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Preface

The emergence of topological quantum field theory has been one of the
most important breakthroughs which have occurred in the context of math-
ematical physics in the last century, a century characterized by independent
developments of the main ideas in both disciplines, physics and mathematics,
which has concluded with two decades of strong interaction between them,
where physics, as in previous centuries, has acted as a source of new mathe-
matics. Topological quantum field theories constitute the core of these phe-
nomena, although the main driving force behind it has been the enormous
effort made in theoretical particle physics to understand string theory as a
theory able to unify the four fundamental interactions observed in nature.
These theories set up a new realm where both disciplines profit from each
other. Although the most striking results have appeared on the mathemati-
cal side, theoretical physics has clearly also benefitted, since the corresponding
developments have helped better to understand aspects of the fundamentals
of field and string theory.

Topology has played an important role in the study of quantum mechan-
ics since the late fifties, after discovering that global effects are important in
physical phenomena. Many aspects of topology have become ordinary ele-
ments in studies in quantum mechanics as well as in quantum field theory
and in string theory. The origin of topological quantum field theory can be
traced back to 1982, although the term itself appeared for the first time in
1987. In 1982 E. Witten studied supersymmetric quantum mechanics and
supersymmetric sigma models providing a framework that led to a general-
ization of Morse theory. This framework was later considered by A. Floer
who constructed its mathematical setting and enlarged it to a more general
context. This, in turn, was reconsidered by E. Witten who, influenced by M.
Atiyah, proposed the first topological quantum field theory itself in 1987. His
construction consisted of a quantum field theory representation of the theory
of Donaldson invariants on four-manifolds proposed in 1982.

After the first formulation of a topological quantum field theory by E.
Witten many others have been considered. A new area of active research
has developed since then. In this book we will concentrate our attention on
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aspects related to that first theory, nowadays known as Donaldson–Witten
theory, which is the most relevant theory in four dimensions. Other important
topological theories, such as Chern–Simons gauge theory in three dimensions
or topological string theory, fall beyond the scope of this book. We will
deal with many aspects of Donaldson–Witten theory, emphasizing how its
formulation has allowed Donaldson invariants to be expressed in terms of a
set of new simpler invariants known as Seiberg–Witten invariants.

Topological quantum field theory is responsible for the discovery of
Seiberg–Witten invariants and their relation to Donaldson invariants. In gen-
eral, quantum field theories can be studied by different methods providing
several pictures of the same theory. The relation between Donaldson–Witten
theory and Donaldson invariants was found using perturbative methods in the
context of quantum field theory. The application of non-pertubative meth-
ods to the same theory waited several years but led to the discovery of the
relevance of Seiberg–Witten invariants as building blocks of Donaldson in-
variants. This connection was possible owing to the progress achieved in 1994
by N. Seiberg and E. Witten in understanding non-perturbative properties of
supersymmetric theories.

From the mathematical side the emergence of Seiberg–Witten invariants
constitutes one of the most important results obtained in the nineties in the
study of four-manifolds. These invariants turn out to be much simpler than
Donaldson invariants and contain all the information provided by the latter.
To understand the connection between these invariants one needs to regard
Donaldson–Witten theory as a theory which originates after the twisting of
certain supersymmetric quantum field theories. Other pictures of topological
quantum field theory, such as the one in the framework of the Mathai–Quillen
formalism, which is also described in this book, do not provide useful infor-
mation in this respect. However, it is important to become acquainted with
this picture since it provides an interesting geometrical setting.

The main goal of this book is to provide a unifying treatment of all
the aspects of Donaldson–Witten theory as a stem theory for Donaldson and
Seiberg–Witten invariants. An important effort has been made so that it
can be read by theoretical physicists and mathematicians. The focus of the
book is on the interplay of mathematical and physical aspects of the theory,
and although we have included expositions of background material —such
as the more mathematical aspects of Donaldson theory or the physics of the

viii



Seiberg–Witten solution— we have not provided all the details, and we refer
the reader to more specific references for an exhaustive treatment of some of
the subjects.

The book starts with a chapter that collects basic mathematical results
about the topology of four-manifolds which will be needed in the rest of the
chapters. Chapters 2 and 3 contain reviews of the theories of Donaldson and
Seiberg–Witten invariants, respectively. Chapter 4 presents supersymmetry
in four dimensions and describes the supersymmetric theories which will be
relevant for Donaldson–Witten theory. Chapter 5 deals with the twisting
of supersymmetric theories and constructs all the topological quantum field
theories which will be of interest in other chapters. There is shown, in partic-
ular, in sections 5.3 and 5.6, the connection between these theories and the
Donaldson and Seiberg–Witten invariants introduced in Chapters 2 and 3. In
Chapter 6 a different framework for dealing with topological quantum field
theories, the Mathai–Quillen formalism, is introduced. This formalism pro-
vides an interesting geometrical framework for these theories which is worth
being be considered. However, its content is not needed for the rest of the
book. The chapter could be omitted in a first reading. Chapter 7 deals with
non-perturbative aspects of supersymmetric theories. A detailed analysis of
the resulting solution, the Seiberg–Witten solution, is presented. The struc-
ture of this solution is used in Donaldson–Witten theory in Chapter 8. It
allows one to write the Donaldson–Witten invariants as an integral on the
so called u-plane introduced by Moore and Witten. The u-plane integral is
the most systematic physical framework in which to understand Donaldson–
Witten theory, and it also leads to the connection between Donaldson invari-
ants and Seiberg–Witten invariants. Chapter 9 deals with several applications
of the u-plane integral, and Chapter 10 summarizes further developments of
Donaldson–Witten theory. Finally, two appendices contain useful formulae
about spinors in four dimensions, elliptic functions and modular forms.
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Chapter 1

Topological Aspects of Four-Manifolds

The purpose of this chapter is to collect a series of basic results about
the topology of four-manifolds that will be used in the rest of the book. No
attempt to be self-contained is made and the reader should consult some of
the excellent books on the subject reviewed at the end of the chapter. The
discussion will be restricted to four-manifolds which are closed, compact and
orientable, which is the case considered in the rest of the book. We will also
assume that all the four-manifolds under consideration are endowed with a
Riemannian metric.

1.1. Homology and cohomology

The most basic classical topological invariants of a four-manifold are
the homology and cohomology groups HiHH (X,Z), Hi(X,Z). These homology
groups are abelian groups, and the rank of HiHH (X,Z) is called the i-th Betti
number of X, denoted by bi. Remember that, for an n-dimensional manifold,
by Poincaré duality, one has´

Hi(X,Z) � HnHH −i(X,Z), (1.1)

and also bi = bn−i. We will also need the (co)homology groups with co-
efficients in other groups such as Z2. To obtain these groups one uses the
universal coefficient theorem, which states that

HiHH (X, G) � HiHH (X,Z) ⊗Z G ⊕ Tor(HiHH −1(X,Z), G). (1.2)

Let us focus on the case G = Zp. Given an element x in HiHH (X,Z), one can
always find an element in HiHH (X,Zp) by sending x → x⊗ 1. This in fact gives
a map:

HiHH (X,Z) → HiHH (X,Zp) (1.3)

1



2 Topological Quantum Field Theory and Four-Manifolds

which is called the reduction mod p of the class x. Notice that, by construc-
tion, the image of (1.3) is in HiHH (X,Z) ⊗ Zp. Therefore, if the torsion part in
(1.2) is not zero, the map (1.3) is clearly not surjective. When the torsion
part is zero, any element in HiHH (X,Zp) comes from the reduction mod p of an
element in HiHH (X,Z). For the cohomology groups we have a similar result.

Physicists are more familiar with the de Rham cohomology groups,
H∗

DR(X) which are defined in terms of differential forms. These groups are de-
fined over R, and therefore they are insensitive to the torsion part of the singu-
lar cohomology. Formally, one has Hi

DR(X) � (Hi(X,Z)/Tor(Hi(X,Z)))⊗Z

R.

Remember also that there is a non-degenerate pairing in cohomology,
which in the de Rham case is the usual wedge product followed by integration.
We will denote the pairing of the cohomology classes (or differential form
representatives) α, β by (α, β).

Let us now focus on dimension four. Poincaré duality then gives an´
isomorphism between H2HH (X,Z) and H2(X,Z). It also follows that b1(X) =
b3(X). Recall that the Euler characteristic χ(X) of an n-dimensional manifold
is defined as

χ(X) =
n∑

i=0

(−1)ibi(X). (1.4)

For a connected four-manifold X, we then have, using Poincaré duality, that´

χ(X) = 2 − 2b1(X) + b2(X). (1.5)

1.2. The intersection form

An important object in the geometry and topology of four-manifolds is
the intersection form,

Q : H2(X,Z) × H2(X,Z) → Z, (1.6)

which is just the pairing restricted to the two-classes. By Poincaré duality´
it can be defined on H2HH (X,Z) × H2HH (X,Z) as well. Notice that Q is zero if
any of the arguments is a torsion element, therefore one can define Q on the
torsion-free parts of homology and cohomology.

Another useful way of looking at the intersection form is precisely in
terms of the intersection of submanifolds in X. One fundamental result in
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this respect is that we can represent any two-homology class in a four-manifold
by a closed oriented surface S: given an embedding

i : S ↪→↪↪ X (1.7)

we have a two-homology class i∗([S]) ∈ H2HH (X,Z), where [S] is the fundamen-
tal class of S. Conversely, any a ∈ H2HH (X,Z) can be represented in this way,
and a = [Sa]. One can also prove that

Q(a, b) = Sa ∪ Sb, (1.8)

where the right hand side is the number of points in the intersection of the two
surfaces, counted with signs which depend on the relative orientation of the
surfaces. If, moreover, ηSa

, ηSb
denote the Poincaré duals of the submanifolds´

Sa, Sb one has

Q(a, b) =
∫

X

∫∫
ηSa

∧ ηSb
= Q([ηSa

], [ηSb
]). (1.9)

If we choose a basis {ai}i=1,...,b2(X) for the torsion-free part of H2HH (X,Z) we
can represent Q by a matrix with integer entries that we will also denote by
Q. Under a change of basis, we obtain another matrix Q → CTQC, where
C is the transformation matrix. The matrix Q is obviously symmetric, and
it follows by Poincaré duality that it is unimodular,´ i.e., it has det(Q) = ±1.
If we consider the intersection form on the real vector space H2HH (X,R) we
see that it is a symmetric, bilinear, non-degenerate form, and therefore it is
classified by its rank and its signature. The rank of Q, rk(Q), is clearly given
by b2(X), the second Betti number. The number of positive and negative
eigenvalues of Q will be denoted by b+

2 (X), b−2 (X), respectively, and the
signature of the manifold X is then defined as

σ(X) = b+
2 (X) − b−2 (X). (1.10)

We will say that the intersection form is even if Q(a, a) ≡ 0 mod 2. Otherwise
it is odd. An element x of H2HH (X,Z)/Tor(H2HH (X,Z)) is called characteristic if

Q(x, a) ≡ Q(a, a) mod 2 (1.11)

for any a ∈ H2HH (X,Z)/Tor(H2HH (X,Z)). An important property of characteris-
tic elements is that

Q(x, x) ≡ σ(X) mod 8. (1.12)
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In particular, if Q is even then the signature of the manifold is divisible by 8.
Examples:
(1) The simplest intersection form is:

n(1) ⊕ m(−1) = diag(1, . . . , 1,−1, . . . ,−1), (1.13)

which is odd and has b+
2 = n, b−2 = m.

(2) Another important form is the hyperbolic lattice,

H =
(

0 1
1 0

)
, (1.14)

which is even and has b+
2 = b−2 = 1.

(3) Finally, one has the even positive definite form of rank 8

E8 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, (1.15)

which is the Dynkin diagram of the exceptional Lie algebra E8.
Fortunately, unimodular lattices have been classified. The result depends

on whether the intersection form is even or odd and whether it is definite
(positive or negative) or not. Odd, indefinite lattices are equivalent to p(1)⊕
q(−1), whilst even indefinite lattices are equivalent to pH ⊕ qE8. Definite
lattices are more complicated, since they involve ‘exotic’ cases.

The intersection form is clearly a homotopy invariant. It turns out that
simply connected smooth four-manifolds are completely characterized topo-
logically by the intersection form, i.e., two simply connected smooth four-
manifolds are homeomorphic if their intersection forms are equivalent. This
is a result owed to Freedman. The classification of smooth four-manifolds up
to diffeomorphism is another story, and this is the main reason for introducing
new invariants which are sensitive to the differentiable structure. But before
going into that we have to give some more details about classical topology.

1.3. Self-dual and anti-self-dual forms

The Riemannian structure on the manifold X allows us to introduce the
Hodge operator ∗ in de Rham cohomology, that can be used to define an
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induced metric in the space of forms by

dµ (ψ, θ) = ψ ∧ ∗θ, (1.16)

where dµ is the Riemannian volume element. In four dimensions the Hodge
operator maps ∗ : Ω2(X) → Ω2(X), and since ∗2 = 1 it has eigenvalues ±1.
It then gives a splitting of the two-forms in Ω2(X) in self-dual (SD) and anti-
self-dual (ASD) forms, defined as the ±1 eigenspaces of ∗ and denoted by
Ω2,+(X) and Ω2,−(X), respectively. Given a differential form ψ, its SD and
ASD parts will be denoted by ψ±. Explicitly,

ψ± =
1
2
(ψ ± ∗ψ). (1.17)

The Hodge operator lifts to cohomology and gives a map

∗ : H2(X) → H2(X). (1.18)

The number of +1 eigenvalues in H2(X) is precisely b+
2 (X), and the number

of −1 eigenvalues is b−2 (X). We will denote the space of SD and ASD two-
cohomology classes as H2,±(X), respectively. It follows from this that we
can interpret b+

2 as the number of self-dual harmonic forms on X, and this
interpretation will be useful later.

1.4. Characteristic classes

An important set of topological invariants of X is given by the char-
acteristic classes of its real tangent bundle. The most elementary ones are
the Pontrjagin class p(X) and the Euler class e(X), both in H4(X,Z) � Z.
These classes are then completely determined by two integers once a gen-
erator of H4(X,Z) is chosen. These integers will be also denoted by p(X),
e(X), and they give the Pontrjagin number and the Euler characteristic of
the four-manifold X, so e(X) = χ. The Pontrjagin number is related to the
signature of the manifold through the Hirzebruch theorem, which states that:

p(X) = 3σ(X). (1.19)

If a manifold admits an almost complex structure one can define a holomor-
phic tangent bundle T (1,0)(X). This is a complex bundle of rank r = dim(X),
therefore we can associate with it the Chern character c(T (1,0)(X)) which
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is denoted by c(X). For a four-dimensional manifold one has c(X) =
1 + c1(X) + c2(X). Since c1(X) is a two-form its square can be paired with
the fundamental class of the four-manifold. The resulting number can be
expressed in terms of the Euler characteristic and the signature as follows:

c2
1(X) = 2χ(X) + 3σ(X). (1.20)

Finally, the second Chern class of X is just its Euler class: c2(X) = e(X). If
the almost complex structure is integrable then the manifold X is complex,
and it is called a complex surface. Complex surfaces provide many examples in
the theory of four-manifolds. Moreover, there is a very beautiful classification
of complex surfaces owed to Kodaira, using techniques of algebraic geometry.

There is another set of characteristic classes which is perhaps less known
in physics. These are the Stiefel–Whitney classes of real bundles F over
X, denoted by wi(F ). They take values in Hi(X,Z2). The Stiefel–Whitney
classes of a four-manifold X are defined as wi(X) = wi(TX). The first Stiefel–
Whitney class of a manifold measures its orientability, so we will always have
w1(X) = 0. The second Stiefel–Whitney class plays an important role in
what follows. This is a two-cohomology class with coefficients in Z2, and it
has three important properties. If the manifold admits an almost complex
structure then

c1(X) ≡ w2(X) mod 2, (1.21)

i.e., w2(X) is the reduction mod 2 of the first Chern class of the manifold.
This is a general property of w2(X) for any almost complex manifold. In four
dimensions w2(X) satisfies in addition two other properties: first, it always
has an integer lift to an integer class (for example, if the manifold is almost
complex then c1(X) is such a lift). The second property is the Wu formula,
which states that

(w2(X), α) = (α, α) mod 2, (1.22)

for any α ∈ H2(X,Z). The left hand side can be interpreted as the pairing
of α with the integer lift of w2(X). A corollary of the Wu formula is that an
integer two-cohomology class is characteristic if and only if it is an integer lift
of w2(X).

1.5. Examples of four-manifolds. Complex surfaces

Let us first give some simple examples of four-manifolds:
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(1) The simplest example is perhaps the four-sphere S4. It has b1 = b2 =
0, and therefore χ = 2, σ = 0, Q = 0.

(2) Next we have the complex projective space IP2. Recall that this is
the complex manifold obtained from C3 − {(0, 0, 0)} by identifying zi � λzi,
i = 1, 2, 3, with λ 
= 0. IP

 2 has b1 = 0 and b2 = 1. In fact, the basic two-
homology class is the so called class of the hyperplane h, which is given in
projective coordinates by z1 = 0. It is not difficult to prove that h2 = 1, so
QIPII 2 = (1). Notice that h is, in fact, a IP1, therefore it is an embedded sphere
in IP2. The projective plane with the opposite orientation will be denoted by
IP2, and it has Q = (−1).

(3) An easy way to obtain four-manifolds is by taking products of two
Riemann surfaces. A simple example is the so called product ruled surfaces
S2×Σg, where Σg is a Riemann surface of genus g. This manifold has b1 = 2g,
b2 = 2. The homology classes have the submanifold representatives S2 and
Σg. They have self-intersection zero and they intersect in one point, therefore
Q = H, the hyperbolic lattice, with b+

2 = b−2 = 1. One then has χ = 4(1− g).
(4) A more complicated example is the hypersurface of degree d in IP3

described by a homogeneous polynomial
∑4

i=1 zd
i = 0. We will denote this

surface by Sd. It is an algebraic surface, hence a complex manifold. Its first
and second Chern numbers can be easily computed by using the adjunction
formula, and one finds c2

1 = (4 − d)2d, c2 = χ = d(6 − 4d + d2). Using (1.20)
one further deduces that σ = 1

3 (4− d2)d. For d = 4, one obtains the so called
K3 surface which has χ = 24 and σ = −16. This manifold possesses the
following intersection form:

QK3 = 3H ⊕ 2(−E8), (1.23)

where H and E8 are given in (1.14) and (1.15), respectively.
(5) Given any four-manifold X one can always form the connected sum

X̂ = X
IP2, also called the blow-up of X. The sphere IP1 corresponding to
the line in IP2 is called the exceptional sphere of X̂, and its homology class
B satisfies B2 = −1. The two-homology of the blow-up is simply given by
H2HH (X̂,Z) = H2HH (X,Z) ⊕ 〈B〉, and the class B is orthogonal to all the classes
inherited from X.

An important class of four-manifolds is given by complex surfaces, i.e.,
complex manifolds of complex dimension two. There is a beautiful classifica-
tion of these manifolds owed to Kodaira, which we will briefly review in order
to present more examples of four-manifolds.
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Complex surfaces can be classified according to the Kodaira dimension
κ(S). This quantity measures the number of holomorphic (2n, 0) forms for
large n and can take the values −∞, 0, 1 and 2. This classification is up to
bi-rational equivalence, and since blowing-up is a bi-rational transformation
it is convenient to focus on minimal surfaces, i.e. surfaces that do not contain
holomorphically embedded spheres of square −1 (and therefore they are not
the blow-up of another surface). The classification of minimal surfaces then
goes as follows:

• The minimal surfaces with κ(S) = −∞ are IP2, ruled surfaces (i.e.,
a sphere bundle over a Riemann surface Σg of genus g) or belong to the so
called Kodaira class VII. All these surfaces have b+

2 = 0 (for class VII) or 1.
For a geometrically ruled surface one has c2

1 = 8(1 − g), where g is the genus
of the base, and they include the products considered in example (3) above.
Geometrically ruled surfaces over IP1 are called Hirzebruch surfaces, and they
are labelled by a non-negative integer n. We will denote them by Fn. One
has F0 = IP1 × IP1 and F1 is IP2 blown up at one point (therefore it is not
minimal).

• There are five types of minimal surfaces with κ(S) = 0: Enriques sur-
faces, bi-elliptic surfaces, Kodaira surfaces (primary and secondary), abelian
surfaces (tori), and K3 surfaces. Enriques, bi-elliptic, and secondary Kodaira
surfaces have b+

2 ≤ 1. Tori, K3, and primary Kodaira surfaces are in fact
elliptic fibrations, which we consider now.

• An elliptic fibration is a complex surface S together with a holomorphic
fibration π : S → Σg over a Riemann surface of genus g, where the generic
fibers are elliptic curves. All the minimal surfaces with Kodaira dimension
κ(S) = 1 are elliptic fibrations, but the converse is not true, as the exam-
ples above show. Any minimal elliptic surface has c2

1 = 0. A particularly
interesting sub-family of elliptic surfaces is given by the simply connected
four-manifolds E(n), labelled by a non-negative integer n. These manifolds
can be constructed starting with E(1) = IP2
9IP2, i.e., the blow-up of IP2

at nine points. It can be shown that this rational surface is elliptic. One
can now perform an operation called fiber sum in order to obtain more el-
liptic fibrations, and in this way one generates the full series E(n). One has
χ(E(n)) = 12n and σ(E(n)) = −8n, and furthermore b+

2 (E(n)) = 2n − 1.
E(2) turns out to be a K3 surface.

• Finally, we have surfaces with Kodaira dimension κ(S) = 2, which are
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called surfaces of general type. They have c2
1 > 0.

Of course, complex surfaces are just a small set in the zoo of four-
manifolds, and in the latter years many ‘exotic’ manifolds have been con-
structed outside the complex realm. The reader is referred to the bibliography
at the end of this chapter for a detailed treatment of these developments.

1.6. Spin and Spinc-structures on four-manifolds

The Spinn group is a double covering of the orthogonal group SO(n).
If E is an oriented SO(n) bundle on a manifold X, a natural question is
whether one can lift it to a Spinn-bundle Sp(E), producing a double covering
Sp(E) → E. If this can be done we say that E is endowed with a Spin
structure. Locally, Spin structures can always be found, but globally there
are topological obstructions which are encoded precisely in the second Stiefel–
Whitney class of E, w2(E). We say that X admits a Spin structure if TX

does, and X is then called a Spin manifold. The necessary and sufficient
condition for X to be Spin is then w2(X) = 0. For example, one can see that
the elliptic fibration E(n) introduced in the previous section is Spin if and
only if n is even.

If a manifold is Spin then one can consistently construct the spinor bun-
dle S, which is a vector bundle providing a representation of the Clifford
algebra. A section of this bundle is nothing but a spinor field. In four di-
mensions Spin4 = SU(2)+ × SU(2)−, and the spinor bundle decomposes in
two irreducible representations S = S+ ⊕ S−, corresponding to positive and
negative chirality spinors (our conventions for spinor algebra in Euclidean and
Minkowskian signature are collected in Appendix A).

Most four-manifolds are not Spin. In such a situation one can still de-
fine something very similar to a spin structure: a Spinc structure. One
of the best ways to think about Spinc structures is the following: as we
said before, the second Stiefel–Whitney cohomology class of a manifold X,
w2(X) ∈ H2(X,Z2), is always the mod 2 reduction of an integral class w. Let
L be the line bundle corresponding to w, i.e, c1(L) = w. The square root of
the line bundle L in principle does not exist, and the topological obstruction
to define it globally is in this case w2(X), the reduction mod 2 of c1(L). In
the same way, the spinor bundle S of X is not globally defined. However,
a standard obstruction analysis in Čech cohomology shows that, although
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neither L1/2 nor S are well defined separately, the product bundle

SL = S ⊗ L1/2 (1.24)

is well defined. This is easy to understand intuitively: to construct a Spin
structure one has to choose a lifting of the rotation group to the spinor group
in the different coordinate patches, and as it is well known this lifting involves
±1 ambiguities. When the choice of signs can not be made consistently for
all patches, the Spin structure is obstructed globally. To define the square
root of L we have the same kind of ambiguity in signs, but when tensoring
both bundles, as in (1.24), these ambiguities compensate each other and the
resulting object is globally well defined.

We then see that, given an integer lifting of w2(X), we can construct
a Spinc structure and define a spinor bundle as in (1.24). Therefore the set
of Spinc structures on a four-manifold is in one-to-one correspondence with
the set of characteristic elements. The complex line bundle L is called the
determinant line bundle of the Spinc structure. Once we have found a Spinc

structure we can generate all the rest of them by tensoring with other line
bundles: if Lα is the line bundle associated to an element α ∈ H2(X,Z), we
can construct from (1.24) another spinor bundle

SL⊗L2
α

= S ⊗
(
L1/2 ⊗ Lα

)
. (1.25)

Notice that if c1(L) ≡ w2(X) mod 2 the same is obviously true for L ⊗ L2
α.

This construction gives a map from H2(X,Z) to the set of Spinc structures.
If there is no two-torsion in H2(X,Z) then this map is a bijection, although a
non-canonical one since it requires a choice of basepoint (the Spinc structure
associated to L).

In the case of an almost complex manifold X there is, however, a canon-
ical choice of the Spinc structure: this is for L = K−1, where K denotes the
canonical line bundle of X. One has, in fact, the isomorphism

SK−1 = Ω∗
CT (1,0)(X), (1.26)

where the right hand side denotes the complex exterior powers of the holo-
morphic tangent bundle of X. Positive chirality spinors correspond to the
even powers, and negative chirality spinors to the odd powers.

Since a Spinc structure can be simply understood as the tensor product
(1.24), one can construct the Dirac operator DL for the Spinc-structure as



Topological Aspects of Four-Manifolds 11

the usual Dirac operator coupled to a U(1) connection whose connection and
curvature are formally given by 1/2 the connection and curvature of L. A
consequence of (1.12) and the index theorem for the Dirac operator is that if
L is the determinant line bundle of a Spinc-structure then

c2
1(L) = σ(X) mod 8, (1.27)

From this it follows that if X is Spin, then σ(X) is a multiple of eight.
Actually, it turns out that in fact σ(X) is a multiple of 16 for Spin manifolds
(Rohlin’s theorem).

Bibliographical notes

• A complete survey of the topology of four-manifolds can be found in

the excellent book [1]. A short but useful summary is contained in

the first chapter of [2].

• The classification of complex surfaces is studied in detail in [3] and

[4], as well as in Chapter 3 of [1].

• Hirzebruch surfaces are considered in detail in [3], Chapters III and

IV, and the elliptic fibrations E(n) are constructed in detail in [1],

Chapter 3. Techniques for constructing ‘exotic’ four-manifolds are

reviewed in [5].



Chapter 2

The Theory of Donaldson Invariants

Donaldson invariants can be mathematically motivated as follows: as we
have mentioned, Freedman’s results imply that two simply connected smooth
manifolds are homeomorphic if and only if they have the same intersection
form. However, the classification of four-manifolds up to diffeomorphism turns
out to be much more subtle: most of the techniques which one uses in di-
mension ≥ 5 to approach this problem (like cobordism theory) fail in four
dimensions. For example, four dimensions is the only dimension in which
a fixed homeomorphism type of closed four-manifolds is represented by in-
finitely many diffeomorphism types, and n = 4 is the only dimension where
there are ‘exotic’ Rns, i.e., manifolds which are homeomorphic to Rn but
not diffeomorphic to it. One has to look then for a new class of invariants of
differentiable manifolds in order to solve the classification problem, and this
was the great achievement of Donaldson. Remarkably, the new invariants in-
troduced by Donaldson are defined by looking at instanton configurations of
non-abelian gauge theories on the four-manifold. We will give here a sketch
of the mathematical procedure for defining Donaldson invariants, in a rather
formal way and without entering into the most intricate parts of the theory.

2.1. Yang–Mills theory on a four-manifold

Donaldson theory defines differentiable invariants of smooth four-
manifolds starting from Yang–Mills fields on a vector bundle over the mani-
fold. The basic framework is then gauge theory on a four-manifold, and the
moduli space of ASD connections.

Let G be a Lie group (usually we will take G = SO(3) or SU(2)). Let
P → X be a principal G-bundle over a manifold X with a connection A taking
values in the Lie algebra of G, g. Given a vector space V and a representation
ρ of G in GL(V ), we can form an associated vector bundle E = P ×G V in the

12
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standard way. G acts on V through the representation ρ. The connection A

on P induces a connection on the vector bundle E (which we will also denote
by A) and a covariant derivative ∇A. Notice that, whilst the connection A on
the principal bundle is an element in Ω1(P,g), the induced connection on the
vector bundle E is better understood in terms of a local trivialization UαUU . On
each UαUU the connection 1-form Aα is a gl(V ) valued one-form (where gl(V )
denotes the Lie algebra of GL(V )) and the transformation rule which glues
together the different descriptions is given by:

Aβ = g−1
αβAαgαβ + ig−1

αβdgαβ , (2.1)

where gαβ are the transition functions of E.
Recall that the representation ρ induces a representation of Lie algebras

ρ∗ : g → gl(V ). We will identify ρ∗(g) = g and define the adjoint action of
G on ρ∗(g) through the representation ρ. On X one can consider the adjoint
bundle gE , defined by:

gE = P ×G g, (2.2)

which is a subbundle of End(E). For example, for G = SU(2) and V corre-
sponding to the fundamental representation, gE consists of Hermitian trace-
free endomorphisms of E. If we look at (2.1) we see that the difference of two
connections is an element in Ω1(gE) (the one-forms on X with values in the
bundle gE). Therefore we can think about the space of all connections A as
an affine space whose tangent space at A is given by TAT A = Ω1(gE).

The curvature FAF of the vector bundle E associated with the connection
A can be also defined in terms of the local trivialization of E. On UαUU the
curvature FαFF is a gl(V )-valued two-form that behaves under a change of
trivialization as:

FβFF = g−1
αβFαFF gαβ , (2.3)

and this shows that the curvature can be considered as an element in Ω2(gE).
The next geometrical objects we must introduce are gauge transforma-

tions, which are automorphisms of the vector bundle E, u : E → E preserving
the fiber structure (i.e., they map one fiber onto another) and descend to the
identity on X. They can be described as sections of the bundle Aut(E).
Gauge transformations form an infinite-dimensional Lie group G, where the
group structure is given by pointwise multiplication. The Lie algebra of
G = Γ(Aut(E)) is given by Lie(G) = Ω0(gE). This can be seen by looking



14 Topological Quantum Field Theory and Four-Manifolds

at the local description, since on an open set UαUU the gauge transformation is
given by a map uα : UαUU → G, where G acts through the representation ρ. As
it is well known, the gauge transformations act on the connections according
to

u∗(Aα) = uαAαu−1
α + iduαu−1

α = Aα + i(∇Auα)u−1
α , (2.4)

where
∇Auα = duα + i[Aα, uα]. (2.5)

Gauge transformations act on the curvature as:

u∗(FαFF ) = uαFαFF u−1
α . (2.6)

2.2. SU(2) and SO(3) bundles

In this book we will essentially restrict ourselves to the gauge groups
SU(2) and SO(3), and the vector bundle will correspond to the fundamen-
tal representation of these groups. In the following, SU(2) bundles will be
denoted by E, and SO(3) bundles will be denoted by V , so E will be a two-
dimensional complex vector bundle and V will be a three-dimensional real
vector bundle.

SU(2) bundles over a compact four-manifold are completely classified by
the second Chern class c2(E). In the case of SO(3) bundles, the isomorphism
class is completely classified by the first Pontrjagin class

p1(V ) = −c2(V ⊗ C) (2.7)

and the Stiefel–Whitney class w2(V ) ∈ H2HH (X,Z2). These characteristic
classes are related by

w2(V )2 = p1(V ) mod 4. (2.8)

SU(2) bundles and SO(3) bundles are, of course, related: given an SU(2)
bundle we can form an SO(3) bundle by taking the bundle gE in (2.2). How-
ever, although an SO(3) bundle can be always regarded locally as an SU(2)
bundle, there are global obstructions to lift the SO(3) group to an SU(2)
group. The obstruction is measured precisely by the second Stiefel–Whitney
class w2(V ). Therefore we can view SU(2) bundles as a special case of SO(3)
bundles with zero Stiefel–Whitney class, and this is what we are going to do
in this book. When the SO(3) bundle can be lifted to an SU(2) bundle one
has the relation:

p1(V ) = −4c2(E). (2.9)
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Chern–Weil theory gives a representative of the characteristic class p1(V )/4
in terms of the curvature of the connection:

1
4
p1(V ) =

1
8π2

TrF 2
AF , (2.10)

where FAF is a Hermitian trace-free matrix valued two-form. Notice that
Hermitian trace-free matrices have the form:

ξ =
(

a −ib + c
ib + c −a

)
, a, b, c ∈ R, (2.11)

so the trace is a positive definite form:

Tr ξ2 = 2(a2 + b2 + c2) ≡ 2|ξ|2, ξ ∈ su(2). (2.12)

We define the instanton number k as:

k = − 1
8π2

∫
X

∫∫
TrF 2

AF . (2.13)

If V does not have a lifting to an SU(2) bundle, the instanton number is not
an integer in general, and satisfies instead

k = −w2(V )2

4
mod 1. (2.14)

If V lifts to E then k = c2(E).
The topological invariant w2(V ) for SO(3) bundles may be less famil-

iar, but it has been used when X = T4, the four-torus, to construct gauge
configurations called torons. Consider SU(N) gauge fields on a four-torus of
lengths aµ, µ = 1, . . . , 4. Torons are configurations which are topologically
non-trivial, and are obtained by requiring the gauge fields to be periodic up
to a gauge transformation in two directions:

Aµ(a1, x2) = Ω1(x2)Aµ(0, x2),

Aµ(x1, a2) = Ω2(x1)Aµ(x1, 0),
(2.15)

where we have denoted by Ω A the action of the gauge transformation Ω on
the connection A. Looking at the corners, we find the compatibility condition

Ω1(a2)Ω2(0) = Ω(a1)Ω1(0)Z, (2.16)

where Z ∈ C(SU(N)) = ZN is a central element. We can allow a non-trivial
Z since a gauge transformation which is in the center of SU(N) does not act
on the SU(N) gauge fields. This means that when we allow torons we are
effectively dealing with an SU(N)/ZN gauge theory. For SU(2) this means
that we are dealing with an SO(3) theory, and the toron configurations are,
in fact, topologically non-trivial SO(3) gauge fields with non-zero Stiefel–
Whitney class.
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2.3. ASD connections

The splitting (1.17) between SD and ASD parts of a two-form extends in
a natural way to bundle-valued two-forms, and, in particular, to the curvature
associated to the connection A, FAF ∈ Ω2(gE). We say that a connection is
ASD if

F+
AF = 0. (2.17)

It is instructive to consider this condition in the case of X = R4 with the
Euclidean metric. If {e1, e2, e3, e4} is an oriented orthonormal frame, a basis
for SD (ASD) forms is given by:

{e1 ∧ e2 ± e3 ∧ e4, e1 ∧ e4 ± e2 ∧ e3, e1 ∧ e3 ± e4 ∧ e1}, (2.18)

with ± for SD and ASD, respectively. If we write F = 1
2FµνFF dxµ ∧ dxν then

the ASD condition reads:
F12FF + F34FF = 0

F14FF + F23FF = 0

F13FF + F42FF = 0.

(2.19)

Notice that the second Chern class density can be written as

Tr (F 2
AF ) = {|F+

AF |2 − |F−
AF |2}dµ, (2.20)

where the norm is defined as

|ψ|2 =
1
2
Tr(ψ ∧ ∗ψ). (2.21)

We then see that, with our conventions, if A is an ASD connection the instan-
ton number k is positive. This gives a topological constraint on the existence
of ASD connections.

One of the most important properties of ASD connections is that they
minimize the Yang–Mills action

SYMSS =
1
2

∫
X

∫∫
F ∧ ∗F =

1
4

∫
X

∫∫
d4x

√
gF

√√
µνFF Fµν (2.22)

in a given topological sector. This is so because the integrand of (2.22) can
be written as |F+

AF |2 + |F−
AF |2, therefore

SYMSS =
1
2

∫
X

∫∫
|F+

AF |2dµ + 8π2k,
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which is bounded from below by 8π2k. The minima are attained precisely
when (2.17) holds.

The ASD condition is a non-linear differential equation for non-abelian
gauge connections, and it defines a subspace of the infinite-dimensional con-
figuration space of connections A. This subspace can be regarded as the zero
locus of the section

s : A −→ Ω2,+(gE) (2.23)

given by

s(A) = F+
AF . (2.24)

Our main goal is to define a finite-dimensional moduli space starting from
s−1(0). The key property to take into account is that section (2.24) is equiv-
ariant with respect to the action of the gauge group,

s(u∗(A)) = u∗(s(A)). (2.25)

Therefore if a gauge connection satisfies the ASD condition then any gauge-
transformed connection u∗(A) will be also ASD. By getting rid of this gauge
redundancy one obtains a finite-dimensional moduli space, so we must ‘divide
by G’. In other words, we must quotient s−1(0) by the action of the gauge
group. We are thus led to define the moduli space of ASD connections, MASD,
as follows:

MASD = {[A] ∈ A/G | s(A) = 0}, (2.26)

where [A] denotes the gauge equivalence class of the connection A. The above
space is well defined since s is G-equivariant. In defining (2.26) it is usual to fix
the topological class of the bundle, so one considers only gauge connections in
that class. This means, for an SO(3) bundle V , fixing the instanton number
k and the second Stiefel–Whitney class w2(V ). When we want to emphasize
this property we will write the moduli space as MASD(w2(V ), k).

That the ASD connections form a moduli space is well known in field
theory. For example, on R4 SU(2) instantons are parametrized by a finite
number of data (which include, for example, the position of the instanton),
giving 8k − 3 parameters for instanton number k. The moduli space that
we have just defined is the generalization of this to an arbitrary, compact
four-manifold.
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2.4. Reducible connections

In order to analyse MASD we will first look at the map

G ×A → A (2.27)

and the associated quotient space A/G. The equivalence class of connections
in this quotient space are denoted by [A]. However it is well known that if
the action of the group is not free one has singularities in the quotient space.
We then define the isotropy group of a connection A, ΓA, as

ΓA = {u ∈ G|u(A) = A}, (2.28)

which measures the extent at which the action of G on A is not free. If the
isotropy group is the center of the group C(G) then the action is free and we
say that the connection A is irreducible. Otherwise we say that the connection
A is reducible. Reducible connections are well known in field theory, since they
correspond to gauge configurations in which the gauge symmetry is broken
to a smaller subgroup. For example, the SU(2) connection

A =
(

a 0
0 −a

)
(2.29)

should be regarded as a U(1) connection in disguise. It is clear that a constant
gauge transformation of the form uσ3 (where σ3 = diag(1,−1)) leaves (2.29)
invariant, therefore the isotropy group of A is bigger than the center of SU(2).
We will denote the space of irreducible connections by A∗. It follows from
the definition that the reduced group of gauge transformations Ĝ = G/C(G)
acts freely on A∗.

By using the description of u as a section of Aut(E) and the action on
A given in (2.4), we see that

ΓA = {u ∈ Γ(Aut(E))|∇Au = 0}, (2.30)

i.e., the isotropy group at A is given by the covariantly constant sections of
the bundle Aut(E). It follows that ΓA is a Lie group, and its Lie algebra is
given by

Lie (ΓA) = {f ∈ Ω0(gE)|∇Af = 0}. (2.31)

Therefore, a useful way of detecting whether ΓA is bigger than C(G) (and
has positive dimension) is to study the kernel of ∇A in Ω0(gE). Reducible
connections then correspond to a non-zero kernel of

∇A : Ω0(gE) → Ω1(gE). (2.32)
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In the case of SU(2) and SO(3) a reducible connection has precisely the
form (2.29), with isotropy group ΓA/C(G) = U(1). This means, topologically,
that the SU(2) bundle E splits as

E = L ⊕ L−1, (2.33)

with L a complex line bundle, whilst a reducible SO(3) bundle splits as

V = R ⊕ T, (2.34)

where R denotes the trivial rank-one real bundle over X, and T is a complex
line bundle. The above structure for V is easily derived by considering the
real part of Sym2(E). Notice that if V admits a SU(2) lifting E then T =
L2. There are topological constraints to have these splittings, because (2.33)
implies that c2(E) = −c1(L)2, and (2.34) that

p1(V ) = c1(T )2. (2.35)

When E exists the first Chern class λ = c1(L) is an integral cohomology class.
However, when w2(V ) = 0 it then follows from (2.8) that

 L does not exist as
a line bundle, since its first Chern class is not an integral class but lives in
the lattice

H2(X,Z) +
1
2
w2(V ). (2.36)

In particular, one has that

c1(T ) ≡ w2(V ) mod 2. (2.37)

Therefore reductions of V are in one-to-one correspondence with cohomology
classes α ∈ H2(X,Z) which are congruent to w2(V ) mod 2 and such that
α2 = p1(V ). In the following, when we study the local model of MASD we
will restrict ourselves to irreducible connections.

2.5. A local model for the moduli space

To construct a local model for the moduli space means essentially to
give a characterization of its tangent space at a given point. The way to do
that is to consider the tangent space at an ASD connection A in A, which is
isomorphic to Ω1(gE), and look for the directions in this vector space which
preserve the ASD condition and which are not gauge orbits (since we are
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quotienting by G). The local model for MASD was first obtained by Atiyah,
Hitchin, and Singer.

Let us first address the second condition. We want to find out which
directions in the tangent space at a connection A are pure gauge, i.e., we
want to find slices of the action of the gauge group Ĝ. The procedure is
simply to consider the derivative of the map (2.27) in the G variable at a
point A ∈ A∗ to obtain

C : Lie (G) −→ TAT A, (2.38)

which is nothing but (2.32). Since there is a natural metric in the space
Ω∗(gE) we can define a formal adjoint operator:

C† : Ω1(gE) −→ Ω0(gE). (2.39)

We can then orthogonally decompose the tangent space at A into the gauge
orbit ImC and its complement:

Ω1(gE) = Im C ⊕ Ker C†. (2.40)

This is precisely the slice of the action we were looking for. Locally this means
that the neighborhood of [A] in A∗/G can be modeled by the subspace of TAT A
given by Ker∇†

A. Furthermore, the isotropy group ΓA has a natural action
on Ω1(gE) given by the adjoint multiplication, as in (2.6). If the connection
is reducible the moduli space is locally moded on (Ker∇†

A)/ΓA.
We have obtained a local model for the orbit space A∗/G, but we need

to enforce the ASD condition in order to obtain a local model for the moduli
space of ASD connections modulo gauge transformations. Let A be an irre-
ducible ASD connection, satisfying F+

AF = 0, and let A + a be another ASD
connection, where a ∈ Ω1(gE). The condition we obtain on a starting from
F+

AF +a = 0 is p+(∇Aa + a ∧ a) = 0, where p+ is the projector on the SD part
of a two-form. At linear order we find:

p+∇Aa = 0. (2.41)

Note that the map p+∇A is nothing but the linearization of the section s, ds:

ds : TAT A −→ Ω2,+(gE). (2.42)

The kernel of ds corresponds to tangent vectors that satisfy the ASD condition
at linear order (2.41). We can now give a precise description of the tangent
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space of MASD at A: we want directions which are in Ker ds but which are
not in ImC. First notice that, since s is gauge equivariant, Im C ⊂ Ker ds.
This can be checked by a direct computation

p+∇A∇Aφ = [F+
AF , φ] = 0, φ ∈ Ω0(gE), (2.43)

since A is ASD. Now taking into account (2.40) we finally find

T[TT A]MASD � (Ker ds) ∩ (Ker∇†
A). (2.44)

This space can be regarded as the kernel of the operator

D : Ω1(gE) −→ Ω0(gE) ⊕ Ω2,+(gE) (2.45)

given by D = ds ⊕∇†
C . Since Im C ⊂ Ker ds there is a short exact sequence:

0 −→ Ω0(gE) C−→ Ω1(gE) ds−→ Ω2,+(gE) −→ 0. (2.46)

This complex is called the instanton deformation complex or Atiyah–Hitchin–
Singer (AHS) complex and gives a very elegant local model for the moduli
space of ASD connections. In particular one has that

T[TT A]MASD = H1
AH (2.47)

, where H1
AH is the middle cohomology group of the complex (2.46):

H1
AH =

ker ds

Im C
, (2.48)

The index of the AHS complex is given by

ind = dimH1
AH − dimH0

AH − dimH2
AH , (2.49)

where H0
AH = Ker C and H2

AH = Coker ds. This index is usually called the
virtual dimension of the moduli space. When A is an irreducible connection
(in particular, Ker∇A = 0) and, in addition, it satisfies H2

AH = 0 it is then
called a regular connection. For these connections the dimension of the moduli
space is given by the virtual dimension. The index of the AHS complex can
be computed for any gauge group G using the Atiyah–Singer index theorem.
The result for the group SO(3) is:

dimMASD = −2p1(V ) − 3
2
(χ + σ). (2.50)
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The conclusion of this analysis is that if A is an irreducible ASD con-
nection the moduli space in a neighborhood of this point is smooth and can
be modeled by the cohomology (2.48). If the connection is also regular, the
index of the instanton deformation complex gives the dimension of the moduli
space. Of course, the most difficult part of Donaldson theory is to find the
global structure of MASD. In particular, in order to define the invariants one
has to compactify the moduli space. We are not going to deal with these
subtle issues here, and refer the reader to the references mentioned at the end
of this chapter.

2.6. Donaldson invariants

Donaldson invariants are roughly defined in terms of integrals of dif-
ferential forms in the moduli space of irreducible ASD connections. These
differential forms come from the rational cohomology ring of A∗/G = B∗, and
it is necessary to have an explicit description of this ring. The construction
involves the universal bundle or universal instanton associated with this mod-
uli problem, and proceeds as follows. For the group SU(2) we will consider
the SO(3) bundle gE , and if the gauge group is SO(3) we consider the vector
bundle V . We will denote both of them by gE , since the construction is the
same in both cases. We first consider the space A∗ × gE . This space can be
regarded as a bundle:

A∗ × gE → A∗ × X (2.51)

which is the pullback from the bundle π : gE → X. In this construction the
space A∗ × gE is called a family of tautological connections since the natural
connection on A∗×gE is tautological in the gE direction and trivial in the A∗

direction: at the point (A, p) the connection is given by Aα(π(p)) (where we
have chosen a trivialization {UαUU }, and π(p) ∈ UαUU ). Since the group of reduced
gauge transformations Ĝ acts on both factors, A∗ and gE , the quotient

P = A∗ ×Ĝ gE (2.52)

is a G/C(G)-bundle over B∗ × X. This is the universal bundle associated
with E (or V ). In the case of G = SU(2) or SO(3) the universal bundle is
an SO(3) bundle (since SU(2)/Z2 = SO(3) and SO(3) has no center). Its
Pontrjagin class p1(P) can be computed using Chern–Weil theory in terms of
the curvature of a connection on P. One can construct a natural connection
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on P, called the universal connection, by considering the quotient of the
tautological connection. The curvature of the universal connection will be
denoted by KP. It is a form in Ω2(B∗ × X,gP ), and splits according to the
bi-grading of Ω∗(B∗ ×X) into three pieces: a two-form with respect to B∗, a
two-form with respect to X, and a mixed form (one-form on B∗ and one-form
on X), all with values in gP . The Pontrjagin class is:

p1(P)
4

=
1

8π2
Tr (KP ∧ KP). (2.53)

By decomposing according to the bi-grading we obtain an element in H∗(B∗)⊗
H∗(X). To obtain differential forms on B∗ we just take the slant product with
homology classes in X (i.e., we simply pair the forms on X with cycles on
X). In this way we obtain the Donaldson map:

µ : HiHH (X) −→ H4−i(B∗). (2.54)

One can prove that the differential forms obtained in this way actually gener-
ate the cohomology ring of B∗. Finally, after restriction to MASD we obtain
the following differential forms on the moduli space of ASD connections:

x ∈ H0HH (X) → O(x) ∈ H4(MASD),

δ ∈ H1(X) → I1(δ) ∈ H3(MASD),

S ∈ H2HH (X) → I2II (S) ∈ H2(MASD).

(2.55)

There are also cohomology classes associated with three-cycles in X, but we
will not consider them in this book. In the next chapter we will see that the
Donaldson map arises very naturally in the context of topological quantum
field theory in what is called the descent procedure. In any case, we can now
formally define the Donaldson invariants as follows. Consider the space

A(X) = Sym (H0HH (X) ⊕ H2HH (X)) ⊗ ∧∗H1(X), (2.56)

with a typical element written as x�Si1 · · ·Sip
δjδ 1 · · · δjδ q

. We have to choose
an integer lifting w of the second Stiefel–Whitney class w2(V ) of the gauge
bundle. The Donaldson invariant corresponding to this element of A(X) is
the following intersection number:

Dw,k
X (x�Si1 · · ·Sipδjδ 1 · · · δjδ q ) =∫

M

∫∫
ASD(w,k)

O� ∧ I2II (Si1) ∧ · · · ∧ I2II (Sip) ∧ I1(δjδ 1) ∧ · · · ∧ I1(δjδ q ),

(2.57)
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where we denoted by MASD(w, k) the moduli space of ASD connections with
second Stiefel–Whitney class w2(V ) with lifting w ∈ H2(X,Z) and instanton
number k. The choice of lifting w of w2(V ) leads to a choice of orientation
of the moduli space, and therefore the value of the invariant will depend
on w, and not only on w2(V ). However, this is a rather mild dependence: if
w, w′ ∈ H2(X,Z) are different choices of integer lifting then the corresponding
Donaldson invariants differ by a sign given by

(−1)(w−w′)·w2(X)/2. (2.58)

Notice that since the integrals of differential forms are different from zero only
when the dimension of the space equals the total degree of the form it is clear
that the integral in (2.57) will be different from zero only if the degrees of
the forms add up to dim(MASD(w, k)). It follows from (2.57) that Donaldson
invariants can be understood as functionals:

Dw,k
X : A(X) → Q. (2.59)

The reason that the values of the invariants are rational rather than integer
is subtle and has to do with their being rigorously defined as intersection
numbers only in certain situations (the so called stable range). Outside this
range there is a natural way in which to extend the definition which involves
dividing by 2.

It is very convenient to pack all Donaldson invariants in a generating
functional. Let {δi}i=1,...,b1 be a basis of one-cycles, and {Si}i=1,...,b2 a basis
of two-cycles. We introduce the formal sums

δ =
b1∑

i=1

ζiζζ δi, S =
b2∑

i=1

vi Si, (2.60)

where vi are complex numbers, and ζiζζ are Grassmann variables. We then
define the Donaldson–Witten generating functional as:

Zw
DW(p, ζiζζ , vi) =

∞∑
k=0

Dw,k
X (epx+δ+S), (2.61)

where in the right hand side we are summing over all instanton numbers, i.e.,
we are summing over all topological configurations of the SO(3) gauge field
with a fixed w2(V ). This gives a formal power series in p, ζiζζ , and vi. The
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Donaldson invariants can be extracted from the coefficients of these formal
series. If we assign degree 4 to p, 2 to vi, and 3 to ζiζζ , and we fix the to-
tal degree, we obtain a finite polynomial which encodes all the Donaldson
invariants for a fixed instanton number. Therefore Donaldson invariants at
fixed instanton number can be also regarded as polynomials in the (dual of
the) cohomology of the manifold. Sometimes we will also write (2.61) as a
functional Zw

DW(p, S, δ).
The basic goal of Donaldson theory is the computation of the generating

functional (2.61), and many results have been obtained over the years for
different four-manifolds. More importantly, general structure results about
the Donaldson–Witten generating functional are known, starting with the
seminal work of Kronheimer and Mrowka. In order to explain these structure
results we have to introduce some definitions. Let w ∈ H2(X,Z) be an integer
lifting of the second Stiefel–Whitney class of V . A four-manifold X is said to
be of w-finite type if there is an n ≥ 0 such that(

∂2

∂p2
− 4
)n

Zw
DW(p, S, δ) = 0. (2.62)

The order of w-finite type is the minimum of such n. It has been proved that
if X is a four-manifold with b+

2 > 1 and w, w′ are elements in H2(X,Z), then
the order of w-finite type and the order of w′-finite type are equal. Therefore
we can just talk about manifolds of finite type and of their order without
having to specify the choice of Stiefel–Whitney class. Moreover, it is known
that all four-manifolds with b+

2 > 1 are of finite type. A manifold is said
to be of Donaldson simple type when it is of finite type with n = 1, i.e., its
Donaldson–Witten generating functional satisfies(

∂2

∂p2
− 4
)

Zw
DW(p, S, δ) = 0. (2.63)

From what we have said, this condition does not depend on the choice of
w: if it is true for a particular choice it will be true for any other. Four-
manifolds of simple type play a very special role in Donaldson theory owing
to the following property. Define the Donaldson series as

Dw(S) = Zw
DW(p, S)

∣∣∣∣
p=0

+
1
2

∂

∂p
Zw

DW(p, S)
∣∣∣∣
p=0

, (2.64)

where we have put δ = 0. Notice that the Donaldson series can be regarded
as a map

Dw : Sym∗(H2HH (X)) → Q. (2.65)
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The most important structure result in Donaldson theory is that if a simply
connected four-manifold X with b+

2 > 1 is of simple type then the Donaldson
series has the following structure:

Dw(S) = exp(S2/2)
r∑

s=1

(−1)(w
2+κs·w)/2ase(κs,S), (2.66)

where the sum is over finitely many homology classes κ1, . . . , κr ∈ H2HH (X,Z)
and non-zero rational numbers a1, . . . , ar which do not depend on w. Fur-
thermore, each of the classes κi is characteristic. The classes κi are called
Donaldson basic classes. This result shows, in particular, that the dependence
on w is completely captured by the phase (−1)(w

2+κs·w)/2, therefore we will
sometimes write the Donaldson series for the manifold X and w = 0 as a map

DX = eQ/2
r∑

s=1

ase
κs , (2.67)

where Q is the intersection form and κs acts on an arbitrary two-homology
class by intersection. Notice that the w dependence in (2.66) implies imme-
diately that a change of lifting of w2(V ) leads to the sign difference given by
(2.58) (since κi are characteristic).

Many simply connected four-manifolds of b+
2 > 1 are known to be of

Donaldson simple type, and their Donaldson series have been computed. For
example, the elliptic fibrations E(n) with n ≥ 2 are of Donaldson simple type.
If we denote by f the homology class of the fiber (which is topologically a
torus) one finds:

DE(n) = eQ/2 sinhn−2(f). (2.68)

This means in particular that the Donaldson basic classes are given by

κs = (n − 2s)f, s = 1, . . . , n − 1, (2.69)

and the coefficients as in the Donaldson series (2.67) are

as = (−1)s+122−n

(
n − 2
s − 1

)
, s = 1, . . . , n − 1. (2.70)

Notice that K3 corresponds to n = 2, whose only Donaldson basic class is
the trivial one.

In the non-simply connected case it is useful to introduce the condition
of strong simple type. A four-manifold X is said to be of w-strong simple type
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if it is of Donaldson simple type and, moreover, Zw
DW(p, S, δ) = 0 for δ 
= 0.



We will say that X is of strong simple type if it is of w-strong simple type for
any w ∈ H2(X,Z). Again, if X is of w-strong simple type for some w, it is
of strong simple type for all w, and its Donaldson series is again of the form
(2.66). For example, the manifold Σh × Σg with h, g ≥ 1 is of strong simple
type. When h = 1 the complex manifold YgYY = T2×Σg is an elliptic fibration,
and its Donaldson series is given by

DYgYY = eQ/24g sinh2g−2(f), (2.71)

where f = [T2] is the class of the fiber. When h, g ≥ 2, Yg,hYY = Σg ×Σh is an
algebraic surface of general type, and its Donaldson series is given by

DYg,hYY = 23+7(g−1)(h−1)

{
sinh K g and h even,
cosh K, g or h odd, (2.72)

where K is the class corresponding to the canonical line bundle of Yg,hYY .
It is known that there are manifolds with b+

2 > 1 which are not of strong
simple type, but there are no known simply connected manifolds of b+

2 > 1
which are not of Donaldson simple type. The conjecture that all simply
connected manifolds of b+

2 > 1 are of Donaldson simple type is one of the
major open problems in the field. We refer the reader to the bibliography at
the end of this chapter for more examples of manifolds of Donaldson simple
type and computations of their Donaldson series.

One of the basic goals of Donaldson theory is to give an expression for the
Donaldson–Witten generating function (2.61) as explicit as possible. As will
be shown in this book, it is possible to derive the structure theorem (2.66)
from topological quantum field theory, and, moreover, one can determine
κi, ai very precisely: as Witten discovered, these data involve some simpler
invariants of four-manifolds, the Seiberg–Witten invariants, which will be the
subject of the next chapter.

2.7. Metric dependence

Donaldson invariants turn out to be independent of the metric when
b+
2 > 1. This is closely related to the existence of reducible connections.

Remember that a reducible connection gives a splitting of the SU(2) bundle
according to (2.33). In order for the reducible connection to solve the ASD
equations, we have to solve the equation for an abelian instanton F+ = 0.
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This means, in particular, that c1(L) can be represented by an ASD harmonic
two-form, and in particular it belongs to the intersection

H2,−(X,R) ∩ H2(X,Z). (2.73)

For a generic metric, however, this intersection it just the zero element (unless
b+
2 = 0), since it is the intersection of an integer lattice in H2(X,R) with a

proper subspace. Therefore for a generic metric there are no reducible ASD
connections if b+

2 > 0.
In order to test metric dependence, however, we have to see what happens

to the moduli space of ASD connections as we move along a generic one-
dimensional family of metrics (more precisely, along a one-dimensional family
of conformal classes of metrics, since the instanton equation is conformally
invariant). If b+

2 = 1 then on a generic one-dimensional family we can in
fact find a reducible ASD connection. This will provoke a singularity in the
moduli space, and as consequence the Donaldson invariants will ‘jump’. If,
on the contrary, b+

2 > 1, then we do not find reducible connections along
generic one-dimensional families, and the Donaldson invariants will be truly
metric-independent.

For b+
2 = 1 the metric dependence can be described in more detail as

follows. Let X be a four-manifold of b+
2 = 1. The dependence on the metric

is through the so called period point ω. The period point is defined as the
harmonic two-form satisfying

∗ω = ω, ω2 = 1. (2.74)

Clearly ω depends on the metric through the Hodge dual ∗. More precisely,
it only depends on the conformal class of the metric (i.e., rescaled metrics
g → tg give the same ω). When we vary the conformal class of the metric we
vary at the same time the period point ω in the space H2(X,R), and ω will
describe a curve in the cone

V+VV = {ω ∈ H2(X,R) : ω2 > 0}. (2.75)

This cone can be described in a fairly concrete way. For example, if we take
Xg = S2 × Σg the general period point can be written as

ω =
1√
2
(eθ[S2] + e−θ[Σg]), (2.76)
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and ω describes a hyperbola in H2(X,R) parametrized by −∞ < θ < ∞.
Each point on this hyperbola corresponds to a choice of Kähler metric in¨
S2 × Σg. The limits θ → ±∞ correspond to limiting metrics which give a
very small volume to S2 and Σg, respectively.

Imagine now that on a manifold of b+
2 = 1 we start varying the period

point ω in such a way that at a certain value there exists a cohomology class
ζ ∈ H2(X) which satisfies

ζ ≡ w2(V ) mod 2, ζ2 < 0, (ζ, ω) = 0. (2.77)

We then say that the element ζ defines a wall in V+VV :

WζWW = {ω : (ζ, ω) = 0}. (2.78)

The complements of these walls are called chambers, and the cone V+VV is then
divided in chambers separated by walls.

What is the meaning of these walls? If ζ ∈ H2(X,Z) satisfies (2.77) then
it is the first Chern class of a line bundle T which admits an ASD connection,
since ζ+ = (ζ, ω)ω = 0. The condition that ζ is congruent to w2(V ) mod 2 is
precisely the condition (2.37). Therefore ζ is the first Chern class associated
with a reducible solution of the ASD equations, and it causes a singularity in
moduli space: the Donaldson invariants jump when we pass through such a
wall.

In summary, when b+
2 = 1 the Donaldson invariants depend on the metric

because they jump at walls, but they are metric independent in each chamber.
We will represent by Zζ

±(p, S, δ) the Donaldson–Witten generating function
after and before passing the wall defined by ζ, respectively. One of the basic
problems in Donaldson theory for manifolds of b+

2 = 1 is to determine the
jump in the generating function,

Zζ
+(p, S, δ) − Zζ

−(p, S, δ) = WCζ(p, S, δ), (2.79)

which is usually called the wall crossing term. It was conjectured by Kotschick
and Morgan that the wall crossing term only depends on the classical ho-
mology ring of the four-manifold. Assuming the validity of this conjecture
Gottsche was able to find a universal formula for WC(¨ ζ) in the simply con-
nected case. As we will describe in Chapter 8, the u-plane integral allows
an explicit evaluation of the wall crossing term that confirms the Kotschick-
Morgan conjecture and reproduces Göttsche’s formula. In the non-simply¨
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connected case only partial results are known mathematically. It will be also
shown in Chapter 8 how by using the u-plane integral one can find a universal
formula in the non-simply connected case as well.
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Chapter 3

The Theory of Seiberg–Witten Invariants

One of the major breakthroughs in the study of four-manifolds came
in 1994, when Witten showed that the mathematical problem that motivated
the introduction of Donaldson invariants —the classification of four-manifolds
up to diffeomorphism— can be studied successfully by looking at a much
simpler set of equations, the so called Seiberg–Witten equations. Witten
also showed, basing on physical arguments, that Seiberg–Witten invariants
contain all the information of Donaldson invariants, and that they provide
the missing ingredient in the structure theorem of Kronheimer and Mrowka.
In this section we will give a brief review of Seiberg–Witten invariants and
their basic properties.

3.1. The Seiberg–Witten equations

Let X be an oriented closed Riemannian four-manifold, and let L be the
determinant line bundle of a Spinc structure. Positive chirality spinors, i.e.,
sections of S+ ⊗ L1/2, will be denoted by M . The Seiberg–Witten equations
(also known as Seiberg–Witten monopole equations) are moduli equations
for a pair (A, M) given by a U(1) connection on L and a spinor M . Moduli
equations for pairs consisting of a gauge connection and a section of some
bundle have been considered many times (such as for example the Hitchin
equations and vortex equations on Riemann surfaces). Although the rationale
for introducing the Seiberg–Witten equations for pairs (A, M) comes from
the analysis of a twisted N = 2 supersymmetric theory, one can just write
down the equations and explore their properties and the invariants which they
define. This is what we are going to do in this chapter.

A section of the spinor bundle Mα̇MM transforms in the 2 of SU(2)+. On
the other hand, F+ is a SD form and it transforms in the 3. In order to

31
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couple them we form a symmetric tensor in the 3 out of MαMM by considering

M (α̇Mβ̇M ) =
( −M1M

∗
2MM 1

2 (|M1|2 − |M2MM |2)
1
2 (|M1|2 − |M2MM |2) M∗

1 M2MM

)
. (3.1)

The Seiberg–Witten equations are:

F+

α̇β̇
+ 4iM (α̇Mβ̇M ) = 0,

Dαα̇
L Mα̇MM = 0,

(3.2)

where F+

α̇β̇
= σµν

α̇β̇
F+

µνF , F is the curvature of the U(1) connection on L, and DL

is the Dirac operator for the bundle S+ ⊗ L1/2. Using (3.1) and the explicit
form of σµν

α̇β̇
given in Appendix A, we can write the first equation as:

1
2
(F12FF + F34FF ) = |M1|2 − |M2MM |2,

1
2
(F13FF + F42FF ) = i(M1M

∗
2MM − M∗

1 M2MM ),

1
2
(F14FF + F23FF ) =M1M

∗
2MM + M∗

1 M2MM .

(3.3)

3.2. The Seiberg–Witten invariants

The procedure for defining the Seiberg–Witten invariants is very similar
to the procedure followed in Donaldson theory. First, one has to construct
the moduli space of solutions of the equations (3.2). We will just present a
local analysis, as we did in the case of MASD.

In the case of the Seiberg–Witten equations the configuration space is
C = A × Γ(X, S+ ⊗ L1/2), where A is the moduli space of U(1)-connections
on L. The group G of gauge transformations of the bundle L acts on this
configuration space according to (2.4):

g∗(Aµ) = Aµ + i∂µ∂ log g,

g∗(M) = gM,
(3.4)

where M ∈ Γ(X, S+ ⊗ L1/2) and g takes values in U(1). The infinitesimal
form of these transformations becomes, after putting g = exp(iφ):

δA = −dφ,

δM = iφM.
(3.5)
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The moduli space of solutions of the Seiberg–Witten equations, modulo gauge
transformations, will be denoted by MSW. The tangent space of the config-
uration space at the point (A, M) is just T(TT A,M)C = TAT A ⊕ TMT Γ(X, S+ ⊗
L1/2) = Ω1(X) ⊕ Γ(X, S+ ⊗ L1/2), since Γ(X, S+ ⊗ L1/2) is a vector space.

A first step towards understanding the structure of the moduli space of
solutions of the Seiberg–Witten equations modulo gauge transformations is
to construct a slice of the gauge action, as we did in Donaldson theory. For
this we need an explicit construction of the gauge orbits, given by the map
G × C → C. The space tangent to these orbits is the map

C : Lie (G) −→ TC. (3.6)

whose explicit expression in local coordinates can be obtained from (3.5):

C(φ) = (−dφ, iφM) ∈ Ω1(X) ⊕ Γ(X, S+ ⊗ L1/2), φ ∈ Ω0(X). (3.7)

The local model of the moduli space is then given by the zero locus in kerC†

of the following map s : C → F , where F = Ω2,+(X) ⊕ Γ(X, S− ⊗ L1/2):

s(A, M) =
(
F+

α̇β̇
+ 4iM (α̇Mβ̇M ), D

αα̇
L Mα̇MM

)
. (3.8)

As in Donaldson theory, we study the linearization of this map, ds :
T(TT A,M)C → F . The explicit expression is:

ds(ψ, µ) =
(

(p+(dψ))α̇β̇ +4i
(
M (α̇µβ̇)+µ(α̇Mβ̇M )), D

αα̇
L µα̇+

i

2
ψαα̇Mα̇MM

)
, (3.9)

where p+ is the projector on SD forms, and we have written the connection
and spinor as A + ψ, M + µ. Instead of studying the restriction of this map
to ker C† we can consider the instanton deformation complex:

0 → Ω0(X) C→ Ω1(X)⊕Γ(X, S+ ⊗L1/2) ds→ Ω2,+(X)⊕Γ(X, S− ⊗L1/2) → 0.

(3.10)
which encodes the local model of the Seiberg–Witten moduli space and its
virtual dimension. One can easily verify that (3.10) is, in fact, a complex, and
after using the index theorem prove that the virtual dimension of Seiberg–
Witten moduli space is

dimMSW =
1
4
(
c1(L)2 − 2χ − 3σ

)
. (3.11)
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It is convenient to denote

λ =
1
2
c1(L), (3.12)

which in general is not an integer class. Since c1(L) ≡ w2(X) mod 2 (it is
characteristic), λ is an element in the lattice

H2(X,Z) +
1
2
w2(X). (3.13)

From now on we will use λ to specify the topological class of the determi-
nant line bundle involved in the Seiberg–Witten equations. In particular, the
dimension of the moduli space (3.11) will be denoted by

dλ = λ2 − 2χ + 3σ

4
. (3.14)

We then have a local model for the moduli space of solutions to the Seiberg–
Witten moduli equations, which has virtual dimension (3.11). A more detailed
analysis shows that this moduli space, in contrast to the ASD moduli space,
is compact, and this makes life much easier!

The second step in defining the invariants is to construct a universal
bundle, as in Donaldson theory. The procedure is very similar. Let PUPP (1) be
the principal U(1) bundle associated with the determinant line bundle L → X

of a Spinc-structure on X. We will denote by M∗ ⊂ M = A×Γ(X, S+⊗L1/2)
the subspace of irreducible pairs in the configuration space. On the space

M∗ × PUPP (1) (3.15)

there is an action of the gauge group G = Map(X, U(1)). The quotient

PU(1) = M∗ ×G PUPP (1) (3.16)

is a U(1)-bundle over (M∗/G) × X. This is the universal bundle associated
with PUPP (1) for the Seiberg–Witten moduli problem. The first Chern class of
this bundle is a closed two-form on the base (M∗/G) × X,

c1(PU(1)) =
1
2π

F , (3.17)

and therefore gives an element in H∗(M∗/G) ⊗ H∗(X). The analog of the
Donaldson map is now

µ : HiHH (X) −→ H2−i(M∗/G). (3.18)
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The image of a point in X gives, after restriction to MSW,

φ ∈ H2(MSW). (3.19)

Given a basis of one-cycles δ1, . . . , δr ∈ H1(X,Z) with duals β1, . . . , βr ∈
H1(X,Z), we define the following one-forms:

νi = µ(δi), i = 1, . . . , b1, (3.20)

again restricted to MSW. We can now define the Seiberg–Witten invariant
associated to a Spinc-structure specified by λ ∈ H2(X,Z)+ 1

2w2(X) as a map

SWλ : ∧∗H1(X,Z) → Z (3.21)

defined by

SWλ(βi1 ∧ · · · ∧ βir
) =
∫
M

∫∫
λ

νi1 ∧ · · · ∧ νir
∧ φ

1
2 (dλ−r). (3.22)

Clearly dλ − r has to be even, otherwise the invariant is zero. We will denote

SW(λ) =
∫
M

∫∫
λ

φdλ/2 (3.23)

as the Seiberg–Witten invariant in the case r = 0. This is the only relevant
invariant in the simply connected case, and we can also regard it as a map from
the characteristic elements in H2(X,Z) to Z. We will say that λ is a Seiberg–
Witten basic class if the map SWλ is not identically zero. Of course, if λ is a
basic class then 2λ is characteristic. In the simply connected case, a Seiberg–
Witten basic class is just a class λ such that SW(λ) 
= 0. A fundamental


result of the theory of Seiberg–Witten invariants is that the number of basic
classes on a four-manifold is finite.

We will say that a manifold X with b+
2 > 1 is of Seiberg–Witten simple

type if all basic classes have dλ = 0. This means, in particular, that SWλ(β1∧
· · ·∧βr) = 0 for r > 0, and the Seiberg–Witten invariants reduce to (3.23). All
known simply connected manifolds with b+

2 > 1 are of Seiberg–Witten simple
type. It is easy to see by using (1.27) that if a manifold is of Seiberg–Witten
simple type then

χh =
χ + σ

4
(3.24)
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is an integer number. There are many classes of manifolds for which χh is
always an integer. For example, on complex manifolds one has:

χh = 1 − h1,0 + h2,0, (3.25)

where hp,q is the dimension of Hp,q(X), and χh is known as the holomorphic
Euler characteristic. It is possible to show that if λ is a Seiberg–Witten basic
class then −λ is a Seiberg–Witten basic class as well, and, furthermore, in
the simple type case their Seiberg–Witten invariants are related as follows:

SW(−λ) = (−1)χhSW(λ). (3.26)

Another important property of Seiberg–Witten invariants is the following
vanishing result: if X is a four-manifold of b+

2 > 0 which admits a Riemannian
metric of positive curvature, then the Seiberg–Witten invariants necessarily
vanish. This follows from the Weitzenbock formula for the Dirac operator.¨

One of the basic advantages of Seiberg–Witten invariants is that they are
relatively easy to compute. To end this section we will give some examples of
Seiberg–Witten invariants of four-manifolds. The elliptic fibrations E(n) with
n > 1 turn out to be of Seiberg–Witten simple type, and the basic classes are

2λs = (n − 2s)f, s = 1, . . . , n − 1, (3.27)

and their Seiberg–Witten invariants are given by

SW(λs) = (−1)s+1

(
n − 2
s − 1

)
, s = 1, . . . , n − 1. (3.28)

Notice that the Seiberg–Witten basic classes agree with the Donaldson basic
classes shown in (2.69).

Another class of four-manifolds of Seiberg–Witten simple type are mini-
mal surfaces of general type with b+

2 > 1. In that case the only Seiberg–Witten
basic classes turn out to be 2λ = ±K, where K is the canonical line bundle,
and their Seiberg–Witten invariants are given respectively (−1)χh (with χh

given by (3.24)) and 1.

3.3. Metric dependence

Like Donaldson invariants, Seiberg–Witten invariants exhibit metric de-
pendence when b+

2 = 1. The reason is also very similar. If we look at (3.4) we
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see that reducible pairs (i.e., pairs (A, M) with a non-trivial isotropy group)
must have M = 0. Therefore, reducible pairs that satisfy the Seiberg–Witten
equations are just abelian instantons F+ = 0. This means that if b+

2 = 1, as
we move along a one-dimensional family we will find a reducible solution of
the Seiberg–Witten equations, and therefore the value of the Seiberg–Witten
invariants will change. As in Donaldson theory, the metric dependence has
a structure of chambers and walls in the cone V+VV . However, the walls are
defined in this case by the conditions:

2λ ≡ w2(X) mod 2, λ2 < 0, (λ, ω) = 0, dλ ≥ 0, (3.29)

where 2λ is the first Chern class of the determinant line bundle of a Spinc

structure. The third condition in (3.29) tells us that this line bundle provides
a reducible solution of the Seiberg–Witten equations: M = 0, F+ = 0, and
this causes a jump in the value of the Seiberg–Witten invariant, so we have
a wall crossing term:

SW+
λ (β1 ∧ · · ·βr) − SW−

λ (β1 ∧ · · ·βr) = WCλ(β1 ∧ · · ·βr). (3.30)

In this case, life is much simpler than in Donaldson theory. It is not very
difficult to show that, when X is simply connected

SW+(λ) − SW−(λ) = ±1. (3.31)

The case in which X is not simply connected has also been worked out. We
will discuss the general formula for wall crossing of Seiberg–Witten invariants
when we discuss the u-plane integral.
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Chapter 4

Supersymmetry in Four Dimensions

This chapter deals with supersymmetry in four dimensions. It contains
a description of all the supersymmetric theories which will be used in future
chapters. The scope of this description is to provide the elements of these
theories which are needed for constructing topological quantum field theo-
ries. After a brief introduction to the supersymmetry algebra and to the
notions of superspace and superfield, all the relevant models for the scope
of this book involving supersymmetric Yang–Mills theory in four dimensions
are considered and formulated. In this chapter we will work in Minkowski
space with the metric ηµν = diag(−1, 1, 1, 1). A summary of our conventions
is contained in Appendix A.

4.1. The supersymmetry algebra

Supersymmetry is the only non-trivial extension of Poincaré symmetry´
that is compatible with the general principles of relativistic quantum field
theory. Besides the ordinary generators of the Poincaré group the supersym-´
metric algebra possesses N fermionic generators,

Qαu, Q
u

α̇, u = 1, . . . ,N , (4.1)

which transform in the spinorial representations S and S, respectively, under
the Lorentz group (see Appendix A for conventions regarding spinors). The
resulting super-Poincaré algebra extends the usual Poincar´´ e algebra introduc-´
ing anticommutators for these fermionic generators.

The part of the algebra involving the fermionic generators has the form:

{Qαu, Q
v

β̇} = 2δv
uσµ

αβ̇
PµPP ,

[PµPP , Qαv] = 0,

[Mµν , Qαu] = −(σµν)α
βQβu,

{Qαu, Qβv} = 2
√

2εαβZuvZZ ,

[PµPP ,Q
u

α̇] = 0,

[Mµν , Q
α̇u

] = −(σµν)α̇
β̇Q

β̇u
,

(4.2)

39
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where u, v = 1, . . . ,N . The quantities σµ
αα̇, (σµν)α

β and (σµν)α̇
β̇ which

appear on the right hand side of these equations are defined in Appendix A.
The terms ZuvZZ are the so called central charges. They satisfy

ZuvZZ = −ZvuZZ , (4.3)

and they commute with all the generators of the algebra that appear in (4.2).
Property (4.3) implies that N ≥ 2 in order to have central charges.

When the central charges vanish, the theory has an internal U(N )R

symmetry:
Qαv → UvUU wQαw, Q

v

α̇ → Uw
vQ

w

α̇ , (4.4)

where U ∈ U(N )R, and U is the complex conjugate of U . The generators of
this symmetry will be denoted by Ba. Their commutation relations with the
fermionic generators are:

[Qαv, Ba] = (ba)v
wQαw, [Q

w

α̇ , Ba] = −Q
v

α̇(ba)v
w, (4.5)

where ba = ba†. The central charges are linear combinations of the U(N )R

generators,
ZuvZZ = duv

aBa. (4.6)

If the central charges are not zero the internal symmetry becomes reduced
to USp(N ), formed by the unitary transformations that leave invariant the
2-form (4.6) in N dimensions. The U(1)R of the internal symmetry (4.4),
with generator R, leads to the following chiral symmetry,

[Qαv, R] = Qαv, [Q
w

α̇ , R] = −Q
v

α̇ . (4.7)

This symmetry is typically anomalous quantum mechanically, and quantum
effects break it down to a discrete subgroup. Explicit realizations of this
symmetry will appear when considering supersymmetric Yang–Mills theories
with extended supersymmetry.

4.2. N = 1 superspace and superfields

In order to find a local realization of supersymmetry one has to extend
the usual Minkowski space to the so called superspace. In this section we
are going to develop the basics of N = 1 superspace, a framework which is
extremely useful for formulating supersymmetric field theories. The first task
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is to construct a local realization of the supersymmetry algebra (4.2) for the
case in which there are only two fermionic generators Qα, Q

α̇
.

Superspace is obtained by adding four spinor coordinates, θα, θα̇, to the
four space-time coordinates xµ. The generator of supersymmetric transfor-
mations in superspace is

iξαQα + iξα̇Q
α̇

= i(ξQ − ξQ), (4.8)

where, ξα, ξα̇, are (fermionic) transformation parameters, and Qα, Qα̇ furnish
a representation of the algebra (4.2). A standard choice in terms of derivatives
on superspace is provided by,

Qα = −i

(
∂

∂θα
− iσµ

αα̇θ
α̇

∂µ

)
, Qα̇ = i

(
∂

∂θ
α̇
− iθασµ

αα̇ ∂µ

)
. (4.9)

They satisfy the anticommutation relations,

{Qα, Qα̇} = −2iσµ
αα̇ ∂µ∂ , (4.10)

and therefore since PµPP = −i∂µ∂ they generate a representation of the su-
persymmetry algebra (4.2) for N = 1. Under these generators superspace
coordinates transform as,

xµ →x′µ = xµ + iθσµξ − iξσµθ ,

θ → θ′ = θ + ξ ,

θ → θ
′
= θ + ξ .

(4.11)

A superfield is just a function H(x, θ, θ) on superspace. Since the θ-
coordinates are anti-commuting the Taylor expansion in the fermionic coor-
dinates truncates after a finite number of terms. Therefore, the most general
N = 1 superfield can always be expanded as

H(x, θ, θ) =f(x) + θφ(x) + θχ(x) + θθm(x) + θθn(x) + θσµθvµ(x)

+ θθθλ(x) + θθθψ(x) + θθθθd(x) .
(4.12)

In this expression f(x), φ(x), etc., are ordinary fields and are called com-
ponent fields of the superfield H. They are grouped into multiplets which
correspond to irreducible representations of supersymmetry. Under the su-
persymmetry transformations (4.8), superfields transform as

δH = i(ξQ − ξQ)H, (4.13)
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and from this expression one can obtain the transformation of the component
fields.

In order to define constraints on superfields it is useful to define super-
covariant derivatives. A standard choice is the following:

Dα =
∂

∂θα
+ iσµ

αα̇ θ
α̇
∂µ , Dα̇ = − ∂

∂θ
α̇
− iσµ

αα̇θα ∂µ , (4.14)

which satisfy

{Dα, Dα̇} = −2iσµ
αα̇ ∂µ, {Dα, Qα̇} = {Qα, Dα̇} = 0. (4.15)

The generic superfield gives a reducible representation of the supersym-
metry algebra. In order to obtain irreducible representations one must impose
constraints. This can be done with the help of the super-covariant derivatives
(4.14). There are two different N = 1 irreducible multiplets: the chiral mul-
tiplet and the vector multiplet. We will consider the first one in this section.
The other one leads to N = 1 supersymmetric Yang–Mills theory, which is
the subject of the next section.

The chiral multiplet is represented by a superfield Φ which satisfies the
following constraint:

Dα̇Φ = 0. (4.16)

Superfields satisfying this constraint are also called chiral superfields. The
constraint can be easily solved by noting that if yµ = xµ + iθσµθ, then

Dα̇yµ = 0, Dα̇θβ = 0 . (4.17)

Therefore, any function of (y, θ) is a chiral superfield. We can then write

Φ(y, θ) = φ(y) +
√

2θαψα(y) + θ2F (y) , (4.18)

and conclude that a chiral superfield contains two complex scalar fields, φ

and F , and a spinor ψα. These are called component fields. In a similar way
we can define an anti-chiral superfield by DαΦ† = 0, which can be expanded
as

Φ†(y†, θ) = φ†(y†) +
√

2θψ(y†) + θ
2
F †(y†) , (4.19)

where, yµ† = xµ − iθσµθ. Again, its field content is a spinor and two complex
scalars.
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Supersymmetric transformations are computed using the generator (4.8),
which acts on superfields in the manner stated in (4.13). Defining the super-
symmetric transformations of the components fields by the relation:

δΦ(y, θ) = δφ(y) +
√

2θαδψα(y) + θ2δF (y) (4.20)

one finds
δφ =

√
2ξαψα,

δψα =
√

2ξαF + i
√

2ξ
α̇
σµ

αα̇∂φ,

δF = i
√

2ξ
α̇
σµ

αα̇∂µψα.

(4.21)

In terms of the original variables, the chiral superfields Φ and Φ† take
the form

Φ(x, θ, θ) =φ(x) + iθσµθ∂µφ − 1
4
θ2θ

2∇2φ

+
√

2θψ(x) − i√
2
θθ∂µψσµθ + θθF (x) ,

Φ†(x, θ, θ) =φ†(x) − iθσµθ∂µφ† − 1
4
θ2θ

2∇2φ†

+
√

2θψ(x) +
i√
2

θθ θσµ ∂µψ + θθF †(x) .

(4.22)

Actions in superspace are constructed using the Berezin integral. For
each anticommuting coordinate θ this integral is defined as a linear operation
on superfields such that ∫

dθ = 0,

∫
dθ θ = 1. (4.23)

We use conventions such that for more than one θ one has
∫

d2θ θ2 = 1 and∫
d2θ θ

2
= 1. Notice that θ-integrals pick up the highest component of the

superfield. The Berezin integral of a superfield is invariant under supersym-
metric transformations when one integrates over the full measure d2θ d2θ.
One can also obtain invariant actions integrating over the chiral (anti-chiral)
measure, d2θ (d2θ), when the integrand is a chiral (anti-chiral) superfield.
The action for the kinetic part of the chiral multiplet takes the form:

1
4

∫
d4x d2θ d2θ Φ†Φ =

∫
d4x (φ†∇2φ − i

2
ψ

α̇
σµ

αα̇∂µψα − F †F ), (4.24)

which leads to the standard kinetic terms for a complex scalar φ and a spinor
ψα. The field F turns out to be an auxiliary field.
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Among the possible terms that could be added to the previous action it
is worth to describe the one that leads to mass terms. It has the form:

m

2

∫
d4x d2θ Φ2 +

m

2

∫
d4x d2θ Φ

2
=

m

∫
d4x (φF + φ†F † +

1
2

(
ψαψα + ψα̇ψ

α̇
)
)
.

(4.25)

Considering the sum of the actions (4.24) and (4.25), and integrating out the
auxiliary field F , one obtains the standard action of a massive complex scalar
field φ and a massive spinor ψα:∫

d4x
(
φ†∇2φ − i

2
ψ

α̇
σµ

αα̇∂µψα − mφ†φ − m

2
(ψαψα + ψα̇ψ

α̇
)
)
. (4.26)

Now the supersymmetry transformations (4.21) simplify to

δφ =
√

2ξαψα,

δψα = i
√

2ξ
α̇
σµ

αα̇∂φ,
(4.27)

but they close only on-shell, i.e., one needs to use the field equations to recover
the supersymmetric algebra.

The superspace formalism allows to obtain very easily the most general
action involving several chiral superfields. Let us denote by Φ a set of n chiral
superfields, Φ = (Φ1, . . . ,Φn). The most general N = 1 supersymmetric
Lagrangian for the scalar multiplet (including the interaction terms) is given
by

L =
∫

d4θ K(Φ, Φ†) +
∫

d2θW(Φ) +
∫

d2θW(Φ†) , (4.28)

where K and W are arbitrary functions. The kinetic term for the scalar field
φi (the θ- independent component of Φi) takes the form,

gij∂µφi∂
µφ†

j , (4.29)

where
gij =

∂2K

∂Φi∂Φ†
j

, (4.30)

is in general a non-trivial metric for the space of fields Φ. This has the form of
a Kähler metric derived from a K¨¨ ahler potential¨ K(Φi,Φ

†
j). For this reason,

the function K(Φ,Φ†) is referred to as the Kahler potential¨ . The simplest
Kahler potential, corresponding to the flat metric, is¨

K(Φ, Φ†) =
n∑

i=1

Φ†
iΦi,
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which leads to the free action (4.24) for a set of n massless scalars and n

massless spinors.
The function W(Φ) in (4.28) is an arbitrary holomorphic function of

chiral superfields, and it is called the superpotential. It can be expanded as,

W(Φi) =W(Ai +
√

2θψi + θθFiFF )

=W(Ai) +
∂W
∂Ai

√
2θψi + θθ

(
∂W
∂Ai

FiFF − 1
2

∂2W
∂AiAj

ψiψj

)
.

(4.31)

Supersymmetric interaction terms can be constructed in terms of the super-
potential and its conjugate. Finally, we have to mention that there is U(1)R

symmetry that acts as follows:

R Φ(x, θ) = e2inαΦ(x, e−iαθ) ,

R Φ†(x, θ) = e−2inαΦ†(x, eiαθ) .
(4.32)

Under this the component fields transform as

A → e2inαA ,

ψ → e2i(n−1/2)αψ ,

F → e2i(n−1)αF .

(4.33)

4.3. N = 1 supersymmetric Yang–Mills theories

The other basic N = 1 multiplet is the vector multiplet. It is the main
ingredient in N = 1 supersymmetric Yang–Mills theories. We will discuss first
the abelian version of this multiplet. Then we will deal with the non-abelian
case and its coupling to chiral multiplets.

The N = 1 vector multiplet is represented by a real superfield satisfying
V = V †. In components, it has the following expansion:

V (x, θ, θ) = C + iθχ − iθχ +
1
2
θ2(M + iN) +

1
2
θ
2
(M − iN) − θσµθAµ

+ iθ2θ(λ +
i

2
σµ∂µχ) − iθ

2
θ(λ +

i

2
σµ∂µχ) +

1
2
θ2θ

2
(D − 1

2
∇2C) .

(4.34)
By performing an abelian gauge transformation

V → V + i(Λ − Λ†), (4.35)

where Λ (Λ†) are chiral (anti-chiral) superfields, one can set C = M = N =
χ = 0. This is the so called Wess–Zumino gauge. In this gauge the superfield
V takes the form,

V = −θσµθAµ + iθ2θλ − iθ
2
θλ +

1
2
θ2θ

2
D , (4.36)
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and it turns out that V 2 = 1
2AµAµθ2θ

2
and V 3 = 0. The Wess–Zumino gauge

breaks all the component gauge symmetries in (4.35) except the one of the
abelian gauge field Aµ. The abelian superfield strength is defined by,

WαWW = −1
4
D

2
DαV , W α̇ = −1

4
D2Dα̇V. (4.37)

It is gauge invariant, and WαWW (W α̇) is a chiral (anti-chiral) spinorial superfield.
In the Wess–Zumino gauge WαWW takes the form

WαWW = −iλα(y) + θαD − i

2
(σµσνθ)α FµνFF + θ2(σµ∂µλ)α . (4.38)

In order to obtain the supersymmetric transformations of the component
fields one needs to take into account restoring gauge transformations to remain
in the Wess–Zumino gauge. This task is carried out considering the full
(supersymmetric (4.13) + gauge (4.35)) transformation of the real superfield
V ,

δV = i(ξQ − ξQ)V + i(Λ − Λ†), (4.39)

and solving for the components of Λ imposed by C = M = N = χ = 0. To
carry this out one uses all the components of Λ (which has an expansion as the
chiral superfield (4.18)) except the real part of its θ-independent component.
Denoting this real part by υ/2, the supersymmetric and gauge transforma-
tions of the component fields which remain in the Wess–Zumino gauge (see
(4.36)) are:

δAµ = ∂µυ − iσµ
αα̇(ξαλ

α̇ − ξ
α̇
λα),

δλα = iξαD − iσµν
α

βξβFµνFF ,

δD = − σµ
αα̇(ξα∂µλ

α̇ − ξ
α̇
∂µ∂ λα),

(4.40)

where, FµνFF = ∂µAν − ∂νAµ, is the ordinary Yang–Mills field strength. These
supersymmetric transformations close up to gauge transformations, as ex-
pected from the fact that one works in the Wess–Zumino gauge.

The action of the theory is obtained using the gauge invariant spinorial
superfield WαWW . Since it is chiral and one needs a scalar, the only quadratic
choices are the real and imaginary parts of∫

d4x d2θ WαWαWW . (4.41)

A convenient way to parametrize the most general quadratic action is achieved
introducing the complex parameter:

τ =
Θ
2π

+ i
4π

g2
, (4.42)
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where g and Θ are real parameters. We have used in (4.42) Θ instead of the
usual parameter, θ, to avoid confusion with the superspace coordinates. The
action in superspace takes the form

1
4π

Im
(
τ

∫
d4x d2θ WαWαWW

)
. (4.43)

This leads to the free action of N = 1 supersymmetric Yang–Mills theory in
the abelian case:

1
g2

∫
d4x
(
− 1

4
FµνFµνFF − iλασµ

αα̇∂µλ
α̇

+
1
2
D2
)
− Θ

64π2
εµνρσFµνFF FρσFF , (4.44)

where εµνρσ is the totally antisymmetric tensor associated to the volume form
with ε1234 = 1.

We will now study the non-abelian case. Let G be a gauge group and let
us consider a set of real vector superfields V a, a = 1, . . . ,dimG. If T a, a =
1, . . . ,dimG, are group generators one constructs the group-valued superfield
V = V aT a. The non-abelian generalization of the gauge transformation (4.35)
is:

e2V → e−iΛ†
e2V eiΛ, (4.45)

where Λ = ΛaT a, and Λa, a = 1, . . . ,dimG, are chiral superfields. The factor
2 in e2V is introduced for convenience. With this choice covariant derivatives
with the standard normalizations will appear naturally. Notice that to first
order the transformation (4.45) matches (4.35). This transformation can be
also used to set the components Ca = Ma = Na = χa = 0, a = 1, . . . ,dimG,
and thus one can also work in this case in the Wess–Zumino gauge. In this
gauge the superfields V a acquire the same form as their abelian counterpart
in (4.36), and V n = 0 for n > 2. Thus e2V , the basic object of the theory,
has the simple expansion,

e2V = 1 + 2V + 2V 2. (4.46)

The non-abelian gauge field strengths are defined by

WαWW = −1
8
D

2
e−2V Dαe2V , W α̇ = −1

8
D2e2V Dα̇e−2V , (4.47)

which, to first order, reduce to the abelian definition (4.37). Under gauge
transformations they transform covariantly,

WαWW → W ′
αWW = e−iΛWαWW eiΛ, W α̇ → W

′
α̇ = e−iΛ†

WαWW eiΛ†
. (4.48)
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The component expansion of W a
αWW in the Wess–Zumino gauge takes the form,

W a
αWW = −iλa

α + θαDa − i

2
(σµσνθ)αF a

µνF + θ2σµ∇µλ
a
, (4.49)

where

F a
µνF = ∂µAa

ν − ∂νAa
µ + fabcAb

µAc
ν , ∇µλ

a
= ∂µλ

a
+ fabcAb

µλ
c
, (4.50)

and fabc are the structure constants of the gauge group, [T a, T b] = ifabcT c. In
the adjoint representation the generators T a take the form: (T a)bc = −ifabc.

The supersymmetric transformations in the non-abelian case are ob-
tained following the same strategy as in the abelian case. Gauge restoring
transformations have to be performed to remain in the Wess–Zumino gauge.
The starting point is to consider the full transformation, the analog of (4.39)
in the previous case. Owing to the exponential form of the gauge transfor-
mation (4.45) its form linearized in Λ is an infinite series in powers of V .
However, in the Wess–Zumino gauge it becomes truncated at second order.
The full transformation which one must take into consideration is,

δV a = i(ξQ − ξQ)V a +
i

2
(Λ − Λ†)a − 1

2
fabcV b(Λ + Λ†)c

− i

6
fabcfcdeV bV d(Λ − Λ†)e.

(4.51)

To maintain the conditions imposed on the Wess–Zumino gauge, Ca = Ma =
Na = χa = 0, one needs to use all the component fields of Λ except the
real part of its lower component. Denoting it by υa/2 one finds the following
set of transformations for the component fields that do not vanish in the
Wess–Zumino gauge:

δAa
µ =∇µυa − iσµ

αα̇(ξαλ
α̇a

+ ξ
α̇
λαa),

δλa
α = fabcυbλc

α + iξαDa − iξβ(σµν)α
βF a

µνF ,

δDa = fabcυbDc − σµ
αα̇(ξα∇µλ

α̇a − ξ
α̇∇µλαa),

(4.52)

being ∇µυa = ∂µυa + fabcAb
µυc.

The action is obtained in the same way as its abelian counterpart (4.44).
As was pointed out there, it is convenient to introduce the complex parameter
τ in (4.42). The action takes the form:

1
4π

Im
(
τ

∫
d4x d2θ (W aαW a

αWW )
)

=

1
g2

∫
d4x
(
− 1

4
F aµνF a

µνF − iλaασµ
αα̇∇µλ

aα̇
+

1
2
DaDa

)
− Θ

64π2

∫
d4x εµνρσF a

µνF F a
ρσF .

(4.53)
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We will now describe the couplings between the two N = 1 multiplets
studied in this section. To carry this out one must first assign a group rep-
resentation to the chiral superfield, which will play the role of a matter field.
Let us then assume that Φ = (Φ1, . . . ,Φn) is a set of chiral superfields trans-
forming in the following way under a gauge transformation,

Φ → eiΛΦ, Φ† → Φ†e−iΛ†
, (4.54)

where Λ = ΛaT a and T a are chosen in the group representation R of dimen-
sion n carried by Φ. The superfield leading to the gauge invariant kinetic
term takes the simple form,

Φ†e2V Φ. (4.55)

The most general action can now be written taking (4.28) as the starting
point. First one must find out how to couple the vector multiplet keeping
gauge invariance. The crucial observation is that if K(Φ, Φ†) is a G-invariant
function then it also remains invariant after replacing Φ† by Φ†e2V . Thus,
taking into account (4.28) the most general action for a set of chiral superfields
transforming in a representation R of the gauge group, coupled to a vector
multiplet is:

1
4π

Im
(

τ

∫
d2θ W aαW a

αWW

)
+
∫

d2θd2θ K(Φ, Φ†e2V )

+
∫

d2θW(Φ) +
∫

d2θW(Φ†) ,

(4.56)

where K(Φ, Φ†) and W(Φ) are G-invariant functions. For the simple case
in which the G-invariant function K takes the form K(Φ, Φ†) = Φ†Φ, after
expanding this action in component fields one finds

1
g2

∫
d4x
(
− 1

4
F aµνF a

µνF − iλaασµ
αα̇∇µλ

aα̇
+

1
2
DaDa

)
− Θ

64π2

∫
d4x εµνρσF a

µνF F a
ρσF

+
∫

d4x
(
(∇µφ)i†∇µφi − iψiσµ∇µψ

i
+ F i†F i + Daφi†(T a)ijφ

j

+ i
√

2 φi†(T a)ijλ
aψj − i

√
2 ψ

i
(T a)ijφ

jλ
a

+
∂W
∂φi

FiFF +
∂W
∂φ†

i

F †
iFF − 1

2
∂2W

∂φi∂φj
ψiψj − 1

2
∂2W

∂φ†
i∂φ†

j

ψiψj

)
,

(4.57)
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where W denotes the scalar component of the superpotential. In (4.57) the
auxiliary fields F and Da can be eliminated by using their field equations.
The terms involving these fields thus give rise to the scalar potential

V =
∑

i

∣∣∣∣∣∣∣∣∣∣∂W∂φi

∣∣∣∣∣∣∣∣∣∣2 − 1
2
g2(φ†T aφ)2 . (4.58)

The action (4.57) is invariant under supersymmetry and gauge transforma-
tions. These transformations are provided in (4.52) for the Yang–Mills fields.
For the fields of the chiral superfields they turn out to be:

δφi =
√

2ξαψi
α − iυa(T a)ijφ

j ,

δψi
α =

√
2ξαF i + i

√
2ξ

α̇
σµ

αα̇∇φi − iυa(T a)ijψ
j
α,

δF i = i
√

2ξ
α̇
σµ

αα̇∇µψαi + 2iξα̇λ
aα̇

(T a)ijφ
j − iυa(T a)ijF

j .

(4.59)

4.4. N = 2 supersymmetric Yang–Mills theories

Theories with at least N = 2 are of fundamental importance in the
construction of topological quantum field theories. The twisting procedure
that leads to these theories involves as its starting point a theory with at least
two supersymmetries. In this section we will present the basic building block
of this type of construction: the N = 2 supersymmetric vector multiplet
which leads to N = 2 supersymmetric Yang–Mills theory. The formulation
will be carried out in N = 1 superspace, obtaining its simplest action. The
construction of the most general model involving only this multiplet will then
be carried out with the help of N = 2 superspace. In the next section we
will deal with the other N = 2 supersymmetric multiplet, the hypermultiplet,
and its coupling to the N = 2 supersymmetric vector multiplet.

Let us consider a gauge group G and a series of real superfields, V a,
and chiral superfields, Φa, a = 1, . . . ,dimG. To construct the action for this
model we will start considering the action (4.56) for the simplest case in which
K(Φ, Φ†) = Φ†aΦa and W = 0:

1
4π

Im
(

τ

∫
d2θ W aαW a

αWW

)
+
∫

d2θd2θ Φ†a(e2V )abΦb. (4.60)

In this action the superfields W a
αWW are the field strengths (4.47) corresponding

to the non-abelian vector multiplet, and in (e2V )ab, V has the form V =
V aT a where T a, a = 1, . . . ,dimG, are in the adjoint representation, (T a)bc =
−ifabcff .
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To study further the theory we will consider it in the Wess–Zumino gauge.
In this gauge the vector superfield V takes the group-valued form (4.36):

V = −θσµθAµ − iθ
2
θλ2 + iθ2θλ

2
+

1
2
θ2θ

2
D, (4.61)

where we have made, for future convenience, the notational assignments λ →
λ2 and λ → λ

2
. The chiral superfields Φa, a = 1, . . . ,dimG, are assumed to

have components φa, −λa
1α and F a, and take the form (in the y, θ variables

of (4.18)):
Φa = φa −

√
2θλa

1 + θ2F a,

Φ†a = φ†a −
√

2θλ
1a

+ θ
2
F

a
.

(4.62)

We can now write the action (4.60) in terms of components. In doing this
we will first rescale the superfield Φ as Φ → Φ/g, and we will redefine the
auxiliary field D as D → D + [φ, φ†]. The component action then reads:

1
g2

∫
d4xTr

(
∇µφ†∇µφ − iλ1σ

µ∇µλ
1 − iλ2σ

µ∇µλ
2 − 1

4
FµνFF Fµν

+
1
2
D2 + |F |2 − 1

2
[φ, φ†]2 − i

√
2λα

1 [φ†, λ2α] + i
√

2λ
1
α̇[λ

2α̇
, φ]
)
,

(4.63)
plus the theta term in (4.57), which is topological. In obtaining (4.63) we
have made the following choice for the normalization of the group generators
in the adjoint representation: Tr (T aT b) = δab. The action (4.63) is not
manifestly N = 2 supersymmetric. As described in section 5.1, the N = 2
supersymmetric algebra has an internal SU(2)R symmetry. One would like to
obtain a construction for the model under consideration in which this internal
symmetry becomes manifest. Doing so we will easily find the full N = 2
supersymmetric transformation of the component fields. The internal SU(2)R

invariance is easily achieved after performing the following identification: the
scalars φa and the gluons Aa

µ as SU(2)R singlets, the spinors λv, v = 1, 2,
as elements of a SU(2)R doublet and, finally, the auxiliary fields as elements
of a real SU(2)R triplet:

Dvw =
(√

2F iD
iD

√
2F

)
. (4.64)

In doublets and triplets the SU(2)R indices are raised and lowered with the
antisymmetric matrices εvw and εvw (ε12 = 1, εvuεuw = δw

v ). Notice that
Dvw = D∗

vw. The full N = 2 supersymmetric transformations are obtained
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by making covariant the N = 1 transformations (4.52) and (4.59) after la-
belling as ξ1 the supersymmetry parameter ξ and introducing an additional
parameter ξ2. These are elements of a SU(2)R doublet. The final form of the
N = 2 supersymmetric transformations is:

δφ =
√

2εvwξvλw,

δAµ = iξvσµλ
v − iλvσµξ

v
,

δλvα =Dv
wξwα − iξvα[φ, φ†] − iσµν

α
βξvβFµνFF

+ i
√

2εvwσµ
αα̇ξ

wα̇∇µφ,

δDvw = 2iξ
(v

σµ∇µλw) + 2i∇µλ
(v

σµξw)

+ 2i
√

2ξ(v[λw), φ†] + 2i
√

2ξ
(v

[λ
w)

, φ].

(4.65)

In these equations ξv
α and ξ

v
α̇ are fermionic parameters, and the δ-

transformation is generated by the charge

iεvwξv
αQαw + iεvwξ

v
α̇Q

α̇w
. (4.66)

The action (4.63) now reads

1
g2

∫
d4xTr

(
∇µφ†∇µφ − iλvσµ∇µλ

v − 1
4
FµνFF Fµν +

1
4
DvwDvw

− 1
2
[φ, φ†]2 − i√

2
εvwλv

α[φ†, λwα] − i√
2
εvwλ

v
α̇[λ

wα̇
, φ]
)
.

(4.67)
In (4.65) and (4.67) the internal symmetry SU(2)R is manifest. The above
action also has a classical U(1)R symmetry. Introducing ϕ as a parameter for
this symmetry the component fields have the following transformations and
U(1)R charges qR:

Aµ →Aµ,

λvα → eiϕλvα,

λ
v

α̇ → e−iϕλ
v

α̇,

qR = 0;

qR = 1;

qR = − 1;

Dvw →Dvw,

φ → e2iϕφ,

φ† → e−2iϕφ†,

qR = 0;

qR = 2;

qR = − 2.

(4.68)
These transformations can also be defined at the level of the N = 1 super-
fields:

WαWW → e−iϕWαWW (eiϕθ), Φ → e−2iϕΦ(eiϕθ). (4.69)

In general, extended superfields are not very useful for defining supersym-
metric theories with extended supersymmetries. Extended superfields involve



Supersymmetry in Four Dimensions 53

too many component fields, and it is difficult to define simple constraints for
dealing with irreducible representations. An exception to this general prop-
erty is starred by the N = 2 vector multiplet. In fact, making use of the
N = 2 superspace formalism one derives very easily the most general form of
the action for this multiplet. We will not introduce here the basic notions of
extended superspace in order to derive this result. We will simply state it and
refer the reader to standard references where this is explained in detail. It
turns out that the most general N = 2 supersymmetric action involving only
the N = 2 vector multiplet can be written in terms of a single gauge-invariant
holomorphic function F(Φ) called the prepotential. For the case of an abelian
gauge group, which is the situation of interest in this book, this action takes
the following form in N = 1 superspace:

1
4π

Im
(∫

d4θ
∂F(Φ)

∂Φ
Φ +

∫
d2θ

1
2

∂2F
∂Φ2

WαWαWW

)
. (4.70)

Notice that this reduces to (4.60) for the abelian case after considering F(Φ) =
τ
2Φ2.

4.5. N = 2 supersymmetric hypermultiplets

The N = 2 supersymmetry generalization of the chiral multiplet is the
hypermultiplet. In terms of N = 1 superfields it consists of two chiral multi-
plets. Adequate choices of the component fields of these chiral multiplets leads
us to discover the internal SU(2)R symmetry. It turns out that these build a
SU(2)R doublet of complex scalar fields, two singlet spinors, and a SU(2)R

doublet of auxiliary fields. The components of the two chiral multiplets, Q

and Q̃, are defined as (in the y, θ variables of (4.18)):

Q = q2 +
√

2θψ + θ2F1FF ,

Q̃ = i(q†1 +
√

2θχ + θ2F †2),
(4.71)

and the action is∫
d4xd2θd2θ( Q†Q+ Q̃†Q̃ )− im

∫
d4xd2θ QQ̃+ im

∫
d4xd2θ Q†Q̃†. (4.72)

The free action in terms of the component fields of the hypermultiplet
takes the form:∫

d4x
(
∂µq†1∂µq1 + ∂µq†2∂µq2 − iψσµ∂µ∂ ψ − iχσµ∂µχ

+ F †1F1FF + F †2F2FF + mF †1q1 + mF †2q2 + mF1FF q†1 + mF2FF q†2

− mψχ − mψχ
)
.

(4.73)
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This action has a manifest SU(2)R invariance, with two doublets qw and FwFF ,
and can be written as∫

d4x
(
∂µq†w∂µqw − iψσµ∂µ∂ ψ − iχσµ∂µχ − mψχ − mψχ

+ F †wFwFF + mF †wqw + mFwFF q†w
)
.

(4.74)

The usual N = 1 supersymmetric transformations (4.21) can be extended to
N = 2 supersymmetry carrying out the corresponding covariantizations and
introducing an additional parameter ξ2 as in (4.65):

δqv =
√

2ξvψ +
√

2εvwξ
w
χ,

δψ =
√

2εvwξvFwFF + i
√

2σµξ
w
∂µqw,

δχ =
√

2ξwF †w − i
√

2εvwσµξ
v
∂µq†w,

δFvFF = − i
√

2∂µψσµεvwξ
w

+ i
√

2ξvσµ∂µχ.

(4.75)

An analysis of the algebra of these transformations shows that it possesses a
central charge as the one contained in the general form of the supersymmetry
algebra (4.2). The action of the central charge on the component fields turns
out to be:

δZqv ∼ FvFF ,

δZψα ∼ σµ
αα̇∂µψ

α̇
,

δZχα ∼ σµ
αα̇∂µχα̇,

δZFvFF ∼ ∂µ∂µqv.

(4.76)

These transformations show that the value of the central charge is propor-
tional to the mass hypermultiplet m when taking into account the field equa-
tions of the component fields emerging from the action (4.74). Thus there
are no central charges in the massless case. Notice, however, that even with
central charges present the model possesses the internal symmetry SU(2)R.
This because in N = 2 the reduction U(N) → USp(N) in the presence of
central charges is just U(2) → SU(2) since any SU(2) transformation leaves
invariant any two-form ZuvZZ ∝ εuv. On the other hand, the theory does not
have a U(1)R symmetry when central charges are present. The part of the
algebra (4.2), {Quα, Qvβ} = CαβC ZuvZZ , implies that the U(1)R charge of the
fermionic generators Quα vanishes. One finds easily that a charge assignment
at the level of superfield as in (4.69) is not possible.
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In the massless case the theory possesses a U(1)R symmetry with the
following charge assignment for the fields:

ψ → eiϕψ,

χ → eiϕχ,

qv → qv,

FvFF → eiqF ϕFvFF .
(4.77)

The U(1)R charge for the field q has been selected to match the choice made
for the N = 2 vector multiplet. The charge qF of FvFF is arbitrary.

4.6. N = 2 supersymmetric Yang–Mills theories with matter

In this section we study the coupling of the N = 2 supersymmetric
matter hypermultiplet to the N = 2 supersymmetric vector multiplet. From
the point of view of N = 1 superspace the theory consists of two chiral
superfields Q and Q̃ in conjugate representations R and R̃ of the gauge group
and a real superfield V together with a chiral superfield Φ in the adjoint
representation. The action is a particular case of (4.56), after taking the
following Kähler potential and superpotential:¨

K = Φ†Φ + Q†Q + Q̃Q̃†, W =
√

2Q̃ΦQ − imQ̃Q. (4.78)

The full action then reads

1
4π

Im
(

τ

∫
d2θ W aαW a

αWW

)
+
∫

d4xd2θd2θ Φ†e2V Φ

+
∫

d4xd2θd2θ
(
Q†e2V Q + Q̃e−2V Q̃† )+

√
2
∫

d4xd2θ Q̃ΦQ

+
√

2
∫

d4xd2θ Q†Φ†Q̃† − im

∫
d4xd2θ Q̃Q + im

∫
d4xd2θ Q†Q̃†.

(4.79)

This action can be written in terms of component fields using the expan-
sions (4.61), (4.62) and (4.71). In order to find a manifest SU(2)R invariant
expression, it is convenient to redefine the auxiliary fields involved in those
expansions in the following way:

F̂1FF = F1FF + mq1 + i
√

2φ†q1,

F̂2FF = F2FF + mq2 − i
√

2φq2,

D̂a = Da + [φ, φ†]a − q†1T aq1 + q†2T aq2,

F̂ a = F a − i
√

2q†2T aq1,

F̂
a

= F
a

+ i
√

2q†1T aq2.

(4.80)
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The resulting action in terms of component fields turns out to be:

∫
d4xTr

(
∇µφ†∇µφ − iλwσµ∇µλ

w − 1
4
FµνFF Fµν +

1
4
DvwDvw

− 1
2
[φ, φ†]2 − i√

2
εvwλα

v [φ†, λwα] − i√
2
εvwλ

v
α̇[λ

wα̇
, φ]
)

+
∫

d4x
(
∇µq†w∇µqw − iψσµ∂µψ − iχσµ∂µχ − mψχ − mψχ + m2q†wqw

+ F †vFvFF + i
√

2q†vλvψ + i
√

2εvwq†vλ
w
χ − i

√
2εvwχλvqw

− i
√

2ψλ
v
qv + i

√
2 χαφψα − i

√
2 ψα̇φ†χα̇ − q†w{φ, φ†}qw

+ im
√

2q†wφ†qw − im
√

2q†wφqw + q†(vT aqw)q†(vT aqw)

)
,

(4.81)
where we have suppressed the hats over the auxiliary fields.

The N = 2 supersymmetric transformations take the following form. For
the gauge fields,

δφ =
√

2εvwξvλw,

δAµ = iξvσµλ
v − iλvσµξ

v
,

δλa
vα = Da

v
wξwα − iξvα[φ, φ†]a − iσµν

α
βξvβF a

µνF

+ i
√

2εvwσµ
αα̇ξ

wα̇∇µφa + 2iq†(vT aqw)ξ
w

α,

δDa vw = 2iξ
(v

σµ∇µλ
a w)

+ 2i∇µλ
a (v

σµξw) + 2
√

2iξ(v[λw), φ†]a

+ 2
√

2iξ
(v

[λ
w)

, φ]a + 2q†(vT aψξw) + 2
√

2iξ
(v

ψT aqw)

+ 2
√

2iq†(vT aχξ
w) − 2

√
2iξ(vχT aqw),

(4.82)

and for the matter fields,

δqv =
√

2ξvψ +
√

2εvwξ
w
χ,

δψ =
√

2εvwξvFwFF + i
√

2σµξ
w∇µqw −

√
2mεvwξvqw − 2iεvwξvφ†qw,

δχ =
√

2ξwF †w − i
√

2εvwσµξ
v∇µq†w −

√
2mq†vξv − 2iξvq†vφ†,

δFvFF = −i
√

2∇µψσµεvwξ
w

+ i
√

2ξvσµ∇µχ +
√

2mξvψ − 2iξvφψ

+ 2iξvεwzλwqz +
√

2mεvwξ
w
χ + 2iεvwξ

w
φ†χ + 2iεvwξ

w
λ

z
qz.

(4.83)

Finally, in the massless theory, m = 0, there is a U(1)R symmetry once the
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auxiliary fields FvFF have been integrated out:

Aµ →Aµ,

λvα → eiϕλvα,

λ
v

α̇ → e−iϕλ
v

α̇,

ψ → e−iϕψ,

χ → e−iϕχ,

qR = 0,

qR = 1,

qR = 1,

qR = − 1,

qR = − 1.

Dvw →Dvw,

φ → e2iϕφ,

φ† → e−2iϕφ†,
qv → qv,

qR = 0,

qR = 2,

qR = − 2,

qR = 0,

(4.84)
It is not possible to build an off-shell formulation of the massless theory in
which the U(1)R symmetry is present. This fact will have important conse-
quences in the study of the twisted versions of this theory. In twisted theories
the symmetry which is equivalent to the U(1)R symmetry in the untwisted
theories plays an important role off-shell and should be maintained. As will
be described in Chapter 5, this will be achieved by modifying the auxiliary
field content in the twisted theory.

Bibliographical notes

• Two standard references on supersymmetry and N = 1 supersym-

metric field theories are [40] and [41].

• A useful summary for the purpose of this book can be found in [42].



Chapter 5

Topological Quantum Field Theories in Four
Dimensions

In this chapter we introduce topological quantum field theories (TQFTs)
and we give a brief general overview of their properties, focusing on the so
called theories of the Witten or cohomological type. We then explain the
twisting procedure, which produces topological quantum field theories from
N = 2 supersymmetric theories, and put it into practice with the examples of
the previous chapter. In this way we shall be able to construct a topological
quantum field theory in four-dimensions which gives a physical realization of
Donaldson theory, the so called Donaldson–Witten theory.

5.1. Basic properties of topological quantum field theories

Let X be a manifold with the Riemannian metric gµν , and let us consider
a quantum field theory defined on X. In general the partition function and
correlation functions of this theory will depend on the background metric.
We will say that a quantum field theory is topological if there exists a set of
operators in the theory (that we shall call topological observables) such that
their correlation functions do not depend on the metric. If we denote these
operators by Oi (where i is a label) then

δ

δgµν
〈Oi1 · · · Oin

〉 = 0. (5.1)

There are two different types of TQFTs. In the TQFTs of the Schwarz
type one defines the relevant ingredients in the theory (the action and the
observables) without using the metric of the manifold. This guarantees topo-
logical invariance as a classical symmetry of the theory, and in some cases
the quantization procedure can be seen to preserve this classical symmetry
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so that one has (5.1). The most important example of a TQFT of Schwarz
type is Chern–Simons gauge theory, introduced by Witten in 1988.

In the TQFTs of the Witten type (also called cohomological TQFTs)
the action and the operators may depend on the metric, but the theory has
an underlying scalar symmetry δ acting on the fields φi in such a way that
the correlation functions of the theory do not depend on the background
metric. This is achieved as follows. Since δ is a symmetry the action of the
theory satisfies δS(φi) = 0. If the energy-momentum tensor of the theory
TµνTT = (δ/δgµν)S(φi) can be written as

TµνTT = −iδGµν , (5.2)

where Gµν is some tensor, then (5.1) holds for any operator O which is δ-
invariant. This is because

δ

δgµν
〈Oi1Oi2 · · · Oin〉 = 〈Oi1Oi2 · · · OinTµνTT 〉

= −i〈Oi1Oi2 · · · OinδGµν〉 = ±i〈δ(Oi1Oi2 · · · OinGµν)〉 = 0.

(5.3)
The symmetry δ is usually called a topological symmetry. In (5.3) we have
assumed that the symmetry δ is not anomalous, so that it is a full symme-
try of the quantum theory. Moreover, we have ‘integrated by parts’ in field
space, therefore we have assumed that there are no contributions coming from
boundary terms. In some situations these assumptions do not hold, and the
theory is then not strictly topological. However, in most of the interesting
cases the resulting dependence on the metric is mild and under control. We
will see a very explicit example of this in Donaldson theory on manifolds with
b+
2 = 1.

In a cohomological theory the observables are the δ-invariant operators.
On the other hand, operators which are δ-exact decouple from the theory,
since their correlation functions vanish. We will then restrict the set of ob-
servables to the cohomology of δ:

O ∈ Ker δ

Im δ
. (5.4)

In all known examples of cohomological TQFTs, δ is a Grasmannian symme-
try. Since, on the other hand, δ is a scalar symmetry we see that topological
quantum field theories of Witten type violate the spin-statistics theorem. In
general δ is is not nilpotent, and one has

δ2 = Z, (5.5)
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where Z is a certain transformation in the theory. It can be a local transfor-
mation (a gauge transformation) or a global transformation (for example, a
global U(1) symmetry). The appropriate framework for analysing the observ-
ables is then equivariant cohomology, and for consistency one has to consider
only operators that are invariant under the transformation generated by Z

(for example, gauge invariant operators). Equivariant cohomology turns out
to be a very natural language to describe TQFTs with local and global sym-
metries, and we shall present it in some detail when we consider the geometric
formulation of cohomological field theories in Chapter 6.

The structure of topological quantum field theories of the Witten type
leads immediately to a general version of the Donaldson map. Remember
that, starting with the curvature of the universal bundle, this map asso-
ciates cohomology classes in the instanton moduli space to homology classes
in the four-manifold. Let us now assume that we have found an operator
φ(0) which is in the cohomology of δ, as well as a series of operators φ(n),
n = 1, . . . ,dimX, which are differential forms of degree n on X such that

dφ(n) = δφ(n+1), n ≥ 0. (5.6)

In this equation d denotes the exterior derivative on X. The operators φ(n)

are called the topological descendants of φ(0). It is easy to see that the operator

W
(γn)

φ
W (0) =

∫
γn

φ(n), (5.7)

where γn ∈ HnHH (X), is a topological observable:

δW
(γn)

φ
W (0) =

∫
γn

δφ(n) =
∫
γn

dφ(n−1) =
∫

∂γn

φ(n−1) = 0, (5.8)

since ∂γn = 0. Similarly, it is easy to show that if γn is trivial in homology
(i.e., if it is ∂-exact) then W

(γn)

φ
W (0) is δ-exact. The equations (5.6) are called

topological descent equations. The conclusion of this analysis is that, given a
(scalar) topological observable φ(0) and a solution to the descent equations
(5.6), one can construct a family of topological observables

W
(γin )

φ
W (0) , in = 1, . . . , bn; n = 1, . . . ,dimX, (5.9)

in one-to-one correspondence with homology classes of space-time. This de-
scent procedure is the analog of the Donaldson map in Donaldson–Witten
and Seiberg–Witten theory.
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It is easy to see that in any theory in which (5.2) is satisfied there is a
simple procedure for constructing a solution to (5.6) given a scalar observable
φ(0). If (5.2) holds then one has

PµPP = T0TT µ = −iδGµ, (5.10)

where

Gµ ≡ G0µ. (5.11)

Since δ is a Grassmannian symmetry, Gµ is an anticommuting operator and
a one-form in space-time. If we are given a δ-invariant operator φ(0)(x) we
can use (5.11) to construct the topological descendants

φ(n)
µ1µ2...µn

(x) = Gµ1Gµ2 · · ·Gµnφ(0)(x), n = 1, . . . ,dimX. (5.12)

On the other hand, since the Gµi
anticommute

φ(n) =
1
n!

φ(n)
µ1µ2...µn

dxµ1 ∧ · · · ∧ dxµn (5.13)

is an n-form on X. By using (5.10) the δ-invariance of φ(0), as well as PµPP =
−i∂µ∂ , one can easily check that these forms satisfy the descent equations
(5.6). This solution to (5.6) is usually called the canonical solution of the
descent equations.

5.2. Twist of N = 2 supersymmetry

In the early eighties Witten noticed that supersymmetry has a deep rela-
tion to topology. The simplest example of such a relation is supersymmetric
quantum mechanics, which provides a physical reformulation (and, in fact,
a refinement) of Morse theory. Another examples are N = 2 supersymmet-
ric theories in two and four dimensions. In 1988 Witten discovered that, by
changing the coupling to gravity of the fields in an N = 2 supersymmetric
theory in two or four dimensions, a TQFT theory of cohomological type was
obtained. This redefinition of the theory is called twisting. We are now going
to explain in some detail how this works in the four-dimensional case.

Our starting point is the Euclidean version of the N = 2 supersymmetry
algebra (with no central charges) which is easily obtained from (4.2), (4.5)
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and (4.7):

{Qαv, Qβ̇w} = 2εvwσµ

αβ̇
PµPP ,

[PµPP , Qαv] = 0,

[MµνM , Qαv] = −(σµν)α
βQβv,

[Qαv, Ba] = −1
2
(τa)v

wQαw,

[Qαv, R] = Qαv,

{Qαv, Qβw} = 0,

[PµPP ,Qα̇v] = 0,

[MµνM , Q
α̇v

] = −(σµν)α̇
β̇Q

β̇v
,

[Qα̇
v, Ba] =

1
2
Qα̇

w(τa)w
v,

[Qα̇v, R] = −Qα̇v.

(5.14)

Here v, w ∈ {1, 2} are SU(2)R indices and − 1
2 (τa)v

w, a = 1, 2, 3, are the
matrices (ba)v

w in (4.5), i.e., the generators of this internal group, (ba)v
w =

− 1
2 (τa)v

w. The matrices τa are the Pauli matrices,

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (5.15)

In these relations we have performed the replacement p0 = −ip4 and all
the matrices σµ, σµν and σµν correspond to the Euclidean counterparts, as
defined in Appendix A. The total symmetry group of the theory is

H = SU(2)+ × SU(2)− × SU(2)R × U(1)R, (5.16)

being K = SU(2)+ × SU(2)− the rotation group, and SU(2)R × U(1)R the
internal group. Under this group the supersymmetry generators Qαv and
Qα̇v transform as (0,2,2)1 and (2,0,2)−1, respectively. The generator of the
rotation group, MµνM , can be decomposed in terms of bispinors as described
in Appendix A:

MµνM → Mαα,β˙ β̇ = εαβM α̇β̇ + εα̇β̇MαβMM , (5.17)

so that M α̇β̇ are the generators of SU(2)+ and MαβMM the generators of SU(2)−.
Their action on the supersymmetry generators Qαv and Qα̇v turns out to be:

[MαβMM , Qδv] = εδ(αQβ)v,

[M α̇β̇ , Qδv] = 0,

[MαβMM , Qα̇v] = 0,

[M α̇β̇ , Qδ̇v] = εδ̇(α̇Qβ̇)v.
(5.18)

The action of the generators Ba of the internal group SU(2)R can be
rewritten using their form in terms of the symmetric bispinor Bvw,

[Bvw, Qu
α] = εu(vQw)

α , [Bvw, Q
u

α̇] = −εu(vQ
w)

α̇ . (5.19)
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The twisting procedure consists of redefining the coupling of the theory
to gravity, which is carried out by redefining the spins of the fields. To do
this we couple the fields to the SU(2)+ spin connection according to their
isospin, i.e., according to the way they transform under the internal group
SU(2)R. This means that we identify the isospin SU(2)R indices v, w with
the SU(2)+ indices α̇, β̇. Therefore we define a generator M ′

α̇β̇
as follows:

M ′
α̇β̇

= Mα̇β̇ − Bα̇β̇ . (5.20)

We then identify a new rotation group K′ = SU ′(2)+ ⊗ SU(2)−, where
SU ′(2)+ is generated by M ′. Under the twisting the isospin index v be-
comes a spinorial index, Qα̇v → Qα̇β̇ and Qαv → Qαβ̇ . With respect to the
new rotation group the topological supercharge,

Q ≡ εα̇β̇Qα̇β̇ = Q1̇2̇ − Q2̇1̇ (5.21)

is a scalar with respect to K′:

[MαβMM ,Q] = 0, [M ′
α̇β̇

,Q] = 0. (5.22)

The topological supercharge Q will provide the topological symmetry δ

that we need for the theory to be topological. The N = 2 supersymmetric
algebra also gives a natural way to construct the operator Gµ defined in (5.11).
In fact, define

Gµ =
i

4
(σµ)α̇γQγα̇. (5.23)

Using now the {Q,Q} anticommutator in (5.14) it is easy to show that

{Q, Gµ} = ∂µ. (5.24)

This means that the supersymmetry algebra by itself almost guarantees (5.2).
In the models that we will consider (5.2) is true (at least on-shell). Finally,
notice that from the anticommutator {Q,Q} in (5.14) follows that the topo-
logical supercharge is nilpotent (in the absence of central charge):

Q2
= 0. (5.25)

The main conclusion of this section is that by twisting N = 2 supersym-
metry one can construct a quantum field theory which satisfies (almost) all
the requirements of a topological quantum field theory of the Witten type. In
the rest of this chapter we are going to analyse in detail the twisting of the
N = 2 supersymmetric theories that we described in previous chapters.
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5.3. Donaldson–Witten theory

Donaldson–Witten theory (also known as topological Yang–Mills theory)
is the topological quantum field theory that results from twisting N = 2
supersymmetric Yang–Mills theory in four dimensions. Historically it was the
first TQFT of the Witten type, and, as we will see, it provides a realization
of Donaldson theory.

As described in section 4.4 N = 2 supersymmetric Yang–Mills theory
contains a gauge field Aµ, two spinors λvα, and a complex scalar φ, all of
them in the adjoint representation of the gauge group G. In the off-shell
formulation we also have auxiliary fields Dvw in the 3 of the internal SU(2)R.
Under the twisting the fields in the N = 2 supersymmetric multiplet change
their spin content as follows:

Aµ (2,2,0)0 → Aµ (2,2)0,

λαv (2,0,2)−1 → ψαβ̇ (2,2)1,

λα̇v (0,2,2)1 → η (0,0)−1, χα̇β̇ (1,0)−1,

φ (0,0,0)−2 → φ (0,0)−2,

φ† (0,0,0)2 → φ† (0,0)2,

Dvw (0,0,1)0 → Dα̇β̇ (0,0)0,

(5.26)

where we have written the quantum numbers with respect to the total sym-
metry group H (5.16) before the twisting, and with respect to the group
H′ = SU(2)′+ ⊗SU(2)−⊗U(1)R after the twisting. In the topological theory
the U(1)R charge is usually called the ghost number. The η and χ fields are
given by the antisymmetric and symmetric pieces of λα̇β̇ , respectively. More
precisely

χα̇β̇ = λ(α̇β̇), η =
1
2
εα̇β̇λα̇β̇ . (5.27)

From the N = 2 supersymmetric action (4.63) it is straightforward to find
(after continuation to Euclidean space) the twisted action on an arbitrary
Riemmanian four-manifold endowed with a metric gµν :

S =
1
g2

∫
d4x

√
g

√√
Tr
(
∇µφ∇µφ† − iψβ̇

ασµα̇α∇µχα̇β̇ − iψαα̇∇α̇αη − 1
4
FµνFF Fµν

+
1
4
Dα̇β̇Dα̇β̇ − 1

2
[φ, φ†]2 − i√

2
χα̇β̇ [φ, χα̇β̇ ]

+ i
√

2η[φ, η] − i√
2
ψαα̇[ψαα̇, φ†]

)
.

(5.28)



Topological Quantum Field Theories in Four Dimensions 65

The reader should not be confused between the coupling constant g and the
square root of the determinant of the metric,

√
g

√√
= (det(gµν))1/2. The Q-

transformations are easily obtained from (5.21) and the N = 2 supersymmet-
ric transformations (5.14):

[Q, φ] = 0,

[Q, Aµ] = ψµ,

{Q, η} = [φ, φ†],

{Q, ψµ} = 2
√

2∇µφ,

[Q, φ†] = 2
√

2iη,

{Q, χα̇β̇} = i(F+
αβF − Dα̇β̇),

[Q, D] = (2∇ψ)+ + 2
√

2[φ, χ].

(5.29)

In (5.29) ψµ = σµαβ̇ψαβ̇ and F+

α̇β̇
= σµν

α̇β̇
FµνFF is the self-dual part of FµνFF (see

Appendix A for more details). Notice that Q2
is a gauge transformation, in

accordance with (5.5). The origin of this property comes from the twisting
having been made from a supersymmetric theory in the Wess–Zumino gauge
in which supersymmetric transformations close up to gauge transformations.
It is not difficult to show that the action of Donaldson–Witten theory (5.28)
is Q-exact up to a topological term, i.e.,

S = {Q, V } − 1
2

∫
F ∧ F, (5.30)

where

V =
∫

d4x
√

g
√√

Tr
( i

4
χαβ(Fαβ +Dαβ)− 1

2
η[φ, φ†]+

1
2
√

2
ψαα̇∇α̇αφ†

)
. (5.31)

As we will see in a moment, this has important implications for the quantum
behavior of the theory.

One of the most interesting aspects of the twisting procedure is the fol-
lowing: if we set the original N = 2 supersymmetric Yang–Mills theory on
an arbitrary Riemannian four-manifold, using the well known prescription of
minimal coupling to gravity, we find global obstructions to have a well defined
theory. The reason is very simple: not every four-manifold is Spin, and there-
fore the fermionic fields λαv are not well defined unless w2(X) = 0. However
all fields are differential forms on X after the twisting, therefore the twisted
theory makes sense globally on an arbitrary Riemannian four-manifold.

The observables of Donaldson–Witten theory can be constructed by using
the topological descent equations. As we have emphasized, these equations
have a canonical solution given by the operator Gµ in (5.23). Using again the
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N = 2 supersymmetry transformations (5.14) one can work out the action of
Gµ on the different fields of the theory. The result is:

[Gµ, φ] =
1

2
√

2
ψµ,

[Gν , Aµ] =
i

2
gµνη − iχµν ,

[G, η] = − i
√

2
4

∇φ,

{Gµ, ψν} = −(F−
µνF + D+

µν),

[G,φ] = 0,

[G, F+] = i∇χ +
3i

2
∗ ∇η,

{G, χ} = −3i
√

2
8

∗ ∇φ,

[G, D] = −3i

4
∗ ∇η +

3i

2
∇χ.

(5.32)

We can now construct the topological observables of the theory by using the
descent equations. The starting point must be a set of gauge-invariant, Q-
closed operators which are not Q-trivial. Since [Q, φ] = 0 these operators
are the gauge-invariant polynomials in the field φ. For a simple gauge group
of rank r the algebra of these polynomials is generated by r elements, and
we shall denote this basis by On, n = 1, . . . , r. For SU(N) one can take for
example

On = Tr (φn+1), n = 1, . . . , N. (5.33)

Starting from these operators the descent procedure produces a set of oper-
ators O(i)

n , i = 1, . . . , 4. In most of this book we shall restrict ourselves to
the gauge group SU(2), therefore the starting point for the descent procedure
will be the operator

O = Tr (φ2). (5.34)

Using now (5.32) we can obtain the canonical solution to the descent equa-
tions. The first two topological descendants obtained in this way are

O(1) = Tr
( 1√

2
φψµ

)
dxµ,

O(2) = − 1
2
Tr
( 1√

2
φ(F−

µνF + Dµν) − 1
4
ψµψν

)
dxµ ∧ dxν .

(5.35)

As we shall see, supersymmetric configurations have D = F+, and in that
subspace one can write F− + D = F . In this book we will restrict ourselves
to the observables:

I1(δ) =
∫

δ

∫∫
O(1), I2II (S) =

∫
S

∫∫
O(2), (5.36)

where δ ∈ H1(X), S ∈ H2HH (X). They correspond to the differential forms on
the moduli space of ASD connections which were introduced in (2.55) through
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the use of the Donaldson map (2.54) (and this is why we have used the same
notation for both). Notice that the ghost number of the operators in (5.35)
is, in fact, their degree as differential forms in moduli space. The operators
(5.35) are naturally interpreted as the decomposition of the Pontrjagin class
of the universal bundle (3.17) with respect to the bi-grading of Ω∗(B∗ × X).
For example, the Grassmannian field ψµ can be interpreted as a (1, 1) form: a
one-form in space-time and also a one-form in the space of connections A. The
operator Q is then interpreted as the equivariant differential in A with respect
to gauge transformations. This leads to a beautiful geometric interpretation
of topological Yang–Mills theory in terms of equivariant cohomology. There
is also a beautiful geometrical interpretation of this theory in terms of the
Mathai–Quillen formalism, which will be considered in the next chapter.

Now that we have formulated the model and constructed its observables,
let us consider the computation of correlation functions. Since the action of
the twisted theory is Q-exact up to a topological term, we will consider the
topological theory defined by the Donaldson–Witten action SDW = {Q, V },
where V is defined in (5.31). The functional integral of the theory defined
by the Donaldson–Witten action can be drastically simplified by taking into
account the following fact. The (un-normalized) correlation functions of the
theory are defined by

〈φ1 · · ·φn〉 =
∫

Dφ φ1 · · ·φn e−
1

g2 SDW , (5.37)

where φ1, . . . , φn are generic fields which are invariant under Q transforma-
tions. Since SDW is Q-exact one has:

∂

∂g
〈φ1 · · ·φn〉 =

2
g3

〈φ1 · · ·φnSDW〉 =
2
g3

〈{Q, φ1 · · ·φnV }〉 = 0, (5.38)

where we have used that Q is a symmetry of the theory, and therefore the
insertion of a Q-exact operator in the functional integral gives zero. The
above result is remarkable: it says that in a topological quantum field theory
in which the action is Q-exact the computation of correlation functions of
products of Q-invariant operators does not depend on the value of the cou-
pling constant. In particular, the semi-classical approximation is exact! We
can then evaluate the functional integral in the saddle-point approximation
as follows: first, we look at zero-modes, i.e., classical configurations that min-
imize the action. Then we look at non zero-modes, i.e., we consider quantum
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fluctuations around these configurations. Since the saddle point approxima-
tion is exact it is enough to consider the quadratic fluctuations. The integral
over the zero-modes gives a finite integral over the space of bosonic collec-
tive coordinates, and a finite Grassmannian integral over the zero-modes of
the fermionic fields. The integral over the quadratic fluctuations involves the
determinants of the kinetic operators in SDW. Since the theory has a Bose–
Fermi Q symmetry it turns out that the determinants cancel (up to a sign),
as in supersymmetric theories.

Let us then analyse the bosonic and fermionic zero-modes. A quick way
to find the bosonic zero-modes is to look for supersymmetric configurations.
These are classical configurations such that {Q,Fermi} = 0 for all Fermi fields
in the theory, and they give minima of the Lagrangian. Indeed, it is known
that in topological quantum field theories with a fermionic symmetry Q one
can compute by localization on the fixed points of this symmetry. In this
case, by looking at {Q, χ} = 0 one finds

F+ = D+. (5.39)

But on-shell D+ = 0, and therefore (5.39) reduces to the usual ASD equa-
tions. The zero-modes of the gauge field are then instanton configurations.
In addition, by looking at {Q, ψ} = 0 we find the equation of motion for the
φ field,

∇φ = 0. (5.40)

This equation is also familiar: as we saw in Chapter 1, its non-trivial solutions
correspond to reducible connections. Let us assume for simplicity that we are
in a situation in which no reducible solutions occur, so that the only solution
to (5.40) is φ = 0. In that case (5.39) tells us that the integral over the
collective coordinates reduces to an integral over the instanton moduli space
MASD.

Let us now look at the fermionic zero-modes in the background of an
instanton. The kinetic terms for the ψ, χ and η fermions fit precisely into the
instanton deformation complex (2.46). Therefore using the index theorem we
can compute

NψNN − NχNN = dimMASD, (5.41)

where Nψ,χNN denotes the number of zero-modes of the corresponding fields,
and we have used that the connection A is irreducible, so that η (which is
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a scalar) has no zero-modes (in other words, ∇η = 0 only has the trivial
solution). Finally, if we assume that the connection is regular then one has
that Coker (p+∇) = 0, and there are not χ zero-modes. In this situation
the number of ψ zero-modes is simply the dimension of the moduli space
of ASD instantons. If we denote the bosonic and the fermionic zero-modes
by dai, dψi, respectively, where i = 1, . . . , D and D = dimMASD, then the
zero-mode measure becomes:

D∏
i=1

dai dψi. (5.42)

This is, in fact, the natural measure for integration of differential forms on
MASD, and the Grassmannian variables ψi are then interpreted as a basis of
one-forms on MASD.

We can already discuss how to compute correlation functions of the op-
erators O, I2II (S), and I1(δ). These operators contain the fields ψ, Aµ and φ.
In evaluating the functional integral it is enough to replace ψ and Aµ by their
zero-modes, and the field φ (with no zero-modes) by its quantum fluctuations,
which we then integrate out at quadratic order. Further corrections which are
higher order in the coupling constant do not contribute to the saddle point
approximation, which in this case is exact. We then have to compute the
one-point correlation function 〈φa〉. The relevant terms in the action are

S(φ, φ†) =
∫

d4xTr
(
∇µφ∇µφ† − i√

2
φ†[ψµ, ψµ]

)
, (5.43)

since we are only considering quadratic terms. We then have to compute

〈φa(x)〉 =
∫

DφDφ†φa(x) exp
(
− S(φ, φ†)

)
. (5.44)

If we take into account that

〈φa(x)φb†(y)〉 = Gab(x − y), (5.45)

where Gab(x − y) is the Green’s function of the Laplacian ∇µ∇µ, we find

〈φa(x)〉 = − i√
2

∫
d4y

√
g G

√√ ab(x, y)[ψ(x)µ, ψ(y)µ]b. (5.46)

This expresses φ in terms of zero-modes. It turns out that this is precisely (up
to a constant) the component along B∗ of the curvature KP of the universal
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bundle. This is in perfect agreement with the correspondence between the ob-
servables (5.35) and the differential forms on moduli space (2.55) constructed
in Donaldson theory.

The main conclusion of this analysis is that, up to normalizations,

〈O�I2II (Si1) · · · I2II (Sip)I1(δjδ 1) · · · I1(δjδ q )〉

=
∫
M

∫∫
ASD

O� ∧ I2II (Si1) ∧ · · · ∧ I2II (Sip
) ∧ I1(δjδ 1) ∧ · · · ∧ I1(δjδ q

),
(5.47)

i.e., the correlation function of the observables of twisted N = 2 supersym-
metric Yang–Mills theory is precisely the corresponding Donaldson invariant
(2.57). The requirement that the differential form in the right hand side has
top degree (otherwise the invariant is zero) corresponds, in the field theory
side, to the requirement that the correlation function has its ghost number
equal to dimMASD, i.e., that the operator in the correlation function soaks
up all the fermionic zero-modes, which is the well known ’t Hooft rule.

Equation (5.47) establishes the equivalence between twisted N = 2 su-
persymmetric Yang–Mills theory and Donaldson theory. In terms of the gen-
erating functional (2.61) we have that

Zw
DW(p, S, δ) =

〈
exp
(
pO + I1(δ) + I2II (S)

)〉
w
, (5.48)

where the subscript w means that we are computing the correlation functions
at fixed Stiefel–Whitney class w, and as in (2.61) we are summing over all
instanton numbers.

This equivalence between Donaldson theory and twisted N = 2 super-
symmetric theory opens a completely different approach to studying Donald-
son invariants by means of topological quantum field theory. As will be shown
in the following chapters, topological quantum field theory provides a recipe
to compute the correlation functions (5.48). This result opens an entirely
new way to understanding Donaldson invariants, establishing a connection
between these invariants and Seiberg–Witten invariants.

As a final remark we would like to note that many features of the eval-
uation of the functional integral of Donaldson–Witten theory developed in
this section —such as the exactness of the semi-classical approximation—
have simple analogs in the evaluation of finite-dimensional integrals, and are
common to most topological field theories of the cohomological type. Also
typical from cohomological theories is the reduction of functional integrals
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to finite-dimensional integrals involving only the zero-modes. These features
will become clearer in the next chapter when we develop the Mathai–Quillen
formalism.

5.4. Twisted N = 2 supersymmetric hypermultiplet

In this section we are going to analyse the twisting of the free N = 2
supersymmetric hypermultiplet considered in section 5.5. The field content
of the hypermultiplet (4.71) is given by a doublet of complex scalar fields, qv,
two Weyl fermions ψ y χ, and a doublet of complex auxiliaries FvFF . After the
twisting the fields in the theory become:

qv (0,0,2) −→ Mα̇MM (2,0),

ψα (2,0,0) −→ να (2,0),

χα̇ (0,2,0) −→ µα̇ (0,2),

FvFF (0,0,2) −→ Kα̇ (2,0),

q†v (0,0,2) −→ M
α̇

(2,0),

ψα̇ (0,2,0) −→ µα̇ (0,2),

χα (2,0,0) −→ να (2,0),

F †v (0,0,2) −→ K
α̇

(2,0),

(5.49)

where we have written the quantum numbers with respect to H and H′. After
the twisting the free action (4.73) becomes:

S =
∫

d4x (∂µM
α̇
∂µMα̇MM + mM

α̇
Kα̇ + mK

α̇
Mα̇MM + K

α̇
Kα̇

− iνα∂α̇αµα̇ − iµα̇∂αα̇να − mµα̇µα̇ − mνανα),
(5.50)

whilst the topological transformations, after using (4.75), turn out to be:

δMα̇MM = −
√

2εµα̇,

δµα̇ = −
√

2εKα̇,

δνα = i
√

2ε∂αα̇M α̇,

δKα̇ = −i
√

2ε∂αα̇να,

δM α̇ =
√

2εµα̇,

δµα̇ = −
√

2εKα̇,

δνα = i
√

2ε∂αα̇M
α̇
,

δKα̇ = i
√

2ε∂αα̇να.

(5.51)

This off-shell formulation of the theory is not particularly suitable since
the action turns out not to be δ-exact. However, there exists another off-shell
formulation which cures this problem, it requires the introduction of new
auxiliary fields h y h. We introduce as well new δ′ transformations:

δ′Mα̇MM = −
√

2εµα̇,

δ′µα̇ = −
√

2εmMα̇MM ,

δ′να =
√

2εhα,

δ′hα =
√

2εmνα,

δ′M α̇ =
√

2εµα̇,

δ′µα̇ = −
√

2εmM α̇,

δ′να =
√

2εhα,

δ′hα = −
√

2εmνα.

(5.52)
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In this formulation the central charge is realized off-shell as a global U(1)
symmetry with parameter m, and the action can be written as εδ′Λ, where,

Λ =
∫

d4x
1√
2

( − iνα∂α̇αMα̇MM − iM
α̇
∂αα̇να̇ − 1

2
mµα̇Mα̇MM

− 1
2
ναhα − 1

2
mM

α̇
µα̇ − 1

2
hανα

)
,

(5.53)

and reads,

S =
∫

d4x
(− ihα∂ααMα̇MM − iM

α̇
∂αα̇hα − iνα∂α̇αµα̇ − iµα̇∂αα̇να

− m2M
α̇
Mα̇MM − mνανα − mµα̇µα̇ − hαhα

)
.

(5.54)

After integrating the new auxiliary fields in this action, and the ones in (5.50),
one finds both actions are equivalent on-shell.

Notice that, in contrast to N = 2 supersymmetric Yang–Mills, where
the twisting procedure made the theory well defined on any four-manifold,
the twisted free hypermultiplet theory contains spinors. In fact, the twisting
has converted the two scalar fields qv into a new spinor field Mα̇MM . Strictly
speaking, the twisted free hypermultiplet only makes sense globally on Spin
manifolds. We will see later that under certain circumstances the coupling to
gauge fields can solve this problem.

5.5. Extensions of Donaldson–Witten theory

We can now put together the results obtained for the twisted N = 2 su-
persymmetric Yang–Mills theory and for the free hypermultiplet and consider
the coupled theory. Again, it is convenient to redefine the auxiliary fields for
the hypermultiplet in the way that we have just described. The results are
easily derived following the same procedure as in the previous sections. For
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the action we find:

S =
∫

d4xTr
(
∇µφ∇µφ† + iψβ̇

α∇α̇αχα̇β̇ + iψαα̇∇α̇αη +
1
4
FµνFF Fµν

− 1
4
Dα̇β̇Dα̇β̇ +

1
2
[φ, φ†]2 − i√

2
χα̇β̇ [φ, χα̇β̇ ] − i

√
2η[φ, η]

− i√
2
ψαα̇[ψαα̇, φ†]

)
+
∫

d4x
(
− ihα∇ααMα̇MM − iM

α̇∇αα̇hα − iνα∇α̇αµα̇ − iµα̇∇αα̇να

− m2M
α̇
Mα̇MM − mνανα − mµα̇µα̇ − hαhα − M

α̇
F+

α̇β̇
M β̇

)
+
∫

d4x
(

i
√

2(M
α̇
χα̇

β̇µβ̇ + µα̇χα̇
β̇Mβ̇M ) + i

√
2(M

α̇
ψαα̇να − ναψα̇αMα̇MM )

+ M
α̇{φ, φ†}Mα̇MM + i

√
2(M

α
ηµα − µαηMα̇MM ) − i

√
2ναφνα

+ i
√

2µα̇φ†µα̇ + (M
(α̇

T aM β̇))(M (α̇T aMβ̇M )) − i
√

2mM
α̇
φMα̇MM

+ i
√

2mM
α̇
φ†Mα̇MM

)
,

(5.55)
and the δ′ transformations become:

δ′φ = 0, δ′φ† = 2
√

2iεη, δ′η = iε[φ, φ†],

δ′Aµ = εψµ, δ′ψµ = 2
√

2ε∇µφ,

δ′χa
αβ = iε(F+a

α̇β̇
− Da

α̇β̇
+ 2iM (α̇T aMβ̇M )),

δ′Da
α̇β̇

= ε(dAψ)a
α̇β̇

+ 2
√

2iε[χα̇β̇ , φ]a + 2
√

2ε(M
(α̇

T aµβ̇) + µ(α̇T aM β̇)),

δ′Mα̇MM = −
√

2εµα̇, δ′M α̇ =
√

2εµα̇,

δ′µj
α̇ =

√
2εmM j

α̇ + 2iεφjkMk
α̇, δ′µj

α̇ =
√

2εmM
jj
α̇ + 2iεM

k
α̇φkj ,

δ′να =
√

2εhα, δ′να =
√

2εhα,

δ′hj
α = −

√
2εmνj

α − 2iεφjkνk
α, δ′h

jj
α =

√
2εmνj

α + 2iενk
αφkj .

(5.56)
Under these transformations (5.55) is δ′-exact,

εS = δ′
∫

d4xTr
( i

4
χα̇β̇F α̇β̇ +

1
4
χα̇β̇Dα̇β̇ − iη[φ, φ†] +

i√
2
ψαα̇∇α̇αη

)
+
∫

d4x
1√
2

(
− iνα∇α̇αMα̇MM − iM

α̇∇αα̇να − 1
2
mµα̇Mα̇MM − 1

2
ναhα

− 1
2
mM

α
µα̇ − 1

2
hανα +

i√
2
(µα̇φ†Mα̇MM + M

α̇
φ†µα̇ )

− i√
2
M α̇χα̇β̇Mβ̇M

)
,

(5.57)
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up to a topological term ∼ ∫
F ∧ F . The observables of this theory are

the same as in Donaldson–Witten theory, in other words there are no new
observables associated with the hypermultiplet fields.

5.6. Monopole equations

Let us consider the twisted N = 2 supersymmetric theory coupled to
a hypermultiplet that we have just analysed, but in the simple case of an
abelian group U(1) and with zero mass, m = 0. Since the action is Q-exact
the theory can be analysed very much like Donaldson–Witten theory. In order
to compute correlation functions we can restrict ourselves to supersymmetric
configurations. The auxiliary fields D and h satisfy the algebraic equations
of motion Dα̇β̇ = 0 and hα = ∇αα̇M α̇. Therefore {Q, χ} = 0 gives

F+

α̇β̇
+ 2iM (α̇Mβ̇M ) = 0, (5.58)

whilst {Q, να} = 0 gives

∇αα̇M α̇ = 0. (5.59)

These are precisely the Seiberg–Witten equations (3.2). The only subtlety is,
of course, that in the original equations (3.2) M is a section of S+ ⊗ L1/2,
where L is the determinant line bundle of a Spinc structure, whilst here M is
a section of S+ ⊗ U , where U is in principle a conventional U(1) bundle. In
fact, as we remarked before, the twisted hypermultiplet is not globally well
defined on an arbitrary four-manifold, unless w2(X) = 0. As we shall see, in
the relevant physical realization of the U(1) theory a subtle topological effect
will make U the square root of the determinant line bundle L associated with
a Spinc connection, in such a way that the twisted abelian theory will be
well defined. In any case, if we assume that the U(1) connection is really
a Spinc connection, we see that supersymmetric configurations are given by
solutions of the Seiberg–Witten equations, and the space of bosonic zero-
modes is precisely the Seiberg–Witten moduli space. We have assumed here,
as in our discussion of Donaldson–Witten theory, that there are no reducible
pairs, and therefore φ = 0. The analysis of the fermionic coordinates is also
very similar to the analysis of Donaldson theory. The fermionic zero-modes fit
into the deformation complex (3.10), and in a generic situation their number
equals the dimension of the Seiberg–Witten moduli space.
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Let us now analyse the observables of the abelian theory. The starting
operator for the descent procedure is

O = φ, (5.60)

and after using (5.23) one finds that the only non-trivial observables are φ

itself and
νi =

∫
δ

∫∫
i

O(1), i = 1, . . . , b1, (5.61)

where
O(1) =

1
2
√

2
ψ. (5.62)

The observables φ and νi, i = 1, . . . , b1, are precisely the differential forms on
moduli space (3.19) and (3.20), respectively. As in Donaldson–Witten the-
ory, it is straightforward to show that correlation functions in this topological
quantum field theory are precisely the Seiberg–Witten invariants (3.22) (as-
suming, of course, that the U(1) connection is really a Spinc connection).
More precisely, one has

〈φ�νi1 . . . νir 〉 =
∫
M

∫∫
SW

φ� ∧ νi1 ∧ · · · ∧ νir . (5.63)

It is understood here that φ is obtained by integrating out, as in (5.46) for
Donaldson–Witten theory, and is therefore expressed in terms of fermionic
zero-modes.

One can also consider the moduli problem associated with a twisted
Yang–Mills theory with a non-abelian gauge group G and NfN hypermultiplets
in different representations of the gauge group R1, . . . , RNf

. The kind of mod-
uli equations which one obtains for these models are non-abelian monopole
equations. For example, in the case in which one has just one hypermultiplet
these are equations for a non-abelian gauge connection A and for a spinor M i

α̇M

taking values in a twisted spinor bundle S+ ⊗E, where E is a vector bundle
associated to a principal G-bundle via a representation R of the gauge group.
The equations for the moduli problem can be read as before from (5.56), and
turn out to be,

F+a

α̇β̇
+ 4iM (α̇(T a)Mβ̇M ) = 0,

(∇αα̇
E M α̇) = 0,

(5.64)

where T a are the generators of the Lie algebra in the representation R, Fα̇β̇ =

F+a

α̇β̇
(T a)ij and M (α̇(T a)Mβ̇M ) is a shortened form for M

i

(α̇(T a)ijM j

β̇
M

)
, In (5.64)

∇αα̇
E is the Dirac operator for the twisted spinor bundle S+ ⊗ E.



76 Topological Quantum Field Theory and Four-Manifolds

The above equations only make sense in principle for a Spin manifold,
since they involve spinors. There are two ways to define the theory on a
general four-manifold. The most obvious one is to introduce a background
Spinc connection through an extended twisting, in such a way that the spinors
MαMM become sections of a bundle S+ ⊗ L

1
2 ⊗ E, where L is the determinant

line bundle of the Spinc structure. When the gauge group G is SO(3) and the
hypermultiplets are in the fundamental representation of the SO(3) bundle
V there is another possibility for defining the theory on any four-manifold X.
If w2(V ) 
= 0 we can not lift

 V to an SU(2) bundle E. This bundle exists
locally, but there is an obstruction to defining it globally measured by w2(V ).
In the same way, the spinor bundle S+ does exist locally, but globally there is
an obstruction to define it measured by w2(X). However, if w2(V ) = w2(X)
the bundle S+ ⊗ E does exist, since the obstructions cancel each other. We
saw a similar phenomenon in the construction of Spinc structures, where S+

and L
1
2 do not exist separately but S+⊗L

1
2 does exist. In the split case (2.33)

it is easy to check that S+ ⊗ E is a well defined bundle: if E = T
1
2 ⊕ T− 1

2

it follows from (2.37) that c1(T±1) � w2(X) , and S+ ⊗ E is the sum of two
Spinc bundles.

The moduli problem for non-abelian monopoles can be analysed following
the same ideas that we used for the Donaldson and Seiberg–Witten moduli
problems, and we shall not repeat this analysis here, referring the reader to
the references at the end of this chapter for further information.
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Chapter 6

The Mathai–Quillen Formalism

In this chapter we shall present an alternative way of constructing the
topological quantum field theories of the previous chapter based on the
Mathai–Quillen formalism. This formalism applies to other cohomologi-
cal theories, and we will present it in some generality, applying it to low-
dimensional situations as well. This chapter can be omitted in a first reading
of the book since its content can be considered as complementary. The formu-
lation of topological quantum field theories in the Mathai–Quillen formalism
is important because it provides a useful geometrical framework, but the true
breakthroughs in the understanding of these theories have been provided by
their formulation as twisted N = 2 supersymmetric theories.

In general terms, topological quantum field theories of cohomological
type are associated with a moduli problem characterized by three basic data:
fields, symmetries, and equations. The starting point is a configuration space
X , whose elements are fields φi defined on some Riemannian manifold X.
These fields are generally acted on by some group G of local transformations
(gauge symmetries, or a diffeomorphism group, amongst others), so that one
is naturally led to consider the quotient space X/G. Within this quotient
space a certain subset or moduli space, M, is singled out by a set of equations
s(φi) = 0:

M = {φi ∈ X |s(φi) = 0}/G. (6.1)

Within this framework the topological symmetry δ which we introduced in the
previous chapter furnishes a representation of the G-equivariant cohomology
on the field space. When G is the trivial group δ is nothing but the de
Rham operator on the field space. The equations s(φi) have to be regarded
as sections of a certain vector bundle E over X/G. For example, in the case
of Donaldson–Witten theory the configuration space X is the space of G-
connections A on a bundle E over a four-manifold X, the group G is the group

78
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of gauge transformations associated with G, and the self-duality equations can
be regarded as sections of a G-bundle E = A×G Ω2,+(X,gE).

In ordinary finite-dimensional situations one can write the Euler class of
a bundle in terms of a section and an explicit differential form representa-
tive constructed by Mathai and Quillen. In general the moduli problem of
a topological quantum field theory involves an infinite-dimensional bundle E
and a particular section s. However, it was noticed by Atiyah and Jeffrey
that if one constructs the Euler class of E by using the section s and a natu-
ral extension of the Mathai–Quillen representative to the infinite-dimensional
setting, one recovers the action principle of the theory. In particular, they
showed that the partition function of the theory can be regarded as a regular-
ized version of the Euler characteristic of E . Conversely, the Mathai–Quillen
formalism makes possible to construct a cohomological field theory starting
from a moduli problem, and provides a precise geometric interpretation of all
the ingredients involved in the theory.

In this chapter we first set up the Mathai–Quillen formalism in the finite-
dimensional case, we illustrate it with a simple example, and then we extend
it to the infinite-dimensional case. Finally, we focus on the theories of interest
in this book: Donaldson–Witten theory and its extensions.

6.1. Equivariant cohomology

The Mathai–Quillen formalism is better formulated in the context of
equivariant cohomology, which we briefly review here. Detailed expositions
can be found in the references at the end of the chapter.

Equivariant cohomology appears when one studies a topological space X

with the action of a group G. It can be realized in many different ways, but
the most useful ones for us involve appropriate extensions of the de Rham
cohomology. From a more general point of view, equivariant cohomology is
defined as the ordinary cohomology of the space

XG = EG ×G X, (6.2)

where EG is, as usual, the universal G-bundle. We will instead work with
algebraic models, the Weil and the Cartan model. Although they are equiva-
lent, the Cartan model is simpler and more natural in topological field theories
with a gauge symmetry. However, when dealing with group actions associ-
ated with principal bundles the Cartan model must be supplemented with
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a horizontal projection. In these cases it is important to keep in mind the
underlying Weil model.

We first formulate the Weil model of equivariant cohomology. Let G be
a Lie group with Lie algebra g. The Weil algebra W(g) is defined as

W(g) = Λg∗ ⊗ Sg∗, (6.3)

given by the tensor product of the exterior algebra and the symmetric algebra
of the dual g∗. We take generators of Λg∗, {θA}A=1,...,dim(G) with degree 1,
and of Sg∗, {uA}A=1,...,dim(G) with degree 2. In this way W(g) becomes a
graded algebra. Let cA

BC be the structure constants of g associated to the
generators θA. We define a differential operator dW from their action on the
generators:

dWθA = −1
2
cA
BCθBθC + uA,

dWuA = cA
BCuBθC .

(6.4)

We also define an inner product operator iA as follows:

iAθB = δAB , iAuB = 0. (6.5)

We can also define a Lie derivative operator using the basic identity LA =
iAdW + dW iA. The motivation to define such a complex comes from the
following: if P is a principal G-bundle with connection θ ∈ Ω1(P,g) and
curvature K ∈ Ω2(P,g), we can expand θ and K as follows:

θ = θATAT , K = uATAT , (6.6)

where {TAT }A=1,...,dim(G) is a basis of g, and θA ∈ Ω1(P ), uA ∈ Ω2(P ). Con-
sider the inner product ι(C(TAT )), where C(TAT ) is the fundamental vector
field on P associated to the generator of the Lie algebra g. The components
defined in (6.6) verify precisely the equations (6.4) and (6.5), where the inner
product iA is understood as the geometric inner product ι(C(TAT )) and the
differential operator dW is the usual de Rham operator on P . We then see
that the Weil model is essentially an algebraic or universal realization of the
basic relations defining connections and curvatures on principal bundles.

Consider now a G-manifold X and the complex

W(g) ⊗ Ω∗(X), (6.7)
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where Ω∗(X) is the complex of differential forms on X. On the complex (6.7)
we can define a differential operator, an inner product and a Lie derivative
operator by taking the tensor product of the corresponding operators in the
two complexes. An element of this complex is called basic if it is in the kernel
of the inner product operators (it is horizontal) and in the kernel of the
Lie derivative operators (it is invariant). The subalgebra consisting of these
elements is denoted by ΩG(X), and its cohomology is called the algebraic
equivariant cohomology of X in the Weil model:

H∗
G(X) = H∗(ΩG(X)). (6.8)

As we shall see, the Weil model is specially useful for studying the cohomology
of associated vector bundles and for this reason has an important role in the
Mathai–Quillen formalism.

Let us now consider the Cartan model of equivariant cohomology. The
fact that the construction of the Weil model involves only a subcomplex of
W(g) ⊗ Ω∗(X) suggests that a smaller complex can be chosen from the very
beginning. In the Cartan model one starts with

Sg∗ ⊗ Ω∗(X) (6.9)

and defines an operator

dCuA = 0, dCω = dω − uAι(C(TAT ))ω, (6.10)

where ω ∈ Ω∗(X) and summation over A is understood. In general dC is not
nilpotent. Rather we have

d2
C = −uAL(C(TAT )), (6.11)

but we can restrict ourselves to the invariant subcomplex

ΩG(X) = (Sg∗ ⊗ Ω∗(X))G, (6.12)

where d2
C = 0. The elements in this complex are called equivariant differential

forms. We used the same notation for the basic subcomplex in the Weil model,
because in fact they are isomorphic. As d2

C = 0 on ΩG(X), we can define the
cohomology of dC , which is precisely the algebraic equivariant cohomology of
X in the Cartan model:

H∗
GH (X) = H∗((Sg∗ ⊗ Ω∗(X))G). (6.13)

Of course, the Weil and the Cartan models give isomorphic cohomology the-
ories.



82 Topological Quantum Field Theory and Four-Manifolds

6.2. The finite-dimensional case

Let X be an orientable compact n-dimensional manifold without bound-
ary, and let us consider an oriented vector bundle E → X of rank rk(E) =
2m ≤ n over X.

There are two complementary approaches to introducing the Euler class
of E , e(E) ∈ H2m(X). The first one is in terms of a generic section, s : X → E .
In that case e(E) is constructed as the Poincaré dual in´ X of the homology
class of Xs = s−1(0), the zero locus of s. When rk(E) = 2m = n = dim(X),
Xs is zero-dimensional (a set of points) and one can integrate e(E) over X to
obtain the Euler number of E as

χ(E) =
∑

xk:s(xk)=0

(±1), (6.14)

i.e., one counts signs at the zeroes of a generic section s. When 2m < n, Xs

is generically (n − 2m)-dimensional, and one can evaluate e(E) on 2m-cycles
or equivalently take the product with elements of Hn−2m(X) and evaluate it
on X. That e(E) is the Poincaré dual to´ Xs means that∫

X

∫∫
e(E) ∧ O =

∫
X

∫∫
s

i∗O, (6.15)

where i : Xs ↪→↪↪ X is the inclusion map, and O is a differential form repre-
senting a class in Hn−2m(X). This result can be interpreted as a localization
result, since it says that integrals on X involving e(E) can be reduced to inte-
grals over a submanifold Xs. Of course, as a cohomology class e(E) does not
depend on the choice of section, as long as it is generic. In the case in which
the section is not generic the equality (6.15) is no longer true and has to be
modified appropriately. When the bundle E is endowed with a connection ∇
the result can be stated as follows. Since ∇s ∈ Ω1(X, E) one can regard ∇s

as a map:

∇s : TpTT X → EpEE , (6.16)

where p ∈ X. If s is not generic, this map will have a non-trivial cokernel
coker∇s, and one can construct a bundle E ′ over Xs whose fiber at p is
coker (∇s)p. One then has:∫

X

∫∫
e(E) ∧ O =

∫
X

∫∫
s

e(E ′) ∧ i∗O. (6.17)



The Mathai–Quillen Formalism 83

This will be useful when discussing the extension of the Mathai–Quillen for-
malism to the infinite-dimensional case.

The second approach to the construction of the Euler class of E makes
use of Chern–Weil theory, and gives a representative e∇(E) of e(E) associated
with a connection ∇ in E :

e∇(E) = (2π)−mPf (K), (6.18)

where Pf (K) stands for the Pfaffian of the curvature K associated to the
connection ∇. The representative e∇(E) can also be written as:

e∇(E) = (2π)−m

∫
dχe

1
2 χaKabχb , (6.19)

by means of a set of real Grassmann-odd variables χa, a = 1, . . . , 2m, satis-
fying the Berezin rules of integration:∫

dχaχb = δab. (6.20)

In this approach, when rk(E) = 2m = n = dim(X) the Euler number of E is
computed by

χ(E) =
∫
X

e∇(E). (6.21)

Again, e∇(E) is independent of the choice of connection ∇.
A third way to construct the Euler class of a vector bundle E is through

its Thom class. The Thom class is characterized as follows. Let E → X

be a vector bundle of rank 2m with fiber V = R2m, and let us consider
the cohomology of forms on E with compact support along the fiber. By
integrating the form along the fiber one has an explicit isomorphism (the
Thom isomorphism) between k forms over E and k − 2m forms over X. This
isomorphism can be made explicit with the aid of the Thom class, whose
representative Φ(E) is a closed 2m-form over E with compact support along
the fiber such that its integral over the fiber is unity. If ω is an arbitrary
p-form over X, its image under the Thom isomorphism is the p + 2m form
π∗(ω) ∧ Φ(E), which by construction has compact support along the fiber.
π∗(ω) is the pullback of ω by the projection π : E → X. If s is any section
of E , the pullback of the Thom form under s, s∗Φ(E), is a closed form in the
same cohomology class as the Euler class e(E). If s is a generic section then
s∗Φ(E) is the Poincaré dual of the zero locus of´ s.
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The Mathai–Quillen formalism provides an explicit representative of the
Thom class Φ(E). The construction goes as follows: first, we assume that
E is equipped with an inner product g compatible with the connection ∇,
consequently

d(g(s, t)) = g(∇s, t) + g(s,∇t), s, t ∈ Γ(E). (6.22)

As our vector bundle is oriented and has an inner product, we can reduce the
structure group to G = SO(2m). Let P be the principal G-bundle over X

such that E is an associated vector bundle:

E = P ×G V. (6.23)

In particular, P ×V can be considered as a principal G-bundle over E . Recall
that when given a principal G-bundle π : P → X, a differential form φ on P

descends to a form on X if the following two conditions are satisfied: first,
given vector fields ViVV , φ(V1VV , . . . , VqVV ) = 0 whenever one of the ViVV is vertical (and
in this case φ is said to be horizontal). Second, φ is invariant under the G

action. The forms that satisfy both conditions (i.e., they are horizontal and
invariant) are called basic. In particular, if we consider the principal bundle
P × V → P ×G V we have an isomorphism:

Ω∗(P ×G V ) � Ω∗(P × V )basic. (6.24)

Suppose now that P is endowed with a connection θ ∈ Ω1(P,g) and
associated curvature K, and consider the Weil algebra of G, W(g). As g =
so(2m) the generators are antisymmetric matrices θab (of degree 1) and Kab

(of degree 2) (notice that we use the same notation for the connection and
curvature of P and the generators of W(g)). The property that W(g) provides
a universal realization of the relations defining the curvature and connection
on P gives the Chern–Weil homomorphism:

w : W(g) −→ Ω∗(P ), (6.25)

defined in a natural way through the expansion of θ and K in (6.6) (for
G = SO(2m), the map w is just the correspondence between the genera-
tors of W(g) and the entries of the antisymmetric matrices for the curvature
and connection in P ). The Chern–Weil homomorphism maps the universal
connection and curvature in the Weil algebra to the actual connection and
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curvature in P . Combined with the lifting of forms from V to P × V , we
obtain another homomorphism:

w ⊗ π∗
2 : W(g) ⊗ Ω∗(V ) −→ Ω∗(P × V ), (6.26)

where π2 : P × V → V is the projection on the second factor. It is easy to
see that the basic subalgebra ΩG(V ) maps to the basic differential forms on
P ×V , and therefore to the differential forms of the associated vector bundle
E . This is the geometric context of the Mathai–Quillen construction.

The universal Thom form U(E) of Mathai and Quillen is an element in
W(g) ⊗ Ω∗(V ) given by:

U(E) = (2π)−mPf (K)exp
(
− 1

2
|v|2 − 1

2
∇va(K−1)ab∇vb

)
. (6.27)

In this expression the va are orthonormal coordinate functions on V , dva are
their corresponding differentials, and ∇va = dva + θabvb. K and θ are the
antisymmetric matrices of generators in W(g), and |v|2 =

∑
a v2

a. It is easy
to write (6.27) as a Grassmann integral as in (6.19):

U(E) =
∫

dχ e−
1
2 |v|2+ 1

2 χaKabχb+iχa∇va . (6.28)

One can check that U(E) is a basic form, and so it belongs to ΩG(V ), and
also that it is equivariantly closed. The image of U(E) under the map (6.26)

Φ(E) = (w ⊗ π∗
2)(U(E)) (6.29)

is then a basic closed differential form in Ω(P × V ) and it descends to a
form in Ω2m(E). Notice that Φ(E) has no compact support along the fibre,
but rather a Gaussian decay. Nevertheless, one can define a cohomology of
rapidly decreasing forms H∗

rdH (E) on the fibre V analogous to the cohomology
of forms with compact support on V , and the usual results about the Thom
class also hold in this slightly generalized setting. In particular, the Thom
class can be uniquely characterized as a cohomology class in H2m

rdH (E) such that
its integration along the fibre is 1. This can be easily checked for the universal
representative given in (6.27), therefore the image of Φ(E) in H2m

rdH (E) is the
Thom class of E .

Let s : X → E be a section of E . Every section of E is associated with a
G-equivariant map

ŝ : P → V, ŝ(̂pg) = g−1ŝ(̂p). (6.30)
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Consider now the map ˜ : P → P ×V given by (̃p) = (p, ŝ(̂p)). It follows that
s̃∗Φ(P × V ) is a closed differential form on P which is also basic, therefore
descends to a form on X which is precisely es,∇(E). This form gives a repre-
sentative of the Euler class of E , and by using (6.28) we can also represent it
as a Grassmann integral:

es,∇(E) = (2π)−m

∫
dχe−

1
2 |s|2+ 1

2 χaKabχb+iχa∇sa . (6.31)

As a consistency check, note that, as follows from (6.19), es=0,∇(E) = e∇(E),
i.e., the pullback of the Mathai–Quillen form by the zero section gives back
the Euler class of E .

Let us denote by xµ, µ = 1, . . . , n, a set of local coordinates on the base
manifold X. The form es,∇(E) can be rewritten in a compact way with the
help of Grassmann odd real variables ψµ through the correspondence:

dxµ ↔ ψµ,

ω =
1
p!

ωµ1,...,µp
dxµ1 ∧ · · · ∧ dxµp ↔ ω(ψ) =

1
p!

ωµ1,...,µp
ψµ1 · · ·ψµp .

(6.32)

The integral over X of a top-form ω(n) is therefore given by a simultaneous
conventional integration over X and a Berezin integration over the ψs:∫

X

ω(n) =
∫

X

∫∫
dx

∫
dψ ω(n)(ψ). (6.33)

In this language the Mathai–Quillen representative (6.31) can be rewritten
as:

es,∇(E)(ψ) = (2π)−m

∫
dχe−

1
2 |s|2+ 1

2 χaKab(ψ)χb+iχa∇sa(ψ), (6.34)

and, for example, in the case n = 2m one has the following expression for the
Euler number of E :

χ(E) = (2π)−m

∫
X

dxdψdχe−
1
2 |s|2+ 1

2 χaKab(ψ)χb+iχa∇sa(ψ). (6.35)

It is worthwhile remarking that (6.35) looks like the partition function of a
field theory whose ‘action’ is:

S(x, ψ, χ) =
1
2
|s|2 − 1

2
χaKab(ψ)χb − iχa∇sa(ψ). (6.36)
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This action is invariant under the transformations:

δxµ = ψµ, δψµ = 0, δχa = isa. (6.37)

This suggests that the Mathai–Quillen formalism can be recast in a more
conventional physical language through the use of the BRST formalism, which
was created originally to quantize Yang–Mills theories. To do that we first
introduce an auxiliary bosonic field Ba, which has the meaning of a basis
of differential forms for the fiber. In this way we obtain two pairs of fields
(x, ψ) and (χ, B), where the first pair is associated with the base manifold X,
whilst the second pair is associated to the fiber V . Notice that these pairs
have opposite Grassmannian character. We also extend the transformation δ

in (6.37) to the new set of fields as follows:

δxµ = ψµ,

δχa = Ba,

δψµ = 0,

δBa = 0.
(6.38)

Notice that δ2 = 0. Indeed, δ is simply the de Rham differential for the
base manifold and for the fiber. One can then verify, by integrating out the
auxiliary field B, that the Euler class can be written as the integral

es,∇(E) =
1

(2π)2m

∫
dχdBe−δΨloc , (6.39)

where the so called localizing gauge fermion Ψloc is given by

Ψloc = χa

(
isa +

1
2
θab(ψ)χb +

1
2
Ba

)
. (6.40)

The Mathai–Quillen representative interpolates between the two different
approaches to the Euler class of a vector bundle which we explained at the
beginning of this section. This statement can be made more precise as follows.
The construction of es,∇(E) is such that it is cohomologous to e∇(E) for any
choice of a generic section s. Take, for example, the case n = 2m and rescale
s → γs. Nothing should change, so in particular:

χ(E) =
∫
X

eγs,∇(E). (6.41)

We can now study (6.41) in two different limits. In the first limit, γ → 0, after
using (6.19) χ(E) = (2π)−m

∫
Pf(Ω∇). In the second limit, γ → ∞, the cur-

vature term in (6.35) can be neglected, leading to χ(E) =
∑

xk:s(xk)=0(±1).
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These signs are generated by the ratio of the determinants of ∇s and its modu-
lus, which results from the Gaussian integrations after expanding around each
zero xk. Hence we recover from this unified point of view the two comple-
mentary ways of defining the Euler class described at the beginning of the
section.

We should point out that from the point of view of the BRST formalism
which we introduced above, the independence of the integral with respect
to γ is a consequence of the δ-exactness of the action (6.36). In particular,
that the integral can be evaluated at γ → ∞ means that the semi-classical
approximation is exact, and that the integral localizes to the minima of the
action S(x, ψ, χ), which in this case are the zeroes of the section, s = 0. This
is then a finite-dimensional version of the functional integral computation that
we did in the previous chapter, in the context of Donaldson–Witten theory.

6.3. A detailed example

To further clarify the formalism let us work out an explicit example. To
be definite we will consider E = TX. The section s is taken as a vector field
V on X, which we assume to be generic. After rescaling V → γV the action
(6.36) takes the form:

S(x, ψ, χ) =
1
2
γ2gµνV µV ν − 1

4
χaRab

µνψµψνχb − iγ∇µV νψµea
νχa. (6.42)

As we explained in the previous section, it is possible to introduce auxiliary
fields in the formulation. In the example under consideration we use

e−
1
2 γ2gµνV µV ν

=
γ2m√

g
√√

(2π)m

∫
dBe−

1
2 γ2(gµνBµBν+2iBνV ν), (6.43)

where Bµ is an auxiliary field. The Euler number resulting from (6.42) can
be rewritten as:

χ(X) =
∫
X

dxdψdχdB

γ2m√
g

√√
(2π)2m

e−
1
2 γ2(gµνBµBν+2iBνV ν)+ 1

4 χaRab
µνψµψνχb+iγ∇µV νψµea

νχa .

(6.44)
Making the redefinitions:

ψµ → γ
1
2 ψµ,

dψ → (γ− 1
2 )2mdψ,

χa → γ
1
2 eaµψ

µ
,

dχ → (γ− 1
2 )2m 1√

g
√√ dψ,

(6.45)
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we obtain:

χ(X) =
∫
X

dxdψdψdB

1
(2π)2m

e−γ2
(

1
2 gµν(BµBν+2iBµV ν)− 1

4 Rρσ
µνψρψσψµψν−i∇µV νψµψν

)
.

(6.46)
As we pointed out above, this looks like the partition function of a topological
quantum field theory in which g = 1/γ plays the role of the coupling constant.
Furthermore, the exponent of (6.46) is invariant under the symmetry:

δxµ = ψµ,

δψµ = 0,

δψµ = Bµ,

δBµ = 0.
(6.47)

This symmetry agrees with the general structure presented in (6.38), and
(ψµ, Bµ) is the doublet associated with the fiber, which in this case has the
same dimension as the base manifold X. One easily finds that the exponent
of (6.47) is indeed δ-exact:

χ =
∫
X

dxdψdψdB
1

(2π)2m
e−γ2δ

(
1
2 ψµ(Bµ+2iV µ+Γσ

τνψσψνgµτ )
)
. (6.48)

Notice that the action in (6.48) has the general structure δΨloc, where the
localizing gauge fermion is indeed of the form (6.40).

The fact that the action is δ-exact makes it possible to use field-theoretic
arguments similar to those explained in the previous chapter to conclude that
χ is independent of the coupling γ and of the metric gµν . We can for example
compute (6.35) in the semi-classical limit γ → ∞, which in this case is exact.
First, we expand around the zeroes, xk, of V (V µ(xk) = 0):

χ(X) =
∑
xk

∫
X

dxdψdχ

(2π)−me−
1
2 γ2gµν∂σV µ∂ρV νxσxρ+ 1

4 χaRab
µνψµψνχb+iγ∂µV νψµea

νχa .

(6.49)
Next, we rescale the variables in the following way:

x → γ−1x,

dx → γ−1dx,

ψ → γ− 1
2 ψ,

dψ → γ
1
2 dψ,

χ → γ− 1
2 χ,

dχ → γ
1
2 dχ.

(6.50)
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The measure is invariant under this rescaling. Using the shorthand notation
for the Hessian H

(k)µ
σHH = ∂σV µ

∣∣∣∣
xk

, one finds after taking the limit γ → ∞:

χ(X) =
∑
xk

∫
X

dxdψdχ(2π)−me−
1
2 gµνH(k)µ

σ H(k)ν
ρ xσxρ+iH(k)ν

µ ψµea
νχa

=
∑
xk

(2π)−m (
√

2π)2m

√
g

√√ |det H(k)|
e

(2m)!
(2m)!det H(k) =

∑
xk

det H(k)

|det H(k)| ,

(6.51)
which indeed corresponds to the Euler number of X by virtue of the Poincaré–
Hopf theorem. Notice that the computation in the semi-classical limit gives
a quotient of determinants which is ±1. This is because there is a hidden
supersymmetry in the action, as it is manifest in the BRST formulation, and
we have a cancellation of fermionic and bosonic determinants. The same
cancellation appeared in the analysis of the functional integral in Donaldson–
Witten theory.

Let us further illustrate the example (6.42). Consider the two-sphere S2

with the standard parametrization:

α : (0, π) × (0, 2π) −→ R3,

(θ, ϕ) −→ (sin θ cos ϕ, sin θ sinϕ, cos θ).
(6.52)

In terms of these coordinates we have the relations:

ds2 = dθ2 + sin2 θdϕ2, gµν =
(

1 0
0 sin2 θ

)
, (6.53)

and the following values for the Christoffel symbol (Γλ
µν = 1

2gλσ(∂(µgν)σ −
∂σgµν)),

Γθ
θθ = Γϕ

ϕϕ = Γϕ
θθ = Γθ

θϕ = 0,

Γθ
ϕϕ = − sin θ cos θ, Γϕ

θϕ =
cos θ

sin θ
.

(6.54)

Let us pick an orthonormal frame:

eµ
a =

(
1 0
0

1
sin θ

)
, ea

µ =
(

1 0
0 sin θ

)
, (6.55)

where the vierbeins satisfy the standard relations: eµ
aeν

b gµν = δab, ea
µeb

νδab =
gµν . The Riemann curvature tensor (Rλ

µνκ = ∂[κΓλ
ν]µ + Γτ

µ[νΓλ
κ]τ ) in (θ, ϕ)

coordinates is given by:
Rθ

ϕϕθ = sin2 θ, (6.56)
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while the curvature two-form Ωab takes the form:

Ω12 = R12
ϕθdϕ ∧ dθ = e1

θe
2
ϕgϕϕRθ

ϕϕθdϕ ∧ dθ = sin θdϕ ∧ dθ. (6.57)

Next let us consider the vector field:

V a = (sinϕ, cos ϕ cos θ) → V µ = (sinϕ, cos ϕ cot θ). (6.58)

This vector field has zeros at ϕ = 0, θ = π/2 and ϕ = π, θ = π/2. The
components of the form ∇V a are:

∇θV
ϕ = − cos ϕ, ∇ϕV θ = sin2 θ cos ϕ, ∇θV

θ = ∇ϕV ϕ = 0, (6.59)

or, alternatively,

∇θV
a = ea

µ∇θV
µ = (0,− cos ϕ sin θ), ∇ϕV a = ea

µ∇ϕV µ = (cos ϕ sin θ, 0),
(6.60)

and therefore
∇V a = (sin2 θ cos ϕdϕ,− cos ϕ sin θdθ). (6.61)

The Euler class representative

eV,∇(TS2) =
1
2π

∫
dχ1dχ2e−

1
2 V aV a+ 1

2 χaΩab
∇ χb+i∇V aχa , (6.62)

after performing the rescaling V a → γV a,

−1
2
V aV a +

1
2
χaΩab

∇χb + i∇V aχa

−→ −γ2

2
(sin2 θ + cos2 ϕ cos2 θ) − χ1χ2 sin θdθ ∧ dϕ

+ iγ(sin2 θ cos ϕdϕχ1 − cos ϕ sin θdθχ2),

(6.63)

becomes:

eV,∇(TS2) =
1
2π

e−
γ2

2 (sin2 θ+cos2 ϕ cos2 θ) sin θ(1 + γ2 cos2 ϕ sin2 θ)dθ ∧ dϕ.

(6.64)
The Euler number of S2 is given by the integral:

χ(S2) =
1
2π

2π∫
0

dϕ

π∫
0

dθ sin θe−
γ2

2 (sin2 θ+cos2 ϕ cos2 θ)(1 + γ2 cos2 ϕ sin2 θ).

(6.65)
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Although γ appears explicitly in this expression, the result of the integration
should be independent of γ. The reader is urged to prove it. Here we will
perform two independent checks. On the one hand, in the limit γ → 0 (6.65)
gives trivially the correct result, χ(S2) = 2. On the other hand, one can
explore the opposite limit γ → ∞, where the integral

χ(S2) =
∫
S2

dx

∫
dψ1dψ2

∫
dχ1dχ2

1
2π

e−A(x,ψ,χ), (6.66)

with S(x, ψ, χ) = 1
2V aV a − 1

2χaΩab
∇χb − i∇V aχa, is dominated by the zeros

of V a: (θ, φ) = (π/2, 0) and (θ, φ) = (π/2, π). This is the semi-classical
approximation to the evaluation of the integral, which in this case is exact.
The zeroes of the vector field are minima of the action, and we expand about
them:

(a) θ = π/2 + x, ϕ = 0 + y.

V aV a = sin2 ϕ + cos2 ϕ cos2 θ = x2 + y2 + · · ·
1
4
χaRab

µνψµψνχb = χ1χ2ψ
θψϕR12

θϕ = sin θχ1χ2ψ
θψϕ

=
(

1 − x2

2
+ · · ·

)
χ1χ2ψ

θψϕ

∇µV νψµea
νχa = − cos ϕ sin θψθχ2 + cos ϕ sin2 θψϕχ1

= −ψθχ2 + ψϕχ1 + · · · ,

(6.67)

and after performing the rescaling

x, y → γ−1x, γ−1y,

ψµ → γ− 1
2 ψµ,

χa → γ− 1
2 χa,

(6.68)

one obtains:

1
2π

∫
dxdy e−

1
2 (x2+y2)

∫
dχ1dχ2dψθdψϕei(−ψθχ2+ψϕχ1) = 1. (6.69)

(b) θ = π/2 + x, ϕ = π + y.

1
2π

∫
dxdye−

1
2 (x2+y2)

∫
dχ1dχ2dψθdψϕei(ψθχ2−ψϕχ1) = 1. (6.70)



The Mathai–Quillen Formalism 93

Notice that in the limit γ → ∞ we have reproduced the pattern described in
(6.51):

χ(S2) =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜ det
(

0 −1
1 0

)
∣∣∣∣∣∣∣∣∣∣det

(
0 −1
1 0

)∣∣∣∣∣∣∣∣∣∣ +
det
(

0 1
−1 0

)
∣∣∣∣∣∣∣∣∣∣det

(
0 1
−1 0

)∣∣∣∣∣∣∣∣∣∣
⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ = 2. (6.71)

6.4. Mathai–Quillen formalism: Infinite-dimensional case

In this section we consider the extension of the Mathai–Quillen formalism
to the infinite-dimensional case, i.e., to infinite-dimensional vector bundles
over infinite-dimensional configuration spaces. Of course, in these cases e(E)
is not defined as a geometric object. However, one can do the following: let us
consider a section s : X/G → E which has a finite-dimensional zero locus M,
and let us use the Mathai–Quillen formalism to give a formal construction
of es,∇(E). We can now take into account (6.15) to define integrals over the
configuration space X/G as follows:∫

X

∫∫
/G

es,∇(E) ∧ O =
∫
M

∫∫
i∗O, (6.72)

where O ∈ Hd(X/G) and d = dimM. If the section s is not generic one has
to use (6.17) instead of (6.15) in order to define the left hand side of (6.72),
and we have ∫

X

∫∫
/G

es,∇(E) ∧ O =
∫
M

∫∫
e(E ′) ∧ i∗O, (6.73)

where E ′ is the bundle over M whose fiber is coker∇s. Since we are defining
the integrals over the configuration space by using (6.72) and (6.73), they
depend a priori on the particular section chosen. However, one expects that
this is still a way of obtaining interesting topological invariants, and the known
examples —such us Donaldson–Witten theory— show that this is indeed the
case. As we will see, in the infinite-dimensional case the left hand side of
(6.72) or (6.73) becomes a correlation function of a topological quantum field
theory, and the definition of these correlation functions as finite-dimensional
integrals agrees with the quantum field theory analysis. For example, we
saw in the previous chapter that the functional integral of Donaldson–Witten
theory reduces to a finite-dimensional integral over zero-modes. The Mathai–
Quillen formalism provides a geometric explanation of why this should be the
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case, and shows that for TQFTs of cohomological type, functional integrals
can be given a precise meaning in terms of finite-dimensional integrals over a
moduli space.

Another observation which will be useful is the following: the tangent
space of M is given by ker∇s, and dim(M) = dim ker∇s. Therefore the
integral in the right hand side of (6.73) will only be different from zero if
the degree of O is equal to ind∇s = dim ker∇s − dim coker∇s. Of course
dim(M) = ind∇s for a generic section. The index ind∇s is usually called
the virtual dimension of the moduli space. Notice that this is exactly the
situation we found in the analysis of Donaldson–Witten theory in Chapters 2
and 5. The virtual dimension coincides with the actual dimension only when
dim coker∇s = 0 and the section is generic. When ind∇s = 0 we can use
(6.72) or (6.73) with O = 1 to define the regularized Euler number of E , χs(E).
This corresponds in field-theoretic language to the partition function of the
model.

The requirement on the degree of O can be made more transparent if
we introduce a ghost number assignment to the different fields involved in
es,∇(E), as follows:

x −→ 0, ψ −→ 1, χ −→ −1, B −→ 0. (6.74)

Notice that the transformation δ has ghost number 1, and the action S =
δΨloc has ghost number zero. Interpreting δ as a U(1) symmetry of S, we see
that ind∇s is the anomaly of that symmetry, and the requirement that the
degree of O is equal to ind∇s is just the requirement that the insertion of
operators in the functional integral (6.72) soaks up the zero-modes associated
to the anomaly in order to obtain a non-vanishing correlation function. This
is exactly what we found in our analysis of Donaldson–Witten theory, but it is
a general feature of cohomological field theories and, as we have just seen, can
be understood in a clear geometric way in the context of the Mathai–Quillen
formalism.

The construction of es,∇(E) follows the pattern of the finite-dimensional
case and it will be illustrated by the description of two examples. The first
one corresponds to supersymmetric quantum mechanics. This is the simplest
infinite-dimensional case and leads to an interesting reformulation of singular-
ity theory. The second example deals with topological sigma models. None
of these examples involve gauge symmetries. In other words, the group of
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symmetries of the configuration space G will be taken to be trivial. In the
case that the moduli problem has a gauge symmetry we shall need a slight
reformulation of the Mathai–Quillen formalism which will be discussed in the
next section.

1) Supersymmetric quantum mechanics

Let X be a smooth, orientable, Riemannian manifold with metric gµν .
The configuration space of the theory X will be the loop space LX, which is
defined by the set of smooth maps:

x : S1 → X,

t ∈ [0, 1] → xµ(t),

xµ(0) = xµ(1).

(6.75)

The vector bundle E will be in this case T (LX), the tangent vector bundle
of LX, with fiber F = TxTT (LX) = Γ(x∗(TX)). A section of E is a vector field
over LX, and it has the form:

V (x) =
∮

dtV µ(x(t))
∂

∂xµ(t)
. (6.76)

The metric on X provides a natural metric for TxTT (LX): let V1VV , V2VV ∈ TxTT (LX),
then

ĝx(V1VV , V2VV ) =
∮

dtgµν(x(t))V µ
1VV (x(t))V ν

2VV (x(t)). (6.77)

The Levi–Civita connection on LX is the pullback connection from X:

∇V =
∮

dt1dt2

[
δV µ(x(t1))

δxν(t2)
+ Γµ

νλ(x(t2))V λ(x(t1))δ(t1 − t2)
]

× ∂

∂xµ(t1)
⊗ d̂xν(t2),

(6.78)

where {∂/∂xµ(t)} is a basis of TxTT (LX), and {d̂xν(t)} is a basis of T ∗
xTT (LX).

Let us consider the vector field:

V µ(x) =
d

dt
xµ ≡ ẋµ. (6.79)

The Mathai–Quillen representative of es,∇(E) is constructed following
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the same procedure as in the finite-dimensional case:

Finite−
dimensional

case

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

χ =
∫
X

dxdψdψdB
1

(2π)2m
e−γ2δΨ(x,ψ,ψ,B),

Ψ(x, ψ, ψ, B) =
1
2
ψµ(Bµ + 2iV µ + Γσ

τνψσψνgµτ ),

δxµ = ψµ, δψµ = 0,

δψµ = Bµ, δBµ = 0.

Supersymmetric
quantum
mechanics

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

χV =
∫

LX

dxdψdψdB
1

(2π)2m
e−γ2δΨ(x,ψ,ψ,B),

Ψ(x, ψ, ψ, B) =
1
2

∮
dtψµ(Bµ + 2iẋµ + Γσ

τνψσψνgµτ ),

δxµ(t) = ψµ(t), δψµ(t) = 0,

δψµ(t) = Bµ(t), δBµ(t) = 0.
(6.80)

We can now compute the regularized Euler number of E , χV (E), following
the observations above. First of all, by using the Mathai–Quillen representa-
tive χV (E) can be written as a functional integral. After we integrate out the
auxiliary fields in the action in (6.80), this integral reads:

χ − V (E) =
∫

dxdψdψ

(2π)m

1√
gγ

√√ 2m
e−γ2

∮
dt[ 1

2 gµν ẋµẋν−iψ∇tψ− 1
4 Rρσ

µνψρψσψµψν ],

(6.81)
where ∇t is the operator

∇tψ
µ = ψ̇µ + Γµ

νσψσẋν . (6.82)

The action in the exponential of (6.81) is precisely the action corresponding
to supersymmetric quantum mechanics. The δ-transformations become

δxµ = ψµ, δψµ = 0, δψµ = −igµν ẋν − Γσ
µνψσψν , (6.83)

which close only on-shell, i.e., δ2 = 0 modulo field equations (of course, by
reintroducing the vector field B one can close δ off-shell). As discussed below,
these transformations can be regarded as supersymmetry transformations.
Following (6.74) we introduce the ghost number symmetry

x −→ 0, ψ −→ 1, ψ −→ −1, B −→ 0. (6.84)
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One can show that ind∇t = 0.

Let us now evaluate χV (E). Geometrically the Euler number of E is
not well defined, since we are in an infinite-dimensional setting. However,
we can use (6.72) or (6.73) to evaluate the regularized Euler number χV (E),
depending on whether the section is generic or not. The zero locus of the
vector field V in (6.79) is the space of constant loops M = X. However, this
section is not generic, since over p ∈ X we have ker∇t = coker∇t = TpTT X.
We then have by using (6.73)

χV (E) = χ(TX), (6.85)

and the regularized Euler characteristic of E is in this case the Euler charac-
teristic of X.

We can check that the definition of χV (E) provided by (6.73) agrees
with our physical expectations by computing the functional integral (6.81) in
the limit γ → ∞. In this limit the exact result is obtained very simply by
considering the expansion of the exponential around bosonic and fermionic
zero-modes:

Bosonic part: ẋµ = 0 → xµ constant

Fermionic part:

⎧⎨⎧⎧⎩⎨⎨ψµ(t) = ψµ + non-zero-modes

ψ
µ
(t) = ψ

µ
+ non-zero-modes

The integration over the non-zero-modes is trivial since the δ symmetry im-
plies that the ratio of determinants is equal to 1. The integration over the
zero-modes gives:

χV =
∫
X

dx
(2π)−m

γ2m√
g

√√
∫ [ 2m∏

µ=1

dψµ

][
2m∏
ν=1

dψ
ν

]
eγ2 1

4 Rρσ
µνψρψσψµψν

=
∫
X

1
γ2m(2π)m

∫ ( 2m∏
a=1

dχa

)
e

γ2

2 χaΩabχb =
∫
X

1
(2π)m

Pf(Ωab)

= χ(X),

(6.86)

where χa = eµ
aψµ.

To finish this quick tour through supersymmetric quantum mechanics,
it is interesting to recall that χV can be also computed using Hamiltonian
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methods. The expression (6.81) possesses a second δ-like symmetry, δ:

δxµ = ψ
µ
,

δψµ = 0,

δψµ = −igµν ẋν − Γσ
µνψσψ

ν
.

(6.87)

After using the field equations one finds that

δ2 = 0, δ
2

= 0, δδ + δδ =
d

dt
, (6.88)

which, in terms of operators,

δ ↔ Q, δ ↔ Q,
d

dt
↔ H, (6.89)

(H stands for the Hamiltonian operator) implies that:

Q2 = Q
2

= 0, {Q,Q} = QQ + QQ = H, (6.90)

which is the standard supersymmetry algebra for (0+1)-supersymmetric field
theories. We can carry out explicitly the canonical quantization of the theory
by imposing the canonical commutation relations:

{ψµ
, ψν} = gµν , {ψµ, ψν} = {ψµ

, ψ
ν} = 0. (6.91)

From these equations it is natural to interpret ψ as fermion creation operators.
In view of this we have the following structure on the Hilbert space:⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

States with one fermion: ωµ(x)ψ
µ|Ω〉,

States with two fermions: ωµν(x)ψ
µ
ψ

ν |Ω〉,
...

States with n fermions: ωµ1,...,µn
(x)ψ

µ1 · · ·ψµn |Ω〉,

(6.92)

|Ω〉 being the Clifford vacuum. The Hilbert space of our system is thus
Ω∗(X), the set of differential forms on X. On this Hilbert space Q and Q are
represented by the exterior derivative d and its adjoint d+

Q ↔ d, Q ↔ d+, (6.93)

therefore, the Hamiltonian is the Hodge–de Rham Laplacian on X:

H = dd+ + d+d = ∆. (6.94)
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The zero energy states are in one-to-one correspondence with the harmonic
forms on X. After rescaling the parameter t and the fermionic fields by

t → γ2t, ψ → γ−1ψ, ψ → γ−1ψ, (6.95)

the partition function (6.81) takes the form:

χV (E) =
∫

dxdψdψ

(2π)m

γ2m

√
g

√√ e−
∮ 1/γ2

0

∮∮
dt
(

1
2 gµν ẋµẋν−iψ∇tψ− 1

4 Rρσ
µνψρψσψµψν

)
,

(6.96)
Using heat-kernel techniques one finds:

χV (E) = Tr
[
(−1)F e−

1
γ2 H
]
, (6.97)

where F is the fermion number operator. In the limit γ → 0 only the zero-
modes of H survive and therefore one must count harmonic forms with signs,
which come from (−1)F , leading to the result:

χ(E) =
2m∑
k=0

(−1)kbk = χ(X), (6.98)

(bk are the Betti numbers of X) in perfect agreement with our previous cal-
culation.

Actually, owing to supersymmetry, for each non-zero energy bosonic
mode there is a fermionic one with the same energy, which cancels its contri-
bution to (6.97). Therefore the computation performed in the Hamiltonian
formalism holds for any γ.

2) Topological sigma models
To further clarify the infinite-dimensional case we shall present a brief de-

scription of topological sigma models in the framework of the Mathai–Quillen
formalism. The physical origin of these models is the following: there is a
two-dimensional version of the twisting procedure explained in the previous
chapter that can be applied to any N = 2 supersymmetric theory. It turns
out that in two dimensions there are two inequivalent ways of doing the twist-
ing, and therefore given an N = 2 supersymmetric field theory one obtains
two different topological quantum field theories of cohomological type. These
two inequivalent theories are called A and B models. When the twisting pro-
cedure is applied to the N = 2 supersymmetric non-linear sigma model in
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two dimensions, one obtains the A and the B version of the topological sigma
model. In this section we shall be dealing with the A model which, in its more
general form, is defined in terms of a smooth, almost Hermitian manifold X,
with metric Gµν and almost complex structure Jµ

ν satisfying:

Jµ
νJν

σ = −δµ
σ, GµνJµ

σJν
ω = Gσω. (6.99)

In this case the configuration space X is the set of maps from a Riemann
surface Σ to X, x : Σ → X. The symmetry group is again trivial, and the
vector bundle E → X has as its fiber F = Γ

(
T ∗(Σ) ⊗ x∗(TX)

)+ over x ∈ X .
The superscript + means that we take the self-dual part of this vector space,
i.e., if �µ

α ∈ F it satisfies the self-duality constraint �µ
αJν

µεβ
α = �ν

β . The
choice of section in E is the following:

s(x)µ
α = ∂αxµ + Jµ

νεα
β∂β∂ xν . (6.100)

Notice that this is indeed a section of E , since it satisfies the self-duality
condition s(x)ν

β = s(x)µ
αJν

µεβ
α.

We will restrict the discussion to the simplest case in which the manifold
X is Kahler. Following the general pattern, we introduce two sets of fields¨
(xµ, χµ), (�µ

α, Bµ
α) for the base space X and the fiber F , respectively. Here,

xµ(σ) is a two-dimensional field, which in this case is a map from Σ to X

written in local coordinates. Following (6.40), we see that the localizing gauge
fermion is given by

Ψloc(x, χ, �, B) =
1
2

∫
Σ

d2σ
√

g
√√ [

�α
µ(Bµ

α + 2isµ
α + Γµ

νσχν�σ
α)
]
. (6.101)

The model is invariant under the symmetry transformations:

δxµ = χµ, δ�µ
α = Bµ

α,

δχµ = 0, δBµ
α = 0.

(6.102)

After integrating out the auxiliary fields the action S = δΨloc reads:

S(x, χ, �) =
∫
Σ

d2σ
√

g
√√ (

1
2
Gµνhαβ∂αxµ∂β∂ xν +

1
2
εαβJµνJ ∂αxµ∂β∂ xν

− ihαβGµν�µ
αDβχν − 1

8
hαβRµνστ�µ

α�ν
βχσχτ

)
,

(6.103)
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where Dαχµ = ∂αχµ + Γµ
νσ∂αxνχσ. We also have the ghost-number assign-

ment:

xµ −→ 0, χµ −→ 1, ρµ
α −→ −1, Bµ

α −→ 0. (6.104)

Rewriting (6.100) in terms of holomorphic indices α → (z, z) and µ →
(M,M), the equation for the zero locus of the section becomes:

∂αxµ + Jµ
νεα

β∂β∂ xν = 0 → ∂zx
M = 0, (6.105)

i.e., it corresponds to the space of holomorphic instantons. The virtual di-
mension of the moduli space of holomorphic instantons can be obtained with
the help of an index theorem. Contrary to the case of supersymmetric quan-
tum mechanics, this dimension is generally not zero. This implies that, in
general, one is forced to insert operators O in the integrals like (6.72) in order
to obtain non-trivial results.

In general, the operators O are cohomology classes on X and are obtained
from the analysis of the δ-cohomology associated to the symmetry (6.102).
These operators are the observables of the cohomological field theory. In the
case of topological sigma models, the highest ghost number operators turn
out to be:

O(0)
A = Ai1,...,ip

χi1χi2 · · ·χip , A ∈ Ω∗(X), (6.106)

and satisfy the relation:

{Q,O(0)
A } = O(0)

dA , (6.107)

where Q denotes the generator of the symmetry δ. This relation allows us
to identify the Q-cohomology classes of the highest ghost number observables
with the (de Rham) cohomology classes of X. As we are dealing with a co-
homological field theory, the observables satisfy topological descent equations
(5.6), which in this case take the form:

dO(0)
A = {Q,O(1)

A }, dO(1)
A = {Q,O(2)

A }. (6.108)

They are easily solved:

O(1)
A = Ai1,...,ip

∂αxi1χi2 · · ·χipdσα,

O(2)
A =

1
2
Ai1,...,ip

∂αxi1∂β∂ xi2χi3 · · ·χipdσα ∧ dσβ .
(6.109)
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With the help of these operators one completes the family of observables
which, as explained in the previous chapter, are labelled by homology classes
of the two-dimensional manifold Σ:∫

γ

O(1)
A ,

∫
Σ

O(2)
A . (6.110)

Topological sigma models can be generalized by including potential terms, and
the resulting theories can be also understood in the context of the Mathai–
Quillen formalism by using an equivariant extension with respect to global
abelian symmetries. We refer the reader to the references at the end of the
chapter for a detailed exposition.

6.5. The Mathai–Quillen formalism for theories with gauge symmetry

In the previous section we have considered the Mathai–Quillen formal-
ism in the infinite-dimensional setting in order to formulate supersymmetric
quantum mechanics and topological sigma models. None of these models
involves a gauge symmetry, and the Mathai–Quillen formalism reproduces
the standard construction of these models in field-theoretic terms. However,
in theories with a gauge symmetry the Mathai–Quillen formalism has to be
modified in order to make contact with the field-theoretic construction. They
key observation, made originally by Atiyah and Jeffrey, is that one has to con-
sider the Mathai–Quillen representative in the Cartan model of equivariant
cohomology.

In order to present this reformulation of the Mathai–Quillen formalism
let us come back to the Mathai–Quillen representative of a vector bundle E
constructed as an associated vector bundle to a principal G-bundle P . The
universal Thom form U(E) given in (6.28) is written in the Weil formulation
of equivariant cohomology. To obtain a Cartan model representative, one first
has to set θab = 0. After applying the Chern–Weil homomorphism one finds
the following form,

ΦC(E) = (2π)−mPf (K) exp
(
− 1

2
|v|2 − 1

2
dvaK−1

ab dvb

)
. (6.111)

This form is still invariant under the action of G, but it is not a basic dif-
ferential form in Ω(P × V ) since it is not horizontal. Therefore a horizontal
projection must be enforced. The result of this projection will be a basic
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form Φh
C(E) (where h denotes the horizontal projection) which coincides in

fact with (6.28), since the horizontal projection only applies to dva and gives

(dva)h = dva + θabvb. (6.112)

We will now enforce the horizontal projection in a more subtle way, following
Atiyah and Jeffrey. Let us assume that P is endowed with a Riemannian
metric g which is G-invariant. We use this metric to define a connection on
P by declaring the horizontal subspace to be the orthogonal complement to
the vertical one. More explicitly, we start with the map defining fundamental
vector fields on P :

CpCC : g → TpTT P, (6.113)

and then consider the differential form on P with values in g∗ given by:

ν̃pν (YpYY , A) = gp(CpCC A, YpYY ), YpYY ∈ TpTT P, A ∈ g. (6.114)

We can then use the Killing form on g to obtain a one-form on P with values
in g, denoted by ν. Notice that νpν = C†

pCC , the adjoint of CpCC , which is defined
by the metric on P together with the Killing form on g. If R = C†C the
connection one-form is defined by

θ = R−1ν. (6.115)

The curvature of this connection can be easily computed on horizontal vectors.
In this case it is simply given by

K = dθ = R−1dν, (6.116)

as the other terms vanish on the horizontal subspace. Let us now write (6.111)
as a Grassmann integral:

ΦC(E) = (2π)−m

∫
dχ e−

1
2 |v|2+ 1

2 χaKabχb+iχadva . (6.117)

Since at the end of the process we want to make a horizontal projection of
this form, we can write K = dθ = R−1dν. We can now introduce Lie algebra
variables λ, φ and use a Fourier transform formula to obtain the expression:

ΦC(E) = (2π)−d−m

∫
dχdφdλ detR exp

(
− 1

2
|v|2 +

1
2
χaφabχb

+ iχadva + i〈dν, λ〉g − i〈φ, Rλ〉g
)
,

(6.118)
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where 〈 , 〉g denotes the Killing form of g, and d = dim(G). Notice that in
this expression the integration over λ gives a δ-function constraining φ to be
K. We now enforce the horizontal projection of ΦC(E) by multiplying it by
the normalized invariant volume form Dg along the G-orbits. One can show
that

(detR)Dg =
∫

dη exp i(〈η, ν〉g), (6.119)

where η is a fermionic Lie algebra variable. Putting everything together we
obtain a representative for the horizontal projection:

Φ(E)h
C = (2π)−d−m

∫
dηdχdφdλ exp

(
− 1

2
|v|2 +

1
2
χaφabχb + iχadva

+ i〈dν, λ〉g − i〈φ, Rλ〉g + i〈η, ν〉g
)
.

(6.120)
This is now a basic form in Ω(P × V ) and descends to the Thom form of E .

We can also introduce a BRST structure for the action involved in the
exponent of (6.120). First, we introduce auxiliary fields Ba with the meaning
of a basis of differential forms for the fiber. The natural BRST operator δ is
again the de Rham d operator, but we must take into account that we have
to enforce the horizontal projection of dva given in (6.112). This leads to the
following modified transformation:

δχa = Ba, δBa = φabχb. (6.121)

Since we must also take into account the horizontal projection of differential
forms on P , we conclude that δ is nothing but the the equivariant exterior
derivative:

δ = d − ι(Cφ). (6.122)

Notice that φ is an element of the Lie algebra g, and therefore Cφ is a funda-
mental vector field on P . The transformation (6.121) can be also interpreted
as the equivariant derivative acting on the fiber V , after taking into account
that the group G acts as v → g−1v on v ∈ V .

Owing to the horizontal projection, we need, in fact, two gauge fermions
in order to reconstruct (6.120): a localizing gauge fermion

Ψloc = χa(iva +
1
2
Ba); (6.123)

and a ‘projecting’ one
Ψproj = i〈λ, ν〉. (6.124)
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The BRST transformation acts on the Lie algebra elements as

δλ = η, δη = −[φ, λ]. (6.125)

Using (6.125), (6.121), and (6.122) as BRST operators acting on the gauge
fermion Ψ = Ψloc + Ψproj, one recovers the action in (6.120). Notice that
since the natural δ symmetry is the equivariant derivative, the observables
associated with the model will live in the equivariant cohomology with respect
to the gauge symmetry.

6.6. Donaldson–Witten theory in the Mathai–Quillen formalism

Donaldson–Witten theory was first analyzed from the viewpoint of the
Mathai–Quillen formalism by Atiyah and Jeffrey, following the general for-
malism presented in the previous section. The basic geometric framework for
the moduli problem is as in Chapter 2: a compact oriented four-dimensional
manifold X endowed with a metric gµν . Over this manifold X we have a
principal G-bundle P → X, together with an associated vector bundle E.
According to our previous general discussion on the Mathai Quillen formal-
ism, to construct a topological quantum field theory associated to Donaldson
theory we have to specify fields, symmetries and equations. Given the ba-
sic geometrical framework, our insight from the considerations in previous
chapters facilitates the choices which have to be made.

The configuration space of the theory X is just the space A of G-
connections on E, and the symmetry G is the group of gauge transformations
on A. The bundle E is defined as A×G F , where F is the vector space of self-
dual two-forms on X with values in gE , Ω2,+(X,gE). The map s : A → F
given by

s(A) = F+(A) (6.126)

descends to a section s : A/G → E , as we already saw in (2.23).
In order to complete the construction we must specify the field content

of the theory. As should be clear from the previous sections, there is a pair
of fields associated with the base space A, (Aµ, ψµ), and two other fields
associated with the fiber F , (χµν , Gµν). Since we are going to use the Mathai–
Quillen representative constructed in the previous section, we also need the
gE-valued fields λ, φ, and η. In total we have the following set of fields:

χµν , Gµν ∈ Ω2,+(X,gE), ψµ ∈ Ω1(X,gE), η, λ, φ ∈ Ω0(X,gE),
(6.127)
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which is indeed the field content of Donaldson–Witten theory. The ghost
number assignment is

Aµ −→ 0, χµν −→ −1, Gµν −→ 0, ψµ −→ 1,

η −→ −1, λ −→ −2, φ −→ 2,
(6.128)

and agrees with the ghost number inherited from the U(1)R symmetry of the
N = 2 supersymmetric theory. The field ψµ lives in the (co)tangent space
to the field space and is to be understood as providing a basis for differential
forms on A, whereas the scalar bosonic field φ —or rather its expectation
value 〈φ〉— plays the role of the curvature two-form of the principal G-bundle
A → A/G.

The scalar symmetry δ which characterizes the theory is the equivariant
derivative with parameter φ, and has the form:

δAµ = ψµ,

δχµν = Gµν ,

δλ = η,

δφ = 0.

δψ = ∇Aφ,

δGµν = i[χµν , φ],

δη = i[λ, φ],

(6.129)

Notice that since δ is an equivariant derivative δ2 is a gauge transformation
with gauge parameter φ, and in order to obtain the observables one is led to
study the G-equivariant cohomology of δ. These transformations are equiva-
lent to those obtained in (5.29) after the redefinitions:

φ −→ 2
√

2φ, λ −→ − i

2
√

2
φ†, Gµν −→ i(F+

µνF − Dµν). (6.130)

The action of the theory is δ-exact and can be written in terms of the
localizing and projecting gauge fermions:

Ψloc =
∫
X

d4x
√

g
√√

Tr
[
2χµν(F+µν − 1

2
Gµν)

]
,

Ψproj =
∫
X

d4x
√

g
√√

Tr [iλ∇µψµ] ,
(6.131)

where we have taken into account that ν = C† = ∇†
A, as explained in (2.38).

After integrating out the auxiliary fields the action reads:

δ(Ψloc + Ψproj) →
∫

X

∫∫
d4x

√
g

√√
Tr
(
F+2 − iχµν∇µψν + iη∇µψµ

+
1
4
φ{χµν , χµν} +

i

4
λ{ψµ, ψµ} − λ∇µ∇µφ

)
.

(6.132)
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This action differs from the one obtained by the twisting procedure in (5.28)
by a δ-exact term. Indeed, comparing (5.31) and (6.131), after taking into
account the redefinitions (6.130), one obtains that their difference is a term in-
volving Tr η[φ, λ]. Since terms of this type in the action are irrelevant we con-
clude that the construction of the Euler class of the infinite-dimensional bun-
dle E by using the Mathai–Quillen formalism leads to Donaldson–Witten the-
ory. We can then rederive in a geometric way the property of the Donaldson–
Witten functional integral reducing to a finite-dimensional integral over the
moduli space of ASD instantons (the zero locus of the section (6.126)).

6.7. Abelian monopoles in the Mathai–Quillen formalism

In this section we will consider abelian monopoles in the Mathai–Quillen
formalism. We will recover the model obtained in the previous chapter from
the approach based on twisted N = 2 supersymmetry.

As in the case of Donaldson–Witten theory we will start identifying fields,
symmetries and equations. The basic geometric framework is as in Chapter
3. Let X be a Riemannian four-manifold, and let L be the determinant
line bundle of a Spinc connection. The configuration space for the moduli
problem is X = A × Γ(X, S+ ⊗ L

1
2 ), and the symmetry G is the group of

gauge transformations acting on X by (3.4). The vector bundle E is X ×G F ,
where F = Ω2,+(X) ⊕ Γ(X, S− ⊗ L

1
2 ). The map s : X → F given in (3.8)

descends to a section of E , and the moduli space M is the space of solutions
to the Seiberg–Witten equations

F+

α̇β̇
+ 4iM (α̇Mβ̇M ) = 0,

Dαα̇
L Mα̇MM = 0,

(6.133)

modulo gauge transformations. Using this section we can construct the corre-
sponding topological field theory in the Mathai–Quillen formalism. In addi-
tion to the fields in Donaldson–Witten theory, we also have to add two pairs
of fields, one pair,

Mα̇MM , µα̇ ∈ Γ(S+ ⊗ L
1
2 ), (6.134)

corresponding to the base manifold X , and another pair,

να, hα ∈ Γ(S− ⊗ L
1
2 ), (6.135)
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corresponding to the fiber F , together with their corresponding complex con-
jugates. The ghost number assignments for these new fields are those pre-
scribed by our general rule (6.74):

Mα̇MM −→ 0, µα̇ −→ 1, να −→ −1, hα −→ 0. (6.136)

On the other hand, the scalar symmetry which characterizes the theory
is now enlarged in the following way:

δMα̇MM = µα̇, δµα̇ = −iφMα̇MM ,

δvα = hα, δhα = −iφvα.
(6.137)

The gauge fermion of the theory takes the following form:

Ψloc =
∫

X

∫∫
d4x

√
g

√√ ( i

2
χα̇β̇
( 1√

2

(
F+

α̇β̇
+ 4iM (α̇Mβ̇M )

)− i

4
Gα̇β̇

)
− i

2
(vα∇αα̇Mα̇MM − M

α̇∇αα̇vα) − 1
8
(vαhα + hαvα)

)
,

Ψproj = −1
2

∫
X

∫∫
d4x

√
g

√√ (
iTr(λ ∧ ∗∇∗

Aψ) + e(µαλMαMM − M
α
λµα)

)
.

(6.138)
Notice that after the redefinitions (6.130) this agrees with (5.57) for m = 0
up to an overall factor and the δ-exact term Tr η[φ, λ]. After integrating out
the auxiliary fields, the action reads:

SAM =
∫

X

∫∫
d4x

√
g

√√ (
gµν∇µM

α̇∇νMα̇MM +
1
4
RM

α̇
Mα̇MM +

1
2
F+α̇β̇F+

α̇β̇

− 1
8
M

(α̇
M β̇)M (α̇Mβ̇M )

)
+
∫

X

∫∫
Tr
( i

2
η ∧ ∗∇∗

Aψ +
i

2
√

2
χα̇β̇(p+(∇Aψ))α̇β̇ +

i

2
λ ∧ ∗∇∗

A∇Aφ
)

+
∫

X

∫∫
d4x

√
g

√√ (
iM

α̇
φλMα̇MM − 1√

2
(M α̇χα̇β̇µβ̇ − µα̇χα̇β̇Mβ̇M )

− i

2
(vα∇αα̇µα̇ + µα̇∇αα̇vα)

+
1
2
(M

α̇
ψαα̇vα + vαψαα̇Mα̇MM )

− 1
2
(µα̇ηMα̇MM + M

α̇
ηµα̇) +

i

4
vαφvα − µα̇λµα̇

)
.

(6.139)
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Chapter 7

The Seiberg–Witten Solution of N = 2
SUSY Yang–Mills Theory

The Seiberg–Witten solution of SU(2), N = 2 supersymmetric gauge
theories obtained by Seiberg and Witten in 1994 provides the exact low energy
effective action (LEEA) of N = 2 supersymmetric Yang–Mills theory up to
two derivatives. In this book we can not make a detailed analysis of this
remarkable achievement, and we will just provide some starting points and
the final results, which will be needed in the topological applications of the
remaining chapters. There are excellent reviews which the reader can consult
for further information, and some of them are addressed in the bibliographical
notes at the end of this chapter. We will start by reviewing some semi-classical
aspects of the theory that motivate the ingredients for the exact solution. N =
2 supersymmetry reduces the problem of finding the LEEA to the problem of
finding a single holomorphic function, the so called prepotential. The duality
properties of the prepotential are reviewed in the second section. Since the
Seiberg–Witten solution is written in terms of an auxiliary elliptic curve, we
will review in some detail some of the basic aspects of elliptic curves and the
theory of elliptic functions. With this machinery we shall present the exact
solution in section 4 and explore some of its properties. Finally, we shall
re-express some aspects of the solution in terms of modular forms, something
that will be very useful for analysing the u-plane integral.

7.1. Low energy effective action: semi-classical aspects

1) Classical potential and moduli space
In order to analyse the N = 2 supersymmetric SU(2) theory the first

step is to perform a classical analysis. The classical action (4.67) contains the
scalar potential

V =
1

2g2
Tr [φ†, φ]2 . (7.1)
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The classical vacua are determined by V = 0, i.e., [φ, φ†] = 0. This means
that φ is gauge equivalent to an element in the Cartan subalgebra, and

φ =
(

a 0
0 −a

)
. (7.2)

When φ is of this form the gauge symmetry is broken to U(1). The vacuum
expectation value a gives mass to the W± bosons in the usual way. The final
outcome of this process is that, of the three N = 2 supersymmetric vector
superfields of the SU(2) theory two of them (the N = 2 supersymmetric
multiplets of the W± bosons) obtain a mass, whilst one of them remains
massless. Classically, the only light degree of freedom is a U(1) N = 2
supersymmetric multiplet.

Notice that different vacuum values of φ correspond to different physi-
cal theories, and therefore the complex number a parametrizes the space of
physically inequivalent vacua. This space is known as the classical moduli
space of the theory, and in this case it has complex dimension one. However,
this parametrization of the moduli space is not gauge-invariant. Although we
have used the gauge symmetry to put φ in the form (7.2), there is still some
residual gauge invariance: a Weyl reflection will take a → −a. It is more
convenient to parametrize the moduli space by the vacuum expectation value
of a gauge-invariant operator,

u = 〈Tr (φ2)〉, (7.3)

which defines the so called u-plane. Classically u = 2a2, but as we will see
this becomes corrected in the full quantum theory.

2) Constraints from N = 2 supersymmetry
Our main goal is to find the effective quantum theory for the massless

degree of freedom, which classically is a U(1) N = 2 supersymmetric multiplet
A. In N = 1 language, this contains an N = 1 chiral multiplet

A = a −
√

2θλ1 + θ2F, (7.4)

and an N = 1 vector multiplet

V = −2θσµθAµ − 2iθ
2
θλ2 + 2iθ2θλ

2
+ θ2θ

2
D. (7.5)

Notice that we have denoted by a both the lowest component of the U(1)
chiral multiplet, in (7.4), and its vacuum expectation value in (7.2). The
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choices (7.4) and (7.5) correspond to (4.18) and (4.36) after some obvious
redefinitions.

In principle, the LEEA should be obtained by integrating out the massive
degrees of freedom, i.e., by performing the functional integral over all the
modes of the massive multiplets. Since this procedure gives in general a non-
local action one has to expand in derivatives to obtain a local effective theory.
The expansion is then in powers of p/Λ, where p is the momentum and Λ is
the typical scale in the theory (in this case, as we shall see, since the theory
is asymptotically free Λ is the dynamically generated scale).

Of course, in real life it is extremely hard to integrate out the massive
degrees of freedom explicitly, and one obtains the structure of low energy
effective actions by symmetry considerations (as, for example, in chiral per-
turbation theory). One of the big advantages of N = 2 supersymmetry is
that the leading terms in the derivative expansion (the terms that contain
at most two derivatives and four fermions) can be obtained from a single
holomorphic function F(a) called the prepotential. As explained in section
5.4 this result is obtained after considering the most general N = 2 super-
symmetric action involving a single vector multiplet. The form of this action
was displayed in (4.70). Adapting it to the fields involved in the low energy
effective Lagrangian one finds:

Leff =
1
4π

Im
[∫

d4θ
∂F(A)

∂A
A +

∫
d2θ

1
2

∂2F
∂A2

WαWαWW

]
, (7.6)

Wα being defined in (4.37). In terms of F(a) the Kähler potential in (4.28)¨
is given by

K = Im
(

A
∂F(A)

∂A

)
. (7.7)

If a denotes the scalar component of the chiral superfield A, then the metric
on the space of fields (or equivalently on the moduli space of vacua), is given
by

ds2 = gaa dada = Imτ dada, (7.8)

where

τ(a) =
∂2F
∂a2

. (7.9)

N = 2 supersymmetry then implies taht the metric is given by the gauge
coupling τ .
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In component fields the above Lagrangian becomes:

− 1
16π

Im
[
τ(F 2

µνF − iFµνFF ∗ FµνFF )
]
− 1

4π

[
τ∂µa∂µa + iτλvσµ∂µλv

]
−

√
2

16π
Im
[dτ

da
λvσµνλvFµνFF ] −

√
2

16π
Im
[dτ

da
λvλwDvw

]
+

1
16π

ImτDvwDvw +
1

48π
Im
[
d2τ

da2
(λvλw)(λvλw)

]
.

(7.10)

Classically the low energy U(1) theory describing the massless photon of
N = 2 supersymmetric Yang–Mills theory with gauge group SU(2) is given
by the prepotential F(a) = a2/2. In terms of the u variable, the metric in
moduli space reads

ds2 =
dudu

8|u| , (7.11)

which is singular at u = 0. This has a simple physical interpretation: at u = 0
the W± bosons are, in fact, massless and the SU(2) symmetry is restored.
This is a very simple example of a general phenomenon which will be realized
later in a much more non-trivial way: whenever a particle in the spectrum
becomes massless (in this case the W± bosons) the low energy theory obtained
from integrating out the massive degrees of freedom becomes singular.

3) The prepotential to one-loop

The classical analysis and the constraints of N = 2 supersymmetry give
the general picture of the LEEA reviewed above. In order to make further
progress we have to investigate the quantum dynamics. The first thing we
can do is to evaluate the perturbative one-loop correction to F . The effective
coupling of the theory can be computed as follows. At energies larger than a

the masses of the W± bosons are negligible, and we can use the β-function
of the SU(2) theory. The β-function for a SU(NcNN ) gauge theory with NfN

Weyl fermions in the representations Rf and NsN complex scalar fields in the
representations Rs is given by

β(g) ≡ µ
dg

dµ
= − g3

48π2

(
11NcNN − 2

∑
f

Cf − 1
4

∑
s

Cs

)
, (7.12)

where Cf,s are the Casimirs of the representations Rf,s, normalized in such
a way that the Casimir in the adjoint is given by NcNN . Since pure N = 2
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supersymmetric SU(2) Yang–Mills contains one complex scalar and two Weyl
fermions, both in the adjoint representation, the β-function is given by

β(g) = − 1
4π2

g3. (7.13)

The SU(2) theory is then asymptotically free, and generates a scale Λ. Below
the scale a the W± bosons decouple, and we are left with the effective U(1)
theory described by the prepotential F(a). The coupling constant of this
theory is obtained by matching the running coupling constant of the SU(2)
theory at the scale µ = a. If a � Λ we are at energies much bigger than the
scale of the theory and asymptotic freedom tells us that perturbative compu-
tations are reliable. Using standard perturbation theory and the holomorphy
of τ one can obtain the effective coupling constant at one loop:

τ(a) =
2i

π
log
( a

Λ

)
. (7.14)

If we now integrate (7.9) we find

F1FF −loop(a) =
i

2π
a2ln

a2

Λ2
. (7.15)

It is known that owing to N = 2 supersymmetry the above one-loop expres-
sion for the prepotential does not receive higher order perturbative correc-
tions, and (7.15) gives the full perturbative prepotential. It is customary to
include the classical piece of the prepotential a2/2 in the one-loop piece by
redefining Λ. We will refer to the regime u � Λ2 as the semi-classical regime.

4) Instanton effects
Since we are dealing with a non-abelian gauge theory, we should expect

non-perturbative effects owed to instantons. The first possible effect of in-
stanton backgrounds is to break some of the classical symmetries, as in the
U(1) problem of quantum cromodynamics. Classically, our theory has the
full global SU(2)R × U(1)R as a symmetry group. However, in an instan-
ton background U(1)R is broken to a discrete subgroup. This can be easily
understood as follows: by the index theorem, in the presence of an SU(N)
instanton there are 2N zero-modes for each fermion λα in the adjoint repre-
sentation, and since there is an SU(2)R doublet of fermions, there are in total
4N zero-modes. The measure of the functional integral

Dλ1α̇Dλ1αDλ2α̇Dλ2α (7.16)



The Seiberg–Witten Solution of N = 2 Supersymmetric Yang–Mills Theory 115

is not invariant under the U(1)R symmetry (4.68): by the usual argument à
la Fujikawa, it picks a factor

e2iϕ index(D) = e−4iNϕ, (7.17)

where D is the Dirac operator coupled to the adjoint bundle. Therefore
the measure is only invariant under the discrete group Z4N . The surviving
discrete R-symmetry is broken spontaneously by the Higgs vacuum expecta-
tion value. The field φ has charge 2 under Z4N and transforms into eπi/Nφ.
Therefore, for the SU(2) theory, if the vacuum is characterized by non-zero
φ, then Z8 is broken down to Z4. The spontaneously broken symmetry has
a non-trivial action on the moduli space, and it acts as Z2 on the u-plane:
u → −u.

Instantons also give non-perturbative corrections to the prepotential.
The structure of these corrections can be determined as follows: first, a cor-
rection to F coming from a configuration of instanton number k should be
proportional to the k-instanton factor exp(−8π2k/g2) (since the prepotential
is a holomorphic function, it cannot receive corrections from anti-instanton
configurations). Using the explicit expression for the β-function of the theory
(7.13) the k-instanton factor can be written as

e−8π2k/g2
=
(

Λ
a

)4k

. (7.18)

To make further progress we notice that although the R-symmetry is broken
by instanton effects, one can formally restore it by assigning charge 2 to the
dynamically generated scale Λ. In this way the instanton factor (7.18) is
neutral. The prepotential has charge 4, and this finally implies that the k-
instanton correction should also be proportional to a2. Putting these together
the prepotential including generic non-perturbative corrections can be written
as

F =
i

2π
a2ln

a2

Λ2
+

∞∑
k=1

FkFF
(

Λ
a

)4k

a2 . (7.19)

The coefficients FkFF are constants (this is because in a supersymmetric theory,
instantons contribute to the functional integral only through zero-modes). It
turns out that the FkFF are all non-zero. Notice that finding the exact LEEA
is equivalent to computing FkFF for all k. The Seiberg–Witten exact solution
will give an explicit procedure to determine these coefficients.
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5) BPS states
Spontaneously broken SU(N) gauge theories with scalar fields in the ad-

joint representation contain ’t Hooft–Polyakov monopoles and dyons in their
semi-classical spectrum. These are solitons, i.e., time-independent, finite en-
ergy solutions of the classical equations of motion, and they are characterized
by the value (7.2) of the Higgs field at spatial infinity. A dyon of electric
charge ne and magnetic charge nm has a mass which is given semi-classically
by

M =
√

2|a(ne + τnm)|. (7.20)

The spectrum of N = 2 supersymmetric SU(2) Yang–Mills theory has a
monopole of charge nm = 1 and dyons of charge (ne, nm) = (n, 1). Quan-
tization of these solitons leads to states which preserve half of the super-
symmetries and arrange themselves into an N = 2 supersymmetric massive
hypermultiplet, with central charge given semi-classically by

Z = a(ne + τclττ nm). (7.21)

These states satisfy the Bogomolnyi bound M =
√

2|Z| and are called BPS
states. As we shall see, (7.21) becomes corrected in the full quantum theory.

7.2. Sl(2,Z) duality of the effective action

One of the most important aspects of the LEEA described by an N = 2
supersymmetric prepotential is that one can perform an Sl(2,Z) transfor-
mation to obtain another description of the same low energy theory. These
different descriptions involve different parametrizations of the quantum mod-
uli space. Depending on the region we are looking at, some parametrizations
will be more appropriate than others, and this will play a crucial role in the
rest of this book.

The duality transformations of the N = 2 supersymmetric LEEA are,
in fact, a generalization of the usual duality of abelian Maxwell theory. Let
us then start with the Maxwell action in Minkowski space, with conventions
(FµνFF )2 = −(F̃µνFF )2 and ˜̃F = −F :

1
32π

Im
∫

τ(a)(F + iF̃ )2 =
1

16π
Im
∫

τ(a)(F 2 + iF̃F ) . (7.22)

Usually we take the gauge connection Aµ as the basic field, with F = dA,
and then it follows that dF = 0 (the Bianchi identity). But we can regard
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F as an independent field and implement the Bianchi identity by introducing
a Lagrange multiplier vector field VDVV . To fix the Lagrange multiplier term,
U(1) ⊂ SU(2) is normalized such that all SO(3) fields have integer charges.
With this convention a magnetic monopole satisfies ε0µνρ∂µFνρFF = 8πδ(3)(x).
The Lagrange multiplier term can now be constructed by coupling VDVV to a
monopole:

1
8π

∫
VDµVV εµνρσ∂νFρσFF =

1
8π

∫
F̃DF F =

1
16π

Re
∫

(F̃DF − iFDF )(F + iF̃ ) ,

(7.23)
with FDµνF = ∂µ∂ VDνVV − ∂νVDµVV . Adding this to the gauge field action and
integrating over F we obtain the dual theory

1
32π

Im
∫ (

−1
τ

)
(FDF + iF̃DF )2 =

1
16π

Im
∫ (

−1
τ

)
(F 2

DF + iF̃DF FDF ) . (7.24)

We want to show that something similar happens in the effective theory de-
scribed by (7.6). We can, in fact, perform a generalization in N = 1 super-
space of the dualization procedure which we have presented. Let us consider
first the second term in (7.6):

1
8π

Im
∫

d2θτ(A)W 2 . (7.25)

The Bianchi identity is now replaced by ImDW = 0. This can be implemented
by introducing a vector superfield VDVV and the corresponding Lagrange mul-
tiplier term becomes

1
4π

Im
∫

d4xd4θ VDVV DW =
1
4π

Re
∫

d4xd4θ iDVDVV W

= − 1
4π

Im
∫

d4xd2θ WDW W .

(7.26)

Adding this to the action and integrating out W , we obtain the dual action

1
8π

Im
∫

d2θ

(
− 1

τ(A)
W 2

DW

)
. (7.27)

The conclusion of this analysis is the following: the effect of the duality
transformation is to replace a gauge field which couples to electric charges by
a dual gauge field which couples to magnetic charges, and at the same time
the gauge coupling is transformed as

τ → τDτ = − 1
τ

. (7.28)
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This is the famous electric–magnetic duality of U(1) gauge theory. Notice
that it transforms weak coupling (small g) in strong coupling (large g), and
vice versa. Another symmetry of the theory comes from the periodicity of
the Θ angle: the theory is invariant under the shift Θ → Θ + 2π. Since this
corresponds to τ → τ +1, we should consider the group Sl(2,Z) generated by
these two transformations:

Sl(2,Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1

}
. (7.29)

This is the so called duality group of our theory, and acts on τ as

τ → aτ + b

cτ + d
. (7.30)

The transformations τ → −1/τ and τ → τ + 1 are implemented by the
matrices

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
. (7.31)

In order to show that the effective theory (7.6) has this duality group, we
have to analyse the first term in (7.6), which involves the chiral superfield
A. Let us introduce h(A) = ∂F/∂A. In terms of this, τ(A) = ∂h(A)/∂A

and the scalar kinetic energy term becomes Im
∫

d4θ h(A)A. The dual theory
corresponding to (7.28) is defined by a dual chiral field

AD = h(A) =
∂F
∂A

. (7.32)

Under this transformation the scalar kinetic energy term transforms to

Im
∫

d4θ h(A)A = Im
∫

d4θ hD(AD)AD, (7.33)

where hD(h(A)) = −A, and therefore retains its form. This transformation
defines in particular a dual prepotential FDF (AD) through the relation:

hD(AD) =
∂F(AD)

∂AD
= −A, (7.34)

and therefore
− 1

τ(A)
= − 1

h′(A)
= h′

D(AD) = τDτ (AD), (7.35)

and the dual coupling constant is related to the original coupling constant τ

through an S-duality transformation (7.28). In conclusion, given the effective
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Lagrangian (7.6), which is written in an ‘electric frame’, (i.e., in terms of the
U(1) photon of the underlying SU(2) theory), one can write it through a du-
ality transformation in a ‘magnetic’ frame, i.e., in terms of a U(1) gauge field
which couples locally to magnetic monopoles. This transformation, induced
by the matrix S, is usually called S-duality. In general we have an infinite
number of frames or equivalent descriptions of the theory related by Sl(2,Z)
transformations.

We can consider the effect of the full Sl(2,Z) group on A and F , or
equivalently on A and AD = ∂F/∂A. The transformation (7.30) implies that(

AD

A

)
→
(

a b
c d

) (
AD

A

)
. (7.36)

The transformation of F can be easily obtained from (7.36), or equivalently
from

A′
D = aAD + bA ,

A′ = cAD + dA .
(7.37)

The first equation can be integrated with respect to A′ by using the second
equation and the result is

F ′ =
1
2
bdA2 +

1
2
acA2

D + bcAAD + F . (7.38)

Finally, notice that the Kähler metric on moduli space,¨

ds2 = Im
daD

du

da

du
dudu = − i

2

(
daD

du

da

du
− daD

du

da

du

)
dudu (7.39)

is manifestly Sl(2,Z) invariant. Duality of the effective action implies that
the correct expression for the central charge for an (ne, nm) dyon must be

Z = ane + aDnm. (7.40)

This can be easily seen as follows: by analysing the coupling of hypermulti-
plets of electric charge ne to the chiral field A in the effective action

√
2neM̃AM, (7.41)

one easily finds the expected mass M =
√

2|ane|. However, by Sl(2,Z) duality
the mass of a monopole of charge nm must be given by M =

√
2|aDnm|. This

leads to (7.40) for an arbitrary dyon. Notice that in the semi-classical limit
aD ∼ τa2, and one recovers (7.21).
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The Sl(2,Z) covariance of the effective theory will be crucial for the
structure of the Seiberg–Witten solution, and many of the quantities involved
will be tensors under this transformation group. We will say that a quantity F

has weight (n, m) under Sl(2,Z) if under the transformation (7.30) it behaves
as

F → (cτ + d)n(cτ + d)mF. (7.42)

For example, u has weight (0, 0), since it is the vacuum expectation value
of a gauge-invariant operator (and as it will become clear later, it is a good
global coordinate on moduli space). Therefore it should not depend on the
description we use. One can also use (7.38) to show that

F − 1
2
aaD (7.43)

has weight (0, 0). Similarly, it is easy to see that du/da has weight (−1, 0).

7.3. Elliptic curves

The exact solution of Seiberg–Witten is given in terms of quantities asso-
ciated with an elliptic curve. This curve, also called a Seiberg–Witten curve,
plays a crucial role in the solution and its topological applications, and there-
fore it is convenient to stop at this point and give a brief summary of the
properties of elliptic curves that will be needed in the following.

As is well known, every algebraic curve of genus one can be written in
the Weierstrass form

Y 2 = 4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3), (7.44)

where the coefficients g2, g3 are related to the roots ei, i = 1, 2, 3, by the
equations

g2 = −4(e2e3 + e3e1 + e1e2), g3 = 4e1e2e3. (7.45)

The discriminant of the elliptic curve is defined by

∆ =
∏
i<j

(ei − ej)2, (7.46)

and in terms of g2, g3 it is given by

∆ =
1
16

(g3
2 − 27g2

3). (7.47)
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We can now use Abel’s theorem, which states that an algebraic curve of genus
one like (7.44) is of the form C/Λ for some lattice Λ ⊂ C with half periods
ω1, ω3, such that Im(ω3/ω1) > 0. The map from C/Λ to the curve (7.44) is
given by

ψ(z) = (℘(z), ℘′(z)) = (X, Y ), (7.48)

where we consider (X, Y ) as inhomogeneous coordinates in CP2, and the
Weierstrass function ℘(z) verifies the differential equation

(℘′(z))2 = 4℘(z)3 − g2℘(z) − g3. (7.49)

Under this correspondence the half periods of the lattice Λ, ωi, i = 1, 2, 3,
ω2 = ω1 + ω3, are mapped to the roots ei = ℘(ωi) of the cubic equation in
(7.44), and the differential dz on C/Λ is mapped to the abelian differential
of the first kind dX/Y . The map (7.48) has an inverse given by

z = ψ−1(p) =
∫ p

∞

∫∫
dX

Y
, (7.50)

which is defined modulo Λ. We can obtain an explicit expression for the
inverse map (7.50) by doing the change of variable t2 = (e1 − e3)/(X − e3),
to obtain

z = − 1√
e1 − e3

F (φ, k), (7.51)

where F (φ, k) is the incomplete elliptic integral of the first kind, with modulus
k2 = (e2 − e3)/(e1 − e3), and sin2φ = (e1 − e3)/(℘(z) − e3).

In fact, all these functions can be computed in terms of the roots ei and
elliptic functions. First of all we have the periods of the abelian differential
dX/Y . We take the branch cut on the X-plane from e3 to e2, and from e1 to
infinity, so that the α1 and α2 cycles of the torus circle around e1 − e2 and
around e3 − e2, respectively. Therefore the periods of the abelian differential
dX/Y are given by

2ω3 =
∮

α

∮∮
1

dX

Y
=
∫ e2

e

∫∫
1

dX√
(X − e1)(X − e2)(X − e3)

,

2ω1 =
∮

α

∮∮
2

dX

Y
=
∫ e2

e

∫∫
3

dX√
(X − e1)(X − e2)(X − e3)

.

(7.52)

Introducing now the complementary modulus k′2 = 1 − k2, we obtain a rep-
resentation of the periods in terms of the complete elliptic integral of the first
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kind,

ω3 =
i√

e1 − e3
K ′(k),

ω1 =
1√

e1 − e3
K(k),

(7.53)

where K ′(k) ≡ K(k′). We will also need the Weierstrass ζ function which
is defined by the equation ζ ′(z) = −℘(z). Because of this property we have
that

ηi ≡ ζ(ωi) = −
∫ ω2

ω

∫∫
j

dz ℘(z), i, j = 1, 3, j 
=

 i, (7.54)

hence their values at the half periods can be computed in terms of complete
elliptic integrals,

η3 = − i
e3√

e1 − e3
K ′(k) − i

√
e1 − e3E

′(k),

η1 = − e1√
e1 − e3

K(k) +
√

e1 − e3E(k),
(7.55)

where E′(k) ≡ E(k′). These periods satisfy the so called Legendre’s relation,

η1ω3 − η3ω1 =
πi

2
. (7.56)

When the discriminant of an elliptic curve vanishes the curve becomes
singular. It is easy to see that in such a situation at least one of the periods
of the lattice goes to infinity, and geometrically this indicates that the corre-
sponding cycle of the torus has ‘pinched’ and the curve has a node. Let us
analyse the structure of the curve when ω1 = ∞ while ω3 remains finite. It
is easy to see that the roots are then given by

e1 = e2 = −e3

2
= −3g3

2g2
. (7.57)

Elliptic functions degenerate to trigonometric functions in this limit (see Ap-
pendix B), and by using that e3 = ℘(ω3), we find that the finite period is
given by ( π

2ω3

)2

=
9g3

2g2
, (7.58)

and evaluating ζ(ω3) leads to

2η3ω3 =
π2

6
. (7.59)

When both periods go to infinity one has that ei = g2 = g3 = 0, and the
curve has a cusp singularity y2 = 4x3. In that case elliptic functions further
degenerate to rational functions.
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7.4. The exact solution of Seiberg and Witten

The exact answer for the low energy effective action of pure N = 2
supersymmetric Yang–Mills theory was given by Seiberg and Witten in terms
of an auxiliary elliptic curve which will play a very important role in what
follows. It is useful to rescale

a → a/2, τ → 2τ (7.60)

so that τ = θ/π+(8πi/g2). With these conventions the Seiberg–Witten curve
is

y2 = x3 − ux2 +
1
4
x, (7.61)

in units where Λ = 1. This elliptic curve describes topologically a torus. To
further specify the solution, we need another ingredient, which is an abelian
differential λSW on the elliptic curve, with the property that

dλSW

du
=

√
2

8π

dx

y
. (7.62)

This differential is usually called the Seiberg–Witten differential. The exact
expression for the LEEA is completely determined by the expressions:

aD =
∮

α

∮∮
1

λSW, a =
∮

α

∮∮
2

λSW. (7.63)

This determines a, aD in terms of u, and therefore determines implicitly the
prepotential F(a) through aD = ∂F/∂a.

It is not difficult to find an explicit expression for the Seiberg–Witten
differential. By integrating (7.62) directly one finds:

λSW = −
√

2
4π

y

x2
dx, (7.64)

which, up to an exact differential
√

2/(2π)d(y/x), is given by

λSW =
√

2
8π

dx

y
(2u − 4x). (7.65)

Let us give a more explicit expression for the above integrals. The first
thing to do is to write the Seiberg–Witten curve in the Weierstrass form
(7.44). This curve (as well as the generalizations to theories with matter) has
the form:

y2 = x3 + Bx2 + Cx + D, (7.66)
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where the coefficients B, C, and D depend on the gauge-invariant parameter
u and the dynamical scale of the theory Λ which we have set equal to one.
To put this curve in the Weierstrass form it suffices to redefine the variables
as

y = 4Y, x = 4X − 1
3
B, (7.67)

and the curve (7.66) now has the form given in (7.44) with

g2 = −1
4
(
C − 1

3
B2), g3 = − 1

16

(
D +

2B3

27
− CB

3

)
. (7.68)

Notice that with the redefinition given in (7.67), the abelian differential of the
first kind is dX/Y = dx/y. In the case of the Seiberg–Witten curve (7.61) it
is easy to find that

g2 =
1
4

(u2

3
− 1

4

)
, g3 =

1
48

(2u3

9
− u

4

)
, (7.69)

so that the discriminant of the curve is given by

∆ =
1

4096
(u2 − 1), (7.70)

and the roots ei have the explicit expression:

e1 =
u

24
+

√
u2 − 1

8
, e2 =

u

24
−

√
u2 − 1

8
, e3 = − u

12
. (7.71)

Of course, at this point this labeling only holds up to permutation, but we will
show in a moment that with the above conventions this is the right choice.

Notice that
daD

du
=

√
2

4π
ω3,

da

du
=

√
2

4π
ω1, (7.72)

and therefore
τ =

daD

da
=

ω3

ω1
, (7.73)

i.e., the effective gauge coupling constant is the τ parameter of the elliptic
curve. In particular, Im τ > 0, as required for the positivity of the Kähler¨
metric (7.8) on moduli space.

In order to compute a and aD we have to compute the integrals:

aD =
√

2
π

∫ ω2

ω

∫∫
1

dz
(u

6
− 4℘(z)

)
,

a =
√

2
π

∫ ω2

ω

∫∫
3

dz
(u

6
− 4℘(z)

)
.

(7.74)



The Seiberg–Witten Solution of N = 2 Supersymmetric Yang–Mills Theory 125

Using (7.54) and ζ(ω2) = ζ(ω1) + ζ(ω3) we obtain

aD =
√

2
π

(
4ζ(ω3) +

u

6
ω3

)
,

a =
√

2
π

(
4ζ(ω1) +

u

6
ω1

)
,

(7.75)

The use of elliptic functions leads to some useful results in Seiberg–Witten
theory. For example, using Legendre’s relation (7.56) one finds that

a
(daD

du

)
− aD

(da

du

)
=

i

π
(7.76)

which after integration leads to

F − 1
2
aaD = − i

2π
u, (7.77)

which confirms that u has weight (0, 0) under Sl(2,Z).
Now we will analyse in more detail the exact solution of Seiberg and

Witten by first checking that it reproduces the known weak coupling behavior,
and then by looking at the strong coupling regime.

We first look at the weak coupling regime, the regime where u → ∞. In
this case one finds:

e1 =
u

6
− 1

16u
+ · · · , e2 = − u

12
+

1
16u

+ · · · . (7.78)

Now using the expansions of the elliptic integral of the first kind for small k2,

K(k) =
π

2

{
1 +

1
4
k2 + · · ·

}
,

K ′(k) = log
4
k

+
1
4

(
log

4
k
− 1
)
k2 + · · · ,

(7.79)

we find
ω3 =

2i√
u

(
log u + 3 log 2 + O

( 1
u

))
,

ω1 =
π√
u

(
1 + O

( 1
u

))
,

(7.80)

and
τ(u) =

2i

π

(
log u + 3 log 2

)
+ O

( 1
u

)
(7.81)

in agreement with the one-loop result. By using the expansion of the complete
elliptic integral of the second kind,

E(k) =
π

2

{
1 − 1

4
k2 + · · ·

}
,

E′(k) =1 +
1
2

(
log

4
k
− 1

2

)
k2 + · · · ,

(7.82)
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one can derive the leading terms of the expansions of ζ(ω3,1),

ζ(ω3) =
i

6
√

u log u − i

6
√

u + · · · ,

ζ(ω1) =
π

12
√

u + · · · ,
(7.83)

and use this to check the weak coupling expressions

a =
√

2u

2

(
1 + O

( 1
u

))
,

aD =
i

π

√
2u
(

log u + O
( 1

u

))
.

(7.84)

Let us now analyse in more detail what happens at other points in the
u-plane. There are clearly some special points in moduli space at which the
curve (7.61) becomes singular. As we discussed at the end of section 3, this
happens when two roots coincide and the discriminant vanishes. In the case of
the Seiberg–Witten curve the singularities occur at u = ±1 in moduli space,
where e1 = e2. Let us first consider the point u = 1. Since

k2 =
u −√

u2 − 1
u +

√
u2 − 1

(7.85)

is one at u = 1, the period ω1 diverges. Using (7.58) and (7.59) it is easy to
see that at this point

aD = 0. (7.86)

After expanding aD, a around u = 1, also known as the monopole point, as
will become clear below:

aD =
i

2
(u − 1) + O(u − 1),

a = − 1
4π

(u − 1) log(u − 1) + O(u − 1),
(7.87)

one finds that the dual coupling can be expanded as

τDτ = − i

2π
log aD + O(aD). (7.88)

Using the general expression for the β-function of a U(1) theory coupled
to Weyl fermions of charges Qf and scalars with charge Qs

β(g) =
g3

16π2

(∑
f

2
3
Q2

f +
∑

s

1
6
Q2

s

)
, (7.89)
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we see that the effective coupling (7.88) behaves as the coupling of a N = 2
supersymmetric U(1) Yang–Mills theory coupled to a massive N = 2 super-
symmetric hypermultiplet of charge 1 and mass ∼ aD. Therefore what is
happening is the following: the N = 2 supersymmetric Yang–Mills theory
has in its spectrum a magnetic monopole with charge (nm, ne) = (1, 0) and
mass M =

√
2|aD|. In the semi-classical regime, when u, a � 1, the monopole

is quite massive, and its mass behaves as ∼ |u|1/2 log |u|. However, as we go
to strong coupling the monopole becomes lighter and precisely at u = 1 it
becomes exactly massless. The fact that the the Seiberg–Witten solution has
an apparent singularity at u = 1 has now a simple explanation: to obtain
the LEEA one has to integrate out massive degrees of freedom. In particular,
at generic points in the u-plane we have to integrate out as well the mas-
sive monopoles in the spectrum. However, integrating out a massless particle
leads to singularities in the effective action (as we saw in the simple example
of the W± bosons), and at u = 1 what we are seeing is precisely the singu-
larity owing to integrating out the massless monopole. This is shown very
explicitly in (7.88), where we see a logarithmic singularity in the one-loop
effective coupling as the mass of the monopole running around the loop goes
to zero.

A similar story takes place at u = −1: what becomes massless there is the
dyon with quantum numbers (ne, nm) = (1, 1). Although this is commonly
referred to as a dyon (and we will do the same), it, is in fact, a monopole:
owing to Witten’s effect the effective electric charge is not ne, but qe =
ne + Re τnm. Using the Seiberg–Witten exact solution one can check that
qe = 0 at u = −1, so the particle becoming massless at u = −1 is physically
a monopole, as it should be in view of the u → −u symmetry.

The picture that emerges from the Seiberg–Witten solution is then the
following: the quantum moduli space of the N = 2 supersymmetric theory
is still the u-plane, but with a corrected Kahler metric given by a non-trivial¨
prepotential, and with a singular behavior not only at infinity, but also at
u = ±1. On this u-plane there is a (flat) Sl(2,Z) vector bundle, and (aD, a)
can be regarded as a section of this bundle. Different choices of the section
are related by Sl(2,Z) transformations.

There is a subgroup of Sl(2,Z) that has a special significance, and it is
called the monodromy group. This arises as follows: the u-plane has three
punctures, at u∗ = ∞, 1,−1. The punctures at u = ±1 correspond to the
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singular behavior owed to the massless monopole and massless dyon, as we
have discussed, whilst at u = ∞ we have the semi-classical region governed
by the one-loop beta function. Since we have a flat bundle the homotopy
group of the u-plane (which is generated by the non-trivial one-cycles around
the punctures) gives a subgroup of the structure group of the bundle Sl(2,Z).
This subgroup is the monodromy group, and it is also called the congruence
subgroup of Sl(2,Z) associated with the Seiberg–Witten elliptic curve. An
explicit presentation of this group can be obtained as follows: at u = ∞ the
effect of u → e2πiu on a, aD can be deduced from (7.84), and is given by the
Sl(2,Z) transformation

M∞MM =
(−1 4

0 −1

)
. (7.90)

On the other hand, near u = 1 the effect of u − 1 → e2πi(u − 1) can be read
from (7.87), and one finds

M1 =
(

1 0
−1 1

)
. (7.91)

The monodromy M−1 at u = −1 can be obtained from the requirement that
M1M−1 = M∞MM .

The matrices (7.90) and (7.91) generate the congruence subgroup Γ0(4)
of Sl(2,Z), which is defined by

Γ0(4) = {
(

a b
c d

)
∈ Sl(2,Z) : b ≡ 0 mod 4}. (7.92)

This is the congruence subgroup of the Seiberg–Witten curve (7.61).
Since the Seiberg–Witten solution tells us the exact prepotential we can

write the LEEA at any point in moduli space. At a generic point of the u-plane
the low energy degrees of freedom are the fields of an N = 2 supersymmetric
vector multiplet, and the LEEA is given by (7.6). However, near u = 1,−1
this action becomes singular because we are integrating out a multiplet which
is becoming massless. To cure the singularity we have to add this multiplet
to the effective action. Suppose, for example, that we are near u = 1. The
monopole hypermultiplet couples locally to the dual N = 2 supersymmetric
vector multiplet AD. Therefore, the LEEA will be the action of a U(1) N = 2
supersymmetric theory coupled to an N = 2 supersymmetric hypermultiplet
with charge 1. The Lagrangian is then (7.6) written in terms of the AD,
together with∫

d2θd2θ
(
M†e2VDV M + M̃†e−2VDV M̃

)
+
√

2
(∫

d2θM̃ADM + h.c.
)

. (7.93)
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There is, however, an important subtlety: the LEEA in magnetic variables is
determined by the dual prepotential FDF (aD). This prepotential is obtained
after integrating out the monopole, and this is what leads to a logarithmic
divergence in the τDτ coupling near u = 1. If we do not integrate out the
monopole, but we include it in the action, the prepotential should be modi-
fied (and in particular the singularity of the modified prepotential should be
smoothed out). The corrected prepotential F̃DF (aD) turns out to be deter-
mined by

d2

da2
D

F̃DF (aD) = τDτ − 1
2πi

log aD, (7.94)

and it is smooth. We will justify this in Chapter 9.

7.5. The Seiberg–Witten solution in terms of modular forms

In this section we provide some extra details about the Seiberg–Witten
curve which will be important in the analysis of the u-plane integral.

So far we have parametrized the quantum moduli space by the u-
variable. Since this moduli space describes a family of elliptic curves, we
can parametrize it in terms of the τ modulus of the tori. Of course, there is
an infinite family of frames which we can choose. In this section τ will denote
the electric frame, which is the most convenient one for the semi-classical re-
gion. Since Im τ > 0, τ lives in the upper half-plane of the complex plane H.
However, two values of τ which are related by an element of the monodromy
group of the curve should be regarded as equivalent. In order to find the
moduli space of the elliptic curve, we then have to take the quotient of H by
the monodromy group. If the monodromy group was Sl(2,Z) we could take
the standard fundamental domain

F = {τ ∈ H : −1
2
≤ Re τ ≤ 1

2
, |τ | ≥ 1} (7.95)

as our moduli space. However, the monodromy group of an elliptic curve is
usually a subgroup of Sl(2,Z). In the case of the Seiberg–Witten curve we
have seen that the monodromy group is Γ0(4). This is a congruence subgroup
of Sl(2,Z) of index 6, and Sl(2,Z) can be written as a union of cosets:

Sl(2,Z) =
6⋃

i=1

α−1
i Γ0(4), (7.96)
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where
α1 = 1,

α4 = T 3,

α2 = T,

α5 = S,

α3 = T 2,

α6 = T 2S.
(7.97)

It is not difficult to prove that ∪6
i=1αiF is a fundamental domain for Γ0(4).

We then find that the moduli space of the Seiberg–Witten curve (when
parametrized by τ) is given by the fundamental domain of Γ0(4):

Γ0(4)\H = F ∪ T · F ∪ T 2 · F ∪ T 3 · F ∪ S · F ∪ T 2S · F . (7.98)

The first four domains give the region of the cusp at τ → i∞ and correspond
to the semi-classical region. The region S · F surrounds the cusp near τ = 0
and will be referred to as the monopole cusp (notice that τ = 0 is the value
of the electric coupling constant at u = 1). The region T 2S · F surrounds the
cusp near τ = 2 and corresponds to the massless dyon at u = −1.

One can, in fact, write all the quantities involved in the Seiberg–Witten
solution in terms of (generalized) modular forms with respect to the congru-
ence subgroup Γ0(4). Notice that the action of the modular group that we are
considering here is conceptually different from the action of Sl(2,Z) which we
have discussed so far. The Sl(2,Z) action discussed in section 2 is a change
of frame for each point in the moduli space, whilst the Γ0(4) transformations
in (7.98) relate different regions of the moduli space.

In order to write the relevant quantities explicitly, the starting point is
the relation between the roots of the Weierstrass cubic (7.44) and the theta
functions:

e1 =
(

π

2ω1

)2 1
3
(ϑ4

3(τ) + ϑ4
4(τ)),

e2 =
(

π

2ω1

)2 1
3
(ϑ4

2(τ) − ϑ4
4(τ)),

e3 = −
(

π

2ω1

)2 1
3
(ϑ4

2(τ) + ϑ4
3(τ)).

(7.99)

Our conventions on Jacobi theta functions can be found in Appendix B. It
follows from (7.99) that the discriminant of the elliptic curve is given by

∆ =
(2π

ω1

)12

η24(q), (7.100)

where we have used the property ϑ4
2(τ)ϑ4

3(τ)ϑ4
4(τ) = 24η12(q). By using the

explicit expressions for the periods and τ in the electric frame, at large u, one
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can check that the identification between the roots and the theta functions
given in (7.99) is the correct one.

The next step is to find an expression for the period ω1 and for u in terms
of modular forms. This is easily done by using that e3 = −u/12, and that

e2 − e1 =
1
4

√
u2 − 1 =

(
π

2ω1

)2

ϑ4
4(τ). (7.101)

Using these results one can obtain:

u =
1
2

ϑ4
2(τ) + ϑ4

3(τ)
(ϑ2ϑ3)2

(7.102)

and
h(τ) =

da

du
=

1
2
ϑ2ϑ3. (7.103)

In order to find expressions in terms of modular forms for the remaining
quantities involved in the Seiberg–Witten solution, the only extra ingredient
we need is the relation between the value of the ζ function at the half period
and the Eisenstein series,

ζ(ω1) =
π2

12ω1
E2(τ), (7.104)

which gives

a =
1
6

(
2E2 + ϑ4

2 + ϑ4
3

ϑ2ϑ3

)
. (7.105)

By performing an S-duality transformation, one can easily derive the expres-
sions for the dual quantities listed in Appendix B (except for aD, τDτ and qD,
these quantities are denoted by the subindex M , which refers to ‘monopole’.)
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Chapter 8

The u-plane Integral

In this chapter we put together all the previous ingredients in order to
compute the Donaldson–Witten generating function by using the Seiberg–
Witten solution for the LEEA. This computation involves in general an in-
tegration over the moduli space of vacua parametrized by u. This u-plane
integral was analysed in detail by Moore and Witten. Although this integral
is different from zero only when b+

2 = 1, it turns out that it gives a very
effective method of deriving the expression for the Donaldson invariants in
the general case.

8.1. The basic principle (or, ‘Coulomb + Higgs=Donaldson’)

Now that we have a low energy description of N = 2 supersymmet-
ric Yang–Mills theory, we can use it to compute the functional integral of
Donaldson–Witten theory, and therefore to compute the Donaldson invari-
ants. In the physical theory, using the effective theory in the two-derivative
approximation only gives approximate results, which are valid for energies
much lower than the dynamical scale Λ. For example, the two-derivative ap-
proximation to the pion Lagrangian of quantum cromodynamics gives only
the bare bones of the pion–pion scattering amplitude. But in a topological
theory the correlation functions of observables do not depend on the scale,
and therefore the low energy approximation should be exact, without any fur-
ther correction. We conclude that the two-derivative LEEA, after twisting,
is all we need in order to compute ZDW in (5.48). This can be stated in yet
another way: since Donaldson–Witten theory is topological, we can compute
correlation functions either at high energy (small distances), or at low energy
(long distances). The underlying physical theory, as we have seen in the last
chapter, is asymptotically free, therefore very high energy means very small
coupling constant, and we know from the analysis in Chapter 5 that the semi-
classical computation of correlation functions leads directly to the definition

133
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of Donaldson invariants. On the other hand, at very low energy we can use
the LEEA, and this leads to a twisted abelian theory with monopoles and to
the Seiberg–Witten invariants. It follows that Donaldson invariants can be
computed by using a U(1) twisted N = 2 supersymmetric theory, possibly
coupled to monopole matter fields.

What is the general structure of the computations in the low energy
theory? In a physical theory in Minkowski space, one does not integrate
over zero-modes which are not normalizable. These modes are rather param-
eters that specify our theory. For example, the u-plane description which
we have presented in the previous section gives, in fact, a family of theories
parametrized by u, since in a non-compact space the zero-mode of the scalar
field u is not normalizable. However, on a compact manifold a scalar zero-
mode is normalizable and we have to integrate over it. Indeed, computing
correlation functions on a compact manifold requires one to perform a sum
over the contributions of all the vacua. This means that the evaluation of
ZDW in the effective theory involves an integration over the u-plane, i.e., over
the Coulomb branch of N = 2 supersymmetric Yang–Mills theory.

However, there are two points in the u-plane where something special
happens: these are the points u = ±1 at which there are extra degrees of
freedom becoming massless. At these points the contribution from the effec-
tive theory has to be different, since for example we will have to perform a
functional integral over these extra degrees of freedom. We then expect that
ZDW looks like

ZDW = ZuZZ + ZuZZ =1 + ZuZZ =−1, (8.1)

where the first summand is the integral over the u-plane, and the second and
third terms come from the localized contributions of the monopole and the
dyon singularities. This basic structure can be summarized by the principle
‘Donaldson = Coulomb + Higgs’. ‘Higgs’ refers to the scalars in the monopole
and dyon multiplet, of course. The rest of this chapter is devoted to explaining
(8.1) in detail.

8.2. Effective topological quantum field theory on the u-plane

It turns out that it is more convenient to start our analysis with ZuZZ .
The reason is that (modulo some subtleties which we will explain in due
time) the computation of ZuZZ involves just the twisted version of the effective
Lagrangian (7.6). This is done as in Donaldson–Witten theory, with the
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simplification that the theory described by (7.6) is abelian, but with the
complication that it has an arbitrary prepotential (the abelian version of
Donaldson–Witten theory corresponds to the prepotential F = a2/2). In
any case, the Q symmetry is precisely the abelian version of (5.29) (after the
rescaling (7.60)). We can easily obtain from (7.10) the Lagrangian density:

L =
i

16π

(
τF+FF ∧ F+FF + τF−FF ∧ F−FF

)
+

1
8π

Imτda ∧ ∗da − 1
8π

(Imτ)D ∧ ∗D

− 1
16π

τψ ∧ ∗dη +
1

16π
τη ∧ d ∗ ψ +

1
8π

τψ ∧ dχ − 1
8π

τχ ∧ dψ

+
i
√

2
16π

dτ

da
ηχ ∧ (D+ + F+FF ) − i

√
2

27π

dτ

da
(ψ ∧ ψ) ∧ (F−FF + D+)

+
i

3 · 211π

d2τ

da2
ψ ∧ ψ ∧ ψ ∧ ψ −

√
2i

3 · 25π
{Q,

dτ

da
χµνχνλχ µ

λ }√gd
√√ 4x .

(8.2)
This can be also written in terms of the fourth descendant of the prepotential:

L =
i

6π
G4F(a) +

1
16π

{Q,F ′′
χ(D + F+FF )} − i

√
2

32π
{Q,F ′

d ∗ ψ}

−
√

2i

3 · 25π
{Q,F ′′′

χµνχνλχ µ
λ }√gd

√√ 4x,

(8.3)

where G is the operator defined in (5.32).
However, the effective action of the topological theory has some extra

terms which can not be derived from the physical theory (7.10) in Minkowski
space. It is well known that effective field theories in curved space contain
extra couplings to the background metric, and these are the extra terms which
we are missing in (8.2). When the theory is topological the extension of the
theory to curved space is restricted by Q-invariance. The extra terms are
forced to have the structure∫

d4x
√

g g
√√

(u)F (gµν), (8.4)

where F (gµν) is some functional of the metric, and Q-invariance implies that
g(u) should be a holomorphic function of u (since [Q, a] = 0). Moreover,


since the theory is topological the functionals of the metric have to give rise
to topological invariants of the four-manifold. The only topological invariants
that can be written as local functionals of the metric are∫

X

∫∫
Tr(R ∧ ∗R),

∫
X

∫∫
Tr(R ∧ R), (8.5)
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which are proportional to the Euler characteristic χ and the signature σ,
respectively. Therefore the integrand of the functional integral exp(−SeffSS )
will contain an extra factor

A(u)χB(u)σ (8.6)

which can be regarded as a contribution to the effective measure of the low
energy theory. Fortunately, the couplings in (8.6) can be determined by holo-
morphy and anomaly considerations. The basic idea is the following: as we
have seen in the previous chapter, the microscopic theory has an anomalous
U(1)R symmetry. This means that the quantum measure has a certain weight
under a U(1)R transformation, which on a general four-manifold will depend
on χ and σ. On the other hand, the effective measure of the low energy theory
is its canonical measure times the factor (8.6). Therefore, requiring that the
effective measure reproduces the anomaly of the microscopic measure may fix
the value of (8.6).

Let us see how this works in some detail. Consider the theory at large
u. The effective theory is a U(1) gauge theory. Under the anomalous U(1)R

symmetry the measure of the microscopic theory transforms as in (7.17).
However, the Dirac operator has changed after twisting the theory (the spinors
are now differential forms). The resulting operator is, in fact, the operator
associated to the complex (2.46), and its index is given on a four-manifold
and for the gauge group SU(2) by:

−8k +
3
2
(χ + σ). (8.7)

In flat space the anomaly is just 8k, and this is what explained the spon-
taneous breaking of the U(1)R symmetry. The gravitational part of this
anomaly is 3

2 (χ + σ): the U(1) photon multiplet and the W± contribute
1
2 (χ + σ) each. However, the canonical measure of the effective theory only
gives 1

2 (χ + σ) (since it only contains the U(1) photon multiplet), and the
remaining anomaly should be reproduced by the effective interaction (8.6)
(since it comes from integrating out the massive W± multiplets which carry
the remaining anomaly). As u has R-charge 4 we must have (for u → ∞):

A(u)χB(u)σ ∼ u(χ+σ)/4. (8.8)

Let us now consider the effective theory near u = 1,−1. Near u = 1
there is an extra light degree of freedom, the monopole. The measure of the



The u-plane Integral 137

twisted effective theory including the monopole now has R-charge

1
2
(χ + σ) − c1(L)2

4
+

σ

4
. (8.9)

Since the LEEA does not include the monopole, it misses the σ/4. But the
full u-plane theory near u = 1 is obtained by integrating out the monopole,
therefore the effective measure (8.6) has to reproduce this anomaly. Remem-
ber that in the monopole theory aD has R-charge 2, and since aD ∼ u− 1 we
have for u → 1

A(u)χB(u)σ ∼ (u − 1)σ/8. (8.10)

In the same way we have that

A(u)χB(u)σ ∼ (u + 1)σ/8, (8.11)

for u → −1. Looking at (8.8) and (8.11), we see that the function

B(u)σ = βσ(u2 − 1)σ/8, (8.12)

where β is a constant, satisfies our requirements. Notice that this holomorphic
function is invariant under duality transformations (since u has weight (0, 0)),
and it involves in a natural way the discriminant of the Seiberg–Witten curve.

The function A(u) is trickier. It should not have zeros or poles at u = ±1,
since the anomaly at those points does not have any χ-dependence. It turns
out that (du

da

)χ/2

(8.13)

satisfies all the requirements. Notice that this is not invariant under duality
transformations: it transforms with weight −χ/2. When we choose the ap-
propriate local coordinate, it is clear that du/da has not zeroes or poles at
u = ±1 (for example, at the monopole point du/daD = −2i). Since u ∼ a2

as u → ∞, (8.13) behaves as uχ/4 in the semi-classical region. We then have

A(u)χ = αχ
(du

da

)χ/2

, (8.14)

where α is a constant. We will see later that, in fact, the weight of A(u)χ

under Sl(2,Z) is the required one to have a consistent u-plane integral.
There is another topological term that we have to add to the effective

action. This is the coupling

i

4

∫
X

∫∫
F ∧ w2(X), (8.15)
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where w2(X), the second Stiefel–Whitney class of X, is interpreted as a grav-
itational background. We will see that, in fact, such a term is required for
consistency of the u-plane integral (and this fixes the coefficient in (8.15)),
and is responsible for the property of the line bundle of the magnetic theory
giving rise to a Spinc structure. It can be also derived directly by integrating
out the massive fermions in the twisted theory.

The main result of this discussion is that the effective measure of the low
energy field theory is given by the canonical measure multiplied by

AχBσ = αχβσ(u2 − 1)σ/8
(du

da

)χ/2

. (8.16)

The values of α, β can be obtained by comparison with mathematical results.
It turns out that

α4 = − 2
π

, β4 = −16
π

. (8.17)

In addition to the measure and the action itself we have to include the
observables of the theory. In principle, the low energy operators are obtained
from the high energy operators by integrating out massive modes, and a pri-
ori it is not simple to obtain their explicit expressions. However, in the case
at hand we can use the topological structure to find the operators in the
effective theory. As we explained in detail in Chapter 5, the observables of
Donaldson theory (in the SU(2) case) are the operator O = Tr (φ2) together
with its topological descendants. In order to obtain the corresponding ob-
servables in the low energy theory we first notice that O corresponds (up to
a normalization) to u, as follows from (7.3). In fact, we will have

O → 2u, (8.18)

where the normalization factor 2 is chosen to agree with the usual normal-
ization in Donaldson theory. We now note that the effective theory is also
topological, and in particular it contains a descent operator G. Since the
operators in Donaldson theory are obtained by topological descent from O,
the corresponding operators in the low energy theory are obtained from u

by using the canonical solution to the topological descent equations, i.e., by
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acting with the operator G on u. In this way we find

I1(γ) → Ĩ1(γ) = a1

∫
γ

∫∫
Gu =

a1

4
√

2
du

da

∫
γ

∫∫
ψ,

I2II (S) → Ĩ2II (S) =
i

π
√

2

∫
S

∫∫
G2u

=
i

π
√

2

∫
S

∫∫ {
1
32

d2u

da2
ψ ∧ ψ −

√
2

4
du

da
(F−FF + D+)

}
.

(8.19)

In this equation we have rescaled the action of G in the way prescribed by
(7.60). The overall normalizations of the observables are chosen again in order
to agree with the normalizations in Donaldson theory, and

a1 = π−1/223/4e−iπ/4. (8.20)

In writing the above correspondence between high energy and low energy op-
erators we have not taken into account an important subtlety: in general,
integrating out high-energy modes and taking products of operators are op-
erations which do not commute. Therefore it is in general not true that

I2II (S1)I2II (S2) −→ Ĩ2II (S1)Ĩ2II (S2). (8.21)

What happens is that the intersection points of S1 and S2 give singularities
in the propagators that can induce extra contributions, and in the low energy
theory we expect contact terms located at the intersection locus of the two-
dimensional homology classes. Instead of (8.21) we will, rather, have:

I2II (S1)I2II (S2) → Ĩ2II (S1)Ĩ2II (S2) +
∑

P∈S1∩S2

εP T (P ). (8.22)

Here T is some operator that one should determine based on a series of re-
quirements. For example, (8.22) must be Q-invariant, and since Ĩ2II (S1)Ĩ2II (S2)
is already Q-invariant the operator T must be separately Q-invariant. This
means that T is a holomorphic function of u, as are the contributions to the
effective measure which we determined above. We will see later that T must
have a very precise behavior under Sl(2,Z) transformations, and using this we
will be able to find it explicitly. We point out that the contact terms can not
be obtained directly from the Seiberg–Witten solution, and extra arguments
are needed to determine them. The main conclusion of this short discussion
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is then that there is potentially in the effective theory a contact term with
the form

exp
(
T (u)S2

)
, (8.23)

where we have written the geometric intersection in (8.22) as (S, S) = S2.
Since one-cycles do not generically intersect in a four-manifold, there will not
be contact terms for the operators I1(γ).

8.3. Zero modes

At this point we have determined almost all the ingredients of the u-
plane integral: the twisted action, the observables (together with their contact
terms) and the effective measure. The u-plane integral contribution to the
Donaldson–Witten generating functional has the form

ZuZZ =2
∫

[da da dη dχ dψ dD]AχBσy−1/2 exp

[
1
8π

∫
(Imτ)D ∧ ∗D

]
× exp

[
− iπ

16π
τF 2

+F − iπ

16π
τF 2

− +
πi

4
(F, w2(X))

]
× exp

[
− i

√
2

16π

∫
dτ

da
ηχ ∧ (D+ + F+FF ) +

i
√

2
27π

∫
dτ

da
(ψ ∧ ψ) ∧ (F−FF + D+)

+
1

3 · 211πi

∫
d2τ

da2
ψ ∧ ψ ∧ ψ ∧ ψ + 2pu + S2T (u)

+
i√
2π

∫
S

∫∫
G2u + a1

∫
γ

∫∫
Gu + · · ·

]
.

(8.24)
In the above expression we have skipped some terms (like the kinetic terms
for the dynamic fields). The global factor of 2 is to correct a standard dis-
crepancy between physical and mathematical computations of the invariants,
since physicists divide by the order of the center of the gauge group in the
Fadeev-Popov gauge fixing, whilst mathematicians do not.

In order to perform the above functional integral in the low energy theory,
we have to divide the fields into zero-modes and quantum fluctuations:

a = a0 + a′,

η = η0 + η′,

A = A0 + A′,

ψ = ψ0 + ψ′,

χ = χ0 + χ′,
(8.25)

and then we have to determine the nature and the measure of the zero-modes.
The geometric content of the zero-modes is easy to obtain by looking at the
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kinetic terms of the effective theory: a0 is just a constant, A0 is a U(1)
connection with harmonic curvature, η0 is a constant Grassmann variable, ψ0

is given by a Grassmann variable multiplied by a harmonic one-form, and χ0

is a Grassmann variable multiplied by a harmonic self-dual two-form.
One would be tempted to follow the analysis we performed in the formal

study of topological quantum field theories and localize the functional integral
on supersymmetric configurations. However, in this case this is not a good
idea: the above theory is an effective theory with a Sl(2,Z) covariance, and
by localizing on classical solutions we break this covariance. However, it
was shown by Moore and Witten that, for b+

2 = 1, the only contributions
to the functional integral (8.24) come from the zero-modes. This analysis is
based on the topological invariance of the theory under global rescalings of
the metric, g → t2g (notice that for b+

2 = 1 Donaldson invariants depend
on the conformal class of the metric, and, in particular, they are invariant
under global scalings). The same analysis shows that for b+

2 > 1 there are too
many zero-modes of the χ field to be soaked up, and the functional integral
vanishes. Therefore

ZuZZ = 0 for b+
2 > 1. (8.26)

This does not mean that Donaldson–Witten theory is trivial for b+
2 > 1: re-

member that ZuZZ is just the contribution to the final answer coming from the
‘Coulomb’ vacua, and there are extra pieces at the singular points u = ±1.
This vanishing result means that for manifolds of b+

2 > 1 the Donaldson invari-
ants are given entirely in terms of the ‘Higgs’ contribution ZuZZ =±1. Another
outcome of the analysis of Moore and Witten is that for b+

2 = 0 the functional
integral has one-loop contributions also. The analysis of the u-plane integral
for b+

2 = 0 remains an interesting open problem.
Since the functional integral can be computed by zero-modes, we are

dealing effectively with a finite-dimensional integral. We just have to find the
appropriate measure for the fields and perform the integral. Owing to (8.26)
we can restrict ourselves to manifolds with b+

2 = 1. On these manifolds there
is only one harmonic self-dual two-form ω (whose normalization is fixed by
ω2 = 1), and we will write

χ = χ0ω + χ′, ψ =
b1∑

i=1

ciβi + ψ′, (8.27)

where the {βi}i=1,...,b1 is a basis for the harmonic one-forms. Notice that
the kinetic terms for the fields in (8.2) are not canonical, since they involve
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a factor Im τ . Therefore, the measure includes a factor (Im τ)1/2 for the
commuting fields and (Im τ)−1/2 for the anticommuting fields (this is just the
Jacobian for the change of variables that takes us to canonical kinetic terms).
After combining all the factors we find that the measure for the zero-modes
of the fields (except for the gauge field) is given by:

(Im τ)−b1/2da da dη0 dχ0

b1∏
i=1

dci. (8.28)

It remains to discuss the zero-modes for the gauge field. This is a little
bit trickier. The solutions of the equations of motion, dF = d ∗ F = 0,
are harmonic two-forms. The space of collective coordinates for the zero-
modes will split into different topological sectors, corresponding to different
line bundles T over the four-manifold X, with c1(T ) = F/2π ∈ H2(X,Z).
Now we have to remember that the gauge bundle we are considering is an
SO(3) bundle V with a non-trivial Stiefel–Whitney class w2(V ). On the
u-plane the non-abelian gauge symmetry is broken down to U(1), and this
means that the SO(3) bundle V has the structure (2.34). Since by (2.37)
c1(T ) is congruent to w2(V ) mod 2 we will write

F = 4πλ, (8.29)

where λ ∈ H2(X,Z) + 1
2w2(V ). We denote by Γ the lattice of integral two-

forms H2(X,Z).

For each topological sector specified by λ the different solutions to the
equation dA = F (where F is the harmonic two-form in the topological sector)
are in one-to-one correspondence with flat connections. The zero-modes are
then collective coordinates for the space of flat connections on X, which is
the Jacobian

Tb1 =
H1(X,R)
H1(X,Z)

, (8.30)

of dimension b1. This space can be also regarded as the moduli space of Wilson
lines of the flat gauge connections. The measure for this space is more subtle.
The Jacobi torus (8.30) has a canonical measure which is independent of τ .
However, when one considers the non-zero-modes of the gauge field, one has
to introduce a factor (Im τ)−1/2 for each non-zero-mode. Let us denote by
B1 and B0 the number of one-forms and zero-forms on X. These numbers
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are in principle infinite, but we could make them finite through a lattice
regularization. The number of non-zero-modes would then be

B1 − B0 + 1 − b1. (8.31)

Here we have subtracted from B1 the number of non-zero-modes which are
pure gauge. There are B0 − 1 of these, since the constant mode acts trivially
on the gauge connection. We have also subtracted the number of zero-modes,
which is b1. This gives in principle a factor

(Im τ)
1
2 (b1−1)(Im τ)

1
2 (B0−B1). (8.32)

In a local regularization of the theory one should eliminate the second factor.
The final result for the measure is then

(Im τ)
1
2 (b1−1)

b1∏
i=1

dAi, (8.33)

where Ai are coordinates on the Jacobian (8.30). We can now write the total
measure by putting together (8.28) and (8.33) to obtain

1
(Im τ)1/2

da da dη0 dχ0

b1∏
i=1

dAidci. (8.34)

The measure for the commuting and anticommuting collective coordinates for
the Jacobi torus simply gives the usual measure for integrating differential
forms on Tb1 (this is again a manifestation of the property that functions on
superspace being equivalent to differential forms). We can then consider the
ci as a basis of one-forms β�

i ∈ H1(Tb1 ,Z), dual to βi ∈ H1(X,Z). We can
then write the zero-modes of ψ as

ψ =
b1∑

i=1

βi ⊗ β�
i . (8.35)

Finally, notice that the above identification leaves room for a factor Cb1 ,
which comes from the different normalization of the measures for the b1 zero-
modes between the mathematical definition of Donaldson invariants and the
one coming out from physics. It turns out that:

C = 29/4eπi/2. (8.36)
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8.4. Final form for the u-plane integral

We are now ready to perform the integral over the fermionic zero-modes
and the auxiliary fields. First of all, notice that the kinetic terms for the
gauge field give the term

exp
(−iπτ(λ+)2 − iπτ(λ−)2

)
, (8.37)

which, after summing over topological sectors, gives a generalized theta func-
tion

ϑ =
∑

λ∈Γ+ 1
2 w2(V )

e(−iπτ(λ+)2−iπτ(λ−)2), (8.38)

where Γ = H2(X,Z). This is a special case of a family of generalized theta
functions sometimes called Siegel–Narain theta functions, which are charac-
terized by a dependence on τ and show up in Narain compactifications of
heterotic string theory. Notice that if we put w2(V ) = 0 and we decompose
the lattice vectors as

λ =
b2∑

i=1

miei, (8.39)

where mi are integers and {ei}i=1,...,b2 is a basis of H2(X,Z), then (8.38) is
of the form ∑

�m∈Zn

g(m), (8.40)

where the function g is a Gaussian involving the quadratic forms

P±
ijPP = (ei, ej)± (8.41)

which are projectors onto H2,±(X,R). Now using Poisson resummation for-
mula, ∑

�m∈Zn

g(m) =
∑

�m∈Zn

ĝ(m), (8.42)

where
ĝ(y) =

∫
dnxe−2πix·yg(x) (8.43)

is the Fourier transform of g, one can see that (8.38) (for w2(V ) = 0) has
weight (b−2 , b+

2 ) under Sl(2,Z) transformations.
In order to soak up the zero-modes of χ and η we have to bring down

from the action the vertex

− i
√

2
16π

∫
X

∫∫
dτ

da
η ∧ χ ∧ (F+FF + D+). (8.44)
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Now we integrate out the auxiliary field D, which has a Gaussian action with
linear term

− i

4π

du

da

[
(4πλ− + D+) ∧ S̃

]˜ (8.45)

where

S̃ = S −
√

2
32

dτ

du
ψ ∧ ψ. (8.46)

We now integrate out the D field. Since this is a Gaussian field with the
wrong sign, we have to introduce an extra factor of −i. The vertex becomes

−
√

2
16π

∫
X

∫∫
dτ

da
η ∧ χ ∧ (F+FF + i

(du/da)
Imτ

S̃+), (8.47)

and we also obtain
exp
(

S̃2
+

(
(du/da)2

8πIm τ

))
. (8.48)

Now we can integrate the zero-modes in the vertex insertion. Since F+FF coin-
cides with 4πλ+, and χ = χ0ω, we find an overall factor

−
√

2
4

dτ

da
· exp

(
S̃2

+

(
(du/da)2

8πy

))
·
(

(λ, ω) +
i

4πy

du

da
(ω, S)

)
, (8.49)

where τ = x + iy.
Before writing the final answer we have to remember that the effective

action includes an extra coupling to the ‘gravitational’ background given by
the second Stiefel–Whitney class of the four-manifold (8.15). In addition,
there is an overall phase which encodes the dependence of the Donaldson
invariants on a choice of orientation of the moduli space. As we mentioned
in Chapter 2, this is specified by a choice of a lifting of w2(V ) to H2(X,Z),
which we will denote by w = 2λ0, where λ0 ∈ 1

2w2(V ) + Γ. This overall sign,
together with (8.15), gives the phase

(−1)(λ−λ0)·w2(X)e2πiλ2
0 . (8.50)

There is no canonical choice of λ0 (unless w2(V ) = 0, in which case one takes
λ0 = 0). If λ0 is replaced by λ̃0 then (8.50) is multiplied by

(−1)β·w2(X) (8.51)

where β is the integral class β = λ0− λ̃0. Thus with the factor (8.50) included
the overall sign of the Donaldson invariants depends on a choice of λ0, and a
change of lifting gives a sign (8.51) which agrees with (2.58).
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If we now define the following lattice sum:

Ψ = exp
[− 1

8πy
(
du

da
)2S̃2

−
]
e2πiλ2

0

×
∑

λ∈H2+ 1
2 w2(V )

(−1)(λ−λ0)·w2(X)

[
(λ, ω) +

i

4πy

du

da
(S̃, ω)

]

× exp
[
−iπτ(λ+)2 − iπτ(λ−)2 − i

du

da
(S̃, λ−)

]
,

(8.52)

where the sum over λ is the sum over topological sectors, we see that the final
result of the integration is

−
√

2
4

dτ

da
y−1/2 exp

(
S̃2 (du/da)2

8πy

)
· Ψ. (8.53)

Combining all the ingredients, we obtain the following expression for the u-
plane integral:

ZuZZ =
∫

Γ

∫∫
0(4)\H

dxdy

y1/2
µ(τ)∫

T

∫∫
b1

exp
[
2pu + S̃2T̂ (u) + H(u)(S̃, ψ2) +

a1

4
√

2
du

da

∫
γ

∫∫
ψ + K(u)ψ4

]
Ψ(S̃),

(8.54)
where

µ(τ) = −
√

2
2

da

dτ
AχBσCb1 ,

Ψ(S̃) = exp(2iπλ2
0) exp

[
− 1

8πy

(du

da

)2

S̃2
−

]
×

∑
λ∈H2+ 1

2 w2(E)

exp
[
−iπτ(λ+)2 − iπτ(λ−)2 + πi(λ − λ0, w2(X))

]

× exp
[
−i

du

da
(S̃−, λ−)

][
(λ+, ω) +

i

4πy

du

da
(S̃+, ω)

]
,

T̂ (u) = T (u) +
1

8πIm τ

(du

da

)2

,

H(u) =
i
√

2
64π

(
d2u

da2
− 4πi

dτ

du
T (u)

)
,

K(u) = − i

3 · 211π

(
d2τ

da2
− 6

dτ

du

d2u

da2
+ 12πi

(dτ

du

)2

T (u)
)

.

(8.55)
In (8.54) the integral over the u-plane is written as an integral over the τ

parameter. As discussed in the previous chapter, the moduli space of vacua
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of SU(2), N = 2 supersymmetric Yang–Mills theory in terms of τ is Γ0(4)\H
given in (7.98), and this is therefore the domain of integration in (8.54). Also
notice that ψ is a differential form on the Jacobi torus (8.30), and (8.54)
includes an integration over Tb1 coming from the integration over zero-modes
that we analysed in the previous section.

Although the detailed properties of the integrand of (8.54) under Sl(2,Z)
transformations will be explained in the next section, we can already use them
to determine the contact term T , and therefore the unknown functions H(u),
K(u). If ψ has weight (1, 0) under Sl(2,Z) transformations, it follows from
(8.46) that S̃ has weight (0, 0). On the other hand, in order to have a well
defined behavior under Sl(2,Z), all the summands in the exponent of (8.54)
should have the same weight, which we can read from the first term 2pu and
is therefore (0, 0). It follows that T̂ (u) must have weight (0, 0) as well. Let
us explore the consequences of this property. Under an S transformation the
term

G(u) =
1

8πIm τ

(du

da

)2

(8.56)

in T̂ (u) transforms inhomogeneously:

G(u) → G(u) − i

4πτ

(
du

da

)2

. (8.57)

It follows that T must also transform inhomogeneously, but with the opposite
sign, in such a way that T̂ is truly invariant. Under τ → −1/τ one must then
have

T → T +
i

4πτ

(
du

da

)2

. (8.58)

A comparison with the standard transformation law for the Eisenstein series
E2(τ) shows that these conditions are equivalent to the statement that

T = − 1
24

E2(τ)
(

du

da

)2

+ H(u), (8.59)

where H is modular invariant and so is an ordinary holomorphic function of u.
However, there is an extra constraint that T (u) must satisfy: T (u) vanishes
at tree level (since it is associated with quantum corrections), therefore it
must vanish in the semi-classical region u → ∞. From (7.84) it follows that
in this region du/da ∼ 2

√
2u, therefore H(u) = u/3 and we obtain the final

expression for the contact term:

T = − 1
24

(
E2(τ)

(
du

da

)2

− 8u

)
. (8.60)
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Using now the explicit expression for T (u), one can easily show that H(u)
and K(u) have weight (−2, 0) and (−4, 0), respectively. Since ψ has weight
(1, 0) we see that all the terms in the exponent of (8.54) have weight (0, 0),
as required. We can also obtain the explicit expressions for H(u) and K(u)
as follows. Define the functions f1,2 by the following equations:

d2u

da2
= 4f1(q),

dτ

da
=

16i

π
f2ff (q). (8.61)

They have the explicit expression

f1(q) =
2E2 + ϑ4

2 + ϑ4
3

3ϑ8
4

= 1 + 24q1/2 + · · · ,

f2ff (q) =
ϑ2ϑ3

2ϑ8
4

= q1/8 + 18q5/8 + · · · .
(8.62)

Using the above result we find that

H(u) =
√

2
32

u
dτ

du
=

i
√

2
16π

ϑ4
2 + ϑ4

3

ϑ8
4

,

K(u) =
7

3 · 210
u

(
dτ

du

)2

= − 7
3 · 27π2

(ϑ2ϑ3)2(ϑ4
2 + ϑ4

3)
ϑ16

4

.

(8.63)

As a last step we will write (8.54) in a more compact form in the case of
manifolds with b1 even. We explained before that the integral (8.54) is both an
integral over the fundamental domain of Γ0(4) and an integral of a differential
form over the Jacobi torus Tb1 (remember that ψ is a one-form on this torus).
This last aspect can be incorporated in a much more convenient way by using
the following simple mathematical results: first, on a manifold of b+

2 = 1, for
any β1, β2, β3 and β4 in H1(X,Z) one has β1 ∧ β2 ∧ β3 ∧ β4 = 0 (this means,
in particular, that the last term in the exponent of (8.54) vanishes); second,
the image of the map

∧ : H1(X,Z) ⊗ H1(X,Z) −→ H2(X,Z) (8.64)

is generated by a single rational cohomology class Λ. We introduce now the
antisymmetric matrix aij associated to the basis βi of H1(X,Z), i = 1, . . . , b1,
as βi ∧ βjβ = aijΛ. Finally, we introduce the two-form on Tb1 as

Ω =
∑
i<j

aijβ
�
i ∧ β�

jβ , (8.65)
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which does not depend on the choice of basis. This is a volume element for
the torus, hence

vol(Tb1) =
∫
T

∫∫
b1

Ωb1/2

(b1/2)!
. (8.66)

Remember that we are assuming b1 to be even.
We can now write the u-plane integral in a more convenient way. If we

define

δ� =
b1∑

i=1

ζiζζ β�
i (8.67)

as the image of δ in (2.60) under the isomorphism H1(X,Z) � H1(Tb1 ,Z),
we find the final expression:

ZuZZ = −4πi

∫
Γ

∫∫
0(4)\H

dxdy

y1/2

∫
T

∫∫
b1

hf̂(p, δ, S, τ, y)Ψ(S̃), (8.68)

with

f̂(p, δ, S, τ, y) =
√

2
64π

hb1−3ϑσ
4f−1

2ff e2pu+S2T̂ exp
[
2f1(S,Λ)Ω + ih−1δ�

]
, (8.69)

where f1,2 were defined in (8.61) and we have denoted

h =
da

du
. (8.70)

One can also write S̃ in a more compact way:

S̃ = S − 16f2ff h(Λ ⊗ Ω). (8.71)

This gives the final expression of the u-plane integral. We now proceed to
study its properties and what are its most immediate mathematical applica-
tions.

8.5. Behavior under monodromy and duality

In order to understand better the modular properties of the u-plane in-
tegral and to write it in a more convenient way, it is useful to introduce a
Siegel–Narain theta function considered by Moore and Witten. The formal
definition is as follows. Let Λ be a lattice of signature (b+, b−), and let P

be a decomposition of Λ ⊗ R as a sum of orthogonal subspaces of definite
signature:

P : Λ ⊗ R ∼= Rb+,0 ⊥ R0,b− (8.72)
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Let P±PP (λ) = λ± denote the projections onto the two factors. We also write
λ = λ+ + λ−. With our conventions P−PP (λ)2 ≤ 0.

Let Λ+γ denote a translate of the lattice Λ. We then define the following
Siegel–Narain theta function:

ΘΛ+γ(τ, α, β;P, ξ)

≡ exp
[

π

2y
(ξ2

+ − ξ2
−)
]

×
∑

λ∈Λ+γ

exp
[
iπτ(λ + β)2+ + iπτ(λ + β)2− + 2πi(λ + β, ξ)

− 2πi(λ +
1
2
β, α)

]
= eiπ(β,α) exp[

π

2y
(ξ2

+ − ξ2
−)]

×
∑

λ∈Λ+γ

exp
[
iπτ(λ + β)2+ + iπτ(λ + β)2− + 2πi(λ + β, ξ)

− 2πi(λ + β, α)
]

.

(8.73)

The main transformation law of this theta function is:

ΘΛ(−1/τ, α, β;P,
ξ+

τ
+

ξ−
τ

) =

√
|Λ|
|Λ′| (−iτ)b+/2(iτ)b−/2ΘΛ′(τ, β,−α;P, ξ) ,

(8.74)
where Λ′ is the dual lattice. This is a generalization of the property, mentioned
above, that (8.38) with w2(V ) = 0 has weight (b+

2 , b−2 ) under Sl(2,Z), and it
can also be easily proved by using Poisson resummation formula (8.42). If
there is a characteristic vector, call it w2, such that

(λ, λ) = (λ, w2) mod 2 (8.75)

for all λ, then we have, in addition,

ΘΛ(τ + 1, α, β;P, ξ) = e−iπ(β,w2)/2ΘΛ(τ, α − β − 1
2
w2, β;P, ξ) . (8.76)

Let us write the u-plane integral in terms of this theta function. We denote

Θ = κ−(w2(X),w2(V ))ΘΓ(τ,
1
2
w2(X),

1
2
w2(E);PωPP , ξ) (8.77)

with κ = e2πi/8 and
ξ = ρy

da

du
ω +

1
2π

du

da
S̃− . (8.78)
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We recall that Γ = H2(X,Z). It is easy to see that ξ has the behavior under
Sl(2,Z) prescribed by (8.74). We now introduce the auxiliary integral G(ρ)

G(ρ) ≡
∫

Γ

∫∫
0(4)\H

dxdy

y3/2
f̂(p, S, τ, y)Θ, (8.79)

where f̂(p, S, τ, y) is given by (8.69). The integral (8.79) is related to the
u-plane integral as follows:

ZuZZ = (S̃, ω)G(ρ)
∣∣∣∣∣∣∣∣∣∣
ρ=0

+ 2
dG
dρ

∣∣∣∣∣∣∣∣∣∣
ρ=0

. (8.80)

Denote the integrand of (8.79) by (dxdy/y2)J , where J = f̂ ·y1/2Θ. It follows
from (7.98) that the fundamental domain of Γ0(4) contains six copies of the
fundamental domain F . In order to write the u-plane integral explicitly, we
map the integrand in these 6 regions to the domain F defined in (7.95). In
order to do this we have to change variables in the integrand according to
the different Sl(2,Z) transformations involved in (7.98). We then obtain six
functions:

J(JJ ∞,0)(τ) ≡ J (τ),

J(JJ ∞,1)(τ) ≡ J (τ + 1),

J(JJ ∞,2)(τ) ≡ J (τ + 2),

J(JJ ∞,3)(τ) ≡ J (τ + 3),

JMJJ (τ) ≡ J (−1/τ),

JDJJ (τ) ≡ J (2 − 1/τ).

(8.81)

The subscript D refers to ‘dyon’, and should not be confused with the sub-
script for dual quantities. In general we denote Γ0(4)-modular forms F trans-
formed as in (8.81) by FIF where

I = (∞, 0), (∞, 1), (∞, 2), (∞, 3), M, D. (8.82)

The integral (8.79) then becomes

G(ρ) =
∫
F

∫∫
dxdy

y3/2

∑
I

f̂Iff (p, S, τ)ΘI , (8.83)

where

ΘI = eiφI Θ(τ, αI , βI ; ξI) (8.84)
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are the transforms of the Siegel–Narain theta function implied by (8.81), and
the φI are the appropriate phases. One can check that:

eiφ(∞,n) = κ−(n+1)(w2(X),w2(E)), n = 0, 1, 2, 3,

eiφM = eiφD = κ−(w2(X),w2(E)),
(8.85)

and that

α(∞,0) =
1
2
w2(X),

α(∞,1) = −1
2
w2(V ),

α(∞,2) = −w2(V ) − 1
2
w2(X),

α(∞,3) = −3
2
w2(V ) − 1

2
w2(X),

αM =
1
2
w2(V ),

αD =
1
2
w2(V ),

β(∞,0) =
1
2
w2(V ),

β(∞,1) =
1
2
w2(V ),

β(∞,2) =
1
2
w2(V ),

β(∞,3) =
1
2
w2(V ),

βM = −1
2
w2(X),

βD = w2(V ) +
1
2
w2(X).

(8.86)

In order to show that the integrand of (8.83) has weight (0, 0) one has to
check that f̂Iff and ΘI are in the same unitary representation of Sl(2,Z). The
behavior of the f̂Iff under the generators T and S is as follows:

f̂(∞,0)(τ + 1) = f̂(∞,1)(τ),

f̂(∞,1)(τ + 1) = f̂(∞,2)(τ),

f̂(∞,2)(τ + 1) = f̂(∞,3)(τ),

f̂(∞,3)(τ + 1) = f̂(∞,0)(τ),

f̂Mff (τ + 1) = κσ f̂Mff (τ),

f̂Dff (τ + 1) = κσ f̂Dff (τ),

f̂(∞,0)(−1/τ) = (−iτ)σ/2f̂Mff (τ),

f̂(∞,1)(−1/τ) = (−iτ)σ/2f̂(∞,3)(τ),

f̂(∞,2)(−1/τ) = (−iτ)σ/2f̂Dff (τ),

f̂(∞,3)(−1/τ) = (−iτ)σ/2f̂(∞,1)(τ),

f̂Mff (−1/τ) = (−iτ)σ/2f̂(∞,0)(τ),

f̂Dff (−1/τ) = (−iτ)σ/2f̂Mff (∞, 2)(τ).
(8.87)

Using (8.85) and (8.86) it is easy to show that the ΘI are in the same unitary
representation as f̂Iff , therefore the integrand is invariant under Sl(2,Z). To
prove these properties it is crucial to take into account the Wu formula (1.22)
and also that w2(X)2 ≡ σ mod 8, a consequence of (1.27).

As a corollary of the above analysis one can show that for every I f̂Iff ΘI

is invariant under the monodromy associated to the corresponding cusp, as
required by consistency. Let us consider, for example, the cusp (∞, 0). The
monodromy is given by T 4, which maps f̂(∞,0) → f̂(∞,0) and Θ(∞,0) → Θ(∞,0),
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therefore the product is clearly invariant. If we now look at the monopole
cusp the monodromy in magnetic variables is given by T , and we see that
f̂Mff and ΘM transform with the same phase, so that f̂Mff ΘM is invariant.
In this analysis (as well as in the analysis of invariance under Sl(2,Z)), the
presence of the coupling (8.15) is crucial for consistency. In fact, this coupling
is required by invariance under the monodromy at infinity. This provides a
very easy way of deducing the existence of such a coupling from consistency
of the u-plane integral which can also be generalized to more complicated
situations, such as the higher rank case which we will briefly consider in the
last chapter. As a final remark notice that the coupling (8.15) indicates that
the lattice in the monopole cusp is Γ + 1

2w2(X). Taking into account (3.13)
we see that the magnetic line bundles are in fact Spinc structures. This will
be crucial in the analysis of the contributions of u = ±1.
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Chapter 9

Some Applications of the u-plane Integral

In this chapter we will discuss three important applications of the u-
plane integral to Donaldson invariants: the wall crossing formula, the blow-up
formula, and a precise determination of the Seiberg–Witten contributions at
the monopole points. This last application will in fact lead us to Witten’s
‘magic formula’ for the Donaldson series of four-manifolds with b+

2 > 1 and of
simple type in terms of Seiberg–Witten invariants. All of these properties can
be derived from the form of the integrand, i.e., it is not necessary to perform
the integral over the fundamental domain of Γ0(4) explicitly.

9.1. Wall crossing

We have seen that the u-plane integral has good properties with respect
to duality transformations and monodromy invariance. However, this does
not mean that it is well defined: the integration region is non-compact, and
the integrand is ill behaved in general as τ → ∞. We then have to define the
integral carefully, in such a way that it makes sense and that (hopefully) we
recover the results of Donaldson theory.

The precise recipe was worked out in detail by Moore and Witten: first,
to obtain a Donaldson invariant of some given order we expand ZuZZ to the
required order in p and S. This gives an integral which computes a particular
Donaldson invariant. To define that particular integral we write τ = x + iy,
we perform the integral for y < y0 for some cutoff y0, and then take the
limit as y0 → ∞ only at the end. A similar procedure is followed near the
cusps at u = ±1, introducing the dual τ -parameters and integrating first over
Im τDτ < y0, before taking the limit as y0 → ∞. This procedure eliminates
the infinities. Let us see this in some detail. Set q = exp(2πiτ). Then the
integral to a given order in p and S is a sum of terms, each of which is a

154
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power of y multiplied by a sum of the form∑
ν,µ

qνqµ. (9.1)

Although ν has no lower bound, µ is bounded below by zero. This is because
negative exponents in (9.1) come only from factors in the integrand, such as
u and (dτ/du)−σ/4, which are singular at the cusps. But these factors are
holomorphic and so contribute to ν but not µ.

Consider now an integral of the following form:

lim
y0→∞

∫ y0

y

∫∫
1

dy

yc

∫ k

0

∫∫
dx
∑
ν,µ

qνqµ, (9.2)

where y1 is an arbitrary lower cutoff. We want to find a prescription to
compute this integral in such a way that it converges when y0 → ∞. The
x integral runs from 0 to k where (for Γ0(4)) k = 4 for the cusp at infinity,
and k = 1 for the other cusps. If we now look at the integrand and to the
definition of the function Ψ, we see that in all cases either c > 1 or there are,
for a generic metric on X, no terms with ν = µ = 0. If we now integrate
first over x we project the sum in (9.2) onto terms with ν = µ, and hence
(as µ is non-negative) onto terms that vanish exponentially or, if ν = µ = 0,
are constant at infinity. For a generic metric on X, the y integral converges
as y0 → ∞ since all terms that have survived the x integral have c > 1 or
ν, µ > 0. With this prescription the integral becomes for a generic metric a
well defined formal power series in p, S.

For special metrics one can find, however, terms with c = 1/2 and ν =
µ = 0. The relevant terms are of the form

I(ω) ≡
∫
F

∫∫
dxdy

y1/2
c(d)e2πixd−2πyde−iπx(λ2

++λ2
−)e−πy(λ2

+−λ2
−)(ω, λ) (9.3)

for some integer d and some λ. In (9.3) c(d) is the coefficient of some modular
from. We want to study the integral in (9.3) for fixed λ as the decomposition
λ = λ+ + λ− varies. Since λ+ = ω(ω, λ) this decomposition is determined by
the period point ω. We want to know if there are discontinuities in I(ω) when
a ‘wall’ is crossed. Such a discontinuity occurs only if λ2 < 0, since otherwise
the integral in (9.3) (with the regularization just described) is convergent.
However, when λ2 < 0 there is a discontinuity at λ+ = 0. This can be
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computed as follows. Upon performing the x integral one projects onto d

such that 2d = λ2. For this value of d the y integral looks like∫ ∞

y

∫∫
1

dy

y1/2
c(λ2/2)e−2πyλ2

+λ+. (9.4)

This is an elementary integral (if one replaces y1 by 0) and converges for all
non-zero λ+, but is discontinuous at λ+ = 0. The discontinuity comes from
the large y part of the integral and so is independent of y1. The discontinuity
in I(ω) as ω crosses from (ω, λ) = 0− to (ω, λ) = 0+ is easily computed to be
(for a single copy of the Sl(2,Z) fundamental domain)

I(ω+) − I(ω−) =
√

2c(d) =
√

2
[
q−λ2/2c(q)

]
q0 . (9.5)

The notation [·]q0 indicates the constant term in a Laurent expansion in pow-
ers of q, and it may also be expressed as a residue. Since λ+ = 0 we may
put (S+, λ+) = 0 and (S−, λ−) = (S, λ) in the function c(q). Note that in
order to compute the wall crossing behavior of the u-plane integral we do not
have to compute the integral itself, but we only need information about the
integrand.

Let us look at the four cusps at infinity. In all cases one has 2λ ≡ w2(V )
mod 2, and we see that the conditions λ2 < 0, λ+ = 0 for a discontinuity
in the integral are precisely the conditions for wall crossing of the Donaldson
invariants that we explained in (2.77) (with ζ = 2λ). The general formula
(9.5) gives

WCζ=2λ = − i

2
(−1)(λ−λ0,w2(X))e2πiλ2

0

×
[
q−λ2/2h∞(τ)b1−2ϑσ

4f−1
2ff ∞ exp

(
2pu∞ + S2T∞TT − i(λ, S)/h∞

)
×
∫
T

∫∫
b1

exp
(

2f1∞(q)(S,Λ)Ω + 16if2ff ∞(q)(λ, Λ)Ω + i
δ�

h∞

)]
q0

,

(9.6)
where we have included a factor of 4 to take into account the contributions
from the four cusps. This expression gives, in fact, the wall crossing behav-
ior for the Donaldson invariants of manifolds with even b1 ≥ 0. An obvious
corollary of (9.6) is that the wall crossing formula only depends on the coho-
mology ring of the four-manifold X, confirming the conjecture of Kotschick
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and Morgan that we mentioned in Chapter 2. Using the behavior of the mod-
ular forms involved in the wall crossing formula, it is easy to check that the
wall crossing term is different from zero only if

0 > λ2 ≥ p1/4, (9.7)

where p1 is the Pontrjagin number of the gauge bundle. As an example of the
use of (9.6), consider λ2 = p1/4. The wall crossing term for the Donaldson
invariant corresponding to prSd−2r, where d is half the dimension of moduli
space, is easily found to be:

WCζ(prSd−2r) =
1
2
(−1)(λ−λ0,w2(X))23b1/2−b−d(−1)r+dprvol(Tb1)

×
b1/2∑
b=0

(b1/2)!
(b1/2 − b)!

(
d − 2r

b

)
(S, ζ)d−2r−b(S, ζ)b(ζ,Λ)b1/2−b,

(9.8)
where ζ = 2λ. For simply connected manifolds the general wall crossing
formula (9.6) reproduces the result of Göttsche.¨

9.2. The Seiberg–Witten contribution

In the first section of this chapter we computed the wall crossing for-
mula only for the cusps at infinity. However, there is also wall crossing at the
monopole and the dyon cusps. Let us consider the monopole cusp in some
detail (the results for the dyon cusp can be obtained in a very similar way).
The first thing to notice is that after performing the S-duality transforma-
tion the lattice points λ live in H2(X,Z) + w2(X)/2. This means that 2λ

corresponds to a Spinc-structure. The walls are still defined by

λ2 < 0, (λ, ω) = 0. (9.9)

and the wall crossing term is easily computed as:

i

8
e2iπ(λ0·λ+λ2

0)

[
q
−λ2/2
D hb1−3

M ϑ8+σ
2 exp

(
2puM − i(S, λ)/hM + S2TMT (u)

)
×
∫
T

∫∫
b1

exp
(

2f1M (S,Λ)Ω + 16if2ff M (λ, Λ)Ω +
i

hM
δ�

)]
q0

D

.

(9.10)
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where the ‘dual’ modular forms are explicitly given by

uM (qD) =
ϑ4

3 + ϑ4
4

2(ϑ3ϑ4)2
= 1 + 32qD + 256qD + · · · ,

hM (qD) =
1
2i

ϑ3ϑ4 =
1
2i

(1 − 4qD + 4q2
D + · · ·),

f1M (qD) =
2E2 − ϑ4

3 − ϑ4
4

3ϑ8
2

= −1
8
(1 − 6qD + 24q2

D + · · ·),

f2ff M (qD) =
ϑ3ϑ4

2iϑ8
2

=
1

29i
(

1
qD

− 12 + 72qD + · · ·),

TMT (qD) = − 1
24

(
E2

h2
M

− 8uM

)
=

1
2

+ 8qD + 48q2
D + · · · ,

(9.11)

and qD = exp(2πiτDτ ).
After computing the leading power of qD in (3.29) for a wall given by λ,

one finds that monopole wall crossing only takes place if

dλ ≥ 0, (9.12)

where dλ, given in (3.14), is the dimension of the Seiberg–Witten moduli space
associated to the Spinc-structure with determinant line bundle 2λ. Therefore
the conditions for a discontinuity of the u-plane integral at the monopole cusp
(9.9) and (9.12) are precisely the conditions for wall crossing in the Seiberg–
Witten invariants (3.29). The picture that emerges from this analysis is the
following. First, let us recall that according to the basic principle ‘Donaldson
= Coulomb+Higgs’, the Donaldson–Witten generating function is a sum of
the three terms in (8.1), which we reproduce here:

ZDW = ZuZZ + ZuZZ =1 + ZuZZ =−1. (9.13)

When there is a Donaldson wall the u-plane integral jumps as a result of to
the behavior at the cusps at infinity. This jump gives the Donaldson wall
crossing, as we saw in the previous section. When there is a Seiberg–Witten
wall, ZuZZ jumps at the monopole and dyon cusps, but since ZDW has no wall
crossing at these walls (generically), the jump should be compensated by an
identical jump but with opposite sign in ZuZZ =±1. Since, as we will see in
a moment, ZuZZ =±1 involves the Seiberg–Witten invariants, in order to have
a cancellation of wall crossings we should have the same conditions for the
walls. Happily, and as we have just seen, this turns out to be the case.
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In fact, more is true: as Moore and Witten realized, cancellation of wall
crossings can be used to determine the detailed form of ZuZZ =±1. Let us now
focus on the analysis of the contribution at u = 1 (the analysis of the contri-
bution at u = −1 is very similar and, in fact, can be obtained from the Z2

symmetry of the u-plane). The first thing to notice is that since at u = 1
there is a preferred frame (the magnetic frame obtained from S-duality from
the electric frame suitable for the semi-classical region) we can perform an
analysis of the functional integral based on localization on supersymmetric
configurations, as we did in Chapter 5 for Donaldson–Witten theory and the
monopole theory. We will then start with the twisted Lagrangian of the the-
ory. We saw in Chapter 7 that the effective Lagrangian of the physical theory
near u = 1 involves both the N = 2 supersymmetric vector multiplet (in
the dual frame) and the monopole hypermultiplet, and involves the magnetic
prepotential F̃DF (aD). It is easy to see that, after twisting, this Lagrangian
can be written as:

{Q, W} +
i

16π
τ̃Dτ F ∧ F + p(u)TrR ∧ ∗R + �(u)TrR ∧ R

− i
√

2
32 · π

dτ̃Dτ

daD
(ψ ∧ ψ) ∧ F +

i

3 · 27π

d2τ̃Dτ

da2
D

ψ ∧ ψ ∧ ψ ∧ ψ.

(9.14)

We have included in this Lagrangian couplings to gravity similar to those
considered in our analysis of the u-plane integral in the previous chapter,
since on general grounds we should expect them on a curved manifold. The
part of the Lagrangian involving the monopole hypermultiplet can also be
written as a Q-exact term after twisting (this is essentially the matter piece
in (5.57)), and has been included in W . Our normalizations are such that M ,
the monopole field, is a section of L1/2 (the dual line bundle), and then F is
the curvature of L (this can be checked by taking into account the rescaling
(7.60), which also explains why some of the factors differ from (8.2)). If
λ = c1(L) we then have F = 4πλ. The exponentiation of the terms involving
the densities TrR ∧ ∗R, TrR ∧ R and λ2 gives after integration on X the
factors

P (u)σ/8L(u)χ/4C(u)λ2/2, (9.15)

where C(u) = e−2πiτ̃D . As in the u-plane integral, in the monopole theory
the ψ field is a one-form on the Seiberg–Witten moduli space, and a one-form
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on the four-manifold X. We can then write it as

ψ =
c

2

b1∑
i=1

νiβi, (9.16)

where βi ∈ H1(X,Z), i = 1, . . . , b1, is the basis of one-forms considered in
(8.27), the νi are the one-forms on moduli space defined in (3.20), and c is a
normalization constant (in order to agree with mathematical normalizations,
one has to put c = 2−9/4π−1/2i).

Finally, we have to consider how to insert observables in this theory. This
is just as in the u-plane theory, by using the descent procedure. Therefore

pO → 2puM , (9.17)

and

exp(I2II (S)) → exp
(
− i

4π

∫
S

∫∫
du

daD
F + S2TMT (u) +

i

8
√

2π

d2u

da2
D

∫
S

∫∫
ψ ∧ ψ

)
.

(9.18)
Notice that in the U(1) theory coupled to matter one has {Gµ, ψν} =
−(F−

µνF + D+
µν) + 2i(MM)+µν , but it also follows from (5.56) that supersym-

metric configurations satisfy F+

α̇β̇
+ 2iM (α̇Mβ̇M ) = Dαβ̇ . Therefore when con-

sidering supersymmetric configurations one finds indeed (9.18). Notice that
since aD is invariant under the rescaling (7.60), we have to use the original G

action in (5.32) (in contrast to (8.19)). Finally, we also have:

I1(δ) →
√

2a1

4
1

hM

∫
δ

∫∫
ψ. (9.19)

Let us now evaluate the contribution from the monopole theory. As we dis-
cussed in Chapter 5, the functional integral reduces to an integral over the
space of collective coordinates for the supersymmetric configurations. This is
precisely the Seiberg–Witten moduli space. The observables, together with
the measure factors and the terms in the Lagrangian that are not Q-exact,
give a function of aD and the νi that one then integrates over this moduli
space. aD is nothing but the operator φ in (3.19), and ψ gives insertions of
νi operators. The contribution to ZuZZ =1,λ from the Spinc-structure associated
to λ is then given by:

ZuZZ =1,λ =
∫
M

∫∫
λ

2e2iπ(λ2
0−λ0·λ)C(u)λ2/2P (u)σ/8L(u)χ/4

× exp
(
2puM + i(S, λ)/hM + S2TMT (u)

)
× exp

[
c2(PMP (u), Λ)

b1∑
i,j=1

aijνiνjν
]
,

(9.20)
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where

PMP (u) =
i
√

2
16π

f1MS +
i
√

2
32

dτ̃Dτ

daD
λ, (9.21)

and we have taken into account that daD/du = −hM . The factor of 2 comes
from the same normalization issue that we discussed in (8.24), and for sim-
plicity we have put I1(δ) = 0. The overall phase depending on λ0 can be
obtained by performing carefully the duality transformation of the effective
Lagrangian in the presence of a non-trivial Stiefel–Whitney class. As we will
see in a moment, it is clearly required to match the wall crossings.

The integral (9.20) can be evaluated in terms of Seiberg–Witten invari-
ants by expanding the exponential, and extracting the different powers of aD

and the νi. By doing this we find:

ZuZZ =1,λ =
b1/2∑
b=0

1
b!

ResaD=0

[
2e2iπ(λ2

0−λ0·λ)C(u)λ2/2P (u)σ/8L(u)χ/4

× exp
(
2puM + i(S, λ)/hM + S2TMT (u)

)
× a

−dλ/2+b−1
D (PMP (u), Λ)b

]
× c2b

b1∑
ip,jp=1

ai1j1 · · · aibjb
SWλ(βi1 ∧ βjβ 1 ∧ · · · ∧ βib

∧ βjβ
b
).

(9.22)
Let us now compare to (3.29) (and use the property that (3.29) is odd un-
der the change λ → −λ). We see that in order to match (3.29) and (9.22)
consistency requires that λ lives in the lattice H2(X,Z) + w2(X)/2, so the
dual line bundle L1/2 is, in fact, a Spinc structure. The reason behind this is
again the crucial coupling (8.15), since after the S-duality transformation it
generates the appropriate shift in the dual λ. The effect of (8.15) in the dual
theory can be analysed directly, and leads to the same conclusion.

We can now determine the unknown factors in (9.22) by requiring that
the wall crossing of the above expression matches the wall crossing at the
monopole cusp. This is easily done by considering first the simply connected
case b1 = 0, since in that case we know that the Seiberg–Witten invariant
jumps by ±1 in crossing a wall. The Seiberg–Witten wall crossing (9.10) can
be also written as a residue in order to compare with (9.22), and in the simply
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connected case it is given by

ResaD=0

[
4πq

−λ2/2
D αχ

( du

daD

)χ/2
βσ(u2 − 1)σ/8

× exp
(
2puM + i(S, λ)/hM + S2TMT (u)

)]
.

(9.23)

For simply connected manifolds with b+
2 = 1 we can write χ = 4 − σ, and by

comparing the terms involving σ and λ2, one finds:

C =
aD

qD
,

P = −π2β8a−1
D (u2 − 1),

L = πiα4
( du

daD

)
.

(9.24)

In terms of modular forms and taking into account the values of the constants
α, β given in (8.17), we have

P = −4ϑ2(τDτ )8

h4
M

a−1
D , L =

i

h2
M

. (9.25)

The first relation tells us that the gauge coupling τ̃Dτ appearing in (9.14) is
given by

τ̃Dτ = τDτ − 1
2πi

log aD, (9.26)

and therefore it is smooth at the monopole cusp. This defines the prepo-
tential F̃DF (aD) through the equation F̃ ′′

DF (aD) = τ̃Dτ , and finally proves our
claim in (7.94). With this information we can already compute the remaining
couplings in (9.14). Since

dτDτ

daD
= −f2ff M (qD), aD = − i

6
2E2(τDτ ) − ϑ4

3 − ϑ4
4

ϑ3ϑ4
= −1

4
f1M

f2ff M
(9.27)

one finds

PMP (u) =
i
√

2
32π

[
2f1MS − 16i

(
1 + 8f1M

8f1M

)
f2ff Mλ

]
. (9.28)

One can actually require cancellation of the wall crossings in the non-simply
connected case and derive the general formula for Seiberg–Witten wall cross-
ing. For example, when no insertions of the νi are made one finds

WCλ = (−1)b1/2(λ, Λ)b1/2vol(Tb1), (9.29)
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in agreement with known mathematical results.
This gives in principle all the information which is needed in order to

write the Seiberg–Witten contribution at u = 1 to the Donaldson invariants,
for any four-manifold with b+

2 ≥ 1. For example, for a manifold with b+
2 = 1,

and after including I1(δ), one obtains:

ZuZZ =1,λ =
ib1+1

8

∑
b≥0

b∑
n=0

(−1)n

n!(b − n)!
2−6n−5b+b1/2e2iπ(λ2

0−λ0·λ)

×
[
q
−λ2/2
D hb1−3

M ϑ8+σ
2

( f1M

if2ff M

)(b+n−b1)/2

exp
(
2puM + i(S, λ)/hM + S2TMT (u)

)
(

2f1M (S,Λ) − 16i

(
1 + 8f1M

8f1M

)
f2ff M (λ, Λ)

)n
]

q0
D

×
b1∑

ip,jp=1

ai1j1 · · · ainjn
SWλ(βi1 ∧ βjβ 1 ∧ · · · ∧ βin

∧ βjβ
n
∧ δb−n

∗ ),

(9.30)
where δ∗ denotes the image of δ under the map δi → βi, and we have taken
into account that on manifolds with b+

2 = 1 the term involving ψ4 in (9.14)
vanishes (as we mentioned in the previous chapter).

The contribution ZuZZ =−1 at u = −1 is identical to the contribution at
u = 1, with the only difference that one has to use the modular forms

uD = −uM , hD = ihM , f1D = f1M , f2ff D = if2ff M , TDT = −TMT

(9.31)
and include an extra factor exp(−2πiλ2

0). It is easy to check that

ZuZZ =−1(p, ζiζζ , vi) = e−2πiλ2
0i(χ+σ)/4ZuZZ =1(−p, iζiζζ ,−ivi). (9.32)

For a general four-manifold the Seiberg–Witten contributions at u = ±1
are rather complicated. For example, in a manifold with b+

2 > 1, b1 > 0 and
which is not of simple type, the term ψ4 in (9.14) gives a contribution. For
a simply connected manifold (but not necessarily of Seiberg–Witten simple
type) the above expressions give:

ZuZZ =1,λ =
SW(λ)

16
· e2iπ(λ2

0−λ0·λ)

×
[
q
−λ2/2
D

ϑ8+σ
2

aDhM

(
−2i

aD

h2
M

)χh

exp
(
2puM + i(λ, S)/hM + S2TMT

)]
q0

.

(9.33)
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If the manifold has b+
2 > 1 and is of Seiberg–Witten simple type,

the Seiberg–Witten contributions simplify enormously. Since ZuZZ = 0 the
Donaldson–Witten generating function is given by ZDW = ZuZZ =1+ZuZZ =−1. The
Seiberg–Witten simple type condition means that the only contribution comes
from basic classes λ with dλ = 0, therefore we only have to take the leading
terms in the q-expansions in (9.33). Using uM = 1 + · · ·, TMT = 1/2 + · · ·,
hM = 1/(2i) + · · · and aD = 16iqD + · · · we find that (9.33) reduces to

(−1)χh21+ 7χ
4 + 11σ

4 e2p+S2/2e−2(S,λ)e2iπ(λ2
0−λ0·λ)SW(λ). (9.34)

We then obtain, after summing over all λ and taking into account (3.26)
and (9.32),

ZDW = 21+ 7χ
4 + 11σ

4

∑
λ

e2iπ(λ0·λ+λ2
0)

[
e2p+S2/2e2(S,λ)

+ iχh−w2(V )2e−2p−S2/2e−2i(S,λ)

]
SW(λ).

(9.35)
This is the famous Witten’s ‘magic formula’ which expresses the Donaldson
invariants in terms of Seiberg–Witten invariants. The Donaldson series then
reads,

Dw2(V )(S) = 22+ 7χ
4 + 11σ

4

∑
λ

e2iπ(λ0·λ+λ2
0)eS2/2e2(S,λ)SW(λ). (9.36)

Comparing to the structure theorem of Kronheimer and Mrowka (2.66) we
find that the characteristic elements κλ are precisely the Seiberg–Witten basic
classes 2λ, and the corresponding rational numbers aλ are given by:

aλ = 22+ 7χ
4 + 11σ

4 e2iπ(λ0·λ+λ2
0)SW(λ). (9.37)

These formulae agree with all known mathematical results. For example, for
elliptic fibrations E(n), n ≥ 2, one can check (9.37) by comparing (2.70)
and (3.28). From the above analysis we can deduce the following results for
manifolds with b+

2 > 1:
1) A simply connected four-manifold of Seiberg–Witten simple type is

also of Donaldson simple type.
2) A non-simply connected manifold of Seiberg–Witten simple type is of

strong simple type.
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3) Any simply connected four-manifold with b+
2 > 1 is of finite type, i.e.,

(2.62) holds and the value of n depends on the maximal dimension of the
Seiberg–Witten moduli spaces involved in the computation of (9.33).

In conclusion, the u-plane integral provides a physical way of comput-
ing the Donaldson invariants of four-manifolds of b+

2 > 0, not necessarily of
Seiberg–Witten simple type. In general it is the sum of two terms, the u-plane
integral ZuZZ given for example in (8.68), and the Seiberg–Witten contributions
at u = ±1 (which is essentially given by the expression (9.20) together with its
transform (9.32)). When the manifold is of Seiberg–Witten simple type, the
u-plane integral technology leads to a simple derivation of Witten’s formula
relating Donaldson and Seiberg–Witten invariants.

9.3. The blow-up formula

As we saw in Chapter 1, one basic operation that can be performed on
a four-manifold in order to construct another four-manifold is the blow-up of
a point. The behavior of Donaldson invariants under this operation has been
investigated by many authors, and this effort culminated with the blow-up
formulae of Fintushel and Stern. In this section we will obtain these blow-up
formulae from the u-plane integral.

Remember that after blowing up a point in a four-manifold X we obtain
another manifold X̂ with an extra two-homology class B with B2 = −1
(we will denote by B its Poincare dual as well). It then follows that´
b+
2 (X̂) = b+

2 (X), χ(X̂) = χ(X) + 1, σ(X̂) = σ(X) − 1. Let I(B) be the
two-observable corresponding to B, and t a complex number. In order to
compute the Donaldson invariants we have to choose as well an integral lift-
ing of w2(V ), ξ̂, in the blown up manifold. It is usually assumed that ξ̂ is a
class that coincides with ξ away from B, and this means that ξ̂ = ξ + jB for
j = 0 or 1. The goal of the blow-up formula is to compute

〈exp(2pu + I(S) + tI(B))〉
ξ̂,X̂

, (9.38)

in a limit in which the area of B is small, in terms of

〈exp(2pu + I(S))〉ξ,X . (9.39)

As pointed out by Moore and Witten in their work on the u-plane integral,
it is natural to expect the existence of universal blow-up formulae based on
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physical considerations: when we blow up a point in X we produce an ‘im-
purity’ which is assumed to be very small (since in the blow-up formula the
area of B is taken to be small), and we should be able to reproduce its effect
by some local, Q-invariant observable. But in the twisted N = 2 theory any
local Q-invariant observable is a holomorphic function of u. Therefore there
must be holomorphic functions FjFF (u, t), for j = 0, 1, such that

〈exp (2pu + I(S) + tI(B))〉
ξ̂,X̂

= 〈exp (2pu + I(S) + FjFF (u, t))〉ξ,X . (9.40)

The above argument shows that the blow-up formula is universal, involving
two holomorphic functions of u that do not depend on the four-manifold under
consideration. This implies that one should be able to deduce the blow up
formula from the u-plane integral alone. The reason for this is that one can
find manifolds such that ZSW = 0 (where ZSW denotes the contribution to
ZDW coming from u = ±1 and involving Seiberg–Witten invariants), and such
that their blow-ups also have ZSW = 0. An example of those is IP2 blown up
at a small number of points: IP2 admits a metric of positive curvature and
has no chambers, so their Seiberg–Witten invariants vanish and ZSW = 0.
The blown up IP2 still admits a metric of positive curvature, and, moreover,
if we blow it up at less than nine points, Seiberg–Witten wall crossing is still
absent, since (9.12) is not satisfied. Therefore ZSW = 0 everywhere after
blowing up, and for these manifolds the blow up functions must come from
the u-plane integral.

The derivation of the blow-up formula from the u-plane integral is actu-
ally very easy, and can be obtained by comparing the u-plane integrand for
X with that for X̂. Put S → S + tB and substitute into the integrand of
(8.54), using as well the condition that we are in a chamber with B+ = 0.
The theta function (8.52) changes as follows:

Ψ
X̂

= ΨX exp
[

πt2

8πy

(du

da

)2
] ∑

n∈Z+ 1
2 w2(V )·B

exp
[
iπτn2 + int/h]e−iπn (9.41)

Similarly the measure factor (8.69) for the blown up manifold is related to
that of the original manifold by:

f̂
X̂

f = f̂Xff ϑ−1
4 exp

[−t2T̂ (u)
]
. (9.42)

The ϑ−1
4 factor arises because the blow-up changes σ, and the other factor

arises because S2 → S2 − t2. We then see that the blow-up has the effect of
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modifying the integrand by introducing an extra factor

τ0ττ (t|u) = e−t2T (u)
ϑ4

( t

2π

du

da
|τ
)

ϑ4(0|τ)
(9.43)

in the case where w2(V ) · B = 0 mod 2 and a factor

τ1(t|u) = e−t2T (u)
ϑ1

( t

2π

du

da
|τ
)

ϑ4(0|τ)
(9.44)

when w2(V ) · B = 1 mod 2.

According to the physical argument above, these blow-up factors should
depend only on u. We are going to prove that, indeed, they are series in t

whose coefficients are polynomials in u.

Let us first consider the case w2(V ) ·B = 0 mod 2. The quotient of theta
functions can be written in terms of the Weierstrass sigma function:

ϑ4(z|τ)
ϑ4(0|τ)

= e−2η1ω1z2
σ3(2ω1z) (9.45)

where ω1 is proportional to the a-period, as shown in (7.72). Taking this into
account, together with the identity

η1 =
π2

12ω1
E2(τ), (9.46)

one finds that

τ0ττ (t|u) = e−t2u/3σ3

( 4t√
2

)
. (9.47)

Now, the sigma functions σi(t) can be expanded around the origin, and the
coefficients of the Taylor expansion are polynomials in the roots ei and the
functions g2, g3 (in the Weierstrass description of the curve). For example,

σ3(t) = 1 − e3t + O(t2), (9.48)

As one can see in (7.69) and (7.71), these quantities only depend on u, proving
our claim. Similarly, in the case w2(V ) · B = 1 mod 2 we use

ϑ1(z|τ)
ϑ′

1(0|τ)
=

1
2ω1

e−2ω1η1z2
σ(2ω1z) (9.49)
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and ϑ′
1(0|τ) = πϑ2(τ)ϑ3(τ)ϑ4(τ), together with (7.103), to write the blow-up

factor as

τ1(t|u) =
√

2
4

e−t2u/3σ
( 4t√

2

)
. (9.50)

The expansion of σ(t) around the origin only involves g2 and g3,

σ(t) = t − g2

240
t5 + O(t7), (9.51)

therefore the blow-up factor (9.50) is also a function of u only.

A particularly interesting case of the blow-up formulae occurs at the de-
generation points of the Seiberg–Witten curve, u = ±1. The blow up formula
at those points describes the behavior of Donaldson invariants for manifolds
of Donaldson simple type. Let us consider for simplicity the monopole point
u = 1 (the behavior at u = −1 is identical). At u = 1 the period ω1 di-
verges, and ω3 = π

√
2i. As shown in (B.2) the σ function degenerates to a

trigonometric function, and one finds

σ(t) = e−t2/6 sinh t. (9.52)

Similarly one finds that

σ3(t) = e−t2/6 cosh t. (9.53)

so the blow up functions become

τ0ττ (t|u = 1) = e−t2/2 cosh t,

τ1(t|u = 1) = e−t2/2 sinh t,
(9.54)

and they describe the behavior of Donaldson invariants under blow up for
manifolds of Donaldson simple type. It can be seen that these formulae are
compatible with Witten’s formula (9.35): if x = 2λ denotes the (integral)
basic classes of the manifold of Seiberg–Witten simple type X, it can be shown
that X̂ is also of Seiberg–Witten simple type. The basic classes of X̂ are given
by x±B, and the Seiberg–Witten invariants satisfy SW(x±B) = SW(x). It is
immediate to see that (9.36) picks after blow-up the factors (9.54) depending
on the values of w2(V ) · B.
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Chapter 10

Further Developments in Donaldson–Witten
Theory

In this final chapter we present some ‘advanced’ results in Donaldson–
Witten theory, in considerably less detail than in the previous chapters. Our
aim is to collect some useful results in the literature and provide an introduc-
tion to more specific developments. In the first section we present formulae
for the Donaldson invariants of some four-manifolds with b+

2 = 1 in special
chambers. These formulae can be obtained from the u-plane integral by doing
the integral on the fundamental domain. In the second section we consider the
u-plane integral for theories with hypermultiplets, mostly in the case b+

2 > 1,
and explain some applications to the geography of four-manifolds. As in the
rest of the book we focus on theories with gauge groups of rank one (SU(2)
or SO(3)). Finally, in the third section we consider the extension to gauge
groups of rank larger than one.

10.1. More formulae for Donaldson invariants

In the previous chapter we have obtained three important properties of
Donaldson invariants (the wall crossing formula, the structure of the Seiberg–
Witten contribution, and the blow-up formula) without evaluating the inte-
gral over the fundamental domain. In this section we will discuss some results
for Donaldson invariants that can be obtained by a more careful analysis of
the u-plane integral.

A very important aspect of the u-plane integral is that in certain circum-
stances it can be shown to vanish. The precise statement is as follows: let
X be a four-manifold with b+

2 = 1 that fibers over a two-dimensional base B

with a fiber Σ of genus zero. Then, if V is an SO(3) bundle such that

w2(V ) · [Σ] 
= 0

 , (10.1)
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then the u-plane integral vanishes when evaluated in the limiting chamber
in which the area of the fiber is very small. As pointed out by Moore and
Witten, this is easy to understand physically: consider for simplicity the case
in which the four-manifold X is a direct product, X = B × Σ. The Maxwell
action which controls the U(1) dynamics of the gauge field on the u-plane can
then be written as∫

B

∫∫
×Σ

F ∧ ∗F =
vol (B)
vol (Σ)

(∫
Σ

∫∫
F

)2

+
vol (Σ)
vol (B)

(∫
B

∫∫
F

)2

, (10.2)

where F is the U(1) field strength. The condition (10.1) means that
∫
Σ

∫∫
F 
= 0,



therefore as vol (Σ) → 0 the Maxwell action diverges, causing the u-plane in-
tegral to vanish. However, one has to exercise caution, since although the
integrand is clearly vanishing in these conditions, one has to worry about
non-compactness of the moduli space. A careful analysis of the u-plane in-
tegral shows that, indeed, there is vanishing of the u-plane integral in these
conditions. We refer the reader to the original work of Moore and Witten for
a proof of this fact.

As an example of this vanishing result let us consider the product ruled
surface Xg = S2 ×Σg, where Σg is a Riemann surface of genus g. H2(Xg,Z)
is generated by two classes, [S2] and [Σg] (the Poincaré duals of the surfaces)´
and one has [S2] · [Σg] = 1. The integral lift of w2(V ) can be written as

w2(V ) = ε[Σg] + ε′[S2]. (10.3)

The period point ω of Xg was written in (2.76) in Chapter 2. The limiting
chamber in which the volume of S2 is small corresponds to θ → ∞. It
follows from the vanishing theorem that the u-plane integral vanishes in this
limiting chamber provided that w2(V ) · [S2] 
= 0,

 i.e., for ε 
= 0. Moreover,


it is easy to see from the expression of the period point (2.76) that if we
endow S2 and Σg with their standard constant curvature metrics the scalar
curvature of Xg is positive for e2θ > g− 1. In particular, it will be positive in
the limiting chamber of vanishing volume for S2, for any genus, therefore the
Seiberg–Witten invariants will vanish in that chamber (owing to the vanishing
theorem discussed in Chapter 3). We conclude that the Donaldson invariants
of a product ruled surface vanish in the chamber of small volume for S2 for
bundles with w2(V ) · [S2] 
= 0.



The vanishing result is also useful in order to determine the Donaldson
invariants of manifolds with b+

2 = 1 in other chambers. The strategy is to
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consider first the Donaldson invariants in a chamber where they can be easily
evaluated (for example, in a limiting chamber where one can show that the
invariants vanish, as in the example of product ruled surfaces which we have
considered). Then one can, in principle, sum the wall crossing terms needed
to reach the chamber of interest. This procedure is useful as long as one can
find an efficient procedure to sum up the wall crossing terms.

Another procedure for determining the Donaldson invariants is to eval-
uate the u-plane integral directly. It turns out that the integral over the
fundamental domain which one ends up with in (8.54) is very similar to the
integrals that compute one-loop corrections in string theory, and the same
techniques that are used to compute these corrections can be applied to eval-
uate the u-plane integral. Again, we refer the reader to the original work of
Moore and Witten, where these techniques are carefully developed in order to
find explicit expressions for the u-plane integrals in certain chambers. Their
results concern four-manifolds whose intersection contains as a summand the
lattice (1.14).

We will now present results for a few examples where the techniques of
Moore and Witten lead to explicit expressions for the Donaldson invariants.
Consider again the product ruled surface Xg. Since its intersection form is
precisely (1.14), the u-plane integral can be explicitly evaluated in the cham-
ber where the volume of S2 is small (hence the Seiberg–Witten contribution
vanishes), but for w2(V ) · [S2] = 0.

Before presenting the result for the Donaldson–Witten generating series,
let us clarify some issues related to the integrand of the u-plane integral (8.68)
in the case of product ruled surfaces. As discussed in detail in Chapter 10, the
integrand in the non-simply connected case involves a symplectic two-form
Ω defined in (8.65). In the case of product ruled surfaces, this two-form is
determined as follows: the basis of one forms on Xg is given by the duals
to the usual symplectic basis of one cycles on Σg, δk, k = 1, . . . , 2g, with
δk ∩ δk+g = 1, k = 1, . . . , g. The matrix akl is then the symplectic matrix
J , and Λ (the generator of the image of the map (8.64)) is given by [S2]. It
follows that

Ω =
g∑

k=1

β�
k ∧ β�

k+g . (10.4)

and vol(Tb1) = 1. It turns out that all the Donaldson polynomials in-
volving the cohomology classes associated to one-cycles can be expressed
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in terms of the Sp(2g,Z)-invariant element in ∧evenH1(X,Z) given by ι =
−2
∑g

k=1 δkδk+g. This element of A(X) corresponds to the degree 6 differen-
tial form on the moduli space of instantons given by:

γ = −2
g∑

i=1

I(δi)I(δi+g). (10.5)

Writing S = sΣg + tS2, we present the results for ZDW(p, r, s, t) =
Dw2(E)

X (epx+rι+sΣg+tS2
). If we want to include ι in the u-plane integral, we

just take into account that the 3-class I(δk) on the moduli space gives (i/h)β�
k

in the u-plane integral. Therefore using (10.4) we find the correspondence

γ → 2r

h2
Ω, (10.6)

and to obtain ZDW(p, r, s, t) from the above formulae we just have to change
(i/h)δ� by (10.6) in (8.69).

We finally present the results for the Donaldson–Witten series of product
ruled surfaces, in the limiting chamber of small volume for S2 and for w2(V ) ·
[S2] = 0. There are two cases to consider. If w2(V ) = 0 the u-plane integral
gives

Z
w2(V )=0
DW = − i

4

[
(h2f2ff )−1e2pu+2stT (u)

(
2f1h

2s + 2r
)g

coth
( is

2h

)]
q0

, (10.7)

where u, h, T , and f1,2 are the modular forms introduced in Chapter 10 (all
of them corresponding to the semi-classical cusp at infinity). If w2(E) = [S2]
the u-plane integral gives

Z
w2(V )=[S2]
DW = −1

4

[
(h2f2ff )−1e2pu+2stT (u)

(
2f1h

2s + 2r
)g

csc
( is

2h

)]
q0

. (10.8)

For g = 0 one finds the results for the Donaldson–Witten series obtained by
Göttsche and Zagier.¨

One of the main interest of considering Donaldson theory on product
ruled surfaces is that one can perform a ‘dimensional reduction’ to a two-
dimensional theory, and deduce properties of this low-dimensional model from
the four-dimensional results. For example, it is easy to show that the moduli
space of anti-self-dual connections on Σg × S2 with instanton number zero
is isomorphic to the moduli space of flat connections on Σg. The moduli
space of flat SO(3) connections on Σg with Stiefel–Whitney class w2 
= 0 is
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known to be a very rich and interesting space, and it can be realized in many
different ways. Using the Hitchin–Kobayashi correspondence, for example,
we can think about this space as the moduli space of rank two, odd degree
stable bundles over Σg with fixed determinant. On the other hand, owing
to the classical theorem of Narashiman and Seshadri we can identify this
moduli space with the representations in SU(2) of the fundamental group of
the punctured Riemann surface Σg\Dp, where Dp is a small disk around the
puncture p, and with holonomy −1 around p (that we require a non-trivial
holonomy is owed precisely to the non-zero Stiefel–Whitney class). In any
case, this moduli space, which we will denote by Mg, is a smooth projective
variety of (real) dimension 6g − 6.

The cohomology ring of Mg can be studied by using a two-dimensional
version of the µ map which arises in Donaldson theory. This map sends
homology classes of Σg to cohomology classes of Mg. The generators of
H∗(Σg) give, in fact, a set of generators in H4−∗(Mg) which are usually
taken as follows:

α = 2µ(Σg) ∈ H2(Mg),

ψi = µ(γi) ∈ H3(Mg),

β = −4µ(x) ∈ H4(Mg),

(10.9)

where x is the class of the point in H0HH (Σg). We also define the Sp(2g,Z)-
invariant cohomology class in H6(Mg),

γ = −2
g∑

i=1

ψiψi+g. (10.10)

In particular, the generators of the cohomology in (10.9) correspond precisely
to the Donaldson cohomology classes, and we have that

α = 2I(Σg), ψi = I(γi), β = −4O, (10.11)

whilst the invariant form γ corresponds to (10.5). Our goal now is to evaluate
the two-dimensional analogs of Donaldson invariants, i.e., the intersection
pairings

〈αmβnγp〉Mg =
∫
M

∫∫
g

αm ∧ βn ∧ γp, (10.12)

as all the intersection pairings involving the ψis can be reduced to (10.12)
by Sp(2g,Z) symmetry. Notice that this pairing is only different from zero
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when 2m + 4n + 6p = 6g − 6. Since the Donaldson moduli space of Xg for
zero instanton number agrees with Mg, and the observables are also related
as indicated in (10.11), the intersection pairings (10.12) and the Donaldson
invariants of Xg are related as follows:

〈αmβnγp〉Mg
= −Dw2(V )=[S2]

Σg×S2

(
(2Σg)m(−4x)nιp

)
. (10.13)

The choice of Stiefel–Whitney class on the right hand side is made in order
to induce w2 
= 0 on the bundle over the Riemann surface. The minus sign is


because the left hand side used the orientation of the moduli space induced
from its complex structure, and differs from the orientation inherited from
Donaldson theory. Notice that the Donaldson invariants in (10.13) can be
computed in any chamber, since for instantons with c2 = 0 and w2(E) = [S2]
one has p1 = 0 and it follows from (9.7) that there are no walls. We will then
use the explicit expression (10.8) to compute them. First of all, it follows
immediately from (10.8) that the invariants of Xg are related to those of
Xg−1 through the relation

∂

∂r
Z

w2(V )=[S2]
XZ

g
= 2gZ

w2(V )=[S2]
XZ

g−1
. (10.14)

This implies the recursive relation

〈αmβnγ�〉Mg = 2g〈αmβnγ�−1〉Mg−1 , (10.15)

originally owed to Thaddeus. Since � cannot be bigger than g in order to have
a non-vanishing intersection pairing, we can use (10.15) to get rid of the γ

operators. We now compute the intersection pairings 〈αmβn〉. To do this we
use the expansion:

csc z =
∞∑

k=0

(−1)k+1(22k − 2)B2k
z2k−1

(2k)!
, (10.16)

where B2k are the Bernoulli numbers. We have to extract the powers smpn

from the generating function (10.8). Since a power sg comes already from the
overall g-dependent factor in (10.8), we have to extract the power sm−g from
the series expansion in s/2h. Now taking into account the comparison factors
from (10.13), and the dimensional constraint 2m + 4n = 6g − 6, one finds

〈αmβn〉 =
1
4
2m(−4)nim−g+122g+n−mm!

(2m−g+1 − 2)
(m − g + 1)!

× Bm−g+1[h3g−m−2
∞ un

∞fg
1∞f−1

2ff ∞]q0 .

(10.17)
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Fortunately, only the leading term contributes in the q-expansion of this mod-
ular form, and one finally obtains,

〈αmβn〉 = (−1)g m!
(m − g + 1)!

22g−2(2m−g+1 − 2)Bm−g+1, (10.18)

which is precisely Thaddeus’ formula for the intersection pairings on Mg.
So far we have considered product ruled surfaces in one limiting chamber

in which S2 has small volume. The Donaldson invariants in the opposite
limiting chamber in which Σg has small volume have been also computed for
Stiefel–Whitney classes of the form w2(V ) = [S2] + ε[Σg], ε = 0, 1, both by
adding up an infinite series of wall crossing terms, and by computing directly
the u-plane integral. For g = 1 one finds for example

Zε
DW(p, r, s, t) = −1

2
(−1)ε

[
e2p+st

cosh2(t)
+ (−1)ε e−2p−st

cosh2(−it)

]
. (10.19)

This expression exhibits Donaldson simple type behavior, albeit in a very
different way from the manifolds with b+

2 > 1. The corresponding Donaldson
series reads

Dε = −(−1)ε eQ/2

cosh2 F
, (10.20)

where F = Σ1. For g > 1 the Donaldson–Witten generating functional of Xg

in the chamber of small volume for Σg and with w2(V ) · [Σg] 
= 0 turns out to


exhibit finite type behavior of order g, i.e., it satisfies (2.62) with n = g. One
reason to be particularly interested in the Donaldson invariants of product
ruled surfaces in this chamber (and for w2(V ) · [Σg] = 0) is because they are


intimately related to the Gromov–Witten invariants of the moduli space of
flat connections, Mg. We refer the reader to the references at the end of this
chapter for more details on this relationship.

We will now briefly consider our final example of a four-manifold with
b+
2 = 1, namely, IP2. Since this manifold has b2 = 1 there is no chamber

structure. On the other hand, IP2 admits a metric of positive scalar curva-
ture (the usual Fubini–Study metric), so the Seiberg–Witten invariants vanish
and the Donaldson invariants all come from the u-plane integral. The inte-
gration over the fundamental domain can be also explicitly performed in this
case, although the techniques needed to do that are quite different from the
ones used in the case of product ruled surfaces and one needs to use a non-
holomorphic modular form constructed by Zagier. The result, owed to Moore
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and Witten, reads as follows. Define

H(q) =
∑
n≥0

H(4n)q2n +
1
2

∑
n≥0

H(4n)qn/2(−1)n −
∑
n>0

H(4n − 1)q2n−1/2,

(10.21)
where H(n) are Hurwitz class numbers, and define as well

H(q, j) =
(
q

d

dq

)jH(q). (10.22)

The Donaldson–Witten generating functional of IP2 is then given by

ZDW(p, S) =

Resq=0

⎛⎝⎛⎛dq

q
· (−1

2
)

∞∑
j=0

Γ(3/2)
j!Γ(3/2 + j)

S2j+1

2j

[
e2pu+S2T ϑ9

4

h4+2j
H(q, j)

]⎞⎠⎞⎞ .

(10.23)
It is interesting to notice that by comparing this explicit expression with
another one obtained by Göttsche one obtains a new, explicit formula for¨
H(q), therefore an explicit formula for Hurwitz class numbers. We refer the
reader to the references at the end of this chapter for more details.

10.2. Applications to the geography of four-manifolds

In Chapter 5 we saw that one can consider extended versions of
Donaldson–Witten theory by considering the coupling to twisted hypermul-
tiplets, and that these models lead in general to non-abelian monopole equa-
tions like (5.64). When the gauge group is G = SU(2) the underlying N = 2
supersymmetric theories with NfN ≤ 4 massive hypermultiplets in the funda-
mental representation have been analyzed by Seiberg and Witten following
their work on pure N = 2 supersymmetric Yang–Mills theory. For NfN < 4
these theories are still asymptotically free, while NfN = 4 is believed to corre-
spond (for vanishing hypermultiplet masses) to a superconformal field theory.
The moduli space of vacua of these theories has a Coulomb branch which can
be parameterized by u = 〈Trφ2〉, so there is also a u-plane for the theories
with gauge group SU(2) and massive hypermultiplets. But for special values
of the masses and when NfN ≥ 2, there can also be Higgs branches in the mod-
uli space of vacua, i.e., vacua where the scalar fields in the hypermultiplet
take a vacuum expectation value different from zero. For generic values of
the masses, the Higgs branch is absent and the picture for the moduli space
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is very similar to the case of pure Yang–Mills theory: there is a Coulomb
branch or u-plane, and the low energy dynamics is described by an elliptic
curve whose singularities correspond to particles that become massless and
are located at the zeroes of the discriminant ∆Nf

of the curve. For generic
masses there are in total NfN + 2 singularities.

Consider, for example, the case of one massive hypermultiplet, NfN = 1,
whose mass will be denoted by m. According to Seiberg and Witten the low
energy dynamics on the Coulomb branch is encoded in an effective action like
(7.6), and the prepotential F(a, m) (which now depends on the mass m) can
be obtained from the elliptic curve

y2 = x2(x − u) +
1
4
mΛ3

1x − 1
64

Λ6
1, (10.24)

where Λ1 is the dynamically generated scale. The discriminant of the curve
is given by

∆1(u, m,Λ1) = −u3 + m2u2 +
9
8
Λ3

1mu − Λ3
1m

3 − 27
256

Λ6
1, (10.25)

up to an overall numerical coefficient. We see that there are three singularities
in the u plane, uj(m), j = 1, 2, 3, whose location depends on the value of the
mass. As in the case of pure Yang–Mills, one defines a and aD = ∂F/∂a as
periods of a certain meromorphic form λSW which is defined as well by (7.62).
In the NfN = 1 case the explicit solution to this equation reads

λSW = −
√

2
8π

dx

y

(
3x − 2u +

mΛ4
1

4x

)
, (10.26)

and one can also use the technology developed in Chapter 7 to write a, aD

explicitly in terms of elliptic functions.
The observables of the twisted theory with hypermultiplets are the same

as in Donaldson–Witten theory. We can then address the problem of com-
puting the generating functional of correlators ZDW defined in (5.48). It is
easy to see that most of the results obtained in Chapter 8 can be transfered.
Remember that in the pure Yang–Mills case the integrand of the u-plane
integral was given by three pieces. The first piece involves the low energy ef-
fective Lagrangian and its form remains the same in the SU(2) theories with
hypermultiplets, the only difference being that the quantities involved in the
Lagrangian are computed in the corresponding elliptic curve. For example,
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in the theory with NfN = 1 flavor da/du will be given again by (7.72), and the
periods ω1,3 are computed for the elliptic curve (10.24).

The second piece involves the couplings to gravity, which give a measure
of the form AχBσ. Since A is given by a period of the elliptic curve the
argument of Chapter 8 will go through and we will still have (8.14). If we
remember the derivation of the measure based on anomaly matching it is
easy to see that B has to be proportional in general to the discriminant of
the corresponding elliptic curve, since each singularity in the u-plane leads
to a massless particle that has been integrated out and whose anomaly has
to be reproduced by the measure. We then find that the general form of the
measure for the theories with hypermultiplets is given by

AχBσ = αχ
Nf

βσ
Nf

∆σ/8
Nf

(du

da

)χ/2

, (10.27)

and αNf
, βNf

are in principle functions of the bare masses mi of the hyper-
multiplets and of the dynamical scale ΛNf

.
The third piece of the low energy effective action corresponds to the

insertion of observables and their contact terms. Although the insertion of
observables in (8.19) is given by the canonical solution to the descent equa-
tions, to find the contact terms we need additional arguments. In the case of
theories with NfN ≤ 2 hypermultiplets, it is easy to see that the expression for
the contact term T (u) turns out to be given again by (8.60). We conclude
that the u-plane integral ZuZZ for SU(2) theories with hypermultiplets is almost
identical to the u-plane integral in the pure Yang–Mills case. An important
difference is that in general the domain of integration is no longer given by a
quotient of a subgroup of Sl(2,Z). All the properties that we derived from a
knowledge of the integrand, such as blow-up and wall crossing formulae, can
be generalized immediately to the theories with hypermultiplets, and we refer
the reader to the work of Moore and Witten for details on this. The only
real surprise which is found at this level is that for NfN = 4 there is no longer
wall crossing behavior for manifolds of b+

2 = 1, but, rather, continuous metric
dependence.

The determination of the Seiberg–Witten contribution to the generating
functional can be also done with the technique of cancellation of wall crossing
that we explained in Chapter 8. This contribution is again a sum of terms
associated to the different singularities of the curve, with each term having
exactly the same form as in the pure Yang–Mills case given in (9.30). The



180 Topological Quantum Field Theory and Four-Manifolds

functions C, L, P around the singularity at u∗ are given by the obvious
generalization of (9.24):

C =
a − a∗

q
,

P = −π2β8∆Nf
(a − a∗)−1,

L = πiα4
(du

da

)
,

(10.28)

where a is the appropriate local coordinate around u∗, and a∗ is its value there
(in such a way that a − a∗ vanishes at the singularity). For manifolds with
b+
2 > 1 the u-plane integral vanish, as in the pure Yang–Mills case, and the

generating functional is given solely by the Seiberg–Witten contributions. For
manifolds of simple type one can generalize the computation of the previous
chapter to obtain an explicit formula for the generating function:

Z(mi; p, S) = 21+ 3σ+χ
2 (−i)χh

(
π2β8

Nf

28

)σ/8(−πα4
Nf

2

)χ/4

×
∑

j=1,...,2+Nf

κχh

j

(
da

du

)−(χh+σ)

j

×
∑

λ

SW(λ) exp
[
2puj + S2TjTT − i

(du

da

)
j
(S, λ)

]
e2πi(λ2

0+λ·λ0).

(10.29)
For simplicity we have not included any insertion of I1(δ). The sum over j

is a sum over the 2 + NfN singularities at finite values on the u-plane. The
sub-index j in the different quantities means that they are evaluated at the
j-th singularity. As we explained in Chapter 5, the theories with matter can
be considered on any smooth, compact, oriented four-manifold X if the non-
abelian magnetic flux of the SO(3) gauge bundle E satisfies w2(E) = w2(X),
where w2(E), w2(X) are the second Stiefel–Whitney classes of the bundle E

and of the manifold X, respectively. Therefore in the expression (10.29) we
have to choose an integer lifting υ = 2λ0 of w2(X). The quantity κ in (10.29)
is given by

κ =
du

dq
. (10.30)

The evaluation of du/da at the singular points can be easily carried out by
using (7.58). In order to evaluate κ at a singular point u∗ notice that we can
expand, in terms of the appropriate τ variable,

u = u∗ + κ∗q + O(q2). (10.31)
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By comparing now the q expansions of both sides of (7.100) we find

κ∗ =
(192 g2(u∗))3

∆′(u∗)
. (10.32)

An interesting consequence of (10.29) is that, at least for generic masses
and for manifolds of simple type with b+

2 > 1, the topological information
contained in the generating functional of twisted SU(2) theories with hyper-
multiplets is the same as the one contained in topological SU(2) Yang–Mills
theory, and it is given by the Seiberg–Witten invariants. Of course, the gen-
erating functionals are different, since the quantities associated to the elliptic
curves are different. We could say that the generating functionals of twisted
theories with hypermultiplets contain a sort of universal part given by the
Seiberg–Witten invariants, and a non-universal part which depends on the
masses and number of flavors and can be computed from the corresponding
Seiberg–Witten curves.

From the point of view of the topology of four-manifolds, the above re-
sult is somewhat disappointing since it implies that the information contained
in the non-abelian SU(2) monopole equations which describe the theory at
high energies is identical to the information contained in the Seiberg–Witten
invariants. However, it is natural to wonder if some new input coming from
the physics of the theories with hypermultiplets can give new insights into the
structure of the generating functional, therefore on the structure of Seiberg–
Witten invariants. Indeed, this turns out to be the case, owing to the appear-
ance of so called Argyres–Douglas points in these theories. Let us explain in
some detail what is this new physical ingredient.

As we mentioned before, in the SU(2) theories with NfN hypermultiplets
and generic masses, there are 2 + NfN points in the moduli space where BPS
states become massless (with one state becoming massless at each singularity).
However, for special values of the masses these singularities can collide. The
structure of the low energy theory at the point of collision depends in a crucial
way on the charges of the colliding states. We will say that two BPS states
with charges �nk = (nk

e , nk
m), k = 1, 2, are mutually local if �n1 ∧ �n2 = 0.

It follows from this definition that if two states are mutually local one can
always perform an Sl(2,Z) duality rotation in such a way that the charges
of both states are parallel, i.e., there is a frame in which both particles are
‘electric’. It follows from this definition that there are two possibilities for
the collisions of singularities. The first possibility is that the k states which
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come together are mutually local, and the low energy theory will simply be
N = 2 supersymmetric abelian gauge theory with k hypermultiplets. The
second possibility is that the colliding BPS states are not mutually local.
The colliding singularities lead in this case to a non-trivial superconformal
field theory in four dimensions, and the point in moduli space where this
occurs is usually called a superconformal point or Argyres–Douglas point.

The simplest superconformal point occurs in the massive NfN = 1 theory.
When m = m∗ = 3Λ1/4 and u = u∗ = 3Λ2

1/4, two singularities corresponding
to a massless monopole and to a massless quark collide, giving rise to a
superconformal point (there are two other superconformal points obtained by
a Z3 rotation of this one). Since

g2(u, m,Λ1) =
1
4

(
u2

3
− Λ3

1m

4

)
,

g3(u, m,Λ1) =
1
16

(
2u3

27
− Λ3

1mu

12
+

Λ6
1

64

) (10.33)

this point corresponds to a complete degeneration of the elliptic curve where
g2 = g3 = 0. If we write

m = m∗ + z, u = u∗ + Λ1z + δu, (10.34)

and we introduce the shifted variable x = u/3 + x̃ the Seiberg–Witten curve
(10.24) becomes, at leading order,

y2 = x̃3 − Λ3
1

4
zx̃ − Λ4

1

16
δu, (10.35)

which is a deformation of the cuspidal cubic y2 = x̃3. The variables z and
δu correspond to operators in the superconformal field theory. The scaling
dimensions of these operators can be deduced from (10.35) by dimensional
analysis: since a ∼ (δu/y)dx̃ has dimension 1 one finds that z has dimension
4/5, while δu has dimension 6/5. The various quantities associated with the
elliptic curve, such as the periods and (10.30), will have a critical behavior
as we approach the superconformal point, with critical exponents typical of
this particular superconformal field theory (there are, in fact, other types of
superconformal points in the theories with NfN ≥ 2). Our purpose now is to
analyse the generating functional of the twisted theory near the superconfor-
mal point, so we will start by analysing in detail the critical behavior of the
quantities involved in (10.29).
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Let us denote by u± = u∗ + Λ1z + δu± the position of the two colliding
singularities. The deformation parameter δu± will depend on z as well, and of
course δu± → 0 when z → 0. The dependence of δu± on z can be obtained as
a power series expansion by looking at the zeros of the discriminant (10.25),
∆1(u, m,Λ1) = 0 in terms of the variables (10.34). The most appropriate nor-
malization for Λ1, for our purposes, is 4

√
3Λ3/2

1 = 1 (with this normalization
the leading term of (du/da)2 is z1/2.) One then finds

δu± = ±
(

16
243

)1/3

z3/2 +
4
9
z2 + O(z5/2). (10.36)

Notice that
δu−(z1/2) = δu+(−z1/2). (10.37)

This is because, for z < 0 one has ±z1/2 = ±i|z|1/2. But in this case the roots
u± of the equation ∆1(m, u,Λ1) = 0 must be related by complex conjugation,
therefore we must have (10.37). Using the expansion (10.36) and the explicit
expressions (10.33), (7.58) and (10.32), we have the following expansions of
(du/da)2 and κ at the singularities u± for m = m∗ + z:(du

da

)2

±
= ±z1/2

(
1 ±
(4

3

)4/3

z1/2 + O(z)
)

κ± = ∓231/3 · 34/3z3/2

(
1 ±
(2048

3

)1/3

z1/2 + O(z)
)

.

(10.38)

Owing to (10.37) one has the following property:(du

da

)2

−
(z1/2) =

(du

da

)2

+
(−z1/2), (10.39)

and a similar equation for κ±. This will be important when we consider the
analytic properties of the generating functional as a function of z. Notice that
the leading powers of z in the expansion of δu, (du/da)2 and κ are determined
by the anomalous scaling weights of the operators near the superconformal
point.

We can now focus on the analysis of the generating functional (10.29) for
NfN = 1 near the superconformal point. First of all we have to make clear that
as long as we are not at the superconformal point the contributions of each
singularity to (10.29) are well defined and manifestly finite when we choose
the appropriate local coordinate. Near the superconformal point, there are
two colliding singularities with critical behavior, whilst the third singularity
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(where nothing special happens) will still give a finite answer. Therefore in
order to analyse the critical behavior we can focus on the contributions of
the colliding singularities. One can show that the critical behavior does not
depend on the overall constants α1, β1, so in order to analyse the generating
functional is enough to look at

F (z) = F+FF (z) + F−FF (z), (10.40)

where

F±FF (z) = κχh
±

[(du

da

)2

±

]χh+σ

2

e2pu±+S2T±TT
∑

λ

SW(λ)e−i(du/da)±(S,λ)e2πi(λ2
0+λ·λ0).

(10.41)
A priori it seems that F±FF (z) is a Laurent series in z1/4, since (du/da)± has
an expansion in z1/4. However, a more detailed analysis of (10.41) shows that
this can be refined. To see this consider the λ-dependent piece of F±FF (z):

SW±(z1/4) =
∑

λ

SW(λ)e−i(du/da)±(S,λ)e2πi(λ2
0+λ·λ0). (10.42)

An important property of these functions is that, if χh + σ is even (odd)
they only contain even (odd) powers of (du/da)±. This is because if λ is a
basic class then −λ is also a basic class and their Seiberg–Witten invariants
are related by (3.26). On the other hand, changing λ to −λ in the phase in
(10.42) introduces a global factor

e−4πiλ0·λ = (−1)σ, (10.43)

which is a consequence of Wu’s formula (1.22). If follows from this analysis
that F±FF (z) only contains even powers of (du/da)±, therefore (since χh is an
integer), the functions F±FF have a series expansion in powers of z1/2. Actually,
more is true: owing to (10.39) we have F−FF (z1/2) = F+FF (−z1/2), therefore F (z)
has, in fact, an expansion in integral powers of z.

We can now study the properties of this function as a power series in z.
It is clear that its behavior will depend on the topological properties of the
four-manifold. First of all, by using (10.38) it is easy to see that the leading
power of z in the factors which do not depend on λ in (10.41) is given by

c2
1 − χh

4
=

7χ + 11σ

16
. (10.44)
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Since (10.42) is regular at z = 0 and F (z) has no monodromies it follows that
F (z) is regular at the origin if

χh − c2
1 − 4 < 0. (10.45)

If this inequality is not satisfied the behavior at the origin will depend on
(10.42) and, in particular, on the Seiberg–Witten invariants of the manifold.
A simple analysis of (10.42) leads to the following sufficient condition for
regularity of F (z), which we will call the superconformal simple type (SST)
condition: define the Seiberg–Witten series of X as the holomorphic function

SWυ
X(ζ) =

∑
x

(−1)(υ
2+υ·x)/2SW(x)exζ , (10.46)

where ζ is a formal variable, x = 2λ are characteristic elements in H2(X,Z),
and υ is an integer lifting of w2(X). As in (2.67), the exponential ex is
understood here as a multilinear map on Sym∗(H2(X,Z)). We will say that a
manifold X of b+

2 > 1 and of Seiberg–Witten simple type is of superconformal
simple type (or, in short, that X is SST) if SWX(ζ) has a zero at ζ = 0 of order
≥ χh − c2

1 − 3. Roughly speaking, this zero compensates the pole associated
with the λ independent prefactor in F (z) in order to guarantee regularity of
(10.41). Notice that a different choice of lifting υ′ will change (10.46) by a
sign

(−1)
(
(υ′−υ)/2

)2
, (10.47)

so the SST property does not depend on the choice of lifting. Of course, any
manifold that satisfies (10.45) is automatically SST.

The importance of the SST condition comes from the following: if a
manifold X is SST then the generating functional (10.29) is finite. Now, on
physical grounds we expect it, in fact, to be finite. The reason is the fol-
lowing: the only sources of divergences of correlation functions in a quantum
field theory are the non-compactness of space-time or the non-compactness
of moduli space. If X is compact, as we are assuming in our book, the first
divergence does not occur, and since b+

2 > 1 the contributions to the correla-
tion functions come from a finite number of points in the u-plane. Moreover,
for NfN = 1 another possible source of non-compactness (Higgs branches) are
also absent. Therefore the generating functional should be finite. One can
see that the contributions of the singularities F±FF (z) may diverge separately
for manifolds which are SST (for example, they do diverge for a K3 surface),
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but when we add them together divergences cancel. Indeed, we are obliged
to add both contributions owing to compactness of X. We then see that as
soon as we put the twisted theory on a compact four-manifold, the singular
behavior associated with the superconformal point disappears from physical
quantities.

Although the SST condition is a sufficient, but not necessary, condi-
tion for analyticity of F (z) around z = 0, it is natural to assume that four-
manifolds avoid potential divergences of F (z) at the origin by being SST.
Therefore it is natural to conjecture that every compact oriented four-manifold
with b+

2 > 1 of simple type is of superconformal simple type. One can easily
check that all minimal complex surfaces are SST. For example, the elliptic
fibrations E(n) with n ≥ 2 have b+

2 > 1 and are of Seiberg-Witten simple
type, and they have c2

1 = 0 and χh = n, so that (10.45) is not satisfied for
n ≥ 4. However, the Seiberg-Witten series (10.46) can be easily computed
by using (3.28) and choosing the lifting υ = c1(K) = (n − 2)[f ], where K is
the canonical line bundle of E(n) and f is the class of the fiber. The result
is simply

SWc1(K)
E(n) (ζ) = (2 sinh(ζf))χh−2, (10.48)

which indeed has a zero of order ≥ χh −3. One can also check that all known
geometric operations on four-manifolds (sucha as, for example, blowing up)
preserve the SST condition. In fact, it has been proved by Feehan, Lenness,
Kronheimer, and Mrowka that the above conjecture is true under some mild
assumptions. We refer the reader to the bibliography at the end of this
chapter for more information about the physical and mathematical aspects
of the SST condition.

One interesting property of SST manifolds is that their number of
Seiberg–Witten basic classes B (where we count λ and −λ as a single ba-
sic class) is bounded from below. It is not difficult to show that if B > 0
then

B ≥
[
χh − c2

1

2

]
, (10.49)

where [·] is the integral part function. One has, in particular,

c2
1 ≥ χh − 2B − 1. (10.50)

The inequality (10.50) is called the generalized Noether inequality. The reason
is its similarity to the Noether inequality for minimal surfaces of general
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Fig. 1: Lines defining the generalized Noether inequalities.

type, which asserts that for these manifolds one has c2
1 ≥ 2χh − 6. The above

results, (10.49) and (10.50), make clear that for SST manifolds there are some
interesting relationships between the classical topological invariants χh and c2

1

and the Seiberg–Witten invariants. Indeed, one fundamental problem in the
theory of four-manifolds is the so called geography problem: where do four-
manifolds lie in the (χh, c2

1) plane? The SST conjecture relates this problem
to Seiberg–Witten theory. For example, the SST conjecture implies that four-
manifolds of simple type and with b+

2 > 1 lying below the line c2
1−χh +3 = 0

must have, either no basic classes (therefore a trivial generating functional),
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or at least two. This fact was observed experimentally by Fintushel and
Stern, and as we have seen its rationale lies, surprisingly, in the physics of
superconformal fixed points in N = 2 supersymmetric theories (in fact, it
is possible to show that if F (z) is regular and X has one basic class, then
necessarily c2

1 ≥ χh−3). The lines defining the generalized Noether inequality
are shown in fig. 1 in the (χh, c2

1) plane.

10.3. Extensions to higher rank gauge groups

In this book we have mostly discussed twisted N = 2 supersymmetric
gauge theories with gauge group SU(2). The extension to gauge groups of
higher rank is substantially more involved. From the mathematical point of
view, this corresponds to the study of intersection theory on the moduli space
of G-instantons, where G can, in principle, be any compact, semisimple Lie
group. Although some of the results explained in Chapter 2 for SU(2) extend
to the general case (like the Atiyah–Hitchin–Singer deformation complex),
this moduli space has never been studied in full detail from the point of
view of intersection theory, and not much is known for Donaldson theory
with gauge groups of rank larger than one. This additional complexity has a
reflection in the physical approach which we have developed in this book. If
the rank of the gauge group is r > 1 the integral over the Coulomb branch is
no longer over a plane, but over Cr, and it is much more difficult to provide
explicit results for the Donaldson–Witten generating functional. There are
however some interesting results for these theories that can be obtained using
the physical approach, and in this last section we will summarize some of
them.

The Lagrangian describing Donaldson–Witten theory with an arbitrary
gauge group is written down in (5.28), and the topological algebra acting on
the fields is written down in (5.29) and (5.32). As explained in Chapter 5,
the observables of this model can be obtained from the descent procedure
from any basis of gauge-invariant operators polynomial in φ. In the case of
SU(N) a convenient choice are the elementary symmetric polynomials UkU in
the eigenvalues of φ, which are given by

UkU =
1
k

Trφk + lower order terms, k = 2, . . . , N. (10.51)

From these operators one can form the operators U
(i)
kU = GiUkU by using the

canonical solution of the descent equations. For simplicity we will mainly
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focus on the observables associated to two-cycles,

IkI (S) =
∫

S

∫∫
G2UkU . (10.52)

Our goal is to compute in the physical approach the generating functional of
Donaldson–Witten theory

Z(pk, fkff , S) =
〈

exp
(∑

k

(pkUkU + fkff IkI (S)
)〉

(10.53)

where the vacuum expectation value is computed in the twisted theory, and
the sum over k is over the labels of the gauge-invariant operators in φ.

In order to proceed with the physical approach to this model we need
some properties of the low energy effective Lagrangian describing SU(N)
N = 2 supersymmetric Yang–Mills theory with a rank r gauge group.

First of all, we describe the classical moduli space. As for SU(2) this
moduli space is given by the vacuum expectation values of the field φ, which
can always be rotated into the Cartan subalgebra. If we denote by �αI the
simple roots of the Lie algebra, with I = 1, . . . , r, these expectation values
will be parameterized by a vector �a =

∑r
I=1 aI�αI in the root lattice. This

theory also has BPS states, and their charges will be specified by vectors �q

expanded in the Dynkin basis (i.e., the basis of fundamental weights). The
central charges of electric BPS states are then written as

Z�q = �q · �a, (10.54)

where the product is given by the usual bilinear form in the weight lattice.
In order to obtain gauge-invariant coordinates on the moduli space, one can
choose any basis of gauge-invariant operators made out of the field φ. The
vacuum expectation values of these operators then provide the coordinates
sought. For SU(N) the usual choice is to take the correlation functions asso-
ciated to (10.51)

uk = 〈UkU 〉. (10.55)

As in the rank one case, the low energy effective action is determined
by a prepotential F which depends now on r N = 2 supersymmetric vector
multiplets AI . The vacuum expectation values of the scalar components of
these vector superfields are the aI . The dual variables and gauge couplings
are defined as

aD,I =
∂F
∂aI

, τIJτ =
∂2F

∂aI∂aJ
. (10.56)
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The moduli space of vacua has a natural Kähler metric given by¨

(ds)2 = Im τIJτ daIdaJ , (10.57)

which is invariant under the group Sp(2r,Z). This is the group of duality
transformations of the low energy effective action, generalizing the Sl(2,Z)
duality group of SU(2). The symplectic group acts on the aI , aD,I variables
as v → γv, where vt = (aD,I , a

I). If we write

γ =
(

A B
C D

)
, (10.58)

where A, B, C and D are r×r matrices, we have the following transformation
properties,

τ → (Aτ + B)(Cτ + D)−1,

Im τ → [(Cτ + D)−1]t(Im τ)(Cτ + D)−1.
(10.59)

N = 2 supersymmetric Yang–Mills theory with gauge group G of rank r also
contains monopoles and dyons in its spectrum. If we denote the charge of a
dyon by �ν = (g, �� ), where�� �g, �q are the r-component vectors of magnetic and
electric charges, respectively, then the central charge associated to it can be
written in terms of the variables aI , aD,I as

Z�ν = �g · �aD + �q · �a, (10.60)

generalizing the expression (10.54) for electric states.
The exact information about the low energy prepotential is encoded in

an algebraic curve which generalizes the Seiberg–Witten curve for SU(2). In
the SU(N) case this curve turns out to be hyper-elliptic and given by

y2 = P (x)2 − Λ2N , P (x) = xN −
N∑

I=2

uIx
N−I , (10.61)

which describes a Riemann surface of genus N − 1. For N = 2 this curve
is of the form y2 = x4 + · · ·, but one can easily show that it is isogenous to
the curve (7.61). Many concepts from the theory of elliptic curves extend to
hyperelliptic curves. The polynomial in the right hand side of (10.61) has N

roots ei, and one can define the discriminant of the curve as
∏

i<j(ei − ej)2.
In the case of (10.61) the discriminant is given by

∆Λ =
∏
i<j

Λ2N2
∆0(u2, . . . , uN−1, uN + ΛN )∆0(u2, . . . , uN−1, uN − ΛN ),

(10.62)



Further Developments in Donaldson–Witten Theory 191

where ∆0 =
∏

�α+
Z2

�α+
, the product is over the positive roots, and Z�q is

given in (10.54). As in the elliptic case, when two roots coincide and the
discriminant has a zero the Riemann surface described by the hyper-elliptic
curve becomes singular by pinching a one-cycle.

To fully specify the low energy effective action we also need a meromor-
phic differential defined on the hyper-elliptic curve, as in the rank one case.
This differential λSW, also known as Seiberg–Witten differential, satisfies

∂λSW

∂uI+1
= ωI , I = 1, . . . , r, (10.63)

where

ωI =
xN−I−1dx

y
(10.64)

is a basis of holomorphic differentials. λSW can be written explicitly as

λSW =
1

2πi

∂P

∂x

xdx

y
. (10.65)

To compute the BPS masses aI , aD,I one chooses a symplectic homology basis
for the genus N−1 Riemann surface described by (10.61), αI , βI , I = 1, . . . , r.
The generalization of (7.63) to the SU(N) case is then

aD,I =
∮

α

∮∮
I

λSW, aI =
∮

β

∮∮
I

λSW. (10.66)

If follows from this that

A J
I =

∮
α

∮∮
I

ωJ =
∂aD,I

∂uJ+1
,

BIJ =
∮

β

∮∮
I

ωJ =
∂aI

∂uJ+1
,

(10.67)

and the couplings τIJτ are given by

τIJτ = A K
I (B−1)KJ . (10.68)

Again as in the SU(2) case, singularities in moduli space where the Rie-
mann surface (10.61) degenerates are associated to massless dyons. The mon-
odromy associated with a massless dyon of charge ν turns out to be given by

M�νMM =
(

1 + �q ⊗ g �� ⊗ �q
−�g ⊗ �g 1 − �g ⊗ �q

)
. (10.69)
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The structure of the singular loci in the Coulomb branch is much more com-
plicated than in the SU(2) case. There is a stratification structure, with
submanifolds of codimension one where one BPS state becomes massless, and
inside this submanifold there can be submanifolds of codimension 2 where
two BPS become massless, and so on. In the SU(N) case there are, in fact,
N points where N − 1 BPS states become massless. These states have zero
electric charge and magnetic charges given by �g = �ei = (0, . . . , 0, 1, 0, . . . , 0),
i = 1, . . . , N −1, with the non-zero entry in the i-th position. At these points
the low energy effective theory becomes a U(1)N−1 theory with one massless
monopole in each factor. These points are called the N = 1 points since
after breaking N = 2 supersymmetry down to N = 1 they give rise to the N

vacua of N = 1 super Yang–Mills theory. In the case of SU(2), the N = 1
vacua are precisely the points u = ±1. The moduli space of SU(N) N = 2
supersymmetric Yang–Mills theory also contains, for N > 2, points where at
least two non-mutually local states become massless simultaneously. These
are the Argyres–Douglas points which we discussed in the last section in the
case of SU(2) theories with massive hypermultiplets, and they give rise to
superconformal field theories.

In any case, the principle ‘Donaldson=Higgs+ Coulomb’ also holds in
the higher rank theories, therefore the generating functional (10.53) will have
the structure

Z = ZCoulomb + ZDZZ . (10.70)

The first piece is given by an integral over the Coulomb branch, and the
other comes from the submanifolds D in which BPS states become massless
and involves, in general, Seiberg–Witten invariants. One can show that the
Coulomb branch contribution is different from zero only when b+

2 (X) = 1.
The explicit expression of this integral can be worked out using the low energy
effective action encoded in the prepotential, following steps very similar to
those explained in Chapter 8, and reads

ZCoulomb =
∫
M

∫∫
Coulomb

[dada]A(uk)χB(uk)σe
∑

pkuk+S2
∑

fkflTk,lT Ψ. (10.71)

The integrand of (10.71) has various ingredients. First of all, there is a grav-
itational part similar to (8.16). This part involves the factors:

A(uk)χ =αχ

(
det

∂uk

∂aI

)χ/2

,

B(uk)σ =βσ∆σ/8
Λ .

(10.72)
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In these equations α and β are constants. Notice that A and B in (10.72) are
obtained from very natural quantities associated to the hyper-elliptic curve
(10.61), namely, the determinant of the matrix of periods of ωI , and the
discriminant of the curve.

Another ingredient in (10.71) is Ψ, which is given by a sum over a lat-
tice Γ. The lattice sum in Ψ comes essentially from the evaluation of the
partition function of the photons in the effective U(1)r gauge theory. As
in the SU(2) case, we want to consider the possibility of turning on a non-
abelian magnetic flux. A bundle E with gauge group SU(N) is character-
ized up to isomorphism by two topological invariants: the instanton num-
ber and the generalized Stiefel–Whitney class (or non-abelian magnetic flux)
�w2(E) ∈ H2(X,ZN ). For a general simply laced gauge group the magnetic
fluxes are cohomology classes in H2(X, Λw/Λr), where Λw(r) are the weight
and root lattices of the group, respectively. For every weight lattice there is a
set of weights called minimal weights which are in one-to-one correspondence
with the cosets Λw/Λr. There are in general c − 1 minimal weights, where
c = detC is the ‘index of connection’, that is, the determinant of the Cartan
matrix (notice that c is precisely the order of Λr in Λw). The set of minimal
weights is in general a subset of the set of fundamental weights. We will
denote these weights by �mI , I = 1, . . . , c − 1. In the case of SU(N) they are
just the fundamental weights �wI , I = 1, . . . , N − 1. The electric line bundles
are then classified by vectors of the form:

�λ = �λZ + �v, �λZ =
r∑

I=1

λI
Z�αI , � =

c−1∑
I=1

πI �mI , (10.73)

where �αI is a set of simple roots. In this expression λI
Z, πI are all integer

classes in H2(X;Z). The πI are fixed and represent a choice of �w2(E) ∈
H2(X, Λw/Λr) lifted to H2(X, Λr). The set of elements of the form (10.73)
is the lattice Γ involved in the Coulomb integral. Notice that we can always
expand the minimal weights in the basis of simple roots:

�mI =
r∑

J=1

m J
I �αJ , I = 1, . . . , c − 1, m J

I ∈ 1
c
Z, (10.74)

therefore we can write

�λ =
r∑

I=1

λI�αI , λI = λI
Z +

c−1∑
J=1

m I
J πJ ∈ 1

c
H2(X,Z). (10.75)
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For SU(N) one has m J
I = (C−1) J

I , where C J
I is the Cartan matrix. Finally,

the generalization of (2.8) to the higher rank case is

c2(E) = −�v · �v
2

mod 1. (10.76)

In order to write Ψ let us introduce the following notation:

VIVV ≡
∑

k

fkff
∂uk

∂aI
. (10.77)

In terms of these quantities Ψ can be written as follows:

Ψ = (det Imτ)−1/2 exp
[ 1
8π

VJV [(Imτ)−1]JKVKVV S2
+

]
×
∑
�λ∈Γ

exp
[
−iπτ IJ(λI

+, λJ
+) − iπτIJτ (λI

−, λJ
−) − iπ((�λ − �λ0) · �ρ, w2(X))

− iVIVV (S, λI
−)
]

×
∫ r∏

I=1

dηIdχI exp
[
− i

√
2

16π
FIJKηIχJ [4π(λK

+ , ω) + i(Imτ)KLVLVV (S, ω)]

+
1

64π
FKLI(Imτ)IJFJPQηKχLηP χQ

]
.

(10.78)
In this equation �ρ is the Weyl vector (the sum of the fundamental weights),
w2(X) is the second Stiefel–Whitney class of X, and ηI , χI are Grassmannian
coordinates which arise from the zero-modes of the fermion fields in the theory.
FIJKF denote the third derivatives of the prepotential. �λ0 is an element in
Γ such that �λ − �λ0 ∈ H2(X, Λr), and, as in the SU(2) case, it corresponds
to a choice of orientation of the instanton moduli spaces. The phase factor
exp[−iπ((�λ−�λ0) · �ρ, w2(X))] is the generalization of (8.15) to the higher rank
case, and can be found, for example, from invariance of the Coulomb integral
under the semi-classical monodromy. One should also include in the lattice
sum a global phase factor depending on the generalized Stiefel–Whitney class
�v in order to obtain invariants which are real. We will discuss this factor
later. Notice that in the rank one case (10.78) becomes precisely i multiplied
by (8.53).

In (10.71) we have also included some terms of the form Tk,lTT S2 in the
exponential. These terms, which are proportional to the intersection form of
the two-cycles, are the contact terms which generalize (8.60) in the higher
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rank case. In contrast to the rest of the terms in Ψ, the contact terms are
not predicted a priori by the solution for the low energy effective action in
terms of the hyper-elliptic curve and the Seiberg–Witten differentials. We
will determine them later by using the behavior under blow-up, but for the
time being let us understand the properties of the integrand under duality
transformations. As we will see in a moment, this indeed provides some
important information about the contact terms.

Let us introduce the following generalized Siegel–Narain theta function:

ΘΓ(τIJτ , αI , β
I ; P, ξI) =

exp
[
−iπ(αI , β

I) +
π

2

(
ξI,+(Imτ)IJξJ,+ − ξI,−(Imτ)IJξJ,−

)]
×
∑
�λ∈Γ

exp
[
−iπτ IJ(λ̂I

+, λ̂J
+) − iπτIJτ (λ̂I

−, λ̂J
−) − 2πi(λ̂I , ξI) + 2πi(λ̂I , αI)

]
,

(10.79)
where λ̂I = λI + βI . If we take

ξI ≡ 1
2π

VIVV S− +
√

2
16π

FIJKηJχKω,

βI =
c−1∑
I=1

m J
I πJ , αI =

1
2
w2(X), I = 1, . . . , r,

(10.80)

and consider λI as the integer class λI
Z introduced in (10.73), the lattice sum

Ψ can be written as

Ψ = exp
[S2

8π
VIVV [(Im τ)−1]IJVJV

]
(det Imτ)−1/2

×
∫ r∏

I=1

dηIdχI exp

[ √
2

16π
FIJKηIχJ(Im τ)KLVLVV (S, ω)

]
ΘΓ(τIJτ , αI , β

I ;P, ξI).

(10.81)

Define Ψ̂ = exp
[−(S2/8π)VIVV [(Im τ)−1]IJVJV

]
Ψ. The Coulomb integral then

reads:

ZCoulomb =
∫
M

∫∫
Coulomb

[du du] exp
[(∑

fkff flff Tk,lTT +
1
8π

VIVV [(Im τ)−1]IJVJV

)
S2

]
×
∣∣∣∣∣∣∣∣∣∣det
(

∂aI

∂uk

)∣∣∣∣∣∣∣∣∣∣2A(uk)χB(uk)σΨ̂.

(10.82)
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It can be checked that the factor in the second line of (10.82) is invariant
under the symplectic duality group. We then see that this expression for the
generating function (except for the exponential involving S2) is the integral
of a duality invariant object over a moduli space parametrized by the VEVs
of the Casimirs, which are duality invariant coordinates. The only thing we
need in order to achieve full invariance is invariance of the exponent involving
S2. This gives a constraint on the contact terms: the quantity

Tk,lTT +
1
8π

∂uk

∂aI
[(Imτ)−1]IJ ∂ul

∂aJ
(10.83)

must be invariant under the action of the symplectic group Sp(2r,Z). Notice
that (10.83) is the generalization of T̂ (u) in (8.69). As in the SU(2) case, the
other constraint on the contact terms has to do with their physical origin:
these terms are quantum corrections and vanish at tree level, therefore they
have to go to zero in the semi-classical region of moduli space (i.e., when
Λ/aI → 0). The duality transformation of the second term in (10.83) is
easily worked out, and one finds that under a duality transformation it is
shifted by:

− i

4π

∂uk

∂aI

[
(Cτ + D)−1C

]IJ ∂ul

∂aJ
, (10.84)

which again generalizes (8.57). The transformation of the contact term under
an element of Sp(2r,Z) should compensate for this shift, therefore we have
the transformation law

Tk,lTT → Tk,lTT +
i

4π

∂uk

∂aI

[
(Cτ + D)−1C

]IJ ∂ul

∂aJ
. (10.85)

The computation of the integral over the Coulomb branch is extremely
involved, and so far it has not been attempted. However, we know from the
analysis of the SU(2) case that some important properties of the generating
functional only involve the behavior of the integrand, and they are easier to
analyse. One can, for example, analyse the wall crossing behavior in some
detail, and we refer the reader to the bibliography at the end of this chapter
for more information. Another aspect of the generating functional which only
involves the integrand is the blow-up formula. We will analyse it here in the
case of zero non-abelian magnetic flux. Suppose that we have a four-manifold
X and we consider the blown up manifold at a point p, X̂. Since X̂ has
an extra two-homology class, there are extra operators IkI (B) that must be
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included in the generating function. We want to compute〈
exp
[∑

k

(fkff IkI (S) + tkIkI (B) + pkOk)
]〉

X̂

, (10.86)

in terms of correlation functions of the twisted theory on X. In this equation
we denoted tk ≡ fkff t. The first thing to do is to analyse the change of the
integrand under blow-up, and as in the SU(2) case we assume that we are in
a chamber where (B,ω) = 0. The lattice sum changes then as follows:

Ψ
X̂

=
(∑

nI

exp
[
πiτIJτ nInJ + i

∑
k

tk
∂uk

∂aI
nI − iπ

∑
I

nI

])
ΨX , (10.87)

and we see that
Ψ

X̂
= Θ[�∆, 0](�ξ|τ)ΨX , (10.88)

where we have introduced the Riemann theta function Θ[�α, �β](�ξ|τ) with char-
acteristics �α = (α1, . . . , αr), �β = (β1, . . . , βr):

Θ[�α, �β](�ξ|τ) =
∑

nK∈Z

exp
[
iπτIJτ (nI + βI)(nJ + βJ) + 2πi(nI + βI)(ξI + αI)

]
.

(10.89)
The theta function Θ[�∆, 0](�ξ|τ) involved in (10.88) has

ξI =
∑

k

tk
2π

∂uk

∂aI
, �∆ = (

1
2
, . . . ,

1
2
). (10.90)

Notice that we have extracted from the Siegel–Narain theta function a stan-
dard theta function on the hyper-elliptic curve (10.61). The above expression
is valid in the electric frame, and the characteristic of the theta function is
inherited from the term (�ρ · �λ, w2(X)) in (10.78).

Let us now analyse the measure in the integrand. As χ(X̂) = χ(X) + 1
and σ(X̂) = σ(X) − 1, the measure picks an extra factor(

det
∂uJ

∂aI

)1/2

∆−1/8
Λ =

1

Θ[�∆, 0](0|τ)
, (10.91)

as a consequence of Thomae’s formulae for hyper-elliptic curves. Putting all
these factors together we see that the blow-up factor in the integrand is given
(up to a constant) by:

τ(tk|uk) = e−
∑

tktlTk,lT Θ[�∆, 0](�ξ|τ)

Θ[�∆, 0](0|τ)
, (10.92)
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which is the higher rank generalization of (9.43). Since (10.92) is an extra
factor in the integrand of ZCoulomb it follows by our arguments above that it
must be invariant under duality transformations. Using the transformation
law of the theta function under a symplectic transformation

Θ[�α, �β](�ξ|τ) → eiφ(det(Cτ + D))1/2 exp
[
πiξt(Cτ + D)−1Cξ

]
Θ[�α, �β](�ξ|τ),

(10.93)
where eiφ is a root of unity, one can easily prove that the duality invariance
of the blow-up factor fixes the duality transformation of the contact terms,
and one can re-derive (10.85) in this way.

The physical arguments which we gave in the third section of Chapter
9 indicate that the blow-up factor, in spite of its appearance, depends only
on the parameters tk and on the uk, as we have indicated with our notation
(and as we verified explicitly in the rank one case). More precisely, let �n =
(n2, . . . , nN ) be a vector of non-negative integers, with |�n| = n2 + . . . + nN .
There are then polynomials B�n(u2, . . . , uN ) in the uk such that:

τ(tk|uk) =
∑
|�n|≥0

tn2
2 · · · tnN

N B�n(u2, . . . , uN ) (10.94)

and the following relation between the generating functions holds:〈
exp
[∑

k

(fkff IkI (S) + tkIkI (B) + pkOk)
]〉

X̃

=〈
exp
[∑

k

(fkff IkI (S) + pkOk)
]
τ(tk|Ok)

〉
X

.

(10.95)

As a corollary of (10.94) we can derive an explicit expression for the
contact terms by simply expanding (10.92) to second order in tk. The first
derivative of the theta function is zero owing to the choice of characteristic,
and we find:

τ(tk|uk) = 1 −
∑
k,l

(
Tk,lTT +

1
2πi

∂τ∂∂
IJ

log Θ[�∆,�0](0�� |τ)
∂uk

∂aI

∂ul

∂aJ

)
tktl + · · · ,

(10.96)
Because of (10.94) this means that

Tk,lTT = − 1
2πi

∂τ∂∂
IJ

log Θ[�∆,�0](0�� |τ)
∂uk

∂aI

∂ul

∂aJ
+ B�nk,l

(u2, . . . , uN ), (10.97)
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where �nk,l are the vectors with |�nk,l| = 2, corresponding to the quadratic
terms in (10.94). The requirement that Tk,lTT vanishes semi-classically implies
that B�nk,l

(u2, . . . , uN ) = 0, and we finally obtain:

Tk,lTT = − 1
2πi

∂τ∂∂
IJ

log Θ[�∆,�0](0�� |τ)
∂uk

∂aI

∂ul

∂aJ
, (10.98)

which is the general expression for the contact terms owed to Losev, Nekrasov,
and Shatashvili. The expansion (10.94) can, in fact, be worked out in detail
and involves (not surprisingly in view of (9.47)) the hyper-elliptic generaliza-
tion of sigma functions.

One can also generalize the arguments given in the SU(2) case to de-
rive the Seiberg–Witten contributions associated to BPS states. These are,
in general, complicated, but when one considers the N = 1 points in the
SU(N) theory (i.e., the points in moduli space where N − 1 monopoles be-
come massless) the Seiberg–Witten contribution can be written down quite
explicitly. Let aI be local coordinates for such a point, with I = 1, . . . , N −1,
and qIJ = exp(2πiτIJτ ). The contribution of an N = 1 point will be then
given by a sum over Spinc structures λI , I = 1, . . . , r, with each r-tuple of λs
contributing

e2πi(λI ,λI
0)
( r∏

I=1

SW(λI)
)

× Resa1=···ar=0

[( r∏
I=1

(aI)(2χ+3σ)/8−(λI)2/2−1q̃II
−(λI)2/2

)

×
∏

1≤I<J≤r

(
q
−(λI ,λJ )
IJ

)( ∆Λ∏r
I=1 aI

)σ/8(
det

∂uI

∂aJ

)χ/2

× exp
(∑

k

pkuk + S2
∑
k,l

fkff flff TklTT − iVIVV (S, λI)
)]

,

(10.99)
up to an overall constant (which depends on χ, σ). In (10.99) we have denoted
q̃II = qII/aI . It is important to notice that the quantities q̃II and qIJ with
I 
=

 j, as well as the factor involving ∆Λ/

∏r
I=1 aI , are regular at aI = 0.

If we now consider manifolds X with b+
2 > 1, the only contribution to the

generating functional comes precisely from the N = 1 points. If, moreover,
the Seiberg–Witten simple type condition holds one can evaluate the residue
very easily by just evaluating the different quantities at the N = 1 points.
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This is done by using the explicit solution around the N = 1 points owed to
Douglas and Shenker together with the discrete Z4N symmetry discussed in
Chapter 7, which acts as ZN in the Coulomb branch and relates the N N = 1
vacua.

The N = 1 points of N = 2 supersymmetric theories are described
by Chebyshev polynomials. At the point where N − 1 monopoles become
massless, the polynomial PNP (x) in (10.61) is of the form

PNP (x) = 2 cos
(
N arccos

x

2

)
. (10.100)

The branch points of the curve are now the single branch points e1 =
−e2g+2 = 2 and there are g double branch points

e2k = e2k+1 = φ̂k = 2 cos
πk

N
. (10.101)

The values of the uk at this degeneration are given by the elementary sym-
metric polynomials in the eigenvalues

φn = 2 cos
π(n − 1

2 )
N

, n = 1, . . . , N. (10.102)

and one has for example,

u2 = N, u3 = 0, u4 =
N

2
(3 − N), (10.103)

and so on. Similarly, one can find the inverse period matrix

∂u�+1

∂aI
= 2i(−1)� sin

πI

N
E�E −1(φ̂p �=�� m), (10.104)

where EjE is the elementary symmetric polynomial of degree j. Furthermore,
one can find explicit expressions for the contact terms evaluated at this N = 1
point, as well as for the off-diagonal gauge couplings

τIJτ =
1
πi

log
γJ − γI

γI + γJ
, I < J, (10.105)

where
γI = tan

πI

2N
. (10.106)

We can already write the contribution from the N = 1 points to the SU(N)
invariants, using the property that these points are related by the Z4N ⊂
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U(1)R symmetry. We must take into account the R-charges of the different
operators in the correlation function, as well as of the measure in (10.99).
We conclude that the generating functional in the case under consideration
is given by

Z(pk, fkff , S) =
N−1∑
k=0

ωk[(N2−1)χh+N�λ0·�λ0]
∑
λI

e2πi(λI ,λI
0)

× exp
[ N∑

�=2

p�ω
k�u� − iωk(�−1)

N−1∑
I=1

(S, λI)
∂u�

∂aI
+ S2

∑
�,�′

f�ff f�ff ′ωk(�+�′−2)T��TT ′

]

×
(N−1∏

I=1

SW(λI)
) ∏

1≤I<J≤N−1

(
γI − γJ

γI + γJ

)−2(λI ,λJ )

,

(10.107)
up to some multiplicative constant α̃χ

N β̃σ
N , where α̃N and β̃N are constants

which depend on N . In (10.107), ω = exp[iπ/N ], and we have included
a phase factor ωkN�λ2

0 depending on the generalized Stiefel–Whitney class,
which generalizes the rank one case appearing in (9.32). This term can be
obtained if we take into account that the instanton number of the bundle, once
non-abelian fluxes are included, satisfies (10.76). The expression (10.107) can
be seen to be real for any N if one multiplies it by the phase factor eiπN�2/2,
where �v is the generalized second Stiefel–Whitney class.

The above formula generalizes Witten’s formula (9.35) to the SU(N)
case. From a mathematical point of view (10.107) is somewhat disappointing,
since it says that there is no new mathematical information in the SU(N)
generalization of Donaldson theory: the evaluation of the generating func-
tional reduces again to the computation of Seiberg–Witten invariants, as in
the case of SU(2) theories with hypermultiplets of generic masses.
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Appendix A

Spinors in Four Dimensions

In this appendix we collect the conventions used for spinors in both
Minkowski and Euclidean spaces. In Minkowski space the flat metric has the
form ηµν = diag(−1, 1, 1, 1), and the coordinates are labelled (x0, x1, x2, x3).
The analytic continuation into Euclidean space is made through the replace-
ment x0 = ix4 (and in momentum space, p0 = −ip4) the coordinates in this
case being labelled (x1, x2, x3, x4) .

The Lorentz group in four dimensions, SO(3, 1), is not simply connected
and therefore, strictly speaking, has no spinorial representations. To deal with
these types of representations one must consider its double covering, the spin
group Spin(3, 1), which is isomorphic to SL(2,C). The group SL(2,C) pos-
sesses a natural complex two-dimensional representation. Let us denote this
representation by S and let us consider an element ψ ∈ S with components
ψα = (ψ1, ψ2) relative to some basis. The action of an element M ∈ SL(2,C)
is

(Mψ)α = MαMM βψβ . (A.1)

This is not the only action of SL(2,C) which one could choose. Instead of M

we could have used its complex conjugate M , its inverse transpose (MT)−1, or
its inverse adjoint (M†)−1. All of them satisfy the same group multiplication
law. These choices would correspond to the complex conjugate representation
S, the dual representation S̃, and the dual complex conjugate representation
S̃. We will use the following conventions for elements of these representations:

ψα ∈ S, ψα̇ ∈ S, ψα ∈ S̃, ψα̇ ∈ S̃. (A.2)

These representations are called spinorial representations and are not inde-
pendent. The SL(2,C) invariant tensor εαβ (and εα̇β̇) allows one to relate
a representation to its dual. We will use the following conventions for this

204
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tensor:
ε21 = ε12 = −ε12 = −ε21 = 1,

ε2̇1̇ = ε1̇2̇ = −ε1̇2̇ = −ε2̇1̇ = 1.
(A.3)

It allows one to raise and lower spinor indices:

ψα = εαβψβ , ψα = εαβψβ ,

ψα̇ = εα̇β̇ψβ̇ , ψα̇ = εα̇β̇ψβ̇ .
(A.4)

One can easily verify that these relations are consistent with the assignment
(A.2). Notice also that in our conventions εαβεβδ = δβ

α, εα̇β̇εβ̇δ̇ = δβ̇
α̇.

The real form of the complex Lie algebras sl(2,C) and su(2)+ × su(2)−
are the same. This allows one to use the notation (j1, j2) for the represen-
tations of SL(2,C) where j1 and j2 are the spins of the two su(2)s. The
representation S corresponds to (2,0) whilst S to (0,2). Notice that the
two su(2)’s are not independent but related by complex conjugation. Under
complex conjugation the labels of the representations must be interchanged.
This allows one to restrict to representations which are fixed by complex con-
jugation in the case in which the two labels are the same. The resulting
representation is real, and the simplest case, (2,2), corresponds to the defin-
ing representation of the Lorentz group SO(3, 1) or vector representation.

The Clebsch–Gordan coefficients which intertwine between the vector
representation and the (2,2) of SL(2,C) involve the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.5)

and have the form

σµ

αβ̇
= (1, σ1, σ2, σ3)αβ̇ , (A.6)

allowing one to transform a four-vector pµ = (p0, p1, p2, p3) into a bi-spinor:

σµpµ =
(

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
. (A.7)

The indices for the matrices σµ show how SL(2,C) acts in bi-spinor space.
If M ∈ SL(2,C), the action of M is given by σµpµ → M(σµpµ)M†, which
preserves hermiticity and the determinant. The determinant is related to the
Lorentz invariant quantity pµpµ = −det(σµpµ) = −p2

0+p2
1+p2

2+p2
3 (the minus

sign in front of the determinant is owed to our choice of metric). Notice that
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M and −M act in the same way on the vector representation, showing the
fact that SL(2,C) is a double cover of SO(3, 1).

The dual Clebsch–Gordan coefficients are defined after raising the indices
of σµ,

(σµ)αβ˙ = εα̇β̇εβασµ

αβ̇
−→ (σµ) = (1,−σ1,−σ2,−σ3) (A.8)

and allow to transform a vector into a bi-spinor corresponding to the dual
representations. The matrices σµ and σµ satisfy the following set of useful
identities:

σµσν + σνσµ = − 2ηµν ,

(σµ)αβ˙ (σµ)γρ̇ = − 2δβ
γ δα̇

ρ̇ ,
(A.9)

which can be easily derived after using the following property of the Pauli
matrices σi, i = 1, 2, 3:

σiσj = δij + iεijkσk (A.10)

where εijk is the totally antisymmetric tensor with ε123 = 1.
The generators of the Lorentz transformations can be constructed with

the help of the matrices σµ and σµ. They take the form:

(σµν)α
β =

1
4
(
σµσν − σνσµ

)
α

β ,

(σµν)β̇
α̇ =

1
4
(
σµσν − σνσµ

)β̇
α̇,

(A.11)

which leads to the simple form:

σ0i = − 1
2
σi, σij = − i

2
εijkσk,

σ0i =
1
2
σi, σij = − i

2
εijkσk,

(A.12)

and satisfy the properties:

σµν =
i

2
εµνρσσρσ, σµν = − i

2
εµνρσσρσ, (A.13)

being ε0123 = 1, ε0123 = −1.
The matrices (A.11) provide spinorial representations of the Lorentz

group:
Mµν → iσµν , Mµν =→ iσµν , (A.14)

satisfying the Lorentz algebra:

[Mµν , Mρτ ] = iηµρMντ − iηµτMνρ − iηνρMµτ + iηντMµρ. (A.15)
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Under a Lorentz transformation parametrized by a real antisymmetric pa-
rameter ωµν spinors transform as:

δψα = iωµν(Mµν)α
βψβ = −ωµν(σµν)α

βψβ ,

δψα̇ = iωµν(M
µν

)α̇
β̇ψβ̇ = −ωµν(σµν)α̇

β̇ψβ̇ .
(A.16)

For the scalar product of spinors we will use the following conventions:

ψχ = ψαχα = −ψαχα = χψ

ψχ = ψ
α̇
χα̇ = −ψα̇χα̇ = χψ.

(A.17)

In Euclidean space the relevant group is the orthonormal group SO(4).
In this case the covering group is Spin(4), which is isomorphic to SU(2)+ ⊗
SU(2)−. The representations are labelled by the spins of the two SU(2)s,
which are independent. These spinorial representations are denoted by S+

and S−. The SU(2) invariant tensor can be used to raise and lower in-
dices following the same conventions (equations (A.3) and (A.4)) as in the
Minkowskian case.

The Clebsh-Gordan coefficients which intertwine between the bi-spinorial
representations and the defining representation of SO(4), or vector represent-
ation, are

σµ = (σ1, σ2, σ3, i), σµ = (−σ1,−σ2,−σ3, i). (A.18)

Given a four vector (p1, p2, p3, p4) the negative of the determinant of its corre-
sponding bi-spinor now becomes −det(σµpµ) = p2

1 +p2
2 +p2

3 +p2
4, as expected.

The matrices σµ and σµ satisfy the identities

σµσν + σνσµ = − 2δµν ,

(σµ)αβ˙ (σµ)γρ̇ = − 2δβ
γ δα̇

ρ̇ .
(A.19)

In order to construct the generators of the rotation group SO(4) one first
defines the following matrices:

(σµν)α
β =

1
4
(
σµσν − σνσµ

)
α

β ,

(σµν)β̇
α̇ =

1
4
(
σµσν − σνσµ

)β̇
α̇,

(A.20)

One then easily finds out that the generators Mµν = iσµν (or Mµν = iσµν)
satisfy the SO(4) algebra:

[Mµν , Mρτ ] = iδµρMντ − iδµτMνρ − iδνρMµτ + iδντMµρ. (A.21)
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The explicit forms of the matrices σµν and σµν are

σµν =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
0 − i

2σ3 i
2σ2 i

2σ1

i
2σ3 0 − i

2σ1 i
2σ2

− i
2σ2 i

2σ1 0 i
2σ3

− i
2σ1 − i

2σ2 − i
2σ3 0

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

σµν =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
0 − i

2σ3 i
2σ2 − i

2σ1

i
2σ3 0 − i

2σ1 − i
2σ2

− i
2σ2 i

2σ1 0 − i
2σ3

i
2σ1 i

2σ2 i
2σ3 0

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

(A.22)

These matrices act as projectors of antisymmetric tensors and two-forms into
their self-dual (SD) and anti-self-dual (ASD) parts. Given an antisymmetric
tensor VµνVV one defines its SD part, V +

µνVV , and ASD part, V −
µνVV , as follows:

V ±
µνVV =

1
2
(VµνVV ± 1

2
εµνρσV ρσ), (A.23)

where εµνρσ is the totally antisymmetric tensor corresponding to the volume
form (ε1234 = 1). The matrices σµν and σµν satisfy the relations:

σµν = −1
2
εµνρσσρσ, σµν =

1
2
εµνρσσρσ (A.24)

and therefore they act as projectors into SD and ASD parts, providing the
corresponding bi-spinor form:

VαβVV =εβγ(σµν)α
γV −

µνVV = εβγ(σµν)α
γVµνVV ,

Vα̇VV β̇ =εβ̇γ̇(σµν)γ̇
α̇V +

µνVV = εα̇γ̇(σµν)γ̇
α̇VµνVV .

(A.25)

The tensors VαβVV and Vα̇VV β̇ are symmetric and transform as the (3,0) and the
(0,3) representations of SO(4). The antisymmetric tensor VµνVV can be also
written in spinorial form as

VαVV α,β˙ β̇ = (σµ)αα̇(σν)ββ̇VµνVV . (A.26)

It turns out that the bi-spinor version of the decomposition of the antisym-
metric tensor into SD and ASD parts takes the form:

VµνVV = V +
µνVV + V −

µνVV −→ VαVV α,β˙ β̇ = εα̇β̇VαβVV + εαβVα̇VV β̇ . (A.27)

For Euclidean spinors we will take Mα̇MM = (M1̇, M2̇MM ) to be a positive
chirality spinor. The complex conjugate spinor is defined as

M
α̇

= (M
1̇
, M

2̇
) = (M∗

1̇
, M∗

2̇
MM ). (A.28)



Appendix B

Elliptic Functions and Modular Forms

In this Appendix we recall the definitions and properties of some of the
elliptic functions and modular forms used in the book, and we list some useful
formulae.

Given a lattice with half-periods ω and ω′ one can define the following
elliptic functions:

σ(z) = z
∏ ′
(

1 − z

s

)
ez/s+z2/2s2

,

ζ(z) =
1
z

+
∑ ′

(
1

z − s
+

1
s

+
z

s2

)
=

d

dz
log σ(z),

℘(z) =
1
z2

+
∑ ′

(
1

(z − s)2
− 1

s2

)
= −ζ ′(z),

(B.1)

where s = 2mω + 2m′ω′, m, m′ are integers, and ′ indicates that the product
or sum is over all pairs of integers (m, m′) except (0, 0). The above functions
are called, respectively, sigma, zeta, and Weierstrass functions. In the limit
in which one of the periods goes to infinity, say ω′, they become elementary
functions:

σ(z) =
2ω

π
e

1
6

(
πz
2ω

)2
sin

πz

2ω
,

ζ(z) =
1
3

(
π

2ω

)2

z +
π

2ω
cot

πz

2ω
,

℘(z) = − 1
3

(
π

2ω

)2

+
(

π

2ω

)2 1
sin2 πz

2ω

.

(B.2)

The incomplete elliptic integrals of the first and the second kind are, respec-
tively,

F (φ, k) =
∫ sin φ

0

∫∫
1√

(1 − t2)(1 − k2t2)
,

E(φ, k) =
∫ sin φ

0

∫∫ √
1 − k2t2

1 − t2
.

(B.3)
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The complete elliptic integrals are defined by:

K(k) = F (π/2, k), E(k) = E(π/2, k). (B.4)

The Eisenstein function of weight two E2 is defined by

E2 = 1 − 24
∞∑

n=1

nqn

1 − qn
= 1 − 24q + · · · (B.5)

and transforms under Sl(2,Z) as follows:

E2(τ) → (cτ + d)2
(

E2(τ) +
12c

2πi(cτ + d)

)
. (B.6)

Our conventions for the Jacobi theta functions are:

ϑ1(ν|τ) = i
∑
n∈Z

(−1)nq
1
2 (n+1/2)2eiπ(2n+1)ν ,

ϑ2(ν|τ) =
∑
n∈Z

q
1
2 (n+1/2)2eiπ(2n+1)ν ,

ϑ3(ν|τ) =
∑
n∈Z

q
1
2 n2

eiπ2nν ,

ϑ4(ν|τ) =
∑
n∈Z

(−1)nq
1
2 n2

eiπ2nν ,

(B.7)

where q = e2πiτ . When ν = 0 we will simply denote ϑ2(τ) = ϑ2(0|τ) (notice
that ϑ1(0|τ) = 0). The theta functions ϑ2(τ), ϑ3(τ) and ϑ4(τ) have the
following product representation:

ϑ2 = 2q1/8
∞∏

n=1

(1 − qn)(1 + qn)2,

ϑ3 =
∞∏

n=1

(1 − qn)(1 + qn−1/2)2,

ϑ4 =
∞∏

n=1

(1 − qn)(1 − qn−1/2)2

(B.8)

and they have the following properties under modular transformations:

ϑ2(−1/τ) =
√

τ

i
ϑ4(τ),

ϑ3(−1/τ) =
√

τ

i
ϑ3(τ),

ϑ4(−1/τ) =
√

τ

i
ϑ2(τ),

ϑ2(τ + 1) = eiπ/4ϑ2(τ),

ϑ3(τ + 1) = ϑ4(τ),

ϑ4(τ + 1) = ϑ3(τ).

(B.9)
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We also have the following useful identities:

ϑ4
3(τ) = ϑ4

2(τ) + ϑ4
4(τ), (B.10)

and
ϑ4

2(τ)ϑ4
3(τ)ϑ4

4(τ) = 16 η12(τ), (B.11)

where

η(τ) = q1/24
∞∏

n=1

(1 − qn) (B.12)

is the Dedekind eta function.
The expressions of the quantities involved in the Seiberg–Witten solution

are, in terms of modular forms:

u =
1
2

ϑ4
2 + ϑ4

3

(ϑ2ϑ3)2
,

u2 − 1 =
1
4

ϑ8
4

(ϑ2ϑ3)4
=

ϑ8
4

64h4(τ)
,

du

dτ
=

π

4i

ϑ8
4

(ϑ2ϑ3)2
,

h(τ) =
da

du
=

1
2
ϑ2ϑ3.

(B.13)

The first few terms in the q-expansions are:

u =
1

8q1/4

(
1 + 20q1/2 − 62q + 216q3/2 + · · ·

)
=

1
8 q1/4

+
5 q1/4

2
− 31 q3/4

4
+ 27 q5/4 − 641 q7/4

8
+

409 q9/4

2
+ · · · ,

(B.14)

uM (qD) = 1+32 qD +256 q2
D +1408 q3

D +6144 q4
D +22976 q5

D +76800 q6
D + · · · ,

(B.15)

T (u) = − 1
24

[
E2

h(τ)2
− 8u

]
= q1/4 − 2 q3/4 + 6 q5/4 − 16 q7/4 + 37 q9/4 − 78 q11/4

+ 158 q13/4 − 312 q15/4 + 594 q17/4 + · · · ,

TMT (qD) =
1
2

+ 8 qD + 48 q2
D + 224 q3

D + 864 q4
D + 2928 q5

D + 9024 q6
D + · · · ,

(B.16)
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h =
1
2
ϑ2ϑ3 =

1
4
ϑ2

2(τ/2)

= q1/8 + 2 q5/8 + q9/8 + 2 q13/8 + 2 q17/8 + 3 q25/8 + 2 q29/8 + · · · ,

hM =
1
2i

ϑ3ϑ4 =
1
2i

ϑ2
4(2τDτ )

=
1
2i

(1 − 4qD + 4q2
D + 4q4

D − 8q5
D + · · ·) ,

(B.17)
For aD we also have the following expansion:

aD(qD) = 16iqD(1 + 6qD + 24q2
D + 76q3

D + · · ·) , (B.18)
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[32] O. Garćıa-Prada. (1998). ‘Seiberg-Witten invariants and vortex equa-´
tions’, in Quantum symmetries. (eds. A. Connes, K. Gawedzki and J.
Zinn-Justin), Les Houches Session LXIV, (North-Holland) p. 885.

[33] C. Okonek and A. Teleman. (1996). ‘Seiberg-Witten invariants for mani-
folds with b+

2 = 1, and the universal wall-crossing formula’, Int. J. Math.,
7, 811, alg-geom/9603003.

[34] R. Friedman and J.W. Morgan. (1997). ‘Algebraic surfaces and Seiberg-
Witten invariants’, J. Alg. Geom., 6, (1997) 445, alg-geom/9502026;
(1999). ‘Obstruction bundles, semiregularity, and Seiberg-Witten invari-
ants’, Commun. Anal. Geom., 7, 451, alg-geom/9509007.

[35] R. Brussee. (1996). ‘The canonical class and the C∞ properties of Kähler¨
surfaces’, New York J. Math., 2, 103, alg-geom/9503004.
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