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Foreword

This book is the third in a series of lectures of the Séminaire Poincaré, which is
directed towards a large audience of physicists and of mathematicians.

The goal of this seminar is to provide up to date information about general
topics of great interest in physics. Both the theoretical and experimental aspects
are covered, with some historical background. Inspired by the Bourbaki seminar
in mathematics in its organization, hence nicknamed “Bourbaphi”, this Poincaré
Seminar is held twice a year at the Institut Henri Poincaré in Paris, with contribu-
tions prepared in advance. A particular care is devoted to the pedagogical nature
of the presentation so as to fulfill the goal of being readable by a large audience of
scientists.

This volume contains the sixth such Seminar, held in 2004. It is devoted to the
Quantum Hall Effect. After a historical and general presentation by Nobel prize
Klaus von Klitzing, discoverer of this effect, the volume proceeds with reviews on
the mathematics and physics of both the integer and fractional case, and includes
up to date presentations of the tunneling and metrology experiments related to
the Quantum Hall Effect.

We hope that the publication of this series will serve the community of physi-
cists and mathematicians at professional or graduate student level.

We thank the Commissariat à l’Énergie Atomique (Division des Sciences de
la Matière), the Centre National de la Recherche Scientifique (Sciences Physique et
Mathématiques), and the Daniel Iagolnitzer Foundation for sponsoring the Semi-
nar. Special thanks are due to Chantal Delongeas for the preparation of the man-
uscript.

Benôıt Douçot
Bertrand Duplantier

Vincent Pasquier
Vincent Rivasseau
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25 Years of Quantum Hall Effect (QHE)
A Personal View on the Discovery,
Physics and Applications of this Quantum Effect

Klaus von Klitzing

1 Historical Aspects

The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It
was the night of the 4th to the 5th of February 1980 at around 2 a.m. during
an experiment at the High Magnetic Field Laboratory in Grenoble. The research
topic included the characterization of the electronic transport of silicon field effect
transistors. How can one improve the mobility of these devices? Which scattering
processes (surface roughness, interface charges, impurities etc.) dominate the mo-
tion of the electrons in the very thin layer of only a few nanometers at the interface
between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and
Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices)
as shown in Fig.1, which allow direct measurements of the resistivity tensor.

For the experiments, low temperatures (typically 4.2 K) were used in order
to suppress disturbing scattering processes originating from electron-phonon in-
teractions. The application of a strong magnetic field was an established method
to get more information about microscopic details of the semiconductor. A review
article published in 1982 by T. Ando, A. Fowler, and F. Stern about the electronic
properties of two-dimensional systems summarizes nicely the knowledge in this
field at the time of the discovery of the QHE [1].

Since 1966 it was known, that electrons, accumulated at the surface of a
silicon single crystal by a positive voltage at the gate (= metal plate parallel to
the surface), form a two-dimensional electron gas [2]. The energy of the electrons
for a motion perpendicular to the surface is quantized (“particle in a box”) and
even the free motion of the electrons in the plane of the two-dimensional system
becomes quantized (Landau quantization), if a strong magnetic field is applied
perpendicular to the plane. In the ideal case, the energy spectrum of a 2DEG in
strong magnetic fields consists of discrete energy levels (normally broadened due
to impurities) with energy gaps between these levels. The quantum Hall effect is
observed, if the Fermi energy is located in the gap of the electronic spectrum and
if the temperature is so low, that excitations across the gap are not possible.

The experimental curve, which led to the discovery of the QHE, is shown in
Fig. 2. The blue curve is the electrical resistance of the silicon field effect tran-
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Figure 1: Typical silicon MOSFET device used for measurements of the xx- and
xy-components of the resistivity tensor. For a fixed source-drain current between
the contacts S and D, the potential drops between the probes P − P and H − H
are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage
increases the carrier density below the gate.

sistor as a function of the gate voltage. Since the electron concentration increases
linearly with increasing gate voltage, the electrical resistance becomes monotoni-
cally smaller. Also the Hall voltage (if a constant magnetic field of e.g. 19.8 Tesla
is applied) decreases with increasing gate voltage, since the Hall voltage is basi-
cally inversely proportional to the electron concentration. The black curve shows
the Hall resistance, which is the ratio of the Hall voltage divided by the current
through the sample. Nice plateaus in the Hall resistance (identical with the trans-
verse resistivity ρxy) are observed at gate voltages, where the electrical resistance
(which is proportional to the longitudinal resistivity ρxx) becomes zero. These ze-
ros are expected for a vanishing density of state of (mobile) electrons at the Fermi
energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain
unchanged indicate, that the gate voltage induced electrons in these regions do not
contribute to the electronic transport- they are localized. The role of localized elec-
trons in Hall effect measurements was not clear. The majority of experimentalists
believed, that the Hall effect measures only delocalized electrons. This assump-
tion was partly supported by theory [3] and formed the basis of the analysis of
QHE data published already in 1977 [4]. These experimental data, available to



25 Years of Quantum Hall Effect (QHE) 3

Figure 2: Hall resistance and longitudinal resistance (at zero magnetic field and at
B = 19.8 Tesla) of a silicon MOSFET at liquid helium temperature as a function
of the gate voltage. The quantized Hall plateau for filling factor 4 is enlarged.

the public 3 years before the discovery of the quantum Hall effect, contain already
all information of this new quantum effect so that everyone had the chance to
make a discovery that led to the Nobel Prize in Physics 1985. The unexpected
finding in the night of 4./5.2.1980 was the fact, that the plateau values in the Hall
resistance ρxy are not influenced by the amount of localized electrons and can be
expressed with high precision by the equation ρxy = h/ie2 (h=Planck constant,
e=elementary charge and i the number of fully occupied Landau levels). Also it
became clear, that the component ρxy of the resistivity tensor can be measured di-
rectly with a volt- and amperemeter (a fact overlooked by many theoreticians) and
that for the plateau values no information about the carrier density, the magnetic
field, and the geometry of the device is necessary.
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Figure 3: Copy of the original notes, which led to the discovery of the quantum
Hall effect. The calculations for the Hall voltage UH for one fully occupied Landau
level show, that the Hall resistance UH/I depends exclusively on the fundamental
constant h/e2.
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Figure 4: Experimental uncertainties for the realization of the resistance 1 Ohm
in SI units and the determination of the fine structure constant α as a function of
time.

The most important equation in connection with the quantized Hall resis-
tance, the equation UH = h/e2 ·I, is written down for the first time in my notebook
with the date 4.2.1980. A copy of this page is reproduced in Fig. 3. The validity
and the experimental confirmation of this fundamental equation was so high that
for the experimental determination of the voltage (measured with a x−y recorder)
the finite input resistance of 1 MΩ for the x − y recorder had to be included as a
correction. The calculations in the lower part of Fig. 3 show, that instead of the
theoretical value of 25813 Ohm for the fundamental constant h/e2 a value of about
25163 Ohm should be measured with the x−y recorder, which was confirmed with
high precision. These first measurements of the quantized Hall resistance showed
already, that localized electrons are unimportant and the simple derivation on the
basis of an ideal electron system leads to the correct result. It was immediately
clear, that an electrical resistance which is independent of the geometry of the
sample and insensitive to microscopic details of the material will be important for
metrology institutes like NBS in the US (today NIST) or PTB in Germany. So
it is not surprising, that discussions with Prof. Kose at the PTB about this new
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quantum phenomenon started already one day after the discovery of the quantized
Hall resistance (see notes in Fig. 3).

Figure 5: The number of publications related to the quantum Hall effect increased
continuously up to a value of about one publication per day since 1995.

The experimental results were submitted to Phys. Rev. Letters with the ti-
tle: “Realization of a Resistance Standard based on Fundamental Constants” but
the referee pointed out, that (at this time) not a more accurate electrical resis-
tor was needed but a better value for the fundamental constant h/e2. Interest-
ingly, the constant h/e2 is identical with the inverse fine-structure constant α−1 =
(h/e2)(2/µ0c) = 137.036 · · · where the magnetic constant µ0 = 4π10−7N/A2 and
the velocity of light c = 299 792 458 m/s are fixed numbers with no uncertain-
ties. The data in Fig. 4 show indeed, that the uncertainty in the realization of
the electrical unit of 1Ω within the International System of Units (SI units) was
smaller (until 1985) than the uncertainty for h/e2 or the inverse fine-structure
constant. As a consequence, the title of the first publication about the quantum
Hall effect was changed to: “New Method for High-Accuracy Determination of the
Fine-Structure Constant Based on Quantized Hall Resistance”[5]. The number of
publications with this new topic “quantum Hall effect” in the title or abstract
increased drastically in the following years with about one publication per day
for the last 10 years as shown in Fig. 5. The publicity of the quantized Hall ef-
fect originates from the fact, that not only solid state physics but nearly all other
fields in physics have connections to the QHE as exemplarily demonstrated by the
following title of publications:

BTZ black hole and quantum Hall effects in the bulk/boundary dynamics [6].
Quantum Hall quarks or short distance physics of quantized Hall fluids [7].
A four-dimensional generalization of the quantum Hall effect [8].
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Quantum computation in quantum-Hall systems [9].
Higher-dimensional quantum Hall effect in string theory [10].
Is the quantum Hall effect influenced by the gravitational field? [11].

Up to now, more than 10 books were published about the quantum Hall effect
[12–19] and the most interesting aspects are summarized in the Proceedings of the
International Symposium “Quantum Hall Effect: Past, Present and Future” [20].

Figure 6: Summary of high precision data for the quantized Hall resistance up to
1988 which led to the fixed value of 25 812.807 Ohm recommended as a reference
standard for all resistance calibrations after 1.1.1990 .

2 Quantum Hall Effect and Metrology

The most important aspect of the quantum Hall effect for applications is the
fact that the quantized Hall resistance has always a fundamental value of h/e2 =
25812.807 · · · Ohm. This value is independent of the material, geometry and mi-
croscopic details of the semiconductor. After the discovery of this macroscopic
quantum effect many metrological institutes repeated the experiment with much
higher accuracy than available in a research laboratory and they confirmed, that
this effect is extremely stable and reproducible. Fig. 6 summarizes the data (pub-
lished until 1988) for the fundamental value of the quantized Hall resistance and
it is evident that the uncertainty in the measurements is dominated by the un-
certainty in the realization of the SI Ohm. From the internationally accepted def-
initions for the basic SI units “second”, “meter”, “kilogram”, and “Ampere” it is
clear, that all mechanical and electrical quantities are well defined. However the
overview in Fig. 7 shows also, that the base unit Ampere has a relatively large un-
certainty of about 10−6 if deduced from the force between current carrying wires.
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Figure 7: Basic and derived SI units for mechanical and electrical quantities.

Apparently, the derived unit 1Ω = 1s−3m2kgA−2 (which depends in principle on
all basic units) should have an even larger uncertainty than 10−6. However, as
shown in Fig. 4, the SI Ohm is known with a smaller uncertainty than the basic
unit Ampere which originates from the fact, that a resistance can be realized via
the a.c. resistance R = 1/ωC of a capacitor C. Since the capacitance C of a ca-
pacitor depends exclusively on the geometry (with vacuum as a dielectric media),
one can realize a SI Ohm just by using the basic units time (for the frequency
ω/2π) and length (for a calculable Thomson-Lampert capacitor [21]), which are
known with very small uncertainties. Therefore an uncertainty of about 10−7 for
the realization of the SI Ohm is possible so that the fine-structure constant can
be measured via the QHE directly with the corresponding accuracy. However, the
quantized Hall resistance is more stable and more reproducible than any resistor
calibrated in SI units so that the Comité Consultatif d’Electricité recommended,
“that exactly 25 812.807 Ohm should be adopted as a conventional value, denoted
by RK−90, for the von Klitzing constant RK” and that this value should be used
starting on 1.1.1990 to form laboratory reference standards of resistances all over
the world [22]. Direct comparisons between these reference standards at different
national laboratories (see Fig. 8) have shown, that deviations smaller than 2 ·10−9

for the reference standards in different countries are found [23] if the published
guidelines for reliable measurements of the quantized Hall resistance are obeyed
[24]. Unfortunately, this high reproducibility and stability of the quantized Hall re-
sistance cannot be used to determine the fine-structure constant directly with high
accuracy since the value of the quantized Hall resistance in SI units is not known.
Only the combination with other experiments like high precision measurements
(and calculations) of the anomalous magnetic moment of the electron, gyromag-
netic ratio of protons or mass of neutrons lead to a least square adjustment of the
value of the fine-structure constant with an uncertainty of only 3.3 ·10−9 resulting
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Figure 8: Reproducibility and stability of the quantized Hall resistance deduced
from comparisons between different metrological institutes. The observed uncer-
tainties of about 2.10−9 is two orders of magnitude smaller than the uncertainty
in the realization of a resistance calibrated in SI Ohms.

in a value for the von Klitzing constant of RK = 25812.807449 ± 0.000086 Ohm
(CODATA 2002 [25]). Accurate values for fundamental constants (especially for
the fine-structure constant) are important in connection with the speculation that
some fundamental constants may vary with time. Publications about the evidence
of cosmological evolution of the fine-structure constant are questioned and could
not be confirmed. The variation ∂α/∂t per year is smaller than 10−16.

Figure 9: Realization of a two-dimensional electrons gas close to the interface
between AlGaAs and GaAs.

The combination of the quantum Hall effect with the Josephson effect (which
allows an representation of the electrical voltage in units of h/e) leads to the
possibility, to compare electrical power (which depends on the Planck constant
h) with mechanical power (which depends on the mass m). The best value for
the Planck constant is obtained using such a Watt balance [26]. Alternatively, one
may fix the Planck constant (like the fixed value for the velocity of light for the
definition of the unit of length) in order to have a new realization of the unit of
mass.
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Figure 10: Hall resistance and longitudinal resistivity data as a function of the
magnetic field for a GaAs/AlGaAs heterostructures at 1.5 K .

3 Physics of Quantum Hall Effect

The textbook explanation of the QHE is based on the classical Hall effect dis-
covered 125 years ago [27]. A magnetic field perpendicular to the current I in a
metallic sample generates a Hall voltage UH perpendicular to both, the magnetic
field and the current direction:

UH = (B · I)/(n · e · d)

with the three-dimensional carrier density n and the thickness d of the sample.
For a two-dimensional electron gas the product of n · d can be combined as a
two-dimensional carrier density ns. This leads to a Hall resistance

RH = UH/I = B/(ns · e)

Such a two-dimensional electron gas can be formed at the semiconductor/insulator
interface, for example at the Si−SiO2 interface of a MOSFET (Metal Oxid Semi-
conductor Field Effect Transistor) or at the interface of a GaAs−AlGaAs HEMT
(High Electron Mobility Transistor) as shown in Fig. 9. In these systems the elec-
trons are confined within a very thin layer of few nanometers so that similar to
the problem of “particle in a box” only quantized energies Ei(i = 1, 2, 3 · · ·) for
the electron motion perpendicular to the interface exist (electric subbands).

A strong magnetic field perpendicular to the two-dimensional layer leads to
Landau quantization and therefore to a discrete energy spectrum:

E0,N = E0 + (N + 1/2)h̄ωc (N = 0, 1, 2, ...)

The cyclotron energy h̄ωc = h̄eB/mc is proportional to the magnetic field B and
inversely proportional to the cyclotron mass mc and equal to 1.16 meV at 10 Tesla
for a free electron mass m0.
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Due to the electron spin an additional Zeeman splitting of each Landau level
appears which is not explicitly included in the following discussion. More important
is the general result, that a discrete energy spectrum with energy gaps exists
for an ideal 2DEG in a strong magnetic field and that the degeneracy of each
discrete level corresponds to the number of flux quanta (F · B)/(h/e) within the
area F of the sample. This corresponds to a carrier density ns = e · B/h for
each fully occupied spin-split energy level E0, N and therefore to a Hall resistance
RH = h/i · e2 for i fully occupied Landau levels as observed in the experiment. A
typical magnetoresistance measurement on a GaAs/AlGaAs heterostructure under
QHE conditions is shown in Fig. 10.

Figure 11: Discrete energy spectrum of a 2DEG in a magnetic field for an ideal
system (no spin, no disorder, infinite system, zero temperature). The Fermi energy
(full red line) jumps between Landau levels at integer filling factors if the electron
concentration is constant.

This simple “explanation” of the quantized Hall resistance leads to the cor-
rect result but contains unrealistic assumptions. A real Hall device has always
a finite width and length with metallic contacts and even high mobility devices
contain impurities and potential fluctuations, which lift the degeneracy of the Lan-
dau levels. These two important aspects, the finite size and the disorder, will be
discussed in the following chapters.

3.1 Quantum Hall Systems with Disorder

The experimental fact, that the Hall resistance stays constant even if the filling
factor is changed (e.g. by varying the magnetic field at fixed density), cannot be
explained within the simple single particle picture for an ideal system. A sketch of
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Figure 12: Measured variation of the electrostatic potential of a 2DEG as a function
of the magnetic field. The black line marks a maximum in the coulomb oscillations
of a metallic single electron on top of the heterostructure, which corresponds to a
constant electrostatic potential of the 2DEG relative to the SET.

the energy spectrum and the Fermi energy as a function of the magnetic field is
shown in Fig. 11 for such an ideal system at zero temperature. The Fermi energy
(full blue line) is located only at very special magnetic field values in energy gaps
between Landau levels so that only at these very special magnetic field values and
not in a finite magnetic field range the condition for the observation of the QHE is
fulfilled. On the other hand, if one assumes, that the Fermi energy remains constant
as a function of the magnetic field (dotted line in Fig. 11), wide plateaus for the
quantized Hall resistance are expected, since the Fermi energy remains in energy
gaps (which correspond to integer filling factors and therefore to quantized Hall
resistances) in a wide magnetic field range. However, this picture is unrealistic since
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Figure 13: SET current as a function of time for different magnetic fields close
to filling factor 1. The oscillations in the current originate from the relaxation of
a non-equilibrium electrostatic potential within the 2DEG originating from eddy
currents due to the magnetic field sweep in the plateau region. One oscillation in
the SET current corresponds to a change in the “gate potential” of about 1 meV.

one has to assume that the electron concentration changes drastically as a function
of the magnetic field. If for example the Fermi energy crosses the Landau level N =
1, the electron density has to change abruptly by a factor of two from filling factor
2 to filling factor 1. Such a strong redistribution of charges between the 2DEG and
an electron reservoir (doping layers, metallic contacts) are in contradiction with
electrostatic calculations. The most direct proof, that the Fermi energy jumps
across the gap between Landau levels within a relatively small magnetic field
range (at least smaller than the plateau width) is given by measurements of the
electrostatic potential between a metal (= wire plus sensor connected to the 2DEG)
and the two-dimensional electron gas. The electrochemical potential within the
metal - 2DEG system has to be constant (thermodynamic equilibrium) so that
the magnetic field dependent variation in the chemical potential (characterized by
the Fermi energy) has to be compensated by a change in the electrostatic potential
difference between the metallic system and the 2DEG (=contact voltage). Such a
variation in the electrostatic potential has been measured directly [28] by using
a metallic single electron transistor (SET) at the surface of the quantum Hall
device as shown in Fig 12. The electrostatic potential of the 2DEG relative to the
SET acts as a gate voltage, which influences drastically the current through the
SET. (The SET shows Coulomb blockade oscillations with a gate voltage period
of about 1mV ). The experimental data shown in Fig. 12 clearly demonstrate, that
the contact voltage and therefore the chemical potential of the two-dimensional
system changes saw-tooth like as expected. The height of the jumps corresponds
directly to the energy gap. The “noise” at 2.8 Tesla (filling factor 4) demonstrates,
that the gate potential below the SET detector is fluctuating and not fixed by
the applied voltage ∆V2DES since the vanishing conductivity in the quantum Hall
regime between the metallic contacts at the boundary of the device and the inner
parts of the sample leads to floating potentials within the 2DEG system. Recent
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Figure 14: Sketch of a device with a filling factor slightly below 1. Long-range
potential fluctuations lead to a finite area within the sample (localized carriers)
with vanishing electrons (= filling factor 0) surrounded by an equipotential line.
The derivation of the measured Hall voltage UH show, that closed areas with
another filling factor than the main part of the device leads to a Hall effect which
is not influenced by localized electrons.

measurements have demonstrated [29], that time constants of many hours are
observed for the equilibration of potential differences between the boundary of a
QHE device and the inner part of the sample as shown in Fig. 13. The oscillations
in the SET current can be directly translated into a variation of the electrostatic
potential below the position of the SET since one period corresponds to a “gate
voltage change” for the SET of about 1 meV. The non-equilibrium originates from
a magnetic field sweep in regions of vanishing energy dissipation, which generates
eddy currents around the detector and corresponding Hall potential differences of
more than 100 meV perpendicular to these currents. These “Hall voltages” are not
measurable at the outer Hall potential probes (at the edge of the sample), since
all eddy currents cancel each other. The current distribution is unimportant for
the accuracy of the quantized Hall resistance!

In order to explain the width of the Hall plateaus, localized electrons in the
tails of broadened Landau levels have to be included. A simple thought experiment
illustrates, that localized states added or removed from fully occupied Landau
levels do not change the Hall resistance (see Fig. 14). For long range potential
fluctuations (e.g. due to impurities located close to the 2DEG) the Landau levels
follow this potential landscape so that the energies of the Landau levels change
with position within the plane of the device. If the energy separation between
Landau levels is larger than the peak value of the potential fluctuation, an energy
gap still exists and a fully occupied Landau level (e.g. filling factor 1) with the
expected quantized Hall resistance RK can be realized. In this picture, a filling
factor 0.9 means, that 10% of the area of the device (= top of the hills in the
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Figure 15: Skipping cyclotron orbits (= diamagnetic current) at the boundaries of
a device are equivalent to the edge channels in a 2DEG with finite size.

potential landscape) becomes unoccupied with electrons as sketched in Fig. 14.
The boundary of the unoccupied area is an equipotential line (with an unknown
potential) but the externally measured Hall voltage UH , which is the sum of the
Hall voltages of the upper part of the sample (current I2) and the lower part
(current I1), adds up to the ideal value expected for the filling factor 1 (grey
regions). Eddy currents around the hole with i = 0 will vary the currents I1 and
I2 but the sum is always identical with the external current I.

The quantized Hall resistance breaks down, if electronic states at the Fermi
energy are extended across the whole device. This is the case for a half-filled
Landau level if the simple percolation picture is applied. Such a singularity at
half-filled Landau levels has been observed experimentally [30].

This simple picture of extended and localized electron states indicates, that
extended states always exist at the boundary of the devices. This edge phenomenon
is extremely important for a discussion of the quantum Hall effect in real devices
and will be discussed in more detail in the next chapter. In a classical picture,
skipping orbits as a result of reflected cyclotron orbits at the edge lead to diamag-
netic currents as sketched in Fig 15. Therefore, even if the QHE is characterized
by a vanishing conductivity σxx (no current in the direction of the electric field), a
finite current between source and drain of a Hall device can be established via this
diamagnetic current. If the device is connected to source and drain reservoirs with
different electrochemical potentials (see Fig. 15), the skipping electrons establish
different electrochemical potentials at the upper and lower edge respectively. En-
ergy dissipation appears only at the points (black dots in Fig. 15) where the edge
potentials differ from the source/drain potentials.
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Figure 16: Ideal Landau levels for a device with boundaries. The fully occupied
Landau levels in the inner part of the device rise in energy close to the edge forming
compressible (“metallic”) stripes close to the crossing points of the Landau levels
with the Fermi energy EF .

3.2 Edge Phenomena in QHE Devices

The simple explanation of the quantized Hall resistance as a result of fully occupied
Landau levels (with a gap at the Fermi energy) breaks down for real devices with
finite size. For such a system no energy gap at the Fermi energy exists under
quantum Hall condition even if no disorder due to impurities is included. This is
illustrated in Fig. 16 where the energy of the Landau levels is plotted across the
width of the device. The Fermi energy in the inner part of the sample is assumed to
be in the gap for filling factor 2. Close to the edge (within a characteristic depletion
length of about 1µm) the carrier density becomes finally zero. This corresponds
to an increase in the Landau level energies at the edge so that these levels become
unoccupied outside the sample. All occupied Landau levels inside the sample have
to cross the Fermi energy close to the boundary of the device. At these crossing
points “half-filled Landau levels” with metallic properties are present.

Selfconsistent calculations for the occupation of the Landau levels show that
not lines but metallic stripes with a finite width are formed parallel to the edge [31].
The number of stripes is identical with the number of fully occupied Landau levels
in the inner part of the device. These stripes are characterized by a compressible
electron gas where the electron concentration can easily be changed since the Lan-
dau levels in these regions are only partly filled with electrons and pinned at the
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Figure 17: Experimental determination of the position of incompressible (= insu-
lating) stripes close to the edge of the device for the magnetic field range 1.5 - 10
Tesla.

Figure 18: Hall potential distribution of a QHE device measured with an AFM.
The innermost incompressible stripe (= black lines) acts as an insulating barrier.
The Hall potential is color coded with about half of the total Hall voltage for the
dark grey-light grey potential difference.
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Fermi energy. In contrast, the incompressible stripes between the compressible re-
gions represent fully occupied Landau levels with the typical isolating behavior of
a quantum Hall state. If the single electron transistor shown in Fig. 12 is located
above an incompressible region, increased noise is observed in the SET current
similar to the noise at 2.8 Tesla in Fig. 12. In order to visualize the position of
the stripes close to the edge, not the SET is moved but an artificial edge (= zero
carrier density) is formed with a negative voltage at a gate metal located close to
the SET. The edge (= position with vanishing carrier density) moves with increas-
ing negative gate voltage closer to the detector and alternatively incompressible
(increased SET noise) and compressible strips (no SET noise) are located below
the SET detector. The experimental results in Fig. 17 confirm qualitatively the
picture of incompressible stripes close to the edge which move away from the edge
with increasing magnetic field until the whole inner part of the device becomes
an incompressible region at integer filling factor. At slightly higher magnetic fields
this “bulk” incompressible region disappears and only incompressible stripes with
lower filling factor remain close to the boundary of the device.

The influence of the incompressible stripes on the Hall potential distribution
has been measured with an atomic force microscope. The results in Fig. 18 show,
that the innermost incompressible stripe has such strong “insulating” properties
that about 50% of the Hall potential drops across this stripe. The other 50%
of the Hall potential drops close to the opposite boundary of the device across
the equivalent incompressible stripe. In principle the incompressible stripes should
be able to suppress the backscattering across the width of a Hall device so that
even for an ideal device without impurities (= localized states due to potential
fluctuations) a finite magnetic field range with vanishing resistivity and quantized
Hall plateaus should exist [32]. However, the fact, that the plateau width increases
systematically with increasing impurity concentration (and shows the expected
different behavior for attractive and repulsive impurities) shows, that localized
states due to impurities are the main origin for the stabilization of the quantized
Hall resistance within a finite range of filling factors. A vanishing longitudinal
resistivity always indicates, that a backscattering is not measurable. Under this
condition the quantized Hall resistance is a direct consequence of the transmission
of one-dimensional channels [33].

4 Correlated Electron Phenomena in Quantum Hall Systems

Many physical properties of the quantum Hall effect can be discussed in a sin-
gle electron picture but it is obvious that the majority of modern research and
publications in this field include electron correlation phenomena. Even if the frac-
tional quantum Hall effect [34] (which is a manifestation of the strong electron-
electron interaction in a two-dimensional system) can be nicely discussed as the
integer quantum Hall effect of weakly interacting quasi particles called compos-
ite fermions [35], the many-body wave function of the quantum Hall system is the
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basis for the discussion of different exciting new phenomena observed in correlated
two-dimensional systems in strong magnetic fields. Many of these new phenomena
can only be observed in devices with extremely high mobility where the electron-
electron interaction is not destroyed by disorder. Experiments on such devices
indicate, that phenomena like superfluidity and Bose-Einstein condensation [36],
skyrmionic excitations [37], fractional charges [38], a new zero resistance state
under microwave radiation [39] or new phases based on a decomposition of a half-
integer filling factor into stripes and bubbles with integer filling factors [40] are
observable. The two-dimensional electron system in strong magnetic field seems
to be the ideal system to study electron correlation phenomena in solids with the
possibility to control and vary many parameters so that the quantum Hall effect
will remain a modern research field also in the future.
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Physics in a Strong Magnetic Field

Benôıt Douçot and Vincent Pasquier

1 Introduction

A glance at the behavior of resistance of a two dimensional electron system as
a function of the perpendicular magnetic field (Fig.1), reveals immediately why
the quantum Hall effect has attracted so much attention in the past years. One
usually plots the resistivities along the direction of the current (ρxx) and in the
direction perpendicular to it (ρxy) as a function of the field B. Very schematically,
for certain range of the field ρxx is nearly equal to zero, and for other ranges it
develops a bump. On the average ρxy grows linearly with the field, but in the
regions where ρxx is equal to zero, ρxy presents a flat plateau which is a fraction
times h/e2 to an extraordinary accuracy. This is the quantized Hall effect which
has led to two Nobel prizes, one in 1985 to Von Klitzing for the discovery of the
integer Hall effect, and the other in 1992 to Laughlin, Störmer and Tsui for the
fractional Hall effect.

The basic experimental observation is best recast using the conductivities
σxx and σxy which give the components of the inverse of the resistivity tensor 1.
The quantized Hall regime corresponds to a nearly vanishing dissipation:

σxx → 0 (1)

accompanied by the quantization of the Hall conductance:

σxy = ν
e2

h
(2)

In the integer Hall effect case, ν is an integer with a precision of about 10−10. In the
fractional case, ν is a fraction which reveals the bizarre properties of many electron
physics. The fractions are universal and independent of the type of semiconductor
material, the purity of the sample and so forth. The effect occurs when the electrons
are at a particular density encoded in the fraction ν as if the electrons locked their
separation at particular values. Changing the electron density by a small amount
does not destroy the effect but changing it by a larger amount does, this is the
origin of the plateaus.

In this introductory seminar we shall present the basic tools needed to under-
stand these phenomena. We first review briefly the classical motion of an electron

1σxx = ρxx�
ρ2

xx+ρ2
xy

, σxy =
ρxy�

ρ2
xx+ρ2

xy
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Figure 1: Overview of the diagonal resistivity ρxx and Hall resistance ρxy After
ref. [4].

in a magnetic field and the classical Hall effect. We then move on to the quantum
mechanical description. We introduce the Landau levels and show their relevance
to understand the integer Hall effect. Various theoretical ideas to account for the
robustness of the plateau values of the Hall conductance are then discussed. Fi-
nally, we give some hints of how taking into account electron-electron interactions
can explain the occurrence of the fractional Hall effect.

Some classical review papers and references on the quantum Hall effect can
be found in ref. [1],[2],[3].

2 Single particle in a magnetic field

2.1 Classical motion in a magnetic field

As a first step we must understand the classical motion of an electron of charge
−e confined in a two-dimensional plane (x, y), and subject to a constant magnetic
field Bẑ perpendicular to this plane. The Newtonian equations of motion due to
the Lorentz force are given by:(

ẍ
ÿ

)
=

eB

m

(
−ẏ
ẋ

)
, (3)



Physics in a Strong Magnetic Field 25

where m is the mass of the particle. In complex notation, z = x + iy, with ω
defined as

ω = eB/m, (4)

(3) rewrites

z̈ = iωż. (5)

The solution is given by

z(t) = z0 + deiωt. (6)

The trajectory is a circle of radius |d| run at a constant angular velocity. The
frequency ω is independent of the initial conditions and fixed by the magnetic
field, the charge and mass of the particle. It is called the cyclotron frequency. The
average position of the particle over the time, z0 = x0 + iy0, is arbitrary, and is
called the guiding center. The radius |d| of the trajectory is proportional to the
speed of the particle times its mass. In a Fermi liquid, the speed of the electrons
times their mass is frozen and equal to the Fermi momentum. The measurement
of the cyclotron radius can thus be used to determine the Fermi momentum 2.

Let us add to the magnetic field an electric field Eŷ in the y direction. The
equation of motion now becomes,

z̈ = iωż − ieE/m. (7)

This equation can be put into the form (5) if we use the variable z′ = z − Et/B.
It results from the fact that the electric field can be eliminated through a Galilean
transformation to the frame moving at the speed E/B in the x direction perpen-
dicular to E with respect to the laboratory frame. As a result, in presence of an
electric field E, the guiding center moves perpendicularly to the electric field at a
speed:

v0 =
E ∧ B

B2
. (8)

This classical motion is illustrated on Fig. 2.

2.2 Classical Hall effect

Let us study the simple consequences of the classical equation of motion for the
resistivity tensor. In a simple model, an electron travels with the Fermi velocity
vf uniformly distributed over all possible directions on a distance given by its
mean free path l0 = vf τ0. Here the scattering time τ0 is the average time between
two collisions. This electron is then scattered with the velocity vf over all possible

2Recently, the same experiment has been performed to determine the charge of quasiparticles
when the Fermi momentum was known. [32]
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E V0

Negative charge

Positive charge

Figure 2: Illustration of cyclotron motion for a classical charged particle in the
presence of uniform perpendicular magnetic and electric fields. The magnetic field
is perpendicular to the plane of the figure, pointing upwards. The electric field E
lies in the plane as shown. The drift velocity v0 = E∧B

B2 is also represented. We
have drawn trajectories for both possible signs of the particle electric charge.

directions. In the presence of an electric field E it is uniformly accelerated with the
acceleration −eE/m in the direction of the electric field in between two collisions.
It thus acquires a mean velocity v = −eE/mτ0 directed parallel to E. In the
presence of a uniform magnetic field B, the particles also acquire a uniform speed
perpendicular to E. Adding up the contributions of independent electrons with
a two dimensional electron number density n, we deduce the resistivity tensor ρ
which expresses the linear relation between the current density j and the electric
field E: (

Ex

Ey

)
=
(

ρxx ρxy

−ρxy ρxx

)(
jx

jy

)
, (9)

where the longitudinal resistivity is:

ρxx =
m

ne2τ0
, (10)

and the transverse (or Hall) resistivity (ρxy), which relates the current density j⊥
perpendicular to the electric field E to the field itself, has the expression

ρxy =
B

ne
. (11)

This result relies on Galilean invariance only and is not modified by interactions.
The simplest way to derive this expression is to assume that the current is known.
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To this current, we associate an average electronic velocity v̄ so that j = −nev̄.
This velocity generates a Lorentz force fL = −ev̄ ∧ B, which has to be balanced
by a transverse electric field E⊥ (E⊥.j = 0) so that fL − eE⊥ = 0, thus giving
E⊥ = j∧B

ne , in agreement with (9) and (11). An alternative viewpoint is that a
Galilean transformation to a frame with relative velocity v̄ suppresses the trans-
verse electric field E⊥. If we compare these predictions with the experimental
situation mentioned in the introduction, we see that classically the transport is
dissipative with a constant longitudinal resistivity, and therefore, the observed van-
ishing of ρxx is not predicted by this simple model. However, the average slope of
the transverse resistivity with respect to the magnetic field is accurately predicted.
At the values for which ρxx = 0, the transverse conductivity is given by the inverse
transverse resistivity (11). Comparing the prediction with the experimental result
(2) we deduce that the Hall effect occurs when the electron density is close to the
value

n = ν
eB

h
. (12)

The quantity h/eB has the dimension of an area and we shall have more to say
about it. The fact that Planck’s constant appears explicitly in this expression
suggests that quantum mechanics plays a crucial role in the formation of those
plateaus in ρxy. But before analyzing the new features induced by quantum me-
chanics, it is useful to first describe in more detail the Hamiltonian approach to
classical motion.

2.3 Hamiltonian formalism

Let us introduce a vector potential A(r) for the magnetic field:

B = ∂xAy − ∂yAx. (13)

The vector potential A(r) is defined up to a gauge transformation A(r) → A(r)+
c∇χ(r). The action from which the equations of motion of a mass m and charge
−e particle (confined to the plane) in presence of the magnetic field Bẑ derive, is
given by

S =
∫ r2

r1

(m

2
ṙ2 − eA.ṙ

)
dt. (14)

Note that the action is not gauge invariant and under a gauge transformation
S → S−e(χ(r2)−χ(r1)). Of course, since this change only involves the end points
of the electron path, the classical equations of motion are not affected by such
a gauge transformation. In presence of a uniform magnetic field, if the particle
makes a closed path and returns back to its position, the action accumulated by
the potential on the trajectory is eB times the area surrounded by the trajectory.
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Using the canonical rules, we obtain a Hamiltonian:

H0 =
1

2m
(p + eA)2 =

π2

2m
, (15)

where p = mṙ − eA is the momentum conjugated to r, the quantities p and r
obey the Poisson brackets:

{pi, pj} = 0, {ri, rj} = 0, {pi, rj} = δij (16)

and the so-called dynamical momenta:

π = mṙ = p + eA, (17)

obey the Poisson brackets:

{πi, πj} = εijeB, {ri, rj} = 0, {πi, rj} = δij , (18)

where εij is the antisymmetric tensor εxy = −εyx = 1.
We can also define new coordinates Rx, Ry which have zero Poisson brackets

with the dynamical momenta:

Rx = x − 1
eB

πy , Ry = y +
1

eB
πx, (19)

with the Poisson brackets given by:

{Ri, Rj} = −εij
1

eB
, {πi, Rj} = 0. (20)

One can verify that the coordinates so defined coincide with the guiding center
defined in (6): Rx + iRy = z0.

To understand the physical meaning of the guiding center it is instructive
to consider the motion of a charged particle in presence of an external potential
V (r), which is supposed to vary slowly (|∂i∂jV | << mω2 for all i, j):

H = H0 − eV (r). (21)

The case of the electric field we looked at in the last section, corresponds to
V (r) = −Ey. We are interested in the motion of the guiding center in presence of
V (r). If the radius of the cyclotron orbital is sufficiently small and the speed of
rotation sufficiently fast so that the potential seen during a rotation is approxima-
tively constant, we can average over time; the dynamical momenta acquire a zero
expectation value and we can replace the position r by the guiding center R. In
this approximation, the guiding center motion is given by:

Ṙ =
B ∧ ∇V

B2
. (22)
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The motion decomposes into a fast rotation around the cyclotron orbit and a slow
motion of the guiding center along the equipotential lines of V (r).

If the potential is smoothly varying, we can divide the equipotential lines
into two kinds: Those located near the maxima of V which are closed, and those
located near its mean value which can wind a long way through the saddle points
of V . We can qualitatively understand why the preceding picture of the transport
can be dramatically affected if we take into account the influence of an external
potential. In presence of an electric field the potential seen by the electrons becomes
V (R)−eE.R, and according to whether the equipotential line we consider is closed
or extended, the electron traveling along it is localized or not. We shall return to
this point later.

A very important consequence of this effective dynamics for guiding centers
in the high magnetic field limit is that area is preserved under the time-evolution.
This is a special case of Liouville’s theorem on the conservation of phase-space
volumes for Hamiltonian systems. But here, very remarkably, phase-space has to
be identified with the physical plane, since the two coordinates of the guiding
center are canonically conjugated according to (20). Physically, this means that if
the initial condition is such that the electronic density is constant inside a domain
Ω0, and zero outside, after the system has evolved according to the dynamics (22),
it is still constant inside a deformed domain Ωt of the same area as Ω0 and zero
outside. In other words, the electronic fluid is incompressible. As we shall see in
section 3.2, this property plays a crucial role in understanding the quantization of
σxy. This can be formalized further if consider the set of Poisson brackets between
plane waves eik.R given by:

{eik.R, eik′.R} =
k ∧ k′

eB
ei(k+k′).R. (23)

This algebra is known as the algebra of diffeomorphisms which preserve the area.

2.4 Quantum-mechanical description

2.4.1 Quantum formalism

In the Hamiltonian formalism, the quantization of a charged particle in a magnetic
field is straightforward. The momenta are operators pi = �

i ∂ri , where � = h/2π.
The discussion of the preceding section can be repeated with the Poisson brackets
replaced by commutators: {X, Y } → �

i [X, Y ].
The dynamical momenta and the guiding center define two sets of operators

which obey the commutation relations analogous to (18,20):

[πi, πj ] = −i�εijeB, [Ri, Rj ] = i�εij
1

eB
, [πi, Rj ] = 0. (24)

Note that the commutation relations (24) for the dynamical momenta πi involve
the magnetic field at the numerator, whereas those involving the guiding centers
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Ri are inversely proportional to the magnetic field. We may therefore expect to
recover two different classical limits, when the magnetic field is weak and when it
becomes very strong.

To compute the spectrum of H0 we can define creation and annihilation
operators as linear combinations of the two dynamical momenta

a =

√
1

2�eB
(πx − iπy), a+ =

√
1

2�eB
(πx + iπy), (25)

obeying the Heisenberg relations:

[a, a+] = 1. (26)

In terms of these oscillators the unperturbed Hamiltonian is:

H0 = �ω(a+a +
1
2
), (27)

and its spectrum is that of an oscillator:

En = �ω(n +
1
2
), (28)

with n ≥ 0. Each energy branch is called a Landau level.
The strong magnetic field limit is when the cyclotron radius gets frozen, and

the dynamics is fully controlled by the guiding center coordinates. The fact that the
guiding center coordinates commute with H0 implies that its spectrum is extremely
degenerate. The two coordinates Rx, Ry do not commute with each other and
cannot be fixed simultaneously. There is a quantum uncertainty ∆Rx∆Ry = �

eB
to determine the position of the guiding center. It is customary to define the
magnetic length l by:

l =

√
�

eB
. (29)

Due to the uncertainty principle, the physical plane can be thought of as divided
into disjoint cells of area 2πl2 where the guiding center can be localized. This
area coincides precisely with the area threaded by one magnetic flux quantum
Φ0 = 2π�/e. The degeneracy per energy level and per unit area is 1/2πl2 so that
in an area Ω, the number of degenerate states is:

NΩ =
Ω

2πl2
, (30)

so that electrons behave “as if ” they acquire some size under a magnetic field, the
area being inversely proportional to B.
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Imagine now that we continuously fill a bounded region of the plane with
noninteracting electrons. Let n be the electron number density. We introduce the
so called filling factor as the number of electrons per cell:

ν = n2πl2. (31)

Due to the Pauli principle, a cell can be occupied by one electron only per energy
level. Therefore, each time the filling factor reaches an integer, an energy level
gets filled and the next electron must be added to the next energy level. Thus, the
energy per added electron (chemical potential) jumps by a quantity �ω. This is the
integer quantum Hall regime, and indeed, comparing (31) with (12) we can identify
the filling factors of the Hall effect with the fraction entering the expression of the
transverse conductivity (2). Not surprisingly thus, when the filling factor takes
integer values, the (integer) Hall effect is observed. This naive approach however,
seems to indicate that the integer Hall effect should be observed only at the specific
values of the magnetic field for which ν given by (12) or (31) is an integer, instead
of some extended regions of B, as seen experimentally. Also, the explanation for
the fractional values of ν is out of reach in this approach.

The energy separation between levels must be compared with the other en-
ergy scales introduced by the impurities and the interactions which will split the
degeneracy. A necessary condition to observe the Hall effect is that the splitting of
the energy levels within each Landau level remains small compared to �ω, so that
the Landau levels are well separated in energy. This picture however is too naive
to account for the width of the plateaus. We must invoke the existence two kinds
of energy levels. Extended levels narrowly dispersed around the Landau energy
and localized levels which do not carry current but spread in energy. The pres-
ence of these localized states is necessary to enable the chemical potential to vary
smoothly between two Landau levels instead of jumping abruptly. This seems to
ruin the quantization argument made just before, and we shall have more to say
to reconcile the quantized picture with the existence of localized states later.

We have just seen that the ν = n integer Hall effect occurs precisely when
the density is such that an integer number of electrons n occupy a magnetic cell.
Conversely, we can expect that the ν = 1/3 Hall effect occurs when one electron
occupies three cells by himself! This locking of the separation between electrons
cannot be accounted for by the Pauli principle. The alternative explanation is
that it is due to the interactions between the electrons. This is the starting of
Laughlin’s theory for the fractional Hall effect, and this aspect is discussed in S.
Girvin’s lecture.

2.4.2 Landau gauge

Although the bulk properties of a system of electrons must be independent of the
gauge choice, it is instructive to carry out the quantization procedure in different
gauges. Different gauges can be better suited to different geometries because the
shape of the wave functions depends on the gauge choice.
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Let us consider the so-called Landau gauge which is well suited to a cylindrical
geometry:

Ax = −By, Ay = 0. (32)

In this gauge the dynamical momenta are:

πx = px − eBy, πy = py, (33)

and the guiding center coordinates are:

Rx = x − 1
eB

py, Ry =
1

eB
px, (34)

We can find the simultaneous spectrum of H0 and Ry, and thus fix the value of
the x-momentum px = �k. We therefore look for eigenfunctions of H0 in the form:

Ψk(r) = eikxfk(y). (35)

Each value of Ry = kl2 determine an effective one dimensional Hamiltonian for
fk(y):

Hk =
1

2m
p2

y +
1
2
mω2(y − kl2)2, (36)

where ω is the cyclotron frequency (4). This is the Hamiltonian of a harmonic
oscillator centered at a position y = kl2 determined by the momentum in the x
direction. The spectrum is independent of k and given by:

εn = (n +
1
2
)�ω. (37)

Let us for the moment concentrate on the lowest level n = 0. The wave
functions fk0 are Gaussian centered on kl2 of width l:

fk0(y) = exp
(
− (y − kl2)2

2l2

)
. (38)

To recover the degeneracy, imagine we impose periodic boundary conditions in the
x direction (x + Lx ≡ x). This imposes a quantization condition on k which must
take the values km = 2πm/Lx for the wave function (35) to be periodic. For each
value of m the Gaussian wave packet fm0(y) is centered on ym = 2πml2/Lx. The
number of allowed values of m in an interval of length Ly is thus LxLy

2πl2 and we
recover the degeneracy (30).

The nth Landau Level wave functions are obtained by acting with the creation
operator (a+)n on the ground state wave functions Ψk(x). One can verify that the
wave functions are expressed in terms of Hermite polynomials Hn as:

fkn(y) = Hn(
y − kl2

l
) exp

(
− (y − kl2)2

2l2

)
. (39)
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2.4.3 Symmetric gauge

Another useful gauge well suited to study the system on a disc is the so-called
symmetric gauge defined by:

Ax = −By

2
, Ay =

Bx

2
. (40)

In this gauge the guiding center coordinates are:

Rx =
x

2
− 1

eB
py, Ry =

y

2
+

1
eB

px. (41)

We combine them into two oscillators:

b =
1√
2l

(Rx + iRy), b+ =
1√
2l

(Rx − iRy). (42)

The lowest Landau level wave functions are obtained upon acting onto the ground
state of (27) with (b+)m. In this gauge, the angular momentum L is a good quan-
tum number and they carry an angular momentum L = −m. Their expression is
proportional to 3:

Ψm0(z̄) = (z̄/l)m exp
(
− zz̄

4l2

)
, (43)

and they can be visualized as thin circular shells of radius
√

2ml around the
origin. Thus if we quantize the system in a disk of finite radius R, we recover the
expected degeneracy (30) by keeping only the wave functions confined into the
disk m ≤ m0 = R2/2l2. By taking linear combinations of wave functions (43) we
see that the general wave functions are proportional to polynomials of fixed degree
m0 in z. A useful way to characterize them is through the location of their zeros
Z̄i:

Ψ0(z̄) =
m0∏
i=1

(z̄ − Z̄i) exp
(
− zz̄

4l2

)
. (44)

3 Hall conductance Quantization: the Integer Effect

3.1 Galilean invariant systems

The first important thing to emphasize is that for a two-dimensional Galilean
invariant system, (in the absence of impurities or boundaries) a full quantum-
mechanical treatment yields the same resistivity tensor as for the pure classical sys-
tem, namely ρxx = 0 and ρxy = B/(ne), or equivalently, σxx = 0 and σxy = ne/B.

3This convention is not usual, most people prefer to use conventions for which z̄ → z.
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To check this, let us consider the following Hamiltonian, for a system of N
interacting electrons in the presence of uniform time-independent perpendicular
magnetic (B) and electric fields (E):

H =
1

2m

N∑
j=1

(
(Pj + eA(rj))2 − eV (rj)

)
+

1
2

∑
i�=j

U(ri − rj) (45)

where as usual, B = ∇ ∧ A, E = −∇V , and U is the pair interaction potential.
Inspired by the discussion of the classical case, let us now introduce the following
transformation on the N -particle wave-function Ψ(r1, r2, . . . , rN , t):

Ψ(r1, r2, . . . , rN , t) = exp

⎛⎝ i

�

N∑
j=1

θ(rj , t)

⎞⎠ Ψ̃(r′1, r
′
2, . . . , r

′
N , t) (46)

where rj denotes the position of particle j in the laboratory frame and r′j its
position in the moving frame, with constant velocity v0 given by:

v0 =
E ∧ B

B2
. (47)

Therefore, we have the relation: r′j = rj − v0t. It is possible to choose the phase
θ(r, t) in such a way that Ψ̃ satisfies the time-dependent Schrödinger equation
associated to the simplified Hamiltonian H̃ deduced from H by removing the
potential term −e

∑
j V (rj). So in the inertial frame moving with constant velocity

v0, there is no electrical field, and only the original magnetic field remains. Note
that the expression of θ(r, t) does depend on the choice of gauge. For instance, in
the radial gauge A = 1

2B ∧ r, we have:

θ(r, t) = mv0.r −
1
2
(mv2

0 + eE.r)t.

The phase-factor does not alter the classical composition rule for currents, and we
get

〈Ψ|J(r)|Ψ〉 = −nev0 + 〈Ψ̃|J(r′)|Ψ̃〉. (48)

Now since there is no driving electric field in the moving frame, 〈Ψ̃|J(r′)|Ψ̃〉 = 0,
so 〈Ψ|J(r)|Ψ〉 = −nev0 which is exactly the classical result.

As we have seen, the natural way to measure the electronic density for a
two-dimensional quantum system in a magnetic field is the filling factor ν = nh

eB .
So we end up with

σxy = ν
e2

h
. (49)

Although this expression does involve Planck’s constant, it is important to note
once again that it is identical to the classical prediction for a uniform fluid of
electrons of areal density n. As illustrated on Fig. 1, this prediction for a Galilean
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invariant system coincides with the experimental result for the Hall conductance
when the filling factor ν is an integer. The existence of quantized plateaus of
the form σH = n e2

h , with n integer clearly indicates the breakdown of Galilean
invariance in real samples, since the two expressions differ when ν is not an integer.
This fact is not too surprising, since there is always a random electrostatic potential
induced by the impurities which are required to generate charge carriers at the
interface between two semi-conductors. The most surprising fact is that despite this
random potential (without which there would be no observable Hall quantization!)
the measured plateau values are universal with a very high accuracy. Of course, a
lot of theoretical work has been dedicated to explain this remarkable phenomenon.
To give a simple outline, we may classify most of the existing approaches in the
following way:

– the Laughlin argument [5]
– expressing the Hall conductance as a topological invariant [6]
– the Edge-State picture [7].

We shall try here to give a flavor of these important contributions, but let us first
begin to present a rather simple and helpful semi-classical analysis [8].

3.2 An intuitive picture

It is indeed very illuminating to consider the limit of an extremely strong magnetic
field, so that the magnetic length l = ( �

eB )1/2 is much smaller than the typical
length-scales associated to the spacial variations of the impurity potential Uimp(r).
Classically, we have seen that the guiding center R of classical orbits for a single
electron obeys the following equations of motion:

Ṙ =
B ∧ ∇

B2
(V − Uimp

e
)(R). (50)

In particular, this implies that W (R) = (V −Uimp
e )(R) is conserved, so the classical

trajectories of guiding centers in the infinite B limit coincide with equipotential
curves of the function W (R). Using the intuition gained in section 1, we expect
that after quantization, single particle eigenstates are located along narrow strips
of width l centered on these equipotential lines. As usual in semi-classical quan-
tization, only a discrete set of classical orbits are allowed. An extension of the
Bohr-Sommerfeld principle indicates that for closed classical orbits, only those
which enclose an integer number of flux quanta give rise to quantum eigenstates.
Let us denote by Wi the potential energies associated to these selected orbits. We
get then the following semi-classical spectrum:

Ei,n = −eWi + �ω(n +
1
2
) (51)

where n is any non-negative integer corresponding to quantizing the fast cyclotron
motion around the slow moving guiding center. For a fixed value of n, we may
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then speak of a generalized nth Landau level, although the degeneracy of this level
is lifted by the joint effect of the driving electric field and the impurity potential.
When such a level is completely filled, it induces a spacial density of electrons
(after coarse-graining on a length-scale of the order of the corresponding cyclotron
radius n1/2l) equal to eB

h , mostly insensitive to the form of the effective potential
W (R).

Let us consider now our system to be a horizontal strip defined by 0 ≤ y ≤ Ly.
We apply an external field along the y direction, in such a way that the edges of
the sample y = 0 and y = Ly are equipotential lines for V . On average, we expect
a global Hall current jx in the horizontal direction. Each generalized Landau level
produces a local current:

jx,n = −e

(
eB

h

)
θ(µ + eW (R) − �ω(n +

1
2
))vx(R) (52)

where vx(R) = − 1
B

∂W
∂y (R), and µ is the chemical potential of the electronic sys-

tem. The Heaviside step function θ(µ + eW (R) − �ω(n + 1
2 )) is the limiting form

of the Fermi-Dirac distribution for the semi-classical spectrum (51) at zero tem-
perature. Let us now integrate this local current along a vertical section of the
sample, at fixed x = x0. This yields:

Ix,n(x0) =
e2

h

∫ Ly

0

dy θ(µ + eW (x0, y) − �ω(n +
1
2
))

∂W

∂y
(x0, y). (53)

To simplify the discussion, let us assume that the impurity potential vanishes on
the edges (for y = 0 and y = Ly). The above integral is easily computed, and the
result distinguishes between four cases:

1)−eW (x0, y) + �ω(n + 1
2 ) ≡ En(x0, y) > µ for both y = 0 and y = Ly.

This means that the nth generalized Landau level is unoccupied in the pres-
ence of the external driving voltage, in the limit where the impurity potential
vanishes. In this case, Ix,n(x0) = 0. Note that this value is independent of the
strength of the local impurity potential. In particular, if Uimp(R) has deep local
minima, it may happen that En(R) < µ in some finite areas, meaning that there
are occupied bound states in the nth Landau level localized near impurities. But
in this very large field limit, we see that such localized states do not contribute to
the global Hall current.

2)En(x0, y) < µ for both y = 0 and y = Ly.
In the limit of vanishing impurity potential, the corresponding Landau level

is then fully occupied. We obtain:

Ix,n(x0) =
e2

h
(W (x0, Ly) − W (x0, 0)) =

e2

h
(V (Ly) − V (0)) . (54)

Again, this result is independent of the strength of the impurity potential. Such a
fully occupied level provides therefore a contribution equal to e2

h to the total Hall
conductance.
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3)En(x0, 0) > µ and En(x0, Ly) < µ.

Then

Ix,n(x0) =
e2

h

µ − En(x0, Ly)
e

. (55)

4)En(x0, 0) < µ and En(x0, Ly) > µ.

Then

Ix,n(x0) =
e2

h

En(x0, 0) − µ

e
. (56)

These last two cases correspond to Landau levels which are partially filled in
the absence of impurity potential, but in the presence of the driving field. They
destroy the quantization of σxy. In order to avoid them, one has to fix the chemical
potential in a gap of the unperturbed Landau level spectrum, and impose a weak
enough driving electric field, typically such that e|V (x0, Ly) − V (x0, 0)| < �ω. If
these conditions are satisfied, we have an integer number p of filled Landau levels
which contribute to the Hall current, so that

Ix(x0) = p
e2

h
(V (Ly) − V (0)) (57)

in perfect agreement with:

σxy = p
e2

h
. (58)

When does this simple and appealing picture break down? Clearly, it is prob-
lematic when the typical scale of the impurity potential becomes comparable to
the magnetic length l. In this case, it is no longer possible to preserve such a sim-
ple description of quantum energy eigenstates. Nevertheless, as shown on Fig. 3
illustrating the effect of a strong scatterer modeled as an impenetrable disk of
radius a, even when a is small compared to the cyclotron radius, we may expect
that such a scatterer does not disturb the shape of a strip-like eigenstate excepted
in its immediate vicinity. In particular, the overall direction of propagation of a
wave-packet is not modified by the presence of such impurities. These qualitative
expectations are confirmed by more detailed perturbative calculations [8].

Figure 3: Illustration of cyclotron motion for a classical charged particle in the
presence of uniform perpendicular magnetic and electric fields. A hard circular
point scatterer is depicted as a dashed-filled circle.
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More serious problems arise when strong localized scatterers are densely
packed, namely with an average nearest-neighbor spacing of the order of l. In
this case, classical trajectories become very complicated. Quantum-mechanically,
we expect that such a strong potential induces strong mixing between different
Landau levels, and therefore, a perturbative analysis is not very helpful. Fortu-
nately, a very interesting and famous argument has been given by Laughlin [5]
which shows that nevertheless a strict quantization of σxy is still possible.

3.3 The Laughlin argument

Let us consider the same strip as before, defined by 0 ≤ y ≤ Ly, but let us fold
it into a cylinder by identifying points (x, y) and (x + Lx, y). The magnetic field
B is still normal to this finite domain, and a driving electric field is still applied
along the y direction. To evaluate the current jx(r) in the quantum mechanical
ground-state of this system, Laughlin uses the following exact relation:

jx(r) = − ∂〈H〉
∂Ax(r)

(59)

where A(r) is the external magnetic vector potential. Let us now impose spacial
variations δA(r) of the form: δAx(r) = δΦ

Lx
and δAy(r) = 0. Such variations do

not modify the gauge-invariant electric and magnetic fields, but they introduce an
Aharonov-Bohm flux through any closed path winding once around the cylinder
in the positive x direction. The corresponding infinitesimal variation of the system
average energy is:

δ〈H〉 = −δΦ
Lx

∫ Lx

0

dx

∫ Ly

0

dy jx(r) = −δΦ Ix. (60)

So the Hall current Ix is simply expressed as:

Ix = −d〈H〉
dΦ

. (61)

Now Laughlin assumes that as Φ varies, the ground-state wave-function |Ψ0(Φ)〉
undergoes a smooth evolution, Φ being considered as an external parameter of the
system Hamiltonian. A sufficient condition for this to occur is when the ground-
state is unique, and well separated by a finite energy gap from excited states
created in the bulk of the system. This happens for instance for non-interacting
electrons with an integer filling factor in the limit of a weak impurity potential.

Let us now vary Φ by a finite quantity Φ0 = h/e. Note that the effect of chang-
ing Φ is simply the same as changing the periodic boundary condition along the x
direction, so its effect on a macroscopic system is expected to be small. One way to
see this is to consider single particle eigenstates in the Landau gauge (Ax = −By,
Ay = 0). These states are localized in narrow strips centered around horizontal
lines such that ym = 2πl2

Lx
(m+Φ/Φ0), m integer. So changing Φ into Φ+Φ0 amounts
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mInteger filling Non integer filling

Φ ΦΦ+Φ Φ+Φ0 0

Figure 4: Illustration of the change in the spatial distribution of occupied energy
states within a single Landau level, as flux Φ is changed into Φ + Φ0. For integer
filling, no change occurs in the bulk of the system (depicted by the dashed paral-
lelogram), and the global effect is to transfer one electron from the lower to the
upper boundary. For non-integer filling factor, this adiabatic process also implies
a change of the level occupancy pattern in the bulk of the system.

simply to changing m into m + 1 and the single electron spectrum is invariant in
this operation. This in fact expresses the gauge-invariance of quantum-mechanics,
as first emphasized by Aharonov and Bohm. In particular, this periodicity of the
spectrum as a function of Φ with period Φ0 holds for interacting electron systems
such as those described by the Hamiltonian (45). Denoting by ∆〈H〉 the varia-
tion of the system energy during such process, Laughlin assumes that we may still
write:

Ix = −∆〈H〉
Φ0

. (62)

Suppose now the chemical potential is such that the ground-state is well
separated from excited states by an energy gap, at least when the driving electric
field vanishes. Again, this is the case for non-interacting electrons with an integer
filling factor in the limit of weak impurity potential. Then upon changing Φ into
Φ+Φ0, we cannot modify the wave-function in the bulk of the system. However, as
the example of non-interacting electrons suggests (see Fig. 4), we may still transfer
an integer number p of electrons (since the quantum number m is shifted into m+1)
from the lower edge to the upper edge. More precisely, for non-interacting electrons
with an integer filling factor ν, then p = ν. In this situation, the energy variation
∆〈H〉 during the shift from Φ to Φ + Φ0 is of purely electrostatic origin, so that

∆〈H〉 = −pe(V (Ly) − V (0)). (63)

From Eq. (62), this yields:

Ix = p
e2

h
(V (Ly) − V (0)) (64)

or equivalently, σxy = p e2

h .
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Figure 5: Schematic plot of the density of single particle energy levels, as a func-
tion of energy in the presence of a static random impurity potential. The arrows
correspond to positions of Landau levels for a pure system, and to extended states
in the disordered case. The random potential lifts the huge degeneracy of each
Landau level, and most of energy eigenstates become spatially localized.

The strength of this argument is that it is also valid for interacting systems,
in the presence of a random potential, as long as the excitation gap present for the
pure non-interacting system at integer ν is preserved. To some extent, we may even
drop the weak disorder assumption. To see this, let us consider a non-interacting
system, but with a possibly large disorder. The density of states has schematically
the shape shown on Fig. 5 where the gaps of the Landau level spectrum have been
partially filled under the influence of the random impurity potential. In two dimen-
sions, (and in absence of magnetic field), it is very likely that all energy eigenstates
are spacially localized [9]. Such localized wave-functions are mostly insensitive to
changing boundary conditions, and therefore do not contribute to the adiabatic
charge transport process involved in Laughlin’s argument. This should yield a
vanishing Hall conductance. However, there are theoretical arguments [10, 11] and
substantial numerical evidence [12] that in the presence of a uniform magnetic
field, some delocalized eigenstates exist for a discrete set of energies, in one to one
correspondence with the original Landau levels (see arrows on Fig. 5). Understand-
ing precisely the onset of such extended states as the energy is tuned towards one
of these critical values still remains a theoretical challenge [13]. A recent review on
these magnetic-field induced delocalization transitions may be found in a paper by
Kramer et al. [14]. Combining this picture of the single-particle spectrum (mostly
localized states, but isolated energies allowing for extended states) with Laughlin’s
argument shows that the quantized Hall conductance σxy = p e2

h may still exist in
a relatively strong disorder regime.

Finally, let us mention briefly the case of arbitrary filling factors ν. We may
still use Eq. (62) to evaluate the Hall conductance. In the case of non-interacting
electron for a pure system, we have a partially filled Landau level crossing the
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Fermi energy. Therefore, the process of adding one flux quantum Φ0 in the system
translates the pattern of occupied and empty horizontal strip-like single particle
states by the amount ∆y = 2πl2

Lx
, as shown on Fig. 4. Another way to say this

is that this adiabatic process induces particle-hole excitations inside the partially
occupied Landau level, which affect now the bulk of the system, and not only
its boundaries. The corresponding change in electrostatic energy is then propor-
tional to the total number of electrons, and this implementation of the Laughlin
argument yields the classical, unquantized value σxy = ν e2

h . The situation changes
dramatically in the presence of electron-electron interactions, and indeed plateau
values of the form σxy = p

q
e2

h have been observed, where p is an integer and q an
odd integer [15]. In a pioneering insight [16], Laughlin explained the appearance
of these fractional values as a consequence of two remarkable properties of the
system:
i)Interactions are lifting completely the degeneracy of the partially filled Landau
level, at least for filling factors ν = 1/q, q odd. The corresponding ground-state is
liquid-like, isotropic and translationally-invariant.
ii)The elementary locally charged excitations correspond to collective reorganiza-
tions of the electron fluid producing a fractional charge e∗ = 1/q.
These two surprising properties of the energy spectrum and of elementary excita-
tions have been incorporated by Laughlin in his 1981 argument to account for the
existence of quantized plateaus in σxy with a fractional value. Since the theory of
this fractional effect is the subject of S. Girvin’s contribution to this seminar, we
shall not discuss it further here.

3.4 The Hall conductivity as a topological invariant

Let us further modify the geometry used for the Laughlin argument by gluing
together the lower (y = 0) and upper (y = Ly) edges of the cylinder, thus forming
a torus. The small external driving field is still uniform, directed along ŷ, and
we shall still measure the current density 〈jx〉 along the x̂ direction. As we wish
to apply linear response theory, it is convenient to work with a time-dependent
electric field:

Ey(t) =
∫

dω

2π
e−iωtẼy(ω). (65)

The frequency-dependent Hall conductivity σxy(ω) is defined by:

j̃x(ω) = σxy(ω)Ẽy(ω). (66)

Quantum-mechanically, the simplest way to introduce an electric field is through
a time-dependent vector-potential δA(t) such that Ey(t) = −∂δAy(t)

∂t , or equiva-
lently: Ẽy(ω) = iωδÃy(ω). If we define Kxy(ω) to be such that j̃x(ω) = Kxy(ω)
δÃy(ω), then: σxy(ω) = Kxy(ω)

iω . For a uniform electric field, δAy is also spatially
uniform. In real space and time, the response kernel Kxy is given by the standard
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Kubo linear response formula:

Kxy(r, t; t′) =
i

�
〈[ δH

δAx(r)
,

∫
δH

δAy(r′)
d2r′]〉, (67)

where we have used again jx(r) = − δH
δAx(r) , and the fact that δAy is uniform.

The quantum-mechanical expectation values are taken in the ground state of the
system, since we are assuming a very low temperature. In the absence of impurities,
we expect a uniform current, but if impurities are present, only the total current
Ix(x) =

∫ Ly

0
dy jx(x, y) is independent of x (because of current conservation) in the

static limit. It is therefore natural to average the above response function over the
“probe” position r. Introducing fluxes Φx and Φy as in the previous section, but
now along the two main directions of the torus, we may write this space-averaged
response function as:

Kxy(r, t; t′) =
i

�

1
LxLy

〈[
∫

δH

δAx(r)
d2r,

∫
δH

δAy(r′)
d2r′]〉 =

i

�
〈[ ∂H

∂Φx
,

∂H

∂Φy
]〉. (68)

Transforming to Fourier-space, we now obtain:

σxy(ω) =
i

�ω

∑
α

{ 〈0|∂xH |α〉〈α|∂yH |0〉
ω − ωα0

− 〈0|∂yH |α〉〈α|∂xH |0〉
ω + ωα0

}
(69)

where |0〉 is the ground-state and |α〉 denotes a complete orthonormal basis of
energy eigenstates of H , with energies Eα. The Bohr frequencies ωα0 are equal to
(Eα − E0)/�. In this expression, H is the full Hamiltonian of the system in the
absence of driving electric field. It may therefore include both impurity potentials
and interaction effects. To simplify notations, ∂xH and ∂xH stand respectively for
∂H
∂Φx

and ∂H
∂Φy

. Gauge-invariance requires that the current vanishes when a static
uniform vector potential is applied. This enables us to replace the above expression
by:

σxy(ω) =
i

�

∑
α

{ 〈0|∂xH |α〉〈α|∂yH |0〉
ωα0(ω − ωα0)

+
〈0|∂yH |α〉〈α|∂xH |0〉

ωα0(ω + ωα0)

}
(70)

which has a well-defined static limit ω → 0 provided the system has a finite energy
gap, so that denominators are not vanishing in this limit. We may then write the
static Hall conductance as:

σxy =
�

i

∑
α

{ 〈0|∂xH |α〉〈α|∂yH |0〉
(E0 − Eα)2

− 〈0|∂yH |α〉〈α|∂xH |0〉
(E0 − Eα)2

}
. (71)

It is now convenient to view the Aharonov-Bohm fluxes Φx and Φy as external
parameters. The ground-state |0〉 becomes a function of (Φx, Φy) ≡ Φ and we shall
denote it by |Φ〉. This allows us to recast the previous equation as:

σxy(Φ) =
�

i

(
∂〈Φ|
∂Φx

∂|Φ〉
∂Φy

− ∂〈Φ|
∂Φy

∂|Φ〉
∂Φx

)
. (72)
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This may be regarded as the curl of a two-dimensional vector:

1
i

(
〈Φ|∂|Φ〉

∂Φx
, 〈Φ|∂|Φ〉

∂Φy

)
. (73)

Since 〈Φ|Φ〉 = 1, this vector has purely real components. The above expression
depends on a choice of two Aharonov-Bohm fluxes (Φx, Φy), which by gauge trans-
formations is equivalent to choosing the following boundary conditions for the
wave-functions (for simplicity of notation, we consider just one electron here, since
generalization to N electrons is obvious):

Ψ(x + Lx, y) = ei2π Φx
Φ0 Ψ(x, y) (74)

Ψ(x, y + Ly) = e
i2π

Φy
Φ0 Ψ(x, y). (75)

This is of course connected to the idea that all physical quantities, like σxy(Φ)
are periodic functions of both Φx and Φy with period Φ0. So the Φ-plane may be
folded onto a two-dimensional torus.

Let us now make the assumption that σxy(Φ) is only very weakly modified
upon changing these boundary conditions. In the case where the ground-state is
well separated from excited states by a finite energy gap, arguments have been
given to show that σxy(Φ) becomes constant for a large system, up to corrections
of order l/Lx, l/Ly [6]. We may therefore replace σxy(Φ) by its average over the Φ-
torus and then transform the two-dimensional integral of a curl into a line-integral
along the boundary of the square [0, Φ0] × [0, Φ0]:

σxy =
e2

h

1
2πi

∫
�
〈Φ|d|Φ〉. (76)

But as shown in Appendix, the quantity 1
2πi

∫
�〈Φ|d|Φ〉 is equal to 2πnC where nC

is an integer called a Chern number. Finally, we get [17, 6]:

σxy = nC
e2

h
. (77)

Note that this formula seems to be valid in great generality, so we may wonder
how we might explain fractional values for the Hall conductance. In fact, the above
derivation requires the ground-state to be unique for all values of Φ. For fractional
filling factors of the form ν = p/q, Tao and Haldane have shown that the ground-
state is q-fold degenerate on a torus in the absence of impurities [18]. Furthermore,
since these degeneracies are associated only to the center of motion of the electron
fluid, the effect of impurities on the energy spectrum is rather small whenever
there is an energy gap for internal excitations. These authors have shown how
such degeneracies induce values of the form p/q in unity of e2/h for the Hall
conductivity.

We have not covered here all the aspects related to this description of the
Hall conductivity as a topological invariant. A recent very accessible review may
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Figure 6: Typical geometry of a Hall bar. The current I is injected in the sample
through contacts labelled 1 and 2. Lateral contacts labelled from 3 to 6 are used
to measure the longitudinal voltage as for instance V3 − V4 or the Hall voltage as
for instance V3 − V5.

be found in [19]. We also mention briefly that such topological ideas have gener-
ated a rigorous proof of the integer Hall conductance quantization for an infinite
disordered system of non-interacting electrons [20]. This work uses a rather elabo-
rate mathematical apparatus (K-theory for C∗ algebras) which we will not try to
describe here, so the interested reader is invited to consult the original paper [20].

3.5 Edge-state picture of the Quantum Hall effect

Starting from an influential paper by Halperin [21], this viewpoint has been em-
phasized by Büttiker [7], and plays a crucial role in experiments aimed at showing
the existence of fractionally charged quasi-particles in the fractional regime. These
experiments will be discussed in detail by C. Glattli. Here, we shall just present a
brief introduction to this approach.

Usually, experiments and metrological applications of the quantum Hall effect
involve
rectangular-shaped samples schematized on Fig. 6. Current is injected along the
long axis of the Hall bar, and voltage probes located on the sides of the sam-
ple are used to measure longitudinal and Hall resistivities. In such systems, there
is a strong but smooth lateral confining potential for electron approaching outer
boundaries. The corresponding semi-classical spectrum for non-interacting elec-
tron has the shape shown on Fig. 7(a) inspired from [21]. From our description
of the dynamics in a large magnetic field, we expect that even in the absence of
external electric field, the strong confining potential gradients will induce static
currents along boundaries. With a positive magnetic field along the ẑ direction,
electrons acquire a positive group velocity along the upper boundary (y 
 Ly)
and a negative group velocity along the lower one (y 
 0). The same reasoning
as in section 3.2 applies here showing that the total current across a section of
the system vanishes, so there is no global current along the sample in equilibrium.
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What happens when the system is driven out of equilibrium by a non-zero average
longitudinal current injected in the sample by external contacts (labeled 1 and 2
on Fig. 6)? This simply means that the population of edge states will be increased
(resp. decreased) with respect to their equilibrium values when edge currents move
in the same (resp. opposite) direction as the injected current. In other words, the
chemical potentials µ(Ly) and µ(0) on both edges are now different. The difference
µ(Ly) − µ(0) is precisely equal to −e(V (Ly) − V (0)) which is the energy cost to
transfer an electron from the Fermi level at y = 0 to the Fermi level at y = Ly.
Adapting Eq. (53), we now have:

Ix,n(x0) =
e2

h

∫ ∞

−∞
dy θ(µ(y) + eW (x0, y) − �ω(n +

1
2
))

∂W

∂y
(x0, y). (78)

Here, W (x, y) is the sum of random impurity and confining electrostatic poten-
tials. By contrast to the discussion in section 3.2, it does not include an external
driving field, since the current is viewed here as the result of imposing an out
of equilibrium distribution of single-particle states along edges. The integral has
now been extended to [−∞,∞] since the precise locations of the sample edges do
depend on the populations of edges states as illustrated on Fig. 7(b). Each filled
Landau level produces now an integrated current:

Ix,n(x0) =
e2

h
(W (Ly) − W (0)). (79)

But we have

−e(W (Ly) − W (0)) = µ(Ly) − µ(0) = −e(V (Ly) − V (0)). (80)

So finally:

Ix,n(x0) =
e2

h
(V (Ly) − V (0)) (81)

for each filled Landau level.
These edge states have been the subject of intense research during the last

fifteen years. Many directions have been explored, including the precise modeling of
electron transport through mesoscopic coherent samples [22, 23, 24], the theoretical
and experimental investigation of interaction effects [25, 26], the generalization of
edge states to the fractional quantum Hall regime [27], and possible applications
of edge channels to quantum information processing [28, 29], . . .

4 Interactions, a preview

This section has no ambition to be exhaustive, it reflects the author’s understand-
ing of the role of interactions in the Hall effect. We have seen earlier that the
main feature of electrons in a strong magnetic field is the large degeneracy of the
Landau levels. It is therefore natural to expect that in this regime, the physics can
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(a)

µ(0) Lyµ(    )
µ(0)

Lyµ(    )

(b)

y y

Figure 7: Semi-classical energy spectrum for three Landau levels, as a function of
the position y across a Hall bar. In (a), an equilibrium situation is depicted, where
the chemical potential is uniform. Filled (resp. empty) circles represent occupied
(resp. empty) single-particle states. Currents flow along the x direction in regions
where these levels depend strongly on y, that is near the edges. In (b), a non-
equilibrium state is depicted, with a smaller chemical for y = 0 than for y = Ly.
As a result, the sum of currents flowing along both edges is non-zero.

be understood through degenerate perturbation theory. In all phenomena where
the filling factor is less than one, the projection on the lowest Landau level should
therefore give an accurate description of the physics. Here, we indicate how the
projection mechanism results in rigid properties of the interacting electron system,
which are fairly independent of interactions involved. Also, the properties of the
quasiparticles which emerge, such as their charge, are completely different from
those of the original electrons.

It is instructive to consider the dynamics of two particles within the lowest
Landau level. The two particles interact through a potential V (r1 − r2) which is
supposed to be both translation and rotation invariant. In a physical situation the
potential is the Coulomb interaction between the electrons, but it can in principle
be any potential. For reasons that will become clear in the text we consider parti-
cles with a charge respectively equal to q1 and q2 times the charge of the electron.
Our aim is to show that, to a large extent, the properties of the dynamics are
independent of the detailed shape of the potential. More precisely, the potential
interaction is a two body operator which can be projected into the lowest Landau
level. Up to normal ordering ambiguities, the projection consists in replacing the
coordinates, r1, r2, with the guiding center coordinates, R1, R2. After the projec-
tion is taken, the potential becomes an operator which is the effective Hamiltonian
for the lowest Landau level dynamics. By choosing conveniently a basis, we can see
that the eigenstates of the potential do not depend on it, as long as it is invariant
under the isometries of the plane. In other words, the two body wave functions
of the Hall effect are independent of the interactions. By extension, we are led to



Physics in a Strong Magnetic Field 47

expect that the many body wave functions have some universality properties, and
do not depend on the details of the potential.

In this section, we use the symmetric gauge, and l denotes the magnetic
length (29). The guiding center coordinates for a particle of charge q > 0 times
the charge of the electron have the expression

b =
√

2(l∂z̄ + q
z

4l
), b+ =

√
2(−l∂z + q

z̄

4l
). (82)

Together with the angular momentum, L, they generate a central extension of the
algebra of the isometries of the plane:

[b, b+] = q, [L, b+] = −b+, [L, b] = b. (83)

This algebra commutes with the Hamiltonian H , and therefore acts within the
lowest Landau level. It plays a role similar to the angular momentum in quantum
mechanics, and the operators b, b+, L are the analogous of the angular momentum
operators J−, J+, Jz . The Landau level index n plays the same role as the repre-
sentation index j in the rotation group, and it can be recovered as the eigenvalue
of a Casimir operator: C = 2b+b/q + L. The states within each Landau level can
be labeled by their angular momentum m ≤ n.

When two particles of positive charge q1 and q2 are restricted to their respec-
tive lowest Landau level, we can form the operators b+ = b+

1 + b+
2 , b = b1 + b2

and the total angular momentum L = L1 + L2. These operators obey the commu-
tation relations of the algebra (83) with the charge q = q1 + q2. Thus, as for the
angular momentum, a product of two representations decomposes into represen-
tations of the isometry of the plane (83). The physically interesting case is when
the two charges are equal to the electron charge (q1 = q2 = 1). It is easy to verify
that each representation is constructed from a generating state annihilated by b:
(b+

1 −b+
2 )n|0〉, and the value of the Casimir operator is C = −n. The corresponding

wave functions are:

Ψn(z̄1, z̄2) = (z̄1 − z̄2)n exp
(
−(z̄1z1 + z̄2z2)/4l2

)
, (84)

an expression that plays an important role in the theory of the fractional Hall
effect. The potential being invariant under the displacements, it is a number Vn in
each representation. Conversely, the information about the Vn is all the informa-
tion about the potential that is retained by the lowest Landau level physics. The
numbers Vn are called pseudopotentials, and turn out to be extremely useful to
characterize the different phases of the fractional Hall effect [30].

A case of even more interest is when the two particles have charges of opposite
sign, q1 > 0 and q2 < 0, |q2| < q1. Because of the sign of the second charge, b+

2 and
b2 become respectively annihilation and creation operators and the lowest Landau
level wave functions are polynomials in z2 instead of z̄2. The same analysis can
be repeated, but now the Casimir operator has a positive value n exactly as for
the Landau levels. The physical interpretation is that a couple of charges with
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opposite sign behaves exactly like a bound state of charge q∗ = q1 − |q2|. The
states annihilated by b have a wave function independent of the precise expression
of the potential, given by:

Ψn(z̄1, z2) = zn
2 exp

(
−q1z̄1z1/4l2 − |q2|z̄2z2/4l2 + |q2|z̄1z2/2l2

)
, (85)

and they are the nth Landau level’s wave functions with the largest possible angular
momentum L = n.

Heuristically, let us indicate how a scenario involving these composite par-
ticles enables to apprehend the region of magnetic field between 21 and 27 Tesla
on Fig.1. For this, we use the well established theoretical fact that a quantized
Hall effect (for bosons) develops at the filling factor ν0 = 1/2. We assume that
the ground state is the ν0 = 1/2 quantum Hall liquid made of particles of charge
−q1e. The physical motivation to start from this bosonic ground-state is that it
exhibits a rather low Coulomb energy, since the probability for two particles to
come close from each other is small in this state. More details on these correlated
ground-states are presented in S. Girvin’s contribution to which we direct the
reader. To recover fermionic statistics, we add on top of this ground state a sea of
quasiparticles which are the bound-states introduced above, made of an electron
of charge −e and a hole (of charge q1e) in the ν0 = 1/2 ground state . The charge
of the quasiparticles is thus −q∗e, with:

q∗ = 1 − q1. (86)

To obtain the values of the filling factor that give rise to a Hall effect, using
(29) and (31) generalized to particles of an arbitrary charge, we see that for a fixed
magnetic field and a fixed density, the following proportionality relation between
the charge and the filling factor holds:

charge ∝ 1
filling factor

, (87)

When the magnetic field is varied, the charge q1e adjusts itself so that the filling
factor of the ground-state is always equal to 1/2. Thus, q1e ∝ 2. Then, an integer
quantum Hall effect will develop when the filling factor of the quasiparticles is an
integer p. So, when q∗e ∝ 1/p. Finally, we can recover the normalization coefficient
through the relation between the filling factor of the electrons and their charge:
e ∝ 1/ν. Substituting these relations in (86) we obtain the following expression
for the filling factors giving rise to a Hall effect:

1
ν

= 2 +
1
p
. (88)

These filling factors are those predicted by Jain [31], and fit well with the Hall
effect observed at ν = 3/7, 4/9, 5/11, 6/13 in Fig.1. The fractions on the other
side of 1/2 are the complement to one of the previous ones, and the corresponding
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states can be obtained through a particle hole transformation. In the region, close
to ν = 1/2, the quasiparticles have practically zero charge, and therefore see a
weak magnetic field. They should therefore behave very much like a neutral Fermi
liquid. This has been confirmed by several experiments. One of them measures
directly the charge q∗ of the quasiparticles through the cyclotron radius of their
trajectory [32] (see the footnote of section 2.1).

At ν = 1/2 exactly, let us introduce a simple model to grasp the physics of
these composite particles. At this value of the magnetic field, the particle and the
hole have exactly opposite charge so that the quasiparticle has exactly zero charge
(86). Let us assume for simplicity that the particle and the hole are linked by a
spring of strength K. In a strong magnetic field, we disregard the kinetic energy
term in the action (14). Thus, after we include the interaction term, the action
becomes:

S =
∫ (

−eA(r1).ṙ1 + eA(r2).ṙ2 −
K

2
(r1 − r2)

2

)
dt. (89)

If we denote by P = p1 + p2 the total momentum of the system, straightforward
quantization leads to:

P = �ẑ ∧ r1 − r2

l2
, (90)

and

H =
P2

2m∗ , (91)

where the quasiparticle mass is m∗ = (Be)2/4K. Thus, these neutral quasiparticles
behave like free particles, and do not feel the external magnetic field. Note that
their effective mass m∗ is independent of the true electron mass, and reflects the
properties of the interactions. Eq. (90) tells us that the quasiparticles are dipoles
oriented perpendicularly to P, with a dipole size proportional to the momentum.
At this moment, no experimental evidence of their dipolar structure has yet been
given.

Finally, let us say a few words about the second quantized formalism in the
lowest Landau level. If V (r) denotes the interacting potential, the dynamics is
governed by the Hamiltonian:

H =
∫

Ṽ (q)ρqρ−qd2q, (92)

where Ṽ (q) are the Fourier modes of the potential multiplied by the short dis-
tance cut-off factor e−q2l2/2, and ρq are the Fourier modes of the density. Again,
due to the projection to the lowest Landau level, the density Fourier modes do
not commute as in the usual case. Instead, they obey the commutation relations
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analogous to (23) (ρq ≡ ∑Ne

i=1 eiq.Ri):

[ρq, ρq′ ] =
1
i

sin
lq ∧ lq′

2
ρq+q′ . (93)

It can be verified that for a finite size system, q can take only N2 values where
N = area/2πl2 is the degeneracy of the lowest Landau level, and the algebra (93) is
the Lie algebra of the group U(N). In the limit of strong magnetic field, l → 0, and
one recovers the algebra of area preserving diffeomorphisms (23) as the classical
limit of (93).

Appendix: Chern number for a two-dimensional torus

In section 3.4, we have introduced the ground-states |Φ〉, where Φ ≡ (Φx, Φy) de-
notes two
Aharonov-Bohm fluxes associated to the two main topologically non-trivial closed
loops winding around the real-space torus defining our electron system. These
states are periodic functions of Φ, up to possible phase-factors, so we may write:

|Φ0, Φy〉 = eiλ(Φy)|0, Φy〉 (94)

|Φx, Φ0〉 = eiµ(Φx)|Φx, 0〉. (95)
(96)

In particular, we get

|Φ0, Φ0〉 = ei(λ(0)+µ(Φ0))|0, 0〉 = ei(µ(0)+λ(Φ0))|0, 0〉. (97)

Consequently:

λ(Φ0) − λ(0) − µ(Φ0) + µ(0) = 2π n (98)

where n is an integer. Now:

1
2πi

∫
�
〈Φ|d|Φ〉 =

1
2πi

∫ Φ0

0

dΦx

(
〈Φ| ∂

∂Φx
|Φ〉(Φx, 0) − 〈Φ| ∂

∂Φx
|Φ〉(Φx, Φ0)

)
+

1
2πi

∫ Φ0

0

dΦy

(
〈Φ| ∂

∂Φy
|Φ〉(Φ0, Φy) − 〈Φ| ∂

∂Φy
|Φ〉(0, Φy)

)
(99)

=
1

2πi

∫ Φ0

0

dΦx

(
−i

∂µ

∂Φx
(Φx)

)
+

1
2πi

∫ Φ0

0

dΦy

(
i

∂λ

∂Φy
(Φy)

)
(100)

=
1
2π

(λ(Φ0) − λ(0) − µ(Φ0) + µ(0)) (101)

= n. (102)



Physics in a Strong Magnetic Field 51

References

[1] The Quantum Hall Effect, Edited by R.E. Prange and S. Girvin, Springer-
Verlag, New York, (1990).

[2] S.M. Girvin, “The Quantum Hall Effect: Novel Excitations and broken Sym-
metries”, Les Houches Lecture Notes, in Topological Aspects of Low Dimen-
sional Systems, Springer-Verlag, Berlin and Les Editions de Physique, Les
Ulis, (1998).

[3] Perspectives in Quantum Hall Effects, Edited by S. Das Sarma and A.
Pinczuk, Wiley, New-York, (1997).

[4] R.L. Willet, H.L. Stormer, D.C. Tsui, A.C. Gossard and J.H. English, Phys.
Rev. Lett. 59, 1776 (1987).

[5] R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

[6] Q. Niu, D.J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372 (1985).
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The Quantum Hall Effect as
an Electrical Resistance Standard

Beat Jeckelmann and Blaise Jeanneret

Abstract. The quantum Hall effect (QHE) provides an invariant reference for resis-
tance linked to natural constants. It is used worldwide to maintain and compare
the unit of resistance. The reproducibility reached today is almost two orders of
magnitude better than the uncertainty of the determination of the ohm in the
International System of Units SI.

In this article, mainly the aspects of the QHE relevant for its metrological appli-
cation are reviewed. After a short introduction of the theoretical models describing
the integer QHE, the properties of the devices used in metrology and the measure-
ment techniques are described. A detailed summary is given on the measurements
carried out to demonstrate the universality of the quantized Hall resistance and to
assess all the effects leading to deviations of the Hall resistance from the quantized
value. In addition, the present and future role of the QHE in the SI and the field
of natural constants is discussed.

1 Introduction

Parallel to the progress made in the physical sciences and in technology, the Inter-
national System of Units SI has evolved from an artefact based system to a system
mainly based on fundamental constants and atomic processes during the last cen-
tury. For example, the unit of time, the second, is now defined as the duration of
a fixed number of periods of the radiation corresponding to an atomic transition
in Cs. The unit of length, the metre, is the path traveled by light in vacuum in
a fixed fraction of a second. This definition assigns a fixed value to the speed of
light which is one of the most fundamental constant in physics. The modern units
have major advantages over their artefact counterparts: they do not depend on
any external parameters like the ambient conditions and, most important, they do
not drift with time. In addition they can be simultaneously realized in laboratories
all over the world which strongly simplifies and improves the traceability of any
measurements to the primary standards.

With the discovery of the Josephson and the quantum Hall effects, two elec-
trical quantum standards became available. As a first consequence, the worldwide
consistency in the realization and maintenance of the electrical units and the elec-
trical measurements based on them has improved hundredfold in the last decade.
The two quantum effects will certainly also play a major role in the next mod-
ernization of the SI when the last remaining base unit in the SI still based on an
artefact, the kilogram, will be linked to fundamental constants.
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The aim of the present review is to highlight the role of the quantum Hall
effect (QHE) in metrology and to recall the theoretical and experimental back-
ground which is necessary for its understanding. Earlier review articles focusing
on similar aspects may be found in references [1, 2, 3].

The QHE was discovered in the night to February 5 1980, when Klaus von
Klitzing was investigating the transport properties of a Si-MOSFET device at very
low temperature and high magnetic field in Grenoble [4]. The discovery, which
was totally unanticipated by the physics community, relied on the existence of
a two-dimensional electron gas (2DEG) in a semiconducting device. The great
technological progress that followed the invention of the transistor lead to the
realization of the first 2DEG in semiconducting devices in the middle of the sixties.
The first measurements performed with Si-MOSFETs at low temperature and high
magnetic field were done by Fowler et al[5] in 1966. Later on, due to improvements
in device fabrication, Kawaji et al[6] observed the dissipationless state in a Si-
MOSFET. In 1978, Hall resistance plateaus were observed in such inversion layers
by Englert and von Klitzing [7]. However, the idea of analyzing the Hall plateaus
in terms of the fundamental value h/e2 emerged that particular night for the
first time. Further measurements [8] confirmed that the fundamental quantization
relation for the Hall resistance RH = h/ie2 was accurate to 10 parts in 106. Von
Klitzing was awarded the Nobel prize for his discovery in 1985 [9].

In 1982, using GaAs/AlGaAs heterostructures, the 2DEG mobility was in-
creased to a level where the fractional quantum Hall effect (FQHE) could be dis-
covered by Tsui, Störmer and Gossard [10]. In 1998, Tsui, Störmer and Laughlin
were awarded the Nobel prize for their discovery [11, 12, 13]. The FHQE opens
the way to the study of a large spectrum of interesting physical phenomena (see
e.g. [14] for a recent review). Unfortunately the current at which the FHQE breaks
down is so low that an application in metrology is not conceivable.

This review is organized as follows: Section 2 presents the basics of the quan-
tum Hall effect. The localization and the edge state model of the QHE are shortly
reviewed. Section 3 describes the devices needed to observe the QHE whereby
emphasis is put on the two types of systems that are mostly used in metrology,
the Si-MOSFET and the GaAs/AlGaAs heterostructure. A short paragraph de-
scribes the role of electrical contacts to the 2DEG. Section 4 describes in detail the
precision measurement techniques used to compare the quantized Hall resistance
(QHR) to traditional resistance standards. Section 5 reviews the most important
physical properties of the QHE and their influence on high precision measurements
of the QHR. In section 6, it is shown that the QHR has a universal character: it
does not depend on the device type (Si-MOSFET or GaAS heterostructures), on
the plateau index, on the mobility, nor on the device width at the level of the
relative measurement uncertainty of 3×10−10. Section 7 discusses the QHE in the
framework of the SI, including the role of the QHR in the metrological triangle
and in the replacement of the kilogram. Section 8 presents the progress made in ac
measurements of the QHR in view of its implementation as a primary ac resistance
standard.
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Figure 1: Experimental measurements of the Hall resistance RH and of the lon-
gitudinal resistance Rxx for a Si-MOSFET (B = 13.8 T) and a GaAs/AlGaAs
heterostructure at a temperature of 0.3 K.

2 Basic Principles

2.1 The Integer Quantum Hall Effect

The QHE is observed in a two-dimensional electron gas at low temperature and
high magnetic field. In figure 1, typical resistance measurements made on a Si-
MOSFET and a GaAs/AlGaAs sample are shown. A current I flows in the 2DEG of
width w, and a longitudinal voltage Vx is measured between two contacts separated
by a distance L. At the same time, the transverse voltage Vy is recorded. The
voltages and currents are related by

Vx = RxxIx + RxyIy (1)
Vy = −RxyIx + RxxIy, (2)

where Rxx is the longitudinal resistance and Rxy = RH is the Hall resistance. In
figure 1 broad steps can be observed in the Hall resistance. Simultaneously, the
longitudinal resistance vanishes. In a two-dimensional system, the Hall resistance is
equal to the Hall resistivity ρxy = RH. The longitudinal resistance is related to the
longitudinal resistivity by ρxx = (w/L)Rxx. However, in the quantum Hall regime,
Rxx = ρxx = 0. Therefore, the resistances are as fundamental as the resistivities in
contrast to the three-dimensional case, where geometrical corrections are required.
On a plateau, the Hall sample is a perfect conductor with ρxx = 0. However, due
to the tensorial nature of the resistance in two dimensions, it is a perfect insulator
as well: σxx = 0. This can be seen from the relation between the resistivities and

i = 2

3

4



58 B. Jeckelmann and B. Jeanneret

0 10 20 30

E

z (nm)

10
 m

eV

EF
E0

E1

Conduction band

eεz

Figure 2: Schematic energy diagram showing the potential well and the first two
electrical subbands E0 and E1. EF is the Fermi energy. The potential eEz gener-
ated by the electric field E is represented as a dashed line. Only the first subband
is filled.

the conductivities

ρxx =
σxx(

σ2
xx + σ2

xy

) ρxy =
−σxy(

σ2
xx + σ2

xy

) (3)

σxx =
ρxx(

ρ2
xx + ρ2

xy

) σxy =
−ρxy(

ρ2
xx + ρ2

xy

) . (4)

Following this succinct preview, the rest of this chapter will briefly cover the
physical ingredients necessary to understand the integer QHE. A large number of
books [15, 16, 17, 18] and review articles [9, 19, 20, 21, 22, 23] is available, which
can more deeply introduce the interested readers to the physics of the QHE.

2.2 The two-dimensional electron gas

The 2DEG needed to observe the QHE can be realized in various types of semicon-
ducting heterostructure devices (see section 3 for the device details). The electrons
are confined by a potential well (see figure 2) due to the infinite barrier of the in-
terface (left side of the well) and the electric field that confines the electrons to
the interface (right side of the well). The motion of the electrons is therefore lim-
ited to the xy plane. In the independent electron approximation, the electronic
wave function can be written as Ψ(x, y, z) = ψ(x, y)ζ(z). Solving the Schrödinger
equation along the z axis with the potential as depicted in figure 2, the following
energy spectrum is obtained:

El =
(

�
2

2mz

)1/3 [3πE
2

(
l +

3
4

)]2/3

, (5)
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where E is the average electric field, mz the transverse effective electron mass and
l the subband index. The electric field can be calculated from the number of 2D
electrons per unit area [19]. The energy levels of the 2DEG form many subbands,
each having the energy El. The total energy of the electrons can be written as

E = El + E⊥ = El +
�

2k2
⊥

2m
, (6)

where the second term is the energy associated with the motion in the xy plane.
This enregy contribution will be analyzed in the next paragraph.

In the following we will only consider systems where the first electrical sub-
band is filled. The energy difference between the first two subbands is on the order
of 10 meV (100 K), much larger then the energy corresponding to the temperature
where the QHE is observed.

The spatial extension of the first subband wave function ζ0 is on the order of
3 to 5 nm, shorter than the de Broglie wave length, therefore the electron gas can
be considered as two-dimensional.

2.3 Landau quantization

In this section we will consider a perfect 2DEG of non interacting spinless electrons
placed in a perpendicular magnetic flux density B parallel to the z axis at zero
temperature. The solution of this problem is obtained by solving the Schrödinger
equation with the following Hamiltonian:

H0 =
1

2m
[p + eA]2 . (7)

The effective mass in the xy plane is denoted by m, A is the vector potential
associated to B by the relation B = curlA. In the Landau gauge, A = (0, Bx, 0),
the problem is reduced to a shifted harmonic oscillator equation. The eigenenergies,
called Landau levels, are given by

En = �ωc

(
n +

1
2

)
n = 0, 1, 2, 3 . . . , (8)

where ωc = eB
m is the cyclotron energy which is on the order of 10 meV at a

magnetic flux density of 10 T. Thus the energy of the 2DEG becomes quantized
as shown in figure 3.

In the case where the spin of the electrons is not neglected, the cyclotron
energy has an additional term, the Zeeman splitting, of the form sg∗µbB, where
s = ±1/2 is the spin of the electron, µb = e�

2me
is the Bohr magneton and g∗ is

the effective Landé g-factor. The effective electron mass m is much smaller than
the bare electron mass me (for example, m = 0.07 me in GaAs and m = 0.2 me

in Si), therefore the Zeeman splitting is much smaller than the Landau splitting.
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The effective g-factor is enhanced with respect to its bulk value (g = 2 in Si and
g = 0.5 in GaAs resp.). Typical values are around g∗ = 3 to 6, depending on the
electron density [24, 25, 26, 27, 28].

The wave function of the electrons consists of a plane wave in the y direction
and the eigenstates of a harmonic oscillator in the x direction [15, 16]. The har-
monic oscillator wave function is characterized by the magnetic length l which is
basically the size of the cyclotron orbit in a classical model (cyclotron radius)

l =

√
�

eB
. (9)

Comparable to other typical lengths of the system, the magnetic length is in the
range 5 to 10 nm, and is independent of material parameters. The number of
states in a filled Landau level N is the size of the system divided by the surface
of a cyclotron orbit, thus the number of states per unit area nB is given by:

nB =
1

2πl2
=

eB

h
. (10)

The filling factor is defined as ν = ns/nB. When a Landau level is full, the filling
factor is an integer number i and the number of electrons per unit area is ns = inB.
The substitution of the previous relation in the expression for the classical Hall
effect [29] RH = B/ens gives the following relation:

RH =
h

ie2
=

RK

i
, i = 1, 2, 3 . . . . (11)

According to this simple model, an ideal 2DEG shows a quantized Hall resistance
when the magnetic flux density is adjusted in such a way that the filling factor
ν is an integer. Under these conditions, the Fermi level lies in a gap and the
electronic scattering rate vanishes [15]. Without scattering, the electrons cannot
move along the electric field but move along a direction perpendicular to both
the electric field and the magnetic field with a velocity vy = Ex/B. Hence the
conductivity σxx of the 2DEG is zero and the Hall conductivity is given by σxy =
−e · ns/B = −ie2/h. Thus the resistivity ρxx is zero and the Hall resistance is
given by RH = ρxy = h/ie2, as observed in experiment. This simple model gives a
quantized Hall resistance for certain values of B, however it does not explain the
presence of plateaus in the Hall resistance. Those plateaus are a consequence of
disorder in the system as explained in the next section.

2.4 Disorder and localization

In real Hall samples, the electrons move in a lattice of positive charges. Despite
the technological progress achieved in crystal growth, this lattice is far from being
perfect when inspected at a microscopic level. Every point defect or impurity acts
like a scattering centre for the electrons. This scattering adds up to the phonon
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Figure 3: Landau quantization of a spinless 2DEG. The continuum of states that
exists in zero field (left side) becomes quantized in Landau levels when the mag-
netic flux density is turned on (central part). When disorder is added to the system,
the Landau levels are broadened in localized and extended states (right side). The
region of the localized states is called the mobility gap.

scattering. However, given the temperature at which the QHE is observed, the
impurity scattering largely dominates. These impurities, located at position rj in
the vicinity of the 2DEG, give rise to a random potential V (r) which is the sum
of all individual impurity potentials vj(r), i.e.

V (r) =
∑

j

vj(r − rj). (12)

Solving the Schrödinger equation with the above potential in a high magnetic flux
density is a formidable task and a subject on its own. Among the many books and
review articles dealing with this subject, e.g. the following have a link to the QHE:
[19, 16, 30, 22, 17].

The first implication of the presence of these impurities is to completely
lift the degeneracy of the Landau levels. Therefore, the levels are broadened into
Landau subbands (see figure 3). In the self-consistent Born approximation [19], the
Landau subbands have an elliptic profile of width Γ. This elliptic profile gives a
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satisfactory approximation of real systems. Experimentally, the width of a Landau
subband was found to be well approximated by [31]

Γ = p

√
B

µ
, (13)

where µ is the mobility of the sample and p = 2.3 ± 0.3 meV/T. It is important
to note that for good quality samples, Γ  �ωc.

The second fundamental consequence of the impurity potential is to create
two different kinds of electronic states: localized and extended states (see figure 3).
The most simple, though very instructive model to show the existence of such states
is the single δ-function impurity potential introduced shortly after the discovery
of the QHE by Prange [32]. This model also includes an external electric field E
in the plane of the 2DEG, therefore the total potential is given by:

V (r) = λδ(r− r0) + eEr. (14)

Two kinds of solutions emerge from the Schrödinger equation. The first yields a
completely localized state whose energy is shifted by ±λ from the Landau level de-
pending whether the potential is attractive or repulsive. At zero temperature, this
state cannot carry any current, therefore the current does not depend on whether
localized states are occupied by electrons or not. The second solution is composed
of N − 1 extended states located close to the unperturbed Landau level n�ωc.
These extended states will carry the current. As mentioned above, the presence
of an impurity reduces the number of states that are able to carry the current.
However, it can be shown [32] that the electrons passing by an impurity will speed
up to increase the current to compensate exactly the deficit of current due to the
presence of the localized state. This model is of course an oversimplification of the
physics of a 2DEG. However, it provides a qualitatively correct description of the
density of states.

By increasing the electron density ns, the various electronics states are gradu-
ally filled up. This is equivalent to shifting the Fermi energy EF through the density
of states. When EF moves in a mobility gap (region where electronic states are
localized), the occupation of the extended states does not change and, since only
these states carry the current, the Hall resistance will not change either, giving
rise to a Hall plateau. It is crucial that the energy of the extended states in the
middle of this plateaus is well away from EF . In this way, inelastic processes like
phonon absorption do not change the occupation of the extended states. Simulta-
neously to the occurrence of the Hall plateau, the longitudinal resistance vanishes
since only localized states are in the vicinity of EF . As soon as EF approaches
the next Landau level, dissipation appears in the system and the Hall resistance
makes a transition to the next plateau. Therefore, the QHE can be understood as
a succession of localization-delocalization transitions when the Fermi energy EF

moves across the density of states, as depicted in figure 3.
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Figure 4: Energy spectrum of a 2DEG in a magnetic field with an infinite confining
potential at the edges of the sample. States below the Fermi energy are occupied
(solid dots). The edge channels are located at the intersection of the Landau levels
with the Fermi energy.

There have been many alternative approaches to describe the physics of the
QHE. A broad review can be found in [17]. Most of these models describe ideal
systems at zero temperature. Real experiments, however, are carried out with sam-
ples of finite size at non-zero temperatures. For the current injection, source and
drain contacts are needed which short out the Hall voltage at both ends of a device.
Therefore, electrons enter and exit at diagonally opposite corners of the device and
the source drain resistance equals the Hall resistance. As a consequence, an elec-
trical power of RHI2 is dissipated in the contacts. All these non-ideal features are
difficult to model. Therefore, a complete quantitative theory which predicts e.g.
deviations from the exact quantization under non-ideal conditions is still missing.

2.5 The edge-state model

Most of the theoretical models put forward to explain the QHE, including the local-
ization theory presented above and the elegant topological argument of Laughlin
[33], are considering ideal systems with specific boundary conditions. Although
these models provide clear and detailed insight in the physics of the 2DEG, re-
sistance measurements performed in real samples rely on finite size devices with
imperfect electrical contacts to the 2DEG. Therefore, the question of whether these
models properly describe the experimental situation, especially in high precision
measurements, was quite open in the early days of the QHE.

At the edges of a real sample the confining potential produces an upward
bending of the Landau levels (see figure 4). For each Landau level intercepting
the Fermi energy a one-dimensional edge channel is formed. Classically this corre-
sponds to the trajectories of an electron moving along the edge of the device in a
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upper sample edge

impurity

Figure 5: Quasiclassical skipping orbits along the upper edge of the sample in
presence of a localized impurity. In a high magnetic field, back-scattering over
distances large compared to the cyclotron radius is suppressed. (After [43]).

magnetic field (skipping orbit). As a consequence, there exist extended states at
the Fermi energy near the sample boundaries.

Soon after the discovery of the QHE, Halperin recognized [34] the importance
of theses edge channels in the transport properties of the 2DEG. Several edge
related theories were then developed, based on different approaches [35, 36, 37,
38] and some experimental evidence was also given that the current in a Hall
bar is flowing close to the edges [39]. The need to develop theories that describe
geometries closer to the experimental arrangement was also pointed out [40].

However, it was in combination with the Landauer formalism [41, 42] for
transport that the edge state approach proved to be really very efficient to un-
derstand electrical transport at high field. In the following, we will very briefly
summarize the approach adopted by Büttiker [43], although some pioneering work
was done by Středa et al[44] and by Jain et al[45]. For additional information,
excellent review papers have been published on the subject [30, 46].

In the Landauer formalism of transport, the current is taken as the driving
force and the electric field can be obtained by calculating the charge distribution
due to the current flow. Using transmission and reflection probabilities, the current
is given as a function of the electrochemical potential at the contacts. For a single
edge state k located between two electron reservoirs at electrochemical potential
µ1 and µ2, the current fed by the contact in the absence of scattering is

I = evkD(E)(µ1 − µ2) =
e

h
∆µ, (15)

where vk is the drift velocity of the electron which is proportional to the slope of
the Landau level and therefore has an opposite sign on each side of the device. The
density of states D(E) is given by D(E) = 2π�vk in a one-dimensional channel
[43]. The voltage drop V between the reservoirs is eV = ∆µ and the two-terminal
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resistance of the edge state is R = h/e2. For N channels, one obtains

R =
h

e2

1
N

. (16)

When elastic scattering takes place along the edge channels with a transmission
probability T across the disordered region, the two-terminal resistance becomes

R =
h

e2

1
NT

. (17)

The situation of a localized impurity scattering in an edge channel is schemat-
ically depicted in figure 5. In a very intuitive way, the figure shows that the mag-
netic field suppresses back-scattering of the electrons over a distance larger then
the cyclotron orbit. This suppression of back-scattering, which allows dissipation-
less current to flow along the edges, is the fundamental property responsible for the
occurrence of the quantum Hall effect. As a consequence, T = 1 and the resistance
is again given by equation 16.

The power of the edge channel approach lies in the possibility of studying the
role of the contacts which are fundamental in precision measurements as already
noticed in 1992 by Büttiker [46]: “. . . It is likely, therefore, that in the future,
contacts will play an essential role in assessing the accuracy of the quantum Hall
effect.” In case the two contacts are non-ideal, they will selectively populate the
edge channels, i.e., T1,2 �= 1, R1,2 �= 0. In this case the current can be written as

I =
NT1T2

N2 − R1R2
∆µ, (18)

giving a two-terminal resistance of

R =
h

e2

N2 − R1R2

NT1T2
. (19)

The two-terminal resistance shows a deviation from perfect quantization.
However, inelastic scattering will equilibrate the population between the edge
states on the same side of the sample (back-scattering is still suppressed). One
inelastic scattering length away from the contact, the Hall voltage VH is calculated
to be

eVH =
NT1T2

N2 − R1R2
∆µ, (20)

leading to a perfectly quantized resistance RH = (h/e2)(1/N). This brief discussion
shows the robustness of the quantum Hall effect with regard to the quality of the
contact. It stresses the importance of inelastic scattering, which equilibrates the
edge states, in establishing exact quantization. A deeper discussion on the role of
the contacts in metrological measurements will be presented in section 5.4.

The situation of a real Hall bar is depicted in figure 6. The contacts are
characterized by transmission Ti and reflection Ri coefficients. As the contacts are
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Figure 6: Schematic picture of a Hall bar with six Ohmic contacts separated by a
distance larger then the inelastic scattering length. The filling factor corresponds
to the second Hall plateau. The contacts are characterized by reflection Ri and
transmission Ti coefficients. Each contact is at an electrochemical potential µi.
The dc transport current I flows between contact 1 (source) and 2 (drain). (After
[43])

separated by a distance larger than the inelastic scattering length, Ti = 1 and
Ri = 0 for all the contacts whether they are ideal or not. The electrochemical
potentials are related by µ1 = µ3 = µ4 and µ2 = µ5 = µ6. These conditions lead
to I = Ne(µ2−µ1) and VH = V56 = V34 = ∆µ, yielding RH = h/Ne2 and Rxx = 0,
as expected.

This edge state model allows a realistic description of the electronic transport
in high magnetic field as long as the difference in electrochemical potentials ∆µ is
small compared to the cyclotron energy �ωc. For high current densities, however,
the current flows mainly in the bulk of the 2DEG and an extension of the edge
state model is needed to explain the QHE in this regime.

The edge state picture has been successfully used to explain many experi-
mental results. In [47, 48], a gate located above the 2DEG was used to selectively
induce reflection of edge channels. As a function of the gate voltage, the Hall
plateaus appearing at non integer value of RK were well explained with the edge
state model. In [49, 50], it was shown that inter-Landau-level scattering was sup-
pressed over macroscopic distances as large as 200 µm and the role of contacts was
also investigated. In [51], the equilibration length was found to be around 80 µm.
The non local behaviour of the four-terminal Hall resistance was demonstrated
in [52]. These studies were the first to rely on the edge state model. They were
followed by numerous additional experiments which have been carefully reviewed
in [53].
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Figure 7: Silicon MOSFET. (a) cross section, (b) schematic energy diagram

In the one-electron picture adopted above, the edge channels formed at the
intersection of the Landau levels with the Fermi energy are like metallic wires
running along the sample boundary and their spatial extension is comparable to
the magnetic length (about 10 nm at 10 T). However, this description does not
include the screening that takes place near the sample boundary. This screening
at high magnetic fields forces the channels into compressible strips separated by
incompressible regions [54]. In a quantitative study, Chklovskii et al[55] calculated
the width of the edge channels to be on the order of 1 µm on the second Hall
plateau. This width is two orders of magnitude larger than in the one-electron
picture and agrees fairly well with experimental measurements [56, 57, 58].

3 The devices

In real samples, the two-dimensional electron gas is located in the inversion layer
found in various semiconductor devices. Inversion layers are formed at the in-
terface between a semiconductor and an insulator (like the Si-MOSFET) or at
the interface between two semiconductors, one of them acting as the insulator
(like the AlGaAs/GaAs heterostructures). The quantum Hall effect was discov-
ered in a Si-MOSFET. However, particularly in metrology, mostly AlGaAs/GaAs
heterostructures are used.

In the following, we will not describe the processing involved to grow the
devices (MOCVD, MBE . . . ). The interested readers can find a good review in
[59]. In addition, a deeper and broader description of the physics and technology
of semiconductor devices can be found in [60, 61].

3.1 Si-MOSFET

A schematic representation of a Si-MOSFET is depicted in figure 7 (a). The Si
substrate, lightly p doped, is coated with 500 nm of SiO2 which isolates the Al
gate. The contact area (source S and drain D) is heavily n+ doped to favour the
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Figure 8: GaAs heterostructure. (a) cross section, (b) schematic energy diagram.

formation of an Ohmic contact to the 2DEG. The 2DEG realization is represented
in the band diagram of figure 7 (b). The gate held at a potential +Vg creates an
electric field which attracts the electrons to the Si-SiO2 interface. In addition, this
field induces a bending of the valence and conduction bands. As the substrate is
p doped, electrons of the valence band will populate the level of the acceptors
and leave holes in the valence band. The electrons attracted to the interface fill
these holes first. However, if the gate voltage is high enough, the bottom of the
conduction band can be shifted below the Fermi level EF , allowing the electrons
to fill the bottom of the conduction band. This is the inversion layer: the bottom
of the conduction band is below the top of the valence band, reversing the usual
order. The 2DEG is located within this inversion layer which is around 3 to 5 nm
wide. This width is smaller than the de Broglie wave length, hence the electron
gas can be considered as two-dimensional: the motion along the z axis is fully
quantized (see section 2.2). The region where all the acceptor levels are filled is
called the depletion length. This region which is on the order of 500 nm in Si has
no free charge carriers and is insulating. Impurities trapped in the oxide layer and
lattice discontinuities at the interface limit the mobility of the 2DEG to ≈ 1 T−1.
The density of the charge carriers in the 2DEG can be tuned by the gate voltage
+Vg.

3.2 GaAs-AlGaAs heterostructures

The AlGaAs system shown in figure 8 has strong similarities with the Si-MOSFET.
In this case, GaAs is the semiconductor (energy gap Eg = 1.5 eV) and AlxGa1−xAs
(x ≈ 0.3), which has a higher gap (Eg = 2.2 eV), plays the role of the insulator.
Using the molecular beam epitaxy technique (MBE see [59]), it is possible to
fabricate interfaces with an atomic regularity given the close lattice match between
the two materials. The AlxGa1−xAs material is deliberately n doped to populate
the bottom of its conduction band. From there electrons will migrate and populate
the holes located at the top of the valence band of the GaAs (which is lightly p
doped). Most of them, however, will fill the bottom of the conduction band of
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the GaAs. The positive charge left on the donors gives rise to an electric field
which attracts the electrons towards the interface and, in a similar way to the
Si-MOSFET, bends the valence and conduction bands. The transfer of electrons
continues until the dipolar layer composed of the positive donors and the negative
inversion layer is strong enough. This dipolar layer produces a discontinuity of the
potential and finally aligns the Fermi energy of the two materials. The electronic
density in the inversions layer is determined by the density of the dopant which is
fixed for each sample, in contrast to the Si-MOSFET where it can be varied with
the gate voltage.

A technique called modulation doping [62] consists in growing an additional
layer of ≈ 10 nm of undoped AlxGa1−xAs at the interface. The idea is to separate
the charge carriers from the ionized impurities so that carriers can attain a mobility
not affected by impurity scattering. At present, the mobility of the 2DEG can reach
values as high as 200 T−1.

3.3 The Ohmic contacts to the 2DEG

In precision measurements, the quality of the electrical contacts to the 2DEG is
a critical issue. First, this quality must be such that the measurements are not
affected by the contact resistance and second, the contacts have to be reliable be-
cause the quantum Hall resistors which are routinely used over periods of years
must withstand numerous thermal cycles between room and cryogenic tempera-
tures.

The contact technology for the Si-MOSFET which has been well established
since the seventies, provides reliable low resistance contacts (see [60] and references
therein) that work down to cryogenic temperatures. The region of the contact is
heavily n+ doped (Nd ≥ 1019cm−3) to favour the contact with a metal having a
low barrier height φB (e.g. φB = 0.25 eV for the Al/Si system). Such contacts can
have specific resistances as low as ρc = 10−6 Ωcm2.

The situation for the GaAs/AlGaAs system is somewhat different. In the
beginning, the contacts were made by alloying In or Sn through the heterostruc-
tures. This method provided low contact resistance. However, its reliability was
not suitable for metrology since the contacts deteriorate with time due to diffu-
sion processes. Therefore, the technique used in optoelectronics devices to contact
bulk GaAs was modified to take into account the presence of the AlGaAs layer
and the modulation doping technique. The result is to sequentially evaporate an
alloy of AuGeNi [63]. First, a layer of AuGe eutectic alloy is evaporated, then a
layer of Ni, and finally a layer of Au. The wafer stays at room temperature during
this process. This metallization is alloyed in an oven containing an atmosphere of
N2/H2. The sample is heated at 430 ◦C for 15 s and then cooled down to room
temperature in 10 min. During the alloying process, the Ge atoms diffuse into the
GaAs and substitute for Ga atoms in the crystal to create an n+ doped zone in
the semiconductor. The Ni atoms, which also diffuse into the GaAs, enhance the
diffusion of the Ge, but act as a barrier to avoid interdiffusion between the AuGe
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layer and the Au top layer. In addition to these effects, the Ni reduces the surface
tension of the AuGe liquid during the alloying which improves the homogeneity of
the contact. The atomic ratio of Ge to Ni was found to be an important parameter
in view of achieving the lowest possible contact resistance. Various investigations
result in an optimum Ge/Ni atomic ratio of 0.8 to 1.0.

Contacts produced in this way regularly have a contact resistance below
Rc = 100 mΩ. This contact resistance does not depend on the current (as long as
the current stays below its breakdown value) and does not depend on the plateau
index, as long as ρxx ≈ 0. In addition, samples with such contacts have been very
intensely used as resistance standards without showing any time deterioration over
a period of 10 years.

4 Measurement techniques

For the accurate measurement of resistance, mainly two techniques are in use
today: the potentiometric method and the current comparator bridge technique.

4.1 The potentiometric method

The principle of the potentiometric set-up is shown in figure 9. The two resistances
RH and Rs to be compared are connected is series and driven by the same dc cur-
rent source. The voltage drop VH across RH is compared against a closely adjusted
voltage Vp generated by a potentiometer using a high impedance voltage detector.
After this first measurement, Vp and the detector are switched to Rs using a low
thermal switch and the second voltage difference Vs − Vp is measured. The differ-
ence measurements are repeated for the reversed current polarity. The sequence of
current reversals and change of measurement positions is chosen such that linear
drifts of the current sources and the thermal voltages are eliminated. The detector
D should have a high input impedance and the linearity of the potentiometer has
to be checked to allow for a reasonable deviation of the resistance standards from
nominal.

Several laboratories have developed resistance comparators of this type to
compare the quantized Hall resistance to a conventional resistance standard of the
same nominal value. Since in this case, the ratio VH/Vs is close to 1, the linearity
requirements on the potentiometer are not critical. At RH = Rs =12.9 kΩ and a
current level of 50 µA, a measurement time of 15 min is required to reach a relative
type-A uncertainty of 10−8 [64, 65]. After this step, the problem of the scaling from
the level of the QHR to decadic resistance levels, e.g. 10 kΩ or 100 Ω, still remains.
The method adopted by several laboratories is the use of a series-parallel resistor
network of the Hamon type [66].

A significant improvement of the 1:1 potentiometric bridge is possible by
using a Josephson array voltage standard (JAVS) [67] to realize the auxiliary
voltage Vp. Modern JAVSs allow the generation of any voltage between 0 V and
10 V. It becomes thus possible to compare e.g. RH(2) against a 10 kΩ standard. The
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Figure 9: Schematic circuit diagram for a potentiometric resistance bridge. The
voltage across the resistors to be compared is closely adjusted against the voltage
Vp generated by the potentiometer. The remaining voltage difference is sensed by
a high impedance voltage detector.

Josephson voltage VJ = nf · h/ (2e) (n = step number, f = Josephson frequency)
can be adjusted very closely to VH and Vs, respectively (∆VH 
 ∆Vs 
 0). The
resistance ratio is then given by

RH

Rs
=

∆VH + VJ1

∆Vs + VJ2

 n1f1

n2f2

(
1 +

∆VH

VH
− ∆Vs

Vs

)
, (21)

where n1, f1 and n2, f2 are the step number and frequency in the RH and Rs

position, respectively. Such measurement systems were first described in [68, 69].
The relative uncertainty reported by the authors was a few parts in 108.

4.2 Current comparator bridges

Because of the sequential measurements, the potentiometric method is mainly lim-
ited by the short term stability of the source. This disadvantage can be eliminated
when the two resistance standards to be compared are in two separate current
loops which track one another. The set-up of the current comparator bridge is
schematically shown in figure 10. The ratio of the two currents is controlled by a
dc comparator first realized by Kusters [70, 71]. The two windings Np and Ns are
wound on a high permeability toroidal core. The difference of the magnetomotive
forces (NpIp − NsIs) can be measured using a second-harmonic flux-gate magne-
tometer. If an ac modulation is applied to the magnetic core, harmonic components
of the modulation are generated if a dc flux is present in the core. A zero-flux con-
dition (NpIp = NsIs) is achieved by means of a servo circuit operating from the
output of the magnetometer. Now Np is adjusted such that the voltage drops
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zero-flux
detector

Rs D

Ns Np

IpIs

Rp

Figure 10: Schematic circuit diagram for a dc current comparator bridge. A servo
circuit operating from the output of the magnetometer establishes the zero-flux
condition in the magnetic core and accurately sets the current ratio Ip/Is to the
winding ratio Ns/Np.

across the two resistors Rp and Rs are the same (detector D balanced). Finally,
if the flux and voltage balance are met simultaneously, then Rp/Rs = Np/Ns. An
accuracy of a few parts in 108 can be achieved for the measured ratio. The resolu-
tion of the bridge is limited by the noise of the magnetic modulation. Commercial
systems are available today [72] where a binary step-up of the windings in the
current comparator allows a self-calibration of the current ratios.

The best ratio accuracy and the lowest random uncertainty are attained with
the cryogenic current comparator (CCC) proposed and first realized by Harvey in
1972 [73]. The principle of the method is shown in figure 11 (a). If a current carrying
wire is passed through a superconducting tube, a shielding current is induced on
the surface of the tube such that a zero magnetic flux density is maintained in
the interior of the superconductor (Meissner effect). The shielding current runs in
the same direction as the initial current on the outside of the tube. The current
density is uniform over the hole surface and thus independent on the geometrical
position of the wire inside the tube. This principle is put in practice in a CCC
as illustrated in figure 11 (b). In an arrangement called type I and introduced
in [74], the superconducting tube is bent to a torus with overlapping ends like
a snake swallowing its tail. The overlapping ends are electrically insulated, the
length of the overlap has to be > 2 turns to keep the end effects on an acceptable
level. Several windings, e.g. Np and Ns with currents Ip and Is, respectively, are
placed inside the torus. The magnetic flux created by the shielding current on the
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Figure 11: The cryogenic current comparator. (a) Illustration of the principle: a
shielding current equal to I is induced on the external surface of the supercon-
ducting tube. (b) Set-up of the ratio coils: The windings of the current comparator
form a toroidal coil which is enclosed in a superconducting shield. The shield over-
laps itself like a snake swallowing its tail. The ampere-turns balance is sensed by
measuring the magnetic flux in the pick-up coil using a SQUID.

torus is proportional to NpIp + NsIs. This flux is sensed by a superconducting
quantum interference device (SQUID) through a pick-up coil placed in the flux. In
an alternative type II arrangement which is topologically equivalent to the type I
[75], the pick-up winding is surrounded by the superconducting shield.

With a CCC, current ratios Is/Ip = Np/Ns with a relative accuracy of 10−12

can be realized. Theoretical estimations of the ratio accuracy for type I [76] and
type II [77] agree well with measurements. An experimental check of the ratio
accuracy is accomplished if the windings have a binary build-up. By measuring
the SQUID signal of two windings with an equal number of turns put in an anti-
series configuration, the error of the 1:1 ratio can be determined. In a binary build
up, every winding with 2j turns can be compared directly with the combination

1 +
j−1∑
i=0

2i, j = 1, 2, 3, . . . (22)

of windings already tested.
The superconducting flux transformer used to couple the SQUID to the

shielding current flowing on the overlapping toroidal shield is illustrated in fig-
ure 12. A simple circuit analysis shows that the current resolution of the CCC is
optimal when the inductance of the pick-up coil Lpu equals the inductance of the
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SQUIDIp

Lpu L

Npu

MSQ
M

ferromagnetic core
(optional)

overlapping�
toroidal shield

Figure 12: Input circuit of the SQUID sensor in a CCC with a superconducting
flux transformer. Npu is the number of turns in the pick-up coil and Lpu denotes
its inductance. L is the inductance of the input coil of the SQUID. M and MSQ

are the mutual inductances.

input coil L of the SQUID. It can be shown [78, 79] that under this condition the
best current resolution or minimum noise current is given by

〈i2p〉
∆f

=
8ESQ

AL
. (23)

In this expression 〈i2p〉 = N2
p 〈I2

p〉 is the mean square value of the noise current per
single turn of the primary winding. Np is the total number of turns in the primary
ratio winding. ESQ is the energy resolution of the SQUID and AL = Lpu/N2

pu the
magnetic conductance of the transformer. Because the sensitivity varies inversely
as the number of turns in the pick-up coil, Npu = 1 would be ideal. On the other
hand, Lpu should be designed to be close to the inductance of the input coil L of
the SQUID which is typically 2 µH. With Npu = 1, a very large sensor volume
would result, which increases the noise due to stray fields. Another way to get
close to the ideal situation is to introduce a ferromagnetic core around which the
pick-up coil and the windings of the CCC are wound. The relative permeability
of the core can be adjusted such that Ns ≤ 1 is achieved with a reasonably sized
sensor volume [78, 79, 80]. The drawback of this method, however, is an additional
noise component from the ferromagnetic core.

In practice [79], the rms-value of the current noise per turn in a dc SQUID
based CCC is around 10−10 A in a bandwidth of 0.01 Hz to 1 Hz (1/f corner of
the SQUID at 0.3 Hz). This is about a factor of ten above the optimum value.

The CCC bridge arrangement is schematically shown in figure 13. A stabilized
voltage source steers the primary and the secondary current sources. The ratio
Np/Ns of the windings is set as close as possible to the nominal ratio of the two
resistors Rp/Rs to be measured. The output voltage of the SQUID system regulates
the secondary current source in a closed feedback loop. The feedback assures that
NpIp = NsIs. The detector, usually a battery operated nanovoltmeter, indicates
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Figure 13: Schematic circuit diagram for a cryogenic current comparator bridge.
The feedback signal from the SQUID accurately adjusts the current ratio between
primary (left) and secondary (right) circuit to the ratio given by the windings Np

and Ns. The divider circuit composed of the trim coil, the adjustable resistor Rl

and Rh is used to balance the detector D.

the difference between the resistance ratio and the winding ratio. The detector can
be balanced with the help of an additional divider circuit composed of the trim
coil Nt, a variable resistance Rl and a fixed high value resistor Rh. The ratio to
be measured is then given by

Rp

Rs
=

Np

Ns

1
(1 + d)

1(
1 + Vm

V

) ; d =
Nt

Ns

Rl

(Rl + Rh)
, (24)

where Vm is the detector reading (
0) and V the voltage drop across the resistors.
The resolution of the bridge is mainly given by three factors: The SQUID noise,
the thermal noise of the resistors and the detector noise.

The current noise of the SQUID detection system, as given above, trans-
forms through the resistance Rs to a voltage noise seen by the detector (typically
0.5 nV/

√
Hz for Rs = 100 Ω and Ns = 16). The white thermal noise of a resistance

R at a temperature T in a frequency bandwidth b is given by the Nyquist formula

Vn−th =
√

4kBT R b, (25)
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where kB is the Boltzmann constant. The thermal noise is often the limiting factor
for resistance measurements above 10 kΩ. The third important noise component
originating form the detector itself is often the dominating part for resistances
below 100 Ω. Above this value, the best nanovoltmeters usually stay below the
corresponding thermal noise of the source resistance at room temperature.

Typical parameters for a comparison of the QHR for i = 2 (RH(2) = 12.9 kΩ)
against a 100 Ω standard are: Np = 2065, Ns = 16 and Ip = 50 µA. For this
configuration, the total rms voltage noise amounts to 7 nV/

√
Hz. It is dominated

by the detector noise because Rp is at 1 K. According to this figure, a type-A
relative uncertainty of 1 nΩ/Ω is expected within a measurement time of 2 min.
In reality, slightly worse performance is achieved because of 1/f noise components
(fluctuations of thermal voltages, detector and SQUID).

Today, the lowest uncertainties in resistance comparisons for 1 Ω ≤ R ≤
100 kΩ are obtained using CCC bridges (see e.g. [81, 82, 83, 84]).

Cryogenic current comparators working at dc are limited to a great extent by
very low frequency noise of the 1/f type (null detector, SQUID) and by thermal
effects (slowly varying thermal voltages, Peltier effect). To overcome these prob-
lems, ac CCCs working at a frequency close to 1 Hz were developed [85, 86]. As it
turns out, the CCC coil has not to be specially designed to work at low frequency.
However, quite some complexity is added to the bridge set-up to allow in-phase and
quadrature current ratio matching and to avoid errors caused by stray capacitive
effects.

5 Physical properties of the QHE devices

5.1 Temperature effect

In the previous paragraphs, the effect of the temperature on the transport proper-
ties of the 2DEG was neglected. In the quantum Hall regime at zero temperature,
the longitudinal conductivity is so small [88, 89] that it is very difficult to measure.
In fact, to the best of our knowledge, the dissipation measured in a QHR at very
low temperature is the smallest measured in any non superconducting systems.
Values of resistivities of ρxx = 10−10Ω/� were measured, which corresponds to a
bulk resistivity of ρxx = 10−16 Ωcm [89]. However, the situation at finite temper-
atures is different and various transport processes can be distinguished depending
on the temperature range.

5.1.1 Thermal activation

In an intermediate temperature range (
 1 K . . . 10 K), the conductivity in the
quantum Hall regime is predominately determined by electrons excited in the
nearest Landau level and the longitudinal conductivity is given by

σxx(T ) = σ0
xxe−∆/kT , (26)
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Figure 14: Log-log plot of the relative deviation δρxy(T ) as a function of the nor-
malized longitudinal resistivity ρxx(T ) for temperatures ranging between 1.2 K and
4.2 K. The measurements were performed with two different GaAs heterostruc-
tures in the middle of the i = 4 plateau with both magnetic field polarities and two
different voltage probe pairs. The linear relation between δρxy and ρxx is observed
over four orders of magnitude in ρxx. (Reproduced after [87]).

where ∆ is the energy difference between the Fermi energy EF and the next Lan-
dau level. The thermally activated conductivity has been studied in great detail
in the integer and in the fractional QHE, both theoretically [90, 91, 92, 93, 94]
and experimentally [95, 96, 97, 98, 99, 100, 101, 102, 103]. The question of the
universality of the prefactor σ0

xx was also addressed [104]. An activated tempera-
ture behaviour is also expected for the deviation of the Hall conductivity from its
quantized value

δσxy(T ) = σxy(T ) − e2ν0

h
, (27)

where ν0 is the filling factor at the plateau centre. Such a temperature be-
haviour leads to a linear dependence between the deviation δσxy(T ) and the lon-
gitudinal conductivity σxx(T ).

In early measurements, such linear dependencies were observed [87, 105, 106]
in the resistivities according to

δρxy(T ) = sρxx(T ). (28)
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In figure 14 (reproduced after [87]) the relative deviation of the Hall resistivity is
plotted as a function of the longitudinal resistivity. The measurements were carried
out close to the i = 4 plateau centre of two GaAs heterostructures. The linear
dependence was observed over four orders of magnitude in ρxx, for two different
samples and various cool downs. The proportionality factor varied between s =
−0.01 and s = −0.51, depending on the device, the Hall probe used and the
magnetic field direction. Other experiments [2, 107] reported different values for
s, including positive values. It should be emphasized that all the measurements
reported above were performed at the plateau centre.

In another study [108], the slope of the plateau was measured as a function of
ρxx for GaAs heterostructures and Si-MOSFET samples at temperatures between
1.5 K and 4.2 K. In the GaAs samples, the slope was found to be activated over the
whole range of temperatures, including at temperatures where ρxx was no longer
in the activated regime. In the MOSFET devices, where ρxx was always activated,
the slope remained linear over three orders of magnitude in ρxx.

More recently, a systematic study of the temperature dependence of the
2DEG resistivity was performed on large heterostructure Hall bars [102, 103].
Data were taken at temperatures ranging between 0.3 K and 20 K over the entire
plateau region for i = 2, 3 and 4 plateaus at very low current level to rule out any
current heating effect. The longitudinal resistivity shows an activated behaviour
over three decade in ρxx in the temperature range from 1 K to 10 K. The prefactor
was found to be σ0

xx = 2e2/h at the plateau centre, in agreement with [104].
The investigation of the activated transverse resistivity showed a linear rela-

tion according to equation 28 over 3 decades of ρxx as long as ρxx < 10 Ω. This
result is in agreement with the early experiment reported previously [87, 105].
However, at higher dissipation, a crossover to a quadratic dependence was ob-
served in agreement with the finite size scaling theories [23], the semicircle rule
[109] and the gauge theory [33]. In figure 15, the slopes s = δρxy/ρxx observed in
the linear response are plotted as a function of the filling factor for plateaus i = 2, 3
and 4 (solid symbol). On the high B side (low ν), the values can be explained by
a geometrical effect [110]. Due to the finite width wp of the voltage probes, a
small component of the longitudinal voltage is mixed into the Hall voltage and
accordingly, the measured Hall resistivity becomes

ρmeas
xy (T ) = ρxy(T ) − wp

w
ρxx(T ), (29)

where w is the sample width. However on the low B side (high ν), slope values as
large as s = −1.1 have been measured. Geometrical effects cannot account for such
large deviations which have to be explained by a percolation model incorporating
different transport regimes depending on the position of the Fermi energy in the
Landau level tail [103]. The strong asymmetry observed in the middle of the odd
plateaus can very well explain the scattering of the values reported for s in the
earlier studies performed at the plateau centre.
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Figure 15: The slope s = δρxy/ρxx are plotted as a function of the filling factor
ν for the plateaus i = 2, 3 and 4. Solid symbol: temperature driven data from
experiments performed at constant low current in the thermally activated regime.
Open symbol: current driven data performed at low temperatures (T = 0.3K) in
the variable range hopping regime. (Reproduced after [103]).

Finally, for metrological applications, it is crucial to note that in all mea-
surements reported so far the transverse resistivity always extrapolates to h/ie2

at zero dissipation (ρxx → 0, T → 0).

5.1.2 Variable-range hopping

At the lowest temperatures (T < 1 K), so called variable-range hopping (VRH)
[111] dominates the behaviour of the conductivity. The VRH consists of electrons
tunnelling between localized states within an energy range on the order of kT
around the Fermi energy by the emission or absorption of phonons. In this case
the longitudinal conductivity is given by

σxx = σT
xxe−(T1/T )α

. (30)

While equation 30 with α = 1
3 describes the Mott hopping [112] in two-

dimensional systems, it was not found to be appropriate for the 2DEG at high
magnetic fields where a soft coulomb gap exists at the Fermi energy [113]. In
this case, an exponent of α = 1

2 was derived [111, 113, 114, 115, 116, 117]. The
evaluation of the prefactor σT

xx and the coefficient T1 was a very disputed question
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and no consensus does exist at the moment. Experimentally, an exponent of α = 1
2

and a prefactor σT
xx ∝ 1/T are usually observed [103, 118, 119, 120, 121, 122].

The behaviour of the Hall resistance in the VRH has only attracted a limited
amount of interest. In [103], it was found that the deviation δρxy measured in the
VRH regime can be explained by the geometrical effect described by equation 29
over the entire plateau range, for plateaus i = 2, 3 and 4. This is in agreement
with a theoretical prediction [115] of a negligibly small VRH contribution to δρxy

compared to ρxx.
In the VRH regime, a non-Ohmic conductivity appears under strong electric

field E and the longitudinal conductivity is then expected to follow [117]

σxx(I) = σI
xxe−

√
E1/EH , (31)

where EH is the Hall electric field and E1 is a characteristic value related to the
hopping temperature T1 [117].

The non-Ohmic regime was experimentally studied by Furlan [103]. The
longitudinal and Hall resistivities were measured as a function of the current
(1 µA < I < 100 µA) at a constant bath temperature of T = 0.3 K. As in
the temperature experiment, δρxy was found to be linearly related to ρxx over
three decade in ρxx. In figure 15, the slopes are reported as a function of the filling
factor (open symbols). Similarly to the temperature driven resistivities, asymme-
tries are also observed, however, with a much smaller amplitude. On the low ν
side, both experiments can be explained by the geometrical effect. On the high
ν side, the slope values are a factor of 4 to 6 smaller than for the temperature
driven resistivities. This is attributed [103] to the different prefactors involved in
the relations 26 and 31.

Based on a field dependent hopping model [117] in the VRH regime due
to the presence of the Hall electric field EH, we can adopt the picture of the
existence of a quasi-Fermi level tilted by EH. As a consequence, formation of the
local Fermi distribution corresponds to an effective electron temperature Teff ∝ EH.
This dependence can be tested by comparison of measured conductivities σxx(T )
and σxx(I) at fixed filling factor ν, which relates the current I to an effective
temperature like

kBTeff(I) = eξ
ρxyI

2w
, (32)

where ξ is the localization length and w the sample width. Besides the direct deter-
mination of the fundamental length scale ξ as suggested from equation 32, the lin-
ear dependence of Teff on the current I was experimentally confirmed [103]. There-
fore, electron heating effects may play a role and have to be taken into account in
precision measurements irrespective of the further possibility of QHE breakdown
(see section 5.3). It is important to note that other measurements [123, 124] which
reported a square root dependence Teff ∝

√
I were based on a different experimen-

tal approach: the ρxx peak width or the maximum slope (dρxy(B)/dB)max may
also yield an effective temperature [117]. However, the assumption of the model of
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a constant dielectric function εr(ν) is not justified for varying ν [103], and neglect
of this fact can lead to confusion and inappropriate interpretations.

In conclusion, the temperature has a significant effect on the transport prop-
erties of the 2DEG. However, as long as the transport is in the variable-range
hopping regime and the longitudinal resistance is exponentially small, the Hall
resistance is quantized to a value which is expected to be h/ie2.

5.2 Current distribution

For a homogeneous 2DEG in the QHE regime, the electric Hall field is perpen-
dicular to the current flow direction. Thus, no power is dissipated in the interior
of the sample. In a Hall bar, the Hall voltage is shunted out at both ends of the
device by the current contacts forcing the electrons to enter and exit the 2DEG
at diagonally opposite corners of the device. The total power dissipation is RHI2

and occurs exclusively at the contacts. This was experimentally observed by Klass
et al[125] utilizing the fountain pressure effect of superfluid helium.

The way the current is distributed across the Hall bar has been discussed
continuously since the discovery of the QHE. According to the underlying theo-
retical models, two pictures for the current distribution are proposed: In the edge
current picture (see section 2.5), the current flows in narrow channels located near
the edges of the device, i.e. the Hall voltage drops entirely in these regions. Ex-
periments carried out in mesoscopic devices at low current levels (∆µ < �ωc)
measuring the equilibrium rate between the current carrying edge states [51] or
the non-local conductivity [52] can be well described by the pure edge-state pic-
ture. Because the Hall current is caused by the drift of electrons in crossed electric
and magnetic fields, the bulk current picture also has to be considered. In this
view, the Hall electric field is essential and the current is carried by the extended
states near the centre of the broadened bulk Landau levels. The Hall current is
proportional to local changes in the potential, it does not depend upon sample
geometry or the existence of edges. This picture implies that, at least for a homo-
geneous sample, the Hall voltage should gradually drop across the width of the
device. Results on Corbino disks [126], where edge states do not contribute to the
electronic transport for topological reasons, show that the QHE as a consequence
of pure bulk transport is possible.

The crossover between the edge state and bulk transport depends on the
experimental situation and is not understood in all details yet. Various theoretical
studies and numerical simulations [127, 128, 129, 130, 131, 132, 133, 134] suggest
that in wide Hall bars at high current levels, a substantial amount of the current
is carried by the bulk states.

The first experimental method used to measure the current distribution was
the direct electrical measurement of the potential distribution by placing a series
of metallic contacts in the interior of a Hall bar device [135, 136, 137]. Outside
the plateau regions, it was found that the current distribution varies more or less
linearly across the device. In the QHE regime, however, a strongly inhomogeneous
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current distribution and bunching of the current as a function of the applied mag-
netic field was observed. This behaviour was attributed to the presence of gradients
in the electron density. The objections raised against these results are that the in-
terior contacts themselves may strongly alter the potential distribution and, in
addition, they tend to decouple from the 2DEG in the QHE regime due to the
Corbino effect.

To overcome such difficulties, contactless methods were applied to measure
the current distribution. One approach was the application of the linear electro-
optical effect (Pockels effect) in GaAs. An applied electric field influences the
birefringence property of the crystal and, therefore, the polarization direction of
light changes as a function of the local potential while passing through the 2DEG.
Using this method, Fontein et al[138] found in a 2 mm wide sample at a current
of 5 µA that approximately 80 % of the Hall voltage drop near the sample edges.
Applying the same technique in a 200 µm wide strip, Knott et al[139] observed
a concentration of the Hall potential in the middle of the channel. The shape of
the profile varied as a function of the magnetic field and the current along the
plateau. In subsequent measurements of Dietsche et al[140], using wider samples,
a potential drop along one side of the device over a width of about 100 µm was
found.

In a different approach Yahel et al[141] measured the current distribution by
means of an inductive coupling technique. The authors showed that gates placed
below or above the sample strongly influence the electrostatic potential profile of
the 2DEG and, as a result, distort the Hall current distribution. This may explain
the current bunching effect observed in earlier experiments. For samples without
any gate, the current distribution in the QHE regime remained almost uniform
like in the dissipative regime.

Recently, McCormick et al[142] used an atomic force microscope to measure
the Hall voltage profile in a 2DEG. On the QHE plateaus, the Hall currents were
located primarily in the bulk and showed complex spatial variations.

The edge channel picture (see section 2.5) implies that a sequence of com-
pressible strips with metal-like screening properties and incompressible strips with
insulator-like behaviour exists near the edges of a 2DEG in the QHE regime. New
experimental techniques using a single-electron tunnelling (SET) transistor as a
detecting device allow the mapping of these strips. Wei et al[143] have fabricated
a GaAs/AlGaAs device with a metal SET transistor mounted on top. Yacoby et
al[144] use a SET transistor mounted on the tip of tapered glass fiber which can
be scanned 100 to 200 nm above the surface of a QHE device. The current through
the SET transistor is modulated by the potential changes underneath. Using this
technique, both groups were able to resolve the edge strips. The number of the
strips was found to be consistent with the value of the bulk Landau level filling
factor.

In conclusion, for higher currents the experiments do not give a conclusive
picture on the relative importance of edge and bulk transport. Some results seem
to be in contradiction with others. Comparisons, however, should be made with
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Figure 16: Current dependence of the longitudinal resistivity for the i = 2 plateau
of a GaAs device (width = 400 µm).

care because the experimental conditions (sample geometry, current level, gate
arrangements, spatial resolution) vary a lot from one experiment to the other.

5.3 Breakdown of the QHE

As shown in section 5.1, the longitudinal resistivity ρxx in the QHE regime and
the deviation ∆ρxy from the QHR gradually increase with increasing temperature
or current. When the current exceeds a certain critical value Ic , ρxx suddenly
increases by several orders of magnitude and the QHE breaks down. This behaviour
is illustrated in figure 16. The critical current decreases linearly as B departs from
the plateau centre as shown in figure 17.

The breakdown of the QHE due to high current densities was and still remains
a subject of much theoretical and experimental work (see also [146] for a further
review). On one hand the phenomenon attracts attention because of its importance
for the understanding of the QHE. On the other hand, knowledge of the breakdown
is crucial for the resistance standard based on the QHE where a critical current
as high as possible is aimed at for maximum resolution.

The first experimental study devoted to current breakdown of the QHE was
published by Ebert et al[147]. The authors measured the critical current in a se-
ries of low mobility GaAs Hall bar devices with different carrier concentrations.
A subset of the results is shown in figure 18 where the critical Hall field calcu-
lated from the average current density at breakdown is plotted against the plateau
centre. Ec is found to be roughly proportional to B3/2. Other early experiments
[148, 149, 150] reported similar values for the critical current density using Hall bar
devices with mobilities below 30 T−1. In contrast to these reports Bliek et al[151]
found critical current densities up to 32 A/m when measuring the longitudinal
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Figure 17: Critical current Ic = jcw (sample width w = 400 µm) as a function of
the magnetic flux density for the i = 2 plateau. The dashed line is a guide to the
eye. Data from Jeckelmann et al([145]).

voltage across a short constriction (10 µm long and up to 66 µm wide) in a Hall
bar.

The B dependence of Ec was also studied by Kawaji et al[152] in butterfly-
type devices and Jeckelmann et al[145] in 400 µm wide Hall bars. As shown in
figure 18, these results confirm the B3/2 dependence found earlier.

Several groups studied the width dependence of the critical current Ic = jcw
[145, 152, 153, 154, 155] and found a linear increase with the sample width w.
The results are summarized in figure 19 and strongly support the picture of a
homogeneous current distribution in samples wider than 10 µm and at a current
around Ic. In addition, no dependence of jc on the mobility up to a value of
130 T−1 was seen in [145, 152]. In contrast to these results, Balaban et al[154]
claimed a sublinear w dependence of Ic in high mobility samples (µ = 70 to
90 T−1). In a low mobility sample, a linear width dependence changed to sublinear
behaviour after illumination. According to Nachtwei [146], the length scale of the
inhomogeneities of the carrier density and their distribution could be the key to
the observed differences. In case of short range fluctuations (typical length scale
smaller than w), a linear dependence is expected whereas long-range fluctuations
are consistent with the sublinear increase of Ic. It is conceivable that in the narrow
devices (w < 40 µm) used by Balaban et al, the long-range inhomogeneities were
dominant after illumination or at high mobility.

Many different theoretical models were put forward to explain the typical sig-
natures of the QHE breakdown. Soon after the first measurements, Streda and von
Klitzing [156] proposed a mechanism of abrupt phonon emission (Cerenkov like)
triggering the breakdown. This model and the electron heating process described
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by Komiyama et al [149] shortly afterwards predict a linear dependence of the crit-
ical field Ec on B which is not observed in experiments. In a model by Eaves and
Sheard [157] based on the quasieleastic inter-Landau level scattering (QUILLS)
the breakdown is induced by transitions of electrons in the highest populated Lan-
dau level into the lowest unpopulated level due to the high Hall electric field. This
model predicts the observed B3/2 dependence of Ec. However, the value for the
critical field is one order of magnitude larger than experimentally observed and
the dependence on the plateau number is not correctly reproduced.

Recently, Komiyama and Kawaguchi [158] have developed a theoretical model
to explain the breakdown of the QHE based on thermodynamical arguments. They
propose an avalanche type electron-hole pair multiplication process, referred to as
bootstrap-type electron heating (BSEH). The process starts when the local electric
fields exceeds a critical level and needs a minimal distance LB for the cascading
generation of electron-hole pairs to significantly develop. In high mobility GaAs
devices, LB is on the order of 100 µm. The avalanche normally starts near the
electron injection point in the source contact where the electric field is generally
larger than the average Hall electric field in the main 2DEG channel. The further
evolution towards breakdown in the entire 2DEG channel, can be distinguished in
two cases:

• If w is larger than the minimal length LB, the breakdown of the QHE in the
entire Hall bar is preceded by a local breakdown around the source contact.
Its signature is a finite voltage drop in the vicinity of the source contact
which emerges once the nonequilibrium distribution of electrons is extended
along the whole boundary between contact and 2DEG and starts to affect the
edge state population. This was experimentally observed by measuring the
spatial distribution of the cyclotron radiation emitted from nonequilibrium
electrons [155].

• If w is smaller than LB, the cascadelike electron-hole pair excitation takes
place as the electrons traverse the Hall bar along its length. The evolution of
the breakdown starts at the source contact and develops towards the drain
contact. Such a spatial evolution has recently been confirmed experimentally
[146]. In addition, the critical field Ec expected from the BSEH model is
close to the experimental results [158] and the reported B3/2 dependence is
reproduced. Because of the role of the length LB in the breakdown, the model
is also consistent with the high critical current observed in short constrictions
(see above).

Another feature reported in some breakdown experiments is the observation
of time dependent fluctuations between the low dissipative QHE condition and
one or several resistive states. When measuring the longitudinal voltage between
two voltage contacts in a standard Hall bar, Cage et al[159] observed a series
of discrete voltage steps quantized in units of the cyclotron energy. Pronounced
steps in the longitudinal voltage with a rich time-dependent structure were also
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the contact resistance Rc of the current contact 1. The black dots indicate the
regions where the electrons enter or leave the device. The contacts 1, 2, 3 and 4
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observed in [160]. Ahlers et al[161] measured the longitudinal voltage across a
narrow constriction in a Hall bar near breakdown and found switching behaviour
between different dissipative states. In contrast to Cage et al, the voltage steps were
not correlated with �ωc. Ahlers et alexplained their results with time-dependent
fluctuations of macroscopic hot-electron domains.

In summary, the breakdown of the QHE is difficult to model because its
characteristics depend on the microscopic details of the 2DEG. Although much
progress was made so far, a complete understanding of the phenomenon is still
missing.

5.4 Contact effects

In the edge state picture (see section 2.5), the contacts to the 2DEG influence
the four-terminal Hall resistance in an essential manner. This was first shown by
Büttiker [43] and subsequently in a quantitative model by Komiyama and Hi-
rai [162]. The basic idea is that a non-ideal current contact populates different
Landau levels to different degrees. This unequal population leads to different elec-
trochemical potentials at different edge states. If this nonequilibrium distribution
travels over macroscopic distances and is selectively probed by a non-ideal voltage
contact, the Hall resistance deviates from the quantized value. These effects have
been observed experimentally [50, 51, 163] and they are, at least qualitatively, in
agreement with the edge state picture. It was also shown that the non-equilibrium
distribution in the edge channels can travel over macroscopic distances (> 100 µm)
[163]. It should be noted, however, that the majority of experiments investigating
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the edge transport are carried out in the linear regime where the chemical poten-
tial difference ∆µ between the boundaries of the device is smaller than the Landau
level spacing �ωc. In the metrological application of the QHE much higher cur-
rents are passed through a device of macroscopic dimensions and ∆µ � �ωc. As
a consequence, the pure edge-state description is no longer appropriate and the
influence of bad contacts is less clear.

The quality of the contacts is characterized by their resistance Rc which
is measured in the QHE using a method first proposed by Rikken et al[164]. The
voltage drop across the contact j to be characterized and the next contact situated
at the same Hall potential is measured while passing a current through contact j
and one of the current contacts (see figure 20). If the sample is well quantized, ρxx

can be neglected and Rcj is obtained directly. The resistance of a good AuGeNi
contact is usually well below 1 Ω, provided the device is cooled slowly from room
temperature down to the working temperature of <2 K.

The resistance of the contact region can also be varied in a controlled way
by using a gate placed over the probe, i.e. the narrow arm which links the contact
pad to the main channel of the device in the usual Hall bar geometry. Applying
a voltage to the gate partially depletes the 2DEG under the gate. In metrological
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applications of the QHE with ungated standard Hall bar devices, a similar local
reduction of the carrier concentration in the narrow voltage probes can be gen-
erated accidentally by cooling a device too fast, by passing a current above the
critical current through the potential probe or even by leaving the device in the
cold for several days. The effect of depletion of the carrier concentration in a probe
is illustrated in figure 21 where the contact resistance is plotted as a function of the
magnetic flux density B. Plateaus appear in the regions where the filling factors
both of the Hall bar ν and of the partially depleted voltage probe νg are integers
(see e.g. [53] for an explanation). The original contact properties are restored by
cycling the device through room temperature or by illuminating the device at low
temperature with infrared radiation [166].

The influence of non-ideal voltage contacts on the QHR was extensively stud-
ied by Jeckelmann et al[165, 167]. It was shown that deviations ∆RH/RH of up to 1
part in 106 can occur as a consequence of Rc values in the kΩ range. At the same
time, a corresponding positive or negative longitudinal voltage Vxx is measured
along the side of the device where the bad contacts are connected to. A zero Vxx is
measured on the opposite side if the corresponding contacts have a low resistance.
There is no simple relation between ∆RH and Rc. The data show, however, that
the maximum deviation ∆RH at a given Rc is proportional to Rc/RH. The devi-
ations become more pronounced when going to higher filling factors. In addition
they are inversely proportional to the current and they decay exponentially with
increasing temperature (see. figure 22). The data finally demonstrate that devia-
tions in the QHR above the experimental resolution of 0.5 nΩ/Ω are to be expected
if the resistance of the potential contacts exceeds 100 Ω when measuring on the
i = 2 plateau and 10 Ω in the case of i = 4. These limits apply for a temperature
of 0.3 K and a current above 10 µA and it is assumed that the resistance of the
current contacts is in the mΩ range.

A model based on the Büttiker formalism for contacts [168] allows an estimate
to be made on the upper limit for the deviation of the four-terminal resistance as
a function of the contact resistance. The magnitude of the effects is similar to the
experimental findings of [167]. On the other hand the model, as it only considers
pure edge state transport in a uniform device, does not explain the detailed pattern
of the observations.

5.5 QHE devices with multiple connections

For the practical application of the QHE as a resistance standard it is desirable
to have quantized resistance values covering a wide range of quantum numbers.
In reality, however, it turns out that the device characteristics are usually such
that only the plateaus two and four are well quantized under normal operational
conditions. The question thus arises whether a combination of several QHE devices
in a series or parallel configuration may yield the practical resistance value needed
in a specific application.
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Ricketts and Kemeny [169] first described the electrical behaviour of a QHE
device in terms of an equivalent circuit (see figure 23). In a fully quantized mul-
titerminal device, each arm ends at a resistance RH/2 + Rc = r(1 + ε), where
Rc is the resistance of the contact to the 2DEG and of the connecting wires
(ε = 2Rc/RH  1). Between each pair of arms k, l there is a voltage generator
Vkl = r(Ik + Il) where Ik and Il are the currents flowing into the device through
the contacts k and l respectively. It is easily shown that in this model, the two-
terminal resistance between any pair of contacts k, l is given by RH + Rck + Rcl,
and the four-terminal Hall resistance Rkl,mn is equal to RH, where m, n and k, l
are the current and potential contacts respectively.

If several QHE devices are put in series or parallel in a network, the resis-
tances of the contacts and the connecting wires have to be taken into account when
the overall resistance of the network is determined. In the case of multiterminal
devices, however, Delahaye [170] has shown that the contact effects can be drasti-
cally reduced if the number of links between neighbouring devices is increased. To
illustrate this interesting property let us consider the simple case where two four-
terminal QHE devices are put in series (see figure 24). If the two devices are linked
together using contacts 3 and 3’ only, a voltage drop I(Rc3 + Rc3′) develops be-
tween contacts 4 and 4’ and as a consequence a deviation in the Hall voltage U2,2′

from the quantized value 2RHI is observed. Now, let us introduce an additional
connection between the contacts 4 and 4’. Applying Kirchhoff’s laws yields:

I3(ε3 + ε3′) = I4(4 + ε4 + ε4′), I4 + I3 = I. (33)

The Hall voltage between contacts 2 and 2’ is given by

U2,2′ = 4rI + r(ε4 + ε4′)I4. (34)
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Combining the three equations and neglecting the higher order terms in ε gives a
Hall resistance deviation from the nominal value of

R22′,11′

2RH

 1 +

1
16

((ε3 + ε3′)(ε4 + ε4′)). (35)

The terminal effects thus decrease to a term of order ε2 when the two devices are
connected by two links.

Applying the same analysis to n links, it can been shown that the series
resistance will differ from its nominal value by a term of the order εn. Similar
results are obtained for multiple parallel connections.

A series array of 10 QHE devices with triple series connections (n = 3)
integrated on one chip was recently investigated [171]. The series resistance for
i = 2 was found to be equal to 10 · RH(2) within the experimental uncertainty of
14 nΩ/Ω.

Multiple connections can also be made between the terminals of a single
device. Fang and Stiles [172] have shown that with appropriate connections two-
terminal resistances which are multiples or fractions of RH can be obtained. As
in the case of the combination of several samples, the effects of the contacts and
connections can be reduced if additional connections between unused terminals
are made [170].

The technique of multiple series connections in a single device allows a re-
duction in the difference between the two-terminal resistance between the current
contacts of a standard Hall bar device and the quantized Hall resistance to a neg-
ligible level. This is achieved [170] by connecting together several voltage contacts
and the current contact at the same potential. In figure 25, a triple series connec-
tion scheme is illustrated. Applying the analysis procedure described above, it can
be shown that in the quantum Hall regime, the resistance between the junction
points A and B differs from the QHR by a term of the order (rc/r)3 where rc is the
resistance of the links. The main link connecting to the current terminal carries
the major part of the device current I. The current I2 is of the order Irc/(2r) and
I3 is further reduced to order I(rc/(2r))2. The multiple series arrangement thus
allows a reduction of the influence of link resistances to very small levels. This
makes the scheme very useful if QHE devices are, for example, used as elements
in ac bridges (see section 8.3).

The dc equivalent circuits with multiple series connections have been exper-
imentally verified [170, 173]. The results demonstrate that the model calculations
are correct within the relative experimental uncertainty of a few parts in 109.

6 Universality of the QHR

As was shown in the previous section, an incomplete quantization of a plateau
due to high current through the device or due to increased temperature leads to a
finite ρxx. A linear relationship exists between the deviation in the measured Hall
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resistance from the expected value and ρxx (see section 5.1). Finite longitudinal
voltages can also be measured as a result of non-ideal contacts. The question
is whether the extrapolated value RH (i, ρxx → 0) is the same irrespective of the
device geometry, material and fabrication process, the carrier mobility and density,
the plateau number or other factors. Due to absence of quantitative theoretical
models, this question has essentially been approached experimentally.

6.1 Device, material and step independence

Already in 1987 an experimental study [174] has shown that the QHRs observed
in four different GaAs devices were in agreement at the level of 5 × 10−9. The
search for possible differences between the QHR realized in a GaAs heterostructure
and a Si-MOSFET, respectively, was of special interest. In a direct comparison
Hartland et al[175] found that the difference between the QHR in the two device
types was smaller than 3.5 parts in 1010. However, at about the same time several
other groups [176, 177, 178] reported anomalous values of the QHR measured in
a particular Si-MOSFET device. The authors claimed to see differences in RH up
to several parts in 107 despite the absence of any measured dissipation within the
experimental resolution. Subsequently, a theoretical model [179] was presented
which explains such deviations by the presence of short-range elastic scatterers
located at the edges.
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Figure 26: Variation of both the Hall resistance RH(4) and the longitudinal voltage
Vxx as a function of gate voltage for a Si-MOSFET measured at T = 0.3 K,
I = 30 µA and B = 13.8 T [165].

More recently, a comprehensive study on the universality of the QHR was
carried out by Jeckelmann et al[165]. The metrological characteristics of 7 different
GaAs and 2 different kinds of MOSFET devices were determined. One of the
MOSFET devices was the one which had shown the reported anomalies. The
results can be summarized as follows:

An agreement between Si-MOSFET and GaAs was found at the level of
the experimental uncertainty of 2.3 parts in 1010. This result was realized with
MOSFET devices grown and configured at Southampton University. They feature
a 800-nm-thick gate oxide and consequently wide Hall plateaus as a function of
gate voltage. A subset of the results is shown in figure 26.

The MOSFET devices with the reported anomalous results were made from
Sony wafers. They operate at considerably smaller gate voltage and have a small
critical current which makes precision measurements difficult. The main finding
was that Vxx measured as a function of gate voltage was usually not flat along
the plateau (see figure 27). In addition Vxx critically depended on the device side
measured and on the pair of contacts chosen. It was possible to obtain Vxx = 0 on
one side and at the same time non-zero values on the other side of the device. It is
obvious that under such circumstances deviations in the Hall resistance from the
expected values have to occur. By measuring the two longitudinal and two Hall
voltages around a rectangle defined by two adjacent pairs of contacts it was clearly
demonstrated that deviations of RH always and only occur when Vxx for at least
one of the sides of the rectangle is nonzero. The results of these measurements show
the signature of effects caused by non-ideal contacts. This interpretation is also
supported by the fact that the observed structure in Vxx and as a consequence the
QHR deviations decrease with increasing temperature, as illustrated in figure 27.
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In the same work [165], it was also shown that the extrapolated Hall resistance
value RH (i = 2, 4, ρxx → 0) does not depend on the device mobility (13 T−1 ≤ µ ≤
135 T−1) and the fabrication process (MBE or MOVCD) within 3 parts in 1010.

As for the plateau number i, the results confirm that in GaAs devices no
dependence on this quantum number can be seen:

i · RH (i)
2 · RH (2)

= 1 − (1.2 ± 2.9) · 10−10, i = 1, 3, 4, 6, 8. (36)

6.2 Sample width dependence

Among the large number of theoretical papers, a few [36, 180, 181, 182, 183, 184]
address the question of size effects in the QHE, including the question of the device
width dependence of the quantized Hall resistance RH(i), i being the plateau index.
A majority of these papers [36, 180, 181, 182], based on different approaches to the
problem, found that the relative variation of RH(i) should scale like the inverse
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square of the device width w, i.e.

∆RH(i)
RH(i)

= α

(
l

w

)2

, (37)

where ∆RH(i) = RH(i, w) − RH(i, w = ∞), l is the magnetic length and α is a
parameter reflecting the strength of size effects. It is worth noting that none of
the mentioned papers gives a numerical estimate of α. On the other hand, models
leading to first order corrections in w−1 [183, 184] or an exponential correction
e(−w/l) [40] as well as a model predicting no size effect [185] were also proposed.

Considering the difficulties to model a real sample, the problem whether the
size effects really occur and can be described by the proposed theoretical models
require an experimental approach. A few experimental papers marginally address
the question of the width dependence of RH [31, 186, 187]. In [31], a difference of
(20 ± 15) nΩ/Ω is reported between a 10 µm and a 100 µm wide GaAs/AlGaAs
sample. From [186], a measured difference of (−0.22±3.5) nΩ/Ω between a 330 µm
wide MOSFET and a 400 µm wide GaAs/AlGaAs sample allows a limit to be set
on the first order corrections in w−1, despite the small difference in width. A
direct comparison [187] between a 150 µm wide and a 250 µm wide GaAs/AlGaAs
heterostructure sets the upper limit for α ≤ 0.13.

More recently, a systematic study addressed the width dependence of the
QHR in more detail [188]. In order to rule out any device specific effect, the sam-
ples involved in this experiment were patterned out of the same GaAs/AlGaAs
heterostructure wafer. At a temperature of 4 K, the mobility µ and charge density
n of the 2DEG are µ = 42 T−1 and n = 4.8 × 1015m−2. Each sample contains
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four devices with a constriction of width wc in the central part. The constric-
tion’s widths are wc = 100 µm, 50 µm, 20 µm, 10 µm. These narrow samples were
compared with a reference sample of width w = 1 mm using a cryogenic current
comparator (see section 4.2).

Before and after any precision measurements, the longitudinal voltage Vxx

was measured to check that dissipation was at an acceptable level (typically ρxx <
100 µΩ). The voltage was measured on both sides and along the full length of the
sample. Measurements were made in both forward and reversed magnetic field,
using several pairs of voltage contacts to measure the Hall voltage VH.

The main results are summarized in figure 28, where ∆RH(i)/RH(i) is plotted
as a function of the inverse square of the device width w−2 for plateau i = 2
and i = 4. The uncertainties on the single data point are well below 1 nΩ/Ω
except for the narrowest devices, both on plateau i = 2 and i = 4. A linear fit
to the data allows α to be calculated. On plateau i = 2 and i = 4, it was found
α2 = (1.8 ± 1.8)10−3 and α4 = (0.70 ± 5)10−3 respectively. The small values
obtained for α are not significant within their experimental uncertainties, showing
that size effects are not observed. Moreover, the values of α would be even smaller
if the current was not homogeneously distributed across the device width.

The fit of figure 28 and its related uncertainties allow to set an upper limit
for the deviation that could be observed in a typical 500 µm-wide metrological
sample due to size effects, under the assumption they really exist. It was found that
∆RH(i)/RH(i) would be smaller than 0.001 nΩ/Ω on plateau i = 2 and smaller
than 0.003 nΩ/Ω on plateau i = 4. These values are three orders of magnitude
below the resolution of the best cryogenic current comparators available today.

A similar analysis can be performed in the framework of a model where
∆RH(i)/RH(i) is assumed to be proportional to w−1 instead of w−2. In this case
the values obtained for the proportionality constant are also negligible within the
experimental uncertainties, and the limits for the deviation observed in a typical
500 µm-wide metrological sample are smaller than 0.03 nΩ/Ω on plateau i = 2 and
smaller than 0.06 nΩ/Ω on plateau i = 4. Although one order of magnitude larger
than in the previous model, they are still well below the present measurement
capabilities.

These results clearly show that possible size effects are totally negligible for
the sample sizes presently used in metrology.

7 The QHE, fundamental constants and the SI

In the last section we have seen that there is convincing experimental evidence that
i · RH(i) observed in the fully quantized regime (vanishing longitudinal voltage)
is a universal quantity. This is, however, not sufficient to prove that the relation
i · RH(i) = h/e2 is correct. There may still exist some unforeseeable corrections
and, therefore, independent realizations of the von Klitzing constant RK ≡ h/e2

are required to establish the final proof.
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7.1 Expressing the QHR in terms of the ohm

As we have shown, the QHE can be used to realize very reproducible resistance
values which, to our knowledge, depend only on natural constants. To be used as
a practical standard, the value of the QHR has to be known in SI units. In the
SI, the electrical units are defined in terms of the SI mechanical base units metre,
kilogram and second through the definition of the ampere and the assumption
that electrical power and mechanical power are equivalent. The ampere is defined
as the constant current which, if maintained in two straight parallel conductors
of infinite length and negligible circular cross-section and placed one metre apart
in vacuum, would produce a force of 2 × 10−7 newton per metre of length. This
definition assigns the value of 4π10−7 N/A2 to the magnetic permeability of free
space µ0. To put the concept of the electrical units in the SI in practice, it is
sufficient to realize two electrical units in terms of the m, kg and s. At present,
the ohm and the watt are the two chosen units, since they are the most accurately
determined.

The realization of the ohm is based on an electrostatics theorem discovered in
1956 by Thompson and Lampard [189]. If we assume an infinitely long conducting
pipe of constant cross section in vacuum and divide it into four segments as shown
in figure 29, the theorem states that the cross capacitance per unit length C ′

1 and
C ′

2 between two opposite segments is given by

exp
(−πC ′

1

ε0

)
+ exp

(−πC ′
2

ε0

)
= 1. (38)

In a real experiment, the electrodes consist of four cylinders made as symmetrical
as possible to make the two cross capacitances C ′

1 and C ′
2 agree as closely as

possible. For C ′
1 = C ′

2 = C ′ and ε0 = 1/
(
µ0c

2
)
, the expression simplifies to

C ′ =
ln (2)
µ0c2π


 1.95 pF/m. (39)

To eliminate the end effects in a practical set-up of finite dimensions, the change
of capacitance ∆C due to change in the position of a movable, centrally inserted
guard tube is measured (see figure 30). ∆C is on the order of 0.1 to 1 pF. It can
be measured with a relative uncertainty of <10 nF/F. Using ac bridge techniques
[190], the capacitance of the calculable capacitor is scaled to a value which can
be compared to the resistance of an ac resistor using a quadrature bridge. After
proper scaling, this ac resistor is compared to another AC resistor which has a
small and calculable ac/dc difference. Dc techniques are finally applied to link the
calculable resistor to the QHR.

Despite the long and complicated measurement chain, an accuracy of a few
parts in 108 is reached using this method [191, 192, 193].
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Figure 29: Illustration of the Thompson-Lampard theorem.
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Figure 30: Arrangement of the four electrodes in a calculable capacitor. The dis-
placement of the guard electrode is measured by a laser interferometer.
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Figure 31: Values for the fine structure constant taken into account in the 1998
adjustment of fundamental constants [194]. The vertical lines indicate the value
corresponding to RK-90 and its uncertainty. Γ′

90 is the value from the measurement
of the gyromagnetic ratio of the shielded proton; ∆νMu is related to the muonium
ground-state hyperfine splitting, ae to the anomalous magnetic moment of the
electron and h/mn to the ratio of the Planck constant and the neutron mass.

7.2 The fine structure constant

The von Klitzing constant RK is related with the fine structure constant through
the simple relation

RK ≡ h

e2
=

µ0c

2α
. (40)

In the SI, the permeability of vacuum µ0 and the speed of light c are fixed quantities
with µ0 = 4π × 10−7 NA−2 and c = 299 792 458 m s−1. The fine structure
constant can thus be used to determine RK and test possible corrections to the
QHR. Conversely, if RK is assumed to be identical to i · RH(i), the QHE opens
up an additional route to the determination of α which does not depend on QED
calculations. In figure 31 all the results are shown which contributed to the least
square adjustment of α, as given in the 1998 set of fundamental physical constants
recommended by the CODATA task group [194].

At present, the most accurate value for α is derived from the anomalous
magnetic moment ae of the electron measured using single electrons or positrons
stored in a Penning trap at 4.2 K and exposed to a magnetic flux [195]. A relative
experimental uncertainty of 3.7 × 10−9 has been reached so far [194]. A value for
the fine structure constant can be obtained from the experimental value of ae
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by comparing it to the theoretical value which can be, up to some insignificant
correction terms due to electroweak and hadronic interactions, expressed in the
framework of quantum electrodynamics as a power series in α. The most important
terms in the series can be calculated analytically, but for some of the higher order
terms extensive numerical calculations are necessary [196]. The uncertainty of the
theoretical calculation of ae is estimated to be 1 part in 109 [194].

The second most important result taken into account in the calculation of
the actual value for α comes from the realization of RK through the calculable
capacitor assuming RH(i = 1) = RK. As the comparison shows, there is no dis-
agreement between the RK and the ae derived value for α within the experimental
uncertainty.

7.3 A conventional value for RK

As we have seen in section 7.1, the best realization of the ohm in the SI is about two
orders of magnitude less accurate than the reproducibility of the QHR. A similar
situation is found in the case of the volt where the Josephson effect represents
a voltage standard which is far more reproducible than the realization of the
SI voltage unit. Two electrical units realized in terms of the non-electrical SI
units metre, kilogram and second are needed to make the other electrical units
measurable in the SI. With the QHE and the Josephson effect, two fundamentally
stable standards are available and thus it was realized the world-wide consistency
of electrical measurements could be improved by defining conventional values for
RK and for the Josephson frequency to voltage coefficient KJ ≡ 2e/h. It was
the task of the Comité Consultatif d’Électricité (CCE) to recommend such values
based on the data available. All the values for RK and KJ available by June 1988 in
units of the SI were analyzed and the following conventional values were proposed
[197]:

RK-90 = 25812.807 Ω
KJ-90 = 483597.9 GHz/V.

Relative uncertainties with respect to the SI of 2×10−7 and 4×10−7 respectively
were assigned to the two values. The conventional values were accepted by all
member states of the Metre Convention and came into effect as of January 1,
1990.

In the case of RK-90, the chosen value is essentially the mean of the most
accurate direct measurements of RK based on the calculable capacitor and the
value from the calculation of the fine-structure constant based on the anomalous
magnetic moment of the electron [197]. In the most recent least-square adjustment
of fundamental constants carried out by the CODATA Task Group on Fundamen-
tal Constants [194], RK = 25812.807572 Ω with a relative uncertainty of 3.7 parts
in 109 was evaluated. This new value is in good agreement with the conventional
value, RK-90. Figure 31 shows the results that were taken into account in the
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Figure 32: Principle of the moving coil watt balance

calculation of the new RK value and consequently the new recommended value for
α.

7.4 The possible role of RK in the redefinition of the kg

With the definition of RK-90 and KJ-90, the electrical units profit from the stability
and reproducibility of the quantum standards based on the QHE and the Joseph-
son effect. This situation is, nevertheless, unsatisfactory as the consistency of the
SI system as a whole still depends on the difficult experiments which link mechan-
ical and electrical units. In addition, the unit of mass, which is one of the base
mechanical units, is the last remaining artefact in the SI. The kilogram is defined as
the mass of the international prototype of the kilogram, made of platinum-iridium
and kept at the Bureau International des Poids et Mesures (BIPM) under special
conditions. One of the major disadvantages of this definition is the fact that the
kilogram is subject to possible changes in time. As a consequence, the electrical
units which all depend on the kilogram may drift also with time. Metrologists
worldwide are trying hard to find a proper replacement of the kg which should be
based on fundamental constants. Among the different experimental ideas pursued
at present (see eg. [198]), the most promising approach seems to be the concept of
the moving coil watt balance proposed by Kibble [199] from the National Physical
Laboratory (NPL), UK, in 1976.

The experiment is performed in two parts (see figure 32). Consider a coil
carrying a constant current I. The straight part with length l is immersed in a
uniform magnetic flux density B perpendicular to l. The force on the conductor is
balanced against the weight of test mass m and we have F = m·g = (B ·l)·I, where
g is the local acceleration due to gravity. In the second part of the experiment,
the coil is moved with constant velocity v in vertical direction through the flux
and the voltage U induced across the coil is measured, being U = (B · l) · v at
the location of the weighing. The elimination of the product (B · l) from the two
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expressions then leads to
U · I = m · g · v. (41)

The experiment thus allows the comparison of the watt realized electrically
(left hand side of the equation) to the watt realized mechanically. If the electrical
quantities are measured using the Josephson and quantum Hall effects, the test
mass can be expressed in terms of the metre, the second and the Planck constant
h:

m =
h

4
1

g · vK2
J-90RK-90{U}V 90{I}A90, (42)

where the notation {U}V 90 and {I}A90 implies that the numerical values of these
quantities are expressed in the units RK-90 and KJ-90.

Experiments of this type are currently pursued at the NPL [200] in the UK,
the National Institute of Standards and Technology(NIST) in the U.S.A. [201]
and the Swiss Federal Office of Metrology and Accreditation (METAS) [202]. A
relative accuracy of 2 × 10−7 in the determination of h was obtained in the first
set-up at NPL [200]. Recently the NIST group has published a value with an
uncertainty of 8.7×10−8[203]. Presently, NPL and NIST, using an improved version
of their experiment, and the METAS group, which has only started recently, are
aiming at a relative uncertainty of 10−8. Once such an accuracy level is reached
by different independent experiments, serious consideration to redefining the unit
of mass in the SI should be given. As the Planck constant plays a unique role
among the fundamental constants, both as quantum of action and as a factor of
proportionality in many equations, it would be a natural choice to fix the value of
h and to link the kilogram to this value using experiments like the watt balance. To
assure the continuity to the old SI, the conventionally fixed value of h would be the
generally accepted experimental value at the time of the new definition. According
to a proposition of Taylor [204], the new definition of the kg could be as follows:
“The kilogram is the mass of a body at rest whose equivalent energy equals the
energy of a collection of photons whose frequencies sum to 135639274× 1042 Hz.”
The definition is based on the well-known Einstein relation E = mc2 and the
relation E = hν valid for the energy of photons.

7.5 The use of the QHR as a standard of resistance

Since January 1, 1990, most major national metrology institutes are using the
QHE to realize a representation of the SI-unit ohm on the basis of the conventional
value RK-90. As we have seen in previous sections of this paper, the value of RK

is independent of the experimental conditions as long as the QHE device is fully
quantized. Temperature, current or contact effects may cause deviations from the
correct value. Most important, however, test measurements can reveal whether the
device is in a proper state or not. This means that the value of the QHR can be
made as reproducible as today’s measurement techniques allow without making
reference to an external standard. These are the criteria a standard has to fulfil to
be accepted as primary standard.
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Figure 33: Tracking of a 100 Ω standard resistor measured in terms of RK-90. The
triangles (right scale) indicate the deviations of the measured data points to the fit
function. Data taken at the Swiss Federal Office of Metrology and Accreditation
(METAS).

To guarantee the accuracy and reproducibility of the QHR standard, the QHE
device, the measurement system and the procedures have to meet an number of
strict requirements. A group of experts under the auspices of the CCE has put
together the “Technical Guidelines for Reliable Measurements of the Quantized
Hall Resistance” [205] which, when correctly applied in practice, assure correct
QHR measurements.

The resistance bridges of the type briefly introduced in section 4 are used to
calibrate traditional room temperature resistance standards in terms of the QHR.
As an example, figure 33 shows the measurements carried out at METAS to de-
termine the drift behaviour of a temperature stabilized wire-wound 100 Ω resistor.
The standard is kept under constant ambient conditions. As the results show, its
resistance can be described with high accuracy by a smooth fitting function, which
makes it usable as a transfer standard at the level of 1 nΩ/Ω.

To check the world-wide consistency of the QHR measurements at the highest
accuracy level, the BIPM has started in 1993 to perform on-site comparisons of
resistance ratio measurements using a transportable QHE standard and resistance
bridge. The results of the bilateral comparisons (see e.g. [206]) are made public
by the BIPM in a database which is accessible by internet (www.bipm.org). The
comparison results obtained so far are shown in figure 34. The agreement between
each laboratory and the BIPM for the RH(2)/100 Ω is on the order of one part in
109 which is well within the combined standard uncertainty of the comparisons.
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Figure 34: Results of on-site comparisons of three different resistance ratios using
the BIPM transportable QHE system.

7.6 The metrological triangle

The trend in quantum metrology is to base the realization of the physical units
on fundamental laws instead of physical artefacts. In the previous paragraphs, the
situation for the ohm was illustrated. However, two additional quantum effects
play an important role in metrology, namely the Josephson and the Single Electron
Tunnelling (SET) effect.

The voltage measured across a Josephson junction irradiated by a microwave
electromagnetic field of frequency fJ is

VJ = n
h

2e
fJ, (43)

where n is the voltage step number. A review on voltage standards based on the
Josephson effect can be found in [207, 208].

The single electron tunnelling effect was theoretically predicted in 1985 [209]
and experimentally observed with appropriate interpretation in 1987 [210] (see
[211, 212] for a review of SET physics). In an ultra small tunnel junction of capac-
itance C measured at low temperatures the charging energy EC = e2/2C can be
much larger than thermal fluctuations kBT , leading to the observation of quantum
phenomena. If such tiny tunnel junctions separate a conducting island from con-
necting electrodes (reservoirs), the electron number on the island can only change
due to individual electrons tunnelling on or off the island, modifying the island
potential by ±EC and generating a discrete island energy spectrum. This effect,
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Figure 35: The metrological triangle relates the three quantum electrical effects
via Ohm’s law.

which prevents further electrons from tunnelling and therefore suppresses (blocks)
current flow, can be compared to the classical picture of Coulomb repulsion of
charge carriers and is called the ’Coulomb blockade’.

Owing to the remarkable feasibility of single electron manipulation in SET
devices, an electrical current

I = qf (44)

can be generated from an electron pump, where the charge q (integer multiple of
the elementary charge e) is transferred through the device per cycle of an external
rf drive of frequency f . The electron pump is investigated for metrological appli-
cations, with an experimentally demonstrated accuracy of 1.5×10−8 at a pumped
current level on the order of a few pA [213].

The three quantum effects can be related by the so called metrological triangle
[214] by means of Ohm’s law depicted in figure 35. The closing of the metrological
triangle is a very important experiment to check the consistency of the quantum
electrical effects themselves.

In the practical experiment [215] shown in figure 36, an electron pump will
provide a current I = ef , where f is the clock frequency of the pump. A quantum
Hall resistance is placed in the current loop giving rise to the Hall voltage

VH(i) =
RK

i
· ef. (45)
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Figure 36: Experimental set-up for the verification of the metrological triangle

A Josephson voltage standard with a voltage VJ given by equation 43 is balanced
against the Hall voltage using a null detector. The comparison of VH and VJ gives:

eRKKJ = in
fJ

f
. (46)

Since only a frequency ratio has to be measured, the frequencies do not have to
be known in absolute units. In case I, RH and/or VJ show deviations from their
usual definitions, one has to introduce the following corrections: I = ef(1 + δ1),
RH = RK/i(1 + δ2), VJ = (nfJ/KJ)(1 + δ3), and equation 46 reads now:

(1 + δ) =
in

2
fJ

f
, (47)

where δ = δ1 + δ2 − δ3 to the first order. Therefore, a measurement of δ provides
a direct test of the consistency between the three quantum effects.

The major difficulty in the experimental realization of the metrological tri-
angle is the very low current level of a few pA from the electron pump. In practice,
the current may be amplified through a cryogenic current comparator first. Never-
theless, a further increase in the current by several orders of magnitude is needed
to reach the target value for the resolution of the experiment [215].

For completeness, it should be mentioned that a different approach exists in
order to close the metrological triangle [216]. Instead of being used as a current
standard, the electron pump can charge a cryogenic capacitor, depositing a number
N of electrons of charge e with a metrological accuracy. The voltage difference �V
developed across the capacitor can be measured with a Josephson voltage standard.
This measurement yields an absolute quantum determination of the capacitance
C = Ne/�V with a potential relative uncertainty on the order of 10−8. The
cryogenic capacitor calibrated in this way can be compared with room temperature
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Figure 37: Schematic of the principle of the measurement chains that link the
QHR to a capacitance standard. The left hand side describes the dc based method
where the QHR is operated at dc, the ac/dc transfer being made using an ac/dc
resistor. The right hand side shows two different methods where the QHR is used
at audio frequencies. CCC stands for cryogenic current comparator.

capacitors, like the calculable capacitor. Up to now, the accuracy in the comparison
of the cryogenic vacuum-gap capacitor to the laboratory capacitance standards was
limited to a few parts in 106. However, this uncertainty will certainly be reduced
by performing comparisons with high-accuracy ac bridges (see section 8.3).

8 ac Measurements of the QHR

Recently, the potential use of the QHR as an ac quantum standard has been
recognized and preliminary investigations have been performed.

In low frequency electrical metrology, ac means frequencies up to 10 kHz,
therefore this chapter will not review studies that describe experiments performed
at higher frequencies, including the far infra red regime.

8.1 Calibration of capacitance standards based on the QHR

Since the early nineties, several national laboratories have made their representa-
tion of the farad traceable to the dc QHE. In this way, the capacitance calibrations
benefit from the consistency brought in electrical metrology by the introduction
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of RK-90 and KJ-90. However, it is important to emphasize that for the absolute
realization of the farad in the SI, the calculable capacitor is still required.

A measurement chain which links the QHR to a capacitance standard is
depicted in the left path of figure 37. In a CCC bridge (see section 4.2), the QHR
is used at dc to calibrate an ac/dc resistor with a small and well characterized ac/dc
difference. Examples of such resistors are the coaxial resistor [217] or the quadrifilar
resistor [218] for which the ac/dc difference can be calculated. Two ac/dc resistors
are then used as secondary standards to calibrate the capacitance using a coaxial
quadrature bridge. The balance condition of the bridge with R = 12906 Ω and
C = 10 nF imposes a measuring frequency of 1233 Hz. A different approach exists
to link the capacitance standard to the QHR [219], as depicted in the right path
of figure 37. In this case the QHR is operated as an ac resistance standard and
directly compared with the ac/dc resistor with a coaxial 1:1 ratio bridge [220]. In a
more direct approach, the QHR is directly compared to the capacitance standards.
According to [219], the uncertainty obtained using the ac QHR is similar to the
one from the dc method. However, the measuring time is strongly reduced by using
the direct ac method making it potentially superior for calibration purpose. This
measurement method relies on a good knowledge of the physics of the 2DEG at
finite frequencies. This knowledge is far from being complete and will be briefly
reviewed in the next section.

8.2 Characteristics of the QHR at kilohertz frequencies

The first ac measurements of the QHR took place shortly after the discovery of
the QHE. In a Si-MOSFET, an increase of the measuring frequency was observed
to enhance the formation of a plateau in the ρxy measurements [221]. This effect is
not always observed and in some samples the frequency seems to prevent the for-
mation of a plateau [222]. The accuracy of these early measurements was, however,
limited to a few percent. On the theoretical side, a model based on the existence of
semiclassical states treated in a percolation framework [223] leads to the result that
the Hall conductivity should not show any deviation from its dc value, although
the longitudinal conductivity should scale like σxx = ω−8/3e(−ω0/ω), with ω0 in the
megahertz range. According to this model, which neglects electron-electron inter-
actions and the influence of the temperature, the Hall resistance is less sensitive to
the frequency effect than the longitudinal resistance. Later, a magnetocapacitance
experiment [224] showed no frequency dependence in σxx in the range between
10 Hz and 20 kHz. This result was contradicted by a study on GaAs/AlGaAs het-
erostructures which showed a strong frequency dependence between 100 Hz and
20 kHz [225].

The picture emerging from the literature at the end of the eighties was far
from being clear and precision measurements of the QHR were needed to under-
stand its behaviour under ac transport conditions. The pioneering work of Melcher
et al[226] showed that the QHR agrees with RK-90 with an overall uncertainty of
3 µΩ/Ω at 1592 Hz. This result initiated a series of experiments in several national
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metrology institutes [227, 228, 229, 230, 231, 232, 233]. The main results of these
precision measurements can be summarized as follows: The ac longitudinal mea-
surements give controversial results. The minimum of Rxx is generally found to
be around 0.3 to 0.5 mΩ, although some samples showed values up to 1 mΩ in
the centre of plateau i = 2 at a frequency of 1 kHz. Most of the time, the range
where Rxx keeps close to its minimum value is much narrower than that in the dc
case. Experiments have been reported with no frequency [229], almost linear fre-
quency [232] and quadratic frequency dependences [230] in the minimum of Rxx.
Resistance plateaus have been observed in the Hall impedance for filling factor
i = 2 and i = 4. The relative flatness of these plateaus is around 20 nΩ/Ω in the
best cases [227, 233] and their width is much narrower then in the dc case (see
figure 38 for an example). In addition, various structures appear at the edges of
the plateaus which are frequency and current dependent. Such a behaviour is not
yet understood.

The Hall resistance in the centre of the plateau is frequency dependent. In
some cases [228], part of this dependence could be ascribed to the measurement
bridge and the sample connection scheme. However, it seems that a residual linear
frequency dependence on the order of 1 part in 107 per kilohertz comes from the
sample itself [227, 233]. Lately, this linear frequency dependence could be linked to
ac losses along the sample edges [234, 235]. A method was proposed to attenuate
these losses by using a properly biased split back-gate. It is worth noticing that the
split back-gate bias conditions, for selected devices, do not require the knowledge of
the frequency behaviour of the device. A measurement of the current dependence
of RH at a single frequency is sufficient. Using this method, it was shown that
the relative frequency dependence can be reduced to 2 parts in 108 per kilohertz.
This improvement by one order of magnitude will certainly stimulate further work
towards the application of the QHR as an ac resistance standard.

On the theoretical side, Christen et al[236] calculated the low-frequency ad-
mittance of a QHR using a pure edge states formalism (see section 2.5). The
longitudinal Zxx and Hall Zxy impedances of a four terminal Hall bar can be
written as

Zxx(ω, i) = jωcµ,13RH(i)2 (48)
Zxy(ω, i) = RH(i) + jω(cµ,24 − cµ,13)RH(i)2, (49)

where cµ,kl is the electrochemical capacitance between edge channels k and l which
depends on the complex electrostatic potential distribution at the sample edges.
This pure edge model predicts a linear frequency dependence for the longitudinal
ac resistance as well as no intrinsic frequency dependence for the real component of
the ac impedance. Such a behaviour has not yet being confirmed by experiments.

Finally, several studies analyzed the role of the sample edges in the ac be-
haviour of the 2DEG. A magnetocapacitance experiment [58] proved that the
capacitance between a gate and the 2DEG in the quantum Hall regime scales
with the device perimeter instead of the device surface, showing that the edge
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Figure 38: In-phase (RH) and quadrature (X) components of the four terminal
Hall impedance for the i = 2 plateau of a GaAs sample at 800 Hz measured with
a current of 40 µA. RH shows a narrow (0.3 T) flat plateau (∆RH/RH ≈ 2×10−8)
around B = 10.1 T (after [227]).

contribution dominates the capacitive response. In a different study [237], a fully
inductive method allowed the internal capacitance of a Corbino ring to be mea-
sured in the QHE regime. A value of 1 pF/cm for a 1mm wide sample was found.
This compares well with the time constant estimated from other ac measurements.
In addition, a calculation [238] of the intrinsic capacitance of a Hall bar based on
the current and potential distribution inside the sample gave a value for the capac-
itance which is two orders of magnitude smaller than the 1 pF/cm quoted above,
providing further evidence of the leading role played by the edge states in the
capacitance of quantum Hall devices.

8.3 Ac measurement techniques

This paragraph is not intended to cover all the coaxial bridge measurement tech-
niques. The interested readers can find a very complete and comprehensible review
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in [190]. Here we just want to emphasize a few points that are specifically related
to the measurements of the QHR at low frequency.

The coaxial bridge technique requires that the impedances are defined as four
terminal pair standards [239]. An important point in the measuring conditions is
that no current should flow in the potential leads. This condition is easily realized
in dc measurements of the QHR. In the ac case, however, the situation is more
complicated. The QHR is usually located at the bottom of a cryostat and at a
temperature close to 1 K. To keep the power dissipation at an acceptable level,
the electrical connections are made by long resistive coaxial cables. Therefore, the
series impedances and the shunt admittances of these cables cause current to flow
in the potential leads inducing errors in the measurements. Another source of error
is the inductive reactance produced by the bonding wires that connect the QHE
device to its sample holder. As an example, a 3 mm long wire carrying a current of
40 µA in a field of 10 T vibrating with an rms amplitude of 0.13 µm corresponds
to a series inductance of 100 µH [227]. A very elegant solution to these problems
was introduced by Delahaye [170] with a multiple series connection scheme (see
section 5.5).

One of the key elements of ac bridges is the current equalizer, commonly
called a choke [190]. These chokes equalize the current flowing in the inner and
outer (shield) part of the coaxial cable in any mesh of the measuring circuit making
the whole bridge immune to any external perturbing electromagnetic field. The
efficiency of the passive chokes usually used in ac bridges strongly depends on the
resistance of the shield, which should be as small as possible. With this respect,
the highly resistive coax cables used at cryogenic temperature are far from ideal.
Therefore, to achieve the smallest possible measurement uncertainty, active chokes
[240] have to be used.

9 Conclusion

In this review, we have summarized those aspects of the QHE which are of impor-
tance for the application of the effect as a resistance standard.

Many systematic studies have been carried out in the last two decades to
assess the accuracy of the QHR. As we have shown, there is now overwhelming
experimental evidence that the QHR is a universal quantity. It is independent of
host material, device and plateau number at the level of a few parts in 1010 which
is the resolution of today’s measurement techniques. As a consequence, the QHR is
used by all the major national metrology institutes as a dc standard for resistance.
The reproducibility of this quantum standard is two orders of magnitude better
than the absolute realization of the ohm in the SI. By fixing conventional values
for the von Klitzing constant RK and the Josephson constant KJ, the worldwide
consistency of the electrical measurements has improved considerably during the
last decade. The QHE together with the Josephson effect may also play an impor-
tant role in the replacement of the last material artefact in the SI, the kilogram,
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by a definition based on natural constants.
Experimental studies of the QHE with alternating current in the audio-

frequency range are under way and first results show the importance of the cur-
rent distribution in the device on the ac/dc difference of the Hall resistance. More
theoretical and experimental work is still needed to understand and control the
observed loss mechanism under ac conditions. The development of a primary ac
resistance standard based on the QHE is of great importance in metrology. It
will simplify the link between resistance and capacitance and, as a consequence,
improve the measurement capabilities in the field of impedance measurements.

Despite the successful application of the QHE in metrology, our understand-
ing of the effect is still incomplete. The many theoretical models explain various
aspects of the QHE, at least in a qualitative way. A complete theory which con-
clusively explains e.g. the remarkable accuracy of the QHR is still missing. More
work is also needed to understand the current distribution in Hall bar devices in
the QHE regime and the relative importance of edge and bulk transport at high
current. Further work should also be carried out to gain a better understanding
of the processes which are responsible for the breakdown of the QHE.
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[46] M. Büttiker, Semiconductors and Semimetals, vol. 35, ch. The quantum Hall
effect in open conductors, pp. 191–277. Academic Press, San Diego, 1992.

[47] R. J. Haug, A. H. MacDonald, P. Středa, and K. von Klitzing, “Quantized
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B. Jeckelmann, and W. Schwitz, “Properties of alloyed AuGeNi-contacts
on GaAs/AlGaAs heterostructures,” IEEE Trans. Instrum. Meas., vol. 40,
no. 2, pp. 228–230, 1991.

[64] G. M. Reedtz and M. E. Cage, “An automatic potentiometric system for
precision measurement of the quantized Hall resistance,” J. Res. Nat. Bur.
Stand., vol. 92, pp. 303–310, 1987.

[65] B. Jeckelmann, W. Schwitz, H. J. Bühlmann, R. Houdré, M. Ilegems,
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W. Schlapp, “Bistability in the current-induced breakdown of the quantum
Hall effect,” Semicond. Sci. Technol., vol. 8, pp. 2062–2068, 1993.

[162] S. Komiyama and H. Hirai, “Theory of contacts in a two-dimensional electron
gas at high magnetic fields,” Phys. Rev. B, vol. 40, no. 11, pp. 7767–7775,
1989.

[163] S. Komiyama, H. Hirai, S. Sasa, and T. Fujii, “Non-equilibrium population
of edge states and a role of contacts in the quantum Hall regime,” Surf. Sci.,
vol. 229, pp. 224–228, 1990.



126 B. Jeckelmann and B. Jeanneret

[164] G. L. J. A. Rikken, J. A. M. M. van Haaren, W. van der Wel, A. P. van
Gelder, H. van Kempen, P. Wyder, J. P. André, K. Ploog, and G. Weimann,
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Introduction to the Fractional Quantum Hall Effect

Steven M. Girvin

1 Introduction

The quantum Hall effect (QHE) is one of the most remarkable condensed-matter
phenomena discovered in the second half of the 20th century. It rivals supercon-
ductivity in its fundamental significance as a manifestation of quantum mechanics
on macroscopic scales. The basic experimental observation for a two-dimensional
electron gas subjected to a strong magnetic field is nearly vanishing dissipation

σxx → 0 (1)

and special values of the Hall conductance

σxy = ν
e2

h
(2)

given by the quantum of electrical conductance (e2/h) multiplied by a quantum
number ν. This quantization is universal and independent of all microscopic details
such as the type of semiconductor material, the purity of the sample, the precise
value of the magnetic field, and so forth. As a result, the effect is now used to
maintain (but not define) the standard of electrical resistance by metrology labo-
ratories around the world. In addition, since the speed of light is now defined, a
measurement of e2/h is equivalent to a measurement of the fine structure constant
of fundamental importance in quantum electrodynamics.

Fig. (1) shows the remarkable transport data for a real device in the quan-
tum Hall regime. Instead of a Hall resistivity which is simply a linear function of
magnetic field, we see a series of so-called Hall plateaus in which ρxy is a universal
constant

ρxy = −1
ν

h

e2
(3)

independent of all microscopic details (including the precise value of the magnetic
field). Associated with each of these plateaus is a dramatic decrease in the dissi-
pative resistivity ρxx −→ 0 which drops as much as 13 orders of magnitude in the
plateau regions. Clearly the system is undergoing some sort of sequence of phase
transitions into highly idealized dissipationless states. Just as in a superconductor,
the dissipationless state supports persistent currents.

In the so-called integer quantum Hall effect (IQHE) discovered by von Kl-
itzing in 1980, the quantum number ν is a simple integer with a precision of
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Figure 1: Integer and fractional quantum Hall transport data showing the plateau
regions in the Hall resistance RH and associated dips in the dissipative resistance
R. The numbers indicate the Landau level filling factors at which various features
occur. After ref. [1].

about 10−10 and an absolute accuracy of about 10−8 (both being limited by our
ability to do resistance metrology).

In 1982, Tsui, Störmer and Gossard discovered that in certain devices with
reduced (but still non-zero) disorder, the quantum number ν could take on ratio-
nal fractional values. This so-called fractional quantum Hall effect (FQHE) is the
result of quite different underlying physics involving strong Coulomb interactions
and correlations among the electrons. The particles condense into special quantum
states whose excitations have the bizarre property of being described by fractional
quantum numbers, including fractional charge and fractional statistics that are
intermediate between ordinary Bose and Fermi statistics. The FQHE has proven
to be a rich and surprising arena for the testing of our understanding of strongly
correlated quantum systems. With a simple twist of a dial on her apparatus, the
quantum Hall experimentalist can cause the electrons to condense into a bewilder-
ing array of new ‘vacua’, each of which is described by a different quantum field
theory. The novel order parameters describing each of these phases are completely
unprecedented. A number of general reviews exist which the reader may be inter-
ested in consulting [2–10] The present lecture notes are based on the author’s Les
Houches Lectures. [11]
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2 Fractional QHE

The free particle Hamiltonian an electron moving in a disorder-free two dimen-
sional plane in a perpendicular magnetic field is

H =
1

2m
Π2 (4)

where
�Π ≡ �p +

e

c
�A(�r) (5)

is the (mechanical) momentum. The magnetic field quenches the kinetic energy
into discrete, massively degenerate Landau levels. In a sample of area LxLy, each
Landau level has degeneracy equal to the number of flux quanta penetrating the
sample

NΦ = LxLy
B

Φ0
=

LxLy

2π�2
(6)

where � is the magnetic length defined by

1
2π�2

=
B

Φ0
(7)

and Φ0 = h
e2 is the quantum of flux. The quantum number ν in the quantized Hall

coefficient turns out to be given by the Landau level filling factor

ν =
N

NΦ
. (8)

In the integer QHE the lowest ν Landau levels are completely occupied by electrons
and the remainder at empty (at zero temperature). Under some circumstances of
weak (but non-zero) disorder, quantized Hall plateaus appear which are charac-
terized by simple rational fractional quantum numbers. For example, at magnetic
fields three times larger than those at which the ν = 1 integer filling factor plateau
occurs, the lowest Landau level is only 1/3 occupied. The system ought to be
below the percolation threshold (that is the electrons should be entirely localized
by the weak random disorder potential) and hence be insulating. Instead a robust
quantized Hall plateau is observed indicating that electrons can travel through the
sample and that (since σxx −→ 0) there is an excitation gap (for all excitations
except for the collective mode corresponding to uniform translation of the system
which carries the current). This novel and quite unexpected physics is controlled
by Coulomb repulsion between the electrons. It is best understood by first ignoring
the disorder and trying to discover the nature of the special correlated many-body
ground state into which the electrons condense when the filling factor is a rational
fraction. Since the kinetic energy has been quenched, the Coulomb interaction has
strong non-perturbative effects.
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For reasons that will become clear later, it is convenient to analyze the prob-
lem in the so-called symmetric gauge

�A = −1
2
�r × �B. (9)

Unlike the Landau gauge which preserves translation symmetry in one direction,
the symmetric gauge preserves rotational symmetry about the origin. Hence we
anticipate that angular momentum (rather than one component of the linear mo-
mentum) will be a good quantum number in this gauge.

For simplicity we will restrict our attention to the lowest Landau level only
and (simply to avoid some awkward minus signs) change the sign of the B field:
�B = −Bẑ. With these restrictions, it is not hard to show that the solutions of the
free-particle Schrödinger equation having definite angular momentum are

ϕm =
1√

2π�22mm!
zme−

1
4 |z|2 (10)

where z = (x+ iy)/� is a dimensionless complex number representing the position
vector �r ≡ (x, y) and m ≥ 0 is an integer.

The angular momentum of these basis states is of course h̄m. If we restrict
our attention to the lowest Landau level, then there exists only one state with
any given angular momentum and only non-negative values of m are allowed. This
‘handedness’ is a result of the chirality built into the problem by the magnetic
field.

It seems rather peculiar that in the Landau gauge we have a continuous one-
dimensional family of basis states corresponding to one component of conserved
linear momentum for this two-dimensional problem. Now we find that in a different
gauge, we have a discrete one dimensional label for the basis states! Nevertheless,
we still end up with the correct density of states per unit area. To see this note
that the peak value of |ϕm|2 occurs at a radius of Rpeak =

√
2m�2. The area 2π�2m

of a circle of this radius contains m flux quanta. Hence we obtain the standard
result of one state per Landau level per quantum of flux penetrating the sample.

Because all the basis states are degenerate, any linear combination of them
is also an allowed solution of the Schrödinger equation. Hence any function of the
form [12]

Ψ(x, y) = f(z)e−
1
4 |z|2 (11)

is allowed so long as f is analytic in its argument. In particular, arbitrary polyno-
mials of any degree N

f(z) =
N∏

j=1

(z − Zj) (12)

are allowed (at least in the thermodynamic limit) and are conveniently defined
by the locations of their N zeros {Zj ; j = 1, 2, . . . , N}. The fact that the Hilbert
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space for the lowest Landau level is the Hilbert space of analytic functions leads
to some beautiful mathematics [11–13].

Another useful solution is the so-called coherent state which is a particular
infinite order polynomial

fλ(z) ≡ 1√
2π�2

e
1
2 λ∗ze−

1
4 λ∗λ. (13)

The wave function using this polynomial has the property that it is a narrow
gaussian wave packet centered at the position defined by the complex number λ.
Completing the square shows that the probability density is given by

|Ψλ|2 = |fλ|2e−
1
2 |z|2 =

1
2π�2

e−
1
2 |z−λ|2 . (14)

This is the smallest wave packet that can be constructed from states within the
lowest Landau level.

Because the kinetic energy is completely degenerate, the effect of Coulomb
interactions among the particles is nontrivial. To develop a feel for the problem,
let us begin by solving the two-body problem. Recall that the standard procedure
is to take advantage of the rotational symmetry to write down a solution with the
relative angular momentum of the particles being a good quantum number and
then solve the Schrödinger equation for the radial part of the wave function. Here
we find that the analyticity properties of the wave functions in the lowest Landau
level greatly simplifies the situation. If we know the angular behavior of a wave
function, analyticity uniquely defines the radial behavior. Thus for example for
a single particle, knowing that the angular part of the wave function is eimθ, we
know that the full wave function is guaranteed to uniquely be rmeimθe−

1
4 |z|2 =

zme−
1
4 |z|2 .
Consider now the two body problem for particles with relative angular mo-

mentum m and center of mass angular momentum M . The unique analytic wave
function is (ignoring normalization factors)

ΨmM (z1, z2) = (z1 − z2)m(z1 + z2)Me−
1
4 (|z1|2+|z2|2). (15)

If m and M are non-negative integers, then the prefactor of the exponential is
simply a polynomial in the two arguments and so is a state made up of linear
combinations of the degenerate one-body basis states ϕm given in eq. (10) and
therefore lies in the lowest Landau level. Note that if the particles are spinless
fermions then m must be odd to give the correct exchange symmetry. Remarkably,
this is the exact (neglecting Landau level mixing) solution for the Schrödinger
equation for any central potential V (|z1 − z2|) acting between the two particles.1

We do not need to solve any radial equation because of the powerful restrictions

1Note that neglecting Landau level mixing is a poor approximation for strong potentials
V � h̄ωc unless they are very smooth on the scale of the magnetic length.
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Figure 2: The Haldane pseudopotential Vm vs. relative angular momentum m for
two particles interacting via the Coulomb interaction. Units are e2/ε�, where ε is
the dielectric constant of the host semiconductor and the finite thickness of the
quantum well has been neglected.

due to analyticity. There is only one state in the (lowest Landau level) Hilbert
space with relative angular momentum m and center of mass angular momentum
M . Hence (neglecting Landau level mixing) it is an exact eigenstate of any central
potential. ΨmM is the exact answer independent of the Hamiltonian!

The corresponding energy eigenvalue vm is independent of M and is referred
to as the mth Haldane pseudopotential

vm =
〈mM |V |mM〉
〈mM |mM〉 . (16)

The Haldane pseudopotentials for the repulsive Coulomb potential are shown in
Fig. (2). These discrete energy eigenstates represent bound states of the repulsive
potential. If there were no magnetic field present, a repulsive potential would of
course have only a continuous spectrum with no discrete bound states. However
in the presence of the magnetic field, there are effectively bound states because
the kinetic energy has been quenched. Ordinarily two particles that have a lot
of potential energy because of their repulsive interaction can fly apart converting
that potential energy into kinetic energy. Here however (neglecting Landau level
mixing) the particles all have fixed kinetic energy. Hence particles that are repelling
each other are stuck and can not escape from each other. One can view this semi-
classically as the two particles orbiting each other under the influence of �E× �B drift
with the Lorentz force preventing them from flying apart. In the presence of an
attractive potential the eigenvalues change sign, but of course the eigenfunctions
remain exactly the same (since they are unique)!

The fact that a repulsive potential has a discrete spectrum for a pair of
particles is (as we will shortly see) the central feature of the physics underlying
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m=4
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(a)

m=0 m=1 m=2 m=3

Figure 3: Orbital occupancies for the maximal density filled Landau level state
with (a) two particles and (b) three particles. There are no particle labels here. In
the Slater determinant wave function, the particles are labeled but a sum is taken
over all possible permutations of the labels in order to antisymmetrize the wave
function.

the existence of an excitation gap in the fractional quantum Hall effect. One might
hope that since we have found analyticity to uniquely determine the two-body
eigenstates, we might be able to determine many-particle eigenstates exactly. The
situation is complicated however by the fact that for three or more particles, the
various relative angular momenta L12, L13, L23, etc. do not all commute. Thus we
can not write down general exact eigenstates. We will however be able to use the
analyticity to great advantage and make exact statements for certain special cases.

2.1 The ν = 1 many-body state

So far we have found the one- and two-body states. Our next task is to write down
the wave function for a fully filled Landau level. We need to find

ψ[z] = f [z] e
− 1

4

∑
j
|zj |2 (17)

where [z] stands for (z1, z2, . . . , zN ) and f is a polynomial representing the Slater
determinant with all states occupied. Consider the simple example of two particles.
We want one particle in the orbital ϕ0 and one in ϕ1, as illustrated schematically
in Fig. (3a). Thus (again ignoring normalization)

f [z] =
∣∣∣∣ (z1)0 (z2)0

(z1)1 (z2)1

∣∣∣∣ = (z1)0(z2)1 − (z2)0(z1)1

= (z2 − z1). (18)

This is the lowest possible order polynomial that is antisymmetric. For the case of
three particles we have (see Fig. (3b))

f [z] =

∣∣∣∣∣∣
(z1)0 (z2)0 (z3)0

(z1)1 (z2)1 (z3)1

(z1)2 (z2)2 (z3)2

∣∣∣∣∣∣ = z2z
2
3 − z3z

2
2 − z1

1z2
3 + z1

3z2
1 + z1z

2
2 − z1

2z2
1

= −(z1 − z2)(z1 − z3)(z2 − z3)

= −
3∏

i<j

(zi − zj). (19)
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This form for the Slater determinant is known as the Vandermonde polynomial.
The overall minus sign is unimportant and we will drop it.

The single Slater determinant to fill the first N angular momentum states is
a simple generalization of eq. (19)

fN [z] =
N∏

i<j

(zi − zj). (20)

To prove that this is true for general N , note that the polynomial is fully anti-
symmetric and the highest power of any z that appears is zN−1. Thus the highest
angular momentum state that is occupied is m = N − 1. But since the antisym-
metry guarantees that no two particles can be in the same state, all N states from
m = 0 to m = N − 1 must be occupied. This proves that we have the correct
Slater determinant.

One can also use induction to show that the Vandermonde polynomial is the
correct Slater determinant by writing

fN+1(z) = fN (z)
N∏

i=1

(zi − zN+1) (21)

which can be shown to agree with the result of expanding the determinant of the
(N +1)× (N +1) matrix in terms of the minors associated with the (N +1)st row
or column.

Note that since the Vandermonde polynomial corresponds to the filled Lan-
dau level it is the unique state having the maximum density and hence is an exact
eigenstate for any form of interaction among the particles (neglecting Landau level
mixing and ignoring the degeneracy in the center of mass angular momentum).

The (unnormalized) probability distribution for particles in the filled Landau
level state is

|Ψ[z]|2 =
N∏

i<j

|zi − zj |2 e
− 1

2

∑N

j=1
|zj |2 . (22)

This seems like a rather complicated object about which it is hard to make any
useful statements. It is clear that the polynomial term tries to keep the particles
away from each other and gets larger as the particles spread out. It is also clear
that the exponential term is small if the particles spread out too much. Such simple
questions as, ‘Is the density uniform?’, seem hard to answer however.

It turns out that there is a beautiful analogy to plasma physics developed
by R. B. Laughlin which sheds a great deal of light on the nature of this many
particle probability distribution. To see how this works, let us pretend that the
norm of the wave function

Z ≡
∫

d2z1 . . .

∫
d2zN |ψ[z]|2 (23)
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is the partition function of a classical statistical mechanics problem with Boltz-
mann weight

|Ψ[z]|2 = e−βUclass (24)

where β ≡ 2
m and

Uclass ≡ m2
∑
i<j

(− ln |zi − zj |) +
m

4

∑
k

|zk|2. (25)

(The parameter m = 1 in the present case but we introduce it for later conve-
nience.) It is perhaps not obvious at first glance that we have made tremendous
progress, but we have. This is because Uclass turns out to be the potential energy
of a fake classical one-component plasma of particles of charge m in a uniform
(‘jellium’) neutralizing background. Hence we can bring to bear well-developed
intuition about classical plasma physics to study the properties of |Ψ|2. Please re-
member however that all the statements we make here are about a particular wave
function. There are no actual long-range logarithmic interactions in the quantum
Hamiltonian for which this wave function is the approximate groundstate.

To understand this, let us first review the electrostatics of charges in three
dimensions. For a charge Q particle in 3D, the surface integral of the electric field
on a sphere of radius R surrounding the charge obeys∫

d �A · �E = 4πQ. (26)

Since the area of the sphere is 4πR2 we deduce

�E(�r ) = Q
r̂

r2
(27)

ϕ(�r ) =
Q

r
(28)

and
�∇ · �E = −∇2ϕ = 4πQ δ3(�r ) (29)

where ϕ is the electrostatic potential. Now consider a two-dimensional world where
all the field lines are confined to a plane (or equivalently consider the electrostatics
of infinitely long charged rods in 3D). The analogous equation for the line integral
of the normal electric field on a circle of radius R is∫

d�s · �E = 2πQ (30)

where the 2π (instead of 4π) appears because the circumference of a circle is 2πR
(and is analogous to 4πR2). Thus we find

�E(�r ) =
Qr̂

r
(31)

ϕ(�r ) = Q

(
− ln

r

r0

)
(32)
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and the 2D version of Poisson’s equation is

�∇ · �E = −∇2ϕ = 2πQ δ2(�r ). (33)

Here r0 is an arbitrary scale factor whose value is immaterial since it only shifts
ϕ by a constant.

We now see why the potential energy of interaction among a group of objects
with charge m is

U0 = m2
∑
i<j

(− ln |zi − zj |) . (34)

(Since z = (x+ iy)/� we are using r0 = �.) This explains the first term in eq. (25).
To understand the second term notice that

−∇2 1
4
|z|2 = − 1

�2
= 2πρB (35)

where
ρB ≡ − 1

2π�2
. (36)

Eq. (35) can be interpreted as Poisson’s equation and tells us that 1
4 |z|2 repre-

sents the electrostatic potential of a constant charge density ρB. Thus the second
term in eq. (25) is the energy of charge m objects interacting with this negative
background.

Notice that 2π�2 is precisely the area containing one quantum of flux. Thus
the background charge density is precisely B/Φ0, the density of flux in units of
the flux quantum.

The very long range forces in this fake plasma cost huge (fake) ‘energy’ unless
the plasma is everywhere locally neutral (on length scales larger than the Debye
screening length which in this case is comparable to the particle spacing). In order
to be neutral, the density n of particles must obey

nm + ρB = 0 (37)

⇒ n =
1
m

1
2π�2

(38)

since each particle carries (fake) charge m. For our filled Landau level with m = 1,
this is of course the correct answer for the density since every single-particle state
is occupied and there is one state per quantum of flux.

We again emphasize that the energy of the fake plasma has nothing to do
with the quantum Hamiltonian and the true energy. The plasma analogy is merely
a statement about this particular choice of wave function. It says that the square
of the wave function is very small (because Uclass is large) for configurations in
which the density deviates even a small amount from 1/(2π�2). The electrons can
in principle be found anywhere, but the overwhelming probability is that they are
found in a configuration which is locally random (liquid-like) but with negligible
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density fluctuations on long length scales. We will discuss the nature of the typical
configurations again further below in connection with Fig. (4).

When the fractional quantum Hall effect was discovered, Robert Laughlin
realized that one could write down a many-body variational wave function at
filling factor ν = 1/m by simply taking the mth power of the polynomial that
describes the filled Landau level

fm
N [z] =

N∏
i<j

(zi − zj)m. (39)

In order for this to remain analytic, m must be an integer. To preserve the an-
tisymmetry m must be restricted to the odd integers. In the plasma analogy the
particles now have fake charge m (rather than unity) and the density of electrons
is n = 1

m
1

2π	2 so the Landau level filling factor ν = 1
m = 1

3 , 1
5 , 1

7 , etc. (Later on,
other wave functions were developed to describe more general states in the hier-
archy of rational fractional filling factors at which quantized Hall plateaus were
observed [2, 3, 5, 7, 8].)

The Laughlin wave function naturally builds in good correlations among the
electrons because each particle sees an m-fold zero at the positions of all the
other particles. The wave function vanishes extremely rapidly if any two particles
approach each other, and this helps minimize the expectation value of the Coulomb
energy.

Since the kinetic energy is fixed we need only concern ourselves with the
expectation value of the potential energy for this variational wave function. Despite
the fact that there are no adjustable variational parameters (other than m which
controls the density) the Laughlin wave functions have proven to be very nearly
exact for almost any realistic form of repulsive interaction. To understand how this
can be so, it is instructive to consider a model for which this wave function actually
is the exact ground state. Notice that the form of the wave function guarantees that
every pair of particles has relative angular momentum greater than or equal to m.
One should not make the mistake of thinking that every pair has relative angular
momentum precisely equal to m. This would require the spatial separation between
particles to be very nearly the same for every pair, which is of course impossible.

Suppose that we write the Hamiltonian in terms of the Haldane pseudopo-
tentials

V =
∞∑

m′=0

∑
i<j

vm′ Pm′(ij) (40)

where Pm(ij) is the projection operator which selects out states in which particles
i and j have relative angular momentum m. If Pm′(ij) and Pm′′ (jk) commuted
with each other things would be simple to solve, but this is not the case. However
if we consider the case of a ‘hard-core potential’ defined by vm′ = 0 for m′ ≥ m,
then clearly the mth Laughlin state is an exact, zero energy eigenstate

V ψm[z] = 0. (41)
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Figure 4: Comparison of typical configurations for a completely uncorrelated (Pois-
son) distribution of 1000 particles (left panel) to the distribution given by the
Laughlin wave function for m = 3 (right panel). The latter is a snapshot taken
during a Monte Carlo simulation of the distribution. The Monte Carlo procedure
consists of proposing a random trial move of one of the particles to a new position.
If this move increases the value of |Ψ|2 it is always accepted. If the move decreases
the value of |Ψ|2 by a factor p, then the move is accepted with probability p. After
equilibration of the plasma by a large number of such moves one finds that the
configurations generated are distributed according to |Ψ|2. (After R. B. Laughlin,
Chap. 7 in [2].)

This follows from the fact that

Pm′(ij)ψm = 0 (42)

for any m′ < m since every pair has relative angular momentum of at least m.
Because the relative angular momentum of a pair can change only in discrete

(even integer) units, it turns out that this hard core model has an excitation gap.
For example for m = 3, any excitation out of the Laughlin ground state necessarily
weakens the nearly ideal correlations by forcing at least one pair of particles to
have relative angular momentum 1 instead of 3 (or larger). This costs an excitation
energy of order v1.

This excitation gap is essential to the existence of dissipationless (σxx =
ρxx = 0) current flow. In addition this gap means that the Laughlin state is stable
against perturbations. Thus the difference between the Haldane pseudopotentials
vm for the Coulomb interaction and the pseudopotentials for the hard core model
can be treated as a small perturbation (relative to the excitation gap). Numeri-
cal studies show that for realistic pseudopotentials the overlap between the true
ground state and the Laughlin state is extremely good.

To get a better understanding of the correlations built into the Laughlin wave
function it is useful to consider the snapshot in Fig. (4) which shows a typical
configuration of particles in the Laughlin ground state (obtained from a Monte
Carlo sampling of |ψ|2) compared to a random (Poisson) distribution. Focussing
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first on the large scale features we see that density fluctuations at long wavelengths
are severely suppressed in the Laughlin state. This is easily understood in terms
of the plasma analogy and the desire for local neutrality. A simple estimate for
the density fluctuations ρ
q at wave vector �q can be obtained by noting that the
fake plasma potential energy can be written (ignoring a constant associated with
self-interactions being included)

Uclass =
1

2L2

∑

q �=0

2πm2

q2
ρ
qρ−
q (43)

where L2 is the area of the system and 2π
q2 is the Fourier transform of the logarith-

mic potential (easily derived from ∇2 (− ln (r)) = −2π δ2(�r ) ). At long wavelengths
(q2  n) it is legitimate to treat ρ
q as a collective coordinate of an elastic con-
tinuum. The distribution e−βUclass of these coordinates is a gaussian and so obeys
(taking into account the fact that ρ−
q = (ρ
q)∗)

〈ρ
qρ−
q〉 = L2 q2

4πm
. (44)

We clearly see that the long-range (fake) forces in the (fake) plasma strongly
suppress long wavelength density fluctuations. We will return more to this point
later when we study collective density wave excitations above the Laughlin ground
state.

The density fluctuations on short length scales are best studied in real space.
The radial correlation g(r) function is a convenient object to consider. g(r) tells
us the density at r given that there is a particle at the origin

g(r) =
N(N − 1)

n2Z

∫
d2z3 . . .

∫
d2zN |ψ(0, r, z3, . . . , zN )|2 (45)

where Z ≡ 〈ψ|ψ〉, n is the density (assumed uniform) and the remaining factors
account for all the different pairs of particles that could contribute. The factors of
density are included in the denominator so that limr→∞ g(r) = 1.

Because the m = 1 state is a single Slater determinant g(z) can be computed
exactly

g(z) = 1 − e−
1
2 |z|2 . (46)

Fig. (5) shows numerical estimates of h(r) ≡ 1 − g(r) for the cases m = 3 and 5.
Notice that for the ν = 1/m state g(z) ∼ |z|2m for small distances. Because of
the strong suppression of density fluctuations at long wavelengths, g(z) converges
exponentially rapidly to unity at large distances. For m > 1, g develops oscillations
indicative of solid-like correlations and, the plasma actually freezes2 at m ≈ 65.

2That is, Monte Carlo simulation of |Ψ|2 shows that the particles are most likely to be found
in a crystalline configuration which breaks translation symmetry. Again we emphasize that this
is a statement about the Laughlin variational wave function, not necessarily a statement about
what the electrons actually do. It turns out that for m ≥∼ 7 the Laughlin wave function is no
longer the best variational wave function. One can write down wave functions describing Wigner
crystal states which have lower variational energy than the Laughlin liquid.
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Figure 5: Plot of the two-point correlation function h(r) ≡ 1−g(r) for the Laughlin
plasma with ν−1 = m = 3 (left panel) and m = 5 (right panel). Notice that,
unlike the result for m = 1 given in eq. (46), g(r) exhibits the oscillatory behavior
characteristic of a strongly coupled plasma with short-range solid-like local order.

The Coulomb interaction energy can be expressed in terms of g(z) as3

〈ψ|V |ψ〉
〈ψ|ψ〉 =

nN

2

∫
d2z

e2

ε|z| [g(z) − 1] (47)

where the (−1) term accounts for the neutralizing background and ε is the dielectric
constant of the host semiconductor. We can interpret g(z) − 1 as the density of
the ‘exchange-correlation hole’ surrounding each particle.

The correlation energies per particle for m = 3 and 5 are [14]

1
N

〈ψ3|V |ψ3〉
〈ψ3|ψ3〉

= −0.4100 ± 0.0001 (48)

and
1
N

〈ψ5|V |ψ5〉
〈ψ5|ψ5〉

= −0.3277 ± 0.0002 (49)

in units of e2/ε� which is ≈ 161 K for ε = 12.8 (the value in GaAs), B = 10T. For
the filled Landau level (m = 1) the exchange energy is −

√
π
8 as can be seen from

eqs. (46) and (47).

3 Neutral Collective Excitations

So far we have studied one particular variational wave function and found that it
has good correlations built into it as graphically illustrated in Fig. 4. To further
bolster the case that this wave function captures the physics of the fractional Hall

3This expression assumes a strictly zero thickness electron gas. Otherwise one must replace
e2

ε|z| by e2

ε

∫ +∞
−∞ ds

|F (s)|2√
|z|2+s2

where F is the wavefunction factor describing the quantum well

bound state.
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effect we must now demonstrate that there is finite energy cost to produce excita-
tions above this ground state. In this section we will study the neutral collective
excitations. We will examine the charged excitations in the next section.

It turns out that the neutral excitations are phonon-like excitations similar to
those in solids and in superfluid helium. We can therefore use a simple modification
of Feynman’s ‘single mode approximation’ (SMA) theory of the excitations in
superfluid helium [15,16].

By way of introduction let us start with the simple harmonic oscillator. The
ground state is of the form

ψ0(x) ∼ e−αx2
. (50)

Suppose we did not know the excited state and tried to make a variational ansatz
for it. Normally we think of the variational method as applying only to ground
states. However it is not hard to see that the first excited state energy is given by

ε1 = min
{ 〈ψ|H|ψ〉

〈ψ|ψ〉

}
(51)

provided that we do the minimization over the set of states ψ which are constrained
to be orthogonal to the ground state ψ0. One simple way to produce a variational
state which is automatically orthogonal to the ground state is to change the parity
by multiplying by the first power of the coordinate

ψ1(x) ∼ x e−αx2
. (52)

Variation with respect to α of course leads (in this special case) to the exact first
excited state.

With this background let us now consider the case of phonons in superfluid
4He. Feynman argued that because of the Bose statistics of the particles, there
are no low-lying single-particle excitations. This is in stark contrast to a fermi
gas which has a high density of low-lying excitations around the fermi surface.
Feynman argued that the only low-lying excitations in 4He are collective density
oscillations that are well-described by the following family of variational wave
functions (that has no adjustable parameters) labelled by the wave vector

ψ
k =
1√
N

ρ
k Φ0 (53)

where Φ0 is the exact ground state and

ρ
k ≡
N∑

j=1

e−i
k·
rj (54)

is the Fourier transform of the density. The physical picture behind this is that
at long wavelengths the fluid acts like an elastic continuum and ρ
k can be treated
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Figure 6: (a) Configuration of particles in which the Fourier transform of the
density at wave vector k is non-zero. (b) The Fourier amplitude will have a similar
magnitude for this configuration but a different phase.

as a generalized oscillator normal-mode coordinate. In this sense eq. (53) is then
analogous to eq. (52). To see that ψ
k is orthogonal to the ground state we simply
note that

〈Φ0|ψ
k〉 =
1√
N

〈Φ0|ρ
k|Φ0〉

=
1√
N

∫
d3R e−i
k·
R 〈Φ0|ρ(�r )|Φ0〉. (55)

where

ρ(�r ) ≡
N∑

j=1

δ3(�rj − �R) (56)

is the density operator. If Φ0 describes a translationally invariant liquid ground
state then the Fourier transform of the mean density vanishes for k �= 0.

There are several reasons why ψ
k is a good variational wave function, espe-
cially for small k. First, it contains the ground state as a factor. Hence it contains
all the special correlations built into the ground state to make sure that the par-
ticles avoid close approaches to each other without paying a high price in kinetic
energy. Second, ψ
k builds in the features we expect on physical grounds for a den-
sity wave. To see this, consider evaluating ψ
k for a configuration of the particles
like that shown in Fig. (6a) which has a density modulation at wave vector �k. This
is not a configuration that maximizes |Φ0|2, but as long as the density modulation
is not too large and the particles avoid close approaches, |Φ0|2 will not fall too
far below its maximum value. More importantly, |ρ
k|2 will be much larger than it
would for a more nearly uniform distribution of positions. As a result |ψ
k|2 will
be large and this will be a likely configuration of the particles in the excited state.
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Figure 7: Schematic illustration of the phonon dispersion in superfluid liquid 4He.
For small wave vectors the dispersion is linear, as is expected for a gapless Gold-
stone mode. The roton minimum due to the peak in the static structure factor
occurs at a wave vector k of approximately 20 in units of inverse Å. The roton
energy is approximately 10 in units of Kelvins.

For a configuration like that in Fig. (6b), the phase of ρ
k will shift but |ψ
k|2 will
have the same magnitude. This is analogous to the parity change in the harmonic
oscillator example. Because all different phases of the density wave are equally
likely, ρ
k has a mean density which is uniform (translationally invariant).

This phonon mode should not be confused with the ordinary hydrodynamic
sound mode in classical fluids. The latter occurs in a collision dominated regime
ωτ  1 in which collision-induced pressure provides the restoring force. The
phonon mode described here by ψ
k is a low-lying eigenstate of the quantum Hamil-
tonian.

At larger wave vectors there is a so-called ‘roton minimum’ (see Fig. (7)) in
the dispersion caused by the solid-like oscillations in the radial distribution func-
tion g(r) similar to those shown in Fig. 5 for the Laughlin liquid. This minimum
is in some crude sense a remnant of the zone boundary phonon of the crystal.

As we mentioned previously Feynman argued that in 4He the Bose symmetry
of the wave functions guarantees that unlike in Fermi systems, there is only a single
low-lying mode, namely the phonon density mode. The paucity of low-energy single
particle excitations in boson systems is what helps make them superfluid–there
are no dissipative channels for the current to decay into. Despite the fact that the
quantum Hall system is made up of fermions, the behavior is also reminiscent of
superfluidity since the current flow is dissipationless. Indeed, within the ‘composite
boson’ picture, one views the FQHE ground state as a bose condensate [8, 9, 17].

It turns out that the SMA works extremely well in the FQHE as can be
seen in Fig. (8). Because of the lack of density fluctuations at long wavelengths in
the Laughlin ground state, the system is incompressible leading to a gap in the
collective excitation spectrum at long wavelengths. This is quite different from the
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Figure 8: Comparison of the single mode approximation (SMA) prediction of the
collective mode energy for filling factors ν = 1/3, 1/5, 1/7 (solid lines) with small-
system numerical results for N particles. Crosses indicate the N = 7, ν = 1/3
spherical system, triangles indicate the N = 6, ν = 1/3 hexagonal unit cell system
results of Haldane and Rezayi [18]. Solid dots are for N = 9, ν = 1/3 and N =
7, ν = 1/5 spherical system calculations of Fano et al. [19] Arrows at the top
indicate the magnitude of the reciprocal lattice vector of the Wigner crystal at
the corresponding filling factor. Notice that unlike the phonon collective mode in
superfluid helium shown in Fig. (7), the mode here is gapped.

case of superfluid 4He in which the mode is gapless. However like the case of the
superfluid, this ‘magnetophonon’ mode has a ‘magnetoroton’ minimum at finite
k as illustrated in Fig. (8). The figure also shows results from numerical exact
diagonalization studies which demonstrate that the single mode approximation
is extremely accurate. Note that the magnetoroton minimum occurs close to the
position of the smallest reciprocal lattice vector in the Wigner crystal of the same
density. In the crystal the phonon frequency would go exactly to zero at this point.
(Recall that in a crystal the phonon dispersion curves have the periodicity of the
reciprocal lattice.)

Because the oscillator strength is almost entirely in the cyclotron mode, the
dipole matrix element for coupling the collective excitations to light is very small.
They have however been observed in Raman scattering [20] and found to have an
energy gap in excellent quantitative agreement with the single mode approxima-
tion.

Finally we remark that these collective excitations are characterized by a
well-defined wave vector �k despite the presence of the strong magnetic field. This
is only possible because they are charge neutral which allows one to define a gauge
invariant conserved momentum [21].
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4 Charged Excitations

Except for the fact that they are gapped, the neutral magnetophonon excitations
are closely analogous to the phonon excitations in superfluid 4He. We further
pursue this analogy with a search for the analog of vortices in superfluid films.
A vortex is a topological defect which is the quantum version of the familiar
whirlpool. A reasonably good variational wave function for a vortex in a two-
dimensional film of 4He is

ψ±

R

=

⎧⎨⎩
N∏

j=1

f
(
|�rj − �R|

)
e±iθ(
rj−
R)

⎫⎬⎭Φ0. (57)

Here θ is the azimuthal angle that the particle’s position makes relative to �R, the
location of the vortex center. The function f vanishes as �r approaches �R and goes
to unity far away. The choice of sign in the phase determines whether the vortex
is right or left handed.

The interpretation of this wave function is the following. The vortex is a
topological defect because if any particle is dragged around a closed loop sur-
rounding �R, the phase of the wave function winds by ±2π. This phase gradient
means that current is circulating around the core. Consider a large circle of radius
ξ centered on �R. The phase change of 2π around the circle occurs in a distance 2πξ
so the local gradient seen by every particle is θ̂/ξ. We see that locally the center
of mass momentum has been boosted by ± h̄

ξ θ̂ so that the current density of the
whirlpool falls off inversely with distance from the core.4 Near the core f falls to
zero because of the ‘centrifugal barrier’ associated with this circulation. In a more
accurate variational wave function the core would be treated slightly differently
but the asymptotic large distance behavior would be unchanged.

What is the analog of all this for the lowest Landau level? For ψ+ we see
that every particle has its angular momentum boosted by one unit. In the lowest
Landau level analyticity (in the symmetric gauge) requires us to replace eiθ by
z = x + iy. Thus we are led to the Laughlin ‘quasi-hole’ wave function

ψ+
Z [z] =

N∏
j=1

(zj − Z) ψm[z] (58)

where Z is a complex number denoting the position of the vortex and ψm is the
Laughlin wave function at filling factor ν = 1/m. The corresponding antivortex

4This slow algebraic decay of the current density means that the total kinetic energy of a single
vortex diverges logarithmically with the size of the system. This in turn leads to the Kosterlitz
Thouless phase transition in which pairs of vortices bind together below a critical temperature.
As we will see below there is no corresponding finite temperature transition in a quantum Hall
system.
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(‘quasi-electron’ state) involves z∗j suitably projected into the Hilbert space [11,12]:

ψ−
Z [z] =

N∏
j=1

(
2

∂

∂zj
− Z∗

)
ψm[z] (59)

where as usual the derivatives act only on the polynomial part of ψm. All these
derivatives make ψ− somewhat difficult to work with. We will therefore concentrate
on the quasi-hole state ψ+. The origin of the names quasi-hole and quasi-electron
will become clear shortly.

Unlike the case of a superfluid film, the presence of the vector potential allows
these vortices to cost only a finite energy to produce and hence the electrical dissi-
pation is always finite at any non-zero temperature. There is no finite temperature
transition into a superfluid state as in the Kosterlitz Thouless transition. From a
field theoretic point of view, this is closely analogous to the Higg’s mechanism [17].

Just as in our study of the Laughlin wave function, it is very useful to see
how the plasma analogy works for the quasi-hole state

|ψ+
Z |2 = e−βUclass e−βV (60)

where Uclass is given by eq. (25), β = 2/m as before and

V ≡ m

N∑
j=1

(− ln |zj − Z|) . (61)

Thus we have the classical statistical mechanics of a one-component plasma of
(fake) charge m objects seeing a neutralizing jellium background plus a new po-
tential energy V representing the interaction of these objects with an ‘impurity’
located at Z and having unit charge.

Recall that the chief desire of the plasma is to maintain charge neutrality.
Hence the plasma particles will be repelled from Z. Because the plasma particles
have fake charge m, the screening cloud will have to have a net reduction of 1/m
particles to screen the impurity. But this means that the quasi-hole has fractional
fermion number! The (true) physical charge of the object is a fraction of the
elementary charge

q∗ =
e

m
. (62)

This is very strange! How can we possibly have an elementary excitation
carrying fractional charge in a system made up entirely of electrons? To understand
this let us consider an example of another quantum system that seems to have
fractional charge, but in reality doesn’t. Imagine three protons arranged in an
equilateral triangle as shown in Fig. (9). Let there be one electron in the system.
In the spirit of the tight-binding model we consider only the 1S orbital on each of
the three ‘lattice sites’. The Bloch states are

ψk =
1√
3

3∑
j=1

eikj |j〉 (63)
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1S

1S

1S

Figure 9: Illustration of an electron tunneling among the 1S orbitals of three pro-
tons. The tunneling is exponentially slow for large separations which leads to only
exponentially small lifting of what would otherwise be a three-fold degenerate
ground state.

where |j〉 is the 1S orbital for the jth atom. The equilateral triangle is like a linear
system of length 3 with periodic boundary conditions. Hence the allowed values
of the wavevector are

{
kα = 2π

3 α; α = −1, 0, +1
}
. The energy eigenvalues are

εkα
= −E1S − 2J cos kα (64)

where E1S is the isolated atom energy and −J is the hopping matrix element
related to the orbital overlap and is exponentially small for large separations of
the atoms.

The projection operator that measures whether or not the particle is on site
n is

Pn ≡ |n〉 〈n|. (65)

Its expectation value in any of the three eigenstates is

〈ψkα
|Pn|ψkα

〉 =
1
3
. (66)

This equation simply reflects the fact that as the particle tunnels from site to site
it is equally likely to be found on any site. Hence it will, on average, be found on a
particular site n only 1/3 of the time. The average electron number per site is thus
1/3. This however is a trivial example because the value of the measured charge
is always an integer. Two-thirds of the time we measure zero and one third of the
time we measure unity. This means that the charge fluctuates. One measure of the
fluctuations is √

〈P 2
n〉 − 〈Pn〉2 =

√
1
3
− 1

9
=

√
2

3
, (67)

which shows that the fluctuations are larger than the mean value. This result is
most easily obtained by noting P 2

n = Pn.
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A characteristic feature of this ‘imposter’ fractional charge e
m that guarantees

that it fluctuates is the existence in the spectrum of the Hamiltonian of a set of
m nearly degenerate states. (In our toy example here, m = 3.) The characteristic
time scale for the charge fluctuations is τ ∼ h̄/∆ε where ∆ε is the energy splitting
of the quasi-degenerate manifold of states. In our tight-binding example τ ∼ h̄/J
is the characteristic time it takes an electron to tunnel from the 1S orbital on one
site to the next. As the separation between the sites increases this tunneling time
grows exponentially large and the charge fluctuations become exponentially slow
and thus easy to detect.

In a certain precise sense, the fractional charge of the Laughlin quasiparticles
behaves very differently from this. An electron added at low energies to a ν = 1/3
quantum Hall fluid breaks up into three charge 1/3 Laughlin quasiparticles. These
quasiparticles can move arbitrarily far apart from each other5 and yet no quasi-
degenerate manifold of states appears. The excitation gap to the first excited state
remains finite. The only degeneracy is that associated with the positions of the
quasiparticles. If we imagine that there are three impurity potentials that pin down
the positions of the three quasiparticles, then the state of the system is uniquely
specified. Because there is no quasidegeneracy, we do not have to specify any more
information other than the positions of the quasiparticles. Hence in a deep sense,
they are true elementary particles whose fractional charge is a sharp quantum
observable.

Of course, since the system is made up only of electrons, if we capture the
charges in some region in a box, we will always get an integer number of electrons
inside the box. However in order to close the box we have to locally destroy the
Laughlin state. This will cost (at a minimum) the excitation gap. This may not
seem important since the gap is small — only a few Kelvin or so. But imagine that
the gap were an MeV or a GeV. Then we would have to build a particle accelerator
to ‘close the box’ and probe the fluctuations in the charge. These fluctuations would
be analogous to the ones seen in quantum electrodynamics at energies above 2mec

2

where electron-positron pairs are produced during the measurement of charge form
factors by means of a scattering experiment.

Put another way, the charge of the Laughlin quasiparticle fluctuates but only
at high frequencies ∼ ∆/h̄. If this frequency (which is ∼ 50GHz) is higher than the
frequency response limit of our voltage probes, we will see no charge fluctuations.
We can formalize this by writing a modified projection operator [22] for the charge
on some site n by

P (Ω)
n ≡ PΩ PnPΩ (68)

where Pn = |n〉 〈n| as before and

P (Ω) ≡ θ(Ω − H + E0) (69)

is the operator that projects onto the subset of eigenstates with excitation energies
less than Ω. P

(Ω)
n thus represents a measurement with a high-frequency cutoff built

5Recall that unlike the case of vortices in superfluids, these objects are unconfined.
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in to represent the finite bandwidth of the detector. Returning to our tight-binding
example, consider the situation where J is large enough that the excitation gap
∆ =

(
1 − cos 2π

3

)
J exceeds the cutoff Ω. Then

P (Ω) =
+1∑

α=−1

|ψkα
〉 θ(Ω − εkα

+ εk0) 〈ψkα
|

= |ψk0〉 〈ψk0 | (70)

is simply a projector on the ground state. In this case

P (Ω)
n = |ψk0〉

1
3
〈ψk0 | (71)

and 〈
ψk0

∣∣∣[P (Ω)
n ]2

∣∣∣ψk0

〉
−
〈
ψk0 |P (Ω)

n |ψk0

〉2

= 0. (72)

The charge fluctuations in the ground state are then zero (as measured by the
finite bandwidth detector).

The argument for the Laughlin quasiparticles is similar. We again emphasize
that one can not think of a single charge tunneling among three sites because the
excitation gap remains finite no matter how far apart the quasiparticle sites are
located. This is possible only because it is a correlated many-particle system.

To gain a better understanding of fractional charge it is useful to compare
this situation to that in high energy physics. In that field of study one knows the
physics at low energies — this is just the phenomena of our everyday world. The
goal is to study the high energy (short length scale) limit to see where this low
energy physics comes from. What force laws lead to our world? Probing the proton
with high energy electrons we can temporarily break it up into three fractionally
charged quarks, for example.

Condensed matter physics in a sense does the reverse. We know the phenom-
ena at ‘high’ energies (i.e. room temperature) and we would like to see how the
known dynamics (Coulomb’s law and non-relativistic quantum mechanics) leads
to unknown and surprising collective effects at low temperatures and long length
scales. The analog of the particle accelerator is the dilution refrigerator.

To further understand Laughlin quasiparticles consider the point of view of
‘flatland’ physicists living in the cold, two-dimensional world of a ν = 1/3 quantum
Hall sample. As far as the flatlanders are concerned the ‘vacuum’ (the Laughlin
liquid) is completely inert and featureless. They discover however that the universe
is not completely empty. There are a few elementary particles around, all having
the same charge q. The flatland equivalent of Benjamin Franklin chooses a unit of
charge which not only makes q negative but gives it the fractional value −1/3. For
some reason the Flatlanders go along with this.

Flatland cosmologists theorize that these objects are ‘cosmic strings’, topo-
logical defects left over from the ‘big cool down’ that followed the creation of the
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Φ(t)

E(t)
J(t)

Figure 10: Construction of a Laughlin quasiparticle by adiabatically threading
flux Φ(t) through a point in the sample. Faraday induction gives an azimuthal
electric field E(t) which in turn produces a radial current J(t). For each quantum
of flux added, charge νe flows into (or out of) the region due to the quantized Hall
conductivity νe2/h. A flux tube containing an integer number of flux quanta is
invisible to the particles (since the Aharanov phase shift is an integer multiple of
2π) and so can be removed by a singular gauge transformation.

universe. Flatland experimentalists call for the creation of a national accelera-
tor facility which will reach the unprecedented energy scale of 10 Kelvin. With
great effort and expense this energy scale is reached and the accelerator is used to
smash together three charged particles. To the astonishment of the entire world a
new short-lived particle is temporarily created with the bizarre property of having
integer charge!

There is another way to see that the Laughlin quasiparticles carry fractional
charge which is useful to understand because it shows the deep connection between
the sharp fractional charge and the sharp quantization of the Hall conductivity.
Imagine piercing the sample with an infinitely thin magnetic solenoid as shown
in Fig. (10) and slowly increasing the magnetic flux Φ from 0 to Φ0 = hc

e the
quantum of flux. Because of the existence of a finite excitation gap ∆ the process
is adiabatic and reversible if performed slowly on a time scale long compared to
h̄/∆.
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Faraday’s law tells us that the changing flux induces an electric field obeying∮
Γ

d�r · �E = −1
c

∂Φ
∂t

(73)

where Γ is any contour surrounding the flux tube. Because the electric field contains
only Fourier components at frequencies ω obeying h̄ω < ∆, there is no dissipation
and σxx = σyy = ρxx = ρyy = 0. The electric field induces a current density
obeying

�E = ρxy
�J × ẑ (74)

so that
ρxy

∮
Γ

�J · (ẑ × d�r) = −1
c

dΦ
dt

. (75)

The integral on the LHS represents the total current flowing into the region en-
closed by the contour. Thus the charge inside this region obeys

ρxy
dQ

dt
= −1

c

dΦ
dt

. (76)

After one quantum of flux has been added the final charge is

Q =
1
c

σxyΦ0 =
h

e
σxy. (77)

Thus on the quantized Hall plateau at filling factor ν where σxy = ν e2

h we have
the result

Q = νe. (78)

Reversing the sign of the added flux would reverse the sign of the charge.
The final step in the argument is to note that an infinitesimal tube containing

a quantum of flux is invisible to the particles. This is because the Aharonov-Bohm
phase factor for traveling around the flux tube is unity.

exp
{

i
e

h̄c

∮
Γ

δ �A · d�r
}

= e±2πi = 1. (79)

Here δ �A is the additional vector potential due to the solenoid. Assuming the flux
tube is located at the origin and making the gauge choice

δ �A = Φ0
θ̂

2πr
, (80)

one can see by direct substitution into the Schrödinger equation that the only
effect of the quantized flux tube is to change the phase of the wave function by

ψ → ψ
∏
j

zj

|zj |
= ψ

∏
j

eiθj . (81)
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The removal of a quantized flux tube is thus a ‘singular gauge change’ which has
no physical effect.

Let us reiterate. Adiabatic insertion of a flux quantum changes the state of the
system by pulling in (or pushing out) a (fractionally) quantized amount of charge.
Once the flux tube contains a quantum of flux it effectively becomes invisible to
the electrons and can be removed by means of a singular gauge transformation.

Because the excitation gap is preserved during the adiabatic addition of the
flux, the state of the system is fully specified by the position of the resulting
quasiparticle. As discussed before there are no low-lying quasi-degenerate states.
This version of the argument highlights the essential importance of the fact that
σxx = 0 and σxy is quantized. The existence of the fractionally quantized Hall
transport coefficients guarantees the existence of fractionally charged elementary
excitations

These fractionally charged objects have been observed directly by using an
ultrasensitive electrometer made from a quantum dot [23] and by the reduced shot
noise which they produce when they carry current [24].

Because the Laughlin quasiparticles are discrete objects they cost a non-
zero (but finite) energy to produce. Since they are charged they can be thermally
excited only in neutral pairs. The charge excitation gap is therefore

∆c = ∆+ + ∆− (82)

where ∆± is the vortex/antivortex (quasielectron/quasihole) excitation energy. In
the presence of a transport current these thermally excited charges can move under
the influence of the Hall electric field and dissipate energy. The resulting resistivity
has the Arrhenius form

ρxx ∼ γ
h

e2
e−β∆c/2 (83)

where γ is a dimensionless constant of order unity. Note that the law of mass action
tells us that the activation energy is ∆c/2 not ∆c since the charges are excited in
pairs. There is a close analogy between the dissipation described here and the flux
flow resistance caused by vortices in a superconducting film.

Theoretical estimates of ∆c are in good agreement with experimental values
determined from transport measurements [25]. Typical values of ∆c are only a
few percent of e2/ε� and hence no larger than a few Kelvin. In a superfluid time-
reversal symmetry guarantees that vortices and antivortices have equal energies.
The lack of time reversal symmetry here means that ∆+ and ∆− can be quite
different. Consider for example the hard-core model for which the Laughlin wave
function ψm is an exact zero energy ground state as shown in eq. (41). Equa-
tion (58) shows that the quasihole state contains ψm as a factor and hence is also
an exact zero energy eigenstate for the hard-core interaction. Thus the quasihole
costs zero energy. On the other hand eq. (59) tells us that the derivatives reduce
the degree of homogeneity of the Laughlin polynomial and therefore the energy
of the quasielectron must be non-zero in the hard-core model. At filling factor
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Figure 11: Energy cost for inserting δN electrons into the Laughlin state near filling
factor ν = 1/m. The slope of the line is the chemical potential. Its discontinuity
at ν = 1/m measures the charge excitation gap.

ν = 1/m this asymmetry has no particular significance since the quasiparticles
must be excited in pairs.

Consider now what happens when the magnetic field is increased slightly or
the particle number is decreased slightly so that the filling factor is slightly smaller
than 1/m. The lowest energy way to accommodate this is to inject m quasiholes
into the Laughlin state for each electron that is removed (or for each mΦ0 of flux
that is added). The system energy (ignoring disorder and interactions in the dilute
gas of quasiparticles) is

E+ = Em − δN m∆+ (84)

where Em is the Laughlin ground state energy and −δN is the number of added
holes. Conversely for filling factors slightly greater than 1/m the energy is (with
+δN being the number of added electrons)

E− = Em + δN m∆−. (85)

This is illustrated in Fig. (11). The slope of the lines in the figure determines the
chemical potential

µ± =
∂E±
∂δN

= ∓m∆±. (86)

The chemical potential suffers a jump discontinuity of m(∆++∆−) = m∆c just at
filling factor µ = 1/m. This jump in the chemical potential is the signature of the
charge excitation gap just as it is in a semiconductor or insulator. Notice that this
form of the energy is very reminiscent of the energy of a type-II superconductor
as a function of the applied magnetic field (which induces vortices and therefore
has an energy cost ∆E ∼ |B|).

Recall that in order to have a quantized Hall plateau of finite width it is
necessary to have disorder present. For the integer case we found that disorder
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localizes the excess electrons allowing the transport coefficients to not change
with the filling factor. Here it is the fractionally-charged quasiparticles that are
localized by the disorder.6 Just as in the integer case the disorder may fill in the
gap in the density of states but the DC value of σxx can remain zero because of
the localization. Thus the fractional plateaus can have finite width.

If the density of quasiparticles becomes too high they may delocalize and con-
dense into a correlated Laughlin state of their own. This gives rise to a hierarchical
family of Hall plateaus at rational fractional filling factors ν = p/q (generically
with q odd due to the Pauli principle). There are several different but entirely
equivalent ways of constructing and viewing this hierarchy which we will not delve
into here [2, 3, 5].

5 Summary

In these notes I have discussed the Laughlin ground state and the basic facts
of the neutral and charged collective excitations above it. These topics barely
scratch the surface of the rich phenomenology of two-dimensional electron gases in
the quantum Hall regime. The reader interested in further details about fractional
statistics, edge states, Chern-Simons field theories, bilayer quantum Hall systems,
quantum Hall ferromagnets and other more advanced topics is directed to the
various reviews that are available. [2–11]
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Tunneling Experiments in
the Fractional Quantum Hall Effect Regime

D. Christian Glattli

Abstract. The Fractional Quantum Hall effect provides a unique example of a quan-
tum system with fractional quantum numbers. We review the tunneling experiments
which have brought into evidence the fractionally charged excitations, the fractional
occupation of the quantum states and the non-linear quantum transport related to
the chiral Luttinger liquids properties.

1 Introduction

The quantum Hall effect is one of the most remarkable macroscopic manifestation
of quantum mechanics in condensed matter after superconductivity and superflu-
idity. The phenomenon is observed in a two-dimensional electrons gas (2DEG) at
low temperature in a high perpendicular magnetic field. Landau Levels (LL) form
due to cyclotron motion quantization in 2D and are highly degenerate. However,
the degeneracy can be lifted by the interactions. The system can be viewed as a
flat macroscopic atom made of 109 electrons. As for atoms or nuclei, particular
values of the filling of the electronic states lead to more stable ground states with
large energy gap for the excitations. The equivalent of magic atomic quantum num-
bers are integer or fractional values of the filling factor ν = p/q of the electronic
quantum states (p and q integers). The filling factor, is given by the ratio of the
electron density ns to the density nφ = B/φ0 of flux quantum φ0 = h/e. It can be
varied either by sweeping the magnetic field or by changing the electron density.
The magic values of ν are experimentally revealed by plateaus in the Hall resis-
tance q

p
h
e2 . The Integer Quantum Hall Effect, discovered by Klitzing [1], occurs

when ν = p (q = 1) when there is a complete filling of the degenerate LLs. The
Fractional Quantum Hall Effect [2, 3] occurs at ν = p/q (q = 2s + 1, s integer).
The underlying physics is the Coulomb interaction which lifts the LL degeneracy
to form new correlated quantum liquids with energy gap and with topological
excitations having a fractional charge e/(2s + 1).

The Quantum Hall effect, and in particular the Fractional Quantum Hall ef-
fect [4], have completely renewed our knowledge of quantum excitations. Topologi-
cal fractionally charged excitations [3], with anyonic or exclusonic fractional quan-
tum statistics [5], composite fermions [6] or composite bosons [7], skyrmions [8, 9],
etc., . . . are the natural elementary excitations required to understand the quan-
tum Hall effect. The quantum Hall effect have made real some concepts invented
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for the purpose of particle physics theories or used in mathematical physics for
quantum integrable systems [10]. It is remarkable that Coulomb interaction and
Fermi statistics, the simplest ingredients one can imagine, are responsible for a so
rich physics. No interaction with the host material is needed as in the case of su-
perconductivity. For macroscopic samples, however, a little amount of disorder is
required to localize the topological excitations and thus to allow observation of Hall
resistance quantization over a finite range of magnetic field (the Hall plateaus). It
is a rare example where imperfections help to reveal a fundamental quantum effect.
For narrow mesoscopic samples, disorder is to be avoid, and the QHE is revealed
by the integer or fractional conductance quantization associated with the forma-
tion of chiral one dimensional edge modes. The properties of chiral edge modes
are deeply related to the bulk properties of the Quantum Hall electron fluid.

I will focus here on tunneling experiments which allow for probing the frac-
tional excitations and the fractional filling of the states. More general reviews on
the quantum Hall effect can be found for example in Refs [11, 12, 9]. In these
tunneling experiments, the charge transfer occurs between gapless chiral modes,
called edge channels, which form at the periphery of a QHE fluid. Indeed, as the
longitudinal conductance in the bulk vanishes, only these modes can generate a
current in response to a potential drop. The edge channels can be easily connected
to metallic contacts arranged at the periphery of the sample and then to an exter-
nal circuit. In the IQHE they can be considered as good realization of 1D metals
with the remarkable property that backscattering is suppressed by chirality. In
the FQHE regime, they inherit from the bulk several non-trivial properties. First,
they are no longer Fermi liquids. Their quantum dynamics is very similar to that of
Tomonaga-Luttinger liquids predicted for 1D interacting electrons. The relevant
excitations which propagate the charge information is no longer the fermionic
Landau quasiparticle (the screened electron) but bosonic collective neutral modes
(plasmons) instead. A remarkable consequence is the power law vanishing tun-
neling density of state (TDOS) at the Fermi energy. Indeed, an electron locally
injected from an external contact into an FQH edge must excite many of these
collective modes. If injected at the Fermi sea, no mode can be excited, and the
tunneling rate vanishes (orthogonality catastrophy). A second non-trivial property
inherited from the bulk is the possibility to extract from the edge a fractionally
charged e/(2s + 1) quasiparticle for ν = p/(2s + 1). Such quasiparticle tunnel-
ing between fractional edges is only observable when tunneling through the bulk
FQHE liquid. An additional requirement due to the Luttinger liquid physics is
a large bias voltage applied between the edges. Otherwise, at low voltage (and
low temperature) near equilibrium, only integer charge is observed in experiments
(the Luttinger liquid properties of the edges forces the quasiparticles to ‘bunch’ to
form ordinary electrons). The detection of the fractionally charged quasiparticles
have been made possible by the current noise generally associated with tunneling
and called shot noise. This became recently possible thanks to the development of
very sensitive current noise measurements in mesoscopic physics. For weak tunnel
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current, the temporal statistics of charge transfer is Poissonian, and the current
noise is a direct measure of the charge carrier. The fractional quantum Hall effect
is the first, and until now unique, example of a system with fractionally charged
carriers. Also using shot noise, it has been also possible to follow the cross over
from fractional to integer charges when reducing the bias voltage. At equilibrium,
voltage lower than kBT the resonant tunneling of electrons between edge states
can be used to probe the fraction of charge associated with the addition of a single
flux quantum in the ground state using conductance measurement. The charge
accumulated on a micrometer edge state ring is shown to vary by fractional incre-
ments with flux either by changing the magnetic field or by varying the size of the
ring with a gate. This demonstrates that individual quantum sates participating
to the formation of the collective ground state are actually filled by a fraction
of electron. This is this fractional occupation which is responsible for the exact
fractional quantization of the conductance.

The notes are organized as follows. Section II will describe the chiral edge
one-dimensional modes which form in a finite 2D electron gas in perpendicular
magnetic field. In section III, the chiral Luttinger liquid physics is presented. Tun-
neling experiments revealing the anomalous power law density of states will be
reviewed. In section IV, non equilibrium experiments probing the charge carrier
by measuring the shot noise of the current will be described. In V we will show
how equilibrium resonant tunneling experiments can probe the fraction of charge
which fills individual states participating to the ground state.

2 Tunneling in the Quantum Hall regime

2.1 Edge states in the integer quantum Hall regime

The kinetic energy K = (p−qA)2

2m∗ , q = −e, of an electron moving freely in the plane
perpendicular to a magnetic field B = Bẑ is quantized into Landau levels:

En = (n +
1
2
)�ωc (1)

( ωc = eB/m∗: cyclotron pulsation). This reflects the quantization of the cyclotron
motion. As the energy depends on a single quantum number n while there are two
degrees of freedom, there is a high degeneracy. The degeneracy comes from the
freedom to choose the center of cyclotron orbits and is equal to the number NΦ =
nΦS = eBS/h of magnetic flux quanta Φ0 = h/e in the plane. To see this, one can
replace the conjugate pairs of electron coordinates [x, px] and [y, py] by a new set
of conjugate pairs, see Fig.1, using the cylindrical gauge A = (−By/2, Bx/2, 0):

[ξ, η] = [vy/ωc,−vx/ωc] = −i�/eB (2)
[X, Y ] = i�/eB (3)
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Figure 1: Left: decomposition of the electron coordinates (x, y) into cyclotron orbit
coordinates (ξ, η) and the coordinates of the obit center (X, Y ). Right: energy
Landau levels formed by quantization of the cyclotron orbits

with
(x, y) = (X + ξ, Y + η) . (4)

The Hamiltonian now writes H = 1
2mω2

c (ξ2 + η2), so the first pair of conjugate
coordinates represents the fast cyclotron motion. For an eigenstate |n〉 of H, the
cyclotron radius is:

rn = 〈n| ξ2 + η2 |n〉1/2 = (n +
1
2
)1/2lc. (5)

It increases with the orbital Landau level index n. The characteristic length lc =
(�/eB)1/2 is called the magnetic length. H does not depend on the second pair
of coordinates R = (X, Y ) , the center around which electrons perform cyclotron
orbits. However, orbit center positions can not be chosen completely freely in
the plane as announced above. The commutation relation [X, Y ] = i�/eB put
restrictions on the number of possible distinct states. There is a finite degeneracy
which is easy to estimate using the following analogy. The plane is similar to
the semi-classical phase space (P, Q) of a one-dimensional system for which it is
known that the effective area occupied by a quantum state is h as [Q, P ] = i� .
Similarly, the area occupied by a quantum Hall state is h/eB, the area of a flux
quantum. The degeneracy per unit area is thus nΦ, the density of flux quanta; it
is the same for all Landau levels. The semiclassical analogy will be usefull to get
intuition about the one-dimensional character of the dynamics of electrons in two
dimensions contrained to stay in a given Landau Level.

2.1.1 Edge states

In real sample of finite size, the 2DEG is bounded thanks to a permanent electric
field directed perpendicular and toward the perimeter. The confining electric field
compensates the long range Coulomb electronic repulsion and prevents electrons
to escape from the area. It can be provided by ionized donor atoms in the host
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semiconductor lattice and uniformly distributed inside the region filled by elec-
trons. Alternatively, an extra confinement can be provided by a gate negatively
polarized with respect to the electrons and placed close and outside the electron
area.

The Hamiltonian in presence of a potential U(x, y):

H =
(p + eA)2

2m∗ + U(x, y) (6)

can be simplified if the potential is smooth over the length lc and lc |∇U |  �ωc.
The mixing between Landau Levels can be neglected and H 
∑

n |n〉Hn 〈n|. The
dynamics of electrons within the nth Landau level is described by the projected
Hamiltonian:

Hn = (n + 1/2)�ωc + U (n)(X, Y ) (7)

where U (n)(X, Y ) = 〈n|U(x, y) |n〉 
 U(X, Y ) is the confining potential averaged
over the fast cyclotron motion. If the electric field due to confinement is along
the ŷ direction, electrons drift along the boundary, the x̂ direction, with velocity
dX
dt = (1/eB)∂U/∂Y . The Lorentz force compensates the electrostatic field, a
direct consequence of the quantization of the velocity modulus ( d

dt (p−(−e)A)2 =
0 ). In the bulk, U 
 0, the drift velocity is zero. Electrons do not move on average
although performing fast cyclotron motion.

2.1.2 Edge channels

At zero temperature, electrons fill the Landau level up to a Fermi Energy EF .
The Fermi energy, here measured from the zero of kinetic energy, is defined by
the exchange of electrons with a reservoir (practically: a contact somewhere on
the edges). Here we disregard spin for simplicity and assume U translationally
invariant along x̂ and vanishing in the bulk.

In the bulk, when (p − 1
2 )�ωc < EF < (p + 1

2 )�ωc electrons fill all the bulk
states of the first p (integer) Landau Levels according to Fermi statistics. The
filling factor is ν = p. There is a gap �ωc for creating internal excitations which
leads to vanishing longitudinal conduction in the bulk. There is also an energy
cost EF − (n + 1/2)�ωc to extract an electron from the nth Landau Level to the
Fermi energy.

Toward edges, Landau levels are adiabatically bend by the potential U(Y )
and depopulate when crossing the Fermi energy, see Fig.2(a) and (b). For the nth

LL this occurs at Y = YF,n, when the energy cost EF − (n + 1/2)�ωc − U(YF,n)
vanishes. This defines p lines along the edge with gapless excitations. This lines of
gapless excitations restore conduction.

The one dimensional chiral conduction modes so formed are called edge chan-
nels. They can be connected to external contacts fixing their Fermi energy. The
drift of electrons along the equipotential lines generated by the confining potential
gives rise to a persistent chiral current . When the Fermi energy rises from EF
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Figure 2: Left: (a) Schematic representation of edge states and of (b) the Landau
level bending. (c) reflection of an edge state by a controlled artificial impurity
called Quantum Point Contact. (d) analogy with 1D semiclassical trajectories in
the phase space.

to EF + eV , each mode contribute to increase the persistent chiral current by an
equal contribution: ∆I = e

∫ YF,n(EF +eV )

YF,n(EF )
dy.nΦ(1/eB)∂U/∂Y = e2

h V . Thus each
edge channel is associated with a conductance equal to the quantum of conduc-
tance e2

h . This result can be equally viewed as a special case of the Landauer
formula (which is valid in the more general case of quantum conductors, even in
zero magnetic field) or as the quantization of Hall conductance. Landauer formula
and quantized Hall conductance are direct consequence of the Pauli principle: the
filling factor of quantum states is one.

2.1.3 Tunneling between edge channels

Edge channels are ideal one dimensional (chiral) conductors: the physical separa-
tion between pairs of opposite edge channels prevents backscattering and elec-
trons propagate elastically over huge distances (∼mm at low temperature) as
phonon scattering is reduced. These properties have made them a convenient tool
to test the generalization of the Landauer formula: the Landauer-Büttiker relations
[13, 14] derived in the context of the mesoscopic quantum transport. In order to do
that it is necessary to induce intentionally elastic backscattering in a controllable
way.
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The tool used is a Quantum Point Contact (QPC) as shown in Fig.2(c). A
negative potential applied on a metallic gate evaporated on top of the sample
depletes electrons to realize a narrow constriction in the 2DEG. This allows a
controllable modification of the boundaries of the sample. The separation between
opposite pairs of edges channels of a given Landau level can be made so small
that the overlap between wavefunctions lead to backscattering from one edge to
the other. The QPC creates a saddle shape potential. When the potential at the
saddle point is close but below the value EF − (n + 1

2 )�ωc, electrons emitted
from the upper left edge channel start to be reflected into the lower edge channel
with probability R  1 while they are still mostly transmitted with probability
T = 1 − R. When the saddle point potential is above UF,n electrons are mostly
reflected and rarely transmitted T  1 and the reflection quickly reaches R � 1.

For getting better intuition on edge channel tunneling, Fig.2(d) shows the
semi classical analogy between the real space coordinates (Y, X) of the 2D Hall
conductor and the (P, Q) phase space coordinate of a real 1D conductor. The
physics of tunneling between opposite edge channels is clearly equivalent to that
of the tunneling in a 1D system. However the chirality allows us to inject or detect
electrons at the four corners of the phase space, something impossible with 1D
systems.

Measuring the conductance is a good tool to know how many edge channels
are transmitted. According to the Landauer formula, the conductance G is defined
as the ratio of the current I through the QPC to the voltage difference V between
the upper left and lower right contacts.

G =
e2

h
(p − 1 + T ) (8)

if there are p−1 channels transmitted while the pth channel is partially transmitted
with transmission T .

Figure 3 shows the reflection of edge channels starting from ν = 8 in the bulk.
One starts with 8 channels transmitted and when applying negative voltage on the
gate the successive reflection 6 edge channels is observed by quantized plateaux in
the resistance (here, the ”access” resistance h/8e2 has been subtracted).

All this can be transposed to the fractional quantum Hall effect regime.

2.2 Edge states in the fractional quantum Hall regime

We will assume a spin polarized system and the first orbital Landau level partially
filled: ns < nΦ or ν < 1. Before describing fractional edge states, we will briefly
present some general characteristics of the Fractional Quantum Hall effect.

Because of Landau level degeneracy, at partial filling there is a large freedom
to occupy the quantum states, i.e. to fill the plane with electrons. However elec-
trons interact and the Coulomb repulsion will reduce our freedom to distribute
electrons in the plane. Let us first consider the limit of infinite magnetic field
when the filling factor goes to zero. The Gaussian wavefunctions describing the
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Figure 3: resistance of the QPC versus the QPC gate voltage showing the reflection
of the six first edge states for ν = 8, at T=45mK. The values of νG are indicated
on the resistance plateaus. The resistance for ν = 8 has been subtracted.

cyclotron motion shrink to zero. Electrons being like point charges behave clas-
sically (no overlap between quantum states) and minimize their energy to form
a crystalline state (analogous to the electron crystal observed in dilute classical
2D electron systems in zero field ). The Landau level degeneracy is broken and a
unique ground state is formed. In the present case, weaker magnetic field, i.e. ν not
too small, the wavefunctions overlap. Electrons can not be localized to a lattice
but instead will form a correlated quantum liquid. For some magic filling factors,
interactions will break efficiently the Landau level degeneracy to form a unique
collective wavefunction minimizing the energy. The magic filling factors are found
to be odd denominator fractions: ν = 1/3,1/5, 2/3, 2/5, 3/5, 2/7, . . . [15].

2.2.1 The Laughlin states

The ground state separated from a continuum of excitations by a gap ∆ is described
by a unique collective wavefunction. For ν = 1/(2s + 1), s integer, Laughlin pro-
posed a trial wavefunction for the ground state which was found very accurate.
The wavefunction is built from single particle states in the cylindrical vector po-
tential gauge. Using a representation of electron coordinates as z = x + iy in unit
of magnetic length lc, the single particle states in the first Landau level are:

ϕm =
1√

2π2mm!
zm exp(− |z|2). (9)
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It is instructive to look first at the Slater determinant of electrons at filling fac-
tor 1 which is a Vandermonde determinant. Its factorization gives the following
wavefunction, up to a normalization constant:

Ψ1 =
∏

i<j≤N

(zi − zj) exp(−
∑

i=1,N

|zi|2). (10)

The polynomial part ensures a uniform distribution of electrons in the plane with
one state, or equivalently one flux quantum, per electron on average. The zeros at
zi = zj reflects the Pauli principle and their multiplicity 1, the Fermi statistics.
At filling factor 1/(2s + 1) the polynomial for each zi should be of degree of
(2s+1)(N−1) such that all electrons are also uniformly distributed on the (2s+1)N
states available. A uniform distribution of electrons in the plane requires a very
symmetrical polynomial. Also Laughlin proposed the simple polynomial form [3]:

Ψ1/2s+1 =
∏

i<j≤N

(zi − zj)2s+1 exp(−
∑

i=1,N

|zi|2). (11)

The correlation energy is efficiently minimized by the multiplicity 2s + 1 of the
zeros which ensures that electrons keep away from each other. By exchanging two
electrons the wavefunction is multiplied by (−1)(2s+1) = −1. The requirement that
electrons must obey Fermi statistics is satisfied. But there is more: the extra factor
(−1)2s expresses the fact that moving two electrons around each other adds an
extra phase. This phase can be viewed as the Aharanov-Bohm flux of two fictive
flux quanta bound to each electron. This is at the origin of the composite Fermion
picture mentioned below which allows to generate more complex fractions. One
can also say that electrons obey a super exclusion principle where each particle
occupies 2s+1 quantum sates (i.e. the area of 2s+1 flux quanta) so minimizing the
interaction (there are deep connections with the concepts of exclusonic statistics
and anyonic statistics [5]).

One can show that the excitations above the ground state present a gap.
The meaning of the excitations is particularly clear in the case of the best known
state occurring at ν = 1/3. The ground state corresponds to uniform distribu-
tion of electrons, one electron per area occupied by three flux quanta. The unique
wavefunction cannot be continuously deformed and the only way to decrease the
density is to empty a single particle quantum state, i.e. to create a hole having the
area occupied by a single flux quanta, see Fig. 4. This can be realized by multi-
plying the Laughlin wavefunction by

∏
i=1,N (zi − zh) where zh is the position of

the hole. The so called quasi-hole carry a charge e∗ = −e/3. The energy cost ∆h

can be obtained by estimating the energy required to create a disc of size Φ0/B
and charge e/3: (4

√
2/3π)(e/3)2/4πεε0lc. Similarly quasi-electron excitations with

charge e/3 are possible and correspond to removing a flux quantum to locally in-
crease the electronic density with an energy ∆e. Quasi-electron or hole excitations
with charge ±e/q can be generalized for other filling factor ν = p/q with q odd.
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Figure 4: The introduction of an extra flux quantum in a QHE fluid leaves a hole
in the collective wavefunction. In the IQHE the associated charge is e while in
FQHE is it e/3 for ν = 1/3

The excitation gap for quasi-electron quasi-hole pairs has been numerically esti-
mated and calculations agree with a value ∆ 
 0.092e2/4πεε0lc for q = 3. It does
not depend on p (as far as spin polarized electrons are considered).

An interesting theoretical issue is the statistics associated with the excita-
tions. It can be shown that when moving adiabatically two quasi-holes around
each other and exchanging their positions, the collective wavefunction picks up a
Berry’s phase factor exp(iπ/(2s+1)). The excitations are not bosons nor fermions
but obey a so-called anyonic statistics, a concept first introduced by Wilzeck in
the context of particle physics.

2.2.2 Composite Fermions

Following the work of Jain [6], a hierarchy of the fractional filling factors can be
made using the concept of Composite Fermions as a guide. This hierarchy followed
more pioneering work made by Halperin [17] using a different approach to built
higher order fractions from the basic 1/(2s + 1) states. The concept is based on
statistical transmutation of electrons in 2D (or 1D). Topological considerations
show that purely 2D particles are not necessarily bosons or fermions but may
have any intermediate statistics (an example is the Laughlin quasi-particles). For
the same reason, it is easy to “manipulate” the statistics of 3D particles such as
electrons which are Fermions provided they are forced to live in 2D (or 1D). This
can be done by attaching an integer number of fictive flux quanta to each electron.
The price to pay is a redefinition of the wavefunction and of the Hamiltonian.
An even number of flux quanta will transform Fermions into Fermions while
an odd number will transmute Fermions into Bosons. In the first case we have
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Composite Fermions (CF) while in the second case Composite Bosons (CB). Both
approaches have been used in the FQHE context. Both have their own merit and a
bridge between them is possible. CF are believed to be appropriate for high order
fractions and to describe the remarkable non Quantum Hall electronic state found
at ν = 1/2. CB make an interesting correspondence between the ν = 1/2s + 1
states and superfluidity [7].

By attaching 2s flux quanta to each electron with a sign opposite to the
external magnetic field flux, the resulting CF experience a reduced mean field. A
mapping can then be done between FQHE states and IQHE states. As an example,
for s = 1, the mean field attached to the “new electrons”, the composite Fermions,
is equivalent and opposite to the magnetic field B1/2 at ν = 1/2 [18]. The field
experienced by the CF is thus BCF = B − B1/2. A filling factor ν = 1/3 for
electrons corresponds to a CF filling factor νCF = 1. Similarly ν = p/(2p + 1)
becomes νCF = p. This describes a series of fractions observed between 1/2 and
1/3. For fields lower than B1/2, ν = p/(2p − 1) also becomes νCF = (−)p and
this describes fractions from 1 to 1/2. In general attaching 2s flux quanta to
electrons describe the fractions ν = p/(p.2s ± 1). The following table shows the
correspondence for 2s = 2:

ν 1/3 2/5 3/7 . . . 1/2 . . . 3/5 2/3 1
νCF 1 2 3 . . . ∞ . . . 3 2 1

The composite fermion picture is supported by experimental observations.
The symmetric variations of the Shubnikov-de Has oscillations around B1/2 are
very similar to that observed around B = 0. We should emphasize that this is not
a real cancellation of the external field, as the Meissner effect in superconductivity
is, but the phenomenon is a pure orbital effect due to the 2s flux attachment.
Convincing experiments have shown that the quasiparticles at ν 
 1/2 behave
very similarly to the quasiparticles at zero field ([19]; see also [20]).

The composite fermion picture can be used as a guide to understand multiple
fractional edge channels.

2.2.3 Fractional edge channels

The picture of edge channels can be extended to the fractional case. Now the
gap �ωc has to be replaced by the gap ∆e + ∆h of the FQHE. Lets consider
for example a filling factor ν = p/(2p + 1) in the bulk, i.e. p composite fermion
Landau levels filled. Using this correspondence, the formation of fractional edge
channels is equivalent to that described previously for the integer Quantum Hall
effect. Moving from the bulk to the edge, each time a CF landau level crosses the
Fermi energy a line of gapless excitation is built. These defines p chiral fractional
edge channels (the last one corresponding to the 1/3 edge channel).

The CF approach for edge channels is convenient for pedagogical presentation
and gives certainly a fair qualitative representation, but is certainly not complete.
Including screening of the external potential in a Thomas Fermi approach is a first
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Figure 5: Fractional edge channel reflection observed for ν = 2/3. The longitudi-
nal resistance quantization indicates νG = 2/5 and 1/3 fractional channels. The
resistance for ν = 2/3 has been subtracted.

step to improve quantitatively the description [21] but this does not change qualita-
tively the overall picture. A important physics not included in this approach is the
Luttinger liquid properties described below: it changes the transport properties.
The hierarchy of fractional edge channels which can be derived in the Luttinger
liquid approach coincide with that of the CF approach.

Experimentally, the existence of fractional edge channels can be probed in
transport experiments using the reflection induced by a QPCs in a manner similar
to the integer case. This is shown in Fig.5. Here the filling factor in the leads is ν =
2/3 and the access resistance 3h/2e2 has been subtracted. The plateaus associated
with the refection of the 2/5 and 1/3 edge channels are clearly observable.

The picture described here is expected to apply to smooth edges, as it is
the case in ordinary samples. Another approach has been proposed for hard wall
confinement in Ref.[22].

2.3 Fractional Edge Channels as Luttinger liquids

The tunnel transfer of an electron from a metallic contact to a ν = 1/3 FQH
liquid involves the transformation of an electron into three quasiparticles. The
number of possibilities to choose 3 quasiparticles in the range eV and satisfying
the energy conservation required for elastic tunneling increases rapidly with V , this
immediately implies that the tunneling I-V characteristics should be non-linear.
So, the fractional edge states should not behave has an ordinary Fermi liquid for
which linear conduction is expected. On a different approach, a similar conclusion
is obtained in the Luttinger liquid description which uses bosonic collective charge
mode on the fractional edge. This is what we will describe below.
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2.3.1 Hydrodynamical approach of fractional edge states

X.G. Wen [23] has first shown the deep connection between fractional edge chan-
nels and the concept of Tomonaga-Luttinger liquids[24, 25] . We will here repeat
the phenomenological hydrodynamical approach of Wen in the simple case of a
Laughlin state in the bulk, filling factor ν = 1/2s+1. We will start with a classical
approach and keep only incompressibility as a quantum ingredient.

The only possible excitations are periphery deformations of the 2D quantum
Hall conductor which preserves the total area (like a 2D droplet of an ordinary
liquid). This is shown schematically in Fig.6 . If we denote y(X, t) the deformation
of the boundary located at position Y = YF , the time varying electron density is
given by:

n(X, Y, t) = nsΘ(Y − YF − y(X, t)) (12)

where ns = νeB/h and Θ(x) is the Heaviside function. We wish to find the
equations of motion for y. To do that we have to remind that, within the first
Landau level, the single particle motion is given by the reduced Hamiltonian
H1 = 1

2�ωc + U(Y ) and the coordinates X and Y are conjugate with Pois-
son’s bracket {X, Y } = 1/eB. Using the equation of motion for the 2D density:
∂n/∂t + {H1, n} = 0 we get the equation describing the chiral propagation of the
shape deformations y at Y = YF :

∂y/∂t + vD∂y/∂X = 0 (13)

where vD = 1
eB |∂U/∂Y �Y =YF

| is the drift velocity.
The potential energy associated with the deformation is

U =
1
2

∫
dXnsy

2 ∂U

∂Y
=

�vD

νπ

∫
dX (πnsy)2 . (14)

If we define φ̃ the charge variation integrated on the upper edge in units of
π as follows:

φ̃ = π

∫ X

−∞
nsydX

and the excess charge density (per unit length) ρ̃ by:

ρ̃ =
1
π

∂φ̃

∂X
(15)

we get the action:

S = − �

πν

∫
dXdt

∂φ̃

∂X

(
∂φ̃

∂t
+ vD

∂φ̃

∂X

)
(16)

and the Hamiltonian is H = U :

H = ∂φ̃∂X
)2

(17)

=
hvD

2ν

∫
dX (ρ̃)2 . (18)
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Figure 6: Wen’s approach for the Chiral Luttinger liquid picture of a fractional
edge channel at ν = 1(2s + 1). The incompressibility of the FQHE fluid allows
only periphery deformations y(X, t) propagating at the drift velocity.

So far the model is purely classical. By defining the conjugate of φ̃ as π̃ =
− �

πν ∂φ̃/∂X and we can quantize the fields using:[
π̃(X), φ̃(X ′)

]
= i�δ (X − X ′) (19)

At first sight, the dynamic of the bosonic modes describing the periphery
deformations seems not contain more physics than that of phonons or photons.
The non trivial physics arises when adding from outside an electron to the edge
or removing a Laughlin quasiparticle to transfer it to the opposite edge, as it
is the case in tunneling experiments. Such operation involves an infinite number
of bosonic modes. This is at the origin of strong non-linearities in the transport
properties, a property not shared by ordinary Fermi liquids.

By definition, the creation operator ψ† for one electron on the upper edge
satisfies: [

ρ̃(X), ψ†(X ′)
]

= δ(X − X ′)ψ†(X ′). (20)

On the other hand, the 1D excess density ρ̃ is related to the conjugate of φ̃ by
π̃ = −�

v ρ̃ and we have [
ρ̃(X), φ̃(X ′)

]
= −iν�δ (X − X ′) (21)

which immediately implies
ψ† ∝ exp(iφ̃/ν). (22)
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ψ† creates a unit charge at X but it is not an electron operator unless it satisfies
Fermi statistics. Exchanging two electrons at position X and X ′ gives ψ†(X ′)ψ†

(X) = exp(−iπ
ν sgn(X − X ′))ψ†(X)ψ†(X ′). The requirement that the bare parti-

cles are Fermions implies
ν = 1/(2s + 1). (23)

The beauty of Wen’s hydrodynamical approach is that the series Laughlin
filling factors appear 1/(2s + 1) naturally as a consequence of incompressibility
and Fermi statistics.

To obtain more fractional filling factors, one must introduce additional
bosonic modes at the periphery (for example: p modes for p/(2ps + 1) which is
consistent with the composite fermion approach.

Finally, one can define similarly the quasiparticle operator which creates a
charge 1/(2s + 1) on the edge:[

ρ̃(X), ψ†
qp(X

′)
]

= νδ(X − X ′)ψ†
qp(X

′) (24)

which writes as
ψ†

qp ∝ exp(iφ̃). (25)

It shows fractional statistics ψ†
qp(X ′)ψ†

qp(X) = e(−iπνsgn(X−X′))ψ†
qp(X)ψ†

qp(X ′) as
do a Laughlin quasiparticle.

The above set of equations for the electron operator ψ† and for the bosonic
modes are characteristics of those of a Luttinger liquid. Because of the direction
of propagation imposed by the magnetic field (no counter propagating mode on
the same edge) it is called a Chiral Luttinger Liquid. The conductance νe2/h
correspond to the conductance ge2/h of a Luttinger Liquid and one usually iden-
tifies g = ν. As for Luttinger liquids there is an algebraic decay of the correlation
functions.

We have
〈
φ̃(X, t)φ̃(0, 0)

〉
= 〈0| eiHtφ̃(X)e−iHtφ̃(0) |0〉 = const.− ν ln(X −

vDt) and the time ordered single-particle Green’s function: 〈0|T
{
ψ†(X, t)ψ(0, 0)

}
|

0〉 = exp
(

1
ν2

〈
φ̃(X, t)φ̃(0, 0)

〉)
decreases as (X − vDt)−1/ν . For 1/3 one see that

this is the product of 3 Green’s functions, reminiscent from the fact that an electron
has to fill 3 states (or excite 3 quasiparticles). This gives a Tunneling Density of
State (TDOS) for electrons injected at energy ε above the Fermi energy EF which
decreases as ∼ |ε − EF |(1/ν−1). This implies that, for electrons tunneling between
a Fermi liquid and a chiral Luttinger fractional edge channel, the finite tempera-
ture tunnel conductance G(T ) and the zero temperature differential conductance
dI/dV show the following power laws:

G(T ) ∼ (T/TB)γ (26)

dI

dV
∼ (V/VB)γ (27)
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γ =
1
ν
− 1 (28)

where TB and VB are related to the coupling energy of the tunnel barrier. Power
laws characterizing the chiral Luttinger liquid in the Fractional Quantum Hall
regime have been experimentally observed (see below).

The chirality leads to some differences with ordinary Luttinger Liquids for
which 1/ν is to be replaced by (g−1 + g)/2. In 1D, g is related to the strength
of a short range interaction which can take arbitrary values and the relation:
γ = (g + g−1 − 2) always holds. A continuous variation of the g = ν parameter
is a priori not expected in the FQHE regime because the magnetic field stabilizes
special fractional values of ν in the bulk (as the Jain’s series). A generalization
of Wen’s approach for ν = p/(2sp + 1) shows that one must have p branches of
bosonic modes (consistent with the CF picture). These branches interact together
and give a relation between the tunneling exponent γ and ν not simply given by
28. For the simplest series of Jain’s filling factor p/(2p ± 1) between 1 and 1/3 ,
the exponent γ is expected to be

γ =
2p + 1

p
− 1

|p| (29)

i.e. constant (γ = 2) between filling factor 1/2 and 1/3 and decreasing linearly
(γ = 1/ν ∼ B) form 2 to 1 between filling factor 1/2 and 1.

2.3.2 Experimental evidence of chiral Luttinger liquids

Tunneling electrons from a metal to the edges. The best evidence for Luttinger
liquid properties is obtained by probing the tunneling density of states (TDOS).
To do that, measurements have to be non-invasive, i.e. a weak tunnel coupling is
required. Indeed, a tunneling experiment measures the TDOS only if higher order
tunneling process are negligible, which means small transmission and small energy.
At large energy, the current varies ∼ |ε − EF |γ+1 and so the effective coupling will
increase with voltage ε ≡ eV or temperature ε ≡ kBT .

Convincing experiments have been performed by the group of A.M. Chang
[26, 27, 28]. The tunnel contact is realized using the cleaved edge overgrowth tech-
nique. By epitaxial growth on the lateral side of a 2DEG, a large tunnel barrier is
first defined followed by a metallic contact realized using heavy doped semiconduc-
tor. The advantage is weak coupling and high enough barrier (to disregard change
of the transparency when applying a large voltage). Also, probably important is
the fact that the metallic contact close to the edge provides screening of the long
range Coulomb interaction (short range is needed for having power laws).

Fig.7 shows example of I-V characteristics: a power law of the current with
applied voltage I ∼ V α, α = γ + 1, is well defined over several current decades
for ν = 1/3. The exponent α found is 2.7-2.65 close to the value 3 predicted by
the theory for γ = 1

ν − 1. For other filling factors similar algebraic variations
are also observed. In the same figure, the tunneling exponent deduced from a
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Figure 7: Left : Log-Log plot of an I-V curve at ν = 1/3 clearly shows the algebraic
variation of current with voltage which characterizes a Luttinger liquid. Right :
the exponent α is plotted versus 1/ν and compared with theoretical predictions
(adapted from Ref.) .

series of I-V curves is shown as a function of the magnetic field or 1/ν. For filling
factor 1/2 < ν < 1/3 the constant exponent predicted [29, 30, 31] is not observed
and instead the exponent varies rather linearly with field or 1/ν. However, some
experiments made with the cleanest samples have shown signs of a plateau in the
exponent in a narrow filling factor value near 1/3.

Theoretical attempts to explain quantitatively the discrepancies have been
made. Taking into account the long range Coulomb interaction slightly lowers the
exponent. The modified Luttinger liquid theories can also include the finite con-
ductivity in the bulk for non fractional filling factors. Indeed a finite conductivity
modifies the dispersion relation of the bosonic chiral modes and so the exponents.
With reasonable parameters these modifications are not yet able to fully reproduce
the data [30, 31]. The discrepancy between experiments and predictions may be
due to the reconstruction of the edge. Wen’s model assume a sharp density varia-
tion at the edge of the 2D sample. In real samples, the density decreases smoothly
and some additional edge states corresponding to filling factor lower than the bulk
filling factor may also strongly modify the exponents. A recent work by Mandal
and Jain shows that taking into account interactions between composite fermions
chiral edges may lead to a continuous variation of the exponent[32]. The reader
will find more in recent review made by A.M. Chang [33].



180 D.C. Glattli

Tunneling between edges: Fractional Edge channel with an artificial impurity.
Transport experiments between two fractional edges can be done using an artifi-
cial impurity, a Quantum Point Contact. Contrary to previous experiments where
electrons were injected from an ordinary metal (Fermi liquid) and the coupling was
weak, we can probe here the transfer of charge through the FQHE fluid. In partic-
ular there is no restriction on the nature of the charge (obviously e in the previous
case) while they can be fractional here. For quantitative comparison to theory, this
strategy however is less reliable than the previous one. For finite voltage differ-
ence Vds applied across the QPC to induce a current, the shape of the scattering
potential can change. This can induce a trivial variation of the transmission with
Vds which can make identification of power laws difficult. Measurements are thus
reliable only at very low temperature (<100mK) and small voltages (<100µV) for
comparison with theories.

Strong barrier. We first consider the case where barrier is high and a tunnel
barrier is formed (so-called pinch-off regime). Electrons are strongly backscattered
at all energies and the tunneling current is weak. The results are expected simi-
lar to that obtained in A.M. Chang’s experiments. Tunneling occurring between
two fractional edge (and not between a metal and a fractional edge) the dI/dVds

characteristics will be proportional to the square of the TDOS. The exponents for
the conductance is doubled. For example γ = 4, i.e. 2.( 1

ν − 1) for ν = 1/3. This
approach has been used by several groups. A difficulty is that sample inhomo-
geneities around the QPC may lead to transmission resonances difficult to control.
Ref.[34] exploits the Luttinger predictions for tunneling through such a resonant
state. A further difficulty is the high value of the power law for the conductance
with temperature or voltage which is is expected to be measurable only at very
low conductance. For ν = 1/3, for example, exact finite temperature calculations
of IV characteristics, see below, shows that the exponent 4, becomes the dominant
term only when the conductance is smaller than 10−4e2/3h [35] . Otherwise an
effective exponent, much smaller than 2 is observed. Up to now, no experimental
group have tried to do measurements in this limit.

Weak barrier. The regime where the barrier is very weak is more interesting.
Practically, the QPC gently pushes the upper edge close to the lower edge to induce
a quantum transfer of particles from one edge to the other. The QPC potential is
weak enough to not make appreciable change of the local filling factor. A charac-
teristic signature of the Luttinger liquid physics is the vanishing transmission at
low temperature or bias voltage even in the case of a so weak coupling that the
transmission would be close to 1 in absence of interaction. The low energy strong
backscattering limit continuously evolves toward a weak backscattering limit at
large energy (large transmission). In this regime, we will see later that integer
charges tunnel at low energy, while fractional charges tunnel at large energy.
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Figure 8: Schematic view of charge transfer in the case of a strong barrier (upper
figure) and a weak barrier. In the later case the FQHE fluid is weakly perturbed
and charge transfer occurs via the FQHE fluid.

To describe the tunneling between the upper and lower edge of Fig.8 we in-
troduce bosonic modes ρ̃ and φ̃ previously derived with the subscript +/− for
the upper and lower modes respectively. Without coupling by the artificial impu-
rity, they are independent and the Hamiltonian is the sum of their Hamiltonian.
The impurity of strength λ situated in X = 0 induces a coupling between the
excitations: 
 ψ†

qp,+ψqp,− + ψ†
qp−ψqp+ which gives the interaction term:

Hint = λ cos(φ+(0) − φ−(0)). (30)

At low energy, the system flows to an insulating state and the conductance
displays the same power law with T or Vds than the one expected for a strong
impurity potential (tunnel barrier)

G ∼ e2

3h

(
ε

TB

)2( 1
ν −1)

→ 0 for ε  TB (31)

where TB is an energy scale related to the impurity strength λ. At large energy, a
conductance close but smaller than the quantum of conductance e2

3h is recovered.
The Luttinger liquid theory predicts

G =
e2

3h
− GB with GB =

e2

3h

(
ε

TB

)2(ν−1)

→ 0 for ε � TB. (32)

GB is called the backscattering conductance. If we call I the forward current,
I0 = e2

3hVds the current without impurity, the current associated with particles
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backscattered by the impurity is IB = I0 − I from which one can define GB =
IB/V . The above formula correspond to strong and weak backscattering limits. In
the first case there is a weak tunneling of particles between the left and right side,
while in the second case there is a weak quantum transfer of particles between the
upper edge and the lower edge. There is an interesting duality with ν ←→ 1/ν.

Conformal field theories have been used to exactly solve the problem of a
Luttinger liquid with one impurity providing a continuous description between
both limits [36, 37]. The so-called FLS theory exploits the charge conservation
when the particle are scattered by the impurity centered in X = 0. By defining
the even and odd charge modes (and corresponding fields):

ρ̃e(X, t) =
1√
2

(ρ̃+(X, t) + ρ̃−(−X, t)) (33)

ρ̃o(X, t) =
−1√

2
(ρ̃+(X, t) − ρ̃−(−X, t)) (34)

for which the variable X is now limited to the semi-infinite line X ≤ 0.
The Hamiltonian to consider reduces to:

H =
hvD

2ν

∫ 0

−∞
dX

[
ρ̃o(X, t)2 + λ1 cos

(√
2ϕ̃o(0)

)]
(35)

while the even mode is decoupled.
The equation is very similar to a Sine-Gordon equation (SG) but with the

SG term only at the boundary, while ρ̃o is solution of a free propagation equation
(velocity vD) for X < 0. Classically, it is easy to show that this boundary SG
equation admits solutions using a combination of the natural kink and anti-kink
of the ordinary SG equation. By definition, a kink (or a soliton) in the field (of the
charge density) which is solution of the ordinary SG equation propagates without
deformation and is also solution of the free propagation equation for X < 0 .
By linearity, superpositions of kink and anti-kinks are also solutions. The effect
of the boundary term is mainly to convert kink into antikink. Physically, the
effect of scattering is that a positive pulse of charge can be reflected as a negative
pulse. The step from classical to quantum integrability is made using conformal
field theories [36, 37]. One can show that applying a voltage bias Vds between
reservoirs emitting electrons in the upper and lower edges is, in the convenient
basis for interacting electrons, equivalent to send a regular flow of kink which are
randomly transformed into antikink. Kink and antikink respectively contribute
to the forward and backscattered current. The Landauer formula adapted to this
approach gives the backscattering current which expresses simply as:

IB(Vds, TB) = evD

∫ A(Vds)

−∞
dαρ+(α) |S+−(α − αB)|2 and I = ν

e2

h
Vds−IB (36)

were ρ+(α) (not to be confused with previous notations) is the density of incoming
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Figure 9: Theoretical curves for the differential conductance versus voltage cal-
culated for different values of the ratio T/TB . The numerical exact solution of
Ref.[36, 37] is used. The conductance is a universal function of the variable T/TB

and eVds/2πkBT .

kink at energy parametrized by eα, and

|S+−(α − αB)|2 =
1

1 + exp [2(1 − ν)(α − αB)/ν]
(37)

is the probability for kink to anti-kink conversion (the scattering probability) with
αB related to the impurity strength TB. A series expansion in TB/Vds and Vds/TB

for respectively weak and strong backscattering gives the current where all coeffi-
cients are known analytically

IB = ν
e2

h
Vds

∑
n

νan(ν)
(

Vds

TB

)2n(ν−1)

forTB/Vds < 1 (38)

I = ν
e2

h
Vds

∑
n

an(
1
ν

)
(

Vds

TB

)2n( 1
ν −1)

forVds/TB < 1. (39)

The curve I(Vds) describing the whole transition from strong to weak
backscattering can be calculated. Note again the duality ν ←→ 1/ν. For finite
temperature numerical solutions are also available giving the whole information
I(Vds, T ).
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For finite temperature, one can show that the conductance is a function of
the reduced variable T/TB and eVds/2πkBT :

G(T, Vds) =
e2

3h
f

(
T

TB
,

eVds

2πkBT

)
(40)

and measuring G(T, 0) fixes the only parameter TB. The Vds/T scaling law also
can be tested very accurately. Fig.9 shows theoretical calculations of the differen-
tial conductance for various values of the parameter TB (the Bethe ansatz method
for calculating the kink-antikink distribution at finite temperature has been used
for the numerical calculation following the results of Ref.[36, 37]. We can see that,
increasing the energy (the voltage or the temperature), leads to a progressive tran-
sition from the strong backscattering regime to the weak backscattering regime.

Fig.10 shows data obtained in our group for the conductance in the strong
backscattering regime for ν = 1/3. Experiments are made in the intermediate
regime (i.e. G > 10−4e2/3h). The effective exponent deduced from a series a
dI/dVds curve for different impurity strength is compared with the effective one
calculated using the finite temperature exact solution. The agreement is rather
good. The theoretical graph in inset of the figure shows that the asymptotic scaling
exponent 2(ν−1 − 1) = 4 is not expected except for conductance lower than 10−4,
which is experimentally difficult to obtain. It is important to say that there are no
adjustable parameters.

Indeed, there are still many open problems for a quantitative description of
conductance measurements using the Luttinger liquid model. Long range interac-
tions are one of this. One can show that the dispersion relation bosonic chiral edges
modes which usually varies linearly with the wavenumber k get a contribution
k ln(k). Such contribution is known from edge magneto-plasmon radiofrequency
experiments realized in classical or in quantum Hall 2D electron systems where
the neutral collective modes are excited and resonantly detected. When the energy
is low enough such that the wavelength is larger than the width of the sample, the
Coulomb interaction couple the edges. The power law of the TDOS is lost. Instead
the TDOS is expected to vary with energy like exp(const × (ln ε)3/2) [38, 39, 40].

3 Fractionally charged carriers

Can an electrical current be carried by fractional charge? From quantum electro-
dynamics and charge conservation, it is known that the total charge of an isolated
body should always be an integer number in units of e. While particles propagating
freely in the vacuum are restricted to integer charge, no such absolute requirement
is imposed in condensed matter to quasiparticles, the elementary excitations above
the ground state which carry the current. They are the product of a complex collec-
tive motion of many particles. The topological singularities of the wave-functions
may lead to many possibilities. The solitonic excitations predicted in polyacetylene
or the Laughlin charges in the Quantum Hall regime are exact fractions. Fractions
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Figure 10: Exponent of the algebraic variation of the differential conductance with
voltage measured in the strong backscattering regime versus the zero bias conduc-
tance normalized to e2/3h. The solid line is a comparison with the FLS predictions.
The scaling exponent α = 2(ν−1−1) = 4 is only expected in a regime of extremely
low conductance (10−4).

manifest particular evident or hidden symmetries. The quasiparticle charge may
not be restricted to exact mathematical fraction: in Luttinger liquid theories, de-
scribing one-dimensional interacting systems, charge ge and (1− g)e are expected
where g is related to the interaction strength. It can take any value between 0 and
1.

Up to now the only experimentally realizable system able to display fractional
charge carriers is the FQHE. But how to measure the charge carrying the current?
Conductance is unable to probes directly the charge. It informs on the average rate
of quasiparticles received by a contact which went through the conductor after they
have been emitted by another contact. Conductance measures the quasiparticle
transmission and, if interference are observed, it is sensitive to the wave nature of
the quasiparticles. This is similar to optics where the average intensity of light tells
about transmission but says nothing about the photon. To probe the graininess
of the current one must make a further step and consider the fluctuations: the
so-called shot noise. Measuring the fluctuation of light beams has given the direct
evidence of the photon as the elementary grain of light. Similarly, measuring the
electrical current fluctuations gives a direct information on the quanta of charge
carrying the current.

According to Schottky [41], the random transfer of charge q across a con-
ductor generates an average current I but also finite temporal fluctuations of the
current ∆I around the mean value.
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Consider an observation during a finite time τ . The current is related to the
average number of transferred electrons N via I = qN/τ , while the square of the

current fluctuations are (∆I)2 = qI/τ (∆N)2

N
. If the statistics of transfer events is

Poissonian (∆N)2 = N the well known Schottky formula is obtained:

(∆I)2 = 2qI∆f = SI∆f (41)

where we have introduce the effective frequency bandwidth of measurement ∆f =
2/τ and the current noise power SI . The noise power is directly proportional to the
carrier charge q . This expresses that noise is a direct consequence of charge gran-
ularity. The simultaneous measure of the average current and its fluctuations gives
a simple direct measurement of q, free of any geometrical or material parameters.

To measure shot-noise, one performs a non-equilibrium experiment and there-
fore probe excitations above the ground state: the quasiparticles. Also, the bias
voltage across contacts has to be larger than kBT otherwise the dominant noise
measured is the thermal or Johnson-Nyquist noise: SI = 4GkBT . Johnson-Nyquist
noise is an equilibrium quantity which only probes conductance and not the charge
of the excitations.

3.1 Shot-noise in quantum conductors

Here we discuss the origin and properties of noise in conductors. This applies
immediately to the case of the Integer QHE regime. For simplicity we consider a
single mode conductor or equivalently single edge channel. An artificial impurity,
for example a Quantum Point Contact, is used to induce backscattering. According
to the Landauer formula the left contact injects electrons at a rate eV/h where
V is the voltage applied between the left and the right contact. This leads to an
incoming current I0 = e(eV/h). If T is the transmission through the QPC, the
transmitted current is:

I = T .I0 = T e2

h
V (42)

and the backscattered current:

IB = I0 − I = (1 − T )
e2

h
V. (43)

One can show that the Fermi statistics is responsible of a remarkable proper-
ties: for long observation time, the incoming current appears to be noiseless (each
electron arrives regularly at a frequency eV/h leading to a temporally structureless
electron flow). As a result the only fluctuations arise from the binomial probability
to be transmitted or reflected. The spectral density SI of the low frequency current
fluctuations is thus given by [42]:

SI = 2eI0T (1 − T ). (44)
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For multimode conductors Tn denoting the transmission of the nth mode, the
generalization is straightforward and is: SI = 2eI0

∑
n Tn(1−Tn). This prediction

has been quantitatively verified in very sensitive shot noise measurement using
QPC [43, 44]. A review on the remarkable low noise of quantum conductors can
be found in [45]. At finite temperature, the shot noise is:

SI = 2e
e2

h

(
T 2kBT + T (1 − T )eV coth

(
eV

2kBT

))
. (45)

At zero bias voltage the Johnson Nyquist equilibrium noise 4
(
T e2

h

)
kBT is recov-

ered. Above a cross-over voltage kBT/2e, shot noise dominates.
Two limits are interesting to consider for the following:

– Strong backscattering regime T  1: this is the regime of Poissonian transfer
from left to right of charge e.

SI = 2eI ; I  I0. (46)

– Weak backscattering regime 1−T  1: most electrons are transmitted, but
there is of Poissonian transfer of “missing electrons”, i.e holes, from left to
right. Alternatively, in the IQHE regime, this can be viewed as Poissonian
transfer of electron from the upper to the lower edge via the QHE fluid

SI = 2eIB ; IB = I0 − I  I0. (47)

3.2 Shot-noise in the fractional regime

In the limit of small transmission (I  I0, strong backscattering) it is reasonable
to expect transfer of charge e as correlations between left and right FQHE quan-
tum fluids are reduced. However, for large transmission (IB = I0 − I  I0, weak
backscattering) the weak effect of the impurity will not affect the FQHE correla-
tions, the Poissonian transfer of holes may correspond to Laughlin quasihole with
fractional charges as shown schematically in Fig.11.

A complete understanding requires to include the Luttinger liquid dynamics
of the fractional edge channels. This has been done in these two limiting cases
in Ref.[46] and then by using the exact FLS Theory. For Laughlin filling factor
ν = 1/(2s + 1), including finite temperature, the strong and weak backscattering
limiting cases give respectively:

SI 
 2eI coth(eV/2kBθ) I  I0 =
1
3

e2

h
V (48)

SI 
 2
e

2s + 1
IB coth(

e

2s + 1
V

2kBT
) IB = I0 − I  I0. (49)

Here, the Johnson-Nyquist thermal noise contributions 4GkBT and 4GBkBT have
been subtracted respectively for clarity. In the first case only electrons are found
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Figure 11:

to tunnel as expected. In the second case fractional charge excitations are found.
In this limit, the noise provides a direct way to measure the fractional Laughlin
charge e/2s + 1.

A fractional e/(2s+1) charge is also found in the argument of the coth func-
tion. However the meaning is different. The cross-over from thermal to shot noise
corresponds to electro-chemical potential difference ∆µ = eV/(2s + 1) compara-
ble to kBT . However, this is not a measure of the fractional quasiparticle charge.
This is a measure of the fractional filling of the quantum state at equilibrium,
like the conductance e2/(2s + 1)h is. This is only in the large voltage limit that
SI 
 2( e

2s+1 )IB really measures the quasiparticle charge. This is a non-equilibrium
regime where quasiparticles excitations dominate over ground state properties.
Nevertheless observation of a three times larger voltage for the thermal cross-over
in noise experiments has been an important confirmation of Eq.49.

The zero temperature limit of expressions 48 and 49 have been also derived
in [47] using Luttinger liquid in the perturbative limit. The exact solution of the
FLS model presented in the previous section allows not only to calculate the cur-
rent in all regimes but also to calculate the noise [36]. To obtain the noise, one
can mimic the wavepacket approach used by T. Martin and R. Landauer for the
noise of non interacting Fermions Ref.[48] . The incoming kinks of the field φ̃o

correspond to a regular flow of solitons in ρ̃o. The regular flow is noiseless but the
random scattering of kinks into anti-kinks produces noise in the outgoing current.
When |S+−(α − αB)|2  1 this a Poissonian process while if |S+−(α − αB)|2 is
not negligible, the statistics is binomial and the fluctuations are proportional to
|S+−(α − αB)|2 (1− |S+−(α − αB)|2) which plays the role of the T (1− T ) factor
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for non-interacting electrons. The expression for the noise is thus simply

SI(V ) = 2e2v

∫ A(Vds)

−∞
dαρ+(α) |S+−(α − αB)|2 (1 − |S+−(α − αB)|2). (50)

Here ν = 1/(2s + 1). Exact expressions and technical mathematical details
can be found in Refs [36]. The special simple form of |S+−(α − αB)| leads to a
relation between current and noise where SI = v

1−v (V dI
dV − I) = v

1−v (IB −V dIB

dV ).
From it, using the weak and strong backscattering limits of the Luttinger theory,
we can easily check that SI → 2(νeIB) and 2eI respectively in agreement with
the zero temperature limit of 48 and 49. Finite temperature predictions can also
be found in Ref. [37].

3.3 Measurement of the fractional charge using noise

A difficulty of shot noise measurements in the FQH effect is that the extremely low
shot noise has to be extracted from the background of relatively large amplifiers
noise. Shot noise levels are extremely small both due to the smaller charge and
the small available current. The latter is restricted by the fact that the FQH effect
breaks down when the applied voltage is larger than the excitation gap. This
excitation gap, in turn, depends crucially on the quality of the material in which
the 2DEG resides. The state of the art technology currently yields samples with
an excitation gap of the of the order of a few 100 µeV , leading to shot noise levels
in the 10−29A2/Hz range.

These measurements have been performed in Saclay and in the Weizmann
Institute [49][50]. A QPC is used in order to realize a local and controllable coupling
between two ν = 1/3 fractional edges to partially reflect the incoming current.
The experiments are designed to have a best sensitivity for the weak coupling
limit where Poissonian noise of the e/3 Laughlin quasiparticles is expected. In
the experiment of Ref.[49], a cross correlation technique detects, at low frequency,
the anticorrelated noise of the transmitted current I and the reflected current IB,
i.e. SI,IB

= 〈∆I∆IB〉 /∆f 
 −2(e/3)IB, see Fig.12. In situ measurements of the
Johnson-Nyquist noise versus temperature provide self-calibration of the current
noise measured and are found consistent with independent calibration, so the shot
noise is free of adjustable parameters. The magnetic field corresponds to a filling
factor 2/3 in the bulk of the sample and a small region of filling factor 1/3 is created
close to the QPC using the depletion effect of the gates. The size of the 1/3 region is
estimated about 150 φ0, sufficient to establish FQHE correlations. The advantage
of doing this is that the coupling between edges occurs on a shorter scale and
the controllable QPC potential is larger than the potential fluctuations inherent
of sample fabrication. In the two samples measured, the combination of QPC and
random potential lead to two dominant paths for backscattering. The coherent
interference between paths gives rise to nearly perfect resonant tunneling peaks in
the conductance. Careful measurements of the conductance resonance showed that
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Figure 12: schematic view of the measurement. The fluctuations of the transmitted
current I and of the reflected current IB are both measured. A very fast dynamic
signal analyzer calculates in real time the cross-correlation of the fluctuations.
Uncorrelated noises are thus eliminated increasing the sensitivity and reliability.

tunneling was coherent. This was an important check for the quasiparticle charge
measurement because this ruled out the possibility of noise suppression due to
multiple uncorrelated hoping, similar to the 1/3 noise reduction factor in zero field
diffusive conductors. Also the resonant conductance showed non-linear dependence
on bias voltage consistent with Luttinger liquid model provided the filling factor of
the bulk is used. The other group [50] used a high frequency technique in order to
increase the signal bandwidth and measured the autocorrelation of the transmitted
current. Here the magnetic field corresponded to a filling factor 1/3 everywhere in
the sample. They found few non-linearities in the conductance, in contrast with
the Luttinger liquid predictions, and this allowed them to define a bias voltage
independent transmission.

In the Poissonian limit IB  I0, the two experiments give the same conclusion
(see Fig.13) that near filling factor 1/3, shot noise is threefold suppressed. These
experiments have given the most direct evidence that the current can be carried
by quasiparticle with a fraction of e and that Laughlin conjecture was correct.
In addition, the data showed a cross-over from thermal noise to shot noise when
the applied voltage satisfies the inequality eV/3 > 2kθ (rather than eV > 2kθ),
indicating that the potential energy of the quasiparticles is threefold smaller as
well as predicted in Eq.(11).This experiment has been now reproduced many time
with different samples and measurement conditions in both laboratories.
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Figure 13: experimental Poissonian noise of the fractionally charged excitations in
the FQHE, from Ref.[49] (left) and Ref.[50] (right).

Is it possible to go further and probe different fractional charges for less
simple filling factor? Measurements close to ν = 2/5 have given indications that
the e/5 quasiparticles are the relevant excitations in this regime[51]. This last
result has been analyzed in a model of non-interacting composite Fermions where
Luttinger effects are neglected [52]. More recently, the same group has extended
their measurement up to the filling factor 3/7 [53] and found a charge e/7. At
very low temperature, they found an unexplained rapid increase of the effective
charge. It would be useful to have a better theoretical understanding of the noise
for Jain’s filing factors to provide a basis for comparisons with experiments.

3.4 Cross-over from fractional to integer charge

When the strength of the artificial impurity potential is slightly increased and the
energy of measurement is reduced, the strong backscattering regime sets in and
one expects integer charges take over fractional charge. This has been measured in
shot noise experiments [54],[55]. In ref.[54] very low temperature and pronounced
Luttinger liquid effects are observed. In the same experiment it is then possible to
observe both the charge e/3 for weak scattering and charge e at strong backscatter-
ing. Despite the strong linear I-V characteristics (due to Luttinger liquid effects),
it is remarkable that the shot-noise increase linearly with current, as shown in
Fig.14. In ref.[55] less non-linearities are observed as the electron temperature
was higher but the strong backscattering regime was obtained by increasing the
impurity strength.
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Figure 14: Although the QPC potential is very weak, at low temperature Luttinger
liquid effects give rise to strong backscattering. The left figure shows the non-
linear I(V ) curve, the center figure the shot noise versus voltage simultaneously
measured, and the right figure the linear variation of the noise with current.

4 Fractional occupation in the ground state

In the Laughlin wave function, electrons are spread uniformly with each elementary
quantum state filled by 1/(2s + 1) electrons on average.

A fractional filling is a necessary condition for the formation of fractionally
charge excitations above the ground state. Indeed, the first excited state, a Laugh-
lin wavefunction with a quasi-hole, is obtained by emptying a quantum state, i.e.
by introducing a hole in the wavefunction whose area is that of one flux quantum.
In a gedanken experiment, an infinitely small solenoid piercing the plane adiabat-
ically increases the flux from zero to φ0. In place of the fractionally filled quantum
state a fractional charge e/(2s + 1) is left.

The fractional filling is also responsible for the fractional quantization of the
Hall conductance. In a Corbino geometry (a ring of radius R and finite width
W  R ) it is possible to generate an azimuthal solenoidal electric field Eθ by a
time varying flux Φ(t) = φ0

t
τ . If GH is the Hall conductance, the radial current

density is jr = GHEθ . For each time slice τ , the flux variation ∆Φ = φ0 radially
shifts all states by one unit. As they are filled by a fraction of electron, a charge
∆Q = e/(2s + 1) crosses the ring from the inner to the outer perimeter. The
current is I = jr2πR = GH

φ0
τ = ∆Q

τ and the Hall conductance is 1
2s+1

e2

h .
Equilibrium conductance measurements have allowed to accurately deter-

mine the fraction of charge filling the quantum states. Resonant tunneling experi-
ments have been used to measure the charge ∆Q in response to the flux variation
∆Φ = φ0 through a well defined area for filling factor 1/3 and filling factor 1 [56].
Comparison between the integer and the fractional case showed that in the later
case, the charge is accurately reduced by one third.

In this experiment, a micron size disc fully depleted of electrons is realized
inside a Hall bar by etching a 2D electron gas. The width of the Hall bar is locally
reduced to a size larger but very close to the disc size, such that edge states running
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Figure 15: Resonant tunneling experiment to measure the fraction of charge asso-
ciated with a quantum state at ν = 1/3. Compared to the integer case, the period
in gate voltage are increase by a factor 3 for 1/3 signaling a one third reduction
of the charge.

along the Hall bar can pass very close to the edge states circulating around the
disc, see Fig.15. Gates, placed nearby the two points where the outer and inner
edge channels meet, allow to control the tunnel coupling.

The disc free of electrons embedded in the 2DEG forms a so-called anti-dot
(as opposed to quantum dots which are small disc of electrons). Because of the
finite size of the perimeter and of the low temperature used, the available edge
states do not appear as a continuum but are quantized. In a semiclassical picture,
the radius rk of the kth edge state is given by Bπr2

k = kφ0 and its energy is U(rk),
where U(r) is the radial potential which confines the electrons (the kinetic energy
has been subtracted for presentation). Edge states with U(rk) < EF are filled by
one electron in the integer regime or by one third of electrons for ν = 1/3. A
new state can be filled by increasing the charge by ∆Q in the disc or by reducing
the magnetic flux by φ0. The filling of a new state is revealed by equilibrium
measurement of the tunnel conductance between the upper and lower outer edge
via the anti-dot. A resonant tunneling conductance peak is observed each time
the edge state energy level align with the Fermi energy. The experiment shows
that the same ∆Φ = φ0 separates two consecutive peaks for integer and fractional
cases, while the backgate voltage variation ∆V separating two peaks is found one
third smaller for the fractional case. Knowing the area of the antidot and the
capacitance, the absolute variation of the charge ∆Q is found consistent with e
and e/3 (estimation of the capacitance assumes strong statements about screening
in the QHE regime, but the numbers are convincing). The results are shown in
Fig.15.
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5 Conclusion

The Fractional Quantum Hall effect is at present, the only system in condensed
matter with fractional quantum numbers. Out of equilibrium or equilibrium tun-
neling experiments have been able to directly or indirectly probe fractionalization.

The Luttinger liquid properties which are revealed by power law variations
of the tunnel conductance can not be understood without associating carriers with
non integer charge. This fractionally charged carriers has been observed directly
through the current noise associated with their tunneling across opposite bound-
aries of FQHE fluid. The evolution of the charge from a fraction in the weak
backscattering limit at large voltage to an integer in the strong backscattering
limit at low voltage is consistent with the Luttinger picture and with common
intuition. At the root of the fractional excitations carrying the current is the frac-
tion of charge in the ground state which fills the individual quantum states to form
Laughlin’s wavefunction. This fraction of charge has been measured by equilibrium
resonant tunneling conductance measurements.

To complete this picture, localized fractional charges have been observed in
a recent experiment using low temperature scanning probe imaging techniques
[57]. The experiment is able to map the charge distribution in a macroscopic
sample. The localized charges do not participate to transport (by definition) and
are responsible for the finite width of the Hall plateau and exact quantization and
is a key point in the understanding of the macroscopic QHE. Localized one third
charge are found both for the 2/3 and the 1/3 FQHE regime.

Fascinating properties of the FQHE excitations are still to be observe. To
cite a few: the fractional statistics which could be revealed by shot noise corre-
lations techniques, the high frequency singularity in the shot noise at frequency
eV/(2s + 1)h, the fractional excitations in the non fully polarized spin regime.
The recent progresses in mastering cold atoms suggest that the QHE could be
observe in different systems with different statistics and interactions. New type of
measurements may also be possible and extend our range of investigation of the
Quantum Hall Effect.
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