.0; 1/; set b.p/i D X if U � minf1; �.X/=�.b.p�1/
i /g and b.p/i D b

.p�1/
i

otherwise.
We simulate data with three true values of � : 0.5, 1.0 and 2.0. Denote �0 as the

initial value and �MLE as the MLE. We compute �MLE’s numerically by maximiz-
ing (7.8) using integration and optimization functions in R (www.r-project.org). We
consider the following combinations of parameters for the algorithm:


 Initial values �0: 0:5�MLE, �MLE and 2�MLE


 I -matrices: I1, I2 and I3

 �k andmk: G1, G2 and G3

 m0: 30 and 300
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Fig. 7.1 Four patterns of sequences divided by �MLE

We have also tried to set both m0 and burn-in period to 10,000, the convergence
behavior remains the same. For each combination of parameters, we repeat simula-
tion 100 times. Following (Gu and Kong, 2000, Personal communication), we stop
the algorithm after 50 iterations for G1, 1,000 iterations for G2, and 250 iterations
for G3.

We first look at the convergence behavior. All iteration sequences follow one of
the following four patterns: (a) converged to the MLE, (d) approaching but not yet
converged to the MLE, (c) converges to zero, and (d) diverges to infinity. We show
a typical example for each pattern in Fig. 7.1.

The curve of sequences usually becomes smoother and smoother along the iter-
ations. However, depending on the choice of �k and mk , random variation persists
even after a large number of iterations. The following definitions allow the estimates
to have small variations around the MLE. Let N�5 be average of the estimate at the
last 5 iterations. For any sequence, we define the following three states:

(S1) converged, if
ˇ̌
. N�5 � �MLE/=.�MLE C 1/

ˇ̌
< 0:05

(S2) diverged, if
ˇ̌
. N�5 � �MLE/=.�MLE C 1/

ˇ̌
> 1, or

ˇ̌
. N�5 � �MLE/=.�MLE C 1/

ˇ̌ �
0:05 and

ˇ̌ N�5=�MLE

ˇ̌
< 0:05

(S3) not converged, otherwise

Not converged sequences (S3) consists of two classes: sequences that are converging
but are not close enough to the MLE and sequences that are diverging but are not
far enough from the MLE. Table 7.1 shows the convergence behavior. An entry i=j
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Table 7.1 Number of simulation replications that are converged or diverged

� �0 m0 D 30 m0 D 300

G1 G2 G3 G1 G2 G3

I1 78/0 0/0 72/0 78/0 0/0 75/0
0:5�MLE I2 8/85 55/26 43/51 11/86 74/17 61/32

I3 38/47 53/6 70/15 50/38 80/6 75/15
I1 79/0 64/0 85/0 83/0 92/0 89/0

0.5 1�MLE I2 5/93 55/36 32/64 21/75 84/12 62/30
I3 38/54 65/8 60/18 53/36 85/9 71/14
I1 82/0 46/0 87/0 87/0 55/0 90/0

1:5�MLE I2 4/95 27/65 16/80 11/88 46/47 24/71
I3 34/54 63/9 50/36 50/44 83/5 71/22

I1 95/0 0/0 94/0 97/0 0/0 94/0
0:5�MLE I2 10/85 65/22 49/44 22/77 77/17 72/24

I3 79/19 75/3 83/6 79/17 97/1 92/2
I1 97/0 86/0 98/0 95/0 100/0 99/0

1 1�MLE I2 9/87 66/29 58/38 51/48 96/3 89/9
I3 64/33 81/6 81/7 81/18 98/0 94/6
I1 96/0 77/0 98/0 97/0 89/0 98/0

1:5�MLE I2 3/95 28/64 26/72 6/93 38/54 30/69
I3 67/31 82/6 86/9 80/19 89/3 91/7

I1 98/0 0/0 98/0 98/0 0/0 99/0
0:5�MLE I2 11/88 66/24 58/40 32/66 53/42 49/49

I3 84/14 95/1 97/1 91/9 100/0 100/0
I1 98/0 97/0 99/0 99/0 100/0 100/0

2 1�MLE I2 12/87 85/13 58/40 58/42 99/1 95/4
I3 85/15 96/0 93/5 91/8 100/0 99/1
I1 98/0 87/0 99/0 100/0 98/0 100/0

1:5�MLE I2 8/91 35/64 19/81 5/95 16/84 12/88
I3 82/17 78/9 91/8 92/5 82/3 98/0

indicates that there are i converged sequences, j diverged sequences, and 100�i�j
not converged sequences.

It is clear that the convergence behavior depends on �0 as well as the choices of
I , �k andmk . As always, a good initial value is important. I1 is stable as expected:
most all sequences based on I1 converged and none of them diverged. A closer look
indicates that all not converged sequences are actually converging slowly. In contrast
to I1, I2 and I3 are unstable with many sequences diverged, regardless of the choice
of �0, I , �k and mk . It is important to note that the problem persists even when the
initial value is set to the target value �MLE. I2 has more diverged sequences than I3.
Convergence also depends on the specific combination of I1, I2, I3 and G1, G2, G3.
For example, I2 always performs best with G2. And when �0 is not close to �MLE,
I1 performs better with G1 than with G2.

To illustrate the cause of divergence when I2 and I3 are used, for a typical
diverged case, we plot � and � for the first 10 iterations in Fig. 7.2. We see that
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Fig. 7.2 Effect of negative � on estimate of � . The bottom plot shows the value of � based on I2.
The top plot shows the estimate of � at the corresponding iteration, and the solid line represents
the MLE

from iteration 7, due to MCMC simulation error, the � values are negative (i.e.,
the � matrices are not positive definite). This turns � away from the MLE. In most
cases sequences with such problems do not recover and diverge to infinity or con-
verge to zero. Zhu and Lee [15] noticed the same problem and proposed a hybrid
algorithm.

Next, we look at the rate of convergence. In Table 7.1 we see that for all com-
binations, the algorithm based on G2 has the most sequences that are classified as
not converged. To compare G1 and G2, we show two typical sequences of estimates
based on I1 with �0 D �MLE and �0 D 0:5�MLE in Fig. 7.3.

The left plot shows that �=�MLE are close to 1 for both G1 ad G2, which means
that both sequences settle around the MLE, but the curve based on G2 is much
smoother than the curve based on G1. The right plot shows that the sequences based
on G1 converged to the MLE in fewer than 50 iterations, whereas the sequence
based on G2 has not reached the level of the MLE after 1,000 iterations.

Plots under other settings are similar. We conclude that if the starting value is
far from the MLE, G1 reaches the level of the MLE faster than G2. On the other
hand if the estimate is already at the level of the MLE, G2 settles down much faster
than G1. These results are not surprising since for G2 the step-size of the parameter
update �k is 1=k. Thus after only a few iteration �k is very small and does not allow
a large change in � anymore. It takes many iterations to reach the level of the MLE.
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Fig. 7.3 Ratios between the estimates and �MLE for sequences based on G1 and G2. The iteration
numbers of G1 are marked at the bottom of the x-axis and iteration numbers of G2 are marked at
the top

For G1, �k is always 1. Therefore, it can reach the level of the MLE quickly, but
remain to have random variations after the level of the MLE has been reached. G3
is a compromise between G1 and G2 (not shown).

Above simulation results illustrate advantages and disadvantages of different
combinations of the I matrices, step size �k and MCMC sample size mk . These
results can be used as a guide to make an algorithm stable and efficient. Overall,
we recommend I1 for stability. One may use G1 and then switch to G2 after the
sequence has reached the target level (Sect. 7.4). When I2 or I3 are used, one needs
to check the properties of the estimates, for example, if the � matrices are positive
definite. One can start with I1 and switch to I2 or I3 after a number of iterations
[15]. This would combine the stability of I1 in the beginning of the algorithm with
the faster convergence of I2 or I3 at the end of the algorithm.

7.4 A Hybrid Algorithm

We consider I1 only in this section. Based on simulations in the previous section, we
found that G1 reaches the MLE quickly and G2 reduces variation in the estimates
quickly after the sequence reached the level of the MLE. Therefore, we consider the
following class of algorithms:

�k D k�tk and mk D m0 C k2.1�tk /; 0 � tk � 1: (7.10)

Special cases include G1 with tk D 0, G3 with tk D 0:5, and G2 with tk D 1. Note
that the sequences need to satisfy conditions (C1)–(C4).
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We would like tk to be close to zero for small k and close to one for large k.
The idea of our procedures is to select �k andmk adaptively according to the actual
convergence behavior. There could be many adaptive schemes. We consider a simple
approach by fitting a regression line through the last K estimates of � . If the slope
is zero, it is likely that the estimates have reached the level of the MLE and the
variation of � around the regression line is likely due to MCMC sampling. In this
case we want to reduce the variation using a combination of �k and mk similar to
G2. If the slope is not zero, i.e., the sequence is still increasing or decreasing, it
is desirable to choose �k and mk such that the estimates reach the level of MLE
quickly. One such choice is G1. Let rk be the correlation coefficient between the
estimate of � at the previousK iterations and their corresponding iteration numbers,
and Ork be the sample correlation coefficient. Zero rk corresponds to the zero slope
of the regression line. We use t-test to test hypothesisH0 W rk D 0 v:s: H1 W rk ¤ 0.

Specifically, H0 is rejected when
ˇ̌
ˇ Ork=

q
.1 � Or2

k
/=.K � 2/

ˇ̌
ˇ � t˛=2;K�2 where ˛ is

the significant level and t˛=2;K�2 is the 1� ˛=2 percentile of the t-distribution with
K � 2 degrees of freedom. This suggests the following algorithms:

G4 For k > K , tk D 1 � r2
k

G5 For k > K , tk D .1 � r2
k
/I.j Ork=

q
.1 � Or2

k
/=.K � 2/j < t˛=2;K�2/

G6 For k > K , tk D I.j Ork=
q
.1 � Or2

k
/=.K � 2/j < t˛=2;K�2/

G1 is used for the firstK iterations in G4, G5 and G6. To implement algorithms G4,
G5 and G6, we need to decide the numberK , that is, the lastK estimates to be used
to compute the correlation coefficients.

For the same simulated data we apply algorithms G4, G5 and G6 with four dif-
ferent choices of K: 10, 20, 30 and 40. We stop the hybrid algorithms after the
50th iteration which is consistent with the number used for G1 in the previous sec-
tion. Table 7.2 presents the number of converged sequences out of 100 simulation
replications. There is no diverged sequences.

Table 7.2 indicates that the convergence behavior is insensitive to the choice of
K so long it is large enough (�10). To compare the convergence rate with G1, we
plot a typical replication of hybrid algorithms with K D 20 in Fig. 7.4. We see that
the curves based on hybrid algorithms are much smoother than those based on G1.
However, it is unclear whether 50 iterations are enough for the sequences to reach
the �MLE . We need to consider stopping rules.

Different convergence criteria have been used in practice. One simple rule is
to stop the algorithm when j�kC1 � �k j < ı where ı is a preassigned number.
Gu and Zhu [6] proposed a two-stage algorithm where the first stage stops at K1
where K1 D inf

n
K � K0 W jjPK

kDK�K0C1
sgn.�k��k�1/

K0
jj � ı1

o
, K0 and ı1 are

preassigned constants and sgn is the signum function of a real number x which
returns 1 when x > 0, 0 when x D 0 and �1 when x < 0. The second stage utilizes
the trace of � matrix andH matrix to decide the stopping rule. We use the variance
along iterations to measure whether the sequence is stable or not. Specifically we
consider the following two stopping rules:
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Table 7.2 Number of simulation replications that are converged

�0 True value �
0.50 1.00 2.00

G4 G5 G6 G4 G5 G6 G4 G5 G6

K D 10 64 76 73 90 94 96 96 98 99

0:5�MLE K D 20 65 78 75 89 94 97 97 97 98

K D 30 72 78 76 89 94 95 97 98 100

K D 40 69 75 77 93 95 96 98 99 97

K D 10 83 83 84 90 95 95 99 98 99

1�MLE K D 20 73 80 83 93 96 94 97 100 98

K D 30 73 82 81 91 93 96 100 99 100

K D 40 82 85 79 96 94 96 99 99 99

K D 10 86 84 79 92 93 99 97 99 99

1:5�MLE K D 20 75 86 87 91 96 98 97 98 99

K D 30 75 87 86 96 93 99 99 99 100

K D 40 84 83 84 93 94 95 100 99 98
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Fig. 7.4 Ratios between the estimates and �MLE for sequences based on G1, G4, G5 and G6

I At the kth iteration, stop if j�k��k�1jp
vCı1

< ı2 where ı1, ı2 are predetermined

numbers and v is the sample variance of f�0; :::�kg.

II Since � �1
k

is an estimate of the covariance matrix of O� , therefore, instead of v,

we stop if j�k��k�1jq
� �1

k
Cı1

< ı2.

For the same simulation settings, we apply algorithms G1–G6 using above two stop-
ping rules. For both rules, we set ı1 D 0:001 and ı2 D 0:001. We compute k as
the average of number of iterations needed to satisfy the stopping criterion, conv: as
converged cases after 600 iterations, diff as the average of the difference between
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Table 7.3 Convergence behavior of G1, G3, G4, G5, and G6 under stopping rule I, diff are
multiplied by 1,000 for ease of presentation

� �0 G1 G4 G5 G6 G3

0.5 0:5�MLE k 118:59 50:12 55:02 53:53 77:40

conv. 87 68 78 78 47

diff 6:672 19:60 12:55 14:99 38:5

CPU (s) 66:12 1:34 4:38 4:67 2:64

0.5 1�MLE k 216:40 80:38 82:44 71:86 179:42

conv. 92 82 83 84 84

diff 2:677 10:66 8:424 9:49 7:407

CPU (s) 390:82 2:71 16:49 9:80 6:77

0.5 1:5�MLE k 131:41 45:04 53:75 51:84 87:12

conv. 92 73 78 84 70

diff 5:881 13:90 11:46 10:16 15:23

CPU (s) 113:02 0:94 4:09 4:10 3:04

1 0:5�MLE k 125:4 45:8 49:49 43:13 66

conv. 95 87 95 91 65

diff 7:588 22:13 14:15 18:86 43:98

CPU (s) 84:55 1:03 2:70 2:03 2:25

1 1�MLE k 289:66 90:9 89:66 77:59 222:02

conv. 98 94 97 98 99

diff 3:188 12:41 9:512 11:95 10:35

CPU (s) 828:94 3:03 17:29 10:797 8:9

1 1:5�MLE k 156:46 90:9 56:05 49:42 88:16

conv. 98 94 95 93 89

diff 6:854 20:41 17:67 17:10 20:92

CPU (s) 199:19 1:11 4:56 3:38 3:11

2 0:5�MLE k 132:87 44:82 49:33 43:01 68:16

conv. 100 97 96 98 84

diff 13:46 43:17 34:76 31:84 57:68

CPU (s) 111:41 0:93 2:92 1:88 2:31

2 1�MLE k 272:06 96:15 90:54 79:69 239:70

conv. 99 97 100 100 94

diff 8:389 26:86 17:34 17:89 20:89

CPU (s) 720:95 3:27 14:30 11:57 9:47

2 1:5�MLE k 162:57 49:47 55:96 47:83 80:69

conv. 100 94 97 99 94

diff 15:68 40:31 30:07 30:78 37:05

CPU (s) 195:29 1:07 4:44 2:99 2:80

estimates and the �MLE among converged sequences, and CPU as the average CPU
time in seconds for one simulation replication.

Tables 7.3 and 7.4 show convergence behavior under rules I and II respectively.
We did not include the convergence behavior of G2 because G2 performs poorly
under these two stopping rules. G2 makes the algorithm stop early even though the
iteration is far away from the targeted �MLE.
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Table 7.4 Convergence behavior of G1, G3, G4, G5 and G6 under stopping rule II, diff are
multiplied by 1,000 for ease of presentation

� �0 G1 G4 G5 G6 G3

0.5 0:5�MLE k 72:58 38:59 43:95 39:79 43:32

conv. 83 59 70 70 24

diff 9:562 23:15 17:69 18:51 59:47

CPU (s) 14:02 1:55 3:81 2:55 1:40

0.5 1�MLE k 78:08 32:16 34:53 32:79 35:41

conv. 88 72 75 77 73

diff 7:743 16:12 15:23 13:35 14:72

CPU (s) 16:28 1:20 1:76 1:68 1:16

0.5 1:5�MLE k 68:98 32 35:08 34:32 38:89

conv. 88 74 77 76 57

diff 8:929 16:53 13:36 14:36 26:09

CPU (s) 11:97 1:18 1:85 1:77 1:27

1 0:5�MLE k 71:37 33:06 38:46 36:41 38:48

conv. 96 81 91 91 41

diff 11:90 28:44 21:90 24:23 66:73

CPU (s) 13:83 1:26 2:17 1:96 1:24

1 1�MLE k 63:86 30:2 33:91 32:68 35:98

conv. 94 87 91 89 92

diff 11:16 23:01 18:18 20:98 19:49

CPU (s) 10:07 1:12 1:68 1:61 1:17

1 1:5�MLE k 65:60 30:88 31:86 33:01 36:02

conv. 98 92 91 88 84

diff 10:75 21:11 21:80 24:16 27:19

CPU (s) 12:44 1:14 1:48 1:64 1:17

2 0:5�MLE k 67:01 34:21 34:19 32:87 35:21

conv. 98 94 96 97 61

diff 22:34 48:81 43:22 42:02 13:57

CPU (s) 11:25 1:28 1:66 1:62 1:14

2 1�MLE k 65:75 29:83 29:85 27:5 32:81

conv. 100 96 96 97 95

diff 21:46 47:51 39:91 48:30 37:52

CPU (s) 10:89 1:10 1:30 1:13 1:07

2 1:5�MLE k 68:42 29:67 32:35 30:73 33:84

conv. 100 95 99 96 99

diff 23:19 50:40 41:64 47:49 51:93

CPU (s) 12:85 1:10 1:53 1:38 1:10

First, we see that stopping rule I is much more time-consuming than stopping
rule II for G1, but not for the hybrid algorithms. And when �0 D �MLE , G1 with
stopping rule I is very slow to converge, the average CPU time is almost 200 times
of those for hybrid algorithms.

Overall, G1 has the highest converged cases among all the algorithms. On the
other hand, G1 is always the most time-consuming one. G3 usually has the lowest
converged cases especially when �0 is far away from the �MLE. G3 is the tradeoff
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between G1 and G2 and the sequences based on G3 is much smoother than G1. So
if we use the variation of sequences as the stopping rule, G3 may stop prematurely.
The hybrid algorithms overcome this problem by switching between G1 and G2,
so they give better converged rate than G3 even though the average CPU time for
hybrid algorithms and G3 are at the same level.

Now we look at the average difference between estimates and �MLE. Under stop-
ping rule I, when � D 0:5 and � D 1, the average difference is at 10�3 level for
G1, and at 10�2 level for hybrid algorithms; when � D 2, the average difference
is at 10�2 level for both G1 and hybrid algorithms. Under stopping rule II, when
� D 0:5, the average difference is at 10�3 level for G1, and at 10�2 level for hybrid
algorithms; when � D 1 and � D 2, the average difference is at 10�2 level for both
G1 and hybrid algorithms. The average difference based on G1 are always smaller
then the hybrid algorithms. However, the CPU time for G1 is between 10 to 200
times of that for the hybrid algorithms.

7.5 Conclusions

MCMCSAA is a powerful tool to compute estimates of parameters with incomplete
data. It has attractive theoretical properties. However, due to its complexity and flex-
ibility, the implementation of MCMCSAA is far from straightforward and caution
needs to be exercised.

The MCMCSAA involves several parameters including the form of the I -matrix,
the MCMC sample size mk and step-size of the parameter update �k . We have
shown that the performance of MCMCSAA depends critically on all three param-
eters. We recommend I1 over I2 and I3 for stability. When I2 or I3 is used, one
should check the property of the H matrix to avoid divergence. There can be many
choices for the combination of the MCMC sample size mk and step-size of the
parameter update �k . Different choices represent different compromise between
convergence rate and CPU time. There is no ultimate best algorithm for both pre-
cision and efficiency. Therefore, different choice should be chosen for different
purpose. In general, the proposed hybrid algorithms are stable and fast.
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Chapter 8
Stochastic Comparisons of Spacings
from Heterogeneous Samples

Subhash Kochar and Maochao Xu

Abstract In this paper we review some of the recently obtained results in the
area of stochastic comparisons of sample spacings when the observations are not
necessarily identically distributed. A few new results on necessary and sufficient
conditions for various stochastic orderings among spacings are also given. The paper
is concluded with some examples and applications.

8.1 Introduction

Spacings are of great interest in many areas of statistics, in particular, in the char-
acterizations of distributions, goodness-of-fit tests, auction theory, life testing and
reliability models. A large number of goodness-of-fit tests are based on functions of
sample spacings (see [2, 14, 15]).

LetX1; : : : ; Xn be n nonnegative random variables. The random variablesDiWn D
Xi Wn�Xi�1Wn andD�

i Wn D .n� iC1/Di Wn, i D 1; : : : ; n, withX0Wn � 0, are respec-
tively called simple spacings and normalized spacings. In the reliability context they
correspond to times elapsed between successive failures of components in a system.
In stochastic auction theory, DnWn and D2Wn are of particular interest, which repre-
sent auction rents in buyer’s auction and reverse auction in the second-price business
auction (see [37]). It is well known that the normalized spacings of a random sample
from an exponential distribution are independent and identically distributed (i.i.d.)
random variables having the same exponential distribution. Such a characterization
may not hold for other distributions or when the observations are not independent
and identically distributed.

In many cases, the observations are independent but not identically distributed
and we call them as heterogeneous samples. The study of heterogeneous samples is
of great interest in many areas. For examples, in engineering, a complex engineering
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system is often composed of many different types of electrical components. Investi-
gating the reliability of such system is relying on heterogeneous samples, which are
the failure times of electrical components collected from experiments. Accordingly,
the topic of heterogenous samples plays an important role. However, such a study
is often challenging as the distribution theory of spacings when the observations are
not i.i.d. is often complicated. A powerful tool to investigate the stochastic proper-
ties of spacings of heterogeneous samples is stochastic orders, which is a widely
studied concept in probability and statistics.

In this paper, we review some recent results on stochastic orderings between
spacings of heterogeneous samples, and some new results and applications are
presented as well. The other interesting topic not discussed in our paper is that
of dependence among spacings. Interested readers may refer to recent papers by
[4, 5, 13, 16, 30] and references therein on this topic.

8.2 Stochastic Orders

Let X and Y be two random variables with distributions F and G, and survival
functions F D 1 � F and G D 1 � G. If X is less likely than Y to take on large
values, then, intuitively, the survival function of X will be smaller than the survival
function of Y at any fixed point. This leads to the usual stochastic order.

Definition 8.1. X is said to be smaller than Y in the usual stochastic order, denoted
by X �st Y , if F .x/ � G.x/, or equivalently, F.x/ � G.x/.

Suppose that X and Y are life lengths of two electronic components and satisfy
X �st Y . If both components are observed to be alive at time t > 0, one might con-
jecture that the residual lives would also be stochastically ordered. However, such
a result does not hold (cf. [24, 26])! Hence, a stronger concept than usual stochas-
tic order is needed. The following order is motivated by the fact that the above
conjecture is false.

Definition 8.2. X is said to be smaller than Y in the hazard rate order, denoted by
X �hr Y , if

P.X > x C t jX > t/ � P.Y > x C t jY > t/; for all x � 0 and all t :

Now, suppose that two componentsX and Y failed before observation time t >
0. If X �st Y , is it necessarily true that the ‘inactive time’ Œt � X jX � t � of X
is stochastically larger that the ‘inactive time’ Œt � Y jY � t � of Y ? The answer is
negative. The following definition is proposed to resolve this question.

Definition 8.3. X is said to be smaller than Y in the reverse hazard rate order,
denoted by X �rh Y , if

P.t � X > xjX � t/ � P.t � Y > xjY � t/; for all x � 0 and all t :

An interesting order based on the mean residual life is defined as follows.



8 Stochastic Comparisons of Spacings 115

Definition 8.4. X is said to be smaller than Y in the mean residual life order,
denoted by X �mrl Y , if

E.Xt/ � E.Yt / for all t :

There are other situations, where one would like to have

ŒX jX 2 E� �st ŒY jY 2 E�

for all possible events E . It turns out that this requirement leads to the likelihood
ratio order as defined below.

Definition 8.5. X is said to be smaller than Y in the likelihood ratio order, denoted
by X �lr Y , if

P.X > xja < X � b/ � P.Y > xja < Y � b/ for all x and a < b:

When the density functions of X and Y exist, X �lr Y is equivalent to

f .t/g.s/ � f .s/g.t/ for all s � t :

The following chain of implications holds among the above univariate stochastic
orders:

X �lr Y H) X �hr Y H) X �mrl Y
+ + +

X �rh Y H) X �st Y H) E.X/ � E.Y /:
(8.1)

An other order closely related to the likelihood ratio order is the joint likelihood
ordering introduced by [34].

Definition 8.6. For a bivariate random variable .X; Y /, X is said to be smaller than

Y according to joint likelihood ordering, denoted by X
`rWj
� Y , if and only if

EŒ�.X; Y /� � EŒ�.Y;X/�; � 2 G`r ;

where
G`r W f� W �.y; x/ � �.x; y/; x � yg:

It can be seen that

X1
`rWj

� X2 , f 2 G`r ;
where f .�; �/ denotes the joint density of .X1; X2/.

As pointed out by [34], joint likelihood ratio ordering between the components
of a bivariate random vector may not imply likelihood ratio ordering between their
marginal distributions unless the random variables are independent, but it does
imply stochastic ordering between them, that is,

X
`rWj
� Y) X

st� Y:
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A bivariate function � 2 G`r is called arrangement increasing (AI). Hollander
et al. [11] have studied many interesting properties of such functions, though,
apparently, they did not relate it to the notion of likelihood ratio ordering.

The above idea can be extended to compare the components of an n-dimensional

vector X D .X1; : : : ; Xn/. We define X1
`rWj� � � � `rWj� Xn if the joint den-

sity f .x1; : : : ; xn/ of X is an arrangement increasing function. (See, [24] for the
definition of an arrangement increasing function on Rn.)

In a different context, [31] studied a subclass of arrangement increasing functions
on Rn, which they call as ISO� functions, as described below. Let x and y be two
vectors on Rn such that

Pj
iD1yi � Pj

iD1xi j D 1; : : : ; n � 1 and
Pn
iD1yi D

Pn
iD1xi . We shall denote this partial ordering between the vectors by x

?� y:

Definition 8.7. A real-valued function � defined on a set A 	 Rn is said to be

ISO� on A if �.x/ � �.y/; 8 x
?� y:

As mentioned earlier, an ISO� function is arrangement increasing but the con-
verse is not true. It is easy to see that the joint density f .x1; x2/ of a bivariate
random vector .X1; X2/ is ISO� if and only if the conditional density of X2 given
X1 CX2 D t is monotonically increasing for each fixed t .

The usual likelihood ratio order has the following multivariate version.

Definition 8.8. Let X D .X1; X2; : : : ; Xn/ and Y D .Y1; Y2; : : : ; Yn/ be two n-
dimensional random vectors with absolutely continuous [or discrete] distribution
functions and let f and g denote their continuous [or discrete] density functions,
respectively. Suppose that

f .x/g.y/ � f .x ^ y/g.x _ y/

for every x and y. Then X is said to be smaller than Y in the multivariate likelihood
ratio order (denoted as X �lr Y).

It is known that multivariate likelihood ratio order implies component-wise like-
lihood ratio order. For more details on the univariate and multivariate stochastic
orders (see [26, 33]).

A basic concept for comparing variability among distributions is that of disper-
sive ordering as defined below.

Definition 8.9. X is said to be less dispersed than Y , denoted by X �disp Y , if

F�1.ˇ/ � F �1.˛/ � G�1.ˇ/ �G�1.˛/

for all 0 < ˛ � ˇ < 1, where F �1 and G�1 denote their corresponding right
continuous inverses.

For more discussion, one may refer to Sect. 3.B of [33].
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A weaker order called the right spread order in [9], or excess wealth order in [32]
has also been proposed to compare the variabilities of two distributions.

Definition 8.10. X is said to be less right spread than Y , denoted by X �RS Y , if

Z 1

F�1.p/

F .x/ dx �
Z 1

G�1.p/

G.x/dx; for all 0 � p � 1:

It is known that

X �disp Y H) X �RS Y H) Var.X/ � Var.Y /:

8.3 Spacings

As mentioned earlier, the normalized spacings of a random sample from an expo-
nential distribution are i.i.d. random variables having the same exponential distribu-
tion. Many authors have studied the stochastic properties of spacings from restricted
families of distributions. Barlow and Proschan [3] proved that if X1; : : : ; Xn is a
random sample from a decreasing failure rate (DFR) distribution, then the succes-
sive normalized spacings are stochastically increasing. Kochar and Kirmani [20]
strengthened this result from stochastic ordering to hazard rate ordering, that is, for
i D 1; : : : ; n � 1,

D�
i Wn �hr D�

iC1Wn: (8.2)

The corresponding problem when the random variables are not identically dis-
tributed has also been studied by many researchers. For a review of this topic see
[19]. In the following, we review some important results obtained recently on this
topic and also give some new results.

First, let us introduce the proportional hazard rates (PHR) model, which will be
discussed extensively in the paper. Independent random variables X1; X2; : : : ; Xn
are said to follow PHR model if for i D 1; 2; : : : ; n, the survival function of Xi can
be expressed as,

F i .x/ D ŒF .x/��i ; for �i > 0, (8.3)

where F .x/ is the survival function of some random variableX . If r.t/ denotes the
hazard rate corresponding to the baseline distribution F , then the hazard rate of Xi
is �i r.t/, i D 1; 2; : : : ; n. We can equivalently express (8.3) as

F i .x/ D e��iR.x/; i D 1; 2; : : : ; n

where R.x/ D R x
�1 r.t/dt , is the cumulative hazard rate of X . The PHR model

includes many well known distributions, such as exponential, Weibull, Pareto and
Lomax, etc.
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8.3.1 One-Sample Problem

Pledger and Proschan [29] considered the problem of stochastically comparing the
spacings of heterogeneous samples in the PHR model.

Theorem 8.1. IfX1; : : : ; Xn are independent random variables withXi having sur-
vival function F .t/ D e��iR.t/, i D 1; : : : ; n, where R.t/ is a concave (i.e., F is
DFR) and differentiable hazard function, then

D�
i Wn �st D�

j Wn for i � j :

Kochar and Kirmani [20] proved that the joint density of the normalized spacings
is ISO� when the joint density of the parent observations is convex. This will hold,
in particular, when the Xi ’s are independent (but not necessarily identical) with
log-convex densities.

Theorem 8.2. Let the joint density fX.x1; : : : ; xn/ of X D .X1; : : : ; Xn/ be convex.
Then the joint density of D D .D1Wn; : : : ;DnWn/ is ISO�.

This result immediately leads to the following interesting result.

Theorem 8.3. Let X1; X2; : : : ; Xn be independent random variables with log-
convex densities. Then

D�
1Wn

`rWj� D�
2Wn

`rWj� : : : :
`rWj� D�

nWn:

If a density is log-convex, it is DFR, but the converse is not true. Hence, Theo-
rem 8.3 establishes a stronger ordering between the normalized spacings than does
Theorem 8.1 under a stronger condition on the parent distributions. A related paper
on this topic is by [27].

One may wonder whether under the condition of Theorem 8.3 the result can be
extended from joint likelihood ratio order to likelihood ratio order? The answer is
negative as illustrated by a counterexample in [25].

Let X1; : : : ; Xn be independent exponential random variables with Xi having
failure rate �i for i D 1; : : : ; n. Hu et al. [12] proved the following result.

Theorem 8.4. If �nC1 � Œ���k for k D 1; : : : ; n, then

DnWn �lr DnC1WnC1

and
D1Wn �lr D2WnC1ŒD2WnC1 �lr D2Wn�:

If �i C �j � �k for all distinct i; j and k then

Dn�1Wn �lr DnWn; DnWnC1 �lr DnWn:
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They also showed that D2W3 �lr D3W3 for all �i ’s, and

D1Wn �lr D2Wn; n � 2:

Observing (8.2), [21] posed the following interesting question. Let X1; : : : ; Xn
be independent exponential random variables with possibly different scale parame-
ters. Will it hold that

D�
i Wn �hr D�

iC1Wn; i D 1; : : : ; n � 1‹ (8.4)

They proved their conjecture for n D 3, but the general case still remains an open
problem. This topic has been extensively studied by [6, 18, 35, 36] in single-outlier
or multiple-outlier exponential models.

8.3.2 Two-Samples Problem

Pledger and Proschan [29] considered the problem of stochastically comparing
the spacings of nonidentical independent exponential random variables with those
corresponding to stochastically comparable independent and identically distributed
exponential random variables.

Theorem 8.5. If X1; : : : ; Xn are independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn is a random sample of size
n from an exponential distribution with common hazard rate �� D Pn

iD1 �i=n,
then

H�
i Wn �st D�

i Wn
where H�

i Wn D .n � i C 1/.Yi Wn � Yi�1Wn/ for i D 1; : : : ; n are the normalized
spacings of Yi ’s, and Y0Wn � 0.

Kochar and Korwar [21] strengthened and extended this result from stochastic
ordering to likelihood ratio ordering and dispersive ordering.

Theorem 8.6. If X1; : : : ; Xn are independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn is a random sample of size
n from an exponential distribution with common hazard rate �� D Pn

iD1 �i=n,
then

H�
i Wn �lr D�

i Wn and H�
i Wn �disp D

�
i Wn; i D 1; : : : ; n:

Kochar and Rojo [22] further strengthened Theorem 8.6 to multivariate likeli-
hood ratio order.

Theorem 8.7. If X1; : : : ; Xn are independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn is a random sample of size
n from an exponential distribution with common hazard rate �� D Pn

iD1 �i=n,
then,
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.H�
1Wn; : : : ;H�

nWn/ �lr .D�
1Wn; : : : ;D�

nWn/

As a consequence, [22] pointed out that

Yj Wn � Yi Wn �st Xj Wn � Xi Wn for all 1 � i < j � n:

Let X1; : : : ; Xn be independent exponential random variables with Xi having
hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn be a random sample of size n from an
exponential distribution with common hazard rate �. One natural question is to find
sufficient and necessary conditions for comparing simple sample spacings of DkWn
from Xi ’s and HkWn from Yi ’s. Kochar and Korwar [21] proved that the distribution
function of D�

kWn for i D 2; : : : ; n is a mixture of independent exponential random
variables with the density function

fD�

kWn
.x/ D

X
r

Qn
iD1 �iQn

iD1
Pn
jDi �rj

 Pn
jDk �rj

n � i C 1

!
exp

( �xPn
jDk �rj

n � i C 1

)
;

where r extends over all of the permutations of f1; 2; : : : ; ng. Hence, the distribution
of DkWn could be represented as

FDkWn
.x/ D

X
j2r

pjF��

kj
.x/;

where j denotes a permutation of .�1; : : : ; �n/ belonging to r and

pj D
Qn
iD1 �iQn

iD1
Pn
jDi �rj

;

and

��
kj D

Pn
jDk �rj

.n � k C 1/2
;

and F��

kj
means an exponential distribution with hazard rate ��

kj
.

Note that, the distribution function ofHkWn is

FHkWn
.x/ D F�=.n�kC1/.x/ D 1 � exp

�
� �x

n � k C 1

�
:

The following results provide sufficient and necessary conditions for stochasti-
cally comparingDkWn andHkWn according to likelihood ratio and reverse hazard rate
orderings.

Theorem 8.8. Let X1; : : : ; Xn be independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn be a random sample of size
n from an exponential distribution with common hazard rate �. Then, for k � 2,

(a) HkWn �lr DkWn or
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(b) HkWn �rh DkWn
if and only if

� � 1

n � k C 1

P
r

Qn
iD1 �iQn

iD1

Pn
j Di �rj

�Pn
jDk �rj

�2

P
r

Qn
iD1 �iQn

iD1

Pn
j Di �rj

Pn
jDk �rj

:

Proof. The necessary and sufficient condition for likelihood ratio order between
HkWn and DkWn follows from Lemma 3.1 of [40]. It remains to prove that the
condition on � is a necessary condition for the reverse hazard rate order.

Note that the reverse hazard rate ofDkWn for k � 2, by Taylor’s expansion around
zero, is

QrDkWn
.x/ D

P
j2r pj�

�
kj

expf���
kj
xgP

j2r pj .1 � expf���
kj
xg/

D
P
j2r pj�

�
kj
.1 � ��

kj
x C o.x//P

j2r pj�
�
kj
x C o.x/

D
P
j2r pj�

�
kj

�P
j2r pj .�

�
kj
/2x C o.x/P

j2r pj�
�
kj
x C o.x/

:

Similarly, for i � 2,

QrHkWn
.x/ D � � �2x=.n � k C 1/C o.x/

�x C o.x/
:

Then
QrHkWn

.x/ � QrDkWn
.x/

implies

� � .n � k C 1/

P
j2r pj

�
��
kj

�2
P
j2r pj�

�
kj

:

The result follows immediately. ut
Analogously, we have an equivalent necessary and sufficient condition for hazard

rate order, dispersive order and stochastic order between DkWn and HkWn.

Theorem 8.9. Let X1; : : : ; Xn be independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn be a random sample of size
n from an exponential distribution with common hazard rate �. Then, for k � 2,

(a) HkWn �hr DkWn or
(b) HkWn �disp DkWn or
(c) HkWn �st DkWn
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if and only if

� � 1

n � k C 1

X
r

Qn
iD1 �iQn

iD1
Pn
jDi �rj

nX
jDk

�rj :

Proof. Using Lemma 2.1 in [28], it is easy to show the condition on � is a neces-
sary and sufficient condition for hazard rate order between DkWn and HkWn. Since
HkWn is an exponential random variable, according to Theorem 3.B.20 of [33], (a)
implies (b). By Theorem 3.B.13 there, (b) implies (c). Hence, it is enough to show
the condition on � is the necessary condition for the stochastic order. Using Taylor’s
expansion around zero for the distribution function, for k � 2,

FDkWn
.x/ D

X
j2r

pj .�
�
kj x C o.x//;

and

FHkWn
.x/ D �

n � k C 1
x C o.x/:

So,
FHkWn

.x/ � FDkWn
.x/

implies,
� � .n � k C 1/

X
j2r

pj�
�
kj :

Hence, the required result follows. ut
Below is another result in the same direction.

Theorem 8.10. Let X1; : : : ; Xn be independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn be a random sample of size
n from an exponential distribution with common hazard rate �. Then, for k � 2,

(a) HkWn �mrl DkWn or
(b) HkWn �RS DkWn or
(c) EHkWn � EDkWn
if and only if

� � 1

n � k C 1

1
P

r

Qn
iD1 �iPn

j Dk �rj

Qn
iD1

Pn
j Di �rj

:

Proof. From Lemma 2.6 of [38], it is seen that the condition on � is necessary and
sufficient for the mean residual life order. By Theorem 3.C.6 of [33], (a) implies (b).
It is easy to see that (b) implies (c). Hence, it is enough to show the condition on �
is a necessary condition for (c). Note that

E.DkWn/ D
X

r

pj

��
kj

;



8 Stochastic Comparisons of Spacings 123

and

E.HkWn/ D n � k C 1

�
;

the result follows immediately. ut
Example 8.1. Suppose X1; X2; X3 are independent exponential random variables
with parameters �1; �2; �3, respectively; and Y1; Y2; Y3 are i.i.d. exponential ran-
dom variables with parameter �. Then, from Theorem 8.9,

Y3W3 � Y2W3 �hr X3W3 �X2W3

if and only if

� � �hr D 2�1�2�3

�1 C �2 C �3

	
1

�2 C �3
C 1

�1 C �3
C 1

�1 C �2



:

From Theorem 8.8,
Y3W3 � Y2W3 �lr X3W3 �X2W3

if and only if

� � �lr D 3

2

	
1

�2 C �3
C 1

�1 C �3
C 1

�1 C �2


�1
:

From Theorem 8.10
Y3W3 � Y2W3 �RS X3W3 �X2W3

if and only if

� � �RS D



�1�2�3

�1 C �2 C �3

	
�22 C �23

.�2 C �3/�
2
2�
2
3

C �21 C �23

.�1 C �3/�
2
1�
2
3

C �22 C �21
.�2 C �1/�

2
2�
2
1


��1
:

It is worth noting that from (8.1), it follows that

�lr � �hr � �RS :

For example, let
�1 D 1; �2 D 2; �3 D 3:

Then,
�lr D 1:91489 > �hr D 1:56667 > �RS D 1:30435:



124 S. Kochar and M. Xu

8.4 Sample Range

Sample range is one of the criteria for comparing variabilities among distributions
and hence it is important to study its stochastic properties.

Kochar and Rojo [22] proved the following result.

Theorem 8.11. If X1; : : : ; Xn are independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn is a random sample of size
n from an exponential distribution with common hazard rate � D Pn

iD1 �i=n, then,

YnWn � Y1Wn �st XnWn � X1Wn:

The next theorem due to [17] improves upon this result.

Theorem 8.12. If X1; : : : ; Xn are independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn is a random sample of size

n from an exponential distribution with common hazard rate Q� D �Qn
iD1 �i

�1=n
,

then,
YnWn � Y1Wn �st XnWn � X1Wn:

Recently, [39] obtained a necessary and sufficient condition for stochastically
comparing sample ranges from heterogeneous and homogeneous exponential
samples.

Theorem 8.13. If X1; : : : ; Xn are independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn is a random sample of size
n from an exponential distribution with common hazard rate �, then,

YnWn � Y1Wn �st XnWn � X1Wn ” � � O� D
	Qn

iD1 �i
�


1=.n�1/
;

where � D Pn
iD1 �i=n.

Note that O� � Q�, which improves upon the results of Theorem 8.12.
Kochar and Xu [23] partially strengthened Theorem 8.11 from stochastic order

to reverse hazard rate order.

Theorem 8.14. Let X1; : : : ; Xn be independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n. Let Y1; : : : ; Yn be a random sample of size
n from an exponential distribution with common hazard rate � D Pn

iD1 �i=n. Then

YnWn � Y1Wn �rh XnWn �X1Wn:

They also proved the following theorem for the PHR model.
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Theorem 8.15. Let X1; : : : ; Xn be independent random variables with Xi having

survival function F
�i , i D 1; : : : ; n. Let Y1; : : : ; Yn be a random sample with

common population survival distribution F
�

, where � D Pn
iD1 �i=n, then

YnWn � Y1Wn �st XnWn � X1Wn:

More recently, [10] proved the following result.

Theorem 8.16. Let X1; : : : ; Xn be independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n, and Y1; : : : ; Yn be a random sample of
size n from an exponential distribution with common hazard rate � D Pn

iD1 �i=n.
Let QrX .x/ and QrY .x/ be reversed hazard rates of XnWn � X1Wn and YnWn � Y1Wn,
respectively. Then

QrX .x/
QrY .x/ is increasing:

The following results follow as consequences as shown in that paper.

Corollary 8.1. Let X1; : : : ; Xn be independent exponential random variables with
Xi having hazard rate �i , i D 1; : : : ; n. Let Y1; : : : ; Yn be a random sample of size
n from an exponential distribution with common hazard rate �, then,

YnWn � Y1Wn �lr XnWn �X1Wn;

and
YnWn � Y1Wn �disp XnWn �X1Wn:

8.5 Applications

8.5.1 Type-II Censoring

If n items are put on life test and the test terminated at the time of r th failure, then

Trn D
rX
iD1
.n � i C 1/.Xi Wn �Xi�1Wn/ D

rX
iD1

D�
i Wn

represents the total time on test (TTT), which is a well-known concept in statistical
reliability. As pointed out in [8], if those component lifetimes are i.i.d. exponential
with mean � or equivalently the failure rate � D 1=� , the best estimator (UMVUE)
of � is

O� D Trn

r
:

It is well-known that (cf., [8]),
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2Trn

r

L�! �22r ;

where �22r denotes a chi-square distribution with 2r degrees of freedom. Based on
this result, many estimation and testing statistical procedures have been established.
However, if the components are actually from different exponential distributions
with failure rates ��

1; : : : ; �
�
n , then it follows from Theorem 8.7 and Theorem 6.E.8

of [33] that
O�� �st O�;

where

O�� D
Pr
iD1D�

i Wn
r

and � D Pn
iD1 ��

i =n. This means that based on TTT statistic, one would overesti-
mate the average lifetime of components using heterogeneous exponential compo-
nents.

8.5.2 Reliability

An n-component system that fails if and only if at least k of the n components fail is
called a k-out-of-n: F system. The lifetime of such a system could be represented as
XkWn. The k-out-of-n system structure is a very popular type of redundancy in fault
tolerant systems with wide applications in industrial and military systems. For two
different systems say a k-out-of-n: F system and a k C 1-out-of-n: F system, the
engineer may be interested in the additional lifetime XkC1Wn � XkWn for the system
design and the cost purpose. Due to the complicated distribution form, one may
provide a sharp bound on the survival function of this based on Theorem 8.9.

For example, a plane has four engines, and a minimum of three engines are
required for the plane work. Hence, this plane is a 2-out-of-4: F system. If the
engineer is planning to improve the system to the 3-out-of-4: F system, he/she has
to consider the cost and the reliability of improvement simultaneously. Hence, it
is important to estimate the survival probability and the mean additional lifetime
X3W4 � X2W4. Theorem 8.9 provides a lower bound for the survival function of the
additional lifetime. Let .�1; �2; �3; �4/ D .1; 2; 2:5; 3/, then,

P.X3W4 � X2W4 > x/ � e�0:955x :

Using Theorem 8.10, the following sharp lower bound could be established,

E.X3W4 �X2W4/ � 1:0879:

In the following table, we list the lower bounds on �’s for various partial orders
to hold in Theorems 8.8–8.10.
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� lr/ rh hr/ disp/ st mrl/ RS/ E

D2W4 2.060897 2.039216 2.019271
D3W4 1.988454 1.909626 1.838388
D4W4 2.009722 1.674501 1.382051

The values above are comparable to the arithmetic mean 2:125, geometric mean
1:96799 and harmonic mean 1:791045 of �i ’s. It is interesting to note that all of
the values are less than the arithmetic mean, which coincides with the condition in
Theorem 8.7.

8.5.3 Dependence Orderings Among Order Statistics

Recently [1] proved that, in a very general sense, the dependence between pairs of
order statistics decreases as the indices of the order statistics draw apart when the
observations are independent and identically distributed. Their proofs make use of
the various results on stochastic orderings between spacings and order statistics in a
nice way.

Let X1; : : : ; Xn be independent continuous random variables with Xi having

survival function F
�i , i D 1; : : : ; n, and Y1; : : : ; Yn be i.i.d. continuous random

variables. Dolati et al. [7] used the concept of more RTI (right-tail increasing)
dependence order to investigate the relative dependence between the extreme order
statistics. They showed that

.XnWnjX1Wn/ 
RTI .YnWnjY1Wn/:

They wondered whether the result can be extended from more RTI dependence
order to more SI (stochastic increasing) dependence order which is a stronger depen-
dence order. Genest et al. [10] have successively made use of Corollary 8.1 to solve
this problem by proving

.XnWnjX1Wn/ 
SI .YnWnjY1Wn/:
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Chapter 9
The Distributions of the Peak to Average and
Peak to Sum Ratios Under Exponentiality

Tomasz J. Kozubowski, Anna K. Panorska, and Fares Qeadan

Abstract Let E1; E2; : : : ; EN be independent and identically distributed exponen-
tial random variables, and let Y D WN

iD1Ei and S D PN
iD1Ei be their maximum

and sum, respectively. We review distributional properties of the peak to sum and
peak to average ratios, R D Y=S and QR D Y=.S=N/, respectively, with determin-
istic N , and provide an extension to the case where N is itself a random variable,
independent of the fEj g. Our results include explicit formulas for the relevant den-
sity and distribution functions, which apply to any distribution of N , as well as a
particular example with geometrically distributedN . An example from climatology
shows modeling potential of these models.

9.1 Introduction

LetE1; E2; : : : be independent and identically distributed (IID) exponential random
variables with the probability density function (PDF)

f .x/ D ˇe�ˇx ; x > 0; (9.1)

and let N be a discrete random variable taking values in the set N D f1; 2; 3; : : :g
of positive integers, independent of the fEig. Let X D PN

iD1Ei be the sum and
Y D WN

iD1Ei be the maximum (peak) of the random numberN of the fEig. In this
paper we study distributions of the following two ratios: the peak to sum ratio

R D Y

X
D
WN
iD1EiPN
iD1Ei

; (9.2)
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and the peak to average ratio

QR D Y

X=N
D

WN
iD1Ei

1
N

PN
iD1Ei

: (9.3)

While our results are valid for any distribution ofN , we concentrate on the particular
case where N is a geometric random variableN � Geo.p/ with the PDF

pn D P.N D n/ D p.1 � p/n�1; n 2 N: (9.4)

Let us note that when the number of the fEj g is a random variable, there is no
simple relation between the distributions of the two ratios R and QR, which is in
contrast with the case when N is deterministic.

The distributions of the rations have been studied for many years, because of
their importance in various applications, especially in engineering, communications,
computer engineering, scheduling, and insurance (see, e.g., [1, 6, 17, 21] and the
references therein). Perhaps the most important applications ofR and QR are in engi-
neering, where peak to average power ratio typically needs to be minimized, see
[21] and the references therein. However, very little is known about the exact distri-
butions of the ratios with general distribution of the fEj g and either deterministic or
random N , except for the case of exponential distribution and deterministic N , for
which explicit formulas are available for the PDF as well as the CDF. These results,
which actually go back to [8], appeared in the context of testing for outliers in expo-
nential samples (see [12, 15]), where the ratios of order statistics to their sum are
in common use. However, these results are not widely known. In one of the earliest
works, the authors [17] derive the exact distribution of the peak to median ratio,
arguing that using median rather than mean allows for standard derivation as both
the peak (maximum) and the median are order statistics. There are also numerous
works dealing with the asymptotic results for the ratios, as well as for the distribu-
tion of the vector .X; Y /, none of which present the explicit exponential case (see,
e.g., [2,4–6,9,10,16,18]). We hope that our brief summary of the deterministic case
with exponentially distributed fEj g will be helpful in this regard.

We consider the ratios (9.2) and (9.3) with both deterministic and random N .
We shall denote the distribution of R by PTSRn or PTSRN (peak to sum ratio),
according to whether the number of terms is deterministic or random. Similarly, we
shall use the notation PTARn or PTARN (peak to average ratio) for the distribution
of QR. We first review the exponential case with deterministic number of terms in
Sect. 9.2. In Sect. 9.3 we present new general results for random N . A special case
with geometric N is treated in Sect. 9.4, while a practical illustrative data example
from climatology appears in Sect. 9.5. Technical derivations are deferred to the last
section.
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9.2 Models with Deterministic Number of Terms

Here we review basic results related to the ratiosR and QR with deterministic number
of terms, including PDF and CDF for both ratios.

9.2.1 Peak to Sum Ratio

Let R have a PTSRn distribution defined by (9.2), where N D n is non-random
andE1; E2; : : : En are IID with exponential distribution (9.1). Clearly, when n D 1,
the distribution of R is a point mass at 1 with probability one. One way to obtain
the PDF of R D Y=X for general n � 2, is via the joint distribution of the sum
X D Pn

jD1Ej and the maximum Y D WN
iD1Ei of IID exponentials, recently

derived in [20]. A standard transformation R D Y=X , S D X leads to the joint
PDF of .R; S/, which actually turns out to be the product of the marginal PDFs of
R and S , showing the independence of these quantities – which is a well-known
property of exponential samples – as well as the exact form of the PDF ofR, shown
below. The support of the distribution of R is the interval Œ1=n; 1�, and for each
t 2 Œ1=n; 1�, the PDF of R is

hn.t/ D
(Pk

sD1 an.s/.1 � st/n�2 1
kC1 � t � 1

k
; k D 1; 2; : : : ; n � 1

0 otherwise;
(9.5)

where

an.s/ D n.n � 1/

 
n � 1

s � 1

!
.�1/sC1: (9.6)

Subsequent integration of the PDF produces the CDF, which turns out to be

Hn.t/ D

8̂
ˆ̂<
ˆ̂̂:

0; t < 1=n;

Pk
sD1

�
n
s

�
.�1/s.1 � st/n�1 C 1; 1

kC1 � t < 1
k

, k D 1; 2; : : : ; n � 1;
1 t � 1:

(9.7)

Remark 9.1. It is worth noting that the quantity an.s/ in (9.2) arises as the likelihood
ratio test statistic for an upper outlier in exponential samples (see, e.g., [7, 11–13,
15]), and its distribution was derived in this context in [15]. This was accomplished
by first establishing the recursive relation

hn.t/ D nf1;n�1.t/Hn�1
	

t

1 � t



; t 2 Œ1=n; 1�; (9.8)
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between the PDF and the CDF of R, where

fa;b.t/ D � .aC b/

� .a/� .b/
ta�1.1 � t/b�1; t 2 Œ0; 1�; (9.9)

is the PDF of a beta distribution with parameters a; b 2 .0; 1/. Repeated application
of (9.8) leads to the formula (9.7), which was actually derived earlier in [8] via a
rather heuristic arguments. Differentiation of (9.7) produces the PDF (9.5). Further,
as noted in [15], similar considerations apply to the ratio connected with random
samples from a gamma distribution with shape parameter ˛ > 0, in which case the
recursive relation (9.8) still holds with f1;n�1 replaced by f˛;˛.n�1/.

Remark 9.2. Notice that the tail probability, P.R > t/, takes a particularly simple
form for t 2 .1=2; 1/, since we have P.R > t/ D n.1 � t/n�1.

Remark 9.3. Observe that when n D 2, the ratio R has a uniform distribution on
its supporting interval Œ1=2; 1�, while for n D 3 we get a triangular distribution on
the interval Œ1=3; 1� with a unique mode m3 D 1=2 (see Fig. 9.1). It can be shown
by elementary calculations that for n � 4 the densities (9.5) are differentiable on
the interval .1=n; 1/, with the values of zero at the endpoints. It also appears that all
densities are unimodal with the unique mode in the interval Œ1=n; 1=2�, which can
be proven by straightforward algebra for the cases n D 4, and 5, where the modes
are m4 D 5=11 and m5 D .30� p

32/=62, respectively.

0 1/81/71/6 1/5 1/4 1/3 1/2 1
0

1
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Fig. 9.1 The densities (9.5) of the ratio (9.2) for n D 2; 3; : : : ; 8
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9.2.2 Peak to Average Ratio

The CDF and PDF of the peak to average ratio QR defined in (9.3) with N D n

(denoted by PTARn) are easily derived from those of PTSRn via the relation QR dD
nR. The PDF of QR is given by gn.t/ D .1=n/hn.t=n/, where hn.x/ is the PDF of
R defined in (9.5). Note, that this PDF is nonzero for t � 1. In turn, the CDF of
PTARn is Gn.t/ D Hn.t=n/, whereHn.x/ is the CDF of PTSRn given above.

9.3 Models with Random Number of Terms

In this section, we consider a general case, were N is an integer-valued random
variable supported on the set N, with

P.N D n/ D pn; n 2 N; (9.10)

while in the following section we present a particular example where N has a
geometric distribution.

9.3.1 Peak to Sum Ratio

To obtain the CDF of the PTSRN distribution, we use a standard conditioning argu-
ment. First, observe that the probability P.R � x/ is zero whenever x � 0 and one
if x � 1. Second, for any 0 < x < 1, we have

P.R � x/ D
1X
nD1

P.R � xjN D n/P.N D n/ D
1X
nD1

Hn.x/pn;

withHn and pn given by (9.7) and (9.10), respectively. Assuming that 1=.kC 1/ �
x < 1=k with some k 2 N and taking into account (9.7), after some algebra we
obtain

P.R � x/ D
kX
sD1

.�1/s
1X

nDkC1

 
n

s

!
.1 � sx/n�1pn C P.N � k C 1/: (9.11)

Note that the function (9.11) is continuous in x on the interval .0; 1/, with the one-
sided limits of

lim
x!0�

P.R � x/ D 0; lim
x!1C

P.R � x/ D 1 � p1:
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The CDF of R is continuous on R except at x D 1, where there is a jump of p1.
Thus, as expected, the distribution of peak to sum ratio R is a mixture of a point
mass at 1 (with probability p1/ and a continuous distribution on the interval .0; 1/
(with probability 1 � p1), with the latter given by the CDF F.t/:

F.t/ D

8
ˆ̂<
ˆ̂:

0; t < 1;

F �.t/; 1
kC1 � t < 1

k
; k 2 N

1; t � 1;

(9.12)

where

F �.t/ D 1

1 � p1

8
<
:

kX
sD1

.�1/s
1X

nDkC1

 
n

s

!
.1 � st/n�1pn C P.N � k C 1/

9
=
; :

By taking the derivative, we obtain the density of the continuous part,

f .t/ D 1

1 � p1

kX
sD1

s.�1/sC1
1X

nDkC1

 
n

s

!
.n � 1/s.1� st/n�2pn; (9.13)

for 1
kC1 � t < 1

k
, k 2 N: The following result summarizes this discussion.

Theorem 9.1. The CDF of R defined by (9.2) is given by

G.t/ D .1 � p1/F.t/C p11Œ1;1/.t/; t 2 R; (9.14)

with F given by (9.12), so that

R
dD I C .1 � I /X; (9.15)

where X has the CDF (9.12) and I is an indicator variable with P.I D 1/ D p1,
independent of X .

9.3.2 Peak to Average Ratio

We now turn to a derivation of the PTARN distribution of (9.3). Proceeding again
with a standard conditioning argument, we obtain

P. QR � x/ D
1X
nD1

P. QR � xjN D n/P.N D n/ D
1X
nD1

Hn.x=n/pn;
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with Hn and pn given by (9.7) and (9.10), respectively. Since Hn.u/ is zero for
u < 1=n, the probability P. QR � x/ is zero whenever x < 1. Assume that x � 1,
with Œx� D m 2 N, so that m � x < mC 1. Since Hn.u/ D 1 whenever u � 1, we
haveHn.x=n/ D 1 whenever n � m D Œx�. On the other hand, for n > m, we have
1=.k C 1/ < x=n � 1=k with k D Œn=x�, so that in view of (9.7) we obtain

Hn.x=n/ D
Œn=x
X
sD1

 
n

s

!
.�1/s.1 � sx=n/n�1 C 1:

This leads to the following expression for the CDF of QR:

G.x/ D
(
0; x < 1;

1CP1
nDŒx
C1 pn

PŒn=x

sD1

�
n
s

�
.�1/s.1 � sx=n/n�1 x � 1:

(9.16)

Note that G.t/ is continuous except for a jump of p1 at x D 1, since QR D 1

wheneverN D 1, which occurs with probability p1. Thus, the distribution of QR is a
mixture of a point mass at 1 and a continuous distribution on .1;1/, the latter given
by the CDF

F.x/ D
8
<
:
0; x < 1;

1
1�p1

n
1 � p1 CP1

nDŒx
C1 pn
PŒn=x

sD1

�
n
s

�
.�1/s.1 � sx=n/n�1

o
x � 1:

(9.17)
We summarize this discussion in the following result.

Theorem 9.2. The CDF of QR defined by (9.3) is given by

G.t/ D .1 � p1/F.t/C p11Œ1;1/.t/; t 2 R; (9.18)

with F given by (9.17), so that

QR dD I C .1 � I /X; (9.19)

where X has the CDF (9.17) and I is an indicator variable with P.I D 1/ D p1,
independent of X .

9.4 Geometric Example

In this section, we illustrate our general results with an example of geometrically
distributed N with PDF given by (9.4). Let us start with the PTSRN distribution,
denoted by PTSRN.p/. By replacing the quantity pn in (9.12) with the geometric
PDF (9.4), we obtain the following expression for the CDF of the random variable
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X of Theorem 9.1:

F.t/ D p

1 � p

kX
sD1

.�1/s
1X

nDkC1

 
n

s

!
.1�q/n�1C.1�p/k�1;

1

k C 1
� t <

1

k
; k2N;

(9.20)
where

q D qs.t Ip/ D 1 � .1 � p/.1 � ts/ 2 .0; 1/: (9.21)

The following result provides an explicit expression for the infinite sum in (9.20).

Lemma 9.1. For any q 2 .0; 1/, k 2 N, and s 2 f1; 2; : : : ; kg we have

1X
nDkC1

 
n

s

!
.1 � q/n�1 D .1 � q/s�1

qsC1
�

kC1X
nDsC1

 
n � 1

s

!
.1 � q/n�2: (9.22)

This leads to the result below.

Theorem 9.3. Let R � PTSRN.p/. Then the CDF of R is given by

G.t/ D .1 � p/F.t/C p1Œ1;1/.t/; t 2 R; (9.23)

where F.t/ D 0 for t � 0, F.t/ D 1 for t � 1, while for 1
kC1 � t < 1

k
; k 2 N,

F.t/ D p

1 � p

kX
sD1

.�1/s
"
.1 � q/s�1
qsC1

�
kC1X
nDsC1

 
n � 1

s

!
.1 � q/n�2

#
C.1�p/k�1;

(9.24)
with q D qs.xIp/ given by (9.21).

Remark 9.4. As before, the random variable R admits the mixture representation
(9.15), where the continuous variableX has the CDF F above. Moreover, by taking
the derivative, we find the PDF of X to be

f .t/ D p

kX
sD1

s.�1/sC1


.s C 1 � 2q/.1 � q/s�2

qsC2
(9.25)

�
kC1X
nDsC1

 
n � 1
s

!
.n� 2/.1� q/n�3

#

for 1
kC1 � t < 1

k
; k 2 N, and zero otherwise.

Finally, we consider the peak-to-average ratio (9.3) with geometrically dis-
tributed N , which distribution shall be denoted by PTARN.p/. When we replace
the quantity pn in (9.17) with the geometric PDF (9.4), we obtain the following
expression for the CDF of the random variable X of Theorem 9.2:
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F.x/ D
(
0; x < 1;

1C p
1�p

P1
nDŒx
C1

PŒn=x

sD1

�
n
s

�
.�1/sŒ.1 � p/.1 � sx=n/�n�1 x � 1:

(9.26)
In this case the mixture representation (9.19) still holds with P.I D 1/ D p and X
having a continuous distribution on .1;1/ given by the CDF (9.26).

9.5 An Illustrative Data Example

We illustrate the possible applications of the models for the ratio of the maximum
to the total of IID exponentials with an example from climatology. Understanding
the distribution of the ratio of maximum to the total precipitation over a time period
helps with water management and flood control (see e.g., [19, 22, 23], or [24] and
the references therein). The issue of flooding is especially important to study in the
“low countries”, such as the Netherlands. The latter is a country with about 25%
of its area below the mean sea level, making 56% of its population living on the
floodplains (see [25]) and 70% of the country gross domestic product produced in
these low areas. Through the Netherlands’ history, countless people have lost their
lives and homes to floods from the North Sea or the rivers that could not be held by
the flood defenses. The most recent flood events in the Netherlands were the 1993
and 1995 floods and the disastrous North Sea Flood of 1953 when 1,836 people
were killed (see [3]).

For this illustration, we chose precipitation data from two stations nearby a mas-
sive river delta in the southwestern Netherlands, west from Antwerp: station 745
in Axel and station 770 in Westdorpe. Axel has data records from 1906–1995 and
Westdorpe from 1995–2008. The two towns are about 4 miles apart. The first station
is located at 51ı170 latitude, 3ı550 longitude, and 2.1 (m) elevation, while the West-
dorpe station is located at 51ı130 latitude, 3ı510 longitude, and 1.5 (m) elevation.
The precipitation is measured at 08.00 UT, as a 24 h total (from 08.00 to 08.00 UT),
see "http://www.knmi.nl/"for more details. The precipitation measurement
unit is 0.1 mm. For modeling, the data consisted of 4,197 weekly precipitation totals
(from 01-01-1928 to 06-07-2008). Each four consecutive weeks were treated as
1 month. One month with zero total precipitation was excluded from analysis. We
had 1,049 months in the data set . For each month two variables were computed:
monthly total precipitation and monthly maximum precipitation. Monthly total was
the sum of the four weekly totals and monthly maximum was the largest weekly
total for the 4 weeks in the month. The data were then converted to the ratios of the
maximum to the total, resulting in 1,049 values.

We fit the distribution PTSRn with n D 4 to the precipitation ratio data. The the-
oretical PDF and CDF are given by (9.5) and (9.7), respectively, with n D 4. Figure
9.2 presents graphical goodness-of-fit analysis: a histogram of the data overlayed
with the theoretical PDF, a comparison of theoretical and empirical CDFs, and a
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Fig. 9.2 Ratio of maximum to total monthly precipitation goodness-of-fit plots: histogram with
fitted PDF (left panel), empirical versus theoretical CDF (middle panel), and QQ-plot (right panel)

Fig. 9.3 Weekly
precipitation amount data
overlayed with a fitted
exponential PDF
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Quantile-Quantile (QQ) plot. The graphs show that the fit of the theoretical model
to the data is quite reasonable.

We also examined the assumptions of the model by testing whether the obser-
vations (weekly total precipitation amounts) are distributed exponentially, using the
likelihood ratio test discussed in [14,19]. The null hypothesis is that the data comes
from an exponential distribution, versus the alternative that the data comes from a
Pareto distribution. Results from the likelihood ratio test indicated that the weekly
precipitation amounts can be assumed to follow an exponential distribution (p-value
D 0:50), with an estimated parameter of Ǒ D 0:00648. Figure 9.3 provides his-
togram of the weekly precipitation amounts overlayed with the exponential density
curve with ˇ D 0:00648. The graphical fit confirms the results of the goodness-of-fit
test as the density curve closely follows the histogram.
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Additionally, we compared the empirical and theoretical correlation coefficients
between the monthly maximum and the sum. The empirical correlation coefficient
between the sum and maximum precipitation was found to be Or D 0:871. According
to the results of [20], the theoretical correlation between them should be r D 0:873,
which is rather close to the empirical one.

Our example illustrates that the models involving the ratio of the maximum and
the sum of exponential variables are not only an important theoretically, but are also
promising as stochastic models in actual applications.

Appendix

Proof of Lemma 9.1. Write the left-hand-side of (9.22) as

.1 � q/s�1
qsC1

1X
jDkC2

 
j � 1

s C 1 � 1

!
qsC1.1 � q/j�.sC1/: (9.27)

Note that this is the same as the probability P.T � k C 2/, where T is a negative
binomial random variable given by the PDF

P.T D j / D
 

j � 1

s C 1 � 1

!
qsC1.1 � q/j�.sC1/; j D s C 1; s C 2; : : : :

Since P.T � k C 2/ D 1 � P.T � k C 1/, we have

1X
jDkC2

 
j � 1

s C 1 � 1

!
qsC1.1�q/j�.sC1/D1�

kC1X
nDsC1

 
n � 1

s C 1 � 1

!
qsC1.1�q/n�.sC1/;

and the result follows by substituting the right-hand-side above into (9.27). ut
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Chapter 10
Least Square Estimation for Regression
Parameters Under Lost Association

Vasudevan Mangalam

Abstract A method is developed to deal with estimating the regression coeffi-
cients when the association among the paired data is partially or completely lost.
Asymptotic properties of the estimators are discussed.

10.1 Introduction

Consider a situation where we have two data sets that are believed to be linearly
related. The independent variable is denoted by x and the dependent variable is
denoted by y. The classical regression analysis gives us least square estimators
for the slope and intercept parameters that are consistent and asymptotically nor-
mal. In this paper the author looks at a situation where the complete data sets for
the independent and dependent variables are available, but the pairwise association
between them is lost. In other words, we have a set of x observations and a set of y
observations without knowing which value of the dependent variable was originally
associated with which value of the independent variable. Such a situation can arise
out of accidental sorting of values that destroyed the association or when the two
data were collected separately or by different people.

The model we work with is the standard linear regression model. Let X1;
X2; : : : ; Xn be i.i.d. with mean �X and standard deviation 	X . Let �1; �2; : : : ; �n
be i.i.d. with mean zero and standard deviation 	� so that �i ’s are independent of
Xi ’s. Finally, let Yi D ˛ C ˇXi C �i , where ˛ and ˇ are unknown parameters. The
observed data consists of fx1; x2; : : : ; xng and fy1; y2; : : : ; yng without any infor-
mation on the pairing. In absence of association, it seems natural that we should
define the least square estimator by choosing the permutation of yi ’s that would
minimize the error sum of squares. If˚.˛; ˇ/ D min�2Pn

Pn
iD1.y�.i/�.˛Cˇxi //2

where Pn represent the set of all permutations of f1; 2; : : : ; ng, then our estimators
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of ˛ and ˇ are Ǫ and Ǒ that satisfy the equation

˚. Ǫ ; Ǒ/ D min
˛;ˇ

˚.˛; ˇ/:

10.2 Main Results

In what follows, for any variable x, xnWi represents the i th order statistics of
fx1; x2; : : : ; xng.

Lemma 10.1.
˚. Ǫ ; Ǒ/ D min

�2Pn

Syy.1 � r2x�.y// (10.1)

where Syy D Pn
iD1 .yi � Ny/2, rxy indicates the correlation between x and y,

and �.y/ represents the vector obtained by rearranging the values of the vector y
according to the permutation � .

Proof. Let A represent the RHS of (10.1) and let the minimum in (10.1) be attained
by the permutation �0. By the results of standard regression analysis, (see, for
instance, [2]) we know that for any pair of vectors x and y, min˛;ˇ

Pn
iD1

�
yi � .˛C

ˇxi /
�2 D Syy.1�r2xy/. So for any permutation� , min˛;ˇ

Pn
iD1

�
y�.i/ � .˛Cˇxi /

�2
D S�.y/�.y/.1� r2x�.y// D Syy.1 � r2x�.y//.

A D Syy.1 � r2x�0.y/
/

D min
˛;ˇ

nX
iD1
.y�0.i/ � .˛ C ˇxi //

2

� min
˛;ˇ

min
�2Pn

nX
iD1
.y�.i/ � .˛ C ˇxi //

2

D min
˛;ˇ

˚.˛; ˇ/

D ˚. Ǫ ; Ǒ/:

For any � 2 Pn,

A � Syy.1 � r2x�.y//

D min
˛;ˇ

nX
iD1
.y�.i/ � .˛ C ˇxi //

2:

Thus A � Pn
iD1.y�.i/ � .˛ C ˇxi //

2 8˛ and ˇ and 8� 2 Pn. Therefore 8˛; ˇ,
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A � min
�2Pn

nX
iD1
.y�.i/ � .˛ C ˇxi //

2

D ˚.˛; ˇ/:

So A � min˛;ˇ ˚.˛; ˇ/ D ˚. Ǫ ; Ǒ/. �

One of the consequences of Lemma 10.1 is that the permutation that minimizes
˚ is not dependent on the values of ˛ and ˇ. If we find the permutation � that max-
imizes r2x�.y/, then it minimizes Syy.1 � r2x�.y// and consequently, Ǒ D Sx�.y/=Sxx

and Ǫ D Ny � Ǒ Nx.
The difficulty is, of course, the computational complexity. If we were to try

out all nŠ permutations the computational time required explodes at a faster-than-
exponential rate. This problem is tackled by Theorem 10.1. Before that, we need a
preliminary lemma.

Lemma 10.2. Let x1; x2; : : : ; xn and y1; y2; : : : ; yn be two sets of real numbers
such that x1 � x2 � : : : ;� xn, y1 � y2 � : : : ;� yn. Let Pn represent the set of
all permutations of 1; 2; : : : ; n. Then

(1) max�2Pn

Pn
iD1 xiy�.i/ D Pn

iD1 xiyi

(2) min�2Pn

Pn
iD1 xiy�.i/ D Pn

iD1 xiyn�iC1:

Proof. (1) The proof is by induction. We first prove the result for n D 2.

0 � .x2 � x1/.y2 � y1/ D x1y1 C x2y2 � .x1y2 C x2y1/

) x1y2 C x2y1 � x1y1 C x2y2:

Now assume the result to be true for integers up to and including n � 1. Letting
� to be an arbitrary element in Pn, we will prove that

nX
iD1

xiy�.i/ �
nX
iD1

xiyi :

Let j D �.n/ and k D ��1.n/ so that �.k/ D n. Then

nX
iD1

xiy�.i/ D
n�1X
iD1
i¤k

xiy�.i/ C xkyn C xnyj

D

8
ˆ̂<
ˆ̂:

n�1X
iD1
i¤k

xiy�.i/ C xkyj

9
>>=
>>;

C xkyn C xnyj � xkyj :
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The expression in the braces, say B , is of the form
Pn�1
iD1 xiy�.i/ and hence by

induction hypothesis,B � Pn�1
iD1 xiyi . Also, applying the result for n D 2 with xk ,

xn, yj and yn, we get xnyj C xkyn � xkyj C xnyn. Hence

nX
iD1

xiy�.i/ �
n�1X
iD1

xiyi C xkyn C xnyj � xkyj

D
n�1X
iD1

xiyi C xnyn

D
nX
iD1

xiyi :

(2) Apply Part (1) with yi ’s replaced by their negatives. �
Define two permutationsRX and NRX as follows. RX .i/ is the rank of xi among

fx1; x2; : : :g and NRX .i/ D n � RX .i/ C 1. Let RY and NRY be defined similarly.
Now define permutations �1 and �2 by �1 D R�1

Y RX and �2 D NR�1
Y RX :

Theorem 10.1. If � is such that r2x�.y/ D maxfr2x�1.y/
; r2x�2.y/

g, then Ǒ D Sx�.y/=

Sxx and Ǫ D Ny � Ǒ Nx:
Proof. We shall show that

˚. Ǫ ; Ǒ/ D Syy.1 � maxfr2x�1.y/
; r2x�2.y/

g/;

from which the theorem follows.
From Lemma 10.1,˚. Ǫ ; Ǒ/D min�2Pn

Syy.1�r2x�.y//DSyy.1�max�2Pn
r2x�.y//,

so it is sufficient to prove that max�2Pn
r2x�.y/ D maxfr2x�1.y/

; r2x�2.y/
g. Moreover,

max�2Pn
r2x�.y/ D maxf.max�2Pn

rx�.y//
2; .min�2Pn

rx�.y//
2g.

Note that
nP
iD1

xiy�1.i/ D
nP
iD1

xnWiynWi . Now from Lemma 10.2,

max
�2Pn

rx�.y/ D
"

max
�2Pn

1

n

nX
iD1
.xiy�.i/ � Nx Ny/

#�
sxsy

D 1

n

 
nX
iD1

xnWiynWi � Nx Ny
!�

sxsy

D 1

n

 
nX
iD1

xiy�1.i/ � Nx Ny
!�

sxsy

D rx�1.y/:

Similarly, min�2Pn
rx�.y/ D rx�2.y/. Thus max�2Pn

r2x�.y/ D maxfr2x�1.y/
; r2x�2.y/

g.
�
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What we infer from the preceding results is that the least-square estimators are
obtained by ordering the x-values in the ascending order, ordering y-values in
ascending order or descending order depending on which gives a higher coefficient
of determination and finding the standard estimators of the parameters based on this
arrangement. But note that the sign of the slope parameter can be wrongly chosen.
It is possible that a strongly positively correlated bivariate data set yields a higher
coefficient of determination when the variables are ordered in reverse and hence the
method can lead to wrong conclusions on whether ˇ is positive or negative. Thus it
would be prudent to use prior information on the sign of ˇ.

10.3 Almost Sure Limits

In order to find the limits of least square estimators of the regression parameters, we
need the following theorem from [1]. The details of the assumptions are described
in the Appendix.

Theorem 10.2. Let
n
.X

.1/
i ; X

.2/
i ; : : : ; X

.d/
i /; i D 1; 2; : : :

o
be a sequence of ran-

dom vectors such that for each j .1 � j � d/,
n
X
.j /
1 ; X

.j /
2 ; : : : ;

o
forms a sequence

of i.i.d. random variables with continuous distribution function Fj . Let � be a real-
valued measurable function on R

d such that � satisfies some regularity conditions.
Then

1

n

nX
iD1

�
�
X
.1/
nWi ; : : : ; X

.d/
nWi
�
a:s:��! � � E�

�
F �1
1 .U /; F�1

2 .U /; : : : ; F�1
d .U /

�

as n ! 1, where U is uniformly distributed over .0; 1/.

Note that in the above theorem, no assumption is made about the joint distribution
of Xi and Yi . We are now ready to prove the following lemma.

Lemma 10.3. Let F be a continuous distribution function with mean � and stan-
dard deviation 	 . Let X1; X2; : : : ; Xn be i.i.d. with distribution function F , and
Y1; Y2; : : : ; Yn be i.i.d. with distribution function F . Then,

1

n

nX
iD1

XnWiYnWi !a:s: �2 C 	2

and
1

n

nX
iD1

XnWiYnWn�iC1 !a:s: �2 � 	2:

Proof. Apply Theorem 10.2 with n D 2 and �.x; y/ D xy, which satisfies the
regularity conditions. Here the limit � is given by
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� D E�
�
F�1.U /; F �1.U /

�

D
Z 1

0

.F�1.u//2du

D
Z 1

�1
x2dF.x/

D �2 C 	2:

The second part of the lemma follows by applying Theorem 10.2 to X and �Y .
ut

Lemma 10.4. Let F and G be continuous distribution functions such that there
exists a; b such that G.x/ D F.x�a

b
/. Assume F has mean �1 and standard devi-

ation 	1, and G has mean �2 and standard deviation 	2. Let X1; X2; : : : ; Xn be
i.i.d. with distribution function F and Y1; Y2; : : : ; Yn be i.i.d. with distribution
function G. Then,

1

n

nX
iD1

XnWiYnWi !a:s: �1�2 C 	1	2

1

n

nX
iD1

XnWiYnWn�iC1 !a:s: �1�2 � 	1	2:

Proof. The result follows from Lemma 10.3 by a linear transformation. ut
Next, we look at the asymptotic properties of the estimator. We would hope

that the estimator is consistent and asymptotically normal. Unfortunately, when the
association between x and y is completely lost, we do not get consistency or unbi-
asedness, nor are we able to recover the sign of ˇ. The limiting behaviour of the
least square estimators are given in the following theorem.

Theorem 10.3.

Ǒ
n !a:s: ˇ1 � ˙

s
ˇ2 C 	2�

	2x
:

Ǫn !a:s: ˛1 � ˛ C �x .ˇ � ˇ1/ :
Proof. From Lemma 10.4,

sx�1.y/ D 1

n

nX
iD1

xnWiynWi � Nx Ny

!a:s: E.X/E.Y /C SD.X/SD.Y /� E.X/E.Y /

D SD.X/SD.Y /:

Similarly sx�2.y/ !a:s: �SD.X/SD.Y /. As s2xn !a:s: V.X/ and Ǒ
n D sx�.y/=s

2
xn

where � is �1 or �2,
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Ǒ
n !a:s: ˙ SD.Y /

SD.X/
D ˙

s
ˇ2 C 	2�

	2x

Ǫn D Nyn � Ǒ
n Nxn

!a:s: �y � ˇ1�x

D ˛ C �x .ˇ � ˇ1/ :

�

10.4 Asymptotic Normality

For the asymptotic normality to hold for the least square estimators, we need to make
certain assumptions about the distributions of X and �. In order to make matters
simple, we will not deal here with the case where X and � have general continuous
distributions. We shall assume that both are normally distributed, as a consequence
of which .X; Y / has bivariate normal distribution.

We need to use another theorem from [1] as stated below. Once again, details are
given in the Appendix.

Theorem 10.4. Let Xi D .X
.1/
i ; : : : ; X

.d/
i / be i.i.d. random vectors. Let Fj .1 �

j � d/ denote the marginal distribution ofX .j /i which is assumed to be continuous,

and Fj;k .1 � j; k � d/ denote the marginal distribution of .X .j /i ; X
.k/
i /. If �

satisfies some regularity conditions, then

1p
n

nX
iD1

�
�
X
.1/
nWi ; : : : ; X

.d/
nWi
�

� p
n � !d N.0; 	2/ (10.2)

as n ! 1 where � is as in Theorem 10.2 and

	2 D 2

dX
jD1

Z 1

0

Z y

0

x.1 � y/ j .x/ j .y/dxdy

C 2
X

1�j<k�d

Z 1

0

Z 1

0

ŒGj;k.x; y/ � xy� j .x/ k.y/dxdy

where Gj;k.x; y/ D Fj;k

�
F�1
j .x/; F �1

k
.y/
�

.

Lemma 10.5. Let .X1; Y1/; .X2; Y2/; : : : ; .Xn; Yn/ be i.i.d. bivariate normal with
each component being N.0; 1/. Then,

1. 1p
n

Pn
iD1 .XnWi � YnWi /2 !p 0

2. 1p
n

Pn
iD1

�
XnWiYnWi � XnY n � 1� !d N

�
0; 
2

�

where 
2 D 1
2

�
E
�
X2Y 2

�C 1
�
:
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Proof. For Part 1, apply Theorem 10.4 with n D 2, �.x; y/ D .x � y/2. It can be
verified that when the distributions are normal, the conditions of Theorem 10.2 and
Theorem 10.4 are satisfied. It is easily seen that for this case, the asymptotic mean
and variance are both zero, and hence the result holds. As for Part 2,

2XnWiYnWi D X2nWi C Y 2nWi � .XnWi � YnWi /2 ;

so

2

nX
iD1

XnWiYnWi D
nX
iD1

X2i C
nX
iD1

Y 2i �
nX
iD1

.XnWi � YnWi /2

1p
n

nX
iD1

�
XnWiYnWi � XnY n � 1

� D 1p
n

nX
iD1



X2i C Y 2i

2
� 1

�
Cp

n XnY nCop.1/

from Part 1. By the Lindeberg–LKevy central limit theorem (See [3], for instance),
the first term of RHS goes to normal with mean zero and variance equaling

V

	
X2 C Y 2

2



D 1

4

�
V
�
X2
�C V

�
Y 2
�C 2COV

�
X2; Y 2

��

D 1

2

�
2C COV

�
X2; Y 2

��

D 1

2

�
E
�
X2Y 2

�C 1
�

D 
2:

p
n XnY n !p 0 because

p
n Xn is asymptotically normal, and hence Op.1/, and

Y n !p 0. The result now follows from Slutsky’s theorem. ut

Note: The asymptotic variance 
2 is equal to
V .X2/
2

if Xi ’s are independent of Yi ’s,
whereas 
2 D V

�
X2
�

if Xi D Yi for all i .

Lemma 10.6. Let .X1; Y1/; .X2; Y2/; : : : ; .Xn; Yn/ be i.i.d. bivariate normal such
that X1; X2; : : : ; Xn are i.i.d. N.�1; 	1/ and Y1; Y2; : : : ; Yn be i.i.d. N.�2; 	2/.
Then,

1p
n

nX
iD1

�
XnWiYnWi � �

XnY n C 	1	2
�� !d N

�
0; �2

�

where �2 D �2
1
�2

2

2
E


�
X��1

�1

�2 �
Y��2

�2

�2 C 1

�
:

Proof. Let Zi D Xi ��1

�1
and Wi D Yi ��2

�2
. By Lemma 10.5,

1p
n

nX
iD1

�
ZnWiWnWi �ZnW n � 1� !d N

�
0; �2t

�
:
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The left hand side is equal to 1p
n�1�2

nP
iD1

�
XnWiYnWi � �

XnY n C 	1	2
��

and hence

the weak convergence holds. The asymptotic variance is given by
�2

1
�2

2

2

�
E
�
Z2W 2

�
C1� which equals �2. �

We are now ready to prove the asymptotic normalities of Ǒ
n and Ǫn.

Theorem 10.5. If .X1; Y1/; .X2; Y2/; : : : ; .Xn; Yn/ are i.i.d. bivariate normal,
then the least square estimators of the regression parameters under lost association
are asymptotically normal.

1.
p
n
� Ǒ

n � ˇ1

�
!d N.0; �/

2.
p
n . Ǫn � ˛1/ !d N.0; �/

where ˇ1 and ˛1 are as in Theorem 10.3

Proof. Ǒ
n D sx�.y/=s

2
xn where � is �1 or �2. We shall prove the case of � = �1.

The other case is similar. (It may fluctuate between the two permutations giving
positive or negative values for Ǒ

n. In that case the subsequences will converge to ˇ1
or �ˇ1). As s2xn !a:s: 	2x ,

p
n
� Ǒ

n � ˇ1
�

D p
n

	
sx�1.y/

s2xn
� 	x	y

	2x




D p
n

 
1

n

nX
iD1

xnWiynWi � Nx Ny=s2xn
!

� 1p
n	2x

nX
iD1

�
XnWiYnWi � �

XnY n C 	1	2
��
:

The asymptotic normality of Ǒ
n now follows from Lemma 10.6. The asymptotic

normality of Ǫn follows from that of Ǒ
n and the fact that Ǫ D Ny � Ǒ Nx. �

10.5 Partial Loss of Association

It is conceivable that only for part of the data the association between x and y is
lost. For the rest, we may have the full data set with the one to one correspondence
intact. In such situations we expect consistency and asymptotic normality for the
least square estimator to hold provided the proportion of observations for which
association is lost tends to zero.

As this is a rather severe restriction, the author suggests alternative estimators
for ˇ and ˛ as follows. Let s2�n be the standard estimator of the error variance, s2xn
be the standard estimator of the variance of the x variable, and ˇ�

n be the standard
estimator of ˇ. These estimators are calculated using the part of the data for which
association is not lost.
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Q̌ D sgn.ˇ�
n/

s
Ǒ
n

2 � s2�n
s2xn

:

Assuming that the number of observations for which association is intact tends
to infinity as the sample size tends to infinity, this new estimator is consistent. This
is a straight forward consequence of the previous results. Its asymptotic normality
is, at present, not as clear.

10.6 Conclusion

There is scope for further studies on this topic. Investigating MLE’s is one possible
extension. Another is to generalize the idea of lost association. In general, loss of
association does not have to be a total hit or total miss. It is possible that for each
xi , we have a set of yi ’s that xi may be associated with, and this set may range
from a singleton to the entire set of yi ’s. On one extreme we have full association
information and on the other we have none. Least square estimation and maximum
likelihood estimation for such a general case can be a subject of future investigation.

Appendix

The content of this appendix is an excerpt from [1].
Let f.X .1/i ; X

.2/
i ; : : : ; X

.d/
i /; i D 1; 2; : : :g be a sequence of random vectors such

that for each j .1 � j � d/, fX .j /1 ; X
.j /
2 ; : : : ; g forms a sequence of independent

and identically distributed (i.i.d.) random variables with distribution function Fj .

Let X .j /nWi denote the i th order statistic of fX .j /1 ; X
.j /
2 ; : : : X

.j /
n g. Define, for 0 < t <

1, F�1.t/ D inffx W F.x/ � tg for a distribution function F .

Let � be a real-valued measurable function on R
d . Let x D .x1; : : : ; xd / for

0 < x; x1; : : : ; xd < 1. Define

 .x/ D �
�
F �1
1 .x1/; : : : ; F

�1
d .xd /

�
; (10.3)

�.x/ D  .x; x; : : : ; x/; (10.4)

 j .x/ D @ .x/
@xj

j.x;:::;x/; 1 � j � d (10.5)

 j;k.x/ D @2 .x/
@xj @xk

; 1 � j; k � d: (10.6)

We introduce conditions on �.
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(C1) The function  .u/ is continuous at u D .u; : : : ; u/; 0 < u < 1. That is,  is
continuous at each point on the diagonal of .0; 1/d .

(C2) There existK and c0 > 0 such that for .x1; : : : ; xd / 2 .0; c0/d [ .1�c0; 1/d ,

j .x1; : : : ; xd /j � K

0
@1C

dX
jD1

j�.xj /j
1
A :

(C3) The functions, Œx.1 � x/�3=2Œ j .x/�
2 (1 � j � d ), and Œx.1 � x/�3=2

j j;k.x; : : : ; x/j (1 � j; k � d ) are Riemann integrable over .0; 1/.
(C4) For all largem, there exist K D K.m/ � 1 and ı > 0 such that

j .y/ �  .x/ � hy � x;r .x/ij

� K

dX
j;kD1

j.yj � x/.yk � x/j Œ1C j j;k.x/j�

if x D .x; : : : ; x/; y D .y1; : : : ; yd / 2 .0; 1/d , jjy � xjj`1
< ı, and for

1 � j � d , yj .1 � yj / > x.1 � x/=m. Here kyk`1
WD jy1j C � � � C jyd j

denotes the `1-norm of y and r .x/ the gradient of  .

Theorem 10.6. Let f.X .1/i ; X
.2/
i ; : : : ; X

.d/
i /; i D 1; 2; : : :g be a sequence of ran-

dom vectors such that for each j .1 � j � d/, fX .j /1 ; X
.j /
2 ; : : : ; g forms a sequence

of i.i.d. random variables with continuous distribution function Fj . Suppose that
� satisfies the conditions (C1)–(C2), and that � , as defined in (10.4), is Riemann
integrable, then

1

n

nX
iD1

�
�
X
.1/
nWi ; : : : ; X

.d/
nWi
�
a:s:��! N�

as n ! 1. Here N� D R 1
0 �.y/dy D E�

�
F�1
1 .U /; F �1

2 .U /; : : : ; F�1
d
.U /

�
and

U is uniformly distributed over .0; 1/.

Theorem 10.7. Let Xi D .X
.1/
i ; : : : ; X

.d/
i / be i.i.d. random vectors. Let Fj .1 �

j � d/ denote the marginal distribution ofX .j /i which is assumed to be continuous,

and Fj;k; .1 � j; k � d/ the marginal distribution of .X .j /i ; X
.k/
i /. If � satisfies

conditions (C1)–(C4), and that � , as defined in (10.4), is Riemann integrable, then

1p
n

nX
iD1

�
�
X
.1/
nWi ; : : : ; X

.d/
nWi
�

� p
n N� dist��! N.0; 	2/ (10.7)

as n ! 1 where N� is defined as in Theorem 10.6 and
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	2 D 2

dX
jD1

Z 1

0

Z y

0

x.1 � y/ j .x/ j .y/dxdy

C2
X

1�j<k�d

Z 1

0

Z 1

0

ŒGj;k.x; y/ � xy� j .x/ k.y/dxdy

where Gj;k.x; y/ D Fj;k

�
F�1
j .x/; F �1

k
.y/
�

.

If we arrange the random variables in a tabular form as below:

X
.1/
1 � � � X .j /1 � � � X .d/1

X
.1/
2 � � � X .j /2 � � � X .d/2
:::

:::
:::

:::
:::

In Theorem 10.6, we just require i.i.d. for each column and no further assumptions
are made on how the columns are related. We need a stronger assumption in Theo-
rem 10.7, namely, the rows are i.i.d. random vectors. Interestingly, the variance of
the limiting normal only depends on the 2-dimensional marginal distributions.

We collect some remarks about the various conditions on the function �.

Remark. (i) Conditions (C1) and (C2), in general, are easy to verify.
A sufficient condition for condition (C4) to hold is that the second par-
tial derivatives of  are continuous, and there exist K and ˛ > 0 such
that j j;k.y1; : : : ; yd /j � K

Pd
`D1 j j;k.y`; : : : ; y`/j and j j;k.x; : : : ; x/j D

O.Œx.1 � x/��˛/ for 1 � j; k � d as x ! 0C or as x ! 1�.

(ii) By a compactness argument, Condition (C1) is shown to be equivalent to

(C1’) For any c 2 .0; 1
2
/; limı!0 !.c; ı/ D 0 where

!.c; ı/ WD sup j .x1; : : : ; xd /� �.y/j (10.8)

and the supremum is taken over all c < x1; x2; : : : xd ; y < 1 � c such that
jxi � yj < ı.

(iii) Let  .x; y/ D Œ.x C y/=2�˛ Œ1 � .x C y/=2�˛: It is easy to verify that for
˛ > �1=4,  satisfies conditions (C3).
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Chapter 11
On Tests of Fit Based on Grouped Data

Sherzod M. Mirakhmedov and Saidbek S. Mirakhmedov

Abstract The problem of testing the goodness-of-fit of a continuous distribution
for a set of n observations grouped into N equal probability intervals is considered.
It is assumed that N ! 1 as n ! 1. Let �1; : : : ; �N be the numbers of obser-
vations in the intervals. We show that within the class of tests based on statistics of
the form f .�1/C � � � C f .�N / the classical chi-square test is optimal in terms of
the Pitman’s and the Kalenberg’s intermediate asymptotic efficiencies but it is much
inferior to tests satisfying Cramer condition in terms of the Kalenberg’s strong inter-
mediate and the Bahadur’s exact asymptotic efficiencies. For the chi-square statistic,
a probability of large deviation result, likely to be of its own interest, is proved.

11.1 Introduction

The classical goodness-of-fit problem of statistical inference is to test whether a
sample has come from a given population. Specifically, we consider the problem
of testing the goodness of fit of a continuous distribution F to a set of n observa-
tions grouped into N equal probability intervals. A large class of the tests based on
statistics are of the general form

R
f
N D

NX
kD1

f .�k/; (11.1)

where �1; : : : ; �N are the numbers of observations in the intervals. In the sequel the
statistics RfN is called f-statistics, a test based on f-statistics is called f-tests. Three
most popular cases of f-statistics are
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X2N D
NX
kD1

�2k

is called the chi-square statistic,


N D
NX
kD1

�k ln �k

is called the likelihood ratio statistic,

�r D
NX
mD1

* f�m D rg

is a number of intervals containing exactly r observations, here * fAg is the
indicator of the event A. Particularly �0 is known empty boxes statistic (see, for
instance, [16]).

We consider the problem of testing the null hypothesisH0: f .x/ D F 0.x/ D 1,
0 < x < 1, versus the sequence of alternatives

H1 W f .x/ D 1C dı.n/ l.x/; (11.2)

where constant d > 0, l.x/ is a known continuous function on Œ0,1� such that

Z 1

0

l.x/dx D 0;

Z 1

0

l2.x/dx D 1; and
Z 1

0

jl.x/j3 dx < 1;

ı.n/ ! ı < 1 will be chosen so that the power for a f-test of size ! has a limit in
(!,1). The problem of testing H0 againstH1 is called problem .H0;H1/.

Holst [4], Ivchenko and Medvedev [6], and Gvanceladze and Chibisov [3] have
shown that for the problem .H0;H1/; for ı.n/ D n�1=2 the power of the f-tests
tends to the significance level as n ! 1 whenever N ! 1; hence such alterna-
tives can not be detected by f-tests. In [20], see also [30], it was pointed out that if
we let N ! 1 then a sequence of alternatives that convergence to uniform must
be in the form (11.2) with ı.n/ D .n˛/�1=4, where ˛ D n=N , in order to keep
the power bounded away from the significance level and unity, hence the f-tests
do not discriminate alternatives (11.2) with ı.n/ D o

�
.n˛/�1=4

�
. This is poor in

comparison with other tests based on empirical distribution functions, for example
the Kolmogorov–Smirnov and Cramer–von Mises tests, which can detect similar
alternatives at distance O

�
n�1=2�. On the other hand not always we need to con-

sider the alternatives converging to hypothesis with the extreme rate of O
�
n�1=2�.

Moreover, concerning the choice of the number of groups in chi-square test there is
a well-known result by [17] stating that the optimal number N increase with n as
N D O

�
n2=5

�
. Hence it is unnatural to keep fixed number of groups when number
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of observations goes to infinity. Nevertheless, because of ı.n/ D .n˛/�1=4 the
number of groups should go to infinity slowly in order to discriminate alternatives
converging to the hypothesis with the rate close to O

�
n�1=2�.

We are concerned with asymptotic results when N D N.n/ ! 1 as n ! 1.
This case has been studied intensively by many authors. We refer to [1, 4, 6, 9–
11, 15, 18–20, 27, 29, 30]. For RfN , [7, 8, 21, 36] prove: the central limit theorem
under mild condition together with Berry–Esseen bound, Edgeworth type asymp-
totic expansion with exact formula for the first three terms, specified for statistics
X2N , 
N and �r , and Cramer type large deviation result under Cramer condition
E exp fH jf .�/jg < 1, 9H > 0, where � is the Poisson.˛/ r.v. with ˛ D n=N .
We refer also to [34] where under Cramer condition the Chernoff type large devi-
ation result for RfN was proved. Note that the statistics 
N and �r satisfy Cramer
condition whereas the chi-square statistic X2N does not. Nevertheless [30] obtain
asymptotic results for Chernoff type large deviation probabilities of X2N and 
N :
These probabilistic results have been used to study asymptotic efficiencies (AE) of
the f-tests. Details of the corresponding results are as follows.

There are two basic ways of comparison of tests. One of them is in principle
based on asymptotic analysis of the power of the tests. A test having maximal
power within a class of tests under consideration is called asymptotic most pow-
erful (AMP) test. AMP test is also first order efficient test, and it may be not unique.
In such a case an asymptotic behavior, as n ! 1, of the difference in powers of two
AMP tests is of interest; this situation gives rise to the concepts of second order effi-
cient tests. The definition of the second order efficient test adapted to our problem
is given later.

Another method of comparison of two tests of the same level is based on com-
parison of the number of observations needed to get same asymptotic power, when
number of observations increases. If we have two tests with corresponding numbers
of observations n1 and n2, then the limit of ratio n2=n1 is called the asymptotic
relative efficiency (ARE) of test 1 with respect to (w.r.t.) test 2. To investigate AE
of a test we consider that ratio where n1 and n2 corresponds to that test and the
AMP test respectively. AE of a test depends on three parameters: the level !n, the
power ˇn and the alternativeH1, which may depend on n. When letting n go to infin-
ity, three concepts arise: Pitman approach when !n ! ! > 0, H1 ! H0 in such
rate that ˇn ! ˇ 2 .!; 1/; Bahadur approach when !n ! 0, ˇn ! ˇ 2 .0; 1/,H1
is fixed, i.e., does not approach the hypothesis; Kallenberg intermediate approach
when !n ! 0, ˇn ! ˇ 2 .0; 1/, H1 ! H0 but more slowly than in Pitman
case. Optimality of a test can be expressed by first order efficiency, which means
that n2.!; ˇ;H1/=n1.!; ˇ;H1/ converges to 1, where the limit is taken accord-
ing to the efficiency concept involved. The problem of finding of the limit of ratio
n2.!; ˇ;H1/=n1.!; ˇ;H1/ is a very difficult problem as it usually reduces to find-
ing of the ratio of what is called slopes of the tests under consideration, see, for
instance, [5, 28].

Let � be the Poisson.˛/ r.v. with ˛ D n=N ; Pi , Ei , Vari stands for the proba-
bility, expectation and variance under Hi ; Ai;N and 	2i;N stands for the asymptotic
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value of EiR
f
N and VariR

f
N , i D 0; 1, respectively. Put

g.�/ D f .�/ � Ef .�/ � �.� � ˛/; � D ˛�1cov.f .�/; �/ (11.3)

	2.f / D Var g.�/ D Var f .�/
�
1 � corr2 .f .�/; �/

�
:

From Theorem 2 of [21] it follows that if

�N D E jg.�/j3p
N	3.f /

! 0; (11.4)

as n and N ! 1, then

rN D sup
x

ˇ̌
ˇPi

n
R
f
N < x	iN C AiN

o
�˚.x/

ˇ̌
ˇ D O

	
�N C 1p

n



; (11.5)

where ˚.x/ is the standard normal distribution function.

Remark 11.1. The statistics X2N and 
N satisfy the condition (11.4) if and only
if n˛ ! 1. But for the statistic �r (11.4) is valid under additional conditions
for r and ˛, namely, if ˛ ! 0 and n˛ ! 1 then (11.4) satisfies for �r with
0 � r � 2; if ˛ is far away from zero then (11.4) is still true for �r , r � 0, if
˛ � lnN � r ln lnN ! 1.

In what follows we will assume that n˛ ! 1.
Asymptotically Most Powerful Test. It is known, see [4,7,8], that under alternative

(11.2) with ı.n/ ! 0

A0N D NEf .�/; 	20N D N	2.f /; 	21N D 	20N .1C o.1//; (11.6)

xN .f /
defD .A1N .f /� A0N .f // =

p
N	.f / D

r
n˛

2
ı2.n/�.f; ˛/d 2 .1C o.1// ;

(11.7)
with �.f; ˛/ D corr

�
f .�/ � ��; �2 � .2˛ C 1/�

�
.

Let ˇ.f / be an asymptotic power of the f-test of a size !. If (11.4) is satisfied
then (11.5) and (11.7) imply

ˇ.f / D ˚

	r
n˛

2
ı2.n/�.f; ˛/d 2 � u!



; u! D ˚�1.1 � !/: (11.8)

Hence the functional �.f; ˛/ plays a key rule in determining of the asymptotic
quality of the f-test. Its meaning is clarified by the following (see Lemma 1 by [8])

�.f; ˛/ D lim corr0
�
R
f
N ; X

2
N

�
: (11.9)
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Hence j�.f; ˛/j � 1, and j�.f; ˛/j D 1 for any ˛ only for chi-square test. The
equality (11.8) means that f-test does not detect alternatives (11.2) with ı.n/ D
o
�
.n˛/�1=4

�
.

In (11.2), let ı.n/ D .n˛/�1=4. Then for the problem .H0;H1/ the chi-square
test is AMP within class of f-tests for any ˛. Nevertheless if ˛ ! 0 or ˛ ! 1 then
there exist other AMP tests also, because in these cases we may have �.f; ˛/ ! 1.
For example, if ˛ ! 0 and�2f .0/ ¤ 0, where operator�f.x/ D f .xC1/�f .x/,
then

�.f; ˛/ D 1 � ˛

6

�3f .0/

�2f .0/
CO

�
˛2
� I

if ˛ ! 1 for the statistic 
N

�.f; ˛/ D 1 � 1

6˛
.1C o.1// :

Second Order Asymptotic Efficiency. Comparison of the AMP tests, when ˛ ! 0

or ˛ ! 1, can be based on the notion of the second order efficiency. Set # D
d 2=

p
2 � u! , where ! is a size of f-test and u! from (11.8), ˇn.R

f
N I#/ stands

for the power of the f-test of a size !. Ivchenko and Mirakhmedov [7] show the
following asymptotic expansion of the power ˇn.X2N I#/ of chi-square test

ˇn.X
2
N I#/ D ˚ .#/C "n.X

2
N I#/ .1C o.1// ;

where

"n.X
2
N I#/ D exp

˚�#2=2�p
2�n˛

	
1 � #2

3
p
2

C #d 2

2
C p

2S1

	
#

r
n˛

2
C n

2




;

if ˛ ! 0,

"n.X
2
N I#/ D exp

˚�#2=2�p
2�N

	
1 � #d 2p

2



;

if ˛ ! 1.
Here S1.x/ D �fxg C 0:5, fxg denotes the fractional part of x. The func-

tion S1.x/ is well known in the theory of asymptotic expansion of the cumulative
distribution function of lattice random variables (r.v.’s). It arises here because the
chi-square statistic X2N is a lattice random variable with span equal to 2.

Definition. The AMP f-test is called second order asymptotic efficient (SOAE)
with respect to chi-square test, if its power has the asymptotic expansion

ˇn.R
f
N ; #/ D ˚ .#/C "n.f I#/ .1C o.1// ;

with "n.f I#/ ! 0 and "n.f I#/ D "n.X
2
N I#/ .1C o.1//.
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The conclusion of [7] is as follows. Let ˛ ! 0, then there exist SOAE f-tests
only if ˛ D O

�
.n˛/�1=2

�
, i.e., n D O

�
N 3=4

�
. For example empty cells test based

on �0 is SOAE, but likelihood ratio test is not SOAE. If ˛ ! 1, then SOAE does
not exist.

Pitman Efficiency. Under certain regularity conditions (see, for example, [2]), the
efficacy of a test based on statistic, say V , is given by e.V / D �2V =	

2
V . Here�V and

	2V are the mean and variance of the limiting normal distribution under the sequence
of alternatives when the test statistics has been normalized to have limiting standard
normal distribution under the hypothesis. In such a situation, the Pitman’s ARE of
one test with respect to another is the ratio of their efficacies.

Because of (11.6) and (11.8) the alternatives (11.2) with ı.n/ D .n˛/�1=4 are
form Palt-the family of Pitman alternatives: f-test of a size !n.f / ! ! > 0 and
�.f; ˛/ is far away from zero has the power (see (1.8))

ˇn.f / ! ˇ.f / D ˚
�
2�1=2d 2�.f; ˛/ � u!

�
2 .!; 1/:

For the efficacy e.f / of the f-test we have

e.f / D x2N .f / D 2�1d 4�2.f; ˛/:

Hence the Pitman asymptotic efficiency of f-test is determined by functional
�.f; ˛/ and within class of f-tests the chi-square test is asymptotic most efficient
(AME) in Pitman sense; the Pitman efficiency of f-tests goes down as number of
intervals N increases for a given sample size n. These results have been proved by
[4, 6, 20, 30].

Bahadur Efficiency. Another extreme family of alternatives is Balt-Bahadur (as
well as Hodges–Lehman) family of alternatives when alternatives do not approach
the hypothesis, i.e., ı.n/ is constant. The Bahadur’s AE of f-tests in the family
Balt have been developed by Ronzhin (1984) who showed, for a certain subclass
of f-tests, that whenever ˇn.f / ! ˇ.f / < 1, �n�1 log!n.f / converges to limit
(which is called slope of the f-test to the alternative) of specifies the Bahadur AE of
f-test. This limit is determined by the logarithmic rate deviations probabilities (for
deviation of order O.

p
N/) under H0, which require restrictive Cramer’s condi-

tion (see (11) below) on the test statistics. In particular, this condition excludes the
chi-square statistic. A comparative analysis of chi-square test’s Bahadur efficiency
relative to the likelihood ratio test was carried out by [30]. They showed that likeli-
hood ratio test is much more Bahadur efficient than the chi-square test, in contrast
to their relative Pitman efficiency. In a similar setup, the ARE, as ˛ ! 1, of the
chi-square and likelihood ratio tests were studied by [15] based on the analysis of
probabilities of large deviations of various orders.

Kallenberg Intermediate Efficiency. The situation when ı.n/ ! 0 but slower
than that in the Palt give rise to the Kallenberg’s intermediate family of alternatives
of three types:Kall-family of alternatives (11.2) with ı.n/ ! 0, ı.n/.n˛/1=4 ! 1;
K1=6-subfamily of Kall with ı.n/ D o

�
.n˛2/�1=6

�
if ˛ � 1, and ı.n/ D
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o
�
.n˛/�1=6

�
if ˛ < 1;Kp

log -subfamily ofKall with ı.n/DO
�
n˛/�1=4 log1=4N

�
.

Actually such division of family of intermediate alternatives becomes from prob-
ability of large deviations results presented below in Sect. 11.3 and because of
relation (11.7). Following the logic of Bahadur’s approach, intermediate AE (IAE)
(between Pitman and Bahadur settings) of f-tests for the family of intermediate alter-
natives (Kall, K1=6 and Kp

log) can be measured by the logarithmic rate of decrease
of the test size when the power is fixed. Therefore, [8] consider as a measure of the
performance of f-test, the asymptotic value of a slope

e!n .R
f
N / D � logP0

n
R
f
N � NA1N .f /

o
: (11.10)

ARE of one test relative to another is defined as the ratio of its asymptotic slopes.
For Pitman’s alternatives this is equal to the Pitman’s asymptotic relative efficiency,
whereas for intermediate alternatives it is related to the IARE in weak sense intro-
duced by [5]. Ivchenko and Mirakhmedov [8] extended this above said result on the
Pitman’s and the Bahadur’s efficiencies properties of the chi-square test: chi-square
test is still optimal within the class of f-tests in the Kallenberg’s weak IAE (i.e., for
the family Kp

log) but in the Kallenberg’s strong intermediate efficiency (i.e., in the
family Kall exceptK1=6) it is much inferior to those statistics satisfying the Cramer
condition, particularly to likelihood ratio test.

It follows from what has been said above, that the chi-square test is AMP, SOAE,
and AME in the Pitman’s and the Kallenberg’s weak IAE senses, but it losses opti-
mality property in terms of the Bahadur’s and the Kallenberg’s strong efficiency. For
the f-tests satisfying Cramer condition AE for all range of alternatives (11.2), i.e.,
for family of alternatives Palt,Kall and Balt in the situation when ˛ is far away from
zero and infinity have been studied also. AE of the chi-square test in the family of
alternativesK1=6 has been an open problem.

Our main purpose here is 2-fold. On the one hand we wish to cover that existing
gap in the study of AE of the chi-square test; with this aim we prove a probability
of large deviation result, likely to be of its own interest. On the other hand we will
extend the result of [8] regarding to AE of chi-square test in the familyKall except
K1=6; for the cases ˛ ! 0 and ˛ ! 1.

11.2 Main Result

We assume n˛ ! 1. Also we continue to use the notations as in (11.3), (11.6),
(11.7) and (11.10). The main conclusion of the present paper is the following.

Theorem 11.1. 1. If 0 < c0 � ˛ � c1 < 1 and

E expfH jf .�/jg < 1; (11.11)

for some H > 0, then in the family of alternativesKall
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e!n .R
f
N /

n˛ı4.n/
D d 4

4
�2.f; ˛/.1C o.1//:

2. In the family of alternativesK1=6

e!n .X
2
N /

n˛ı4.n/
D d 4

4
.1C o.1//:

3. In the family of alternativesKall if

ı3.n/.n˛/1=2 log�1N ! 1; (11.12)

then
e!n .X

2
N /

n˛ı4.n/
D o.1/:

This Theorem 11.1 together with the results of [7, 8, 30] implies that chi-square
test is optimal within class of f-tests in Pitman AE and Kallenberg IAE senses but
it is much inferior to those statistics satisfying the Cramer condition (particularly to
likelihood ratio test and �r ,r � 0, tests) in Kallenberg strong IAE under condition
(11.12) and Bahadur AE senses. These covers almost all range of alternatives. The
only remaining gap in the study of the intermediate efficiency of the chi-square test
is in the familyKall with

c2.n˛
2/�1=6 � ı.n/ � c3.n˛/

�1=6 log1=3N

for ˛ � 1,
and

c2.n˛/
�1=6 � ı.n/ � c3.n˛/

�1=6 log1=3N

for ˛ < 1.

Remark 11.2. An alternative approach to testing of uniformity [0,1] is to construct
tests based on “spacings”. Let X1n � X2n � : : : � Xn;n be the order statistics

of the sample X1; X2; : : : ; Xn, W .s/
m;n D Xms;n � X.m�1/s;n, m D 1; 2; : : : ; N 0,

W
.s/
N 0C1;n D 1 � XN 0s;n, with notation Xo;n D 0 and XnC1;n D 1, be their s-

spacings; N 0 D Œ.n C 1/=s�, N D N 0 if .n C 1/=s is an integer and N D N 0 C 1

otherwise;W D .W
.s/
1;n ; : : : ;W

.s/
N;n/. The step of the spacings s may increase together

with n, but s D o.n/.

The order statistics X0n; X1n; : : : ; Xn;n; XnC1;n divide interval [0,1] to s C 1

subintervals (groups), that is we again, actually, deal with method of grouping data.
In contrast to above considered method here the ends of intervals are random and we
are using, for a statistical procedure, the length of intervals instead of frequencies of
intervals. Most common among tests based on spacings are tests based on statistics
of the form
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R
f
N .W / D

NX
mD1

f
�
.nC 1/W .s/

m;n

�
:

AE properties here alike to those of f-tests (the step of spacings s plays the role
of ˛). For example: such tests can detect alternatives (11.2) with ı.n/ D .ns/�",
" 2 .0; 1=4�, AMP test for the alternatives (11.2) with ı.n/ D .ns/�1=4 is the
Greenwood’s test based on statistic

G2N D
NX
kD1

�
.nC 1/W

.s/

k;n

�2
:

While considerable attention has been devoted in literature to typeRfN .W / statis-
tics, we are not in position to give here all the details of existing results. Reader can
find detailed information, applications, and references, for example, in papers by
[11, 13, 23–25, 32, 33, 37]. We wish only to refer to [9–11] where the Pitman’s ARE
of chi-square test and Greenwood test with s D Œ˛� were studied. They have shown
that if s ! 1 then these two tests have same Pitman efficiency, but for fixed s (that
corresponds to the case 1 � ˛ < c < 1) spacings tests are preferable to compara-
ble chi-square procedures. From Theorem 2.1 and results of [26] it follows that the
same results are still true for Kallenberg IAE of chi-square test and spacings based
tests.
Proof of Theorem 11.1 For proof of Part 1, we refer to [8]. To prove of Part 2 we
note that

e!n .R
f
N / D � logP0

n
R
f
N � xN .f /	.f /

p
N CNf.�/

o

D � logP0

(
R
f
N �Nf.�/

	.f /
p
N

�
r
n˛

2
ı2.n/�.f; ˛/d 2 .1C o.1//

)

because of (11.10). Therefore, Part 2 follows from Theorem 11.1 of Sect. 11.3,
using the facts that �.f; ˛/ D 1 for the chi-square statistic and that � log˚.�x/ D
2�1x2.1C o.1//, as x ! 1. ut

Proof of Part 3. We use an approach similar to that of [30]. We will write � �
B.k; p/ to mean that a r.v. � has the Binomial distribution with parameters n and p,

0 < p < 1; and �.n/ D
h
˛ Cp

˛ C d 2n˛ı2.n/
i

C 1 where Œa� is an integer part

of a. We have

P
˚
X2N > NA1N

� D P
n
X2N � n.˛ C 1/ > xN .f /

p
2n˛

o

D P

(
NX
mD1

�
.�m � ˛/2 � ˛

�
> d 2n˛ı2.n/ .1Co.1//

)

D P

(
NX
mD2

�
.�m � ˛/2 � ˛

� � 0

,
�1 D v.n/

)
P f�1 D v.n/g
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D P

(
N�1X
mD1

�
. O�m � ˛/2 � ˛

� � 0

)
P f�1 D v.n/g : (11.13)

Here O�m � Bi
�
n � v.n/; .N � 1/�1

�
. Put Q̨ D .n � v.n//=.N � 1/. It easy to see

that v.n//=n D �
N�1 C dı.n/N�1=2� .1C o.1// and Q̨ D ˛

�
1CO

�
N�1Cdı.n/

N�1=2��. We have

P

(
N�1X
mD1

�
. O�m � ˛/2 � ˛� � 0

)
� P

(
N�1X
mD1

. O�m � Ǫ /2 � .N � 1/˛

)

D P

(
N�1X
mD1

�
. O�m � Ǫ /2 � Ǫ � � .v.n/ � ˛/

)

D P

( PN�1
mD1

�
. O�m � Ǫ /2 � Ǫ�p

2.n� v.n//2=.N � 1/
� dı.n/Co.1/

)

� c > 0; (11.14)

because of .n � v.n// Q̨ D n˛ .1C o.1// ! 1, and hence the Central Limit
Theorem for chi-square statistic

PN�1
mD1. O�m � Ǫ /2 is valid, see above Remark 11.1.

Set g.x; p/ D x log .x=p/ C .1 � x/ log ..1 � x/=.1 � p//, x 2 .0; 1/ and
p 2 .0; 1/. The following Lemma 11.1 is quoted from [30]. ut
Lemma 11.1. If � � Bi .k; p/ then for integer kx

P f� D kxg � 0:8 .2�kx.1 � x//�1=2 exp f�kg.x; p/g :

Note that �1 � B.n;N�1/. Therefore due to Lemma 11.1 we have

P f�1 D v.n/g � c
�
v.n/

�
1 � v.n/n�1���1=2 exp

�
� v.n/ log.˛�1v.n//

�n.1 � n�1v.n// log
1 � v.n/n�1

1 �N�1

�

� c .v.n//�1=2 exp
˚�v.n/ log.˛�1v.n//

�
:

Hence

� logP f�1 D v.n/g
n˛ı4.n/

� c
log v.n/C v.n/ log.˛�1v.n//

n˛ı4.n/

� c
˛ C ı.n/

p
n˛

n˛ı4.n/
log

v.n/

˛

� c



1

nı4.n/
C 1

ı3.n/
p
n˛

�
logN D o.1/; (11.15)

because of (11.12). The Part 3 follows from (11.13),(11.14) and (11.15).
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11.3 Large Deviation Results

We recall from the notations of Sect. 11.2: � is Poisson (˛) r.v., ˛ D n=N , � D
˛�1cov .f .�/; �/,

g.�/ D f .�/ �Ef .�/ � �.� � ˛/ ; 	2.f / D Var g.�/

D Varf .�/
�
1 � corr2 .f .�/; �/

�
: (11.16)

The following result on the large deviation probability of the chi-square statistic
stated in Theorem 11.2, is likely to be of its own interest.

Theorem 11.2. If ˛ � 1 then for all x � 0 and x D o
�
.n=˛/1=6

�
, if ˛ < 1 then for

all x � 0 and x D o
�
.n˛/1=6

�
one has

P
n
X2N > x

p
2n˛ C n.˛ C 1/

o
D .1 �˚.x// .1C o.1// :

Proof. Let �1; �2; : : : be independent r.v.’s with common Poisson (˛) distribution.
Also let Ck.�/ be a cumulant of the kth order of a r.v. � and

SN D
NX
mD1

.�m � ˛/ ;X21;N D
NX
mD1

.�m � ˛/2 ; QX21;N D
NX
mD1

.�m � ˛/2 :ut

Lemma 11.2. For any fixed k � 2 and large enough n

Ck.X21;N / D Ck. QX21;N / .1C o .1//:

Proof. It is well known that L..�1; : : : ; �N // D L..�1; : : : ; �N /=SN D 0/,
where L.X/ denotes the distribution of the random vector X . Hence

E.X21;N /
k D E

�
. QX21;N /k=SN D 0

�
: (11.17)

On the other handE
�
.X21;N /

kei�SN

�
D E

n
ei�SNE

�
.X21;N /

k=SN

�o
. Integrating

w.r.t. 
 both side of this equality over interval Œ��; ��, and taking into account
(11.17) we have

E
�
X21;N

�k D dn

Z �
p
n

��p
n

E
� QX21;N

�k
exp

�
i

SNp
n

�
d
;

where

dn D �
2�

p
nP fSN D 0g��1 D 1

2�
p
n

nŠen

nn
:
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Hence, putting Q�m D �m � ˛ we have

E
�
X21;N

�k D dn

kX
lD1

0X
k

00X
l

Z �
p
n

��p
n

E



Q�2k1

j1
� : : : Q�2kl

jl
exp

�
i

SNp
n

��
d
;

(11.18)
where

P0
k is the summation over all l-tuples .k1; : : : ; kl / with positive integer com-

ponents such that k1 C � � � C kl D k;
P00
l is the summation over all

l-tuples .j1; : : : ; jl / with components not equal of each others and such that jm D
1; 2; : : : ; N ; m D 1; 2; : : : ; l .

Putting SN;l D Pl
iD1 Q�ji

we have

Z �
p
n

��p
n

E



Q�2k1

j1
� : : : � Q�2kl

jl
exp

�
i

SNp
n

��
d


D
Z �

p
n

��p
n

E



Q�2k1

j1
� : : : � Q�2kl

jl
exp

�
i

SN;lp
n

�� 

E exp

�
i

SN � SN;lp

n

�

� exp

(
�


2

2

	
1 � l

N


�1)#
d
 C

Z �
p
n

��p
n

exp

(
�


2

2

	
1 � l

N


�1)

�E



Q�2k1

j1
� : : : � Q�2kl

jl

	
exp

�
i

SN;lp
n

�
� 1


�
d
 C E

h Q�2k1

j1
� : : : � Q�2kl

jl

i

�
Z �

p
n

��p
n

exp

(
�


2

2

	
1 � l

N


�1)
d


defD J1 C J2 C J3: (11.19)

We have
ˇ̌
ˇ̌
ˇE exp

(
i
 Q�mp
n

) ˇ̌
ˇ̌
ˇ D exp

�
�2˛ sin2




2
p
n

�
� exp

�
� 2˛

n�2

2
�
; (11.20)

since sin2 u=2 � u2=�2, juj � � . Put �n D 3N�1=2 C .n˛/�1=2, then
p
nVar3=2

�m=E j�mj3 � ��1
n . Taking into account this inequality and using Assertion 11.4

and (11.20) by some algebra we have

jJ1j � E
h Q�2k1

j1
� : : : � Q�2kl

jl

i �Z

j� j�.6�n/�1

ˇ̌
ˇ̌E exp

�
i

SN � SN;lp

n

�

� exp

(
�


2

2

	
1 � l

N


�1) ˇ̌ˇ̌
ˇ d


C
Z

�
p
n�j� j�.6�n/�1

	ˇ̌
ˇ̌E exp

�
i

SN � SN;lp

n

� ˇ̌
ˇ̌



11 On Tests of Fit Based on Grouped Data 167

C exp

(
�


2

2

	
1 � l

N


�1)!
d


)
� C4�nE

h Q�2k1

j1
� : : : � Q�2kl

jl

i
:

(11.21)

Lemma 11.3. For any integer v � 2 one has

E Q�v
m D vŠ

Œv=2
X
lD1

cl;v˛
l ; (11.22)

with
0 < cl;v < 1; l D 1; 2; : : : ; Œv=2�: (11.23)

Proof. We have Eei� Q� D exp
˚
˛
�
ei� � 1

��
. Applying here the Bruno’s formula

we find

E Q�v D vŠ
X

˛k2C:::Ck�

vY
mD2

1

kmŠ.mŠ/km
D vŠ

Œv=2
X
lD1

cl;v˛
l

where
P

is summation over all non-negativek2; : : : ; kv such that 2k2C : : :Cvkv D
v and l D k2 C : : :C kv, cl;v D PQv

mD2 1

kmŠ.mŠ/km
: Lemma 11.3 follows.

In particular, from Lemma 11.3 it follows thatE Q�2kC1 � C1E Q�2k andE Q�2kC2 �
C2k

2˛E Q�2k . Using this fact after some algebra we obtain

jJ2j � 1

2n
E
h Q�2k1

j1
� : : : � Q�2kl

jl
S2N;l

i Z 1

�1

2 exp

(
�


2

2

	
1 � l

N


�1)
d


� C
˛k2l C k2l2

n
E
h QZ2k1

j1;s
� : : : � QZ2kl

jl ;s

i
: (11.24)

It is obvious that

J3 D p
2�E

h Q�2k1

j1
� : : : � Q�2kl

jl

i	
1CO

	
l

N




: (11.25)

Apply (11.21), (11.24) and (11.25) in (11.19) to get

Z 1

�1
E

	
Q�2k1

j1
� : : : � Q�2kl

jl
exp

�
i

SNp
n

�

d


D p
2�

	
1CO

	
k2p
n

C ˛k3

n
C k

N
C 1p

n˛




E
h Q�2k1

j1
� : : : � Q�2kl

jl

i
: (11.26)

Using Stirling’s formula it is easy to see that dn D .2�/�1=2
�
1CO.n�1/

�
.

Inserting this and (11.26) into relation (11.18) we have
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E
�
X21;N

�k D E
� QX21;N

�k 	
1CO

	
˛k3

n
C 1p

N
C 1p

n˛




: (11.27)

Lemma 11.2 follows from Assertion 11.3, see Appendix, and (11.27), because
Ck.X2N / D Ck.X21;N / .

Let ˛ � 1. Due to Lemma 11.3 and Stirling’s formula we have: for k � 3

ˇ̌
ˇ̌E
� Q�2m �E Q�2m

�k ˇ̌ˇ̌ � 2kE Q�2km � .2k/Š2k
kX
lD1

˛l � .kŠ/2
2k.2k/Š

.kŠ/2
k˛k

� .kŠ/2 23kC1k˛k � .kŠ/2
�
210k1=.k�2/˛

�k�2
Var Q�2m � .kŠ/2

�
212˛

�k�2
Var Q�2m:

because Var Q�2m D 2˛2 C ˛. Therefore by the Assertion 11.1 with � D Q�2m � E Q�2m,
we have

ˇ̌
ˇCk

� Q�2m
�ˇ̌
ˇ D

ˇ̌
ˇCk

� Q�2m � E Q�2m
�ˇ̌
ˇ � .kŠ/2

�
212˛

�k�2
Var Q�2m; k � 3:

Hence ˇ̌Ck
� QX2N

�ˇ̌ � .kŠ/2
�
212˛

�k�2
NVar Q�21 ; k � 3;

because as QX21;N is a sum of i.i.d. r.v.’s. Apply this and Lemma 11.1 to get: for any
fixed k D 3; 4; : : : and enough large n

ˇ̌Ck
�
X2N

�ˇ̌ � .kŠ/2
�
210˛

�k�2 Var Q�21
2˛.˛ C 1/

2N˛.˛C1/ � .kŠ/2
�
212˛

�k�2
VarX21;N ;

since Var�2=2˛.˛ C 1/ < 1. Thus r.v. X21;N satisfy the Statulevicius condition
.S�/ with � D 1 and � D 213˛, see Appendix. Theorem 11.1 follows from the
Assertion 11.3 with � D X2N , 	 D p

2N˛.˛ C 1/ and� D 213˛.
Let ˛ < 1 . Then

ˇ̌
ˇ̌E
� Q�2m � E Q�2m

�k ˇ̌ˇ̌ � .2k/Š2k
kX
lD1

˛l � .kŠ/2
2k.2k/Š

.kŠ/2
k˛ � .kŠ/2 212.k�2/Var Q�2m:

Hence in this case
ˇ̌Ck

� QX2N
�ˇ̌ � .kŠ/2 212.k�2/NVar Q�21 and

ˇ̌Ck
�
X2N

�ˇ̌ � .kŠ/2

212.k�2/VarX21;N . So r.v. X21;N satisfy the Statulevicius condition .S�/ with � D
1and � D 213. Theorem 11.2 follows from the Assertion 11.3 with � D X2N ,
	 D p

2N˛.˛ C 1/ and� D 213.
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Appendix

Let � and �1; �2; : : : ; be i.i.d. r.v.’s with E� D 0, Var� D 	2 > 0, Ck.�/ and ˛k.�/
be respectively, the cumulant and moment of kth order of the r.v. �. The following
two conditions play an essential role in the theory of large deviations (see [35]).

Bernstein’s condition .B�/: there exist constants � � 0 and B > 0 such that
j˛k.�/j � .kŠ/�C1Bk�2	2, for all k =3,4,. . . .
Statulevicius condition.S�/: there exist constants � � 0 and � > 0 such that
jCk.�/j � .kŠ/�C1�.k�2/	2, for all k =3,4,. . . .

Assertion 11.1 ([35]). If � satisfies condition .B�/ then it also satisfies the condi-
tion .S�/ with � D 2B .

Assertion 11.2. Suppose that r.v. � depending on a parameter� satisfies condition
.S1/(i.e., � D 1). Then P f� > x	g D ˚.�x/ .1C o.1// for all x � 0 and x D
o
�
.�=	/�1=3

�
.

Assertion 11.2 is Lemma 2.3 with � D 1 by [35].

Remark. The condition .S�/ presented by [35] has the form jCk.�=	/j � .kŠ/�C1
��.k�2/, then in the Assertions 11.1 and 11.2 one should replace � D 	=2B by

� D 2B and x D o
�
�1=3

�
by x D o

�
.�=	/�1=3

�
; respectively. The slightly

different formulation presented here, of the condition .S�/ is more convenient. For
example, Assertion 11.1 now is easily understood because the following well-known
relation (see, for instance [35, p. 15]).

Assertion 11.3.

Ck.�/DkŠ
X

.�1/m1Cm2C:::Cmk�1 .m1Cm2 C : : :Cmk�1/Š
kY
lD1

1

ml Š

	
˛l.�/

lŠ


ml

where
P

is summation over all non-negative integerm1; m2; : : : ; mk such thatm1C
2m2 C : : :C kmk D k

Assertion 11.4 ([31]). For all t: jt j � 	3
p
n
ı
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(ed) Contributions to statistics: Jaroslav Hájek Memorial Volume. Academia, Prague, pp 79–89



170 S.M. Mirakhmedov et al.

4. Holst L (1972) Asymptotic normality and efficiency for certain goodness-of-fit tests. Biomet-
rica 59:137–145

5. Inglot T (1999) Generalized intermediate efficiency of goodness-of-fit tests. Math Methods
Stat 8:487–509

6. Ivchenko GI, Medvedev YI (1978) Decomposable statistics and verifying of tests. Small
sample case. Theory Probab Appl 23:796–806

7. Ivchenko GI, Mirakhmedov SA (1991) The limit theorems for divisible statistic and efficiency
of corresponding tests. Discrete Math 3:73–88

8. Ivchenko GI, Mirakhmedov SA (1995) Large deviations and intermediate efficiency of the
decomposable statistics in multinomial scheme. Math Methods Stat 4:294–311

9. Jammalamadaka SR, Tiwari RC (1985) Asymptotic comparison of three tests for goodness of
fit. J Stat Plan Inference 12:295–304

10. Jammalamadaka SR, Tiwari RC (1987). Efficiencies of some disjoint spacings tests relative to
a �2 tests. In: Puri ML, Vilaplana J, Wertz W (eds) New perspectives in theoretical and applied
statistics. Wiley, New York, pp 311–318

11. Jammalamadaka SR, Zhou X, Tiwari RC (1989) Asymptotic efficiencies of spacings tests for
goodness of fit. Metrika, 36:355–377

12. Jammalamadaka SR, Gatto R (2006) Small sample asymptotics for higher-order spacings. In:
Balakrishnan N, Castillo E, Sarabia JM (eds) Advances in distributions, order statistics, and
inference. Birkhauser, Basel, pp 239–252

13. Jammalamadaka SR, Goria MN (2004) A test of goodness of fit based on Gini’s index spacings.
Stat Probab Lett 68:177–187

14. Kallenberg WCM (1983) Intermediate efficiency, theory and examples. Ann Stat 11:170–182
15. Kallenberg WCM (1985) On moderate and large deviations in multinomial distributions. Ann

Stat 13:1554–1580
16. Kolchin VF, Sevastyanov BA, Chistyakov VP (1978) Random allocation. Wiley, New York
17. Mann HB, Wald A (1942) On the choice of the number of intervals in the application of the

chi-square test. Ann Math Stat 13:306–317
18. Medvedev YI (1977) Decomposable statistics in the multinomial scheme. Theory Probab Appl

22:3–17
19. Mirakhmedov SA (1985) Estimations of the closeness to the normal law of the distribution of

randomized decomposable statistics in a multinomial scheme. Theory Probab Appl 30:175–
178

20. Mirakhmedov SA (1987) Approximation of the distribution of multi-dimensional randomized
divisible statistics by normal distribution. Theory Probab Appl 32:696–707

21. Mirakhmedov SA (1990) Randomized decomposable statistics in the scheme of independent
allocations of particles into cells. Discretnaya Math (In Russian) 2(2):97–111

22. Mirakhmedov SA (1996) Limit theorems on decomposable statistics in generalized allocation
scheme. Discrete Math Appl 6:379–404

23. Mirakhmedov SM1 (2005) Lower estimation of the remainder term in the CLT for a sum of the
functions of k-spacings. Stat Probab Lett 73:411–424

24. Mirakhmedov SM (2006) Probability of large deviations for the sum of functions of spacings.
Int J Math Sci 2006: 1–22, Article ID 58738

25. Mirakhmedov SM, Naeem M (2008) Asymptotic properties of the goodness-of-fit tests based
on spacings. Pak J Stat 24(4):253–268

26. Mirakhmedov SM (2009) On the greenwood goodness-of-fit test. J Stat Plan Inference
140(11):3017–3025.

27. Morris C (1975) Central limit theorems for multinomial sums. Ann Stat 3:165–188
28. Nikitin YY (1995) Asymptotic efficiency of nonparametric tests. Cambridge University Press,

Cambridge

1 Former Mirakhmedov S.A.



11 On Tests of Fit Based on Grouped Data 171

29. Quine MP, Robinson J (1984) Normal approximations to sums of scores based on occupancy
numbers. Ann Probab 13:794–804

30. Quine MP, Robinson J (1985) Efficiencies of chi-square and likelihood ratio goodness-of-fit
tests. Ann Stat 13:727–742

31. Petrov VV (1975) Sum of independent random variables. Ergebnisse der Mathematik und
There Grenegebiete, vol 82, 1st edn. Springer, New York

32. Pyke R (1965) Spacings. J R Stat Soc Series B, 27:395–449
33. Rao JS Sethuraman J (1975) Weak convergence of empirical distribution functions of random

variables subject to perturbations and scale factors. Ann Stat 3:299–313
34. Ronzhin AF (1984) Theorem on the probability of large deviations for decomposable statistics

and its statistical applications. Mathe Notes 36:603–615
35. Saulis L, Statulevicius V (1991) Limit theorems for large deviations. Kluwer, Dordrecht, p 232
36. Sirajdinov SKh, Mirakhmedov SA, Ismatullaev SA (1989) Large deviation probabilities for

decomposable statistics in a multinomial scheme. Theory Probab Appl 34:706–719
37. Zhou X, Jammalamadaka SR (1989) Bahadur efficiencies of spacings tests for goodness of fit.

Ann Inst Stat Math 28:783–786



Chapter 12
Innovation Processes in Logically Constrained
Time Series

Christoph Möller, Svetlozar T. Rachev, Young S. Kim, and Frank J. Fabozzi

Abstract Capturing the relevant aspects of phenomena in an econometric model is
a fine art. When it comes to the innovation process a trade of between a suitable
process and its mathematical implications has to be found.

In many phenomena the likelihood of extreme events plays a crucial role. At
the same time, classical extreme value theory is based on assumptions that cannot
logically be drawn for the phenomenon in question. In this paper, we exemplify the
fitness of tempered stable laws to capture both the probability of extreme events, and
the relevant boundary conditions in a back-coupled system, the German balancing
energy demand.

12.1 Introduction

Classical time series analysis assumes a normal distribution. This assumption is jus-
tified by the central limit theorem (CLT) which states that the infinite sum of random
numbers drawn from any distribution with finite first and second moments con-
verges to the normal distribution. The global financial crisis that began in late 2007,
however, has demonstrated how problematic the assumption of normal innovations
or a Gaussian copular is when it comes to evaluating risk. There is a rich litera-
ture proposing alternative modeling approaches (see, e.g., [21] and the references
within).

In this paper we will analyze a non-financial seasonal autoregressive integrated
moving average (SARIMA) time series whose innovation process is clearly in the
domain of the CLT due to physical boundary conditions. Nonetheless, we will
demonstrate normal innovations to be inadequate in this setting due to the presence
of heavy-tailed distributions in the data. Furthermore, we will address the issue of
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robustness of the Kolmogorow–Smirnow test and the Anderson–Darling test when
testing heavy-tailed distributions.

The remainder of this paper is organized as follows. Section 12.2 reviews clas-
sical linear time series analysis: the non-seasonal autoregressive integrated moving
average (ARIMA) and SARIMA models. Different distribution classes for the corre-
sponding innovation process are discussed in Sect. 12.3 along with distribution tests.
Section 12.4 introduces the balancing energy demand time series and the relevant
boundary conditions. In Sect. 12.5 we describe the SARIMA model used to filter
the innovations that are subsequently analyzed for their distribution in Sect. 12.6.
Section 12.7 concludes and summarizes our results.

12.2 Time Series Models

In econometrics, a linear time series regression can be regarded as a fundamental
building block. We restrict our overview here to the case of discrete time series
models. One widely known example is the autoregressive (AR) model capturing
serial dependence in an analyzed time series. In this model, the realized time series
xt of a random variableXt is generated from a noise process �t , in its standard form
the Gaussian white noise process, and a regression on the past realizations of the
process. One example would be Brownian motion wt in discrete time; however, this
process is not stationary and may grow without limits. Nevertheless, the process is
transformed into a stationary process .wt � wt�1/ by differencing, which in turn
is expanded into the original Brownian motion by summation or integration. So
Brownian motion is a simple example of an integrated stationary AR-process.

If one replaces each past realization in the AR-process by the lagged process, it
is transformed into a possibly infinite regression on past realizations of the noise
process, the so-called moving average (MA) process. Obviously this transformation
is reversible and so any such MA-process can be transformed into a possibly infinite
AR-process. Additionally, Wold’s decomposition theorem states that any stationary
time series may be represented by a possibly infinite MA-process, or equivalently
AR-process. This explains why the combination of the autoregressive moving aver-
age (ARMA)-process has become the standard approach in time series modeling.
The practical advantage over the strict AR- and MA-processes is a parsimonious
usage of parameters. This approach is expanded to an even wider range of non-
stationary time series the ARIMA model, when including the appropriate degree of
differencing to obtain a stationary time series.

Again the consideration of parameter parsimony leads to a further specification,
the SARIMA model. This seasonal ARIMA model is a serial connection of ARIMA
models. Here, one ARIMA model captures a serial dependence structure over cycli-
cal periods (e.g., 1 year), and a further ARIMA model captures the dependence on a
sub-cycle horizon [1]. Using the lag-operator L and the difference-operator r, the
model can be expressed as in (12.1):

�p.L/˚P .L
s/rdrDxt D �q.L/�Q.L

s/�t (12.1)
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Here s is the seasonality, p and P are the orders of the AR-polynomials �, ˚ and q
andQ are the orders of MA-polynomials � and�, and d andD are the appropriate
numbers of differencing to obtain stationarity.

Therefore the model is also abbreviated as SARIMA.p; d; q/ � .P;D;Q/s .
The crucial difference to the regular ARIMA.p; d; q/ model can be best seen by
expanding the multiplicative model into its additive form as in (12.2):

.1 � �1L � �2L2 � : : : � .�s C ˚1/L
s � .�sC1 � �s˚1/L

sC1 � : : :/rdrDxt

D .1C �1LC �2L
2 C : : :C .�s C�1/L

s C .�sC1 C �s�1/L
sC1 C : : :/�t :

(12.2)

So as an example, a SARIMA.1; 0; 0/ � .1; 0; 0/12 is equivalent to an ARIMA
.13; 0; 0/ with the constraint �13 D ��1�12.

We conclude this section with a brief overview of model identification techniques
that were established by [1]. The first condition a time series needs to fulfill in order
to adapt a linear model is stationarity. This condition is fulfilled if all roots of the
polynomial �.L/ lie outside the unit circle. Consequently, the hypothesis of a root
of value one is tested (i.e., the unit root test). Should this hypothesis be rejected, the
time series may be regarded as stationary, otherwise a higher order of differencing
has to be considered. The work of [6] lead to the augmented Dickey–Fuller test
(ADF-test) as an unbiased unit root test.

Once the appropriate degree d of differencing is selected, inspection of the sam-
ple autocorrelation function (SACF) and partial autocorrelation function (SPACF)
will help to select the order of the AR and MA polynomials. The SACF will cut
off at the lag q of a MA.q/-process, while the SPACF will cut off at the lag p of
an AR.p/-process. Unfortunately, the SACF will only gradually tail off for an AR-
process as will the SPACF for a MA-process. Consequently, anARMA-process will
lead to a tailing off of both SACF and SPACF. Additionally, because it is calculated
on a limited sample, this method is also prone to statistical fluctuations. Nonethe-
less, sudden drops in SACF and SPACF give an indication of appropriate choices
for the parameters p and q of an ARMA-process.

Finally model selection criteria such as the Akaike information criterion (AIC) or
Bayesian information criterion (BIC) should be used as a guide to avoid the pitfalls
of overparameterized modeling.

12.3 Innovations

The main purpose of modeling time series is to identify and understand under-
lying characteristics and then be able to apply this understanding to predict the
future. While a specification of the appropriate parameters of a SARIMA.p; d; q/�
.P;D;Q/s/ captures information on the location parameter of a future realiza-
tion, the identification of the distribution of the innovation process �t is crucial in
understanding the risk that goes along with anticipating this realization.
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Among all distributions, the class of ˛-stable distributions stands out as the
distributional class any appropriately scaled sum of independent and identically
distributed (i.i.d.) random variables will converge to. In the context of time series
modeling, this property is of particular interest as the innovations in each time step
are considered to be the sum of many independent events from the same set of
plausible events (i.e., the sum of i.i.d. random variables).

The normal distribution is the most well-known member of the class of ˛-stable
distributions, and for this distribution the convergence property is known as the CLT.
Relaxing the assumption of existing first and second moments, the CLT is gener-
alized. The limiting distribution is now not generally the normal distribution, but,
instead, a member of the class of ˛-stable distributions. This is known as the general
central limit theorem (GCLT). In the following we will refer to ˛-stable distributions
as non-Gaussian to distinguish the class from its most well-known member. In gen-
eral, for ˛-stable distributions there exists no probability density function in closed
form and therefore it is expressed by its characteristic function as given by (12.3):

�stable.uI˛; 	; ˇ; �/ D EŒeiuX � (12.3)

D

8
<̂
:̂

exp
�
i�u � j	uj˛

�
1 � iˇ.sign u/ tan

�˛

2

��
; ˛ ¤ 1

exp

	
i�u � 	 juj

	
1C iˇ

2

�
.sign u/ ln juj




; ˛ D 1;

where

sign t D
8<
:
1; t � 0

0; t D 0

�1; t � 0:

In this parameterization, the four parameters .˛; ˇ; 	; �/ have the following domain
and interpretation:


 ˛: the index of stability or the shape parameter, ˛ 2 .0; 2/

 ˇ: the skewness parameter, ˇ 2 Œ�1;C1�

 	 : the scale parameter, 	 2 .0;C1/


 �: the location parameter, � 2 .�1;C1/

The ˛-stable distribution is a very rich class of distributions that can capture even
extreme asymmetric and heavy-tailed structural conditions. However, in some prob-
lems the implication of infinite variance, or in the case of ˛ � 1 infinite mean and
variance, is too strong an assumption. At the same time the empirical distribution
might clearly show excess kurtosis or skewness. For these problems the class of tem-
pered stable distributions has been proposed. (See [12,16], and [15]). In an adaption
of the ˛-stable distribution, the tempered stable distribution has the characteristic
function given by (12.4) with one extra parameter.

�CTS .uI˛;C; �C; ��; m/ D exp.ium � iuC� .1� ˛/.�˛�1C � �˛�1� / (12.4)

CC� .�˛/..�C � iu/˛ � �˛C C .�� C iu/˛ � �˛�//:
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Here m and C determine the location and scale as do � and 	 in the ˛-stable
distribution. However, the skewness is parameterized by �C and ��, at the same
time allowing for a faster than ˛-stable decay in the tails. So a tempered stable
distribution allows for the same flexibility at the center of the distribution as the
˛-stable distributions, combined with finite first and second moments. Therefore,
the tempered stable distribution is in the domain of the CLT, though convergence to
the Gaussian limit may be very slow due to the almost ˛-stable distribution in the
center. So tempered stable distributions are a natural choice whenever the problem
suggests a distribution that is prone to extreme events, but at the same time other
considerations forbid infinite moments; that is, whenever the rate of convergence to
the limiting Gaussian distribution at the infinite sum is too slow to justify a Gaussian
model at the finite time horizon of interest.

The classical tempered stable (CTS) distribution has been introduced under dif-
ferent names in the literature, including the truncated Levy flight by [14], the KoBoL
distribution by [2], and the CGMY distribution by [4].

Having introduced the tempered stable distribution, we conclude this section
with a review of methods to justify the introduction of additional parameters into
a model by specifying a non-Gaussian innovation process. One widely used graph-
ical method is the inspection of the quantile-quantile (QQ)-plot. Figure 12.1 shows
an example of the quantiles of the fitted Gaussian-distribution versus the empiri-
cal quantiles of an observed innovations time series. Ideally, the QQ-plot would be
a straight line of unit slope, and any deviation from this line is an indication of the
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Fig. 12.1 QQ-plot of heavy-tailed data under the Gaussian hypothesis
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Table 12.1 Goodness-off-fit test and their statistic
Test Statistic

KS
p
n sup

ˇ̌
Femp:.x/� Fth:.x/

ˇ̌

AD
p
n sup

ˇ̌
ˇ Femp: .x/�Fth: .x/

p

Fth:.x/.1�Fth: .x//

ˇ̌
ˇ

CvM n
R

1

�1
.Femp:.x/� Fth:.x//

2dFth:.x/

AD2 n
R

1

�1

�
Femp: .x/�Fth:.x/

Fth: .x/.1�Fth: .x//

�2
dFth:.x/

chosen distribution not adequately describing the innovation time series. One should
keep in mind that because it is based on a finite sample, the empirical quantiles will
never stretch out to arbitrarily small or large quantiles.

Another less subjective method is testing the proposed distribution with a
goodness-of-fit test. All the tests calculate a test statistic (see Table 12.1) to test
the hypothesis of the innovations time series to be a realization of the fitted distri-
bution. These statistics can then be compared to critical values and p-values can be
calculated.

The Kolmogorov–Smirnov (KS) test is known for its critical values to be inde-
pendent of the tested distribution. Like the KS-test, the Anderson–Darling (AD)
test is based on the supremum of the difference of the theoretical and empirical
CDF, however, a weight assigned to each point assigns more weight to the tails of
the distribution. In the case of the ˛-stable distribution, this feature is obviously of
particular importance.

Both the KS-test and AD-test have to be used with caution when testing ˛-stable
or tempered stable distributions. We illustrate this drawback in the following exam-
ple. Suppose the underlying distribution is the CTS-.0:3; 1; 0:5; 0:7; 0/ shown in
Fig. 12.2. There is an almost vertical step in the CDF at the location parameter m.
Because of the dominance of extreme events, the mean of a sample drawn from a
heavy-tailed distribution will only converge slowly to the true mean of zero. Con-
sequently, the steep increase is very likely to be dislocated in the empirical CDF.
In combination with the almost vertical increase at the location parameter, this may
result in large deviances between the empirical and theoretical CDF and a rejection
of the distribution in the KS-test. This argument might even hold true for the AD-test
where the weights are minimal at the location parameter. This behavior is particu-
larly undesirable when analyzing innovation distributions where the true mean of
zero is known and the location parameter is of minor importance. We therefore
suggest a flexibility in adjusting the sample mean before a KS-test or an AD-test.

In contrast to the KS-test and AD-test, the Cramer–von Mises (CvM) test and the
AD2-test are based on the area between the theoretical and empirical CDF (see Table
12.1). The main advantage of these statistics is that they incorporate information
about the total sample, and, in particular, are insensitive to a slight dislocation of the
empirical CDF. The AD2-test introduces a weighting scheme that focuses the test on
the tails of the distribution. One major disadvantage of the CvM-test, AD2-test and
AD-test is that critical values are dependent on the analyzed distribution. One fea-
sible method of obtaining critical values in these cases is to use Monte Carlo-based
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Fig. 12.2 CDF of CTS-.0:3; 1; 0:5; 0:7; 0/

simulation based on the estimated parameter set (see [5]). Therefore, the tests are
not available in common software, and in turn results are less transparent.

12.4 Market Setting and Data

Electricity is a special commodity as it is practically not storable. Consequently, in
electricity grids supply and demand sides have to be in exact equilibrium at all times,
otherwise a blackout will result. This task of active balancing is performed by the
transmission system operator (TSO) who activates bids of up- or down-regulating
energy to maintain equilibrium. In this context, it is important to distinguish between
regulatory energy and balancing energy. Regulatory energy is contracted prior to the
actual balancing action by the TSO to allocate the resources to be able to balance
the grid. Balancing energy is the energy the TSO will settle with balancing respon-
sible entities (BR) who caused a disturbance after the balancing action. The TSO
performs this correction by calling up appropriate regulatory energy bids contracted
prior to the actual balancing.

It is technically not feasible to balance disturbances of arbitrary sizes as the
blackouts in northeast North America in 2003 or the blackout in central Europe
in 2006 demonstrate. So balancing energy demand is constrained around zero;
however, no exact boundary can be specified. In general, balancing energy has to
compensate all unpredictable supply and demand shocks such as a power plant
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outage or a football match going into overtime. Such shocks are unknown in advance
and not predictable over a time horizon of a day or even more. Within the German
electricity market design, balancing energy may however also be used as a substitute
for other energy contracts as long as this position is neither obvious nor exces-
sive (see [3]). This incentive leads to pronounced patterns and serial dependence
(see [19] and [18]).

In this paper we concentrate on the governing innovation distribution of balanc-
ing energy demand in Germany. To uncover this distribution, we therefore have
to filter from the data predictable components. The analytical model used here is
described in [18]. For the German market two factors are identified. These factors
are the gradient of grid load and an arbitrage incentive. Next we restate some of the
results.

The gradient effect is modeled by the out of sample average, which in turn can
be modeled by (12.5) using the load (L.t/) as a factor.

q.rL.t// D q � . NLq.t/ � NLh.t//; q D 0:42 (12.5)

This model describes the quarter hourly pattern with aR2 of 0:87. The effect is fully
attributable to the discrepancy between the step function of load changes imposed by
the traded contracts on the day-ahead market, and a rather smoothly changing load
in reality. Such effects cannot be observed in most of the other European markets,
because the settlement periods of the day-ahead market and the balancing energy
market are one and the same in these markets (see [9]).

As for the second factor, there exist arbitrage incentives (I.t/; Itec.t/) to sub-
stitute electricity trades on the day-ahead market with strategic positions in the
balancing energy market or avoid technical difficulties in plant operation. This
incentive is driven by the day-ahead prices exceedence of a common price level
and can be modeled as in (12.6). The model captures dependence and saturation
effects, and is compatible with a functional relation that is constant over time as the
parameter estimates and R2-values in Table 12.2 demonstrate.

h.I.t/; Itec.t// D a �
	

2

1C b � e�c�I.t/ � 1



C Itec.t/ a 2 R b; c 2 RC (12.6)

Table 12.2 Parameters and R2 fitting to out of sample data. Source [18]

Parameters R2 factor model

Year aŒMW h� bŒE� cŒe�1� I.t/ only I.t/ and Itec.t /

2003 940.045 1.053 0.035 0.6948 0.7252
2004 901.082 1.113 0.039 0.4448 0.6170
2005 918.633 1.089 0.039 0.6069 0.7518
2006 902.485 1.072 0.038 0.8424 0.8499
2007 928.798 1.081 0.037 0.7571 0.7998
2008 884.110 1.068 0.043 0.6530 0.7025
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The sample variance is reduced by 12 and 19% in the case of the gradient effect
and the arbitrage incentive, respectively. This clearly demonstrates the existence of
non-random predictable components in the balancing energy demand data.

The raw data are obtained from the publications of balancing energy demand
the four German TSOs from January 2003 to December 2008. Namely the four
sources are RWE [22], E.on [8], EnBW [7], and Vattenfall [24]. These data from
four sub-zones are combined to obtain one hypothetical German zone to account
for interzonal balancing effects and provide a better correspondence to the single
German day-ahead market EEX.

12.5 SARIMA Model of Balancing Energy Demand

Here we focus on the analysis of the residual time series after subtracting the effects
described by the analytical model given by (12.5) and (12.6). Before trying to adapt
a linear time series model to the residuals, the data need to be checked for station-
arity. We apply an augmented Dickey–Fuller unit root test. The null hypothesis of
a unit root is rejected at a significance level below ˛ D 0:001 even when including
the first 168 lags for the regression.

This finding is supported also by a consideration of the physical boundary con-
ditions of the underlying data. Balancing energy demand is fulfilled by the grid
operator to ensure grid balance. This energy has to be delivered physically by power
stations, and so the installed capacity imposes a hard boundary. This boundary can,
however, never be reached, as the response time and response capacity of power sta-
tions impose an even tighter boundary. Due to their design, powers stations cannot
run on an arbitrary fraction of their designed capacity, but instead have to be oper-
ated within a certain bandwidth. Additionally, a complex system such as a power
station has a considerable amount of inertia, and cannot instantaneously adapt to
changes in operation. When looking at the total generation stock, although these
facts do not translate into a hard boundary, the true limits will depend on the exact
condition and history of all individual facilities connected to the grid. Nonetheless a
limit to fluctuations the grid operator can manage always exists. So it is physically
impossible for the balancing energy demand to grow to very large positive values
or fall to very small negative values, but balancing energy will always be within a
bandwidth around zero. Mathematically, this argument relates to a stationary time
series, and the absence of unit roots. We can therefore model the data without the
need of further differencing.

As a first step, an inspection of the SACF and SPACF of the residuals in Fig. 12.3
shows the presence of SARIMA effects in the data. The autocorrelation decays off
with increasing lag. Additionally, this decay is disturbed at multiples of 24, indi-
cating a seasonality of 24. This picture is supported by the partial autocorrelation
function displaying a drop at lag one and 24, together with a decaying negative
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Fig. 12.3 Sample autocorrelation and partial autocorrelation

Table 12.3 Parameter estimates of SARIMA model
SARIMA

.1; 0; 0/� .1; 0; 1/24 .3; 0; 0/ � .1; 0; 1/24

Gaussian t(�/ Gaussian t(�/

ar1 0.8185 0.8238 0.7974 0.8036
ar3 – – 0.0084 0.0079
ar24 0.9572 0.9571 0.9419 0.9427
ma24 �0.8502 �0.8529 �0.8291 �0.8328
	 341.9658 341.9410 341.7744 342.0834
� – 9.1080 – 9.1396
AIC 763,170 762,080 763,060 761,970
BIC 763,200 762,110 763,090 762,000

partial autocorrelation at lags following multiples of 24. Moreover, the SPACF indi-
cates another step at lag three. We therefore choose SARIMA.1; 0; 0/ � .1; 0; 1/24
and SARIMA.3; 0; 0/ � .1; 0; 1/24 as candidates for the model. Additional to the
classical model with Gaussian innovations we include models with t-distributed
innovations as representatives of heavy-tailed innovations in the analysis. This
approach is suggested by [25] as a compromise between a heavy-tailed innova-
tion distribution and robust parameter estimates for the SARIMA-model. Table 12.3
holds the AIC and BIC values of different specifications, including both Gaussian
and t-distributed innovations. We choose the SARIMA.1; 0; 0/ � .1; 0; 1/24 model
with t-distributed innovations for two reasons. First, the AIC and BIC values indi-
cate a preference of t-distributed innovations over the Gaussian case. Second, the
ar3 coefficient is small and, as we will discuss below, coefficients at low lags are
of minor practical relevance. Note that the t-distributed innovations demonstrate the
necessity of a heavy-tailed noise term in the model. This will be further investigated
in Sect. 12.6.

We conclude this section with an analysis of the consistency of the model over
time and a test of its forecasts. Table 12.4 reports the parameter estimates of the
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Table 12.4 Parameter estimates of SARIMA model
Parameter a1 a24 b24 	 �

Total 0.8238 0.9571 �0.8529 341.9410 9.1080
2003 0.8522 0.9307 �0.7973 341.9410 9.4983
2004 0.7860 0.9421 �0.8184 328.8776 12.3724
2005 0.7810 0.9359 �0.8248 325.6431 10.7623
2006 0.8092 0.9455 �0.8397 336.8019 9.0538
2007 0.8067 0.9586 �0.8620 329.9785 10.1529
2008 0.7861 0.9515 �0.8541 341.9410 9.2676

model based on yearly sub-samples. The parameter estimates are very consistent
with the overall model. We therefore decided to test the forecasts of the overall
model rather than the individual yearly models.

The information on balancing energy demand is not continuously revealed to the
market, but rather published only once a month, including the data for the preceding
month. So the data for May will be available by July. We therefore do not test the
one-time step forecast, as this has no practical implication in this market. Instead,
we test a forecast adapted to the information revealed to the market. As a result, fore-
casting is performed once a month based on the information lagged 1 month (i.e.,
the forecast horizon is 720–1,440 lags). Because one of the TSOs also publishes the
balancing demand data in its zone with a time delay of only 3 days, we also test
the implications of the model on this time horizon (i.e., a forecast horizon of 72–96
lags). In both cases that we test, the sample variance is reduced by subtracting the
conditional expectation. When using the monthly forecast, the variance is reduced
by 3:69%; applying a 3-day forecast horizon results in a 11:22% reduction.

This additional variance reduction as compared to the analytical model in
Sect. 12.4 can be decomposed into two components. For the first component there
exist comparatively short-lived patterns in the data. These patterns can be under-
stood as a linear correction term for the analytical model. The second component
captures a non-zero conditional mean of the time series. Neither the gradient effect
nor the arbitrage incentive described in Sect. 12.4 can explain a non-zero expectation
value of the balancing energy demand over extended periods of time. Both effects
will average to zero over a few cycles of their respective seasonality. However when
looking at the average forecast of the SARIMA-model in Table 12.5, it is evident
the SARIMA forecast does not average to zero over a few cycles. Furthermore, it
is argued in [17] that this non-zero mean over extended periods of time is sufficient
to influence the electricity price on the day-ahead market. Other studies of market
power abuse in Germany identify the same periods as periods of abuse, which show
highly negative mean SARIMA forecasts (i.e., artificial demand) in their analysis
(see [10, 11, 23]).
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Table 12.5 Average prediction of SARIMA model

Average prediction

Horizon 2003 2004 2005 2006 2007 2008

One month �198.9537 �179.9403 �110.6992 21.8594 �118.4479 �52.1579
Three days �372.3728 �307.2270 �214.6126 18.6222 �217.6485 �190.4806

12.6 Innovation Distribution

The parameter estimation of the SARIMA-model used in Sect. 12.5 is based on a t-
distributed innovation process. Models with Gaussian innovations were disregarded
based on AIC and BIC values reported in Sect. 12.5. In this section, we will further
investigate the heavy-tailed innovation process.

The innovations process is of particular importance in the balancing energy mar-
ket as it governs the risk involved with balancing the grid. In general, TSOs have to
allocate sufficient regulatory power to be able to maintain grid operation and avoid a
blackout. The capacity that is considered sufficient is usually defined by a threshold
probability for a blackout (i.e., the probability of fluctuations exceeding the allo-
cated capacity). So the more precise the quantiles of the innovations distributions
are known, the more efficiently resources may be allocated.

The first step of the investigation is the QQ-plot of the innovations time series
and the fitted t-distribution in Fig. 12.4. From this figure it can be seen that the
t-distribution does not adequately capture the risk in the tails of the empirical
distribution because the QQ-plot deviates from the diagonal.

Due to the conceptual advantage of modeling the data with a distribution in the
proximity of the GCLT as discussed in Sect. 12.3, we test both the ˛-stable and the
CTS-distribution as a more adequate model for the innovations time series. Both
distributions are estimated by the Fourier inversion formula and their characteristic
functions given by (12.3) and (12.4). This inversion is, in turn, numerically esti-
mated by the fast Fourier transform (FFT) method. A more detailed description of
the method is given in [20] and [13]. Table 12.6 shows the estimated parameter sets.
As can be seen in Fig. 12.5, the heavy-tailed distribution captures the likelihood of
extreme events more accurately than the t-distribution.

In the next step, all three distributions are compared using the goodness-of-fit
tests mentioned in Sect. 12.3. The results are summarized in Table 12.7.

The p-values of the KS-test clearly indicate that the CTS-distribution describes
the innovations best, as its p-value is 49 and 9 orders of magnitude greater than
the p-value of t-distribution and ˛-stable distribution, respectively. However the
p-value of the CTS-distribution is still low. As discussed in Sect. 12.3, the KS-test
is responsive to small fluctuations in the location parameter, while such fluctuations
are to be expected with heavy-tailed distributions. Also, the SARIMA model implies
a location parameter of zero for the innovation process, so we do not need to focus
on the location parameter. We therefore correct the mean of the innovations time
series for such fluctuations within the 95% confidence bounds. The corresponding
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Table 12.6 Estimated parameters of heavy-tailed distributions

Distribution Parameters

˛-stable
˛ 	 ˇ �

1.9107 0.0048 0.6711 0-fixed

CTS
˛ C �C �� m

0.9122 1

� .2�˛/.�˛�2
C

C�˛�2
�

/
1.4856 1.5168 0-fixed

statistics are identified by an asterisk (�). Again the CTS-distribution provides the
best description of the data. Furthermore, the CTS-distribution is acceptable at a 5%
significance level. The other statistics reported provide further support for selecting
the CTS-distribution over both the t-distribution and the ˛-stable distribution.

12.7 Conclusion

The wide application of linear time series models in finance has made the short-
comings of inadequate innovation processes and correlation structures evident.
Tempered stable distributions have been proposed and tested on financial time series
data to overcome these problems. The tempered stable distribution is an expan-
sion of the ˛-stable distribution. It combines heavy-tailed innovations over multiple
timescales with finite higher moments. These properties make tempered stable
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Table 12.7 Goodness-of-fit statistics and p-values

Distribution

t ˛-stable CTS

Test Statistic p-value Statistic p-value Statistic p-value

KS 0.0331 1:37 � 10�50 0.0156 1:75 � 10�11 0.0082 0.0016
AD 0.0883 – 0.0333 – 0.0170 –
KS� 0.0316 5:73 � 10�46 0.0134 1:40 � 10�8 0.0059 0.0538
AD� 0.0854 – 0.0316 – 0.0126 –
CvM� 23.4809 – 2.2939 – 0.5144 –
AD2� 625.3888 – 685.0225 – 611.5575 –

distributions an excellent choice for modeling phenomena dependant on extreme
events, which are at the same time bounded by other considerations.

In this paper, we apply the classical tempered stable model to German balanc-
ing energy demand data and demonstrate its fitness. The CTS-distribution describes
the risk of unpredictable events in the electricity grid, while at the same time cap-
turing physical boundary conditions in the model. In the balancing energy market,
these advantages can be used to allocate the resource capacity more efficiently, and
thereby reduce grid tariffs. Additionally, the SARMIA model is able to separate
predictable balancing energy demand from unpredictable shocks. In general, the
predictable fraction of balancing energy demand can be satisfied by a wider and
technically less demanding range of providers. The German market design includes
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the option to trade this predictable fraction in strategic positions on the balancing
market, while the reserve capacity for the unpredictable shocks is traded on the
market for regulatory energy. A further development of strategic positions in the bal-
ancing energy market could therefore increase the competitiveness of the capacity
reserve market. In view of the planned increase of highly fluctuating regenerative
power in the German system, this advantage will become even more pronounced in
the future.
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processes and time-varying volatility. J Bank Finance 32:1363–1378

13. Kim YS, Rachev ST, Bianchi ML, Fabozzi FJ (2009) Computing var and avar in infinitely
divisible distributions. Technical report, Chair of Econometrics, Statistics and Mathematical
Finance School of Economics and Business Engineering University of Karlsruhe (http://www.
statistik.uni-karlsruhe.de/download/AVaR ID KRBF 03-25.pdf)

14. Koponen I (1995) Analytic approach to the problem of convergence of truncated Lévy flights
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Chapter 13
Laws of Large Numbers and Nearest Neighbor
Distances

Mathew D. Penrose and J.E. Yukich

Abstract We consider the sum of power weighted nearest neighbor distances in a
sample of size n from a multivariate density f of possibly unbounded support. We
give various criteria guaranteeing that this sum satisfies a law of large numbers for
large n, correcting some inaccuracies in the literature on the way. Motivation comes
partly from the problem of consistent estimation of certain entropies of f .

13.1 Introduction

Nearest-neighbor statistics on multidimensional data are of long-standing and con-
tinuing interest, because of their uses, e.g., in density estimation and goodness-of
fit testing [3, 11, 21], and entropy estimation [2, 4, 9, 10]. They form a multivariate
analog to the one-dimensional spacings statistics in which the work of S.R. Jam-
malamadaka, the dedicatee of this paper, has featured prominently. For example,
[16] uses nearest neighbor balls to generalize the maximum spacings method to
high dimensions and to establish consistency in estimation questions.

In the present note we revisit, extend and correct some of the laws of large num-
bers concerned with sums of power-weighted nearest-neighbor distances that have
appeared in recent papers, notably [10, 15, 19].

Fix d 2 N and j 2 N. Given a finite X 	 R
d , and given a point x 2 X , let

card.X / denote the number of elements of X , and letD.x;X / WD Dj .x;X / denote
the Euclidean distance from x to its j th nearest neighbor in the point set X n fxg,
if card.X / > j ; set D.x;X / WD 0 if card.X / � j . Let f be a probability density
function on R

d , and let .Xi /i2N be a sequence of independent random d -vectors
with common density f . For n 2 N, let Xn WD fX1; : : : ; Xng. Let ˛ 2 R and set
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Sn;˛ WD
X
x2Xn

.n1=dD.x;Xn//˛ D
nX
iD1
.n1=dD.Xi ;Xn//˛:

Certain transformations of the Sn;˛ have been proposed [9, 10] as estimators for
certain entropies of the density f which are defined in terms of the integrals

I	.f / WD
Z

Rd

f .y/	dy .� > 0/:

For � > 0 with � ¤ 1, the Tsallis �-entropy (or Havrda and Charvát �-entropy
[7]) of the density f is defined byH	.f / WD .1� I	.f //=.1� �/, while the Rényi
entropy [17] of f is defined by H�

	 .f / WD log I	.f /=.1� �/.
Rényi and Tsallis entropies figure in various scientific disciplines, being used in

dimension estimation and the study of nonlinear Fokker–Planck equations, frac-
tal random walks, parameter estimation in semi-parametric modeling, and data
compression (see [4] and [10] for further details and references).

A problem of interest is to estimate the Rényi and Tsallis entropies, or equiv-
alently, the integrals I	.f /, given only the sample fXigniD1 and their pairwise
distances. Let !d WD �d=2=� .1 C d=2/ denote the volume of the unit radius

Euclidean ball in d dimensions, and set �.d; j / WD !
�˛=d
d

�
� .jC˛=d/
� .j /

�
. This note

provides sufficient conditions on the density f establishing that �.d; j /�1n�1Sn;˛
converges to I1�˛=d .f / in L1, or in L2. In other words, since L1 convergence
implies convergence of means, we provide sufficient conditions on f guaranteeing
that �.d; j /�1n�1Sn;˛ is an asymptotically unbiased and consistent estimator of
I1�˛=d .f /.

13.2 Results

Two of our results can be stated without further ado.

Theorem 13.1. Let ˛ > 0. Suppose the support of f is a finite union of convex
bounded sets with nonempty interior, and f is bounded away from zero and infinity
on its support. Then as n ! 1 we have L2 and almost sure convergence

n�1Sn;˛ ! !
�˛=d
d

	
� .j C ˛=d/

� .j /



I1�˛=d .f /: (13.1)

Theorem 13.2. Let q D 1 or q D 2. Let ˛ 2 .�d=q; 0/ and suppose f is bounded.
Then (13.1) holds with Lq convergence.

For the interesting case when ˛ > 0 and f has unbounded support, our results
require further notation. Let j � j denote the Euclidean norm on R

d . For r > 0, define
the integral
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Mr.f / WD E ŒjX1jr � D
Z

Rd

jxjrf .x/dx;

and define the critical moment rc.f / 2 Œ0;1�, by

rc.f / WD supfr � 0 W Mr.f / < 1g:

If r < s and Ms.f / < 1, then Mr.f / < 1. Hence Mr.f / < 1 for r < rc.f /

and Mr.f / D 1 for r > rc.f /.
For k 2 N, let Ak denote the annular shell centered around the origin of R

d

with inner radius 2k and outer radius 2kC1, and let A0 be the ball centered at the
origin with radius 2. For Borel measurable A 	 R

d , set F.A/ WD P ŒX1 2 A� DR
A
f .x/dx.
We can now state the rest of our results.

Theorem 13.3. Let q D 1 or q D 2. Let ˛ 2 .0; d=q/. Suppose I1�˛=d .f / < 1,
and rc.f / > q˛d=.d � q˛/. Then (13.1) holds with Lq convergence.

We shall deduce from Theorem 13.3, that when f .x/ decays as a power of jxj,
the condition I1�˛=d .f / < 1 is sufficient for L1 convergence:

Corollary 13.1. Suppose there exists ˇ > d such that f .x/ D �.jxj�ˇ / as jxj !
1, i.e., such that for some finite positive C we have

C�1jxj�ˇ < f .x/ < C jxj�ˇ ; 8x 2 R
d ; jxj � C: (13.2)

Suppose also that I1�˛=d .f / < 1 for some ˛ 2 .0; d/. Then (13.1) holds with L1

convergence.

Our final result shows that in general, the condition I1�˛=d .f / < 1 is not
sufficient alone for L1 convergence, or even for convergence of expectations. It can
also be viewed as a partial converse to Theorem 13.3 showing, under the additional
regularity condition (13.3), that when q D 1 the condition rc.f / > q˛d=.d � q˛/

is close to being sharp.

Theorem 13.4. Let 0 < ˛ < d . Then (i) If rc.f / < ˛d=.d �˛/, and also for some
k0 2 N we have

0 < inf
k�k0

F.Ak/

F.Ak�1/
� sup
k�k0

F.Ak/

F.Ak�1/
< 1; (13.3)

then lim supn!1 E Œn�1Sn;˛� D 1;
(ii) For 0 < r < ˛d=.d � ˛/ there exists a bounded continuous density function

f on R
d satisfying (13.3), such that I1�˛=d .f / < 1, but with rc.f / D r so that

lim supn!1 E Œn�1Sn;˛� D 1 by part (i).

The value of the limit in (13.1) was already known (see Lemma 13.1). The con-
tribution of the present paper is concerned with the conditions under which the
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convergence (13.1) holds; in what follows we compare our conditions with the exist-
ing ones in the literature and also comment on related limit results. For conditions
under which n�1=2.Sn;˛�ESn;˛/ is asymptotically Gaussian, we refer to [1,12,14].

Remark. (i) Theorem 13.1. The condition in Theorem 13.1 is a slight relaxation of
condition C1 of the L2 convergence results in [15] or [19], which assume a poly-
hedral support set. When the support of f is the unit cube, Theorem 2.2 of [8]
gives an alternative proof of almost sure convergence in (13.1) (we remark that
Theorem 2.2 of [8] contains an extraneous E in the left-hand side). Theorem 8.3
of [20] uses subadditivity to obtain (13.1) when the support of f is the unit cube
and when ˛ D 1, but it does not identify the limiting constant. The convergence
of means implied by Theorem 13.1 was previously obtained, under some extra
differentiability conditions on f , in [5].
(ii) Theorem 13.2. The L1 convergence of Theorem 13.2 improves upon Theorem
3.1 of [10], which establishes mean convergence; the L2 convergence of Theorem
13.2 is contained in Theorem 3.2 of [10] and we include this for completeness.

(iii) Theorem 13.3. The condition in Theorem 13.3 corrects the condition of the
corresponding result given [15], where for L1 convergence it is stated that we need
rc.f / > d=.d � ˛/; in fact we need instead the condition rc.f / > ˛d=.d � ˛/.
In the proof of Theorem 13.3 below, we shall indicate the errors in the proof in
[15] giving rise to this discrepancy. This correction also applies to condition C2 in
Theorem 2 of [19], the proof of which relies on the result stated in [15].

(iv) Theorem 13.4. The condition (13.3) holds, e.g., if f .x/ is a regularly varying
function of jxj. Given (13.3) and given I1�˛=d < 1, Theorem 13.4 shows that
the condition rc.f / � ˛d=.d � ˛/ is necessary for L1 convergence of n�1Sn;˛,
while Theorem 13.3 says that rc.f / > ˛d=.d � ˛/ is sufficient. It would be of
interest to try to find more refined necessary and sufficient conditions when rc.f / D
˛d=.d � ˛/.

(v) General �. For � W R
C ! R

C put Sn;� WD P
x2Xn

�.n1=dD.x;Xn//: If
� has polynomial growth of order ˛, that is if there is a constant ˛ 2 .0;1/ such
that �.x/ � C.1 C x˛/ for all x 2 R

C, then straightforward modifications of the
proofs show that under the conditions of Theorem 13.1 or Theorem 13.3 we have
the correspondingLq convergence

n�1Sn;� !
Z

Rd

E Œ�.D.0;Pf.x///�f .x/dx;

where for all 
 > 0, P� is a homogeneous Poisson point process in R
d having

constant intensity 
 , and D.0;P� / is the distance between the origin of R
d and its

j th nearest neighbor in P� .
(vi) Minimal spanning trees. Given a finite X 	 R

d and � W R
C ! R

C, let

L�.X / WD
X

e2MST.X /
�.jej/;
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where MST.X / denotes the edges in the graph of the minimal spanning tree on X .
ThusL�.X / is the sum of the �-weighted edge lengths in the minimal spanning tree
on X . Let q D 1 or 2. If � has polynomial growth of order ˛, with ˛ 2 .0; d=q/, if
I1�˛=d .f / < 1, and if rc.f / > q˛d=.d � q˛/ then, as may be seen by following
the proof of Theorem 13.3, the proof of Theorem 2.3(iii) of [15] in fact shows that
as n ! 1 we have

L�.Xn/ ! 1

2

Z

Rd

E

2
4 X
e2MST.0;Pf .x//

�.jej/
3
5f .x/dx;

where the convergence is in Lq , and where MST.0;Pf.x// denotes the edges in the
minimal spanning tree graph on 0 [ Pf.x/ incident to 0, the origin of R

d . When
q D 2, this is new whereas for q D 1 and ˛ 2 .0; 1/, this improves upon Theorem
2.3(iii) of [15], which requires rc.f / > max.˛d=.d � ˛/; d=.d � ˛//:

(vii) Non-existence of density. If the fXigniD1 fail to have a density, then nor-
malization of Sn;˛ may involve exotic functions of n, including log periodic nor-
malizations, as is the case when the fXigniD1 have a Cantor distribution on Œ0; 1�;
see [18].

(viii) Comparison with [10]. The convergence of expectations corresponding
to (13.1) is given as the main conclusion in Theorem 3.1 of [10]. In the case
1 � ˛=d < 1 of that result, it is claimed that this convergence of expectations
holds without any extra conditions besides finiteness of I1�˛=d . Theorem 13.4 here
disproves this assertion; the argument in [10] requires that convergence in distribu-
tion implies convergence of r th moments, which is not in general true. On the other
hand, Corollary 13.1 shows that if we assume f .x/ decays as some power of jxj
then finiteness of I1�˛=d is indeed a sufficient condition for convergence in L1, and
hence also convergence of expectations.

13.3 Proofs

This section provides the proofs of the results stated in the preceding section. We
denote by c; C; C 0; and C 00 various strictly positive finite constants whose values
may change from line to line. The proofs of Theorems 13.1, 13.2 and 13.3 use the
following result.

Lemma 13.1. Let q 2 f1; 2g and ˛ 2 R. Suppose for some p > q that E Œ.n1=d

D.X1;Xn//˛p� is a bounded function of n. Then (13.1) holds with Lq convergence.

Proof. SinceD is a stabilizing functional on homogeneous Poisson point processes
[15], we can apply Theorem 2.2 of [15] or Theorem 2.1 of [15] to get Lq conver-
gence of n�1Sn;˛ to a limit which is expressed as an integrated expectation in [15]
(see (2.15) of [15]). It was shown in [19] that this limit is equal to the right hand
side of (13.1) (and this is also consistent with the limiting constant in [5]).
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Proof of Theorem 13.1. Recall that we assume the support of f , namely supp
.f / WD fx 2 R

d W f .x/ > 0g, is a finite union of bounded convex sets
with nonempty interior, here denoted B1; : : : ; Bm. Set � WD supfjx � yj W x 2
supp.f /; y 2 supp.f /g, the diameter of the support of f . By assumption, � < 1.
Also we assert that there is a constant c > 0 such that for r 2 .0; ��,

F.Br.x// � crd ; 8x 2 supp.f /: (13.1)

To see this, take ı1 > 0 such that for 1 � i � m there is a ball B�
i of radius ı1

contained in Bi . There is a constant ı2 > 0 such that for 1 � i � m, if x 2 Bi , and
r � ı1, then the intersection of the ball of radius r centered at x with the convex
hull of the union of B�

i and x has volume at least ı2rd . This region is contained
in Bi and (13.1) follows for r 2 .0; ı1�. But then (with a different choice of c)
(13.1) follows for r � �. Hence, for 0 < t � �n1=d and with B.xI r/ denoting the
Euclidean ball of radius r centered at x,

P Œn1=dD.X1;Xn/ > t� � sup
x2supp.f /

P Œcard.Xn�1 \ B.xIn�1=d t// < j �

�
j�1X
iD0

 
n � 1

i

!
.cn�1td /i .1 � cn�1td /n�1�i

� C

j�1X
iD0

t id exp.�cn�1td .n � 1 � i//

� C 0.1C t .j�1/d / exp.�ctd / � C 00 exp.�.c=2/td /:

Moreover this probability is clearly zero for t > �n1=d . Hence, for ˛ > 0 and
p > 2,

E Œ.n1=dD.X1;Xn//˛p � D
Z 1

0

P Œn1=dD.X1;Xn/ > u1=.˛p/�du

� C

Z 1

0

exp.�.c=2/ud=.˛p//du

which is finite and does not depend on n. Therefore we can apply Lemma 13.1 to
get the L2 convergence (13.1).

For almost sure convergence, we apply Theorem 2.2 of [13], where here the test
function considered in that result (and denoted f there, not to be confused with
the notation f as used here) is the identity function. It is well known (see [3], or
Lemma 8.4 of [20]) that there is a constant C WD C.d/ such that for any finite
X 	 R

d , any point x 2 X is the j th nearest neighbor of at most C other points
of X . Therefore adding one point to a set X within the bounded region supp.f /
changes the sum of the power-weighted j th nearest neighbor distances by at most a
constant. Therefore (2.9) of [13] holds here (with ˇ D 1 and p0 D 5 say), and the
almost sure convergence follows by Theorem 2.2 of [13].
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Proof of Theorem 13.2. The proof depends on the following lemma. Recall that
.Xi /i�1 are i.i.d. with density f . Given X1, let Vn denote the volume of the
d -dimensional ball centered at n1=dX1 whose radius equals the distance to the j th
nearest point in n1=d .Xn n X1/, where for r > 0 and X 	 R

d we write rX for
frx W x 2 X g. For all x 2 R

d , for all n D 2; 3; ::: and for all v 2 .0;1/ let

Fn;x.v/ WD P ŒVn � vjX1 D x�: (13.2)

Lemma 13.2. If f is bounded and ı 2 .0; 1/, then

sup
n

EV �ı
n D sup

n

Z

Rd

Z 1

0

v�ıdFn;x.v/f .x/dx < 1:

Proof. Since
R1
0

v�pdF.v/ D p
R1
0

v�p�1F.v/dv for any p 2 .0; 1/ whenever
both integrals exist (see, e.g., Lemma 1 on p. 150 of [6]), we have for all x 2 R

d

Z 1

0

v�ıdFn;x.v/ D ı

Z 1

0

v�ı�1Fn;x.v/dv

�
Z 1

0

v�ı�1Fn;x.v/dv C ı

Z 1

1

v�ı�1dv

D
Z 1

0

v�ı�1Fn;x.v/dv C 1:

With QBv.x/ denoting the ball of volume v around x, for all v 2 .0; 1/ we have

Fn;x.v/ D P ŒVn � vjX1 D x� D 1 � P Œcard.n1=dXn�1 \ QBv.n
1=dx// < j �

� 1 � P Œcard.n1=dXn�1 \ QBv.n
1=dx// D 0�

D 1 �
 
1 �

Z
QBv=n.x/

f .z/d z

!n�1
: (13.3)

Since f is assumed bounded we have

Fn;x.v/ � 1 � exp ..n � 1/ log.1� kf k1v=n// :

When n is large enough, for all v 2 .0; 1/ we have .n � 1/ log.1 � kf k1v=n/ �
�2kf k1v, and so for all x 2 R

d

Fn;x.v/ � 1 � exp.�2kf k1v/ � 2kf k1v:

Hence for all n large enough and all x we have
R 1
0

v�ı�1Fn;x.v/dv � 2kf k1R 1
0

v�ı�1vdv; demonstrating Lemma 13.2.
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Now to prove Theorem 13.2, we choose p > q such that �1 < ˛p=d < 0 and
invoke Lemma 13.2 to conclude supn E ŒV

˛p=d
n � < 1. We now apply Lemma 13.1

to complete the proof of Lq convergence.

The proof of Theorem 13.3 uses the following lemma. Recall from Sect. 13.2 the
definition of the regions Ak ; k � 0.

Lemma 13.3. Let 0 < s < d . If rc.f / > sd=.d � s/, then
P1
kD1 2ks

.F.Ak//
.d�s/=d < 1.

Proof. We modify some of the arguments on p. 85 of [20]. For all " > 0, by Hölder’s
inequality we have

X

k

2ks.F ŒAk �/
.d�s/=d D

X

k

2�"ks.F ŒAk �/.d�s/=d2.1C"/ks

�
0
@X

k

.2�"ks/d=s
1
A
s=d0
@X

k

F ŒAk �.2
.1C"/ks/d=.d�s/

1
A
.d�s/=d

� C."; s/

0
@X

k

Z

Ak

jxj.1C"/sd=.d�s/f .x/dx

1
A
.d�s/=d

which, for " small enough, is finite by hypothesis.

Proof of Theorem 13.3. We follow the proof in [15], but correct it in some places
and give more details in others. We aim to use Lemma 13.1. Since we assume 0 <
˛ < d=q, we can take p > q with ˛p < d . Clearly

E Œ.n1=dD.X1;Xn//˛p� D n˛p=d�1
E

"
nX
iD1

D.Xi ;Xn/˛p
#

D n˛p=d�1
E ŒL˛p.Xn/�;

(13.4)

where for any finite point set X 	 R
d , and any b > 0, we write Lb.X /

for
P
x2X D.x;X /b (and set Lb.;/ WD 0). Note that for some finite constant

C D C.d; j / the functional X 7! Lb.X / satisfies the simple subadditivity relation

Lb.X [ Y/ � Lb.X /C Lb.Y/C C tb (13.5)

for all t > 0 and all finite X and Y contained in Œ0; t �d (cf. (2.2) of [20]).
As in (7.21) of [20] or (2.21) of [15] we have that

L˛p.Xn/ �
 1X
kD0

L˛p.Xn \Ak/
!

C C.p/ max
1�i�n jXi j˛p: (13.6)

In the last sentence of the proof of Theorem 2.4 of [15] it is asserted that the last
term in (13.6) is not needed, based on a further assertion that one can take C D 0
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in (13.5) here, but these assertions are incorrect. For example, if card.Y/ � j then
Lb.Y/ D 0 but Lb.X [ Y/ could be strictly greater than Lb.X /. Similarly, if
card.Xn\Ak/ � j then the term in (13.6) from that k is zero but the corresponding
contribution to the left side of (13.6) is non-zero.

Combining (13.6) with (13.4) yields

E Œ.n1=dD.X1;Xn//˛p� � n.˛p�d/=d
E

"X
k

L˛p.Xn \ Ak/

#

C C.p/E Œn.˛p�d/=d max
i

jXi j˛p�: (13.7)

By Jensen’s inequality and the growth bounds L˛p.X / � C.diamX /˛p
.card.X //.d�˛p/=d (see Lemma 3.3 of [20]), we can bound the first term in the
right hand side of (13.7) by

C
X
k

2k˛p.F ŒAk �/
.d�˛p/=d : (13.8)

Recall that we are assuming 0 < ˛ < d=q and also rc.f / > qd˛=.d�q˛/ (the last
assumption did not feature in [15], but in fact we do need it). Let p > q be chosen
so that rc.f / > d˛p=.d � ˛p/ as well as ˛p < d . Setting s D ˛p in Lemma 13.3,
we get that the expression (13.8) is finite. Thus the first term in the right hand side
of (13.7) is bounded by a constant independent of n.

The second term in the right hand side of (13.7) is bounded by

C.p/

	Z 1

0

P



max
1�i�n jXi j˛p � tn.d�˛p/=d

�
dt

C
Z 1

1

P



max
1�i�n jXi j˛p � tn.d�˛p/=d

�
dt




� C.p/

	
1C n

Z 1

1

P ŒjX1j˛pd=.d�˛p/ � td=.d�˛p/n�dt


:

By Markov’s inequality together with the assumption rc.f / > d˛p=.d � ˛p/, this
last integral is bounded by a constant independent of n.

Therefore the expression (13.7) is bounded independently of n, so we can apply
Lemma 13.1 to get the Lq convergence in (13.1).

Proof of Corollary 13.1. Suppose for some ˇ > d that f .x/ D �.jxj�ˇ / as jxj !
1. Then it is easily verified that given ˛ 2 .0; d/, the condition I1�˛=d .f / < 1
implies that �ˇ.1 � ˛=d/ C d < 0 and hence ˇ > d 2.d � ˛/�1. Moreover,
it is also easily checked that rc.f / D ˇ � d so that if ˇ > d 2.d � ˛/�1 then
rc.f / > d˛=.d � ˛/.

Therefore, if I1�˛=d .f / < 1 we can apply the case q D 1 of Theorem 13.3 to
get (13.1) with L1 convergence.
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The proof of Theorem 13.3 shows that

sup
n

E Œ.n1=dD.X1;Xn//"� < 1; (13.9)

if " > 0 is such that "d=.d � "/ < rc.f /. The proof of Theorem 13.4, given below,
shows that the condition "d=.d � "/ < rc.f / cannot be dropped in general.

Proof of Theorem 13.4. Let 0 < ˛ < d . Suppose that rc.f / < ˛d=.d � ˛/, and
(13.3) holds for some k0 2 N. Choose r; s such that rc.f / < r < s < ˛d=.d �
˛/. Then Mr .f / D 1, so

P
k 2

rkF.Ak/ D 1 and therefore there is an infinite
subsequence K of N such that

2skF.Ak/ � 1; k 2 K: (13.10)

Indeed, if no such K existed, then for all but finitely many k we would have
2rkF.Ak/ � 2.r�s/k which is summable in k.

Given k 2 N, and set n.k/ D d.F.Ak//�1e, the smallest integer not less than
.F.Ak//

�1. Let Ek be the event that X1 2 Ak but Xi … Ak�1 [ Ak [ AkC1 for
2 � i � n.k/. Then by the condition (13.3), there is a strictly positive constant c,
independent of k, such that for k � k0 we have

P ŒEk � D F.Ak/.1 � F.Ak�1 [ Ak [AkC1//n.k/�1 � cF.Ak/:

If Ek occurs then D.X1;Xn.k// � 2k�1, so for n D n.k/ we have (for a different
constant c) that

E Œn�1Sn;˛� D E Œ.n1=dD.X1;Xn//˛� � n˛=dE ŒD.X1;Xn/˛1Ek
�

� cn˛=dF.Ak/2
k˛ � c.F.Ak//

1�˛=d2k˛:

By (13.10), for k 2 K this lower bound is at least a constant times 2k.˛�s.d�˛/=d/,
and therefore tends to infinity as k ! 1 through the sequence K, concluding the
proof of part (i).

For part (ii), for each k � 2 choose, in an arbitrary way, a unit radius ball Bk
that is contained in Ak . Given r 2 .0; ˛d=.d �˛//, consider the density function f
with f .x/ D C2�rk for x 2 Bk ; k � 2, and with f .x/ D 0 for x 2 R

d n [1
kD2Bk ;

here the normalizing constantC is chosen to make f a probability density function.
This gives F.Ak/ D C!d2

�rk for each k � 2; it is easy to see that this f has
rc.f / D r , and that (13.3) holds with k0 D 3. Also, for any � > 0we have I	.f / D
!dC

	
P
k�2 2�r	k which is finite, so in particular I1�˛=d < 1. This choice of f is

bounded but not continuous, but can easily be modified to a continuous density with
the same properties, e.g., by modifying f in an annulus near the boundary of each
ball Bk so as to make it continuous, and then adjusting the normalizing constant C
accordingly.
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8. Jiménez R, Yukich JE (2002) Strong laws for Euclidean graphs with general edge weights. Stat
Probab Lett 56:251–259

9. Kozachenko LF, Leonenko NN (1987) A statistical estimate for the entropy of a random vector.
Probl Inf Transm 23:95–101

10. Leonenko NN, Pronzato L, Savani V (2008) A class of Rényi information estimators for
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17. Rényi A (1961) On measures of information and entropy. In: Proceedings of the 4th Berkeley
symposium on mathematics, statistics and probability, vol 1960. University of California Press,
Berkeley, pp 547–561

18. Shank N (2009) Nearest-neighbor graphs on the Cantor set. Adv Appl Probab 41:38–62
19. Wade A (2007) Explicit laws of large numbers for random nearest neighbor type graphs. Adv

Appl Probab 39:326–342
20. Yukich JE (1998) Probability theory of classical euclidean optimization problems. Lecture

notes in mathematics, vol 1675. Springer, Berlin
21. Zhou S, Jammalamadaka SR (1993) Goodness of fit in multidimensions based on nearest

neighbour distances. J Nonparametr Stat 2:271–284



Chapter 14
Nonparametric and Probabilistic Classification
Using NN-balls with Environmental
and Remote Sensing Applications

Bo Ranneby and Jun Yu

Abstract National and international policies today require environmental follow-
up systems that detect, in a quality assured way, changes over time in land use and
landscape indicators. Questions related to environmental health and spatial patterns
call for new statistical tools. We present in this paper some new developments on the
classification of land use by using multispectral and multitemporal satellite images,
based on techniques of nearest neighbour balls. The probabilistic classifiers intro-
duced are useful for measuring uncertainty at pixel level and obtaining reliable area
estimates locally. Also some theoretical considerations for the reference sample plot
method (today named k-NN method in natural resource applications) are presented.

14.1 Introduction

Environmental pressures on ecosystems and the continuous loss of suitable habi-
tats for different species jeopardize the ambitions of a sustainable development.
Environmental work needs to be enforced at a global, national, regional and local
level.

Spatial patterns at different scales are important characteristics of environmental
quality. Spatial elements that indicate high environmental quality are usually quite
rare and important changes are sometimes very subtle. Existing monitoring pro-
grams linked to landscape surveillance do not permit evaluation of data at a local
level or of smaller regions. The landscape perspective requires wall-to-wall analysis
that are scale-independent, i.e., the results can be used at different levels and the
accuracy of the measurements can be clearly defined.

Remote sensing of satellite images offers great potential to assess wall-to-wall
changes in the health of ecosystems and identify risks. So far, however, little of this
potential has been realized.

Bo Ranneby (B)
Centre of Biostochastics, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
e-mail: bo.ranneby@sekon.slu.se
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Questions related to environmental health, biodiversity, and spatial patterns in
general require new statistical methods. Methods and models must be developed
under so called non-standard conditions – conditions under which many statistical
methods do not work properly but frequently appear in environmental and remote
sensing applications.

In this paper the focus will be on the classification of land use using multispectral
and multitemporal satellite images and some convergence results for nearest neigh-
bour balls (NN-balls). Section 14.2 is devoted to classification methods, including a
brief review of the conventional classification methods, new developments of non-
parametric classification, and the probabilistic classifiers. The reference sample plot
method (today named k-NN) is very popular in natural resource applications. Unfor-
tunately there are no theoretical considerations about the selection of a suitable
metric and the weights. In Sect. 14.3 we will use NN-balls to show how the weights
should be calculated. Some final remarks are given in Sect. 14.4.

14.2 Classification

Supervised classification of remote-sensing images has been widely used as a
powerful means to extract various kinds of information concerning the earth envi-
ronment. The objective of supervised classification in remote sensing is to identify
and partition the pixels comprising the noisy image of an area according to its class,
with the parameters in the model for pixel values estimated from training samples
(ground truths). Usually, the spectral signature is the main aspect of the classes
used to classify the pixels. For multispectral image data acquired by remote sens-
ing devices, one should be aware that they are very complex entities which have
not only spectral attributes (with correlated bands) but also spatial attributes. Proper
utilization of this spatial contextual information, in addition to spectral information,
can improve the classification performance significantly in many applications com-
pared to the conventional noncontextual rules such as discriminant analysis and the
k-nearest neighbour classifier.

A typical problem with the parametric classification methods is the assumption
of (approximative) normality for the feature vector, which is often not fulfilled in
remote sensing applications. For non-normal densities it is nevertheless possible
to use maximum likelihood (ML) classifiers but with other models for the class
distributions. For example, in [18] mixtures of normal distributions are used for
classification of images. Their results indicate a substantial increase in correct clas-
sification rates compared to classification under normal densities. It is worth noting
that mixture models are examples of models when traditional estimation methods
such as ML have a tendency to fail. It has been observed that in remotely sensed
data feature vectors quite frequently possess bimodal or multimodal empirical dis-
tributions. If the training sets are objectively selected empirical distributions of this
kind will become even more common. Therefore general estimation methods, which
give efficient and robust estimates also when traditional methods break down, are
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of fundamental importance for parametric classification. For recent achievements in
this direction we refer to [7, 14, 19].

One way to utilize information from neighbouring pixels is to use the wavelet
transform and denoising techniques. Yu and Ekström [23] evaluated various tradi-
tional classifiers by using the wavelet transform on multispectral images, and found
that no matter which type of spatial correlation between pixels the image has and
which kind of conventional classification method one uses, the classification by
using the wavelet transform (specially the wavelet shrinkage) yields a much lower
classification error than that working directly on the original image data, as soon as
we have a class image with some structure in it. It is worth noting that this study is
based on a model for feature vector assuming normality of class distributions.

Concerning the conventional nonparametric classification methods such as the
k-nearest neighbour classifier, its successful combination with the wavelet trans-
form and information theory [15, 25] has shown a great potential in remote sensing
applications. The methodology will be described in the following subsections.

We assume that a given pixel from the scene belongs to one of a fixed number of
classes, say,C1; : : : ; CK . The proportion of pixels belonging to class Cj in the popu-
lation under study is denoted by �j , which is usually unknown. Each pixel gives rise
to certain measurements (e.g., spectral signatures in remote sensing images, or their
various transformations), which form the d -dimensional feature vector X 2 R

d .
Our task is to allocate each pixel into one of the classes in fC1; : : : ; CKg, on the
basis of the observed value X D x and/or prior information about the classes.

14.2.1 Conventional Classification Methods

Here follows a short description of three traditional classification methods. See [11,
16] for a comprehensive review of these methods.

14.2.1.1 Parametric Model

In parametric models, the feature vectors from classCj are assumed to be distributed
according to the density pj .x/. Then the posterior distribution of the classes after
observing x is p.Cj jx/ / �jpj .x/:

If we assume the probability model in which the observations for class Cj are
(d -dimensional) multivariate normal with mean �j and covariance matrix ˙j , the
Bayes rule is to allocate a future observation x to the class that minimises

Qj D �2 logp.Cj jx/ D .x � �j /
T˙�1

j .x � �j /C log
ˇ̌
˙j
ˇ̌ � 2 log�j :

This method is known as quadratic discriminant analysis (QDA). When the classes
have a common covariance matrix ˙ , minimizing Qj is equivalent to maximizing
the linear terms
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Lj D 2xT˙�1�j � �Tc ˙
�1�j C 2 log�j ;

which leads to the linear discriminant analysis (LDA).
In practice, we replace �j ,˙j or˙ , and �j with their estimates (e.g., maximum

likelihood) by using a training sample.

14.2.1.2 Nonparametric Model

In nonparametric designs we do not assume any model of the probability distri-
butions. There is a number of nonparametric classifiers based on nonparametric
estimates of the class densities or of the log posterior, such as kernel methods,
orthogonal expansion, projection pursuit, and others. Here we use the simple adap-
tive kernel method which gives a classifier known as the k-nearest neighbour rule.
The k-NN rule is introduced by [6], which is one of the most theoretically elegant
and yet simple classification techniques. It is based on finding the k nearest (usually
in the Euclidean distance) pixels from the training samples (prototypes), and taking
a majority vote amongst the classes of these k samples, or equivalently, estimating
the posterior distributions p.Cj jx/ by the proportions of the classes amongst the k
samples. The nearest neighbour rule (when k is 1) is of special interest in our later
applications.

Nonparametric classification is often associated with the notion “prototype”. A
prototype is a representative point of certain class in the feature space R

d and is
attached with both field and satellite information. Different classes can have differ-
ent number of prototypes, depending on the property of field data or ground truth
we have. Prototype selection plays a key role in the nonparametric classification.
k-NN is a prototype classifier.

Specifically, assuming the number of prototypes for class Cj is nj and n DPK
jD1 nj is the number of all prototypes. For an arbitrary pixel with observed fea-

ture value x, let B.x/ denote the hypersphere with centre x and containing exactly
k prototypes and jjB.x/jj the volume of B.x/. The number of prototypes in B.x/
from class Cj is denoted by kj . The unconditional probability density of x and the
class-conditional probability density for class Cj can be approximated as

p.x/ � k

njjB.x/jj and pj .x/ � kj

nj jjB.x/jj ; (14.1)

respectively. Then the posterior probabilities are obtained as

p.Cj jx/ D pj .x/�j
p.x/

�
kj

nj jjB.x/jj � nj

n

k
njjB.x/jj

D kj

k
; (14.2)

which implies that the k-NN classification rule assigns the class label independent
of the volume jjB.x/jj.
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When we are dealing with sparse or rarely occurring objects, however, it is
unrealistic to assume that the number of prototypes for these classes is large so
the approximation above may be violated. Thus there is an obvious risk that such
classes will be underestimated. To overcome this problem alternatives of deriving
the probabilities are needed.

The k-NN classifier uses the whole prototype set of any class to choose the neigh-
borhood, which differs from using the k-nearest neighbour density estimate for each
class. Ties in distances can occur with finite-precision data. One solution to this
problem is to include in the vote all distances equal to the kth largest.

Notice that “nearest” implies a certain metric over the feature space R
d . No

matter which metric is used, the k-NN rule is applied in the same way. However,
this metric has to be defined properly because the closeness in the feature space
is no longer so simple as in Euclidean case. This is connected to the similarity in
spatial statistics, which means that the smaller the distance, the higher the similarity
between input data and the prototype.

14.2.2 Nonparametric Classification: New Developments

Very often objects with high environmental values (such as old deciduous forest)
are rare. Remote sensing classification of sparse and rarely occurring objects in
the landscape is complicated and reported classification rates are usually poor. For
several reasons traditional methods will not give satisfactory results:


 The number of field plots in different classes varies too much leading to an
unfavorable treatment of sparsely occurring objects.


 Data editing methods, like the multiedit algorithm [16], often drop whole classes
when applied to moderately sized training sets with more dimensions and classes.


 Noncontextual methods neglect information from neighbouring plots and the
feature vector is not normally distributed.


 Parametric contextual classification methods do utilize information from neigh-
bouring plots but the demands for field data increases, and estimation of some
parameters in the model is unreliable and in many situations impossible.


 The feature vector is not normally distributed and the different class distributions
are often highly overlapping.

To overcome these problems nonparametric approaches have been used. Infor-
mation from neighbouring pixels will be utilized by using the wavelet transform to
denoise the original images by removing small wavelet coefficients and inverting
the wavelet transform. Hereafter a suitable classification algorithm is applied. For
previous work in this direction see [3, 15, 20, 22–26].

The nonparametric classification that we have developed is based on a new
approach for classification of multitemporal satellite data sets, combining multispec-
tral and change detection techniques. The classification method has to be adapted for
handling a mixture of reference data from different sources in order to compensate
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Table 14.1 Definition of forest classes
Proportion deciduous Age

10–39 40–69 70–109 110C
Pine � 70% 1 7 13 19

0–19% Spruce � 70% 2 8 14 20
“Remaining” 3 9 15 21

20–49% 4 10 16 22
50–69% 5 11 17 23
�70% 6 12 18 24

Class 25 D basal area � 1 m2 ha�1

for the lack of ground samples from rare classes within the main reference data
source.

As an example, classification of forest land in a study area located in the center
of Sweden is presented. In this application the forest is defined into 24 different
classes with respect to species composition and age, supplemented with the class
“low basal area”, when species composition and age do not have any meaning.
Table 14.1 presents the definition of those 25 forest classes to be used.

The field data from the Swedish National Forest Inventory (NFI) and satellite
images with different dates were used. The dimension of the feature space is 12.

Our classification algorithm is based on the nearest neighbour method. The main
procedures are as follows.


 Define the target function. The probabilities of correct classification for each
class are used, so that each class is of equal importance. Note that it differs from
the overall correct classification, which is often used in various applications.


 Denoise the feature vector. The wavelet shrinkage method based on 2D-wavelet
transform is used to denoise the images. The feature vector consists of compo-
nents that are pixel values from different spectral bands of different temporal
images over both years and seasons.


 Remove outliers from the reference data. When the feature vector has high
dimension and the number of classes is large, new data editing methods are
needed in order to remove outliers due to poor quality of field data, and to find
out the prototypes for each class in the case of nearest neighbour classifiers. This
must be done so that poor quality data is removed at the same time as most of the
natural variations within the different classes are kept. This is achieved by work-
ing with a further subdivision of the classes with respect to other information, as
e.g. basal area, and for the new classes (now 109 classes) suitable techniques for
outlier removal are applied.


 Calculate the information values in the components in the feature vector. Before
the feature vector can be used the components have to be rescaled. The size of
the rescaling factor is a function of the dependence between the studied objects
and the component. Since the classes are defined by more than one variable,
there will not exist any natural order relation between the classes so conven-
tional dependence measures, such as the correlation coefficient, cannot be used.
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Instead measures with the origin in information theory are used. Here we apply
the normed information rate, IR�;�, introduced by [13], which measures the
divergence between the general 2-dimensional distribution and the 2-dimensional
distribution calculated under the assumption about independence and then uses
Shannon’s entropy for the general 2-dimensional distribution to get a measure
between zero (independence) and one (perfect dependence). The definitions are
as follows:

IR�;� D I�;�

H�;�
; (14.3)

where

I�;� D
X
i;j

P.� D i; � D j / log
P.� D i; � D j /

P.� D i/P.� D j /

is the Kullback–Leibler information rate for the class variable � and the feature
component variable �, and

H�;� D �
X
i;j

P.� D i; � D j / logP.� D i; � D j /

is the Shannon joint entropy for .�; �/.

 Determine a proper metric. We prefer to use the following metric:

vuut dX
iD1

w2i

ˇ̌
ˇ̌xi .s/� xi .t/

qi

ˇ̌
ˇ̌
2

: (14.4)

Here x.s/ D Œx1.s/; x2.s/; : : : ; xd .s/�, x.t/ D Œx1.t/; x2.t/; : : : ; xd .t/� are two
pixels at location s and t, with attribute of the spectral components, d is the
dimension of feature vector, qi is the inter-quartile range of the i th feature
component, and the weight

wi D ŒIRclass; feature component.i/�
p (14.5)

is determined by the normed information rate of the i th feature component
obtained from (14.3), raised to some power p. And p is determined so the target
function is maximized. Usually p equals to 1.


 Determine prototypes for the classes. Here the information about the occurrence
of different classes in the reference data is used.


 Run a nonparametric classification. Here the nearest neighbour classifier is used.

 Declare the quality of classification result by using probability matrices. The

probability matrix is based on the confusion matrix and defined as P D ŒPij �

where Pij is the probability that class Ci is classified as class Cj .

As a result in the example, the probability for correct classification varies
between 30 and 40% for most of the pure classes although it is considerably lower
for some other classes, especially those with different types of mixed forest. The
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Table 14.2 Probabilities of correct classification for C1 and C24
Class LDA with prior LDA without prior Our method

C1 70% 12% 39%
C24 0% 34% 37%

largest class is C1 (younger pine forest) and the smallest is C24 (older deciduous
forest). We have compared our classification rates with LDA with or without prior
information. Note that it was impossible to apply QDA here because the field plots
for small classes were too few to be able to estimate the covariances. LDA with prior
information is the most commonly used method. With this method the probability
for correct classification is 0% for 14 out of the 25 classes. The reason is that all
small classes essentially are classified as the larger classes, particularly C1, which
gets a rate of 70% for correct classification. If we do not use any prior information
then the rates increases for the small classes but drops dramatically (to 12%) for
class C1. A comparison for the largest and smallest classes is given in Table 14.2.

As we want to have high classification accuracy also for small classes they have
to be overestimated (unless the classification is 100% perfect). To overcome this
problem we can calculate matrices for area correction and the precision in the cor-
rection matrices, using Monte Carlo techniques. From this it is possible to obtain
unbiased estimates for the different classes and standard errors of the area estimates.
Resulting estimated areas and standard errors are omitted here.

It is worth to notice that the estimation property is reliable only on the scene
level and it is inappropriate to apply it to the local area or pixel level. To obtain area
estimation of good quality (such as unbiasedness), a new approach is needed, and
we will take it up in the coming subsection.

14.2.3 Probabilistic Classifier

For several applications and a large number of users it is necessary to give pixelwise
information. However, as the distributions for different classes are highly overlap-
ping it is not possible to get satisfactory accuracy at pixel level. It is, therefore,
necessary to introduce a new concept, pixelwise probabilistic classifiers. Instead of
classifying each pixel to a specific class, each pixel is given a probability distribu-
tion describing how likely the different classes are. This new concept has several
important applications: (a) it is possible to give quality declarations at pixel level,
(b) it is possible to derive unbiased area estimates also for small areas and deviating
areas, (c) it is possible to derive cost-efficient monitoring systems.

The concept of pixelwise probabilistic classifiers is closely related to fuzzy clas-
sification; see [2] for different definitions. The drawback with fuzzy classifiers is
that until now the methods are not based on any rigorous theory and the literature is
sparse where the probabilistic classifier definition is used.
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In principle, probabilistic classifiers can be derived both from parametric and
nonparametric classification methods. However, deriving probabilistic classifiers
from parametric methods is a complicated task since for several classes the distri-
butional assumptions are not satisfied. Furthermore, it is of key importance to have
consistent parameter estimates. To avoid the problem of misspecification, nonpara-
metric approaches are preferred. The probabilistic classifier derived here is based on
the k-NN method with k D 1, defined in Sect. 14.2.1.2.

Articles on fuzzy classification and k-NN are available, see e.g. [1, 10], but they
have a different scope. To be useful for area estimation and quality assessment at
pixel level the probabilities must be extracted from proper probability distributions
for the different classes. When the classifier uses distances in feature space to derive
the probabilities it is intuitively obvious that the probabilities will be inversely pro-
portional to the distances raised to some power. However, there is only one value
that is correct and that value depends on the dimension of the feature vector. Actu-
ally, by using the nonparametric density estimation [12], the density for class Cj at x
will be inversely proportional to the volume of the nearest neighbour ball with cen-
ter x. Note that the volume is proportional to the radius, based on the metric defined
in (14.4), raised to the dimension of the feature space. The derivation is similar as
for (14.1) and (14.2), but now using the NN-balls in the feature space.

As a theoretical background, we introduce a proposition based on [14] before the
derivation. Let B.x; r/ D fy W jx � yj � rg denote the ball of radius r with center
at x in the feature space. Then the volume of the ball B.x; r/ is kB.x; r/k D cd r

d

where cd D �d=2=� .d=2C 1/.
Let X1;X2; : : : ;Xn be a sequence of i.i.d. d -dimensional random vectors with

the common density function g.x/ and define the nearest neighbour distance to the
point Xi by

Rn.i/ D min
j¤i

ˇ̌
Xi � Xj

ˇ̌
:

Then B.Xi ; Rn.i// is the so-called NN-ball of Xi .

Proposition 14.1. Let X1;X2; : : : ;Xn be i.i.d. random vectors with the common
density function g.x/ and

Yn.i/ D n kB.Xi ; Rn.i//k D ncdR
d
n .i/:

Then

.Xi ; Yn.i//
D�! .X; Y /; as n ! 1, (14.6)

where X has density g.x/ and Y given X D x has an exponential distribution with
parameter g.x/.

Note that .Xi ; Yn.i//; i D 1; 2; : : : ; n are exchangeable and asymptotically
independent, and the joint probability density of .X; Y / is g2.x/ expf�yg.x/g.

Furthermore,

EŒYn.i/jXi D x� ! EŒY jX D x� D 1=g.x/:
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Let now

Rn.x; Cj / D the minimum distance in the feature space (using the metric (14.4))

from x to the prototypes of class Cj . (14.7)

The conditional probability density for class Cj can be estimated by

Opj .x/ D 1

nj
��B.x; Rn.x; Cj //

�� : (14.8)

Then the posterior probabilities are obtained as

Op.Cj jx/ D �jpj .x/PK
iD1 �ipi .x/

D �j

nj
��B.x; Rn.x; Cj //

��
,

KX
iD1

�i

ni kB.x; Rn.x; Ci //k
�j 'nj =n' 1��B.x; Rn.x; Cj //

��
,

KX
iD1

1

kB.x; Rn.x; Ci//k

D R�d
n .x; Cj /PK

iD1R�d
n .x; Ci /

:

For each pixel with location s and feature vector x.s/ D Œx1.s/; x2.s/; : : : ; xd .s/�,
we assign the following proper probability to class Cj

pj .s/ D R�d
n .x.s/; Cj /PK

iD1R�d
n .x.s/; Ci /

: (14.9)

Thus, the probability vector at pixel s is obtained as p.s/ D Œp1.s/; p2.s/; : : : ;
pK.s/�.

14.2.4 Applications of the Probabilistic Classifier

The probabilistic classifiers can be used in different ways. For instance, it can be
used to measure uncertainty at pixel level, or to obtain reliable area estimates locally.
It can also be applied to correct the erroneous mask of maps (see comments in the
last section).


 Quality evaluation of traditional classification
A traditional classification is obtained by choosing the class with the highest
probability for each pixel. With the probabilistic classifier, it is possible to give
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quality declaration at pixel level. The pixelwise vectors of probabilities (14.9) can
be used to judge how reliable a traditional classification is and to derive measures
of the uncertainty (entropy) for the individual pixels. Based on the probability
vector, the entropy at pixel s is defined as

�
KX
jD1

pj .s/ logpj .s/: (14.10)


 Monitoring systems
In application, in addition to the classified map a raster map expressing the qual-
ity (entropy defined in (14.10)) for each pixel is produced. Areas where the
precision is unsatisfactory will be identified. In these areas it is possible to take
additional field plots and perform an improved classification. Here it is important
that the classification method can handle different types of reference data. The
final product will be two maps, one showing the pixel wise classification and
the other giving the classification accuracy at pixel level. Figure 14.1 illustrates
our concept of probabilistic classifiers operated on a small site of size 16 � 16

pixels. The area consists of mixed forest, which implies difficulty to classify.
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Fig. 14.1 The concept of probabilistic classifiers. Test area with mixed forest, eight classes. Field
plots can be added in areas where entropy is high (i.e., quality at pixel level is unsatisfactory) to
produce additional reference data as input to a renewed (improved) classification
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Darkest colored pixels indicate higher entropy values or unsatisfactory quality.
The diagram on top right shows the probability distributions of 16 pixels (one
row) picked from the entropy map on the left side. For a given pixel, the more
even distributed probabilities among classes, the high entropy. If one class domi-
nates the probability vector (i.e., having high probability), then the pixel has very
low entropy and is reliably classified.


 Area estimation
Although it is possible to obtain satisfactory area estimates on scene level using
area correction matrices derived from the confusion matrices as we discussed in
Sect. 14.2.2, the precision is not good enough for smaller areas or on pixel level.
The pixelwise vectors of probabilities can be used to get unbiased area estimates
also for quite small areas and for deviating areas, such as potential areas for
nature reserves. The area estimates is obtained simply by summation of the “class
probabilities” over the selected subregion. It is extremely important that proper
probability distributions allowing frequency interpretation are derived; otherwise
misleading results are obtained.

Concerning the quality assessment related to our new area estimates, resam-
pling and subsampling methods will be considered. The advantage of such
methods is that statistical inference can be done without knowledge of the under-
lying spatial dependence mechanism and marginal distributions that generated
the data. Furthermore, for the user no explicit theoretical derivation is necessary
but instead intensive computing. Most of the proposed methods in the literature
assume stationary data. However, when modeling real-life data, the hypothesis
of stationarity often must be rejected. Especially for nonstationary spatial data,
there are very few available methods to do inference. Sherman [17] has provided
a short discussion on subsampling of spatial lattice data in the context of regres-
sion models with stationary errors, and later [4, 5] has proposed resampling and
subsampling methods for nonstationary spatial lattice data. The nonparametric
variance estimator proposed by them can be used to estimate not only the vari-
ance of the area estimates derived from the probabilistic classification, but also
the variance of estimators for continuous variables (such as wood volume) with
respect to (estimated) area of interest (e.g., forest).

14.3 k-NN Estimation in Natural Resources

Starting around 1990 with articles by [9, 21], k-NN techniques have gained pop-
ularity for natural resources applications. Kilkki and Pivinen [9] used the term
“reference sample plot method”. Later the term “k-NN method” was established
although the method differs from the k-NN method introduced by [6]. Katila and
Tomppo [8] provided a survey of the early k-NN (reference sample plot method)
literature for estimating forest attributes. For prediction we have observations of
the response variable Y for a subset of pixels and observations of covariates X
(d -dimensional feature vector) for all pixels. The k-NN prediction for the i th pixel is
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Qyi D
0
@

kX
jD1

wij

1
A

�1
kX
jD1

wijyij ;

where fyij ; j D 1; 2; : : : ; kg is the set of observations closest to the i th pixel with
respect to a metric in the feature space, and wij is the weight assigned to the j th
nearest neighbour observation. Common selections for the metric are Mahalanobis
distance or Euclidean distance. Usually the weights are chosen to be inversely pro-
portional to the distance raised to the power of 1 or 2, regardless of the dimension
of the feature space.

Theoretical considerations about the selection of the weights and a suitable met-
ric are lacking. For selection of a suitable metric some of the ideas described in
Sect. 14.2.2 will be useful. In this section we will use NN-balls to show how the
weights should be calculated.

For the reference set (e.g., satellite data) we have information both for the
response variable Y and the feature vector X. For a pixel with value x, the best pre-
dictor of Y , given squared loss function, is the conditional expectationEŒY jX D x�.
It can be written as

EŒY jX D x� D
Z
yp.yjx/dy D

Z
y
p.xjy/p.y/

p.x/
dy: (14.11)

The support of Y is partitioned into sets Cj ; j D 1; : : : ; K: Then

EŒY jX D x� D
KX
jD1

1

p.x/

Z

Cj

yp.xjy/p.y/dy

D
KX
jD1

1

p.x/
P.Y 2 Cj /

Z

Cj

yp.y/

P.Y 2 Cj /p.xjy/dy:

If the partition fSCj g is fine enough then p.xjy/ is almost constant for all y 2 Cj ,
and denoted by p.xjCj /. This gives us

EŒY jX D x� '
KX
jD1

1

p.x/
P.Y 2 Cj /p.xjCj /

Z

Cj

yp.y/

P.Y 2 Cj /dy

D
KX
jD1

1

p.x/
P.Y 2 Cj /p.xjCj /�j : (14.12)

Here �j is the expected value of the response variable for class Cj and p.xjCj / is
the density of the covariates for class Cj .

Suppose now that for the class Cj we have nj reference points and let n DPK
jD1 nj , the total number of reference points. Suppose that a suitable metric in

the feature space, such as (14.4), has been chosen. With respect to that metric the
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distance from the pixel with covariate value x to the nearest pixel in the reference
set belonging to class Cj is denoted, as in (14.7), by Rn.x; Cj /. As we have seen
before the volume of the nearest ball converges in distribution to an exponential
distribution,

nj
��B.x; Rn.x; Cj //

�� D nj cdR
d
n .x; Cj /

D�! Zj ;

where Zj is exponential distributed with mean 1=p.xjCj /. Furthermore,

EŒnj cdR
d
n .x; Cj /� ! EŒZj � D 1

p.xjCj / :

To obtain a predictor Oy.x/ of the pixel with covariate value x we substitute each
component in the best predictor EŒY jX D x� (14.12) with a reasonable estimate.
Thus,

Oy.x/ D
KX
jD1

1

Op.x/
OP .Y 2 Cj / Op.xjCj / O�j : (14.13)

If the reference set is chosen properly, then

nj

n
! P.Y 2 Cj /:

The mean �j has to be estimated by the observed value yj and the density p.xjCj /
will be estimated by Œnj cdRdn .x; Cj /�

�1, andp.x/ by
PK
jD1

nj

n
Œnj cdR

d
n .x; Cj /�

�1.
Thus

Oy.x/ D 1

Op.x/
KX
jD1

yj
nj

n
Œnj cdR

d
n .x; Cj /�

�1

D
0
@

KX
jD1

R�d
n .x; Cj /

1
A

�1
KX
jD1

yjR
�d
n .x; Cj /: (14.14)

Consequently, the weights in k-NN estimation shall be inversely proportional to the
distance raised to the power of d , the dimension of the covariate (feature) space,
and not to 1 or 2 which are standard choices in the k-NN (reference sample plot
method) literature.

14.4 Final Remarks

Remote sensing classification of sparse and rarely occurring objects in the land-
scape is complicated. An approach, based on nonparametric statistical methods,
has been developed to overcome the problems arisen with traditional classification
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methods. It utilises information from multitemporal and multispectral satellite data
and change detection techniques. The classification method is also adapted for han-
dling a mixture of reference data from different sources in order to compensate for
the lack of ground samples from rare classes within the main reference data source.
The new algorithm is derived in order to optimize the average probability for correct
classification, i.e., each class is equally important.

As we have seen the probabilistic classifiers are useful for measuring uncertainty
at pixel level and obtaining reliable area estimates locally. It can also be applied
to correct the masks of maps. The masks from the topographic maps are usually
used to define different land use of vegetation, e.g., forest land, peat land, or agri-
cultural land. Then the classification is performed within the mask. It has, however,
been found that the errors in masks can be significant, and thus development of bet-
ter masks is needed. Otherwise we know a priori that the classification accuracy
will not be satisfactory. An application of the probabilistic classifiers to obtain new
masks for forest land and peatland has been conducted successfully in other studies
of the authors. The idea is as follows: (a) use the probabilistic classifier together
with information from digital elevation model (wetness index) and neighbouring
pixels to get the probability vector for classes (both forest and peatland) at pixel
level and consider it as a prior probability distribution for each pixel; (b) apply the
probabilistic classifier by using remotely sensed data to get the probability vector
for classes at pixel level; (c) join (a) with (b) to get the a posterior probability vector
for each pixel; (d) aggregate the classes to two categories: Forest and Peatland; (e)
calculate entropies for each pixel and determine the threshold value according to
the entropies so that pixels belong to one of the following zones: Forest, Peatland,
or Transition Zone; (f) recalculate the probability vectors for pixels in Forest and
Peatland zones. In such a way, two masks with higher quality are obtained for forest
and peatland, respectively. A third one, the Transition Zone, is given for pixels with
a certain degree of uncertainty.
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Chapter 15
Probabilistic Recurrence Relations

M. Bhaskara Rao, S. Kasala, and H. Zhang

Abstract A sampling of discrete probability problems, some of them coming from
consulting work, is presented. We demonstrate how a probabilistic recurrence rela-
tion arises from the pit of the problem and present ways and means of solving the
recurrence relation.

15.1 Introduction

Recurrence relations crop up frequently in mathematical research. The basic set-
up is as follows. A sequence Xn; n � 0 of numbers is said to satisfy a recurrence
relation of order k � 1 if

Xn D a1Xn�1 C a2Xn�2 C � � � C akXn�k C bn; n � k

for some fixed constants a1; a2; � � � ; ak , and sequence bn; n � k. The goal is to
find an explicit mathematical expression for the nth term Xn. In order to find an
expression, we need the values of X0; X1; � � � ; Xk�1. These values are collectively
called ‘boundary conditions’. The mathematical form, of course, depends on the
‘boundary conditions’. If it is not possible to find an explicit mathematical expres-
sion for the nth term of the sequence, one could investigate the asymptotic behavior
of the sequence. If the sequence bn; n � k is a constant, i.e., bn D b for all n � k,
the recurrence relation is said to be homogeneous. If the relation is homogeneous,
one could use ‘difference equations’ methodology to find an explicit expression for
the nth term of the sequence. If the relation is not homogeneous, one has to devise
some ‘ad hoc’ method to solve the recurrence relation.
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A classical example of a recurrence relation is the one satisfied by the Fibonacci
sequence Xn; n � 0, i.e., Xn D Xn�1 C Xn�2; n � 2 with boundary conditions
X0 D 0 andX1 D 1. This is a homogeneous recurrence relation of order 2. The nth
term has an explicit expression:

Xn D �n � .1 � �/np
5

; n � 0;

where � D
p
5C1
2

is the so-called Golden Ratio.
In this article, we focus on recurrence relations that arise from probabilistic

investigations. Probabilistic recurrence relations are of two kinds. The sequence
Xn; n � 0 could be a sequence of probabilities satisfying a recurrence relation
of order k for some k � 1. Solving such recurrence relations falls into the realm
of mathematics. On the other hand, the sequence Xn; n � 0 could be a sequence of
random variables satisfying a recurrence relation of the type

Xn
dD f .Xn�1; Xn�2; : : : ; Xn�k/; n � k;

where the symbol
dD means ‘equal in distribution’ and the distribution of Xn is the

same as the distribution of f .Xn�1; Xn�2; : : : ; Xn�k/. The function f .�/ is fixed
and known. Typically, the function f .�/ is of the form

f .Xn�1; Xn�2; : : : ; Xn�k/ D a1Xn�1 C a2Xn�2 C � � � C akXn�k C Yn;

where a1; a2; : : : ; ak are constants and Yn is a sequence of random variables inde-
pendent of the sequence Xn; n � 0. The goal is to determine the distribution and
properties of Xn. In order to determine the distribution and properties of Xn such as
mean and variance, we ought to have a knowledge of the distribution of the initial
random variables X0; X1; : : : ; Xk�1, and also that of Yn; n � k.

The probabilistic recurrence relation outlined above looks like an Autoregressive
model encountered in Time Series Analysis but the random variables involved have
special distributions. In our ‘modus operandi’ the random variables have discrete
distributions. Further, we do discuss situations in which the recurrence relations are
not exactly the type outlined above but in spirit they are similar.

In this article, we present a number of examples from discrete probability which
are unified by the presence of a probabilistic recurrence relation. Some of these
problems came from our consulting work. These are listed below:

1. Dermal Patch Problem
2. Patterns in Coin Tossing
3. Chemical Bonding Problem
4. Yell Game
5. Noodles Problem
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These examples can be used in a class-room setting to demonstrate how proba-
bilistic recurrence relations arise naturally in some probabilistic investigations and
exhort students to find ways to solve such recurrence relations.

15.2 An Illustrative Example

Let X1; X2; � � � be a sequence of independent identically distributed Bernoulli ran-
dom variables with Pr .X1 D 1/ D p D 1 � Pr .X1 D 0/ with 0 < p < 1 fixed.
What is the distribution of Sn D X1 C X2 C � � � C Xn? There are many ways this
problem can be solved. We can solve this problem by building a probabilistic recur-
rence relation. Note that Sn D Sn�1 C Xn. We postulate the induction hypothesis
that Sn � Binomial.n; p/ for all n � 1, i.e., Pr .Sn D r/ D �

n
r

�
pr .1 � p/n�r ; r D

0; 1; � � � ; n. The result is true for n D 1. Assume that the result is true for all k � n.
We will show that the result is true also for k D n C 1. Observe that SnC1 D 0 if
and only if Sn D 0 and XnC1 D 0. In view of independence,

Pr .SnC1 D 0/ D Pr .Sn D 0/ � Pr .XnC1 D 0/ D .1� p/nC1:

Let 1 � r � n. Observe that SnC1 D r if and only if Sn D r and XnC1 D 0 or
Sn D r � 1 and XnC1 D 1. In view of independence,

Pr .SnC1 D r/ D Pr .Sn D r/ � Pr .XnC1 D 0/C Pr .Sn D r � 1/ � Pr .XnC1 D 1/

D
 
n

r

!
pr.1 � p/n�r � .1 � p/C

 
n

r � 1

!
pr�1.1 � p/n�rC1 � p

D
  
n

r

!
C
 

n

r � 1

!!
pr.1 � p/n�rC1

D
 
nC 1

r

!
pr.1 � p/n�rC1:

Finally, SnC1 D nC 1 if and only if Sn D n and XnC1 D 1. Consequently,

Pr .SnC1 D nC 1/ D Pr .Sn D n/ � Pr .XnC1 D 1/ D pn � p D pnC1:

Thus SnC1 � Binomial.nC 1; p/.

15.3 Dermal Patch Problem

A dermal patch has been created to release doses incrementally over a period of
10 days into an organism to which the patch has been attached. The goal of the
doses is to reach ten receptors, currently dormant, inside the organism, and make
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them active. On Day 1, the patch releases one dose, which latches onto one receptor
and makes it active. On Day 2, the patch releases two doses, which latch onto two
receptors, one dose per receptor. If the receptor is already active, the new dose makes
it inactive. If the receptor is not active, the new dose makes it active. On Day 3, the
patch releases three doses of medicine, which latch onto three receptors, one dose
per receptor. The active or inactive status of the receptor which received a dose
follows the same paradigm outlined above. This will continue until the tenth day,
on which ten doses are released, which latch onto all the ten receptors, one dose per
receptor. The question, posed by a pharmaceutical company, is to determine how
many receptors are expected to be active at the end of the tenth day.

We have generalized and synthesized the problem. We have christened the
generalization as the ‘Light Bulb’ problem.

In the light bulb problem, we assume that there are n � 1 light bulbs, serially
numbered from 1 to n, each one attached to a toggle switch. If the bulb is off and
its switch is pressed, the bulb lights up. If the bulb is on and its switch is pressed,
then the bulb is off. Initially all bulbs are set off. On Day i.D 1; 2; : : : ; n/ exactly
i of the n switches are randomly pressed. The question raised is to determine the
expected number of light bulbs on at the end of the nth day. The problem was first
considered in [8].

Let Xn be the number of light bulbs on at the end of day n. Write

Xn D Xn1 CXn2 C � � � CXnn;

whereXni D 1, if the i th bulb is on at the end of Day n, and D 0 otherwise. Note that
Xn1; Xn2; � � � ; Xnn are exchangeable. It suffices to calculate p.n/1 D Pr .Xn1 D 1/.

This would give E.Xn/ D np
.n/
1 . Let

p
.r/
1 D Probability that the bulb attached to Switch 1 is on at the end of Day r:

Then the light bulb attached to Switch 1 lights up at the end of Day r if and only if
(1) the light bulb was on at the end of Day .r � 1/ and Switch 1 was not pressed on
the r th day; or (2) the light bulb was off at the end of Day .r � 1/ and Switch 1 was
not pressed on the r th day. We then come up with the following recurrence relation,
a non-homogeneous difference equation of order 1,

p
.r/
1 D

�
1 � r

n

�
p
.r�1/
1 C r

n
.1 � p

.r�1/
1 / D r

n
C
	
1 � 2r

n



p
.r�1/
1 ; r D 2; 3; � � � ; n;

with boundary conditionp.1/1 D 1=n. To solve this equation, letting q.r/1 D p
.r/
1 �1

2
,

r D 1; 2; � � � ; n, we have the following recurrence relation

q
.r/
1 D

	
1 � 2r

n



q
.r�1/
1 ;
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for r D 2; 3; � � � ; n with boundary condition q.1/1 D 1
n

� 1
2

. Thus, we obtain

p
.r/
1 D 1

2
C
	
1

n
� 1

2


 rY
iD2

	
1 � 2i

n



D 1

2

 
1 �

rY
iD1

	
1 � 2i

n


!
;

for r D 1; 2; � � � ; n. Therefore,

E.Xn/ D n

2

 
1 �

nY
iD1

	
1 � 2i

n


!
:

Note thatEXn D n
2

if n is even, and � n
2

if n is odd. The idea of recurrence relation
has been extensively exploited in [8] to calculate the variance, covariance and the
distribution of Xn.

15.4 Patterns in Coin Tossing

If we toss a fair coin four times, what are the chances of getting the pattern HHHH?
HHHT? They are the same. Let us pose the problem differently. Keep tossing the
coin until we get the pattern HHHH. How many tosses are needed to get the pat-
tern HHHH? How many tosses are needed to get the pattern HHHT? It is harder to
get the pattern HHHH than the pattern HHHT in the sense that the expected num-
ber of tosses required to get the pattern HHHH is greater than the corresponding
expectation for HHHT.

Questions on expected number of tosses needed for any pattern of outcomes to
appear for the first time have been solved elegantly using martingale arguments
in [6] and [5]. Their work was further extended in [7]. In this section, we focus
on the distribution of the number of tosses required. We show how probabilistic
recurrence relations help solve the problem and provide a rich source and variety of
number sequences.

Let TH be the number of tosses required to get heads for the first time. It is an
elementary exercise that the distribution of TH is geometric, i.e.,

TH: 1 2 3 � � �
Probability: 1=2 .1=2/2 .1=2/3 � � �

with E.TH/ D 2.
Let THH be the number of tosses required to get the pattern HH. It is not hard to

show that its distribution is given by

THH: 2 3 4 5 6 � � �
Probability: .1=2/2 .1=2/3 2.1=2/4 3.1=2/5 5.1=2/6 � � �
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with E.THH/ D 6. A surprising feature about the distribution is that the coeffi-
cients of power of 1=2 form the Fibonacci sequence! The distribution of THH can be
derived from that of TH. The key idea is a probabilistic recurrence relation.

Suppose that we are observing TH. Look at the .TH C 1/st toss. It could be either
H with probability 1/2 or T with probability 1/2. If it is H, we have the pattern
HH occurring for the first time and THH D 1 C TH. If it is T, we need to start
from scratch beyond the .TH C 1/st toss to look for the pattern HH. Consequently,
THH D 1CTHCT �

HH, where T �
HH is an independent copy of THH. These deliberations

lead to the following probabilistic recurrence relation

THH D
�

1C TH with probability 1/2,
1C TH C T �

HH with probability 1/2.

It is easy to exploit this recurrence relation to get ETHH.

ETHH D .1C ETH/ �
	
1

2



C .1CETHH C ET �

HH/ �
	
1

2




D 3C
	
1

2



ETHH;

implying thatETHH D 6. This relation can be exploited to calculate variance of THH

and distribution of THH. As for the distribution of THH, note that

THH D 2 if and only if TH D 1:

Consequently,

P.THH D 2/ D
	
1

2



Pr .TH D 1/ D

	
1

2


2
:

Also,
THH D 3 if and only if TH D 2:

Hence,

P.THH D 3/ D
	
1

2



Pr .TH D 2/ D

	
1

2


3
:

Now

THH D 4 if and only if TH D 3 or

THH D 1 and T �
HH D 2:

Therefore,

Pr .THH D 4/ D Pr .THH D 3/

	
1

2



C Pr .THH D 1/Pr .T �

HH D 2/

	
1

2




D
	
1

2


4
C
	
1

2


	
1

2


2 	
1

2



D 2

	
1

2


4
:
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One can proceed inductively to lay out the entire distribution of THH. It should be
pointed out that there are different ways to develop a recurrence relation for THH.
Following the same trail, we have obtained the distribution of THHH.

THHH: 3 4 5 6 7 8 9 � � �
Probability: .1=2/3 .1=2/4 2.1=2/5 4.1=2/6 7.1=2/7 13.1=2/8 24.1=2/9 � � �

A serendipitous discovery is that the coefficients of powers of
�
1
2

�
in the distri-

bution constitute a tribonacci sequence, i.e.,

f1 D 1; f2 D 1; f3 D 2; f4 D 4; f5 D 7; f6 D 13;

f7 D 24; � � � ; fn D fn�1 C fn�2 C fn�3;

etc. In general, one can show that the coefficients of powers of
�
1
2

�
in the distribution

of THH � � �H„ ƒ‚ …
n

constitute a n-bonacci sequence. Further,

E.THH � � �H„ ƒ‚ …
n

/ D 2nC1 � 2:

Using similar ideas, we have obtained the distribution of THT.

THT: 2 3 4 5 � � �
Probability: .1=2/2 2.1=2/3 3.1=2/4 4.1=2/5 � � �

with E.THT/ D 4. Note that the coefficients of powers of
�
1
2

�
in the distribution

constitute the entire sequence of natural numbers.
A very rich family of distributions on f0; 1; 2; 3; � � � ; g can be generated by look-

ing at the distributions of Tpattern for a variety of patterns. Further, by looking at
the coefficients of powers of

�
1
2

�
in the distributions, we will have a rich variety

of positive integer sequences. In [4], expectations for patterns of length 3 are given
using Markov Chain ideas. Here is a partial list of expectations.

Pattern Expectation

H 2
HH 6
HT 4

HHH 14
HHT 8
HTH 10
THH 8

One can provide a general formula for E.Tpattern/ for any given ‘Pattern’ of heads
and tails. If the ‘Pattern’ is of length n, then
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E.Tpattern/ D 2n C b1 � 2n�1 C b2 � 2n�2 C � � � C bn�1 � 2;

for some b1; b2; � � � ; bn�1 in f0, 1g. The following algorithm gives the coefficients.
Let a1a2 � � �an be a pattern of length n.

Stage 0: Write the pattern as follows.

a1a2 � � �an
a1a2 � � �an

There is a perfect alignment.
Stage 1: Slide the second pattern one position to the right.

a1a2a3 � � �an
a1a2 � � �an�1an

If there is a perfect match in the common positions of both the patterns, b1 D 1,
otherwise, b1 D 0.

Stage 2: Slide the second pattern two positions to the right.

a1a2a3a4 � � �an
a1a2 � � �an�2an�1an

If there is a perfect match in the common positions of both the patterns, b2 D 1,
otherwise, b2 D 0, and so on : : :.

As an illustration, look at the pattern HHTTHH.

Stage 0: Write the pattern as follows.

HHTTHH

HHTTHH

There is a perfect alignment.
Stage 1: Slide the second pattern one position to the right.

H HTTHH

HHTTHH

b1 D 0.
Stage 2: Slide the pattern two positions to the right.

HH TTHH

HHTTHH

b2 D 0
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Stage 3: Slide the pattern three positions to the right.

HHT THH

HHTTHH

b3 D 0

Stage 4: Slide the pattern four positions to the right.

HHTT HH

HHTTHH

b4 D 1

Stage 5: Slide the pattern five positions to the right.

HHTTH H

HHTTHH

b5 D 1

Consequently,
E.THHTTHH/ D 26 C 22 C 21 D 70:

15.5 Chemical Bonding Problem

A certain system has ten molecules in some hierarchical order from 1 to 10, say. A
catalyst is added to the system and the resultant reaction lines up the molecules. One
can read the hierarchies of the molecules from left to right. If there are molecules in
the line-up in consecutive increasing hierarchical order, then these molecules merge
to become one molecule. A new hierarchical order sets in among the molecules that
are left over including the merged ones. Again, a catalyst is added to the system and
the whole process of merging renews again. The process continues until we get a
single molecule. The question of interest is how many times catalysts are expected
to be added until we get a single molecule.

We have generalized and synthesized the problem. We relabel the problem as
‘Card Shuffling Problem’. (A related problem has been presented in [2]).

In the card shuffling problem, we assume that n cards, serially numbered from
1 to n, are shuffled thoroughly and spread out in a line on a table facing up. The
cards were then read from left to right, and those cards with consecutive numbers
in increasing order are merged. After the mergers, the cards are renumbered serially
from 1 onwards to whatever number of cards available now. Cards are shuffled thor-
oughly again and laid out on a table in a line facing up, etc. The process continues
until only one card is left. See [9] for more details.



226 M. Bhaskara Rao et al.

Let Xn be the number of shuffles needed so that there is only one card left at
the end. The principal questions are: E.Xn/? Var(Xn)? Distribution of Xn? We will
start with a special case n D 2 to illustrate our approach to the problem, and then
extend the idea to the general case.

Assume n D 2, let QX2 be an independent copy of X2. X2 takes values f1, 2,
3, � � � g. If the first shuffle ends up with the permutation 1 2 (with probability 1=2),
only one shuffle is needed. However, if the first shuffle ends with the permutation 2 1
(with probability 1=2), then the cards are needed to be shuffled again. The number
of shuffles needed to have one card left is QX2. In summary, we have the following.

Possible permutations: Probability Value of X2
f1 2g 1=2 1
f2 1g 1=2 1C QX2

In other words,

X2 D
�

1 with prob. 1/2, corresponding to the shuffle result f1 2g,
1C QX2 with prob. 1/2, corresponding to the shuffle result f2 1g,

This is a probabilistic recurrence relation. It can be exploited to calculate E.X2/.
For example

E.X2/ D 1 � .1=2/CE.1C QX2/ � .1=2/ D 1C 1

2
E.X2/;

implying that E.X2/ D 2.
Before moving to the general case, we follow the notation from [2, p. 168], by

letting Tn;s be the number of permutations of f1; 2; � � � ; ng such that in each per-
mutation there are s pairs of consecutive increasing integers in the permutation. For
n � 8, Tn;s is given by Table 1 on the same page. We further let A.n; k/; k D
1; 2; � � � ; n be the number of permutations of f1; 2; � � � ; ng in which k cards are left
after merging from n cards. It is shown in [9] that A.n; k/ D T .n; n � k/ andPn
kD1A.n; k/ D nŠ.
Suppose that there are n cards initially. Let QXk be an independent copy of Xk ,

k D 2; 3; � � � ; n. If the first shuffle ends up with the permutation 1 2 � � � n (with
probability A.n; 1/=nŠ D 1=nŠ), only one shuffle is needed. In general, if there are
k cards left (with probabilityA.n; k/=nŠ; k D 2; 3; � � � ) after the first shuffle and all
possible mergers, then the k cards are needed to be shuffled again and the number
of shuffles needed to have one card left is QXk . Therefore, we have the following
recurrence relation.

Xn D

8̂
<̂
ˆ̂:

1 with probability A.n; 1/=nŠ,
1C QX2 with probability A.n; 2/=nŠ

� � � � � �
1C QXn with probability A.n; n/=nŠ
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Hence, we have

E.Xn/ D 1C A.n; 2/

nŠ
E.X2/C � � � C A.n; n � 1/

nŠ
E.Xn�1/C A.n; n/

nŠ
E.Xn/;

and so

E.Xn/ D
 
1C

n�1X
kD2

A.n; k/

nŠ
E.Xk/

!�	
1 � A.n; n/

nŠ



:

The following table givesE.Xn/ when n � 10. More results can be found in [9].

n 2 3 4 5 6 7 8 9 10
E.Xn/ 2 3.33 4.61 5.84 7.02 8.17 9.30 10.42 11.40

15.6 Yell Game

This game is played by many improved comedy troupes for encouraging coopera-
tion between performers. See [1] for details. The game is played by N individuals
who stand in a circle, initially looking down at the floor. On a signal, all play-
ers simultaneously lift their gaze from the floor and each player fixes his/her gaze
exactly at one other player in the circle. If any two players make eye contact with
each other, they yell at each other and they are out of the game. The game continues
with players who remain. In [1], the focus was on calculating probability of silence.
In this section, we focus on determining the distribution of the number of people
left over at each turn of the game.

Let n� 2. Let X .n/0 DnD the number of players at the start of the game. Let

X
.n/

k
D the number of players at the end of kth turn of the game. If n is even,

the possible values of X .n/
k

are 0; 2; � � � ; n. If n is odd, the possible values of

X
.n/

k
are 1; 3; � � � ; n. Let us look at some special cases. Suppose nD 2. Then

X
.2/
0 D 2;X

.2/
1 D 0;X

.2/
2 D 0; � � � etc. Suppose n D 3. The distribution of X .3/1 is

given by

X
.3/
1 : 1 3

Probability 3=4 1/4

It is clear that X .3/
k
; k � 0 constitutes a Markov Chain with state space f1, 3g

and transition probability matrix

P D
	
1 0

3=4 1=4



:
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Using Markov Chain ideas or a recurrence relation approach, one can show that the
distribution of X .3/

k
is

X
.3/

k
: 1 3

Probability 4k�1
4k

1

4k

with E.X .3/
k
/ D 1C 2

4k . Let us look at the case n D 4. The distribution of X .4/1 is
given by

X
.4/
1 : 0 2 4

Probability 1=27 8/27 18/27

and E.X .4/1 / D 88=27. The sequence X .4/
k
; k � 0 constitutes a Markov Chain with

state space f0, 2, 4g and transition probability matrix

P D
0
@

1 0 0

1 0 0

1=27 8=27 18=27

1
A :

Using Markov Chain ideas or a recurrence relation approach, one can show that the
distribution of X .4/

k
is

X
.4/

k
: 0 2 4

Probability 1 � 2k �13
3kC2

2k �4
3kC2

2k �9
3kC2

with E.X .4/
k
/ D 2kC2�11

3kC2 . We do not have a general formula for the distribution of

X
.n/

k
for any n. One interesting problem is to find an expression for the probability

of ‘silence’ for any n. More precisely, let

pn D Pr .X .n/1 D n/ D Pr .all players stay in the game at the end of the first turn/

D Pr .No yells/:

It will be interesting to obtain an asymptotic formula for pn.

15.7 Noodles Problem

15.7.1 Introduction

There are n strings. Each string has two ends. Out of 2n ends two ends are selected
at random and tied. If the two ends come from the same string, we will have a loop
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right away. Otherwise, we will have .n�1/ strings with 2.n�1/ ends. We now select
two ends at random from these 2.n � 1/ strings. The selection will continue until
the last two ends available are tied. Let Xn be the total number of loops that will
form. The possible values of Xn are 1; 2; � � � ; n. The objective of this section is to
determine the distribution ofXn, its expected value, the variance, and the asymptotic
normality.

15.7.2 Expected Value

The random variables Xn�1 and Xn have a connection. If the initial selection of
two ends come from the same string, we will have a loop right away and Xn D
1 C Xn�1. On the other hand, if the initial selection of two ends come from two
different strings, then Xn D Xn�1. The probability that two ends come from the
same string is given by 1=.2n� 1/. The complementary event has the probability of
2.n� 1/=.2n� 1/. Formally, the relationship between the random variables can be
written as

Xn
dD
�
1CXn�1 with prob. 1=.2n� 1/,
Xn�1 with prob. 2.n� 1/=.2n� 1/. (15.1)

This fundamental recurrence relation in distribution can provide formulas for
E.Xn/ and Var.Xn/. In addition, the distribution of Xn is derivable. First, let us
work with the expected value. Observe that

E.Xn/ D 1

2n� 1
E.1CXn�1/C 2.n� 1/

2n � 1
E.Xn�1/

D 1

2n� 1
C E.Xn�1/; n D 2; 3; � � � :

The boundary condition isE.X1/ D 1. The formula for the expected value can be
set out directly from the recurrence relation between two consecutive expectations.

E.Xn/ D 1C 1

3
C 1

5
C � � � C 1

2n � 1
:

Note that the expected value diverges to 1, rather slowly, at the pace of lnn. An
approximation for the expected value is given by

E.Xn/ D lnn

2
C ln 2C 1

2
�;

where � � 0:5772 is the Euler’s constant. This approximation is good with agree-
ment between the exact value and the approximation taking place in the first two
decimal places for n equal to as low as 15.
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15.7.3 Variance

The recurrence relation between the random variablesXn andXn�1 can be exploited
to get a recurrence relation between Var.Xn/ and Var.Xn�1/. However, we present
another relation between Xn and Xn�1 by introducing a Bernoulli random variable.
In the context of n strings, let

In D
�
1 if the randomly chosen ends come from the same string,
0 otherwise.

(15.2)

The probability distribution of In is given by

P.In D 1/ D 1

2n� 1
D 1 � P.In D 0/:

The distributional recurrence relation (15.1) is equivalent to

Xn
dD Xn�1 C In (15.3)

withXn�1 and In independently distributed. Consequently, in view of independence
of Xn�1 and In,

Var.Xn/ D Var.Xn�1/C Var.In/ D Var.Xn�1/C 2.n� 1/

.2n � 1/2 ; n D 2; 3; � � � :

The boundary condition is given by Var.X1/ D 0. The formula for the variance
works out to be

Var.Xn/ D 1C 1

3
C 1

5
C � � � C 1

2n � 1
�
	
1C 1

32
C 1

52
C � � � C 1

.2n � 1/2



:

The variance also diverges to 1, rather slowly, at the pace of ln n. An approximation
to the variance is given by

Var.Xn/ D lnn

2
C ln 2C 1

2
� � 3

4

�2

6
:

15.7.4 Distribution

The recurrence relation (15.1) and (15.3) can be used for obtaining the distribution
of Xn from that of Xn�1. Let the distribution of Xn�1 be given by
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Xn�1 1 2 � � � n � 1

Probability pn�1;1 pn�1;2 � � � pn�1;n�1.

Let us denote the probability distribution of Xn�1 by the .n � 1/-tuple: .pn�1;1;
pn�1;2; � � � ; pn�1;n�1/. From (15.2), following the same notation, the probability
distribution of Xn is given by

.pn;1; pn;2; � � � ; pn;n/ D 1

2n � 1
� .0; pn�1;1; pn�1;2; � � � ; pn�1;n�1/

C 2n� 2

2n� 1
� .pn�1;1; pn�1;2; � � � ; pn�1;n�1; 0/:

The distribution of Xn is a convex combination of two probability n-tuples created
from the distribution of Xn�1. From this, it follows that, for n D 2; 3; � � � ;

pn;1 D 2n � 2
2n � 1pn�1;1 D .2n � 2/.2n � 4/ � � � .4/.2/

.2n � 1/.2n � 3/ � � � .5/.3/ I

pn;j D 1

2n � 1pn�1;j�1 C 2n � 2

2n � 1
pn�1;j ; j D 2; 3; � � � ; n � 1I

pn;n D 1

2n � 1pn�1;n�1 D 1

.2n � 1/.2n� 3/ � � � .5/.3/ :

The distribution of Xn for selected values of n is tabulated below.

The distribution of Xn
n 1 2 3 4 5 6

1 1 0 0 0 0 0
2 2

3
1
3

0 0 0 0
3 8

15
6
15

1
15

0 0 0
4 48

105
44
105

12
105

1
105

0 0
5 384

945
400
945

140
945

20
945

1
945

0
6 3840

10395
4384
10395

1800
10395

340
10395

30
10395

1
10395

15.7.5 Asymptotic Normality

With the recurrence relation (15.3), we can derive the asymptotic normality for Xn.
Note that, Xn can be expressed in terms of the sum of n independent but not
identically distributed Bernoulli random variables, i.e.,

Xn D I1 C I2 C � � � C In;
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where Im is a Bernoulli random variable with the distribution given by

P.Im D 1/ D 1

2m � 1
D 1 � P.Im D 0/;m D 1; 2; � � � ; n:

Therefore, we have the following asymptotic normality.

Theorem 15.1. As n ! 1, Xn�E.Xn/p
Var.Xn/

d! N.0; 1/.

Proof. We consider the normalized random variable Zn;m D Im�E.Im/p
Var.Xn/

. Then

E.Zn;m/ D 0 and
Pn
mD1EZ2n;m D 1. In addition, since VarXn D O.ln n/, for

any fixed " > 0, taking sufficiently large n, we have .lnn/�1=2 < ", which implies
that, for any fixed " > 0,

nX
mD1

E.jZn;mj2I jZn;mj > "/ ! 0;

as n ! 1. By the Lindeberg–Feller Central Limit theorem, for example, p. 116
in [3], the asymptotic normality holds.

15.8 Conclusions

There is a plethora of discrete probability problems coming from a variety of
research disciplines. We have presented a sample of these problems. We have devel-
oped a probabilistic recurrence relation methodology to solve these problems. There
are some problems remain unsolved.
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the University of Cincinnati for the support and splendid hospitality during his visits.
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Chapter 16
On Some Inequalities
of Chernoff–Borovkov–Utev Type
for Circular Distributions

B.L.S. Prakasa Rao

Abstract We discuss some classical inequalities such as Wirtinger inequality and
weighted Wirtinger type inequality for 2�-periodic functions and study their appli-
cations for obtaining Chernoff–Borovkov–Utev type inequalities for probability
distributions with support [0, 2�]. In addition we derive Chernoff type inequalities
for the wrapped normal distribution and von-Mises distribution.

16.1 Introduction

Let X be a standard normal random variable and g(�) be an absolutely continuous
function. The inequality

VarŒg.X/� � E.Œg0.X/�2/ (16.1)

was first proved by [9] and later rediscovered by [4] as a special case of a general
result for log-concave densities and was obtained independently by [5]. Analogous
inequalities for several discrete and continuous distributions are known. A matrix
variance inequality for the normal distribution was recently obtained by [10]. Matrix
variance inequalities for some multivariate distributions are derived in [13]. For a
recent overview on some stochastic inequalities and stochastic identities, see [14].
Borovkov and Utev [3] obtained a general inequality of the type (16.1). We will
discuss similar inequalities for random variables defined on the interval [0; 2�]. It
is known that the concept of mean and variance for circular random variables do
not have the same interpretation as they do for random variables taking values in
the real line. Statistical methods for analysis of directional or angular data are of
great interest. Following [6], we derive some inequalities for circular variance for
circular random variables and obtain some inequalities for standard wrapped normal

B.L.S. Prakasa Rao
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DOI 10.1007/978-3-7908-2628-9 16, c� Springer-Verlag Berlin Heidelberg 2011
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distribution and standard von-Mises distribution. Derivation of bounds on moments,
in particular on variances, for functions of circular random variables is of interest in
directional data analysis as the exact distributions of these random variables might
be difficult to compute as in the usual case of functions of random variables tak-
ing values in the real line. The variance bounds for functions of circular random
variables derived in Sect. 16.3 deal with the general case. However it is possible
to derive better bounds for the wrapped normal distribution and von-Mises distri-
bution. These are discussed in Sects. 16.4 and 16.5 respectively. We now discuss
some classical inequalities from analysis such as Hardy’s inequalities with weights,
Wirtinger inequality and weighted Wirtinger type inequality which are also related
to the problems we are investigating.

16.1.1 Hardy’s Inequalities with Weights

Hardy’s inequality (cf. [16, p. 20]) states that if p and b satisfy the conditions 1 �
p < 1 and bp < �1, then


Z 1

0

ˇ̌
ˇ̌xb

Z x

0

f .t/dt

ˇ̌
ˇ̌
p

dx

�1=p
� �p

bp C 1


Z 1

0

ˇ̌
ˇxbC1f .x/

ˇ̌
ˇ
p

dx

�1=p
(16.2)

and the constant �p
bpC1 is the best possible. Muckenhoupt [8] generalized this

inequality and proved the following result.

Theorem 16.1. Suppose � and � are Borel measures and 1 � p < 1. Then there
is a finite constant C for which


Z 1

0

ˇ̌
ˇ̌
Z x

0

f .t/dt

ˇ̌
ˇ̌
p

d�.x/

�1=p
� C


Z 1

0

jf .x/jpd�.x/
�1=p

(16.3)

if and only if

B D sup
r>0

8
<
:Œ�.Œr;1//�1=p

"Z r

0

	
d�

dx


�q=p
dx

#1=q9=
; (16.4)

where d�
dx

denotes the Radon–Nikodym derivative of the absolutely continuous com-
ponent of � with respect to the Lebesgue measure and q is such that 1

p
C 1

q
D 1.

Furthermore, if C is the least constant for which (16.3) is true, then

B � C � p1=p11=qB (16.5)

for p > 1 and B D C for p D 1.
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An extensive discussion on inequalities of this type and related inequalities
known as the logarithmic Sobolev inequalities is given in [2].

The following discussion deals with inequalities for 2�-periodic absolutely
continuous functions.

16.1.2 Wirtinger Inequality

Suppose g is a 2�-periodic and absolutely continuous function with g0 2 L2Œ0; 2�/
where g0 denotes the derivative of g whenever it exists. Further suppose that

Z 2�

0

g.�/d� D 0:

Then it is known that

Z 2�

0

Œg.�/�2d� �
Z 2�

0

Œg0.�/�2d�

equality occurring if and only if g.�/ D A cos.� � �0/ for some constant A and
0 � �0 � 2� . This inequality is known as Wirtinger inequality. This can be derived
easily in the following manner.

Suppose fang denotes the sequence of complex Fourier coefficients of the func-
tion g. Then those of g0 are finang. Applying Parseval’s identity to g0 and observing
that

a0 D 1

2�

Z 2�

0

g.�/d� D 0;

we get that

1

2�

Z 2�

0

Œg0.�/�2d� D
1X

nD�1
n2janj2 �

1X
nD�1

janj2 D 1

2�

Z 2�

0

Œg.�/�2d�:

This result has been recently extended by [15].

16.1.3 Weighted Wirtinger Type Inequality

Let C.a; b/ > 0 denote the best constant in the weighted Wirtinger type inequality

Z 2�

0

Œg.�/�2a.�/d� � C.a; b/

Z 2�

0

Œg0.�/�2b.�/d� (16.6)

where g is a 2�-periodic function and

Z 2�

0

g.�/a.�/d� D 0:
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Let B.L/ be the class of functions a.�/ 2 L1.Œ0; 2��/ such that a.�/ is 2�-
periodic and

inf
0���2�

a.�/ D 1 and sup
0���2�

a.�/ D L:

Suppose a.�/ D Œ�.�/�p and b.�/ D Œ�.�/�q for some �.�/ 2 B.M/;M > 1

and p; q 2 R such that p C q � 0. Then the weighted Wirtinger type inequality
(16.2) holds with

C.a; b/ �
"

1
2�

R 2�
0
Œ�.�/�.p�q/=2d�

4
�

arctan.M�.pCq/=4/

#2

from [15]. Suppose p D 0 D q and a.�/ D b.�/ � 1. Then it follows that
C.1; 1/ � 1 leading to the classical Wirtinger inequality. Suppose that b.�/ D a.�/

and p D q D 1. Then it follows that

C.a; a/ � �2

16
Œarctan.L�1=2/�2

proved in [11].

16.2 Borovkov–Utev Inequality

Suppose  is a random variable with a distribution function

V.�/ D ˛V1.�/C .1 � ˛/V2.�/; 0 � � � 2�

where 0 � ˛ � 1 and further suppose that V1 has the density function v1.�/. In
addition, suppose that, for some �0 in Œ0; 2�� and c > 0,

Z 2�

�

.� � �0/V .d�/ � cv1.�/; �0 � � � 2� (16.7)

and Z �

0

.�0 � �/V .d�/ � cv1.�/; 0 � � � �0: (16.8)

Theorem 16.2. Suppose the conditions (16.7) and (16.8) hold. Then, for any abso-
lutely continuous function g on Œ0; 2��,

EŒg. / � g.�0/�2 � c

˛
E.Œg0. /�2/: (16.9)

The inequality (16.9) follows as a special case of Theorem 1 in [3]. We give the
proof here for completeness.
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Proof. Observe that

E.Œg. / � g.�0/�
2/ D

Z 2�

0

"Z �

�0

g0.�/d�
#2
V.d�/ (16.10)

D
Z 2�

�0


Z 0

�0

g0.�/d�
�2
V.d�/

C
Z �0

0

"Z �0

�

g0.�/d�
#2
V.d�/

�
Z 2�

�0

"
.� � �0/

Z �

�0

.g0.�//2d�
#
V.d�/

C
Z �0

0

"
.�0 � �/

Z �0

�

.g0.�//2d�
#
V.d�/

D
Z 2�

�0



.g0.�//2

Z 2�

�

.� � �0/V .d�/

�
d�

C
Z �0

0

"
.g0.�//2

Z �

0

.�0 � �/V .d�/
#
d�

� c

Z 2�

�0

.g0.�//2v1.�/d� C c

Z �0

0

.g0.�/2v1.�/d�

D c

Z 2�

0

.g0.�//2v1.�/d�

� c

˛
E.Œg0. /�2/:

The above inequality also holds for distribution functions on R with support not
necessarily compact under conditions similar to those in (16.7) and (16.8) (cf. [3]).
As a particular case of Theorem 16.1, the following result can be obtained. ut

Theorem 16.3. Suppose  is a random variable with density function v.�/ on
Œ0; 2�� and there exists �0 in Œ0; 2�� and c > 0 such that

Z 2�

�

.� � �0/v.�/d� � cv.�/; �0 � � � 2� (16.11)

and Z �

0

.�0 � �/v.�/d� � cv.�/; 0 � � � �0: (16.12)

Then, for any absolutely continuous function g.�/ on Œ0; 2��,

EŒg. / � g.�0/�
2 � c E.Œg0. /�2/: (16.13)
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The following result follows from inequalities derived in [3] following the
literature on differential equations.

Theorem 16.4. Suppose  is a random variable with the density function v.�/ on
Œ0; 2�� and there exists c > 0 such that either

g.0/ D 0;

Z 2�

�

v.�/d� � cv.�/; 0 � � � 2� (16.14)

or

g.2�/ D 0;

Z �

0

v.�/d� � cv.�/; 0 � � � 2� (16.15)

where g.�/ is an absolutely continuous function on Œ0; 2��. Then

E.Œg. /�2/ � 4c2E.Œg0. /�2/: (16.16)

The following two theorems give bounds on the second moments of absolutely
continuous functions of random variables defined on the real line.

Theorem 16.5. Suppose X is a random variable with the distribution function F
and the density function f > 0 on R and g is an absolutely continuous function
with E.Œg0.X/�2/ � 1. Further suppose that

lim
x!1g2.x/F.x/ D lim

x!�1g2.x/F.x/ D 0:

Then there exists a positive constant Cg depending on the function g and the
distribution function F such that

.EŒg2.X/�/2 � CgE.Œg
0.X/�2/:

Proof. Applying integration by parts, we get that

Z 1

�1
g2.x/f .x/dx D Œg2.x/F.x/�1�1 � 2

Z 1

�1
g.x/g0.x/F.x/dx (16.17)

D �2
Z 1

�1
g.x/g0.x/F.x/dx

D �2
Z 1

�1
g.x/F.x/

f .x/

p
f .x/ g0.x/

p
f .x/ dx:

Applying the Cauchy–Schwartz inequality to the integral on the right side, we get
that


Z 1

�1
g2.x/f .x/dx

�2
� 4

Z 1

�1
g2.x/F 2.x/

f 2.x/
f .x/dx

Z 1

�1
Œg0.x/�f .x/dx

equality occurring if and only if
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g.x/F.x/

f .x/
and g0.x/

are linearly related. In other words

.EŒg2.X/�/2 � CgE.Œg
0.X/�2/ (16.18)

where

Cg D 4E

	
g2.X/F 2.X/

f 2.X/



:

ut
Remark. The inequality (16.18) is not of major interest as the constant Cg depends
on the function g.�/:
Theorem 16.6. Suppose X is a random variable with the density function f > 0

onR and g is a continuously differentiable function withE.Œg.X/�2/ < 1. Further
suppose that f is continuously differentiable such that

lim
jxj!1

f .x/g.x/ D 0:

Then
.EŒg0.X/�/2 � EŒg2.X/�I.f /

where I.f / is the Fisher information.

Proof. Let u D p
f and h D g. Note that u and h are continuously differentiable

functions such that
lim

jxj!1
u2.x/h.x/ D 0:

Benson [1] proved that (cf. [7])

Z 1

�1
.Œu0.x/�2 C .h0.x/C h2.x//u2.x//dx � 0:

Replacing h by �h and applying the above inequality, we get that

�2
Z 1

�1
h2.x/u2.x/dx C �

Z 1

�1
h0.x/u2.x/dx C

Z 1

�1
Œu0.x/�2dx � 0

for all � 2 R. Hence


Z 1

�1
h0.x/u2.x/dx

�2
� 4


Z 1

�1
h2.x/u2.x/dx

� 
Z 1

�1
.u0.x//2dx

�
:

Then it follows that
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Z 1

�1
g0.x/f .x/dx

�2
�

Z 1

�1
g2.x/f .x/dx

� "Z 1

�1

	
f 0.x/
f .x/


2
f .x/dx

#

or equivalently
EŒg0.X/�/2 � EŒg2.X/�I.f /

where I.f / is the Fisher information. ut
Remark. This inequality is the Cramer–Rao inequality. Other inequalities of these
types are derived in [12].

16.3 Circular Random Variables

Let Z be a random variable with values on the unit circle. We identify Z with a
random variable  such that Z D ei ; 0 <  � 2� . For convenience in notation,
we denote the typical values taken by  by � . Let V be the distribution function
of  . Then V.0/ D 0 and V.2�/ D 1. We extend the function V to R by the
equation V.� C 2�/ � V.�/ D 1. Suppose V is absolutely continuous with the
probability density function v.�/. Then:

(a) v.�/ � 0;�1 < � < 1
(b) v.� C 2�/ D v.�/;�1 < � < 1
(c)

R 2�
0

v.�/d� D 1

(cf. [6]). Suppose there exists �0 such that

Z 2�

0

.� � �0/v.�/d� D 0: (16.19)

Then the conditions (16.11) and (16.12) hold provided

Z 2�

�

.� � �0/v.�/d� � cv.�/; 0 � � � 2�: (16.20)

This can be seen by checking that

Z �

0

.�0 � �/v.�/d� D
Z 2�

�

.� � �0/v.�/d� (16.21)

for 0 � � � 2� . Hence for any absolutely continuous function g.�/ on Œ0; 2��,

EŒg. / � g.�0/�
2 � cE.Œg0. /�2/ (16.22)

whenever (16.20) holds.
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Suppose  is a circular random variable as discussed earlier with density func-
tion v.�/. Then � is called the mean direction of  if

EŒsin. � �/� D 0

	2 is called the circular variance if

	2 D EŒ1 � cos. � �/� D E



2 sin2

	
 � �
2


�
:

We now obtain an upper bound for

E



g

	
sin

	
 � �0
2




� g.0/

�2

where g.�/ is an absolutely continuous function. We follow the technique used in
proving Theorem 16.1.

Theorem 16.7. Suppose is a circular random variable with density function v on
Œ0; 2��. Let

�.�/ D 2 sin

	 j� � �0j
2



(16.23)

for 0 � �; �0 � 2� . Further suppose that there exists c > 0

Z 2�

t

�.�/v.�/d� � cv.t/; t > �0 (16.24)

and Z t

0

�.�/v.�/d� � cv.t/; t > �0: (16.25)

Let g be an absolutely continuous function. Then

E



g

	
sin

	
 � �0

2




� g.0/

�2
� cE

"
g0

	
sin

	
 � �0

2



2 ˇ̌
ˇ̌ cos

	
 � �0

2


 ˇ̌
ˇ̌
#
:

(16.26)

Proof. Note that

E



g

	
sin

	
 � �0

2




� g.0/

�2
(16.27)

�
Z 2�

0

"Z �

�0

1

2
g0
	

sin

	
t � �0

2




cos

	
t � �0

2



dt

#2
v.�/d�
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D
Z 2�

�0

"Z �

�0

1

2
g0

	
sin
	
t � �0

2




cos

	
t � �0
2



dt

#2
v.�/d�

C
Z �0

0

"Z �0

�

1

2
g0

	
sin
	
t � �0

2




cos

	
t � �0
2



dt

#2
v.�/d�

� 1

4

Z 2�

�0

"Z �

�0

ˇ̌
ˇ̌ cos

	
t��0
2


ˇ̌
ˇ̌dt
Z �

�0



g0

	
sin
	
t��0
2



�2̌ˇ̌
ˇcos

	
t��0
2


ˇ̌
ˇ̌dtv.�/d�

#

C1

4

Z �0

0

"Z �0

�

ˇ̌
ˇ̌cos

	
t��0
2


ˇ̌
ˇ̌dt

#Z �0

�



g0

	
sin
	
t��0
2



�2ˇ̌
ˇ̌cos

	
t��0
2


ˇ̌
ˇ̌dtv.�/d�:

The proof follows from the inequalities derived in (16.27) and an application of
Fubini’s theorem. ut

The following inequality follows as a special case from the weighted Wirtinger
inequality stated in Sect. 16.3.

Theorem 16.8. Suppose  is a circular random variable with a bounded, 2�-
probability density function f on Œ0; 2��. Further suppose that inff DL > 0

and supf D M <1. Then, for any absolutely continuous function g.�/ which is
2�-periodic,

E.Œg. /�2/ � C.f; f /E.Œg0. /�2/ (16.28)

whenever EŒg. /� D 0 where

C.f; f / � �2

16
.arctan.L1=2M�1=2//�2: (16.29)

Proof. Let a D f
L

and b D f
L

. Then a D b is bounded, 2�-periodic and infa D 1

and supa D M
L

. By the weighted Wirtinger inequality, it follows that

Z 2�

0

Œg.�/�2a.�/d� � .a; a/

Z 2�

0

a.�Œg0.�/�2d�

if g is 2�-periodic and Z 2�

0

g.�/a.�/d� D 0

where

C.a; a/ � �2

16
.arctan.L1=2M�1=2//�2:

Rewriting these inequalities in terms of the function f , we obtain the inequality
stated in (16.28). ut
Remark. Ricciardi [15] proved that equality holds in (16.28) if and only if
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f .�/

L
D Nf .� C �/

for some � in R where

Nf .�/ D 1 if 0 � � < .�=2/; and � � � < .3�=2/

D M=L if .�=2/ � � < �; and .3�=2/ � � < 2�: (16.30)

Furthermore equality holds in (3.10) with f.�/
L

D Nf .� C �/ if and only if g.�/ D
Ng.� C �/ where

Ng.�/ D sin
hp
�
�
� � �

4

�i
if 0 � � <

�

2
(16.31)

D .M=L/�1=2 cos


p
�

	
� � 3�

4


�
if
�

2
� � < �

D � sin


p
�

	
� � 5�

4


�
if � � � <

3�

2

D �.M=L/�1=2 cos


p
�

	
� � 7�

4


�
if
3�

2
� � < 2�

where � D .�2=16/.arctan.M=L/�2/.

It is clear that the inequality (16.28) in Theorem 16.8 can be restated in terms of
the variance of the random variable g. / in the form

VarŒg. /� � C.f; f /E.Œg0. /�2/ (16.32)

under the same conditions as stated in Theorem 16.8 without the additional condi-
tion EŒg. /� D 0.

16.4 Chernoff Type Inequality for Wrapped Normal
Distribution

A circular random variable  is said to have the standard wrapped normal distribu-
tion if its probability density function is of the form

v.�/ D .2�/1=2
1X

kD�1
exp

	
�1
2
.� C 2k�/2



; 0 < � � 2�: (16.33)

This distribution is unimodal and is symmetric about � D 0. It is possible to obtain
a Chernoff type inequality for the wrapped normal distribution from the inequality
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(16.1) for the normal distribution by restricting the inequality to 2�-periodic func-
tions. However we will obtain the inequality directly.

Let g.�/ be any absolutely continuous function on Œ0; 2��. Then g.�/ is almost
everywhere differentiable on Œ0; 2��. Let I.A/ denote the indicator function of setA.
Note that

 Z �

0

g0.�/d�
!2

D
	Z 2�

0

I Œ� > ��g0.�/d�

2

(16.34)

�
	Z 2�

0

I Œ� > ��d�


	Z 2�

0

I Œ� > ��Œg0. /�2d�



D �

	Z 2�

0

I Œ� > ��Œg0.�/�2d�


:

Hence

E

2
4
 Z �

0

g0.�/d�
!23
5 � E



�

	Z 2�

0

I Œ� > ��Œg0.�/�2d�

�

(16.35)

D
Z 2�

0

E.�I Œ� > ��/Œg0.�/�2d�:

Therefore

EŒ.g.�/ � g.0//2� �
Z 2�

0

E.�I Œ� > ��/Œg0.�/�2d�: (16.36)

Observe that

E.�I Œ� > ��/ D 1p
2�

1X
kD�1

Z 2�

�

� exp

	
�1
2
.� C 2k�/2



d� (16.37)

D 1p
2�

Z 2�

�

1X
kD�1

� exp

	
�1
2
.� C 2k�/2



d�:

For k � 0,

Z 2�

�

� exp

	
�1
2
.�C2k�/2



d� D

Z 2k�C2�

�C2�
.˛ � 2k�/ exp

	
�1
2
˛2


d˛ (16.38)

�
Z 1

�C2k�
˛ exp

	
�1
2
˛2


d˛
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D


� exp

	
�1
2
˛2

�1

Œ�C2k�


� exp

	
�1
2
.� C 2k�/2



:

Hence

E.�I Œ� > ��/ � 1p
2�

�1X
kD�1

Z 2�

�

� exp

	
�1
2
.� C 2k�/2



d� (16.39)

C 1p
2�

1X
kD0

exp

	
�1
2
.� C 2k�/2




D I.�/C 1p
2�

1X
kD0

exp

	
�1
2
.� C 2k�/2



(say):

Combining the inequalities (16.36) and (16.39), we get that

EŒ.g.�/ � g.0//2� �
Z 2�

0

I.�/Œg0.�/�2d� (16.40)

C 1p
2�

Z 2�

0

Œg0.�/�2
1X
kD0

exp

	
�1
2
.� C 2�/2



d�

�
Z 2�

0

I.�/Œg0.�/�2d� C E.Œg0.�/�2/:

16.5 Chernoff Type Inequality for von-Mises Distribution

A circular random variable  is said to have the von-Mises distribution if it has a
probability density function of the form

f .�; �; k/ D 1

2�I0.k/
expŒk cos.� � �/�; 0 < � � 2� (16.41)

where k > 0 and 0 � � < 2� . Here the function I0.k/ is the modified Bessel
function of the first kind and order zero, that is,

I0.k/ D
1X
rD0

1

rŠ2
.k=2/2r :

The parameter � is called the mean direction and the parameter k is called the
concentration parameter. Suppose that � D 0. We denote the normalizing constant
in (16.41) by Ck and the function f .�; 0; k/ by fk.�/ for convenience.
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Let g be any absolutely continuous function. Then the derivative g0 exists almost
everywhere. Then

g.sin �/ � g.0/ D
Z �

0

g0.sin u/ cos u du (16.42)

for 0 � � � 2� . Let

h.u/ D 1 if cos u � 0; (16.43)

D �1 if cos u < 0

for 0 � u � 2� and

p.�; u/ D h.u/ cos u if 0 � u � � (16.44)

D 0 otherwise:

Then

Œg.sin �/ � g.0/�2 D
"Z �

0

g0.sin u/ cos u du

#2
(16.45)

D
"Z �

0

g0.sin u/

h.u/
h.u/ cos u du

#2

D

Z 2�

0

g0.sin u/

h.u/
p.�; u/ du

�2

�

Z 2�

0

p.�; u/ du

�"Z 2�

0

	
g0.sin u/

h.u/


2
p.�; u/ du

#

D

Z 2�

0

p.�; u/ du

� 
Z 2�

0

.g0.sin u//2p.�; u/ du

�

(since h.u/ is either C1 or �1)

D �.�/


Z 2�

0

.g0.sin u//2p.�; u/ du

�
.say/:

Hence

E.Œg.sin / � g.0/�2/ � E

	
�. /


Z 2�

0

.g0.sin u//2p. ; u/ du

�

(16.46)

D
Z 2�

0

EŒ�. /p. ; u/�.g0.sin u//2 du:

Observe that



16 Inequalities for Circular Distributions 249

EŒ�. /p. ; u/� D
Z 2�

0

�.�/p.�; u/fk.�/ d� (16.47)

�
Z 2�

u
�.�/h.u/ cos ufk.�/ d�

D h.u/ cos u
Z 2�

u
�.�/fk.�/ d�:

Combining the inequalities (16.45) and (16.46), we get that

E.Œg.sin / � g.0/�2/ �
Z 2�

0



h.u/ cos u

�Z 2�

u
�.�/fk.�/d�

�
.g0.sin u//2

�
du:

(16.48)

Note that

Z 2�

0

�.t/fk.t/dt D
Z 2�

0

fk.t/


Z t

0

h.u/ cos u du

�
dt (16.49)

D
Z 2�

0


Z 2�

0

fk.t/dt

�
h.u/ cos u du

D
Z 2�

0

Œ1 � Fk.u/�h.u/ cos u du

.where Fk.�/ D
Z 1

0

fk.t/dt; 0 � � � 2�/

�
Z 2�

0

j cos ujdu

� 2� � �

� 2�:

The above inequalities show that

E.Œg.sin / � g.0/�2/ � 2�

Z 2�

0

j cos uj.g0.sin u//2du (16.50)

� 2�EŒ.g0.sin //2j cos j.fk. //�1�:

Note that fk.�/ � Cke
�k for all 0 � � � 2� . Hence

E.Œg.sin / � g.0/�2/ � 2�ek

Ck
EŒ.g0.sin //2j cos j�: (16.51)

Remark. The Chernoff type inequality for the von-Mises distribution can also be
derived from the classical Wirtinger inequality by the following method. Suppose
g.�/ is a 2�-periodic absolutely continuous function with g0 2 L2.Œ0; 2��/ and
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further suppose that Z 2�

0

g.�/ d� D 0:

Note that

VarŒg. /� � EŒg. /�2 (16.52)

�
Z 2�

0

Œg.�/�2fk.�/d�

� supfk.�/
Z 2�

0

Œg.�/�2d�

� supfk.�/
Z 2�

0

Œg0.�/�2d�

� supfk.�/

inffk.�/

Z 2�

0

Œg0.�/�2fk.�/d�

� supfk.�/

inffk.�/
E.Œg0. /�2/

D exp.2k/E.Œg0. /�2/:

In particular,

VarŒg.sin. //� � exp.2k/EŒ.g0.sin. ///2 cos2. /� (16.53)

� exp.2k/EŒ.g0.sin. ///2j cos. /j�:
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Chapter 17
Revisiting Local Asymptotic Normality (LAN)
and Passing on to Local Asymptotic Mixed
Normality (LAMN) and Local Asymptotic
Quadratic (LAQ) Experiments

George G. Roussas and Debasis Bhattacharya

Abstract Let X1; : : : ; Xn be a random sample of size n from an underlying para-
metric statistical model. Then the basic statistical problem may be stated as follows:
On the basis of a random sample, whose probability law depends on a parameter � ,
discriminate between two values � and �� (� ¤ ��). When the parameters are suf-
ficiently far apart, any decent statistical procedure will do the job. A problem arises
when the parameter points are close together, and yet the corresponding probabil-
ity measures are substantially or even vastly different. The present paper revolves
around ways of resolving such a problem. The concepts and methodology used are
those of contiguity, Local Asymptotic Normality (LAN), Local Asymptotic Mixed
Normality (LAMN), and Local Asymptotic Quadratic (LAQ) experiments.

17.1 Introduction, Notation, and Assumptions

A brief description of the organization of this paper is as follows. In Sect. 17.1, much
of the needed notation is introduced, and assumptions under which a set of basic
results, Theorems 17.1–17.7 and Theorem 17.8, are established. Some statistical
applications, pertaining to testing hypotheses, are given in Sect. 17.3. In Sect. 17.5,
some applications of Theorem 17.8, relative to asymptotic efficiency of estimates,
are presented, whereas the next section is devoted to various comments. General-
izations of Theorems 17.1–17.7 and Theorem 17.8 are presented in Sect. 17.7. In
the next section, the concepts of LAMN and LAQ are introduced, and then a set of
assumptions, under which LAMN obtains, is given. In Sect. 17.9 some basic results
under the LAMN framework, Theorems 17.15–17.19, are given. In Sect. 17.10, two
examples, pertaining to the LAMN case, and one example pertaining to the LAQ
case, are discussed, and the paper is concluded with Sect. 17.11, where the proofs
of Theorems 17.1–17.6 are presented.

G.G. Roussas (B)
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Throughout the paper, all limits are taken as n ! 1, unless otherwise explicitly
stated. For the sake of simplicity, it will be assumed that the underlying r.v.’s are
i.i.d.; in a subsequent section (see Sect. 17.7), generalizations already available will
be mentioned. To this effect, let X0; X1; : : : ; Xn be i.i.d. r.v.’s defined on the prob-
ability space .X ;A; P� /, � 2 � open � R

k , k � 1, let An D 	.X0; X1; : : : ; Xn/

be the 	-field induced by the r.v.’s X0; X1; : : : ; Xn, and let Pn;� D P� j An be the
restriction of P� to An. It is assumed that P0;� and P0;�� are mutually absolutely
continuous, P0;� � P0;�� , �; �� 2 � (� ¤ ��), and let

q.X0I �; ��/ D dP0;��

dP0;�

be a specified version of the Radon–Nikodym derivative involved. Set

'j .�; �
�/ D '.Xj I �; ��/ D Œq.Xj I �; ��/�1=2; (17.1)

so that 'j .�; ��/ is square P0;� -integrable, and the likelihood and log-likelihood
functions are given, respectively, by

Ln.�; �
�/ D dPn;��

dPn;�
D

nY
jD0

'2j .�; �
�/;


n.�; �
�/ D logLn.�; �

�/:

In the following, we restrict ourselves to ��, which are close to � ; i.e.,

�n D � C hnp
n

with hn ! h 2 R
k: (17.2)

Thus, the relevant likelihood and log-likelihood functions are

Ln.�; �n/ D dPn;�n

dPn;�
; 
n.�; �n/ D logLn.�; �n/: (17.3)

At this point, recall the definition of quadratic mean differentiability of a random
function.

Definition 17.1. Let g.�I �/, � 2 �, be a random function defined on the prob-
ability space .X ;A; P /, and let

R
X g

2.�I �/ dP < 1. Then g.�I �/ is said to be
differentiable in q.m. at � when P is employed if

1

khk Œg.�I � C h/ � g.�I �/ � h0 Pg.�I �/� ! 0 in q.m.ŒP � as .0 ¤/h ! 0;

where Pg.�I �/ is the derivative in q.m. of g.�I �/ at � , a k-dimensional random vector.
Alternatively,
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1

�
Œg.�I � C �h/� g.�I �/� �! h0 Pg.�I �/ in q.m.ŒP � as .0 </� ! 0

uniformly on bounded sets of values of h.

Assumptions

(A1) The probability measures fP0;� I � 2 �g are mutually absolutely continuous.
(A2) (i) For each � 2 �, the random function '0.�; ��/ (as defined in (17.1) for

j D 0) is differentiable in q.m. with respect to �� at � when P� is
employed.
Let P'0.�/ be the derivative in q.m. of '0.�; ��/ with respect to �� at
.�; �/ – a k-dimensional random vector. Then

(ii) P'0.�/ is A0�C-measurable, where C is the 	-field of Borel subsets of�.

Let � .�/ be the covariance function defined by

� .�/ D 4E� Œ P'0.�/ P' 0
0.�/�: (17.4)

Then
(A3) � .�/ is positive definite for every � 2 �.
(A4) For each � 2 �:

(i) q.X0I �; ��/ ! 1 in P0;� -probability, as �� ! � .
(ii) q.X0I �; ��/ is A0 � C-measurable.

In terms of the q.m. derivatives P'j .�/, define the k � 1 random vector�n.�/ by

�n.�/ D 2p
n

nX
jD0

P'j .�/; (17.5)

observe that, with � .�/ defined in (17.4),

h0� .�/h D 4E� Œh0 P'0.�/�2; h 2 R
k ;

and set

A.h; �/ D 1

2
h0� .�/h: (17.6)

17.2 Some Basic Results

We are now ready to state some basic results in the first part (Sects. 17.2
through 17.7) of the paper, which are the following.
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Theorem 17.1. Let �n, Ln.�; �n/, �n.�/, and A.h; �/ be defined by (17.2), (17.3),
(17.5), and (17.6), respectively. Then, under assumptions (A1)–(A4),


n.�; �n/ � h0�n.�/
Pn;��! �A.h; �/:

Theorem 17.2. In the same setting as that of Theorem 17.1,

LŒ�n.�/ j Pn;� � ) N.0; � .�//;

where � .�/ is defined in (17.4).

Theorem 17.3. In the same setting as that of Theorem 17.1,

LŒ
n.�; �n/ j Pn;� � ) N

	
�1
2
h0� .�/h; h0� .�/h



:

An outline of the proof of these theorems will be given in Sect. 17.11. At this
point, recall one mode of the definition of contiguity.

Definition 17.2. For n � 0, let Pn and Qn be probability measures defined on the
	-field An in the measurable space .X ;An/. Then the sequences fPng and fQng
are said to be contiguous if whenever Pn.An/ ! 0, An 2 An, then Qn.An/ ! 0,
and vice versa.

Remark 17.1. Although contiguity can be viewed as some sort of asymptotic mutual
continuity of the pairs Pn and Qn, it should be emphasized, however, that it is
possible for fPng and fQng to be contiguous without Pn � Qn for any n; likewise,
it is possible that Pn � Qn for all n, but fPng and fQng are not contiguous. These
situations are illustrated by concrete examples. See, e.g., Examples 2.1 and 2.2,
Chap. 1, in [33] (also reprinted in a paperback form in 2008).

Proposition 17.1. Let fh�
ng be a bounded sequence in R

k , and set ��
n D �Ch�

n=
p
n.

Then, under assumptions (A1)–(A4), the sequences fPn;�g and fPn;��

n
g are contigu-

ous; in particular, so are the sequences fPn;�g and fPn;�n
g. An outline of the proof

will be given in Sect. 17.11.

On the basis of Theorems 17.1–17.3 and Proposition 17.1, we may establish the
following results.

Theorem 17.4. In the same setting as that of Theorem 17.1,


n.�; �n/� h0�n.�/
Pn;�n�! �A.h; �/:

Theorem 17.5. In the same setting as that of Theorem 17.1,

L �
n.�; �n/ j Pn;�n

� ) N
�
1
2
h0� .�/h; h0� .�/h

�
:
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Theorem 17.6. In the same setting as that of Theorem 17.1,

L ��n.�/ j Pn;�n

� ) N.� .�/h; � .�//:

Remark 17.2. (i) Theorem 17.1 may be interpreted as follows: In the neighborhood
of � , for large n, and in the sense of probability,


n.�; �n/ ' h0�n.�/ � A.h; �/;

or by exponentiation,

Ln.�; �n/ ' E
h0�n.�/�A.h;�/: (17.7)

Expression (17.7) suggests that, in the neighborhood of � and for large n, the
likelihood function behaves as if it were (approximately) an exponential family.
The statistical implications of this are immense. Roughly speaking, one could
use the exponential family on the right-hand side of (17.7) to set up optimal tests
about � or estimates of � , and then establish the same properties in the context
of the original family of probability measures at the asymptotic level.

(ii) The precise formulation of the approximation in (17.7) is the content of
Theorem 17.7 below.

(iii) Theorems 17.2 and 17.6 do demonstrate the point made earlier that, in the
limit, neighboring parameter points may produce definitely distinct probability
measures. The same point is made by Theorems 17.3 and 17.5.

Theorem 17.7 (Rigorous formulation of the approximation indicated in rela-
tion (17.7)). In the same setting as that of Theorem 17.1, there exists a (suitably)
truncated version ��

n.�/ of �n.�/ such that:

E�Eh0��

n.�/
defD E

Bn.h/ < 1;

Pn;�
�
��
n.�/ ¤ �n.�/

� �! 0;

Pn;�n

�
��
n.�/ ¤ �n.�/

� �! 0;

and if

Rn;h.A/ D E
�Bn.h/

Z

A

E
h0��

n.�/ dPn;� ; A 2 An;
	

so that
dRn;h
dPn;�

D E
h0��

n.�/�Bn.h/; h 2 R
k



;

then
kPn;�n

�Rn;hn
k ! 0; (17.8)

or

sup

�����Pn;�C h
p

n

� Rn;h

���� I h 2 B bounded 	 R
k

�
! 0: (17.9)
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17.3 Some Statistical Applications of Theorems 17.1–17.7

For the sake of illustration, consider first the case that � is a subset of R, and con-
sider the problem of testing a couple of hypotheses; and then consider the case that
� is a subset of R

k .k � 2/ and test a simple hypothesis.

(i) � � R

Recall that in an exponential family, f .xI �/ D C.�/EQ.�/T .x/h.x/, x 2 R,
with Q.�/ being strictly monotone, there are level-˛ UMP tests for each one of the
following hypotheses against the respective alternatives; namely,

H W � D �0; A W � > �0 I H W � D �0; A W � < �0 I

H W � � �0; A W � > �0 I H W � � �0; A W � < �0 I
H W � � �1 or � � �2; A W �1 < � < �2 .�1 < �2/:

(a) For hypotheses (alternatives) for which there are level-˛ UMP tests in the
exponential family, we can construct level-˛ tests 'n – based on �.�j /; �j ,
j D 0; 1; 2, boundary points – which are AUMP level-˛ tests

.i.e., lim supŒsup.E�!n � E�'nI � 2 A/� � 0/

among all tests !n such that

lim sup Œsup .E�!nI � 2 H/� � ˛:

For example, for testing H W � � �0 against A W � > �0 at level ˛, the test
defined by:

'n D 'n .�n.�0// D

8
ˆ̂<
ˆ̂:

1; �n.�0/ � cn

�n; �n.�0/ D cn

0; �n.�0/ < cn;

where cn and �n are constants such that E�0
'n D ˛, is an AUMP test of level ˛.

Again, recall that in an exponential family, with Q.�/ being strictly monotone,
there are level-˛ UMPU tests for each one of the following hypotheses against
the respective alternatives; namely,
H W �1 � � � �2, A W � < �1 or � > �2 .�1 < �2/;
H W � D �0, A W � ¤ �0.

(b) For hypotheses (alternatives) for which there are level-˛ UMPU tests in the
exponential family, we can construct tests 'n – based on�.�j /; �j , j D 0; 1; 2,
boundary points – of asymptotic level of significance ˛, which are AUMP

.i.e., lim sup Œsup .E�!n � E�'nI � 2 A/� � 0/
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among all tests !n of asymptotic level of significance ˛, which are asymptoti-
cally unbiased

.i.e., lim inf Œinf .E�!nI � 2 A/� � ˛/:

For example, for testing H W � D �0 against A W � ¤ �0 at level ˛, the test 'n
defined by:

'n D 'n .�n.�0//

D
(
1; �n.�0/ < an or �n.�0/ > bn

0; an � �n.�0/ � bn
;

(an < bn) with an ! ��˛=2, bn ! �˛=2 (where �p is the pth quantile of
N .0; � .�0//) is an AUMPU test of asymptotic level of significance ˛.

Remark 17.3. Actually, the tests referred to under (a) and (b) above are locally
AUMP or AUMPU, respectively, but they become globally so under the additional
(usually, easily fulfilled) assumption:

Assumption (A5)

�n.�j /
Pn;�n�! ˙1 if

p
n.�n � �j / ! ˙1; j D 0; 1; 2:

(ii) � � R
k , k > 1

For testing H W � D �0 against A W � ¤ �0 at level ˛, simple tests 'n (indicators
of certain convex sets in R

k) are constructed – based on �n.�0/ – which enjoy
Wald-type asymptotically optimal properties. These properties are too complicated
to be described here in any detail, but their essence may be conveyed as follows:

(P1) The weighted average power over certain surfaces (which are ellipsoids) is
largest – within a class of competing tests.

(P2) The sup of the difference of the sup and the inf of the power over certain
surfaces (which are ellipsoids) ! 0.
At this point, recall that the envelope power function of a class F of level-˛ test
functions ' is denoted by ˇ.� I˛/ and is defined by ˇ.� I˛/ D supfˇ.� I'/I
' 2 Fg, where ˇ.� I'/ is the power of ' at � 2 �. Then the next property is

(P3) The sup of the difference between the envelope power and the power over
certain surfaces (which are ellipsoids) – of the test 'n – compared to the same
sup of any other competing test have a difference whose limsup is � 0.

The asymptotic optimality properties of the test 'n are implicit in the formulation
of (P1)–(P3).

17.4 A Convolution Representation Theorem

In this section, we consider a class of estimates, so-called regular estimates, a nor-
malized version of which is assumed to converge weakly to a probability measure.
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Then this limiting probability measure assumes of a certain convolution representa-
tion.

Definition 17.3. With �n D � C hp
n

, the estimate Tn is said to be regular if

L �pn.Tn � �n/ j Pn;�n

� ) L.�/;

a probability measure.

Then the following result holds.

Theorem 17.8. In the same setting as that of Theorem 17.1, and for regular
estimates,

L.�/ D N.0; � �1.�// � L�.�/;

where L�.�/ is a specific probability measure (arising in the proof of the theorem).

Thus, the limiting measure is most concentrated when it is restricted to its normal
component, and is diffused otherwise.

There are many significant applications of this theorem. Presently, we restrict
ourselves to its use in the quest of asymptotically efficient estimates; this is done in
the following section.

17.5 Some Applications of Theorem 17.8 in the Quest
for Asymptotically Efficient Estimates

Asymptotic efficiency of an estimate is looked upon in two ways: The Weiss–
Wolfowitz approach based on the asymptotic concentration of probabilities over
certain classes of sets; and the classical approach based on the variance or covariance
of the asymptotic distribution of the estimates.

The search for an asymptotically efficient estimate may be divided into two parts:
First, establish a bound for the limit (lim sup/lim inf) of a certain desirable quantity,
defined for each estimate of a target class of estimates; and second, try to identify
a member of the target class for which this bound is attained. Presently, we restrict
ourselves to the first part only.

17.5.1 The Weiss–Wolfowitz Approach

In this framework, there will be four results presented.

Theorem 17.9. For � � R, consider estimates Tn such that Pn;�
�p
n.Tn��/�x�

! FT .xI �/, a d.f., continuously in � for each fixed x 2 R and continuously on R
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for each � 2 �. Let `T .�/ and uT .�/ be the “smallest” and the “largest” medians
of the (continuous) d.f. FT .�I �/. Then, for every � 2 �,

limPn;�

	
� � t1p

n
C `T .�/p

n
� Tn � � C t2p

n
C uT .�/p

n



� B.� I t1; t2/;

where
B.� I t1; t2/ D ˚Œt2	.�/� � ˚Œt1	.�/� for all t1; t2 > 0;

˚ is the d.f. of N.0; 	2.�//; and 	2.�/ D 4E� Œ P'0.�/�2 : (17.10)

(Recall that P'0.�/ is the q.m. derivative at � of the square root of the p.d.f. of the
underlying i.i.d. r.v.’s.)

Now, allow � � R
k , and consider estimates Tn such as those in Theorem 17.9;

i.e., Pn;�
�p
n.Tn � �/ � x

� ! FT .xI �/, a d.f., continuously in � for each fixed
x 2 R

k , and also continuously in R
k for each � 2 �. Then it is clear that, for

each h 2 R
k , the Pn;�

�p
nh0.Tn � �/ � x

�
converges to a d.f., FT .xI �; h/, say,

continuously in� for each fixed x 2 R
k , and also continuously in R

k for each fixed
� 2 �. Furthermore, let `T .�; h/ and uT .�; h/ be the “smallest” and the “largest”
medians of the (continuous) d.f. FT .�I �; h/. Then the following result holds.

Theorem 17.10. For every � 2 � � R
k and each h 2 R

k , in the notation just
introduced and the assumptions made, it holds

limPn;�
��t1 C `T .�; h/ � p

nh0.Tn � �/ � t2 C uT .�; h/
�

� ˚Œt2	
�1.�; h/� � ˚Œ�t1	�1.�; h/�;

for all t1; t2 > 0, where ˚ is the d.f. of the N.0; 	2.�; h//, and 	2.�; h/ D
h0� �1.�/h.

(Recall that � �1.�/ is the inverse of the covariance � .�/ defined in (17.4).)

Next, for estimates Tn, where a properly normalized version converges weakly
to a probability measure which has zero as its median, a result similar to that in
Theorem 17.9 holds. More specifically, we have

Theorem 17.11. Let � � R, and let Tn be an estimate such that LŒpn.Tn � �/j
Pn;� � ) LT;� , a probability measure having 0 as its median. Then

lim supPn;�

	
� � t1p

n
� Tn � � C t2p

n



� B.� I t1; t2/;

for all t1; t2 > 0, and almost all � 2 � (with respect to Lebesgue measure), where
B.� I t1; t2/ is defined in (17.10).

If one imposes median unbiasedness to the estimates considered, then a result
such as that of the preceding theorem also holds. That is, we have
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Theorem 17.12. Let � � R, and let Tn be median unbiased estimates; i.e., for
every � 2 � and all n,

Pn;� .Tn � �/ � 1

2
and P� .Tn � �/ � 1

2
:

Then, for all t1; t2 > 0 and all � 2 �, one has

lim supPn;�

	
� � t1p

n
� Tn � � C t2p

n



� B.� I t1; t2/;

where B.� I t1; t2/ is defined in (17.10).

Remark 17.4. In all three cases considered above, the desirable properties of the
estimates entertained are built into the definition of the classes of estimates. How-
ever, how the convolution Theorem 17.8 is entering in establishing the inequalities
is not easy to explain without introducing many technical details. It suffices only
to say that the concentration of probabilities under the measure N.0; � �1.�// is at
least half as large as the respective concentration under the measure L.�/. This is
the decisive point on which the proofs hinge.

17.5.2 The Classical Approach

In this subsection, we state two results, each one for the case that � � R and
� � R

k . More precisely, we have

Theorem 17.13. Let � � R, and let Tn be an estimate such that

(i) Either P�
�p
n.Tn � �/ � x

� ! ˚T .xI �/ for all x 2 R and all � 2 �,
(ii) orP�

�p
n.Tn � �/ � x

� ! ˚T .xI �/ continuously in � for each x 2 R, where
˚T .�I �/ is the d.f. of the N.0; 	2T .�//, for some variance 	2T .�/.

Then one has, respectively,

(i) 	2T .�/ � 1=	2.�/ and lim inf
�
nE� .Tn � �/2� � 1=	2.�/, for almost all �

(with respect to Lebesgue measure), and
(ii) 	2T .�/ � 1=	2.�/ and lim inf

�
nE� .Tn � �/2� � 1=	2.�/, for every � 2 �.

For the multiparameter case, there is the following generalization of parts of
Theorem 17.13. Namely, we have

Theorem 17.14. For � 2 � � R
k , let Tn be an estimate such that

P�
�p
n.Tn � �/ � x

� ) ˚ .k/.xICT .�//

continuously in � for each x 2 R
k , where ˚ .k/.�ICT .�// is the d.f. of the

N.0; CT .�// with CT .�/ positive definite. Then, with � .�/ D E�
� P'0.�/ P' 0

0.�/
�
,
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CT .�/�� �1.�/ is positive semi-definite for almost all � (with respect to Lebesgue
measure). Also, CT .�/ is continuous on�. Furthermore, if � .�/ is also continuous,
then CT .�/� � �1.�/ is positive semi-definite for all � 2 �.

There are conditions which ensure continuity of � .�/. To this effect, make the
following assumption.

Assumption (A6)

There exists ı > 0 such that, for each � 2 � and each h 2 R
k , there is a

neighborhood of � , n.�; h/, with the property

E��

ˇ̌
h0'0.��/

ˇ̌2Cı � M.�; h/.< 1/; for all �� 2 n.�; h/:

Then we have the following result.

Proposition 17.2. Under the assumptions (A1)–(A4) and (A6), � .�/ is continuous
on �.

To Theorem 17.14, there is the following easy but useful corollary.

Corollary 17.1. Let g be a real-valued function defined on R
k , and suppose that

.@=@�j /Œg.�/�, j D 1; : : : ; k exist and are continuous on�. Estimate g.�/ by Sn D
g.Tn/, where the estimate Tn of � is as in the theorem. Then one has:

(i) LfpnŒSn�g.�/� j Pn;�g ) N .0; 	2S .�//, for all � 2 �, provided 	2S .�/ > 0,
where 	2S .�/ D Ng0.�/CT .�/ Ng.�/ and

Ng.�/ D
	
@

@�1
g.�/; : : : ;

@

@�k
g.�/


0
:

(ii) 	2S .�/ � Ng0.�/� �1.�/ Ng.�/ for almost all � (with respect to Lebesgue mea-
sure).

(iii) The inequality in part (ii) holds for all � 2 � if � .�/ is continuous on �.

17.6 Some Comments

The results stated in the preceding sections depend heavily on LAN and contiguity.
These concepts have been central in much of Le Cam’s research work, were intro-
duced by him in the literature, and were given a definite form in his seminal paper
[24]. They also constitute an essential part of his book [25], and they are found in a
more readable version in the book [26].

The important convolution representation theorem, Theorem 17.8, was estab-
lished by [17]. A version of it was also arrived at independently and at the same
time by [18]. Results employing LAN and contiguity have been obtained by the first
author in a series of papers. Relevant developments in a Markovian framework is
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the content of the book [33,38]. Contiguity was taken a step further by [15], relating
it to the statistical invariance principle.

The central assumptions among those made for the derivation of the results stated
so far is the differentiability in q.m. of the square root of the p.d.f. of the underlying
r.v.’s. Such an assumption may hold even if the pointwise derivative does not exist.
Also, it singlehandedly replaces the Cramér-type conditions involving the existence
of third-order pointwise derivatives. The interested reader may refer to the papers
[27, 28].

The precise formulation of the Wald-type properties referred to in Sect. 17.3(ii)
may be found in Chap. 6 of the book [33, 38], and, of course, in the original paper
[50]. Asymptotic efficiency of estimates in terms of concentration of probability,
briefly discussed in Sect. 17.5, has been studied extensively by [51–55].

17.7 Some Generalizations of Results Stated in Sects. 17.2
and 17.4

Many of the results stated in Sects. 17.2 and 17.4 have been generalized in several
settings and different directions.

Thus, Theorems 17.1–17.4 have been carried over to the case when the underly-
ing r.v.’s are independent but not identically distributed in [29]. Theorem 17.8 was
discussed in a Markovian framework in [46], whereas statistical applications of The-
orems 17.1–17.4 and Theorem 17.8 in the same setting were presented in [21–23].
Theorems 17.1–17.4 for Markovian processes were established originally in [31],
and some statistical applications were discussed in [32, 34, 35]. The same theorems
were carried over to the case of general discrete time-parameter stochastic pro-
cesses in [36]. Theorems 17.1–17.4 were also discussed in the context of continuous
time-parameter Markov processes, Lévy processes, and continuous time-parameter
diffusions and Gaussian processes with known covariance by [1]. Certain aspects
of the relation between contiguity, sample size, and parameter rates were addressed
by [2, 3]. Theorems 17.1–17.4 were derived, under a sampling scheme based on
stopping times, in [4] for Markov processes, and in [5] for general discrete time-
parameter stochastic processes. The same theorems were proved in the framework
of continuous time-parameter semi-Markov processes with finite state in [39]. The
same problem was revisited by [41], where Theorem 17.7 was also established.
In general discrete time-parameter stochastic processes, various aspects of Theo-
rems 17.1–17.4 and Theorem 17.8 were discussed by [40, 44] when stopping times
are involved, and by [42, 43] for fixed sample size.
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17.8 The Local Asymptotic Mixed Normal and Local
Asymptotic Quadratic Experiments

It must have become apparent by now that LAN is a valuable tool in discussing
the asymptotic distribution of the log-likelihood functions, as well as other entities
closely related to it. This is the first step in drawing statistical inference about the
underlying parameter.

It so happens, however, that LAN does not obtain in some cases which are
not too far out of the way. Two such cases are the explosive autoregressive pro-
cess of first order, and the super-critical Galton–Watson branching process with
geometric offspring distribution. What is happening instead is that, under suitable
conditions, the log-likelihood function converges weakly to a Locally Asymptoti-
cally Mixed Normal (LAMN) distribution, so-termed by [19], who first arrived at
this distribution.

For the definition of this concept, let ın be a k � k positive definite matrix such
that the matrix norm of ı�1

n tends to 0; i.e.,

kı�1
n k ! 0; (17.11)

and set
�nh (to be shortened to �n/ D � C ı�1

n h; h 2 R
k; (17.12)

so that �n 2 � for all sufficiently large n. Also, set


n.�n; �/ D log
dPn;�n

dPn;�
: (17.13)

Then, in the language of random experiments, we have

Definition 17.4. Let ın, �n, and
n.�n; �/ be given by (17.11), (17.12), and (17.13),
respectively. Then the sequence of experiments f.X ;An; Pn;� /I � 2 �g, n � 1,
is said to be Locally Asymptotically Mixed Normal (LAMN), if the following two
conditions are satisfied:

(i) There exists a sequence fWn.�/g, n � 1, of An-measurable k-dimensional ran-
dom vectors, and a sequence fTn.�/g, n � 1, of An-measurable k�k symmetric
and a.s. ŒPn;� � positive definite random matrices, such that, for every h 2 R

k ,


n.�n; �/�


h0T 1=2n .�/Wn.�/ � 1

2
h0Tn.�/h

�
! 0 in Pn;� -probability:

(17.14)
(ii) There exists an a.s. ŒPn;� � positive definite k � k symmetric random matrix

T .�/, such that,

LfŒWn.�/; Tn.�/�jPn;�g ) LfŒW.�/; T .�/�jP�g; (17.15)
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where W.�/ � N.0; Ik/ and is independent of T .�/.

By setting,

�n.�/ D T 1=2n .�/Wn.�/ and �.�/ D T 1=2.�/W.�/; (17.16)

properties (i) and (ii) become as follows:

(i0) For every h 2 R
k ,


n.�n; �/� Œh0�n.�/ � 1
2
h0Tn.�/h� ! 0 in Pn;� -probability; (17.17)

(ii0)
LfŒ�n.�/; Tn.�/�jPn;�g ) LfŒ�.�/; T .�/�jP� /g: (17.18)

If conditions (i) and (ii) (or (i0) and (ii0)) are satisfied, we also say that the sequence
of families of probability measures fPn;� I � 2 �g, n � 1, has the LAMN property
at each � 2 �.

Remark 17.5. Comparing the convergences in Theorem 17.1 and in relation (17.17),
it is seen that the constant A.h; �/ is replaced in (17.17) by the r.v. 1

2
h0Tn.�/h.

Also, comparing the convergences in Theorem 17.2 and in relation (17.12), it is
seen that the random vector �n.�/ is replaced in (17.18) by the random vector
Œ�n.�/; Tn.�/�, whose asymptotic distribution, underPn;� , is LfŒ�.�/; T .�/� j P�g
rather than N.0; � .�//. See also Remark 17.7 for some additional comments.

Remark 17.6. There exist statistical experiments (to be discussed in Sect. 17.10,
Example 17.3), defined by (17.17) and (17.18), but for which the relations stated in
(17.16) may not hold. Such experiments are called Locally Asymptotic Quadratic
(LAQ) experiments [20, 26]. The points at which LAN or LAMN do not hold
are called ‘critical points’. For LAQ experiments, it is observed that, under the
contiguity of fPn;�g and fPn;�n

g, the following relation holds:

E �exp.h0� � 1
2
h0T h/

� D 1 for all h; (17.19)

where � and T are as they appear in (17.18).

The assumptions made below refer to the segment of r.v.’s X1; : : : ; Xn com-
ing from a general (discrete-time parameter) stochastic process fXng, n � 1; this
process need not even be stationary, either in the strict or in the wide sense. In
the present context, the 	-fields An are induced in X by the segment of r.v.’s
X1; : : : ; Xn.

Assumptions Pertaining to the LAMN Case

A set of assumptions will be listed below which imply the LAMN property, after
some additional notation is introduced. First, it is assumed that, for j � 1, a
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regular conditional probability measure of the distribution of Xj , given Xj�1 D
.X1; : : : ; Xj�1/, is absolutely continuous with respect to a 	-finite measure�j with
corresponding conditional p.d.f. fj .� j Xj�1I �/, and the distribution of X1 is abso-
lutely continuous with respect to a 	-finite measure �1 with corresponding p.d.f.
f1.�I �/. Furthermore, it is assumed that the support of all p.d.f.’s are independent
of � 2 �. These assumptions imply that, for any �; �� 2 �, Pn;� and Pn;�� are
mutually absolutely continuous, Pn;� � Pn;�� , n � 1.

For notational convenience, set

fj .Xj j Xj�1I �/ D fj .�/; j � 2I f1.X1 j X0I �/ D f1.X1I �/ D f1.�/:

Assumptions

(B1) With �n D � C ı�1
n h and fj .�/ D fj .Xj jXj�1I �/, define �nj .�I �; h/ by

�nj .�I �; h/ D f
1=2
j .�n/ � f 1=2j .�/ D f

1=2
j .� j Xj�1I �n/ � f 1=2j .� j Xj�1I �/:

Then assume that there exists a k-dimensional random vector �j .�/, such that

kX
jD1

E�

(Z

S



�nj .xj I �; h/ � 1

2
h0ı�1

n �j .�/

�2
d�j

)
! 0;

(B2) Set �j .�/ D �j .�/=f
1=2
j .�/, j � 1. Then assume that

E� Œ�j .�/ j Aj�1� D 0 a:s:ŒP� �; j � 1:

(B3) There exists a k�k symmetric, a.s. ŒP� � positive definite random matrix T .�/,
such that

ı�1
n

8
<
:

nX
jD1

E�
�
�j .�/�

0
j .�/ j Aj�1

�
9
=
; ı

�1
n � T .�/ ! 0 in P� -probability:

(B4) For every " > 0 and every h 2 R
k ,

nX
jD1

E�
nˇ̌
h0ı�1

n �j .�/
ˇ̌2
I
�ˇ̌
h0ı�1

n �j .�/
ˇ̌
> "

�o ! 0;

where, of course, I.�/ stands for the indicator function.

(B5) Either for every h 2 R
k , there exists � > 0, such that
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sup
n�1

nX
jD1

E�
ˇ̌
h0ı�1

n �j .�/
ˇ̌2 � �;

or
nE�

ˇ̌
h0ı�1

n �j .�/
ˇ̌2 D O.1/; uniformly in j:

(B6) Define the r.v.’s �nj .�; h/ by:

�nj .�; h/ D f
1=2
j .�n/

f
1=2
j .�/

� 1:

Then assume that, for every h 2 R
k ,

nE�
˚
Œ�nj .�; h/C 1�4 � 1� D O.1/; uniformly in j � 1:

The main results to be stated in the next section also require a specification of
the (fixed) matrix ın, the random matrices Tn.�/, and the random vectors Wn.�/.
Namely, ın, Tn.�/, andWn.�/ are taken to be as follows:

ı0
nın D

nX
jD1

E�
�
�j .�/�

0
j .�/

�
; (17.20)

Tn.�/ D ı�1
n

8
<
:

nX
jD1

E�
�
�j .�/�

0
j .�/ j Aj�1

�
9
=
; ı

�1
n ; (17.21)

Wn.�/ D T �1=2
n .�/

2
4ı�1

n

nX
jD1

�j .�/

3
5 : (17.22)

17.9 Some Basic Results

Here is the first result.

Theorem 17.15. For every h 2 R
k , let �n be defined by (17.12), and let ın, Tn.�/,

and Wn.�/ be defined by (17.20), (17.21), and (17.22), respectively. Then, under
assumptions (B1)–(B6), the sequence of families of probability measures fPn;� I � 2
�g, n � 1, has the LAMN property; that is,


n.�n; �/�
h
h0T 1=2n .�/Wn.�/ � 1

2
h0Tn.�/h

i
! 0 in Pn;� -probability for every

h 2 R
k ; (17.23)

and
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LfŒWn.�/; Tn.�/� j Pn;�g ) LfŒW; T .�/� j P� g ; (17.24)

where T .�/ is as in assumption (B3),W � N.0; Ik/ and is independent of T .�/.

Furthermore,

Theorem 17.16. In the setting of Theorem 17.15, it holds

LŒ
n.�n; �/ j Pn;� � ) L
h
h0T 1=2.�/W � 1

2
h0T .�/h j P�

i
;

and therefore

L
h
h0T 1=2n .�/Wn.�/� 1

2
h0Tn.�/h j Pn;�

i
) L

h
h0T 1=2.�/W � 1

2
h0T .�/h j P�

i
:

The following is a contiguity result. Namely,

Proposition 17.3. In the setting of Theorem 17.15, the sequences of probability
measures fPn;�g and fPn;�n

g, n � 1, are contiguous.

Theorem 17.15 and Proposition 17.3 immediately yield the following result.

Theorem 17.17. In the setting of Theorem 17.15 and Proposition 17.3, it holds


n.�n; �/ �
h
h0T 1=2n .�/Wn.�/ � 1

2
h0Tn.�/h

i
! 0 in Pn;�n

-probability:

In the following, a certain local approximation of the underlying family of prob-
ability measures is discussed. To this end, consider �n.�/ and construct a certain
truncated version of it, call it ��

n.�/, like so: For 0 < kn " 1, define W kn
n

(D W
kn
n .�/) by

W kn
n D WnI

�ˇ̌
ˇT 1=2n Wn

ˇ̌
ˇ � kn

�
D WnI .j�nj � kn/ ;

and take

��
n

defD T 1=2n W kn
n D T 1=2n WnI .j�nj � kn/ D �nI .j�nj � kn/ :

Then it is seen that

��
n.�/ ��n.�/ ! 0 in Pn;� -probability; (17.25)

and

Cn;h.�/ D
Z

X
exp

�
h0��

n.�/ � 1
2
h0Tn.�/h

�
dPn;� < 1: (17.26)

Next, define the probability measures

Qn;h.A/ D Cn;h.�/

Z

A

exp
�
h0��

n.�/ � 1
2
h0Tn.�/h

�
dPn;� ; A 2 An; (17.27)
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so that
dQn;h

dPn;�
D Cn;h.�/ exp

�
h0��

n.�/ � 1
2
h0Tn.�/h

�
: (17.28)

Then the following results may be established.

Theorem 17.18. In the notation introduced above and under assumptions (B1)–
(B6):

(a) supŒkPn;�Cı�1
n h �Qn;hkI h 2 B , a bounded subset of R

k� ! 0.
(b) supŒjCn;h.�/� 1jI jhj � b� ! 0 for every b > 0.
(c) kPn;�Cı�1

n hn
�Qn;hn

k ! 0 for every bounded sequence fhng, n � 1, in R
k .

It is in the sense of Theorem 17.18 (parts (a) or (c)) that the probability measures
Pn;�Cı�1

n h are approximated locally (and in the sup norm mode) by the probability
measures Qn;h defined in (17.27). Although in the construction of the measures
Qn;h it was ��

n.�/ rather than �n.�/ which was used, this would be irrelevant
asymptotically, because of (17.25). The usage of ��

n.�/ was dictated in order to
ensure finiteness of the norming constant defined in (17.26).

Remark 17.7. Unlike Theorem 17.7 (see relations (17.8) and (17.9)), the approx-
imation provided here in Theorem 17.18 is not by a standard exponential family.
Instead, the approximating family is a curved exponential family, so termed by [14].
Roughly speaking, an exponential family is curved when the dimensionality of the
sufficient statistic for � is larger than the dimensionality of � . For example, the nor-
mal family N.�; �2/, � 2 R, is a curved exponential family. For more information
the interested reader is referred to the book [12], and in particular Sect. 16.9.

In Theorem 17.16, the limiting distribution of the log-likelihood is a curved
exponential family. However, independence of W and T .�/ and the fact that
W � N.0; Ik/ turns the limiting distribution into a normal distribution, conditioned
upon T .�/ D t . This fact is exploited for making statistical inference in the limit,
and then transposing it to the original family; optimal properties of statistical pro-
cedures will be of the asymptotic variety. Relevant references in this respect are
[6,7,13,16,47–49]. The proofs of Theorems 17.15–17.18, when stopping times are
involved, can be found in [8–11]. A thorough discussion of this sort of asymptotic
results with applications to time series models can be found in [20].

A convolution representation result similar to that in Theorem 17.8 is established
here, too. More precisely, one has

Theorem 17.19. Suppose assumptions (B1)–(B6) hold. Also, let fVng, n � 1, be
a sequence of k-dimensional random vectors of regular estimates of �; that is, for
every h 2 R

k , there is a k-dimensional random vector V.�/, such that

LfŒın.Vn � �n/; Tn.�/� j Pn;�n
g ) LfŒV .�/; T .�/� j P� g D L.�/; say. (17.29)

Let LT .�/ be a regular version of the conditional distribution of V.�/, given T .�/.
Then
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LV.�/jT .�/ D LT .�/ D L1 � L2 a:s: ŒP� �; (17.30)

where L1 D N.0; T �1.�// and L2 is the conditional distribution (under P� ) of
V.�/�T �1=2.�/Z.�/, given T .�/, andZ.�/ follows the N.0; Ik/ distribution and
is independent of T .�/.

It is to be noted that the convolution representation here refers to the conditional
distribution of V.�/, given T .�/, unlike the case in Theorem 17.8. This is the way
one may circumvent the curvature of the limiting family in the present context. A
version of Theorem 17.19, when stopping times are involved, can be found in [45].

17.10 Examples Pertaining to the LAMN and LAQ Cases

Here are three examples whose discussion falls into the LAMN and LAQ frame-
works.

Example 17.1 (Explosive autoregressive process of first order). Such a process
consists of r.v.’s Xj , j � 0, generated as follows:

Xj D �Xj�1 C "j ; X0 D 0; j� j > 1;

where the "j ’s are independent r.v.’s distributed asN.0; 1/. TheXj ’s form a Markov
process with transition p.d.f. that of N.�xj�1; 1/, so that

fj .xj jxj�1I �/ D f .xj jxj�1I �/ D 1p
2�

exp



�1
2
.xj � �xj�1/2

�
:

In [8], it has been checked that assumptions (B1)–(B6) hold, so that the underlying
family of probability measures is LAMN (see also [16, p. 110], and [49, pp. 135–
136]).

The key quantities here are:

ı�1
n D �2 � 1

�n
; so that �n D � C .�2 � 1/h

�n
;

�j .�/ D
Pfj .�/

f
1=2
j .�/

;

where

Pfj .�/ D @

@�
f .xj jxj�1I �/ D xj�1.xj � �xj�1/p

2�
exp



�1
2
.xj � �xj�1/2

�
;

so that
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�j .�/ D �j .�/

f
1=2
j .�/

D
Pfj .�/
fj .�/

D xj�1.xj � �xj�1/:

It follows that

Tn.�/ D .�2 � 1/2

�2n

nX
jD1

X2j�1; Wn.�/ D
Pn
jD1Xj�1�j

�Pn
jD1X2j�1

�1=2 ;

�n.�/ D .�2 � 1/

�n

nX
jD1

Xj�1�j :

Furthermore, it is seen that the log-likelihood is given by


n.�n; �/D .�2�1/h
�n

Pn
jD1Xj�1.Xj��Xj�1/
.
Pn
jD1X2j�1/1=2

� .�
2�1/2h2
2�2n

nX
jD1

X2j�1CoPn;�
.1/:

From results found in [6, pp. 164–165] and [16, p. 110], it is seen that

LŒTn.�/jPn;� � ) LŒT .�/jP� � D �21;

LfŒ�n.�/; Tn.�/�jPn;�g ) LfŒT 1=2.�/W; T .�/�jP�g;

where W � N.0; 1/, T 1=2.�/ � N.0; 1/, and T 1=2.�/ and W are independent (all
under P� ).

Example 17.2 (Super-critical Galton–Watson branching process with geometric
offspring distribution). This example has been discussed in [6, p. 163]; [13, pp. 853–
854]; [8]; and [49, pp. 133–135]. In the present case,

fj .xj jxj�1I �/ D f .xj jxj�1I �/ D
	
1 � 1

�


xj �xj �1
	
1

�


xj �1

; � > 1:

Here, the geometric offspring distribution is given by

P.X1 D j / D ��1.1 � ��1/j�1; j D 1; 2; : : : ; � > 1;

so that
E�X1 D � and Var�.X1/ D �.� � 1/:

The key quantities here are (see [13, pp. 853–854] and [49, pp. 133–135]):

ı�1
n D �1=2.� � 1/

�n=2
; so that �n D � C �1=2.� � 1/h

�n=2
;
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�j .�/ D
Pfj .�/

f
1=2
j .�/

; where
@

@�
logf .xj jxj�1I �/ D @

@�
logfj .�/ D xj � �xj�1

�.� � 1/ ;

and Pfj .�/ D fj .�/ � @

@�
logfj .�/; so that �j .�/ D Xj � �Xj�1

�.� � 1/
:

It follows that

Tn.�/ D � � 1

�n

nX
jD1

Xj�1; Wn.�/ D
Pn
jD1

�
Xj � �Xj�1

�

Œ�.� � 1/
Pn
jD1Xj�1�1=2

;

and

�n.�/ D
Pn
jD1

�
Xj � �Xj�1

�

� .n�1/=2 :

Furthermore, the log-likelihood function is given by


n.�n; �/ D h

� .n�1/=2
nX
jD1

.Xj � �Xj�1/� �.� � 1/2h2
2�n

nX
jD1

Xj�1 C oPn;�
.1/:

It can be seen (from the references just cited) that

LŒTn.�/jPn;� � ) LŒT .�/�;
LfŒ�n.�/; Tn.�/�jPn;�g ) LfŒT 1=2.�/W; T .�/�jP� g;

LŒ�n.�/jPn;� � ) LŒT 1=2.�/W jP� �;

where T .�/ is an exponentially distributed random variable (under P� ) with unit
mean,W � N.0; Ik/, and T 1=2.�/ andW are independent.

Example 17.3. Let us consider the process described in Example 17.1 again, where
� D 1 is the true value of the parameter � (a unit root autoregressive process of order
one). We use (17.20) to find ın as indicated below, and, without loss of generality,
take ın D n, so that �n D � C h

n
.

ı2n D E
0
@

nX
jD1

X2j�1

1
A D n.n � 1/

2
' n2:

We find that the log-likelihood function is given by


n.�n; �/ D h

n

nX
jD1

Xj�1"j � h2

2n2

nX
jD1

X2j�1 C oPn;�
.1/:

It can be seen that the distribution of
n.�n; �/ tends weakly to the limit distribution
of 
h, where
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h D
Z 1

0

Wt dWt � h2

2

Z 1

0

W 2
t dt D 1

2
.W 2

1 � 1/� h2

2

Z 1

0

W 2
t dt;

and Wt is a Weiner process or standard Brownian motion [16, 30, 48]. Here

�n.�/ D 1

n

nX
jD1

Xj�1"j )
Z 1

0

Wt dWt D 1

2
.W 2

1 � 1/;

where W 2
t is a N.0; t/ r.v. for fixed t ,

Tn.�/ D 1

n2

nX
jD1

X2j�1 )
Z 1

0

W 2
t dt;

and

LfŒ�n.�/; Tn.�/� j Pn;�g ) LŒ.�; T / j P� � D
	Z 1

0

Wt dWt ;
Z 1

0

W 2
t dt



:

It can also be seen that

LŒn.b�n � 1/ j Pn;� � ) L
h
1
2
.W 2

1 � 1/
.R 1

0
W 2
t dt j P�

i
;

where

b�n D
Pn
jD1XjXj�1Pn
jD1X2j�1

and

n.b�n � 1/ D
1
n

Pn
jD1Xj�1.Xj �Xj�1/
1
n2

Pn
jD1X2j�1

D
1
n

Pn
jD1Xj�1"j

1
n2

Pn
jD1X2j�1

D �n.�/

Tn.�/
:

17.11 Outline of Proofs of Some of the Basic Results

From Sect. 17.1, recall that 'j .�; ��/ D Œq.Xj I �; ��/�1=2. Keep � fixed, replace ��
by �n D � C hn=

p
n with hn ! h 2 R

k , and set

'nj .�/ D 'j .�; �n/ D Œq.Xj I �; �n/�1=2:

Also, recall that P'0.�/ is the q.m. derivative of '0.�; ��/ with respect to �� at �
when P� is employed. In this notation and always under assumptions (A1)–(A4),
we have



17 Revisiting LAN and Passing on to LAMN and LAQ Experiments 275

Lemma 17.1.

nX
jD0

Œ'nj .�/ � 1�2 ! E� Œh0 P'0.�/�2 in P� -probability:

Proof. See Lemma 5.1 in [33, 38]. ut
Lemma 17.2. With 
n.�; �n/ D 
n.�/ defined by (17.3), we have


n.�/ � 2

nX
jD0

Œ'nj .�/ � 1�C
nX
jD0

Œ'nj .�/ � 1�2 ! 0 in P� -probability:

Proof. See Lemma 5.3 in [33, 38]. ut
From Lemmas 17.1 and 17.2 we have, by subtraction


n.�/ � 2
nX
jD0

Œ'nj .�/ � 1� ! �E� Œh0 P'0.�/�2 in P� -probability: (17.31)

Now, in the alternative definition of q.m. differentiability (see Definition 17.1),
replace �� by � C hp

n
to obtain

p
n



'j

	
�; � C hp

n



� 1

�
q:m:�!
.P� /

h0 P'j .�/;

since 'j .�; �/ D 1; or

p
n
�
'nj .�/ � 1

� q:m:�!
.P� /

h0 P'j .�/: (17.32)

However,

Lemma 17.3.
p
nŒ'2nj .�/ � 1� ! 2h0 P'j .�/ in the first mean ŒP� �.

Proof. See Lemma 5.4 in [33, 38]. ut
But if Un

q:m:�! U , then

jEUn � EU j D jE.Un � U /j � E jUn � U j � E1=2jUn � U j2 ! 0

(see, e.g., Corollary to Theorem 2, Chapter 6, in [37]). Accordingly,

E�
�p
n
�
'2nj .�/ � 1�� �! E� Œ2h0 P'j .�/�:

However, E�'2nj .�/ D 1, so that E� Œh0 P'j .�/� D 0; Thus, we have the following
lemma.
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Lemma 17.4. For each h 2 R
k , E� Œh0 P'j .�/� D 0.

Next, omit � in the expressions for 'nj .�/ and P'j .�/, and set

Yj D .'nj � 1/� 1p
n
h0 P'j � .E�'nj � 1/;

so that E�Yj D 0, and apply Tchebichev’s inequality to get the result.

P�

0
@
ˇ̌
ˇ̌
ˇ̌
nX
jD0

Yj

ˇ̌
ˇ̌
ˇ̌ > "

1
A � 1

"2
	2�

0
@

nX
jD0

Yj

1
A D nC 1

"2
	2�



.'n0 � 1/� 1p

n
h0 P'0

�

� nC 1

"2
E�
ˇ̌p
n .'n0 � 1/� h0 P'0

ˇ̌2 �! 0;

so that

nX
jD0

Yj D
nX

jD0

�
'nj � 1�� 1p

n

nX
jD0

h0 P'j � .nC 1/ .E�'n0 � 1/ ! 0 in P� -probability:

(17.33)
Combining (17.31) and (17.33), we get


n � 2p
n

nX
jD0

h0 P'j � 2.nC 1/ .E�'n0 � 1/ ! �E�
�
h0 P'0

�2
in P� -probability:

(17.34)
From the identity

'2n0 � 1 D .'n0 � 1/2 C 2 .'n0 � 1/ ;

we obtain, by taking expectations,

0 D E�
�
'2n0 � 1� D E� .'n0 � 1/2 C 2 .E�'n0 � 1/ ; or

E�
�p
n .'n0 � 1/�2 C 2n .E�'n0 � 1/ D 0: (17.35)

Since E�
�p
n .'n0 � 1/

�2 ! E� .h0 P'0/2, relation (17.35) yields

2n .E�'n0 � 1/ ! �E�
�
h0 P'0

�2
;

or
2.nC 1/ .E�'n0 � 1/ ! �E�

�
h0 P'0

�2
: (17.36)

Relations (17.34) and (17.36) yield then


n � 2p
n

nX
jD0

h0 P'j �! �2E�
�
h0 P'0

�2
in P� -probability: (17.37)
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Since, by relations (17.6) and (17.4),

�A.h; �/ D � 1

2
h0� .�/h D � 1

2
� 4E�

�
h0 P'0.�/

�2 D �2E�
�
h0 P'0.�/

�2
;

and
2p
n

nX
jD0

P'j .�/ D �n.�/;

by (17.5), then relation (17.37) establishes Theorem 17.1; i.e.,

Proof of Theorem 17.1.


n.�/ � h0�n.�/ �! �A.h; �/ in Pn;� -probability:

ut
We proceed now with the proof of Theorem 17.2.

Proof of Theorem 17.2. By dropping � for convenience, it suffices to show that, for
all h 2 R

k ,
L �h0�n j Pn;�

� ) N.0; h0� h/:

From (17.5),

h0�n D 2p
n

nX
jD0

h0 P'j

with the r.v.’s h0 P'j , j D 0; 1; : : : ; n, being i.i.d., E� .h0 P'0/ D 0 and 	2
�
.h0 P'0/ < 1.

Then the CLT applies and gives

1p
n

nX
jD0

h0 P'j ) N
�
0; E�

�
h0 P'0

�2�
under P� ;

or
LŒh0�n.�/ j Pn;� � ) N.0; h0� .�/h/ for all h 2 R

k;

so that
LŒ�n.�/ j Pn;� � ) N.0; � .�//:

ut
Proof of Theorem 17.3. It is an immediate consequence of Theorems 17.1 and 17.2.

ut
At this point, the contiguity result stated in Proposition 17.1 is established.

Proof of Proposition 17.1. By Theorem 17.3,

L �
n j Pn;�
� ) N

	
�	

2

2
; 	2



;
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where 	2 D h0� .�/h, and

Z

R

E
� dN

	
�	

2

2
; 	2



D
Z

R

1p
2�	

E
� exp

(
�
	
�C 	2

2


2
=2	2

)
d�

D
Z

R

1p
2�	

exp

(
�
	
� � 	2

2


2
=2	2

)
d� D 1:

Then statement (S3) on page 11 in [33, 38] implies statement (S1), which is the
required contiguity. ut
Proof of Theorem 17.4. Contiguity of fPn;�g and fPn;�n

g implies that, for any An-
measurable r.v.’s Tn, the convergence Tn ! 0 in Pn;� -probability implies Tn ! 0

inPn;�n
-probability, and vice versa. This is so by Proposition 2.1, page 8, in [33,38].

Applying this for 
n.�/ D 
n.�; �n/, we obtain the desired result. ut
Proof of Theorem 17.5. It follows by Theorem 17.3, the contiguity of the sequences
fPn;�g and fPn;�n

g, and Corollary 7.2, page 35 in [33, 38]. ut
Proof of Theorem 17.6. It follows by Theorem 7.2, page 38 in [33, 38], by way of
Theorems 17.1, 17.2, and Proposition 17.1. ut

The remaining main results are considerably more complicated, and any attempt
to provide even an outline of their proofs would take us too far afield. So, this section
is concluded here. Interested readers are referred to the different papers written by
the authors for the omitted proofs of results stated herein.
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Chapter 18
Long Range Dependence in Third Order
for Non-Gaussian Time Series

György Terdik

Abstract The object of this paper is to define the long-range dependence (LRD) for
a Non-Gaussian time series in third order and to investigate the third order properties
of some well known long-range dependent series. We define the third order LRD in
terms of the third order cumulants and of the bispectrum. The definition of the third
order LRD is given in polar coordinates.

18.1 Introduction

Higher order spectra and in particular bispectra are very efficient tools for time series
analysis, the development of the rigorous theory has been started in the sixties [5,8],
the applications include testing linearity and Gaussianity [14,31] parameter estima-
tions [6, 19] and so on with a huge literature. At the same time many papers have
been devoted to the research on the long memory time series. The memory of a time
series is defined usually by the order of decay of the covariance function at infin-
ity. The classical stationary ARMA models have short memory with exponentially
decreasing covariance function. The long memory means that the decay is hyper-
bolic. The asymptotic distribution of the sums of the long memory processes is well
studied due to [9, 10, 23–27, 32]. The dependence structure of a time series charac-
terized by the covariances only for a Gaussian series, in this case being uncorrelated
and independent is equivalent, hence long memory and long-range dependence are
synonymous concepts in time series analysis. If the time series is not Gaussian
all the higher order cumulants are necessary for the description of the dependence
structure. The independence, for instance, implies and implied by that each higher
order cumulant is zero, except all variables in the cumulant are the same. Although
Non-Gaussianity and long-range dependence have been observed in many areas, in
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network traffic [22, 29, 37] in asset returns and exchange rate data [11], musics [7],
etc., there are no results neither on the higher order statistics nor on higher order
spectra of non-Gaussian and long-range dependent time series.

The object of this paper is defining the long-range dependence (LRD) of a time
series in third order and investigating the third order properties of some well known
long-range dependent non-Gaussian series. We define the third order LRD in terms
of the third order cumulants and of the bispectrum. Both the third order cumulants
and the bispectrum are symmetric, therefore we consider their values on the princi-
pal domains only. The definition of the third order LRD is given in polar coordinates,
since the origin and the x-axis have some particular importance. Besides the pri-
mary singularity of the bispectrum at the origin, the singularity on the whole x-axis
is allowed. Similarly, not only the radial decay of the third order cumulants at infin-
ity is considered but its behavior when it is approaching the x-axis on the ‘circle
with infinite radius’ as well. The marginal bispectrum and the third order cumu-
lants on the x-axis couple these properties of the bispectrum and the third order
cumulants. In Sect. 18.3 we consider five basic non-Gaussian models; the fraction-
ally integrated noise, the linear fractional noise,H2-process, Rosenblatt process and
�LISDLG process serve as prototypes for the third order LRD. In the last section
we summarize the results and put some conjectures for further subjects of investi-
gations. The proofs are technical and omitted, interested readers may consult with
[36] and the author.

18.2 Long-Range Dependence

It is a well known that for an i.i.d. series X1; X2; : : : Xn (with mean zero and
variance Var .Xk/ D 	2X ) the variance of the sum of Xk’s changes linearly with n,
i.e.,

Var

 
nX
kD1

Xk

!
D n	2X :

Asymptotically the above result holds even when X` is a stationary time series. Let
X` be a zero mean stationary time series given in spectral representation

X` D
Z 1=2

�1=2
ei2�`!MX .d!/ ;

where E jMX .d!/j2 D S2 .!/ d!, and S2 .!/ is its spectral density function. The
variance of the sum

Pn�1
`D0 X` is calculated directly from the spectral representation,

we have
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Var

 
n�1X
`D0

X`

!
D Var

 Z 1=2

�1=2
ei2�n! � 1
ei2�! � 1

MX .d!/

!

D
Z 1=2

�1=2

ˇ̌
ˇ̌ei2�n! � 1
ei2�! � 1

ˇ̌
ˇ̌
2

S2 .!/ d!:

Now, as far as S2 .0/ is finite the Fejér kernel
ˇ̌�
ei2�n! � 1

�
=
�
ei2�! � 1�ˇ̌2 guar-

anties the limit

lim
n!1

1

n

Z 1=2

�1=2

ˇ̌
ˇ̌ei2�n! � 1
ei2�! � 1

ˇ̌
ˇ̌
2

S2 .!/ d! D S2 .0/ ;

hence for large n we obtain

Var

 
n�1X
`D0

X`

!
' nS2 .0/ :

If this is true for a particular time series then it is expected that the estimated vari-
ances of the aggregated series for different n will show this approximation. Namely
estimating and plotting the logarithm of these variances against log .n/ we obtain a
linear function with slope 1. Several phenomena have been reported in the literature,
see [2,28], where the slope of log .n/ is different from one, usually it is greater than
1, i.e., for large n

log Var

 
nX
kD1

Xk

!
' 2H log .n/C const:;

where H 2 .1=2; 1/. Half-slope H is called the Hurst exponent, the name goes
back to [17]. From now on we shall use a shifted version h D H � 1=2 of H ,
since it is frequently used in time series analysis. When the slope is larger than
one, the spectrum has singularity at zero, which is equivalent to the divergence of
the covariance series

P1
kD�1 Cov .X`; X`Ck/. Therefore the decay of the covari-

ances Cov .X`; X`Ck/ is slower, hence the dependence of the values X` and X`Ck
is stronger then in a usual case when the S2 .0/ is finite. A stationary time seriesX`,
` D 0;˙1;˙2 : : : ˙ n will be called long-range dependent (LRD) if its spectrum
S2 .!/ behaves like j!j�2h at zero, more precisely

lim
!!0

S2 .!/

j!j�2h L.1= j!j/
D qs ; (18.1)

where h 2 .0; 1=2/ and L.�/ is a slowly varying function at infinity. This definition
of long-range dependence can be stated in terms of autocorrelation function as well,
since, as far as L.�/ is quasi-monoton slowly varying, (18.1) is equivalent to:
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lim
k!1

Cov .X`Ck; X`/
jkj2h�1L.k/

D qc; h 2 .0; 1=2/ : (18.2)

Note here the connection between these two constants qs and qc , namely the ratio
qs=qc D 21�2h��2h� .2h/ cos .�h/ is constant. From now on this ratio will be
denoted by �2h. In other words, the autocorrelation function decays hyperbolically.
In fact although the spectrum is in L1 its Fourier coefficients Cov .X0; Xk/ are not
in L1 any more. The equivalence of (18.1) and (18.2) is studied in the theory of
regular varying functions in details, we quote here the results of two Theorems,
4.3.2 and 4.10.1 of [3]. Let L.�/ be quasi-monotone slowly varying function, then
for h 2 .0; 1=2/

1X
kD�1

L.k/ jkj2h�1 ei2�!k ' 21�2h��2h� .2h/ cos .�h/ j!j�2h L.1= j!j/ ;
(18.3)

when ! ! 0. The left hand side converges to a function, S2 .!/ say, such that it
fulfils (18.1). The Tauberian conversion of this Abelian result is also true, namely
if the Fourier coefficients of the right hand side, Cov .X0; Xk/ say, decreasing then
it fulfils (18.2). These results of calculus covers totally the problem of LRD for
Gaussian time series. It should be emphasized that either we are given the spectrum
around zero

S2.!/ ' c0�2h j!j�2h L.1= j!j/ ; ! ! 0;

where c0 is some (positive) constant which might depend on h, or the covariances
at large k

Cov.X`Ck; X`/ ' c0 jkj2h�1L.jkj/ ; k ! 1;

they defines each other including the exponents, constants and slowly varying
functions.

If the time series is not Gaussian then the higher order cumulants and spectra
provide some additional information on the structure of dependence.

18.2.1 Bispectrum and Cumulants

Let the process X` be centered and stationary in third order, then its third order
cumulants are

Cum
�
X`Ck1

; X`Ck2
; X`

� D EX`Ck1
X`Ck2

X`

D C3 .k1W2/ ; k1; k2 D 0;˙1;˙2; : : :

(notation: k1W2 D .k1; k2/). The third order cumulants are called bicovariance as
well. An easy consequence of this definition is that the following properties are
fulfilled
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C3 .k1W2/ D C3 .k2; k1/

D C3 .�k1; k2 � k1/ :

These equations provide the symmetry of the third order cumulants, the plain is
divided into six equivalent parts, each of them is sufficient for the determining of
the third order cumulants on the whole plane. One of these parts, called principal
domain for the third order cumulants, is 0 � k2 � k1, i.e., the lower half of the right
upper quarter of the lattice with integer coordinates in the plain.

The bispectrum S3 is a complex valued function of two variables with Fourier
coefficients C3 .k1W2/, i.e.,

C3 .k1W2/ D
1=2“

�1=2
ei2�.!1k1C!2k2/S3 .!1W2/ d!1W2:

In case the series C3 .k1; k2/ is in L1 then the bispectrum has the series expansion

S3 .!1W2/ D
1X

k1D�1

1X
k2D�1

C3 .k1W2/ e�i2�.!1k1C!2k2/: (18.4)

While the spectrum is real and nonnegative the bispectrum is generally complex
valued and since C3 .k1W2/ is real, we have S3 .!1W2/ D S3 .�!1W2/, (notation:
!1W2 D .!1; !2/). The bispectrum S3 is periodic

S3 .!1W2/ D S3 .!1 Cm1; !2 Cm2/ ; m1; m2 D ˙1;˙2; : : : ;

and it has the following symmetry

S3 .!1W2/ D S3 .!2; !1/

D S3 .!1; !3/ :

where !3 $ �!1 � !2. These symmetries imply 12 equivalent domains for the
bispectrum, see Fig. 18.1, the principal domain traditionally is the triangle 41 with
vertices (0,0), (1/2,0), and (1/3,1/3) (41 denoted by T1 in Fig. 18.1) [15, 35]. The
Fig. 18.1 shows the symmetry lines going through on the origin for the bispectrum
of a continuous time process as well.

The cumulants on the x-axis will play some particular roll later on, they are the
Fourier coefficients of the marginal bispectrumM3, i.e.,

Cum .Xk; X0; X0/ D
Z 1=2

�1=2
ei2�!kM3 .!/ d!;

The marginal bispectrum is calculated directly from the bispectrum
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Fig. 18.1 12 domains of bispectrum

M3 .!/ D
Z 1=2

�1=2
S3 .!; �/ d�:

The following formula is useful for the calculation of the cumulant C3 .`1W2/ of
a stationary process. When the bispectrum is given we have

C3 .`1W2/ D
Z

Œ0;1
2
ei2�.`1!1C`2!2/S3 .!1W2/ d!1W2;

since the bispectrum is symmetric, see above we split the integral into 12 parts, each
corresponds to a domain 4m,m D 1 W 12, with boundary according to the symmetry
lines, see Fig. 18.1. For instance 41 denotes the lower half of the upper quarter of
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the plane, it corresponds to the triangle T1 in the Fig. 18.1. Now, the transformation
from 4m into 41 does not change the bispectrum (conjugates it at most) it changes
the exponent only. Let us consider the integral

Z

45

ei2�.`1!1C`2!2/S3 .!1W2/ d!1W2;

and transform 45 into 41, i.e., change the variables !1 D ��1��2, and !2 D �1,
we obtain
Z

45

ei2�.`1!1C`2!2/S3 .!1W2/ d!1W2 D
Z

41

ei2�.Œ`2�`1
�1�`1�2/S3 .�1W2/ d�1W2

D c3 .`2 � `1;�`1/ ;

where

c3 .`1W2/ D
Z

41

ei2�.`1!1C`2!2/S3 .!1W2/ d!1W2:

After transforming all domains into the 41 we obtain the following expression.

Lemma 18.1. The continuous time cumulant function can be calculated in terms of
integral c3, namely

C3 .`1; `2/ D 4Re

 
sym
`1W2

Œc3 .`1; `2/C c3 .`2 � `1;�`1/C c3 .�`1; `2 � `1/�

!
;

where sym`1W2
denotes the sum according to all possible permutations of `1W2

divided by the number of the terms.

18.2.2 Long-Range Dependence in Third Order

The relations (18.1) and (18.2) concern on the behavior of the covariances at infinity
and the spectrum at zero. Similar results in 2D are available for isotropic case only,
see [30, Ch. VII, Theorem 2.17].

Lemma 18.2. Suppose that the bispectrum S3 .!1W2/ is continuous. Then S3 is
isotropic if and only if S3 .0; 0/ is finite and S3 .!1W2/ is constant.

Proof. Suppose that the bispectrum S3 .!1W2/ is isotropic, i.e., S3 .!1W2/ is con-
stant on the circle with radius � D j!1W2j, say. From the symmetry S3 .!1W2/ D
S3 .!1; !3/ it follows S3 .�; 0/ D S3 .�;��/. Hence the value of S3 on the circle
with radius � is the same as the value on the circle with radius

p
2�, equivalently

S3 .�/ D S3

�
�=

p
2
�

D : : : D S3
�
2�n=2�

�
, for any integer n. Now if S3 .0/ is

finite then S3 .�/ D S3 .0/ for any radius �. ut
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Since there is no isotropic bispectrum (except constant) we have to deal with
more general 2D Fourier transforms than the isotropic one. Examples show below
that the bispectrum S3 .!1W2/ and the third order cumulant are connected in some
particular way. Let ˛!2=!1

D arctan .!2=!1/, i.e., ˛ corresponds to the angle of the
unit vector !1W2= j!1W2j and the polar axis, if !1W2 is in the principal domain when

either the radius � D j!1W2j D
q
!21 C !22 tends to zero and ˛!2=!1

is fixed or

˛!2=!1
tends to zero and j!1W2j is fixed then the bispectrum might have singularity.

When !1W2 is close to the boundary we put the bispectrum in the following form

S3 .!1W2/ ' pS j!1W2j�3g0 ˛
�2g1

!2=!1
L˛

�
j!1W2j�1

�
L
�
˛�1
!2=!1

�
; (18.5)

where L is a slowly varying function and L˛ is a slowly varying family. A term like�
�=4� ˛!2=!1

��2g
might be included into the bispectrum S3, but we do not have

any example implying its necessity.

Definition 18.1 (S). The time series X` is S-long-range dependent in third order
with radial exponent g0 and angular exponent g1 if the bispectrum S3 is factorized
as (18.5) on the principal domain 41 and 0 < g0 < 2=3, g1 2 Œ0; 1=2/.

If g1 > 0 then the bispectrum has singularity on the hole x-axis therefore there
are some additional information in the marginal bispectrum as well.

On the principal domain, 0 � k2 � k1, let the third order cumulants be given in
the form

Cum
�
Xk1

; Xk2
; X0

� ' pC jk1W2j3g0�2L.jk1W2j/Kˇ .jk1W2j/ ; jk1W2j ! 1
(18.6)

where ˇk2=k1
D arctan .k2=k1/, ˇk2=k1

2 .0; �=4/, and for each ˇ 2 .0; �=4/,
Kˇ .�/ has a finite, continuous in ˇ limit Kˇ , when jk1W2j ! 1, L.jk1W2j/ is a
slowly varying function. In addition,

Kˇ ' pKˇ
2g2�1
k2=k1

�
�=4 � ˇk2=k1

�2g3�1
L1

�
ˇ�1
k2=k1

�
�=4 � ˇk2=k1

��1�
; (18.7)

when ˇk2=k1
! 0: It is clearly corresponding to (18.5).

Definition 18.2 (C). The time series X` is C-long-range dependent in third order
with radial exponent g0 and angular exponent g2, g3 if the third order cumulants
are factorized over the principal domain such that (18.6) and (18.7) fulfil, moreover
0 < g0 < 2=3, g2; g3 2 .0; 1=2�.

A delicate question to be addressed is the consequence of the LRD bispectrum
to the marginal bispectrum

M3 .!/ ' c�
2 Qh j!j�2 Qh L

�
j!j�1

�
; (18.8)

around zero. The marginal cumulants, as k tends to infinity, are connected to M3 in
a well known way
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Cum .Xk; X0; X0/ ' c jkj2 Qh�1 L.jkj/ ; (18.9)

Cum .X�k; X0; X0/ ' jkj2 Qh��1L.jkj/ :

Since Cum .X�k; X0; X0/ D Cum .Xk; Xk; X0/, therefore this series corresponds
to the cumulants on the diagonal k1 D k2.

18.3 Non-Gaussian LRD Models

There are several well known ways of modelling long-range dependence, see
[1, 12, 34]. For instance one may start with either the fractional Gaussian noise pro-
cess or with the discretized fractional Brownian motion. In this section we consider
particular non-Gaussian processes, each of them are LRD, and derive the Hurst
exponents for both the bispectra and cumulants.

18.3.1 Fractionally Integrated Noise

Define the fractional (not necessarily Gaussian) noise process as

U` D .1 � B/�hZ`

D
Z 1=2

�1=2
ei2�!`

�
1 � e�i2�!��hM .d!/ ;

where Z` is i.i.d. series (EZ` D 0, EZ2
`

D 	2) and B is the backward shift oper-
ator, i.e., BZ` D Z`�1. Note here that the stochastic spectral measure M .d!/ has
independent increments, E jM .d!/j2 D 	2d!. Now, if jhj < 1=2, then U` is a sta-
tionary process having both moving average and infinite order AR representations,
see [13,16]. If 0 < h < 1=2 then U` is a long-range dependent linear process in the
sense that its autocorrelation function decreases hyperbolically (instead of the usual
exponential rate). The moving average representation of U` is

U` D
1X
kD0

� .k C h/

� .h/ � .k C 1/
Z`�k : (18.10)

The series (18.10) converges in mean-square. We have exact expressions for the
covariances, they are is calculated by the MA representation (18.10), i.e.,

Cov.U`Ck; U`/ D 	2
� .k C h/ � .1=2� h/

22h
p
�� .k C 1 � h/ � .h/ : (18.11)
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and 	2U D 	2� .1 � 2h/=� 2.1 � h/. For large values k we obtain the hyperbolic
decay of correlations .k ! 1; /

Cov.U`Ck; U`/ ' 	2
� .1=2� h/

22h
p
�� .h/

jkj2h�1 (18.12)

D 	2c2h jkj2h�1 ;

where c2h D � .1 � 2h/ sin�h=� . The spectral density follows from the spectral
representation

SU;2 .!/ D 	2
ˇ̌
1 � e�i2�! ˇ̌�2h : (18.13)

The property (18.12) implies and is implied by the fact that the spectral density of
U` is hyperbolic for low frequencies, i.e., if ! ! 0, we obtain

SU;2.!/ D 	2 j2�!j�2h
ˇ̌
ˇ̌ei2�! � 1

2�!

ˇ̌
ˇ̌
�2h

' 	2�2hc2h j!j�2h : (18.14)

Vice versa, the corresponding covariance function writes as (18.12).

18.3.1.1 Third Order Properties

Assume Cum .Z0; Z0; Z0/ exists and denote it by cZ;3, then

Cum .U0; U0; U0/ D cZ;3
� .1C h=2/� .1 � 3h=2/

� .1C h/� .1 � h/ � 2 .1 � h=2/
: (18.15)

the third order cumulant Cum
�
Uk1

; Uk2
; U0

�
is expressed in terms of generalized

Gauss function

Cum
�
Uk1

; Uk2
; U0

� D cZ;3

� 2 .h/

� .k1 C h/ � .k2 C h/

� .k1 C 1/� .k2 C 1/
A3;2 .h; k1W2/ ; (18.16)

where
A3;2 .h; k1W2/ D 3F2 .h; k1 C h; k2 C hI k1 C 1; k2 C 1; 1/ ;

provided Re .k1 C 1C k2 C 1 � 3h� k1 � k2/ > 0, i.e., h < 2=3, in other words
there are no extra assumptions for the third order analysis than the existence of the
third order moment for Z`. We approximateA3;2 .h; k1W2/ by

rh
.sinˇ/h � .2 � 3h/

� .2 .1 � h// 2F1 .h; 1 � hI 2 .1 � h/ I 1 � tanˇ/ :

If ˇ is fixed and r tends to infinity then both k1 and k2 tend to infinity, hence
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Cum
�
Uk1

; Uk2
; U0

� ' cZ;3r
3h�2Kˇ .r/ ; r ! 1;

such that

Kˇ ' .sinˇ/2h�1 � .2 � 3h/
� 2 .h/ � .2 .1 � h//

.cosˇ/h�1

� 2F1 .h; 1 � hI 2 .1 � h/ I 1 � tanˇ/

D ˇ2h�1 c2h

� .h/
L
�
ˇ�1� :

In other words

lim
ˇ!0

ˇ1�2h lim
r!1

Cum
�
Uk1

; Uk2
; U0

�

r3h�2 D cZ;3
c2h

� .h/
: (18.17)

The bispectrum SU;3 is calculated in terms of the transfer function of a linear
series

SU;3 .!1W2/ D cZ;3

3Y
jD1

�
1 � e�i2�!j

��h
(18.18)

D .2�/�3h cZ;3 Œ� .!1W2/��h
3Y
kD1

.i!k/
�h ;

here and the rest of the paper !3 is defined traditionally as !3 D �!1 � !2, and

� .!1W2/ D
3Y
jD1

sin
�
�!j

�

�!j
:

As far as !1 ¤ 0 we have the representation for the bispectrum

SU;3 .!1W2/ ' j!1W2j�3h ˛�h
!2=!1

.2�/�3h e�ih�=2L
�
˛�1
!2=!1

�
; (18.19)

where j!1W2j D �, ˛ D arctan .!2=!1/.

18.3.1.2 Marginals

The cumulants behave differently on the boundaries

Cum .Uk; U0; U0/ ' cZ;3
� .1 � 2h/

� .h/ � 2 .1 � h/
kh�1; k ! 1; (18.20)
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Cum .U0; U0; U�k/ ' cZ;3
� .2 � 3h/

� .h/2 � .2 .1 � h//k
3h�2; k ! 1:

Both series decay hyperbolically with different exponents.
The corresponding marginal bispectrum is

MU;3 .!/ ' � .1 � 2h/

� 2 .1 � h/
.2�/�h e�i�h=2!�h; ! ! 0C;

since the Fourier transform according to the cumulants Cum .U0; U0; U�k/ on the
diagonal provides singularity j!j1�3h, while Cum .Uk; U0; U0/ gives singularity
j!j�h, the superposition of these two sides results the singularity j!j�h of the
marginal bispectrum, since 2� 3h > 1� h. When r is large the difference between
the order of decays on the x-axis (Cum .Uk; U0; U0/ with order 1 � h) and inside
the principal domain (Cum

�
Uk1

; Uk2
; U0

�
with order 2 � 3h) is equalized, i.e., the

radial exponent is 2 � 3h� .1 � h/ D 1 � 2h.

Remark 18.1. For a linear process the bicoherence is constant,

jS3 .!1W2/j2
S2 .!1/ S2 .!2/ S2 .!3/

D const:;

hence from the singularity of the spectrum follows the singularity of the bispectrum.

18.3.2 Linear Fractional Noise

The continuous time spectrum

ˇ̌
ˇ̌ei2�! � 1

i2�!

ˇ̌
ˇ̌
2

j2�!j�2h D 4 sin2 .�!/ j2�!j�2h�2 ; (18.21)

where 0 < h < 1=2, behaves similarly, around zero, to the fractionally inte-
grated spectrum (18.13). It corresponds to the continuous time process with spectral
representation

Vt D
Z 1

�1
ei2�!t

ei2�! � 1

i2�!
.i2�!/�hM .d!/ ; (18.22)

where M .d!/ is a stochastic spectral measure with independent increments,
E jM .d!/j2 D 	2d!. We shall consider Vt at integer time points, t D 0;˙1;
˙2; : : : only. If M .d!/ is Gaussian then Zt D Vt is referred as (differenced) frac-
tional Gaussian noise since Zt D �Bt , where Bt denotes the fractional Brownian
motion [28]. We are interested in non-Gaussian case and call it fractional noise. The



18 Long Range Dependence in Third Order for Non-Gaussian Time Series 293

spectrum of the fractional noise Vt follows from the Poisson summation formula,
see [30],

SV;2 .!/ D 4	2 .2�/�2h�2 sin2 .�!/
1X

mD�1
jmC !j�2h�2 (18.23)

D 	2 j2�!j�2h L �!�1� :

where

L
�
!�1� D

	
sin .�!/

�!


2 1X
mD�1

ˇ̌
ˇ̌ !

mC !

ˇ̌
ˇ̌
2hC2

:

The spectrum around zero

SV;2 .!/ D .2�/�2h 	2 j!j�2hL.1= j!j/
' 	2c2h�2h j!j�2h ;

and the covariance

Cov.VtCk; Vt / D 	2	2h�
2
1=2k

2hC1

' 	2c2h jkj2h�1 :

where 	2h D c2h= Œ2h.2hC 1/�.

18.3.2.1 Third Order Properties

The bispectrum

SV;3 .!1W2/ D cV;3 .2�/
�3h � .!1W2/

3Y
jD1

�
i!j

��h 1X
m1;m2D�1

3Y
jD1

	
!j

!j Cmj


hC1
:

(18.24)
follows immediately from the transfer function of the process (18.22), assuming
EM .d!1/M .d!2/M .d!3/ D cV;3ı!1C!2C!3

d!1W2. The bispectrum behaves
around zero like

cV;3� .!1W2/ .i2�!1/�h .i2�!2/�h .i2�!3/�h ;

hence
SV;3 .!1W2/ ' cV;3�

�3h˛�h .2�/�3h e�ih�=2L
�
˛�1� ;

where � D j!1W2j, and ˛ D arctan .!2=!1/. The third order properties, as far as
1=3 < h < 1=2 and ˇ > 0,
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Cum
�
Vk1

; Vk2
; V0

� ' cV;3r
3h�2Kˇ .r/ ˇ2h�1 c2h

� .h/
L
�
ˇ�1� ; r ! 1; (18.25)

where k1 D r cosˇ and k2 D r sinˇ, ˇ 2 .0; �=4/, moreover

Kˇ ' ˇ2h�1 c2h

� .h/
L
�
ˇ�1� ; ˇ ! 0:

18.3.2.2 Marginals

Marginal cumulants are similar to those (18.20)

Cum .Vk ; V0; V0/ ' 2kh�1	2h
cV;3

� .h/
; (18.26)

Cum .V0; V0; V�k/ ' k3h�2 � .2 � 3h/
� .h/2 � .2 .1 � h//

:

The marginal bispectrum is

MV;3 .!/ ' 2cV;3 .2�/
�h 	2he�i�h=2 j!j�h ; ! ! 0C :

18.3.3 H2-Process

H2-process is a homogenous Hermite process with order 2. The simplest process
which is subject of non-central limit theorem. It is defined as the second order
Hermite polynomial of the differenced fractional Brownian motion Zt .

Zt D
Z 1

�1
ei2�!t

ei2�! � 1

i2�!
.i2�!/�hW .d!/ :

The correlation of Zt is the same as that of Vt , namely RZ .k/ D 	2h�
2
1=2
k2hC1.

DenoteH2 .Z/ D Z2 � Var .Z/, the Hermite polynomial with degree 2. The trans-
form Xt D H2 .Zt / called H2-process, has the following multiple Wiener–Ito
representation

Xt D
Z

R2

ei2�t.!1C!2/
ei2�!1 � 1

i2�!1

ei2�!2 � 1

i2�!2
.i2�!1/

�h .i2�!2/�hW .d!1W2/ :

The correlation of Xt is just the square of the correlation of Zt (up to a constant),
Var .Zt / D 	2h,
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RX .k/ D 2R2Z .k/ D 2	22h

�
�21=2k

2hC1�2

' 2c22h jkj2.2h�1/ ;

The spectrum around zero behaves like

SX;2 .!/ D 2 .2�/�4h
Z 1

�1
jeI .�/j2 jeI .! � �/j2 j�j�2h j! � �j�2h d�

' 2c22h�4h�1 j!j1�4h ; ! ! 0; (18.27)

provided h > 1=4, where eI .!/ D ei�! sin .�!/ =� .
The spectrum of Xt D H2 .Zt / is LRD unless additionally to 0 < h < 1=2

we have h > 1=4. In general, it is easy to see that the Hm .Zt / will preserve the
LRD property only if h > .m � 1/ =2m, since in this case the correlation �Hm.Z/ D
mŠRmZ .k/ ' mŠ	m

2h
jkjm.2h�1/.

18.3.3.1 Third Order Properties

Concerning to the cumulants for Hermite polynomials, it follows from the general
expression (see [35, p. 17])

Cum
�
Xk1

; Xk2
; X0

� D 8RZ .k1/ RZ .k1 � k2/ RZ .k2/ (18.28)

D 8	32h

h
�21=2k

2hC1
1

i h
�21=2 .k1 � k2/

2hC1i h�21=2k2hC1
2

i
;

where k1 > k2 > 0; this cumulant is expressed also in terms of the bispectrum

Cum
�
Xk1

; Xk2
; X0

� D
Z

R2

exp .i2�k1!1 C k2!2/ SX;3 .!1W2/ d!1W2;

where

SX;3 .!1W2/ D 8 .2�/�6h
Z 1

�1
jeI .�/ eI .!2 � �/ eI .!1 C �/j2 (18.29)

� j�j�2h j!1 � �j�2h j!2 C �j�2h d�;

see [35, p. 47].
We are interested in the asymptotic behavior of the cumulants when k1 and k2

are large

Cum
�
XtCk1

; XtCk2
; Xt

� D 8RZ .k1/ RZ .k1 � k2/ RZ .k2/

' 8c32h .jk1j jk1 � k2j jk2j/2h�1 :
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For further notation the Cum
�
XtCk1

; XtCk2
; Xt

�
is denoted by RX .k1W2/. First

notice that if k1 D k2, or k2 D 0, then RX .k1; k1/ ' 8c2
2h

jk1j2.2h�1/. Put
k1 D r cosˇ and k2 D r sinˇ, .ˇ ¤ �=4; 0/, then

RX .k1; k2/ ' 8c32hr
3.2h�1/Kˇ .r/

Kˇ ' jˇj2h�1
ˇ̌
ˇ�
4

� ˇ
ˇ̌
ˇ
2h�1

L.1=ˇ/

L .1=ˇ/ D jcosˇj2h�1
ˇ̌
ˇ̌ sin .�=4 � ˇ/

�=4 � ˇ
ˇ̌
ˇ̌
2h�1 ˇ̌

ˇ̌ sinˇ

ˇ

ˇ̌
ˇ̌
2h�1

;

The singularity of the bispectrum (18.29) in accordance with the order of decay of
RX is the following. For small ˛ we obtain

SX;3 .˛; �/ ' �1�6h j˛j1�4h L˛ .1=�/L .1=˛/ ;

it has radial singularity provided h > 1=6. The order of angular singularity of the
bispectrum (˛ limit to 0) is 2h and cumulant has angular decay of order 1 � 2h.
The singularity of the bispectrum on the x-axis, according to the singularity of the
angular part at 0, corresponds to the 2 .2h� 1/ order of decay of RX on the x-
axis here the S .s/3 .�/ is the angular part, which is continuous on .0; �=4/, it has
singularity at ˛ D 0; �=4 and by the symmetry at ˛ D �=2; �; 5�=4 on the unit
circle, and L.�/ is slowly varying at infinity. Cumulants

RX .k1W2/ '
(
8c3
2h
r3.2h�1/Kˇ .r/ ; k1 ¤ k2;

8c2
2h

jk1j2.2h�1/ ; k2 D 0; k1;
; r ! 1:

Again the order of decay of RX .k1W2/ by the x-axis (and on the line x D y) is the
difference 3 .1 � 2h/�2 .1 � 2h/ D 1�2hwhere 2 .1 � 2h/ is the radial singularity.
The symmetry of the bispectrum implies that the values of the angular part on the
unit circle are determined by the values on Œ0; �=4�.

The divergence of the 2D series of the third order cumulants is equivalent to the
2 � .3 � 6h/ D 6h � 1 order radial singularity of the bispectrum. The assumption
of the LRD is 0 < 3 � 6h < 2, i.e., 1=6 < h < 1=2.

Lemma 18.3. If Xt D H2 .Zt / and h > 1=6 then Xt is LRD in third order with
Hurst exponents: g0 D .6h� 1/ =3; g1 D 2h, and Qh D 4h� 1.

Corollary 18.1. The assumption for the second and third order LRD is 1=4 < h <
1=2. If 1=6 < h < 1=4 then Xt D H2 .Zt / is LRD in third order but second order.
If 0 < h < 1=6 then the Gaussian time series Zt is LRD but Xt D H2 .Zt / is not
LRD neither in second nor in third order sense.
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18.3.3.2 Marginals

Cum .Xk; X0; X0/ D 8R2Z .k/RZ .0/

D 8	32h

h
�21=2k

2hC1
i2

' 8	2hc
2
2h jkj2.2h�1/

The marginal bispectrum

MX;3 .!1/ ' 8	2hc
2
2h�4h�1 j!j1�4h ; ! ! 0: (18.30)

18.3.4 Rosenblatt Process

Assume 1=4 < h < 1=2; then

Yt D
Z

R2

ei2�t.!1C!2/
ei2�.!1C!2/ � 1
i2� .!1 C !2/

.i2�!1/
�h .i2�!2/�hW .d!1W2/ ;

(18.31)
defines a stationary process. The process Yt , is subject of some non-central limit
theorem [4, 9, 21, 33] it is called as Rosenblatt process. The representation (18.31)
provides the covariance

Cov .YtCk; Yt / D c2
2h

4h .4h� 1/
�21=2k

4h (18.32)

' 2c22h jkj2.2h�1/ ; k ! 1;

where�1=2 is the central difference operator and�2
1=2

is its square, in particular we
have the variance

Var .Yt / D c2
2h

h .4h� 1/
:

The spectrum of Yt around zero is

SY;2 .!/ ' 2c22h�4h�1 j!j1�4h ; ! ! 0; (18.33)

provided 1=4 < h < 1=2:We conclude that the asymptotic behavior of the spectra,
SX;2 and SY;2, at zero and the correlations at infinity are the same for both the
seriesH2 .Zt / and its aggregated limit Yt . This become quite obvious if we compare

the spectra at zero and apply the well known result; the term
ˇ̌
ˇ ei2�!�1
i2�!

ˇ̌
ˇ
2

has no

singularity (�1) in the interval Œ�1=2; 1=2�.
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18.3.4.1 Third Order Properties

The bispectrum of the process Yt follows from a general theory, see is

SY;3 .!1W2/ D � .!1W2/ s3 .!1W2/ ;

where !3 D �!1 � !2 as usual and where

s3 .!1W2/ D 8 .2�/�6h
Z 1

�1
j�j�2h j!1 � �j�2h j!2 C �j�2h d�: (18.34)

Note h < 1=2 implies 1 � 4h > �2h, hence if !1 D � cos˛, !2 D � sin ˛, we
obtain

Z 1

�1
j�j�2h j!1 � �j�2h j!2 C �j�2h d� ' �1�6h j˛j1�4h L

�
˛�1� ;

therefore
SY;3 .!1W2/ ' �1�6h j˛j1�4h L

�
˛�1�L˛

�
��1� :

Straightforward calculation shows

Cum
�
Yk1

; Yk2
; Y0

� D 8c32h

�
1Z

0

1Z

0

1Z

0

jk1 C u1 � u3j2h�1 jk2 C u2 � u3j2h�1 jk1 � k2 C u1 � u2j2h�1 du.1W3/:

It provides the limit for the third order cumulants

lim
r!1

Cum
�
Yk1

; Yk2
; Y0

�

r6h�3 D 8
2h�1=2

� 3 .2h/
L
�
ˇ�1 .�=4�ˇ/�1

�
ˇ2h�1 .�=4�ˇ/2h�1 ;

0 < 3 � 6h < 2, i.e., 1=6 < h < 1=2, hence one gets for Kˇ the expression

Kˇ D 8
2h�1=2

� 3 .2h/
ˇ2h�1 .�=4 � ˇ/2h�1L

�
ˇ�1 .�=4� ˇ/�1

�
:

18.3.4.2 Marginals

The cumulants on the x-axis and the diagonal are the same, i.e., if either k1 D 0 or
k1 D k2 D k, then

Cum .Yk; Yk ; Y0/ ' k2.2h�1/ 8c3
2h

h .2hC 1/
:
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it follows that the marginal bispectrum is a spectrum, more over

MY;3 .!/ ' j!j1�4h 8c3
2h

h .2hC 1/
�4h�1; ! ! 0: (18.35)

18.3.5 �LISDLG Process

�LISDLG (increments of the Limit of Superpositions of Diffusion with Linear Gen-
erator) process, X`, ` 2 Z, has been developed, see [18], in particular for modeling
high speed network data. This discrete time processX` has several interesting prop-
erties, it is not self-similar rather multifractal, moreover it is nonlinear and LRD.
Besides the Hurst exponent h, its distribution depends on two positive parameters
c0 and 	20 . Although all statistics of higher order has been derived in [18], we con-
cern here the second and third order cumulants and spectra and repeat some results
of [18].


 The spectral density of �LISDLG process X` is

S2;X .!/ D �2hc0	
2
0

1 � 2h
j!j�2h

ˇ̌
ˇ̌ sin!�

�!

ˇ̌
ˇ̌
2 1X
mD�1

ˇ̌
ˇ̌ !

! Cm

ˇ̌
ˇ̌
2C2h

' �2hc0	
2
0

1 � 2h
j!j�2h ; j!j ! 0:

for ! 2 .0; 1/. The corresponding covariance function

Cov .Xt ; X0/ ' c0	
2
0

1 � 2h jt j2h�1 ; t ! 1 (18.36)


 The bispectrum of Xt exists

S3;X.!1W2/ D
�3i .2�/�3�2h c0	40

3Q
jD1

�
1 � ei2�!j

�

sin.� .hC 1=2//� .2 .1 � h//
1X

m1W2D�1
u .!1W2 Cm1W2/ ;

where

u .!1W2/ D
P3
jD1 !j

ˇ̌
!j
ˇ̌1�2h

.!1!2!3/
2

:

We are interested in the singularity of S3;X around zero. S3;X corresponds to the
continuous time bispectrum
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S3 .!1W2/ D
�3ic0	40 .2�/�3�2h 3Q

jD1
�
1 � ei2�!j

�

sin.� .hC 1=2//� .2 .1 � h// u .!1W2/

D 3��1=2�2hc0	40� .1=2C h/

.1 � 2h/ � .1 � h/ s3 .!1W2/� .!1W2/

by Poisson summation formula, where

s3 .!1W2/ D
P3
jD1 !j

ˇ̌
!j
ˇ̌1�2h

!1!2!3

D
!1

�
j!1j1�2h � j!3j1�2h�C !2

�
j!2j1�2h � j!3j1�2h�

!1!2!3
:

Hence the bispectrum is real-valued and positive, and around zero

s3 .!1W2/ ' 2 .1 � h/ ��1�2hL.1=˛/ ;

more precisely

S3;X .!1; !2/ '
	!0

6��1=2�2hc0	40 .1 � h/� .1=2C h/

.1 � 2h/� .1 � h/ ��1�2hL.1=˛/ :

The interesting property is that S3;X has no singularity on the x-axis, nevertheless
the bispectrum is LRD with exponent g0 D .1C 2h/ =3 and g1 D 0.


 Now, we turn to the third order cumulants,

Cum
�
Xt1 ; Xt2 ; X0

� D c3 �
2
1=2 jt j1C2h

ˇ̌
ˇ
tDdiam.0;t1;t2/

; (18.37)

for t1 ¤ 0, t2 ¤ 0, t1 ¤ t2, respectively and diam.a; b; c/ $ max.a; b; c/ �
min.a; b; c/ is the diameter, the constant

Cum .X0; X0; X0/ D 6c0	
4
0

.hC 1/ .1 � 4h2/ ;

is positive. If t1 � t2 � 0, then diam .t1; t2; 0/ D t1, hence

Cum
�
Xt1 ; Xt2 ; X0

� ' 6hc0	
4
0

.1 � 2h/ .hC 1/
r2h�1 .cosˇ/2h�1 ;

for large r , it corresponds to the singularity of S3, namely 1�2h�2 D �1�2h,
[30, Ch. VII, Theorem 2.17].


 Xt is nonlinear.
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 The discrete increment process Xt , t 2 Z, is not selfsimilar rather multifractal.
Indeed the aggregated increments X .n/t , have cumulants of orderm

Cumm

�
X
.n/
t

�
' k1.m/n

2h�1: (18.38)

The Hurst exponent of n is 2h � 1, it does not depend on m. Assuming self-
similarity, one obtains the second order cumulants (compare with (18.36))

Cum2

�
X
.n/
t

�
' n2.h�1=2/ Cum2 .Xt / ;

since the exponent follows from (18.36). Now, cumulants of order m follows
from the selfsimilarity

Cumm

�
X
.n/
t

�
' nm.h�1=2/ Cumm .Xt / :

It implies the �LISDLG process Xt can not be self-similar rather h is changing
with m in the above exponent of n, more precisely h D h .m/, such that

Cumm

�
X
.n/
t

�
' nm.h.m/�1=2/ Cumm .Xt / : (18.39)

Let us compare the exponents in (18.38) and (18.39), we obtain

h.m/ D 2h� 1
m

C 1

2
:

If m D 3 then h.3/ D 2h=3C 1=6.

18.3.5.1 Marginals

The marginal cumulants have special form

Cum .Xk; X0; X0/ D Cum .Xk; Xk; X0/

' 6hc0	
4
0

.1� 2h/ .hC 1/
k2h�1;

since Cum .Xk; X0; X0/ D Cum .X0; X0; X�k/, the marginal bispectrum is real
and

MX;3 .!/ ' �2h
6hc0	

4
0

.1 � 2h/ .hC 1/
j!j�2h ; ! ! 0:

Observe that the order of decays of cumulants inside the principal domain and on
the boundaries are equal.
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18.4 Conclusions

Although there are deep results on the Fourier transform in higher dimensions, see
[20, 30, 38], we have not found some appropriate theory for problems arising in the
theory of third order LRD time series. A question to be addressed is in what extent
(Abelian and Tauberian type Theorems) the bispectrum (18.5) and cumulants (18.6)
are connected to each other. Are Definition S and Definition C of third order LRD
equivalent? From the above investigations of particular time series we make some
conclusions.

Let us consider the results for the cumulants according to particular processes:

Cumulants, decay

Marg: �=4 Ang: �=4 Radial Ang: 0 Marg: 0

FrIN 0 2 � 3h 2 � 3h 1 � 2h 1 � h

LinFrN 0 2 � 3h 2 � 3h 1 � 2h 1 � h

H2 2 .1 � 2h/ 1 � 2h 3 .1 � 2h/ 1 � 2h 2 .1 � 2h/

Rosenblatt 2 .1 � 2h/ 1 � 2h 3 .1 � 2h/ 1 � 2h 2 .1 � 2h/

�LISDLG 1� 2h 0 1 � 2h 0 1 � 2h
This table implies that the sum of the angular exponent and the marginal exponent
equals to the radial one. It follows that the exponents inside the principal domain is
constant but they are changing continuously approaching to the x-axis on the circle
with ‘infinite radius’.

Conjecture 18.1. Let us consider the cumulants Cum
�
Xk1

; Xk2
; X0

�
on the circle

with ‘infinite radius’ and assume it is changing continuously, then approaching to
both lines the x-axis (ˇ D 0) and the diagonal (ˇ D �=4) the orders of radial
decays inside the triangle (2 � 3g0) and on the lines should be equalized by the
angular exponents. For instance if ˇ D 0,

.2 � 3g0/ � .1 � 2g2/ D 1 � 2 Qh;

therefore we have
Qh D 3g0 � 2g2

2
:

Now we turn to the bispectrum and consider the singularities

Bispectrum, singularity

Marg: �=4 Ang: �=4 Radial Ang: 0 Marg: 0

FrIN 3h� 1 0 3h h h

LinFrN 3h� 1 0 3h h h

H2 4h� 1 0 6h � 1 4h� 1 4h� 1

Rosenblatt 4h� 1 0 6h � 1 4h� 1 4h� 1

�LISDLG 2h 0 1C 2h 0 2h:
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Conjecture 18.2 (Abel type). Let us suppose that the radial singularity of the bis-
pectrum and the singularities of marginal bispectra are given. Then the radial decay
of the cumulants and their angular ‘decays’ in both directions follow.

Conjecture 18.3 (Tauber type). Let us suppose that the radial decay of the cumu-
lants and their angular ‘decays’ in both directions are given. Then the radial
singularity of the bispectrum and the singularities of marginal bispectra follow.
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Chapter 19
Graphical Models for Clustered Binary
and Continuous Responses

Martin T. Wells and Dabao Zhang

Abstract Graphical models for clustered data mixed with discrete and continu-
ous responses are developed. Discrete responses are assumed to be regulated by
some latent continuous variables and particular link functions are used to describe
the regulatory mechanisms. Inferential procedures are constructed using the full-
information maximum likelihood estimation and observed/empirical Fisher infor-
mation matrices. Implementation is carried out by stochastic versions of the
generalized EM algorithm. As an illustrative application, clustered data from a
developmental toxicity study is re-investigated using the directed graphical model
and the proposed algorithms. A new interesting directed association between two
mixed outcomes reveals. The proposed methods also apply to cross-sectional data
with discrete and continuous responses.

19.1 Introduction

Analysis of clustered data with multidimensional outcomes has been intensively
studied for decades. Research on multiple continuous outcomes has generated many
useful models, e.g., seemingly unrelated regression models [32], simultaneous equa-
tion models [19], structural equation models [3] and multiple linear mixed models
[23, 29, 30]. However, clustered data mixed with both discrete and continuous out-
comes, which are common in epidemiological and medical studies, pose challenging
issues in data analysis. A graphical association model proposed by [22], i.e., con-
ditional Gaussian (CG) regression model, for cross-sectional study and [15] further
extended it as hierarchical interaction model. An algorithm was developed by [16]
for these models. In the case of clustered data, different strategies for modelling
and inferencing correlated binary and normal responses have been proposed (see
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[13, 14, 17, 18], and [26]). All of these models focus on undirected association
between variables representing discrete and continuous outcomes even though iden-
tifying directed associations may be primarily solicited. We may read off directed
association from the CG-regression model and hierarchical interaction model. How-
ever the directed association may not, even in the case of cross-sectional study, be
established from continuous variables to discrete variables.

In this article, we propose a general framework to model directed association
between variables representing discrete and continuous outcomes in clustered data.
Treating discrete outcomes as observed hidden continuous variables and using a
latent graphical model to structurally construct directed association between contin-
uous variables, this framework is an extension of the class of models developed by
[17]. We propose a full-information maximum likelihood estimation procedure by
developing several stochastic versions of the EM algorithm for the problem at hand.
It is appealing to pursue Bayesian analysis with available powerful computers and
“easy” implementation. However, the “easy” implementation of a Bayesian anal-
ysis usually takes advantage of Markov chain Monte Carlo (MCMC) approaches
and follows some convenient priors. Unfortunately, it is impossible to guarantee
the stationarity of a sampled chain, although some properties of stationarity can
be checked (see review by [5]), and convenient priors may not yield proper poste-
rior distributions (see review by [2]). Furthermore, it is well known that finding a
noninformative prior for covariance structure is quite complex (see [10], and refer-
ences contained therein) and since the models under study depend critically on the
covariance structure, we focus our statistical inference on likelihood approach.

The building block of our model is the reciprocal graphical model in the sense
of [21]. Consider the simultaneous equation system Y D Y� C XB C U with
G endogenous and K exogenous variables. One can associate a graph G with the
simultaneous equation system. Specifically, G D .V; F / where V D f1; 2; � � � ; GC
Kg is the set of vertices representing the random variables Y1; � � � ; YG , X1; � � � ; XK
in this order, while the edge set F consists of the elements:

1. .˛; ˇ/ 2 F iff 1 � ˇ � G and one of the following conditions hold:

(a) 1 � ˛ � G; ˛ ¤ ˇ and .ˇ; ˛/ … Z�
(b) G C 1 � ˛ � G CK and .ˇ; ˛ �K/ … ZB

2. f˛; ˇg 2 F iff G C 1 � ˛; ˇ � G CK;˛ ¤ ˇ and .˛ �G;ˇ �G/ … Z˚
where Z� , ZB , Z˚ denote the sets of indices of all of the structural zeros of � ,
B and Cov.X/, respectively. Since the class of undirected path components of G
is ff1g; � � � ; fGgg [ fu.˛/jG C 1 � ˛ � G C Kg, where u.˛/ is undirected path
component of ˛, one can see that there are no directed edges between the vertices
which belong to the same path component. Hence G is a reciprocal graph as defined
in [21]. It is shown in [21, Theorem 5.2], that under a set of regularity conditions
that the probability distributions of the simultaneous equations system are global
G-Markov. In the case of recursive models (that is, � is lower triangular) we have
the so called acyclic graphical Markov model.
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We consider discrete outcomes as partially observed information of some latent
continuous variables and incorporate the above reciprocal graphical model as a hid-
den model. Therefore, the directed association between mixed outcomes can be
specified by constructing the association between (latent) continuous variables. This
setup lets us extend and fully take the advantages of simultaneous equation model,
in which prolific results have made in theory and application.

We illustrate the application of the models and algorithms by analyzing a dataset
from a developmental toxicity study of ethylene glycol in mice conducted through
the National Toxicity Program [27]. In a clustered case-control experiment, on each
fetus two main outcomes of interest were collected as fetal weight (continuous)
and fetal malformation status (binary). Previous studies have focused on the joint
effects of ethylene glycol dose on fetal weight and on the probability of malforma-
tion. We further explore the possible directed association from fetal weight to fetal
malformation status.

Our paper proceeds as follows. In Sect. 19.2, we introduce the graphical models
for mixed and clustered responses under consideration. A full-information likeli-
hood approach is considered in Sect. 19.3 by developing some stochastic versions
of the EM algorithm for the models with known link functions. Section 19.4 pro-
vides an application of the proposed models and algorithms to the dataset in the
developmental toxicity study. We confirm the intuitive directed association that fetus
weighting less are more prone to malformation. Finally, a simulation study of the
proposed algorithms is given in Sect. 19.5.

19.2 The Model

There is a long tradition in applied statistics to use continuous latent variables to
model discrete variables, e.g., probit for binary data. Furthermore, limited-value data
are also modelled by using continuous variables either because of existing latent
censoring mechanism or just for convenience. For instance, in econometrics [20]
introduced Tobit model for censored continuous variables based on the selection
mechanism. Other types of Tobit models discussed in [1] further explore more com-
plicated mechanisms between dependent censored variables and binary variables.
These models are also useful in a variety of epidemiologic settings.

For multivariate outcomes Zij D .Z1ij Z2ij � � � ZGij /, j D 1; 2; � � � ; mi , in
the i th cluster, the kth variable Zkij is connected to a group of latent continu-
ous variables Yij by a link function hk.�/, i.e., Zkij D hk.Yij/. In the simplest
case, each latent continuous variable regulates only one observed outcome, i.e.,
Zkij D hk.Ykij /, and the continuous observed outcome has an identity function
correspondingly. More complicated link functions can be used to describe the joint
regulatory mechanisms between some outcomes such as in Tobit variants.

The directed/undirected association, within i th cluster, between components of
Yij can be described by a reciprocal graph associated to the following simultaneous
equations,

Yij D Yij�i CXijBi C Uij; Uij
i id� N.0;˙/; (19.1)
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where 1 � j � mi ; Xi t is a K-dimensional row vector of observed exogenous
variables; �i and Bi are G � G and K � G respectively; the diagonal elements of
�i are zeros under normalization rule; and Uij is a G-dimensional row vector of
unobserved disturbances.

The above model describes within-cluster associations and therefore the coeffi-
cients matrices �i and Bi may include cluster-dependent components. Putting all
these cluster-dependent components as a column vector �i . The between-cluster
variation of �i can be further modeled as,

�i D �i� C �i ; �i
i id� N.0;˙/;

where �i includes all cluster-related characteristic affecting �i . We focus on the
simplest case with �i as identity matrix, i.e., �i is normally distributed with mean
� and variance-covariance matrix ˙ , although the general hierarchical model can
also be considered following the same idea.

For notational simplicity, we further collect all cluster-independent unknown
components of �i and Bi into a column vector � . With the re-specification of
parameters, the above model associated to a reciprocal graph can be re-expressed
in a much simpler form,

Zkij D hk.Yij/; 1 � k � GI(
Yij D �TWij C�Ti Mij C Uij; Uij

i id� N.0;˙/;

�i
i id� N.�; V /;

(19.2)

where � and � are P1 and P2-dimensional column vectors, respectively; Mij and
Wij are P1 �G and P2 �G matrices, respectively, which are both constructed from
elements of Xij and Yij. Particularly, there are only P1 nonzero components in Mij

and P2 nonzero components in Wij.
This formulation essentially gives a latent multivariate quasi-linear mixed model

representation, which, however, is different from the multivariate linear mixed
model because exogenous and endogenous variables may co-exist in both Mij and
Wij. Since both Mij and Wij may depend on the disturbance term Uij, we need to be
careful in using the above form of the model for our inference. Note that the model
in (19.2) is actually more general than in (19.1) because it can be derived from any
simultaneous equation model linear in coefficients �i and Bi without requiring Yij

and Xij to be linear in the right hand of the equations as in (19.1).

19.3 Full-Information Likelihood Inference

Inference on linear simultaneous equation models is usually considered either by an
instrumental variable (IV) approach, e.g., two-step least square (2SLS) and three-
step least square (3SLS), or by a likelihood approach, e.g., limited-information



19 Graphical Models for Clustered Mixed Data 309

maximum likelihood estimation (LIMLE) and full-information likelihood estima-
tion (FIMLE). For the model proposed in the previous section, IV-type estimators
are difficult to implement and, on the contrary, likelihood approaches are better
suited for our implementation as shown in the following. An additional advantage
of likelihood approaches is their statistical efficiency over the IV approaches.

Assume that there are n clusters in total, and, without loss of generality, that
mi � m for simplicity of notation. The joint density function of Yi D .Y Ti1 Y

T
i2 � � �

Y Tim/
T and�i is

.2�/�.GmCP1/=2j˙ j�m=2jV j�1=2jI � �i jm � exp

8
<
: � 1

2
�Ti

0
@V �1

C
mX
jD1

Mij˙
�1M T

ij

1
A�i C�Ti

2
4

mX
jD1

Mij˙
�1.Yij � �TWij/

T C V �1�

3
5

� 1

2

mX
jD1

.Yij � �TWij/˙
�1.Yij � �TWij/

T � 1

2
�TV �1�

9=
; : (19.3)

Due to the complicated structures of Mij, Wij and �i , integrating out Yi and �i and
finding a closed-form of the marginal likelihood function may be hopeless. How-
ever, observing all Yi and �i will make it easy to estimate all parameters. Hence,
we can consider .Yi ; �i /, 1 � i � n, to be the complete data with observed data
Zi D .ZTi1 Z

T
i2 � � � ZTim/T , 1 � i � n. Given the complete data representation, it

is natural to pursue a generalized EM algorithm [12] to estimate the parameters.

19.3.1 The Generalized EM Algorithm

Let O�.k/, O� .k/, OV .k/, Ȯ .k/ be the estimated parameters from the kth iteration of a
generalized EM algorithm. And, for any function g.Yi ; �i I�;�; V;˙/, define the
iteration

E.kC1/Œg.Yi ; �i I�;�; V;˙/jZi �
D EŒg.Yi ; �i I�;�; V;˙/jZi ; O�.k/; O� .k/; OV .k/; Ȯ .k/�: (19.4)

The expected complete-data log-likelihood in the .k C 1/-st iteration is then

Q.�;�; V;˙ I O�.k/; O� .k/; OV .k/; Ȯ .k//
D � n

2
.GmC P1/ log.2�/C nm

2
log j˙�1j C n

2
log jV �1j

Cm

nX
iD1

E.kC1/Œlog jI � �i jjZi � � 1

2

nX
iD1

E.kC1/Œ.�i ��/T
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�V �1.�i ��/jZi � � 1

2

nX
iD1

mX
jD1

E.kC1/Œ.Yij ��Ti Mij

��TWij/˙
�1.Yij ��Ti Mij � �TWij/

T jZi �: (19.5)

A further generalized EM algorithm can be constructed by maximizing the above
expected complete-data log-likelihood function or searching for .� .k/; V .k/; ˙ .k//

to improve it sufficiently at each iteration. However, the conditional expectations
in the form of (19.4) may not have a closed-form expression. Since the joint den-
sity function of .Yi ; �i / is available as in (19.3), we instead consider Monte Carlo
approaches to evaluate these conditional expectations.

Based on different implementation strategies to evaluate the conditional expec-
tation (19.4) using Monte Carlo samples, different stochastic versions of the gener-
alized EM algorithm can be constructed. The Monte Carlo EM algorithm (MCEM)
introduced by [31] evaluates this conditional expectation as the sample mean from
some random draws of missing variables. Alternatively [4, 8], and [7] design the
Stochastic EM algorithm (SEM) to avoid computation of the conditional expecta-
tions and impute only one draw of missing variables, conditional on observed data
at each iteration. At each iteration, both MCEM and SEM algorithms update the
estimates by imputing a new set of missing values and all the previously simulated
missing values are then discarded, which is computationally inefficient. Instead,
Delyon et al. [11] suggests the Stochastic Approximation EM algorithm (SAEM) to
gradually discount the previously simulated missing values with a “forgetting fac-
tor” which is inversely proportional to the iteration step size. All three stochastic
versions of the generalized EM algorithm are constructed for the model (19.2) in
Appendix.

In the afore mentioned algorithms both Yi and �i must be sampled from their
conditional distributions conditional on observed data, so we will call these algo-
rithms full stochastic versions of the generalized EM algorithm hereafter. However,
when I � �i does not include any random component, the stochastic-version
generalized EM algorithms can be constructed without sampling the random coef-
ficient�i because all involved E.kC1/Œg.Yi ; �i I�;�; V;˙/jYi � can be analytically
expressed. In this case we thereafter refer to the corresponding generalized EM
algorithms as the marginal stochastic versions, which can be developed following
the same way as the full stochastic versions shown in Appendix.

19.3.2 Standard Errors

For notational simplicity, let ˚ be a column vector including all unknown parame-
ters in � , ˙ , � and V . Let Lc be the complete-data log-likelihood function. With
Monte Carlo calculation of the conditional expectations (19.4), the standard errors
of the point estimates can be calculated by using the observed Fisher information
matrix, which can be approximated, using the missing information principle of [24],
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by

nX
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OE.kC1/


@

@˚
Lc.Yi ; ˚i /jZi

�
�

nX
iD1

OE.kC1/


@

@˚T
Lc.Yi ; ˚i /jZi

�

�
nX
iD1

OE.kC1/



@2

@˚@˚T
Lc.Yi ; ˚i /C @

@˚
Lc.˚/ @

@˚T
Lc.Yi ; ˚i /jZi

�
:

The first three conditional expectations are evaluated in the Expectation Step of the
stochastic-version generalized EM algorithms. But the last conditional expectation
is not, hence, extra computational effort is required.

The second-order derivatives of Lc and their conditional expectations are eval-
uated in calculating observed Fisher information matrix using missing information
principle. However, the standard errors can be more easily evaluated by calculating
empirical Fisher information matrix, which only requires the evaluation of the con-
ditional expectation of the gradient vector of Lc . When the data .Zi ; Xi ; �i / are
independently and identically distributed, the corresponding expected Fisher infor-
mation matrix can be approximated by the empirical Fisher information matrix [25],

In.˚/ D
nX
iD1

E



@

@˚
Lc.Yi ; �i I˚/jZi ; ˚

�
� E



@

@˚
Lc.Yi ; �i I˚/jZi ; ˚

�T
:

All the involved conditional expectations can be stochastically approximated in the
Expectation Step of the stochastic versions of the generalized EM algorithm.

19.4 The Developmental Toxicity Study

We will use the methodology proposed in the previous sections to analyze a dataset
from the developmental toxicity study of ethylene glycol in mice conducted through
the National Toxicity Program [27]. The experiment assigned pregnant mice ran-
domly to four groups, one group serving as control and the others at different levels
of ethylene glycol during major organogenesis and measurements of each fetus in
the uterus were taken. The two main outcomes of interest on each fetus were contin-
uously measured fetal weight and binary fetal malformation status. To investigate
the joint effects of ethylene glycol dose on fetal weight and fetal malformation,
many methods have been developed by jointly modelling the data with discrete and
continuous outcomes [6, 9, 13, 14, 17, 28].

Here we are interested in checking the intuitive observation that a fetus weight-
ing less is more prone to malformation, i.e., besides the usual associations between
exogenous variables with fetal weight and fetal malformation status, there is a
possible directed association from fetal weight to fetal malformation status. Thus,
motivated by this intuition, we consider a directed graphical model described as
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follows,

Z1ij D Y1ij ; Z2ij D I ŒY2ij > 0�;�
Y1ij D ˇ1i C ˇ2X1ij C ˇ3X2ij C �1ij ;

Y2ij D �1i C �2Y1ij C �3X1ij C �2ij ;

where Z1ij and Z2ij are the weight and the malformation status of j th mouse in
the i th litter, respectively;X1ij andX2ij are the dose administered and its quadratic
term for the j th mouse in the i th litter, respectively. The error terms are distributed
as independent bivariate normal distribution with the variance of �1ij as 	11 and
the variance of �2ij as one for identification. The random coefficients .ˇ1i ; �1i / are
used to account for the cluster (or litter) effects and assumed to be distributed as a
multivariate normal distribution with mean vector .ˇ1; �1/ and variance-covariance
matrix V D .vij/2�2.

Starting from initial values with zero coefficients and identity variance-
covariance matrices, we run 20,000 iterations of the marginal SEM algorithm to
explore the possible values for the parameter estimation. The diagnostic conver-
gence plots are of the estimated parameter series. Note that all chains are roughly
stationary after 5,000 iterations (see Fig. 19.1). We then use the means of last 10,000
iterations in the estimated parameter chains as the initial values for our further
inference.

With the available initial values, we run another 20,000 iterations of the marginal
SAEM algorithm with �k D 1=k but the first 50 iterations are implemented as
the marginal MCEM algorithm with lk � 50. The diagnostic plots of the esti-
mated parameter series demonstrated that 20,000 iterations are enough for us to
get satisfactory point estimation for the parameters (see Fig. 19.1). The result of
the marginal SAEM algorithm is summarized in Table 19.1, along with the cor-
responding standard errors (calculated by using the empirical Fisher information
matrix).

It is interesting to observe the complex association between fetal weight and
fetal malformation. First, the result implies that the litter-specific effects on the fetal
weight and malformation status are negatively correlated. Second, after accounting
for the litter-specific effects and dose effects on both fetal weight and fetal malfor-
mation status, fetus weighting less are more prone to malformation. Therefore, in
further investigation of ethylene glycol effects on fetal malformation it may better
take into consideration the above sophisticated endogenous associations other than
the simple “reduced” association.

19.5 Simulation Study

The performance of full and marginal stochastic versions of the generalized EM
algorithm are studied by considering the same type of model as in the devel-
opmental toxicity study. Using a set of given parameters and the covariates in
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Fig. 19.1 Some convergence diagnostic plots for the marginal SEM and SAEM algorithms in the
developmental toxicity study
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Table 19.1 Parameter estimates in the developmental toxicity study

Parameter Initial Estimation Estimation S.E. p-value
Value Last 10,000 Lase one Last One

Ǒ
1 0.9723 0.9726 0.9726 0.0235 �0:0001

Ǒ
2 �0.1470 �0.1476 �0.1476 0.3338 � 0:0001

Ǒ
3 0.0193 0.0195 0.0195 0.0098 0.0466

O�1 0.6794 0.6886 0.6880 0.3916 0.0789
O�2 �3:4707 �3:4573 �3:4575 0:3622 � 0:0001

O�3 0.7615 0.7547 0.7548 0.0970 � 0:0001

O	11 0.0056 0.0056 0.0056 0.0002 �0:0001
Ov11 0.0068 0.0068 0.0068 0.0012 � 0:0001

Ov12 �0.0191 �0.0186 �0.0187 �0.0056 �0.0008
Ov22 0.6767 0.6576 0.6590 0.1909 0.0006

the developmental toxicity study, we simulate the observations for the endoge-
nous variables. Since the proposed stochastic versions of the EM algorithm are
computation-intensive, we perform the simulation study by using a fixed simulated
data.

Following the same estimation strategy as in the developmental toxicity study,
we run 20,000 iterations of the marginal SEM algorithm with zero coefficients and
identity variance-covariance matrix as initial values (see Fig. 19.2). Then taking
the means of the last 10,000 iterations in the estimated parameter series from the
marginal SEM algorithm as the initial values. We also run another 20,000 iterations
of marginal SAEM algorithm with �k D 1=k but the first 50 iterations are imple-
mented as the marginal MCEM algorithm with lk D 50 (see Fig. 19.2). The results
are shown in Table 19.2.

In addition, we also run 60,000 iterations of the full SEM algorithm with zero
coefficients and identity variance-covariance matrix as initial values (see Fig. 19.3).
Then taking the means of the last 30,000 iterations in the estimated parameter chains
from the full SEM algorithm as the initial values, we run another 20,000 iterations
of the full SAEM algorithm with �k D 1=k. However now the first 50 iterations are
implemented as the full MCEM algorithm with lk D 50 (see Fig. 19.3). The results
are shown in Table 19.2. Comparing the upper panel and lower panel of Table 19.2,
we observe that the estimation using full stochastic versions of the EM algorithms
performs as well as that using marginal stochastic versions.

Comparing the plots in the left panel and those in the right panel of Fig. 19.3,
we can also observe that some of the estimated parameter chains of the full SEM
algorithm fluctuate in a much wider range than that of the marginal SEM algorithm.
In particular, both estimated parameter chains for �1 and �2 of the full SEM algo-
rithm have much higher autocorrelation than that of the marginal SEM algorithm.
The rational for running more iterations in full SEM algorithm than that in marginal
SEM algorithm analog is to explore the initial values for SAEM algorithms.
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Fig. 19.2 Some convergence diagnostic plots for the marginal SEM and SAEM algorithms for the
simulated data
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Table 19.2 Parameter estimates for the simulated data using marginal and full SAEM algorithms

Parameter True Initial Estimation Estimation S.E.
Value Value Last 10,000 Last One

Ǒ
1 0.9725 0.9884 0.9885 0.9885 0.0177

Ǒ
2 �0:1472 �0:1617 �0:1618 �0:1618 0.0278

Ǒ
3 0.0194 0.0228 0.0228 0.0228 0.0089

O�1 0.6877 0.4504 0.4589 0.4588 0.2151
Marginal O�2 �3:4585 �3:1904 �3:1852 �3:1852 0.3377

O�3 0.7542 0.7989 0.7956 0.7956 0.1277
O	11 0.0056 0.0054 0.0054 0.0054 0.0002
Ov11 0.0068 0.0064 0.0064 0.0064 0.0011
Ov12 �0:0190 �0:0211 �0:0207 �0:0207 0.0049
Ov22 0.6657 0.7606 0.7433 0.7432 0.1844

Ǒ
1 0.9725 0.9892 0.9899 0.9899 0.0177

Ǒ
2 �0:1472 �0:1636 �0:1624 �0:1624 0.0276

Ǒ
3 0.0194 0.0234 0.0226 0.0226 0.0089

O�1 0.6877 0.4480 0.4587 0.4591 01782
Full O�2 �3:4585 �209465 2:9634 2:9634 0.3237

O�3 0.7542 0.7289 0.7293 0.7293 0.1129
O	11 0.0056 0.0054 0.0054 0.0054 0.0002
Ov11 0.0068 0.0065 0.0064 0.0064 0.0011
Ov12 �0:0190 �0:0189 �0:0186 �0:0186 0.0043
Ov22 0.6657 0.5538 0.5547 0.5551 0.1417

19.6 Discussion

In this article we use a latent reciprocal graphical model to construct a directed
graphical model for clustered data mixed with discrete and continuous variables.
Discrete variables are assumed to be versions of some latent continuous variables
and the discretization mechanisms are described by known link functions. In more
general cases, such as ordered discrete variables and Box-Cox models, we may have
to use link functions but with unknown parameters to bridge observed variables and
latent variables used for constructing the hidden reciprocal graphical models, i.e.,
Zkij D hk.Yij; �/. In the case with the ordinal discrete variables, the threshold
parameters (included in the link parameter �) may not be updated in each iteration
of EM algorithms by maximizing the expected complete-data log-likelihood since
they define the integration domains. So, some other strategies may have to be pur-
sued. However, Box-Cox models can be put into a much more general model with
known link function, for clustered data,

Zkij D hk.Yij/; 1 � k � GI(
H.Yij; Xij; �i ; �/ D Uij; Uij

i id� N.0;˙/;

�i D �i� C �i ; �i
i id� N.0; V /;
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Fig. 19.3 Some convergence diagnostic plots for the full SEM and SAEM algorithms for the
simulated data
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where the random coefficients in �i are further regressed on some panel-specific
covariates �i . Then the parameters in the Box-Cox transformation are included in
� and the corresponding link functions are set as identity function. The algorithms
proposed here may be modified for a broad class of functionH.�/.

As shown in the simulation study and the developmental toxicity study, the SEM
algorithm provides fluctuating estimates at each iteration but the SAEM algorithm
usually gets trapped and steadily converges at some local points close to the initial
values. Therefore, we propose to explore initial values by using the SEM algorithm
and then run the SAEM algorithm to get point estimation of the parameters and
to calculate the standard errors of the estimators. Although we have only focused
clustered data in this article, all the models and algorithms can be easily modified
for a cross-sectional study.
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Appendix

Stochastic Versions of the Generalized EM Algorithms

Stochastic versions of the generalized EM algorithm essentially evaluates the condi-
tional expectations (19.4) by OE.kC1/Œg.Yi ; �i I�;�; V;˙/jZi � using various Monte
Carlo approaches. The expected complete-data log-likelihood function (19.5) can
then be stochastically approximated by

OQ.kC1/.�;�; V;˙ I O�.k/; O� .k/; OV .k/; Ȯ .k//
D �n

2
.GmC P1/ log.2�/C nm

2
log j˙�1j C n

2
log jV �1j

Cm

nX
iD1

OE.kC1/
"

log jI � �i jjZi � � 1

2

nX
iD1

OE.kC1/Œ.�i ��/T

�V �1.�i ��/jZi � � 1

2

nX
iD1

mX
jD1

OE.kC1/Œ.Yij ��Ti Mij

��TWij/˙
�1.Yij ��Ti Mij � �TWij/

T jZi
#
:

Maximizing OQ.kC1/.�;�; V;˙ I O�.k/; O� .k/; OV .k/; Ȯ .k// for each of�,� ,V and
˙ separately, we have closed-from estimators for � and V ; but � and ˙ have no
closed-form estimators. Therefore, we set � D O� .k/ to maximize

OQ.kC1/. O�.kC1/; O� .k/; OV .kC1/; ˙ I O�.k/; O� .k/; OV .k/; Ȯ .k//
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and get a closed-form estimator for ˙ . Then we maximize OQ.kC1/. O�.kC1/; �;
OV .kC1/; Ȯ .kC1/I O�.k/; O� .k/, OV .k/; Ȯ .k// for O� .kC1/. The stochastic version of the

generalized EM algorithm can therefore be constructed as follows.

Expectation Step For 1 � i � n, calculate

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
:
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jD1 OE.kC1/Œ.Yij ��Ti Mij/˝ .Yij ��Ti Mij/jZi �I

Maximization Step Calculate
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where ˝ is the Kronecker product, and vec.Wij/ collects all of the nonzero compo-
nents of Wij to form a P2 � 1 vector. All of the conditional expectations used in the
Maximization Step are calculated in the Expectation Step. Note that in general the
stochastic approximation of OE.kC1/Œlog jI � �i jjZi � may involve unknown param-
eters. A solution of this is to consider a series approximation approach and expand
log jI � �i j first into summation and then evaluate its each summand. In the case
that jI � �i j does not involve any random coefficient in �i , this dependency is not
an issue.

In the case jI � �1j involves � , we have to consider nonlinear optimization
routines for O� .kC1/. One-step Newton–Raphson algorithm may be used to update
O� .k/ to O� .kC1/. If jI � �1j does not involve � , then O� .kC1/ can be calculated

explicitly as

O� .kC1/ D
0
@

nX
iD1

mX
jD1

OE.kC1/ŒWij˙
�1W T

ij jZi �
1
A

�1

�
nX
iD1

mX
jD1

OE.kC1/ŒWij˙
�1.Yij ��Ti Mij/jZi �j˙D Ȯ .kC1/ :
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A.1 MCEM Algorithm

The conditional expectations (19.4) are evaluated by using lkC1 .lkC1 � 1/ random
draws of missing variables .Yi ; �i / conditional on observable data Zi , i.e.,

OE.kC1/Œg.Yi ; �i I�;�; V;˙/jZi � D 1

lkC1

lkC1X
tD1

g.Y
.t/
i ; �

.t/
i I�;�; V;˙/;

where .Y .t/i ; �
.t/
i /

i id� ŒYi ; �i jZi ; �.k/; � .k/; V .k/; ˙ .k/�.

A.2 Stochastic EM Algorithm

At each iteration, the algorithm imputes one drawing of missing variables condi-
tional on observable data and current estimate of the parameters and then maximizes
the pseudo-complete-data likelihood function. Fundamentally, it is the same as the
above MCEM algorithm with lkC1 � 1.

A.3 Stochastic Approximation EM Algorithm

With a sequence of positive step sizes f�kgk�1, the conditional expectations (5) are
updated iteratively as

OE.kC1/Œg.Yi ; �i I�;�; V;˙/jZi �
D .1 � �kC1/ OE.k/Œg.Yi ; �i I�;�; V;˙/jZi �C �kC1 Ng.kC1/.Yi ; �i I�;�; V;˙/

where Ng.kC1/.�/ is the average of g.�/ by using the simulated missing data in .k C
1/-st iteration. The point estimate of the parameter is computed by averaging the
sequence of parameter estimates in the SAEM algorithm or seeking the converging
point of the sequence. For the convergence of the point estimation, it is required that
0 � �k � 1,

P1
kD1 �2k < 1 but

P1
kD1 �k D 1.
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