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Preface

This book evolved from my notes for a three-semester sequence of core courses
on theoretical statistics for doctoral students at the University of Michigan.
When I first started teaching these courses, I used Theory of Point Estimation
and Testing Statistical Hypotheses by Lehmann as texts, classic books that
have certainly influenced my writings.

To appreciate this book students will need a background in advanced cal-
culus, linear algebra, probability, and some analysis. Some of this material is
reviewed in the appendices. And, although the content on statistics is reason-
ably self-contained, prior knowledge of theoretical and applied statistics will
be essential for most readers.

In teaching core courses, my philosophy has been to try to expose students
to as many of the central theoretical ideas and topics in the discipline as pos-
sible. Given the growth of statistics in recent years, such exposition can only
be achieved in three semesters by sacrificing depth. Although basic material
presented in early chapters of the book is covered carefully, many of the later
chapters provide brief introductions to areas that could take a full semester
to develop in detail.

The role of measure theory in advanced statistics courses deserves careful
consideration. Although few students will need great expertise in probabil-
ity and measure, all should graduate conversant enough with the basics to
read and understand research papers in major statistics journals, at least in
their areas of specialization. Many, if not most, of these papers will be written
using the language of measure theory, if not all of its substance. As a prac-
tical matter, to prepare for thesis research many students will want to begin
studying advanced methods as soon as possible, often before they have fin-
ished a course on measure and probability. In this book I follow an approach
that makes such study possible. Chapter 1 introduces probability and measure
theory, stating many of the results used most regularly in statistics. Although
this material cannot replace an honest graduate course on probability, it gives
most students the background and tools they need to read and understand
most theoretical derivations in statistics. As we use this material in the rest
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of the book, I avoid esoteric mathematical details unless they are central to
a proper understanding of issues at hand. In addition to the intrinsic value
of concepts from measure theory, there are several other advantages to this
approach. First, results in the book can be stated precisely and at their proper
level of generality, and most of the proofs presented are essentially rigorous.1

In addition, the use of material from probability, measure theory, and analysis
in a statistical context will help students appreciate its value and will motivate
some to study and learn probability at a deeper level. Although this approach
is a challenge for some students, and may make some statistical issues a bit
harder to understand and appreciate, the advantages outweigh these concerns.

As a caveat I should mention that some sections and chapters, mainly later
in the book, are more technical than most and may not be accessible without
a sufficient background in mathematics. This seems unavoidable to me; the
topics considered cannot be covered properly otherwise.

Conditioning arguments are used extensively in the book. To keep the
derivations as intuitive and accessible as possible, the presentation is based on
(regular) conditional distributions to avoid conditioning on σ-fields.2 As long
as the conditioning information can be viewed as a random vector, conditional
distributions exist and this approach entails no loss of generality. Conditional
distributions are introduced in Chapter 1, with the conditioning variable dis-
crete, and the law of total probability or smoothing is demonstrated in this
case. A more general treatment of conditioning is deferred to Chapter 6. But
I mention in Chapter 1 that smoothing identities are completely general, and
use these identities in Chapter 6 to motivate the technical definition of con-
ditional distributions.

With advances in technology for sharing and collecting information, large
data sets are now common. Large sample methods have increasing value in
statistics and receive significant attention in this book. With large amounts
of data, statisticians will often seek the flexibility of a semi- or nonparametric
model, models in which some parameters are viewed as smooth functions. At
a technical and practical level, there is considerable value in viewing functions
as points in some space. This notion is developed in various ways in this text.
The discussion of asymptotic normality for the maximum likelihood estimator
is structured around a weak law of large numbers for random functions, an
approach easily extended to cover estimating equations and robustness. Weak
compactness arguments are used to study optimal testing. Finally, there is
an introduction to Hilbert space theory, used to study a spline approach to
nonparametric regression. Modern statisticians need some knowledge of func-
tional analysis. To help students meet the challenge of learning this material,
the presentation here builds intuition by noting similarities between infinite-

1 A reader with a good background in probability should have little trouble filling
in any missing technical details.

2 Filtrations and conditioning on σ-fields are mentioned in Chapter 20 on sequential
analysis.
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dimensional and finite-dimensional spaces, and provides motivation by linking
the mathematical results to significant statistical applications.

If you are a professor using this book as a text, please note that results from
Chapters 1 through 4 and Sections 6.1 and 6.2 are used extensively in the rest
of the book, and any unfamiliar material on these pages should be covered with
care. But much of the rest of the book can be resequenced or omitted to suit
your preferences. Chapters 7 and 15 on Bayesian methods should be covered
in order, as should Chapters 12, 13, and 17 on hypothesis testing. Chapter 11
on empirical Bayes estimation uses results from Chapter 7, and Chapter 14
on the general linear model uses results on testing from Chapter 12. Results
on large sample theory from Chapters 8 and (to a lesser extent) 9 are used in
Chapters 15 through 20. As I mentioned earlier, results in some chapters and
sections3 are more mathematically challenging; depending on the maturity
of your students you may want to omit or cover this material superficially,
possibly without proofs or derivations. For these chapters and sections and
others, title footnotes indicate whether the material is optional and how the
results will be used later.

Finally, a few words of appreciation are in order. To Michael Woodroofe,
Herman Chernoff, and Carl Bender, who have had such an impact on my
personal development as a mathematician, probabilist, and statistician; to
friends, family, colleagues, and the Department for support and encourage-
ment; and to past students, reviewers, and editors for a wealth of useful sug-
gestions. This manuscript was typeset using LATEXand figures were produced
using MATLAB. Finally, a special thanks to future students; the notion that
this book will help some of you has kept me believing it to be a worthwhile
project.

Ann Arbor, Michigan Robert Keener

June 24, 2010

3 My list would include Sections 6.4, 9.1, 9.9, 12.5, 12.6, and 12.7; and Chapters 13
and 16.



 



Notation

Absolute Continuity, P ≪ µ: The measure P is absolutely continuous with
respect to (or P is dominated by) the measure µ. See page 7.

Convergence in Distribution: Yn ⇒ Y . See page 131.

Convergence in Probability: Yn
p→ Y . See page 129.

Cumulants : κr1,...,rs . See page 30.
Derivatives: If h is a differentiable function from some subset of Rm into Rm,

then Dh(x) is a matrix of partial derivatives with [Dh(x)]ij = ∂hi(x)/∂xj .
Floor and Ceiling: For x ∈ R, the floor of x, denoted ⌊x⌋, is the is the largest

integer y with y ≤ x. The ceiling ⌈x⌉ of x is the smallest integer y ≥ x.
Inner Product : 〈x, y〉. See page 374.
Inverse Functions: If f is a function on D with range R = f(D), then f−1,

mapping 2R → 2D, is defined by f−1(B) = {x ∈ D : f(x) ∈ B}. If f is
one-to-one, the inverse function f← is defined so that f←(y) = x when
y = f(x).

Maximum and Minimum: x ∧ y def
= min{x, y} and x ∨ y def

= max{x, y}.
Norms : For x ∈ Rp, ‖x‖ is the usual Euclidean norm. For functions, ‖f‖∞ =

sup |f |, and ‖f‖2 =
[∫

f dµ
]1/2

. For points x in an inner product space,

‖x‖ = 〈x, x〉1/2.
Point Mass : δc is a probability measure that all of its mass to the point c,

so δ({c}) = 1.
Scales of Magnitude: O(·), Op(·), o(·), and op(·). See page 141.
Set Notation: The complement of a set A is denoted Ac. For two sets A

and B, AB or A ∩ B denotes the intersection, A ∪ B denotes the union,

and A − B
def
= ABc will denotes the set difference. Infinite unions and

intersections of sets A1, A2, . . . are denoted

∞
⋃

i=1

Ai
def
= {x : x ∈ Ai, ∀i}

and
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∞
⋂

i=1

Ai
def
= {x : x ∈ Ai, ∃i}.

Stochastic Transition Kernel : Q is a stochastic transition kernel if Qx(·) is a
probability measure for all x and Qx(B) is a measurable function of x for
every Borel set B.

Topology: For a set S, S is the closure, So the interior, and ∂S = S − So is
the boundary. See page 432.

Transpose: The transpose of a vector or matrix x is denoted x′.
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1

Probability and Measure

Much of the theory of statistical inference can be appreciated without a de-
tailed understanding of probability or measure theory. This book does not
treat these topics with rigor. But some basic knowledge of them is quite use-
ful. Much of the literature in statistics uses measure theory and is inaccessible
to anyone unfamiliar with the basic notation. Also, the notation of measure
theory allows one to merge results for discrete and continuous random vari-
ables. In addition, the notation can handle interesting and important applica-
tions involving censoring or truncation in which a random variable of interest
is neither discrete nor continuous. Finally, the language of measure theory is
necessary for stating many results correctly. In the sequel, measure-theoretic
details are generally downplayed or ignored in proofs, but the presentation is
detailed enough that anyone with a good background in probability should be
able to fill in any missing details.

In this chapter measure theory and probability are introduced, and several
of the most useful results are stated without proof.

1.1 Measures

A measure µ on a set X assigns a nonnegative value µ(A) to many subsets A
of X . Here are two examples.

Example 1.1. If X is countable, let

µ(A) = #A = number of points in A.

This µ is called counting measure on X .

Example 1.2. Let X = Rn and define

µ(A) =

∫

· · ·
∫

A

dx1 · · · dxn.

1 R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
DOI 10.1007/978-0-387-93839-4_1, © Springer Science+Business Media, LLC 2010 
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With n = 1, 2, or 3, µ(A) is called the length, area, or volume of A, respec-
tively. In general, this measure µ is called Lebesgue measure on Rn. Actually,
for some sets A it may not be clear how one should evaluate the integral
“defining” µ(A), and, as we show, the theory of measure is fundamentally
linked to basic questions about integration.

The measures in these examples differ from one another in an interesting
way. Counting measure assigns mass to individual points, µ({x}) = 1 for
x ∈ X , but the Lebesgue measure of any isolated point is zero, µ({x}) = 1.
In general, if µ({x}) > 0, then x is called an atom of the measure with mass
µ({x}) > 0.

It is often impossible to assign measures to all subsets A of X . Instead,
the domain1 of a measure µ will be a σ-field.

Definition 1.3. A collection A of subsets of a set X is a σ-field (or σ-algebra)
if

1. X ∈ A and ∅ ∈ A.
2. If A ∈ A, then Ac = X −A ∈ A.
3. If A1, A2, . . . ∈ A, then

⋃∞
i=1Ai ∈ A.

The following definition gives the basic properties that must be satisfied for
a set function µ to be called a measure. These properties should be intuitive
for Examples 1.1 and 1.2.

Definition 1.4. A function µ on a σ-field A of X is a measure if

1. For every A ∈ A, 0 ≤ µ(A) ≤ ∞; that is, µ : A → [0,∞].
2. If A1, A2, . . . are disjoint elements of A (Ai ∩Aj = ∅ for all i 6= j), then

µ

( ∞
⋃

i=1

Ai

)

=
∞
∑

i=1

µ(Ai).

One interesting and useful consequence of the second part of this definition
is that if measurable sets Bn, n ≥ 1, are increasing (B1 ⊂ B2 ⊂ · · · ), with
union B =

⋃∞
n=1Bn, called the limit of the sequence, then

µ(B) = lim
n→∞

µ(Bn). (1.1)

This can be viewed as a continuity property of measures.
For notation, if A is a σ-field of subsets of X , the pair (X ,A) is called a

measurable space, and if µ is a measure on A, the triple (X ,A, µ) is called a
measure space.

A measure µ is finite if µ(X ) <∞ and σ-finite if there exist sets A1, A2, . . .
in A with µ(Ai) < ∞ for all i = 1, 2, . . . and

⋃∞
i=1 Ai = X . All measures

considered in this book are σ-finite.

1 See Appendix A.1 for basic information and language about functions.
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A measure µ is called a probability measure if µ(X ) = 1, and then the
triple (X ,A, µ) is called a probability space. For probability (or other finite)
measures, something analogous to (1.1) holds for decreasing sets. If measurable
sets B1 ⊃ B2 ⊃ · · · have intersection B =

⋂∞
n=1Bn, then

µ(B) = lim
n→∞

µ(Bn). (1.2)

Example 1.1, continued. Counting measure given by µ(A) = #A can be
defined for any subset A ⊂ X , so in this example, the σ-field A is the collection
of all subsets of X . This σ-field is called the power set of X , denoted A = 2X .

Example 1.2, continued. The Lebesgue measure of a set A can be defined,
at least implicitly, for any set A in a σ-field A called the Borel sets of Rn.
Formally, A is the smallest σ-field that contains all “rectangles”

(a1, b1) × · · · × (an, bn) = {x ∈ Rn : ai < xi < bi, i = 1, . . . , n}.

Although there are many subsets of Rn that are not Borel, none of these sets
can be written explicitly.

1.2 Integration

The goal of this section is to properly define integrals of “nice” functions f
against a measure µ. The integral written as

∫

f dµ or as
∫

f(x) dµ(x) when
the variable of integration is needed. To motivate later developments, let us
begin by stating what integration is for counting and Lebesgue measure.

Example 1.5. If µ is counting measure on X , then the integral of f against µ
is

∫

f dµ =
∑

x∈X
f(x).

Example 1.6. If µ is Lebesgue measure on Rn, then the integral of f against
µ is

∫

f dµ =

∫

· · ·
∫

f(x1, . . . , xn) dx1 . . . dxn.

It is convenient to view x as the vector (x1, . . . , xn)′ and write this integral
against Lebesgue measure as

∫

· · ·
∫

f(x) dx or
∫

f(x) dx.

The modern definition of integration given here is less constructive than
the definition offered in most basic calculus courses. The construction is driven
by basic properties that integrals should satisfy and proceeds arguing that for
“nice” functions f these properties force a unique value for

∫

f dµ. A key
regularity property for the integrand is that it is “measurable” according to
the following definition.
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Definition 1.7. If (X ,A) is a measurable space and f is a real-valued func-
tion on X , then f is measurable if

f−1(B)
def
= {x ∈ X : f(x) ∈ B} ∈ A

for every Borel set B.

Although there are many functions that are not measurable, they cannot
be stated explicitly. Continuous and piecewise continuous functions are mea-
surable. A more interesting example is the function f : R → R with f(x) = 1
when x is an irrational number in (0, 1), and f(x) = 0 otherwise. With the
Riemann notion of integration used in basic calculus courses, for this function
f ,
∫

f(x) dx is not defined. The more general methods presented here give the
natural answer,

∫

f(x) dx = 1. In the sequel, functions of interest are generally
presumed to be measurable.

The indicator function 1A of a set A is defined as

1A(x) = I{x ∈ A} =

{

1, x ∈ A;

0, x /∈ A.

Here are the basic properties for integrals.

1. For any set A in A,
∫

1A dµ = µ(A).
2. If f and g are nonnegative measurable functions, and if a and b are positive

constants,
∫

(af + bg) dµ = a

∫

f dµ+ b

∫

g dµ. (1.3)

3. If f1 ≤ f2 ≤ · · · are nonnegative measurable functions, and if f(x) =
limn→∞ fn(x), then

∫

f dµ = lim
n→∞

∫

fn dµ.

The first property provides the link between
∫

f dµ and the measure µ,
the second property is linearity, and the third property is useful for taking
limits of integrals.

Using the first two properties, if a1, . . . , am are positive constants, and if
A1, . . . , Am are sets in A, then

∫

(

m
∑

i=1

ai1Ai

)

dµ =

m
∑

i=1

aiµ(Ai).

Functions of this form are called simple. Figure 1.1 shows the graph of the
simple function 1(1/2,π)+21(1,2). The following result asserts that nonnegative
measurable functions can be approximated by simple functions.

Theorem 1.8. If f is nonnegative and measurable, then there exist nonneg-
ative simple functions f1 ≤ f2 ≤ · · · with f = limn→∞ fn.
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Fig. 1.1. The simple function 1(1/2,π) + 21(1,2).

This result along with the third basic property for integrals allows us
to integrate any nonnegative measurable function f , at least in principle.
The answer is unique; different choices for the increasing sequence of simple
functions give the same answer. To integrate a general measurable function
f , introduce the positive and negative parts

f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}.

Then f+ and f− are both nonnegative and measurable, and f = f+ − f−.
The integral of f should generally be the difference between the integral of f+

and the integral of f−. This difference is ambiguous only when the integrals
of f+ and f− are both infinite. So, if either

∫

f+ dµ < ∞ or
∫

f− dµ < ∞,
we define

∫

f dµ =

∫

f+ dµ−
∫

f− dµ.

With this definition the linearity in (1.3) holds unless the right-hand side is
formally ∞−∞. Note also that because |f | = f+ + f−, this definition gives
a finite value for

∫

f dµ if and only if

∫

f+ dµ+

∫

f− dµ =

∫

|f | dµ <∞.

When
∫

|f | dµ <∞, f is called integrable.
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1.3 Events, Probabilities, and Random Variables

Let P be a probability measure on a measurable space (E ,B), so (E ,B, P )
is a probability space. Sets B ∈ B are called events, points e ∈ E are called
outcomes, and P (B) is called the probability of B.

A measurable function X : E → R is called a random variable. The prob-
ability measure PX defined by

PX(A) = P
(

{e ∈ E : X(e) ∈ A}
) def

= P (X ∈ A)

for Borel sets A is called the distribution of X . The notation

X ∼ Q

is used to indicate that X has distribution Q; that is, PX = Q. The cumulative
distribution function of X is defined by

FX(x) = P (X ≤ x) = P
(

{e ∈ E : X(e) ≤ x}
)

= PX
(

(−∞, x]
)

,

for x ∈ R.

1.4 Null Sets

Let µ be a measure on (X ,A). A set N is called null (or null with respect to
µ) if

µ(N) = 0.

If a statement holds for x ∈ X −N with N null, the statement is said to hold
almost everywhere (a.e.) or a.e. µ. For instance, f = 0 a.e. µ if and only if
µ
(

{x ∈ X : f(x) 6= 0}
)

= 0.
There is an alternative language for similar ideas when µ is a probability

measure. Suppose some statement holds if and only if x ∈ B. Then the state-
ment holds (a.e. µ) if and only if µ(Bc) = 0 if and only if µ(B) = 1. This can
be expressed by saying “the statement holds with probability one.”

The values of a function on a null set cannot affect its integral. With this
in mind, here are a few useful facts about integration that are fairly easy to
appreciate:

1. If f = 0 (a.e. µ), then
∫

f dµ = 0.
2. If f ≥ 0 and

∫

f dµ = 0, then f = 0 (a.e. µ).
3. If f = g (a.e. µ), then

∫

f dµ =
∫

g dµ whenever either one of the integrals
exists.

4. If
∫

1(c,x)f dµ = 0 for all x > c, then f(x) = 0 for a.e. x > c. The constant
c here can be −∞.

As a consequence of 2, if f and g are integrable and f > g, then
∫

f dµ >
∫

g dµ (unless µ is identically zero).
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1.5 Densities

Densities play a basic role in statistics. In many situations the most convenient
way to specify the distribution of a random vector X is to give its density.
Also, densities give likelihood functions used to compute Bayes estimators or
maximum likelihood estimators. The density for a measure exists whenever
it is absolutely continuous with respect to another measure according to the
following definition.

Definition 1.9. Let P and µ be measures on a σ-field A of X . Then P is
called absolutely continuous with respect to µ, written P ≪ µ, if P (A) = 0
whenever µ(A) = 0.

Theorem 1.10 (Radon–Nikodym). If a finite measure P is absolutely
continuous with respect to a σ-finite measure µ, then there exists a nonnegative
measurable function f such that

P (A) =

∫

A

f dµ
def
=

∫

f1A dµ.

The function f in this theorem is called the Radon–Nikodym derivative of
P with respect to µ, or the density of P with respect to µ, denoted

f =
dP

dµ
.

By the third fact about integration and null sets in the previous section, the
density f may not be unique, but if f0 and f1 are both densities, then f0 = f1
(a.e. µ). If X ∼ PX and PX is absolutely continuous with respect to µ with
density p = dPX/dµ, it is convenient to say that X has density p with respect
to µ.

Example 1.11. Absolutely Continuous Random Variables. If a random variable
X has density p with respect to Lebesgue measure on R, then X or its dis-
tribution PX is called absolutely continuous with density p. Then, from the
Radon–Nikodym theorem,

FX(x) = P (X ≤ x) = PX
(

(−∞, x]
)

=

∫ x

−∞
p(u) du.

Using the fundamental theorem of calculus, p can generally be found from the
cumulative distribution function FX by differentiation, p(x) = F ′X(x).

Example 1.12. Discrete Random Variables. Let X0 be a countable subset of
R. The measure µ defined by

µ(B) = #(X0 ∩B)
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for Borel sets B is (also) called counting measure on X0. As in Example 1.5,

∫

f dµ =
∑

x∈X0

f(x).

Suppose X is a random variable and that

P (X ∈ X0) = PX(X0) = 1.

Then X is called a discrete random variable. Suppose N is a null set for µ,
so µ(N) = 0. From the definition of µ, #(N ∩ X0) = 0, which means that
N ∩ X0 = ∅ and so N ⊂ X c

0 . Then PX(N) = P (X ∈ N) ≤ P (X ∈ X c
0 ) =

1 − P (X ∈ X0) = 0. Thus N must also be a null set for PX , and this shows
that PX is absolutely continuous with respect to µ. The density p of PX with
respect to µ satisfies

P (X ∈ A) = PX(A) =

∫

A

p dµ =
∑

x∈X0

p(x)1A(x).

In particular, if A = {y} with y ∈ X0, then X ∈ A if and only if X = y, and
so

P (X = y) =
∑

x∈X0

p(x)1{y}(x) = p(y).

This density p is called the mass function for X . Note that because X c
0 is a

null set, the density p(y) can be defined arbitrarily when y /∈ X0. The natural
convention is to take p(y) = 0 for y /∈ X0, for then p(y) = P (Y = y) for all y.

1.6 Expectation

If X is a random variable on a probability space (E ,B, P ), then the expectation
or expected value of X is defined as

EX =

∫

X dP. (1.4)

This formula is rarely used. Instead, if X ∼ PX it can be shown that

EX =

∫

xdPX(x).

Also, if Y = f(X), then

EY = Ef(X) =

∫

f dPX . (1.5)
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Integration against PX in these two formulas is often accomplished using
densities. If PX has density p with respect to µ, then

∫

f dPX =

∫

fp dµ. (1.6)

This identity allows formal substitution of p dµ for dPX , which makes the
derivative notation p = dPX/dµ seem natural. Together these results can all
be viewed as change of variable results. Proofs of these results are based on
the methods used to define integrals. It is easy to show that (1.5) and (1.6)
hold when f is an indicator function. By linearity they must then hold for
positive simple functions, and then a limiting argument shows that they hold
for general measurable f , at least when the integrals exist. Specializing these
results to absolutely continuous and discrete random variables we have the
following important examples.

Example 1.13. If X is an absolutely continuous random variable with density
p, then

EX =

∫

xdPX(x) =

∫

xp(x) dx

and

Ef(X) =

∫

f(x)p(x) dx. (1.7)

Example 1.14. If X is discrete with P (X ∈ X0) = 1 for a countable set X0, if
µ is counting measure on X0, and if p is the mass function given by p(x) =
P (X = x), then

EX =

∫

xdPX(x) =

∫

xp(x) dµ(x) =
∑

x∈X0

xp(x)

and
Ef(X) =

∑

x∈X0

f(x)p(x). (1.8)

Expectation is a linear operation. If X and Y are random variables and a
and b are nonzero constants, then

E(aX + bY ) = aEX + bEY, (1.9)

provided EX and EY both exist and the right-hand side is not ∞−∞. This
follows easily from the definition of expectation (1.4), because integration is
linear (1.3). Another important property of expectation is that if X and Y
have finite expectations and X < Y (a.e. P ), then EX < EY . Also, using
linearity and the second fact about integration in Section 1.4, if X ≤ Y (a.e.
P ) and both have finite expectations, EX ≤ EY with equality only if X = Y
(a.e. P ).
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The variance of a random variable X with finite expectation is defined as

Var(X) = E(X − EX)2.

If X is absolutely continuous with density p, by (1.7)

Var(X) =

∫

(x− EX)2p(x) dx,

and if X is discrete with mass function p, by (1.8)

Var(X) =
∑

x∈X0

(x − EX)2p(x).

Using (1.9),

Var(X) = E
(

X2 − 2XEX + (EX)2
)

= EX2 − (EX)2,

a result that is often convenient for explicit calculation.
The covariance between two random variables X and Y with finite expec-

tations is defined as

Cov(X,Y ) = E(X − EX)(Y − EY ), (1.10)

whenever the expectation exists. Note that Cov(X,X) = Var(X). Using (1.9),

Cov(X,Y ) = E
(

XY −XEY − Y EX + (EX)(EY )
)

= EXY − (EX)(EY ). (1.11)

The covariance between two variables might be viewed as a measure of the
linear association between the two variables. But because covariances are in-
fluenced by the measurement scale, a more natural measure is the correlation,
defined using the covariance as

Cor(X,Y ) =
Cov(X,Y )

[

Var(X)Var(Y )
]1/2

.

Correlations always lie in [−1, 1], with values ±1 arising when there is a perfect
linear relation between the two variables.2

1.7 Random Vectors

If X1, . . . , Xn are random variables, then the function X : E → Rn defined by

2 This follows from the covariance inequality (4.11).
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X(e) =







X1(e)
...

Xn(e)






, e ∈ E ,

is called a random vector.3 Much of the notation and many of the results
presented in this chapter for random variables extend naturally and directly
to random vectors. For instance, the distribution PX of X is defined by

PX(B) = P (X ∈ B)
def
= P

(

{e ∈ E : X(e) ∈ B}
)

for Borel sets B ∈ Rn, and notation X ∼ PX means that X has distribution
PX . The random vector X or its distribution PX is called absolutely contin-
uous with density p if PX is absolutely continuous with respect to Lebesgue
measure on Rn. In this case

P (X ∈ B) =

∫

· · ·
∫

B

p(x) dx.

The random vector X is discrete if P (X ∈ X0) = 1 for some countable set
X0 ⊂ Rn. If p(x) = P (X = x), then PX has density p with respect to counting
measure on X0 and

P (X ∈ B) =
∑

x∈X0∩B
p(x).

The expectation of a random vector X is the vector of expectations,

EX =







EX1

...
EXn






.

If T : Rn → R is a measurable function, then T (X) is a random variable, and,
as in (1.5),

ET (X) =

∫

T dPX

whenever the expectation or integral exists. If PX has a density p with respect
to a dominating measure µ, this integral can be expressed as

∫

Tp dµ, which
becomes

∑

x∈X0

T (x)p(x) or

∫

· · ·
∫

T (x)p(x) dx

in the discrete and absolutely continuous cases with µ counting or Lebesgue
measure, respectively.

3 Equivalently, the vector-valued function X is measurable: X−1(B) ∈ E for every
Borel set B ∈ Rn.



12 1 Probability and Measure

1.8 Covariance Matrices

A matrix W is called a random matrix if the entriesWij are random variables.
If W is a random matrix, then EW is the matrix of expectations of the entries,

(EW )ij = EWij .

If v is a constant vector, A, B, and C are constant matrices, X is a random
vector, and W is a random matrix, then

E[v +AX ] = v +AEX (1.12)

and
E[A+BWC] = A+B(EW )C. (1.13)

These identities follow easily from basic properties of expectation because
(v +AX)i = vi +

∑

j AijXj and (A+BWC)ij = Aij +
∑

k

∑

lBikWklClj .
The covariance of a random vector X is the matrix of covariances of the

variables in X ; that is,

[

Cov(X)
]

ij
= Cov(Xi, Xj).

If µ = EX and (X − µ)′ denotes the transpose of X − µ, a (random) row
vector, then

Cov(Xi, Xj) = E(Xi − µi)(Xj − µj) = E
[

(X − µ)(X − µ)′
]

ij
,

and so
Cov(X) = E(X − µ)(X − µ)′. (1.14)

Similarly, using (1.11) or (1.13),

Cov(X) = EXX ′ − µµ′.

To find covariances after an affine transformation, because the transpose of a
product of two matrices (or vectors) is the product of the transposed matrices
in reverse order, using (1.14), (1.12), and (1.13), if v is a constant vector, A
is a constant matrix, and X is a random vector, then

Cov(v +AX) = E(v +AX − v −Aµ)(v +AX − v −Aµ)′

= EA(X − µ)(X − µ)′A′

= A
[

E(X − µ)(X − µ)′
]

A′

= ACov(X)A′. (1.15)
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1.9 Product Measures and Independence

Let (X ,A, µ) and (Y,B, ν) be measure spaces. Then there exists a unique
measure µ× ν, called the product measure, on (X × Y,A ∨ B) such that

(µ× ν)(A ×B) = µ(A)ν(B),

for all A ∈ A and all B ∈ B. The σ-field A ∨ B is defined formally as the
smallest σ-field containing all sets A×B with A ∈ A and B ∈ B.

Example 1.15. If µ and ν are Lebesgue measures on Rn and Rm, respectively,
then µ× ν is Lebesgue measure on Rn+m.

Example 1.16. If µ and ν are counting measures on countable sets X0 and Y0,
then µ× ν is counting measure on X0 × Y0.

The following result shows that integration against the product measure
µ× ν can be accomplished by iterated integration against µ and ν, in either
order.

Theorem 1.17 (Fubini). If f ≥ 0, then

∫

f d(µ× ν) =

∫ [∫

f(x, y) dν(y)

]

dµ(x)

=

∫ [∫

f(x, y) dµ(x)

]

dν(y).

Dropping the restriction f ≥ 0, if
∫

|f | d(µ × ν) < ∞ then these equations
hold.

Taking f = 1S , this result gives a way to compute (µ × ν)(S) when S is
not the Cartesian product of sets in A and B.

Definition 1.18 (Independence). Two random vectors, X ∈ Rn and Y ∈
Rm are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B), (1.16)

for all Borel sets A and B.

If Z =
(

X
Y

)

, then Z ∈ A× B if and only if X ∈ A and Y ∈ B, and (1.16)
can be expressed in terms of the distributions of X , Y , and Z as

PZ(A×B) = PX(A)PY (B).

This shows that the distribution of Z is the product measure,

PZ = PX × PY .
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The density of Z is also given by the product of the densities of X and Y .
This can be shown using Fubini’s theorem and (1.6) to change variables of
integration. Specifically, suppose PX has density pX with respect to µ and PY
has density pY with respect to ν. Then

P (Z ∈ S) =

∫

1S d(PX × PY )

=

∫ [∫

1S(x, y) dPX(x)

]

dPY (y)

=

∫ [∫

1S(x, y)pX(x) dµ(x)

]

pY (y) dν(y)

=

∫

1S(x, y)pX(x)pY (y) d(µ× ν)(x, y).

This shows that PZ has density pX(x)pY (y) with respect to µ× ν. In applica-
tions, µ and ν will generally be counting or Lebesgue measure. Note that the
level of generality here covers mixed cases in which one of the random vectors
is discrete and the other is absolutely continuous.

Whenever Z =
(

X
Y

)

, PZ is called the joint distribution of X and Y , and a
density for PZ is called the joint density of X and Y . So when X and Y are
independent with densities pX and pY , their joint density is pX(x)pY (y).

These ideas extend easily to collections of several random vectors. If Z is
formed from random vectors X1, . . . , Xn, then a density or distribution for Z
is called a joint density or joint distribution, respectively, for X1, . . . , Xn. The
vectors X1, . . . , Xn are independent if

P (X1 ∈ B1, . . . , Xn ∈ Bn) = P (X1 ∈ B1) × · · · × P (Xn ∈ Bn)

for any Borel sets B1, . . . , Bn. Then PZ = PX1 ×· · ·×PXn , where this product
is the unique measure µ satisfying

µ(B1 × · · · ×Bn) = PX1(B1) × · · · × PXn(Bn).

The following proposition shows that functions of independent variables
are independent.

Proposition 1.19. If X1, . . . , Xn are independent random vectors, and if f1,
. . . , fn are measurable functions, then f1(X1), . . . , fn(Xn) are independent.

If Xi has density pXi with respect to µi, i = 1, . . . , n, then X1, . . . , Xn

have joint density p given by

p(x1, . . . , xn) = pX1(x1) × · · · × pXn(xn)

with respect to µ = µ1×· · ·×µn. If X1, . . . , Xn are independent, and they all
have the same distribution, Xi ∼ Q, i = 1, . . . , n, then X1, . . . , Xn are called
independent and identically distributed (i.i.d.), and the collection of variables
is called a random sample from Q.
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1.10 Conditional Distributions

Suppose X and Y are random vectors. If X is observed and we learn that
X = x, then PY should no longer be viewed as giving appropriate probabilities
for Y . Rather, we should modify PY taking account of the new information
that X = x. When X is discrete this can be accomplished using the standard
formula for conditional probabilities of events: Let pX(x) = P (X = x), the
mass function for X ; take X0 = {x : pX(x) > 0}, the set of possible values for
X ; and define

Qx(B) = P (Y ∈ B|X = x) =
P (Y ∈ B,X = x)

P (X = x)
(1.17)

for Borel sets B and x ∈ X0. Then for any x ∈ X0, it is easy to show that
Qx is a probability measure, called the conditional distribution for Y given
X = x.

Formally, conditional probabilities should be stochastic transition kernels.
These are defined as functions Q : X × B → [0, 1] satisfying two properties.
First, for x ∈ X , Qx(·) should be a probability measure on B; and second, for
any B ∈ B, Qx(B) should be a measurable function of x.

For completeness, we should also define Qx(B) above when x /∈ X0. How
this is done does not really matter; taking Qx to be some fixed probability
measure for x /∈ X0 would be one simple possibility.

Conditional distributions also exist when X is not discrete, but the defi-
nition is technical and is deferred to Chapter 6. However, the most important
results in this section hold whether X is discrete or not. In particular, if X
and Y are independent and X is discrete, by (1.17) Qx equals PY , regardless
of the value of x ∈ X0. This fact remains true in general and is the basis for
a host of interesting and useful calculations.

Integration against a conditional distributions gives a conditional expec-
tation. Specifically, the conditional expectation of f(X,Y ) given X = x is
defined as

E
[

f(X,Y )
∣

∣X = x
]

=

∫

f(x, y) dQx(y). (1.18)

Suppose X and Y are both discrete with Y taking values in a countable set
Y0 and X taking values in X0 as defined above. Then Z =

(

X
Y

)

takes values in
the countable set X0 × Y0 and is discrete with mass function pZ(z) = P (Z =
z) = P (X = x, Y = y), where z =

(

x
y

)

. By (1.17), Qx(Y0) = 1 and so Qx is
discrete with mass function qx given by

qx(y) = Qx
(

{y}
)

= P (Y = y|X = x) =
P (Y = y,X = x)

P (X = x)
(1.19)

for x ∈ X0. Then the conditional expectation in (1.18) can be calculated as a
sum,

H(x) = E
[

f(X,Y )
∣

∣X = x
]

=
∑

y∈Y0

f(x, y)qx(y).
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For regularity, suppose E|f(X,Y )| < ∞. Noting from (1.19) that P (X =
x, Y = y) = qx(y)pX(x), the expectation of f(X,Y ) can be written as

Ef(X,Y ) =
∑

(x
y)∈X0×Y0

f(x, y)P (X = x, Y = y)

=
∑

x∈X0

∑

y∈Y0

f(x, y)qx(y)pX(x)

=
∑

x∈X0

H(x)pX(x)

= EH(X).

This is a fundamental result in conditioning, called the law of total probability,
the tower property, or smoothing. In fact, smoothing identities are so basic
that they form the basis for general definitions of conditional probability and
expectation when X is not discrete. The random variable H(X) obtained
evaluating H from (1.18) at X is denoted

H(X) = E
[

f(X,Y )
∣

∣X
]

.

With this convenient notation the smoothing identity is just

Ef(X,Y ) = EE
[

f(X,Y )
∣

∣X
]

.

In particular, when f(X,Y ) = Y this becomes

EY = EE(Y |X).

When Y = 1B, the indicator of an event B, EY = P (B) and this identity
becomes

P (B) = EP (B|X),

where P (B|X)
def
= E(1B|X). Finally, these identities also hold when the initial

expectation or probability is conditional. Specifically,4

E(Y |X) = E
[

E(Y |X,W )
∣

∣X
]

(1.20)

and
P (B|X) = E

[

P (B|X,Y )
∣

∣X
]

.

4 See Problem 1.46.
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1.11 Problems5

*1. Prove (1.1). Hint: Define A1 = B1 and An = Bn − Bn−1 for n ≥ 2.
Show that the An are disjoint and use the countable additivity property
of measure. Note: By definition,

∑∞
n=1 cn = limN→∞

∑N
n=1 cn.

2. For a set B ⊂ N = {1, 2, . . .}, define

µ(B) = lim
n→∞

#
[

B ∩ {1, . . . , n}
]

n
,

when the limit exists, and let A denote the collection of all such sets.
a) Find µ(E), µ(O), and µ(S), where E = {2, 4, . . .}, all even numbers,

O = {1, 3, . . .}, all odd numbers, and S = {1, 4, 9, . . .), all perfect
squares.

b) If A and B are disjoint sets in A, show that µ(A∪B) = µ(A)+µ(B).
c) Is µ a measure? Explain your answer.

3. Suppose µ is a measure on the Borel sets of (0,∞) and that µ
(

(x, 2x]
)

=√
x, for all x > 0. Find µ

(

(0, 1]
)

.
4. Let X = {1, 2, 3, 4}. Find the smallest σ-field A of subsets of X that

contains the sets {1} and {1, 2, 3}.
5. Truncation. Let µ be a measure on (X ,A) and let A be a set in A. Define
ν on A by

ν(B) = µ(A ∩B), B ∈ A.
Show that ν is a measure on (X ,A).

6. Suppose A and B are σ-fields on the same sample space X . Show that the
intersection A ∩ B is also a σ-field on X .

7. Let X denote the rational numbers in (0, 1), and let A be all subsets of
X , A = 2X . Let µ be a real-valued function on A satisfying

µ
[

(a, b) ∩ X
]

= b− a, for all a < b, a ∈ X , b ∈ X .

Show that µ cannot be a measure.
*8. Prove Boole’s inequality: For any events B1, B2, . . . ,

P





⋃

i≥1

Bi



 ≤
∑

i≥1

P (Bi).

Hint: One approach would be to establish the result for finite collections
by induction, then it extend to countable collections using (1.1). Another
idea is to use Fubini’s theorem, noting that if B is the union of the events,
1B ≤∑ 1Bi .

5 Solutions to starred problems in each chapter are given at the back of the book.
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9. Cantor set. The Cantor set can be defined recursively. Start with the
closed unit interval [0, 1] and form K1 by removing the open middle third,
so

K1 = [0.1/3]∪ [2/3, 1].

Next, form K2 by removing the two open middle thirds from the intervals
in K1, so

K2 = [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1].

Continue removing middle thirds to form K2,K3, . . . . The Cantor set K
is the limit or intersection of these sets,

K =

∞
⋂

n=1

Kn.

Show that K is a Borel set and find its length or Lebesgue measure.
Remark: K and [0, 1] have the same cardinality.

*10. Let µ and ν be measures on (E ,B).
a) Show that the sum η defined by η(B) = µ(B) + ν(B) is also a measure.
b) If f is a nonnegative measurable function, show that

∫

f dη =

∫

f dµ+

∫

f dν.

Hint: First show that this result holds for nonnegative simple func-
tions.

*11. Suppose f is the simple function 1(1/2,π] + 21(1,2], and let µ be a measure
on R with µ{(0, a2]} = a, a > 0. Evaluate

∫

f dµ.
*12. Suppose that µ{(0, a)} = a2 for a > 0 and that f is defined by

f(x) =



















0, x ≤ 0;

1, 0 < x < 2;

π, 2 ≤ x < 5;

0, x ≥ 5.

Compute
∫

f dµ.
*13. Define the function f by

f(x) =

{

x, 0 ≤ x ≤ 1;

0, otherwise.

Find simple functions f1 ≤ f2 ≤ · · · increasing to f (i.e., f(x) =
limn→∞ fn(x) for all x ∈ R). Let µ be Lebesgue measure on R. Using
our formal definition of an integral and the fact that µ

(

(a, b]
)

= b − a
whenever b > a (this might be used to formally define Lebesgue mea-
sure), show that

∫

f dµ = 1/2.
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14. Suppose µ is a measure on R with µ([0, a]) = ea, a ≥ 0. Evaluate
∫

(1(0,2)+
21[1,3]) dµ.

15. Suppose µ is a measure on subsets of N = {1, 2, . . .} and that

µ
(

{n, n+ 1, . . .}
)

=
n

2n
, n = 1, 2, . . . .

Evaluate
∫

xdµ(x).
*16. Define F (a−) = limx↑a F (x). Then, if F is nondecreasing, F (a−) =

limn→∞ F (a − 1/n). Use (1.1) to show that if a random variable X has
cumulative distribution function FX ,

P (X < a) = FX(a−).

Also, show that
P (X = a) = FX(a) − FX(a−).

*17. Suppose X is a geometric random variable with mass function

p(x) = P (X = x) = θ(1 − θ)x, x = 0, 1, . . . ,

where θ ∈ (0, 1) is a constant. Find the probability that X is even.
*18. Let X be a function mapping E into R. Recall that if B is a subset of R,

then X−1(B) = {e ∈ E : X(e) ∈ B}. Use this definition to prove that

X−1(A ∩B) = X−1(A) ∩X−1(B),

X−1(A ∪B) = X−1(A) ∪X−1(B),

and

X−1

( ∞
⋃

i=0

Ai

)

=

∞
⋃

i=0

X−1(Ai).

*19. Let P be a probability measure on (E ,B), and let X be a random variable.
Show that the distribution PX of X defined by PX(B) = P (X ∈ B) =
P
(

X−1(B)
)

is a measure (on the Borel sets of R).
20. Suppose X is a Poisson random variable with mass function

p(x) = P (X = x) =
λxe−λ

x!
, x = 0, 1, . . . ,

where λ > 0 is a constant. Find the probability that X is even.
*21. Let X have a uniform distribution on (0, 1); that is, X is absolutely con-

tinuous with density p defined by

p(x) =

{

1, x ∈ (0, 1);

0, otherwise.

Let Y1 and Y2 denote the first two digits ofX whenX is written as a binary
decimal (so Y1 = 0 if X ∈ (0, 1/2) for instance). Find P (Y1 = i, Y2 = j),
i = 0 or 1, j = 0 or 1.
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*22. Let E = (0, 1), let B be the Borel subsets of E , and let P (A) be the length
of A for A ∈ B. (P would be called the uniform probability measure on
(0, 1).) Define the random variable X by

X(e) = min{e, 1/2}.

Let µ be the sum of Lebesgue measure on R and counting measure on
X0 = {1/2}. Show that the distribution PX of X is absolutely continuous
with respect to µ and find the density of PX .

*23. The standard normal distribution N(0, 1) has density φ given by

φ(x) =
e−x

2/2

√
2π

, x ∈ R,

with respect to Lebesgue measure λ on R. The corresponding cumulative
distribution function is Φ, so

Φ(x) =

∫ x

−∞
φ(z) dz

for x ∈ R. Suppose that X ∼ N(0, 1) and that the random variable Y
equals X when |X | < 1 and is 0 otherwise. Let PY denote the distribution
of Y and let µ be counting measure on {0}. Find the density of PY with
respect to λ+ µ.

*24. Let µ be a σ-finite measure on a measurable space (X,B). Show that
µ is absolutely continuous with respect to some probability measure P .
Hint: You can use the fact that if µ1, µ2, . . . are probability measures
and c1, c2, . . . are nonnegative constants, then

∑

ciµi is a measure. (The
proof for Problem 1.10 extends easily to this case.) The measures µi you
will want to consider are truncations of µ to sets Ai covering X with
µ(Ai) < ∞, given by µi(B) = µ(B ∩ Ai). With the constants ci chosen
properly,

∑

ciµi will be a probability measure.
*25. The monotone convergence theorem states that if 0 ≤ f1 ≤ f2 · · · are

measurable functions and f = lim fn, then
∫

f dµ = lim
∫

fn dµ. Use this
result to prove the following assertions.
a) Show that if X ∼ PX is a random variable on (E ,B, P ) and f is a

nonnegative measurable function, then
∫

f
(

X(e)
)

dP (e) =

∫

f(x) dPX(x).

Hint: Try it first with f an indicator function. For the general case,
let fn be a sequence of simple functions increasing to f .

b) Suppose that PX has density p with respect to µ, and let f be a
nonnegative measurable function. Show that

∫

f dPX =

∫

fp dµ.
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*26. The gamma distribution.
a) The gamma function is defined for α > 0 by

Γ (α) =

∫ ∞

0

xα−1e−xdx.

Use integration by parts to show that Γ (x + 1) = xΓ (x). Show that
Γ (x+ 1) = x! for x = 0, 1, . . . .

b) Show that the function

p(x) =

{

1
Γ (α)βαx

α−1e−x/β, x > 0;

0, otherwise,

is a (Lebesgue) probability density when α > 0 and β > 0. This
density is called the gamma density with parameters α and β. The
corresponding probability distribution is denoted Γ (α, β).

c) Show that if X ∼ Γ (α, β), then EXr = βrΓ (α + r)/Γ (α). Use this
formula to find the mean and variance of X .

*27. Suppose X has a uniform distribution on (0, 1). Find the mean and co-
variance matrix of the random vector

(

X
X2

)

.
*28. If X ∼ N(0, 1), find the mean and covariance matrix of the random vector

(

X
I{X>c}

)

.

29. Let X be a random vector in Rn with EX2
i < ∞, i = 1, . . . , n, and let

A = EXX ′. Show that A is nonnegative definite: v′Av ≥ 0 for all v ∈ Rn.
30. Let W be absolutely continuous with density

p(x) =

{

λe−λx, x > 0;

0, otherwise,

where λ > 0 (the exponential density with failure rate λ), and define
X = ⌊W ⌋ and Y = W − X . Here ⌊·⌋ is the floor or greatest integer
function: ⌊x⌋ is the greatest integer less than or equal to x.
a) Find P (X = k), k ≥ 0, the mass function for X .
b) Find P (Y ≤ y|X = k), y ∈ (0, 1). What is the cumulative distribution

function for Y ?
c) Find EY and Var(Y ).
d) Compute EW . Use linearity and your answer to (c) to find EX .
e) Find the covariance matrix for the random vector

(

Y
W

)

.
31. Let X be an absolutely continuous random variable with density

p(x) =

{

2x, x ∈ (0, 1);

0, otherwise.

a) Find the mean and variance of X .
b) Find E sin(X).
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c) Let Y = I{X > 1/2}. Find Cov(X,Y ).
*32. Suppose E|X | <∞ and let

h(t) =
1 − E cos(tX)

t2
.

Use Fubini’s theorem to find
∫∞
0
h(t) dt. Hint:

∫ ∞

0

(

1 − cos(u)
)

u−2 du =
π

2
.

*33. Suppose X is absolutely continuous with density pX(x) = xe−x, x > 0
and pX(x) = 0, x ≤ 0. Define cn = E(1 +X)−n. Use Fubini’s theorem to
evaluate

∑∞
n=1 cn.

34. Let Z have a standard normal distribution, introduced in Problem 1.23.
a) For n = 1, 2, . . . , show that

EZ2n = (2n− 1)!!
def
= (2n− 1) × (2n− 3) × · · · × 1.

Hint: Use an inductive argument based on an integration by parts
identity or formulas for the gamma function.

b) Use the identity in (a) and Fubini’s theorem to evaluate

∞
∑

n=1

(2n− 1)!!

3nn!
.

35. Prove Proposition 1.19.
*36. Suppose X and Y are independent random variables, and let FX and FY

denote their cumulative distribution functions.
a) Use smoothing to show that the cumulative distribution function of

S = X + Y is

FS(s) = P (X + Y ≤ s) = EFX(s− Y ). (1.21)

b) If X and Y are independent and Y is almost surely positive, use
smoothing to show that the cumulative distribution function of W =
XY is FW (w) = EFX(w/Y ) for w > 0.

*37. Differentiating (1.21) with respect to s one can show that ifX is absolutely
continuous with density pX , then S = X+Y is absolutely continuous with
density

pS(s) = EpX(s− Y )

for s ∈ R. Use this formula to show that if X and Y are independent with
X ∼ Γ (α, 1) and Y ∼ Γ (β, 1), then X + Y ∼ Γ (α+ β, 1).

*38. Let Qλ denote the exponential distribution with failure rate λ, given
in Problem 1.30. Let X be a discrete random variable taking values in
{1, . . . , n} with mass function
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P (X = k) =
2k

n(n+ 1)
, k = 1, . . . , n,

and assume that the conditional distribution of Y given X = x is expo-
nential with failure rate x,

Y |X = x ∼ Qx.

a) Find E[Y |X ].
b) Use smoothing to compute EY .

*39. Let X be a discrete random variable uniformly distributed on {1, . . . , n},
so P (X = k) = 1/n, k = 1, . . . , n, and assume that the conditional
distribution of Y given X = x is exponential with failure rate x.
a) For y > 0 find P [Y > y|X ].
b) Use smoothing to compute P (Y > y).
c) Determine the density of Y .

40. Let X and Y be independent absolutely continuous random variables, X
with density pX(x) = e−x, x > 0, pX(x) = 0, x < 0, and Y uniformly
distributed on (0, 1). Let V = X/(X + Y ).
a) Find P (V > c|Y = y) for c ∈ (0, 1).
b) Use smoothing to compute P (V > c).
c) What is the density of V ?

41. Suppose that X has the standard exponential distribution with density
pX(x) = e−x, x ≥ 0, pX(x) = 0, x < 0; that Y has a (discrete) uniform
distribution on {1, . . . , n}; and that X and Y are independent.
a) Find the joint density of X and Y . Use it to compute P (X+Y > 3/2).
b) Find the covariance matrix for Z =

(

X
X+Y

)

.

c) Find E
[

exp
(

XY/(1 + Y )
) ∣

∣X
]

.

d) Use smoothing to compute E exp
(

XY/(1 + Y )
)

.
42. Two measures µ and ν on (X ,A) are called (mutually) singular if µ(A) =

ν(Ac) = 0 for some A ∈ A. For instance, Lebesgue measure and counting
measure on some countable subset X0 of R are singular (take A = X0).
Let µ and ν be singular measures on the Borel sets of R, and let Q0 and
Q1 be probability measures absolutely continuous with respect to µ and
ν, respectively, with densities

q0 =
dQ0

dµ
and q1 =

dQ1

dν
.

LetX have a Bernoulli distribution with success probability p, and assume
that

Y |X = 0 ∼ Q0 and Y |X = 1 ∼ Q1.

a) Use the result in Problem 1.10 to show that Q1 has density q11A with
respect to µ+ ν, where µ(A) = ν(Ac) = 0.

b) Use smoothing to derive a formula for P (Y ∈ B) involving Q0, Q1,
and p.
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c) Find a density for Y with respect to µ+ ν.
43. Let X and Y be independent random variables with X uniformly dis-

tributed on (0, 1) and Y uniformly distributed on {1, . . . , n}. Define
W = Y eXY .
a) Find E[W |Y = y].
b) Use smoothing to compute EW .

44. The standard exponential distribution is absolutely continuous with den-
sity p(x) = 1(0,∞)(x)e

−x. Let X and Y be independent random variables,
both from this distribution, and let Z = X/Y .
a) For z > 0, find P (Z ≤ z|Y = y).
b) Use smoothing and the result in part (a) to compute

P (Z ≤ z), z > 0.

c) Find the covariance between Y and I{Z ≤ z}.
45. Show that E[f(X)Y |X ] = f(X)E(Y |X).
46. If E|Y | <∞ and f is a bounded function, then by smoothing,

E[f(X)Y ] = E
[

f(X)E(Y |X)
]

.

By (1.20) we should then have

E[f(X)Y ] = E
[

f(X)E
[

E(Y |X,W )
∣

∣X
]

]

.

Use a smoothing argument to verify that this equation holds, demonstrat-
ing that (1.20) works in this case.
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Exponential Families

Inferential statistics is the science of learning from data. Data are typically
viewed as random variables or vectors, but in contrast to our discussion of
probability, distributions for these variables are generally unknown. In ap-
plications, it is often reasonable to assume that distributions come from a
suitable class of distributions. In this chapter we introduce classes of distri-
butions called exponential families. Examples include the binomial, Poisson,
normal, exponential, geometric, and other distributions in regular use. From
a theoretical perspective, exponential families are quite regular. In addition,
moments for these distributions can often be computed easily using the dif-
ferential identities in Section 2.4.

2.1 Densities and Parameters

Let µ be a measure on Rn, let h : Rn → R be a nonnegative function, and let
T1, . . . , Ts be measurable functions from Rn to R. For η ∈ Rs, define

A(η) = log

∫

exp

[

s
∑

i=1

ηiTi(x)

]

h(x) dµ(x). (2.1)

Whenever A(η) <∞, the function pη given by

pη(x) = exp

[

s
∑

i=1

ηiTi(x) − A(η)

]

h(x), x ∈ Rn, (2.2)

integrates to one; that is,
∫

pη dµ = 1. So, this construction gives a family of
probability densities indexed by η. The set

Ξ = {η : A(η) <∞}

is called the natural parameter space, and the family of densities {pη : η ∈ Ξ}
is called an s-parameter exponential family in canonical form.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
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Example 2.1. Suppose µ is Lebesgue measure on R, h = 1(0,∞), s = 1, and
T1(x) = x. Then

A(η) = log

∫ ∞

0

eηx dx

=

{

log(−1/η), η < 0;

∞, η ≥ 0.

Thus, pη(x) = exp[ηx− log(−1/η)]1(0,∞)(x) is a density for η ∈ Ξ = (−∞, 0).
In form, these are the exponential densities, which are usually parameterized
by the mean or failure rate instead of the canonical parameter η here.

To allow other parameterizations for an exponential family of densities,
let η be a function from some space Ω into Ξ and define

pθ(x) = exp

[

s
∑

i=1

ηi(θ)Ti(x) −B(θ)

]

h(x)

for θ ∈ Ω, x ∈ Rn, where B(θ) = A
(

η(θ)
)

. Families {pθ : θ ∈ Ω} of this form
are called s-parameter exponential families.

Example 2.2. The normal distribution N(µ, σ2) has density

pθ(x) =
1√

2πσ2
e−(x−µ)2/(2σ2)

=
1√
2π

exp

[

µ

σ2
x− 1

2σ2
x2 −

(

µ2

2σ2
+ log σ

)]

,

where θ = (µ, σ2). This is a two-parameter exponential family with T1(x) = x,
T2(x) = x2, η1(θ) = µ/σ2, η2(θ) = −1/(2σ2), B(θ) = µ2/(2σ2) + log σ, and
h(x) = 1/

√
2π.

Example 2.3. If X1, . . . , Xn is a random sample fromN(µ, σ2), then their joint
density is

pθ(x1, . . . , xn) =

n
∏

i=1

[

1√
2πσ2

e−(xi−µ)2/(2σ2)

]

=
1

(2π)n/2
exp

[

µ

σ2

n
∑

i=1

xi −
1

2σ2

n
∑

i=1

x2
i − n

(

µ2

2σ2
+ log σ

)

]

.

These densities also form a two-parameter exponential family with T1(x) =
∑n

i=1 xi, T2(x) =
∑n

i=1 x
2
i , η1(θ) = µ/σ2, η2(θ) = −1/(2σ2), B(θ) =

n
[

µ2/(2σ2) + log σ
]

, and h(x) = 1/(2π)n/2.
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The similarity between these two examples is not accidental. If X1, . . . , Xn

is a random sample with common marginal density

exp

[

s
∑

i=1

ηi(θ)Ti(x) −B(θ)

]

h(x),

then their joint density is

exp





s
∑

i=1

ηi(θ)





n
∑

j=1

Ti(xj)



− nB(θ)





n
∏

j=1

h(xj), (2.3)

which is an s-parameter exponential family with the same functions η1, . . . , ηs,
and with

T̃i(x) =

n
∑

j=1

Ti(xj), B̃(θ) = nB(θ), h̃(x) =

n
∏

i=1

h(xi),

where the tilde is used to indicate that the function is for the family of joint
densities.

2.2 Differential Identities

In canonical exponential families it is possible to relate moments and cumu-
lants for the statistics T1, . . . , Ts to derivatives of A. The following theorem
plays a central role.

Theorem 2.4. Let Ξf be the set of values for η ∈ Rs where

∫

|f(x)| exp

[

s
∑

i=1

ηiTi(x)

]

h(x) dµ(x) <∞.

Then the function

g(η) =

∫

f(x) exp

[

s
∑

i=1

ηiTi(x)

]

h(x) dµ(x)

is continuous and has continuous partial derivatives of all orders for η ∈
Ξ◦f (the interior of Ξf). Furthermore, these derivatives can be computed by
differentiation under the integral sign.

A proof of this result is given in Brown (1986), a monograph on exponential
families with statistical applications. Although the proof is omitted here, key
ideas from it are of independent interest and are presented in the next section.
As an application of this result, if f = 1, then Ξf = Ξ, and, by (2.1),
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g(η) = eA(η) =

∫

exp

[

s
∑

i=1

ηiTi(x)

]

h(x) dµ(x).

Differentiating this expression with respect to ηj , which can be done under
the integral if η ∈ Ξ◦, gives

eA(η) ∂A(η)

∂ηj
=

∫

∂

∂ηj
exp

[

s
∑

i=1

ηiTi(x)

]

h(x) dµ(x)

=

∫

Tj(x) exp

[

s
∑

i=1

ηiTi(x)

]

h(x) dµ(x).

Using the definition (2.2) of pη, division by eA(η) gives

∂A(η)

∂ηj
=

∫

Tj(x)pη(x) dµ(x).

This shows that if data X has density pη with respect to µ, then

EηTj(X) =
∂A(η)

∂ηj
(2.4)

for any η ∈ Ξ◦.

2.3 Dominated Convergence

When s = 1, (2.4) is obtained differentiating the identity

eA(η) =

∫

eηT (x)h(x) dµ(x),

passing the derivative inside the integral. To understand why this should work,
suppose the integral is finite for η ∈ [−2ǫ, 2ǫ] and consider taking the derivative
at η = 0. If the function is differentiable at zero, the derivative will be the
following limit:

lim
n→∞

eA(ǫ/n) − eA(0)

ǫ/n
= lim
n→∞

∫

eǫT (x)/n − 1

ǫ/n
h(x) dµ(x)

= lim
n→∞

∫

fn(x) dµ(x),

where

fn(x) =
eǫT (x)/n − 1

ǫ/n
h(x). (2.5)

As n→ ∞, fn(x) → f(x)
def
= T (x)h(x). So the desired result follows provided
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∫

fn dµ→
∫

f dµ

as n → ∞. This seems natural, but is not automatic (see Example 2.6). The
following basic result gives a sufficient condition for this sort of convergence.

Theorem 2.5 (Dominated Convergence). Let fn, n ≥ 1 be a sequence
of functions with |fn| ≤ g (a.e. µ) for all n ≥ 1. If

∫

g dµ < ∞ and
limn→∞ fn(x) = f(x) for a.e. x under µ, then

∫

fn dµ→
∫

f dµ

as n→ ∞.

Example 2.6. To appreciate the need for a “dominating” function g in this
theorem, suppose µ is Lebesgue measure on R, define fn = 1(n,n+1), n ≥ 1,
and take f = 0. Then fn(x) → f(x) as n→ ∞, for all x. But

∫

fn dµ = 1, for
all n ≥ 1, and these values do not converge to

∫

f dµ = 0.

To apply dominated convergence in our original example with fn given by
(2.5), the following bounds are useful:

|et − 1| ≤ |t|e|t|, t ∈ R,

and
|t| ≤ e|t|, t ∈ R.

Using these,

∣

∣

∣

∣

eǫT (x)/n − 1

ǫ/n

∣

∣

∣

∣

≤ |ǫT (x)/n|
ǫ/n

e|ǫT (x)/n|

≤ 1

ǫ
|ǫT (x)|e|ǫT (x)| ≤ 1

ǫ
e|2ǫT (x)| ≤ 1

ǫ

(

e2ǫT (x) + e−2ǫT (x)
)

.

The left-hand side of this bound multiplied by h(x) is |fn(x)|, so

|fn(x)| ≤
1

ǫ

(

e2ǫT (x) + e−2ǫT (x)
)

h(x)
def
= g(x).

The dominating function g has a finite integral because

∫

e±2ǫT (x)h(x) dµ(x) = eA(±2ǫ) <∞.

So, by dominated convergence
∫

fn dµ →
∫

f dµ as n→ ∞, as desired.
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2.4 Moments, Cumulants, and Generating Functions

Let T = (T1, . . . , Ts)
′ be a random vector in Rs. Note that the dot product of

T with a constant u ∈ Rs is u · T = u′T . The moment generating function of
T is defined as

MT (u) = Eeu1T1+···+usTs = Eeu·T , u ∈ Rs,

and the cumulant generating function is

KT (u) = logMT (u).

According to the following lemma, the moment generating function MX de-
termines the distribution of X , at least if it is finite in some open interval.

Lemma 2.7. If the moment generating functions MX(u) and MY (u) for two
random vectors X and Y are finite and agree for u in some set with a
nonempty interior, then X and Y have the same distribution, PX = PY .

Expectations of products of powers of T1, . . . , Ts are called moments of T ,
denoted

αr1,...,rs = E[T r11 × · · · × T rs
s ].

The following result shows that these moments can generally be found by dif-
ferentiating MT at u = 0. The proof is omitted, but is similar to the proof of
Theorem 2.4. Here, dominated convergence would be used to justify differen-
tiation under an expectation.

Theorem 2.8. If MT is finite in some neighborhood of the origin, then MT

has continuous derivatives of all orders at the origin, and

αr1,...,rs =
∂r1

∂ur11
· · · ∂

rs

∂urs
s
MT (u)

∣

∣

∣

u=0
.

The corresponding derivatives of KT are called cumulants, denoted

κr1,...,rs =
∂r1

∂ur11
· · · ∂

rs

∂urs
s
KT (u)

∣

∣

∣

u=0
.

When s = 1, K ′T = M ′T /MT and K ′′T = [MTM
′′
T − (M ′T )2]/M2

T . At u = 0,
these equations give

κ1 = ET and κ2 = ET 2 − (ET )2 = Var(T ).

Generating functions can be quite useful in the study of sums of inde-
pendent random vectors. As a preliminary to this investigation, the following
lemma shows that in regular situations, the expectation of a product of inde-
pendent variables is the product of the expectations.
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Lemma 2.9. Suppose X and Y are independent random variables. If X and
Y are both positive, or if E|X | and E|Y | are both finite, then

EXY = EX × EY.

Proof. Viewing |XY | as a function g of Z =
(

X
Y

)

∼ PX × PY , by Fubini’s
theorem,

E|XY | =

∫

g d(PX × PY ) =

∫ (∫

|x||y| dPX(x)

)

dPY (y).

The inner integral is |y|E|X |, and the outer integral then gives E|X |×E|Y |, so
E|XY | = E|X | ×E|Y |. This proves the lemma if X and Y are both positive,
because then X = |X | and Y = |Y |. If E|X | < ∞ and E|Y | < ∞, then
E|XY | <∞, so the same steps omitting absolute values prove the lemma.

⊓⊔

By iteration, this lemma extends easily to products of several independent
variables.

Suppose T = Y1 + · · · + Yn, where Y1, . . . , Yn are independent random
vectors in Rs. Then by Proposition 1.19, the random variables eu·Y1 , . . . , eu·Yn

are independent, and

MT (u) = Eeu·T = E[eu·Y1 × · · · × eu·Yn ] = MY1(u) × · · · ×MYn(u).

Taking logarithms,

KT (u) = KY1(u) + · · · +KYn(u).

Derivatives at the origin give cumulants, and thus cumulants for the sum T
will equal the sum of the corresponding cumulants of Y1, . . . , Yn. This is a
well-known result for the mean and variance.

If X has density from a canonical exponential family (2.2), and if T =
T (X), then T has moment generating function

Eηe
u·T (X) =

∫

eu·T (x)eη·T (x)−A(η)h(x) dµ(x)

= eA(u+η)−A(η)

∫

e(u+η)·T (x)−A(u+η)h(x) dµ(x),

provided u+ η ∈ Ξ. The final integrand is pu+η, which integrates to one. So,
the moment generating function is eA(u+η)−A(η), and the cumulant generating
function is

KT (u) = A(u+ η) −A(η).

Taking derivatives, the cumulants for T are

κr1,...,rs =
∂r1

∂ηr11

· · · ∂
rs

∂ηr1s
A(η).



32 2 Exponential Families

Example 2.10. If X has the Poisson distribution with mean λ, then

P (X = x) =
λxe−λ

x!
=

1

x!
ex log λ−λ, x = 0, 1, . . . .

The mass functions for X form an exponential family, but the family is not in
canonical form. The canonical parameter here is η = log λ. The mass function
expressed using η is

P (X = x) =
1

x!
exp[ηx− eη], x = 0, 1, . . . ,

and so A(η) = eη. Taking derivatives, all of the cumulants of T = X are
eη = λ.

Example 2.11. The class of normal densities formed by varying µ with σ2 fixed
can be written as

pµ(x) = exp

[

µx

σ2
− µ2

2σ2

]

e−x
2/(2σ2)

√
2πσ2

.

These densities form an exponential family with T (x) = x, canonical pa-
rameter η = µ/σ2, and A(η) = σ2η2/2. The first two cumulants are
κ1 = A′(η) = σ2η = µ and κ2 = A′′(η) = σ2. Because A is quadratic, all
higher-order cumulants, κ3, κ4, . . . , are zero.

To calculate moments from cumulants when s = 1, repeatedly differentiate
the identity M = eK . This gives M ′ = K ′eK , M ′′ = (K ′′ + K ′2)eK , M ′′′ =

(K ′′′ + 3K ′K ′′ + K ′3)eK , and M ′′′′ = (K ′′′′ + 3K ′′2 + 4K ′K ′′′ + 6K ′2K ′′ +
K ′4)eK . At zero, these equations give

ET = κ1, ET 2 = κ2 + κ2
1, ET 3 = κ3 + 3κ1κ2 + κ3

1,

and
ET 4 = κ4 + 3κ2

2 + 4κ1κ3 + 6κ2
1κ2 + κ4

1.

For instance, if X ∼ Poisson(λ), EX = λ, EX2 = λ+λ2, EX3 = λ+3λ2+λ3,
and EX4 = λ+ 7λ2 + 6λ3 + λ4, and if X ∼ N(µ, σ2), EX3 = 3µσ2 + µ3 and
EX4 = 3σ4 + 6µ2σ2 + µ4.

The expressions above expressing moments as functions of cumulants can
be solved to express cumulants as functions of moments. The algebra is easier
if the variables are centered. Note that for c ∈ Rs,

MT+c(u) = Eeu·(T+c) = eu·cEeu·T = eu·cMT (u),

and soKT+c(u) = u·c+KT (u). Taking derivatives, it is clear that the constant
c only affects first-order cumulants. So with s = 1, if j ≥ 2, the jth cumulant
κj for T will be the same as the jth cumulant for T − ET . The equations
above then give
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κ3 = E(T − ET )3

and
E(T − ET )4 = κ4 + 3κ2

2,

and so
κ4 = E(T − ET )4 − 3Var2(T ).

In higher dimensions, the first-order cumulants are the means of T1, . . . , Ts,
and second-order cumulants are covariances between these variables. Formulas
for mixed cumulants in higher dimensions become quite complicated as the
order increases.

2.5 Problems1

*1. Consider independent Bernoulli trials with success probability p and let
X be the number of failures before the first success. Then P (X = x) =
p(1 − p)x, for x = 0, 1, . . . , and X has the geometric distribution with
parameter p, introduced in Problem 1.17.
a) Show that the geometric distributions form an exponential family.
b) Write the densities for the family in canonical form, identifying the

canonical parameter η, and the function A(η).
c) Find the mean of the geometric distribution using a differential iden-

tity.
d) SupposeX1, . . . , Xn are i.i.d. from a geometric distribution. Show that

the joint distributions form an exponential family, and find the mean
and variance of T .

*2. Determine the canonical parameter space Ξ, and find densities for the one-
parameter exponential family with µ Lebesgue measure on R2, h(x, y) =
exp
[

−(x2 + y2)/2
]

/(2π), and T (x, y) = xy.
3. Suppose that X1, . . . , Xn are independent random variables and that for
i = 1, . . . , n, Xi has a Poisson distribution with mean λi = exp(α +
βti), where t1, . . . , tn are observed constants and α and β are unknown
parameters. Show that the joint distributions for X1, . . . , Xn form a two-
parameter exponential family and identify the statistics T1 and T2.

*4. Find the natural parameter space Ξ and densities pη for a canonical one-
parameter exponential family with µ Lebesgue measure on R, T1(x) =
log x, and h(x) = (1 − x)2, x ∈ (0, 1), and h(x) = 0, x /∈ (0, 1).

*5. Find the natural parameter space Ξ and densities pη for a canonical one-
parameter exponential family with µ Lebesgue measure on R, T1(x) = −x,
and h(x) = e−2

√
x/
√
x, x > 0, and h(x) = 0, x ≤ 0. (Hint: After a change

of variables, relevant integrals will look like integrals against a normal
density. You should be able to express the answer using Φ, the standard
normal cumulative distribution function.) Also, determine the mean and
variance for a variable X with this density.

1 Solutions to the starred problems are given at the back of the book.
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*6. Find the natural parameter space Ξ and densities pη for a canonical
two-parameter exponential family with µ counting measure on {0, 1, 2},
T1(x) = x, T2(x) = x2, and h(x) = 1 for x ∈ {0, 1, 2}.

*7. Suppose X1, . . . , Xn are independent geometric variables with pi the suc-
cess probability for Xi. Suppose these success probabilities are related to a
sequence of “independent” variables t1, . . . , tn, viewed as known constants,
through

pi = 1 − exp(α+ βti), i = 1, . . . , n.

Show that the joint densities for X1, . . . , Xn form a two-parameter expo-
nential family, and identify the statistics T1 and T2.

*8. Assume that X1, . . . , Xn are independent random variables with Xi ∼
N(α + βti, 1), where t1, . . . , tn are observed constants and α and β are
unknown parameters. Show that the joint distributions for X1, . . . , Xn

form a two-parameter exponential family, and identify the statistics T1

and T2.
*9. Suppose that X1, . . . , Xn are independent Bernoulli variables (a random

variable is Bernoulli if it only takes on values 0 and 1) with

P (Xi = 1) =
exp(α + βti)

1 + exp(α+ βti)
.

Show that the joint distributions for X1, . . . , Xn form a two-parameter
exponential family, and identify the statistics T1 and T2.

10. Suppose a researcher is interested in how the variance of a response Y
depends on an independent variable x. Natural models might be those
in which Y1, . . . , Yn are independent mean zero normal variables with the
variance of Yi some function of a linear function of xi:

Var(Yi) = g(θ1 + θ2xi).

Suggest a form for the function g such that the joint distributions for the
Yi, as the parameters θ vary, form a two-parameter exponential family.

11. Find the natural parameter space Ξ and densities pη for a canonical one-
parameter exponential family with µ Lebesgue measure on R, T1(x) = x,
and h(x) = sinx, x ∈ (0, π), and h(x) = 0, x /∈ (0, π).

12. Truncation. Let {pθ : θ ∈ Ω} be an exponential family of densities with
respect to some measure µ, where

pθ(x) = h(x) exp

[

s
∑

i=1

ηi(θ)Ti(x) −B(θ)

]

.

In some situations, a potential observation X with density pθ can only be
observed if it happens to lie in some region S. For regularity, assume that

Λ(θ)
def
= Pθ(X ∈ S) > 0. In this case, the appropriate distribution for the

observed variable Y is given by
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Pθ(Y ∈ B) = Pθ(X ∈ B|X ∈ S), B ∈ B.

This distribution for Y is called the truncation of the distribution for X
to the set S.
a) Show that Y has a density with respect to µ, giving a formula for its

density qθ.
b) Show that the densities qθ, θ ∈ Ω, form an exponential family.

13.14. Find densities pη for a canonical one-parameter exponential family if µ is
counting measure on X0 = {−1, 0, 1}3, h is identically one, and T (x) is
the median of x1, x2, and x3.

*15. For an exponential family in canonical form, ETj = ∂A(η)/∂ηj . This can
be written in vector form as ET = ∇A(η). Derive an analogous differential
formula for EθT for an s-parameter exponential family that is not in
canonical form. Assume that Ω has dimension s. Hint: Differentiation
under the integral sign should give a system of linear equations. Write
these equations in matrix form.

16. Find the natural parameter space Ξ and densities pη for a canonical
one-parameter exponential family with µ counting measure on {1, 2, . . .},
h(x) = x2, and T (x) = −x. Also, determine the mean and variance for a
random variable X with this density. Hint: Consider what Theorem 2.4
has to say about derivatives of

∑∞
x=1 e

−ηx.
*17. Let µ denote counting measure on {1, 2, . . .}. One common definition for

∑∞
k=1 f(k) is limn→∞

∑n
k=1 f(k), and another definition is

∫

f dµ.
a) Use the dominated convergence theorem to show that the two defini-

tions give the same answer when
∫

|f | dµ < ∞. Hint: Find functions
fn, n = 1, 2, . . . , so that

∑n
k=1 f(k) =

∫

fn dµ.
b) Use the monotone convergence theorem, given in Problem 1.25, to

show the definitions agree if f(k) ≥ 0 for all k = 1, 2, . . . .
c) Suppose limn→∞ f(n) = 0 and that

∫

f+ dµ =
∫

f− dµ = ∞ (so that
∫

f dµ is undefined). Let K be an arbitrary constant. Show that the
list f(1), f(2), . . . can be rearranged to form a new list g(1), g(2), . . .
so that

lim
n→∞

n
∑

k=1

g(k) = K.

18. Let λ be Lebesgue measure on (0,∞). The “Riemann” definition of
∫∞
0
f(x) dx for a continuous function f is

lim
c→∞

∫ c

0

f(x) dx,

when the limit exists. Another definition is
∫

f dλ. Use the dominated con-
vergence theorem to show that these definitions agree when f is integrable,
∫

|f | dλ < ∞. Hint: Let cn be a sequence of constants with cn → ∞, and
find functions fn such that

∫

fn(x) dx =
∫ cn

0
f(x) dx.
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*19. Let pn, n = 1, 2, . . . , and p be probability densities with respect to a mea-
sure µ, and let Pn, n = 1, 2, . . . , and P be the corresponding probability
measures.
a) Show that if pn(x) → p(x) as n → ∞, then

∫

|pn − p| dµ → 0. Hint:
First use the fact that

∫

(pn − p) dµ = 0 to argue that
∫

|pn − p| dµ =
2
∫

(p− pn)
+ dµ. Then use dominated convergence.

b) Show that |Pn(A) − P (A)| ≤
∫

|pn − p| dµ. Hint: Use indicators and
the bound |

∫

f dµ| ≤
∫

|f | dµ.
Remark: Distributions Pn, n ≥ 1, are said to converge strongly to P
if supA |Pn(A) − P (A)| → 0. The two parts above show that pointwise
convergence of pn to p implies strong convergence. This was discovered by
Scheffé.

20. Let h be a bounded differentiable function on [0,∞), vanishing at zero,
h(0) = 0.
a) Show that

∫ ∞

0

|h(1/x2)| dx <∞.

Hint: Because h is differentiable at 0, h(x)/x → h′(0) as x ↓ 0, and
|h(x)| ≤ cx for x sufficiently small.

b) If Z has a standard normal distribution, Z ∼ N(0, 1), find

lim
n→∞

nEh
(

1/(n2Z2)
)

.

Hint: Be careful with your argument: the answer should not be zero.
21. Let µ be counting measure on {1, 2, . . .}, and let fn = cn1{n}, n = 1, 2, . . . ,

for some constants c1, c2, . . . .
a) Find f(x) = limn→∞ fn(x) for x = 1, 2, . . . .
b) Show that these functions fn can be dominated by an integrable func-

tion; that is, there exists g with
∫

g dµ <∞ and |fn| ≤ g, n = 1, 2, . . . ,
if and only if

∞
∑

n=1

|cn| <∞.

c) Find constants c1, c2, . . . that provide an example of functions fn that
cannot be dominated by an integrable function, so the assumption of
the dominated convergence theorem fails, but

∫

fn dµ→
∫

f dµ.
*22. Suppose X is absolutely continuous with density

pθ(x) =











e−(x−θ)2/2
√

2πΦ(θ)
, x > 0;

0, otherwise.

Find the moment generating function of X . Compute the mean and vari-
ance of X .
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*23. Suppose Z ∼ N(0, 1). Find the first four cumulants of Z2. Hint: Consider
the exponential family N(0, σ2).

*24. Find the first four cumulants of T = XY when X and Y are independent
standard normal variates.

*25. Find the third and fourth cumulants of the geometric distribution.
*26. Find the third cumulant and third moment of the binomial distribution

with n trials and success probability p.
*27. Let T be a random vector in R2.

a) Express κ2,1 as a function of the moments of T .
b) Assume ET1 = ET2 = 0 and give an expression for κ2,2 in terms of

moments of T .
*28. Suppose X ∼ Γ (α, 1/λ), with density

λαxα−1e−λx

Γ (α)
, x > 0.

Find the cumulants of T = (X, logX) of order 3 or less. The answer will
involve ψ(α) = d logΓ (α)/dα = Γ ′(α)/Γ (α).

29. Let X1, . . . , Xn be independent random variables, and let αi and ti, i =
1, . . . , n, be known constants. Suppose Xi ∼ Γ (αi, 1/λi) with λi = θ1 +
θ2ti, i = 1, . . . , n, where θ1 and θ2 are unknown parameters. Show that the
joint distributions form a two-parameter exponential family. Identify the
statistic T and give its mean and covariance matrix. (Similar models arise
in “parameter design” experiments used to study the effects of various
factors on process variation.)

30. In independent Bernoulli trials with success probability p, the variable
X counting the number of failures before the mth success has a negative
binomial distribution with mass function

P (X = x) =

(

m+ x− 1

m− 1

)

pm(1 − p)x, x = 0, 1, . . . .

Find the moment generating function of X , along with the first three
moments and first three cumulants of X .

31. An estimator θ̂ is called unbiased for a parameter θ if Eθ̂ = θ. If
X1, . . . , Xn are i.i.d., then the sample moment

α̂r =
1

n

n
∑

i=1

Xr
i

is an unbiased estimator of αr = EXr
i . Unbiased estimators for cumulants

are called K-statistics. They are a bit harder to identify than unbiased es-
timators for moments, because cumulants depend on powers of moments.
For example, κ2 = α2 − α2

1.

a) One natural estimator for α2
1 is X

2
= α̂2

1. Find the expected value of
this estimator. When is it biased?
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b) Show that
(

n

2

)−1
∑

1≤i<j≤n
XiXj

is unbiased for α2
1. Give a formula relating this estimator to sample

moments α̂1 and α̂2.
c) Give an unbiased estimator for κ2 = Var(Xi) based on sample mo-

ments α̂1 and α̂2.
d) Find the expected value of α̂3

1, showing that it is usually biased for
α3

1. Relate the unbiased estimator

(

n

3

)−1
∑

1≤i<j<k≤n
XiXjXk

to sample moments.
e) Find an unbiased estimator for κ3 based on the first three sample

moments, α̂1, α̂2, and α̂3.
32. By Taylor expansion, for θ ∈ (0, 1),

− log(1 − θ) =

∞
∑

x=1

θx

x
.

From this, for θ ∈ (0, 1),

pθ(x) =
θx

−x log(1 − θ)
, x = 1, 2, . . . ,

is the mass function for a probability distribution, called the log series
distribution. Let X be a discrete random variable with this distribution.
Find the mean and variance of X .

33. A discrete random variable X on {0, 1, . . .} has a power series distribution
if its mass function has form

P (X = x) =
a(x)θx

C(θ)
, x = 0, 1, 2, . . . .

Derive formulas for the mean and variance of this distribution involving
derivatives of C.
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Risk, Sufficiency, Completeness, and

Ancillarity

The initial section of this chapter develops a basic framework for inference.
Later sections concern the notion of sufficiency that arises when data can be
summarized without any loss of information.

3.1 Models, Estimators, and Risk Functions

Inferential statistics can be viewed as the science or art of learning about an
unknown parameter θ from dataX . For most applications,X will be a random
vector. The parameter θ may be a single constant, but more commonly takes
values in some subset of Rp. The parameter θ and data X are related through
a model in which the distribution of X is determined by θ. The distribution
when the parameter is θ is denoted Pθ, and we write

X ∼ Pθ.

Formally, a model should be a mapping θ  Pθ, but more commonly, a model
is written as the set of distributions for X , P = {Pθ : θ ∈ Ω}, where the
parameter space Ω is the set of all possible values for θ.

A statistic is a function of the data X and can be viewed as providing par-
tial information about the data when the function is many-to-one. A typical
example, when X is a random vector in Rn, would be the sample average

δ(X) = X =
X1 + · · · +Xn

n
.

In a broad sense there are two major categories for inference: estimation
and hypothesis testing. For now we focus on estimation, in which the goal
is to find statistic δ so that δ(X) is close to g(θ). Then δ or δ(X) is called
an estimator of g(θ). The case g(θ) = θ is allowed, and, when θ is a vector,
g(θ) = θk may be a fairly typical situation of interest. Hypothesis testing is
introduced and studied in Chapter 12.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
DOI 10.1007/978-0-387-93839-4_3, © Springer Science+Business Media, LLC 2010 
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Fig. 3.1. Binomial risk function: R(θ, δ).

Example 3.1. For a coin toss, the chance of heads is very close to 1/2. Suppose
instead we stand a coin on its edge, balancing it with a finger on top, and
spin it by flicking it with a different finger. If this is done 100 times, with the
trials independent and a common chance θ of heads on each spin, then the
total number of heads X should have a binomial distribution. Thus

X ∼ Binomial(100, θ).

Viewing X as our data and taking

Pθ = Binomial(100, θ), θ ∈ [0, 1] = Ω,

our model P = {Pθ : θ ∈ Ω} is the set of binomial distributions with 100
trials.

In this example, a natural estimator of θ is δ(X) = X/100, the proportion
of heads in 100 spins. In the sequel we study the performance of estimators,
trying to decide when an estimator, such as δ here, is good or optimal in
some sense. An adequate answer to these questions must involve criteria that
judge the performance of estimators. One standard approach to making such
judgments is called decision theory. For estimation, this approach begins with
a loss function L chosen so that L(θ, d) is the loss associated with estimating
g(θ) by a value d. It is natural to assume L

(

θ, g(θ)
)

= 0, so that there is no
loss for the correct answer, and L(θ, d) ≥ 0, for all θ and d. Because X is
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Fig. 3.2. Risks for δ0, δ1, and δ2.

random, L
(

θ, δ(X)
)

is random and can be large if we are unlucky, even if δ
is an excellent estimator. Accordingly, an estimator δ is judged by its average
loss or risk function R, defined as

R(θ, δ) = EθL
(

θ, δ(X)
)

.

Here Eθ denotes expectation when X ∼ Pθ.
Example 3.1, continued. Suppose X ∼ Binomial(100, θ), δ(X) = X/100,

g(θ) = θ, and the loss function is given by L(θ, d) = (θ − d)2, called squared
error loss. Then the risk function for δ is

R(θ, δ) = Eθ(θ −X/100)2 =
θ(1 − θ)

100
, θ ∈ [0, 1].

A plot of this risk function is given in Figure 3.1.
A fundamental problem arises when one compares estimators using risk

functions: if the risk functions for two estimators cross, there is no clear deci-
sion which estimator is best. For instance, in our binomial example, if δ0(X) is
the original estimatorX/100, δ1(X) = (X+3)/100, and δ2(X) = (X+3)/106,
then R(θ, δ0) = θ(1 − θ)/100, R(θ, δ1) =

(

9 + 100θ(1 − θ)
)

/1002, and
R(θ, δ2) = (9 − 8θ)(1 + 8θ)/1062. These functions are plotted together in
Figure 3.2. Looking at the graph, δ0 and δ2 are both better than δ1, but the
comparison between δ0 and δ2 is ambiguous. When θ is near 1/2, δ2 is the
preferable estimator, but if θ is near 0 or 1, δ0 is preferable. If θ were known,
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we could choose between δ0 and δ2. However, if θ were known, there would be
no need to estimate its value.

3.2 Sufficient Statistics

Suppose X and Y are independent with common Lebesgue density

fθ(x) =

{

θe−θx, x ≥ 0;

0, x < 0,

and let U be independent of X and Y and uniformly distributed on (0, 1).
Take T = X + Y , and define

X̃ = UT and Ỹ = (1 − U)T.

Let us find the joint density of X̃ and Ỹ . The density of T is needed, and this
can be found by smoothing. Because X and Y are independent,1

P (T ≤ t|Y = y) = P (X + Y ≤ t|Y = y)

= E[I{X + Y ≤ t}|Y = y]

=

∫

I{x+ y ≤ t}dPX(x)

= FX(t− y).

So P (T ≤ t|Y ) = FX(t− Y ) and

FT (t) = P (T ≤ t) = EFX(t− Y ).

This formula holds generally. Specializing to our specific problem, FX(t− Y )
is 1 − e−θ(t−Y ) on Y < t and is zero on Y ≥ t. Writing the expected value of
this variable as an integral against the density of Y , for t ≥ 0,

FT (t) =

∫ t

0

(

1 − e−θ(t−y)
)

θe−θy dy = 1 − e−θt − tθe−θt.

Taking derivatives, T has density

pT (t) = F ′T (t) = tθ2e−θt, t ≥ 0,

with pT (t) = 0 for t < 0. Because T and U are independent, they have joint
density

pθ(t, u) =

{

tθ2e−θt, t ≥ 0, u ∈ (0, 1);

0, otherwise.

1 The distribution of T naturally depends on θ, but for convenience this dependence
is suppressed in the notation here.
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From this,

P

(

(

X̃

Ỹ

)

∈ B

)

=

∫∫

1B
(

tu, t(1 − u)
)

pθ(t, u) du dt.

Changing variables to x = ut, du = dx/t in the inner integral, and reversing
the order of integration using Fubini’s theorem,

P

(

(

X̃

Ỹ

)

∈ B

)

=

∫∫

1B(x, t− x)t−1pθ(t, x/t) dt dx.

Now a change of variables to y = t− x in the inner integral gives

P

(

(

X̃

Ỹ

)

∈ B

)

=

∫∫

1B(x, y)(x + y)−1pθ

(

x+ y,
x

x+ y

)

dy dx.

Thus X̃ and Ỹ have joint density

pθ

(

x+ y, x
x+y

)

x+ y
=

{

θ2e−θ(x+y), x ≥ 0, y ≥ 0;

0, otherwise.

This density is the same as the joint density of X and Y , and so this calcu-
lation shows that the joint distribution of X̃ and Ỹ is the same as the joint
distribution of X and Y . Considered as data that provide information about
θ, the pair (X̃, Ỹ ) should be just as informative as (X,Y ). But (X̃, Ỹ ) can be
computed from T = X + Y and U . Because the distribution of U does not
depend on θ, it could be generated numerically on a computer or obtained
from a table of random numbers. Thus T by itself also provides as much in-
formation about θ as the pair (X,Y ) because we could construct fake data
(X̃, Ỹ ) equivalent to (X,Y ) using any convenient variable U that is uniformly
distributed on (0, 1). The sum T = X + Y is called a sufficient statistic. This
construction of fake data works because the conditional distribution Qt for X
and Y given T = t, given explicitly by2

Qt(B) = Pθ

[(

X

Y

)

∈ B

∣

∣

∣

∣

T = t

]

= P

[(

Ut

(1 − U)t

)

∈ B

]

,

does not depend on θ. This motivates the following definition in a general
setting.

Definition 3.2. Suppose X has distribution from a family P = {Pθ : θ ∈ Ω}.
Then T = T (X) is a sufficient statistic for P (or for X, or for θ) if for every t
and θ, the conditional distribution of X under Pθ given T = t does not depend
on θ.

2 See Chapter 6 for a proper treatment of conditional distributions.
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Suppose T is sufficient, and let

Qt(B) = Pθ(X ∈ B|T = t).

Then Pθ(X ∈ B|T ) = QT (B) and, by smoothing,

Pθ(X ∈ B) = EθPθ(X ∈ B|T ) = EθQT (B).

Suppose we use a random number generator to construct “fake” data X̃ from
T taking X̃ ∼ Qt when T = t. Then

X̃ |T = t ∼ Qt

and by smoothing

Pθ(X̃ ∈ B) = EθPθ(X̃ ∈ B|T ) = EθQT (B). (3.1)

So X and X̃ have the same distribution.

Theorem 3.3. Suppose X has distribution from a family P = {Pθ : θ ∈ Ω}
and that T = T (X) is sufficient. Then for any estimator δ(X) of g(θ) there
exists a randomized estimator based on T that has the same risk function as
δ(X).

Proof. A randomized estimator is one that can be constructed from T with
auxiliary random number generation. Inasmuch as X̃ can be constructed from
T by random number generation, δ(X̃) is a randomized estimator, and its
risk is the same as the risk of δ(X) because X and X̃ both have the same
distribution Pθ. ⊓⊔

A similar notion of sufficiency, due to Blackwell (1951), can be used to
compare experiments. It is natural here to identify an experiment with the
model that gives distributions for data from the experiment. Let P̃ = {P̃θ :
θ ∈ Ω} and P = {Pθ : θ ∈ Ω} be models for two experiments. As before, the
notion is that P̃ is sufficient if fake data can be created using an observation
from P̃ and external randomization, with the distributions for the fake data,
as θ varies, the same as distributions for real data from the other experiment.

Definition 3.4. Model P̃ is sufficient for P if there is a stochastic transition
kernel Q such that

Pθ(B) =

∫

Qt(B) dP̃θ(t)

for every Borel set B and all θ ∈ Ω.

The argument that this supports randomization to construct fake data
is the same as (3.1). Suppose P̃ is sufficient for P , and let T ∼ P̃θ be data
from the sufficient experiment. When T = t, the fake data X̃ is obtained by
sampling from Qt, so that
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P (X̃ ∈ B|T = t) = Qt(B).

Then, by smoothing,

P (X̃ ∈ B) = EP (X̃ ∈ B|T ) = EQT (B) =

∫

Qt(B) dP̃θ(t) = Pθ(B).

This shows that X̃ ∼ Pθ, so the distributions for X̃, as desired, are the same
as distributions for real data from the other experiment P , regardless of the
value of θ ∈ Ω.

3.3 Factorization Theorem

From the definition of sufficiency in the last section it is easy to understand
the sense in which a sufficient statistic T (X) conveys all of the information
about θ from data X , at least when the model is correct. But the definition is
less useful for finding a sufficient statistic, or trying to determine whether a
specific statistic is sufficient. When distributions in the family are specified by
densities, sufficiency can be checked using the factorization theorem simply
by looking at the form of the densities.

Definition 3.5. A family of distributions P = {Pθ : θ ∈ Ω} is dominated if
there exists a measure µ with Pθ absolutely continuous with respect to µ, for
all θ ∈ Ω.

Theorem 3.6 (Factorization Theorem). Let P = {Pθ : θ ∈ Ω} be a
family of distributions dominated by µ. A necessary and sufficient condition
for a statistic T to be sufficient is that there exist functions gθ ≥ 0 and h ≥ 0
such that the densities pθ for the family satisfy

pθ(x) = gθ
(

T (x)
)

h(x), for a.e. x under µ.

A proof of this result is given in Section 6.4. It depends in part on a proper
definition of conditional distributions.

Example 3.7. Suppose X1, . . . , Xn are i.i.d. absolutely continuous variables
with common marginal density

fθ(x) =

{

(θ + 1)xθ, x ∈ (0, 1);

0, otherwise,

for θ > −1. Then their joint density pθ is

pθ(x) =

n
∏

i=1

fθ(xi) =

n
∏

i=1

(θ + 1)xθi = (θ + 1)n
( n
∏

i=1

xi

)θ

, x ∈ (0, 1)n,

with pθ(x) = 0 if x /∈ (0, 1)n. Taking gθ(t) = (θ + 1)ntθ and h = 1(0,1)n , from
the factorization theorem, T =

∏n
i=1Xi is sufficient.
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When {x : pθ(x) > 0} depends on θ, care is needed to ensure that formulas
for pθ used in the factorization theorem work for all x. To accomplish this,
indicator functions are often used.

Example 3.8. Suppose X1, . . . , Xn are a random sample from the uniform dis-
tribution on (θ, θ + 1). Then the common marginal density is

fθ(x) =

{

1, x ∈ (θ, θ + 1);

0, otherwise.

So fθ = 1(θ,θ+1). The joint density is

pθ(x) =

n
∏

i=1

1(θ,θ+1)(xi),

which equals one if and only if maxi xi < θ + 1 and mini xi > θ. So

pθ(x) = 1(θ,∞)(min
i
xi)1(−∞,θ+1)(max

i
xi).

By the factorization theorem, T = (miniXi,maxiXi) is sufficient.

3.4 Minimal Sufficiency

If T is sufficient for a family of distributions P , and if T = f(T̃ ), then T̃ is also
sufficient. This follows easily from the factorization theorem when the family
is dominated. This suggests the following definition.

Definition 3.9. A statistic T is minimal sufficient if T is sufficient, and for
every sufficient statistic T̃ there exists a function f such that T = f(T̃ ) (a.e.
P). Here (a.e. P) means that the set where equality fails is a null set for every
P ∈ P.

Example 3.10. If X1, . . . , X2n are i.i.d. from N(θ, 1), θ ∈ R, then

T̃ =

(
∑n

i=1Xi
∑2n

i=n+1Xi

)

is sufficient but not minimal. It can be shown that T =
∑2n
i=1Xi is minimal

sufficient here,3 and T = f(T̃ ) if we take f(t) = t1 + t2.

If P is a dominated family, then the density pθ(X), viewed as a function
of θ, is called the likelihood function. By the factorization theorem, any suf-
ficient statistic must provide enough information to graph the shape of the
likelihood, where two functions are defined to have the same shape if they
are proportional. The next result shows that a statistic is minimal sufficient if
there is a one-to-one relation between the statistic and the likelihood shape.

3 This follows from Example 3.12 below.
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Theorem 3.11. Suppose P = {Pθ : θ ∈ Ω} is a dominated family with den-
sities pθ(x) = gθ

(

T (x)
)

h(x). If pθ(x) ∝θ pθ(y) implies T (x) = T (y), then T
is minimal sufficient.4

Proof. A proper proof of this result unfortunately involves measure-theoretic
niceties, but here is the basic idea. Suppose T̃ is sufficient. Then pθ(x) =
g̃θ
(

T̃ (x)
)

h̃(x) (a.e. µ). Assume this equation holds for all x. If T is not a

function of T̃ , then there must be two data sets x and y that give the same
value for T̃ , T̃ (x) = T̃ (y), but different values for T , T (x) 6= T (y). But then

pθ(x) = g̃θ
(

T̃ (x)
)

h̃(x) ∝θ g̃θ
(

T̃ (y)
)

h̃(y) = pθ(y),

and from the condition on T in the theorem, T (x) must equal T (y). Thus T is
a function of T̃ . Because T̃ was an arbitrary sufficient statistic, T is minimal.

⊓⊔

Although a proper development takes more work, this result in essence
says that the shape of the likelihood is minimal sufficient, and so a minimal
sufficient “statistic” exists for dominated families.5 When this result is used, if
the implication only fails on a null set (for the family), T will still be minimal
sufficient. In particular, if the implication holds unless pθ(x) and pθ(y) are
identically zero as θ varies, then T will be minimal sufficient.

Example 3.12. Suppose P is an s-parameter exponential family with densities

pθ(x) = eη(θ)·T (x)−B(θ)h(x),

for θ ∈ Ω. By the factorization theorem, T is sufficient. Suppose pθ(x) ∝θ
pθ(y). Then

eη(θ)·T (x) ∝θ eη(θ)·T (y),

which implies that
η(θ) · T (x) = η(θ) · T (y) + c,

where the constant c may depend on x and y, but is independent of θ. If θ0
and θ1 are any two points in Ω,

[

η(θ0) − η(θ1)
]

· T (x) =
[

η(θ0) − η(θ1)
]

· T (y)

and

4 The notation “∝θ” here means that the two expressions are proportional when
viewed as functions of θ. So pθ(x) ∝θ pθ(y) here would mean that there is a
“proportionality constant” c that may depend on x and y, so c = c(x, y), such
that pθ(x) = c(x, y)pθ(y), for all θ ∈ Ω.

5 At a technical level this may fail without a bit of regularity. Minimal sufficient
σ-fields must exist in this setting, but there may be no minimal sufficient statistic
if P is not separable (under total variation norm). For discussion and counterex-
amples, see Bahadur (1954) and Landers and Rogge (1972).



48 3 Risk, Sufficiency, Completeness, and Ancillarity

[

η(θ0) − η(θ1)
]

·
[

T (x) − T (y)
]

= 0.

This shows that T (x) − T (y) is orthogonal to every vector in

η(Ω) ⊖ η(Ω)
def
= {η(θ0) − η(θ1) : θ0 ∈ Ω, θ1 ∈ Ω},

and so it must lie in the orthogonal complement of the linear span6 of η(Ω)⊖
η(Ω). In particular, if the linear span of η(Ω) ⊖ η(Ω) is all of Rs, then T (x)
must equal T (y). So, in this case, T will be minimal sufficient.

Example 3.13. Suppose X1, . . . , Xn are i.i.d. absolutely continuous variables
with common marginal density

fθ(x) =
1

2
e−|x−θ|.

Then the joint density is

pθ(x) =
1

2n
exp

{

−
n
∑

i=1

|xi − θ|
}

.

The variables X(1) ≤ X(2) ≤ · · · ≤ X(n) found by listing X1, . . . , Xn in in-
creasing order are called the order statistics. By the factorization theorem,
T = (X(1), . . . , X(n))

′, is sufficient. Suppose pθ(x) ∝θ pθ(y). Then the differ-
ence between

∑n
i=1 |xi − θ| and

∑n
i=1 |yi − θ| is constant in θ. Both of these

functions are piecewise linear functions of θ with a slope that increases by two
at each order statistic. The difference can only be constant in θ if x and y
have the same order statistics. Thus the order statistics are minimal sufficient
for this family of distributions.

3.5 Completeness

Completeness is a technical condition that strengthens sufficiency in a useful
fashion.

Definition 3.14. A statistic T is complete for a family P = {Pθ : θ ∈ Ω} if

Eθf(T ) = c, for all θ,

implies f(T ) = c (a.e. P).

Remark 3.15. Replacing f by f − c, the constant c in this definition could be
taken to be zero.

6 See Appendix A.3 for a review of vector spaces and the geometry of Rn.
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Example 3.16. Suppose X1, . . . , Xn are i.i.d. from a uniform distribution on
(0, θ). Using indicator functions, the joint density is I{minxi > 0}I{maxxi <
θ}/θn, and so T = max{X1, . . . , Xn} is sufficient by the factorization theorem
(Theorem 3.6). By independence, for t ∈ (0, θ),

Pθ(T ≤ t) = Pθ(X1 ≤ t, . . . , Xn ≤ t)

= Pθ(X1 ≤ t) × · · · × Pθ(Xn ≤ t) = (t/θ)n.

Differentiating this expression, T has density ntn−1/θn, t ∈ (0, θ). Suppose
Eθf(T ) = c for all θ > 0; then

Eθ
[

f(T ) − c
]

=
n

θn

∫ θ

0

[

f(t) − c
]

tn−1 dt = 0.

From this (using fact 4 about integration in Section 1.4)
[

f(t) − c
]

tn−1 = 0
for a.e. t > 0. So f(T ) = c (a.e. P), and T is complete.

Theorem 3.17. If T is complete and sufficient, then T is minimal sufficient.

Proof. Let T̃ be a minimal sufficient statistic, and assume T and T̃ are both
bounded random variables. Then T̃ = f(T ). Define g(T̃ ) = Eθ[T |T̃ ], noting
that this function is independent of θ because T̃ is sufficient. By smoothing,
Eθg(T̃ ) = EθT , and so Eθ

[

T−g(T̃ )
]

= 0, for all θ. But T−g(T̃ ) = T−g
(

f(T )
)

,

a function of T , and so by completeness, T = g(T̃ ) (a.e. P). This establishes
a one-to-one relationship between T and T̃ . From the definition of minimal
sufficiency, T must also be minimal sufficient.

For the general case, first note that sufficiency and completeness are both
preserved by one-to-one transformations, so two statistics can be considered
equivalent if they are related by a one-to-one (bimeasurable) function. But
there are one-to-one bimeasurable functions from Rn to R, and so any ran-
dom vector is equivalent to a single random variable.7 Using this, if T and
T̃ are random vectors, the result follows easily from the one-dimensional case
transforming both of them to equivalent random variables. ⊓⊔
Definition 3.18. An exponential family with densities pθ(x) = exp

{

η(θ) ·
T (x) − B(θ)

}

h(x), θ ∈ Ω, is said to be of full rank if the interior of η(Ω)
is not empty and if T1, . . . , Ts do not satisfy a linear constraint of the form
v · T = c (a.e. µ).

If Ω ⊂ Rs and η is continuous and one-to-one (injective), and the interior
of Ω is nonempty, then the interior of η(Ω) cannot be empty. This follows
from the “invariance of domain” theorem of Brouwer (1912).

If the interior of η(Ω) is not empty, then the linear span of η(Ω) ⊖ η(Ω)
will be all of Rs, and, by Example 3.12, T will be minimal sufficient. The
following result shows that in this case T is also complete.

7 For instance, the function g : R2 → R that alternates the decimal digits of its
arguments, and thus, for instance, g(12.34 . . . , 567.89 . . .) = 506172.8394 . . . , is
one-to-one and bimeasurable.
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Theorem 3.19. In an exponential family of full rank, T is complete.

Definition 3.20. A statistic V is called ancillary if its distribution does not
depend on θ. So, V by itself provides no information about θ.

An ancillary statistic V , by itself, provides no useful information about θ.
But in some situations V can be a function of a minimal sufficient statistic T .
For instance, in Example 3.13 differences X(i) −X(j) between order statistics
are ancillary. But they are functions of the minimal sufficient T and are rele-
vant to inference. The following result of Basu shows that when T is complete
it will contain no ancillary information. See Basu (1955, 1958) or Lehmann
(1981) for further discussion.

Theorem 3.21 (Basu). If T is complete and sufficient for P = {Pθ : θ ∈
Ω}, and if V is ancillary, then T and V are independent under Pθ for any
θ ∈ Ω.

Proof. Define qA(t) = Pθ(V ∈ A|T = t), so that qA(T ) = Pθ(V ∈ A|T ), and
define pA = Pθ(V ∈ A). By sufficiency and ancillarity, neither pA nor qA(t)
depend on θ. Also, by smoothing,

pA = Pθ(V ∈ A) = EθPθ(V ∈ A|T ) = EθqA(T ),

and so, by completeness, qA(T ) = pA (a.e. P). By smoothing,

Pθ(T ∈ B, V ∈ A) = Eθ1B(T )1A(V )

= EθEθ
(

1B(T )1A(V )
∣

∣ T
)

= Eθ1B(T )Eθ
(

1A(V )
∣

∣ T
)

= Eθ1B(T )qA(T )

= Eθ1B(T )pA

= Pθ(T ∈ B)Pθ(V ∈ A).

Here A and B are arbitrary Borel sets, and so T and V are independent. ⊓⊔

Example 3.22. Suppose X1, . . . , Xn are i.i.d. from N(µ, σ2), and take P =
Pσ = {N(µ, σ2)n : µ ∈ R}. (Thus Pσ is the family of all normal distributions
with standard deviation the fixed value σ.) With x = (x1 + · · · + xn)/n, the
joint density can be written as

1

(2πσ2)n/2
exp

[

nµ

σ2
x− nµ2

2σ2
− 1

2σ2

n
∑

i=1

x2
i

]

.

These densities for Pσ form a full rank exponential family, and so the average
X = (X1 + · · · +Xn)/n is a complete sufficient statistic for Pσ. Define

S2 =
1

n− 1

n
∑

i=1

(Xi −X)2,
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called the sample variance. For the family Pσ, S2 is ancillary. To see this, let
Yi = Xi − µ, i = 1, . . . , n. Because

Pµ(Yi ≤ y) = Pµ(Xi ≤ y + µ) =

∫ y+µ

−∞
exp

[

− 1

2σ2
(x− µ)2

]

dx√
2πσ2

=

∫ y

−∞
exp

[

− 1

2σ2
u2

]

du√
2πσ2

,

and the integrand is the density for N(0, σ2), Yi ∼ N(0, σ2). Then Y1, . . . , Yn
are i.i.d. from N(0, σ2). Because Y = (Y1 + · · · + Yn)/n = X − µ, Xi −X =
Yi − Y , i = 1, . . . , n, and

S2 =
1

n− 1

n
∑

i=1

(Yi − Y )2.

Because the joint distribution of Y1, . . . , Yn depends on σ but not µ, S2 is
ancillary for Pσ. Hence, by Basu’s theorem, X and S2 are independent.8

3.6 Convex Loss and the Rao–Blackwell Theorem

Definition 3.23. A real-valued function f on a convex set C in Rp is called
convex if, for any x 6= y in C and any γ ∈ (0, 1),

f
[

γx+ (1 − γ)y
]

≤ γf(x) + (1 − γ)f(y). (3.2)

The function f is strictly convex if (3.2) holds with strict inequality.

Geometrically, f is strictly convex if the graph of f for values between
x and y lies below the chord joining

(

x, f(x)
)

and
(

y, f(y)
)

, illustrated in
Figure 3.3. If p = 1 and f ′′ exists and is nonnegative on C, the f is convex.
The next result is the supporting hyperplane theorem in one dimension.

Theorem 3.24. If f is a convex function on an open interval C, and if t is
an arbitrary point in C, then there exists a constant c = ct such that

f(t) + c(x− t) ≤ f(x), ∀x ∈ C.

If f is strictly convex, then f(t) + c(x− t) < f(x) for all x ∈ C, x 6= t.

The left-hand side of this inequality is a line through
(

t, f(t)
)

. So, this
result says that we can always find a line below the graph of f touching the
graph of f at t. This is illustrated in Figure 3.4.

8 The independence established here plays an important role when distribution
theory for this example is considered in more detail in Section 4.3. Independence
can also be established using spherical symmetry of the multivariate normal dis-
tribution, an approach developed in a more general setting in Chapter 14.
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f

x γx+ (1 − γ)y y

f
`

γx+ (1 − γ)y
´

γf(x) + (1 − γ)f(y)

Fig. 3.3. A convex function.

Theorem 3.25 (Jensen’s Inequality). If C is an open interval, f is a con-
vex function on C, P (X ∈ C) = 1, and EX is finite, then

f(EX) ≤ Ef(X).

If f is strictly convex, the inequality is strict unless X is almost surely con-
stant.

Proof. By Theorem 3.24 with t = EX , for some constant c,

f(EX) + c(x− EX) ≤ f(x), ∀x ∈ C,
and so

f(EX) + c(X − EX) ≤ f(X), (a.e. P ).

The first assertion of the theorem follows taking expectations. If f is strictly
convex this bound will be strict on X 6= EX . The second assertion of the
theorem then follows using fact 2 from Section 1.4. ⊓⊔
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t

f(t)

f

Fig. 3.4. Convex function with support line.

Remark 3.26. Jensen’s inequality also holds in higher dimensions, with X a
random vector.

Example 3.27. The functions 1/x and − logx are strictly convex on (0,∞). If
X > 0, then 1/EX ≤ E[1/X ] and logEX ≥ E log(X). These inequalities are
strict unless X is constant.

If δ(X) is an estimator of g(θ), then the risk of δ for a loss function L(θ, d)
is R(δ, θ) = EθL

(

θ, δ(X)
)

. Suppose T is a sufficient statistic. By Theorem 3.3
there is a randomized estimator based on T with the same risk as δ. The
following result shows that for convex loss functions there is generally a non-
randomized estimator based on T that has smaller risk than δ.

Theorem 3.28 (Rao–Blackwell). Let T be a sufficient statistic for P =
{Pθ : θ ∈ Ω}, let δ be an estimator of g(θ), and define η(T ) = E[δ(X)|T ]. If
θ ∈ Ω, R(θ, δ) <∞, and L(θ, ·) is convex, then

R(θ, η) ≤ R(θ, δ).

Furthermore, if L(θ, ·) is strictly convex, the inequality will be strict unless
δ(X) = η(T ) (a.e. Pθ).
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Proof. Jensen’s inequality with expectations against the conditional distribu-
tion of δ(X) given T gives

L
(

θ, η(T )
)

≤ Eθ
[

L
(

θ, δ(X)
) ∣

∣ T
]

.

Taking expectations, R(θ, η) ≤ R(θ, δ). The assertion about strict inequality
follows after a bit of work from the second assertion in Jensen’s inequality. ⊓⊔

This result shows that with convex loss functions the only estimators worth
considering, at least if estimators are judged solely by their risk, are functions
of T but not X . It can also be used to show that any randomized estimator is
worse than a corresponding nonrandomized estimator. Using the probability
integral transformation,9 any randomized estimator can be viewed as a func-
tion of X and U , where X and U are independent and the distribution of U
does not depend on θ. But if X and U are both considered as data, then X
is sufficient, and with convex loss the risk of a randomized estimator δ(X,U)
will be worse than the risk of the estimator E

(

δ(X,U)
∣

∣ X
)

, which is based
solely on X .

3.7 Problems10

1. An estimator δ is called inadmissible if there is a competing estimator δ̃
with a better risk function, that is, if R(θ, δ̃∗) ≤ R(θ, δ), for all θ ∈ Ω, and
R(θ, δ̃∗) < R(θ, δ), for some θ ∈ Ω. If there is no estimator with a better
risk function, δ is admissible. Consider estimating success probability θ ∈
[0, 1] from data X ∼ Binomial(n, θ) under squared error loss. Define δa,b
by

δa,b(X) = a
X

n
+ (1 − a)b,

which might be called a linear estimator, because it is a linear function of
X .
a) Find the variance and bias of δa,b. (The bias of an arbitrary estimator

δ of θ is defined as b(θ, δ) = Eθδ(X) − θ.)
b) If a > 1, show that δa,b is inadmissible by finding a competing linear

estimator with better risk. Hint: The risk of an arbitrary estimator δ
under squared error loss is Varθ

(

δ(X)
)

+ b2(θ, δ). Find an unbiased
estimator with smaller variance.

c) If b > 1 or b < 0, and a ∈ [0, 1), show that δa,b is inadmissible by
finding a competing linear estimator with better risk. Hint: Find an
estimator with the same variance but better bias.

9 If the inverse for a possibly discontinuous cumulative distribution function F is
defined as F⇐(t) = sup{x : F (x) ≤ t}, and if U is uniformly distributed on (0, 1),
then the random variable F⇐(U) has cumulative distribution function F .

10 Solutions to the starred problems are given at the back of the book.
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d) If a < 0, find a linear estimator with better risk than δa,b.
*2. Suppose data X1, . . . , Xn are independent with

Pθ(Xi ≤ x) = xtiθ, x ∈ (0, 1),

where θ > 0 is the unknown parameter, and t1, . . . , tn are known positive
constants. Find a one-dimensional sufficient statistic T .

*3. An object with weight θ is weighed on scales with different precision.
The data X1, . . . , Xn are independent, with Xi ∼ N(θ, σ2

i ), i = 1, . . . , n,
with the standard deviations σ1, . . . , σn known constants. Use sufficiency
to suggest a weighted average of X1, . . . , Xn to estimate θ. (A weighted
average would have form

∑n
i=1 wiXi, where the wi are positive and sum

to one.)
*4. LetX1, . . . , Xn be a random sample from an arbitrary discrete distribution

P on {1, 2, 3}. Find a two-dimensional sufficient statistic.
5. For θ ∈ Ω = (0, 1), let P̃θ denote a discrete distribution with mass function

p̃θ(t) = (1 + t)θ2(1 − θ)t, t = 0, 1, . . . ,

and let Pθ denote the binomial distribution with two trials and success
probability θ. Show that the model P̃ = {P̃θ : θ ∈ Ω} is sufficient for the
binomial model P = {Pθ : θ ∈ Ω}. Identify the stochastic transition Q by
giving the mass functions

qt(x) = Qt({x}), x = 0, 1, 2,

for t = 0, 1, . . ..
*6. The beta distribution with parameters α > 0 and β > 0 has density

fα,β(x) =







Γ (α+ β)

Γ (α)Γ (β)
xα−1(1 − x)β−1, x ∈ (0, 1);

0, otherwise.

Suppose X1, . . . , Xn are i.i.d. from a beta distribution.
a) Determine a minimal sufficient statistic (for the family of joint distri-

butions) if α and β vary freely.
b) Determine a minimal sufficient statistic if α = 2β.
c) Determine a minimal sufficient statistic if α = β2.

*7. Logistic regression. Let X1, . . . , Xn be independent Bernoulli variables,
with pi = P (Xi = 1), i = 1, . . . , n. Let t1, . . . , tn be a sequence of known
constants that are related to the pi via

log
pi

1 − pi
= α+ βti,

where α and β are unknown parameters. Determine a minimal sufficient
statistic for the family of joint distributions.
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*8. The multinomial distribution, derived later in Section 5.3, is a discrete
distribution with mass function

n!

x1! × · · · × xs!
px1
1 × · · · × pxs

s ,

where x0, . . . , xs are nonnegative integers summing to n, where p1, . . . , ps
are nonnegative probabilities summing to one, and n is the sample size.
Let N11, N12, N21, N22 have a multinomial distribution with n trials and
success probabilities p11, p12, p21, p22. (A common model for a two-by-two
contingency table.)
a) Give a minimal sufficient statistic if the success probabilities vary

freely over the unit simplex in R4. (The unit simplex in Rp is the set
of all vectors with nonnegative entries summing to one.)

b) Give a minimal sufficient statistic if the success probabilities are con-
strained so that p11p22 = p12p21.

*9. Let f be a positive integrable function on (0,∞). Define

c(θ) = 1
/

∫ ∞

θ

f(x) dx,

and take pθ(x) = c(θ)f(x) for x > θ, and pθ(x) = 0 for x ≤ θ. Let
X1, . . . , Xn be i.i.d. with common density pθ.
a) Show that M = min{X1, . . . , Xn} is sufficient.
b) Show that M is minimal sufficient.

*10. Suppose X1, . . . , Xn are i.i.d. with common density fθ(x) = (1 + θx)/2,
|x| < 1; fθ(x) = 0, otherwise, where θ ∈ [−1, 1] is an unknown parameter.
Show that the order statistics are minimal sufficient. (Hint: A polynomial
of degree n is uniquely determined by its value on a grid of n+ 1 points.)

11. Consider a two-sample problem in which X1, . . . , Xn is a random sample
from N(µ, σ2

x) and Y1, . . . , Ym is an independent random sample from
N(µ, σ2

y). Let Pθ denote the joint distribution of these n + m variables,
with θ = (µ, σ2

x, σ
2
y). Find a minimal sufficient statistic for this family of

distributions.
12. Let Z1 and Z2 be independent standard normal random variables with

common density φ(x) = exp(−x2/2)/
√

2π, and suppose X and Y are
related to these variables by

X = Z1 and Y = (X + Z2)θ,

where θ > 0 is an unknown parameter. (This might be viewed as a regres-
sion model in which the independent variable is measured with error.)
a) Find the joint density for X and Y .
b) Suppose our data (X1, Y1), . . . , (Xn, Yn) are i.i.d. random vectors with

common distribution that of X and Y in part (a),
(

Xi

Yi

)

∼
(

X

Y

)

, i = 1, . . . , n.
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Find a minimal sufficient statistic.
13. Let X1, . . . , Xn be independent Poisson variables with λi = EXi, i =

1, . . . , n. Let t1, . . . , tn be a sequence of known constants related to the λi
by

logλi = α+ βti, i = 1, . . . , n,

where α and β are unknown parameters. Find a minimal sufficient statistic
for the family of joint distributions.

14. Let X1, . . . , Xn be i.i.d. from a discrete distribution Q on {1, 2, 3}. Let
pi = Q({i}) = P (Xj = i), i = 1, 2, 3, and assume we know that p1 = 1/3,
but have no additional knowledge of Q. Define

Ni = #{j ≤ n : Xj = i}.

a) Show that T = (N1, N2) is sufficient.
b) Is T minimal sufficient? If so, explain why. If not, find a minimal

sufficient statistic.
15. Use completeness for the family N(θ, 1), θ ∈ R to find an essentially

unique solution f of the following integral equation:

∫

f(x)eθx dx =
√

2πeθ
2/2, θ ∈ R.

*16. Let X1, . . . , Xn be a random sample from an absolutely continuous dis-
tribution with density

fθ(x) =

{

2x/θ2, x ∈ (0, θ);

0, otherwise.

a) Find a one-dimensional sufficient statistic T .
b) Determine the density of T .
c) Show directly that T is complete.

*17. Let X,X1, X2, . . . be i.i.d. from an exponential distribution with failure
rate λ (introduced in Problem 1.30).
a) Find the density of Y = λX .

b) Let X = (X1 + · · · + Xn)/n. Show that X and (X2
1 + · · · +X2

n)/X
2

are independent.
18. Let X1, . . . , Xn be independent, with Xi ∼ N(tiθ, 1), where t1, . . . , tn are

a sequence of known constants (not all zero).

a) Show that the least squares estimator θ̂ =
∑n
i=1 tiXi/

∑n
i=1 t

2
i is com-

plete sufficient for the family of joint distributions.
b) Use Basu’s theorem to show that θ̂ and

∑n
i=1(Xi− tiθ̂)

2 are indepen-
dent.

19. Let X and Y be independent Poisson variables, X with mean θ, and Y
with mean θ2, θ ∈ (0,∞).
a) Find a minimal sufficient statistic for the family of joint distributions.
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b) Is your minimal sufficient statistic complete? Explain.
20. Let Z1, . . . , Zn be i.i.d. standard normal variates, and let Z be the random

vector formed from these variables. Use Basu’s theorem to show that ‖Z‖
and Z1/‖Z‖ are independent.

21. Let X1, . . . , Xn be i.i.d. from the uniform distribution on (0, 1), and let
M = max{X1, . . . , Xn}. Show that X1/M and M are independent.

22. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. and absolutely continuous with com-
mon density

fθ(x, y) =

{

2/θ2, x > 0, y > 0, x+ y < θ;

0, otherwise.

(This is the density for a uniform distribution on the region inside a tri-
angle in R2.)
a) Find a minimal sufficient statistic for the family of joint distributions.
b) Find the density for your minimal sufficient statistic.
c) Is the minimal sufficient statistic complete?

23. SupposeX has a geometric distribution with success probability θ ∈ (0, 1),
Y has a geometric distribution with success probability 2θ − θ2, and X
and Y are independent. Find a minimal sufficient statistic T for the family
of joint distributions. Is T complete?

24. Let data X and Y be independent variables with

X ∼ Binomial(n, θ) and Y ∼ Binomial(n, θ2),

with θ ∈ (0, 1) an unknown parameter.
a) Find a minimal sufficient statistic.
b) Is the minimal sufficient statistic complete? If it is, explain why; if it

is not, find a nontrivial function g such that Eθg(T ) = 0 for all θ.
25. Let X1, . . . , Xn be i.i.d. absolutely continuous random variables with com-

mon density

fθ(x) =

{

θe−θx, x > 0;

0, x ≤ 0,

where θ > 0 is an unknown parameter.
a) Find the density of θXi.
b) Let X(1) ≤ · · · ≤ X(n) be the order statistics and X = (X1 + · · · +

Xn)/n the sample average. Show that X and X(1)/X(n) are indepen-
dent.

26. Two teams play a series of games, stopping as soon as one of the teams
has three wins. Assume the games are independent and that the chance
the first team wins is an unknown parameter θ ∈ (0, 1). Let X denote
the number of games the first team wins, and Y the number of games the
other team wins.
a) Find the joint mass function of X and Y .
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b) If our data are X and Y , find a minimal sufficient statistic.
c) Is the minimal sufficient statistic in part (b) complete? Explain your

reasoning.
27. Let X1, . . . , Xn be i.i.d. from a uniform distribution on (−θ, θ), where

θ > 0 is an unknown parameter.
a) Find a minimal sufficient statistic T .
b) Define

V =
X

maxiXi − miniXi
,

where X = (X1 + · · · +Xn)/n, the sample average. Show that T and
V are independent.

28. Show that if f is defined and bounded on (−∞,∞), then f cannot be
convex (unless it is constant).

*29. Find a function on (0,∞) that is bounded and strictly convex.
*30. Use convexity to show that the canonical parameter space Ξ of a one-

parameter exponential family must be an interval. Specifically, show that
if η0 < η < η1, and if η0 and η1 both lie in Ξ, then η must lie in Ξ.

*31. Let f and g be positive probability densities on R. Use Jensen’s inequality
to show that

∫

log

(

f(x)

g(x)

)

f(x) dx > 0,

unless f = g a.e. (If f = g, the integral equals zero.) This integral is called
the Kullback–Leibler information.

32. The geometric mean of a list of positive constants x1, . . . , xn is

x̃ =
(

x1 × · · · × xn
)1/n

,

and the arithmetic mean is the average x = (x1 + · · ·+ xn)/n. Show that
x̃ ≤ x.



4

Unbiased Estimation

Example 3.1 shows that a clean comparison between two estimators is not
always possible: if their risk functions cross, one estimator will be preferable
for θ in some subset of the parameter space Ω, and the other will be prefer-
able in a different subset of Ω. In some cases this problem will not arise if
both estimators are unbiased. We may then be able to identify a best un-
biased estimator. These ideas and limitations of the theory are discussed in
Sections 4.1 and 4.2. Sections 4.3 and 4.4 concern distribution theory and un-
biased estimation for the normal one-sample problem in which data are i.i.d.
from a normal distribution. Sections 4.5 and 4.6 introduce Fisher information
and derive lower bounds for the variance of unbiased estimators.

4.1 Minimum Variance Unbiased Estimators

An estimator δ is called unbiased for g(θ) if

Eθδ(X) = g(θ), ∀θ ∈ Ω. (4.1)

If an unbiased estimator exists, g is called U-estimable.

Example 4.1. Suppose X has a uniform distribution on (0, θ). Then δ is unbi-
ased if

∫ θ

0

δ(x)θ−1 dx = g(θ), ∀θ > 0,

or if
∫ θ

0

δ(x) dx = θg(θ), ∀θ > 0. (4.2)

So g cannot be U-estimable unless θg(θ) → 0 as θ ↓ 0. If g′ exists, then
differentiating (4.2), by the fundamental theorem of calculus,

δ(x) =
d

dx

(

xg(x)
)

= g(x) + xg′(x).
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For instance, if g(θ) = θ, δ(X) = 2X .

Example 4.2. If X has the binomial distribution with n trials and success
probability θ, and if g(θ) = sin θ, then δ will be unbiased if

n
∑

k=0

δ(k)

(

n

k

)

θk(1 − θ)n−k = sin θ, ∀θ ∈ (0, 1).

The left hand side of this equation is a polynomial in θ with degree at most
n. The sine function cannot be written as a polynomial, therefore sin θ is not
U-estimable.

With squared error loss, L(θ, d) =
(

d − g(θ)
)2

, the risk of an unbiased
estimator δ is

R(θ, δ) = Eθ
(

δ(X) − g(θ)
)2

= Varθ
(

δ(X)
)

,

and so the goal is to minimize the variance.

Definition 4.3. An unbiased estimator δ is uniformly minimum variance un-
biased (UMVU) if

Varθ(δ) ≤ Varθ(δ
∗), ∀θ ∈ Ω,

for any competing unbiased estimator δ∗.

In a general setting there is no reason to suspect that there will be a
UMVU estimator. However, if the family has a complete sufficient statistic, a
UMVU will exist, at least when g is U-estimable.

Theorem 4.4. Suppose g is U-estimable and T is complete sufficient. Then
there is an essentially unique unbiased estimator based on T that is UMVU.

Proof. Let δ = δ(X) be any unbiased estimator and define

η(T ) = E[δ|T ],

as in the Rao–Blackwell theorem (Theorem 3.28). By smoothing,

g(θ) = Eθδ = EθEθ[δ|T ] = Eθη(T ),

and thus η(T ) is unbiased. Suppose η∗(T ) is also unbiased. Then

Eθ
[

η(T ) − η∗(T )
]

= 0, ∀θ ∈ Ω,

and by completeness, η(T )−η∗(T ) = 0 (a.e. P). This shows that the estimator
η(T ) is essentially unique; any other unbiased estimator based on T will equal
η(T ) except on a P-null set. The estimator η(T ) has minimum variance by
the Rao–Blackwell theorem with squared error loss. Specifically, if δ∗ is any
unbiased estimator, then η∗(T ) = Eθ(δ

∗|T ) is unbiased by the calculation
above. With squared error loss, the risk of δ∗ or η∗(T ) is the variance, and so

Varθ(δ
∗) ≥ Varθ

(

η∗(T )
)

= Varθ
(

η(T )
)

, ∀θ ∈ Ω.

Thus, η(T ) is UMVU. ⊓⊔
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From the uniqueness assertion in this theorem, if T is complete sufficient
and η(T ) is unbiased, η(T ) must be UMVU. Viewing (4.1) as an equation for
δ, any solution of the form δ = η(T ) will be UMVU. This approach provides
one strategy to find these estimators.

Example 4.5. Let X1, . . . , Xn be i.i.d. from the uniform distribution on (0, θ).
From Example 3.16, T = max{X1, . . . , Xn} is complete and sufficient for the
family of joint distributions. Suppose η(T ) is unbiased for g(θ). Then

∫ θ

0

η(t)
ntn−1

θn
dt = g(θ), θ > 0,

which implies

n

∫ θ

0

tn−1η(t) dt = θng(θ), θ > 0.

If g is differentiable and θng(θ) → 0 as θ ↓ 0, then differentiation with respect
to θ gives

nθn−1η(θ) =
d

dθ

(

θng(θ)
)

,

and so

η(t) =
1

ntn−1

d

dt

(

tng(t)
)

= g(t) +
tg′(t)
n

, t > 0.

When g is a constant c this argument shows the η(T ) must also equal c, and
so T is complete.

When g is the identity function, g(θ) = θ, η(t) = (n + 1)t/n. Thus, (n +
1)T/n is the UMVU of θ. Another unbiased estimator is δ = 2X. By the
theory we have developed, η(T ) must have smaller variance than δ. In this
example the comparison can be done explicitly. Since

EθT
2 =

∫ θ

0

t2
ntn−1

θn
dt =

n

n+ 2
θ2

and

Eθη
2(T ) =

(

n+ 1

n

)2

EθT
2 =

(n+ 1)2

n(n+ 2)
θ2,

we have

Varθ
(

η(T )
)

= Eθη
2(T ) −

(

Eθη(t)
)2

=
(n+ 1)2

n(n+ 2)
θ2 − θ2 =

θ2

n(n+ 2)
.

When n = 1, T = 2X1, and so this formula implies that Varθ(2Xi) = θ2/3.
Because δ is an average of these variables,

Varθ(δ) =
θ2

3n
.

The ratio of the variance of η(T ) to the variance of δ is
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Varθ
(

η(T )
)

Varθ(δ)
=

3

n+ 2
.

As n → ∞ this ratio tends to zero, and so η(T ) is much more accurate than
δ when n is large.

The proof of Theorem 4.4 also suggests another way to find UMVU esti-
mators. If δ is an arbitrary unbiased estimator, then η(T ) = E[δ|T ] will be
UMVU. So if any unbiased estimator can be identified, the UMVU can be
obtained by computing its conditional expectation.

Example 4.6. Let X1, . . . , Xn be i.i.d. Bernoulli variables with Pθ(Xi = 1) =
θ = 1 − Pθ(Xi = 0), i = 1, . . . , n. The marginal mass function can be written
as θx(1 − θ)1−x, x = 0 or 1, and so the joint mass function is

n
∏

i=1

θxi(1 − θ)1−xi = θT (x)(1 − θ)n−T (x),

where T (x) = x1 + · · · + xn. These joint mass functions form an exponential
family with

T = T (X) = X1 + · · · +Xn ∼ Binomial(θ, n)

as a complete sufficient statistic. Consider unbiased estimation of g(θ) = θ2.
One unbiased estimator is δ = X1X2. The UMVU estimator must be η(T ) =
Eθ[X1X2|T ] = Pθ(X1 = X2 = 1|T ). Because

Pθ(X1 = X2 = 1, T = t) = Pθ

(

X1 = X2 = 1,

n
∑

i=3

Xi = t− 2

)

= θ2
(

n− 2

t− 2

)

θt−2(1 − θ)n−t,

Pθ(X1 = X2 = 1|T = t) =
Pθ(X1 = X2 = 1, T = t)

Pθ(T = t)

=
θ2
(

n−2
t−2

)

θt−2(1 − θ)n−t
(

n
t

)

θt(1 − θ)n−t
=
t

n

t− 1

n− 1
.

So T (T − 1)/(n2 − n) is the UMVU estimator of θ2.

4.2 Second Thoughts About Bias

Although the approach developed in the previous section often provides rea-
sonable estimators, the premise that one should only consider unbiased esti-
mators is suspect. Estimators with considerable bias may not be worth con-
sidering, but estimators with small bias may be quite reasonable.
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Example 4.1, continued. As before, X1, . . . , Xn are i.i.d. from the uniform
distribution on (0, θ), and T = max{X1, . . . , Xn} is complete sufficient. The
UMVU estimator (n + 1)T/n is a multiple of T , but is it the best multiple
of T ? To address this question, let us calculate the risk of δa = aT under
squared error loss. From our prior calculations,

EθT =
nθ

n+ 1
and EθT

2 =
nθ2

n+ 2
.

So the risk of δa is

R(θ, δa) = Eθ(aT − θ)2

= a2EθT
2 − 2aθEθT + θ2

= θ2
(

n

n+ 2
a2 − 2n

n+ 1
a+ 1

)

.

This is a quadratic function of aminimized when a = (n+2)/(n+1). With this
choice for a, R(θ, δa) = θ2/(n+1)2, slightly smaller than the risk θ2/(n2 +2n)
for the UMVU estimator. With squared error loss, the risk of an arbitrary
estimator δ can be written as

R(θ, δ) = Eθ
(

δ − g(θ)
)2

= Varθ(δ) + b2(θ, δ),

where b(θ, δ) = Eθδ − g(θ) is the bias of δ. In this example, the biased esti-
mator δa has smaller variance than the UMVU estimator, which more than
compensates for a small amount of additional risk due to the bias. Possibil-
ities for this kind of trade-off between bias and variance arise fairly often in
statistics. In nonparametric curve estimation these trade-offs often play a key
role. (See Section 18.1.)

Example 4.7. Suppose X has mass function

Pθ(X = x) =
θxe−θ

x!(1 − e−θ)
, x = 1, 2, . . . .

This is the density for a Poisson distribution truncated to {1, 2, . . .}. The
mass functions for X form an exponential family and X is complete sufficient.
Consider estimating g(θ) = e−θ (the proportion lost through truncation). If
δ(X) is unbiased, then

e−θ =

∞
∑

k=1

δ(k)θke−θ

k!(1 − e−θ)
, θ > 0,

and so ∞
∑

k=1

δ(k)

k!
θk = 1 − e−θ =

∞
∑

k=1

(−1)k+1

k!
θk, θ > 0.
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These power series will agree if and only if they have equal coefficients for θk.
Hence δ(k) must be (−1)k+1, and the UMVU estimator is (−1)X+1, which is
1 when X is odd and −1 when X is even! In this example the only unbiased
estimator is absurd.

4.3 Normal One-Sample Problem—Distribution Theory

In this section distributional results related to sampling from a normal distri-
bution are derived. To begin, here are a few useful properties about normal
variables. Let X ∼ N(µ, σ2) and take Z = (X − µ)/σ.

1. The distribution of Z is standard normal, Z ∼ N(0, 1). More generally, if
a and b are constants, aX + b ∼ N(aµ+ b, a2σ2).

Proof. The cumulative distribution function of Z is

P (Z ≤ z) = P

(

X − µ

σ
≤ z

)

= P (X ≤ µ+ zσ)

=

∫ µ+zσ

−∞

exp
[

−(x− µ)2/(2σ2)
]

√
2πσ2

dx =

∫ z

−∞

e−u
2/2

√
2π

du.

Taking a derivative with respect to z, Z has density e−z
2/2/

√
2π and so

Z ∼ N(0, 1). The second assertion can be established in a similar fashion.
⊓⊔

2. The moment generating function of Z is MZ(u) = eu
2/2, u ∈ R.

Proof. Completing the square,

MZ(u) = EeuZ =

∫

euz
e−z

2/2

√
2π

dz = eu
2/2

∫

e−(z−u)2/2

√
2π

dz.

The integrand here is the density for N(u, 1), which integrates to one, and
the result follows. ⊓⊔

3. The moment generating function of X is

MX(u) = euµ+u2σ2/2, u ∈ R.

Proof.

MX(u) = EeuX = Eeu(µ+σZ) = euµEeuσZ = euµMZ(uσ) = euµ+u2σ2/2.

⊓⊔
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4. If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent, then X1 +X2 ∼

N(µ1 + µ2, σ
2
1 + σ2

2).

Proof.

MX1+X2(u) = MX1(u)MX2(u) = euµ1+u2σ2
1/2euµ2+u2σ2

2/2

= eu(µ1+µ2)+u2(σ2
1+σ2

2)/2, u ∈ R,

which is the moment generating function for N(µ, σ2) with µ = µ1 + µ2

and σ2 = σ2
1 + σ2

2 . So the assertion follows by Lemma 2.7. ⊓⊔

Let X1, . . . , Xn be a random sample from N(µ, σ2). By Example 2.3, the
joint densities parameterized by θ = (µ, σ2) form a two-parameter full rank
exponential family with complete sufficient statistic T =

(∑n
i=1Xi,

∑n
i=1X

2
i

)

.
It is often more convenient to work with statistics

X =
X1 + · · · +Xn

n
and S2 =

1

n− 1

n
∑

i=1

(Xi −X)2,

called the sample mean and variance. Using the identity
∑n

i=1(Xi − X)2 =
∑n

i=1X
2
i − nX

2
, we have

X =
T1

n
and S2 =

T2 − T 2
1 /n

n− 1
, (4.3)

or
T1 = nX and T2 = (n− 1)S2 + nX

2
. (4.4)

This establishes a one-to-one relationship between T and (X,S2). One-to-one
relationships preserve sufficiency and completeness, and so (X,S2) is also a
complete sufficient statistic.

Iterating Property 4, X1 + · · · + Xn ∼ N(nµ, nσ2). Dividing by n, by
Property 1, X ∼ N(µ, σ2/n). We know from Example 3.22 that X and S2

are independent, but the derivation to find the marginal distribution of S2 is
a bit more involved.

The gamma distribution, introduced in Problem 1.26, with parameters
α > 0 and β > 0, denoted Γ (α, β), has density

fα,β(x) =







xα−1e−x/β

βαΓ (α)
, x > 0;

0, otherwise,

(4.5)

where Γ (·) is the gamma function defined as

Γ (α) =

∫ ∞

0

xα−1e−x dx, ℜ(α) > 0.

Useful properties of the gamma function include
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Γ (α+ 1) = αΓ (α), ℜ(α) > 0

(which follows after integration by parts from the definition), Γ (n+ 1) = n!,
n = 1, 2, . . . , and Γ (1/2) =

√
π. It is not hard to show that if X ∼ Γ (α, 1),

then βX ∼ Γ (α, β). For this reason, β is called a scale parameter, and α is
called the shape parameter for the distribution.

If X ∼ Γ (α, β), then, for u < 1/β,

MX(u) = EeuX =

∫ ∞

0

eux
xα−1e−x/β

βαΓ (α)
dx

=
1

(1 − uβ)α
1

Γ (α)

∫ ∞

0

yα−1e−y dy =
1

(1 − uβ)α
,

where the change of variables y = (1 − uβ)x/β gives the third equality. From
this, if X ∼ Γ (αx, β) and Y ∼ Γ (αy, β) are independent, then

MX+Y (u) = MX(u)MY (u) =
1

(1 − uβ)αx+αy
.

This is the moment generating function for Γ (αx + αy, β), and so

X + Y ∼ Γ (αx + αy, β). (4.6)

The chi-square distributions are special cases of the gamma distribution,
generally defined as sums of independent squared standard normal variables.
If Z ∼ N(0, 1), then

MZ2(u) =

∫

euz
2 1√

2π
e−z

2/2 dz =
1√

1 − 2u

∫

1√
2π
e−x

2/2 dx =
1√

1 − 2u
,

where the change of variables x = z
√

1 − 2u gives the second equality. The
distribution of Z2 is called the chi-square distribution on one degree of free-
dom, denoted χ2

1. But the moment generating function for Z2 just computed
is the moment generating function for Γ (1/2, 2). So χ2

1 = Γ (1/2, 2).

Definition 4.8. The chi-square distribution on p degrees of freedom, χ2
p, is

the distribution of the sum Z2
1 + · · · + Z2

p when Z1, . . . , Zp are i.i.d. from
N(0, 1).

Repeated use of (4.6) shows that

χ2
p = Γ (p/2, 2),

which has moment generating function

1

(1 − 2u)p/2
, u < 1/2. (4.7)



4.3 Normal One-Sample Problem—Distribution Theory 69

Returning to sampling from a normal distribution, let X1, . . . , Xn be i.i.d.
from N(µ, σ2), and define Zi = (Xi − µ)/σ, so that Z1, . . . , Zn are i.i.d. from
N(0, 1). Then

Z =
1

n

n
∑

i=1

Xi − µ

σ
=

∑n
i=1Xi − nµ

nσ
=
X − µ

σ
.

Note that
√
nZ ∼ N(0, 1), and so nZ

2 ∼ χ2
1. Next,

V
def
=

(n− 1)S2

σ2
=

n
∑

i=1

(

Xi −X

σ

)2

=
n
∑

i=1

(

Xi − µ

σ
− X − µ

σ

)2

=

n
∑

i=1

(Zi − Z)2.

Expanding the square,

V =

n
∑

i=1

(Zi − Z)2 =

n
∑

i=1

(Z2
i − 2ZiZ + Z) =

n
∑

i=1

Z2
i − nZ

2
,

and thus

V + nZ
2

=

n
∑

i=1

Z2
i ∼ χ2

n. (4.8)

By Basu’s theorem (see Example 3.22), X and S2 are independent. Because

nZ
2

is a function of X, and V is a function of S2, V and nZ
2

are independent.
Using this independence and formula (4.7) for the moment generating function
for χ2

n, (4.8) implies

MV (u)M
nZ

2(u) =
1

(1 − 2u)n/2
.

But nZ
2 ∼ χ2

1 with moment generating function 1/
√

1 − 2u, and thus

MV (u) =
1

(1 − 2u)(n−1)/2
. (4.9)

This is the moment generating function for χ2
n−1, and thus

V =
(n− 1)S2

σ2
∼ χ2

n−1.

This along with X ∼ N(µ, σ2/n) implicitly determines the joint distribution
of X and S2, because these two variables are independent.



70 4 Unbiased Estimation

4.4 Normal One-Sample Problem—Estimation

Results from the last section lead directly to a variety of UMVU estimates.
First note that for n+ r > 1,

ESr = E

[

σr

(n− 1)r/2
V r/2

]

=
σr

(n− 1)r/2

∫ ∞

0

x(r+n−3)/2e−x/2

2(n−1)/2Γ
[

(n− 1)/2
] dx

=
σr2r/2Γ

[

(r + n− 1)/2
]

(n− 1)r/2Γ
[

(n− 1)/2
] . (4.10)

From this,
(n− 1)r/2Γ

[

(n− 1)/2
]

2r/2Γ
[

(r + n− 1)/2
] Sr

is an unbiased estimate of σr . This estimate is UMVU because it is a function
of the complete sufficient statistic (X,S2). In particular, when r = 2, S2 is
UMVU for σ2. Note that the UMVU estimate for σ is not S, although S is a
common and natural choice in practice. By Stirling’s formula

(n− 1)r/2Γ
[

(n− 1)/2
]

2r/2Γ
[

(r + n− 1)/2
] = 1 − r(r − 2)

4n
+O(1/n2),

as n→ ∞.1 For large n, the bias of Sr as an estimate of σr will be slight.

Because EX = µ, X is the UMVU estimator of µ. However, X
2

is a biased
estimator of µ2 as

EX
2

= (EX)2 + Var(X) = µ2 + σ2/n.

The bias can be removed by subtracting an unbiased estimate of σ2/n. Doing

this, X
2 − S2/n is UMVU for µ2.

The parameter µ/σ might be interpreted as a signal-to-noise ratio. The
unbiased estimate of σ−1 given above only depends on S2 and is independent
of X, the unbiased estimate of µ. Multiplying these estimates together,

X
√

2Γ
[

(n− 1)/2
]

S
√
n− 1Γ

[

(n− 2)/2
]

is UMVU for µ/σ.
The pth quantile for N(µ, σ2) is a value x such that P (Xi ≤ x) = p. If Φ

is the cumulative distribution function for N(0, 1), then as Zi = (Xi−µ)/σ ∼
N(0, 1),

1 Here O(1/n2) represents a remainder bounded in magnitude by some multiple of
1/n2. See Section 8.6.
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P (Xi ≤ x) = P

(

Zi ≤
x− µ

σ

)

= Φ

(

x− µ

σ

)

.

This equals p if (x− µ)/σ = Φ←(p), and so the pth quantile of N(µ, σ2) is

x = µ+ σΦ←(p).

The UMVU estimate of this quantile is

X +

√
n− 1Γ

[

(n− 1)/2
]

√
2Γ (n/2)

SΦ←(p).

4.5 Variance Bounds and Information

From (1.10) and (1.11), the covariance between two random variables X and
Y is

Cov(X,Y ) = E(X − EX)(Y − EY ) = EXY − (EX)(EY ).

In particular, if either mean, EX or EY , is zero, Cov(X,Y ) = EXY . Letting
σX =

√

Var(X) and σY =
√

Var(Y ), then because

E [(X − EX)σY ± (Y − EY )σX ]
2

= 2σXσY
(

σXσY ± Cov(X,Y )
)

≥ 0,

we have the bound

|Cov(X,Y )| ≤ σXσY or Cov2(X,Y ) ≤ Var(X)Var(Y ), (4.11)

called the covariance inequality.
Using the covariance inequality, if δ is an unbiased estimator of g(θ) and

Ψ is an arbitrary random variable, then

Varθ(δ) ≥
Cov2

θ(δ, ψ)

Varθ(ψ)
. (4.12)

The right hand side of this inequality involves δ, so this seems rather useless as
a bound for the variance of δ. To make headway we need to choose ψ cleverly,
so that Covθ(δ, ψ) is the same for all δ that are unbiased for g(θ).

Let P = {Pθ : θ ∈ Ω} be a dominated family with densities pθ, θ ∈ Ω ⊂ R.
As a starting point, Eθ+∆δ − Eθδ gives the same value g(θ + ∆) − g(θ) for
any unbiased δ. Here ∆ must be chosen so that θ + ∆ ∈ Ω. Next, we write
Eθ+∆δ − Eθδ as a covariance under Pθ. To do this we first express Eθ+∆δ as
an expectation under Pθ, which is accomplished by introducing a likelihood
ratio. This step of the argument involves a key assumption that pθ+∆(x) = 0
whenever pθ(x) = 0. Define L(x) = pθ+∆(x)/pθ(x) when pθ(x) > 0, and
L(x) = 1, otherwise. (This function L is called a likelihood ratio.) From the
assumption,
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L(x)pθ(x) =
pθ+∆(x)

pθ(x)
pθ(x) = pθ+∆(x), a.e. x,

and so, for any function h integrable under Pθ+∆,

Eθ+∆h(X) =

∫

hpθ+∆ dµ =

∫

hLpθ dµ = EθL(X)h(X).

Taking h = 1, EθL = 1; and taking h = δ, Eθ+∆δ = EθLδ. So if we define

ψ(X) = L(X) − 1,

then Eθψ = 0 and

Eθ+∆δ − Eθδ = EθLδ − Eθδ = Eθψδ = Covθ(δ, ψ).

Thus
Covθ(δ, ψ) = g(θ +∆) − g(θ)

for any unbiased estimator δ. With this choice for ψ, (4.12) gives

Varθ(δ) ≥
[

g(θ +∆) − g(θ)
]2

Varθ(ψ)
=

[

g(θ +∆) − g(θ)
]2

Eθ

(

pθ+∆(X)

pθ(X)
− 1

)2 , (4.13)

called the Hammersley–Chapman–Robbins inequality.
Under suitable regularity, the dominated convergence theorem can be used

to show that the lower bound in (4.13), which can be written as

[

g(θ +∆) − g(θ)

∆

]2

Eθ

(

[

pθ+∆(X) − pθ(X)
]

/∆

pθ(X)

)2 ,

converges to
[

g′(θ)
]2

Eθ

(

∂pθ(X)/∂θ

pθ(X)

)2

as ∆ → 0. The denominator here is called Fisher information, denoted I(θ),
and given by

I(θ) = Eθ

(

∂ log pθ(X)

∂θ

)2

. (4.14)

With enough regularity to interchange integration and differentiation,
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0 =
∂

∂θ
1 =

∂

∂θ

∫

pθ(x) dµ(x) =

∫

∂

∂θ
pθ(x) dµ(x)

=

∫

∂ log pθ(x)

∂θ
pθ(x) dµ(x) = Eθ

∂ log pθ(X)

∂θ
,

and so

I(θ) = Varθ

(

∂ log pθ(X)

∂θ

)

. (4.15)

If we can pass two partial derivatives with respect to θ inside the integral
∫

pθ dµ = 1, then

∫

∂2pθ(x)

∂θ2
dµ(x) = Eθ

[

∂2pθ(X)/∂θ2

pθ(X)

]

= 0.

From this, inasmuch as

∂2log pθ(X)

∂θ2
=
∂2pθ(X)/∂θ2

pθ(X)
−
(

∂ log pθ(X)

∂θ

)2

,

I(θ) = −Eθ
∂2log pθ(X)

∂θ2
. (4.16)

For calculations, this formula is often more convenient than (4.14).
A lower bound based on Fisher information can be derived in much the

same way as the Hammersley–Chapman–Robbins inequality, but tends to in-
volve differentiation under an integral sign. Let δ have mean g(θ) = Eθδ and
take ψ = ∂ log pθ/∂θ. With sufficient regularity,

g′(θ) =
∂

∂θ

∫

δpθ dµ =

∫

δ
∂

∂θ
pθ dµ =

∫

δψpθ dµ,

or
g′(θ) = Eθδψ. (4.17)

In a given application, this might be established using dominated convergence.
If δ is identically one, then g(θ) = 1, g′(θ) = 0, and we anticipate Eθψ = 0.
Then (4.17) shows that Covθ(δ, ψ) = g′(θ). Using this in (4.12) we have the
following result.

Theorem 4.9. Let P = {Pθ : θ ∈ Ω} be a dominated family with Ω an
open set in R and densities pθ differentiable with respect to θ. If Eθψ = 0,
Eθδ

2 <∞, and (4.17) hold for all θ ∈ Ω, then

Varθ(δ) ≥
[

g′(θ)
]2

I(θ)
, θ ∈ Ω.

This result is called the Cramér–Rao, or information, bound. The reg-
ularity condition (4.17) is troublesome. It involves the estimator δ, thus the
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theorem leaves open the possibility that some estimators, not satisfying (4.17),
may have variance below the stated bound. This has been addressed in various
ways. Under very weak conditions Woodroofe and Simons (1983) show that
the bound holds for any estimator δ for almost all θ. Other authors impose
more restrictive conditions on the model P , but show that the bound holds
for all δ at all θ ∈ Ω.

Suppose P = {Pθ : θ ∈ Ω} is a dominated family with densities pθ and
Fisher information I. If h is a one-to-one function from Ξ to Ω, then the
family P can be reparameterized as P̃ = {Qξ : ξ ∈ Ξ} with the identification
Qξ = Ph(ξ). Then Qξ has density qξ = ph(ξ). Letting θ = h(ξ), by the chain

rule, Fisher information Ĩ for the reparameterized family P̃ is given by

Ĩ(ξ) = Ẽξ

(

∂ log qξ(X)

∂ξ

)2

= Ẽξ

(

∂ log ph(ξ)(X)

∂ξ

)2

=
[

h′(ξ)
]2
Eθ

(

∂ log pθ(X)

∂θ

)2

=
[

h′(ξ)
]2
I(θ). (4.18)

Example 4.10. Exponential Families. Let P be a one-parameter exponential
family in canonical form with densities pη given by

pη(x) = exp
[

ηT (x) −A(η)
]

h(x).

Then
∂ log pη(X)

∂η
= T −A′(η),

and so by (4.15),

I(η) = Varη
(

T −A′(η)
)

= Varη(T ) = A′′(η).

Because
∂2log pη(X)

∂η2
= −A′′(η),

this formula for I(η) also follows immediately from (4.16). If the family is
parameterized instead by µ = A′(η) = EηT , then by (4.18)

A′′(η) = I(µ)
[

A′′(η)
]2
,

and so, because A′′(η) = Var(T ),

I(µ) =
1

VarµT
.

Note that because T is UMVU for µ, the lower bound Varµ(δ) ≥ 1/I(µ) for
an unbiased estimator δ of µ is sharp in this example.
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Example 4.11. Location Families. Suppose ǫ is an absolutely continuous ran-
dom variable with density f . The family of distributions P = {Pθ : θ ∈ R}
with Pθ the distribution of θ+ ǫ is called a location family. Using a change of
variables x = θ + e,

∫

g(x) dPθ(x) = Eθg(X) = Eg(θ + ǫ)

=

∫

g(θ + e)f(e) de =

∫

g(x)f(x − θ) dx,

and so Pθ has density pθ(x) = f(x − θ). Fisher information for this family is
given by

I(θ) = Eθ

(

∂ log f(X − θ)

∂θ

)2

= Eθ

(

−f
′(X − θ)

f(X − θ)

)2

= E

(

f ′(ǫ)
f(ǫ)

)2

=

∫

[

f ′(x)
]2

f(x)
dx.

So for location families, I(θ) is constant and does not vary with θ.

If two (or more) independent vectors are observed, then the total Fisher
information is the sum of the Fisher information provided by the individual
observations. To see this, suppose X and Y are independent, and that X has
density pθ and Y has density qθ (dominating measures for the distributions of
X and Y can be different). Then by (4.15), the Fisher information observing
X is

IX(θ) = Varθ

(

∂ log pθ(X)

∂θ

)

,

and the Fisher information observing Y is

IY (θ) = Varθ

(

∂ log qθ(Y )

∂θ

)

.

As X and Y are independent, their joint density is pθ(x)qθ(y), and Fisher
information observing both vectors X and Y is

IX,Y (θ) = Varθ

(

∂ log
[

pθ(X)qθ(Y )
]

∂θ

)

= Varθ

(

∂ log pθ(X)

∂θ
+
∂ log qθ(Y )

∂θ

)

= Varθ

(

∂ log pθ(X)

∂θ

)

+ Varθ

(

∂ log qθ(Y )

∂θ

)

= IX(θ) + IY (θ).

Iterating this, the Fisher information for a random sample of n observations
will be nI(θ) if I(θ) denotes the Fisher information for a single observation.
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4.6 Variance Bounds in Higher Dimensions

When the parameter θ takes values in Rs, Fisher information will be a matrix,
defined in regular cases by

I(θ)i,j = Eθ

[

∂ log pθ(X)

∂θi

∂ log pθ(X)

∂θj

]

= Covθ

(

∂ log pθ(X)

∂θi
,
∂ log pθ(X)

∂θj

)

= −Eθ
[

∂2log pθ(X)

∂θi∂θj

]

.

The first two lines here are equal because

Eθ∇θlog pθ(X) = 0,

and, as before, the third formula requires extra regularity necessary to pass a
second derivative inside an integral. Using matrix notation,

I(θ) = Eθ
(

∇θlog pθ(X)
)(

∇θlog pθ(X)
)′

= Covθ
(

∇θlog pθ(X)
)

= −Eθ∇2
θ log pθ(X),

where ∇θ is the gradient with respect to θ, ∇2
θ is the Hessian matrix of sec-

ond order derivatives, and prime denotes transpose. The lower bound for the
variance of an unbiased estimator δ of g(θ), where g : Ω → R, is

Varθ(δ) ≥ ∇g(θ)′I−1(θ)∇g(θ).

Example 4.12. Exponential Families. If P is an s-parameter exponential family
in canonical form with densities

pη(x) = exp
[

η · T (x) −A(η)
]

h(x),

then
∂2log pη(X)

∂ηi∂ηj
= −∂

2A(η)

∂ηi∂ηj
.

Thus

I(η)i,j =
∂2A(η)

∂ηi∂ηj
.

This can be written more succinctly as

I(η) = ∇2A(η).
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The final formula in this section is a multivariate extension of (4.18). As
before, let P = {Pθ : θ ∈ Ω} be a dominated family with densities pθ and
Fisher information I, but now Ω is a subset of Rs. Let h be a differentiable
one-to-one function from Ξ to Ω and introduce the family P̃ = {Qξ : ξ ∈ Ξ}
with Qξ = Ph(ξ). The density for Qξ is qξ = ph(ξ), and by the chain rule,

∂ log qξ(X)

∂ξi
=
∑

j

∂ log pθ(X)

∂θj

∂hj(ξ)

∂ξi
,

where θ = h(ξ). If Dh represents the matrix of partial derivatives of h given
by

[Dh(ξ)]i,j =
∂hi(ξ)

∂ξj
,

then ∂ log qξ(X)/∂ξi is the ith entry of
[

Dh(ξ)
]′∇θlog pθ(X). So

∇ξ log qξ(X) =
[

Dh(ξ)
]′∇θlog pθ(X)

and

Ĩ(ξ) = Ẽξ
[

∇ξ log qξ(X)
][

∇ξ log qξ(X)
]′

= Eθ
[

Dh(ξ)
]′[∇θlog pθ(X)

][

∇θlog pθ(X)
]′[
Dh(ξ)

]

=
[

Dh(ξ)
]′
I(θ)

[

Dh(ξ)
]

.

4.7 Problems2

*1. Let X1, . . . , Xm and Y1, . . . , Yn be independent variables with the Xi a
random sample from an exponential distribution with failure rate λx, and
the Yj a random sample from an exponential distribution with failure rate
λy .
a) Determine the UMVU estimator of λx/λy.
b) Under squared error loss, find the best estimator of λx/λy of form

δ = cY /X.
c) Find the UMVU estimator of e−λx = P (X1 > 1).

*2. Let X1, . . . , Xn be a random sample from N(µx, σ
2), and let Y1, . . . , Ym

be an independent random sample from N(µy, 2σ
2), with µx, µy, and σ2

all unknown parameters.
a) Find a complete sufficient statistic.
b) Determine the UMVU estimator of σ2. Hint: Find a linear combination

L of S2
x =

∑n
i=1(Xi −X)2/(n− 1) and S2

y =
∑m

j=1(Yj − Y )2/(m− 1)

so that (X,Y , L) is complete sufficient.

2 Solutions to the starred problems are given at the back of the book.



78 4 Unbiased Estimation

c) Find a UMVU estimator of (µx − µy)
2.

d) Suppose we know the µy = 3µx. What is the UMVU estimator of µx?
*3. Let X1, . . . , Xn be a random sample from the Poisson distribution with

mean λ. Find the UMVU for cosλ. (Hint: For Taylor expansion, the iden-
tity cosλ = (eiλ + e−iλ)/2 may be useful.)

*4. Let X1, . . . , Xn be independent normal variables, each with unit variance,
and with EXi = αti + βt2i , i = 1, . . . , n, where α and β are unknown
parameters and t1, . . . , tn are known constants. Find UMVU estimators
of α and β.

*5. Let X1, . . . , Xn be i.i.d. from some distribution Qθ, and let X = (X1 +
· · · +Xn)/n be the sample average.
a) Show that S2 =

∑

(Xi − X)2/(n − 1) is unbiased for σ2 = σ2(θ) =
Varθ(Xi).

b) If Qθ is the Bernoulli distribution with success probability θ, show
that S2 from (a) is UMVU.

c) If Qθ is the exponential distribution with failure rate θ, find the
UMVU estimator of σ2 = 1/θ2. Give a formula for Eθ[X

2
i |X = c]

in this case.
*6. Suppose δ is a UMVU estimator of g(θ); U is an unbiased estimator of

zero, EθU = 0, θ ∈ Ω; and that δ and U both have finite variances for all
θ ∈ Ω. Show that U and δ are uncorrelated, EθUδ = 0, θ ∈ Ω.

*7. Suppose δ1 is a UMVU estimator of g1(θ), δ2 is UMVU estimator of g2(θ),
and that δ1 and δ2 both have finite variance for all θ. Show that δ1 + δ2
is UMVU for g1(θ) + g2(θ). Hint: Use the result in the previous problem.

*8. LetX1, . . . , Xn be i.i.d. absolutely continuous variables with common den-
sity fθ, θ > 0, given by

fθ(x) =

{

θ/x2, x > θ;

0, x ≤ θ.

Find the UMVU estimator for g(θ) if g(θ)/θn → 0 as θ → ∞ and g is
differentiable.

9. Let X be a single observation from a Poisson distribution with mean λ.
Determine the UMVU estimator for

e−2λ =
[

Pλ(X = 0)
]2
.

*10. Suppose X is an exponential variable with density pθ(x) = θe−θx, x > 0;
pθ(x) = 0, otherwise. Find the UMVU estimator for 1/(1 + θ).

*11. Let X1, . . . , X3 be i.i.d. geometric variables with common mass function
fθ(x) = Pθ(Xi = x) = θ(1 − θ)x, x = 0, 1, . . . . Find the UMVU estimator
of θ2.

*12. Let X be a single observation, absolutely continuous with density
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pθ(x) =

{

1
2 (1 + θx), |x| < 1;

0, |x| ≥ 1.

Here θ ∈ [−1, 1] is an unknown parameter.
a) Find a constant a so that aX is unbiased for θ.
b) Show that b = Eθ|X | is independent of θ.
c) Let θ0 be a fixed parameter value in [−1, 1]. Determine the constant

c = cθ0 that minimizes the variance of the unbiased estimator aX +
c
(

|X |−b
)

when θ = θ0. Is aX uniformly minimum variance unbiased?
13. Let X1, . . . , Xm be i.i.d. from a Poisson distribution with parameter λx

and let Y1, . . . , Yn be i.i.d. from a Poisson distribution with parameter λy ,
with all n+m variables independent.
a) Find the UMVU of (λx − λy)

2.
b) Give a formula for the chanceXi is odd, and find the UMVU estimator

of this parameter.
14. LetX1, . . . , Xn be i.i.d. from an arbitrary discrete distribution on {0, 1, 2}.

Let T1 = X1 + · · · +Xn and T2 = X2
1 + · · · +X2

n.
a) Show that T = (T1, T2) is complete sufficient.
b) Let µ = EXi. Find the UMVU of µ3.

15. Let X1, . . . , Xn be i.i.d. absolutely continuous random variables with com-
mon marginal density fθ given by

fθ(x) =

{

eθ−x, x ≥ θ;

0, x < θ.

Find UMVU estimators for θ and θ2.
16. Let X1 and X2 be independent discrete random variables with common

mass function

P (Xi = x) = − θx

x log(1 − θ)
, x = 1, 2, . . . ,

where θ ∈ (0, 1).
a) Find the mean and variance of X1.
b) Find the UMVU of θ/ log(1 − θ).

17. LetX1, . . . , Xn be i.i.d. absolutely continuous variables with common den-
sity fθ, θ ∈ R, given by

fθ(x) =







φ(x)

Φ(θ)
, x < θ;

0, x ≥ θ.

(This is the density for the standard normal distribution truncated above
at θ.)
a) Derive a formula for the UMVU for g(θ). (Assume g is differentiable

and behaves reasonably as θ → ±∞.)
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b) If n = 3 and the observed data are −2.3, −1.2, and 0, what is the
estimate for θ2?

18. Let X1 and X2 be i.i.d. discrete variables with common mass function

fθ(x) = Pθ(Xi = x) = (x+ 1)θ2(1 − θ)x, x = 0, 1, . . . ,

where θ ∈ (0, 1).
a) Compute E

[

1/(Xi + 1)
]

.
b) Find the mass function for X1 +X2.
c) Use conditioning to find the UMVU for θ.

19. Let X have a binomial distribution with n trials and success probability
θ ∈ (0, 1). If m ≤ n, find the UMVU estimator of θm.

20. Let X1, . . . , Xn be i.i.d. and absolutely continuous with common marginal
density fθ given by

fθ(x) =

{

2x/θ2, 0 < x < θ;

0, otherwise,

where θ > 0 is an unknown parameter. Find the UMVU estimator of g(θ)
if g is differentiable and θ2ng(θ) → 0 as θ ↓ 0.

21. Let X1, . . . , Xn be i.i.d. from an exponential distribution with density

fθ(x) =

{

θe−θx, x > 0;

0, otherwise.

Find UMVU estimators for θ and θ2.
22. Suppose X1, . . . , Xn are independent with Xj ∼ N(0, jθ2), j = 1, . . . , n.

Find the UMVU estimator of θ.
23. For θ > 0, let

∆θ = {(x, y) ∈ R2 : x > 0, y > 0, x+ y < θ},

the interior of a triangle. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. from the
uniform distribution on ∆θ, so their common density is 21∆θ

/θ2.
a) Find a complete sufficient statistic T .
b) Find the UMVU estimators of θ and cos θ.

*24. In the normal one-sample problem, the statistic t =
√
nX/S has the

noncentral t-distribution on n − 1 degrees of freedom and noncentrality
parameter δ =

√
nµ/σ. Use our results on distribution theory for the

one-sample problem to find the mean and variance of t.
25. Let X1, . . . , Xn be i.i.d. from N(µ, σ2), with µ and σ both unknown.

a) Find the UMVU estimator of µ3.
b) Find the UMVU estimator of µ2/σ2.

26. Let X1, . . . , Xn be independent with

Xi ∼ N(miµ,miσ
2), i = 1, . . . , n,
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where m1, . . . ,mn are known constants and µ and σ are unknown param-
eters. (These sort of data would arise if i.i.d. variables from N(µ, σ2) were
divided into groups, with the ith group having mi observations, and the
observed data are totals for the n groups.)
a) Find UMVU estimators for µ and σ2.
b) Show that the estimators in part (a) are independent.

27. Let Z1 and Z2 be independent standard normal random variables. Find
E
√

|Z1/Z2|.
*28. Let X1, . . . , Xn be i.i.d. from the uniform distribution on (0, θ).

a) Use the Hammersley–Chapman–Robbins inequality to find a lower
bound for the variance of an unbiased estimator of θ. This bound will
depend on ∆. Note that ∆ cannot vary freely but must lie in a suitable
set.

b) In principle, the best lower bound can be found taking the supre-
mum over ∆. This calculation cannot be done explicitly, but an ap-
proximation is possible. Suppose ∆ = −cθ/n. Show that the lower
bound for the variance can be written as θ2gn(c)/n

2. Determine
g(c) = limn→∞ gn(c).

c) Find the value c0 that maximizes g(c) over c ∈ (0, 1) and give an
approximate lower bound for the variance of δ. (The value c0 cannot be
found explicitly, but you should be able to come up with a numerical
value.)

29. Determine the Fisher information I(θ) for the density fθ(x) = (1+ θx)/2,
x ∈ (−1, 1), fθ(x) = 0, x /∈ (−1, 1).

*30. SupposeX1, . . . , Xn are independent withXi ∼ N(α+βti, 1), i = 1, . . . , n,
where t1, . . . , tn are known constants and α, β are unknown parameters.
a) Find the Fisher information matrix I(α, β).
b) Give a lower bound for the variance of an unbiased estimator of α.
c) Suppose we know the value of β. Give a lower bound for the variance

of an unbiased estimator of α in this case.
d) Compare the estimators in parts (b) and (c). When are the bounds

the same? If the bounds are different, which is larger?
e) Give a lower bound for the variance of an unbiased estimator of the

product αβ.
*31. Find the Fisher information for the Cauchy location family with densities

pθ given by

pθ(x) =
1

π
[

(x− θ)2 + 1
] .

Also, what is the Fisher information for θ3?
*32. Suppose X has a Poisson distribution with mean θ2, so the parameter θ

is the square root of the usual parameter λ = EX . Show that the Fisher
information I(θ) is constant.
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*33. Consider the exponential distribution with failure rate λ. Find a function
h defining a new parameter θ = h(λ) so that Fisher information I(θ) is
constant.

*34. Consider an autoregressive model in which X1 ∼ N
(

θ, σ2/(1 − ρ2)
)

and
the conditional distribution of Xj+1 given X1 = x1, . . . , Xj = xj , is
N
(

θ + ρ(xj − θ), σ2
)

, j = 1, . . . , n− 1.
a) Find the Fisher information matrix, I(θ, σ).
b) Give a lower bound for the variance of an unbiased estimator of θ.
c) Show that the sample average X = (X1 + · · ·+Xn)/n is an unbiased

estimator of θ, compute its variance, and compare its variance with
the lower bound. Hint: Define ǫj = Xj − θ and ηj+1 = ǫj+1 − ǫj .
Use smoothing to argue that η2, . . . , ηn are i.i.d. N(0, σ2) and are
independent of ǫ1. Similarly, Xi is independent of ηi+1, ηi+2, . . . . Use
these facts to find first Var(X2) = Var(ǫ2), then Var(X3), Var(X4),
. . . . Finally, find Cov(Xi+1, Xi), nCov(Xi+2, Xi), and so on.

35. Consider the binomial distribution with n trials and success probability
p. Find a function h defining a new parameter θ = h(p) so that Fisher
information I(θ) is constant.

36. Let X1, . . . , Xn be i.i.d. with common density fθ(x) = eθ−x, x > θ,
fθ(x) = 0, otherwise.
a) Find lower bounds for the variance of an unbiased estimator of θ

using the Hammersley–Chapman–Robbins inequality. These bounds
will depend on the choice of ∆.

b) What choice of ∆ gives the best (largest) lower bound?
37. Suppose X has a Poisson distribution with mean λ, and that given X = n,

Y is Poisson with mean nθ.
a) Find the Fisher information matrix.
b) Derive a formula for µY = EY .
c) Find a lower bound for the variance of an unbiased estimator of µY .
d) Compare the bound in part (c) with the variance of Y .

38. Suppose X has a geometric distribution with parameter θ, so P (X = x) =
θ(1− θ)x, x = 0, 1, . . . , and that given X = n, Y is binomial with x trials
and success probability p.
a) Find the Fisher information matrix.
b) Give a lower bound for the variance of an unbiased estimator of µY =

EY . Compare the lower bound with Var(Y ).
39. Let X have a “triangular” shaped density given by

fθ(x) =

{

2(θ − x)/θ2, x ∈ (0, θ);

0, otherwise.

a) Use the Hammersley–Chapman–Robbins inequality to derive lower
bounds for the variance of an unbiased estimator of θ based on a
single observation X . These bounds will depend on the choice of ∆.
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b) What is in fact the smallest possible variance for an unbiased estimator
δ(X) of θ? Compare this value with the lower bounds in part (a).

40. Let X have a geometric distribution with success probability θ, so Pθ(X =
x) = θ(1− θ)x, x = 0, 1, . . . . What is the smallest possible variance for an
unbiased estimator δ(X) of θ? Compare this variance with the Cramér–
Rao lower bound in Theorem 4.9.

41. Let X1, . . . , Xn be i.i.d. random variables (angles) from the von Mises
distribution with Lebesgue density

pθ(x) =







exp
{

θ1 sinx+ θ2 cosx
}

2πI0(‖θ‖)
, x ∈ (0, 2π);

0, otherwise.

Here ‖θ‖ denotes the Euclidean length of θ, ‖θ‖ = (θ21 + θ22)
1/2, and the

function I0 is a modified Bessel function.
a) Find the Fisher information matrix, expressed using I0 and its deriva-

tives.
b) Give a lower bound for the variance of an unbiased estimator of ‖θ‖.

42. Let θ = (α, λ) and let Pθ denote the gamma distribution with shape
parameter α and scale 1/λ. So Pθ has density

pθ(x) =







λαxα−1e−xλ

Γ (α)
, x > 0;

0, otherwise.

a) Find the Fisher information matrix I(θ), expressed using the “psi”

function ψ
def
= Γ ′/Γ and its derivatives.

b) What is the Cramér–Rao lower bound for the variance of an unbiased
estimator of α+ λ?

c) Find the mean µ and variance σ2 for Pθ. Show that there is a one-to-
one correspondence between θ and (µ, σ2).

d) Find the Fisher information matrix if the family of gamma distribu-
tions is parameterized by (µ, σ2), instead of θ.
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Curved Exponential Families

Curved exponential families may arise when the parameters of an exponential
family satisfy constraints. For these families the minimal sufficient statistic
may not be complete, and UMVU estimation may not be possible. Curved
exponential families arise naturally with data from sequential experiments,
considered in Section 5.2, and Section 5.3 considers applications to contin-
gency table analysis.

5.1 Constrained Families

Let P = {Pη : η ∈ Ξ} be a full rank s-parameter canonical exponential family
with complete sufficient statistic T . Consider a submodel P0 parameterized
by θ ∈ Ω with η̃(θ) the value for the canonical parameter associated with θ.
So

P0 = {Pη̃(θ) : θ ∈ Ω}.
Often η̃ : Ω → Ξ is one-to-one and onto. In this case P0 = P and the choice of
parameter, θ or η, is dictated primarily by convenience. Curved exponential
families may arise when P0 is a strict subset of P , generally with Ω ⊂ Rr and
r < s. Here are two possibilities.

1. Points η in the range of η̃, η̃(Ω) = {η̃(θ) : θ ∈ Ω}, satisfy a nontrivial linear
constraint. In this case, P0 will be a q-parameter exponential family for
some q < s. The statistic T will still be sufficient, but will not be minimal
sufficient.

2. The points η in η̃(Ω) do not satisfy a linear constraint. In this case, P0 is
called a curved exponential family. Here T will be minimal sufficient (see
Example 3.12), but may not be complete.

Example 5.1. Joint distributions for a sample from N(µ, σ2) form a two-
parameter exponential family with canonical parameter

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
DOI 10.1007/978-0-387-93839-4_5, © Springer Science+Business Media, LLC 2010 
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η =

(

µ

σ2
,− 1

2σ2

)

and complete sufficient statistic

T =

(

n
∑

i=1

Xi,
n
∑

i=1

X2
i

)

.

(See Example 2.3.) If µ and σ2 are equal and we let θ denote the common
value, then our subfamily will consist of joint distributions for a sample from
N(θ, θ), θ > 0. Then

η̃(θ) =

(

1,− 1

2θ

)

,

and the range of η̃ is the half-line indicated in Figure 5.1. Because points η in
η̃(Ω) satisfy the linear constraint η1 = 1, the subfamily should be exponential
with less than two parameters. This is easy to check; the joint densities form
a full rank one-parameter exponential family with

∑n
i=1X

2
i as the canonical

complete sufficient statistic.

η1

η2

1−1

Fig. 5.1. Range of η̃(θ) =
`

1,−1/(2θ)
´

.

Suppose instead σ = |µ|, so the subfamily will be joint distributions for a
sample from N(θ, θ2), θ ∈ R. In this case

η̃(θ) =

(

1

θ
,− 1

2θ2

)

.

Now the range space η̃(Ω) is the parabola in Figure 5.2. Points in this range
space do not satisfy a linear constraint, so in this case we have a curved
exponential family and T is minimal sufficient. Because

EθT
2
1 = (EθT1)

2 + Varθ(T1) = n2θ2 + nθ2,
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and
EθT2 = nEθX

2
i = n

(

(EθXi)
2 + Varθ(Xi)

)

= 2nθ2,

we have
Eθ
(

2T 2
1 − (n+ 1)T2

)

= 0, θ ∈ R.

Thus g(T ) = 2T 2
1 −(n+1)T2 has zero mean regardless the value of θ. Inasmuch

as g(T ) is not zero (unless n = 1), T is not complete.

η1

η2

1−1

Fig. 5.2. Range of η̃(θ) =
`

1/θ,−1/(2θ2)
´

.

Example 5.2. If our data consist of two independent random samples, X1, . . . ,
Xm fromN(µx, σ

2
x) and Y1, . . . , Yn fromN(µy, σ

2
y), then the joint distributions

form a four-parameter exponential family indexed by θ = (µx, µy, σ
2
x, σ

2
y). A

canonical sufficient statistic for the family is

T =





m
∑

i=1

Xi,

n
∑

j=1

Yj ,

m
∑

i=1

X2
i ,

n
∑

j=1

Y 2
j



 ,

and the canonical parameter is

η =

(

µx
σ2
x

,
µy
σ2
y

,− 1

2σ2
x

,− 1

2σ2
y

)

.

By (4.3) and (4.4), an equivalent statistic would be (X,Y , S2
x, S

2
y), where

S2
x =

∑m
i=1(Xi−X)2/(m− 1) and S2

y =
∑n

i=1(Yi−Y )2/(n− 1). Results from
Section 4.3 provide UMVU estimates for µx, µy, σ

r
x, σ

r
y, etc.

If the variances for the two samples agree, σ2
x = σ2

y = σ2, then η satisfies
the linear constraint η3 = η4. In this case the joint distributions form a three-
parameter exponential family with complete sufficient statistic (T1, T2, T3 +
T4). An equivalent sufficient statistic here is (X,Y , S2

p), where
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S2
p =

∑m
i=1(Xi −X)2 +

∑n
i=1(Yi − Y )2

n+m− 2
=

(m− 1)S2
x + (n− 1)S2

y

n+m− 2
,

called the pooled sample variance. Again the equivalence follows easily from
(4.3) and (4.4). Also, because S2

x and S2
y are independent, from the definition

of the chi-square distribution and (4.9),

(n+m− 2)S2
p

σ2
∼ χ2

n+m−2.

Again, results from Section 4.3 provide UMVU estimates for various param-
eters of interest.

Another subfamily arises if the means for the two samples are the same,
µx = µy. In this case the joint distributions form a curved exponential family,
and T or (X,Y , S2

x, S
2
y) are minimal sufficient. In this case these statistics are

not complete because E(X − Y ) = 0 for all distributions in the subfamily.

5.2 Sequential Experiments

The protocol for an experiment is sequential if the data are observed as they
are collected, and the information from the observations influences how the
experiment is performed. For instance, the decision whether to terminate a
study at some stage or continue collecting more data might be based on prior
observations. Or, in allocation problems sampling from two or more popula-
tions, the choice of population sampled at a given stage could depend on prior
data.

There are two major reasons why a sequential experiment might be pre-
ferred over a classical experiment. A sequential experiment may be more ef-
ficient. Here efficiency gains might be quantified as a reduction in decision
theoretic risk, with costs for running the experiment added to the usual loss
function. There are also situations in which certain objectives can only be met
with a sequential experiment. Here is one example.

Example 5.3. Estimating a Population Size. Consider a lake (or some other
population) with M fish. Here M is considered an unknown parameter, and
the goal of the experiment is to estimate M . Data to estimate M are obtained
from a “capture–recapture” experiment. This experiment has two phases.
First, k fish are sampled from the lake and tagged so they can be identi-
fied. These fish are then returned to the lake. At the second stage, fish are
sampled at random from the lake. Note that during this phase a sampled fish
is tagged with probability θ = k/M . (Actually, there is an assumption here
that at the second stage tagged and untagged fish are equally likely to be
captured; this premise seems suspect for real fish.) In terms of θ,

M = k/θ,
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and so the inferential goal is basically to estimate 1/θ. Information from
the second stage of this experiment can be coded using Bernoulli variables
X1, . . . , XN , where N denotes the sample size, and Xi is one if the ith fish is
tagged or zero if the ith fish is not tagged.

In mathematical terms we have a situation in which potential data
X1, X2, . . . are i.i.d. Bernoulli variables with success probability θ. If the sam-
ple size is fixed, N = n, then our data have joint density

n
∏

i=1

θxi(1 − θ)1−xi = θT (x)(1 − θ)n−T (x),

where T (x) = x1 + · · ·+ xn. These densities form an exponential family with
T as a sufficient statistic. Because T has a binomial distribution with mean
nθ, T/n is unbiased for θ and hence UMVU. But there can be no unbiased
estimate of 1/θ because

Eθδ(T ) ≤ max
0≤k≤n

δ(k),

which is less than 1/θ once θ is sufficiently small. Note that if θ is much smaller
than 1/n, then T will be zero with probability close to one. The real problem
here is that when T = 0 we cannot infer much about the relative size of θ
from our data.

Inverse binomial sampling avoids the problem just noted by continued
sampling until m of the Xi equal one. The number of observations N is now
a random variable. Also, this is a sequential experiment because the decision
to stop sampling is based on observed data.

Intuitively, data from inverse binomial sampling would be the list

X = (X1, . . . , XN).

There is a bit of a technical problem here: this list is not a random vector
because the number of entries N is random. The most natural way around this
trouble involves a more advanced notion of “data” in which the information
from an experiment is viewed as the σ-field of events that can be resolved from
the experiment. Here this σ-field would include events such as {T = k} or
{N = 7}, but would preclude events such as {XN+2 = 0}. See Chapter 20 for
a discussion of this approach. Fortunately, in this example we can avoid these
technical issues in the following fashion. Let Y1 be the number of zeros in the
list X before the first one, and let Yi be the number of zeros between the (i−
1)st and ith one, i = 2, . . . ,m. Note that the list X can be recovered from Y =
(Y1, . . . , Ym). If, for instance, Y = (2, 0, 1), thenX must be (0, 0, 1, 1, 0, 1). The
variables Y1, . . . , Ym are i.i.d. with

Pθ(Yi = y) = P (X1 = 0, . . . , Xy = 0, Xy+1 = 1)

= (1 − θ)yθ

= exp
(

y log(1 − θ) + log θ
)

, y = 0, 1, . . . .
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This is the mass function for the geometric distribution. It is a one-parameter
exponential family with canonical parameter η = log(1 − θ) and

A(η) = − log θ = − log(1 − eη).

Thus

EθYi = A′(η) =
eη

1 − eη
=

1 − θ

θ
.

The family of joint distributions of Y1, . . . , Ym has T =
∑m

i=1 Yi = N −m as
a complete sufficient statistic. The statistic T counts the number of failures
before the mth success and has the negative binomial distribution with mass
function

P (T = t) =

(

m+ t− 1

m− 1

)

θm(1 − θ)t, t = 0, 1, . . . .

Inasmuch as

EθT = mEθYi =
m

θ
−m,

T +m

m
=
N

m

is UMVU for 1/θ.

The following result gives densities for a sequential experiment in which
data X1, X2, . . . are observed until a stopping time N . This stopping time is
allowed to depend on the data, but clairvoyance is prohibited. Formally, this
is accomplished by insisting that

{N = n} =
{

(X1, . . . , Xn) ∈ An
}

, n = 1, 2, . . . ,

for some sequence of sets A1, A2, . . . .

Theorem 5.4. Suppose X1, X2, . . . are i.i.d. with common marginal density
fθ, θ ∈ Ω. If Pθ(N < ∞) = 1 for all θ ∈ Ω, then the total data, viewed
informally1 as (N,X1, . . . , XN ), have joint density

n
∏

i=1

fθ(xi). (5.1)

When fθ comes from an exponential family, so that

fθ(x) = eη(θ)·T (x)−B(θ)h(x),

1 One way to be more precise is to view the information from the observed data as
a σ-field. This approach is developed in Section 20.2, and Theorem 20.6 (Wald’s
fundamental identity) from this section is the mathematical basis for the theorem
here.
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then the joint density is

exp

[

η(θ) ·
n
∑

i=1

T (xi) − nB(θ)

]

n
∏

i=1

h(xi). (5.2)

These densities form an exponential family with canonical parameters η1(θ),

. . . , ηs(θ), and −B(θ), and sufficient statistic
(
∑N

i=1 T (Xi), N
)

.

By (5.1), the likelihood for the sequential experiment is the same as the
likelihood that would be used ignoring the optional stopping and treating N as
a fixed constant. In contrast, distributional properties of standard estimators
are generally influenced by optional stopping. For instance, the sample average
(X1+· · ·+XN )/N is generally a biased estimator of EθX1. (See Problems 5.10
and 5.12 for examples.)

The exponential family (5.2) has an extra canonical parameter −B(θ),
therefore sequential experiments usually lead to curved exponential families.
The inverse binomial example is unusual in this regard, basically because the
experiment is conducted so that

∑N
i=1Xi must be the fixed constant m.

5.3 Multinomial Distribution and Contingency Tables

The multinomial distribution is a generalization of the binomial distribution
arising from n independent trials with outcomes in a finite set, {a0, . . . , as}
say. Define vectors

e0 =



















1
0
0
...
0
0



















, e1 =



















0
1
0
...
0
0



















, . . . , es =



















0
0
0
...
0
1



















in Rs+1, and take Yi = ej if trial i has outcome aj, i = 1, . . . , n, j = 0, . . . , s.
Then Y1, . . . , Yn are i.i.d. If pj , j = 0, . . . , s, is the chance of outcome aj , then
P (Yi = ej) = pj . If we define

X =











X0

X1

...
Xs











=

n
∑

i=1

Yi,

then Xj counts the number of trials with aj as the outcome. By independence,
the joint mass function of Y1, . . . , Yn will be an n-fold product of success
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probabilities p0, . . . , ps. The number of times that pj arises in this product
will be the number of trials with outcome aj , and so

P (Y1 = y1, . . . , Yn = yn) =

s
∏

j=0

p
xj

j = exp





s
∑

j=0

xj log pj



 ,

where x = x(y) = y1 + · · ·+yn. Thus the joint distribution for Y1, . . . , Yn form
an (s+ 1)-parameter exponential family with canonical sufficient statistic X .
But this family is not of full rank because X0+· · ·+Xs = n. Taking advantage
of this constraint

P (Y1 = y1, . . . , Yn = yn) = exp

[

s
∑

i=1

xi log(pi/p0) + n log p0

]

,

which is a full rank s-parameter exponential family with complete sufficient
statistic (X1, . . . , Xs). There is a one-to-one correspondence between this
statistic and X , therefore X is also complete sufficient.

The distribution of X can be obtained from the distribution of Y as

P (X = x) =
∑

(y1,...,yn):
Pn

i=1 yi=x

P (Y = y). (5.3)

The probabilities in this sum all equal
∏s
j=1 p

xj

j , and so this common value
must be multiplied by the number of ways the yj can sum to x. This is equal
to the number of ways of partitioning the set of trials {1, . . . , n} into s + 1
sets, the first with x0 elements, the next with x1 elements, and so on. This
count is a multinomial coefficient given by

(

n

x0, . . . , xs

)

=
n!

x0! × · · · × xs!
.

This formula can be derived recursively. There are
(

n
x0

)

ways to choose the

first set, then
(

n−x0

x1

)

ways to choose the second set, and so on. The product of
these binomial coefficients simplifies to the stated result. Using a multinomial
coefficient to evaluate the sum in (5.3),

P (X0 = x0, . . . , Xs = xs) =

(

n

x0, . . . , xs

)

px0
0 × · · · × pxs

s ,

provided x0, . . . , xs are nonnegative integers summing to n. This is the mass
function for the multinomial distribution, and we write

X ∼ Multinomial(p0, . . . , ps;n).

The marginal distribution of Xj, because Xj counts the number of trials
with aj as an outcome, is binomial with success probability pj. Because X is
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complete sufficient, Xj/n is UMVU for pj . Unbiased estimation of the product
pjpk of two different success probabilities is more interesting as Xj and Xk

are dependent. One unbiased estimator δ is the indicator that Y1 is aj and
Y2 is ak. The chance that X = x given δ = 1 is a multinomial probability for
n−2 trials with outcome aj occurring xj −1 times and outcome ak occurring
xk − 1 times. Therefore

P (δ = 1|X = x) =
P (δ = 1)P (X = x|δ = 1)

P (X = x)

=
pjpk

(

n−2
x0,...,xj−1,...,xk−1,...,xs

)

px0
0 × · · · × pxs

s /(pjpk)
(

n
x0,...,xs

)

px0
0 × · · · × pxs

s

=
xjxk

n(n− 1)
.

Thus XjXk/(n
2 − n) is UMVU for pjpk, j 6= k.

In applications, the success probabilities p0, . . . , ps often satisfy additional
constraints. In some cases this will lead to a full rank exponential family with
fewer parameters, and in other cases it will lead to a curved exponential family.
Here are two examples of the former possibility.

Example 5.5. Two-Way Contingency Tables. Consider a situation with n in-
dependent trials, but now for each trial two characteristics are observed: Char-
acteristic A with possibilities A1, . . . , AI , and Characteristic B with possibili-
ties B1, . . . , BJ . Let Nij denote the number of trials in which the combination
AiBj is observed, and let pij denote the chance of AiBj on any given trial.
Then

N = (N11, N12, . . . , NIJ) ∼ Multinomial(p11, p12, . . . , pIJ ;n).

These data and the sums

Ni+ =

J
∑

j=1

Nij , i = 1, . . . , I,

and

N+j =
I
∑

i=1

Nij , j = 1, . . . , J,

are often presented in a contingency table with the following form:

B1 · · · BJ Total
A1 N11 · · · N1J N1+

...
...

...
...

AI NI1 · · · NIJ NI+
Total N+1 · · · N+J n
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If characteristics A and B are independent, then

pij = pi+p+j , i = 1, . . . , I, j = 1, . . . , J,

where pi+ =
∑J

j=1 pij is the chance of Ai, and p+j =
∑I

i=1 pij is the chance
of Bj . With independence, the mass function of N can be written as

(

n

n11, . . . , nIJ

) I
∏

i=1

J
∏

j=1

(pi+p+j)
nij .

Letting ni+ =
∑J

j=1 nij , i = 1, . . . , I, and n+j =
∑I

i=1 nij , j = 1, . . . , J ,

I
∏

i=1

J
∏

j=1

p
nij

i+ =

I
∏

i=1

p
ni+

i+ and

I
∏

i=1

J
∏

j=1

p
nij

+j =

J
∏

j=1

p
n+j

+j .

So the mass function of N can be written

(

n

n11, . . . , nIJ

) I
∏

i=1

p
ni+

i+

J
∏

j=1

p
n+j

+j .

Using the constraints
∑I

i=1 ni+ =
∑J

j=1 n+j = n and
∑I
i=1 pi+ =

∑J
j=1 p+j =

1, this mass function equals

(

n

n11, . . . , nIJ

)

exp

[

I
∑

i=2

ni+ log

(

pi+
p1+

)

+

J
∑

j=2

n+j log

(

p+j

p+1

)

+ n log(p1+p+1)

]

.

These mass functions form a full rank (I+J−2)-parameter exponential family
with canonical sufficient statistic

(N2+, . . . , NI+, N+2, . . . , N+J).

The equivalent statistic

(N1+, . . . , NI+, N+1, . . . , N+J)

is also complete sufficient. In this model, Ni+ ∼ Binomial(n, pi+) and N+j ∼
Binomial(n, p+j) are independent. So p̂i+ = Ni+/n and p̂+j = N+j/n are
UMVU estimates of pi+ and p+j, respectively, and p̂i+p̂+j is the UMVU esti-
mate of pij = pi+p+j .
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Example 5.6. Tables with Conditional Independence. Suppose now that three
characteristics, A, B, and C, are observed for each trial, with Nijk the num-
ber of trials that result in combination AiBjCk, and pijk the chance of this
combination. Situations frequently arise in which it seems that characteristics
A and B should be unrelated, but they are not independent because both are
influenced by the third characteristic C. An appropriate model may be that
A and B are conditionally independent given C. This leads naturally to the
following constraints on the cell probabilities:

pijk = p++k
pi+k
p++k

p+jk

p++k
, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K,

where a “+” as a subscript indicates that the values for that subscript should
be summed. Calculations similar to those for the previous example show that
the mass functions with these constraints form a full rank

(

K(I+J −1)−1
)

-
parameter exponential family with sufficient statistics N++k, k = 1, . . . ,K,
Ni+k, i = 1, . . . , I, k = 1, . . . ,K, and N+jk, j = 1, . . . , J , k = 1, . . . ,K.

5.4 Problems2

*1. Suppose X has a binomial distribution with m trials and success probabil-
ity θ, Y has a binomial distribution with n trials and success probability
θ2, and X and Y are independent.
a) Find a minimal sufficient statistic T .
b) Show that T is not complete, providing a nontrivial function f with

Eθf(T ) = 0.
*2. Let X and Y be independent Bernoulli variables with P (X = 1) = p and

P (Y = 1) = h(p) for some known function h.
a) Show that the family of joint distributions is a curved exponential

family unless

h(p) =
1

1 + exp
{

a+ b log p
1−p

}

for some constants a and b.
b) Give two functions h, one where (X,Y ) is minimal but not complete,

and one where (X,Y ) is minimal and complete.
3. Let X and Y be independent Poisson variables.

a) Suppose X has mean λ, and Y has mean λ2. Do the joint mass func-
tions form a curved two-parameter exponential family or a full rank
one-parameter exponential family?

b) Suppose instead X has mean λ, and Y has mean 2λ. Do the joint
mass functions form a curved two-parameter exponential family, or a
full rank one-parameter exponential family?

2 Solutions to the starred problems are given at the back of the book.
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4. Consider the two-sample problem with X1, . . . , Xm i.i.d. from N(µx, σ
2
x)

and Y1, . . . , Yn i.i.d. from N(µy, σ
2
y), and all n + m variables mutually

independent.
a) Find the UMVU estimator for the ratio of variances, σ2

x/σ
2
y .

b) If the two variances are equal, σ2
x = σ2

y = σ, find the UMVU estimator
of the normalized difference in means (µx − µy)/σ.

5. Consider the two-sample problem with X1, . . . , Xm i.i.d. from N(µx, σ
2)

and Y1, . . . , Yn i.i.d. from N(µy, σ
2), and all n + m variables mutually

independent. Fix α ∈ (0, 1) and define a parameter q so that P (Xi >
Yi + q) = α. Find the UMVU of q.

*6. Two teams A and B play a series of games, stopping as soon as one of
the teams has 4 wins. Assume that game outcomes are independent and
that on any given game team A has a fixed chance θ of winning. Let X
and Y denote the number of games won by the first and second team,
respectively.
a) Find the joint mass function for X and Y . Show that as θ varies these

mass functions form a curved exponential family.
b) Show that T = (X,Y ) is complete.
c) Find a UMVU estimator of θ.

*7. Consider a sequential experiment in which observations are i.i.d. from a
Poisson distribution with mean λ. If the first observation X is zero, the
experiment stops, and if X > 0, a second observation Y is observed. Let
T = 0 if X = 0, and let T = 1 +X + Y if X > 0.
a) Find the mass function for T .
b) Show that T is minimal sufficient.
c) Does this experiment give a curved two-parameter exponential family

or full rank one-parameter exponential family?
d) Is T a complete sufficient statistic? Hint: Write eλEλg(T ) as a power

series in λ and derive equations for g setting coefficients for λx to zero.
8. Potential observations (X1, Y1), (X2, Y2), . . . in a sequential experiment

are i.i.d. The marginal distribution of Xi is Poisson with parameter λ, the
marginal distribution of Yi is Bernoulli with success probability 1/2, and
Xi and Yi are independent. Suppose we continue observation, stopping
the first time that Yi = 1, so that the sample size is

N = inf{i : Yi = 1}.

a) Show that the joint densities form an exponential family, and identify
a minimal sufficient statistic. Is the family curved?

b) Find two different unbiased estimators of λ, both functions of the min-
imal sufficient statistic. Is the minimal sufficient statistic complete?

9. Consider an experiment observing independent Bernoulli trials with un-
known success probability θ ∈ (0, 1). Suppose we observe trial outcomes
until there are two successes in a row.
a) Find a minimal sufficient statistic.
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b) Give a formula for the mass function of the minimal sufficient statistic.
c) Is the minimal sufficient statistic complete? If it is, explain why, and

if it is not, find a nontrivial function with constant expectation.
10. Consider a sequential experiment in which X1 and X2 are independent

exponential variables with failure rate λ. If X1 < 1, sampling stops after
the first observation; if not, the second variable X2 is also sampled. So
N = 1 if X1 < 1 and N = 2 if X1 ≥ 1.
a) Do the densities for this experiment form a curved two-parameter

exponential family or a one-parameter exponential family?
b) Find EX, and compare this expectation with the mean 1/λ of the

exponential distribution.
11. Suppose independent Bernoulli trials are performed until the number of

successes and number of failures differ by 2. Let X denote the number of
successes, Y the number of failures (so |X − Y | = 2), and θ the chance of
success.
a) Find the joint mass function for X and Y . Show that these mass

functions form a curved exponential family with T = (X,Y ).
b) Show that T is complete.
c) Find the UMVU estimator for θ.
d) Find P (X > Y ).

12. Consider a sequential experiment in which the potential observations
X1, X2, . . . are i.i.d. from a geometric distribution with success probability
θ ∈ (0, 1), so

P (Xi = x) = θ(1 − θ)x, x = 0, 1, . . . .

The sampling rule calls for a single observation (N = 1) if X1 = 0, and
two observations (N = 2) if X1 ≥ 1. Define

T =
N
∑

i=1

Xi.

a) Do the densities for this experiment form a curved two-parameter
exponential family or a one-parameter exponential family?

b) Show that T is minimal sufficient.
c) Find the mass function for T .
d) Is T complete? Explain why or find a function g such that g(T ) has

constant expectation.
e) Find EX . Is X an unbiased estimator of EX1?
f) Find the UMVU estimator of EX1.

*13. Consider a single two-way contingency table and defineR = N11+N12 (the
first row sum), C = N11 +N21 (the first column sum), and D = N11 +N22

(the sum of the diagonal entries).
a) Show that the joint mass function can be written as a full rank three-

parameter exponential family with T = (R,C,D) as the canonical
sufficient statistic.
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b) Relate the canonical parameter associated with D to the “cross-
product ratio” α defined as α = p11p22/(p12p21).

c) Suppose we observe m independent two-by-two contingency tables.
Let ni, i = 1, . . . ,m, denote the trials for table i. Assume that cell
probabilities for the tables may differ, but that the cross-product ratios
for all m tables are all the same. Show that the joint mass functions
form a full rank exponential family. Express the sufficient statistic as
a function of the variables R1, . . . , Rm, C1, . . . , Cm, and D1, . . . , Dm.

14. Consider a two-way contingency table with a multinomial distribution
for the counts Nij and with I = J . If the probabilities are symmetric,
pij = pji, do the mass functions form a curved exponential family, or
a full rank exponential family? With this constraint, identify a minimal
sufficient statistic. Also, if possible, give UMVU estimators for the pij .

15. Let (N11k, N12k, N21k, N22k), k = 1, . . . , n, be independent two-by-two
contingency tables. The kth table has a multinomial distribution with m
trials and success probabilities

(

1 + θk
4

,
1 − θk

4
,
1 − θk

4
,
1 + θk

4

)

.

Note that θk can be viewed as a measure of dependence in table k. (If
θk = 0 there is independence in table k.) Consider a model in which

log

[

1 + θk
1 − θk

]

= α+ βxk, k = 1, . . . ,m,

where α and β are unknown parameters, and x1, . . . , xn are known con-
stants. Show that the joint densities form an exponential family and iden-
tify a minimal sufficient statistic. Is this statistic complete?

*16. For an I × J contingency table with independence, the UMVU estimator
of pij is p̂i+p̂+j = Ni+N+j/n

2.
a) Determine the variance of this estimator, Var(p̂i+p̂+j).
b) Find the UMVU estimator of the variance in (a).

17. In some applications the total count in a contingency table would most
naturally be viewed as a random variable. In these cases, a Poisson model
might be more natural than the multinomial model in the text.
a) LetX1, . . . , Xp be independent Poisson variables, and let λi denote the

mean of Xi. Show that T = X1 + · · ·+Xp has a Poisson distribution,
and find

P (X1 = x1, . . . , Xp = xp|T = n),

the conditional mass function for X given T = n.
b) Consider a model for a two-by-two contingency table in which entries

N11, . . . , N22 are independent Poisson variables, and let λij denote the
mean of Nij . With the constraint λ11λ22 = λ12λ21, do the joint mass
functions for these counts form a curved four-parameter exponential
family or a three-parameter exponential family?
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18. Consider a two-way contingency table with a multinomial distribution for
the counts Nij with I = J . Assume that the cell probabilities pij are
constrained to have the same marginal values,

pi+ = p+i, i = 1, . . . , I.

a) If I = 2, find a minimal sufficient statistic T . Is T complete?
b) Find a minimal sufficient statistic T when I = 3. Is this statistic

complete?
c) Suppose we add an additional constraint that the characteristics are

independent, so

pij = pi+p+j , i = 1, . . . , I, j = 1, . . . , I.

Give a minimal sufficient statistic when I = 2, and determine whether
it is complete.
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Conditional Distributions

Building on Section 1.10, this chapter provides a more thorough and proper
treatment of conditioning. Section 6.4 gives a proof of the factorization theo-
rem (Theorem 3.6).

6.1 Joint and Marginal Densities

Let X be a random vector in Rm, let Y be a random vector in Rn, and let
Z = (X,Y ) in Rm+n. Suppose PZ has density pZ with respect to µ×ν where µ
and ν are measures on Rm and Rn. This density pZ is called the joint density
of X and Y . Then

P (Z ∈ B) =

∫∫

1B(x, y)pZ(x, y) dµ(x) dν(y).

By Fubini’s theorem, the order of integration here can be reversed. To compute
P (X ∈ A) from this formula, note that X ∈ A if and only if Z ∈ A × Rn.
Then because 1A×Rn(x, y) = 1A(x),

P (X ∈ A) = P (Z ∈ A× Rn) =

∫∫

1A(x)pZ (x, y) dν(y) dµ(x)

=

∫

A

{∫

pZ(x, y) dν(y)

}

dµ(x).

From this, X has density

pX(x) =

∫

pZ(x, y) dν(y) (6.1)

with respect to µ. This density pX is called the marginal density of X . Simi-
larly, Y has density

pY (y) =

∫

pZ(x, y) dµ(x),

called the marginal density of Y .

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
DOI 10.1007/978-0-387-93839-4_6, © Springer Science+Business Media, LLC 2010 
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Example 6.1. Suppose µ is counting measure on {0, 1, . . . , k} and ν is Lebesgue
measure on R. Define

pZ(x, y) =







(

k

x

)

yx(1 − y)k−x, x = 0, 1, . . . , k, y ∈ (0, 1);

0, otherwise.

By (6.1), X has density

pX(x) =

∫ 1

0

(

k

x

)

yx(1 − y)k−xdy =
1

k + 1
, x = 0, 1, . . . , k.

(The identity
∫ 1

0
uα−1(1−u)β−1 du = Γ (α)Γ (β)/Γ (α+β) is used to evaluate

the integral.) This is the density for the uniform distribution on {0, 1, . . . , k}.
To find the marginal density of Y we integrate the joint density against µ.
For y ∈ (0, 1),

pY (y) =

∫

pZ(x, y) dµ(x) =

k
∑

x=0

(

k

x

)

yx(1 − y)k−x = 1;

and if y /∈ (0, 1), pY (y) = 0. Therefore Y is uniformly distributed on (0, 1).

6.2 Conditional Distributions

Let X and Y be random vectors. The definition of the conditional distribution
Qx of Y given X = x is related to our fundamental smoothing identity.
Specifically, if E|f(X,Y )| <∞, we should have

Ef(X,Y ) = EE[f(X,Y )|X ], (6.2)

with E[f(X,Y )|X ] = H(X) and

H(x) = E[f(X,Y )|X = x] =

∫

f(x, y) dQx(y).

Written out, (6.2) becomes

Ef(X,Y ) =

∫

H(x) dPX(x) =

∫∫

f(x, y) dQx(y) dPX(x). (6.3)

The formal definition requires that (6.3) holds when f is an indicator of A×B.
Then (6.2) or (6.3) will hold for general measurable f provided E|f(X,Y )| <
∞.

Definition 6.2. The function Q is a conditional distribution for Y given X,
written

Y |X = x ∼ Qx,

if
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1. Qx(·) is a probability measure for all x,
2. Qx(B) is a measurable function of x for any Borel set B, and
3. for any Borel sets A and B,

P (X ∈ A, Y ∈ B) =

∫

A

Qx(B) dPX(x).

When X and Y are random vectors, conditional distributions will always
exist.1 Conditional probabilities can be defined in more general settings, but
assignments so that Qx(·) is a probability measure may not be possible.

The stated definition of conditional distributions is not constructive. In the
setting of Section 6.1 in which X and Y have joint density pZ with respect to
µ× ν, conditional distributions can be obtained explicitly using the following
result.

Theorem 6.3. Suppose X and Y are random vectors with joint density pZ
with respect to µ × ν. Let pX be the marginal density for X given in (6.1),
and let E = {x : pX(x) > 0}. For x ∈ E, define

pY |X(y|x) =
pZ(x, y)

pX(x)
, (6.4)

and let Qx be the probability measure with density pY |X(·|x) with respect to
ν. When x /∈ E, define pY |X(y|x) = p0(y), where p0 is the density for an
arbitrary fixed probability distribution P0, and let Qx = P0. Then Q is a
conditional distribution for Y given X.

Proof. Part one of the definition is apparent, and part two follows from mea-
surability of pZ . It is convenient to establish (6.3) directly; part three of
the definition then follows immediately. First note that P (X ∈ E) = 1,
and without loss of generality we can assume that pZ(x, y) = 0 when-
ever x /∈ E. (If not, just change pZ(x, y) to pZ(x, y)1E(x)—these functions
agree for a.e. (x, y) (µ × ν), and either can serve as the joint density.) Then
pZ(x, y) = pX(x)pY |X(y|x) for all x and y, and the right-hand side of (6.3)
equals

∫∫

f(x, y)pY |X(y|x) dν(y) pX(x) dµ(x)

=

∫∫

f(x, y)pZ(x, y) dν(y) dµ(x) = Ef(X,Y ).

⊓⊔

When X and Y are independent, pZ(x, y) = pX(x)pY (y), and so

1 When X is a random variable, this is given as Theorem 33.3 of Billingsley (1995).
See Chapter 5 of Rao (2005) for more general cases.
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pY |X(y|x) =
pX(x)pY (y)

pX(x)
= pY (y),

for x ∈ E. So the conditional and marginal distributions for Y are the same
(for a.e. x).

Example 6.1, continued. Because pY (y) = 1, y ∈ (0, 1),

pX|Y (x|y) = pZ(x, y) =

(

k

x

)

yx(1 − y)k−x, x = 0, 1, . . . , k.

As a function of x with y fixed, this is the mass function for the binomial
distribution with success probability y and k trials. So

X |Y = y ∼ Binomial(k, y). (6.5)

Similarly, recalling that pX(x) = 1/(k + 1),

pY |X(y|x) =
pZ(x, y)

pX(x)
= (k + 1)

(

k

x

)

yx(1 − y)k−x

=
Γ (k + 2)

Γ (x+ 1)Γ (k − x+ 1)
yx+1−1(1 − y)k−x+1−1, y ∈ (0, 1).

This is the density for the beta distribution, and so

Y |X = x ∼ Beta(x+ 1, k − x+ 1).

To illustrate how smoothing might be used to calculate expectations in
this example, as the binomial distribution in (6.5) has mean ky,

E[X |Y ] = kY.

So, by smoothing,

EX = EE[X |Y ] = kEY = k

∫ 1

0

y dy =
k

2
.

Summation against the mass function for X gives the same answer:

EX =

k
∑

x=0

x

k + 1
=
k

2
.

To compute EX2 using smoothing, because the binomial distribution in (6.5)
has second moment ky(1 − y) + k2y2,

EX2 = EE[X2|Y ] = E
[

kY (1 − Y ) + k2Y 2
]

=

∫ 1

0

(

ky(1 − y) + k2y2
)

dy =
k(1 + 2k)

6
.
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Summation against the mass function for X gives

EX2 =
k
∑

x=0

x2

k + 1
,

so these calculations show indirectly that

k
∑

x=0

x2 =
k(k + 1)(2k + 1)

6
.

(This can also be proved by induction.)

6.3 Building Models

To develop realistic models for two or more random vectors, it is often conve-
nient to specify a joint density, using (6.4), as

pZ(x, y) = pX(x)pY |X(y|x).

The thought process using this equation would involve first choosing a
marginal distribution for X and then combining this marginal distribution
with a suitable distribution for Y if X were known. This equation can be ex-
tended to several vectors. If p(xk|x1, . . . , xk−1) denotes the conditional density
of Xk given X1 = x1, . . . , Xk−1 = xk−1, then the joint density of X1, . . . , Xn

is
pX1(x1)p(x2|x1) · · · p(xn|x1, . . . , xn−1). (6.6)

Example 6.4. Models for Time Series. Statistical applications in which vari-
ables are observed over time are widespread and diverse. Examples include
prices of stocks, measurements of parts from a production process, or growth
curve data specifying size or dimension of a person or organism over time. In
most of these applications it is natural to suspect that the observations will
be dependent. For instance, if Xk is the log of a stock price, a model with

Xk|X1 = x1, . . . , Xk−1 = xk−1 ∼ N(xk−1 + µ, σ2)

may be natural. If X1 ∼ N(x0 + µ, σ2), then by (6.6), X1, . . . , Xn will have
joint density

n
∏

k=1

1√
2πσ2

exp

[

− (xk − xk−1 − µ)2

2σ2

]

.

Differences Xk −Xk−1 here are i.i.d. from N(µ, σ2), and the model here for
the joint distribution is called a random walk.

Another model for variables that behave in a more stationary fashion over
time might have
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Xk|X1 = x1, . . . , Xk−1 = xk−1 ∼ N(ρxk−1, σ
2),

where |ρ| < 1. If X1 ∼ N(ρx0, σ
2), then by (6.6) the joint density is

n
∏

k=1

1√
2πσ2

exp

[

− (xk − ρxk−1)
2

2σ2

]

.

This is called an autoregressive model.

Example 6.5. A Simple Model for Epidemics. For any degree of realism, statis-
tical models for epidemics must allow substantial dependence over time, and
conditioning arguments can be quite useful in attempts to incorporate this
dependence in a natural fashion. To illustrate, let us develop a simple model
based on suspect assumptions. Improvements with more realistic assumptions
should give practical and useful models

Let N denote the size of the population of interest, and let Xi denote
the number of infected individuals in the population at stage i. Assume that
once someone is infected, they stay infected. Also, assume that the chance an
infected individual infects a noninfected individual during the time interval
between two stages is p = 1− q and that all chances for infection are indepen-
dent. Then the chance a noninfected person stays noninfected during the time
interval between stages k and k + 1, given Xk = xk (and other information
about the past), is qxk , and so the number of people newly infected during
this time interval, Xk+1 −Xk, will have a binomial distribution. Specifically

Xk+1 −Xk|X1 = x1, . . . , Xk = xk ∼ Binomial(N − xk, 1 − qxk).

This leads to conditional densities (mass functions)

p(xk+1|x1, . . . , xk) =

(

N − xk
xk+1 − xk

)

(

1 − qxk
)xk+1−xk

(

qxk
)N−xk+1.

The product of these gives the joint mass function for X1, . . . , Xn.

6.4 Proof of the Factorization Theorem2

To prove the factorization theorem (Theorem 3.6) we need to work directly
from the definition of conditional distributions, for in most cases T and X
will not have a joint density with respect to any product measure. To begin,
suppose Pθ, θ ∈ Ω, has density

pθ(x) = gθ
(

T (x)
)

h(x) (6.7)

2 This section is optional; the proof is fairly technical.
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with respect to µ. Modifying h, we can assume without loss of generality that
µ is a probability measure equivalent3 to the family P = {Pθ : θ ∈ Ω}. Let
E∗ and P ∗ denote expectation and probability when X ∼ µ; let G∗ and Gθ
denote marginal distributions for T (X) when X ∼ µ and X ∼ Pθ; and let Q
be the conditional distribution for X given T when X ∼ µ. To find densities
for T ,

Eθf(T ) =

∫

f
(

T (x)
)

gθ
(

T (x)
)

h(x) dµ(x)

= E∗f(T )gθ(T )h(X)

=

∫∫

f(t)gθ(t)h(x) dQt(x) dG
∗(t)

=

∫

f(t)gθ(t)w(t) dG∗(t),

where

w(t) =

∫

h(x) dQt(x).

If f is an indicator function, this shows that Gθ has density gθ(t)w(t) with
respect to G∗. Next, define Q̃t to have density h/w(t) with respect to Qt, so
that

Q̃t(B) =

∫

B

h(x)

w(t)
dQt(x).

(On the null set w(t) = 0, Q̃t can be an arbitrary probability measure.) Then

Eθf(X,T ) = E∗f(X,T )gθ(T )h(X)

=

∫∫

f(x, t)gθ(t)h(x) dQt(x) dG
∗(t)

=

∫∫

f(x, t)
h(x)

w(t)
dQt(x)gθ(t)w(t) dG∗(t)

=

∫∫

f(x, t) dQ̃t(x) dGθ(t).

By (6.3) this shows that Q̃ is a conditional distribution for X given T under
Pθ. Because Q̃ does not depend on θ, T is sufficient.

Before considering the converse—that if T is sufficient the densities pθ must
have form (6.7)—we should discuss mixture distributions. Given a marginal
probability distribution G∗ and a conditional distribution Q, we can define a
mixture distribution P̂ by

P̂ (B) =

∫

Qt(B) dG∗(t) =

∫∫

1B(x) dQt(x) dG
∗(t).

3 “Equivalence” here means that µ(N) = 0 if and only if Pθ(N), ∀θ ∈ Ω. The
assertion here is based on a result that any dominated family is equivalent to the
mixture of some countable subfamily.
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Then for integrable f ,
∫

f dP̂ =

∫∫

f(x) dQt(x) dG
∗(t).

(By linearity, this must hold for simple functions f , and the general case
follows taking simple functions converging to f .)

Suppose now that T is sufficient, with Q the conditional distribution for
X given T . Let gθ be the G∗ density of T when X ∼ Pθ. (This density will
exist, for if G∗(N) = 0, µ(N0) = 0 where N0 = T−1(N), and so Gθ(N) =
Pθ(T ∈ N) = Pθ(X ∈ N0) =

∫

N0
pθ dµ = 0.) Then

Pθ(X ∈ B) = EθPθ(X ∈ B|T )

= EθQT (B)

=

∫

Qt(B)gθ(t) dG
∗(t)

=

∫∫

1B(x) dQt(x) gθ(t) dG
∗(t)

=

∫∫

1B(x)gθ
(

T (x)
)

dQt(x) dG
∗(t)

=

∫

B

gθ
(

T (x)
)

dP̂ (x).

This shows that Pθ has density gθ
(

T (·)
)

with respect to P̂ .

The mixture distribution P̂ is absolutely continuous with respect to µ. To
see this, suppose µ(N) = 0. Then Pθ(N) =

∫

Qt(N) dGθ(t) = 0, which implies

Gθ(Ñ) = 0, where Ñ = {t : Qt(N) > 0}. Because µ is equivalent to P and
Gθ(Ñ) = Pθ(T ∈ Ñ) = 0, ∀θ ∈ Ω, P ∗(T ∈ Ñ) = G∗(Ñ) = 0. Thus Qt(N) = 0
(a.e. G∗) and so P̂ (N) =

∫

Qt(N) dG∗(t) = 0. Taking h = dP̂ /dP ∗, Pθ has
density gθ

(

T (x)
)

h(x) with respect to P ∗.

6.5 Problems4

1. The beta distribution.
a) Let X and Y be independent random variables with X ∼ Γ (α, 1)

and Y ∼ Γ (β, 1). Define new random variables U = X + Y and
V = X/(X + Y ). Find the joint density of U and V . Hint: If p is the
joint density of X and Y , then

P{(U, V ) ∈ B} = P

{(

X + Y,
X

X + Y

)

∈ B

}

=

∫

1B

(

x+ y,
x

x+ y

)

p(x, y) dx dy.

4 Solutions to the starred problems are given at the back of the book.
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Next, change variables to write this integral as an integral against u =
x+ y and v = x/(x+ y). The change of variables can be accomplished
either using Jacobians or writing the double integral as an iterated
integral and using ordinary calculus.

b) Find the marginal density for V . Use the fact that this density inte-

grates to one to compute
∫ 1

0 x
α−1(1 − x)β−1dx. This density for V is

called the beta density with parameters α and β. The corresponding
distribution is denoted Beta(α, β).

c) Compute the mean and variance of the beta distribution.
d) Find the marginal density for U .

*2. Let X and Y be independent random variables with cumulative distribu-
tion functions FX and FY .
a) Assuming Y is continuous, use smoothing to derive a formula express-

ing the cumulative distribution function ofX2Y 2 as the expected value
of a suitable function of X . Also, if Y is absolutely continuous, give a
formula for the density.

b) Suppose X and Y are both exponential with the same failure rate λ.
Find the density of X − Y .

*3. Suppose that X and Y are independent and positive. Use a smoothing
argument to show that if x ∈ (0, 1), then

P

(

X

X + Y
≤ x

)

= EFX

(

xY

1 − x

)

, (6.8)

where FX is the cumulative distribution function of X .
*4. Differentiating (6.8), if X is absolutely continuous with density pX , then

V = X/(X + Y ) is absolutely continuous with density

pV (x) = E

[

Y

(1 − x)2
pX

(

xY

1 − x

)]

, x ∈ (0, 1).

Use this formula to derive the beta distribution introduced in Problem 6.1,
showing that if X and Y are independent with X ∼ Γ (α, 1) and Y ∼
Γ (β, 1), then V = X/(X + Y ) has density

pV (x) =
Γ (α+ β)

Γ (α)Γ (β)
xα−1(1 − x)β−1

for x ∈ (0, 1).
*5. Let X and Y be absolutely continuous with joint density

p(x, y) =

{

2, 0 < x < y < 1;

0, otherwise.

a) Find the marginal density of X and the marginal density of Y .
b) Find the conditional density of Y given X = x.
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c) Find E[Y |X ].
d) Find EXY by integration against the joint density of X and Y .
e) Find EXY by smoothing, using the conditional expectation you found

in part (c).
*6. Let µ be Lebesgue measure on R and let ν be counting measure on

{0, 1, . . .}2. Suppose the joint density of X and Y with respect to µ× ν is
given by

p(x, y1, y2) = x2(1 − x)y1+y2

for x ∈ (0, 1), y1 = 0, 1, 2, . . . , and y2 = 0, 1, 2, . . . .
a) Find the marginal density of X .
b) Find the conditional density of X given Y = y (i.e., given Y1 = y1

and Y2 = y2).
c) Find E[X |Y ] and E[X2|Y ]. Hint: The formula

∫ 1

0

xα−1(1 − x)β−1dx =
Γ (α)Γ (β)

Γ (α+ β)

may be useful.
d) Find E

[

1/(4+Y1 +Y2)
]

. Hint: Find EX using the density in part (a)
and find an expression for EX using smoothing and the conditional
expectation in part (c).

7. Let X and Y be random variables with joint Lebesgue density

p(x, y) =

{

2y2e−xy, x > 0, y ∈ (0, 1);

0, otherwise.

a) Find the marginal density for Y .
b) Find the conditional density for X given Y = y.
c) Find P (X > 1|Y = y), E[X |Y = y], and E[X2|Y = y].

8. Suppose X has the standard exponential distribution with marginal den-
sity e−x, x > 0, and that

P (Y = y|X = x) =
xye−x

y!
, y = 0, 1, . . . .

a) Find the joint density for X and Y . Identify the dominating measure.
b) Find the marginal density of Y .
c) Find the conditional density of X given Y = y.
d) Find EY using the marginal density in part (b).
e) As the conditional distribution of Y given X = x is Poisson with

parameter x, E(Y |X = x) = x. Use this to find EY by smoothing.
9. Suppose that X is uniformly distributed on the interval (0, 1) and that

P (Y = y|X = x) = (1 − x)xy , y = 0, 1, . . . .

a) Find the joint density for X and Y . What is the measure for integrals
against this density?
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b) Find the marginal density of Y .
c) Find the conditional density of X given Y = y.
d) Find E[X |Y = y]. Find P (X < 1/2|Y = 0) and P (X < 1/2|Y = 1).

10. Suppose X and Y are independent, both uniformly distributed on (0, 1).
Let M = max{X,Y } and Z = min{X,Y }.
a) Find the conditional distribution of Z given M = m.
b) Suppose instead that X and Y are independent but uniformly dis-

tributed on the finite set {1, . . . , k}. Give the conditional distribution
of Z given M = j.

*11. Suppose X and Y are independent, both absolutely continuous with com-
mon density f . Let M = max{X,Y } and Z = min{X,Y }. Determine the
conditional distribution for the pair (X,Y ) given (M,Z).

*12. Let X and Y be independent exponential variables with failure rate λ, so
the common marginal density is λe−λx, x > 0. Let T = X + Y . Give a
formula expressing E[f(X,Y )|T = t] as a one-dimensional integral. Hint:
Review the initial example on sufficiency in Section 3.2.

13. Suppose X and Y are absolutely continuous with joint density

exp
[

−x2−2ρxy+y2

2(1−ρ2)

]

2π
√

1 − ρ2
.

This is a bivariate normal density with

EX = EY = 0, Var(X) = Var(Y ) = 1,

and
Cor(X,Y ) = ρ.

Determine the conditional distribution of Y given X . (Naturally, the an-
swer should depend on the correlation coefficient ρ.) Use smoothing to
find the covariance between X2 and Y 2.

*14. Let X and Y be absolutely continuous with density p(x, y) = e−x, if
0 < y < x; p(x, y) = 0, otherwise.
a) Find the marginal densities of X and Y .
b) Compute EY and EY 2 integrating against the marginal density of Y .
c) Find the conditional density of Y given X = x, and use it to compute

E[Y |X ] and E[Y 2|X ].
d) Find the expectations of E[Y |X ] and E[Y 2|X ] integrating against the

marginal density of X .
15. Suppose X has a Poisson distribution with mean λ and that given X = x,

Y has a binomial distribution with x trials and success probability p. (If
X = 0, Y = 0.)
a) Find the marginal distribution of Y .
b) Find the conditional distribution of X given Y .
c) Find E[Y 2|X ].
d) Compute EY 2 by smoothing, using the result in part (c).



112 6 Conditional Distributions

e) Compute EY 2 integrating against the marginal distribution from
part (a).

f) Find E[X |Y ] and use this to compute EX by smoothing.
16. Let X = (X1, X2) be an absolutely continuous random vector in R2 with

density f , and let T = X1 +X2.
a) Find the joint density for X1 and T .
b) Give a formula for the density of T .
c) Give a formula for the conditional density of X1 given T = t.
d) Give a formula for E

[

g(X)
∣

∣ T = t
]

. Hint: View g(X) as a function of
T and X1 and use the conditional density you found in part (c).

e) Suppose X1 and X2 are i.i.d. standard normal. Then X1 − X2 ∼
N(0, 2) and T ∼ N(0, 2). Find P

(

|X1 − X2| < 1
∣

∣ T
)

using your
formula from part (d). Integrate this against the density for T to
show that smoothing gives the correct answer.

17. Let X1, . . . , Xn be jointly distributed Bernoulli variables with mass func-
tion

P (X1 = x1, . . . , Xn = xn) =
sn!(n− sn)!

(n+ 1)!
,

where sn = x1 + · · · + xn.
a) Find the joint mass function for X1, . . . , Xn−1. (Your answer should

simplify.)
b) Find the joint mass function for X1, . . . , Xk for any k < n.
c) Find P (Xk+1 = 1|X1 = x1, . . . , Xk = xk), k < n.
d) Let Sn = X1 + · · · +Xn. Find

P (X1 = x1, . . . , Xn = xn|Sn = s).

e) Let Yk = (1 + Sk)/(k + 2). For k < n, find

E(Yk+1|X1 = x1, . . . , Xk = xk),

expressing your answer as a function of Yk. Use smoothing to relate
EYk+1 to EYk. Find EYk and ESk.

18. Suppose X ∼ N(0, 1) and Y |X = x ∼ N(x, 1).
a) Find the mean and variance of Y .
b) Find the conditional distribution of X given Y = y.

19. Let X be absolutely continuous with a positive continuous density f and
cumulative distribution function F . Take Y = X2.
a) Find the cumulative distribution function and the density for Y .
b) For y > 0, y 6= x2, find

lim
ǫ↓0

P
[

X ≤ x
∣

∣ Y ∈ (y − ǫ, y + ǫ)
]

.

c) The limit in part (b) should agree with the cumulative distribution
function for a discrete probability measureQy. Find the mass function
for this discrete distribution.
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d) Show that Q is a conditional distribution for X given Y . Specifically,
show that it satisfies the conditions in Definition 6.2.

20. Suppose X and Y are conditionally independent given W = w with

X |W = w ∼ N(aw, 1) and Y |W = w ∼ N(bw, 1).

Use smoothing to derive formulas relating EX , EY , Var(X), Var(Y ), and
Cov(X,Y ) to moments of W and the constants a and b.

21. Suppose Y ∼ N(ν, τ2) and that given Y = y, X1, . . . , Xn are i.i.d. from
N(y, σ2). Taking x = (x1 + · · · + xn)/n, show that the conditional distri-
bution of Y given X1 = x1, . . . , Xn = xn is normal with

E(Y |X1 = x1, . . . , Xn = xn) =
ν/τ2 + nx/σ2

1/τ2 + n/σ2

and

Var(Y |X1 = x1, . . . , Xn = xn) =
1

1/τ2 + n/σ2
.

Remark: If precision is defined as the reciprocal of the variance, these
formulas state that the precision of the conditional distribution is the
sum of the precisions of the Xi and Y , and the mean of the conditional
distribution is an average of the Xi and ν, weighted by the precisions of
the variables.

22. A building has a single elevator. Times between stops on the first floor
are presumed to follow an exponential distribution with failure rate θ. In
a time interval of duration t, the number of people who arrive to ride the
elevator has a Poisson distribution with mean λt.
a) Suggest a joint density for the time T between elevator stops and the

number of people X that board when it arrives.
b) Find the marginal mass function for X .
c) Find EX2.
d) Let λ > 0 and θ > 0 be unknown parameters, and suppose we observe

data X1, . . . , Xn that are i.i.d. with the marginal mass function of
X in part (b). Suggest an estimator for the ratio θ/λ based on the
average X . With these data, if n is large will we be able to estimate
λ accurately?
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Bayesian Estimation

As mentioned in Section 3.1, a comparison of two estimators from their risk
functions will be inconclusive whenever the graphs of these functions cross.
This difficulty will not arise if the performance of an estimator is measured
with a single number. In a Bayesian approach to inference the performance of
an estimator δ is judged by a weighted average of the risk function, specifically
by

∫

R(θ, δ) dΛ(θ), (7.1)

where Λ is a specified probability measure on the parameter space Ω.

7.1 Bayesian Models and the Main Result

The weighted average (7.1) arises as expected loss using δ in a Bayesian
probability model in which both the unknown parameter and data are viewed
as random. For notation, Θ is the random parameter with θ a possible value
for Θ. In the Bayesian model,

Θ ∼ Λ,

with Λ called the prior distribution because it represents probabilities before
data are observed, and Pθ is the conditional distribution of X given Θ = θ,
that is,

X |Θ = θ ∼ Pθ.

Then

E
[

L
(

Θ, δ(X)
) ∣

∣ Θ = θ
]

=

∫

L
(

θ, δ(x)
)

dPθ(x) = R(θ, δ),

and by smoothing,

EL(Θ, δ) = EE
[

L(Θ, δ)
∣

∣ Θ
]

= ER(Θ, δ) =

∫

R(θ, δ) dΛ(θ).
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In Bayesian estimation, the choice of the prior distribution Λ is critical. In
some situations Θ may be random in the usual frequentist sense with a random
process producing the current parameter Θ and other random parameters in
the past and future. Then Λ would be selected from prior experience with the
random process. For instance, the parameter Θ may be the zip code on a letter
estimated using pixel data from an automatic scanner. The prior distribution
here should just reflect chances for various zip codes. More commonly, the
parameter Θ cannot be viewed as random in a frequentist sense. The general
view in these cases would be that the prior Λ should reflect the researchers’
informed subjective opinion about chances for various values of Θ. Both of
these ideas regarding selection of Λ may need to be tempered with a bit
of pragmatism. Calculations necessary to compute estimators may be much
easier if the prior distribution has a convenient form.

An estimator that minimizes (7.1) is called Bayes. Lacking information
from data X , the best estimate is just the constant minimizing EL(Θ, d) over
allowed values of d. The following result shows that a Bayes estimator can be
found in a similar fashion. The key difference is that one should now minimize
the conditional expected loss given the data, that is E

[

L(Θ, d)
∣

∣ X = x
]

. This
conditional expected loss is called the posterior risk and would be computed
integrating against the conditional distribution for Θ given X = x, called the
posterior distribution of Θ.

Theorem 7.1. Suppose Θ ∼ Λ, X |Θ = θ ∼ Pθ, and L(θ, d) ≥ 0 for all θ ∈ Ω
and all d. If

a) EL(Θ, δ0) <∞ for some δ0,

and

b) for a.e. x there exists a value δΛ(x) minimizing

E
[

L(Θ, d)
∣

∣ X = x
]

with respect to d,

then δΛ is a Bayes estimator.

Proof. Let δ be an arbitrary estimator. Then for a.e. x,

E
[

L
(

Θ, δ(X)
) ∣

∣ X = x
]

= E
[

L
(

Θ, δ(x)
) ∣

∣ X = x
]

≥ E
[

L
(

Θ, δΛ(x)
) ∣

∣ X = x
]

= E
[

L
(

Θ, δΛ(X)
) ∣

∣ X = x
]

,

and so
E
[

L
(

Θ, δ(X)
) ∣

∣ X
]

≥ E
[

L
(

Θ, δΛ(X)
) ∣

∣ X
]

,

almost surely. Taking expectations, by smoothing,

EL
(

Θ, δ(X)
)

≥ EL
(

Θ, δΛ(X)
)

.

Thus δΛ is Bayes. ⊓⊔
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7.2 Examples

Example 7.2. Weighted Squared Error Loss. Suppose

L(θ, d) = w(θ)
(

d− g(θ)
)2
.

By Theorem 7.1, δΛ(x) should minimize

E
[

w(Θ)
(

d− g(Θ)
)2 ∣
∣ X = x

]

= d2E
[

w(Θ)
∣

∣ X = x
]

− 2dE
[

w(Θ)g(Θ)
∣

∣ X = x
]

+ E
[

w(Θ)g2(Θ)
∣

∣ X = x
]

.

This is a quadratic function of d, minimized when the derivative

2dE
[

w(Θ)
∣

∣ X = x
]

− 2E
[

w(Θ)g(Θ)
∣

∣ X = x
]

equals zero. Thus

δΛ(x) =
E
[

w(Θ)g(Θ)
∣

∣ X = x
]

E
[

w(Θ)
∣

∣ X = x
] . (7.2)

If the weight function w is identically one, then

δΛ(X) = E
[

g(Θ)
∣

∣ X
]

,

called the posterior mean of g(Θ).
If P is a dominated family with pθ the density for Pθ, and if Λ is absolutely

continuous with Lebesgue density λ, then the joint density of X and Θ is

pθ(x)λ(θ).

By (6.1), the marginal density of X is

q(x) =

∫

pθ(x)λ(θ) dθ,

and by (6.4), the conditional density of Θ given X = x is

λ(θ|x) =
pθ(x)λ(θ)

q(x)
.

Using this, (7.2) becomes

δΛ(x) =

∫

w(θ)g(θ)pθ(x)λ(θ) dθ
∫

w(θ)pθ(x)λ(θ) dθ
.

(The factor 1/q(x) common to both the numerator and denominator cancels.)
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Example 7.3. Binomial. When Pθ is the binomial distribution with n trials
and success probability θ, the beta distribution Beta(α, β) with density

λ(θ) =
Γ (α+ β)

Γ (α)Γ (β)
θα−1(1 − θ)β−1, θ ∈ (0, 1),

is a common choice for the prior distribution of Θ. (For a derivation of this
density, see Problem 6.1.) The beta density integrates to one, therefore

∫ 1

0

θα−1(1 − θ)β−1 dθ =
Γ (α)Γ (β)

Γ (α+ β)
. (7.3)

Using this,

EΘ =
Γ (α+ β)

Γ (α)Γ (β)

∫ 1

0

θ1+α−1(1 − θ)β−1 dθ

=
Γ (α+ β)

Γ (α)Γ (β)

Γ (α+ 1)Γ (β)

Γ (α+ β + 1)

=
α

α+ β
.

The marginal density of X in the Bayesian model is

q(x) =

∫

pθ(x)λ(θ) dθ

=

∫ 1

0

(

n

x

)

Γ (α+ β)

Γ (α)Γ (β)
θx+α−1(1 − θ)n−x+β−1 dθ

=

(

n

x

)

Γ (α+ β)

Γ (α)Γ (β)

Γ (x+ α)Γ (n− x+ β)

Γ (n+ α+ β)
.

This is the mass function for the beta-binomial distribution, sometimes used
in a non-Bayesian setting to model variables that exhibit more variation than
would be anticipated from a binomial model. Dividing pθ(x)λ(θ) by this mass
function q(x),

λ(θ|x) =
Γ (n+ α+ β)

Γ (α+ x)Γ (β + n− x)
θx+α−1(1 − θ)n−x+β−1, θ ∈ (0, 1).

This shows that
Θ|X = x ∼ Beta(x+ α, n− x+ β).

The updating necessary to find the posterior distribution from the prior and
the observed data is particularly simple here; just increment α by the number
of successes observed, and increment β by the number of failures. Prior dis-
tributions that ensure a posterior distribution from the same class are called
conjugate. See Problem 7.4 for a class of examples. With squared error loss,
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δΛ(X) = E[Θ|X ] =
X + α

n+ α+ β
.

Straightforward algebra gives

δΛ(X) =

[

n

n+ α+ β

]

X

n
+

[

1 − n

n+ α+ β

]

α

α+ β
,

which shows that the Bayes estimator here is a weighted average of the UMVU
estimator X/n and the prior mean EΘ = α/(α+ β).

Example 7.4. Negative Binomial. From a sequence of Bernoulli trials with suc-
cess probability θ, let X be the number of failures before the second success.
Then

pθ(x) = Pθ(X = x) = (x+ 1)θ2(1 − θ)x, x = 0, 1, . . . .

Consider estimation of g(Θ) = 1/Θ for a Bayesian model in which Θ is uni-
formly distributed on (0, 1). Then

λ(θ|x) ∝θ pθ(x)λ(θ) ∝θ θ2(1 − θ)x.

This is proportional to the density for Beta(3, x+ 1), and so

Θ|X = x ∼ Beta(3, x+ 1).

The posterior mean is

δ0(x) = E[Θ−1|X = x] =
Γ (x+ 4)

Γ (3)Γ (x+ 1)

∫ 1

0

θ(1 − θ)x dθ

=
Γ (x+ 4)Γ (2)Γ (x+ 1)

Γ (3)Γ (x+ 1)Γ (x+ 3)
=
x+ 3

2
.

Recalling from Example 5.3 that the UMVU estimator of 1/θ for this model
is

δ1(x) =
x+ 2

2
,

we have the curious result that

δ0(X) = δ1(X) +
1

2
.

So the estimator δ0 has constant bias b(θ, δ0) = Eθδ0(X) − 1/θ = 1/2. With
squared error loss, the risk of any estimator is its variance plus the square of
its bias. Because δ0 and δ1 differ by a constant they have the same variance,
and so

R(θ, δ0) = Varθ(δ0) + 1/4 = Varθ(δ1) + 1/4 = R(θ, δ1) + 1/4.
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Thus the UMVU estimator δ1 has uniformly smaller risk than δ0! An estimator
is called inadmissible if a competing estimator has a better1 risk function. And
an inadmissible estimators is generally not Bayes, because an estimator with
a better risk function usually has smaller integrated risk. See Theorems 11.6
and 11.7. Trouble arises in this innocuous example because condition (a) in
Theorem 7.1 fails. When this happens, any estimator will minimize (7.1), and
Bayesian calculations may lead to a poor estimator.

7.3 Utility Theory2

In much of this book there is a basic presumption that risk or expected loss
should be used to compare and judge estimators. This may be reasonably
intuitive, but there is an important philosophical question regarding why ex-
pectation should play such a central role. Utility theory provides motivation
for this approach, showing that if preferences between probability distribu-
tions obey a few basic axioms, then one distribution will be preferred over
another if and only if its expected utility is greater. The treatment of utility
theory here is a bit sketchy. For more details see Chapter 7 of DeGroot (1970).

Let R be a set of rewards. These rewards could be numerical or monetary,
but more ethereal settings in which a reward might be some degree of fame
or happiness could also be envisioned. Let R denote all probability distribu-
tions on (R,F), where F is some σ-field. The distributions P ∈ R are called
“lotteries.” The idea here is that if you play some lottery P ∈ R you will re-
ceive a random reward in R according to the distribution P . Let “-” indicate
preferences among lotteries in R. Formally, - should be a complete ordering
of R; that is, it should satisfy these conditions:

1. If P1 and P2 are lotteries in R, then either P1 ≺ P2, P2 ≺ P1, or P1 ≃ P2.
(Here P1 ≃ P2 means that P1 - P2 and P2 - P1; and P1 ≺ P2 means
that P1 - P2, but P1 6≃ P2.)

2. If P1, P2, and P3 are lotteries in R with P1 - P2 and P2 - P3, then
P1 - P3.

It is also convenient to identify a reward r ∈ R with the degenerate probability
distribution in R that assigns unit mass to {r}. (To ensure this is possible, the
σ-field F must contain all singletons {r}, r ∈ R.) We can then define reward
intervals

[r1, r2] = {r ∈ R : r1 - r - r2}.
A lottery P ∈ R is called bounded if P ([r1, r2]) = 1 for some rewards r1 and
r2 in R. Let RB denote the collection of all bounded lotteries in R.

1 See Section 11.3 for a formal definition.
2 This section covers optional material not used in later chapters.



7.3 Utility Theory 121

Definition 7.5. A (measurable) function U : R → R is a utility function for
- if

P1 - P2 if and only if EP1U ≤ EP2U,

whenever the expectations exist. (Here EPU =
∫

U dP .)

The following example shows that utility functions may or may not exist.

Example 7.6. Suppose R contains two rewards, a and b, and let Pθ be the
lottery that gives reward a with probability θ. Suppose b ≺ a. Then if - has a
utility function U , U(a) is larger than U(b). Inasmuch as the expected utility
of Pθ is

∫

U(r) dPθ(r) = θU(a) + (1 − θ)U(b) = θ
[

U(a) − U(b)
]

+ U(b),

the expected utility of Pθ increases as θ increases. Hence Pθ1 - Pθ2 if and only
if θ1 ≤ θ2. Similarly, if a ≃ b, then U(a) = U(b) and all lotteries are equivalent
under -. But preferences between lotteries do not have to behave in this
fashion. For instance, if someone views rewards a and b as comparable, but
finds pleasure in the excitement of not knowing the reward they will receive,
a preference relation in which Pθ1 - Pθ2 if and only if |θ1 − 1/2| ≥ |θ2 − 1/2|
may be appropriate. For this preference relation there is no utility function.

Under axioms given below, utility functions will exist. The language makes
extensive use of pairwise mixtures of distributions. If P1 and P2 are lotteries
and α ∈ (0, 1), then the mixture αP1+(1−α)P2 can be viewed (by smoothing)
as a lottery that draws from P1 with probability α and draws from P2 with
probability 1 − α. In particular, because we associate rewards with degener-
ate lotteries, αr1 + (1 − α)r2 represents a lottery that gives reward r1 with
probability α and reward r2 with probability 1 − α.

A1) If P1, P2, and P are bounded lotteries in RB , and if α ∈ (0, 1), then
P1 ≺ P2 if and only if αP1 + (1 − α)P ≺ αP2 + (1 − α)P .

It is also easy to see that P1 - P2 if and only if αP1 + (1 − α)P -
αP2 + (1 − α)P . As a further consequence, if P1 - Q1 and P2 - Q2, all in
RB , and α ∈ (0, 1), then

αP1 + (1 − α)P2 - αQ1 + (1 − α)P2 - αQ1 + (1 − α)Q2.

If P1 ≃ Q1 and P2 ≃ Q2, again all in RB , the reverse inequalities also hold,
and

αP1 + (1 − α)P2 ≃ αQ1 + (1 − α)Q2. (7.4)

As a final consequence of this axiom, if r1 ≺ r2 are rewards in R, and if α and
β are constants in [0, 1], then

αr2 + (1 − α)r1 ≺ βr2 + (1 − β)r1 if and only if α < β. (7.5)
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A2) If P1 ≺ P ≺ P2 are bounded lotteries, then there exist constants α and
β in (0, 1) such that P ≺ αP2 + (1 − α)P1 and P ≻ βP2 + (1 − β)P1.

The following result follows from this axiom, and is used shortly to con-
struct a candidate utility function.

Theorem 7.7. If r1 - r - r2 are rewards in R, then there exists a unique
value ν ∈ [0, 1] such that

r ≃ νr2 + (1 − ν)r1.

Proof. Consider S = {α ∈ [0, 1] : r ≺ αr2 + (1 − α)r1}, an interval by (7.5),
and let ν be the lower endpoint of S, ν = inf S. If νr2 + (1 − ν)r1 ≺ r then
ν < 1, and by the second axiom

r ≻ βr2 + (1 − β)
(

νr2 + (1 − ν)r1
)

=
(

ν + β(1 − ν)
)

r2 +
(

1− ν − β(1 − ν)
)

r1

for some β ∈ (0, 1). This would imply that ν is not the lower endpoint of S.
But if νr2 + (1 − ν)r1 ≻ r, then ν > 0, and by the second axiom

r ≺ αr1 + (1 − α)
(

νr2 + (1 − ν)r1
)

= (1 − α)νr2 +
(

1 − (1 − α)ν
)

r1,

for some α ∈ (0, 1), again contradicting ν = inf S. Thus r ≃ νr2 + (1 − ν)r1.
Uniqueness follows from similar considerations. ⊓⊔

Let s0 ≺ s1 be fixed rewards in R. Utility functions, if they exist, are not
unique, for if U is a utility, and if a and b are constants with b > 0, then
a + bU is also a utility function. From this, if a utility function exists, there
will be a utility function with U(s0) = 0 and U(s1) = 1. The construction
below gives this utility function.

Suppose r ∈ [s0, s1]. Then by Theorem 7.7,

r ≃ νs1 + (1 − ν)s0,

for some ν ∈ [0, 1]. If a utility function exists, then the expected utilities for
the two lotteries in this equation must agree, which means that we must have

U(r) = ν.

If instead r - s0, then by Theorem 7.7,

s0 ≃ νs1 + (1 − ν)r,

for some ν ∈ (0, 1). Equating expected utilities, 0 = ν + (1 − ν)U(r), and so
we need

U(r) = − ν

1 − ν
.

Finally, if s1 ≺ r, then by Theorem 7.7,
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s1 ≃ νr + (1 − ν)s0,

and equating expected utilities we must have

U(r) =
1

ν
.

The following technical axiom is needed to ensure that this function U is
measurable.

A3) For any r1, r2, and r3 in R, and any α and β in [0, 1],

{r ∈ R : αr + (1 − α)r1 - βr2 + (1 − β)r3} ∈ F .

Let P be a bounded lottery, so that P{[r1, r2]} = 1 for some r1 and r2 in
R. The final axiom concerns a two-stage lottery in which the first stage is P ,
and the second stage trades in P for an equivalent mixture of r1 and r2. To
be specific, define a function α : [r1, r2] → [0, 1] using Theorem 7.7 so that

r ≃ α(r)r2 +
(

1 − α(r)
)

r1.

From the construction of U it can be shown that

α(r) =
U(r) − U(r1)

U(r2) − U(r1)
. (7.6)

For instance, if s0 - r1 - r - r2 - s1, from the construction of U ,

r1 ≃ U(r1)s1 +
(

1 − U(r1)
)

s0, r2 ≃ U(r2)s1 +
(

1 − U(r2)
)

s0,

and, using (7.4),

αr2 + (1 − α)r1

≃ α
[

U(r2)s1 +
(

1 − U(r2)
)

s0
]

+ (1 − α)
[

U(r1)s1 +
(

1 − U(r1)
)

s0
]

=
[

αU(r2) + (1 − α)U(r1)]s1 +
[

1 − αU(r2) − (1 − α)U(r1)
]

s0.

Because r ≃ U(r)s1 +
(

1 − U(r)
)

s0, r ≃ αr2 + (1 − α)r1 when

U(r) = αU(r2) + (1 − α)U(r1).

Solving for α we obtain (7.6).
In the two-stage lottery, if the reward for the first stage, sampled from P , is

r, then the second stage is α(r)r2 +
(

1−α(r)
)

r1. Conditioning on the outcome
of the first stage, this two-stage lottery gives reward r2 with probability

β =

∫

α(r) dP (r).

Otherwise, the two-stage lottery gives reward r1. The final axiom asserts that
under - this two-stage lottery is equivalent to P .
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A4) P ≃ βr2 + (1 − β)r1.

Based on the stated axioms, the final result of this section shows that the
function U constructed above is a utility function for bounded lotteries.

Theorem 7.8. If axioms A1 through A4 hold, and P1 and P2 are bounded
lotteries, then

P1 - P2 if and only if EP1U ≤ EP2U.

Proof. Choose r1 and r2 so that P1{[r1, r2]} and P2{[r1, r2]} both equal one.
By the fourth axiom and (7.6),

P1 ≃
[

EP1U − U(r1)

U(r2) − U(r1)

]

r2 +

[

U(r2) − EP1U

U(r2) − U(r1)

]

r1

and

P2 ≃
[

EP2U − U(r1)

U(r2) − U(r1)

]

r2 +

[

U(r2) − EP2U

U(r2) − U(r1)

]

r1.

By (7.5), P1 - P2 if and only if

EP1U − U(r1)

U(r2) − U(r1)
≤ EP2U − U(r1)

U(r2) − U(r1)
,

which happens if and only if EP1U ≤ EP2U . ⊓⊔

7.4 Problems3

*1. Consider a Bayesian model in which the prior distribution for Θ is ex-
ponential with failure rate η, so that λ(θ) = ηe−ηθ, θ > 0. Given
Θ = θ, the data X1, . . . , Xn are i.i.d. from the Poisson distribution
with mean θ. Determine the Bayes estimator for Θ if the loss function
is L(θ, d) = θp(d− θ)2, with p a fixed positive constant.

*2. Consider a Bayesian model in which the prior distribution for Θ is abso-
lutely continuous with density λ(θ) = 1/(1 + θ)2, θ > 0. Given Θ = θ,
our datum is a single variable X uniformly distributed on (0, θ). Give an
equation to find the Bayes estimate δΛ(X) of Θ if the loss function is
L(θ, d) = |d− θ|. Determine P (δΛ(X) < Θ|X = x), explicitly.

*3. In a Bayesian approach to simple linear regression, suppose the intercept
Θ1 and slope Θ2 of the regression line are a priori independent with Θ1 ∼
N(0, τ2

1 ) and Θ2 ∼ N(0, τ2
2 ). Given Θ1 = θ1 and Θ2 = θ2, data Y1, . . . , Yn

are independent with Yi ∼ N(θ1 + θ2xi, σ
2), where the variance σ2 is

known, and x1, . . . , xn are constants summing to zero, x1 + · · · + xn = 0.
Find the Bayes estimates of Θ1 and Θ2 under squared error loss.

3 Solutions to the starred problems are given at the back of the book.
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*4. Conjugate prior distributions. Let P = {Pθ, θ ∈ Ω} be a one-parameter
canonical exponential family with densities pθ given by

pθ(x) = h(x)eθT (x)−A(θ).

Here Ω is an interval. Let Λ = Λα,β be an absolutely continuous prior
distribution with density

λ(θ) =

{

exp{αθ − βA(θ) −B(α, β)}, θ ∈ Ω;

0, otherwise,

where

B(α, β) = log

∫

Ω

exp{αθ − βA(θ)} dθ.

These densities Λα,β form a canonical two-parameter exponential fam-
ily. Let Ξ = {(α, β) : B(α, β) < ∞} be the canonical parameter space.
Assume for regularity that λ(θ) → 0 as θ approaches either end of the
interval Ω, regardless the value of (α, β) ∈ Ξ.
a) With the stated regularity,

∫

Ω λ
′(θ) dθ = 0. Use this to give an explicit

formula for EA′(Θ) when Θ ∼ Λα,β. (The answer should be a simple
function of α and β.)

b) Consider a Bayesian model in which Θ ∼ Λα,β and given Θ = θ,
X1, . . . , Xn are i.i.d. with common density Pθ from the exponential
family P . Determine the Bayes estimate of A′(Θ) under squared error
loss. Show that this estimate is a weighted average of EA′(Θ) and the
average T =

[

T (X1) + · · · + T (Xn)
]

/n.
c) Demonstrate the ideas in parts (a) and (b) when Pθ is the exponential

distribution with failure rate θ and mean 1/θ: identify the prior dis-
tributions Λα,β , and give an explicit formula for the Bayes estimator
of the mean 1/θ.

5. Consider an autoregressive model in which X1 ∼ N
(

θ, σ2/(1 − ρ2)
)

and
the conditional distribution of Xj+1 given X1 = x1, . . . , Xj = xj is
N
(

θ + ρ(xj − θ), σ2
)

, j = 1, . . . , n − 1. Suppose the values for ρ and σ
are fixed constants, and consider Bayesian estimation with Θ ∼ N(0, τ2).
Find Bayes estimates for Θ and Θ2 under squared error loss.

*6. Consider a Bayesian model in which the random parameter Θ has a
Bernoulli prior distribution with success probability 1/2, so P (Θ = 0) =
P (Θ = 1) = 1/2. Given Θ = 0, data X has density f0, and given Θ = 1,
X has density f1.
a) Find the Bayes estimate of Θ under squared error loss.
b) Find the Bayes estimate of Θ if L(θ, d) = I{θ 6= d} (called zero-one

loss).
*7. Consider Bayesian estimation in which the parameterΘ has a standard ex-

ponential distribution, so λ(θ) = e−θ, θ > 0, and given Θ = θ, X1, . . . , Xn

are i.i.d. from an exponential distribution with failure rate θ. Determine
the Bayes estimator of Θ if the loss function is L(θ, d) = (d− θ)2/d.
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8. Consider a Bayesian model in which the prior distribution for Θ is stan-
dard exponential and the density for X given Θ = θ is

pθ(x) =

{

eθ−x, x > θ;

0, otherwise.

a) Find the marginal density for X and EX in the Bayesian model.
b) Find the Bayes estimator for Θ under squared error loss. (Assume

X > 0.)
9. Suppose Θ ∼ Λ andX |Θ = θ ∼ Pθ, and let f be a nonnegative measurable

function. Use smoothing to write Ef(Θ,X) as an iterated integral. (This
calculation shows that specification of a Bayesian model in this fashion
determines the joint distribution of X and Θ.)

10. Suppose we observe two independent observations, (X1, Y1) and (X2, Y2)
from an absolutely continuous bivariate distribution with density

√
1 − θ2

2π
exp

[

−1

2
(x2 + y2 − 2θxy)

]

.

Find the Bayes estimate for Θ under squared error loss if the prior distri-
bution is uniform on (−1, 1).

11. Consider a Bayesian model in which the prior distribution for Θ is uniform
on (0, 1) and given Θ = θ, Xi, i ≥ 1, are i.i.d. Bernoulli with success
probability θ. Find

P (Xn+1 = 1|X1, . . . , Xn).

12. Bayesian prediction.
a) Let X and Y be jointly distributed, with X a random variable and Y

a random vector. Suppose we are interested in predicting X from Y .
The efficacy of a predictor f(Y ) might be measured using the expected

squared error, E
(

X − f(Y )
)2

. Use a smoothing argument to find the
function f minimizing this quantity.

b) Consider a Bayesian model in which Θ is a random parameter, and
given Θ = θ, random variables X1, . . . , Xn+1 are i.i.d. from a distribu-
tion Pθ with mean µ(θ). With squared error loss, the best estimator
of µ(θ) based on X1, . . . , Xn is

µ̂ = E
[

µ(Θ)
∣

∣ X1, . . . , Xn

]

.

Show that µ̂ is also the best predictor for Xn+1 based on Y =
(X1, . . . , Xn). You can assume that Θ is absolutely continuous, and
that the family P = {Pθ : θ ∈ Ω} is dominated with densities pθ,
θ ∈ Ω.

13. Consider a Bayesian model in which Θ is absolutely continuous with den-
sity
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λ(θ) =







e−1/θ

θ2
, θ > 0;

0, otherwise,

and given Θ = θ, X1, . . . , Xn are i.i.d. N(0, θ). Find the Bayes estimator
for Θ under squared error loss.

14. Consider a Bayesian model in which given Θ = θ, X1, . . . , Xn are i.i.d.
from a Bernoulli distribution with mean θ.
a) Let

(

π(1), . . . , π(n)
)

be a permutation of (1, . . . , n). Show that

(

Xπ(1), . . . , Xπ(n)

)

and
(

X1, . . . , Xn)

have the same distribution. When this holds the variables involved are
said to be exchangeable.

b) Show that Cov(Xi, Xj) ≥ 0. When will this covariance be zero?
15. Consider a Bayesian model in which Θ is absolutely continuous with den-

sity

λ(θ) =







4θ3

(1 + θ)5
, θ > 0;

0, otherwise,

and given Θ = θ > 0, data X and Y are absolutely continuous with
density

pθ(x, y) =

{

1/θ3, |x| < θy < θ2;

0, otherwise,

Find the Bayes estimator of Θ under squared error loss.
*16. (For fun) Let X and Y be independent Cauchy variables with location θ.

a) Show that X and the average A = (X + Y )/2 have the same distri-
bution.

b) Show that Pθ(|A − θ| < |X − θ|) > 1/2, so that A is more likely to
be closer to θ that X . (Hint: Graph the region in the plane where the
event in question occurs.)
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Large-Sample Theory

To this point, most of the statistical results in this book concern properties
that hold in some exact sense. An estimator is either sufficient or not, unbi-
ased or not, Bayes or not. If exact properties are impractical or not available,
statisticians often rely on approximations. This chapter gives several of the
most basic results from probability theory used to derive approximations. Sev-
eral notions of convergence for random variables and vectors are introduced,
and various limit theorems are presented. These results are used in this chap-
ter and later to study and compare the performance of various estimators in
large samples.

8.1 Convergence in Probability

Our first notion of convergence holds if the variables involved are close to their
limit with high probability.

Definition 8.1. A sequence of random variables Yn converges in probability
to a random variable Y as n→ ∞, written

Yn
p→ Y,

if for every ǫ > 0,
P
(

|Yn − Y | ≥ ǫ
)

→ 0

as n→ ∞.

Theorem 8.2 (Chebyshev’s Inequality). For any random variable X and
any constant a > 0,

P
(

|X | ≥ a
)

≤ EX2

a2
.
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Proof. Regardless of the value of X ,

I
{

|X | ≥ a} ≤ X2/a2.

The result follows by taking expectations. ⊓⊔

Proposition 8.3. If E(Yn − Y )2 → 0 as n→ ∞, then Yn
p→ Y .

Proof. By Chebyshev’s inequality, for any ǫ > 0,

P
(

|Yn − Y | ≥ ǫ
)

≤ E(Yn − Y )2

ǫ2
→ 0. ⊓⊔

Example 8.4. Suppose X1, X2, . . . are i.i.d., with mean µ and variance σ2, and
let Xn = (X1 + · · · +Xn)/n. Then

E(Xn − µ)2 = Var(Xn) = σ2/n→ 0,

and so Xn
p→ µ as n → ∞. In fact, Xn

p→ µ even when σ2 = ∞, provided
E|Xi| <∞. This result is called the weak law of large numbers.

Proposition 8.5. If f is continuous at c and if Yn
p→ c, then f(Yn)

p→ f(c).

Proof. Because f is continuous at c, given any ǫ > 0, there exists δǫ > 0 such
that |f(y) − f(c)| < ǫ whenever |y − c| < δǫ. Thus

P
(

|Yn − c| < δǫ
)

≤ P
(

|f(Yn) − f(c)| < ǫ
)

,

which implies

P
(

|f(Yn) − f(c)| ≥ ǫ
)

≤ P
(

|Yn − c| ≥ δǫ
)

→ 0. ⊓⊔

In statistics there is a family of distributions of interest, indexed by a pa-

rameter θ ∈ Ω, and the symbol
Pθ→ is used to denote convergence in probability

with Pθ as the underlying probability measure.

Definition 8.6. A sequence of estimators δn, n ≥ 1, is consistent for g(θ) if
for any θ ∈ Ω,

δn
Pθ→ g(θ)

as n→ ∞.

If R(θ, δn) = Eθ
(

δn − g(θ)
)2

is the mean squared error, or risk, of δn
under squared error loss, then by Proposition 8.3, δn will be consistent if
R(θ, δn) → 0 as n → ∞, for any θ ∈ Ω. Letting bn(θ) = Eθδn − g(θ), called
the bias of δn,

R(θ, δn) = b2n(θ) + Varθ(δn),
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and so sufficient conditions for consistency are that bn(θ) → 0 and Varθ(δn) →
0 as n→ ∞, for all θ ∈ Ω.

Convergence in probability extends directly to higher dimensions. If Y , Y1,
Y2, . . . are random vectors in Rp, then Yn converges in probability to Y , written

Yn
p→ Y , if for every ǫ > 0, P (‖Yn − Y ‖ > ǫ) → 0 as n → ∞. Equivalently,

Yn
p→ Y if [Yn]i

p→ [Y ]i as n → ∞ for i = 1, . . . , p. Proposition 8.5 also
holds as stated, with the same proof, for random vectors Yn and c ∈ Rp, with
f a vector-valued function, f : Rp → Rq. For instance, since addition and

multiplication are continuous functions from R2 → R, if Xn
p→ a and Yn

p→ b
as n→ ∞, then

Xn + Yn
p→ a+ b and XnYn

p→ ab, (8.1)

as n→ ∞.

8.2 Convergence in Distribution

If a sequence of estimators δn is consistent for g(θ), then the distribution of the
error δn−g(θ) must concentrate around zero as n increases. But convergence in
probability will not tell us how rapidly this concentration occurs or the shape
of the error distribution after suitable magnification. For this, the following
notion of convergence in distribution is more appropriate.

Definition 8.7. A sequence of random variables Yn, n ≥ 1, with cumulative
distribution functions Hn, converges in distribution (or law) to a random
variable Y with cumulative distribution function H if

Hn(y) → H(y)

as n→ ∞ whenever H is continuous at y. For notation we write Yn ⇒ Y or
Yn ⇒ PY .

One aspect of this definition that may seem puzzling at first is that point-
wise convergence of the cumulative distribution functions only has to hold at
continuity points of H . Here is a simple example that should make this seem
more natural.

Example 8.8. Suppose Yn = 1/n, a degenerate random variable, and that Y
is always zero. Then

Hn(y) = P (Yn ≤ y) = I{1/n ≤ y}.
If y > 0, then Hn(y) = I{1/n ≤ y} → 1 as n → ∞, for eventually 1/n will
be less than y. If y ≤ 0, then Hn(y) = I{1/n ≤ y} = 0 for all n, and so
Hn(y) → 0 as n → ∞. Because H(y) = P (Y ≤ y) = I{0 ≤ y}, comparisons
with the limits just obtained show that Hn(y) → H(y) if y 6= 0. But Hn(0) =
0 → 0 6= 1 = H(0). In this example, Yn ⇒ Y , but the cumulative distribution
functions Hn(y) do not converge to H(y) when y = 0, a discontinuity point
of H .
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Theorem 8.9. Convergence in distribution, Yn ⇒ Y , holds if and only if
Ef(Yn) → Ef(Y ) for all bounded continuous functions f .

Remark 8.10. The convergence of expectations in this theorem is often taken
as the definition for convergence in distribution. One advantage of this as a
definition is that it generalizes easily to random vectors. Extensions to more
abstract objects, such as random functions, are even possible.

Corollary 8.11. If g is a continuous function and Yn ⇒ Y , then

g(Yn) ⇒ g(Y ).

Proof. If f is bounded and continuous, then f ◦ g is also bounded and contin-
uous. Since Yn ⇒ Y ,

Ef
(

g(Yn)
)

→ Ef
(

g(Y )
)

.

Because f is arbitrary, this shows that the second half of Theorem 8.9 holds for
the induced sequence g(Yn) and g(Y ). So by the equivalence, g(Yn) ⇒ g(Y ).

⊓⊔

For convergence in distribution, the central limit theorem is our most basic
tool. For a derivation and proof, see Appendix A.7, or any standard text on
probability.

Theorem 8.12 (Central Limit Theorem). Suppose X1, X2, . . . are i.i.d.
with common mean µ and variance σ2. Take Xn = (X1 + · · · +Xn)/n. Then

√
n(Xn − µ) ⇒ N(0, σ2).

As an application of this result, let Hn denote the cumulative distribution
function of

√
n(Xn − µ) and note that

P (µ− a/
√
n < Xn ≤ µ+ a/

√
n) = P

(

−a < √
n(Xn − µ) ≤ a

)

= Hn(a) −Hn(−a)
→ Φ(a/σ) − Φ(−a/σ).

This information about the distribution of Xn from the central limit theorem
is more detailed than information from the weak law of large numbers, that

Xn
p→ µ.

The central limit theorem is certainly one of the most useful and cele-
brated results in probability and statistics, and it has been extended in nu-
merous ways. Theorems 9.27 and 9.40 provide extensions to averages of i.i.d.
random vectors and martingales, respectively. Other extensions concern situa-
tions in which the summands are independent but from different distributions
or weakly dependent in a suitable sense. In addition, some random variables
will be approximately normal because their difference from a variable in one
of these central limit theorems converges to zero, an approach used repeatedly
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later in this book. Results bounding the error in the central limit theorem have
also been derived. With the assumptions of Theorem 8.12, the Berry–Esséen
theorem, given as Theorem 16.5.1 of Feller (1971), states that

∣

∣P
(√
n(Xn − µ) ≤ x

)

− Φ(x/σ)
∣

∣ ≤ 3E|X1 − µ|3
σ3

√
n

. (8.2)

The next result begins to develop a calculus for convergence of random
variables combining convergence in distribution with convergence in probabil-
ity.

Theorem 8.13. If Yn ⇒ Y , An
p→ a, and Bn

p→ b, then

An +BnYn ⇒ a+ bY.

The central limit theorem stated only provides direct information about
distributions of averages. Many estimators in statistics are not exactly aver-
ages, but can be related to averages in some fashion. In some of these cases,
clever use of the central limit theorem still provides a limit theorem for an
estimator’s distribution. A first possibility would be for variables that are
smooth functions of an average and can be written as f(Xn). The Taylor
approximation

f(Xn) ≈ f(µ) + f ′(µ)(Xn − µ)

with the central limit theorem motivates the following proposition.

Proposition 8.14 (Delta Method). With the assumptions in the central
limit theorem, if f is differentiable at µ, then

√
n
(

f(Xn) − f(µ)
)

⇒ N
(

0, [f ′(µ)]2σ2
)

.

Proof. For convenience, let us assume that f has a continuous derivative1 and
write

f(Xn) = f(µ) + f ′(µn)(Xn − µ),

where µn is an intermediate point lying between Xn and µ. Since |µn − µ| ≤
|Xn−µ| and Xn

p→ µ, µn
p→ µ, and since f ′ is continuous, f ′(µn)

p→ f ′(µ) by
Proposition 8.5. If Z ∼ N(0, σ2), then

√
n(Xn − µ) ⇒ Z ∼ N(0, σ2) by the

central limit theorem. Thus by Theorem 8.13,

√
n
(

f(Xn) − f(µ)
)

= f ′(µn)
[√
n(Xn − µ)

]

⇒ f ′(µ)Z ∼ N
(

0, [f ′(µ)]2σ2
)

.

This use of Taylor’s theorem to approximate distributions is called the delta
method. ⊓⊔

1 A proof under the stated condition takes a bit more care; one approach is given
in the discussion following Proposition 8.24.
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By Theorem 8.9, if Xn ⇒ X and f is bounded and continuous, Ef(Xn) →
Ef(X). If f is continuous but unbounded, convergence of Ef(Xn) may fail.
The theorem below shows that convergence will hold if the variables are uni-
formly integrable according to the following definition.

Definition 8.15. Random variables Xn, n ≥ 1, are uniformly integrable if

sup
n≥1

E
[

|Xn|I{|Xn| ≥ t
}]

→ 0,

as t→ ∞.

Because E|Xn| ≤ t + E
[

|Xn|I
{

|Xn| ≥ t
}]

, if supn≥1E
[

|Xn|I{|Xn| ≥
t
}]

is finite for some t, supnE|Xn| < ∞. Thus uniform integrability implies
supnE|Xn| < ∞. But the converse can fail. If Yn ∼ Bernoulli(1/n) and
Xn = nYn, then E|Xn| = 1 for all n, but the variables Xn, n ≥ 1, are
not uniformly integrable.

Theorem 8.16. If Xn ⇒ X, then E|X | ≤ lim inf E|Xn|. If Xn, n ≥ 1, are
uniformly integrable and Xn ⇒ X, then EXn → EX. If X and Xn, n ≥ 1,
are nonnegative and integrable with Xn ⇒ X and EXn → EX, then Xn,
n ≥ 1, are uniformly integrable.

tt

tt

−t−t

−t−t

gt ht

xx

Fig. 8.1. Functions gt and ht.

Proof. For t > 0, define functions2 gt(x) = |x| ∧ t and ht(x) = −t ∨ (x ∧ t),
pictured in Figure 8.1. These functions are bounded and continuous, and so if

2 Here x ∧ y def
= min{x, y} and x ∨ y def

= max{x, y}.
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Xn ⇒ X , Egt(Xn) → Egt(X) and Eht(Xn) → Eht(X). For the first assertion
in the theorem,

lim inf E|Xn| ≥ lim inf E|Xn| ∧ t = E|X | ∧ t,

and the right-hand side increases to E|X | as t→ ∞ by monotone convergence
(Problem 1.25).

For the second assertion, by uniform integrability and the first result,
E|X | <∞. Since |Xn − ht(X)| ≤ |Xn|I{|Xn| ≥ t},

lim sup |EXn − EX | ≤ lim sup |Eht(Xn) − Eht(X)| + E |X − ht(X)|
+ supE |Xn − ht(Xn)|

≤ E |X − ht(X)| + supE
[

|Xn|I
{

|Xn| ≥ t
}]

,

which decreases to zero as t→ ∞.
For the final assertion, since the variables are nonnegative with EXn →

EX and Egt(Xn) → Egt(X), then for any t > 0,

E(Xn − t)+ = EXn − Egt(Xn) → EX − Egt(X) = E(X − t)+.

Using this, since xI{x ≥ 2t} ≤ 2(x− α)+, x > 0,

lim supE
[

XnI{Xn ≥ 2t}
]

≤ lim sup 2E(Xn − t)+ = 2E(X − t)+.

By dominated convergence E(X − t)+ → 0 as t→ ∞. Thus

lim
t→∞

lim supE
[

|Xn|I{Xn ≥ 2t}
]

.

Uniform integrability follows fairly easily from this (see Problem 8.9). ⊓⊔

8.3 Maximum Likelihood Estimation

Suppose data vector X has density pθ. This density, evaluated at X and
viewed as a function of θ, L(θ) = pθ(X), is called the likelihood function, and

the value θ̂ = θ̂(X) maximizing L(·) is called the maximum likelihood esti-

mator of θ. The maximum likelihood estimator of g(θ) is defined3 to be g(θ̂).
For explicit calculation it is often convenient to maximize the log-likelihood
function, l(θ) = logL(θ). instead of L(·).

Example 8.17. Suppose the density for our data X comes from a canonical
one-parameter exponential family with density

pη(x) = exp
{

ηT (x) −A(η)
}

h(x).

3 It is not hard to check that this definition remains consistent if different param-
eters are used to specify the model.
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Then the maximum likelihood estimator η̂ of η maximizes

l(η) = log pη(X) = ηT −A(η) + log h(X).

Because l′′(η) = −A′′(η) = −Varη(T ) < 0, the η̂ is typically4 the unique
solution of

0 = l′(η) = T −A′(η).

Letting ψ denote the inverse function of A′,

η̂ = ψ(T ).

If our data are a random sampleX1, . . . , Xn with common density pη, then
the joint density is

∏n
i=1 pη(xi) and the log-likelihood is

l(η) = η

n
∑

i=1

T (Xi) − nA(η) + log

n
∏

i=1

h(Xi).

The maximum likelihood estimator η̂ solves

0 = l′(η) =
n
∑

i=1

T (Xi) − nA′(η),

and so

η̂ = ψ(T ), where T =
1

n

n
∑

i=1

T (Xi).

It is interesting to note that the maximum likelihood estimator for the mean
of T , EηT (Xi) = A′(η), is

A′(η̂) = A′
(

ψ(T )
)

= T .

The maximum likelihood estimator here is an unbiased function of the com-
plete sufficient statistic; therefore, it is also UMVU. But in general maximum
likelihood estimators may have some bias.

Since the maximum likelihood estimator in this example is a function of
an average of i.i.d. variables, its asymptotic distribution can be determined
using the delta method, Proposition 8.14. By the implicit function theorem,
ψ has derivative (1/A′′) ◦ ψ. This derivative evaluated at A′(η) = EηT (Xi) is

1

A′′
[

ψ
(

A′(η)
)] =

1

A′′(η)
.

Because Varη
(

T (Xi)
)

= A′′(η), by Proposition 8.14

4 Examples are possible in which l(·) is strictly increasing or strictly decreasing.
The equation here holds whenever T ∈ η′(Ξ).
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√
n(η̂ − η) ⇒ N

(

0, 1/A′′(η)
)

. (8.3)

Note that since the Fisher information from each observation is A′′(η), by the
Cramér–Rao lower bound, if an estimator η̃ is unbiased for η, then

Varη
[√
n(η̃ − η)

]

= nVarη(η̃) ≥
1

A′′(η)
.

So (8.3) can be interpreted as showing that η̂ achieves the Cramér–Rao lower
bound in an asymptotic sense. For this reason, η̂ is considered asymptoti-
cally efficient. A rigorous treatment of asymptotic efficiency is delicate and
technical; a few of the main developments are given in Section 16.6.

8.4 Medians and Percentiles

Let X1, . . . , Xn be random variables. These variables, arranged in increasing
order, X(1) ≤ X(2) ≤ · · · ≤ X(n), are called order statistics. The first order
statisticX(1) is the smallest value,X(1) = min{X1, . . . , Xn}, and the last order
statistic X(n) is the largest value, X(n) = max{X1, . . . , Xn}. The median is
the middle order statistic when n is odd, or (by convention) the average of
the two middle order statistics when n is even:

X̃ =

{

X(m), n = 2m− 1;
1
2 (X(m) +X(m+1)), n = 2m.

The median X̃ and mean X are commonly used to describe the center or
overall location of the variables X1, . . . , Xn. One possible advantage for the
median is that it will not be influenced by a few extreme values. For instance,
if the data are (1, 2, 3, 4, 5), then both X̃ and X are 3. But if the data are
(1, 2, 3, 4, 500), X̃ is still 3, but X = 102. If we view them as estimators, it
is also natural to want to compare the error distributions of X and X̃. For
a random sample, the error distribution of X can be approximated using the
central limit theorem. In what follows, we derive an analogous result for X̃.

Assume now that X1, X2, . . . are i.i.d. with common cumulative distribu-
tion function F , and let X̃n be the median of the first n observations. For
regularity, assume that F has a unique median θ, so F (θ) = 1/2, and that
F ′(θ) exists and is finite and positive. Let us try to approximate

P
(√
n(X̃n − θ) ≤ a

)

= P (X̃n ≤ θ + a/
√
n).

Define
Sn = #{i ≤ n : Xi ≤ θ + a/

√
n}.

The key to this derivation is the observation that X̃n ≤ θ+ a/
√
n if and only

if Sn ≥ m. Also, by viewing observation i as a success if Xi ≤ θ+ a/
√
n, it is

evident that
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Sn ∼ Binomial
(

n, F (θ + a/
√
n)
)

.

The next step involves normal approximation for the distribution of Sn.
First note that if Yn ∼ Binomial(n, p), then Yn/n can be viewed as the average
of n i.i.d. Bernoulli variables. Therefore by the central limit theorem,

√
n

(

Yn
n

− p

)

=
Yn − np√

n
⇒ N (0, p(1 − p)) ,

and hence

P

(

Yn − np√
n

> y

)

= 1 − P

(

Yn − np√
n

≤ y

)

→ 1 − Φ

(

y
√

p(1 − p)

)

= Φ

(

−y
√

p(1 − p)

)

,

as n → ∞. In fact, this approximation for the binomial distribution holds
uniformly in y and uniformly for p in any compact subset of (0, 1).5

The normal approximation for the binomial distribution just discussed
gives

P
(√
n(X̃n − θ) ≤ a

)

= P (Sn > m− 1)

= P

(

Sn − nF (θ + a/
√
n)√

n
>
m− 1 − nF (θ + a/

√
n)√

n

)

= Φ





[

nF (θ + a/
√
n) −m+ 1

]

/
√
n

√

F (θ + a/
√
n)
(

1 − F (θ + a/
√
n)
)



+ o(1). (8.4)

Here “o(1)” is used to denote a sequence that tends to zero as n → ∞.
See Section 8.6 for a discussion of notation and various notions of scales of
magnitude. Since F is continuous at θ,

√

F (θ + a/
√
n)
(

1 − F (θ + a/
√
n)
)

→ 1/2,

as n→ ∞. And because F is differentiable at θ,

nF (θ + a/
√
n) −m+ 1)√
n

= a
F (θ + a/

√
n) − F (θ)

a/
√
n

+
nF (θ) −m+ 1√

n

= a
F (θ + a/

√
n) − F (θ)

a/
√
n

+
1

2
√
n
→ aF ′(θ).

5 “Uniformity” here means that the difference between the two sides will tend to
zero as n → ∞, even if y and p both vary with n, provided p stays away from
zero and one (lim sup p < 1 and lim inf p > 0). This can be easily proved using
the Berry–Esséen bound (8.2).
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Since the numerator and denominator of the argument of Φ in (8.4) both
converge,

P
(√
n(X̃n − θ) ≤ a

)

→ Φ
(

2aF ′(θ)
)

.

The limit here is the cumulative distribution function for the normal distri-
bution with mean zero and variance 1/

(

4[F ′(θ)]2
)

evaluated at a, and so

√
n(X̃n − θ) ⇒ N

(

0,
1

4[F ′(θ)]2

)

. (8.5)

A similar derivation leads to the following central limit theorem for other
quantiles.

Theorem 8.18. Let X1, X2, . . . be i.i.d. with common cumulative distribu-
tion function F , let γ ∈ (0, 1), and let θ̃n be the ⌊γn⌋th order statistic for
X1, . . . , Xn (or a weighted average of the ⌊γn⌋th and ⌈γn⌉th order statistics).6

If F (θ) = γ, and if F ′(θ) exists and is finite and positive, then

√
n(θ̃n − θ) ⇒ N

(

0,
γ(1 − γ)
[

F ′(θ)
]2

)

,

as n→ ∞.

8.5 Asymptotic Relative Efficiency

A comparison of the mean and median will only be natural if they both
estimate the same parameter. In a location family this will happen naturally if
the error distribution is symmetric. So let us assume that our data are i.i.d. and
have common density f(x − θ) with f symmetric about zero, f(u) = f(−u),
u ∈ R. Then Pθ(Xi < θ) = Pθ(Xi > θ) = 1/2, and EθXi = θ (provided the
mean exists). By the central limit theorem,

√
n(Xn − θ) ⇒ N(0, σ2),

where

σ2 =

∫

x2f(x) dx,

and by (8.5),
√
n(X̃n − θ) ⇒ N

(

0,
1

4f2(0)

)

.

(Here we naturally take f(0) = F ′(0).) Suppose f is the standard normal

density, f(x) = e−x
2/2/

√
2π. Then σ2 = 1 and 1/

(

4f2(0)
)

= π/2. Since the

6 Here ⌊x⌋, called the floor of x, is the largest integer y with y ≤ x. Also, ⌈x⌉ is
the smallest integer y ≥ x, called the ceiling of x.
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variance of the limiting distribution is larger for the median than the mean,
the median is less efficient than the mean. To understand the import of this
difference in efficiency, define m = mn = ⌊πn/2⌋, and note that

√

n/m →
√

2/π as n→ ∞. Using Theorem 8.13,

√
n(X̃m − θ) =

√

n

m

√
m(X̃m − θ) ⇒ N(0, 1).

This shows that the error distribution for the median of m observations is ap-
proximately the same as the error distribution for the mean of n observations.
As n → ∞, m/n → π/2, and this limiting ratio π/2 is called the asymptotic
relative efficiency (ARE) of the mean Xn with respect to the median X̃n. In

general, if θ̂n and θ̃n are sequences of estimators, and if

√
n(θ̂n − θ) ⇒ N(0, σ2

θ̂
)

and √
n(θ̃n − θ) ⇒ N(0, σ2

θ̃
),

then the asymptotic relative efficiency of θ̂n with respect to θ̃n is σ2
θ̃
/σ2

θ̂
. This

relative efficiency can be interpreted as the ratio of sample sizes necessary for
comparable error distributions.

In our first comparison of the mean and median the data were a random
sample from N(θ, 1). In this case, the mean is UMVU, so it should be of no
surprise that it is more efficient than the median. If instead

f(x) =
1

2
e−|x|,

then

σ2 =

∫

x2 1

2
e−|x| dx =

∫ ∞

0

x2e−x dx = Γ (3) = 2! = 2.

So here
√
n(Xn − θ) ⇒ N(0, 2),

√
n(X̃n − θ) ⇒ N(0, 1), and the asymptotic

relative efficiency of Xn with respect to X̃n is 1/2. Now the median is more
efficient than the mean, and roughly twice as many observations will be needed
for a comparable error distribution if the mean is used instead of the median.
In this case, the median is the maximum likelihood estimator of θ. Later
results in Sections 9.3 and 16.6 show that maximum likelihood estimators are
generally fully efficient.

Example 8.19. Suppose X1, . . . , Xn is a random sample from N(θ, 1), and we
are interested in estimating

p = Pθ(Xi ≤ a) = Φ(a− θ).

One natural estimator is
p̂ = Φ(a−X),
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where X = (X1 + · · · +Xn)/n. (This is the maximum likelihood estimator.)
Another natural estimator is the proportion of the observations that are at
most a,

p̃ =
1

n
#{i ≤ n : Xi ≤ a} =

1

n

n
∑

i=1

I{Xi ≤ a}.

By the central limit theorem,

√
n(p̃− p) ⇒ N(0, σ̃2),

as n→ ∞, where

σ̃2 = Varθ
(

I{Xi ≤ a}
)

= Φ(a− θ)
(

1 − Φ(a− θ)
)

.

Because the first estimator is a function of the averageX, by the delta method,
Proposition 8.14, √

n(p̂− p) ⇒ N(0, σ̂2),

as n→ ∞, where

σ̂2 =

[

d

dx
Φ(a− x)

∣

∣

∣

x=θ

]2

= φ2(a− θ).

The asymptotic relative efficiency of p̂ with respect to p̃ is

ARE =
Φ(a− θ)

(

1 − Φ(a− θ)
)

φ2(a− θ)
.

In this example, the asymptotic relative efficiency depends on the unknown
parameter θ. When θ = a, ARE = π/2, and the ARE increases without bound
as |θ − a| increases. Note, however, that p̃ is a sensible estimator even if the
stated model is wrong, provided the data are indeed i.i.d. In contrast, p̂ is
only reasonable if the model is correct. Gains in efficiency using p̂ should be
balanced against the robustness of p̃ to departures from the model.

8.6 Scales of Magnitude

In many asymptotic calculations it is convenient to have a standard notation
indicating orders of magnitudes of variables in limiting situations. We begin
with a definition for sequences of constants.

Definition 8.20. Let an and bn, n ≥ 1, be constants. Then

1. an = o(bn) as n→ ∞ means that an/bn → 0 as n→ ∞;
2. an = O(bn) as n → ∞ means that |an/bn| remains bounded, i.e., that

lim supn→∞ |an/bn| <∞; and
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3. an ∼ bn means that an/bn → 1 as n→ ∞.

Thus an = o(bn) when an is of smaller order of magnitude than bn, an =
O(bn) when the magnitude of an is at most comparable to the magnitude of
bn, and an ∼ bn when an is asymptotic to bn. Note that an = o(1) means that
an → 0.

Large oh and small oh notation may also be used in equations or in-
equalities. For instance, an = bn + O(cn) means that an − bn = O(cn), and
an ≤ bn+o(cn) means that an ≤ bn+dn for some sequence dn with dn = o(cn).
Exploiting this idea, an ∼ bn can be written as an = bn

(

1 + o(1)
)

.
Although Definition 8.20 is stated for sequences indexed by a discrete

variable n, analogous notation can be used for functions indexed by a con-
tinuous variable x. For instance, a(x) = o

(

b(x)
)

as x → x0 would mean that
a(x)/b(x) → 0 as x → x0. The limit x0 here could be finite or infinite. As an
example, if f has two derivatives at x, then the two-term Taylor expansion
for f can be expressed as

f(x+ ǫ) = f(x) + ǫf ′(x) +
1

2
ǫ2f ′′(x) + o(ǫ2)

as ǫ→ 0. If f ′′′ is exists and is finite at x, this can be strengthened to

f(x+ ǫ) = f(x) + ǫf ′(x) +
1

2
ǫ2f ′′(x) +O(ǫ3)

as ǫ→ 0.
In the following stochastic extension, the basic idea is that the original

notion can fail, but only on a set with arbitrarily small probability.

Definition 8.21. Let Xn and Yn, n ≥ 1, be random variables, and let bn,
n ≥ 1, be constants. Then

1. Xn = op(bn) as n→ ∞ means that Xn/bn
p→ 0 as n→ ∞;

2. Xn = Op(1) as n→ ∞ means that

sup
n
P
(

|Xn| > K
)

→ 0

as K → ∞; and
3. Xn = Op(bn) means that Xn/bn = Op(1) as n→ ∞.

The definition for Op(1) is equivalent to a notion called tightness for the
distributions of the Xn. Tightness is necessary for convergence in distribution,
and so, if Xn ⇒ X , then Xn = Op(1).

Here are a few useful propositions about stochastic scales of magnitude.

Proposition 8.22. If Xn = Op(an) and Yn = Op(bn), then

XnYn = Op(anbn).



8.7 Almost Sure Convergence 143

Also, if α > 0 and Xn = Op(an), then Xα
n = Op(a

α
n). Similarly, if Xn =

Op(an), α > 0, and Yn = op(bn), then

XnYn = op(anbn) and Y αn = op(b
α
n).

Proposition 8.23. Let α and β be constants with α > 0. If E|Xn|α = O(nβ)
as n→ ∞, then Xn = Op(n

β/α) as n→ ∞.

Proposition 8.24. If Xn = Op(an) with an → 0, and if f(ǫ) = o(ǫα) as
ǫ→ 0 with α > 0, then

f(Xn) = op(a
α
n).

This result is convenient for delta method derivations such as Proposi-
tion 8.14. By the central limit theorem, Xn = µ+Op

(

1/
√
n
)

, and by Taylor
expansion

f(µ+ ǫ) = f(µ) + ǫf ′(µ) + o(ǫ)

as ǫ→ 0, whenever f is differentiable at µ. So by Proposition 8.24,

f
(

Xn

)

− f(µ) =
(

Xn − µ
)

f ′(µ) + op
(

1/
√
n
)

,

and rearranging terms,

√
n
(

f(Xn) − f(µ)
)

=
√
n
(

Xn − µ
)

f ′(µ) + op(1) ⇒ N
(

0, [f ′(µ)]2σ2
)

.

8.7 Almost Sure Convergence7

In this section, we consider a notion of convergence for random variables called
almost sure convergence or convergence with probability one.

Definition 8.25. Random variables Y1, Y2, . . . defined on a common probabil-
ity space converge almost surely to a random variable Y on the same space
if

P (Yn → Y ) = 1.

The statistical implications of this mode of convergence are generally sim-
ilar to the implications of convergence in probability, and in the rest of this
book we refer to almost sure convergence only when the distinction seems
statistically relevant. To understand the difference between these modes of
convergence, introduce

Mn = sup
k≥n

|Yk − Y |,

and note that Yn → Y if and only if Mn → 0. Now Mn → 0 if for every ǫ > 0,
Mn < ǫ for all n sufficiently large. Define Bǫ as the event that Mn < ǫ for all

7 Results in this section are used only in Chapter 20.
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n sufficiently large. An outcome is in Bǫ if and only if it is in one of the sets
{Mn < ǫ}, and thus

Bǫ =
⋃

{Mn < ǫ}.
If an outcome gives a convergent sequence, it must be in Bǫ for every ǫ, and
so

{Yn → Y } =
⋂

ǫ>0

Bǫ,

and we have almost sure convergence if and only if

P

[

⋂

ǫ>0

Bǫ

]

= 1.

Since the Bǫ decrease as ǫ → 0, using the continuity property of probability
measures (1.1), this will happen if and only if P (Bǫ) = 1 for all ǫ > 0. But
because the events {Mn < ǫ} increase with n, P (Bǫ) = limn→∞ P (Mn <
ǫ). Putting this all together, Yn → Y almost surely if and only if for every

ǫ > 0, P (Mn ≥ ǫ) → 0, that is, if and only if Mn
p→ 0. In words, almost

sure convergence means the largest difference after stage n tends to zero in
probability as n→ ∞.

Example 8.26. If Yn ∼ Bernoulli(pn), then Yn
p→ 0 if and only if pn → 0.

Almost sure convergence will also depend on the joint distribution of these
variables. If they are independent, then Mn = supk≥n |Yn−0| ∼ Bernoulli(πn)
with

1 − πn = P (Mn = 0) = P (Yk = 0, k ≥ n) =

∞
∏

k=n

(1 − pk).

This product tends to 1 as n → ∞ if and only if
∑

pn < ∞. So in this
independent case, Yn → 0 almost surely if and only if

∑

pn <∞. If instead U
is uniformly distributed on (0, 1) and Yn = I{U ≤ pn}, then Yn → 0 almost

surely if and only if pn → 0, that is, if and only if Yn
p→ 0.

The following result is the most famous result on almost sure convergence.
For a proof, see Billingsley (1995) or any standard text on probability.

Theorem 8.27 (Strong Law of Large Numbers). If X1, X2, . . . are i.i.d.
with finite mean µ = EXi, and if Xn = (X1 + · · · + Xn)/n, then Xn → µ
almost surely as n→ ∞.

8.8 Problems8

*1. Random variables X1, X2, . . . are called “m-dependent” if Xi and Xj are
independent whenever |i− j| ≥ m. Suppose X1, X2, . . . are m-dependent

8 Solutions to the starred problems are given at the back of the book.
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with EX1 = EX2 = · · · = ξ and Var(X1) = Var(X2) = · · · = σ2 < ∞.

Let Xn = (X1 + · · · + Xn)/n. Show that Xn
p→ ξ as n → ∞. Hint: You

should be able to bound Cov(Xi, Xj) and Var(Xn).
*2. Let X1, . . . , Xn be i.i.d. from an exponential distribution with failure rate

λ, and let Mn = max{X1, . . . , Xn}. Is log(n)/Mn a consistent estimator
of λ?

*3. If X1, . . . , Xn are i.i.d. from the uniform distribution on (0, θ) with
maximum Mn = max{X1, . . . , Xn}, then the UMVU estimator of θ is

θ̂n = (n + 1)Mn/n. Determine the limiting distribution of n(θ̂n − θ) as
n→ ∞.

*4. Let X1, . . . , Xn be i.i.d. Bernoulli variables with success probability p. Let
p̂n = (X1 + · · · +Xn)/n.
a) Show that

√
n(p̂2

n − p2) ⇒ N
(

0, 4p3(1 − p)
)

.
b) Find the UMVU estimator δn of σ2 = 4p3(1 − p), the asymptotic

variance in (a).
c) Determine the limiting distribution of n(δn−σ2) when p = 3/4. Hint:

The maximum likelihood estimator of σ2 is σ̂2 = 4p̂3
n(1 − p̂n). Show

that n(δn− σ̂2
n) converges in probability to a constant, and use a two-

term Taylor expansion to find the limiting distribution of n(σ̂2 − σ2).
*5. Let X1, . . . , Xn be i.i.d. with common density fθ(x) = (x−θ)+eθ−x. Show

that Mn = min{X1, . . . , Xn} is a consistent estimator of θ, and determine
the limiting distribution for

√
n(Mn − θ).

*6. Prove that if An
p→ 1 and Yn ⇒ Y , then AnYn ⇒ Y . (This is a special

case of Theorem 8.13.)
7. Suppose X1, X2, . . . are i.i.d. with common density

f(x) =







1

(1 + x)2
, x > 0;

0, otherwise,

and let Mn = max{X1, . . . , Xn}. Show that Mn/n converges in distribu-
tion, and give a formula for the limiting distribution function.

8. If ǫ > 0 and supE|Xn|1+ǫ < ∞, show that Xn, n ≥ 1, are uniformly
integrable.

9. Suppose X1, X2, . . . are integrable and

lim
t→∞

lim sup
n→∞

E
[

|Xn|I
{

|Xn| ≥ t
}]

= 0.

Show that Xn, n ≥ 1, are uniformly integrable.
10. Suppose Xn ⇒ X , xn → x, and the cumulative distribution function for

X is continuous at x. Show that P (Xn ≤ xn) → P (X ≤ x).
11. Let X1, X2, . . . be i.i.d. variables uniformly distributed on (0, 1), and let

X̃n denote the geometric average of the first n of these variables; that is,

X̃n = (X1 × · · · ×Xn)
1/n.
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a) Show that X̃n
p→ 1/e as n→ ∞.

b) Show that
√
n(X̃n − 1/e) converges in distribution, and identify the

limit.
12. Let X1, X2, . . . be i.i.d. from the uniform distribution on (1, 2), and let

Hn denote the harmonic average of the first n variables:

Hn =
n

X−1
1 + · · · +X−1

n

.

a) Show that Hn
p→ c as n→ ∞, identifying the constant c.

b) Show that
√
n(Hn−c) converges in distribution, and identify the limit.

13. Show that if Yn
p→ c as n → ∞, then Yn ⇒ Y as n → ∞. Give the

distribution or cumulative distribution function for Y .
14. Let X1, X2, . . . be i.i.d. from a uniform distribution on (0, e), and define

Yn =
n

√

∏n2

i=1Xi.

Show that Yn ⇒ Y as n→ ∞, giving the cumulative distribution function
for Y .

15. Let X1, X2, . . . be i.i.d. from N(µ, σ2), let w1, w2, . . . be positive weights,
and define weighted averages

Yn =

∑n
i=1 wiXi
∑n

i=1 wi
, n = 1, 2, . . . .

a) Suppose wk = 1/k, k = 1, 2, . . . . Show that Yn
p→ c, identifying the

limiting value c.
b) Suppose wk = 1/(2k−1)2. Show that Yn ⇒ Y , giving the distribution

for Y . Hint:

∞
∑

k=1

1

(2k − 1)2
=
π2

8
and

∞
∑

k=1

1

(2k − 1)4
=
π4

96
.

*16. Let Y1, . . . , Yn be independent with Yi ∼ N(α + βxi, σ
2), i = 1, . . . , n,

where x1, . . . , xn are known constants, and α, β, and σ2 are unknown
parameters. Find the maximum likelihood estimators of these parameters,
α, β, and σ2.

*17. Let X1, . . . , Xn be jointly distributed. The first variable X1 ∼ N(0, 1),
and, for j = 1, . . . , n− 1, the conditional distribution of Xj+1 given X1 =
x1, . . . , Xj = xj is N(ρxj , 1). Find the maximum likelihood estimator of
ρ.

18. Distribution theory for order statistics in the tail of the distribution can
behave differently than order statistics such as the median, that are near
the middle of the distribution. LetX1, . . . , Xn be i.i.d. from an exponential
distribution with unit failure rate.



8.8 Problems 147

a) Suppose we are interested in the limiting distribution for X(2), the

second order statistic. Naturally, X(2)
p→ 0 as n → ∞. For an inter-

esting limit theory we should scale X(2) by an appropriate power of
n, but the correct power is not 1/2. Suppose x > 0. Find a value p
so that P (npX(2) ≤ x) converges to a value between 0 and 1. (If p
is too small, the probability will tend to 1, and if p is too large the
probability will tend to 0.)

b) Determine the limiting distribution for X(n) − logn.
*19. Let X1, . . . , Xn be i.i.d. from an exponential distribution with failure rate

θ. Let p̂n = #{i ≤ n : Xi ≥ 1}/n and Xn = (X1+ · · ·+Xn)/n. Determine
the asymptotic relative efficiency of − log p̂n with respect to 1/Xn.

*20. Let X1, . . . , Xn be i.i.d. from N(θ, θ), with θ > 0 an unknown parameter,
and consider estimating θ(θ + 1). Determine the asymptotic relative effi-
ciency of Xn(Xn + 1) with respect to δn = (X2

1 + · · ·+X2
n)/n, where, as

usual, Xn = (X1 + · · · +Xn)/n.
*21. Let Qn denote the upper quartile (or 75th percentile) for a random sample

X1, . . . , Xn from N(0, σ2). If Φ(c) = 3/4, then Qn
p→ cσ, and so σ̃n =

Qn/c is a consistent estimator of σ. Let σ̂ be the maximum likelihood
estimator of σ. Determine the asymptotic relative efficiency of σ̃ with
respect to σ̂.

22. If X1, . . . , Xn are i.i.d. from N(θ, θ), then two natural estimators of θ are
the sample meanX and the sample variance S2. Determine the asymptotic
relative efficiency of S2 with respect to X.

23. Suppose X1, . . . , Xn are i.i.d. Poisson variables with mean λ and we are
interested in estimating p = Pλ(Xi = 0) = e−λ.
a) One estimator for p is the proportion of zeros in the sample, p̃ =

#{i ≤ n : Xi = 0}/n. Find the limiting distribution for
√
n(p̃− p).

b) Another estimator would be the maximum likelihood estimator p̂. Give
a formula for p̂ and determine the limiting distribution for

√
n(p̂− p).

c) Find the asymptotic relative efficiency of p̃ with respect to p̂.
*24. Suppose X1, . . . , Xn are i.i.d. N(0, σ2), and let M be the median of

|X1|, . . . , |Xn|.
a) Find c ∈ R so that σ̃ = cM is a consistent estimator of σ.
b) Determine the limiting distribution for

√
n(σ̃ − σ).

c) Find the maximum likelihood estimator σ̂ of σ and determine the
limiting distribution for

√
n(σ̂ − σ).

d) Determine the asymptotic relative efficiency of σ̃ with respect to σ̂.
25. Suppose X1, X2, . . . are i.i.d. from the beta distribution with parameters

α > 0 and β > 0. The mean of this distribution is µ = α/(α+β). Solving,
α = βµ/(1 − µ). If β is known, this suggests

α̃ =
βX

1 −X

as a natural estimator for α. Determine the asymptotic relative efficiency
of this estimator α̃ with respect to the maximum likelihood estimator α̂.
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26. Let X1, . . . , Xn be i.i.d. Poisson with mean λ, and consider estimating

g(λ) = Pλ(Xi = 1) = λe−λ.

One natural estimator might be the proportion of ones in the sample:

p̂n =
1

n
#{i ≤ n : Xi = 1}.

Another choice would be the maximum likelihood estimator, g(Xn), with
Xn the sample average.
a) Find the asymptotic relative efficiency of p̂n with respect to g(Xn).
b) Determine the limiting distribution of

n
[

g(Xn) − 1/e
]

when λ = 1.
27. Let X1, . . . , Xn be i.i.d. from N(θ, 1), and let U1, . . . , Un be i.i.d. from a

uniform distribution on (0, 1), with all 2n variables independent. Define
Yi = XiUi, i = 1, . . . , n. If the Xi and Ui are both observed, then X would
be a natural estimator for θ. If only the products Y1, . . . , Yn are observed,
then 2Y may be a reasonable estimator. Determine the asymptotic relative
efficiency of 2Y with respect to X.

28. Definition 8.21 for Op(1) does not refer explicitly to limiting values as
n → ∞. But in fact the conclusion only depends on the behavior of the
sequence for large n. Show that if

lim sup
n→∞

P
(

|Xn| > K
)

→ 0

as K → ∞, then Xn = Op(1), so that “sup” in the definition could be
changed to “lim sup.”

29. Prove Proposition 8.22.
30. Markov’s inequality. Show that for any constant c > 0 and any random

variable X ,
P (|X | ≥ c) ≤ E|X |/c.

31. Use Markov’s inequality from the previous problem to prove Proposi-
tion 8.23.

32. If Xn ⇒ X as n → ∞, show that Xn = Op(1) as n → ∞. Also, show
that the converse fails, finding a sequence of random variables Xn that
are Op(1) but do not converge in distribution.

33. Show that if Xn = Op(1) as n→ ∞ and f is a continuous function on R,
then f(Xn) = Op(1) as n → ∞. Also, give an example showing that this
result can fail if f is discontinuous at some point x.

34. Let Mn, n ≥ 1, be positive, integer-valued random variables.
a) Show that if Mn → ∞ almost surely as n → ∞, and Xn → 0 almost

surely as n→ ∞, then XMn → 0 almost surely as n→ ∞.
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b) Show that if Mn
p→ ∞, and Xn → 0 almost surely, then XMn

p→ 0.
35. Let X1, X2, . . . be independent Bernoulli variables with P (Xn = 1) = 1/n.

Then Xn
p→ 0, but almost sure convergence fails. Find positive, integer-

valued random variables Mn, n ≥ 1, such that Mn → ∞ almost surely
with Xmn = 1. This shows that the almost sure convergence for Xn in the
previous problem is essential.



9

Estimating Equations and Maximum

Likelihood

Many estimators in statistics are specified implicitly as solutions to equations
or as values maximizing some function. In this chapter we study why these
methods work and learn ways to approximate distributions. Although we focus
on methods for i.i.d. observations, many of the ideas can be extended. Results
for stationary time series are sketched in Section 9.9.

A first example, introduced in Section 8.3, concerns maximum likelihood
estimation. The maximum likelihood estimator θ̂ maximizes the likelihood
function L(·) or log-likelihood l(·) = logL(·). And if l is differentiable and

the maximum occurs in the interior of the parameter space, then θ̂ solves
∇l(θ) = 0. Method of moments estimators, considered in Problem 9.2, provide
a second example. If X1, . . . , Xn are i.i.d. observations with average X, and
if µ(θ) = EθXi, then the method of moments estimator of θ solves µ(θ) = X .
A final example would be M -estimators, considered in Section 9.8.

9.1 Weak Law for Random Functions1

In this section we develop a weak law of large numbers for averages of random
functions. This is used in the rest of the chapter to establish consistency and
asymptotic normality of maximum likelihood and other estimators.

Let X1, X2, . . . be i.i.d., let K be a compact set in Rp, and define

Wi(t) = h(t,Xi), t ∈ K,

where h(t, x) is a continuous function of t for all x. Then W1,W2, . . . are i.i.d.
random functions taking values in C(K), the space of continuous functions
on K.

Functions in C(K) behave in many ways like vectors. They can be added,
subtracted, and multiplied by constants, with these operations satisfying the

1 The theory developed in this section is fairly technical, but uniform convergence
is important for applications developed in later sections.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
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usual properties. Sets with these properties are called linear spaces. In addi-
tion, notions of convergence can be introduced for functions in C(K). There
are various possibilities. The one we use in this section is based on a notion
of length. For w ∈ C(K) define

‖w‖∞ = sup
t∈K

|w(t)|,

called the supremum norm of w. Functions wn converge to w in this norm if
‖wn − w‖∞ → 0. With this norm, C(K) is complete (all Cauchy sequences
converge), and a complete linear space with a norm is called a Banach space.

A final nice property of C(K) is separability. A subset of some set is called
dense if every element in the set is arbitrarily close to some point in the
subset. For instance, the rational numbers are a dense subset of R because
there are rational numbers arbitrarily close to any real number x ∈ R. A
space is separable if it has a countable dense subset. We state the law of large
numbers in this section for i.i.d. random functions in C(K), but the result
also holds for i.i.d. random elements in an arbitrary separable Banach space.2

Lemma 9.1. Let W be a random function in C(K) and define

µ(t) = EW (t), t ∈ K.

(This function µ is called the mean of W .) If E‖W‖∞ < ∞, then µ is con-
tinuous. Also,

sup
t∈K

E sup
s:‖s−t‖<ǫ

|W (s) −W (t)| → 0

as ǫ ↓ 0.

Proof. Let tn, n ≥ 1, be a sequence of constants in K converging to t. Because
W is continuous, the random variables W (tn) converge to W (t) as n → ∞.
They are also dominated by ‖W‖∞, which has a finite expectation. Thus

µ(tn) = EW (tn) → EW (t) = µ(t)

as n→ ∞ by dominated convergence, and µ is continuous.
For the second part, define

Mǫ(t) = sup
s:‖s−t‖<ǫ

|W (s) −W (t)|,

2 As usual, we are not giving much attention to issues of measurability, and the
notion of what we mean by a “random function” is a bit vague. To be more
specific, define Ba(w) =

˘

f ∈ C(K) : ‖f − w‖∞ < a
¯

, called the open ball with
radius a centered at w. The Borel σ-field B can then be defined as the smallest
σ-field that contains all open balls. If probability is defined on a measurable space
(X ,A), thenW : X → C(K) is measurable and would be called a random function
if W−1(B) ∈ A for any Borel set B ∈ B. Aside from defining Borel sets using open
balls instead of intervals, this definition is essentially the same as the definition
of measurability for random variables given in Definition 1.7.
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and let λǫ be the mean of Mǫ,

λǫ(t) = EMǫ(t).

Because W is continuous, Mǫ is continuous. Also, since |Mǫ(t)| ≤ 2‖W‖∞,
E‖Mǫ‖∞ < ∞, and by the first part of this theorem, λǫ is continuous. By
continuity, Mǫ(t) → 0 as ǫ → 0, and by dominated convergence, λǫ(t) → 0
as ǫ → 0. Since the functions λǫ are decreasing as ǫ ↓ 0, by Dini’s theorem
(Theorem A.5) the convergence is uniform, that is, supt∈K λǫ(t) → 0 as ǫ ↓ 0.

⊓⊔

Theorem 9.2. Let W,W1,W2, . . . be i.i.d. random functions in C(K), K
compact, with mean µ and E‖W‖∞ <∞, and let Wn = (W1 + · · · +Wn)/n.
Then

‖Wn − µ‖∞ p→ 0

as n→ ∞.

By the weak law of large numbers, for any t ∈ K, Wn(t)
p→ µ(t). But the

theorem is stronger, asserting that this convergence holds with uniformity in
t.

Proof. Fix ǫ > 0. For notation, let

Mδ,j(t) = sup
s:‖s−t‖<δ

∣

∣Wj(s) −Wj(t)
∣

∣

with mean λδ(t). Choose δ using the second assertion of Lemma 9.1 so that

λδ(t) = E sup
s:‖s−t‖<δ

|W (s) −W (t)| < ǫ, ∀t ∈ K,

and note that with this choice of δ, if ‖t− s‖ < δ, then

|µ(t) − µ(s)| =
∣

∣E
[

W (t) −W (s)
]∣

∣ ≤ E
∣

∣W (t) −W (s)
∣

∣ ≤ ǫ.

Let Bδ(t) =
{

s : ‖s − t‖ < δ
}

, the open ball with radius δ about t. Since
K is compact, the open sets Bδ(t), t ∈ K, covering K have a finite subcover
Oi = Bδ(ti), i = 1, . . . ,m. Then

‖Wn − µ‖∞
= max
i=1,...,m

sup
t∈Oi

∣

∣Wn(t) − µ(t)
∣

∣

≤ max
i

sup
t∈Oi

[

∣

∣Wn(t) −Wn(ti)
∣

∣+
∣

∣Wn(ti) − µ(ti)
∣

∣+
∣

∣µ(ti) − µ(t)
∣

∣

]

≤ max
i

sup
t∈Oi

∣

∣Wn(t) −Wn(ti)
∣

∣+ max
i

∣

∣Wn(ti) − µ(ti)
∣

∣+ ǫ.

Now
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sup
t∈Oi

∣

∣Wn(t) −Wn(ti)
∣

∣ =
1

n
sup
t∈Oi

∣

∣

∣

∣

∣

∣

n
∑

j=1

[Wj(t) −Wj(ti)]

∣

∣

∣

∣

∣

∣

≤ 1

n

n
∑

j=1

sup
t∈Oi

∣

∣Wj(t) −Wj(ti)
∣

∣

=
1

n

n
∑

j=1

Mδ,j(ti)
def
= M δ,n(ti).

By the law of large numbers,

M δ,n(ti)
p→ λδ(ti) < ǫ.

Using these bounds,

‖Wn − µ‖∞ < 2ǫ+ max
i

(

M δ,n(ti) − λδ(ti)
)

+ max
i

∣

∣Wn(ti) − µ(ti)
∣

∣.

The two maximums in this equation both converge to zero in probability and
using this it is easy to argue that P

(

‖Wn − µ‖∞ > 3ǫ
)

→ 0 as n→ ∞. ⊓⊔

Remark 9.3. The same proof coupled with the strong law of large numbers,
stated in Section 8.7, shows that ‖Wn − µ‖∞ → 0 almost surely.

The following result shows the usefulness of uniform convergence. None of
the conclusions follow from pointwise convergence in probability.

Theorem 9.4. Let Gn, n ≥ 1, be random functions in C(K), K compact,

and suppose ‖Gn − g‖∞ p→ 0 with g a nonrandom function in C(K).

1. If tn, n ≥ 1, are random variables converging in probability to a constant

t∗ ∈ K, tn
p→ t∗, then Gn(tn)

p→ g(t∗).
2. If g achieves its maximum at a unique value t∗, and if tn are random

variables maximizing Gn, so that

Gn(tn) = sup
t∈K

Gn(t),

then tn
p→ t∗.

3. If K ⊂ R and g(t) = 0 has a unique solution t∗, and if tn are random

variables solving Gn(tn) = 0, then tn
p→ t∗.

Proof. For the first assertion, since

∣

∣Gn(tn) − g(t∗)
∣

∣ ≤
∣

∣Gn(tn) − g(tn)
∣

∣+
∣

∣g(tn) − g(t∗)
∣

∣

≤ ‖Gn − g‖∞ +
∣

∣g(tn) − g(t∗)
∣

∣,

and since g(tn)
p→ g(t∗),
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P
(∣

∣Gn(tn) − g(t∗)
∣

∣ > ǫ
)

≤ P
(

‖Gn − g‖∞ +
∣

∣g(tn) − g(t∗)
∣

∣ > ǫ
)

≤ P (‖Gn − g‖∞ > ǫ/2) + P
(∣

∣g(tn) − g(t∗)
∣

∣ > ǫ/2
)

→ 0.

t

g

t∗ − ǫ t∗ t∗ + ǫ

M
M − δ/2

Mǫ = M − δ

�	
g + δ/2

Fig. 9.1. g and g + δ/2.

For the second assertion, fix ǫ and let Kǫ = K − Bǫ(t
∗). This set is

compact; it is bounded because K is bounded, and it is closed because it
is the intersection of two closed sets, K and the complement of Bǫ(t

∗). Let
M = g(t∗) = supK g and let Mǫ = supKǫ

g. Since Kǫ is compact, Mǫ = g(t∗ǫ )
for some t∗ǫ ∈ Kǫ, and since g has a unique maximum overK, Mǫ < M . Define
δ = M −Mǫ > 0. See Figure 9.1. Suppose ‖Gn − g‖∞ < δ/2. Then

sup
Kǫ

Gn < sup
Kǫ

g +
δ

2
= M − δ

2

and

sup
K
Gn ≥ Gn(t

∗) > g(t∗) − δ

2
= M − δ

2
,

and tn must lie in Bǫ(t
∗). Thus

P
(

‖Gn − g‖∞ < δ/2
)

≤ P
(

‖tn − t∗‖ < ǫ
)

.

Taking complements,

P
(

‖tn − t∗‖ ≥ ǫ
)

≤ P
(

‖Gn − g‖∞ ≥ δ/2
)

→ 0,

and so tn
p→ t∗. The third assertion in the theorem can be established in a

similar fashion. ⊓⊔
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Remark 9.5. The law of large numbers and the first and third assertions in
Theorem 9.4 can be easily extended to multivariate situations where the ran-
dom functions are vector-valued, mapping a compact set K into Rp.

Remark 9.6. In the approach to the weak law here, continuity plays a key role
in proving uniform convergence. Uniform convergence without continuity is
also possible. One important result concerns empirical distribution functions.
If X1, . . . , Xn are i.i.d., then a natural estimator for the common cumula-
tive distribution function F would be the empirical cumulative distribution
function F̂n, defined as

F̂n(x) =
1

n
#{i ≤ n : Xi ≤ x}, x ∈ R.

The Glivenko–Cantelli theorem asserts that ‖F̂n − F‖∞ p→ 0 as n → ∞. In
the proof of this result, monotonicity replaces continuity as the key regularity
used to establish uniform convergence.

9.2 Consistency of the Maximum Likelihood Estimator

For this section let X,X1, X2, . . . be i.i.d. with common density fθ, θ ∈ Ω,
and let ln be the log-likelihood function for the first n observations:

ln(ω) = log
n
∏

i=1

fω(Xi) =
n
∑

i=1

log fω(Xi).

(We use ω as the dummy argument here, reserving θ to represent the true
value of the unknown parameter in the sequel.) Then the maximum likelihood

estimator θ̂n = θ̂n(X1, . . . , Xn) from the first n observations will maximize ln.
For regularity, assume fθ(x) is continuous in θ.

Definition 9.7. The Kullback–Leibler information is defined as

I(θ, ω) = Eθ log
[

fθ(X)/fω(X)
]

.

It can be viewed as a measure of the information discriminating between θ and
ω when θ is the true value of the unknown parameter.

Lemma 9.8. If Pθ 6= Pω, then I(θ, ω) > 0.

Proof. By Jensen’s inequality,

−I(θ, ω) = Eθ log
[

fω(X)/fθ(X)
]

≤ logEθ
[

fω(X)/fθ(X)
]

= log

∫

fθ>0

fω(x)

fθ(x)
fθ(x) dµ(x)

≤ log 1

= 0.
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Strict equality will occur only if fω(X)/fθ(X) is constant a.e. But then the
densities will be proportional and hence equal a.e., and Pθ and Pω will be the
same. ⊓⊔

The next result gives consistency for the maximum likelihood estimator
when Ω is compact. The result following is an extension when Ω = Rp. Define

W (ω) = log

[

fω(X)

fθ(X)

]

.

Theorem 9.9. If Ω is compact, Eθ‖W‖∞ <∞, fω(x) is a continuous func-

tion of ω for a.e. x, and Pω 6= Pθ for all ω 6= θ, then under Pθ, θ̂n
p→ θ.

Proof. If Wi(ω) = log
(

fω(Xi)/fθ(Xi)
)

, then under Pθ, W1,W2, . . . are i.i.d.
random functions in C(Ω) with mean µ(ω) = −I(θ, ω). Note that µ(θ) = 0
and µ(ω) < 0 for ω 6= θ by Lemma 9.8, and so µ has a unique maximum at θ.
Since

Wn(ω) =
1

n

n
∑

j=1

Wi(ω) =
ln(ω) − ln(θ)

n
,

θ̂n maximizes Wn. By Theorem 9.2, ‖Wn − µ‖∞ → 0, and the result follows
from the second assertion of Theorem 9.4. ⊓⊔

Remark 9.10. The argument used to prove consistency here is based on the
proof in Wald (1949). In this paper, the one-sided condition that Eθ supΩW <
∞ replaces Eθ‖W‖∞ < ∞. Inspecting the proof here, it is not hard to see
that Wald’s weaker condition is sufficient.

Theorem 9.11. Suppose Ω = Rp, fω(x) is a continuous function of ω for
a.e. x, Pω 6= Pθ for all ω 6= θ, and fω(x) → 0 as ω → ∞. If Eθ‖1KW‖∞ <∞
for any compact set K ⊂ Rp, and if Eθ sup‖ω‖>aW (ω) < ∞ for some a > 0,

then under Pθ, θ̂n
p→ θ.

Proof. Since fω(x) → 0 as ω → ∞, if fθ(X) > 0,

sup
‖ω‖>b

W (ω) → −∞

as b → ∞. By a dominated convergence argument the expectation of this
variable will tend to −∞ as b→ ∞, and we can choose b so that

Eθ sup
‖ω‖>b

W (ω) < 0.

Note that b must exceed ‖θ‖, because W (θ) = 0. Since

sup
‖ω‖>b

Wn(ω) ≤ 1

n

n
∑

j=1

sup
‖ω‖>b

Wi(ω)
p→ Eθ sup

‖ω‖>b
W (ω),
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Pθ
(

sup
‖ω‖>b

Wn(ω) ≥ 0
)

→ 0,

as n → ∞. Let K be the closed ball of radius b, and let θ̃n be variables

maximizing Wn over K.3 By Theorem 9.9, θ̃n
p→ θ. Since θ̂n must lie in K

whenever
sup
‖ω‖>b

Wn(ω) < Wn(θ) = 0,

Pθ(θ̂n = θ̃n) → 1. It then follows that θ̂n
p→ θ. ⊓⊔

Remark 9.12. A similar result can be obtained when Ω is an arbitrary open
set. The corresponding conditions would be that fω(x) → 0 as ω approaches
the boundary of Ω, and that Eθ supω∈Kc W (ω) < ∞ for some compact set
K. Although conditions for consistency are fairly mild, counterexamples are
possible when they fail. Problem 9.4 provides one example.

Example 9.13. Suppose we have a location family with densities fθ(x) = g(x−
θ), θ ∈ R, and that

1. g is continuous and bounded, so supx∈R
g(x) = K <∞,

2. g(x) → 0 as x→ ±∞, and
3.
∫

| log g(x)|g(x) dx <∞.

Then

Eθ sup
ω∈R

W (ω) = Eθ sup
ω∈R

log
g(X − ω)

g(X − θ)

= logK − Eθ log g(X − θ)

= logK −
∫

[log g(x)]g(x) dx

<∞.

Hence θ̂n is consistent by the one-sided adaptation of our consistency theorems
mentioned in Remark 9.10. The third condition here is not very stringent; it
holds for most densities, including the Cauchy and other t-densities, that
decay algebraically near infinity.

9.3 Limiting Distribution for the MLE

Theorem 9.14. Assume:

1. Variables X,X1, X2, . . . are i.i.d. with common density fθ, θ ∈ Ω ⊂ R.

3 To be careful, as we define θ̃n, we should also insist that θ̃n = θ̂n whenever
θ̂n ∈ K, to cover cases with multiple maxima.
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2. The set A = {x : fθ(x) > 0} is independent of θ.
3. For every x ∈ A, ∂2fθ(x)/∂θ

2 exists and is continuous in θ.
4. Let W (θ) = log fθ(X). The Fisher information I(θ) from a single obser-

vation exists, is finite, and can be found using either

I(θ) = EθW
′(θ)2 or I(θ) = −EθW ′′(θ).

Also,
EθW

′(θ) = 0.

5. For every θ in the interior of Ω there exists ǫ > 0 such that

Eθ‖1[θ−ǫ,θ+ǫ]W
′′‖∞ <∞.

6. The maximum likelihood estimator θ̂n is consistent.

Then for any θ in the interior of Ω,

√
n(θ̂n − θ) ⇒ N

(

0, 1/I(θ)
)

under Pθ as n→ ∞.

The assumptions in this theorem are fairly mild, although similar results,
such as those in Chapter 16, are possible under weaker conditions. Assump-
tion 2 usually precludes families of uniform distributions or truncated families.
Assumptions 3 and 4 are the same as assumptions discussed for the Cramér–
Rao bound, and Assumption 5 strengthens 4. Concerning the final assumption,
for the proof θ̂n needs to be consistent, but it is not essential that it maximizes

the likelihood. What matters is that
√
nW

′
n(θ̂n)

Pθ→ 0. In regular cases this will
hold for Bayes estimators. There may also be models satisfying the other as-
sumptions for this theorem in which the maximum likelihood estimator does
not exist or is not consistent. In these examples there is often a consistent

θ̂n solving W
′
n(θ̂n) = 0, with this consistent root of the likelihood equation

asymptotically normal.
The following technical lemma shows that, when proving convergence in

distribution, we only need consider what happens on a sequence of events with
probabilities converging to one.

Lemma 9.15. Suppose Yn ⇒ Y , and P (Bn) → 1 as n → ∞. Then for
arbitrary random variables Zn, n ≥ 1,

Yn1Bn + Zn1Bc
n
⇒ Y

as n→ ∞.

Proof. For any ǫ > 0,

P
(

|Zn1Bc
n
| > ǫ

)

≤ P (Bcn) = 1 − P (Bn) → 0
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as n→ ∞. So Zn1Bc
n

p→ 0 as n→ ∞. Also,

P
(

|1Bn − 1| > ǫ
)

≤ P (Bcn) = 1 − P (Bn) → 0

as n → ∞, and so 1Bn

p→ 1 as n → ∞. With these observations, the lemma
now follows from Theorem 8.13. ⊓⊔

Proof of Theorem 9.14. Choose ǫ > 0 using Assumption 5 small enough that
[θ − ǫ, θ + ǫ] ⊂ Ω0 and Eθ‖1[θ−ǫ,θ+ǫ]W ′′‖∞ < ∞, and let Bn be the event

θ̂n ∈ [θ−ǫ, θ+ǫ]. Because θ̂n is consistent, Pθ(Bn) → 1, and since θ̂n maximizes

nWn(·) = ln(·), on Bn we have W
′
n(θ̂n) = 0. Taylor expansion of W

′
n about

θ gives

W
′
n(θ̂n) = W

′
n(θ) +W

′′
n(θ̃n)(θ̂n − θ),

where θ̃n is an intermediate value between θ̂n and θ. Setting the left-hand side
of this equation to zero and solving, on Bn,

√
n(θ̂n − θ) =

√
nW

′
n(θ)

−W ′′n(θ̃n)
. (9.1)

By Assumption 4, the variables averaged in W
′
n(θ) are i.i.d., mean zero, with

variance I(θ). By the central limit theorem,

√
nW

′
n(θ) ⇒ Z ∼ N

(

0, I(θ)
)

.

Turning to the denominator, since |θ̃n − θ| ≤ |θ̂n − θ|, at least on Bn, and θ̂n
is consistent, θ̃n

p→ θ. By Theorem 9.2,

‖1[θ−ǫ,θ+ǫ](W
′′
n − µ)‖∞ p→ 0,

where µ(ω) = EθW
′′(ω), and so, by second assertion of Theorem 9.4,

W
′′
n(θ̃n)

p→ µ(θ) = −I(θ).

Since the behavior of θ̂n on Bcn cannot affect convergence in distribution (by
Lemma 9.15),

√
n(θ̂n − θ) ⇒ Z

I(θ)
∼ N

(

0, 1/I(θ)
)

,

as n→ ∞ by Theorem 8.13. ⊓⊔

Remark 9.16. The argument that

W
′′
n(θ̃n) =

1

n
l′′n(θ̃n)

p→ −I(θ)

holds for any variables θ̃n converging to θ in probability. This is exploited
later as we study asymptotic confidence intervals.
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9.4 Confidence Intervals

A point estimator δ for an unknown parameter g(θ) provides no information
about accuracy. Confidence intervals address this deficiency by seeking two
statistics, δ0 and δ1, that bracket g(θ) with high probability.

Definition 9.17. If δ0 and δ1 are statistics, then the random interval (δ0, δ1)
is called a 1 − α confidence interval for g(θ) if

Pθ
(

g(θ) ∈ (δ0, δ1)
)

≥ 1 − α,

for all θ ∈ Ω. Also, a random set S = S(X) constructed from data X is called
a 1 − α confidence region for g(θ) if

Pθ
(

g(θ) ∈ S
)

≥ 1 − α,

for all θ ∈ Ω.

Remark 9.18. In many examples, coverage probabilities equal 1 − α for all
θ ∈ Ω, in which case the interval or region might be called an exact confidence
interval or an exact confidence region.

Example 9.19. Let X1, . . . , Xn be i.i.d. from N(µ, σ2). Then from the results
in Section 4.3, X = (X1 + · · ·+Xn)/n and S2 =

∑n
i=1(Xi −X)2/(n− 1) are

independent, with X ∼ N(µ, σ2/n) and (n− 1)S2/σ2 ∼ χ2
n−1. Define

Z =
X − µ

σ/
√
n

∼ N(0, 1)

and

V =
(n− 1)S2

σ2
∼ χ2

n−1.

These variables Z and V are called pivots, since their distribution does not
depend on the unknown parameters µ and σ2. This idea is similar to ancillar-
ity, but Z and V are not statistics since both variables depend explicitly on
unknown parameters. Since Z and V are independent, the variable

T =
Z

√

V/(n− 1)
(9.2)

is also a pivot. Its distribution is called the t-distribution on n− 1 degrees of
freedom, denoted T ∼ tn−1. The density for T is

fT (x) =
Γ
(

(ν + 1)/2
)

√
νπΓ (ν/2)(1 + x2/ν)(ν+1)/2

, x ∈ R,

where ν = n− 1, the number of degrees of freedom.
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Pivots can be used to set confidence intervals. For p ∈ (0, 1), let tp,ν denote
the upper pth quantile for the t-distribution on ν degrees of freedom, so that

P
(

T ≥ tp,ν
)

=

∫ ∞

tp,ν

fT (x) dx = p.

By symmetry,

P
(

T ≥ tα/2,n−1

)

= P
(

T ≤ −tα/2,n−1

)

= α/2,

and so
P
(

−tα/2,n−1 < T < tα/2,n−1

)

= 1 − α.

Now

T =
Z

√

V/(n− 1)
=
X − µ

S/
√
n
,

and so
−tα/2,n−1 < T < tα/2,n−1

if and only if
|X − µ|
S/

√
n

< tα/2,n−1

if and only if

|X − µ| < tα/2,n−1
S√
n

if and only if

µ ∈
(

X − tα/2,n−1
S√
n
,X + tα/2,n−1

S√
n

)

def
= (δ0, δ1).

Thus for any θ = (µ, σ2),

Pθ
(

µ ∈ (δ0, δ1)
)

= 1 − α

and (δ0, δ1) is a 1 − α confidence interval for µ.
The pivot V can be used in a similar fashion to set confidence intervals

for σ2. Let χ2
p,ν denote the upper pth quantile for the chi-square distribution

on ν degrees of freedom. Then

P
(

V ≥ χ2
α/2,n−1

)

= P
(

V ≤ χ2
1−α/2,n−1

)

= α/2,

and

1 − α = Pθ

(

χ2
1−α/2,n−1 < V =

(n− 1)S2

σ2
< χ2

α/2,n−1

)

= Pθ

[

σ2 ∈
(

(n− 1)S2

χ2
α/2,n−1

,
(n− 1)S2

χ2
1−α/2,n−1

)]

.
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Thus
(

(n− 1)S2

χ2
α/2,n−1

,
(n− 1)S2

χ2
1−α/2,n−1

)

is a 1 − α confidence interval for σ2.

9.5 Asymptotic Confidence Intervals

Suppose the conditions of Theorem 9.14 hold, so that under Pθ,

√
n(θ̂n − θ) ⇒ N

(

0, 1/I(θ)
)

as n → ∞, where θ̂n is the maximum likelihood estimator of θ based on n
observations. Multiplying by

√

I(θ), this implies

√

nI(θ)(θ̂n − θ) ⇒ N(0, 1). (9.3)

Since the limiting distribution here is independent of θ,
√

nI(θ)(θ̂n − θ) is
called an approximate pivot. If we define zp = Φ←(1 − p), the upper pth
quantile of N(0, 1), then

Pθ
(
√

nI(θ)|θ̂n − θ| < zα/2
)

→ 1 − α

as n→ ∞. If we define the (random) set

S =
{

θ ∈ Ω :
√

nI(θ)|θ̂n − θ| < zα/2
}

, (9.4)

then θ ∈ S if and only if
√

nI(θ)|θ̂n − θ| < zα/2, and so

Pθ(θ ∈ S) → 1 − α

as n→ ∞. This set S is called a 1 − α asymptotic confidence region for θ.
Practical considerations may make the confidence region S in (9.4) unde-

sirable. It need not be an interval, which may make the region hard to describe
and difficult to interpret. Also, if the Fisher information I(·) is a complicated
function, the inequalities defining the region may be difficult to solve. To avoid

these troubles, note that if I(·) is continuous, then

√

I(θ̂n)/I(θ)
Pθ→ 1, and so

by Theorem 8.13 and (9.3),

√

nI(θ̂n)(θ̂n − θ) =

√

I(θ̂n)

I(θ)

√

nI(θ)(θ̂n − θ) ⇒ N(0, 1)

as n→ ∞. From this,
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Pθ
(

√

nI(θ̂n)|θ̂n − θ| < zα/2
)

= Pθ



θ ∈



θ̂n − zα/2
√

nI(θ̂n)
, θ̂n +

zα/2
√

nI(θ̂n)









→ 1 − α

as n→ ∞. So


θ̂n − zα/2
√

nI(θ̂n)
, θ̂n +

zα/2
√

nI(θ̂n)



 (9.5)

is a 1 − α asymptotic confidence interval for θ.
The interval (9.5) requires explicit calculation of the Fisher information. In

addition, it might be argued that confidence intervals should be based solely
on the shape of the likelihood function, and not on quantities that involve

an expectation, such as I(θ̂n). Using Remark 9.16, −l′′n(θ̂n)/n
Pθ→ I(θ). So

√

−l′′n(θ̂n)/
√

nI(θ)
Pθ→ 1, and multiplying (9.3) by this ratio,

√

−l′′n(θ̂n)(θ̂n − θ) ⇒ N(0, 1) (9.6)

under Pθ as n→ ∞. From this,


θ̂n − zα/2
√

−l′′n(θ̂n)
, θ̂n +

zα/2
√

−l′′n(θ̂n)



 (9.7)

is a 1−α asymptotic confidence interval for θ. The statistic −l′′n(θ̂n) used to set
the width of this interval is called the observed or sample Fisher information.

The interval (9.7) relies on the log-likelihood only through θ̂n and the

curvature at θ̂n. Our final confidence regions are called profile regions as they
take more account of the actual shape of the likelihood function. By Taylor
expansion about θ̂n,

2ln(θ̂n) − 2ln(θ) =
[
√

−l′′n(θ∗n)(θ − θ̂n)
]2
,

where θ∗n is an intermediate value between θ and θ̂n (provided l′n(θ̂n) = 0,
which happens with probability approaching one if θ ∈ Ωo). By the argument
leading to (9.6),

√

−l′′n(θ∗n)(θ̂n − θ) ⇒ Z ∼ N(0, 1),

and so, using Corollary 8.11,

2ln(θ̂n) − 2ln(θ) ⇒ Z2 ∼ χ2
1.

Noting that P (Z2 < z2
α/2) = P (zα/2 < Z < zα/2) = 1 − α,
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Pθ
(

2ln(θ̂n) − 2ln(θ) < z2
α/2

)

→ 1 − α.

If we define
S =

{

θ ∈ Ω : 2ln(θ̂n) − 2ln(θ) < z2
α/2

}

, (9.8)

then Pθ(θ ∈ S) → 1 − α and S is a 1 − α asymptotic confidence region for
θ. Figure 9.2 illustrates how this set S = (δ0, δ1) would be found from the
log-likelihood function ln(·).

θ

l

ln(θ̂)

ln(θ̂) − 1
2
z2

α/2

δ0 θ̂ δ1

Fig. 9.2. Profile confidence interval (δ0, δ1).

Example 9.20. Suppose X1, . . . , Xn are i.i.d. from a Poisson distribution with
mean θ. Then

ln(θ) = nX log θ − nθ − log

(

n
∏

i=1

Xi!

)

,

where X = (X1 + · · · +Xn)/n. Since

l′n(θ) =
nX

θ
− n,

the maximum likelihood estimator of θ is θ̂ = X. Also, I(θ) = 1/θ. The first
confidence region considered, (9.4), is

S =
{

θ > 0 :
√

n/θ|θ̂ − θ| < zα/2
}

=
{

θ > 0 : θ̂2 − 2θ̂θ + θ̂2 < z2
α/2θ/n

}

= (θ̂−, θ̂+),
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where

θ̂± = θ̂ +
z2
α/2

2n
±

√

√

√

√

(

θ̂ +
z2
α/2

2n

)2

− θ̂2.

The next confidence interval, (9.5), based on I(θ̂) = 1/X is

(

X − zα/2

√

X/n,X + zα/2

√

X/n

)

.

For this example, the third confidence interval is the same because the ob-
served Fisher information, −l′′n(θ̂) = nX/θ̂ = n/X, agrees with nI(θ̂). Note
that the lower endpoint for this confidence interval will be negative if X is
close enough to zero. Finally, the profile confidence interval (9.8) is

{

θ > 0 : θ −X log(θ/X) −X <
z2
α/2

2n

}

.

This set will be an interval, because the left-hand side of the inequality is a
convex function of θ, but the endpoints cannot be given explicitly and must
be computed numerically.

Example 9.21. Imagine an experiment in which X is either 1 or 2, according
to the toss of a fair coin, and that

Y |X = x ∼ N(θ, x).

Multiplying the marginal density (mass function) of X by the conditional
density of Y given X , the joint density of X and Y is

fθ(x, y) =
1

2
√

2πx
exp

[

− (y − θ)2

2x

]

.

The Fisher information is

I(θ) = −Eθ
∂2

∂θ2
log fθ(X,Y ) = Eθ

[

1

X

]

=
3

4
.

If (X1, Y1), . . . , (Xn, Yn) is a random sample from this distribution, then

ln(θ) =
n
∑

i=1

log fθ(Xi, Yi) =
n
∑

i=1

[

− (Yi − θ)2

2Xi
− 1

2
log(8πXi)

]

and

l′n(θ) =

n
∑

i=1

Yi − θ

Xi
.



9.6 EM Algorithm: Estimation from Incomplete Data 167

Equating this to zero, the maximum likelihood estimator is

θ̂n =

∑n
i=1(Yi/Xi)

∑n
i=1(1/Xi)

.

Also, l′′n(θ) = −∑n
i=1(1/Xi). Here the first two confidence intervals, (9.4) and

(9.5), are the same (since the Fisher information is constant), namely

(

θ̂n − zα/2

√

4

3n
, θ̂n + zα/2

√

4

3n

)

.

The last two intervals are also the same (because the log-likelihood is exactly
quadratic), namely

(

θ̂n − zα/2
√
∑n
i=1(1/Xi)

, θ̂n +
zα/2

√
∑n

i=1(1/Xi)

)

. (9.9)

In this example, the latter, likelihood-based intervals are clearly superior.
Given X1 = x1, . . . , Xn = xn, θ̂n is exactly N

(

θ, 1/
∑

i=1(1/xi)
)

, and by
smoothing, the coverage probability for (9.9) is exactly 1−α. Also, the width
of (9.9) varies in an appropriate fashion: it is shorter when many of the Xi

are 1s, increasing in length when more of the Xi are 2s.

9.6 EM Algorithm: Estimation from Incomplete Data

The EM algorithm (Dempster et al. (1977)) is a recursive method to calculate
maximum likelihood estimators from incomplete data. The “full data” X has
density from an exponential family, but is not observed. Instead, the observed
data Y is a known function of X , Y = g(X), with g many-to-one (so that X
cannot be recovered from Y ). Here we assume for convenience the density for
X is in canonical form, given by

h(x)eηT (x)−A(η).

We also assume that η ∈ Ω ⊂ R, although the algorithm works in higher
dimensions, and that Y is discrete. (The full data X can be discrete or con-
tinuous.)

The EM algorithm may be useful when data are partially observed in
some sense. For instance, X1, . . . , Xn could be a random sample from some
exponential family, and Yi could be Xi rounded to the nearest integer. Similar
possibilities could include censored or truncated data.

The EM algorithm can also be used in situations with missing data. For
instance, we may be studying answers for two multiple choice questions on
some survey. The full data X gives information on answers for both questions
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for every subject. The incomplete data Y may provide counts for all answer
combinations for respondents who answered both questions, along with counts
for the first question for respondents who skipped the second question, and
counts for the second question for respondents who skipped the first question.

Let X denote the sample space for X , Y the sample space for Y , and X (y)
the cross-section

X (y) = {x ∈ X : g(x) = y}.
Then Y = y if and only if X ∈ X (y).

Proposition 9.22. The joint density of X and Y (with respect to µ× ν with
µ the dominating measure for X and ν counting measure on Y) is

1X (y)(x)h(x)eηT (x)−A(η).

Proof. Let f be an arbitrary nonnegative function on X ×Y. Then f(X,Y ) =
∑

y∈Y f(X, y)I{Y = y}. Since expectation is linear (or by Fubini’s theorem)
and Y = g(X),

Ef(X,Y ) =
∑

y∈Y
Ef(X, y)I{g(X) = y}

=
∑

y∈Y

∫

X
f(x, y)I{g(x) = y}h(x)eηT (x)−A(η) dµ(x),

and the proposition follows because I{g(x) = y} = 1X (y)(x). ⊓⊔

To define the algorithm, recall that the maximum likelihood estimate of η
from the full data X is ψ(T ), where ψ is the inverse of A′. Also, define

e(y, η) = Eη
[

T (X)
∣

∣ Y = y
]

.

This can be computed as an integral against the conditional density of X
given Y = y. Dividing the joint density of X and Y by the marginal density
of Y , this conditional density is

1X (y)(x)h(x)eηT (x)−A(η)

fη(y)
,

where

fη(y) = Pη(Y = y) = Pη
(

X ∈ X (y)
)

=

∫

X (y)

h(x)eηT (x)−A(η) dµ(x).

The algorithm begins with an initial guess η̂0 for the true maximum likelihood
estimate η̂. Using this initial guess and data Y , the value of T (X) is imputed
to be T1 = e(Y, η̂0) (this is called an E-step). The refined estimate for η̂ is
η̂1 = ψ(T1) (an M-step). These E- and M-steps are repeated as necessary,
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starting with the current estimate for η̂ instead of the initial guess, until the
values converge.

If the exponential family is not specified in canonical form, so the density
is h(x)eη(θ)T (x)−B(θ), the E-step of the EM algorithm stays the same,

Tk+1 = Eθ̂k
[T (X)|Y ],

and for the M-step, θ̂k maximizes η(θ)Tk − B(θ) over θ ∈ Ω.
If the EM algorithm converges to η̃, then η̃ will satisfy

η̃ = ψ
(

e(Y, η̃)
)

,

or, equivalently,
A′(η̃) = e(Y, η̃).

Since

∂

∂η
log fη(Y ) =

∂
∂η

∫

X (Y ) h(x)eηT (x)−A(η) dµ(x)

fη(Y )

=

∫

X (Y )

[

T (x) −A′(η)
]

h(x)eηT (x)−A(η) dµ(x)

fη(Y )

= e(Y, η) −A′(η),

the log-likelihood has zero slope when η = η̃.

Example 9.23 (Rounding). Suppose X1, . . . , Xn are i.i.d. exponential variables
with common density fη(x) = ηe−ηx, x > 0; fη(x) = 0, x ≤ 0, and let
Yi = ⌊Xi⌋, the greatest integer less than or equal to Xi, so we only observe
the variables rounded down to the nearest integer. The joint distributions
of X1, . . . , Xn form an exponential family with canonical parameter η and
complete sufficient statistic T = −(X1 + · · · +Xn). The maximum likelihood
estimator of η based on X is ψ(T ) = −n/T . Arguing as in Proposition 9.22,

Eη[Xi|Yi = yi] = Eη[Xi|yi ≤ Xi < yi + 1]

=

∫ yi+1

yi
xηe−ηx dx

∫ yi+1

yi
ηe−ηx dx

= yi +
eη − 1 − η

η(eη − 1)
,

and by the independence,

Eη[Xi|Y1 = y1, . . . , Yn = yn] = Eη[Xi|Yi = yi].

Thus

e(y, η) = Eη[T |Y1 = y1, . . . , Yn = yn]

= −
n
∑

i=1

Eη[Xi|Yi = yi] = −n
[

y +
eη − 1 − η

η(eη − 1)

]

.
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The EM algorithm is given by

η̂j = − n

Tj
and Tj+1 = −n

[

Y +
eη̂j − 1 − η̂j
η̂j(eη̂j − 1)

]

.

In this example, the mass function for Yi can be computed explicitly:

Pη(Yi = y) = Pη(y ≤ Xi < y + 1) = (1 − e−η)(e−η)y, y = 0, 1, . . . ,

and we see that Y1, . . . , Yn are i.i.d. from a geometric distribution with p =
1 − e−η. The maximum likelihood estimator for p is

p̂ =
1

1 + Y
,

and since η = − log(1 − p), the maximum likelihood estimator for η is

η̂ = − log(1 − p̂) = log(1 + 1/Y ).

To study the convergence of the EM iterates η̂j , j ≥ 1, to the maximum
likelihood estimator η̂, suppose η̂j = η̂ + ǫ. By Taylor expansion,

Tj+1 = −n
[

Y +
1

η̂ + ǫ
− 1

eη̂+ǫ − 1

]

= −n
η̂

[

1 − ǫ

η̂
+

ǫη̂eη̂

(eη̂ − 1)2
+O(ǫ2)

]

,

and from this,

η̂j+1 = η̂ + ǫ

[

1 − η̂2eη̂

(eη̂ − 1)2

]

+O(ǫ2). (9.10)

In particular, if η̂j = η̂, so ǫ = 0, η̂j+1 also equals η̂. This shows that η̂ is a
fixed point of the recursion.

As a numerical routine for optimization, the EM algorithm is generally
stable and reliable. One appealing property is that the likelihood increases
with each successive iteration. This follows because it is in the class of MM
algorithms, discussed in Lange (2004). But convergence is not guaranteed: if
the likelihood has multiple modes, the algorithm may converge to a local max-
imum. Sufficient conditions for convergence are given by Wu (1983). Although
the EM algorithm is stable, convergence can be slow. By (9.10), there is linear
convergence in our example, with the convergence error η̂j − η̂ decreasing by
a constant factor (approximately) with each iteration. Linear convergence is
typical for the EM algorithm. If the likelihood for Y is available, quadratic con-
vergence, with η̂j+1 − η̂ = O

(

(η̂j − η̂)2
)

, may be possible by Newton–Raphson
or another search algorithm, but faster routines are generally less stable and
often require information about derivatives of the objective function.

The EM algorithm can be developed without the exponential family struc-
ture assumed here. It can also be supplemented to provide numerical approx-
imations for observed Fisher information. For these and other extensions, see
McLachlan and Krishnan (2008).
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9.7 Limiting Distributions in Higher Dimensions

Most of the results presented earlier in this chapter have natural extensions in
higher dimensions. If x = (x1, . . . , xp) and y = (y1, . . . , yp) are vectors in Rp,
then x ≤ y will mean that xi ≤ yi, i = 1, . . . , p. The cumulative distribution
function H of a random vector Y in Rp is defined by H(y) = P (Y ≤ y).

Definition 9.24. Let Y, Y1, Y2, . . . be random vectors taking values in Rp, with
H the cumulative distribution of Y and Hn the cumulative distribution func-
tion of Yn, n = 1, 2, . . . . Then Yn converges in distribution to Y as n → ∞,
written Yn ⇒ Y , if Hn(y) → H(y) as n→ ∞ at any continuity point y of H.

For a set S ⊂ Rp, let ∂S = S−So denote the boundary of S. The following
result lists conditions equivalent to convergence in distribution.

Theorem 9.25. If Y, Y1, Y2, . . . are random vectors in Rp, then the following
conditions are equivalent.

1. Yn ⇒ Y as n→ ∞.
2. Eu(Yn) → Eu(Y ) for every bounded continuous function u : Rp → R.
3. lim infn→∞ P (Yn ∈ G) ≥ P (Y ∈ G) for every open set G.
4. lim supn→∞ P (Yn ∈ F ) ≤ P (Y ∈ F ) for every closed set F .
5. P (Yn ∈ S) → P (Y ∈ S) for any Borel set S such that P (Y ∈ ∂S) = 0.

This result is called the portmanteau theorem. The second condition in this
result is often taken as the definition of convergence in distribution. As is the
case for one dimension, the following result is an easy corollary.

Corollary 9.26. If f : Rp → Rm is a continuous function, and if Yn ⇒ Y (a
random vector in Rp), then

f(Yn) ⇒ f(Y ).

In the multivariate extension of the central limit theorem, averages of i.i.d.
random vectors, after suitable centering and scaling, will converge to a limit,
called the multivariate normal distribution. One way to describe this distri-
bution uses moment generating functions. The moment generating function
MY for a random vector Y in Rp is given by

MY (u) = Eeu
′Y , u ∈ Rp.

As in the univariate case, if the moment generating functions of two random
vectorsX and Y agree on any nonempty open set, thenX and Y have the same
distribution. Suppose Z = (Z1, . . . , Zp)

′ with Z1, . . . , Zp a random sample
from N(0, 1). By independence,

Eeu
′Z = (Eeu1Z1) × · · · × (EeupZp) = eu

2
1/2 × · · · × eu

2
p/2 = eu

′u/2.



172 9 Estimating Equations and Maximum Likelihood

Suppose we define X = µ+AZ. Then

EX = µ and Cov(X) = Σ = AA′.

Taking u = A′t in the formula above for Eeu
′Z , X has moment generating

function

MX(t) = Eet
′X = Eet

′µ+t′AZ = et
′µEeu

′Z

= et
′µ+u′u/2 = et

′µ+t′AA′t/2 = et
′µ+t′Σt/2.

Note that this function depends on A only through the covariance Σ = AA′.
The distribution for X is called the multivariate normal distribution with
mean µ and covariance matrix Σ, written

X ∼ N(µ,Σ).

Linear transformations preserve normality. IfX ∼ N(µ,Σ) and Y = AX+
b, then

MY (u) = Eeu
′(AX+b) = eu

′bEeu
′AX

= eu
′bMX(A′u) = exp[u′b+ u′Aµ+ u′AΣA′u/2],

and so
Y ∼ N(b+Aµ,AΣA′).

Naturally, the parameters for this distribution are the mean and covariance
of Y .

In the construction for N(µ,Σ), any nonnegative definite matrix Σ is
possible. One suitable matrix A would be a symmetric square root of Σ. This
can be found writing Σ = ODO′ with O an orthogonal matrix (so O′O = I)
and D diagonal, and defining Σ1/2 = OD1/2O′, where D1/2 is diagonal with
entries the square roots of the diagonal entries of D. Then Σ1/2 is symmetric
and

Σ1/2Σ1/2 = OD1/2O′OD1/2O′ = OD1/2D1/2O′ = ODO′ = Σ. (9.11)

As a side note, the construction here can be used to define other pow-
ers, including negative powers, of a symmetric positive definite matrix Σ. In
this case, the diagonal entries Dii of D are all positive, Dα can be taken

as the diagonal matrix with diagonal entries Dα
ii, and Σα def

= ODαO′. This
construction gives Σ0 = I, and the powers of Σ satisfy

ΣαΣβ = Σα+β.

When Σ is positive definite (Σ > 0), N(µ,Σ) is absolutely continuous. To
derive the density, note that the density of Z is
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p
∏

i=1

e−z
2
i /2

√
2π

=
e−z

′z/2

(2π)p/2
.

Also, the linear transformation z  µ+Σ1/2z is one-to-one with inverse x 
Σ−1/2(x−µ). (Here Σ−1/2 is the inverse of Σ1/2.) The Jacobian of the inverse
transformation is det(Σ−1/2) = 1/

√
detΣ. So if X = µ+Σ1/2Z ∼ N(µ,Σ),

a multivariate change of variables gives

P (X ∈ B) = P (µ+Σ1/2Z ∈ B) =

∫

· · ·
∫

1B(µ+Σ1/2z)
e−z

′z/2

(2π)p/2
dz

=

∫

· · ·
∫

1B(x)
exp
(

− 1
2

(

Σ−1/2(x− µ)
)′(
Σ−1/2(x− µ)

)

)

(2π)p/2
√

detΣ
dx.

From this, X ∼ N(µ,Σ) has density

exp
(

− 1
2 (x− µ)′Σ−1(x− µ)

)

(2π)p/2
√

detΣ
.

The following result generalizes the central limit theorem (Theorem 8.12)
to higher dimensions. For a proof, see Billingsley (1995) or any standard text
on probability.

Theorem 9.27 (Multivariate Central Limit Theorem). If X1, X2, . . .
are i.i.d. random vectors with common mean µ and common covariance matrix
Σ, and if Xn = (X1 + · · · +Xn)/n, n ≥ 1, then

√
n(X − µ) ⇒ Y ∼ N(0, Σ).

Asymptotic normality of the maximum likelihood estimator will involve
random matrices. The most convenient way to deal with convergence in prob-
ability of random matrices is to treat them as vectors, introducing the Eu-
clidean (or Frobenius) norm

‖M‖ =







∑

i,j

M2
ij







1/2

.

Definition 9.28. A sequence of random matrices Mn, n ≥ 1 converges in

probability to a random matrix M , written Mn
p→M , if for every ǫ > 0,

P
(

‖Mn −M‖ > ǫ
)

→ 0

as n → ∞. Equivalently, Mn
p→ M as n → ∞ if [Mn]ij

p→ Mij as n → ∞,
for all i and j.
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The following results are natural extensions of the corresponding results
in one dimension.

Theorem 9.29. If Mn
p→M as n→ ∞, with M a constant matrix, and if f

is continuous at M , then f(Mn)
p→ f(M).

Theorem 9.30. If Y, Y1, Y2, . . . are random vectors in Rp with Yn ⇒ Y as

n → ∞, and if Mn are random matrices with Mn
p→ M as n → ∞, with M

a constant matrix, then
MnYn ⇒MY

as n→ ∞

Technical details establishing asymptotic normality of the maximum like-
lihood estimator in higher dimensions are essentially the same as the details
in one dimension, so the presentation here just highlights the main ideas
in an informal fashion. Let X,X1, X2, . . . be i.i.d. with common density fθ,
θ ∈ Ω ⊂ Rp. As in one dimension, the log-likelihood can be written as a sum,

ln(θ) =

n
∑

i=1

log fθ(Xi).

As in Section 4.6, the Fisher information is a matrix,

I(θ) = Covθ
(

∇θ log fθ(X)
)

= −Eθ∇2
θ log fθ(X),

and
Eθ∇θ log fθ(X) = 0.

The maximum likelihood estimator based on X1, . . . , Xn maximizes ln. If
θ̂n is consistent and θ lies in the interior of Ω, then with probability tending
to one,

∇θln(θ̂n) = 0.

Taylor expansion of ∇θln(·) about θ gives the following approximation:

∇θln(θ̂n) ≈ ∇θln(θ) + ∇2
θ ln(θ)(θ̂n − θ).

Setting this expression to zero, solving, and introducing powers of n,

√
n(θ̂n − θ) ≈

[

− 1

n
∇2
θ ln(θ)

]−1
1√
n
∇θln(θ). (9.12)

By the multivariate central limit theorem,

1√
n
∇θln(θ) =

√
n

[

1

n

n
∑

i=1

∇θ log fθ(Xi) − 0

]

⇒ Y ∼ N
(

0, I(θ)
)

as n→ ∞. Also, by the law of large numbers,



9.8 M -Estimators for a Location Parameter 175

− 1

n
∇2
θ ln(θ) =

1

n

n
∑

i=1

[

−∇2
θ log fθ(Xi)

] Pθ→ I(θ)

as n→ ∞. Since the function A A−1 is continuous for nonsingular matrices
A, if I(θ) > 0,

[

− 1

n
∇2
θ ln(θ)

]−1
Pθ→ I(θ)−1.

The error in (9.12) tends to zero in probability, and then using Theorem 9.30,
√
n(θ̂n − θ) ⇒ I(θ)−1Y ∼ N

(

0, I(θ)−1
)

.

To verify the stated distribution for I(θ)−1Y , note that Y has the same dis-
tribution as I(θ)1/2Z with Z a vector of i.i.d. standard normal variates, and
so

I(θ)−1Y ∼ I(θ)−1I(θ)1/2Z = I(θ)−1/2Z ∼ N
(

0, I(θ)−1
)

.

The following proposition is a multivariate extension of the delta method.

Proposition 9.31. If g : Ω → R is differentiable at θ, I(θ) is positive definite,

and
√
n(θ̂n − θ) ⇒ N

(

0, I(θ)−1
)

, then
√
n
(

g(θ̂n) − g(θ)
)

⇒ N
(

0, ν2(θ)
)

with
ν2(θ) =

(

∇g(θ)
)′
I(θ)−1∇g(θ).

As an application of this result, if ν̂n is a consistent estimator of ν(θ) and
ν(θ) > 0, then

(

g(θ̂n) − zα/2ν̂n√
n

, g(θ̂n) +
zα/2ν̂n√

n

)

(9.13)

is a 1 − α asymptotic confidence interval for g(θ).
Finally, the delta method can be extended to vector-valued functions. In

this result, Dg(θ) denotes a matrix of partial derivatives of g, with entries
[Dg(θ)]ij = ∂gi(θ)/∂θj .

Proposition 9.32. If g : Ω → Rm is differentiable at θ, I(θ) is positive

definite, and
√
n(θ̂n − θ) ⇒ N

(

0, I(θ)−1
)

, then
√
n
(

g(θ̂n) − g(θ)
)

⇒ N
(

0, Σ(θ)
)

with
Σ(θ) = Dg(θ)I(θ)−1[Dg(θ)]′.

9.8 M -Estimators for a Location Parameter

Let X,X1, X2, . . . be i.i.d. from some distribution Q, and let ρ be a convex
function4 on R with ρ(x) → ∞ as x → ±∞. The M -estimator Tn associated

4 These conditions on ρ are convenient, because with them H must have a mini-
mum. But they could be relaxed.
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with ρ minimizes

H(t) =

n
∑

i=1

ρ(Xi − t)

over t ∈ R. If ρ is continuously differentiable and ψ = ρ′, then Tn is also a
root of the estimating equation

Wn(t)
def
=

1

n

n
∑

i=1

ψ(Xi − t) = 0.

Several common estimates of location are M -estimators. If ρ(x) = x2,
then Tn = Xn, the sample average, and if ρ(x) = |x|, then Tn is the median.
Finally, ifQ lies in a location family of absolutely continuous distributions with
log-concave densities f(x − θ), then taking ρ = − log f , Tn is the maximum
likelihood estimator of θ.

To study convergence, let us assume ρ is continuously differentiable, and
define

λ(t) = Eψ(X − t) =

∫

ψ(x− t) dQ(x).

Since ρ is convex, ψ is nondecreasing and λ is nonincreasing. Also, λ(t) will
be negative for t sufficiently large and positive for t sufficiently small.

Lemma 9.33. If λ(t) is finite for all t ∈ R and λ(t) = 0 has a unique root c,

then Tn
p→ c.

Using part 3 of Theorem 9.4, this lemma follows fairly easily from our law
of large numbers for random functions, Theorem 9.2. The monotonicity of ψ
can be used both to restrict attention to a compact set K and to argue that
the envelope of the summands over K is integrable.

If ρ is symmetric, ρ(x) = ρ(−x) for all x ∈ R, and if the distribution of X
is symmetric about some value θ, so that X − θ ∼ θ−X , then in this lemma
the limiting value c is θ.

Asymptotic normality for Tn can be established with an argument similar
to that used to show asymptotic normality for the maximum likelihood esti-
mator. If ψ is continuously differentiable, then Taylor expansion of Wn about
c gives

Wn(Tn) = Wn(c) + (Tn − c)W
′
n(t
∗
n),

with t∗n an intermediate value between c and Tn. Since Wn(Tn) is zero,

√
n(Tn − c) = −

√
nWn(c)

W
′
n(t
∗
n)

.

By the central limit theorem,

√
nWn(c) ⇒ N

(

0,Var[ψ(X − c)]
)

,
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and since t∗n
p→ c, under suitable regularity5

−W ′n(t∗n)
p→ −Eψ′(X − c) = λ′(c).

Thus √
n(Tn − c) ⇒ N

(

0, V (ψ,Q)
)

,

where

V (ψ,Q) =
Eψ2(X − c)

[λ′(c)]2
.

M -estimation was introduced by Huber (1964) to consider robust estima-
tion of a location parameter. As noted above, if ρ is symmetric, ρ(x) = ρ(−x)
for all x ∈ R, and if the distribution of X is symmetric about θ, X − θ ∼
θ − X , then Tn is a consistent estimator of θ. For instance, we might have
Q = N(θ, 1), so that X−θ ∼ N(0, 1). Taking ρ the square function, ρ(x) = x2,
Tn is the sample average Xn, which is consistent and fully efficient. In a situ-
ation like this it may seem foolish to base M -estimation on any other function
ρ, an impression that seems entirely reasonable if we have complete confidence
in a normal model for the data. Unfortunately, doubts arise if we entertain the
possibility that our normal distribution for X is even slightly “contaminated”
by some other distribution. Perhaps

X ∼ (1 − ǫ)N(θ, 1) + ǫQ∗, (9.14)

with Q∗ some other distribution symmetric about θ. Then

Var(X) = 1 − ǫ+ ǫ

∫

(x− θ)2 dQ∗(x).

By the central limit theorem, the asymptotic performance of Xn is driven by
the variance of the summands, and even a small amount of contamination ǫ
can significantly degrade the performance of Xn if the variance of Q∗ is large.
If Q∗ has infinite variance,

√
n(Xn−θ) will not even converge in distribution.

Let C = Cǫ be the class of all distributions for X with the form in (9.14).
If one is confident that Q ∈ Cǫ it may be natural to use an M -estimator with

sup
Q∈Cǫ

V (ψ,Q)

as small as possible. The following result shows that this is possible and de-
scribes the optimal function ψ0. The optimal function ψ0 and ρ0 = ψ′0 are
plotted in Figure 9.3.

Theorem 9.34 (Huber). The asymptotic variance V (ψ,Q) has a saddle
point: There exists Q0 = (1 − ǫ)N(θ, 1) + ǫQ∗0 ∈ Cǫ and ψ0 such that

5 The condition E supt∈[c−ǫ,c+ǫ] |ψ′(X − t)| <∞ for some ǫ > 0 is sufficient.
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sup
Q∈Cǫ

V (ψ0, Q) = V (ψ0, Q0) = inf
ψ
V (ψ,Q0).

If k solves
1

1 − ǫ
= P

(

|Z| < k
)

+
2φ(k)

k
,

where Z ∼ N(0, 1), and if

ρ0(t) =

{

1
2 t

2, |t| ≤ k;

k|t| − 1
2k

2, |t| ≥ k,

then ψ0 = ρ′0 and Q∗0 is any distribution symmetric about θ with

Q∗0
(

[θ − k, θ + k]
)

= 0.

k

k

k

−k

−k

−k

ρ0 ψ0

t

t

k2/2

Fig. 9.3. Functions ρ0 and ψ0.

9.9 Models with Dependent Observations6

The asymptotic theory developed earlier in this chapter is based on models
with i.i.d. observations. Extensions in which the observations need not have
the same distribution and may exhibit dependence are crucial in various ap-
plications, and there is a huge literature extending basic results in various
directions. In our discussion of the i.i.d. case, the law of large numbers and

6 Results in this section are somewhat technical and are not used in later chapters.
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the central limit theorem were our main tools from probability. Extensions
typically rely on more general versions of these results, but the overall nature
of the argument is similar to that for the i.i.d. case in most other ways. As
a single example, this section sketches how large-sample theory can be devel-
oped for models for stationary time series. For extensions in a variety of other
directions, see DasGupta (2008).

Time series analysis concerns inference for observations observed over time.
Dependence is common and is allowed in the models considered here, but we
restrict attention to observations that are stationary according to the follow-
ing definition. A sequence of random variables, Xn, n ∈ Z, will be called
a (stochastic) process, and can be viewed as an infinite-dimensional random
vector taking values in RZ.

Definition 9.35. The process X is (strictly) stationary if

(X1, . . . , Xk) ∼ (Xn+1, . . . , Xn+k),

for all k ≥ 1 and n ∈ Z.

Taking k = 1 in this definition, observations Xi from a stationary process are
identically distributed, and it feels natural to expect information to accumu-
late fairly linearly over time, as it would with i.i.d. data.

Viewing a sequence xn, n ∈ Z, as a single point x ∈ RZ, we can define a
shift operator T that acts on x by incrementing time. Specifically, y = T (x)
if yn = xn+1 for all n ∈ Z. Using T , a process X is stationary if X ∼ T (X),
where X ∼ Y means that the finite-dimensional distributions for X and Y
agree:

(Xi, Xi+1, . . .Xj) ∼ (Yi, Yi+1, . . . Yj)

for all i ≤ j in Z.

Example 9.36. If Xn, n ∈ Z, are i.i.d. from some distribution Q, then X
is stationary. More generally, a mixture model in which, given Y = y, the
variables Xn, n ∈ Z, are i.i.d. from Qy also gives a stationary process X .

If ǫn, n ∈ Z, are i.i.d. from some distribution Q with Eǫn = 0 and Eǫ2n <
∞, and if cn, n ≥ 1, are square summable constants, then

Xn =

∞
∑

j=0

cjǫn−j , n ∈ Z,

defines a stationary process X , called a linear process. If cn = ρn with |ρ| < 1
then

Xn+1 = ρXn + ǫn+1,

and if Q = N(0, σ2) we have the autoregressive model introduced in Exam-
ple 6.4.
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The ergodic theorem is a generalization of the law of large numbers useful
in this setting. To describe this result, let BZ denote the Borel sets of RZ.7

A set B ∈ BZ is called shift invariant if x ∈ B if and only if T (x) ∈ B.
Changing the value for xn at any fixed n will not change whether x lies in a
shift invariant set; inclusion can only depend on how the sequence behaves as
|n| → ∞. For instance, sets

{

x : lim sup
n→−∞

xn ≤ c
}

and

{

x :
1

n

n
∑

i=1

xi → c as n→ ∞
}

are shift invariant, but {x : x3 + x7 ≤ x4} is not.

Definition 9.37. A stationary process Xn, n ∈ Z, is ergodic if

P (X ∈ B) = 0 or 1

whenever B is a shift invariant set in BZ.

In Example 9.36, i.i.d. variables and linear processes can be shown to be
ergodic. But i.i.d. mixtures generally are not; see Problem 9.38.

With this definition we can now state the ergodic theorem. Let Tj denote
T composed with itself j times.

Theorem 9.38 (Ergodic Theorem). If X is a stationary ergodic process
and E|g(X)| <∞, then

1

n

n
∑

j=1

g
(

Tj(X)
)

→ µg
def
= Eg(X)

almost surely as n→ ∞. The convergence here also holds in mean,

E

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

g
(

Tj(X)
)

− µg

∣

∣

∣

∣

∣

∣

→ 0.

As noted, if the Xn are i.i.d. from some distribution Q, then X is ergodic.
If g is defined by g(x) = x0, then µg = EXn, g

(

Tj(X)
)

= Xj , and the ergodic
theorem gives the strong law of large numbers.

For convergence in distribution we use an extension of the ordinary central
limit theorem to martingales.

Definition 9.39. For n ≥ 1, let Mn be a function of X1, . . . , Xn. The process
Mn, n ≥ 1, is a (zero mean) martingale with respect to Xn, n ≥ 1, if EM1 = 0
and

E[Mn+1|X1, . . . , Xn] = Mn, n ≥ 1.

7 Formally, BZ is the smallest σ-field that contains all (finite) rectangles of form
{x ∈ RZ : xk ∈ (ak, bk), i ≤ k ≤ j}.
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If Mn, n ≥ 1, is a martingale, then by smoothing

E[Mn+2|X1, . . . , Xn] = E
[

E[Mn+2|X1, . . . , Xn+1]
∣

∣ X1, . . . , Xn

]

= E[Mn+1|X1, . . . , Xn] = Mn.

With further iteration it is easy to see that

E[Mn+k|X1, . . . , Xn] = Mn, n ≥ 1, k ≥ 1. (9.15)

Defining differences Yn+1 = Mn+1 −Mn, n ≥ 1, with Y1 = M1,

Mn =

n
∑

i=1

Yi, n ≥ 1.

Using (9.15),

E[Yn+k|X1, . . . , Xn] = E[Mn+k+1|X1, . . . , Xn] − E[Mn+k|X1, . . . , Xn]

= Mn −Mn = 0, n ≥ 1, k ≥ 1.

If the Xi are i.i.d. with mean µ and Yi = Xi − µ, it is easy to check
that Mn = Y1 + · · · + Yn, n ≥ 1, is a martingale. By the ordinary central
limit theorem, Mn/

√
n is approximately normal. In the more general case,

the summands Yi may be dependent. But by smoothing,

EYn+kYn = EE[Yn+kYn|X1, . . . , Xn] = E
[

YnE[Yn+k|X1, . . . , Xn]
]

= 0,

and so they remain uncorrelated, as in the i.i.d. case. Let σ2
n

def
= Var(Yn) =

EY 2
n , and note that since the summands are uncorrelated,

Var(Mn) = σ2
1 + · · · + σ2

n.

For convenience, we assume that σ2
n → σ2 as n → ∞. (For more general

results, see Hall and Heyde (1980).) Then

Var
(

Mn/
√
n
)

=
1

n

n
∑

i=1

σ2
i → σ2.

In contrast with the ordinary central limit theorem, the result for martin-
gales requires some control of the conditional variances

s2n
def
= Var(Yn|X1, . . . , Xn−1) = E[Y 2

n |X1, . . . , Xn−1].

Specifically, the following result from Brown (1971a) assumes that

1

n

n
∑

1=1

s2i
p→ σ2, (9.16)
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and that
1

n

n
∑

i=1

E
[

Y 2
i I
{

|Yi
∣

∣≥ ǫ
√
n
}]

→ 0 (9.17)

as n→ ∞ for all ǫ > 0. Requirement (9.17) is called the Lindeberg condition.
Since Es2i = σ2

i , (9.16) might be considered a law of large numbers.

Theorem 9.40. If Mn, n ≥ 1, is a mean zero martingale satisfying (9.16)
and (9.17), then

Mn√
n

⇒ N(0, σ2).

Turning now to inference, let θ ∈ Ω ⊂ R be an unknown parameter, and
let Pθ be the distribution for a process X that is stationary and ergodic for
all θ ∈ Ω. Also, assume that finite-dimensional joint distributions for X are
dominated, and let fθ(x1, . . . , xn) denote the density of X1, . . . , Xn under Pθ.
As usual, this density can be factored using conditional densities as

fθ(x1, . . . , xn) =

n
∏

i=1

fθ(xi|x1, . . . , xi−1).

The log-likelihood function is then

ln(ω) =
n
∑

i=1

log fω(Xi|X1, . . . , Xi−1),

where, as before, we let ω denote a generic value for the unknown parameter,
reserving θ for the true value.

With dependent observations, the conditional distributions for Xn change
as we condition on past observations. But for most models of interest the
amount of change decrease as we condition further into the past, with these
distributions converging to the conditional distribution given the entire history
of the process. Specifically, we assume that the conditional densities

fω(Xn|Xn−1, . . . , Xn−m) → fω(Xn|Xn−1, . . .) (9.18)

in an appropriate sense as m → ∞. The autoregressive model, for instance,
has Markov structure with the conditional distributions for Xn depending
only on the previous observation, fω(Xn|Xn−1, . . . , Xn−m) = fω(Xn|Xn−1).
So in this case (9.18) is immediate.

In Section 9.2, our first step towards understanding consistency of the
maximum likelihood estimator θ̂n was to argue that if ω 6= θ, ln(θ) will exceed
ln(ω) with probability tending to one as n→ ∞. To understand why that will
happen in this case, define

g(X) = log
fθ(X0|X−1, X−2, . . .)

fω(X0|X−1, X−2, . . .)
.
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Note that
Eθ
[

g(X)
∣

∣ X−1, X−2, . . .
]

is the Kullback–Leibler information between θ and ω for the conditional dis-
tributions of X0 given the past, and is positive unless these conditional dis-
tributions coincide. Assuming this is not almost surely the case,

µg = Eθg(X) = EθEθ[g(X)|X−1, X−2, . . .]

is positive. Using (9.18), if j is large,

log
fθ(Xj |X1, . . . , Xj−1)

fω(Xj |X1, . . . , Xj−1)
≈ log

fθ(Xj |Xj−1, Xj−2, . . .)

fω(Xj |Xj−1, Xj−2, . . .)
= g
(

Tj(X)
)

.

Using this approximation,

ln(θ) − ln(ω)

n
=

1

n

n
∑

j=1

log
fθ(Xj |X1, . . . , Xj−1)

fω(Xj |X1, . . . , Xj−1)
≈ 1

n

n
∑

i=1

g
(

Tj(X)
)

, (9.19)

converging to µg > 0 as n→ ∞. If the approximation error here tends to zero
in probability (see Problem 9.40 for a sufficient condition), then the likelihood
at θ will be greater than the likelihood at ω with probability tending to one.
Building on this basic idea, consistency of θ̂n can be established in regular
cases using the same arguments as those for the i.i.d. case, changing likelihood
at a point ω to the supremum of the likelihood in a neighborhood of ω (or a
neighborhood of infinity).

In the univariate i.i.d. case, asymptotic normality followed using Taylor
approximation to show that

√
n(θ̂n − θ) =

1√
n
l′n(θ)

− 1

n
l′′n(θ)

+ op(1) (9.20)

with
1√
n
l′n(θ) ⇒ N

(

0, I(θ)
)

and − 1

n
l′′n(θ)

p→ I(θ). (9.21)

The same Taylor expansion argument can be used in this setting, so we mainly
need to understand why the limits in (9.21) hold. Convergence for −l′′n(θ)/n
is similar to the argument for consistency above. If we define h as

h(X) = − ∂2

∂θ2
log fθ(X0|X−1, X−2, . . .),

and assume for large j,

− ∂2

∂θ2
log fθ(Xj |X1, . . . , Xj−1) ≈ − ∂2

∂θ2
log fθ(Xj |Xj−1, Xj−2, . . .)

= h
(

Tj(X)
)

,
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which is essentially that (9.18) holds in a differentiable sense, then

− 1

n
l′′n(θ) = − 1

n

n
∑

j=1

∂2

∂θ2
log fθ(Xj |X1, . . . , Xj−1) ≈

1

n

n
∑

j=1

h
(

Tj(X)
)

,

converging to Eθh(X) by the ergodic theorem. Since Fisher information here
for all n observations is In(θ) = −Eθl′′n(θ), if the approximation error tends
to zero in probability, then

1

n
In(θ)

p→ Eθh(X). (9.22)

So it is natural to define I(θ) = Eθh(X), interpreted with large samples as
average Fisher information per observation.

Asymptotic normality for the score function l′n(θ) is based on the martin-
gale central limit theorem. Define

Yj =
∂

∂θ
log fθ(Xj |X1, . . . , Xj−1)

so that

l′n(θ) =

n
∑

j=1

Yj .

The martingale structure needed will hold if we can pass derivatives inside
integrals, as in the Cramér–Rao bound, but now with conditional densities.
Specifically, we want

0 =

∫

∂

∂θ
fθ(xj |x1, . . . , xj−1) dµ(xj)

=

∫ [

∂

∂θ
log fθ(xj |x1, . . . , xj−1)

]

fθ(xj |x1, . . . , xj−1) dµ(xj).

Viewing this integral as an expectation, we see that

Eθ
[

Yj
∣

∣ X1, . . . , Xj−1

]

= 0,

which shows that l′n(θ), n ≥ 1, is a martingale. We also assume

s2j
def
= Varθ

(

Yj
∣

∣ X1, . . . , Xj−1

)

= −Eθ
[ ∂2

∂θ2
log fθ(Xj |X1, . . . , Xj−1)

∣

∣

∣ X1, . . . , Xj−1

]

,

which holds if a second derivative can be passed inside the integral above.
By smoothing, σ2

j = Eθs
2
j = Varθ(Yj), converging to I(θ) as j → ∞ by an

argument like that for (9.22). Therefore if the Lindeberg condition holds, then

1√
n
l′n(θ) ⇒ N

(

0, I(θ)
)
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as n → ∞ by the martingale central limit theorem. Thus with suitable regu-
larity (9.21) should hold in this setting as it did with i.i.d. observations. Then
using (9.20) √

n(θ̂n − θ) ⇒ N
(

0, 1/I(θ)
)

as n→ ∞.
The derivation above is sketchy, but can be made rigorous with suitable

regularity. Some possibilities are explored in the problems, but good condi-
tions may also depend on the context. Martingale limit theory is developed in
Hall and Heyde (1980). The martingale structure of the score function does
not depend on stationarity or ergodicity, and Hall and Heyde’s book has a
chapter on large-sample theory for the maximum likelihood estimator without
these restrictions. Results for stationary ergodic Markov chains are given in
Billingsley (1961) and Roussas (1972).

9.10 Problems8

1. Let Z1, Z2, . . . be i.i.d. standard normal, and define random functions Gn,
n ≥ 1, taking values in C(K) with K = [0, 1] by

Gn(t) = nZn(1 − t)tn − t, t ∈ [0, 1].

Finally, take g(t) = EGn(t) = −t.
a) Show that for any t ∈ [0, 1], Gn(t)

p→ g(t).
b) Compute supt∈[0,1] n(1 − t)tn and find its limit as n→ ∞.
c) Show that ‖Gn − g‖∞ does not converge in probability to zero as

n→ ∞.
d) Let Tn maximize Gn over [0, 1]. Show that Tn does not converge to

zero in probability.
2. Method of moments estimation. Let X1, X2, . . . be i.i.d. observations

from some family of distributions indexed by θ ∈ Ω ⊂ R. Let Xn de-
note the average of the first n observations, and let µ(θ) = EθXi and
σ2(θ) = Varθ(Xi). Assume that µ is strictly monotonic and continuously

differentiable. The method of moments estimator θ̂n solves µ(θ) = Xn. If

µ′(θ) 6= 0, find the limiting distribution for
√
n(θ̂n − θ).

3. Take K = [0, 1], let Wn, n ≥ 1, be random functions taking values in
C(K), and let f be a constant function in C(K). Consider the following

conjecture. If ‖Wn − f‖∞ p→ 0 as n → ∞, then
∫ 1

0
Wn(t) dt

p→
∫ 1

0
f(t) dt.

Is this conjecture true or false? If true, give a proof; if false, find a coun-
terexample.

4.

8 Solutions to the starred problems are given at the back of the book.
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5. maximum likelihood estimation!inconsistent example If Z ∼ N(µ, σ2),
then X = eZ has the lognormal distribution with parameters µ and σ2.
In some situations a threshold γ, included by taking

X = γ + eZ ,

may be desirable, and in this case X is said to have the three-parameter
lognormal distribution with parameters γ, µ, and σ2. Let data X1, . . . , Xn

be i.i.d. from this three-parameter lognormal distribution.
a) Find the common marginal density for the Xi.
b) Suppose the threshold γ is known. Find the maximum likelihood es-

timators µ̂ = µ̂(γ) and σ̂2 = σ̂2(γ) of µ and σ2. (Assume γ < X(1).)
c) Let l(γ, µ, σ2) denote the log-likelihood function. The maximum like-

lihood estimator for γ, if it exists, will maximize l
(

γ, µ̂(γ), σ̂2(γ)
)

over
γ. Determine

lim
γ↑X(1)

l
(

γ, µ̂(γ), σ̂2(γ)
)

.

Hint: Show first that as γ ↑ X(1),

µ̂(γ) ∼ 1

n
log(X(1) − γ) and σ̂2(γ) ∼ n− 1

n2
log2(X(1) − γ).

Remark: This thought-provoking example is considered in Hill (1963).
6. Let X1, X2, . . . be i.i.d. from a uniform distribution on (0, 1), and let Tn ∈

[0, 1] be the unique solution of the equation

n
∑

i=1

tXi =

n
∑

i=1

X2
i .

a) Show that Tn
p→ c as n→ ∞, identifying the constant c.

b) Find the limiting distribution for
√
n(Tn − c) as n→ ∞.

7. Let X1, X2, . . . be i.i.d. from a uniform distribution on (0, 1) and let Tn
maximize

n
∑

i=1

log(1 + t2Xi)

t

over t > 0.
a) Show that Tn

p→ c as n→ ∞, identifying the constant c.
b) Find the limiting distribution for

√
n(Tn − c) as n→ ∞.

*8. If V and W are independent variables with V ∼ χ2
j and W ∼ χ2

k, then the
ratio (V/j)/(W/k) has an F distribution with j and k degrees of freedom.
Suppose X1, . . . , Xm is a random sample from N(µx, σ

2
x) and Y1, . . . , Yn

is an independent random sample from N(µy, σ
2
y). Find a pivotal quantity

with an F distribution. Use this quantity to set a 1−α confidence interval
for the ratio σx/σy.

*9. Let X1, . . . , Xn be i.i.d. from a uniform distribution on (0, θ).
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a) Find the maximum likelihood estimator θ̂ of θ.

b) Show that θ̂/θ is a pivotal quantity and use it to set a 1−α confidence
interval for θ.

*10. Let X1, . . . , Xn be i.i.d. exponential variables with failure rate θ. Then
T = X1 + · · · + Xn is complete sufficient. Determine the density of θT ,
showing that it is a pivot. Use this pivot to derive a 1 − α confidence
interval for θ.

*11. Consider a location/scale family of distributions with densities fθ,σ given
by

fθ,σ(x) =
g
(

x−θ
σ

)

σ
, x ∈ R,

where g is a known probability density.
a) Find the density of (X − θ)/σ if X has density fθ,σ.
b) If X1 and X2 are independent variables with the same distribution

from this family, show that

W =
X1 +X2 − 2θ

|X1 −X2|

is a pivot.
c) Derive a confidence interval for θ using the pivot from part (b).
d) Give a confidence interval for σ based on an appropriate pivot.

*12. Suppose S1(X) and S2(X) are both 1−α confidence regions for the same
parameter g(θ). Show that the intersection S1(X)∩S2(X) is a confidence
region with coverage probability at least 1 − 2α.

*13. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. with Xi ∼ N(0, 1) and Yi|Xi = x ∼
N(xθ, 1).

a) Find the maximum likelihood estimate θ̂ of θ.
b) Find the Fisher information I(θ) for a single observation (Xi, Yi).

c) Determine the limiting distribution of
√
n(θ̂ − θ).

d) Give a 1 − α asymptotic confidence interval for θ based on I(θ̂).
e) Compare the interval in part (d) with a 1 − α asymptotic confidence

interval based on observed Fisher information.
f) Determine the (exact) distribution of

√
∑

X2
i (θ̂ − θ) and use it to

find the true coverage probability for the interval in part (e). Hint:
Condition on X1, . . . , Xn and use smoothing.

14. Let X1, . . . , Xn be a random sample from N(θ, θ2). Give or describe four
asymptotic confidence intervals for θ.

*15. Suppose X has a binomial distribution with n trials and success probabil-
ity p. Give or describe four asymptotic confidence intervals or regions for
p. Find these regions numerically if 1 − α = 95%, n = 100, and X = 30.

16. Let X1, . . . , Xn be i.i.d. from a geometric distribution with success prob-
ability p. Describe four asymptotic confidence regions for p.
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17. A variance stabilizing approach. Let X1, X2, . . . be i.i.d. from a Poisson
distribution with mean θ, and let θ̂n = Xn be the maximum likelihood
estimator of θ.
a) Find a function g : [0,∞) → R such that

Zn =
√
n
[

g(θ̂n) − g(θ)
]

⇒ N(0, 1).

b) Find a 1 − α asymptotic confidence interval for θ based on the ap-
proximate pivot Zn.

18. Let X1, X2, . . . be i.i.d. from N(µ, σ2). Suppose we know that σ is a known
function of µ, σ = g(µ). Let µ̂n denote the maximum likelihood estimator
for µ under this assumption, based on X1, . . . , Xn.
a) Give a 1−α asymptotic confidence interval for µ centered at µ̂n. Hint:

If Z ∼ N(0, 1), then Var(Z2) = 2 and Cov(Z,Z2) = 0.
b) Compare the width of the asymptotic confidence interval in part (a)

with the width of the t-confidence interval that would be appropriate
if µ and σ were not functionally related. Specifically, show that the
ratio of the two widths converges in probability as n→ ∞, identifying
the limiting value. (The limit should be a function of µ.)

19. Suppose that the density for our data X comes from an exponential family
with density

h(x)eη(θ)T (x)−B(θ), θ ∈ Ω ⊂ R.

If θ̂ is the maximum likelihood estimator of θ, show that −l′′(θ̂) and I(θ̂)
agree. (Assume that η is differentiable and monotonic.) So in this case,
the asymptotic confidence intervals (9.5) and (9.7) are the same.

*20. Suppose electronic components are independent and work properly with
probability p, and that components are tested successively until one fails.
Let X1 denote the number that work properly. In addition, suppose de-
vices are constructed using two components connected in series. For proper
performance, both components need to work properly, and these devices
will work properly with probability p2. Assume these devices are made
with different components and are also tested successively until one fails,
and let X2 denote the number of devices that work properly.
a) Determine the maximum likelihood estimator of p based on X1 and

X2.
b) Give the EM algorithm to estimate p from Y = X1 +X2.
c) If Y = 5 and the initial guess for p is p̂0 = 1/2, give the next two

estimates, p̂1 and p̂2, from the EM algorithm.
*21. Suppose X1, . . . , Xn are i.i.d. with common (Lebesgue) density

fθ(x) =
θeθx

2 sinh θ
, x ∈ (−1, 1),

and let Yi = I{Xi > 0}. If θ = 0 the Xi are uniformly distributed on
(−1, 1).
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a) Give an equation for the maximum likelihood estimator θ̂x based on
X1, . . . , Xn.

b) Find the maximum likelihood estimator θ̂y based on Y1, . . . , Yn.

c) Determine the EM algorithm to compute θ̂y.

d) Show directly that θ̂y is a fixed point for the EM algorithm.

e) Give the first two iterates, θ̂1 and θ̂2, of the EM algorithm if the initial

guess is θ̂0 = 0 and there are 5 observations with Y1 + · · · + Y5 = 3.
22. Consider a multinomial model for a two-way contingency table with inde-

pendence, so that N = (N11, N12, N21, N22) is multinomial with n trials
and success probabilities

(

pq, p(1−q), q(1−p), (1−p)(1−q)
)

. Here p ∈ (0, 1)
and q ∈ (0, 1) are unknown parameters.
a) Find the maximum likelihood estimators of p and q based on N .
b) Suppose we misplace the off-diagonal entries of the table, so our ob-

served data are X1 = N11 and X2 = N22. Describe in detail the EM
algorithm used to compute the maximum likelihood estimators of p
and q based on X1 and X2.

c) If the initial guess for p is 2/3, the initial guess for q is 1/3, the number
of trials is n = 12, X1 = 4, and X2 = 2, what are the revised estimates
for p after one and two complete iterations of the EM algorithm?

23. Let X1, . . . , Xn be i.i.d. exponential variables with failure rate λ. Also,
for i = 1, . . . , n, let Yi = I{Xi > ci}, where the thresholds c1, . . . , cn are
known constants in (0,∞).
a) Derive the EM recursion to compute the maximum likelihood estima-

tor of λ based on Y1, . . . , Yn.
b) Give the first two iterates, λ̂1 and λ̂2, if the initial guess is λ̂0 = 1 and

there are three observations, Y1 = 1, Y2 = 1, and Y3 = 0, with c1 = 1,
c2 = 2, and c3 = 3.

24. Contingency tables with missing data. Counts indicating responses to two
binary questions, A and B, in a survey are commonly presented in a two-
by-two contingency table. In practice, some respondents may only answer
one of the questions. If m respondents answer both questions, then cross-
classified counts N = (N11, N12, N21, N22) for these respondents would
be observed, and would commonly be modeled as having a multinomial
distribution with m trials and success probability p = (p11, p12, p21, p22).
Count information for the nA respondents that only answer question A
could be summarized by a variable R representing the number of these
respondents who gave the first answer to question A. Under the “missing
at random” assumption that population proportions for these individuals
are the same as proportions for individuals who answer both questions,
R would have a binomial distribution with success probability p1+ =
p11 + p12. Similarly, for the nB respondents who only answer question B,
the variable C counting the number who give the first answer to questionB
would have a binomial distribution with success probability p+1 = p11 +
p21.
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a) Develop an EM algorithm to find the maximum likelihood estimator
of p from these data, N,R,C. The complete data X should be three
independent tables N , NA, and NB, with sample sizes m, nA, and
nB, respectively, and common success probability p, related to the
observed data by R = NA

1+ and C = NB
+1.

b) Suppose the observed data are

N =

(

5 10
10 5

)

, R = 5, C = 10,

with m = 30 and nA = nB = 15. If the initial guess for p is p̂0 = N/30,
find the first two iterates for the EM algorithm, p̂1 and p̂2.

25. A simple hidden Markov model. Let X1, X2, . . . be Bernoulli variables with
EX1 = 1/2 and the joint mass function determined recursively by

P (Xk+1 6= xk|X1 = x1, . . . , Xk = xk) = θ, n = 1, 2, . . . .

Viewed as a process in time, Xn, n ≥ 1, is a Markov chain on {0, 1} that
changes state at each stage with probability θ. Suppose these variables
are measured with error. Specifically, let Y1, Y2, . . . be Bernoulli variables
that are conditionally independent given the Xi, satisfying

P (Yi 6= Xi|X1, X2, . . .) = γ.

Assume that the error probability γ is a known constant, and θ ∈ (0, 1) is
an unknown parameter.
a) Show that the joint mass functions forX1, . . . , Xn form an exponential

family.
b) Find the maximum likelihood estimator for θ based on X1, . . . , Xn.
c) Give formulas for the EM algorithm to compute the maximum likeli-

hood estimator of θ based on Y1, . . . , Yn.
d) Give the first two iterates for the EM algorithm, θ̂1 and θ̂2, if the

initial guess is θ̂0 = 1/2, the error probability γ is 10%, and there are
four observations: Y1 = 1, Y2 = 1, Y3 = 0 and Y4 = 1.

26. Probit analysis. Let Y1, . . . , Yn be independent Bernoulli variables with

P (Yi = 1) = Φ(α + βti),

where t1, . . . , tn are known constants and α and β in R are unknown
parameters. Also, let X1, . . . , Xn be independent with Xi ∼ N(α+βti, 1),
i = 1, . . . , n.
a) Describe a function g : Rn → {0, 1}n such that Y ∼ g(X) for any α

and β.
b) Find the maximum likelihood estimator for θ = (α, β) based on X .
c) Give formulas for the EM algorithm to compute the maximum likeli-

hood estimator of θ based on Y .
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d) Suppose we have five observations, Y = (0, 0, 1, 0, 1) and ti = i for

i = 1, . . . , 5. Give the first two iterates for the EM algorithm, θ̂1 and
θ̂2, if the initial guess is θ̂0 = (−2, 1).

*27. Suppose X1, X2, . . . are i.i.d. with common density fθ, where θ = (η, λ) ∈
Ω ⊂ R2. Let I = I(θ) denote the Fisher information matrix for the family,

and let θ̂n = (η̂n, λ̂n) denote the maximum likelihood estimator from the
first n observations.
a) Show that

√
n(η̂n − η) ⇒ N(0, τ2) under Pθ as n → ∞, giving an

explicit formula for τ2 in terms of the Fisher information matrix I.
b) Let η̃n denote the maximum likelihood estimator of η from the first n

observations when λ has a known value. Then
√
n(η̃n−η) ⇒ N(0, ν2)

under Pθ as n → ∞. Give an explicit formula for ν2 in terms of the
Fisher information matrix I, and show that ν2 ≤ τ2. When is ν2 = τ2?

c) Assume I(·) is a continuous function, and derive a 1 − α asymptotic

confidence interval for η based on the plug-in estimator I(θ̂n) of I(θ).
d) The observed Fisher information matrix for a model with several pa-

rameters can be defined as −∇2l(θ̂n), where ∇2 is the Hessian matrix
of partial derivatives (with respect to η and λ). Derive a 1−α asymp-
totic confidence interval for η based on observed Fisher information
instead of I(θ̂n).

28. Let (X1, Y1), (X2, Y2), . . . be i.i.d. with common Lebesgue density

exp

{

− (x− µx)
2 − 2ρ(x− µx)(y − µy) + (y − µy)

2

2(1 − ρ2)

}

2π
√

1 − ρ2
,

where θ = (µx, µy, ρ) ∈ R2 × (−1, 1) is an unknown parameter. (This is a
bivariate normal density with both variances equal to one.)
a) Give formulas for the maximum likelihood estimators of µx, µy, and

ρ.
b) Find the (3×3) Fisher information matrix I(θ) for a single observation.

c) Derive asymptotic confidence intervals for µx and ρ based on I(θ̂)
and based on observed Fisher information (so you should give four
intervals, two for µx and two for ρ).

*29. Suppose W and X have a known joint density q, and that

Y |W = w, X = x ∼ N(αw + βx, 1).

Let (W1, X1, Y1), . . . , (Wn, Xn, Yn) be i.i.d., each with the same joint dis-
tribution as (W,X, Y ).

a) Find the maximum likelihood estimators α̂ and β̂ of α and β. Deter-
mine the limiting distribution of

√
n(α̂−α). (The answer will depend

on moments of W and X .)
b) Suppose β is known. What is the maximum likelihood estimator α̃ of

α? Find the limiting distribution of
√
n(α̃−α). When will the limiting
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distribution for
√
n(α̃−α) be the same as the limiting distribution in

part (a)?
*30. Prove Proposition 9.31 and show that (9.13) is a 1 − α asymptotic confi-

dence interval for g(θ). Suggest two estimators for ν(θ).
*31. Let N11, . . . , N22 be cell counts for a two-way table with independence.

Specifically, N has a multinomial distribution on n trials, and the cell
probabilities satisfy pij = pi+p+j , i = 1, 2, j = 1, 2. The distribution of N
is determined by θ = (p+1, p1+). Find the maximum likelihood estimator

θ̂, and give an asymptotic confidence intervals for p11 = θ1θ2.
32. Suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d. random vectors in R2 with com-

mon density

exp
{

−(x− θx)
2 +

√
2(x− θx)(y − θy) − (y − θy)

2
}

π
√

2
.

In polar coordinates we can write θx = ‖θ‖ cosω and θy = ‖θ‖ sinω, with
ω ∈ (−π, π]. Derive asymptotic confidence intervals for ‖θ‖ and ω.

33. Suppose X1, X2, . . . are i.i.d. from some distribution Qθ, with θ ∈ Ω ⊂ Rp.
Assume that the Fisher information matrix I(θ) exists and is positive
definite and continuous as a function of θ. Also, assume that the family
{Qθ : θ ∈ Ω} is regular enough that the maximum likelihood estimators

θ̂n are consistent, and that

√
n(θ̂n − θ) ⇒ N

(

0, I(θ)−1
)

.

a) Find the limiting distribution for

√
nI(θ)1/2(θ̂n − θ).

b) Find the limiting distribution for

n(θ̂n − θ)′I(θ̂)(θ̂n − θ).

Hint: This variable should almost be a function of the random vector
in part (a).

c) The variable in part (b) should be an asymptotic pivot. Use this pivot
to find an asymptotic 1 − α confidence region for θ. (Use the upper
quantile for the limiting distribution only.)

d) If p = 2 and I(θ) is diagonal, describe the shape of your asymptotic
confidence region. What is the shape of the region if I(θ) is not diag-
onal?

34. Simultaneous confidence intervals. SupposeX1,X2, . . . are i.i.d. from some
distribution Qθ with θ two-dimensional:

θ =

(

β

λ

)

∈ Ω ⊂ R2.
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Assume that the Fisher information matrix I(θ) exists, is positive definite,
is a continuous function of θ, and is diagonal,

I(θ) =

(

Iβ(θ) 0
0 Iλ(θ)

)

.

Finally, assume the family {Qθ : θ ∈ Ω} is regular enough that the maxi-
mum likelihood estimators are asymptotically normal:

√
n(θ̂n − θ) =

√
n

(

(

β̂n

λ̂n

)

−
(

β

λ

)

)

⇒ N
(

0, I(θ)−1
)

.

a) Let

Mn = max

{
√

nIβ(θ̂n)|β̂n − β|,
√

nIλ(θ̂n)|λ̂n − λ|
}

.

Show that Mn ⇒ M as n → ∞. Does the distribution of M depend
on θ?

b) Let q denote the upper αth quantile for M . Derive a formula relating
q to quantiles for the standard normal distribution.

c) Use Mn to find a 1 − α asymptotic confidence region S for θ. (You
should only use the upper quantile for the limiting distribution.) De-
scribe the shape of the confidence region S.

d) Find intervals CIβ and CIλ based on the data, such that

P (β ∈ CIβ and λ ∈ CIλ) → 1 − α.

From this, it is natural to call intervals CIβ and CIλ asymptotic
simultaneous confidence intervals for λ and β, because the chance
they simultaneously cover β and λ is approximately 1 − α.

35. Multivariate confidence regions. Let X1, . . . , Xm be a random sample from
N(µx, 1) and Y1, . . . , Yn be a random sample from N(µy, 1), with all m+n
variables independent, and let X = (X1 + · · · + Xm)/m and Y = (Y1 +
· · · + Yn)/n.
a) Find the cumulative distribution function for

V = max
{

|X − µx|, |Y − µy|
}

.

b) Assume n = m and use the pivot from part (a) to find a 1 − α confi-
dence region for θ = (µx, µy). What is the shape of this region?

36. Let X1, X2, . . . be i.i.d. from a distribution Q that is symmetric about θ.
Let Xn and X̃n denote the mean and median of the first n observations,
and let Tn be the M -estimator from the first n observations using the
function ρ given in Theorem 9.34 with k = 1.
a) Determine the asymptotic relative efficiency of Tn with respect to Xn

if Q = N(θ, 1).
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b) Determine the asymptotic relative efficiency of Tn with respect to X̃n

if Q is absolutely continuous with density

1

π[(x− θ)2 + 1]
,

a Cauchy density with location θ.
37. Let X1, X2, . . . be i.i.d. from a distribution Q that is symmetric about θ

and absolutely continuous with density q. Fix ǫ (or k), and let Tn be the
M -estimator from the first n observations using the function ρ given in
Theorem 9.34. Take ψ = ρ′.
a) Suggest a consistent estimator for λ′(θ). You can assume that λ′(θ) =

−Eψ′(X − θ).
b) Suggest a consistent estimator for Eψ2(X − θ).
c) Using the estimators in parts (a) and (b), find an asymptotic 1 − α

confidence interval for θ.
38. Suppose Y ∼ N(0, 1) and that, given Y = y, Xn, n ∈ Z, are i.i.d. from

N(y, 1). Find a shift invariant set B with P (X ∈ B) = 1/2.
39. Show that if E|Yi|2+ǫ is bounded for some ǫ > 0, then the Lindeberg

condition (9.17) holds.
40. Show that if

Eθ

(

g(x) − log
fθ(X0|X−1, . . . , X−k)
fω(X0|X−1, . . . , X−k)

)2

, k = 1, 2, . . . ,

are finite9 and tend to zero as k → ∞, then the approximation error in
(9.19) tends to zero in probability as n→ ∞.

41. Let Xn, n ∈ Z, be a stationary process with X0 uniformly distributed on
(0, 1), satisfying

Xn = 〈2Xn+1〉, n ∈ Z.

Here 〈x〉 def
= x− ⌊x⌋ denotes the fractional part of x. Show that X − 1/2

is a linear process. Identify a distribution Q for the innovations ǫi and
coefficients cn, n ≥ 1.

9 Actually, it is not hard to argue that the conclusion will still hold if some of these
moments are infinite, provided they still converge to zero.
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Equivariant Estimation

In our study of UMVU estimation, we discovered that, for some models, if
we restrict attention to the class of unbiased estimators there may be a best
choice. Equivariant estimation is similar, but now we restrict attention to
estimators that satisfy symmetry restrictions. At an abstract level, these re-
strictions are imposed using group theory. The basic ideas are developed here
only for estimation of a location parameter, but we try to proceed in a fashion
that illustrates the role of group theory.

10.1 Group Structure

For estimation of a location parameter, the group of interest is the real line,
G = R, with group multiplication, denoted by ∗, taken to be addition. So
g1 ∗ g2 = g1 + g2. This group acts, denoted by “⋆”, on points θ ∈ R (the
parameter space) by g ⋆ θ = g+ θ, and acts on points x ∈ Rn (the data space)
by

g ⋆ x =







g + x1

...
g + xn






= g1 + x,

where 1 ∈ Rn denotes a column vector of 1s.
Location models arise when each datum Xi can be thought of as the true

quantity of interest, θ ∈ R, plus measurement error ǫi. So

Xi = θ + ǫi, i = 1, . . . , n.

Writing

X =







X1

...
Xn






and ǫ =







ǫ1
...
ǫn






,

these equations can be written in vector form as

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
DOI 10.1007/978-0-387-93839-4_10, © Springer Science+Business Media, LLC 2010 
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X = θ1 + ǫ.

In a location model, the distribution of the error vector ǫ is fixed, ǫ ∼ P0.
This assumption allows dependence between the ǫi, but they are often taken
to be i.i.d., in which case P0 = Qn with Q the common marginal distribution,
ǫi ∼ Q. Letting Pθ denote the distribution of X , so

X = θ1 + ǫ ∼ Pθ,

the family P = {Pθ, θ ∈ R} is called a location family, and θ is called a location
parameter.

The symmetry restriction imposed on estimators, called equivariance, is
defined as follows.

Definition 10.1. An estimator δ for the location θ in a location family is
called equivariant if

δ(x1 + g, . . . , xn + g) = δ(x1, . . . , xn) + g,

or, using vector notation,

δ(x+ g1) = δ(x) + g,

for all g ∈ R, x ∈ Rn. Using the actions of g on points in R and Rn, this
equation can be written succinctly as

δ(g ⋆ x) = g ⋆ δ(x).

Examples of equivariant estimators include the sample mean and the me-
dian. An optimality theory for equivariant estimation requires considerable
structure. The family of distributions must behave naturally under group ac-
tions, and the loss function must be invariant, defined below. For location
families, since θ1 + g1 + ǫ = g ⋆ (θ1 + ǫ) has distribution Pg⋆θ,

Pg⋆θ(X ∈ B) = P (θ1 + g1 + ǫ ∈ B) = P
(

g ⋆ (θ1 + ǫ
)

∈ B) = Pθ(g ⋆ X ∈ B).

Definition 10.2. A loss function L for the location θ in a location family is
called invariant if

L(g ⋆ θ, g ⋆ d) = L(θ, d),

for all g ∈ R, θ ∈ R, d ∈ R. Defining ρ(x) = L(0, x) and taking g = −θ, L is
invariant if

L(θ, d) = ρ(d− θ)

for all θ ∈ R, d ∈ R.
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Suppose δ is equivariant and L is invariant. Then the risk of δ is

R(θ, δ) = Eθρ
(

δ(X) − θ
)

= Eρ
(

δ(θ1 + ǫ) − θ
)

= Eρ
(

δ(ǫ)
)

.

With the structure imposed, the risk function is a constant, independent of
θ. This means that graphs of risk functions for equivariant estimators cannot
cross, and we anticipate that there will be a best equivariant estimator δ∗,
called the minimum risk equivariant estimator. The technical issue here is
simply whether the infimum of the risks as δ varies over the class of equivariant
estimators is achieved.

As we proceed, it is convenient to add the assumption that P0 is absolutely
continuous with density f .

Proposition 10.3. If P0 is absolutely continuous with density f , then Pθ is
absolutely continuous with density f(x1 − θ, . . . , xn − θ) = f(x − θ1). Con-
versely, if distributions Pθ are absolutely continuous with densities f(x− θ1),
then if ǫ ∼ P0, θ1 + ǫ ∼ Pθ and P = {Pθ : θ ∈ R} is a location family.

Proof. Since θ1 + ǫ ∼ Pθ, the change of variables ei = xi − θ, i = 1, . . . , n,
gives

Pθ(B) = P (θ1 + ǫ ∈ B)

= E1B(θ1 + ǫ)

=

∫

· · ·
∫

1B(θ + e1, . . . , θ + en)f(e1, . . . , en) de1 · · · den

=

∫

· · ·
∫

1B(x1, . . . , xn)f(x1 − θ, . . . , xn − θ) dx1 · · · dxn

=

∫

· · ·
∫

B

f(x1 − θ, . . . , xn − θ) dx1 · · · dxn.

The converse follows similarly. ⊓⊔

A function h on Rn is called invariant if h(g ⋆ x) = h(x) for all x ∈ Rn,
g ∈ R. One invariant function of particular interest is

Y = Y (X) =







X1 −Xn

...
Xn−1 −Xn






.

If h is an arbitrary invariant function, then taking g = −Xn,

h(X) = h(X −Xn1)

= h(X1 −Xn, . . . , Xn−1 −Xn, 0)

= h(Y1, . . . , Yn−1, 0).
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This shows that any invariant function must be a function of Y . For this reason
Y is called a maximal invariant. This functional relationship means that Y
contains at least as much information about X as any other invariant function
h(X). Suppose δ0 and δ are equivariant estimators. Then their difference δ0−δ
is an invariant function because

δ0(g ⋆ x) − δ(g ⋆ x) = [δ0(x) + g] − [δ(x) + g] = δ0(x) − δ(x).

So the difference must be a function of Y ,

δ0(X) − δ(X) = v(Y ).

Conversely, if δ0 is equivariant and v is an arbitrary function, then

δ(X) = δ0(X) − v(Y )

is an equivariant estimator, because

δ(g ⋆ x) = δ0(g ⋆ x) − v
(

Y (g ⋆ x)
)

= δ0(x) + g − v
(

Y (x)
)

= δ(x) + g.

10.2 Estimation

The next result shows that optimal estimators are constructed by conditioning
on the maximal invariant Y introduced in the previous section.

Theorem 10.4. Consider equivariant estimation of a location parameter with
an invariant loss function. Suppose there exists an equivariant estimator δ0
with finite risk, and that for a.e. y ∈ Rn−1 there is a value v∗ = v∗(y) that
minimizes

E0

[

ρ
(

δ0(X) − v
) ∣

∣ Y = y
]

over v ∈ R. Then there is a minimum risk equivariant estimator given by

δ∗(X) = δ0(X) − v∗(Y ).

Proof. From the discussion above, δ∗ is equivariant. Let δ(X) = δ0(X)−v(Y )
be an arbitrary equivariant estimator. Then by smoothing, using the fact that
risk functions for equivariant estimators are constant,

R(θ, δ) = E0ρ
(

δ0(X) − v(Y )
)

= E0E0

[

ρ
(

δ0(X) − v(Y )
) ∣

∣ Y
]

≥ E0E0

[

ρ
(

δ0(X) − v∗(Y )
) ∣

∣ Y
]

= E0ρ
(

δ0(X) − v∗(Y )
)

= E0ρ
(

δ∗(X)
)

= R(θ, δ∗).

⊓⊔
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To calculate the minimum risk equivariant estimator in this theorem ex-
plicitly, let us assume that the equivariant estimator

δ0(X) = Xn

has finite risk. To evaluate the conditional expectation in the theorem we need
the conditional distribution of Xn given Y (under P0), which we can obtain
from the joint density. Using a change of variables yi = xi−xn, i = 1, . . . , n−1,
in the integrals against dxi,

P0

[(

Y

Xn

)

∈ B

]

= E01B(Y1, . . . , Yn−1, Xn)

= E01B(X1 −Xn, . . . , Xn−1 −Xn, Xn)

=

∫

· · ·
∫

1B(x1−xn, . . . , xn)f(x1, . . . , xn) dx1 · · · dxn

=

∫

· · ·
∫

B

f(y1 + xn, . . . , yn−1 + xn, xn) dy1 · · · dyn−1 dxn.

So the joint density of Y and Xn under P0 is

f(y1 + xn, . . . , yn−1 + xn, xn).

Integration against xn gives the marginal density of Y ,

fY (y) =

∫

f(y1 + t, . . . , yn−1 + t, t) dt.

So the conditional density of Xn = δ0 given Y = y is

fXn|Y (t|y) =
f(y1 + t, . . . , yn−1 + t, t)

fY (y)
.

From the theorem, v∗ = v∗(y) should be chosen to minimize

∫

ρ(t− v)f(y1 + t, . . . , yn−1 + t, t) dt
∫

f(y1 + t, . . . , yn−1 + t, t) dt
.

This is simplified by a change of variables in both integrals taking t = xn−u.
Here xn is viewed as a constant, and we define xi by xi − xn = yi, so that
yi + t = xi − u. Then this expression equals

∫

ρ(xn − v − u)f(x1 − u, . . . , xn − u) du
∫

f(x1 − u, . . . , xn − u) du
.

Since δ∗(x) = xn − v∗(y), it must be the value that minimizes
∫

ρ(d− u)f(x1 − u, . . . , xn − u) du
∫

f(x1 − u, . . . , xn − u) du
. (10.1)
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Formally, this looks very similar to the calculations to compute a posterior
risk in a Bayesian model. The likelihood at θ = u is f(x1 − u, . . . , xn − u),
and ρ is the loss function. If the prior density were taken as one, so the prior
distribution is Lebesgue measure λ, then formally we would be choosing δ to
minimize our posterior risk. Of course, as precise mathematics this is suspect
because Lebesgue measure (or any multiple of Lebesgue measure) is not a
probability and cannot serve as a proper prior distribution for θ in a Bayesian
model. But the posterior distribution obtained from formal calculations with
prior distribution Lebesgue measure will be a probability measure, and the
minimum risk equivariant estimator can be viewed informally as Bayes with
Lebesgue measure as a prior.

If we define the action of group elements g on Borel sets B by

g ⋆ B
def
= {g ⋆ x : x ∈ B},

then Lebesgue measure is invariant, λ(B) = λ(g ⋆ B). Measures invariant un-
der the action of some group are called Haar measures, and in this setting
multiples of Lebesgue measure are the only invariant measures. The struc-
ture we have discovered here persists in more general settings. With suitable
structure, best equivariant estimators are formally Bayes with Haar measure
as the prior distribution for the unknown parameter. For further discussion,
see Eaton (1983, 1989).

With squared error loss, ρ(d − u) = (d − u)2, minimization to find the
minimum risk equivariant estimator can be done explicitly. IfW is an arbitrary
random variable, then E(W − d)2 = EW 2 − 2dEW + d2, and this quadratic
function of d is minimized when d = EW . If W has density h, then E(W −
d)2 =

∫

(u − d)2h(u) du and the minimizing value for d is
∫

uh(u) du. The
minimization of (10.1) has this form, with h (the formal posterior density)
given by

h(u) =
f(x1 − u, . . . , xn − u)
∫

f(x1 − t, . . . , xn − t) dt
.

So with squared error loss, the minimum risk equivariant estimator is

δ∗(X) =

∫

uf(X1 − u, . . . , Xn − u) du
∫

f(X1 − u, . . . , Xn − u) du
. (10.2)

This estimator δ∗ is called the Pitman estimator.

Example 10.5. Suppose the measurement errors ǫ1, . . . , ǫn are i.i.d. standard
exponential variables. Then the density f(e) of ǫ will be positive when ei > 0,
i = 1, . . . , n, i.e., when min{e1, . . . , en} > 0, and so this density is

f(e) =

{

e−(e1+···+en), min{e1, . . . , en} > 0;

0, otherwise.

Letting M = min{X1, . . . , Xn} and noting that min{X1 − u, . . . , Xn− u} > 0
if and only if u < M ,
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f(X1 − u, . . . , Xn − u) =

{

enu−(X1+···+Xn), u < M ;

0, otherwise.

Thus the Pitman estimator (10.2) in this example is

δ∗ =

∫M

−∞ ue
nu−(X1+···+Xn) du

∫M

−∞ enu−(X1+···+Xn) du
=

∫ 0

−∞(t+M)ent dt
∫ 0

−∞ e
nt dt

= M − 1

n
.

10.3 Problems1

*1. Let X1 ∼ N(θ, 1), and suppose that for j = 1, . . . , n − 1 the conditional
distribution of Xj+1 given X1 = x1, . . . , Xj = xj is N

(

(xj + θ)/2, 1
)

.
Show that the joint distributions for X1, . . . , Xn form a location family
and determine the minimum risk equivariant estimator for θ under squared
error loss.

*2. Let X have cumulative distribution function F , and assume that F is
continuous.
a) Show that g(c) = E|X − c| is minimized when c is a median of F , so

F (c) = 1/2.
b) Generalizing part (a), define

g(c) = E
[

a(X − c)+ + b(c−X)+
]

,

where a and b are positive constants. Find the quantile of F that
minimizes g.

3. Let ǫ1, . . . , ǫn be i.i.d. standard exponential variables, and let Xi = θ+ ǫi,
i = 1, . . . , n. Using the result in Problem 10.2, determine the minimum
risk equivariant estimator of θ based on X1, . . . , Xn if the loss function is
L(θ, d) = |θ − d|.

*4. Suppose X has density
1

2
e−|x−θ|.

Using the result in Problem 10.2, determine the minimum risk equivariant
estimator of θ when the loss for estimating θ by d is

L(θ, d) = a(d− θ)+ + b(θ − d)+,

with a and b positive constants.
5. Suppose X and Y are independent, with X ∼ N(θ, 1) and Y absolutely

continuous with density eθ−y for y > θ, 0 for y ≤ θ. Determine the
minimum risk equivariant estimator of θ based on X and Y under squared
error loss.

1 Solutions to the starred problems are given at the back of the book.
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6. Suppose θ̂ is minimum risk equivariant under squared error loss and that
the risk of θ̂ is finite. Is θ̂ then unbiased? Prove or give a counterexample.

7. Suppose X and Y are independent random variables, X with density
1
2e
−|x−θ|, x ∈ R, and Y with density e−2|y−θ|, y ∈ R. Find the minimum

risk equivariant estimator of θ under squared error loss based on X and
Y .

8. Equivariant estimation for scale parameters. Let ǫ1, . . . , ǫn be positive ran-
dom variables with joint distribution P1. If σ > 0 is an unknown param-
eter, and X ∼ σǫ ∼ Pσ, then {Pσ : σ > 0} is called a scale family, and σ
is a scale parameter. (Similar developments are possible without the re-
striction to positive variables.) The transformation group for equivariant
scale estimation is G = (0,∞) with g1 ∗ g2 = g1g2, and group elements
act on data values x ∈ X = (0,∞)n and parameters σ by multiplication,
g ⋆ x = gx and g ⋆ σ = gσ.
a) A loss function L(σ, d) is invariant if L(g ⋆ σ, g ⋆ d) = L(σ, d) for all

g, σ, d in (0,∞). For instance, L(σ, d) = ρ(d/σ) is invariant. Show that
any invariant loss function L must have this form.

b) A function h on X is invariant if h(g ⋆ x) = h(x) for all g ∈ G, x ∈ X .
The function

Y (x) =







x1/xn
...

xn−1/xn







is invariant. If h is invariant, show that h(x) = ν
(

Y (x)
)

for some
function ν.

c) An estimator δ : X → (0,∞) is equivariant if δ(g⋆x) = g⋆δ(x) = gδ(x)
for all g > 0, x ∈ (0,∞)n. Show that the risk function R(σ, δ) for
an equivariant estimator of scale, with an invariant loss function, is
constant in σ.

d) If δ is an arbitrary equivariant estimator and δ0 is a fixed equivariant
estimator, then δ0/δ is invariant. So δ(X) = δ0(X)/ν(Y ) for some
ν. Use this representation to prove a result similar to Theorem 10.4
identifying the minimum risk equivariant estimator in regular cases.

e) If the distribution P1 for ǫ is absolutely continuous with density f ,
find the density for X ∼ Pσ.

9. Let U1, U2, and V be independent variables with U1 and U2 uniformly
distributed on (−1, 1) and P (V = 2) = P (V = −2) = 1/2. Suppose our
data X1 and X2 are given by

X1 = θ + U1 + V and X2 = θ + U2,

with θ ∈ R and unknown location parameter.
a) Find the minimum risk equivariant estimator δ for θ under squared

error loss based on X1 and X2.
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b) The best equivariant estimator if we observe only a single observation
Xi is that observationXi. Will the estimator δ from both observations
lie between X1 and X2? Explain your answer.



11

Empirical Bayes and Shrinkage Estimators

Many of the classical ideas in statistics become less reliable when there are
many parameters. Results in this chapter suggest a natural approach in some
situations and illustrate one way in which classical ideas may fail.

11.1 Empirical Bayes Estimation

Suppose several objects are measured using some device and that the mea-
surement errors are i.i.d. from N(0, 1). (Results here can easily be extended
to the case where the errors are from N(0, σ2) with σ2 a known constant.) If
we measure p objects then our data X1, . . . , Xp are independent with

Xi ∼ N(θi, 1), i = 1, . . . , p,

where θ1, . . . , θp are the unknown true values. Let X denote the vector
(X1, . . . , Xp)

′ and θ the vector (θ1, . . . , θp)
′. If we estimate θi by δi(X) and

incur squared error loss, then our total loss, called compound squared error
loss, is

L(θ, δ) =

p
∑

i=1

(

θi − δi(X)
)2
.

Note that the framework here allows the estimator δi(X) of θi to depend on
Xj for j 6= i. This is deliberate, and although it may seem unnecessary or
unnatural, some estimators for θi in this section depend on Xi and to some
extent the other observations. This may be an interesting enigma to ponder
as you read this section. Letting δ(X) denote the vector

(

δ1(X), . . . , δp(X)
)′

,

the compound loss L(θ, δ) equals
∥

∥δ(X) − θ
∥

∥

2
, and the risk function for δ is

given by

R(θ, δ) = Eθ
∥

∥δ(X) − θ
∥

∥

2
.

At this stage, let us consider a Bayesian formulation in which the unknown
parameter is taken to be a random variable Θ. For a prior distribution, let
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Θ1, . . . , Θp be i.i.d. from N(0, τ2). Given Θ = θ, X1, . . . , Xp are independent
with Xi ∼ N(θi, 1), i = 1, . . . , p. Then the conditional density of X given
Θ = θ is

1

(2π)p/2
exp

[

−1

2

p
∑

i=1

(xi − θi)
2

]

,

the marginal density of Θ is

1

(2πτ2)p/2
exp

[

− 1

2τ2

p
∑

i=1

θ2i

]

,

and, multiplying these together, the joint density of X and Θ is

1

(2πτ)p
exp

[

−1

2

p
∑

i=1

(xi − θi)
2 − 1

2τ2

p
∑

i=1

θ2i

]

.

Completing the square,

(xi − θi)
2 +

θ2i
τ2

=

(

1 +
1

τ2

)(

θi −
xi

1 + 1/τ2

)2

+
x2
i

1 + τ2
.

Integrating against θ, the marginal density of X is

∫

· · ·
∫

exp

[

−1

2

(

1 +
1

τ2

) p
∑

i=1

(

θi −
xi

1 + 1/τ2

)2

− 1

2

p
∑

i=1

x2
i

1 + τ2

]

(2πτ)p
dθ

=
1

(

2π(1 + τ2)
)p/2

exp

[

−1

2

p
∑

i=1

x2
i

1 + τ2

]

.

This is a product of densities for N(0, 1+τ2), and so X1, . . . , Xp are i.i.d. from
N(0, 1 + τ2). Dividing the joint density of X and Θ in the Bayesian model by
the marginal density of X , the conditional density of Θ given X = x is

1
(

2π
τ2

1 + τ2

)p/2
exp











−1

2

p
∑

i=1

(

θi −
xi

1 + 1/τ2

)2

τ2/(1 + τ2)











.

Noting that this factors into a product of normal densities, we see that given
X = x, Θ1, . . . , Θp are independent with

Θi|X = x ∼ N

(

xi
1 + 1/τ2

,
τ2

1 + τ2

)

.

From this
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E[Θi|X ] =
Xi

1 + 1/τ2
and Var(Θi|X) =

τ2

1 + τ2
.

The expected loss under the Bayesian model is

EL
(

Θ, δ(X)
)

= E

p
∑

i=1

(

δi(X) −Θi
)2

= EE

[ p
∑

i=1

(

δi(X) −Θi
)2
∣

∣

∣

∣

X

]

= E

p
∑

i=1

E
[

(

δi(X) −Θi
)2
∣

∣

∣ X
]

= E

p
∑

i=1

[

Var(Θi|X) +

(

Xi

1 + 1/τ2
− δi(X)

)2
]

.

This risk is minimized taking

δi(X) =
Xi

1 + 1/τ2
=

(

1 − 1

1 + τ2

)

Xi. (11.1)

In the Bayesian approach to this problem here, the choice of τ is crucial.
In an empirical Bayes approach to estimation, the data are used to estimate
parameters of the prior distribution. To do this in the current setting, recall
that under the Bayesian model, X1, . . . , Xp are i.i.d. from N(0, 1 + τ2). The
UMVU estimate of 1 + τ2 is

∑p
i=1X

2
i /p, and slightly different multiples of

‖X‖2 may be sensible. The James–Stein estimator of θ is based on estimating
1/(1 + τ2) by (p− 2)/‖X‖2 in (11.1). The resulting estimator is

δJS(X) =

(

1 − p− 2

‖X‖2

)

X. (11.2)

The next section considers the risk of this estimator.
Although the derivation above has a Bayesian feel, the standard deviation

τ that specifies the marginal prior distributions for the Θi is not modeled as
a random variable. This deviation τ might be called a hyperparameter, and a
fully Bayesian approach to this problem would treat τ as a random variable
with its own prior distribution. Then given τ , Θ1, . . . , Θp would be condi-
tionally i.i.d. from N(0, τ2). This approach, specifying the prior by coupling
a marginal prior distribution for hyperparameters with conditional distribu-
tions for the regular parameters, leads to hierarchical Bayes models. With
modern computing, estimators based on these models can be practical and
have gained popularity in recent years. Hierarchical models are considered in
greater detail in Section 15.1.
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11.2 Risk of the James–Stein Estimator1

The following integration by parts identity is an important tool in our study of
the risk of the James–Stein estimator. Fubini’s theorem provides a convenient
way to establish an appropriate regularity condition for this identity.

Lemma 11.1 (Stein). Suppose x ∼ N(µ, σ2), h : R → R is differentiable
(absolutely continuous is also sufficient), and

E|h′(X)| <∞. (11.3)

Then
E(X − µ)h(X) = σ2Eh′(X).

Proof. Assume for now that µ = 0 and σ2 = 1. If the result holds for a
function h it also holds for h plus a constant, and so we can assume without
loss of generality that h(0) = 0. By Fubini’s theorem,

∫ ∞

0

xh(x)e−x
2/2 dx =

∫ ∞

0

x

[∫ x

0

h′(y) dy

]

e−x
2/2 dx

=

∫ ∞

0

∫ ∞

0

I{y < x}xh′(y)e−x2/2 dy dx

=

∫ ∞

0

h′(y)

[
∫ ∞

y

xe−x
2/2 dx

]

dy

=

∫ ∞

0

h′(y)e−y
2/2 dy.

The regularity necessary in Fubini’s theorem to justify the interchange of the
order of integration follows from (11.3). A similar calculation shows that

∫ 0

−∞
xh(x)e−x

2/2 dx =

∫ 0

−∞
h′(y)e−y

2/2 dy.

Adding these together and dividing by
√

2π, EXh(X) = Eh′(X) when X ∼
N(0, 1).

For the general case, let Z = (X −µ)/σ ∼ N(0, 1). Then X = µ+ σZ and

E(X − µ)h(X) = σEZh(µ+ σZ)

= σ2Eh′(µ+ σZ)

= σ2Eh′(X). ⊓⊔

The next lemma generalizes the previous result to higher dimensions. If
h : Rp → Rp, let Dh denote the p× p matrix of partial derivatives,

1 This section covers optional material not used in later chapters.
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[

Dh(x)
]

ij
=
∂hi(x)

∂xj
.

Also, let ‖Dh‖ denote the Euclidean norm of this matrix,

‖Dh(x)‖ =







∑

i,j

[

Dh(x)
]2

ij







1/2

.

Lemma 11.2. Let X1, . . . , Xp be independent with Xi ∼ N(θi, 1), i = 1, . . . , p.
If

E‖Dh(X)‖ <∞,

then
E(X − θ)′h(X) = Etr

{

Dh(X)
}

.

Proof. Using Stein’s lemma (Lemma 11.1) and smoothing,

E(Xi − θi)hi(X) = EE
[

(Xi − θi)hi(X)
∣

∣ X1, . . . , Xi−1, Xi+1, . . . , Xp

]

= EE

[

∂hi(X)

∂Xi

∣

∣

∣

∣

∣

X1, . . . , Xi−1, Xi+1, . . . , Xp

]

= E
∂hi(X)

∂Xi

= E
[

Dh(X)
]

ii
.

Summation over i gives the stated result. ⊓⊔

The final result provides an unbiased estimator of the risk. Let X1, . . . , Xp

be independent with Xi ∼ N(θi, 1). Given an estimator δ(X) of θ, define h(X)
as X − δ(X) so that

δ(X) = X − h(X). (11.4)

For the James–Stein estimator (11.2),

h(X) =
p− 2

‖X‖2
X.

Theorem 11.3. Suppose X1, . . . , Xp are independent with Xi ∼ N(θi, 1) and
that h and δ are related as in (11.4). Assume that h is differentiable and define

R̂ = p+
∥

∥h(X)
∥

∥

2 − 2tr
{

Dh(X)
}

.

Then
R(θ, δ) = Eθ

∥

∥δ(X) − θ
∥

∥

2
= EθR̂,

provided Eθ
∥

∥Dh(X)
∥

∥ <∞.
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Proof. Using Lemma 11.2,

R(θ, δ) = Eθ

p
∑

i=1

(

Xi − θi − hi(X)
)2

= Eθ

[

p
∑

i=1

(Xi − θi)
2 +

p
∑

i=1

h2
i (X) − 2

p
∑

i=1

(Xi − θi)hi(X)

]

= p+ Eθ
∥

∥h(X)
∥

∥

2 − 2Eθ(X − θ) · h(X)

= p+ Eθ
∥

∥h(X)
∥

∥

2 − 2Eθtr
{

Dh(X)
}

. ⊓⊔

For the James–Stein estimator (11.2),

h(X) =
p− 2

‖X‖2
X,

and so

hi(x) =
(p− 2)xi

x2
1 + · · · + x2

p

.

Since

∂hi(x)

∂xi
=

p− 2

x2
1 + · · · + x2

p

− (p− 2)xi(2xi)

(x2
1 + · · · + x2

p)
2

=
p− 2

‖x‖2
− 2(p− 2)x2

i

‖x‖4
,

tr
{

Dh(x)
}

=
p(p− 2)

‖x‖2
− 2(p− 2)

∑p
i=1 x

2
i

‖x‖4
=

(p− 2)2

‖x‖2
.

Also,
∥

∥h(x)
∥

∥

2
=

p
∑

i=1

[

(p− 2)xi
]2

‖x‖4
=

(p− 2)2

‖x‖2
.

Thus, for the James–Stein estimator,

R̂ = p+
(p− 2)2

‖X‖2
− 2

(p− 2)2

‖X‖2
= p− (p− 2)2

‖X‖2
. (11.5)

By Theorem 11.3,

R(θ, δJS) = EθR̂ = Eθ

[

p− (p− 2)2

‖X‖2

]

< p = R(θ,X).

Hence when p > 2, the James–Stein estimator always has smaller compound
risk than the estimator X . Because the risk function for δJS is better than
the risk function for X , in the language of decision theory, developed in the
next section, X is called inadmissible.
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When ‖θ‖ is large, ‖X‖ will be large with high probability. Then the
James–Stein estimator and X will be very similar and will have similar risk.
But when ‖θ‖ is small there can be a substantial decrease in risk using the
James–Stein estimator instead of X . If θ = 0, then

‖X‖2 =

p
∑

i=1

X2
i ∼ χ2

p.

Integrating against the chi-square density, as in (4.10),

E0
1

‖X‖2
=

1

p− 2
.

Using this and (11.5),

R(0, δ) = E0

[

p− (p− 2)

‖X‖2

]

= p− (p− 2)2

p− 2
= 2.

Regardless of the dimension of θ and X , at the origin θ = 0, the James–Stein
estimator has risk equal to two.

The results in this section can be extended in various ways. James and
Stein (1961) derived the estimator (11.2) and also consider estimation when
σ2 is unknown. Extensions to ridge regression are reviewed in Draper and
van Nostrand (1979). Stein’s identity in Lemma 11.1 can be developed for
other families of distributions, and these identities have been used in various
interesting ways. Chen (1975) and Stein (1986) use them to obtain Poisson
limit theorems, and Woodroofe (1989) uses them for interval estimation and
to approximate posterior distributions.

11.3 Decision Theory2

The calculations in the previous section show that X is inadmissible when
the dimension p is three or higher, leaving open the natural question of what
happens in one or two dimensions. In this section, several results from deci-
sion theory are presented and used to characterize admissible procedures and
show that for compound estimation X is admissible when p = 1. A similar
argument shows that X is also admissible when p = 2, although the necessary
calculations in that case are quite delicate.

Formal decision theory begins with a parameter space Ω, an action space
A, a data space X , a model P = {Pθ : θ ∈ Ω}, and a loss function L : Ω×A →
[−∞,∞]. For simplicity and convenience, we assume that X = Rn, that Ω
and A are Borel subsets of Euclidean spaces, and that the loss function L is
nonnegative and measurable, with L(θ, a) lower semicontinuous in a.

2 This section covers optional material not used in later chapters.
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A measurable function δ : X → A is called a nonrandomized decision rule,
and its risk function is defined as

R(θ, δ) =

∫

L
(

θ, δ(x)
)

dPθ(x) = EθL
(

θ, δ(X)
)

, θ ∈ Ω.

The set of all nonrandomized decision rules is denoted Dn.
A nonrandomized decision rule associates with each x an action δ(x). In

contrast, a randomized decision rule associates with each x a probability dis-
tribution δx, the idea being that if X = x is observed, a random action A will
be drawn from δx. So A|X = x ∼ δx. Formally, δ is should be a stochastic
transition kernel, satisfying the regularity condition that δx(A) is a measur-
able function of x for any Borel set A. By smoothing, the risk function for δ
can be defined as

R(θ, δ) = EθL(θ,A) = EθEθ
[

L(θ,A)|X
]

=

∫∫

L(θ, a) dδx(a) dPθ(x), θ ∈ Ω.

The set of all randomized decision rules is denoted D.

Example 11.4 (Estimation). For estimating a univariate parameter g(θ) it is
natural to take A = R as the action space, and a decision rule δ would be
called an estimator. Representative loss functions include squared error loss
with L(θ, a) = [a − g(θ)]2 and weighted squared error loss with L(θ, a) =
w(θ)[a − g(θ)]2.

Example 11.5 (Testing). In testing problems, the action space is A = {0, 1},
with action “0” associated with accepting H0 : θ ∈ Ω0 and action “1” asso-
ciated with accepting H1 : θ ∈ Ω1. For each x, δx is a Bernoulli distribution,
which can be specified by its “success” probability ϕ(x) = δx

(

{1}
)

. This pro-
vides a one-to-one correspondence between test functions ϕ and randomized
decision rules. A representative loss function now might be zero-one loss in
which there is unit loss for accepting the wrong hypothesis:

L(θ, a) = I{a = 1, θ ∈ Ω0} + I{a = 0, θ ∈ Ω1}.

If the power function β is defined as

β(θ) = Pθ(A = 1) = EθPθ(A = 1|X) = EθδX
(

{1}
)

= Eθϕ(X),

then the risk function with this loss is

R(θ, δ) =

{

Pθ(A = 1), θ ∈ Ω0;

Pθ(A = 0), θ ∈ Ω0,

=

{

β(θ), θ ∈ Ω0;

1 − β(θ), θ ∈ Ω1.
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A decision rule δ is called inadmissible if a competing rule δ∗ has a better
risk function, specifically if R(θ, δ∗) ≤ R(θ, δ) for all θ ∈ Ω with R(θ, δ∗) <
R(θ, δ) for some θ ∈ Ω. If this happens we say that δ∗ dominates δ. All
other rules are called admissible. If minimizing risk is the sole concern, no one
would ever want to use an inadmissible rule, and there has been considerable
interest in characterizing admissible rules. Our first results below show that
Bayes rules are typically admissible. More surprising perhaps are extensions,
such as Theorem 11.8 below, showing that the remaining admissible rules are
almost Bayes in a suitable sense. For notation, for a prior distribution Λ let

R(Λ, δ) =

∫

R(θ, δ) dΛ(θ), (11.6)

the integrated risk of δ under Λ, and let

R(Λ) = inf
δ∈D

R(Λ, δ), (11.7)

the minimal integrated risk. Finally, the decision rule δ is called Bayes for a
prior Λ if it minimizes the integrated risk, that is, if

R(Λ, δ) = R(Λ). (11.8)

At this stage it is worth noting that in definitions (11.6) and (11.7) the prior
Λ does not really need to be a probability measure; the equations make sense
as long as Λ is finite, or even if it is infinite but σ-finite. The definition of
Bayes for Λ also makes sense for these Λ. But if the prior Λ is not specified, δ
is called proper Bayes only if (11.8) holds for some probability distribution Λ.
Of course, if Λ is finite and δ is Bayes for Λ it is also Bayes for the probability
distribution Λ(·)/Λ(Ω). Thus we are only disallowing rules that are Bayes
with respect to an “improper” prior with Λ(Ω) = ∞ in this designation.

The next two results address the admissibility of Bayes rules.

Theorem 11.6. If a Bayes rule δ for Λ is essentially unique, then δ is ad-
missible.

Proof. Suppose R(θ, δ∗) ≤ R(θ, δ) for all θ ∈ Ω. Then, by (11.6), R(Λ, δ∗) ≤
R(Λ, δ), and δ∗ must also be Bayes for Λ. But then, by the essential uniqueness,
δ = δ∗, a.e. P , and so R(θ, δ) = R(θ, δ∗) for all θ ∈ Ω. ⊓⊔

The next result refers to the support of the prior distribution Λ, defined as
the smallest closed set B with Λ(B) = 1. Note that if the support of Λ is Ω
and B is an open set with Λ(B) = 0, then B must be empty, since otherwise
Bc would be a closed set smaller than Ω with Λ(Bc) = 1.

Theorem 11.7. If risk functions for all decision rules are continuous in θ, if
δ is Bayes for Λ and has finite integrated risk R(Λ, δ) <∞, and if the support
of Λ is the whole parameter space Ω, then δ is admissible.
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Proof. Suppose again that R(θ, δ∗) ≤ R(θ, δ) for all θ ∈ Ω. Then, as before,
δ∗ is Bayes for Λ and δ and δ∗ must have the same integrated risk, R(Λ, δ) =
R(Λ, δ∗. Hence

∫

(

R(θ, δ) −R(θ, δ∗)
)

dΛ(θ) = 0.

Since the integrand here is nonnegative, by integration fact 2 in Section 1.4
the set

{θ : R(θ, δ) −R(θ, δ∗) > 0}
has Λ measure zero. But since risk functions are continuous, this set is open
and must then be empty since Λ has support Ω. So the risk functions for δ
and δ∗ must be the same, R(θ, δ) = R(θ, δ∗) for all θ ∈ Ω. ⊓⊔

A collection of decision rules is called a complete class if all rules outside the
class are inadmissible. A complete class will then contain all of the admissible
rules. In various situations suitable limits of Bayes procedures form a complete
class. Because randomized decision rules are formally stochastic transition
functions, a proper statement of most of these results involves notions of
convergence for these objects, akin to our notion of convergence in distribution
for probability distributions, but complicated by the functional dependence
on X . An exception arises if the loss function L(θ, a) is strictly convex in a.
In this case, admissible rules must be nonrandomized by the Rao–Blackwell
theorem (Theorem 3.28), and we have the following result, which can be stated
without reference to complicated notions of convergence. This result appears
with a careful proof as Theorem 4A.12 of Brown (1986). Let B0 denote the
class of Bayes rules for priors Λ concentrated on finite subsets of Ω.

Theorem 11.8. Let P be a dominated family of distributions with pθ as the
density for Pθ, and assume that pθ(x) > 0 for all x ∈ X and all θ ∈ Ω. If
L(θ, ·) is nonnegative and strictly convex for all θ ∈ Ω, and if L(θ, a) → ∞
as ‖a‖ → ∞, again for all θ ∈ Ω, then the set of pointwise limits of rules in
B0 forms a complete class.

This and similar results show that in regular cases any admissible rule will
be a limit of Bayes rules. Unfortunately, some limits may give inadmissible
rules, and these results cannot be used to show that a given rule is admissi-
ble. The final theoretical result of this section gives a sufficient condition for
admissibility. For regularity, it assumes that all risk functions are continuous,
but similar results are available in different situations. Let

Br(x) =
{

y : ‖y − x‖ ≤ r
}

,

the closed ball of radius r about x.

Theorem 11.9. Assume that risk functions for all decision rules are contin-
uous in θ. Suppose that for any closed ball Br(x) there exist finite measures
Λm such that R(Λm, δ) <∞, m ≥ 1,
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lim inf Λm
(

Br(x)
)

> 0,

and
R(δ, Λm) −R(Λm) → 0.

Then δ is admissible.

Proof. Suppose δ∗ dominates δ. Then R(θ0, δ
∗) < R(θ0, δ) for some θ0 ∈ Ω.

By continuity

inf
θ∈Br(θ0)

[

R(θ, δ) −R(θ, δ∗)
]

→ R(θ0, δ) −R(θ0, δ
∗) > 0

as r ↓ 0, and so there exist values ǫ > 0 and r0 > 0 such that

R(θ, δ) ≥ R(θ, δ∗) + ǫ, ∀θ ∈ Br0(θ0).

Since δ∗ dominates δ, this implies

R(θ, δ) ≥ R(θ, δ∗) + ǫI
{

θ ∈ Br0
}

.

Integrating this against Λm,

R(Λm, δ) ≥ R(Λm, δ
∗) + ǫΛm

(

Br0
)

≥ R(Λm) + ǫΛm
(

Br0
)

,

contradicting the assumptions of the theorem. ⊓⊔

Stein (1955) gives a necessary and sufficient condition for admissibility,
and using this result the condition in this theorem is also necessary. Related
results are given in Blyth (1951), Le Cam (1955), Farrell (1964, 1968a,b),
Brown (1971b), and Chapter 8 of Berger (1985).

Example 11.10. Consider a Bayesian formulation of the one-sample problem
in which Θ ∼ N(0, τ2) and given Θ = θ, X1, . . . , Xn are i.i.d. from N(θ, σ2)
with σ2 a known constant. By the calculation for Problem 6.21, the posterior
distribution for Θ is

Θ|X = x ∼ N

(

x

1 + σ2/(nτ2)
,

σ2τ2

σ2 + nτ2

)

,

where x = (x1 + · · ·+ xn)/n. So the Bayes estimator under squared error loss
is

X

1 + σ2/(nτ2)

with integrated risk
σ2τ2

σ2 + nτ2
.

Since the Bayes estimator converges to X as τ → ∞, if we are hoping to use
Theorem 11.9 to show that the sample average δ = X = (X1 + · · · + Xn)/n
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is admissible, it may seem natural to take Λm = N(0,m). But this does not
quite work; since densities for these distributions tend to zero, with this choice
Λm
(

Br(x)
)

tends to zero as m → ∞. The problem can be simply fixed by
rescaling, taking Λm =

√
mN(0,m). The density for this measure is φ(θ/

√
m),

converging pointwise to φ(0) = 1/
√

2π. So by dominated convergence,

Λm
(

Br(x)
)

=

∫ x+r

x−r
φ(θ/

√
m) dθ → 2r√

2π
.

Scaling the prior by
√
m scales risks and expectations by the same factor

√
m,

and so

R(δ, Λm) =

√
mσ2

n
and R(Λm) =

√
mσ2 m

σ2 + nm
.

Then

R(δ, Λm) −R(Λm) =

√
mσ4

n(σ2 + nm)
→ 0

as m→ ∞, and by Theorem 11.9 X is admissible.

Stein (1956) shows admissibility of the sample average X in p = 2 dimen-
sions. The basic approach is similar to that pursued in this example, but the
priors Λn must be chosen with great care; it is not hard to see that scaled
conjugate normal distributions will not work.

For a more complete introduction to decision theory, see Chernoff and
Moses (1986) or Bickel and Doksum (2007), and for a more substantial treat-
ment, see Berger (1985), Ferguson (1967), or Miescke and Liese (2008).

11.4 Problems3

*1. Consider estimating the failure rates λ1, . . . , λp for independent exponen-
tial variables X1, . . . , Xp. So Xi has density λie

−λix, x > 0.
a) Following a Bayesian approach, suppose the unknown parameters

are modeled as random variables Λ1, . . . , Λp. For a prior distribu-
tion, assume these variables are i.i.d. from a gamma distribution
with shape parameter α and unit scale parameter, so Λi has den-
sity λα−1e−λ/Γ (α), λ > 0. Determine the marginal density of Xi in
this model.

b) Find the Bayes estimate of Λi in the Bayesian model with squared
error loss.

c) The Bayesian model gives a family of joint distributions forX1, . . . , Xp

indexed solely by the parameter α (the joint distribution does not
depend on λ1, . . . , λp). Determine the maximum likelihood estimate
of α for this family.

3 Solutions to the starred problems are given at the back of the book.
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d) Give an empirical Bayes estimator for λi combining the “empirical”
estimate for α in part (c) with the Bayes estimate for λi when α is
known in part (b).

*2. Consider estimation of regression slopes θ1, . . . , θp for p pairs of observa-
tions, (X1, Y1), . . . , (Xp, Yp), modeled as independent with Xi ∼ N(0, 1)
and Yi|Xi = x ∼ N(θix, 1).
a) Following a Bayesian approach, let the unknown parameters Θ1, . . . ,

Θp be i.i.d. random variables from N(0, τ2). Find the Bayes estimate
of Θi in this Bayesian model with squared error loss.

b) Determine EY 2
i in the Bayesian model. Using this, suggest a simple

method of moments estimator for τ2.
c) Give an empirical Bayes estimator for θi combining the simple “em-

pirical” estimate for τ in (b) with the Bayes estimate for θi when τ is
known in (a).

*3. Consider estimation of the means θ1, . . . , θp of p independent Poisson ran-
dom variables X1, . . . , Xp under compound squared error loss, L(θ, d) =
∑p

i=1(θi − di)
2.

a) Following a Bayesian approach, let the unknown parameters be mod-
eled as random variables Θ1, . . . , Θp that are i.i.d. with common den-
sity λe−λx for x > 0, 0 for x ≤ 0. Determine the Bayes estimators of
Θ1, . . . , Θp.

b) Determine the marginal density (mass function) of Xi in the Bayesian
model.

c) In the Bayesian model, X1, . . . , Xp are i.i.d. with the common density
in part (b). Viewing this joint distribution as a family of distributions
parameterized by λ, what is the maximum likelihood estimator of λ.

d) Suggest empirical Bayes estimators for θ1, . . . , θp based on the Bayesian
estimators in part (a) with an empirical estimator of λ from part (c).

4. Consider estimating success probabilities θ1, . . . , θp for p independent bi-
nomial variables X1, . . . , Xp, each based on m trials, under compound
squared error loss, L(θ, d) =

∑p
i=1(θi − di)

2.
a) Following a Bayesian approach, model the unknown parameters as

random variables Θ1, . . . , Θp that are i.i.d. from a beta distribu-
tion with parameters α and β. Determine the Bayes estimators of
Θ1, . . . , Θp.

b) In the Bayesian model, X1, . . . , Xp are i.i.d. Determine the first two
moments for their common marginal distribution, EXi and EX2

i . Us-
ing these, suggest simple method of moments estimators for α and
β.

c) Give empirical Bayes estimators for θi combining the simple “empiri-
cal” estimates for α and β in (b) with the Bayes estimate for θi when
α and β are known in (a).

5. Consider estimation of unknown parameters θ1, . . . , θp based on data
X1, . . . , Xp that are independent with Xi ∼ N(θi, 1) under compound
squared error loss.
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a) Following a Bayesian approach, model the unknown parameters as
random variables Θ1, . . . , Θp that are i.i.d. from N(ν, τ2). Find Bayes
estimators for the random parameters Θ1, . . . , Θp.

b) Suggest “empirical” estimates for ν and τ2 based on X and S2, the
mean and sample variance of the Xi.

c) Give empirical Bayes estimators for θ1, . . . , θp based on the Bayesian
estimators in (a) and the estimates for ν and τ2 in (b).

6. Consider estimation of unknown parameters θ1, . . . , θp based on data
X1, . . . , Xp that are independent with Xi ∼ Unif(0, θi), i = 1, . . . , p, under
compound squared error loss.
a) Following a Bayesian approach, model the unknown parameters as

random variablesΘ1, . . . , Θp which are i.i.d. and absolutely continuous
with common density

xλ21(0,∞)(x)e
−λx.

Find Bayes estimators for Θ1, . . . , Θp.
b) Suggest an empirical estimate for λ based on the sample average X.
c) Give empirical Bayes estimators for θ1, . . . , θp based on the Bayes

estimators in (a) and the estimator for λ in (b).



12

Hypothesis Testing

In hypothesis testing data are used to infer which of two competing hypothe-
ses, H0 or H1, is correct. As before, X ∼ Pθ for some θ ∈ Ω, and the two
competing hypotheses are that the unknown parameter θ lies in set Ω0 or in
set Ω1, written

H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1.

We assume that Ω0 and Ω1 partition Ω, so Ω = Ω0

⋃

Ω1 and Ω0

⋂

Ω1 =
∅. This chapter derives optimal tests when the parameter θ is univariate.
Extensions to higher dimensions are given in Chapter 13.

12.1 Test Functions, Power, and Significance

A nonrandomized test of H0 versus H1 can be specified by a critical region
S with the convention that we accept H1 when X ∈ S and accept H0 when
X /∈ S. The performance of this test is described by its power function β(·),
which gives the chance of rejecting H0 as a function of θ ∈ Ω:

β(θ) = Pθ(X ∈ S).

Ideally, we would want β(θ) = 0 for θ ∈ Ω0 and β(θ) = 1 for θ ∈ Ω1, but in
practice this is generally impossible.

In the mathematical formulation for hypothesis testing just presented,
the hypotheses H0 and H1 have a symmetric role. But in applications H0

generally represents the status quo, or what someone would believe about θ
without compelling evidence to the contrary. In view of this, attention is often
focused on tests that have a small chance of error when H0 is correct. This
can be quantified by the significance level α defined as

α = sup
θ∈Ω0

Pθ(X ∈ S).

In words, the level α is the worst chance of falsely rejecting H0.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
DOI 10.1007/978-0-387-93839-4_12, © Springer Science+Business Media, LLC 2010 
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For technical reasons it is convenient to allow external randomization to
“help” the researcher decide between H0 and H1. Randomized tests are char-
acterized by a test or critical function ϕ with range a subset of [0, 1]. Given
X = x, ϕ(x) is the chance of rejecting H0. The power function β still gives
the chance of rejecting H0, and by smoothing,

β(θ) = Pθ(reject H0) = EθPθ(reject H0|X) = Eθϕ(X).

Note that a nonrandomized test with critical region S can be viewed as a
randomized test with ϕ = 1S. Conversely, if ϕ(x) is always 0 or 1, then the
randomized test with critical function ϕ can be considered a nonrandomized
test with critical region S = {x : ϕ(x) = 1}.

The set of all critical functions is convex, for if ϕ1 and ϕ2 are critical
functions and γ ∈ (0, 1), then γϕ1 + (1 − γ)ϕ2 is also a critical function.
Convex combinations of nonrandomized tests are not possible, and this is the
main advantage of allowing randomization. For randomized tests the level α
is defined as

α = sup
θ∈Ω0

β(θ) = sup
θ∈Ω0

Eθϕ(X).

12.2 Simple Versus Simple Testing

A hypothesis is called simple if it completely specifies the distribution of
the data, so Hi : θ ∈ Ωi is simple when Ωi contains a single parameter
value θi. When both hypotheses, H0 and H1 are simple, the Neyman–Pearson
lemma (Proposition 12.2 below) provides a complete characterization of all
reasonable tests. This result makes use of Lagrange multipliers, an important
idea in optimization theory of independent interest.

Suppose H0 and H1 are both simple, and let p0 and p1 denote densities
for X under H0 and H1, respectively.1 Since there are only two distributions
for the data X , the power function for a test ϕ has two values,

α = E0ϕ =

∫

ϕ(x)p0(x) dµ(x)

and

E1ϕ =

∫

ϕ(x)p1(x) dµ(x).

Ideally, the first of these values α is near zero, and the other value β is near
one. These objectives are in conflict. To do as well as possible we consider the
constrained maximization problem of maximizing E1ϕ among all test ϕ with
E0ϕ = α. The following proposition shows that solutions of unconstrained
optimization problems with Lagrange multipliers (k) also solve optimization
problems with constraints.

1 As a technical note, there is no loss of generality in assuming densities p0 and p1,
since the two distributions P0 and P1 are both absolutely continuous with respect
to their sum P0 + P1.
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Proposition 12.1. Suppose k ≥ 0, ϕ∗ maximizes

E1ϕ− kE0ϕ

among all critical functions, and E0ϕ
∗ = α. Then ϕ∗ maximizes E1ϕ over all

ϕ with level at most α.

Proof. Suppose ϕ has level at most α, E0ϕ ≤ α. Then

E1ϕ ≤ E1ϕ− kE0ϕ+ kα

≤ E1ϕ
∗ − kE0ϕ

∗ + kα

= E1ϕ
∗. ⊓⊔

Maximizing E1ϕ− kE0ϕ is fairly easy because

E1ϕ− kE0ϕ =

∫

[

p1(x) − kp0(x)
]

ϕ(x) dµ(x)

=

∫

p1(x)>kp0(x)

∣

∣p1(x) − kp0(x)
∣

∣ϕ(x) dµ(x)

−
∫

p1(x)<kp0(x)

∣

∣p1(x) − kp0(x)
∣

∣ϕ(x) dµ(x). (12.1)

Clearly, any test ϕ∗ maximizing this expression must have

ϕ∗(x) = 1, when p1(x) > kp0(x),

and
ϕ∗(x) = 0, when p1(x) < kp0(x).

When division by zero is not an issue, these tests are based on the likelihood
ratio L(x) = p1(x)/p0(x), with ϕ∗(x) = 1 if L(x) > k and ϕ∗(x) = 0 if
L(x) < k. When L(x) = k, ϕ(x) can take any value in [0, 1]. Any test of this
form is called a likelihood ratio test. In addition, the test ϕ = I{p0 = 0} is
also considered a likelihood ratio test. (This can be viewed as the test that
arises when k = ∞.)

Proposition 12.2 (Neyman–Pearson Lemma). Given any level α ∈ [0, 1],
there exists a likelihood ratio test ϕα with level α, and any likelihood ratio test
with level α maximizes E1ϕ among all tests with level at most α.

The fact that likelihood ratio tests maximize E1ϕ among tests with the
same or smaller level follows from the discussion above. A formal proof that
any desired level α ∈ [0, 1] can be achieved with a likelihood ratio test is
omitted, but similar issues are addressed in the proof of the first part of
Theorem 12.9. Also, Example 12.6 below illustrates the type of adjustments
that are needed to achieve level α in a typical situation. The next result shows
that if a test is optimal, it must be a likelihood ratio test.
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Proposition 12.3. Fix α ∈ [0, 1], let k be the critical value for a likelihood
ratio test ϕα described in Proposition 12.2, and define B =

{

x : p1(x) 6=
kp0(x)

}

. If ϕ∗ maximizes E1ϕ among all tests with level at most α, then ϕ∗

and ϕα must agree on B, 1Bϕ
∗ = 1Bϕα, a.e. µ.

Proof. Assume k ∈ (0,∞) and let B1 = {p1 > kp0} and B2 = {p1 < kp0},
so that B = B1

⋃

B2. Since ϕ∗ and ϕα both maximize E1ϕ, we have E1ϕ
∗ =

E1ϕα. And since ϕα maximizes E1ϕ−kE0ϕ, kE0ϕα = kα ≤ kE0ϕ
∗. So E0ϕ

∗

must equal α, and ϕα and ϕ∗ both have level α. Thus they both give the same
value in (12.1). Since ϕα is 1 on B1 and 0 on B2, using (12.1),

∫

1B1 |p1 − kp0|(1 − ϕ∗) dµ+

∫

1B2 |p1 − kp0|ϕ∗ dµ = 0.

Since the arguments of both integrands are nonnegative, both integrands must
be zero a.e. µ, and since |p1 − kp0| is positive on B1 and B2, we must have

1B1(1 − ϕ∗) + 1B2ϕ
∗ = 1B1 |ϕ∗ − ϕα| + 1B2 |ϕ∗ − ϕα| = 0

a.e. µ.
When k = 0, ϕα = 1 on p1 > 0, and ϕα has power E1ϕα = 1. If ϕ∗ has

power 1, then 0 = E1(ϕα−ϕ∗) =
∫

B
|ϕ∗−ϕα|p1 dµ, so again ϕ∗ and ϕα agree

a.e. µ on B.
For the final degenerate case, “k = ∞,” B should be defined as {p0 > 0}.

In this case ϕα = 0 on p0 > 0, and so α = 0. If ϕ∗ has level α = 0, 0 =
E0(ϕ

∗ − ϕα) =
∫

B |ϕ∗ − ϕα|p0 dµ, and once again ϕ∗ and ϕα agree a.e. µ on
B. ⊓⊔

Corollary 12.4. If P0 6= P1 and ϕα is a likelihood ratio test with level α ∈
(0, 1), then E1ϕα > α.

Proof. Consider the test ϕ∗ which is identically α, regardless of the value of
x. Since ϕα maximizes E1ϕ among tests with level α, E1ϕα ≥ E1ϕ

∗ = α.
Suppose E1ϕα = α. Then ϕ∗ also maximizes E1ϕ among tests with level α,
and by Proposition 12.3, ϕα and ϕ∗ must agree a.e. on B. But since α ∈ (0, 1)
and ϕα is 0 or 1 on B, they cannot agree on B. Thus B must be a null set and
p1 = kp0 a.e. µ. Integrating this against µ, k must equal 1, so the densities
agree a.e. µ and P0 = P1. ⊓⊔

Example 12.5. Suppose X is absolutely continuous with density

pθ(x) =

{

θe−θx, x > 0;

0, otherwise,

and that we would like to test H0 : θ = 1 versus H1 : θ = θ1, where θ1 is a
specified constant greater than one. A likelihood ratio test ϕ is one if
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p1(X)

p0(X)
=
θ1e
−θ1X

e−X
> k,

or equivalently if

X <
log(θ1/k)

θ1 − 1
= k′.

The test is zero if X > k′. When X = k′ the test can take any value in [0, 1],
but the choice will not affect any power calculations since Pθ(X = k′) = 0.
The level of this likelihood ratio test is

α = P0(X < k′) =

∫ k′

0

e−x dx = 1 − e−k
′

.

Solving,
k′ = − log(1 − α)

gives a test with level α. If ϕα is a test with

ϕα(X) =

{

1, X < − log(1 − α);

0, X > − log(1 − α),

then by Proposition 12.1, ϕα maximizes Eθ1ϕ among all tests with level α.
Something surprising and remarkable has happened here. This test ϕα, which
is optimal for testing H0 : θ = 1 versus H1 : θ = θ1, does not depend on the
value θ1. If ϕ is any competing test with level α, then

Eθ1ϕ ≤ Eθ1ϕα, for all θ1 > 1.

Features of this example that give the same optimal test regardless of the
value of θ1 are detailed and exploited in the next section.

Example 12.6. SupposeX has a binomial distribution with success probability
θ and n = 2 trials. If we are interested in testing H0 : θ = 1/2 versus H1 : θ =
3/4, then

L(X) =
p1(X)

p0(X)
=

(

2

X

)

(3/4)X(1/4)2−X

(

2

X

)

(1/2)X(1/2)2−X
=

3X

4
.

Under H0,

L(X) =











1/4, with probability 1/4;

3/4, with probability 1/2;

9/4, with probability 1/4.

Suppose the desired significance level is α = 5%. If k is less than 9/4, then
L(2) = 9/4 > k and ϕ(2) = 1. But then E0ϕ(X) ≥ ϕ(2)P0(X = 2) = 1/4. If
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instead k is greater than 9/4, ϕ is identically zero. So k must equal 9/4, and
ϕ(0) = ϕ(1) = 0. Then to achieve the desired level we must have

5% = E0ϕ(X) = 1
4ϕ(0) + 1

2ϕ(1) + 1
4ϕ(2) = 1

4ϕ(2).

Solving, ϕ(2) = 1/5 gives a test with level α = 5%.
The assertion in Proposition 12.2 that there exists a likelihood ratio test

with any desired level α ∈ [0, 1] is established in a similar fashion. First k is
adjusted so that P0

(

L(X) > k
)

and P0

(

L(X) ≥ k
)

bracket α, and then a
value γ ∈ [0, 1] is chosen for ϕ(X) when L(X) = k to achieve level α.

12.3 Uniformly Most Powerful Tests

A test ϕ∗ with level α is called uniformly most powerful if

Eθϕ
∗ ≥ Eθϕ, ∀θ ∈ Ω1,

for all ϕ with level at most α. Uniformly most powerful tests for composite
hypotheses generally only arise when the parameter of interest is univariate,
θ ∈ Ω ⊂ R and the hypotheses are of the form H0 : θ ≤ θ0 versus H1 : θ > θ0,
where θ0 is a fixed constant.2 In addition, the family of densities needs to have
an appropriate structure.

Definition 12.7. A family of densities pθ(x), θ ∈ Ω ⊂ R has monotone
likelihood ratios if there exists a statistic T = T (x) such that whenever θ1 <
θ2, the likelihood ratio pθ2(x)/pθ1(x) is a nondecreasing function of T . Also,
the distributions should be identifiable, Pθ1 6= Pθ2 whenever θ1 6= θ2. Natural
conventions concerning division by zero are used here, with the likelihood ratio
interpreted as +∞ when pθ2 > 0 and pθ1 = 0. On the null set where both
densities are zero the likelihood ratio is not defined and monotonic dependence
on T is not required.

Example 12.8. If the densities pθ form an exponential family,

pθ(x) = exp
{

η(θ)T (x) −B(θ)
}

h(x),

with η(·) strictly increasing, then if θ2 > θ1,

pθ2(x)

pθ1(x)
= exp

{

[η(θ2) − η(θ1)]T (x) +B(θ1) −B(θ2)
}

,

which is increasing in T (x).

2 Minor variants are possible here: H0 could be θ = θ0, θ < θ0, θ ≥ θ0, etc.
Uniformly most powerful tests are also possible when the null hypothesis H0 is
two-sided, but this case sees little application.
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Theorem 12.9. Suppose the family of densities has monotone likelihood ra-
tios. Then

1. The test ϕ∗ given by

ϕ∗(x) =











1, T (x) > c;

γ, T (x) = c;

0, T (x) < c,

is uniformly most powerful testing H0 : θ ≤ θ0 versus H1 : θ > θ0 and has
level α = Eθ0ϕ

∗. Also, the constants c ∈ R and γ ∈ [0, 1] can be adjusted
to achieve any desired significance level α ∈ (0, 1).

2. The power function β(θ) = Eθϕ
∗ for this test is nondecreasing and strictly

increasing whenever β(θ) ∈ (0, 1).
3. If θ1 < θ0, then this test ϕ∗ minimizes Eθ1ϕ among all tests with Eθ0ϕ =
α = Eθ0ϕ

∗.

Proof. Suppose θ1 < θ2 and let

L(x) =
pθ2(x)

pθ1(x)
.

Since the family has monotone likelihood ratios, L is a nondecreasing function
of T . If k is the value of L when T = c, then (see Figure 12.1)

ϕ∗(x) =

{

1, when L > k;

0, when L < k.

Thus ϕ∗ is a likelihood ratio test of θ = θ1 versus θ = θ2. By Corollary 12.4,
Eθ2ϕ

∗ ≥ Eθ1ϕ
∗, with strict inequality unless both expectations are zero or

one. So the second assertion of the theorem holds, and ϕ∗ has level α = Eθ0ϕ
∗.

To show that ϕ∗ is uniformly most powerful, suppose ϕ̃ has level at most α
and θ1 > θ0. Then Eθ0 ϕ̃ ≤ α, and since ϕ∗ is a likelihood ratio test of θ = θ0
versus θ = θ1 maximizing Eθ1ϕ among all tests with Eθ0ϕ ≤ Eθ0ϕ

∗ = α,
Eθ1ϕ

∗ ≥ Eθ1ϕ̃. Similarly, if θ1 < θ0, since ϕ∗ is a likelihood ratio test of θ = θ1
versus θ = θ0 with some critical value k, it must maximize Eθ0ϕ − kEθ1ϕ.
Thus if ϕ̃ is a competing test with Eθ0 ϕ̃ = α = Eθ0ϕ

∗, then Eθ1 ϕ̃ ≥ Eθ1ϕ
∗,

proving the third assertion in the theorem.
To finish, we must show that c and γ can be adjusted so that Eθ0ϕ

∗ = α.
Let F denote the cumulative distribution function for T when θ = θ0. Define

c = sup
{

x : F (x) ≤ 1 − α
}

.

If x > c, then F (x) > 1 − α. Because F is right continuous,

F (c) = lim
x↓c

F (x) ≥ 1 − α.
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L

k

c
T

Fig. 12.1. The likelihood ratio L as a function of T .

But for x < c, F (x) ≤ 1 − α, and so

F (c−)
def
= lim

x↑c
F (x) ≤ 1 − α.

Now let q = F (c) − F (c−) = Pθ0(T = c) (see Problem 1. 16), and define

γ =
F (c) − (1 − α)

q
.

(If q = 0, γ can be any value in [0, 1].) By the bounds for F (c) and F (c−), γ
must lie in [0, 1], and then

Eθ0ϕ
∗ = γPθ0(T = c) + Pθ0(T > c)

= F (c) − (1 − α) +
(

1 − F (c)
)

= α. ⊓⊔

Example 12.10. Suppose our data X1, . . . , Xn are i.i.d. from the uniform dis-
tribution on (0, θ). The joint density pθ(x) is positive if and only if xi ∈ (0, θ),
i = 1, . . . , n, and this happens if and only if M(x) = min{x1, . . . , xn} > 0 and
T (x) = max{x1, . . . , xn} < θ. Thus

pθ(x) =

{

1/θn, M(x) > 0 and T (x) < θ;

0, otherwise.

Suppose θ2 > θ1, M(x) > 0, and T (x) < θ2. Then
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pθ2(x)

pθ1(x)
=

{

θn1 /θ
n
2 , T (x) < θ1;

+∞, T (x) ≥ θ1.

This shows that the family of joint densities has monotone likelihood ratios.
(The behavior of the likelihood ratio when both densities are zero does not
matter; this is why there is no harm assuming M(x) > 0 and T (x) < θ2.) If
we are interested in testing H0 : θ ≤ 1 versus H1 : θ > 1, the test function ϕ
given by

ϕ =

{

1, T ≥ c;

0, otherwise.

is uniformly most powerful. This test has level

P1(T ≥ c) = 1 − cn,

and a specified level α can be achieved taking

c = (1 − α)1/n.

The power of this test is

βϕ(θ) = Pθ(T ≥ c) =







0, θ < c;

1 − 1 − α

θn
, θ ≥ c.

In this example, one competing test ϕ̃ is given by

ϕ̃ =

{

α, T < 1;

1, T ≥ 1.

For θ < 1, Eθϕ̃ = α, so this test also has level α. For θ > 1, this test has
power

βϕ̃(θ) = Eθϕ̃ = αPθ(T < 1) + Pθ(T ≥ 1)

=
α

θn
+ 1 − 1

θn

= βϕ(θ).

The power functions βϕ and βϕ̃ are plotted in Figure 12.2. Because the power
functions for ϕ̃ and ϕ are the same under H1, these two tests are both uni-
formly most powerful. Under H0, the power function for ϕ is smaller than the
power function for ϕ̃, so ϕ is certainly the better test. The test ϕ̃ here is an
example of an inadmissible3 uniformly most powerful test.

3 A test ϕ̃ is called inadmissible if a competing test ϕ has a better power function:
βϕ̃(θ) ≥ βϕ(θ) for all θ ∈ Ω0, and βϕ̃(θ) ≤ βϕ(θ) for all θ ∈ Ω1, with strict
inequality in one of these bounds for some θ ∈ Ω.
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Fig. 12.2. Power functions βϕ and βϕ̃.

12.4 Duality Between Testing and Interval Estimation

Recall that a random set S(X) is a 1 − α confidence region for a parameter
ξ = ξ(θ) if

Pθ
(

ξ ∈ S(X)
)

≥ 1 − α, ∀θ ∈ Ω.

For every ξ0, let A(ξ0) be the acceptance region for a nonrandomized level α
test of H0 : ξ(θ) = ξ0 versus H1 : ξ(θ) 6= ξ0, so that

Pθ
[

X ∈ A
(

ξ(θ)
)]

≥ 1 − α, ∀θ ∈ Ω.

Define
S(x) =

{

ξ : x ∈ A(ξ)
}

.

Then ξ(θ) ∈ S(X) if and only if X ∈ A
(

ξ(θ)
)

, and so

Pθ
(

ξ(θ) ∈ S(X)
)

= Pθ
(

X ∈ A
(

ξ(θ)
))

≥ 1 − α.

This shows that S(X) is a 1 − α confidence region for ξ.
The construction above can be used to construct confidence regions from

a family of nonrandomized tests. Conversely, a 1− α confidence region S(X)
can be used to construct a family of tests. If we define
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ϕ =

{

1, ξ0 /∈ S(X);

0, otherwise,

then if ξ(θ) = ξ0,

Eθϕ = Pθ
(

ξ0 /∈ S(X)
)

= Pθ
(

ξ(θ) /∈ S(X)
)

≤ α.

This shows that this test has level at most α testing H0 : ξ(θ) = ξ0 versus
H1 : ξ(θ) 6= ξ0. If the coverage probability for S(X) is exactly 1−α, Pθ

(

ξ(θ) ∈
S(X)

)

= 1 − α, for all θ ∈ Ω, then ϕ will have level exactly α.

Example 12.11. Suppose the densities for a model have monotone likelihood
ratios. Also, for convenience assume Fθ(t) = Pθ(T ≤ t) is continuous and
strictly increasing in t, for all θ ∈ Ω. For each θ ∈ Ω, define u(θ) so that

Pθ
(

T < u(θ)
)

= Fθ
(

u(θ)
)

= 1 − α.

Then

ϕ =

{

1, T ≥ u(θ0);

0, otherwise,

is uniformly most powerful testing H0 : θ = θ0 versus H1 : θ > θ0 and has
level

Eθ0ϕ = Pθ0
(

T ≥ u(θ0)
)

= α.

This test has acceptance region

A(θ0) =
{

x : T (x) < u(θ0)
}

.

Proposition 12.12. The function u(·) is strictly increasing.

Proof. Suppose θ > θ0. By the second part of Theorem 12.9, the power func-
tion for ϕ is strictly increasing at θ0, and so

Eθϕ = Pθ
(

T ≥ u(θ0)
)

> Eθ0ϕ = α.

Thus Pθ
(

T < u(θ0)
)

< 1−α. But from the definition of u(·), Pθ
(

T < u(θ)
)

=
1 − α, and so u(θ) > u(θ0). Since θ > θ0 are arbitrary parameter values, u is
strictly increasing. ⊓⊔

The confidence set dual to the family of tests with acceptance regionsA(θ),
θ ∈ Ω, is

S(X) =
{

θ : X ∈ A(θ)
}

=
{

θ : T (X) < u(θ)
}

.

Because u is strictly increasing, this region is the interval (see Figure 12.3)

S(X) =
(

u←(T ),∞
)

⋂

Ω.

Here u← is the inverse function of u.
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u(θ)

T

u←(T )
θ

Fig. 12.3. The increasing function u.

For a concrete example, suppose X is exponential with mean θ, so

pθ(x) =
1

θ
e−x/θ, x > 0.

The densities for X form an exponential family with η = −1/θ, an increasing
function of θ. So we have monotone likelihood ratios with T = X . The function
u is defined so that

Pθ
(

X < u(θ)
)

= 1 − α

or
Pθ
(

X ≥ u(θ)
)

= α.

Because Pθ(X ≥ x) = e−x/θ,

e−u(θ)/θ = α.

Solving,
u(θ) = −θ logα.

Since u←(X) is the value θ solving

X = −θ logα,

we have
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u←(X) =
X

− logα
,

and the 1 − α confidence set for θ is

S(X) =

(

X

− logα
,∞
)

.

As a check,

Pθ
(

θ ∈ S(X)
)

= Pθ

(

X

− logα
< θ

)

=

∫ −θ logα

0

1

θ
e−x/θ dx

= 1 − α.

Our construction of confidence sets by duality works with any family of
level α tests. But intuition suggests that better tests should give better con-
fidence intervals. In the example just considered, tests in the family are uni-
formly most powerful, and a natural conjecture would be that the dual con-
fidence interval S(X) should be optimal in some related sense. This is indeed
the case. To deduce the proper notion of optimality, let S∗(X) be a competing
confidence set, and take

ϕ∗ =

{

1, θ0 /∈ S∗(X);

0, otherwise.

Then ϕ∗ is a test of H0 : θ = θ0 with level at most α. The corresponding test
ϕ dual to S(X) is

ϕ =

{

1, θ0 /∈ S(X);

0, otherwise.

If the tests dual to S are uniformly most powerful testing H0 : θ = θ0 versus
H1 : θ > θ0, then for any θ > θ0,

Eθϕ ≥ Eθϕ
∗.

The left- and right-hand sides of this equation are Pθ
(

θ0 /∈ S(X)
)

and Pθ
(

θ0 /∈
S∗(X)

)

, respectively, and so

Pθ
(

θ0 ∈ S(X)
)

≤ Pθ
(

θ0 ∈ S∗(X)
)

. (12.2)

This shows that if θ is the true value of the parameter, then S(X) has a
smaller chance of containing any incorrect value θ0 < θ.

In practice, a researcher may be most concerned with the length of a
confidence interval, and the optimality for S in (12.2) may seem less relevant.
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However, using Fubini’s theorem, there is a relation between the expected
length and the probabilities Pθ

(

θ0 ∈ S(X)
)

. Let λ denote Lebesgue measure
on R, so that λ(A) =

∫

A dx is the length of A. Also, assume for convenience
that Ω is the interval (ω, ω) (we allow ω = −∞ and/or ω = ∞). Then, by
Fubini’s theorem,

Eθλ
(

S(X) ∩ (ω, θ)
)

= Eθ

∫ θ

ω

I
(

θ0 ∈ S(X)
)

dθ0

=

∫ ∫ θ

ω

I
(

θ0 ∈ S(x)
)

dθ0 dPθ(x)

=

∫ θ

ω

Pθ
(

θ0 ∈ S(X)
)

dθ0.

Similarly,

Eθλ
(

S∗(X) ∩ (ω, θ)
)

=

∫ θ

ω

Pθ
(

θ0 ∈ S(X)
)

dθ0,

and so, by (12.2),

Eθλ
(

S(X) ∩ (ω, θ)
)

≤ Eθλ
(

S∗(X) ∩ (ω, θ)
)

.

So the expected length of S(X) below θ is minimal among all 1−α confidence
intervals.

12.5 Generalized Neyman–Pearson Lemma4

Treatment of two-sided hypotheses in the next section relies on an extension
of the Neyman–Pearson lemma in which the test function must satisfy several
constraints. Let g(x) take values in Rm, and consider maximizing

∫

ϕf dµ

over all test functions ϕ satisfying
∫

ϕg dµ = c, (12.3)

where c is a specified vector in Rm. Introducing a Lagrange multiplier k ∈ Rm,
consider maximizing

∫

(f − k · g)ϕdµ (12.4)

4 Results in the rest of this chapter and Chapter 13 are more technical and are not
used in subsequent chapters.
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without constraint. A test function maximizing (12.4) will have form

ϕ(x) =

{

1, f(x) > k · g(x);
0, f(x) < k · g(x), (12.5)

for a.e. x (µ). As in our discussion of the Neyman–Pearson lemma, if a function
of this form satisfies (12.3), it clearly solves the constrained maximization
problem.

Let K denote the the set of all test functions (measurable functions with
range a subset of [0, 1]).

Theorem 12.13. Assume f and g are both integrable with respect to µ and
that the class C of all test functions ϕ ∈ K satisfying (12.3) is not empty.
Then

1. There exists a test function ϕ∗ maximizing
∫

ϕf dµ over C.
2. If ϕ∗ ∈ C satisfies (12.5) for some k ∈ Rm, then ϕ∗ maximizes

∫

ϕf dµ
over ϕ ∈ C.

3. If ϕ∗ ∈ C has form (12.5) with k ≥ 0, then ϕ∗ maximizes
∫

ϕf dµ over all
ϕ satisfying

∫

ϕg dµ ≤ c.
4. Let Lg be the linear mapping from test functions ϕ ∈ K to vectors in Rm

given by Lg(ϕ) =
∫

ϕg dµ, and let M denote the range of Lg. Then M is
closed and convex. If c lies in the interior of M , there exists a Lagrange
multiplier k ∈ Rm and a test function ϕ∗ ∈ C maximizing

∫

(f − k · g)ϕdµ
over ϕ ∈ K. Also, if any ϕ ∈ C maximizes

∫

ϕf dµ over C, then (12.5)
must hold a.e. µ.

The proof of this result relies on an important and useful result from
functional analysis, the weak compactness theorem. In functional analysis,
functions are viewed as points in a vector space, much as vectors are viewed
as points in Rn. But notions of convergence for functions are much richer. For
instance, functions fn, n ≥ 1, converge pointwise to f if limn→∞ fn(x) = f(x)
for all x. In contrast, uniform convergence would hold if limn→∞ supx |fn(x)−
f(x)| = 0. Uniform convergence implies pointwise convergence, but not vice
versa. (For instance, the functions 1(n,n+1) converge pointwise to the zero
function, but the convergence is not uniform.) The notion of convergence of
interest here is called weak convergence.

Definition 12.14. A sequence of uniformly bounded measurable functions ϕn,
n ≥ 1, converge weakly to ϕ, written ϕn

w→ ϕ, if

∫

ϕnf dµ→
∫

ϕf dµ

whenever
∫

|f | dµ <∞.
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If the functions ϕn converge pointwise to ϕ, then weak convergence follows
from dominated convergence, but pointwise convergence is not necessary for
weak convergence. With this notion of convergence, the objective function in
Theorem 12.13,

Lf (ϕ) =

∫

ϕf dµ,

is a continuous function of ϕ; that is, Lf (ϕn) → Lf (ϕ) whenever ϕn
w→ ϕ. The

linear constraint function Lg introduced in Theorem 12.13, is also continuous.

Theorem 12.15 (Weak Compactness Theorem). The set K is weakly
compact:5 any sequence of functions ϕn, n ≥ 1, in K has a convergent subse-
quence, ϕn(j)

w→ ϕ ∈ K as j → ∞.

See Appendix A.5 of Lehmann and Romano (2005) for a proof. In the
proof of Theorem 12.13, we also need the following result, called the sup-
porting hyperplane theorem. For this and other results in convex analysis, see
Rockafellar (1970).

Theorem 12.16 (Supporting Hyperplane Theorem). If x is a point on
the boundary of a convex set K ⊂ Rm, then there exists a nonzero vector
v ∈ Rm such that

v · y ≤ v · x, ∀y ∈ K.

Proof of Theorem 12.13. The first assertion follows by weak compactness of
K. Take

KC = sup
ϕ∈C

Lf (ϕ),

and let ϕn, n ≥ 1, be a sequence of test functions in C such that

Lf (ϕn) → KC .

By the weak compactness theorem (Theorem 12.15), there must be a subse-
quence ϕn(m), m ≥ 1, with

ϕn(m)
w→ ϕ∗ ∈ K,

and since Lf is continuous, Lf (ϕ∗) = KC . If ϕ∗ ∈ C we are done. But
this follows by continuity of Lg because Lg(ϕ∗) = limm→∞ Lg(ϕn(m)) and
Lg(ϕn(m)) = c for all m ≥ 1.

For the second assertion, if ϕ∗ ∈ C has form (12.5), then ϕ∗ maximizes
∫

ϕ(f − k · g) dµ = Lf (ϕ) − k · Lg(ϕ) over all K, and hence ϕ∗ maximizes
Lf (ϕ)−k ·Lg(ϕ) over ϕ ∈ C. But when ϕ ∈ C, Lf (ϕ)−k ·Lg(ϕ) = Lf (ϕ)−k ·c,
and so ϕ∗ maximizes Lf (ϕ) over ϕ ∈ C.

5 The topology of weak convergence has a countable base, and so compactness and
sequential compactness (stated in this theorem) are equivalent.
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Suppose ϕ∗ ∈ C has form (12.5), so it maximizes Lf (ϕ) − k · Lg(ϕ) over
all ϕ ∈ K. Then if k ≥ 0 and Lg(ϕ) ≤ c,

Lf (ϕ) ≤ Lf (ϕ) − k · Lg(ϕ) + k · c
≤ Lf (ϕ∗) − k · Lg(ϕ∗) + k · c = Lf (ϕ∗).

This proves the third assertion.
The final assertion is a bit more involved. First, M is convex, for if x0 =

Lg(ϕ0) and x1 = Lg(ϕ1) are arbitrary points in M , and if γ ∈ [0, 1], using the
linearity of Lg,

γx0 + (1 − γ)x1 = γLg(ϕ0) + (1 − γ)Lg(ϕ1)

= Lg
(

γϕ0 + (1 − γ)ϕ1

)

∈M.

Closure of M follows by weak compactness and continuity of Lg. Suppose x
is a limit point of M , so that x = limn→∞ Lg(ϕn) for some sequence of test
functions ϕn, n ≥ 1. Letting ϕn(m), m ≥ 1, be a subsequence converging
weakly to ϕ,

Lg(ϕ) = lim
m→∞

Lg(ϕn(m)) = lim
m→∞

xn(m) = x,

which shows that x ∈M .
For the final part of the theorem, assume that c lies in the interior of

M . Let ϕ∗ ∈ C maximize Lf (ϕ) over ϕ ∈ C, and take KC = Lf (ϕ∗). Define
L : K → Rm+1 by

L(ϕ) =

(

Lf (ϕ)
Lg(ϕ)

)

.

The arguments showing that M is closed and convex also show that the range
M̃ of L is closed and convex. The point

x = L(ϕ∗) =

(

Lf (ϕ∗)
Lg(ϕ∗)

)

=

(

Lf (ϕ∗)
c

)

lies in M̃ . Because ϕ∗ maximizes Lf (ϕ∗) over ϕ ∈ C, if ǫ > 0, the point

(

Lf (ϕ∗) + ǫ
c

)

cannot lie in M̃ , and thus x lies on the boundary of M̃ . By the supporting
hyperplane theorem (Theorem 12.16), there is a nonzero vector v =

(

a
b

)

such
that

v · y ≤ v · x, ∀y ∈ M̃,

or, equivalently, such that

aLf (ϕ) + b · Lg(ϕ) ≤ aLf (ϕ∗) + b · Lg(ϕ∗), ∀ϕ ∈ K.
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Here a cannot be zero, for then this bound would assert that b · Lg(ϕ) ≤ b · c
for all ϕ ∈ K, contradicting the assumption that c lies in the interior of M .
For ϕ ∈ C this bound becomes aLf (ϕ) ≤ aLf (ϕ∗). Because ϕ∗ maximizes
Lf (ϕ) over ϕ ∈ C, a must be positive, unless we are in a degenerate situation
in which Lf (ϕ) = Lf (ϕ∗) for all ϕ ∈ C. And if a is positive, we are done, for
then the bound is

Lf (ϕ) + (b/a) · Lg(ϕ) ≤ Lf (ϕ∗) + (b/a) · Lg(ϕ∗), ∀ϕ ∈ K,

and we can take k = −b/a.
To handle the degenerate case, suppose Lg(ϕ1) = Lg(ϕ2) = c̃ 6= c. Be-

cause c is an interior point of M , it can be expressed as a nontrivial convex
combination of c̃ and some other point Lg(ϕ3) 6= c in M ; that is,

c = γc̃+ (1 − γ)Lg(ϕ3),

for some γ ∈ (0, 1). Since Lg is linear,

γϕ1 + (1 − γ)ϕ3 and γϕ2 + (1 − γ)ϕ3

both lie in C, and so

Lf
(

γϕ1 + (1 − γ)ϕ3

)

= γLf (ϕ1) + (1 − γ)Lf (ϕ3)

= Lf
(

γϕ2 + (1 − γ)ϕ3

)

= γLf (ϕ2) + (1 − γ)Lf (ϕ3).

So we must have Lf (ϕ1) = Lf (ϕ2). Thus, if
(

ℓ0
c̃

)

and
(

ℓ1
c̃

)

both lie in M̃ , then

ℓ0 = ℓ1. Since M̃ is convex and contains the origin, the only way this can
happen is if Lf (ϕ) is a linear function of Lg(ϕ),

Lf (ϕ) = k · Lg(ϕ), ϕ ∈ K.

In this case, ϕ∗ trivially maximizes Lf (ϕ) − k · Lg(ϕ).
To finish, if ϕ maximizes Lf over C, then L(ϕ) = L(ϕ∗) and ϕ also maxi-

mizes Lf − k · Lg over K. It is then clear that (12.5) must hold a.e. µ; if not,
a function satisfying (12.5) would give a larger value for Lf − k · Lg. ⊓⊔

12.6 Two-Sided Hypotheses

This section focuses on testing H0 : θ = θ0 versus H1 : θ 6= θ0 with data from
a one-parameter exponential family. Generalization to families satisfying a
condition analogous to the monotone likelihood ratio condition is possible.
Tests of H0 : θ ∈ [θ1, θ2] versus H1 : θ < θ1 or θ > θ2 can be developed in a
similar fashion, but results about the point null hypothesis seem more useful
in practice. Also, uniformly most powerful tests when H0 is two-sided can be
obtained (see Problem 12.39), but these tests are not used very often.
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With data from an exponential family there will be a sufficient statistic,
and the next result shows that we can then restrict attention to tests based
on the sufficient statistic.

Theorem 12.17. Suppose that T is sufficient for the model P = {Pθ : θ ∈
Ω}. Then for any test ϕ = ϕ(X), the test

ψ = ψ(T ) = Eθ
[

ϕ(X)
∣

∣ T
]

has the same power function as ϕ,

Eθψ(T ) = Eθϕ(X), ∀θ ∈ Ω.

Proof. This follows immediately from smoothing,

Eθϕ(X) = EθEθ
[

ϕ(X)
∣

∣ T
]

= Eθψ(T ). ⊓⊔

The next theorem shows that if the densities for X come from an exponen-
tial family, then the densities for T will also be from an exponential family.
This is established using the following fundamental lemma, which shows how
likelihood ratios can be introduced to write an expectation under one distri-
bution as an expectation under a different distribution. This lemma is quite
useful in a variety of situations.

Lemma 12.18. Let P0 and P1 be possible distributions for a random vector
X with densities p0 and p1 with respect to µ. If p1(x) = 0 whenever p0(x) = 0,
then P1 ≪ P0 and P1 has density

dP1

dP0
(x) = L(x) =

p1(x)

p0(x)

with respect to P0. (The value for L(x) when p0(x) = 0 does not matter; for
definiteness, take L(x) = 1 when p0(x) = 0.) Introducing this likelihood ratio,
we can write expectations under P1 as expectations under P0 using the formula

E1h(X) = E0h(X)L(X),

valid whenever the expectations exist. When h is an indicator function, we
have

P1(B) = E01B(X)L(X).

Proof. First note that N = {x : p0(x) = 0} is a null set for P0 because

P0(N) =

∫

N

p0 dµ =

∫

1Np0 dµ =

∫

0 dµ = 0.

Similarly, {x : p1(x) = 0} is a null set for P1, and since N ⊂ {x : p1(x) = 0},
N is also a null set for P1. So 1Nc = 1 a.e. P0 and P1, and multiplication by
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this function cannot change the value of an integral against either distribution.
Suppose M is a null set for P0. Then

∫

1Mp0 dµ =

∫

1M1Ncp0 dµ =

∫

1M∩Ncp0 dµ,

which implies that 1M∩Ncp0 = 0 a.e. µ (by the second fact about integration
in Section 1.4). Because p0 > 0 whenever the indicator is 1, M ∩N c must be
a null set for µ. But P1 is dominated by µ, and so M ∩N c is a null set for P1.
But M ⊂ N ∪(M ∩N c), which is a union of two null sets for P1, showing that
M must be a null set for P1. To write expectations under P1 as expectations
under P0,

E1h(X) =

∫

hp1 dµ =

∫

1Nchp1 dµ =

∫

1Nch
p1

p0
p0 dµ

=

∫

1NchLp0 dµ =

∫

hLp0 dµ = E0h(X)L(X). ⊓⊔

Theorem 12.19. If the distribution for X comes from an exponential family
with densities

pθ(x) = h(x)eη(θ)·T (x)−B(θ), θ ∈ Ω,

then the induced distribution for T = T (X) has density

qθ(t) = eη(θ)·t−B(θ), θ ∈ Ω,

with respect to some measure ν.

Proof. Two ideas are used. First, using Lemma 12.18, we can introduce a
likelihood ratio to write probabilities under Pθ as expectations under Pθ0 ,
where θ0 is a fixed point in Ω. This likelihood ratio is

L =
pθ(X)

pθ0(X)
= e[η(θ)−η(θ0)]·T+B(θ0)−B(θ).

The second is that expectations of functions of T can be written as integrals
against the density of X , or as integrals against the marginal distribution of
T . Let ν∗ denote the marginal distribution of T when θ = θ0. Then

Pθ(T ∈ B) = Eθ0I
{

T ∈ B
}

e[η(θ)−η(θ0)]·T+B(θ0)−B(θ)

=

∫

I
{

t ∈ B
}

e[η(θ)−η(θ0)]·t+B(θ0)−B(θ) dν∗(t)

=

∫

B

qθ(t)e
−η(θ0)·t+B(θ0) dν∗(t).

If we define ν by
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ν(A) =

∫

A

e−η(θ0)·t+B(θ0) dν∗(t),

then ν has density e−η(θ0)·t+B(θ0) with respect to ν∗, and

Pθ(T ∈ B) =

∫

B

qθ(t) dν(t),

completing the proof. ⊓⊔

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 based on data X with
density

h(x)eη(θ)T (x)−B(θ), θ ∈ Ω, (12.6)

where η is strictly increasing and differentiable. From results in Section 12.3,
there are level α tests ϕ± with form

ϕ+ =











1, T > c+;

γ+, T = c+;

0, T < c+,

and ϕ− =











1, T < c−;

γ−, T = c−;

0, T > c−.

These tests are most powerful for one-sided alternatives. If θ− < θ0 < θ+,
then ϕ+ will have maximal power at θ+, and ϕ− will have maximal power at
θ−. Since these tests are different, this shows that there cannot be a uniformly
most powerful level α test. To achieve uniformity, we must restrict the class
of tests under consideration. We do this by constraining the derivative of the
power function at θ0. The formula in the following theorem is useful.

Theorem 12.20. If η is differentiable at θ and θ lies in the interior of Ω,
then the derivative of the power function β for a test ϕ is given by

β′(θ) = η′(θ)EθTϕ−B′(θ)β(θ).

Proof. If differentiation under the integral sign works, then

β′(θ) =
∂

∂θ

∫

ϕ(x)eη(θ)T (x)−B(θ)h(x) dµ(x)

=

∫

ϕ(x)
∂

∂θ
eη(θ)T (x)−B(θ)h(x) dµ(x)

=

∫

ϕ(x)
[

η′(θ)T (x) −B′(θ)
]

eη(θ)T (x)−B(θ)h(x) dµ(x)

= η′(θ)EθϕT −B′(θ)Eθϕ,

and the result follows. Differentiation under the integral sign can be justified
using Theorem 2.4 and the chain rule, or by dominated convergence directly.

⊓⊔
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Note that because ϕ+ has maximal power for θ > θ0,

β′ϕ(θ0) = lim
ǫ↓0

βϕ(θ0 + ǫ) − βϕ(θ0)

ǫ

≤ lim
ǫ↓0

βϕ+(θ0 + ǫ) − βϕ+(θ0)

ǫ
= β′ϕ+

(θ0)
def
= m+. (12.7)

Similarly, β′ϕ(θ0) ≥ β′ϕ−
(θ0)

def
= m−. For m ∈ [m−,m+], let Cm denote the

class of all level α tests ϕ with β′ϕ(θ0) = m. The next theorem shows that
when m ∈ (m−,m+) there is a uniformly most powerful test in Cm. This test
is two-sided, according to the following definition.

Definition 12.21. A test ϕ is called two-sided if there are finite constants
t1 ≤ t2 such that

ϕ =

{

1, T < t1 or T > t2;

0, T ∈ (t1, t2).

In addition, the test should not be one-sided. Specifically, EϕI{T ≥ t2} and
EϕI{T ≤ t1} should both be positive.

Theorem 12.22. If θ0 lies in the interior of Ω, α ∈ (0, 1), X has density
(12.6), and η is differentiable and strictly increasing with 0 < η′(θ0) < ∞,
then for any value m ∈ (m−,m+) there is a two-sided test ϕ∗ ∈ Cm. Any such
test is uniformly most powerful in class Cm: for any competing test ϕ ∈ Cm,

Eθϕ ≤ Eθϕ
∗, ∀θ ∈ Ω.

Proof. Using Theorem 12.20, if ϕ ∈ Cm, then

β′ϕ(θ0) = η′(θ0)Eθ0Tϕ− αB′(θ0) = m,

which happens if and only if

Eθ0Tϕ =

∫

ϕTpθ0 dµ =
m+ αB′(θ0)

η′(θ0)
.

If we define

g(x) =

(

pθ0(x)
T (x)pθ0(x)

)

and c =





α
m+ αB′(θ0)

η′(θ0)



 ,

then a test function ϕ lies in Cm if and only if Lg(ϕ) =
∫

ϕg dµ = c. Because
m+ > m and m− < m, the point c lies in the interior of the convex hull of the
four points Lg(ϕ+), Lg(ϕ−), Lg(α− ǫ), and Lg(α+ ǫ). (Here “α± ǫ” denotes
a test function that equals α± ǫ regardless of the value of X .) Thus c lies in
the interior of the range M of Lg.
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With this background on the nature of the constraints for test functions ϕ
in Cm, we can now use the last assertion in Theorem 12.13 to show that there
exists a two-sided test ϕ∗ in Cm. Let θ̃ be some fixed point in Ω different from
θ0 and consider maximizing

Eθ̃ϕ =

∫

ϕpθ̃ dµ

over ϕ in Cm. Using the fourth assertion in Theorem 12.13 there is a Lagrange
multiplier k ∈ R2 and a test ϕ∗ ∈ Cm maximizing

∫

ϕ(pθ̃ − k · g) dµ with form

ϕ∗ =

{

1, pθ̃ > (k1 + k2T )pθ0 ;

0, pθ̃ < (k1 + k2T )pθ0 .

Dividing through by pθ0 ,

ϕ∗ =

{

1, exp
{(

η(θ̃) − η(θ0)
)

T −B(θ̃) +B(θ0)
}

> k1 + k2T ;

0, exp
{(

η(θ̃) − η(θ0)
)

T −B(θ̃) +B(θ0)
}

< k1 + k2T.

The line k1+k2t must intersect the exponential function exp
{(

η(θ̃)−η(θ0)
)

t−
B(θ̃) +B(θ0)

}

, for otherwise ϕ∗ would be identically one. Because the expo-
nential function is strictly convex, the line and exponential function intersect
either once, if the line is tangent to the curve, or twice. Let t∗1 < t∗2 denote
the two points of intersection when the line is not tangent, and let t∗1 = t∗2
be the single point of intersection when the line is tangent to the exponential
function. Since the exponential function is convex, ϕ∗ has form

ϕ∗ =

{

1, T < t∗1 or T > t∗2;

0, T ∈ (t∗1, t
∗
2).

To finish showing that ϕ∗ is a two-sided test, we need to verify ϕ∗ is not one-
sided. Suppose EθϕI{T ≤ t1} = 0. By Theorem 12.9 ψ = Eθ(ϕ

∗|T ) has the
same power function as ϕ∗, and this test is uniformly most powerful testing
θ ≤ θ0 against θ > θ0 by Theorem 12.9. Because ϕ+ is also uniformly most
powerful, the power functions for ϕ∗ and ϕ+ must agree for θ ≥ θ0, and the
slope of the power function for ϕ∗ at θ0 must be m+. This is a contradiction
for if ϕ∗ lies in Cm this slope must be m < m+. Similarly, EθϕI{T ≥ t2} = 0,
and so ϕ∗ is a two-sided test.

To conclude, we show that any two-sided test ϕ̃ ∈ Cm is uniformly most
powerful. So assume

ϕ̃ =

{

1, T < t̃1 or T > t̃2;

0, T ∈ (t̃1, t̃2),

and let θ be an arbitrary point in Ω not equal to θ0. Define κ ∈ R2 so that
the line κ1 + κ2t passes through the points
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(

t̃1, e
[η(θ)−η(θ0)]t̃1−B(θ)+B(θ0)

)

and
(

t̃2, e
[η(θ)−η(θ0)]t̃2−B(θ)+B(θ0)

)

.

If t̃1 = t̃2, so these points are the same, then the line should also have slope
(θ−θ0)e(θ−θ0)t̃1−A(θ)+A(θ0) so that it lies tangent to the exponential curve. By
convexity of the exponential function and algebra similar to that used above,
ϕ̃ has form

ϕ̃ =

{

1, pθ > (κ1 + κ2T )pθ0;

0, pθ < (κ1 + κ2T )pθ0.

From this, ϕ̃ clearly maximizes
∫

ϕ(pθ − κ · g) dµ over all ϕ ∈ K. But for test
function ϕ ∈ Cm,

∫

ϕ(pθ − κ · g) dµ = Eθϕ− κ · c.

Thus Eθϕ̃ ≥ Eθϕ for any ϕ ∈ Cm, and, since θ is arbitrary, ϕ̃ is uniformly
most powerful in Cm. ⊓⊔

Remark 12.23. A similar result can be obtained testing H0 : θ ∈ [θ1, θ2] versus
H1 : θ /∈ [θ1, θ2]. Suppose ϕ∗ is a two-sided test with Eθ1ϕ

∗ = α1 and Eθ2ϕ
∗ =

α2. Then ϕ∗ has level α = max{α1, α2} and is uniformly most powerful among
all tests ϕ with Eθ1ϕ = α1 and Eθ2ϕ = α2.

Remark 12.24. If the slope m for the power function for a test ϕ at θ0 differs
from zero, then there will be points θ 6= θ0 where the power for the test
is less than α. If this happens, the test ϕ is called biased. If an unbiased
test is desired, the slope m should be constrained to equal zero. This idea is
developed and extended in the next section of this chapter.

12.7 Unbiased Tests

In the previous section we encountered a situation in which uniformly most
powerful tests cannot exist unless we constrain the class of test functions un-
der consideration. One appealing constraint restricts attention to tests that
are unbiased according to the following definition. Theorem 12.26 below finds
uniformly most powerful unbiased tests for one-parameter exponential fami-
lies, and Chapter 13 has extensions to higher dimensions.

Definition 12.25. A test ϕ for H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1 with level α
is unbiased if its power βϕ(θ) = Eθϕ satisfies

βϕ(θ) ≤ α, ∀θ ∈ Ω0 and βϕ(θ) ≥ α, ∀θ ∈ Ω1.
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If there is a uniformly most powerful test ϕ∗, then it is automatically un-
biased because βϕ∗(θ) ≥ βϕ(θ), for all θ ∈ Ω1, and the right-hand side of this
inequality is identically α for the degenerate test, which equals α regardless
of the observed data.

Theorem 12.26. If α ∈ (0, 1), θ0 lies in the interior of Ω, X has density
(12.6), and η is differentiable and strictly increasing with 0 < η′(θ0) < ∞,
then there is a two-sided, level α test ϕ∗ with β′ϕ∗(θ0) = 0. Any such test is
uniformly most powerful testing H0 : θ = θ0 versus H1 : θ 6= θ0 among all
unbiased tests with level α.

Changing the sign of T and η, this result is also true if η is differentiable
and strictly decreasing with −∞ < η′(θ0) < 0.

Proof. Since θ0 lies in the interior of Ω, the power function for any unbiased
test ϕ must have zero slope at θ0, and so ϕ ∈ C0. The theorem is essentially
a corollary of Theorem 12.22, provided 0 ∈ (m−,m+). This is established in
the following lemma. ⊓⊔

Lemma 12.27. Under the assumptions of Theorem 12.26,

m+ = β′ϕ+
(θ0) > 0 and m− = β′ϕ−

(θ0) < 0.

Proof. Let us begin showing that Eθ0Tϕ+ > αEθ0T . The argument is similar
to the proof of Proposition 12.3. From the form of ϕ+,

Eθ0Tϕ+ − αEθ0T = Eθ0(T − c+)ϕ+ − Eθ0(T − c+)α

= Eθ0(T − c+)(ϕ+ − α)

= Eθ0 |T − c+| |ϕ+ − α|.

Since α ∈ (0, 1), this expression is strictly positive unless Pθ0(T = c+) =
1. But if Pθ0(T = c+) = 1, then Pθ(T = c+) = 1 for all θ ∈ Ω and all
distributions in the family are the same. Thus Eθ0Tϕ+ > αEθ0T . Using this
in the formula in Theorem 12.20,

β′ϕ+
(θ0) = η′(θ0)Eθ0Tϕ+ − αB′(θ0) > α

(

η′(θ0)Eθ0T −B′(θ0)
)

.

The lower bound here is zero because B′(θ) = η′(θ)EθT , which follows from
Theorem 12.20, with ϕ identically one. ⊓⊔

Remark 12.28. Because B′(θ) = η′(θ)EθT , using Theorem 12.20 the con-
straint β′ϕ∗(θ0) = 0 in Theorem 12.26 becomes

0 = η′(θ0)
[

Eθ0Tϕ
∗ − αEθ0T

]

= η′(θ0)Covθ0(ϕ
∗, T ).

So any two-sided test ϕ∗ with level α that is uncorrelated with T is uniformly
most powerful unbiased.
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Example 12.29. Suppose X has an exponential distribution with failure rate
θ, so

pθ(x) =

{

θe−θx, x > 0;

0, otherwise,

and consider testing H0 : θ = 1 versus H1 : θ 6= 1. Let

ϕ =

{

0, X ∈ (c1, c2);

1, X ≤ c1 or X ≥ c2.

By Theorem 12.26, ϕ is uniformly most powerful unbiased provided

E1ϕ = 1 −
∫ c2

c1

e−x dx = 1 − e−c1 + e−c2 = α (12.8)

and

E1Xϕ = E1X − E1X(1 − ϕ) = 1 −
∫ c2

c1

xe−x dx

= 1 − (1 + c1)e
−c1 + (1 + c2)e

−c2 = αE1X = α.

Using (12.8), this equation simplifies to

c1e
−c1 = c2e

−c2 . (12.9)

Isolating c2 in (12.8),

c2 = − log
(

e−c1 − 1 + α
)

.

Using this in (12.9),

c1e
−c1 = −

(

e−c1 − 1 + α
)

log
(

e−c1 − 1 + α
)

.

The solution to this equation must be found numerically. Note that as c1
varies from 0 to − log(1 − α) > 0, the left-hand side increases from 0 to
−(1 − α) log(1 − α) > 0, as the right-hand side decreases from −α logα > 0
to 0, and so, by continuity, a solution must exist. For α = 5%, c1 = 0.042363
and c2 = 4.7652.

In practice, numerical issues can be eliminated by choosing c1 and c2 so
that P1(X ≤ c1) = P1(X ≥ c2) = α/2, for then c1 = − log(1 − α/2) and
c2 = − log(α/2). But the resulting test is biased. For instance, if α = 5%,
c1 = 0.025318 and c2 = 3.6889, quite different from the critical values above
for the best unbiased test.
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12.8 Problems6

*1. Suppose X ∼ Pθ for some θ ∈ Ω, and that U is uniformly distributed on
(0, 1) and is independent of X . Let ϕ(X) be a randomized test based on
X . Find a nonrandomized test based on X and U , so ψ(X,U) = 1S(X,U)
for some critical region S, with the same power function as ϕ, Eθϕ(X) =
Eθψ(X,U), for all θ ∈ Ω.

*2. Suppose sup |h(x)| = M and Eh(Z) = 0, where Z ∼ N(0, 1). Give a sharp
upper bound for Eh(2Z).

*3. Determine the density of Z1/Z2 when Z1 and Z2 are independent standard
normal random variables. (This should be useful in the next problem.)

*4. Let X1 and X2 be independent, and let σ2
1 > 0 and σ2

2 > 0 be known
variances. Find the error rate for the best symmetric test of H0 : X1 ∼
N(0, σ2

1), X2 ∼ N(0, σ2
2) versus H1 : X1 ∼ N(0, σ2

2), X2 ∼ N(0, σ2
1). A

symmetric test here is a test that takes the opposite action if the two data
values are switched, so ϕ(x1, x2) = 1−ϕ(x2, x1). For a symmetric test the
error probabilities under H0 and H1 will be equal.

5. Suppose supx≥0 |h(x)| = M and Eh(X) = 0, where X has a standard
exponential distribution. Give a sharp upper bound for Eh(2X).

*6. Suppose X is uniformly distributed on (0, 2).
a) Suppose sup(0,2) |h(x)| ≤ M and Eh(X) = 0. Give an upper bound

for Eh(X2/2), and a function h that achieves the bound.
b) Suppose instead that |h(x)| ≤ Mx, 0 < x < 2, but we still have

Eh(X) = 0. Now what is the best upper bound for Eh(X2/2)? What
function achieves the bound?

*7. Consider a model in which X has density

pθ(x) =
θ

(1 + θx)2
, x > 0.

a) Show that the derivative of the power function β of a test ϕ is given
by

β′(θ) = Eθ

[

1 − θX

θ(1 + θX)
ϕ(X)

]

.

b) Among all tests with β(1) = α, which one maximizes β′(1)?
8. Let X have a Poisson distribution with mean one. Suppose |h(x)| ≤ 1, x =

0, 1, 2, . . . , and Eh(X) = 0. Find the largest possible value for Eh(2X),
and the function h that achieves the maximum.

*9. Suppose data X has density pθ, θ ∈ Ω ⊂ R, and that these densities
are regular enough that the derivative of the power function of any test
function ϕ can be evaluated differentiating under the integral sign,

β′ϕ(θ) =

∫

ϕ(x)
∂pθ(x)

∂θ
dµ(x).

6 Solutions to the starred problems are given at the back of the book.
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A test ϕ∗ is called locally most powerful testing H0 : θ = θ0 versus H1 :
θ > θ0 if it maximizes β′ϕ(θ0) among all tests ϕ with level α. Determine
the form of the locally most powerful test.

*10. Suppose X = (X1, . . . , Xn) with the Xi i.i.d. with common density fθ.
The locally most powerful test of H0 : θ = θ0 versus H1 : θ > θ0 from
Problem 12.9 should reject H0 if an appropriate statistic T exceeds a
critical value c. Use the central limit theorem to describe how the critical
level c can be chosen when n is large to achieve a level approximately α.
The answer should involve Fisher information at θ = θ0.

11. Laplace’s law of succession gives a distribution for Bernoulli variables
X1, X2, . . . in which P (X1 = 1) = 1/2, and

P (Xj+1 = 1|X1 = x1, . . . , Xj = xj) =
1 + x1 + · · · + xj

j + 2
, j ≥ 1.

Consider testing the hypothesis H1 that X1, . . . , Xn have this distribution
against the null hypothesis H0 that the variables are i.i.d. with P (Xi =
1) = 1/2. If n = 10, find the best test with size α = 5%. What is the
power of this test?

12. An entrepreneur would like to sell a fixed amount M of some product
through online auctions. Let R(t) ≥ 0 denote his selling rate at time t.
Assuming all of the merchandise is sold eventually,

∫ ∞

0

R(t) dt = M.

The sales rate and price should be related, with the sales rate increasing
as the price decreases. Assume that price is inversely proportional to

√
R,

so that the rate of return (price times selling rate) at time t is c
√

R(t).
Discounting future profits, the entrepreneur would like to maximize

∫ ∞

0

c
√

R(t)e−δt dt,

where δ > 0 denotes the discount rate. Use a Lagrange multiplier approach
to find the best rate function R for the entrepreneur.

13. Consider simple versus simple testing from a Bayesian perspective. Let Θ
have a Bernoulli distribution with P (Θ = 1) = p and P (Θ = 0) = 1 − p.
Given Θ = 0, X will have density p0, and given Θ = 1, X will have density
p1.
a) Show that the chance of accepting the wrong hypothesis in the

Bayesian model using a test function ϕ is

R(ϕ) = E
[

I{Θ = 0}ϕ(X) + I{Θ = 1}
(

1 − ϕ(X)
)]

.

b) Use smoothing to relate R(ϕ) to E0ϕ = E
[

ϕ(X)
∣

∣ Θ = 0
]

and E1ϕ =

E
[

ϕ(X)
∣

∣ Θ = 1
]

.
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c) Find the test function ϕ∗ minimizing R(ϕ). Show that ϕ∗ is a likeli-
hood ratio test, identifying the critical value k.

*14. Let X denote the number of tails before the first heads if a coin is tossed
repeatedly. If successive tosses are independent and p is the chance of
heads, determine the uniformly most powerful test of H0 : p = 1/2 versus
H1 : p < 1/2 with level α = 5%. What is the power of this test if p is
40%?

*15. Suppose X and Y are jointly distributed from a bivariate normal distribu-
tion with correlation ρ, means EX = EY = 0, and Var(X) = Var(Y ) =
1/(1 − ρ2). Determine the uniformly most powerful test of H0 : ρ ≤ 0
versus H1 : ρ > 0 based on (X,Y ).

*16. Consider a location family with densities pθ(x) = g(x− θ). Show that if g
is twice differentiable and d2 log g(x)/dx2 ≤ 0 for all x, then the densities
have monotone likelihood ratios in x. Give an analogous differential condi-
tion sufficient to ensure that densities for a scale family pθ(x) = g(x/θ)/θ,
x > 0, have monotone likelihood ratios in x.

*17. p-values. Suppose we have a family of tests ϕα, α ∈ (0, 1) indexed by level
(so ϕα has level α), and that these tests are “nested” in the sense that
ϕα(x) is nondecreasing as a function of α. We can then define the “p-value”
or “attained significance” for observed data x as inf{α : ϕα(x) = 1},
thought of as the smallest value for α where test ϕα rejects H0. Suppose
we are testing H0 : θ ≤ θ0 versus H1 : θ > θ0 and that the densities for
data X have monotone likelihood ratios in T . Further suppose T has a
continuous distribution.
a) Show that the family of uniformly most powerful tests are nested in

the sense described.
b) Show that if X = x is observed, the p-value P (x) is

Pθ0
[

T (X) > t
]

,

where t = T (x) is the observed value of T .
c) Determine the distribution of the p-value P (X) when θ = θ0.

18. Let F be a cumulative distribution function that is continuous and strictly
increasing on [0,∞) with F (0) = 0, and let qα denote the upper αth
quantile for F , so F (qα) = 1−α. Suppose we have a single observation X
with

Pθ(X ≤ x) = F (x/θ), x ∈ R, θ > 0.

a) Consider testing H0 : θ ≤ θ0 versus H1 : θ > θ0. Find the significance
level for the test ϕ = 1(c,∞). What choice for c will give a specified
level α?

b) Let ϕα denote the test with level α in part (a). Show that the tests
ϕα, α ∈ (0, 1), are nested in the sense described in Problem 12.17, and
give a formula to compute the p-value P (X).

19. Suppose X has a Poisson distribution with parameter λ. Determine the
uniformly most powerful test of H0 : λ ≤ 1 versus H1 : λ > 1 with level
α = 5%.
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*20. Do the densities pθ(x) = (1 + θx)/2, x ∈ (−1, 1), θ ∈ [−1, 1], have mono-
tone likelihood ratios in T (x) = x?

*21. Let f be a specified probability density on (0, 1) and let

pθ(x) = θ + (1 − θ)f(x), x ∈ (0, 1),

where θ ∈ [0, 1] is an unknown parameter. Show that these densities have
monotone likelihood ratios, identifying the statistic T (x).

22. Suppose we observe a single observation X from N(θ, θ2).
a) Do the densities for X have monotone likelihood ratios?
b) Let φ∗ be the best level α test of H0 : θ = 1 versus H1 : θ = 2. Is φ∗

also the best level α test of H0 : θ = 1 versus H1 : θ = 4?
23. Consider tests for H0 : θ = 0 versus H1 : θ 6= 0 based on a single ob-

servation X from N(θ, 1). Using the apparent symmetry of this testing
problem, it seems natural to base a test on Y = |X |.
a) Find densities qθ for Y and show that the distribution for Y depends

only on |θ|.
b) Show that the densities qθ, θ ≥ 0, have monotone likelihood ratios.
c) Find the uniformly most powerful level α test of H0 versus H1 based

on Y .
d) The uniformly most powerful test ϕ∗(Y ) in part (c) is not most pow-

erful compared with tests based on X . Find a level α test ϕ(X) with
better power at θ = −1,

E−1ϕ(X) > E−1ϕ
∗(Y ).

What is the difference in power at θ = −1 if α = 5%?
24. Let P0 and P1 be two probability distributions, and for ǫ ∈ (0, 1), let Pǫ

denote the mixture distribution (1−ǫ)P0+ǫP1. Let E0, E1, and Eǫ denote
expectation when X ∼ P0, X ∼ P1, and X ∼ Pǫ, respectively.
a) Let ϕ be a test function with α = E0ϕ(X) and β = E1ϕ(X). Express

Eǫϕ(X) as a function of ǫ, α, and β.
b) Using the result in part (a), argue directly that if ϕ is the most pow-

erful level α test of H0 : X ∼ P0 versus H1 : X ∼ P1, then it is also
the most powerful level α test of H0 : X ∼ P0 versus H1 : X ∼ Pǫ.

c) Suppose P0 and P1 have densities p0 and p1, respectively, with respect
to a measure µ. Find the density for Pǫ.

d) Using part (c), show that if ϕ is a likelihood ratio test of H0 : X ∼ P0

versus H1 : X ∼ P1, then it is also a likelihood ratio test of H0 : X ∼
P0 versus H1 : X ∼ Pǫ.

*25. Suppose X has a Poisson distribution with mean λ, and that U is uni-
formly distributed on (0, 1) and is independent of X .
a) Show that the joint densities of X and U have monotone likelihood

ratios in T = X + U .
b) Describe how to construct level α uniformly most powerful tests of

H0 : λ = λ0 versus H1 : λ > λ0 based on X and U . Specify the
resulting test explicitly if α = 5% and λ0 = 2.
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c) Describe confidence intervals dual to the family of tests in part (b).
Give the confidence interval if the data are X = 2 and U = 0.7.

26. Suppose X has a geometric distribution with success probability θ, so
Pθ(X = x) = θ(1 − θ)x, x = 0, 1, . . .; and that U is uniformly distributed
on (0, 1) and is independent of X .
a) Show that the joint densities of X and U have monotone likelihood

ratios in T = −(X + U).
b) Describe how to construct level α uniformly most powerful tests of

H0 : θ = θ0 versus H1 : θ > θ0 based on X and U . Specify the
resulting test explicitly if α = 5% and θ0 = 1/20.

c) Describe confidence intervals dual to the family of tests in part (b).
Give the confidence interval if the data are X = 2 and U = 0.7.

27. Suppose X1, . . . , Xn are i.i.d. from N(0, σ2).
a) Determine the uniformly most powerful test of H0 : σ = σ0 versus

H1 : σ > σ0.
b) Find a confidence interval for σ using duality from the tests in part (a).

*28. Let X1, . . . , Xn be i.i.d. observations from a uniform distribution on the
interval (0, θ). Find confidence intervals S1 dual to the family of uniformly
most powerful tests of θ = θ0 versus θ > θ0 and S2 dual to the family
of uniformly most powerful tests of θ = θ0 versus θ < θ0. Then use the
result from the Problem 9.12 to find a 95% confidence interval for θ. This
interval should have finite length and exclude zero.

29. Suppose Y1 and Y2 are independent variables, both uniformly distributed
on (0, θ), but our observation is X = Y1 + Y2.
a) Show that the densities for X have monotone likelihood ratios.
b) Find the UMP level α test of H0 : θ = θ0 versus H1 : θ > θ0 based on

X .
c) Find a confidence set for θ dual to the tests in part (b).

30. Let X and Y be independent with X ∼ N(µx, 1) and Y ∼ N(µy, 1).
Take ‖µ‖2 = µ2

x + µ2
y, and consider testing H0 : µx = µy = 0 versus

H1 : ‖µ‖ > 0. For rotational symmetry, a test based on T = X2 +Y 2 may
seem natural. The density of T is

f‖µ‖(t) =

{

1
2I0
(√
t‖µ‖

)

exp
{

− 1
2

(

t+ ‖µ‖2
)}

, t > 0;

0, otherwise,

where I0 is a modified Bessel function given by

I0(x) =
1

π

∫ π

0

ex cosω dω.

a) Show that I0(x) > I ′0(x) and that xI ′′0 (x) + I ′0(x) = xI0(x).
b) Show that xI ′0(x)/I0(x) is increasing in x. Use this to show that for

c > 1, I0(cx)/I0(x) is an increasing function of x. Hint:

log I0(cx) − log I0(x) =

∫ c

1

∂ log I0(ux)

∂u
du.
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c) Show that the densities f‖µ‖ have monotone likelihood ratios.
d) Find the uniformly most powerful level α test of H0 versus H1 based

on T .
e) Find a level α test of H0 versus H1 based on X and Y that has power

as high as possible if µx = µy = 1. Is this the same test as the test in
part (d)?

f) Suggest a level α test of H̃0 : µx = cx, µy = cy, versus H̃1 : µx 6= cx
or µy 6= cy, based on T̃ = (X − cx)

2 + (Y − cy)
2.

g) Find a 1− α confidence region for (µx, µy) dual to the family of tests
in part (f). What is the shape of your confidence region?

*31. Suppose X ∼ N(θ, 1), and let ϕ be a test function with power β(θ) =
Eθϕ(X).
a) Show that β′(0) = E0Xϕ(X).
b) What test function ϕ maximizes β(1) subject to constraints β(0) = α

and β′(0) = 0?
*32. Suppose X1 and X2 are independent positive random variables with com-

mon Lebesgue density pθ(x) = θ/(1 + θx)2, x > 0.
a) Use dominated convergence to write the derivative β′(θ) of the power

function for a test ϕ as an expectation.
b) Determine the locally most powerful test ϕ of H0 : θ ≤ θ0 versus

H1 : θ > θ0 with βϕ(θ0) = 5%. As in Problem 12.9, a locally most
powerful test here would maximize β′(θ0) among all tests with level
α. Hint: The relevant test statistic can be written as the sum of two
independent variables. First find the Pθ0 marginal distribution of these
variables.

c) Determine a 95% confidence region for θ by duality, inverting the
family of tests in part (b).

*33. Suppose we have a single observation from an exponential distribution
with failure rate λ, and consider testing H0 : λ = 2 versus H1 : λ 6= 2.
Find a test ϕ∗ with minimal level α among all tests ϕ with 50% power at
λ = 1 and λ = 3, E1ϕ = E3ϕ = 1/2.

34. Suppose X has a uniform distribution on (0, 1). Find the test function ϕ
that maximizes Eϕ(X) subject to constraints

Eϕ(X2) = Eϕ(1 −X2) = 1/2.

35. Define ϕ1 = 1[0,1], ϕ2 = 1[0,1/2], ϕ3 = 1[1/2,1], ϕ4 = 1[0,1/3], ϕ5 = 1[1/3,2/3],
ϕ6 = 1[2/3,1], etc.
a) If x ∈ [0, 1], what is lim supn→∞ ϕn(x)?

b) What is limn→∞
∫ 1

0 ϕ(x) dx?
c) Suppose f is bounded and nonnegative. Find

lim
n→∞

∫ 1

0

ϕ(x)f(x) dx.
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d) Suppose f ≥ 0 and
∫ 1

0
f(x) dx < ∞. Use dominated convergence to

show that

lim
k→∞

∫ 1

0

(

f(x) − k
)+
dx = 0.

e) Suppose f ≥ 0 and
∫ 1

0
f(x) dx <∞. Show that

lim
n→∞

∫ 1

0

f(x)ϕn(x) dx = 0.

Hint: Note that for any k,

f(x) = min{f(x), k} +
(

f(x) − k
)+
.

Use this to find an upper bound for

lim sup
n→∞

∫ 1

0

f(x)ϕn(x) dx.

f) Let ϕ be the “zero” test function, ϕ(x) = 0, for all x. Do the functions
ϕn converge pointwise to ϕ?

36. For n ≥ 1 and x ∈ (0, 1), define

φn(x) = I
(

⌊2nx2⌋ ∈ {0, 2, 4, . . .}
)

,

and let µ be Lebesgue measure on (0, 1). Find the weak limit of these

functions, that is, a function φ on (0, 1) such that φn
w→ φ.

*37. Let ϕn be a sequence of test functions converging pointwise to ϕ, ϕn(x) →
ϕ(x) for all x.

a) Does it follow that ϕ2
n
w→ ϕ2? Prove or give a counterexample.

b) Does it follow that 1/ϕn
w→ 1/ϕ? Prove or give a counterexample.

38. Let X have a Cauchy distribution with location θ, so

pθ(x) =
1

π
[

1 + (x− θ)2
] , x ∈ R,

and consider testing H0 : θ = 0 versus H1 : θ 6= 0. Find a test ϕ with level
α = 5% that maximizes E1ϕ subject to the constraint E1ϕ = E−1ϕ. Is
this test uniformly most powerful unbiased?

39. Suppose X has an exponential distribution with failure rate λ, so pλ(x) =
λe−λx for x > 0. Determine the most powerful test of H0 : λ = 1 or λ = 4
versus H1 : λ = 2 with level α = 5%. The test you derive is in fact the
uniformly most powerful test of H0 : λ ≤ 1 or λ ≥ 4 versus H1 : λ ∈ (1, 4)
with level α = 5%.

40. Locally most powerful tests in two-sided situations. Suppose we have a
single observation X with density
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pθ(x) =







θ

(1 + θx)2
, x > 0;

0, otherwise,

where θ > 0. Find a test ϕ∗ of H0 : θ = 1 versus H1 : θ 6= 1 with level
α = 5% that maximizes β′′ϕ(1), subject to the constraint β′ϕ(1) = 0.

*41. Suppose X has a binomial distribution with two trials and success
probability p. Determine the uniformly most powerful unbiased test of
H0 : p = 2/3 versus H1 : p 6= 2/3. Assume α < 4/9.

*42. Let X1 . . . X4 be i.i.d. from N(0, σ2). Determine the uniformly most pow-
erful unbiased test of H0 : σ = 1 versus H1 : σ 6= 1 with size α = 5%.

43. Suppose we observe a single observation X with density

fθ(x) = c(θ)|x|e−(x−θ)2/2, x ∈ R.

a) Give a formula for c(θ) in terms of the cumulative distribution function
Φ for the standard normal distribution.

b) Find the uniformly most powerful unbiased test of H0 : θ = 0 versus
H1 : θ 6= 0.

*44. Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 based on a single obser-
vation X with density

pθ(x) =







θeθx

2 sinh θ
, |x| < 1;

0, |x| ≥ 1.

When θ = 0, pθ should be 1/2 if |x| < 1, and zero otherwise.
a) Specify the form of the uniformly most powerful unbiased test with

level α, and give equations to determine constants needed to specify
the test.

b) Specify the uniformly most powerful unbiased test explicitly when
θ0 = 0.

45. Let X1, . . . , Xn be independent with

Xi ∼ N(tiθ, 1), i = 1, . . . , n,

where t1, . . . , tn are known constants and θ is an unknown parameter.
a) Determine the uniformly most powerful unbiased test of H0 : θ = θ0

versus H1 : θ 6= θ0.
b) Find a confidence region for θ inverting the family of tests in part (a).

46. Suppose our data consist of two independent observations, X and Y , from
a Poisson distribution with mean λ. Find the uniformly most powerful
unbiased test of H0 : λ = 1 versus H1 : λ 6= 1 with level α = 10%.

47. A random angle X has density
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pθ(x) =







exp
[

θ cosx
]

2πI0(θ)
, x ∈ [0, 2π);

0, otherwise,

where θ ∈ R and I0 is a modified Bessel function (I0(0) = 1). Find the
uniformly most powerful unbiased test of H0 : θ = 0 versus H1 : θ 6= 0
with level α.

48. Suppose X has density

pθ(x) =
x2 exp

[

− 1
2 (x − θ)2

]

√
2π(1 + θ2)

, x ∈ R.

Find the uniformly most powerful unbiased test of H0 : θ = 0 versus
H1 : θ 6= 0 with level α = 5%.

49. Because a good test of H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1 should have high
power on Ω1 and small power on Ω0, a test function φ might be chosen
to minimize

∫

Ω0

βφ(θ)w(θ) dΛ(θ) +

∫

Ω1

(

1 − βφ(θ)
)

w(θ) dΛ(θ),

where Λ is a measure on Ω = Ω0 ∪ Ω1 and w ≥ 0 is a weight function.
(With a natural loss structure, Bayes risks would have this form.)
a) Describe a test function φ∗ that minimizes this criterion. Assume that

P is a dominated family with densities pθ, θ ∈ Ω.
b) Find the optimal test function φ∗ explicitly if w is identically one, Λ is

Lebesgue measure on (0,∞), Pθ is the exponential distribution with
failure rate θ, Ω0 = (0, 1], and Ω1 = (1,∞).
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Optimal Tests in Higher Dimensions

In Section 13.2, uniformly most powerful unbiased tests are considered for
multiparameter exponential families. The discussion involves marginal and
conditional distributions described in Section 13.1. The t-test and Fisher’s
exact test are considered as examples in Section 13.3.

13.1 Marginal and Conditional Distributions

The main result of this section uses the following technical lemma about
conditional and marginal distributions when a joint density factors, but the
dominating measure is not a product measure.

Lemma 13.1. Let Y be a random vector in Rn and T a random vector in Rm,
and let P0 and P1 be two possible joint distributions for Y and T . Introduce
marginal distributions

Q0(B) = P0(T ∈ B) and Q1(B) = P1(T ∈ B),

and conditional distributions

R0t(B) = P0(Y ∈ B|T = t) and R1t(B) = P1(Y ∈ B|T = t).

Assume P1 ≪ P0 and that the density for P1 has form

dP1

dP0
(t, y) = a(y)b(t)

with a(y) > 0 for all y ∈ Rn. Then Q1 ≪ Q0 and R1t ≪ R0t, for a.e. t (Q1)
with densities given by

dQ1

dQ0
(t) = b(t)E0

[

a(Y )|T = t
]

= b(t)

∫

a dR0t

and
dR1t

dR0t
(y) =

a(y)
∫

a dR0t
.
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Proof. The formula for the marginal density is established by first using
Lemma 12.18 to write P1(T ∈ B) as an expectation under P0 involving the
likelihood ratio a(Y )b(T ), followed by a smoothing argument to write this
expectation as an integral against Q0. Thus

P1(T ∈ B) = E0

[

I{T ∈ B}a(Y )b(T )
]

= E0E0

[

I{T ∈ B}a(Y )b(T )
∣

∣ T
]

= E0

[

I{T ∈ B}b(T )E0

[

a(Y )
∣

∣ T
]

]

=

∫

B

b(t)E0

[

a(Y )
∣

∣ T = t
]

dQ0(t).

Next, if the stated density for R1t is correct,

R1t(C) =

∫

C

a(y)
∫

a dR0t
dR0t(y),

and so, according to Definition 6.2 of conditional distributions, we must show
that

P1(T ∈ B, Y ∈ C) =

∫

B

∫

C

a(y)
∫

a dR0t
dR0t(y) dQ1(t).

Using the formula for the density of Q1 with respect to Q0, the right-hand
side of this equation equals

∫

B

∫

I{y ∈ C}a(y) dR0t(y)b(t) dQ0(t)

= E0

[

I{T ∈ B}b(T )E0

[

I{Y ∈ C}a(Y )
∣

∣ T
]

]

= E0

[

a(Y )b(T )I{T ∈ B, Y ∈ C}
]

= P1(T ∈ B, Y ∈ C),

where the last equality follows from Lemma 12.18. ⊓⊔
Suppose the distribution for data X comes from an (r + s)-parameter

canonical exponential family with densities

pθ,η(x) = h(x) exp
[

θ · U(x) + η · T (x) −A(θ, η)
]

, (13.1)

where θ is r-dimensional and η is s-dimensional. The following theorem gives
the form of marginal and conditional distributions for the sufficient statistics
U and T .

Theorem 13.2. If X has density pθ,η in (13.1), then there exist measures λθ
and νt such that:

1. With θ fixed, the marginal distributions of T will form an s-parameter
exponential family with densities

exp
[

η · t−A(θ, η)
]

with respect to λθ.
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2. The conditional distributions of U given T = t form an exponential family
with densities

exp
[

θ · u−At(θ)
]

with respect to νt. These densities are independent of η.

Proof. Fix some point (θ0, η0) ∈ Ω, and let ν be the joint distribution of T
and U under Pθ0,η0 . Arguing as in the proof of Theorem 12.19, under Pθ,η, T
and U have joint density

exp
[

(θ − θ0) · u+ (η − η0) · t+A(θ0, η0) −A(θ, η)
]

with respect to ν. If R0 denotes the conditional distribution of U given T
under Pθ0,η0 , then by Lemma 13.1 the marginal density of T under Pθ,η is

eη·t−A(θ,η)

∫

exp
(

(θ − θ0) · u− η0 · t+A(θ0, η0)
)

dR0t(u)

with respect to Q0, the marginal density of T under Pθ0,η0 . This is of the
correct form provided we choose λθ so that

dλθ
dQ0

(t) =

∫

exp
(

(θ − θ0) · u− η0 · t+A(θ0, η0)
)

dR0t(u).

By the second formula in Lemma 13.1, under Pθ,η the conditional density of
U given T = t with respect to R0t is

e(θ−θ0)·u
∫

e(θ−θ0)·v dR0t(v)
.

This density has the desired form. ⊓⊔

13.2 UMP Unbiased Tests in Higher Dimensions

If the power function βϕ for an unbiased test ϕ is continuous, then βϕ(θ) ≤ α
for θ in Ω0, the closure of Ω0, and βϕ(θ) ≥ α for θ ∈ Ω1. If we take ω =
Ω0 ∩Ω1, the common boundary of Ω0 and Ω1, then

βϕ(θ) = α, ∀θ ∈ ω.

Tests satisfying this equation are called α-similar. Here α need not denote the
level of the tests, because βϕ may exceed α at points θ in Ω0 − ω.

Lemma 13.3. Suppose ϕ∗ is α-similar and has level α, and that power func-
tions βϕ for all test functions ϕ are continuous. If ϕ∗ is uniformly most power-
ful among all α-similar tests, then it is unbiased and uniformly most powerful
among all unbiased tests.
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Proof. The degenerate test that equals α regardless of the observed data is α-
similar. Since ϕ∗ has better power, βϕ∗(θ) ≥ α, θ ∈ Ω1. Because ϕ∗ has level
α, βϕ∗(θ) ≤ α, θ ∈ Ω0. Thus ϕ∗ is unbiased. If a competing test ϕ is unbiased,
then since its power function is continuous it is α-similar. Then βϕ ≤ βϕ∗ on
Ω1 because ϕ∗ is uniformly most powerful among all α-similar tests. ⊓⊔

The tests we develop use conditioning to reduce to the univariate case.
Part of why this works is that the tests have the structure in the following
definition.

Definition 13.4. Suppose T is sufficient for the subfamily {Pθ : θ ∈ ω}. An
α-similar test ϕ has Neyman structure if

Eθ[ϕ|T = t] = α, for a.e. t, ∀θ ∈ ω.

Theorem 13.5. If T is complete and sufficient for {Pθ : θ ∈ ω}, then every
similar test has Neyman structure.

Proof. For θ ∈ ω, let h(T ) = Eθ(ϕ|T ). (Because T is sufficient, h is indepen-
dent of θ ∈ ω.) By smoothing,

Eθϕ = Eθh(T ) = α, ∀θ ∈ ω.

By completeness, h(T ) = Eθ(ϕ|T ) = α, a.e., for all θ ∈ ω. ⊓⊔
Suppose data X has density

pθ,η(x) = h(x) exp
{

θU(x) + η · T (x) −A(θ, η)
}

. (13.2)

Here θ is univariate, but η can be s-dimensional. The tests of interest are
derived by conditioning on T . By Theorem 13.2, the conditional distributions
of U given T = t form a one-parameter exponential family with canonical
parameter θ. Theorem 12.9 gives a uniformly most powerful conditional test
of H0 : θ ≤ θ0 versus H1 : θ > θ0, given by

ϕ1 =











1, U > c(T );

γ(T ), U = c(T );

0, U < c(T ),

with c(·) and γ(·) adjusted so that

Pθ0,η
(

U > c(t)
∣

∣ T = t
)

+ γ(t)Pθ0,η
(

U = c(t)
∣

∣ T = t
)

= α.

Similarly, Theorem 12.26 gives a uniformly most powerful unbiased condi-
tional test of H0 : θ = θ0 versus H1 : θ 6= θ0, given by

ϕ2 =































1, U < c−(T );

1, U > c+(t);

γ−(T ), U = c−(T );

γ+(T ), U = c+(T );

0, U ∈
(

c−(T ), c+(T )
)

,
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with c±(·) and γ±(·) adjusted so that

Eθ0,η[ϕ2|T = t] = α

and
Eθ0,η[ϕ2U |T = t] = αEθ0,η[U |T = t].

Theorem 13.6. If the exponential family (13.2) is of full rank and Ω is open,
then ϕ1 is a uniformly most powerful unbiased test of H0 : θ ≤ θ0 versus
H1 : θ > θ0, and ϕ2 is a uniformly most powerful unbiased test of H0 : θ = θ0
versus H1 : θ 6= θ0.

Proof. Let us begin proving the assertion about ϕ1. First note that the con-
ditions on the exponential family ensure that the densities with θ = θ0 form
a full rank exponential family with T as a complete sufficient statistic. Also,
from the construction, Eθ0,η[ϕ1|T ] = α, so by smoothing Eθ0,ηϕ1 = α and ϕ1

is α-similar. Suppose ϕ is a competing α-similar test. Then ϕ has Neyman
structure by Theorem 13.5 and Eθ0,η[ϕ|T = t] = α. Because ϕ1 is the most
powerful conditional test of θ = θ0 versus θ > θ0, if θ > θ0, then

Eθ,η(ϕ1|T = t) ≥ Eθ,η(ϕ|T = t),

and by smoothing,1

Eθ,ηϕ1 = Eθ,ηEθ,η(ϕ1|T ) ≥ Eθ,ηEθ,η(ϕ|T ) = Eθ,ηϕ.

This shows that ϕ1 is uniformly most powerful α-similar. By Theorem 12.9,
the conditional power function for ϕ1 is increasing in θ, and so if θ < θ0,

Eθ,ηϕ1 = Eθ,ηEθ,η(ϕ1|T ) ≤ Eθ0,ηEθ,η(ϕ1|T ) = α.

Thus ϕ1 has level α. By Theorem 2.4, power functions for all test functions
are continuous, so by Lemma 13.3 ϕ1 is uniformly most powerful unbiased.

The argument for the assertion about ϕ2 is a bit more involved. Let

m(θ, η) = Eθ,ηU =
∂A(θ, η)

∂η
,

by (2.4). By dominated convergence (as in Theorem 12.20),

1 There is a presumption here that (θ0, η) lies in Ω regardless the choice of (θ, η) ∈
Ω. Unfortunately, this does not have to be the case. This issue can be resolved by
reparameterization. If (θ0, η0) ∈ Ω and we are concerned with power at (θ1, η1) ∈
Ω, define new parameters θ̃ = θ and η̃ = η + (η0 − η1)(θ − θ0)/(θ1 − θ0). Then
the original parameters of interest, (θ0, η0) and (θ1, η1) become (θ̃0, η̃0) = (θ0, η0)
and (θ̃1, η̃1) = (θ1, η0). The canonical statistics for the reparameterized family are
T̃ = T and Ũ = U + (η0 − η1) · T/(θ1 − θ0). Since we condition on T , it is easy to
see that the test ϕ1 will be the same, regardless of the parameterization.
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∂βϕ(θ, η)

∂θ
=

∂

∂θ

∫

ϕ(x)pθ,η(x) dµ(x)

=

∫

ϕ(x)
∂

∂θ
pθ,η(x) dµ(x)

=

∫

ϕ(x)
(

U(x) −m(θ, η)
)

pθ,η(x) dµ(x)

= Eθ,ηϕ
(

U −m(θ, η)
)

.

Suppose ϕ is unbiased. Then this derivative must be zero when θ = θ0, and
thus

Eθ0,ηϕU − αm(θ0, η) = Eθ0,η[ϕU − αU ] = 0.

Conditioning on T ,

0 = Eθ0,ηEθ0,η
[

ϕU − αU
∣

∣ T
]

,

and since T is complete for the family of distributions with θ = θ0, this implies
that

Eθ0,η
[

ϕU − αU
∣

∣ T
]

= 0.

But ϕ is α-similar and has Neyman structure, implying Eθ0,η[ϕ|T ] = α, and
so

Eθ0,η[ϕU |T ] = αEθ0,η[U |T ].

By Theorem 12.20, this constraint ensures that the conditional powerEθ,η[ϕ|T ]
has zero slope at θ = θ0. By Theorem 12.22, ϕ2 is the uniformly most powerful
conditional test satisfying this condition, and so

Eθ,η[ϕ2|T ] ≥ Eθ,η[ϕ|T ].

Taking expectations, by smoothing

Eθ,ηϕ2 ≥ Eθ,ηϕ.

Thus ϕ is uniformly most powerful unbiased. (Again, reparameterization can
be used to treat cases where (θ, η) ∈ Ω but (θ0, η) /∈ Ω.) ⊓⊔

13.3 Examples

Example 13.7 (The t-test). The theory developed in the previous section can
be used to test the mean of a normal distribution. Suppose X1, . . . , Xn is
a random sample from N(µ, σ2), and consider testing H0 : µ ≤ 0 versus
H1 : µ > 0. The joint density from Example 2.3 is

1

(2π)n/2
exp

[

µ

σ2
U(x) − 1

2σ2
T (x) − nµ2

2σ2
− n log σ

]

,
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with U(x) = x1 + · · · + xn and T (x) = x2
1 + · · · + x2

n. This has form (13.2)
with θ = µ/σ2 and η = −1/(2σ2). Note that the hypotheses expressed using
the canonical parameters are H0 : θ ≤ 0 versus H1 : θ > 0. By Theorem 13.6,
the uniformly most powerful unbiased test has form

ϕ =

{

1, U > c(T );

0, otherwise,

with c(·) chosen so that

Pµ=0

[

U > c(t)
∣

∣ T = t
]

= α.

To proceed we need the conditional distribution of U given T = t when µ = 0.
Note that the family of distributions with µ = 0 is an exponential family with
complete sufficient statistic T . Also, if we define Z = X/σ, so that Z1, . . . , Zn
are i.i.d. standard normal, or Z ∼ N(0, I), then W = X/‖X‖ = Z/‖Z‖
is ancillary. By Basu’s theorem (Theorem 3.21), T and W are independent.
Because ‖X‖ =

√
T , X = W

√
T , and using independence between T and W ,

E
[

h(X)
∣

∣T = t
]

= E
[

h
(

W
√
t
)∣

∣T = t
]

= Eh
(

W
√
t
)

.

This shows that
X |T = t ∼W

√
t. (13.3)

The vector W is said to be uniformly distributed on the unit sphere. Note that
if O is an arbitrary orthogonal matrix (OO′ = I), then OZ ∼ N(0, OO′) =
N(0, I). Also ‖OZ‖2 = (OZ)′(OZ) = Z ′O′OZ = Z ′Z = ‖Z‖2. Thus Z and
OZ have the same length and distribution. Then

OW =
OZ

‖Z‖ =
OZ

‖OZ‖ ∼ Z

‖Z‖ = W.

So W and OW have the same distribution, which shows that the uniform
distribution on the unit sphere is invariant under orthogonal transformations.
In fact, this is the only probability distribution on the unit sphere that is in-
variant under orthogonal transformations. Using (13.3), since U = 1′X where
1 denotes a column of 1s,

Pµ=0

[

U > c(t)
∣

∣ T = t
]

= P (1′W > c(t)/
√
t).

This equals α if we take c(t)/
√
t = q, the upper αth quantile for 1′W . Thus

the uniformly most powerful unbiased test rejects H0 if

U√
T

≥ q.

Although it may not be apparent, this is equivalent to the usual test based
on the t-statistic
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t =
X

S/
√
n
.

To see this, note that
X = U/n

and

S2 =
1

n− 1

n
∑

i=1

(Xi −X)2

=
1

n− 1

n
∑

i=1

X2
i −

n

n− 1
X

2
=

T

n− 1
− U2

n(n− 1)
,

and so

t =
U/

√
n

√

(T − U2/n)/(n− 1)
=

√
n− 1 Sign(U)
√

nT/U2 − 1
= g(U/

√
T ).

The function g(·) here is strictly increasing, and so U/
√
T > q if and only if

t > g(q). When µ = 0, t has the t-distribution on n − 1 degrees of freedom,
and so level α is achieved taking g(q) = tα,n−1, the upper αth quantile of this
distribution. So our test then rejects H0 when

t > tα,n−1.

Details for the two-sided case, testing H0 : µ = 0 versus H1 : µ 6= 0,
are similar. The uniformly most powerful level α test rejects H0 when |t| >
tα/2,n−1.

Example 13.8 (Fisher’s Exact Test). A second example of unbiased testing
concerns dependence in a two-way contingency table. Consider two questions
on a survey, A and B, and suppose each of these questions has two answers.
Responses to these questions might be coded with variables X1, . . . , Xn and
Y1, . . . , Yn taking Xk = 1 if respondent k gives the first answer to question A,
Xk = 2 if respondent k gives the second answer to question A; and Yk = 1
if respondent k gives the first answer to question B, Yk = 2 if respondent k
gives the second answer to question B. If the pairs (Xk, Yk), k = 1, . . . , n, are
i.i.d., and if

pij = P (Xk = i, Yk = j), i = 1, 2, j = 1, 2,

then the joint density is

P (X1 = x1, . . . , Xn = xn, Y1 = y1, . . . , Yn = yn) =
2
∏

i=1

2
∏

j=1

p
nij

ij , (13.4)

where nij = #{k : xk = i, yk = j}. So if we take



13.3 Examples 263

Nij = #{k : Xk = i, Yk = j}, i = 1, 2, j = 1, 2,

then N = (N11, N12, N21, N22) is a sufficient statistic. Based on these data, we
may want to test whether there is positive dependence between the two ques-
tions. But first we need to resolve what we mean by “positive dependence.”
There seem to be various possibilities.

Let (X,Y ) be a generic variable distributed as (Xk, Yk). Perhaps we should
define positive dependence between the questions to mean that the correlation
between X and Y is positive. Because

E(X − 1) = P (X = 2) = p21 + p22
def
= p2+

and
E(Y − 1) = P (Y = 2) = p12 + p22

def
= p+2,

Cov(X,Y ) = Cov(X − 1, Y − 1) = E(X − 1)(Y − 1) − p2+p+2

= P (X = 2, Y = 2) − p2+p+2 = p22 − p2+p+2 = p22p11 − p12p21.

So the covariance between X and Y is positive if and only if

p22p11 > p12p21.

Another notion of positive dependence might be that the chance X equals
the larger value 2 increases if we learn that Y equals its larger value, that is,
if

P (X = 2|Y = 2) > P (X = 2).

Equivalently,
p22

p12 + p22
> p21 + p22.

Cross-multiplication and a bit of algebra show that this happens if and only
if p22p11 > p12p21, so this notion of positive dependence is the same as the
notion based on correlation.

The distribution of N is multinomial,

P (N11 = n11, . . . , N22 = n22) =

(

n

n11, . . . , n22

)

pn11
11 p

n12
12 p

n21
21 p

n22
22 .

It is convenient to introduce new variables U = N11, T1 = N11 + N12, and
T2 = N11 +N21. If N is given in a two-way table as in Example 5.5, then T1

and T2 determine the marginal sums. Given U and T , we can solve for N ,
specifically,

N11 = U, N12 = T1 − U, N21 = T2 − U,

and
N22 = n+ U − T1 − T2.
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Thus there is a one-to-one relation between N and variables T and U , and

P (T = t, U = u)

= P
(

N11 = u,N12 = t1 − u,N21 = t2 − u,N22 = n+ u− t1 − t2
)

= h(u, t)pu11p
t1−u
12 pt2−u21 pn+u−t1−t2

22

= h(u, t)

(

p11p22

p12p21

)u (
p12

p22

)t1 (p21

p22

)t2

pn22

= h(u, t) exp
{

θu + η · t−A(θ, η)
}

, (13.5)

where

θ = log

(

p11p22

p12p21

)

, η =

(

log(p12/p22)
log(p21/p22)

)

,

h(u, t) =

(

n

u, t1 − u, t2 − u, n+ u− t1 − t2

)

,

and
A(θ, η) = −n log p22.

Using Theorem 13.6, a uniformly most powerful unbiased test is given by

ϕ =











1, U > c(T );

γ(T ), U = c(T );

0, U < c(T ),

with c(·) and γ(·) adjusted so that

α = Pθ=0

(

U > c(t)|T = t) + γ(t)Pθ=0

(

U = c(t)|T = t).

To describe the test in a more explicit fashion, we need the conditional
distribution of U given T = t when θ = 0. This distribution does not depend on
η. It is convenient to assume that p11 = p12 = p21 = p22 = 1/4 and to denote
probability in this case by P0. Then P0(Xk = 1) = P0(Xk = 2) = P0(Yk =
1) = P0(Yk = 2) = 1/2, so the joint density in (13.4) equals the product of
the marginal densities and under P0 the variables Xk, k = 1, . . . , n, and Yk,
k = 1, . . . , n, are all independent. Since T1 depends on Xk, k = 1, . . . , n, and
T2 depends on Yk, k = 1, . . . , n, T1 and T2 are independent under P0, each
from a binomial distribution with n trials and success probability 1/2. Thus

P0(T = t) = P0(T1 = t1)P0(T2 = t2) =

(

n

t1

)(

n

t2

)

1

4n
.

Using (13.5),

P0(U = u, T = t) =

(

n

u, t1 − u, t2 − u, n+ u− t1 − t2

)

1

4n
.
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Dividing these expressions, after a bit of algebra,

P0(U = u|T = t) =
P0(U = u, T = t)

P0(T = t)
=

(

t1
u

)(

n− t1
t2 − u

)

(

n

t2

) .

This is the hypergeometric distribution, which arises in sampling theory. Con-
sider drawing t2 times without replacement from an urn containing t1 red balls
and n− t1 white balls, and let U denote the number of red balls in the sam-
ple. Then there are

(

n
t2

)

samples, and the number of samples for which U = u

is
(

t1
u

)(

n−t1
t2−u

)

. If the chances for all possible samples are the same, then the
chance U = u is given by the formula above.

The two-sided case can be handled in a similar fashion. Direct calculation
shows that θ = 0 if and only if X and Y are independent, and so testing
H0 : θ = 0 versus H1 : θ 6= 0 amounts to testing whether answers for the
two questions are independent. Again the best test conditions on the margins
T , and probability calculations are based on the hypergeometric distribution.
Calculations to set the constants c± and γ± are messy and need to be done
numerically. These tests for two-way contingency tables were introduced by
Fisher and are called Fisher’s exact tests.

13.4 Problems2

*1. Consider a two-parameter exponential family with Lebesgue density

pθ,φ(x, y) = (x+ y)eθx+φy−A(θ,φ), x ∈ (0, 1), y ∈ (0, 1).

a) Find A(θ, φ).
b) Find the marginal density of X . Check that the form of this distribu-

tion agrees with Theorem 13.2.
c) Find the conditional density of X given Y = y. Again, check that this

agrees with Theorem 13.2.
d) Determine the uniformly most powerful unbiased test of H0 : θ ≤ 0

versus H1 : θ > 0.
e) Determine the uniformly most powerful unbiased test of H0 : θ = 0

versus H1 : θ 6= 0.
2. Suppose X and Y are absolutely continuous with joint density

pθ,η(x, y) =

{

η(θ + η)eθx+ηy, 0 < x < y;

0, otherwise,

where η < 0 and η + θ < 0.

2 Solutions to the starred problems are given at the back of the book.
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a) Determine the marginal density of Y . Show that for fixed θ these
densities form an exponential family with parameter η.

b) Determine the conditional density of X given Y = y. Show that for
fixed y, these densities form an exponential family with parameter θ.

*3. Let X and Y be independent variables, both with gamma distributions.
The parameters for the distribution of X are αx and λx; the parameters
for Y are αy and λy; and both shape parameters, αx and αy, are known
constants.
a) Determine the uniformly most powerful unbiased test of H0 : λx ≤ λy

versus H1 : λx > λy. Hint: You should be able to relate the critical
value for the conditional test to a quantile for the beta distribution.

b) If X1, . . . , Xn is a random sample from N(0, σ2
x) and Y1, . . . , Ym is a

random sample from N(0, σ2
y), then one common test of H0 : σ2

x ≤ σ2
y

versus H1 : σ2
x > σ2

y rejects H0 if and only if F = s2x/s
2
y exceeds

the upper αth quantile of the F -distribution on n and m degrees of
freedom, where s2x =

∑n
i=1X

2
i /n and s2y =

∑m
j=1 Y

2
j /m. Show that

this test is the same as the test in part (a). Give a formula relating
quantiles for the F -distribution to quantiles for the beta distribution.

4. Consider a regression model in which data Y1, . . . , Yn are independent
with Yi ∼ N(α+ βxi, 1), i = 1, . . . , n. Here α and β are unknown param-
eters, and x1, . . . , xn are known constants. Determine the uniformly most
powerful unbiased test of H0 : β = 0 versus H1 : β 6= 0.

*5. Consider a regression model in which data Y1, . . . , Yn are independent with
Yi ∼ N(βxi + γwi, 1), i = 1, . . . , n. Here β and γ are unknown parame-
ters, and x1, . . . , xn and w1, . . . , wn are known constants. Determine the
uniformly most powerful unbiased test of H0 : β ≤ γ versus H1 : β > γ.

*6. Let X1, . . . , Xm be a random sample from the Poisson distribution with
mean λx, and let Y1, . . . , Yn be an independent random sample from the
Poisson distribution with mean λy.
a) Describe the uniformly most powerful unbiased test of H0 : λx ≤ λy

versus H1 : λx > λy.
b) Suppose α = 5% and the observed data are X1 = 3, X2 = 5, and

Y1 = 1. What is the chance the uniformly most powerful test will
reject H0?

c) Give an approximate version of the test, valid if m and n are large.
7. Consider a two-parameter exponential family with density

pθ,η(x, y) =







θ2η2(x + y)

θ + η
e−θx−ηy, x > 0 and y > 0;

0, otherwise.

Determine the level α uniformly most powerful unbiased test of H0 : θ ≤ η
versus H1 : θ > η.

8. Suppose X and Y are absolutely continuous with joint density
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pθ(x, y) =

{

(x+ y)e−θ1x
2−θ2y2−A(θ), x > 0, y > 0;

0, otherwise.

a) Find A(θ).
b) Find the uniformly most powerful unbiased test of H0 : θ1 ≤ θ2 versus

H1 : θ1 > θ2.
9. Let X have a normal distribution with mean µ and variance σ2.

a) For x > 0, find

p(x) = lim
ǫ↓0

P
(

x < X < x+ ǫ
∣

∣ x2 < X2 < (x+ ǫ)2
)

.

In part (b) you can assume that the conditional distribution of X
given X2 is given by P (X = x|X2 = x2) = p(x) and P (X = −x|X2 =
x2) = 1 − p(x), x > 0.

b) Find the uniformly most powerful unbiased level α test ϕ ofH0 : µ ≤ 0
versus H1 : µ > 0 based on the single observation X .

10. Let X1, . . . , Xn be i.i.d. from N(µ, σ2). Determine the uniformly most
powerful unbiased test of H0 : σ2 ≤ 1 versus H1 : σ2 > 1.
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General Linear Model

The general linear model incorporates many of the most popular and useful
models that arise in applied statistics, including models for multiple regression
and the analysis of variance. The basic model can be written succinctly in
matrix form as

Y = Xβ + ǫ, (14.1)

where Y , our observed data, is a random vector in Rn, X is an n×p matrix of
known constants, β ∈ Rp is an unknown parameter, and ǫ is a random vector
in Rn of unobserved errors. We usually assume that ǫ1, . . . , ǫn are a random
sample from N(0, σ2), with σ > 0 an unknown parameter, so that

ǫ ∼ N(0, σ2I). (14.2)

But some of our results hold under the less restrictive conditions that Eǫi = 0
for all i, Var(ǫi) = σ2 for all i, and Cov(ǫi, ǫj) = 0 for all i 6= j. In matrix
notation, Eǫ = 0 and Cov(ǫ) = σ2I. Since Y is ǫ plus a constant vector and
Eǫ = 0, we have EY = Xβ and Cov(Y ) = Cov(ǫ) = σ2I. With the normal
distribution for ǫ in (14.2),

Y ∼ N(Xβ, σ2I). (14.3)

Example 14.1 (Quadratic Regression). In quadratic regression, a response
variable Y is modeled as a quadratic function of some explanatory variable x
plus a random error. Specifically,

Yi = β1 + β2xi + β3x
2
i + ǫi, i = 1, . . . , n.

Here the explanatory variables x1, . . . , xn are taken to be known constants,
β1, β2, and β3 are unknown parameters, and ǫ1, . . . , ǫn are i.i.d. from N(0, σ2).
If we define the design matrix X as
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X =













1 x1 x
2
1

1 x2 x
2
2

...
...

...
1 xn x

2
n













,

then Y = Xβ + ǫ, as in (14.1).

Example 14.2 (One-Way ANOVA). Suppose we have independent random
samples from three normal populations with common variance σ2, so

Yi ∼











N(β1, σ
2), i = 1, . . . , n1;

N(β2, σ
2), i = n1 + 1, . . . , n1 + n2;

N(β3, σ
2), i = n1 + n2 + 1, . . . , n1 + n2 + n3

def
= n.

If we define

X =



































1 0 0
...

...
...

1 0 0
0 1 0
...

...
...

0 1 0
0 0 1
...

...
...

0 0 1



































,

then EY = Xβ and the model has form (14.3).

In applications the parameters β1, . . . , βp usually arise naturally when for-
mulating the model. As a consequence they are generally easy to interpret.
But for technical reasons it is often more convenient to view the unknown
mean of Y , namely,

ξ
def
= EY = Xβ

in Rn as the unknown parameter. If c1, . . . , cp are the columns of X , then

ξ = Xβ = β1c1 + · · · + βpcp,

which shows that ξ must be a linear combination of the columns of X . So ξ
must lie in the vector space

ω
def
= span{c1, . . . , cp} = {Xβ : β ∈ Rp}.

Using ξ instead of β, the vector of unknown parameters is θ = (ξ, σ) taking
values in Ω = ω × (0,∞).
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Since Y has mean ξ, it is fairly intuitive that our data must provide some
information distinguishing between any two values for ξ, since the distribu-
tions for Y under two different values for ξ must be different. Whether this
also holds for β depends on the rank r of X . Since X has p columns, this
rank r is at most p. If the rank of X equals p then the mapping β  Xβ is
one-to-one, and each value ξ ∈ ω is the image of a unique value β ∈ Rp. But if
the columns of X are linearly dependent, then a nontrivial linear combination
of the columns of X will equal zero, so Xv = 0 for some v 6= 0. But then
X(β+ v) = Xβ+Xv = Xβ, and parameters β and β∗ = β + v both give the
same mean ξ. Here our data Y provides no information to distinguish between
parameter values β and β∗.

Example 14.3. Suppose

X =









1 0 1
1 0 1
1 1 0
1 1 0









.

Here the three columns of X are linearly dependent because the first column
is the sum of the second and third columns, and the rank of X is 2, r = 2 <
p = 3. Note that parameter values

β =





1
0
0



 and β∗ =





0
1
1





both give

ξ =









1
1
1
1









.

14.1 Canonical Form

Many results about testing and estimation in the general linear model follow
easily once the data are expressed in a canonical form. Let v1, . . . , vn be an
orthonormal basis for Rn, chosen so that v1, . . . , vr span ω. Entries in the
canonical data vector Z are coefficients expressing Y as a linear combination
of these basis vectors,

Y = Z1v1 + · · · + Znvn. (14.4)

Algebraically, Z can be found introducing an n × n matrix O with columns
v1, . . . , vn. Then O is an orthogonal matrix, O′O = OO′ = I, and Y and Z
are related by

Z = O′Y or Y = OZ.
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Since Y = ξ+ǫ, Z = O′(ξ+ǫ) = O′ξ+O′ǫ. If we define η = O′ξ and ǫ∗ = O′ǫ,
then

Z = η + ǫ∗.

Because Eǫ∗ = EO′ǫ = O′Eǫ = 0 and

Cov(ǫ∗) = Cov(O′ǫ) = O′Cov(ǫ)O = O′(σ2I)O = σ2O′O = σ2I,

ǫ∗ ∼ N(0, σ2I) and ǫ∗1, . . . , ǫ
∗
n are i.i.d. from N(0, σ2). Since Z = η + ǫ∗,

Z ∼ N(η, σ2I). (14.5)

Next, let c1, . . . , cp denote the columns of the design matrix X . Then
ξ = Xβ =

∑p
i=1 βici and

η = O′ξ =







v′1
...
v′n







p
∑

i=1

βici =







∑p
i=1 βiv

′
1ci

...
∑p

i=1 βiv
′
nci






.

Since c1, . . . , cp all lie in ω, and vr+1, . . . , vn all lie in ω⊥, we have v′kci = 0
for k > r, and thus

ηr+1 = · · · = ηn = 0. (14.6)

Because η = O′ξ,

ξ = Oη = (v1 . . . vn)





















η1
...
ηr
0
...
0





















=
r
∑

i=1

ηivi.

These equations establish a one-to-one relation between points ξ ∈ ω and
(η1, . . . , ηr) ∈ Rr.

Since Z ∼ N(η, σ2I), the variables Z1, . . . , Zn are independent with Zi ∼
N(ηi, σ

2). The density of Z, taking advantage of the fact that ηr+1 = · · · =
ηn = 0, is

1√
2πσ2

n exp

[

− 1

2σ2

r
∑

i=1

(zi − ηi)
2 − 1

2σ2

n
∑

i=r+1

z2
i

]

= exp

[

− 1

2σ2

n
∑

i=1

z2
i +

1

σ2

r
∑

i=1

ηizi −
r
∑

i=1

η2
i

2σ2
− n

2
log(2πσ2)

]

.

These densities form a full rank (r + 1)-parameter exponential family with
complete sufficient statistic

(

Z1, . . . , Zr,

n
∑

i=1

Z2
i

)

. (14.7)
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14.2 Estimation

Exploiting the canonical form, many parameters are easy to estimate. Because
EZi = ηi, i = 1, . . . , r, Zi is the UMVU estimator of ηi, i = 1, . . . , r. Also,
since ξ =

∑r
i=1 ηivi,

ξ̂ =

r
∑

i=1

Zivi (14.8)

is a natural estimator of ξ. Noting that

Eξ̂ =

r
∑

i=1

EZivi =

r
∑

i=1

ηivi = ξ,

ξ̂ is unbiased. Since it is a function of the complete sufficient statistic, it should
be optimal in some sense. One measure of optimality might be the expected
squared distance from the true value ξ. If ξ̃ is a competing unbiased estimator,
then

E‖ξ̃ − ξ‖2 =
n
∑

j=1

E(ξ̃j − ξj)
2 =

n
∑

j=1

Var(ξ̃j). (14.9)

Because ξ̂j is unbiased for ξj and is a function of the complete sufficient

statistic, Var(ξ̂j) ≤ Var(ξ̃j), j = 1, . . . , n. So ξ̂ minimizes each term in the
sum in (14.9), and hence

E‖ξ̂ − ξ‖2 ≤ E‖ξ̃ − ξ‖2.

A more involved argument shows that ξ̂ also minimizes the expectation of any
other nonnegative quadratic form in the estimation error, E(ξ̃ − ξ)′A(ξ̃ − ξ),
among all unbiased estimators.

From (14.4), we can write Y as

Y =

r
∑

i=1

Zivi +

n
∑

i=r+1

Zivi = ξ̂ +

n
∑

i=r+1

Zivi.

In this expression the first summand, ξ̂, lies in ω, and the second, Y − ξ̂ =
∑n

i=r+1 Zivi, lies in ω⊥. This difference Y − ξ̂ is called the vector of residuals,
denoted by e:

e
def
= Y − ξ̂ =

n
∑

i=r+1

Zivi. (14.10)

Since Y = ξ̂ + e, by the Pythagorean theorem, if ξ̃ is any point in ω, then

‖Y − ξ̃‖2 = ‖ξ̂ − ξ̃ + e‖2 = ‖ξ̂ − ξ̃‖2 + ‖e‖2,

because ξ̂ − ξ̃ ∈ ω is orthogonal to e ∈ ω⊥. From this equation, it is apparent
that ξ̂ is the unique point in ω closest to the data vector Y . This closest point
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is called the projection of Y onto ω. The mapping Y  ξ̂ is linear and can be
represented by an n× n matrix P ,

ξ̂ = PY,

with P called the (orthogonal) projection matrix onto ω. Since ξ̂ ∈ ω, P ξ̂ = ξ̂,

and so P 2Y = P (PY ) = P ξ̂ = ξ̂ = PY . Because Y can take arbitrary
values in Rn, this shows that P 2 = P . (Matrices that satisfy this equation
are called idempotent.) Using the orthonormal basis, P can be written as
P = v1v

′
1 + · · ·+ vrv

′
r. (To check that this works, just multiply (14.4) by this

sum.) But for explicit calculation, formulas that do not rely on construction
of the basis vectors v1, . . . , vn are more convenient, and are developed below.

Since arbitrary points in ω can be written as Xβ for some β ∈ Rp, if
ξ̂ = Xβ̂, then β̂ must minimize

‖Y −Xβ‖2 =

n
∑

i=1

[

Yi − (Xβ)i
]2

(14.11)

over β ∈ Rp. For this reason, β̂ is called the least squares estimator of β. Of
course, when the rank r of X is less than p, β̂ will not be unique. But unique
or not, all partial derivatives of the least squares criterion (14.11) must vanish

at β = β̂. This often provides a convenient way to calculate β̂ and then ξ̂.
Another approach to explicit calculation proceeds directly from geometric

considerations. Since the columns ci, i = 1, . . . , p, of X lie in ω, and e = Y − ξ̂
lies in ω⊥, we must have c′ie = 0, which implies

X ′e = 0.

Since Y = ξ̂ + e,

X ′Y = X ′(ξ̂ + e) = X ′ξ̂ +X ′e = X ′ξ̂ = X ′Xβ̂. (14.12)

If X ′X is invertible, then this equation gives

β̂ = (X ′X)−1X ′Y. (14.13)

The matrix X ′X is invertible if X has full rank, r = p. In fact, X ′X is positive
definite in this case. To see this, let v be an eigenvector of X ′X with ‖v‖ = 1
and eigenvalue λ. Then

‖Xv‖2 = v′X ′Xv = λv′v = λ,

which must be strictly positive since Xv = c1v1 + · · ·+ cpvp cannot be zero if
X has full rank. When X has full rank

PY = ξ̂ = Xβ̂ = X(X ′X)−1X ′Y,

and so the projection matrix P onto ω can be written as
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P = X(X ′X)−1X ′. (14.14)

Since ξ̂ is unbiased, a′ξ̂ is an unbiased estimator of a′ξ. This estimator is
UMVU because ξ̂ is a function of the complete sufficient statistic. By (14.12),

X ′Y = X ′ξ̂, and so by (14.13), when X is full rank

β̂ = (X ′X)−1X ′ξ̂.

This equation shows that β̂i is a linear function of ξ̂, and so β̂i is UMVU for
βi.

14.3 Gauss–Markov Theorem

For this section we relax the assumptions for the general linear model. The
model still has Y = Xβ+ǫ, but now the ǫi, i = 1, . . . , n, need not be a random
sample from N(0, σ2). Instead, we assume the ǫi, i = 1, . . . , n, have zero mean,
Eǫi = 0, i = 1, . . . , n; a common variance, Var(ǫi) = σ2, i = 1, . . . , n; and are
uncorrelated, Cov(ǫi, ǫj) = 0, i 6= j. In matrix form, these assumptions can
be written as

Eǫ = 0 and Cov(ǫ) = σ2I.

Then
EY = Xβ = ξ and Cov(Y ) = σ2I.

Any estimator of the form a′Y = a1Y1+· · ·+anYn, with a ∈ Rn a constant
vector, is called a linear estimate. Using (1.15),

Var(a′Y ) = Cov(a′Y ) = a′Cov(Y )a

= a′(σ2I)a = σ2a′a = σ2‖a‖2. (14.15)

Because EY = ξ, the estimator a′ξ̂ is unbiased for a′ξ. Since ξ̂ = PY ,
a′ξ̂ = a′PY = (Pa)′Y , and so by (14.15)

Var(a′ξ̂) = σ2‖Pa‖2. (14.16)

Also, by (1.15) and since P is symmetric with P 2 = P ,

Cov(ξ̂) = Cov(PY ) = PCov(Y )P = P (σ2I)P = σ2P.

When X has full rank, we can compute the covariance of the least squares
estimator β̂ using (1.15) as

Cov(β̂) = Cov
(

(X ′X)−1X ′Y
)

= (X ′X)−1X ′Cov(Y )X(X ′X)−1 = σ2(X ′X)−1. (14.17)
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Theorem 14.4 (Gauss–Markov). Suppose

EY = Xβ and Cov(Y ) = σ2I.

Then the (least squares) estimator a′ξ̂ of a′ξ is unbiased and has uniformly
minimum variance among all linear unbiased estimators.

Proof. Let δ = b′Y be a competing unbiased estimator. By (14.15) and

(14.16), the variances of δ and a′ξ̂ are

Var(δ) = σ2‖b‖2 and Var(a′ξ̂) = σ2‖Pa‖2.

If ǫ happens to come from a normal distribution, since both of these estimators
are unbiased and a′ξ̂ is UMVU, Var(a′ξ̂) ≤ Var(δ), or

σ2‖Pa‖2 ≤ σ2‖b‖2.

But formulas for the variances of the estimators do not depend on normality,
and thus Var(a′ξ̂) ≤ Var(δ) in general. ⊓⊔

Although a′ξ̂ is the “best” linear estimate, in some examples nonlinear
estimates can be more precise.

Example 14.5. Suppose

Yi = β + ǫi, i = 1, . . . , n,

where ǫ1, . . . , ǫn are i.i.d. with common density

f(x) =
e−
√

2|x|/σ

σ
√

2
, x ∈ R.

By the symmetry, Eǫi = 0, i = 1, . . . , n, and

Var(ǫi) = Eǫ2i = 2

∫ ∞

0

x2e−
√

2x/σ

σ
√

2
dx

=
σ2

2

∫ ∞

0

u2e−u du =
σ2

2
Γ (3) = σ2, i = 1, . . . , n.

So Cov(Y ) = Cov(ǫ) = σ2I, and if we take X = (1, . . . , 1)′, then EY = Xβ.
This shows that the conditions of the Gauss–Markov theorem are satisfied. If
a = n−1X , then a′ξ = n−1X ′Xβ = β. By the Gauss–Markov theorem, the
best linear estimator of β is

β̂ =
1

n
X ′ξ̂ =

1

n
X ′X(X ′X)−1X ′Y =

1

n
X ′Y = Y ,

the sample average. This estimator has variance σ2/n. A competing estimator
might be the sample median,
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Ỹ = med{Y1, . . . , Yn} = β + med{ǫ1, . . . , ǫn}.

By (8.5),
√
n(Ỹ − β) ⇒ N(0, σ2/2). This result suggests that

Var
(√
n(Ỹ − β)

)

→ σ2/2.

This can be established formally using Theorem 8.16 and showing that the
variables n(Ỹ −β)2 are uniformly integrable. Since Var

(√
n(Y −β)

)

= σ2, for

large n the variance of Ỹ is roughly half the variance of Y .

14.4 Estimating σ
2

From the discussion in Section 14.1, Zr+1, . . . , Zn are i.i.d. from N(0, σ2).
Thus EZ2

i = σ2, i = r + 1. . . . , n, and the average of these variables,

S2 =
1

n− r

n
∑

i=r+1

Z2
i , (14.18)

is an unbiased estimator of σ2. But S2 is a function of the complete sufficient
statistic (Z1, . . . , Zr,

∑n
i=1 Z

2
i ) in (14.7), and so S2 is the UMVU estimator of

σ2. The estimator S2 can be computed from the length of the residual vector
e in (14.10). To see this, first write

‖e‖2 = e′e =

(

n
∑

i=r+1

Ziv
′
i

)





n
∑

j=r+1

Zjvj



 =

n
∑

i=r+1

n
∑

j=r+1

ZiZjv
′
ivj .

Because v1, . . . , vn is an orthonormal basis, v′ivj equals zero when i 6= j and
equals one when i = j. So the double summation in this equation simplifies
giving

‖e‖2 =

n
∑

i=r+1

Z2
i , (14.19)

and so

S2 =
‖e‖2

n− r
=

‖Y − ξ̂‖2

n− r
. (14.20)

Because ξ̂ in (14.8) is a function of Z1, . . . , Zr, and e in (14.10) is a function

of Zr+1, . . . , Zn, S
2 and ξ̂ are independent. Also, using (14.19), (14.20), and

the definition of the chi-square distribution,

(n− r)S2

σ2
=

n
∑

i=r+1

(Zi/σ)2 ∼ χ2
n−r, (14.21)

since Zi/σ ∼ N(0, 1).



278 14 General Linear Model

The distribution theory just presented can be used to set confidence inter-
vals for linear estimators. If a is a constant vector in Rn, then from (14.16)

the standard deviation of least squares estimator a′ξ̂ of a′ξ is σ‖Pa‖. This
standard deviation is naturally estimated as

σ̂a′ ξ̂
def
= S‖Pa‖.

Theorem 14.6. In the general linear model with Y ∼ N(ξ, σ2I), ξ ∈ ω, and
σ2 > 0,

(

a′ξ̂ − σ̂a′ ξ̂tα/2,n−r, a
′ξ̂ + σ̂a′ ξ̂tα/2,n−r

)

is a 1 − α confidence interval for a′ξ.

Proof. Because a′ξ̂ ∼ N
(

a′ξ, σ2‖Pa‖2
)

,

a′ξ̂ − a′ξ
σ‖Pa‖ ∼ N(0, 1).

This variable is independent of (n−r)S2/σ2 because S2 and ξ̂ are independent.
Using (9.2), the definition of the t-distribution,

a′ξ̂ − a′ξ
σ‖Pa‖

√

1

n− r

(n− r)S2

σ2

=
a′ξ̂ − a′ξ
S‖Pa‖ ∼ tn−r.

The coverage probability of the stated interval is

P
(

a′ξ̂ − S‖Pa‖tα/2,n−r < a′ξ < a′ξ̂ + S‖Pa‖tα/2,n−r
)

= P

(

−tα/2,n−r <
a′ξ̂ − a′ξ
S‖Pa‖ < tα/2,n−r

)

= 1 − α. ⊓⊔

When X has full rank, βi is a linear function of ξ, estimated by β̂i with
variance σ

[

(X ′X)−1
]

ii
. So the estimated standard deviation of β̂i is

σ̂β̂i
= S

√

[

(X ′X)−1
]

ii
,

and
(

β̂i − σ̂β̂i
tα/2,n−p, β̂i + σ̂β̂i

tα/2,n−p
)

(14.22)

is a 1 − α confidence interval for βi.
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14.5 Simple Linear Regression

To illustrate the ideas developed, we consider simple linear regression in which
a response variable Y is a linear function of an independent variable x plus
random error. Specifically,

Yi = β1 + β2(xi − x) + ǫi, i = 1, . . . , n.

The independent variables x1, . . . , xn with average x are taken to be known
constants, β1 and β2 are unknown parameters, and ǫ1, . . . , ǫn are i.i.d. from
N(0, σ2). This gives a general linear model with design matrix

X =







1 x1 − x
...

...
1 xn − x






.

In parameterizing the mean of Y (called the regression function) as β1 +
β2(x−x), β1 would be interpreted not as an intercept, but as the value of the
regression when x = x. Note that

∑n
i=1(xi − x) =

∑n
i=1 xi − nx = 0, which

means that the two columns of X are orthogonal. This will simplify many
later results. For instance, X will have rank 2 unless all entries in the second
column are zero, which can only occur if x1 = · · · = xn. Also, since the entries
in X ′X are inner products of the columns of X , this matrix and (X ′X)−1 are
both diagonal:

X ′X =

(

n 0
0
∑n

i=1(xi − x)2

)

and

(X ′X)−1 =

(

1/n 0
0 1/

∑n
i=1(xi − x)2

)

.

Since

X ′Y =

( ∑n
i=1 Yi

∑n
i=1 Yi(xi − x)

)

,

β̂ = (X ′X)−1X ′Y =

( 1
n

∑n
i=1 Yi

∑n
i=1 Yi(xi − x)/

∑n
i=1(xi − x)2

)

.

Also,

Cov(β̂) = σ2(X ′X)−1 =

(

σ2/n 0
0 σ2/

∑n
i=1(xi − x)2

)

. (14.23)

To estimate σ2, since ξ̂i = β̂1 + β̂2(xi − x),

ei = Yi − β̂1 − β̂2(xi − x),
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and then

S2 =
1

n− 2

n
∑

i=1

e2i .

This equation can be rewritten in various ways. For instance,

S2 =
1

n− 2

n
∑

i=1

(Yi − Y )2(1 − ρ̂2),

where ρ̂ is the sample correlation defined as

ρ̂ =

∑n
i=1(Yi − Y )(xi − x)

[
∑n
i=1(Yi − Y )2

∑n
i=1(xi − x)2

]1/2
.

This equation shows that ρ̂2 may be viewed as the proportion of the variation
of Y that is “explained” by the linear relation between Y and x.

Using (14.22),

(

β̂1 −
Stα/2,n−2√

n
, β̂1 +

Stα/2,n−2√
n

)

is a 1 − α confidence interval for β1, and

(

β̂2 −
Stα/2,n−2

√
∑n

i=1(xi − x)2
, β̂2 +

Stα/2,n−2
√
∑n

i=1(xi − x)2

)

is a 1 − α confidence interval for β2.

14.6 Noncentral F and Chi-Square Distributions

Distribution theory for testing in the general linear model relies on noncentral
F and chi-square distributions.

Definition 14.7. If Z1, . . . , Zp are independent and δ ≥ 0 with

Z1∼N(δ, 1) and Zj ∼ N(0, 1), j = 2, . . . , p,

then W =
∑p

i=1 Z
2
i has the noncentral chi-square distribution with noncen-

trality parameter δ2 and p degrees of freedom, denoted

W ∼ χ2
p(δ

2).

Lemma 14.8. If Z ∼ Np(µ, I), then Z ′Z ∼ χ2
p(‖µ‖2).
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Proof. Let O be an orthogonal matrix where the first row is µ′/‖µ‖, so that

Oµ = µ̃ =











‖µ‖
0
...
0











.

Then
Z̃ = OZ ∼ Np(µ̃, Ip).

From the definition, Z̃ ′Z̃ =
∑p

i=1 Z̃
2 ∼ χ2

p(‖µ‖2), and the lemma follows
because

Z̃ ′Z̃ = Z ′O′OZ = Z ′Z. ⊓⊔

The next lemma shows that certain quadratic forms for multivariate nor-
mal vectors have noncentral chi-square distributions.

Lemma 14.9. If Σ is a p × p positive definite matrix and if Z ∼ Np(µ,Σ),
then

Z ′Σ−1Z ∼ χ2
p(µ
′Σ−1µ).

Proof. Let A = Σ−1/2, the symmetric square root of Σ−1, defined in (9.11).
Then AZ ∼ Np(Aµ, Ip), and so

Z ′Σ−1Z = (AZ)′(AZ) ∼ χ2
p(‖Aµ‖2).

The lemma follows because ‖Aµ‖2 = (Aµ)′(Aµ) = µ′AAµ = µ′Σ−1µ. ⊓⊔

Definition 14.10. If V and W are independent variables with V ∼ χ2
k(δ

2)
and W ∼ χ2

m, then
V/k

W/m
∼ Fk,m(δ2),

the noncentral F -distribution with degrees of freedom k and m and noncen-
trality parameter δ2. When δ2 = 0 this distribution is simply called the F
distribution, Fk,m.

14.7 Testing in the General Linear Model

In the general linear model, Y ∼ N(ξ, σ2I) with the mean ξ in a linear
subspace ω with dimension r. In this section we consider testing H0 : ξ ∈ ω0

versusH1 : ξ ∈ ω−ω0 with ω0 a q-dimensional linear subspace of ω, 0 ≤ q < r.
Null hypotheses of this form arise when β satisfies linear constraints. For
instance we might have H0 : β1 = β2 or H0 : β1 = 0. (Similar ideas can be
used to test β1 = c or other affine constraints; see Problem 14.13.)
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Let ξ̂ and ξ̂0 denote least squares estimates for ξ under the full model
and under H0. Specifically, ξ̂ = PY and ξ̂0 = P0Y , where P and P0 are the
projection matrices onto ω and ω0. The test statistic of interest is based on
‖Y − ξ̂‖, the distance between Y and ω, and ‖Y − ξ̂0‖, the distance between
Y and ω0. Because ω0 ⊂ ω, the former distance must be smaller, but if the
distances are comparable, then at least qualitatively H0 may seem adequate.
The test statistic is

T =
n− r

r − q

‖Y − ξ̂0‖2 − ‖Y − ξ̂‖2

‖Y − ξ̂‖2
,

and H0 will be rejected if T exceeds a suitable constant. Noting that Y − ξ̂ ∈
ω⊥ and ξ̂ − ξ̂0 ∈ ω, the vectors Y − ξ̂ and ξ̂ − ξ̂0 are orthogonal, and the
squared length of their sum, by the Pythagorean theorem, is

‖Y − ξ̂0‖2 = ‖Y − ξ̂‖2 + ‖ξ̂ − ξ̂0‖2.

Using this, the formula for T can be rewritten as

T =
n− r

r − q

‖ξ̂ − ξ̂0‖2

‖Y − ξ̂‖2
=

‖ξ̂ − ξ̂0‖2

(r − q)S2
. (14.24)

This test statistic is equivalent to the generalized likelihood ratio test statistic
that will be introduced and studied in Chapter 17. When r − q = 1 the test
is uniformly most powerful unbiased, and when r − q > 1 the test is most
powerful among tests satisfying symmetry restrictions.

For level and power calculations we need the distribution of T given in the
next theorem.

Theorem 14.11. Under the general linear model,

T ∼ Fr−q,n−r(δ
2),

where

δ2 =
‖ξ − P0ξ‖2

σ2
. (14.25)

Proof. Write

Y =

n
∑

i=1

Zivi,

where v1, . . . , vn is an orthonormal basis chosen so that v1, . . . , vq span ω0 and
v1, . . . , vr span ω. Then, as in (14.8),

ξ̂0 =

q
∑

i=1

Zivi and ξ̂ =

r
∑

i=1

Zivi.
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Also, as in (14.5) and (14.6), Z ∼ N(η, σ2I) with ηr+1 = · · · = ηn = 0. Since
v′ivj is zero when i 6= j and one when i = j,

‖Y − ξ̂‖2 =

∥

∥

∥

∥

∥

n
∑

i=r+1

Zivi

∥

∥

∥

∥

∥

2

=

(

n
∑

i=r+1

Ziv
′
i

)





n
∑

j=r+1

Zjvj





=

n
∑

i=r+1

n
∑

j=r+1

ZiZjv
′
ivj =

n
∑

i=r+1

Z2
i .

Similarly

‖Y − ξ̂0‖2 =

n
∑

i=q+1

Z2
i ,

and so

T =

1

r − q

∑r
i=q+1(Zi/σ)2

1

n− r

∑n
i=r+1(Zi/σ)2

.

The variables Zi are independent, and so the numerator and denomina-
tor in this formula for T are independent. Because Zi/σ ∼ N(ηi/σ, 1), by
Lemma 14.8,

r
∑

i=q+1

(

Zi
σ

)2

∼ χ2
r−q(δ

2),

where

δ2 =

r
∑

i=q+1

η2
i

σ2
. (14.26)

Also, since ηi = 0 for i = r + 1, . . . , n, Zi/σ ∼ N(0, 1), i = r + 1, . . . , n,
and so

∑n
i=r+1(Zi/σ)2 ∼ χ2

n−r. So by Definition 14.10 for the noncentral F -
distribution, T ∼ Fr−q,n−r(δ2) with δ2 given in (14.26). To finish we must
show that (14.25) and (14.26) agree, or that

r
∑

i=q+1

η2
i = ‖ξ − P0ξ‖2.

Since

ξ = Eξ̂ =

r
∑

i=1

ηivi

and

P0ξ = EP0Y = Eξ̂0 =

q
∑

i=1

ηivi,
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ξ − P0ξ =
r
∑

i=q+1

ηivi.

Then, by the Pythagorean theorem,

‖ξ − P0ξ‖2 =

r
∑

i=q+1

η2
i ,

as desired. ⊓⊔

Example 14.12. Consider a model in which

Yi =

{

xiβ1 + ǫi, i = 1, . . . , n1;

xiβ2 + ǫi, i = n1 + 1, . . . , n1 + n2 = n,

with ǫ1, . . . , ǫn i.i.d. from N(0, σ2) and independent variables x1, . . . , xn taken
as known constants. This model might be appropriate if you have bivariate
data from two populations, each satisfying simple linear regression through
the origin. In such a situation, the most interesting hypothesis to consider
may be that the two populations are the same, and so let us test H0 : β1 = β2

versus H1 : β1 6= β2. The design matrix under the full model is

X =





















x1 0
...

...
xn1 0
0 xn1+1

...
...

0 xn





















,

and straightforward algebra gives

X ′X =

(∑n1

i=1 x
2
i 0

0
∑n
i=n1+1 x

2
i

)

and X ′Y =

( ∑n1

i=1 xiYi
∑n

i=n1+1 xiYi

)

.

So

β̂ = (X ′X)−1X ′Y =

( ∑n1

i=1 xiYi/
∑n1

i=1 x
2
i

∑n
i=n1+1 xiYi/

∑n
i=n1+1 x

2
i

)

and

‖Y − ξ̂‖2 =

n1
∑

i=1

(Yi − xiβ̂1)
2 +

n
∑

i=n1+1

(Yi − xiβ̂2)
2.

Here X is of full rank (unless x1 = · · · = xn1 = 0 or xn1 = · · · = xn = 0), and
so r = p = 2 and
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S2 =
‖Y − ξ̂‖2

n− 2
.

Under H0 we also have a general linear model. If β0 denotes the common
value of β1 and β2, then Yi = xiβ0 + ǫi, i = 1, . . . , n, and the design matrix is

X0 =







x1

...
xn






.

Then X ′0X0 =
∑n
i=1 x

2
i and X ′0Y =

∑n
i=1 xiYi, and so

β̂0 = (X ′0X0)
−1X ′0Y =

∑n
i=1 xiYi
∑n

i=1 x
2
i

.

Thus

‖ξ̂ − ξ̂0‖2 =

n1
∑

i=1

(xiβ̂1 − xiβ̂0)
2 +

n
∑

i=n1+1

(xiβ̂2 − xiβ̂0)
2

= (β̂1 − β̂0)
2
n1
∑

i=1

x2
i + (β̂2 − β̂0)

2
n
∑

i=n1+1

x2
i .

Noting that β̂0 is a weighted average of β̂1 and β̂2,

β̂0 =

∑n1

i=1 x
2
i

∑n
i=1 x

2
i

β̂1 +

∑n
i=n1+1 x

2
i

∑n
i=1 x

2
i

β̂2,

this expression simplifies to

‖ξ̂ − ξ̂0‖2 =

∑n1

i=1 x
2
i

∑n
i=n1+1 x

2
i

∑n
i=1 x

2
i

(β̂1 − β̂2)
2. (14.27)

So the test statistic T is given by

T =

∑n1

i=1 x
2
i

∑n
i=n1+1 x

2
i

S2
∑n

i=1 x
2
i

(β̂1 − β̂2)
2.

UnderH0, T ∼ F1,n−2, and the level-α test will rejectH0 if T exceeds Fα,1,n−2,
the upper αth quantile of this F -distribution.

For power calculations we need the noncentrality parameter δ2 in (14.25).
Given the calculations we have done, the easiest way to find δ2 is to note that
if our data were observed without error, i.e., if ǫ were zero, then ξ̂ would be ξ,
β̂1 and β̂2 would be β1 and β2, and ξ̂0 would be P0ξ. Using this observation
and (14.27),

δ2 =

∑n1

i=1 x
2
i

∑n
i=n1+1 x

2
i

σ2
∑n

i=1 x
2
i

(β1 − β2)
2.

The power is then the chance that a variable from F1,n−2(δ
2) exceeds Fα,1,n−2.
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14.8 Simultaneous Confidence Intervals

A researcher studying a complex data set may construct confidence intervals
for many parameters. Even with a high coverage probability for each interval
there may be a substantial chance some of them will fail, raising a concern
that the ones that fail may be reported as meaningful when all that is really
happening is natural chance variation. Simultaneous confidence intervals have
been suggested to protect against this possibility. A few basic ideas are devel-
oped here, first in the context of one-way ANOVA models, introduced before
in Example 14.2.

The model under consideration has

Ykl = βk + ǫkl, 1 ≤ l ≤ c, 1 ≤ k ≤ p.

This can be viewed as a model for independent random samples from p normal
populations all with a common variance. The design here has the same number
of observations c from each population. Listing the variables Ykl in a single
vector, as in Example 14.2, this is a general linear model. The least squares
estimator of β should minimize

c
∑

l=1

p
∑

k=1

(Ykl − βk)
2.

The partial derivative of this criterion with respect to βm is

−2

c
∑

l=1

(Yml − βm)

which vanishes when βm = β̂m given by

β̂m = Y m·
def
=

1

c

c
∑

l=1

Yml, m = 1, . . . , p.

These are the least squares estimators. Here r = p and n = pc, so

S2 =
‖Y − ξ̂‖2

pc− p
=

1

p(c− 1)

c
∑

l=1

p
∑

k=1

(Ykl − β̂k)
2.

The least squares estimators are averages of different collections of the Ykl.
Thus β̂1, . . . , β̂p are independent with

β̂k ∼ N(βk, σ
2/c), k = 1, . . . , p.

Also
p(c− 1)S2

σ2
∼ χ2

p(c−1),
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and S2 is independent of β̂.
To start, let us try to find intervals I1, . . . , Ip that simultaneously cover

parameters β1, . . . , βp with specified probability 1 − α. Specifically, we want

P (βk ∈ Ik, k = 1, . . . , p) = 1 − α.

The confidence intervals in Theorem 14.6 or (14.22) are

(

β̂k −
S√
c
tα/2,p(c−1), β̂k +

S√
c
tα/2,p(c−1)

)

,

and intuition suggests that we may be able to achieve our objective taking

Ik =

(

β̂k −
S√
c
q, β̂k +

S√
c
q

)

, k = 1, . . . , p,

if q is chosen suitably. Now

P (βk ∈ Ik, k = 1, . . . , p) = P

(

|β̂k − βk| <
S√
c
q, k = 1, . . . , p

)

= P

(

max
1≤k≤p

|β̂k − βk|
S/

√
c

< q

)

= P

(

max
1≤k≤p

|Zk|√
W

< q

)

,

where

Zk =
β̂k − βk
σ/

√
c

∼ N(0, 1), k = 1, . . . , p

and W = S2/σ2. Because Z1, . . . , Zp and W are independent and mW ∼ χ2
m

with m = p(c−1), the simultaneous coverage probability here does not depend
on β or σ.

Definition 14.13. If Z1, . . . , Zp and W are independent variables with Zk ∼
N(0, 1), k = 1, . . . , p, and mW ∼ χ2

m, then

max1≤k≤p |Zk|√
W

has the studentized maximum modulus distribution with parameters p and
m.

If q is the upper αth quantile of this studentized maximum modulus dis-
tribution, then the intervals I1, . . . , Ip have simultaneous coverage probability
1 − α.

In practice, researchers will often be more interested in comparing pop-
ulations than estimating individual means, and so confidence intervals for
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differences βj − βi may be of interest. So let us now seek intervals Iij such
that

P (βj − βi ∈ Iij , ∀i 6= j) = 1 − α.

Now we may naturally suspect we can achieve this objective with intervals of
the form

Iij =

(

β̂j − β̂i −
S√
c
q, β̂j − β̂i +

S√
c
q

)

with q adjusted suitably. Then

P (βj − βi ∈ Iij , ∀i 6= j)

= P

(

∣

∣(β̂j − βj) − (β̂i − βi)
∣

∣ <
S√
c
q, ∀i 6= j

)

= P

(
∣

∣

√
c(β̂j − βj) −

√
c(β̂i − βi)

∣

∣

S
< q, ∀i 6= j

)

= P

( |Zj − Zi|√
W

< q, ∀i 6= j

)

= P

(

max1≤k≤p Zk − min1≤k≤p Zk√
W

< q

)

.

This approach works because this probability does not depend on β or σ.

Definition 14.14. If Z1, . . . , Zp and W are independent variables with Zk ∼
N(0, 1), k = 1, . . . , p and mW ∼ χ2

m, then

max1≤k≤p Zk − min1≤k≤p Zk√
W

has the studentized range distribution with parameters p and m.

If q is the upper αth quantile of the studentized range distribution, then
the intervals Iij will have simultaneous coverage probability 1 − α.

The derivations of simultaneous confidence intervals just presented relies
heavily on the structure of the ANOVA model under consideration. More
general results are possible using a method due to Scheffé. This method is
based on confidence sets for a parameter ψ ∈ Rq, with q ≤ r, which is a linear
function of the mean ξ; that is,

ψ = Aξ = AXβ

for some q × n matrix A. When X is full rank β = (X ′X)−1X ′ξ, and so
A = (X ′X)−1X ′ will give ψ = β. Other linear functions of β are also possible.
Because Pξ = ξ, we have APξ = Aξ = ψ, and replacing A by A∗ = AP
will not change ψ. Then A∗P = APP = AP = A∗. Changing A to A∗, if
necessary, we can assume without loss of generality that A = AP . This is
convenient because then the least squares estimator of ψ is
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ψ̂ = Aξ̂ = APY = AY.

Finally, we assume that the rows of AX are linearly independent. Since AX
is then of full rank and ψ = AXβ, this ensures that ψ can assume arbitrary
values in Rq. Also, note that then the rank of AX will be less than the rank
of A, for if the rows of A satisfy a nontrivial linear constraint, v′A = 0, then
v′AX = 0, and the rows of AX will satisfy the same linear constraint. If we
define B = AA′, then B is positive definite because

q ≤ rank(AX) ≤ rank(A) ≤ q,

showing that A and AX are both of full rank, and v′Bv = v′AA′v = ‖A′v‖2,
which is positive unless v = 0 as A is full rank. Using (1.15),

ψ̂ ∼ N(ψ, σ2B),

and so by Lemma 14.9,

(ψ̂ − ψ)′B−1(ψ̂ − ψ)

σ2
∼ χ2

q.

Because ψ̂ is a function of ξ̂, and ξ̂ is independent of S2, this quadratic form
is independent of

(n− r)S2

σ2
∼ χ2

n−r.

Then by Definition 14.10,

(ψ̂ − ψ)′B−1(ψ̂ − ψ)/(qσ2)

S2/σ2
=

(ψ̂ − ψ)′B−1(ψ̂ − ψ)

qS2
∼ Fq,n−r.

From this

P
(

(ψ̂ − ψ)′B−1(ψ̂ − ψ) ≤ qS2Fα,q,n−r
)

= 1 − α.

The set of values for ψ where this event obtains is a multivariate ellipse cen-
tered at ψ̂. This random ellipse is a 1 − α confidence set for ψ.

To form simultaneous confidence intervals from the confidence ellipse de-
scribed, note that

(ψ̂ − ψ)′B−1(ψ̂ − ψ) = ‖B−1/2(ψ̂ − ψ)‖2.

Also, for any h ∈ Rq,

h′Bh = h′B1/2B1/2h = ‖B1/2h‖2.

By the Schwarz inequality,

‖B1/2h‖2‖B−1/2(ψ̂ − ψ)‖2 ≥
[

h′B1/2B−1/2(ψ̂ − ψ)
]2

=
[

h′(ψ̂ − ψ)
]2
.
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So

P
{

[

h′(ψ̂ − ψ)
]2 ≤ qS2h′BhFα,q,n−r , ∀h ∈ Rq

}

≥ P
(

‖B1/2h‖2‖B−1/2(ψ̂ − ψ)‖2 ≤ qS2h′BhFα,q,n−r, ∀h ∈ Rq
)

= P
(

‖B−1/2(ψ̂ − ψ)‖2 ≤ qS2Fα,q,n−r
)

= 1 − α.

But taking h = B−1(ψ̂−ψ), this probability can be at most 1−α, and so we
must have equality. Since

Var
(

h′(ψ̂ − ψ)
)

= σ2h′Bh,

naturally estimated by
σ̂2
h′ψ̂

= S2h′Bh,

we can write this identity as

P
{

[

h′(ψ̂ − ψ)
]2 ≤ σ̂2

h′ψ̂
qFα,q,n−r, ∀h ∈ Rq

}

= 1 − α.

So the intervals
(

h′ψ̂ − σ̂h′ψ̂

√

qFα,q,n−r, h
′ψ̂ + σ̂h′ψ̂

√

qFα,q,n−r

)

contain h′ψ simultaneously for all h ∈ Rq, with probability 1 − α.

Example 14.15. In the model for simple linear regression considered in Sec-
tion 14.5, the value for the regression function at a specified value x for the
independent variable is β1 + β2(x − x), estimated by β̂1 + β̂2(x − x). Using
(14.23), the variance of this estimator is

σ2

[

1

n
+

(x− x)2

sxx

]

,

where sxx =
∑n

i=1(xi − x)2. This variance is estimated by

S2

[

1

n
+

(x− x)2

sxx

]

.

Taking ψ = β, the regression at x, β1 + β2(x − x), will lie in

(

β̂1 + β̂2(x− x) − S

√

1

n
+

(x− x)2

sxx

√

2Fα,2,n−2,

β̂1 + β̂2(x− x) + S

√

1

n
+

(x− x)2

sxx

√

2Fα,2,n−2

)

,

simultaneously for all x ∈ R, with probability at least 1−α. These confidence
bands are plotted along with the regression line in Figure 14.1.
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y

x

Fig. 14.1. Confidence bands.

Example 14.16. In one-way ANOVA comparisons between weighted averages
of the means of certain populations and weighted averages of the means of
different populations may be of interest. Scaled differences between weighted
averages are called contrasts.

Definition 14.17. A contrast in one-way ANOVA is any parameter of the
form

a′β = a1β1 + · · · + apβp

with a1 + · · · + ap = 0.

Examples of contrasts include β3 − β1 or 1
2 (β1 + β3)−

(

1
6β2 + 1

3β4 + 1
2β5

)

.
Taking

ψ =







β1 − βp
...

βp−1 − βp






,

a contrast a′β equals h′ψ with h′ = (a1, . . . , ap−1). The least squares estimate

of this contrast is
∑p

i=1 aiβ̂i which has variance
∑p

i=1 a
2
iσ

2/c = ‖a‖2σ2/c,
estimated replacing σ2 by S2. Thus with probability 1 − α,

a′β ∈
(

a′β̂ − S‖a‖√
c

√

(p− 1)Fα,p−1,p(c−1),

a′β̂ +
S‖a‖√
c

√

(p− 1)Fα,p−1,p(c−1)

)

,
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simultaneously for all a ∈ Rp with a1 + · · · + ap = 0. If instead we were
interested in all linear combinations of β, we would need to take ψ = β. For
this case, q equals p, and we have simultaneous confidence intervals

a′β ∈
(

a′β̂ − S‖a‖√
c

√

pFα,p,p(c−1), a
′β̂ +

S‖a‖√
c

√

pFα,p,p(c−1)

)

,

for all a ∈ Rp. These intervals will be a bit wider than the simultaneous
confidence intervals for contrasts.

14.9 Problems1

*1. Consider a model in which our data are

Yi = β1 + wiβ2 + xiβ3 + ǫi, i = 1, . . . , n,

where w1, . . . , wn and x1, . . . , xn are observed constants; β1, β2, and β3 are
unobserved parameters; and ǫ1, . . . , ǫn are unobserved random variables
which are i.i.d. from N(0, σ2). Assume that through accident or design,
w1 + · · ·+wn = 0 and x1 + · · ·+xn = 0. For notation, let Sww =

∑n
i=1 w

2
i ,

Sxx =
∑n

i=1 x
2
i , Swx =

∑n
i=1 wixi, and so on.

a) Write the model in matrix form as Y = Xβ + ǫ describing entries in
the matrix X .

b) If n > 3, when will X be of full rank?

c) Assuming X is of full rank, give an explicit formula for β̂. (It will
involve terms such as Sxx, SxY , etc.)

d) Find the covariance matrix of β̂.
e) Give a formula for the UMVU estimator of σ2.
f) Find confidence intervals for β1 and for β3 − β2.

2. Consider a general linear model with n = 2m in which Yi = β1 +β3xi+ ǫi,
i = 1, . . . ,m, and Yi = β2 +β3xi+ ǫi, i = m+1, . . . , n. Here ǫ1, . . . , ǫn are
i.i.d. from N(0, σ2); β = (β1, β2, β3)

′ and σ2 are unknown parameters, and
x1, . . . , xn are known constants with x1 + · · ·+xm = xm+1 + · · ·+xn = 0.
a) Write the model in vector form as Y = Xβ + ǫ describing entries in

the design matrix X .
b) Determine the UMVU estimator β̂ of β.
c) Write β1 as a linear function of ξ = EY ; that is, find a vector w such

that β1 = w′ξ.
d) Find the UMVU estimator ξ̂i of ξi.

e) Show that β̂1 from part (b) equals w′ξ̂ from parts (c) and (d).

f) Determine the variance of β̂2 − β̂1.
g) Determine the UMVU estimator S2 of σ2.

1 Solutions to the starred problems are given at the back of the book.
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h) Derive a 1 − α confidence interval for β2 − β1.
i) If the parameter β were known, the best estimate for a future observa-

tion Y from the first population (the population for the first half of the
data observed) at some specified level x for the independent variable
would be β1 + β3x. Give a 95% confidence interval for this quantity.
Sketch the upper and lower limits of this interval as a function of x if
β̂1 = 0 and β̂3 = 1/2.

j) Give an explicit formula for the test statistic T used to test H0 : β1 =
β2 versus H1 : β1 6= β2, and explain how this statistic would be used
to test H0 versus H1 at level α.

k) Determine the distribution for T with an explicit formula for the non-
centrality parameter.

l) Show that the test of β1 = β2 rejects H0 if and only if the confidence
interval for β2 − β1 does not contain zero.

3. Consider a general linear model with n = 2m in which

Yi = β1 + β2xi + ǫi, i = 1, . . . ,m,

and
Yi = β1 + β3xi + ǫi, i = m+ 1, . . . , n.

Here ǫ1, . . . , ǫn are i.i.d. from N(0, σ2); β = (β1, β2, β3)
′ and σ2 are un-

known parameters; and x1, . . . , xn are known constants with x1 + · · · +
xm = xm+1 + · · · + xn = 0.
a) Write the model in vector form as Y = Xβ + ǫ describing entries in

the design matrix X .
b) Determine the UMVU estimator β̂ of β.
c) Write β2 as a linear function of ξ = EY ; that is, find a vector w such

that β2 = w′ξ.
d) Find the UMVU estimator ξ̂i of ξi.

e) Show that β̂2 from part (b) equals w′ξ̂ from parts (c) and (d).
f) Determine the UMVU estimator S2 of σ2.

g) Determine the variance of β̂3 − β̂2.
h) Derive a 95% confidence interval for β3 − β2.
i) If the parameter β were known, the best estimate for a future observa-

tion Y from the first population (the population for the first half of the
data observed) at some specified level x for the independent variable
would be β1 + β2x. Give a 95% confidence interval for this quantity.
Sketch the upper and lower limits of this interval as a function of x if
β̂1 = 0 and β̂2 = 1/2.

j) Use the fact that a suitable multiple of (β̂3−β̂2)/S has a t-distribution
to derive a test of H0 : β2 = β3 versus H1 : β2 6= β3 with level α = 5%.

k) Show that this test of H0 : β2 = β3 rejects H0 if and only if the
confidence interval for β3 − β2 does not contain zero.
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l) Derive the F -test of H0 : β2 = β3 versus H1 : β2 6= β3 with level
α = 5%. Show that this test is the same as the test above based on
the t-distribution.

*4. Two-way analysis of variance without replication. Suppose a researcher
wishes to study the effects of two factors A and B on some response
variable. If A and B both occur at m levels, then there are m2 possible
combinations of factors. If observations are expensive, a design in which
there is a single observation for each treatment combination may be de-
sirable. Let Yij denote the response when factor A is at level i and factor
B is at level j. A common (additive) model for these data has

Yij = αi + γj + ǫij ,

where the ǫij are i.i.d. from N(0, σ2). This can be considered a general
linear model with β = (α1, . . . , αm, γ1, . . . , γm)′.
a) Increasing every parameter αi by an amount ∆ and simultaneously

decreasing every parameter γj by the same amount ∆ leaves the mean
ξ of Y unchanged. So it is clear that r = dim(ω) is less than p = 2m.
Determine the dimension r of ω in this model.

b) Find the least squares estimate for ξij = EYij in this model.
c) Determine S2, the usual unbiased estimator of σ2.
d) Show that αi − αj is a linear function of ξ and determine the least

squares estimate of this difference.
e) Let Y i· = (Yi1 + · · · + Yim)/m, the average response with factor A

at level i. Use the studentized range distribution and the fact that
Y 1·, . . . , Y m· are independent to derive simultaneous 1−α confidence
intervals for all differences αi − αj , 1 ≤ i < j ≤ m.

f) Derive a level 1 − α test of H0 : α1 = · · · = αm versus H1 : αi 6= αj
for some i 6= j.

g) Give the power for this test of α1 = · · · = αm. Your answer should
involve the cumulative distribution function for a noncentral F dis-
tribution. Give the degrees of freedom and provide a formula for the
noncentrality parameter.

h) Use the Scheffé method to derive simultaneous confidence intervals for
all contrasts of the αi, that is, all linear combinations a1α1 + · · · +
amαm with a1 + · · ·+am = 0. Note that these contrasts are estimable
because they can be written as linear combinations of differences α1−
αm, . . . , αm−1 − αm.

5. Time series regression models often incorporate regular oscillation over
time, and in some cases this structure can be incorporated into a general
linear model. Let tj , j = 1, . . . , n, be known time points, and assume

Yj = r sin(tj + θ) + ǫj , j = 1, . . . , n.

Here the errors ǫi are i.i.d. from N(0, σ2), and r > 0, θ ∈ [−π, π), and
σ2 > 0 are unknown parameters. Assume for convenience that the time
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points are evenly spaced with 4k observations per cycle and m cycles, so
that n = 4km and tj = jπ/(2k). With these assumptions,

n
∑

j=1

sin2(tj) =

n
∑

j=1

cos2(tj) = n/2

and
n
∑

j=1

sin(tj) =

n
∑

j=1

cos(tj) =

n
∑

j=1

sin(tj) cos(tj) = 0.

a) Introduce new parameters β1 = r sin θ and β2 = r cos θ. Show that
after replacing r and θ with these parameters, we have a general linear
model.

b) Find UMVU estimators β̂1 and β̂2 for β1 and β2.
c) Find the UMVU estimator of σ2.
d) Derive 95% confidence intervals for β1 and β2.

e) Show that a suitable multiple of r̂2 = β̂2
1 + β̂2

2 has a noncentral chi-
square distribution. Identify the degrees of freedom and the noncen-
trality parameter.

f) Derive a test of H0 : θ = θ0 versus H1 : θ 6= θ0 with level α = 5%.
6. Let β1, . . . , β3 be the angles for a triangle in degrees, so β1 + β2 + β3 =

180; and let Y1, . . . , Y3 be measurements of these angles. Assume that the
measurement errors, ǫi = Yi − βi, i = 1, . . . , 3, are i.i.d. N(0, σ2).

a) Find UMVU estimates β̂1 and β̂2 for β1 and β2.

b) Find the covariance matrix for (β̂1, β̂2) and compare the variance of

β̂1 with Y1.
c) Find an unbiased estimator for σ2.
d) Derive confidence intervals for β1 and β2 − β1.

7. Side conditions when r < p. When r < p, different values for β will give
the same mean ξ = Xβ, and various values for β will minimize ‖Y −Xβ‖2.
One approach to force a unique answer is to impose side conditions on
β. Because the row span and column span of a matrix are the same, the
space V ⊂ Rp spanned by the rows of X will have dimension r < p, and
V ⊥ will have dimension p− r.
a) Show that β ∈ V ⊥ if and only if Xβ = 0.
b) Let ω = {Xβ : β ∈ Rp}. Show that the map β  Xβ from V to ω is

one-to-one and onto.
c) Let h1, . . . , hp−r be linearly independent vectors spanning V ⊥. Show

that β ∈ V if and only if hi · β = 0, i = 1, . . . , p − r. Equivalently,
β ∈ V if and only if Hβ = 0, where H ′ = (h1, . . . , hp−r).

d) From part (b), there should be a unique β̂ in V with Xβ̂ = ξ̂, and β̂

will then minimize ‖Y −Xβ‖2 over β ∈ V . Using part (c), β̂ can be
characterized as the unique value minimizing ‖Y −Xβ‖2 over β ∈ Rp

satisfying the side condition Hβ̂ = 0. Show that β̂ minimizes
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over β ∈ Rp. Use this to derive an explicit equation for β̂.
8. A variable Y has a log-normal distribution with parameters µ and σ2 if

logY ∼ N(µ, σ2).
a) Find the mean and density for the log-normal distribution.
b) If Y1, . . . , Yn are i.i.d. from the log-normal distribution with unknown

parameters µ and σ2, find the UMVU for µ.
c) If Y1, . . . , Yn are i.i.d. from the log-normal distribution with param-

eters µ and σ2, with σ2 a known constant, find the UMVU for the
common mean ν = EYi.

d) In simple linear regression, Y1, . . . , Yn are independent with Yi ∼
N(β1 + β2xi, σ

2). In some applications this model may be inappro-
priate because the Yi are positive; perhaps Yi is the weight or volume
of the ith unit. Suggest a similar model without this defect based on
the log-normal distribution. Explain how you would estimate β1 and
β2 in your model.

9. Consider the general linear model with normality:

Y ∼ N(Xβ, σ2I), β ∈ Rp, σ2 > 0.

If the rank r of X equals p, show that (β̂, S2) is a complete sufficient
statistic.

10. Consider a regression version of the two-sample problem in which

Yi =

{

β1 + β2xi + ǫi, i = 1, . . . , n1;

β3 + β4xi + ǫi, i = n1 + 1, . . . , n1 + n2 = n,

with ǫ1, . . . , ǫn i.i.d. from N(0, σ2). Derive a 1 − α confidence interval for
β4 − β2, the difference between the two regression slopes.

11. Inverse linear regression. Consider the model for simple linear regression,

Yi = β1 + β2(xi − x) + ǫi, i = 1, . . . , n,

studied in Section 14.5.
a) Derive a level α-test of H0 : β2 = 0 versus H1 : β2 6= 0.
b) Let y0 denote a “target” value for the mean of Y . The regression line

β1 + β2(x − x) achieves this value when the independent variable x
equals

θ = x+
y0 − β1

β2
.

Derive a level-α test of H0 : θ = θ0 versus H1 : θ 6= θ0. Hint: You may
want to find a test first assuming y0 = 0. After a suitable transforma-
tion, the general case should be similar.
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c) Use duality to find a confidence region, first discovered by Fieller
(1954), for θ. Show that this region is an interval if the test in part (a)
rejects β2 = 0.

12. Find the mean and variance of the noncentral chi-square distribution on
p degrees of freedom with noncentrality parameter δ2.

*13. Consider a general linear model Y ∼ N(ξ, σ2In), ξ ∈ ω, σ2 > 0 with
dim(ω) = r. Define ψ = Aξ ∈ Rq where q < r, and assume A = AP where

P is the projection onto ω, so that ψ̂ = Aξ̂ = AY , and that A has full
rank q.
a) The F test derived in Section 14.7 allows us to test ψ = 0 versus

ψ 6= 0. Modify that theory and give a level-α test of H0 : ψ = ψ0

versus H1 : ψ 6= ψ0 with ψ0 some constant vector in Rq. Hint: Let
Y ∗ = Y − ξ0 with ξ0 ∈ ω and Aξ0 = ψ0. Then the null hypothesis will
be H∗0 : Aξ∗ = 0.

b) In the discussion of the Sheffé method for simultaneous confidence
intervals,

{

ψ : (ψ − ψ̂)′(AA′)−1(ψ − ψ̂) ≤ qS2Fα,q,n−r
}

was shown to be a level 1− α confidence ellipse for ψ. Show that this
confidence region can be obtained using duality from the family of
tests in part (a).

*14. Analysis of covariance. Suppose

Ykl = βk + β0xkl + ǫkl, 1 ≤ l ≤ c, 1 ≤ k ≤ p,

with the ǫkl i.i.d. from N(0, σ2) and the xkl known constants.
a) If

∑c
l=1 xkl = 0, k = 1, . . . , c, use the studentized maximum modulus

distribution to derive simultaneous confidence intervals for β1, . . . , βp.
b) If

∑c
l=1 x1l =

∑c
l=1 x2l = · · · =

∑c
l=1 xpl, use the studentized range

distribution to derive simultaneous confidence intervals for all differ-
ences βi − βj , 1 ≤ i < j ≤ p. Hint: The algebra will be simpler if you
first reparameterize adding an appropriate multiple of β0 to β1, . . . , βp.

*15. Unbalanced one-way layout. Suppose we have samples from p normal popu-
lations with common variance, but that the sample sizes from the different
populations are not the same, so that

Yij = βi + ǫij , 1 ≤ i ≤ p, j = 1, . . . , ni,

with the ǫij i.i.d. from N(0, σ2).
a) Derive a level-α test of H0 : β1 = · · · = βp versus H1 : βi 6= βj for

some i 6= j.
b) Use the Scheffé method to derive simultaneous confidence intervals for

all contrasts a1β1 + · · · + apβp with a1 + · · · + ap = 0.
16. Factorial experiments. A “24” experiment is a factorial experiment to

study the effects of four factors, each at two levels. The experiment has
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n = 16 as the sample size (called the number of runs), with each run one
of the 16 possible combinations of the four factors. Letting “+” and “−”
be shorthand for +1 and −1, define vectors

x′A = (+,+,+,+,+,+,+,+,−,−,−,−,−,−,−,−),

x′B = (+,+,+,+,−,−,−,−,+,+,+,+,−,−,−,−),

x′C = (+,+,−,−,+,+,−,−,+,+,−,−,+,+,−,−),

x′D = (+,−,+,−,+,−,+,−,+,−,+,−,+,−,+,−),

and let 1 denote a column of ones. A “+1” for the jth entry of one of
these vectors means that factor is set to the high level on the jth run, and
a “−1” means the factor is set to the low level. So, for instance, on run 5,
factors A, C, and D are at the high level, and factor B is at the low level.
The vector Y gives the responses for the 16 runs. In an additive model for
the experiment,

Y = µ1 + θAxA + θBxB + θCxC + θDxD + ǫ,

with the unobserved error ǫ ∼ N(0, σ2I). Parameters θA, θB, θC , and θD
are called the main effects for the factors.
a) Find the least squares estimates for the main effects, and give the

covariance matrix for these estimators.
b) Find the UMVU estimator for σ2.
c) Derive simultaneous confidence intervals for the main effects using the

studentized maximum modulus distribution.
17. Consider the 24 factorial experiment described in Problem 14.16. Let xAB

be the elementwise product of xA with xB,

x′AB = (+,+,+,+,−,−,−,−,−,−,−,−,+,+,+,+),

and define xAC , xAD, xBC , xBD, and xCD similarly. A model with two-
way interactions has

Y = µ1 + θAxA + θBxB + θCxC + θDxD + θABxAB

+ θACxAC + θADxAD + θBCxBC + θBDxBD + θCDxCD + ǫ,

still with ǫ ∼ N(0, σ2I). The additional parameters in this model are
called two-way interaction effects. For instance, θBD is the interaction
effect of factors B and D.
a) Find least squares estimators for the

(

4
2

)

interaction effects, and give
the covariance matrix for these estimators.

b) Derive a test for the null hypothesis that all of the interaction effects
are null, that is,

H0 : xAB = xAC = xAD = xBC = xBD = xCD = 0,

versus the alternative that at least one of these effects is nonzero.
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c) Use the Scheffé method to derive simultaneous confidence intervals for
all contrasts of the two-way interaction effects.

18. Bonferroni approach to simultaneous confidence intervals.
a) Suppose I1, . . . , Ik are 1 − α confidence intervals for parameters

η1 = g1(θ), . . . , ηk = gk(θ), and let γ be the simultaneous coverage
probability,

γ = inf
θ
P
[

ηi ∈ Ii, ∀i = 1, . . . , k
]

.

Use Boole’s inequality (see Problem 1.7) to derive a lower bound for
γ. For a fixed value α∗, what choice for α will ensure γ ≥ 1 − α∗?

b) Suppose the confidence intervals in part (a) are independent. In this
case, what choice for α will ensure γ ≥ 1 − α∗?

c) Consider one-way ANOVA with c = 6 observations from each of p = 4
populations. Compare the Bonferroni approach to simultaneous esti-
mation of the differences βi − βj , 1 ≤ i < j ≤ 4, with the approach
based on the studentized range distribution. Because the Bonferroni
approach is conservative, the intervals should be wider. What is the
ratio of the lengths when 1 − α∗ = 95%? The 95th percentile for the
studentized range distribution with parameters 4 and 20 is 3.96.



15

Bayesian Inference: Modeling and

Computation

This chapter explores several practical issues for a Bayesian approach to in-
ference. The first section explores an approach used to specify prior distribu-
tions called hierarchical modeling, based on hyperparameters and condition-
ing. Section 15.2 discusses the robustness to the choice of prior distribution.
Sections 15.4 and 15.5 deal with the Metropolis–Hastings algorithm and the
Gibbs sampler, simulation methods that can be used to approximate poste-
rior expectations numerically. As background, Section 15.3 provides a brief
introduction to Markov chains. Finally, Section 15.6 illustrates how Gibbs
sampling can be used in a Bayesian approach to image processing.

15.1 Hierarchical Models

Hierarchical modeling is a mixture approach to setting a prior distribution
in stages. It arises when there is a natural family of prior distributions {Λτ :
τ ∈ T} for our unknown parameter Θ. If the value τ characterizing the prior
distribution is viewed as an unknown parameter, then for a proper Bayesian
analysis τ should be viewed as a realization of an unknown random variable T .
With this approach, there are two random parameters, T and Θ. Because the
distribution for our data X depends only on Θ, T is called a hyperparameter.
If G is the prior distribution for T , then the Bayesian model is completely
specified by

T ∼ G, Θ|T = τ ∼ Λτ ,

and
X |T = τ,Θ = θ ∼ Pθ.

Note that in this model,

P (Θ ∈ B) = EP (Θ ∈ B|T ) = EΛT (B) =

∫

Λτ (B) dG(τ),
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DOI 10.1007/978-0-387-93839-4_15, © Springer Science+Business Media, LLC 2010 

301



302 15 Bayesian Inference: Modeling and Computation

which shows that the prior distribution for Θ is now a mixture of distribu-
tions in the family {Λτ : τ ∈ T}. Using this mixture, the hyperparameter T
could be eliminated from the model, although in some situations this may be
counterproductive.

Example 15.1 (Compound Estimation). As a first example, let us consider the
compound estimation problem considered from an empirical Bayes perspective
in Section 11.1. In that section, the parameters Θ1, . . . , Θn were i.i.d. from
N(0, τ2), with the hyperparameter τ viewed as a constant. For a hierarchical
Bayesian analysis, a prior distribution G would be specified for T . Then

Θ|T = τ = N(0, τ2I) and X |T = τ,Θ = θ ∼ N(θ, I).

In this example, if we eliminated the hyperparameter T then the prior
distribution for Θ would not be conjugate and we would not be able to take
advantage of exact formulas based on that structure. If the dimension n is
large, numerical calculations may be a challenge. Keeping T , smoothing leads
to some simplifications. Using (11.1) the Bayes estimator for Θ is

δ = E[Θ|X ] = E
[

E[Θ|X, T ]
∣

∣ X
]

= XE

[ T 2

1 + T 2

∣

∣

∣

∣

X

]

.

As noted in Section 11.1, given T = τ , X1, . . . , Xn are i.i.d. from N(0, 1+τ2),
so the likelihood for τ has a simple form and compound inference can be
accomplished using standard conditioning formulas to compute E

[

T 2/(1 +

T 2)
∣

∣ X
]

. Note that all of the integrals involved are one-dimensional; therefore
a numerical approach is quite feasible.

Example 15.2 (General Linear Model). The general linear model was intro-
duced in Chapter 14. Here we consider Bayesian inference with the error
variance σ2 assumed known. This leaves β as the sole unknown parameter,
viewed as a random vector B, and

Y |B = β ∼ N(Xβ, σ2I),

with X a known n × p matrix. For a prior distribution, proceeding as in the
last example we might take

B ∼ N(0, τ2I).

If κ is the variance ratio σ2/τ2, the posterior distribution is

B|Y = y ∼ N
(

(X ′X + κI)−1X ′Y, σ2(X ′X + κI)−1
)

.

As in the previous example, the posterior mean here still shrinks the UMVU
(X ′X)−1X ′Y towards the origin, although the shrinkage “factor” is now the
matrix (X ′X + κI)−1X ′X instead of a constant.
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The Bayes estimator (X ′X + κI)−1X ′Y is also called a ridge regression
estimator, originally suggested for numerical reasons to help regularize X ′X .

As in the first example, the prior distributions N(0, τ2I) for B here are
indexed by a hyperparameter τ . A hierarchical approach would model τ as a
random variable T from some distribution G.

Example 15.3 (Testing). Another class of examples arises if natural prior
distributions for θ seem appropriate under competing scientific hypotheses.
In these examples the hyperparameter T can be a discrete variable indexing
the competing theories. As a concrete example, the standard model for one-
way ANOVA has Yij ∼ N(θi, σ

2), i = 1, . . . , I, j = 1, . . . , ni, with all n =
n1 + · · · + nI observations independent. If there is reason to believe that all
the θi may be equal, then a prior distribution in which Θ1 ∼ N(µθ, σ

2
θ) with

all other Θi equal to Θ1 may be reasonable, so

Θ ∼ N(µθ1, σ
2
θ11′).

If instead the means differ, the prior

Θ ∼ N(µθ1, σ
2
θI)

may be more natural. If T = 1 or 2 indexes these possibilities, then the
mixture prior for Θ in a hierarchical model would be the convex combination

Θ ∼ P (T = 1)N(µθ1, σ
2
θ11′) + P (T = 2)N(µθ1, σ

2
θI).

15.2 Bayesian Robustness

Ideally, in a Bayesian analysis the prior distribution is chosen to reflect a
researcher’s knowledge and beliefs about the unknown parameter Θ. But in
practice the choice is often dictated to some degree by convenience. Conjugate
priors are particularly appealing here due to simple formulas for the posterior
mean. Unfortunately, the convenience of such priors entails some risk.

To explore robustness issues related to the choice of the prior distribution
in a very simple setting, consider a measurement error model with

X |Θ = θ ∼ N(θ, 1).

Suppose the true prior distribution Λ is a t-distribution on three degrees of
freedom with density

λ(θ) =
2√

3π(1 + θ2/3)2
.

Calculations with this prior distribution are a challenge, so it is tempting to
use a conjugate normal distribution instead. The normal distribution ΛN =
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θ

λ
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Fig. 15.1. Prior densities λ and λN .

N(0, 5/4) seems close to Λ. Densities λ and λN for Λ and ΛN , graphed in
Figure 15.1, are quite similar; the largest difference between them is

sup
θ

|λ(θ) − λN (θ)| = 0.0333,

and |Λ(B) − ΛN (B)| ≤ 7.1% for any Borel set B.
With squared error loss, the Bayes estimator with ΛN as the prior is

δN (X) =
5X

9
,

and its risk function is

x

δ − x

−10 −5 5 10

−4

−2

2

4

Fig. 15.2. Differences δ(x) − x and δN (x) − x.
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Fig. 15.3. Risk functions R(θ, δU ), R(θ, δN), and R(θ, δ).

R(θ, δN ) = E
[(

δN (X) − θ
)2 ∣
∣ Θ = θ

]

=
25 + 16θ2

81
.

The integrated risk of δN under ΛN is

∫

R(θ, δN ) dΛN (θ) =
45

81
,

much better than the integrated risk of 1 for the UMVU δU (X) = X . This
improvement is achieved by the shrinkage towards zero, which improves the
variance of the estimator and introduces little bias when θ is near zero.

The true prior Λ has heavier tails, placing more weight on the region where
δN is more heavily biased and its risk R(θ, δN ) is large. As one might guess, the
Bayes estimator works to minimize risk for large θ with less shrinkage when
|X | is large. This can be seen in Figure 15.2, which graphs the differences δ−δU
and δN − δU . The estimators δ(X) and δN (X) are very similar if |X | < 2, but
as |X | increases, δ(X) moves closer to X . In fact,

δ(x) = x− 4/x+ o(1/x) (15.1)

as x → ±∞. Thus as θ → ±∞, the bias of δ tends to 0 and its risk func-
tion approaches 1, the risk of δU , instead of increasing without bound as the
quadratic risk of δN . Figure 15.3 shows risk functions for δU , δN , and δ.

With the true prior Λ, the integrated risk for δN is
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∫

R(θ, δN ) dΛ(θ) =
73

81
= 0.901,

almost as high as the risk of X . The best possible integrated risk with the
true prior, achieved using the Bayes estimator δ, is

∫

R(θ, δ) dΛ(θ) = 0.482,

which is 46.5% smaller than the integrated risk for δN .

15.3 Markov Chains

Definition 15.4. A sequence of random vectors X0, X1, X2, . . . taking val-
ues in a state space (X ,A) form a (time homogeneous) Markov chain with
transition kernel1 Q, if

P (Xn+1 ∈ B|X0 = x0, . . . , Xn = xn) = P (Xn+1 ∈ B|Xn = xn) = Qxn(B),

for all n ≥ 1, all B ∈ A, and almost all x1, . . . , xn.

Using smoothing, the joint distribution of the vectors in a Markov chain
can be found from the initial distribution for X0 and the transition kernel
Q. The algebra involved can be easily described introducing some convenient
notation. For a probability measure π on (X ,A), define a probability measure
πQ by

πQ(B) =

∫

Qx(B) dπ(x). (15.2)

Note that if πn denotes the distribution for Xn, then by smoothing,

πn+1(B) = P (Xn+1 ∈ B) = EP (Xn+1 ∈ B|Xn)

= EQXn(B) =

∫

Qx(B) dπn(x) = πnQ(B),

and so
πn+1 = πnQ. (15.3)

A distribution π is called stationary if π = πQ. Using (15.3), if the initial
distribution π0 for X0 is stationary, then π2 = π1Q = π1. Further iteration
shows that π1 = π2 = π3 = · · · , so in this case the random vectors in the
chain are identically distributed.

If Q and Q̃ are transition kernels on X , define the product kernel QQ̃ by

1 The kernel Q should satisfy the usual regularity conditions for stochastic transi-
tion kernels: Qx should be a probability measure on (X ,A) for all x ∈ X , and
Qx(B) should be a measurable function of x for all B ∈ A.
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(QQ̃)x = QxQ̃. (15.4)

Taking Q2 def
= QQ, by smoothing,

P (Xn+2 ∈ B|X0 = x0, . . . , Xn = xn)

=

∫

P (Xn+2 ∈ B|X0 = x0, . . . , Xn+1 = xn+1) dQxn(xn+1)

= Q2
xn

(B),

and so Q2 can be viewed as the two-step transition kernel for the Markov
chain. Similarly, the k-fold product Qk gives chances for k-step transitions:

Qkxn
(B) = P (Xn+k ∈ B|X0 = x0, . . . , Xn = xn).

Example 15.5. If the state space X is finite, X = {1, . . . ,m} say, then a dis-
tribution π on X can be specified through its mass function given as a row
vector

π =
[

π
(

{1}
)

, . . . , π
(

{m}
)]

,

and the transition kernel Q can be specified by a matrix Q with

Qij = Qi
(

{j}
)

= P (Xn+1 = j|Xn = i).

If we let πn be the row vector for the distribution of Xn, then

[πn+1]j = P (Xn+1 = j) = EP (Xn+1 = j|Xn) = EQXn({j})
=
∑

i

P (Xn = i)Qi({j}) =
∑

i

[πn]iQij = [πnQ]j .

So
πn+1 = πnQ.

Thus, if distributions are represented as row vectors and transition kernels
are represented as matrices, the “multiplication” in (15.3) becomes ordinary
matrix multiplication. Similarly, if Q and Q̃ are matrices corresponding to
transition kernels Q and Q̃, then

(QQ̃)i({j}) =

∫

Q̃x({j}dQi(x) =
∑

x

QixQ̃xj = [QQ̃]ij

and the matrix representing QQ̃ is simply the matrix product QQ̃.
For a finite Markov chain, because the mass function for Qi sums to 1, we

have
∑

j

Qij = [Q1]i = 1,

and hence
Q1 = 1.
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This shows that 1 is a right-eigenvector for Q with unit eigenvalue. Since πQ is
given by matrix multiplication, a probability distribution π will be stationary
if

π = πQ,

that is, if π is a left-eigenvector of Q with unit eigenvalue. In general, if λ is
an eigenvalue for Q, then |λ| ≤ 1,

Convergence properties for finite Markov chains are commonly related to
the Frobenius theory for positive matrices, covered in Appendix 2 of Karlin
and Taylor (1975). If A is an n× n matrix with eigenvalues λ1, . . . , λn, then
its spectral radius is defined as r = max{|λ1|, . . . , |λn|}.

Theorem 15.6 (Perron–Frobenius). Let A be an n× n matrix with non-
negative entries and spectral radius r, and assume that Am > 0 for some
m > 0. Then

1. The spectral radius r is a simple2 eigenvalue for A, r > 0, and if λ is any
other eigenvalue, |λ| < r.

2. There are left- and right-eigenvectors associated with r with positive en-
tries. Specifically, there is a row vector v and a column vector w with
v > 0, w > 0, vA = rv, and Aw = rw.

3. If v is normalized so that its entries sum to 1 and w is normalized so that
vw = 1, then

r−nAn → wv

as n→ ∞.
4. The spectral radius r satisfies

min
i

∑

j

Aij ≤ r ≤ max
i

∑

j

Aij .

To characterize eigenvalues and convergence properties for finite chains in
regular cases, we need a few definitions. Let

Lx(A) = P (Xn ∈ A, ∃n ≥ 1|X0 = x),

the chance the chain ever visits A if it starts at x. States i and j for a finite
chain are said to communicate if the chain can move from either of the states
to the other; that is, if Li({j}) > 0 and Lj({i}) > 0. If all of the states
communicate, the chain is called irreducible. The chain is called periodic if X
can be partitioned into sets X1, . . . ,Xk, k ≥ 2, and the process cycles between
these sets: if i ∈ Xj , 1 ≤ j ≤ k − 1,

Qi(Xj+1) = P (X1 ∈ Xj+1|X0 = i) = 1,

and if i ∈ Xk, Qi(X1) = 1.

2 An eigenvalue is simple if it is a simple root of the characteristic equation. In this
case, eigenspaces (left or right) will be one-dimensional.
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For finite chains, properties needed for simulation arise when the chain
is irreducible and aperiodic. In this case, it is not hard to argue that Qm >
0, so Q satisfies the conditions of the Perron–Frobenius theorem. Because
Q1 = 1, the spectral radius r for Q must be r = 1 by the fourth assertion
of the theorem. Because r is a simple eigenvalue, there will exist a unique
corresponding left-eigenvector π with entries summing to 1, corresponding to
a unique stationary distribution π for the chain. The mass function for this
distribution can be found by solving the linear equations

π = πQ and π1 = 1.

By the third assertion in the theorem,

Qn → 1π

as n→ ∞. In probabilistic terms, this means that

Xn ⇒ π

as n → ∞, regardless of the initial state (or distribution) for the chain. The
stationary distribution also gives the long run proportion of time the process
spends in the various states, and the following law of large numbers holds:

1

n

n
∑

i=1

f(Xi) →
∫

f dπ,

with probability one, regardless of the initial distribution π0. Using this, the
value for

∫

f dπ can be approximated by simulation, having a computer gen-
erate the chain numerically and averaging the values for f . For an extended
discussion of finite chains, see Kemeny and Snell (1976).

The theory for Markov chains when X is infinite but denumerable is sim-
ilar, although irreducible and aperiodic chains without a stationary distri-
bution are possible; see Karlin and Taylor (1975) or another introduction
to stochastic processes. When X is not denumerable, the relevant theory,
presented in Nummelin (1984) or Meyn and Tweedie (1993), is much more
complicated. For simulation, the most appealing notion of regularity might be
Harris recurrence. Tierney (1994) gives convergence results for the Metropolis–
Hastings algorithm and the Gibbs sampler, discussed in the next two sections.

15.4 Metropolis–Hastings Algorithm

In a Bayesian model, if Θ has density λ and the conditional density ofX given
Θ = θ is pθ, then the posterior density of Θ given X = x is proportional (in
θ) to
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λ(θ)pθ(x).

To compute the posterior density λ(θ|x) we should divide this function by its
integral,

∫

λ(θ)pθ(x) dθ.

In practice, this integral may be difficult to evaluate, explicitly or numeri-
cally, especially if Θ is multidimensional. The Metropolis–Hastings algorithm
is a simulation method that allows approximate sampling from this poste-
rior distribution without computing the normalizing constant. Specifically,
the algorithm gives a Markov chain that has the target law as its stationary
distribution.

To describe the transition kernel Q for the Markov chain, let π denote
a target distribution on some state space X with density f with respect to
a dominating measure µ. The chain runs by accepting or rejecting potential
states generated using a transition kernel J with densities jx = dJx/dµ. The
chances for accepting or rejecting a new value are based on a function r given
by

r(x0, x
∗) =

f(x∗)/jx0(x
∗)

f(x0)/jx∗(x0)
.

Note that r can be computed if f is only known up to a proportionality
constant. Let X0 denote the initial state of the chain. Given X0 = x0, a
variable X∗ is drawn from Jx0 , so

X∗|X0 = x0 ∼ Jx0 .

The next state for the Markov chain, X1, will be either X0 or X∗, with

P (X1 = X∗|X0 = x0, X
∗ = x∗) = min{r(x0, x

∗), 1}.

Thus

P (X1 ∈ A|X0 = x0, X
∗ = x∗)

= 1A(x∗)min{r(x0, x
∗), 1} + 1A(x0)

(

1 − min{r(x0, x
∗), 1}

)

.

Integrating against the conditional distribution for X∗ given X0 = x0, by
smoothing

Qx0(A)
def
= P (X1 ∈ A|X0 = x0)

= 1A(x0) +

∫

A

min{r(x0, x
∗), 1}jx0(x

∗) dµ(x∗)

− 1A(x0)

∫

min{r(x0, x
∗), 1}jx0(x

∗) dµ(x∗).

To check that π is a stationary distribution for the chain with transition
kernel Q we need to show that if X0 ∼ π, then X1 ∼ π. If X0 ∼ π, then by
smoothing,
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P (X1 ∈ A) = EP (X1 ∈ A|X0) = EQX0(A) =

∫

Qx0(A) dπ(x0).

Because
∫

1A(x0) dπ(x0) = π(A), this will hold if

∫∫

min{r(x0, x
∗), 1}1A(x∗)f(x0)jx0(x

∗) dµ(x0) dµ(x∗)

=

∫∫

min{r(x0, x
∗), 1}1A(x0)f(x0)jx0(x

∗) dµ(x0) dµ(x∗).

Using the formula for r, this equation becomes

∫∫

min{f(x∗)jx∗(x0), f(x0)jx0(x
∗)}1A(x∗) dµ(x0) dµ(x∗)

=

∫∫

min{f(x∗)jx∗(x0), f(x0)jx0(x
∗)}1A(x0) dµ(x0) dµ(x∗),

which holds by Fubini’s theorem.
Convergence of the Metropolis–Hastings algorithm is discussed in Tierney

(1994). Turning to practical considerations, several things should be consid-
ered in choosing the jump kernel J . First, it should be easy to sample values
from Jx, and the formula to compute r should be simple. In addition, J should
move easily to all relevant areas of the state space and jumps should not be
rejected too often.

15.5 Gibbs Sampler

The Gibbs sampler is based on alternate sampling from the conditional dis-
tributions for the target distribution π. If (X,Y ) ∼ π, let R denote the condi-
tional distribution of X given Y , and let R̃ denote the conditional distribution
of Y given X . If (X0, Y0) is the initial state for the Markov chain, then we find
(X1, Y1) by first samplingX1 fromR and then drawing Y1 from R̃. Specifically,

X1|X0 = x0, Y0 = y0 ∼ Ry0

and
Y1|X0 = x0, Y0 = y0, X1 = x1 ∼ R̃x1 .

Continuing in this fashion, (Xi, Yi), i ≥ 0 is a Markov chain.
The Gibbs sampler can be easily extended to joint distributions for more

than two variables (or vectors). If we are interested in simulating the joint
distribution of X , Y , and Z, say, we could generate a new X sampling from
the conditional distribution for X given Y and Z, then generate a new Y from
the conditional distribution of Y given X and Z, then generate a new Z from
the conditional distribution of Z given X and Y , and so on.
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The Gibbs sampler is useful in simulation mainly through dimension re-
duction. Sampling from a univariate distribution is typically much easier than
multivariate sampling. If a better approach is not available, univariate simu-
lation is possible using the probability integral transformation whenever the
cumulative distribution function is available. Also, note that if the target dis-
tribution π is absolutely continuous with density f proportional to a known
function g, then, in order to compute f from g, we would normalize g dividing
by its integral,

∫∫

g(x, y) dx dy.

In contrast, to find conditional densities we would normalize g dividing by

∫

g(x, y) dx or

∫

g(x, y) dy.

The normalization for the conditional distributions needed for Gibbs sampling
involves univariate integration instead of the multiple integration needed to
find the joint density.

To check that the Gibbs sampler has π as a stationary distribution, let πX
and πY denote the marginal distributions of X and Y when (X,Y ) ∼ π. By
smoothing,

P
[

(X,Y ) ∈ A
]

= EE
[

1A(X,Y )
∣

∣ Y
]

=

∫∫

1A(x, y) dRy(x) dπY (y), (15.5)

and reversing X and Y ,

P
[

(X,Y ) ∈ A
]

=

∫∫

1A(x, y) dR̃x(y) dπX(x). (15.6)

Suppose we start the chain with distribution π, so (X0, Y0) ∼ (X,Y ). Then
by smoothing, since Y0 ∼ πY and the conditional distribution of X1 given Y0

is R,

P
[

(X1, Y0) ∈ A
]

= EE
[

1A(X1, Y0)
∣

∣ Y0

]

=

∫∫

1A(x, y) dRy(x) dπY (y).

Comparing this with (15.5), (X1, Y0) ∼ π. In particular, X1 ∼ πX . Smoothing
again, since R̃ is the conditional distribution of Y1 given X1,

P
[

(X1, Y1) ∈ A
]

= EE
[

1A(X1, Y1)
∣

∣ X1

]

=

∫∫

1A(x, y) dR̃x(y) dπX(x).

Comparing this with (15.6), (X1, Y1) ∼ (X,Y ) ∼ π, which shows that π is
stationary.
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15.6 Image Restoration

Gibbs sampling was introduced in a landmark paper by Geman and Geman
(1984) on Bayesian image restoration. The example here is based on this work
with a particularly simple form for the prior distribution. The unknown image
is represented by unknown greyscale values Θz at nm pixels z = (i, j) in a
rectangular grid T :

z = (i, j) ∈ T def
= {1, . . . ,m} × {1, . . . , n}.

Given Θ = θ, observed data Xz, z ∈ T , are independent with

Xz ∼ N(θz, σ
2), z ∈ T , (15.7)

and σ2 considered known.
In real images, greyscale values at nearby pixels are generally highly corre-

lated, whereas well-separated pixels are nearly uncorrelated. For good perfor-
mance, correlations for the prior distribution for Θ should have similar form.
For simplicity we restrict attention here to normal distributions. In one di-
mension, the autoregressive model in Example 6.4 has these features; it is not
hard to show that Cor(Xi, Xj) = ρ|i−j|. The joint density in that example is
proportional to

exp

[

−a
2

n
∑

i=1

x2
i + b

n−1
∑

i=1

xixi+1

]

,

where the constants a and b satisfy |b| < a/2, which ensures that this expres-
sion is integrable. To construct a prior density for Θ with a similar form, call
a set of two pixels {z1, z2} ∈ T 2 an edge if ‖z1 − z2‖ = 1 and let E denote the
set of all edges. The priors of interest here have form

λ(θ) ∝θ exp



−a
2

∑

z

θ2z + b
∑

{z1,z2}∈E
θz1θz2



 . (15.8)

For integrability, assume |b| < a/4. Neglecting effects that arise near the edge
of the image,

σ2
Θ

def
= Var(Θz) =

2K
(√
η
)

aπ
,

where η = 4b/a and K is the complete elliptic integral of the first kind, given3

by

K(x) =

∫ π/2

0

dφ
√

1 − x2 sin2(φ)
=
π

2

∞
∑

n=0

(

x2

16

)n(
2n

n

)2

.

Also, if z1 and z2 are adjacent pixels, then

3 Different sources use slightly different definitions.
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ρ
def
= Cor(Θz1 , Θz2) =

2K
(√
η
)

− π

2ηK
(√
η
) .

Solving,

2K
(√
η
)

=
π

1 − ρη
.

As η increases to 1, K
(√
η
)

increases without bound, and so ρ ↑ 1 as η ↑ 1.

By results in Cody (1965), K
(√
η
)

∼ log
[

4/(1− η)
]

as η ↑ 1. From this, when
ρ is near 1,

η ≈ 1 − 4 exp

[

− π

2(1 − ρ)

]

,

and so

a ≈ 1

σ2
Θ(1 − ρ)

and b ≈ a

4
− a exp

[

− π

2(1 − ρ)

]

, (15.9)

relating a and b in the prior density to σ2
Θ and ρ.

The prior density in (15.8) has an interesting and useful structure. Suppose
we let z1, . . . , z4 denote the pixels adjacent to some pixel z. If we fix the
values for θ at these pixels, then λ factors into a function of θz and a function
of θs at the remaining nm − 5 pixels. From this, given Θz1 , . . . , Θz4 , Θz is
conditionally independent of the image values at the remaining pixels. This
conditional independence might be considered a Markov property, and the
distribution for Θ here is called a Markov random field. Building on this idea,
let us divide T into “even” and “odd” pixels:

T1 = {(i, j) ∈ T : i+ j odd} and T2 = {(i, j) ∈ T : i+ j even}.

If we fix the values for θz, z ∈ T1, then λ(θ) has form
∏

z∈T2 fz(θz). Thus
given Θz , z ∈ T1, the Θz , z ∈ T2, are conditionally independent. Below we
show that posterior distributions have this same structure.

Taking τ = 1/σ2, the “precision” of the Xz, by (15.7) the density for X
given Θ = θ is

pθ(x) ∝θ exp

[

−τ
2

∑

z∈T
θ2z + τ

∑

z∈T
θzxz

]

.

Therefore the conditional density for Θ given X = x is

λ(θ|x) = c(x) exp



−a+ τ

2

∑

z∈T
θ2z + τ

∑

z∈T
θzxz + b

∑

{z1,z2}∈E
θz1θz2



 , (15.10)

with c(x) chosen as usual so that
∫

· · ·
∫

λ(θ|x) dθ = 1. With the quadratic
structure, this conditional density must be normal. The mean can be found
solving linear equations to minimize the quadratic function of θ in the expo-
nent, and the covariance is minus one half the inverse of the matrix defining
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the quadratic form in θ. With modern computing these calculations may be
possible, but the nm×nm matrices involved, although sparse, are very large.
Thus Gibbs sampling may be an attractive alternative.

To implement Gibbs sampling, we need to determine the relevant condi-
tional distributions. Let Nz denote the pixels neighboring z ∈ T ,

Nz =
{

z̃ ∈ T : ‖z̃ − z‖ = 1
}

,

and define
Sz =

∑

z̃∈Nz

θz̃,

the sum of the θ values at pixels neighboring z. Isolating the terms in (15.10)
that depend on θz , λ(θ|x) is

exp

[

−a+ τ

2
θ2z + θz

(

τxz + bSz)

]

(15.11)

times a term that is functionally independent of θz . As a function of θz ,
the expression in (15.11) is proportional to a normal density with variance
1/(a+ τ) (or precision a+ τ) and mean

τxz + bSz
a+ τ

.

With the product structure, given Θz̃ = θz̃, z̃ ∈ T1, the Θz for z ∈ T2 are
conditionally independent with

Θz |Θz̃ = θz̃, z̃ ∈ T1, X = x ∼ N

(

τxz + bSz
a+ τ

,
1

a+ τ

)

, z ∈ T2, (15.12)

with a similar result for the conditional distribution of the image given values
at pixels in T2.

The conditional distributions just described are exactly what we need
to implement Gibbs sampling from the posterior distribution of the image.
Starting with image values at pixels in T1, independent values at pixels in
T2 would be drawn using the conditional marginal distributions in (15.12).
Reversing the sets T1 and T2, values at pixels in T1 would next be drawn inde-
pendently from the appropriate normal distributions. Iterating, the posterior
mean should be close to the average values in the simulation.

To illustrate how this approach works in practice, let us consider a numer-
ical example. The true θ is a 99 × 64 image of the letter A, displayed as the
first image in Figure 15.4. The value for θ at “dark” pixels is 0 and the value
at “light” pixels is 5. The second image in Figure 15.4 shows the raw data X ,
drawn from a normal distribution with mean θ and covariance 9I, so σ = 3.

By symmetry, the mean for the prior distribution λ in (15.8) is zero. But
the average greyscale value in the true image θ is 4.1477, which is significantly
different. It seems natural, although a bit ad hoc, to center the raw data by
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Fig. 15.4. Left to right: True image θ, raw data X, undersmoothed, matched co-
variance, oversmoothed.

subtracting the overall average X =
∑

z∈T Xz/(nm) from the greyscale value
at each pixel, before proceeding with our Bayesian analysis. After processing,
we can add X back to the posterior mean. Results doing this should be similar
to those obtained using a normal prior with mean X for Θ, or (more properly)
following a hierarchical approach in which the mean for Θ is an additional
hyperparameter and this parameter has a reasonably diffuse distribution.

Empirical estimates for σ2
Θ and ρ, based on the true θ, are 3.5350 and

0.8565, respectively. Using (15.9) these values correspond to a = 1.971 and
b = 0.493. With these values, the prior variance and covariance between values
at adjacent pixels will match the empirical values for the true image, and it
seems reasonable to hope for excellent restoration using this prior. Of course
in practice the true image and associated moments are unknown. For com-
parison, we have also done an analysis with two other priors. In both, we take
σ2
Θ = 3.5350, matching the empirical variance for the true θ. But in one of

the priors we take ρ = 0.70 and in the other we take ρ = 0.95. Since higher
values for ρ give smoother images Θ, we anticipate that the posterior mean
will undersmooth X when ρ = 0.70 and oversmooth X when ρ = 0.95. The
final three images in Figure 15.4 show posterior means for these three prior
distributions, which can be found by Gibbs sampling.4

Evaluating the performance of an image restoration method is perhaps
a bit subtle. In Figure 15.4, the three posterior means look more like the
true image than the raw data, but the raw data X seems visually almost
as “clear.” One measure of performance might be the average mean square
error, MSE =

∑

z(θ̂ − θ)2/(nm). The raw data X is the UMVU estimator
here and has MSE = 9.0016, very close to the expected MSE which is exactly
9, the common variance of the Xz. Mean squared errors for the posterior
means are 0.9786, 1.0182, and 1.5127 for the undersmoothed, matched, and
oversmoothed priors, respectively. Surprisingly, by this measure the image
using the undersmoothed prior is a bit better than the image that matches
the covariance between values at adjacent pixels.

4 Actually, taking advantage of the normal structure in this particular example,
means for the Gibbs sampling Markov chain can be found recursively and con-
verge to the posterior mean. This approach was used to produce the images in
Figure 15.4, iterating the recursion numerically. See Problem 15.9.
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15.7 Problems

1. Consider Example 15.3 in the balanced case where n1 = · · · = nI . Derive
a formula for

P [T = 1|Yij , i = 1, . . . , I, j = 1, . . . , nj ].

2. Verify the relation (15.1).
3. Find the stationary distribution for a Markov chain on X = R with kernel
Q given by

Qx = N(cx, 1), x ∈ R,

where c is a fixed constant with |c| < 1.
4. Let Q be the transition kernel for a Markov chain on X = {0, 1, 2, . . .}

given by

Qij =



















1, i = 0, j = 1;

1/2, i > 0, j = i+ 1;

1/2, i > 0, j = 0;

0, otherwise,

where Qij
def
= Qi({j}). (Here Q might naturally be viewed as an infinite-

dimensional transition matrix.) So at each stage, this chain has an equal
chance of increasing by one or falling back to zero. The Markov chain with
transition kernel Q has a unique stationary distribution π. Find the mass
function for π.

5. Consider using the Metropolis–Hastings algorithm to sample from the
standard normal distribution. Assume that the jump kernel J is given by

Jx = N(x/2, 1), x ∈ R.

Give a formula for r and find the chance the chain does not move when
it is at position x; that is, P (X1 = x|X0 = x).

6. Consider using the Metropolis–Hastings algorithm to sample from a dis-
crete distribution on X = {1, . . . , 5} with mass function

f(x) = cx, x = 1, . . . , 5,

for some constant c. Suppose the transition matrix for the jump kernel J
is

J =













1/2 1/2 0 0 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
0 0 0 1/2 1/2













.

Find the transition matrix Q for the Metropolis–Hastings chain. Check
that the vector π corresponding to the mass function f is a left-eigenvector
for Q with unit eigenvalue.
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7. Consider Gibbs sampling with target distribution

π = N

((

0

0

)

,

(

1 ρ

ρ 1

))

.

Find π1 and π2 if X0 = x and Y0 = y, so that π0 is a point mass at (x, y).
8. Consider Gibb’s sampling for an absolutely continuous distribution with

density

f(x, y) =

{

ce−x−y−xy, x > 0, y > 0;

0, otherwise,

for some constant c. Find the joint density of X1 and Y1 if X0 = Y0 = 1.
9. Consider using Gibbs sampling for the posterior distribution of an image

in the model considered in Section 15.6. Let Θ(n), n ≥ 0, be images
generated by Gibbs simulation, and let µ(n) denote the mean of Θ(n).
Use smoothing and (15.12) to derive an equation expressing µ(n + 1) as
a function of µ(n). These means µ(n) converge to the true mean of the
posterior distribution as n → ∞, so the equation you derive can be used
to find the posterior mean by numerical recursion.

10. Consider Bayesian image restoration for the model considered in Sec-
tion 15.6 when the prior density has form

λ(θ) ∝θ exp



−a
2

∑

z

θ2z + b
∑

{z1,z2}∈E1
θz1θz2 + c

∑

{z1,z2}∈E2
θz1θz2



 ,

where
E1 =

{

(z1, z2) ∈ T 2 : ‖z1 − z2‖ = 1
}

and
E2 =

{

(z1, z2) ∈ T 2 : ‖z1 − z2‖ =
√

2
}

.

With this prior, it is natural to partition the pixels T into four sets, T00,
T01, T10, and T11, given by

Tab =
{

(i, j) ∈ T : i ≡ a (mod 2), j ≡ b (mod 2)
}

,

for a = 0, 1 and b = 0, 1. Describe how to implement Gibb’s sampling
from the posterior distribution in this case. As in (16.11), for z ∈ T00 find
the conditional distribution of Θz given Θz̃ = θz̃, z̃ ∈ T01 ∪ T10 ∪ T11, and
X = x.



16

Asymptotic Optimality1

In a rough sense, Theorem 9.14 shows that the maximum likelihood estimator
achieves the Cramér–Rao lower bound asymptotically, which suggests that it
is asymptotically fully efficient. In this chapter we explore results on asymp-
totic optimality formalizing notions of asymptotic efficiency and showing that
maximum likelihood or similar estimators are efficient in regular cases. No-
tions of asymptotic efficiency are quite technical and involved, and the treat-
ment here is limited. Our main goal is to derive a result from Hájek (1972),
Theorem 16.25 below, which shows that the maximum likelihood estimator is
locally asymptotically minimax.

To motivate later results, the first section begins with a curious example
that shows why simple approaches in this area fail.

16.1 Superefficiency

Suppose X1, X2, . . . are i.i.d. with common density fθ, θ ∈ Ω. By the Cramér–
Rao lower bound, if δn = δn(X1, . . . , Xn) is an unbiased estimator of g(θ),
then

Varθ(δn) ≥
[

g′(θ)
]2

nI(θ)
,

where

I(θ) = Eθ

(

∂

∂θ
log fθ(Xi)

)2

is the Fisher information for a single observation. Suppose we drop the as-
sumption that δn is unbiased, but assume it is asymptotically normal:

1 From Section 16.3 on, the results in this chapter are very technical. The material
on contiguity in Section 16.2 is needed for the discussion of generalized likelihood
ratio tests in Chapter 17, but results from the remaining sections are not used in
later chapters.
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√
n
(

δn − g(θ)
)

⇒ N
(

0, σ2(θ)
)

.

This seems to suggest that δn is almost unbiased and that

Varθ(
√
nδn) → σ2(θ).

(This supposition is not automatic, but does hold if the sequence n
(

δn−g(θ)
)2

is uniformly integrable.) It seems natural to conjecture that

σ2(θ) ≥
[

g′(θ)
]2

I(θ)
.

But the following example, discovered by Hodges in 1951, shows that this con-
jecture can fail. The import of this counterexample is that a proper formula-
tion of asymptotic optimality will need to consider features of an estimator’s
distribution beyond the asymptotic variance.

Example 16.1. Let X1, X2, . . . be i.i.d. from N(θ, 1) and take Xn = (X1 +
· · · +Xn)/n. Define δn, graphed in Figure 16.1, by

δn =

{

Xn, |Xn| ≥ 1/n1/4;

aXn, |Xn| < 1/n1/4,

where a is some constant in (0, 1). Let us compute the limiting distribution
of

√
n(δn − θ).

Suppose θ < 0. Fix x and consider

Pθ
(√
n(δn − θ) ≤ x

)

= P (δn ≤ θ + x/
√
n).

Since θ+x/
√
n→ θ < 0 and −1/n1/4 → 0, for n sufficiently large, θ+x/

√
n <

−1/n1/4, and then

Pθ
(√
n(δn − θ) ≤ x

)

= Pθ(Xn ≤ θ + x/
√
n) = Φ(x).

So in this case,
√
n(δn − θ) ⇒ N(0, 1). A similar calculation shows that√

n(δn − θ) ⇒ N(0, 1) when θ > 0.
Suppose now that θ = 0. Fix x and consider

Pθ(
√
nδn ≤ x) = Pθ(δn ≤ x/

√
n).

For n sufficiently large, a|x| will be less than n1/4, or, equivalently, a|x√n| <
1/n1/4, and then

P0(
√
nδn ≤ x) = P0(aXn ≤ x/

√
n) = Φ(x/a).

This is the cumulative distribution function for N(0, a2). So when θ = 0,√
n(δn − θ) ⇒ N(0, a2).

These calculations show that in general,
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δn

θ + x/
√
n

1/n1/4

a/n1/4

x/
√
n

−a/n1/4

−1/n1/4

θ + x/
√
n

θ+ x√
n

−1

n1/4

x

an1/4
1

n1/4
θ+ x√

n

X

Fig. 16.1. The Hodges’ estimator δn.

√
n(δn − θ) ⇒ N

(

0, σ2(θ)
)

, (16.1)

where

σ2(θ) =

{

1, θ 6= 0;

a2, θ = 0.

This estimator is called “superefficient” since the variance of the limiting
distribution when θ = 0 is smaller than 1/I(θ) = 1.

Because
√
n(Xn − θ) ∼ N(0, 1), (16.1) seems to suggest that δn may be

a better estimator than Xn when n is large. To explore what is going on, let
us consider the risk functions for these estimators under squared error loss.
Since R(θ,Xn) = Eθ(Xn − θ)2 = 1/n, nR(θ,Xn) = 1. It can be shown that

nR(θ, δn) →
{

1, θ 6= 0;

a2, θ = 0,

as one might expect from (16.1). But comparison of δn and Xn by pointwise
convergence of their risk functions scaled up by n does not give a complete
picture, because the convergence is not uniform in θ. One simple way to see
this is to note (see Figure 16.1) that δn never takes values in the interval
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nR(θ, δn)

3

−0.5 0.5
θ

� n = 500

� n = 100

Fig. 16.2. Scaled risk of δn with n = 100 and n = 500 (a = 1/2).

(

a

n1/4
,

1

n1/4

)

.

If we define

θn =
1 + a

2n1/4

to be the midpoint of this interval, then δn will always miss θn by at least half
the width of the interval, and so

(δn − θn)
2 ≥

(

1 − a

2n1/4

)2

=
(1 − a)2

4
√
n

.

From this,

nR(θn, δn) ≥ n
(1 − a)2

4
√
n

=
(1 − a)2

4

√
n→ ∞,

as n→ ∞. This shows that for large n the risk of δn at θn will be much worse
than the risk of Xn at θn. Figure 16.2 plots n times the risk function for δn
when n = 100 and n = 500 with a fixed at 1/2. As n increases, the improved
risk near zero does not seem sufficient compensation for the worsening risk
nearby.



16.2 Contiguity 323

16.2 Contiguity

Recall that a measure Q̃ is absolutely continuous with respect to another
measure Q if Q̃(N) = 0 whenever Q(N) = 0. To impart a statistical conse-
quence to this notion, suppose we are interested in testing H0 : X ∼ Q versus
H1 : X ∼ Q̃. If the level α = E0ϕ(X) is zero, then N = {x : ϕ(x) > 0} is
a null set under Q, and must then also be a null set under Q̃. So the power
β = E1ϕ(X) must also be zero. Conversely, β > 0 implies α > 0. If the mea-
sures Q and Q̃ are mutually absolutely continuous, α < 1 implies β < 1. In
this sense the competing distributions Q and Q̃ are hard to distinguish, at
least perfectly.

Contiguity might be viewed as an asymptotic notion of absolute continuity.
It concerns two sequences of distributions, Q̃n and Qn, n = 1, 2, . . . . These
might be viewed as competing joint distributions for data, with n representing
the sample size. So Q̃n and Qn are defined on a common measurable space
(Xn,An), but these spaces generally vary with n. For instance, Xn would be
Rn if n is the sample size and the individual observations are univariate.

Definition 16.2. The measures Q̃n are contiguous to the measures Qn if
Q̃n(An) → 0 whenever Qn(An) → 0.

Contiguity can also be framed in the statistical context of simple versus
simple testing. Suppose ϕn, n ≥ 1, are tests of H0 : X ∼ Qn versus H1 :
X ∼ Q̃n with levels αn = E0ϕn(X) and powers βn = E1ϕn(X). If Q̃n are
contiguous to Qn and αn → 0 then βn → 0. If the sequences are mutually
contiguous (i.e., Qn is also contiguous to Q̃n), then βn → 1 implies αn → 1. In
this sense the competing hypotheses remain hard to distinguish as n increases
without bound.

Example 16.3. Suppose

Qn = Nn(µn, σ
2I) and Q̃n = Nn(νn, σ

2I)

where µn and νn in Rn, n ≥ 1. By the Neyman–Pearson lemma, the best level
α test of H0 : X ∼ Qn versus H1 : X ∼ Q̃n rejects H0 if

(νn − µn) · (X − µn) > σ‖µn − νn‖zα
and has power

Φ

(‖µn − νn‖
σ

− zα

)

.

Suppose M = lim sup ‖µn − νn‖ < ∞, and let An, n ≥ 1, be Borel sets
with An ⊂ Rn. The function 1An , viewed as a test of H0 versus H1 has level
αn = E01An = Qn(An) and power E11An = Q̃n(An). But the power of this
test is at most that of the optimal test, and so

Q̃n(An) ≤ Φ

(‖µn − νn‖
σ

− zαn

)

.
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But if Qn(An) = αn → 0, then zαn → ∞, and from this bound, Q̃n(An) must
also tend to zero. This shows that Q̃n, n ≥ 1, are contiguous to Qn, n ≥ 1. And
because we could reverse the roles of µn and νn without changing ‖µn − νn‖,
when lim sup ‖µn − νn‖ <∞ the sequences will be mutually contiguous.

Suppose instead that ‖µn − νn‖ → ∞. If we take

An =
{

x ∈ Rn : (νn − µn) ·
(

x− 1
2 (µn + νn)

)

> 0
}

,

corresponding to the critical region for a symmetric likelihood ratio test, then

Qn(An) = Φ

(

− 1

2σ
‖µn − νn‖

)

→ 0

and

Q̃n(An) = Φ

(

1

2σ
‖µn − νn‖

)

→ 1.

So in this case the measures are not contiguous. Taking subsequences, they
are also not contiguous if lim sup ‖µn − νn‖ = ∞.

If µn = θ1 and νn = (θ + δn)1, then under Qn the entries of X are i.i.d.
from N(θ, σ2), and under Q̃n the entries are i.i.d. from N(θ + δn, σ

2). In
this case the sequences will be contiguous if lim supnδ2n < ∞. This may be
interpreted as meaning that shifts in the common mean of order 1/

√
n cannot

be detected with probability approaching one. This sort of behavior is typical
in regular models; see Theorem 16.10 below.

Considering the role of the Neyman–Pearson lemma in this example, it
seems natural that contiguity should be related to likelihood ratios. The notion
of uniform integrability also plays a role. If X is integrable, then E|X |I

{

|X | ≥
t
}

→ 0, as t → ∞, by dominated convergence, and our Definition 8.15 of
uniform integrability asserts that this holds uniformly over a collection of
random variables.

Lemma 16.4. Suppose Q̃n ≪ Qn with Ln the density (or likelihood ratio)
dQ̃n/dQn. Let Xn ∼ Qn. If the likelihood ratios Ln(Xn), n ≥ 1, are uniformly
integrable, then the measures Q̃n are contiguous to the measures Qn.

As in Lemma 12.18, the likelihood ratios Ln would usually be computed
as p̃n/pn, with p̃n and pn the densities of Q̃n and Qn with respect to some
measure µn.

Proof. Using Ln, and letting E denote expectation when Xn ∼ Qn, we have
the following bound, valid for any t > 0:

Q̃n(An) =

∫

An

Ln dQn = ELn(Xn)I{Xn ∈ An}

≤ tEI{Xn ∈ An} + ELn(Xn)I{Ln(Xn) ≥ t}.
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The first term in this bound is tQn(An), which tends to zero if Qn(An) → 0.
So in this case

lim sup Q̃n(An) ≤ lim supELn(Xn)I{Ln(Xn) ≥ t}.

Using uniform integrability, the right-hand side here tends to zero as t→ ∞,
and so lim sup Q̃n(An) must be zero, proving the lemma. ⊓⊔

The next result shows that convergence in probability remains in effect
following a shift to a contiguous sequence of distributions.

Proposition 16.5. Suppose Xn ∼ Qn and X̃n ∼ Q̃n, let Tn be an arbitrary
sequence of estimators, and assume Q̃n, n ≥ 1, are contiguous to Qn, n ≥
1. If Tn(Xn)

p→ c, then Tn(X̃n)
p→ c. Similarly, if Tn(Xn) = Op(1), then

Tn(X̃n) = Op(1).

Proof. From the definition of convergence in probability, for any ǫ > 0,

P
(

|Tn(Xn) − c| ≥ ǫ
)

→ 0.

Viewing this probability as the Qn-measure of a set, by contiguity

P
(

|Tn(X̃n) − c| ≥ ǫ
)

→ 0,

and since ǫ is an arbitrary positive number, Tn(X̃n)
p→ c. The second assertion

can be established with a similar argument. ⊓⊔

To state the final result about contiguity in its proper generality, we again
want to view functions as points in a vector space, as we did in Section 12.5,
now with a different notion of convergence. Given a measure µ on (X ,B), let

L2(µ) =

{

f :

∫

f2 dµ <∞
}

,

and define the L2-length of a function f ∈ L2(µ) as

‖f‖2 =

(∫

f2 dµ

)1/2

.

Then ‖f−g‖2 represents the distance between two functions f and g in L2(µ),
and with this distance L2(µ) is a metric space,2 similar in many respects to
Rn. Using this distance we have the following natural notions of convergence
and differentiation.

2 To be more precise, L2(µ) is a pseudometric space, because ‖f − g‖ can be zero
for functions f 6= g if they differ only on a null set. It would be a proper metric
space if we were to introduce equivalence classes of functions and consider two
functions the same if they agreed almost everywhere.
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Definition 16.6. A sequence of functions fn ∈ L2(µ) converges in L2 to

f ∈ L2(µ), denoted fn
L2→ f , if ‖fn − f‖2 → 0.

Definition 16.7. A mapping θ  fθ from R to L2(µ) is differentiable in
quadratic mean at θ0 with derivative V if V ∈ L2(µ) and

fθ0+ǫ − fθ0
ǫ

L2→ V,

as ǫ→ 0.

When the domain of the map is Rp, the derivative, analogous to the gra-
dient in multivariate calculus, will be a vector-valued function. First-order
Taylor approximation should give fθ0+ǫ ≈ fθ0 + ǫ · V , which motivates the
following definition.

Definition 16.8. A mapping θ  fθ from Rp to L2(µ) is differentiable in
quadratic mean at θ0 with derivative V if

∫

‖V ‖2 dµ <∞ and

fθ0+ǫ − fθ0 − ǫ · V
‖ǫ‖

L2→ 0,

as ǫ→ 0.

This notion of differentiation is generally weaker than pointwise differentia-
bility. In most cases the following lemma allows us to compute this derivative
as the gradient, provided it exists.

Lemma 16.9. Let θ  fθ be a mapping from Rp to L2(µ). If ∇θfθ(x) exists
for almost all x, for θ in some neighborhood of θ0, and if

∫

‖∇θfθ‖2 dµ

is continuous at θ0, then the mapping is differentiable in quadratic mean at
θ0 with derivative the gradient ∇θfθ evaluated at θ = θ0.

Returning to statistics, let P = {Pθ : θ ∈ Ω} be a dominated family with
densities pθ, θ ∈ Ω, and assume for now that Ω ⊂ R. Then the functions

√
p
θ

can be viewed as points in L2(µ). When ordinary derivatives exist, (4.14) and
the chain rule give

I(θ) =

∫ (

∂ log pθ
∂θ

)2

pθ dµ = 4

∫ (

∂
√
pθ

∂θ

)2

dµ.

This suggests the following definition for Fisher information:

I(θ) = 4‖Vθ‖2
2, (16.2)
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with Vθ the quadratic mean derivative of θ  
√
pθ. This definition is more

general and proper than the formulas given earlier that require extra regular-
ity. And the next result shows that the regularity necessary to define Fisher
information in this way gives contiguity in i.i.d. models with parameter shifts
of order 1/

√
n.

Theorem 16.10. If P = {Pθ : θ ∈ Ω} is a dominated family with densities
pθ, and if θ  

√
p
θ

is differentiable in quadratic mean at θ0, then the measures
Pn
θ0+∆/

√
n
, n ≥ 1, are contiguous to measures Pnθ0 , n ≥ 1.

16.3 Local Asymptotic Normality

Previous chapters provide a fair amount of information about optimal estima-
tion sampling from a normal distribution with unknown mean. For instance,
if X ∼ N(θ, 1), θ ∈ R, then X is complete sufficient, and it is the UMVU and
best equivariant estimator of θ under squared error loss. And under squared
error loss, it is also minimax, minimizing supθ Eθ(δ − θ)2. This is established
and generalized in Section 16.6.

In large samples, the maximum likelihood estimator θ̂ is approximately
normal (after suitable rescaling). If θ̂ provides most of the information from
the data, it would be natural to hope that inference from large samples may
be similar to inference sampling from a normal distribution. Naturally, this
will involve some rescaling, because with large samples small changes in pa-
rameter values will be noticeable from our data. This notion is made precise
by considering likelihood ratios; a sequence of distribution families is called
locally asymptotically normal if the likelihood ratios for the families are close
to those for normal distributions, in an appropriate sense.

Suppose X ∼ Pθ = Np(θ,Σ), θ ∈ Rp, with Σ a fixed positive definite
covariance matrix. Then the log-likelihood ratio between parameter values t
and 0 is

ℓ(t, 0) = log
dPt
dP0

(X)

= −1

2
(X − t)′Σ−1(X − t) +

1

2
X ′Σ−1X

= t′Σ−1X − 1

2
t′Σ−1t, (16.3)

which is a quadratic function of t with the linear coefficients random and the
quadratic coefficients constant.

To see why likelihood ratios are approximately of this form in large sam-
ples, suppose Xi, i ≥ 1, are i.i.d. with common density fθ, θ ∈ Ω ⊂ R. Fix
θ and define Wi(ω) = log

(

fω(Xi)/fθ(Xi)
)

. Under sufficient regularity (see
Section 4.5),
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EθW
′
i (θ) = Eθ

∂ log fθ(Xi)

∂θ
= 0,

Varθ
(

W ′i (θ)
)

= Eθ

(

∂ log fθ(Xi)

∂θ

)2

= I(θ),

and

EθW
′′
i (θ) = Eθ

∂2 log fθ(Xi)

∂θ2
= −I(θ).

By the central limit theorem,

Sn =
1√
n

n
∑

i=1

W ′i (θ) ⇒ N
(

0, I(θ)
)

,

and by the law of large numbers,

1

n

n
∑

i=1

W ′′i (θ)
p→ −I(θ).

A two-term Taylor expansion then suggests the following approximation for
log-likelihood ratios between θ and “contiguous” alternative θ + t/

√
n:

ℓn(θ + t/
√
n, θ) = log

[

∏n
i=1 fθ+t/

√
n(Xi)

∏n
i=1 fθ(Xi)

]

=

n
∑

i=1

Wi(θ + t/
√
n)

≈ t√
n

n
∑

i=1

W ′i (θ) +
t2

2n

n
∑

i=1

W ′′i (θ)

≈ tSn − 1

2
t2I(θ). (16.4)

This is quite similar in form to (16.3)
The following definition formalizes conditions on likelihood ratios sufficient

for the notions of asymptotic optimality developed in Section 16.6, yet weak
enough to hold in a wide class of applications. These applications include cases
where the data are not identically distributed and cases where the data are
dependent.

Definition 16.11. Consider a sequence of models,

Pn = {Pθ,n : θ ∈ Ω ⊂ Rp}, n ≥ 1,

and let ℓn denote log-likelihood ratios for Pn,
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ℓn(ω, θ) = log

[

dPω,n
dPθ,n

]

.

These models are locally asymptotically normal (LAN) at a parameter value
θ in the interior of Ω if there exist random vectors Sn = Sn(θ) and a positive
definite matrix J = J(θ) such that:

1. If tn is any convergent sequence, tn → t ∈ Rp,

ℓn(θ + tn/
√
n, θ) −

[

t′Sn − 1
2 t
′Jt
] Pθ,n→ 0

as n→ ∞.
2. Under Pθ,n, Sn ⇒ Z ∼ N(0, J) as n→ ∞.

Remark 16.12. The second condition in this definition can be replaced by the
condition that the measures Pθ,n and Pθn,n are contiguous whenever

√
n(θn−

θ) remains bounded. Mixtures of these measures are also contiguous if the
mixing distributions concentrate appropriately near θ. Specifically, if B(r)
denotes the ball of radius r about θ and if πn are probability distributions on
Ω such that lim inf πn

(

B(c/
√
n)
)

↑ 1 as c → ∞, then Pθ,n and
∫

Pω,ndπn(ω)
are contiguous.

Remark 16.13. If the models are LAN and tn → t, the distributions of Sn un-
der Pθ+tn/

√
n,n are also approximately normal. Specifically, under Pθ+tn/

√
n,n,

Sn ⇒ N(Jt, J). To understand the nature of the argument, assume

Pθ+tn/
√
n,n ≪ Pθ,n,

and let f be a bounded continuous function. With suitable uniform integra-
bility, one would then expect

Eθ+tn/
√
n,nf(Sn) = Eθ,nf(Sn)e

ℓn(θ+tn/
√
n,θ)

≈ Ef(Z)et
′Z−t′Jt/2 = Ef(Jt+ Z).

Theorem 16.14. Suppose X1, X2, . . . are i.i.d. with common density pθ, and
let Pθ,n be the joint distribution of X1, . . . , Xn. If the mapping ω  

√
pω is

differentiable in quadratic mean at a parameter value θ in the interior of the
parameter space Ω ⊂ Rp, then the families Pn = {Pθ,n : θ ∈ Ω} are locally
asymptotically normal at θ with J the Fisher information given in (16.2),
J = I(θ).

The quadratic approximation t′Sn − 1
2 t
′Jt in the LAN definition is maxi-

mized at t̂ = J−1Sn. Because the maximum likelihood estimator θ̂n maximizes

ln(ω) − ln(θ) = ℓn

(

θ +

√
n(ω − θ)√

n
, θ

)

over ω ∈ Ω, the LAN approximation suggests that
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√
n(θ̂n − θ) ≈ J−1Sn.

Regularity conditions akin to those of Theorem 9.14 but extended to the
multivariate case ensure that

√
n(θ̂n − θ) − J−1Sn

Pθ→ 0, (16.5)

as n→ ∞. We assume as we proceed that (16.5) holds for suitable estimators

θ̂n, but these estimators need not be maximum likelihood.

Example 16.15. Suppose X1, X2, . . . are i.i.d. absolutely continuous random
vectors in R4 with common density

pθ(x) = c
e−‖x−θ‖

2

‖x− θ‖ .

The families of joint distributions here are LAN. With the pole in the density,
the likelihood function is infinite at each data point, so a maximum likelihood
estimator will be one of the observed data. Section 6.3 of Le Cam and Yang
(2000) details a general method to find estimators θ̂n satisfying (16.5). This
method is based on using the LAN approximation to improve a reasonable
preliminary estimator, such as Xn in this example.

16.4 Minimax Estimation of a Normal Mean

An estimator δ is called minimax if it minimizes supθ∈Ω R(θ, δ). In this section
we find minimax estimates for the mean of a normal distribution. These results
are used in the next section when a locally asymptotically minimax notion of
asymptotic optimality is developed.

As an initial problem, suppose X ∼ Np(θ, I), θ ∈ Rp, and consider a
Bayesian model with prior distribution

Θ ∼ N(0, σ2I).

Then

Θ|X = x ∼ N

(

σ2x

1 + σ2
,

σ2

1 + σ2
I

)

,

and the Bayes estimator under compound squared error loss is

θ̃ =
σ2X

1 + σ2
,

with Bayes risk

E‖θ̃ −Θ‖2 = EE
[

‖θ̃ −Θ‖2
∣

∣ X
]

=
pσ2

1 + σ2
.
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Because θ̃ is Bayes, conditioning on Θ gives

E‖θ̃ −Θ‖2 = EE
[

‖θ̃ −Θ‖2
∣

∣ Θ
]

= ER(Θ, θ̃) ≤ ER(Θ, δ) ≤ sup
θ
R(θ, δ),

for any competing estimator δ. So for any δ,

sup
θ
R(θ, δ) ≥ p

σ2

1 + σ2
. (16.6)

But this holds for any σ, so letting σ → ∞ we have

sup
θ
R(θ, δ) ≥ p

for any δ. But the risk of δ(X) = X equals p, and so X is minimax.
As an extension, we show that X is also minimax when the loss function

has form L(θ, d) = W (d−θ) with W “bowl-shaped” according to the following
definition.

Definition 16.16. A function W : Rp → [0,∞] is bowl-shaped if {x :
W (x) ≤ α} is convex and symmetric about zero for every α ≥ 0.

The following result due to Anderson (1955) is used to find Bayes estima-
tors with bowl-shaped loss functions.

Theorem 16.17 (Anderson’s lemma). If f is a Lebesgue density on Rp

with {x : f(x) ≥ α} convex and symmetric about zero for every α ≥ 0, and if
W is bowl-shaped, then

∫

W (x− c)f(x) dx ≥
∫

W (x)f(x) dx,

for every c ∈ Rp.

The proof of this result relies on the following inequality.

Theorem 16.18 (Brunn–Minkowski). If A and B are nonempty Borel sets
in Rp with sum A+B = {x+ y : x ∈ A, y ∈ B} (the Minkowski sum of A and
B), and λ denotes Lebesgue measure, then

λ(A +B)1/p ≥ λ(A)1/p + λ(B)1/p.

Proof. Let a box denote a bounded Cartesian product of intervals and suppose
A and B are both boxes with a1, . . . , ap the lengths of the sides of A and
b1, . . . , bp the lengths of the sides of B. Then

λ(A) =

p
∏

i=1

ai and λ(B) =

p
∏

i=1

bi.
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The sum A + B is also a box, and the lengths of the sides of this box are
a1 + b1, . . . , ap + bp. Thus

λ(A+B) =

p
∏

i=1

(ai + bi).

Since arithmetic averages bound geometric averages (see Problem 3.32),

(

p
∏

i=1

ai
ai + bi

)1/p

+

(

p
∏

i=1

bi
ai + bi

)1/p

≤ 1

p

p
∑

i=1

ai
ai + bi

+
1

p

p
∑

i=1

bi
ai + bi

= 1,

which gives the desired inequality for boxes.
We next show that the inequality holds when A and B are both finite

unions of disjoint boxes. The proof is based on induction on the total number
of boxes in A and B, and there is no harm assuming that A has at least
two boxes (if not, just switch A and B). Translating A (if necessary) we can
assume that some coordinate hyperplane, {x : xk = 0} separates two of the
boxes in A. Define half-spaces H+ = {x : xk ≥ 0}, H− = {x : xk < 0}
and let A± be intersections of A with these half spaces, A+ = A ∩ H+ and
A− = A ∩H−. Note that A± are both finite intersections of boxes with the
total number of boxes in each of them less than the number of boxes in A.
The proportion of the volume of A in H+ is λ(A+)/λ(A), and by translating
B we make λ(B ∩H+)/λ(B) match this proportion. Defining B± = B ∩H±
we then have

λ(A±)

λ(A)
=
λ(B±)

λ(B)
. (16.7)

Because intersection with a half-plane cannot increase the number of boxes in
a set, the number of boxes in A+ and B+ and the number of boxes in A− and
B− are both less than the number of boxes in A and B, and by the inductive
hypothesis we can assume that the inequality holds for both of these pairs.
Also note that since A+ +B+ ⊂ H+ and A− +B− ⊂ H−,

λ
(

(A+ +B+) ∪ (A− +B−)
)

= λ(A+ +B+) + λ(A− +B−),

and that A + B ⊃ (A+ + B+) ∪ (A− + B−). Using these, (16.7), and the
inductive hypothesis,

λ(A +B) ≥ λ(A+ +B+) + λ(A− +B−)

≥
(

λ(A+)1/p + λ(B+)1/p
)p

+
(

λ(A−)1/p + λ(B−)1/p
)p

= λ(A+)

(

1 +
λ(B)1/p

λ(A)1/p

)p

+ λ(A−)

(

1 +
λ(B)1/p

λ(A)1/p

)p

= λ(A)

(

1 +
λ(B)1/p

λ(A)1/p

)p

=
(

λ(A)1/p + λ(B)1/p
)p
.
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This proves the theorem when A and B are finite unions of boxes. The general
case follows by an approximation argument. As a starting point, we use the
fact that Lebesgue measure is regular, which means that λ(K) < ∞ for all
compact K, and for any B,

λ(B) = inf{λ(V ) : V ⊃ B, V open}

and
λ(B) = sup{λ(K) : K ⊂ B,K compact}.

Suppose A is open. Fix ǫ > 0 and let K ⊂ A be a compact set with λ(K) ≥
λ(A) − ǫ. Because the distance between K and Ac is positive, we can cover
K with open boxes centered at all points of K so that each box in the cover
lies in A. The union Ã of a finite subcover will then contain K and lie in A,
so λ(Ã) ≥ λ(A) − ǫ, and Ã will be a finite union of disjoint boxes. Similarly,
if B is open there is a set B̃ ⊂ B that is a finite union of disjoint boxes with
λ(B̃) ≥ λ(B) − ǫ. Because A+B ⊃ Ã+ B̃,

λ(A+B)1/p ≥ λ(Ã+ B̃)1/p ≥ λ(Ã)1/p + λ(B̃)1/p

≥
(

λ(A) − ǫ
)1/p

+
(

λ(B) − ǫ
)1/p

. (16.8)

Letting ǫ→ 0, the inequality holds for nonempty open sets. Next, suppose A
and B are both compact. Define open sets

An = {x : ‖x− y‖ < 1/n, ∃y ∈ A}

and
Bn = {x : ‖x− y‖ < 1/n, ∃y ∈ B}.

Then
A+B =

⋂

n≥1

(An +Bn),

for if s lies in the intersection, then s = an + bn with an ∈ An and bn ∈ Bn,
and along a subsequence (an, bn) → (a, b) ∈ A×B. Then s = a+ b ∈ A+B.
Using this,

λ(A+B)1/p = lim
n→∞

λ(An +Bn)
1/p

≥ lim
n→∞

(

λ(An)1/p + λ(Bn)1/p
)

= λ(A)1/p + λ(B)1/p.

Finally, if A and B are arbitrary Borel sets with positive and finite measure,
and if ǫ > 0, there are compact subsets Ã ⊂ A and B̃ ⊂ B such that λ(Ã) ≥
λ(A) − ǫ and λ(B̃) ≥ λ(B) − ǫ. The inequality then follows by the argument
used in (16.8) ⊓⊔
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Corollary 16.19. If A and B are symmetric convex subsets of Rp and c is
any vector in Rp, then

λ
(

(c+A) ∩B
)

≤ λ(A ∩B).

Proof. LetK+ = (c+A)∩B andK− = (−c+A)∩B. By symmetryK− = −K+

and so λ(K+) = λ(K−). Define K = 1
2 (K+ +K−), and note that K ⊂ A∩B.

By the Brunn–Minkowski inequality,

λ(K)1/p ≥ λ

(

1

2
K+

)1/p

+ λ

(

1

2
K−

)1/p

=
1

2
λ(K+)1/p +

1

2
λ(K−)1/p = λ(K+)1/p.

So
λ(A ∩B) ≥ λ(K) ≥ λ(K+) = λ

(

(c+A) ∩B
)

. ⊓⊔

Proof of Theorem 16.17. For u ≥ 0 define convex symmetric sets Au = {x :
W (x) ≤ u} and Bu = {x : f(x) ≥ u}. Using Fubini’s theorem and Corol-
lary 16.19,

∫

W (x− c)f(x) dx =

∫∫ ∞

0

∫ ∞

0

I
[

W (x− c) > u, f(x) ≥ v
]

du dv dx

=

∫ ∞

0

∫ ∞

0

∫

I(x /∈ c+Au, x ∈ Bv) dx du dv

=

∫ ∞

0

∫ ∞

0

[

λ(Bv) − λ
(

(c+Au) ∩Bv
)]

du dv

≥
∫ ∞

0

∫ ∞

0

[

λ(Bv) − λ(Au ∩Bv)
]

du dv

=

∫

W (x)f(x) dx. ⊓⊔

Theorem 16.20. Suppose X ∼ Np(θ,Σ) with Σ a known positive definite
matrix, and consider estimating the mean θ with loss function L(θ, d) = W (θ−
d) and W bowl-shaped. Then X is minimax.

Proof. Consider a Bayesian formulation in which the prior distribution for Θ
is N(0, σ2Σ). Let Θ̃ = Σ−1/2Θ and X̃ = Σ−1/2X and note that

Θ̃ ∼ N(0, σ2I)

and
X̃|Θ̃ = θ̃ ∼ N(θ̃, I).

As before,
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Θ̃|X̃ = x̃ ∼ N

(

σ2x̃

1 + σ2
,

σ2

1 + σ2
I

)

.

Since conditioning on X̃ is the same as conditioning on X , multiplication by
Σ1/2 gives

Θ|X = x ∼ N

(

σ2x

1 + σ2
,

σ2

1 + σ2
Σ

)

.

If Z ∼ N
(

(0, σ2Σ/(1 + σ2)
)

, with density f , then the posterior risk of an
estimator δ is

E
[

W
(

Θ − δ(X)
) ∣

∣ X = x
]

= EW

(

Z +
σ2x

1 + σ2
− δ(x)

)

=

∫

W

(

z +
σ2x

1 + σ2
− δ(x)

)

f(z) dz.

By Theorem 16.17, this is minimized if δ(x) = σ2x/(1+σ2), and so again the
Bayes estimator is

θ̃ =
σ2X

1 + σ2
.

If ǫ = X −Θ, then
ǫ|Θ = θ ∼ N(0, Σ),

and so ǫ and Θ are independent and the marginal distribution of ǫ is N(0, Σ2).
Using this, the Bayes risk is

EW (Θ − θ̃) = EW

(

Θ − σ2(Θ + ǫ)

1 + σ2

)

= EW

(

Θ

1 + σ2
− σ2ǫ

1 + σ2

)

= EW

(

σǫ√
1 + σ2

)

,

which converges to EW (ǫ) as σ → ∞ by monotone convergence. Arguing as
we did for (16.6), for any δ

sup
θ
R(θ, δ) ≥ EW (ǫ).

Since this is the risk of X (for any θ), X is minimax. ⊓⊔

16.5 Posterior Distributions

In this section we derive normal approximations for posterior distributions for
LAN families. Local asymptotic optimality is derived using these approxima-
tions with arguments similar to those in the preceding section.

The approximations for posterior distributions are developed using a no-
tion of convergence stronger than convergence in distribution, based on the
following norm.
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Definition 16.21. The total variation norm of the difference between two
probability measures P and Q is defined as

‖P −Q‖ = sup
{

|
∫

f dP −
∫

f dQ| : |f | ≤ 1
}

.

If P and Q have densities p and q with respect to a measure µ, and |f | ≤ 1,
then

∣

∣

∣

∣

∫

f dP −
∫

f dQ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

f(p− q) dµ

∣

∣

∣

∣

≤
∫

|p− q| dµ.

This bound is achieved when f = Sign(p− q), and so

‖P −Q‖ =

∫

|p− q| dµ.

Taking advantage of the fact that p and q both integrate to one,

‖P −Q‖ =

∫

p>q

(p− q) dµ+

∫

q>p

(q − p) dµ = 2

∫

p>q

(p− q) dµ

= 2

∫

p>q

(1 − L) dP = 2

∫

(

1 − min{1, L}
)

dP, (16.9)

where L = q/p is the likelihood ratio dQ/dP .
If f is a bounded function, sup |f | = M , and we take f∗ = f/M , then

|f∗| ≤ 1 and so
∣

∣

∣

∣

∫

f dP −
∫

f dQ

∣

∣

∣

∣

= M

∣

∣

∣

∣

∫

f∗ dP −
∫

f∗ dQ

∣

∣

∣

∣

≤M‖P −Q‖. (16.10)

Strong convergence is defined using the total variation norm. Distributions
Pn converge strongly to P if ‖Pn − P‖ → 0. If this happens, then by (16.10)
∫

f dPn →
∫

f dP for any bounded measurable f . This can be compared with
convergence in distribution where, by Theorem 8.9,

∫

f dPn →
∫

f dP for
bounded continuous functions, but convergence can fail if f is discontinuous.
So strong convergence implies convergence in distribution.

Lemma 16.22. Let P̃ and P be two possible joint distributions for random
vectors X and Y . Suppose P̃ ≪ P , and let f denote the density dP̃ /dP .
Let Q̃ and Q denote the marginal distributions for X when (X,Y ) ∼ P̃ and
(X,Y ) ∼ P , and let R̃x and Rx denote the conditional distributions for Y
given X = x when (X,Y ) ∼ P̃ and (X,Y ) ∼ P . Then Q̃≪ Q with density

h(x) =
dQ̃

dQ
(x) =

∫

f(x, y) dRx(y),

and R̃x ≪ Rx (a.e.) with density

dR̃x
dRx

(y) =
f(x, y)

h(x)
.
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Proof. Using Lemma 12.18 and smoothing,

Ẽg(X) = Eg(X)f(X,Y ) = Eg(X)E[f(X,Y )|X ] =

∫

g(x)h(x) dQ(x).

To show that the stated densities for the conditional distributions are correct
we need to show that iterated integration gives the integral against P̃ . This
is the case because

∫∫

g(x, y)
f(x, y)

h(x)
dRx(y) dQ̃(x) =

∫∫

g(x, y)f(x, y) dRx(y)dQ(x)

= EE[g(X,Y )f(X,Y )|X ]

= Eg(X,Y )f(X,Y ) = Ẽg(X,Y ). ⊓⊔

To motivate the main result, approximating posterior distributions, sup-
pose our family is LAN at θ0, and that the prior distribution for Θ is
N(θ0, Γ

−1/n).3 If the LAN approximation and the approximation (16.5) for

θ̂ were exact, then the likelihood function would be proportional to

exp
[

n(θ − θ0)
′J(θ̂n − θ0) −

n

2
(θ − θ0)

′J(θ − θ0)
]

,

and the posterior distribution for Θ would be

Gx,n = N
(

θ0 + (Γ + J)−1J(θ̂n − θ0), (Γ + J)−1/n
)

. (16.11)

For convenience, as we proceed dependence on n is suppressed from the no-
tation.

Theorem 16.23. Suppose our families are LAN at θ0 in the interior of Ω
and that θ̂ satisfies (16.5). Consider a sequence of Bayesian models in which
Θ ∼ N(θ0, Γ

−1/n) (truncated to Ω) with Γ a fixed positive definite matrix.
Let Fx denote the conditional distribution of Θ given X = x, and let Gx
denote the normal approximation for this distribution given in (16.11). Then
‖FX −GX‖ converges to zero in probability as n→ ∞.

Proof. (Sketch) Let P denote the joint distribution of X and Θ (in the
Bayesian model), and let Q denote the marginal distribution for X . Intro-
duce another model in which X has the same marginal distribution and
Θ̃|X = x ∼ Gx, the normal approximation for the posterior. Let P̃ denote
the joint distribution for X and Θ̃. Finally, let P = 1

2 (P + P̃ ), so that P ≪ P

and P̃ ≪ P , and introduce densities

f(x, θ) =
dP

dP
(x, θ) and f̃(x, θ) =

dP̃

dP
(x, θ).

3 If Ω is not all Rp, then we should truncate the prior to Ω. If θ0 lies in the interior
of Ω, only minor changes result and the theorem is correct as stated. But to keep
the presentation accessible we do not worry about this issue in the proof.
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The marginal distributions for X are the same under P , P̃ , and (thus) P . So
both marginal densities for X must be one, and by Lemma 16.22, f(x, ·) and
f̃(x, ·) are densities for Fx and Gx. Using (16.9),

‖Fx −Gx‖ = 2

∫

[

1 − min{1, L(x, θ)}
]

dFx(θ),

where L is the likelihood ratio

L(x, θ) =
f̃(x, θ)

f(x, θ)
.

Integrating against the marginal distribution of X ,

E‖FX −GX‖ = 2E
[

1 − min{1, L(X,Θ)}
]

,

and the theorem will follow if L(X,Θ)
p→ 1.

We next want to rewrite L to take advantage of the things we know about
the likelihood and Gx. Suppose P ≪ P̃ . Then P has density f(x, θ)/f̃(x, θ)
with respect to P̃ . Because the marginal distributions ofX are the same under
P and P̃ , the marginal density must be one, and the formula in Lemma 16.22
then gives

∫

f(x, θ̃)

f̃(x, θ̃)
dGx(θ̃) = 1. (16.12)

When P ≪ P̃ fails, this need not hold exactly, but remains approximately
true.4 Assuming, for convenience, that (16.12) holds exactly, we have

L(x, θ) =

∫

f̃(x, θ)

f̃(x, θ̃)

f(x, θ̃)

f(x, θ)
dGx(θ̃),

and from this the theorem will follow if

f̃(X,Θ)

f̃(X, Θ̃)

f(X, Θ̃)

f(X,Θ)

p→ 1. (16.13)

The two fractions here can both be viewed as likelihood ratios, since f and
f̃ are both joint densities. Specifically, viewing f̃ as proportional to a density
for X times the normal conditional density Gx,

f̃(X,Θ)

f̃(X, Θ̃)
= exp

[

− n

2
(Θ − θ0)

′(Γ + J)(Θ − θ0)

+
n

2
(Θ̃ − θ0)

′(Γ + J)(Θ̃ − θ0)

+ n(θ̂ − θ0)
′J(Θ − Θ̃)

]

,

4 If H is the conditional distribution given X under P , then
R

f(x, θ̃) dHx(θ̃) = 1.

Since dGx(θ̃) = f̃(x, θ̃)dHx(θ̃), the true value for the integral is 1−P
`

f̃(X,Θ) =
0

˛

˛ X = x
´

. This approaches one by a contiguity argument.
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and viewing f as proportional to the normal density for Θ times a conditional
density for X given θ,

f(X, Θ̃)

f(X,Θ)
= exp

[

−n
2
(Θ̃ − θ0)

′Γ (Θ̃ − θ0) +
n

2
(Θ − θ0)

′Γ (Θ − θ0)

+ ℓn(Θ̃, θ0) − ℓn(Θ, θ0)
]

.

If the LAN approximation for ℓn and approximation (16.5) held exactly, then
the left-hand side of (16.13) would be one. The proof is completed by arguing
that the approximations imply convergence in probability. ⊓⊔

16.6 Locally Asymptotically Minimax Estimation

Our first lemma uses the approximations of the previous section and An-
derson’s lemma (Theorem 16.17) to approximate Bayes risks with the loss
function a bounded bowl-shaped function.

Lemma 16.24. Suppose our families are LAN at θ in the interior of Ω and
that θ̂ satisfies (16.5). Consider Bayesian models in which the prior distribu-
tion for Θ is N(θ, σ2J−1/n). If W is a bounded bowl-shaped function, then

lim
n→∞

inf
δ
EnW

(√
n(δ −Θ)

)

= EW

(

σZ√
1 + σ2

)

,

where Z ∼ N(0, J−1).

Proof. Let

Gx,n = N

(

θ +
σ2(θ̂n − θ)

1 + σ2
,
σ2J−1

n(1 + σ2)

)

,

the approximation for the posterior distribution from Theorem 16.23, and let
Fn,x denote the true posterior distribution of θ. Define

ρn(x) = inf
d
En
[

W
(√
n(d−Θ)

) ∣

∣ X = x
]

= inf
d

∫

W
(√
n(d− θ)

)

dFx,n(θ).

Then, as in Theorem 7.1,

inf
δ
EnW

(√
n(δ −Θ)

)

= Enρn(X).

Using (16.10), for any d,
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∣

∣

∣

∣

∫

W
(√
n(d− θ)

)

dFx,n(θ) −
∫

W
(√
n(d− θ)

)

dGx,n(θ)

∣

∣

∣

∣

≤M‖Fx,n −Gx,n‖,

and it then follows that
∣

∣

∣

∣

ρn(x) − inf
d

∫

W
(√
n(d− θ)

)

dGx,n(θ)

∣

∣

∣

∣

≤M‖Fx,n −Gx,n‖,

where M = sup |W |. But by Anderson’s lemma (Theorem 16.17),

inf
d

∫

W
(√
n(d− θ)

)

dGx,n(θ) = EW

(

σZ√
1 + σ2

)

.

So
∣

∣

∣

∣

Enρn(X) − EW

(

σZ√
1 + σ2

)∣

∣

∣

∣

≤ En

∣

∣

∣

∣

ρn(X) − EW

(

σZ√
1 + σ2

)∣

∣

∣

∣

≤MEn‖FX,n −GX,n‖.

The lemma follows because this expectation tends to zero by Theorem 16.23.
⊓⊔

Theorem 16.25. Suppose our families are LAN at θ0 in the interior of Ω
and that θ̂ satisfies (16.5), and let W be a bowl-shaped function. Then for any
sequence of estimators δn,

lim
b→∞

lim
c→∞

lim inf
n→∞

sup
‖θ−θ0‖≤c/

√
n

Eθ min
{

b,W
(√
n(δn − θ)

)}

≥ EW (Z),

where Z ∼ N(0, J−1). The asymptotic lower bound here is achieved if δn = θ̂n.

Proof. Let πn = N(θ0, σ
2J−1/n), the prior distribution forΘ in Lemma 16.24,

and note that θ0 + σZ/
√
n ∼ πn. Also, let Wb = min{b,W}, a bounded bowl-

shaped function. Then

inf
δ
EWb

(√
n(δ −Θ)

)

≤ EWb

(√
n(δn −Θ)

)

=

∫

EθWb

(√
n(δn − θ)

)

dπn(θ)

≤ sup
‖θ−θ0‖≤c/

√
n

EθWb

(√
n(δn − θ)

)

πn
({

θ : ‖θ − θ0‖ ≤ c/
√
n
})

+ bπn
({

θ : ‖θ − θ0‖ > c/
√
n
})

.

But
πn
({

θ : ‖θ − θ0‖ ≤ c/
√
n
})

= P
(

‖Z‖ ≤ c/σ).
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Solving the inequality to bound the supremum and taking the lim inf as n→
∞, using Lemma 16.24,

lim inf
n→∞

sup
‖θ−θ0‖≤c/

√
n

EθWb

(√
n(δn − θ)

)

≥ EWb

(

σZ/
√

1 + σ2
)

− bP
(

‖Z‖ > c/σ)

P
(

‖Z‖ ≤ c/σ)
.

Letting c → ∞ the denominator on the right-hand side tends to one, leaving
a lower bound of EWb

(

σZ/
√

1 + σ2
)

. Because this lower bound must hold for
σ arbitrarily large,

lim
c→∞

lim inf
n→∞

sup
‖θ−θ0‖≤c/

√
n

EθWb

(√
n(δn − θ)

)

≥ EWb(Z).

The first part of the theorem now follows because EWb(Z) → EW (Z) as
b→ ∞ by monotone convergence. The second part that the asymptotic bound
is achieved if δn = θ̂n holds because

√
n(θ̂n − θ) ⇒ N(0, J−1) uniformly

over ‖θ − θ0‖ ≤ c/
√
n. Using contiguity, this follows from (16.5) and normal

approximation for the distributions of Sn mentioned in Remark 16.13. ⊓⊔

In addition to the local risk optimality of θ̂ one can also argue that θ̂
is asymptotically sufficient, as described in the next result. For a proof see
Le Cam and Yang (2000).

Theorem 16.26. Suppose the families Pn are locally asymptotically normal
at every θ and that estimators θ̂n satisfy (16.5). Then θ̂n is asymptotically
sufficient. Specifically, there are other families Qn = {Qθ,n : θ ∈ Ω} such
that:

1. Statistic θ̂n is (exactly) sufficient for Qn.
2. For every b > 0 and all θ ∈ Ω,

sup
|ω−θ|≤b/√n

‖Qω,n − Pω,n‖ → 0

as n→ ∞.

For a more complete discussion of asymptotic methods in statistics, see
van der Vaart (1998), Le Cam and Yang (2000), or Le Cam (1986).

16.7 Problems

1. Consider a regression model in which Yi = xiβ + ǫi, i = 1, 2, . . . , with
the ǫi i.i.d. from N(0, σ2), and assume that

∑∞
i=1 x

2
i <∞. Let Qn denote

the joint distribution of Y1, . . . , Yn if β = β0, and let Q̃n denote the joint
distribution if β = β1.
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a) Show that the distributions Qn and Q̃n are mutually contiguous.
b) Let Ln denote the likelihood ratio dQ̃n/dQn. Find limiting distri-

butions for Ln when β = β0 and when β = β1. Are the limiting
distributions the same?

2. Let X1, X2, . . . be i.i.d. from a uniform distribution on (0, θ). Let Qn
denote the joint distribution for X1, . . . , Xn when θ = 1, and let Q̃n
denote the joint distribution when θ = 1 + 1/np with p a fixed positive
constant. For which values of p are Qn and Q̃n mutually contiguous?

3. Prove the second assertion of Proposition 16.5: If the distributions for X̃n

are contiguous to those for Xn, and if Tn(Xn) = Op(1), then Tn(X̃n) =
Op(1).

4. Let X and Y be random vectors with distributions PX and PY . If h is a
one-to-one function, show that

‖PX − PY ‖ = ‖Ph(X) − Ph(Y )‖.

In particular, if X and Y are random variables and a 6= 0,

‖PX − PY ‖ = ‖PaX+b − PaY+b‖.

5. Show that Xn
p→ 0 if and only if Emin

{

1, |Xn|
}

→ 0.

6. Define g(x) = min{1, |x|} and let Z = E
[

|Y |
∣

∣ X
]

. Show that Eg(Z) ≥
Eg(Y ). Use this and the result from Problem 16.5 to show that L(Θ,X)

p→
1 when (16.13) holds.

7. Let Yn be integrable random variables. Show that if E
[

|Yn|
∣

∣ Zn
] p→ 0,

then Yn
p→ 0.
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Large-Sample Theory for Likelihood Ratio

Tests

The tests in Chapters 12 and 13 have strong optimality properties but re-
quire conditions on the densities for the data and the form of the hypotheses
that are rather special and can fail for many natural models. By contrast,
the generalized likelihood ratio test introduced in this chapter requires little
structure, but it does not have exact optimality properties. Use of this test
is justified by large-sample theory. In Section 17.2 we derive approximations
for its level and power. Wald tests and score tests are popular alternatives to
generalized likelihood ratio tests with similar asymptotic performance. They
are discussed briefly in Section 17.4.

17.1 Generalized Likelihood Ratio Tests

Let the data X1, . . . , Xn be i.i.d. with common density fθ for θ ∈ Ω. The
likelihood function is

L(θ) = L(θ|X1, . . . , Xn) =
n
∏

i=1

fθ(Xi).

The (generalized) likelihood ratio statistic for testing H0 : θ ∈ Ω0 versus
H1 : θ ∈ Ω1 is defined as

λ = λ(X1, . . . , Xn) =
supΩ1

L(θ)

supΩ0
L(θ)

.

The likelihood ratio test rejects H0 if λ > k. When H0 and H1 are both simple
hypotheses, this test is the optimal test described in the Neyman–Pearson
lemma.

Typical situations where likelihood ratio tests are used have Ω0 a smooth
manifold of smaller dimension than Ω = Ω0 ∪ Ω1. In this case, if L(θ) is
continuous, λ can be computed as

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 
DOI 10.1007/978-0-387-93839-4_17, © Springer Science+Business Media, LLC 2010 
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λ = λ(X1, . . . , Xn) =
supΩ L(θ)

supΩ0
L(θ)

.

Furthermore, if these supremum are attained, then

λ =
L(θ̂)

L(θ̃)
, (17.1)

where θ̂ is the maximum likelihood estimate of θ under the full model, and θ̃
is the maximum likelihood under H0, with θ varying over Ω0.

Example 17.1. Suppose X1, . . . , Xn are a random sample from N(µ, σ2) and
θ = (µ, σ). The log-likelihood function is

l(θ) = logL(θ) = −n
2

log(2πσ2) −
n
∑

i=1

(Xi − µ)2

2σ2
.

The partial derivative with respect to µ is

1

σ2

n
∑

i=1

(Xi − µ).

Setting this equal to zero gives

µ̂ = X =
1

n

n
∑

i=1

Xi

as the value for µ that maximizes l, regardless of the value of σ, so µ̂ is the
maximum likelihood estimate for µ. We can find the maximum likelihood
estimate σ̂ of σ by maximizing l(µ̂, σ) over σ > 0. Setting

∂

∂σ
l(µ̂, σ) = −n

σ
+

n
∑

i=1

(Xi −X)2

σ3

equal to zero gives

σ̂2 =
1

n

n
∑

i=1

(Xi −X)2.

Using these values in the formula for l, after some simplification

L(µ̂, σ̂) =
e−n/2

(2πσ̂2)n/2
. (17.2)

Suppose we wish to test H0 : µ = 0 against H1 : µ 6= 0. The maximum
likelihood estimate for µ under the null hypothesis is µ̃ = 0 (of course). Setting
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∂

∂σ
l(0, σ) = −n

σ
+

n
∑

i=1

X2
i

σ3

equal to zero gives

σ̃2 =
1

n

n
∑

i=1

X2
i

as the maximum likelihood estimate for σ2 under H0. After some algebra,

L(µ̃, σ̃) =
e−n/2

(2πσ̃2)n/2
. (17.3)

Using (17.2) and (17.3) in (17.1), the likelihood ratio statistic is

λ =
σ̃n

σ̂n
.

Using the identity
n
∑

i=1

(Xi −X)2 =

n
∑

i=1

X2
i − nX

2
,

we have

λ =

[ ∑n
i=1X

2
i

∑n
i=1(Xi −X)2

]n/2

=

[

∑n
i=1(Xi −X)2 + nX

2

∑n
i=1(Xi −X)2

]n/2

=

[

1 +
nX

2

∑n
i=1(Xi −X)2

]n/2

=

[

1 +
T 2

n− 1

]n/2

,

where T =
√
nX/S is the t-statistic usually used to test H0 against H1. Since

the function relating λ to |T | is strictly increasing, the likelihood ratio test is
equivalent to the usual t-test, which rejects if |T | exceeds a constant.

Example 17.2. Let (X1, Y1), . . . , (Xn, Yn) be a sample from a bivariate normal
distribution. The log-likelihood is

l(µx, µy, σx, σy, ρ) = − 1

2(1 − ρ2)

[

n
∑

i=1

(

Xi − µx
σx

)2

+

n
∑

i=1

(

Yi − µy
σy

)2

− 2ρ

n
∑

i=1

(

Xi − µx
σx

)(

Yi − µy
σy

)

]

− n log
(

2πσxσy
√

1 − ρ2
)

.
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We derive the likelihood ratio test of H0 : ρ = 0 versus H1 : ρ 6= 0. When
ρ = 0, we have independent samples from two normal distributions, and using
results from the previous example,

µ̃x = X, µ̃y = Y

and

σ̃2
x =

1

n

n
∑

i=1

(Xi −X)2, σ̃2
y =

1

n

n
∑

i=1

(Yi − Y )2.

The easiest way to find the maximum likelihood estimates for the full model is
to note that the family of distributions is a five-parameter exponential family,
so the canonical sufficient statistic is the maximum likelihood estimate for its
mean. This gives

n
∑

i=1

Xi = nµ̂x,
n
∑

i=1

Yi = nµ̂y,

n
∑

i=1

X2
i = n(µ̂2

x + σ̂2
x),

n
∑

i=1

Y 2
i = n(µ̂2

y + σ̂2
y),

and
n
∑

i=1

XiYi = n(µ̂xµ̂y + ρ̂σ̂xσ̂y).

Solving these equations gives µ̂x = µ̃x, µ̂y = µ̃y, σ̂x = σ̃x, σ̂y = σ̃y, and

ρ̂ =

∑n
i=1(Xi −X)(Yi − Y )

√

∑n
i=1(Xi −X)2

√

∑n
i=1(Yi − Y )2

.

Using (17.1),

log λ = logL(X,Y , σ̂x, σ̂y, ρ̂) − logL(X,Y , σ̂x, σ̂y, 0)

= −n
2

log(1 − ρ̂2).

Equivalent test statistics are |ρ̂| or |T |, where

T =
ρ̂
√
n− 2

√

1 − ρ̂2
.

Under H0, T has a t-distribution on n − 2 degrees of freedom. In fact, the
conditional distribution of T given the Yi is t on n− 2 degrees of freedom. To
see this, let Zi = (Xi−µx)/σx, and let Vi = Yi−Y . Since Xi−X = σx(Zi−Z),
we can write

ρ̂ =

∑n
i=1(Zi − Z)Vi

√

∑n
i=1(Zi − Z)2

√
∑n

i=1 V
2
i

.
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Let a = (1, . . . , 1)′/
√
n and b = V/‖V ‖. Then ‖a‖ = 1, ‖b‖ = 1, and

a · b =
1√
n‖V ‖

n
∑

i=1

(Yi − Y ) = 0.

Hence we can find an orthogonal matrix O where the first two columns are
a and b. Because O is constructed from Y , Z and O are independent under
H0. By this independence, if we define transformed variables Ž = O′Z, then
Ž|O ∼ N(0, I), which implies that Ž1, . . . , Žn are i.i.d. standard normal.
Note that Ž1 = a · Z =

√
nZ and Ž2 = b · Z. Since ‖Z‖ = ‖Ž‖,
n
∑

i=1

(Zi − Z)2 =

n
∑

i=1

Z2
i − nZ

2

= ‖Z‖2 − Ž2
1

=

n
∑

i=2

Ž2
i ,

and hence

ρ̂ =
Z · b

√

∑n
i=2 Ž

2
i

=
Ž2

√

∑n
i=2 Ž

2
i

.

From this, 1 − ρ̂2 =
∑n

i=3 Ž
2
i /
∑n
i=2 Ž

2
i , so

T =
Ž2

√

1
n−2

∑n
i=3 Ž

2
i

.

The sum in the denominator has the chi-square distribution on n− 2 degrees
of freedom, and the numerator and denominator are independent. Therefore
this agrees with the usual definition for the t-distribution.

17.2 Asymptotic Distribution of 2 log λ

In this section we derive the asymptotic distribution of 2 logλ when θ ∈ Ω0 or
θ is nearΩ0. A rigorous treatment requires considerable attention to detail and
deep mathematics, at least if one is concerned with getting the best regularity
conditions. To keep the presentation here as accessible as possible, we keep
the treatment somewhat informal and base it on assumptions stronger than
necessary. Specifically, we assume that conditions necessary for a multivariate
version of Theorem 9.14 are in force: the maximum likelihood estimators θ̂n are
consistent, and the densities fθ(x) are regular enough to allow us to define the
Fisher information matrix I(θ) (positive definite for all θ ∈ Ω and continuous
as a function of θ) and use Taylor expansion to show that
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√
n(θ̂n − θ) = I−1(θ)

1√
n
∇ln(θ) + op(1) ⇒ N

(

0, I−1(θ)
)

. (17.4)

The parameter space Ω is an open subset of Rr, and Ω0 is a smooth sub-
manifold of Ω with dimension q < r. Finally, we assume that θ̃n is consistent
if θ ∈ Ω0.

To use likelihood ratio tests in applications, we need to know the size,
so it is natural to want an approximation for the power βn(θ) of the test
when θ ∈ Ω0. Also, to design experiments it is useful to approximate the
power at other points θ /∈ Ω0. Now for fixed θ ∈ Ω1, if n is large enough any
reasonable test will likely reject H0 and the power βn(θ) should tend to one as
n→ ∞. But a theorem detailing this would not be very useful in practice. For
a more interesting theory we study the power at points near Ω0. Specifically,
we study the distribution of 2 logλn along a sequence of parameter values
θn = θ0 +∆/

√
n, where θ0 ∈ Ω0 and ∆ is a fixed constant, and show that

Pθn [2 logλn < t] → F (t)

as n → ∞, where F is the cumulative distribution function for a noncentral
chi-square distribution with r − q degrees of freedom. When ∆ = 0, θn =
θ0 ∈ Ω0 and this result approximates the cumulative distribution function of
2 logλn under H0. In this case, the noncentrality parameter is zero, so the
likelihood ratio test, which rejects if 2 logλ exceeds the upper αth quantile of
the chi-square distribution on r−q degrees of freedom, has size approximately
α. Other choices for ∆ allow one to approximate the power of this test.

The assumptions for Theorems 16.10 or 16.14 are weaker than those above,
so the joint distributions for X1, . . . , Xn under θn are contiguous to the joint
distributions under θ0, and, by Remark 16.13, under Pθn

1√
n
∇ln(θ0) ⇒ N

(

I(θ0)∆, I(θ0)
)

.

By Proposition 16.5, a sequence that is op(1) under Pθ0 will also be op(1)
under Pθn . If we define

Zn =
√
n(θ̂n − θ0) =

√
n(θ̂n − θn) +∆,

then by (17.4), under Pθn ,

Zn ⇒ N
(

∆, I−1(θ0)
)

. (17.5)

Equivalently,
√
n(θ̂n − θn) ⇒ N

(

0, I−1(θ0)
)

, showing in some sense that the
usual normal approximation for the distribution of the maximum likelihood
estimator holds uniformly over contiguous parameter values, which seems nat-
ural.

The rest of the argument is based on using Taylor expansion and the
normal equations to relate 2 logλn to Zn. The op and Op notations for scales
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of magnitude, introduced in Section 8.6, provide a convenient way to keep
track of the size of errors in these expansions. Note that Zn = Op(1) by

(17.5), and so op(Zn) = op(1). The normal equations for θ̂n are simple, the

gradient of ln must vanish at θ̂n; that is,

∇ln(θ̂n) = 0. (17.6)

The normal equations for θ̃n involve the local geometry of Ω0 and are more
delicate. For θ ∈ Ω0, let Vθ denote the tangent space1 at θ, and let P (θ)
denote the projection matrix onto Vθ. As x ∈ Ω0 approaches θ, x − θ should
almost lie in Vθ. Specifically,

x− θ = P (θ)(x − θ) + o
(

‖x− θ‖
)

. (17.7)

Also, the matrices P (θ) should vary continuously with θ. When θ̃n lies in the
interior of Ω, the directional derivatives of ln for vectors in the tangent space
at θ̃n must vanish; otherwise we could move a little in Ω0 and increase the

likelihood. So if P̃n
def
= P (θ̃n), then

P̃n∇ln(θ̃n) = 0. (17.8)

Also, by continuity, because θ̃n → θ0, P̃n
p→ P0

def
= P (θ0), the projection

matrix onto the tangent plane of Ω0 at θ0. Using this,

P0∇ln(θ̃n) = op
(

∇ln(θ̃n)
)

. (17.9)

Since θ̃n and θ0 are close to each other and both lie in Ω0, by (17.7) their
normalized difference Yn =

√
n(θ̃n − θ0) satisfies

Yn = P0Yn + op(Yn). (17.10)

Let ∇2ln denote the Hessian matrix of second partial derivatives of ln. By the
weak law of large numbers,

1

n
∇2ln(θ) =

1

n

n
∑

i=1

∇2
θ log fθ(Xi)

p→ −I(θ)

in Pθ-probability as n→ ∞, since

Eθ∇2
θ log fθ(X1) = −I(θ).

By contiguity, ∇2ln(θ0)/n→ −I(θ0) in Pθn -probability as n→ ∞. Also, using
Theorem 9.2, our weak law for random functions, convergence in probability
also holds if the Hessian is evaluated at intermediate values approaching θ0.
Using this observation, one-term Taylor expansions of ∇ln/

√
n about θ0 give

1 See Appendix A.4 for an introduction to manifolds and tangent spaces.
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1√
n
∇ln(θ̂n) − 1√

n
∇ln(θ0) =

(

−I(θ0) + op(1)
)√
n(θ̂n − θ0) (17.11)

and

1√
n
∇ln(θ̃n) −

1√
n
∇ln(θ0) =

(

−I(θ0) + op(1)
)√
n(θ̃n − θ0). (17.12)

With the definition of Zn and (17.6), the first Taylor approximation above
becomes

1√
n
∇ln(θ0) = I(θ0)Zn.+ op(1). (17.13)

Multiplying the second Taylor approximation by P0 and using (17.9),

P0
1√
n
∇ln(θ0) = P0I(θ0)Yn + op(Yn) + op(1),

and these last two equations give

P0I(θ0)Zn = P0I(θ0)Yn + op(Yn) + op(1). (17.14)

We have now obtained three key equations: (17.5), (17.10), and (17.14). We
also need an equation relating 2 logλn to Yn and Zn. This follows from a
two-term Taylor expansion, again equating ∇2ln at intermediate values with
−nI(θ0) + op(n), which gives

2 logλn = 2ln(θ̂n) − 2ln(θ̃n)

= 2(θ̂n − θ0)
′∇ln(θ0) − (θ̂n − θ0)

′(nI(θ0) + op(n)
)

(θ̂n − θ0)

− 2(θ̃n − θ0)
′∇ln(θ0) + (θ̃n − θ0)

′(nI(θ0) + op(n)
)

(θ̃n − θ0)

= 2Z ′n
1√
n
∇ln(θ0) − Z ′n

(

I(θ0) + op(1)
)

Zn

− 2Y ′n
1√
n
∇ln(θ0) + Y ′n

(

I(θ0) + op(1)
)

Yn.

Using (17.13)

2 log λn = 2Z ′nI(θ0)Zn − Z ′nI(θ0)Zn + op(1)

− 2Y ′nI(θ0)Zn + Y ′nI(θ0)Yn + op
(

‖Yn‖2
)

= (Zn − Yn)
′I(θ0)(Zn − Yn) + op

(

‖Yn‖2
)

+ op(1). (17.15)

The approximation for the Pθn distributions of 2 logλn, mentioned above,
follows eventually from (17.5), (17.10), (17.14), and (17.15). The algebra for
this derivation is easier if we write the quantities involved in a convenient
basis. Let V = Vθ0 denote the tangent space of Ω0 at θ0, and let V ⊥ denote its
orthogonal complement. Then for v ∈ V , P0v = v, and for v ∈ V ⊥, P0v = 0.
Let e1, . . . , eq be an orthonormal basis for V , and let eq+1, . . . , er be an
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orthonormal basis for V ⊥. Because e1, . . . , er is an orthonormal basis for Rr,
O = (e1, . . . , er) is an orthogonal matrix. Also, P0O = (e1, . . . , eq, 0, . . . , 0), so

O′P0O
def
= P̌ =

(

Iq 0
0 0

)

,

where Iq denotes the q×q identity matrix and the zeros are zero matrices with
suitable dimensions. In the new basis the key variables are Y̌ = O′Yn, Ž =
O′Zn, Ǐ = O′I(θ0)O, and ∆̌ = O′∆. By (17.5), Ž ⇒ Nr

(

O′∆,O′I−1(θ0)O
)

,

and since O′I−1(θ0)O = Ǐ−1, this becomes

Ž ⇒ Nr(∆̌, Ǐ
−1). (17.16)

Premultiplying (17.10) by O′ and inserting O′O at useful places gives

O′P0OO
′Yn = O′Yn + op(Yn),

or
P̌ Y̌ = Y̌ + op(Y̌ ). (17.17)

Similarly, premultiplying (17.14) by O′ gives

O′P0OO
′I(θ0)OO

′Yn = O′P0OO
′I(θ0)OO

′Zn + op(Yn) + op(1),

or
P̌ ǏY̌ = P̌ ǏŽ + op(Y̌ ) + op(1). (17.18)

Finally, (17.15) gives

2 logλn = (Zn − Yn)OO′I(θ0)OO
′(Zn − Yn) + op

(

‖Yn‖
)

+ op(1),

which becomes

2 log λn = (Ž − Y̌ )′Ǐ(Ž − Y̌ ) + op
(

‖Y̌ ‖
)

+ op(1). (17.19)

To continue we need to partition Ž, Y̌ , and Ǐ as

Ž =

(

Ž1

Ž2

)

, Y̌ =

(

Y̌1

Y̌2

)

, Ǐ =

(

Ǐ11 Ǐ12
Ǐ21 Ǐ22

)

,

where Ž1 ∈ Rq, Y̌1 ∈ Rq, and Ǐ11 is q × q. Formula (17.17) gives

Y̌2 = op(Y̌ ) = op(Y̌1) + op(Y̌2) or
(

1 + op(1)
)

Y̌2 = op(Y̌1),

which implies
Y̌2 = op(Y̌1).

Thus op(Y̌ ) = op(Y̌1), and (17.18) gives
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P̌ ǏŽ =

(

Ǐ11Ž1 + Ǐ12Ž2

0

)

= P̌ ǏY̌ + op
(

‖Y̌1‖
)

+ op(1)

=

(

Ǐ11Y̌1

0

)

+ op
(

‖Y̌1‖
)

+ op(1).

This can be written as

(

Ǐ11 + op(1)
)

Y̌1 = Ǐ11Ž1 + Ǐ12Ž2 + op(1),

which implies (since Ǐ11 is positive definite)

Y̌1 = Ž1 + Ǐ−1
11 Ǐ12Ž2 + op(1).

Note that since Ž = Op(1), this equation shows that Y̌ = Op(1), which allows
us to express errors more simply in what follows. Because

Ž − Y̌ =

(

−Ǐ−1
11 Ǐ12Ž2

Ž2

)

+ op(1),

(17.19) gives

2 logλn = (−Ž ′2Ǐ21I−1
11 , Ž

′
2)

(

Ǐ11 Ǐ12
Ǐ21 Ǐ22

)(

−Ǐ−1
11 Ǐ12Ž2

Ž2

)

+ op(1)

= Ž ′2(Ǐ22 − Ǐ21Ǐ
−1
11 Ǐ12)Ž2 + op(1).

Letting Σ = Ǐ−1, from the formula for inverting partitioned matrices,2

Σ22 = (Ǐ22 − Ǐ21Ǐ
−1
11 Ǐ12)

−1,

and so
2 logλn = Ž2Σ

−1
22 Ž2 + op(1).

From (17.16), Ž2 ⇒ Nr−q(∆̌2, Σ22). Using Lemma 14.9,

2 logλn ⇒ χ2
r−q(∆̌

′
2Σ
−1
22 ∆̌2).

This is the desired result, but for explicit computation it is convenient to
express the noncentrality parameter in the original basis. Let Q̌ = I − P̌ and
Q0 = I − P0. Then

(P̌ + Q̌ΣQ̌)−1 =

(

Iq 0
0 Σ22

)−1

=

(

Iq 0
0 Σ−1

22

)

,

and we can express the noncentrality parameter as

2 See Appendix A.6.
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∆′2Σ
−1
22 ∆2

= ∆̌′Q̌

(

Iq 0
0 Σ−1

22

)

Q̌∆̌

= ∆̌′Q̌(P̌ + Q̌Ǐ−1Q̌)−1Q̌∆̌

= ∆′OO′Q0O
(

O′P0O +O′Q0O
(

O′I(θ0)
−1O

)−1
O′Q0O

)−1
O′Q0OO

′∆

= ∆′Q0

(

P0 +Q0I(θ0)
−1Q0

)−1
Q0∆.

When this formula is used in practice, it may be more convenient to substitute
I−1(θn) for I−1(θ0). Since θn converges to θ0, for large n this has negligible
impact on power calculations.

17.3 Examples

Example 17.3. As a first example, suppose that X1, . . . , Xn, Y1, . . . , Yn,
Z1, . . . , Zn are independent with Xi ∼ Poisson(θ1), Yi ∼ Poisson(θ2), and
Zi ∼ Poisson(θ3), for i = 1, . . . , n. We can view this as a random sample of
random vectors in R3 with density

fθ(x, y, z) =
θx1 θ

y
2θ
z
3

x!y!z!
e−θ1−θ2−θ3 .

Then

log fθ(x, y, z) = x log θ1+y log θ2+z log θ3−θ1−θ2−θ3−log(x!y!z!),

and

∇2
θ log fθ(x, y, z) =





−x/θ21 0 0
0 −y/θ22 0
0 0 −z/θ23



 .

Hence

I(θ) = −Eθ∇2
θ log fθ(X1, Y1, Z1) =





1/θ1 0 0
0 1/θ2 0
0 0 1/θ3



 .

Suppose we want to test H0 : θ1 + θ2 = θ3 versus H1 : θ1 + θ2 6= θ3. The
log-likelihood is

l(θ) = log(θ1)
n
∑

i=1

Xi + log(θ2)
n
∑

i=1

Yi + log(θ3)
n
∑

i=1

Zi

− nθ1 − nθ2 − nθ3 −
n
∑

i=1

log(Xi!Yi!Zi!).

Maximizing l gives



354 17 Large-Sample Theory for Likelihood Ratio Tests

θ̂1 = X, θ̂2 = Y , θ̂3 = Z.

Also, θ̃1 and θ̃2 must maximize

l(θ1, θ2, θ1 + θ2) = log(θ1)

n
∑

i=1

Xi + log(θ2)

n
∑

i=1

Yi + log(θ1 + θ2)

n
∑

i=1

Zi

− nθ1 − nθ2 − n(θ1 + θ2) −
n
∑

i=1

log(Xi!Yi!Zi!)

or (dividing by n and dropping the term that is independent of θ)

X log θ1 + Y log θ2 + Z log(θ1 + θ2) − 2(θ1 + θ2).

Setting partial derivatives with respect to θ1 and θ2 equal to zero gives

X

θ̃1
+

Z

θ̃1 + θ̃2
= 2 and

Y

θ̃2
+

Z

θ̃1 + θ̃2
= 2.

From these equations, X/θ̃1 = Y /θ̃2. So

Z

θ̃1 + θ̃2
=

Z

θ̃2(1 +X/Y )
.

Using this in the second normal equation,

2θ̃2 = Y +
Z

1 +X/Y
= Y

(

Z +X + Y

X + Y

)

.

Hence

θ̃1 =
X

2

(

Z +X + Y

X + Y

)

, θ̃2 =
Y

2

(

Z +X + Y

X + Y

)

,

and

θ̃3 =
Z +X + Y

2
.

Now

2 logλ = 2
(

l(θ̂) − l(θ̃)
)

= 2n
[

X log(θ̂1/θ̃1) + Y log(θ̂2/θ̃2) + Z log(θ̂3/θ̃3)

+ θ̃1 + θ̃2 + θ̃3 − θ̂1 − θ̂2 − θ̂3

]

.

Since θ̃1 + θ̃2 + θ̃3 = θ̂1 + θ̂2 + θ̂3, this simplifies to

2 log λ = −2n

[

(X + Y ) log

(

Z +X + Y

2X + 2Y

)

+ Z log

(

Z +X + Y

2Z

)]

.
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In this example, r = 3 and q = 2, so under H0, 2 logλ is approximately
χ2

1. If c is the 1−α quantile of χ2
1, then the test that rejects if 2 logλ > c has

size approximately α. To approximate the power of this test using the results
from the last section we need to identify the projection matrices that arise.
Because Ω0 is linear, the tangent space V = Vθ0 is the same for all θ0 ∈ Ω0.
The vectors

v1 =
1√
2





−1
1
0



 , v2 =
1√
6





1
1
2



 , and v3 =
1√
3





1
1

−1





form an orthonormal basis for R3. Both v1 and v2 lie in the tangent space V ,
and v3 lies in V ⊥. So

P0 = v1v
′
1 + v2v

′
2 =

1

3





2 −1 1
−1 2 1

1 1 2





and

Q0 = v3v
′
3 =

1

3





1 1 −1
1 1 −1

−1 −1 1



 .

Suppose θ = θ0 +∆/
√
n, where θ0 ∈ Ω0. Then

Q0θ = Q0θ0 +Q0∆/
√
n,

which implies
Q0∆ =

√
nQ0θ =

√
nv3(v

′
3θ).

Since

I−1(θ) =





θ1 0 0
0 θ2 0
0 0 θ3



 ,

we have

Q0I
−1(θ)Q0 = v3

(

v′3I
−1(θ)v3

)

v′3

=
θ1 + θ2 + θ3

3
v3v
′
3

=
θ1 + θ2 + θ3

3
Q0.

Hence

(

P0 +Q0I
−1(θ)Q0

)−1
=

(

P0 +
θ1 + θ2 + θ3

3
Q0

)−1

= P0 +
3

θ1 + θ2 + θ3
Q0.
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The formula for the noncentrality parameter (substituting I−1(θ) for I−1(θ0))
is

∆′Q0

(

P0 +
3

θ1 + θ2 + θ3
Q0

)

Q0∆ =
3∆′Q0Q0∆

θ1 + θ2 + θ3

=
3‖Q0∆‖2

θ1 + θ2 + θ3

=
3n(v′3θ)

2

θ1 + θ2 + θ3

=
n(θ1 + θ2 − θ3)

2

θ1 + θ2 + θ3
.

To be concrete, suppose a test with size 5% is desired. Then one would take
c = 1.962 = 3.84. If θ1 = θ2 = 1, θ3 = 2.3, and n = 100, then the noncentrality
parameter comes out δ2 = 9/4.3 = 2.09 = 1.452. If we let Z ∼ N(0, 1), then
(Z + 1.45)2 ∼ χ2

1(2.09) and the power of the test is approximately

P (2 logλ > 3.84) ≈ P{(Z + 1.45)2 > 1.962}
= P (Z > .51) + P (Z < −3.41) = 0.3053.

Example 17.4. Our final example concerns the classic problem of testing in-
dependence in two-way contingency tables. The data are









N11

N12

N21

N22









∼ Multinomial(n; p11, p12, p21, p22).

Because the pij must sum to one, they lie on the unit simplex in R4. This set
is not open, so to apply our results directly we take

θ =





p11

p12

p21



 .

The maximum likelihood estimates for the pij are

p̂ij =
Nij
n
.

Here we follow the common convention where a “+” as a subscript indicates
that terms should be summed; so pi+ = pi1 + pi2 and N+j = N1j + N2j, for
example. The null hypothesis of independence in the table is

H0 : pij = pi+p+j , for i = 1, 2 and j = 1, 2.
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Equivalently,
H0 : p11 = p1+p+1. (17.20)

(For instance, if (17.20) holds, then p12 = p1+ − p11 = p1+ − p1+p+1 =
p1+(1 − p+1) = p1+p+2.) The log-likelihood function is

l =
∑

i,j

Nij log pij + log

(

n
N11, . . . , N22

)

.

Under H0,

l =
∑

ij

Nij log(pi+p+j) + log

(

n
N11, . . . , N22

)

=
∑

ij

Nij log(pi+) +
∑

ij

Nij log(p+j) + log

(

n
N11, . . . , N22

)

=
∑

i

Ni+ log(pi+) +
∑

j

N+j log(p+j) + log

(

n
N11, . . . , N22

)

= N1+ log(p1+) +N2+ log(1 − p1+) +N+1 log(p+1)

+N+2 log(1 − p+1) + log

(

n
N11, . . . , N22

)

.

Setting partial derivatives with respect to p+1 and p1+ to zero gives the fol-
lowing normal equations for p̃1+ and p̃+1:

N1+

p̃1+
− N2+

1 − p̃1+
= 0

and
N1+

p̃+1
− N+2

1 − p̃+1
= 0.

Solving these equations,

p̃1+ =
N1+

n
= p̂1+

and

p̃+1 =
N+1

n
= p̂+1.

It follows that p̃+j = p̂+j for j = 1, 2 and p̃i+ = p̂i+ for i = 1, 2. Therefore

p̃ij = p̂i+p̂+j

for i = 1, 2 and j = 1, 2. Plugging in the maximum likelihood estimates
derived gives
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2 log λ = 2l(θ̂) − 2l(θ̃)

= 2
∑

i,j

Nij log(p̂ij) − 2
∑

i,j

Nij log(p̂i+p̂+j)

= 2
∑

i,j

Nij log

(

p̂ij
p̂i+p̂+j

)

.

Let us now turn our attention to the approximate distribution of the like-
lihood ratio test statistic. Because Ω0 has dimension q = 2 and Ω is an open
set in R3, under H0,

2 logλ
.∼ χ2

1.

To approximate the power at contiguous alternatives we need the Fisher in-
formation. We know that

√
n(θ̂ − θ) ⇒ N3

(

0, I−1(θ)
)

as n → ∞. Since θ̂ can be viewed as an average of n i.i.d. vectors, by the
central limit theorem, √

n(θ̂ − θ) ⇒ N3

(

0, Σ
)

as n→ ∞, where Σ is the covariance of θ̂ when n = 1. With n = 1,

Cov(p̂ij , p̂kl) = Cov(Nij , Nkl)

= ENijNkl − pijpkl

=

{

−pijpkl, (i, j) 6= (k, l);

pij(1 − pij), i = k, j = l.

Letting qij = 1 − pij , we have

Σ = I−1(θ) =





p11q11 −p11p12 −p11p21

−p11p12 p12q12 −p12p21

−p11p21 −p12p21 p21q21



 .

Fix θ0 ∈ Ω0 and let V0 be the tangent space for Ω0 at θ0. To identify the
projection matrices P0 and Q0 onto V0 and V ⊥0 , note that parameters θ ∈ Ω0

must satisfy the constraint

θ1 − (θ1 + θ2)(θ1 + θ3)
def
= g(θ) = 0.

Using results from Appendix A.4, V ⊥0 is the space spanned by the rows of
Dg(θ0), or the columns of Dg(θ0)

′ = ∇g(θ0). Direct calculation gives

∇g(θ) =





1 − θ2 − θ3 − 2θ1
−(θ1 + θ3)
−(θ1 + θ2)



 .

Let
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v3 =
∇g(θ0)
‖∇g(θ0)‖

,

and choose v1 and v2 so that {v1, v2, v3} is an orthonormal basis for R3. As
in Example 17.3, v1 and v2 span V0, v3 spans V ⊥0 ,

P0 = v1v
′
1 + v2v

′
2

and
Q0 = v3v

′
3.

The noncentrality parameter is

δ2 = ∆′Q0(P0 +Q0I
−1(θ0)Q0)

−1Q0∆

= ∆′v3v
′
3(P0 + v3v

′
3I
−1(θ0)v3v

′
3)
−1v3v

′
3∆

= (v′3∆)2v′3
(

P0 + [v′3I
−1(θ0)v3]Q0

)−1
v3

= (v′3∆)2v′3

(

P0 +
Q0

v′3I
−1(θ0)v3

)

v3

=
(v′3∆)2

v′3I
−1(θ0)v3

=
n
(

∇g(θ0) · (θn − θ0)
)2

∇g(θ0)′I−1(θ0)∇g(θ0)
.

The derivation leading to this formula works whenever r− q = 1 with Ω0 the
parameters θ ∈ Ω satisfying a single differentiable constraint g(θ) = 0.

To illustrate use of the distributional results in a more concrete setting, let
us consider the following design question. How large should the sample size
be to achieve a test with (approximate) level α = 5% and power 90% when
p11 = p22 = 0.3 and p12 = p21 = 0.2? The parameter value associated with
these cell probabilities is

θn =





0.3
0.2
0.2



 .

Under H0, 2 logλ ∼ Z2, where Z ∼ N(0, 1). Since P
(

Z2 > (1.96)2
)

= 1 −
P (−1.96 < Z < 1.96) = 5% = α, the test should reject if 2 logλ > (1.96)2.
Since (Z + δ)2 ∼ χ2

1(δ
2), under the alternative θn,

2 logλ
.∼ (Z + δ)2.

To meet the design objective, we need

90% ≈ P
(

(Z + δ)2 > (1.96)2
)

= P (Z > 1.96 − δ) + P (Z < −1.96− δ).

The second term here is negligible, so we require
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90% ≈ P (Z > 1.96 − δ).

This holds if 1.96−δ is the 10th percentile of the standard normal distribution.
This percentile is −1.282 which gives δ = 1.96+1.282 = 3.242 and δ2 = 10.51.
The marginal cell probabilities under θn are pi+ = p+j = 1/2, so the natural
choice for θ0 is

θ0 =





1/4
1/4
1/4



 .

Then

∇g(θ0) =





0
−1/2
−1/2





and

∇g(θ0) · (θn − θ0) =





0
−1/2
−1/2



 ·





1/20
−1/20
−1/20



 =
1

20
.

Also,

I−1(θ0) =
1

4





3/4 −1/4 −1/4
−1/4 3/4 −1/4
−1/4 −1/4 3/4



 ,

and so

∇g(θ0)′I−1(θ0)∇g(θ0) =
1

4

(

3

4
− 1

4
− 1

4
+

3

4

)

=
1

16
.

Hence

δ2 =
n(1/20)2

(1/4)2
=

n

25
.

Setting this equal to 10.51 gives n = 263 as the sample size required for the
level and power specified.

In practice many statisticians test independence in 2×2 tables using Pear-
son’s chi-square test statistic,

T =
∑

i,j

(Nij − np̂i+p̂+j)
2

np̂i+p̂+j
.

For large n, T and 2 logλ are asymptotically equivalent. To demonstrate this
equivalence (without any serious attempt at mathematical rigor), we write

2 log λ = 2n
∑

i,j

p̂ij log

(

p̂ij
p̂i+p̂+j

)

.

We view this as a function of the p̂ij with the marginal probabilities p̂i+ and
p̂+j considered fixed constants and Taylor expand about p̂ij = p̂i+p̂+j (equality
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here is approximately correct under both H0 and contiguous alternatives). To
compute the gradient of the function,

∂

∂p̂kl
(2 logλ) = 2n

[

log

(

p̂kl
p̂k+p̂+l

)

+ 1

]

. (17.21)

Then
∂

∂p̂ij
(2 logλ)

∣

∣

∣

∣

p̂ij=p̂i+p̂+j

= 2n,

and the gradient at the point of expansion is









2n
2n
2n
2n









.

Taylor expansion through the gradient term gives

2 logλ ≈ 2n
∑

i,j

(p̂ij − p̂i+p̂+j) = 0.

To get an interesting answer we need to keep an extra term in our Taylor ex-
pansion. Because (17.21) only depends on p̂ij , the Hessian matrix is diagonal.
Now

∂2

∂p̂2
ij

(2 logλ) =
2n

p̂ij
,

so
∂2

∂p̂2
ij

(2 logλ)

∣

∣

∣

∣

∣

p̂ij=p̂i+ p̂+j

=
2n

p̂i+p̂+j
.

Taylor expansion through the Hessian term gives

2 log λ ≈ 1

2

∑

i,j

2n

p̂i+p̂+j
(p̂ij − p̂i+p̂+j)

2 = T.

17.4 Wald and Score Tests

The Wald and score (or Lagrange multiplier) tests are alternatives to the
generalized likelihood ratio tests with similar properties. Assume that the
null hypothesis can be written as H0 : g(θ) = 0, with the constraint function
g : Ω → Rr−q continuously differentiable and Dg(θ) of full rank for θ ∈ Ω0.

The basic idea behind the Wald test (Wald (1943)) is simply that if H0

is correct, then g(θ̂n) should be close to zero. By Proposition 9.32, if θ ∈ Ω0,
then
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√
ng(θ̂n) ⇒ N

[

0, Dg(θ)I(θ)−1
(

Dg(θ)
)′]

.

By Lemma 14.9 and results on weak convergence,

TW
def
= n

(

g(θ̂n)
)′ [

Dg(θ̂n)I(θ̂n)−1
(

Dg(θ̂n)
)′]−1

g(θ̂n) ⇒ χ2
r−q

when θ ∈ Ω0.
Rao’s score test (Rao (1948)) is based on the notion that if θ ∈ Ω0, then

θ̃n should be a good estimate of θ and the gradient of the log-likelihood should
not be too large at θ̃n. Differencing (17.12) and (17.11), for θ ∈ Ω0

1√
n
∇ln(θ̃n) = I(θ)(Zn − Yn) + op(1)

as n→ ∞. Using (17.13) it is then not hard to show that

TS
def
=

1

n

(

∇ln(θ̃n)
)′
I(θ̃n)

−1∇ln(θ̃n) = 2 logλn + op(1) ⇒ χ2
r−q.

The three test statistics, 2 log λ, TW , and TS , have different strengths and
weaknesses. Although the derivation here only considers the asymptotic null
distributions of TW and TS , with the methods and regularity assumed in
Section 17.2 it is not hard to argue that all three tests are asymptotically
equivalent under distributions contiguous to a null distribution; specifically,
differences between any two of the statistics will tend to zero in probabil-
ity. Furthermore, variants of TW and TS in which the Fisher information is
estimated consistently in a different fashion, perhaps using observed Fisher
information, are also equivalent under distributions contiguous to a null dis-
tribution.

The score test only relies on θ̃n. The maximum likelihood estimator θ̂n
under the full model is not needed. This may be advantageous if the full
model is difficult to fit. Unfortunately, it also means that although the test
will have good power at alternatives near a null distribution, the power may
not be high at more distant alternatives. In fact, there are examples where the
power of the score test does not tend to one at fixed alternatives as n → ∞.
See Freedman (2007).

In contrast to the score test, the Wald test statistic relies only on the
maximum likelihood estimator under the full model θ̂n, and there is no need
to compute θ̃n. This may make TW easier to compute than 2 logλ.

With a fixed nominal level α, at a fixed alternative θ ∈ Ω1 the pow-
ers of the generalized likelihood, Wald, and the score test generally tend to
one quickly. With sufficient regularity, the convergence occurs exponentially
quickly, with the generalized likelihood ratio test having the best possible rate
of convergence. This rate of convergence is called the Bahadur slope for the
test, and the generalized likelihood ratio is thus Bahadur efficient. But from
a practical standpoint, the ability of a test to detect smaller differences may
be more important, and in this regard it is harder to say which of these tests
is best.
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17.5 Problems3

1. Consider three samples: W1, . . . , Wk from N(µ1, σ
2
1); X1, . . . , Xm from

N(µ1, σ
2
2); and Y1, . . . , Yn from N(µ2, σ

2
2), all independent, where µ1,

µ2, σ1, and σ2 are unknown parameters. Derive the generalized likelihood
test statistic λ to test H0 : σ1 = σ2 versus H1 : σ1 6= σ2. You should be
able to reduce the normal equations under the full model to a single cubic
equation. Explicit solution of this cubic equation is not necessary.

2. Consider data for a two-way contingency table N11, N12, N21, N22 from a
multinomial distribution with n trials and success probabilities p11, p12,
p21, p22. Derive the generalized likelihood test statistic λ to test “symme-
try,” H0 : p12 = p21 versus H1 : p12 6= p21.

*3. Random effects models. One model that is used to analyze a blocked ex-
periment comparing p treatments has Yij = αi + βj + ǫij , i = 1, . . . , p,
j = 1, . . . , n, with the αi and βj viewed as unknown constant parameters
and the ǫij unobserved and i.i.d. from N(0, σ2). In some circumstances,
it may be more natural to view the blocking variables βj as random,
perhaps as i.i.d. from N(0, τ2) and independent of the ǫij . This gives a
model in which the vectors Yj = (Y1j , . . . , Ypj)

′, j = 1, . . . , n, are i.i.d.
from N(α, σ2I + τ211′). Here “1” denotes a column of 1s in Rp, and the
unknown parameters are α ∈ Rp, σ2 > 0, and τ2 ≥ 0.
a) Derive the likelihood ratio test statistic to test H0 : τ2 = 0 versus

H1 : τ2 > 0.
b) Derive the likelihood ratio test statistic to test H0 : α1 = · · · = αp.

*4. Let X and Y be independent exponential variables with failure rates θx
and θy, respectively.
a) Find the generalized likelihood ratio test statistic λ, based on X and

Y , to test H0 : θx = 2θy versus H1 : θx 6= 2θy.
b) Suppose the test rejects if λ ≥ c. How should the critical level c be

adjusted to give level α?
5. Let X and Y be independent normal variables, both with variance one

and means θX = EX and θY = EY .
a) Derive the generalized likelihood test statistic λ (or logλ) to test H0 :

θX = 0 or θY = 0 versus H1 : θX 6= 0 and θy 6= 0.
b) The likelihood test using λ from part (a) rejectsH0 if logλ > k. Derive

a formula for the power of this test when θX = 0.
c) Find the significance level α as a function of k. How should k be chosen

to achieve a desired level α?
6. Suppose X ∼ Np(θ, I) and consider testing H0 : θ ∈ Ω0 versus H1 : θ /∈
Ω0.
a) Show that the likelihood ratio test statistic λ is equivalent to the

distance D between X and Ω0, defined as

D = inf
{

‖X − θ‖ : θ ∈ Ω0}.
3 Solutions to the starred problems are given at the back of the book.
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(Equivalent here means there is a one-to-one increasing relationship
between the two statistics.)

b) Using part (a), a generalized likelihood ratio test will reject H0 if
D > c. What is the significance level α for this test if p = 2 and
Ω0 = {θ : θ1 ≤ 0, θ2 ≤ 0}?

7. Show that in the general linear model there is an increasing one-to-one
relationship between the generalized likelihood ratio statistic λ and the
test statistic T in (14.24), so that tests based on λ and T are equivalent.

*8. Let X1, . . . , Xn be a random sample from an exponential distribution
with mean θ1, and let Y1, . . . , Yn be an independent sample from an
exponential distribution with mean θ2.
a) Find the likelihood ratio test statistic for testing H0 : θ1/θ2 = c0

versus H1 : θ1/θ2 6= c0, where c0 is a constant.
b) Use the large-sample approximation for the null distribution of 2 logλ

and the duality between testing and interval estimation to describe a
confidence set for θ1/θ2 with coverage probability approximately 95%
(the set is an interval, but you do not have to demonstrate this fact).
If n = 100, X = 2, and Y = 1, determine whether the parameter ratio
2.4 lies in the confidence set.

c) How large should the sample size n be if we want the likelihood ratio
test for testing H0 : θ1 = θ2 versus H1 : θ1 6= θ2 at level 5% to have
power 90% when θ1 = 0.9 and θ2 = 1.1?

*9. Let W1, . . . ,Wn, X1, . . . , Xn, and Y1, . . . , Yn be independent random sam-
ples from N(µw, σ

2
w), N(µx, σ

2
x), and N(µy, σ

2
y), respectively.

a) Find the likelihood ratio test statistic for testing H0 : σw = σx = σy
versus the alternative that at least two of the standard deviations
differ.

b) What is the approximate power of the likelihood ratio test with level
α = 5% if n = 200, σw = 1.8, σx = 2.2 and σy = 2.0? You can
express the answer in terms of a noncentral chi-square distribution,
but identify the appropriate degrees of freedom and the noncentrality
parameter.

*10. Suppose X1, . . . , Xn are i.i.d. Np(µ, I).
a) Derive the likelihood ratio test statistic 2 logλ to test H0 : ‖µ‖ = r

versus H1 : ‖µ‖ 6= r, where r is a fixed constant.
b) Give a formula for the power of the likelihood ratio test that rejects

H0 when 2 logλ > c in terms of the cumulative distribution function
for a noncentral chi-square distribution.

c) If r = 1, what sample size will be necessary for the test with α ≈ 5%
to have power approximately 90% when ‖µ‖ = 1.1?

11. Let W1, . . . ,Wn, X1, . . . , Xn, and Y1, . . . , Yn be independent random sam-
ples. The Wi have density e−|x−θ1|/2, the Yi have density e−|x−θ2|/2, and
the Xi have density e−|x−θ3|/2. Derive the approximate power for the
likelihood ratio test with α = 5% of H0 : θ1 = θ2 = θ3 if n = 200,
θ1 = 1.8, θ2 = 2.0, and θ3 = 2.2. You can express the answer in terms of
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a noncentral chi-square distribution, but identify the appropriate degrees
of freedom and the noncentrality parameter.

*12. Errors in variables models. Consider a regression model in which

Yi = βXi + ǫi, i = 1, . . . , n,

with the Xi a random sample from N(0, 1) and the ǫi an independent
random sample, also from N(0, 1). In some situations, the independent
variables Xi may not be observed directly. One possibility is that they are
measured with error. For a specific model, let

Wi = Xi + ηi, i = 1, . . . , n.

The ηi are modeled as a random sample from N(0, σ2), independent of
the Xi and ǫi. The data are W1, . . . ,Wn and Y1, . . . , Yn, with β and σ
unknown parameters.
a) Determine the joint distribution of Wi and Yi.
b) Describe how to compute the generalized likelihood ratio test statistic

to test H0 : β = 0 versus H1 : β 6= 0. An explicit formula for the
maximum likelihood estimators may not be feasible, but you should
give equations that can be solved to find the maximum likelihood
estimators.

c) Show that the least squares estimate for β when σ = 0 (the estimator
that one would use when the model ignores measurement error for the
independent variable) is inconsistent if σ > 0.

d) Derive an approximation for the power of the generalized likelihood
ratio test with level α ≈ 5% when β = ∆/

√
n. How does σ effect the

power of the test?
*13. Goodness-of-fit test. Let X1, . . . , Xn be a random sample from some con-

tinuous distribution on (0,∞), and let Y1 be the number of observations in
(0, 1), Y2 the number of observations in [1, 2), and Y3 the number of obser-
vations in [2,∞). Then Y has a multinomial distribution with n trials and
success probabilities p1, p2, p3. If the distribution of the Xi is exponential
with failure rate θ, then p1 = 1 − e−θ, p2 = e−θ − e−2θ, and p3 = e−2θ.
a) Derive a generalized likelihood ratio test of the null hypothesis that

the Xi come from an exponential distribution. The test should be
based on data Y1, Y2, Y3.

b) If α ≈ 5% and Y = (36, 24, 40), would the test in part (a) accept
or reject the null hypothesis? What is the attained significance with
these data (approximately)?

c) How large should the sample size be if we want the test with level
α ≈ 5% to have power 90% when p1 = 0.36, p2 = 0.24, and p3 = 0.4?

14. Let X1, . . . , Xn be i.i.d. from a Fisher distribution on the unit sphere in
R3 with common density

fθ(x) =
‖θ‖eθ·x

4π sinh(‖θ‖) ,
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with respect to surface area on the unit sphere. When θ = 0, f0(x) =
1/(4π), so the variables are uniformly distributed. (These distributions
are often used to model solid angles.)
a) Describe how you would test H0 : θ2 = θ3 = 0 versus H1 : θ2 6= 0 or

θ3 6= 0, giving the normal equations you would use to solve for θ̂n and
θ̃n. If α = 5%, n = 100, and Xn = (0.6, 0.1, 0.1), would you accept or
reject H0?

b) What is the approximate power of the likelihood test if n = 100,
α = 5%, and θ = (1, .2, 0)? Express the answer using the noncentral
chi-square distribution, but identify the degrees of freedom and the
noncentrality parameter.

15. Let Xij , i = 1, . . . , p, j = 1, . . . , n, be i.i.d. from a standard expo-
nential distribution, and given X = x, let Yij , i = 1, . . . , p, j =
1, . . . , n, be independent Poisson variables with EYij = xijθi. Then
(X1j , . . . , Xpj , Y1j , . . . , Ypj), j = 1, . . . , n, are i.i.d. random vectors. Con-
sider testing H0 : θ1 = · · · = θp versus H1 : θi 6= θk for some i 6= k.
a) Find the likelihood ratio test statistic to test H0 against H1.
b) What is the approximate power for the likelihood ratio test if α = 5%,

n = 100, p = 5, θ1 = 1.8, θ2 = 1.9, θ3 = 2.0, θ4 = 2.1, and θ5 = 2.2?
Express your answer using the noncentral chi-square distribution, but
give the degrees of freedom and the noncentrality parameter.

c) If p = 2 and α ≈ 5%, how large should the sample size n be if power
90% is desired when θ1 = 1.9 and θ2 = 2.1?

16. Define
Ω0 =

{

x ∈ (0,∞)3 : x1x2x3 = 10
}

,

a manifold in R3.
a) What is the dimension of Ω0?
b) Let V be the tangent space for this manifold at x = (1, 2, 5).

Find an orthonormal basis e1, e2, e3 with e1, . . . , eq spanning V and
eq+1, . . . , e3 spanning V ⊥.

c) Find projection matrices P and Q onto V and V ⊥, respectively.
17. Define a vector-valued function η : R2 → R3 by η1(x, y) = x2, η2(x, y) =

y2, and η3(x, y) = (x−y)2, and let Ω0 = η
(

(0,∞)2
)

. Let V be the tangent
space for Ω0 at (4, 1, 1). Find orthonormal vectors that span V .

18. Let (N11, . . . , N22) have a multinomial distribution, as in Example 17.4,
and consider testing whether the marginal distributions are the same, that
is, testing H0 : p+1 = p1+ versus H1 : p+1 6= p1+.
a) Derive a formula for the generalized likelihood ratio test statistic

2 log λ.
b) How large should the number of trials be if we want the test with level

α ≈ 5% to have power 90% when p11 = 30%, p12 = 15%, p21 = 20%,
and p22 = 35%?
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Nonparametric Regression

Regression models are used to study how a dependent or response variable
depends on an independent variable or variables. The regression function f(x)
is defined as the mean for a response variable Y when the independent variable
equals x. In model form, with n observations, we may write

Yi = f(xi) + ǫi, i = 1, . . . , n,

with Eǫi = 0.
Classically, the regression function f is assumed to lie in a class of func-

tions specified by a finite number of parameters. For instance, in quadratic
regression f is a quadratic function, f(x) = β0 + β1x + β2x

2, specified by
three parameters, β0, β1, and β2. This approach feels natural with a small-
or moderate-size data set, as the data in this case may not be rich enough to
support fitting a more complicated model. But with more data a researcher
will often want to consider more involved models, since in most applications
there is little reason to believe the regression function lies exactly in some nar-
row parametric family. Of course one could add complexity by increasing the
number of parameters, fitting perhaps a cubic or quartic function, say, instead
of a quadratic. But this approach may have limitations, and recently there has
been considerable interest in replacing parametric assumptions about f with
more qualitative assumptions about the smoothness of f .

In this chapter we explore two approaches. We begin with kernel methods,
based on Clark (1977), which exploit the assumed smoothness of f in a fairly
direct fashion. With this approach the regression function is estimated as a
weighted average of the responses with similar values for the independent
variable. The other approach, splines, is derived by viewing the regression
function f as an unknown parameter taking values in an infinite-dimensional
vector space. This approach is developed in Section 18.3, following a section
extending results about finite-dimensional vector spaces to Hilbert spaces.
The chapter closes with a section showing how similar ideas can be used for
density estimation.
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DOI 10.1007/978-0-387-93839-4_18, © Springer Science+Business Media, LLC 2010 
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18.1 Kernel Methods

Consider a regression model in which

Yi = f(xi) + ǫi, i = 1, . . . , n,

where ǫ1, . . . , ǫn are mean zero, uncorrelated random variables with a common
variance σ2. The independent variables x1, . . . , xn are viewed as (observed or
known) constants, and the response variables Y1, . . . , Yn are observed and
random. The errors ǫ1, . . . , ǫn are not observed, and σ2 is an unobserved pa-
rameter. The regression function f is unknown and is not assumed to lie in
any parametric class. But we do assume it is twice continuously differentiable.
Finally, for convenience, assume x1 < · · · < xn.

One conceivable estimator for f might be the function ĥ obtained from
the data by linear interpolation. This function is Yi when x = xi and is linear
between adjacent values for x, so

ĥ(x) = Yi
x− xi+1

xi − xi+1
+ Yi+1

x− xi
xi+1 − xi

, x ∈ [xi, xi+1]. (18.1)

If the errors are very small then ĥ may lie close to f , but when the errors are
appreciable ĥ will jump up and down too much to be a sensible estimator.
This can be seen in the plot to the left in Figure 18.1, with the true regression
function f shown as a dashed line and ĥ given as a solid line.

x

ĥ

x

f̂

Fig. 18.1. Kernel smoothing: left: ĥ; right: f̂ .

One way to make a function smoother is through convolution. Doing this
with ĥ leads to an estimator

f̂(x) =
1

b

∫

ĥ(t)W

(

x− t

b

)

dt, (18.2)

where W is a probability density and b, called the bandwidth, controls the
amount of smoothing. The plot to the right in Figure 18.1 shows1 f̂ , and it is

1 The graphs are based on simulated data with f(x) = 16x3 − 19.2x2 +4.68x+2.3,
ǫi ∼ N(0, 1),W (x) = (1−|x|)+, b = 0.24, and xi+1−xi = 0.04. To avoid problems
with edge effects, f̂ is based on observations (not graphed) with x /∈ [0, 1].
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indeed smoother than ĥ. Viewing this integral in (18.2) as an expectation,

f̂(x) = EZ ĥ(x− bZ),

where Z is an absolutely continuous variable with density W . From this we
can see that f̂(x) is a weighted average of ĥ(y) over values y of order b from x.
With increasing b there is more averaging and, as intuition suggests, this will
improve the variance of f̂(x). But if f curves near x, averaging will induce

bias in the estimator f̂ that grows as b increases. We explore this below when
the independent variables are equally spaced, trying to choose the bandwidth
to balance these concerns.

The estimators ĥ and f̂ are both linear functions of Y . Using (18.1),

ĥ(x) =

n
∑

i=1

ui(x)Yi,

where

ui(x) =



























x− xi−1

xi − xi−1
, x ∈ [xi−1, xi];

x− xi+1

xi − xi+1
, x ∈ [xi, xi+1];

0, otherwise.

Using this in (18.2),

f̂(x) =
1

b

∫ n
∑

i=1

ui(t)YiW

(

x− t

b

)

dt =
n
∑

i=1

vi(x)Yi, (18.3)

where

vi(x) =
1

b

∫

ui(t)W

(

x− t

b

)

dt. (18.4)

With this linear structure, moments of f̂(x) should be easy to compute.

If we let h(x) = Eĥ(x), then by (18.1),

h(x) = f(xi)
x− xi+1

xi − xi+1
+ f(xi+1)

x− xi
xi+1 − xi

, x ∈ [xi, xi+1],

so h is the linear interpolant of f . The difference between h and f can be
estimated by Taylor approximation. If x ∈ [xi, xi+1], then

f(x) = f(xi) + (x− xi)f
′(xi) +

∫ x

xi

(x− u)f ′′(u) du.

In particular, if x = xi+1, we have

f(xi+1) = f(xi) + (xi+1 − xi)f
′(xi) +

∫ xi+1

xi

(xi+1 − u)f ′′(u) du,
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and we can use this to eliminate f ′(xi) from the first equation in favor of
f(xi+1). The algebra is messy but straightforward and gives

f(x) = f(xi) + (x− xi)
f(xi+1) − f(xi)

xi+1 − xi

−
∫ x

xi

(u − xi)

(

1 − x− xi
xi+1 − xi

)

f ′′(u) du

−
∫ xi+1

x

(x− xi)
xi+1 − u

xi+1 − xi
f ′′(u) du

= h(x) − 1

2
(x− xi)(xi+1 − x)

∫ xi+1

xi

pi,x(u)f ′′(u) du,

where pi,x is a probability density concentrated on (xi, xi+1). If f ′′ is contin-
uous, then by the (first) intermediate value theorem for integrals,

f(x) = h(x) − 1

2
(x− xi)(xi+1 − x)f ′′(ui,x),

where ui,x ∈ (xi, xi+1). In particular, since (x−xi)(xi+1−x) ≤ 1
4 (xi+1−xi)2,

if M2 = sup |f ′′(x)|, then

∣

∣f(x) − h(x)
∣

∣ ≤ M2

8
(xi+1 − xi)

2. (18.5)

For clarity, let us now assume that the xi are equally spaced between
0 and 1, xi = i/n. Assume also that W is continuous, symmetric, and has

support [−1, 1]. Two popular choices for the kernel are W2(x) =
(

1 − |x|
)+

and W4(x) = 3
4 (1 − x2)+. Then

Ef̂(x) = E
1

b

∫

ĥ(t)W

(

x− t

b

)

dt

=
1

b

∫

Eĥ(t)W

(

x− t

b

)

dt

=
1

b

∫

f(t)W

(

x− t

b

)

dt+
1

b

∫

(

h(t) − f(t)
)

W

(

x− t

b

)

dt.

By (18.5), the difference between f and h is at most M2/(8n
2), and since W

is a probability density integrating to one, this also bounds the magnitude of
the final term.2 If Z has density W , then the other term is

EZf(x− bZ) = EZ
[

f(x) − bZf ′(x) + 1
2b

2Z2f ′′(x− bZ∗)
]

,

where Z∗ is an intermediate value in (−1, 1). Because W is symmetric, EZ =
0, and by dominated convergence

2 We neglect “edge effects” here, assuming xi > b and xi+1 < 1 − b.
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Bias
(

f̂(x)
)

= Ef̂(x) − f(x) =
1

2
b2f ′′(x)EZ2 + o(b2) +O(1/n2),

as b → 0. With the regularity imposed, the asymptotics here also hold uni-
formly in x provided we stay away from the endpoints 0 and 1.

From the representation (18.3),

Var
(

f̂(x)
)

= σ2
n
∑

i=1

v2
i (x).

Note that in this sum, the number of nonzero terms is of order nb because
vi(x) is zero unless |x− xi| ≤ b+ 1/n. To approximate the terms in this sum,
note that nui is a probability measure concentrated on (xi−1, xi+1), and so,
by (18.4),

vi(x) =
1

nb
W

(

x− t∗i (x)
b

)

,

with t∗i (x) some value in (xi−1, xi+1). If M1 = sup |W ′(t)|, then
∣

∣

∣

∣

vi(x) −
1

nb
W

(

x− xi
b

)∣

∣

∣

∣

≤ M1

n2b2
.

Since the points xi/b are uniformly spaced and separated by an amount 1/(nb),
in a limit in which b→ 0 but nb→ ∞, then

1

nb

n
∑

i=1

W 2

(

x− xi
b

)

is a Riemann approximation for
∫

W 2(x−t) dt converging to
∫

W 2(t) dt. Thus

Var
(

f̂(x)
)

=
σ2

nb

1

nb

n
∑

i=1

[

W 2

(

x− xi
b

)

+O

(

1

nb

)]

=
σ2

nb

[∫

W 2(t) dt+ o(1)

]

+O

(

1

n2b2

)

∼ σ2

nb

∫

W 2(t) dt.

Combining our approximations for the bias and variance of f̂(x), we can

approximate the mean square error of f̂(x) as

MSE(x) = E
[

f̂(x) − f(x)
]2

= Var
(

f̂(x)
)

+ Bias2
(

f̂(x)
)

≈ σ2

nb

∫

W 2(t) dt+ b4
1

4

(

f ′′(x)
)2

(EZ2)2.

The mean square error measures the performance of f̂ at individual values
for the independent variable x. For a more global assessment, the integrated
mean square error may be a natural measure:
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IMSE =

∫ 1

0

MSE(x) dx

=

∫ 1

0

E
[

f̂(x) − f(x)
]2
dx = E

∫ 1

0

[

f̂(x) − f(x)
]2
dx.

Using the approximation for the mean square error,

IMSE ≈ c1
nb

+ b4c2,

where

c1 = σ2

∫

W 2(t) dt and c2 =
1

4
(EZ2)2

∫ 1

0

(

f ′′(x)
)2
dx.

The approximation for the integrated mean square error, viewed as a function
of b, is minimized at a value where the derivative is zero; that is, at a value
solving

− c1
nb2

+ 4c2b
3 = 0.

This gives

bopt =

(

c1
4nc2

)1/5

as an optimal choice (approximately), and with this choice

IMSE ≈ 5c
1/5
2

( c1
4n

)4/5

= Kf

(

σ2

n

)4/5
(

[∫

W 2(t) dt

]4

[EZ2]2

)1/5

,

where

Kf =
5

4

(∫ 1

0

(

f ′′(x)
)2
dx

)1/5

,

which depends on f but is independent of the kernel W . Using W2, IMSE ≈
0.353Kf(σ

2/n)4/5, and using W4, IMSE ≈ 0.349Kf(σ
2/n)4/5. Thus W4 has a

slight theoretical advantage.
In practice, the choice of the kernel is less important than the choice of the

bandwidth. The formula for bopt cannot be used directly, since the constants

c1 and c2 depend on σ2 and
∫ 1

0

(

f ′′(x)
)

dx. One natural idea is to estimate
these quantities somehow and choose the bandwidth by plugging the estimates
into the formula for bopt. This is feasible, but a bit tricky since derivatives of
f are often harder to estimate than f itself. Another idea would be to use a
cross-validation approach based on prediction error. Suppose we wanted to
predict the outcome at a new location x. The expected squared prediction
error would be

E
[

Y − f̂(x)
]2

= E[f(x) + ǫ− f̂(x)
]2

= σ2 + MSE(x).

If x were chosen at random from a uniform distribution on (0, 1), then the
expected squared prediction error would be σ2 + IMSE. Here is a resampling
method to estimate this error:
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1. Partition the data at random into two samples, an estimation sample
with n1 observations and a validation sample with n2 observations. Let
f̂∗b denote the kernel estimate for f based on the estimation sample with
bandwidth b.

2. Define

C(b) =
1

n2

n2
∑

i=1

(

y2,i − f̂∗b (x2,i)
)2
,

where (x2,i, y2,i), i = 1, . . . , n2, are the data in the validation sample.
3. Repeat steps 1 and 2 m times and define

C(b) =
1

m

m
∑

i=1

Ci(b),

where Ci(b) is the function C(b) for the ith partition.

The value b̂ minimizing C would be the cross-validation choice for the band-
width.

18.2 Hilbert Spaces

If V is a vector space in Rn with an orthonormal basis e1, . . . , ep, then any
x ∈ V can be written as

x =

p
∑

i=1

ciei,

with the constants ci in the expansion given by

ci = e′ix, i = 1, . . . , p.

Classes of functions may also form vector spaces over R, but these spaces are
rarely spanned by a finite set of functions. However, expansions like those
above may be possible with an infinite collection of basis vectors. To deal
with infinite sums we need a notion of convergence, and this is based here on
the norm or length of a vector. And, for the geometric structure of interest,
we also need inner products. Here are formal definitions of norms and inner
products.

Definition 18.1. Let V be a vector space over R. A norm on V is a real-
valued function on V , ‖ · ‖ : V → R, satisfying the following conditions:

1. For all x in V , ‖x‖ ≥ 0, and ‖x‖ = 0 only if x = O (the zero vector in
V ).

2. For all x and y in V , ‖x+ y‖ ≤ ‖x‖ + ‖y‖.
3. For all x ∈ V and c ∈ R, ‖cx‖ = |c| × ‖x‖.
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Using a norm we can define convergence xn → x to mean that ‖xn−x‖ →
0. Then a function f from one normed space to another is continuous if
f(xn) → f(x) whenever xn → x. For instance the function f(x) = ‖x‖ is
continuous. The second property of norms implies

‖xn‖ ≤ ‖xn − x‖ + ‖x‖ and ‖x‖ ≤ ‖x− xn‖ + ‖xn‖.

Together these imply

∣

∣f(xn) − f(x)
∣

∣ =
∣

∣‖xn‖ − ‖x‖
∣

∣ ≤ ‖xn − x‖,

which tends to zero (by definition) whenever xn → x.

Definition 18.2. Let V be a vector space over R. An inner product is a
function 〈·, ·〉 : V × V → R that is symmetric:

〈x, y〉 = 〈y, x〉, ∀y, x ∈ V ;

bilinear:
〈x, ay + bz〉 = a〈x, y〉 + b〈x, z〉

and
〈ax+ by, z〉 = a〈x, z〉 + b〈y, z〉,

for all x, y, z in V and all a, b in R; and positive definite:

〈x, x〉 ≥ 0,

with equality only if x = O. The pair (V, 〈·, ·〉) is called an inner product
space.

Proposition 18.3. In an inner product space, ‖x‖ =
√

〈x, x〉 defines a norm
satisfying the Cauchy–Schwarz inequality,

|〈x, y〉| ≤ ‖x‖ × ‖y‖. (18.6)

Proof. The first property of a norm follows because the inner product is
positive definite, the third property follows from the bilinearity which gives
〈cx, cx〉 = c2〈x, x〉, and, anticipating (18.6), the second property of a norm
follows because

∣

∣〈x+ y, x+ y〉
∣

∣ =
∣

∣〈x, x〉 + 2〈x, y〉 + 〈y, y〉
∣

∣

≤ ‖x‖2 + 2‖x‖ × ‖y‖ + ‖y‖2 =
(

‖x‖ + ‖y‖
)2
.

To finish we must verify the Cauchy–Schwarz inequality. It is not hard to show
that 〈x,O〉 = 0, and so the inequality is immediate unless x and y are both
nonzero. In this case,
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〈x− cy, x− cy〉 = ‖x‖2 − 2c〈x, y〉 + c2‖y‖2,

viewed as a function of c, is minimized when c = 〈x, y〉/‖y‖2. But the function
is nonnegative for all c, and so plugging in the minimizing value we have

‖x‖2 − 2
〈x, y〉2
‖y‖2

+
〈x, y〉2
‖y‖2

≥ 0.

After a bit of rearrangement this gives (18.6). ⊓⊔
One consequence of the Cauchy–Schwarz inequality is that the inner prod-

uct 〈·, ·〉 is continuous, because
∣

∣〈x̃, ỹ〉 − 〈x, y〉
∣

∣ =
∣

∣〈x̃, ỹ − y〉 + 〈x̃− x, y〉
∣

∣

≤ ‖x̃‖ × ‖ỹ − y‖ + ‖x̃− x‖ × ‖y‖,

which tends to zero as x̃→ x and ỹ → y.
If a norm ‖ · ‖ comes from an inner product, then

‖x± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2.

Adding these two relations we have the parallelogram law, stating that

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (18.7)

Elements x and y in an inner product space V are called orthogonal, written
x ⊥ y, if 〈x, y〉 = 0. Since

〈x + y, x+ y〉 = 〈x, x〉 + 2〈x, y〉 + 〈y, y〉,

we then have the Pythagorean relation,

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

If W is a subspace of V , then the orthogonal complement of W is

W⊥ =
{

x ∈ V : 〈x, y〉 = 0, ∀y ∈ W
}

.

If xn → x, then ‖xn − x‖ → 0, which implies that

sup
m:m≥n

‖xm − x‖ → 0,

as n→ ∞. Because

‖xn − xm‖ ≤ ‖xn − x‖ + ‖x− xm‖,

convergence implies
lim
n→∞

sup
m≥n

‖xn − xm‖ = 0. (18.8)

Sequences satisfying this equation are called Cauchy, but if the space is not
rich enough some Cauchy sequences may not converge. For instance, 3, 3.1,
3.14, . . . is a Cauchy sequence in Q without a limit in Q, because π is irrational.
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Definition 18.4. A normed vector space V is complete if every Cauchy se-
quence in V has a limit in V . A complete inner product space is called a
Hilbert space.

The next result extends our notion of projections in Euclidean spaces to
Hilbert spaces.

Theorem 18.5. Let V be a closed subspace of a Hilbert space H. For any
x ∈ H there is a unique y ∈ V , called the projection of x onto V , minimizing
‖x− z‖ over z ∈ V . Then x− y ∈ V ⊥, and this characterizes y: if ỹ ∈ V and
x− ỹ ∈ V ⊥, then ỹ = y.

Proof. Let d = infz∈V ‖x − z‖ (the distance from x to V ), and choose yn in
V so that ‖x− yn‖ → d. By the parallelogram law,

‖x− ym + x− yn‖2 + ‖yn − ym‖2 = 2‖x− yn‖2 + 2‖x− ym‖2.

But
‖2x− ym − yn‖2 = 4

∥

∥x− 1
2 (yn + ym)

∥

∥

2 ≥ 4d2,

and so
‖yn − ym‖2 ≤ 2‖x− yn‖2 + 2‖x− ym‖2 − 4d2 → 0,

as m,n→ ∞. So yn, n ≥ 1, is a Cauchy sequence converging to some element
y ∈ H. Since V is closed, y ∈ V , and by continuity, ‖x−y‖ = d. Next, suppose
ỹ ∈ V and ‖x− ỹ‖ = d. If z ∈ V then ỹ + cz ∈ V for all c ∈ R and

0 ≤ ‖x− ỹ − cz‖2 − ‖x− ỹ‖2 = −2c〈x− ỹ, z〉 + c2‖z‖2.

This can only hold for all c ∈ R if 〈x− ỹ, z〉 = 0, and thus x− ỹ ∈ V ⊥. Finally,
since y and ỹ both lie in V and x− y and x− ỹ both lie in V ⊥,

‖y − ỹ‖2 = 〈x − ỹ, y − ỹ〉 − 〈x− y, y − ỹ〉 = 0,

showing that y is unique. ⊓⊔

If V is a closed subspace of a Hilbert space H, let PV x denote the projection
of x onto V . The following result shows that PV is a linear operator with
operator norm one (see Problem 18.4).

Proposition 18.6. If V is a closed subspace of a Hilbert space H, x ∈ H,
y ∈ H, and c ∈ R, then

PV (cx+ y) = cPV x+ PV y

and
‖PV x‖ ≤ ‖x‖.
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Proof. Since V is a subspace and PV x and PV y lie in V , cPV x + PV y ∈ V ;
and if z ∈ V ,

〈cx+ y − cPV x− PV y, z〉 = c〈x− PV x, z〉 + 〈y − PV y, z〉 = 0,

because x−PV x ⊥ z and y−PV y ⊥ z. Using Theorem 18.5, cPV x+PV y must
be the projection of cx + y onto V . For the second assertion, since PV x ∈ V
and x− PV x ∈ V ⊥ are orthogonal, by the Pythagorean relation

‖PV x‖2 + ‖x− PV x‖2 = ‖x‖2. ⊓⊔

Definition 18.7. A collection et, t ∈ T , is said to be orthonormal if es ⊥ et
for all s 6= t and ‖et‖ = 1, for all t.

As in the finite-dimensional case, we would like to represent elements in our
Hilbert space as linear combinations of elements in an orthonormal collection,
but extra care is necessary because some infinite linear combinations may not
make sense.

Definition 18.8. The linear span of S ⊂ H, denoted span(S), is the collec-
tion of all finite linear combinations c1x1 + · · · + cnxn with c1, . . . , cn in R

and x1, . . . , xn in S. The closure of this set is denoted span(S).

Definition 18.9. An orthonormal collection et, t ∈ T , is called an orthonor-
mal basis for a Hilbert space H if 〈et, x〉 6= 0 for some t ∈ T , for every nonzero
x ∈ H.

Theorem 18.10. Every Hilbert space has an orthonormal basis.

The proof in general relies on the axiom of choice. (The collection of all
orthonormal families is inductively ordered, so a maximal element exists by
Zorn’s lemma, and any maximal element is an orthonormal basis.) When H
is separable, a basis can be found by applying the Gram–Schmidt algorithm
to a countable dense set, and in this case the basis will be countable.

Theorem 18.11. If en, n ≥ 1, is an orthonormal basis, then each x ∈ H may
be written as

x =

∞
∑

k=1

〈x, ek〉ek.

Proof. Let

xn =
n
∑

k=1

〈x, ek〉ek.

The infinite sum in the theorem is the limit of these partial sums, so we begin
by showing that these partial sums form a Cauchy sequence. If j ≤ n,
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〈x− xn, ej〉 = 〈x, ej〉 −
n
∑

k=1

〈x, ek〉〈ek, ej〉 = 0,

since 〈ek, ej〉 = 0, unless k = j, and in that case it is 1. From this, x −
xn ∈ span{e1, . . . , en}⊥, and by Theorem 18.5, xn is the projection of x onto
span{e1, . . . , en}. By the Pythagorean relation,

‖xn‖2 =

n
∑

k=1

〈x, ek〉2,

and by Proposition 18.6, ‖xn‖ ≤ ‖x‖. From this we have Bessel’s inequality,

n
∑

k=1

〈x, ek〉2 ≤ ‖x‖2,

and since n here is arbitrary, the coefficients 〈x, ek〉, k ≥ 1, are square
summable. By the Pythagorean relation, if n < m,

‖xm − xn‖2 =

∥

∥

∥

∥

∥

m
∑

k=n+1

〈x, ek〉ek
∥

∥

∥

∥

∥

2

=

m
∑

k=n+1

〈x, ek〉2,

which tends to zero as m and n tend to infinity. So xn, n ≥ 1, is a Cauchy
sequence, and since H is complete the sequence must have a limit x∞. Because
the inner product 〈·, ·〉 is a continuous function of its arguments, for any j ≥ 1,

〈x− x∞, ej〉 = lim
n→∞

〈x− xn, ej〉.

But if n ≥ j, 〈x − xn, ej〉 = 0 because xn is the projection of x onto
span{e1, . . . , en}, and so the limit in this expression must be zero. Therefore

〈x− x∞, ej〉 = 0, j ≥ 1.

Finally, since ek, k ≥ 1, form an orthonormal basis, x − x∞ must be zero,
proving the theorem. ⊓⊔

18.3 Splines

Let us consider again our nonparametric regression model

Yi = f(xi) + ǫi, i = 1, . . . , n,

where ǫ1, . . . , ǫn are mean zero, uncorrelated random variables with a common
variance σ2. As with the kernel approach, there is a presumption that f is
smooth. The smoothing spline approach tries to take direct advantage of this
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smoothness by augmenting the usual least squares criteria with a penalty for
roughness. For instance, if the xi lie in [0, 1], the estimator f̂ might be chosen
to minimize

J(f) =

n
∑

i=1

(

Yi − f(xi)
)2

+ λ‖f (m)‖2
2, (18.9)

where ‖ · ‖2 is the L2-norm of functions on [0, 1] under Lebesgue measure,

‖g‖2
2 =

∫ 1

0

g2(x) dx.

The constant λ is called a smoothing parameter. Larger values for λ will lead
to a smoother f̂ , smaller values will lead to an estimate f̂ that follows the
observed data more closely, that is, with f̂(xi) closer to Yi.

For the roughness penalty in our criteria to make sense, f (m−1) will need
to be absolutely continuous according to the following definition.

Definition 18.12. A real-valued function g defined on an interval of R is
absolutely continuous if there exists a function g′ such that

g(b) − g(a) =

∫ b

a

g′(x) dx, ∀a < b.

If g is differentiable, then g′ must be the derivative a.e., so use of a common
notation should not cause any confusion. Also, if f has m − 1 continuous
derivatives and g = f (m−1) is absolutely continuous, then we denote g′ as
f (m).

Definition 18.13. The Sobolev space Wm[0, 1] is the collection of all func-
tions f : [0, 1] → R with m − 1 continuous derivatives, f (m−1) absolutely
continuous, and ‖f (m)‖2 <∞. With an inner product 〈·, ·〉 defined by

〈f, g〉 =
m−1
∑

k=0

f (k)(0)g(k)(0) +

∫ 1

0

f (m)(x)g(m)(x) dx, f, g ∈ Wm[0, 1],

Wm[0, 1] is a Hilbert space.

These Hilbert spaces have an interesting structure. Suppose we define

K(x, y) =

m−1
∑

k=0

1

k!2
xkyk +

∫ x∧y

0

(x− u)m−1(y − u)m−1

(m− 1)!2
du.

Then
∂k

∂xk
K(x, y)

∣

∣

x=0
=
yk

k!
, k = 0, . . . ,m− 1,

and
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∂m

∂xm
K(x, y) =

(y − x)m−1

(m− 1)!
I{x ≤ y}. (18.10)

Comparing this with the Taylor expansion

f(y) =
m−1
∑

k=0

1

k!
f (k)(0)yk +

∫ y

0

(y − x)m−1f (m)(x)

(m− 1)!
dx,

we see that
f(y) = 〈f,K(·, y)〉.

This formula shows that the evaluation functional, f  f(y), is a bounded
linear operator. Hilbert spaces in which this happens are called reproducing
kernel Hilbert spaces. The function K here is called the reproducing kernel,
reproducing because

K(x, y) = 〈K(·, x),K(·, y)〉.

The kernel K is a positive definite function. To see this, first note that

∑

i,j

cicjK(xi, xj) =
∑

i,j

cicj〈K(·, xi),K(·, xj)〉 =

∥

∥

∥

∥

∥

∑

i

ciK(·, xi)
∥

∥

∥

∥

∥

2

,

which is nonnegative. If this expression is zero, then h =
∑

i ciK(·, xi) is zero.
But then 〈h, f〉 =

∑

i cif(xi) will be zero for all f , which can only happen if
ci = 0 for all i.

To minimize J(f) in (18.9) over f ∈ Wm[0, 1], let Πm denote the vector
space of all polynomials of degree at most m−1, let ηi = K(·, xi), i = 1, . . . , n,
and define

V = Πm ⊕ span{η1, . . . , ηn}.
An arbitrary function f in Wm[0, 1] can be written as g + h with g ∈ V and
h ∈ V ⊥. Because h is orthogonal to ηi, h(xi) = 〈h, ηi〉 = 0. Also, if k ≤ m−1,
then the inner product of h with the monomial xk is k!h(k)(0), and because
h is orthogonal to these monomials, h(k)(0) = 0, k = 0, . . . ,m− 1. It follows
that ‖h‖ = ‖h(m)‖2, and

〈g, h〉 =

∫ 1

0

g(m)(x)h(m)(x) dx = 0.

But then

‖g(m) + h(m)‖2
2 =

∫ 1

0

(

g(m)(x) + h(m)(x)
)2
dx = ‖g(m)‖2

2 + ‖h(m)‖2
2,

and so
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J(f) = J(g + h) =
n
∑

i=1

(

Yi − g(xi) − h(xi)
)2

+ λ‖g(m) + h(m)‖2
2

=

n
∑

i=1

(

Yi − g(xi)
)2

+ λ‖g(m)‖2
2 + λ‖h(m)‖2

2 = J(g) + λ‖h‖2.

From this it is evident that a function minimizing J must lie in V .
Using (18.10),

η
(m)
i (x) =

(xi − x)m−1

(m− 1)!
I{x ≤ xi}.

From this, on [0, xi], ηi must be a polynomial of degree 2m− 1, and on [xi, 1],
ηi is a polynomial of degree at most m− 1. Taking more derivatives,

η
(m+j)
i (x) =

(−1)j(xi − x)m−1−j

(m− 1 − j)!
I{x ≤ xi}, j = 1, . . . ,m− 2,

and so the derivatives of ηi of order 2m − 2 or less are continuous. Linear
combinations of the ηi are piecewise polynomials. Functions like these are
called splines.

Definition 18.14. A function f : [0, 1] → R is called a spline of order q with
(simple) knots 0 < x1 < · · · < xn < 1 if, for any i = 0, . . . , n, the restriction
of f to [xi, xi+1] (with the convention x0 = 0 and xn+1 = 1) is a polynomial
of degree q − 1 or less, and if the first q − 2 derivatives of f are continuous
on the whole domain [0, 1]. The collection of all splines of order q is denoted
Sq = Sq(x0, . . . , xn+1). The space Sq is a vector space.

From the discussion above, any function f ∈ V must be a spline of order
2m. In addition, all functions f ∈ V are polynomials of degree m− 1 on the
last interval [xn, 1]. So if f̂ minimizes J(f), it will be a polynomial of degree
at most m − 1 on [xn, 1], and by time reversal3 it will also be a polynomial
of degree m − 1 or less on the first interval [0, x1]. It will then be a natural
spline according to the following definition.

Definition 18.15. A function f ∈ S2q is called a natural spline of order 2q if
its restrictions to the first and last intervals, [0, x1] and [xn, 1], are polynomials
of degree q − 1 or less. Let S̃2q denote the set of all natural splines.

These spline spaces (with fixed knots) are finite-dimensional vector spaces,

and once we know that the function f̂ minimizing J lies in a finite-dimensional
vector space, f̂ can be identified using ordinary linear algebra. To see how, let
ej , j = 1, . . . , k, be linearly independent functions with

3 Formally, the argument just given shows that the function f̃(t)
def
= f̂(1 − t), that

minimizes
P

`

Yi − f(1 − xi)
´2

+ λ‖f (m)‖2
2, must be a polynomial of degree at

most m− 1 on [1 − x1, 1].
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S̃2m ⊂ span{e1, . . . , ek}.

If
f = c1e1 + · · · + ckek,

then
f(xi) = 〈f, ηi〉 =

∑

j

cj〈ej , ηi〉 = [Ac]i,

where A is a matrix with entries

Aij = 〈ej , ηi〉, i = 1, . . . , n, j = 1, . . . , k.

Then
n
∑

i=1

(

Yi − f(xi)
)2

= ‖Y −Ac‖2 = Y ′Y − 2Y ′Ac+ c′A′Ac.

For the other term in J ,

‖f (m)‖2
2 =

∥

∥

∥

∥

∥

∥

k
∑

j=1

cje
(m)
j

∥

∥

∥

∥

∥

∥

2

2

=
∑

i,j

cicj

∫ 1

0

e
(m)
i (x)e

(m)
j (x) dx = c′Bc,

where B is a k × k matrix with

Bij =

∫ 1

0

e
(m)
i (x)e

(m)
j (x) dx, i = 1, . . . , k, j = 1, . . . , k.

Using these formulas,

J(f) = Y ′Y − 2Y ′Ac+ c′A′Ac+ λc′Bc.

This is a quadratic function of c with gradient

2(A′A+ λB)c− 2A′Y.

Setting the gradient to zero, if

ĉ = (A′A+ λB)−1A′Y

and

f̂ =

k
∑

j=1

ĉjej ,

then f̂ minimizes J(f) over Wm[0, 1].
One collection of linearly independent functions with span containing4 S̃2q

is given by

4 For some linear combinations of these functions, restriction to the final interval
[xn, 1] will give a polynomial of degree greater than q − 1. So the linear span of
these functions is in fact strictly larger than S̃2q.
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ei(x) = (x− xi)
2q−1
+ , i = 1, . . . , n,

along with the monomials of degree q − 1 or less,

en+j(x) = xj−1, j = 1, . . . , q.

This can be seen recursively. If f ∈ S̃2q, let

p =

q
∑

j=1

cjen+j

be a polynomial of degree q − 1 equal to f on [0, x1]. Then f − p ∈ S̃2q is
zero on [0, x1]. By the enforced smoothness for derivatives at the knots, on
[x1, x2] f − p will be a polynomial of degree 2q − 1 with 2q − 2 derivatives
equal to zero at x1. Accordingly, on this interval f − p = c1(x− x1)

2q−1, and
it follows that f − p− c1e1 is zero on [0, x2]. Next, with a proper choice of c2,
f − p − c1e1 − c2e2 will be zero on [0, x3]. Further iteration eventually gives
f − p−∑n

j=1 cjej = 0 on [0, 1].
The choice of the spanning functions e1, . . . , ek may not seem important

from a mathematical perspective. But a careful choice can lead to more effi-
cient numerical algorithms. For instance, S̃2 contains the functions

e1(x) =















1, x ∈ [0, x1];
x2 − x

x2 − x1
, x ∈ [x1, x2];

0, otherwise,

en(x) =















x− xn−1

xn − xn−1
, x ∈ [xn−1, xn];

1, x ∈ [xn, 1];

0, otherwise,

and

ei(x) =



























x− xi−1

xi − xi−1
, x ∈ [xi−1, xi];

xi+1 − x

xi+1 − xi
, x ∈ [xi, xi+1];

0, otherwise,

i = 2, . . . , n− 1.

These functions are called B-splines. The first two, e1 and e2, are plotted in
Figure 18.2. The B-splines are linearly independent and form what is called a
local basis for S̃2, because each basis function vanishes except on at most two
adjacent intervals of the partition induced by x1, . . . , xn. Functions expressed
in this basis can be computed quickly at a point x since all but at most two
terms in

∑

cjej(x) will be zero. In addition, with this basis, the matrix A is
the identity, and B will be “tridiagonal,” with Bij = 0 if |i− j| ≥ 2. Matrices
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x

1

x1 x2 x3

-e1 � e2

Fig. 18.2. B-splines e1 and e2.

with a banded structure can be inverted and multiplied much more rapidly
than matrices with arbitrary entries.

B-spline bases are also available for other spline spaces. The notation
needed to define them carefully is a bit involved, but it is not too hard to
understand why they should exist. In Sq, the q + 1 functions

(x− xi)
q−1
+ , . . . , (x− xi+q)

q−1
+

restricted to [xi+q, 1] are all polynomials of degree q−1. Because polynomials
of degree q− 1 form a vector space of dimension q, the restrictions cannot be
linearly dependent, and some nontrivial linear combination of these functions
must be zero on [xi+q , 1]. This linear combination gives a function in Sq that
is zero unless its argument lies in (xi, xi+q). With a suitable normalization,
functions such as this form a B-spline basis for Sq. For further information
on splines see Wahba (1990) or De Boor (2001)

18.4 Density Estimation

The methods just developed for nonparametric regression can also be applied
to nonparametric density estimation. Let X1, . . . , Xn be i.i.d. from some dis-
tribution Q. One natural estimator for Q would be the empirical distribution
Q̂ defined by

Q̂(A) =
1

n
#
{

i ≤ n : Xi ∈ A
}

.

This estimator Q̂(·) is a discrete distribution placing atoms with mass 1/n at
each observation Xi. So integrals against Q̂n are just averages,



18.4 Density Estimation 385

∫

g dQ̂n =
1

n

n
∑

i=1

g(Xi).

If we believe Q is absolutely continuous with a smooth density f , Q̂ is
not a very sensible estimator; it is too rough, in much the same way the
linear interpolant ĥ of the data was too rough for estimating a smooth re-
gression function. A kernel approach to estimating f uses convolution, as in
Problem 18.10, to smooth Q̂. Intuition suggests this may give a reasonable
estimate for f if the convolving distribution is concentrated near zero. To ac-
complish this we incorporate a bandwidth b, tending to zero as n → ∞, and
consider estimators of the form

f̂(x) =
1

b

∫

W

(

x− t

b

)

dQ̂(t) =
1

nb

n
∑

i=1

W

(

x−Xi

b

)

,

with W a fixed symmetric probability density.
With the linear structure, formulas for the mean and variance for f̂(x) are

easy to derive and study. If f ′′ is continuous and bounded, then

Ef̂(x) = f(x) +
1

2
b2f ′′(x)

∫

t2W (t) dt+ o(b2) (18.11)

and

Var
(

f̂(x)
)

=
1

nb
f(x)‖W‖2

2 + o
(

1/(nb)
)

(18.12)

uniformly in n as b ↓ 0. Combining these, the mean square error for f̂(x) is

MSE(x) = E
(

f̂(x) − f(x)
)2

=
f(x)

nb
‖W‖2

2 + 1
4b

4
(

f ′′(x)
)2
(∫

t2W (t) dt

)2

+ o
(

b4 + 1/(nb)
)

as b ↓ 0. If b = bn varies with n so that bn → 0 and nbn → ∞, then this mean
square error will tend to zero.

With suitable regularity, this approximation can be integrated, giving

IMSE = E

∫

(

f̂(x) − f(x)
)2
dx =

∫

MSE(x) dx

=
1

nb
‖W‖2

2 +
1

4
b4‖f ′′‖2

2

(∫

t2W (t) dt

)2

+ o
(

b4 + 1/(nb)
)

.

Minimizing this approximation,

b ∼ ‖W‖2/5
2

n1/5‖f ′′‖2/5
2

(∫

t2W (t) dt
)2/5

will be asymptotically optimal, and with this choice
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IMSE ∼ 5
4‖W‖8/5

2 ‖f ′′‖2/5
2

(∫

t2W (t) dt

)2/5

n−4/5.

For further discussion, see Chapter 2 of Wand and Jones (1995)
A spline approach to density estimation is more challenging. If we assume

f > 0 and take θ = log f , then an estimator f̂ = eθ̂ for f will automatically
be positive. For regularity, let us assume θ ∈ Wm[0, 1]. In contrast to non-
parametric regression, since f must integrate to one, θ cannot vary freely over
Wm[0, 1], but must satisfy the constraint

∫ 1

0

eθ(x) dx = 1.

Let Ω denote the class of all functions in Wm[0, 1] satisfying this constraint.
The log-likelihood function is given by

l(θ) =
n
∑

i=1

θ(Xi).

A direct maximum likelihood approach to estimating θ or f fails because

sup
θ∈Ω

l(θ) = ∞,

with arbitrarily high values for the likelihood achieved by densities with very
large spikes at the data values. To mitigate this problem, we incorporate a
penalty for smoothness and choose θ̂ to maximize

J0(θ) =
1

n

n
∑

i=1

θ(Xi) − λ‖θ(m)‖2
2.

To ameliorate troubles with the constraint, Silverman (1982) introduces an-
other functional,

J(θ) =
1

n

n
∑

i=1

θ(Xi) −
∫ 1

0

eθ(x) dx − λ‖θ(m)‖2
2.

Theorem 18.16. The function θ̂ ∈ Ω maximizes J0 over Ω if and only if θ̂
maximizes J over Wm[0, 1].

Proof. If θ ∈ Wm[0, 1] and c =
∫ 1

0
eθ(x) dx, then θ̃ = θ − log c ∈ Ω and

‖θ(m)‖2 = ‖θ̃(m)‖2. Thus

J(θ̃) = J(θ) − log c− 1 + c.

But c−log c ≥ 1 for all c > 0, with equality only if c = 1, and thus J(θ̃) ≥ J(θ),
with equality only if c = 1, that is, only if θ ∈ Ω. So any θ maximizing J over
Wm[0, 1] must lie in Ω. But on Ω, J = J0 − 1, and the theorem follows. ⊓⊔
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The null family associated with the smoothness penalty here is defined as

Ω0 =
{

θ ∈ Ω : ‖θ(m)‖2 = 0
}

.

Functions in Ω0 must be polynomials and can be parameterized as

θη(x) = η1x+ · · · + ηm−1x
m−1 −A(η),

where

A(η) = log

∫ 1

0

exp

[

m−1
∑

i=1

ηix
i

]

dx.

Then Ω0 = {θη : η ∈ Rm−1} and the corresponding densities, fη = eθη ,
η ∈ Rm−1, form an exponential family.

If λ is large, then functions θ ∈ Ω that are not close to Ω0 will incur a sub-
stantial smoothness penalty. For this reason, if θ̂λ is the estimator maximizing
J , then θ̂λ should converge as λ → ∞ to the maximum likelihood estimator
for the null family Ω0. Let us call this estimator θ̂∞. In applications, this ob-
servation might be used in a reverse fashion to choose a smoothness penalty.
If there is reason to believe that the data come from some particular expo-
nential family, a researcher may want to choose a penalty with these target
distributions as its null family. The next result shows that existence is also
tied to estimation for the null family.

Theorem 18.17. With a given data set X1, . . . , Xn, J will have a maximizer
in Ω if θ̂∞, the maximum likelihood estimator for the null family, exists. This
will hold with probability one if n ≥ m.

Proposition 18.18. The functional J is strictly concave.

Proof. Given θ1, θ2 in Wm[0, 1] and α ∈ (0, 1), since the exponential function
is convex,

∫ 1

0

eαθ1(x)+(1−α)θ2(x) dx ≤
∫ 1

0

[

αeθ1(x) + (1 − α)eθ2(x)
]

dx

= α

∫ 1

0

eθ1(x) dx+ (1 − α)

∫ 1

0

eθ2(x) dx,

with equality only if θ1 = θ2. Also,

‖αθ(m)
1 + (1 − α)θ

(m)
2 ‖2

2 ≤
[

α‖θ(m)
1 ‖2 + (1 − α)‖θ(m)

2 ‖2

]2

≤ α‖θ(m)
1 ‖2

2 + (1 − α)‖θ(m)
2 ‖2

2.

So
J
(

αθ1 + (1 − α)θ2
)

≥ αJ(θ1) + (1 − α)J(θ2),

with equality if and only if θ1 = θ2. ⊓⊔
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As a consequence of this result, if an estimator θ̂ maximizing J exists, it
must be unique, for if θ̂1 and θ̂2 both maximize J , then

J(θ̂1) =
1

2
J(θ̂1) +

1

2
J(θ̂2) ≤ J

(

θ̂1 + θ̂2
2

)

≤ J(θ̂1).

The inequalities here must be equalities, and strict concavity then implies
θ̂1 = θ̂2.

The following result, from Silverman (1982), shows that with a suitable

choice for the penalty scale λ, the estimator θ̂ is consistent.

Theorem 18.19. Suppose θ ∈W2m[0, 1] and

θ(2m−1)(0) = θ(2m−1)(1).

If λ→ 0 and nm−δλ→ ∞ for some δ > 0, then for every ǫ > 0,

‖θ̂ − θ‖2
∞ = Op

{

λ−ǫ
(

n−1λ−1/m + λ(4m−1)/(2m)
)}

.

In particular, if λ = n−(2m)/(4m+1),

‖θ̂ − θ‖2
∞ = Op

(

n−(4m−1)/(4m+1)+ǫ
)

,

for every ǫ > 0.

18.5 Problems

1. Estimating σ2. Consider nonparametric regression with the assumptions
in Section 18.1 and i.i.d. errors ǫi. A natural estimator for σ2 might be

σ̂2 =
1

n

n
∑

i=1

(

Yi − f̂(xi)
)2
,

with f̂ the kernel estimator for f . Suppose b = cn−1/5. Is this estimator
necessarily consistent? Prove or explain why not. In your argument you
can ignore edge effects.

2. Locally weighted regression. Like kernel smoothing, locally weighted re-
gression is a linear approach to nonparametric regression. Let W be a
continuous, nonnegative, symmetric (W (x) = W (−x)) function, decreas-
ing on (0,∞) with support [−1, 1]. The estimate for f at a point x is based
on weighted least squares, fitting a polynomial to the data with weights
emphasizing data with xi near x. This problem considers quadratic models
in which β̂ is chosen to minimize
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n
∑

i=1

W

(

xi − x

b

)

(

yi − β1 − β2(xi − x) − β3(xi − x)2
)2
.

The estimate for f(x) is then f̂(x) = β̂1. Here the bandwidth b is taken
to be a small constant (decreasing as n increases), although in practice b
is often chosen using the xi so that the estimate for f(x) is based on a
fixed number of data points. For simplicity, you may assume below that
xi = i/n.

a) Derive an explicit formula for f̂(xj) when xj ∈ (b, 1 − b).

b) Derive approximations for the bias of f̂(xj) as n→ ∞ and b ↓ 0 with
nb→ ∞ and xj = ⌊nx⌋/n, x ∈ (0, 1).

c) Derive an approximation for the variance of f̂(xj) in the same limit.

d) What choice for bandwidth bminimizes the mean square error of f̂(xj)
(approximately).

3. Show that the stated inner product 〈·, ·〉 in Definition 18.13 for Wm[0, 1]
satisfies the conditions in Definition 18.2

4. Let X and Y be normed vector spaces over R. A function T : X → Y is
called a linear operator if

T (cx1 + x2) = cT (x1) + T (x2), ∀x1, x2 ∈ X , c ∈ R.

The operator norm (or spectral norm) of T is defined as

‖T ‖ = sup
{

‖T (x)‖ : ‖x‖ ≤ 1
}

,

and T is called bounded if ‖T ‖ <∞.
a) Show that a bounded operator T is continuous: If ‖xn−x‖ → 0, then

‖T (xn) − T (x)‖ → 0.
b) Show that a continuous linear operator T is bounded.
c) Let X = Rm and Y = Rn, with the usual Euclidean norms. Let A be

an n×m matrix, and define a linear operator T by T (x) = Ax. Relate
the operator norm ‖T ‖ to the eigenvalues of A′A.

5. Consider the set C[0, 1] of continuous real functions on [0, 1] with the L2

inner product

〈x, y〉 =

∫ 1

0

x(t)y(t) dt

and associated norm

‖x‖2 =

√

∫ 1

0

x2(t) dt.

a) Find a Cauchy sequence xn (for this norm) that does not converge,
showing that C[0, 1] is not complete (with this norm). (The usual norm
for C[0, 1] is ‖x‖ = supt∈(0,1) |x(t)|, and with this norm C[0, 1] is com-
plete.)
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b) Let Tt be the evaluation operator, Tt(x) = x(t). Show that Tt is an
unbounded linear operator.

6. Show that if fn → f in W2[0, 1], then f ′n(x) → f ′(x).
7. Find a nontrivial function f ∈ S4(0, 0.1, 0.2, . . . , 1) which is zero unless its

argument lies between 0.2 and 0.6.
8. Suppose m = 1, x = (0.2, 0.4, 0.6, 0.8), and we use the B-spline basis

described for S̃2. Calculate the matrices A and B that arise in the formula
to compute f̂ =

∑

ĉjej .
9. Semiparametric models. Consider a regression model with two explanatory

variables x and w in which

Yi = f(xi) + βwi + ǫi, i = 1, . . . , n,

with 0 < x1 < · · · < xn < 1, f ∈ Wm[0, 1], β ∈ R, and the ǫi i.i.d.
from N(0, σ2). This might be called a semiparametric model because the
dependence on w is modeled parametrically, but the dependence on x
is nonparametric. Following a penalized least squares approach, consider
choosing f̂ and β̂ to minimize

J(f, β) =
n
∑

i=1

(

Yi − f(xi) − βwi
)2

+ λ‖f (m)‖2
2.

a) Show that the estimator f̂ will still be a natural spline of order 2m.

b) Derive explicit formulas based on linear algebra to compute β̂ and f̂ .
10. Convolutions. Suppose X ∼ Q and Y ∼W are independent, and that W

is absolutely continuous with Lebesgue density w. Show that T = X + Y
is absolutely continuous with density h given by

h(t) =

∫

w(t− x) dQ(x).

The distribution of T is called the convolution of Q with W , and this
shows that if either Q or W is absolutely continuous, their convolution is
absolutely continuous.

11. Use dominated convergence to prove (18.11).
12. Prove (18.12).
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Bootstrap Methods

Bootstrap methods use computer simulation to reveal aspects of the sampling
distribution for an estimator θ̂ of interest. With the power of modern com-
puters the approach has broad applicability and is now a practical and useful
tool for applied statisticians.

19.1 Introduction

To describe the bootstrap approach to inference, let X1, . . . , Xn be i.i.d. from
some unknown distribution Q, and let

X = (X1, . . . , Xn)

denote all n observations. For now we proceed nonparametrically with Q an
arbitrary distribution. Natural modifications whenQ comes from a parametric
family are introduced in Section 19.3. With Q arbitrary, a natural estimator
for it would be the empirical distribution

Q̂ =
1

n

n
∑

i=1

δXi .

Here δx represents a “point mass” at x, that assigns full probability to the
point x, δx({x}) = 1, and zero probability to all other points, δx({x}c) = 0.
Then the estimator Q̂ is a discrete distribution that assigns mass 1/n to each
data point Xi, 1 ≤ i ≤ n, and Q̂(A) is just the proportion of these values that
lie in A:

Q̂(A) =
1

n
#{i ≤ n : Xi ∈ A}.

Note that by the law of large numbers, Q̂(A)
p→ Q(A) as n→ ∞, supporting

the notion that Q̂ is a reasonable estimator for Q.
Suppose next that θ̂ = θ̂(X) is an estimator for some parameter θ = θ(Q).

Anyone using θ̂ should have interest in the distribution for the error θ̂−θ, since
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this distribution provides information about the bias, variance, and accuracy
of θ̂. Unfortunately, this error distribution typically varies with Q, and because
Q is unknown we cannot hope to know it exactly. Bootstrap methods are based
on the hope or intuition that the true error distribution may be similar to the
error distribution if the observations were sampled from Q̂ instead of Q.

In principle, the error distribution with observations drawn from Q̂ is
a specific function of Q̂, but exact calculations are generally intractable.
This is where computer simulation plays an important role in practice.
Given the original data X, a computer routine draws a bootstrap sample
X∗ = (X∗1 , . . . , X

∗
n), with the variables in this sample conditionally i.i.d. from

Q̂, so X∗|X ∼ Q̂n. Note that since Q̂ assigns mass 1/n to each observation,
X∗1 , . . . , X

∗
n can be viewed as a random sample drawn with replacement from

the set {X1, . . . , Xn}. So these variables are very easy to simulate. If θ̂∗ is the
estimate from the bootstrap sample,

θ̂∗ = θ̂(X∗) = θ̂(X∗1 , . . . , X
∗
n),

then the distribution of θ̂∗− θ̂ is used to estimate the unknown distribution of
the error θ̂ − θ. To be more precise, the estimate for the error distribution is
the conditional distribution for θ̂∗− θ̂ given the original data X. The following
examples show ways this estimate for the error distribution might be used.

Example 19.1. Bias Reduction. Let

b = b(Q) = EQ[θ̂ − θ]

denote the bias of an estimator θ̂ = θ̂(X) for a parameter θ = θ(Q). If this

bias were known, subtracting it from θ̂ would give an unbiased estimator. The
true bias depends only on the error distribution. Substituting the bootstrap
estimate for the true error distribution gives

b̂ = E[θ̂∗ − θ̂|X]

as the bootstrap estimate for the bias. Subtracting this estimate from θ̂ gives
a new estimator θ̂ − b̂, generally less biased that the original estimator θ̂.
Results detailing improvement are derived in the next section for a special

case in which θ̂ = X
3

and θ is the cube of the mean of Q.
In practice, b̂ would typically be computed by numerical simulation, having

a computer routine draw multiple random samples, X∗1, . . . ,X
∗
B , each from

Q̂n. Letting θ̂∗i = θ̂(X∗i ) denote the estimate from ith bootstrap sample X∗i ,
if the number of replications B is large, then by the law of large numbers b̂
should be well approximated by the average

1

B

B
∑

i=1

[

θ̂∗i − θ̂
]

.
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A natural assumption, relating the unknown parameter θ = θ(Q) and the

estimator θ̂(X), is that the estimator has no error whenever proportions in
the sample agree with probabilities from Q, which happens if Q = Q̂. With
this assumption,

θ̂(X) = θ(Q̂), (19.1)

and so b̂ = b(Q̂). Hence, from a technical viewpoint, the bootstrap estimator
here is found by plugging the empirical distribution Q̂ into the functional
of interest, b(·). This mathematical structure occurs generally and underlies
various results in the literature showing that bootstrap methods perform well
when functionals of interest are smooth in an appropriate sense.

Example 19.2. Confidence Intervals. Quantiles for |θ̂−θ| are useful in assessing

the accuracy of θ̂, for if q = q(Q) is the upper αth quantile1 for the distribution

of |θ̂ − θ|, then

P
(

θ ∈ [θ̂ − q, θ̂ + q]
)

= 1 − α.

The bootstrap estimator q̂ for q would be the upper αth quantile for the
conditional distribution of |θ̂∗ − θ̂| given X. If this estimator is reasonably
accurate, we expect that

P
(

θ ∈ [θ̂ − q̂, θ̂ + q̂]
)

≈ 1 − α,

so that [θ̂ − q̂, θ̂ + q̂] is an approximate 1 − α interval for θ. As in the bias
example, q̂ can be approximated numerically by simulation, still with random
samples X∗1, . . . ,X

∗
B from Q̂n, again taking θ̂∗i = θ̂(X∗i ). Then q̂ could be

approximated as the upper αth quantile for the list of values |θ̂∗i − θ̂|, i =
1, . . . , B, generated in the simulation, or more formally as

q̂ ≈ inf

{

x :
1

B
#{i ≤ B : |θ̂∗i − θ̂| ≤ x} ≥ 1 − α

}

.

Mathematically, the structure is much the same as the bias example, with the
bootstrap estimator q̂ obtained by plugging Q̂ into q(·); that is, q̂ = q(Q̂).

In practice, bootstrap confidence intervals can often be improved by mod-
ifying the approach and approximating the distribution of studentized errors,
obtained by dividing the error θ̂− θ by an estimate of the standard deviation
of θ̂. If q̃ = q̃(Q) is the upper αth quantile for the distribution of the absolute

studentized error |θ̂ − θ|/τ̂ , where τ̂ = τ̂(X) is an estimate for the standard

deviation of θ̂, then

P
(

θ ∈ [θ̂ − q̃τ̂ , θ̂ + q̃τ̂ ]
)

= 1 − α.

1 For convenience, we assume that θ̂−θ has a continuous distribution. When this is
not the case, some of the equations above may not hold exactly, but discrepancies
will be quite small if masses for atoms of the error distribution are small.
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The bootstrap estimator ˆ̃q for q̃ is the upper αth quantile for the conditional
distribution of |θ̂∗ − θ̂|/τ̂∗ given X, where τ̂∗ = τ̂ (X∗). If this estimator is
reasonably accurate, then

[θ̂ − ˆ̃qτ̂ , θ̂ + ˆ̃qτ̂ ]

should be an approximate 1−α interval for θ. Again, the bootstrap estimate
ˆ̃q can be computed numerically by simulation as the upper αth quantile for
the list |θ̂∗i − θ̂|/τ̂∗i , i = 1, . . . , B, with θ̂∗i as before, and τ̂∗i = τ̂ (X∗i ).

To appreciate the value of studentizing, note that in various settings, in-
cluding those detailed in the large-sample theory developed in Chapter 8,
(θ̂ − θ)/τ̂ is approximately standard normal. If this is the case, the quantile
q̃ is nearly independent of Q, making it easy to estimate. For instance, if the
studentized error distribution happened to be exactly standard normal2 for
any Q, q̃ would always equal zα/2 and could be “estimated” perfectly, even
without data.

19.2 Bias Reduction

In this section we explore a simple case of bias reduction where the perfor-
mance of bootstrap estimators can be determined explicitly. Specifically, in
Example 19.1 let

θ = θ(Q) = µ3,

where µ = EXi is the mean of Q,

µ = µ(Q) =

∫

xdQ(x).

The mean of Q̂ is the average,

µ(Q̂) =

∫

xdQ̂(x) = X =
1

n

n
∑

i=1

Xi,

and so
θ̂ = θ(Q̂) = X

3
.

To find the bias b we need Eθ̂ = EX
3
. Let σ2 = Var(Xi) and γ = E(Xi−µ)3.

Since γ is the third cumulant forXi, the third cumulant for nX = X1+· · ·+Xn

is nγ, and so
E(nX − nµ)3 = n3E(X − µ)3 = nγ.

Thus E(X − µ)3 = γ/n2. Also, E(X − µ)2 = Var(X) = σ2/n. Using these
identities,

2 This could only happen in parametric situations.
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EX
3

= E(X − µ+ µ)3

= E
[

µ3 + 3µ2(X − µ) + 3µ(X − µ)2 + (X − µ)3
]

= µ3 +
3µσ2

n
+

γ

n2
. (19.2)

So

b = b(Q) = Eθ̂ − θ = EX
3 − µ3 =

3µσ2

n
+

γ

n2
. (19.3)

Because b̂ = b(Q̂), we find the bootstrap estimate for b with the same calcu-
lations but with data drawn from Q̂. The mean, variance, and third central
moment of Q̂ are

X =

∫

xdQ̂(x), σ̂2 =

∫

(x−X)2 dQ̂(x) =
1

n

n
∑

i=1

(Xi −X)2,

and

γ̂ =
1

n

n
∑

i=1

(Xi −X)3.

Using these in (19.3),

b̂ =
3Xσ̂2

n
+

γ̂

n2
.

Subtracting this from X
3
, the “bias-reduced” estimator is

θ̂ − b̂ = X
3 − 3Xσ̂2

n
− γ̂

n2
.

To see whether bootstrapping actually reduces the bias, we need to eval-
uate the mean of this new estimator. From (19.2) with n = 1, EX3

1 =
µ3 + 3µσ2 + γ. Next, by symmetry, for any j,

EXj

n
∑

i=1

X2
i = EX1

n
∑

i=1

X2
i = EX3

1 +

n
∑

i=2

EX1X
2
i

= µ3 + 3µσ2 + γ + (n− 1)µ(µ2 + σ2).

Averaging over j,

EX

n
∑

i=1

X2
i = µ3 + 3µσ2 + γ + (n− 1)µ(µ2 + σ2).

Finally, since

σ̂2 =
1

n

n
∑

i=1

X2
i −X

2
,
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we have

EXσ̂2 = E

[

1

n
X

n
∑

i=1

X2
i −X

3

]

= µσ2 +
1

n
(γ − µσ2) − 1

n2
γ.

To find Eγ̂, note that

E(X1 − µ)2(X − µ) =
1

n
E(X1 − µ)3 =

γ

n
,

and by symmetry

E(X1 − µ)(X − µ)2 =
1

n

n
∑

i=1

E(Xi − µ)(X − µ)2 = E(X − µ)3 =
γ

n2
.

Using these and symmetry,

Eγ̂ = E(X1 −X)3

= E
[

(X1 − µ)3 − 3(X1 − µ)2(X − µ)

+ 3(X1 − µ)(X − µ)2 − (X − µ)3
]

= γ

(

1 − 3

n
+

2

n2

)

.

Using these formulas, the mean of θ̂ − b̂ is

E[θ̂ − b̂] = µ3 +
3

n2
(µσ2 − γ) +

6γ

n3
− 2γ

n4
.

For large n the bias of this estimator is of order 1/n2 compared with a bias

of order 1/n for θ̂. So bootstrap correction here typically improves the bias.3

19.3 Parametric Bootstrap Confidence Intervals

In this section we consider parametric models in which our data are i.i.d.
from a distribution Q in some parametric family {Qλ : λ ∈ Λ}. Knowing

the marginal distribution lies in this family, Q̂ = Qλ̂, with λ̂ the maximum
likelihood estimator of λ, is a more natural estimator for Q than the empirical
distribution used in earlier sections. With this modification, the bootstrap
approach is essentially the same as before. If θ̂ is the maximum likelihood

3 If bias is the sole concern, there are unbiased estimators for µ3. The most natural
one might be the U -statistic

P

i<j<k XiXjXk/
`

n
3

´

. Other resampling approaches,
such as the jackknife, could also be used to reduce bias. See Problem 19.2.
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estimator4 for a parameter θ = θ(λ), and if X∗ is a bootstrap sample with
entries conditionally i.i.d. from Q̂ = Qλ̂, so

X∗|X ∼ Q̂n,

then the error distribution for θ̂ would be estimated as the conditional distri-
bution for θ̂∗ − θ̂ given X, with θ̂∗ = θ̂(X∗).

As in Example 19.2, interval estimation for θ can be approached with an
attempt to estimate the upper αth quantile q = q(λ) for |θ̂−θ|. The bootstrap
estimate q̂ for q is the upper αth quantile for the conditional distribution of
|θ̂∗ − θ̂| given X, and the approximate confidence interval based on q̂ is

(θ̂ − q̂, θ̂ + q̂).

As before, studentizing the error distribution may give a more accurate con-
fidence interval. If τ̂ = τ̂(X) is an estimate for the standard deviation of θ̂,
and q̃ = q̃(λ) denotes the upper αth quantile for the distribution of the ab-

solute studentized error |θ̂ − θ|/τ̂ , then the bootstrap estimate ˆ̃q for q̃ is the

upper αth quantile for the conditional distribution of |θ̂∗ − θ̂|/τ∗ given X,
with τ̂∗ = τ̂(X∗), and the associated approximate confidence interval is

(θ̂ − ˆ̃qτ̂ , θ̂ + ˆ̃qτ̂ ).

If the functions q(·) or q̃(·) are tractable, quantile estimates q̂ and ˆ̃q can

be found by evaluation at the maximum likelihood estimator: q̂ = q(λ̂) and
ˆ̃q = q̃(λ̂). When this is not feasible or practical, these estimators can be
approximated by bootstrap simulation. Specifically q̂ or ˆ̃q would be approxi-
mated numerically as upper αth quantiles for the lists |θ̂∗i − θ̂|, i = 1, . . . , B, or

|θ̂∗i − θ̂|/σ̂∗i , i = 1, . . . , B, with θ̂∗i = θ̂(X∗i ), σ̂
∗
i = σ̂(X∗i ), and X∗i , i = 1, . . . , B,

conditionally i.i.d. from Q̂n = Qn
λ̂
, given the original data X.

To illustrate these ideas, consider interval estimation of the mean of a
normal distribution. Taking λ = (θ, σ), λ̂ = (θ̂, σ̂), with θ̂ = X and

σ̂2 =
1

n

n
∑

i=1

(Xi −X)2.

Given X, the resampled data X∗1 , . . . , X
∗
n are i.i.d. from N(X, σ̂2). Since θ̂∗ =

(X∗1 + · · · +X∗n)/n, we have

θ̂∗|X ∼ N(X, σ̂2/n) and q̂ = zα/2σ̂/
√
n,

and the bootstrap confidence interval is
(

X − zα/2
σ̂√
n
,X + zα/2

σ̂√
n

)

.

4 The maximum likelihood structure here replaces assumption (19.1).
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Exploiting the independence of X and σ̂, the coverage probability for this
bootstrap confidence interval can be expressed as

P

(

X − zα/2
σ̂√
n
<θ<X + zα/2

σ̂√
n

)

= P

(

−zα/2
σ̂

σ
<
X − θ

σ/
√
n
<zα/2

σ̂

σ

)

= EP

(

−zα/2
σ̂

σ
<
X − θ

σ/
√
n
<zα/2

σ̂

σ

∣

∣

∣

∣

σ̂

)

= 1 − 2EΦ

(

−
√

z2
α/2

σ̂2

σ2

)

.

By Taylor expansion about σ̂2/σ2 = 1,

Φ

(

−
√

z2
α/2

σ̂2

σ2

)

= Φ(−zα/2) −
1

2
zα/2φ(zα/2)

(

σ̂2

σ2
− 1

)

+ o(σ̂2 − σ2).

Taking expectations of this approximation5 and using

Eσ̂2 =
n− 1

n
ES2 =

n− 1

n
σ2,

the coverage probability of the bootstrap confidence interval is

1 − α− zα/2φ(zα/2)

n
+ o(1/n).

Because θ̂ = X has standard deviation τ = σ/
√
n, for the studentized

approach we take τ̂ = σ̂/
√
n and define q̃(λ) as the upper αth quantile for

|X − θ|/τ̂ . If S2 = nσ̂2/(n − 1) is the sample variance, then T
def
=

√
n(X −

θ)/S ∼ tn−1. Since

|θ̂ − θ|
τ̂

=

√
n|T |√
n− 1z

,

we have

q̃(λ) =

√
ntα/2,n−1√
n− 1

.

This quantile is independent of λ, and so ˆ̃q = q̃ and the studentized bootstrap
confidence interval is

(θ̂ − ˆ̃qτ̂ , θ̂ + ˆ̃qτ̂ ) = (X − tα/2,n−1S/
√
n,X + tα/2,n−1S/

√
n).

This interval is the same as the usual t-confidence interval, so in this case stu-
dentizing works perfectly, giving a bootstrap confidence interval with coverage
exactly 1 − α.

5 This can be justified using dominated convergence.
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19.4 Nonparametric Accuracy for Averages

In this section we consider in some detail the performance of the nonpara-
metric bootstrap when θ̂ is the sample mean Xn, estimating θ = EXi. In this
case error distributions can also be approximated using central limit theory,
and it is of interest to see if a bootstrap approach does as well or better. Let
σ2 = Var(Xi),

σ̂2
n =

1

n

n
∑

i=1

(Xi −Xn)
2,

the variance of the empirical distribution Q̂n, and γ = E(Xi − θ)3. If

Zn
def
=

√
n(θ̂ − θ)

σ
,

then by the central limit theorem, Zn ⇒ N(0, 1) and P (Zn ≤ x) → Φ(x). The
next result shows that the error of this large-sample approximation is typically
of order 1/

√
n. Note that if Q is a lattice distribution, assigning probability

one to a set of the form {a + bj : j ∈ Z}, then this would have to be the
case as the distribution for Xn would have to have jumps of order 1/

√
n. The

theorem assumes that Q is nonlattice.

Theorem 19.3. If Q is nonlattice and E|Xi|3 <∞, then

P (Zn ≤ x) = Φ(x) − γ(x2 − 1)

6σ3
√
n
φ(x) + o

(

1/
√
n
)

as n→ ∞, uniformly in x.

A proof of this result is given in Appendix A.7.3. Let Yi = (Xi − θ)/σ, so
that Zn =

√
nY n, let f be the characteristic function6 of Yi, defined as

f(t) = EeitYi , t ∈ R,

and let fn be the characteristic function of Zn,

fn(t) = EeitZn = fn
(

t/
√
n
)

.

Using a smoothing lemma based on an inversion formula for characteristic
functions (Lemma A.14), this theorem follows from two facts: first, that

fn(t) = e−t
2/2

(

1 − iγt3

6σ3
√
n

)

+ o
(

1/
√
n
)

, (19.4)

which follows by Taylor expansion of f using the first three moments of Y :
EYi = 0, EY 2

i = 1, and EY 3
i = γ/σ3; and second, that for any 0 < δ < c <∞,

6 See Appendix A.7.1.
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sup
|t|∈[δ,c]

∣

∣f(t)
∣

∣ < 1, (19.5)

which follows from the nonlattice assumption.
A bootstrap approach to inference would approximate the distribution for

Zn by the conditional distribution for

Z∗n
def
=

√
n(θ̂∗ − θ̂)

σ̂n
.

The following result, due to Singh (1981), shows that this conditional distribu-
tion is the same to op

(

1/
√
n
)

, which represents an improvement over normal
approximation.

Theorem 19.4. If Q is nonlattice and E|Xi|3 <∞, then

P (Z∗n ≤ x|X) = Φ(x) − γ(x2 − 1)

6σ3
√
n
φ(x) + op

(

1/
√
n
)

as n→ ∞, uniformly in x.

Proof (Sketch). If we define Y ∗i = (X∗i − Xn)/σ̂n, then Z∗n =
√
nY
∗
n, and

given X, Y ∗1 , . . . , Y
∗
n are conditionally i.i.d. So the conditional structure here

is identical to that in Theorem 19.3. Also,

E(Y ∗i |X) = 0, E(Y ∗i
2|X) = 1,

and

E(Y ∗i
3|X) =

γ̂n
σ̂3
n

,

with

γ̂n =
1

n

n
∑

i=1

(Xi −Xn)
3.

So the first two conditional moments for Y ∗i are exactly the same as the
corresponding moments of Yi, and by the law of large numbers,

E(Y ∗i
3|X) = γ̂n/σ̂

3
n

p→ EY 3
i .

The same Taylor expansion argument used to show (19.4) gives

f∗n(t) = e−t
2/2

(

1 − iγt3

6σ3
√
n

)

+ op
(

1/
√
n
)

,

with f∗n the conditional characteristic function for Z∗n, f∗n(t) = E[eitZ
∗

n |X].
The proof is completed, using the same argument used to prove Theo-

rem 19.3, by showing that for any 0 < δ < c < ∞, there exists ǫ > 0 such
that
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P

(

sup
|t|∈[δ,c]

∣

∣f∗(t)
∣

∣ > 1 − ǫ

)

→ 0, (19.6)

where f∗ is the conditional characteristic function for Y ∗i , given by

f∗(t) = E
(

eitY
∗

i

∣

∣ X
)

=
1

n

n
∑

j=1

exp

[

it(Xj −Xn)

σ̂n

]

, t ∈ R.

Using Theorem 9.2, our law of large numbers for random functions, it is not
hard to show that

sup
|t|∈[δ,c]

|f(t) − f∗(t)| p→ 0,

and (19.6) then follows from (19.5). ⊓⊔

Because the approximations in Theorems 19.3 and 19.4 hold uniformly in
x,

P
[√
n(θ̂− θ) ≤ x

]

= P (Zn ≤ x/σ) = Φ(x/σ) − γ(x2 − σ2)

6σ5
√
n

φ(x/σ) + o
(

1/
√
n
)

and

P
[√
n(θ̂∗ − θ̂) ≤ x

∣

∣ X
]

= Φ(x/σ̂n) − γ(x2 − σ2)

6σ5
√
n

φ(x/σ) + op
(

1/
√
n
)

.

Since σ̂n − σ = Op
(

1/
√
n
)

, by the delta method the leading terms in these

approximations differ by Op
(

1/
√
n
)

. So in this case, bootstrap methods do a
better job of approximating the distribution of the standardized variable Zn
than the distribution of the scaled error

√
n(θ̂ − θ). Although the issues are

somewhat different, this provides some support for the notion that studentiz-
ing generally improves the bootstrap performance.

The results above on the accuracy of bootstrap approximations can be ex-
tended in various ways. Perhaps the first thing worth noting is that Edgeworth
expansions for distributions can be used to derive corresponding approxima-
tions, called Cornish–Fisher expansions, for quantiles. These expansions nat-
urally play a central role in studying the performance of bootstrap confidence
intervals.

Although the algebra is more involved, Edgeworth expansions can be de-
rived to approximate distributions of averages of random vectors. And in
principle these expansions lead directly to expansions for the distributions
of smooth functions of averages. In his monograph, Hall (1992) uses this ap-

proach to study the performance of the bootstrap when θ̂ is a smooth function
of averages. With suitable regularity, the discrepancy between the true cov-
erage probability and the desired nominal value for the symmetric two-sided
bootstrap confidence intervals described in Example 19.2 is of order O(1/n)
without studentizing, and of order O(1/n2) with studentizing.
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As mentioned earlier, if θ = θ(Q) and θ̂ = θ(Q̂), then bootstrapping should
work well if θ(·) is suitably smooth. One regularity condition, studied in Bickel
and Freedman (1981), is that θ(·) is Gâteaux differentiable with the derivative
representable as an integral. Such θ(·) are often called von Mises functionals.
Bickel and Freedman (1981) also give examples showing that bootstrapping
can fail when θ(·) is not smooth.

19.5 Problems

1. Bootstrap methods can also be used to reduce bias in parametric esti-
mation. As an example, suppose X1, . . . , Xn are i.i.d. from N(µ, 1), and
consider estimating θ = sinµ.
a) The maximum likelihood estimator, θ̂ = sinX, is (for most µ) a biased

estimator of θ. Derive an approximation for the bias of θ̂, accurate to
o(1/n2) as n→ ∞.

b) Consider a parametric bootstrap approach to estimating the bias

b(µ) = Eµθ̂ − θ, in which, given X = (X1, . . . , Xn), X
∗
1 , . . . , X

∗
n are

conditionally i.i.d. from N(X, 1). Letting b̂ = E[θ̂∗ − θ̂|X], derive an

approximation for the bias of θ̂ − b̂, accurate to o(1/n2) as n→ ∞.

2. Another resampling approach to inference is called the jackknife. Let θ̂ be
an estimator for θ based on i.i.d. observations X1, . . . , Xn, let θ̂−i be the
estimator obtained omitting observation Xi from the data set, and define

θ̃i = nθ̂ − (n− 1)θ̂−i, i = 1, . . . , n,

called pseudo-values by Tukey.
a) Let θ̃ denote the average of the pseudo-values, and assume

Eθ̂ = θ +
a1

n
+
a2

n2
+ o(1/n2),

as n → ∞. Derive an approximation for the bias of θ̃ as n → ∞,
accurate to o(1/n).

b) Assume now that the observations Xi are random variables with a

finite mean µ and variance σ2 ∈ (0,∞), and that θ = A(µ) and θ̂ =
A(X) for some function A, with A′ and A′′ bounded and continuous.
Show that √

n(θ̃ − θ)

S̃
⇒ N(0, 1),

as n → ∞, where S̃ is the sample standard deviation for the pseudo-
values:

S̃2 =
1

n− 1

n
∑

i=1

(θ̃i − θ̃)2.
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3. Consider a parametric bootstrap approach to interval estimation with ob-
servations from a location family. Let X1, . . . , Xn be i.i.d. from an abso-
lutely continuous distribution with density f(x−θ). Let θ̂ be the maximum
likelihood estimator of θ, and define q = q(θ) as the upper αth quantile

for the distribution of |θ̂ − θ|. The bootstrap estimate of q is q̂ = q(θ̂).
Show that the associated confidence interval

(θ̂ − q̂, θ̂ + q̂)

has exact coverage 1 − α.
4. Let qα denote the upper αth quantile for Zn =

√
n(Xn − θ)/σ in Sec-

tion 19.4. Use Theorem 19.3 to derive an approximation for qα, accurate
to o

(

1/
√
n
)

as n→ ∞.
5. Let X1, X2, . . . be i.i.d. from a nonlattice distribution Q, with common

mean µ, common variance σ2, and E|Xi|3 < ∞; and let g be a twice
continuously differentiable function with g(µ) 6= 0. Use Theorem 19.3 to
derive an approximation for

P
[√
n
(

g(Xn) − g(µ)
)

≤ x
]

,

accurate to o
(

1/
√
n
)

as n→ ∞.
6. Let X1, X2, . . . be i.i.d. absolutely continuous variables from a canonical

exponential family with marginal density

fη(x) = exp{ηx−A(η)}h(x), x ∈ R,

for η ∈ Ξ. The maximum likelihood estimator of η based on the first
n observations is then η̂n = ψ(Xn) with ψ the inverse of A′. Consider
a parametric bootstrap approach to estimating the error distribution for
η̂n. Given X = (X1, . . . , Xn), let X∗1 , . . . , X

∗
n be conditionally i.i.d. with

marginal density fη̂n . Assume that the approximation derived in Prob-
lem 19.5 holds uniformly in some neighborhood of η, and use it to derive
approximations for

P
(√
n(η̂n − η) ≤ x

)

and
P
(√
n(η̂∗n − η̂) ≤ x

∣

∣ X
)

,

both accurate to op
(

1/
√
n
)

. Are these the same to op
(

1/
√
n
)

?



20

Sequential Methods

Sequential experiments, introduced in Chapter 5, call for design decisions as
data are collected. Optional stopping, in which the data are observed sequen-
tially and used to decide when to terminate the experiment, would be the
simplest example. A sequential approach can lead to increased efficiency, or it
may achieve objectives not possible with a classical approach, but there are
technical, practical, and philosophical issues that deserve attention.

Example 20.1. Sampling to a Foregone Conclusion. Let X1, X2, . . . be i.i.d.
from N(µ, 1), and let Sn denote the sum of the first n observations. The stan-
dard level α test of H0 : µ = 0 versus H1 : µ 6= 0 based on these observations
will reject H0 if |Sn| > zα/2

√
n.

Suppose a researcher proceeds sequentially, stopping the first time n that
|Sn| exceeds zα/2

√
n, so the sample size is

N = inf
{

n ≥ 1 : |Sn| > zα/2
√
n
}

.

Whenever N is finite, the classical test will reject H0. If µ 6= 0, then N will be
finite almost surely by the law of large numbers. In fact, N will also be finite
almost surely if µ = 0. To see this, note that for any k, {N = ∞} implies

{

|Sk| ≤
√
kzα/2, |S2k| ≤

√
2kzα/2

}

,

which in turn implies
{

|S2k − Sk| ≤ (
√
k +

√
2k)zα/2

}

.

These events have constant probability

p = P
(

|Z| ≤ (1 +
√

2)zα/2
)

< 1,

where Z ∼ N(0, 1), and so by independence,

P (N = ∞) ≤ P





∞
⋂

j=1

{

|S2j+1 − S2j | ≤
(
√

2j +
√

2j+1
)

zα/2
}



 =

∞
∏

j=1

p = 0.
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This example highlights one central technical problem with sequential ex-
periments; sampling distributions may change with optional stopping. For
any fixed sample size N , if µ = 0, then SN/

√
N ∼ N(0, 1), but with the

random sample size N in the example,
∣

∣SN/
√
N
∣

∣ exceeds zα/2 almost surely.
Historically, there was controversy and concern when this was noted. If a re-
searcher conducts an experiment sequentially, a standard frequentist analysis
is not appropriate. For a proper frequentist analysis there must be a specific
protocol detailing how the sample size will be determined from the data, so
that the effects of optional stopping can be taken into account properly when
probabilities, distributions, and moments of statistics are computed.

Surprisingly, likelihood functions after a sequential experiment are found
in the usual way. Since Bayesian inference is driven by the likelihood, posterior
distributions will be computed in the usual fashion, and a sequential design
will not affect Bayesian analysis of the data. Due to this, design problems are
often more tractable with a Bayesian formulation.

In Section 20.1 a central limit theorem is derived for sequential experiments
and used to find stopping rules that allow asymptotic interval estimation
with specified fixed accuracy. Section 20.2 studies stopping times in a more
formal fashion, explaining why they do not affect likelihood functions. In
Section 20.3, the backwards induction method, used to find optimal stopping
times, is explored, focusing on a Bayesian approach to hypothesis testing.
Section 20.4 introduces Wald’s sequential probability ratio test for simple
versus simple testing in a sequential context. Finally, Section 20.5 explores
design issues beyond optional stopping, specifically stochastic approximation
recursions in which independent regression variables are chosen adaptively,
and “bandit” allocation problems.

20.1 Fixed Width Confidence Intervals

LetX1, X2, . . . be i.i.d. from a one-parameter exponential family with marginal
density

fθ(x) = h(x) exp
{

η(θ)T (x) −B(θ)
}

.

Let Ti = T (Xi) and Tn = (T1 + · · · + Tn)/n. Then the maximum likelihood

estimator λ̂n of a parameter λ = g(θ) based on the first n observations is a
function of Tn,

λ̂n = λ̂(Tn),

and by the delta method,

√
n(λ̂n − λ) ⇒ N

(

0, ν2(θ)
)

,

where
ν2(θ) =

[

λ̂′
(

µT (θ)
)]2

σ2
T (θ),
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with µT (θ) = EθTi and σ2
T (θ) = Varθ(Ti). Using this, if ν(·) is continuous and

θ̂n is the maximum likelihood estimator of θ, then
(

λ̂n ± zα/2

nu(θ̂n)
/
√
n

)

(20.1)

is an asymptotic 1 − α confidence interval for λ.
If a researcher is interested in estimating λ with fixed precision, a confi-

dence interval with a fixed width w would be desired. Since ν(θ) will generally
vary with θ, the interval (20.1) from any fixed sample may fail. But following
a sequential strategy, the researcher may choose to continue sampling until
the width 2zα/2ν(θ̂n)/

√
n of interval (20.1) is less than w. This leads to a

sequential experiment with sample size

N = Nw = inf
{

n : w2n ≥ 4z2
α/2ν

2(θ̂n)
}

. (20.2)

If w is small, N will be large, and it seems reasonable to hope that the interval
(

λ̂N ± zα/2ν(θ̂N )√
N

)

(20.3)

from a sequential experiment will have coverage approximately 1 − α. And
by construction, the width of this interval is at most w. This is correct, but
a proper demonstration takes a bit of care, because the sample size N is a
random variable, whereas sample sizes in our prior results on weak convergence
were constant. The main result we need is a central limit theorem due to
Anscombe (1952) in which the number of summands is random. Almost sure
convergence, introduced in Section 8.7, and the strong law of large numbers
play a role here.

The proposed sample size Nw in (20.2) tends to ∞ almost surely as w ↓ 0.

If θ̂n → θ almost surely,1 then θ̂N → θ almost surely and θ̂N−1 → θ almost
surely. Since

4z2
α/2ν

2(θ̂N ) ≤ w2N < w2 + 4z2
α/2ν

2(θ̂N−1),

it follows that
w2N → 4z2

α/2ν
2(θ)

almost surely as w ↓ 0. If we define

nw =

⌊

4z2
α/2ν

2(θ)

w2

⌋

,

then w2(N − nw) → 0 almost surely as w ↓ 0. The idea behind Anscombe’s
central limit theorem is that a shift in the sample size from N to nw will
change the limiting variable by an amount that is op(1).

1 When η is continuous, θ̂n is a continuous function of Tn, and this follows from
the strong law of large numbers.
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Definition 20.2. Random variables Wn, n ≥ 1, are uniformly continuous in
probability (u.c.i.p.) if for all ǫ > 0 there exists δ > 0 such that

P

{

max
0≤k≤nδ

|Wn+k −Wn| ≥ ǫ

}

< ǫ, for all n ≥ 1.

Theorem 20.3 (Anscombe). If Nw, w > 0, are positive integer-valued ran-

dom variables with w2Nw
p→ c ∈ (0,∞) as w ↓ 0, if nw = ⌊c/w2⌋, and if Wn,

n ≥ 1 are u.c.i.p., then

WNw −Wnw

p→ 0

as w ↓ 0.

Proof. Fix ǫ > 0. For any δ > 0,

P
(

|WNw−Wnw | > ǫ
)

≤ P
(

w2|Nw−nw| > δ
)

+P
(

max
w2|n−nw|≤δ

|Wn−Wnw | > ǫ
)

.

The first term here tends to zero regardless of the choice of δ. By the triangle
inequality, if m = ⌈nw− δ/w2⌉ (the smallest integer m with w2|m−nw| ≤ δ),
then

|Wn −Wnw | ≤ |Wn −Wm| + |Wnw −Wm|,
and so

max
w2|n−nw|≤δ

|Wn −Wnw | ≤ 2 max
w2|n−nw|≤δ

|Wn −Wm|.

Therefore

P
(

max
w2|n−nw|≤δ

|Wn −Wnw | > ǫ
)

≤ P
(

max
w2|n−nw|≤δ

|Wn −Wm| > ǫ/2
)

.

Since theWn are u.c.i.p., this probability will be less than ǫ/2 if δ is sufficiently
small, and the theorem follows as ǫ is arbitrary. ⊓⊔

In Theorem 20.3, if Wn ⇒W , Wnw ⇒W , and so

WNw = Wnw + op(1) ⇒W.

One example of particular interest would be normalized partial sums, Wn =√
nY n with Y1, Y2, . . . i.i.d. mean zero, and Y n the average of the first n of

these variables. The following maximal inequality, due to Kolmogorov, is used
to show these variables are u.c.i.p. Let Sk = Y1 + · · · + Yk.

Lemma 20.4. If Y1, . . . , Yn are i.i.d. with mean zero and common variance
σ2
Y ∈ (0,∞), then for any c > 0,

P

(

max
1≤k≤n

|Sk| ≥ c

)

≤ nσ2
Y

c2
.
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Proof. Let Ak be the event that Sk is the first partial sum with magnitude at
least c, that is,

Ak =
{

|S1| < c, . . . , |Sk−1| < c, |Sk| ≥ k
}

.

Because Ak is determined by Y1, . . . , Yk, Sk1Ak
is independent of Sn − Sk =

Yk+1 + · · · + Yn, and for k ≤ n

E
[

Sk(Sn − Sk)1Ak

]

= E[Sk1Ak
] × E[Sn − Sk] = 0.

But on Ak, S
2
k ≥ c2, and so for k ≤ n,

E[S2
n1Ak

] = E
[

(Sn − Sk)
2 + 2Sk(Sn − Sk) + S2

k

]

1Ak
≥ c2P (Ak).

Since {max1≤k≤n |Sk| ≥ c} is the disjoint union of A1, . . . , An,

c2P ( max
1≤k≤n

|Sk| ≥ c) =

n
∑

k=1

c2P (Ak) ≤ E

[

S2
n

n
∑

i=1

Ak

]

≤ ES2
n = nσ2

Y ,

proving the lemma. ⊓⊔

Considering the normalized partial sums, since

|Wn+k −Wn| =

∣

∣

∣

∣

∣

1√
n

k
∑

i=n+1

Yi −
(
√

n+ k

n
− 1

)

Wn+k

∣

∣

∣

∣

∣

,

we have

P ( max
0≤k≤nδ

|Wn+k −Wn| ≥ ǫ) ≤ P
(

(
√

1 + δ − 1)|Wn+k| ≥ ǫ/2
)

+ P

(

max
0≤k≤nδ

∣

∣

∣

∣

∣

n+k
∑

i=n+1

Yi

∣

∣

∣

∣

∣

≥ ǫ
√
n/2

)

.

By Chebyshev’s inequality, the first term here is at most

4(
√

1 + δ − 1)2σ2
Y

ǫ2
,

and by Lemma 20.4 the second term is at most

4σ2
Y δ

ǫ2
.

These bounds tend to zero as δ ↓ 0, uniformly in n, and so Wn, n ≥ 1, are
u.c.i.p.

Returning to fixed width interval estimation and the coverage probability
for interval (20.3), by Theorem 20.3,
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√
N
(

TN − µ(θ)
)

⇒ N
(

0,Varθ(Ti)
)

as w ↓ 0, and by the delta method,
√

Nw(λ̂N − λ) ⇒ N
(

0, ν2(θ)
)

.

Since N → ∞ as w ↓ 0 and θ̂n → θ as n → ∞, both almost surely, θ̂N → θ
almost surely as w ↓ 0. It then follows that

√
N(λ̂N − λ)

ν(θ̂N )
⇒ N(0, 1)

as w ↓ 0. So the coverage probability for the confidence interval (20.3),

Pθ

[

λ ∈
(

λ̂N ± zα/2ν(θ̂N )/
√
N
)

]

= Pθ

(√
N |λ̂N − λ|
ν(θ̂N )

< zα/2

)

,

converges to 1 − α as w ↓ 0.

20.2 Stopping Times and Likelihoods

In Chapter 5 we had some trouble representing data from a sequential exper-
iment as a random vector, because this kind of experiment’s sample size is
not a fixed constant. The most elegant and standard way to ameliorate this
problem is to use σ-fields to represent information. To understand how this
is done, consider an experiment in which a coin is tossed two times, so the
sample space is

E = {TT, TH,HT,HH}.
Let F be the σ-field of all subsets of E , F = 2E , and let the random variable
X give the number of heads. If we observe X we will know if certain events
occur. For instance, we will know whether

{X = 1} = {HT, TH}

occurs. But other events, such as {HH,HT } (the first toss lands heads), will
remain in doubt. The collection of all events we can resolve,

σ(X) =
{

∅, {TT }, {HT, TH}, {HH}, {TT,HT, TH},
{TT,HH}, {HT, TH,HH}, {TT, TH,HT,HH}

}

,

is a σ-field. A means to learn which events in σ(X) occur would provide
exactly the same information about the outcome e as the value for X . Thus
X and σ(X) in a natural sense provide the same information.

The notions in the coin tossing example generalize easily. If we observe a
random vector X , then we will know whether {X ∈ B} = X−1(B) occurs.
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Here we insist that B is a Borel set to guarantee that {X ∈ B} is an event in
F . We can then define

σ(X)
def
=
{

X−1(B) : B Borel
}

,

and it is easy to show that σ(X) is a σ-field.
Consider now an experiment in which random vectors X1, X2, . . . are ob-

served sequentially. Let

Fn = σ{X1, . . . , Xn}, (20.4)

the events we can resolve observing the first n variables, and take F0 = {∅, E}.
These σ-fields are increasing, F0 ⊂ F1 ⊂ F2 ⊂ · · · . In general, any increasing
sequence of σ-fields Fn, n ≥ 0, is called a filtration. The filtration given by
(20.4) would be called the natural filtration for Xi, i ≥ 1. We can also define
F∞ as the smallest σ-field containing all events in

⋃

n≥1 Fn. For the natural
filtration, F∞ would represent the information available from all the Xi. This
σ-field may not equal the underlying σ-field F ; it will be strictly smaller if F
contains events that cannot be determined from the Xi.

Sample sizes for a sequential experiment cannot depend on the observa-
tions in an arbitrary fashion. For instance, a design calling for two observations
if and only if X5 > 10 would be absurd. Clairvoyance needs to be prohibited in
the mathematical formulation. In particular, the decision to stop or continue
after n observations needs to be based on the information Fn available from
those data. Specifically, the event {N = n} should lie in Fn. These variables
are called stopping times according to the following definition.

Definition 20.5. A random variable2 N taking values in {0, 1, 2, . . . ,∞} is
called a stopping time with respect to a filtration Fn, n ≥ 0, if

{N = n} ∈ Fn, for all n ≥ 0.

Next we would like to find a σ-field that represents the information avail-
able when data are observed until a stopping time N . Any event B ∈ F can
be written as the disjoint union of the sets B ∩ {N = n}, n = 1, 2, . . . ,∞. If
we can determine B from the data, it must be the case that that part of B
where N = n (i.e., B ∩ {N = n}) must lie in Fn, for any n, and we define

FN =
{

B : B ∩ {N = n} ∈ Fn, ∀n = 0, 1, . . . ,∞
}

.

It is not hard to show that FN is a σ-field, and it represents the information
available observing the data until stopping time N . We may also want to
consider what random variables Y are based on the observed data. Because
the event {Y ∈ B} = Y −1(B) can be resolved by observing Y , this event

2 Since “+∞” is an allowed value for N , it may be slightly more proper to call N
an extended random variable.
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should lie in FN . But this requirement is simply that Y is FN measurable. For
instance, with the natural filtration, the stopping time N is FN measurable,
and XN = (X1 + · · · +XN)/N is FN measurable. But XN+1 is not.

If we use σ-fields to represent information, we will also be interested in
conditioning to revise probabilities and expectations in light of the information
from a σ-field. With a random vector X and an integrable random variable
Y , E(Y |X) should be a measurable function of X , and smoothing must work
for Y I{X ∈ B} with B an arbitrary Borel set:

EY I{X ∈ B} = EI{X ∈ B}E(Y |X),

for all Borel sets B. The requirements for conditioning on a σ-field G are
similar. First, E(Y |G) should be G measurable (based only on information
available from G); and second, smoothing should work for Y 1B with B any
event in G:

EY 1B = E1BE(Y |G), B ∈ G.

The next result, Wald’s fundamental identity, is the basis for likelihood
calculations. In this result, there are two probability measures P0 and P1. Let
f0n and f1n denote joint densities for (X1, . . . , Xn) under P0 and P1, and let
Ln = Ln(X1, . . . , Xn) denote the likelihood ratio

Ln(X1, . . . , Xn) =
f1n(X1, . . . , Xn)

f0n(X1, . . . , Xn)
.

Theorem 20.6 (Wald’s Fundamental Identity). If f1n = 0 whenever
f0n = 0, and if P0(N <∞) = P1(N <∞) = 1, then

P1(B) = E01BLN , ∀B ∈ FN .

Proof. Because {N = n} ∩B ∈ Fn, by Lemma 12.18,

P1(N = n,B) = E0I{N = n}1BLn = E0I{N = n}1BLN .

Because P0(N <∞) = P1(N <∞) = 1,

P1(B) = P1(B,N <∞) =

∞
∑

n=1

P1(N = n,B)

=

∞
∑

n=1

E0I{N = n}1BLN = E0I{N <∞}1BLN = E01BLN . ⊓⊔

If P0 and P1 are restricted and only considered as measures on FN , this
result asserts that P1 has density LN with respect to P0. Theorem 5.4 follows
from this. It can be shown that any σ-finite measure µ is equivalent to, or
has the same null sets as, a probability measure. So in Theorem 5.4 we can
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assume that the dominating measure µ is a probability measure. If the Xi are
i.i.d. with density fθ under Pθ, viewed as P1 in Wald’s fundamental identity,
and they are i.i.d. from µ under P0, then the density for the restriction of Pθ
to FN is

LN =

N
∏

i=1

f(Xi),

with respect to the restriction of P0 to FN .

20.3 Optimal Stopping

This section provides an introduction to the theory of optimal stopping, used
to select the best stopping time N for a sequential experiment. The main ideas
are developed in the context of Bayesian hypothesis testing.

Given Θ = θ, let potential observations X1, X2, . . . be i.i.d. from Qθ, and
consider testingH0 : Θ ∈ Ω0 versusH1 : Θ ∈ Ω1. To be specific in our goals we
proceed in a decision-theoretic fashion, assigning costs for the consequences of
our inferential actions, with additional costs to perform the experiment and
collect data. Inferential actions and stopping times are chosen to minimize
expected costs.

After data collection, one of the hypotheses, H0 or H1, will be accepted.
Let variable A specify this action, with A = 0 if we accept H0 and A = 1 if we
accept H1. This action depends on the observed data FN , so A must be FN
measurable. Let L(Θ) denote the loss if we make the wrong decision: A = 0
when Θ ∈ Ω1, or A = 1 when Θ ∈ Ω0. The following result characterizes an
optimal action A.

Theorem 20.7. The inferential risk associated with action A, given by

R(A) = EL(Θ)
[

I{A = 0, Θ ∈ Ω1} + I{A = 1, Θ ∈ Ω0}
]

,

will be minimal if

A = 0 on E
[

L(Θ)I{Θ ∈ Ω1}
∣

∣ FN
]

< E
[

L(Θ)I{Θ ∈ Ω0}
∣

∣ FN
]

and

A = 1 on E
[

L(Θ)I{Θ ∈ Ω1}
∣

∣ FN
]

> E
[

L(Θ)I{Θ ∈ Ω0}
∣

∣ FN
]

.

Proof. Because A is FN measurable,

E
[

L(Θ)I{A = 0}I{Θ ∈ Ω1}
∣

∣ FN
]

= I{A = 0}E
[

L(Θ)I{Θ ∈ Ω1}
∣

∣ FN
]

and

E
[

L(Θ)I{A = 1}I{Θ ∈ Ω0}
∣

∣ FN
]

= I{A = 1}E
[

L(Θ)I{Θ ∈ Ω0}
∣

∣ FN
]

.



414 20 Sequential Methods

So by smoothing,

R(A) = EE
[

L(Θ)
[

I{A = 0, Θ ∈ Ω1} + I{A = 1, Θ ∈ Ω0}
]

∣

∣

∣ FN
]

= E
[

I{A = 0}E
[

L(Θ)I{Θ ∈ Ω1}
∣

∣ FN
]

+ I{A = 1}E
[

L(Θ)I{Θ ∈ Ω0}
∣

∣ FN
]

]

≥ Emin
{

E
[

L(Θ)I{Θ ∈ Ω1}
∣

∣ FN
]

, E
[

L(Θ)I{Θ ∈ Ω0}
∣

∣ FN
]

}

.

This bound is achieved if A has the form indicated in the theorem. ⊓⊔

Using this result, if we define

ρN = min
{

E
[

L(Θ)I{Θ ∈ Ω1}
∣

∣ FN
]

, E
[

L(Θ)I{Θ ∈ Ω0}
∣

∣ FN
]

}

,

the inferential risk with an optimal action A is EρN , and an optimal stopping
rule N should balance this risk against expected costs running the experiment.
A simple assumption, natural and fairly appropriate in many cases, is that
each observation costs some fixed amount c > 0. The total cost to run the
experiment is then cN , and an optimal stopping rule N minimizes

E[cN + ρN ]. (20.5)

To illustrate some ideas useful in a broader context, let us now restrict
attention to a simple example, testing H0 : Θ ≤ 1/2 versus H1 : Θ > 1/2 with
Θ the success probability for a sequence of independent Bernoulli trials. We
develop a recursive method, called backwards induction, to find an optimal
stopping time. For the loss function, let us take

L(Θ) = K|Θ − 1/2|.

This function decreases as Θ tends to 1/2, which seems natural because incor-
rect inference when Θ is near 1/2 should be less of a concern than incorrect
inference when Θ lies farther from 1/2. Finally, for a prior distribution assume

Θ ∼ Beta(α, β).

To begin, let us consider our inferential risk ρ0 if we stop immediately with
no data collection. Noting that

L(Θ)I{Θ > 1/2} =
1

2
K|Θ − 1/2|+ 1

4
K − 1

2
K(1 −Θ)

and

L(Θ)I{Θ ≤ 1/2} =
1

2
K|Θ − 1/2| + 1

4
K − 1

2
KΘ,
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ρ0 =
1

2
KE|Θ − 1/2|+ 1

4
K − 1

2
K

max{α, β}
α+ β

.

In form, ρ0 is a function of α and β, ρ0 = H(α, β), but the specific repre-
sentation given is convenient. Calculations to find ρN are similar, but involve
conditional expectations given FN . By Wald’s identity (Theorem 20.6), the
likelihood function for the data is proportional to

θSN (1 − θ)N−SN ,

where SN = X1 + · · · + XN . Calculations identical to those in Example 7.3
show that

Θ|FN ∼ Beta(αN , βN),

where
αn = α+ Sn and βn = β + n− Sn.

The calculations for ρ0 involved expectations for functions of Θ, which can
be viewed as integrals against the Beta(α, β) distributions. The calcula-
tions for ρN are identical, except that the expectations are integrals against
Beta(αN , βN ), the posterior distribution for Θ given FN . Using this observa-
tion,

ρN =
1

2
KE

[

|Θ − 1/2|
∣

∣ FN
]

+
1

4
K − 1

2
K

max{αN , βN}
αN + βN

.

By smoothing,
E|Θ − 1/2| = EE

[

|Θ − 1/2|
∣

∣ FN
]

,

so according to criteria (20.5), our stopping time N should be chosen to min-
imize

1

2
KE|Θ − 1/2|+ 1

4
K − 1

2
KE

[

max{αN , βN}
αN + βN

]

+ cEN.

Equivalently, since the first two terms here are independent of N , the stopping
time N should be chosen to maximize

1

2
KE

[

max{αN , βN}
αN + βN

]

− cEN. (20.6)

This expression has an interesting interpretation as the expected reward in
a “guess the next observation” game. In this game, c is the cost for each
observation, and after sampling, the player tries to guess whether XN+1 will
be 0 or 1, winning K/2 for a correct guess.

Recursive algorithms to maximize (20.6) or minimize (20.5) rely on the
conditional independence of the Xi given Θ. Since

P (Xk+1 = x1, . . . , Xk+n = xn|Θ,Fk) = Θsn(1 −Θ)n−sn ,

where sn = x1 + · · · + xk, smoothing gives

P (Xk+1 = x1, . . . , Xk+n = xn|Fk) = E
[

Θsn(1 −Θ)n−sn
∣

∣ Fk
]

.
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Since the variable of interest here is a function of Θ, this could be computed
as an integral against Beta(αk, βk), the posterior distribution of Θ given Fk.
Formally, the answer would be exactly the same as P (X1 = x1, . . . , Xn = xn)
if the prior distribution were Beta(αk, βk). So the joint distribution of fu-
ture observations given Fk only depends on the posterior distribution of Θ.
The observed data X1, . . . , Xk, once they have been used to compute this
posterior distribution, have no other effect on the distribution of future obser-
vations. The posterior distributions, characterized by the sequence (αn, βn),
n ≥ 0, form a Markov chain (see Section 15.3), and given (αk, βk), the ini-
tial observations X1, . . . , Xk and the future observations Xk+1, Xk+2, . . . are
independent.

To use the Markov structure described, let V (α, β) denote the supremum
of (20.6),

V (α, β) = sup
stopping times N

[

1

2
KE

(

max{αN , βN}
αN + βN

)

− cEN

]

,

called the value of the game. Suppose the player takes an initial observation
and proceeds after this observation stopping optimally at some later stage.
How much should he expect to win? Given X1, future observations will evolve
as if the prior were Beta(α1, β1) and we had no data. Since we have to pay c
for the first observation, the expected winnings will be

EV (α1, β1) − c.

Since α1 = α+X1, β1 = β + 1 −X1, and

P (X1 = 1) = EP (X1 = 1|Θ) = EΘ =
α

α+ β
,

the expected winnings can be written as

αV (α+ 1, β) + βV (α, β + 1)

α+ β
− c.

If instead the player stops immediately, he will win

1

2
K

max{α, β}
α+ β

.

The optimal expectation must be the larger of these, so

V (α, β) = max

{

1

2
K

max{α, β}
α+ β

,
αV (α+ 1, β) + βV (α, β + 1)

α+ β
− c

}

. (20.7)

This key equation can be used to calculate V recursively. To get started, if
the sum αn+βn = α+β+n is extremely large, the value of information from
a single additional observation cannot offset its cost c, and so V (αn, βn) will
be
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V (αn, βn) =
1

2
K

max{αn, βn}
α+ β + n

.

There are n + 1 possible values for (αn, βn): (α, β + n), (α + 1, β + n − 1),
. . . , (α + n, β) and the values for V on this grid can be saved as a vector or
array on a computer. Using these values, V can be computed at (α, β+n−1),
. . . , (α + n − 1, β), all of the possible values for (αn−1, βn−1), using (20.7).
Continuing in this fashion we will eventually find V at all of the possible
values for (αk, βk), k = 0, . . . , n. This recursive approach to calculating V is
called backwards induction.

Once V has been computed, it is easy to characterize an optimal stop-
ping time N . From the discussion above, it should be clear that stopping
immediately will be optimal if

1

2
K

max{α, β}
α+ β

≥ αV (α+ 1, β) + βV (α, β + 1)

α+ β
− c.

With the Markov structure, the decision to stop or continue at stage k will
be the same as the decision to stop or continue initially if the prior were
Beta(αk, βk). Thus it is optimal to stop the first time k that

1

2
K

max{αk, βk}
α+ β + k

≥ αkV (αk + 1, βk) + βkV (αk, βk + 1)

α+ β + k
− c.

Given the data, the left-hand side here is what you expect to win if you stop
at stage k, and the right-hand side is what you can expect to win if you take
an additional observation and stop optimally at some later time.

If α = β = 1, so the prior distribution for Θ is the uniform distribution on
(0, 1), and if K = 200 and c = 1, the optimal stopping time continues until
(αn, βn) leaves the set

{

(1, 1), (2, 1), (1, 2), (2, 2), (3, 2), (2, 3), (3, 3), (4, 3), (3, 4), (4, 4),

(5, 4), (4, 5), (5, 5), (6, 5), (5, 6), (6, 6), (7, 6), (6, 7), (7, 7)
}

.

The expected value for this stopping time is 3.12683, the chance of a correct
guess for XN+1 is 0.71447, and the inferential risk is 3.55256. In contrast, the
best fixed sample design will sample three observations, and the inferential
risk with this sample size is 5.0. The sequential experiment is more efficient.
Although the expected sample size is slightly larger, its inferential risk is 29%
smaller.

20.4 Sequential Probability Ratio Test

The sequential probability ratio test is suggested in Wald (1947) for simple
versus simple testing with i.i.d. observations with optional stopping. Take
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Ω = {0, 1}, let X1, X2, . . . be i.i.d. from Qθ with density qθ, and consider
testing H0 : θ = 0 versus H1 : θ = 1. Define

Ln = Ln(X1, . . . , Xn) =

∏n
i=1 q1(Xi)

∏n
i=1 q0(Xi)

,

the likelihood ratio for the first n observations. By convention, for n = 0 we
take L0 = 1. We know from the Neyman–Pearson theory in Section 12.2, that
with a fixed sample size the best test rejects H0 according to the size of Ln.
The sequential probability ratio test (SPRT) has a similar feel. At each stage,
the researcher has three options: stop and accept H0, stop and accept H1, or
continue sampling. For the SPRT these options are resolved by comparing the
likelihood ratio with two critical values A < 1 < B in the following manner;

if Ln ∈ (A,B), take another observation;
if Ln ≥ B, reject H0;
if Ln ≤ A, accept H0.

(20.8)

Formally, the sample size3 for this SPRT is then

N = inf
{

n : Ln /∈ (A,B)
}

.

To understand the optimality properties of the SPRT, let us consider this
testing problem from a Bayesian perspective. Let Θ be a Bernoulli variable
with success probability π = P (Θ = 1), and given Θ = θ, potential observa-
tions X1, X2, . . . be i.i.d. from, Qθ. Because

P (Θ = θ|X1, . . . , Xn) ∝θ P (Θ = θ)

n
∏

i=1

qθ(Xi),

it is not hard to show that

πn
def
= P (Θ = 1|X1, . . . , Xn) =

πLn
1 − π + πLn

, (20.9)

an increasing function of Ln. For convenience, let Fn = σ(X1, . . . , Xn). Given
Θ the data are i.i.d., and so, for any Borel set B ∈ Rk,

P
[

(Xn+1, . . . , Xn+k) ∈ B
∣

∣ Θ,Fn
]

= QkΘ(B).

So by smoothing,

P
[

(Xn+1, . . . , Xn+k) ∈ B
∣

∣ Fn
]

= E
[

QnΘ(B)|Fn]

= (1 − πn)Q
k
0(B) + πnQ

k
1(B).

If data X1, . . . , Xn are observed, the conditional distribution of the remaining
observations is a function only of πn and does not depend in any other way

3 Some authors also consider a procedure that stops immediately (N = 0) a SPRT.
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on either n or values for the first n observations. This Markov structure is
essentially the same as that for the testing problem considered in Section 20.3,
and also holds more generally. See Problem 20.5.

As in the last section, let L(Θ) denote the cost for accepting the wrong
hypothesis. If we stop without collecting any data, our minimal inferential
risk, taking the smaller of the risks for the two actions, is

ρ(π) = min
{

πL(1), (1 − π)L(0)
}

.

If we collect data, as in Theorem 7.1 it will be optimal to minimize posterior
inferential risk. Since optional stopping does not change the likelihood, P (Θ =
1|FN) = πN , and the minimal posterior inferential risk, again minimizing over
the two actions, is just ρ(πN ).

To have a definite design objective, let us now assume, as in Section 20.3,
that each observation costs an amount c, so the total sampling costs with a
stopping rule N will be cN . Then the total risk for a stopping time N and
(FN measurable) test function ϕ will be

R(π,N, ϕ) = E
[

cN + L(1)I{Θ = 1}(1 − ϕ) + L(0)I{Θ = 0}ϕ
]

= πcE1N + (1 − π)cE0N + πL(1)E1(1 − ϕ) + (1 − π)L(0)E0ϕ,

where the second equality follows by conditioning on Θ, with E0 and E1

denoting conditional expectation given Θ = 0 and Θ = 1, respectively. Note
that R(π,N, ϕ) is a linear function of π. By the argument above, if ϕ is chosen
optimally the posterior inferential risk is ρ(πN ), and so

R(π,N)
def
= inf

ϕ
R(π,N, ϕ) = E

[

cN + ρ(πN )
]

.

Let R(π) be the optimal risk, obtained minimizing over stopping times N :

R(π) = inf
N
R(π,N) = inf

N,ϕ
R(π,N, ϕ).

Note that since R(π) is the infimum of a collection of linear functions, it must
be concave.

Let us next consider whether stopping immediately is optimal. Since there
are no sampling costs, the risk for the stopping time N = 0 is ρ(π). The best
possible risk, taking at least one observation, is

R1(π) = inf
N≥1

R(π,N),

which is concave by the same reasoning as that for R. Comparing these risks,
stopping immediately is optimal only if

ρ(π) ≤ R1(π).

The functions ρ and R1 are graphed in Figure 20.1, and the values π± where
the two functions agree are indicated on the horizontal axis. As pictured, the
function R1 is continuous,4 and approaches c as π → 0 or π → 1. In some

4 Because R1 is concave, continuity is immediate on (0, 1). The argument for con-
tinuity at the endpoints 0 and 1 is more delicate.
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π

R

c

π− π+ 1

Fig. 20.1. ρ and R1.

cases, the function ρ may lie entirely below R1. Barring this possibility, if
the functions ever cross, the values π− ≤ π+ are uniquely determined. By
the Markov structure, the decision to stop or continue at stage n should be
formed in the same fashion after replacing the prior probability π with the
posterior probability πn. Thus the rule that stops the first time πn /∈ (π−, π+)
is optimal.

Theorem 20.8. If R1(π) < ρ(π), so N = 0 is suboptimal, then the SPRT
with

A =
1 − π

π

π−
1 − π−

and B =
1 − π

π

π+

1 − π+

is optimal, minimizing R(π,N) over all stopping times N .

Proof. This follows from the discussion above and the monotonic relationship
between πn and Ln in (20.9). With A and B as defined in this theorem,
straightforward algebra shows that πn ∈ (π−, π+) if and only if Ln ∈ (A,B).

⊓⊔

To allow comparisons with procedures that may accept or reject H0 in a
suboptimal fashion, let N and ϕ denote the sample size and test function for
a sequential procedure. As usual, Eθϕ gives the chance of rejecting H0, so the

error probabilities for this test are α0
def
= E0ϕ and α1

def
= 1 − E1ϕ. The risk

for this procedure in the Bayesian model is

R(π,N, ϕ) = πcE1N + (1 − π)cE0N + πL(1)α1 + (1 − π)L(0)α0,

a linear combination of α0, α1, E0N , and E1N . Because SPRTs are optimal,
they must minimize the linear combination of the expected sample sizes E0N
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and E1N in this risk among all procedures with the same or better error
probabilities. The following striking result of Wald and Wolfowitz (1948) is
stronger, asserting that the SPRT simultaneously minimizes both of these
expected sample sizes.

Theorem 20.9. Let α̃0, α̃1, and Ñ be the error probabilities and sample size
for a SPRT with 0 < Ã < 1 < B̃ <∞. If α0 and α1 are error probabilities for
a competing procedure (N,ϕ), and if α0 ≤ α̃0 and α1 ≤ α̃1, then E0N ≥ E0Ñ
and E1N ≥ E1Ñ .

The proof of this result is based on showing that the SPRT Ñ is optimal
for Bayesian models with different values for the prior probability π, which
may seem plausible because the loss structure for the problem depends on
several values, c, L(0), and L(1), which can be varied, whereas the SPRT is
completely specified by A and B.

A rescaling of costs just amounts to measuring them in different monetary
units, and has no impact on a procedure’s optimality. So let us assume that
L(0)+L(1) = 1 and define ω = L(1), so L(0) = 1−ω. For notation, we write
π± = π±(c, ω) and R1(π) = R1(π, c, ω) to indicate how these critical values
and risk depend on ω and c.

Lemma 20.10. For any values 0 < π̂− < π̂+ < 1 there exist values ω ∈ (0, 1)
and c > 0 such that π−(c, ω) = π̂− and π+(c, ω) = π̂+.

A careful proof of this lemma takes some work. It is not hard to argue
that R1(π, c, ω) is continuous, strictly increasing in c when π and ω are fixed,
and tends to zero as c ↓ 0, again with π and ω fixed. It follows that π±(c, ω)
are continuous, and that with ω fixed, π+(c, ω) is an increasing function of c,
π−(c, ω) is a decreasing function of c, and π−(c, ω) → 0 and π+(c, ω) → 1 as
c ↓ 0. From this, for fixed ω, ratio A/B for the SPRT,

π−(c, ω)

1 − π−(c, ω)

1 − π+(c, ω)

π+(c, ω)
,

is continuous in c and increases from 0 to 1 as c varies. The proof of the
lemma is completed showing that if c is chosen to keep this ratio A/B fixed,
then π+(c, ω) will increase from 0 to 1 as ω varies over (0, 1). Intuitively, this
occurs because as ω increases, the risk for accepting H0 increases while the
risk for acceptingH0 decreases, leading to an increase in critical value π+(c, ω)
necessary to accept H1. A careful proof takes some care; details are available
in Lehmann (1959).

Proof of Theorem 20.9. Given any value π ∈ (0, 1), define 0 < π̂− < π < π̂+ <
1 by

π̂− =
Ãπ

Ãπ + 1 − π
and π̂+ =

B̃π

B̃π + 1 − π
. (20.10)

Using Lemma 20.10, choose ω and c so that
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π−(ω, c) = π̂− and π+(ω, c) = π̂+. (20.11)

By Theorem 20.8, with the loss structure (c, ω) and π as the prior probability,
the optimal sequential procedure will be a SPRT with

A =
1 − π

π

π−(ω, c)

1 − π−(ω, c)
and B =

1 − π

π

π+(ω, c)

1 − π+(ω, c)
.

But by (20.10) and (20.11), Ã = A and B̃ = B, and so this SPRT is the
same as the one with stopping time Ñ in the theorem. Because this SPRT
minimizes risk,

πcE1Ñ + (1 − π)cE0Ñ + πL(1)α̃1 + (1 − π)L(0)α̃0

≤ πcE1N + (1 − π)cE0N + πL(1)α1 + (1 − π)L(0)α0,

which implies

πcE1Ñ + (1 − π)cE0Ñ ≤ πcE1N + (1 − π)cE0N.

But π ∈ (0, 1) is arbitrary, and this bound can hold for all π ∈ (0, 1) only if
E0N ≥ E0Ñ and E0N ≥ E0Ñ . ⊓⊔

20.5 Sequential Design

In other sections of this chapter, the decision concerning when to stop exper-
imentation has been the central design issue. Here we move beyond stopping
problems and consider procedures with other design options. The first ex-
ample, called stochastic approximation, concerns adaptive variable selection
in regression models. In the other example we consider allocation, or bandit,
problems.

Stochastic Approximation

Let Qx, x ∈ R, be the distribution for a response variable Y when an input
variable X , chosen by the researcher, equals x. The mean of Qx,

f(x)
def
= E[Y |X = x] =

∫

y dQx(y),

is called the regression function. Let σ2(x) denote the variance of Qx,

σ2(x) =

∫

(

y − f(x)
)2
dQx(y).

Stochastic approximation, introduced in Robbins and Monro (1951), con-
siders situations in which the input variables are chosen adaptively. Specif-
ically, X1 is a constant, and for n ≥ 1, Xn+1 is a function of the first n
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observations. So if Fn is the σ-field representing information from the first n
observations,

Fn = σ(X1, Y1, . . . , Xn, Yn),

Xn+1 is Fn measurable. Conditional distributions for the Yn are given by

Yn|Fn−1 ∼ QXn .

If the mechanism to select independent variables is specified, these conditional
distributions determine the joint distribution for the data.

Let t be a fixed constant representing a target value for the regression
function, and let θ denote the value for the independent variable that achieves
this target, so

f(θ) = t.

The design objective in stochastic approximation is to find an adaptive strat-
egy that drives the independent variables Xn to θ as quickly as possible. It
should be clear that this will be possible only with a sequential approach.

Example 20.11. Bioassay experiments are designed to investigate the relation-
ship between a dose level x and the chance of some response. The median5

effective dose, ED50, is defined as the dose that gives a 50% chance of response.
If the variable Y is a response indicator and its conditional distribution given
X = x is a Bernoulli distribution with success probability f(x), then ED50
will be θ if the target t is 1/2.

If the regression function f is assumed to be increasing, then a natural
strategy would be to decrease the independent variable X if the response
were to lie above the target and increase X if the response were to lie below
the target. A specific recursion suggested in Robbins and Monro (1951) takes

Xn+1 = Xn − an(Yn − t), n ≥ 1, (20.12)

where an, n ≥ 1, is a sequence of positive constants.

Theorem 20.12. If f is continuous and strictly increasing,
∑

a2
n < ∞,

∑

an = ∞, and

sup
x∈R

σ(x) + |f(x)|
1 + |x| <∞,

then Xn → θ almost surely as n→ ∞.

Asymptotic normality for Xn can be established under slightly stronger
assumptions using results of Fabian (1968). In particular, an = c/n gives the
best rate of convergence. With this choice and suitable regularity,

5 The language here, though somewhat natural, is a bit unfortunate because this
dose is not in any natural sense the median for any list or distribution for doses.
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√
n(Xn − θ) ⇒ N

(

0,
c2σ2(θ)

2cf ′(θ) − 1

)

,

provided 2c > 1/f ′(θ). The asymptotic variance here is minimized taking
c = 1/f ′(θ). For more discussion, see the review articles by Ruppert (1991)
and Lai (2003).

In practice, procedures seeking the maximum of a regression function
may have even more practical value. Kiefer and Wolfowitz (1952) suggest
an approach similar to that of Robbins and Monro. Let bn, n ≥ 1 be
positive constants decreasing to zero. Responses are observed in pairs with
the independent variable set to Xn ± bn. Then the conditional mean of
Zn = (Yn+ − Yn−)/(2cn) will be approximately f ′(Xn), and their recursion
takes

Xn+1 = Xn − anZn, n ≥ 1,

again with an, n ≥ 1, a sequence of constants.
In industrial applications, the independent variables Xn are often multi-

variate, and the response surface methodology suggested in Box and Wilson
(1951) has been popular. Experimentation proceeds in stages. For early stages,
the independent variables are selected to allow a linear fit to estimate the gra-
dient of the regression function. At successive stages, this information about
the gradient is used to shift to a region with higher average response. Then
at later stages richer designs are used that allow quadratic models to be fit.
The maximum of the fitted quadratic is then taken as the estimate for the
maximum of the regression function.

Bandit Problems

Bandit or allocation problems have a rich history and literature. We only
touch on a few ideas here to try to give a feel for the general area. The
“bandit” language refers to a slot machine for gambling, operated by pulling
a lever (arm) and called informally a one-armed bandit. Playing the machine
repeatedly, a gambler will receive a sequence of rewards, until he tires or runs
out of quarters. If the gaming establishment has several machines, then the
gambler may choose to switch among them, playing different arms over time.
Our main concern is to find an optimal strategy for the gambler, that identifies
the best arm to play at each stage.

Mathematically, bandit problems can be formulated in various ways. A
special case of interest in statistics is discussed here, although extensions are
mentioned. For more extensive developments, see Berry and Fristedt (1985).

At each stage n ≥ 0, the researcher chooses among k arms. In a clinical
setting, “arms” might correspond to giving one of k treatments for some med-
ical condition. Each time an arm is played, the researcher observes a random
variable (or vector) X , and the distribution of this variable for arm a is gov-
erned by an unknown random parameter Θa. These parameters Θ1, . . . , Θk
are independent with prior marginal distributions Θa ∼ π0(a), a = 1, . . . , k.
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Let Fn = σ(X0, . . . , Xn−1), the information from the first n observations,
and let An denote the arm played at stage n ≥ 0. Since An must be chosen
based on past data, An is Fn measurable. Distributions for the observations,
given the arm played and the value for the parameter of the arm, are denoted
Q(a, θa). If a strategy to select arms to play has been fixed, then the joint
distribution for the observations Xn, n ≥ 1, is determined by the conditional
distributions

Xn|Fn, Θ ∼ Q(An, ΘAn).

Every time arm a is played, the researcher receives a reward r(a,Θa), but
the value of this reward if it is acquired at stage n is discounted geometrically
by the factor βn for some constant β ∈ (0, 1), called the discount factor.
For regularity, we assume the reward function r(·, ·) is bounded. The total
discounted reward, if arms are played indefinitely, is

∞
∑

n=0

r(An, ΘAn)βn,

and the design objective is to maximize the expected value of this variable.
Using a conditioning argument the expectation V of this variable can be
expressed in another way. If π is an arbitrary probability measure, define

r(a, π) =

∫

r(a, θ) dπ(θ),

and let πn(a) denote the conditional distribution for Θa given Fn. Then

E
[

r(An, ΘAn)
∣

∣ Fn
]

= r
(

An, πn(An)
)

.

Using Fubini’s theorem to justify interchanging expectation and summation,

V =

∞
∑

n=0

βnEr(An, ΘAn) =

∞
∑

n=0

βnEE
[

r(An, ΘAn)
∣

∣ Fn
]

= E
∞
∑

n=0

βnr
(

An, πn(An)
)

. (20.13)

In this form, the Markov structure of this allocation problem is clearer. When
arm a is played, the posterior distributions πn(a), n ≥ 0, evolve as a time
homogeneous Markov chain, the same structure noted in Sections 20.3 and
20.4, and this is really the intrinsic structure needed for Theorem 20.13 below.
So a Markov formulation for bandit allocation problems, seen in much of the
literature, is formally more general, and also makes application to scheduling
problems in operations research more evident.

An allocation index ν for arm a is a function of πn(a) (the current state
of arm a), determined solely by the reward function r(a, ·) for arm a and by
the family Q(a, ·) that implicitly determines the stochastic transition kernel
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that dictates how posterior distributions for Θa evolve when arm a is played.
An index strategy is an allocation procedure that always selects the arm with
the largest allocation index.

A formula for allocation indices can be derived by considering simple two-
armed bandit problems in which the researcher plays either arm a or an arm
with a fixed reward λ. It is natural to calibrate indices so that the allocation
index for the fixed arm is simply λ. These special bandit problems are actually
stopping problems, for if it is ever correct to play the arm with a fixed reward,
playing it at the current and all future stages is optimal. So we can restrict
attention to strategies that play arm a before some stopping time τ , and the
maximal expected discounted reward is

H
(

a, π0(a), λ
)

= sup
τ
E

[

τ−1
∑

n=0

βnr
(

a, πn(a)
)

+ λ
βτ

1 − β

]

.

If λ is large enough, stopping immediately (τ = 0) is optimal, and we have

H
(

a, π0(a), λ
)

=
λ

1 − β
.

But for sufficiently small λ, τ = 0 is suboptimal, and arm a should be played
at least once. In this case,

H
(

a, π0(a), λ
)

>
λ

1 − β
.

If index strategies are optimal in these problems, since the index for the fixed
arm is λ, the initial index for arm a will be at most λ in the former case, and
will exceed λ in the latter. So the index for arm a will be the smallest value λ
where stopping immediately is optimal, the critical value dividing these two
regions. Thus

ν
(

a, π0(a)
)

= inf
{

λ : (1 − β)H(
(

a, π0(a), λ
)

= λ
}

(20.14)

should be the initial allocation index for arm a. Allocation indices at later
stages are obtained in the same way, replacing π0(a) with posterior distribu-
tion πn(a), in effect treating the posterior distribution as the prior distribution
in the stopping problems.

Theorem 20.13 (Gittins). An index strategy, with indices given by (20.14),
is optimal for the k-armed bandit problem, maximizing the expected discounted
reward V in (20.13).

This beautiful result first appears in Gittins and Jones (1974). Whittle
(1980) gives an elegant proof. Gittins (1979) gives a characterization of allo-
cation indices using a notion of forwards induction, and Katehakis and Veinott
(1987) relates the index to the value for a game based on a single arm, with
the option of “restarting” at any stage.
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20.6 Problems

1. Two-stage procedures. Let X1, X2, . . . be i.i.d. from N(µ, σ2). In a two-
stage sequential procedure, the sample size N1 for the first stage is a
fixed constant, and the sample size N2 for the second stage is based on
observations X1, . . . , XN1 from the first stage. Let N = N1 + N2 denote
the total number of observations, let X1 and X2 denote sample averages
for the first and second stages,

X1 =
X1 + · · · +XN1

N1
and X2 =

XN1+1 + · · · +XN

N2
,

and let X denote the average of all N observations. For this problem,
assume that N2 is a function of

S2
1 =

1

N1 − 1

N1
∑

i=1

(Xi −X1)
2,

the sample variance for the first stage. For convenience, assume N2 ≥ 1
almost surely.
a) Use smoothing to find the distribution of

√
N2(X2 − µ).

b) Show that
√
N2(X2 − µ) and (X1, S1) are independent.

c) Show that S1 and
√
N(X − µ) are independent.

d) Determine the distribution of T =
√
N(X − µ)/S1 and give a confi-

dence interval for µ with coverage probability (exactly) 1 − α.
e) The second-stage sample size N2 is a function of S1. Suggest a choice

for this function if the researcher would like a confidence interval for
µ with width at most some fixed value w.

2. If N1 and N2 are stopping times with respect to the same filtration Fn,
n ≥ 0, show that N1 ∧N2 and N1 ∨N2 are also stopping times.

3. Extend Theorem 20.6, giving an identity for P1(B), B ∈ FN , that holds
if P1(N <∞) = 1 but P0(N = ∞) > 0.

4. Given Θ1 = θ1 and Θ2 = θ2, let X1, X2, . . . and Y1, Y2, . . . be indepen-
dent with the Xi from a Bernoulli distribution with success probabil-
ity θ1 and the Yi from a Bernoulli distribution with success probability
θ2. Consider a sequential experiment in which pairs of these variables,
(X1, Y1), (X2, Y2), . . . , are observed until a stopping time N . Assume that
Θ1 and Θ2 are a priori independent, each uniformly distributed on (0, 1).
Consider testing H0 : Θ1 ≤ Θ2 versus H1 : Θ1 > Θ2 with loss K|Θ1 −Θ2|
if we accept the wrong hypothesis and total sampling costs cN . Derive a
recursive “backwards induction” algorithm to find the optimal stopping
time N . This algorithm will involve the posterior inferential risk ρn.

5. Consider a Bayesian model in which Θ ∼ Λ and given Θ = θ, Xi, i ≥ 1,
are i.i.d. from Qθ. Let Λn denote the posterior distribution for Θ given
X1, . . . , Xn. Use smoothing to show that
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P
[

(Xn + 1, . . . , Xn+k) ∈ B
∣

∣ X1, . . . , Xn

]

=

∫

Qnθ (B) dΛn(θ).

This equation shows that the distribution of future observations given
the past depends on the conditioning variables only through the posterior
distribution Λn.

6. Secretary problems. Let X1, . . . , Xn be i.i.d. from a uniform distribution,
let Bij = {Xi < Xj}, and define

Fk = σ(Bij : 1 ≤ i < j ≤ k)

(F1 = {∅, E}, the trivial σ-field), so that Fk provides information about
the relative ranks of Xi, i ≤ k, but not their values. Also, let

Gk = σ(X1, . . . , Xk),

so the filtration G has information about the actual values of the Xi. Let

p(N) = P (XN > Xi, 1 ≤ i ≤ n, i 6= N),

the chance XN is maximal.
a) Take n = 5. Find a stopping time N with respect to F that maximizes

p(N).
b) Take n = 2. Find a stopping time N with respect to G that maximizes

p(N).
7. Wald’s identity. Let X1, X2, . . . be i.i.d. with E|Xi| < ∞ and mean µ =
EXi. Define Sn = X1 + · · ·+Xn and let N be a (positive) stopping time
with respect to the filtration F generated by these variables,

Fn = σ(X1, . . . , Xn), n ≥ 1.

Assume EN <∞. Wald’s identity asserts that

ESN = µEN.

a) Use indicator variables and Fubini’s theorem to show that

EN =

∞
∑

n=1

P (N ≥ n).

b) Prove Wald’s identity if the Xi are nonnegative, Xi ≥ 0. Hint: Show
that

SN =

∞
∑

n=1

XnI{N ≥ n},

and use Fubini’s theorem. Independence, related to the condition that
N is a stopping time, will play an important role.
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c) Prove Wald’s identity if the stopping time N is bounded, N ≤ k,
almost surely for some k ≥ 1. An argument like that for part (a)
should suffice.

d) Prove Wald’s identity in general. Hint: Take

Nk = min{N, k},

so that Nk ↑ N as k → ∞. Using part (b), it should be enough
to show that E[SN − SNk

] tends to zero. But this expectation is
E(SN −Sk)I{N > k} (explain why). Use dominated convergence and
independence to show this expectation tends to zero.

8. Power one tests and one-sided SPRTs. Power one tests arise in a sequential
setting if we reject H0 whenever our sample size N is finite and we stop.
Since N = ∞ is desirable when H0 is correct, sampling costs in this case
should be zero. For the simple versus simple model considered for the
SPRT in Section 20.4, if c represents the cost per observation when Θ = 1
and L the loss for stopping if Θ = 0, our stopping time N should be
chosen to minimize

E
[

LI{N <∞, Θ = 0} + cNI{Θ = 1}
]

= (1 − π)LP0(N <∞) + cπE1N.

a) Use a convexity argument to show that an optimal stopping will have
form

N = inf{n ≥ 0 : πn > π+},
for some constant π+ ∈ (0, 1).

b) Define Yn = log
[

q1(Xi)/q0(Xi)
]

and take Sn = Y1 + · · ·+Yn = logLn.
Introduce ladder times

T+
def
= inf{n ≥ 1 : Sn > 0}, T− def

= inf{n ≥ 1 : Sn ≤ 0}.

Note that if π0 equals π+, then T+ will be the optimal stopping time
in part (a). But N = 0 should also be optimal. Use this observation
and the duality formula

P0(T+ = ∞) =
1

E0T−
to derive an explicit formula relating π+/(1 − π+) to moments of the
ladder variables T±.

9. Consider the mean square performance of the Robbins–Monro recursion
with t = 0 and an = 1/n, so that

Xn+1 = Xn − Yn
n
, n ≥ 1.

Assume that f(x) = x, so θ = 0, and that the variance function is con-
stant, σ2(x) = σ2.
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a) Let µn = EXn. Use a conditioning argument to derive a recursion
relating µn+1 to µn. Solve this recursion, expressing µn, n ≥ 2, as a
function of the initial value µ1 = X1.

b) Define mn = EX2
n, the mean square error at stage n. Use conditioning

to derive a recursion relating mn+1 to mn. Solve this recursion and
show that mn → 0 as n→ ∞. Hint: Let wn = (n−1)2mn, n ≥ 1. The
recursion for wn should be easy to solve.
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Appendices

A.1 Functions

Informally, a function f can be viewed as a rule that associates with every
point x in some domain D an image value f(x). More formally, a function can
be defined as a collection of ordered pairs with the property that if (x, y1) and
(x, y2) are both in the collection, then y1 and y2 must be equal. The domain
of the function can then be defined as D = {x : (x, y) ∈ f}, and the range of
the function is R = {y : (x, y) ∈ f}. For x ∈ D, f(x) denotes the unique value
y ∈ R with (x, y) ∈ f , and we say f maps x to this value f(x).

A function f with domain D and range R is said to be into a set S if
R ⊂ S, and onto S if R = S. The notation f : D → S means that f has
domain D and maps this domain into S.

A function is one-to-one if every value y in the range R is the image of a
unique value x in the domain D. In this case the collection formed reversing
all of the ordered pairs, {(y, x) : (x, y) ∈ f}, is also a function, with domain R
and range D, called the inverse function, denoted f←. Then f←(y) for y ∈ R
is the unique value x with f(x) = y. Functions also have an inverse that maps
sets to sets, denoted f−1, given by

f−1(S) = {x ∈ D : f(x) ∈ S}.

This inverse always exists, even if f is not one-to-one.

Example A.1. If D = {HH,HT, TH, TT }, perhaps viewed as all possible out-
comes of tossing a coin twice, then

f = {(HH, 2), (HT, 1), (TH, 1), (TT, 0)}

is the function mapping the outcome to the number of heads. The range of
this function is R = {0, 1, 2}. The function is not one-to-one because the
value 1 ∈ R is the image of HT and TH , f(HT ) = f(TH). So the inverse
function f← does not exist. The other inverse, f−1, does exist. For instance,
f−1(1, 2) = {HT, TH,HH} and f−1(4) = ∅.
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The definitions given above are quite general, covering situations where D
and R are very complicated sets. For instance, a measure is a function with
domainD a σ-field of subsets of some sample space. The domain for a function
could even be itself a collection of functions. For instance, if C[0, 1] is the set
of all continuous functions on [0, 1], then

h f(h) =

∫ 1

0

h(x) dx

describes a function f with domainD = C[0, 1] and rangeR = R, f : C[0, 1] →
R. A function is called real-valued if R ⊂ R and real-valuedvector-valued if
R ⊂ Rn for some n.

A.2 Topology and Continuity in Rn

For x ∈ Rn and ǫ > 0, let Bǫ(x) = {y : ‖y − x‖ < ǫ}, the open ball around x
with radius ǫ. A set O ⊂ Rn is called open if it has the property that for every
point x in O there is some open ball Bǫ(x) that is contained in O (Bǫ(x) ⊂ O).
The collection T of all open sets is called a topology. A set C is closed if its
complement is open.

Topologies can be used to characterize convergence and continuity in gen-
eral settings. Note that the topology T for Rn is closed under finite intersec-
tions and arbitrary unions. Also, Rn itself and the empty set ∅ are both open
sets in T . In general, a topology is any collection of sets with these properties.
One example arises when we are only concerned with points in a subset S of
Rn. In this case, we use the relative topology in which all sets of the form O∩S
with O ∈ T are open. For instance, in the relative topology with S = [0, 2],
[0, 1) is an open set, even though this set is not open in R. Sets in the relative
topology are called open relative to S.

A set N is called a neighborhood of x if N contains an open set O with
x ∈ O. A sequence of vectors xn, n ≥ 1, in Rn converges to x ∈ Rn if for any
neighborhood N of x, xn lies in N for all sufficiently large n. This definition is
equivalent to the usual definition in calculus courses. But because it is based
only on the topology T , this definition of convergence can be used to define
convergence on any space with a topology of open sets, even if there is no
notion of distance between elements in the space.

A point x lies in the boundary ∂S of a set S ⊂ Rn if for any ǫ > 0, Bǫ(x)
contains at least one point in S and at least one point in Sc. The closure S
of a set S is the union of S with its boundary ∂S, S = S ∪ ∂S. This closure
S is the smallest closed set that contains S. The interior S◦ of S is S − ∂S.
The interior is the largest open set contained in S.

A function f : D → R is continuous at a point x ∈ D if f(xn) → f(x)
whenever xn, n ≥ 1, is a sequence in D converging to x. The function f is
called continuous if it is continuous at every point x in D. Continuity can
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also be characterized using open sets. A function f : D → R is continuous if
f−1(O) is open relative to D for any O ∈ T .

A collection {Oα : α ∈ A} of open sets is called an open cover of K if K
is a subset of the union,

K ⊂
⋃

α∈A
Oα.

A set K in Rn (or any other topological space) is compact if any open cover
{Oα : α ∈ A} ⊂ T has a finite subcover, {Oα1 , . . . , Oαm} with K ⊂ ⋃mi=1Oαi .
The following result provides a useful characterization of compact sets in Rn.

Theorem A.2 (Heine–Borel). A set K ⊂ Rn is compact if and only if it
is closed and bounded, supx∈K ‖x‖ <∞.

If xn, n ≥ 1, is a sequence of points in some space, and if n1 < n2 < · · ·
are positive integers, then xnm , m ≥ 1, is called a subsequence. A set K is
called sequentially compact if any subsequence xn, n ≥ 1, has a convergent
subsequence, xnm → x with x ∈ K. In general, compactness implies sequential
compactness, but in Rn (or any metric space), compactness and sequential
compactness are the same. Let C(K) denote the collection of continuous real-
valued functions on K. The next result shows that functions in C(K) achieve
their supremum if K is compact.

Proposition A.3. Suppose K is compact and f ∈ C(K), and let M =
supx∈K f(x). Then f(x) = M for some x ∈ K.

Proof. There must be values in the range of f arbitrarily close to M . Thus
for any n ≥ 1 there exists xn with f(xn) > M − 1/n. Since the points xn,
n ≥ 1, lie in K, by compactness there is a subsequence xnm → x ∈ K. Since
f is continuous, f(xnm) → f(x). But because M − 1/nm < f(xnm) ≤ M ,
f(xnm) →M . Thus f(x) = M . ⊓⊔

If f : D → R is continuous, then for any x ∈ D and any ǫ > 0, there
exists δ > 0 such that |f(x)− f(y)| < ǫ whenever ‖x− y‖ < δ. In general, the
value for δ will need to depend on both ǫ and x. If the choice can be made
independently of x, then f is called uniformly continuous. Equivalently, f is
uniformly continuous if

sup
‖x−y‖<ǫ

|f(x) − f(y)| → 0

as ǫ ↓ 0.

Proposition A.4. If K is compact and f ∈ C(K), then f is uniformly con-
tinuous.

Proof. Fix ǫ > 0 and for every x ∈ D choose δx so that |f(x) − f(y)| < ǫ/2
whenever y ∈ Bδx(x). Since x ∈ Bδx/2(x), these balls Bδx/2(x), x ∈ D, form
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an open cover of K. Because K is compact, there must be a finite subcover
Bδxi

/2(xi), i = 1, . . . ,m. Define δ = mini=1,...,m δxi/2. Suppose ‖x − y‖ < δ.
Since x is in one of the sets in the finite open cover, ‖x−xi‖ < δxi/2 for some
i. By the triangle inequality,

‖y − xi‖ ≤ ‖y − x‖ + ‖x− xi‖ < 1
2δ + 1

2δxi ≤ δxi .

From the definition of δx,

|f(x) − f(xi)| <
ǫ

2
and |f(y) − f(xi)| <

ǫ

2
,

and so, by the triangle inequality,

|f(x) − f(y)| ≤ |f(x) − f(xi)| + |f(xi) − f(y)| < ǫ. ⊓⊔

Functions in C(K), K compact, achieve their supremum and are uniformly
continuous. A final useful property of C(K) is that monotone sequences con-
verge uniformly.

Theorem A.5 (Dini). If f1 ≥ f2 ≥ · · · are positive functions in C(K), K
compact, and if fn(x) → 0 as n→ ∞ for every x ∈ K, then supx∈D fn(x) → 0
as n→ ∞.

Proof. Fix ǫ > 0 and define

On = f−1
n [(−∞, ǫ)] = {x ∈ K : fn(x) < ǫ}.

Since f is continuous these sets On, n ≥ 1, are open relative to K, and
since the functions are decreasing, O1 ⊂ O2 ⊂ · · · . Because fn(x) → 0, the
point x will be in On once n is large enough, and so these sets cover K. By
compactness, there is a finite subcover, On1 , . . . , Onm . If N = maxni, then
the union of these sets is ON , and thus ON = K. So fN(x) < ǫ for all x ∈ K,
and since the functions are decreasing, fn(x) < ǫ for all x ∈ K and all n ≥ N .
So

lim sup
n→∞

sup
x∈K

fn(x) ≤ ǫ,

and since ǫ > 0 is arbitrary, supx∈K fn(x) → 0. ⊓⊔

A.3 Vector Spaces and the Geometry of Rn

Definition A.6. A set V is a vector space over the real numbers1 R if ele-
ments of V can be added, with the sum again an element of V , and multiplied
by a constant, with the product an element of V , so that:

1 Vector spaces can be defined analogously over complex numbers or any other
field.
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1. (Commutative and associative laws for addition) If u ∈ V , v ∈ V , and
w ∈ V ,

u+ v = v + u and (u + v) + w = u+ (v + w).

2. There is a zero element in V , denoted O, such that O + u = u, for all
u ∈ V .

3. Given any u ∈ V there exists an element −u ∈ V such that u+(−u) = O.
4. (Associative law for multiplication) If v ∈ V , a ∈ R, and b ∈ R, then

(ab)v = a(bv).
5. (Distributive laws) If u ∈ V , v ∈ V , a ∈ R, and b ∈ R, then

(a+ b)v = av + bv and a(u+ v) = au+ av.

6. If v ∈ V , 1v = v.

A subset W ⊂ V is called a subspace if W is closed under addition (if
u ∈W and v ∈W , then u+ v ∈W ) and multiplication (if c ∈ R and v ∈ W ,
then cv ∈ W ). If these hold, then W must also be a vector space.

Most of the vector spaces in this book are Rn or subspaces of Rn. Other
examples of interest include the set of all n×p matrices with real entries. Col-
lections of functions can also form vector spaces. For instance, the collection
of all functions f with form f(x) = a sinx+ b cosx is a vector space. And the
set C[0, 1] of all continuous real-valued functions on [0, 1] is a vector space.

A vector u is a linear combination of vectors v1, . . . , vn if u = c1v1 +
· · · + cnvn for some constants ci ∈ R, i = 1, . . . , n. The set of all linear
combinations of vectors from a set S is called the linear span of S, and the
linear span of any set is then a vector space. For instance, R2 is the linear span
of S = {(1, 0), (0, 1)} because an arbitrary vector (x, y) ∈ R2 can be expressed
as x(1, 0)+ y(0, 1). The dimension of a vector space V is the smallest number
of vectors needed to span V . If V is not the span of any finite set, then V is
called infinite-dimensional. By convention, the dimension of the trivial vector
space {O} is zero.

Vectors v1, . . . , vp are linearly independent if the linear combination c1v1 +
· · · + cpvp = O only if c1 = · · · = cp = 0. In this case, the linear span W of
S = {v1, . . . , vp} has dimension p. If these vectors are points in Rn, and
if X = (v1, . . . , vp), an n × p matrix with columns v1, . . . , vp, then Xβ =
β1v1 + · · · + βpvp for β ∈ Rp. Since this is an arbitrary linear combination of
the vectors in S,

W = span(S) = {Xβ : β ∈ Rp}.
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The rank2 of X is the dimension of W . Because X has p columns, its rank is
at most p. If the columns of X are linearly independent, then the rank of X
is p and X is called full rank.3

The dot or inner product of two vectors u and v in Rn is u·v = u1v1+· · ·+
unvn, and these vectors are called orthogonal, denoted u ⊥ v, if u ·v = 0. If W
is a subspace of Rn, the set of vectors orthogonal to all points in W is called
the orthogonal complement of W , denoted W⊥. The sum of the dimensions
of W and W⊥ is n.

The (Euclidean) length ‖u‖ of a vector u ∈ Rn is

‖u‖ =
√
u · u =

√

u2
1 + · + u2

n,

and u is called a unit vector if ‖u‖ = 1. If a subspace W of Rn has dimension
p, then there exist p unit vectors e1, . . . , ep that are mutually orthogonal,
ei · ej = 0, i 6= j, and span W . This collection {e1, . . . , ep} is called an
orthonormal basis for W , and any vector v ∈ W can be expressed uniquely as
v = c1e1 + · · · + cpep. Then if ep+1, . . . , en is an orthonormal basis for W⊥,
e1, . . . , en forms an orthonormal basis for Rn. Writing w ∈ Rn uniquely as
c1e1 + · · · + cnen, we see that w = u + v with u = c1e1 + · · · + cpep ∈ W
and v = cp+1ep+1 + · · · + cnen ∈ W⊥. These vectors u and v are called
the (orthogonal) projections of w onto W and W⊥. The projection u can be
characterized as the vector in W closest to w. We can show this using the
Pythagorean formula that if u ⊥ v,

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

If x is an arbitrary point in W , then

‖w − x‖2 = ‖(u− x) + (w − u)‖2 = ‖u− x‖2 + ‖w − u‖2 ≤ ‖w − u‖2,

because w − x ∈W and w − u = v ∈W⊥ are orthogonal.

A.4 Manifolds and Tangent Spaces

Manifolds are sets in Rr that look locally like Rq for some q called the di-
mension of the manifold. For instance, the unit circle in R2 is a manifold with
dimension one. A precise definition involves reparameterizing the manifold
locally by a differentiable function. If U is an open subset of Rq, let C1(U)

2 This might also be called the column rank of X since it is the dimension of the
linear span of the columns of X. But the row rank of X can be defined similarly,
and these two ranks must agree.

3 Since the row and column ranks agree, the rank of X is also at most n. So it is
also natural to call X full rank if n < p and the rank of X is n. This happens if
the rows of X are linearly independent.
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be the collection of all functions h : U → Rr with continuous first partial
derivatives. For h ∈ C1(U), let Dh be the matrix of partial derivatives,

[Dh(x)]i,j =
∂hi(x)

∂xj
.

When U is not open, a function h : U → Rr is in C1(U) if there exists an
open set V ⊃ U and a function H ∈ C1(V ) that coincides with h on U ; that
is, h(x) = H(x) for x ∈ U . A set Ω0 ⊂ Rr is a manifold of dimension q < r
if for every θ0 ∈ Ω0 there exists an open neighborhood N0 of θ0, an open set
M0 ⊂ Rq and a one-to-one function h : M0 → N0 ∩Ω0 with h ∈ C1(M0) and
h−1 ∈ C1(N0 ∩ Ω0). Using the inverse function theorem, the condition that
h−1 is differentiable can be replaced with the condition that Dh(x) has full
rank for all x ∈M0. The definition of a manifold is sometimes given in terms
of constraints: Ω0 ⊂ Rr is a manifold of dimension q < r if for every θ0 ∈ Ω0

there exists an open neighborhood N0 of θ0 and a function g : N0 → Rr−q in
C1(N0) such that Dg(x) has full rank for all x ∈ N0 and

Ω0 ∩N0 = {x ∈ N0 : g(x) = 0}.

Because g maps onto Rr−q, the last assertion means that in some neighbor-
hood of θ0, the points in Ω0 are those that satisfy r− q nonlinear constraints.
The assumption on the rank of Dg is needed so that the constraints are not
redundant.

Tangent spaces of a manifold Ω0 are defined so that if points θ0 and θ1
in Ω0 are close to each other, their difference should lie approximately in the
tangent space at θ0. To be specific, let θ0 be an arbitrary point of the manifold
Ω0 and let h be the local reparameterization given in our first definition of a
manifold. Assume that h(y) = θ0. First-order Taylor expansion of hi about y
gives

hi(x) ≈ hi(y) +

q
∑

j=1

∂

∂yj
hi(y)(xj − yj),

or, in matrix notation,

h(x) ≈ θ0 +Dh(y)(x − y).

The tangent space at θ0 is defined as

Vθ0 = {Dh(y)x : x ∈ Rq}.

Equivalently, Vθ0 is the linear span of the columns of Dh(y). It is worth noting
that Vθ0 is a vector space that passes through the origin, but typically does
not pass through θ0. Since h(x) lies in Ω0 for x near y, by the Taylor expansion
above

h(x) − θ0 ≈ Dh(y)(x − y) ∈ Vθ0 ,
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so if θ1 ∈ Ω0 is close to θ0, then θ1 − θ0 is “almost” in Vθ0 . The tangent space
Vθ0 can also be identified from a local constraint function g. By first-order
Taylor expansion, if θ ∈ Ω0 is close to θ0, then

0 = g(θ) − g(θ0) ≈ Dg(θ0)(θ − θ0).

Hence θ − θ0 (which should lie almost in Vθ0) is approximately orthogonal to
each of the rows of Dg(θ0). A careful argument along these lines shows that
V ⊥θ0 is the vector space spanned by the rows of Dg(θ0).

Example A.7. Let Ω0 be the unit circle in R2. Then Ω0 is a manifold with
dimension q = 1. Let

θ0 =

(

1/
√

2

1/
√

2

)

∈ Θ0.

The tangent space at θ0 is just the line Vθ0 = {x ∈ R2 : x1 + x2 = 0}. The
graph to the left in Figure A.1 shows the circle Ω0 with the tangent line, and
the graph to the right shows the tangent space Vθ0 .

Fig. A.1. Tangent lines and spaces.

A.5 Taylor Expansion for Functions of Several Variables

Let f : R → R have a continuous derivative f ′. Taylor’s theorem with La-
grange’s form for the remainder asserts that

f(x) = f(x0) + (x− x0)f
′(x∗), (A.1)

where x∗ is an intermediate point between x and x0. If f ′′ is continuous, then
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f(x) = f(x0) + (x− x0)f
′(x0) +

1

2
(x − x0)

2f ′′(x∗∗), (A.2)

where x∗∗ is an intermediate value between x and x0. The goal of this section
is to derive analogous results when f : Rn → R. Define the function ∇if by

∇if(x) =
∂

∂xi
f(x),

and let

∇f(x) =







∇1f(x)
...

∇nf(x)






.

The first step is deriving a chain rule formula for computing ∂f(hx)/∂h. We
assume that ∇f is continuous. Using the definition of derivatives,

∂

∂h
f(hx) = lim

ǫ→0

f
(

(h+ ǫ)x1, . . . , (h+ ǫ)xn
)

− f
(

hx1, . . . , hxn
)

ǫ

= lim
ǫ→0

f
(

(h+ǫ)x1, . . . , (h+ǫ)xn
)

−f
(

hx1, (h+ǫ)x2, . . . , (h+ǫ)xn
)

ǫ

+ lim
ǫ→0

f
(

hx1, (h+ ǫ)x2, . . . , (h+ ǫ)xn
)

− f
(

hx1, . . . , hxn
)

ǫ
,

provided both limits exist. By (A.1), the argument of the first limit equals

(

(h+ ǫ)x1 − hx1

)

∇1f
(

z∗, (h+ ǫ)x2, . . . , (h+ ǫ)xn
)

ǫ

= x1∇1f
(

z∗, (h+ ǫ)x2, . . . , (h+ ǫ)xn
)

,

where z∗ lies between (h + ǫ)x1 and hx1. Since ∇f is continuous, this term
approaches x1∇1f(hx) as ǫ→ 0. The other limit is like the original derivative
except that ǫ does not appear in the first argument. Repeating the argument
we can remove ǫ from the second argument, but an additional term arises:
x2∇2f(hx). Iteration n times gives

∂

∂h
f(hx) =

n
∑

i=1

xi∇if(hx) = x′∇f(hx).

Also,

∂2

∂h2
f(hx) =

n
∑

i=1

xi
∂

∂h
∇if(hx)

=

n
∑

i=1

xi

n
∑

j=1

xj∇j∇if(hx)

= x′∇2f(hx)x,
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where ∇2f is the Hessian matrix of partial derivatives of f :

∇2f =







∇1∇1f ∇1∇2f . . .
∇2∇1f ∇2∇2f . . .

...
...

. . .






.

Viewing f(hx) as a function of h with x a fixed constant, we can use (A.1)
and (A.2) to express the value of the function at h = 1 by an expansion about
h = 0. This gives

f(x) = f(0) + x′∇f(x∗)

and

f(x) = f(0) + x′∇f(0) +
1

2
x′∇2f(x∗∗)x,

where x∗ = h∗x, x∗∗ = h∗∗x, and h∗ and h∗∗ are intermediate points between
0 and 1; so x∗ and x∗∗ lie on the chord between 0 and x. As x→ 0, ∇f(x∗) →
∇f(0) and ∇2f(x∗∗) → ∇2f(0), which justifies the approximations

f(x) ≈ f(0) + x′∇f(0)

and

f(x) ≈ f(0) + x′∇f(0) +
1

2
x′∇2f(0)x.

The corresponding Taylor approximations expanding about a point x0 6= 0
are

f(x) ≈ f(x0) + (x − x0)
′∇f(x0)

and

f(x) ≈ f(x0) + (x− x0)
′∇f(x0) +

1

2
(x − x0)

′∇2f(x0)(x− x0).

Both of these approximations hold with equality if the argument of the highest
derivative is changed to an intermediate point on the chord between x and
x0.

A.6 Inverting a Partitioned Matrix

Let A be a nonsingular matrix partitioned into blocks,

A =

(

A11 A12

A21 A22

)

,

and let B = A−1, also partitioned into blocks,

B =

(

B11 B12

B21 B22

)

,
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Then

AB =

(

A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)

=

(

I 0
0 I

)

.

This leads to the following two equations:

A11B12 +A12B22 = 0 (A.3)

and
A21B12 +A22B22 = I. (A.4)

Using (A.3),
B12 = −A−1

11 A12B22.

Using this to eliminate B12 in (A.4),

−A21A
−1
11 A12B22 +A22B22 = I

and hence
B22 = (A22 −A21A

−1
11 A12)

−1.

Using this in the equation for B12,

B12 = −A−1
11 A12(A22 −A21A

−1
11 A12)

−1.

Similar calculations show that

B11 = (A11 −A12A
−1
22 A21)

−1

and
B21 = −A−1

22 A21B11 = −A−1
22 A21(A11 −A12A

−1
22 A21)

−1.

So A−1 equals

(

(A11 −A12A
−1
22 A21)

−1 −A−1
11 A12(A22 −A21A

−1
11 A12)

−1

−A−1
22 A21(A11 −A12A

−1
22 A21)

−1 (A22 −A21A
−1
11 A12)

−1

)

.

A.7 Central Limit Theory

This appendix derives the central limit theorem and a few of the extensions
used in the main body of this text. The approach is based on an inversion
formula for characteristic functions and smoothing.
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A.7.1 Characteristic Functions

If U and V are random variables, then the function X = U+ iV , mapping the
sample space to the complex numbers C, is called a complex random variable.
The mean of X is defined as

EX
def
= EU + iEV.

As with ordinary random variables,

|EX | ≤ E|X |, (A.5)

which follows from Jensen’s inequality. The integral of a complex function
u+ iv against a measure µ is defined similarly as

∫

(u+ iv) dµ =

∫

u dµ+ i

∫

v dµ.

The characteristic function of a random variable X ∼ F is

f(t) = EeitX =

∫

eitx dF (x), t ∈ R.

Formally, the characteristic function is just the moment generating function
for X evaluated at the imaginary argument it, so it is natural that derivatives
of f are related to moments for X . By dominated convergence, if E|Y |k <∞,

dk

dtk
f(t) = E

∂k

∂tk
eitY = E(iY )keitY .

In particular, the kth derivative at zero is ikEXk, and Taylor expansion gives

f(t) = 1 + itEY − 1

2
t2EY 2 + · · · + 1

k!
(it)kEY k + o(tk) (A.6)

as t→ 0.
Suppose X ∼ F and Y ∼ G are independent with characteristic functions

f and g. Then

e−ityf(y) =

∫

eiy(x−t) dF (x).

Integrating this against G,

∫

e−ityf(y) dG(y) =

∫

g(x− t) dF (x),

an important identity called Parseval’s relation.
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Example A.8. If Z ∼ N(0, 1), then

EeitZ =

∫

exp(itz − z2/2)√
2π

dz

= e−t
2/2

∫

exp
[

− 1
2 (z − it)2

]

√
2π

dz

= e−t
2/2.

From this, if X ∼ N(µ, σ2), then

EeitX = Eeit(µ+σZ) = eitµEeitσZ = eiµt−t
2σ2/2.

Suppose Y = Z/a in Parseval’s relation. Then

g(t) = EeitZ/a = exp
[

− 1
2 (t/a)2

]

.

The density of Y is aφ(ay), and so

∫

e−ityf(y)aφ(ay) dy =

∫

exp

[

−1

2

(

x− t

a

)2
]

dF (x),

or
1

2π

∫

f(y)e−ity−a
2y2/2 dy =

∫

1

a
φ

(

x− t

a

)

dF (x). (A.7)

The right-hand side of this equation is the density of X + aZ, and by this
formula, if f is known the density for X + aZ can be computed for any a > 0.
Because X + aZ ⇒ X as a ↓ 0, we have the following result.

Theorem A.9. Distinct probability distributions on R have distinct charac-
teristic functions.

The next result is a bit more constructive. It gives an inversion formula
for the density when the characteristic function is integrable.

Theorem A.10. Suppose
∫

|f(t)| dt < ∞. Then F is absolutely continuous
with a bounded density given by

f(x) =
1

2π

∫

e−itxf(t) dt.

Proof. Let fa be the density of X + aZ in (A.7). Then fa(x) → f(x) as a ↓ 0
for every x ∈ R by dominated convergence. Also,

fa(x) ≤
1

2π

∫

|f(t)| dt, ∀x ∈ R, a > 0.

Because X + aZ ⇒ X , by the portmanteau theorem (Theorem 9.25) and
dominated convergence, for any b < c,
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P
[

X ∈ (b, c)
]

≤ lim inf
a↓0

P
[

X + aZ ∈ (b, c)
]

= lim inf
a↓0

∫ c

b

fa(x) dx =

∫ c

b

f(x) dx,

and

P
[

X ∈ [b, c]
]

≥ lim sup
a↓0

∫ c

b

fa(x) dx =

∫ c

b

f(x) dx.

So P
[

X ∈ (b, c)
]

=
∫ c

b f(x) dx, and X has density f . ⊓⊔

Remark A.11. When F is absolutely continuous with density f , the charac-
teristic function f is also called the Fourier transform of f . Because f(t) =
∫

eitxf(x) dx, Fourier transforms can be defined for measurable functions f
that are not densities, provided f is integrable,

∫

|f(x)| dx < ∞. When f is
integrable, the inversion formula in this theorem remains valid and gives a
constructive way to compute f from f.

Remark A.12. The inversion formula for the standard normal distribution
gives

φ(x) =
1

2π

∫

e−itx−t
2/2 dt. (A.8)

Dominated convergence and repeated differentiation then give

1

2π

∫

(−it)ke−itx−t2/2 dt = φ(k)(x). (A.9)

A.7.2 Central Limit Theorem

Let X,X1, X2, . . . be i.i.d. with common mean µ and finite variance σ2, and
define

Zn =

√
n(Xn − µ)

σ
.

Let f denote the characteristic function of Y = (X − µ)/σ

f(t) = EeitY ,

and let fn denote the characteristic function of Zn. Noting that

eitZn =

n
∏

i=1

exp

[

it√
n

Xi − µ

σ

]

,

a product of independent variables, we have

fn(t) = fn(t/
√
n).
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Since EY = 0 and EY 2 = 1, by Taylor expansion as in (A.6),

f(t/
√
n) = 1 − t2

2n
+ o(1/n)

as n→ ∞ with t fixed. It follows that

log fn(t) = n log f(t/
√
n) → −t2/2,

and so
fn(t) → e−t

2/2,

the characteristic function for the standard normal distribution. Convergence
of these characteristic functions certainly suggests that the corresponding dis-
tributions should converge, but a careful argument using our inversion formula
is a bit delicate, mainly because fn need not be integrable. To circumvent this
problem, we use a smoothing approach due to Berry. Let h be a density with
support [−1, 1] and bounded derivatives of all orders. One concrete possibility
is

h(x) = c exp
[

−1/(1 − x2)
]

1(−1,1)(x).

Let h be the corresponding characteristic function, and let W be a random
variable with density h independent of Zn. Repeated integration by parts gives

h(t) =

∫

h(x)eitx dx =
i

t

∫

h′(x)eitx dx = · · · =

(

i

t

)j ∫

h(j)(x)eitx dx.

So h(t) = O
(

|t|−j
)

as t→ ±∞, for any j = 1, 2, . . . .
Instead of approximating the distribution of Zn directly, we consider the

distribution of
Z̃n = Zn + ǫnW,

with ǫn, n ≥ 1, a sequence of constants tending to zero. By the independence,
Z̃n has characteristic function

f̃n(t) = fn(t)h(ǫnt),

and since h is integrable, Z̃n has a bounded density f̃n given by the inversion
formula in Theorem A.10. Because |W | ≤ 1, we have the bounds

P (Z̃n ≤ x− ǫn) ≤ P (Zn ≤ x) ≤ P (Z̃n ≤ x+ ǫn),

or
F̃n(x− ǫn) ≤ Fn(x) ≤ F̃n(x+ ǫn),

where Fn and F̃n denote the cumulative distribution functions for Zn and
Z̃n. Since differences |F̃n(x± ǫn)− F̃n(x)| are at most ǫn‖f̃n‖∞, these bounds
imply

‖Fn − F̃n‖∞ ≤ ǫn‖f̃n‖∞. (A.10)

With this bound, the central limit theorem follows easily from the following
proposition.
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Proposition A.13. Taking ǫn = 1/n1/4, as n→ ∞,

f̃n(x) → φ(x).

Proof. The desired result essentially follows by dominated convergence from
the inversion formula

f̃n(x) =
1

2π

∫

e−itxfn(t)h(ǫnt) dx. (A.11)

To be specific, since log f(t) ∼ −t2/2 as t → 0, then in some neighborhood of
zero, (−δ, δ) say, we have

ℜ
[

log f(t)
]

≤ − t
2

4
,

which implies

|f(t)| ≤ e−t
2/4, |t| < δ,

and
|fn(t)| ≤ e−t

2/4, |t| < δ
√
n.

Then

f̃n(x) =
1

2π

∫

|t|<δ√n
e−itxfn(t)h(ǫnt) dt+

1

2π

∫

|t|≥δ√n
e−itxfn(t)h

(

ǫnt
)

dt.

If we take ǫn = 1/n1/4, it is easy to see that the second term here tends to
zero, since |fn| ≤ 1 and h(t) = O

(

|t|−j
)

as t → ∞ for any j. The integrand

in the first term is dominated by e−t
2/4/(2π), an integrable function. So by

dominated convergence the first term tends to

1

2π

∫

e−t
2/2−itx dt.

This integral equals φ(x) by (A.8), proving the proposition. ⊓⊔

By Proposition A.13, the densities for Z̃n converge pointwise to φ. So by
Scheffé’s theorem, given in Problem 2.19,

Z̃n ⇒ N(0, 1).

Because Zn = Z̃n − ǫnW and ǫnW
p→ 0, it follows that

Zn ⇒ N(0, 1),

proving the central limit theorem (Theorem 8.12).
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A.7.3 Extensions

The central limit theorem in the last subsection was proved using the inversion
formula, smoothing, and Taylor expansion to approximate fn. The Taylor
approximation for fn can be improved keeping an extra term in the expansion.
By (A.6), if E|X |3 <∞,

f
(

t/
√
n
)

= 1 − t2

2n
− iγt3

6σ3n
√
n

+ o
(

n−3/2
)

,

as n→ ∞, where γ = E(X − µ)3. Because log(1 + ǫ) = ǫ+O(ǫ2),

log fn(t) = n log f(t/
√
n) = −1

2
t2 − iγt3

6σ3
√
n

+ o
(

1/
√
n
)

.

Finally, since eǫ = 1 + ǫ+O(ǫ2) as ǫ→ 0,

fn(t) = e−t
2/2

(

1 − iγt3

6σ3
√
n

)

+ o
(

1/
√
n
)

. (A.12)

By Fourier inversion, if we define

gn(x) =
1

2π

∫

e−itxe−t
2/2

(

1 − iγt3

6σ3
√
n

)

dt

= φ(x) − γφ′′′(x)
6σ3

√
n
,

with the integral in this expression evaluated using (A.9), then the Fourier
transform of gn is the approximation for fn in (A.12). Integrating gn, the
function Gn, defined as

Gn(x) =

∫ x

−∞
gn(u) du = Φ(x) − γφ′′(x)

6σ3
√
n

= Φ(x) − γ(x2 − 1)φ(x)

6σ3
√
n

,

is the natural candidate to approximate Fn. There is one technical issue worth
noting. Because gn/φ is a cubic polynomial, gn(x) will be negative for some
x (unless γ = 0), and so Gn may not be nondecreasing. We call a function,
such as Gn, that tends to zero at −∞ and one at +∞ a pseudo-cdf, and if a
pseudo-cdf is differentiable, we define its characteristic function as the Fourier
transform of its derivative.

To use (A.12) to argue that Gn is a good approximation for Fn we need
the following technical lemma. Although there are technical differences, the
approach used to prove this result is similar to that used above to prove the
central limit theorem. For details, see Section 16.3 of Feller (1971).

Lemma A.14. Let F be the cumulative distribution function for a distribu-
tion with mean zero and characteristic function f, and let G be a differen-
tiable pseudo-cdf with density g = G′ and characteristic function g satisfying
g′(0) = 0. Then for any T > 0,
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‖F −G‖∞ ≤ 1

π

∫ T

−T

∣

∣

∣

∣

f(t) − g(t)

t

∣

∣

∣

∣

dt+
24‖g‖∞
πT

.

Proof of Theorem 19.3. Let us first show that the nonlattice assumption im-
plies |f(t)| < 1 for t 6= 0. To see this, first note that by (A.5),

|f(t)| =
∣

∣EeitX
∣

∣ ≤ E
∣

∣eitX
∣

∣ = 1,

and we only need to rule out |f(t)| = 1, that is, that f(t) = eiω for some ω ∈ R.
But in this case

1 = ℜ
(

f(t)e−iω
)

= ℜ
(

EeitX−iω
)

= E cos(tX − ω),

and since the cosine function is at most one, this implies

P
(

cos(tX − ω) = 1
)

= P
(

X = ω + 2πk/t, ∃k ∈ Z
)

= 1,

and Q is a lattice distribution.
Next, fix ǫ > 0 and take

c = 24 sup
n≥1

‖gn‖∞
πǫ

.

By Lemma A.14 with T = c
√
n,

‖Fn −Gn‖∞ ≤ 1

π

∫ c
√
n

−c√n

∣

∣

∣

∣

fn(t) − gn(t)

t

∣

∣

∣

∣

dt+
ǫ√
n
. (A.13)

Because ǫ > 0 is arbitrary, the theorem will follow if the integral in this formula
is o
(

1/
√
n
)

. For some δ > 0, the contribution integrating over |t| < δ
√
n will

be o
(

1/
√
n
)

by dominated convergence and the expansion (A.12). If instead,

|t| ∈
[

δ
√
n, c

√
n
]

,
∣

∣fn(t)
∣

∣=
∣

∣fn(t/
√
n)
∣

∣ ≤Mn

with
M = sup

|t|∈[δ,c]

|f(t)|.

Since f is continuous and
∣

∣f(t)
∣

∣ < 1 for t 6= 0, M < 1, and fn is exponen-
tially small for δ

√
n ≤ |t| ≤ c

√
n. Because gn is also exponentially small over

this region, the contribution to the integral in (A.13) over |t| ≥ δ
√
n is also

o
(

1/
√
n
)

, and the theorem follows. ⊓⊔
The approximation in Theorem 19.3 is called an Edgeworth expansion for

Fn. The same method can be used to obtain higher-order expansions. For
regularity, higher-order moments of X must be finite to improve the Tay-
lor approximation for fn. In addition, the nonlattice assumption needs to be
strengthened. This occurs because T in Lemma A.14 will need to grow at a
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rate faster than
√
n, and exponential decay for fn over this region can fail. A

suitable replacement, due to Cramér, is that

lim sup
|t|→∞

∣

∣f(t)
∣

∣ < 1. (A.14)

This assumption fails if Q is discrete, but holds when Q is absolutely con-
tinuous.4 Similar expansions are possible if Q is a lattice distribution. For
these results and a derivation of the Berry–Esséen theorem (equation (8.2))
based on Taylor expansion and Lemma A.14, see Feller (1971). For Edgeworth
expansions in higher dimensions, see Bhattacharya and Rao (1976).

4 The Riemann–Lebesgue lemma asserts that f(t) → 0 as |t| → ∞ when Q is
absolutely continuous.
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Solutions

B.1 Problems of Chapter 1

1. If j < k, then Bj ⊆ Bk−1, which implies Bck−1 ⊆ Bcj . Since Aj ⊂ Bk and

Ak ⊂ Bck−1 ⊆ Bck, Aj and Ak are disjoint. By induction, Bn =
⋃n
j=1 Aj .

Also,
⋃∞
j=1Aj = B, for if x ∈ B, x ∈ Bn for some n, and then x ∈ Aj for

some j ≤ n. Conversely, if x ∈ ⋃∞j=1 Aj , x ∈ An ⊂ Bn ⊂ B for some n. By
countable additivity,

µ(B) =

∞
∑

j=1

µ(Aj) = lim
n→∞

n
∑

j=1

µ(Aj) = lim
n→∞

µ(Bn).

8. If B is the union of the Bi, then 1B ≤ ∑

1Bi , and by Fubini’s theorem,
viewing summation as integration against counting measure,

µ(B) =

∫

1B dµ ≤
∫

∑

i

1Bi dµ =
∑

i

∫

1Bi dµ =
∑

i

µ(Bi).

10. a) Let B be an arbitrary set in B. Since µ(B) ≥ 0 and ν(B) ≥ 0, η(B) =
µ(B) + ν(B) ≥ 0. Thus µ : B → [0,∞]. Next, if B1, B2, . . . are disjoint
sets in B, then

η

( ∞
⋃

i=1

Bi

)

= µ

( ∞
⋃

i=1

Bi

)

+ ν

( ∞
⋃

i=1

Bi

)

=

∞
∑

i=1

µ(Bi) +

∞
∑

i=1

ν(Bi) =

∞
∑

i=1

[

µ(Bi) + ν(Bi)
]

=

∞
∑

i=1

η(Bi).

Thus η is a measure.
b) To establish the integration identity, suppose f is a simple function:
f =

∑n
i=1 ci1Ai. Then



452 B Solutions

∫

f dη =
n
∑

i=1

ciη(Ai) =
n
∑

i=1

ci
[

µ(Ai) + ν(Ai)
]

=

n
∑

i=1

ciµ(Ai) +

n
∑

i=1

ciν(Ai) =

∫

f dµ+

∫

f dν.

So the identity holds for simple functions. For the general case, let fn be
simple functions increasing to f . Then from our definition of the integral,

∫

f dη = lim
n→∞

∫

fn dη = lim
n→∞

{∫

fn dµ+

∫

fn dν

}

= lim
n→∞

∫

fn dµ+ lim
n→∞

∫

fn dν =

∫

f dµ+

∫

f dν.

11. By finite additivity,

µ
(

(0, 1/2]
)

+ µ
(

(1/2, π]
)

= µ
(

(0, π]
)

.

Since µ
(

(0, 1/2]
)

= 1/
√

2 and µ
(

(0, π]
)

=
√
π,

µ
(

(1/2, π]
)

=
√
π − 1√

2
.

Similarly µ
(

(1, 2]
)

=
√

2 − 1. Then

∫

f dµ = µ
(

(1/2, π]
)

+ 2µ
(

(1, 2]
)

=
√
π + 2

√
2 − 2 − 1√

2
.

12. The integral is
∫

f dµ = 4 + 21π.
13. For x ∈ (0, 1], let fn(x) = ⌊2nx⌋/2n, where ⌊y⌋ is y rounded down to the

nearest integer. If x /∈ (0, 1], let fn(x) = 0. So, for instance, f1(x) is 1/2
for x ∈ [1/2, 1), f1(1) = 1, and f1(x) = 0, x /∈ [1/2, 1]. (Draw a picture of
f2.) Then

∫

fn dµ =
1 + 2 + · · · + (2n − 1)

4n
=

2n(2n − 1)

2 × 4n
→ 1

2
.

16. Define Bn = {X ≤ a − 1/n}. Then B1 ⊂ B2 ⊂ · · · . Also, {X < a} =
⋃∞
n=1Bn, for if X(e) < a, e ∈ {X ≤ a − 1/n} for some n, and if e ∈

⋃∞
n=1Bn, e ∈ {X ≤ a − 1/n} for some n, which implies e ∈ {X < a}.

Then by Problem 1.1,

P (X < a) = lim
n→∞

P (X ≤ a− 1/n) = lim
n→∞

F (a− 1/n) = F (a−).

For the second part, {X < a} and {X = a} are disjoint with union {X ≤
a}, and so P (X < a) + P (X = a) = P (X ≤ a); that is, FX(a−) + P (X =
a) = FX(a).
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17. By countable additivity, the chance X is even is

P (X = 0) + P (X = 2) + · · · = θ + θ(1 − θ)2 + · · · =
1

2 − θ
.

18. For the first assertion, an outcome e lies in X−1(A ∩ B) if and only if
X(e) ∈ A ∩ B if and only if X(e) ∈ A and X(e) ∈ B if and only if
e ∈ X−1(A) and e ∈ X−1(B) if and only if e ∈ X−1(A) ∩ X−1(B).
For the third assertion, an outcome e lies in X−1

(
⋃∞
i=1 Ai

)

if and only
if X(e) ∈ ⋃∞

i=1 Ai if and only if X(e) ∈ Ai, for some i, if and only if
e ∈ X−1(Ai), for some i, if and only if e ∈ ⋃∞i=1X

−1(Ai). The second
assertion follows in the same way.

19. Since PX(B) = P
(

X−1(B)
)

≥ 0, we only need to establish countable

additivity. Let us first show that X−1
(
⋃

iBi
)

=
⋃

iX
−1(Bi). Suppose

e ∈ X−1
(
⋃

iBi
)

. Then X(e) ∈ ⋃iBi, which implies X(e) ∈ Bj for some
j. But then e ∈ X−1(Bj), and so e ∈ ⋃

iX
−1(Bi). Conversely, if e ∈

⋃

iX
−1(Bi), then e ∈ X−1(Bj) for some j, which implies X(e) ∈ Bj , and

so X(e) ∈ ⋃iBi. Thus e ∈ X−1
(
⋃

iBi
)

. Next, suppose Bi and Bj are
disjoint. Then X−1(Bi) and X−1(Bj) are disjoint, for if e lies in both of
these sets, X(e) lies in Bi and Bj . Finally, if B1, B2, . . . are disjoint Borel
sets with union B =

⋃

iBi, then X−1(B1), X
−1(B2), . . . are disjoint sets

with union X−1(B), and so

∑

i

PX(Bi) =
∑

i

P
(

X−1(Bi)
)

= P
(

X−1(B)
)

= PX(B).

21. The probabilities are all the same, P (Y1 = 0, Y2 = 0) = P (Y1 = 0, Y2 =
1) = P (Y1 = 1, Y2 = 0) = P (Y1 = 1, Y2 = 1) = 1/4. For instance,
P (Y1 = 0, Y2 = 1) = P (1/4 ≤ X < 1/2) = 1/4.

22. First note that

{X ∈ B} = {y ∈ (0, 1) : X(y) ∈ B}

=

{

B ∩ (0, 1/2), 1/2 /∈ B;

[B ∩ (0, 1/2)] ∪ [1/2, 1), 1/2 ∈ B.

Let λ be Lebesgue measure, and let ν be counting measure on {1/2}. Then
µ(B) = 0 if and only if λ(B) = 0 and 1/2 /∈ B. But then PX(B) = P (X ∈
B) = P

(

B ∩ (0, 1/2)
)

= λ
(

B ∩ (0, 1/2)
)

= 0, and hence PX is absolutely
continuous w.r.t. λ+ ν. From the equation above,

P (X ∈ B) = λ
(

B ∩ (0, 1/2)
)

+
1

2
1B(1/2).

If f is the density, this should equal
∫

B
fd(λ+ν), and f = 1(0,1/2)+

1
21{1/2}

works because
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∫

f1Bd(λ + ν) =

∫ (

1B∩(0,1/2) +
1

2
1{1/2}∩B

)

d(λ+ ν)

= λ
(

B ∩ (0, 1/2)
)

+ ν
(

B ∩ (0, 1/2)
)

+
1

2
λ
(

{1/2} ∩B
)

+
1

2
ν
(

{1/2} ∩B
)

= λ
(

B ∩ (0, 1/2)
)

+
1

2
1B(1/2).

23. Define g(x) = x1(−1,1)(x), so that Y = g(X). Integrating against the
density of X ,

Ef(Y ) = Ef
(

g(X)
)

=

∫

f
(

g(x)
)

φ(x) dx =

∫ 1

−1

f(x)φ(x) dx + cf(0),

where c =
∫

|x|>1
φ(x) dx = 2Φ(−1). But integrating against the density p

of Y ,

Ef(Y ) =

∫

fp d(λ+ ν) =

∫

fp dλ+

∫

fp dµ

=

∫

f(x)p(x) dx + f(0)p(0).

These expressions must agree for any integrable function f . If f = 1{0},
this gives p(0) = 2Φ(−1). And if f(0) = 0, we must have

∫

f(x)p(x) dx =
∫

f(x)φ(x)1(−1,1)(x) dx. This will hold if p(x) = φ(x) when 0 < |x| < 1.

So the density is p(x) = 2Φ(−1)1{0}(x) + φ(x)1(0,1)

(

|x|
)

.
24. The problem is trivial if µ is finite (just divide µ by µ(X)). If µ is infinite

but σ-finite, there exist sets A1, A2, . . . in B with
⋃

iAi = X and 0 <
µ(Ai) <∞. Define truncated measures µi, as suggested, by µi(B) = µ(B∩
Ai). (Routine calculations show that µi is indeed a measure.) Note that
µi(X) = µ(Ai), so each µi is a finite measure. Let bi = 1/2i (or any other
sequence of positive constants summing to one) and define ci = bi/µ(Ai).
Then P =

∑

i ciµi is a probability measure since P (X) =
∑

i ciµi(X) =
∑

i[bi/µ(Ai)]µ(Ai) = 1. Suppose P (N) =
∑

i ciµi(N) = 0. Then µi(N) =
µ(N ∩ Ai) = 0 for all i. By Boole’s inequality (Problem 1.8), µ(N) =
µ
(
⋃

i[N ∩Ai]
)

≤∑i µ(N ∩Ai) = 0. This shows that any null set for P is
a null set for µ, and µ is thus absolutely continuous with respect to P .

25. a) Suppose f = 1A. Then f
(

X(e)
)

= 1 if and only if X(e) ∈ A, so
f ◦ X = 1B, where B = {e : X(e) ∈ A}. Note that the definition of PX
has PX(A) = P (B). Now

∫

f
(

X(e)
)

dP (e) =

∫

1B(e) dP (e) = P (B),

and
∫

f(x) dPX(x) =

∫

1A(x) dPX (x) = PX(A).
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So the equation holds for indicator functions. Next, suppose that f is a
simple function: f =

∑n
i=1 ci1Ai. Because integration is linear,

∫

f
(

X(e)
)

dP (e) =

∫ n
∑

i=1

ci1Ai

(

X(e)
)

dP (e)

=

n
∑

i=1

ci

∫

1Ai

(

X(e)
)

dP (e) =

n
∑

i=1

ci

∫

1Ai(x) dPX(x)

=

∫ n
∑

i=1

ci1Ai(x) dPX(x) =

∫

f(x) dPX(x).

Finally, let f be an arbitrary nonnegative measurable function, and let fn
be nonnegative simple functions increasing to f . Then fn ◦X increase to
f ◦X , and using the monotone convergence theorem twice,

∫

f
(

X(e)
)

dP (e) = lim
n→∞

∫

fn
(

X(e)
)

dP (e)

= lim
n→∞

∫

fn(x) dPX(x)

=

∫

f(x) dPX(x).

b) Using the same general approach, since PX has density p with respect
to µ,

∫

1A dPX = PX(A) =

∫

A

p dµ =

∫

1Ap dµ,

and the equation holds for indicator functions. Next, if f is a simple func-
tion, f =

∑n
i=1 ci1Ai , linearity gives

∫

f dPX =

∫ n
∑

i=1

ci1Ai dPX

=

n
∑

i=1

ci

∫

1Ai dPX

=

n
∑

i=1

ci

∫

1Aip dµ

=

∫ n
∑

i=1

ci1Aip dµ

=

∫

fp dµ.

For the general case, let fn be nonnegative simple functions increasing to
f . Then fnp increase to fp, and using the monotone convergence theorem
twice,
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∫

f dPX = lim
n→∞

∫

fn dPX = lim
n→∞

∫

fnp dµ =

∫

fp dµ.

26. a) Integrating e−x and differentiating xα, integration by parts gives

Γ (α+ 1) =

∫ ∞

0

xαe−x dx

= −xαe−x
∣

∣

∞
0

+

∫ ∞

0

αxα−1e−x dx

= αΓ (α).

Using this repeatedly, Γ (x + 1) = xΓ (x) = x(x − 1)Γ (x − 1) = · · ·x(x −
1) · · · 1Γ (1). But Γ (1) =

∫∞
1 e−x dx = 1, and so Γ (x+1) = x!, x = 0, 1, . . . .

b) The change of variables u = x/β (so dx = β du) gives

∫

p(x) dx =

∫ ∞

0

βp(βu) du =

∫ ∞

0

1

Γ (α)
uα−1e−u du =

Γ (α)

Γ (α)
= 1.

c) The same change of variables gives

EXr =

∫

xrp(x) dx =

∫ ∞

0

βr+1urp(βu) du

=
βr

Γ (α)

∫ ∞

0

uα+re−u du =
βrΓ (α+ r)

Γ (α)
.

Using this, EX = βΓ (α + 1)/Γ (α) = βα, EX2 = β2Γ (α + 2)/Γ (α) =
β(α+ 1)α, and Var(X) = EX2 − (EX)2 = αβ2.

27. Integrating against the density, EXp =
∫ 1

0
xp dx = 1/(p + 1). So EX =

1/2, EX2 = 1/3, Var(X) = EX2 − (EX)2 = 1/3 − 1/4 = 1/12,
Var(X2) = EX4 − (EX2)2 = 1/5 − 1/9 = 4/45 and Cov(X,X2) =
EX3 − (EX)(EX2) = 1/4 − 1/6 = 1/12. So the mean and covariance
are

E

(

X
X2

)

=

(

1/2
1/3

)

and Cov

(

X
X2

)

=

(

1/12 1/12
1/12 4/45

)

.

28. The mean and covariance are

E

(

X
I{X > c}

)

=

(

0
1 − Φ(c)

)

and

Cov

(

X
I{X > c}

)

=

(

1 φ(c)
φ(c) Φ(c)

(

1 − Φ(c)
)

)

.

32. By Fubini’s theorem,
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∫ ∞

0

h(t) dt =

∫ ∞

0

E
1 − cos(tX)

t2
dt

=

∫ ∞

0

∫

1 − cos(tx)

t2
dPX(x) dt

=

∫∫ ∞

0

1 − cos(tx)

t2
dt dPX(x)

=

∫∫ ∞

0

|x|1 − cosu

u2
du dPX(x)

=

∫

π

2
|x| dPX (x)

=
π

2
E|X |.

33. The sum is
∑∞

n=1 cn = 1.
36. a) By independence of X and Y , P (X + Y ≤ s|Y = y) = P (X ≤ s− y) =

FX(s− y), and so, P (X + Y ≤ s|Y ) = FX(s− Y ). Then

FS(s) = P (X + Y ≤ s) = EP (X + Y ≤ s|Y ) = EFX(s− Y ).

b) Using the independence, for y > 0,

P (XY ≤ w|Y = y) = P (X ≤ w/y|Y = y) = FX(w/y).

So, P (XY ≤ w|Y ) = FX(w/Y ) almost surely, and

FW (w) = P (XY ≤ w) = EP (XY ≤ w|Y ) = EFX(w/Y ).

37. Note that pX(x− Y ) = 0 if Y ≥ x. The change of variables u = y/x gives

pS(x) = E
(x− Y )α−1e−(x−Y )

Γ (α)
1(0,x)(Y ) =

∫ x

0

(x− y)α−1yβ−1e−x

Γ (α)Γ (β)
dy

=

∫ 1

0

xα+β−1e−xuβ−1(1 − u)α−1

Γ (α)Γ (β)
du =

xα+β−1e−x

Γ (α+ β)
,

for x > 0. So X + Y ∼ Γ (α+ β, 1).
38. a) The mean of the exponential distribution Qλ is

∫

xdQλ(x) =

∫

xqλ(x) dx =

∫ ∞

0

xλe−λx dx =
1

λ
.

So E[Y |X = x] = 1/x and E[Y |X ] = 1/X .
b) By smoothing,

EY = EE[Y |X ] = E(1/X) =

n
∑

x=1

1

x

2x

n(n+ 1)
=

2

n+ 1
.
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39. a) P [Y > y|X = k] = Qk
(

(y,∞)
)

=
∫∞
y
ke−ku du = e−ky. So P (Y >

y|X) = e−Xy.
b) By smoothing,

P (Y > y) = EP (Y > y|X) = Ee−Xy =

n
∑

k=1

e−ky

n
=

1 − e−ny

n(ey − 1)
.

(The sum here is geometric.)
c) The density is

F ′Y (y) =
d

dy

(

1 − P (Y > y)
)

=
ey(1 − e−ny)
n(ey − 1)2

− e−ny

ey − 1
.

B.2 Problems of Chapter 2

1. a) The mass functions can be written as exp
[

log(1 − p)x+ log(p)
]

, which
has exponential family form.
b) The canonical parameter is η = log(1 − p). Solving, p = 1 − eη, and
so the mass function in canonical form is exp

[

ηx + log(1 − eη)
]

, with
A(η) = − log(1 − eη).
c) Since T = X , by (2.4), EX = A′(η) = eη/(1 − eη) = (1 − p)/p.
d) The joint mass functions are

n
∏

i+1

[

p(1 − p)xi
]

= pn(1 − p)T (x),

where T (x) =
∑

i xi. With the same definition for η, this can be rewritten
as

exp
[

log(1 − p)T (x) + n log(p)
]

= exp
[

ηT (x) + n log(1 − eη)
]

.

Now A(η) = −n log(1 − eη), and so

ET = A′(η) =
neη

1 − eη
=
n(1 − p)

p
,

and

Var(T ) = A′′(η) =
neη

(1 − eη)2
=
n(1 − p)

p2
.

2. From the definition,

eA(η) =

∫∫

h(x, y)eηxydx dy =
1√
2π

∫

exp

[

−1

2
(1 − η2)y2

]

dy.

This integral is finite if and only if |η| < 1, and so Ξ = (−1, 1). Doing

the integral, eA(η) = 1/
√

1 − η2 and the densities are exp
[

ηxy + log(1 −
η2)/2

]

h(x, y).
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4. The parameter space is Ξ = (−1,∞), and the densities are

pη(x) =
1

2
(η + 1)(η + 2)(η + 3)xη(1 − x)2, x ∈ (0, 1).

5. The integral (below) defining A(η) is finite if and only if η ≥ 0, and so
Ξ = [0,∞). To evaluate the integral, let y =

√
x. Then

eA(η) =

∫ ∞

0

e−ηx−2
√
x dx√

x
= 2

∫ ∞

0

e−ηy
2−2ydy

=
2
√
πe1/η√
η

∫ ∞

0

exp
[

− (y+1/η)2

2[1/(2η)]

]

√

2π[1/(2η)]
dy.

If Y ∼ N
(

−1/η, 1/(2η)
)

, then the integral here is P (Y > 0) = Φ(−
√

2/η).
So

A(η) = log
√

4π + 1/η − log
√
η + logΦ(−

√

2/η),

and pη(x) = exp
[

−2
√
x− ηx−A(η)

]

/
√
x, x > 0. Then

EηX = −EηT = −A′(η) =
1

η2
+

1

2η
− φ(

√

2/η)

Φ(−
√

2/η)
√

2η3
.

6. The parameter space is Ξ = R2, and the densities are

pη(x) =
eη1x+η2x

2

1 + eη1+η2 + e2η1+4η2
, x = 0, 1, 2.

7. The joint densities are

n
∏

i=1

[

1−eα+βti
][

eα+βti
]xi

= exp

[

α

n
∑

i=1

xi + β

n
∑

i=1

xiti +

n
∑

i=1

log
[

1− eα+βti
]

]

,

forming an exponential family with T1 =
∑n

i=1Xi and T2 =
∑n

i=1 tiXi.
8. The joint densities are

n
∏

i=1

1√
2π

exp

[

−1

2
(xi − α− βti)

2

]

=
1√
2π

n exp

[

α

n
∑

i=1

xi + β

n
∑

i=1

tixi −
1

2

n
∑

i=1

x2
i −

1

2

n
∑

i=1

(α+ βti)
2

]

,

which is a two-parameter exponential family with T1 =
∑n

i=1Xi and T2 =
∑n
i=1 tiXi.

9. Since P (Xi = xi) = exp(αxi+βtixi)/
(

1+exp(α+βti)
)

, the joint densities
are
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n
∏

i=1

exp(αxi + βtixi)

1 + exp(α+ βti)
=

exp
[

α
∑n

i=1 xi + β
∑n
i=1 tixi

]

∏n
i=1

(

1 + exp(α+ βti)
) ,

which form a two-parameter exponential family with T1 =
∑n

i=1Xi and
T2 =

∑n
i=1 tiXi.

15. Differentiating the identity

eB(θ) =

∫

exp{η(θ) · T (x)}h(x) dµ(x)

with respect to θi under the integral sign, gives

eB(θ)∂B(θ)

∂θi
=

∫ s
∑

j=1

∂ηj(θ)

∂θi
Tj(x) exp{η(θ) · T (x)}h(x) dµ(x).

Division by eB(θ) then gives

∂B(θ)

∂θi
=

s
∑

j=1

∂η(θ)j
∂θi

EθTj , i = 1, . . . , s.

(This also follows from the chain rule because B(θ) = A
(

η(θ)
)

and ETj =
∂A(η)/∂ηj .) These equations can be written as ∇B(θ) = Dη(θ)′EθT ,
where Dη(θ) denotes an s× s matrix with (i, j)th entry ∂ηi(θ)/∂θj . Solv-
ing, EθT = [Dη(θ)′]−1∇B(θ).

17. a) Let fn(k) = f(k) for k ≤ n, and fn(k) = 0 for k > n. Then
fn → f pointwise, and |fn| ≤ |f |. Note that fn is a simple function
and that

∫

fn dµ =
∑n

k=1 f(k). The dominated convergence theorem gives
∫

fn dµ →
∫

f dµ, which is the desired result.
b) Define fn as in part (a). Then fn ↑ f , and so

∑n
k=1 f(k) =

∫

fn dµ →
∫

f dµ by the monotone convergence theorem.
c) Begin the g-sequence taking positive terms from the f -sequence until
the sum exceeds K. Then, take negative terms from the f sequence until
the sum is below K. Then take positive terms again, and so on. Because
the summands tend to zero, the partial sums will have limit K.

19. a) Since
∫

(p−pn) dµ =
∫

(p−pn)+ dµ−
∫

(p−pn)− dµ = 0, we have
∫

(p−
pn)

+ dµ =
∫

(p−pn)− dµ. Using |pn−p| = |p−pn| = (p−pn)+ +(p−pn)−,

∫

|pn − p| dµ =

∫

(p− pn)
+ dµ+

∫

(p− pn)
− dµ

= 2

∫

(p− pn)
+ dµ.

But |(p−pn)+| ≤ p, which is an integrable function, and
(

p(x)−pn(x)
)+ →

0. So by dominated convergence
∫

|pn − p| dµ = 2

∫

(p− pn)
+ dµ→ 0.
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b) Since Pn(A) =
∫

1Apn dµ and P (A) =
∫

1Ap dµ,

|Pn(A) − P (A)| =

∣

∣

∣

∣

∫

1A(pn − p) dµ

∣

∣

∣

∣

≤
∫

1A|pn − p| dµ ≤
∫

|pn − p| dµ.

22. Because pθ(x) = φ(x) exp
[

θx − logΦ(θ) − θ2/2
]

, we have a canonical ex-

ponential family with A(θ) = logΦ(θ)+θ2/2. So MX(u) = exp
[

A(θ+u)−
A(θ)

]

= Φ(θ+u) exp(uθ+u2/2)/Φ(θ). Also, EθX = A′(θ) = θ+φ(θ)/Φ(θ)
and Varθ(X) = A′′(θ) = 1 − θφ(θ)/Φ(θ) − φ2(θ)/Φ2(θ).

23. The exponential family N(0, σ2) has densities

1√
2πσ2

exp

[

− x2

2σ2

]

=
1√
2π

exp

[

ηx2 +
1

2
log(−2η)

]

,

where η = −1/(2σ2). So A(η) = − 1
2 log(−2η) and KT (u) = − 1

2 log
[

−2(η+

u)
]

+ 1
2 log(−2η), which simplifies to − 1

2 log(1 − 2u) when η = −1/2 (or
σ2 = 1). Then

K ′T (u) =
1

1 − 2u
, K ′′T (u) =

2

(1 − 2u)2
,

K ′′′T (u) = 8(1 − 2u)3, K ′′′′T (u) =
48

(1 − 2u)4
,

and so the first four cumulants of T ∼ Z2 are 1, 2, 8, and 48.
24. The first four cumulants of T = XY are 0, 1, 0, and 4.
25. From the last part of Problem 2.1 with n = 1, the first two cumulants

are κ1 = A′(η) = (1 − p)/p and κ2 = A′′(η) = (1 − p)/p2. Because
p = p(η) = 1 − eη, p′ = −eη = p− 1. Using this,

κ3 = A′′′(η) =
−2p′

p3
+
p′

p2
=

2

p3
− 3

p2
+

1

p
,

and

κ4 = A′′′′(η) =
6p′

p4
− 6p′

p3
+
p′

p2
=

6

p4
− 12

p3
+

7

p2
− 1

p
.

26. The third cumulant is

κ3 = np(1 − p)(1 − 2p),

and the third moment is

EX3 = np(1 − p)(1 − 2p) + 3n2p2(1 − p) + n3p3.
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27. a) For notation, let fij(u) = ∂i+jf(u)/(∂ui1∂u
j
2), and let M and K be the

moment generating function and cumulant generating function for T , so
that K = logM . Taking derivatives,

K10 =
M10

M
, K11 =

M11M −M10M01

M2
,

and

K21 =
M21M

2 −M20M01M − 2M11M10M + 2M2
10M01

M3
.

At zero we get

κ2,1 = ET 2
1 T2 − (ET 2

1 )(ET2) − 2(ET1T2)(ET1) + 2(ET1)
2(ET2).

b) Taking one more derivative,

K22 =

M22M
3 − 2M21M01M

2 − 2M12M10M
2

−M20M02M
2 + 2M20M

2
01M + 2M02M

2
10M

−2M11M11M
2 + 8M11M10M01M − 6M2

10M
2
01

M4
.

Since M10(0) = ET1 = 0 and M01(0) = ET2 = 0, at zero we get

κ22 = ET 2
1 T

2
2 − (ET 2

1 )(ET 2
2 ) − 2(ET1T2)

2.

28. Taking η = (−λ, α), X has density

exp
[

η1T1(X) + η2T2(x) − logΓ (η2) + η2 log(−η1)
]

x
, x > 0.

These densities form a two-parameter exponential family with cumulant
generating function A(η) = logΓ (η2) − η2 log(−η1). The cumulants of T
are derivatives of A:
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κ10 =
∂A(η)

∂η1
= −η2

η1
=
α

λ
,

κ01 =
∂A(η)

∂η2
= ψ(η2) − log(−η1) = ψ(α) − logλ,

κ20 =
∂2A(η)

∂η2
1

=
η2
η2
1

=
α

λ2
,

κ11 =
∂2A(η)

∂η1∂η2
= − 1

η1
=

1

λ
,

κ02 =
∂2A(η)

∂η2
2

= ψ′(η2) = ψ′(α),

κ30 =
∂3A(η)

∂η3
1

= −2η2
η3
1

=
2α

λ3
,

κ21 =
∂3A(η)

∂η2
1∂η2

=
1

η2
1

=
1

λ2
,

κ12 =
∂3A(η)

∂η1∂η2
2

= 0,

κ03 =
∂3A(η)

∂η2
= ψ′′(η2) = ψ′′(α).

B.3 Problems of Chapter 3

2. The marginal density of Xi is tiθx
tiθ/x, x ∈ (0, 1). Multiplying these

together, the joint density is

θn

(

n
∏

i=1

ti
xi

)(

n
∏

i=1

xtii

)θ

.

By the factorization theorem, T =
∏n
i=1X

ti
i is sufficient. An equivalent

sufficient statistic is
∑n

i=1 ti logXi.
3. The joint densities are

exp

[

µ

n
∑

i=1

xi
σ2
i

−
n
∑

i=1

x2
i + µ2

2σ2
i

−
n
∑

i=1

log σi − n log
√

2π

]

,

and T =
∑n

i=1Xi/σ
2
i is sufficient by the factorization theorem. The

weighted average T/
∑n
i=1 σ

−2
i is a natural estimator for θ.

4. By independence, the joint mass functions are

P (X1 = x1, . . . , Xn = xn) = p
n1(x)
1 p

n2(x)
2 p

n3(x)
3 ,
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where pi = P ({i}), i = 1, 2, 3, and ni(x) = #{j : xj = i}. Since
n1(x) + n2(x) + n3(x) = n, we can write the joint mass functions as

p
n1(x)
1 p

n2(x)
2 p

n−n1(x)−n2(x)
3 , and T = (n1, n2) is sufficient by the factor-

ization theorem.
6. a) The joint densities are

exp

[

(α− 1)
n
∑

i=1

log xi + (β − 1)
n
∑

i=1

log(1 − xi) + n log
Γ (α+ β)

Γ (α)Γ (β)

]

,

a full rank exponential family with

T =

(

n
∑

i=1

logXi,
n
∑

i=1

log(1 −Xi)

)

a minimal sufficient statistic.
b) Now the joint densities are

exp

[

(β − 1)

n
∑

i=1

log
[

x2
i (1 − xi)

]

+

n
∑

i=1

log xi + n log
Γ (3β)

Γ (2β)Γ (β)

]

,

a full rank exponential family with minimal sufficient statistic

n
∑

i=1

log
[

x2
i (1 − xi)

]

= 2T1 + T2.

c) The densities, parameterized by β, are

pβ(x) = exp

[

(β2 − 1)T1(x) + (β − 1)T2(x) + n log
Γ (β + β2)

Γ (β)Γ (β2)

]

.

Suppose pβ(x) ∝β pβ(y). Then

p2(x)

p1(x)
=
p2(y)

p1(y)
and

p3(x)

p1(x)
=
p3(y)

p1(y)
.

Taking the logarithm of these and using the formula for pβ ,

3T1(x) + T2(x) + n log 20 = 3T1(y) + T2(y) + n log 20,

and

8T1(x) + 2T2(x) + n log 495 = 8T1(y) + 2T2(y) + n log 495.

These equations imply T (x) = T (y), and T is minimal sufficient by Theo-
rem 3.11.

7. The statistic T =
(
∑n
i=1Xi,

∑n
i=1 tiXi

)

, is minimal sufficient.
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8. a) The statistic (N11, N12, N21) is minimal sufficient. (The statistic (N11,
N12, N21, N22) is also minimal sufficient.)
b) With the constraint, (N11 +N12, N11 +N21) is minimal sufficient.

9. a) The joint density is zero unless xi > θ, i = 1, . . . , n, that is, unless
M(x) = min{x1, . . . , xn} > θ. Using this, the joint density can be written
as

pθ(x) = cn(θ)I{M(x) > θ}
n
∏

i=1

f(xi),

and M(X) is sufficient by the factorization theorem.
b) If pθ(x) ∝θ pθ(y), then the region where the two functions are zero
must agree, and M(x) must equal M(y). So M is minimal sufficient by
Theorem 3.11.

10. The joint densities are pθ(x) = 2−n
∏

(1 + θxi) = 2−n
∏

(1 + θx(i)), where
x(1) ≤ · · · ≤ x(n) are the ordered values. Note that pθ is a polynomial
in θ with degree n, with roots −1/x(i). Suppose pθ(x) ∝θ pθ(y). Then
these polynomials must have the same roots, and we must have x(i) = y(i),
i = 1, . . . , n. So the order statistics are minimal sufficient by Theorem 3.11.

16. a) Let T (x) = max{x1, . . . , xn}, and M(x) = min{x1, . . . , xn}. Then the
joint density will be positive if and only if M(x) > 0 and T (x) < θ. In-
troducing suitable indicator functions, the joint density can be written
∏n

1 (2xi)I{M(x) > 0}I{T (x) < θ}/θ2n. So T = T (X) is sufficient by the
factorization theorem.
b) For t ∈ (0, θ), P (Xi ≤ t) =

∫ t

0 2xdx/θ2 = t2/θ2. So P (T ≤ t) =
P (X1 ≤ t, . . . , Xn ≤ t) = P (X1 ≤ t) × · · · × P (Xn ≤ t) = t2n/θ2n. Tak-
ing the derivative of this with respect to t, T has density 2nt2n−1/θ2n,
t ∈ (0, θ).

c) Suppose Eθf(T ) = c, for all θ > 0. Then
∫ θ

0 f(t)2nt2n−1 dt/θ2n = c,

which implies
∫ θ

0
t2n−1f(t) dt = cθ2n/(2n), for all θ > 0. Taking a deriva-

tive with respect to θ, θ2n−1f(θ) = cθ2n−1, for a.e. θ, and hence f(t) = c,
for a.e. t.

17. a) If y > 0, then P (Y ≤ y) = P (λX ≤ y) =
∫ y/λ

0 λe−λx dx = 1 − e−y.
So Y has density d(1 − e−y)/dy = e−y, y > 0, the standard exponential
density.
b) The joint densities are λn exp{−nλx}, a full rank exponential family
with T = X a complete sufficient statistic. Let Yi = λXi, so that regard-
less of the value of λ, Y1, . . . , Yn are i.i.d. from the standard exponential

distribution. Then (X2
1 + · · ·+X2

n)/X
2

= (Y 2
1 + · · ·+Y 2

n )/Y
2

is ancillary,
and independence follows by Basu’s theorem.

29. f(x) = 1/(1 + x) is bounded and convex on (0,∞).
30. Because η0 < η < η1, η = γη0 + (1− γ)η1 for some γ ∈ (0, 1), and because

the exponential function is convex,

eηT (x) < γeη0T (x) + (1 − γ)eη1T (x).

Multiplying by h(x) and integrating against µ,
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∫

eηT (x)h(x) dµ(x) < γ

∫

eη0T (x)h(x) dµ(x)+(1−γ)

∫

eη1T (x)h(x) dµ(x).

From the definition of Ξ, the upper bound here is finite, and η must then
also lie in Ξ.

31. Suppose X is absolutely continuous with density f , and define Y =
g(X)/f(X). Then

EY =

∫

g(x)

f(x)
f(x) dx =

∫

g(x) dx = 1.

The function h(y) = − log y = log(1/y) is strictly convex on (0,∞) (its
second derivative is 1/y2). So by Jensen’s inequality,

Eh(Y ) = E log

[

f(X)

g(X)

]

=

∫

log

[

f(x)

g(x)

]

f(x) dx ≥ h(EY ) = − log 1 = 0.

The inequality is strict unless Y is constant a.e. If Y is constant a.e., then
Y = EY = 1 and f(x) = g(x) a.e.

B.4 Problems of Chapter 4

1. a) The joint densities form a two-parameter exponential family with T =
(Tx, Ty) = (

∑m
i=1Xi,

∑n
j=1 Yj) as a complete sufficient statistic. Since Tx

has a gamma distribution,

ET−1
x =

λmx
Γ (m)

∫ ∞

0

tm−2e−λxt dt =
λx

m− 1
.

Also, ETy = n/λy. So (m − 1)Ty/(nTx) is unbiased for λx/λy and must
be UMVU since it is a function of T .
b) Integrating against the gamma density,

ET−2
x =

λmx
Γ (m)

∫ ∞

0

tm−3e−λxt dt =
λ2
x

(m− 1)(m− 2)
.

Also, ET 2
y = (ETy)

2 + Var(Ty) = n(n+ 1)/λ2
x. So

E

(

d
Ty
Tx

− λx
λy

)2

= d2E
T 2
y

T 2
x

− 2d
λx
λy
E
Ty
Tx

+
λ2
x

λ2
y

=

(

d2 n(n+ 1)

(m− 1)(m− 2)
− 2d

n

m− 1
+ 1

)

λ2
x

λ2
y

,

which is minimized taking d = (m − 2)/(n + 1). So the best multiple of

Y /X is (m− 2)Ty/
[

(n+ 1)Tx
]

= n(m−2)
(n+1)mY /X.

c) Since δ = I{X1 > 1} is evidently unbiased, the UMVU estimator must
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be E[δ|T ], and by independence this must be P (X1 > 1|Tx]. The joint
density of X1 and S = X2 + · · ·+Xm is g(x, s) = λmx s

m−2e−λx(s+x)/(m−
2)!, s > 0 and x > 0. From this, the joint density of X1 and Tx is f(x, t) =
λmx (t− x)m−2e−λxt/(m− 2)!, 0 < x < t. Dividing by the marginal density
of Tx, λ

m
x t

m−1e−λxt/(m− 1)!, the conditional density of X given T = t is
f(x|t) = (m − 1)(1 − x/t)m−2/t, 0 < x < t. Integrating this conditional
density, P (X1 > 1|Tx] = I{Tx ≥ 1}(1 − 1/Tx)

m−1.
2. a) The joint densities are

exp

[

µx
∑n
i=1 xi
σ2

+
µy
∑m

j=1 yj

2σ2
−

2
∑n
i=1 x

2
i +

∑m
j=1 y

2
j

4σ2
− 2n+m

4σ2

]

(2πσ2)n/2(4πσ2)m/2
,

a full rank exponential family with complete sufficient statistic T =
(
∑n
i=1Xi,

∑m
j=1 Yj , 2

∑n
i=1X

2
i +

∑m
j=1 Y

2
j ).

b) Expanding the squares and simplifying, 2(n − 1)S2
x + (m − 1)S2

y =

2
∑n
i=1X

2
i +

∑m
j=1 Y

2
j − 2nX

2 − mY
2

is a function of T with mean

2(n + m − 2)σ2. So S2
p =

[

2(n − 1)S2
x + (m − 1)S2

y

]

/(2n + 2m − 4) is
UMVU for σ2.
c) Because E(X − Y )2 = (µx − µy)

2 + σ2/n+ 2σ2/m, (X − Y )2 − (1/n+
2/m)S2

p is UMVU for (µx − µy)
2.

d) With the additional constraint, (2
∑n
i=1Xi + 3

∑m
j=1 Yj , 2

∑n
i=1X

2
i +

∑m
j=1 Y

2
j ) is complete sufficient. The first statistic here has mean (2n +

9m)µx, so (2
∑n

i=1Xi + 3
∑m
j=1 Yj)/(2n+ 9m) is the UMVU estimator of

µx.
3. The joint mass functions are

λx1+···+xne−nλ

x1! × · · · × xn!
.

These densities form a full rank exponential family with T = X1+ · · ·+Xn

as a complete sufficient statistic. Since T has a Poisson distribution with
mean nλ, δ(T ) will be an unbiased estimator of cosλ if

∞
∑

t=0

δ(t)(nλ)te−nλ

t!
= cosλ

or if

∞
∑

t=0

δ(t)nt

t!
λt = enλ cosλ =

e(n+i)λ + e(n−i)λ

2

=

∞
∑

t=0

(n+ i)t + (n− i)t

2t!
λt.
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Equating coefficients of λt in these expansions,

δ(t) =
1

2

[

(

1 +
i

n

)t

+

(

1 − i

n

)t
]

=

(

1 +
1

n2

)t/2

cos(tω),

where ω = arctan(1/n).
4. The joint densities are

1

(2π)n/2
exp

[

α
n
∑

i=1

tixi + β
n
∑

i=1

t2ixi −
1

2

n
∑

i=1

x2
i −

1

2

n
∑

i=1

(αti + βt2i )
2

]

.

These densities form a full rank exponential family with

T =

(

n
∑

i=1

tiXi,

n
∑

i=1

t2iXi

)

a complete sufficient statistic. Now

ET1 = α

n
∑

i=1

t2i + β

n
∑

i=1

t3i and ET2 = α

n
∑

i=1

t3i + β

n
∑

i=1

t4i .

Using these,

T1

∑n
i=1 t

4
i − T2

∑n
i=1 t

3
i

∑n
i=1 t

2
i

∑n
i=1 t

4
i − (

∑n
i=1 t

3
i )

2 and
T2

∑n
i=1 t

2
i − T1

∑n
i=1 t

3
i

∑n
i=1 t

2
i

∑n
i=1 t

4
i − (

∑n
i=1 t

3
i )

2

are unbiased estimators for α and β. Since they are functions of the com-
plete sufficient statistic T , they are UMVU.

5. a) Expanding the quadratic, S2 =
(
∑n

i=1X
2
i − nX

2
)/(n − 1). If we let

µ(θ) = EθXi, then EθX
2
i = µ2(θ) + σ2(θ), and EθX = µ2(θ) + σ2(θ)/n.

So

EθS
2 =

1

n− 1

(

n
∑

i=1

[

µ2(θ) + σ2(θ)
]

− n

[

µ2(θ) +
1

n
σ2(θ)

]

)

= σ2(θ).

b) If Xi is Bernoulli, then Xi = X2
i and

S2 =

∑n
i=1Xi − nX

2

n− 1
=
nX(1 −X)

n− 1
.

The joint mass functions form a full rank exponential family with X as a
complete sufficient statistic. Since δ is unbiased and is a function of X , δ
is UMVU.
c) Again we have a full rank exponential family with X as a complete

sufficient statistic. Because EXi = 1/θ and Var(Xi) = 1/θ2, EX
2

= θ−2+
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θ−2/n, and nX
2
/(n+ 1) is an unbiased estimator of σ2. This estimator is

UMVU because it is a function of the complete sufficient statistic. Next,
by symmetry Eθ[X

2
1 |X = c] = · · · = Eθ[X

2
n|X = c]. The UMVU estimator

must equal Eθ[δ|X ], and therefore

nc2

n+ 1
= Eθ

[∑n
i=1X

2
i − nX

2

n− 1

∣

∣

∣

∣

X = c

]

=
nEθ[X

2
i |X = c] − nc2

n− 1
.

From this,

Eθ[X
2
i |X = c] =

2nc2

n+ 1
.

6. Because δ + cU is unbiased and δ is UMVU, for any θ,

Varθ(δ + cU) = Varθ(δ) + 2cCovθ(δ, U) + c2Varθ(U) ≥ Varθ(δ).

So h(c) = c2Varθ(U)+2cCovθ(δ, U) ≥ 0. Since h(0) = 0, this will hold for
all c only if h′(0) = 2 Covθ(δ, U) = 0.

7. Suppose δ is unbiased for g1(θ) + g2(θ), and that Varθ(δ) <∞. Then U =
δ− δ1 − δ2 is an unbiased estimator of zero. By Problem 4.6, Covθ(U, δ1 +
δ2) = Covθ(U, δ1)+Covθ(U, δ2) = 0. Since these variables are uncorrelated,

Varθ(δ) = Varθ(U + δ1 + δ2)

= Varθ(U) + Varθ(δ1 + δ2) ≥ Varθ(δ1 + δ2).

8. If M(x) = minxi, then the joint densities are

pθ(x) =
θn

∏n
i=1 x

2
i

I{M(x) > θ},

and M is sufficient by the factorization theorem. Next, for x > θ,

Pθ(M > x) = Pθ(X1 > x, . . . , Xn > x)

= Pθ(X1 > x) × · · · × Pθ(Xn > x) = (θ/x)n.

So M has cumulative distribution function 1− (θ/x)n, x > θ, and density
nθn/xn+1, x > θ. If δ(M) is an unbiased estimator of g(θ), then

∫ ∞

θ

δ(x)
nθn

xn+1
dx = g(θ)

or
∫ ∞

θ

nδ(x)

xn+1
dx =

g(θ)

θn
.

Taking a derivative with respect to θ,

nδ(x)

xn+1
=
ng(x)

xn+1
− g′(x)

xn
.
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In particular, if g(θ) = c for all θ > 0, this calculation shows that δ(x) = c,
and so M is complete. In general, δ(M) = g(M)−Mg′(M)/n is the UMVU
estimator of g(θ).

10. If we assume δ is unbiased and can be written as a power series δ(x) =
c0 + c1x+ · · · , then by Fubini’s theorem we anticipate

Eθδ(X) =

∫ ∞

0

( ∞
∑

n=0

cnx
n

)

θe−θx dx

=

∞
∑

n=0

∫ ∞

0

cnx
nθe−θx dx =

∞
∑

n=0

n!cn
θn

.

The form here is a power series in 1/θ. Writing

1

1 + θ
=

1/θ

1 + 1/θ
= −

∞
∑

n=1

(−1)nθ−n,

by matching coefficients for powers of 1/θ, c0 = 0 and cn = (−1)n+1/n!,
n = 1, 2, . . . . This gives δ = 1 − e−X . The steps in this derivation only
work if θ > 1, but it is easy to show directly that δ is unbiased. Because
the densities form a full rank exponential family, X is complete, and δ is
UMVU.

11. The joint mass functions form a full rank exponential family with T =
X1 + · · · +X3 complete sufficient. The estimator δ = I{X1 = X2 = 0} is
unbiased. By Theorem 4.4, η(t) = E[δ(X)|T = t] = P (X1 = X2 = 0|T =
t) is UMVU. To calculate η we need Pθ(T = t). This event occurs if and
only if trial t + 3 is a success, and there are exactly two successes in the
first t+ 2 trials. Thus

Pθ(T = t) =

(

t+ 2

2

)

θ3(1 − θ)t.

Since Pθ(X1 = X2 = 0, T = t) = P (X1 = X2 = 0, X3 = t) = θ3(1 − θ)t,

η(t) =
Pθ(X1 = X2 = 0, T = t)

Pθ(T = t)
=

2

(t+ 1)(t+ 2)
.

12. a) Since

EθX =

∫ 1

−1

1

2
(x+ θx2) dx =

θ

3
,

3X is unbiased for θ.
b) Integrating against the density,

b = Eθ|X | =

∫ 1

−1

1

2
(1 + θx)|x| dx =

1

2
,
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for all θ ∈ [−1, 1].
c) Since

EθX
2 =

∫ 1

−1

1

2
(x2 + θx3) dx =

1

3
,

Varθ(3X) = 3 − θ2. Also, Varθ(|X |) = 1/3 − 1/4 = 1/12. Finally,

Eθ3X |X | =
∫ 1

−1

3

2
(x+ θx2)|x| dx =

3θ

4
,

and so Covθ(3X, |X |) = 3θ/4 − θ/2 = θ/4. So

Varθ0(3X + c|X |) = Varθ0(3X) + 2cCovθ0(3X, |X |) + c2Varθ0(|X |)

= (3 − θ20) +
cθ0
2

+
c2

12
,

minimized when c = −3θ0. Since the variance of this estimator is smaller
than the variance of 3X when θ = θ0, 3X cannot be UMVU.

24. Since X and S2 are independent, using (4.10),

Et = E

√
nX

S
=

√
n
(

EX
)(

ES−1
)

= δ

√
n− 1Γ

(

(n− 2)/2
)

√
2Γ
(

(n− 1)/2
) ,

Et2 = n
(

EX
2)(

ES−2
)

= (1 + δ2)
n− 1

n− 3
,

and

Var(t) =
n− 1

n− 3
+ δ2

(

n− 1

n− 3
− (n− 1)Γ 2

(

(n− 2)/2
)

2Γ 2
(

(n− 1)/2
)

)

.

28. a) Since g(θ) = θ, g(θ +∆) − g(θ) = ∆, so the lower bound is

∆2

Eθ

(

pθ+∆(X)
pθ(X) − 1

)2 .

Because we need pθ+∆ = 0 whenever pθ = 0, ∆ must be negative. Also,
θ+∆ must be positive, so ∆ ∈ (−θ, 0). To evaluate the expectation, note
that pθ+∆(X)/pθ(X) will be θn/(θ + ∆)n if M = max{X1, . . . , Xn} <
θ+∆, which happens with probability (θ+∆)n/θn under Pθ. Otherwise,
pθ+∆(X)/pθ(X) will be zero. After a bit of algebra, the lower bound is
found to be

∆2

[

θn/(θ +∆)n
]

− 1
=

c2θ2/n2

(1 − c/n)−n − 1

b) gn(c) = c2/
[

(1 − c/n)−n − 1
]

→ c2/(ec − 1) = g(c).
c) Setting derivatives to zero, the value c0 maximizing g over c ∈ (0,∞) is
the unique positive solution of the equation e−c = 1− c/2. This gives c0 =
1.59362, and an approximate lower bound of g(c0)θ

2/n2 = 0.64761θ2/n2.
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30. a) We have log pθ(X) = −∑n
i=1(Xi − α− βti)

2/2 − n log
√

2π, and so

I(α, β) = −E∇2 log pθ(X) =

(

n
∑n
i=1 ti

∑n
i=1 ti

∑n
i=1 t

2
i

)

.

b) If g(θ) = α, then ∇g(θ) =
(

1
0

)

and the lower bound is

(1, 0)I−1(α, β)

(

1

0

)

=

(1, 0)

( ∑n
i=1 t

2
i −∑n

i=1 ti
−∑n

i=1 ti n

)(

1

0

)

n
∑n
i=1 t

2
i −

(
∑n

i=1 ti
)2

=

∑n
i=1 t

2
i

n
∑n

i=1 t
2
i −

(
∑n
i=1 ti

)2

=
1/n

1 −
(
∑n

i=1 ti/n
)2
/
(
∑n

i=1 t
2
i /n
)

.

c) Now I(α) = n, and so the lower bound for the variance is 1/n.
d) The bound in (b) is larger. This is clear from the final expression, with
equality only if

∑n
i=1 ti = 0.

e) If g(θ) = αβ, then ∇g(θ) =
(

β
α

)

and the lower bound is

(β, α)

( ∑n
i=1 t

2
i −∑n

i=1 ti
−∑n

i=1 ti n

)(

β

α

)

n
∑n
i=1 t

2
i −

(
∑n

i=1 ti
)2 =

β2
∑n

i=1 t
2
i − 2αβ

∑n
i=1 ti + nα2

n
∑n
i=1 t

2
i −

(
∑n

i=1 ti
)2 .

31. This is a location model, and so

I(θ) =

∫

[

f ′(x)
]2

f(x)
dx =

∫

4x2

π(1 + x2)3
dx =

1

2
.

If ξ = θ3, θ = ξ1/3 = h(ξ), and the information for ξ is I∗(ξ) = I
[

h(ξ)
]

×
[

h′(ξ)
]2

= 1/(18ξ4/3).

32. Since pθ(x) = θ2xe−θ
2

/x!,

I(θ) = Varθ

(

∂ log pθ(X)

∂θ

)

= Varθ

(

2X

θ
− 2θ

)

= 4.

33. Since the exponential distributions form a canonical exponential family
with A(λ) = − logλ, the Fisher information for λ is Ĩ(λ) = A′′(λ) = 1/λ2.
Using (4.18),

I(θ) =
Ĩ(λ)

[

h′(λ)
]2 =

1
[

λh′(λ)
]2 .

From this, I(θ) will be constant if h(λ) = logλ.
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34. a) Multiplying the conditional densities,

log pθ,σ(X) = − (1 − ρ2)(X1 − θ)2

2σ2
− 1

2σ2

n−1
∑

j=1

(

Xj+1 − ρXj − (1 − ρ)θ
)2

− n

2
log(2π) − n log σ + log

√

1 − ρ2.

Taking derivatives,

− ∂2

∂θ2
log pθ,σ(X) =

1 − ρ2

σ2
+

(n− 1)(1 − ρ)2

σ2
,

− ∂2

∂θ∂σ
log pθ,σ(X) =

2(1 − ρ2)ǫ1
σ3

+
2(1 − ρ)

σ3

n−1
∑

j=1

ηj+1,

and

− ∂2

∂σ2
log pθ,σ(X) =

3(1 − ρ2)(X1 − θ)2

σ4
+

3

σ4

n−1
∑

j=1

η2
j+1 −

n

σ2
,

where ǫj = Xj − θ and ηj+1 = ǫj+1 − ρǫj . The conditional distribution of
ηj+1 givenX1 = x1, . . . , Xj = xj , or equivalently, given ǫ1 and η2, . . . , ηj , is
N(0, σ2). From this, η2, . . . , ηn are i.i.d. from N(0, σ2), and these variables
are independent of ǫ1 ∼ N

(

0, σ2/(1 − ρ2)
)

. Using this, it is easy to take
expectations of these logarithmic derivatives, giving

I(θ, σ) =







1 − ρ2 + (n− 1)(1 − ρ)2

σ2
0

0
2n

σ2






.

b) The lower bound is σ2/
[

1 − ρ2 + (n− 1)(1 − ρ)2
]

.
c) Since ǫ2 = ρǫ1 +η2, Var(ǫ2) = ρ2σ2/(1−ρ2)+σ2 = σ2/(1−ρ2). Further
iteration gives Var(Xi) = Var(ǫi) = σ2/(1 − ρ2). If i > j, then

Xi = ρXi−1 + ηi = · · · = ρi−jXj + ρi−j+1ηj+1 + · · · + ρηi−1 + ηi,

and from this it is easy to see that

Cov(Xi, Xj) =
ρ|i−j|σ2

1 − ρ2
.

Noting that
∑n−1

j=1 ρ
j = (ρ− ρn)/(1 − ρ) and

n−1
∑

i=1

jρj = ρ
d

dρ

n−1
∑

j=1

ρj =
ρ− ρn+1

(1 − ρ)2
− nρn

1 − ρ
,
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Var(X) =
σ2

n2(1 − ρ2)

n
∑

i=1

n
∑

j=1

ρ|i−j|

=
σ2

n2(1 − ρ2)



n+ 2
n−1
∑

j=1

(n− j)ρj





=
σ2

n(1 − ρ)2
− 2ρσ2(1 − ρn)

n2(1 − ρ)3(1 + ρ)
.

B.5 Problems of Chapter 5

1. a) The joint mass functions are
(

m

x

)(

n

y

)

exp

[

x log
θ

1 − θ
+ y log

θ2

1 − θ2
+ n log θ + 2m log θ

]

.

These mass functions form a curved exponential family with minimal suf-
ficient statistic (X,Y ).
b) Eθ[X

2 +X ] = m(m−1)θ2, and EθY = nθ2. So Eθ[nX
2 +nX−m(m−

1)Y ] = 0 for all θ ∈ (0, 1).
2. a) The joint densities are

ph(p) exp

[

x log

(

p

1 − p

)

+ y log

(

h(p)

1 − h(p)

)]

.

These form a curved exponential family unless the canonical parameters
are linearly related, that is, unless

log

(

h(p)

1 − h(p)

)

= a+ b log

(

p

1 − p

)

for some constants a and b. Solving for h(p), this is the same as the equation
stated in the problem.
b) If h(p) = p/2, we have a curved family with (X,Y ) minimal sufficient,
but not complete, because Ep(X − 2Y ) = 0 for all p ∈ (0, 1). For an
example where (X,Y ) is complete, note that Epg(X,Y ) = ph(p)g(1, 1) +
p
(

1 − h(p)
)

g(1, 0) + (1 − p)h(p)g(0, 1) + (1 − p)
(

1 − h(p)
)

g(0, 0). We need

to find a function h with ph(p), p
(

1 − h(p)
)

, and (1 − p)h(p) linearly
independent. One choice that works is h(p) = p2. Then

Epg(X,Y ) = p3
[

g(1, 1)− g(1, 0) − g(0, 1) + g(0, 0)
]

+ p2
[

g(0, 1)− g(0, 0)
]

+ p
[

g(1, 0)− g(0, 0)
]

+ g(0, 0).

If this is zero for all p ∈ (0, 1), then the coefficients of the various powers of
p must vanish, and it is easy to see that this can only happen if g(0, 0) =
g(1, 0) = g(0, 1) = g(1, 1) = 0. Thus g(X,Y ) = 0 and (X,Y ) is complete.
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6. a) Consider the event X = 4 and Y = y. This happens if and only if A
wins exactly 3 of the first 3 + y games and then wins the next game. The
chance of 3 wins in 3+y trials is

(

3+y
3

)

θ3(1−θ)y. The outcome of the next
game is independent of this event, and so

P (X = 4, Y = y) =

(

3 + y

3

)

θ4(1 − θ)y , y = 0, . . . , 3.

Similarly,

P (X = x, Y = 4) =

(

3 + x

3

)

θx(1 − θ)4, x = 0, . . . , 3.

The joint mass functions have form h(x, y) exp
[

x log θ+ y log(1 − θ)
]

. Be-
cause the relationship between the canonical parameters log θ and log(1−θ)
is nonlinear, this exponential family is curved.
b) Let f be an arbitrary function, and suppose

h(θ) = Eθf(X,Y )

=

3
∑

x=0

f(x, 4)

(

3 + x

3

)

θx(1 − θ)4 +

3
∑

y=0

f(4, y)

(

3 + y

3

)

θ4(1 − θ)y

= 0,

for all θ ∈ (0, 1). This function h is a polynomial in θ. Letting θ tend to
zero, the constant term in this polynomial is f(0, 4), and so f(0, 4) must be
zero. If f(0, 4) is zero, then the linear term (dividing by θ and letting θ tend
to zero) is 4f(1, 4), so f(1, 4) must be zero. Similarly f(2, 4) = f(3, 4) = 0.
Then

h(θ)

θ4
=

3
∑

y=0

f(4, y)

(

3 + y

3

)

(1 − θ)y = 0.

Because this is a polynomial in 1 − θ, the coefficients of powers of 1 − θ
must vanish, giving f(4, 0) = · · · = f(4, 3) = 0. Thus f(X,Y ) = 0 almost
surely, demonstrating that T is complete.
c) Let δ be an indicator that team A wins the first game. Then δ is unbiased
for θ, and the UMVU estimator must be E(δ|X,Y ) = P (δ = 1|X,Y ).
Arguments similar to those used deriving the joint mass function give

P (δ = 1|X = 4, Y = y) =
P (δ = 1, X = 4, Y = y)

P (X = 4, Y = y)

=

θ2
(

2 + y

2

)

θ2(1 − θ)y

(

3 + y

3

)

θ4(1 − θ)y
=

3

3 + y
,
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and

P (δ = 1|X = x, Y = 4) =

θ(1 − θ)

(

x+ 2

x− 1

)

θx−1(1 − θ)3

(

3 + x

3

)

θx(1 − θ)4
=

x

3 + x
.

The UMVU is (X − I{Y = 4})/(X + Y − 1).
7. a) P (T = 0) = P (X = 0) = e−λ, and for k = 0, 1, . . . ,

P (T = k + 1) = P (X + Y = k,X > 0)

= P (X + Y = k) − P (X + Y = k,X = 0)

=
(2λ)ke−2λ

k!
− λke−2λ

k!
.

c) Let N denote the sample size, so N = 1 if X = 0 and N = 2 if X > 0,
and let W = 0 if X = 0 and W = X + Y if X > 0. Using Theorem 5.4,
the joint densities form an exponential family with canonical parameter
η = (log λ,−λ) and sufficient statistic (W,N). Because η does not satisfy a
linear constraint, the exponential family is curved, and (W,N) is minimal
sufficient.
b) There is a one-to-one relationship between T and (W,N), so T is min-
imal sufficient. (This can also be shown directly.)
d) Suppose Eλg(T ) = 0 for all λ > 0. Then

e2λEλg(T ) = eλg(0) +

∞
∑

k=0

g(k + 1)(2k − 1)

k!
λk = 0.

The constant term in this power series is g(0), so g(0) = 0. Setting the
coefficient of λk to zero, g(k + 1) = 0 for k = 1, 2, . . . . Since T is never 1,
g(T ) must be zero. Thus T is complete.

13. a) Solving, N22 = (n+D − R− C)/2, N11 = (R + C +D − n)/2, N12 =
(R − C − D + n)/2 and N21 = (C − R − D + n)/2. So the joint mass
function can be written as

(

n

n11, . . . , n22

)

exp

[

r log

√

p11p12

p21p22
+ c log

√

p11p21

p12p22

+ d log

√

p11p22

p12p21
+ n log

√

p12p21p22

p11

]

,

where r = R(n11, . . . , n22) = n11 + n12, and c and d are defined similarly.
These densities form a full rank exponential family: (R,C,D) cannot sat-
isfy a linear constraint because there is a one-to-one linear association
between it and (N11, N12, N21), and the three canonical parameters ηr, ηc,
and ηd can vary freely over R3.
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b) They are related by ηd = log
√
α.

c) Multiplying the marginal mass functions, the joint mass function has
form

h(x) exp

[

m
∑

i=1

riηr,i +

m
∑

i=1

ciηc,i + log
√
α

m
∑

i=1

di −
m
∑

i=1

Ai(ηi)

]

.

These mass functions form a full rank (2m + 1)-parameter exponential
family with complete sufficient statistic

T =

(

R1, . . . , Rm, C1, . . . , Cm,

m
∑

i=1

Di

)

.

16. a) Since Ni+ and N+j are independent with

Ni+ ∼ Binomial(n, pi+) and N+j ∼ Binomial(n, p+j),

E(p̂i+p̂+j)
2 =

1

n4
EN2

i+EN
2
+j

=
1

n2

[

np2
i+ + pi+(1 − pi+)

][

np2
+j + p+j(1 − p+j)

]

.

Subtracting p2
i+p

2
+j ,

Var(p̂i+p̂+j) =
pi+(1 − pi+)p2

+j + p+j(1 − p+j)p
2
i+

n

+
pi+(1 − pi+)p+j(1 − p+j)

n2
.

b) Unbiased estimates of pi+(1 − pi+), p+j(1 − p+j), p
2
i+, and p2

+j are

Ni+(n−Ni+)/(n2 − n), N+j(n−N+j)/(n
2 − n), Ni+(Ni+ − 1)/(n2 − n),

andN+j(N+j−1)/(n2−n), respectively. From these, the UMVU estimator
for the variance above is

Ni+(n−Ni+)N+j(N+j − 1) +N+j(n−N+j)Ni+(Ni+ − 1)

n3(n− 1)2

+
Ni+(n−Ni+)N+j(n−N+j)

n4(n− 1)2
.

B.6 Problems of Chapter 6

2. a) Conditioning on X , for z ≥ 0,

P (X2Y 2 ≤ z) = EP (X2Y 2 ≤ z|X) = E
[

FY (
√

z/X2) − FY (−
√

z/X2)
]

.
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Taking a derivative with respect to z, the density is

E
fY (
√

z/X2) + fY (−
√

z/X2)

2
√
zX2

, z ≥ 0.

b) Differentiating (1.21), since −Y has density λeλxI{x < 0}, the density
is

Eλeλ(z−X)I{X > z} =

∫ ∞

z∨0

λ2eλ(z−2x) dx =
λ

2
e−λ|z|.

3. Since X and Y are positive and x ∈ (0, 1), X/(X + Y ) ≤ x if and only if
X ≤ xY/(1 − x). So

P

(

X

X + Y
≤ x

∣

∣

∣

∣

Y = y

)

= E

(

I

{

X ≤ xY

1 − x

} ∣

∣

∣

∣

Y = y

)

= FX

(

xy

1 − x

)

.

Thus P
(

X/(X + Y ) ≤ x
∣

∣ Y
)

= FX
(

xY/(1− x)
)

, and the desired identity
follows by smoothing.

4. The change of variables u = y/(1 − x) in the integral against the density
of Y gives,

pV (x) =
1

Γ (α)Γ (β)

∫ ∞

0

y

(1 − x)2

(

xy

1 − x

)α−1

yβ−1e−y/(1−x)dy

=
xα−1(1 − x)β−1

Γ (α)Γ (β)

∫ ∞

0

uα+β−1e−u du

=
Γ (α+ β)

Γ (α)Γ (β)
xα−1(1 − x)β−1.

5. a) For x ∈ (0, 1),

pX(x) =

∫

p(x, y) dy =

∫ 1

x

2 dy = 2(1 − x).

Similarly, for y ∈ (0, 1),

pY (y) =

∫

p(x, y) dx =

∫ y

0

2 dx = 2y.

b) For y ∈ (x, 1),

pY |X(y|x) =
p(x, y)

pX(x)
=

2

2(1 − x)
=

1

1 − x
.

c) Because
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E[Y |X = x] =

∫ 1

x

y

1 − x
dy =

1 + x

2
,

E[Y |X ] = (1 +X)/2.
d) Integrating against the joint density,

EXY =

∫∫

xyp(x, y) dx dy =

∫ 1

0

∫ y

0

2xy dx dy =

∫ 1

0

y3 dy =
1

4
.

e) By smoothing,

EXY = EE[XY |X ] = E
{

XE[Y |X ]
}

= E

[

X
1

2
(1 +X)

]

=

∫ 1

0

2(1 − x)
1

2
x(1 + x) dx =

∫ 1

0

[x− x3] dx =
1

4
.

6. a) For x ∈ (0, 1),

pX(x) =

∞
∑

y1=0

∞
∑

y2=0

x2(1 − x)y1+y2 = 1.

b) Integrating the joint density,

pY (y1, y2) =

∫ 1

0

x2(1 − x)y1+y2 dx

=
Γ (3)Γ (y1 + y2 + 1)

Γ (y1 + y2 + 4)
=

2(y1 + y2)!

(y1 + y2 + 3)!
,

and so

pX|Y (x|y) =
p(x, y1, y2)

pY (y1, y2)
=

(y1 + y2 + 3)!

2(y1 + y2)!
x2(1 − x)y1+y2 .

c) Using the formula in the hint,

E(X |Y = y) =

∫ 1

0

(y1 + y2 + 3)!

2(y1 + y2)!
x3(1 − x)y1+y2 dx =

3

y1 + y2 + 4

and

E(X2|Y = y) =

∫ 1

0

(y1 + y2 + 3)!

2(y1 + y2)!
x4(1 − x)y1+y2 dx

=
12

(y1 + y2 + 4)(y1 + y2 + 5)
.

So,
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E(X |Y ) =
3

Y1 + Y2 + 4
,

and

E(X2|Y ) =
12

(Y1 + Y2 + 4)(Y1 + Y2 + 5)
.

d) Since

EX =
1

2
= EE(X |Y ) = E

[

3

Y1 + Y2 + 4

]

,

E

[

1

Y1 + Y2 + 4

]

=
1

6
.

11. Given M = m and Z = z, the conditional distribution for (X,Y ) must
concentrate on the two points (m, z) and (z,m). By symmetry, a natural
guess is

1

2
= P (X = m,Y = z|M = m,Z = z)

= P (X = z, Y = m|M = m,Z = z).

To see that this is correct we need to check that smoothing works. Let h
be an arbitrary function and define g(x, y) = h(x, y, x ∨ y, x ∧ y) so that
h(X,Y,M,Z) = g(X,Y ). Then

E
[

h(X,Y,M,Z)
∣

∣M,Z
]

= E
[

g(X,Y )
∣

∣M,Z
]

=
1

2
g(M,Z) +

1

2
g(Z,M).

So smoothing works if Eg(X,Y ) = E
[

1
2g(M,Z) + 1

2g(Z,M)
]

, that is, if
∫∫

g(x, y)f(x)f(y) dx dy

=

∫∫

1

2

[

g(x ∨ y, x ∧ y) + g(x ∧ y, x ∨ y)
]

f(x)f(y) dx dy

=

∫∫

1

2

[

g(x, y) + g(y, x)
]

f(x)f(y) dx dy.

This holds because
∫∫

g(x, y) dx dy =
∫∫

g(y, x) dx dy, and the stated con-
ditional distribution is correct.

12. From the example of Section 3.2, T and U = X/(X + Y ) are independent
with U ∼ Unif(0, 1). Then

E
[

f(X,Y )
∣

∣ T = t
]

= E
[

f
(

TU, T (1− U)
) ∣

∣ T = t
]

=

∫ 1

0

f
(

tu, t(1 − u)
)

du.

(It is easy to check that smoothing works by viewing all expectations as
integrals against the joint density of T and U .)



B.7 Problems of Chapter 7 481

14. a) Integrating against y,

pX(x) =

∫

p(x, y) dy =

∫ x

0

e−x dy = xe−x, x > 0,

and integrating against x,

pY (y) =

∫

p(x, y) dx =

∫ ∞

y

e−x dx = e−y, y > 0.

b) Integration against the marginal density gives

EY =

∫ ∞

0

ye−y dy = 1 and EY 2 =

∫ ∞

0

y2e−y dy = 2.

c) Dividing the joint density by the marginal density,

pY |X(y|x) = p(x, y)/pX(x) =
1

x
, y ∈ (0, x).

Integrating against this conditional density

E[Y |X = x] =

∫ x

0

y

x
dy =

x

2

and

E[Y 2|X = x] =

∫ x

0

y2

x
dy =

x2

3
.

So E[Y |X ] = X/2, and E[Y 2|X ] = X2/3.
d) Integrating against the marginal density of X ,

EE[Y |X ] =
1

2
EX =

1

2

∫ ∞

0

x2e−x dx = 1,

and

EE[Y 2|X ] =
1

3
EX2 =

1

3

∫ ∞

0

x3e−x dx = 2.

B.7 Problems of Chapter 7

1. The likelihood is pθ(x) = θT (x)e−nθ/
∏n

1 xi!, where T (x) =
∑n

i=1 xi. So
the Bayes estimator is

δ(x) =

∫∞
0 θp+1pθ(x)λ(θ) dθ
∫∞
0 θppθ(x)λ(θ) dθ

=

∫∞
0
θT (x)+p+1e−(n+η)θ dθ

∫∞
0
θT (x)+pe−(n+η)θ dθ

=
T (x) + p+ 1

n+ η
.
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2. The marginal density of X is

q(x) =

∫

pθ(x)λ(θ) dθ

=

∫ ∞

x

1

θ(1 + θ)2
dθ

=

∫ ∞

x

[

1

θ
− 1

1 + θ
− 1

(1 + θ)2

]

dθ

= log

(

1 + x

x

)

− 1

1 + x
.

So p(θ|x) = 1/
[

θ(1 + θ)2q(x)
]

, θ > x, and

E
[

|Θ − d|
∣

∣ X = x
]

=

∫ ∞

x

|θ − d|
θ(1 + θ)2q(x)

dθ

=

∫ d

x

d− θ

θ(1 + θ)2q(x)
dθ +

∫ ∞

d

θ − d

θ(1 + θ)2q(x)
dθ.

Note that these integrals are like the integral for q when d is in the nu-
merator and are easy to integrate when θ is in the numerator. After a bit
of algebra,

E
[

|Θ − d|
∣

∣ X = x
]

= d− 2dq(d)

q(x)
− 1

(1 + x)q(x)
+

2

(1 + d)q(x)
.

Since q′(d) = −1/
[

d(1 + d)2
]

, the derivative of this expression is 1 −
2q(d)/q(x). This function is strictly increasing from −1 to 1 as d varies
from x to infinity. So it will have a unique zero, and this zero determines
the Bayes estimator: q

(

δΛ(X)
)

= q(X)/2. From this equation,

P [δΛ(X) < Θ|X = x] =

∫ ∞

δΛ(x)

1

θ(1 + θ)2q(x)
dθ =

q
(

δΛ(x)
)

q(x)
=

1

2
.

3. Completing squares, the conditional density is proportional to

λ(θ)pθ(y)

∝θ exp

[

− θ21
2τ2

1

− θ22
2τ2

2

− nθ21
2σ2

− θ22
2σ2

n
∑

i=1

x2
i +

θ1
σ2

n
∑

i=1

yi +
θ2
σ2

n
∑

i=1

xiyi

]

∝θ exp











−

[

θ1 −
∑n

i=1 yi
n+ σ2/τ2

1

]2

2
(

n/σ2 + 1/τ2
1

)−1 −

[

θ2 −
∑n
i=1 xiyi

∑n
i=1 x

2
i + σ2/τ2

2

]2

2
(
∑n

i=1 x
2
i /σ

2 + 1/τ2
2

)−1











.

So given the data, Θ1 and Θ2 are independent normal variables. The Bayes
estimates are the posterior means,
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E[Θ1|X,Y ] =

∑n
i=1 Yi

n+ σ2/τ2
1

and E[Θ2|X,Y ] =

∑n
i=1 xiYi

∑n
i=1 x

2
i + σ2/τ2

2

.

4. a) Since λ′(θ) =
[

α− βA′(θ)
]

λ(θ),

0 =

∫

Ω

λ′(θ) dθ = E
[

α− βA′(Θ)
]

.

So EA′(Θ) = α/β.

b) The joint density (or likelihood) is proportional to eθnT−nA(θ). Multi-
plying by λα,β , the conditional density of Θ given X = x is proportional
to

e(α+nT )θ−(β+n)A(θ) ∝θ λα+nT ,β+n.

So Θ|X = x ∼ Λα+nT,β+n. Using the result from part (a), the Bayes
estimator of A′(Θ) is

E
[

A′(Θ)|X
]

=
α+ nT

β + n
=

β

β + n

α

β
+

n

β + n
T ,

where the last equality expresses this estimator as a weighted average of
EA′(Θ) = α/β and T .
c) Since pθ(x) = θe−θx, x > 0, we should take T (x) = −x, and A(θ) =
− log θ. Then

λα,β(θ) ∝θ eαθ+β log θ = θβeαβ , θ > 0.

For convergence, α should be negative. This density is proportional to a
gamma density, and so Λα,β is the gamma distribution with shape param-
eter β + 1 and failure rate −α. Since 1/θ = −A′(θ), the Bayes estimator,
using results from part (b), is

−E
[

A′(Θ)|X
]

= −α+ nT

β + n
=

|α| + nX

β + n
.

6. a) The joint density is λ(θ)pθ(x) = fθ(x)/2. Integrating (summing) out θ,
the marginal density of X is q(x) = [f0(x) + f1(x)]/2. So the conditional
density of Θ given X is

λ(θ|x) =
λ(θ)pθ(x)

q(x)
=

fθ(x)

f0(x) + f1(x)
, θ = 0, 1.

This is the mass function for a Bernoulli distribution with success probabil-
ity p = p(x) = f1(x)/

(

f0(x) + f1(x)
)

. The Bayes estimator under squared
error loss is the mean of this conditional distribution,

E(Θ|X) =
f1(X)

f0(X) + f1(X)
.
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b) From Theorem 7.1, the Bayes estimator should minimize the posterior
risk. For zero-one loss the estimator should be one if p(X) > 1/2, and zero
if p(X) < 1/2. If p(X) = 1/2, either is optimal. Equivalently, δ should be
one if f1(X) > f0(X), and should be zero if f1(X) < f0(X).

7. Using Theorem 7.1, the Bayes estimator δ(x) should be the value d mini-
mizing

E

[

(d−Θ)2

d

∣

∣

∣

∣

X = x

]

= d− 2E[Θ|X = x] +
E[Θ2|X = x]

d
.

Setting the derivative to zero, δ =
√

E[Θ2|X ]. If T (x) = x1 + · · · + xn,
then since λ(θ|x) ∝ λ(θ)pθ(x) ∝ θne−[1+T (x)]θ,

E[Θ2|X ] =

∫∞
0
θn+2e−(1+T )θ dθ

∫∞
0 θne−(1+T )θ dθ

=
(n+ 1)(n+ 2)

(1 + T )2
.

So the Bayes estimator is
√
n2 + 3n+ 2/(1 + T ).

16. a) Let f and F be the density and cumulative distribution functions for
the standard Cauchy distribution, so the respective density and cumulative
distribution functions ofX (or Y ) are f(x−θ) and F (x−θ). By smoothing,

P (A ≤ x) = EP (X ≤ 2x− Y |Y ) = EF (2x− Y − θ).

Taking d/dx, A has density

2Ef(2x− Y − θ) =

∫

2 dy

π2
[

(2x− y − θ)2 + 1
][

y2 + 1
]

=
1

π
[

(x− θ)2 + 1
] .

So A and X have the same density.
b) We have |A− θ| = |X − θ| along two lines: Y − θ = X − θ and Y − θ =
−3(X−θ). These lines divide the (X,Y ) plane into four regions: two where
|A − θ| < |X − θ| (boundaries for these two regions form obtuse angles),
and two where |A − θ| > |X − θ|. Similarly, the lines Y − θ = X − θ and
Y − θ = −(X− θ) divide the plane into four regions. But these regions are
symmetric, and so the chance (X,Y ) lies any of them is 1/4. The region
where |A − θ| < |X − θ| contains two of the symmetric regions, and so
P (|A− θ| < |X − θ|) > 1/2.

B.8 Problems of Chapter 8

1. By the covariance inequality (equation (4.11))
∣

∣Cov(Xi, Xj)
∣

∣ ≤ σ2. Of
course, by the independence, this covariance must be zero if |i − j| ≥ m.
So for any i,

∑n
j=1 Cov(Xi, Xj) ≤ (2m− 1)σ2. Thus
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E(Xn − ξ)2 =
1

n2
Var

(

n
∑

i=1

Xi

)

=
1

n2

n
∑

i=1

n
∑

j=1

Cov(Xi, Xj)

≤ 1

n2

n
∑

i=1

(2m− 1)σ2 =
(2m− 1)σ2

n
→ 0.

2. Since log(1 − u)/u→ −1 as u→ 0 and

P (Mn ≤ x) = P (Xi ≤ x, i = 1, . . . , n) = (1 − e−λx)n,

if ǫ > 0,

logP

(

logn

Mn
≥ λ+ ǫ

)

= nǫ/(λ+ǫ) log
[

1 − e−λ log(n)/(λ+ǫ)
]

e−λ log(n)/(λ+ǫ)
→ −∞.

So P (logn/Mn ≥ λ+ ǫ) → 0. Similarly, if ǫ ∈ (0, λ),

logP

(

logn

Mn
> λ− ǫ

)

= n−ǫ/(λ−ǫ)
log
[

1 − e−λ log(n)/(λ−ǫ)]

e−λ log(n)/(λ−ǫ) → 0.

So P (log n/Mn > λ − ǫ) → 1, and P (log n/Mn ≤ λ − ǫ) → 0. Hence
log(n)/Mn is consistent.

3. Because Mn lies between 0 and θ, n(θ̂ − θ) lies between −nθ and θ. So

Pθ
(

n(θ̂ − θ) ≤ y
)

is one if y ≥ θ. If y ≤ θ, then for n sufficiently large,

Pθ
(

n(θ̂ − θ) ≤ y
)

= Pθ

(

Mn ≤ θ − θ − y

n+ 1

)

=

(

1 − 1 − y/θ

n+ 1

)n

→ ey/θ−1.

So Yn → Y where Y has cumulative distribution function Hθ given by
Hθ(y) = min{1, ey/θ−1}.

4. a) By the central limit theorem,
√
n(p̂ − p) ⇒ N

[

0, p(1 − p)
]

, and so
by the delta method, Proposition 8.14, with f(x) = x2,

√
n(p̂2

n − p2) ⇒
N
[

0, 4p3(1 − p)
]

.
b) Tn = X1 + · · · + Xn is complete sufficient and 4X1X2X3(1 − X4) is
unbiased. The UMVU estimator is δn(T ) = E[4X1X2X3(1−X4)|T ], given
explicitly by

δn(t) =
4P (X1 = X2 = X3 = 1, X4 = 0, X5 + · · · +Xn = t− 3)

P (T = t)

=
4t(t− 1)(t− 2)(n− t)

n(n− 1)(n− 2)(n− 3)
.

c) The difference nδn − nσ̂2
n is
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4T (T − 1)(T − 2)(n− T )

(n− 1)(n− 2)(n− 3)
− 4T 3(n− T )

n3

=
4T (n− T )

[

T 2(6n2 − 11n+ 6) − 3Tn3 + 2n3
]

n3(n− 1)(n− 2)(n− 3)

=
4n3p̂n(1 − p̂n)

(n− 1)(n− 2)(n− 3)

(

p̂2
n

6n2 − 11n+ 6

n2
− 3p̂n +

2

n

)

,

which converges in probability to 4p(1 − p)(6p2 − 3p) = 27/32. By the
central limit theorem,

√
n(p̂n−p) ⇒ Z ∼ N(0, 3/16). Now σ̂2 = f(p̂n) with

f(p) = 4p3(1−p), and since f ′(3/4) = 0, a two-term Taylor approximation
is necessary to derive the limiting distribution using the delta method.
With a suitable intermediate value pn, lying between p and p̂n,

n(σ̂2 − σ2) = n
(

f(p̂n) − f(p)
)

=
1

2

[√
n(p̂n − p)

]2
f ′′(pn).

Because pn
p→ p and f ′′ is continuous, f ′′(pn)

p→ f ′′(p) = −9. Using
Theorem 8.13, n(σ̂2 − σ2) ⇒ −9Z2/2 and n(δn − σ2) ⇒ 27/32− 9Z2/2.

5. If ǫ > 0,

P (Xi ≥ θ + ǫ) =

∫ ∞

θ+ǫ

(x− θ)eθ−x dx = (1 + ǫ)e−ǫ < 1,

and so

P (Mn ≥ θ + ǫ) = P (Xi ≥ θ + ǫ, i = 1, . . . , n) =
[

(1 + ǫ)e−ǫ
]n → 0.

Since Mn ≥ θ, Mn is consistent. Next, for x > 0,

P
(√
n(Mn − θ) > x

)

=

[(

1 +
x√
n

)

e−x/
√
n

]n

.

To evaluate the limit, we use the facts that if cn → c, then (1+cn/n)n → ec,
and that

[

(1+u)e−u−1
]

/u2 → −1/2, which follows from Taylor expansion
or l’Hôpital’s rule. Since

n

[(

1 +
x√
n

)

e−x/
√
n − 1

]

= x2 (1 + x/
√
n)e−x/

√
n − 1

(x/
√
n)2

→ −x2/2,

P
(√
n(Mn − θ) > x

)

→ e−x
2/2. So,

√
n(Mn − θ) > x

)

⇒ Y , where Y has

cumulative distribution function P (Y ≤ y) = 1− e−y
2/2, y > 0 (a Weibull

distribution).
6. Let F denote the cumulative distribution function of Y , and let y > 0 be

a continuity point of F . If y+ ǫ is also a continuity point of F , then since

{AnYn ≤ y} ⊂ {Yn ≤ y + ǫ} ∪
{

An ≤ y/(y + ǫ)
}

,
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we have

P (AnYn ≤ y) ≤ P (Yn ≤ y + ǫ) + P
(

An ≤ y/(y + ǫ)
)

→ F (y + ǫ).

From this, lim supP (AnYn ≤ y) ≤ F (y+ ǫ). Because F is continuous at y
and ǫ can be arbitrarily small (F can have at most a countable number of
discontinuities), lim supP (AnYn ≤ y) ≤ F (y). Similarly, if y− ǫ is positive
and a continuity point of F , then

P (AnYn ≤ y) ≥ P (Yn ≤ y−ǫ)−P
(

An < 0 or An ≥ y/(y−ǫ)
)

→ F (y−ǫ).

From this, lim inf P (AnYn ≤ y) ≥ F (y − ǫ), and since ǫ can be arbitrarily
small, lim inf P (AnYn ≤ y) ≥ F (y). Thus

limP (AnYn ≤ y) = F (y).

Similar arguments show that

limP (AnYn ≤ y) = F (y)

when y is negative or zero with F continuous at y.
16. The log-likelihood l(α, β, σ2) is

− 1

2σ2

n
∑

i=1

Y 2
i +

α

σ2

n
∑

i=1

Yi +
β

σ2

n
∑

i=1

xiYi −
nα2

2σ2

− β2

2σ2

n
∑

i=1

x2
i −

αβ

σ2

n
∑

i=1

xi − n log
√

2πσ2.

With any fixed value for σ2 this is a quadratic function of α and β,
maximized when both partial derivatives are zero. From the form, the
answer is the same regardless of the value for σ2. This gives the fol-
lowing equations for α̂ and β̂: −2

∑n
i=1 Yi + 2nα̂ + 2β̂

∑n
i=1 xi = 0 and

−2
∑n
i=1 xiYi + 2β̂

∑n
i=1 x

2
i + 2α̂

∑n
i=1 xi = 0. Solving, β̂ =

(
∑n

i=1 xiYi −
nxY

)

/
(
∑n

i=1 x
2
i − nx2

)

and α̂ = Y − β̂x. Next, σ̂2 must maximize

l(α̂, β̂, σ2) = −∑n
i=1 e

2
i /(2σ

2)−n log
√

2πσ2, where ei = Yi−α̂−β̂xi (called
the ith residual). The derivative here with respect to σ2 is

∑n
i=1 e

2
i /(2σ

4)−
n/(2σ2) which has a unique zero when σ2 is σ̂2 =

∑n
i=1 e

2
i /n. Note that

the function goes to −∞ as σ2 ↓ 0 or as σ2 → ∞. So this value must give
the maximum, and σ̂2 is thus the maximum likelihood estimator of σ2.

17. The likelihood is

1√
2π

n exp

[

−X
2
1

2
− 1

2

n−1
∑

i=1

(Xi+1 − ρXi)
2

]

∝ exp

[

ρ

n−1
∑

i=1

XiXi+1 −
ρ2

2

n−1
∑

i=1

X2
i

]

.
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Maximizing the quadratic function in the exponential, the maximum like-
lihood estimator is

ρ̂ =

n−1
∑

i=1

XiXi+1

/

n−1
∑

i=1

X2
i .

19. By the central limit theorem,
√
n(Xn−1/θ) ⇒ N(0, 1/θ2). Using the delta

method with f(x) = 1/x,
√
n(1/Xn− θ) ⇒ N(0, θ2). Next, by the central

limit theorem,
√
n(p̂n − e−θ) ⇒ N

[

0, e−θ(1 − e−θ)
]

, and so by the delta
method with f(x) = − log x,

√
n(− log p̂n − θ) ⇒ N(0, eθ − 1). So the

asymptotic relative efficiency is θ2/(eθ − 1).
20. By the central limit theorem,

√
n(Xn − θ) ⇒ N(0, θ), and so by the delta

method with f(x) = x(x+ 1),
√
n
[

Xn(Xn + 1) − θ(θ + 1)
]

⇒ N(0, 4θ3 +

4θ2+θ). Next, let Z = (X1−θ)/
√
θ ∼ N(0, 1). Then Var(X2

1 ) = Var(θZ2+
2θ3/2Z+θ2) = Var(θZ2)+Var(2θ3/2Z)+2 Cov(θZ2, 2θ3/2Z) = 2θ2+4θ3+
0, and by the central limit theorem,

√
n
(

δn− θ(θ+1)
)

⇒ N(0, 4θ3 +2θ2).

So the asymptotic relative efficiency of Xn(Xn + 1) with respect to δn is
(4θ3 + 2θ2)/(4θ3 + 4θ2 + θ).

21. Since Var(X2
i ) = 2σ4 and σ̂2 =

∑n
i=1X

2
i /n, by the central limit theo-

rem,
√
n(σ̂2 − σ2) ⇒ N(0, 2σ4). By the delta method with f the square

root function,
√
n(σ̂−σ) ⇒ N(0, σ2/2). By Theorem 8.18,

√
n(Qn−cσ) ⇒

N
[

0, 3σ2/
(

16φ2(c)
)]

. So
√
n(σ̃−σ) ⇒ N

[

0, 3σ2/
(

16c2φ2(c)
)]

. The asymp-
totic relative efficiency of σ̃ with respect to σ̂ is 8c2φ2(c)/3 = 0.1225
(c = 0.6745).

24. a) For x > 0, P (|Xi| ≤ x) = Φ(x/σ) − Φ(−x/σ) = 2Φ(x/σ) − 1. So |Xi|
has density 2φ(x/σ)/σ, x > 0, and median Φ←(3/4)σ = 0.6745σ. Hence

σ̃ = cM
p→ 0.6745cσ. This estimator will be consistent if c = 1/0.6745 =

1.4826.
b) By (8.5),

√
n(M − 0.6745σ) ⇒ N

[

0, σ2/
(

(16φ2(0.6745)
)]

= N(0, 0.6189σ2),

and so √
n(σ̃ − σ) ⇒ N(0, 1.3604σ2).

c) The log-likelihood is

ln(σ) = − 1

2σ2

n
∑

i=1

X2
i − n log(

√
2πσ).

Setting l′n(σ) to zero, the maximum likelihood estimator is σ̂ =
∑n

i=1X
2
i /n.

The summands in σ̂2 have common variance 2σ4, and by the central limit
theorem, √

n(σ̂2 − σ2) ⇒ N(0, 2σ4).

Using the delta method,
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√
n(σ̂ − σ) ⇒ N(0, σ2/2).

d) Dividing the variances, the asymptotic relative efficiency is

σ2/2

1.3604σ2
= 0.3675.

B.9 Problems of Chapter 9

8. Define S2
x =

∑m
i=1(Xi −X)2/(m − 1) and S2

y =
∑n

j=1(Yi − Y )2/(n − 1).

Then (m − 1)S2
x/σ

2
x ∼ χ2

m−1 and (n − 1)S2
y/σ

2
y ∼ χ2

n−1 are independent,
and F = σ2

yS
2
x/(σ

2
xS

2
y) has an F distribution with m−1 and n−1 degrees of

freedom. The distribution of F does not depend on unknown parameters.
Therefore it is a pivot. If c1 and c2 are the (α/2)th and (1−α/2)th quantiles
for this F distribution, then P (c1 < F < c2) = 1 − α. This event, c1 <
F < c2, occurs if and only if

σx
σy

∈
(√

S2
x

c2S2
y

,

√

S2
x

c1S2
y

)

,

and this is the desired 1 − α confidence interval.
9. a) The likelihood function is θ−nI{X(n) ≤ θ}, maximized at θ̂ = X(n).

b) For x ∈ (0, 1), P (θ̂/θ ≤ x) = P (X(n) ≤ xθ) = xn, and so θ̂/θ is a pivot.

The (α/2)th and (1 − α/2)th quantiles for this distribution are (α/2)1/n

and (1 − α/2)1/n. So

1 − α = P
[

(α/2)1/n < θ̂/θ < (1 − α/2)1/n
]

= P
[

θ ∈
(

θ̂/(1 − α/2)1/n, θ̂/(α/2)1/n
)]

.

Hence
(

θ̂/(1−α/2)1/n, θ̂/(α/2)1/n
)

is the desired 1−α confidence interval.
10. For t > 0,

P (θXi ≤ t) = P (Xi ≤ t/θ) =

∫ t/θ

0

θe−θx = 1 − e−t,

and so θXi has a standard exponential distribution. So θT has a gamma
distribution with density xn−1e−x/Γ (n), x > 0. If γα/2 and γ1−α/2 are the
upper and lower (α/2)th quantiles for this distribution, then

P (γ1−α/2 < θT < γα/2) = P
(

θ ∈ (γ1−α/2/T, γα/2/T )
)

= 1 − α,

which shows that (γ1−α/2/T, γα/2/T ) is a 1 − α confidence interval for θ.
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11. a) The cumulative distribution function of Y = (X − θ)/σ is

FY (y) = P

(

X − θ

σ
≤ y

)

= P (X ≤ θ + σy)

=

∫ θ+σy

−∞
g

(

x− θ

σ

)

dx

σ
=

∫ y

−∞
g(u) du.

From this, Y has density g.
b) Let Yi = (Xi − θ)/σ, i = 1, 2. Then Xi = θ + σYi, and using this,
W = (Y1 + Y2)/|Y1 − Y2|. Since Y1 and Y2 are independent, (Y1, Y2) has
joint density g(y1)g(y2), which does not depend on θ or σ. Because W is
a function of Y1 and Y2, its distribution does not depend on θ or σ.
c) Let qα/2 and q1−α/2 denote the upper and lower (α/2)th quantiles for
the distribution of W . Then

1 − α = P

(

q1−α/2 <
X1 +X2 − 2θ

|X1 −X2|
< qα/2

)

= P
[

θ ∈
(

X − 1
2 |X1 −X2|qα/2, X + 1

2 |X1 −X2|q1−α/2
)]

,

and the interval in this expression is a 1 − α confidence interval for θ.
d) The variable V = |X1−X2|/σ = |Y1 −Y2| is a pivot. If qα/2 and q1−α/2
are the upper and lower (α/2)th quantiles for the distribution of V , then

1 − α = P

(

q1−α/2 <
|X1 −X2|

σ
< qα/2

)

= P

[

σ ∈
( |X1 −X2|

qα/2
,
|X1 −X2|
q1−α/2

)]

,

and the interval in this expression is a 1 − α confidence interval for σ.
12. By the addition law,

Pθ
(

g(θ) ∈ S1 ∩ S2

)

= Pθ
(

g(θ) ∈ S1

)

+ Pθ
(

g(θ) ∈ S2

)

− Pθ
(

g(θ) ∈ S1 ∪ S2

)

≥ Pθ
(

g(θ) ∈ S1

)

+ Pθ
(

g(θ) ∈ S2

)

− 1

≥ 1 − 2α.

13. a) Multiplying the marginal density of Xi times the conditional density of
Yi given Xi, the joint density of (Xi, Yi) is exp{−x2/2−(y−xθ)2/2}/(2π).
So the joint density for the entire sample is

∏n
i=1

[

exp{−x2
i /2 − (yi −

xiθ)
2/2}/(2π)

]

, and the log-likelihood function is

ln(θ) = −1

2

n
∑

i=1

X2
i −

1

2

n
∑

i=1

(Yi −Xiθ)
2 − n log(2π).

This is a quadratic function of θ, maximized when
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l′n(θ) = −2
n
∑

i=1

Xi(Yi −Xiθ) = 0.

This gives θ̂ =
∑n
i=1XiYi/

∑n
i=1X

2
i .

b) Fisher information is

I(θ) = −Eθ
∂2 log fθ(X,Y )

∂θ2
= EθX

2 = 1.

c) As n→ ∞,
√
n(θ̂ − θ) ⇒ N(0, 1).

d) (θ̂ ± zα/2/
√
n).

e) The observed Fisher information is −l′′n(θ̂) =
∑n
i=1X

2
i , and the associ-

ated confidence interval is
(

θ̂ ± zα/2/
[
∑n

i=1X
2
i

]1/2)
. The main difference

is that now the width of the interval varies according to the observed in-
formation.
f) Given X1 = x1, . . . , Xn = xn, the variables Y1, . . . , Yn are condi-
tionally independent with N(xiθ, 1) as the marginal distribution for Yi.
So, given X1 = x1, . . . , Xn = xn,

∑n
i=1XiYi ∼ N(θ

∑n
i=1 x

2
i ,
∑n

i=1 x
2
i ).

From this, the conditional distribution of
[
∑n
i=1X

2
i

]1/2
(θ̂ − θ) given

X1 = x1, . . . , Xn = xn is N(0, 1). By smoothing,

P

[( n
∑

i=1

X2
i

)1/2

(θ̂ − θ) ≤ x

]

= EP

[( n
∑

i=1

X2
i

)1/2

(θ̂ − θ) ≤ x

∣

∣

∣

∣

X1, . . . , Xn

]

= EΦ(x) = Φ(x).

So
[
∑n
i=1X

2
i

]1/2
(θ̂ − θ) ∼ N(0, 1), and using this it is easy to show that

the coverage probability for the interval in part (e) is exactly 1 − α.
15. Since the Fisher information for a single Bernoulli observation is I(p) =

1/[p(1 − p)], the first two confidence regions/intervals are

CI1 =

{

p :

√
n|p̂− p|

√

p(1 − p)
< zα/2

}

=





p̂+ z2
α/2/(2n)

1 + z2
α/2/n

±
zα/2

√

p̂(1 − p̂) + z2
α/2/(4n)

√
n(1 + z2

α/2/n)



 ,

and

CI2 =

(

p̂± zα/2

√

p̂(1 − p̂)

n

)

.

Since ln(p) = log
(

n
X

)

+ np̂ log p+ n(1 − p̂) log(1 − p), the observed Fisher
information is −l′′n(p̂) = n/[p̂(1−p̂)]. Using this, CI3, based on the observed
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Fisher information, is the same as CI2. Finally, the profile confidence region
is

CR4 =
{

p : p̂ log[p̂/p] + (1 − p̂) log[(1 − p̂)/(1 − p)] < z2
α/2/(2n)

}

.

This region is an interval, but it can only be found numerically. With the
stated data, the confidence intervals are

CI1 = (0.2189, 0.3959),

CI2 = CI3 = (0.2102, 0.3898),

and

CI4 = (0.2160, 0.3941).

20. a) The joint densities are px1(1 − p)p2x2(1 − p2), an exponential family
with sufficient statistic T = X1 +2X2. The maximum likelihood estimator
solves

l′(p) = − (3 + T )p2 + p− T

p(1 − p2)
= 0,

which gives

p̂ = p̂(T ) =
−1 +

√

1 + 4T (3 + T )

6 + 2T
.

b) Since

P (Y = y) =

y
∑

x=0

P (X1 = y − x,X2 = x)

= py(1 − p)(1 − p2)(1 + p+ · · · + py)

= py(1 − p2)(1 − p1+y),

we have

P (X2 = x|Y = y) =
P (X1 = y − x,X2 = x)

P (Y = y)
=
px(1 − p)

1 − p1+y

and

e(y, p) = E(T |Y = y) = y + E(X2|Y = y)

= y +
1 − p

1 − p1+y

y
∑

x=0

xpx = y +
p(1 − py) − p(1 − p)ypy

(1 − p)(1 − p1+y)
.

The algorithm then evolves with p̂j = p̂(Tj) and Tj+1 = e(y, p̂j).
c) The iterates are T1 = 124/21 = 5.9048, p̂1 = 0.76009, T2 = 6.7348, and
p̂2 = 0.78198.
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21. a) The joint densities are exp
[

θT (x) − n log[(2 sinh θ)/θ]
]

, where T (x) =
x1 + · · ·+ xn. This is an exponential family, and the maximum likelihood
estimator θ̂x is the unique solution of the equation

T

n
=
A′(θ)
n

= coth θ − 1

θ
.

b) Data Y1, . . . , Yn are i.i.d. Bernoulli variables with success probability
p = P (Xi > 0) = (eθ − 1)/(eθ − e−θ). Noting that 1− p = (1− e−θ)/(eθ −
e−θ) = p/eθ, θ = log[p/(1−p)], and the relation between θ and p is one-to-
one. Naturally, the maximum likelihood estimator of p based on Y1, . . . , Yn
is p̂ = (Y1 + · · · + Yn)/n, and so θ̂y = log[p̂/(1 − p̂)].
c) From the independence, E[Xj |Y = y] = E[Xj |Yj = yj ], which is

∫ 1

0
θxeθx dx

∫ 1

0 θe
θx dx

= 1 − 1

θ
+

1

eθ − 1
, if yj = 1,

∫ 0

−1
θxeθx dx

∫ 0

−1 θe
θx dx

= −1

θ
+

1

eθ − 1
, if yj = 0.

So E[T |Y ] =
∑n
i=1 Yi − n/θ + n/(eθ − 1).

d) Because
n
∑

i=1

Yi = np̂ =
n(eθ̂y − 1)

eθ̂y − e−θ̂y

,

if we start the algorithm at θ̂y, then

T1

n
=

eθ̂y − 1

eθ̂y − e−θ̂y

− 1

θ̂y
+

1

eθ̂y − 1
= coth(θ̂y) −

1

θ̂y
.

From the equation in part (a), the next estimate, θ̂1, will also be θ̂y.

e) The iterates are T1 = 1/2, θ̂1 = 0.30182, T2 = 0.62557, and θ̂2 =
0.37892.

27. a) Since
√
n(θ̂n−θ) ⇒ Y ∼ N(0, I−1(θ)) and

√
n(η̂n−η) =

(

1
0

)

·√n(θ̂n−θ),
we have

√
n(η̂n − η) ⇒

(

1
0

)

· Y ∼ N(0, τ2) with

τ2 = (1, 0)I−1(θ)
(

1
0

)

= [I−1(θ)]11 =
I22

I11I22 − I2
12

.

b) The limiting variance is ν2 = 1/E[∂ log fθ(X)/∂η]2 = 1/I11. So ν2 ≥ τ2

if and only if I11I22/(I11I22 − I2
12) ≤ 1, which always holds, and ν2 = τ2

if and only if I12 = 0.
c) If I(·) is continuous, then

τ̂2 =
I22(θ̂)

I11(θ̂)I22(θ̂) − I12(θ̂)2
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is a consistent estimator of τ2. Then
√
n(η̂n − η)/τ̂ ⇒ N(0, 1), and using

this asymptotic pivot, (η̂n ± zα/2τ̂ /
√
n) is an asymptotic 1−α confidence

interval for η.
d) The observed Fisher information divided by n, Ĩ = −∇2l(θ̂n)/n, is a
consistent estimator of I(θ), and so

τ̃2 =
Ĩ22

Ĩ11Ĩ22 − Ĩ12

is a consistent estimator of τ2. Continuing as in part (c), (η̂n± zα/2τ̃ /
√
n)

is an asymptotic 1 − α confidence interval for η.
29. a) The joint density of W,X, Y is

fα,β(w, x, y) = q(w, x)
exp
[

− 1
2 (y − αw − βx)2

]

√
2π

,

and so the Fisher information I(α, β) is

−E∇2 log fα,β(W,X, Y ) = E

(

W 2 WX
WX X2

)

=

(

EW 2 EWX
EWX EX2

)

.

The gradient of the log-likelihood is

∇l(α, β) =

(
∑n

i=1Wi(Yi − αWi − βXi)
∑n
i=1Xi(Yi − αWi − βXi)

)

.

Setting this equal to zero, the maximum likelihood estimators are

α̂ =

(
∑n

i=1X
2
i

)(
∑n

i=1WiYi
)

−
(
∑n
i=1WiXi

)(
∑n
i=1XiYi

)

(
∑n
i=1X

2
i

)(
∑n
i=1W

2
i

)

−
(
∑n
i=1WiXi

)2

and

β̂ =

(
∑n

i=1W
2
i

)(
∑n

i=1XiYi
)

−
(
∑n

i=1WiXi

)(
∑n
i=1WiYi

)

(
∑n

i=1X
2
i

)(
∑n

i=1W
2
i

)

−
(
∑n

i=1WiXi

)2 .

Since
√
n(θ̂ − θ) ⇒ N(0, I−1),

√
n(α̂ − α) ⇒ N

(

0, [I(α, β)−1]1,1
)

with

[I(α, β)−1]1,1 = EX2/
(

EX2EW 2 − (EXW )2
)

.
b) If β is known, then α̃ solves l′(α) =

∑n
i=1Wi(Yi − αWi − βXi) =

0, which gives α̃ =
(
∑n
i=1WiYi − β

∑n
i=1WiXi

)

)/
∑n
i=1W

2
i . The Fisher

information is just EW 2 in this case, and so
√
n(α̃− α) ⇒ N(0, 1/EW 2).

This is the same as the limiting distribution in part (a) when EXW = 0.
Otherwise the distribution in part (a) has larger variance.

30. By Taylor expansion about θ,

g(θ̂n) = g(θ) + ∇g(θ̃n) · (θ̂n − θ),
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where θ̃n is an intermediate value on the line segment between θ̂n and θ.

Since θ̂n is consistent, θ̃n
Pθ→ θ, and so ∇g(θ̃n)

Pθ→ ∇g(θ). Because
√
n(θ̂n−

θ) ⇒ Z ∼ N
(

0, I(θ)−1
)

, using Theorem 9.30,

√
n
(

g(θ̂n) − g(θ)
)

= ∇g(θ̃n) · √n(θ̂n − θ) ⇒ ∇g(θ) · Z ∼ N
(

0, ν(θ)
)

,

where ν(θ) = ∇g(θ)′I(θ)−1∇g(θ). This proves Proposition 9.31. To show

that (9.13) is a 1 − α asymptotic confidence interval, if ν̂
Pθ→ ν(θ), then

1/
√
ν̂

Pθ→ 1/
√

ν(θ) by Proposition 8.5. If Y ∼ N
(

0, ν(θ)
)

, then using The-
orem 8.13,

1√
ν̂

√
n
(

g(θ̂n) − g(θ)
)

⇒ 1
√

ν(θ)
Y ∼ N(0, 1).

One natural estimate for ν is ν̂1 = ν(θ̂n). Another estimator, based on
observed Fisher information, is

ν̂2 = −n∇g(θ̂n)′
(

∇2l(θ̂n)
)−1∇g(θ̂n).

The asymptotic confidence intervals are
(

g(θ̂) ± zα/2
√

ν̂i/n
)

, i = 1 or 2.
31. The likelihood is

L(θ) =

(

n

N11, . . . , N22

)

θ
N+1

1 (1 − θ1)
N+2θ

N1+

2 (1 − θ2)
N2+ ,

and maximum likelihood estimators for θ1 and θ2 are θ̂1 = N+1/n and

θ̂2 = N1+/n. The observed Fisher information matrix is

−∇2l(θ̂) =









N+1

θ̂21
+

N+2

(1 − θ̂1)2
0

0
N1+

θ̂22
+

N2+

(1 − θ̂2)2









=







n

θ̂1(1 − θ̂1)
0

0
n

θ̂2(1 − θ̂2)






.

Since −∇2l(θ̂)/n
Pθ→ I(θ),

I(θ) =







1

θ1(1 − θ1)
0

0
1

θ2(1 − θ2)






.

In this example, g(θ) = θ1θ2 and the two estimates of ν(θ) are the same:
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(θ̂2, θ̂1)

(

θ̂1(1 − θ̂1) 0

0 θ̂2(1 − θ̂2)

)(

θ̂2
θ̂1

)

= θ̂1θ̂2(θ̂1 + θ̂2 − 2θ̂1θ̂2).

The confidence intervals are both


θ̂1θ̂2 ± zα/2

√

θ̂1θ̂2(θ̂1 + θ̂2 − 2θ̂1θ̂2)

n



 .

B.10 Problems of Chapter 10

1. The joint density can be written as

exp
[

− 1
2 (x1 − θ)2 − 1

2

∑n−1
j=1

(

xj+1 − θ − 1
2 (xj − θ)

)2
]

√
2π

n ,

so we have a location family. Ignoring terms that do not depend on θ, the
likelihood is proportional to

exp



X1θ −
1

2
θ2 +

1

2

n−1
∑

j=1

(Xj+1 −
1

2
Xj)θ −

1

8
(n− 1)θ2





= exp

[

1

4
Tθ − 1

8
(n+ 3)θ2

]

∝ exp

[

−n+ 3

8

(

θ − T

n+ 3

)2
]

,

where T = (3X1 +X2 + · · ·+Xn−1 +2Xn). This likelihood is proportional
to a normal density with mean T/(n + 3). Because the minimum risk
equivariant estimator is the mean of the normalized likelihood, it must be
T/(n+ 3).

2. a) By dominated convergence, if c is a continuity point of F ,

g′(c) = E
∂

∂c
|X − c| = −E Sign(X − c) = P (X < c) − P (X > c),

which is zero if c is the median.
b) Dominated convergence (when c is a continuity point of F ) gives

g′(c) = E
[

−aI{X > c} + bI{X < c}
]

= bP (X < c) − aP (X > c),

which equals zero if P (X < c) = a/(a + b). So g is minimized if c is the
(

a/(a+ b)
)

th quantile of F .
4. An equivariant estimator must have form X − c, with minimal risk if c is

chosen to minimize
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EθL(θ,X − c) = E0

[

a(X − c)+ + b(c−X)
]

.

From Problem 10.2, c should be the
(

a/(a + b)
)

th quantile of the P0-

cumulative distribution of X , given by F (t) = 1
2

∫ t

−∞ e
−|x|dx. Solving

F (t) = a/(a+ b), c = log[2a/(a+ b)] if a ≤ b, and c = − log[2b/(a+ b)] if
a ≥ b.

B.11 Problems of Chapter 11

1. a) The joint density of Λi with Xi is λαe−λ(1+x)/Γ (α). So the marginal
density of Xi is

∫ ∞

0

λαe−λ(1+x)

Γ (α)
dλ =

α

(1 + x)1+α
, x > 0.

b) Dividing the joint density by the marginal density ofXi, the conditional
density of Λi given Xi = x is

(1 + x)1+αλαe−λ(1+x)

Γ (1 + α)
,

a gamma density with shape parameter 1 + α and scale 1/(1 + x). The
Bayes estimator is

E(Λi|Xi) =
1 + α

1 +Xi
.

c) From part (a), the joint density is

p
∏

i=1

α

(1 + xi)1+α
= exp

[

−(1 + α)

p
∑

i=1

log(1 + xi) + p logα

]

.

So the log-likelihood is l(α) = −(1 + α)
∑p

i=1 log(1 +Xi) + p logα. Then
l′(α) = −∑p

i=1 log(1 +Xi) + p/α which is zero when α is p/
∑p
i=1 log(1 +

Xi). This is the maximum likelihood estimator.
d) The empirical Bayes estimator for Λi is

1 + p/
∑p
j=1 log(1 +Xj)

1 +Xi
.

2. a) Direct calculation shows that

Θi|X = xi, Y = yi ∼ N

(

xiyiτ
2

1 + x2
i τ

2
,

τ2

1 + x2
i τ

2

)

.

The Bayes estimate is XiYiτ
2/(1 +X2

i τ
2).
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b) By smoothing, EY 2
i = EE[Y 2

i |Xi, Θi] = E[X2
i θ

2
i +1] = 1+τ2. A simple

estimator of τ2 is

τ̂2 =
1

p

p
∑

i=1

Y 2
i − 1.

c) The empirical Bayes estimator is

θ̂i =
XiYiτ̂

2

1 +X2
i τ̂

2
.

3. a) and b) The joint density of Θi with Xi is λθxe−(1+λ)θ/x!, the marginal
density of Xi is

∫ ∞

0

λθxe−(1+λ)θ

x!
dθ =

λ

(1 + λ)x+1
,

the conditional density of Θi given Xi = x is

(1 + λ)x+1θxe−(1+λ)θ

x!
,

and

E[Θi|Xi = x] =

∫ ∞

0

(1 + λ)x+1θx+1e−(1+λ)θ

x!
dθ =

x+ 1

1 + λ
.

By independence, E[Θi|X ] = E[Θi|Xi] = (Xi + 1)/(1 + λ), which is the
Bayes estimate of Θi under compound squared error loss.
c) The joint density of X1, . . . , Xp in the Bayesian model is

p
∏

i=1

λ

(1 + λ)xi+1
= exp

[

−T (x) log(1 + λ) + p log

(

λ

1 + λ

)]

,

where T (x) = x1 + · · · + xp. The maximum likelihood estimator λ̂ of λ
solves

0 = − T

1 + λ
+
p

λ
− p

1 + λ
=

−λT + p

λ(1 + λ)
,

giving λ̂ = p/T = 1/X.
d) The empirical Bayes estimator for θi is (Xi + 1)/(1 + 1/X).

B.12 Problems of Chapter 12

1. By smoothing, Eθψ = Pθ
(

(X,U) ∈ S
)

= EθPθ
(

(X,U) ∈ S
∣

∣ X
)

. This will

equal Eθϕ(X) if we can choose S so that Pθ
(

(X,U) ∈ S
∣

∣ X = x
)

= ϕ(x).

One solution is S =
{

(x, u) : u < ϕ(x)
}

.
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2. This is like the Neyman–Pearson lemma. If f0 and f1 are densities
for N(0, 1) and N(0, 4), then we want to maximize

∫

h(x)f1(x) dx with
∫

h(x)f0(x) dx = 0. Adding a Lagrange multiplier, let us try to maximize
∫

h(x)[f1(x)−kf0(x)] dx. Here there is a bit of a difference. Because h has
range [−M,M ] instead of [0, 1], an optimal function h∗ will satisfy

h∗(x) = M, if
f1(x)

f0(x)
> k, and h∗(x) = −M, if

f1(x)

f0(x)
< k.

The likelihood ratio is 1
2e

3x2/8, so equivalently,

h∗(x) = M, if |x| > k′, and h∗(x) = −M, if |x| < k′.

To satisfy the constraint, k′ = Φ−1(3/4) = 0.67449. Then Eh∗(2Z) =
0.47186M . (You can also solve this problem applying the Neyman–Pearson
lemma to the test function ϕ = (h+M)/(2M).)

3. By smoothing,

P (Z1/Z2 ≤ x) = EP (Z1/Z2 ≤ x|Z2) = EΦ(x|Z2|).

(By symmetry, this is true regardless of the sign of Z2.) Taking d/dx, the
density of Z1/Z2 is

E|Z2|φ(x|Z2|) =
1

2π

∫

|z|e−(z2+x2z2)/2 dz

=
1

π

∫ ∞

0

ze−(1+x2)z2/2 dz = −e
−(1+x2)z2/2

π(1 + x2)

∣

∣

∣

∣

∞

0

=
1

π(1 + x2)
.

4. The likelihood ratio is

L = exp

[

(X2
1 −X2

2 )

(

1

2σ2
1

− 1

2σ2
2

)]

.

If we assume σ2
1 < σ2

2 , then Neyman–Pearson likelihood ratio tests will
reject H0 if X2

1 − X2
2 ≥ k, and for a symmetric test, k should be zero.

Taking Z1 = X1/σ1 and Z2 = X2/σ2, the error probability under H0 is

P (X2
1 −X2

2 ≥ 0) = P (σ2
1Z

2
1 ≥ σ2

2Z
2
2 )

= P
(

|Z2/Z1| ≤ σ1/σ2

)

=
2

π
tan−1(σ1/σ2).

If σ2
1 > σ2

2 , the error rate is 2 tan−1(σ2/σ1)/π.
6. a) By a change of variables,

Eh(X2/2) =
1

2

∫ 2

0

h(x2/2) dx =

∫ 2

0

h(y)

2
√

2y
dy,

and we want to maximize this integral with the constraint
∫ 2

0 h(y) dy = 0.
Introducing a Lagrange multiplier, consider maximizing
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∫ 2

0

[

1

2
√

2y
− k

]

h(y) dy

without constraint. An optimal solution will have h∗(y) = M when y <
1/(8k2) and h∗(y) = −M when y > 1/(8k2). This solution will satisfy the
constraint if k = 1/

√
8. This gives an upper bound of (

√
2 − 1)M , and

h∗(y) = M Sign(1 − y) as a function achieving the bound.
b) Introducing a Lagrange multiplier and proceeding in the same fashion,
consider maximizing

∫ 2

0

[

1

2
√

2y
− k

]

h(y) dy

without constraint. Now an optimal solution will be h∗(y) = My Sign(c−y)
with c = 1/(8k2). Then Eh∗(X) = M(c2 − 2)/2 so h∗ will satisfy the
constraint if c =

√
2, giving an upper bound of

Eh∗(X2/2) =

∫ 23/4

0

Mx2

4
dx−

∫ 2

23/4

Mx2

4
dx =

2

3
(21/4 − 1)M.

7. a) If we can interchange differentiation and integration, then

β′(θ) =
d

dθ

∫ ∞

0

ϕ(x)pθ(x) dx =

∫ ∞

0

ϕ(x)
∂

∂θ
pθ(x) dx

=

∫ ∞

0

1 − θx

θ(1 + θx
ϕ(x)pθ(x) dx = Eθ

[

1 − θX

θ(1 + θX)
ϕ(X)

]

.

Dominated convergence can be used to justify the interchange. Note that
∂pθ(x)/∂θ = (1− θx)/(1+ θx)3. Let h = hn be a sequence of positive con-
stants all less than θ converging to zero, and let ξ = ξn(x) be intermediate
values in [θ, 2θ] chosen so that

ϕ(x)
(

pθ+h(x) − pθ(x)
)

h
=
ϕ(x)(1 − ξx)

(1 + ξx)3
.

These functions converge pointwise to ϕ(x)∂pθ(x)/∂θ and are uniformly
bounded in magnitude by (1 + 2θx)/(1 + θx)3, an integrable function.
b) Introducing a Lagrange multiplier k, consider unconstrained maximiza-
tion of

β′ϕ(1) − kβϕ(1) = E1

(

1 −X

1 +X
− k

)

ϕ.

An optimal test function ϕ∗ should equal one when (1 −X)/(1 +X) > k
and zero, otherwise. Because (1 −X)/(1 +X) is a decreasing function of
X , this gives ϕ∗ = I{X < c}, where k = (1− c)/(1+ c). This test has level
P1(X < c) = c/(1 + c). If c = α/(1−α), or, equivalently, k = 1− 2α, then
ϕ∗ has level α, satisfying the constraint and maximizing β′ϕ(1) among all
tests with βϕ(1) = α.
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9. Let vθ(x) = ∂ log pθ(x)/∂θ. Then the test ϕ∗ should maximize
∫

ϕvθ0pθ0 dµ
subject to the constraint

∫

ϕpθ0 dµ = α. Introducing a Lagrange multiplier
and arguing as in the Neyman–Pearson lemma, ϕ∗ should have form

ϕ∗(x) =

{

1, vθ0(x) > k;

0, vθ0(x) < k.

10. Since log pθ(x) =
∑n
i=1 log fθ(xi), vθ(x) =

∑n
i=1 sθ(xi), where sθ(xi) =

∂ log fθ(xi)/∂θ. Note that sθ(X1), . . . , sθ(Xn) are i.i.d., Eθsθ(Xi) = 0, and
Varθ

[

sθ(Xi)
]

= I(θ), the Fisher information from a single observation. By

the central limit theorem, under Pθ, vθ(X)/
√
n ⇒ N

(

0, I(θ)
)

as n → ∞.
So the level of the test ϕ∗ in Problem 12.9 is approximately

Pθ0(vθ0(X)/
√
n > k/

√
n) ≈ 1 − Φ

(

k/
√

nI(θ0)
)

,

which is α if k = zα
√

nI(θ0).
14. The mass function for X is p(1 − p)x, x ≥ 0, which is an exponential

family with canonical parameter η = log(1 − p). The two hypotheses can
be expressed in terms of η as H0 : η ≤ − log 2 and H1 : η > − log 2. With η
as the parameter the densities have monotone likelihood ratios in T = X ,
and so there will be a uniformly most powerful test with form ϕ = 0 if
X < k, ϕ = 1 if X > k, and ϕ = γ if X = k. For a fair coin (p = 1/2),
P (X ≤ 3) = 93.75% and P (X = 4) = 3.125%. If k = 4 and γ = 3/5 the
test will have level α = 5%. The power if p = 40% is 10.8864%.

15. The joint density for the data is

√

1 − ρ2

2π
exp
[

ρxy − (x2 + y2)/2
]

,

which is an exponential family with T = XY . So, the uniformly most
powerful test will reject H0 if XY > k. Adjusting k to achieve a given
level α is a bit tricky. The null density of T = XY is K0(|t|/2)/(2π),
where K0 is a Bessel function. Numerical calculations using this density
show that α = 5% when k = 3.19.

16. a) Let h = log g. The family will have monotone likelihood ratios in x if

log

(

pθ2(x)

pθ1(x)

)

= h(x− θ2) − h(x− θ1)

is nondecreasing in x whenever θ2 > θ1. A sufficient condition for this is
that h′(x− θ2) − h′(x− θ1) ≥ 0. Since x− θ2 ≤ x− θ1, this will hold if h′

is nonincreasing, which follows if h′′(x) = d2 log g(x)/dx2 ≤ 0.
b) As in part (a), a sufficient condition will be that the derivative of
log
(

pθ2(x)/pθ1(x)
)

is at least zero whenever θ2 > θ1, and this derivative is

1

x

(

g′(x/θ2)x/θ2
g(x/θ2)

− g′(x/θ1)x/θ1
g(x/θ1)

)

.
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Since x/θ2 < x/θ1, this will hold if the function xg′(x)/g(x) is nonincreas-
ing, and a sufficient condition for this is

d

dx

(

xg′(x)
g(x)

)

=
g(x)g′(x) + xg(x)g′′(x) − x

[

g′(x)
]2

g2(x)
≤ 0, x > 0.

17. a) Define F (t) = Pθ0(T ≤ t). The uniformly most powerful level α test
is ϕα(x) = I{T (x) > k(α)} with k(α) chosen so that F

(

k(α)
)

= 1 − α.
Suppose α0 < α1. Then since F is nondecreasing, k(α0) > k(α1). So if
T (x) > k(α0), T (x) also exceeds k(α1), and hence ϕα1(x) = 1 whenever
ϕα0(x) = 1. Thus ϕα1(x) ≥ ϕα0(x) for all x, and since α0 and α1 are
arbitrary, ϕα(x) is nondecreasing in α.
b) Because F is nondecreasing and continuous, if t > k(α) then F (t) ≥
F
(

k(α)
)

= 1−α, and so P = inf{α : t > k(α)} ≥ inf{α : F (t) ≥ 1−α} =

1 − F (t). But in addition, if F (t) > F
(

k(α)
)

= 1 − α, then t > k(α), and
so P = inf{α : t > k(α)} ≤ inf{α : F (t) > 1−α}, which is again 1−F (t).
So the p-value must be 1 − F (t) = Pθ0(T > t).
c) Let F← denote the largest inverse function of F : F←(c) = sup{t :
F (t) = c}, c ∈ (0, 1). Then F (T ) ≤ x if and only if T ≤ F←(x) and
Pθ0
(

F (T ) ≤ x
)

= Pθ0
(

T ≤ F←(x)
)

= F
(

F←(x)
)

= x. So F (T ) and the
p-value 1 − F (T ) are both uniformly distributed on (0, 1) under Pθ0 .

20. Suppose θ2 > θ1. Then the log-likelihood ratio is

l(x) = logL(x, θ1, θ2) = log
pθ2(x)

pθ1(x)
= log

(

1 + θ2x

1 + θ1x

)

and

l′(x) =
θ2 − θ1

(1 + θ2x)(1 + θ1x)
.

This is positive for x ∈ (−1, 1). So l(x) and L(x, θ1, θ2) are increasing
functions of x, and the family has monotone likelihood ratios in x.

21. Fix 0 < θ1 < θ2 < 1. The likelihood ratio

pθ2(x)

pθ1(x)
=
θ2 + (1 − θ2)f(x)

θ1 + (1 − θ1)f(x)
=

1 − θ2
1 − θ1

+
(θ2 − θ1)/(1 − θ1)

θ1 + (1 − θ1)f(x)

is monotone decreasing in f(x), so we can take T (X) = −f(X).
25. a) The joint densities are fλ(x, u) = λxe−λ/x!, u ∈ (0, 1), x = 0, 1, . . . . If

⌊t⌋ denotes the greatest integer less than or equal to t, then with T (x, u) =
x + u, these densities can also be written as λ⌊T (x,u)⌋e−λ/x!. (From this,
we see that T is sufficient, but not minimal sufficient, because X is also
sufficient, and T is not a function of X .) If λ1 > λ0, then the likelihood
ratio fλ1(x, u)/fλ0(x, u) = (λ1/λ0)

⌊T (x,u)⌋eλ0−λ1 is an increasing function
of T , so the joint densities have monotone likelihood ratios in T .
b) Let Fλ(t) = Pλ(T ≤ t). For n = 0, 1, 2, . . . , Fλ(n) = Pλ(X ≤ n − 1),
which can be found summing the Poisson mass function. For nonintegral
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values t, Fλ(t) is the linear interpolation of the value of Fλ at the two
adjacent integers. So, Fλ is strictly increasing and continuous on (0,∞).
The UMP test has form ϕ = 1 if T ≥ k, ϕ = 0 if T < k. (Randomization on
the boundary is unnecessary because T is continuous.) The constant k is
chosen (uniquely) so that Fλ0(k) = 1−α. For the particular case, F2(5) =
0.947347 and F2(6) = 0.9834364. By linear interpolation, F2(5.073519) =
95%, and we should reject H0 if T ≥ 5.073519.
c) From part (b), if T = t, we accept the null hypothesis that the true
value of the parameter is λ if and only if Fλ(t) < 1 − α. For fixed t, Fλ(t)
is continuous and strictly decreasing on [0,∞), and so there is a unique
value λt such that Fλt(t) = 1 − α. The confidence interval is (λt,∞). For
data X = 2 and U = 0.7, the observed value of T is 2.7. As in part (a),
Fλ(2.7) = (1 + λ+ 7λ2/20)e−λ, which is 95% at λ2.7 = 0.583407.

28. As in Example 12.10, the uniformly most powerful test of θ = θ0 versus
θ > θ0 will reject if T = max{X1, . . . , Xn} > c, with c chosen so that

Pθ0(T > c) = 1 − (c/θ0)
n = α.

Solving, c = θ0(1 − α)1/n, and the acceptance region for this test is

A(θ0) =
{

x : T (x) < θ0(1 − α)1/n
}

.

The confidence interval S1 dual to these tests is

S1 =
{

θ : X ∈ A(θ)
}

=
{

θ : T < θ(1 − α)1/n
}

=
(

T (1 − α)−1/n,∞
)

.

Similarly, the uniformly most powerful test of θ = θ0 versus θ < θ0 will
reject if T = max{X1, . . . , Xn} < c, with c chosen so that

Pθ0(T < c) = (c/θ0)
n = α.

This gives c = θ0α
1/n, A(θ0) =

{

x : T (x) > θ0α
1/n
}

, and

S2 = {θ : T > θα1/n} = (0, Tα−1/n).

By the result in Problem 9.12,

S = S1 ∩ S2 =
(

T (1 − α)−1/n, Tα−1/n
)

should have coverage probability at least 1 − 2α, which is 95% if we take
α = 2.5%. (In fact, it is easy to see that the coverage probability is exactly
95%.)

31. a) By dominated convergence,

β′(θ) =
d

dθ

∫

ϕ(x)
1√
2π
e−(x−θ)2/2 dx

=

∫

ϕ(x)
1√
2π

∂

∂θ
e−(x−θ)2/2 dx

=

∫

ϕ(x)
1√
2π

(x− θ)e−(x−θ)2/2 dx

= Eθ
[

(X − θ)ϕ(X)
]

.
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The desired result follows setting θ = 0.
b) Using part (a) and writing expectations as integrals, we wish to maxi-
mize

∫

ϕ(x)f2(x) dx

with constraints
∫

ϕ(x)f0(x) dx = α and

∫

ϕ(x)f1(x) dx = 0,

where

f2(x) =
e−(x−1)2/2

√
2π

, f0(x) =
e−x

2/2

√
2π

,

and

f1(x) =
xe−x

2/2

√
2π

.

By the generalization of the Neyman–Pearson lemma, there are constants
k0 and k1 such that the optimal test function ϕ has form

ϕ(x) =

{

1, f2(x) ≥ k0f0(x) + k1f1(x);

0, otherwise.

Dividing by f0,

ϕ(x) =

{

1, ex−1/2 ≥ k0 + k1x;

0, otherwise.

Because ex−1/2 is convex, ϕ(x) = 0 if and only if x ∈ [c1, c2]. To satisfy
the second constraint, c2 must be −c1, and then the first constraint gives
c = Φ−1(1−α/2) as the common magnitude. So the optimal test function
is ϕ(x) = I

{

|x| ≥ c
}

.
32. a) By dominated convergence, we should have

β′(θ) =

∫

ϕ
∂pθ
∂θ

dµ =

∫

ϕ
∂ log pθ
∂θ

pθ dµ = Eθϕl
′(θ),

where l(θ) is the log-likelihood. Here

l′(θ) =

2
∑

i=1

[

1

θ
− 2Xi

1 + θXi

]

.

b) Reasoning as in the Neyman–Pearson lemma, the locally most powerful
test will reject H0 if l′(θ0) exceeds some critical value, that is, if

2
∑

i=1

[

1

θ0
− 2Xi

1 + θ0Xi

]

≥ k(θ0).
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To find k(θ0) we need the Pθ0-distribution of the sum here. Solving the
inequality, for |x| < 1/θ0,

Pθ0

(

1

θ0
− 2Xi

1 + θ0Xi
< x

)

= Pθ0

(

Xi >
1 − θ0x

θ0(1 + θ0x)

)

.

Since Pθ(Xi > c) =
∫∞
c

[

θ/(1 + θx)2
]

dx = 1/(1 + θc), this expression
equals

(

1 +
1 − θ0x

1 + θ0x

)−1

=
1 + θ0x

2
,

which is the cumulative distribution for the uniform distribution on
(−1/θ0, 1/θ0). The density of this distribution is f(x) = θ0/2 for |x| <
1/θ0. The density for the sum of two independent variables with this den-

sity is “triangular” in shape: g(s) =
∫

f(x)f(s− x) dx =
[

1
2θ0 − 1

4 |s|θ20
]+

.

If k ∈ (0, 2/θ0),
∫ 2/θ0
k g(s) ds = (kθ0 − 2)2/8 Setting this to α, k(θ0) =

(

2 −
√

8α
)

/θ0 (provided α < 1/2), which is 1.6/θ0 when α = 5%.
c) The confidence interval is

{

θ :
2

θ
− 2X1

1 + θX1
− 2X2

1 + θX2
<

1.6

θ

}

=

(

−0.8(X1 +X2) +
√

0.64(X1 +X2)2 + 0.8X1X2

2X1X2
,∞
)

.

33. We want to minimize
∫∞
0
ϕ(x)2e−2x dx with

∫ ∞

0

ϕ(x)e−x dx =

∫ ∞

0

ϕ(x)3e−3x dx = 1/2.

By the generalized Neyman–Pearson lemma, there should be Lagrange
multipliers k1 and k2 so that an optimal test ϕ∗ is one if −2e−2x > k1e

−x+
3k2e

−3x, and zero if the opposite inequality holds. Equivalently, with c1 =
−k1/2 and c2 = −3k2/2,

ϕ∗(x) =

{

1, c1e
x + c2e

−x > 1;

0, c1e
x + c2e

−x < 1.

If c1 and c2 have opposite signs, or one of them equals zero, then the left-
hand side of these inequalities will be a monotone function of x, and ϕ∗

will be a one-sided test. But then its power function will be monotone,
and we cannot satisfy the constraints for the power function. So c1 and
c2 must both be positive. Then c1e

x + c2e
−x is convex, and ϕ∗ will be a

two-sided test1 with form ϕ∗(x) = 1− 1(b1,b2)(x), with b1 and b2 adjusted
so that

1 Reversing the null and alternative hypotheses, an extended argument using simi-
lar ideas can show that the test 1−ϕ∗ is a uniformly most powerful level α = 1/2
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P1

(

X ∈ (b1, b2)
)

= e−b1 − e−b2 = 1/2

and
P3

(

X ∈ (b1, b2)
)

= e−3b1 − e−3b2 = 1/2.

Solving,

b1 = log

(

4√
5 + 1

)

= 0.2119 and b2 = log

(

4√
5 − 1

)

= 1.1744.

37. a) Suppose f is integrable,
∫

|f | dµ < ∞. Since |ϕ2
nf | ≤ |f | and ϕ2

nf con-
verges pointwise to ϕ2f , by dominated convergence

∫

ϕ2
nf dµ→

∫

ϕ2f dµ.

Because f is an arbitrary integrable function, ϕ2
n
w→ ϕ2.

b) A dominated convergence argument now fails because 1/ϕn can be ar-

bitrarily large. Because of this, it need not be the case that 1/ϕn
w→ 1/ϕ.

For instance, suppose µ is Lebesgue measure on (0, 1), and ϕn(x) is 1/n
if x ∈ (0, 1/n) and is one otherwise. Then ϕn converges pointwise to the
test function ϕ that is identically one. But if f is one,

∫

(1/ϕn)f dµ =
2 − 1/n→ 2, instead of

∫

(1/ϕ)f dµ = 1.
41. The equation Eθ0ϕ = α gives ϕ(0)+4ϕ(1)+4ϕ(2) = 9α, and the equation

Eθ0Xϕ = αEθ0X gives ϕ(1) + 2ϕ(2) = 3α. If ϕ(1) = 0, then these equa-
tions give ϕ(0) = 3α and ϕ(2) = 3α/2. This is the solution if α ≤ 1/3.
When α > 1/3, then ϕ(0) = 1, ϕ(1) = (3α−1)/2, and ϕ(2) = (1+3α)/4.

42. The joint densities are exp{−T (x)/(2σ2)}/(4π2σ4), where T (x) = x2
1 +

· · · + x2
4, an exponential family. The UMP unbiased test will reject if and

only if T ≤ c1 or T ≥ c2 with c1 and c2 adjusted so that P1(T ≤ c1) +
P1(T ≥ c2) = 5% and E1Tϕ = 20%. The density of T when σ = 1 is
te−t/2/4, and after a bit of calculus these equations become

1 − (1 + c1/2)e−c1/2 + (1 + c2/2)e−c2/2 = 5%

and

4 − (4 + 2c1 + c21/2)e−c1/2 + (4 + 2c2 + c22/2)e−c2/2 = 20%.

Numerical solution of these equations gives c1 = 0.607 and c2 = 12.802.
44. a) The densities form an exponential family with T = X , and by Theo-

rem 12.26 the uniformly most powerful unbiased test will be two-sided
with the proper level and uncorrelated with X if θ = θ0. Since X is
continuous, we do not need to worry about randomization, and can take
ϕ∗ = I{X /∈ (c1, c2)}. The constants c1 and c2 are determined by

test of H0 : θ ≤ 1 or θ ≥ 3 versus H1 : θ ∈ (1, 3). In general, if θ1 < θ2, α ∈ (0, 1),
and the data come from a one-parameter exponential family with η(·) a monotone
function, then there will be a two-sided test ϕ∗ with βϕ∗(θ1) = βϕ∗ (θ1) = 1 − α,
and 1−ϕ∗ will be a uniformly most powerful level α test of H0 : θ ≤ θ1 or θ ≥ θ2
versus H1 : θ ∈ (θ1, θ2).
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1 − α = Pθ0
(

X ∈ (c1, c2)
)

=
eθ0c2 − eθ0c1

2 sinh(θ0)
,

and Covθ0(X,ϕ
∗) = −Covθ0(X, 1 − ϕ∗) = 0, which becomes

∫ c2

c1

xθ0e
θ0x

2 sinh(θ0)
dx = (1 − α)Eθ0X,

or
c2e

θ0c2 − c1e
θ0c1

2 sinh(θ0)
− 1 − α

θ0
= (1 − α)

[

coth(θ0) −
1

θ0

]

.

b) When θ0 = 0, pθ0(x) = 1/2, x ∈ (−1, 1), the uniform density. The
equations for c1 and c2 are

1 − α = P0

(

X ∈ (c1, c2)
)

=
c2 − c1

2

and
∫ c2

c1

1

2
xdx =

1

4
(c22 − c21) = 0.

Solving, c2 = 1 − α and c1 = −(1 − α).

B.13 Problems of Chapter 13

1. a) Since densities must integrate to one, if θ 6= 0 and φ 6= 0,

A(θ, φ) = log

∫ 1

0

∫ 1

0

(x+ y)eθx+φy dx dy

= log

[

θ(eθ − 1)(φeφ + 1 − eφ) + φ(eφ − 1)(θeθ + 1 − eθ)

θ2φ2

]

.

b) The marginal density of X is

∫ 1

0

pθ,φ(x, y) dy =
xφ(eφ − 1) + φeφ + 1 − eφ

φ2
eθx−A(θ,φ).

This has the form in Theorem 13.2, with the dominating measure λφ hav-
ing density

[

xφ(eφ−1)+φeφ+1−eφ
]

/φ2 with respect to Lebesgue measure
on (0, 1).
c) The conditional density is

pθ,φ(x, y)
∫ 1

0
pθ,φ(u, y) du

=
θ2(x+ y)eθx

θeθ + 1 − eθ + yθ(eθ − 1)
.

Again, this has the form from Theorem 13.2, now with a dominating mea-
sure νy that has density x+ y with respect to Lebesgue measure on (0, 1).
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d) The UMP unbiased test will reject H0 if and only if X ≥ c(Y ) with c(·)
chosen so that Pθ=0

(

X ≥ c(y)
∣

∣ Y = y
)

= α. When θ = 0, the conditional
density of X given Y = y is 2(x+ y)/(1 + 2y). So

Pθ=0

(

X ≥ c(y)
∣

∣ Y = y
)

=

∫ 1

c(y)

2(x+ y)

1 + 2y
dx

=
1 − c2(y) + 2y − 2yc(y)

1 + 2y
.

Solving, this will be α if c(y) =
√

y2 + (1 + 2y)(1 − α) − y.
e) Now the UMP unbiased test will reject H0 if and only if X ≤ c1(Y ) or
X ≥ c2(Y ), with c1(·) and c2(·) adjusted so that

∫ c1(y)

0

2(x+ y)

1 + 2y
dx+

∫ 1

c2(y)

2(x+ y)

1 + 2y
dx

=
c21(y) + 2yc1(y) + 1 − c22(y) + 2y − 2yc2(y)

1 + 2y
= α,

and

∫ c1(y)

0

2x(x + y)

1 + 2y
dx+

∫ 1

c2(y)

2x(x+ y)

1 + 2y
dx = α

∫ 1

0

2x(x+ y)

1 + 2y
dx,

or
2c31(y) + 3yc21(y) + 2 − 2c32(y) + 3y − 3yc22(y)

3 + 6y
= α

2 + 3y

3 + 6y
.

Explicit solution of these equations for c1(y) and c2(y) does not seem
possible.

3. a) Letting θ1 = λx − λy and θ2 = −λx, the joint densities are

λαx
x xαx−1λ

αy
y yαy−1

xyΓ (αx)Γ (αy)
e−λxx−λyy =

|θ2|αxxαx |θ1 + θ2|αyyαy

xyΓ (αx)Γ (αy)
eθ1y+θ2(x+y),

which is a canonical exponential family with sufficient statistics T1 = Y
and T2 = X + Y . With this parameterization, we are testing H0 : θ1 ≤ 0
versus H1 : θ1 > 0, and the UMP unbiased test will reject H0 if and only
if T1 > z(T2), with z(·) chosen so that P(0,θ2)

[

T1 > z(t2)
∣

∣ T2 = t2
]

= α.
To compute this conditional probability, first note that the joint density
of T1 and T2 is (the Jacobian for the transformation is one)

|θ2|αx(t2 − t1)
αx−1|θ1 + θ2|αy t

αy−1
1

Γ (αx)Γ (αy)
eθ1t1+θ2t2 , 0 < t1 < t2.

The conditional density when θ1 = 0 is
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(t2 − t1)
αx−1t

αy−1
1

∫ t2
0 (t2 − τ)αx−1ταy−1 dτ

=
(t2 − t1)

αx−1t
αy−1
1

t
αx+αy−1
2

∫ 1

0 (1 − u)αx−1uαy−1 du

=
Γ (αx)Γ (αy)(t2 − t1)

αx−1t
αy−1
1

Γ (αx + αy)t
αx+αy−1
2

.

Here the first equality arises from the change of variables u = τ/t2. The
change of variables u = t1/t2 now gives

P(0,θ2)

[

T1 > a
∣

∣ T2 = t2
]

=

∫ t2

a

Γ (αx)Γ (αy)(t2 − t1)
αx−1t

αy−1
1

Γ (αx + αy)t
αx+αy−1
2

dt1

=

∫ 1

a/t2

Γ (αx)Γ (αy)

Γ (αx + αy)
uαy−1(1 − u)αx−1 du

= 1 − F (a/t2),

where F is the cumulative distribution function for the beta distribution
with parameters αy and αx. If q is the upper αth quantile for this distri-
bution, so F (q) = 1 − α, then the probability will be α if a = qt2. Thus
the UMP unbiased test rejects H0 if and only if T1 > qT2.
b) From the definition,

∑n
i=1(Xi/σx)

2 ∼ χ2
n = Γ (n/2, 1/2), and since the

reciprocal of the “failure rate” is a scale parameter, ns2x ∼ Γ
(

n/2, 1/(2σ2
x)
)

.

Similarly, ms2y ∼ Γ
(

m/2, 1/(2σ2
y)
)

. From part (a), the UMP unbiased
test will reject H0 if and only if ns2x/(ns

2
x + ms2y) > q, if and only if

F > mq/
(

n(1 − q)
)

, where q is the upper αth quantile for β(m/2, n/2).
This is the usual F -test, and this derivation shows that the upper αth
quantile of Fn,m is mq/

(

n(1 − q)
)

.
5. The joint densities are

(2π)−n/2 exp

[

βx′y + γw′y − 1

2
‖y‖2 − 1

2
‖βx+ γw‖2

]

.

Introducing new parameters θ = β − γ and η = γ, the joint densities
become

(2π)−n/2 exp

[

θx′y + η(w + x)′y − 1

2
‖y‖2 − 1

2
‖θx+ ηx+ ηw‖2

]

,

and we would like to test H0 : θ ≤ 0 versus H1 : θ > 0. These densities
form an exponential family with canonical sufficient statistics U = x′Y and
T = (x+w)′Y . By Theorem 13.6, a uniformly most powerful unbiased test
will reject H0 if U > c(T ) with c(·) chosen so that

Pθ=0

(

U > c(t)
∣

∣ T = t
)

= α.

When θ = 0, U and T have a bivariate normal distribution with EU =
ηx′(x + w), ET = η‖x + w‖2, Var(U) = ‖x‖2, Var(T ) = ‖x + w‖2, and
Cov(U, T ) = x′(x+ w). So, when θ = 0,



510 B Solutions

U |T = t ∼ N

(

x′(x + w)t

‖x+ w‖2
,
‖x‖2‖w‖2 − (x′w)2

‖x+ w‖2

)

,

and the uniformly most powerful unbiased test will reject H0 if

U − x′(x + w)T

‖x+ w‖2
> zα

√

‖x‖2‖w‖2 − (x′w)2

‖x+ w‖2
.

6. a) Taking θ1 = logλx − log λy and θ2 = logλy, the likelihood is

exp
[

θ1T1 + θ2T2 −meθ1+θ2 − neθ2
]

∏m
i=1Xi!

∏n
j=1 Yj !

,

where T1 =
∑m

i=1Xi and T2 =
∑m

i=1Xi +
∑n

j=1 Yj . The UMP unbiased
test has form

ϕ =











1, T1 > z(T2);

γ(T2), T1 = z(T2);

0, T1 < z(T2),

with z, γ chosen so that P
(

T1 > z(t2)
∣

∣ T2 = t2
)

+ γ(t2)P
(

T1 = z(t2)
∣

∣

T2 = t2
)

= α when λx = λy. Note that if λx = λy

P (T1 = t1|T2 = t2) =
P
(
∑m

i=1Xi = t1,
∑n
j=1 Yj = t2 − t1

)

P
(
∑m

i=1Xi +
∑n

j=1 Yj = t2
)

=
(mλ)t1(nλ)t2−t1e−(m+n)λ/

[

t1!(t2 − t1)!
]

(

(m+ n)λ
)t2
e−(m+n)λ/t2!

=

(

t2
t1

)(

m

m+ n

)t1 ( n

m+ n

)t2−t1
,

and so, when λx = λy, T1|T2 = t2 ∼ Binomial
(

t2,m/(m+ n)
)

.
b) If λx = λy , P (T1 = 9|T2 = 9) = (2/3)9 = 2.6% and P (T1 = 8|T2 =
9) = 3(2/3)8 = 11.7%, so in this case z(9) = 8 and γ(9) = 20.5%. So the
chance of rejection is 20.5%.
c) Using normal approximation for the binomial distribution, the approx-
imate test will reject H0 if

T1 >
mT2 + zα

√
mnT2

m+ n
.

B.14 Problems of Chapter 14

1. a) The matrix X should be
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1 w1 x1

...
...

...
1 wn xn






.

b) Because w1 + · · ·+wn = x1 + · · ·+xn = 0, w and x are both orthogonal
to a column of 1s, and X will be of full rank unless w and x are collinear.
Algebraically, this would occur if D = SxxSww − S2

xw is zero.

c) Using the formula β̂ = (X ′X)−1X ′Y , since

X ′X =





n 0 0
0 Sww Swx
0 Swx Sxx



 , X ′Y =





nY
SwY
SxY



 ,

and

(X ′X)−1 =





1/n 0 0
0 Sxx/D −Swx/D
0 −Swx/D Sww/D



 ,

we have

β̂1 = Y , β̂2 =
SxxSwY − SwxSxY
SxxSww − S2

xw

, and β̂3 =
SwwSxY − SwxSwY
SxxSww − S2

xw

.

d) The covariance of β̂ is Cov(β̂) = (X ′X)−1σ2, with (X ′X)−1 given
above.
e) The UMVU estimator of σ2 is

S2 =
1

n− 3

n
∑

i=1

(Yi − β̂1 − wiβ̂2 − xiβ̂3)
2.

f) The variance of β̂1 is σ2/n, estimated by S2/n. So the confidence interval
for β1 is

(

β̂1 ±
S√
n
tα/2,n−3

)

.

Since β̂3 − β̂2 =
(

0 −1 1
)

β̂,

Var(β̂3 − β̂2) =
(

0 −1 1
)

Cov(β̂)





0
−1

1





=
(

0 −1 1
)

(X ′X)−1





0
−1

1



σ2

=
Sxx + Sww + 2Sxw
SxxSww − S2

xw

σ2

=

∑n
i=1(xi + wi)

2

SxxSww − S2
xw

σ2.
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Plugging in S2 to estimate σ2, the confidence interval for β3 − β2 is

(

β̂3 − β̂2 ± s

√

∑n
i=1(xi + wi)2

SxxSww − S2
xw

tα/2,n−3

)

.

4. a) The dimension r is 2m− 1 because the rows of the design matrix corre-
sponding to (i, j) pairs (1, 1), . . . , (1,m) and (2, 1), . . . , (m, 1) are linearly
independent.
b) The least squares estimators α̂i and γ̂j are not unique in this problem
(since r < p), but they still minimize

L =

m
∑

i=1

m
∑

j=1

(Yij − αi − γj)
2,

and must satisfy normal equations, obtained setting ∂L/∂αi, i = 1, . . . ,m
and ∂L/∂γj, j = 1, . . . ,m to zero. This gives

α̂i + γ̂ = Y i·, i = 1, . . . ,m,

and
γ̂j + α̂ = Y ·j, j = 1, . . . ,m,

where

α̂ =
1

m

m
∑

i=1

α̂i, γ̂ =
1

m

m
∑

j=1

γ̂j ,

Y i· =
1

m

m
∑

j=1

Yij , i = 1, . . . ,m,

and

Y ·j =
1

m

m
∑

i=1

Yij , j = 1, . . . ,m.

Averaging these equations over i or j,

α̂+ γ̂ = Y =
1

m2

m
∑

i=1

m
∑

j=1

Yij .

So the least squares estimator for ξij is

ξ̂ij = α̂i + γ̂j = Y i· + Y ·j − Y ,

i = 1, . . . ,m, j = 1, . . . ,m.
c) Since eij = Yij − ξ̂ij , the estimator of σ2 is

S2 =
1

(m− 1)2

m
∑

i=1

m
∑

j=1

(Yij − Y i· − Y ·j + Y )2.
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d) Because

ξi· =
1

m

m
∑

j=1

ξij = αi + γ, i = 1, . . . ,m,

we have αi − αj = ξi· − ξj·, expressing this difference as a linear function

of ξ. The least squares estimator of αi − αj is α̂i − α̂j = Y i· − Y j·.
e) Let Zi = m1/2

(

Y i· − αi − γ)/σ ∼ N(0, 1). These variables depend
on different subsets of the Yij , and hence they are independent. Also,

averaging ξ̂ij = Y i· + Y ·j − Y over j gives Y i· = ξ̂i·, so the variables

Zi, i = 1, . . . ,m, are functions of ξ̂ and are independent of S2. Since
(m− 1)2S2/σ2 ∼ χ2

(m−1)2 , by Definition 14.14,

maxZi − minZi
S/σ

=
max(Y i· − αi) − min(Y i· − αi)

S/
√
m

has the studentized range distribution with parametersm and (m−1)2. If q
is the upper αth quantile of this distribution, and Iij = (α̂i−α̂j±qS/

√
m),

then, proceeding as in the text,

P (αi − αj ∈ Iij , ∀i 6= j) = P

(

max(Y i· − αi) − min(Y i· − αi)

S/
√
m

< q

)

= 1 − α.

So Iij , i 6= j, are simultaneous confidence intervals for the differences
αi − αj .
f) Under H0, the data are distributed as they are in one-way analysis of
variance, so q = m, and the least squares estimator for the mean of Yij is
Y ·j . Then

‖ξ̂ − ξ̂0‖2 =
m
∑

i=1

m
∑

j=1

(Y i· − Y )2 = m
m
∑

i=1

(Y i· − Y )2,

T =
m
∑m
i=1(Y i· − Y )2

(m− 1)S2
,

and we should reject H0 if T > Fα,m−1,(m−1)2 .
g) The test statistic has a noncentral F distribution with noncentrality
parameter

δ2 =
‖ξ − P0ξ‖2

σ2
=
m
∑m
i=1(αi − α)2

σ2

(found easily from the prior results, since ξ−P0ξ equals ξ̂− ξ̂0 when ǫ = 0)
and degrees of freedom m− 1 and (m− 1)2. The power is the probability
this distribution assigns to the interval (Fα,m−1,(m−1)2 ,∞).
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h) Taking ψ = (α1 − αm, . . . , αm−1 − αm)′, we can write any contrast
∑m
i=1 aiαi as

∑m−1
i=1 aiψi. From part (d), the least squares estimator of

this contrast is
m−1
∑

i=1

ai(Y i· − Y m·) =

m
∑

i=1

aiY i·.

The variance of this estimator is
∑m

i=1 a
2
iσ

2/m = ‖a‖2σ2/m, estimated by
‖a‖2S2/m. So the desired simultaneous confidence intervals are

(

m
∑

i=1

aiY i· ± ‖a‖S
√

m−1
m Fα,m−1,(m−1)2

)

.

13. a) Let ω0 = {v ∈ ω : Av = 0}, with dimension r−q because A has full rank.
Choose ξ0 ∈ ω so that Aξ0 = ψ0, and introduce Y ∗ = Y −ξ0 ∼ N(ξ∗, σ2I),
with ξ∗ = ξ − ξ0 ∈ ω. Since ψ = ψ0 if and only if Aξ = Aξ0 if and only
if Aξ∗ = 0, the null hypothesis is H0 : ξ∗ ∈ ω0, tested using the usual
statistic

T =
(n− r)‖PY ∗ − P0Y

∗‖2

q‖Y ∗ − PY ∗‖2
,

where P is the projection onto ω and P0 is the projection onto ω0. The
level α test rejects H0 if T ≥ Fα,q,n−r.
b) Because ξ0 ∈ ω, Pξ0 = ξ0 and ‖Y ∗ − PY ∗‖2 = ‖Y − PY ‖2. So
T = ‖PY ∗ − P0Y

∗‖2/(qS2), where S2 = ‖Y − PY ‖2/(n− r) is the usual
estimator of σ2. Next, note that P − P0 is the projection onto ω ∩ ω⊥0 ,
for if v = v0 + v1 + v2 with v0 ∈ ω0, v1 ∈ ω ∩ ω⊥0 , and v2 ∈ ω⊥, then
(P −P0)v = (v0 + v1)− v0 = v1. Because A = AP , the rows of A all lie in
ω, and so they must span ω ∩ ω⊥0 . Consequently, P − P0 = A′(AA′)−1A,
as in the derivation for (14.14). So

‖(P − P0)Y
∗‖2 = (Y − ξ0)

′(P − P0)(Y − ξ0)

= (Y − ξ0)
′A′(AA′)−1A(Y − ξ0)

= (ψ̂ − ψ0)
′(AA′)−1(ψ̂ − ψ0),

and

T =
(ψ̂ − ψ0)

′(AA′)−1(ψ̂ − ψ0)

qS2
.

The confidence set consists of all values ψ0 where we would accept the
null hypothesis ψ = ψ0, that is,

{

ψ0 : T (ψ0) < Fα,q,n−r
}

. Using the last
formula for T , this region is the ellipse given in the problem.

14. a) Because
∑c
l=1 xkl = 0, the columns of the design matrix X are orthog-

onal, and X ′X is diagonal. The (0, 0) entry will be
∑p
k=1

∑c
l=1 x

2
kl, and

the other diagonal entries will all equal c. Also, the zeroth entry of X ′Y
will be

∑p
k=1

∑c
l=1 xklYkl, and the kth entry will be

∑c
l=1 Ykl, 1 ≤ k ≤ p.

Since β̂ = (X ′X)−1X ′Y ,
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β̂k =
1

c

c
∑

l=1

Ykl, k = 1, . . . , p,

are the least squares estimators for β1, . . . , βp, and

β̂0 =

∑p
k=1

∑c
l=1 xklYkl

∑p
k=1

∑c
l=1 x

2
kl

is the least squares estimator for β0. If Zk =
√
p(β̂k − βk)/σ, k = 1, . . . , p,

then Z1, . . . , Zc are i.i.d. N(0, 1) independent of

S2 =
1

pc− p− 1

p
∑

k=1

c
∑

l=1

(Ykl − β̂k − β̂0xkl)
2.

Because (pc− p− 1)S2/σ2 ∼ χ2
pc−p−1,

M =
max |Zk|
S/σ

=
max |β̂k − βk|

S/
√
c

has the studentized maximum modulus distribution with parameters p and
pc− p− 1. If q is the upper αth quantile for this distribution, then

P
[

βk ∈ (β̂k ± Sq/
√
c), k = 1, . . . , p

]

= P (M < q) = 1 − α,

and (β̂k±sq/
√
c), k = 1, . . . , p, are simultaneous 1−α confidence intervals

for β1, . . . , βp.
b) Let x =

∑c
l=1 xkl/c, and write

Ykl = βk + β0x+ β0(xkl − x) + ǫkl = β∗k + β∗0 (xkl − x) + ǫkl,

where β∗k = βk + β0x and β∗0 = β0. Then the design matrix X∗ has

orthogonal columns, and proceeding as in part (a), β̂∗k = Y k =
∑c
l=1 Ykl/c,

k = 1, . . . , p, and

β̂∗0 =

∑p
k=1

∑c
l=1 Ykl(xkl − x)

∑p
k=1

∑c
l=1(xkl − x)2

are the least squares estimators of β∗k , k = 1, . . . , p, and β∗0 . Since Zk =√
c(Y k − β∗k)/σ, k = 1, . . . , p, are i.i.d. N(0, 1), independent of

S2 =
1

pc− p− 1

p
∑

k=1

c
∑

l=1

(Ykl − β̂∗k − β̂∗0xkl)
2,

and since (pc− p− 1)S2/σ2 ∼ χ2
pc−p−1,

R =
maxZk − minZk

S/σ
=

maxj,k |βk − βj − Y k + Y j |
S/

√
c
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has the studentized maximum range distribution with parameters p and
pc− p− 1. If q is the upper αth quantile of this distribution,

P
[

βk − βj ∈ (Y k − Y j ± qS/
√
c), ∀k, j

]

= P (R < q) = 1 − α.

So (Y k−Y j±qS/
√
c), 1 ≤ j < k ≤ p, are simultaneous confidence intervals

for the differences βk − βj , 1 ≤ j < k ≤ p.

15. a) Since β̂i =
∑ni

j=1 Yij/ni, the (i, j)th entry of PY is β̂i. The (i, j)th entry

of P0Y is Y =
∑p
i=1

∑ni

j=1 Yij/n, where n =
∑p
i=1 ni. So

‖PY − P0Y ‖2 =

p
∑

i=1

ni
∑

j=1

(β̂i − Y )2 =

p
∑

i=1

ni(β̂i − Y )2

and

S2 =
‖Y − PY ‖2

n− p
=

1

n− p

p
∑

i=1

ni
∑

j=1

(Yij − β̂i)
2.

The F -statistic for the test is

T =

∑p
i=1 ni(β̂i − Y )2

(p− 1)S2
,

and we reject H0 if and only if T ≥ Fp−1,n−p(1 − α).

b) The estimate a1β̂1 + · · · + apβ̂p has variance σ2
∑p

i=1 a
2
i /ni, estimated

by S2
∑p
i=1 a

2
i /ni. So the simultaneous confidence intervals are

p
∑

i=1

aiβi ∈





p
∑

i=1

aiβ̂i ± S

√

√

√

√(p− 1)Fp−1,n−p(1 − α)

p
∑

i=1

a2
i

ni



 .

B.17 Problems of Chapter 17

3. a) As usual, let

Y i· =
1

n

n
∑

j=1

Yij , i = 1, . . . , p,

and

Y ·j =
1

p

p
∑

i=1

Yij , j = 1, . . . , n.

Introduce
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SSe =

p
∑

i=1

n
∑

j=1

(Yij − Y i· − Y ·j + Y ··)
2

=

n
∑

j=1

‖Yj − Y ‖2 − 1

p

n
∑

j=1

[1′(Yj − Y )]2

and

SSβ = p
n
∑

j=1

(Y ·j − Y ··)
2 =

1

p

n
∑

j=1

[1′(Yj − Y )]2,

sums of squares that would arise testing null hypotheses if the βj were
viewed as fixed constants. Let P = 11′/p, the projection onto the linear
span of 1, and let Q = I − P . The covariance of Yj is Σ = σ2I + τ211′ =
σ2Q+ (σ2 + pτ2)P , with determinant σ2(p−1)(σ2 + pτ2) (the eigenvector
1 has eigenvalue σ2 + pτ2, and the other eigenvalues are all σ2), and
Σ−1 = σ−2Q+ (σ2 + pτ2)−1P . The log-likelihood is

l(α, σ, τ) = −1

2

n
∑

j=1

(Yj − α)′Σ−1(Yj − α) − np log
√

2π − n

2
log |Σ|

= −1

2

n
∑

j=1

(Yj − Y )′Σ−1(Yj − Y ) − n

2
(Y − α)′Σ−1(Y − α)

− np log
√

2π − n(p− 1)

2
log σ2 − n

2
log(σ2 + pτ2).

(The cross-product term drops out because
∑n

j=1(Yj − Y ) = 0.) This is

maximized over α by α̂ = Y , regardless of the value of σ or τ . To maximize
over σ and τ , introduce η2 = σ2 + pτ2 and note that

(Yj − Y )′Σ−1(Yj − Y ) =
‖Q(Yj − Y )‖2

σ2
+

‖P (Yj − Y )‖2

η2

=
‖Yj − Y ‖2 − [1′(Yj − Y )]2/p

σ2
+

[1′(Yj − Y )]2

pη2
.

So

l(α̂, σ, τ) = −
∑n

1 ‖Yj − Y ‖2 −∑n
1 [1′(Yj − Y )]2/p

2σ2
−
∑n

1 [1′(Yj − Y )]2

2pη2

− n(p− 1) log σ − n log η

= −SSe
2σ2

− SSβ
2η2

− n(p− 1) log σ − n log η.

Setting derivatives to zero suggests that the maximum likelihood estima-
tors should be

η̂2 =
1

n
SSβ and σ̂2 =

SSe
np− n

.
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But there is a bit of a problem here because we need η̂2 ≥ σ̂2. If these
formulas give η̂2 < σ̂2, then the likelihood is maximized with η̂ = σ̂. The
common value will maximize l(α̂, σ, σ) =

∑n
j=1 ‖Yj − Y ‖2/σ2 − np logσ.

Setting the derivative to zero, the common value is σ̃2 =
∑n

j=1 ‖Yj −
Y ‖2/(np), and this is also the maximum likelihood estimator for σ2 under
H0. Plugging these estimates into the likelihood,

2 log λ = 2l(α̂, σ̂, τ̂) − 2l(α̂, σ̃, 0) = 2n(p− 1) log(σ̃/σ̂) + 2n log(σ̃/η̂).

Remark: H0 would not be rejected when η̂2 = σ̂2, and when η̂2 > σ̂2 there
is a monotonic relationship between λ and the F -statistic that would be
used to test H0 if βj were viewed as constants. So the F -test and likelihood
ratio test here would be the same in practice.
b) Under H0, α = α01 and

(Y − α)′Σ−1(Y − α) =
Y
′
QY

σ2
+

(1′Y − pα0)
2

p(σ2 + pτ2)
,

which is minimized when α0 is 1′Y /p. So

(Y − α̃)′Σ−1(Y − α̃) =
SSα
nσ2

and

l(α̃, σ, τ) = −SSe + SSα
2σ2

− SSβ
2η2

− n(p− 1) log σ − n log η,

where SSα =
∑p
i=1

∑n
j=1(Y i· − Y ··)2. Setting derivatives to zero, and

keeping in mind that we must have η̃ ≥ σ̃,

σ̃2 =
SSe + SSα
n(p− 1)

and η̃2 =
SSβ
n

,

when (p− 1)SSβ ≥ SSe + SSα, and σ̃2 = η̃2 = (SSe + SSα + SSβ)/(np)
when (p−1)SSβ < SSe+SSα. Plugging these values into the log-likelihood
function, 2 logλ = n(p− 1) log(σ̃/σ̂) +n log(σ̃/η̂). The estimators σ̃ and η̃
depend on SSβ; thus the F -statistic and the likelihood ratio statistic are
not equivalent.

4. a) The likelihood function is L(θx, θy) = θxθy exp[−θxX − θyY ]. Setting

derivatives to zero, the maximum likelihood estimators are θ̂x = 1/X

and θy = 1/Y , and so supΩ L(θ) = L(θ̂x, θ̂y) = e−2/(XY ). The max-

imum likelihood estimator θ̃y for θy under H0 maximizes L(2θy, θy) =

2θ2y exp
[

−(2X +Y )θy
]

. A bit of calculus gives θ̃y = 2/(2X+Y ), and then

supΩ0
L(θ) = L(θ̃x, θ̃y) = 8e−2/(2X+Y )2. The likelihood ratio test statis-

tic is λ = (2X + Y )2/(8XY ).
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b) Define U = θxX and V = θyY , so U and V are independent standard
exponential variables. Under H0, λ can be expressed in terms of these
variables as λ = (U + V )2/(4UV ). The significance level of the test is

α = PH0(λ ≥ c) = P
[

(U + V )2 ≥ 4cUV
]

= P (U ≥ mV ) + P (V ≥ mU),

where m = 2c − 1 + 2
√
c2 − c. By smoothing, P (U ≥ mV ) = EP (U ≥

mV |V ) = Ee−mV =
∫∞
0 e−(m+1)v dv = 1/(m + 1). So α = 2/(m + 1),

and to achieve a specified level α, m should be 2/α − 1. From this, c =
(m+ 1)2/(4m) = 1/

[

α(2 − α)
]

.

8. a) The log-likelihood is l(θ1, θ2) = −nX/θ1 − nY /θ2 − n log θ1 − n log θ2.

Setting derivatives to zero, the maximum likelihood estimators are θ̂1 =
X and θ̂2 = Y . The maximum likelihood estimator θ̃1 for θ1 under H0

maximizes l(θ1, θ1/c0). Setting the derivative to zero, θ̃1 = (X + c0Y )/2.
Then

logλ = l(θ̂1, θ̂2) − l(θ̃1, θ̃1/c0)

= n log

(

X + c0Y

2X

)

+ n log

(

X + c0Y

2c0Y

)

.

b) The confidence intervals would contain all values c0 for which 2 logλ <
3.84. (Here 3.84 is the 95th percentile of χ2

1.) For the data and sample size
given, if c0 is 2.4, 2 logλ = 1.66. This value is less than 3.84, and so 2.4 is
in the confidence interval.
c) The Fisher information matrix is

I(θ) =

(

θ−2
1 0
0 θ−2

2

)

.

It seems natural to take θ0 =
(

1
1

)

, and then ∆ =
(

1
−1

)√
n/10. Define an

orthonormal basis v1 =
(

1
1

)

/
√

2 and v2 =
(

1
−1

)

/
√

2. Since Ω0 is linear, the
tangent spaces Vθ = V at different θ ∈ Ω are all the same, each being the
linear span of v1. So P0 = v1v

′
1 and Q0 = v2v

′
2 are the projection matrices

onto V and V ⊥. Since ∆ lies in V ⊥, Q0∆ = ∆. Since I(θ0) is the identity,
P0 + Q0I(θ0)

−1Q0 = P0 + Q0 =
(

1 0
0 1

)

. So the noncentrality parameter is

δ2 = ∆′Q0

[

P0 + Q0I(θ0)
−1Q0

]−1
Q0∆ = ∆′∆ = n/50. The asymptotic

distribution of 2 logλ is χ2
1(δ

2). If Z ∼ N(0, 1), then (Z+δ)2 ∼ χ2
1(δ

2) has
this distribution, and so the power is approximately P

[

(Z+ δ)2 > 3.84
]

=
P (Z + δ > 1.96) + P (Z + δ < −1.96) = Φ(δ − 1.96) + Φ(−δ − 1.96). The
second term here will be negligible, and since Φ(1.28) = 0.9 we will need
δ − 1.96 = 1.28, which gives n = 525 as the necessary sample size.

9. a) The likelihood L is

exp
[

− 1
2σ2

w

∑n
1 (Wi − µw)2 − 1

2σ2
x

∑n
1 (Xi − µx)

2 − 1
2σ2

y

∑n
1 (Yi − µy)

2
]

√
2π

3n
σnwσ

n
xσ

n
y

,
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and the Fisher information matrix is

I(µw, µx, µy, σw, σx, σy) = diag

(

1

σ2
w

,
1

σ2
x

,
1

σ2
y

,
2

σ2
w

,
2

σ2
x

,
2

σ2
y

)

.

Maximum likelihood estimators under the full model and under H0 are
given by

µ̂w = µ̃w = W, µ̂x = µ̃x = X, µ̂y = µ̃y = Y ,

σ̂2
w =

1

n

n
∑

i=1

(Wi −W )2, σ̂2
x =

1

n

n
∑

i=1

(Xi −X)2, σ̂2
y =

1

n

n
∑

i=1

(Yi − Y )2,

and

σ̃2 =
σ̂2
w + σ̂2

x + σ̂2
y

3
.

Plugging these in,

λ =
L(θ̂)

L(θ̃)
=

[

σ̃3

σ̂wσ̂xσ̂y

]n

.

b) The natural choice for θ0 is (µw, µx, µy, 2, 2, 2)′, and then

I(θ0) = diag

(

1

4
,
1

4
,
1

4
,
1

2
,
1

2
,
1

2

)

.

Introduce the orthonormal basis

v1 =

















1
0
0
0
0
0

















, v2 =

















0
1
0
0
0
0

















, v3 =

















0
0
1
0
0
0

















,

v4 =
1√
3

















0
0
0
1
1
1

















, v5 =
1√
2

















0
0
0
1

−1
0

















, v6 =
1√
6

















0
0
0
1
2

−2

















.

As in Example 17.3, all of the tangent spaces V = Vθ are the same. Here
V is the linear span of v1, v2, v3, and v4, and Q0 = v5v

′
5 + v6v

′
6 is the

orthogonal projection onto V ⊥. Noting that Q0I(θ0)
−1Q0 = 2Q0, that

∆ = (θ − θ0)
√
n = (0, 0, 0,−

√
8,
√

8, 0)′, and that Q0∆ = ∆, the noncen-
trality parameter is

δ2 = ∆′Q0

[

P0 +Q0I(θ0)
−1Q0

]−1
Q0∆ = ∆′∆/2 = 8.
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The likelihood ratio test with α ≈ 5% rejects H0 if 2 log λ ≥ 5.99 (the
95th percentile of χ2

2). The power of this test is thus P (2 logλ ≥ 5.99).
The distribution of 2 logλ should be approximately χ2

2(δ
2 = 8). If F is

the cumulative distribution function for this distribution, the power is
approximately 1 − F (5.99) = 71.77%.

10. a) The log-likelihood is

l(µ) = −1

2

n
∑

i=1

‖Xi − µ‖2 − np log
√

2π

= −n
2
‖X − µ‖2 − 1

2

n
∑

i=1

‖Xi −X‖2 − np log
√

2π.

By inspection, µ̂ = X is the maximum likelihood estimator under the full
model, and the maximum likelihood estimator underH0 minimizes ‖X−µ‖
over µ with ‖µ‖ = r. The natural guess is µ̃ = rX/‖X‖. That this is indeed
correct can be seen using the triangle inequality. Suppose ‖µ‖ = r. Then if
‖X‖ > r, ‖X−µ‖+‖µ‖ ≥ ‖X‖ = ‖µ̃‖+‖X−µ̃‖, and so ‖X−µ‖ ≥ ‖X−µ̃‖;
and if ‖X‖ < r, ‖X‖ + ‖µ−X‖ ≥ ‖µ‖ = 1 = ‖X‖ + ‖X − µ̃‖, and again

‖X−µ‖ ≥ ‖X−µ̃‖. So 2 logλ = 2l(µ̂)−2l(µ̃) = n‖µ̃−X‖2 = n
(

‖X‖−r
)2

.

b) By Lemma 14.8, because
√
nX ∼ N(

√
nµ, I),

n‖X‖2 ∼ χ2
p(n‖µ‖2).

If F is the cumulative distribution function for this distribution, then the
power of the test, assuming nr2 > c, is

P
[

n
(

‖X‖ − r
)2
> c
]

= P
(√
n‖X‖ < √

nr −√
c
)

+ P
(√
n‖X‖ > √

nr +
√
c
)

= F
(

(
√
nr −√

c)2
)

+ 1 − F
(

(
√
nr +

√
c)2
)

.

c) Since the Fisher information is the identity, the formula for the noncen-
trality parameter δ2 is just ‖Q0∆‖2, where Q0 is the projection onto the
orthogonal complement of the tangent space at µ0 and ∆ =

√
n(µ − µ0).

Now µ0 should be near µ and in the null parameter space, and the most
natural choice is just µ0 = µ/‖µ‖. Then µ− µ0 is in the orthogonal com-
plement of the tangent space at µ0, and the noncentrality parameter is
δ2 = ‖∆‖2 = n‖µ − µ0‖2 = n/100. Arguing as in the Example 17.4,
δ2 = 10.51 will give power 90%, and 1051 observations will be necessary.

12. a) Because Yi and Wi are linear functions of Xi, ǫi, and ηi, they should
have a bivariate normal distribution with mean zero and covariances given
by

Var(Yi) = 1 + β2, Var(Wi) = 1 + σ2,

and
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Cov(Yi,Wi) = Cov(βXi + ǫi, Xi + ηi) = β.

b) The log-likelihood is

l(β, σ2) = −n
2

log(2π) − n

2
log(1 + σ2 + σ2β2)

− n
(1 + σ2)T1 − 2βT2 + (1 + β2)T3

2(1 + σ2 + σ2β2)
,

with

T1 =
1

n

n
∑

i=1

Y 2
i , T2 =

1

n

n
∑

i=1

WiY1, and T3 =
1

n

n
∑

i=1

W 2
i .

Maximum likelihood estimators for β̂ and σ̂2 can be obtained solving the
following equations, obtained setting partial derivatives of l to zero:

1 + β2 + T1 =
[(1 + σ2)T1 − 2βT2 + (1 + β2)T3](1 + β2)

1 + σ2 + σ2β2
,

2βσ2 − 2T2 + 2βT3 =
[(1 + σ2)T1 − 2βT2 + (1 + β2)T3](2βσ

2)

1 + σ2 + σ2β2
.

Explicit formulas do not seem possible. Under H0 : β = 0, the maximum
likelihood estimator for σ2 is σ̃2 = T3/n−1, obtained setting ∂l(0, σ2)/∂σ2

to zero.
c) When σ = 0, then the least squares estimator for β is T2/T1. By the

law of large numbers, T2
p→ EY1W1 = β and T1

p→ EW 2
1 = 1 + σ2. So

the least squares estimator converges in probability to β/(1 + σ2) and is
inconsistent unless σ2 = 0 or β = 0.
d) Let θ = (β, σ2)′. The Fisher information is

I(θ) =
1

D2

(

2 + 2σ2 + 6β2σ4 β + 2β2 + βσ2 + β3σ2

β + 2β2 + βσ2 + β3σ2 (1 + β2)2/2

)

,

where D = 1 + σ2 + β2σ2. Under H0, β = 0 and I(θ) is diagonal with
inverse

I(θ)−1 =

(

1
2 (1 + σ2) 0

0 2(1 + σ2)2

)

.

If e1 =
(

1
0

)

and e2 =
(

0
1

)

, the standard basis vectors, then the projection
matrices in the formula for the noncentrality parameter δ2 are P0 = e2e

′
2

and Q0 = e1e
′
1. Taking θ0 =

(

0
σ2

)

, ∆ =
√
n
(

β
0

)

and

δ2 = nβ2e′1[P0 +Q0I(θ0)
−1Q0]

−1e1

= nβ2e′1

(

P0 +
Q0

e′1I(θ0)
−1e1

)

e1

=
2nβ2

1 + σ2
.
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The power of the test is approximately P
(

(Z + δ)2 > 1.962
)

with Z ∼
N(0, 1). It decreases as σ2 increases.

13. a) Viewing (p1, p2) as the parameter with p3 determined as 1−p1−p2, the
parameter space Ω is the triangular-shaped region where p1 > 0, p2 > 0,
and p1 + p2 < 1, an open set in R2, and the likelihood function is

L(p) =

(

n

Y1, Y2, Y3

)

pY1
1 pY2

2 pY3
3 .

Maximum likelihood estimators under the full model are p̂i = Yi/n, i = 1,
2, 3. The parameter space under H0 is

Ω0 = {(1 − e−θ, e−θ − e−2θ) : θ > 0}.
The maximum likelihood estimator θ̃ for θ under H0 maximizes

logL(1 − e−θ, e−θ − e−2θ).

Setting the θ-derivative to zero, θ̃ = − log[(Y2 + 2Y3)/(2n−Y1)]. Plugging
in the estimators, 2 logλ is

2

[

3
∑

i=1

Yi log
Yi
n

− (Y1 + Y2) log
Y1 + Y2

Y1 + 2Y2 + 2Y3

− (Y2 + 2Y3) log
Y2 + 2Y3

Y1 + 2Y2 + 2Y3

]

.

b) With Y = (36, 24, 40), 2 logλ = 0.0378 and we accept H0. The p-value
is P (χ2(1) > 0.0378) = 84.6%.
c) Take θ0 = (0.4, 0.24), a convenient point in Ω0 close to θ = (0.36, 0.24)
(any other reasonable choice should give a similar answer). Inverse Fisher
information at θ is

I(θ0)
−1 =

(

0.240 −0.0960
−0.096 0.1824

)

,

and points θ in Ω0 satisfy the constraint g(θ) = θ21 + θ2 − θ1 = 0. If V0 is
the tangent space at θ0, then V ⊥0 is the linear span of

v = ∇g(θ0) =

(

2θ1 − 1

1

)

θ=θ0

=

(−0.2

1

)

,

and Q0 = vv′/‖v‖2. Also, ∆ =
√
n(θ − θ0) =

√
n
(−0.04

0

)

. So

δ2 = ∆′Q0

(

P0 +Q0I(θ0)
−1Q0

)−1
Q0∆

=
(∆ · v)2

v′I(θ0)−1v
=
n(0.008)2

0.2304
=

n

3600
.

For 90% power, δ2 needs to be 10.51 which leads to n = 37, 836 as the
requisite sample size.
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Index

absolutely continuous, 7
absolutely continuous function, 379
admissible decision rules, 213

sufficient conditions, 214–215
almost everywhere, 6

for a family, 46
almost sure convergence, 143–144
analysis of covariance, 297
analysis of variance

Bayesian inference, 303, 317
contrasts, 291–292
one-way, 270
one-way, unbalanced, 297, 516
simultaneous confidence intervals,

286–288
two-way, 294, 512–514

ancillary statistics, 50
Anderson’s lemma, 331, 334
Anscombe’s theorem, 408
asymptotic relative efficiency, 139–141
asymptotic sufficiency, 341
autoregressive models, 82, 106, 472–474

Bayesian estimation, 125
maximum likelihood estimation, 146,

487–488

backwards induction, 416–417
Bahadur efficiency, 362
bandwidth selection, 372–373
Basu’s theorem, 50
Bayesian estimation, 115–120

conjugate prior distributions, 118,
124–125, 483

posterior distributions, 116

posterior risk, 116
prior distributions, 115

Bayesian inference
admissibility, 213–214
compound estimation, 302
hierarchical models, 301–303
hyperparameters, 301
image restoration, 313–316, 318
prediction, 126
robustness, 303–306
testing, 246–247, 253

Bayesian models, 115
bias, 130
Boole’s inequality, 17, 451
bootstrap methods, 391–403

accuracy for averages, 399–402
bias reduction, 392–396, 402
for exponential families, 403
nonparametric confidence intervals,

393–394
parametric confidence intervals,

396–398, 402–403
bounded linear operator, 389
bowl-shaped functions, 331
Brunn–Minkowski inequality, 331–333

Cantor set, 17–18
capture recapture experiments, 88–90
Cauchy sequence, 375
Cauchy–Schwarz inequality, 374–375
ceiling, 139
central limit theorem, 132

Edgeworth expansions, 447–449



532 Index

for martingales, 182
for medians and percentiles, 137–139
multivariate, 173
proof, 444–446

characteristic functions, 442–444
inversion formula, 443–444
Parseval’s relation, 442

Chebyshev’s inequality, 129
complete class theorem, 214
complete ordering, 120
completeness, 48–51

and minimal sufficiency, 49
compound loss functions, 205
confidence intervals, 161–163

asymptotic, 163–167
exact, 161
multivariate, 193
simultaneous, 192–193
simultaneous Bonferroni, 299

confidence regions, 161
asymptotic, 163
profile, 164

consistent estimation, 130
contiguity, 323–327, 348

definition, 323
contingency tables

conditional independence, 94–95
cross-product ratios, 97–98, 476–477
Fisher’s exact test, 262–265
Pearson’s chi-square test statistic,

360
Poisson model, 98–99
positive dependence, 263
symmetric, 98
testing independence, 356–361
testing symmetry, 363
two-way, 93–94, 189, 192, 495–496
with missing data, 189–190

continuity, 374
convergence

in L2, 325–326
in distribution, 131–134, 171–175
in distribution, definition, 131, 171
in probability, 129–131
strong, 35–36

convex functions, 51
convolutions, 390
Cornish–Fisher expansions, 401, 403
correlation, 10

covariance, 10

covariance inequality, 71
covariance matrices, 12
Cramér–Rao bound, 73–74
cross-sections, 168
cross-validation, 372–373

cumulant generating function, 30
cumulants, 30

decision theory, 40, 211–216
delta method, 133–134, 175

dense subsets, 152
densities, 7–8

conditional, 103
joint, 101

marginal, 101
density estimation, 384–388

kernel method, 385–386
using splines, 386–388

differentiable in quadratic mean, 326
Dini’s theorem, 434
discount factor, 425
distributions

F , 186
t, 161
beta, 55, 108–109, 464
binomial, 40

asymptotic confidence intervals, 187

Bayesian estimation, 117–119
empirical Bayes estimation, 217
UMVU estimation, 62, 64
uniformly most powerful unbiased

tests, 252, 506
bivariate normal, 191

testing independence, 345–347
Cauchy

uniformly most powerful tests, 251
chi-square, 68–69
conditional, 15–16, 102–105

definition, 102

given a σ-field, 412
exponential, 21, 57, 465

Bayesian estimation, 125, 484
confidence intervals, 187, 244

empirical Bayes estimation,
216–217, 497

equivariant estimation, 200–201
UMVU estimation, 78, 470
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uniformly most powerful tests,
250–251, 505–506

Fisher

generalized likelihood ratio test,
365–366

gamma, 21, 67–68, 456

cumulants, 37, 462–463

geometric, 19, 33, 37, 90, 452, 458,
461

asymptotic confidence intervals, 187

confidence intervals, 249

UMVU estimation, 78, 470

joint, 14, 101–102

log normal, 296

log series, 38

marginal, 101–102

mixture, 107

multinomial, 55–56, 91–93, 464–465

multivariate normal, 171–173

negative binomial, 90

Bayesian estimation, 119–120

UMVU estimation, 90

noncentral F , 281

noncentral t, 80, 471

noncentral chi-square, 280–281

mean and variance, 297

uniformly most powerful tests,
249–250

normal, 26

confidence intervals, 249

empirical Bayes estimation, 217–218

properties, 66–67

uniformly most powerful unbiased
tests, 252, 267, 506

of a product, 22

of a sum, 22, 42

Poisson, 19, 32

asymptotic confidence intervals,
165–166

Bayesian estimation, 124, 481

confidence intervals, 248–249,
502–503

empirical Bayes estimation, 217,
498

generalized likelihood ratio tests,
353–356

UMVU estimation, 78, 467–468

uniformly most powerful tests, 247

uniformly most powerful unbiased
tests, 252, 266, 510

power series, 38
standard normal, 20
studentized maximum modulus, 287
studentized range, 288
support, 213
truncated, 34–35
truncated Poisson, 65
uniform, 19, 453

Bayesian estimation, 124, 481–482
completeness, 49
confidence intervals, 186–187, 249,

503
contiguity, 342
empirical Bayes estimation, 218
maximum likelihood estimation,

186–187
UMVU estimation, 61, 63–65

von Mises, 83
uniformly most powerful unbiased

tests, 252–253
Weibull, 486

dominated convergence theorem, 29
dominated family, 45
duality between testing and interval

estimation, 228–232

Edgeworth expansions, 399–401, 403
empirical Bayes estimation, 205–207
empirical cumulative distribution

function, 156
empirical distribution, 384, 391
epidemic models, 106
equivariant estimation, 195–201

of a scale parameter, 202
equivariant estimators, 196
ergodic theorem, 180
errors in variables models, 365, 521–523
events, 6
exchangeable distributions, 127
expectation, 8–10

of a random function, 152
of a random matrix, 12
of a random vector, 11

expected value, see expectation
exponential families, 25–27

completeness, 50
curved, 85–88
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differential identities, 27–28
generating functions, 31
induced density for T , 238–239
marginal and conditional densities,

256–257
minimal sufficiency, 47
natural parameter space, 25
of full rank, 49

factorial designs, 297–299
factorization theorem, 45–46

proof, 106–108
filtrations, 411
Fisher information, 72–73

additive property, 75
for reparameterized families, 74, 77
general definition, 326
in exponential families, 74, 76–77
in higher dimensions, 76–77
in location families, 74–75
observed, 164

floor, 139
Fourier transform, 444
Fubini’s theorem, 13
function spaces
C(K), 151
L2(µ), 325
Banach, 152
complete, 152
Hilbert, see Hilbert spaces
linear, 152
separable, 152
Sobolev, 379

functions, 431–432
domain, 431
into and onto, 431
inverse f←, 431
inverse f−1, 3, 19, 431, 453
one-to-one, 431
range, 431
real-valued, 432
vector-valued, 432

gamma function, 21, 456
general linear model, 269–292

Bayesian estimation, 302–303
best linear unbiased estimators,

275–276
canonical form, 271–272

confidence intervals, 277–278
estimating β and ξ, 273–275
estimating σ2, 277–278
Gauss–Markov theorem, 275–277
generalized likelihood ratio tests, 364
least squares estimator, 274
nonidentifiable models, 295–296
residuals, 273
simultaneous confidence intervals,

286–292
testing, 281–285

Gibbs sampler, 311–312
Glivenko–Cantelli theorem, 156
goodness-of-fit tests, 365, 523
group action, 195, 200

Haar measures, 200
Hammersley–Chapman–Robbins

inequality, 72
harmonic mean, 146
hidden Markov model, 190
Hilbert spaces, 373–378

definition, 375
orthonormal basis, 377–378
projections, 376–377
reproducing kernels, 379–380

hyperparameters, 207
hypothesis testing, 219–244

critical regions, 219
likelihood ratio tests, 221
locally most powerful tests, 245–246,

251–252, 500–501
nonrandomized tests, 219
p-values, 247, 502
power functions, 219
significance level, 219
similar tests, 257–258
simple hypotheses, 220
simple versus simple testing, 220–224
test function, 220
two-sided tests, 240
unbiased tests, 242–243
uniformly most powerful tests,

224–227
two-sided hypotheses, 236–242
unbiased, 242–244, 258–260

idempotent matrices, 274
identifiable models, 224
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inadmissible decision rules, 213
inadmissible estimators, 54–55, 210

Bayesian, 120
inadmissible uniformly most powerful

tests, 226–227
indicator functions, 4
inner product, 374
integrated mean square error, 371–372
integration, 3–5

basic properties, 4
null sets, 6

invariant functions, 197
invariant loss functions, 196
inverse binomial sampling, 89
inverse linear regression, 296–297
inverting a partitioned matrix, 440–441

jackknife, 402
James–Stein estimator, 207

risk, 208–211
Jensen’s inequality, 52

K-statistics, 37–38
Kullback–Leibler information, 59, 156,

466

L2-norm, 325
Lagrange multipliers, 220–221
Laplace’s law of succession, 246
large-sample theory, 129–141
likelihood function, 46, 135
likelihood ratio tests

asymptotic distribution of 2 log λ,
347–353

generalized, 343–347
likelihood ratios, 221, 237–238
Lindeberg condition, 182, 194
linear estimators, 275
linear span, 377
local asymptotic normality, 327–330
locally asymptotically minimax,

339–341
location family, see location models
location models, 74, 195–196
loss function, 40

m-dependent processes, 144–145,
484–485

M -estimation, 175–178

asymptotic confidence intervals, 194
manifolds and tangent spaces, 436–438
Markov chains, 306–309

aperiodic, 308
irreducible, 308
with a finite state space, 307–309

Markov random fields, 314
Markov’s inequality, 148
maximal inequality, 408
maximal invariant, 198
maximum likelihood estimation,

135–137
central limit theorem, 158–160
consistency, 156–158
EM algorithm, 167–170
in exponential families, 135

measurable functions, 4, 152
measures, 1–3

atoms, 2
counting, 1, 3, 8
Lebesgue , 1
probability, 3
product, 13–14
regular, 333
sigma-finite, 2
singular, 23–24
sums of, 18, 451–452
truncated, 17

medians, 137
limiting distribution, 139

method of moments estimation, 185
Metropolis–Hastings algorithm, 309–311
minimax estimation, 330

normal mean, 330–331, 334–335
minimum risk equivariant estimators,

198–199
models, 39
moment generating function, 30
moments, 30
monotone convergence theorem, 20–21
monotone likelihood ratios, 224

in location families, 247, 501–502
multinomial coefficient, 92

Neyman structure, 258
Neyman–Pearson lemma, 221

converse, 221–222
generalized, 232–236

nonparametric regression
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estimating σ2, 388
kernel method, 368–373

bandwidth, 368
locally weighted, 388–389

norm, 373
normal one-sample problem
t-test, 260–262, 344–345
admissibility of the sample average,

215–216
common mean and standard

deviation, 86–87, 187
common mean and variance, 85–86
confidence intervals, 161–163
distribution theory, 66–69
estimation, 70–71
independence of X and S2, 50
UMVU estimation, 80

normal two-sample problem, 87–88
F test, known variance, 266, 508–509
UMVU estimation, 96

null family, 387
null sets, 6

O, Op, o, and op notation, see scales of
magnitude

order statistics, 48, 137

parallelogram law, 375
Parseval’s relation, 442
Perron–Frobenius theorem, 308
Pitman estimator, 200
pivotal statistics, 161

approximate, 163
pooled sample variance, 87
portmanteau theorem, 171
posterior distributions

normal approximation, 337–339
power function

derivatives, 239–240
powers of symmetric nonnegative

definite matrices, 172
precision, 113, 314
probit analysis, 190–191
projection matrices, 274
Pythagorean relation, 375

quantiles
for the normal distribution, 70

Radon–Nikodym derivative, 7

Radon–Nikodym theorem, 7
random effects models, 363, 516–518
random functions, 152
random matrices, 12
random variables, 6

absolutely continuous, 7
complex, 442
cumulative distribution functions, 6,

19, 452
discrete, 7
distributions, 6, 19, 453
mass function, 8
mixed, 19–20, 453–454

random vectors, 10–11
absolutely continuous, 11
cumulative distribution functions,

171
discrete, 11
independence, 13

random walk, 105
randomized estimators, 44, 54
Rao–Blackwell theorem, 53
regression, 57

Bayesian estimation, 124, 482–483
confidence bands, 290–291
logistic, 34, 55, 459–460, 464
maximum likelihood estimation, 146,

487
quadratic, 269–270
ridge estimators, 303
simple linear, 34, 78, 279–280, 459,

468
time series, 294–295
two-sample models, 296
uniformly most powerful unbiased

tests, 252, 266, 509–510
risk function, 40, 212
robust estimation, 177–178

sample correlation, 280, 346
scale parameter, 68
scales of magnitude, 141–143, 148
Scheffé method for simultaneous

confidence intervals, 288–292
Scheffé’s theorem, 35–36, 460–461
score tests, 361–362
semiparametric models, 390
sequential methods, 88–91, 405–426

bandit problems, 424–426
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allocation indices, 425
forwards induction, 426
index strategy, 426

Bayesian testing, 413–417
bias, 97
fixed width confidence intervals,

406–410
Gittins’ theorem, 426
likelihood, 90, 412–413
optimal stopping, 413–417
power one tests, 429
sampling to a foregone conclusion,

405–406
secretary problems, 428
sequential probability ratio test,

417–422
stochastic approximation, 422–424,

429–430
two-stage procedures, 427

shift invariant sets, 180
σ-field, 2

Borel, 3
simple functions, 4
smoothing, 16
spectral radius, 308
splines, 378–384
B-spline bases, 383–384
definition, 381
natural, 381
smoothing parameter, 379

squared error loss, 41, 117
weighted, 117

stationary distributions, 306
stationary process

definition, 179
maximum likelihood estimation,

178–185
Stein’s identity, 208
stochastic process, 179

ergodic, 180
linear, 179

stochastic transition kernel, 15, 44, 212,
306, 425

stopping times, 411–412
strong convergence, 336
strong law of large numbers, 144
sufficient experiments or models, 44
sufficient statistics, 42–44

in testing, 237

minimal, 46–48
superefficiency, 319–322
supporting hyperplane theorem, 51, 234
supremum norm, 152

Taylor expansion, 438–440
tightness, 142
time series models, 105–106
topology in Rn, 432–434

closed sets, 432
closure, 432
compact sets, 433
continuity, 432
convergence, 432
Heine–Borel theorem, 433
interior, 432
neighborhoods, 432
open cover, 433
open sets, 432
sequentially compact, 433
uniform continuity, 433

total variation norm, 335–336

U-estimable, 61
UMVU estimation, 62–66

by direct solution, 63–64
from conditioning, 64
of a sum of parameters, 78, 469

unbiased estimation, 37–38, 61
of the variance, 78, 468–469
second thoughts, 64–66

unbiased estimator of the risk, 209–210
uniform integrability, 134, 145
uniformly continuous in probability, 407
unit simplex, 56
utility theory, 120–124

counterexample, 121

value of a game, 416
variance, 9
variance stabilizing transformations,

187–188
vector spaces, 434–436

dimension, 435
Euclidean length, 436
inner product, 436
linear independence, 435–436
linear span, 435
orthogonal projections, 436



538 Index

orthogonal vectors, 436
orthonormal basis, 436
subspaces, 435
unit vectors, 436

von Mises functionals, 402

Wald tests, 361–362
Wald’s fundamental identity, 412, 427
Wald’s identity, 428–429

Wald–Wolfowitz theorem, 421–422
weak compactness theorem, 234
weak convergence, 233–234
weak law of large numbers, 130

for random functions, 151–156
weighted averages, 55, 463
with probability one, 6

zero-one loss, 125
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