
123

S P R I N G E R B R I E F S I N
E L E C T R I C A L A N D CO M P U T E R E N G I N E E R I N G

Heng Qi
Keqiu Li

Software De� ned
Networking
Applications
in Distributed
Datacenters

SpringerBriefs in Electrical and Computer
Engineering

More information about this series at http://www.springer.com/series/10059

http://www.springer.com/series/10059

Heng Qi • Keqiu Li

Software Defined
Networking Applications
in Distributed Datacenters

123

Heng Qi
Dalian University of Technology
Dalian, China

Keqiu Li
Dalian University of Technology
Dalian, China

Microsoft, Encarta, MSN, and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

ISSN 2191-8112 ISSN 2191-8120 (electronic)
SpringerBriefs in Electrical and Computer Engineering
ISBN 978-3-319-33134-8 ISBN 978-3-319-33135-5 (eBook)
DOI 10.1007/978-3-319-33135-5

Library of Congress Control Number: 2016939412

© The Author(s) 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Software-defined networking (SDN) has drawn increasing attention from both
academia and industry as an emerging network architecture. Compared with closed
traditional network architecture, SDN decouples the control function from the for-
warding function to build a novel network architecture consisting of three planes: the
data plane, control plane, and SDN application. SDN improves the programmability
of a network to promote network innovation; however, the basic theories and key
technologies of SDN are limited by the initial stage of SDN development. The goal
of this book is to provide valuable insights into SDN technologies in distributed
datacenters. In particular, we consider three key problems: SDN application design,
SDN network deployment, and SDN network management. This book is suitable
for SDN researchers and engineers.

In Chap. 1, we introduce the development of SDN and future networks and
specifically focus on recent advances in SDN. In Chap. 2, an SDN-based request
allocation mechanism is proposed as a typical application of SDN in distributed
datacenters. With global information and central control provided by SDN, we
propose a joint optimization model for request allocation from the view of both
service providers and end-users. Then, we present a Nash bargaining solution
(NBS)-based algorithm to implement the request allocation mechanism. In Chap. 3,
an SDN controller placement strategy is proposed to achieve the deployment of SDN
in distributed datacenters. We formulate the optimal controller placement problem
as an integer linear program (ILP) and use an effective approximation algorithm
to solve it. In Chap. 4, a management system of heterogeneous SDN controllers
is presented to manage the distributed datacenter network. This system shields the
differences among heterogeneous controllers to provide a uniform graphical user
interface in order to reduce the complexities of network management and SDN
application development. Finally, we summarize our studies and highlight future
research topics related to SDN in Chap. 5.

We would like to express our appreciation to Professor Sherman Shen and the
editors at Springer for their help throughout the publication preparation process.
We would also like to thank all of our collaborators for their contributions in this
book; in particular, we would like to thank Wenxin Li, Haisheng Yu, Jun Lu, and

v

vi Preface

Dr. Song Guo. This work was supported by the State Key Program of National
Natural Science of China (grant no. 61432002), the National Science Foundation for
Distinguished Young Scholars of China (grant no. 61225010), and the Fundamental
Research Funds for the Central Universities (grant DUT15QY20).

Dalian, China Heng Qi
Dalian, China Keqiu Li
December 2015

Contents

1 Introduction . 1
1.1 Software-Defined Networking and Future Networks. 1
1.2 Recent Advances in Software-Defined Networking . 3

1.2.1 Data Plane . 4
1.2.2 Control Plane . 5
1.2.3 Software-Defined Networking Applications 6

1.3 Aim of This Book . 8
References . 9

2 Software-Defined Networking Based Request Allocation
in Distributed Datacenters . 13
2.1 A Software-Defined Networking Framework for Request Allocation. 15

2.1.1 Infrastructure . 15
2.1.2 Service Provider and End-Users . 16
2.1.3 Problem Formulation . 18

2.2 Request Allocation Algorithm with a Software-Defined
Networking Global View . 20
2.2.1 Logarithmic Smoothing . 20
2.2.2 Request-Allocation Algorithm . 26

2.3 Experiment Evaluation. 29
2.3.1 Simulation Setup . 29
2.3.2 Performance Analysis . 30

2.4 Conclusion . 36
References . 37

3 Software-Defined Networking Controller Placement
in Distributed Datacenters . 39
3.1 Placement Problem of Multiple Software-Defined

Networking Controllers . 41
3.1.1 System Model . 41
3.1.2 Problem Formulation . 43

3.2 Efficient Controller Placement Approximation Algorithm 43

vii

viii Contents

3.3 Experiment Evaluation. 47
3.3.1 Analysis of Internet2 OS3E . 48
3.3.2 Analysis of SINET4 . 50
3.3.3 Analysis of More Topologies . 50
3.3.4 Analysis of Controller Load. 52

3.4 Conclusion . 54
References . 54

4 Management System of Heterogeneous Software-Defined
Networking Controllers . 57
4.1 The Architecture of the Controller Management System 58

4.1.1 The Heterogeneous Controller Management Module 58
4.1.2 The Domain Relationship Management Module 59
4.1.3 The Database Module . 60
4.1.4 The Front-End Module . 60

4.2 System Evaluation . 61
4.3 Conclusion . 63
References . 65

5 Conclusions and Future Research Topics . 67
5.1 Conclusions . 67
5.2 Future Research Topics . 68

Chapter 1
Introduction

Abstract With the development of computer networks, the defects of traditional
Transmission Control Protocol/Internet Protocol (TCP/IP)-based architecture have
been amplified. Traditional computer networks are facing big challenges. To break
a closed traditional network for eliminating defects and promoting network inno-
vation, software-defined networking (SDN) has been proposed. In this chapter, we
illustrate SDN and discuss future network research. We also give a brief overview
of recent advances in SDN. Finally, we summarize our work related to SDN in
datacenter networks.

1.1 Software-Defined Networking and Future Networks

The scale of computer networks is expanding rapidly, and the demands for cloud,
big data, security, and mobility services are always increasing. Traditional network
architecture has gradually exposed to defects. To overcome these defects, there
is a growing interest in future networks from both academia and industry. Many
research projects that propose and design future network architectures have been
launched all around the world [1]. The USA has launched a series of future network
projects including the NewArch [2], Future Internet Architecture (FIA) [3], Global
Environment for Network Innovations (GENI) [4], and Future Internet Design
(FIND) [5] projects. In Japan, the New Generation Network (NWGN) project
has been implemented, which consists of a series of sub-projects from academia
and industry [6]. In the European Union, many future Internet research projects
have been launched including the Future Internet Research and Experimentation
(FIRE) [7] and Architecture and Design for the Future Internet (4WARD) [8]
projects. In China, the China Next Generation Internet (CNGI) project has been
established for future network research [9].

From these future network research projects, more and more users have come
to the realization that the development of future networks is seriously hindered by
the closeness of traditional networks. In general, closed networks face the following
problems:

© The Author(s) 2016
H. Qi, K. Li, Software-Defined Networking Applications
in Distributed Datacenters, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-33135-5_1

1

2 1 Introduction

• It is difficult to manage large-scale networks. Existing networks consist of
many closed network devices and a lot of complex networking protocols. There
is no one unified, public management platform; hence, network configuration
and management must be implemented by specialized network administrators.
Moreover, the closeness of network devices increases network management
difficulties.

• It is difficult to guarantee network services. Traditional networks work in a
“best-effort delivery” way. Routers transmit data depending on the current traffic
load without a guaranteed quality of service. Because routers are distributed, each
router controls data transmission individually. A global network view for traffic
scheduling does not exist to improve the quality of service.

• It is difficult to control network devices. Existing network devices are black
boxes consisting of hardware and software. To preserve their profits, network
device vendors are averse to providing standard open interfaces for device
control, which reduces flexibility of network control.

• It is difficult to deploy new network protocols. Existing closed network devices
are designed based on traditional network protocols. It is difficult to implement
new protocols without appropriate open application programming interfaces
(APIs). A lack of open APIs limits the ability of network programming. Users
cannot customize networks based on practical needs, which hinders network
innovation.

To address the above problems, closed network architecture should be discour-
aged and open network architecture should be promoted. To this end, software-
defined networking (SDN) has been proposed as a basis for future network
construction [10]. SDN is an emerging network architecture that decouples the con-
trol function from the forwarding function to break closed network architecture. The
framework of SDN enables centralized traffic control and network programmability.
Thus, SDN changes the way a network is designed and managed. Figure 1.1 shows
the framework of SDN and illustrates its characteristics.

As shown in Fig. 1.1, the framework of SDN usually consists of three planes
and two types of APIs. The data plane consists of flow forwarding devices such as
switches and routers. It only forwards traffic flows based on the decisions made
by the control plane. The control plane consists of controllers (servers), which
decide the strategies of traffic flow forwarding. The application plane includes many
network applications such as a fire wall and access control list (ACL). To connect
these three planes, two types of APIs are used. The first is the open southbound
API, and the second is the open northbound API. The open southbound API is the
communication interface between the data plane and the control plane. Using the
southbound API, the controller can send flow forwarding decisions to the switches.
The open northbound API is the network programming interface provided by the
control plane. Using the northbound API, the controller can design and implement
new network protocols and network innovation applications.

OpenFlow is an important protocol in SDN [11] that facilitates flow table pro-
gramming in different switches. When the switch vendors integrate the OpenFlow

1.2 Recent Advances in Software-Defined Networking 3

APP 1 APP 2 APP 3 APP 4 SDN Application

Control Plane

Data Plane

Northbound API

Southbound API

Fig. 1.1 Framework of software-defined networking (SDN)

protocol into their switches, a controller can add and remove flow entries in
switches using a standardized interface. OpenFlow enables controllers to realize
new traffic policies and schedules while disregarding heterogeneous switches. Since
the development of OpenFlow, many users have mistakenly believed that OpenFlow
is synonymous with SDN; to be clear, OpenFlow is a successful example of SDN or
a typical southbound API in SDN.

1.2 Recent Advances in Software-Defined Networking

The idea of SDN was derived from the Stanford Clean Slate project, namely,
Ethane [12]. The goal of Ethane is to build a new architecture for enterprise
networks to provide a powerful and simple management model and strong security
guarantees [13]. In this project, Martin Casado proposed building one centralized
controller by which network administrators can tailor flow-based security policies
to their individual requirements. Inspired by this idea, McKeown et al. proposed the
concept of OpenFlow in 2008 to enable a network to be programmable [14]. Then,
based on OpenFlow, McKeown further proposed SDN in 2009 [15].

As an emerging technology, SDN provides many benefits to overcome the draw-
backs of traditional network architectures, which has garnered significant attention
from industry. In 2011, the user-driven organization called the Open Networking
Foundation (ONF) was founded, which is dedicated to the promotion and adoption
of SDN through open standards development [16]. In 2012, the Internet Research
Task Force (IRTF) SDN research group (SDNRG) was established to investigate
SDN from various perspectives with the goal of identifying the approaches that can

4 1 Introduction

be defined, deployed, and used in the near future [17]. In 2013, the Linux Foundation
announced the founding of the OpenDaylight Project as a community-led and
industry-supported open source framework to promote SDN, which is supported by
the Cisco�, Microsoft�, Hewlett-Packard� (HP), International Business Machines
(IBM), VMware, and Brocade companies [18]. In 2014, Infonetics, as a telecom
market research firm, forecasted that the SDN market will reach 11 billion by
2018 [19]. In 2015, American multinational telecommunications corporation AT&T
expanded SDN-based Network-on-Demand services to more than 100 cities [20].

Over the past several years, even though SDN has gained significant momentum
in industry, many important research challenges remain. In particular, SDN has
become a hot topic in the academia and research communities. Since 2012, the
Association for Computing Machinery (ACM) Special Interest Group on Data Com-
munication (SIGCOMM) has built the Hot Topics in Software-Defined Networking
(HotSDN) workshop to explore the newest research and developments related to
SDN [21]. In 2015, the Symposium on SDN Research (SOSR) was held in lieu
of HotSDN for research publications on SDN [22]. Moreover, SDN has become
an important topic of interest in many famous academic conferences, such as
SIGCOMM, International Conference on Computer Communications (INFOCOM),
Networked Systems Design and Implementation (NSDI), and CoNext. Existing
work on SDN mainly centers around the three planes of the SDN architecture. Thus,
we review state-of-the-art work related to these planes.

1.2.1 Data Plane

The data plane provides rich SDN programming models and abstractions to manage
hardware resources [23]. OpenFlow is usually viewed as one general abstraction of
the data plane that provides standard interfaces for installing and deleting rules in the
flow table [24]. However, there are several drawbacks of OpenFlow. To overcome
these drawbacks, other abstractions of the data plane have been proposed.

As a modification of OpenFlow, DevoFlow was proposed to reduce unnecessary
costs in order to meet the needs of high-performance networks [25]. Because
the abstraction of computation and storage resources are ignored in OpenFlow,
Labelcast was proposed to better support future networks by abstracting forwarding
resources as well as computation and storage resources in the data plane [26]. The
Internet engineering task force (IETF) working group proposed the Forwarding and
Control Element Separation (ForCES) protocol to achieve the same objectives as
OpenFlow. Compared with OpenFlow, ForCES has a very dynamic model that
makes its protocol quite powerful; however, it lacks open source availability for
experimentation [27, 28]. Because OpenFlow-based devices are expensive, it is
impossible for companies to replace their existing network devices with OpenFlow-
based devices. Thus, ClosedFlow was proposed to incorporate techniques of
network control over existing devices, while taking advantage of SDN’s benefits

1.2 Recent Advances in Software-Defined Networking 5

with no new investment [29]. In recent years, other candidates for the southbound
API have been proposed, such as the Path Computation Element (PCE) [30] and the
Locator/ID Separation Protocol (LISP) [31].

In addition to abstractions, the flow table is another hot research topic in the
data plane. The flow table is the kernel of the OpenFlow switch, which consists
of flow entries corresponding to actions. The controller schedules network traffic
by installing or deleting flow entries. Because the flow table is implemented with
Ternary Content Addressable Memory (TCAM), which is very expensive, the size
of the flow table should be as minimal as possible without decreasing the forwarding
performance. To address this problem, many solutions have been proposed.

Jiang et al. proposed building a decision forest model for storing more flow
entries in less TCAM storage [32]. Kannan et al. proposed Compact TCAM, which
reduces the size of the flow entries, thereby managing the large flow table without
adding extra TCAM [33]. Soliman et al. proposed source routing techniques to
significantly reduce the number of flow table entries [34]. Rifai et al. proposed a
compression technique called MINNIE to drastically reduce the number of flow
entries with a limited impact on the packet loss rate [35]. Giroire et al. proposed
optimizing the size of the forwarding rule space using an integer linear program
(ILP) [36]. Huang et al. proposed a partition and allocation algorithm to distribute
forwarding rules across all switches with limited TCAM [37]. Zhang et al. proposed
the Adaptive Hard Timeout Method (AHTM) to improve the utilization of the flow
table by optimizing flow entries’ timeouts [38].

1.2.2 Control Plane

The control plane is usually the SDN controller, which is also viewed as the
network operating system (OS). In the SDN architecture, the controller connects
all forwarding devices in the data plane, by which the network management
changes from distribution to centralization. Therefore, a user can tailor network
traffic to their particular needs by programming the network using the controller.
Moreover, the controller behaves likes a middleware as low-level hardware devices
are abstracted. Users can deploy their services on the controller while disregarding
low-level devices.

Currently, there are many controllers that include commercial products and open
source products. Cisco, VMware, Nicira, Juniper, NEC, and Big Switch Network
have their commercial controllers, which usually support their proprietary protocols
as well as OpenFlow. The Application Policy Infrastructure Controller (APIC)
from Cisco [39] and Big Network Controller from Big Switch Network [40] are
two examples. Open source controllers are popular in the academia and research
communities, which are usually based on OpenFlow. Examples include NOX, which
is implemented in C++, and Floodlight, which is implemented in JAVA.

Released in 2008, NOX was the first OpenFlow controller [41]. The NOX-based
network consists of OpenFlow switches, a server running NOX, and a database

6 1 Introduction

storing the network view. Since NOX, other OpenFlow controllers have been
released. Maestro was proposed to improve the parallelism of the controller [42].
It was the first OpenFlow controller to achieve near linear performance scalability
on multi-core processors. Floodlight, a JAVA-based OpenFlow controller, is the core
of a commercial controller product from the Big Switch Networks company [43].
It has a simple structure and dexterous operation for SDN beginners. Beacon was
created to improve the performance of the controller [44]. Surprisingly, it has
high performance and is able to scale linearly with processing cores. McNettle
is an extensible controller, which shields the complexity of multi-core processing
to preserve a simple programming model [45]. Trema is a full-stack, easy-to-
use OpenFlow controller implemented in the Ruby and C languages [46]. RYU
is a component-based controller, which provides well-defined APIs for creating
applications [47].

The above controllers are centralized controllers, which may cause a single
point of failure. To address this problem, the control plane has been designed to
be logically centralized but physically distributed. Onix is a distributed control
platform, which provides a global view of the network and a general API for control
plane implementations [48]. HyperFlow is a distributed event-based control plane,
which enables network operators to deploy any number of controllers for tuning
the performance of the control plane [49]. DISCO is a distributed multi-domain
SDN control plane, which differs from other distributed control planes in that it
is adaptable to a heterogeneous, constrained network deployment [50]. The Open
Network Operating System (ONOS) is an experimental distributed SDN control
platform, which meets the performance and reliability requirements of large-scale
networks [51].

Except for research on new controllers, there are few works that compare and
evaluate SDN controllers. Shah et al. provided a detailed architectural evaluation of
prominent OpenFlow controllers [52]. Based on their evaluations, some promising
architectural guidelines have been proposed to improve the scalability of controllers.
Fernandez proposed a methodology to compare OpenFlow controllers in reactive or
proactive operation paradigms [53]. Monaco et al. proposed incorporating operating
system principles into the SDN controller design [54]. Xie et al. presented a detailed
survey of existing SDN controllers and analyzed their performance, scalability, and
security [55].

1.2.3 Software-Defined Networking Applications

Because SDN enables networks to be programmable, users can build SDN applica-
tions to overcome the problems of network management, quality of service (QoS),
and routing design. Moreover, users can build SDN applications for datacenter
networks, cloud-based networks, mobile networks, and big data.

1.2 Recent Advances in Software-Defined Networking 7

Network Management. As OpenFlow network evaluation tools, ENVI and SAGE
were developed to realize management functionality [56]. Devlic et al. applied
SDN in the carrier-grade network, extending the SDN architecture to support
multi-provider network management functions in carrier networks [57]. Kim et al.
presented an event-driven network control framework, namely, Lithium, which
makes network management easier [58]. Sundaresan et al. built a test bed named
BISmark for deploying measurements and applications in broadband access net-
works. This test bed can gather information about network topology, availability,
reachability, and so on [59]. Kim et al. designed and implemented Procera to
simplify various aspects of network operations and management and serves as the
glue between high-level network policies and low-level network configurations [60].

Quality of Service Applications. Kim et al. built a QoS API based on SDN con-
trollers, providing fine-grained automated QoS control in networks [61]. Egilmez
et al. proposed the OpenQoS framework to guarantee seamless video delivery with
end-to-end QoS support [62, 63]. Moreover, they also designed an optimization
framework for QoS routing [64]. Penno et al. proposed the application enabled
SDN (A-SDN) framework, which provides QoS and other network services by
deploying application-aware network elements [65]. Ko et al. proposed OpenQFlow
to support scalable and stateful SDN, providing micro-flow-based QoS [66].
Civanlar et al. described an architecture that can incorporate QoS flows in the
OpenFlow environment to support scalable video streaming [67].

Datacenter Networks with Software-Defined Networking. Recent SDN is usu-
ally deployed in datacenter networks (DCNs) to improve networking performance.
Google deploys SDN in a private wide area network (WAN) that connects datacen-
ters to build the B4 architecture, achieving full control over the whole network to
maximize the utilization of links [68]. Tavakoli et al. applied the NOX controller
to DCNs, addressing a variety of datacenter requirements [69]. Thanh et al. built
a test platform with OpenFlow to measure and analyze energy-aware DCNs [70].
Macapuna et al. proposed a novel datacenter architecture with switching with
in-packet bloom filters (SiBF), transforming DCNs into a software problem [71].
Fang et al. used SDN to design a solution for handling datacenter congestion in
DCNs [72].

Cloud Computing with Software-Defined Networking. Cloud computing
provides Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS). However, it is hard to provide Network-as-a-Service
(NaaS) because of limited control over network resources. SDN provides powerful
user interfaces for controlling networks, which makes it possible to implement
NaaS. Feng et al. built a prototype of a cloud-based network by extending the
OpenFlow architecture to realize a pay-as-you-go model of network capacity [73].
Benson et al. leveraged SDN techniques to build a novel cloud networking system
named CloudNaaS, which provides many virtual networking functions [74].
Banikazemi et al. proposed a novel SDN platform named Meridian to support a

8 1 Introduction

network service model for cloud computing [75]. Raghavendra et al. designed a
graph algorithm library, which can be loaded into an SDN controller for cloud
network management [76].

Other Software-Defined Networking Applications. Caraguay et al. applied SDN
to the development of Internet of Things (IoT) applications [77]. Bifulco et al.
built a mobile cloud management system based on SDN, which benefits from
the dynamic configuration of OpenFlow switches [78]. Wang et al. addressed the
problems of mobility in Internet Protocol (IP) networks using SDN while designing
an OpenFlow-based mobility protocol [79]. Das et al. presented an SDN-based
network management framework named FlowComb for big data processing [80].
Wang et al. integrated a network control function provided by an SDN controller
into Hadoop to jointly optimize performance of big data processing and network
utilization [81].

1.3 Aim of This Book

This book aims to elaborate on our studies on SDN application design and
deployment in distributed datacenters. The remainder of this book is organized as
follows.

In Chap. 2, we take advantage of the central control provided by SDN to
address the request allocation problem in distributed datacenters. First, we propose
a joint optimization model from the view of both service providers and end-users.
Second, we present a Nash bargaining solution (NBS)-based method to model the
requirements of both the providers and end-users. Third, we develop an efficient
algorithm blending the advantages of the logarithmic smoothing technique and the
auxiliary variable method. Finally, we conduct many experiments based on real-
world traces to show the efficiency of our request allocation algorithm.

In Chap. 3, to deploy SDN in distributed datacenters, we present an effective
solution for SDN controller placement. First, we propose a novel placement metric
for deploying multiple controllers in large-scale networks. Second, we formulate the
optimal controller placement problem as an ILP and use an effective approximation
algorithm to find its solution. Finally, we conduct intensive experiments based on
many real topologies to demonstrate that our strategy can significantly improve
performance over existing methods.

In Chap. 4, to guarantee the performance of network management in distributed
datacenters, we design and implement an SDN controller management system.
This system consists of the heterogeneous controller management (HCM) module,
domain relationships management (DRM) module, database module, and front-
end module. It shields the differences between the heterogeneous controllers and
provides a unified graphical user interface (GUI) for users and administrators.

In Chap. 5, we summarize our studies regarding SDN application design and
deployment in distributed datacenters. We also highlight future research topics
related to SDN with the hope of providing valuable insights for researchers and
engineers.

References 9

References

1. J. Pan, S. Paul and R. Jain. A Survey of the Research on Future Internet Architectures. IEEE
Communications Magazine, 2011, 49(7): 26–36.

2. NewArch Project: Future-Generation Internet Architecture, http://www.isi.edu/newarch/.
3. NSF Future Internet Architecture Project, http://www.nets-fia.net/.
4. Global Environment for Network Innovations (GENI) Project, http://www.geni.net/.
5. NSF NETS FIND Project, http://www.nets-find.net.
6. New-Generation Network R&D Project, http://www.nict.go.jp/en/nrh/index.html.
7. FIRE: Future Internet Research and Experimentation, http://cordis.europa.eu/fp7/ict/fire/.
8. The FP7 4WARD Project, http://www.4ward-project.eu/.
9. China Next Generation Internet (CNGI) Project, http://www.cngi.cn/.

10. N. Feamster, J. Rexford and E. Zegura. The Road to SDN: An Intellectual History of
Programmable Networks. ACM SIGCOMM Computer Communication Review, 2014, 44(2):
87–98.

11. A. Lara, A. Kolasani and B. Ramamurthy. Network Innovation Using Openflow: A Survey.
IEEE Communications Surveys & Tutorials, 2014, 16(1): 493–512.

12. Ethane: A Security Management Architecture, A Stanford Clean Slate Project, http://yuba.
stanford.edu/ethane/.

13. M. Casado, M. J. Freedman, J. Pettit, et al. Ethane: Taking Control of the Enterprise. ACM
SIGCOMM Computer Communication Review, 2007, 37(4): 1–12.

14. N. McKeown, T. Anderson, H. Balakrishnan, et al. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69–74.

15. N. McKeown. Software-defined Networking. INFOCOM Keynote Talk, Rio de Janeiro, Brazil,
April 2009.

16. Open Networking Foundation (ONF), https://www.opennetworking.org/about/onf-overview.
17. Software-Defined Networking Research Group (SDNRG), https://irtf.org/sdnrg.
18. L. Foundation, Opendaylight: An Open Source Community and Meritocracy for Software-

Defined Networking, A Linux Foundation Collaborative Project, April 2013. http://www.
opendaylight.org/resources/publications.

19. Infonetics, Carrier SDN and NFV Hardware and Software Market Size and Forecast Report,
November 2014. http://www.infonetics.com/pr/2014/Carrier-SDN-NFV-Market-Highlights.
asp.

20. AT & T, A Software-Centric Network – Network on Demand & Universal CPE. http://about.
att.com/innovation/showcase/networkondemand.

21. ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN). http://
conferences.sigcomm.org/sigcomm/2014/hotsdn.php.

22. ACM SIGCOMM Symposium ON SDN Research (SOSR). http://www.sigcomm.org/events/
SOSR.

23. M. Casado, N. Foster and A. Guha. Abstractions for Software-Defined Networks. Communi-
cations of the ACM, 2014, 57(10): 86–95.

24. L. Schiff, M. Borokhovich and S. Schmid. Reclaiming the Brain: Useful OpenFlow Functions
in the Data Plane. Proceedings of the 13th Workshop on Hot Topics in Networks, ACM,
2014: 1–7.

25. A. R. Curtis, J. C. Mogul, J. Tourrilhes, et al. DevoFlow: Scaling Flow Management for High-
performance Networks. ACM SIGCOMM Computer Communication Review, 2011, 41(4):
254–265.

26. J. Su, G. Lv, Z. Sun, et al. Labelcast: A Novel Data Plane Abstraction for SDN. Open
Networking Summit, Santa Clara, USA, April 2013.

27. A. Doria, J. H. Salim, R. Haas, et al. Forwarding and Control Element Separation (ForCES)
Protocol Specification. [Online]. Available: http://tools.ietf.org/html/rfc5810.

28. D. Kreutz, F. M. V. Ramos, P. E. Verissimo, et al. Software-Defined Networking: A Compre-
hensive Survey. Proceedings of the IEEE, 2015, 103(1): 14–76.

http://www.isi.edu/newarch/
http://www.nets-fia.net/
http://www.geni.net/
http://www.nets-find.net
http://www.nict.go.jp/en/nrh/index.html
http://cordis.europa.eu/fp7/ict/fire/
http://www.4ward-project.eu/
http://www.cngi.cn/
http://yuba.stanford.edu/ethane/
http://yuba.stanford.edu/ethane/
https://www.opennetworking.org/about/onf-overview
https://irtf.org/sdnrg
http://www.opendaylight.org/resources/publications
http://www.opendaylight.org/resources/publications
http://www.infonetics.com/pr/2014/Carrier-SDN-NFV-Market-Highlights.asp
http://www.infonetics.com/pr/2014/Carrier-SDN-NFV-Market-Highlights.asp
http://about.att.com/innovation/showcase/networkondemand
http://about.att.com/innovation/showcase/networkondemand
http://conferences.sigcomm.org/sigcomm/2014/hotsdn.php
http://conferences.sigcomm.org/sigcomm/2014/hotsdn.php
http://www.sigcomm.org/events/SOSR
http://www.sigcomm.org/events/SOSR
http://tools.ietf.org/html/rfc5810

10 1 Introduction

29. R. Hand and E. Keller. ClosedFlow: OpenFlow-Like Control over Proprietary Devices,
Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking. ACM, 2014:
7–12.

30. A. Farrel, J. P. Vasseur and J. Ash. A Path Computation Element (PCE)-Based Architecture.
[Online]. Available: http://tools.ietf.org/html/rfc4655.

31. D. Farinacci, V. Fuller, D. Meyer and D. Lewis. The Locator/ID Separation Protocol (LISP).
[Online]. Available: https://tools.ietf.org/html/rfc6830.

32. W. Jiang, V. K. Prasanna and N. Yamagaki. Decision Forest: A Scalable Architecture for
Flexible Flow Matching on FPGA. Proceedings of the 2010 International Conference on Field
Programmable Logic and Applications (FPL), IEEE, 2010: 394–399.

33. K. Kannan and S. Banerjee. Compact TCAM: Flow Entry Compaction in TCAM for Power
Aware SDN. Distributed Computing and Networking, Springer Berlin Heidelberg, 2013:
439–444.

34. M. Soliman, B. Nandy, I. Lambadaris and P. Ashwood-Smith. Source Routed Forwarding with
Software Defined Control, Considerations and Implications. Proceedings of the 2012 ACM
Conference on CoNEXT Student Workshop. ACM, 2012: 43–44.

35. M. Rifai, N. Huin, C. Caillouet, et al. Too Many SDN Rules? Compress Them with MINNIE.
Proceedings of the 2015 Global Communications Conference (GLOBECOM), IEEE, 2015.

36. F. Giroire, J. Moulierac and T. K. Phan. Optimizing Rule Placement in Software-Defined
Networks for Energy-Aware Routing. Proceedings of the 2014 Global Communications
Conference (GLOBECOM), IEEE, 2014: 2523–2529.

37. J. Huang, G. Chang, C. Wang and C. Lin. Heterogeneous Flow Table Distribution
in Software-defined Networks. IEEE Transactions on Emerging Topics in Computing,
DOI: 10.1109/TETC.2015.2457333.

38. L. Zhang, R. Lin, S. Xu and S. Wang. AHTM: Achieving Efficient Flow Table Utilization
in Software Defined Networks. Proceedings of the 2014 Global Communications Conference
(GLOBECOM), IEEE, 2014: 1897–1902.

39. Cisco Application Policy Infrastructure Controller (APIC). http://www.cisco.com/c/en/us/
products/cloud-systems-management/application-policy-infrastructure-controller-enterprise-
module/index.html.

40. Big Network Controller. http://bigswitch.com/products/SDN-Controller.
41. N. Gude, T. Koponen, J. Pettit, et al. NOX: Towards An Operating System for Networks. ACM

SIGCOMM Computer Communication Review, 2008, 38(3): 105–110.
42. Z. Cai, A. L. Cox and T. S. Eugene Ng. Maestro: A System for Scalable Openflow Control.

Rice University Technical Report TR11-07, December 2011.
43. Floodlight: An Open SDN Controller. http://www.projectfloodlight.org/floodlight/.
44. D. Erickson. The Beacon Openflow Controller. Proceedings of the 2nd ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking. ACM, 2013: 13–18.
45. A. Voellmy and J. Wang. Scalable Software Defined Network Controllers, ACM SIGCOMM

Computer Communication Review, 2012, 42(4): 289–290.
46. Trema: Openflow Controller. https://trema.github.io/trema/.
47. Ryu: A Component-based Software Defined Networking Framework. http://osrg.github.io/

ryu/.
48. T. Koponen, M. Casado, N. Gude, et al. Onix: A Distributed Control Platform for Large-scale

Production Networks. Proceedings of Operating Systems Design and Implementation (OSDI).
USENIX Association, 2010.

49. A. Tootoonchian and Y. Ganjali. Hyperflow: A Distributed Control Plane for Openflow.
Proceedings of the 2010 Internet Network Management Conference on Research on Enterprise
Networking. USENIX Association, 2010: 3–3.

50. K. Phemius, M. Bouet and J. Leguay. Disco: Distributed Multi-domain SDN Controllers.
Proceedings of Network Operations and Management Symposium (NOMS). IEEE/IFIP, 2014:
1–4.

51. P. Berde, M. Gerola, J. Hart, et al. ONOS: Towards An Open, Distributed SDN OS. Proceedings
of the 3rd Workshop on Hot Topics in Software Defined Networking. ACM, 2014: 1–6.

http://tools.ietf.org/html/rfc4655
https://tools.ietf.org/html/rfc6830
http://dx.doi.org/10.1109/TETC.2015.2457333
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-enterprise-module/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-enterprise-module/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-enterprise-module/index.html
http://bigswitch.com/products/SDN-Controller
http://www.projectfloodlight.org/floodlight/
https://trema.github.io/trema/
http://osrg.github.io/ryu/
http://osrg.github.io/ryu/

References 11

52. S. A. Shah, J. Faiz, M. Farooq, et al. An Architectural Evaluation of SDN Controllers. the 2013
International Conference on Communications (ICC). IEEE, 2013: 3504–3508.

53. M. P. Fernandez. Comparing Openflow Controller Paradigms Scalability: Reactive and
Proactive. The 27th International Conference on Advanced Information Networking and
Applications (AINA). IEEE, 2013: 1009–1016.

54. M. Monaco, O. Michel and E. Keller. Applying Operating System Principles to SDN Controller
Design. Proceedings of the 12th Workshop on Hot Topics in Networks. ACM, 2013.

55. J. Xie, D. Guo, Z. Hu, et al. Control Plane of Software Defined Networks: A Survey. Computer
Communications, 2015, 67: 1–10.

56. A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt and T. Gayraud. Software-Defined
Networking: Challenges and Research Opportunities for Future Internet. Computer Networks,
2014, 75: 453–471.

57. A. Devlic, W. John and P. Skoldstrom. Carrier-grade Network Management Extensions to the
SDN Framework. Proceedings of the 8th Swedish National Computer Networking Workshop
(SNCNW), Stockholm, Sweden. 2012.

58. H. Kim, A. Voellmy, S. Burnett, N. Feamster and R. Clark. Lithium: Event-Driven Network
Control. Georgia Institute of Technology Technical Report, 2012.

59. S. Sundaresan, S. Burnett, N. Feamster and W. Donato. BISmark: A Testbed for Deploying
Measurements and Applications in Broadband Access Networks. Proceedings of the USENIX
Annual Technical Conference (USENIX ATC 14). USENIX, 2014: 383–394.

60. H. Kim and N. Feamster. Improving Network Management with Software Defined Networking.
IEEE Communications Magazine, 2013, 51(2): 114–119.

61. W. Kim, P. Sharma, J. Lee, et al. Automated and Scalable QoS Control for Network
Convergence. Proceedings of USENIX INM/WREN 2010, San Jose, CA, April 2010.

62. H. E. Egilmez, S. T. Dane, K. T. Bagci and A. M. Tekalp. OpenQoS: An OpenFlow Controller
Design for Multimedia Delivery with End-to-End Quality of Service over Software-Defined
Networks. 2012 Asia-Pacific Signal & Information Processing Association Annual Summit
and Conference (APSIPA ASC). IEEE, 2012: 1–8.

63. H. E. Egilmez, S. T. Dane, B. Gorkeml and A. M. Tekalp. Openqos: Openflow Controller
Design and Test Network for Multimedia Delivery with Quality of Service. Proceedings of
NEM Summit, Implementing Future Media Internet Towards New Horiz, 2012: 22–27.

64. H. E. Egilmez, B. Gorkeml, A. M. Tekalp and S. Civanlar. Scalable Video Streaming over
OpenFlow Networks: An Optimization Framework for QoS Routing. Proceedings of the 18th
International Conference on Image Processing (ICIP). IEEE, 2011: 2241–2244.

65. R. Penno, T. Reddy, M. Boucadair, D. Wing and S. Vinapamula. Application Enabled SDN
(A-SDN). [Online]. Available: https://tools.ietf.org/html/draft-penno-pcp-asdn-00.

66. N. S. Ko, H. HEO, J. D. PARK and H. S. PARK. OpenQFlow: Scalable OpenFlow with Flow-
Based QoS. IEICE TRANSACTIONS on Communications, 2013, E96-B(2): 479–488.

67. S. Civanlar, M. Parlakisik, A. M. Tekalp, et al. A QoS-Enabled OpenFlow Environment for
Scalable Video Streaming. Proceedings of the IEEE GLOBECOM Workshops on Network of
the Future. IEEE, 2010: 351–356.

68. S. Jain, A. Kumar, S. Mandal, et al. B4: Experience with A Globally-deployed Soft-
ware Defined WAN. ACM SIGCOMM Computer Communication Review. ACM, 2013,
43(4): 3–14.

69. A. Tavakoli, M. Casado, T. Koponen and S. Shenker. Applying NOX to the Datacenter.
Proceedings of the 8th Workshop on Hot Topics in Networks. ACM, 2009.

70. N. H. Thanh, P. N. Nam, T. H. Truong, et al. Enabling Experiments for Energy-efficient
Data Center Networks on OpenFlow-based Platform. Proceedings of the 4th International
Conference on Communications and Electronics (ICCE). IEEE, 2012: 239–244.

71. C. Macapuna, C. E. Rothenberg and M. F. Magalhaes. In-Packet Bloom Filter based Data
Center Networking with Distributed OpenFlow Controllers. Proceedings of the IEEE GLOBE-
COM Workshops on Management of Emerging Networks and Services. IEEE, 2010: 584–588.

https://tools.ietf.org/html/draft-penno-pcp-asdn-00

12 1 Introduction

72. S. Fang, Y. Yu, C. H. Foh, et al. A Loss-Free Multipathing Solution for Data Center Network
using Software-Defined Networking Approach. Proceedings of the Asia-Pacific Magnetic
Recording Conference, Digest APMRC. IEEE, 2012: 1–8.

73. T. Feng, J. Bi, H. Hu and H. Cao. Networking as A Service: A Cloud-based Network
Architecture. Journal of Networks, 2011, 6(7): 1084–1090.

74. T. Benson, A. Akella, A. Shaikh and S. Sahu. CloudNaaS: A Cloud Networking Platform
for Enterprise Applications. Proceedings of the 2nd ACM Symposium on Cloud Computing.
ACM, 2011.

75. M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey and G. Wang. Meridian: An SDN Platform
for Cloud Network Services. IEEE Communications Magazine, 2013, 51(2): 120–127.

76. R. Raghavendra, J. Lobo and K. W. Lee. Dynamic Graph Query Primitives for SDN-based
Cloudnetwork Management. Proceedings of the 1st Workshop on Hot topics in Software
Defined Networks. ACM, 2012: 97–102.

77. A. Caraguay, A. Peral, L. Lopez and L. Villalba. SDN: Evolution and Opportunities in the
Development IoT Applications. International Journal of Distributed Sensor Networks, http://
dx.doi.org/10.1155/2014/735142, 2014.

78. R. Bifulco, M. Brunner, R. Canonico, et al. Scalability of A Mobile Cloud Management
System. Proceedings of the 1st MCC Workshop on Mobile Cloud Computing. ACM, 2012:
17–22.

79. Y. Wang and J. Bi. A Solution for IP Mobility Support in Software Defined Networks.
Proceedings of the 23rd International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2014: 1–8.

80. A. Das, C. Lumezanu, Y. Zhang, et al. Transparent and Flexible Network Management for Big
Data Processing in the Cloud. Proceedings of the 5th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud’13). USENIX, 2013: 1–6.

81. G. Wang, T. S. Ng, A. Shaikh. Programming Your Network at Run-time for Big Data
Applications. Proceedings of the 1st Workshop on Hot topics in Software Defined Networks.
ACM, 2012: 103–108.

http://dx.doi.org/10.1155/2014/735142
http://dx.doi.org/10.1155/2014/735142

Chapter 2
Software-Defined Networking Based Request
Allocation in Distributed Datacenters

Abstract Large-scale Internet applications, such as information retrieval or video
streaming, are usually built on top of distributed datacenters. In these applications,
the request allocation problem is a fundamental problem, aiming to efficiently
allocate massive requests among distributed datacenters. Generally, there are two
basic factors that should be considered. First, from an overall system perspective,
service provider expects to achieve high bandwidth utilization and load balance.
Second, from an individual perspective, end-users have a strong desire for good user
experience and fair treatment. To the best of our knowledge, existing approaches
solely focus on either the former or the latter. Software-defined networking (SDN)
makes it possible to implement global optimization over an entire network con-
sisting of distributed datacenters. Thus, an SDN controller can be used as the
central portal to allocate requests, satisfying the needs of both service providers
and end-users. To address this problem, we first develop a general formulation
of the request allocation problem. Specifically, we guarantee the benefits of both
the service providers and end-users, which are modeled by two Nash bargaining
games. Then, we further present an efficient request allocation algorithm based on
logarithmic smoothing. We theoretically prove that our request allocation algorithm
significantly converges to a unique solution. Finally, we conduct a large number of
experiments based on real-world traces. These simulation results demonstrate the
efficiency of our request allocation algorithm.

Large-scale Internet applications, such as video streaming (Netflix), information
retrieval (Google), and social networking (Facebook), provide service to hundreds
of millions of end-users. To guarantee both reliability and performance of services,
providers must deploy distributed datacenters to deal with ten million requests
every day. Once applications are deployed on distributed datacenters, the request
allocation problem is of great importance to both service providers and end-users.

As shown in Fig. 2.1, a simple model consists of two end-users and two
datacenters deployed by a service provider. The request allocation problem becomes
how to efficiently distribute massive requests among distributed datacenters through
a centralized traffic controller. There are two basic goals that must be considered
from the view of both the service provider and end-users. First, high bandwidth

© The Author(s) 2016
H. Qi, K. Li, Software-Defined Networking Applications
in Distributed Datacenters, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-33135-5_2

13

14 2 Software-Defined Networking Based Request Allocation in Distributed. . .

Fig. 2.1 Distributed
datacenters model

utilization and load balance must be achieved from the overall system perspective of
the service provider. Second, end-users have a strong desire for good user experience
and fair treatment from their individual perspective.

There are two observations that motivate these goals. First, if large costs have
been incurred, the benefit of the service provider must be guaranteed. For example,
Google has already spent a lot of money to deploy more than 450,000 servers
in its thirty datacenters [1]. Overloading can lead to poor performance and is
vulnerable to failures [2]. To be profitable for service providers, high bandwidth
utilization and load balance among multiple datacenters must be achieved. Second,
as business increases, end-user demands for low response time, fairness, and low
costs also increase [3]. Thus, good user experience and fairness among end-users
must be ensured. Unfortunately, previous works can be generalized as a continuous
optimization problem that mainly concentrates on part of the goals defined in
different ways, i.e., minimizing the total cost for service providers or fairness among
end-users; such approaches involve several iterations [4, 7].

Existing work on request allocation either solely focuses on service providers or
end-users, i.e., minimizing total costs for service providers or fairness among end-
users. For example, from a provider’s point of view, Qureshi et al. proposed a simple
cost-aware request allocation policy that utilizes geographical diversity of electricity
prices to preferentially allocate requests to datacenters where energy is cheaper [4].
Gao et al. designed FORTE, a request-routing framework that provides a three-way
trade-off between access latency, electricity cost, and carbon footprint [5]. Liu et al.
considered the effects of request allocation on providing environment gains by using
green energy [6]. Xu et al. developed an efficient request allocation algorithm that
considered both bandwidth and electricity costs [7]. Boloor et al. proposed a novel
approach of data-oriented dynamic service-request allocation with gi first-in, first-
out (gi-FIFO) scheduling to globally increase the profit charged by cloud computing
systems [8].

There is also existing work that takes end-user benefits into account. Wendell
et al. developed a decentralized request allocation algorithm for cloud services and
evaluated its performance using a prototype and realistic traffic traces [9]. Xu et al.

2.1 A Software-Defined Networking Framework for Request Allocation 15

discussed fairness between users in the process of request allocation, and they
also developed a request allocation algorithm based on the alternating direction
method of multipliers (ADMM), which efficiently balances the trade-off between
performance and cost [10].

Unlike existing work, we want to take both the benefit to the service provider and
benefit to end-users into account. To give an optimal request allocation solution, the
global information of the entire network is needed. Fortunately, software-defined
networking (SDN) makes it feasible to collect global network information and
control the entire network [11]. Inspired by this, we construct our request allocation
model based on the SDN controller. To guarantee both benefits to the service
provider and end-users, we apply two Nash bargaining games where each Nash
product denotes the benefit of the service provider and end-users, respectively.
Furthermore, we propose a concept named user experience degree to qualify user
experience that depends on the most important metric response time and some
inherent cost. To obtain the final solution, we present an efficient request allocation
algorithm based on logarithmic smoothing. We theoretically prove that our loga-
rithmic smoothing-based request allocation algorithm significantly converges to a
unique solution [12].

Our main contributions are summarized as follows:

• We present a general formulation of request allocation for a scenario of dis-
tributed datacenters and multiple end-users.

• We present a Nash product-based method to capture both benefits of the service
provider and end-users.

• We propose an efficient request algorithm based on logarithmic smoothing and
theoretically prove that our request allocation algorithm significantly converges
to a unique solution.

• We evaluate the efficiency of our request allocation algorithm using real-world
traces in our simulation.

The remainder of this chapter is organized as follows. In Sect. 2.1, we show
a framework for request allocation. In Sect. 2.2, we give our request allocation
algorithm based on logarithmic smoothing. In Sect. 2.3, we discuss the experiment
evaluation. Finally, we conclude this chapter in Sect. 2.4.

2.1 A Software-Defined Networking Framework
for Request Allocation

2.1.1 Infrastructure

Consider that the service provider deploys a set of datacenters M for better
reliability and performance, M = {d1,d2, . . . ,dM}. Each datacenter dj ∈ M is
equipped with a fixed bandwidth capacity Uj. Let K = {c1,c2, . . . ,cK} denote the
set of end-users and N denote the set of application instances offered by service

16 2 Software-Defined Networking Based Request Allocation in Distributed. . .

provider, N = {a1,a2, . . . ,aN}. Let bi be the amount of bandwidth to handle one
request when serving ai ∈N . Generally, service providers make several copies for
each application instance. The set of application instances hosted by dj is defined as
wj = (w1,j,w2,j, . . . ,wN,j), where wi,j is the binary variable that indicates whether ai

is located on dj. Then, we have

wi,j =

{
1 if ai is located on dj,

0 otherwise.

For all ai ∈N , assume that ck ∈K can only make one request for a given moment.
End-users’ requests are described by a matrix rN = [rk,i]K×N , where rk,i denotes
whether ck requests ai. Clearly, this implies

rk,i =

{
1 if ck requests ai,

0 otherwise.

Let vk
i,j represent whether dj gets the request from ck to ai. In this case, we have

vk
i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if rk,iwi,j �= 0 and dj gets the

request from ck to ai,

0 otherwise.

(2.1)

vk
i,j is our goal such that each request is allocated to a suitable datacenter with

both benefits of the service provider and end-users guaranteed. We apply Nash
bargaining solutions [14] to interpret the benefits of service providers and end-users.
The Nash bargaining solution is known as a non-zero-sum game, where players
cooperate to achieve a win–win solution so that social utility gains are maximized
and commodities owned by each player do not exceed its capacity. This corresponds
to maintaining fairness and high utility for players.

2.1.2 Service Provider and End-Users

We now present methods for defining both benefits of service providers and end-
users.

2.1.2.1 The Benefit of Service Providers

The service provider incurs large costs building M datacenters. Therefore, the
service provider expects to achieve high bandwidth utilization and load balance
from an overall system perspective. High bandwidth utilization contributes to

2.1 A Software-Defined Networking Framework for Request Allocation 17

improved throughput. One can imagine an overloading case of any one datacenter,
where the response time can be significantly increased and the throughput of the
overall system can be seriously decreased. To capture bandwidth resource usage
at each datacenter, we define the bandwidth utilization of each datacenter dj as Pj,
which is given by

Pj =
K

∑
k=1

N

∑
i=1

rk,iwi,jvk
i,jbi

Uj
.

At this time, we interpret the benefit of the service provider as the social utility
gain in a Nash bargaining game. The Nash bargaining game is described as follows:
M datacenters are viewed as players, and requests from K end-users are viewed
as commodities. Each player enters the game with bandwidth utilization Pj as the
utility function and aims to maximize its own utility. In the long-term, it achieves
a win–win solution. By utilizing the concept of the Nash bargaining solution,
we simply obtain an equilibrium point that guarantees the load balance between
multiple datacenters and achieves high bandwidth utilization. The benefit of the
service provider is computed by ∏M

j=1 Pj.

2.1.2.2 The Benefit of End-Users

From the perspective of end-users, they have a strong desire for good user experi-
ence and fair treatment. User experience is end-users’ perceptions and responses of
system aspects such as utility, ease of use, and efficiency, that result from the use
or anticipated use of service. In our framework, we consider that user experience
depends on the most important metric response time inside the datacenter and some
inherent cost, i.e., the price of application instance, electricity cost, etc.

We build a set of parallel queues denoting each application instance inside
datacenters, such as queuei,j. Requests arrive one by one into its corresponding
infinite capacity queue. For each application instance in dj, let θi,j denote the mean
arrival rate of requests and τi,j represent the inter-arrival time whose expected value
is 1/θi,j; ϕi,j captures the mean service time, and ρi,j = θi,jϕi,j is the traffic offered
corresponding to the fraction of time the server is busy if the application instance
is served by a single server. Let σ2

ϕi,j
and σ2

τi,j
represent the squared coefficient of

variation of service time and request inter-arrival time, respectively. Now, we obtain
an expression for the average response time. We approximate queuei,j by a G/G/1
queue using the method in [15]. In this case, the average response time is defined by

δi,j = ϕi,j +ϕi,j
ρi,j

1−ρi,j

(
σ2

ϕi,j
+σ2

τi,j

2

)
,

where the first term is the average service time and the second term denotes the
average waiting time in queuei,j.

18 2 Software-Defined Networking Based Request Allocation in Distributed. . .

Next, we present the inherent cost for end-users. Let ξ k
i,j represent the inherent

cost of ck requests ai within dj. The inherent cost may be caused by the price
of application, spatial distance from end-user to datacenter, or electricity cost. In
order to qualify user experience, we propose the concept of user experience degree,
which ranges from 0 to 1. Let the user experience degree of ck when requesting the
application instance ai within dj be denoted by uk

i,j, which is defined as follows:

uk
i,j = exp(−δi,j −ξ k

i,j).

Note that uk
i,j is a decreasing function of the average response time δi,j and inherent

cost ξ k
i,j, which is reasonable in practice. Based on the average response time δi,j and

inherent cost ξ k
i,j, the average user experience degree of end-user ck is denoted by

Tk, which is given by

Tk =
M

∑
j=1

N

∑
i=1

rk,iwi,jv
k
i,ju

k
i,j/

N

∑
i=1

rk,i.

We are now in a position to formally formulate the benefit of end-users as the
Nash product in another Nash bargaining game. In this game, K end-users are
viewed as players and M datacenters are viewed as commodities. Rational players
will seek to an appropriate datacenter to maximize its utility, which is denoted by
its own average user experience Tk. Players cooperate in this game to achieve a
win–win solution. Therefore, fairness among end-users and high user experience
can be achieved from the Nash bargaining solution. Thus, the benefit of end-users
is defined by ∏K

k=1 Tk.

2.1.3 Problem Formulation

We now formulate the request allocation problem as an optimization problem,
considering both the benefits of service provider and end-users.

max

⎛
⎜⎜⎝

M
∏
j=1

Pj

K
∏

k=1
Tk

⎞
⎟⎟⎠ (2.2)

s.t.
K

∑
k=1

N

∑
i=1

rk,iwi,jv
k
i,jbi ≤ Uj,∀j, (2.3)

M

∑
j=1

vk
i,j = 1,∀k,∀i, (2.4)

2.1 A Software-Defined Networking Framework for Request Allocation 19

where Eq. 2.3 stands for the bandwidth capacity constraint, and Eq. 2.4 denotes that
each request can only be allocated to one datacenter. Here, we ignore the case when
rk,i ∗wi,j = 0 while vk

i,j = 1 since it has no influence on the two objectives. We obtain

the real value of vk
i,j from Eq. 2.1. The first objective in Eq. 2.2 stands for the benefit

of the service provider, and the second represents the benefit of end-users. By taking
the logarithm of the two objectives in Eq. 2.2, we derive another multi-objective
optimization problem as follows:

max

⎛
⎜⎜⎜⎝

M
∑

j=1
ln

K
∑

k=1

N
∑

i=1

rk,iwi,jvk
i,jbi

Uj

K
∑

k=1
ln

∑M
j=1 ∑N

i=1 rk,iwi,jvk
i,ju

k
i,j

∑N
i=1 rk,i

⎞
⎟⎟⎟⎠. (2.5)

By utilizing the linear weighted sum method in Eq. 2.5, we obtain a single objective
optimization problem. Note that by adding a weight factor in front of each objective,
any desired trade-off point between the benefit of the service provider and the benefit
of end-users can be achieved. Let λ1 and λ2 denote the weight of the benefit of
the service provider and benefit of end-users, respectively. The sum of these two
weights should be a unitary value, i.e., λ1 + λ2 = 1. Then, obtain the following
single objective optimization problem:

max H(v), (2.6)

where

H(v) =λ1

M

∑
j=1

ln
K

∑
k=1

N

∑
i=1

rk,iwi,jvk
i,jbi

Uj
+

λ2

K

∑
k=1

ln
∑M

j=1 ∑N
i=1 rk,iwi,jvk

i,ju
k
i,j

∑N
i=1 rk,i

.

The following theorem indicates that the optimal solution to Eq. 2.6 must be the
efficient solution to Eq. 2.5.

Theorem 1. The optimal solution to the single objective optimization problem in
Eq. 2.6 must be the efficient solution to the multi-objective optimization problem in
Eq. 2.5.

Proof. First, let

Ψ1(v) =
M

∑
j=1

ln
K

∑
k=1

N

∑
i=1

rk,iwi,jvk
i,jbi

Uj
,

and

Ψ2(v) =
K

∑
k=1

ln
∑M

j=1 ∑N
i=1 rk,iwi,jvk

i,ju
k
i,j

∑N
i=1 rk,i

.

20 2 Software-Defined Networking Based Request Allocation in Distributed. . .

Let v be the matrix (vk
i,j) and the feasible region of v be denoted by Z, which is a

set of v that satisfies the constraint in Eqs. 2.3 and 2.4. We assume that v∗ is the
optimal solution to the single objective optimization problem in Eq. 2.6, but is not
the efficient solution to the multi-objective optimization problem in Eq. 2.5. Then,
there exists v� ∈ Z such that

Ψ1(v
�)>Ψ1(v

∗),

Ψ2(v
�)>Ψ2(v

∗).

Then, we obtain

λ1Ψ1(v
�)+λ2Ψ2(v

�)> λ1Ψ1(v
∗)+λ2Ψ2(v

∗).

This indicates that v∗ is not the optimal solution to the problem in Eq. 2.6. Hence,
the theorem is proven.

2.2 Request Allocation Algorithm with a Software-Defined
Networking Global View

Clearly, the problem in Eq. 2.6, a nonlinear integer optimization problem whose
variables can only take on integer quantities or discrete values, is NP-hard [13].
Problems like this are usually solved by implicit enumeration methods or cutting
plane methods. However, the computational complexity may increase significantly
as the number of discrete variables increases. In this paper, we resort to logarithmic
smoothing [16], a continuation approach for nonlinear integer programming prob-
lems. We first present logarithmic smoothing and then detail our request allocation
algorithm.

2.2.1 Logarithmic Smoothing

Logarithmic smoothing can be an efficient smoothing method. Before presenting
the logarithmic smoothing technique, we make a few transformations. First, let X
be the matrix (Xk,i

j), where Xk,i
j is a number between 0 and 1 and is defined by

Xk,i
j =

{
rk,iwi,jvk

i,j if rk,iwi,j �= 0,

0 otherwise.
(2.7)

Next, we include the slack variable Yj for Eq. 2.3. Then Eq. 2.3 can be written in
matrix form as follows:

A1X+Y = U.

2.2 Request Allocation Algorithm with a Software-Defined Networking. . . 21

The matrices A1, X, and Y are defined by

A1 =

⎡
⎢⎢⎢⎣

BT 0 0 0
0 BT 0 0
...

...
. . .

...
0 0 0 BT

⎤
⎥⎥⎥⎦ ,

X = (

K︷ ︸︸ ︷
X1,1

1 , . . . ,X1,N
1︸ ︷︷ ︸

N

, . . . ,X2,1
1 , . . . ,X2,N

1 , . . . ,XK,N
M)T ,

Y = (Y1, . . . ,YM)T ,

U = (U1, . . . ,UM)T ,

where A1 is an (M×MKN) matrix and

B = (

N︷ ︸︸ ︷
b1, . . . ,bN , . . . ,b1, . . . ,bN︸ ︷︷ ︸

K

)T .

Equation 2.4 can also be transformed into the following matrix form:

A2X = e.

Here, A2 and e are defined by

A2 = (

M︷ ︸︸ ︷
ê1, . . . , êKN︸ ︷︷ ︸

KN

, . . . , ê1, . . . , êKN),

e = [1,1, . . . ,1]T ,

where A2 is a (KN×MKN) matrix and êi is the ith column of the (KN×KN) identity
matrix IKN ; e is a vector with KN elements.

Therefore, we transform Eq. 2.6 into a matrix form in Eq. 2.8 that contains
equality constraints only. Then, we have

min − f (X) (2.8)

s.t. A1X+Y = U,

A2X = e,

X ∈ {0,1}M×K×N ,

22 2 Software-Defined Networking Based Request Allocation in Distributed. . .

where

f (X) =λ1

M

∑
j=1

ln
K

∑
k=1

N

∑
i=1

Xk,i
j bi

Uj
+

λ2

K

∑
k=1

ln
∑M

j=1 ∑N
i=1 Xk,i

j uk
i,j

∑N
i=1 rk,i

.

Now, we present logarithmic smoothing, which primarily relies on a logarithmic
barrier and penalty term. Let Φ(X,Y) be the smoothing function defined by

Φ(X,Y) =−
M

∑
j=1

K

∑
k=1

N

∑
i=1

[lnXk,i
j + ln(1−Xk,i

j)]+
M

∑
j=1

lnYj.

Since the feasible region of the independent variable must be nonnegative in the
logarithm function, the logarithmic barrier function simply eliminates inequality
constraints. Thus, we obtain the transformed problem as follows:

min − f (X)+μΦ(X,Y) (2.9)

s.t. A1X+Y = U,

A2X = e,

where μ > 0 is the smoothing parameter and −f (X)+ μΦ(X,Y) is strictly convex
if μ is large enough as prescribed by Lemma 3.1 in [17]. The following theorem
indicates that there is a unique solution to Eq. 2.9.

Theorem 2. Suppose the set {X : A1X + Y = U;A2X = e}⋂(0,1)K×N×M is
nonempty. Then Eq. 2.9 has a solution X∗(μ) ∈ (0,1)K×N×M. Also, there exists
μ∗ > 0 such that for all μ > μ∗, the solution to Eq. 2.9 is unique.

Proof. First, we show the existence of X∗(μ) for any μ > 0. Define S =
[1/4,3/4]M×K×N ⋂{X : A1X + Y = U;A2X = e}. Since S is a compact set and
−f (X)+μΦ(X,Y) is a continuous function on S, there exist real numbers L1 and L2

such that L1 ≤−f (X)+μΦ(X,Y)≤ L2 for all S. Since −f (X)+μΦ(X,Y)→ ∞ as
Xk,i

j → 0+ or 1−, there exists ε such that for all X ∈ ((0,ε]
⋃
[1− ε ,1)M×K×N ⋂{X :

A1X+Y = U;A2X = e},
− f (X)+μΦ(X,Y)> L2. (2.10)

Furthermore, ε must be greater than 1/4. Define S1 = [ε ,1−ε]M×K×N ⋂{X : A1X+
Y = U;A2X = e}. Again, by continuity of −f (X)+ μΦ(X,Y) on the compact set
S1, there exists Z ∈ S1 such that −f (Z)+ μΦ(Z,Y) ≤ −f (X)+ μΦ(X,Y) for all
X ∈ S1. Moreover, −f (Z) + μΦ(Z,Y) ≤ L2 as S ⊂ S1. By utilizing Eq. 2.10, we
have −f (Z)+ μΦ(Z,Y) < −f (X)+ μΦ(X,Y) for all X ∈ (0,1)M×K×N\S1. Thus,
Z is required for X∗(μ).

2.2 Request Allocation Algorithm with a Software-Defined Networking. . . 23

The uniqueness of X∗(μ) for sufficiently large μ follows from Lemma 3.1 of
[17] and the convexity of the feasible region in Eq. 2.9.

Observe that the unique solution is obtained for Eq. 2.9 with no definitive
rounding, i.e., the variables are not close to 0 or 1. Motivated by this, we present
a plenty term, which is defined by

γ
M

∑
j=1

K

∑
k=1

N

∑
i=1

Xk,i
j

(
1−Xk,i

j

)
,

where γ > 0 is a penalty parameter. Notice that the penalty term forces binary
variables to their bounds. Therefore, the actual problem we are solving is

min F(X,Y) (2.11)

s.t. A1X+Y = U, (2.12)

A2X = e, (2.13)

where

F(X,Y) =− f (X)+μΦ(X,Y)+

γ
M

∑
j=1

K

∑
k=1

N

∑
i=1

Xk,i
j

(
1−Xk,i

j

)
.

The following theorem demonstrates that Eqs. 2.9 and 2.11 share the same solution.

Theorem 3. There exists γ∗ > 0 such that for all γ > γ∗, Eqs. 2.9 and 2.11 have the
same minimizer.

Proof. First, let Θ(X) = −f (X)+ μΦ(X,Y); then, let t(p) denote the set elements
of {0,1}M×K×N , and T(p) denote the set {Ẋ ∈ [0,1]M×K×K : ‖Ẋ − t(p)‖ < 1/4}.
Suppose X ∈ T(q) for some q. Then for indices i, j,k in which tk,ij

(q)
= 0, we have

xk,i
j = |xk,i

j − tk,ij
(q)| ≤ ‖X− t(q)‖ ≤ 1/4, so that

|xk,i
j − tk,ij

(q)|= xk,i
j ≤ 2xk,i

j (1− xk,i
j). (2.14)

Similarly, for indices i, j,k in which tk,ij
(q)

= 1, we have 1− xk,i
j = |xk,i

j − tk,ij
(q)| ≤

‖X− t(q)‖ ≤ 1/4, so that

|xk,i
j − tk,ij

(q)|= 1− xk,i
j ≤ 2xk,i

j (1− xk,i
j). (2.15)

24 2 Software-Defined Networking Based Request Allocation in Distributed. . .

By Taylor’s theorem, there exists � ∈ [0,1]M×K×N such that Θ(X) = Θ(t(q)) +
(
Θ(�))T (X− t(q)). Since
Θ(t(q)) is continuous on the compact set [0,1]M×K×N ,
there exists some constant L0 > 0 such that

Θ(t(q))−Θ(X)≤ |Θ(X)−Θ(t(q))|
= |(
Θ(�))T (X− t(q))|
≤ L0‖(X− t(q))‖

= L0

√√√√ M

∑
j=1

K

∑
k=1

N

∑
i=1

(xk,i
j − tk,ij

(q)
)2

≤ L0

M

∑
j=1

K

∑
k=1

N

∑
i=1

|xk,i
j − tk,ij

(q)|

from Eqs. 2.14 and 2.15

≤ 2L0

M

∑
j=1

K

∑
k=1

N

∑
i=1

xk,i
j (1− xk,i

j).

So, if γ > 2L0,

Θ(t(q))≤Θ(X)+ γ
M

∑
j=1

K

∑
k=1

N

∑
i=1

xk,i
j (1− xk,i

j)

for X ∈ T(q).
Suppose X ∈ C, where C = [0,1]M×K×N\(⋃T(p)

)
. By the continuity of

∑M
j=1 ∑K

k=1 ∑N
i=1 xk,i

j (1 − xk,i
j) on the compact set C, there exist L1 and L2 such

that Θ(X) ≥ L1 and ∑M
j=1 ∑K

k=1 ∑N
i=1 xk,i

j (1− xk,i
j) ≥ L2 for all X ∈ C. In particular,

L2 > 0 since X �= t(p) for all p. This implies that for all X ∈ C,

Θ(X)+ γ
M

∑
j=1

K

∑
k=1

N

∑
i=1

xk,i
j (1− xk,i

j)≥ L1 + γL2

≥Θ(t(p))

for all p if γ ≥ (L3−L1)/L2, where L3 = maxp Θ(t(p)). Thus, if γ > max{2L0,(L3−
L1)/L2}, we have L3 ≤Θ(X)+ γ ∑M

j=1 ∑K
k=1 ∑N

i=1 xk,i
j (1− xk,i

j). Letting

p
′
= argmin

p:A1t(p)+Y=U;A2t(p)=e

Θ(t(p))

2.2 Request Allocation Algorithm with a Software-Defined Networking. . . 25

and γ∗ = max{2L0,(L3 −L1)/L2}, we also have

Θ(t(p
′
))+ γ

M

∑
j=1

K

∑
k=1

N

∑
i=1

tk,i
j

(p
′
)
(1− tk,i

j
(p

′
)
)

=Θ(t(p
′
))

≥Θ(X)+ γ
M

∑
j=1

K

∑
k=1

N

∑
i=1

xk,i
j (1− xk,i

j)

for all X ∈ [0,1]M×K×N ⋂{p : A1X+Y =U;A2X = e} if γ > γ∗. The theorem follows

from the observation that t(p
′
) is the minimizer of Eqs. 2.9 and 2.11.

The following theorem indicates that the solution is obtained for Eq. 2.11 with
variables close to 0 or 1 by adding the plenty term.

Theorem 4. Let X(γ ,μ) be any local minimizer of Eq. 2.11. Then lim
γ→∞

lim
μ→0

Xk,i
j

(γ ,μ) = 0 or 1, ∀j,∀k,∀i.

Proof. Let γ > 0. The objective function in Eq. 2.11 can be rewritten as

F(X,Y) = fγ(X,Y)+μΦ(X,Y),

where

fγ(X,Y) =−f (X)+ γ
M

∑
j=1

K

∑
k=1

N

∑
i=1

Xk,i
j

(
1−Xk,i

j

)
.

Also, let X(γ) be a solution to

min fγ(X,Y)

s.t. A1X+Y = U,

A2X = e,

0 ≤ X ≤ e.

Notice that

lim
μ→0

X(γ ,μ) = X(γ).

Observe that the above problem becomes a sequence of penalty subproblems for
Eq. 2.8 when γ is used as the penalty parameter. By Theorem 3, we know that
Xk,i

j (γ ,μ)= {0,1} for sufficiently large γ so that Xk,i
j (γ)→ 0 or 1 as γ →∞,∀i,∀j,∀k.

Finally, this implies lim
γ→∞

lim
μ→0

Xk,i
j (γ ,μ) = 0 or 1, ∀j, ∀k, ∀i.

26 2 Software-Defined Networking Based Request Allocation in Distributed. . .

2.2.2 Request-Allocation Algorithm

The first-order optimality conditions of Eq. 2.11 can be written as

X F(X,Y)+AT
1 ˛+AT

2 ˇ = 0, (2.16)

Y F(X,Y)+˛ = 0, (2.17)

A1X+Y = U, (2.18)

A2X = e, (2.19)

where ˛ = (α1,α2, . . . ,αM)T corresponds to the Lagrange multiplier for the con-
straint in Eq. 2.12. Similarly, ˇ = (β1,1, . . . ,β1,N , . . . ,βK,1, . . . ,βK,N), is a (KN × 1)
matrix that denotes the Lagrange multiplier for the constraint in Eq. 2.13. Directly
applying Newton’s method yields

⎡
⎢⎢⎣

F1 F2 AT
1 AT

2

F3 F4 I 0
A1 I 0 0
A2 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ΔX
ΔY
Δ˛

Δˇ

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎦ , (2.20)

where F1, F2, F3, and F4 are as follows:

F1 =
XXF(X,Y),

F2 =
XYF(X,Y),

F3 =
YXF(X,Y),

F4 =
YYF(X,Y).

Furthermore, r1, r2, r3, and r4 are defined by

r1 =−(
XF(X,Y)+AT
1 ˛+AT

2 ˇ
)
,

r2 =−(
YF(X,Y)+˛) ,

r3 =−(A1X+Y−U) ,

r4 =−(A2X− e) .

Observe that Eq. 2.20 can be reduced as follows:

[
H AT

2

A2 0

][
ΔX
Δˇ

]
=

[
u
r4

]
, (2.21)

2.2 Request Allocation Algorithm with a Software-Defined Networking. . . 27

where

H = F1 −F2A1 −AT
1 F3 +AT

1 F4A1,

u = r1 −F2r3 −AT
1 r2 +AT

1 F4r3.

The rest of the Newton directions can be obtained using the following equations:

�Y = r3 −A1ΔX,

�˛ = r2 −F3ΔX−F4ΔY.

Letting Z be a matrix with columns that form a basis null-space matrix of A2; then,
we have A2Z = 0. Let X0 be any feasible point such that A2X0 = e; thus, �X = Zx
for some x. Substituting this into the top part of Eq. 2.21 and premultiplying both
sides by ZT yields

ZTHZx = ZTu, (2.22)

where x can be obtained using a conjugate gradient method [18]. After obtaining
the corresponding ΔX, we then obtain ΔY, Δ˛, and Δˇ. By performing a linear
search method to determine the step size ρl, we set Xl+1 = Xl+ρl�X. Similarly, we
update Yl+1, ˛l+1 and ˇl+1. Our request allocation algorithm based on logarithmic
smoothing is summarized in Algorithm 1. The following theorem states that our
algorithm significantly converges to the unique solution.

Theorem 5. Let {μt}∞
t=1 be a recursive sequence of positive numbers such that

lim
t→∞

μt = 0. Moreover, suppose that there exists (X∗,Y∗,˛∗,ˇ∗) that satisfies

Eqs. 2.16–2.19. Then,

lim
t→∞

X(μt) = X∗.

Proof. Since (X∗,Y∗,˛∗,ˇ∗) satisfies Eqs. 2.16–2.19, the following equations hold:

X∗ F(X∗,Y∗)+AT
1 ˛∗+AT

2 ˇ∗ = 0, (2.23)

Y∗ F(X∗,Y∗)+˛∗ = 0, (2.24)

A1X∗+Y∗ = U, (2.25)

A2X∗ = e. (2.26)

Moreover, for each t,

X(μt) F(X(μt),Y(μt))+AT
1 ˛(μt)+AT

2 ˇ(μt) = 0, (2.27)

Y(μt) F(X(μt),Y(μt))+˛(μt) = 0, (2.28)

A1X(μt)+Y(μt) = U, (2.29)

A2X(μt) = e. (2.30)

28 2 Software-Defined Networking Based Request Allocation in Distributed. . .

Algorithm 1 Request-Allocation Algorithm Based on Logarithmic Smoothing
Input:

Request matrix,
[
rk,i

]
K×N

;
Bandwidth capacity, Uj;
Application instance placement matrix,

[
wi,j

]
N×M

;
Amount of bandwidth to handle one request when serving ai ∈N , bi;
Inherent cost, ξ k

i,j;
Average response time, δi,j;
Tolerance for function evaluation, ε;
Tolerance for barrier value, εμ ;
Maximum value for penalty parameter, εγ ;
Rounds of iteration, S;
Reduction ratio for barrier parameter, ημ ;
Reduction ratio for penalty parameter, ηγ ;
Initial value of barrier parameter, μ0;
Initial value of penalty parameter, γ0;
Feasible starting point, r;
Value of the weight, λ1;
Value of the weight, λ2;

Output:

Request-allocation matrix,
[
vk

i,j

]
M×N×K

;

1: Set γ = γ0, μ = μ0;
2: while γ < εγ or μ > εμ do
3: Set

(
X0,Y0,˛0,ˇ0

)
= r;

4: set l = 0;
5: while l ≤ S do
6: if F(X,Y)< εμ then
7: Set XS = Xl,YS = Yl;
8: Set ˛S = ˛l;
9: Set ˇS = ˇl;

10: Set l = S;
11: else
12: By applying the conjugate gradient method for Eq. 2.22, we obtain ΔX, ΔY, Δ˛, Δˇ;
13: Perform a linesearch (see [19]) to determine ρl, set Xl+1 = Xl + ρlΔX, and update

Yl+1, ˛l+1, ˇl+1;
14: end if
15: end while
16: Set r =

(
XS,YS,˛S,ˇS

)
;

17: Set μ = ημ μ;
18: Set γ = 1

ηγ
γ;

19: end while
20: Obtain the request-allocation matrix by Eqs. 2.7 and 2.1;

21: return
[
vk

i,j

]
M×N×K

;

2.3 Experiment Evaluation 29

From Eqs. 2.25, 2.26, 2.29, and 2.30, we obtain[
A1 I
A2 0

][
X(μt)−X∗

Y(μt)−Y∗

]
=

[
0
0

]
, (2.31)

where I is an (M ×M) identity matrix. Furthermore, from Eqs. 2.23, 2.24, 2.27,
and 2.28, we have

[
H1

H2

]
+

[
A1 I
A2 0

]T [
˛(μt)−˛∗

ˇ(μt)−ˇ∗

]
=

[
0
0

]
, (2.32)

where H1 =
X(μt)F(X(μt) −
X∗F(X∗,Y∗) and H2 =
Y(μt)F(X(μt) −

Y∗F(X∗,Y∗). Premultiplying both sides of Eq. 2.32 by

[
X(μt)−X∗

Y(μt)−Y∗

]T

and using

Eqs. 2.25, 2.29, and 2.31 yields

(X(μt)−X∗)T(H1 +H2) = 0.

This implies that

lim
t→∞

X(μt) = X∗.

2.3 Experiment Evaluation

2.3.1 Simulation Setup

We employ simulators and real-word traces to evaluate our request allocation algo-
rithm. We simulate a provider that deploys three datacenters, marked as Datacenter
1 to 3, hosting three types of application instances altogether. We used Wikipedia
request traces [20] as the real-word traces to represent the request traffic, which
contains requests issued to Wikipedia from 04:10 a.m., September 19, 2007 GMT
to 04:11 a.m., September 20, 2007 GMT. We assumed that the service provider
periodically addresses the optimization problem, i.e., hourly. Figure 2.2 plots the
hourly request traffic, where we extract three traces in all, denoted as Application 1
to 3, with each trace being for a 24 h duration.

Since the dataset does not contain any end-user information, we split the
total requests among three users following a normal distribution. Without loss
of generality, we assumed that each datacenter is equipped with the same set of
application instances as well as the same fixed bandwidth capacity. Each type of
application instance ai ∈N consumes the same amount of bandwidth, such as one
unit of bandwidth when handling one corresponding request. We considered the

30 2 Software-Defined Networking Based Request Allocation in Distributed. . .

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (Hour)

R
eq

ue
st

s
(1

03)

APP 1
APP 2
APP 3

Fig. 2.2 Wikipedia request traces for 24 h

Table 2.1 Default
simulation parameter values

Parameter Value

M 3

K 3

N 3

bi,∀i 1

wj,∀j (1,1,1)

λ1 = λ2 0.5

benefits of service providers and end-users to have the same importance; thus, we
set λ1 = λ2. The default parameters are summarized in Table 2.1.

The inherent cost ξ k
i,j can be varied dynamically and periodically as end-users’

demands change. For simplicity, in our simulation, we assumed that ξ k
i,j = 1. Note

that parameters θi,j, σ2
τi,j

, ϕi,j, and σ2
ϕi,j

are all time varying as well as stochastic,
requiring a prediction of their values at each interval. We obtained the prediction
values of these variables for the current interval from the previous interval, i.e., the
prediction values in hour 12 were based on information in hour 11. By using the
prediction values of θi,j, σ2

τi,j
, ϕi,j, and σ2

ϕi,j
for a given interval, the response time

can be acquired.

2.3.2 Performance Analysis

We first evaluated the performance of our request allocation algorithm. The
bandwidth capacity of each datacenter was set to 1000 units (i.e., Uj = 1000 for all j).
Figure 2.3 shows the average bandwidth utilization with total requests for a 24 h
period of time. Clearly, the average bandwidth utilization figure closely follows the

2.3 Experiment Evaluation 31

Fig. 2.3 Average bandwidth
utilization, Uj = 1000

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 B
an

dw
id

th
 U

til
iz

at
io

n

Time (Hour)
0 5 10 15

0

800

1600

2400

3200

4000

T
ot

al
 R

eq
ue

st
s

Fig. 2.4 Average user
experience degree, Uj = 1000

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 U
se

r
E

xp
er

ie
nc

e
D

eg
re

e

Time (Hour)
0 5 10 15 20

0

800

1600

2400

3200

4000

T
ot

al
 R

eq
ue

st
s

total requests. We observed that the average bandwidth utilization is below 0.8 most
of the time. This allows providers ample residual financial bandwidth resources to
do other work without having to consider the extra bandwidth cost involved in this
request allocation problem.

The performance can be better explained by Fig. 2.4, which shows the average
user experience degree versus total requests. We found that average user experience
maintains a relatively stable value of 0.24, which demonstrates that our request
allocation algorithm guarantees stable user experience with no relation to total
requests. Although requests are picked, service providers can offer stable service
to end-users.

To understand the performance of our request allocation algorithm on a micro-
scopic level, we plot the cumulative distribution function (CDF) per request across
all end-users and all hours in Fig. 2.5. Observe that most of the requests, more than
95 %, are served with a response time less than 1000 ms. Only less than 5 % are
more than 1000 ms, which we will implement in our future work.

32 2 Software-Defined Networking Based Request Allocation in Distributed. . .

Fig. 2.5 Cumulative
distribution function (CDF)
of per request response time,
Uj = 1000

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Response Time (ms)

C
D

F

Fig. 2.6 Average bandwidth
utilization, Uj = 900

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 B
an

dw
id

th
 U

til
iz

at
io

n

Time (Hour)
0 5 10 15 20

0

800

1600

2400

3200

4000

T
ot

al
 R

eq
ue

st
s

We also considered the performance of our request algorithm with a reduced
bandwidth capacity (i.e., Uj = 900 for all j) while keeping all other settings
unchanged. Compared to Fig. 2.3, Fig. 2.6 demonstrates higher average bandwidth
utilization. Figure 2.7 also shows that the average user experience degree is
unchanged compared to that in Fig. 2.4. This further verifies that stable service is
guaranteed. As shown in Fig. 2.8, the response time per request is similar to that in
Fig. 2.5. All these facts show that when holding total requests, providers can reduce
the bandwidth capacity for each datacenter without reducing the user experience
degree, which can indirectly improve provider profits.

Now, we investigate the fairness achieved with our request allocation algorithm.
We used a simple model that shares all of the same constraints with our model, but
uses

2.3 Experiment Evaluation 33

Fig. 2.7 Average user
experience degree, Uj = 900

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 U
se

r E
xp

er
ie

nc
e

D
eg

re
e

Time (Hour)
0 5 10 15 20

0

800

1600

2400

3200

4000

To
ta

l R
eq

ue
st

s

Fig. 2.8 CDF of per request
response time, Uj = 900

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Response Time (ms)

C
D

F

max

⎛
⎜⎜⎝

M
∑

j=1
Pj

K
∑

k=1
Tk

⎞
⎟⎟⎠

as the objective function instead of Eq. 2.2. For simplicity, we denote this model by
RAUF, and denote our model by RAF. Note that RAUF does not contain the fairness
issue and can also be solved by logarithmic smoothing, and then, Newton’s method,
the conjugate method, and linesearch method can be applied. We determined that
RAUF always allocates requests to a datacenter with lower response time for
the objective that maximizes the sum of the total bandwidth utilization and total
user experience degree; thus, user experience can be guaranteed. We evaluated
the fairness for different bandwidth capacities, 1000 and 900, for each datacenter,
respectively.

34 2 Software-Defined Networking Based Request Allocation in Distributed. . .

Fig. 2.9 Standard deviation
of bandwidth utilization,
Uj = 1000

0 5 10 15 20
0

0.4

0.8

1.2

1.6

2
x 10−3

Time (Hour)
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

RAF
RAUF

Fig. 2.10 Standard deviation
of bandwidth utilization,
Uj = 900

0 5 10 15 20
0

0.4

0.8

1.2

1.6

2
x 10−3

Time (Hour)
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1
RAF
RAUF

Figure 2.9 first shows the fairness comparison of RAF and the simplified RAUF,
where we use the standard deviation of bandwidth utilization for each datacenter at
each time as the fairness measure. A fair request allocation strategy can achieve a
load balance between datacenters with a smaller standard deviation, while a poor
algorithm that does not consider fairness has a larger standard deviation. Observe
from Fig. 2.9 that in a 24 h period, RAF always achieves a much smaller standard
deviation, which translates to a much better load balance among datacenters. The
load balance generally improves over the time, which verifies the effectiveness of
our model. This is further confirmed in Fig. 2.10 with a reduced bandwidth capacity
(i.e., Uj = 900 for all j) for each datacenter.

2.3 Experiment Evaluation 35

Fig. 2.11 Standard deviation
of the user experience degree,
Uj = 1000

0 5 10 15 20
0

0.003

0.006

0.009

0.012

0.015

Time (Hour)
0 5 10 15 20

0

0.003

0.006

0.009

0.012

0.015

RAF
RAUF

Fig. 2.12 Standard deviation
of the user experience degree,
Uj = 900

0 5 10 15 20
0

0.003

0.006

0.009

0.012

0.015

Time (Hour)
0 5 10 15 20

0

0.003

0.006

0.009

0.012

0.015
RAF
RAUF

We also studied fairness between end-users. Figure 2.11 shows the standard
deviation of the average user experience degree for RAF and RAUF. Observe
that RAF achieves a much smaller standard deviation than RAUF, which implies
RAF achieves better fairness for users than RAUF. This point is further verified
in Fig. 2.12, where the bandwidth capacity for each datacenter reduces to 900.
Figures 2.13 and 2.14 present the average bandwidth utilization for different
bandwidth capacities. Although RAUF provides better user experience than RAF,
its fairness for end-users is worse than that of RAF. Overall, we believe that our
algorithm is practical for real-word problems.

36 2 Software-Defined Networking Based Request Allocation in Distributed. . .

Fig. 2.13 Average user
experience degree, Uj = 1000

0 5 10 15 20
0

0.2

0.4

A
ve

ra
ge

 U
se

r
E

xp
er

ie
nc

e
D

eg
re

e

Time (Hour)
0 5 10 15 20

0

0.2

0.4

A
ve

ra
ge

 U
se

r
E

xp
er

ie
nc

e
D

eg
re

e

RAF

RAUF

Fig. 2.14 Average user
experience degree, Uj = 900

0 5 10 15 20
0

0.2

0.4

A
ve

ra
ge

 U
se

r
E

xp
er

ie
nc

e
D

eg
re

e

Time (Hour)
0 5 10 15 20

0

0.2

0.4

A
ve

ra
ge

 U
se

r
E

xp
er

ie
nc

e
D

eg
re

e

RAF
RAUF

2.4 Conclusion

In this chapter, we took advantage of the central control provided by SDN to address
the request allocation problem in distributed datacenters. Unlike existing work on
request allocation, we developed a general formulation of the request allocation
problem considering both the benefit of service providers and end-users. We applied
two Nash bargaining games, where each Nash product denoted the benefit of the
service provider and the benefit of end-users, respectively. Specifically, we proposed
the concept of the user experience degree to capture user experience, which depends
on the most important metric response time inside the datacenter and some inherent
cost. Furthermore, we presented an efficient request allocation algorithm based on
logarithmic smoothing. After applying Newton’s method, the conjugate method, and
linear search method, we theoretically proved that our request allocation algorithm
significantly converges to a unique solution. We evaluated its efficiency and
practicality using real-word traces in our simulations. Our algorithm simultaneously

References 37

achieved high bandwidth utilization as well as load balance for service providers
and good user experience, as well as fairness for end-users. Extensive simulations
showed that our algorithm exhibits better fairness than a framework where fairness
is not considered. Overall, our work shows that it is feasible for an SDN controller
to implement request allocation.

References

1. C. Guo, H. Wu, K. Tan, et al. Dcell: A Scalable and Fault-tolerant Network Structure for Data
Centers. ACM SIGCOMM Computer Communication Review, 2008, 38(4): 75–86.

2. A. Singh, M. Korupolu and D. Mohapatra. Server-storage Virtualization: Integration and Load
Balancing in Data Centers. Proceedings of the 2008 ACM/IEEE conference on Supercomput-
ing. ACM/IEEE, 2008: 1–12.

3. R. Buyya, R. Ranjan and R. N. Calheiros. Intercloud: Utility-oriented Federation of Cloud
Computing Environments for Scaling of Application Services. Algorithms and Architectures
for Parallel Processing. Springer Berlin Heidelberg, 2010: 13–31.

4. A. Qureshi, R. Weber, H. Balakrishnan, et al. Cutting the Electric Bill for Internet-scale
Systems. ACM SIGCOMM Computer Communication Review, 2009, 39(4): 123–134.

5. P. X. Gao, A. R. Curtis, B. Wong, et al. It’s Not Easy Being Green. ACM SIGCOMM Computer
Communication Review, 2012, 42(4): 211–222.

6. Z. Liu, M. Lin, A. Wierman, et al. Greening Geographical Load Balancing. Proceedings of
the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of
Computer Systems. ACM, 2011: 233–244.

7. H. Xu and B. Li. Cost Efficient Datacenter Selection for Cloud Services. Proceedings of the
1st IEEE International Conference on Communications in China (ICCC 2012). IEEE, 2012:
51–56.

8. K. Boloor, R. Chirkova, Y. Viniotis, and T. Salo. Dynamic Request Allocation and Scheduling
for Context Aware Applications Subject to A Percentile Response Time SLA in A Distributed
Cloud. Proceedings of the 2nd International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, 2010: 464–472.

9. P. Wendell, J. W. Jiang, M. J. Freedman, et al. Donar: Decentralized Server Selection for Cloud
Services. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 231–242.

10. H. Xu and B. Li. Joint Request Mapping and Response Routing for Geo-distributed Cloud
Services. Proceedings of the IEEE INFOCOM. IEEE, 2013: 854–862.

11. S. Shenker, M. Casado, T. Koponen, et al. The Future of Networking, and the Past of Protocols.
Open Networking Summit, Stanford University, USA, October 2011.

12. W. Li, H. Qi, K. Li, et al. Joint Optimization of Bandwidth for Provider and Delay
for User in Software Defined Data Centers. IEEE Transactions on Cloud Computing.
DOI: 10.1109/TCC.2015.2402677.

13. E. Cela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic,
Dordrecht, 1998.

14. A. Muthoo. Bargaining Theory with Applications. Cambridge University Press, 1999.
15. G. Bolch, S. Greiner, H. Meer, et al. Queueing Networks and Markov Chains: Modeling and

Performance Evaluation with Computer Science Applications. John Wiley & Sons, 2006.
16. W. Murray, K. Ng. An Algorithm for Nonlinear Optimization Problems with Binary Variables.

Computational Optimization and Applications, 2010, 47(2): 257–288.
17. K. M. Ng. A Continuous Approach for Solving Nonlinear Optimization Problems with

Discrete Variable. Stanford: Department of Management Science and Engineering of Stanford
University, 2002.

http://dx.doi.org/10.1109/TCC.2015.2402677

38 2 Software-Defined Networking Based Request Allocation in Distributed. . .

18. G. H. Golub and C. F. Loan. Matrix Computation, The John Hopkins University Press,
Baltimore and London, 1996.

19. A. Forsgren and W. Murray. Newton methods for large-scale linear equality-constrained
minimization, SIAM Journal on Matrix Analysis and Applications, 1993, 14(2): 560–587.

20. Wikipedia Request Traces, http://www.wikibench.eu/.

http://www.wikibench.eu/

Chapter 3
Software-Defined Networking Controller
Placement in Distributed Datacenters

Abstract From the previous chapter, one can see that software-defined networking
(SDN) can be applied to large-scale distributed datacenter networks for network
control and management. When this occurs, a logically centralized and physically
distributed control plane is usually required. This type of control plane consists of
multiple controllers communicating with one another. The collaboration of these
controllers facilitates the maintenance of a global consistent view of the entire
network. However, there are many new problems that must be addressed when
a distributed control plane is deployed in a large-scale network; in particular,
controller placement is one key problem. Controller placement refers to selecting the
proper positions of the controllers to further improve the scalability and performance
of the distributed control plane. In this chapter, we propose a novel placement
metric for deploying multiple controllers that measures the cost when controllers
with limited capacity handle request messages from switches. Then, we formulate
the optimal controller placement problem as an integer linear program (ILP) and
use an effective approximation algorithm to find its solution. We conduct intensive
experiments based on many real topologies. Our results demonstrate that our
strategy can significantly improve performance over existing strategies in terms of
both cost and load balance.

In recent years, the use of software-defined networking (SDN) has increased and
deepened. Using a well-defined application programming interface (API) provided
by an SDN controller, routing can be customized for network control, and a
network-wide view for network management can be maintained. Although we can
benefit from the centralized control realized by SDN, it is big challenge to deploy
SDN in large-scale networks such as distributed datacenter networks and wide
area networks (WANs). When adopting a single controller in large-scale networks,
problems arise such as limited scalability or a single point of failure. To address
these problems, a logically centralized and physically distributed control plane is
proposed. This type of control plane usually consists of multiple controllers. These
controllers communicate with each other to realize centralized control. For example,
ON.Lab launched one distributed SDN control platform named the Open Network
Operating System (ONOS) [1].

© The Author(s) 2016
H. Qi, K. Li, Software-Defined Networking Applications
in Distributed Datacenters, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-33135-5_3

39

40 3 Software-Defined Networking Controller Placement in Distributed Datacenters

When deploying a distributed SDN control platform in large-scale distributed
datacenter networks, the placement of multiple controllers is a key problem.
Controller placement refers to selecting the positions of multiple controllers in a
given network. More and more users have discovered that controller placement
strategies influence every aspect of an SDN, from node-to-controller latencies,
network availability, to performance metrics. Therefore, little research has been
conducted on controller placement. Zhang et al. focused on controller placement
in a split architecture network, where the control platform consists of a set of
commodity servers connecting to one or more switches [2]. In their paper, they
proposed a min-cut-based graph partitioning algorithm for controller placement,
minimizing the likelihood of loss of connectivity between controllers and switches.
Heller et al. addressed the controller placement problem with the objective of
minimizing the latencies between switches and controllers [3]. In particular, they
examined the impact of controller placement on average and worst-case latencies
with real topologies. Bari et al. introduced a dynamic controller provisioning
problem (DCPP) [4]. Moreover, they presented a framework that can adapt the
number of controllers and their corresponding locations by changing network
conditions. Hu et al. addressed the controller placement problem in order to
maximize the reliability of control networks [5]. To achieve their goal, they
presented a metric to measure the reliability of an SDN controller. Guo et al.
studied the controller placement problem for network resilience [6]. To improve the
resilience of SDN, they designed a novel metric for resilience and a new solution
for controller placement. Muller et al. proposed a controller placement strategy
named Survivor [7]. In the Survivor strategy, path diversity, capacity, and failover
mechanisms are all taken into consideration. Lange et al. presented a framework for
Pareto-based optimal controller placement [8]. In this framework, various important
metrics were considered including the latency from nodes to controllers, the latency
among controllers, resilience against nodes, and link failures.

These existing controller placement strategies, however, do not take the limited-
capacity of controllers into consideration. In fact, a single controller usually cannot
handle a large number of request messages originating from all infrastructure
switches. Another major problem of these strategies is that the load of a controller
should be balanced. As shown in Fig. 3.1, where different markers and colors
illustrate switch-to-controller assignments, Controller A controls four switches, but
Controller B controls 10 switches with a much higher load. Some controllers control
too many switches, exceeding their limited capacities.

These problems motivate us to answer the following question: given a physical
network and number of controllers, how should these controllers be placed so
that the overall cost of installing forwarding rules from capacity-constrained SDN
controllers to switches is minimized? To address this problem, we propose a new
solution for optimal controller placement. In this solution, we first define the cost
and formulate optimal controller placement as an integer linear programming (ILP)
problem. We then develop a (3+1/|S|)-approximation algorithm using Lagrangian
relaxation to find its solution. Through extensive simulations over real topologies,
we show that the proposed approximation algorithm achieves both cost efficiency
and load balance for controller placement.

3.1 Placement Problem of Multiple Software-Defined Networking Controllers 41

A

location in average-latency-optimized placement

location in worst-case-latency-optimized placement

B

Fig. 3.1 Load-imbalanced examples

The remainder of this chapter is organized as follows. Section 3.1 defines
our novel placement metric and formulates the controller placement problem.
Section 3.2 presents a different approach based on one existing approximation algo-
rithm and analyzes its approximation ratio. Section 3.3 discusses our experimental
results. Finally, Sect. 3.4 concludes this chapter.

3.1 Placement Problem of Multiple Software-Defined
Networking Controllers

In this section, we define our novel placement metric and formulate the controller
placement problem as an ILP problem.

3.1.1 System Model

We consider an SDN-based distributed datacenter network consisting of OpenFlow-
enabled switches and multiple capacity-limited controllers, where each controller
maintains a global view of the network. Generally, a switch is controlled by at least
one controller. The abstract view of the physical network with multiple controllers is
shown in Fig. 3.2, where S is the set of switches and C(C ⊆ S) is the set of locations
where a controller can be deployed.

When a new flow arrives at a switch, the switch first checks its forwarding table
for a matching entry. If a matching forwarding rule exists, packets in the flow are

42 3 Software-Defined Networking Controller Placement in Distributed Datacenters

Fig. 3.2 Abstract view of a physical software-defined networking (SDN) network with multiple
controllers

Table 3.1 Notation and definitions

Notation Definition

S The set of switches, |S|= n

C The set of controllers

k The maximum number of controllers

dij The cost along the shortest path between switch i and controller j

uj The maximum number of requests controller j can handle in a unit of time

δ The maximum allowable cost of any adopted control path

fi The number of flows from switch i in a unit of time

yj A binary variable indicating whether controller j is active

xij A binary variable indicating whether switch i is controlled by controller j

forwarded according to the matching rule. Otherwise, the switch sends a packet-in
OpenFlow message to its controller. The controller then computes a path with its
global network view and installs forwarding rules to all switches along the path of
the flow.

Communications between switches and controllers are made by control paths,
each of which is constituted by existing connections between switches in the
network. Let dij denote the cost of the shortest path between switch i and controller
j expressed in terms of the propagation delay. Any adopted control path should have
cost at most δ (expressed in the same unit as dij).

The associated cost is then considered as the metric for the controller placement
strategies, which can be expressed by D = ∑i∈S ∑j∈C fixijdij, where fi represents the
number of flows from switch i, and xij is an indicator variable denoting whether
switch i is controlled by controller j. The goal is to find a placement of at most k
controllers such that the resulting cost D is minimized. The important notation used
throughout this chapter is listed in Table 3.1.

3.2 Efficient Controller Placement Approximation Algorithm 43

3.1.2 Problem Formulation

Based on the above system model, the controller placement problem studied in this
chapter can be formulated as follows:

min ∑
i∈S

∑
j∈C

fixijdij (LP1)

s.t. ∑
j∈C

xij ≥ 1, ∀i ∈ S (3.1)

∑
j∈C

yj ≤ k, (3.2)

∑
i∈S

xijfi ≤ yjuj, ∀j ∈ C (3.3)

xijdij ≤ δ , ∀i ∈ S,∀j ∈ C (3.4)

xij ≤ yj, ∀i ∈ S,∀j ∈ C (3.5)

xij ∈ {0,1}, ∀i ∈ S,∀j ∈ C (3.6)

yj ∈ {0,1}, ∀j ∈ C (3.7)

Equation 3.1 guarantees that every switch is controlled by at least one controller
at any time. Let yj be a binary variable indicating that a controller will be deployed
at j if yj is equal to 1; otherwise, yj = 0. Equation 3.2 indicates that at most k
controllers can be deployed. Recall that each controller j has limited processing
capacity denoted by uj. Equation 3.3 ensures that a controller must satisfy the
requests from the switches assigned to it. Equation 3.4 indicates that any adopted
control path should be of cost at most δ . Finally, Eq. 3.5 enforces a controller j must
be active, i.e., yj = 1, if any switch i allocates to it, i.e., xij = 1.

3.2 Efficient Controller Placement Approximation Algorithm

Our controller placement problem is NP-hard because it is a generalized minimum
k-median problem [9], which is one of the most widely studied NP-hard problems
in location theory. While a number of algorithms with constant approximation ratios
have been proposed for the classic minimum k-median problem, none of them can
be directly applied to solve this controller placement problem. Instead, we proposed
a different approach based on one existing approximation algorithm [10] where the
main algorithmic idea is a new extension of the primal–dual schema, and its degree
of approximation is three for the metric uncapacitated facility location problem.

Specifically, we model the network as a bipartite graph G(S∪C,E), where any
edge (i, j) in set E represents the shortest path from switch i ∈ S to controller

44 3 Software-Defined Networking Controller Placement in Distributed Datacenters

Fig. 3.3 Bipartite graph
abstract of the whole network C

S

j ∈ C, as shown in Fig. 3.3. The goal of our controller placement optimization
problem is to find the placement C̃ from the set of all possible controller placements
such that |C̃| ≤ k and the incurred cost D = ∑i∈S ∑j∈C fixijdij is minimized. In an
effort to solve this NP-hard problem, we use the primal–dual schema to derive an
approximation algorithm. The LP-relaxed formulation of the original problem and
the corresponding dual program are given below by (LP2) and (LP3), respectively.

The LP-relaxation of this program is

min ∑
i∈S

∑
j∈C

fixijdij (LP2)

s.t. ∑
j∈C

xij ≥ 1, ∀i ∈ S

∑
j∈C

−yj ≥−k,

yjuj −∑
i∈S

xijfi ≥ 0, ∀j ∈ C

− xijdij ≥−δ , ∀i ∈ S,∀j ∈ C

yj − xij ≥ 0, ∀i ∈ S,∀j ∈ C

xij ≥ 0, ∀i ∈ S,∀j ∈ C

yj ≥ 0, ∀j ∈ C.

The dual program of this program is

max ∑
i∈S

αi −∑
i∈S

∑
j∈C

γijδ −bk (LP3)

s.t. αi −βij ≤ fidij + γijdij +afi, ∀i ∈ S,∀j ∈ C

∑
i∈S

βij ≤ b−auj, ∀j ∈ C

3.2 Efficient Controller Placement Approximation Algorithm 45

αi ≥ 0, ∀i ∈ S

βij ≥ 0, ∀i ∈ S,∀j ∈ C

γij ≥ 0, ∀i ∈ S,∀j ∈ C

a,b ≥ 0.

The algorithm is based on the primal–dual schema [10]. Before showing how this
is done, several ideas are required. First, suppose (LP2) has an optimal solution that
is an integral, say C̃ ⊆ C and Φ : S → C̃. Thus, under this solution, yj = 1 if and
only if j ∈ C̃ and xij = 1 if and only if Φ(i) = j. The primal conditions are relaxed as
follows: the switches are partitioned into two sets, directly connected and indirectly
connected. βij is nonzero only if i is a directly connected switch, and Φ(i) = j. For
a directly connected switch i, αi −βiΦ(i) = fidiΦ(i) + γiΦ(i)diΦ(i) + afi, and for each
active controller j, ∑i:Φ(i)=j βij = b−auj. Second, to solve (LP3), we use the Control
Variate Method. Clearly, when b = 0, all controllers will be active in the algorithm.
When b is very large, there will only be one active controller. The maximum value
of b is nemax, where n is the number of nodes and emax is the length of the longest
edge. Thus, the positive integers b and a satisfy b ∈ [0,nemax] and a ∈ [0,b/uj],
respectively.

The algorithm consists of two phases. In the first phase, the algorithm finds a
feasible dual solution and temporarily determines the controller placement Ct in a
primal–dual fashion. In the second phase, a subset C̃ of Ct is chosen as the final
solution by finding a mapping Φ(i) = j from switches to controllers in C̃. We now
discuss these phases in greater detail.

Algorithm 1 shows the first phase of the primal–dual schema-based algorithm.
Our goal is to find the largest dual solution. To achieve this target, the following
ultimate process is required to deal with the non-covering packing pair of (LP1).
Initially, every switch in the network is unconnected to the controller, the initial
state of each switch is set to unconnected, and the dual variables of each switch i
are set to 0, i.e., αi = 0 and βij = 0. Throughout this phase, for the dual variable
αi, the algorithm uniformly raises its value for each switch i until the state of the
switch is changed. To maintain feasibility and satisfy the complementary slackness
conditions, all other primal and dual variables request to change by the change in αi.

For some edge (i, j) (edge (i, j) is the shortest path between switch i and
controller j), when αi is raised to αi = fidij+γijdij+afi, this edge is declared a control
path. Similarly, the dual variable βij is increased uniformly. For controller j ∈ C,
when βij is increased to ∑i∈S βij = b− auj, the controller is declared temporarily
active. Therefore, if unconnected switches have a control path to this temporarily
active controller, they are declared connected, and this controller is declared the
pseudo controller. Later, when traversing all other unconnected switches, if switch i
gets a control path to controller j, then switch i is also declared connected.

When the first phase is terminated, a switch may have been connected to several
temporarily active controllers; we use Ct to denote the set of all such controllers.
To ensure that a switch is only connected to one controller that will eventually be

46 3 Software-Defined Networking Controller Placement in Distributed Datacenters

Algorithm 1 The First Phase of the Primal–Dual Schema-Based Algorithm
Require:

Set of switches, S;
Set of controllers, C;
Cost along shortest path between i and j, dij;
Capacity of controller j, uj;
Number of flows from switch i, fi;
Length of the longest edge, emax;
Random positive integer, γij;

Ensure:
The set of all temporarily active controllers, Ct;

1: Initialize: Set Ct =∅;
2: Randomly select positive integer b in the interval [0,nemax];
3: Randomly select positive integer a in the interval [0,b/uj];
4: for each switch i do
5: Set dual variable αi = 0;
6: while switch i is unconnected to any controllers do
7: αi ++;
8: end while
9: for each edge (i, j) do

10: Set dual variable βij = 0;
11: if αi = fidij + γijdij +afi then
12: edge (i, j) is a control path;
13: end if
14: while ∑i∈S βij < b−auj do
15: βij ++;
16: end while
17: Declare controller j temporarily active;
18: Add controller j to Ct;
19: end for
20: end for
21: return Ct;

active, we choose a subset of temporarily active controllers in the second phase of
the primal–dual schema-based algorithm shown in Algorithm 2.

In the second phase, let graph G1 denote a subgraph of G. Initially, G1 satisfies
G1 =∅. If edge (i, j) is a control path of which the number of hops is at most two,
it is added to G1. All edges in G are traversed. Then, let G̃ denote the subgraph of
G1 induced on Ct. Our goal is to find any maximal independent set C̃ ⊆ G̃ where all
controllers in the set C̃ are active.

Let set Fi satisfy Fi ={j ∈ C|βij > 0}. Because C̃ is an independent set, there is
at most one controller in Fi that is active. Traversing all switches, if controller j ∈ Fi

is active, then set the mapping from switches to C̃ as Φ(i) = j, and directly connect
switch i; otherwise, consider control path (i, j′). If controller j′ is a pseudo controller
and j′ ∈ C̃, set Φ(i) = j′ and directly connect switch i. If controller j′ is a pseudo
controller and j′ �∈ C̃, let controller j ∈ C̃ be any neighbor of j′ in graph G̃, and set
Φ(i) = j so that switch i is indirectly connected. Then, C̃ and Φ define a primal
integral solution.

3.3 Experiment Evaluation 47

Algorithm 2 The Second Phase of the Primal–Dual Schema-Based Algorithm
Require:

Set of all temporarily active controllers, Ct

Whole of network topology, G;
Number of hops for edge (i, j), hij;

Ensure:
Maximal independent set of all active controllers, C̃;
Mapping from switches to C̃, Φ ;

1: Initialize: Set one subgraph of G to be G1 =∅;
2: for each edge (i, j) do
3: if edge (i, j) is a control path then
4: if hij ≤ 2 then
5: Add edge (i, j) to G1;
6: end if
7: end if
8: end for
9: Set G̃ for the subgraph of G1 induced on Ct;

10: Find any maximal independent set C̃ ⊆ G̃;
11: for each switch i do
12: Set Fi ={j ∈ C|βij > 0};
13: if j ∈ Fi and j is active then
14: Set the mapping Φ(i) = j;
15: while edge (i, j′) is a control path do
16: if j′ ∈ C̃ then
17: Set the mapping Φ(i) = j′;
18: else
19: if j is any neighbor of j′ then
20: Set Φ(i) = j;
21: end if
22: end if
23: end while
24: end if
25: end for
26: return C̃, Φ ;

Finally, we obtain the following primal integral solution:

xij = 1 iff Φ(i) = j, (3.8)

and

yj = 1 iff j ∈ C̃. (3.9)

3.3 Experiment Evaluation

In this section, we evaluate the controller placement strategy based on realistic
network topologies, including the Internet2 OS3E network [11] and the SINET4
network [12]. Internet2’s Advanced Layer 2 Service has a large advantage in that

48 3 Software-Defined Networking Controller Placement in Distributed Datacenters

Table 3.2 Main
characteristics of experiment
networks

Networks
Main characteristics of experiment networks

Node number Link number

OS3E 34 42

SINET4 75 77

it provides the research and education communities with effective and efficient,
wide area 100 gigabit Ethernet technology. Not only do members have scalable and
flexible global access to an open exchange network, but they can also build Layer
2 circuits (virtual local area networks) between endpoints on the Internet2 network.
The service completely meets the wide-ranging needs of the research and education
communities, both now and into the future. SINET4 is the biggest National Research
and Education Network (NREN) in Japan, which connects approximately 700
universities and research institutes across Japan. Note that these topologies can be
downloaded from the Internet Topology Zoo [13], which is a collection of annotated
network graphs derived from public network maps. The key characteristics of these
topologies are summarized in Table 3.2.

In our experiments, all nodes in the networks were capable of hosting controllers.
We first evaluated the cost of a controller’s metric discussed in Sect. 3.3 using the
Internet2 OS3E topology. To characterize the cost of controllers against the number
of controllers, we expanded our analysis to the SINET4 topology.

To investigate the cost of controllers on an SDN/OpenFlow WAN, we used
Mininet 2.0 [14] to build analogies of the Internet2 OS3E’s and the SINET4’s
network topologies and used POX [15] as a network controller with OpenFlow
protocol version 1.0. Both Mininet and POX were running on Ubuntu 12.04.3 LTS.
Finally, the networking devices were connected with 100 Mbps links, and the delay
in each link was assigned a respective value, which is an acceptable latency between
the controller and the switches.

3.3.1 Analysis of Internet2 OS3E

The brute-force method was adopted to find the values of min∑i∈S ∑j∈C fixijdij as
follows: all possible locations of controllers and all possible connections between
controllers and switches were measured and stored for analysis. For the OS3E
topology, we used the results of the simulations to find the answer to the following
question: given a physical network and number of controllers, how should these
controllers be placed so that a pre-defined objective is optimized? Figure 3.4a shows
the cumulative distribution function (CDF) of the cost obtained from all possible
placements on OS3E when the number of controller varied from 1 to 5. The x-axis
is the cost of controllers, and the y-axis shows the corresponding probability. Notice
that the optimal values are obviously at the bottoms, and only a tiny percentage of
placements are optimal.

3.3 Experiment Evaluation 49

0 500

5 4 3 2 k=1

1000 1500
the cost

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1 2 3 4 5 6 7 8
number of controllers (k)

1.0

1.2

1.4

1.6

1.8

2.0

ra
tio

2 4 6 8 10 12
number of controllers (k)

200

400

600

800

1000

th
e

co
st

a

b

c

Fig. 3.4 Simulations results based on OS3E. (a) The cumulative distribution function (CDF) of
the cost generated from all possible combinations of controller placements. (b) Ratio of randomly
deploying to our proposed placement. (c) The cost for the number of controllers when k = [1,12]

50 3 Software-Defined Networking Controller Placement in Distributed Datacenters

As shown in Fig. 3.4b, if we randomly deploy controllers to the OS3E topology
for some value k, the cost is between 1.4 and 1.8 times that of the placements
obtained from our proposed approximation algorithm. For example, the cost of a
random placement is almost 60 % larger than that of the optimal placement for k = 5.
Thus, it is worthwhile to optimize the placement of controllers.

Figure 3.4c shows the cost obtained from our proposed algorithm when the
number of controllers k ranged from 1 to 12. Notice that the cost decreases as the
number of controllers increases. Almost half of the cost is dropped when the second
controller is added to the network topology, and the third controller drops the cost
to less than half. If k ≥ 2, the cost falls within the supposed acceptable range of 500.

3.3.2 Analysis of SINET4

For the SINET4 topology, the number of controller was varied from 1 to 6 in
the investigation. Similarly, Fig. 3.5a shows the CDF of the cost obtained from
all possible placements in SINET4. Notice that the optimal values are clearly at
the bottoms, and the difference between cost values is rather large. As shown in
Fig. 3.5b, the cost of a random placement is almost 70 % larger than that of our
proposed placement for k = 5. Hence, network operators should carefully choose
the locations of controllers. Figure 3.5c shows the cost of our proposed placements
when the number of controllers k ranges from 1 to 12. Clearly, the cost decreases
as the number of controllers decreases. If k ≥ 4, the cost falls within the supposed
acceptable range of 500.

3.3.3 Analysis of More Topologies

We now present the results of our simulations on more topologies in the Internet
Topology Zoo with the goal of accurately answering the following question: how
many controllers should be used in order to minimize the cost? We employed this
data set because it covers a diverse range of geographic areas, network sizes, and
topologies. We used the most recent version of topologies in the Zoo and all those
with nodes more than 20. For all of the topologies, we set the maximum allowable
latency of each network to be equal.

Figure 3.6 depicts the impact of the number of controllers on the control network
cost. The x-axis is the number of controllers, which ranges from 1 to 8. The y-axis
shows the corresponding cost of controllers. We found that cost optimizations on
different topologies provide similar results, and larger topologies generally require
more controllers to attain the same fractional reduction in cost. As expected, using
more controllers reduces cost. BtNorthAmerica, for instance, which is the largest
of the topologies with more than 35 nodes and 75 edges, needs at least seven
controllers. However, for most of topologies, past a certain number of controllers,

3.3 Experiment Evaluation 51

0 200 400 600 800 1000
the cost

0.0

0.2

0.4

0.6

0.8

1.0
a

b

c

C
D

F

1 2 3 4 5 6 7 8
number of controllers (k)

1.0

1.2

1.4

1.6

1.8

2.0

ra
tio

2 4 6 8 10 12
number of controllers (k)

200

400

600

800

1000

th
e

co
st

Fig. 3.5 Simulations results based on SINET4. (a) The CDF of the cost generated from all
possible combinations of controller placements. (b) Ratio of randomly deploying to our proposed
placement. (c) The cost for the number of controllers when k = [1,12]

52 3 Software-Defined Networking Controller Placement in Distributed Datacenters

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

number of controllers

th
e

co
st

 o
f c

on
tro

lle
rs

Arn
BtNorthAmerica
BtEurope
Canerie
Arpanet19728

Fig. 3.6 Cost for the number of controllers for more topologies

adding more controllers does not significantly reduce the cost. For example, for the
Arpanet19728 topology, which is a topology of Europe with more than 28 nodes and
31 edges, when more than three controllers are deployed in the network, the slope of
the proportional lines in the figure is more gradual, which indicates a smaller benefit.
Therefore, network operators should carefully choose the number of controllers.

3.3.4 Analysis of Controller Load

For comparison, we now present the results of our simulations on Internet2 OS3E
and SINET4 from both the latency and cost perspectives in order to determine
which one has the most significant benefit. We used the same assumption in [3];
specifically, switches are always assigned to their nearest controller. We used the
number of switches under the control of each controller as the load of that controller.
The maximum number of switches a controller has to control is the load on that
controller.

As shown in Fig. 3.7a, b, the messaging difference between the maximum and
minimum number of switches for both topologies is reported. The x-axis is the
number of controllers, and the y-axis shows the difference between the maximum
and minimum number of switches in control. Analogous to [3], the number of
switches per controller is imbalanced and ranges from 4 to 22, based on the Internet2
OS3E topology when the number of controllers ranges from 2 to 5. Furthermore,
the number of switches per controller ranges from 10 to 52, based on the SINET4
topology when the number of controllers ranges from 2 to 6.

3.3 Experiment Evaluation 53

number of controllers

a

b

The algorithm in [3]
Our algorithm

th
e

di
ffe

re
nc

e
be

tw
ee

n
m

ax
im

um
m

in
im

um
 n

um
be

r
of

 s
w

itc
he

s
in

 c
on

tr
ol

th
e

di
ffe

re
nc

e
be

tw
ee

n
m

ax
im

um
an

d
m

in
im

um
 n

um
be

r
of

 s
w

itc
he

s
in

 c
on

tr
ol

2

number of controllers
2 3 4 5 6

0

0

5

10

15

20

25

30

2

4

6

8

10

12

3 4 5

The algorithm in [3]
Our algorithm

Fig. 3.7 Comparison of the assignment of switches. (a) The difference from both the latency and
cost perspectives based on OS3E. (b) The difference from both the latency and cost perspectives
based on SINET4

54 3 Software-Defined Networking Controller Placement in Distributed Datacenters

To be resilient against controller overload, the assignment of switches to
different controllers must be well balanced. As expected, the difference between
the maximum and minimum number of switches ranged from 4 to 12 and 14 to
29, respectively, from the latency perspective. However, the difference between the
maximum and minimum number of switches ranged from 2 to 8 and 11 to 21,
respectively, from the cost perspective. Clearly, this is very beneficial from a cost
perspective.

3.4 Conclusion

In this chapter, we investigated the problem of SDN controller placement, which
is one of the most important practical issues for SDN deployment. We proposed
a novel metric for controller placement that measured the cost when controllers
with limited capacity to handle request messages from switches. We first formulated
the optimal controller placement as an ILP problem based on the proposed metric.
We then conducted experiments using real topologies. Finally, with the simulation
results, we showed how to place controllers in a physical network to achieve load
balance among controllers.

References

1. ONOS: The Open Network Operating System, http://onosproject.org/.
2. Y. Zhang, N. Beheshti and M. Tatipamula. On Resilience of Split-architecture Networks. Pro-

ceedings of the 2011 Global Communications Conference (GLOBECOM). IEEE, 2011: 1–6.
3. B. Heller, R. Sherwood and N. McKeown. The Controller Placement Problem. Proceedings of

the 1st ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. ACM,
2012: 7–12.

4. M. F. Bari, A. R. Roy, S. R. Chowdhury, et al. Dynamic Controller Provisioning in Software
Defined Networks. Proceedings of the 9th International Conference on Network and Service
Management (CNSM). IEEE, 2013: 18–25.

5. Y. Hu, W. Wang, X. Gong, et al. Reliability-aware Controller Placement for Software-Defined
Networks. Proceedings of the International Symposium on Integrated Network Management
(IM). IFIP/IEEE, 2013: 672–675.

6. M. Guo and P. Bhattacharya. Controller Placement for Improving Resilience of Software-
Defined Networks. Proceedings of the 4th International Conference on Networking and
Distributed Computing (ICNDC). IEEE, 2013: 23–27.

7. L. F. Muller, R. R. Oliveira, M. C. Luizelli, et al. Survivor: An Enhanced Controller Placement
Strategy for Improving SDN Survivability. Proceedings of the 2014 Global Communications
Conference (GLOBECOM). IEEE, 2014: 1909–1915.

8. S. Lange, S. Gebert, T. Zinner, et al. Heuristic Approaches to the Controller Placement Problem
in Large Scale SDN Networks. IEEE Transactions on Network and Service Management, 2015,
12(1): 4–17.

9. V. Arya, N. Garg, R. Khandekar, et al. Local Search Heuristics for K-median and Facility
Location Problems. SIAM Journal on Computing, 2004, 33(3):544–562.

http://onosproject.org/

References 55

10. K. Jain and V. V. Vazirani. Approximation Algorithms for Metric Facility Location and
K-median Problems Using the Primal-dual Schema and Lagrangian Relaxation. Journal of the
ACM, 2001, 48(2): 274–296.

11. Internet2 open science, scholarship and services exchange. http://www.internet2.edu/net
work/ose/.

12. Science and Information Network (SINET). http://www.sinet.ad.jp/.
13. S. Knight, H. X. Nguyen, N. Falkner, et al. The Internet Topology Zoo. IEEE Journal on

Selected Areas in Communications (JSAC), 2011, 29(9):1765–1775.
14. N. Handigol, B. Heller, V. Jeyakumar, et al. Reproducible Network Experiments using

Container based Emulation. Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies. ACM, 2012: 253–264.

15. POX Controller. http://www.noxrepo.org/pox/about-pox/.

http://www.internet2.edu/net
work/ose/
http://www.sinet.ad.jp/
http://www.noxrepo.org/pox/about-pox/

Chapter 4
Management System of Heterogeneous
Software-Defined Networking Controllers

Abstract In the previous chapter, we studied the controller placement problem to
improve the performance of the distributed control plane. When placing multiple
controllers into their proper positions, the management of controllers is an important
problem. In the distributed control plane, each software-defined networking (SDN)
controller has its own control domain. To realize entire network control and
management, these controllers must communicate with each other. However, there
are no standard communication interfaces between controllers in the standard
architecture of SDN. In particular, when there are heterogeneous controllers in a
large-scale network, it is very difficult to coordinate these controllers to improve
control plane performance. Moreover, heterogeneous controllers provide entirely
different application programming interfaces (APIs) for users, leading to difficulties
in management and application development. To address this problem, we propose a
controller management system that consists of a heterogeneous controller manage-
ment (HCM) module, domain relationships management (DRM) module, database
module, and front-end module. This system can generate a global network view by
collecting network information from a group of controllers while providing unified
APIs for application developers that shield the differences among heterogeneous
controllers.

To deploy software-defined networking (SDN) in distributed datacenters, it is
necessary to build a logically centralized, physically distributed control plane. The
entire network is divided into several domains. Each controller covers one domain to
control switches in that domain. To realize centralized control of the entire network,
an information exchange should be implemented among different domains.

In existing work, most SDN controllers do not provide the communication
API. To address this issue, the Internet engineering task force (IETF) developed
a protocol SDN to provide an interface for information exchange between SDN
controllers [1]. Lin et al. proposed a west-east bridge for SDN inter-domain
communication [2, 3]. Helebrandt et al. designed a new architecture that provides
inter-domain communication based on a vendor neutral communication proto-
col [4]. These works focus on designing complex interfaces to achieve the goal
of inter-domain communications. To reduce the complexity in interface design, a
new distributed controller named the Open Network Operating System (ONOS) was

© The Author(s) 2016
H. Qi, K. Li, Software-Defined Networking Applications
in Distributed Datacenters, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-33135-5_4

57

58 4 Management System of Heterogeneous Software-Defined Networking Controllers

built by borrowing the idea of server cluster [5]. When each domain is controlled by
an ONOS controller, information exchange can be easily realized among different
domains.

It is difficult, however, to implement communication between different domains
when they are controlled by heterogeneous controllers. Little research has been
conducted on communication between heterogeneous controllers and the man-
agement of heterogeneous controllers. To address this problem, we propose a
promising controller management system based on our previous work [6]. This
system consists of four sub-modules: the heterogeneous controller management
(HCM) module, the domain relationships management (DRM) module, the database
module, and the front-end module. We then design and implement a prototype
system that can manage Floodlight, RYU, POX, and other famous open-source
SDN controllers. Moreover, the system can shield the differences among these
heterogeneous controllers. Users can operate heterogeneous controllers using a
uniform graphical user interface (GUI).

The remainder of this chapter is organized as follows. Section 4.1 proposes the
architecture of the controller management system. Section 4.2 discusses perfor-
mance measurements of the prototype system and other particular cases. Finally,
Sect. 4.3 concludes this chapter.

4.1 The Architecture of the Controller Management System

Figure 4.1 shows the architecture of SDN with the controller management system.
This system is built on top of the control plane, which can encapsulate the whole
control plane to provide a uniform interface and front-end GUI. Users can use
the uniform interface to control the data plane without considering the differences
among the heterogeneous controllers.

4.1.1 The Heterogeneous Controller Management Module

The function of the heterogeneous controller management (HCM) module is to
manage different controllers, such as Floodlight, POX, and Maestro. The HCM
module can be viewed as a middleware between the control plane and users. Users
can operate heterogeneous controllers by a uniform GUI. The HCM module can
convert user operations into controller APIs to communicate with the control plane.

When the controller management system is running, the HCM module collects
network information from a group of controllers to generate a global-wide network
view. The collected statistics include domain, controller, flow, host, link, switch,
switch port, and traffic data information. HCM transmits this information to a front-
end module, i.e., a GUI, which displays information to users. Users can define new
flows by adding flow entries and can set flow entry parameters in the GUI. The HCM

4.1 The Architecture of the Controller Management System 59

Fig. 4.1 Architecture of software-defined networking with the controller management system

module can translate this information into a Hypertext Transfer Protocol (HTTP)
request based on the type of controller. The HCM then transmits the HTTP request
to the control plane to install flow entries into the switches.

4.1.2 The Domain Relationship Management Module

For a distributed datacenter network, it is very important to define global inter-
domain relationships. In particular, it is key for network service management, can
help achieve load balancing, congestion avoidance, and fault tolerance, and prevent
network configuration errors.

To address this problem, we propose the domain relationship management
(DRM) module that includes two types of domain relationships: children-to-parent
(c2p) and sibling-to-sibling (s2s). The c2p relationship means that each sub-domain
is covered by a secondary controller while a primary controller connects to these
secondary controllers. The primary controller maintains the whole network by
collecting information from secondary controllers. The s2s relationship means that
each sub-domain is covered by a controller while these controllers are intercon-
nected. Any two controllers can directly exchange messages to maintain the whole
network. In the DRM module, if multiple controllers are heterogeneous, the c2p
relationship is adopted, and the s2s relationship is adopted, otherwise.

60 4 Management System of Heterogeneous Software-Defined Networking Controllers

Table 4.1 Key tables in the database module

Table Explanation

s_controller_info Controller type, such as POX, Floodlight, etc.

s_ip_domain IP information in one domain

s_domain_info Domain information

s_domain_relation Relationship between domains

s_flow_info Flow entry information

s_host_info Host information

s_link_info Link information

s_port_info Switch port information

s_port_stats Port statistics

s_switch_info Switch information

4.1.3 The Database Module

To store network statistics, we built a database for the controller management
system. There are ten key tables in the database. Table 4.1 gives the table names and
their explanations. In particular, eight tables illustrate the information in a domain:
basic information, controller, flow, host, link, switch, switch port, and switch port
statistics. The other two tables give information between domains. The s_ip_domain
table displays the IP information in one domain. The s_domain_relation table shows
the relationship between domains as c2p or s2s.

4.1.4 The Front-End Module

The front-end module provides a uniform GUI to users where they can manage
the whole network more conveniently without considering complex controllers’
APIs. As shown in Fig. 4.2, this module displays network topologies to users.
Moreover, users can add and delete flow entries using GUI operations. For example,
Fig. 4.3 shows the interface of adding flow entries. Flex and ActionScript are used
to implement the GUI in this module. RemoteObject is used to implement the
data interaction between this module and the server-end including HCM and DRM
modules.

Although there are some existing controller systems with GUIs, there is no GUI
that can show a large-scale network controlled by multiple controllers. Table 4.2
shows the comparison between the GUI of our system and those of other existing
controller systems.

4.2 System Evaluation 61

Fig. 4.2 Network topologies presentation in the controller management system

Fig. 4.3 Interface of adding flow entries in the controller management system

4.2 System Evaluation

To evaluate the proposed system, we built a fat-tree structure-based datacenter test
bed including eight practical nodes. In the test bed, we used four Pica8 P-3297
switches [7], a NetFPGA card, an ONetSwitch20 card [8], and some OpenvSwitches
on Ubuntu 12.04 as the forwarding devices in the data plane. To simulate multiple
SDN domains, we divided the datacenter network into three domains, which were

62 4 Management System of Heterogeneous Software-Defined Networking Controllers

Table 4.2 Comparison of the
proposed system and other
existing controller systems

GUI

Function Floodlight POX Our system

Component information Yes No Yes

Topology display Yes Yes Yes

Link information No No Yes

Port information No No Yes

Flow table operation No No Yes

Flow table information Yes Yes Yes

Fig. 4.4 Test bed consisting of practical devices

covered by Ryu, Floodlight, and Pox, respectively. Figure 4.4 shows the practical
devices in the test bed.

In our experiments, three controllers were connected to the controller manage-
ment system. We used the apache benchmark to measure system performance.
First, we compared the request completion time of the proposed system to that of
the Floodlight controller. We built an application to send 100,000 flow table entry
update requests and then monitored the time of request completion. From the results
shown in Fig. 4.5, we can see that the proposed system finishes more than 60 %
of the requests in 5 ms and more than 95 % of the requests in 10 ms. The request
completion time of the proposed system is similar to that of the Floodlight controller.

Next, we measured the throughput of the proposed system with different numbers
of threads. In this experiment, we compared the proposed system, Floodlight
controller, and Maestro controller. In the data plane, there were 16 openflow

4.3 Conclusion 63

0
0

10

20

30

Fr
ac

tio
n(

%
)

40

50

60

50 100 0
0

10

20

30

Fr
ac

tio
n(

%
)

The request completion time
of our system (ms)

The request completion time
of Floodlight controller (ms)

40

50

60

50 100

Fig. 4.5 Comparison of the request completion time between the proposed system and the
Floodlight controller

switches. Figure 4.6 shows the throughput of the proposed system and other existing
controllers for varying numbers of threads. We can see that the Floodlight and
Maestro controllers both process less than 0.8 million requests per second with ten
threads. With the same number of threads, the proposed system can process more
than 0.9 million requests per second. Thus, the throughput of the proposed system
is better than that of existing controllers.

Finally, we measured the latency of the proposed system. In this experiment, we
analyzed the responding time with varying numbers of switches. The comparison
results are shown in Fig. 4.7. According to Fig. 4.7, we can see that the proposed
system has a longer responding time when connecting to less switches. The reason
for this is that the proposed system interacts with the control plane. When con-
necting to more switches, the processing capacities of the Floodlight and Maestro
controllers are limited, leading to more higher latency. Because the flexibility of the
proposed system is better, it has less latency.

4.3 Conclusion

In this chapter, we designed and implemented a controller management system,
which provides a uniform GUI to manage the distributed datacenter network covered
by multiple heterogeneous controllers. The proposed system shields the differences
among heterogeneous controllers to achieve more convenient network management.

64 4 Management System of Heterogeneous Software-Defined Networking Controllers

Number of threads

Our system
Floodlight
Maestro

T
hr

ou
gh

pu
t(

ki
lo

re
qu

es
ts

 p
er

 s
ec

on
d)

1
100

200

300

400

500

600

700

800

900

1000

2 3 4 5 6 7 8 9 10

Fig. 4.6 Throughput of the proposed system and other existing controllers when the number of
threads is varied

Number of switches

La
te

nc
y(

m
s)

Our system
Floodlight
Maestro

0
10

15

20

25

30

35

40

50 100 150 200 250

Fig. 4.7 Latency of the proposed system and other existing controllers when varying the number
of switches

References 65

We also presented the architecture of the proposed system and built a practical
datacenter as a test bed to evaluate the proposed system. Our experimental results
show that the proposed system achieves high performance.

References

1. H. Yin, H. Xie, T. Tsou, et al. SDNi: A Message Exchange Protocol for Software Defined
Networks (SDNS) across Multiple Domains. [Online]. Available: https://tools.ietf.org/html/
draft-yin-sdn-sdni-00.

2. P. Lin, J. Bi, Z. Chen, et al. WE-bridge: West-East Bridge for SDN Inter-domain Network
Peering. Proceedings of the 2014 IEEE Conference on Computer Communications Workshops
(INFOCOM Workshops). IEEE, 2014: 111–112.

3. P. Lin, J. Bi, S. Wolff, et al. A West-East Bridge based SDN Inter-domain Testbed. IEEE
Communications Magazine, 2015, 53(2): 190–197.

4. P. Helebrandt and I. Kotuliak. Novel SDN Multi-domain Architecture. Proceedings of the
12th International Conference on Emerging eLearning Technologies and Applications (ICETA).
IEEE, 2014: 139–143.

5. S. S. Hayward, S. Natarajan and S. Sezer. A Survey of Security in Software Defined Networks.
IEEE Communications Surveys & Tutorials, 2015, DOI: 10.1109/COMST.2015.2453114.

6. H. Yu, K. Li, H. Qi, W. Li and X. Tao. Zebra: An East-West Control Framework For SDN
Controllers. Proceedings of the 44th International Conference on Parallel Processing (ICPP).
IEEE, 2015: 610–618.

7. The Pica8 Openflow Switch, http://www.pica8.org/.
8. The ONetSwitch20 from Meshsr company. http://www.meshsr.com/.

https://tools.ietf.org/html/draft-yin-sdn-sdni-00
https://tools.ietf.org/html/draft-yin-sdn-sdni-00
http://dx.doi.org/10.1109/COMST.2015.2453114
http://www.pica8.org/
http://www.meshsr.com/

Chapter 5
Conclusions and Future Research Topics

Abstract In this chapter, we summarize the studies presented in this book. Then,
we discuss some future research topics related to software-defined networking
(SDN).

5.1 Conclusions

In this book, we discussed the design and deployment of SDN applications in
distributed datacenters. We focused on the SDN-based request allocation mecha-
nism, SDN controller placement strategy, and SDN controller management system
in distributed datacenters. The specific contributions are as follows:

• We found that the central control provided by SDN is an effective way to
address the request allocation problem in distributed datacenters. In light of
this fact, we proposed a joint optimization model for request allocation, which
considered both service providers and end-users. To give the solution, we
proposed a Nash bargaining solution (NBS)-based algorithm. According to the
simulation experiments with real-world traces, we verified the effectiveness of
the proposed algorithm. Based on this algorithm, we designed the SDN-based
request allocation mechanism.

• To maximize the benefits of SDN, we must effectively deploy SDN in distributed
datacenters. To address the problem of SDN controller placement in SDN
deployment, we proposed a novel placement metric that considered the cost of
controllers when their processing capacities were limited. We presented an inte-
ger linear program (ILP)-based optimization model. To solve this problem, we
designed an effective approximation algorithm as an SDN controller placement
strategy. According to the simulation experiments, which were based on many
real topologies, we demonstrated the high performance of the proposed SDN
controller placement strategy.

• In large-scale distributed datacenter networks, it is necessary to deploy multiple
SDN controllers while maintaining a global network view from these distributed
controllers. To achieve this goal, we designed and implemented a management
system of heterogeneous SDN controllers. This system shields differences among
the heterogeneous controllers to provide a uniform graphical user interface (GUI)

© The Author(s) 2016
H. Qi, K. Li, Software-Defined Networking Applications
in Distributed Datacenters, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-33135-5_5

67

68 5 Conclusions and Future Research Topics

for users. To evaluate the proposed system, we built a test bed consisting of
practical openflow switches and servers. The experimental results verified the
high performance of the proposed SDN controller management system.

5.2 Future Research Topics

In the next few years, SDN will perpetually be a hot point in future network areas;
thus, we plan to make further progress toward solving existing SDN problems. It
is our opinion that the important future research topics related to SDN include the
following three areas:

• In the data plane, OpenFlow is not the only option. It is difficult to design a better
southbound application programming interface (API) to improve the flexibility
of the data plane. Moreover, the data plane should have minimal computational
capabilities to reduce the burden of the control plane.

• In the control plane, the deployment of SDN in large-scale networks remains
a big problem, especially for improving the expansibility of the control plane.
When realizing global control of large-scale networks, a simple and effective
global optimization algorithm is necessary.

• In the application plane, there is lack of high-level network programming
language for building network innovation applications. A unified and powerful
northbound API is also needed. It is difficult to realize application driven network
control to take full advantage of SDN.

	Preface
	Contents
	1 Introduction
	1.1 Software-Defined Networking and Future Networks
	1.2 Recent Advances in Software-Defined Networking
	1.2.1 Data Plane
	1.2.2 Control Plane
	1.2.3 Software-Defined Networking Applications

	1.3 Aim of This Book
	References

	2 Software-Defined Networking Based Request Allocation in Distributed Datacenters
	2.1 A Software-Defined Networking Framework for Request Allocation
	2.1.1 Infrastructure
	2.1.2 Service Provider and End-Users
	2.1.2.1 The Benefit of Service Providers
	2.1.2.2 The Benefit of End-Users

	2.1.3 Problem Formulation

	2.2 Request Allocation Algorithm with a Software-Defined Networking Global View
	2.2.1 Logarithmic Smoothing
	2.2.2 Request-Allocation Algorithm

	2.3 Experiment Evaluation
	2.3.1 Simulation Setup
	2.3.2 Performance Analysis

	2.4 Conclusion
	References

	3 Software-Defined Networking Controller Placement in Distributed Datacenters
	3.1 Placement Problem of Multiple Software-Defined Networking Controllers
	3.1.1 System Model
	3.1.2 Problem Formulation

	3.2 Efficient Controller Placement Approximation Algorithm
	3.3 Experiment Evaluation
	3.3.1 Analysis of Internet2 OS3E
	3.3.2 Analysis of SINET4
	3.3.3 Analysis of More Topologies
	3.3.4 Analysis of Controller Load

	3.4 Conclusion
	References

	4 Management System of Heterogeneous Software-Defined Networking Controllers
	4.1 The Architecture of the Controller Management System
	4.1.1 The Heterogeneous Controller Management Module
	4.1.2 The Domain Relationship Management Module
	4.1.3 The Database Module
	4.1.4 The Front-End Module

	4.2 System Evaluation
	4.3 Conclusion
	References

	5 Conclusions and Future Research Topics
	5.1 Conclusions
	5.2 Future Research Topics

