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Preface

This book evolved from my notes for a three-semester sequence of core courses
on theoretical statistics for doctoral students at the University of Michigan.
When I first started teaching these courses, I used Theory of Point Estimation
and Testing Statistical Hypotheses by Lehmann as texts, classic books that
have certainly influenced my writings.

To appreciate this book students will need a background in advanced cal-
culus, linear algebra, probability, and some analysis. Some of this material is
reviewed in the appendices. And, although the content on statistics is reason-
ably self-contained, prior knowledge of theoretical and applied statistics will
be essential for most readers.

In teaching core courses, my philosophy has been to try to expose students
to as many of the central theoretical ideas and topics in the discipline as pos-
sible. Given the growth of statistics in recent years, such exposition can only
be achieved in three semesters by sacrificing depth. Although basic material
presented in early chapters of the book is covered carefully, many of the later
chapters provide brief introductions to areas that could take a full semester
to develop in detail.

The role of measure theory in advanced statistics courses deserves careful
consideration. Although few students will need great expertise in probabil-
ity and measure, all should graduate conversant enough with the basics to
read and understand research papers in major statistics journals, at least in
their areas of specialization. Many, if not most, of these papers will be written
using the language of measure theory, if not all of its substance. As a prac-
tical matter, to prepare for thesis research many students will want to begin
studying advanced methods as soon as possible, often before they have fin-
ished a course on measure and probability. In this book I follow an approach
that makes such study possible. Chapter 1 introduces probability and measure
theory, stating many of the results used most regularly in statistics. Although
this material cannot replace an honest graduate course on probability, it gives
most students the background and tools they need to read and understand
most theoretical derivations in statistics. As we use this material in the rest
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of the book, I avoid esoteric mathematical details unless they are central to
a proper understanding of issues at hand. In addition to the intrinsic value
of concepts from measure theory, there are several other advantages to this
approach. First, results in the book can be stated precisely and at their proper
level of generality, and most of the proofs presented are essentially rigorous.!
In addition, the use of material from probability, measure theory, and analysis
in a statistical context will help students appreciate its value and will motivate
some to study and learn probability at a deeper level. Although this approach
is a challenge for some students, and may make some statistical issues a bit
harder to understand and appreciate, the advantages outweigh these concerns.

As a caveat I should mention that some sections and chapters, mainly later
in the book, are more technical than most and may not be accessible without
a sufficient background in mathematics. This seems unavoidable to me; the
topics considered cannot be covered properly otherwise.

Conditioning arguments are used extensively in the book. To keep the
derivations as intuitive and accessible as possible, the presentation is based on
(regular) conditional distributions to avoid conditioning on o-fields.? As long
as the conditioning information can be viewed as a random vector, conditional
distributions exist and this approach entails no loss of generality. Conditional
distributions are introduced in Chapter 1, with the conditioning variable dis-
crete, and the law of total probability or smoothing is demonstrated in this
case. A more general treatment of conditioning is deferred to Chapter 6. But
I mention in Chapter 1 that smoothing identities are completely general, and
use these identities in Chapter 6 to motivate the technical definition of con-
ditional distributions.

With advances in technology for sharing and collecting information, large
data sets are now common. Large sample methods have increasing value in
statistics and receive significant attention in this book. With large amounts
of data, statisticians will often seek the flexibility of a semi- or nonparametric
model, models in which some parameters are viewed as smooth functions. At
a technical and practical level, there is considerable value in viewing functions
as points in some space. This notion is developed in various ways in this text.
The discussion of asymptotic normality for the maximum likelihood estimator
is structured around a weak law of large numbers for random functions, an
approach easily extended to cover estimating equations and robustness. Weak
compactness arguments are used to study optimal testing. Finally, there is
an introduction to Hilbert space theory, used to study a spline approach to
nonparametric regression. Modern statisticians need some knowledge of func-
tional analysis. To help students meet the challenge of learning this material,
the presentation here builds intuition by noting similarities between infinite-

L A reader with a good background in probability should have little trouble filling
in any missing technical details.

2 Filtrations and conditioning on o-fields are mentioned in Chapter 20 on sequential
analysis.
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dimensional and finite-dimensional spaces, and provides motivation by linking
the mathematical results to significant statistical applications.

If you are a professor using this book as a text, please note that results from
Chapters 1 through 4 and Sections 6.1 and 6.2 are used extensively in the rest
of the book, and any unfamiliar material on these pages should be covered with
care. But much of the rest of the book can be resequenced or omitted to suit
your preferences. Chapters 7 and 15 on Bayesian methods should be covered
in order, as should Chapters 12, 13, and 17 on hypothesis testing. Chapter 11
on empirical Bayes estimation uses results from Chapter 7, and Chapter 14
on the general linear model uses results on testing from Chapter 12. Results
on large sample theory from Chapters 8 and (to a lesser extent) 9 are used in
Chapters 15 through 20. As I mentioned earlier, results in some chapters and
sections® are more mathematically challenging; depending on the maturity
of your students you may want to omit or cover this material superficially,
possibly without proofs or derivations. For these chapters and sections and
others, title footnotes indicate whether the material is optional and how the
results will be used later.

Finally, a few words of appreciation are in order. To Michael Woodroofe,
Herman Chernoff, and Carl Bender, who have had such an impact on my
personal development as a mathematician, probabilist, and statistician; to
friends, family, colleagues, and the Department for support and encourage-
ment; and to past students, reviewers, and editors for a wealth of useful sug-
gestions. This manuscript was typeset using IXTEXand figures were produced
using MATLAB. Finally, a special thanks to future students; the notion that
this book will help some of you has kept me believing it to be a worthwhile
project.

Ann Arbor, Michigan ROBERT KEENER
June 24, 2010

3 My list would include Sections 6.4, 9.1, 9.9, 12.5, 12.6, and 12.7; and Chapters 13
and 16.






Notation

Absolute Continuity, P < p: The measure P is absolutely continuous with
respect to (or P is dominated by) the measure u. See page 7.

Convergence in Distribution: Y, = Y. See page 131.

Convergence in Probability: Y, = Y. See page 129.

Cumulants: Ky, .. r,. See page 30.

Derivatives: If h is a differentiable function from some subset of R into R™,
then Dh(z) is a matrix of partial derivatives with [Dh(z)];; = Oh,(x)/0x;.

Floor and Ceiling: For x € R, the floor of z, denoted |z |, is the is the largest
integer y with y < z. The ceiling [z] of x is the smallest integer y > .

Inner Product: (x,y). See page 374.

Inverse Functions: If f is a function on D with range R = f(D), then f~1,
mapping 2% — 2P is defined by f~Y(B) = {x € D : f(x) € B}. If f is
one-to-one, the inverse function f is defined so that f< (y) = = when
y=f(z)

Mazimum and Minimum: x Ay Lef min{z,y} and z Vy ef max{z,y}.

Norms: For x € RP, ||z|| is the usual Euclidean norm. For functions, || f||e =
sup |f|, and || f]l2 = [ffdu] 2 por points z in an inner product space,
loll = (, )12,

Point Mass: J. is a probability measure that all of its mass to the point ¢,
so 6({c}) =1.

Scales of Magnitude: O(-), Op(+), o(-), and op(+). See page 141.

Set Notation: The complement of a set A is denoted A€. For two sets A

and B, AB or AN B denotes the intersection, A U B denotes the union,
def

and A — B = AB° will denotes the set difference. Infinite unions and
intersections of sets A1, As, ... are denoted

oo

UAl déf {{E T e Ai,Vi}

i=1

and



XII Notation
~ i def
ﬂAi = {z:3 € A;, 3i}.
i=1

Stochastic Transition Kernel: @ is a stochastic transition kernel if Q. (-) is a
probability measure for all z and @,(B) is a measurable function of z for
every Borel set B.

Topology: For a set S, S is the closure, S° the interior, and 95 = .S — S is
the boundary. See page 432.

Transpose: The transpose of a vector or matrix x is denoted z’.
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1

Probability and Measure

Much of the theory of statistical inference can be appreciated without a de-
tailed understanding of probability or measure theory. This book does not
treat these topics with rigor. But some basic knowledge of them is quite use-
ful. Much of the literature in statistics uses measure theory and is inaccessible
to anyone unfamiliar with the basic notation. Also, the notation of measure
theory allows one to merge results for discrete and continuous random vari-
ables. In addition, the notation can handle interesting and important applica-
tions involving censoring or truncation in which a random variable of interest
is neither discrete nor continuous. Finally, the language of measure theory is
necessary for stating many results correctly. In the sequel, measure-theoretic
details are generally downplayed or ignored in proofs, but the presentation is
detailed enough that anyone with a good background in probability should be
able to fill in any missing details.

In this chapter measure theory and probability are introduced, and several
of the most useful results are stated without proof.

1.1 Measures

A measure p on a set X assigns a nonnegative value u(A) to many subsets A
of X. Here are two examples.

Example 1.1. If X is countable, let
1(A) = #A = number of points in A.
This p is called counting measure on X.

Example 1.2. Let X = R™ and define
w(A) =/-~-/dm1---d:vn.
A

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 1
DOI 10.1007/978-0-387-93839-4 1, © Springer Science+Business Media, LLC 2010
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With n =1, 2, or 3, u(A) is called the length, area, or volume of A, respec-
tively. In general, this measure y is called Lebesgue measure on R™. Actually,
for some sets A it may not be clear how one should evaluate the integral
“defining” p(A), and, as we show, the theory of measure is fundamentally
linked to basic questions about integration.

The measures in these examples differ from one another in an interesting
way. Counting measure assigns mass to individual points, p({z}) = 1 for
x € X, but the Lebesgue measure of any isolated point is zero, pu({z}) = 1.
In general, if u({z}) > 0, then z is called an atom of the measure with mass
p({z}) > 0.

It is often impossible to assign measures to all subsets A of X. Instead,
the domain! of a measure ;& will be a o-field.

Definition 1.3. A collection A of subsets of a set X is a o-field (or o-algebra)
if

1.Xe€Aand () € A.
2.If A€ A, then A=X —Aec A.
3. If A1, As,... € A, then U?ilAiGA-

The following definition gives the basic properties that must be satisfied for
a set function p to be called a measure. These properties should be intuitive
for Examples 1.1 and 1.2.

Definition 1.4. A function p on a o-field A of X is a measure if

1. For every A€ A, 0 < pu(A) < oo; that is, p: A — [0, 00].
2. If A1, As, ... are disjoint elements of A (A, NA; =0 for all i # j), then

1 (U Ai) = ZN(AJ

One interesting and useful consequence of the second part of this definition
is that if measurable sets B,, n > 1, are increasing (B1 C By C ---), with
union B = |, By, called the limit of the sequence, then

u(B) = lim_ u(B,). (1.1)
n—oo
This can be viewed as a continuity property of measures.

For notation, if A is a o-field of subsets of X, the pair (X,.A) is called a
measurable space, and if p is a measure on A, the triple (X, A4, i) is called a
measure space.

A measure p is finite if (X)) < oo and o-finite if there exist sets Aj, Ao, ...
in A with p(A;) < oo for all i = 1,2,... and J;2, A; = X. All measures
considered in this book are o-finite.

1 See Appendix A.1 for basic information and language about functions.
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A measure p is called a probability measure if u(X) = 1, and then the
triple (X, A, p) is called a probability space. For probability (or other finite)
measures, something analogous to (1.1) holds for decreasing sets. If measurable
sets B1 D By D - -+ have intersection B = ﬂff:l B,,, then

p(B) = lim p(By). (1.2)

Ezample 1.1, continued. Counting measure given by u(A) = #A can be

defined for any subset A C X, so in this example, the o-field A is the collection

of all subsets of X. This o-field is called the power set of X, denoted A = 2¥.

Example 1.2, continued. The Lebesgue measure of a set A can be defined,

at least implicitly, for any set A in a o-field A called the Borel sets of R™.
Formally, A is the smallest o-field that contains all “rectangles”

(a1,b1) X« X (an,bp) ={z €R" 1 a; < z; < bj,i=1,...,n}.

Although there are many subsets of R™ that are not Borel, none of these sets
can be written explicitly.

1.2 Integration

The goal of this section is to properly define integrals of “nice” functions f
against a measure . The integral written as [ fdu or as [ f(z) du(z) when
the variable of integration is needed. To motivate later developments, let us
begin by stating what integration is for counting and Lebesgue measure.

Example 1.5. If u is counting measure on X, then the integral of f against p

’ /fdu=2f(:v)«

reX

FEzample 1.6. If 1 is Lebesgue measure on R", then the integral of f against

s
/fd,u:/---/f(;vl,...,xn)dxl...dxn.

It is convenient to view z as the vector (x1,...,2,) and write this integral
against Lebesgue measure as [ - [ f(z)dz or [ f(z)dz.

The modern definition of integration given here is less constructive than
the definition offered in most basic calculus courses. The construction is driven
by basic properties that integrals should satisfy and proceeds arguing that for
“nice” functions f these properties force a unique value for [ fdu. A key
regularity property for the integrand is that it is “measurable” according to
the following definition.
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Definition 1.7. If (X, A) is a measurable space and f is a real-valued func-
tion on X, then f is measurable if

def

B S {reX:f(x)eB}c A

for every Borel set B.

Although there are many functions that are not measurable, they cannot
be stated explicitly. Continuous and piecewise continuous functions are mea-
surable. A more interesting example is the function f: R — R with f(z) =1
when z is an irrational number in (0, 1), and f(z) = 0 otherwise. With the
Riemann notion of integration used in basic calculus courses, for this function
[, [ f(z) dx is not defined. The more general methods presented here give the
natural answer, [ f(z)dz = 1. In the sequel, functions of interest are generally
presumed to be measurable.

The indicator function 14 of a set A is defined as

1, ze€A;

1,4($)=I{$6A}:{0 rd A

Here are the basic properties for integrals.

1. For any set A in A, [1a4du = p(A).
2. If f and g are nonnegative measurable functions, and if a and b are positive
constants,

/(af—&—bg)d,uza/fd,u—!—b/gdu. (1.3)

3. If f1 < fy < --- are nonnegative measurable functions, and if f(x) =

lim;, o0 fn(x), then
/fd,u: lim /fnd,u.

The first property provides the link between | fdp and the measure p,
the second property is linearity, and the third property is useful for taking
limits of integrals.

Using the first two properties, if aq, ..., a,, are positive constants, and if
Aq,..., Ay, are sets in A, then

Functions of this form are called simple. Figure 1.1 shows the graph of the
simple function 1(1 3 7)+21(1,2). The following result asserts that nonnegative
measurable functions can be approximated by simple functions.

Theorem 1.8. If f is nonnegative and measurable, then there exist nonneg-
atiwe simple functions f1 < fo < -+ with f =lim, o0 fn-
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L
\%
8

1 2 3

Fig. 1.1. The simple function 1(;/2 x) + 211,2).

This result along with the third basic property for integrals allows us
to integrate any nonnegative measurable function f, at least in principle.
The answer is unique; different choices for the increasing sequence of simple
functions give the same answer. To integrate a general measurable function
f, introduce the positive and negative parts

fT(z) = max{f(x),0} and f~(z) = —min{f(z),0}.

Then f* and f~ are both nonnegative and measurable, and f = fT — f~.
The integral of f should generally be the difference between the integral of fT
and the integral of f~. This difference is ambiguous only when the integrals
of f* and f~ are both infinite. So, if either [ f*du < co or [ f~du < oo,

we define
[ran=[sran- [ 1 an

With this definition the linearity in (1.3) holds unless the right-hand side is
formally oo — co. Note also that because |f| = f + f~, this definition gives
a finite value for [ fdpu if and only if

[rraus [ du= [ 1flau< o,

When [ |f|dp < oo, fis called integrable.
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1.3 Events, Probabilities, and Random Variables

Let P be a probability measure on a measurable space (£, B), so (£, B, P)
is a probability space. Sets B € B are called events, points e € £ are called
outcomes, and P(B) is called the probability of B.

A measurable function X : £ — R is called a random variable. The prob-
ability measure Py defined by

def

Px(A)=P({ec&:X(e) € A}) = P(X € A)

for Borel sets A is called the distribution of X. The notation
X~Q

is used to indicate that X has distribution @); that is, Px = @Q. The cumulative
distribution function of X is defined by

Fx(z)=P(X <z)=P({e€&: X(e) < z}) = Px((—00,1]),

for x € R.

1.4 Null Sets

Let p be a measure on (X, A). A set N is called null (or null with respect to
p) if

uw(N) = 0.
If a statement holds for z € X — N with N null, the statement is said to hold
almost everywhere (a.e.) or a.e. u. For instance, f = 0 a.e. u if and only if
p({z € X : f(z) #0}) =0.

There is an alternative language for similar ideas when u is a probability
measure. Suppose some statement holds if and only if x € B. Then the state-
ment holds (a.e. ) if and only if u(B¢) = 0 if and only if u(B) = 1. This can
be expressed by saying “the statement holds with probability one.”

The values of a function on a null set cannot affect its integral. With this
in mind, here are a few useful facts about integration that are fairly easy to
appreciate:

1. If f =0 (a.e. p), then [ fdu=0.

2. If f>0and [ fdu=0, then f =0 (a.e. ).

3. If f = g (a.e. ), then [ fdp = [ gdp whenever either one of the integrals
exists.

4. If | Loy fdpu =0 for all z > ¢, then f(x) = 0 for a.e. z > c. The constant
¢ here can be —o0.

As a consequence of 2, if f and g are integrable and f > g, then [ fdu >
[ gdp (unless p is identically zero).
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1.5 Densities

Densities play a basic role in statistics. In many situations the most convenient
way to specify the distribution of a random vector X is to give its density.
Also, densities give likelihood functions used to compute Bayes estimators or
maximum likelihood estimators. The density for a measure exists whenever
it is absolutely continuous with respect to another measure according to the
following definition.

Definition 1.9. Let P and p be measures on a o-field A of X. Then P is
called absolutely continuous with respect to p, written P < u, if P(A) =0
whenever u(A) = 0.

Theorem 1.10 (Radon—Nikodym). If a finite measure P is absolutely
continuous with respect to a o-finite measure p, then there exists a nonnegative
measurable function f such that

P(A)=Afdu(1§f/flAdu~

The function f in this theorem is called the Radon—Nikodym derivative of
P with respect to u, or the density of P with respect to u, denoted

By the third fact about integration and null sets in the previous section, the
density f may not be unique, but if fy and f; are both densities, then fy = f;
(a.e. p). If X ~ Px and Px is absolutely continuous with respect to p with
density p = dPx /dy, it is convenient to say that X has density p with respect
to p.

Example 1.11. Absolutely Continuous Random Variables. If a random variable
X has density p with respect to Lebesgue measure on R, then X or its dis-
tribution Py is called absolutely continuous with density p. Then, from the
Radon-Nikodym theorem,

Fx(z) = P(X <) = Px((—00,2]) = /:E p(u) du.

Using the fundamental theorem of calculus, p can generally be found from the
cumulative distribution function Fx by differentiation, p(x) = Fi ().

Ezxample 1.12. Discrete Random Variables. Let Xy be a countable subset of
R. The measure p defined by

n(B) = #(X N B)
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for Borel sets B is (also) called counting measure on Xp. As in Example 1.5,
[ran=3 1@
reXy

Suppose X is a random variable and that
P(X € XQ) = Px(.)(o) =1.

Then X is called a discrete random wvariable. Suppose N is a null set for pu,
so u(N) = 0. From the definition of u, #(N N Ap) = 0, which means that
NNXy=0and so N C X§. Then Px(N) = P(X € N) < P(X € X§) =
1—P(X € X)) = 0. Thus N must also be a null set for Px, and this shows
that Px is absolutely continuous with respect to u. The density p of Px with
respect to p satisfies

P(X € 4) = Px(A) = /Apdu =3 p@)a).

reXy

In particular, if A = {y} with y € Xy, then X € A if and only if X =y, and

P(X =y)= Y p)liy(x) =py).

rEeX)y

This density p is called the mass function for X. Note that because A is a
null set, the density p(y) can be defined arbitrarily when y ¢ AXy. The natural
convention is to take p(y) = 0 for y ¢ Xy, for then p(y) = P(Y = y) for all y.

1.6 Expectation

If X is a random variable on a probability space (€, B, P), then the ezpectation
or expected value of X is defined as

EX = /XdP. (1.4)
This formula is rarely used. Instead, if X ~ Px it can be shown that
EX = /deX(x).
Also, if Y = f(X), then

EY = Ef(X) = /fdPX. (1.5)
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Integration against Px in these two formulas is often accomplished using
densities. If Px has density p with respect to p, then

[ tars= [ ivan (1.6)

This identity allows formal substitution of pdu for dPx, which makes the
derivative notation p = dPx /du seem natural. Together these results can all
be viewed as change of variable results. Proofs of these results are based on
the methods used to define integrals. It is easy to show that (1.5) and (1.6)
hold when f is an indicator function. By linearity they must then hold for
positive simple functions, and then a limiting argument shows that they hold
for general measurable f, at least when the integrals exist. Specializing these
results to absolutely continuous and discrete random variables we have the
following important examples.

FEzample 1.13. If X is an absolutely continuous random variable with density
p, then

EX = /deX(;v) = /xp(m) dx

and

Ef(X) = / f(@)p() da. (17)

Ezample 1.14. If X is discrete with P(X € Ap) = 1 for a countable set Xy, if
1 is counting measure on Xy, and if p is the mass function given by p(z) =
P(X =), then

EX = /deX(x) = /xp(m) du(z) = Z xp(x)

reX)y

and

Ef(X)= ) fl@)p(x). (1.8)

zEX)

Expectation is a linear operation. If X and Y are random variables and a
and b are nonzero constants, then

E(aX +bY) = aEX + bEY, (1.9)

provided EX and EY both exist and the right-hand side is not oo — co. This
follows easily from the definition of expectation (1.4), because integration is
linear (1.3). Another important property of expectation is that if X and Y
have finite expectations and X < Y (a.e. P), then EX < EY. Also, using
linearity and the second fact about integration in Section 1.4, if X <Y (a.e.
P) and both have finite expectations, EX < EY with equality only if X =Y
(a.e. P).
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The wvariance of a random variable X with finite expectation is defined as
Var(X) = E(X — EX)%

If X is absolutely continuous with density p, by (1.7)
Var(X) = /(:r — EX)*p(z) dz,

and if X is discrete with mass function p, by (1.8)

Var(X) = > (z — EX)*p(x).

TEX)
Using (1.9),
Var(X) = BE(X? - 2XEX + (EX)?) = EX® — (EX)?,

a result that is often convenient for explicit calculation.
The covariance between two random variables X and Y with finite expec-
tations is defined as

Cov(X,Y) = E(X — EX)(Y — EY), (1.10)
whenever the expectation exists. Note that Cov(X, X) = Var(X). Using (1.9),

Cov(X,Y) = E(XY — XEY — YEX + (EX)(EY))
= EXY — (EX)(EY). (1.11)

The covariance between two variables might be viewed as a measure of the
linear association between the two variables. But because covariances are in-
fluenced by the measurement scale, a more natural measure is the correlation,
defined using the covariance as

Cov(X,Y)

Cor(X,Y) = .
ol ) [Var(X)Var(Y)] 1/2

Correlations always lie in [—1, 1], with values +1 arising when there is a perfect
linear relation between the two variables.?

1.7 Random Vectors
If X4,...,X, are random variables, then the function X : £ — R"™ defined by

2 This follows from the covariance inequality (4.11).
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is called a random vector.> Much of the notation and many of the results
presented in this chapter for random variables extend naturally and directly
to random vectors. For instance, the distribution Px of X is defined by

Px(B)=P(X € B)¥ P({ec &: X(e) € BY)

for Borel sets B € R", and notation X ~ Px means that X has distribution
Px. The random vector X or its distribution Px is called absolutely contin-
uous with density p if Px is absolutely continuous with respect to Lebesgue
measure on R™. In this case

P(XGB):/---/p(x)dx.
B

The random vector X is discrete if P(X € Xy) = 1 for some countable set
Xo C R™. If p(x) = P(X = ), then Px has density p with respect to counting
measure on Xy and

P(XeB)= Y  p(a).

reXoNB

The expectation of a random vector X is the vector of expectations,
EX,
EX = g
EX,
If T: R™ — R is a measurable function, then T'(X) is a random variable, and,
as in (1.5),

ET(X) = / T dPx

whenever the expectation or integral exists. If Px has a density p with respect
to a dominating measure y, this integral can be expressed as [ Tpdu, which

becomes
Z T(z)p(x) or //T((E)p(l’) dx

TEX)

in the discrete and absolutely continuous cases with p counting or Lebesgue
measure, respectively.

3 Equivalently, the vector-valued function X is measurable: X *(B) € £ for every
Borel set B € R".
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1.8 Covariance Matrices

A matrix W is called a random matriz if the entries W;; are random variables.
If W is a random matrix, then EW is the matrix of expectations of the entries,

(EW);; = EW,;.

If v is a constant vector, A, B, and C are constant matrices, X is a random
vector, and W is a random matrix, then

Elv+ AX]=v+ AEX (1.12)
and
E[A+ BWC]|= A+ B(EW)C. (1.13)

These identities follow easily from basic properties of expectation because
(U + AX)l =v; + Ej Ainj and (A + BWC)ij = Aij + Zk Zl BikalClj.

The covariance of a random vector X is the matrix of covariances of the
variables in X; that is,

[COV(X)]ij = COV()(Z'7 XJ)

If w = EX and (X — p)’ denotes the transpose of X — u, a (random) row
vector, then

Cov(Xi, Xj) = B(X; — 1) (X; — p3) = E[(X = p)(X — )],
and so
Cov(X) = E(X — p)(X —p)". (1.14)
Similarly, using (1.11) or (1.13),

Cov(X)=EXX' — uy'.

To find covariances after an affine transformation, because the transpose of a
product of two matrices (or vectors) is the product of the transposed matrices
in reverse order, using (1.14), (1.12), and (1.13), if v is a constant vector, A
is a constant matrix, and X is a random vector, then

Coviv + AX)=FE(v+ AX —v—Ap)(v + AX —v — Ap)’
=FBAX — p)(X —p)' A
= AB(X — p)(X —p)]A
= ACov(X)A". (1.15)
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1.9 Product Measures and Independence

Let (X, A, pn) and (Y, B,v) be measure spaces. Then there exists a unique
measure u X v, called the product measure, on (X x Y, AV B) such that

(1 x V)(A x B) = u(A)v(B),

for all A € A and all B € B. The o-field A Vv B is defined formally as the
smallest o-field containing all sets A x B with A € A and B € B.

Ezxample 1.15. If p and v are Lebesgue measures on R™ and R™, respectively,
then u x v is Lebesgue measure on R™*,

Ezxample 1.16. If p and v are counting measures on countable sets Xy and ),
then p X v is counting measure on Xy X ).

The following result shows that integration against the product measure
1 X v can be accomplished by iterated integration against p and v, in either
order.

Theorem 1.17 (Fubini). If f >0, then

[ axw) - /[/fa:ydv} ()
- [| [ renauo)] v,

Dropping the restriction f > 0, if [|f]d(p x v) < oo then these equations
hold.

Taking f = 1g, this result gives a way to compute (u x v)(S) when S is
not the Cartesian product of sets in A and B.

Definition 1.18 (Independence). Two random vectors, X € R™ and Y €
R™ are independent if

P(X €AY eB)=P(X e A)P(Y € B), (1.16)
for all Borel sets A and B.

If Z= (), then Z € Ax B if and only if X € A and Y € B, and (1.16)
can be expressed in terms of the distributions of X, Y, and Z as

Pz(A X B) = Px(A)Py(B)
This shows that the distribution of Z is the product measure,

PZ:PX ><Py.
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The density of Z is also given by the product of the densities of X and Y.
This can be shown using Fubini’s theorem and (1.6) to change variables of
integration. Specifically, suppose Px has density px with respect to u and Py
has density py with respect to v. Then

P(ZES):/lsd(PX Xpy)

_ / { / 1s(z, y) dPX(x)} dPy (y)

-/ { [1stvpxta) du(:v)] Py (y) duy)

- / (e, y)px (@)py (v) d(p X v)(, ).

This shows that Pz has density px (z)py (y) with respect to u x v. In applica-
tions, p and v will generally be counting or Lebesgue measure. Note that the
level of generality here covers mixed cases in which one of the random vectors
is discrete and the other is absolutely continuous.

Whenever Z = ();), Py is called the joint distribution of X and Y, and a
density for Py is called the joint density of X and Y. So when X and Y are
independent with densities px and py, their joint density is px (z)py (y).

These ideas extend easily to collections of several random vectors. If Z is
formed from random vectors X7, ..., X,, then a density or distribution for Z
is called a joint density or joint distribution, respectively, for X,..., X,. The
vectors X1, ..., X, are independent if

P(X,€By,...,Xn € B,)=P(X, € B)) x -+ x P(X,, € By)

for any Borel sets B, ..., By,. Then Pz = Px, X---X Px, , where this product
is the unique measure p satisfying

w(B1 x -+ x By,) = Px,(B1) x -+ X Px, (By).

The following proposition shows that functions of independent variables
are independent.

Proposition 1.19. If X4, ..., X,, are independent random vectors, and if f1,
.., [n are measurable functions, then f1(X1), ..., fn(Xy,) are independent.

If X; has density px, with respect to p;, ¢ = 1,...,n, then Xq,..., X,
have joint density p given by

p(z1,..., ) =px, (x1) X - X px,, (Tn)

with respect to g = g X -+ X uy. If Xq,..., X, are independent, and they all
have the same distribution, X; ~ Q, 71 =1,...,n, then X;,..., X, are called
independent and identically distributed (i.i.d.), and the collection of variables
is called a random sample from Q.
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1.10 Conditional Distributions

Suppose X and Y are random vectors. If X is observed and we learn that
X = x, then Py should no longer be viewed as giving appropriate probabilities
for Y. Rather, we should modify Py taking account of the new information
that X = z. When X is discrete this can be accomplished using the standard
formula for conditional probabilities of events: Let px(z) = P(X = x), the
mass function for X; take Xy = {x : px(x) > 0}, the set of possible values for
X; and define

P(Y € B,X =)

Qu(B)= P e BIX =a)= "1

(1.17)
for Borel sets B and x € Xj. Then for any x € Aj, it is easy to show that
Q. is a probability measure, called the conditional distribution for Y given
X ==

Formally, conditional probabilities should be stochastic transition kernels.
These are defined as functions @ : X x B — [0, 1] satisfying two properties.
First, for x € X, Q.(-) should be a probability measure on B; and second, for
any B € B, Q.(B) should be a measurable function of x.

For completeness, we should also define Q,(B) above when = ¢ Xy. How
this is done does not really matter; taking @), to be some fixed probability
measure for ¢ Xy would be one simple possibility.

Conditional distributions also exist when X is not discrete, but the defi-
nition is technical and is deferred to Chapter 6. However, the most important
results in this section hold whether X is discrete or not. In particular, if X
and Y are independent and X is discrete, by (1.17) @, equals Py, regardless
of the value of x € &j. This fact remains true in general and is the basis for
a host of interesting and useful calculations.

Integration against a conditional distributions gives a conditional expec-
tation. Specifically, the conditional expectation of f(X,Y) given X = x is
defined as

E[f(X,Y)|X =] = / £, ) dQa (y). (1.18)

Suppose X and Y are both discrete with Y taking values in a countable set
Yo and X taking values in Xy as defined above. Then Z = (if) takes values in
the countable set Xy x )y and is discrete with mass function pz(z) = P(Z =
z) = P(X =a,Y = y), where z = (Z) By (1.17), Q4(Yy) = 1 and so @ is
discrete with mass function g, given by

PY =y, X =ux)

POt = 2) (1.19)

2:(y) = Qz({y}) = P(Y =y|X =x) =

for z € Xy. Then the conditional expectation in (1.18) can be calculated as a
sum,

H(z)=E[f(X,Y)|X =2] = > f(,9)q(y)-

y€Vo
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For regularity, suppose F|f(X,Y)| < oo. Noting from (1.19) that P(X =
z,Y =y) = q.(y)px (z), the expectation of f(X,Y") can be written as

(5)exmx

> @ y)aa(y)px ()

rEXo yEVo

= Y H@)px(2)

rEeX)y

= EH(X).

This is a fundamental result in conditioning, called the law of total probability,
the tower property, or smoothing. In fact, smoothing identities are so basic
that they form the basis for general definitions of conditional probability and
expectation when X is not discrete. The random variable H(X) obtained
evaluating H from (1.18) at X is denoted

H(X)=E[f(X,Y) |X]
With this convenient notation the smoothing identity is just
Ef(X,Y)=FEE[f(X,Y)| X].
In particular, when f(X,Y) =Y this becomes
EY = EFE(Y|X).

When Y = 1p, the indicator of an event B, EY = P(B) and this identity
becomes
P(B) = EP(B|X),

where P(B|X) def E(1p|X). Finally, these identities also hold when the initial

expectation or probability is conditional. Specifically,*
E(Y|X)=E[EY|X,W)|X] (1.20)

and
P(B|X) = E[P(B|X7Y) ]X}

4 See Problem 1.46.
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1.11 Problems®

*1.

*8.

Prove (1.1). Hint: Define Ay = By and A,, = B,, — B,_; for n > 2.
Show that the A,, are disjoint and use the countable additivity property
of measure. Note: By definition, Y 2 | ¢, = limn_ oo 25:1 Cn-

For a set B C N={1,2,...}, define

W(B) = lim #[Bﬂ{l,...,n}] ’
n—oo n

when the limit exists, and let A denote the collection of all such sets.

a) Find u(E), 1(0), and u(S), where E = {2,4,...}, all even numbers,
O = {1,3,...}, all odd numbers, and S = {1,4,9,...), all perfect
squares.

b) If A and B are disjoint sets in A, show that u(AUB) = u(A4) + u(B).

¢) Is p a measure? Explain your answer.

Suppose p is a measure on the Borel sets of (0,00) and that u((z,2z]) =

Vi, for all z > 0. Find £((0,1]).

. Let X = {1,2,3,4}. Find the smallest o-field A of subsets of X that

contains the sets {1} and {1,2,3}.
Truncation. Let u be a measure on (X,.A) and let A be a set in A. Define
v on A by

v(B) = p(AN B), Be A

Show that v is a measure on (X, A).

. Suppose A and B are o-fields on the same sample space X. Show that the

intersection AN B is also a o-field on X
Let X denote the rational numbers in (0, 1), and let A be all subsets of
X, A=2%. Let u be a real-valued function on A satisfying

pl(a,b)NX] =b—a, foralla <b,ac X, beX.

Show that p cannot be a measure.
Prove Boole’s inequality: For any events By, By, . . .,

pJBi| <> PB.

i>1 i>1

Hint: One approach would be to establish the result for finite collections
by induction, then it extend to countable collections using (1.1). Another
idea is to use Fubini’s theorem, noting that if B is the union of the events,
1p < E lBi-

5 Solutions to starred problems in each chapter are given at the back of the book.
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*10.

*11.

*12.

*13.

1 Probability and Measure

Cantor set. The Cantor set can be defined recursively. Start with the
closed unit interval [0, 1] and form K3 by removing the open middle third,
S0

Ky = [0.1/3]U[2/3,1].
Next, form Ky by removing the two open middle thirds from the intervals
in Kl, SO

Ky =1[0,1/9]U[2/9,1/3]U [2/3,7/9] U [8/9,1].

Continue removing middle thirds to form Ks, K3, .... The Cantor set K
is the limit or intersection of these sets,

K= ﬁ K,.
n=1

Show that K is a Borel set and find its length or Lebesgue measure.
Remark: K and [0, 1] have the same cardinality.

Let p and v be measures on (&, B).

a) Show that the sum 7 defined by n(B) = u(B) + v(B) is also a measure.
b) If f is a nonnegative measurable function, show that

/fdn:/fd,u—&-/fdu.

Hint: First show that this result holds for nonnegative simple func-
tions.
Suppose f is the simple function 1(; /5 7 +21(1 9}, and let p be a measure
on R with x{(0,a?} = a, a > 0. Evaluate [ f dpu.
Suppose that p{(0,a)} = a? for a > 0 and that f is defined by

0, =<0
1, 0<ze<2
m, 2<z<5;
0, x>5.

Compute [ fdu.
Define the function f by

f(x):{x7 0<x<1;

0, otherwise.

Find simple functions f; < fo < --- increasing to f (ie., f(zx) =
lim,, o fn(x) for all x € R). Let u be Lebesgue measure on R. Using
our formal definition of an integral and the fact that p((a,b]) = b —a
whenever b > a (this might be used to formally define Lebesgue mea-
sure), show that [ fdu =1/2.
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15.

*16.

*17.

*18.

*19.

20.

*21.
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Suppose 1 is a measure on R with ([0, a]) = e, a > 0. Evaluate [(1¢2)+

21[1’3]) d/.t.
Suppose p is a measure on subsets of N = {1,2,...} and that

u({n,n—l—l,...}):;, n=12,....

Evaluate [z du(z).

Define F(a—) = limgyq F'(z). Then, if F' is nondecreasing, F(a—) =
lim, o F(a — 1/n). Use (1.1) to show that if a random variable X has
cumulative distribution function F,

P(X <a) = Fx(a—).
Also, show that
P(X =a) = Fx(a) — Fx(a—).
Suppose X is a geometric random variable with mass function
p(x)=P(X =z)=0(1-6)", z=0,1,...,

where 6 € (0,1) is a constant. Find the probability that X is even.
Let X be a function mapping £ into R. Recall that if B is a subset of R,
then X~1(B) = {e € £: X(e) € B}. Use this definition to prove that

X1 AnB)=Xx"YAnX"1B),
X HAUB)=X"1A)uXxB),

and

Let P be a probability measure on (£, B), and let X be a random variable.
Show that the distribution Px of X defined by Px(B) = P(X € B) =
P(X~!(B)) is a measure (on the Borel sets of R).

Suppose X is a Poisson random variable with mass function
A=A
p(x):P(X:x): x' , iEZO,].,...,

where A > 0 is a constant. Find the probability that X is even.
Let X have a uniform distribution on (0,1); that is, X is absolutely con-
tinuous with density p defined by

p(z) = {1, xz € (0,1);

0, otherwise.

Let Y7 and Y5 denote the first two digits of X when X is written as a binary
decimal (so Y7 =0 if X € (0,1/2) for instance). Find P(Y; = ¢, Y2 = j),
t=0o0rl,5=0o0r1.
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*22.

*23.

*24.

*25.

1 Probability and Measure

Let £ = (0,1), let B be the Borel subsets of £, and let P(A) be the length
of A for A € B. (P would be called the uniform probability measure on
(0,1).) Define the random variable X by

X (e) = min{e, 1/2}.

Let o be the sum of Lebesgue measure on R and counting measure on
Xo = {1/2}. Show that the distribution Px of X is absolutely continuous
with respect to p and find the density of Px.

The standard normal distribution N (0, 1) has density ¢ given by

2
e /2

- Vor

with respect to Lebesgue measure A on R. The corresponding cumulative
distribution function is @, so

¢(x)

z € R,

P(x) = /_:O d(z)dz

for x € R. Suppose that X ~ N(0,1) and that the random variable ¥
equals X when |X| < 1 and is 0 otherwise. Let Py denote the distribution
of Y and let p be counting measure on {0}. Find the density of Py with
respect to A + .
Let u be a o-finite measure on a measurable space (X, B). Show that
w1 is absolutely continuous with respect to some probability measure P.
Hint: You can use the fact that if pq,pueo,... are probability measures
and ¢y, ¢g, ... are nonnegative constants, then > ¢;u; is a measure. (The
proof for Problem 1.10 extends easily to this case.) The measures p; you
will want to consider are truncations of pu to sets A; covering X with
u(A;) < oo, given by p;(B) = u(B N A;). With the constants ¢; chosen
properly, > ¢;u; will be a probability measure.
The monotone convergence theorem states that if 0 < f; < fo.-- are
measurable functions and f = lim f,, then [ fdu =lim [ f, du. Use this
result to prove the following assertions.
a) Show that if X ~ Px is a random variable on (£,B,P) and f is a
nonnegative measurable function, then

/ f(X(e) dP(e) = / f(x) dPx (2).

Hint: Try it first with f an indicator function. For the general case,
let f, be a sequence of simple functions increasing to f.

b) Suppose that Px has density p with respect to p, and let f be a
nonnegative measurable function. Show that

[ tars= [ span
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*26. The gamma distribution.
a) The gamma function is defined for a > 0 by

F(a):/ z* temdx.
0

Use integration by parts to show that I'(z + 1) = aI'(x). Show that
I'x+1)=zlforxz=0,1,....
b) Show that the function

0, otherwise,
is a (Lebesgue) probability density when « > 0 and S > 0. This
density is called the gamma density with parameters o and 3. The
corresponding probability distribution is denoted I'(«, 3).
¢) Show that if X ~ I'(a, 8), then EX"™ = 8"I'(aw + r)/I' (). Use this
formula to find the mean and variance of X.
*27. Suppose X has a uniform distribution on (0,1). Find the mean and co-
variance matrix of the random vector ( ;((2)
*28. If X ~ N(0,1), find the mean and covariance matrix of the random vector
(I{)?(>c} :
29. Let X be a random vector in R" with EX? < oo, i = 1,...,n, and let
A = EXX'. Show that A is nonnegative definite: v’ Av > 0 for all v € R™.
30. Let W be absolutely continuous with density

() = Xe M x> 0;
P = 0, otherwise,

where A > 0 (the exponential density with failure rate X), and define

X = |W] and Y = W — X. Here || is the floor or greatest integer

function: |z is the greatest integer less than or equal to x.

a) Find P(X = k), k > 0, the mass function for X.

b) Find P(Y <y|X = k), y € (0,1). What is the cumulative distribution
function for Y7

¢) Find EY and Var(Y).

d) Compute EW. Use linearity and your answer to (c) to find EX.

e) Find the covariance matrix for the random vector (V)I/,)

31. Let X be an absolutely continuous random variable with density

p(z) = {Qx, x € (0,1);

0, otherwise.

a) Find the mean and variance of X.
b) Find Esin(X).
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*32.

*33.

34.

35.
*36.

*37.

*38.

1 Probability and Measure

¢) Let Y = I{X > 1/2}. Find Cov(X,Y).
Suppose E|X| < oo and let

1= Ecos(tX)

(e B

Use Fubini’s theorem to find [ h(t) dt. Hint:

/000(1 —cos(u))u?du=

Suppose X is absolutely continuous with density px(z) = ze™®, > 0
and px(z) =0, z <0. Define ¢, = E(1 + X)~". Use Fubini’s theorem to
evaluate > 7 | cp.

Let Z have a standard normal distribution, introduced in Problem 1.23.
a) Forn=1,2,..., show that

EZ* = 2n— D1 2n—1) x 2n—3) x -+ x 1.

Hint: Use an inductive argument based on an integration by parts
identity or formulas for the gamma function.
b) Use the identity in (a) and Fubini’s theorem to evaluate

Prove Proposition 1.19.

Suppose X and Y are independent random variables, and let F'x and Fy

denote their cumulative distribution functions.

a) Use smoothing to show that the cumulative distribution function of
S=X+Yis

Fs(s)=P(X +Y < s) = EFy(s — Y). (1.21)

b) If X and Y are independent and Y is almost surely positive, use
smoothing to show that the cumulative distribution function of W =
XY is Fyy(w) = EFx(w/Y) for w > 0.

Differentiating (1.21) with respect to s one can show that if X is absolutely

continuous with density px, then S = X +Y is absolutely continuous with

density
ps(s) = Epx(s —Y)

for s € R. Use this formula to show that if X and Y are independent with
X ~I(a,1)and Y ~ I'(3,1), then X + Y ~ I'(a + 3, 1).

Let @) denote the exponential distribution with failure rate A, given
in Problem 1.30. Let X be a discrete random variable taking values in
{1,...,n} with mass function
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40.

41.

42.
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2k
P(X=k)= , k=1,...,n,
n(n+1)
and assume that the conditional distribution of Y given X = x is expo-
nential with failure rate x,

YIX=z~Q,.

a) Find E[Y|X].

b) Use smoothing to compute EY.

Let X be a discrete random variable uniformly distributed on {1,...,n},
so P(X = k) =1/n, k = 1,...,n, and assume that the conditional
distribution of Y given X = z is exponential with failure rate x.

a) For y > 0 find P[Y > y|X].

b) Use smoothing to compute P(Y > y).

¢) Determine the density of Y.

Let X and Y be independent absolutely continuous random variables, X
with density px(z) = e ®, > 0, px(z) = 0, z < 0, and Y uniformly
distributed on (0,1). Let V = X/(X +Y).

a) Find P(V > c|Y =y) for ¢ € (0,1).

b) Use smoothing to compute P(V > ¢).

¢) What is the density of V?

Suppose that X has the standard exponential distribution with density
px(x) =e ", x>0, px(z) =0, z < 0; that Y has a (discrete) uniform
distribution on {1,...,n}; and that X and Y are independent.

a) Find the joint den51ty of X and Y. Use it to compute P(X+Y > 3/2).

b) Find the covariance matrix for Z =
¢) Find Elexp(XY/(1+Y))|X].
d) Use smoothing to compute Eexp(XY/(1+Y)).
Two measures p and v on (X, A) are called (mutually) singular if u(A) =
v(A°) = 0 for some A € A. For instance, Lebesgue measure and counting
measure on some countable subset Xy of R are singular (take A = AXjp).
Let p and v be singular measures on the Borel sets of R, and let Qg and
@1 be probability measures absolutely continuous with respect to p and
v, respectively, with densities

dQo
dp

(X+Y)

aQ1

and ¢ = 0y

qo =
Let X have a Bernoulli distribution with success probability p, and assume
that
Y| X=0~Q and Y|X =1~ Q.

a) Use the result in Problem 1.10 to show that @1 has density ¢114 with
respect to p + v, where u(A) = v(A°) = 0.

b) Use smoothing to derive a formula for P(Y € B) involving Qo, @1,
and p.
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43.

44.

45.
46.

1 Probability and Measure

¢) Find a density for Y with respect to u + v.

Let X and Y be independent random variables with X uniformly dis-
tributed on (0,1) and Y uniformly distributed on {1,...,n}. Define
W =YeXY.

a) Find E[W|Y = y].

b) Use smoothing to compute EW.

The standard exponential distribution is absolutely continuous with den-
sity p(z) = 1(0,00)(®)e™". Let X and Y be independent random variables,
both from this distribution, and let Z = X/Y.

a) For z > 0, find P(Z < z|Y =y).

b) Use smoothing and the result in part (a) to compute

P(Z < z), z>0.
c¢) Find the covariance between Y and I{Z < z}.
Show that E[f(X)Y|X] = f(X)E(Y|X).
If E|Y| < oo and f is a bounded function, then by smoothing,
E[f(X)Y] = E[f(X)B(Y]X)].
By (1.20) we should then have
E[f(X)Y] = B[f(X)E[E(Y|X,W)|X]]

Use a smoothing argument to verify that this equation holds, demonstrat-
ing that (1.20) works in this case.
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Exponential Families

Inferential statistics is the science of learning from data. Data are typically
viewed as random variables or vectors, but in contrast to our discussion of
probability, distributions for these variables are generally unknown. In ap-
plications, it is often reasonable to assume that distributions come from a
suitable class of distributions. In this chapter we introduce classes of distri-
butions called ezponential families. Examples include the binomial, Poisson,
normal, exponential, geometric, and other distributions in regular use. From
a theoretical perspective, exponential families are quite regular. In addition,
moments for these distributions can often be computed easily using the dif-
ferential identities in Section 2.4.

2.1 Densities and Parameters

Let u be a measure on R™, let h : R™ — R be a nonnegative function, and let
T1,...,Ts be measurable functions from R"™ to R. For € R?®, define

Aln) =10g [ exp| S nTi(o) | h(o) du(o) (2.1)
i=1
Whenever A(n) < oo, the function p, given by
pn(x) = explz niTi(x) — A(n)| h(z),  ze€R", (2.2)
i=1

integrates to one; that is, [ p,dp = 1. So, this construction gives a family of
probability densities indexed by 7. The set

Z={n:An) <oo}

is called the natural parameter space, and the family of densities {p, : n € =}
is called an s-parameter exponential family in canonical form.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 25
DOI 10.1007/978-0-387-93839-4 2, © Springer Science+Business Media, LLC 2010
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Example 2.1. Suppose p is Lebesgue measure on R, h = 1(g ), s = 1, and
Ty(xz) = x. Then

A(n) = log/ e dx
0

_ {log(—l/n), n<0;

00, n > 0.

Thus, p,(z) = exp[nz —log(—1/1)]1(0,00)(x) is a density for n € = = (—o0,0).
In form, these are the exponential densities, which are usually parameterized
by the mean or failure rate instead of the canonical parameter n here.

To allow other parameterizations for an exponential family of densities,
let 17 be a function from some space {2 into = and define

x) = explz n:(0)Ts(x) — B(0)

for 0 € 2, x € R", where B(#) = A(n(6)). Families {pp : 6 € £2} of this form
are called s-parameter exponential families.

h(z)

Ezample 2.2. The normal distribution N (p,0?) has density

1
po(z) = o (@=p)?/(20%)

V2ro?
1 K L, p?
= o exp sz— ZUQLU - (202 +logo )|,

where 0 = (11, 0%). This is a two-parameter exponential family with Ty (z) = ,

Ty(z) = 2%, m(0) = p/o?, n2(0) = —1/(20%), B(0) = p*/(20°) + logo, and
h(z) = 1/v/2m.

Example 2.3. If X1, ..., X, is a random sample from N (u, o?), then their joint
density is

a —T‘—LQ 172
po(a1,. .. 0 H{mm? (i) /(2 )]

=1
(277 yn/2 eXpl QZ‘% 2 QZT/ ( _HOgJﬂ :

These densities also form a two-parameter exponential family with 73 (x)

Sz Do(z) = Y0l 2f m(0) = p/o®, m(0) = -1/(20%), B(9)
nlu?/(20%) +logo], and h(z) = 1/(2m)"/2.
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The similarity between these two examples is not accidental. If X5,..., X,
is a random sample with common marginal density

exp| Y mO)Ti(w) — BO)| hie)

then their joint density is

exp me) Zﬂ(ﬂ?j) —nB(0) Hh(xj), (2.3)

which is an s-parameter exponential family with the same functions 7y, ..., 7s,
and with

Tiw) = . Tw).  BO=nBO), @) = [h)

Jj=1

where the tilde is used to indicate that the function is for the family of joint
densities.

2.2 Differential Identities
In canonical exponential families it is possible to relate moments and cumu-

lants for the statistics 77,...,7Ts to derivatives of A. The following theorem
plays a central role.

Theorem 2.4. Let =y be the set of values for n € R® where

/ (@) explz nTi(z)
=1

Then the function

o) = / f(x) explzmmm
=1

is continuous and has continuous partial derivatives of all orders for n €
=7 (the interior of Z¢). Furthermore, these derivatives can be computed by
differentiation under the integral sign.

h(z) du(z) < oco.

h(z) dp(z)

A proof of this result is given in Brown (1986), a monograph on exponential
families with statistical applications. Although the proof is omitted here, key
ideas from it are of independent interest and are presented in the next section.
As an application of this result, if f =1, then =y = =, and, by (2.1),
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g(n) = " = / exp[Zm ;

Differentiating this expression with respect to 7;, which can be done under
the integral if n € =°, gives

A(n
A(n)a _/8 explZm ;
/ explZm ;

Using the definition (2.2) of p,,, division by e gives

x) dp(z).

) dp(x)

z) du(x).

0A(n)

on / T;(x)py (x) dp(x).

This shows that if data X has density p, with respect to u, then

90A(n)

J

(2.4)

for any n € =Z°.

2.3 Dominated Convergence

When s =1, (2.4) is obtained differentiating the identity

eAM) — /enT(m)h(x) du(z),

passing the derivative inside the integral. To understand why this should work,
suppose the integral is finite for n € [—2e, 2¢] and consider taking the derivative
at 7 = 0. If the function is differentiable at zero, the derivative will be the
following limit:

eA(e/n) _ €A(O) 6eT(ac)/n -1
li = 1li
= lim [ fu(z) du(z),
where
eeT(m)/n _ 1h o5
)= ). (25)

def

Asn — oo, fn(z) — f(x) = T(x)h(z). So the desired result follows provided
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[ fuidn— [ tan

as n — oo. This seems natural, but is not automatic (see Example 2.6). The
following basic result gives a sufficient condition for this sort of convergence.

Theorem 2.5 (Dominated Convergence). Let f,, n > 1 be a sequence
of functions with |f,| < g (a.e. p) for all n > 1. If [gdu < oo and
lim, o0 fr(x) = f(z) for a.e. x under p, then

[ fudn— [ tan

Example 2.6. To appreciate the need for a “dominating” function ¢ in this
theorem, suppose p is Lebesgue measure on R, define f, = 1, nq1), n > 1,
and take f = 0. Then f,(z) — f(z) as n — oo, for all . But [ f,, du =1, for
all n > 1, and these values do not converge to [ fdu = 0.

as n — oQ.

To apply dominated convergence in our original example with f,, given by
(2.5), the following bounds are useful:

e =1 < [tlell,  teR,

and
[t <eltl,  teR.

Using these,

eT@)/m 1 |€T($)/n|e\eT(x)/n|
e/n

e/n

N

1|6T(m)|e\eT(w)\ < 16\25T(m)| < 1 <e2eT(m) _’_6726T(w)) .

The left-hand side of this bound multiplied by h(z) is | fn(x)], so
1 e
fa(@) £ (27 47270 p(a) © g(a).
€
The dominating function ¢g has a finite integral because

/ei2eT(w)h(x) du(.’lﬁ) _ eA(j:ZE) < 0.

So, by dominated convergence [ f, du — [ fdp as n — oo, as desired.
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2.4 Moments, Cumulants, and Generating Functions

Let T = (Ty,...,Ts) be arandom vector in R®. Note that the dot product of
T with a constant u € R® is u - T = u/T. The moment generating function of
T is defined as

Mr(u) = Betr Tt tuTe = peuT u € R?,
and the cumulant generating function is
Ko (u) = log M (u).

According to the following lemma, the moment generating function Mx de-
termines the distribution of X, at least if it is finite in some open interval.

Lemma 2.7. If the moment generating functions Mx (u) and My (u) for two
random vectors X and Y are finite and agree for u in some set with a
nonempty interior, then X andY have the same distribution, Px = Py .

Expectations of products of powers of 11, ..., T, are called moments of T',
denoted
O['r‘l,... ry — E[T{l X oo X TST’s]

s

The following result shows that these moments can generally be found by dif-
ferentiating Mp at u = 0. The proof is omitted, but is similar to the proof of
Theorem 2.4. Here, dominated convergence would be used to justify differen-
tiation under an expectation.

Theorem 2.8. If Mt is finite in some neighborhood of the origin, then My
has continuous derivatives of all orders at the origin, and

oo

Qpy . p, = Mr(u
T15--45Ts aufl’l auzg (

u=0
The corresponding derivatives of Kp are called cumulants, denoted

oo

I{ . . P “ .. .
Tt T gt Ous®

KT(U)

u=0 ’

When s = 1, K, = M}/Mr and K/, = [Mp M} — (M})?]/M2. At v = 0,
these equations give

k1 = ET and ko = ET? — (ET)? = Var(T).

Generating functions can be quite useful in the study of sums of inde-
pendent random vectors. As a preliminary to this investigation, the following
lemma shows that in regular situations, the expectation of a product of inde-
pendent variables is the product of the expectations.
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Lemma 2.9. Suppose X and Y are independent random variables. If X and
Y are both positive, or if E|X| and E|Y| are both finite, then

EXY =EX x EY.

Proof. Viewing |XY| as a function g of Z = (i,() ~ Px x Py, by Fubini’s
theorem,

Blxy| = [gaesxm) = | ( / |x||y|dPX<x>) aPy (y).

The inner integral is |y|F| X |, and the outer integral then gives E|X|x E|Y, so
E|XY|= E|X| x E|Y|. This proves the lemma if X and Y are both positive,
because then X = |X| and ¥ = |Y|. If E|X| < oo and E|Y| < oo, then
E|XY| < o0, so the same steps omitting absolute values prove the lemma.

O

By iteration, this lemma extends easily to products of several independent
variables.

Suppose T' = Y7 + -+ + Y, where Y7,...,Y, are independent random
vectors in R®. Then by Proposition 1.19, the random variables e* 1, ..., e%*Yn
are independent, and

Mrp(u) = Be*T = E[e"Y x .- x e* Y] = My, (u) x - x My, (u).
Taking logarithms,
Kr(u) = Ky, (u) + -+ + Ky, (u).

Derivatives at the origin give cumulants, and thus cumulants for the sum T
will equal the sum of the corresponding cumulants of Y7,...,Y,. This is a
well-known result for the mean and variance.

If X has density from a canonical exponential family (2.2), and if T =
T(X), then T has moment generating function

BT — /eu.T(m)en.T(m)—A(ﬂ)h(x) dp(z)
— A(utn)—A(n) /e(qun)'T(w)*A(“*”)h(x) dp(x),

provided u +n € =. The final integrand is p,4,, which integrates to one. So,
the moment generating function is eA(“+M =4 and the cumulant generating
function is

Kp(u) = A(u+n) — An).
Taking derivatives, the cumulants for T" are

oo
K’leny"’s = 71 TlA N
8771 87]8 (77)
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Ezxample 2.10. If X has the Poisson distribution with mean A, then

A 1
PX=xz)= = erlogA=A z=0,1,....
x! x!
The mass functions for X form an exponential family, but the family is not in
canonical form. The canonical parameter here is 7 = log A. The mass function
expressed using 7 is

1
P(X:a:):x'exp[nx—e"], z=0,1,...,

and so A(n) = €". Taking derivatives, all of the cumulants of 7' = X are
el =\

Ezxample 2.11. The class of normal densities formed by varying ; with o2 fixed
can be written as

e NZ :| eme/(Zog)

pulw) = exp{(ﬂ 202 V2no?

These densities form an exponential family with 7'(z) = «, canonical pa-
rameter n = pu/o?, and A(n) = o2n?/2. The first two cumulants are
k1 = A'(n) = 0?n = p and Ky = A”(n) = o%. Because A is quadratic, all
higher-order cumulants, k3, k4, . .., are zero.

To calculate moments from cumulants when s = 1, repeatedly differentiate
the identity M = eX. This gives M’ = K'eX, M" = (K" + K'*)eX, M" =
(K/// +3K'K" + K’B)eK, and M = (K//// + 3K//2 FAK'K™ 4 GK/QK// +
K’4)eK. At zero, these equations give

ET = k1, ET? = Ky + K2, ET® = k3 + 3k1ka + K3,

and
ET* = ky + 3/{% + 4dKk1Kk3 + 6/@'%/{2 + /{‘11.

For instance, if X ~ Poisson()\), EX = A\, EX? = A4+ )2, EX3 = A\4+3)\24+)\3,
and EX* = A+ 7X2+ 6% + \4, and if X ~ N(u,0?), EX? = 3uc? + p? and
EX* =30* 4+ 6p%02 + pt.

The expressions above expressing moments as functions of cumulants can
be solved to express cumulants as functions of moments. The algebra is easier
if the variables are centered. Note that for ¢ € R?,

My e(u) = Be®TH) = el = eueMp(u),

and so K71 .(u) = u-c+Kr(u). Taking derivatives, it is clear that the constant
c only affects first-order cumulants. So with s = 1, if j > 2, the jth cumulant
tj for T' will be the same as the jth cumulant for 7" — ET. The equations
above then give
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k3 = B(T — ET)?
and
E(T — ET)* = k4 + 3k3,

and so
ty = B(T — ET)* — 3Var*(T).

In higher dimensions, the first-order cumulants are the means of T3, ..., T,
and second-order cumulants are covariances between these variables. Formulas
for mixed cumulants in higher dimensions become quite complicated as the
order increases.

2.5 Problems!

*1. Consider independent Bernoulli trials with success probability p and let
X be the number of failures before the first success. Then P(X = z) =
p(1 —p)*, for z = 0,1,..., and X has the geometric distribution with
parameter p, introduced in Problem 1.17.

a) Show that the geometric distributions form an exponential family.

b) Write the densities for the family in canonical form, identifying the
canonical parameter 7, and the function A(n).

¢) Find the mean of the geometric distribution using a differential iden-
tity.

d) Suppose Xy, ..., X, arei.i.d. from a geometric distribution. Show that
the joint distributions form an exponential family, and find the mean
and variance of T

*2. Determine the canonical parameter space =, and find densities for the one-
parameter exponential family with y Lebesgue measure on R?, h(z,y) =
exp[—(z? +y?)/2]/(27), and T (z,y) = zy.

3. Suppose that Xi,..., X, are independent random variables and that for
i = 1,...,n, X; has a Poisson distribution with mean \; = exp(a +
Bt;), where t1,...,t, are observed constants and « and § are unknown
parameters. Show that the joint distributions for Xy, ..., X, form a two-
parameter exponential family and identify the statistics 77 and T5.

*4. Find the natural parameter space = and densities p,, for a canonical one-
parameter exponential family with u Lebesgue measure on R, Ti(x) =
logz, and h(z) = (1 —z)?, z € (0,1), and h(z) =0, = ¢ (0,1).

*5. Find the natural parameter space = and densities p, for a canonical one-
parameter exponential family with p Lebesgue measure on R, T3 (z) = —u=,
and h(z) = e=2V*/\/z, £ > 0, and h(x) = 0, x < 0. (Hint: After a change
of variables, relevant integrals will look like integrals against a normal
density. You should be able to express the answer using @, the standard
normal cumulative distribution function.) Also, determine the mean and
variance for a variable X with this density.

1 Solutions to the starred problems are given at the back of the book.
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*6.

*T.

*8.

*9.

10.

11.

12.

2 Exponential Families

Find the natural parameter space = and densities p, for a canonical
two-parameter exponential family with g counting measure on {0, 1,2},
Ti(x) = x, To(x) = 2%, and h(z) = 1 for z € {0,1,2}.

Suppose X7,..., X, are independent geometric variables with p; the suc-
cess probability for X;. Suppose these success probabilities are related to a
sequence of “independent” variables t1, ..., t,, viewed as known constants,
through

pi = 1 —exp(a+ Bt;), i=1,...,n.

Show that the joint densities for X1, ..., X,, form a two-parameter expo-
nential family, and identify the statistics 77 and T5.

Assume that Xi,...,X, are independent random variables with X; ~
N(a + Bt;, 1), where t1,...,t, are observed constants and « and [ are
unknown parameters. Show that the joint distributions for Xi,..., X,
form a two-parameter exponential family, and identify the statistics T}
and T5.

Suppose that X7i,...,X,, are independent Bernoulli variables (a random
variable is Bernoulli if it only takes on values 0 and 1) with

. expla+ pty)
PX;=1)= |+ expla+ )

Show that the joint distributions for Xi,..., X, form a two-parameter
exponential family, and identify the statistics 77 and T5.

Suppose a researcher is interested in how the variance of a response Y
depends on an independent variable x. Natural models might be those
in which Yi,...,Y,, are independent mean zero normal variables with the
variance of Y; some function of a linear function of z;:

Var(Y;) = g(61 + O2x;).

Suggest a form for the function g such that the joint distributions for the
Y;, as the parameters 6 vary, form a two-parameter exponential family.
Find the natural parameter space = and densities p, for a canonical one-
parameter exponential family with p Lebesgue measure on R, T (z) = z,
and h(z) =sinz, v € (0,7), and h(z) =0, ¢ (0, 7).

Truncation. Let {py : 6 € 2} be an exponential family of densities with
respect to some measure p, where

po(x) = h(z)exp Z ni(0)Ti(x) — B(0)

In some situations, a potential observation X with density py can only be

observed if it happens to lie in some region S. For regularity, assume that

A(9) <t p, (X € 5) > 0. In this case, the appropriate distribution for the

observed variable Y is given by
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Py(Y € B)=Py(X € B|X € 5), BeB.

This distribution for Y is called the truncation of the distribution for X

to the set S.

a) Show that Y has a density with respect to u, giving a formula for its
density qg.

b) Show that the densities gg, 6 € {2, form an exponential family.

Find densities p, for a canonical one-parameter exponential family if y is
counting measure on Xy = {—1,0,1}3, h is identically one, and T'(z) is
the median of x1, x2, and z3.
For an exponential family in canonical form, ET; = 0A(n)/0n;. This can
be written in vector form as ET = V A(n). Derive an analogous differential
formula for EyT for an s-parameter exponential family that is not in
canonical form. Assume that (2 has dimension s. Hint: Differentiation
under the integral sign should give a system of linear equations. Write
these equations in matrix form.

Find the natural parameter space = and densities p, for a canonical

one-parameter exponential family with p counting measure on {1, 2, ...},

h(z) = 2%, and T'(z) = —z. Also, determine the mean and variance for a

random variable X with this density. Hint: Consider what Theorem 2.4

has to say about derivatives of Y >7 e~

Let p denote counting measure on {1,2,...}. One common definition for

opey f(k) is limy oo D p—y f(k), and another definition is [ f du.

a) Use the dominated convergence theorem to show that the two defini-
tions give the same answer when [ |f|dp < oco. Hint: Find functions
fnom=1,2 ... sothat Y.;_| f(k)= [ fadp.

b) Use the monotone convergence theorem, given in Problem 1.25, to
show the definitions agree if f(k) >0 forallk=1, 2, ....

¢) Suppose lim,, .o f(n) = 0 and that [ f*dp = [ f~du = oo (so that
J fdu is undefined). Let K be an arbitrary constant. Show that the
list (1), f(2), ... can be rearranged to form a new list g(1), g(2), ...
so that

lim Y " g(k) = K.
k=1

Let A be Lebesgue measure on (0,00). The “Riemann” definition of
fooo f(x) dz for a continuous function f is

C
lim f(z)dx,
C— 00 0
when the limit exists. Another definition is | f dA. Use the dominated con-
vergence theorem to show that these definitions agree when f is integrable,

J1fldX < co. Hint: Let ¢, be a sequence of constants with ¢, — oo, and
find functions f, such that [ f,(z)dz = [;" f(x)da.
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*19. Let p,, n=1,2,..., and p be probability densities with respect to a mea-
sure u, and let P,, n =1,2,..., and P be the corresponding probability
measures.

a) Show that if p,(z) — p(x) as n — oo, then [ |p, — p|du — 0. Hint:
First use the fact that [(p, — p) du = 0 to argue that [ |p, — p|du =
2 [(p — pn)T dp. Then use dominated convergence.

b) Show that |P,(A) — P(A)| < [|p» — p|dp. Hint: Use indicators and
the bound | [ fdul < ['|f|dp.

Remark: Distributions P,, n > 1, are said to converge strongly to P

if supy |P,(A) — P(A)| — 0. The two parts above show that pointwise

convergence of p, to p implies strong convergence. This was discovered by

Scheffé.

20. Let h be a bounded differentiable function on [0, 00), vanishing at zero,
h(0) = 0.
a) Show that

/OO Ih(1/2?)| dz < oo.
0

Hint: Because h is differentiable at 0, h(x)/x — h'(0) as = | 0, and
|h(z)| < cx for x sufficiently small.
b) If Z has a standard normal distribution, Z ~ N(0, 1), find

nILH;O nEh(1/(n*Z?)).
Hint: Be careful with your argument: the answer should not be zero.
21. Let p be counting measure on {1,2,...},and let f,, = cplny, n=1,2,...,
for some constants ¢y, ca, - . ..
a) Find f(z) = lim,— oo fn(x) for x =1,2,....
b) Show that these functions f, can be dominated by an integrable func-
tion; that is, there exists g with [gdu < oo and |f,| < g,n=1,2,...,

if and only if
Z len] < oo.
n=1

¢) Find constants ¢, ¢a, . .. that provide an example of functions f,, that
cannot be dominated by an integrable function, so the assumption of
the dominated convergence theorem fails, but [ f, du — [ f du.
*22. Suppose X is absolutely continuous with density

o= (@—0)%/2

po(z) = ¢ V21d(H)
0, otherwise.

, x>0

Find the moment generating function of X. Compute the mean and vari-
ance of X.
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Suppose Z ~ N(0,1). Find the first four camulants of Z2. Hint: Consider

the exponential family N (0, 0?).

Find the first four cumulants of T = XY when X and Y are independent

standard normal variates.

Find the third and fourth cumulants of the geometric distribution.

Find the third cumulant and third moment of the binomial distribution

with n trials and success probability p.

Let T be a random vector in R2.

a) Express kg1 as a function of the moments of 7T'.

b) Assume ET; = ET; = 0 and give an expression for kg2 in terms of
moments of T.

Suppose X ~ I'(a, 1/)), with density

/\axa—le—kfc

(o) , x> 0.

Find the cumulants of T' = (X, log X) of order 3 or less. The answer will
involve 9(a) = dlog I'(a) /de = I'" () / T ().

Let X4,..., X, be independent random variables, and let «; and ¢;, i =
1,...,n, be known constants. Suppose X; ~ I'(ay;, 1/A;) with A; = 61 +
Ost;,i=1,...,n, where 01 and 65 are unknown parameters. Show that the

joint distributions form a two-parameter exponential family. Identify the
statistic T' and give its mean and covariance matrix. (Similar models arise
in “parameter design” experiments used to study the effects of various
factors on process variation.)

In independent Bernoulli trials with success probability p, the variable
X counting the number of failures before the mth success has a negative
binomial distribution with mass function

<m+x—1

P(X=x)= m—1

)pm(l—p)‘”, x=0,1,....

Find the moment generating function of X, along with the first three
moments and first three cumulants of X. .

An estimator 6 is called unbiased for a parameter 6 if £ = 6. If
Xi,...,X, are i.i.d., then the sample moment

1 n
G = z;xg"
=

is an unbiased estimator of o, = EX]. Unbiased estimators for cumulants

are called K -statistics. They are a bit harder to identify than unbiased es-

timators for moments, because cumulants depend on powers of moments.

For example, ko = ag — oz%.

a) One natural estimator for o is X 2= &?. Find the expected value of
this estimator. When is it biased?



38 2 Exponential Families

b) Show that

(;‘)1 Y XX,

1<i<j<n

is unbiased for a?. Give a formula relating this estimator to sample
moments & and &s.

¢) Give an unbiased estimator for ko = Var(X;) based on sample mo-
ments & and &s.

d) Find the expected value of 43, showing that it is usually biased for
a}. Relate the unbiased estimator

-1
(Z) Y XXXy

1<i<j<k<n

to sample moments.
e) Find an unbiased estimator for k3 based on the first three sample
moments, &1, Go, and &s.
32. By Taylor expansion, for § € (0,1),

X

—log(l—G):ZGx.

r=1
From this, for 6 € (0, 1),

01‘
= - 1 2 “e e
pQ(x) _x 10g(1 . 9)7 x P )
is the mass function for a probability distribution, called the log series
distribution. Let X be a discrete random variable with this distribution.
Find the mean and variance of X.
33. A discrete random variable X on {0, 1, ...} has a power series distribution

if its mass function has form

a(x)6*

PX=z)= c) +=0,1,2,....

Derive formulas for the mean and variance of this distribution involving
derivatives of C.
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Risk, Sufficiency, Completeness, and
Ancillarity

The initial section of this chapter develops a basic framework for inference.
Later sections concern the notion of sufficiency that arises when data can be
summarized without any loss of information.

3.1 Models, Estimators, and Risk Functions

Inferential statistics can be viewed as the science or art of learning about an
unknown parameter 6 from data X . For most applications, X will be a random
vector. The parameter § may be a single constant, but more commonly takes
values in some subset of RP. The parameter # and data X are related through
a model in which the distribution of X is determined by 6. The distribution
when the parameter is 6 is denoted Py, and we write

X~ Py.

Formally, a model should be a mapping 6 ~~ Py, but more commonly, a model
is written as the set of distributions for X, P = {Py : 6 € (2}, where the
parameter space {2 is the set of all possible values for 6.

A statistic is a function of the data X and can be viewed as providing par-
tial information about the data when the function is many-to-one. A typical
example, when X is a random vector in R™, would be the sample average

Xi+o+ X,

§(X)=X = ;

In a broad sense there are two major categories for inference: estimation
and hypothesis testing. For now we focus on estimation, in which the goal
is to find statistic § so that §(X) is close to g(6). Then § or 4(X) is called
an estimator of g(#). The case ¢g(f) = 6 is allowed, and, when 6 is a vector,
g(#) = 0 may be a fairly typical situation of interest. Hypothesis testing is
introduced and studied in Chapter 12.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 39
DOI 10.1007/978-0-387-93839-4 3, © Springer Science+Business Media, LLC 2010
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Fig. 3.1. Binomial risk function: R(8,4).

Ezample 3.1. For a coin toss, the chance of heads is very close to 1/2. Suppose
instead we stand a coin on its edge, balancing it with a finger on top, and
spin it by flicking it with a different finger. If this is done 100 times, with the
trials independent and a common chance 6 of heads on each spin, then the
total number of heads X should have a binomial distribution. Thus

X ~ Binomial(100,6).
Viewing X as our data and taking
Py = Binomial(100, 6), 0 €[0,1] = 12,

our model P = {Py : § € 2} is the set of binomial distributions with 100
trials.

In this example, a natural estimator of  is §(X) = X /100, the proportion
of heads in 100 spins. In the sequel we study the performance of estimators,
trying to decide when an estimator, such as § here, is good or optimal in
some sense. An adequate answer to these questions must involve criteria that
judge the performance of estimators. One standard approach to making such
judgments is called decision theory. For estimation, this approach begins with
a loss function L chosen so that L(6,d) is the loss associated with estimating
g(0) by a value d. It is natural to assume L(6,g(f)) = 0, so that there is no
loss for the correct answer, and L(6,d) > 0, for all § and d. Because X is
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Fig. 3.2. Risks for do, d1, and 2.

random, L(9, 5(X)) is random and can be large if we are unlucky, even if §
is an excellent estimator. Accordingly, an estimator ¢§ is judged by its average
loss or risk function R, defined as

R(6,5) = EoL(6,5(X)).

Here Fy denotes expectation when X ~ Py.

Ezample 3.1, continued. Suppose X ~ Binomial(100,6), §(X) = X/100,
g(0) = 6, and the loss function is given by L(6,d) = (§ — d)?, called squared
error loss. Then the risk function for ¢ is

,_ 6(1—0)

R(6,5) = Eg(6 — X/100) 0o

6 €10,1].
A plot of this risk function is given in Figure 3.1.

A fundamental problem arises when one compares estimators using risk
functions: if the risk functions for two estimators cross, there is no clear deci-
sion which estimator is best. For instance, in our binomial example, if do(X) is
the original estimator X /100, §; (X) = (X +3)/100, and d2(X) = (X +3)/106,
then R(0,80) = 6(1 — 6)/100, R(6,61) = (9 + 1006(1 — 6))/100%, and
R(6,55) = (9 — 80)(1 + 80)/1062. These functions are plotted together in
Figure 3.2. Looking at the graph, g and 2 are both better than §;, but the
comparison between dp and do is ambiguous. When 6 is near 1/2, d5 is the
preferable estimator, but if 8 is near 0 or 1, g is preferable. If § were known,
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we could choose between &g and do. However, if 8 were known, there would be
no need to estimate its value.

3.2 Sufficient Statistics

Suppose X and Y are independent with common Lebesgue density

—0x .
fa(ﬁ)Z{ge , x>0

0, x <0,

and let U be independent of X and Y and uniformly distributed on (0,1).
Take T'= X + Y, and define

X=UT and Y = (1 - U)T.

Let us find the joint density of X and Y. The density of T'is needed, and this
can be found by smoothing. Because X and Y are independent,'

PT <ty =y)=P(X+Y <t]Y =y)
= B[{X +Y <t}|Y =y

- / [z +y < }dPx(2)
=Fx(t—y).
So P(T < t|Y) = Fx(t — Y) and
Fr(t) = P(T < t) = EFx(t — Y).

This formula holds generally. Specializing to our specific problem, Fx (¢t —Y)
is 1 —e ?¢=Y) onY <t and is zero on Y > t. Writing the expected value of
this variable as an integral against the density of Y, for t > 0,

t
Fr(t) = / (1- e_e(t_y))ﬁe_ey dy=1—e % —the 9",
0
Taking derivatives, T" has density

pr(t) = Fp(t) = th%e=%, t>0,

with pp(t) = 0 for t < 0. Because T' and U are independent, they have joint
density

() t0%e= % t>0, ue(0,1);
7u = .
be 0, otherwise.

! The distribution of T naturally depends on 6, but for convenience this dependence
is suppressed in the notation here.
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P <(§) eB) = // 1 (tu, t(1 — w))pe(t, w) du dt.

Changing variables to = ut, du = dz/t in the inner integral, and reversing
the order of integration using Fubini’s theorem,

P <<§) € B) = // 1p(x,t — )t 'pg(t, x/t) dt da.

Now a change of variables to y = ¢t — x in the inner integral gives

P<<§) €B> ://lg(x,y)(:r+y)_1p9 (m—ky,xiy) dy dz.

Thus X and Y have joint density

From this,

T+y 0, otherwise.

Pe (CU +y, rf_y) {9269(w+y)’ x>0, y>0;

This density is the same as the joint density of X and Y, and so this calcu-
lation shows that the joint distribution of X and Y is the same as the joint
distribution of X and Y. Considered as data that provide information about
0, the pair (X,Y) should be just as informative as (X,Y). But (X,Y) can be
computed from T'= X + Y and U. Because the distribution of U does not
depend on 6, it could be generated numerically on a computer or obtained
from a table of random numbers. Thus 7" by itself also provides as much in-
formation about @ as the pair (X,Y’) because we could construct fake data
(X,Y) equivalent to (X,Y’) using any convenient variable U that is uniformly
distributed on (0,1). The sum 7'= X +Y is called a sufficient statistic. This
construction of fake data works because the conditional distribution Q; for X
and Y given T = t, given explicitly by?

aan=l(F)ea[ -] -r[(, %) -1

does not depend on . This motivates the following definition in a general
setting.

Definition 3.2. Suppose X has distribution from a family P = {Py : 0 € 2}.
Then T = T(X) is a sufficient statistic for P (or for X, or for 8) if for every t
and 0, the conditional distribution of X under Py given T =t does not depend
on 6.

2 See Chapter 6 for a proper treatment of conditional distributions.
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Suppose T is sufficient, and let
Q:(B) = Py(X € B|T =1).
Then Pyp(X € B|T) = Qr(B) and, by smoothing,
Py(X € B) = EgPy(X € B|T) = EgQr(B).

Suppose we use a random number generator to construct “fake” data X from
T taking X ~ @; when T' = t. Then

X|T=t~Q,
and by smoothing
Py(X € B) = EgPy(X € B|T) = EsQr(B). (3.1)
So X and X have the same distribution.

Theorem 3.3. Suppose X has distribution from a family P = {Py : 0 € 2}
and that T = T(X) is sufficient. Then for any estimator §(X) of g(0) there

exists a randomized estimator based on T that has the same risk function as
d(X).

Proof. A randomized estimator is one that can be constructed from T with
auxiliary random number generation. Inasmuch as X can be constructed from
T by random number generation, (5(f( ) is a randomized estimator, and its
risk is the same as the risk of §(X) because X and X both have the same
distribution Py. O

A similar notion of sufficiency, due to Blackwell (1951), can be used to
compare experiments. It is natural here to identify an experiment with the
model that gives distributions for data from the experiment. Let P = {]59 :
0 € 2} and P ={Py: 0 € 2} be models for two experiments. As before, the
notion is that P is sufficient if fake data can be created using an observation
from P and external randomization, with the distributions for the fake data,
as 0 varies, the same as distributions for real data from the other experiment.

Definition 3.4. Model P is sufficient for P if there is a stochastic transition
kernel ) such that

RB) = [ @i(B)du(t)
for every Borel set B and all 6 € (2.

The argument that this supports randomization to construct fake data
is the same as (3.1). Suppose P is sufficient for P, and let T ~ Py be data
from the sufficient experiment. When T' = ¢, the fake data X is obtained by
sampling from @, so that
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P(X € BIT =t) = Q,(B).

Then, by smoothing,
P(X € B)= EP(X € B|T) = EQr(B /Qt YdPy(t) = Py(B).

This shows that X ~ Py, so the distributions for X , as desired, are the same
as distributions for real data from the other experiment P, regardless of the
value of 6 € (2.

3.3 Factorization Theorem

From the definition of sufficiency in the last section it is easy to understand
the sense in which a sufficient statistic T'(X) conveys all of the information
about 0 from data X, at least when the model is correct. But the definition is
less useful for finding a sufficient statistic, or trying to determine whether a
specific statistic is sufficient. When distributions in the family are specified by
densities, sufficiency can be checked using the factorization theorem simply
by looking at the form of the densities.

Definition 3.5. A family of distributions P = {Py : § € 2} is dominated if
there exists a measure p with Py absolutely continuous with respect to u, for
all § € 0.

Theorem 3.6 (Factorization Theorem). Let P = {FPy : § € 2} be a
family of distributions dominated by p. A necessary and sufficient condition
for a statistic T to be sufficient is that there exist functions go > 0 and h >0
such that the densities pg for the family satisfy

po(x) = go (T(x))h(x), for a.e. x under p.

A proof of this result is given in Section 6.4. It depends in part on a proper
definition of conditional distributions.

Example 3.7. Suppose Xi,...,X, are ii.d. absolutely continuous variables
with common marginal density

1’9 x )
fola) = {<a+1> L we(0,1);

0, otherwise,

for § > —1. Then their joint density py is

Hfga;‘l _H0+1) =(O+1)" (Hx) z € (0,1)",

with pg(z) = 0 if z ¢ (0,1)". Taking go(t) = (0 + 1)"t? and h = 1(g1)n, from
the factorization theorem, T' = [} ; X; is sufficient.



46 3 Risk, Sufficiency, Completeness, and Ancillarity

When {z : pg(x) > 0} depends on 8, care is needed to ensure that formulas
for pg used in the factorization theorem work for all x. To accomplish this,
indicator functions are often used.

Example 3.8. Suppose X7, ..., X, are a random sample from the uniform dis-
tribution on (0,6 + 1). Then the common marginal density is

L, ze(0,0+1);
Jolw) = {0, otherwise.

So fg = 1(9,041)- The joint density is

n

po(x) = H Lig,041)(Ti),

i=1
which equals one if and only if max; z; < 6 + 1 and min; z; > 6. So

Po () = 1(g,00) (00 27) 1 (oo p41) (MaX 23).

By the factorization theorem, T' = (min; X;, max; X;) is sufficient.

3.4 Minimal Sufficiency

If T is sufficient for a family of distributions P, and if T = f(T'), then T is also
sufficient. This follows easily from the factorization theorem when the family
is dominated. This suggests the following definition.

Definition 3.9. A statistic T' is minimal sufficient if T' is sufficient, and for
every sufficient statistic T there exists a function f such that T = f(T) (a.e.
P). Here (a.e. P) means that the set where equality fails is a null set for every
PePp.

Ezample 3.10. If Xy, ..., X5, are i.i.d. from N(0,1), § € R, then

N X,
-(EN)
Zi:n,+1 Xi

is sufficient but not minimal. It can be shown that T = 21221 X, is minimal
sufficient here,® and T = f(T) if we take f(t) = t1 + to.

If P is a dominated family, then the density pg(X), viewed as a function
of 0, is called the likelihood function. By the factorization theorem, any suf-
ficient statistic must provide enough information to graph the shape of the
likelihood, where two functions are defined to have the same shape if they
are proportional. The next result shows that a statistic is minimal sufficient if
there is a one-to-one relation between the statistic and the likelihood shape.

3 This follows from Example 3.12 below.



3.4 Minimal Sufficiency 47

Theorem 3.11. Suppose P = {Pp : 0 € 2} is a dominated family with den-
sities po(z) = go (T'(x))h(x). If po(x) o po(y) implies T(x) = T(y), then T
is minimal sufficient.*

Proof. A proper proof of this result unfortunately involves measure-theoretic
niceties, but here is the basic idea. Suppose T' is sufficient. Then py(z) =

go(T(z))h(z) (a.e. p). Assume this equation holds for all z. If T is not a

function of TN, then there must be two data sets z and y that give the same
value for T', T'(x) = T'(y), but different values for T', T'(z) # T'(y). But then

po(x) = Go(T(x))h(x) oo Go (T(y)) h(y) = po(y),

and from the condition on 7" in the theorem, T'(x) must equal T'(y). Thus T is
a function of T'. Because T was an arbitrary sufficient statistic, 7" is minimal.
O

Although a proper development takes more work, this result in essence
says that the shape of the likelihood is minimal sufficient, and so a minimal
sufficient “statistic” exists for dominated families.” When this result is used, if
the implication only fails on a null set (for the family), T" will still be minimal
sufficient. In particular, if the implication holds unless py(x) and pg(y) are
identically zero as 6 varies, then T will be minimal sufficient.

Ezxample 3.12. Suppose P is an s-parameter exponential family with densities
polx) = 677(9)~T(ﬂc)—B(ﬁ)h(ﬁ)7

for @ € 2. By the factorization theorem, T is sufficient. Suppose pp(x) g

Po(y)- Then
O T@) en(9)~T(y)7

which implies that
n(0) - T(x) = n(0) - T(y) +¢,

where the constant ¢ may depend on = and y, but is independent of 6. If 6,
and A, are any two points in {2,

[1(6) —n(01)] - T(x) = [n(f0) —n(61)] - T(y)

and

4 The notation “cg” here means that the two expressions are proportional when
viewed as functions of 0. So pp(z) x¢ pe(y) here would mean that there is a
“proportionality constant” ¢ that may depend on z and y, so ¢ = ¢(z,y), such
that pe(x) = c(x,y)po(y), for all 0 € (2.

At a technical level this may fail without a bit of regularity. Minimal sufficient
o-fields must exist in this setting, but there may be no minimal sufficient statistic
if P is not separable (under total variation norm). For discussion and counterex-
amples, see Bahadur (1954) and Landers and Rogge (1972).

ot
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[1(60) —n(61)] - [T(2) = T(y)] = 0.
This shows that T'(x) — T'(y) is orthogonal to every vector in

1(£2) ©1(2) = {n(6o) —1(61) : 6o € 2,6, € 2},

and so it must lie in the orthogonal complement of the linear span® of n(£2) ©
n(§2). In particular, if the linear span of n(§2) © n(£2) is all of R®, then T'(z)
must equal T'(y). So, in this case, T' will be minimal sufficient.

Ezxample 3.13. Suppose X1, ..., X, are i.i.d. absolutely continuous variables
with common marginal density

fo(z) = ;6_"7”_”

Then the joint density is

1 n
po(x) = on exp{—z |x; — 9|}
i=1

The variables X(1) < X() < --+ < X(,) found by listing Xi,..., X, in in-
creasing order are called the order statistics. By the factorization theorem,
T = (Xqy,..., X)), is sufficient. Suppose pg(zx) g pg(y). Then the differ-
ence between Y . |z; — 6] and >, |y; — 6| is constant in 6. Both of these
functions are piecewise linear functions of 6 with a slope that increases by two
at each order statistic. The difference can only be constant in 6 if z and y
have the same order statistics. Thus the order statistics are minimal sufficient
for this family of distributions.

3.5 Completeness

Completeness is a technical condition that strengthens sufficiency in a useful
fashion.

Definition 3.14. A statistic T is complete for a family P ={Py: 0 € 2} if
Eof(T)=c¢, for all0,

implies f(T) =c¢ (a.e. P).

Remark 3.15. Replacing f by f — ¢, the constant ¢ in this definition could be

taken to be zero.

5 See Appendix A.3 for a review of vector spaces and the geometry of R™.
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Ezxample 3.16. Suppose X1, ..., X, are i.i.d. from a uniform distribution on
(0, 0). Using indicator functions, the joint density is I{min z; > 0}I{maxz; <
0}/0™, and so T = max{Xy,..., X, } is sufficient by the factorization theorem
(Theorem 3.6). By independence, for ¢t € (0, 6),

Py(T <t)=Pp(X1 <t,...,Xn <)
= Py(Xy <t)x - x Po(X, < t) = (t/0)".

Differentiating this expression, T has density nt"~1/0" t € (0,6). Suppose
Eof(T) = c for all § > 0; then

n

0
Eo[f(T)—c| = an/o [f(t)—c]t" tdt =0.

From this (using fact 4 about integration in Section 1.4) [f(t) — c][t"~! =0
for a.e. t > 0. So f(T) = c (a.e. P), and T is complete.

Theorem 3.17. If T is complete and sufficient, then T is minimal sufficient.

Proof. Let T be a minimal sufficient statistic, and assume 7' and T are both
bounded random variables. Then T = f(T'). Define ¢(T) = E,[T|T], noting
that this function is independent of # because T is sufficient. By smoothing,
Eog(T) = EoT, and so Ep [T—g(j’)] =0, for all . But T—g(T) = T—g(f(T)),
a function of T, and so by completeness, T' = g(T') (a.e. P). This establishes
a one-to-one relationship between T and T. From the definition of minimal
sufficiency, T' must also be minimal sufficient.

For the general case, first note that sufficiency and completeness are both
preserved by one-to-one transformations, so two statistics can be considered
equivalent if they are related by a one-to-one (bimeasurable) function. But
there are one-to-one bimeasurable functions from R™ to R, and so any ran-
dom vector is equivalent to a single random variable.” Using this, if 7 and
T are random vectors, the result follows easily from the one-dimensional case
transforming both of them to equivalent random variables. a

Definition 3.18. An ezponential family with densities pg(x) = exp{n(@) .
T(z) — B(0)}h(x), 6 € £2, is said to be of full rank if the interior of n({2)
is not empty and if T1,...,Ts do not satisfy a linear constraint of the form
v-T=c (a.e p).

If 2 C R® and n is continuous and one-to-one (injective), and the interior
of {2 is nonempty, then the interior of n({2) cannot be empty. This follows
from the “invariance of domain” theorem of Brouwer (1912).

If the interior of 7({2) is not empty, then the linear span of n(£2) & n(£2)
will be all of R® and, by Example 3.12, T" will be minimal sufficient. The
following result shows that in this case T is also complete.

" For instance, the function ¢ : R> — R that alternates the decimal digits of its
arguments, and thus, for instance, ¢(12.34...,567.89...) = 506172.8394 ..., is
one-to-one and bimeasurable.
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Theorem 3.19. In an exponential family of full rank, T is complete.

Definition 3.20. A statistic V' is called ancillary if its distribution does not
depend on 0. So, V' by itself provides no information about 6.

An ancillary statistic V', by itself, provides no useful information about 6.
But in some situations V' can be a function of a minimal sufficient statistic 7.
For instance, in Example 3.13 differences X ;) — X(;) between order statistics
are ancillary. But they are functions of the minimal sufficient 7" and are rele-
vant to inference. The following result of Basu shows that when T is complete
it will contain no ancillary information. See Basu (1955, 1958) or Lehmann
(1981) for further discussion.

Theorem 3.21 (Basu). If T is complete and sufficient for P = {Py : 0 €
N2}, and if V is ancillary, then T and V are independent under Py for any
6 e (2.

Proof. Define ga(t) = Py(V € A|T =1t), so that q4(T) = Py(V € A|T), and
define pa = Pyp(V € A). By sufficiency and ancillarity, neither p4 nor ga(t)
depend on 6. Also, by smoothing,

pa=Pp(V € A) = EgPy(V € AT) = Egqa(T),

and so, by completeness, ga(T) = pa (a.e. P). By smoothing,

Py(T € B,V € A) = Eglp(T)14(V)
= EgEo(15(T)14(V) | T)
= Eylp(T)Ey(1a(V) | T)
= Eplp(T)qa(T)

= Eplp(T)pa
= PQ(T € B)PQ(V S A)

Here A and B are arbitrary Borel sets, and so T' and V are independent. O

Ezample 3.22. Suppose X1,..., X, are i.i.d. from N(u,0?), and take P =
Py ={N(u,0%)" : p € R}. (Thus P, is the family of all normal distributions
with standard deviation the fixed value ¢.) With x = (x1 + --- + x,)/n, the
joint density can be written as

1 nu np? 1 <« 9
(2mo2)n/2 Pl 27T 952 T 942 2;%

These densities for P, form a full rank exponential family, and so the average

X =(X1+4 -+ X,)/n is a complete sufficient statistic for P,. Define

n

Z(Xl - X)27

i=1

1

§* =
n—1
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called the sample variance. For the family P,, S? is ancillary. To see this, let
Yi=X;,—pu,t=1,...,n. Because

y+p

1 dx
FuYi<y) = Pu(Xi <y +p) :/ 202 (x_“)ﬂ V2ro?

/y 1 5] du

= exp|—_ u

— 00 P 20’2 \/27'['0'27

and the integrand is the density for N(0,0?), Y; ~ N(0,02). Then Yi,...,Y,

are i.i.d. from N(0,0%). Because Y = (Y1 +--- 4+ Y,)/n=X —p, X; — X =
Y,-Y,i=1,...,n, and

exp[—

n

1
2 _ 2
5= n—1 Z(Yl Yy
=1
Because the joint distribution of Yi,...,Y,, depends on ¢ but not u, S? is

ancillary for P,. Hence, by Basu’s theorem, X and S? are independent.®

3.6 Convex Loss and the Rao—Blackwell Theorem

Definition 3.23. A real-valued function f on a convex set C in RP is called
convex if, for any x #y in C and any vy € (0,1),

flve+ @ =7yl <vfl@)+ 1@ =Nfy). (3.2)
The function f is strictly convex if (3.2) holds with strict inequality.

Geometrically, f is strictly convex if the graph of f for values between
z and y lies below the chord joining (x, f(z)) and (y, f(y)), illustrated in
Figure 3.3. If p = 1 and f” exists and is nonnegative on C, the f is convex.
The next result is the supporting hyperplane theorem in one dimension.

Theorem 3.24. If f is a convex function on an open interval C, and if t is
an arbitrary point in C, then there exists a constant ¢ = ¢; such that

f) +e(z—1t) < flx), Vrzel.
If f is strictly convex, then f(t) + c(x —t) < f(x) for allz € C, x #t.

The left-hand side of this inequality is a line through (¢, f(t)). So, this
result says that we can always find a line below the graph of f touching the
graph of f at t. This is illustrated in Figure 3.4.

8 The independence established here plays an important role when distribution
theory for this example is considered in more detail in Section 4.3. Independence
can also be established using spherical symmetry of the multivariate normal dis-
tribution, an approach developed in a more general setting in Chapter 14.
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f
A

@)+ @ =fY) +

flr+QA—-yy) +

=1

x vz + (1 =)y Yy

Fig. 3.3. A convex function.

Theorem 3.25 (Jensen’s Inequality). If C is an open interval, f is a con-
vez function on C, P(X € C) =1, and EX is finite, then

f(EX) < Ef(X).

If f is strictly convez, the inequality is strict unless X is almost surely con-
stant.

Proof. By Theorem 3.24 with t = EX, for some constant c,
f(EX)+c(z— EX) < f(z), Vo €C,

and so

F(EX)+c(X — EX) < f(X), (a.e. P).
The first assertion of the theorem follows taking expectations. If f is strictly
convex this bound will be strict on X # EX. The second assertion of the
theorem then follows using fact 2 from Section 1.4. a
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f
A
) 1
4 + B>
t
v

Fig. 3.4. Convex function with support line.

Remark 3.26. Jensen’s inequality also holds in higher dimensions, with X a
random vector.

Ezample 3.27. The functions 1/z and — logx are strictly convex on (0, c0). If
X >0, then 1/EX < E[1/X] and log EX > E'log(X). These inequalities are
strict unless X is constant.

If §(X) is an estimator of g(6), then the risk of § for a loss function L(6, d)
is R(6,0) = EgL(6,5(X)). Suppose T is a sufficient statistic. By Theorem 3.3
there is a randomized estimator based on T with the same risk as . The
following result shows that for convex loss functions there is generally a non-
randomized estimator based on 7' that has smaller risk than 4.

Theorem 3.28 (Rao—Blackwell). Let T' be a sufficient statistic for P =
{Py: 0 € 2}, let & be an estimator of g(0), and define n(T) = E[6(X)|T). If
6 € 2, R(0,§) < oo, and L(0,-) is convex, then

R(8,n) < R(6,9).

Furthermore, if L(0,-) is strictly convez, the inequality will be strict unless
(X)) =n(T) (a.e. Pp).
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Proof. Jensen’s inequality with expectations against the conditional distribu-
tion of §(X) given T gives

L(0,n(T)) < Eg[L(0,6(X)) | T].

Taking expectations, R(0,n) < R(6,0). The assertion about strict inequality
follows after a bit of work from the second assertion in Jensen’s inequality. 0O

This result shows that with convex loss functions the only estimators worth
considering, at least if estimators are judged solely by their risk, are functions
of T but not X. It can also be used to show that any randomized estimator is
worse than a corresponding nonrandomized estimator. Using the probability
integral transformation,” any randomized estimator can be viewed as a func-
tion of X and U, where X and U are independent and the distribution of U
does not depend on 6. But if X and U are both considered as data, then X
is sufficient, and with convex loss the risk of a randomized estimator §(X, U)
will be worse than the risk of the estimator E(§(X,U) | X), which is based
solely on X.

3.7 Problems!’

1. An estimator ¢ is called inadmissible if there is a competing estimator B
with a better risk function, that is, if R(0,*) < R(0,0), for all § € (2, and
R(0,6*) < R(6,0), for some 6 € (2. If there is no estimator with a better
risk function, J is admissible. Consider estimating success probability 6 €
[0,1] from data X ~ Binomial(n,#) under squared error loss. Define d,
by

X
Jap(X) =0 N + (1 —a)b,

which might be called a linear estimator, because it is a linear function of

X.

a) Find the variance and bias of d, 5. (The bias of an arbitrary estimator
d of 0 is defined as b(,d) = Fgd(X) —0.)

b) If a > 1, show that d45 is inadmissible by finding a competing linear
estimator with better risk. Hint: The risk of an arbitrary estimator ¢
under squared error loss is Varg(6(X)) + b2(6,6). Find an unbiased
estimator with smaller variance.

c)If b>1orb<0,and a € [0,1), show that J,; is inadmissible by
finding a competing linear estimator with better risk. Hint: Find an
estimator with the same variance but better bias.

9 If the inverse for a possibly discontinuous cumulative distribution function F' is
defined as F<(¢) = sup{z : F(z) < t}, and if U is uniformly distributed on (0, 1),
then the random variable F~(U) has cumulative distribution function F.

10 Solutions to the starred problems are given at the back of the book.
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d) If a < 0, find a linear estimator with better risk than dqp.

. Suppose data X1,...,X,, are independent with

Py(X; <) =2l z € (0,1),

where 6 > 0 is the unknown parameter, and ¢, ..., %, are known positive
constants. Find a one-dimensional sufficient statistic 7.

An object with weight 6 is weighed on scales with different precision.
The data Xi,..., X, are independent, with X; ~ N(0,02),i=1,...,n,
with the standard deviations o1, ..., 0, known constants. Use sufficiency
to suggest a weighted average of X1,...,X,, to estimate 6. (A weighted
average would have form Z?:l w; X;, where the w; are positive and sum
to one.)

Let X1,..., X, be arandom sample from an arbitrary discrete distribution
P on {1,2,3}. Find a two-dimensional sufficient statistic.

. Forf € 2 =(0,1), let Py denote a discrete distribution with mass function

Po(t) = (14 1)0*(1 — 0)", t=0,1,...,

and let Py denote the binomial distribution with two trials and success
probability 8. Show that the model P = {Py : § € 2} is sufficient for the
binomial model P = {Fy : 6 € 2}. Identify the stochastic transition @ by
giving the mass functions

a(x) = Q({z}),  ©=0,1,2,

fort=0,1,....
The beta distribution with parameters o > 0 and 3 > 0 has density

I'la+p)
fap(x) =< T'(a)T(B)

0, otherwise.

M1 -2)P7t, 2 e(0,1);

Suppose X, ..., X, are i.i.d. from a beta distribution.
a) Determine a minimal sufficient statistic (for the family of joint distri-
butions) if « and 8 vary freely.

b) Determine a minimal sufficient statistic if o = 24.

c¢) Determine a minimal sufficient statistic if o = 3%

Logistic regression. Let X1,...,X, be independent Bernoulli variables,
with p; = P(X; =1),i=1,...,n. Let t1,...,t, be a sequence of known
constants that are related to the p; via

pi

:a—'_ﬁtia
L —pi

log

where a and 3 are unknown parameters. Determine a minimal sufficient
statistic for the family of joint distributions.
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The multinomial distribution, derived later in Section 5.3, is a discrete
distribution with mass function
n! . v
21! % - X:vslpll X oo X DY,
where xg, ..., xs are nonnegative integers summing to n, where p1,...,ps
are nonnegative probabilities summing to one, and n is the sample size.

Let Ni1, Ni2, No1, Noo have a multinomial distribution with n trials and

success probabilities p11, P12, P21, pee. (A common model for a two-by-two

contingency table.)

a) Give a minimal sufficient statistic if the success probabilities vary
freely over the unit simplex in R*. (The unit simplex in R? is the set
of all vectors with nonnegative entries summing to one.)

b) Give a minimal sufficient statistic if the success probabilities are con-
strained so that pi1p22 = p1opor.

Let f be a positive integrable function on (0, c0). Define

«0) =1/ [ s e

and take pg(z) = c(0)f(x) for z > 0, and pg(x) = 0 for z < 0. Let
X1,..., X, be iid. with common density pg.

a) Show that M = min{Xy,..., X, } is sufficient.

b) Show that M is minimal sufficient.

Suppose X1,..., X, are i.i.d. with common density fp(x) = (1 + 0x)/2,
|z| < 1; fo(z) = 0, otherwise, where § € [—1,1] is an unknown parameter.
Show that the order statistics are minimal sufficient. (Hint: A polynomial
of degree n is uniquely determined by its value on a grid of n + 1 points.)
Consider a two-sample problem in which Xy, ..., X, is a random sample
from N(u,02) and Yi,...,Y,, is an independent random sample from
N(u, crz). Let Py denote the joint distribution of these n + m variables,
with 6 = (u,03,0;). Find a minimal sufficient statistic for this family of
distributions.

Let Z1 and Z5 be independent standard normal random variables with
common density ¢(z) = exp(—x?/2)/v/2n, and suppose X and Y are
related to these variables by

X = Zl and Y = (X+Z2)9,

where 6 > 0 is an unknown parameter. (This might be viewed as a regres-

sion model in which the independent variable is measured with error.)

a) Find the joint density for X and Y.

b) Suppose our data (X1,Y1),..., (X,,Y,) are i.i.d. random vectors with
common distribution that of X and Y in part (a),

Xi X i=1,...,n
» v ) =1,...,n.
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Find a minimal sufficient statistic.
Let Xy,...,X, be independent Poisson variables with \; = EX;, ¢ =
1,...,n. Let t1,...,t, be a sequence of known constants related to the \;
by
log \; = a + Gt;, i=1,...,n,

where « and § are unknown parameters. Find a minimal sufficient statistic
for the family of joint distributions.

Let Xi,...,X, be iid. from a discrete distribution @ on {1,2,3}. Let
pi = Q{i}) = P(X; =), i=1,2,3, and assume we know that p; =1/3,
but have no additional knowledge of ). Define

Ni:#{jgn:Xj:i}.

a) Show that T' = (N, N) is sufficient.

b) Is T minimal sufficient? If so, explain why. If not, find a minimal
sufficient statistic.

Use completeness for the family N(6,1), § € R to find an essentially

unique solution f of the following integral equation:

/f(i)eem da = V/2me?" /2, 0 € R.

Let X3,...,X,, be a random sample from an absolutely continuous dis-
tribution with density

folz) = {2x/02, x € (0,0);

0, otherwise.

a) Find a one-dimensional sufficient statistic 7.

b) Determine the density of T'.

¢) Show directly that T is complete.

Let X, X1, X5,... be i.i.d. from an exponential distribution with failure
rate A (introduced in Problem 1.30).

a) Find the density of Y = AX.

b) Let X = (X1 + - + X,)/n. Show that X and (X2 + -+ X2)/X"
are independent.

Let X1,..., X, be independent, with X; ~ N(¢;0,1), where t1,...,t, are

a sequence of known constants (not all zero).

a) Show that the least squares estimator § = 327 | #;X;/ 327" | 2 is com-
plete sufficient for the family of joint distributions.

b) Use Basu’s theorem to show that § and Y7, (X; — t;0)? are indepen-
dent.

Let X and Y be independent Poisson variables, X with mean 6, and Y

with mean 62, 6 € (0, 00).

a) Find a minimal sufficient statistic for the family of joint distributions.
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b) Is your minimal sufficient statistic complete? Explain.

Let Z1,...,Z, beii.d. standard normal variates, and let Z be the random
vector formed from these variables. Use Basu’s theorem to show that || Z||
and Z1/||Z]| are independent.

Let X1,...,X, be iid. from the uniform distribution on (0,1), and let
M = max{X;,...,X,}. Show that X;/M and M are independent.

Let (X1,Y1),...,(X,,Y,) be iid. and absolutely continuous with com-
mon density

2/02, x>0,y>0,r+y<6;
Jo (.’13, y) = { .

0, otherwise.
(This is the density for a uniform distribution on the region inside a tri-
angle in R2.)
a) Find a minimal sufficient statistic for the family of joint distributions.
b) Find the density for your minimal sufficient statistic.
¢) Is the minimal sufficient statistic complete?
Suppose X has a geometric distribution with success probability 6 € (0,1),
Y has a geometric distribution with success probability 26 — 6%, and X
and Y are independent. Find a minimal sufficient statistic 7" for the family
of joint distributions. Is T' complete?
Let data X and Y be independent variables with

X ~ Binomial(n,f) and Y ~ Binomial(n, %),

with 6 € (0,1) an unknown parameter.
a) Find a minimal sufficient statistic.

b) Is the minimal sufficient statistic complete? If it is, explain why; if it
is not, find a nontrivial function g such that Egg(T) = 0 for all 6.
Let X3,..., X, bei.i.d. absolutely continuous random variables with com-

mon density
fe= 0% x> 0;

fe(x):{o 2<0

where 6 > 0 is an unknown parameter.

a) Find the density of 6.X;.

b) Let X(;) < --- < X(;,) be the order statistics and X = (X +--- +
X,)/n the sample average. Show that X and X(;)/ X, are indepen-
dent.

Two teams play a series of games, stopping as soon as one of the teams

has three wins. Assume the games are independent and that the chance

the first team wins is an unknown parameter § € (0,1). Let X denote
the number of games the first team wins, and Y the number of games the
other team wins.

a) Find the joint mass function of X and Y.
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b) If our data are X and Y, find a minimal sufficient statistic.
¢) Is the minimal sufficient statistic in part (b) complete? Explain your
reasoning.
Let Xy,...,X, be iid. from a uniform distribution on (—#0,6), where
6 > 0 is an unknown parameter.
a) Find a minimal sufficient statistic T'.
b) Define
X

. 9
max; X; — min; X;

where X = (X1 +--- + X,,)/n, the sample average. Show that 7" and
V are independent.
Show that if f is defined and bounded on (—oo0,00), then f cannot be
convex (unless it is constant).
Find a function on (0, c0) that is bounded and strictly convex.
Use convexity to show that the canonical parameter space = of a one-
parameter exponential family must be an interval. Specifically, show that
if no <n < mni, and if ny and 71 both lie in =, then n must lie in =.
Let f and g be positive probability densities on R. Use Jensen’s inequality

to show that
/log (J;g;) f(z)dz >0,

unless f = g a.e. (If f = g, the integral equals zero.) This integral is called
the Kullback—Leibler information.
The geometric mean of a list of positive constants 1, ..., z, is

T = (331 X X xn)l/n,
and the arithmetic mean is the average © = (x1 + - - - + ) /n. Show that
T <z
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Unbiased Estimation

Example 3.1 shows that a clean comparison between two estimators is not
always possible: if their risk functions cross, one estimator will be preferable
for # in some subset of the parameter space {2, and the other will be prefer-
able in a different subset of 2. In some cases this problem will not arise if
both estimators are unbiased. We may then be able to identify a best un-
biased estimator. These ideas and limitations of the theory are discussed in
Sections 4.1 and 4.2. Sections 4.3 and 4.4 concern distribution theory and un-
biased estimation for the normal one-sample problem in which data are i.i.d.
from a normal distribution. Sections 4.5 and 4.6 introduce Fisher information
and derive lower bounds for the variance of unbiased estimators.

4.1 Minimum Variance Unbiased Estimators

An estimator § is called unbiased for g(6) if
E¢6(X)=g(0), Vo€ . (4.1)
If an unbiased estimator exists, g is called U-estimable.

Ezample 4.1. Suppose X has a uniform distribution on (0, ). Then § is unbi-
ased if

0
/ 5(2)0~ dz = g(0), VO >0,
0
or if )
/ 5(z)dz = 0g(0), V0> 0. (4.2)
0
So g cannot be U-estimable unless 6g(6) — 0 as 6 | 0. If ¢’ exists, then
differentiating (4.2), by the fundamental theorem of calculus,

@) = 1 (9(a)) = g(a) + 29/ (2).

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 61
DOI 10.1007/978-0-387-93839-4 4, © Springer Science+Business Media, LLC 2010
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For instance, if g(0) = 0, 6(X) = 2X.

Example 4.2. If X has the binomial distribution with n trials and success
probability 0, and if g(8) = sin 6, then § will be unbiased if

25 ()0’%—0) “k —sing,  VvOe(0,1).

The left hand side of this equation is a polynomial in 6 with degree at most
n. The sine function cannot be written as a polynomial, therefore sin 6 is not
U-estimable.

With squared error loss, L(6,d) = (d — g(0))2, the risk of an unbiased
estimator ¢ is

R(6,5) = By(8(X) — g(0))” = Vary (5(X)),
and so the goal is to minimize the variance.

Definition 4.3. An unbiased estimator ¢ is uniformly minimum variance un-
biased (UMVU) if

Varg(d) < Varg (™), Vo € 12,
for any competing unbiased estimator 0*.

In a general setting there is no reason to suspect that there will be a
UMVU estimator. However, if the family has a complete sufficient statistic, a
UMVU will exist, at least when g is U-estimable.

Theorem 4.4. Suppose g is U-estimable and T is complete sufficient. Then
there is an essentially unique unbiased estimator based on T that is UMVU.

Proof. Let § = 6(X) be any unbiased estimator and define
n(T) = E[8|T],
as in the Rao—Blackwell theorem (Theorem 3.28). By smoothing,
9(0) = Egd = EgEg[0|T] = Eon(T),
and thus n(T') is unbiased. Suppose n*(T') is also unbiased. Then
Bo[o(T) - (T)] =0,  ¥oen,

and by completeness, n(T")—n*(T') = 0 (a.e. P). This shows that the estimator
1(T') is essentially unique; any other unbiased estimator based on T' will equal
n(T) except on a P-null set. The estimator n(7T) has minimum variance by
the Rao—Blackwell theorem with squared error loss. Specifically, if §* is any
unbiased estimator, then n*(T') = Eg(6*|T) is unbiased by the calculation
above. With squared error loss, the risk of §* or n*(T') is the variance, and so

Varg(6*) > Varg(n*(T)) = Varg (n(T)), Vo € (2.
Thus, n(T") is UMVU. O
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From the uniqueness assertion in this theorem, if T is complete sufficient
and 7(T) is unbiased, n(T) must be UMVU. Viewing (4.1) as an equation for
J, any solution of the form § = n(T) will be UMVU. This approach provides
one strategy to find these estimators.

Ezample 4.5. Let X4,..., X, beiid. from the uniform distribution on (0, §).
From Example 3.16, T = max{X3,..., X,,} is complete and sufficient for the
family of joint distributions. Suppose n(T") is unbiased for g(6). Then

6 n—1
t
[ 0™, d=g6). o0
0 o
which implies
0
n/ t"In(t) dt = 6™g(6), 6> 0.
0

If g is differentiable and 8™ g(6) — 0 as 6 | 0, then differentiation with respect
to 6 gives

n"n0) = 5 (679(6)).

and so _y (1)
_ n _ g
n(t) = oy g (F9®) =9+ 7 7 >0,

When g is a constant ¢ this argument shows the n(7T") must also equal ¢, and
so T is complete.

When g is the identity function, g(8) = 0, n(¢t) = (n + 1)t/n. Thus, (n +
1)T/n is the UMVU of 6. Another unbiased estimator is 6 = 2X. By the
theory we have developed, n(T") must have smaller variance than 6. In this
example the comparison can be done explicitly. Since

0 n—1
t n
Er?= | " ar= 62
o /0 on n+2
and ) )
+1 (n+1)
En?(T) = (" E,T? = 2
we have
_ 2 2_(""'1)2 2 2 _ 0°
Varg (n(T)) = Eor*(T) — (Een(t))” = n(n + 2)‘9 "= n(n+2)

When n = 1, T = 2X1, and so this formula implies that Vary(2X;) = 62/3.
Because § is an average of these variables,
92
Varg(d) = _ .
arg(9) 4

The ratio of the variance of n(T') to the variance of ¢ is
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Varg(n(T)) 3

Varg(8) n+2

As n — oo this ratio tends to zero, and so n(T") is much more accurate than
0 when n is large.

The proof of Theorem 4.4 also suggests another way to find UMVU esti-
mators. If ¢ is an arbitrary unbiased estimator, then n(7") = E[|T] will be
UMVU. So if any unbiased estimator can be identified, the UMVU can be
obtained by computing its conditional expectation.

Ezample 4.6. Let X1,...,X,, be i.i.d. Bernoulli variables with Pp(X; = 1) =
0=1—Py(X;=0),i=1,...,n. The marginal mass function can be written
as 0%(1 — 0)'~% z =0 or 1, and so the joint mass function is

H 977(1 _ 9)1—@ _ oT(m)(l _ ‘9)n—T(m)7
i=1
where T'(x) = 1 + - - - + &,. These joint mass functions form an exponential
family with
T=T(X)=X1+- -+ X,, ~ Binomial(f,n)

as a complete sufficient statistic. Consider unbiased estimation of g() = 6.
One unbiased estimator is § = X7 Xy. The UMVU estimator must be n(T") =
Ey[X1Xo|T) = Po(X; = Xy = 1|T'). Because

fﬂXl:XQ:LT:tyzﬁ(X1:X2=L§:X,:t—%
=3

:02cl_§)m%1—awi

t —

Py(Xy=Xo=1,T=t
m&:&:mEﬂ:“1 N )

Py(T =1t)
B 92(?:22)91‘,—2(1 _a)n—t B tt—1
(oa—op—t Tan-y

So T(T —1)/(n? — n) is the UMVU estimator of 62.

4.2 Second Thoughts About Bias

Although the approach developed in the previous section often provides rea-
sonable estimators, the premise that one should only consider unbiased esti-
mators is suspect. Estimators with considerable bias may not be worth con-
sidering, but estimators with small bias may be quite reasonable.
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Example 4.1, continued. As before, X1,...,X,, are ii.d. from the uniform
distribution on (0,0), and T' = max{Xj,..., X, } is complete sufficient. The
UMVU estimator (n + 1)T/n is a multiple of T', but is it the best multiple
of T? To address this question, let us calculate the risk of §, = a7 under
squared error loss. From our prior calculations,

nf nb?
EgT = d EyT? = .
0 n+1 an 0 n+2

So the risk of §, is

R(6,64) = Eg(aT — 0)?
= a?FEyT? — 2a0FEyT + 6>

2
=62 " a® — " a+1).
n+2 n+1

This is a quadratic function of @ minimized when a@ = (n+2)/(n+1). With this
choice for a, R(0,8,) = 60%/(n+1)?2, slightly smaller than the risk 6%/(n?+2n)
for the UMVU estimator. With squared error loss, the risk of an arbitrary
estimator ¢ can be written as

R(6,6) = Ey(5 — g(8))” = Varg(5) + b*(6,6),

where b(0,0) = Fpd — g(0) is the bias of J. In this example, the biased esti-
mator d, has smaller variance than the UMVU estimator, which more than
compensates for a small amount of additional risk due to the bias. Possibil-
ities for this kind of trade-off between bias and variance arise fairly often in
statistics. In nonparametric curve estimation these trade-offs often play a key
role. (See Section 18.1.)

Ezxample 4.7. Suppose X has mass function

0r€—9

PoX =) = (1 —e?)’

r=1,2,....
This is the density for a Poisson distribution truncated to {1,2,...}. The
mass functions for X form an exponential family and X is complete sufficient.

Consider estimating g(#) = e~? (the proportion lost through truncation). If
§(X) is unbiased, then

_ 5(k)9ke’9
0
e " = E k!(l 6_9), 0 >0,

and so
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These power series will agree if and only if they have equal coefficients for 6% .
Hence §(k) must be (—1)¥*1, and the UMVU estimator is (—1)X*!, which is
1 when X is odd and —1 when X is even! In this example the only unbiased
estimator is absurd.

4.3 Normal One-Sample Problem—Distribution Theory

In this section distributional results related to sampling from a normal distri-
bution are derived. To begin, here are a few useful properties about normal
variables. Let X ~ N(u,0?) and take Z = (X — u)/o.

1. The distribution of Z is standard normal, Z ~ N(0, 1). More generally, if
a and b are constants, aX +b ~ N(au + b,a%c?).

Proof. The cumulative distribution function of Z is

P(Zgz)=P<X_“gz>:P(ngrza)

g

dx

B I
oo V2ro? —eo V2T .

Taking a derivative with respect to z, Z has density e=%/2 /27 and so
Z ~ N(0,1). The second assertion can be established in a similar fashion.
O

2. The moment generating function of Z is Mz (u) = 6“2/2, u € R.

Proof. Completing the square,

—22)2 —(z—u)?/2
Mz (u) = Be'? = /e“ze dz = ev’/2 [ © dz.
V2 V2o

The integrand here is the density for N(u, 1), which integrates to one, and
the result follows. O

3. The moment generating function of X is
Mx(u) = /2 yeR.
Proof.
Mx (u) = Be"Y = Ee"(#H77) = ¢ Ee"” = "' My(uo) = guntu*o®/2,

O
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4. If X1 ~ N(u1,0%) and Xo ~ N(p2,03) are independent, then X; + Xo ~
N(p1 + p2, 0% + 03).

Proof.

MX1+X2 (u) = MX1 (U)MX2 (u) = 6ult1+UQaf/2€u“2+UQU§/2

= eulmtn) it oD)/2 e R,

which is the moment generating function for N(u,0?) with g = 1 + 2
and 02 = 0% + 03. So the assertion follows by Lemma 2.7. O

Let X1,..., X, be a random sample from N (u,0?). By Example 2.3, the
joint densities parameterized by 6 = (u,0?) form a two-parameter full rank
exponential family with complete sufficient statistic T = (-1, X3, > iy X?).
It is often more convenient to work with statistics

_X1_|_..._|_Xn
N n

1 n
X and S?% = 0 3 (X - X)?,
i=1

called the sample mean and variance. Using the identity Y (X; — X)? =
S X2 — nX", we have

T Ty — T?
x =Tt g2 BT (4.3)
n n—1
or )
Ty =nX and Ty = (n —1)S* + nX". (4.4)

This establishes a one-to-one relationship between T and (X, S?). One-to-one
relationships preserve sufficiency and completeness, and so (X, S?) is also a
complete sufficient statistic.

Iterating Property 4, X; + --- + X,, ~ N(nu,no?). Dividing by n, by
Property 1, X ~ N(u,0%/n). We know from Example 3.22 that X and S2
are independent, but the derivation to find the marginal distribution of S? is
a bit more involved.

The gamma distribution, introduced in Problem 1.26, with parameters
a >0 and § > 0, denoted I'(«, ), has density

xaflefm/ﬁ

fap()=q BoT(a)

0, otherwise,

z>0; (4.5)

where I'(-) is the gamma function defined as
I'(a) :/ e da, R(a) > 0.
0

Useful properties of the gamma function include
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I'a+1)=al(a), R(a) >0

(which follows after integration by parts from the definition), I'(n 4+ 1) = nl,
n=1,2,...,and I'(1/2) = y/m. It is not hard to show that if X ~ I'(«, 1),
then 8X ~ I'(«, ). For this reason, 3 is called a scale parameter, and « is
called the shape parameter for the distribution.

If X ~I'(a, ), then, for u < 1/0,

00 a—1,—z/8
Mx(u :Ee“X:/ e“xx ¢ dx
x(u) , O per(a)
1 I 1
= o e d = s
(1 —uB)e F(a)/o Y YT (1 up)e

where the change of variables y = (1 — uf)z /[ gives the third equality. From
this, if X ~ I'(ag, 8) and Y ~ I'(ay, B) are independent, then

1

Mx vy (u) = Mx (u)My (u) = (1 — uf)o=toy :

This is the moment generating function for I'(a, + ay, 3), and so

X+Y ~INag + ay, B). (4.6)

The chi-square distributions are special cases of the gamma distribution,
generally defined as sums of independent squared standard normal variables.
If Z ~ N(0,1), then

2 1 2 1 1 2 1
M w) = eU? e~ % /2 dz = / e T /2 dr = ,
z2(u) / V2 V1—2u) or V1 —2u

where the change of variables = zv/1 — 2u gives the second equality. The
distribution of Z2 is called the chi-square distribution on one degree of free-
dom, denoted x?7. But the moment generating function for Z?2 just computed
is the moment generating function for I'(1/2,2). So x? = I'(1/2,2).

Definition 4.8. The chi-square distribution on p degrees of freedom, Xf,, s
the distribution of the sum Z? + --- + Zf, when Zi,...,7Z, are i.i.d. from
N(0,1).

Repeated use of (4.6) shows that
xX; =1T(p/2,2),

which has moment generating function

1

A gup U< 1/2. (4.7)
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Returning to sampling from a normal distribution, let X1, ..., X, be i.i.d.
from N(p,0?), and define Z; = (X; — )/, so that Zy, ..., Z, are i.i.d. from
N(0,1). Then

7= 1§:X¢—u:2?:1X¢—n,u:X—u.
ne o no o

Note that v/n Z ~ N(0,1), and so VAR x3. Next,
(“.%)
o
1
2
Xi—p X—p
(5=

(Z; — 7).

e —1)52
Vd:f (n 2)5

I

(o
5

I

s
Il
-

|

@
I
=

Expanding the square,

n n

V=N (Zi-2)=) (2} 222+ 2) = anzf —nZ’,
=1

i=1 i=1
and thus .
Vanz =Y 22~ 2. (4.8)
i=1
By Basu’s theorem (see Example 3.22), X and S? are independent. Because

nZ2 is a function of X, and V is a function of S2, V and nZ2 are independent.
Using this independence and formula (4.7) for the moment generating function
for x2, (4.8) implies

My (u)M, 2 (u) = (1- 21u)”/2'

But nZ” ~ X7 with moment generating function 1/4/1 — 2u, and thus

1

MV(U) = (1 _ 2u)(n71)/2'

(4.9)

This is the moment generating function for x2_,, and thus

(n—1)52

2
V= 2 ~ Xn—1-

g

This along with X ~ N(u,0?/n) implicitly determines the joint distribution
of X and S?, because these two variables are independent.
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4.4 Normal One-Sample Problem—Estimation

Results from the last section lead directly to a variety of UMVU estimates.
First note that for n+r > 1,

r_ o" /2
ES E{(n—l)”ﬂv ]

B o /OO x('r+n73)/267m/2 "
 (n=1)72 Jy 20=1/20[(n - 1)/2]
0" [(r+n—1)/2]

= (n—1)720[(n - 1)/2] (4.10)

From this,
(n—1)2r[(n—1)/2] .
2720 [(r+n—1)/2]
is an unbiased estimate of ¢”. This estimate is UMVU because it is a function
of the complete sufficient statistic (X,S?). In particular, when r = 2, S? is
UMVU for 2. Note that the UMVU estimate for ¢ is not S, although S is a
common and natural choice in practice. By Stirling’s formula

(n— 1)”21"[(71— 1)/2} o r(r—2)

2020 [(r +n—1)/2] 4n +00/m%),

as n — o0o.! For large n, the bias of S” as an estimate of o will be slight.

Because EX = p, X is the UMVU estimator of . However, X7 is a biased
estimator of 2 as

EX’ = (EX)? + Var(X) = i + 02/n.

The bias can be removed by subtracting an unbiased estimate of 02 /n. Doing
this, X’ - 5% /n is UMVU for p?.

The parameter u/o might be interpreted as a signal-to-noise ratio. The
unbiased estimate of 0~! given above only depends on $? and is independent
of X, the unbiased estimate of y. Multiplying these estimates together,

XV2TI[(n-1)/2]
Svn—1I[(n—2)/2]

is UMVU for p/o.

The pth quantile for N (i, 0?) is a value = such that P(X; < x) = p. If &
is the cumulative distribution function for N(0,1), then as Z; = (X; —p)/o ~
N(0,1),

! Here o(1/ n2) represents a remainder bounded in magnitude by some multiple of
1/n?. See Section 8.6.
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P(Xigx):P(Zigx;u>:sﬁ(x;M>.

This equals p if (z — p)/o = &~ (p), and so the pth quantile of N(u,c?) is
T =p+ 0P (p).
The UMVU estimate of this quantile is

Vn—1I[(n —1)/2]

Xt V2T (n/2)

S~ (p)-

4.5 Variance Bounds and Information

From (1.10) and (1.11), the covariance between two random variables X and
Y is

Cov(X,Y) = B(X — EX)(Y — EY) = EXY — (EX)(EY).
In particular, if either mean, EX or EY, is zero, Cov(X,Y) = EXY. Letting
ox = +/Var(X) and oy = /Var(Y), then because

E[(X — EX)oy £ (Y — EY)ox]? = 20x0y (ox0y £ Cov(X,Y)) >0,
we have the bound
|Cov(X,Y)| < oxoy or Cov?(X,Y) < Var(X)Var(Y), (4.11)

called the covariance inequality.
Using the covariance inequality, if § is an unbiased estimator of g(f) and
¥ is an arbitrary random variable, then

Covj(6,v)
Vary(d) > Varp() -

The right hand side of this inequality involves 4, so this seems rather useless as
a bound for the variance of §. To make headway we need to choose 1 cleverly,
so that Covg(d,) is the same for all § that are unbiased for g(6).

Let P = {Py : 0 € 22} be a dominated family with densities pg, § € 2 C R.
As a starting point, Eg+ad — Epd gives the same value g(0 + A) — g(0) for
any unbiased d. Here A must be chosen so that § + A € 2. Next, we write
Egi 16 — Egd as a covariance under Py. To do this we first express Egiad as
an expectation under Py, which is accomplished by introducing a likelihood
ratio. This step of the argument involves a key assumption that pgia(z) =0
whenever po(z) = 0. Define L(z) = po+a(z)/po(z) when pp(z) > 0, and
L(z) = 1, otherwise. (This function L is called a likelihood ratio.) From the
assumption,

(4.12)
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L(x)pe(z) = p(;_;?x()x)pe(x) = po+a(x), a.e. T,

and so, for any function h integrable under Pyy A,

E9+Ah(X) = /hp9+A d,u = /thg d,u = EgL(X)h(X)
Taking h =1, EgL = 1; and taking h =, Fgp1 A0 = EgLJ. So if we define
Y(X)=L(X) -1,
then Egy =0 and
E9+A(5 - Eg(s = E9L5 — E95 = ngé = COVQ(&, w)
Thus
Covy(6,9) = g(0 + A) — g(0)
for any unbiased estimator §. With this choice for 1, (4.12) gives

2

2
[g(0+2)—g(0)]"  [9(60+A)—g(0)]
Var N 2’
6(¢) By (P9+A(X) _ 1)
po(X)
called the Hammersley—-Chapman—Robbins inequality.

Under suitable regularity, the dominated convergence theorem can be used
to show that the lower bound in (4.13), which can be written as

[gw +A) gw)r
A
o (a0 = p0] /A"
? po(X)

Vary(0) > (4.13)

converges to
2

[9'(0)]
(8p9(X) /@9)2
Ey
po(X)
as A — 0. The denominator here is called Fisher information, denoted I(6),
and given by

o) = £ (750 ))2

With enough regularity to interchange integration and differentiation,

(4.14)
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0= 1= oy [ @ duta) = [ o) dut)

[ Ologps(x) ., Ologpe(X)
_/ 0 pa(a) du(a) = B0 50,

and so

alogpe(X)) . (4.15)

1(0) = Varg ( )

If we can pass two partial derivatives with respect to 6 inside the integral
J podp =1, then

Opi(o) 0 po(X) /082
o dute) =5 | | <o

From this, inasmuch as

0*logpg(X) _ 9°pe(X)/06% _ (Dlogpe(X))
062 po(X) 00 ’
9?log ps(X)

10)=~Es" 5

(4.16)
For calculations, this formula is often more convenient than (4.14).

A lower bound based on Fisher information can be derived in much the
same way as the Hammersley—Chapman—Robbins inequality, but tends to in-
volve differentiation under an integral sign. Let § have mean g(0) = Epd and
take ¢ = dlogpg/00. With sufficient regularity,

w8 [ foin= |
g(9)—a9 ope dp = 586P9d/~b— d1bpe dpu,

g'(0) = Egbe). (4.17)

or

In a given application, this might be established using dominated convergence.
If § is identically one, then g(f) = 1, ¢’(6) = 0, and we anticipate Eptp = 0.
Then (4.17) shows that Covg(d,¢) = ¢'(0). Using this in (4.12) we have the
following result.

Theorem 4.9. Let P = {Py : 0 € 2} be a dominated family with 2 an
open set in R and densities pg differentiable with respect to 6. If Fgip = 0,
FEpd? < 00, and (4.17) hold for all 6 € £2, then

Varg(d) >

This result is called the Cramér—Rao, or information, bound. The reg-
ularity condition (4.17) is troublesome. It involves the estimator ¢, thus the
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theorem leaves open the possibility that some estimators, not satisfying (4.17),
may have variance below the stated bound. This has been addressed in various
ways. Under very weak conditions Woodroofe and Simons (1983) show that
the bound holds for any estimator § for almost all 8. Other authors impose
more restrictive conditions on the model P, but show that the bound holds
for all § at all 6 € (2.

Suppose P = {FPy : 6 € 2} is a dominated family with densities py and
Fisher information I. If h is a one-to-one function from = to {2, then the
family P can be reparameterized as P = {Q¢ : € € =} with the identification
Q¢ = Pyey- Then Q¢ has density ge = py(e). Letting 60 = h(), by the chain
rule, Fisher information I for the reparameterized family P is given by

I(¢) = E¢ (310g(J£(X)>2 o <8logph(§)(x)>2

o€ o€

=l () —werieo. aa

Example 4.10. Exzponential Families. Let P be a one-parameter exponential
family in canonical form with densities p,, given by

py(x) = exp[nT(z) — A(n)] h(z)

Then
0logp,(X)

—T— A
on (),

and so by (4.15),
I(n) = Var, (T — A/(n)) = Var, (T) = A" (n).
Because
8210gp77 (X)
on?

this formula for I(n) also follows immediately from (4.16). If the family is
parameterized instead by p = A’(n) = E, T, then by (4.18)

A"(n) = () [A" ()],

and so, because A”(n) = Var(T),

= _A”(n)v

1

I(p) = .
() Var,T'

Note that because T is UMVU for , the lower bound Var,(6) > 1/I(u) for
an unbiased estimator § of y is sharp in this example.
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Example 4.11. Location Families. Suppose € is an absolutely continuous ran-
dom variable with density f. The family of distributions P = {Py : § € R}
with Py the distribution of 6 4 € is called a location family. Using a change of
variables x = 0 + e,

/ g(x) dPy(x) = Eog(X) = Eg(0+ ¢

— [ a6+ ppierde = [ g(a)s (o~ 0)da.

and so Py has density pg(x) = f(x — ). Fisher information for this family is
given by

0= (PO < (LG
2

/ 2 ’
e (1Y - [T,
f(e) f(x)
So for location families, 1(#) is constant and does not vary with 6.

If two (or more) independent vectors are observed, then the total Fisher
information is the sum of the Fisher information provided by the individual
observations. To see this, suppose X and Y are independent, and that X has
density pg and Y has density gy (dominating measures for the distributions of
X and Y can be different). Then by (4.15), the Fisher information observing

X is
310gpe(X)>

IX(G):Vam( 50

and the Fisher information observing Y is

Iy (8) = Varg (810%%9(}/) ) .

As X and Y are independent, their joint density is ps(z)ge(y), and Fisher
information observing both vectors X and Y is

Ix.y(6) = Varg <610g [peg;' )go (V)] )

— Varg (310gp9(X) n 8logq9(Y)>

tol7) a0
= Varg <alog8p€9 (X)> + Varg (810g8%9 (Y)>

= Ix(e) + Iy(@).

Iterating this, the Fisher information for a random sample of n observations
will be nI() if I(0) denotes the Fisher information for a single observation.
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4.6 Variance Bounds in Higher Dimensions

When the parameter 6 takes values in R®, Fisher information will be a matrix,
defined in regular cases by

0log pg(X) dlogpg(X
1(9)¢,j=E9[ 80f( ) 8t9j( )]
_ dlogpg(X) 0Ologpy(X)
_COV"< 00, 90,
9%log py(X)
90,90,

The first two lines here are equal because
EyVglogpe(X) =0,

and, as before, the third formula requires extra regularity necessary to pass a
second derivative inside an integral. Using matrix notation,

1(0) = Eg(Vlog ps(X)) (Velogpe(X))/
= Covg(Valogpg(X)) = —EgVj log pp(X),

where Vj is the gradient with respect to 6, V3 is the Hessian matrix of sec-
ond order derivatives, and prime denotes transpose. The lower bound for the
variance of an unbiased estimator 0 of g(), where g : 2 — R, is

Varg(8) > Vg(0)'I7(0)Vg(0).

Example 4.12. Exponential Families. If P is an s-parameter exponential family
in canonical form with densities

py(x) = exp[n - T(x) — A(p)]h(),

then
0%logpy(X) _  0*A(n)
On;0n; On;On;
Thus 82A( )
n
I(n)i; = .
()i On;0n;

This can be written more succinctly as

I(n) = V*A(n).
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The final formula in this section is a multivariate extension of (4.18). As
before, let P = {Py : 0 € 2} be a dominated family with densities py and
Fisher information I, but now {2 is a subset of R®. Let h be a differentiable
one-to-one function from = to 2 and introduce the family P = {Qe : €€ =}
with Q¢ = Pj,(¢). The density for Q¢ is g¢ = pj(¢), and by the chain rule,

dlog qe(X) _ Z dlog py(X) Oh;(§)

0&; 09, o8
where 0 = h(§). If Dh represents the matrix of partial derivatives of h given
by
_ 0hi(§)
Dh(¢ ,
ORI

then 0log ge(X)/0&; is the ith entry of [Dh(f)]/Vdogpg (X). So

Ve log g¢ (X) = [Dh(€)] Volog ps(X)
and

I(€) = E¢ [Ve log g¢(X)] [Ve log g¢ (X))’
= By [Dh(€)]' [Velog pe(X)] [Velog pe(X)] [DR(€)]
= [Dh(€)]'1(0) [Dh(&)].

4.7 Problems?

*1. Let X4q,...,X,, and Y7,...,Y, be independent variables with the X; a
random sample from an exponential distribution with failure rate A\, and
the Y; a random sample from an exponential distribution with failure rate
Ay

a) Determine the UMVU estimator of A, /\,.

b) Under squared error loss, find the best estimator of A;/\, of form
d=cY/X.

¢) Find the UMVU estimator of e™*= = P(X; > 1).

*2. Let Xi,...,X, be a random sample from N (u,0?), and let Y3,...,Y,,
be an independent random sample from N (p,, 202), with g, p,, and o2
all unknown parameters.

a) Find a complete sufficient statistic.

b) Determine the UMV U estimator of o2. Hint: Find a linear combination
Lof §2= 3" (X, — X)*/(n—1) and 82 = Y7 (V; — ¥)2/(m —1)
so that (X,Y, L) is complete sufficient.

2 Solutions to the starred problems are given at the back of the book.
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*3.

*4,

*5.

*6.

7.

*8.

*10.

*11.

*12.

4 Unbiased Estimation

¢) Find a UMVU estimator of (u; — p1y)2.

d) Suppose we know the p,, = 3p,. What is the UMVU estimator of p,?

Let X;,...,X,, be a random sample from the Poisson distribution with

mean A. Find the UMVU for cos A. (Hint: For Taylor expansion, the iden-

tity cos A = (e"* 4+ e~")/2 may be useful.)

Let X4, ..., X, be independent normal variables, each with unit variance,

and with EX; = at; + 8t?, i = 1,...,n, where a and 8 are unknown

parameters and t1,...,t, are known constants. Find UMVU estimators

of o and (3.

Let X1,...,X, be iid. from some distribution Qp, and let X = (X7 +

.-+ 4 X,)/n be the sample average.

a) Show that S? = > (X; — X)?/(n — 1) is unbiased for 0? = 0%(0) =
Varg(le).

b) If Qp is the Bernoulli distribution with success probability 6, show
that S? from (a) is UMVU.

c) If Qg is the exponential distribution with failure rate 6, find the
UMVU estimator of 02 = 1/62. Give a formula for Ey[X?X = |
in this case.

Suppose ¢ is a UMVU estimator of g(#); U is an unbiased estimator of

zero, FpU = 0, 0 € (2; and that § and U both have finite variances for all

0 € (2. Show that U and ¢ are uncorrelated, FoUd§ =0, 6 € (2.

Suppose 07 is a UMVU estimator of g1 (), d2 is UMVU estimator of g2(0),

and that §; and do both have finite variance for all §. Show that &, + do

is UMVU for g1(0) + g2(0). Hint: Use the result in the previous problem.

Let X1,..., X, bei.i.d. absolutely continuous variables with common den-

sity fo, @ > 0, given by

0/x%, x> 0;
fo(z) = {0’ <0,
Find the UMVU estimator for g() if ¢(#)/60™ — 0 as § — oo and g is
differentiable.
Let X be a single observation from a Poisson distribution with mean A.
Determine the UMVU estimator for

e = [P(X = 0)]*.

Suppose X is an exponential variable with density pg(x) = 0=, 2 > 0;
po(x) = 0, otherwise. Find the UMVU estimator for 1/(1 + 6).

Let X4,..., X3 be ii.d. geometric variables with common mass function
fo(x) = Py(X; =2)=0(1—-6)*, x =0,1,.... Find the UMVU estimator
of 62.

Let X be a single observation, absolutely continuous with density
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14.

15.

16.

17.
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Y1 +0z), |zl <1
— 2 ) )
po(z) {0’ 2| > 1.

Here 6 € [—1,1] is an unknown parameter.

a) Find a constant a so that aX is unbiased for 6.

b) Show that b = Ey|X]| is independent of 6.

c) Let 6y be a fixed parameter value in [—1,1]. Determine the constant
¢ = c¢g, that minimizes the variance of the unbiased estimator a X +
¢(|X|—b) when 6 = 6. Is aX uniformly minimum variance unbiased?

Let Xi,...,X,, be iid. from a Poisson distribution with parameter A,
and let Y7,...,Y, beii.d. from a Poisson distribution with parameter A,
with all n + m variables independent.

a) Find the UMVU of (A, — \,)%

b) Give a formula for the chance X; is odd, and find the UMVU estimator
of this parameter.

Let X1,..., X, beii.d. from an arbitrary discrete distribution on {0, 1, 2}.
LetTh =X+ +X,and Tp = X7 + -+ X2

a) Show that T = (T3, T») is complete sufficient.

b) Let 4 = EX;. Find the UMVU of p?.

Let X3,..., X, bei.i.d. absolutely continuous random variables with com-
mon marginal density fy given by

0—x .
fe(ff)z{e b

0, x < 0.

Find UMVU estimators for 6 and 62.
Let X; and X5 be independent discrete random variables with common
mass function

gw

PXi=2) = ~zlog(l—0)’

z=1,2,...,

where 6 € (0,1).

a) Find the mean and variance of X.

b) Find the UMVU of 6/ log(1 — 0).

Let X1,..., X, bei.i.d. absolutely continuous variables with common den-
sity fg, 0 € R, given by

T < 0;

0, r>0.

(This is the density for the standard normal distribution truncated above

at 6.)

a) Derive a formula for the UMVU for ¢(#). (Assume ¢ is differentiable
and behaves reasonably as § — +00.)
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19.

20.

21.

22.

23.

*24.

25.

26.

4 Unbiased Estimation

b) If n = 3 and the observed data are —2.3, —1.2, and 0, what is the
estimate for 627
Let X; and X5 be i.i.d. discrete variables with common mass function

fo(z) = Po(X; = x) = (x + 1)0%(1 — 6)°, x=0,1,...,

where 6 € (0,1).

a) Compute E[1/(X; +1)].

b) Find the mass function for X; + Xo.

¢) Use conditioning to find the UMVU for 6.

Let X have a binomial distribution with n trials and success probability
0 € (0,1). If m < n, find the UMVU estimator of §™.

Let X4,..., X, beii.d. and absolutely continuous with common marginal
density fg given by

2 )
f9($)={2x/9’ 0<z<b;

0, otherwise,

where 6 > 0 is an unknown parameter. Find the UMVU estimator of ¢(f)
if g is differentiable and 6?"g(#) — 0 as 6 | 0.
Let X1,...,X, be ii.d. from an exponential distribution with density

—0x .
fe(x):{Ge , x>0

0, otherwise.

Find UMVU estimators for 6 and 62.

Suppose X1i,...,X, are independent with X; ~ N(0,;6%), j = 1,...,n.
Find the UMVU estimator of 6.

For 6 > 0, let

Ag={(z,y) ER? : x>0,y >0,z +y < 0},

the interior of a triangle. Let (X1,Y7), ..., (X,,Ys) be iid. from the
uniform distribution on Ag, so their common density is 21, /62

a) Find a complete sufficient statistic 7T

b) Find the UMVU estimators of 6 and cos§.

In the normal one-sample problem, the statistic ¢ = /n X/S has the
noncentral ¢t-distribution on n — 1 degrees of freedom and noncentrality
parameter 6 = y/nu/o. Use our results on distribution theory for the
one-sample problem to find the mean and variance of .

Let X1,...,X, beiid. from N(u,o?), with 4 and o both unknown.

a) Find the UMVU estimator of u3.

b) Find the UMVU estimator of u?/o?.

Let X1,..., X, be independent with

XiNN(milJﬂmiUQ)a 7;:17"'571’7
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where my, ..., m, are known constants and y and ¢ are unknown param-
eters. (These sort of data would arise if i.i.d. variables from N (u, 0?) were
divided into groups, with the ith group having m; observations, and the
observed data are totals for the n groups.)

a) Find UMVU estimators for p and o2.

b) Show that the estimators in part (a) are independent.

Let Z; and Z5 be independent standard normal random variables. Find
EN/|Z1/ 2.
Let X1,...,X, be ii.d. from the uniform distribution on (0, 9).

a) Use the Hammersley—Chapman—Robbins inequality to find a lower
bound for the variance of an unbiased estimator of . This bound will
depend on A. Note that A cannot vary freely but must lie in a suitable
set.

b) In principle, the best lower bound can be found taking the supre-
mum over A. This calculation cannot be done explicitly, but an ap-
proximation is possible. Suppose A = —cf/n. Show that the lower
bound for the variance can be written as 62g,(c)/n? Determine
g(c) = limp oo gn(c).

¢) Find the value ¢y that maximizes g(c) over ¢ € (0,1) and give an
approximate lower bound for the variance of §. (The value ¢y cannot be
found explicitly, but you should be able to come up with a numerical
value.)

Determine the Fisher information I(#) for the density fo(x) = (14 6z)/2,
€ (-1,1), fo(z) =0,z ¢ (-1,1).

Suppose X7, ..., X,, are independent with X; ~ N(a+p5t;,1),i=1,...,n,

where t1,...,t, are known constants and «, 0 are unknown parameters.

a) Find the Fisher information matrix I(«, ).

b) Give a lower bound for the variance of an unbiased estimator of «.

¢) Suppose we know the value of . Give a lower bound for the variance
of an unbiased estimator of « in this case.

d) Compare the estimators in parts (b) and (c). When are the bounds
the same? If the bounds are different, which is larger?

e) Give a lower bound for the variance of an unbiased estimator of the
product af.

Find the Fisher information for the Cauchy location family with densities
pey given by .

wl(@—0)2 +1]

Also, what is the Fisher information for 637

Suppose X has a Poisson distribution with mean 62, so the parameter
is the square root of the usual parameter A = FX. Show that the Fisher
information 7(#) is constant.

po(x) =
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*34.

35.

36.

37.

38.

39.

4 Unbiased Estimation

Consider the exponential distribution with failure rate A. Find a function
h defining a new parameter § = h(\) so that Fisher information I(#) is
constant.

Consider an autoregressive model in which X; ~ N(6,0%/(1 — p?)) and

the conditional distribution of X;411 given Xi = z1, ..., X; = z;, is

N0+ p(x; —0),0%),j=1,...,n—1.

a) Find the Fisher information matrix, I(6, o).

b) Give a lower bound for the variance of an unbiased estimator of 6.

¢) Show that the sample average X = (X1 +---+ X,,)/n is an unbiased
estimator of #, compute its variance, and compare its variance with
the lower bound. Hint: Define ¢; = X; — 0 and 0,11 = €41 — €.
Use smoothing to argue that 7s,...,n, are ii.d. N(0,0%) and are
independent of ¢;. Similarly, X; is independent of 1; 41,742, .... Use
these facts to find first Var(Xy) = Var(ez), then Var(Xs), Var(X4),
.... Finally, find Cov(X;4+1, X;), nCov(X,12, X;), and so on.

Consider the binomial distribution with n trials and success probability

p. Find a function h defining a new parameter § = h(p) so that Fisher

information I(#) is constant.

Let X1,...,X, be iid. with common density fo(z) = e/=%, = > 6,

fo(x) = 0, otherwise.

a) Find lower bounds for the variance of an unbiased estimator of 6
using the Hammersley—Chapman—-Robbins inequality. These bounds
will depend on the choice of A.

b) What choice of A gives the best (largest) lower bound?

Suppose X has a Poisson distribution with mean A, and that given X = n,

Y is Poisson with mean nf.

a) Find the Fisher information matrix.

b) Derive a formula for uy = EY.

¢) Find a lower bound for the variance of an unbiased estimator of py.

d) Compare the bound in part (¢) with the variance of Y.

Suppose X has a geometric distribution with parameter 8, so P(X = z) =

0(1—-0)*, =0,1,..., and that given X = n, Y is binomial with z trials

and success probability p.

a) Find the Fisher information matrix.

b) Give a lower bound for the variance of an unbiased estimator of uy =
EY. Compare the lower bound with Var(Y).

Let X have a “triangular” shaped density given by

—2)/0%. 2 .
fole) = {2(0 /0%, € (0,0);

0, otherwise.

a) Use the Hammersley—Chapman—Robbins inequality to derive lower
bounds for the variance of an unbiased estimator of 6 based on a
single observation X . These bounds will depend on the choice of A.
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b) What is in fact the smallest possible variance for an unbiased estimator
§(X) of 87 Compare this value with the lower bounds in part (a).
40. Let X have a geometric distribution with success probability 8, so Py(X =
z)=60(1-0)", =0,1,.... What is the smallest possible variance for an
unbiased estimator §(X) of 7 Compare this variance with the Cramér—
Rao lower bound in Theorem 4.9.
41. Let Xy,..., X, be ii.d. random variables (angles) from the von Mises
distribution with Lebesgue density

exp{01 sinx + 05 cos x}

po(x) = 2m1o(1|01]) ’
0, otherwise.

x € (0,2m);

Here ||f|| denotes the Euclidean length of 6, ||0]| = (67 + 63)'/2, and the
function I; is a modified Bessel function.
a) Find the Fisher information matrix, expressed using Iy and its deriva-
tives.
b) Give a lower bound for the variance of an unbiased estimator of ||6]|.
42. Let 0 = (o, A) and let Py denote the gamma distribution with shape
parameter « and scale 1/A. So Py has density

/\axa—le—r)\

po(x) = Ila)
0, otherwise.

x> 0;

a) Find the Fisher information matrix (), expressed using the “psi”
function ¢ % 1 /T and its derivatives.

b) What is the Cramér-Rao lower bound for the variance of an unbiased
estimator of a + A?

¢) Find the mean p and variance o2 for Py. Show that there is a one-to-
one correspondence between 6 and (u, 0?).

d) Find the Fisher information matrix if the family of gamma distribu-
tions is parameterized by (u,0?), instead of 6.
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Curved Exponential Families

Curved exponential families may arise when the parameters of an exponential
family satisfy constraints. For these families the minimal sufficient statistic
may not be complete, and UMVU estimation may not be possible. Curved
exponential families arise naturally with data from sequential experiments,
considered in Section 5.2, and Section 5.3 considers applications to contin-
gency table analysis.

5.1 Constrained Families

Let P = {P, : n € =} be a full rank s-parameter canonical exponential family
with complete sufficient statistic 7. Consider a submodel Py parameterized
by 6 € 2 with 77(6) the value for the canonical parameter associated with 6.
So

Po = {Pf](g) 10 € Q}

Often 77 : 2 — Z is one-to-one and onto. In this case Py = P and the choice of
parameter, 6 or 7, is dictated primarily by convenience. Curved exponential
families may arise when Py is a strict subset of P, generally with 2 C R” and
r < s. Here are two possibilities.

1. Points 7 in the range of 77, 77(2) = {7(9) : 6 € 2}, satisfy a nontrivial linear
constraint. In this case, Py will be a g-parameter exponential family for
some q < s. The statistic T will still be sufficient, but will not be minimal
sufficient.

2. The points 7 in 77({2) do not satisfy a linear constraint. In this case, Py is
called a curved exponential family. Here T will be minimal sufficient (see
Example 3.12), but may not be complete.

Ezample 5.1. Joint distributions for a sample from N(u,0?) form a two-
parameter exponential family with canonical parameter

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 85
DOI 10.1007/978-0-387-93839-4 5, © Springer Science+Business Media, LLC 2010
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" 02’ 202

and complete sufficient statistic

T = (ixi,zn:)(f) :
i= i=1

(See Example 2.3.) If u and o2 are equal and we let 6 denote the common
value, then our subfamily will consist of joint distributions for a sample from

N(6,6), 6 > 0. Then
. 1
1) = (1= ).

and the range of 7 is the half-line indicated in Figure 5.1. Because points 7 in
71(£2) satisfy the linear constraint 1; = 1, the subfamily should be exponential
with less than two parameters. This is easy to check; the joint densities form
a full rank one-parameter exponential family with Y 7" | X2 as the canonical
complete sufficient statistic.

72

4o

v v

Fig. 5.1. Range of 7(0) = (1, —1/(26)).

Suppose instead o = |u|, so the subfamily will be joint distributions for a
sample from N (6,60?), € R. In this case

Now the range space 7(2) is the parabola in Figure 5.2. Points in this range
space do not satisfy a linear constraint, so in this case we have a curved
exponential family and 7" is minimal sufficient. Because

E9T12 = (E9T1)2 + Val"g(Tl) = n26? + TLGQ,
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and
EgTy =nEg X} =n((EgX;)* + Varg(X;)) = 2n6?,

we have
Eg(2Tf — (n+1)T) = 0, 6 € R.

Thus g(T) = 2T — (n+1)T3 has zero mean regardless the value of §. Inasmuch
as g(T) is not zero (unless n = 1), T is not complete.

72

4L

v

Fig. 5.2. Range of 7j(0) = (1/0,—1/(20%)).

Ezxample 5.2. If our data consist of two independent random samples, X, ...,
Xy from N (pg, 02) and Yy, ..., Y, from N(u,, 07), then the joint distributions
form a four-parameter exponential family indexed by 6 = (i, py, 02, 05). A
canonical sufficient statistic for the family is

n m n

m
2 2
T= |2 X V) X2 ) VP,
i=1 j=1  i=1 j=1
and the canonical parameter is

_ (Nm My 1 . 1 )
= 02’02’ 202 202)°

By (4.3) and (4.4), an equivalent statistic would be (X,Y,52,52), where
S2 =371 (Xi—X)?/(m—1)and S7 =377 (Vi —Y)?/(n—1). Results from
Section 4.3 provide UMVU estimates for p., py, oy, oy, etc.

If the variances for the two samples agree, 02 = o, = 02, then 7 satisfies
the linear constraint n3 = n4. In this case the joint distributions form a three-
parameter exponential family with complete sufficient statistic (77,7%,T5 +

T4). An equivalent sufficient statistic here is (X,Y, Sg), where



88 5 Curved Exponential Families

o S XYL (- VR (= 1)+ (- 1)S]
p n+m-—2 n+m-—2

)

called the pooled sample variance. Again the equivalence follows easily from
(4.3) and (4.4). Also, because S? and S? are independent, from the definition
of the chi-square distribution and (4.9),

(n+m—2)S2 )
o2 Xn+m—2-
Again, results from Section 4.3 provide UMVU estimates for various param-
eters of interest.

Another subfamily arises if the means for the two samples are the same,
Mz = [4y. In this case the joint distributions form a curved exponential family,
and T or (X,Y,S2, Sg) are minimal sufficient. In this case these statistics are

not complete because E(X —Y) = 0 for all distributions in the subfamily.

5.2 Sequential Experiments

The protocol for an experiment is sequential if the data are observed as they
are collected, and the information from the observations influences how the
experiment is performed. For instance, the decision whether to terminate a
study at some stage or continue collecting more data might be based on prior
observations. Or, in allocation problems sampling from two or more popula-
tions, the choice of population sampled at a given stage could depend on prior
data.

There are two major reasons why a sequential experiment might be pre-
ferred over a classical experiment. A sequential experiment may be more ef-
ficient. Here efficiency gains might be quantified as a reduction in decision
theoretic risk, with costs for running the experiment added to the usual loss
function. There are also situations in which certain objectives can only be met
with a sequential experiment. Here is one example.

Ezample 5.3. Estimating a Population Size. Consider a lake (or some other
population) with M fish. Here M is considered an unknown parameter, and
the goal of the experiment is to estimate M. Data to estimate M are obtained
from a “capture-recapture” experiment. This experiment has two phases.
First, k fish are sampled from the lake and tagged so they can be identi-
fied. These fish are then returned to the lake. At the second stage, fish are
sampled at random from the lake. Note that during this phase a sampled fish
is tagged with probability § = k/M. (Actually, there is an assumption here
that at the second stage tagged and untagged fish are equally likely to be
captured; this premise seems suspect for real fish.) In terms of 6,

M = k[0,
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and so the inferential goal is basically to estimate 1/6. Information from
the second stage of this experiment can be coded using Bernoulli variables
X1,..., XN, where N denotes the sample size, and X; is one if the ith fish is
tagged or zero if the ith fish is not tagged.

In mathematical terms we have a situation in which potential data
X1, X, ... areii.d. Bernoulli variables with success probability 6. If the sam-
ple size is fixed, N = n, then our data have joint density

H 9@1(1 _ 9)17@ _ 9T(w)(1 _ g)nfT(m)’
i=1

where T'(x) = 1 + - - - + 2. These densities form an exponential family with
T as a sufficient statistic. Because 7" has a binomial distribution with mean
n#, T'/n is unbiased for § and hence UMVU. But there can be no unbiased
estimate of 1/6 because
Epd(T) < max 6(k),
0<k<n

which is less than 1/6 once 6 is sufficiently small. Note that if  is much smaller
than 1/n, then T will be zero with probability close to one. The real problem
here is that when T' = 0 we cannot infer much about the relative size of
from our data.

Inverse binomial sampling avoids the problem just noted by continued
sampling until m of the X; equal one. The number of observations N is now
a random variable. Also, this is a sequential experiment because the decision
to stop sampling is based on observed data.

Intuitively, data from inverse binomial sampling would be the list

X = (X1,...,Xn).

There is a bit of a technical problem here: this list is not a random vector
because the number of entries IV is random. The most natural way around this
trouble involves a more advanced notion of “data” in which the information
from an experiment is viewed as the o-field of events that can be resolved from
the experiment. Here this o-field would include events such as {T' = k} or
{N = 7}, but would preclude events such as {Xy12 = 0}. See Chapter 20 for
a discussion of this approach. Fortunately, in this example we can avoid these
technical issues in the following fashion. Let Y; be the number of zeros in the
list X before the first one, and let Y; be the number of zeros between the (i —
1)st and ith one, i = 2,..., m. Note that the list X can be recovered from ¥ =
(Y1,...,Y,,). If, for instance, Y = (2,0, 1), then X must be (0,0,1,1,0,1). The
variables Y7, ...,Y,, are i.i.d. with

Pﬁ(m:y):P(Xl :07"'5Xy:OaXy+1:1)
=(1-0)Y0
= exp(ylog(1 — 6) + log ), y=0,1,....
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This is the mass function for the geometric distribution. It is a one-parameter
exponential family with canonical parameter = log(1 — 6) and

A(n) = —logh = —log(1l — e").

Thus ; 1_8
e _
EpY; = A'(n) = =

0L (77) 1 —en 9
The family of joint distributions of V3,...,Y,, has T =", Y; = N —m as
a complete sufficient statistic. The statistic T counts the number of failures
before the mth success and has the negative binomial distribution with mass
function

m+t—1
m—1

)m%1-0ﬁ, t=0,1,....

Inasmuch as

EsT =mEY; =~ —m,

0
T+m N
m  om

is UMVU for 1/6.

The following result gives densities for a sequential experiment in which
data X1, Xo,... are observed until a stopping time N. This stopping time is
allowed to depend on the data, but clairvoyance is prohibited. Formally, this
is accomplished by insisting that

{N:n}:{(Xl,...,Xn)eAn}, n=12 ...,
for some sequence of sets Ay, As, . ...

Theorem 5.4. Suppose X1, Xa,... are i.i.d. with common marginal density
fo, 0 € 2. If Py(N < o0) = 1 for all 6§ € (2, then the total data, viewed
informally' as (N, X1,...,Xn), have joint density

n

I o). (5.1)

i=1
When fo comes from an exponential family, so that
fo(x) = en(9)~T(m)—B(0)h(x)7

! One way to be more precise is to view the information from the observed data as
a o-field. This approach is developed in Section 20.2, and Theorem 20.6 (Wald’s
fundamental identity) from this section is the mathematical basis for the theorem
here.
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then the joint density is

n n

exp|n(0) - > _T(x;) —nB(0)| [ hlz:). (5.2)

i=1 =1

These densities form an exponential family with canonical parameters n1(0),
., ns(0), and —B(0), and sufficient statistic (Zivzl T(X;),N).

By (5.1), the likelihood for the sequential experiment is the same as the
likelihood that would be used ignoring the optional stopping and treating N as
a fixed constant. In contrast, distributional properties of standard estimators
are generally influenced by optional stopping. For instance, the sample average
(X14+---+Xn)/N is generally a biased estimator of FyX;. (See Problems 5.10
and 5.12 for examples.)

The exponential family (5.2) has an extra canonical parameter —B(6),
therefore sequential experiments usually lead to curved exponential families.
The inverse binomial example is unusual in this regard, basically because the
experiment is conducted so that vazl X; must be the fixed constant m.

5.3 Multinomial Distribution and Contingency Tables
The multinomial distribution is a generalization of the binomial distribution

arising from n independent trials with outcomes in a finite set, {ao,...,as}
say. Define vectors

1 0 0

0 1 0

0 0 0

€0 = . , €1 = . yerey €5 =

0 0 0

0 0 1
in R*T!) and take Y; = e; if trial ¢ has outcome aj, i =1,...,n,j =0,...,s.
Then Y1,...,Y, areiid. If p;,  =0,...,s, is the chance of outcome a;, then

P(Y; = e;) = p;. If we define

Xo

X n
x=|"=v

);S i=1

then X; counts the number of trials with a; as the outcome. By independence,
the joint mass function of Yi,...,Y, will be an n-fold product of success
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probabilities po,...,ps. The number of times that p; arises in this product
will be the number of trials with outcome a;, and so

PYVi=y1,....Yn=yn) = [[ P} = exp| ) _x;logp; |,
=0 =0

where = z(y) = y1+- - -+ y». Thus the joint distribution for Y7, ...,Y,, form
an (s + 1)-parameter exponential family with canonical sufficient statistic X.
But this family is not of full rank because Xg+- - -+ X = n. Taking advantage
of this constraint

PYi=wy1,...,Yn =yn) = exp Zml log(pi/po) +nlogpo| ,
i=1

which is a full rank s-parameter exponential family with complete sufficient
statistic (X7y,...,Xs). There is a one-to-one correspondence between this
statistic and X, therefore X is also complete sufficient.

The distribution of X can be obtained from the distribution of Y as

P(X =z)= > P(Y =1y). (5.3)

(Y1,5Yn )i fy yi=2
i=1

The probabilities in this sum all equal H;Zl p;j, and so this common value
must be multiplied by the number of ways the y; can sum to x. This is equal
to the number of ways of partitioning the set of trials {1,...,n} into s + 1
sets, the first with xg elements, the next with z; elements, and so on. This
count is a multinomial coefficient given by

n n!
20y ..., Ts ol X - X x5l

This formula can be derived recursively. There are (;;) ways to choose the

first set, then (”;fo) ways to choose the second set, and so on. The product of

these binomial coefficients simplifies to the stated result. Using a multinomial
coefficient to evaluate the sum in (5.3),

n
P(Xo=x0,...,Xs =u5) = ( )pgo X oo x ple,
LOy--eyLg

provided xg, ..., xs are nonnegative integers summing to n. This is the mass
function for the multinomial distribution, and we write

X ~ Multinomial(pg, . .., ps; n).

The marginal distribution of X, because X; counts the number of trials
with a; as an outcome, is binomial with success probability p;. Because X is
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complete sufficient, X; /n is UMVU for p;. Unbiased estimation of the product
p;pr of two different success probabilities is more interesting as X; and Xy
are dependent. One unbiased estimator ¢ is the indicator that Y; is a; and
Y5 is ay. The chance that X = = given § = 1 is a multinomial probability for
n — 2 trials with outcome a; occurring x; — 1 times and outcome a; occurring
zp — 1 times. Therefore

P(6=1)P(X = |6 = 1)

eI P(X =2z)
_2 £ '
— P;jPk (mo,...,mj—1T,L...,rck_17...,ms)p80 e pié/(pjpk)
(r07~T~L~,ﬂCs)pgo X oee X P5°
— T
S on(n-1)

Thus X; Xy, /(n? —n) is UMVU for p;py, j # k.

In applications, the success probabilities py, .. ., ps often satisfy additional
constraints. In some cases this will lead to a full rank exponential family with
fewer parameters, and in other cases it will lead to a curved exponential family.
Here are two examples of the former possibility.

Example 5.5. Two-Way Contingency Tables. Consider a situation with n in-
dependent trials, but now for each trial two characteristics are observed: Char-
acteristic A with possibilities A1, ..., Ay, and Characteristic B with possibili-
ties By, ..., By. Let N;; denote the number of trials in which the combination
A;Bj is observed, and let p;; denote the chance of A;B; on any given trial.
Then

N = (Nllv N12, ey N[J) ~ Multinomial(pu,plg, s PIJS TL)

These data and the sums
J
Nip =Y Ny, i=1,...1,
j=1
and
I
N+J:ZNlj7 j:17"'aJ7
i=1
are often presented in a contingency table with the following form:

B --- By Total
Ay Nip -+ Ny Nig

Ar Npi -+ Nrj Nig
Total N+1 N+J n
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If characteristics A and B are independent, then
Dij = Pi+P+j, izl,...,I, j:].,...,J,

where p;y = ijl pi; is the chance of A;, and p4; = Zle pi; is the chance
of B;. With independence, the mass function of IV can be written as

PitP+5)""
(o ) T
Lettingm+zzjzlnij,izl,...,l, andn+j:Elenij,jzl,...,J,
TOIVERS | R V01 T
i=1j=1 1=1j=1

So the mass function of NV can be written

(nl17 ) nIJ) Hanr Hpn+7 .

Using the constraints Zle Nip = Z}le ni; =nand Zle Dit = Z}le Pyj =
1, this mass function equals

n pz+
ex N4 1o
(nn,---,nu) pLX; " g<p1+>
! p
i
+Z”+j log< j) + nlog(pi+p+1) |-
= Pi1

These mass functions form a full rank (I+J —2)-parameter exponential family
with canonical sufficient statistic

(N2+7 ce 5N1+7N+27 .. 'aN-‘rJ)'
The equivalent statistic
(Nig,.. .y NipyNyq, ...y Nyy)

is also complete sufficient. In this model, N;;+ ~ Binomial(n,p;+) and N4, ~
Binomial(n, p4;) are independent. So p,+ = N;y/n and p;; = Ni;/n are
UMVU estimates of p;+ and p4;, respectively, and p;4p4; is the UMVU esti-
mate of p;; = pitp+j-
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Ezxample 5.6. Tables with Conditional Independence. Suppose now that three
characteristics, A, B, and C, are observed for each trial, with NV;;; the num-
ber of trials that result in combination A; B;Cy, and p;;i the chance of this
combination. Situations frequently arise in which it seems that characteristics
A and B should be unrelated, but they are not independent because both are
influenced by the third characteristic C'. An appropriate model may be that
A and B are conditionally independent given C. This leads naturally to the
following constraints on the cell probabilities:

Dijk :p++kpi+k p+jk7 i= 17"'515 ]: 17"'7']7 k:17"'7Ka
Pt++k P++k
where a “+” as a subscript indicates that the values for that subscript should
be summed. Calculations similar to those for the previous example show that
the mass functions with these constraints form a full rank (K(I+J—1)—1)-

parameter exponential family with sufficient statistics Ny, K = 1,..., K,
Niyg,i=1,...., 1, k=1,...,K,and Nyj,, j=1,...,J,k=1,... K.

5.4 Problems?

*1. Suppose X has a binomial distribution with m trials and success probabil-
ity 8, Y has a binomial distribution with n trials and success probability
6%, and X and Y are independent.
a) Find a minimal sufficient statistic T'.
b) Show that T is not complete, providing a nontrivial function f with

Eyf(T) =0.

*2. Let X and Y be independent Bernoulli variables with P(X = 1) = p and
P(Y =1) = h(p) for some known function h.
a) Show that the family of joint distributions is a curved exponential

family unless
1

h(p) =
1—|—exp{a+b10g 1fp}

for some constants a and b.

b) Give two functions h, one where (X,Y") is minimal but not complete,

and one where (X,Y") is minimal and complete.
3. Let X and Y be independent Poisson variables.

a) Suppose X has mean ), and Y has mean A?. Do the joint mass func-
tions form a curved two-parameter exponential family or a full rank
one-parameter exponential family?

b) Suppose instead X has mean A, and Y has mean 2\. Do the joint
mass functions form a curved two-parameter exponential family, or a
full rank one-parameter exponential family?

2 Solutions to the starred problems are given at the back of the book.
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*6.

*7.

5 Curved Exponential Families

Consider the two-sample problem with X1, ..., X,, i.i.d. from N(u,,02)

and Yi,...,Y, iid. from N(,uy,az), and all n + m variables mutually

independent.

a) Find the UMVU estimator for the ratio of variances, o2 /02

b) If the two variances are equal, o2 = O’Z = o, find the UMVU estimator
of the normalized difference in means (y; — py)/0.

Consider the two-sample problem with X7, ..., X,, i.i.d. from N(ps,0o?)

and Y,...,Y, iid. from N(u,,0?), and all n + m variables mutually

independent. Fix a € (0,1) and define a parameter ¢ so that P(X; >

Y: + ¢) = «. Find the UMVU of q.

Two teams A and B play a series of games, stopping as soon as one of

the teams has 4 wins. Assume that game outcomes are independent and

that on any given game team A has a fixed chance 6 of winning. Let X

and Y denote the number of games won by the first and second team,

respectively.

a) Find the joint mass function for X and Y. Show that as 6 varies these
mass functions form a curved exponential family.

b) Show that T'= (X,Y) is complete.

¢) Find a UMVU estimator of 6.

Consider a sequential experiment in which observations are i.i.d. from a

Poisson distribution with mean A. If the first observation X is zero, the

experiment stops, and if X > 0, a second observation Y is observed. Let

T=0if X=0,andlet T=1+X+Y if X > 0.

a) Find the mass function for 7.

b) Show that T' is minimal sufficient.

¢) Does this experiment give a curved two-parameter exponential family
or full rank one-parameter exponential family?

d) Is T a complete sufficient statistic? Hint: Write e Eyg(T) as a power
series in A and derive equations for g setting coefficients for A\” to zero.

Potential observations (X1,Y1), (Xo,Y2),... in a sequential experiment

are i.i.d. The marginal distribution of X; is Poisson with parameter A, the

marginal distribution of Y; is Bernoulli with success probability 1/2, and

X, and Y; are independent. Suppose we continue observation, stopping

the first time that Y; = 1, so that the sample size is

N =inf{i:Y; = 1}.

a) Show that the joint densities form an exponential family, and identify
a minimal sufficient statistic. Is the family curved?

b) Find two different unbiased estimators of A, both functions of the min-
imal sufficient statistic. Is the minimal sufficient statistic complete?

Consider an experiment observing independent Bernoulli trials with un-

known success probability 6 € (0,1). Suppose we observe trial outcomes

until there are two successes in a row.

a) Find a minimal sufficient statistic.
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b) Give a formula for the mass function of the minimal sufficient statistic.

¢) Is the minimal sufficient statistic complete? If it is, explain why, and
if it is not, find a nontrivial function with constant expectation.

Consider a sequential experiment in which X; and Xs are independent

exponential variables with failure rate A. If X; < 1, sampling stops after

the first observation; if not, the second variable X5 is also sampled. So

N=1ifX;<land N=2if X; > 1.

a) Do the densities for this experiment form a curved two-parameter
exponential family or a one-parameter exponential family?

b) Find EX, and compare this expectation with the mean 1/ of the
exponential distribution.

Suppose independent Bernoulli trials are performed until the number of

successes and number of failures differ by 2. Let X denote the number of

successes, Y the number of failures (so |X — Y| = 2), and € the chance of

success.

a) Find the joint mass function for X and Y. Show that these mass
functions form a curved exponential family with 7' = (X,Y).

b) Show that T is complete.

¢) Find the UMVU estimator for 6.

d) Find P(X >7Y).

Consider a sequential experiment in which the potential observations

X4, Xa,...areiid. from a geometric distribution with success probability

6 €(0,1), so

P(Xi=2)=01-0)°  2=01,....

The sampling rule calls for a single observation (N = 1) if X; = 0, and
two observations (N = 2) if X; > 1. Define

N
T = ZX
=1

a) Do the densities for this experiment form a curved two-parameter
exponential family or a one-parameter exponential family?

b) Show that 7' is minimal sufficient.

¢) Find the mass function for T

d) Is T complete? Explain why or find a function ¢ such that g(T") has
constant expectation.

e) Find EX. Is X an unbiased estimator of EX;?

f) Find the UMVU estimator of EX;.

Consider a single two-way contingency table and define R = Ny1+ N2 (the

first row sum), C' = N1+ No; (the first column sum), and D = Nyj + Noo

(the sum of the diagonal entries).

a) Show that the joint mass function can be written as a full rank three-
parameter exponential family with 7' = (R, C, D) as the canonical
sufficient statistic.
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14.

15.

*16.

17.

5 Curved Exponential Families

b) Relate the canonical parameter associated with D to the “cross-
product ratio” « defined as o = p11p22/(p12p21)-
¢) Suppose we observe m independent two-by-two contingency tables.
Let n;, ¢ = 1,...,m, denote the trials for table 7. Assume that cell
probabilities for the tables may differ, but that the cross-product ratios
for all m tables are all the same. Show that the joint mass functions
form a full rank exponential family. Express the sufficient statistic as
a function of the variables Ry,..., Ry, C1,...,Cp, and Dy, ..., Dy,.
Consider a two-way contingency table with a multinomial distribution
for the counts IV;; and with I = J. If the probabilities are symmetric,
Pij = Pji, do the mass functions form a curved exponential family, or
a full rank exponential family? With this constraint, identify a minimal
sufficient statistic. Also, if possible, give UMVU estimators for the p;;.
Let (Ni1g, N12k, Noig, Nook), kK = 1,...,n, be independent two-by-two
contingency tables. The kth table has a multinomial distribution with m
trials and success probabilities

140k 1 -0k 1 -0, 1+04
4 7 4 7 4 7 4 '

Note that 65 can be viewed as a measure of dependence in table k. (If
0. = 0 there is independence in table k.) Consider a model in which

o [1+9k

gl_gk]:oH—ﬁxk, k=1,...,m,

where o and 3 are unknown parameters, and z1,...,x, are known con-
stants. Show that the joint densities form an exponential family and iden-
tify a minimal sufficient statistic. Is this statistic complete?

For an I x J contingency table with independence, the UMVU estimator
of pij is PitP+j = Nigy Nyj/n?.

a) Determine the variance of this estimator, Var(pi+p;).

b) Find the UMVU estimator of the variance in (a).

In some applications the total count in a contingency table would most
naturally be viewed as a random variable. In these cases, a Poisson model
might be more natural than the multinomial model in the text.

a) Let Xi,..., X, be independent Poisson variables, and let A\; denote the
mean of X;. Show that T'= X; +--- + X, has a Poisson distribution,
and find

P(Xl = J}l,...,Xp =$p|T:7’L),

the conditional mass function for X given T' = n.

b) Consider a model for a two-by-two contingency table in which entries
Nii, ..., Nag are independent Poisson variables, and let A;; denote the
mean of N;;. With the constraint A1 22 = A12A21, do the joint mass
functions for these counts form a curved four-parameter exponential
family or a three-parameter exponential family?
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18. Consider a two-way contingency table with a multinomial distribution for
the counts N;; with I = J. Assume that the cell probabilities p;; are
constrained to have the same marginal values,

Pi+ = P+i, 7':177[

a) If I = 2, find a minimal sufficient statistic T'. Is T' complete?

b) Find a minimal sufficient statistic 7" when I = 3. Is this statistic
complete?

¢) Suppose we add an additional constraint that the characteristics are
independent, so

Pij = Pi+P+j> i:17"'aIa ]:177[

Give a minimal sufficient statistic when I = 2, and determine whether
it is complete.
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Conditional Distributions

Building on Section 1.10, this chapter provides a more thorough and proper
treatment of conditioning. Section 6.4 gives a proof of the factorization theo-
rem (Theorem 3.6).

6.1 Joint and Marginal Densities

Let X be a random vector in R™, let Y be a random vector in R”, and let
7 = (X,Y) in R™*". Suppose Pz has density pz with respect to px v where
and v are measures on R” and R". This density pz is called the joint density
of X and Y. Then

HZemz//wuwmﬂmwwmmww

By Fubini’s theorem, the order of integration here can be reversed. To compute
P(X € A) from this formula, note that X € A if and only if Z € A x R™.
Then because 1 axgn(z,y) = 1la(x),

P(Xe€eA)=PZecAxR") = // la(@®)pz(z,y) dv(y) du(zx)

- [{ [ peten vt} auto
From this, X has density

m@z/wmmww (6.1)

with respect to . This density px is called the marginal density of X. Simi-
larly, Y has density

sz/mmwww,

called the marginal density of Y.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 101
DOI 10.1007/978-0-387-93839-4 6, © Springer Science+Business Media, LLC 2010
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Ezample 6.1. Suppose 1 is counting measure on {0, 1,. .., k} and v is Lebesgue
measure on R. Define

k
( )yw(l—m’“% x=0,1,....k y e (0,1)
pz(z,y) = \@
0, otherwise.

By (6.1), X has density

Yk 1
— z ]_ — kiwd = = ]_ e k.

(The identity fol u (1 —u)P~Vdu = I'(a)[(B)/I(a+ B) is used to evaluate
the integral.) This is the density for the uniform distribution on {0,1,...,k}.
To find the marginal density of Y we integrate the joint density against u.
For y € (0,1),

p(0) = [ potey)dut) = 5 ()ra-w =

z=0

and if y ¢ (0,1), py (y) = 0. Therefore Y is uniformly distributed on (0, 1).

6.2 Conditional Distributions

Let X and Y be random vectors. The definition of the conditional distribution

Q, of Y given X = x is related to our fundamental smoothing identity.
Specifically, if E|f(X,Y)| < oo, we should have
Ef(X,Y) = EE[f(X,Y)|X], (6.2)

with E[f(X,Y)|X] = H(X) and

H(x) = Bf(X,Y)|X = ] = / F(.y) dQa (v).

Written out, (6.2) becomes

Ef(X,Y) = / H(x) dPy (x) = / / F(2.9)dQu(y) dPx(z).  (6.3)

The formal definition requires that (6.3) holds when f is an indicator of A x B.
Then (6.2) or (6.3) will hold for general measurable f provided E|f(X,Y)| <
0.

Definition 6.2. The function @Q is a conditional distribution for Y given X,
written
YIX =2 ~Q,,

if
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1. Q. (+) is a probability measure for all x,
2. Q.(B) is a measurable function of x for any Borel set B, and
3. for any Borel sets A and B,

P(X €AY € B) = AQr(B) dPx (z).

When X and Y are random vectors, conditional distributions will always
exist.! Conditional probabilities can be defined in more general settings, but
assignments so that Q,(-) is a probability measure may not be possible.

The stated definition of conditional distributions is not constructive. In the
setting of Section 6.1 in which X and Y have joint density pz with respect to
1 X v, conditional distributions can be obtained explicitly using the following
result.

Theorem 6.3. Suppose X and Y are random wvectors with joint density pz
with respect to p x v. Let px be the marginal density for X given in (6.1),
and let E = {z : px(z) > 0}. For x € E, define

pz(®,y)

px(z) (64)

pY\X(y|$) =

and let Q, be the probability measure with density py|x(-|z) with respect to
v. When x ¢ E, define py|x(y|lr) = po(y), where po is the density for an
arbitrary fized probability distribution Py, and let Q. = Py. Then Q is a
conditional distribution for'Y given X.

Proof. Part one of the definition is apparent, and part two follows from mea-
surability of pz. It is convenient to establish (6.3) directly; part three of
the definition then follows immediately. First note that P(X € E) = 1,
and without loss of generality we can assume that pz(x,y) = 0 when-
ever z ¢ E. (If not, just change pz(x,y) to pz(x,y)lg(xr)—these functions
agree for a.e. (z,y) (u x v), and either can serve as the joint density.) Then
pz(z,y) = px(x)py|x (y|z) for all 2 and y, and the right-hand side of (6.3)
equals

/ / £ y)py1x (]) do(y) px () dis(z)
- / / F (@, )p (o, ) dv(y) du(z) = EF(X,Y).

O

When X and Y are independent, pz(z,y) = px(z)py (y), and so

! When X is a random variable, this is given as Theorem 33.3 of Billingsley (1995).
See Chapter 5 of Rao (2005) for more general cases.
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px (@)py (y)

. (y),

pY\X(y|$) =

for x € E. So the conditional and marginal distributions for Y are the same
(for a.e. x).
Ezample 6.1, continued. Because py (y) =1, y € (0,1),

k T c— T
pavGeli) =pzte) = (Dra-wi e=otk

As a function of x with y fixed, this is the mass function for the binomial
distribution with success probability y and k trials. So

X|Y =y ~ Binomial(k, y). (6.5)

Similarly, recalling that px(x) = 1/(k + 1),

€, k T —z
priclola) = "200 — e (P -t

_ I'(k+2) -1

— k—xz+1-—1 0 1 .

Dz + D)0k —z+1) v) o yel)

This is the density for the beta distribution, and so
Y|X =x ~Beta(x + 1,k — 2 +1).

To illustrate how smoothing might be used to calculate expectations in
this example, as the binomial distribution in (6.5) has mean ky,

E[X|Y] = kY.

So, by smoothing,
! k
EX = FE[X|Y]=kEY = k/ ydy = 9"
0

Summation against the mass function for X gives the same answer:

EX—i €T _k
_T:0k+1_2'

To compute EX? using smoothing, because the binomial distribution in (6.5)
has second moment ky(1 — ) + k?y?,

EX?=FE[X*Y]|=E[kY(1-Y)+k*Y?]
k(1 + 2k)

- / (ky(1 —y) + k*y®) dy = 6 )
0
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Summation against the mass function for X gives

L
EX? =
Z k+1
=0
so these calculations show indirectly that

b k(k +1)(2k + 1)

(This can also be proved by induction.)

6.3 Building Models

To develop realistic models for two or more random vectors, it is often conve-
nient to specify a joint density, using (6.4), as

pz(z,y) = px(x)py|x(y|$)-

The thought process using this equation would involve first choosing a
marginal distribution for X and then combining this marginal distribution
with a suitable distribution for Y if X were known. This equation can be ex-
tended to several vectors. If p(zk|x1,...,2x—1) denotes the conditional density
of Xy given X7 = x1,...,Xk_1 = xx_1, then the joint density of X;,..., X,
is

px, (21)p(@2|21) - p(Tnlzr, ..o T0o1). (6.6)

Example 6.4. Models for Time Series. Statistical applications in which vari-
ables are observed over time are widespread and diverse. Examples include
prices of stocks, measurements of parts from a production process, or growth
curve data specifying size or dimension of a person or organism over time. In
most of these applications it is natural to suspect that the observations will
be dependent. For instance, if Xy is the log of a stock price, a model with

Xk-|X1 =21y, X1 = Th_1 ~ N(.’Ek_l —|—/.L,O'2)

may be natural. If X; ~ N(z¢ + p,0?), then by (6.6), Xi,..., X, will have
joint density
(T — Tp—1 — p)?

-1
exp| —
kl;[l V2ro? { 202

Differences X — X;_1 here are i.i.d. from N(u,o?), and the model here for
the joint distribution is called a random walk.

Another model for variables that behave in a more stationary fashion over
time might have



106 6 Conditional Distributions
Xe|X1 =21,..., Xko1 = 251 ~ N(pzp_1,0?),

where |p| < 1. If X; ~ N(pxo,0?), then by (6.6) the joint density is

[T o] ]
s V2102 202
This is called an autoregressive model.

Example 6.5. A Simple Model for Epidemics. For any degree of realism, statis-
tical models for epidemics must allow substantial dependence over time, and
conditioning arguments can be quite useful in attempts to incorporate this
dependence in a natural fashion. To illustrate, let us develop a simple model
based on suspect assumptions. Improvements with more realistic assumptions
should give practical and useful models

Let N denote the size of the population of interest, and let X; denote
the number of infected individuals in the population at stage 7. Assume that
once someone is infected, they stay infected. Also, assume that the chance an
infected individual infects a noninfected individual during the time interval
between two stages is p = 1 — ¢ and that all chances for infection are indepen-
dent. Then the chance a noninfected person stays noninfected during the time
interval between stages k and k + 1, given X, = x; (and other information
about the past), is ¢**, and so the number of people newly infected during
this time interval, X311 — X, will have a binomial distribution. Specifically

Xp+1 — Xg| X1 =21, ..., X = 2 ~ Binomial(N — x,1 — ¢"*).

This leads to conditional densities (mass functions)

N — xk > Tr4+1— Tk wak+1
Thatl|T1, ..., 2) = 1—¢%)™" (gTF .
(k41|21 ) (ka o (1-q™) (a*)

The product of these gives the joint mass function for Xi,..., X,,.

6.4 Proof of the Factorization Theorem?

To prove the factorization theorem (Theorem 3.6) we need to work directly
from the definition of conditional distributions, for in most cases T" and X
will not have a joint density with respect to any product measure. To begin,
suppose Py, 0 € (2, has density

po(x) = go(T (2)) h() (6.7)

2 This section is optional; the proof is fairly technical.
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with respect to p. Modifying h, we can assume without loss of generality that
p is a probability measure equivalent® to the family P = {P : € 2}. Let
E* and P* denote expectation and probability when X ~ pu; let G* and Gy
denote marginal distributions for T'(X) when X ~ p and X ~ Pp; and let Q
be the conditional distribution for X given T' when X ~ p. To find densities
for T,

Eof(T / F(T()) g0 (T(2)) h(zr) dp()
= B f(T)go(T)h(X)

/ F (095 (D)h () dQu () dC™ (1)
/f go(t)w(t) dG* (1),

w(t) = / h(x) dQy (x)

If f is an indicator function, this shows that Gy has density go(t)w(t) with
respect to G*. Next, define @y to have density h/w(t) with respect to Q:, so
that

where

= [ 10 dauo)

(On the null set w(t) = 0, Q; can be an arbitrary probability measure.) Then

_ / )90 ()h(x) dQu(x) dG (1)
/ ") ) 41 ()as(1)u(t) 4G (1)
- / £, ) dGu(x) dGo t).

By (6.3) this shows that Q is a conditional distribution for X given T under
Py. Because Q does not depend on 6, T is sufficient.

Before considering the converse—that if 7" is sufficient the densities pp must
have form (6.7)—we should discuss mixture distributions. Given a marginal
probability distribution G* and a conditional distribution @, we can define a
mizture distribution P by

/Qt B)dG*(t //13 ) dQ¢(x) dG™ (¢).

3 “Bquivalence” here means that u(N) = 0 if and only if Ps(N), V0 € 2. The
assertion here is based on a result that any dominated family is equivalent to the
mixture of some countable subfamily.
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Then for integrable f,

/fdf?://f(a:) dQy(z) dG*(t).

(By linearity, this must hold for simple functions f, and the general case
follows taking simple functions converging to f.)

Suppose now that T is sufficient, with @) the conditional distribution for
X given T. Let gy be the G* density of T when X ~ Py. (This density will
exist, for if G*(N) = 0, u(Ny) = 0 where Ng = T71(N), and so Go(N) =
Po(T € N) = Py(X € No) = [y podp=0.) Then

Py(X € B) = EgPy(X € B|T)
= FEyQr(B)
- [ @B e

- / / Lp(2) dQu(x) g (£) dG" (1)

//1B )90 (T (2)) dQu () dG* (1
/B o(T(x)) dP(z).

This shows that Py has density gg (T()) with respect to P.

The mixture distribution P is abbolutely continuous with respect to . To
see this, suppose u(N) = 0. Then Py(N) = [ Q¢(N) dGs(t) = 0, which implies
Go(N) = 0, where N = {t : Q;(N) > 0} Because p is equivalent to P and
Go(N) = Pg(TeN)—O Vo € 0, P*(TEN) G*(N) = 0. Thus Q;(N) =0
(a.e. G*) and so P(N) = [ Q.(N)dG*(t) = 0. Taking h = dP/dP*, Py has
density g (T(x))h(x) With respect to P*.

6.5 Problems*

1. The beta distribution.
a) Let X and Y be independent random variables with X ~ I'(a,1)
and Y ~ I'(8,1). Define new random variables U = X 4+ Y and
V =X/(X +Y). Find the joint density of U and V. Hint: If p is the
joint density of X and Y, then

P{(U,V)EB}:P{(X—FYX)iY) EB}

:/1B (x+y,xiy>p(x,y)dxdy-

4 Solutions to the starred problems are given at the back of the book.
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Next, change variables to write this integral as an integral against u =
z+y and v = z/(x+y). The change of variables can be accomplished
either using Jacobians or writing the double integral as an iterated
integral and using ordinary calculus.

b) Find the marginal density for V. Use the fact that this density inte-
grates to one to compute fol 2%~ 1(1 — 2)P~'dx. This density for V is
called the beta density with parameters a and . The corresponding
distribution is denoted Beta(a, 3).

¢) Compute the mean and variance of the beta distribution.

d) Find the marginal density for U.

Let X and Y be independent random variables with cumulative distribu-

tion functions F'x and Fy.

a) Assuming Y is continuous, use smoothing to derive a formula express-
ing the cumulative distribution function of X2Y? as the expected value
of a suitable function of X. Also, if Y is absolutely continuous, give a
formula for the density.

b) Suppose X and Y are both exponential with the same failure rate .
Find the density of X — Y.

Suppose that X and Y are independent and positive. Use a smoothing

argument to show that if € (0,1), then

P(Xfy <x) = EFy (;”_Yx) (6.8)

where F'x is the cumulative distribution function of X.
Differentiating (6.8), if X is absolutely continuous with density px, then
V =X/(X +Y) is absolutely continuous with density

pv(x):E[(l Y 2pX< oy )] z € (0,1).

—x) 1—x

Use this formula to derive the beta distribution introduced in Problem 6.1,
showing that if X and Y are independent with X ~ I'(e,1) and Y ~
I'(8,1), then V.= X/(X 4+ Y) has density

F((X—Fﬂ) a—1

x —xﬂ_l
rr® 7Y

pv(z) =

for x € (0,1).
Let X and Y be absolutely continuous with joint density

(2,1) 2, O<r<y<l;
x7 = .
Py 0, otherwise.

a) Find the marginal density of X and the marginal density of Y.
b) Find the conditional density of Y given X = z.
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¢) Find E[Y|X].

d) Find EXY by integration against the joint density of X and Y.

e) Find EXY by smoothing, using the conditional expectation you found
in part (c).

*6. Let u be Lebesgue measure on R and let v be counting measure on
{0,1,...}2. Suppose the joint density of X and Y with respect to u x v is
given by

pla,yi,y2) = 2(1 — a)n e

forz € (0,1), 431 =0,1,2,..., and yo = 0,1,2,....

a) Find the marginal density of X.

b) Find the conditional density of X given Y = y (i.e., given Y7 = y;
and Yo = y9).

¢) Find E[X|Y] and E[X?|Y]. Hint: The formula

/1 xafl(l _ x)ﬁfldx — F(Q)F(ﬁ)
0

may be useful.

d) Find E[1/(4+ Y1+ Y>)]. Hint: Find EX using the density in part (a)
and find an expression for FX using smoothing and the conditional
expectation in part (c).

7. Let X and Y be random variables with joint Lebesgue density

2y%e™™, x>0, ye(0,1);
px,y) = .
0, otherwise.

a) Find the marginal density for Y.
b) Find the conditional density for X given Y = y.
¢) Find P(X > 1Y =), E[X|Y = y], and E[X?|Y = y].
8. Suppose X has the standard exponential distribution with marginal den-
sity e, x > 0, and that
PY=ylX=2)= , y=0,1,....
a) Find the joint density for X and Y. Identify the dominating measure.
b) Find the marginal density of Y.
¢) Find the conditional density of X given Y = y.
d) Find EY using the marginal density in part (b).
) As the conditional distribution of Y given X = x is Poisson with
parameter z, E(Y|X = z) = x. Use this to find EY by smoothing.
9. Suppose that X is uniformly distributed on the interval (0, 1) and that

e

PY=ylX=2)=(1-ax)z, y=0,1,....

a) Find the joint density for X and Y. What is the measure for integrals
against this density?
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b) Find the marginal density of Y.

¢) Find the conditional density of X given Y = y.

d) Find E[X|Y =y]. Find P(X < 1/2|]Y =0) and P(X < 1/2]Y =1).

Suppose X and Y are independent, both uniformly distributed on (0,1).

Let M =max{X,Y} and Z = min{X,Y}.

a) Find the conditional distribution of Z given M = m.

b) Suppose instead that X and Y are independent but uniformly dis-
tributed on the finite set {1,...,k}. Give the conditional distribution
of Z given M = j.

Suppose X and Y are independent, both absolutely continuous with com-

mon density f. Let M = max{X,Y} and Z = min{X, Y}. Determine the

conditional distribution for the pair (X,Y) given (M, Z).

Let X and Y be independent exponential variables with failure rate X, so

the common marginal density is Ae™**, > 0. Let T = X + Y. Give a

formula expressing F[f(X,Y)|T = t] as a one-dimensional integral. Hint:

Review the initial example on sufficiency in Section 3.2.

Suppose X and Y are absolutely continuous with joint density

m272pwy+y2
eXp[_ 2(1-p?)

2my/1 — p?
This is a bivariate normal density with
EX =FEY =0, Var(X) = Var(Y) =1,

and
Cor(X,Y) = p.

Determine the conditional distribution of ¥ given X. (Naturally, the an-

swer should depend on the correlation coefficient p.) Use smoothing to

find the covariance between X2 and Y2.

Let X and Y be absolutely continuous with density p(x,y) = e™%, if

0 <y <z p(x,y) = 0, otherwise.

a) Find the marginal densities of X and Y.

b) Compute EY and EY? integrating against the marginal density of Y.

¢) Find the conditional density of Y given X = x, and use it to compute
E[Y|X] and E[Y?|X].

d) Find the expectations of E[Y|X] and E[Y?|X] integrating against the
marginal density of X.

Suppose X has a Poisson distribution with mean A and that given X = x,

Y has a binomial distribution with z trials and success probability p. (If

X=0,Y=0)

a) Find the marginal distribution of Y.

b) Find the conditional distribution of X given Y.

c¢) Find E[Y?|X].

d) Compute EY? by smoothing, using the result in part (c).
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e) Compute EY? integrating against the marginal distribution from
part (a).

f) Find E[X|Y] and use this to compute EX by smoothing.

16. Let X = (X1, X2) be an absolutely continuous random vector in R? with
density f, and let T' = X; + Xs.

a) Find the joint density for X; and T

b) Give a formula for the density of T'.

¢) Give a formula for the conditional density of X; given T = t.

d) Give a formula for E[g(X) | T =t]. Hint: View g(X) as a function of
T and X; and use the conditional density you found in part (c).

e) Suppose X; and X5 are ii.d. standard normal. Then X; — X5 ~
N(0,2) and T ~ N(0,2). Find P(|X; — X3| < 1 | T) using your
formula from part (d). Integrate this against the density for T to
show that smoothing gives the correct answer.

17. Let Xq,..., X, be jointly distributed Bernoulli variables with mass func-

tion '( y
B B _ spl(n—sp)!
PXi=z,...,Xp=2a,) = (1)
where s, = x1 + -+ + Tp.
a) Find the joint mass function for Xi,..., X,_1. (Your answer should

simplify.)
b) Find the joint mass function for Xy,..., X for any k < n.
¢) Find P(Xyy1 = 1| X1 =21,..., Xk = zk), k <n.
d) Let S, = X1 +---+ X,,. Find

P(X1 le,...,Xn :xn|Sn = S)
e) Let Y, = (14 Sk)/(k+2). For k < n, find
E(Yiq1| X1 =21,..., X = ap),

expressing your answer as a function of Yj. Use smoothing to relate
EY}41 to EY}. Find EY}, and ESy.
18. Suppose X ~ N(0,1) and Y| X =z ~ N(z,1).
a) Find the mean and variance of Y.
b) Find the conditional distribution of X given Y = y.
19. Let X be absolutely continuous with a positive continuous density f and
cumulative distribution function F. Take Y = X?2.
a) Find the cumulative distribution function and the density for Y.
b) For y > 0, y # 22, find

: < B .
lellr(r)lP[Xfx|Y€(y €y+e]
¢) The limit in part (b) should agree with the cumulative distribution

function for a discrete probability measure @,. Find the mass function
for this discrete distribution.
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d) Show that @ is a conditional distribution for X given Y. Specifically,
show that it satisfies the conditions in Definition 6.2.
Suppose X and Y are conditionally independent given W = w with

X|W =w ~ N(aw,1) and Y|W = w ~ N(bw,1).

Use smoothing to derive formulas relating EX, EY, Var(X), Var(Y), and
Cov(X,Y) to moments of W and the constants a and b.
Suppose Y ~ N(v,72) and that given Y = gy, Xy,..., X,, are i.i.d. from
N(y,0?). Taking x = (z1 + -+ + ) /n, show that the conditional distri-
bution of Y given X7 = z1,...,X,, = x,, is normal with

v/ + nz/o?

EY|Xi=21,...,.Xp=12,) = 1/724+n/o?

and
1

T 1/ 4 nfo?

Remark: If precision is defined as the reciprocal of the variance, these

formulas state that the precision of the conditional distribution is the

sum of the precisions of the X; and Y, and the mean of the conditional

distribution is an average of the X; and v, weighted by the precisions of

the variables.

A building has a single elevator. Times between stops on the first floor

are presumed to follow an exponential distribution with failure rate . In

a time interval of duration ¢, the number of people who arrive to ride the

elevator has a Poisson distribution with mean At.

a) Suggest a joint density for the time 7" between elevator stops and the
number of people X that board when it arrives.

b) Find the marginal mass function for X.

Var(Y| X1 = 21,..., X, = x,)

c) Find EX?2.
d) Let A > 0 and € > 0 be unknown parameters, and suppose we observe
data Xi,...,X, that are i.i.d. with the marginal mass function of

X in part (b). Suggest an estimator for the ratio §/A based on the
average X. With these data, if n is large will we be able to estimate
A accurately?



7

Bayesian Estimation

As mentioned in Section 3.1, a comparison of two estimators from their risk
functions will be inconclusive whenever the graphs of these functions cross.
This difficulty will not arise if the performance of an estimator is measured
with a single number. In a Bayesian approach to inference the performance of
an estimator ¢ is judged by a weighted average of the risk function, specifically
by

/ R(6,5)dA(), (7.1)

where A is a specified probability measure on the parameter space (2.

7.1 Bayesian Models and the Main Result

The weighted average (7.1) arises as expected loss using 0 in a Bayesian
probability model in which both the unknown parameter and data are viewed
as random. For notation, @ is the random parameter with 6 a possible value
for ©. In the Bayesian model,

6~ A,

with A called the prior distribution because it represents probabilities before
data are observed, and Py is the conditional distribution of X given © = 0,
that is,

X|© =0~ Py.

Then
E[L(6,6(X)) |©=10] = /L(Q,&(m)) dPy(x) = R(0,6),

and by smoothing,

EL(©,6) = EE[L(O,6) | ©] = ER(0,6) = /R(e,a) dA(0).

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 115
DOI 10.1007/978-0-387-93839-4 7, © Springer Science+Business Media, LLC 2010
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In Bayesian estimation, the choice of the prior distribution A is critical. In
some situations © may be random in the usual frequentist sense with a random
process producing the current parameter © and other random parameters in
the past and future. Then A would be selected from prior experience with the
random process. For instance, the parameter © may be the zip code on a letter
estimated using pixel data from an automatic scanner. The prior distribution
here should just reflect chances for various zip codes. More commonly, the
parameter © cannot be viewed as random in a frequentist sense. The general
view in these cases would be that the prior A should reflect the researchers’
informed subjective opinion about chances for various values of @. Both of
these ideas regarding selection of A may need to be tempered with a bit
of pragmatism. Calculations necessary to compute estimators may be much
easier if the prior distribution has a convenient form.

An estimator that minimizes (7.1) is called Bayes. Lacking information
from data X, the best estimate is just the constant minimizing EL(©, d) over
allowed values of d. The following result shows that a Bayes estimator can be
found in a similar fashion. The key difference is that one should now minimize
the conditional expected loss given the data, that is [L(@, d) | X = x] This
conditional expected loss is called the posterior risk and would be computed
integrating against the conditional distribution for @ given X = z, called the
posterior distribution of 6.

Theorem 7.1. Suppose © ~ A, X|0© =0 ~ Py, and L(6,d) >0 for all € 2
and all d. If

a) EL(O,d) < oo for some do,
and
b) for a.e. x there exists a value §4(x) minimizing
E[L(©,d) | X = x]
with respect to d,
then d4 is a Bayes estimator.
Proof. Let 6 be an arbitrary estimator. Then for a.e. z,
E[L(6,5(X )IX—JJ}: [2(6,6(x)) | X = 2]
B[L(6.54(w) | X = 1]
= E[L(@,&A(X)) | X = x},
and so
BIL(6.5(X)) | X] = E[L(€.5:(X)) | X),

almost surely. Taking expectations, by smoothing,

EL(@,(S(X)) > EL(@,(SA(X)).
Thus 4 is Bayes. O
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7.2 Examples

Ezxample 7.2. Weighted Squared Error Loss. Suppose

2

L(0,d) = w(0)(d — g(0))".
By Theorem 7.1, §,(z) should minimize
E[w(©)(d-9(0))" | X = «] = PE[w(® MX=d
—2dE [w (©) | X =]
E[w(©)g*(0) | X = z].
This is a quadratic function of d, minimized when the derivative
2dE[w(0) | X =] —2E[w(0)g(0) | X =z]

equals zero. Thus
E[w(@)g(@) ‘ X = x}
E[w(0) | X = 1]

If the weight function w is identically one, then

oa(z) =

4(X) = E[g(0) | X],
called the posterior mean of g(O).

If P is a dominated family with pg the density for Py, and if A is absolutely
continuous with Lebesgue density A, then the joint density of X and © is

po(z)A(0).
By (6.1), the marginal density of X is

«mz/mwxwm

and by (6.4), the conditional density of @ given X = z is

ol = PO,
Using this, (7.2) becomes
5a() = | CO9OP(@)AG) 9
AT T w(@)pe(e)A©@) do

(The factor 1/¢(z) common to both the numerator and denominator cancels.)
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Ezxample 7.8. Binomial. When Py is the binomial distribution with n trials
and success probability 0, the beta distribution Beta(a, 3) with density

A0) = Ila+f) goL(1— 0L, 6e(0,1),

I'(a)I(9)

is a common choice for the prior distribution of ©. (For a derivation of this
density, see Problem 6.1.) The beta density integrates to one, therefore

e - I'(a)I(B)
a—1 B—1 _
/0 0 (1-9) do = (a+8)" (7.3)
Using this,

The marginal density of X in the Bayesian model is

o(x) = / o(2)A(0) dO
Ck—‘r—ﬁ r+a—1 . n—x+pB—1
Feyr@ T =0 df
(a

n
[ G
<>F +8) INx+a)(n—z+p)

N @ Th+a+p)
This is the mass function for the beta-binomial distribution, sometimes used
in a non-Bayesian setting to model variables that exhibit more variation than

would be anticipated from a binomial model. Dividing pg(z)A(#) by this mass
function ¢(z),

I'(n+a+p3)
I'a+2)I'(B+n—2a)

This shows that

A0|z) = grra-l(q — gyn—=+i-1 0 € (0,1).

O|X =z ~ Beta(x + a,n —x + ).

The updating necessary to find the posterior distribution from the prior and
the observed data is particularly simple here; just increment o by the number
of successes observed, and increment § by the number of failures. Prior dis-
tributions that ensure a posterior distribution from the same class are called
conjugate. See Problem 7.4 for a class of examples. With squared error loss,
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X+«

Sa(X)=BleIx]= T

Straightforward algebra gives
n X n o
SA(X) = + 1= ,
A(X) [n+a+ﬂ]n [ n+a+ﬁ]a+ﬁ
which shows that the Bayes estimator here is a weighted average of the UMVU
estimator X/n and the prior mean £6 = a/(a + 3).

Example 7.4. Negative Binomial. From a sequence of Bernoulli trials with suc-
cess probability 6, let X be the number of failures before the second success.
Then

po(x) = Po(X =) = (z + 1)0*(1 — 0)7, x=0,1,....

Consider estimation of g(©) = 1/0 for a Bayesian model in which © is uni-
formly distributed on (0,1). Then

AB)z) ocg po(z)A(0) g 6*(1 — 6)°.
This is proportional to the density for Beta(3,x + 1), and so
O|X =z ~ Beta(3,z + 1).

The posterior mean is

So(z) = B[OV X = 2] = péfﬁ&fn ooy ar
I+ 4)r)lz+1) z=+3
I3 (x+D(x+3) 2

Recalling from Example 5.3 that the UMVU estimator of 1/ for this model

1S 19
T
(51(£E) = 9 5

we have the curious result that
1
do(X) = 01(X) + 9"
So the estimator dp has constant bias b(6,d¢) = Epdp(X) —1/60 = 1/2. With
squared error loss, the risk of any estimator is its variance plus the square of

its bias. Because d§p and ¢; differ by a constant they have the same variance,
and so

R(0,d0) = Varg(do) + 1/4 = Varg(d1) + 1/4 = R(0,61) + 1/4.
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Thus the UMVU estimator §; has uniformly smaller risk than dp! An estimator
is called inadmissible if a competing estimator has a better! risk function. And
an inadmissible estimators is generally not Bayes, because an estimator with
a better risk function usually has smaller integrated risk. See Theorems 11.6
and 11.7. Trouble arises in this innocuous example because condition (a) in
Theorem 7.1 fails. When this happens, any estimator will minimize (7.1), and
Bayesian calculations may lead to a poor estimator.

7.3 Utility Theory?

In much of this book there is a basic presumption that risk or expected loss
should be used to compare and judge estimators. This may be reasonably
intuitive, but there is an important philosophical question regarding why ex-
pectation should play such a central role. Utility theory provides motivation
for this approach, showing that if preferences between probability distribu-
tions obey a few basic axioms, then one distribution will be preferred over
another if and only if its expected utility is greater. The treatment of utility
theory here is a bit sketchy. For more details see Chapter 7 of DeGroot (1970).

Let R be a set of rewards. These rewards could be numerical or monetary,
but more ethereal settings in which a reward might be some degree of fame
or happiness could also be envisioned. Let R denote all probability distribu-
tions on (R, F), where F is some o-field. The distributions P € R are called
“lotteries.” The idea here is that if you play some lottery P € R you will re-
ceive a random reward in R according to the distribution P. Let “Z<” indicate
preferences among lotteries in R. Formally, < should be a complete ordering

~

of R; that is, it should satisfy these conditions:

1. If P, and P» are lotteries in ‘R, then either P, < P>, P, < Py, or P; ~ P5.
(Here P; ~ P, means that P; X P and P, X Pi; and P < P means
that P1 j PQ, but P1 ;ﬁ PQ)

2. If Pi, P, and P5 are lotteries in R with P, 3 P, and P, 3 Ps, then
P, = Ps.

It is also convenient to identify a reward » € R with the degenerate probability
distribution in R that assigns unit mass to {r}. (To ensure this is possible, the
o-field F must contain all singletons {r}, r € R.) We can then define reward
intervals

[ri,r2] ={re R:ri Zr Ira}.

A lottery P € R is called bounded if P([r1,72]) = 1 for some rewards r; and
ro in R. Let Rp denote the collection of all bounded lotteries in R.

1 See Section 11.3 for a formal definition.
2 This section covers optional material not used in later chapters.
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Definition 7.5. A (measurable) function U : R — R is a utility function for
S if
Py 2 Py if and only if EpU < Ep,U,

whenever the expectations exist. (Here EpU = [U dP.)

The following example shows that utility functions may or may not exist.

Ezxample 7.6. Suppose R contains two rewards, a and b, and let Py be the
lottery that gives reward a with probability 6. Suppose b < a. Then if < has a
utility function U, U(a) is larger than U(b). Inasmuch as the expected utility
of Py is

/U(r) dPs(r) = 6U(a) + (1 — O)U(b) = 0[U(a) — U®W)] + U (D),

the expected utility of Py increases as 6 increases. Hence Py, 3 Py, if and only
if 01 < 05. Similarly, if a ~ b, then U(a) = U(b) and all lotteries are equivalent
under <. But preferences between lotteries do not have to behave in this
fashion. For instance, if someone views rewards a and b as comparable, but
finds pleasure in the excitement of not knowing the reward they will receive,
a preference relation in which Py, 3 Py, if and only if |61 — 1/2| > |62 — 1/2|
may be appropriate. For this preference relation there is no utility function.

Under axioms given below, utility functions will exist. The language makes
extensive use of pairwise mixtures of distributions. If P; and P are lotteries
and a € (0,1), then the mixture aP; 4 (1—a) P> can be viewed (by smoothing)
as a lottery that draws from P; with probability a and draws from P, with
probability 1 — a. In particular, because we associate rewards with degener-
ate lotteries, ary + (1 — a)ry represents a lottery that gives reward 1 with
probability a and reward ry with probability 1 — «.

Al) If Py, Py, and P are bounded lotteries in Rp, and if a € (0,1), then
P, < Py if and only if aP; + (1 — )P < aPy + (1 — a)P.

It is also easy to see that P; 3 P, if and only if aP; + (1 — a)P 3
aPy 4+ (1 — a)P. As a further consequence, if P; 3 @1 and P> 3 @2, all in
Rp, and a € (0,1), then

aP1+(1—05)P2jOéQl—i-(l—Oé)PQjOéQl—i-(l—Oé)QQ.

If P, ~ @y and P> >~ @2, again all in Rp, the reverse inequalities also hold,
and
06P1 +(1—06)P2 20{@1 —‘1‘(1—06)@2 (74)

As a final consequence of this axiom, if 1 < ry are rewards in R, and if « and
(3 are constants in [0, 1], then

arg + (1 —a)ry < Bra+ (1 — B)ry if and only if o < . (7.5)
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A2) If P, < P < P, are bounded lotteries, then there exist constants o and
G in (0,1) such that P < P, + (1 —a)P; and P > 8P, + (1 — B)Py.

The following result follows from this axiom, and is used shortly to con-
struct a candidate utility function.

Theorem 7.7. If 1 3 r 3 ro are rewards in R, then there exists a unique
value v € [0,1] such that

r~uvrg+ (1 —v)r.

Proof. Consider S = {a € [0,1] : 7 < are + (1 — a)r1}, an interval by (7.5),
and let v be the lower endpoint of S, v = inf S. If vry + (1 — v)r; < r then
v < 1, and by the second axiom

r=Bro+(1=0)(vra+(1—v)r1) = (v+B1—-v))ro+ (1—v—B1—-v))r

for some § € (0,1). This would imply that v is not the lower endpoint of S.
But if vrg + (1 — v)ry > r, then v > 0, and by the second axiom

r<ari+(1—a)(vro+(1—v)r1) =1 —a)vra+ (1= (1 — a)v)r,

for some « € (0, 1), again contradicting v = inf S. Thus r ~ vry + (1 — v)ry.
Uniqueness follows from similar considerations. a

Let sg < s1 be fixed rewards in R. Utility functions, if they exist, are not
unique, for if U is a utility, and if ¢ and b are constants with b > 0, then
a + bU is also a utility function. From this, if a utility function exists, there
will be a utility function with U(sp) = 0 and U(s;) = 1. The construction
below gives this utility function.

Suppose 7 € [Sg, $1]. Then by Theorem 7.7,

r~wvs; + (1 —v)so,

for some v € [0, 1]. If a utility function exists, then the expected utilities for
the two lotteries in this equation must agree, which means that we must have

U(r) =v.
If instead r 3 sg, then by Theorem 7.7,
so ~vs+ (L—v)r,
for some v € (0,1). Equating expected utilities, 0 = v + (1 — v)U(r), and so

we need

Finally, if s; < r, then by Theorem 7.7,
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s1~vr+ (1—v)so,

and equating expected utilities we must have

1

Ur)= .

(=

The following technical axiom is needed to ensure that this function U is
measurable.

A3) For any rq, ro, and r3 in R, and any « and S in [0, 1],
{reR:ar+(1—a)ry I 0ra+ (1 —p)r3} € F.

Let P be a bounded lottery, so that P{[r1,72]} =1 for some r; and r2 in
R. The final axiom concerns a two-stage lottery in which the first stage is P,
and the second stage trades in P for an equivalent mixture of r; and 3. To
be specific, define a function « : [r1,r2] — [0, 1] using Theorem 7.7 so that

r~ a(r)ro + (1 —a(r))r.

From the construction of U it can be shown that

r)y—=U(r
()= Yoy~ (0
For instance, if sg S 71 S 7 3 r2 3 s1, from the construction of U,
r1~U(r1)s1 + (1 — U(r1))so, roa ~ U(rz)s1 + (1 — U(r2))so,
and, using (7.4),

arg + (1 — a)rq
~ a[U(Tg)Sl + (1 — U(T’Q))S()} +(1-a) [U(rl)sl + (1 — U(rl))so]
= [aU(rg) +(1—-a)U(r)]s1 + [1 —aU(ry) — (1 - a)U(rl)} 0.
Because r ~ U(r)s1 + (1 — U(r))so, r = ars + (1 — a)ry when
U(r) =aU(rz) + (1 — «)U(ry).

Solving for o we obtain (7.6).

In the two-stage lottery, if the reward for the first stage, sampled from P, is
r, then the second stage is a(r)rz + (1 —a(r))r;. Conditioning on the outcome
of the first stage, this two-stage lottery gives reward ro with probability

5= / a(r) dP(r).

Otherwise, the two-stage lottery gives reward r1. The final axiom asserts that
under 3 this two-stage lottery is equivalent to P.
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P~ Brg 4+ (1 — B)ry.

Based on the stated axioms, the final result of this section shows that the
function U constructed above is a utility function for bounded lotteries.

Theorem 7.8. If axioms Al through A4 hold, and P, and P are bounded
lotteries, then

Py 2 Py if and only if Ep,U < Ep,U.

Proof. Choose r1 and rg so that Pi{[r1,r2]} and Py{[r1,72]} both equal one.
By the fourth axiom and (7.6),

and

P~ [EplU - U(rl)] - [U(m) - EplU] .

U(T‘Q)—U(T‘l) U(T‘Q)—U(T‘l)

Py~ {EPQU - U(m)} - {U(m) = EPQU} B

U(T‘Q)—U(T‘l) U(T‘Q)—U(T‘l)

By (7.5), P1 2 P if and only if

Ep U —U(r) < Ep, U —U(r)
U(T‘Q) —U(T‘l) - U(T‘Q) —U(T1)7

which happens if and only if Ep U < Ep,U. a

7.4 Problems?

*1.

*2.

*3.

Consider a Bayesian model in which the prior distribution for @ is ex-
ponential with failure rate 7, so that A(#) = ne ™ 6 > 0. Given
© = 0, the data Xi,...,X, are ii.d. from the Poisson distribution
with mean 6. Determine the Bayes estimator for © if the loss function
is L(0,d) = 07(d — 0)?, with p a fixed positive constant.

Consider a Bayesian model in which the prior distribution for © is abso-
lutely continuous with density A(§) = 1/(1 + 0)%, § > 0. Given © = 0,
our datum is a single variable X uniformly distributed on (0, 6). Give an
equation to find the Bayes estimate §,(X) of © if the loss function is
L(6,d) = |d — 6]. Determine P(54(X) < O|X = x), explicitly.

In a Bayesian approach to simple linear regression, suppose the intercept
©1 and slope @5 of the regression line are a priori independent with ©; ~
N(0,72) and O3 ~ N(0,72). Given ©; = 01 and Oy = 0, data Y1,...,Y,
are independent with Y; ~ N(6; + 0o, 02), where the variance o2 is
known, and x1,...,x, are constants summing to zero, 1 + --- + x, = 0.
Find the Bayes estimates of @; and @ under squared error loss.

8 Solutions to the starred problems are given at the back of the book.
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Congugate prior distributions. Let P = {Py,0 € 2} be a one-parameter
canonical exponential family with densities py given by

polz) = h(z)e! T4,

Here (2 is an interval. Let A = A, 3 be an absolutely continuous prior
distribution with density

sz{mmw—ﬁmm—Bmﬁn,aem

0, otherwise,

where

B(a,B) = log/Q exp{ad — BA(0)} d6.

These densities A, g form a canonical two-parameter exponential fam-
ily. Let £ = {(a, 8) : B(e,8) < oo} be the canonical parameter space.
Assume for regularity that A(d) — 0 as 6 approaches either end of the
interval (2, regardless the value of («, ) € =.

a) With the stated regularity, [, '(#) dd = 0. Use this to give an explicit
formula for EA’(©) when © ~ A, g. (The answer should be a simple
function of « and 3.)

b) Consider a Bayesian model in which © ~ A, 3 and given @ = 6,
Xiq,..., X, are i.i.d. with common density Py from the exponential
family P. Determine the Bayes estimate of A’(©) under squared error
loss. Show that this estimate is a weighted average of EA’(©) and the
average T = [T(X1) + - -+ + T(Xn)] /n.

¢) Demonstrate the ideas in parts (a) and (b) when Py is the exponential
distribution with failure rate 6 and mean 1/6: identify the prior dis-
tributions A, g, and give an explicit formula for the Bayes estimator
of the mean 1/6.

Consider an autoregressive model in which X; ~ N (6,0%/(1 — p?)) and

the conditional distribution of X;4; given X; = x1, ..., X; = z; is

N(0 + px; — 9),02), j =1,...,n— 1. Suppose the values for p and o

are fixed constants, and consider Bayesian estimation with © ~ N(0,72).

Find Bayes estimates for © and ©2 under squared error loss.

Consider a Bayesian model in which the random parameter © has a

Bernoulli prior distribution with success probability 1/2, so P(© = 0) =

P(© =1)=1/2. Given © = 0, data X has density fo, and given © =1,

X has density fi.

a) Find the Bayes estimate of © under squared error loss.

b) Find the Bayes estimate of © if L(0,d) = I{6 # d} (called zero-one
loss).

Consider Bayesian estimation in which the parameter © has a standard ex-

ponential distribution, so A\(f) = e~?, 6 > 0, and given © =0, X1,..., X,,

are i.i.d. from an exponential distribution with failure rate #. Determine

the Bayes estimator of @ if the loss function is L(6,d) = (d — 0)?/d.
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8. Consider a Bayesian model in which the prior distribution for @ is stan-
dard exponential and the density for X given © = 6 is

(@) e~ x>0,
€Tr) =
po 0, otherwise.

a) Find the marginal density for X and EX in the Bayesian model.
b) Find the Bayes estimator for © under squared error loss. (Assume
X >0)

9. Suppose ©® ~ Aand X|© = 0 ~ Py, and let f be a nonnegative measurable
function. Use smoothing to write Ef(©, X) as an iterated integral. (This
calculation shows that specification of a Bayesian model in this fashion
determines the joint distribution of X and ©.)

10. Suppose we observe two independent observations, (X1,Y7) and (X2, Ys)
from an absolutely continuous bivariate distribution with density

V1 — 62

1
o CXPI= 2(3:2 +y% —20xy)| .

Find the Bayes estimate for © under squared error loss if the prior distri-
bution is uniform on (—1,1).

11. Consider a Bayesian model in which the prior distribution for @ is uniform
on (0,1) and given © = 60, X;, ¢ > 1, are i.i.d. Bernoulli with success
probability 6. Find

P(Xng1 = 1X1,..., Xn).

12. Bayesian prediction.
a) Let X and Y be jointly distributed, with X a random variable and Y’
a random vector. Suppose we are interested in predicting X from Y.
The efficacy of a predictor f(Y') might be measured using the expected

squared error, E(X — f(Y))2. Use a smoothing argument to find the
function f minimizing this quantity.

b) Consider a Bayesian model in which © is a random parameter, and
given © = 6, random variables X1, ..., X,,4+1 are i.i.d. from a distribu-
tion Py with mean p(f). With squared error loss, the best estimator
of pu(0) based on Xy,...,X,, is

fi=FE[uO) | X1,...,Xn].

Show that [ is also the best predictor for X,i; based on ¥ =

(X1,...,Xn). You can assume that © is absolutely continuous, and
that the family P = {Py : 0 € 2} is dominated with densities py,
0 € 1.

13. Consider a Bayesian model in which © is absolutely continuous with den-
sity



14.

15.
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e—1/0
)\(9) e 02 ?
0, otherwise,

0 > 0;

and given © = 6, X;,..., X, are i.i.d. N(0,0). Find the Bayes estimator
for © under squared error loss.

Consider a Bayesian model in which given © = 6, X1,...,X,, are i.i.d.
from a Bernoulli distribution with mean 6.

a) Let (m(1),...,m(n)) be a permutation of (1,...,n). Show that

(Xﬁ(l), ce ,Xﬂ.(n)) and (Xl, ce ,Xn)

have the same distribution. When this holds the variables involved are
said to be exchangeable.
b) Show that Cov(X;, X;) > 0. When will this covariance be zero?
Consider a Bayesian model in which @ is absolutely continuous with den-
sity
463
AO) =< (1+60)5

0, otherwise,

0> 0;

and given @ = 6 > 0, data X and Y are absolutely continuous with
density

(2,y) = 1/63, |z| < Oy < 0%
POl 4) = 0, otherwise,

Find the Bayes estimator of © under squared error loss.

(For fun) Let X and Y be independent Cauchy variables with location 6.

a) Show that X and the average A = (X + Y)/2 have the same distri-
bution.

b) Show that Py(|A — 0] < |X —0]) > 1/2, so that A is more likely to
be closer to 6 that X. (Hint: Graph the region in the plane where the
event in question occurs.)
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Large-Sample Theory

To this point, most of the statistical results in this book concern properties
that hold in some exact sense. An estimator is either sufficient or not, unbi-
ased or not, Bayes or not. If exact properties are impractical or not available,
statisticians often rely on approximations. This chapter gives several of the
most basic results from probability theory used to derive approximations. Sev-
eral notions of convergence for random variables and vectors are introduced,
and various limit theorems are presented. These results are used in this chap-
ter and later to study and compare the performance of various estimators in
large samples.

8.1 Convergence in Probability

Our first notion of convergence holds if the variables involved are close to their
limit with high probability.

Definition 8.1. A sequence of random variables Y, converges in probability
to a random variable Y as n — oo, written

Y, 2,
if for every e > 0,
P(lY, —Y|>¢) =0

as n — oQ.

Theorem 8.2 (Chebyshev’s Inequality). For any random variable X and
any constant a > 0,
EX?

P(|X] = a)< a2

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 129
DOI 10.1007/978-0-387-93839-4 8, © Springer Science+Business Media, LLC 2010
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Proof. Regardless of the value of X,
I{|X| > a} < X?/d®.
The result follows by taking expectations. a
Proposition 8.3. If E(Y,, = Y)? — 0 as n — oo, then Y,, > Y.
Proof. By Chebyshev’s inequality, for any € > 0,

_ 2
P(lY,—Y|>¢) < E(Y"eQ RO

Example 8.4. Suppose X1, Xo, ... are i.i.d., with mean p and variance o2, and
let X, = (X1+4---+ X,)/n. Then

B(X, —p)? = Var(X,) = o*/n — 0,

and so X, > was n — oo. In fact, X, 2, 1t even when o2 = oo, provided
E|X;| < co. This result is called the weak law of large numbers.

Proposition 8.5. If f is continuous at ¢ and if Y, 2 ¢, then f(Y;) 2 f(c).

Proof. Because f is continuous at ¢, given any € > 0, there exists J > 0 such
that |f(y) — f(¢)| < € whenever |y — ¢| < d.. Thus

P(|Yn - C| < 56) < P(|f(Yn) - f(c)| < 6)7
which implies
P(If(Yn) = f(c)] =€) < P(|Yn —c| > 4.) — 0. 0

In statistics there is a family of distributions of interest, indexed by a pa-
rameter 6 € {2, and the symbol 78 is used to denote convergence in probability
with Py as the underlying probability measure.

Definition 8.6. A sequence of estimators d,, n > 1, is consistent for g(0) if
for any 0 € 2,

6 = g(0)
as n — 0.

If R(9,5,) = Ey (5n — g(@))2 is the mean squared error, or risk, of 4,
under squared error loss, then by Proposition 8.3, 4, will be consistent if
R(0,6,) — 0 as n — oo, for any 0 € (2. Letting b,(0) = Epd, — g(0), called
the bias of d,,

R(0,6,) = b2(0) + Vary(6,),
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and so sufficient conditions for consistency are that b, (6) — 0 and Varg(d,) —
0 as n — oo, for all 8 € §2.
Convergence in probability extends directly to higher dimensions. If Y, Y7,
Y5, ... are random vectors in RP, then Y,, converges in probability to Y, written
Y, &Y, if for every € > 0, P(||Y;, — Y| > €) — 0 as n — oo. Equivalently,
Y, & Y if [V,)i & [Y]; as n — oo for i = 1,...,p. Proposition 8.5 also
holds as stated, with the same proof, for random vectors Y;, and ¢ € RP, with
f a vector-valued function, f : RP — R?. For instance, since addition and
multiplication are continuous functions from R? — R, if X,, > a and Y,, 2 b
as n — 0o, then
X, +Y, % a+b and X,Y, > ab, (8.1)

as n — OQ.

8.2 Convergence in Distribution

If a sequence of estimators d,, is consistent for ¢g(#), then the distribution of the
error 0, —g(6) must concentrate around zero as n increases. But convergence in
probability will not tell us how rapidly this concentration occurs or the shape
of the error distribution after suitable magnification. For this, the following
notion of convergence in distribution is more appropriate.

Definition 8.7. A sequence of random wvariables Y, n > 1, with cumulative
distribution functions H,, converges in distribution (or law) to a random
variable Y with cumulative distribution function H if

Hy,(y) — H(y)

as n — 0o whenever H s continuous at y. For notation we write Y,, =Y or
Y, = Py.

One aspect of this definition that may seem puzzling at first is that point-
wise convergence of the cumulative distribution functions only has to hold at
continuity points of H. Here is a simple example that should make this seem
more natural.

Ezample 8.8. Suppose Y,, = 1/n, a degenerate random variable, and that Y
is always zero. Then

Hy(y) = P(Y, <y) =I{1/n < y}.

If y > 0, then H,(y) = I{1/n <y} — 1 as n — oo, for eventually 1/n will
be less than y. If y < 0, then H,(y) = I{1/n < y} = 0 for all n, and so
H,(y) — 0 as n — oo. Because H(y) = P(Y < y) = I{0 < y}, comparisons
with the limits just obtained show that H, (y) — H(y) if y # 0. But H,(0) =
0 — 0+# 1= H(0). In this example, Y;, = Y, but the cumulative distribution
functions H,(y) do not converge to H(y) when y = 0, a discontinuity point
of H.
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Theorem 8.9. Convergence in distribution, Y, = Y, holds if and only if
Ef(Y,) — Ef(Y) for all bounded continuous functions f.

Remark 8.10. The convergence of expectations in this theorem is often taken
as the definition for convergence in distribution. One advantage of this as a
definition is that it generalizes easily to random vectors. Extensions to more
abstract objects, such as random functions, are even possible.

Corollary 8.11. If g is a continuous function and Y, =Y, then
9(¥Yn) = g(Y).

Proof. If f is bounded and continuous, then f o g is also bounded and contin-
uous. Since Y,, = Y,

Ef(9(Yn)) — Ef(9(Y)).

Because f is arbitrary, this shows that the second half of Theorem 8.9 holds for
the induced sequence g(Y},) and g(Y). So by the equivalence, g(Y,,) = g(Y).
O

For convergence in distribution, the central limit theorem is our most basic
tool. For a derivation and proof, see Appendix A.7, or any standard text on
probability.

Theorem 8.12 (Central Limit Theorem). Suppose X1, Xo, ... are i.i.d.
with common mean p and variance o*. Take X, = (X1 + -+ X,,)/n. Then

Vn(X, — ) = N(0,0?).

As an application of this result, let H,, denote the cumulative distribution
function of \/n(X, — 1) and note that

P(p—a/vn < X, <p+a/vn)=P(—a</n(Xn,—p) <a)
= H,(a) — Hy(—a)
— P(a/o) — P(—a/o).

This information about the distribution of X,, from the central limit theorem
is more detailed than information from the weak law of large numbers, that
X, 5 .

The central limit theorem is certainly one of the most useful and cele-
brated results in probability and statistics, and it has been extended in nu-
merous ways. Theorems 9.27 and 9.40 provide extensions to averages of i.i.d.
random vectors and martingales, respectively. Other extensions concern situa-
tions in which the summands are independent but from different distributions
or weakly dependent in a suitable sense. In addition, some random variables
will be approximately normal because their difference from a variable in one
of these central limit theorems converges to zero, an approach used repeatedly
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later in this book. Results bounding the error in the central limit theorem have
also been derived. With the assumptions of Theorem 8.12; the Berry—Esséen
theorem, given as Theorem 16.5.1 of Feller (1971), states that

3E|X) — uf?
o3yn

The next result begins to develop a calculus for convergence of random
variables combining convergence in distribution with convergence in probabil-

ity.

|P(Vn(Xy —p) <z) —P(z/o)| < (8.2)

Theorem 8.13. IfY,, = Y, A, 2, a, and By, LN b, then
A, + B,Y,, = a+bY.

The central limit theorem stated only provides direct information about
distributions of averages. Many estimators in statistics are not exactly aver-
ages, but can be related to averages in some fashion. In some of these cases,
clever use of the central limit theorem still provides a limit theorem for an
estimator’s distribution. A first possibility would be for variables that are
smooth functions of an average and can be written as f(X,). The Taylor
approximation

F(Xn) = f(p) + ' (p)(Xn — )

with the central limit theorem motivates the following proposition.

Proposition 8.14 (Delta Method). With the assumptions in the central
limit theorem, if f is differentiable at u, then

Vn(f(Xn) = f(u) = N(0,[f(1)]*0?).

Proof. For convenience, let us assume that f has a continuous derivative! and
write

F(Xn) = f(p) + f'(pn)(Xn — 1),
where p,, is an intermediate point lying between X,, and p. Since |, — pu| <
| X, —p| and X, & g, pin = g1, and since f' is continuous, f(iun) 2 /(1) by
Proposition 8.5. If Z ~ N(0,0?), then v/n(X,, — u) = Z ~ N(0,0?) by the
central limit theorem. Thus by Theorem 8.13,

VR(f(Xn) = F(1) = £ () [VR(Xn — w)] = /(1) Z ~ N(0,[f'(w)]*0?).

This use of Taylor’s theorem to approximate distributions is called the delta
method. ad

L A proof under the stated condition takes a bit more care; one approach is given
in the discussion following Proposition 8.24.
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By Theorem 8.9, if X,, = X and f is bounded and continuous, E f(X,,) —
Ef(X). If f is continuous but unbounded, convergence of Ef(X,,) may fail.
The theorem below shows that convergence will hold if the variables are uni-
formly integrable according to the following definition.

Definition 8.15. Random variables X,,, n > 1, are uniformly integrable if

sup E[| X, |I{|Xn| > t}] — 0,
n>1

as t — o0.

Because E|X,| < t+ E[|X,|I{|X,| > t}], if sup,>, B[|X,|[I{| X, >
t}] is finite for some ¢, sup,, E|X,| < co. Thus uniform integrability implies
sup,, E|X,| < oco. But the converse can fail. If ¥;, ~ Bernoulli(1/n) and
X, = nY,, then E|X,| = 1 for all n, but the variables X,,, n > 1, are
not uniformly integrable.

Theorem 8.16. If X,, = X, then E|X| < liminf E|X,|. If X,,, n > 1, are
uniformly integrable and X,, = X, then EX,, - EX. If X and X,,, n > 1,
are nonnegative and integrable with X,, = X and EX, — EX, then X,,
n > 1, are uniformly integrable.

gt ht
AN AN
- t 4 R t 4 N
< ; > < >
—t t -t t
—t L —td

Fig. 8.1. Functions g¢ and h;.

Proof. For t > 0, define functions? g¢(z) = |z| At and hi(z) = —t V (z A t),
pictured in Figure 8.1. These functions are bounded and continuous, and so if

2 Here xz Ay &f min{z,y} and z Vy &f max{z,y}.
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X, = X, Eq(X,) — Egq(X) and Fh(X,) — Ehy(X). For the first assertion
in the theorem,

liminf F|X,| > liminf E|X,| At = E|X|At,

and the right-hand side increases to E|X | as t — oo by monotone convergence
(Problem 1.25).

For the second assertion, by uniform integrability and the first result,
E|X| < o0. Since | X,, — he(X)| < | X | I{| Xn| > t},

limsup |EX,, — EX| < limsup |Eh(X,,) — Ehy(X)| + E|X — hy(X)]

+ SupE |Xn - ht(Xn)|
< E |X - ht(X)| + SupE [|Xn|I{|Xn| > tH )

which decreases to zero as t — oo.

For the final assertion, since the variables are nonnegative with £ X, —
EX and Fg,(X,) — Eg(X), then for any ¢t > 0,

E(X, — )" = EX, — Eg/(X,) — EX — Egi(X) = E(X — t)*.
Using this, since zI{z > 2t} < 2(z —a)*, z > 0,

limsup E[ X, I[{X, > 2t}] <limsup2E(X, — )" =2E(X —t)*.
By dominated convergence E(X —t)* — 0 as t — oo. Thus

tlim limsup E[| X, |[I{X, > 2t}].

Uniform integrability follows fairly easily from this (see Problem 8.9). a

8.3 Maximum Likelihood Estimation

Suppose data vector X has density py. This density, evaluated at X and
viewed as a function of 0, L(0) = pg(X), is called the likelihood function, and
the value § = 6(X) maximizing L(-) is called the mazimum likelihood esti-
mator of 8. The maximum likelihood estimator of g(f) is defined® to be g(6).

For explicit calculation it is often convenient to maximize the log-likelihood
function, 1(#) = log L(#). instead of L(-).

Ezxample 8.17. Suppose the density for our data X comes from a canonical
one-parameter exponential family with density

py(x) = exp{nT(x) — A(n) }h(z).

3 It is not hard to check that this definition remains consistent if different param-
eters are used to specify the model.
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Then the maximum likelihood estimator 7 of n maximizes

I(n) = log p,(X) = nT — A(n) + log h(X).

Because I”(n) = —A"(n) = —Var,(T) < 0, the 7 is typically? the unique
solution of
0=1U(n)=T-A'(n).

Letting 1) denote the inverse function of A’,

N =v(T).

If our data are a random sample X7, ..., X,, with common density p,, then
the joint density is [}, p,(z;) and the log-likelihood is

n

W) =D T(X:) = nA() +log [T n(xX5).

i=1
The maximum likelihood estimator 7 solves

n

0=1(n) =3 T(X) — nAn),

i=1
and so
1 n
n — T h T = T Xq/ .
= U(D), where T= 3 T(X)

It is interesting to note that the maximum likelihood estimator for the mean
of T, E,T(X;) = A'(n), is

A'(f) = A'((T)) =T.

The maximum likelihood estimator here is an unbiased function of the com-
plete sufficient statistic; therefore, it is also UMVU. But in general maximum
likelihood estimators may have some bias.

Since the maximum likelihood estimator in this example is a function of
an average of i.i.d. variables, its asymptotic distribution can be determined
using the delta method, Proposition 8.14. By the implicit function theorem,
1 has derivative (1/A”) o 1. This derivative evaluated at A'(n) = E,T(X;) is

1 1
A W(A’(n))} - A//(n)'

Because Var, (T(X;)) = A”(n), by Proposition 8.14

4 Examples are possible in which I(+) is strictly increasing or strictly decreasing.
The equation here holds whenever T € n/(Z).
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V(i —n) = N(0,1/A"(n)). (8.3)

Note that since the Fisher information from each observation is A”(n), by the
Cramér—Rao lower bound, if an estimator 7 is unbiased for n, then

- . 1

Var, [\/n(n — 77)} = nVar, (1) > ()’

So (8.3) can be interpreted as showing that 7 achieves the Cramér-Rao lower
bound in an asymptotic sense. For this reason, 7 is considered asymptoti-
cally efficient. A rigorous treatment of asymptotic efficiency is delicate and
technical; a few of the main developments are given in Section 16.6.

8.4 Medians and Percentiles

Let X1,..., X, be random variables. These variables, arranged in increasing
order, X (1) < X9y < -+ < X, are called order statistics. The first order
statistic X(q) is the smallest value, X(;) = min{X7, ..., X,,}, and the last order
statistic X(,,) is the largest value, X(,) = max{Xi,..., X,,}. The median is
the middle order statistic when n is odd, or (by convention) the average of
the two middle order statistics when n is even:

%(X(m) + X(m+1)), n =2m.

The median X and mean X are commonly used to describe the center or
overall location of the variables X1, ..., X,. One possible advantage for the
median is that it will not be influenced by a few extreme values. For instance,
if the data are (1,2,3,4,5), then both X and X are 3. But if the data are
(1,2,3,4,500), X is still 3, but X = 102. If we view them as estimators, it
is also natural to want to compare the error distributions of X and X. For
a random sample, the error distribution of X can be approximated using the
central limit theorem. In what follows, we derive an analogous result for X.

Assume now that Xi, Xo,... are i.i.d. with common cumulative distribu-
tion function F, and let Xn be the median of the first n observations. For
regularity, assume that F' has a unique median 0, so F(f) = 1/2, and that
F'(9) exists and is finite and positive. Let us try to approximate

P(vVn(X, —0) <a) = P(X, <0+a/Vn).
Define
Sn=#{i<n:X, <0+a/yn}.

The key to this derivation is the observation that X, < 6 +a /+/n if and only
if S, > m. Also, by viewing observation i as a success if X; <60+ a/+/n, it is
evident that
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Sy ~ Binomial(n, F(0 + a/v/n)).

The next step involves normal approximation for the distribution of S,,.
First note that if Y;, ~ Binomial(n, p), then Y,, /n can be viewed as the average
of n i.i.d. Bernoulli variables. Therefore by the central limit theorem,

vi (o) =T s N ),

and hence

Y, — Y, —
P ) np>y =1-P npgy
vn n

y B —y
Hl_gﬁ(\/p(l—p)> _Q)(\/p(l—p)»

as n — oo. In fact, this approximation for the binomial distribution holds
uniformly in y and uniformly for p in any compact subset of (0,1).%

The normal approximation for the binomial distribution just discussed
gives

P(\/n(f(n -0) < a)
=P(Sp,>m—1)
B Sp—nF@+a/y/n)  m—1—-nF0+a/\/n)
S G Vn )

[nF(0+a/y/n) —m+1]/yn

-0
\/F(H +a/vn)(1 = F(0 +a/yn))

+o(1). (8.4)

Here “o(1)” is used to denote a sequence that tends to zero as n — oo.
See Section 8.6 for a discussion of notation and various notions of scales of
magnitude. Since F' is continuous at 6,

VEO+a/vn) (1~ FO+a/yn) —1/2,

as n — 0o0. And because F is differentiable at 6,

Vn - a//n vn
FO+a/ym)=FO) 1 o)

- a/\/n + 2y/n

5 “Uniformity” here means that the difference between the two sides will tend to
zero as n — oo, even if y and p both vary with n, provided p stays away from
zero and one (limsupp < 1 and liminfp > 0). This can be easily proved using
the Berry—Esséen bound (8.2).

nF(0+a/y/n) —m+1) aF(G—i—a/\/n)—F(H)+nF(9)—m+1
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Since the numerator and denominator of the argument of & in (8.4) both

converge, .
P(vn(X, —0) <a) — &(2aF'(0)).

The limit here is the cumulative distribution function for the normal distri-
bution with mean zero and variance 1/(4[F’(0)]?) evaluated at a, and so

Vn(X, —0) = N (0, (8.5)

4[F’1(9)]2) '

A similar derivation leads to the following central limit theorem for other
quantiles.

Theorem 8.18. Let X1, Xa,... be i.i.d. with common cumulative distribu-
tion function F, let v € (0,1), and let 6, be the |yn|th order statistic for
X1,..., X, (or a weighted average of the |yn]th and [yn]th order statistics).®
If F(0) = v, and if F'(0) exists and is finite and positive, then

(G — (1 —7)
ey <o’ [F’W) |

as n — oQ.

8.5 Asymptotic Relative Efficiency

A comparison of the mean and median will only be natural if they both
estimate the same parameter. In a location family this will happen naturally if
the error distribution is symmetric. So let us assume that our data are i.i.d. and
have common density f(z — ) with f symmetric about zero, f(u) = f(—u),
u € R. Then Py(X; < 0) = Py(X; > 0) = 1/2, and EpX; = 0 (provided the
mean exists). By the central limit theorem,

Vn(X, —0) = N(0,0%),
where
o? = / 22 f(z) da,
and by (8.5),
" 45200

(Here we naturally take f(0) = F’(0).) Suppose f is the standard normal
density, f(z) = ef‘”2/2/\/27r. Then 02 = 1 and 1/(4f%(0)) = /2. Since the

m(Xn—e);»N( ! >

5 Here |z], called the floor of z, is the largest integer y with y < . Also, [z] is
the smallest integer y > x, called the ceiling of z.
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variance of the limiting distribution is larger for the median than the mean,
the median is less efficient than the mean. To understand the import of this
difference in efficiency, define m = m,, = |7n/2], and note that \/n/m —
\/2/7r as n — 0o. Using Theorem 8.13,

Vi \/ (K — ) = N(0,1).

This shows that the error distribution for the median of m observations is ap-
proximately the same as the error distribution for the mean of n observations.
As n — oo, m/n — m/2, and this limiting ratio 7/2 is called the asymptotic
relative eﬂiczency (ARE) of the mean X,, with respect to the median X,,. In
general, if 6,, and 0, are sequences of estimators, and if

vn(0, —0) = N(O,Ug)

and
Vn(b, —0) = N(0,02),

then the asymptotic relative efficiency of 0,, with respect to 6, is 093 / Jg. This
relative efficiency can be interpreted as the ratio of sample sizes necessary for
comparable error distributions.

In our first comparison of the mean and median the data were a random
sample from N (6,1). In this case, the mean is UMVU, so it should be of no
surprise that it is more efficient than the median. If instead

fla) = e,

then

02:/x2;e*|‘/”|da€:/ e dr =T(3) =2! = 2.
0

So here \/n(X,, —6) = N(0,2), /n(X,, — ) = N(0,1), and the asymptotic
relative efficiency of X,, with respect to Xn is 1/2. Now the median is more
efficient than the mean, and roughly twice as many observations will be needed
for a comparable error distribution if the mean is used instead of the median.
In this case, the median is the maximum likelihood estimator of 6. Later
results in Sections 9.3 and 16.6 show that maximum likelihood estimators are
generally fully efficient.

Ezample 8.19. Suppose X;, ..., X, is a random sample from N (0, 1), and we
are interested in estimating

p=Py(X; <a)=o(a—0).

One natural estimator is
]3 = q)(a’ - X)a
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where X = (X1 + -+ + X,,)/n. (This is the maximum likelihood estimator.)
Another natural estimator is the proportion of the observations that are at
most a,

1 1 &
p = , < ZXi< = IXlS .
p= #li<niXi<w =3I <a)

By the central limit theorem,
vn(p = p) = N(0,6%),
as n — 00, where

&% = Varg(I{X; < a}) = &(a — 0)(1 — &(a — 0)).

Because the first estimator is a function of the average X, by the delta method,
Proposition 8.14,

vn(p —p) = N(0,6%),

as n — 0o, where

6% = { d D(a — ) M]Q = ¢*(a —0).

The asymptotic relative efficiency of p with respect to p is

B(a—0)(1—P(a—10))
¢*(a —0)

In this example, the asymptotic relative efficiency depends on the unknown
parameter §. When 6 = a, ARE = 7/2, and the ARE increases without bound
as |6 — a| increases. Note, however, that p is a sensible estimator even if the
stated model is wrong, provided the data are indeed i.i.d. In contrast, p is
only reasonable if the model is correct. Gains in efficiency using p should be
balanced against the robustness of p to departures from the model.

ARE =

8.6 Scales of Magnitude

In many asymptotic calculations it is convenient to have a standard notation
indicating orders of magnitudes of variables in limiting situations. We begin
with a definition for sequences of constants.

Definition 8.20. Let a,, and b,, n > 1, be constants. Then

1. a, = o(by,) as n — oo means that a, /b, — 0 as n — oo;
2. an, = O(bn) as n — oo means that |an/by| remains bounded, i.e., that
limsup,,_, o |an/bn| < 00; and
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3. an ~ b, means that a, /b, — 1 asn — oo.

Thus a,, = o(b,) when a,, is of smaller order of magnitude than b, a,, =
O(by,) when the magnitude of a,, is at most comparable to the magnitude of
by, and a,, ~ b, when a,, is asymptotic to b,. Note that a,, = o(1) means that
a, — 0.

Large oh and small oh notation may also be used in equations or in-
equalities. For instance, a,, = b, + O(c,) means that a,, — b, = O(c,), and
an < by+o(e,) means that a,, < b, +d, for some sequence d,, with d,, = o(cy,).
Exploiting this idea, a, ~ b, can be written as a,, = b,,,(l + 0(1)).

Although Definition 8.20 is stated for sequences indexed by a discrete
variable n, analogous notation can be used for functions indexed by a con-
tinuous variable z. For instance, a(z) = o(b(z)) as © — z¢ would mean that
a(x)/b(z) — 0 as © — xo. The limit zo here could be finite or infinite. As an
example, if f has two derivatives at z, then the two-term Taylor expansion
for f can be expressed as

L2 p1(a) + ofe?)

fla+e = @) +ef @)+

as € — 0. If f"” is exists and is finite at x, this can be strengthened to

L () + 0

flz+e) =f(z) +ef'(@)+,

as € — 0.
In the following stochastic extension, the basic idea is that the original
notion can fail, but only on a set with arbitrarily small probability.

Definition 8.21. Let X,, and Y,,, n > 1, be random wvariables, and let b,,
n > 1, be constants. Then

1. X, = 0p(bn) as n — oo means that X, /b, 2.0 asn — oo;
2. X,, = 0p(1) as n — oo means that

sup P(|X,| > K) — 0
as K — oo; and
3. X, = Op(bn) means that X,, /b, = Op(1) as n — oo.

The definition for O,(1) is equivalent to a notion called tightness for the
distributions of the X,,. Tightness is necessary for convergence in distribution,
and so, if X,, = X, then X,, = O,(1).

Here are a few useful propositions about stochastic scales of magnitude.

Proposition 8.22. If X,, = Op(ay) and Y,, = Oy(by), then

XY, = Op(anby).
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Also, if & > 0 and X,, = Op(ay), then X3 = Op(al). Similarly, if X,, =
Op(an), >0, and Y, = op(by,), then

X, Y, = op(anby,) and Yy = 0,(b5).

Proposition 8.23. Let o and 3 be constants with o > 0. If E|X,,|* = O(nP)
as n — oo, then X, = O,(n/*) as n — oo.

Proposition 8.24. If X,, = Op(an) with a,, — 0, and if f(e) = o(e*) as
€ — 0 with o > 0, then
f(Xn) = op(ay).

This result is convenient for delta method derivations such as Proposi-
tion 8.14. By the central limit theorem, X,, = p + Op(l/\/n), and by Taylor
expansion

flu+e)=f(u) +ef' (1) +ole)
as € — 0, whenever f is differentiable at p. So by Proposition 8.24,

F(Xn) = f(u) = (X0 — ) (1) + 0p(1//n),

and rearranging terms,

Vn(f(Xn) = f(1) = Vn(Xn = ) f' (1) + 0p(1) = N (0, [f'()]*0?).

8.7 Almost Sure Convergence’

In this section, we consider a notion of convergence for random variables called
almost sure convergence or convergence with probability one.

Definition 8.25. Random variables Y1,Y>, ... defined on a common probabil-
ity space converge almost surely to a random variable Y on the same space
if

PY,—-Y)=1

The statistical implications of this mode of convergence are generally sim-
ilar to the implications of convergence in probability, and in the rest of this
book we refer to almost sure convergence only when the distinction seems
statistically relevant. To understand the difference between these modes of
convergence, introduce

M,, = sup |Y, — Y],
k>n

and note that Y;,, — Y if and only if M,, — 0. Now M,, — 0 if for every ¢ > 0,
M, < e for all n sufficiently large. Define B, as the event that M, < € for all

7 Results in this section are used only in Chapter 20.
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n sufficiently large. An outcome is in B, if and only if it is in one of the sets
{M,, < €}, and thus

B = J{M,, < ¢}.
If an outcome gives a convergent sequence, it must be in B, for every €, and
SO

{Y, > Y}=()B.

e>0
and we have almost sure convergence if and only if

5

e>0

P =1.

Since the B, decrease as € — 0, using the continuity property of probability
measures (1.1), this will happen if and only if P(B.) = 1 for all ¢ > 0. But
because the events {M,, < e} increase with n, P(B¢) = lim, oo P(M, <
€). Putting this all together, Y¥;, — Y almost surely if and only if for every
e >0, P(M,, > €) — 0, that is, if and only if M, = 0. In words, almost
sure convergence means the largest difference after stage n tends to zero in
probability as n — oo.

Ezample 8.26. If Y,, ~ Bernoulli(p,), then Y, 2.0 if and only if p, — 0.
Almost sure convergence will also depend on the joint distribution of these
variables. If they are independent, then M,, = supy>.,, |Y, —0| ~ Bernoulli(r,,)
with -
1—m, =P(M,=0)=PYp=0k>n)=[](1—ps).
k=n

This product tends to 1 as n — oo if and only if > p, < co. So in this
independent case, Y;, — 0 almost surely if and only if > p,, < oo. If instead U
is uniformly distributed on (0,1) and Y, = I{U < p,}, then Y,, — 0 almost
surely if and only if p, — 0, that is, if and only if ¥, 2 0.

The following result is the most famous result on almost sure convergence.
For a proof, see Billingsley (1995) or any standard text on probability.

Theorem 8.27 (Strong Law of Large Numbers). If X1, Xo,... are i.i.d.
with finite mean p = EX;, and if X, = (X1 + -+ 4+ X,)/n, then X,, — 1
almost surely as n — oo.

8.8 Problems?®

*1. Random variables X1, X, ... are called “m-dependent” if X; and X; are
independent whenever |i — j| > m. Suppose X1, Xo, ... are m-dependent

8 Solutions to the starred problems are given at the back of the book.
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*3.

*4,

*5.

*6.

10.

11.
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with EX; = EXp = -+ = £ and Var(X;) = Var(X3) = -+ = 0% < o0.

Let X,, = (X1 + -+ + X,,)/n. Show that X, LN £ as n — oo. Hint: You

should be able to bound Cov(X;, X;) and Var(X,).

Let Xq,..., X, beii.d. from an exponential distribution with failure rate

A, and let M,, = max{Xy,...,X,}. Is log(n)/M, a consistent estimator

of A\?

If Xq,...,X, are ii.d. from the uniform distribution on (0,6) with

maximum M, = max{Xi,...,X,}, then the UMVU estimator of 6 is

0,, = (n + 1)M, /n. Determine the limiting distribution of n(6, — ) as

n — o0.

Let X1,..., X, bei.i.d. Bernoulli variables with success probability p. Let

Pn= X1+ +Xp)/n.

a) Show that v/n(p2 — p?) = N(0,4p*(1 — p)).

b) Find the UMVU ebtlmator dp of 02 = 4p3(1 — p), the asymptotic
variance in (a).

¢) Determine the limiting distribution of n(é,, — 02) when p = 3/4. Hint:
The maximum likelihood estimator of o2 is 6% = 4p3 (1 — p,,). Show
that n(d, — 62) converges in probability to a constant, and use a two-
term Taylor expansion to find the limiting distribution of n(62 — o2).

Let X1,...,X, beii.d. with common density fy(z) = (z—0)*e’~*. Show

that M, = min{X;,..., X, } is a consistent estimator of ¢, and determine

the limiting dlstrlbutlon for \/n(M, —6).

Prove that if 4, > 1 and Y, = Y, then A,Y, = Y. (This is a special

case of Theorem 8.13.)

Suppose X7, Xs, ... are i.i.d. with common density
! >0
z )
f(m) _ (1 + J})Q’ ’
0, otherwise,

and let M,, = max{X;,..., X, }. Show that M, /n converges in distribu-
tion, and give a formula for the limiting distribution function.

If ¢ > 0 and sup E|X,|'*¢ < oo, show that X,, n > 1, are uniformly
integrable.

Suppose X1, Xs, ... are integrable and

tlirrolo liTILrLsolipE[|Xn|I{|Xn| > t}} =

Show that X,, n > 1, are uniformly integrable.

Suppose X,, = X, x, — =, and the cumulative distribution function for
X is continuous at . Show that P(X,, < z,) — P(X < x).

Let X3, Xo, ... be i.i.d. variables uniformly distributed on (0,1), and let
X,, denote the geometric average of the first n of these variables; that is,

X, = (X1 x - x X))V
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12

13.

14.

15.

*16.

*17.

18.

a) Show that X, % 1/e as n — ooc.
b) Show that \/n(X, — 1/e) converges in distribution, and identify the
limit.
. Let X1,X5,... be i.i.d. from the uniform distribution on (1,2), and let
H,, denote the harmonic average of the first n variables:

n
X X

a) Show that H, 2, ¢ as n — oo, identifying the constant c.

b) Show that /n(H, —c) converges in distribution, and identify the limit.
Show that if Y, Lcasn — oo, then Y,, = Y as n — oo. Give the
distribution or cumulative distribution function for Y.

Let X1, Xs,... be i.i.d. from a uniform distribution on (0, ), and define

Y, = YII¥, X

Show that Y,, = Y as n — oo, giving the cumulative distribution function
for Y.

Let X1, Xo,... be i.i.d. from N(u,0?), let wy,ws,... be positive weights,
and define weighted averages

> iy wiX;
Z?:l w;

a) Suppose wi = 1/k, k = 1,2,.... Show that Y, 2, ¢, identifying the
limiting value c.

b) Suppose wy = 1/(2k —1)2. Show that Y;, = Y, giving the distribution
for Y. Hint:

Y, = n=12,....

o0 o0
1 w2 1 t
> =, and > = .
—1)2 _1)4
P 2k —1) 8 — (2k—1) 96
Let Yi,...,Y, be independent with Y; ~ N(a + Bx;,02), i = 1,...,n,
where 1,...,2, are known constants, and «, 3, and o2 are unknown
parameters. Find the maximum likelihood estimators of these parameters,
a, 3, and o2.

Let Xi,...,X, be jointly distributed. The first variable X; ~ N(0, 1),
and, for j =1,...,n —1, the conditional distribution of X;4, given X; =
z1,...,X; = xj is N(pz;,1). Find the maximum likelihood estimator of
p.

Distribution theory for order statistics in the tail of the distribution can
behave differently than order statistics such as the median, that are near
the middle of the distribution. Let X1, ..., X,, be i.i.d. from an exponential
distribution with unit failure rate.
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23.
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a) Suppose we are interested in the limiting distribution for X (s, the

second order statistic. Naturally, X ) 2,0 as n — oo. For an inter-
esting limit theory we should scale X(;) by an appropriate power of
n, but the correct power is not 1/2. Suppose x > 0. Find a value p
so that P(n?X(y) < z) converges to a value between 0 and 1. (If p
is too small, the probability will tend to 1, and if p is too large the
probability will tend to 0.)

b) Determine the limiting distribution for X(,) —logn.

Let X4,...,X,, beii.d. from an exponential distribution with failure rate

0. Let p, =#{i <n:X; >1}/nand X,, = (X1 +---+X,,)/n. Determine

the asymptotic relative efficiency of — logp,, with respect to 1/X,,.

Let X1,..., X, be iid. from N(6,0), with 6 > 0 an unknown parameter,

and consider estimating 6(6 + 1). Determine the asymptotic relative effi-

ciency of X,,(X,, + 1) with respect to 6, = (X? + -+ + X2)/n, where, as

usual, X,, = (X1 4+ -+ X,,)/n.

Let @, denote the upper quartile (or 75th percentile) for a random sample

X1,...,X, from N(0,0%). If &(c) = 3/4, then Q,, % co, and so &, =

Qn/c is a consistent estimator of o. Let & be the maximum likelihood

estimator of o. Determine the asymptotic relative efficiency of & with

respect to &.

If Xq,...,X, are i.i.d. from N(6,0), then two natural estimators of 6 are

the sample mean X and the sample variance S?. Determine the asymptotic

relative efficiency of S? with respect to X.

Suppose X1, ..., X, are i.i.d. Poisson variables with mean A and we are

interested in estimating p = Py(X; = 0) = ™.

a) One estimator for p is the proportion of zeros in the sample, p =
#{i <n:X; =0}/n. Find the limiting distribution for /n(p — p).

b) Another estimator would be the maximum likelihood estimator p. Give
a formula for p and determine the limiting distribution for v/n(p — p).

¢) Find the asymptotic relative efficiency of p with respect to p.

Suppose Xi,...,X, are iid. N(0,02), and let M be the median of

| X1, .., | Xnl

a) Find ¢ € R so that 6 = ¢M is a consistent estimator of o.

b) Determine the limiting distribution for /n(¢ — o).

¢) Find the maximum likelihood estimator 6 of o and determine the
limiting distribution for v/n(6 — o).

d) Determine the asymptotic relative efficiency of & with respect to 4.

Suppose X1, Xo,... are i.i.d. from the beta distribution with parameters

a > 0and S > 0. The mean of this distribution is 4 = a/(a+ ). Solving,

a = Bu/(1 — u). If 8 is known, this suggests

B8X

1-X

as a natural estimator for a. Determine the asymptotic relative efficiency

of this estimator & with respect to the maximum likelihood estimator .

&:
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26.

27.

28.

29.
30.

31.

32.

33.

34.

8 Large-Sample Theory
Let X1,...,X, beii.d. Poisson with mean A, and consider estimating
g\) = P\(X; =1) = e

One natural estimator might be the proportion of ones in the sample:
. 1,
pn:n#{zgn:Xizl}.

Another choice would be the maximum likelihood estimator, g(X,,), with
X, the sample average.

a) Find the asymptotic relative efficiency of p,, with respect to g(X,).
b) Determine the limiting distribution of

n[g(Xn) - 1/6]

when A = 1.

Let X4,...,X,, beiid. from N(0,1), and let Uy,...,U, be iid. from a
uniform distribution on (0, 1), with all 2n variables independent. Define
Y, = X;U;,i=1,...,n. If the X; and U; are both observed, then X would
be a natural estimator for . If only the products Y7, ...,Y,, are observed,
then 2Y may be a reasonable estimator. Determine the asymptotic relative
efficiency of 2Y with respect to X.

Definition 8.21 for O,(1) does not refer explicitly to limiting values as
n — oo. But in fact the conclusion only depends on the behavior of the
sequence for large n. Show that if

limsupP(|Xn| > K) — 0

n—oo
as K — o0, then X,, = Op(1), so that “sup” in the definition could be
changed to “limsup.”
Prove Proposition 8.22.
Markov’s inequality. Show that for any constant ¢ > 0 and any random

variable X,
P(X| > o) < E|X|/c.

Use Markov’s inequality from the previous problem to prove Proposi-

tion 8.23.

If X,, = X as n — oo, show that X,, = O,(1) as n — oo. Also, show

that the converse fails, finding a sequence of random variables X,, that

are Op(1) but do not converge in distribution.

Show that if X,, = Op(1) as n — oo and f is a continuous function on R,

then f(X,) = O,(1) as n — co. Also, give an example showing that this

result can fail if f is discontinuous at some point x.

Let M,,, n > 1, be positive, integer-valued random variables.

a) Show that if M,, — oo almost surely as n — oo, and X,, — 0 almost
surely as n — oo, then X, — 0 almost surely as n — oo.
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b) Show that if M, LN 00, and X,, — 0 almost surely, then X/, 20.

35. Let Xi, X, ... be independent Bernoulli variables with P(X,, =1) = 1/n.
Then X, > 0, but almost sure convergence fails. Find positive, integer-
valued random variables M,,, n > 1, such that M,, — oo almost surely
with X,,,, = 1. This shows that the almost sure convergence for X,, in the
previous problem is essential.
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Estimating Equations and Maximum
Likelihood

Many estimators in statistics are specified implicitly as solutions to equations
or as values maximizing some function. In this chapter we study why these
methods work and learn ways to approximate distributions. Although we focus
on methods for i.i.d. observations, many of the ideas can be extended. Results
for stationary time series are sketched in Section 9.9.

A first example, introduced in Section 8.3, concerns maximum likelihood
estimation. The maximum likelihood estimator § maximizes the likelihood
function L(-) or log-likelihood I(-) = log L(-). And if [ is differentiable and
the maximum occurs in the interior of the parameter space, then 6 solves
Vi(0) = 0. Method of moments estimators, considered in Problem 9.2, provide
a second example. If X;,..., X, are i.i.d. observations with average X, and
if 4(0) = EpX;, then the method of moments estimator of 6 solves u(0) = X.
A final example would be M-estimators, considered in Section 9.8.

9.1 Weak Law for Random Functions!

In this section we develop a weak law of large numbers for averages of random
functions. This is used in the rest of the chapter to establish consistency and
asymptotic normality of maximum likelihood and other estimators.

Let X1, X5,... beiid., let K be a compact set in RP, and define

Wz(t) = h(ta Xi)v te Ka

where h(t,x) is a continuous function of ¢ for all . Then Wy, W5, ... are i.i.d.
random functions taking values in C(K), the space of continuous functions
on K.

Functions in C'(K) behave in many ways like vectors. They can be added,
subtracted, and multiplied by constants, with these operations satisfying the

1 The theory developed in this section is fairly technical, but uniform convergence
is important for applications developed in later sections.
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usual properties. Sets with these properties are called linear spaces. In addi-
tion, notions of convergence can be introduced for functions in C(K). There
are various possibilities. The one we use in this section is based on a notion
of length. For w € C(K) define

[wl[oe = sup |w(t)],
teK

called the supremum norm of w. Functions w, converge to w in this norm if
lwn — w|lee — 0. With this norm, C(K) is complete (all Cauchy sequences
converge), and a complete linear space with a norm is called a Banach space.

A final nice property of C'(K) is separability. A subset of some set is called
dense if every element in the set is arbitrarily close to some point in the
subset. For instance, the rational numbers are a dense subset of R because
there are rational numbers arbitrarily close to any real number z € R. A
space is separable if it has a countable dense subset. We state the law of large
numbers in this section for i.i.d. random functions in C(K), but the result
also holds for i.i.d. random elements in an arbitrary separable Banach space.?

Lemma 9.1. Let W be a random function in C(K) and define
w(t) = EW(t), te K.

(This function u is called the mean of W.) If E||W||sx < 00, then p is con-
tinuous. Also,

supE  sup |W(s)—-W()|—0

teK  si||s—t|<e

as e | 0.

Proof. Let t,, n > 1, be a sequence of constants in K converging to ¢t. Because
W is continuous, the random variables W (t,) converge to W (t) as n — oo.
They are also dominated by ||W||, which has a finite expectation. Thus

(ltn) = EW (tn) — EW (t) = pu(t)

as n — oo by dominated convergence, and p is continuous.
For the second part, define

Mc(t) = sup |[W(s) = W()],

si|s—tl|<e

2 As usual, we are not giving much attention to issues of measurability, and the
notion of what we mean by a “random function” is a bit vague. To be more
specific, define By (w) = {f € C(K) : ||f — w|| < a}, called the open ball with
radius a centered at w. The Borel o-field B can then be defined as the smallest
o-field that contains all open balls. If probability is defined on a measurable space
(X, A), then W : X — C(K) is measurable and would be called a random function
if W~!(B) € A for any Borel set B € B. Aside from defining Borel sets using open
balls instead of intervals, this definition is essentially the same as the definition
of measurability for random variables given in Definition 1.7.
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and let A¢ be the mean of M.,
A(t) = EM.(2).

Because W is continuous, M, is continuous. Also, since |M,(t)] < 2||W|| oo,
E||M||sc < o0, and by the first part of this theorem, A. is continuous. By
continuity, M.(t) — 0 as ¢ — 0, and by dominated convergence, A\.(t) — 0
as € — 0. Since the functions A, are decreasing as € | 0, by Dini’s theorem
(Theorem A.5) the convergence is uniform, that is, sup,cx Ac(t) = 0 as e | 0.

O

Theorem 9.2. Let W, W1, Ws, ... be i.i.d. random functions in C(K), K
compact, with mean p and E|W||e < 00, and let W, = Wy + -+ W,,)/n.
Then

W = pilloe 20

as n — oQ.

By the weak law of large numbers, for any t € K, W, (t) 2 u(t). But the
theorem is stronger, asserting that this convergence holds with uniformity in
t.

Proof. Fix € > 0. For notation, let

Msj(t) = sup  [Wj(s) — W(t)]
si||s—t]|<d

with mean As(t). Choose d using the second assertion of Lemma 9.1 so that

As({t)=FE sup |W(s)—W(t)| <e, vt € K,

s:]|s—t|| <8
and note that with this choice of §, if ||t — s|| < d, then

(1) — p(s)] = [E[W () — W(s)]| < B|W(t) ~ W(s)| <.

Let Bs(t) = {s : ||s —t|| < 6}, the open ball with radius § about ¢. Since
K is compact, the open sets Bs(t), t € K, covering K have a finite subcover
O; = Bs(t;),i=1,...,m. Then

W — il oo

=  max sup|Wn(t) — u(t)‘
i=1,..m €0,

< max sup [|[W(t) = W (t3)] + [Wa(ts) = ult)| + [u(t:) = u(0)] |

t te0;
< max sup ‘Wn(t) - Wn(tl)‘ + max‘Wn(ti) - u(ti)| +e.
L te0; o

Now
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1 n
sup (W, (t) = W (t:)| = sup | Y [W;(t) — W(t:)]
teOo; N teo; =1
< sup |W.(t) — W, (t;
n;(g\ () = Wi (53]

By the law of large numbers,
Msn(t:) & As(t:) < e.
Using these bounds,
W = pilloc < 2e+ m?X(M&,n(ti) = Xs(ti)) + m?x|Wn(ti) — pulti)]-

The two maximums in this equation both converge to zero in probability and
using this it is easy to argue that P(||W, — pllsc >3€) = 0asn —oo. O

Remark 9.3. The same proof coupled with the strong law of large numbers,
stated in Section 8.7, shows that |[W,, — p|lcc — 0 almost surely.

The following result shows the usefulness of uniform convergence. None of
the conclusions follow from pointwise convergence in probability.

Theorem 9.4. Let G,,, n > 1, be random functions in C(K), K compact,
and suppose |G, — glloo 2 0 with g a nonrandom function in C(K).

1. If t,, n > 1, are random variables converging in probability to a constant
t* e K, t, 5 t*, then Gp(tn) = g(t*).

2. If g achieves its maximum at a unique value t*, and if t,, are random
variables mazximizing Gy, so that

Gy, (tn) = sup Gn(t)a
teK

then tn, 2 t*.
3. If K C R and g(t) = 0 has a unique solution t*, and if t,, are random
variables solving G, (t,) = 0, then t, LN

Proof. For the first assertion, since

|Gn(tn) - g(t*)| < ‘Gn(tn) - g(tn)| + |9(tn) - g(t*)|
<G = glloo + |g(tn) — g(t*)

)

and since g(t,) 2 g(t*),
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P(|Gnltn) = g(t*)] > €)
< P ([|Gn — glloo + |g(tn) — g(t)] > €)
< P(|Gn = glloo > €/2) + P (|g(tn) — g(t*)| > €/2)

— 0.
g
M—4/2 .
M.=M-§
t
t* — € t* t"+e

Fig. 9.1. g and g+ §/2.

For the second assertion, fix € and let K. = K — B.(t*). This set is
compact; it is bounded because K is bounded, and it is closed because it
is the intersection of two closed sets, K and the complement of B(t*). Let
M = g(t*) = supg g and let M. = supy_g. Since K. is compact, M. = g(t})
for some t¥ € K, and since g has a unique maximum over K, M. < M. Define
d =M — M, > 0. See Figure 9.1. Suppose ||G,, — g|lco < /2. Then

1) )
supG, <supg+ _ =M —
K. K. 2 2
and
. N 0 )
supG,, > Gp(t*) > g(t*)— . =M — _,
K 2 2

and t,, must lie in B.(t*). Thus
P(IG — glloo < 6/2) < P(Jtn — '] < ©).
Taking complements,

P([tn — £ 2 €) < P(|Gn — glloc > 6/2) =0,

and so t, - t*. The third assertion in the theorem can be established in a
similar fashion. O
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Remark 9.5. The law of large numbers and the first and third assertions in
Theorem 9.4 can be easily extended to multivariate situations where the ran-
dom functions are vector-valued, mapping a compact set K into RP.

Remark 9.6. In the approach to the weak law here, continuity plays a key role
in proving uniform convergence. Uniform convergence without continuity is
also possible. One important result concerns empirical distribution functions.
If X4q,...,X, are ii.d., then a natural estimator for the common cumula-
tive distribution function F would be the empirical cumulative distribution
function Fn, defined as

Fo(x) = :L#{ign:Xigx}, x € R.

The Glivenko—Cantelli theorem asserts that ||, — Fllec = 0 as n — oco. In
the proof of this result, monotonicity replaces continuity as the key regularity
used to establish uniform convergence.

9.2 Consistency of the Maximum Likelihood Estimator

For this section let X, X7, Xo,... be i.i.d. with common density fg, 0 € (2,
and let [,, be the log-likelihood function for the first n observations:

In(w) =log [ ] fu(X:) = " log fu.(X).
i=1 i=1

(We use w as the dummy argument here, reserving 6 to represent the true
value of the unknown parameter in the sequel.) Then the maximum likelihood
estimator 6,, = 0, (X1,...,X,) from the first n observations will maximize L,,.
For regularity, assume fg(x) is continuous in 6.

Definition 9.7. The Kullback—Leibler information is defined as
1(0,w) = Eylog fo(X)/ fu(X)].

It can be viewed as a measure of the information discriminating between 6 and
w when 0 is the true value of the unknown parameter.

Lemma 9.8. If Py # P, then I(6,w) > 0.
Proof. By Jensen’s inequality,
—I(0,w) = Ey log[fw(

< log Eg [ fu(X)/ fo(X)]
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Strict equality will occur only if f,(X)/fo(X) is constant a.e. But then the
densities will be proportional and hence equal a.e., and Py and P,, will be the
same. O

The next result gives consistency for the maximum likelihood estimator
when {2 is compact. The result following is an extension when {2 = RP. Define

fw(X):|
fo(X) 1

Theorem 9.9. If 2 is compact, Eg||W || < 00, fu(x) is a continuous func-
tion of w for a.e. x, and P,, # Py for all w # 0, then under Py, 6, 2 0.

W) = 1og[

Proof. 1f Wi(w) = log(fu(Xi)/fo(Xi)), then under Py, Wy, Wa,... are ii.d.
random functions in C'({2) with mean p(w) = —I(6,w). Note that u(f) = 0
and p(w) < 0 for w # 6 by Lemma 9.8, and so g has a unique maximum at 6.

Since

1
Walw) = n n
1

n

J

0,, maximizes W,. By Theorem 9.2, |W,, — il|cc — 0, and the result follows
from the second assertion of Theorem 9.4. O

Remark 9.10. The argument used to prove consistency here is based on the
proof in Wald (1949). In this paper, the one-sided condition that Eg sup, W <
oo replaces Fy||W||o < oo. Inspecting the proof here, it is not hard to see
that Wald’s weaker condition is sufficient.

Theorem 9.11. Suppose 2 = RP, f,(x) is a continuous function of w for
a.e. ¢, P, # Py for allw # 0, and f,(z) — 0 asw — oo. If Eg||1xW||eo < 00
for any compact set K C R, and if Egsup|,|>q W(w) < oo for some a > 0,

then under Py, én L.
Proof. Since f,(xz) — 0 as w — oo, if fp(X) > 0,

sup W(w) — —o0
llwll>b

as b — oo. By a dominated convergence argument the expectation of this
variable will tend to —oc as b — 0o, and we can choose b so that

Ey sup W(w) <0.
llwll>b

Note that b must exceed ||0]], because W (#) = 0. Since

n

1
sup W (w) < Z sup Wi(w) 2 Ep sup W (w),
llwl>b AT lwli>b llwll>o
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Py( sup Wy (w) >0) —0,
lwl|>b
as n — oo. Let K be the closed ball of radius b, and let én be variables
maximizing W,, over K.3 By Theorem 9.9, 6, 2, 9. Since 6,, must lie in K
whenever

sup W, (w) < W, (6) =0,

[lw||>b
Py (én = 9~n) — 1. Tt then follows that 6,, 2 6. O

Remark 9.12. A similar result can be obtained when (2 is an arbitrary open
set. The corresponding conditions would be that f,(z) — 0 as w approaches
the boundary of {2, and that Eysup,cy- W(w) < oo for some compact set
K. Although conditions for consistency are fairly mild, counterexamples are
possible when they fail. Problem 9.4 provides one example.

Ezample 9.13. Suppose we have a location family with densities fg(z) = g(x—
), 0 € R, and that

1. g is continuous and bounded, so sup,p g(z) = K < oo,
2. g(z) = 0 as x — %00, and
3. [ |log g(x)|g(x) dz < .

Then

9(X —w)
FEysup W(w) = Ey sup log
wER ( ) w€eR Q(X - 9)

=log K — Eglogg(X —6)
—tog e — [ log g(a)]g(o) do

< Q.

Hence 0, is consistent by the one-sided adaptation of our consistency theorems
mentioned in Remark 9.10. The third condition here is not very stringent; it
holds for most densities, including the Cauchy and other ¢-densities, that
decay algebraically near infinity.

9.3 Limiting Distribution for the MLE

Theorem 9.14. Assume:

1. Variables X, X1, Xo, ... are i.i.d. with common density fg, 0 € 2 C R.

3 To be careful, as we define én, we should also insist that én = én whenever

0, € K, to cover cases with multiple maxima.
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IS

. The set A ={x: fo(x) > 0} is independent of 0.

. For every x € A, 9% fo(2)/00? exists and is continuous in 6.

4. Let W(0) = log fo(X). The Fisher information I(0) from a single obser-
vation exists, is finite, and can be found using either

Co

I1(6) = EgW'(0)% or I(8) = —E,W"(6).

Also,
EgW'(0) = 0.

5. For every 0 in the interior of (2 there exists € > 0 such that
E9||1[9,6’9+6]W”||00 < Q.

6. The mazimum likelthood estimator én is consistent.

Then for any 0 in the interior of 12,
Vn(0, —0) = N(0,1/1(6))
under Py as n — 0o.

The assumptions in this theorem are fairly mild, although similar results,
such as those in Chapter 16, are possible under weaker conditions. Assump-
tion 2 usually precludes families of uniform distributions or truncated families.
Assumptions 3 and 4 are the same as assumptions discussed for the Cramér—
Rao bound, and Assumption 5 strengthens 4. Concerning the final assumption,
for the proof 0,, needs to be consistent, but it is not essential that it maximizes
the likelihood. What matters is that \/nW;(én) 2% 0. In regular cases this will
hold for Bayes estimators. There may also be models satisfying the other as-
sumptions for this theorem in which the maximum likelihood estimator does
not exist or is not consistent. In these examples there is often a consistent
0,, solving W;(én) = 0, with this consistent root of the likelihood equation
asymptotically normal.

The following technical lemma shows that, when proving convergence in
distribution, we only need consider what happens on a sequence of events with
probabilities converging to one.

Lemma 9.15. Suppose Y,, = Y, and P(B,) — 1 as n — oo. Then for
arbitrary random variables Z,, n > 1,

Yn]-Bn + Zn]-BfZ =Y
as n — 0o.
Proof. For any € > 0,

P(|Znlpe| > €) < P(BS)=1— P(B,) — 0
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as n — 00. So Znlpe 20 asn — oo. Also,
P(|1Bn —1] > e) <P(Bi)=1-P(B,) —0

as n — 00, and so 1p_ 21 as n — oco. With these observations, the lemma
now follows from Theorem 8.13. O

Proof of Theorem 9.14. Choose € > 0 using Assumption 5 small enough that
[0 — €0+ ¢ C 2° and Eg|1j6—c,0+qW"[|cc < 00, and let B,, be the event
0, € [0—e€, O+¢€]. Because 0, is consistent, Py(B,,) — 1, and since 0,, maximizes
nW,(-) = l.(+), on B, we have W;(én) = 0. Taylor expansion of W; about
0 gives

/A ~ ~

Wi (0,) = W, (0) + W, (6,)(0r — ),

where 0~n is an intermediate value between én and 6. Setting the left-hand side
of this equation to zero and solving, on B,,,

_ /AW (0)

(0, — ) W (9.1)

By Assumption 4, the variables averaged in W:L(H) are i.i.d., mean zero, with
variance I(). By the central limit theorem,

VnWh(0) = Z ~ N(0,1(6)).

Turning to the denominator, since |0, — 0| < |6,, — 6], at least on B,, and 6,
is consistent, 6,, 29, By Theorem 9.2,
"
||1[976,9+6](W7L - IM)HOO i 07
where u(w) = EgW"(w), and so, by second assertion of Theorem 9.4,

W (6,) % u(6) = —1(6).

Since the behavior of §,, on B¢ cannot affect convergence in distribution (by
Lemma 9.15),

~ N(0,1/1(9)),
as n — 0o by Theorem 8.13. ad

Remark 9.16. The argument that
. 1., -~
Wo(0n) = 17(0n) 2> ~1(0)

holds for any variables 6, converging to 6 in probability. This is exploited
later as we study asymptotic confidence intervals.
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9.4 Confidence Intervals

A point estimator § for an unknown parameter g(6) provides no information
about accuracy. Confidence intervals address this deficiency by seeking two
statistics, dp and J1, that bracket g(#) with high probability.

Definition 9.17. If 6y and 01 are statistics, then the random interval (dg, 1)
is called a 1 — a confidence interval for g(0) if

Py (9(9) € (50,51)) >1-aq,

for all 6 € £2. Also, a random set S = S(X) constructed from data X is called
a 1 — « confidence region for g(0) if

Py(9(0) € S) >1—a,
for all 6 € £2.

Remark 9.18. In many examples, coverage probabilities equal 1 — « for all
0 € {2, in which case the interval or region might be called an ezact confidence
interval or an exact confidence region.

Example 9.19. Let X1,...,X, be ii.d. from N(u,0?). Then from the results
in Section 4.3, X = (X; +---+ X,,)/nand S? =" (X; — X)?*/(n—1) are
independent, with X ~ N(u,02/n) and (n —1)S?/0? ~ x%_,. Define

X —p
7 = ~ N(0,1
N0
and ( )52
n—1 9
V: 0_2 Nanl'

These variables Z and V' are called pivots, since their distribution does not
depend on the unknown parameters p and o2. This idea is similar to ancillar-
ity, but Z and V are not statistics since both variables depend explicitly on
unknown parameters. Since Z and V' are independent, the variable

Z
T =
VV/(n—1)

is also a pivot. Its distribution is called the t-distribution on n — 1 degrees of
freedom, denoted T ~ t,,_1. The density for T is

(9.2)

I((v+1)/2)

Jrlw) = Vvl (v/2)(1 4 22 /v)r+1)/2 7

r €R,

where v = n — 1, the number of degrees of freedom.
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Pivots can be used to set confidence intervals. For p € (0, 1), let ¢, ,, denote
the upper pth quantile for the t-distribution on v degrees of freedom, so that

T>t / fr(x)de =p

17

By symmetry,

P(T > ta/Q,n—l) = P(T < _ta/Q,n—l) = 0[/2,

and so
P(_ta/Q,nfl <T< ta/2,n71) =1-q.
Now
_ Z X -
V/n=1)  S/yn’
and so

_ta/2,n71 <T< ta/2,n71

if and only if
| X — pl
<ta/2.n—
S/y/n /2,n—1

if and only if
S
| X — p| <tajon—1 Jn

if and only if

S S def
uE (X_ta/Z,n1\/n7X+ta/2,n1\/n> = (o, 61).
Thus for any 6 = (u,0?),

Pg(u € (50,51)) =1l—-a

and (dp, 1) is a 1 — a confidence interval for .

The pivot V can be used in a similar fashion to set confidence intervals
for o2. Let Xzzw denote the upper pth quantile for the chi-square distribution
on v degrees of freedom. Then

P(V 2 X(21/2,n—1) = P(V < X%—a/Q,n—l) = a/2,
and

n—1)5?
l—a=hH (X%—a/Q,n—l <V= ( 0_2) < X(21/2,n—1>

—1)52 —1)52
p e (-0 wons]
Xa/2mn-1 Xi—a/2n—1
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(n—1)8% (n—-1)8?
XZ/Z,nfl 7X%7a/2,n71

is a 1 — a confidence interval for o2.

Thus

9.5 Asymptotic Confidence Intervals

Suppose the conditions of Theorem 9.14 hold, so that under Py,
Vvn(, —0) = N(0,1/1(0))

as n — oo, where 0,, is the maximum likelihood estimator of 6 based on n
observations. Multiplying by \/ 1(0), this implies

V/nI(0)(6, — 0) = N(0,1). (9.3)
Since the limiting distribution here is independent of 6, \/nI(G)(én —0) is

called an approzimate pivot. If we define z, = & (1 — p), the upper pth
quantile of N(0,1), then

(\/nI )0 — 0| < zap2) 21—«
as n — oo. If we define the (random) set
S=1{0€2:\/nl(0)0n — 0| < 202}, (9.4)
then 6 € S if and only if \/nI(6) )0, — 0] < Za/2, and so
PyfelS) —1—a

as n — o0o. This set S is called a 1 — « asymptotic confidence region for 0.
Practical considerations may make the confidence region S in (9.4) unde-
sirable. It need not be an interval, which may make the region hard to describe
and difficult to interpret. Also, if the Fisher information I(-) is a complicated
function, the inequalities defining the region may be difficult to solve. To avoid

these troubles, note that if I(-) is continuous, then \/I )/1(0) ™1, and so
by Theorem 8.13 and (9.3),

\/nl(én)(é —0) \/ \/nI (0, —0) = N(0,1)

as n — 0o. From this,
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Pg(\/nl(én)lén - 6| < ZG/Q)

Za/2 é + Za)2

Vol \/n1@,)

=P |0 € én—

—1—«

as n — 00. So

Ra/2 é + Ra)2

o0 \JnI(d,)

is a 1 — « asymptotic confidence interval for 6.

The interval (9.5) requires explicit calculation of the Fisher information. In
addition, it might be argued that confidence intervals should be based solely
on the shape of the likelihood function, and not on quantities that involve

~ ~ Py

an expectation, such as I(6,). Using Remark 9.16, —1/(0,,)/n — I(6). So
\/—l;{(én)/\/nf(g) ™ 1, and multiplying (9.3) by this ratio,

0, — (9.5)

V=166, - 0) = N(0,1) (9.6)

under Py as n — oo. From this,

a2 é + a2
V@ /)

is a 1—a asymptotic confidence interval for 6. The statistic —I!/(6,,) used to set
the width of this interval is called the observed or sample Fisher information.

0, — (9.7)

The interval (9.7) relies on the log-likelihood only through 6, and the
curvature at 6,,. Our final confidence regions are called profile regions as they
take more account of the actual shape of the likelihood function. By Taylor
expansion about én,

20,,(0,) — 20(8) = [v/~12(62)(6 — 6,)]°,

where 67 is an intermediate value between 6 and 6, (provided ,(6,) = 0,
which happens with probability approaching one if 8 € £2°). By the argument
leading to (9.6),

V=1(05)(0n — 0) = Z ~ N(0,1),

and so, using Corollary 8.11,
2y (0n) — 200 (0) = 22 ~ X3

Noting that P(Z?% < zi/z) =P(2a2 < Z < 242) =1—aq,
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Py(2n(0n) = 21(0) < 22)9) — 1 —a.

If we define .
S ={0€02:20,(0,) —20n(0) < 23 )5}, (9.8)
then Pp(f € S) — 1 —« and S is a 1 — o asymptotic confidence region for

6. Figure 9.2 illustrates how this set S = (g, d1) would be found from the
log-likelihood function I, (+).

=]

S

s T+
[«%)

=

v

Fig. 9.2. Profile confidence interval (do, d1).

Ezxample 9.20. Suppose X1, ..., X, are i.i.d. from a Poisson distribution with
mean 0. Then

[,(0) =nXlogh —nb — log <H Xﬂ) ,

i=1
where X = (X1 +--- + X,,)/n. Since

X
o) ="" -n,

the maximum likelihood estimator of 6 is = X. Also, I(8) = 1/6. The first
confidence region considered, (9.4), is

S=1{0>0:vn/010 -0 < 245}
={6>0: 0% — 200 + 0% < 25/29/71} =(6-,07),
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where

5 5 23/2 A 22/2 :
0F =0+ a0+ 5] 0%

The next confidence interval, (9.5), based on I(0) =1/X is

(X g\ X /0, X Za/g\/X/n> .

For this example, the third confidence interval is the same because the ob-
served Fisher information, —I//(6) = nX /0 = n/X, agrees with nI(). Note
that the lower endpoint for this confidence interval will be negative if X is
close enough to zero. Finally, the profile confidence interval (9.8) is

22
{9>0:9—X10g(9/X)—X< ;/2}.
n

This set will be an interval, because the left-hand side of the inequality is a
convex function of 6, but the endpoints cannot be given explicitly and must
be computed numerically.

Ezxample 9.21. Imagine an experiment in which X is either 1 or 2, according
to the toss of a fair coin, and that
Y|IX =2~ N(0,z).

Multiplying the marginal density (mass function) of X by the conditional
density of Y given X, the joint density of X and Y is

(y ;xG)Q] .

1

Jolw,y) = 227z

exp[—
The Fisher information is

10) = B O tog fo(x.Y) =By | L] =3
) = 98620g9(’)_9X_4'

If (X1,Y1),...,(X,,Ys) is a random sample from this distribution, then

n

In(0) = Zlog fo(Xi,Yi) = Z {— (Y;;(ZH) - ;log(&rXi)}

i=1 =1

and
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Equating this to zero, the maximum likelihood estimator is

é Z?:I(K/Xl)

orL/x)”

Also, I(0) = — 3", (1/X;). Here the first two confidence intervals, (9.4) and
(9.5), are the same (since the Fisher information is constant), namely

N 4 4 4

The last two intervals are also the same (because the log-likelihood is exactly
quadratic), namely

(én . Za)2 An + Za/2 > .
V(1) X)) Vi (1/X)

In this example, the latter, likelihood-based intervals are clearly superior.
Given X1 = z1,..., X, = Zn, 0, is exactly N(9,1/ Zi:l(l/xi))’ and by
smoothing, the coverage probability for (9.9) is exactly 1 — «. Also, the width
of (9.9) varies in an appropriate fashion: it is shorter when many of the X;
are 1s, increasing in length when more of the X; are 2s.

(9.9)

9.6 EM Algorithm: Estimation from Incomplete Data

The EM algorithm (Dempster et al. (1977)) is a recursive method to calculate
maximum likelihood estimators from incomplete data. The “full data” X has
density from an exponential family, but is not observed. Instead, the observed
data Y is a known function of X, Y = ¢(X), with g many-to-one (so that X
cannot be recovered from Y'). Here we assume for convenience the density for
X is in canonical form, given by

h(x)enT(w)fA(n).

We also assume that n € 2 C R, although the algorithm works in higher
dimensions, and that Y is discrete. (The full data X can be discrete or con-

tinuous.)
The EM algorithm may be useful when data are partially observed in
some sense. For instance, X1,..., X, could be a random sample from some

exponential family, and Y; could be X; rounded to the nearest integer. Similar
possibilities could include censored or truncated data.

The EM algorithm can also be used in situations with missing data. For
instance, we may be studying answers for two multiple choice questions on
some survey. The full data X gives information on answers for both questions
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for every subject. The incomplete data Y may provide counts for all answer
combinations for respondents who answered both questions, along with counts
for the first question for respondents who skipped the second question, and
counts for the second question for respondents who skipped the first question.
Let X denote the sample space for X, ) the sample space for Y, and X (y)
the cross-section
X(y) ={zeX:g(x) =y}

Then Y = y if and only if X € X (y).

Proposition 9.22. The joint density of X andY (with respect to p X v with
w the dominating measure for X and v counting measure on Y) is

La(y) (x)h(x)enT(r)—A(n).
Proof. Let f be an arbitrary nonnegative function on X x ). Then f(X,Y) =

> yey [(X,y)[{Y = y}. Since expectation is linear (or by Fubini’s theorem)
and Y = g(X),

EBf(X,Y)=>_ Ef(X,y)I{g(X) =y}

yey
=Y [ Sa{ole) = s A du ),
yey /¥
and the proposition follows because I{g(z) = y} = 1x(y)(z). O

To define the algorithm, recall that the maximum likelihood estimate of n
from the full data X is (T), where v is the inverse of A’. Also, define

e(y,n) = Ey[T(X) | Y =y].

This can be computed as an integral against the conditional density of X
given Y = y. Dividing the joint density of X and Y by the marginal density
of Y, this conditional density is

Ly(y) (x)h(x)e"T(f)—A(")
fn (y) ’

where

o) = Po(Y =) = Py(X € X)) = | | H@ETAD dug),

The algorithm begins with an initial guess 7jy for the true maximum likelihood
estimate 7). Using this initial guess and data Y, the value of T'(X) is imputed
to be Ty = e(Y, 7)) (this is called an E-step). The refined estimate for 7 is
1 = ¥(T1) (an M-step). These E- and M-steps are repeated as necessary,
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starting with the current estimate for 7 instead of the initial guess, until the
values converge.

If the exponential family is not specified in canonical form, so the density
is h(x)e"@T@)=BO) the E-step of the EM algorithm stays the same,

Ti+1 = B, [T(X)|Y],

and for the M-step, 6 maximizes n(0)T}, — B(0) over 6 € (2.
If the EM algorithm converges to 7, then 1 will satisfy

i =1 (e(Y, 7)),

or, equivalently,
A7) = e(Y, 7).

Since
0 B 6877 fX(Y)h(x)e’iT(w)*A(n) dp(z)
oy # 1 Y) = £ Y)
B fX(Y) (T () — A ()] h(x)enT @) =40 dy(z)
- Fa(Y)

=e(Y,n) — A'(n),
the log-likelihood has zero slope when n = 1.

Ezample 9.23 (Rounding). Suppose X1, ..., X, are i.i.d. exponential variables
with common density f,(z) = ne™"*, z > 0; f,(z) = 0, z < 0, and let
Y; = | Xi], the greatest integer less than or equal to X;, so we only observe
the variables rounded down to the nearest integer. The joint distributions
of Xi,...,X, form an exponential family with canonical parameter n and
complete sufficient statistic T = —(X1 + - - - + X,,). The maximum likelihood
estimator of 7 based on X is ¥(T) = —n/T. Arguing as in Proposition 9.22,

ffm—l xne~ " dx en—1-—1

_ Jui —
= y1+n(en_1)a

i1
JI pemn da

k3

and by the independence,
E,XilY1 =91, Y0 = yn] = Ep[Xi]Yi = i)
Thus

e(y,n) = Ey[T|Y1 =y1,...,Yn = yn]

=~ B lY: =] = [y +

e —1 —n}
i=1

n(en —1)
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The EM algorithm is given by

n ehi —1—1;
oo dTjp=-nl|Y Y
nj T and 1£j41 n|¥r+ Ai(eh — 1)

In this example, the mass function for Y; can be computed explicitly:

BYi=y) =Py <Xi<y+=>0-e")(")’ y=01,...,

and we see that Y7,...,Y, are i.i.d. from a geometric distribution with p =
1 — e™". The maximum likelihood estimator for p is

R 1

P= 1y
and since n = —log(1 — p), the maximum likelihood estimator for 7 is

7 = —log(1 — p) =log(1l+ 1/Y).

To study the convergence of the EM iterates 7;, j > 1, to the maximum
likelihood estimator 7), suppose 7j; = 7} 4+ €. By Taylor expansion,

1 1
Tit1=—nlY -
Jj+1 n{ +77—|—e e"+‘—1]
n € ene’l 9
= — 1 — N O
-5 @ o]
and from this, A
i1 =1+€|l— et +O(€?) (9.10)
T]J"Fl =17 (e,f] o 1)2 . .
In particular, if 7; = 7, so € = 0, 741 also equals 7. This shows that 7 is a
fixed point of the recursion.

As a numerical routine for optimization, the EM algorithm is generally
stable and reliable. One appealing property is that the likelihood increases
with each successive iteration. This follows because it is in the class of MM
algorithms, discussed in Lange (2004). But convergence is not guaranteed: if
the likelihood has multiple modes, the algorithm may converge to a local max-
imum. Sufficient conditions for convergence are given by Wu (1983). Although
the EM algorithm is stable, convergence can be slow. By (9.10), there is linear
convergence in our example, with the convergence error 7); — 7 decreasing by
a constant factor (approximately) with each iteration. Linear convergence is
typical for the EM algorithm. If the likelihood for Y is available, quadratic con-
vergence, with 7);41 — 7 = O((f); —1)?), may be possible by Newton-Raphson
or another search algorithm, but faster routines are generally less stable and
often require information about derivatives of the objective function.

The EM algorithm can be developed without the exponential family struc-
ture assumed here. It can also be supplemented to provide numerical approx-
imations for observed Fisher information. For these and other extensions, see
McLachlan and Krishnan (2008).
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9.7 Limiting Distributions in Higher Dimensions

Most of the results presented earlier in this chapter have natural extensions in
higher dimensions. If z = (z1,...,2p) and y = (y1, ..., ¥yp) are vectors in R?,
then x < y will mean that z; < wy;, ¢ = 1,...,p. The cumulative distribution
function H of a random vector Y in R? is defined by H(y) = P(Y < y).

Definition 9.24. LetY, Y1, Ys, ... be random vectors taking values in R, with
H the cumulative distribution of Y and H, the cumulative distribution func-
tion of Y,, n=1,2,.... Then Y, converges in distribution to Y as n — oo,
written Y, = Y, if H,(y) — H(y) as n — oo at any continuity point y of H.

For aset S C RP, let S = S —S° denote the boundary of S. The following
result lists conditions equivalent to convergence in distribution.

Theorem 9.25. If Y, Y1, Y5, ... are random vectors in RP, then the following
conditions are equivalent.

1.Y,=Y asn — oo.

2. Eu(Y,) — Eu(Y) for every bounded continuous function u : RP — R.
3. liminf,,_., P(Y,, € G) > P(Y € G) for every open set G.

4. limsup,,_,.  P(Y, € F) < P(Y € F) for every closed set F'.

5 P(Y, €S8)— P(Y €8) for any Borel set S such that P(Y € 9S) = 0.

This result is called the portmanteau theorem. The second condition in this
result is often taken as the definition of convergence in distribution. As is the
case for one dimension, the following result is an easy corollary.

Corollary 9.26. If f : RP — R™ is a continuous function, and if Y,, =Y (a
random vector in RP), then

f(Yn) = ().

In the multivariate extension of the central limit theorem, averages of i.i.d.
random vectors, after suitable centering and scaling, will converge to a limit,
called the multivariate normal distribution. One way to describe this distri-
bution uses moment generating functions. The moment generating function
My for a random vector Y in RP is given by

My (u) = Be*Y u € RP.

As in the univariate case, if the moment generating functions of two random
vectors X and Y agree on any nonempty open set, then X and Y have the same
distribution. Suppose Z = (Zi,...,2,)" with Z1,...,Z, a random sample
from N(0,1). By independence,

’ 2 2 ’
Ee“Z = (Bem?1) x --- x (Ee'r?r) = e"/2 x oo x etp/? = gwu/?,
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Suppose we define X = pu+ AZ. Then
EX =p and Cov(X) =X = AA'.

Taking u = A’t in the formula above for Ee¢*'Z, X has moment generating
function

’ ’ ’ ’ ’
Mx(t) _ Eet X _ Eet wtt'AZ _ et el Z

_ et'u+u'u/2 — et'qut'AA't/Z — et'u+t'2t/2

Note that this function depends on A only through the covariance X' = AA’.
The distribution for X is called the multivariate normal distribution with
mean p and covariance matrix Y, written

X ~N(p,2).

Linear transformations preserve normality. If X ~ N(u, X)) and Y = AX +
b, then

My (u) = Be¥ (AX+0) — vt pou'AX

— "My (A'u) = explu'b+ v’ Ap+ ' AX A'u/2),

and so
Y ~N(b+ Ap, AXA").

Naturally, the parameters for this distribution are the mean and covariance
of Y.

In the construction for N(u, ), any nonnegative definite matrix X' is
possible. One suitable matrix A would be a symmetric square root of X'. This
can be found writing X’ = ODO’ with O an orthogonal matrix (so O'O = I)
and D diagonal, and defining /2 = OD'/20’, where D'/? is diagonal with
entries the square roots of the diagonal entries of D. Then X'/? is symmetric
and

2512 — ODY20'ODY20" = ODY2DY?0' = 0DO' = £.  (9.11)

As a side note, the construction here can be used to define other pow-
ers, including negative powers, of a symmetric positive definite matrix Y. In

this case, the diagonal entries D;; of D are all positive, D“ can be taken

as the diagonal matrix with diagonal entries D¢, and X¢ 4 ODaO’. This

(R

construction gives X° = I, and the powers of X satisfy
Doyh = poth,

When X is positive definite (X' > 0), N(u, X) is absolutely continuous. To
derive the density, note that the density of Z is
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2
p e % /2 6—2'2/2

W or = mpr

Also, the linear transformation z ~» p+ X/2z is one-to-one with inverse & ~
E=Y2(x—p). (Here £~1/2 is the inverse of £'/2.) The Jacobian of the inverse
transformation is det(X~1/2) = 1/v/det X. So if X = p+ X/2Z ~ N(u, %),
a multivariate change of variables gives

’
e~ % z/2

P(X € B) :P(;H—EUQZEB):/---/IB(M+21/2z)(2 e dz
T

exp(~ 4 (5712 - ) (372(x — )
:/---/1B(aﬂ) dzx.
(2m)P/2/det &
From this, X ~ N(u,Y) has density

exp( (@ = ) T — )
(2m)P/2y/det &

The following result generalizes the central limit theorem (Theorem 8.12)
to higher dimensions. For a proof, see Billingsley (1995) or any standard text
on probability.

Theorem 9.27 (Multivariate Central Limit Theorem). If X;, Xo, ...
are i.1.d. random vectors with common mean p and common covariance matric
Yoand if X = (X1 4+ -+ Xp)/n, n>1, then

Vn(X —p) =Y ~ N(0, X).

Asymptotic normality of the maximum likelihood estimator will involve
random matrices. The most convenient way to deal with convergence in prob-
ability of random matrices is to treat them as vectors, introducing the Eu-
clidean (or Frobenius) norm

1/2

1M = {4 > M
i

Definition 9.28. A sequence of random matrices My, n > 1 converges in
probability to a random matriz M, written M, 2> M, if for every e > 0,

P(| My — M| >€) =0

as n — oco. Equivalently, M,, & M as n — oo if [M,);j 2 ij as n — 0o,
for alli and j.
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The following results are natural extensions of the corresponding results
in one dimension.

Theorem 9.29. If M,, 2 M asn — oo, with M a constant matriz, and if f
is continuous at M, then f(M,) % f(M).

Theorem 9.30. If Y, Y1,Ys,... are random vectors in RP with Y,, = Y as
n — 0o, and if M, are random matrices with M, 2 M asn — oo, with M

a constant matriz, then
M,Y, = MY

asn— oo

Technical details establishing asymptotic normality of the maximum like-
lihood estimator in higher dimensions are essentially the same as the details
in one dimension, so the presentation here just highlights the main ideas
in an informal fashion. Let X, X7, X5,... be i.i.d. with common density fg,
0 € {2 C RP. As in one dimension, the log-likelihood can be written as a sum,

1(0) = 3 og fo( X)),

As in Section 4.6, the Fisher information is a matrix,
1(8) = Covg(Valog fo(X)) = —E¢V; log fo(X),

and
EyVylog fo(X) = 0.

The maximum likelihood estimator based on X1, ..., X, maximizes [,. If
0, is consistent and @ lies in the interior of {2, then with probability tending
to one,

Vol (0,) = 0.
Taylor expansion of Vyl,,(-) about 8 gives the following approximation:
Voln(0n) = Vol (0) + Vil (0) (0, — 6).
Setting this expression to zero, solving, and introducing powers of n,

1

Vn(0, —0) ~ {-ivﬁznw)} ) Wngzn(e). (9.12)

By the multivariate central limit theorem,

\/1nv€ln(9) =vn [i > Vplog fo(Xi) =0

as n — 00. Also, by the law of large numbers,

=Y ~ N(0,1(9))
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n

—ivgzn(e) = i Z[—vg log fo(X)] 28 1(6)

i=1
as n — o0. Since the function A ~ A~! is continuous for nonsingular matrices
A, if 1(9) > 0,
-1
1
{— vgzn(e)} 1)t

n

The error in (9.12) tends to zero in probability, and then using Theorem 9.30,
Vi(ln —0) = 1(0)7'Y ~ N(0,1()71).
To verify the stated distribution for I(#)~'Y, note that Y has the same dis-
tribution as I(0)'/2Z with Z a vector of i.i.d. standard normal variates, and
SO
10)7'Y ~ 1) 1(0)V*Z = 1(0)"/2Z ~ N(0,1(6)71).
The following proposition is a multivariate extension of the delta method.

Proposition 9.31. If g : 2 — R is differentiable at 0, I1(0) is positive definite,
and \/n(0, — 0) = N(0,1(0)7"), then

Vn(g(6n) = 9(0)) = N (0,1°(6))
with )
v2(0) = (Vg(0)) 1(0)"'Vg(0).
As an application of this result, if &, is a consistent estimator of v(f) and
v(#) > 0, then
A Za/29n A Za/21>n,
97: - 9 Hn 913
CAERGANTARE (0.13)
is a 1 — a asymptotic confidence interval for g(0).
Finally, the delta method can be extended to vector-valued functions. In
this result, Dg(f) denotes a matrix of partial derivatives of g, with entries

[Dg(0)]i; = 0gi(0)/06;.
Proposition 9.32. If g : 2 — R™ s differentiable at 0, 1(0) is positive
definite, and \/n(0, — 0) = N(0,1(0)7"), then
Vn(g(0n) — 9(0)) = N (0, £(0))
with
X(0) = Dg(0)I(6)~ ' [Dg(0)]".

9.8 M-Estimators for a Location Parameter

Let X, X1, X5, ... be i.i.d. from some distribution @, and let p be a convex
function? on R with p(x) — co as @ — 4o00. The M -estimator T, associated

4 These conditions on p are convenient, because with them H must have a mini-
mum. But they could be relaxed.
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with p minimizes
n

H(t) =Y p(Xi—1t)
i=1
over t € R. If p is continuously differentiable and ¢ = p’, then T, is also a
root of the estimating equation

W (t) % i S B(X; — ) = 0.
=1

Several common estimates of location are M-estimators. If p(x) = 2,

then T, = X,,, the sample average, and if p(x) = |z|, then T;, is the median.
Finally, if @ lies in a location family of absolutely continuous distributions with
log-concave densities f(x — 6), then taking p = —log f, 1), is the maximum
likelihood estimator of 6.

To study convergence, let us assume p is continuously differentiable, and
define

\O) = Bo(X —0) = [ 0(a 1) dQ(a).

Since p is convex, ¢ is nondecreasing and A is nonincreasing. Also, \(¢) will
be negative for t sufficiently large and positive for ¢ sufficiently small.

Lemma 9.33. If A(t) is finite for allt € R and A(t) = 0 has a unique root c,
then Ty, 2 oe.

Using part 3 of Theorem 9.4, this lemma follows fairly easily from our law
of large numbers for random functions, Theorem 9.2. The monotonicity of
can be used both to restrict attention to a compact set K and to argue that
the envelope of the summands over K is integrable.

If p is symmetric, p(x) = p(—z) for all x € R, and if the distribution of X
is symmetric about some value 6, so that X — 6 ~ § — X, then in this lemma
the limiting value c is 6.

Asymptotic normality for T}, can be established with an argument similar
to that used to show asymptotic normality for the maximum likelihood esti-
mator. If 9 is continuously differentiable, then Taylor expansion of W, about
c gives

WalTn) = Wale) + (Tn = )W, (t),

with ¢} an intermediate value between ¢ and T,,. Since W, (T},) is zero,

_\/an(c).

Vi === )

By the central limit theorem,

VW (e) = N(O,VarW(X — c)]),
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and since t* 2 ¢, under suitable regularity®

W) B —Ey/ (X —¢) = N(c).

Thus
V(T —¢) = N(0,V(4,Q)),
where
_ BA(X o)
V(,Q) = V()2

M-estimation was introduced by Huber (1964) to consider robust estima-
tion of a location parameter. As noted above, if p is symmetric, p(z) = p(—x)
for all x € R, and if the distribution of X is symmetric about 6, X — 6 ~
f# — X, then T, is a consistent estimator of . For instance, we might have
Q = N(0,1), so that X —0 ~ N(0,1). Taking p the square function, p(z) = 2,
T, is the sample average X ,,, which is consistent and fully efficient. In a situ-
ation like this it may seem foolish to base M-estimation on any other function
p, an impression that seems entirely reasonable if we have complete confidence
in a normal model for the data. Unfortunately, doubts arise if we entertain the
possibility that our normal distribution for X is even slightly “contaminated”
by some other distribution. Perhaps

X ~ (1 - )N (0,1) + €Q*, (9.14)

with @* some other distribution symmetric about 6. Then
Var(X)=1—¢€+ e/(x —0)2dQ* ().

By the central limit theorem, the asymptotic performance of X, is driven by
the variance of the summands, and even a small amount of contamination e
can significantly degrade the performance of X, if the variance of Q* is large.
If Q* has infinite variance, v/n(X, — ) will not even converge in distribution.

Let C = C. be the class of all distributions for X with the form in (9.14).
If one is confident that @ € C. it may be natural to use an M-estimator with

sup V (¢, Q)

QecC.

as small as possible. The following result shows that this is possible and de-
scribes the optimal function ty. The optimal function 1y and py = ¥ are
plotted in Figure 9.3.

Theorem 9.34 (Huber). The asymptotic variance V (i, Q) has a saddle
point: There exists Qo = (1 — €)N(6,1) + eQf € Ce and g such that

® The condition ESupcie_e crq [P (X —1)] < oo for some € > 0 is sufficient.
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sup V (1o, Q) = V (Yo, Qo) = iﬁf V (¢, Qo).

QecC.
If k solves
1 2¢(k)
=P(|Z| <k
L P2 <k + 7
where Z ~ N(0,1), and if
142 It] < k;
1) = 2V = Ry
pol) {kltl — K%t >k,

then o = p, and Q} is any distribution symmetric about 0 with

Q5([0 — k.0 + k]) = 0.

Po Yo

VAN AN

k4

2 +
k /2 < t t =
-k k
< + B¢
—k k
k4
\4 \4

Fig. 9.3. Functions po and ).

9.9 Models with Dependent Observations®

The asymptotic theory developed earlier in this chapter is based on models
with i.i.d. observations. Extensions in which the observations need not have
the same distribution and may exhibit dependence are crucial in various ap-
plications, and there is a huge literature extending basic results in various
directions. In our discussion of the i.i.d. case, the law of large numbers and

6 Results in this section are somewhat technical and are not used in later chapters.
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the central limit theorem were our main tools from probability. Extensions
typically rely on more general versions of these results, but the overall nature
of the argument is similar to that for the i.i.d. case in most other ways. As
a single example, this section sketches how large-sample theory can be devel-
oped for models for stationary time series. For extensions in a variety of other
directions, see DasGupta (2008).

Time series analysis concerns inference for observations observed over time.
Dependence is common and is allowed in the models considered here, but we
restrict attention to observations that are stationary according to the follow-
ing definition. A sequence of random variables, X,,, n € Z, will be called
a (stochastic) process, and can be viewed as an infinite-dimensional random
vector taking values in RZ.

Definition 9.35. The process X is (strictly) stationary if

(Xla"'7Xk) ~ (Xn+17~~~7Xn+k)v
forallk>1 andn € Z.

Taking k = 1 in this definition, observations X; from a stationary process are
identically distributed, and it feels natural to expect information to accumu-
late fairly linearly over time, as it would with i.i.d. data.

Viewing a sequence z,, n € Z, as a single point 2 € RZ, we can define a
shift operator T' that acts on x by incrementing time. Specifically, y = T'(x)
if y, = 41 for all n € Z. Using T', a process X is stationary if X ~ T'(X),
where X ~ Y means that the finite-dimensional distributions for X and Y
agree:

(X3, Xig1, ... Xj) ~ (Y3,Yi11,...Y))

for alli < j in Z.

Ezxample 9.36. If X,,, n € Z, are i.i.d. from some distribution @, then X
is stationary. More generally, a mixture model in which, given Y = y, the
variables X,,, n € Z, are i.i.d. from @), also gives a stationary process X.

If €,, n € Z, are i.i.d. from some distribution @ with Fe, = 0 and Ee2 <
oo, and if ¢,, n > 1, are square summable constants, then

o0
X, = E Cj€n—j, n €7,
Jj=0

defines a stationary process X, called a linear process. If ¢, = p™ with |p| < 1
then
Xn+1 = an + €n+t1,

and if Q@ = N(0,0?%) we have the autoregressive model introduced in Exam-
ple 6.4.
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The ergodic theorem is a generalization of the law of large numbers useful
in this setting. To describe this result, let Bz denote the Borel sets of RZ.7
A set B € By is called shift invariant if x € B if and only if T'(z) € B.
Changing the value for x,, at any fixed n will not change whether « lies in a
shift invariant set; inclusion can only depend on how the sequence behaves as
|n| — oo. For instance, sets

1 n
{x:limsupxn SC} and {Z‘Z le — C as n—>oo}
n

nmTee i=1
are shift invariant, but {x : x3 + 27 < x4} is not.
Definition 9.37. A stationary process X,,, n € Z, is ergodic if
P(XeB)=0orl
whenever B is a shift invariant set in By.

In Example 9.36, i.i.d. variables and linear processes can be shown to be
ergodic. But i.i.d. mixtures generally are not; see Problem 9.38.

With this definition we can now state the ergodic theorem. Let T} denote
T composed with itself j times.

Theorem 9.38 (Ergodic Theorem). If X is a stationary ergodic process
and E|g(X)| < oo, then
1 & def

-2 9(T3(X)) = g = Eg(X)
j=1

almost surely as n — oco. The convergence here also holds in mean,

B| LS g(1,00) — | 0

As noted, if the X,, are i.i.d. from some distribution @, then X is ergodic.
If g is defined by g(z) = zo, then py = EX,, g(Tj(X)) = X;, and the ergodic
theorem gives the strong law of large numbers.

For convergence in distribution we use an extension of the ordinary central
limit theorem to martingales.

Definition 9.39. Forn > 1, let M,, be a function of X1, ..., X,. The process
M, n > 1, is a (zero mean) martingale with respect to X,,, n > 1, if EM; =0
and

EMpi1|X1,. .., X, = M, n>1.

" Formally, Bz is the smallest o-field that contains all (finite) rectangles of form
{x € R% : 2y, € (ag,br),i < k < j}.
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If M,,, n > 1, is a martingale, then by smoothing

EMyi2|X1, ..., X, = E[E[Myy2| X1, ..., Xng1] | X1, Xan]
= E[Mp1|X1,..., X, = M,.

With further iteration it is easy to see that
EMp+k|X1,..., Xpn] = My, n>1, k>1 (9.15)

Defining differences Y, 11 = My, 41 — M, n > 1, with Y; = M,

Using (9.15),

EYnin| X1, .. X0] = E[Mypsria| X1, -, Xn] = E[Mpik| X1, ..., X
=M,-M,=0, n>1, k>1.

If the X; are i.i.d. with mean p and Y; = X; — p, it is easy to check
that M, = Y1 +---+Y,, n > 1, is a martingale. By the ordinary central
limit theorem, M, //n is approximately normal. In the more general case,
the summands Y; may be dependent. But by smoothing,

EYihYn = EEYy i1 Yol X1, ..., Xp] = E[YoE[Yoyk] X1, ..., X0]] =0,

o def

and so they remain uncorrelated, as in the i.i.d. case. Let o = Var(Y,) =

EY?, and note that since the summands are uncorrelated,

Var(M,) = o 4+ - + o2.
For convenience, we assume that 02 — o2 as n — oo. (For more general
results, see Hall and Heyde (1980).) Then

Var(M,/v/n) = TILZUZZ — o2,
i=1

In contrast with the ordinary central limit theorem, the result for martin-
gales requires some control of the conditional variances

def

s2 = Var(Y,|X1,...,Xn 1) = E[Y2|X1,..., X0 1]

Specifically, the following result from Brown (1971a) assumes that

n

> ost o, (9.16)

1
n
1=1
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and that

1 n

2 BDPI{Y: [z evn}] — 0 (9.17)
i=1

as n — oo for all € > 0. Requirement (9.17) is called the Lindeberg condition.

Since Es? = 02, (9.16) might be considered a law of large numbers.

Theorem 9.40. If M,,, n > 1, is a mean zero martingale satisfying (9.16)
and (9.17), then

M,

" = N(0,0?%).
vn
Turning now to inference, let 6 € 2 C R be an unknown parameter, and

let Py be the distribution for a process X that is stationary and ergodic for
all @ € (2. Also, assume that finite-dimensional joint distributions for X are
dominated, and let fyp(x1,...,x,) denote the density of Xi,..., X,, under Py.
As usual, this density can be factored using conditional densities as

n

fo(z1,...,zn) = Hf9($i|$1, Cey Tio1).

=1

The log-likelihood function is then
In(w) =Y log fu(XilX1,..., Xio),
i=1

where, as before, we let w denote a generic value for the unknown parameter,
reserving 6 for the true value.

With dependent observations, the conditional distributions for X,, change
as we condition on past observations. But for most models of interest the
amount of change decrease as we condition further into the past, with these
distributions converging to the conditional distribution given the entire history
of the process. Specifically, we assume that the conditional densities

FolXnl X1, Xoem) — fo(XnlXno1,...) (9.18)

in an appropriate sense as m — oo. The autoregressive model, for instance,
has Markov structure with the conditional distributions for X, depending
only on the previous observation, f,(Xn|Xn-1,..., Xn-m) = fu(Xn|Xn-1).
So in this case (9.18) is immediate.

In Section 9.2, our first step towards understanding consistency of the
maximum likelihood estimator #,, was to argue that if w # 6, 1,,(0) will exceed
I (w) with probability tending to one as n — co. To understand why that will
happen in this case, define

f9(XO|X—17x_2, .. )

g(X) B log fw(XO|X713X727 .. )
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Note that
Eolg(X) | X_1, X ,.. ]

is the Kullback—Leibler information between # and w for the conditional dis-
tributions of X given the past, and is positive unless these conditional dis-
tributions coincide. Assuming this is not almost surely the case,

g = Egg(X) = EgEplg(X)| X1, X2,.. ]
is positive. Using (9.18), if j is large,

Jo(Xi|1 X, Xjm1) log fo(X;1X5-1, Xj-2,...)
fw(Xj|X1,...,Xj,1) fw(leXjfl,Xj,Q,...)

Using this approximation,

log = Q(Tj(X))-

9(T5(X)), (9.19)

) L1y
Xj|X1,...,Xj 1) n -

=1

ln(a) —ln(UJ) 1 & fe(Xj|X17"'an—l
= 1
n n; °8 ful _

converging to 1y > 0 as n — oo. If the approximation error here tends to zero
in probability (see Problem 9.40 for a sufficient condition), then the likelihood
at @ will be greater than the likelihood at w with probability tending to one.
Building on this basic idea, consistency of 6,, can be established in regular
cases using the same arguments as those for the i.i.d. case, changing likelihood
at a point w to the supremum of the likelihood in a neighborhood of w (or a
neighborhood of infinity).

In the univariate i.i.d. case, asymptotic normality followed using Taylor
approximation to show that

1

) Y 17.(0)
Vi, —0) =V +0,(1) (9.20)
- 17(0)
with ] .
WLl;(e) = N(0,I(f)) and — nz;;(e) L 1(0). (9.21)

The same Taylor expansion argument can be used in this setting, so we mainly
need to understand why the limits in (9.21) hold. Convergence for —1!/(6)/n
is similar to the argument for consistency above. If we define h as
82
h’(X) = _892 10gf9(X0|X,1, X*27 e ')7

and assume for large j,

0? 0?
~ 902 log fo(X;|X1,..., Xj—1) = ~ 902 log fo(X;|Xj-1,X;-2,...)

= h(Tj(X))7
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which is essentially that (9.18) holds in a differentiable sense, then

n

1 - !
_nl// _ 2692 logfeX|X1,...,Xj_1)%nzh(Tj(X))7

j=1

converging to Egh(X) by the ergodic theorem. Since Fisher information here
for all n observations is I,,(#) = —Epl!/(0), if the approximation error tends
to zero in probability, then

1

n

I,(0) & Egh(X). (9.22)

So it is natural to define I(0) = Egh(X), interpreted with large samples as
average Fisher information per observation.

Asymptotic normality for the score function I/,(6) is based on the martin-
gale central limit theorem. Define

0
log fo(X;] X1, ..., Xj1)

Yi= o9

so that

o) =Y,
j=1

The martingale structure needed will hold if we can pass derivatives inside
integrals, as in the Cramér—Rao bound, but now with conditional densities.
Specifically, we want

0
0= / 89f9(xj|x1, s i) dp(zy)
0
= o0 log fo(zjlw1, ..., m5-1) | fo(xjlz1, ... 25-1) du(z;).

Viewing this integral as an expectation, we see that

Eg[Y; | X1,...,X;1] =0,
which shows that I,(0), n > 1, is a martingale. We also assume

o def
s5 = Varg(Yj | X1, .. .,Xj,l)
82
— _Eg |:802 logfg(Xj|X1, e 7Xj—1) ’ Xl, ce. 7Xj—1 5

which holds if a second derivative can be passed inside the integral above.

By smoothing, 07 = Eys} = Vary(Y;), converging to I(f) as j — oo by an
argument like that for (9. 22). Therefore if the Lindeberg condition holds, then

1

PRACE: N(0,1(6))
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as n — oo by the martingale central limit theorem. Thus with suitable regu-
larity (9.21) should hold in this setting as it did with i.i.d. observations. Then
using (9.20)

Vn(0, —0) = N(0,1/1(6))

as n — 0o.

The derivation above is sketchy, but can be made rigorous with suitable
regularity. Some possibilities are explored in the problems, but good condi-
tions may also depend on the context. Martingale limit theory is developed in
Hall and Heyde (1980). The martingale structure of the score function does
not depend on stationarity or ergodicity, and Hall and Heyde’s book has a
chapter on large-sample theory for the maximum likelihood estimator without
these restrictions. Results for stationary ergodic Markov chains are given in
Billingsley (1961) and Roussas (1972).

9.10 Problems?®

1. Let Z1, Zs, ... be i.i.d. standard normal, and define random functions G,,,
n > 1, taking values in C(K) with K = [0,1] by

Gnlt) = nZ,(1— )" —t,  te0,1].

Finally, take g(t) = EG,(t) = —t.

a) Show that for any ¢ € [0, 1], G,,(t) 2 g(t).

b) Compute sup;c(o 1) n(1 — )" and find its limit as n — oo.

¢) Show that |G, — g|l does not converge in probability to zero as
n — 0.

d) Let T}, maximize G,, over [0,1]. Show that T}, does not converge to
zero in probability.

2. Method of moments estimation. Let X1, Xs,... be ii.d. observations
from some family of distributions indexed by 6 € 2 C R. Let X,, de-
note the average of the first n observations, and let u(f) = EypX, and
02(0) = Varg(X;). Assume that p is strictly monotonic and continuously
differentiable. The method of moments estimator 6, solves u(0) = X,,. If
(' (0) # 0, find the limiting distribution for v/n(6,, — 6).

3. Take K = [0,1], let W,,, n > 1, be random functions taking values in
C(K), and let f be a constant function in C(K'). Consider the following
conjecture. If |[W,, — f|loo = 0 as n — oo, then fol W, (t)dt 2 fol f(t)dt.
Is this conjecture true or false? If true, give a proof; if false, find a coun-
terexample.

8 Solutions to the starred problems are given at the back of the book.
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5. maximum likelihood estimation!inconsistent example If Z ~ N(u,o?),
then X = e has the lognormal distribution with parameters p and o2.
In some situations a threshold +, included by taking

X =v+¢7,

may be desirable, and in this case X is said to have the three-parameter

lognormal distribution with parameters ~y, i, and o2. Let data X1,..., X,

be i.i.d. from this three-parameter lognormal distribution.

a) Find the common marginal density for the X;.

b) Suppose the threshold + is known. Find the maximum likelihood es-
timators 4 = fi(y) and 62 = 6%(7) of p and o?. (Assume v < X(1).)

c) Let I(v, p, 0?) denote the log-likelihood function. The maximum like-
lihood estimator for v, if it exists, will maximize (v, i(v), 6%(7)) over
7. Determine

lim (v, 2(7),8%(%)).
S 1, (), 8%(7)

Hint: Show first that as v T Xy,

. 1 . n—1
fily) ~ log(X(y =) and %(y) ~ " log*(X (1) — 7).

Remark: This thought-provoking example is considered in Hill (1963).
6. Let X1, Xo,... beiid. from a uniform distribution on (0,1), and let T,, €
[0, 1] be the unique solution of the equation

n n
d ot =3 "Xx7.
i=1 i=1

a) Show that T, 2, ¢ as n — oo, identifying the constant c.
b) Find the limiting distribution for \/n(T;, — ¢) as n — oc.
7. Let X, Xo,... be i.i.d. from a uniform distribution on (0,1) and let T,

maximize
n

Z log(1 + t?X;)

, t
=1

over t > 0.
a) Show that T,, % ¢ as n — oo, identifying the constant c.
b) Find the limiting distribution for v/n(T}, — ¢) as n — oo.

*8. If V and W are independent variables with V' ~ x% and W ~ 7, then the
ratio (V/4)/(W/k) has an F' distribution with j and k degrees of freedom.
Suppose X1, ..., X,, is a random sample from N(u,,02) and Yi,...,Y,
is an independent random sample from N (g, 0’5). Find a pivotal quantity
with an F' distribution. Use this quantity to set a 1 —« confidence interval
for the ratio o, /0.

*9. Let X1q,...,X, be ii.d. from a uniform distribution on (0, 6).
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*11.

*12.

*13.

14.

*15.

16.
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a) Find the maximum likelihood estimator 6 of .

b) Show that 0 /0 is a pivotal quantity and use it to set a 1 —« confidence
interval for 6.

Let Xi,...,X, be ii.d. exponential variables with failure rate . Then

T = X; + -+ X, is complete sufficient. Determine the density of 6T,

showing that it is a pivot. Use this pivot to derive a 1 — « confidence

interval for 6.

Consider a location/scale family of distributions with densities fy , given

by

z—0
fra =) e,

where ¢ is a known probability density.

a) Find the density of (X — 0)/o if X has density fg .

b) If X; and Xo are independent variables with the same distribution
from this family, show that

X7+ Xy — 20
W =
| X1 — Xaf

is a pivot.
¢) Derive a confidence interval for 6 using the pivot from part (b).
d) Give a confidence interval for o based on an appropriate pivot.
Suppose S1(X) and S2(X) are both 1 — « confidence regions for the same
parameter g(#). Show that the intersection S1(X) N S2(X) is a confidence
region with coverage probability at least 1 — 2a.
Let (X1,Y1), ..., (Xn,Y,) be iid. with X; ~ N(0,1) and ;| X; = 2 ~
N(z6,1).
Find the maximum likelihood estimate 6 of 6.
Find the Fisher information () for a single observation (X;,Y;).

a)
b)
) Determine the limiting distribution of v/n(8 — 6).
)
)

[oFaNe)

Give a 1 — a asymptotic confidence interval for 6 based on I(6).
Compare the interval in part (d) with a 1 — o asymptotic confidence
interval based on observed Fisher information.

f) Determine the (exact) distribution of /3" X2(d — 6) and use it to
find the true coverage probability for the interval in part (e). Hint:
Condition on Xy, ..., X, and use smoothing.

Let Xi,..., X, be a random sample from N (6, 6?). Give or describe four
asymptotic confidence intervals for 6.

Suppose X has a binomial distribution with n trials and success probabil-
ity p. Give or describe four asymptotic confidence intervals or regions for
p. Find these regions numerically if 1 — a = 95%, n = 100, and X = 30.
Let X1,...,X, beiid. from a geometric distribution with success prob-
ability p. Describe four asymptotic confidence regions for p.

@
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17. A wariance stabilizing approach. Let X1, Xo, ... be i.i.d. from a Poisson
distribution with mean 6, and let 6,, = X,, be the maximum likelihood
estimator of 6.

a) Find a function g : [0,00) — R such that

b) Find a 1 — a asymptotic confidence interval for 6 based on the ap-
proximate pivot Z,.

18. Let X1, Xo, ... bei.i.d. from N(u,o?). Suppose we know that o is a known
function of u, o = g(p). Let ji,, denote the maximum likelihood estimator

for p under this assumption, based on Xi,..., X,,.

a) Give a 1 —« asymptotic confidence interval for p centered at fi,,. Hint:
If Z ~ N(0,1), then Var(Z?) =2 and Cov(Z, Z?) = 0.

b) Compare the width of the asymptotic confidence interval in part (a)
with the width of the ¢-confidence interval that would be appropriate
if 4 and o were not functionally related. Specifically, show that the
ratio of the two widths converges in probability as n — oo, identifying
the limiting value. (The limit should be a function of p.)

19. Suppose that the density for our data X comes from an exponential family
with density
h(z)enOT(@)=BO) fe2CR.

If § is the maximum likelihood estimator of 6, show that —1”(8) and I(6)
agree. (Assume that 7 is differentiable and monotonic.) So in this case,
the asymptotic confidence intervals (9.5) and (9.7) are the same.
*20. Suppose electronic components are independent and work properly with
probability p, and that components are tested successively until one fails.
Let X; denote the number that work properly. In addition, suppose de-
vices are constructed using two components connected in series. For proper
performance, both components need to work properly, and these devices
will work properly with probability p?. Assume these devices are made
with different components and are also tested successively until one fails,
and let X5 denote the number of devices that work properly.
a) Determine the maximum likelihood estimator of p based on X; and
X,
b) Give the EM algorithm to estimate p from ¥ = X; + Xo.
¢) If Y = 5 and the initial guess for p is po = 1/2, give the next two
estimates, p; and po, from the EM algorithm.
*21. Suppose X, ..., X, are i.i.d. with common (Lebesgue) density

_ eeOm
~ 2sinh@’

and let Y; = I{X; > 0}. If # = 0 the X, are uniformly distributed on
(—1,1).

fo(z) xz € (—1,1),
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a) Give an equation for the maximum likelihood estimator 0, based on
Xi,.., X,
Find the maximum likelihood estimator 6, based on Y7, ..., Y.

o

)

) Determine the EM algorithm to compute 6,,.

) Show directly that 9y is a fixed point for the EM algorithm.

) Give the first two iterates, 01 and 05, of the EM algorithm if the initial
guess is éo = 0 and there are 5 observations with Y7 +--- 4+ Y5 = 3.
Consider a multinomial model for a two-way contingency table with inde-
pendence, so that N = (Ny1, N1g, Naj, Nog) is multinomial with n trials
and success probabilities (pg, p(1—¢), ¢(1-p), (1—p)(1—q)). Here p € (0,1)

and ¢q € (0,1) are unknown parameters.

a) Find the maximum likelihood estimators of p and ¢ based on N.

b) Suppose we misplace the off-diagonal entries of the table, so our ob-
served data are X7 = Nj; and X9 = Nas. Describe in detail the EM
algorithm used to compute the maximum likelihood estimators of p
and g based on X; and Xos.

c¢) If the initial guess for p is 2/3, the initial guess for ¢ is 1/3, the number
of trialsisn = 12, X7 = 4, and X5 = 2, what are the revised estimates
for p after one and two complete iterations of the EM algorithm?

Let Xi,...,X, be ii.d. exponential variables with failure rate A. Also,

fori=1,...,n,let Y; = I{X; > ¢;}, where the thresholds cy,...,c, are

known constants in (0, 00).

a) Derive the EM recursion to compute the maximum likelihood estima-
tor of A based on Y7,...,Y,,.

b) Give the first two iterates, A1 and 5\2, if the initial guess is Mo =1 and
there are three observations, Y1 =1, Y = 1, and Y3 = 0, with ¢; = 1,
co =2, and c3 = 3.

Contingency tables with missing data. Counts indicating responses to two

binary questions, A and B, in a survey are commonly presented in a two-

by-two contingency table. In practice, some respondents may only answer
one of the questions. If m respondents answer both questions, then cross-
classified counts N = (Ni1, N1a, Na1, Nog) for these respondents would
be observed, and would commonly be modeled as having a multinomial
distribution with m trials and success probability p = (p11, p12, P21, P22)-

Count information for the n4 respondents that only answer question A

could be summarized by a variable R representing the number of these

respondents who gave the first answer to question A. Under the “missing
at random” assumption that population proportions for these individuals
are the same as proportions for individuals who answer both questions,

R would have a binomial distribution with success probability p;+ =

p11 + p12. Similarly, for the np respondents who only answer question B,

the variable C' counting the number who give the first answer to question B

would have a binomial distribution with success probability p11 = p11 +

p21-

C

o,

e
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a) Develop an EM algorithm to find the maximum likelihood estimator
of p from these data, NV, R, C'. The complete data X should be three
independent tables N, N4, and N2, with sample sizes m, n4, and
np, respectively, and common success probability p, related to the
observed data by R = N{} and C = N5,.

b) Suppose the observed data are

5 10
N_<10 5), R =5, C =10,

with m = 30 and ng = np = 15. If the initial guess for p is po = N/30,
find the first two iterates for the EM algorithm, p; and ps.
A simple hidden Markov model. Let X1, Xo, ... be Bernoulli variables with
EX; = 1/2 and the joint mass function determined recursively by

P(Xk+1§££rk|X1le,...,Xkak)Za, n:1,2,....

Viewed as a process in time, X,,, n > 1, is a Markov chain on {0, 1} that
changes state at each stage with probability 6. Suppose these variables
are measured with error. Specifically, let Y7, Ya, ... be Bernoulli variables
that are conditionally independent given the X, satisfying

P(Y; 75 XZ‘|X1,X2,...) =.

Assume that the error probability v is a known constant, and 6 € (0,1) is
an unknown parameter.

a) Show that the joint mass functions for Xy, ..., X, form an exponential
family.
b) Find the maximum likelihood estimator for 6 based on X1, ..., X,.

¢) Give formulas for the EM algorithm to compute the maximum likeli-
hood estimator of 8 based on Y3,...,Y,,.

d) Give the first two iterates for the EM algorithm, 0, and ég, if the
initial guess is fy = 1/2, the error probability ~ is 10%, and there are
four observations: Y1 =1,Y, =1, Y3 =0and Y, = 1.

Probit analysis. Let Yi,...,Y, be independent Bernoulli variables with
P(Y; = 1) = B+ Bt,),
where t1,...,t, are known constants and o« and 8 in R are unknown

parameters. Also, let X7, ..., X,, be independent with X; ~ N(a+ Gt;, 1),

1=1,...,n.

a) Describe a function g : R™ — {0,1}" such that ¥ ~ g(X) for any «
and (.

b) Find the maximum likelihood estimator for § = (a, §) based on X.

¢) Give formulas for the EM algorithm to compute the maximum likeli-
hood estimator of 8 based on Y.
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d) Suppose we have five observations, Y = (0,0,1,0,1) and ¢; = i for
i=1,...,5. Give the first two iterates for the EM algorithm, 6, and
0y, if the initial guess is fy = (—2,1).

Suppose X7, Xo, ... are i.i.d. with common density fy, where 6 = (1, \) €

2 C R?. Let I = I(6) denote the Fisher information matrix for the family,

and let 6, = (i, j\n) denote the maximum likelihood estimator from the

first n observations.

a) Show that v/n(f, —n) = N(0,72) under Py as n — oo, giving an
explicit formula for 72 in terms of the Fisher information matrix I.

b) Let 7,, denote the maximum likelihood estimator of 7 from the first n
observations when A has a known value. Then v/n(7j, —n) = N(0,2?)
under Py as n — oo. Give an explicit formula for v? in terms of the
Fisher information matrix I, and show that v? < 72. When is v? = 727

¢) Assume I(-) is a continuous function, and derive a 1 — « asymptotic
confidence interval for i based on the plug-in estimator I(6,,) of 1(6).

d) The observed Fisher information matrix for a model with several pa-
rameters can be defined as —V2I(6,,), where V2 is the Hessian matrix
of partial derivatives (with respect to 7 and \). Derive a 1 — « asymp-
totic confidence interval for 1 based on observed Fisher information
instead of 1(6,,).

Let (X1,Y1), (X2,Y2),... be i.i.d. with common Lebesgue density

(= p)? = 2p(x — ) (y — py) + (Y — y)?
e"p{ 2(1 - p?) }
2my/1 — p?

where 0 = (i, j1y, p) € R? x (—1,1) is an unknown parameter. (This is a

bivariate normal density with both variances equal to one.)

a) Give formulas for the maximum likelihood estimators of p,, py, and
P

b) Find the (3x3) Fisher information matrix I(6) for a single observation.

3

¢) Derive asymptotic confidence intervals for p, and p based on I(6)
and based on observed Fisher information (so you should give four
intervals, two for p, and two for p).

Suppose W and X have a known joint density ¢, and that

YW =w, X =z~ N(aw + fz,1).

Let (W1, X1,Y1),...,(Wy,, X,,,Y,) be i.i.d., each with the same joint dis-

tribution as (W, X, Y).

a) Find the maximum likelihood estimators & and B of a and 3. Deter-
mine the limiting distribution of v/n(& — ). (The answer will depend
on moments of W and X.)

b) Suppose § is known. What is the maximum likelihood estimator & of
a? Find the limiting distribution of v/n(&— «). When will the limiting
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distribution for v/n(& — a) be the same as the limiting distribution in
part (a)?

*30. Prove Proposition 9.31 and show that (9.13) is a 1 — « asymptotic confi-
dence interval for g(6). Suggest two estimators for v(6).

*31. Let Nip,..., N be cell counts for a two-way table with independence.
Specifically, N has a multinomial distribution on n trials, and the cell
probabilities satisfy p;; = pi+p+;, ¢ = 1,2, j = 1,2. The distribution of N
is determined by 6 = (p41,p1+). Find the maximum likelihood estimator
é, and give an asymptotic confidence intervals for p1; = 6165.

32. Suppose (X1,Y1),...,(Xn,Y,) are i.i.d. random vectors in R? with com-
mon density

exp{—(a} - om)z + \/Q(x —0.)(y —0y) — (y — Gy)z}
™2 .

In polar coordinates we can write 6, = ||6|| cosw and 6, = ||0|| sinw, with
w € (—m,w]. Derive asymptotic confidence intervals for ||0| and w.

33. Suppose X1, Xo,...arei.i.d. from some distribution QQy, with 6 € 2 C RP.
Assume that the Fisher information matrix I(0) exists and is positive
definite and continuous as a function of 6. Also, assume that the family
{Qp : 0 € 2} is regular enough that the maximum likelihood estimators
én are consistent, and that

Vn(0, —0) = N(0,1(6)7").
a) Find the limiting distribution for
VI (026, —6).

b) Find the limiting distribution for

n(0, —0)1(0)(8, —0).

Hint: This variable should almost be a function of the random vector
in part (a).

¢) The variable in part (b) should be an asymptotic pivot. Use this pivot
to find an asymptotic 1 — a confidence region for 6. (Use the upper
quantile for the limiting distribution only.)

d) If p = 2 and I(6) is diagonal, describe the shape of your asymptotic
confidence region. What is the shape of the region if I(6) is not diag-
onal?

34. Simultaneous confidence intervals. Suppose X1, Xo, ... arei.i.d. from some
distribution Q9 with 6 two-dimensional:

(B 2
9—(>\>EQCR.



35.

36.
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Assume that the Fisher information matrix I(6) exists, is positive definite,
is a continuous function of §, and is diagonal,

16) = (Iﬁé") IA?9)> |

Finally, assume the family {Qy : 0 € 2} is regular enough that the maxi-
mum likelihood estimators are asymptotically normal:

V0, —0) = /n ((f:) - (f)) = N(0,1(0)7").

M, = max {\/nlg(énﬂ,@n RVCINCR . >\|} .

Show that M,, = M as n — oco. Does the distribution of M depend
on 07

b) Let g denote the upper ath quantile for M. Derive a formula relating
q to quantiles for the standard normal distribution.

c) Use M, to find a 1 — o asymptotic confidence region S for . (You
should only use the upper quantile for the limiting distribution.) De-
scribe the shape of the confidence region S.

d) Find intervals Clg and CI\ based on the data, such that

a) Let

P(ﬁECIg and A€ CI)) —1—a.

From this, it is natural to call intervals Clg and C1I, asymptotic
simultaneous confidence intervals for A and 3, because the chance
they simultaneously cover § and A is approximately 1 — «.
Multivariate confidence regions. Let X1, ..., X,, be a random sample from
N(pz,1) and Y7, ...,Y, be a random sample from N (u,, 1), with all m+n
variables independent, and let X = (X1 +---+ X;)/m and ¥ = (Y1 +
4 Yn) /n
a) Find the cumulative distribution function for

V =max{|X — po|, [Y — pyl}.

b) Assume n = m and use the pivot from part (a) to find a 1 — « confi-
dence region for 6 = (g, tty). What is the shape of this region?

Let X1, X5,... be ii.d. from a distribution @ that is symmetric about 6.

Let X,, and X,, denote the mean and median of the first n observations,

and let T,, be the M-estimator from the first n observations using the

function p given in Theorem 9.34 with k = 1.

a) Determine the asymptotic relative efficiency of T,, with respect to X,

if Q = N(0,1).
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b) Determine the asymptotic relative efficiency of T;, with respect to X,
if @ is absolutely continuous with density

1
m[(x —0)2 + 1]

a Cauchy density with location 6.

37. Let X1, X5,... be i.i.d. from a distribution @) that is symmetric about 6
and absolutely continuous with density ¢. Fix e (or k), and let T}, be the
M-estimator from the first n observations using the function p given in
Theorem 9.34. Take ¢ = p'.

a) Suggest a consistent estimator for A’(6). You can assume that X' (0) =
—Ey/(X —0).

b) Suggest a consistent estimator for Ev?(X — 0).

¢) Using the estimators in parts (a) and (b), find an asymptotic 1 — «
confidence interval for 6.

38. Suppose Y ~ N(0,1) and that, given Y =y, X,,, n € Z, are i.i.d. from
N(y,1). Find a shift invariant set B with P(X € B) =1/2.

39. Show that if E|Y;|?¢ is bounded for some e > 0, then the Lindeberg
condition (9.17) holds.

40. Show that if

fe<Xo|X1,...7§k>)2, F=12

Ey (g(w) —log Fo(XolX ... 0

are finite® and tend to zero as k — oo, then the approximation error in
(9.19) tends to zero in probability as n — .
41. Let X,,, n € Z, be a stationary process with X uniformly distributed on
(0,1), satisfying
X, = (2X541), n € Z.

Here (z) ety || denotes the fractional part of x. Show that X — 1/2

is a linear process. Identify a distribution @ for the innovations ¢; and
coefficients ¢,, n > 1.

9 Actually, it is not hard to argue that the conclusion will still hold if some of these
moments are infinite, provided they still converge to zero.
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Equivariant Estimation

In our study of UMVU estimation, we discovered that, for some models, if
we restrict attention to the class of unbiased estimators there may be a best
choice. Equivariant estimation is similar, but now we restrict attention to
estimators that satisfy symmetry restrictions. At an abstract level, these re-
strictions are imposed using group theory. The basic ideas are developed here
only for estimation of a location parameter, but we try to proceed in a fashion
that illustrates the role of group theory.

10.1 Group Structure

For estimation of a location parameter, the group of interest is the real line,
G = R, with group multiplication, denoted by #*, taken to be addition. So
g1 % g2 = g1 + go. This group acts, denoted by “¥”, on points § € R (the
parameter space) by gx6 = g+ 0, and acts on points x € R™ (the data space)
by

gtz

grx = : =gl +=x,
g +xn

where 1 € R™ denotes a column vector of 1s.
Location models arise when each datum X; can be thought of as the true
quantity of interest, 8 € R, plus measurement error €;. So

X, =0+¢, 1=1,...,n.
Writing
X1 €1
X = : and e= | © |,
Xn €n

these equations can be written in vector form as

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 195
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X =01+e.

In a location model, the distribution of the error vector € is fixed, ¢ ~ Pp.
This assumption allows dependence between the ¢;, but they are often taken
to be i.i.d., in which case Py = Q™ with @) the common marginal distribution,
€; ~ Q. Letting Py denote the distribution of X, so

X:01+6~P9,

the family P = { Py, 6 € R} is called a location family, and 0 is called a location
parameter.

The symmetry restriction imposed on estimators, called equivariance, is
defined as follows.

Definition 10.1. An estimator ¢ for the location 0 in a location family is
called equivariant if

6(x1 +gvaxn+g) :5(x13"'7xn)+ga
or, using vector notation,
6(z+g1) =6(x) +g,

for all g € R, x € R™. Using the actions of g on points in R and R", this
equation can be written succinctly as

0(g*x)=g*d(z).

Examples of equivariant estimators include the sample mean and the me-
dian. An optimality theory for equivariant estimation requires considerable
structure. The family of distributions must behave naturally under group ac-
tions, and the loss function must be invariant, defined below. For location
families, since 01 + g1 4+ € = g * (A1 + ¢) has distribution Pg.g,

Pps(X € B)y=P(01+gl+ec€ B)=P(gx (01 +¢) € B) = Py(g+ X € B).

Definition 10.2. A loss function L for the location 0 in a location family is
called invariant if
L(g*6,9gxd) = L(0,d),

forallg e R, 8 € R, d € R. Defining p(x) = L(0,x) and taking g = —0, L is
invariant if

L(0,d) = p(d —0)
for all e R, d € R.
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Suppose § is equivariant and L is invariant. Then the risk of § is
R(9,6) = Egp(0(X) — 0) = Ep(0(01 +¢€) — 0) = Ep(6(c)).

With the structure imposed, the risk function is a constant, independent of
f. This means that graphs of risk functions for equivariant estimators cannot
cross, and we anticipate that there will be a best equivariant estimator 0*,
called the minimum risk equivariant estimator. The technical issue here is
simply whether the infimum of the risks as § varies over the class of equivariant
estimators is achieved.

As we proceed, it is convenient to add the assumption that Py is absolutely
continuous with density f.

Proposition 10.3. If Py is absolutely continuous with density f, then Py is
absolutely continuous with density f(x1 —6,...,z, —0) = f(x — 01). Con-
versely, if distributions Py are absolutely continuous with densities f(x — 601),
then if e ~ Py, 01 + e~ Py and P = {Py : 0 € R} is a location family.

Proof. Since 01 + € ~ Py, the change of variables e; = x; — 0, i =1,...,n
gives

Py(B) = P(01 + ¢ € B)
= ElB 91+6)

/ /13 O+er,....0+en)f(er,...,eq)der - dey
:/---/13($1,...,xn)f(x1—9,...,xn—9)dx1---dxn

:/---/f(;vl—0,...,xn—0)d:v1---dmn.
B

The converse follows similarly. O

A function h on R™ is called invariant if h(g x ) = h(x) for all x € R™,
g € R. One invariant function of particular interest is

X, - X,
Y=YX)=
anl - Xn
If h is an arbitrary invariant function, then taking g = — X,

h(X) = h(X — Xn1)
= h(Xl - Xn; cee )Xn—l - XTMO)
— h(Yi,...,Ypo1,0).
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This shows that any invariant function must be a function of Y. For this reason
Y is called a mazimal invariant. This functional relationship means that Y
contains at least as much information about X as any other invariant function
h(X). Suppose &y and J are equivariant estimators. Then their difference dp— 9
is an invariant function because

o(g* ) — (g % 7) = [Fo(x) + g] — [(z) + g] = do(x) — 8(a).
So the difference must be a function of Y,
00(X) = 6(X) =v(Y).
Conversely, if dy is equivariant and v is an arbitrary function, then
5(X) = 9(X) — v(Y)
is an equivariant estimator, because

§(g*x) =0do(g*x) —v(Y(g*a)) =do(x) +g—v(Y(x)) =d(z) +g.

10.2 Estimation

The next result shows that optimal estimators are constructed by conditioning
on the maximal invariant Y introduced in the previous section.

Theorem 10.4. Consider equivariant estimation of a location parameter with
an tnvariant loss function. Suppose there erists an equivariant estimator gy
with finite risk, and that for a.e. y € R"™! there is a value v* = v*(y) that
minimizes

Eo[p(d0(X) —v) | Y =]

over v € R. Then there is a minimum risk equivariant estimator given by
0" (X) = do(X) —v"(Y).

Proof. From the discussion above, §* is equivariant. Let §(X) = §o(X) —v(Y)
be an arbitrary equivariant estimator. Then by smoothing, using the fact that
risk functions for equivariant estimators are constant,

R(9,6) = Eop(do(X) —v(Y))
= EoEo[p(0(X) —v(Y)) | Y]
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To calculate the minimum risk equivariant estimator in this theorem ex-
plicitly, let us assume that the equivariant estimator

50 (X) = X,

has finite risk. To evaluate the conditional expectation in the theorem we need
the conditional distribution of X, given Y (under Fp), which we can obtain
from the joint density. Using a change of variablesy; = z;—x,,i=1,...,n—1,
in the integrals against dx;,

Y
POKX ) € B} = Eolp(Y1,...,Y, 1, Xy)
=Folg(X1 — Xn, ., Xno1 — X0, Xi)
/ /IB X1—Tn,- s Tn)f(T1, ..., 2n) dey -+ - dy,

=/---/f(y1+xn,---,yn_1+xn,xn)dy1---dyn_1dxn-

So the joint density of Y and X, under P is

f(yl + T, - - 'ayn—l + xTHxn)'

Integration against x,, gives the marginal density of Y,

fr(y) = /f(y1 b, Y1+t 1) dE

So the conditional density of X,, = jy given Y = y is

f(yl +ta"'ayn71 +tvt)
fy(y)

From the theorem, v* = v*(y) should be chosen to minimize

Ix, v (tly) =

fp(t_v)f(yl +t7ayn—1+t,t)dt
ff(y1+t77yn—l+t,t)dt

This is simplified by a change of variables in both integrals taking t = x,, — u.
Here z,, is viewed as a constant, and we define x; by z; — z,, = y;, so that
y; +t = x; — u. Then this expression equals

Jol@n —v—u)f(xy —u,..., 2, —u)du
J =y, an —u)du '

Since 0*(x) = x,, — v*(y), it must be the value that minimizes

fp(d—u)f(;vl—u,...,xn—u)du.

[ flzr—u,. .. 2 — u)du (10.1)
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Formally, this looks very similar to the calculations to compute a posterior
risk in a Bayesian model. The likelihood at 6 = u is f(z1 — u,..., 2, — u),
and p is the loss function. If the prior density were taken as one, so the prior
distribution is Lebesgue measure A, then formally we would be choosing § to
minimize our posterior risk. Of course, as precise mathematics this is suspect
because Lebesgue measure (or any multiple of Lebesgue measure) is not a
probability and cannot serve as a proper prior distribution for # in a Bayesian
model. But the posterior distribution obtained from formal calculations with
prior distribution Lebesgue measure will be a probability measure, and the
minimum risk equivariant estimator can be viewed informally as Bayes with
Lebesgue measure as a prior.
If we define the action of group elements g on Borel sets B by

g«B ¥ {g*z:z € B},

then Lebesgue measure is invariant, A(B) = A(g x B). Measures invariant un-
der the action of some group are called Haar measures, and in this setting
multiples of Lebesgue measure are the only invariant measures. The struc-
ture we have discovered here persists in more general settings. With suitable
structure, best equivariant estimators are formally Bayes with Haar measure
as the prior distribution for the unknown parameter. For further discussion,
see Eaton (1983, 1989).

With squared error loss, p(d — u) = (d — u)*, minimization to find the
minimum risk equivariant estimator can be done explicitly. If W' is an arbitrary
random variable, then E(W — d)? = EW? — 2dEW + d?, and this quadratic
function of d is minimized when d = EW. If W has density h, then E(W —
d)? = [(u— d)*h(u)du and the minimizing value for d is [wuh(u)du. The
minimization of (10.1) has this form, with h (the formal posterior density)
given by

2

_ flar —u, ...,z — )
[ flxr—t,... 2z, —t)dt
So with squared error loss, the minimum risk equivariant estimator is

5(X) = G“fﬁgl_‘u“?_‘u? - (10.2)

h(u)

This estimator 6* is called the Pitman estimator.

Ezxample 10.5. Suppose the measurement errors €1, ..., €, are i.i.d. standard
exponential variables. Then the density f(e) of € will be positive when e; > 0,
i=1,...,n, ie, when min{ey,...,e,} > 0, and so this density is

e~(ertten) - min{ey, ..., e,} > 0;
fle) = .
0, otherwise.

Letting M = min{Xj,...,X,} and noting that min{X; —u,..., X,, —u} >0
if and only if u < M,
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nu—(X1+-+Xn) M-
f(X1—u,...,Xn—u):{€ Cu< M

0, otherwise.

Thus the Pitman estimator (10.2) in this example is

IO T I N (E 3 U EL
e ety 0 entdr

10.3 Problems!

*1.

*2.

*4.

Let X7 ~ N(6,1), and suppose that for j = 1,...,n — 1 the conditional

distribution of X;1q given X1 = a1,...,X; = z; is N((z; + 0)/2,1).

Show that the joint distributions for Xi,..., X, form a location family

and determine the minimum risk equivariant estimator for § under squared

error loss.

Let X have cumulative distribution function F, and assume that F' is

continuous.

a) Show that g(c¢) = F|X — c| is minimized when c is a median of F', so
F(e) =1/2.

b) Generalizing part (a), define

g(c) = E[a(X —co)F +blc— X)ﬂ,

where a and b are positive constants. Find the quantile of F' that
minimizes g.
Let €1,...,€, be i.i.d. standard exponential variables, and let X; = 6 +¢;,
t = 1,...,n. Using the result in Problem 10.2, determine the minimum
risk equivariant estimator of # based on X1, ..., X, if the loss function is
L(6,d) =10 —d|.
Suppose X has density
—lz—0]
o€ .
Using the result in Problem 10.2, determine the minimum risk equivariant
estimator of 8 when the loss for estimating 6 by d is

L(0,d) = a(d— 0)T +b(0 — d)T,

with a and b positive constants.

Suppose X and Y are independent, with X ~ N(6,1) and Y absolutely
continuous with density e’~Y for y > 6, 0 for y < 6. Determine the
minimum risk equivariant estimator of 6 based on X and Y under squared
error loss.

1 Solutions to the starred problems are given at the back of the book.



202

6.

7.

9.

10 Equivariant Estimation

Suppose 0 is minimum risk equivariant under squared error loss and that
the risk of 0 is finite. Is § then unbiased? Prove or give a counterexample.
Suppose X and Y are independent random variables, X with density
ée"w’e‘, z € R, and Y with density e 2¥=? 4 € R. Find the minimum
risk equivariant estimator of # under squared error loss based on X and
Y.
Equivariant estimation for scale parameters. Let €1, . . ., €, be positive ran-
dom variables with joint distribution P;. If ¢ > 0 is an unknown param-
eter, and X ~ oe ~ P,, then {P, : ¢ > 0} is called a scale family, and o
is a scale parameter. (Similar developments are possible without the re-
striction to positive variables.) The transformation group for equivariant
scale estimation is G = (0,00) with g1 * go = g1g2, and group elements
act on data values x € X = (0,00)™ and parameters o by multiplication,
gxx =gz and g*x o = go.

a) A loss function L(o,d) is invariant if L(g* 0,9 xd) = L(o,d) for all
g,0,d in (0, 0c0). For instance, L(o,d) = p(d/o) is invariant. Show that
any invariant loss function L must have this form.

b) A function h on X is invariant if h(gxx) = h(z) forallg € G, x € X.
The function

T1/Tn
Y(z) = :
mn—l/xn
is invariant. If h is invariant, show that h(z) = v(Y(z)) for some

function v.

¢) Anestimator § : X — (0, 00) is equivariant if 6(gxx) = g*d(x) = go(x)
for all g > 0, x € (0,00)". Show that the risk function R(c,d) for
an equivariant estimator of scale, with an invariant loss function, is
constant in o.

d) If ¢ is an arbitrary equivariant estimator and dg is a fixed equivariant
estimator, then dy/d is invariant. So §(X) = 6o(X)/v(Y) for some
v. Use this representation to prove a result similar to Theorem 10.4
identifying the minimum risk equivariant estimator in regular cases.

e) If the distribution P; for € is absolutely continuous with density f,
find the density for X ~ P,.

Let Uy, Uz, and V be independent variables with U; and Us uniformly

distributed on (—1,1) and P(V = 2) = P(V = —2) = 1/2. Suppose our

data X; and X5 are given by

X1=0+U;+V and X5 =0+ Uy,

with 6 € R and unknown location parameter.
a) Find the minimum risk equivariant estimator ¢ for # under squared
error loss based on X; and Xs.
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b) The best equivariant estimator if we observe only a single observation
X is that observation X;. Will the estimator § from both observations
lie between X; and X537 Explain your answer.
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Empirical Bayes and Shrinkage Estimators

Many of the classical ideas in statistics become less reliable when there are
many parameters. Results in this chapter suggest a natural approach in some
situations and illustrate one way in which classical ideas may fail.

11.1 Empirical Bayes Estimation

Suppose several objects are measured using some device and that the mea-
surement errors are i.i.d. from N(0,1). (Results here can easily be extended
to the case where the errors are from N (0, 0?) with 02 a known constant.) If
we measure p objects then our data Xy, ..., X, are independent with

XvNN(0171)7 izlw"apv

where 6y,...,0, are the unknown true values. Let X denote the vector
(X1,...,Xp) and 6 the vector (61,...,0,). If we estimate 6; by §;(X) and
incur squared error loss, then our total loss, called compound squared error
loss, is

P
2
L(0,8) = (0 — 6:(X))".
i=1
Note that the framework here allows the estimator §;(X) of 6; to depend on
X; for j # 4. This is deliberate, and although it may seem unnecessary or
unnatural, some estimators for 6; in this section depend on X; and to some
extent the other observations. This may be an interesting enigma to ponde/r
as you read this section. Letting 6(X) denote the vector (61(X),...,d6,(X))’,
the compound loss L(0, §) equals ||§(X) — 0”2, and the risk function for ¢ is
given by
2
R(6,6) = Ep|[5(X) — 6]*.

At this stage, let us consider a Bayesian formulation in which the unknown
parameter is taken to be a random variable ©. For a prior distribution, let

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 205
DOI 10.1007/978-0-387-93839-4 11, © Springer Science+Business Media, LLC 2010



206 11 Empirical Bayes and Shrinkage Estimators

O1,...,0, be iid. from N(0,72). Given © = 0, Xi,..., X, are independent
with X; ~ N(6;,1), ¢ = 1,...,p. Then the conditional density of X given
O=2~0is

1
(2m)ypr2 P T

the marginal density of © is

1 1 &
(2772)P/2 expl— 272 201] ’

=1

and, multiplying these together, the joint density of X and O is

1

1< s 1 &

Completing the square,

62 1 T; 2 x?

2 [ 7 [
i — b =11 i — :
(i = 0:) +72 ( +72) (0 1+1/72> +1—|—72

Integrating against 6, the marginal density of X is

/] (2r7)p - C”’

1 1< x?
_ exp[-%;mg

(27r(1 + 72))p/2

This is a product of densities for N (0,1+72), and so Xi,..., X, arei.i.d. from
N (0,14 72). Dividing the joint density of X and © in the Bayesian model by
the marginal density of X, the conditional density of © given X = x is

(1 i)
I\ 14172
2 XP| — Z 2 /2
N 2i_1 T2/(1+72)
9 —
( "1+ 72)
Noting that this factors into a product of normal densities, we see that given
X =z, 01,...,0, are independent with
2

Z; T
O,]X =z~ N , .
| . (1-1—1/72 1+72>

From this
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Xi T2
Elo;|X] = 1 41/72 and Var(0;|X) = L2

The expected loss under the Bayesian model is

EL(6,4(X)) = Ei(éi(X) -6,)°

This risk is minimized taking

X, 1
5i(X) = L41/m2 = (1 - 1+T2> Xi. (11.1)

In the Bayesian approach to this problem here, the choice of 7 is crucial.
In an empirical Bayes approach to estimation, the data are used to estimate
parameters of the prior distribution. To do this in the current setting, recall
that under the Bayesian model, X1, ..., X, are i.i.d. from N (0,1 + 72). The
UMVU estimate of 1 4 72 is Zle X2 /p, and slightly different multiples of
| X |2 may be sensible. The James—Stein estimator of @ is based on estimating
1/(1+72) by (p—2)/||X]||? in (11.1). The resulting estimator is

drs(X) = (1 — |]|));||22> X. (11.2)

The next section considers the risk of this estimator.

Although the derivation above has a Bayesian feel, the standard deviation
T that specifies the marginal prior distributions for the ©; is not modeled as
a random variable. This deviation 7 might be called a hyperparameter, and a
fully Bayesian approach to this problem would treat 7 as a random variable
with its own prior distribution. Then given 7, ©1,...,0, would be condi-
tionally i.i.d. from N(0,72). This approach, specifying the prior by coupling
a marginal prior distribution for hyperparameters with conditional distribu-
tions for the regular parameters, leads to hierarchical Bayes models. With
modern computing, estimators based on these models can be practical and
have gained popularity in recent years. Hierarchical models are considered in
greater detail in Section 15.1.
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11.2 Risk of the James—Stein Estimator’

The following integration by parts identity is an important tool in our study of
the risk of the James—Stein estimator. Fubini’s theorem provides a convenient
way to establish an appropriate regularity condition for this identity.

Lemma 11.1 (Stein). Suppose x ~ N(u,0?), h : R — R is differentiable
(absolutely continuous is also sufficient), and

BN (X)| < oc. (11.3)

Then
E(X — ph(X) = c*ER (X).

Proof. Assume for now that 4 = 0 and 02 = 1. If the result holds for a
function h it also holds for A plus a constant, and so we can assume without
loss of generality that h(0) = 0. By Fubini’s theorem,

/ xh(x)e”ﬁ/2 dx :/ x {/ h'(y) dy] e /2 dy
0 0 0

= / / Hy < xYah/(y)e ™ /2 dy da
o Jo

:/ ' (y) U xe—fz/de} dy
0 y
:/ B (y)e /2 dy.

0

The regularity necessary in Fubini’s theorem to justify the interchange of the
order of integration follows from (11.3). A similar calculation shows that

0 0
/ zh(z)e ™™ /2 dz = / B (y)e /2 dy.

— 0o

Adding these together and dividing by v27, EXh(X) = ER/(X) when X ~
N(0,1).
For the general case, let Z = (X —p)/o ~ N(0,1). Then X = p+0Z and
EX —p)h(X)=0EZh(u+0Z)
= ’El (u+02)
= o’EN (X). 0

The next lemma generalizes the previous result to higher dimensions. If
h: RP — RP, let Dh denote the p x p matrix of partial derivatives,

1 This section covers optional material not used in later chapters.
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[Dh(z)], = 7M@)

v 8xj

Also, let || Dh|| denote the Euclidean norm of this matrix,
1/2
2
|Dh()| = 2_[Ph@)];
Z!j

Lemma 11.2. Let X1, ..., X, be independent with X; ~ N(6;,1),i=1,...,p.
If
E|Dh(X)]| < oo,
then
E(X —0)'h(X) = Etr{ Dh(X)}.

Proof. Using Stein’s lemma (Lemma 11.1) and smoothing,

E(X; — 0:)hi(X) = EE[(X; — 0)ha(X) | X1, o, Xio1, Xiv1, -, Xp]

Oh;(X)

=FFE 0,

Xla"'7Xiflei+17"'aXp

= E[Dh(X)LZ..
Summation over ¢ gives the stated result. ad

The final result provides an unbiased estimator of the risk. Let X;,..., X,

be independent with X; ~ N(6;,1). Given an estimator §(X) of 0, define h(X)
as X — 0(X) so that

§(X) =X — h(X). (11.4)

For the James—Stein estimator (11.2),

p—2
= x e

Theorem 11.3. Suppose X1,..., X, are independent with X; ~ N(6;,1) and
that h and 6 are related as in (11.4). Assume that h is differentiable and define

R=p+ |hX)| - 2te{ Dh(X)}.

Then ) X
R(6,6) = EQH(S(X) - 9” = FyR,

provided EgHDh(X)H < 00.
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Proof. Using Lemma 11.2,

R(0,0) = Ey i(Xi —0; — hi(X))2

= FEy Z(Xi —0;)% + Zp: hi(X) — 2Zp:(Xz‘ —0;)hi(X)
i—1 =1

= p+ Eo||h(X)||* — 2E4(X — 0) - h(X)
— p+ Eo||h(X)|)* — 2Estr{ Dh(X)}. O

For the James—Stein estimator (11.2),

p—2
0= x 2
and so
hol) = x%(i__?)f;g-
Since
Ohi(z) _ p—2  (p—2)zi(2zy)
Ox;  xi4-- a2 (a4 +aD)?
p—2 2(p-—2)a]
Tzl T el 2 2
p(p—2) 20p-2)> 5,7 (p—2)
I
Also,
P (p-2)z)”  (p-2)?
IP@I" =325 e = e
Thus, for the James—Stein estimator,
. _9)2 _9)2 _9)2
Reps S 20 = O (1L5)

By Theorem 11.3,

(p—2)°

R(0,6;5) = EgR = Ey {p =)

} <p=R(0,X).
Hence when p > 2, the James—Stein estimator always has smaller compound
risk than the estimator X. Because the risk function for ;¢ is better than

the risk function for X, in the language of decision theory, developed in the
next section, X is called inadmissible.
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When |0 is large, || X|| will be large with high probability. Then the
James—Stein estimator and X will be very similar and will have similar risk.
But when ||0|| is small there can be a substantial decrease in risk using the
James—Stein estimator instead of X. If § = 0, then

p
IX[12 = X2 ~ ;.
i=1

Integrating against the chi-square density, as in (4.10),

1 1
E = .
Ylx)2 T p-2
Using this and (11.5),
@—21 (p—2)?
R(0,8) = E, |p— =p— =2.
(©.9) [ BSE p—2

Regardless of the dimension of § and X, at the origin § = 0, the James—Stein
estimator has risk equal to two.

The results in this section can be extended in various ways. James and
Stein (1961) derived the estimator (11.2) and also consider estimation when
o? is unknown. Extensions to ridge regression are reviewed in Draper and
van Nostrand (1979). Stein’s identity in Lemma 11.1 can be developed for
other families of distributions, and these identities have been used in various
interesting ways. Chen (1975) and Stein (1986) use them to obtain Poisson
limit theorems, and Woodroofe (1989) uses them for interval estimation and
to approximate posterior distributions.

11.3 Decision Theory?

The calculations in the previous section show that X is inadmissible when
the dimension p is three or higher, leaving open the natural question of what
happens in one or two dimensions. In this section, several results from deci-
sion theory are presented and used to characterize admissible procedures and
show that for compound estimation X is admissible when p = 1. A similar
argument shows that X is also admissible when p = 2, although the necessary
calculations in that case are quite delicate.

Formal decision theory begins with a parameter space {2, an action space
A, a data space X', amodel P = {Py : 6 € 2}, and a loss function L : 2x A —
[—00, 00]. For simplicity and convenience, we assume that X = R™, that {2
and A are Borel subsets of Euclidean spaces, and that the loss function L is
nonnegative and measurable, with L(6,a) lower semicontinuous in a.

2 This section covers optional material not used in later chapters.
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A measurable function § : X — A is called a nonrandomized decision rule,
and its risk function is defined as

R(6,5) = /L(G,é(m)) dPy(r) = BsL(0,6(X)),  0¢€ Q.

The set of all nonrandomized decision rules is denoted D,,.

A nonrandomized decision rule associates with each z an action §(x). In
contrast, a randomized decision rule associates with each z a probability dis-
tribution J,, the idea being that if X = z is observed, a random action A will
be drawn from J,. So A|X = x ~ §,. Formally, § is should be a stochastic
transition kernel, satisfying the regularity condition that ¢,(A) is a measur-
able function of x for any Borel set A. By smoothing, the risk function for §
can be defined as

R(6,6) = EoL(6, A) = EyEy[L(6, A)|X]
_ //L(G,a) d6,(a) dPy(z), O € Q.

The set of all randomized decision rules is denoted D.

Ezample 11.4 (Estimation). For estimating a univariate parameter g(6) it is
natural to take A = R as the action space, and a decision rule § would be
called an estimator. Representative loss functions include squared error loss
with L(0,a) = [a — g(0)]? and weighted squared error loss with L(0,a) =
w(B)[a — g(0)]*.

Ezxample 11.5 (Testing). In testing problems, the action space is A = {0,1},
with action “0” associated with accepting Hy : 6 € {29 and action “1” asso-
ciated with accepting H; : 0 € 2;. For each z, §, is a Bernoulli distribution,
which can be specified by its “success” probability ¢(x) = d, ({1}) This pro-
vides a one-to-one correspondence between test functions ¢ and randomized
decision rules. A representative loss function now might be zero-one loss in
which there is unit loss for accepting the wrong hypothesis:

L#,a)=I{a=1,0€ 2} +I{a=0,0 € 2}
If the power function g is defined as
B(0) = Po(A=1) = EgPy(A = 1|X) = Egdx ({1}) = Eop(X),
then the risk function with this loss is

R(G 5)_ PG(A 1)7 96903
U P(A=0), 0e 2,

) Bo), 0 € £o;
C1-p00), 6¢e .
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A decision rule 9 is called inadmissible if a competing rule §* has a better
risk function, specifically if R(6,6*) < R(0,9) for all § € 2 with R(6,§*) <
R(0,6) for some 6 € (2. If this happens we say that §* dominates §. All
other rules are called admissible. If minimizing risk is the sole concern, no one
would ever want to use an inadmissible rule, and there has been considerable
interest in characterizing admissible rules. Our first results below show that
Bayes rules are typically admissible. More surprising perhaps are extensions,
such as Theorem 11.8 below, showing that the remaining admissible rules are
almost Bayes in a suitable sense. For notation, for a prior distribution A let

R(A,8) = / R(0,5) dA(0), (11.6)

the integrated risk of & under A, and let

R(4) = inf R(A,9), (11.7)

the minimal integrated risk. Finally, the decision rule ¢ is called Bayes for a
prior A if it minimizes the integrated risk, that is, if

R(A,8) = R(A). (11.8)

At this stage it is worth noting that in definitions (11.6) and (11.7) the prior
A does not really need to be a probability measure; the equations make sense
as long as A is finite, or even if it is infinite but o-finite. The definition of
Bayes for A also makes sense for these A. But if the prior A is not specified, §
is called proper Bayes only if (11.8) holds for some probability distribution A.
Of course, if A is finite and ¢ is Bayes for A it is also Bayes for the probability
distribution A(-)/A(£2). Thus we are only disallowing rules that are Bayes
with respect to an “improper” prior with A(f2) = oo in this designation.
The next two results address the admissibility of Bayes rules.

Theorem 11.6. If a Bayes rule § for A is essentially unique, then 0 is ad-
missible.

Proof. Suppose R(0,6*) < R(0,9) for all § € 2. Then, by (11.6), R(A,§*) <
R(A,6), and §* must also be Bayes for A. But then, by the essential uniqueness,
d =0% a.e. P, and so R(6,0) = R(6,0*) for all § € (2. O

The next result refers to the support of the prior distribution A, defined as
the smallest closed set B with A(B) = 1. Note that if the support of A is 2
and B is an open set with A(B) = 0, then B must be empty, since otherwise
B¢ would be a closed set smaller than {2 with A(B¢) = 1.

Theorem 11.7. If risk functions for all decision rules are continuous in 0, if
0 is Bayes for A and has finite integrated risk R(A,d) < oo, and if the support
of A is the whole parameter space {2, then 0 is admissible.
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Proof. Suppose again that R(0,5*) < R(0,0) for all 8 € (2. Then, as before,
0* is Bayes for A and § and §* must have the same integrated risk, R(A, ) =
R(A,6*. Hence

/ (R(6,5) — R(0,5%)) dA(6) = .

Since the integrand here is nonnegative, by integration fact 2 in Section 1.4
the set
{6 : R(0,9) — R(0,6") > 0}

has A measure zero. But since risk functions are continuous, this set is open
and must then be empty since A has support 2. So the risk functions for §
and §* must be the same, R(,d) = R(6,6*) for all € (2. O

A collection of decision rules is called a complete class if all rules outside the
class are inadmissible. A complete class will then contain all of the admissible
rules. In various situations suitable limits of Bayes procedures form a complete
class. Because randomized decision rules are formally stochastic transition
functions, a proper statement of most of these results involves notions of
convergence for these objects, akin to our notion of convergence in distribution
for probability distributions, but complicated by the functional dependence
on X. An exception arises if the loss function L(0,a) is strictly convex in a.
In this case, admissible rules must be nonrandomized by the Rao—Blackwell
theorem (Theorem 3.28), and we have the following result, which can be stated
without reference to complicated notions of convergence. This result appears
with a careful proof as Theorem 4A.12 of Brown (1986). Let By denote the
class of Bayes rules for priors A concentrated on finite subsets of 2.

Theorem 11.8. Let P be a dominated family of distributions with pg as the
density for Py, and assume that pg(x) > 0 for all x € X and all 0 € 2. If
L(0,-) is nonnegative and strictly convex for all 0 € §2, and if L(0,a) — oo
as ||a|| — oo, again for all 6 € 2, then the set of pointwise limits of rules in
By forms a complete class.

This and similar results show that in regular cases any admissible rule will
be a limit of Bayes rules. Unfortunately, some limits may give inadmissible
rules, and these results cannot be used to show that a given rule is admissi-
ble. The final theoretical result of this section gives a sufficient condition for
admissibility. For regularity, it assumes that all risk functions are continuous,
but similar results are available in different situations. Let

By(x) ={y:lly —z| <r},
the closed ball of radius r about z.

Theorem 11.9. Assume that risk functions for all decision rules are contin-
uwous in 0. Suppose that for any closed ball B, (x) there exist finite measures
Ay, such that R(A,,,d) < oo, m > 1,
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liminf Ay, (Br(z)) > 0,
and
R(4, Ar) — R(Ay) — 0.
Then 6 is admissible.

Proof. Suppose ¢* dominates §. Then R(6p,*) < R(6o,d) for some §y € (2.
By continuity

inf  [R(0,5) - R(6,6")] — R(60,5) — R(60,6") >0
0eB(6o)

as r | 0, and so there exist values € > 0 and ry > 0 such that
R(0,6) > R(0,%) + ¢, V0 € By, (0o).
Since §* dominates d, this implies
R(0,9) > R(9,6%) + 61{0 € Bm}-
Integrating this against A,,,
R(Ay,6) > R(Ay,, 6%) + €Ay (Bry) > R(Ay) + €A (Byy),
contradicting the assumptions of the theorem. a

Stein (1955) gives a necessary and sufficient condition for admissibility,
and using this result the condition in this theorem is also necessary. Related
results are given in Blyth (1951), Le Cam (1955), Farrell (1964, 1968a,b),
Brown (1971b), and Chapter 8 of Berger (1985).

Example 11.10. Consider a Bayesian formulation of the one-sample problem
in which © ~ N(0,72) and given © = 0, Xi,...,X,, are i.i.d. from N(0,02)
with 02 a known constant. By the calculation for Problem 6.21, the posterior
distribution for © is

O|X =z N( . U%2>

14+ 02/(n72)’ 02 +n12

where © = (z1 + - - -+ ) /n. So the Bayes estimator under squared error loss
is
X
14 02/(n12)

with integrated risk

0.2,7_2

0% +n7?’
Since the Bayes estimator converges to X as 7 — oo, if we are hoping to use
Theorem 11.9 to show that the sample average 6 = X = (X7 + -+ X,,)/n
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is admissible, it may seem natural to take A, = N(0,m). But this does not
quite work; since densities for these distributions tend to zero, with this choice
Ay (B (z)) tends to zero as m — oco. The problem can be simply fixed by
rescaling, taking A,, = v/mN (0, m). The density for this measure is ¢(8/+/m),
converging pointwise to ¢(0) = 1/4/27. So by dominated convergence,

x4+ r
A (Br(2)) = /‘T?T é(0/v/m) do — \/227r'

Scaling the prior by y/m scales risks and expectations by the same factor v/m,
and so

m02 m

R(5,A,,) = v and R(A,,) = vmao?

n o2 +nm’
Then
Vmao?

n(o? 4+ nm)

R(év Am) - R(Am) =

as m — oo, and by Theorem 11.9 X is admissible.

Stein (1956) shows admissibility of the sample average X in p = 2 dimen-
sions. The basic approach is similar to that pursued in this example, but the
priors A, must be chosen with great care; it is not hard to see that scaled
conjugate normal distributions will not work.

For a more complete introduction to decision theory, see Chernoff and
Moses (1986) or Bickel and Doksum (2007), and for a more substantial treat-
ment, see Berger (1985), Ferguson (1967), or Miescke and Liese (2008).

11.4 Problems?

*1. Consider estimating the failure rates A1, ..., A\, for independent exponen-

tial variables Xi,..., X,. So X; has density Nie N x> 0.

a) Following a Bayesian approach, suppose the unknown parameters
are modeled as random variables Ai,...,A,. For a prior distribu-
tion, assume these variables are i.i.d. from a gamma distribution
with shape parameter o and unit scale parameter, so A; has den-
sity A te™*/I'(a), A > 0. Determine the marginal density of X; in
this model.

b) Find the Bayes estimate of A; in the Bayesian model with squared
error loss.

¢) The Bayesian model gives a family of joint distributions for X7, ..., X,
indexed solely by the parameter a (the joint distribution does not
depend on Aq,...,\p). Determine the maximum likelihood estimate
of a for this family.

8 Solutions to the starred problems are given at the back of the book.
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d) Give an empirical Bayes estimator for \; combining the “empirical”
estimate for « in part (c¢) with the Bayes estimate for \; when « is
known in part (b).

Consider estimation of regression slopes 61, ...,8, for p pairs of observa-

tions, (X1,Y1), ..., (Xp,Y,), modeled as independent with X; ~ N(0,1)

and Y;|X; =2 ~ N(0;x,1).

a) Following a Bayesian approach, let the unknown parameters 61, ...,
O, be i.i.d. random variables from N(0,72). Find the Bayes estimate
of ©; in this Bayesian model with squared error loss.

b) Determine EY;? in the Bayesian model. Using this, suggest a simple
method of moments estimator for 72.

¢) Give an empirical Bayes estimator for §; combining the simple “em-
pirical” estimate for 7 in (b) with the Bayes estimate for 6; when 7 is
known in (a).

Consider estimation of the means 6, ..., 6, of p independent Poisson ran-

dom variables X1, ..., X, under compound squared error loss, L(f,d) =

21 (0 — di).

a) Following a Bayesian approach, let the unknown parameters be mod-

eled as random variables ©1, ..., 6, that are i.i.d. with common den-
sity Ae™* for z > 0, 0 for 2 < 0. Determine the Bayes estimators of
O1,...,0,.

b) Determine the marginal density (mass function) of X; in the Bayesian
model.

c) In the Bayesian model, X1, ..., X, are i.i.d. with the common density

in part (b). Viewing this joint distribution as a family of distributions
parameterized by A, what is the maximum likelihood estimator of A.
d) Suggest empirical Bayes estimators for 6y, . . ., 6, based on the Bayesian
estimators in part (a) with an empirical estimator of A from part (c).
Consider estimating success probabilities 61, ...,0, for p independent bi-
nomial variables X7i,...,X,, each based on m trials, under compound
squared error loss, L(0,d) = Y7_ (6; — d;)*.
a) Following a Bayesian approach, model the unknown parameters as

random variables ©1,...,6, that are ii.d. from a beta distribu-
tion with parameters o and 3. Determine the Bayes estimators of
O1,...,6,.

b) In the Bayesian model, X1,...,X, are i.i.d. Determine the first two
moments for their common marginal distribution, EX; and EX?. Us-
ing these, suggest simple method of moments estimators for a and
0.

¢) Give empirical Bayes estimators for ; combining the simple “empiri-
cal” estimates for o and g in (b) with the Bayes estimate for §; when
a and [ are known in (a).

Consider estimation of unknown parameters 6;,...,6, based on data

Xi,...,Xp that are independent with X; ~ N(6;,1) under compound

squared error loss.
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a) Following a Bayesian approach, model the unknown parameters as
random variables ©1, ..., 0, that are i.i.d. from N(v,72). Find Bayes
estimators for the random parameters ©1,...,0,.

b) Suggest “empirical” estimates for v and 72 based on X and S?, the
mean and sample variance of the Xj.

c) Give empirical Bayes estimators for 61,...,6, based on the Bayesian
estimators in (a) and the estimates for v and 72 in (b).

6. Consider estimation of unknown parameters 6;,...,6, based on data
X1, ..., X, that are independent with X; ~ Unif(0,6;),7 =1,...,p, under
compound squared error loss.

a) Following a Bayesian approach, model the unknown parameters as
random variables O1, ..., O, which are i.i.d. and absolutely continuous
with common density

x/\Ql(O’OO)(x)e_“.
Find Bayes estimators for ©1,...,6),.
b) Suggest an empirical estimate for A based on the sample average X.
c) Give empirical Bayes estimators for 61,...,6, based on the Bayes
estimators in (a) and the estimator for A in (b).
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Hypothesis Testing

In hypothesis testing data are used to infer which of two competing hypothe-
ses, Hy or Hi, is correct. As before, X ~ Py for some 6 € {2, and the two
competing hypotheses are that the unknown parameter 6 lies in set {2y or in
set 2¢, written

Hy:0 € () versus Hy : 6 € (2.

We assume that 2y and §2; partition §2, so 2 = 2y|J1 and 2[4 =
(). This chapter derives optimal tests when the parameter 6 is univariate.
Extensions to higher dimensions are given in Chapter 13.

12.1 Test Functions, Power, and Significance

A nonrandomized test of Hy versus H; can be specified by a critical region
S with the convention that we accept H; when X € S and accept Hy when
X ¢ S. The performance of this test is described by its power function 3(-),
which gives the chance of rejecting Hy as a function of 6 € (2:

B0) = Pp(X € 5).

Ideally, we would want 3(0) = 0 for 6 € 2y and §(0) = 1 for 6 € 24, but in
practice this is generally impossible.

In the mathematical formulation for hypothesis testing just presented,
the hypotheses Hy and H; have a symmetric role. But in applications Hy
generally represents the status quo, or what someone would believe about 8
without compelling evidence to the contrary. In view of this, attention is often
focused on tests that have a small chance of error when Hj is correct. This
can be quantified by the significance level o defined as

a= sup Py(X €59).
o€y

In words, the level « is the worst chance of falsely rejecting Hy.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 219
DOI 10.1007/978-0-387-93839-4 12, © Springer Science+Business Media, LLC 2010
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For technical reasons it is convenient to allow external randomization to
“help” the researcher decide between Hy and H;. Randomized tests are char-
acterized by a test or critical function ¢ with range a subset of [0,1]. Given
X =z, p(zx) is the chance of rejecting Hy. The power function [ still gives
the chance of rejecting Hy, and by smoothing,

B(0) = Py(reject Hy) = EyPy(reject Ho|X) = Egp(X).

Note that a nonrandomized test with critical region S can be viewed as a
randomized test with ¢ = 1g. Conversely, if ¢(x) is always 0 or 1, then the
randomized test with critical function ¢ can be considered a nonrandomized
test with critical region S = {z : ¢(z) = 1}.

The set of all critical functions is convex, for if ¢; and @9 are critical
functions and vy € (0,1), then y¢1 + (1 — 7)p2 is also a critical function.
Convex combinations of nonrandomized tests are not possible, and this is the
main advantage of allowing randomization. For randomized tests the level «
is defined as

a = sup B(6) = sup Egp(X).
0e o 0e g

12.2 Simple Versus Simple Testing

A hypothesis is called simple if it completely specifies the distribution of
the data, so H; : 0 € f2; is simple when (2; contains a single parameter
value 0;. When both hypotheses, Hy and H; are simple, the Neyman—Pearson
lemma (Proposition 12.2 below) provides a complete characterization of all
reasonable tests. This result makes use of Lagrange multipliers, an important
idea in optimization theory of independent interest.

Suppose Hy and H; are both simple, and let py and p; denote densities
for X under Hy and Hy, respectively.! Since there are only two distributions
for the data X, the power function for a test ¢ has two values,

a=Ew=/¢@m@MM@

and
awz/wmmmmmm

Ideally, the first of these values « is near zero, and the other value § is near
one. These objectives are in conflict. To do as well as possible we consider the
constrained maximization problem of maximizing E;¢ among all test ¢ with
Eyp = a. The following proposition shows that solutions of unconstrained
optimization problems with Lagrange multipliers (k) also solve optimization
problems with constraints.

! As a technical note, there is no loss of generality in assuming densities po and p1,

since the two distributions Py and P; are both absolutely continuous with respect
to their sum Po + P1.
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Proposition 12.1. Suppose k > 0, ¢* mazimizes
Erp — kEop

among all critical functions, and Eqp™ = a. Then ¢* maximizes E1p over all
@ with level at most .

Proof. Suppose ¢ has level at most «, Fop < o. Then

Ei1p < E1p — kEgp + ka
< E10" — kEyp™ + ka
= EMO* O

Maximizing Fy¢ — kFEyp is fairly easy because
Bvp ~ kEop = [ [n(@) ~ kpo(@)] (o) du(o)

- / 101 (2) — Epo(@) | p(z) du(z)

p1(x)>kpo ()

- / Ip1(2) — kpo(@)|p(@) d(z).  (12.1)
p1(x)<kpo(zx)

Clearly, any test ¢* maximizing this expression must have
©*(x) =1, when pi(x) > kpo(z),

and
¢ (x) =0, when pi(x) < kpo(z).

When division by zero is not an issue, these tests are based on the likelihood
ratio L(z) = p1(x)/po(x), with ¢*(x) = 1 if L(z) > k and ¢*(z) = 0 if
L(z) < k. When L(z) = k, ¢(z) can take any value in [0, 1]. Any test of this
form is called a likelihood ratio test. In addition, the test ¢ = I{py = 0} is
also considered a likelihood ratio test. (This can be viewed as the test that
arises when k = 00.)

Proposition 12.2 (Neyman—Pearson Lemma). Given any level a € [0, 1],
there exists a likelihood ratio test o with level o, and any likelihood ratio test
with level a maximizes E1p among all tests with level at most «.

The fact that likelihood ratio tests maximize Fqp among tests with the
same or smaller level follows from the discussion above. A formal proof that
any desired level o € [0,1] can be achieved with a likelihood ratio test is
omitted, but similar issues are addressed in the proof of the first part of
Theorem 12.9. Also, Example 12.6 below illustrates the type of adjustments
that are needed to achieve level «v in a typical situation. The next result shows
that if a test is optimal, it must be a likelihood ratio test.
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Proposition 12.3. Fiz a € [0,1], let k be the critical value for a likelihood
ratio test @, described in Proposition 12.2, and define B = {x :p1(x) #
k‘po(x)}. If ©* mazimizes E1¢p among all tests with level at most a, then @*
and @, must agree on B, 1pp* = 1pyp,, a.e. u.

Proof. Assume k € (0,00) and let By = {p1 > kpo} and Bz = {p1 < kpo},
so that B = By |J Bs. Since ¢* and ¢, both maximize F1¢, we have Fq¢* =
E1¢. And since ¢, maximizes E1p —kFop, kEypo, = ka < kEyp*. So Eyp*
must equal o, and ¢, and ¢* both have level a. Thus they both give the same
value in (12.1). Since ¢, is 1 on By and 0 on Bs, using (12.1),

/1Bllp1—kpol(1—<ﬁ*)d/~b+/1lep1—kpo|<p* dp = 0.

Since the arguments of both integrands are nonnegative, both integrands must
be zero a.e. u, and since |p1 — kpo| is positive on By and Bs, we must have

I, (1 = ¢") +1p,¢" = 15, |[¢" — pal| + 1B,[¢" — pal =0

a.e. [i.

When k£ =0, 9o, = 1 on p; > 0, and ¢, has power Fip, = 1. If ¢* has
power 1, then 0 = E1(pa —¢*) = [5 |¢* — @alp1 dp, so again ¢* and ¢, agree
a.e. o on B.

For the final degenerate case, “k = 00,” B should be defined as {py > 0}.
In this case po = 0 on pp > 0, and so o = 0. If ¢* has level a = 0, 0 =
Eo(¢* — ¢a) = [5¢* — @alpo du, and once again ¢* and ¢, agree a.e. y on
B. a

Corollary 12.4. If Py # P and @4 is a likelihood ratio test with level o €
(0,1), then E1p, > .

Proof. Consider the test ¢* which is identically «, regardless of the value of
x. Since ¢, maximizes Fjp among tests with level a, E1p, > Ei190* = a.
Suppose E1p, = a. Then ¢* also maximizes E1¢ among tests with level «,
and by Proposition 12.3, ¢, and ¢* must agree a.e. on B. But since a € (0,1)
and ¢, is 0 or 1 on B, they cannot agree on B. Thus B must be a null set and
p1 = kpo a.e. p. Integrating this against p, k¥ must equal 1, so the densities
agree a.e. p and Py = Py. O

Example 12.5. Suppose X is absolutely continuous with density

(2) fe= 0% 2> 0;
xTr) =
be 0, otherwise,

and that we would like to test Hy : § = 1 versus Hy : § = 61, where 6; is a
specified constant greater than one. A likelihood ratio test ¢ is one if
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pl(X) o 016_91X >k
po(X) e X ’

or equivalently if

log (61 /k)
0 -1

The test is zero if X > k’. When X =k’ the test can take any value in [0, 1],

but the choice will not affect any power calculations since Py(X = k') = 0.

The level of this likelihood ratio test is

X < =k

’

k/
a:PO(X<k’):/ e dr=1-¢".
0

Solving,
o kK = —log(l — a)

gives a test with level a. If ¢, is a test with

1, X <-—log(l—a);

Pa(X) = {0, X > —log(1 —a),

then by Proposition 12.1, ¢, maximizes Fy, o among all tests with level a.
Something surprising and remarkable has happened here. This test ¢, which
is optimal for testing Hy : 8 = 1 versus H; : 8 = 61, does not depend on the
value 6;. If ¢ is any competing test with level «, then

Ey, 0 < Ep, 0q, for all 6, > 1.

Features of this example that give the same optimal test regardless of the
value of 6; are detailed and exploited in the next section.

Ezxample 12.6. Suppose X has a binomial distribution with success probability
0 and n = 2 trials. If we are interested in testing Hy : = 1/2 versus Hy : 0 =
3/4, then

2

X 2—X
) (% )emxam=x

po(X) B (;) (1/2)X(1/2)27X - 4

Under Hy,
1/4, with probability 1/4;
L(X) = {3/4, with probability 1/2;
9/4, with probability 1/4.

Suppose the desired significance level is « = 5%. If k is less than 9/4, then
L(2) =9/4 > k and ¢(2) = 1. But then Egp(X) > ¢(2)Py(X =2) =1/4. If
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instead k is greater than 9/4, ¢ is identically zero. So k must equal 9/4, and
©(0) = (1) = 0. Then to achieve the desired level we must have

5% = Eop(X) = 10(0) + 3o(1) + j0(2) = j0(2).

Solving, ¢(2) = 1/5 gives a test with level a = 5%.

The assertion in Proposition 12.2 that there exists a likelihood ratio test
with any desired level o € [0, 1] is established in a similar fashion. First & is
adjusted so that Py(L(X) > k) and Py(L(X) > k) bracket o, and then a
value 7 € [0,1] is chosen for p(X) when L(X) = k to achieve level a.

12.3 Uniformly Most Powerful Tests

A test ¢* with level « is called uniformly most powerful if
Eyp™ > Eyo, Vo € (2,

for all ¢ with level at most a. Uniformly most powerful tests for composite
hypotheses generally only arise when the parameter of interest is univariate,
0 € 2 C R and the hypotheses are of the form Hy : 6 < 0y versus Hy : 0 > 6,
where 6 is a fixed constant.? In addition, the family of densities needs to have
an appropriate structure.

Definition 12.7. A family of densities pg(x), 8 € 2 C R has monotone
likelihood ratios if there exists a statistic T = T(x) such that whenever 6; <
02, the likelihood ratio pg,(x)/pe, (x) is a nondecreasing function of T. Also,
the distributions should be identifiable, Py, # Py, whenever 01 # 2. Natural
conventions concerning division by zero are used here, with the likelihood ratio
interpreted as +oo when pg, > 0 and pg, = 0. On the null set where both
densities are zero the likelihood ratio is not defined and monotonic dependence
on T s not required.

Example 12.8. If the densities pg form an exponential family,

po(x) = exp{n(0)T (x) — B(0) } h(x),
with 7(-) strictly increasing, then if 6 > 61,

Po, (Z‘)

o oy = exp{n(0a) ~m(@)IT(@) + B0:) ~ B(62)},

which is increasing in T'(x).

2 Minor variants are possible here: Hy could be 8 = 6y, 6 < 6y, 0 > 0y, etc.
Uniformly most powerful tests are also possible when the null hypothesis Hy is
two-sided, but this case sees little application.
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Theorem 12.9. Suppose the family of densities has monotone likelihood ra-
tios. Then

1. The test p* given by

1, T(x)>c
e (@) =97 T@) =g
0, T(x)<ec,

s uniformly most powerful testing Hy : 0 < 0y versus Hy : 6 > 0y and has
level @ = Ep,*. Also, the constants ¢ € R and v € [0,1] can be adjusted
to achieve any desired significance level a € (0,1).

2. The power function 3(0) = Egp* for this test is nondecreasing and strictly
increasing whenever 3(0) € (0,1).

3. If 01 < 09, then this test * minimizes Ep, o among all tests with Eg o =
o = Ego (p*.

Proof. Suppose 61 < 02 and let

_ Po, (:E)
bo, (:E)

L(x) .
Since the family has monotone likelihood ratios, L is a nondecreasing function
of T. If k is the value of L when T = ¢, then (see Figure 12.1)

“(2) 1, when L > k;
xTr) =
4 0, when L < k.

Thus ¢* is a likelihood ratio test of 8 = 61 versus 6 = 6,. By Corollary 12.4,
Eg,0* > FEg, ", with strict inequality unless both expectations are zero or
one. So the second assertion of the theorem holds, and ¢* has level a = Eg,¢*.

To show that ¢* is uniformly most powerful, suppose ¢ has level at most «
and 01 > 6p. Then Ey, ¢ < «, and since ¢* is a likelihood ratio test of 8 = 6
versus § = 6; maximizing Ejp, ¢ among all tests with Ep,0 < Eg,0* = a,
Ey,p* > Ep, @. Similarly, if 61 < 6, since ¢* is a likelihood ratio test of 8 = 6,
versus 0 = 0y with some critical value k, it must maximize Ey,¢ — kEjp, ¢.
Thus if ¢ is a competing test with Eg ¢ = o = Ep,¢*, then Eg, @ > Ey, ¢*,
proving the third assertion in the theorem.

To finish, we must show that ¢ and v can be adjusted so that Ey,¢* = a.
Let F' denote the cumulative distribution function for T when 6 = 6. Define

c=sup{z: F(z) <1-a}.
If £ > ¢, then F(z) > 1 — a. Because F is right continuous,

F(c)=lmF(z) >1-a.

zlc
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L

AN

V4

Fig. 12.1. The likelihood ratio L as a function of T.

But for x < ¢, F(z) <1— «, and so

F(c—) def lim F(z) <1— .

zle
Now let ¢ = F(¢) — F(c—) = Py, (T = ¢) (see Problem 1. 16), and define
Fle)—(1—-a)
. :

(If ¢ = 0, v can be any value in [0, 1].) By the bounds for F'(¢) and F(c—),
must lie in [0, 1], and then

")/:

E90<P* :7P90(T:C)+P90(T> C)
=F(c)—(1—a)+ (1-F(c)
= Q. O

Example 12.10. Suppose our data X1, ..., X, are i.i.d. from the uniform dis-
tribution on (0, 8). The joint density pg(x) is positive if and only if z; € (0, 0),
i=1,...,n, and this happens if and only if M (z) = min{z1,...,z,} > 0 and
T(x) = max{z1,...,2,} < 0. Thus

po(x) = {1/6"7 M(z) >0 and T(z) < 0;

0, otherwise.

Suppose 0 > 01, M(xz) > 0, and T'(x) < 62. Then



12.3 Uniformly Most Powerful Tests 227

po,(x) _ J07/03, T(x) <6
+oo, T(z)> 6.

Po, ((E)

This shows that the family of joint densities has monotone likelihood ratios.
(The behavior of the likelihood ratio when both densities are zero does not
matter; this is why there is no harm assuming M (z) > 0 and T'(x) < 69.) If
we are interested in testing Hg : 8 < 1 versus H; : 0 > 1, the test function ¢

given by
1, T >c
90 =

0, otherwise.

is uniformly most powerful. This test has level
P(T>c)=1-c",

and a specified level « can be achieved taking

c=(1-a)/m
The power of this test is
0, 0 < c;
0) = Py(T > c) = 1—
Be0)=PTze=3 1-a

077‘
In this example, one competing test ¢ is given by
. Ja, T<1
v T>1.

For 0 < 1, Eyp = a, so this test also has level a. For # > 1, this test has
power

Bs(0) = Egp = aPy(T < 1) + Py(T > 1)

« 1
= 1—

on T pn
=ﬁ¢(9)-

The power functions 3, and (3 are plotted in Figure 12.2. Because the power
functions for ¢ and ¢ are the same under H;, these two tests are both uni-
formly most powerful. Under Hy, the power function for ¢ is smaller than the
power function for ¢, so ¢ is certainly the better test. The test ¢ here is an
example of an inadmissible® uniformly most powerful test.

3 A test @ is called inadmissible if a competing test ¢ has a better power function:
Bs(0) > By(0) for all 8 € (2, and Bz(0) < [,(0) for all & € (21, with strict
inequality in one of these bounds for some 6 € (2.
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8

A

4 H > 0

Yl—a

Fig. 12.2. Power functions 8, and (3.

12.4 Duality Between Testing and Interval Estimation

Recall that a random set S(X) is a 1 — « confidence region for a parameter

§=¢(0) if
Py S(X))>1—aq, Vo € 1.

For every &, let A(&p) be the acceptance region for a nonrandomized level «
test of Hy : £(0) = & versus Hy : £(0) # &o, so that

Py[X € A(¢(9))] > 1—q, Vo € 0.

Define
S(z) ={¢:z € A©)}.

Then £(f) € S(X) if and only if X € A(£(6)), and so
Py(£(0) € S(X)) = Py(X € A(£(9))) =1 — o

This shows that S(X) is a 1 — a confidence region for &.

The construction above can be used to construct confidence regions from
a family of nonrandomized tests. Conversely, a 1 — a confidence region S(X)
can be used to construct a family of tests. If we define
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o {1, & ¢ S(X);

0, otherwise,
then if £(0) = &,

Egp = Pp(& ¢ S(X)) = Py (€(0) ¢ S(X)) < a.

This shows that this test has level at most « testing Hy : £(0) = & versus
Hi : £(0) # &. If the coverage probability for S(X) is exactly 1 —a, Py (5(0) €
S(X)) =1—a, for all § € 12, then ¢ will have level exactly a.

FEzample 12.11. Suppose the densities for a model have monotone likelihood
ratios. Also, for convenience assume Fy(t) = Py(T < t) is continuous and
strictly increasing in ¢, for all 8 € £2. For each 6 € (2, define u() so that

Py(T < u(9) = Fp(u(8)) =1—a.

Then
B {1, T > u(bo);

0, otherwise,

is uniformly most powerful testing Hy : @ = 6y versus Hy : § > 6y and has
level
Ego(p = P90 (T Z U,(Go)) = .

This test has acceptance region
A(0y) = {z: T(z) < u(bo)}
Proposition 12.12. The function u(-) is strictly increasing.

Proof. Suppose 6 > 6y. By the second part of Theorem 12.9, the power func-
tion for ¢ is strictly increasing at 6y, and so

Eop=Py (T > u(@o)) > FEp,0 = a.

Thus Py (T < u(fp)) < 1—cv. But from the definition of u(-), Py (T < u(d)) =
1 — «, and so u(f) > u(6p). Since 6 > Oy are arbitrary parameter values, u is
strictly increasing. a

The confidence set dual to the family of tests with acceptance regions A(#),
0 € (2, is
S(X) = {9 X e A(G)} = {9 T(X) < u(@)}

Because u is strictly increasing, this region is the interval (see Figure 12.3)
S(X) = (u™(T),00) ()22

Here v is the inverse function of u.
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u(0)
A

Fig. 12.3. The increasing function w.

For a concrete example, suppose X is exponential with mean 6, so

1
po(x) = 96_'7”/9, x> 0.
The densities for X form an exponential family with n = —1/6, an increasing

function of 8. So we have monotone likelihood ratios with T' = X . The function
u is defined so that
Py(X <u(f) =1-«

Py(X >u(f)) = a.

Because Py(X > z) = e ®/?,

e/ — o,

Solving,
u(f) = —0log a.

Since u(X) is the value 6 solving
X = —0flogq,

we have
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_ X
—log a

and the 1 — « confidence set for 6 is

SX) = (—lfga’oo> '

As a check,

Py(0 € S(X)) =Py (_I)O(ga <6>

—0Olog 1
:/ e /% 4y
0 0

=1-a.

Our construction of confidence sets by duality works with any family of
level « tests. But intuition suggests that better tests should give better con-
fidence intervals. In the example just considered, tests in the family are uni-
formly most powerful, and a natural conjecture would be that the dual con-
fidence interval S(X) should be optimal in some related sense. This is indeed
the case. To deduce the proper notion of optimality, let S*(X) be a competing
confidence set, and take

* ]-a 90 ¢ S* (X)v
L 0, otherwise.
Then ¢* is a test of Hy : 8 = 0y with level at most «. The corresponding test
¢ dual to S(X) is
)1, b ¢ S(X);
v 0, otherwise.

If the tests dual to S are uniformly most powerful testing Hy : 6 = 6, versus
Hy : 0 > 0y, then for any 0 > 6,

Eygp > Egp*.

The left- and right-hand sides of this equation are Py (6o ¢ S(X)) and Py (6o ¢
S*(X )), respectively, and so

Py (90 S S(X)) < Py (90 S S*(X)) (122)

This shows that if 6 is the true value of the parameter, then S(X) has a
smaller chance of containing any incorrect value 6y < 6.

In practice, a researcher may be most concerned with the length of a
confidence interval, and the optimality for S in (12.2) may seem less relevant.
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However, using Fubini’s theorem, there is a relation between the expected
length and the probabilities Py(fy € S(X)). Let A denote Lebesgue measure
on R, so that A(A) = [, dz is the length of A. Also, assume for convenience
that (2 is the interval (w,w) (we allow w = —o0 and/or w = oo). Then, by
Fubini’s theorem,

[
EoA(S(X) N (w,0)) = Eg/ I(6o € S(X)) dby

w

(4
_ / / 1(0 € S(x)) dfo dPy(x)
6

:/ Py (60 € S(X)) dbo.

Similarly,
0

EoA(5*(X) N (,0)) :/ Py (60 € S(X)) dbo,

w

and so, by (12.2),
EgA(S(X) N (w,0)) < EgA(S*(X) N (w,0)).
So the expected length of S(X) below 6 is minimal among all 1 — « confidence
intervals.
12.5 Generalized Neyman—Pearson Lemma*
Treatment of two-sided hypotheses in the next section relies on an extension

of the Neyman—Pearson lemma in which the test function must satisfy several
constraints. Let g(x) take values in R™, and consider maximizing

/@fdu

/@g du = c, (12.3)

over all test functions ¢ satisfying

where c is a specified vector in R™. Introducing a Lagrange multiplier k£ € R™,
consider maximizing

/(f —k-g)pdu (12.4)

4 Results in the rest of this chapter and Chapter 13 are more technical and are not
used in subsequent chapters.
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without constraint. A test function maximizing (12.4) will have form
(12.5)

for a.e. x (). As in our discussion of the Neyman—Pearson lemma, if a function
of this form satisfies (12.3), it clearly solves the constrained maximization
problem.

Let K denote the the set of all test functions (measurable functions with
range a subset of [0, 1]).

Theorem 12.13. Assume f and g are both integrable with respect to p and
that the class C of all test functions ¢ € K satisfying (12.3) is not empty.
Then

1. There exists a test function ¢* mazimizing [ ¢ f du over C.

2. If p* € C satisfies (12.5) for some k € R™, then ¢* mazimizes [ @f dp
over ¢ € C.

3. If p* € C has form (12.5) with k > 0, then ¢* mazimizes [ ¢f du over all
o satisfying [ pgdu < c.

4. Let Ly be the linear mapping from test functions ¢ € K to vectors in R™
given by Ly4() = [ @gdp, and let M denote the range of Ly. Then M is
closed and convez. If ¢ lies in the interior of M, there exists a Lagrange
multiplier k € R™ and a test function ¢* € C mazimizing [(f —k-g)pdu
over p € K. Also, if any ¢ € C mazimizes [ @f du over C, then (12.5)
must hold a.e. p.

The proof of this result relies on an important and useful result from
functional analysis, the weak compactness theorem. In functional analysis,
functions are viewed as points in a vector space, much as vectors are viewed
as points in R™. But notions of convergence for functions are much richer. For
instance, functions f,, n > 1, converge pointwise to f if lim,— . fn(z) = f(x)
for all z. In contrast, uniform convergence would hold if lim,,_,~ sup,, | fn(x)—
f(@)| = 0. Uniform convergence implies pointwise convergence, but not vice
versa. (For instance, the functions 1(, ,11) converge pointwise to the zero
function, but the convergence is not uniform.) The notion of convergence of
interest here is called weak convergence.

Definition 12.14. A sequence of uniformly bounded measurable functions oy,
n > 1, converge weakly to o, written ¢, — ¢, if

/wn,fduﬂ/wfdu

whenever [ |f|dp < oo.
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If the functions ¢,, converge pointwise to ¢, then weak convergence follows
from dominated convergence, but pointwise convergence is not necessary for
weak convergence. With this notion of convergence, the objective function in
Theorem 12.13,

Ls(p) =/s0fdﬂ,

is a continuous function of ¢; that is, £;(¢,) — L () whenever ¢, ~ ¢. The
linear constraint function £, introduced in Theorem 12.13, is also continuous.

Theorem 12.15 (Weak Compactness Theorem). The set K is weakly
compact:® any sequence of functions ¢,, n > 1, in IC has a convergent subse-
quence, Pn(j) Lyek asj— .

See Appendix A.5 of Lehmann and Romano (2005) for a proof. In the
proof of Theorem 12.13, we also need the following result, called the sup-

porting hyperplane theorem. For this and other results in convex analysis, see
Rockafellar (1970).

Theorem 12.16 (Supporting Hyperplane Theorem). If x is a point on
the boundary of a convexr set K C R™, then there exists a mnonzero wvector
v € R™ such that

vy <v-z, Yy € K.

Proof of Theorem 12.13. The first assertion follows by weak compactness of
K. Take
KC = sup ‘Cf(@%
el

and let ¢,, n > 1, be a sequence of test functions in C such that
L(en) — Ke.

By the weak compactness theorem (Theorem 12.15), there must be a subse-
quence @y, (m), m > 1, with

Pn(m) = 90* € ]Ca

and since Ly is continuous, L;(¢*) = K¢. If ¢* € C we are done. But
this follows by continuity of £, because Ly(¢*) = limy, o0 Lg(Pn(m)) and
Ly(pn(m)) = c for all m > 1.

For the second assertion, if ¢* € C has form (12.5), then ¢* maximizes
Jo(f —k-g)dp = L(p) — k- Ly(p) over all K, and hence ¢* maximizes
Li(p)—k-Lg(p) over ¢ € C. But when ¢ € C, Lf(p)—k-L4(0) = Li(@)—k-c,
and so ¢* maximizes Lf(p) over ¢ € C.

5 The topology of weak convergence has a countable base, and so compactness and
sequential compactness (stated in this theorem) are equivalent.



12.5 Generalized Neyman—Pearson Lemma 235

Suppose ¢* € C has form (12.5), so it maximizes L;(¢) — k- L4(¢) over
all ¢ € K. Then if k > 0 and L4(¢) <,

Li(p) <L) —k-Ly(p) +k-c
SLp(p") =k Lg(p) +k-c=Lp(e").
This proves the third assertion.
The final assertion is a bit more involved. First, M is convex, for if 2y =

Ly(po) and z1 = L4(p1) are arbitrary points in M, and if v € [0, 1], using the
linearity of L,

Yoo + (1L —y)21 = 7Ly (w0) + (1 —7)Ly (1)
=Ly(vpo + (1 —7)¢1) € M.

Closure of M follows by weak compactness and continuity of £,. Suppose =
is a limit point of M, so that = lim, o L£4(pr) for some sequence of test
functions ¢, n > 1. Letting ¢, ), m > 1, be a subsequence converging
weakly to ¢,

‘Cg((»o) = lim Cg(@n(m)) = n%gnoo Tpm) = T,

m—00

which shows that x € M.
For the final part of the theorem, assume that c¢ lies in the interior of
M. Let ¢* € C maximize Lf(p) over ¢ € C, and take K¢ = Lf(¢*). Define

L: K — R™*! by o)
e = (240

The arguments showing that M is closed and convex also show that the range
M of L is closed and convex. The point

. Ef(SD*)> (ﬁf(so*)>
xr = C = * =
= (2 :
lies in M. Because ¢* maximizes £ (¢*) over ¢ € C, if € > 0, the point

<Lf(<P:) + 6)

cannot lie in M, and thus z lies on the boundary of M. By the supporting
hyperplane theorem (Theorem 12.16), there is a nonzero vector v = (Z) such
that

v-y<ov-z, VyEJ\;L

or, equivalently, such that

aly(p) +b-Ly(p) <alp(e™) +b-Ly(e™), Voek.
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Here a cannot be zero, for then this bound would assert that b- L4(p) <b-c¢
for all ¢ € K, contradicting the assumption that ¢ lies in the interior of M.
For ¢ € C this bound becomes aly(¢) < aly;(¢*). Because ¢* maximizes
L¢(p) over ¢ € C, a must be positive, unless we are in a degenerate situation
in which Lf(p) = L(¢*) for all ¢ € C. And if a is positive, we are done, for
then the bound is

Li(p) +(b/a)- Lo(p) < Li(07) + (b/a) - Ly(¢7), Ve K,

and we can take k = —b/a.

To handle the degenerate case, suppose L4(p1) = Lg(p2) = ¢ # c. Be-
cause c is an interior point of M, it can be expressed as a nontrivial convex
combination of & and some other point £,(¢3) # ¢ in M; that is,

c=7c+ (1 —7)Ly(p3),

for some v € (0,1). Since £, is linear,

o1 + (1 = 7)ps and yp2 + (1 —7)ps

both lie in C, and so

Ly (ver+ 1 =7)ps) =1Ly (1) + (1 =)Ly (03)
= Ls(vp2 + (1 —7)3)
=7Ls(p2) + (1 =7)Ls(p3).
So we must have Lf(p1) = Ly (¢2). Thus, if (*°) and (%) both lie in M, then
lop = ¢1. Since M is convex and contains the origin, the only way this can
happen is if £L¢(y) is a linear function of L4(y),

Li(p) =k Ly(p), pek.

In this case, ¢* trivially maximizes L£;(p) — k - L4(¢).

To finish, if ¢ maximizes £ over C, then L(p) = L(¢*) and ¢ also maxi-
mizes Ly — k- L, over K. It is then clear that (12.5) must hold a.e. y; if not,
a function satisfying (12.5) would give a larger value for L5 — k- L. a

12.6 Two-Sided Hypotheses

This section focuses on testing Hy : 8 = 0y versus H; : 6 # 6, with data from
a one-parameter exponential family. Generalization to families satisfying a
condition analogous to the monotone likelihood ratio condition is possible.
Tests of Hp : 0 € [01, 03] versus Hy : 0 < 61 or > 02 can be developed in a
similar fashion, but results about the point null hypothesis seem more useful
in practice. Also, uniformly most powerful tests when Hj is two-sided can be
obtained (see Problem 12.39), but these tests are not used very often.
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With data from an exponential family there will be a sufficient statistic,
and the next result shows that we can then restrict attention to tests based
on the sufficient statistic.

Theorem 12.17. Suppose that T is sufficient for the model P = {Py : 0 €
2}. Then for any test o = p(X), the test

v =9(T) = Eg[p(X) | T]
has the same power function as @,
Eo(T) = Egp(X), Vo € 0.
Proof. This follows immediately from smoothing,
Egp(X) = EgEg[p(X) | T] = Eg(T). 0

The next theorem shows that if the densities for X come from an exponen-
tial family, then the densities for T" will also be from an exponential family.
This is established using the following fundamental lemma, which shows how
likelihood ratios can be introduced to write an expectation under one distri-
bution as an expectation under a different distribution. This lemma is quite
useful in a variety of situations.

Lemma 12.18. Let Py and P be possible distributions for a random wvector
X with densities py and p1 with respect to p. If p1(x) = 0 whenever po(x) = 0,
then Py < Py and Py has density

ar o) — p1()
dPy (@) = Liz) = po()

with respect to Py. (The value for L(x) when po(x) = 0 does not matter; for
definiteness, take L(x) = 1 when po(x) = 0.) Introducing this likelihood ratio,
we can write expectations under P as expectations under Py using the formula

E1h(X) = Eoh(X)L(X),

valid whenever the expectations exist. When h is an indicator function, we
have
Pi(B) = Eglp(X)L(X).

Proof. First note that N = {z : po(z) = 0} is a null set for Py because

) = [ podi= [1mda= [0du=0,
N

Similarly, {z : p1(z) = 0} is a null set for P;, and since N C {z : p1(z) = 0},
N is also a null set for P;. So 1y =1 a.e. Py and P;, and multiplication by
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this function cannot change the value of an integral against either distribution.
Suppose M is a null set for Py. Then

/1Mpod/~b=/1M1NcpodH=/1MmNcP0d/~ba

which implies that 1y/Anepo = 0 a.e. p (by the second fact about integration
in Section 1.4). Because py > 0 whenever the indicator is 1, M N N¢ must be
a null set for u. But P; is dominated by p, and so M N N€ is a null set for P;.
But M C NU(M NN¢), which is a union of two null sets for P;, showing that
M must be a null set for P;. To write expectations under P; as expectations
under Py,

E1h(X) :/hpld,u:/lNchpld,u:/lNchg(l)pod,u

Theorem 12.19. If the distribution for X comes from an exponential family

with densities
po(z) = h(m)en(ﬂT(w)fB(@)’ 0 e,

then the induced distribution for T = T(X) has density
qo(t) = en(9)'t—B(9)7 € 1,
with respect to some measure v.

Proof. Two ideas are used. First, using Lemma 12.18, we can introduce a
likelihood ratio to write probabilities under Py as expectations under P,
where 6 is a fixed point in {2. This likelihood ratio is

1= PoX) ) —n(00) - 7+B600)-B(0)
p9o(X)

The second is that expectations of functions of T can be written as integrals
against the density of X, or as integrals against the marginal distribution of
T. Let v* denote the marginal distribution of 7" when 6 = 6. Then

Py(T € B) = Eeol{T c B}e[n(e)fn(eo)]»T+B(90)fB(9)

_ /I{t € Bl O =100} +500)=50) g (1

= [ oty O o),
B

If we define v by
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V(A) = /A e (00 1B O] gy (1),

then v has density e="(%0)*+B(00) with respect to v*, and
Py(T € B) = / qo(t) dv(t),
B

completing the proof. O

Consider testing Hy : 0 = 0y versus Hy : 0 # 0y based on data X with
density
h(z)e" T @)=BO) 0 € 1, (12.6)

where 7) is strictly increasing and differentiable. From results in Section 12.3,
there are level a tests ¢+ with form

1, T >cy; 1, T <c_;
Yy =97 T=cy; and o =q¢7-, T=c_;
0, T<C+, 0, T>c_.

These tests are most powerful for one-sided alternatives. If _ < 6y < 64,
then ¢, will have maximal power at 6, and ¢_ will have maximal power at
0_. Since these tests are different, this shows that there cannot be a uniformly
most powerful level « test. To achieve uniformity, we must restrict the class
of tests under consideration. We do this by constraining the derivative of the
power function at y. The formula in the following theorem is useful.

Theorem 12.20. If n is differentiable at 6 and 0 lies in the interior of {2,
then the derivative of the power function [ for a test ¢ is given by

B'(0) =/ (0)EgT — B'(0)5(6).

Proof. 1f differentiation under the integral sign works, then

510 = gy [ @) EOn@) duta)
= [ o) 5T E O ) dp(o)

- / (@) [ ()T (z) — B'(6)]"@T@~BO k() dpu(z)

=1'(0)EoeT — B'(0) Egep,

and the result follows. Differentiation under the integral sign can be justified
using Theorem 2.4 and the chain rule, or by dominated convergence directly.
|
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Note that because ¢ has maximal power for 6 > 6,

iy P (o +€) = By (60)

ﬂ;(go) - el €
< tim P+ (B +€) = Bpy (B0) _ B, (60) < m. (12.7)
€l0 €

Similarly, 8,,(60) > 5, (6o) o . Form € [m—,m4], let C,, denote the

class of all level a tests ¢ with 3,(6p) = m. The next theorem shows that
when m € (m_,my) there is a uniformly most powerful test in C,,. This test
is two-sided, according to the following definition.

Definition 12.21. A test ¢ is called two-sided if there are finite constants
t1 < to such that

. 1, T <ty orT >ty
v O7 TE(tl,tg).

In addition, the test should not be one-sided. Specifically, EoI{T > t2} and
EoI{T < t1} should both be positive.

Theorem 12.22. If 0y lies in the interior of §2, o € (0,1), X has density
(12.6), and n is differentiable and strictly increasing with 0 < n'(6y) < oo,
then for any value m € (m—_,m4) there is a two-sided test p* € C,. Any such
test is uniformly most powerful in class Cp,: for any competing test p € Cp,

Eyp < Eyp*, Vo € (2.
Proof. Using Theorem 12.20, if ¢ € C,,, then
B, (00) = 1'(60) Eg, Tp — aB'(60) = m,
which happens if and only if

m+ aB’(0y)

0oL P /QO Do, Gl n,(ao)

If we define

= Po, (7) and c= | m aa’
o= (1) o= (s ),

then a test function ¢ lies in C,, if and only if L,(p) = [ g du = c. Because
m4 > m and m_ < m, the point c lies in the interior of the convex hull of the
four points L4(¢4), Lg(w-), Lg(a—€), and Ly(a+€). (Here “a £ €’ denotes
a test function that equals o & € regardless of the value of X.) Thus c lies in
the interior of the range M of L,.



12.6 Two-Sided Hypotheses 241

With this background on the nature of the constraints for test functions ¢
in Cy,, we can now use the last assertion in Theorem 12.13 to show that there
exists a two-sided test ¢* in C,,. Let 6 be some fixed point in (2 different from
0o and consider maximizing

Ezp = / Ppg dp

over @ in C,,. Using the fourth assertion in Theorem 12.13 there is a Lagrange
multiplier £ € R? and a test ¢* € C,,, maximizing [ ¢(p; — k- g) dp with form

. _ )L pg > (k4 kT)pay;
0, ps < (k1 + k2T)pe, -
Dividing through by pg,,

R ()
0, exp{(n(@)

1(00))T — B(0) + B(6o)} > k1 + k2T
T](G()))T — B(é) + B(GO)} < k1 + koT.

The line k1 + kot must intersect the exponential function exp{ (77(9) —77(90))25—
B(0) + B (60) }, for otherwise ¢* would be identically one. Because the expo-
nential function is strictly convex, the line and exponential function intersect
either once, if the line is tangent to the curve, or twice. Let ¢t7 < t5 denote
the two points of intersection when the line is not tangent, and let t7 = ¢
be the single point of intersection when the line is tangent to the exponential
function. Since the exponential function is convex, ¢* has form

« L, T <tjorT>t5
770, Te ).

To finish showing that ¢* is a two-sided test, we need to verify ¢* is not one-
sided. Suppose EgpI{T < t;} = 0. By Theorem 12.9 1) = Ey(¢*|T") has the
same power function as ¢*, and this test is uniformly most powerful testing
0 < 6y against 6 > 6y by Theorem 12.9. Because 4 is also uniformly most
powerful, the power functions for ¢* and ¢4 must agree for 6 > 6y, and the
slope of the power function for ¢* at 8y must be m_. This is a contradiction
for if o* lies in C,, this slope must be m < my.. Similarly, FgoI{T > t2} = 0,
and so ¢* is a two-sided test.

To conclude, we show that any two-sided test ¢ € C,, is uniformly most
powerful. So assume

- )L T <t;orT >ty
0, Te(f,t),

and let 6 be an arbitrary point in 2 not equal to fy. Define x € R? so that
the line k1 + kot passes through the points
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(gh e[n(9)—n(9o)]fl—3(9)+B(90))

and ~
(527 e[n(9)*n(9o)]tz73(9)+B(9o)) ,

If £, = 13, so these points are the same, then the line should also have slope
(6 —Bp)el0—00)t1=A(0)+A(00) 56 that it lies tangent to the exponential curve. By
convexity of the exponential function and algebra similar to that used above,
¢ has form

il P> (k1 + £2T)po,;
0, po < (k1 + k2T)pa,-

From this, ¢ clearly maximizes [ ¢(pg — - g) dp over all ¢ € K. But for test
function ¢ € Cpy,

/so(pe—n-g)du=EesD—ﬁ-C~

Thus Eyp > Eyp for any ¢ € C,,, and, since 6 is arbitrary, ¢ is uniformly
most powerful in C,,. a

Remark 12.23. A similar result can be obtained testing Hy : 6 € [0, 02] versus
Hj : 0 ¢ [01,65]. Suppose p* is a two-sided test with Ey, o* = a; and Fy,p* =
ag. Then ¢* has level @ = max{ay, as} and is uniformly most powerful among
all tests ¢ with Eg, ¢ = a1 and Ep,p = aa.

Remark 12.24. If the slope m for the power function for a test ¢ at 6y differs
from zero, then there will be points 6 # 6y where the power for the test
is less than «. If this happens, the test ¢ is called biased. If an unbiased
test is desired, the slope m should be constrained to equal zero. This idea is
developed and extended in the next section of this chapter.

12.7 Unbiased Tests

In the previous section we encountered a situation in which uniformly most
powerful tests cannot exist unless we constrain the class of test functions un-
der consideration. One appealing constraint restricts attention to tests that
are unbiased according to the following definition. Theorem 12.26 below finds
uniformly most powerful unbiased tests for one-parameter exponential fami-
lies, and Chapter 13 has extensions to higher dimensions.

Definition 12.25. A test ¢ for Hy : 0 € £29 versus Hy : 0 € £21 with level «
is unbiased if its power B,(8) = Egp satisfies

Be(0) <a, Ve 2y and B,(0) > o, VO € (2.
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If there is a uniformly most powerful test ¢*, then it is automatically un-
biased because B+ () > 5,(0), for all § € 21, and the right-hand side of this
inequality is identically « for the degenerate test, which equals « regardless
of the observed data.

Theorem 12.26. If a € (0,1), 6y lies in the interior of 2, X has density
(12.6), and n is differentiable and strictly increasing with 0 < 7/(6y) < oo,
then there is a two-sided, level a test p* with ﬁ;* (6p) = 0. Any such test is
uniformly most powerful testing Hy : 0 = 0y versus Hy : 0 # 6y among all
unbiased tests with level .

Changing the sign of T and 7, this result is also true if 7 is differentiable
and strictly decreasing with —oo < n’(6y) < 0.

Proof. Since 6 lies in the interior of {2, the power function for any unbiased
test ¢ must have zero slope at 6y, and so ¢ € Cy. The theorem is essentially
a corollary of Theorem 12.22, provided 0 € (m_,m4). This is established in
the following lemma. a

Lemma 12.27. Under the assumptions of Theorem 12.26,
my = B, (00) >0 and m_ = 3, (6) < 0.

Proof. Let us begin showing that Ep, T4 > aFy,T. The argument is similar
to the proof of Proposition 12.3. From the form of ¢,
E90T§0+ - aE90T = E90 (T - C+)(p+ - E90 (T - C+)O¢
= Eo, (T — c1)(p4 — )
= Ep,|T — et ||+ — al.

Since o € (0,1), this expression is strictly positive unless Py, (T = c1) =
1. But if Pyp,(T = c4) = 1, then Py(T = ¢4) = 1 for all § € 2 and all
distributions in the family are the same. Thus Eg,T w1 > aFp,T. Using this
in the formula in Theorem 12.20,

B, (60) =1'(60) Eg, Ty — aB'(0) > a(n' (60) Eg, T — B'(6o)).

The lower bound here is zero because B'(6) = n/(8)EyT, which follows from
Theorem 12.20, with ¢ identically one. a

Remark 12.28. Because B'(0) = 1/ (0)EyT, using Theorem 12.20 the con-
straint 3], (6p) = 0 in Theorem 12.26 becomes

0= TII(GO) [E90T<p* - O‘E90T} = TI’(HO)COV% (410*7 T)

So any two-sided test ¢* with level « that is uncorrelated with T' is uniformly
most powerful unbiased.
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Ezxample 12.29. Suppose X has an exponential distribution with failure rate
0, so

fe 0% x> 0;
po(z) = {

0, otherwise,

and consider testing Hy : 0§ = 1 versus H; : 0 # 1. Let

0, X €(c1,c2);
(p:{ (c1,¢2)

1, X <c orX >cs.

By Theorem 12.26, ¢ is uniformly most powerful unbiased provided

c2
Eip=1- / efdr=1—e"+e 2=q (12.8)

C1

and

c2
Ei:Xpo=FX—-E1X(1-y) :1—/ ze Tdx

Cc1

=1—-(14+c)e 4+ (1+c)e®=abrX =a.
Using (12.8), this equation simplifies to
cre” ! = cge” . (12.9)
Isolating ¢z in (12.8),
cy = —log(e*"’1 -1+ a).
Using this in (12.9),
cre”t = —(e_c1 -1+ cu)log(e_c1 -1+ a).

The solution to this equation must be found numerically. Note that as ¢;
varies from 0 to —log(l — ) > 0, the left-hand side increases from 0 to
—(1 —a)log(l — ) > 0, as the right-hand side decreases from —aloga > 0
to 0, and so, by continuity, a solution must exist. For oo = 5%, ¢; = 0.042363
and ¢y = 4.7652.

In practice, numerical issues can be eliminated by choosing c¢; and ¢y so
that Pi(X < ¢1) = PiI(X > ¢2) = a/2, for then ¢; = —log(l — «/2) and
ca = —log(a/2). But the resulting test is biased. For instance, if a = 5%,
c1 = 0.025318 and ¢y = 3.6889, quite different from the critical values above
for the best unbiased test.
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12.8 Problems®

*1.

*2.

*3.

*4.

*6.

7.

*9.

Suppose X ~ Py for some 6 € {2, and that U is uniformly distributed on

(0,1) and is independent of X. Let ¢(X) be a randomized test based on

X . Find a nonrandomized test based on X and U, so ¢(X,U) = 15(X,U)

for some critical region S, with the same power function as ¢, Egp(X) =

Epp(X,U), for all 0 € (2.

Suppose sup |h(z)| = M and Eh(Z) = 0, where Z ~ N(0,1). Give a sharp

upper bound for Fh(27).

Determine the density of Z; /Z when Z; and Zs are independent standard

normal random variables. (This should be useful in the next problem.)

Let X; and X, be independent, and let 7 > 0 and 03 > 0 be known

variances. Find the error rate for the best symmetric test of Hy : X1 ~

N(0,0%), X5 ~ N(0,03) versus Hy; : X1 ~ N(0,03),Xs ~ N(0,0%). A

symmetric test here is a test that takes the opposite action if the two data

values are switched, so p(z1,z2) = 1 — p(z2,z1). For a symmetric test the
error probabilities under Hy and H; will be equal.

Suppose sup,sq|h(x)] = M and Eh(X) = 0, where X has a standard

exponential distribution. Give a sharp upper bound for Eh(2X).

Suppose X is uniformly distributed on (0, 2).

a) Suppose sup(q oy |h(z)| < M and Eh(X) = 0. Give an upper bound
for ER(X?/2), and a function h that achieves the bound.

b) Suppose instead that |h(z)] < Mz, 0 < z < 2, but we still have
Eh(X) = 0. Now what is the best upper bound for Eh(X?/2)? What
function achieves the bound?

Consider a model in which X has density

0
po(z) = (1 4 62)2’ x> 0.
a) Show that the derivative of the power function 8 of a test ¢ is given
by
1-60X
/ - B
B0 = |y ey #0)|

b) Among all tests with 3(1) = «, which one maximizes 3'(1)?

Let X have a Poisson distribution with mean one. Suppose |h(z)] < 1,z =
0,1,2,..., and Fh(X) = 0. Find the largest possible value for Fh(2X),
and the function h that achieves the maximum.

Suppose data X has density pg, 8 € 2 C R, and that these densities
are regular enough that the derivative of the power function of any test
function ¢ can be evaluated differentiating under the integral sign,

5,0 = [ o0 duta).

6 Solutions to the starred problems are given at the back of the book.
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*10.

11.

12.

13.

12 Hypothesis Testing

A test ¢* is called locally most powerful testing Hy : 0 = 0y versus Hy :
0 > 0o if it maximizes [3,(fy) among all tests ¢ with level a. Determine
the form of the locally most powerful test.

Suppose X = (X1,...,X,) with the X; ii.d. with common density fp.
The locally most powerful test of Hy : 8 = 6y versus Hy : 60 > 6y from
Problem 12.9 should reject Hy if an appropriate statistic T' exceeds a
critical value c. Use the central limit theorem to describe how the critical
level ¢ can be chosen when n is large to achieve a level approximately a.
The answer should involve Fisher information at 8 = 6.

Laplace’s law of succession gives a distribution for Bernoulli variables
X1, X5, ... in which P(X; =1) =1/2, and

P(Xj+1:1|X1=.’131,...,Xj=$j):1+x1j—:_2 +xj, ]Zl
Consider testing the hypothesis H; that Xy, ..., X,, have this distribution
against the null hypothesis Hy that the variables are i.i.d. with P(X; =
1) = 1/2. If n = 10, find the best test with size a = 5%. What is the
power of this test?

An entrepreneur would like to sell a fixed amount M of some product
through online auctions. Let R(t) > 0 denote his selling rate at time t.

Assuming all of the merchandise is sold eventually,

/OOOR(t)dt:M.

The sales rate and price should be related, with the sales rate increasing
as the price decreases. Assume that price is inversely proportional to v/R,
so that the rate of return (price times selling rate) at time ¢ is cy/R(t).
Discounting future profits, the entrepreneur would like to maximize

/DO e/ R(t)e % dt,
0

where § > 0 denotes the discount rate. Use a Lagrange multiplier approach
to find the best rate function R for the entrepreneur.

Consider simple versus simple testing from a Bayesian perspective. Let @
have a Bernoulli distribution with P(©@ = 1) = p and P(© =0) =1 —p.
Given @ = 0, X will have density pg, and given © = 1, X will have density
p1-

a) Show that the chance of accepting the wrong hypothesis in the

Bayesian model using a test function ¢ is

R(p) = E[I{0 = 0}p(X) + I{O = 1}(1 — ¢(X))].

b) Use smoothing to relate R(p) to Egp = E[p(X) | © =0] and Eyp =
Elp(X)|©=1].
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*15.

*16.

*17.

18.

19.

12.8 Problems 247

¢) Find the test function ¢* minimizing R(y). Show that ¢* is a likeli-
hood ratio test, identifying the critical value k.
Let X denote the number of tails before the first heads if a coin is tossed
repeatedly. If successive tosses are independent and p is the chance of
heads, determine the uniformly most powerful test of Hy : p = 1/2 versus
Hy : p < 1/2 with level @ = 5%. What is the power of this test if p is
40%?
Suppose X and Y are jointly distributed from a bivariate normal distribu-
tion with correlation p, means EX = EY = 0, and Var(X) = Var(Y) =
1/(1 — p?). Determine the uniformly most powerful test of Hy : p < 0
versus Hy : p > 0 based on (X,Y).
Consider a location family with densities pg(x) = g(x — 6). Show that if ¢
is twice differentiable and d? log g(z)/dz? < 0 for all z, then the densities
have monotone likelihood ratios in z. Give an analogous differential condi-
tion sufficient to ensure that densities for a scale family pg(z) = g(z/6)/0,
x > 0, have monotone likelihood ratios in x.
p-values. Suppose we have a family of tests ¢, « € (0,1) indexed by level
(s0 ¢q has level a), and that these tests are “nested” in the sense that
o () is nondecreasing as a function of a. We can then define the “p-value”
or “attained significance” for observed data x as inf{a : ¢,(z) = 1},
thought of as the smallest value for « where test ¢, rejects Hy. Suppose
we are testing Hy : 0 < 0y versus Hy : 8 > 0y and that the densities for
data X have monotone likelihood ratios in T'. Further suppose T has a
continuous distribution.
a) Show that the family of uniformly most powerful tests are nested in
the sense described.
b) Show that if X = x is observed, the p-value P(x) is

Py, [T(X) > t],

where t = T'(x) is the observed value of T'.

¢) Determine the distribution of the p-value P(X) when 6 = 6.

Let F' be a cumulative distribution function that is continuous and strictly

increasing on [0,00) with F'(0) = 0, and let g, denote the upper ath

quantile for F'; so F(q,) = 1 — a.. Suppose we have a single observation X

with

Py(X <x)=F(z/0), reR, 6>0.

a) Consider testing Hy : 6 < 0y versus Hj : 0 > 6. Find the significance
level for the test ¢ = 1(. o). What choice for ¢ will give a specified
level a?

b) Let ¢, denote the test with level « in part (a). Show that the tests
©Ya, @ € (0,1), are nested in the sense described in Problem 12.17, and
give a formula to compute the p-value P(X).

Suppose X has a Poisson distribution with parameter A. Determine the

uniformly most powerful test of Hy : A < 1 versus Hy : A > 1 with level

a=5%.
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*20. Do the densities pg(z) = (1 + 0z)/2, z € (—1,1), 6 € [-1, 1], have mono-
tone likelihood ratios in T'(x) = z?
*21. Let f be a specified probability density on (0,1) and let

po(x) =0+ (1 —0)f(z), z € (0,1),

where 0 € [0,1] is an unknown parameter. Show that these densities have
monotone likelihood ratios, identifying the statistic T'(z).
22. Suppose we observe a single observation X from N (6, 6?).
a) Do the densities for X have monotone likelihood ratios?
b) Let ¢* be the best level « test of Hy : 6 = 1 versus Hy : § = 2. Is ¢*
also the best level « test of Hy : 6 = 1 versus Hy : 0 = 47
23. Consider tests for Hy : § = 0 versus H; : 6 # 0 based on a single ob-
servation X from N(6,1). Using the apparent symmetry of this testing
problem, it seems natural to base a test on Y = | X]|.
a) Find densities gg for Y and show that the distribution for Y depends
only on |6].
b) Show that the densities g, > 0, have monotone likelihood ratios.
¢) Find the uniformly most powerful level « test of Hy versus H; based
onY.
d) The uniformly most powerful test ¢*(Y') in part (c) is not most pow-
erful compared with tests based on X. Find a level « test p(X) with
better power at § = —1,

E_19(X) > E_19"(Y).

What is the difference in power at 0 = —1 if a = 5%?

24. Let Py and P; be two probability distributions, and for € € (0, 1), let P.
denote the mixture distribution (1—¢€)Py+€eP;. Let Ey, Ey, and E. denote
expectation when X ~ Py, X ~ P;, and X ~ P., respectively.

a) Let ¢ be a test function with a = Egp(X) and 8 = E1p(X). Express
E.o(X) as a function of €, o, and S.

b) Using the result in part (a), argue directly that if ¢ is the most pow-
erful level « test of Hy : X ~ Py versus Hy : X ~ P, then it is also
the most powerful level « test of Hy : X ~ Py versus Hy : X ~ P..

¢) Suppose Py and P have densities py and p1, respectively, with respect
to a measure p. Find the density for P..

d) Using part (c), show that if ¢ is a likelihood ratio test of Hy : X ~ Py
versus Hy : X ~ Py, then it is also a likelihood ratio test of Hy : X ~
Py versus Hy : X ~ P..

*25. Suppose X has a Poisson distribution with mean A, and that U is uni-

formly distributed on (0,1) and is independent of X.

a) Show that the joint densities of X and U have monotone likelihood
ratiosin T = X + U.

b) Describe how to construct level o uniformly most powerful tests of
Hy : A = Ao versus H; : A\ > )\g based on X and U. Specify the
resulting test explicitly if & = 5% and A\g = 2.
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¢) Describe confidence intervals dual to the family of tests in part (b).
Give the confidence interval if the data are X = 2 and U = 0.7.
26. Suppose X has a geometric distribution with success probability 6, so
Py(X =2)=0(1—-0)", x=0,1,...; and that U is uniformly distributed
on (0,1) and is independent of X.
a) Show that the joint densities of X and U have monotone likelihood
ratios in T' = —(X + U).
b) Describe how to construct level « uniformly most powerful tests of
Hy : 0 = 0y versus Hy : 6 > 6y based on X and U. Specify the
resulting test explicitly if & = 5% and 6y = 1/20.
¢) Describe confidence intervals dual to the family of tests in part (b).
Give the confidence interval if the data are X = 2 and U = 0.7.
27. Suppose X1, ..., X, are i.i.d. from N(0,c?).
a) Determine the uniformly most powerful test of Hy : 0 = og versus

Hy:0 > op.
b) Find a confidence interval for o using duality from the tests in part (a).
*28. Let Xq,...,X,, be ii.d. observations from a uniform distribution on the

interval (0, 0). Find confidence intervals S7 dual to the family of uniformly
most powerful tests of 8 = 6y versus 6 > 6y and Sy dual to the family
of uniformly most powerful tests of § = 6y versus 6 < 6y. Then use the
result from the Problem 9.12 to find a 95% confidence interval for 6. This
interval should have finite length and exclude zero.

29. Suppose Y7 and Y5 are independent variables, both uniformly distributed
on (0, 0), but our observation is X = Y7 + Ya.
a) Show that the densities for X have monotone likelihood ratios.
b) Find the UMP level « test of Hy : 6 = 6y versus H; : § > 6y based on

X.

¢) Find a confidence set for § dual to the tests in part (b).

30. Let X and Y be independent with X ~ N(us,1) and Y ~ N(u,,1).
Take [|ul|* = p2 + p2, and consider testing Ho : py = p, = 0 versus
Hi : ||p|] > 0. For rotational symmetry, a test based on T’ = X2+ Y2 may
seem natural. The density of T is

s (Vtpll) exp{ =3 (t+ ul?)}, t>0;
fln® =14 y
, otherwise,

where Ij is a modified Bessel function given by

1 (7 .
Ip(x) = 71_/0 €7 dw.

a) Show that Ip(z) > I} (z) and that =} (z) + I} (x) = xI(x).
b) Show that xI)(x)/Io(z) is increasing in x. Use this to show that for
c¢>1, Ip(cz)/Io(x) is an increasing function of z. Hint:

log In(cz) — log In(z) = / 510g8[0(ux) .
1 ]
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c) Show that the densities f}, have monotone likelihood ratios.

d) Find the uniformly most powerful level « test of Hy versus H; based
onT.

e) Find a level « test of Hy versus Hy based on X and Y that has power
as high as possible if p, = p, = 1. Is this the same test as the test in
part (d)?

f) Suggest a level « test of Hy : iy = Ca, [y = Cy, VErsus Hy : pig # o
or f1y # ¢y, based on T = (X — ¢;)? + (Y —¢,)%.

g) Find a 1 — a confidence region for (4, i) dual to the family of tests
in part (f). What is the shape of your confidence region?

*31. Suppose X ~ N(0,1), and let ¢ be a test function with power 5(0) =
Egp(X).

a) Show that 3'(0) = Ex X p(X).

b) What test function ¢ maximizes 3(1) subject to constraints 5(0) = «
and '(0) = 07

*32. Suppose X; and X are independent positive random variables with com-
mon Lebesgue density pg(z) = 0/(1 + 0x)%, x > 0.

a) Use dominated convergence to write the derivative /() of the power
function for a test ¢ as an expectation.

b) Determine the locally most powerful test ¢ of Hy : 8 < 0y versus
Hy : 0 > 60y with 8,(00) = 5%. As in Problem 12.9, a locally most
powerful test here would maximize 3'(6p) among all tests with level
«. Hint: The relevant test statistic can be written as the sum of two
independent variables. First find the Py, marginal distribution of these
variables.

¢) Determine a 95% confidence region for 6 by duality, inverting the
family of tests in part (b).

*33. Suppose we have a single observation from an exponential distribution
with failure rate A, and consider testing Hy : A = 2 versus Hy : A # 2.
Find a test ¢* with minimal level oz among all tests ¢ with 50% power at
/\zland/\=3, El(p=E3<p=1/2

34. Suppose X has a uniform distribution on (0,1). Find the test function ¢
that maximizes Ep(X) subject to constraints

Ep(X?) = Ep(1 — X?) =1/2.

35. Define p1 = 1j9,11, 2 = lj0,1/2], 3 = L[1/2,1), P4 = Ljo,1/3]: ¥5 = L1/3,2/3)
w6 = lpg/3,1], ete.
a) If z € [0,1], what is limsup,,_,. @n(z)?
b) What is lim, oo fol o(z) dx?
¢) Suppose f is bounded and nonnegative. Find

lim p(z)f(x) dx.

n—oo 0
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*37.

38.

39.

40.
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d) Suppose f > 0 and fol f(x)dz < co. Use dominated convergence to
show that
lim (f(m)—k)+d;v:0.

k—oo Jq

e) Suppose f >0 and fol f(z) dz < co. Show that

lim 1 f(@)pn(x)dx =0.

n—oo 0

Hint: Note that for any k,

f(x) = min{ f(2),k} + (f(z) — k)"

Use this to find an upper bound for

lim sup -/01 f(@)pn(z) de.

n—oo

f) Let ¢ be the “zero” test function, ¢(z) = 0, for all z. Do the functions
pn, converge pointwise to ¢?
For n > 1 and z € (0,1), define

on(z) = I([2"2°] € {0,2,4,...}),

and let p be Lebesgue measure on (0,1). Find the weak limit of these
functions, that is, a function ¢ on (0,1) such that ¢, — ¢.

Let ¢, be a sequence of test functions converging pointwise to ¢, ¢, (z) —
p(x) for all .

a) Does it follow that 2 % ©?? Prove or give a counterexample.

b) Does it follow that 1/, % 1/p? Prove or give a counterexample.
Let X have a Cauchy distribution with location 6, so

1
po(z) = x € R,

Cor[l+ (z—0)?2]
and consider testing Hy : § = 0 versus H; : 6 # 0. Find a test ¢ with level
a = 5% that maximizes E;¢ subject to the constraint F1p = E_jp. Is
this test uniformly most powerful unbiased?

Suppose X has an exponential distribution with failure rate A, so py(z) =
Ae for x > 0. Determine the most powerful test of Hy: A =1 or A =4
versus Hy : A = 2 with level a = 5%. The test you derive is in fact the
uniformly most powerful test of Hy: A < 1or A >4 versus H; : A € (1,4)
with level a = 5%.

Locally most powerful tests in two-sided situations. Suppose we have a
single observation X with density
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*41.

*42.

43.

*44.

45.

46.

47.
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, > 0;
po(z) =4 (1+6x)2

0, otherwise,

where 6 > 0. Find a test ¢* of Hy : 6 = 1 versus H; : 0 # 1 with level
a = 5% that maximizes f3;(1), subject to the constraint (1) = 0.
Suppose X has a binomial distribution with two trials and success
probability p. Determine the uniformly most powerful unbiased test of
Hy:p=2/3 versus Hy : p # 2/3. Assume a < 4/9.

Let X;...X4 bei.id. from N(0,0?). Determine the uniformly most pow-
erful unbiased test of Hy : ¢ = 1 versus Hy : o # 1 with size a = 5%.

Suppose we observe a single observation X with density
fo(z) = c(O)|a]e @2 zeR

a) Give a formula for ¢() in terms of the cumulative distribution function
@ for the standard normal distribution.

b) Find the uniformly most powerful unbiased test of Hy : § = 0 versus
H1 1 0 75 0.

Consider testing Hy : 0 = 0y versus H; : 6 # 0y based on a single obser-

vation X with density

0 el <1
po(z) = { 2sinh 6’ ’
0, |z| > 1.

When 6 = 0, py should be 1/2 if |z| < 1, and zero otherwise.

a) Specify the form of the uniformly most powerful unbiased test with
level «, and give equations to determine constants needed to specify
the test.

b) Specify the uniformly most powerful unbiased test explicitly when
6o = 0.

Let X1,..., X, be independent with

XiNN(ti0,1)7 7;:17...,71,

where t1,...,t, are known constants and # is an unknown parameter.

a) Determine the uniformly most powerful unbiased test of Hy : 6 = 6,
versus Hj : 6 # 0q.

b) Find a confidence region for ¢ inverting the family of tests in part (a).

Suppose our data consist of two independent observations, X and Y, from

a Poisson distribution with mean A. Find the uniformly most powerful

unbiased test of Hg: A = 1 versus Hy : A # 1 with level a = 10%.

A random angle X has density



48.

49.
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exp|6 cos x|
po(z) = 2nlg(0)
0, otherwise,

x € [0, 2m);

where 6 € R and I is a modified Bessel function (Ip(0) = 1). Find the
uniformly most powerful unbiased test of Hy : 8 = 0 versus Hy : 6 # 0
with level a.

Suppose X has density

x2 exp[— % (x — 9)2]

, eR.
V2r(l + 62) v

po(z) =

Find the uniformly most powerful unbiased test of Hy : § = 0 versus
H; : 0 # 0 with level a = 5%.

Because a good test of Hy : 6 € 2y versus H; : 6 € 21 should have high
power on {2, and small power on {2, a test function ¢ might be chosen
to minimize

Bo(O)w(0)dA©) + [ (1= 5,(6))(6) dA(),
20 21

where A is a measure on {2 = 29 U {21 and w > 0 is a weight function.

(With a natural loss structure, Bayes risks would have this form.)

a) Describe a test function ¢* that minimizes this criterion. Assume that
P is a dominated family with densities pg, 0 € (2.

b) Find the optimal test function ¢* explicitly if w is identically one, A is
Lebesgue measure on (0,00), Py is the exponential distribution with
failure rate 0, 2o = (0,1], and 4 = (1, c0).
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Optimal Tests in Higher Dimensions

In Section 13.2, uniformly most powerful unbiased tests are considered for
multiparameter exponential families. The discussion involves marginal and
conditional distributions described in Section 13.1. The ¢-test and Fisher’s
exact test are considered as examples in Section 13.3.

13.1 Marginal and Conditional Distributions

The main result of this section uses the following technical lemma about
conditional and marginal distributions when a joint density factors, but the
dominating measure is not a product measure.

Lemma 13.1. Let Y be a random vector in R™ and T a random vector in R™,
and let Py and P be two possible joint distributions for Y and T. Introduce
marginal distributions

Qo(B) = Po(T € B) and Q1(B) = PA(T € B),
and conditional distributions
Ry (B) = Py(Y € BIT =t) and Ry (B) = P (Y € B|T =1t).
Assume Py < Py and that the density for Py has form

" (60) = alw)b(0)

with a(y) > 0 for ally € R™. Then Q1 <€ Qo and Ry < R, for a.e. t (Q1)
with densities given by

dQ:
(t) = b(t)Eo[a(Y)|T = t] = b(t) /adROt
dQo
and
dRy¢ y) = a(y)
dR()t f a dR()t ’
R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 255

DOI 10.1007/978-0-387-93839-4 13, © Springer Science+Business Media, LLC 2010
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Proof. The formula for the marginal density is established by first using
Lemma 12.18 to write P (T € B) as an expectation under Py involving the
likelihood ratio a(Y)b(T), followed by a smoothing argument to write this
expectation as an integral against QQg. Thus

P\(T € B) = Eo[I{T € B}a(Y)b(T)]
= EoEo[I{T € B}a(Y')b(T) | T|
= Ep [I{T € BIb(T)Ep[a(Y) | T”

. /B b(t)Eo[a(Y) | T = 1]dQo(t).

Next, if the stated density for R;; is correct,

_ a(y)
(@)= [ M dRat)

and so, according to Definition 6.2 of conditional distributions, we must show
that

P(TeBYe(C)= /B/C IZ%M dRot(y) dQ1(t).

Using the formula for the density of Q1 with respect to @, the right-hand
side of this equation equals

/B [ 11 € Chaty) dRaty)piv) a@u

_y [I{T € BIb(T)Ey[I{Y € C}a(Y) | TH
= Eo[a(Y)b(T)I{T € B,Y € C}]
=P (T € B,Y € C),
where the last equality follows from Lemma 12.18. a

Suppose the distribution for data X comes from an (r + s)-parameter
canonical exponential family with densities

po.n(x) = h(x)exp [9 -U(x)+n-T(x)— A6, n)}, (13.1)

where 0 is r-dimensional and 7 is s-dimensional. The following theorem gives
the form of marginal and conditional distributions for the sufficient statistics
UandT.

Theorem 13.2. If X has density pg,, in (13.1), then there exist measures Ag
and vy such that:

1. With 0 fized, the marginal distributions of T will form an s-parameter
exponential family with densities

exp [77 -t — A(0, 77)]

with respect to Ag.
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2. The conditional distributions of U given T =t form an exponential family

with densities
exp [0 U — At(ﬁ)]

with respect to v¢. These densities are independent of 1.

Proof. Fix some point (fg,1n9) € {2, and let v be the joint distribution of T
and U under Py, ,,. Arguing as in the proof of Theorem 12.19, under Py ,, T’
and U have joint density

exp[(0 — 6o) - u+ (n—mo) - t + A(bo,m0) — A(6,7)]

with respect to v. If Ry denotes the conditional distribution of U given T
under Py, ., then by Lemma 13.1 the marginal density of T" under Py ,, is

oA / exp((0— 00) -u— 10 - £ + A6, m0)) dRo (u)

with respect to Qo, the marginal density of 1" under Pp, y,. This is of the
correct form provided we choose Ag so that
dNg
dQo

By the second formula in Lemma 13.1, under Py, the conditional density of
U given T =t with respect to Ry is

(1) = /exp((0 —00) - u—no - t + A(B,10)) dRou(w).

e(0—00)-u

f e(6—60)v dRo: ('U) '

This density has the desired form. a

13.2 UMP Unbiased Tests in Higher Dimensions

If the power function (3, for an unbiased test ¢ is continuous, then 8,(9) < «
for 6 in (29, the closure of 2y, and B,(0) > « for § € 2,. If we take w =
20 N 21, the common boundary of 2y and (27, then

Be(0) = «a, Vo € w.

Tests satisfying this equation are called a-similar. Here a need not denote the
level of the tests, because 3, may exceed o at points 6 in 2y — w.

Lemma 13.3. Suppose ¢* is a-similar and has level o, and that power func-
tions B, for all test functions ¢ are continuous. If p* is uniformly most power-
ful among all a-similar tests, then it is unbiased and uniformly most powerful
among all unbiased tests.
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Proof. The degenerate test that equals a regardless of the observed data is -
similar. Since ¢* has better power, G,+(0) > «, 6 € £21. Because ¢* has level
a, B+ (0) < o, 0 € £2. Thus ¢* is unbiased. If a competing test ¢ is unbiased,
then since its power function is continuous it is a-similar. Then 8, < (.- on
{21 because ¢* is uniformly most powerful among all a-similar tests. a

The tests we develop use conditioning to reduce to the univariate case.
Part of why this works is that the tests have the structure in the following
definition.

Definition 13.4. Suppose T is sufficient for the subfamily {Py : 0 € w}. An
a-similar test p has Neyman structure if

Eplo|T =t] = a fora.e. t, VO e€w.

Theorem 13.5. If T is complete and sufficient for {Py : 0 € w}, then every
stmilar test has Neyman structure.

Proof. For 0 € w, let h(T) = Ey(¢|T). (Because T is sufficient, h is indepen-
dent of § € w.) By smoothing,
Epp = Egh(T) = «, Vo € w.
By completeness, h(T') = Eg(p|T) = a, a.e., for all § € w. O
Suppose data X has density

po.n(x) = h(x) exp{OU(x) +n-T(x) — A6, 77)} (13.2)

Here 6 is univariate, but 1 can be s-dimensional. The tests of interest are
derived by conditioning on 7T'. By Theorem 13.2, the conditional distributions
of U given T = t form a one-parameter exponential family with canonical
parameter 6. Theorem 12.9 gives a uniformly most powerful conditional test
of Hy: 6 <6y versus Hy : 6 > 6, given by

1, U > ¢(T);
p1=97T), U=cT);
0, U < ¢(T),

with ¢(-) and v(-) adjusted so that
Poo(U >c(t) | T =1t) +v(t)Ppo (U =c(t) | T =1t) =

Similarly, Theorem 12.26 gives a uniformly most powerful unbiased condi-
tional test of Hy : 8 = 0y versus Hy : 6 # 6, given by

(
(t);

g2 =q7-(T), U=c_(T)
(
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with ¢4 (+) and v+ (-) adjusted so that
Egynlp2|T =t =«

and
Egynlp2U|T = t] = aEp, ,[U|T = t].

Theorem 13.6. If the exponential family (13.2) is of full rank and §2 is open,
then 1 is a uniformly most powerful unbiased test of Hy : 0 < 6y versus
Hy : 0 > 0y, and p2 is a uniformly most powerful unbiased test of Hy : 0 = 0
versus Hy : 6 £ 6.

Proof. Let us begin proving the assertion about ;. First note that the con-
ditions on the exponential family ensure that the densities with 6 = 6y form
a full rank exponential family with 7" as a complete sufficient statistic. Also,
from the construction, Eg, »[¢1|T] = o, so by smoothing Eg, ,¢1 = o and ¢
is a-similar. Suppose ¢ is a competing a-similar test. Then ¢ has Neyman
structure by Theorem 13.5 and Ey, ,[p|T = t] = «. Because ¢; is the most
powerful conditional test of § = 6 versus 6 > 6, if 8 > 0y, then

Egn(p1|T =1) = Eg (0T =1),
and by smoothing,’
Eynp1 = EgnEon(p1|T) = EgnEoy(¢|T) = Egnep-

This shows that 7 is uniformly most powerful a-similar. By Theorem 12.9,
the conditional power function for ¢y is increasing in 6, and so if 6 < 6,

Eo.no1 = Eo.nEon(01|T) < EgynEon(p1|T) = a.

Thus ¢1 has level a. By Theorem 2.4, power functions for all test functions
are continuous, so by Lemma 13.3 ¢ is uniformly most powerful unbiased.
The argument for the assertion about ¢ is a bit more involved. Let

by (2.4). By dominated convergence (as in Theorem 12.20),

! There is a presumption here that (6o, 7) lies in 2 regardless the choice of (6, 7) €
2. Unfortunately, this does not have to be the case. This issue can be resolved by
reparameterization. If (6o, n0) € 2 and we are concerned with power at (61,m1) €
2, define new parameters § = 0 and 7 = n + (0 — 11)(0 — 60) /(61 — 6p). Then
the original parameters of interest, (6o, 70) and (61,m1) become (9o, 7o) = (6o, 10)
and (61,71) = (61,m0). The canonical statistics for the reparameterized family are
T=Tand U=U-+(no—m)-T/(61 —6). Since we condition on T, it is easy to
see that the test 1 will be the same, regardless of the parameterization.
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oelbm) _ 0 / o (@)po.n() dpi(z)

= [ 6@ pypo(@) du(o)

- / (@) (U(2) — m(0,1))po o () dpu(x)
= Eeﬂl@(U - m(ov 77))

Suppose ¢ is unbiased. Then this derivative must be zero when 6 = 6y, and
thus
EGOJ?QOU - Oém(007 77) = EGO,n[QOU - OéU] =0.

Conditioning on T,
0 = Epo.n Loy [0U — U | T},

and since T is complete for the family of distributions with 8 = 6y, this implies
that
Egy U — U | T] = 0.

But ¢ is a-similar and has Neyman structure, implying Fg, ,[¢|T] = «, and
S0
EGO,U[(PU|T] = aE9077I[U|T]'

By Theorem 12.20, this constraint ensures that the conditional power Ey ,,[|T]
has zero slope at 8 = 6y. By Theorem 12.22, ¢5 is the uniformly most powerful
conditional test satisfying this condition, and so

Eon|2|T] = Eg 5[0l T].
Taking expectations, by smoothing
EG,nQOQ Z EQ,T]QO-

Thus ¢ is uniformly most powerful unbiased. (Again, reparameterization can
be used to treat cases where (6,7) € 2 but (6g,n) ¢ £2.) 0

13.3 Examples

Ezample 13.7 (The t-test). The theory developed in the previous section can
be used to test the mean of a normal distribution. Suppose Xi,..., X, is
a random sample from N(u,0?), and consider testing Hy : u < 0 versus
Hi : o> 0. The joint density from Example 2.3 is

7 1 ny?

(2m)n/2 oxXp| o U(x) — = 9p2 —nlogo]|,
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with U(x) = 21 + -+ + 2, and T(z) = 27 + .-+ + 22. This has form (13.2)
with @ = p/0? and n = —1/(202). Note that the hypotheses expressed using
the canonical parameters are Hy : 6 < 0 versus Hy : 6 > 0. By Theorem 13.6,
the uniformly most powerful unbiased test has form

_ {1, U > ¢(T):;

0, otherwise,

with ¢(+) chosen so that
Puo[U>c(t) | T =t] =0

To proceed we need the conditional distribution of U given T' = ¢ when p = 0.
Note that the family of distributions with p = 0 is an exponential family with
complete sufficient statistic T'. Also, if we define Z = X/o, so that Z1,..., Z,
are i.i.d. standard normal, or Z ~ N(0,1I), then W = X/||X|| = Z/||Z]|
is ancillary. By Basu’s theorem (Theorem 3.21), T and W are independent.
Because | X|| = VT, X = W+/T, and using independence between T and W,

E[WMX)|T =t] = E[h(WV)|T = t] = EL(WV1).

This shows that

X|T =t~ Wt (13.3)
The vector W is said to be uniformly distributed on the unit sphere. Note that
if O is an arbitrary orthogonal matrix (OO’ = I), then OZ ~ N(0,00’) =
N(0,I). Also ||OZ|]? = (02)'(0Z) = Z'O'0OZ = Z'Z = || Z||?>. Thus Z and
OZ have the same length and distribution. Then

0z 0z VA

OW: = ~ =
12l flozll {1l

w.

So W and OW have the same distribution, which shows that the uniform
distribution on the unit sphere is invariant under orthogonal transformations.
In fact, this is the only probability distribution on the unit sphere that is in-
variant under orthogonal transformations. Using (13.3), since U = 1'X where
1 denotes a column of 1s,

Pu—o|U >c(t) | T =t] = PA'W > c(t)/V1).
This equals « if we take c(t)/v/t = ¢, the upper ath quantile for 1’W. Thus
the uniformly most powerful unbiased test rejects Hy if

U
> q.
Jr =1

Although it may not be apparent, this is equivalent to the usual test based
on the t-statistic
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. X
S/
To see this, note that
X=U/n
and
- 1 zn:(x X)?
n_1¢:1 !
1 = n 2 T U?
= X2 X = -
n—llz:; on—1 n—1 n(n-1)
and so
U/\/n _ v/n—1Sign(U)

' V(T =U?/n)/(n—1)  /nT/U2 -1 =g(U/VT).

The function g(-) here is strictly increasing, and so U/v/T > ¢ if and only if
t > g(q). When p = 0, ¢t has the t-distribution on n — 1 degrees of freedom,
and so level « is achieved taking g(q) = ta,n—1, the upper ath quantile of this
distribution. So our test then rejects Hy when

t> ta,n—l-

Details for the two-sided case, testing Hy : u = 0 versus Hy : u # 0,
are similar. The uniformly most powerful level « test rejects Hy when || >
ta/Z,nfl-

Ezample 13.8 (Fisher’s Ezact Test). A second example of unbiased testing
concerns dependence in a two-way contingency table. Consider two questions
on a survey, A and B, and suppose each of these questions has two answers.
Responses to these questions might be coded with variables X;,..., X, and
Y1,...,Y, taking X; = 1 if respondent k gives the first answer to question A,
X = 2 if respondent k gives the second answer to question A; and Y, = 1
if respondent k& gives the first answer to question B, Y; = 2 if respondent k
gives the second answer to question B. If the pairs (X, Y:), k=1,...,n, are
ii.d., and if

pij=P(Xk=i,Yy=7j), =12 j=12,
then the joint density is
2 2
P(Xl =T1,-... aXn = xnayl =Y1,-- '7Yn = yn) = HHPZ;”» (134)
i=1j=1

where n;; = #{k : zx, = i,yx = j}. So if we take



13.3 Examples 263
NZJ:#{ka:l7Yk:j}, ,L':LQ7 j:1,2,

then N = (N11, N12, Na1, Nag) is a sufficient statistic. Based on these data, we
may want to test whether there is positive dependence between the two ques-
tions. But first we need to resolve what we mean by “positive dependence.”
There seem to be various possibilities.

Let (X,Y) be a generic variable distributed as (X}, Y ). Perhaps we should
define positive dependence between the questions to mean that the correlation
between X and Y is positive. Because

E(X —1)=P(X =2) = pa1 +pa2 défp%

and def
E(Y —=1)=P(Y =2) = p1a + p22 = pso,

Cov(X,Y)=Cov(X —1,Y - 1) =E(X —1)(Y — 1) — patp+2
= P(X =2,Y = 2) — DP2+4+P+2 = P22 — P2+P+2 = P22P11 — P12P21-

So the covariance between X and Y is positive if and only if

P22P11 > P12p21-

Another notion of positive dependence might be that the chance X equals
the larger value 2 increases if we learn that Y equals its larger value, that is,
if

P(X=2Y=2)>PX=2).
Equivalently,

D22
> p21 + p22.
P12 + P22

Cross-multiplication and a bit of algebra show that this happens if and only
if poop11 > pi12p21, so this notion of positive dependence is the same as the
notion based on correlation.

The distribution of N is multinomial,

n 11,712,121 .22
P(Ni1 =n11,...,Nag =ngo) = ( )Pul D12 Dot Pas”
niy,...,N22

It is convenient to introduce new variables U = Ny, T1 = Ni; + Nig2, and
To = Ni1 + Noy. If N is given in a two-way table as in Example 5.5, then T
and Ty determine the marginal sums. Given U and T, we can solve for N,
specifically,

Ny =U, Nip =T, U, Noy =15 - U,

and
N22=n+U—T1—T2.
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Thus there is a one-to-one relation between N and variables T and U, and

P(T=4,U =)
=P(Ny1=u,Nig =1t —u,No1 =to —u, Nog =n+u—t; — t3)

t1—u_ to—u n+tu—t;—ts

= h(u, t)pl1p1y “Poi “Paa
= h(u,t) (pupzz)u (Pm)tl <P21>t2 P32
Pi2p21 D22 Db22
= h(u,t)exp{fu+mn-t—A0,n)}, (13.5)
P11D22 10%(?12/?22))
0 =1lo 5 - 9
8 (plzpzl) " (10g(p21/p22)
h(u,t) = " :
u,tl —u,tg —u,n+u—t1 _tQ

A(0,m) = —nlogpay.

where

and

Using Theorem 13.6, a uniformly most powerful unbiased test is given by

1, U > ¢(T);
=), U= (D)
0, U < ¢(T),

with ¢(+) and v(-) adjusted so that
o= Py—o(U > c(t)|T =t) +~(t)Pp—o (U = c(t)|T = ¢).

To describe the test in a more explicit fashion, we need the conditional
distribution of U given T' = ¢ when 6 = 0. This distribution does not depend on
7. It is convenient to assume that p;; = p12 = pa1 = pe2 = 1/4 and to denote
probability in this case by Py. Then Py(Xy = 1) = Py(Xi = 2) = Py(Yy =
1) = Py(Yr = 2) = 1/2, so the joint density in (13.4) equals the product of
the marginal densities and under Py the variables Xy, k = 1,...,n, and Y},
k=1,...,n, are all independent. Since T7 depends on X, k =1,...,n, and
T5 depends on Yy, k = 1,...,n, Ty and T» are independent under Fy, each
from a binomial distribution with n trials and success probability 1/2. Thus

Po(T =t) = Po(Ty = 1) Po(To = ta) = (n> <n> 1

t1 to qn’

Using (13.5),

P(U=uT=t)= " !
oy = s == Uty — Uty —u,n+u—t; —tg ) 47
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Dividing these expressions, after a bit of algebra,

Po(U = u{T = 1) = PO(IIJDOTTU,ZZ;): t_ (2) (E}__t;) .
(752)

This is the hypergeometric distribution, which arises in sampling theory. Con-
sider drawing o times without replacement from an urn containing t; red balls
and n — t; white balls, and let U denote the number of red balls in the sam-
ple. Then there are (Z) samples, and the number of samples for which U = u

is (t;) (?;‘;) If the chances for all possible samples are the same, then the
chance U = u is given by the formula above.

The two-sided case can be handled in a similar fashion. Direct calculation
shows that § = 0 if and only if X and Y are independent, and so testing
Hy : 0 = 0 versus H; : 6 # 0 amounts to testing whether answers for the
two questions are independent. Again the best test conditions on the margins
T, and probability calculations are based on the hypergeometric distribution.
Calculations to set the constants c+ and 4 are messy and need to be done
numerically. These tests for two-way contingency tables were introduced by
Fisher and are called Fisher’s exact tests.

13.4 Problems?

*1. Consider a two-parameter exponential family with Lebesgue density
pg@(ﬂl‘, y) = (:E + y)69m+¢y—A(9,¢)7 T e (Ov 1)7 ye (O’ 1)'

a) Find A(6, ¢).

b) Find the marginal density of X. Check that the form of this distribu-
tion agrees with Theorem 13.2.

¢) Find the conditional density of X given Y = y. Again, check that this
agrees with Theorem 13.2.

d) Determine the uniformly most powerful unbiased test of Hy : § < 0
versus Hy : 6 > 0.

e) Determine the uniformly most powerful unbiased test of Hy : 6§ = 0
versus Hy : 0 #£ 0.

2. Suppose X and Y are absolutely continuous with joint density

n(0 +n)e T, 0 <z <y;
0, otherwise,

Po.n(T,y) = {

where n < 0 and n+ 6 < 0.

2 Solutions to the starred problems are given at the back of the book.



266

*3.

*5.

*6.

13 Optimal Tests in Higher Dimensions

a) Determine the marginal density of Y. Show that for fixed 6 these
densities form an exponential family with parameter 7.

b) Determine the conditional density of X given Y = y. Show that for
fixed y, these densities form an exponential family with parameter 6.

Let X and Y be independent variables, both with gamma distributions.
The parameters for the distribution of X are a, and A.; the parameters
for Y are a, and Ay; and both shape parameters, o, and «,, are known
constants.

a) Determine the uniformly most powerful unbiased test of Hp : Az < Ay
versus Hy : Ay > Ay. Hint: You should be able to relate the critical
value for the conditional test to a quantile for the beta distribution.

b) If X1, ..., X, is a random sample from N(0,02) and Y3, ..., Y, is a
random sample from N(0,07), then one common test of Hy : 02 < o7
versus Hy : 02 > 05 rejects Hy if and only if F' = s%/sz exceeds
the upper ath quantile of the F-distribution on n and m degrees of
freedom, where s = 3" | X?/n and s = 3™, Y7 /m. Show that
this test is the same as the test in part (a). Give a formula relating
quantiles for the F-distribution to quantiles for the beta distribution.

Consider a regression model in which data Yi,...,Y; are independent

with Y; ~ N(a + fx;,1),i=1,...,n. Here o and (§ are unknown param-
eters, and x1,...,x, are known constants. Determine the uniformly most
powerful unbiased test of Hy : § = 0 versus H; : 8 # 0.

Consider a regression model in which data Y7, ..., Y,, are independent with
Y; ~ N(Bx; + yw;,1), i = 1,...,n. Here § and 7 are unknown parame-
ters, and z1,...,z, and wi,...,w, are known constants. Determine the
uniformly most powerful unbiased test of Hqy : 3 < =y versus Hy : § > 7.
Let X1,...,X,, be a random sample from the Poisson distribution with
mean A, and let Y7,...,Y,, be an independent random sample from the
Poisson distribution with mean A,,.

a) Describe the uniformly most powerful unbiased test of Hy : Ay < Ay
versus Hy : Ay > Ay,

b) Suppose o = 5% and the observed data are X; = 3, Xy = 5, and
Y1 = 1. What is the chance the uniformly most powerful test will
reject Ho?

¢) Give an approximate version of the test, valid if m and n are large.

Consider a two-parameter exponential family with density

0*n*(z +y)
pQ,W(xay): 9+77
0, otherwise.

e 9=y 2 >0 and y > 0;

Determine the level o uniformly most powerful unbiased test of Hy : 0 <17
versus Hy : 60 > .
Suppose X and Y are absolutely continuous with joint density
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po(z,y) = (z +y)e 01" 00" =A0) 15 0,y > 0;
’ 0, otherwise.

a) Find A(0).
b) Find the uniformly most powerful unbiased test of Hy : 61 < 65 versus
Hy: 601 > 0-.
9. Let X have a normal distribution with mean y and variance o2.
a) For z > 0, find

p(z) zleilr(r)lP(x <X<z+e|z?<X?<(z+¢)?).
In part (b) you can assume that the conditional distribution of X
given X2 is given by P(X = z|X? = 2?) = p(z) and P(X = —x|X? =
22)=1-p(z), z > 0.
b) Find the uniformly most powerful unbiased level a test ¢ of Hyp : u < 0
versus H; : p > 0 based on the single observation X.
10. Let Xi,...,X, be iid. from N(u,0?). Determine the uniformly most
powerful unbiased test of Hy : 02 < 1 versus H; : 02 > 1.
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General Linear Model

The general linear model incorporates many of the most popular and useful
models that arise in applied statistics, including models for multiple regression
and the analysis of variance. The basic model can be written succinctly in
matrix form as

Y =XB+e, (14.1)

where Y, our observed data, is a random vector in R™, X is an n X p matrix of
known constants, 5 € RP is an unknown parameter, and € is a random vector
in R™ of unobserved errors. We usually assume that €1, ..., €, are a random
sample from N(0,0?), with o > 0 an unknown parameter, so that

e ~ N(0,0%1). (14.2)

But some of our results hold under the less restrictive conditions that Ee; = 0
for all i, Var(e;) = o2 for all 4, and Cov(e;,¢;) = 0 for all i # j. In matrix
notation, Fe = 0 and Cov(e) = o2I. Since Y is € plus a constant vector and
FEe = 0, we have EY = Xf3 and Cov(Y) = Cov(e) = ¢2I. With the normal
distribution for € in (14.2),

Y ~ N(X3,0%I). (14.3)
Ezample 14.1 (Quadratic Regression). In quadratic regression, a response

variable Y is modeled as a quadratic function of some explanatory variable x
plus a random error. Specifically,

Y; = B + B + B3a? + €y i=1,...,n.

Here the explanatory variables x1,...,x, are taken to be known constants,
B1, B2, and B3 are unknown parameters, and €y, . . ., €, are i.i.d. from N(0, 0?).
If we define the design matrix X as

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 269
DOI 10.1007/978-0-387-93839-4 14, © Springer Science+Business Media, LLC 2010
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12y 22

1 2o 22
_ 2
X_ . . . ’

1z, 22
then Y = X + ¢, as in (14.1).

Ezample 14.2 (One-Way ANOVA). Suppose we have independent random

samples from three normal populations with common variance o2, so

N(51;0—2), 1= ].,...,’I”Ll;
}/iN N(62702)7 i=n1—|—1,...,n1—|—n2;
N(ﬁ3702)7 i=n1—|—n2—|—1,...,n1+n2—|—n3d:efn.

If we define
100

100
010

010
001

001
then EY = X3 and the model has form (14.3).

In applications the parameters 31,. .., 3, usually arise naturally when for-
mulating the model. As a consequence they are generally easy to interpret.
But for technical reasons it is often more convenient to view the unknown

mean of Y, namely,

¢ py = xp

in R™ as the unknown parameter. If ci, ..., ¢, are the columns of X, then
E=XB=pic1+ -+ Bpcp,

which shows that £ must be a linear combination of the columns of X. So &
must lie in the vector space

wd:efspan{cl,...,cp} ={Xp:p R}

Using ¢ instead of (3, the vector of unknown parameters is § = (£, 0) taking
values in 2 = w x (0, 00).
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Since Y has mean £, it is fairly intuitive that our data must provide some
information distinguishing between any two values for £, since the distribu-
tions for Y under two different values for £ must be different. Whether this
also holds for § depends on the rank r of X. Since X has p columns, this
rank r is at most p. If the rank of X equals p then the mapping G ~~ X is
one-to-one, and each value £ € w is the image of a unique value g € RP. But if
the columns of X are linearly dependent, then a nontrivial linear combination
of the columns of X will equal zero, so Xv = 0 for some v # 0. But then
X(B+v)=Xp+ Xv= X[, and parameters 3 and §* = [+ v both give the
same mean &. Here our data Y provides no information to distinguish between
parameter values 8 and G*.

Example 14.3. Suppose
101
101
110
110

Here the three columns of X are linearly dependent because the first column
is the sum of the second and third columns, and the rank of X is 2, r =2 <
p = 3. Note that parameter values

0

1
B=10] and g*=1(1
0 1

both give

2
I
e e

14.1 Canonical Form

Many results about testing and estimation in the general linear model follow
easily once the data are expressed in a canonical form. Let vy,...,v, be an
orthonormal basis for R™, chosen so that v1,...,v, span w. Entries in the
canonical data vector Z are coefficients expressing Y as a linear combination
of these basis vectors,

Y =Zivy+---+ Z,0,. (14.4)

Algebraically, Z can be found introducing an n X n matrix O with columns
v1,...,Up. Then O is an orthogonal matrix, O'O = OO’ = I, and Y and Z
are related by

Z=0Y or Y =0Z.
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SinceY =&+¢, Z=0"({+¢) = 0’6+ O'e. If we define n = O’¢ and €* = O'e,
then
Z =n+¢€".
Because Ee* = EO’e = O'Ee = 0 and
Cov(e*) = Cov(0'¢) = O'Cov(e)O = O'(¢*1)0 = ¢*0'0 = o°1I,
€* ~ N(0,0%]) and €},..., € are iid. from N(0,02). Since Z = n + €*,

Z ~ N(n,o°I). (14.5)
Next, let c1,...,c, denote the columns of the design matrix X. Then
E=XB=>"Bic and
v p Zf:l Bivic
p=oe= || Yae=|
v,) 21 Bivpci
Since cy,...,¢p all lie in w, and v44,...,v, all lie in w, we have ve; =0
for k > r, and thus
Nr41 =" =1MNn = 0. (146)
Because n = O'¢,

m
E=0n=(v1...vp) %T = vai.
i=1

0
These equations establish a one-to-one relation between points ¢ € w and

(m,...,n) €R".
Since Z ~ N(n,02I), the variables Z1, ..., Z, are independent with Z; ~

N(n;,0?). The density of Z, taking advantage of the fact that n,4 4 = --- =
Nn =10, 1s

1 1 « , 1 K,
Vo2 expl—202 ;(Zl_m) 202 Z Zl]

1=r+1
1 & 1 & r 777'2 n
= exp[— 952 ZZzQ + o2 Zmzi — 20:2 — 9 10g(2770-2)
=1 =1 =1

These densities form a full rank (r + 1)-parameter exponential family with
complete sufficient statistic

<Zl, .. .,ZT,ZZ§> . (14.7)
=1
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14.2 Estimation
Exploiting the canonical form, many parameters are easy to estimate. Because

EZ;, =n,i=1,...,r, Z; is the UMVU estimator of n;, i = 1,...,r. Also,
since § = 370y mivi,

§=> Zw (14.8)
=1

is a natural estimator of £. Noting that

Eé = ZT:EZﬂ)l' = zr:nivi = f,
i=1

=1

f is unbiased. Since it is a function of the complete sufficient statistic, it should
be optimal in some sense. One measure of optimality might be the expected
squared distance from the true value £. If £ is a competing unbiased estimator,
then

ElE—¢)?=> B - &)=Y Var(§). (14.9)
j=1 j=1

Because éj is unbiased for ¢; and is a function of the complete sufficient
statistic, Var(§;) < Var(§;), 7 = 1,...,n. So £ minimizes each term in the
sum in (14.9), and hence

E|§ —¢|? < E||E —¢|%

A more involved argument shows that é also minimizes the expectation of any
other nonnegative quadratic form in the estimation error, E(£ — &) A( — &),
among all unbiased estimators.

From (14.4), we can write Y as

Y = ET:ZW@‘-F i Ziv; =€ + E”: Z;v;.
=1 1=r+1 1=r+1

In this expression the first summand, é, lies in w, and the second, Y — é =

> 41 Zivg, lies in w™. This difference Y — ¢ is called the vector of residuals,
denoted by e:
c®y €= % Zu,. (14.10)
i=r+1

Since Y = f—i— e, by the Pythagorean theorem, if é is any point in w, then
1Y —€1° = 1€ = £+ el = 1€ = €]I% + [le]?,

because f — f € w is orthogonal to e € w'. From this equation, it is apparent
that ¢ is the unique point in w closest to the data vector Y. This closest point
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is called the projection of Y onto w. The mapping Y ~~ é is linear and can be
represented by an n x n matrix P,

£ =Py,

with P called the (orthogonal) projection matriz onto w. Since f € w, Pf = f,
and so P2Y = P(PY) = P{ = ¢ = PY. Because Y can take arbitrary
values in R™, this shows that P? = P. (Matrices that satisfy this equation
are called idempotent.) Using the orthonormal basis, P can be written as
P =uvv) + -+ v.v.. (To check that this works, just multiply (14.4) by this
sum.) But for explicit calculation, formulas that do not rely on construction
of the basis vectors v1, ..., v, are more convenient, and are developed below.

Since arbitrary points in w can be written as X for some g € RP, if
f = XB, then ,3 must minimize

n

Iy - Xp)2 =S [¥i - (x8)]” (14.11)

=1

over (3 € RP. For this reason, B is called the least squares estimator of 5. Of
course, when the rank r of X is less than p, ﬁ will not be unique. But unique
or not, all partial derivatives of the least squares criterion (14.11) must vanish
at 0= B This often provides a convenient way to calculate 3 and then é
Another approach to explicit calculation proceeds directly from geometric
considerations. Since the columns ¢;, i =1,...,p,of X lieinw,ande =Y —é

lies in w™, we must have cie = 0, which implies
X'e = 0.
Since Y = é—i— e,
XY =X'(E+e)=XE+Xe=XE=X'X0. (14.12)

If X’X is invertible, then this equation gives
B=(X'X)"'X"Y. (14.13)

The matrix X’'X is invertible if X has full rank, r = p. In fact, X’'X is positive
definite in this case. To see this, let v be an eigenvector of X’'X with |jv]| =1
and eigenvalue A. Then

[Xv|? =0/ X' Xv=Mv=)\,

which must be strictly positive since Xv = ¢jv1 + - - - 4+ ¢pv, cannot be zero if
X has full rank. When X has full rank

PY =(=Xp=X(X'X)"'X"Y,

and so the projection matrix P onto w can be written as
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P=XX'X)"'X" (14.14)

Since ¢ is unbiased, /€ is an unbiased estimator of a’¢. This estimator is
UMVU because € is a function of the complete sufficient statistic. By (14.12),
X'Y = X'¢, and so by (14.13), when X is full rank

§ = (XX) X

This equation shows that f3; is a linear function of é , and so f3; is UMVU for
Bi-

14.3 Gauss—Markov Theorem

For this section we relax the assumptions for the general linear model. The
model still has Y = X 3+¢, but now the ¢;,7 = 1,...,n, need not be a random
sample from N (0, 02). Instead, we assume the ¢;, i = 1,...,n, have zero mean,
Fe; =0,i=1,...,n; a common variance, Var(e;) = 02, i = 1,...,n; and are
uncorrelated, Cov(e;,€;) = 0, ¢ # j. In matrix form, these assumptions can
be written as

Fe=0 and Cov(e) = 1.

Then
EY = X =¢ and Cov(Y) = o°I.

Any estimator of the form 'Y = a1Y1+- - -+a, Yy, with a € R™ a constant
vector, is called a linear estimate. Using (1.15),

Var(a'Y) = Cov(a’Y) = a/Cov(Y)a

=d' (0*I)a = 0?d'a = o?||a*. (14.15)

Because EY = ¢, the estimator a’€ is unbiased for a’¢. Since £ = PY,
a'€ =ad'PY = (Pa)'Y, and so by (14.15)

Var(a'€) = o?|| Pal?. (14.16)
Also, by (1.15) and since P is symmetric with P? = P,
Cov(§) = Cov(PY) = PCov(Y)P = P(c*I)P = o*P.

When X has full rank, we can compute the covariance of the least squares
estimator 8 using (1.15) as

Cov(f) = Cov((X'X)~'X'Y)
= (X'X) ' X'Cov(V)X(X'X) ' =0?(X' X)L (14.17)
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Theorem 14.4 (Gauss—Markov). Suppose
EY = Xf3 and Cov(Y) = o*I.

Then the (least squares) estimator 'S of a’€ is unbiased and has uniformly
minimum variance among all linear unbiased estimators.

Proof. Let § = b'Y be a competing unbiased estimator. By (14.15) and
(14.16), the variances of 6 and a'¢ are

Var(8) = o2||b||? and Var(a’€) = 02| Pal|®.

If e happens to come from a normal distribution, since both of these estimators
are unbiased and a'¢ is UMVU, Var(d'€) < Var(d), or

o*|[Pall* < o®||b]|*.

But formulas for the variances of the estimators do not depend on normality,
and thus Var(a’€) < Var(d) in general. O

Although /€ is the “best” linear estimate, in some examples nonlinear
estimates can be more precise.

Example 14.5. Suppose
E:6+€i7 izlw"anv
where €1, ..., €, are i.i.d. with common density

@ e~ V2lzl/o R
x) = , T € K.
f ov/2

By the symmetry, Fe; =0,i=1,...,n, and

oo .2 7\/2:r/0'
Var(e;) = Be? = 2/ ve dx
0 V2

o2

o) 0_2
:2/0 wle ™ du = 2F(3)202, 1=1,...,n.
So Cov(Y) = Cov(e) = %I, and if we take X = (1,...,1)’, then EY = X 3.
This shows that the conditions of the Gauss—Markov theorem are satisfied. If
a =n"1X, then a’¢ = n~!X'X3 = 3. By the Gauss-Markov theorem, the
best linear estimator of 3 is

1.1 1
f= Xi= X'XX'X)' XY= XY=V,
n n n

the sample average. This estimator has variance 02 /n. A competing estimator
might be the sample median,
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Y = med{Yy,...,Y,} =B+ med{ey,...,e,}.
y (8.5), v/n(Y — 3) = N(0,0%/2). This result suggests that
Var(vn(Y — 3)) — o?/2.

This can be established formally using Theorem 8.16 and showing that the
variables n(Y — 3)? are uniformly integrable. Since Var(y/n(Y — 3)) = o2, for
large n the variance of Y is roughly half the variance of Y.

14.4 Estimating o2

From the discussion in Section 14.1, Z,,1,...,Z, are ii.d. from N(0,02).
Thus EZE =02, i=7r+1....,n, and the average of these variables,
2= ! Zn: Z? (14.18)
ner ot B .

is an unbiased estimator of 0. But S? is a function of the complete sufficient
statistic (Z1,...,Zy, > 1y Z2) in (14.7), and so S? is the UMVU estimator of
o?. The estimator S$? can be computed from the length of the residual vector
e in (14.10). To see this, first write

”6”2 =eée= < i Zi“;;) En: ZjUj = i En: ZiZjUQUj.

i=r+1 Jj=r+1 i=r+1j=r+1

Because v1,...,v, is an orthonormal basis, vjv; equals zero when i # j and
equals one when i = j. So the double summation in this equation simplifies
giving

lel> =Y 2, (14.19)

1=r+1
and so )
o Nz _ Iy —épe 1120)
n—r n—r '
Because & in (14.8) is a function of Zi,.. ., Z,, and e in (14.10) is a function

of Zyi1,..., Zn, S? and € are independent. Also, using (14.19), (14.20), and
the definition of the chi-square distribution,

n—r)S? -
DS S e ~ i (14.21)
1=r+1

since Z; /o ~ N(0,1).
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The distribution theory just presented can be used to set confidence inter-
vals for linear estimators. If a is a constant vector in R™, then from (14.16)
the standard deviation of least squares estimator a’¢ of a/¢ is o||Pal|. This
standard deviation is naturally estimated as

~ def
6,e S|\ Pall.

Theorem 14.6. In the general linear model with Y ~ N(&,0%1), € € w, and
02 >0, R R
(U,/f - &a/éta/znfry alg + &a/éta/lnf'r)

18 a 1 — a confidence interval for a'€.

Proof. Because a'€ ~ N(d'¢,0?||Pal?),

a/€ —a'¢
~ N(0,1).

ol|Pal
This variable is independent of (n—r)S2 /02 because 52 and € are independent.
Using (9.2), the definition of the ¢-distribution,

a€—a'¢
o||Pal| B a'€ —ad'¢ ot
\/ 1 (n—r)s2  S|Pa| 7
n—r o2

The coverage probability of the stated interval is

P(a/é_ S”Pa'lta/lnfr < alg < a/é+ S”Pa”ta/znfr)

a/é—a'¢
=P _ta 2,n—r < < to/ 2n—r
( / S|Pal| )

=1-a. O

When X has full rank, §; is a linear function of &, estimated by f3; with
variance o [(X'X)~!] .. So the estimated standard deviation of ; is
75, = 8y [0,

and R R
(ﬂl - &@1 ta/2,nfp7 ﬂl =+ a',éb ta/2,nfp) (1422)

is a 1 — a confidence interval for ;.
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14.5 Simple Linear Regression

To illustrate the ideas developed, we consider simple linear regression in which
a response variable Y is a linear function of an independent variable x plus
random error. Specifically,

Y; = f1 + Ba(xi — x) + €, i=1,...,n.

The independent variables x1,...,x, with average x are taken to be known
constants, B and (2 are unknown parameters, and €q,..., €, are i.i.d. from
N(0,0?). This gives a general linear model with design matrix

lxzy—=x

1z, —x

In parameterizing the mean of Y (called the regression function) as 81 +
Ba(x —x), £1 would be interpreted not as an intercept, but as the value of the
regression when z = z. Note that > 1 | (z; —z) = > | #; — nx = 0, which
means that the two columns of X are orthogonal. This will simplify many
later results. For instance, X will have rank 2 unless all entries in the second
column are zero, which can only occur if z; = - -- = x,,. Also, since the entries
in X’X are inner products of the columns of X, this matrix and (X'X)~! are
both diagonal:

v [T 0
A= (o 2?_1@—@2)
and v .
(xx)™ = ( 0 150, (i - x>2) :
Since
. ( LY )
XL Vil - o)
. Vi Y )
B=X'X)"1X'Y = ,
) (Z?—M(w—w)/Z?—l(%—x)Q
Also,

. 2
Cov(B) = e*(X'X) ! = (a O/n y 2’110(% _ x)2> : (14.23)
To estimate o2, since & = 1 + Ba(x; — ),

ei=Y; — [ — Bo(z; — ),
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and then
1 n
5% = 2,
n—2 ; K

This equation can be rewritten in various ways. For instance,

n

, i = YR- 2,

=1

1

n —

% =

where p is the sample correlation defined as

N L

[Z:L:1(Yl —Y)2 i (w - x)2]

This equation shows that 52 may be viewed as the proportion of the variation
of Y that is “explained” by the linear relation between Y and x.

3, Sta 2,n—2 9), Sta 2,n—2

is a 1 — « confidence interval for 3, and

5 Sta/Q n—2 5 Stoz/Q,n—Q
B2 — n , B2 + N
(2 Vi —a)? m_l(xi—x)?)

is a 1 — « confidence interval for [s.

14.6 Noncentral F' and Chi-Square Distributions

Distribution theory for testing in the general linear model relies on noncentral
F and chi-square distributions.

Definition 14.7. If Z1, ..., Z, are independent and 6 > 0 with
Z1~N(6,1) and Z; ~N(0,1), j=2,...,p,

then W = >0 | Z2 has the noncentral chi-square distribution with noncen-
trality parameter 62 and p degrees of freedom, denoted

W~ x2(67).

Lemma 14.8. If Z ~ Ny(u,I), then Z'Z ~ x2(||pl|?).
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Proof. Let O be an orthogonal matrix where the first row is u'/||u||, so that

4l
} 0
0
Then ~
Z =0Z ~ Np(fi, Ip).
From the definition, Z'Z = Y0 7% ~ Xa([lul|?), and the lemma follows
because

7'7=7'007Z =7'Z. 0

The next lemma shows that certain quadratic forms for multivariate nor-
mal vectors have noncentral chi-square distributions.

Lemma 14.9. If X is a p X p positive definite matriz and if Z ~ Np(u, X),
then
2! Z (W X ).

Proof. Let A = X~1/2, the symmetric square root of X1, defined in (9.11).
Then AZ ~ Np(Ap, I,), and so

2'57'2 = (AZ)(AZ) ~ (| Aul).

The lemma follows because ||Au||? = (Ap)' (Ap) = ' AAp = @' 2. 0

Definition 14.10. If V and W are independent variables with V ~ x2(5%)
and W ~ x2,, then
V/k
W/m
the noncentral F-distribution with degrees of freedom k and m and noncen-
trality parameter §%. When 6% = 0 this distribution is simply called the F
distribution, Fy, m, .

~ Fk,m((SQ)v

14.7 Testing in the General Linear Model

In the general linear model, Y ~ N(¢ 021) with the mean ¢ in a linear
subspace w with dimension 7. In this section we consider testing Hy : £ € wg
versus H; : £ € w—wp with wy a g-dimensional linear subspace of w, 0 < ¢ < 7.
Null hypotheses of this form arise when ( satisfies linear constraints. For
instance we might have Hy : 1 = 2 or Hp : #1 = 0. (Similar ideas can be
used to test 81 = ¢ or other affine constraints; see Problem 14.13.)
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Let é and éo denote least squares estimates for ¢ under the full model
and under Hy. Specifically, é = PY and éo = PBY, where P and P, are the
projection matrices onto w and wg. The test statistic of interest is based on
Y — €||, the distance between Y and w, and ||Y — &||, the distance between
Y and wg. Because wy C w, the former distance must be smaller, but if the
distances are comparable, then at least qualitatively Hy may seem adequate.
The test statistic is

_n—r [y =&l =Y €|

r—q |y -
and Hy will be rejected if T' exceeds a suitable constant. Noting that ¥ — é €
wh and £ — & € w, the vectors Y — & and £ — & are orthogonal, and the
squared length of their sum, by the Pythagorean theorem, is

1Y —&oll* = Y = &II” + 1§ — &l
Using this, the formula for T can be rewritten as

_n—=r ||§C—5A0||2 . ||é‘c—éto||2
gy =g T s (14:24)

This test statistic is equivalent to the generalized likelihood ratio test statistic
that will be introduced and studied in Chapter 17. When r — ¢ = 1 the test
is uniformly most powerful unbiased, and when r — ¢ > 1 the test is most
powerful among tests satisfying symmetry restrictions.

For level and power calculations we need the distribution of T" given in the
next theorem.

Theorem 14.11. Under the general linear model,

T ~ Fr—q,n—r((SQ)v

where I 2
o |I€— Pk
0° = 2 . (14.25)
Proof. Write
n
Y = Z Zﬂ}i,
i=1
where vy, ..., v, is an orthonormal basis chosen so that v1,. .., v, span wg and
v1,...,0, span w. Then, as in (14.8),

q T
éO = Z Z;v; and é: Z Z;0;.
i=1 i1
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Also, as in (14.5) and (14.6), Z ~ N(n,0?I) with 1., = --- = n,, = 0. Since
vjv; is zero when ¢ # j and one when i = j,

n 2 n n
Iy =& = > zw :<Z ZM) > Ziv,
i=r+1 i=r+1 j=r+1
=Y Y azefn= Y 2
1=r+1j=r+1 i=r+1
Similarly
I =&l = > 2z,
i=q+1
and so 1
Zzzq+1(zi/‘7)2
T="71

S (Zifo)

The variables Z; are independent, and so the numerator and denomina-
tor in this formula for T are independent. Because Z;/c ~ N(n;/o,1), by

n—r

Lemma 14.8,

r Z1 2

> ()~
1=q+1
where ,
52 = i (14.26)
= - .
1=q+1 g

Also, since n; = 0 fori =r+1,...,n, Z;/o ~ N(0,1), ¢ = r+1,...,n,
and so Y . (Z;i/0)? ~ xZ_,. So by Definition 14.10 for the noncentral F-
distribution, T ~ F,_, ,—(6%) with 6% given in (14.26). To finish we must
show that (14.25) and (14.26) agree, or that

> o =16 - Pl
i=q+1

Since

E=EE=) mv
=1
and

q
Pyt = ERY = Eéy =Y _nivi,
i=1
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E—PR&= Y mu

1=q+1

Then, by the Pythagorean theorem,

1€ = Pogl> = > n},

1=q+1
as desired. O

Example 14.12. Consider a model in which

Y, = xiﬁl"_eia i:]-v"'anl;
’ Tifo + €, i=mn1+1,...,n1+ng=mn,
with €1, ..., €, i.i.d. from N(0,02) and independent variables x1, ..., z, taken
as known constants. This model might be appropriate if you have bivariate
data from two populations, each satisfying simple linear regression through
the origin. In such a situation, the most interesting hypothesis to consider
may be that the two populations are the same, and so let us test Hy : 81 = (2
versus Hy : 1 # (2. The design matrix under the full model is

X1 0
T 0
X=|"m
0 xn1+1
0 x,

and straightforward algebra gives

X'X = <E7n_11 = 0 ) and X'Y = ( 2wl )
v

0 Z?:n1+1 7 Z;L:nrkl i
> S @Y/ Y o
ﬂ:(X/X)_lX/YZ < n 1 n 1 2)
Zi:nﬁ-l z;Yi/ Zi:n1+1 €Ty
and
ni n
IV =8P =Y (Vi—aip)* + D (Vi—aif)”.
i=1 i=ni+1
Here X is of full rank (unless ¢y =---=x,, =0ora,, = - =z, =0), and

sor=p=2and
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o Y —ép
n—2
Under Hy we also have a general linear model. If 3y denotes the common
value of 81 and (o, then Y; = z;60 +¢;, t = 1,...,n, and the design matrix is
1
Xo =
Tn

Then X{Xo =Y, z? and XY =3 | z,;¥;, and so

- _ S Y
o= (XX =T e

Thus
||é - §A0||2 = Z(%ﬁl - xiBO)Q + Z (%32 - xiBO)Q
i=1 i=ni+1
= (51— o)? fo + (B2 — Bo)? Z 3.
i=1 i=ni+1

Noting that BO is a weighted average of Bl and Bg,

/@0: 2?11 H Zv n1+1

2
2 /623

LB+
Z:leQ Zv 1x1

this expression simplifies to

an 2 Zz n1+1

1€ = &l* = S (ﬂl f2)2. (14.27)
=1
So the test statistic 7" is given by
Z?l f,U2 21 n 3 3
T="" S G

Sy a2

Under Hy, T ~ F ,,—2, and the level-a test will reject Hy if T exceeds Fy, 1,n—2,
the upper ath quantile of this F-distribution.

For power calculations we need the noncentrality parameter §2 in (14.25).

Given the calculations we have done, the easiest way to find §2 is to note that

if our data were observed without error, i.e., if € were zero, then 5 would be &,
,81 and 52 would be 31 and (32, and fo Would be Py&. Using this observation

and (14.27),
an 2 Z’L n1+1
o? Zi:l xi

The power is then the chance that a variable from Fl,n_2(52) exceeds Fy, 1,n—2.

5% = (51 Ba)?.
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14.8 Simultaneous Confidence Intervals

A researcher studying a complex data set may construct confidence intervals
for many parameters. Even with a high coverage probability for each interval
there may be a substantial chance some of them will fail, raising a concern
that the ones that fail may be reported as meaningful when all that is really
happening is natural chance variation. Simultaneous confidence intervals have
been suggested to protect against this possibility. A few basic ideas are devel-
oped here, first in the context of one-way ANOVA models, introduced before
in Example 14.2.
The model under consideration has

Y = B + €m, 1<1<g, 1<k<p.

This can be viewed as a model for independent random samples from p normal
populations all with a common variance. The design here has the same number
of observations ¢ from each population. Listing the variables Yj; in a single
vector, as in Example 14.2; this is a general linear model. The least squares
estimator of # should minimize

c p
> > (Y-
I=1 k=1

The partial derivative of this criterion with respect to 3, is

-2 Z(le - 6771)
=1

which vanishes when (3,, = ﬁm given by
B=Y,, ! Z Y, m=1
m m- Cl:l mls IEERRY 2

These are the least squares estimators. Here » = p and n = pc, so

_A2 P
g V=l c_lzzym By?

pc—p 1=1 k=1

The least squares estimators are averages of different collections of the Yj;.
Thus i, ..., Bp are independent with

BkNN(ﬁk,UQ/C), k=1,...,p.

Also
p(c—1)8

2
o2 ~ Xp(e—1)’
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and S? is independent of 3.
To start, let us try to find intervals I,..., I, that simultaneously cover
parameters 31, ..., 8, with specified probability 1 — a. Specifically, we want
PBrelpy,k=1,....p)=1—q.

The confidence intervals in Theorem 14.6 or (14.22) are

- S - S
Br — \/Cta/Q,p(c—l)a Br + \/Cta/Q,p(c—l) )

and intuition suggests that we may be able to achieve our objective taking

- S . S
Ik:(ﬂk_\/cqaﬁk+\/cq>, ]i?:].,...,p7

if ¢ is chosen suitably. Now

- S
P(ﬂkelk”k:l?"'?p)zp |/6k5_6k|< Q7k:17"')p>

Ve

<max Wk _6k| < q)

1<k<p S/4/c

_ | Z|
=r <1r<nka§p VW =4)

|
e

where R

B — B
 o/y/c
and W = S?/0?. Because Z1,..., Z, and W are independent and mW ~ x2,
with m = p(c¢—1), the simultaneous coverage probability here does not depend
on 3 or o.

Zk ~N(0,1), k=1,....p

Definition 14.13. If Z,,...,Z, and W are independent variables with Zj, ~
N(0,1), k=1,...,p, and mW ~ x2,, then

maxi<i<p | Z|
VW

has the studentized maximum modulus distribution with parameters p and
m.

If ¢ is the upper ath quantile of this studentized maximum modulus dis-
tribution, then the intervals Iy, ..., I, have simultaneous coverage probability
1—oa.

In practice, researchers will often be more interested in comparing pop-
ulations than estimating individual means, and so confidence intervals for



288 14 General Linear Model

differences 3; — B; may be of interest. So let us now seek intervals I;; such
that

PB;—BieLjVi#j)=1—q.
Now we may naturally suspect we can achieve this objective with intervals of
the form

I = (Bj —Bi - 56(175} — B+ jcq)
with ¢ adjusted suitably. Then
P(B; — Bi € 1ij, Vi # j)
=P (|<Bj —B;) = (Bi — By)| < iq,w #j)
» (\wcw} aln veBi=Bl _ j>

|Z; — Zi] . >
=P < q,Yi
( IV q,Vi#j

Zi — mi Z
:P<ma><1<k<p k= Mini<p<p Zi <q>.
VW

This approach works because this probability does not depend on (3 or o.

Definition 14.14. If Z,,...,Z, and W are independent variables with Zj, ~
N(0,1), k=1,...,p and mW ~ x2,, then

maxi<g<p Zk — minlgkgp Zk
VW

has the studentized range distribution with parameters p and m.

If ¢ is the upper ath quantile of the studentized range distribution, then
the intervals I;; will have simultaneous coverage probability 1 — a.

The derivations of simultaneous confidence intervals just presented relies
heavily on the structure of the ANOVA model under consideration. More
general results are possible using a method due to Scheffé. This method is
based on confidence sets for a parameter ¢y € R?, with ¢ < r, which is a linear
function of the mean &; that is,

Y =AL = AXp

for some ¢ x n matrix A. When X is full rank 8 = (X'X)"1X’¢, and so
A= (X'X)"1X" will give ¢) = 3. Other linear functions of 3 are also possible.
Because P¢ = &, we have AP¢ = A¢ = 1, and replacing A by A* = AP
will not change 9. Then A*P = APP = AP = A*. Changing A to A*, if
necessary, we can assume without loss of generality that A = AP. This is
convenient because then the least squares estimator of ¢ is
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) = A = APY = AY.

Finally, we assume that the rows of AX are linearly independent. Since AX
is then of full rank and ¢ = AX (3, this ensures that 1 can assume arbitrary
values in R?. Also, note that then the rank of AX will be less than the rank
of A, for if the rows of A satisfy a nontrivial linear constraint, v'A = 0, then
v'AX = 0, and the rows of AX will satisfy the same linear constraint. If we
define B = AA’, then B is positive definite because

q < rank(AX) < rank(A4) <gq,

showing that A and AX are both of full rank, and v'Bv = v/ AA'v = || A'v||?,
which is positive unless v = 0 as A is full rank. Using (1.15),

¥~ N($,0°B),
and so by Lemma 14.9,

(¥ — ) B () — )

2
o2 q

Because 1& is a function of é , and é is independent of S?, this quadratic form
is independent of

(n—1r)S?

2
o2 ~ Xn—r-

Then by Definition 14.10,

(9B )/ (ao®) _ b=y B —v)

S2 /a2 52
From this
P(( — ) B™Y % — ) < ¢5?*Fagn-r) =1 - a.

The set of values for 1) where this event obtains is a multivariate ellipse cen-
tered at 1& This random ellipse is a 1 — « confidence set for .

To form simultaneous confidence intervals from the confidence ellipse de-
scribed, note that

(=) B™N@ —w) = | B2 - o).
Also, for any h € RY,
W' Bh = h'BY?B'Y2h = | B/?h||%.
By the Schwarz inequality,

|BY2RIPIB 2 — )P = [WBY2BT20 ) = [W (@ — )"
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So
P{[W( = )] < 4S°W BhFugnr.¥h € RT}
> P(||BY2h|2|B=Y2(4) — ¥)||* < qS*W BhFy gy, Yh € RY)
= P(IB72( = )| < ¢5% Fagnr)
=1-a.
But taking h = B’l(iﬁ — 1)), this probability can be at most 1 — a, and so we
must have equality. Since
Var(h' (¢ — ) = o>’ Bh,
naturally estimated by
&2, o= S%h'Bh,
we can write this identity as

P{[H@ — )] <82 jqFugn s Vh €RT} =10

So the intervals
(hl& - a-h%[) \/quq,n—m hl@ + 6h'¢ \/qFa,q,n—f’>

contain h’1y) simultaneously for all h € R?, with probability 1 — a.

Example 14.15. In the model for simple linear regression considered in Sec-
tion 14.5, the value for the regression function at a specified value z for the
independent variable is 81 + f2(z — ), estimated by 31 + f2(x — x). Using
(14.23), the variance of this estimator is

o[1 | (z—12)?]

o + R
n Spx

where sz, = >, (z; — z)?. This variance is estimated by

52 -1 + (l’—(E)2-

Taking ¢ = (3, the regression at x, 81 + B2(x — z), will lie in

n Sxx

<B1 + Bo(z — x) — S\/l + (& —o)* V2F o202,

B+ Bo(x — ) + S\/rlz + (z—a)? \/2Fa,2,n2>7

Sl‘l‘

simultaneously for all x € R, with probability at least 1 — «. These confidence
bands are plotted along with the regression line in Figure 14.1.
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P <

Fig. 14.1. Confidence bands.

Ezxample 14.16. In one-way ANOVA comparisons between weighted averages
of the means of certain populations and weighted averages of the means of
different populations may be of interest. Scaled differences between weighted
averages are called contrasts.

Definition 14.17. A contrast in one-way ANOVA is any parameter of the

form
a'/ﬁ - alﬁl + e + apﬁp

with ap + -+ +a, = 0.
Examples of contrasts include 83 — 81 or § (81 + 33) — (é@ + éﬁz; + 3085).

Taking
B — Bp
Y= : ;
Bp—1— Bp
a contrast a’( equals h'ep with A’ = (a1,...,ap—1). The least squares estimate
of this contrast is 3.7, a;; which has variance Y°7_, a?0?/c = |la||?02/c,

estimated replacing o2 by S2. Thus with probability 1 —

5 Slall
alﬂ € (alﬁ - \/C \/(p - ]-)Fa,p—l,p(c—l)v

Slall
a/ﬁ + \/C \/(p - 1)Fa,p71,p(c71) 5
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simultaneously for all a € RP with a; + --- + a, = 0. If instead we were
interested in all linear combinations of 3, we would need to take ¥ = 3. For
this case, ¢ equals p, and we have simultaneous confidence intervals

5 Slal 5, Slal
a’/ﬁ € (alﬂ - \/C \/pFa,p,p(c—l)valﬁ + \/C \/pFa,p,p(c—l) )

for all @ € RP. These intervals will be a bit wider than the simultaneous
confidence intervals for contrasts.

14.9 Problems'
*1. Consider a model in which our data are
Yi = f1 + wif2 + 2083 + €, i=1,...,n,

where w1, ...,w, and x1,..., T, are observed constants; 31, B2, and B3 are

unobserved parameters; and €1, ..., €, are unobserved random variables

which are i.i.d. from N(0,02). Assume that through accident or design,

wy+---+w, =0and z1+---+x, = 0. For notation, let Sy, = Z?:l wf,

Spw = Z?:l 22, Spz = Z:;l w;T;, and so on.

a) Write the model in matrix form as Y = X + € describing entries in
the matrix X.

b) If n > 3, when will X be of full rank?

¢) Assuming X is of full rank, give an explicit formula for 8. (Tt will
involve terms such as S;., Syy, etc.)

d) Find the covariance matrix of £.

e) Give a formula for the UMVU estimator of .

f) Find confidence intervals for 5, and for f5 — (5.

2. Consider a general linear model with n = 2m in which Y; = 81 + O3x; + €,

t=1,....m,and Y; = fo+ Osx;+€,i=m+1,...,n. Hereey,... €, are
i.i.d. from N(0,02); 3 = (B1, F2,43)" and o2 are unknown parameters, and
Z1,...,Ty are known constants with 1 +---+x, = g1+ -+, = 0.

a) Write the model in vector form as Y = X + € describing entries in
the design matrix X.

b) Determine the UMVU estimator /3 of £.

¢) Write 3; as a linear function of £ = EY’; that is, find a vector w such
that 61 = w’f.

) Find the UMVU estimator & of &.

) Show that (1 from part (b) equals w'¢ from parts (c) and (d).

) Determine the variance of Bg — Bl.

) Determine the UMVU estimator S? of o

o &

R

1 Solutions to the starred problems are given at the back of the book.
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h) Derive a 1 — a confidence interval for By — (3.

i) If the parameter 8 were known, the best estimate for a future observa-
tion Y from the first population (the population for the first half of the
data observed) at some specified level x for the independent variable
would be 31 + B3z. Give a 95% confidence interval for this quantity.
Sketch the upper and lower limits of this interval as a function of x if
B1=0and 35 = 1/2.

j) Give an explicit formula for the test statistic T used to test Hy : 81 =
B2 versus Hy : 81 # (o2, and explain how this statistic would be used
to test Hy versus Hi at level a.

k) Determine the distribution for 7" with an explicit formula for the non-
centrality parameter.

1) Show that the test of 51 = B2 rejects Hy if and only if the confidence
interval for B — (31 does not contain zero.

3. Consider a general linear model with n = 2m in which

Yi = b1+ Bawi + €, t=1,...,m,

and

Yi = b1+ Bszi + €, i=m+1,...,n.
Here €1,...,¢e, are i.i.d. from N(0,02); 3 = (81, 32,03)" and o2 are un-
known parameters; and x1,..., %, are known constants with xy + --- +

Tm =Tm41+ -+ 2xn =0.

a) Write the model in vector form as Y = X3 + € describing entries in
the design matrix X.

b) Determine the UMVU estimator 3 of £3.

¢) Write (2 as a linear function of £ = EY’; that is, find a vector w such

that By = w'€.

) Find the UMVU estimator & of &;.

e) Show that 3, from part (b) equals w/'¢ from parts (c) and (d).
f) Determine the UMVU estimator S? of o2.

g) Determine the variance of 33 — Bg.

h) Derive a 95% confidence interval for 33 — .

) If the parameter § were known, the best estimate for a future observa-
tion Y from the first population (the population for the first half of the
data observed) at some specified level x for the independent variable
would be 31 + Box. Give a 95% confidence interval for this quantity.
Sketch the upper and lower limits of this interval as a function of z if
ﬂl =0 and 52 = 1/2
j) Use the fact that a suitable multiple of (33— 3)/S has a t-distribution

to derive a test of Hy : 8o = (33 versus Hy : B2 # (33 with level a = 5%.
k) Show that this test of Hy : B2 = (3 rejects Hp if and only if the
confidence interval for 33 — 83 does not contain zero.
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1) Derive the F-test of Hy : B2 = (3 versus Hy : B2 # (3 with level
a = 5%. Show that this test is the same as the test above based on
the t-distribution.

*4. Two-way analysis of variance without replication. Suppose a researcher
wishes to study the effects of two factors A and B on some response
variable. If A and B both occur at m levels, then there are m? possible
combinations of factors. If observations are expensive, a design in which
there is a single observation for each treatment combination may be de-
sirable. Let Y;; denote the response when factor A is at level ¢ and factor
B is at level j. A common (additive) model for these data has

Yij = oi +7; + €ij,

where the €;; are i.i.d. from N(0,0%). This can be considered a general
linear model with 3 = (@1, ..., Qum, Y15+« Ym) -

a) Increasing every parameter «; by an amount A and simultaneously
decreasing every parameter y; by the same amount A leaves the mean
¢ of Y unchanged. So it is clear that r = dim(w) is less than p = 2m.
Determine the dimension r of w in this model.

b) Find the least squares estimate for ;; = EYj; in this model.

) Determine S2, the usual unbiased estimator of .
d) Show that o; — «; is a linear function of £ and determine the least
squares estimate of this difference.

e) Let Y, = (Yan + -+ + Yim)/m, the average response with factor A
at level ¢. Use the studentized range distribution and the fact that
Yi.,...,Y,,. areindependent to derive simultaneous 1 — a confidence
intervals for all differences a; — vj, 1 <4 < j < m.

f) Derive a level 1 — « test of Hy : oy = -+ = auy, versus Hy @ o # q;
for some ¢ # j.

g) Give the power for this test of a3 = -+ = ;. Your answer should
involve the cumulative distribution function for a noncentral F' dis-
tribution. Give the degrees of freedom and provide a formula for the
noncentrality parameter.

h) Use the Scheffé method to derive simultaneous confidence intervals for
all contrasts of the «;, that is, all linear combinations ajay + --- +
Gy, With ay + -+ -4+ a,,, = 0. Note that these contrasts are estimable
because they can be written as linear combinations of differences a; —
Qv oy Qp—1 — Qlyp.-

5. Time series regression models often incorporate regular oscillation over
time, and in some cases this structure can be incorporated into a general
linear model. Let t;, j =1,...,n, be known time points, and assume

Y; =rsin(t; +0) +¢j, j=1,...,n.

Here the errors ¢; are ii.d. from N(0,02), and r > 0, 6 € [—m,7), and
02 > 0 are unknown parameters. Assume for convenience that the time
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points are evenly spaced with 4k observations per cycle and m cycles, so
that n = 4km and t; = jn/(2k). With these assumptions,

Zbln ZCOb =n/2

and

g sin(t g cos(t E sin(t;) cos(t;) = 0.

a) Introduce new parameters $; = rsinf and B2 = rcosd. Show that
after replacing r and 6 with these parameters, we have a general linear
model.

b) Find UMVU estimators Bl and Bg for By and [s.

c¢) Find the UMVU estimator of o2.

d) Derive 95% confidence intervals for 8, and .

e) Show that a suitable multiple of #2 = 32 + 32 has a noncentral chi-
square distribution. Identify the degrees of freedom and the noncen-
trality parameter.

f) Derive a test of Hy : 0 = 6y versus Hy : 0 # 6y with level o = 5%.

. Let (,...,03 be the angles for a triangle in degrees, so 81 + B2 + (B3 =

180; and let Y7,..., Y3 be measurements of these angles. Assume that the

measurement errors, ¢; = Y; — 3;, i =1,...,3, are i.i.d. N(0,0?).

a) Find UMVU estimates Bl and Bg for B1 and (s.

b) Find the covariance matrix for (Bl, Bg) and compare the variance of
Bl with Yl.

c¢) Find an unbiased estimator for o2.

d) Derive confidence intervals for 8y and B2 — 1.

. Side conditions when r < p. When r < p, different values for g will give

the same mean ¢ = X 3, and various values for 3 will minimize ||Y — X 3||2.

One approach to force a unique answer is to impose side conditions on

8. Because the row span and column span of a matrix are the same, the

space V C RP? spanned by the rows of X will have dimension r < p, and

V+ will have dimension p — 7.

a) Show that 8 € V* if and only if X3 = 0.

b) Let w = {X3: 8 € RP}. Show that the map 8~ X3 from V to w is
one-to-one and onto.

c) Let hq,..., hp—, be linearly independent vectors spanning VL. Show
that § € V if and only if h; - 8 = 0,7 = 1,...,p — r. Equivalently,
B eV ifandonly if H3 =0, where H' = (hy,...,hp_y).

d) From part (b), there should be a unique BinV with X3 = ¢, and 3
will then minimize ||Y — X 3||2 over 3 € V. Using part (c), § can be
characterized as the unique value minimizing ||Y — X 3||? over 3 € R?
satisfying the side condition H = 0. Show that £ minimizes
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2

Y X
I(0)- ()2
over 3 € RP. Use this to derive an explicit equation for J3.
A variable Y has a log-normal distribution with parameters y and o2 if

logY ~ N(u,0?).
a) Find the mean and density for the log-normal distribution.

b) If Y1,...,Y, are ii.d. from the log-normal distribution with unknown
parameters u and o2, find the UMVU for p.
¢) If Yq,...,Y, are i.i.d. from the log-normal distribution with param-

eters 1 and o2, with 02 a known constant, find the UMVU for the
common mean v = FYj.

d) In simple linear regression, Yi,...,Y,, are independent with Y; ~
N (B + Boxi,0?). In some applications this model may be inappro-
priate because the Y; are positive; perhaps Y; is the weight or volume
of the ith unit. Suggest a similar model without this defect based on
the log-normal distribution. Explain how you would estimate (3, and
(B2 in your model.

Consider the general linear model with normality:

Y ~ N(XB,0%I), BeERP, o%>0.

If the rank r of X equals p, show that (3,52) is a complete sufficient
statistic.
Consider a regression version of the two-sample problem in which

v — B+ Pexi + €, i=1,...,n;
! O3+ Oazi +€;, i=n1+1,...,n1+ny=mn,

with €1, ..., €, ii.d. from N(0,02). Derive a 1 — a confidence interval for
B4 — B2, the difference between the two regression slopes.
Inverse linear regression. Consider the model for simple linear regression,

Y = B+ Ba(wi — 2) + &, i=1,...,n,

studied in Section 14.5.

a) Derive a level a-test of Hy : 2 = 0 versus H; : B2 # 0.

b) Let yo denote a “target” value for the mean of Y. The regression line
081 + P2(x — x) achieves this value when the independent variable x
equals

Yo —

B2

Derive a level-a test of Hy : 0 = 0y versus Hy : 6 # 0y. Hint: You may

want to find a test first assuming yg = 0. After a suitable transforma-

tion, the general case should be similar.

0=x+
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¢) Use duality to find a confidence region, first discovered by Fieller
(1954), for 6. Show that this region is an interval if the test in part (a)
rejects B2 = 0.

Find the mean and variance of the noncentral chi-square distribution on

p degrees of freedom with noncentrality parameter §2.

Consider a general linear model Y ~ N(£,021,), € € w, 02 > 0 with

dim(w) = r. Define ¢ = A¢ € R? where g < r, and assume A = AP where

P is the projection onto w, so that 1/} = Aé = AY, and that A has full

rank gq.

a) The F test derived in Section 14.7 allows us to test 1) = 0 versus
¥ # 0. Modify that theory and give a level-a test of Hy : ¥ = g
versus Hy : 9 # 1o with ¥ some constant vector in R?. Hint: Let
Y* =Y — ¢ with £ € w and A&y = 1)p. Then the null hypothesis will

be Hj : A¢* = 0.
b) In the discussion of the Sheffé method for simultaneous confidence
intervals,

{v: (=) (AA) (¢ — ) < qS?Fagn—r}

was shown to be a level 1 — a confidence ellipse for ). Show that this
confidence region can be obtained using duality from the family of
tests in part (a).

Analysis of covariance. Suppose

Y = Br + BoTw + €, 1<i<e, 1<k<p,

with the ey i.i.d. from N(0,0?) and the z3; known constants.

a) If > 2w =0,k =1,...,c use the studentized maximum modulus
distribution to derive simultaneous confidence intervals for 31,..., 3.

b) If Z?Zl T = chz1 Top = -+ = E?Zl xpi, use the studentized range
distribution to derive simultaneous confidence intervals for all differ-
ences 3; — 3;, 1 <14 < j < p. Hint: The algebra will be simpler if you
first reparameterize adding an appropriate multiple of 8y to 31,. .., Bp.

Unbalanced one-way layout. Suppose we have samples from p normal popu-

lations with common variance, but that the sample sizes from the different

populations are not the same, so that

Yij = Bi + €y, 1<i<p, j=1,...,n
with the €;; i.i.d. from N (0, a?).
a) Derive a level-a test of Hy : 1 = -+ = (3, versus H; : §; # (; for
some ¢ # j.

b) Use the Scheffé method to derive simultaneous confidence intervals for
all contrasts a131 + -+ -+ apfp with a1 +--- +a, = 0.

Factorial experiments. A “2*” experiment is a factorial experiment to

study the effects of four factors, each at two levels. The experiment has
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n = 16 as the sample size (called the number of runs), with each run one
of the 16 possible combinations of the four factors. Letting “+” and “—”
be shorthand for +1 and —1, define vectors

vy =+t Hh o o),
xjg_(++++————++++———,—),
x/C_( a_a+a+7_7_7+7+7_7_7+7+a_?_)7

rp = (—i—, -+, -+ -+ -+ -+ -+ -+ ),
and let 1 denote a column of ones. A “+1” for the jth entry of one of
these vectors means that factor is set to the high level on the jth run, and
a “—1” means the factor is set to the low level. So, for instance, on run 5,
factors A, C, and D are at the high level, and factor B is at the low level.
The vector Y gives the responses for the 16 runs. In an additive model for
the experiment,

Y =pul+0sx4+0pxp+0crc+0pxp +,

with the unobserved error € ~ N(0,02I). Parameters 04, 05, 6c, and 0p

are called the main effects for the factors.

a) Find the least squares estimates for the main effects, and give the
covariance matrix for these estimators.

b) Find the UMVU estimator for o2.

¢) Derive simultaneous confidence intervals for the main effects using the
studentized maximum modulus distribution.

Consider the 2% factorial experiment described in Problem 14.16. Let x4

be the elementwise product of x4 with z g,

th = (+7+7+a+ IR R T T T + + + +)
and define xa¢, Tap, TBC, £BD, and xop similarly. A model with two-
way interactions has
Y =pl+0s24+0pxp+0cxc+0prp +0apxan
+0acrac +0aprap +0pcrpe +08pTBD +bO0cDTCD + €
still with € ~ N(0,02%I). The additional parameters in this model are
called two-way interaction effects. For instance, fpp is the interaction
effect of factors B and D.
a) Find least squares estimators for the (g) interaction effects, and give
the covariance matrix for these estimators.

b) Derive a test for the null hypothesis that all of the interaction effects
are null, that is,

Hy:xaB =2ac = 2Ap = %pc = TBDp = Tcp = 0,

versus the alternative that at least one of these effects is nonzero.
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Use the Scheffé method to derive simultaneous confidence intervals for
all contrasts of the two-way interaction effects.

18. Bonferroni approach to simultaneous confidence intervals.

2)

Suppose I1,...,I are 1 — a confidence intervals for parameters
m = q1(0),...,m = gx(0), and let v be the simultaneous coverage
probability,

v = irelfP[m el;,Vi= 1,...,k].

Use Boole’s inequality (see Problem 1.7) to derive a lower bound for
~. For a fixed value o, what choice for a will ensure v > 1 — o*7
Suppose the confidence intervals in part (a) are independent. In this
case, what choice for a will ensure v > 1 — a*?

Consider one-way ANOVA with ¢ = 6 observations from each of p =4
populations. Compare the Bonferroni approach to simultaneous esti-
mation of the differences 8; — 85, 1 < ¢ < j < 4, with the approach
based on the studentized range distribution. Because the Bonferroni
approach is conservative, the intervals should be wider. What is the
ratio of the lengths when 1 — a* = 95%7? The 95th percentile for the
studentized range distribution with parameters 4 and 20 is 3.96.
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Bayesian Inference: Modeling and
Computation

This chapter explores several practical issues for a Bayesian approach to in-
ference. The first section explores an approach used to specify prior distribu-
tions called hierarchical modeling, based on hyperparameters and condition-
ing. Section 15.2 discusses the robustness to the choice of prior distribution.
Sections 15.4 and 15.5 deal with the Metropolis—Hastings algorithm and the
Gibbs sampler, simulation methods that can be used to approximate poste-
rior expectations numerically. As background, Section 15.3 provides a brief
introduction to Markov chains. Finally, Section 15.6 illustrates how Gibbs
sampling can be used in a Bayesian approach to image processing.

15.1 Hierarchical Models

Hierarchical modeling is a mixture approach to setting a prior distribution
in stages. It arises when there is a natural family of prior distributions {4, :
7 € T} for our unknown parameter ©. If the value 7 characterizing the prior
distribution is viewed as an unknown parameter, then for a proper Bayesian
analysis 7 should be viewed as a realization of an unknown random variable 7.
With this approach, there are two random parameters, 7 and 6. Because the
distribution for our data X depends only on ©, 7 is called a hyperparameter.
If G is the prior distribution for 7, then the Bayesian model is completely
specified by
T ~G, OIT =7~ A,

and
X|T =71,0=0~ P,.

Note that in this model,

P(© € B)=EP(O € B|T) = EAr(B) = / A, (B) dG(7),

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 301
DOI 10.1007/978-0-387-93839-4 15, © Springer Science+Business Media, LLC 2010
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which shows that the prior distribution for © is now a mixture of distribu-
tions in the family {A, : 7 € T}. Using this mixture, the hyperparameter 7
could be eliminated from the model, although in some situations this may be
counterproductive.

Ezample 15.1 (Compound Estimation). As a first example, let us consider the
compound estimation problem considered from an empirical Bayes perspective
in Section 11.1. In that section, the parameters ©1, ..., @, were i.i.d. from
N(0,72), with the hyperparameter 7 viewed as a constant. For a hierarchical
Bayesian analysis, a prior distribution G would be specified for 7. Then

O|T =7=N(0,7%) and X|T =7,0 =0 ~ N(0,I).

In this example, if we eliminated the hyperparameter 7 then the prior
distribution for @ would not be conjugate and we would not be able to take
advantage of exact formulas based on that structure. If the dimension n is
large, numerical calculations may be a challenge. Keeping 7, smoothing leads
to some simplifications. Using (11.1) the Bayes estimator for © is

x].

As noted in Section 11.1, given 7 = 7, X1, ..., X,, are i.i.d. from N(0,1+72),
so the likelihood for 7 has a simple form and compound inference can be
accomplished using standard conditioning formulas to compute E[’T 2/(1 +
72) | X]. Note that all of the integrals involved are one-dimensional; therefore
a numerical approach is quite feasible.

7'2

a:m&m=EWWWJHﬂ=XEL+ﬂ

Ezample 15.2 (General Linear Model). The general linear model was intro-
duced in Chapter 14. Here we consider Bayesian inference with the error
variance o2 assumed known. This leaves 3 as the sole unknown parameter,
viewed as a random vector B, and

Y|B=p~ N(XB,o%I),

with X a known n X p matrix. For a prior distribution, proceeding as in the
last example we might take

B~ N(0,7%I).
If » is the variance ratio 02 /72, the posterior distribution is
BY =y ~N (XX +rI)'X'Y,0*(X'X + rI)7").

As in the previous example, the posterior mean here still shrinks the UMVU
(X’'X)~1X'Y towards the origin, although the shrinkage “factor” is now the
matrix (X’X + xI)"'X'X instead of a constant.
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The Bayes estimator (X'X + xI)71X'Y is also called a ridge regression
estimator, originally suggested for numerical reasons to help regularize X’X.

As in the first example, the prior distributions N(0,72I) for B here are
indexed by a hyperparameter 7. A hierarchical approach would model 7 as a
random variable 7 from some distribution G.

Ezample 15.3 (Testing). Another class of examples arises if natural prior
distributions for # seem appropriate under competing scientific hypotheses.
In these examples the hyperparameter 7 can be a discrete variable indexing
the competing theories. As a concrete example, the standard model for one-
way ANOVA has Y;; ~ N(0;,0%),i=1,...,1,j = 1,...,n;, with all n =
ni + - -+ + ny observations independent. If there is reason to believe that all
the §; may be equal, then a prior distribution in which ©; ~ N(ug,03) with
all other ©; equal to ©; may be reasonable, so

6 ~ N(pupl,o311").
If instead the means differ, the prior
6 ~ N(upl,osl)

may be more natural. If 7 = 1 or 2 indexes these possibilities, then the
mixture prior for @ in a hierarchical model would be the convex combination

6 ~ P(T =1)N(pgl,0311") + P(T = 2)N(ppl,031).

15.2 Bayesian Robustness

Ideally, in a Bayesian analysis the prior distribution is chosen to reflect a
researcher’s knowledge and beliefs about the unknown parameter @. But in
practice the choice is often dictated to some degree by convenience. Conjugate
priors are particularly appealing here due to simple formulas for the posterior
mean. Unfortunately, the convenience of such priors entails some risk.

To explore robustness issues related to the choice of the prior distribution
in a very simple setting, consider a measurement error model with

X|0 =0~ N(0,1).

Suppose the true prior distribution A is a t-distribution on three degrees of

freedom with density
2

T V3m(1+62/3)2

Calculations with this prior distribution are a challenge, so it is tempting to
use a conjugate normal distribution instead. The normal distribution Ay =

A(0)
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Fig. 15.1. Prior densities A and An.

N(0,5/4) seems close to A. Densities A and Ay for A and Ay, graphed in
Figure 15.1, are quite similar; the largest difference between them is

sup |A(0) — An(0)] = 0.0333,
6

and |A(B) — An(B)| < 7.1% for any Borel set B.
With squared error loss, the Bayes estimator with Ay as the prior is
5X
InN(X) = 9

and its risk function is

-10 -5 5 10

\Y

Fig. 15.2. Differences 6(z) — z and dn(z) — z.
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Fig. 15.3. Risk functions R(6,0v), R(6,0n), and R(0,9).

25 + 1662

R(0,6n) = E[(6x(X) —6)° |© = 6] = 81

The integrated risk of §y under Ay is

45

JENONO R

much better than the integrated risk of 1 for the UMVU 6§y (X) = X. This
improvement is achieved by the shrinkage towards zero, which improves the
variance of the estimator and introduces little bias when 6 is near zero.

The true prior A has heavier tails, placing more weight on the region where
dn is more heavily biased and its risk R(6,dy) is large. As one might guess, the
Bayes estimator works to minimize risk for large 6 with less shrinkage when
| X | is large. This can be seen in Figure 15.2, which graphs the differences 6 —dy/
and 0y — dy. The estimators §(X) and dn(X) are very similar if | X| < 2, but
as | X| increases, 6(X) moves closer to X. In fact,

0z) =2 —4/x+o(1/x) (15.1)

as x — Foo. Thus as § — +o0o, the bias of § tends to 0 and its risk func-

tion approaches 1, the risk of dy, instead of increasing without bound as the

quadratic risk of d. Figure 15.3 shows risk functions for dy7, d, and 4.
With the true prior A, the integrated risk for dy is
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/ R0, 5x) dA(6) = ;i’ — 0.901,

almost as high as the risk of X. The best possible integrated risk with the
true prior, achieved using the Bayes estimator ¢, is

/ R(6,8) dA(6) = 0.482,

which is 46.5% smaller than the integrated risk for dy.

15.3 Markov Chains

Definition 15.4. A sequence of random vectors Xy, X1, Xo, ... taking val-
ues in a state space (X, A) form a (time homogeneous) Markov chain with
transition kernel! Q, if

P(X,41 € B|Xo=20,...,Xn =x,) = P(Xy11 € B|X,, = z,) = Q,, (B),
for allm > 1, all B € A, and almost all z1,...,x,.

Using smoothing, the joint distribution of the vectors in a Markov chain
can be found from the initial distribution for X, and the transition kernel
Q. The algebra involved can be easily described introducing some convenient
notation. For a probability measure 7 on (X, .A), define a probability measure

7@ by
B) = /Qm(B) dm(x). (15.2)

Note that if 7, denotes the distribution for X,,, then by smoothing,
Tnt1(B) = P(Xn41 € B) = EP(X,,41 € B|X,)

— BQx.( / Qu(B) dro(x) = 1 Q(B),

and so
Tnt1 = TnQ. (15.3)

A distribution 7 is called stationary if 7 = 7@Q. Using (15.3), if the initial
distribution 7y for X, is stationary, then mo = m @ = m;. Further iteration
shows that m; = m9 = w3 = ---, so in this case the random vectors in the
chain are identically distributed.

If Q and Q are transition kernels on X, define the product kernel QQ by

! The kernel @ should satisfy the usual regularity conditions for stochastic transi-
tion kernels: @, should be a probability measure on (X,.A) for all x € X, and
Q+(B) should be a measurable function of z for all B € A.
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(QQ): = Q:Q. (15.4)
Taking Q2 QQ by smoothing,
P(X,42 € B|Xo=x0,...,Xn =xp)
= /P(Xn+2 € Bl Xo==x0,..., Xn+1 = Tn+1) dQz, (Tn+1)
=Q%,.(B),

and so Q? can be viewed as the two-step transition kernel for the Markov
chain. Similarly, the k-fold product Q* gives chances for k-step transitions:

Q% (B) = P(Xp4r € B|Xo =0,..., X = Tn).

Ezample 15.5. If the state space X is finite, X = {1,...,m} say, then a dis-
tribution m on X can be specified through its mass function given as a row

vector
= [r({1}),....7({m})],
and the transition kernel @) can be specified by a matrix Q with
Qij = Qi({j}) = P(Xpy1 = j|Xn = 9).
If we let 7r,, be the row vector for the distribution of X,,, then

[(Tnt1]j = P(Xnt1 = j) = EP(Xn11 = j1Xn) = EQx, ({j})
= ZP = )Qi({7}) = Y _[mnliQi; = [7.QJ;.

7
So
Tn+l1 = 7TnQ

Thus, if distributions are represented as row vectors and transition kernels
are represented as matrices, the “multiplication” in (15.3) becomes ordinary
matrix multiplication. Similarly, if Q and Q are matrices corresponding to
transition kernels @ and Q7 then

(QQ {]} / Qm {]}sz Z Qm Qm] QQ]U

and the matrix representing QQ is simply the matrix product QQ.
For a finite Markov chain, because the mass function for ); sums to 1, we

have
> Qi =1Q1); =
J

and hence

Ql=1.
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This shows that 1 is a right-eigenvector for Q with unit eigenvalue. Since 7@ is
given by matrix multiplication, a probability distribution 7 will be stationary
if

™ =7Q,
that is, if 7 is a left-eigenvector of Q with unit eigenvalue. In general, if X is
an eigenvalue for Q, then [A| <1,

Convergence properties for finite Markov chains are commonly related to
the Frobenius theory for positive matrices, covered in Appendix 2 of Karlin
and Taylor (1975). If A is an n X n matrix with eigenvalues A, ..., A,, then
its spectral radius is defined as r = max{|\1|,..., | \a|}.

Theorem 15.6 (Perron—Frobenius). Let A be an n X n matriz with non-
negative entries and spectral radius r, and assume that A™ > 0 for some
m > 0. Then

1. The spectral radius r is a simple? eigenvalue for A, r > 0, and if X is any
other eigenvalue, |[A| < 7.

2. There are left- and right-eigenvectors associated with r with positive en-
tries. Specifically, there is a row vector v and a column vector w with
v>0,w>0,vA=rv, and Aw = rw.

3. If v is normalized so that its entries sum to 1 and w is normalized so that
vw =1, then

T—TLATL — W

as n — oo.
4. The spectral radius r satisfies

min A;; <r <max A
i3 Ay <0 <Y A
J J

To characterize eigenvalues and convergence properties for finite chains in
regular cases, we need a few definitions. Let

Lo(A) = P(X, € A, 30 > 1|X, = ),

the chance the chain ever visits A if it starts at x. States ¢ and j for a finite
chain are said to communicate if the chain can move from either of the states
to the other; that is, if L;({j}) > 0 and L;({7}) > 0. If all of the states
communicate, the chain is called irreducible. The chain is called periodic if X
can be partitioned into sets A7, ..., Xk, kK > 2, and the process cycles between
these sets: if ¢ € A, 1 < j <k —1,

Qi(Xj+1) = P(X1 € Xj1|Xo =) =1,
and if 7 € X, Q’L(Xl) =1.

2 An eigenvalue is simple if it is a simple root of the characteristic equation. In this
case, eigenspaces (left or right) will be one-dimensional.
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For finite chains, properties needed for simulation arise when the chain
is irreducible and aperiodic. In this case, it is not hard to argue that Q™ >
0, so Q satisfies the conditions of the Perron—Frobenius theorem. Because
Q1 = 1, the spectral radius r for Q must be » = 1 by the fourth assertion
of the theorem. Because r is a simple eigenvalue, there will exist a unique
corresponding left-eigenvector 7r with entries summing to 1, corresponding to
a unique stationary distribution 7 for the chain. The mass function for this
distribution can be found by solving the linear equations

m=7mQ and w1l =1.
By the third assertion in the theorem,
Q" —1nw
as n — oo. In probabilistic terms, this means that
X,=>m

as n — oo, regardless of the initial state (or distribution) for the chain. The
stationary distribution also gives the long run proportion of time the process
spends in the various states, and the following law of large numbers holds:

1 n
W10 = [ ram

with probability one, regardless of the initial distribution my. Using this, the
value for [ fdr can be approximated by simulation, having a computer gen-
erate the chain numerically and averaging the values for f. For an extended
discussion of finite chains, see Kemeny and Snell (1976).

The theory for Markov chains when X is infinite but denumerable is sim-
ilar, although irreducible and aperiodic chains without a stationary distri-
bution are possible; see Karlin and Taylor (1975) or another introduction
to stochastic processes. When X is not denumerable, the relevant theory,
presented in Nummelin (1984) or Meyn and Tweedie (1993), is much more
complicated. For simulation, the most appealing notion of regularity might be
Harris recurrence. Tierney (1994) gives convergence results for the Metropolis—
Hastings algorithm and the Gibbs sampler, discussed in the next two sections.

15.4 Metropolis—Hastings Algorithm

In a Bayesian model, if © has density A and the conditional density of X given
© = 0 is pp, then the posterior density of @ given X = z is proportional (in
0) to
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A(O)po ().
To compute the posterior density A(f|x) we should divide this function by its
integral,

[ A @wo(a)as

In practice, this integral may be difficult to evaluate, explicitly or numeri-
cally, especially if © is multidimensional. The Metropolis—Hastings algorithm
is a simulation method that allows approximate sampling from this poste-
rior distribution without computing the normalizing constant. Specifically,
the algorithm gives a Markov chain that has the target law as its stationary
distribution.

To describe the transition kernel @) for the Markov chain, let w denote
a target distribution on some state space X with density f with respect to
a dominating measure p. The chain runs by accepting or rejecting potential
states generated using a transition kernel J with densities j, = dJ,/du. The
chances for accepting or rejecting a new value are based on a function r given

by

F(@)/jao (z7)
f(@0)/jo (o)
Note that r can be computed if f is only known up to a proportionality
constant. Let Xy denote the initial state of the chain. Given Xy = z9, a
variable X* is drawn from J,, so

r(zg,x*) =

X" X0 =x0 ~ Ju,-
The next state for the Markov chain, X7, will be either X or X*, with
P(X; = X*|Xo =20, X" = 2*) = min{r(zg,2*),1}.
Thus
P(X; € A|Xg =m0, X* =27)
= 14(z") min{r(zo, 2*), 1} + 1a(zo) (1 — min{r(zo, z*), 1}).

Integrating against the conditional distribution for X* given Xy = z¢, by
smoothing

Quo(A) & P(X € AIXo = 20)

= 1a(mo) + / min{r(zg, %), 1} jz, (") du(z™)
A
~ Latan) [ win{r(eo, %), g 0”) du(e”).
To check that 7 is a stationary distribution for the chain with transition

kernel Q we need to show that if Xo ~ 7, then X; ~ 7. If Xy ~ 7, then by
smoothing,
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P(X, € A) = EP(X, € A|Xo) = EQx,(A) = / Quo(A) dr(z0).

Because [14(zo)dm(zo) = m(A), this will hold if

/ min{r(zo, 2*), 1}14(2") f (20)jao (=) dp(o) du(a*)
- / min{r(zo, 2*), 1}14(x0) f (20} a0 (=°) d(z0) du(z").

Using the formula for r, this equation becomes

/ min{ f (%) jo+ (20), f (€0) o (#7) }La(2") dp(o) dpu(z™)
= / min{ f (z%)jz= (20), f (20)Jzo () }1a(20) dpu(zo) dp(z™),

which holds by Fubini’s theorem.

Convergence of the Metropolis—Hastings algorithm is discussed in Tierney
(1994). Turning to practical considerations, several things should be consid-
ered in choosing the jump kernel J. First, it should be easy to sample values
from J;, and the formula to compute r should be simple. In addition, J should
move easily to all relevant areas of the state space and jumps should not be
rejected too often.

15.5 Gibbs Sampler

The Gibbs sampler is based on alternate sampling from the conditional dis-
tributions for the target distribution 7. If (X,Y") ~ m, let R denote the condi-
tional distribution of X given Y, and let R denote the conditional distribution
of Y given X. If (X, Yp) is the initial state for the Markov chain, then we find
(X1,Y7) by first sampling X7 from R and then drawing Y7 from R. Specifically,

X1|Xo =0, Yo =90 ~ Ry,

and .
Y1|Xo = 20, Yo = yo, X1 =21 ~ Ry,

Continuing in this fashion, (X;,Y;), i > 0 is a Markov chain.

The Gibbs sampler can be easily extended to joint distributions for more
than two variables (or vectors). If we are interested in simulating the joint
distribution of X, Y, and Z, say, we could generate a new X sampling from
the conditional distribution for X given Y and Z, then generate a new Y from
the conditional distribution of Y given X and Z, then generate a new Z from
the conditional distribution of Z given X and Y, and so on.
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The Gibbs sampler is useful in simulation mainly through dimension re-
duction. Sampling from a univariate distribution is typically much easier than
multivariate sampling. If a better approach is not available, univariate simu-
lation is possible using the probability integral transformation whenever the
cumulative distribution function is available. Also, note that if the target dis-
tribution 7 is absolutely continuous with density f proportional to a known
function g, then, in order to compute f from g, we would normalize g dividing

by its integral,
//g(w,y) dx dy.

In contrast, to find conditional densities we would normalize g dividing by

/g(%y) dx or /g(way) dy.

The normalization for the conditional distributions needed for Gibbs sampling
involves univariate integration instead of the multiple integration needed to
find the joint density.

To check that the Gibbs sampler has 7 as a stationary distribution, let mx
and 1y denote the marginal distributions of X and Y when (X,Y) ~ 7. By
smoothing,

P[(X,Y) € A] = EE[14(X,Y) | Y]
//1,4 (x,y) dRy () dmy (y), (15.5)

and reversing X and Y,

P[(X,Y) € 4] = //1A(x,y) AR (y) drx (x). (15.6)

Suppose we start the chain with distribution m, so (Xo,Yy) ~ (X,Y’). Then
by smoothing, since Yy ~ my and the conditional distribution of X; given Yj
is R,

P[(X,,Y) € A] = EE[14(X1,Y0) | Y] = // La(z, y) dR, () dry (1).

Comparing this with (15.5), (X1, Yp) ~ 7. In particular, X; ~ 7x. Smoothing
again, since R is the conditional distribution of Y7 given Xj,

P[(X1,Y1) € A] = EE[14(X1, Y1) | X41]

- / / La(e,y) dRa(y) drx ().

Comparing this with (15.6), (X1,Y1) ~ (X,Y) ~ 7, which shows that 7 is
stationary.
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15.6 Image Restoration

Gibbs sampling was introduced in a landmark paper by Geman and Geman
(1984) on Bayesian image restoration. The example here is based on this work
with a particularly simple form for the prior distribution. The unknown image
is represented by unknown greyscale values ©, at nm pixels z = (¢,7) in a
rectangular grid 7:

s=00,7) e T {1,...,m} x {1,...,n}.
Given © = 6, observed data X,, z € T, are independent with
X. ~ N(6,,0%), zeT, (15.7)

and o2 considered known.

In real images, greyscale values at nearby pixels are generally highly corre-
lated, whereas well-separated pixels are nearly uncorrelated. For good perfor-
mance, correlations for the prior distribution for @ should have similar form.
For simplicity we restrict attention here to normal distributions. In one di-
mension, the autoregressive model in Example 6.4 has these features; it is not
hard to show that Cor(X;, X;) = pl*=7l. The joint density in that example is

proportional to
a n n—1
2
exp Y ;xz —&—b;xmﬂ_l ,

where the constants a and b satisfy || < a/2, which ensures that this expres-
sion is integrable. To construct a prior density for @ with a similar form, call
a set of two pixels {z1,22} € 72 an edge if ||z1 — 22| = 1 and let € denote the
set of all edges. The priors of interest here have form

A(0) o exp —329§+b 3 6.0, (15.8)
z {21,22}65

For integrability, assume |b| < a/4. Neglecting effects that arise near the edge
of the image,

2 4ol 1 (,) = 2K (y/n)

Opn =
@ ar

where 7 = 4b/a and K is the complete elliptic integral of the first kind, given?

by
K(z) :/0 / \/1 _jjSin2(¢) _ g;z:o (Tﬁ) (27?)2

Also, if z1 and z are adjacent pixels, then

3 Different sources use slightly different definitions.
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dif or _ 2K(\/77) -
Cor(6.,,6.,) oK (yn)

Solving,
™

K(yn) = .
W=, "
As 7 increases to 1, K (y/n) increases without bound, and so p T 1 as 7 T 1.

By results in Cody (1965), K (\/n) ~ log[4/(1—n)] asn 1 1. From this, when
p is near 1,

s
n%1—4exp{— ],
2(1=p)

and so

1 a ™
a~ and b~ — aexp[— } , 15.9
031 - p) 1 21— p) (15.9)

relating a and b in the prior density to 0(29 and p.
The prior density in (15.8) has an interesting and useful structure. Suppose

we let z1,...,2z4 denote the pixels adjacent to some pixel z. If we fix the
values for 6 at these pixels, then A factors into a function of #, and a function
of fs at the remaining nm — 5 pixels. From this, given 6,,,...,0,,, O, is

conditionally independent of the image values at the remaining pixels. This
conditional independence might be considered a Markov property, and the
distribution for © here is called a Markov random field. Building on this idea,
let us divide 7 into “even” and “odd” pixels:

T =A{(i,j) €T :i+jodd} and 73 = {(i,j) € T : i+ j even}.

If we fix the values for 0., z € 71, then A(0) has form [[,. f.(6.). Thus
given 6., z € 11, the O,, z € T, are conditionally independent. Below we
show that posterior distributions have this same structure.

Taking 7 = 1/0?, the “precision” of the X,, by (15.7) the density for X
given © =0 is

po(x) xg exp|— 202—1—72ze

zET ze€T

Therefore the conditional density for © given X = z is

A6|2) = e(x) exp —Q;TZHE+TZHZxZ+b S 0.0, |, (15.10)

2€T z€T {z1,22}€&

with ¢(z) chosen as usual so that [--- [ A(f|z)df = 1. With the quadratic
structure, this conditional density must be normal. The mean can be found
solving linear equations to minimize the quadratic function of 8 in the expo-
nent, and the covariance is minus one half the inverse of the matrix defining
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the quadratic form in . With modern computing these calculations may be
possible, but the nm x nm matrices involved, although sparse, are very large.
Thus Gibbs sampling may be an attractive alternative.

To implement Gibbs sampling, we need to determine the relevant condi-
tional distributions. Let A/, denote the pixels neighboring z € 7,

N, ={2eT:|z-2| =1},

S.= Y 0

ZEN,

and define

the sum of the 6 values at pixels neighboring z. Isolating the terms in (15.10)
that depend on 6., A(0|z) is

exp{—a;Tﬁi + 6, (sz +b52)} (15.11)

times a term that is functionally independent of 6,. As a function of 6,
the expression in (15.11) is proportional to a normal density with variance
1/(a+ 7) (or precision a + 7) and mean

7T, + bS,
a+71

With the product structure, given @; = 03, 2 € Ty, the O, for z € 75 are
conditionally independent with

7L, + bS, 1

@Z|@g=9575671,X=xNN< ,
a+T a+T

> , z €Tz, (15.12)

with a similar result for the conditional distribution of the image given values
at pixels in 75.

The conditional distributions just described are exactly what we need
to implement Gibbs sampling from the posterior distribution of the image.
Starting with image values at pixels in 77, independent values at pixels in
7T, would be drawn using the conditional marginal distributions in (15.12).
Reversing the sets 77 and 73, values at pixels in 7; would next be drawn inde-
pendently from the appropriate normal distributions. Iterating, the posterior
mean should be close to the average values in the simulation.

To illustrate how this approach works in practice, let us consider a numer-
ical example. The true 0 is a 99 x 64 image of the letter A, displayed as the
first image in Figure 15.4. The value for 6 at “dark” pixels is 0 and the value
at “light” pixels is 5. The second image in Figure 15.4 shows the raw data X,
drawn from a normal distribution with mean 6 and covariance 91, so o = 3.

By symmetry, the mean for the prior distribution A in (15.8) is zero. But
the average greyscale value in the true image 6 is 4.1477, which is significantly
different. It seems natural, although a bit ad hoc, to center the raw data by
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S TN

Fig. 15.4. Left to right: True image 6, raw data X, undersmoothed, matched co-
variance, oversmoothed.

subtracting the overall average X = ) _, X./(nm) from the greyscale value
at each pixel, before proceeding with our Bayesian analysis. After processing,
we can add X back to the posterior mean. Results doing this should be similar
to those obtained using a normal prior with mean X for ©, or (more properly)
following a hierarchical approach in which the mean for @ is an additional
hyperparameter and this parameter has a reasonably diffuse distribution.

Empirical estimates for 0'(29 and p, based on the true 6, are 3.5350 and
0.8565, respectively. Using (15.9) these values correspond to a = 1.971 and
b = 0.493. With these values, the prior variance and covariance between values
at adjacent pixels will match the empirical values for the true image, and it
seems reasonable to hope for excellent restoration using this prior. Of course
in practice the true image and associated moments are unknown. For com-
parison, we have also done an analysis with two other priors. In both, we take
o2, = 3.5350, matching the empirical variance for the true 6. But in one of
the priors we take p = 0.70 and in the other we take p = 0.95. Since higher
values for p give smoother images ©, we anticipate that the posterior mean
will undersmooth X when p = 0.70 and oversmooth X when p = 0.95. The
final three images in Figure 15.4 show posterior means for these three prior
distributions, which can be found by Gibbs sampling.*

Evaluating the performance of an image restoration method is perhaps
a bit subtle. In Figure 15.4, the three posterior means look more like the
true image than the raw data, but the raw data X seems visually almost
as “clear.” One measure of performance might be the average mean square
error, MSE = Y _(8 — 0)?/(nm). The raw data X is the UMVU estimator
here and has MSE = 9.0016, very close to the expected MSE which is exactly
9, the common variance of the X,. Mean squared errors for the posterior
means are 0.9786, 1.0182, and 1.5127 for the undersmoothed, matched, and
oversmoothed priors, respectively. Surprisingly, by this measure the image
using the undersmoothed prior is a bit better than the image that matches
the covariance between values at adjacent pixels.

4 Actually, taking advantage of the normal structure in this particular example,
means for the Gibbs sampling Markov chain can be found recursively and con-
verge to the posterior mean. This approach was used to produce the images in
Figure 15.4, iterating the recursion numerically. See Problem 15.9.
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15.7 Problems

1. Consider Example 15.3 in the balanced case where n; = --- = njy. Derive
a formula for

P[T:1|Yij,i:1,...,I,j=1,...,nj].

2. Verify the relation (15.1).
3. Find the stationary distribution for a Markov chain on X = R with kernel
Q@ given by
Q. = N(cz, 1), x € R,

where c¢ is a fixed constant with |¢| < 1.

4. Let @ be the transition kernel for a Markov chain on X = {0,1,2,...}
given by

1, 1=0,7=1;

1/2, i>0,j=i+1;

1/2, i>0,j=0;

0, otherwise,

Qi =

where Q;; def Q:({j}). (Here Q might naturally be viewed as an infinite-
dimensional transition matrix.) So at each stage, this chain has an equal
chance of increasing by one or falling back to zero. The Markov chain with
transition kernel @ has a unique stationary distribution 7. Find the mass
function for 7.

5. Consider using the Metropolis—Hastings algorithm to sample from the
standard normal distribution. Assume that the jump kernel J is given by

Jy = N(z/2,1), z €R.

Give a formula for r and find the chance the chain does not move when
it is at position x; that is, P(X; = x| Xy = ).

6. Consider using the Metropolis—Hastings algorithm to sample from a dis-
crete distribution on X = {1,...,5} with mass function

flx) = ca, r=1,...,5,

for some constant c¢. Suppose the transition matrix for the jump kernel J
is

1/21/2 0 0 O

/2 0 1/2 0 0

J=|01/2 0 1/2 0

0 0 1/2 0 1/2

0 0 0 1/21/2
Find the transition matrix Q for the Metropolis—Hastings chain. Check

that the vector 7 corresponding to the mass function f is a left-eigenvector
for Q with unit eigenvalue.
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7.

10.

15 Bayesian Inference: Modeling and Computation

Consider Gibbs sampling with target distribution

= (()60)

Find 7 and 79 if Xo = z and Yy = y, so that 7 is a point mass at (z,y).
Consider Gibb’s sampling for an absolutely continuous distribution with

density
F@y) ce TV x>0,y > 0;
x’ = .
Y 0, otherwise,

for some constant c. Find the joint density of X; and Y7 if Xy =Yy =1.
Consider using Gibbs sampling for the posterior distribution of an image
in the model considered in Section 15.6. Let @(n), n > 0, be images
generated by Gibbs simulation, and let p(n) denote the mean of ©(n).
Use smoothing and (15.12) to derive an equation expressing p(n + 1) as
a function of p(n). These means p(n) converge to the true mean of the
posterior distribution as n — oo, so the equation you derive can be used
to find the posterior mean by numerical recursion.

Consider Bayesian image restoration for the model considered in Sec-
tion 15.6 when the prior density has form

A(0) xp exp —320§+b S b, re S 6.6,

{z1,22}€&1 {z1,22} €&

where
& ={(z1,2) € T2 |21 — 2| = 1}

and
& ={(z1,22) € T*: |21 — 22| = V2}.

With this prior, it is natural to partition the pixels 7 into four sets, Zyq,
7617 7107 and 7117 given by

Top ={(i,j) € T:i=a (mod 2), j =b (mod 2)},

for a = 0,1 and b = 0,1. Describe how to implement Gibb’s sampling
from the posterior distribution in this case. As in (16.11), for z € 7go find
the conditional distribution of ©, given Oz = 0;, Z € Ty; U 719 U771, and
X =ux.
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Asymptotic Optimality!

In a rough sense, Theorem 9.14 shows that the maximum likelihood estimator
achieves the Cramér—Rao lower bound asymptotically, which suggests that it
is asymptotically fully efficient. In this chapter we explore results on asymp-
totic optimality formalizing notions of asymptotic efficiency and showing that
maximum likelihood or similar estimators are efficient in regular cases. No-
tions of asymptotic efficiency are quite technical and involved, and the treat-
ment here is limited. Our main goal is to derive a result from Hajek (1972),
Theorem 16.25 below, which shows that the maximum likelihood estimator is
locally asymptotically minimax.

To motivate later results, the first section begins with a curious example
that shows why simple approaches in this area fail.

16.1 Superefficiency

Suppose X1, Xo, ... are i.i.d. with common density fy, 0 € {2. By the Cramér—
Rao lower bound, if §,, = 6,(X1,...,X,,) is an unbiased estimator of g(),

then [ ]2
q'(9)
Varg(d,) > nI(6)

where
a 2
116) = £ ( gy o (X))

is the Fisher information for a single observation. Suppose we drop the as-
sumption that §,, is unbiased, but assume it is asymptotically normal:

1 From Section 16.3 on, the results in this chapter are very technical. The material
on contiguity in Section 16.2 is needed for the discussion of generalized likelihood
ratio tests in Chapter 17, but results from the remaining sections are not used in
later chapters.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 319
DOI 10.1007/978-0-387-93839-4 16, © Springer Science+Business Media, LLC 2010
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Vn (8, — g(0)) = N(0,0%(9)).
This seems to suggest that J,, is almost unbiased and that

Varg(v/nd,) — o%(9).

(This supposition is not automatic, but does hold if the sequence n(én —g(0))2
is uniformly integrable.) It seems natural to conjecture that

90"

a*(0) > 106)

But the following example, discovered by Hodges in 1951, shows that this con-
jecture can fail. The import of this counterexample is that a proper formula-
tion of asymptotic optimality will need to consider features of an estimator’s
distribution beyond the asymptotic variance.

Ezample 16.1. Let X1, Xo,... be i.id. from N(0,1) and take X, = (X1 +
-+ X,,)/n. Define §,,, graphed in Figure 16.1, by

5 _ {Xm X ,| > 1/n/4

aX,, |Xn| < 1/n1/47

where a is some constant in (0, 1). Let us compute the limiting distribution
of /n(6, — 0).
Suppose 0 < 0. Fix z and consider

Pg(\/n(én -0) < x) = P(0, <0+ x/\/n).

Since §+x//n — 6 < 0 and —1/n'/* — 0, for n sufficiently large, 6 +x/\/n <
—1/n!/*, and then

Py(v/n(0, —0) < x) = Py(X,, <0+ x/Vn) = ().

So in this case, v/n(d, — ) = N(0,1). A similar calculation shows that
vVn(dn, —0) = N(0,1) when 6 > 0.
Suppose now that # = 0. Fix x and consider

Py(v/nd, < x) = Py(0, < z/v/n).

For n sufficiently large, a|z| will be less than n'/4

1/n'/*, and then

, or, equivalently, a|z+/n| <

Py(v/nd, < x) = Py(aX, <z/v/n)=d(z/a).

This is the cumulative distribution function for N(0,a?). So when § = 0,
Vn(0n, — 0) = N(0,a?).
These calculations show that in general,
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0+ x/\/n
1/n1/4
1/4

a/n

+ + > X

Q
LTst
=z
2
-
S
+
8

—a/nl/“

_1/n1/4

0+ z/\/n

Fig. 16.1. The Hodges’ estimator dy,.

Vn(6, —0) = N(0,0%(9)), (16.1)

where

1, 60#0;
20: 9 )
() {a2, 0 =0.

This estimator is called “superefficient” since the variance of the limiting
distribution when 6 = 0 is smaller than 1/I(6) = 1.

Because v/n(X, —0) ~ N(0,1), (16.1) seems to suggest that J,, may be
a better estimator than X,, when n is large. To explore what is going on, let
us consider the risk functions for these estimators under squared error loss.
Since R(0, X,) = Eg(X,, — 0)> =1/n, nR(6, X,,) = 1. It can be shown that

1, 60#0;

nR(6,8n) = {cﬂ, 0 =0,

as one might expect from (16.1). But comparison of ¢,, and X,, by pointwise
convergence of their risk functions scaled up by n does not give a complete
picture, because the convergence is not uniform in . One simple way to see
this is to note (see Figure 16.1) that d,, never takes values in the interval
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nR(0,6r)
VAN

—0.5 0.5
v

Fig. 16.2. Scaled risk of ¢,, with n = 100 and n = 500 (a = 1/2).

a 1
nl/4’ pl/a -

_1+a

T oopl/4

to be the midpoint of this interval, then 4,, will always miss 6,, by at least half
the width of the interval, and so

If we define
On

(5n = 60" (1—a)2: (1-a2

2nl/4 4y/n
From this,
> —
nR(0,,6,) >n sn A Vn — o0,

as n — oo. This shows that for large n the risk of d,, at 6,, will be much worse
than the risk of X, at 6,,. Figure 16.2 plots n times the risk function for &,
when n = 100 and n = 500 with a fixed at 1/2. As n increases, the improved
risk near zero does not seem sufficient compensation for the worsening risk
nearby.
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16.2 Contiguity

Recall that a measure Q is absolutely continuous with respect to another
measure @ if Q(N) = 0 whenever Q(N) = 0. To impart a statistical conse-
quence to this notion, suppose we are interested in testing Hy : X ~ @ versus
Hy : X ~ Q. If the level @ = Egp(X) is zero, then N = {z : () > 0} is
a null set under ), and must then also be a null set under Q So the power
8 = E1p(X) must also be zero. Conversely, § > 0 implies « > 0. If the mea-
sures Q and @ are mutually absolutely continuous, a < 1 implies 3 < 1. In
this sense the competing distributions @ and Q are hard to distinguish, at
least perfectly.

Contiguity might be viewed as an asymptotic notion of absolute continuity.
It concerns two sequences of distributions, Qn and @Q,, n = 1,2,.... These
might be viewed as competing joint distributions for data, with n representing
the sample size. So Q,, and Q,, are defined on a common measurable space
(X, A,), but these spaces generally vary with n. For instance, X, would be
R™ if n is the sample size and the individual observations are univariate.

Definition 16.2. The measures Qn are contiguous to the measures Qn if
Qn(Ayn) — 0 whenever Qp(A,) — 0.

Contiguity can also be framed in the statistical context of simple versus
simple testing. Suppose ¢,, n > 1, are tests of Hy : X ~ @Q,, versus Hj :
X ~ Q, with levels a,, = Eypn(X) and powers 5, = E1p,(X). If Q,, are
contiguous to @, and a,, — 0 then 3, — 0. If the sequences are mutually
contiguous (i.e., @, is also contiguous to Q,,), then £, — 1 implies a,, — 1. In
this sense the competing hypotheses remain hard to distinguish as n increases
without bound.

Example 16.3. Suppose
Qn = Nn(ﬂnaJ2I) and Qn = Nn(VnaU2I)

where ji,, and v, in R", n > 1. By the Neyman—Pearson lemma, the best level
« test of Hy : X ~ @, versus Hy : X ~ @, rejects Hy if

(Vn - Nn) : (X - Hn) > UH:Un - VnHZa

& (”l‘n — V| _ ZQ) .
o

Suppose M = limsup ||y — vp| < o0, and let A,, n > 1, be Borel sets
with A, C R™. The function 14, , viewed as a test of Hy versus H; has level
an = Egla, = Qn(A,) and power E1ly, = Qn(An) But the power of this
test is at most that of the optimal test, and so

<o (P2

g

and has power
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But if Q,,(4,) = a, — 0, then z,, — 00, and from this bound, Qn(An) must

also tend to zero. This shows that Q,,, n > 1, are contiguous to @, n > 1. And

because we could reverse the roles of p, and v, without changing ||, — vn ||,

when limsup || 4y, — vy || < 00 the sequences will be mutually contiguous.
Suppose instead that ||, — v,|| — oo. If we take

A, = {xER":(yn—,un)-(x— 5 (kn + 1)) >0},

corresponding to the critical region for a symmetric likelihood ratio test, then

1
Qu(a) = (= o =il ) =0

and )
Q4 = (5 = vall) 1.

So in this case the measures are not contiguous. Taking subsequences, they
are also not contiguous if lim sup ||y, — vy || = co.

If p, = 61 and v, = (0 + ,,)1, then under @,, the entries of X are i.i.d.
from N(6,02), and under Q, the entries are ii.d. from N(0 + 6,,02). In
this case the sequences will be contiguous if limsupnd? < oco. This may be
interpreted as meaning that shifts in the common mean of order 1/1/n cannot
be detected with probability approaching one. This sort of behavior is typical
in regular models; see Theorem 16.10 below.

Considering the role of the Neyman—Pearson lemma in this example, it
seems natural that contiguity should be related to likelihood ratios. The notion
of uniform integrability also plays a role. If X is integrable, then E|X|I { | X| >
t} — 0, as t — oo, by dominated convergence, and our Definition 8.15 of
uniform integrability asserts that this holds uniformly over a collection of
random variables.

Lemma 16.4. Suppose Qn < Q, with L, the density (or likelihood ratio)
dQyn/dQy. Let Xy, ~ Q. If the likelihood ratios Ly (Xy), n > 1, are uniformly
integrable, then the measures Q,, are contiguous to the measures Q.

As in Lemma 12.18, the likelihood ratios L, would usually be computed
as Pn/DPn, with p, and p,, the densities of @, and @Q,, with respect to some
measure fi,.

Proof. Using L,,, and letting F denote expectation when X,, ~ @,, we have
the following bound, valid for any ¢ > 0:

Qn(An) = /A L,dQ, = EL,(X,)I{X, € A,}

<HEI{X, € Ap} + EL, (X)) I{Ln(X,) > t}.
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The first term in this bound is ¢tQ,,(A;,), which tends to zero if @, (A,) — 0.
So in this case

lim sup Qn(An) < limsup EL, (X)) I{L,(X,) > t}.

Using uniform integrability, the right-hand side here tends to zero as t — oo,
and so limsup @, (4,) must be zero, proving the lemma. ad

The next result shows that convergence in probability remains in effect
following a shift to a contiguous sequence of distributions.

Proposition 16.5. Suppose X, ~ Q, and X, ~ Qp, let T, be an arbitrary
sequence of estimators, and assume Qn, n > 1, are contiguous to Q,, n >

1. If Th(Xn) Loc, then To(X,) 2 c. Similarly, if T,(X,) = Opy(1), then
T0(Xy) = O;D(l)~

Proof. From the definition of convergence in probability, for any € > 0,
P(IT(Xn) —¢| =€) — 0.

Viewing this probability as the @Q,,-measure of a set, by contiguity
P(|Tn()~(n) —c =€) —0,

and since € is an arbitrary positive number, T;, (Xn) 2, ¢. The second assertion
can be established with a similar argument. a

To state the final result about contiguity in its proper generality, we again
want to view functions as points in a vector space, as we did in Section 12.5,
now with a different notion of convergence. Given a measure p on (X, B), let

ea = {75 [ 72 < oo,

and define the Lo-length of a function f € Lo(u) as

1/2
nﬂb:(/ﬂmQ |

Then || f —g||2 represents the distance between two functions f and g in Lo(),
and with this distance L£2(u) is a metric space,? similar in many respects to
R™. Using this distance we have the following natural notions of convergence
and differentiation.

2 To be more precise, L2(p) is a pseudometric space, because ||f — g|| can be zero
for functions f # g if they differ only on a null set. It would be a proper metric
space if we were to introduce equivalence classes of functions and consider two
functions the same if they agreed almost everywhere.
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Definition 16.6. A sequence of functions f, € La(un) converges in Lo to
f € La(p), denoted fr 3 f, if | fu — fll2 = 0.

Definition 16.7. A mapping 6 ~ fy from R to Lo(p) is differentiable in
quadratic mean at g with derivative V if V € Lo(p) and

foore = Joo £4 V.
€

as € — 0.

When the domain of the map is RP, the derivative, analogous to the gra-
dient in multivariate calculus, will be a vector-valued function. First-order
Taylor approximation should give fg,+e =~ fo, + € - V, which motivates the
following definition.

Definition 16.8. A mapping 0 ~ fy from RP to Lo(u) is differentiable in
quadratic mean at 6y with derivative V if [ ||V||*du < oo and

€

as € — 0.

This notion of differentiation is generally weaker than pointwise differentia-
bility. In most cases the following lemma allows us to compute this derivative
as the gradient, provided it exists.

Lemma 16.9. Let 0 ~ fy be a mapping from RP to Lo(u). If Vo fo(x) exists

for almost all z, for 0 in some neighborhood of 0y, and if

/ 1V o2 ds

is continuous at 0y, then the mapping is differentiable in quadratic mean at
0o with derivative the gradient Vg fg evaluated at 6 = 0.

Returning to statistics, let P = {Py : § € £2} be a dominated family with
densities pyg, 0 € §2, and assume for now that {2 C R. Then the functions /p,
can be viewed as points in L£2(p). When ordinary derivatives exist, (4.14) and
the chain rule give

- (5 s [ () o

This suggests the following definition for Fisher information:

1(0) = 4]Vali3, (16.2)
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with Vpy the quadratic mean derivative of 6 ~- Vpo- T his definition is more
general and proper than the formulas given earlier that require extra regular-
ity. And the next result shows that the regularity necessary to define Fisher
information in this way gives contiguity in i.i.d. models with parameter shifts
of order 1/4/n.

Theorem 16.10. If P = {Fy : 0 € 2} is a dominated family with densities
po, and if 0 ~ /p, is differentiable in quadratic mean at 6y, then the measures

n y n
P90+A/\/n, n > 1, are contiguous to measures Py, n > 1.

16.3 Local Asymptotic Normality

Previous chapters provide a fair amount of information about optimal estima-
tion sampling from a normal distribution with unknown mean. For instance,
if X ~N(0,1),0 € R, then X is complete sufficient, and it is the UMVU and
best equivariant estimator of # under squared error loss. And under squared
error loss, it is also minimax, minimizing sup, Eg(§ — )2. This is established
and generalized in Section 16.6.

In large samples, the maximum likelihood estimator 6 is approximately
normal (after suitable rescaling). If § provides most of the information from
the data, it would be natural to hope that inference from large samples may
be similar to inference sampling from a normal distribution. Naturally, this
will involve some rescaling, because with large samples small changes in pa-
rameter values will be noticeable from our data. This notion is made precise
by considering likelihood ratios; a sequence of distribution families is called
locally asymptotically normal if the likelihood ratios for the families are close
to those for normal distributions, in an appropriate sense.

Suppose X ~ Py = Np(6,%), 0 € RP, with X' a fixed positive definite
covariance matrix. Then the log-likelihood ratio between parameter values t
and 0 is

dP,
£(t,0) = log dP:)
1

1
= —2(X —t)YXN(X —t)+ 2X’Z*1X

1
=YX — 2t’2_1t, (16.3)

(X)

which is a quadratic function of ¢ with the linear coefficients random and the
quadratic coefficients constant.

To see why likelihood ratios are approximately of this form in large sam-
ples, suppose X;, i > 1, are i.i.d. with common density fy, 6 € 2 C R. Fix
0 and define W;(w) = log(f.(X:)/fo(X;)). Under sufficient regularity (sce
Section 4.5),
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EoW!(0) = Egmoggg(xi) =0,
Varg (W} (6)) = Ey (amggg(xi)f = 1(0),
and
EoW!(0) = E, o loggg(xi) = —I(6).

By the central limit theorem,

S, \/ZW )= N(0,1(0)),

and by the law of large numbers,

n

i S W) B —1(0).

=1

A two-term Taylor expansion then suggests the following approximation for
log-likelihood ratios between 6 and “contiguous” alternative 6 + t/\/n:

H?:1 f9+t/\/n (Xz)
H?—1 f9(Xi)

= iWZ 0+ t/vn)
=1

(0 +t//n,0) = 1og[

n

t 12
~ Z WiO)+, > W/'0)

i=1 =1
tS,, — ;tQI(H). (16.4)

Q

This is quite similar in form to (16.3)

The following definition formalizes conditions on likelihood ratios sufficient
for the notions of asymptotic optimality developed in Section 16.6, yet weak
enough to hold in a wide class of applications. These applications include cases
where the data are not identically distributed and cases where the data are
dependent.

Definition 16.11. Consider a sequence of models,
Pn=A{Pon:0¢€ 2CRP}, n>1,

and let £, denote log-likelihood ratios for Py,
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These models are locally asymptotically normal (LAN) at a parameter value
0 in the interior of §2 if there exist random vectors S,, = S,,(0) and a positive
definite matriz J = J(0) such that:

1. If t,, is any convergent sequence, t, — t € RP,

Po

ln(0+ tn/v/n,0) — [t'Sn — St'Jt] =0

as n — oo.
2. Under Py, Sn = Z ~ N(0,J) as n — 0.

Remark 16.12. The second condition in this definition can be replaced by the
condition that the measures Py ,, and Py, , are contiguous whenever /n (6, —
) remains bounded. Mixtures of these measures are also contiguous if the
mixing distributions concentrate appropriately near 6. Specifically, if B(r)
denotes the ball of radius r about 8 and if 7, are probability distributions on
2 such that liminf m, (B(c/\/n)) 11 as¢— oo, then Py, and [ P, ndmy,(w)
are contiguous.

Remark 16.13. If the models are LAN and t,, — t, the distributions of S,, un-
der Py /. /n.n are also approximately normal. Specifically, under Py_; / /n n:
Sp = N(Jt,J). To understand the nature of the argument, assume

P9+tn/\/n,n < P9,n7

and let f be a bounded continuous function. With suitable uniform integra-
bility, one would then expect

gty ynand (Sn) = Bon f (Sn)etOH0/V0)
~ Ef(Z)etfzft'Jtﬂ _ Ef(Jt—i—Z).

Theorem 16.14. Suppose X1, Xs, ... are i.i.d. with common density pg, and
let Py be the joint distribution of X1,...,Xn. If the mapping w ~ /p. is
differentiable in quadratic mean at a parameter value 6 in the interior of the
parameter space 2 C RP, then the families P, = {Py,, : 0 € 2} are locally

asymptotically normal at 6 with J the Fisher information given in (16.2),
J=1(0).

The quadratic approximation ¢'S,, — }¢'Jt in the LAN definition is maxi-
mized at £ = J~1S,,. Because the maximum likelihood estimator én maximizes

m(&un— 0 9)

over w € 2, the LAN approximation suggests that

Ln(w) — 1, (0) = €, (a +
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V0, —0) = JS,,.

Regularity conditions akin to those of Theorem 9.14 but extended to the
multivariate case ensure that

Vb, —0)— J1S, 20, (16.5)

as n — 0o. We assume as we proceed that (16.5) holds for suitable estimators
0., but these estimators need not be maximum likelihood.

Example 16.15. Suppose X1, Xa,... are i.i.d. absolutely continuous random
vectors in R* with common density

. o~ lle—011?
po(z) =c .
[z — o

The families of joint distributions here are LAN. With the pole in the density,
the likelihood function is infinite at each data point, so a maximum likelihood
estimator will be one of the observed data. Section 6.3 of Le Cam and Yang
(2000) details a general method to find estimators 6, satisfying (16.5). This
method is based on using the LAN approximation to improve a reasonable
preliminary estimator, such as X, in this example.

16.4 Minimax Estimation of a Normal Mean

An estimator § is called minimaz if it minimizes supyc, R(6, d). In this section
we find minimax estimates for the mean of a normal distribution. These results
are used in the next section when a locally asymptotically minimax notion of
asymptotic optimality is developed.

As an initial problem, suppose X ~ N,(0,I), § € RP, and consider a
Bayesian model with prior distribution

O ~ N(0,02I).

Then

o’z o2
Ol X=z~N I
| . (1—}—0271—1—02 )’

and the Bayes estimator under compound squared error loss is

- 2x

=",
1+ 02

with Bayes risk

po?

n_ 2 _ N 2 _
E|l0 —0|*=EFE][|0—6|* | X] b g2



16.4 Minimax Estimation of a Normal Mean 331
Because 6 is Bayes, conditioning on © gives

E|6-0|*=EE[||0 - 6| 6]
= ER(6,0) < ER(O,6) < sup R(0,9),
0

for any competing estimator §. So for any 4,

0.2

. 16.6
P42 (16.6)

sup R(0,6) >
0

But this holds for any o, so letting 0 — oo we have

sup R(0,6) > p
6

for any . But the risk of §(X) = X equals p, and so X is minimax.

As an extension, we show that X is also minimax when the loss function
has form L(0,d) = W (d—60) with W “bowl-shaped” according to the following
definition.

Definition 16.16. A function W : RP — [0,00] is bowl-shaped if {x :
W(z) < a} is convex and symmetric about zero for every o > 0.

The following result due to Anderson (1955) is used to find Bayes estima-
tors with bowl-shaped loss functions.

Theorem 16.17 (Anderson’s lemma). If f is a Lebesgue density on RP
with {x : f(x) > a} convex and symmetric about zero for every a > 0, and if
W is bowl-shaped, then

[We-ar@ds = [ W@
for every c € RP.
The proof of this result relies on the following inequality.

Theorem 16.18 (Brunn—Minkowski). If A and B are nonempty Borel sets
in RP with sum A+ B ={x+y:x € A,y € B} (the Minkowski sum of A and
B), and X denotes Lebesgue measure, then

AA + B)YP > X(A)YP + A(B)Y?.

Proof. Let a box denote a bounded Cartesian product of intervals and suppose
A and B are both boxes with ay,...,a, the lengths of the sides of A and
b1,...,b, the lengths of the sides of B. Then

P

Mm:fimmmA@nzfpp

=1
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The sum A + B is also a box, and the lengths of the sides of this box are
ay —|—b1,...,ap+bp. Thus

MA+B) = f[(ai +b;).

i=1

Since arithmetic averages bound geometric averages (see Problem 3.32),

P a; e L bl e 1 P a; 1 L bl
(E%—Hﬁ) - <Hai+bi> = p;ai+bi +p;ai+bi -h
which gives the desired inequality for boxes.

We next show that the inequality holds when A and B are both finite
unions of disjoint boxes. The proof is based on induction on the total number
of boxes in A and B, and there is no harm assuming that A has at least
two boxes (if not, just switch A and B). Translating A (if necessary) we can
assume that some coordinate hyperplane, {z : x;, = 0} separates two of the
boxes in A. Define half-spaces Hy = {x : z > 0}, H_. = {z : , < 0}
and let Ay be intersections of A with these half spaces, AL = AN H; and
A_ = AN H_. Note that A4+ are both finite intersections of boxes with the
total number of boxes in each of them less than the number of boxes in A.
The proportion of the volume of A in H is A(A1)/A(A), and by translating
B we make \(B N Hy)/A(B) match this proportion. Defining By = BN Hy
we then have

A(4)  A(B)
Because intersection with a half-plane cannot increase the number of boxes in
a set, the number of boxes in A4 and By and the number of boxes in A_ and
B_ are both less than the number of boxes in A and B, and by the inductive
hypothesis we can assume that the inequality holds for both of these pairs.
Also note that since Ay + B C Hy and A_ +B_ C H_,

AM(A+ +By)U(A- + B-)) = NA4 + By) + MA- + B-),

and that A+ B D (A4 + B1) U (A- + B_). Using these, (16.7), and the
inductive hypothesis,
MA+B) > MNAy +By) +MA_ +B_)
> (MANDYP £ NBO)YPY 4 (MA)YP + N(B-)MP)P
(BN (BN
=4 1 AMAZ) |1
(o (14 30 )+ (1430

—A\(A) (1 N ig;i:)p

= (MA)YP + \(B)P)".
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This proves the theorem when A and B are finite unions of boxes. The general
case follows by an approximation argument. As a starting point, we use the
fact that Lebesgue measure is regular, which means that A(K) < oo for all
compact K, and for any B,

A(B) =inf{A\(V):V D B,V open}

and
AMB) = sup{\(K) : K C B, K compact}.

Suppose A is open. Fix € > 0 and let K C A be a compact set with A(K) >
A(A) — €. Because the distance between K and A€ is positive, we can cover
K with open boxes centered at all points of K so that each box in the cover
lies in A. The union A of a finite subcover will then contain K and lie in A,
s0 A(A) > A(A) — ¢, and A will be a finite union of disjoint boxes. Similarly,
if B is open there is a set B C B that is a finite union of disjoint boxes with
AMB) > \(B) — e. Because A+ B> A+ B,

AMA 4 B)YP > XA+ B)Y/? > A\(A)Y/P + \(B)'/?
>(AA) -+ (\B) - 9. (168)

Letting € — 0, the inequality holds for nonempty open sets. Next, suppose A
and B are both compact. Define open sets

Ap={z:|lz —y|| <1/n,Jy € A}
and
B, ={z: ||z —vy| <1/n,3y € B}.

Then
A+ B = ((An + By),

n>1

for if s lies in the intersection, then s = a, + b,, with a,, € A, and b,, € B,
and along a subsequence (ay,,b,) — (a,b) € Ax B. Then s=a+b€ A+ B.
Using this,

NA+ B)Y? = lim (A, + By,)"/?
> lim (MAn)Y? + NB,)'7)
= ANA)YP + NB)P.

Finally, if A and B are arbitrary Borel sets with positive and finite measure,
and if € > 0, there are compact subsets A C A and B C B such that A(A) >

AMA) — € and A\(B) > A(B) — €. The inequality then follows by the argument
used in (16.8) O
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Corollary 16.19. If A and B are symmetric conver subsets of RP and c is
any vector in RP then

AM(c+A4)NB) < MANB).

Proof. Let K4 = (c+A)NB and K_ = (—c+A)NB. By symmetry K_ = —K
and so A(K1) = A(K_). Define K = (K, + K_), and note that K C AN B.
By the Brunn—Minkowski inequality,

1 1/p 1 1/p
s () " ()

1 1
= 2,\(K+)1/p + 2)\([(7)1/17 = A(KJr)l/p.

So
MANB) > MK) > AK4)=A(c+A)NB). O

Proof of Theorem 16.17. For u > 0 define convex symmetric sets A4, = {z :

W(z) < u} and B, = {z : f(z) > u}. Using Fubini’s theorem and Corol-
lary 16.19,

[we-ar dx—// / W(e—¢) > u, f(z) > o] dudode
:/ / /I(w§éc+Au,x€Bv)dxdudv
/ / (e + Au) N B,)] dudv
/ / A(Ay N By)] du dv
- [ W) 0

Theorem 16.20. Suppose X ~ N,(0,X) with ¥ a known positive definite
matriz, and consider estimating the mean 0 with loss function L(0,d) = W (0—
d) and W bowl-shaped. Then X is minimaz.

Proof. Consider a Bayesian formulation in which the prior distribution for ©
is N(0,02%). Let © = X~1/20 and X = ¥~1/2X and note that

© ~ N(0,0%)

and o
X©=60~N(6,1).

As before,
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~ = o2% o2
X=2~N I].
ol x (1—}—02’14—02 >

Since conditioning on X is the same as conditioning on X, multiplication by

X2 gives
ol o2
X=2~N X.
ol v <1+02’1+02 >

IfzZ ~ N((O,U2E/(l + 02)), with density f, then the posterior risk of an
estimator ¢ is

2

E[W(6 -6(X)) | X =2] = EW <Z+ 113_2 —5(@)

_ /W <z+ 10:?72 - 5@)) £(2) dz.

By Theorem 16.17, this is minimized if §(x) = o2x/(1 + ¢?), and so again the
Bayes estimator is
~ 02X

0= .

1+ 02
If e=X — 0O, then
€@ =60~ N(0,%),

and so € and O are independent and the marginal distribution of € is N (0, 2?).
Using this, the Bayes risk is

EW(6 —0) = EW (g _ 0?? :2@)

e o3¢ oe
W<1+02 1+02) W<¢1+02>’

which converges to EW (¢) as 0 — oo by monotone convergence. Arguing as
we did for (16.6), for any §

sup R(0,8) > EW (e).
0

Since this is the risk of X (for any #), X is minimax. O

16.5 Posterior Distributions

In this section we derive normal approximations for posterior distributions for
LAN families. Local asymptotic optimality is derived using these approxima-
tions with arguments similar to those in the preceding section.

The approximations for posterior distributions are developed using a no-
tion of convergence stronger than convergence in distribution, based on the
following norm.
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Definition 16.21. The total variation norm of the difference between two
probability measures P and @ is defined as

1P = Q| =sup{| [ fdP ~ [ fdQ|:|f| <1}.
If P and @ have densities p and ¢ with respect to a measure p, and |f| < 1,

‘/fdP /fdQ‘ ‘/f ~adu| < [ o dldn

This bound is achieved when f = Sign(p — ¢), and so

I\P—Q|\=/Ip—q|du~

Taking advantage of the fact that p and ¢ both integrate to one,

P—Q=/> (p—q)du+/> (q—p)du:2/> (v — q)dy
:2/ (1—L)dP:2/(1—min{1,L}) dP, (16.9)

where L = q/p is the likelihood ratio dQ/dP.
If f is a bounded function, sup|f| = M, and we take f* = f/M, then
|/*] <1 and so

‘/fdP—/fdQ’:M’/f*dP—/f*dQ‘ <M||P-Qf.  (16.10)

Strong convergence is defined using the total variation norm. Distributions
P, converge strongly to P if |P,, — P|| — 0. If this happens, then by (16.10)
J fdP, — [ fdP for any bounded measurable f. This can be compared with
convergence in distribution where, by Theorem 8.9, [ fdP, — [ fdP for
bounded continuous functions, but convergence can fail if f is discontinuous.
So strong convergence implies convergence in distribution.

Lemma 16.22. Let P and P be two possible joint distributions for random
vectors X and Y. Suppose P < P, and let f denote the density d]5/dP,
Let Q and @ denote the marginal distributions for X when (X,Y) ~ P and
(X,Y) ~ P, and let R, and R, denote the conditional distributions for'Y
given X =z when (X,Y) ~ P and (X,Y) ~ P. Then Q < Q with density

o) = o) = [ Fedra(

and Ry < R, (a.e.) with density
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Proof. Using Lemma 12.18 and smoothing,

Eg(X) = Eg(X)f(X,Y) = Eg(X)E[f(X,Y)|X] = /g(l‘)h(x) dQ(z).

To show that the stated densities for the conditional distributions are correct
we need to show that iterated integration gives the integral against P. This
is the case because

J[ st Y draw // ol 0) () AR (1)4Q()

:Eg(X,Y)f(X,Y)ZEg(X,Y) U

To motivate the main result, approximating posterior distributions, sup-
pose our family is LAN at 6y, and that the prior distribution for 6 is
N (6o, I'"1/n).? If the LAN approximation and the approximation (16.5) for
0 were exact, then the likelihood function would be proportional to

- n
exp[n(e —00)/J (6 — 00) — | (6 — 60)'J (0 - 90)} ,
and the posterior distribution for © would be
Gom =N (0o + (I'+ J) " J(0n — 00), (I + J) " /n). (16.11)

For convenience, as we proceed dependence on n is suppressed from the no-
tation.

Theorem 16.23. Suppose our families are LAN at 6y in the interior of (2
and that 0 satisfies (16.5). Consider a sequence of Bayesian models in which
O ~ N(bp, I'"1/n) (truncated to 2) with I' a fized positive definite matriz.
Let F,, denote the conditional distribution of @ given X = x, and let G,
denote the normal approximation for this distribution given in (16.11). Then
|IFx — Gx|| converges to zero in probability as n — oo.

Proof. (Sketch) Let P denote the joint distribution of X and @ (in the
Bayesian model), and let () denote the marginal distribution for X. Intro-
duce another model in which X has the same marginal distribution and
é|X = 2 ~ G, the normal approximation for the posterior. Let P denote
the joint distribution for X and 6. Finally, let P = }(P+ P), so that P < P
and P < P, and introduce densities

f(z,0) = 3]]2 (2,0) and f(x,0) = zi

3 If 2 is not all R?, then we should truncate the prior to 2. If f lies in the interior
of 2, only minor changes result and the theorem is correct as stated. But to keep
the presentation accessible we do not worry about this issue in the proof.

(z,0).
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The marginal distributions for X are the same under P, P, and (thus) P. So
both marginal densities for X must be one, and by Lemma 16.22, f(z,-) and
f(x,-) are densities for F,, and G,. Using (16.9),

|Fe — Gl = 2/[1 - min{l’L(x79)HdFm(0)a

where L is the likelihood ratio

f(z,0)
f(z,6)

Integrating against the marginal distribution of X,

E||Fx — Gx| =2E[1 — min{1, L(X,0)}],

L(x,0) =

and the theorem will follow if L(X,©0) % 1.

We next want to rewrite L to take advantage of the things we know about
the likelihood and G,. Suppose P < P. Then P has density f(z, 9)/f(x, 0)
with respect to P. Because the marginal distributions of X are the same under
P and P, the marginal density must be one, and the formula in Lemma 16.22
then gives

/ ;gg G, (0) = 1. (16.12)

When P < P fails, this need not hold exactly, but remains approximately
true.* Assuming, for convenience, that (16.12) holds exactly, we have

L(x,0) = / 1.0 1(2.0) 45y,
and from this the theorem will follow if

f(X,0)1(X,0) (16.13)
f(X,0) f(X,0)
The two fractions here can both be viewed as likelihood ratios, since f and

f are both joint densities. Specifically, viewing f as proportional to a density
for X times the normal conditional density G,

&) = o — (6= 60)'(I'+ J)(O — o)

+ (6 —00)' (I +7)(6 —bo)

ol — 0,) J(O — (—))} ,

* If H is the conditional distribution given X under P, then [ f(z,0)dH.(0) = 1.
Since dG.(0) = f(x,0)dH.(6), the true value for the integral is 1 — P(f(X,0) =
0 ‘ X = x) This approaches one by a contiguity argument.
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and viewing f as proportional to the normal density for © times a conditional
density for X given 6,

f(X,0)

f(X,@) = exp[—2(é—90)’F((:)—00)+ 2(@_90)/F(@—90)

+0,(0,00) — £,(6,0y)|.

If the LAN approximation for ¢,, and approximation (16.5) held exactly, then
the left-hand side of (16.13) would be one. The proof is completed by arguing
that the approximations imply convergence in probability. a

16.6 Locally Asymptotically Minimax Estimation

Our first lemma uses the approximations of the previous section and An-
derson’s lemma (Theorem 16.17) to approximate Bayes risks with the loss
function a bounded bowl-shaped function.

Lemma 16.24. Suppose our families are LAN at 0 in the interior of 2 and
that 0 satisfies (16.5). Consider Bayesian models in which the prior distribu-
tion for © is N(0,02J~1/n). If W is a bounded bowl-shaped function, then

o/
lim inf E, W §—0)) =EW ,
it EW(/n(0 — ©)) (ﬂ N 02)

where Z ~ N(0,J71).
Proof. Let

20 _ 2 7—1
Gr,n=N<6+"(6” 0) o2J )

1402 "n(l+02)

the approximation for the posterior distribution from Theorem 16.23, and let
F,, . denote the true posterior distribution of . Define

pn(z) = iréf E,[W(Vn(d—0)) | X =]
= iréf/W(\/n(d —0)) dF, n(0).

Then, as in Theorem 7.1,

inf E,W (v/n(3 — 0)) = Enpa(X).

Using (16.10), for any d,
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‘ / W (vn(d — 0)) dF;,,(0) — / W (vn(d - 0)) dGr,nw)‘
é M”Fw,n - Gw,n”a

and it then follows that

puli) ~inf [ W (Yl = 0) 4G (0) < MIF = Gl

where M = sup |W|. But by Anderson’s lemma (Theorem 16.17),

inf / W (v/n(d — 6)) dG, n(0) = EW ( ¢1U+Z 02> .

So

oZ
Enpn(X)—EW <E,
‘ pnlX) (\/1—%02)‘

o7,

é MEn”FX,n - GX,n”'

The lemma follows because this expectation tends to zero by Theorem 16.23.

Theorem 16.25. Suppose our families are LAN at 0q in the interior of (2
and that 0 satisfies (16.5), and let W be a bowl-shaped function. Then for any

sequence of estimators Oy,

lim lim liminf sup Egmin{b, W (v/n(6, — 0))} > EW(Z),

b—o0 C—00 N—00 0—60ll<c/v/n

where Z ~ N(0,J~1Y). The asymptotic lower bound here is achieved if 6, = 0,.

Proof. Let 7, = N(6y,c%J~1/n), the prior distribution for © in Lemma 16.24,
and note that 6y + 0 Z/+/n ~ m,. Also, let W, = min{b, W}, a bounded bowl-

shaped function. Then
inf EW, (v/n(s — ©))
< EW,(Vn(0, — 9))
. / EsWy(vn(6, — 0)) dra ()

< sup Eng(\/n(dn — 0))7%({9 |0 — 6o < c/\/n})

10—oll<e/vn
+ b, ({0 : |60 — 6o]| > c¢/v/n}).

But
ma ({0 16— 5] < ¢/vn}) = P( 2] < c/o).
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Solving the inequality to bound the supremum and taking the liminf as n —
o0, using Lemma 16.24,

lim inf sup Eng(\/n(én — 0))
"0 0—60lI<c/v/n
EWy(cZ/V1+02) —bP(||Z|| > c/o)
B P(|1Z]| < ¢/o)

Letting ¢ — oo the denominator on the right-hand side tends to one, leaving
a lower bound of EW,, (O’Z / V1+ 02). Because this lower bound must hold for
o arbitrarily large,

lim liminf  sup  EgW,(Vn(6, — 0)) > EW,(2).

€700 T 9—6g|<c/v/n

The first part of the theorem now follows because EWy(Z) — EW(Z) as
b — oo by monotone convergence. The second part that the asymptotic bound
is achieved if 6, = 0, holds because v/n(f, — 6) = N(0,.J') uniformly
over ||6 — 0g|| < ¢/+/n. Using contiguity, this follows from (16.5) and normal
approximation for the distributions of S,, mentioned in Remark 16.13. a

In addition to the local risk optimality of 0 one can also argue that 0
is asymptotically sufficient, as described in the next result. For a proof see
Le Cam and Yang (2000).

Theorem 16.26. Suppose the families Py, are locally asymptotically normal
at every 0 and that estimators 0, satisfy (16.5). Then 6,, is asymptotically
sufficient. Specifically, there are other families Q, = {Qon : 0 € 2} such
that:

1. Statistic 0y, is (ezactly) sufficient for Q.
2. For every b > 0 and all 8 € {2,

sup ”Qw,n - Pw,n” —0
lw—0|<b/v/n

asn — oQ.

For a more complete discussion of asymptotic methods in statistics, see
van der Vaart (1998), Le Cam and Yang (2000), or Le Cam (1986).

16.7 Problems

1. Consider a regression model in which Y; = ;0 +¢;, ¢ = 1,2,..., with
the ¢; i.i.d. from N(0,0?), and assume that > .- 2? < co. Let @Q,, denote
the joint distribution of Yi,...,Y, if 8 = S, and let Q,, denote the joint
distribution if § = ;.
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a) Show that the distributions Q, and Q,, are mutually contiguous.

b) Let L, denote the likelihood ratio dQ,/dQ@,. Find limiting distri-
butions for L, when 8 = [y and when § = ;. Are the limiting
distributions the same?

Let X1, Xo,... be iid. from a uniform distribution on (0,6). Let Q,

denote the joint distribution for X;,...,X, when 6 = 1, and let Qn

denote the joint distribution when 6 = 1+ 1/n?P with p a fixed positive
constant. For which values of p are (),, and Qn mutually contiguous?

Prove the second assertion of Proposition 16.5: If the distributions for X,,

are contiguous to those for X, and if T},(X,) = O,(1), then T, (X,,) =

Op(1).

Let X and Y be random vectors with distributions Px and Py. If h is a

one-to-one function, show that

|Px — Pyl = | Pnx) — Paoryl-
In particular, if X and Y are random variables and a # 0,
|IPx — Pyl = || Pax+b — Pay+al-

Show that X,, 2 0 if and only if Emin{1,|X,|} — 0.

Define g(z) = min{1, |z|} and let Z = E[|Y| | X]. Show that Eg(Z) >
Eg(Y). Use this and the result from Problem 16.5 to show that L(©, X) %
1 when (16.13) holds.

Let Y,, be integrable random variables. Show that if E[|Yn| | Zn] 20,
then Y, = 0.
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Large-Sample Theory for Likelihood Ratio
Tests

The tests in Chapters 12 and 13 have strong optimality properties but re-
quire conditions on the densities for the data and the form of the hypotheses
that are rather special and can fail for many natural models. By contrast,
the generalized likelihood ratio test introduced in this chapter requires little
structure, but it does not have exact optimality properties. Use of this test
is justified by large-sample theory. In Section 17.2 we derive approximations
for its level and power. Wald tests and score tests are popular alternatives to
generalized likelihood ratio tests with similar asymptotic performance. They
are discussed briefly in Section 17.4.

17.1 Generalized Likelihood Ratio Tests

Let the data X, ..., X, be ii.d. with common density fy for 6 € 2. The
likelihood function is

L) = LO/X1,..., X,) = [[ folX0).

The (generalized) likelihood ratio statistic for testing Hy : 6 € (2 versus
Hy: 0 € (2 is defined as

supg,, L(0)
supg, L(0)

The likelihood ratio test rejects Hy if A > k. When Hy and H; are both simple
hypotheses, this test is the optimal test described in the Neyman—Pearson
lemma.

Typical situations where likelihood ratio tests are used have 2y a smooth
manifold of smaller dimension than (2 = (2 U 2. In this case, if L(6) is
continuous, A can be computed as

A= ANX1,..., Xp) =

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 343
DOI 10.1007/978-0-387-93839-4 17, © Springer Science+Business Media, LLC 2010
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supy, L(0)
supg, L(#)

Furthermore, if these supremum are attained, then

A= ANX1,..., X,) =

L(6)

A= @) (17.1)

where 6 is the maximum likelihood estimate of 6 under the full model, and 6
is the maximum likelihood under Hy, with 6 varying over (2.

Ezample 17.1. Suppose X1, ..., X, are a random sample from N (u,0?) and
0 = (u,0). The log-likelihood function is

n

1(0) = log L(6) = —’2‘ log(2m0?) —

i=1

(X; — p)?
202
The partial derivative with respect to u is

ED IR
i=1

Setting this equal to zero gives

X RS
H:X:n;)g

as the value for p that maximizes [, regardless of the value of o, so ji is the
maximum likelihood estimate for p. We can find the maximum likelihood
estimate & of o by maximizing I(fi, o) over o > 0. Setting

0 N o n i (Xz_X)2
8al(u’a) T o +Z

equal to zero gives
n

62 = :L > (X - X)

i=1
Using these values in the formula for [, after some simplification
efn/2

L(1s0) = (e (17.2)

Suppose we wish to test Hy : p = 0 against H; : p # 0. The maximum
likelihood estimate for  under the null hypothesis is & = 0 (of course). Setting
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0 N X2
1(0,0) =— .
Oo (0,0 o +; o3
equal to zero gives
1 n
~2 2
= X:

as the maximum likelihood estimate for o2 under Hy. After some algebra,

L) = 17.3
(M?J) - (27_(_5_2)”/2‘ ( : )
Using (17.2) and (17.3) in (17.1), the likelihood ratio statistic is
A= o
= on
Using the identity
Y (Xi-x)2 =Y X2 -nx’,
i=1 i=1
we have
r n n/2
N> =S } /
-Z?:I(Xi - X)?

- n/2
[ (= X)X
L Z?:1(Xi - X)2
- nXQ n/2
L 2 i1 (Xi — X)
T2 n/2
n— 1] ’

where T' = /n X /S is the t-statistic usually used to test Hy against H;. Since

the function relating A to |T'| is strictly increasing, the likelihood ratio test is
equivalent to the usual ¢-test, which rejects if |T| exceeds a constant.

Ezample 17.2. Let (X1,Y7), ..., (Xn, Yn) be a sample from a bivariate normal
distribution. The log-likelihood is

1 SO RTINS A

i=1 =1

= Xz_lllw }/;_My
-2
() )

— nlog(Zwamay \/1 — p2).
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We derive the likelihood ratio test of Hy : p = 0 versus H; : p # 0. When
p = 0, we have independent samples from two normal distributions, and using
results from the previous example,

fo =X, iy =Y

and
n

_ 1 . 1 —
aelywoxe 2=y vy

i=1 i=1
The easiest way to find the maximum likelihood estimates for the full model is
to note that the family of distributions is a five-parameter exponential family,
so the canonical sufficient statistic is the maximum likelihood estimate for its
mean. This gives

n n
ZXiznﬂm, Zmznﬂy,

ZXZ—n(erU) ZYz—n(uerJ)

i=1 i=1

and

Solving these equations gives fi, = fix, fly = fly, Oz = Oz, 6y = 0y, and
Vi (X = X)(Y;i - Y)
\/Zl 1 X X \/Zl 1 Y Y)
Using (17.1),
log A =log L(X,Y,64,6y,p) —log L(X,Y, 6, 6y,0)
——2log(1—,6 ).
Equivalent test statistics are |p| or |T'|, where

pvn —2
V1—p?

Under Hy, T has a t-distribution on n — 2 degrees of freedom. In fact, the
conditional distribution of T" given the Y; is t on n — 2 degrees of freedom. To
see this, let Z; = (X;—py)/0z, and let V; = Y; =Y. Since X; — X = 0,(Z;— Z),

we can write
Z (Z AL
\/Zl 1 Z Z \/Zv 1 V2

T =
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Let a=(1,...,1)/y/n and b= V/|V]|. Then ||| = 1, 5] = 1, and

a-b= Y, —Y)
WLIIVII Z

Hence we can find an orthogonal matrix O where the first two columns are
a and b. Because O is constructed from Y, Z and O are independent under
Hy. By this independence, if we define transformed variables Z = O’Z, then
Z|O ~ N(0,I), which implies that Z;, ..., Z, are i.i.d. standard normal.
Note that Z; =a-Z =+/nZ and Zy = b- Z. Since || Z|| = || Z|,

i
(V]

Il
iM:
N

[\v]
.
N

=|1z|1?
Nz
i=2
and hence
. Z b Zo
p= = ;
@?_2 zz @7_2 72
From this, 1 — 27 3 Z2/ Zq 24
Zz

T =

\/n£2 22;3 Z7,2

The sum in the denominator has the chi-square distribution on n — 2 degrees
of freedom, and the numerator and denominator are independent. Therefore
this agrees with the usual definition for the ¢-distribution.

17.2 Asymptotic Distribution of 2log A\

In this section we derive the asymptotic distribution of 2log A when 6 € {2 or
0 is near {2y. A rigorous treatment requires considerable attention to detail and
deep mathematics, at least if one is concerned with getting the best regularity
conditions. To keep the presentation here as accessible as possible, we keep
the treatment somewhat informal and base it on assumptions stronger than
necessary. Specifically, we assume that conditions necessary for a multivariate
version of Theorem 9.14 are in force: the maximum likelihood estimators én are
consistent, and the densities fp(z) are regular enough to allow us to define the
Fisher information matrix I() (positive definite for all § € {2 and continuous
as a function of #) and use Taylor expansion to show that
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1

Vn(0, —0) =17(0) wva

n(0) +0,(1) = N(0,17(6)). (17.4)
The parameter space {2 is an open subset of R”, and (2, is a smooth sub-
manifold of 2 with dimension ¢ < r. Finally, we assume that 6, is consistent
if 6 € (2.

To use likelihood ratio tests in applications, we need to know the size,
so it is natural to want an approximation for the power ,(0) of the test
when 0 € (5. Also, to design experiments it is useful to approximate the
power at other points 6 ¢ 2y. Now for fixed 6 € (21, if n is large enough any
reasonable test will likely reject Hy and the power (3,,(0) should tend to one as
n — o00. But a theorem detailing this would not be very useful in practice. For
a more interesting theory we study the power at points near 2. Specifically,
we study the distribution of 2log\, along a sequence of parameter values
0, = 0o + A/\/n, where 6y € 2y and A is a fixed constant, and show that

Py, [2log A, < 1] — F(t)

as n — oo, where F' is the cumulative distribution function for a noncentral
chi-square distribution with r — ¢ degrees of freedom. When A = 0, 6,, =
0y € 2y and this result approximates the cumulative distribution function of
2log A\, under Hy. In this case, the noncentrality parameter is zero, so the
likelihood ratio test, which rejects if 2log A\ exceeds the upper ath quantile of
the chi-square distribution on r — ¢ degrees of freedom, has size approximately
«. Other choices for A allow one to approximate the power of this test.

The assumptions for Theorems 16.10 or 16.14 are weaker than those above,
so the joint distributions for X, ..., X, under 6, are contiguous to the joint
distributions under 6y, and, by Remark 16.13, under Py,

1
Vvn

By Proposition 16.5, a sequence that is o,(1) under Py, will also be op(1)
under Py, . If we define

Zn = /n(n — 00) = Vn(l, — 0,) + A,
then by (17.4), under Py_,
Zn = N (A, I7(60)). (17.5)

Equivalently, /n(0, — 6,) = N(0,17'(6p)), showing in some sense that the
usual normal approximation for the distribution of the maximum likelihood
estimator holds uniformly over contiguous parameter values, which seems nat-
ural.

The rest of the argument is based on using Taylor expansion and the
normal equations to relate 2log A, to Z,,. The o, and O, notations for scales
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of magnitude, introduced in Section 8.6, provide a convenient way to keep
track of the size of errors in these expansions. Note that Z,, = O,(1) by
(17.5), and s0 0,(Z,) = 0,(1). The normal equations for ,, are simple, the
gradient of [, must vanish at én; that is,

Vi, (0,) = 0. (17.6)

The normal equations for 6, involve the local geometry of {2y and are more
delicate. For 6 € (2, let Vy denote the tangent space! at 6, and let P(f)
denote the projection matrix onto Vy. As x € {2y approaches 0, x — 6 should
almost lie in Vy. Specifically,

z—0=P)(x—0)+o([|z—0]). (17.7)

Also, the matrices P(6) should vary continuously with 8. When 6,, lies in the
interior of (2, the directional derivatives of [,, for vectors in the tangent space
at #,, must vanish; otherwise we could move a little in {2y and increase the

likelihood. So if P, % P(f,), then

P,V1,(0,) = 0. (17.8)
Also, by continuity, because 6, — 6y, P, > P, def P(6y), the projection
matrix onto the tangent plane of 2y at 6y. Using this,

PoVin(0n) = 0, (Vin(02)). (17.9)

Since 6,, and 6, are close to each other and both lie in 2y, by (17.7) their
normalized difference Y,, = v/n(6,, — 6y) satisfies

Y, = BY, + 0,(Yy). (17.10)

Let V2I,, denote the Hessian matrix of second partial derivatives of I,,. By the
weak law of large numbers,

1 1 <&
SV (0) = Z;vg log fo(X;) 5 —1(6)

in Py-probability as n — oo, since
EpV§ log fo(X1) = —1(0).

By contiguity, V21,,(6p)/n — —I(6p) in Py, -probability as n — oo. Also, using
Theorem 9.2, our weak law for random functions, convergence in probability
also holds if the Hessian is evaluated at intermediate values approaching 6.
Using this observation, one-term Taylor expansions of VI, //n about 8y give

! See Appendix A.4 for an introduction to manifolds and tangent spaces.
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\/lnvzn(én) - \/lnvzn(ao) = (=1(0o) + 0p(1)) /(0 — o) (17.11)
and
\}nvzn(én) — ;n Vin(60) = (—1(60) + 0p(1))v/n(0n — o). (17.12)

With the definition of Z,, and (17.6), the first Taylor approximation above

becomes 1

vn

Multiplying the second Taylor approximation by Py and using (17.9),

Vi, (00) = I(006) Zn. + 0p(1). (17.13)

;n Vin(06) = PoI(06)Y + 0p(YVi) + 0,(1),

and these last two equations give

B

We have now obtained three key equations: (17.5), (17.10), and (17.14). We
also need an equation relating 2log A, to Y, and Z,. This follows from a
two-term Taylor expansion, again equating V2, at intermediate values with
—nl(6y) + op(n), which gives
210g A = 200, (6,) — 21, (6,)
=20y — 00)' Vi (00) — (00 — 00)' (nI(60) + 0,(n)) (B — 6o)
—2(0,, — 00)'V1,,(00) + (0, — 00)' (nI(6o) + 0,(n)) (8, — 6o)

— 221, a(60) — 2, (1(60) + 0,(1)) Za

\/nVZ
—2v] jnvznwo) LY (I(00) + 0p(1)) Yo

Using (17.13)

2log Ay = 22! 1(00) Zn — Z!,1(00) Zn + 0,(1)
—2Y 1(00) Zn + Yy I(00)Ys + 0p (|| Yn?)
= (Zn — Yn)' I(00)(Zy, — Ya) + 0p (| Yal?) + 0p(1). (17.15)

The approximation for the Py, distributions of 2log A,,, mentioned above,
follows eventually from (17.5), (17.10), (17.14), and (17.15). The algebra for
this derivation is easier if we write the quantities involved in a convenient
basis. Let V' = Vp, denote the tangent space of {2y at 6y, and let V< denote its
orthogonal complement. Then for v € V, Pyv = v, and for v € V*, Pyv = 0.
Let eq, ..., eq be an orthonormal basis for V, and let eqy1, ..., e, be an
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orthonormal basis for V. Because eq, ..., e, is an orthonormal basis for R”,
O = (e1,...,er) is an orthogonal matrix. Also, PyO = (e1,...,€4,0,...,0), so

/ def 5 (140
om0t p- (10,

where I, denotes the g x g identity matrix and the zeros are zero matrices with

suitable dimensions. In the new basis the key variables are Y =0, Z =
0'Z,, I =01(0)0, and A =0'A. By (17.5), Z = NT(O’A,()’I_1(¢90)())7
and since O'T~1(6p)O = I~!, this becomes

Z = N.(A T, (17.16)
Premultiplying (17.10) by O’ and inserting O’O at useful places gives
O'P00'Y,, = 0'Y,, + 0,(Yy),

or

PY =Y +0,(Y). (17.17)
Similarly, premultiplying (17.14) by O’ gives

O’ PyOO' I(00)00'Y,, = O' PyOO'1(06)00' Zy, + 0,y(Y) + 0,(1),

or

PIYV = PIZ + 0,(Y) + 0,(1). (17.18)
Finally, (17.15) gives

210g Ay = (Zn — Yn)OO'I(09) 00" (Zy, — Yr) + 0p (| Yau) + 0p(1),
which becomes
2logA, = (Z = Y)I(Z=Y) + 0p(|Y]]) + 0p(1). (17.19)
To continue we need to partition Z, Y, and I as
2=(7) =G =(nk)
where Z; € R, Y] € RY, and I}; is ¢ x q. Formula (17.17) gives
Yo = 0,(Y) = 0,(Y1) + 0p(Y2) or (1+0,(1))Y2 = 0,(Y1),

which implies

Thus 0,(Y) = 0,(Y1), and (17.18) gives
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Piz — <j1121 -(5)- j1222>

+op(IIV1]]) + 0p(1)

PIY +
(P70) o131 + )

This can be written as
(I +0,(1))Yy = [11Zy + T12Z5 + 0,(1),
which implies (since 1,1 is positive definite)
Yi =70+ I 1225 + 0,(1).

Note that since Z = O, (1), this equation shows that Y = O, (1), which allows
us to express errors more simply in what follows. Because

— v_l i 7
Z - Y == ( 1112212Z2> + Op(l)v

(17.19) gives

L. SRR
Nog A = (=24 15, 270) ({11 {12) ( 111VI12Z2> +op(1)
Iy Inp Z
Vé(jgg — jgljﬁljlg)ZQ + Op(].).
Letting X = 1!, from the formula for inverting partitioned matrices,?
Yoy = (log — I I 1h2) 71,

and so 5 5
2log Ay = Zo Y55t Zs 4 0,(1).

From (17.16), Zy = N,_,(Az, Y9s). Using Lemma 14.9,
2log Ay = XP_ (AL X5 Ay).

This is the desired result, but for explicit computation it is convenient to
express the noncentrality parameter in the original basis. Let Q = I — P and
QQZI—PQ. Then

L I, 0\ ' (I, 0
om0 = (0 0) = (5 e

and we can express the noncentrality parameter as

2 See Appendix A.6.
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-1
Ay Ay

_ A0 ({; 2221> QA

=AQ(P+QIT'Q)'QA

= A’00'Qu0(0' PyO + 0'QoO(0'1(6,) "1 0) "' 0'Qy0) "' 0'Q,00’ A
= A'Qo(Po + QoI (60) ' Qo) QoA

When this formula is used in practice, it may be more convenient to substitute
I=1(0,,) for I=1(0o). Since 6,, converges to 6, for large n this has negligible
impact on power calculations.

17.3 Examples

Example 17.5. As a first example, suppose that Xi, ..., X,, Y1, ..., Y,
Zi, ..., Zy, are independent with X; ~ Poisson(6;), Y; ~ Poisson(f2), and
Z; ~ Poisson(fs), for i =1, ..., n. We can view this as a random sample of
random vectors in R? with density

070103
fg(:r,y,z) = 1| 2| ;36_91_92_93'

Then

log fo(z,y, z) = xlogb1+ylog s+ zlog O3 — 01 — 02 — 03 —log(zly!2!),

and
—z/6? 0 0
0 0 —z/62
Hence
1/6, 0 0
I1(0) = —EgVilog fo(X1,Y1,Z)) = | 0 1/65 0
0 0 1/6s

Suppose we want to test Hg : 01 + 02 = 03 versus Hy : 01 + 0> # 03. The
log-likelihood is

1(0) = log(61) Z X + log(62) Z Y; + log(63) Z Z;
i=1 i=1 i=1

—nby —nby —nfs — Y _ log(X,!V;!Zy)).

=1

Maximizing [ gives
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0, = X, 0y =Y, 03 = 7.
Also, 0, and f, must maximize
(01,602,061 + 02) = log(61) Z X + log(6-) Z Y; + log(61 + 62) Z Z;
i=1 i=1 i=1

—nby —nby — n(0y +02) — Y _ log(X,!V;!Zy!)

i=1
or (dividing by n and dropping the term that is independent of )
X log 01 + Y10g02 + Zlog(61 + 02) — 2(91 + 92)

Setting partial derivatives with respect to 61 and 05 equal to zero gives

X Z Y Z
-+ . . =2and . + . . =2.
0, 61+ 06- Oy 01+ 0,
From these equations, X /6; =Y /0. So
z A
01+6, 6,(1+X)Y)
Using this in the second normal equation,
~ Z Z+X+Y
2%, = Y + —y (7T
1+ X/)Y X+Y
Hence
é_X Z4+X+4+Y - Y [(Z+X+Y
T2 x+y )0 T2\ x+v )
and
~ Z+X+Y
03 = .
2
Now

2log A = 2(1(0) — 1(0))
=2n [X log(61/61) + Y log(62/85) + Zlog(63/6s)
+é1+92+0~3—é1—é2—é3]
Since 01 + 05 + 05 = él + ég + 93, this simplifies to

Z4X4Y 74X +Y
2log A = —2n | (X + )1 + 71 .
o8 "[( )Og< 2X +2Y ) Og( 27 )]
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In this example, 7 = 3 and ¢ = 2, so under Hy, 2log A is approximately
X3. If ¢ is the 1 — a quantile of x?, then the test that rejects if 2log A > ¢ has
size approximately a. To approximate the power of this test using the results
from the last section we need to identify the projection matrices that arise.
Because (2 is linear, the tangent space V = Vp, is the same for all 8y € 2.
The vectors

1 _1 1 1 and v L 1
V1 = 7'[} = s =
vl o) 7 e\, TTwvs |\

form an orthonormal basis for R3. Both v; and v, lie in the tangent space V,
and vs lies in V*. So

2-11
Py = v1v] + vovh = -1 21
1 12
and
1 1 1-1
Q():Ug?}ézg 1 1-1
-1-1 1

Suppose 6 = 0y + A/+/n, where 6y € 2. Then
Qof = Qobo + QoA//n,

which implies
QoA = V/nQob = V/nvs(v36).
Since
#0100
Iil(ﬁ): 06; 0],
0 0 065

we have

QoI (0)Qo = v3 (vé[‘l(ﬁ)vg)vé
01+6:+05
= 3 U3'U3
01+ 62+ 06
g,

Hence

01 + 05 + 0 -1
L 3@0)
3

:P .
0+91+92+93Q0

(Po+ Qofﬁl(a)Qo)il = (Po +
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The formula for the noncentrality parameter (substituting I=1(8) for I=1(6y))
is
3A'QuQoA
01+ 02+ 65
QoA
01+ 02+ 65
~ 3n(vsh)?
01+ 0o+ 03
. n(01 + 6o — 93)2
i+t

3
A P, A=
Qo( 0+01+92+93Q0)Q0

To be concrete, suppose a test with size 5% is desired. Then one would take
c=196%2=3.84.1f0; = 05 = 1, 63 = 2.3, and n = 100, then the noncentrality
parameter comes out 62 = 9/4.3 = 2.09 = 1.452. If we let Z ~ N(0,1), then
(Z +1.45)2 ~ x2(2.09) and the power of the test is approximately

P(2log \ > 3.84) ~ P{(Z + 1.45)% > 1.96%}
= P(Z > 51) + P(Z < —3.41) = 0.3053.

Example 17.4. Our final example concerns the classic problem of testing in-
dependence in two-way contingency tables. The data are

N1y
Nio
Noy
Naa

~ Multinomial(n; p11, P12, P21, P22)-

Because the p;; must sum to one, they lie on the unit simplex in R*. This set
is not open, so to apply our results directly we take

P11

0= | pi2

P21
The maximum likelihood estimates for the p;; are
. Nij
pz] - n .

Here we follow the common convention where a “+” as a subscript indicates
that terms should be summed; so p;+ = ps1 + pi2 and Ny ; = Nyj + Nyj, for
example. The null hypothesis of independence in the table is

Hy : pij = pitrp+j, fori=1,2and j =1,2.
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Equivalently,
Ho : p11 = pi4p41- (17.20)

(For instance, if (17.20) holds, then pi12 = p1+ — p11 = P14+ — P1+P+1 =
p1+(1 — p+1) = p14py2.) The log-likelihood function is

n
I — ZNij log p;; +10g(N117...,N22> '

i,J

Under Hy,

n
l = ZNlj IOg(pH-p-‘r]) + 10g<]\/v117 .. .7N22>

ij

n
= Z Nij log(pH) + Z Nlj log(p+]) + 10g <N11 o N22>

ij %]

n
= Z Ny log(piv) + Z Nyjlog(pyj) + log (Nu N22>
- - b

= Niy log(pi+) + Noy log(1 — p14) + Niqlog(ps1)

n
+ Ni2log(l —pi1) + lOg<N11 e N22> .

Setting partial derivatives with respect to p41 and pi4 to zero gives the fol-
lowing normal equations for p14 and pyi:

Ny  Noy 0
P+ 1—piy
and
Nip Ny _0
P+1 1—pp
Solving these equations,
Ny
b1+ = = P1+
n
and
- Ny
b1 = = P+1-
n

It follows that pi; = p4; for j = 1,2 and p;4 = ps4 for i = 1,2. Therefore
Dij = Di+D+j

for i = 1,2 and j = 1,2. Plugging in the maximum likelihood estimates
derived gives
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21og \ = 21(6) — 21(6)
=2 Nijlog(pi;) — 2> Nijlog(pispys)

,J ]
:QZNUIOg<A]§Zf >
i Pi+D+j

Let us now turn our attention to the approximate distribution of the like-
lihood ratio test statistic. Because {2y has dimension ¢ = 2 and {2 is an open
set in R3, under Hy,

2log A ~ x3.

To approximate the power at contiguous alternatives we need the Fisher in-
formation. We know that

V(@ —0) = N3(0,171(0))

as n — 00. Since # can be viewed as an average of n i.i.d. vectors, by the
central limit theorem, .
Vn(f —0) = Nj (0, E)

as n — 0o, where X' is the covariance of 6 when n = 1. With n = 1,
Cov(pij, pri) = Cov(Nij, Nki)
= EN;; N, — pijDri
_ —Pij Pkl (17]) 7é (kal)a
pij(L—pi), i=kj=L1
Letting ¢q;; = 1 — p;j, we have
P11911 —P11pP12 —P1ipP21

221_1(9) = | —P11P12 P12412 —Pi2P21
—P11P21 —P12P21 P21421

Fix 6y € 2y and let V be the tangent space for {2y at 6. To identify the
projection matrices Py and Qg onto Vy and Vj', note that parameters 6 € (2
must satisfy the constraint

01— (01 + 62)(01 + 65) & g(0) = 0.

Using results from Appendix A.4, V4= is the space spanned by the rows of
Dg(6p), or the columns of Dg(6y) = Vg(6p). Direct calculation gives

1—60y —65—26,
Vyg(0) = — (61 + 03)
— (01 + 62)

Let
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Vg(6o)
Va(6o)ll”

and choose v1 and vy so that {vy,ve,v3} is an orthonormal basis for R3. As
in Example 17.3, v; and vy span Vp, vs spans VOJ-,

V3 =

! !
Py = v1v] 4+ v2v5

and
!
Qo = v3vs.

The noncentrality parameter is

6% = A'Qo(Py + QoI *(00)Q0) QoA

= A'vzvh(Py 4 v3vs I~ (00)vzvh) " tuzvs A
= (v5A)*v5 (P + [031_1(90)1)3]@0)_1113

_ / 2./ QO
-ciard (me )
_ (vsA)?

o 'Ué[fl(go)'l}g,

_ n(Vg(8o) - (B — 60))°
Vg(0o) I=1(00)Vyg(bo)

The derivation leading to this formula works whenever r — ¢ = 1 with 2 the
parameters 6 € (2 satisfying a single differentiable constraint g(#) = 0.

To illustrate use of the distributional results in a more concrete setting, let
us consider the following design question. How large should the sample size
be to achieve a test with (approximate) level « = 5% and power 90% when
p11 = p22 = 0.3 and p13 = po1 = 0.27 The parameter value associated with
these cell probabilities is

0.3
0, =10.2
0.2

Under Hy, 2log A ~ Z2, where Z ~ N(0,1). Since P(Z* > (1.96)?) =1 —
P(-1.96 < Z < 1.96) = 5% = a, the test should reject if 2log A > (1.96)2.
Since (Z + 6)% ~ x3(62), under the alternative 6,

2log A\ ~ (Z 4 6)2.

To meet the design objective, we need

90% =~ P((Z +6)* > (1.96)?)
=P(Z >1.96—6)+ P(Z < —1.96 — ).

The second term here is negligible, so we require
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90% ~ P(Z > 1.96 — §).

This holds if 1.96—4§ is the 10th percentile of the standard normal distribution.
This percentile is —1.282 which gives § = 1.96+1.282 = 3.242 and §? = 10.51.
The marginal cell probabilities under 6,, are p;y = p4+; = 1/2, so the natural
choice for 6y is

1/4
6= |1/4
1/4
Then
0
Vg(0o) = [ 172
—-1/2
and
0 1/20
Vg(@o)-(én—ao): —1/2 . —1/20 = 20
—-1/2 —-1/20
Also,
3/4 —1/4 —1/4
I™'0)= | —1/4 3/4 —1/4],
~1/4-1/4 3/4
and so 3 1 1 3 1
Vol 1 0Va00) = (- -+ 5) = i
Hence

52— n(1/20)2 _n
(1/4)? 25
Setting this equal to 10.51 gives n = 263 as the sample size required for the
level and power specified.
In practice many statisticians test independence in 2 x 2 tables using Pear-
son’s chi-square test statistic,

T Z (Nij — npirp;)?
; NP+ D+j

For large n, T' and 2log A are asymptotically equivalent. To demonstrate this
equivalence (without any serious attempt at mathematical rigor), we write

2log \ = 2n2ﬁijlog< A pif > .

i Pi+D+j

We view this as a function of the p;; with the marginal probabilities p;1 and
D; considered fized constants and Taylor expand about p;; = pitP+; (equality
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here is approximately correct under both Hy and contiguous alternatives). To
compute the gradient of the function,

Dri
. (2log\) =2n |log| .. +1]. 17.21
3pkz( & ) [ g(Pk+p+l) ] ( )
Then
0
9 (2log A) = 2n,
Pij Dij=Di+D+;j

and the gradient at the point of expansion is

2n
2n
2n
2n

Taylor expansion through the gradient term gives
2log A~ 2n Y (pij — Pitij) = 0.
,J

To get an interesting answer we need to keep an extra term in our Taylor ex-
pansion. Because (17.21) only depends on p;;, the Hessian matrix is diagonal.
Now

0? 2
o (2log)) = An’
8pij Dij
SO
9? 2
', (2log \) -
op3; o DitD+y
Pij=Pi+P+j

Taylor expansion through the Hessian term gives

1 2n
2log A ~ T (Pi — pirpri)t=T.
22, P~ PusPe)

17.4 Wald and Score Tests

The Wald and score (or Lagrange multiplier) tests are alternatives to the
generalized likelihood ratio tests with similar properties. Assume that the
null hypothesis can be written as Hy : g(f) = 0, with the constraint function
g : 2 — R"™? continuously differentiable and Dg(#) of full rank for 6 € 2.
The basic idea behind the Wald test (Wald (1943)) is simply that if Hp

is correct, then ¢(6,,) should be close to zero. By Proposition 9.32, if 6 € (2,
then
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Vng(6.) = N [0, Dg(0)1(0)~ (Dg(0))].
By Lemma 14.9 and results on weak convergence,

Tiw ™ n(9(0))' [Da0.)10,) " (Da(6.))'] " 9(0,) = 2,

when 6 € 2.

_ Rao’s score test (Rao (1948)) is based on the notion that if 6 € 2y, then
0 should be a good estimate of 6 and the gradient of the log-likelihood should
not be too large at 6,,. Differencing (17.12) and (17.11), for 6 € 2y

1
vn

as n — o0. Using (17.13) it is then not hard to show that

vzn(én) =1(0)(Zn — Yn) + 0p(1)

Ts & i(vzn@n))’f(én)*wn(én) =2log A, + 0,(1) = X7

The three test statistics, 21log A, Tw, and T, have different strengths and
weaknesses. Although the derivation here only considers the asymptotic null
distributions of Ty and Tg, with the methods and regularity assumed in
Section 17.2 it is not hard to argue that all three tests are asymptotically
equivalent under distributions contiguous to a null distribution; specifically,
differences between any two of the statistics will tend to zero in probabil-
ity. Furthermore, variants of Ty and Tg in which the Fisher information is
estimated consistently in a different fashion, perhaps using observed Fisher
information, are also equivalent under distributions contiguous to a null dis-
tribution.

The score test only relies on 9~n The maximum likelihood estimator én
under the full model is not needed. This may be advantageous if the full
model is difficult to fit. Unfortunately, it also means that although the test
will have good power at alternatives near a null distribution, the power may
not be high at more distant alternatives. In fact, there are examples where the
power of the score test does not tend to one at fixed alternatives as n — oo.
See Freedman (2007).

In contrast to the score test, the Wald test statistic relies only on the
maximum lilgelihood estimator under the full model 6,,, and there is no need
to compute 6,. This may make Ty easier to compute than 2log \.

With a fixed nominal level «, at a fixed alternative § € (2; the pow-
ers of the generalized likelihood, Wald, and the score test generally tend to
one quickly. With sufficient regularity, the convergence occurs exponentially
quickly, with the generalized likelihood ratio test having the best possible rate
of convergence. This rate of convergence is called the Bahadur slope for the
test, and the generalized likelihood ratio is thus Bahadur efficient. But from
a practical standpoint, the ability of a test to detect smaller differences may
be more important, and in this regard it is harder to say which of these tests
is best.
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17.5 Problems?

1.

*3.

*4,

Consider three samples: W1y, ..., Wy, from N(u1,0%); X1, ..., X,, from

N(u1,03); and Yy, ..., Y, from N(uz,03), all independent, where pu1,

W2, 01, and oy are unknown parameters. Derive the generalized likelihood

test statistic A to test Hy : 01 = o9 versus Hj : 01 # o2. You should be

able to reduce the normal equations under the full model to a single cubic

equation. Explicit solution of this cubic equation is not necessary.

Consider data for a two-way contingency table Ny1, N12, Noi, Nog from a

multinomial distribution with n trials and success probabilities pi1, pi2,

pa1, p22. Derive the generalized likelihood test statistic A to test “symme-

try,” Hg : p1o = po1 versus Hy : p1a # po1.

Random effects models. One model that is used to analyze a blocked ex-

periment comparing p treatments has Y;; = a; + 85 + €5, 1 = 1,...,p,

j=1,...,n, with the o; and 3; viewed as unknown constant parameters

and the €;; unobserved and i.i.d. from N(0,0?). In some circumstances,

it may be more natural to view the blocking variables ; as random,

perhaps as i.i.d. from N(0,72) and independent of the €;;. This gives a

model in which the vectors Y; = (Y1;,...,Y};), 7 = 1,...,n, are i.id.

from N (o, 02l 4+ 7211’). Here “1” denotes a column of 1s in R?, and the

unknown parameters are o € R?, 02 > 0, and 72 > 0.

a) Derive the likelihood ratio test statistic to test Ho : 72 = 0 versus
H,:72>0.

b) Derive the likelihood ratio test statistic to test Ho : oy = -+ = .

Let X and Y be independent exponential variables with failure rates 6,

and 6, respectively.

a) Find the generalized likelihood ratio test statistic A, based on X and
Y, to test Hy : 0, = 20, versus H; : 8, # 20,,.

b) Suppose the test rejects if A > ¢. How should the critical level ¢ be
adjusted to give level a?

Let X and Y be independent normal variables, both with variance one

and means fx = EX and 6y = EY.

a) Derive the generalized likelihood test statistic A (or log A) to test Hy :
Ox =0 or Oy =0 versus H; : 0x # 0 and 0, # 0.

b) The likelihood test using A from part (a) rejects Hy if log A > k. Derive
a formula for the power of this test when 0x = 0.

¢) Find the significance level « as a function of k. How should & be chosen
to achieve a desired level a?

Suppose X ~ N,(0,I) and consider testing Hy : 6 € 29 versus Hy : 6 ¢

2.

a) Show that the likelihood ratio test statistic A is equivalent to the
distance D between X and {2y, defined as

D =f{|X — 0] : 0 € 2}

8 Solutions to the starred problems are given at the back of the book.
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(Equivalent here means there is a one-to-one increasing relationship
between the two statistics.)

b) Using part (a), a generalized likelihood ratio test will reject Hy if
D > c. What is the significance level « for this test if p = 2 and
.Q() :{9191 §0,92 SO}?

7. Show that in the general linear model there is an increasing one-to-one
relationship between the generalized likelihood ratio statistic A and the
test statistic T in (14.24), so that tests based on A and T are equivalent.

*8. Let X1, ..., X, be a random sample from an exponential distribution
with mean 6,, and let Y7, ..., Y, be an independent sample from an

exponential distribution with mean 6.

a) Find the likelihood ratio test statistic for testing Hy : 01/02 = ¢
versus Hj : 01/02 # co, where ¢ is a constant.

b) Use the large-sample approximation for the null distribution of 2 log A
and the duality between testing and interval estimation to describe a
confidence set for 61 /05 with coverage probability approximately 95%
(the set is an interval, but you do not have to demonstrate this fact).
If n =100, X = 2, and Y = 1, determine whether the parameter ratio
2.4 lies in the confidence set.

¢) How large should the sample size n be if we want the likelihood ratio
test for testing Hy : 01 = 0o versus Hy : 01 # 0 at level 5% to have
power 90% when 6; = 0.9 and 6, = 1.17

*9. Let W1,...,W,, X1,...,X,,and Y1,...,Y,, be independent random sam-
ples from N (i, 02), N(pa,03), and N(py, 07), respectively.

a) Find the likelihood ratio test statistic for testing Hy : 0 = 05 = 0y
versus the alternative that at least two of the standard deviations
differ.

b) What is the approximate power of the likelihood ratio test with level
a = 5% if n = 200, 0,y = 1.8, 0, = 2.2 and o, = 2.0? You can
express the answer in terms of a noncentral chi-square distribution,
but identify the appropriate degrees of freedom and the noncentrality
parameter.

*10. Suppose X1, ..., X, are i.i.d. Np(y,I).

a) Derive the likelihood ratio test statistic 2log A to test Hp : ||u| = r
versus Hi : ||u|| # r, where r is a fixed constant.

b) Give a formula for the power of the likelihood ratio test that rejects
Hy when 2log A > ¢ in terms of the cumulative distribution function
for a noncentral chi-square distribution.

¢) If »r = 1, what sample size will be necessary for the test with a ~ 5%
to have power approximately 90% when ||pu| = 1.17

11. Let Wy, ..., W,, X1,..., Xy, and Y7, ..., Y, be independent random sam-
ples. The W; have density e~1*=%11 /2, the Y; have density e~1*=%2!/2, and
the X; have density e"”‘93‘/2. Derive the approximate power for the

likelihood ratio test with o = 5% of Hg : 67 = 05 = 03 if n = 200,

01 = 1.8, 03 = 2.0, and A3 = 2.2. You can express the answer in terms of
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a noncentral chi-square distribution, but identify the appropriate degrees
of freedom and the noncentrality parameter.
Errors in variables models. Consider a regression model in which

Y;:BXiJf_eiv i:]-a"wna

with the X; a random sample from N(0,1) and the ¢; an independent
random sample, also from N(0,1). In some situations, the independent
variables X; may not be observed directly. One possibility is that they are
measured with error. For a specific model, let

Wi = X; +n, 1=1,...,n.

The 7; are modeled as a random sample from N (0, 0?), independent of
the X; and ¢;. The data are Wy,...,W,, and Yi,...,Y,, with # and ¢
unknown parameters.

a) Determine the joint distribution of W; and Y;.

b) Describe how to compute the generalized likelihood ratio test statistic
to test Hy : B = 0 versus Hy : # # 0. An explicit formula for the
maximum likelihood estimators may not be feasible, but you should
give equations that can be solved to find the maximum likelihood
estimators.

¢) Show that the least squares estimate for 8 when o = 0 (the estimator
that one would use when the model ignores measurement error for the
independent variable) is inconsistent if ¢ > 0.

d) Derive an approximation for the power of the generalized likelihood
ratio test with level a &~ 5% when 3 = A/\/n. How does o effect the
power of the test?

Goodness-of-fit test. Let X1,..., X, be a random sample from some con-

tinuous distribution on (0, 00), and let Y; be the number of observations in

(0,1), Y2 the number of observations in [1, 2), and Y3 the number of obser-

vations in [2, 00). Then Y has a multinomial distribution with n trials and

success probabilities py, p2, p3. If the distribution of the X; is exponential

with failure rate 0, then p1 =1 — e~ %, po =e ¥ —e 2% and p3 = e 2.

a) Derive a generalized likelihood ratio test of the null hypothesis that
the X; come from an exponential distribution. The test should be
based on data Y7, Y, Y.

b) If @« = 5% and Y = (36,24,40), would the test in part (a) accept
or reject the null hypothesis? What is the attained significance with
these data (approximately)?

¢) How large should the sample size be if we want the test with level
a =~ 5% to have power 90% when p; = 0.36, po = 0.24, and p3 = 0.47

14. Let X1,..., X, be ii.d. from a Fisher distribution on the unit sphere in

R? with common density

I U
folz) = 47 sinh(]|0]])
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with respect to surface area on the unit sphere. When 6 = 0, fo(x) =

1/(4m), so the variables are uniformly distributed. (These distributions

are often used to model solid angles.)

a) Describe how you would test Hy : 62 = 035 = 0 versus Hy : 62 # 0 or
03 # 0, giving the normal equations you would use to solve for 6,, and
0,. If o = 5%, n = 100, and X,, = (0.6,0.1,0.1), would you accept or
reject Hy?

b) What is the approximate power of the likelihood test if n = 100,
a = 5%, and 6 = (1,.2,0)? Express the answer using the noncentral
chi-square distribution, but identify the degrees of freedom and the
noncentrality parameter.

15. Let Xy, ¢ = 1,...,p, j = 1,...,n, be iid. from a standard expo-
nential distribution, and given X = =z, let Yj;, ¢ = 1,...,p, j =

1,...,n, be independent Poisson variables with EY;; = x;;0;. Then
(X1 s Xpjs Y14, .., Yp5), 5 =1,...,n, are i.i.d. random vectors. Con-
sider testing Ho : 01 = --- = 0, versus H; : 0; # 0}, for some i # k.

a) Find the likelihood ratio test statistic to test Hy against Hj.

b) What is the approximate power for the likelihood ratio test if « = 5%,
n=100,p=25,60, =1.8,0, =1.9, 05 = 2.0, 04, = 2.1, and 05 = 2.27
Express your answer using the noncentral chi-square distribution, but
give the degrees of freedom and the noncentrality parameter.

¢) If p=2 and a =~ 5%, how large should the sample size n be if power
90% is desired when 67 = 1.9 and 6y = 2.17

16. Define
2 = {x € (0,00)3 : zyx0w3 = 10}7

a manifold in R3.

a) What is the dimension of 27

b) Let V be the tangent space for this manifold at =z = (1,2,5).
Find an orthonormal basis ey, ez, e3 with eq,..., e, spanning V' and
€g+1, - - -, €3 Spanning v+t

c) Find projection matrices P and Q onto V and V=, respectively.
17. Define a vector-valued function n : R? — R? by n1(z,y) = 22, no(z,y) =
y?, and n3(z,y) = (z—y)?, and let 29 = n((0,00)?). Let V be the tangent
space for {2y at (4,1,1). Find orthonormal vectors that span V.
18. Let (Nii,..., Nog) have a multinomial distribution, as in Example 17.4,
and consider testing whether the marginal distributions are the same, that
is, testing Ho : py1 = p14+ versus Hy : py1 # D1y
a) Derive a formula for the generalized likelihood ratio test statistic
2log A

b) How large should the number of trials be if we want the test with level
a ~ 5% to have power 90% when p11 = 30%, pi12 = 15%, p21 = 20%,
and poo = 35%7
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Nonparametric Regression

Regression models are used to study how a dependent or response variable
depends on an independent variable or variables. The regression function f(x)
is defined as the mean for a response variable Y when the independent variable
equals z. In model form, with n observations, we may write

}/;i:f(xi)+6ia i:]-a"wna

with Fe; = 0.

Classically, the regression function f is assumed to lie in a class of func-
tions specified by a finite number of parameters. For instance, in quadratic
regression f is a quadratic function, f(x) = By + Bix + Be2?, specified by
three parameters, 3y, 51, and (2. This approach feels natural with a small-
or moderate-size data set, as the data in this case may not be rich enough to
support fitting a more complicated model. But with more data a researcher
will often want to consider more involved models, since in most applications
there is little reason to believe the regression function lies exactly in some nar-
row parametric family. Of course one could add complexity by increasing the
number of parameters, fitting perhaps a cubic or quartic function, say, instead
of a quadratic. But this approach may have limitations, and recently there has
been considerable interest in replacing parametric assumptions about f with
more qualitative assumptions about the smoothness of f.

In this chapter we explore two approaches. We begin with kernel methods,
based on Clark (1977), which exploit the assumed smoothness of f in a fairly
direct fashion. With this approach the regression function is estimated as a
weighted average of the responses with similar values for the independent
variable. The other approach, splines, is derived by viewing the regression
function f as an unknown parameter taking values in an infinite-dimensional
vector space. This approach is developed in Section 18.3, following a section
extending results about finite-dimensional vector spaces to Hilbert spaces.
The chapter closes with a section showing how similar ideas can be used for
density estimation.

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 367
DOI 10.1007/978-0-387-93839-4 18, © Springer Science+Business Media, LLC 2010
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18.1 Kernel Methods

Consider a regression model in which
Yl:f(xl)—&—el, i=1,...,n,

where €1, . . ., €, are mean zero, uncorrelated random variables with a common
variance 2. The independent variables z1, ..., z, are viewed as (observed or
known) constants, and the response variables Yi,...,Y, are observed and
random. The errors €1, ..., €, are not observed, and o2 is an unobserved pa-
rameter. The regression function f is unknown and is not assumed to lie in
any parametric class. But we do assume it is twice continuously differentiable.
Finally, for convenience, assume z1 < -+ < Zp.

One conceivable estimator for f might be the function h obtained from
the data by linear interpolation. This function is Y; when z = x; and is linear
between adjacent values for x, so
T — X417 xr —x;

+Yin

M) =Y, :
Li — Tit1 Tit1 — Ty

T € x4, Tiy1)- (18.1)
If the errors are very small then h may lie close to f, but when the errors are
appreciable h will jump up and down too much to be a sensible estimator.
This can be seen in the plot to the left in Figure 18.1, with the true regression
function f shown as a dashed line and h given as a solid line.

h f

x x

Fig. 18.1. Kernel smoothing: left: h; right: f

One way to make a function smoother is through convolution. Doing this
with h leads to an estimator

A 1 /. -t
fa) =, /h(t)W (x . ) dt, (18.2)
where W is a probability density and b, called the bandwidth, controls the

amount of smoothing. The plot to the right in Figure 18.1 shows! f, and it is

! The graphs are based on simulated data with f(z) = 162® — 19.222 +4.68z + 2.3,
€i ~N(0,1), W(z) = (1—|z))*, b= 0.24, and ;41 —x; = 0.04. To avoid problems
with edge effects, f is based on observations (not graphed) with z ¢ [0, 1].
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indeed smoother than h. Viewing this integral in (18.2) as an expectation,

f(z) = Ezh(z - b2),

where Z is an absolutely continuous variable with density W. From this we
can see that f(m) is a weighted average of fAL(y) over values y of order b from .
With increasing b there is more averaging and, as intuition suggests, this will
improve the variance of f (z). But if f curves near z, averaging will induce
bias in the estimator f that grows as b increases. We explore this below when
the independent variables are equally spaced, trying to choose the bandwidth
to balance these concerns.
The estimators i and f are both linear functions of Y. Using (18.1),

= Zui(x)Y

where

T — Ti—1

. T E [wim1, x);
Ti — Ti—1
. — T — Tip1

ul(‘r) - , T E [:Ei,xi+1];
Ti — Ti41

0, otherwise.

Using this in (18.2),

/Zul YW( > Zvl Y;, (18.3)

vile) =, /u (x_t> dt. (18.4)

With this linear structure, moments of f (z) should be easy to compute.
If we let h(z) = Eh(z), then by (18.1),

where

xr — Ty

h(x) = f(xi) + f(@it1) z € (i, i),

Tq — Ti41 Ti41 — T

so h is the linear interpolant of f. The difference between h and f can be
estimated by Taylor approximation. If = € [z;, x;11], then

F@) = @) + @ =e)r ) + [ =) du.

In particular, if x = 2,41, we have

Tit1

f@wﬁ=f@0+@wrﬂmf®0+/ (i1 — )" () du,

x4
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and we can use this to eliminate f’(z;) from the first equation in favor of
f(x;y1). The algebra is messy but straightforward and gives

F@) = Flwi) + (o — )T 1)~ I ()
Ti41 T;

- /z (u — ;) (1 - xi:_x;) I (u) du

Tit1 =
‘/ (@—a) " ) du
T xi+1 - xi
Tit1

— (o)~ (@2~ ) [ el (@) du

Zq

where p; , is a probability density concentrated on (x;, z;11). If f” is contin-
uous, then by the (first) intermediate value theorem for integrals,

1
fla) = ha) = (@ — @) (zip1 = ) f (i),
where u; 5 € (2, %i+1). In particular, since (x — ;) (zi+1 — ) < }l(zviﬂ — )2,
if My = sup|f”(x)]|, then

|f(z) = h(x)] < A? (Tip1 — @)% (18.5)

For clarity, let us now assume that the x; are equally spaced between
0 and 1, z; = i/n. Assume also that W is continuous, symmetric, and has

support [—1,1]. Two popular choices for the kernel are Wa(z) = (1 — |x|)+
and Wy(z) = 3(1 — 2%)T. Then

Ef(x) =E[1)/B(t)w (x;t> dt
- Zl)/EB(t)W (x;t> dt
= 11)/f(t)W (x;t> dt + Z/(h(t)—f(t))W(m;t> dt.

By (18.5), the difference between f and h is at most Ms/(8n?), and since W
is a probability density integrating to one, this also bounds the magnitude of
the final term.2 If Z has density W, then the other term is

Ezf(x —bZ) = Ez[f(z) —bZf (x) + 302 2% f"(x — bZ")],

where Z* is an intermediate value in (—1,1). Because W is symmetric, EZ =
0, and by dominated convergence

2 We neglect “edge effects” here, assuming x; > b and z;11 < 1 —b.
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Bias(f(x)) = Ef(x) — [(x) = ,0*f"(x)EZ + oft?) + O(1/n?),

as b — 0. With the regularity imposed, the asymptotics here also hold uni-
formly in z provided we stay away from the endpoints 0 and 1.
From the representation (18.3),

Var(f(x)) =o? va(x)

=1

Note that in this sum, the number of nonzero terms is of order nb because
v;(x) is zero unless |z — x;| < b+ 1/n. To approximate the terms in this sum,
note that nu; is a probability measure concentrated on (z;_1,z;+1), and so,

by (18.4), 1 xr—ti(x)
vilw) = an< 3 ) ’

with ¢t (x) some value in (2,1, %;41). If My = sup [W'(t)|, then
1 Xr — Ty M1
i - w < .
) =, ( b )’ = p2p2

Since the points xz; /b are uniformly spaced and separated by an amount 1/(nb),
in a limit in which b6 — 0 but nb — oo, then

1 & T —x;
w? '
nb ; ( b >
is a Riemann approximation for [ W?2(z—t) dt converging to [ W?(t) dt. Thus
P 0?21 & 5 [T — Ty 1
Var(f(z)) = b b 2 [W ( b > +0 (nb)]

— ‘;2 UW%) dt+o(1)] +0 <n21b2>

02 2
~ t) dt.
nb/W()

Combining our approximations for the bias and variance of f (z), we can
approximate the mean square error of f(z) as

MSE(z) = E[f(z) — f(z)]* = Var(f(x)) + Bias®(f(z))

02
~ nb/w2(t) dt+b4i(f”(x))2(EZ2)2.

The mean square error measures the performance of f at individual values
for the independent variable x. For a more global assessment, the integrated
mean square error may be a natural measure:
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1
IMSE = / MSE(z) da
0

2

1 1
A 2 A
~ [ Eliw) - s@)*da=E [ [f(o) - f@)] e
0 0
Using the approximation for the mean square error,
IMSE ~ !+ be,,
nb
where .
= 02/W2(t) dt and ¢ = i(EZ2)2/ (f”(m))zdx.
0

The approximation for the integrated mean square error, viewed as a function
of b, is minimized at a value where the derivative is zero; that is, at a value

solving
C1

 nb2

. . 1/5
opt — 4ncy

as an optimal choice (approximately), and with this choice

+ 4e9b° = 0.

This gives

o\ 4/5 52\ ¥/ 4 1/5
IMSE = 5¢5/ (4;) :Kf(n) ([/W%t)dt} [EZ2]2> :

where
1/5

K= ([ rwye)

which depends on f but is independent of the kernel W. Using W5, IMSE =~
0.353K (02 /n)*/5, and using Wy, IMSE =~ 0.349K (0 /n)*/®. Thus Wy has a
slight theoretical advantage.

In practice, the choice of the kernel is less important than the choice of the
bandwidth. The formula for b,,; cannot be used directly, since the constants

c1 and ¢y depend on o2 and fol (f”(;v)) dx. One natural idea is to estimate
these quantities somehow and choose the bandwidth by plugging the estimates
into the formula for b,y:. This is feasible, but a bit tricky since derivatives of
f are often harder to estimate than f itself. Another idea would be to use a
cross-validation approach based on prediction error. Suppose we wanted to
predict the outcome at a new location z. The expected squared prediction
error would be

E[Y — f(2)]? = El[f(z) + ¢ — f(2)]” = 0 + MSE(x).

If © were chosen at random from a uniform distribution on (0, 1), then the
expected squared prediction error would be ¢ + IMSE. Here is a resampling
method to estimate this error:
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1. Partition the data at random into two samples, an estimation sample
with n; observations and a validation sample with ny observations. Let
fg‘ denote the kernel estimate for f based on the estimation sample with
bandwidth b.

2. Define
1 & . 2
) = g Z(yz,i ) (x2z)) )
i=1
where (224,Y2,), i = 1,...,n9, are the data in the validation sample.

3. Repeat steps 1 and 2 m times and define

where C;(b) is the function C(b) for the ith partition.

The value b minimizing C' would be the cross-validation choice for the band-
width.

18.2 Hilbert Spaces

If V is a vector space in R™ with an orthonormal basis e, ..., ey, then any
x € V can be written as
p
x = E Ci€i,
i=1

with the constants ¢; in the expansion given by

c; = e, i=1,...,p.
Classes of functions may also form vector spaces over R, but these spaces are
rarely spanned by a finite set of functions. However, expansions like those
above may be possible with an infinite collection of basis vectors. To deal
with infinite sums we need a notion of convergence, and this is based here on
the norm or length of a vector. And, for the geometric structure of interest,
we also need inner products. Here are formal definitions of norms and inner
products.

Definition 18.1. Let V' be a vector space over R. A norm on V is a real-
valued function on V, || - || : V — R, satisfying the following conditions:

1. For all x in V, ||z|| > 0, and ||z|| = 0 only if x = O (the zero vector in
V).

2. For all z andy in V, ||z +y| < |z|| + |yl

3. For allz € V and c € R, ||cz|| = || x ||=]|.
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Using a norm we can define convergence x, — z to mean that ||z, —z| —
0. Then a function f from one normed space to another is continuous if
f(zn) — f(x) whenever x,, — x. For instance the function f(z) = ||z is
continuous. The second property of norms implies

[znll < llzn — 2 + [[#]] and |z]| < [z — znll + [[2n]-
Together these imply

|f(@n) = f@)| = [lzall = 2]l] < llzn — 2],
which tends to zero (by definition) whenever z,, — .

Definition 18.2. Let V' be a wvector space over R. An inner product is a
function (-,-) : V. x V — R that is symmetric:

(x,y) = (y,x),  Vy,zeV;
bilinear:
(2, ay + bz) = alz, y) + b(r, 2)

and
(az + by, 2) = alz, z) + b{y, 2),

forallxz, y, z in'V and all a, b in R; and positive definite:
(z,2) 20,

with equality only if x = Q. The pair (V,{-,-)) is called an inner product
space.

Proposition 18.3. In an inner product space, ||z|| = \/(z,z) defines a norm
satisfying the Cauchy—Schwarz inequality,

(@, 9) < =]l > {lyll- (18.6)

Proof. The first property of a norm follows because the inner product is
positive definite, the third property follows from the bilinearity which gives
(cw,cx) = c*(x,r), and, anticipating (18.6), the second property of a norm
follows because
(@ +y, 2 +y)| = [(z,2) + 2(x,9) + (y,)]
2
< el + 20|zl x [yl + lyll* = (=]l + lyll)™

To finish we must verify the Cauchy—Schwarz inequality. It is not hard to show
that (z,0@) = 0, and so the inequality is immediate unless x and y are both
nonzero. In this case,
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(@ —cy.w — cy) = [lal|* — 2c(z,y) + *|lyll*,

viewed as a function of ¢, is minimized when ¢ = (x, y)/||y||?>. But the function
is nonnegative for all ¢, and so plugging in the minimizing value we have

2 2

Iz gl —

After a bit of rearrangement this gives (18.6). ad

One consequence of the Cauchy—Schwarz inequality is that the inner prod-
uct (-, -) is continuous, because

|<jag> - <$7y>| = ‘<:f,g—y>—|— <9~c—x,y>|
<2l g =yl + 12 — =l < [lyll,

which tends to zero as T — x and y — y.
If a norm || - || comes from an inner product, then

lz £ yl* = [l«]* £ 2(z, y) + llyl*.
Adding these two relations we have the parallelogram law, stating that
2+l + llz — ylI* = 2l|2* + 2ly|1*. (18.7)

Elements x and y in an inner product space V are called orthogonal, written
x Ly, if (z,y) = 0. Since

(z+y,x+y) =(z,2)+29) + (yv),
we then have the Pythagorean relation,
=+ gl = llz]1* + [ly]|*.
If W is a subspace of V', then the orthogonal complement of W is
Wt={zeV:(x,y)=0vyeW}.
If x,, — x, then ||z, — z|| — 0, which implies that

sup ||@m — x| — 0,
m:m>n

as n — 0o. Because
zn — zm|l < lzn — 2| + [lz — 20,

convergence implies
lim sup [z, — x| = 0. (18.8)
n—00 1y >p
Sequences satisfying this equation are called Cauchy, but if the space is not
rich enough some Cauchy sequences may not converge. For instance, 3, 3.1,
3.14, ...is a Cauchy sequence in Q without a limit in QQ, because 7 is irrational.
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Definition 18.4. A normed vector space V is complete if every Cauchy se-
quence in 'V has a limit in V. A complete inner product space is called a
Hilbert space.

The next result extends our notion of projections in Euclidean spaces to
Hilbert spaces.

Theorem 18.5. Let V' be a closed subspace of a Hilbert space H. For any
x € 'H there is a unique y € V, called the projection of x onto V', minimizing
llz — z| over z € V. Then x —y € V*, and this characterizes y: if § € V and
x—g§EVL, then j=y.

Proof. Let d = inf ¢y ||x — z|| (the distance from z to V), and choose y,, in
V so that |z — y,|| — d. By the parallelogram law,

12 = Ym + 2 — ynll® + Y0 — Ym® = 2]z — ynll* + 2]z — ym|*.

But )
122 — ym — yn||2 =4 ||33 - é(yn =+ Z/m)” > 4d27

and so
1Yn = ymll* < 20|z — ynll® + 2[|z — ym|* — 44> — 0,

as m,n — 00. S0 y,, n > 1, is a Cauchy sequence converging to some element
y € H. Since V is closed, y € V, and by continuity, ||z —y|| = d. Next, suppose
geVand [z —g||=d. If z€V then g+ cz € V for all ¢c € R and

0< flo—g—czl* = llz = glI* = —2c{x — g, 2) + ¢*[|=]*.

This can only hold for all ¢ € R if (x — 7, z) = 0, and thus z — 7 € V. Finally,
since y and 7 both lie in V and x — y and  — § both lie in V-,

ly—4lI> = (- 9.y —9) — (x—y,y —§) =0,
showing that y is unique. ad

If V is a closed subspace of a Hilbert space H, let Py x denote the projection
of x onto V. The following result shows that Py is a linear operator with
operator norm one (see Problem 18.4).

Proposition 18.6. If V is a closed subspace of a Hilbert space H, x € H,
y €H, and c € R, then

Py(cx +y) =cPvz + Pvy

and
[Py < |z
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Proof. Since V is a subspace and Pyx and Pyy lie in V, cPyx + Pyy € V;
and if z € V,

(cx +y—cPyx — Pyy,z) = c¢(xr — Pyx,z) + (y — Pyy, z) =0,

because x — Pyx L z and y— Pyy L z. Using Theorem 18.5, cPyz+ Pyy must
be the projection of cx + y onto V. For the second assertion, since Pyx € V
and  — Pya € V1 are orthogonal, by the Pythagorean relation

1Py a|? + Iz — Pya|* = ||l=]*. o

Definition 18.7. A collection e;, t € T, is said to be orthonormal if e5 L e
for all s # t and |let|| = 1, for all t.

As in the finite-dimensional case, we would like to represent elements in our
Hilbert space as linear combinations of elements in an orthonormal collection,
but extra care is necessary because some infinite linear combinations may not
make sense.

Definition 18.8. The linear span of S C H, denoted span(S), is the collec-
tion of all finite linear combinations cix1 + -+ + ¢pTy with ¢1,...,cy, in R
and x1,...,x, i S. The closure of this set is denoted span(sS).

Definition 18.9. An orthonormal collection e, t € T, is called an orthonor-
mal basis for a Hilbert space H if {e;,x) # 0 for somet € T, for every nonzero

r €H.
Theorem 18.10. Every Hilbert space has an orthonormal basis.

The proof in general relies on the axiom of choice. (The collection of all
orthonormal families is inductively ordered, so a maximal element exists by
Zorn’s lemma, and any maximal element is an orthonormal basis.) When H
is separable, a basis can be found by applying the Gram—Schmidt algorithm
to a countable dense set, and in this case the basis will be countable.

Theorem 18.11. Ife,, n > 1, is an orthonormal basis, then each x € H may

be written as
oo
x = Z(m, €k)Ck-

k=1

Proof. Let

n

Ty = Z(m,ek>ek.

k=1

The infinite sum in the theorem is the limit of these partial sums, so we begin
by showing that these partial sums form a Cauchy sequence. If j < n,
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(@ — @n,e5) = (m,e5) = Y _(w,e1)(ex, e5) =0,

k=1

since (eg,ej) = 0, unless k = j, and in that case it is 1. From this, « —
x, € span{ei,...,e,} "+, and by Theorem 18.5, x,, is the projection of = onto
span{es, ..., e,}. By the Pythagorean relation,

n

lal® =D (@, er)?,

k=1
and by Proposition 18.6, ||z,|| < ||z||. From this we have Bessel’s inequality,

n

> (zen)® < Jlall?,

k=1

and since m here is arbitrary, the coefficients (z,er), k > 1, are square
summable. By the Pythagorean relation, if n < m,

m 2 m
[m =zl = || Y (wewden| = Y (xex)?,
k=n+1 k=n+1

which tends to zero as m and n tend to infinity. So x,, n > 1, is a Cauchy
sequence, and since H is complete the sequence must have a limit x,. Because
the inner product (-, -) is a continuous function of its arguments, for any j > 1,

(T — Too,€) = lim (x — zp, €5).

n—oo
But if n > j, (x — zp,e;) = 0 because z, is the projection of z onto
span{ey, ..., ey}, and so the limit in this expression must be zero. Therefore
(* — Too,e5) =0, j>1

Finally, since e;, k& > 1, form an orthonormal basis, x — z,, must be zero,
proving the theorem. a

18.3 Splines
Let us consider again our nonparametric regression model
}/sz(xl)—‘rﬁ, i=1,...,n,

where €1, .. ., €, are mean zero, uncorrelated random variables with a common
variance 2. As with the kernel approach, there is a presumption that f is
smooth. The smoothing spline approach tries to take direct advantage of this
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smoothness by augmenting the usual least squares criteria with a penalty for
roughness. For instance, if the x; lie in [0, 1], the estimator f might be chosen

to minimize
n

2 m
J(f) =3 (Y= @) + AIF I3, (18.9)
i=1
where || - ||2 is the Lo-norm of functions on [0, 1] under Lebesgue measure,

1
mﬁzéfmm.

The constant A is called a smoothing parameter. Larger values for A will lead
to a smoother f, smaller values will lead to an estimate f that follows the
observed data more closely, that is, with f(x;) closer to Y;.

For the roughness penalty in our criteria to make sense, f(™~1 will need
to be absolutely continuous according to the following definition.

Definition 18.12. A real-valued function g defined on an interval of R is
absolutely continuous if there exists a function g’ such that

o)~ gl0) = [ g(e)dz,  Va<u

If g is differentiable, then g’ must be the derivative a.e., so use of a common
notation should not cause any confusion. Also, if f has m — 1 continuous

derivatives and g = f™=Y is absolutely continuous, then we denote ¢' as
flm),

Definition 18.13. The Sobolev space W,,,[0,1] is the collection of all func-
tions f : [0,1] — R with m — 1 continuous derivatives, Fm=1" gbsolutely
continuous, and || f™ | < co. With an inner product (-,-) defined by

m—1 1
)= 30 19000+ [ f @ @) e, fg€ Wal0.1)
k=0

Wi |0,1] is a Hilbert space.

These Hilbert spaces have an interesting structure. Suppose we define

m—1 A m—1 m—1
_ I ok Y (r —u) (y —u)
K(z,y) = 2 Y +/0 (m —1)12 du.
k=0
Then ot 3
Y
) kK(x7y)|w:0_ k" k:O7 7m_17

and
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o _(y—om
fam @) = "0 )

Comparing this with the Taylor expansion

:m 1 (k) y(y_x)mflf(m)(x) .
S ot [T da,

— m —1)!

Hx <y} (18.10)

we see that
fly) = (. K(y)).

This formula shows that the evaluation functional, f ~ f(y), is a bounded
linear operator. Hilbert spaces in which this happens are called reproducing
kernel Hilbert spaces. The function K here is called the reproducing kernel,
reproducing because

K(m,y) = <K(,x),K(,y)>

The kernel K is a positive definite function. To see this, first note that

ZCiCjK(xi,xj) :ZC¢Cj<K(',x1' |
i,j 5,J

which is nonnegative. If this expression is zero, then h =), ¢; K (-, x;) is zero.
But then (h, f) = >, ¢ f(x;) will be zero for all f, which can only happen if
¢; = 0 for all 7.

To minimize J(f) in (18.9) over f € W,,,[0,1], let IT,, denote the vector
space of all polynomials of degree at most m—1,let n; = K(-,z;),i=1,...,n
and define

2

l ?

V =11, ®span{n, ..., M}

An arbitrary function f in W;,[0,1] can be written as g + h with g € V and
h € V*. Because h is orthogonal to 1, h(z;) = (h,n;) = 0. Also, if k < m — 1,
then the inner product of A with the monomial z* is k!h(¥)(0), and because
h is orthogonal to these monomials, h(*)(0) = 0, k = 0,...,m — 1. Tt follows
that ||| = [|A(™)]|2, and

1
(g.1) = [ 9™ @™ (@) do =0
0
But then

1
lg™) + At )II§=/0 (9 (@) + ™ (@) da = (g™ I3 + A3,

and so
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n

J(f)=J(g+h) =3 (Y — gla:) — hlz:)” + Ag™ + |3

=1

- 2 m m
=D (Yi—g(@)” + Mg I3 + A3 = J(g) + All]>
i=1

From this it is evident that a function minimizing J must lie in V.
Using (18.10),

n )y = O

(m— 1)! Hx < ;).

From this, on [0, z;], n; must be a polynomial of degree 2m — 1, and on [z;, 1],
7; is a polynomial of degree at most m — 1. Taking more derivatives,

. 1V (s — —1-j
(m+3) (=1)7 (2 — )™ .
; xT) = Hx < x; =1,...,m—2,
R (CF T A
and so the derivatives of n; of order 2m — 2 or less are continuous. Linear
combinations of the 7; are piecewise polynomials. Functions like these are
called splines.

Definition 18.14. A function f : [0,1] — R is called a spline of order q with
(simple) knots 0 < x1 < -+ < xp, < 1 if, for any i =0,...,n, the restriction
of f to [xi,xi11] (with the convention xo = 0 and xn1 = 1) is a polynomial
of degree q — 1 or less, and if the first ¢ — 2 derivatives of f are continuous
on the whole domain [0,1]. The collection of all splines of order q is denoted
Sq = S¢(20, ..., Znt1). The space Sy is a vector space.

From the discussion above, any function f € V' must be a spline of order
2m. In addition, all functions f € V are polynomials of degree m — 1 on the
last interval [z, 1]. So if f minimizes J(f), it will be a polynomial of degree
at most m — 1 on [z, 1], and by time reversal® it will also be a polynomial
of degree m — 1 or less on the first interval [0, z1]. It will then be a natural
spline according to the following definition.

Definition 18.15. A function f € Saq is called a natural spline of order 2q if
its restrictions to the first and last intervals, [0, x1] and [z, 1], are polynomials
of degree ¢ — 1 or less. Let Saq denote the set of all natural splines.

These spline spaces (with fixed knots) are finite-dimensional vector spaces,
and once we know that the function f minimizing J lies in a finite-dimensional
vector space, f can be identified using ordinary linear algebra. To see how, let
ej, j=1,...,k, be linearly independent functions with

3 Formally, the argument just given shows that the function f(t) ef f(l —t), that

minimizes > (Vi — f(1 — gzcl))2 + Allf™ |2, must be a polynomial of degree at
most m — 1 on [1 — z1,1].
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Som C span{ey, ..., e}

If
f=ce +-- +crep,

then
f( fﬂh ch ej7771 AC]

where A is a matrix with entries
Aij:<ej777i>7 i:l,...,n, jzl,,k

Then

ST - fl@) = Y — Ac|? = Y'Y — 2V Ac+ A Ae.
i=1
For the other term in J,

2
k 1
7% = che;m) = Z clvcj/ egm)(x)eg»m)(x) dx = ¢ Be,
j=1 y 0
where B is a k X k matrix with
1
Bij:/ el(.m)(x)eg»m)(x)dx, i1=1,....k, j=1,... k.
0

Using these formulas,
J(f)=Y'Y —2Y'Ac+ A’ Ac + \¢' Be.
This is a quadratic function of ¢ with gradient
2(A’A+ AB)c —2A'Y.
Setting the gradient to zero, if
é=(AA+AB)'AY
and

k
= E Cj€j
=1

then f minimizes J(f) over W,,[0,1]. )
One collection of linearly independent functions with span containing® Sa,
is given by

4 For some linear combinations of these functions, restriction to the final interval
[xn, 1] will give a polynomial of degree greater than ¢ — 1. So the linear span of
these functions is in fact strictly larger than Saq.



18.3 Splines 383

ez(x) = (x_xi)iq_17 i = 17"'an7

along with the monomials of degree ¢ — 1 or less,
entj(r) = 2971, j=1,...,q.

This can be seen recursively. If f € 32,1, let

q
p = E cjen+j
j=1

be a polynomial of degree ¢ — 1 equal to f on [0,x1]. Then f —p € 5’2,1 is
zero on [0,z1]. By the enforced smoothness for derivatives at the knots, on
[z1,22] f — p will be a polynomial of degree 2¢ — 1 with 2¢g — 2 derivatives
equal to zero at x1. Accordingly, on this interval f —p = ¢;(z — 21)?¢7!, and
it follows that f —p — cie; is zero on [0, z2]. Next, with a proper choice of ca,
f —p—c1e1 — caes will be zero on [0, x3]. Further iteration eventually gives
f—-p— 2?21 cjej = 0on [0,1].

The choice of the spanning functions eq,...,e; may not seem important
from a mathematical perspective. But a careful choice can lead to more effi-
cient numerical algorithms. For instance, 5’2 contains the functions

1, x € [0,21];
To — X
e1(z) = Ty — 2y’ T € [71, 72);
0, otherwise,
T — Ty
"2 € o1, tal;
. Tp — Tp—1
en () = 1, x € [zp, 1];
0, otherwise,
and
T — Ti_
o ;T E [miy, xil;
Ti — Ti-1
eile) = xiﬂ_x, T € [, Tiy1]; t=2...,m—1
Ti+1 — T4
0, otherwise,

These functions are called B-splines. The first two, e; and es, are plotted in
Figure 18.2. The B-splines are linearly independent and form what is called a
local basis for 5’2, because each basis function vanishes except on at most two
adjacent intervals of the partition induced by x1, ..., z,. Functions expressed
in this basis can be computed quickly at a point z since all but at most two
terms in ) ¢;je;(z) will be zero. In addition, with this basis, the matrix A is
the identity, and B will be “tridiagonal,” with B;; = 0 if |i — j| > 2. Matrices
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Fig. 18.2. B-splines e; and es.

with a banded structure can be inverted and multiplied much more rapidly
than matrices with arbitrary entries.

B-spline bases are also available for other spline spaces. The notation
needed to define them carefully is a bit involved, but it is not too hard to
understand why they should exist. In S, the ¢ + 1 functions

q—1 q—1
(IE - xi)+ ,...,((E - xi+q)+
restricted to [z;44, 1] are all polynomials of degree ¢ — 1. Because polynomials
of degree ¢ — 1 form a vector space of dimension ¢, the restrictions cannot be
linearly dependent, and some nontrivial linear combination of these functions
must be zero on [%;44, 1]. This lincar combination gives a function in S, that
is zero unless its argument lies in (x;, z;44). With a suitable normalization,

functions such as this form a B-spline basis for S,. For further information
on splines see Wahba (1990) or De Boor (2001)

18.4 Density Estimation

The methods just developed for nonparametric regression can also be applied
to nonparametric density estimation. Let X1,..., X, be ii.d. from some dis-
tribution Q). One natural estimator for Q would be the empirical distribution
Q defined by

Q(A) = i#{i <n:X; €A}

This estimator Q(-) is a discrete distribution placing atoms with mass 1/n at
each observation X;. So integrals against @),, are just averages,
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1 n
dQ, = X
/ 9dQn = ;lg(

If we believe @ is absolutely continuous with a smooth density f, Q is
not a very sensible estimator; it is too rough, in much the same way the
linear interpolant i of the data was too rough for estimating a smooth re-
gression function. A kernel approach to estimating f uses convolution, as in
Problem 18.10, to smooth Q Intuition suggests this may give a reasonable
estimate for f if the convolving distribution is concentrated near zero. To ac-
complish this we incorporate a bandwidth b, tending to zero as n — oo, and
consider estimators of the form

N 1 x—t A 1 « z—X;
for=y [w (") dQ(t)—nb;W( )
with W a fixed symmetric probability density.

With the linear structure, formulas for the mean and variance for f (z) are
easy to derive and study. If f is continuous and bounded, then

Ef(x) = f(z)+ ;b2f”(:r)/t2W(t) dt + o(b?) (18.11)

and

2 1
Var(f(@) = | f@IWIB +o(1/(nb) (1812)
uniformly in n as b | 0. Combining these, the mean square error for f (z) is

MSE(z) = E(f(z) - f())”
( ) 4 2 2 2 4
||W||2+ b (f" (x)) EW(t)dt | +o(b* 4 1/(nb))
as b | 0. If b = b, varies with n so that b, — 0 and nb,, — oo, then this mean

square error will tend to zero.
With suitable regularity, this approximation can be integrated, giving

IMSE — E/(f(a:) @) de = /MSE(x) do

1 1 ?
= nb”WH% + 4b4||f”||§ (/tQW(t) dt) + O(b4 + 1/(nb))
Minimizing this approximation,

W j5/°
U3\ )3 (2w () de) >

will be asymptotically optimal, and with this choice
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2/5
IMSE ~ W[5/ |2 ( [ewa dt) 4,

For further discussion, see Chapter 2 of Wand and Jones (1995)

A spline approach to density estimation is more challenging. If we assume
f > 0 and take 6 = log f, then an estimator f = ¢ for f will automatically
be positive. For regularity, let us assume 6 € W,,[0,1]. In contrast to non-
parametric regression, since f must integrate to one, 6 cannot vary freely over

Wm0, 1], but must satisfy the constraint

1
/ @) dp = 1.
0

Let £2 denote the class of all functions in W,,[0, 1] satisfying this constraint.
The log-likelihood function is given by

A direct maximum likelihood approach to estimating 6 or f fails because

sup (6) = oo,
0

with arbitrarily high values for the likelihood achieved by densities with very
large spikes at the data values. To mitigate this problem, we incorporate a
penalty for smoothness and choose 6 to maximize

n

1
Jo(0) = > 0(X:) = Ajo™ 3.

i=1

To ameliorate troubles with the constraint, Silverman (1982) introduces an-
other functional,

1 1
0) = 0(X;)— [ €@ da — |03
T0) = ) 300X~ [ e o - x|

Theorem 18.16. The function 6 € 2 mazimizes Jy over 2 if and only zfé
mazimizes J over Wy, [0, 1].

Proof. If § € W,,[0,1] and ¢ = fol @ dzx, then § = 6 — loge € 2 and
16C™ |2 = |6 ]|. Thus

J(0)=J(0) —logc—1+ec.

But ¢—logc > 1 for all ¢ > 0, with equality only if ¢ = 1, and thus J(8) > J(6),
with equality only if ¢ = 1, that is, only if 8 € 2. So any  maximizing J over
Wi [0, 1] must lie in 2. But on {2, J = Jp — 1, and the theorem follows. O
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The null family associated with the smoothness penalty here is defined as
Q={0€2:(0™]>=0}.
Functions in {29 must be polynomials and can be parameterized as
Oy(x) = max + -+ 1™ = A(n),

where .
1 m—

Aln) = 1og/ explz mxi] dr.
0 i=1

Then 2y = {6, : n € R™"!} and the corresponding densities, f, = e,
n € R™~! form an exponential family.

If A is large, then functions 6 € (2 that are not close to {29 will incur a sub-
stantial smoothness penalty. For this reason, if 0, is the estimator maximizing
J, then 6 should converge as A — 0o to the maximum likelihood estimator
for the null family (2y. Let us call this estimator 0. In applications, this ob-
servation might be used in a reverse fashion to choose a smoothness penalty.
If there is reason to believe that the data come from some particular expo-
nential family, a researcher may want to choose a penalty with these target
distributions as its null family. The next result shows that existence is also
tied to estimation for the null family.

Theorem 18.17. With a given data set Xy, ..., Xy, J will have a mazimizer
i £2 if O, the mazimum likelihood estimator for the null family, exists. This
will hold with probability one if n > m.

Proposition 18.18. The functional J is strictly concave.

Proof. Given 601, 02 in W,,[0,1] and « € (0, 1), since the exponential function
is convex,

1 1
/ @01 (@) +(1=)ba(x) g0 < / {ae&(z) (- a)eeg(z)} da
0 0

1 1
= a/ @ de 4+ (1 - a)/ (@) dp,
0 0

with equality only if 6; = 6. Also,
m m m m 2
abf™ + (1 — a)05™|I3 < [all67™ |12 + (1 — @) |65™ ||2]
< all8™ 3+ (1 - )lI65™ |12

So
J(abr + (1 — a)b2) > aJ(61) + (1 — @) J(62),

with equality if and only if 6; = 6,. O
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As a consequence of this result, if an estimator 0 maximizing J exists, it
must be unique, for if #; and s both maximize J, then

an::;u%)+;J@g<iJ<0“;%><<J@g.

The inequalities here must be equalities, and strict concavity then implies
01 = 6s.

The following result, from Silverman (1982), shows that with a suitable
choice for the penalty scale A, the estimator 0 is consistent.

Theorem 18.19. Suppose 6 € Wa,,,[0,1] and
0Cm=1(0) = 2m=1(1).
If X — 0 and n™ %X — oo for some § > 0, then for every e > 0,
10 = 011% = Op{A™ (n71A71/m 4 ACmmD/Em) )
In particular, if X = n~(m)/(Am+1)

18— 012 = O, (n~(m-/tamente)

for every e > 0.

18.5 Problems

1. Estimating o?. Consider nonparametric regression with the assumptions
in Section 18.1 and i.i.d. errors ¢;. A natural estimator for o2 might be

0= 3 (Vi @)’

with f the kernel estimator for f. Suppose b = en~'/%. Is this estimator
necessarily consistent? Prove or explain why not. In your argument you
can ignore edge effects.

2. Locally weighted regression. Like kernel smoothing, locally weighted re-
gression is a linear approach to nonparametric regression. Let W be a
continuous, nonnegative, symmetric (W (z) = W(—z)) function, decreas-
ing on (0, 0o) with support [—1, 1]. The estimate for f at a point z is based
on weighted least squares, fitting a polynomial to the data with weights
emphasizing data with x; near x. This problem considers quadratic models
in which B is chosen to minimize
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n

;W (xl b_ x) (i — B — Ba(z: — @) — Ba(w: — 2)?)"

The estimate for f(z) is then f(z) = 3,. Here the bandwidth b is taken

to be a small constant (decreasing as n increases), although in practice b

is often chosen using the x; so that the estimate for f(z) is based on a

fixed number of data points. For simplicity, you may assume below that

x; =1i/n.

a) Derive an explicit formula for f(:rj) when z; € (b,1 — D).

b) Derive approximations for the bias of f (xj) asm — oo and b | 0 with
nb — oo and x; = |nz|/n, z € (0,1).

¢) Derive an approximation for the variance of f(z;) in the same limit.

d) What choice for bandwidth b minimizes the mean square error of f (x;)
(approximately).

. Show that the stated inner product (-,-) in Definition 18.13 for W,,[0, 1]

satisfies the conditions in Definition 18.2

. Let X and ) be normed vector spaces over R. A function T : X — ) is

called a linear operator if

T(cxy + x2) = cT'(z1) + T(w2), Vri,70 € X,c € R.
The operator norm (or spectral norm) of T' is defined as
IT|l = sup{||T ()] : [ll| <1},

and T is called bounded if ||T|| < oo.

a) Show that a bounded operator T is continuous: If ||z, — x| — 0, then
17 (@) — ()] — 0.

b) Show that a continuous linear operator 7" is bounded.

¢) Let X =R™ and Y = R", with the usual Euclidean norms. Let A be
an n X m matrix, and define a linear operator T' by T'(x) = Ax. Relate
the operator norm ||T'|| to the eigenvalues of A’ A.

. Consider the set C[0, 1] of continuous real functions on [0, 1] with the £,

inner product

1
(z,5) = / £(t)y(t) dt

1
]|z = \//O 22(1) di.

a) Find a Cauchy sequence x,, (for this norm) that does not converge,
showing that C[0, 1] is not complete (with this norm). (The usual norm
for C[0,1] is ||z[| = supye 0,1y [(¢)], and with this norm CJ0, 1] is com-
plete.)

and associated norm
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b) Let T} be the evaluation operator, T3(x) = z(t). Show that T} is an
unbounded linear operator.

Show that if f,, — f in W2[0,1], then f/(z) — f'(z).

Find a nontrivial function f € 8§4(0,0.1,0.2,...,1) which is zero unless its

argument lies between 0.2 and 0.6.

Suppose m = 1, z = (0.2,0.4,0.6,0.8), and we use the B-spline basis

described for 32. Calculate the matrices A and B that arise in the formula

to compute f = 3 ¢je;.

Semiparametric models. Consider a regression model with two explanatory

variables  and w in which

Yi = f(xi) + pw; + €, i=1,...,n,

with 0 < 27 < -+ <z, < 1, f € W,[0,1], B € R, and the ¢; i.i.d.
from N(0,0?). This might be called a semiparametric model because the
dependence on w is modeled parametrically, but the dependence on x
is nonparametric. Following a penalized least squares approach, consider
choosing f and 5’ to minimize

n

T(.8) =" (Yi— fl@:) — Buwi)® + Al F13.

i=1

a) Show that the estimator f will still be a natural spline of order 2m.
b) Derive explicit formulas based on linear algebra to compute ,3 and f .
Convolutions. Suppose X ~ @ and Y ~ W are independent, and that W
is absolutely continuous with Lebesgue density w. Show that T'= X +Y
is absolutely continuous with density h given by

h(t) = /w(t—x) d0().

The distribution of T is called the convolution of Q with W, and this
shows that if either @ or W is absolutely continuous, their convolution is
absolutely continuous.

Use dominated convergence to prove (18.11).
Prove (18.12).
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Bootstrap Methods

Bootstrap methods use computer simulation to reveal aspects of the sampling
distribution for an estimator # of interest. With the power of modern com-
puters the approach has broad applicability and is now a practical and useful
tool for applied statisticians.

19.1 Introduction

To describe the bootstrap approach to inference, let Xy, ..., X, be i.i.d. from
some unknown distribution @, and let

X = (X1,...,X,)

denote all n observations. For now we proceed nonparametrically with Q an
arbitrary distribution. Natural modifications when @) comes from a parametric
family are introduced in Section 19.3. With @ arbitrary, a natural estimator
for it would be the empirical distribution

.1
an;@g-

Here §, represents a “point mass” at x, that assigns full probability to the
point z, §,;({z}) = 1, and zero probability to all other points, d,({z}¢) = 0.
Then the estimator Q is a discrete distribution that assigns mass 1/n to each
data point X;, 1 <i < n, and Q(A) is just the proportion of these values that
lie in A:

O(A) = i#{i <n:X €A}

Note that by the law of large numbers, Q(A) 2 Q(A) as n — oo, supporting
the notion that Q is a reasonable estimator for Q.

Suppose next that § = 6(X) is an estimator for some parameter 6 = 6(Q).
Anyone using 0 should have interest in the distribution for the error —8, since

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 391
DOI 10.1007/978-0-387-93839-4 19, © Springer Science+Business Media, LLC 2010



392 19 Bootstrap Methods

this distribution provides information about the bias, variance, and accuracy
of 6. Unfortunately, this error distribution typically varies with @, and because
@ is unknown we cannot hope to know it exactly. Bootstrap methods are based
on the hope or intuition that the true error distribution may be similar to the
error distribution if the observations were sampled from Q instead of Q.

In principle, the error distribution with observations drawn from Q is
a specific function of Q, but exact calculations are generally intractable.
This is where computer simulation plays an important role in practice.
Given the original data X, a computer routine draws a bootstrap sample
X* = (X7,...,X}), with the variables in this sample conditionally i.i.d. from
Q, so X*|X ~ Q” Note that since Q assigns mass 1/n to each observation,
X{,..., X can be viewed as a random sample drawn with replacement from
the set {X1,..., X, }. So these variables are very easy to simulate. If 0* is the
estimate from the bootstrap sample,

0" = 6(X*)

O(X5,..., X},

then the distribution of §* — 6 is used to estimate the unknown distribution of
the error 6 — 0. To be more precise, the estimate for the error distribution is
the conditional distribution for * — @ given the original data X. The following
examples show ways this estimate for the error distribution might be used.

Ezxample 19.1. Bias Reduction. Let
b=b(Q) = Eql0 — 0]

denote the bias of an estimator 6 = A(X) for a parameter 6 = 0(Q). If this
bias were known, subtracting it from 6 would give an unbiased estimator. The
true bias depends only on the error distribution. Substituting the bootstrap
estimate for the true error distribution gives

b= E[f* - |X]

as the bootstrap estimate for the bias. Subtracting this estimate from 6 gives
a new estimator 6 — 13, generally less biased that the original estimator 0.
Results detailing improvement are derived in the next section for a special
case in which § = X° and 6 is the cube of the mean of Q.

In practice, b would typically be computed by numerical simulation, having
a computer routine draw multiple random samples, X7,..., X%, each from
Q". Letting éj = é(X;“) denote the estimate from ith bootstrap sample X7,
if the number of replications B is large, then by the law of large numbers b
should be well approximated by the average

B

200

i=1
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A natural assumption, relating the unknown parameter 6 = 6(Q) and the
estimator 9A(X)7 is that the estimator has no error whenever proportions in
the sample agree with probabilities from @Q, which happens if Q = Q. With
this assumption,

H(X) = 0(Q), (19.1)

and so b = b(Q) Hence, from a technical viewpoint, the bootstrap estimator
here is found by plugging the empirical distribution @ into the functional
of interest, b(-). This mathematical structure occurs generally and underlies
various results in the literature showing that bootstrap methods perform well
when functionals of interest are smooth in an appropriate sense.

Ezample 19.2. Confidence Intervals. Quantiles for |§—6| are useful in assessing
the accuracy of 8, for if ¢ = q(Q) is the upper ath quantile® for the distribution
of | — 6], then

POcl—q0+q)=1-a.

The bootstrap estimator ¢ for ¢ would be the upper ath quantile for the
conditional distribution of |6* — 6| given X. If this estimator is reasonably
accurate, we expect that

PO€f—q0+q)~1-a,

so that [é — q,é + ] is an approximate 1 — « interval for 6. As in the bias
example, ¢ can be approximated numerically by simulation, still with random
samples X7,..., X% from Qm, again taking 6% = 0(X?). Then § could be
approximated as the upper ath quantile for the list of values |éf — é|, i =
1,..., B, generated in the simulation, or more formally as

4 ~ inf { #{Z<B| —0|<x}>1—oz}

Mathematically, the structure is much the same as the bias example, with the
bootstrap estimator ¢ obtained by plugging @ into q(+); that is, § = q(Q)

In practice, bootstrap confidence intervals can often be improved by mod-
ifying the approach and approximating the distribution of studentized errors,
obtained by dividing the error 6—6 by an estimate of the standard deviation
of 0. If ¢ = ¢(Q) is the upper ath quantile for the distribution of the absolute
studentized error |§ — 6|/7, where 7 = 7(X) is an estimate for the standard
deviation of 6, then

POelf—qr,0+qr]) =1—a
! For convenience, we assume that 6 — 6 has a continuous distribution. When this is

not the case, some of the equations above may not hold exactly, but discrepancies
will be quite small if masses for atoms of the error distribution are small.
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The bootstrap estimator ¢ for § is the upper ath quantile for the conditional
distribution of |§* — f|/7* given X, where 7* = #(X*). If this estimator is
reasonably accurate, then o

[0 — q7,0 + ¢7]
should be an approximate 1 — « interval for #. Again, the bootstrap estimate
¢ can be computed numerically by simulation as the upper ath quantile for
the list |0 — 6|/7*,i=1,..., B, with 0 as before, and 7 = 7#(X%).

To appreciate the value of studentizing, note that in various settings, in-
cluding those detailed in the large-sample theory developed in Chapter 8,
(é — 0)/7 is approximately standard normal. If this is the case, the quantile
G is nearly independent of @@, making it easy to estimate. For instance, if the
studentized error distribution happened to be exactly standard normal? for
any @, ¢ would always equal z,/2 and could be “estimated” perfectly, even
without data.

19.2 Bias Reduction

In this section we explore a simple case of bias reduction where the perfor-
mance of bootstrap estimators can be determined explicitly. Specifically, in
Example 19.1 let

0=06(Q) =,
where p = FX; is the mean of Q,

p=pmQ) = /de(m).

The mean of Q is the average,
R A 1
= =X= X,
u@) = [radw =x =]y

and so R . .
0=60(Q)=X".
To find the bias b we need Ef = EX°. Let o = Var(X;) and v = E(X; — p)3.
Since 7y is the third cumulant for X;, the third cumulant for nX = X;4+-- -+ X,
is nvy, and so
E(nX —np)® =n*BE(X — ) = ny.

Thus E(X — p)? = v/n% Also, E(X — p)? = Var(X) = 0%/n. Using these
identities,

2 This could only happen in parametric situations.
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EX’ = B(X — i+ p)?
= B[’ + 30 (X — p) +3p(X — p)* + (X — p)?]

3uc? vy
— B , 19.2
L (19.2)
So )
b:b(Q):Eé—ezEXB—ﬁ:S‘;J +;. (19.3)

Because b = b(Q), we find the bootstrap estimate for b with the same calcu-
lations but with data drawn from Q. The mean, variance, and third central
moment of () are

n

Xz/xd@(x), &2 :/(x—X)QdQ(x) - :LZ(XZ-—X)Q,

=1

and
Using these in (19.3),

. . 3 . . .
Subtracting this from X ', the “bias-reduced” estimator is

3 3X62 A

n n?

To see whether bootstrapping actually reduces the bias, we need to eval-
uate the mean of this new estimator. From (19.2) with n = 1, EX} =
w2+ 3po? + . Next, by symmetry, for any j,

EX;Y X! =EX;» X]=EX{+» EX;X}
i=1 =1 =2
=1 +3p0® + v+ (n = Dp(p® + %)

Averaging over 7,

EX Y X7 =y +3u0” + v+ (n— Du(p® + o).
i=1

Finally, since

1 n
=S X?-x7,
n
=1
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we have

EX62=E

1 n 3
X X?-X
1 1
=pot+ (y—pot) =

To find E#, note that

1 Y
B(Xi —p)*(X —p) = E(Xi—p)P’=",
n n
and by symmetry
1 — ¥
BOG = p)(X = =SB = (X = ) = B(X —p)° = .

i=1
Using these and symmetry,

Fy=E(X; - X)?
= E[(X1 —p)® = 3(X1 — p)*(X — p)
+3(X1 — ) (X = p)* = (X — p)°]

3 2
:7<1— + 2).
n o n

Using these formulas, the mean of 6—bis

2
(no? =)+ 1 =2

3
Elf—b] = p® + n3  pA

n2

For large n the bias of this estimator is of order 1/n? compared with a bias
of order 1/n for §. So bootstrap correction here typically improves the bias.

19.3 Parametric Bootstrap Confidence Intervals

In this section we consider parametric models in which our data are i.i.d.
from a distribution @ in some parametric family {Qx : A € A}. Knowing
the marginal distribution lies in this family, Q = Q 5, With A the maximum
likelihood estimator of A, is a more natural estimator for ) than the empirical
distribution used in earlier sections. With this modification, the bootstrap
approach is essentially the same as before. If 6 is the maximum likelihood

3 If bias is the sole concern, there are unbiased estimators for ;>. The most natural

one might be the U-statistic Zi<j<k
such as the jackknife, could also be used to reduce bias. See Problem 19.2.

XinXk/(g). Other resampling approaches,
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estimator® for a parameter = 0(A), and if X* is a bootstrap sample with
entries conditionally i.i.d. from @ = Qj5, so

XX ~ Q"

then the error distribution for § would be estimated as the conditional distri-
bution for * — 6 given X, with 6* = (X*).

As in Example 19.2, interval estimation for 6 can be approached with an
attempt to estimate the upper ath quantile ¢ = g() for |é—9|. The bootstrap
estimate ¢ for ¢ is the upper ath quantile for the conditional distribution of
|0* — 9| given X, and the approximate confidence interval based on ¢ is

As before, studentizing the error distribution may give a more accurate con-
fidence interval. If 7 = 7(X) is an estimate for the standard deviation of 6,
and ¢ = ¢(\) denotes the upper ath quantile for the distribution of the ab-
solute studentized error |§ — 0|/7, then the bootstrap estimate g for ¢ is the

upper ath quantile for the conditional distribution of |6* — 0]/7* given X,
with 7* = 7(X*), and the associated approximate confidence interval is

(0 — 7,0+ qr).

If the functions ¢(-) or ¢(-) are tractable, quantile estimates ¢ and g can

be found by evaluation at the maximum likelihood estimator: ¢ = ¢(\) and

g = G(A). When this is not feasible or practical, these estimators can be
approximated by bootstrap simulation. Specifically ¢ or ¢ would be approxi-

mated numerically as upper ath quantiles for the lists |éj —é|, i=1,...,B,or
|0F —0|/6F,i=1,...,B, with 0 = 0(X7}), 6f =6(X!),and X}, i=1,..., B,
conditionally i.i.d. from Q™ = %, given the original data X.

To illustrate these ideas, consider interval estimation of the mean of a
normal distribution. Taking A = (0,0), A = (6,5), with 6 = X and
~92 1 - 2
&= (Xi—X)%.

n -
=1

Given X, the resampled data X7,..., X* arei.i.d. from N(X,45?). Since 6+ =
(X7 4+ X)/n, we have

0*|X ~ N(X,62/n) and § = Za )20 /\/n,

and the bootstrap confidence interval is

o) %)

4 The maximum likelihood structure here replaces assumption (19.1).
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Exploiting the independence of X and &, the coverage probability for this
bootstrap confidence interval can be expressed as

o 4 o X-—40 %
P(X—Za/g\/n<9<X+Za/2\/n>:P<—Za/20_<o_/\/n<2a/20)

o X-—40 o
— EP(—2,,,° < <z4
(z/20 a/vn Z/20'

~2
_ 2 O
=1-2FE9 <—\/za/202> .

By Taylor expansion about 62/0% = 1,

o ()27} = b(r) — Loz (T 1) +0(6% — o)
a/2 52 a/2 9~a/2P\a/2) | o :

Taking expectations of this approximation® and using

n_lES2:n_102
n n

E&? =

the coverage probability of the bootstrap confidence interval is

1—a- ZW“;(LZ“/?) +o(1/n).

Because § = X has standard deviation 7 = o//n, for the studentized

approach we take 7 = 6/4/n and define ¢(\) as the upper ath quantile for

|X —0|/7. If S? = n6?/(n — 1) is the sample variance, then T Lt Vn(X —

0)/S ~ tp_1. Since

16— 0] _ VT
7 Vn—1z’
we have
to/2m—
i = Vern

and the studentized bootstrap

(=}

This quantile is independent of \, and so ¢ =
confidence interval is

(0 — 47,0+ G7) = (X — tajon15/v/n X +tajon15/v/n).

This interval is the same as the usual ¢-confidence interval, so in this case stu-
dentizing works perfectly, giving a bootstrap confidence interval with coverage
exactly 1 — a.

5 This can be justified using dominated convergence.
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19.4 Nonparametric Accuracy for Averages

In this section we consider in some detail the performance of the nonpara-
metric bootstrap when 0 is the sample mean X ,,, estimating § = EX;. In this
case error distributions can also be approximated using central limit theory,
and it is of interest to see if a bootstrap approach does as well or better. Let
0% = Var(X;),

1 n
~2 2
= Xi - Xn y
on=_ ;( )
the variance of the empirical distribution Qn, and v = B(X; — 0)3. If

7,4 V0 =6)
g

then by the central limit theorem, Z,, = N(0,1) and P(Z,, < x) — &(z). The
next result shows that the error of this large-sample approximation is typically
of order 1/4/n. Note that if Q is a lattice distribution, assigning probability
one to a set of the form {a + bj : j € Z}, then this would have to be the
case as the distribution for X,, would have to have jumps of order 1/+/n. The
theorem assumes that @) is nonlattice.

Theorem 19.3. If Q is nonlattice and E|X;|> < oo, then

y(a? = 1)

P(Z,<z)=®d(x)— 609\ /n

¢(x) +o(1/vn)

as n — 0o, uniformly in x.

A proof of this result is given in Appendix A.7.3. Let Y; = (X; — 0) /0o, so
that Z,, = \/nY ,, let § be the characteristic function® of Y;, defined as

f(t) = Ee™,  teR,
and let f, be the characteristic function of Z,,
fu(t) = Ee™?n = §"(t/v/n).

Using a smoothing lemma based on an inversion formula for characteristic
functions (Lemma A.14), this theorem follows from two facts: first, that

2 iyt
fu(t) =e t/? (1 - 60?1/”) +0(1/v/n), (19.4)

which follows by Taylor expansion of § using the first three moments of Y:
EY; =0, EY? = 1,and EY;?> = /0?; and second, that for any 0 < § < ¢ < oo,

6 See Appendix A.7.1.
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sup ‘f(t)| <1, (19.5)
[t|€[,c]

which follows from the nonlattice assumption.
A bootstrap approach to inference would approximate the distribution for
Z, by the conditional distribution for

zx %! \/"(é* - é).

On
The following result, due to Singh (1981), shows that this conditional distribu-

tion is the same to 0,(1/y/n), which represents an improvement over normal
approximation.

Theorem 19.4. If Q is nonlattice and E|X;|> < oo, then

x? —
P(Z; < alX) = 0(0) = ", o) + 0y (1))

as n — 0o, uniformly in x.

Proof (Sketch). If we define Y;* = (X7 — X,,)/6n, then Z* = \/nY ., and

K3
given X, Y*,..., Y are conditionally i.i.d. So the conditional structure here

is identical to that in Theorem 19.3. Also,
E(Y7|X)=0, EY?X)=1,

and
B X) =7

with

n

= DK - X0

i=1

So the first two conditional moments for Y;* are exactly the same as the

corresponding moments of Y;, and by the law of large numbers,
E(Y[[X) = 4u /67, > EY.

The same Taylor expansion argument used to show (19.4) gives
43
* _ —t2/2 nyt
R0 = (1= 00 ) o1y,

with § the conditional characteristic function for Z;, f*(t) = E[e"%n|X].

The proof is completed, using the same argument used to prove Theo-
rem 19.3, by showing that for any 0 < § < ¢ < oo, there exists ¢ > 0 such
that
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Pl sup |f(t)] >1—¢€] =0, (19.6)
[t|€[,c]

where * is the conditional characteristic function for Y;*, given by

Zex{ HX; X)}, teR.

Using Theorem 9.2, our law of large numbers for random functions, it is not
hard to show that

Ft) =B [X

sup [f(£) —F*(t)| =

[t|€[8,c]
and (19.6) then follows from (19.5). O
Because the approximations in Theorems 19.3 and 19.4 hold uniformly in
x?
. y(a? = o?)
P[vn(0—0) < x| = P(Z, < x/0) = D(z/0) — 605 /n ¢(x/0) +o(1/v/n)
and

_ o)
P[vn(0* = 0) <z | X] = &(x/6,) 605 /n
Since 6, — 0 = Op(l/\/n), by the delta method the leading terms in these
approximations differ by Op(l / \/n) So in this case, bootstrap methods do a
better job of approximating the distribution of the standardized variable Z,,
than the distribution of the scaled error \/n(d — ). Although the issues are
somewhat different, this provides some support for the notion that studentiz-
ing generally improves the bootstrap performance.

The results above on the accuracy of bootstrap approximations can be ex-
tended in various ways. Perhaps the first thing worth noting is that Edgeworth
expansions for distributions can be used to derive corresponding approxima-
tions, called Cornish—Fisher expansions, for quantiles. These expansions nat-
urally play a central role in studying the performance of bootstrap confidence
intervals.

Although the algebra is more involved, Edgeworth expansions can be de-
rived to approximate distributions of averages of random vectors. And in
principle these expansions lead directly to expansions for the distributions
of smooth functions of averages. In his monograph, Hall (1992) uses this ap-
proach to study the performance of the bootstrap when 0 is a smooth function
of averages. With suitable regularity, the discrepancy between the true cov-
erage probability and the desired nominal value for the symmetric two-sided
bootstrap confidence intervals described in Example 19.2 is of order O(1/n)
without studentizing, and of order O(1/n?) with studentizing.

d(x/0) + 0p(1/v/n).
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As mentioned earlier, if § = 6(Q) and 6= 0(@), then bootstrapping should
work well if 6(-) is suitably smooth. One regularity condition, studied in Bickel
and Freedman (1981), is that 6(-) is Gateaux differentiable with the derivative
representable as an integral. Such 6(-) are often called von Mises functionals.
Bickel and Freedman (1981) also give examples showing that bootstrapping
can fail when 6(-) is not smooth.

19.5 Problems

1. Bootstrap methods can also be used to reduce bias in parametric esti-
mation. As an example, suppose X7, ..., X, are i.i.d. from N(y,1), and
consider estimating 6 = sin p.

a) The maximum likelihood estimator, § = sin X, is (for most 1) a biased
estimator of #. Derive an approximation for the bias of 9, accurate to
o(1/n?) as n — oo.

b) Consider a parametric bootstrap approach to estimating the bias
b(u) = E,0 — 6, in which, given X = (Xy,...,X,), X;,..., X} are
conditionally i.i.d. from N(X,1). Letting b = E[0* — 0|X], derive an
approximation for the bias of § — b, accurate to o(1/n?) as n — oo.

2. Another resampling approach to inference is called the jackknife. Let 0 be
an estimator for # based on i.i.d. observations X1,..., X, let 9_i be the
estimator obtained omitting observation X; from the data set, and define

Gizné—(n—l)é_i, i:l,...,n,

called pseudo-values by Tukey.
a) Let 0 denote the average of the pseudo-values, and assume

A a1 ag

as n — o0o. Derive an approximation for the bias of 6 as n — 00,
accurate to o(1/n).

b) Assume now that the observations X; are random variables with a
finite mean g and variance o2 € (0,00), and that 6 = A(p) and 6 =
A(X) for some function A, with A" and A” bounded and continuous.

Show that ~
W(ij % _ No,1),

as n — 0o, where S is the sample standard deviation for the pseudo-

values:
- 1 "o .
2 _ )2
S _n—1;:1(9l 0)°.
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3. Consider a parametric bootstrap approach to interval estimation with ob-
servations from a location family. Let X,...,X,, be i.i.d. from an abso-
lutely continuous distribution with density f(z—6). Let 6 be the maximum
likelihood estimator of 6, and define ¢ = ¢(#) as the upper ath quantile
for the distribution of |# — 6. The bootstrap estimate of ¢ is ¢ = ¢(f).
Show that the associated confidence interval

has exact coverage 1 — a.

4. Let g, denote the upper ath quantile for Z, = /n(X,, — 0)/o in Sec-
tion 19.4. Use Theorem 19.3 to derive an approximation for ¢, accurate
to o(1/y/n) as n — oco.

5. Let X1, Xo,... be ii.d. from a nonlattice distribution ), with common
mean g, common variance o2, and E|X;|3 < oo; and let g be a twice
continuously differentiable function with g(u) # 0. Use Theorem 19.3 to
derive an approximation for

PlVn(g(Xy) — g(w) < ],

accurate to o(1/y/n) as n — oco.
6. Let X1, X5,... be i.i.d. absolutely continuous variables from a canonical
exponential family with marginal density

fn(x) = exp{nz — A(n)ih(z),  zeR,

for n € Z. The maximum likelihood estimator of n based on the first
n observations is then 7, = (X ,) with ¢ the inverse of A’. Consider
a parametric bootstrap approach to estimating the error distribution for
M. Given X = (X1,...,Xy), let X7,..., X} be conditionally i.i.d. with
marginal density fj;,. Assume that the approximation derived in Prob-
lem 19.5 holds uniformly in some neighborhood of 7, and use it to derive
approximations for

P(\/n(ﬁn - 77) < x)
and
P(Vn(iy, =) <z | X),
both accurate to 0,(1/y/n). Are these the same to o, (1/y/n)?
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Sequential experiments, introduced in Chapter 5, call for design decisions as
data are collected. Optional stopping, in which the data are observed sequen-
tially and used to decide when to terminate the experiment, would be the
simplest example. A sequential approach can lead to increased efficiency, or it
may achieve objectives not possible with a classical approach, but there are
technical, practical, and philosophical issues that deserve attention.

Example 20.1. Sampling to a Foregone Conclusion. Let X1, Xo, ... be ii.d.
from N(u,1), and let S,, denote the sum of the first n observations. The stan-
dard level « test of Hy : = 0 versus H; : u # 0 based on these observations
will reject Ho if |Spn| > 24/2v/7-

Suppose a researcher proceeds sequentially, stopping the first time n that
|Sn| exceeds z4/2+/1, 50 the sample size is

N =inf{n >1:(S,| > z4/2v/n}.

Whenever N is finite, the classical test will reject Hy. If u # 0, then N will be
finite almost surely by the law of large numbers. In fact, NV will also be finite
almost surely if 4 = 0. To see this, note that for any &k, {N = oo} implies

{1Sk] < Vkzas2, [Sor] < V2kzas2},
which in turn implies
{121 — Skl < (Vk + V2k) 242 }-
These events have constant probability
p=P(Z] < 1+ V2)z4)0) <1,

where Z ~ N(0, 1), and so by independence,

P(N = 00) < P | ({ISz01 — 8| < (V2 +V27+) 200} HP—O

Jj=1

R.W. Keener, Theoretical Statistics: Topics for a Core Course, Springer Texts in Statistics, 405
DOI 10.1007/978-0-387-93839-4 20, © Springer Science+Business Media, LLC 2010
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This example highlights one central technical problem with sequential ex-
periments; sampling distributions may change with optional stopping. For
any fixed sample size N, if u = 0, then Sy/v' N ~ N(0,1), but with the
random sample size N in the example, ‘S N/ VN ‘ exceeds z,/7 almost surely.
Historically, there was controversy and concern when this was noted. If a re-
searcher conducts an experiment sequentially, a standard frequentist analysis
is not appropriate. For a proper frequentist analysis there must be a specific
protocol detailing how the sample size will be determined from the data, so
that the effects of optional stopping can be taken into account properly when
probabilities, distributions, and moments of statistics are computed.

Surprisingly, likelihood functions after a sequential experiment are found
in the usual way. Since Bayesian inference is driven by the likelihood, posterior
distributions will be computed in the usual fashion, and a sequential design
will not affect Bayesian analysis of the data. Due to this, design problems are
often more tractable with a Bayesian formulation.

In Section 20.1 a central limit theorem is derived for sequential experiments
and used to find stopping rules that allow asymptotic interval estimation
with specified fixed accuracy. Section 20.2 studies stopping times in a more
formal fashion, explaining why they do not affect likelihood functions. In
Section 20.3, the backwards induction method, used to find optimal stopping
times, is explored, focusing on a Bayesian approach to hypothesis testing.
Section 20.4 introduces Wald’s sequential probability ratio test for simple
versus simple testing in a sequential context. Finally, Section 20.5 explores
design issues beyond optional stopping, specifically stochastic approximation
recursions in which independent regression variables are chosen adaptively,
and “bandit” allocation problems.

20.1 Fixed Width Confidence Intervals

Let X1, X5, ... bei.i.d. from a one-parameter exponential family with marginal
density

fo(x) = h(z) exp{n(0)T () — B(0)}.

Let T; = T(X;) and T, = (T + - -+ + T,)/n. Then the maximum likelihood
estimator A, of a parameter A = ¢g(6) based on the first n observations is a
function of T',,

An = MT),
and by the delta method,

V(A — A) = N(0,2(9)),

where
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with 1 (0) = EgT; and 04(0) = Varg(T;). Using this, if v(+) is continuous and
0,, is the maximum likelihood estimator of 0, then

(Xn + T2 /\/n> (20.1)
nu(6y,)
is an asymptotic 1 — « confidence interval for \.

If a researcher is interested in estimating A with fixed precision, a confi-
dence interval with a fixed width w would be desired. Since v(¢) will generally
vary with 6, the interval (20.1) from any fixed sample may fail. But following
a sequential strategy, the researcher may choose to continue sampling until
the width 2za/2u(én)/\/n of interval (20.1) is less than w. This leads to a
sequential experiment with sample size

N =N, = inf{n:w’n > 4zi/zu2(én)}. (20.2)

If w is small, N will be large, and it seems reasonable to hope that the interval

(XN + %o/ f/VJEfN) ) (20.3)

from a sequential experiment will have coverage approximately 1 — «. And
by construction, the width of this interval is at most w. This is correct, but
a proper demonstration takes a bit of care, because the sample size N is a
random variable, whereas sample sizes in our prior results on weak convergence
were constant. The main result we need is a central limit theorem due to
Anscombe (1952) in which the number of summands is random. Almost sure
convergence, introduced in Section 8.7, and the strong law of large numbers
play a role here.

The proposed sample size N,, in (20.2) tends to co almost surely as w | 0.
If 6, — 6 almost surely,! then Oy — 0 almost surely and On_1 — 0 almost
surely. Since

4zi/2V2(9N) <w?N < w® + 422/21/2(631\7,1),
it follows that
w? N — 4zi/zu2(0)
almost surely as w | 0. If we define

{4Z§/2V2(9)J
Ny = 3

w?

then w?(N — n,) — 0 almost surely as w | 0. The idea behind Anscombe’s
central limit theorem is that a shift in the sample size from N to n, will
change the limiting variable by an amount that is o,(1).

1 When 7 is continuous, én is a continuous function of T',, and this follows from
the strong law of large numbers.
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Definition 20.2. Random variables W,,, n > 1, are uniformly continuous in
probability (u.c.i.p.) if for all € > 0 there exists 6 > 0 such that

P{ max |Wn+k—Wn|Ze} < €, for alln > 1.
0<k<né

Theorem 20.3 (Anscombe). If N,,, w > 0, are positive integer-valued ran-
dom variables with w?>N, 2 ¢ € (0,00) as w | 0, if ny = [c/w?], and if W,
n > 1 are u.c.i.p., then

Wha

w

— W, 20
as w | 0.
Proof. Fix € > 0. For any 6 > 0,

P(|Wn,, =W,

> e) < P(w2|Nw—nw| > (5)+P( max |W,—W,

w2|n—n| <48

wl > e) .

The first term here tends to zero regardless of the choice of §. By the triangle
inequality, if m = [n, —6/w?] (the smallest integer m with w?|m —n,| < d),
then

(Wi =W, | < Wy = Win| + [Wa,, — W,
and so
max W, =W, | <2 max [|W, —W,|.
w2|n—n., | <6 W2 Nn—nq, <8
Therefore

P( max W, —W,

w2|n—n.,|<8

> e) < P( max  |W, — Wp,| > 6/2).

v w2 |n—n., <68

Since the W,, are u.c.i.p., this probability will be less than €/2 if § is sufficiently
small, and the theorem follows as € is arbitrary. a

In Theorem 20.3, if W,, = W, W,,, = W, and so

W

w

= Wnu, + OP(l) = W.

One example of particular interest would be normalized partial sums, W,, =
VnY , with Y1,Ys, ... i.i.d. mean zero, and Y,, the average of the first n of
these variables. The following maximal inequality, due to Kolmogorov, is used
to show these variables are u.c.i.p. Let S, = Y1 +--- + Y.

Lemma 20.4. If Y1,...,Y, are i.i.d. with mean zero and common variance
02 € (0,00), then for any ¢ > 0,

2
noy

P(max |Sk|>c> < o
1<k<n c
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Proof. Let Ay be the event that Sy is the first partial sum with magnitude at
least ¢, that is,

Ay = {|Sl| <oy |Sk—1] < e, |Sk| > k}

Because Ay, is determined by Y7, ..., Y%, Skla, is independent of S,, — S =
Yir1+--+Y,,and for k<n

E[Sk(Sn — Sk)lAk] = E[SklAk] X E[Sn — Sk] =0.
But on Ay, S? > ¢?, and so for k < n,

E[S214,] = E[(Sn — Sk)?* + 28k(Sn — Sk) + Sz]1a, > P(A).

Since {maxi<k<n |Sk| > ¢} is the disjoint union of Ay,..., A,,
n n
C2P(1r<nl?é<n 1Skl > ¢) =) *P(Ax) < E |82 ZAk < ES? =no?,
k=1 i=1
proving the lemma. g

Considering the normalized partial sums, since

Z v <\/n+k 1>WM

1=n—+1

]

|Wn+k - Wn| =

we have

P(Og}ﬁx [Wiar — Wa| >€) < P((\/l + 06— 1)[Whik| = €/2)

n+k
>
+P<O£n3éx5 ZIY e\/n/2>

By Chebyshev’s inequality, the first term here is at most

4(V1+6—1)%02

€2 ’
and by Lemma 20.4 the second term is at most

4026
e

These bounds tend to zero as ¢ | 0, uniformly in n, and so W,,, n > 1, are
u.c.i.p.

Returning to fixed width interval estimation and the coverage probability
for interval (20.3), by Theorem 20.3,
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VN(Tn — pu(6)) = N (0, Varg(T3))
as w | 0, and by the delta method,
VNu(An = A) = N(0,02(9)).

Since N — oo as w | 0 and 0, — 0 asn — 00, both almost surely, On — 0
almost surely as w | 0. It then follows that

VNN —A)
v(0y)

as w | 0. So the coverage probability for the confidence interval (20.3),

= N(0,1)

Pg[)\e (S\Niza/gu(éN)/\/N)} =F \/N|)\f\f_)\| <Za/2 ,
v(On)

converges to 1 —a as w | 0.

20.2 Stopping Times and Likelihoods

In Chapter 5 we had some trouble representing data from a sequential exper-
iment as a random vector, because this kind of experiment’s sample size is
not a fixed constant. The most elegant and standard way to ameliorate this
problem is to use o-fields to represent information. To understand how this
is done, consider an experiment in which a coin is tossed two times, so the
sample space is

E={TT,TH,HT,HH}.

Let F be the o-field of all subsets of £, F = 2%, and let the random variable
X give the number of heads. If we observe X we will know if certain events
occur. For instance, we will know whether

(X =1} = {HT,TH}

occurs. But other events, such as {HH, HT} (the first toss lands heads), will
remain in doubt. The collection of all events we can resolve,

o(X) = {0,{TT},{HT,TH},{HH},{TT, HT,TH},
(TT,HH},{HT,TH,HH},{TT,TH,HT, HH}},

is a o-field. A means to learn which events in o(X) occur would provide
exactly the same information about the outcome e as the value for X. Thus
X and o(X) in a natural sense provide the same information.

The notions in the coin tossing example generalize easily. If we observe a
random vector X, then we will know whether {X € B} = X~(B) occurs.
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Here we insist that B is a Borel set to guarantee that {X € B} is an event in
F. We can then define

o(X) = {X'(B): B Borel},
and it is easy to show that o(X) is a o-field.

Consider now an experiment in which random vectors X1, Xs,... are ob-
served sequentially. Let

Fn=0{X1,..., Xn}, (20.4)

the events we can resolve observing the first n variables, and take Fy = {0, £}.
These o-fields are increasing, Fy C F; C Fa C ---. In general, any increasing
sequence of o-fields F,,, n > 0, is called a filtration. The filtration given by
(20.4) would be called the natural filtration for X;, ¢ > 1. We can also define
Foo as the smallest o-field containing all events in | J,,~, Fn. For the natural
filtration, F,, would represent the information available from all the X;. This
o-field may not equal the underlying o-field F; it will be strictly smaller if F
contains events that cannot be determined from the X;.

Sample sizes for a sequential experiment cannot depend on the observa-
tions in an arbitrary fashion. For instance, a design calling for two observations
if and only if X5 > 10 would be absurd. Clairvoyance needs to be prohibited in
the mathematical formulation. In particular, the decision to stop or continue
after n observations needs to be based on the information F,, available from
those data. Specifically, the event {N = n} should lie in F,,. These variables
are called stopping times according to the following definition.

Definition 20.5. A random variable* N taking values in {0,1,2,...,00} is
called a stopping time with respect to a filtration F,,, n > 0, if

{N =n}eF,, for allm > 0.

Next we would like to find a o-field that represents the information avail-
able when data are observed until a stopping time N. Any event B € F can
be written as the disjoint union of the sets BN{N =n}, n=1,2,...,00. If
we can determine B from the data, it must be the case that that part of B
where N = n (i.e., BN{N = n}) must lie in F,,, for any n, and we define

.7-'N:{B:BQ{N:n}E.Fn,Vnzo,l,...,oo}.

It is not hard to show that Fy is a o-field, and it represents the information
available observing the data until stopping time N. We may also want to
consider what random variables Y are based on the observed data. Because
the event {Y € B} = Y~!(B) can be resolved by observing Y, this event

2 Since “4-00” is an allowed value for N, it may be slightly more proper to call N
an extended random variable.



412 20 Sequential Methods

should lie in Fj . But this requirement is simply that Y is Fy measurable. For
instance, with the natural filtration, the stopping time N is Fxn measurable,
and Xy = (X1 +---+ Xn)/N is Fy measurable. But X1 is not.

If we use o-fields to represent information, we will also be interested in
conditioning to revise probabilities and expectations in light of the information
from a o-field. With a random vector X and an integrable random variable
Y, E(Y|X) should be a measurable function of X, and smoothing must work
for YI{X € B} with B an arbitrary Borel set:

EYI{X € B} = EI{X € B}E(Y|X),

for all Borel sets B. The requirements for conditioning on a o-field G are
similar. First, E(Y|G) should be G measurable (based only on information
available from G); and second, smoothing should work for Y15 with B any
event in G:

EY1lp = FEl1E(Y|G), Beg.

The next result, Wald’s fundamental identity, is the basis for likelihood
calculations. In this result, there are two probability measures Py and P;. Let
fon and f1,, denote joint densities for (X1, ..., X,,) under Py and P;, and let
L, =L,(X1,...,X,) denote the likelihood ratio

_ (X1, X))
fon(X1,0 0 X))

Theorem 20.6 (Wald’s Fundamental Identity). If f1, = 0 whenever
fon =0, and if Po(N < 00) = Pi(N < o0) =1, then

Ln(Xy,...,X5)

Pl(B):E()].BLN, VB e Fn.
Proof. Because {N =n} N B € F,, by Lemma 12.18,
Pl(N = n,B) = E()I{N = n}lBLn = E()I{N = n}lBLN.

Because Py(N < 00) = Pi(N < o0) =1,
Pi(B) = P\(B,N <o) =Y _ Pi(N =n,B)
n=1
=Y EJ{N =n}lpLy = EoI{N < co}lpLy = EolpLy. O
n=1

If Py and P; are restricted and only considered as measures on Fy, this
result asserts that P has density Ly with respect to Py. Theorem 5.4 follows
from this. It can be shown that any o-finite measure p is equivalent to, or
has the same null sets as, a probability measure. So in Theorem 5.4 we can
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assume that the dominating measure p is a probability measure. If the X; are
ii.d. with density fp under Py, viewed as P; in Wald’s fundamental identity,
and they are i.i.d. from p under Py, then the density for the restriction of Py
to Fn is

N
Ly =[] r(x0),
=1

with respect to the restriction of Py to Fy.

20.3 Optimal Stopping

This section provides an introduction to the theory of optimal stopping, used
to select the best stopping time IV for a sequential experiment. The main ideas
are developed in the context of Bayesian hypothesis testing.

Given @ = 0, let potential observations X1, Xo, ... be i.i.d. from Qy, and
consider testing Hy : @ € {2y versus Hy : @ € {21. To be specific in our goals we
proceed in a decision-theoretic fashion, assigning costs for the consequences of
our inferential actions, with additional costs to perform the experiment and
collect data. Inferential actions and stopping times are chosen to minimize
expected costs.

After data collection, one of the hypotheses, Hy or H;, will be accepted.
Let variable A specify this action, with A = 0 if we accept Hp and A = 1 if we
accept H;. This action depends on the observed data Fp, so A must be Fy
measurable. Let L(©) denote the loss if we make the wrong decision: A = 0
when © € 21, or A =1 when © € (2y. The following result characterizes an
optimal action A.

Theorem 20.7. The inferential risk associated with action A, given by
R(A) =EL(O)[I{A=0,0 € !} + I{A=1,0 € }],

will be minimal if

A=0 on E[L(O)I{O € 1} | Fn] < E[L(©)I{O € 2} | Fn]
and

A=1 on E[L(O)I{O € 1} | Fx] > E[L(©)I{O € 2} | Fn].
Proof. Because A is Fy measurable,

E[L(O)I{A=0}1{0 € 1} | Fx] = I{A=0}E[L(6)I{O € 1} | Fn]

and

E[L(O)I{A=1}I{0 € 2} | Fn] = I{A=1}E[L(©)I{O € 2} | Fn].
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So by smoothing,
R(A) = BE[L(O)[[{A = 0,0 € 21} + [{A=1,0 € %}] ] ]
- E[I{A — 0}E[L(O)I{6 € 21} | Fu]
+ H{A=1}E[L(O){0 € 2} | Fn]|
> Emin{E[L(@)I{@ € 21} | Fn], B[L(O)I{6 € 2} | Fn] }
This bound is achieved if A has the form indicated in the theorem. O
Using this result, if we define
pN = min{E[L(@)I{@ € 2} | Fn], E[L(O)I{6 € 2} | Fn] }

the inferential risk with an optimal action A is Fpy, and an optimal stopping
rule N should balance this risk against expected costs running the experiment.
A simple assumption, natural and fairly appropriate in many cases, is that
each observation costs some fixed amount ¢ > 0. The total cost to run the
experiment is then ¢N, and an optimal stopping rule N minimizes

E[eN + pn]. (20.5)

To illustrate some ideas useful in a broader context, let us now restrict
attention to a simple example, testing Hy : © < 1/2 versus H; : © 