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 Chapter 1 
Introduction 

          This chapter gives general information on Battery Management Systems 
(BMSs) and State-of-Charge (SoC) indication that will be required as a 
background in later chapters. A general block diagram of a BMS is shown in 
section 1.1. One of the main tasks of a BMS is to keep track of a battery’s SoC, 
which is the main subject of this book. Section 1.2 gives a definition of SoC 
indication and discusses its importance. The goal and motivation of the research 
described in this book are discussed in section 1.3. Finally, section 1.4 presents the 
contents of this book. 

 
  

1.1 Battery Management Systems 
 

          Battery-powered electronic devices have become ubiquitous in modern 
society. The recent rapid expansion of the use of portable devices (e.g. portable 

battery technologies at an unprecedented rate [1].  

Fig. 1.1. Examples of portable devices on the market [2]. 

computers, personal data assistants, cellular phones, shavers, etc. (see Fig. 1.1)) and 
Hybrid Electrical Vehicles (HEVs) creates a strong demand for fast deployment of 

for Battery-Powered Applications. 
doi: 10.1007/978-1-4020-6945-1_1, © Springer Science + Business Media B.V. 2008 
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          The design of a battery-powered device requires many battery-management 
features, including charge control, battery-capacity monitoring, remaining run-time 
information, charge-cycle counting, etc. For it to be able to offer high precision, 
each part of the system must be near to perfection. The basic task of a BMS can be 
defined as follows [1]: 
 
The basic task of a Battery Management System (BMS) is to ensure that 
optimum use is made of the energy inside the battery powering the portable 
product and that the risk of damage to the battery is prevented. This is 
achieved by monitoring and controlling the battery’s charging and 
discharging process. 
 
          A general block diagram of a BMS is shown in Fig. 1.2. The basic task of the 
power module (PM) is to charge the battery by converting electrical energy from 
the mains into electrical energy suitable for charging the battery. The PM can either 
be a separate device, such as a travel charger, or it can be integrated within the 
portable device, as, for example, in shavers [1]. A protection Integrated Circuit (IC) 
connected in series with the battery is generally needed for lithium-ion (Li-ion) 
batteries. The reason for this is that battery suppliers are particularly concerned 
about safety issues due to liability risks. The battery voltage, current and tempe-
rature have to be monitored and the protection IC ensures that the battery is never 
operated under unsafe conditions. The battery manufacturer determines the 
operating conditions under which it is assumed to be safe to use Li-ion batteries. 
Outside the safe region, destructive processes may take place [1]. 

 
Fig. 1.2. General architecture of a Battery Management System. 

 
          The DC/DC converter is used to efficiently condition the unregulated battery 
voltage (3–4.2 V in Li-ion chemistry) for compatibility with stringent load 
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requirements (see Fig. 1.2). The basic task of the load is to convert the electrical 
energy supplied by a battery into an energy form that will fulfil the load’s function, 
such as mechanical energy, light, sound, heat, EM radiation, etc. The battery status 
can be indicated in one light-emitting diode (LED) or several such diodes 
connected in series or on a liquid-crystal display (LCD) that indicates the SoC and 
the battery’s condition (e.g. the State-of-Health (SoH)) [1]. The processor is used to 
run the battery-management software, including the SoC algorithm (see Fig. 1.2). 
Communication between the BMS and other devices is another important task of 
the BMS. Depending on the application, various systems can be used for data 
exchange, such as an inter-integrated-circuit bus interface (I2C) or some other form 
of serial interface (see Fig. 1.2). The battery state is used as an input parameter for 
the portable device’s electrical management and it is an important parameter for the 
user. The battery state can be used to estimate the battery’s expected lifetime. It can 
be simply described by two parameters: SoC and SoH. Both parameters depend on 
each other and influence the battery performance. More information on these two 
parameters will be given in the next section.  
 
          
1.2 State-of-Charge definition 
    
         Three terms are relevant with respect to accurately implementing the monitor 
function of the battery state in a Battery Management System. These three terms 
are the State-of-Charge (SoC), the State-of-Health (SoH) and the remaining run-
time (tr). The SoC can be defined as follows: 
 
State-of-Charge (SoC) is the percentage of the maximum possible charge that 
is present inside a rechargeable battery. 
 
          The SoC indication involves battery measurements and modelling [1]. As a 
simple example the battery voltage (V) can be measured and the V-SoC relationship 
can be stored in a look-up table function in a microcontroller [3]–[6]. The size and 
accuracy of the look-up tables in SoC indication systems depend on the number of 
stored values, i.e. the number of stored V-SoC data points. A problem is that the 
battery voltage changes with temperature, discharge rates and aging. Making the 
look-up table temperature and discharge-rate dependent can solve the first two 
dependencies [7]. However, aging of the battery is a complex process that involves 
many battery parameters (e.g. impedance, capacity). The process is too complex to 
be tackled with simple look-up table implementation [7].  
          The State-of-Health (SoH) is an indication of the point that has been reached 
in the battery’s life cycle and is a measure of its condition relative to a fresh 
battery. The SoH can be defined as follows: 
 
State-of-Health (SoH) is a ‘measure’ that reflects the general condition of a 
battery and its ability to deliver the specified performance in comparison with 
a fresh battery.  
 
          The SoH indication may involve for example cycle-counting. In the simplest 
case the number of full charge/discharge cycles (Cn) can be counted and the SoH 
can be calculated on the basis of a stored maximum capacity-Cn function [1]. 
However, a user doesn’t always wait until a battery reaches an empty or a full SoC 
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state. The system should therefore also take into consideration SoC levels other 
than “empty” and “full”, e.g. levels defined by the last discharge/charge SoC value 
before a user starts charging/discharging. Another problem is the spread in both 
battery and user behaviour. Due to this spread the SoH evolution will be different 
for each user and application, and will consequently be rather unpredictable. It is  
not possible to deal with such unpredictable behaviour with a simple charge/ 
discharge cycles counting implementation. An adaptive system must therefore be 
used to ensure an accurate SoC indication when the battery ages. Examples of 
possible adaptive systems are neural networks [8], [9], Kalman filters [10]–[13] and 
fuzzy logic [14].   
          The SoC is usually displayed to the user in a graphic bar or in [%]. In the 
latter case 100% implies a full battery state and 0% the empty state. However, for a 
user it is convenient to know how long a portable device battery will still be able to 
deliver power. An SoC indication with a couple of bars does not provide sufficient 
information. The remaining time-of-use indication will be the most interesting and 
attractive solution for a portable device user. The remaining run-time can be 
defined as follows [1]: 
 
The remaining run-time (tr) is the estimated time that the battery can supply 
current to a portable device under valid discharge conditions before it will 
stop functioning.  
 
          The remaining run-time can be inferred from the remaining capacity in two 
ways, depending on the type of load: in the case of a current-type load the 
remaining capacity in mAh, so expressed as charge, is divided by the drawn current 
in mA and in the case of a power-type load the remaining capacity in mWh, so 
expressed as energy, is divided by the drawn power in mW [1]. In this book only 
current-type loads will be considered for simplicity. 
          To conclude, an accurate SoC and run-time determination method combined 
with a SoH calculation will improve a battery’s performance and reliability, and 
will ultimately lengthen its lifetime.    
 
 
1.3 Goal and motivation of the research described in this book 
 
          Accurate SoC and remaining run-time indication for portable devices is 
important for user convenience and for prolonging the lifetime of batteries. In a 
survey conducted by market research group TNS involving almost 7,000 mobile 
users in 15 countries, over 75% of respondents said better battery life is the main 
feature they want from a future converged device [15]. This motivates the request 
for an accurate and reliable SoC, run-time and SoH indicator system in portable 
applications. At the moment Li-ion is the most commonly used battery chemistry in 
portable applications. Therefore, the focus in this book is on SoC indication for Li-
ion batteries. The chosen battery in this work is Sony’s US18500G3 Li-ion battery.   
          Accurate SoC information allows a battery to be used within its design limits, 
so the battery pack does not need to be over-engineered. This allows the use of a 
smaller, lighter battery, which costs less. However, many examples of poor 
accuracy and reliability are found in practice. This can be pretty annoying, 
especially when a portable device suddenly stops functioning whereas sufficient 
battery capacity is indicated. Poor reliability of the SoC indication system may 
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induce the use of only part of the available battery capacity. For example, a user 
may be inclined to recharge a battery every day, even when enough battery capacity 
is indicated on the portable device. This will lead to more frequent recharging than 
strictly necessary, which in turn leads to earlier wear-out of the battery. The effect 
of inaccuracy of SoC indication may be even worse when the SoC value is also 
used to control charging. The battery is either not fully charged or it is overcharged. 
In the former case, the battery will be recharged more often than needed, which will 
lead to earlier wear-out. In the latter case, frequent overcharging will lead to a 
lower cycle life [1].  
          Many leading semiconductor companies (e.g. Philips, Texas Instruments, 
Microchip, Maxim, etc.) are paying more and more attention to accurate State- 
of-Charge (SoC) indication. Following the technological revolution and the 
appearance of more power-consuming devices on the automotive electronics and 
portable devices markets (e.g. Third-Generation cellular phones) the simple SoC 
indication systems of the thirties based on voltage and temperature measurements 
[16]–[19] have been replaced by more complicated and accurate SoC systems [1], 
[20]–[27].  
          Of these, the system presented by Bergveld et al. in 2000 [1], [25]–[27], 
implementing the mathematical models described in [1], has been found to be the 
most accurate [28], [29]. The developed method refers to SoC estimation for a Li-
ion battery. The method is based on current measurement and integration during the 
charge and discharge state (referred to as Coulomb counting [1], [7], [30]) and 
Electro-Motive Force (EMF) measurements during the equilibrium state (state in 
which no current is flowing into or out of the battery and the battery is fully 
stabilized) [1]. The EMF method is also used for calibrating the SoC system, 
because the same SoC level in percentage has been found for a certain measured 
EMF irrespective of the age and temperature of the battery. This calibration is 
important, because in charge and discharge states the calculated SoC will 
eventually drift away from the real value due to e.g. measurement inaccuracy in the 
current and the integration over time of this inaccuracy [1]. Apart from simple 
Coulomb counting, the effect of the overpotential is also considered in the 
discharge state. Due to this overpotential, the battery voltage during discharge is 
lower than the EMF. The value of the overpotential depends on the discharge 
current, SoC, age and temperature. 
          A couple of shortcomings of the developed method have been revealed [1]. 
In the first place, the implementation of an accurate battery model is essential for 
accurate SoC indication. The model applied in the proposed SoC indication system 
describes the battery EMF and overpotential behaviour, neither of which can be 
measured directly. Drawbacks of the measurement methods described in [1] have 
been discussed in [34], [35] along with possible solutions. Secondly, false entries in 
the equilibrium state have been detected [1]. They influence the EMF estimation 
and the system’s calibration accuracy [1]. Furthermore, the overpotential model 
presents parameters that are temperature and age dependent. A better model that 
includes temperature and age dependence needs to be developed.  
          A designer of a BMS in a portable device will also be interested in the 
implementation requirements of the mathematical functions used in the SoC 
indication algorithm in a practical application. Close quantitative agreement 
between the results of laboratory simulations using the battery models and 
measurements on a real-time system in which the SoC system is implemented is 
then of course important. Part of the research described in this book is devoted to 
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optimising such quantitative agreement. The optimised SoC system implementation 
must agree with the portable device hardware speed and memory requirements. Part 
of the research described in this book is aimed at finding an optimum 
implementation method of the SoC algorithm in a real-time system.  
          The final aim of the method presented in this book is to design and test 
an SoC indication system capable of predicting the remaining capacity of any 
Li-based battery and the remaining run-time with an accuracy of 1 minute  
or better under all realistic user conditions, including aging, a wide variety  
of load currents and a wide temperature range.  The designed SoC indication 
system must moreover agree with the portable application hardware and 
software requirements.    
 
 
1.4 Scope of this book 
 
          This book presents the results of research into battery measurements and 
electrochemical modelling obtained by combining the expertise of electrical 
engineering with that of electrochemical and computer science. The result is an 
adaptive method for indicating the SoC and remaining run-time that can be applied 
to all Lithium systems [31]–[35].  
          This book is organized as follows. Chapter 2 presents an overview of battery 
technologies and the state-of-the-art State-of-Charge (SoC) methods. The general 
operational mechanism of batteries and information on existing SoC indication 
methods will be discussed. This general information is required as a background in 
the remaining chapters of this book. 
           There are several practical methods available for SoC indication. Special 
attention will be paid to the SoC indication system presented by Bergveld et al. in 
[1], [25], [26], which represents the starting point of this book. This SoC system 
has been chosen because it is one of the most advanced SoC systems so far 
proposed in the literature [28], [29]. The main advantages and drawbacks of this 
system will be presented in Chapter 3. In chapters 4–7 improvements on this 
algorithm will be presented.  
           A complete study of a better EMF determination method developed in-house 
will be presented. This method will lead to a better understanding of the EMF 
dependence on temperature and aging and of new topics such as the EMF 
hysteresis. A new EMF model that includes temperature dependence will be 
developed. This will enable the use of the EMF at different temperatures, which 
will finally improve the SoC indication accuracy. A new model that predicts the 
EMF from the first minutes of relaxation will also be presented. Accurate EMF 
prediction is important because the EMF will also be used as a calibration method 
in our system. These efforts will be described in chapter 4. 
          The main drawback of the EMF method is that it does not provide continuous 
indication of the SoC. Therefore the SoC algorithm also uses Coulomb count-
ing and overpotential prediction. A complete study of a new overpotential 
determination method also developed in-house will be presented. This method will 
lead to a better understanding of new topics such as overpotential symmetry and 
overpotential dependence on C-rate current and aging. A new overpotential model 
that includes C-rate current dependence will be developed. This will enable the use 
of the overpotential at different currents and will finally improve the SoC indication 
accuracy. These efforts will be presented in chapter 5. 
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          The main problem of designing an accurate SoC indication system is the 
unpredictability of both battery and user behaviour. This necessitates the use of an 
adaptive system. In addition to better measurements and battery models, on-line 
adaptive solutions will be added to the SoC system. The EMF and overpotential 
models for example include a variety of parameters that change during cycling of 
the battery. Innovative methods for adapting the EMF and overpotential model 
parameters used in the system, including aging effects, will be described in chapter 6. 
          Chapter 7 will focus on implementation aspects of the algorithm. For testing 
and evaluation purposes the SoC indication system has been implemented in a real-
time laboratory set-up. Simulation results of the mathematical models and 
experimental results of the implemented SoC system will be presented. The 
experimental results will show the effectiveness of the presented novel approach 
for improving the SoC indication accuracy. 
          The “dream” of the last 70 years of research in the field of SoC is to design 
an accurate SoC system that will adapt on-line to any type of battery [7]. An 
innovative algorithm solution that incorporates on-line adaptation solutions will be 
presented in chapter 8. This algorithm will bring the dream of any researcher in this 
field nearer to realization. In addition, a demonstration board that incorporates a 
mobile phone hardware platform has been developed. The applicability and 
usability of the SoC algorithm for a newly developed ultra-fast recharging 
algorithm will also be presented in Chapter 8.  
          Conclusions will be drawn in chapter 9 and recommendations will be made 
for further research in the interesting field of SoC indication. 
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 Chapter 2 
State-of-the-Art of battery State-of-Charge 
determination 
 
  
          Improvements over time in the use of battery technology and SoC indication 
will be presented in this chapter. The goal of all the presented SoC determination 
methods is to arrive at an SoC indication system capable of providing an accurate 
SoC indication under all realistic user conditions, including those of spread in both 
battery and user behaviour, a large temperature and current range and aging of 
the battery. This chapter is organized as follows. Section 2.2 briefly describes the 
general operational mechanism of batteries and the characteristics of the best-
known batteries with their applications. The history of SoC indication is presented 
in section 2.3. A general State-of-Charge system and possible State-of-Charge 
indication methods are discussed in sections 2.4 and 2.5, respectively. Section 2.6 
focuses on commercially available State-of-Charge systems. Finally, section 2.7 
presents concluding remarks. 
 
 2.1 Introduction 
 
          Humanity has depended on electricity ever since it was first discovered. 
Without this phenomenon many technological advancements would not have been 
made. When the need for mobility increased, people switched to portable energy 
storage devices – first of all wheeled applications, then portable ones and finally 
wearable use. Several types of rechargeable battery systems are available on the 
market, such as lead–acid (LA), nickel–cadmium (NiCd), nickel–metal hydride 
(NiMH), lithium-ion (Li-ion) and lithium-ion polymer (Li-ion POL) batteries. The 
most important of them will be discussed in this chapter. For almost as long as 
rechargeable batteries have existed, systems that are capable of indicating the SoC 
have been around. Several methods for determining the SoC of a battery are known 
in the art, such as direct measurements, book-keeping and adaptive systems [1]. An 
accurate SoC determination method and an understandable and reliable SoC user 
display will improve a battery’s performance and reliability and will ultimately 
lengthen its lifetime.      
 
 
2.2 Battery technology and applications 
 
          As awkward and unreliable as the early batteries may have been, our 
descendants may one day look at today’s technology in very much the same way as 
we now view our predecessors’ clumsy experiments of 100 years ago [2]. This 
section focuses on developments in battery technology and characteristics. 
          In 1800 Volta discovered that a continuous flow of electrical force was 
generated when certain fluids were used as ionic conductors to promote an
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electrochemical reaction between two metals or electrodes [2]. This led to the 
invention of the first voltaic cell, better known as a battery.  
          In 1859 the French physicist Gaston Planté invented the first rechargeable 
battery. This secondary battery was based on lead–acid (LA) chemistry, a system 
that is still used today. In 1899 the Swedish Waldmar Jungner invented the nickel–
cadmium (NiCd) battery, based on nickel for the positive and cadmium for the 
negative electrode. Two years later, Edison came up with an alternative design by 
replacing cadmium with iron. Due to high material costs relative to dry cells or LA 
storage batteries, the practical applications of nickel–cadmium and nickel–iron 
batteries were limited. In 1932 Schlecht and Ackermann invented the sintered pole 
plate with which great improvements were achieved. These advancements were 
reflected in higher load currents and improved longevity. The sealed nickel–
cadmium battery, as we know it today, only became available in 1947, when 
Neumann succeeded in completely sealing the cell [2]. 
          Soon after the discovery, in the late 1960s, that intermetallic compounds, 
such as SmCo5 and LaNi5, were able to absorb and also desorb large amounts of 
hydrogen [3], it was realized that electrodes made of these materials could serve as 
a new electrochemical storage medium [4], [5]. In the following years the hydride-
forming electrode proved to be a serious alternative to the cadmium electrode, 
which was widely employed in rechargeable nickel–cadmium batteries. In 
particular, the higher energy storage capacity, good rate capability and non-toxic 
properties of the chemical elements of which these hydride-forming materials 
were composed were great advantages in relation to the cadmium electrode [6]. 
The nickel–metal hydride (NiMH) battery became commercially available in the 
1990s [7]. 
          The first non-rechargeable lithium batteries appeared in the early 1970s. 
Attempts to develop rechargeable lithium batteries followed in the 1980s but failed 
due to safety problems. Because of the inherent instability of lithium metal, 
especially during charging, research shifted to intercalate lithium ions in host 
materials in Li-ion batteries. Although lower in energy density than lithium metal, 
lithium ion is safe, provided certain precautions are taken when charging and 
discharging, implemented by means of a proper charging algorithm and a safety IC 
in series with the battery as discussed in the previous chapter. In 1991, the Sony 
Corporation commercialised the first lithium-ion battery (Li-ion) [1]. 
          Table 2.1 summarises the history of the battery developments described 
above. The general operational mechanism of a battery and characteristics of the 
most important rechargeable batteries available on the market today, e.g. nickel–
cadmium, nickel–metal hydride and lithium-ion batteries, will be given in the 
remainder of this section. 
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Table 2.1. History of battery development [2]. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
2.2.1 General operational mechanism of batteries 
 
          In its simplest definition, a battery is a device capable of converting chemical 
energy into electrical energy and vice versa. The chemical energy is stored in the 
electroactive species of the two electrodes inside the battery. The conversions occur 
through electrochemical reduction-oxidation (redox) or charge-transfer reactions 
[1]. These reactions involve the exchange of electrons between electroactive 
species in the two electrodes through an electrical circuit external to the battery. 
The reactions take place at the electrode/electrolyte interfaces. When current flows 
through the battery, an oxidation reaction will take place at the anode and a 
reduction reaction at the cathode. The oxidation reaction yields electrons to the 
external circuit, while a reduction reaction takes up these electrons from the 
external circuit. The electrolyte serves as an intermediate between the electrodes. It 
offers a medium for the transfer of ions. Hence, current flow is supported by 
electrons inside the electrodes and by ions inside the electrolyte. Externally, the 
current flows through the charger or load [1]. The basic electrochemical unit of a 
battery is called a cell, but the word battery is commonly used for one cell or for 
two or more cells connected in series/parallel. 
          During a battery’s lifetime, its performance or ‘health’ tends to deteriorate 
gradually due to irreversible physical and chemical changes that take place with 
usage and with age until the battery is finally no longer usable. The State-of-Health 
(SoH) is an indication of the point that has been reached in a battery’s life cycle and 
a measure of its condition relative to that of a fresh battery. Aging of the battery is a 
complex process that involves many battery parameters (e.g. impedance, capacity), 
the most important of which is capacity. To illustrate the phenomena, Fig. 2.1 
shows the discharge capacity (Qd) of a Li-ion battery represented as a function of 
the cycle number (Cn). The degradation curve has a clearly visible transfer point at 
which the rate of the battery’s degradation increases. 
 
 
 
 
 

Year Researcher (Country) Method 
1800 Volta Invention of the battery  
1859 Plante (France) Invention of the lead-acid battery 
1899 Jungner (Sweden) Invention of the nickel-cadmium battery 
1901 Edison (USA) Invention of the nickel-iron battery 
1932 Schlecht & Ackermann 

(Germany) 
Invention of the sintered pole plate 

1947 Neumann (France) Successful sealing of the nickel-cadmium 
battery 

1990 Sanyo (Japan) First commercial introduction of the NiMH 
battery 

1991 Sony (Japan) First commercial introduction of the  
Li-ion battery 
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Fig. 2.1. Decrease of the discharge capacity Qd [mAh] as a function of the operational 
conditions. The horizontal axis shows the cycle number Cn. 

 
          The exact position of the transfer point varies, depending on the type of 
battery and operational conditions. Aging of Li-ion batteries is not an absolutely 
new topic in modern electrochemistry. A number of models describing the aging 
effects in Li-ion batteries have recently been introduced. Models describing the 
dynamics of lithium consumption in Li-ion batteries are discussed by Broussely 
and Spotnitz in [8], [9]. Both Broussely and Spotnitz deal with the aging of the 
batteries under ‘on float’ condition, with the battery being kept under constant 
voltage of fixed polarity. A striking feature of all plots in the aforementioned 
articles is that they are smooth and do not have any transfer points. 
          A first conclusion is that it will be difficult to take into account every nuance 
of a battery’s charge and discharge qualities and aging characteristics in an SoC 
indication system. 
 
2.2.2 Battery types and characteristics 
 
NiCd batteries. Batteries based on a positive nickel electrode of a Ni(OH)2/NiOOH 
compound and a negative cadmium electrode of Cd and Cd(OH)2 are called NiCd 
batteries. The electrolyte is an aqueous KOH solution. A great advantage of NiCd 
batteries is their fast charge and discharge performance: it is possible to charge a 
battery in 10 minutes and large currents can be supplied during discharge. NiCd 
batteries have an average operating voltage of 1.2 V and can be used in many 
devices. NiCd batteries are used especially in tools demanding a lot of power. 
Other applications include cordless and mobile phones, shavers, camcorders, 
portable audio products and laptop computers. Disadvantages of NiCd batteries are 
their relatively low energy density and their so-called memory effect. This memory 
effect causes the battery to deliver only the capacity used during the preceding 
repeated charge/discharge cycles. Because of this effect the entire capacity of NiCd 
batteries should preferably be used for each discharge cycle to avoid a decrease in 
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the maximum capacity [1]. Another disadvantage is the presence of cadmium, 
which is an environmental hazard. This will lead to a complete ban on NiCd 
batteries in the future. 
 
NiMH batteries. The main difference between NiCd and NiMH batteries is the fact 
that in NiMH batteries a metal hydride alloy is used for the negative electrode 
instead of cadmium. In this way a higher energy density is obtained and the 
memory effect and environmental impact are reduced. NiMH batteries can 
moreover replace NiCd batteries because they have the same 1.2 V average 
operating voltage per cell. Applications include cordless and mobile phones, 
shavers, camcorders, portable audio products, laptop computers and Hybrid 
Electrical Vehicles (HEVs). A disadvantage of NiMH batteries is their relatively 
high self-discharge rate and relatively poor robustness with respect to overcharging, 
which is made worse by the fact that it is more difficult to detect the battery-full 
condition during charging [1]. 
 
Li-ion batteries. A schematic representation of a typical Li-ion cell is shown in Fig. 
2.2 [10]. The cell consists of five regions (from left to right in Fig. 2.2): a negative-
electrode current collector made of copper, a porous composite negative insertion 
electrode, a porous separator, a porous composite positive insertion electrode and a 
positive-electrode current collector made of aluminium. The composite electrodes 
are made of active material particles held together by a binder and a suitable filler 
material such as carbon black. When discharge is about to begin the negative 
electrode is fully lithiated and the positive electrode is ready to accept lithium ions. 
During discharge, the lithium ions deintercalate from the negative electrode 
particles and enter the solution phase, while in the positive electrode region lithium 
ions in the solution phase intercalate into the LiCoO2 particles. This results in a 
concentration gradient, which drives lithium ions from the negative electrode to the 
positive electrode. The cell voltage decreases during discharge, as the equilibrium 
potentials and overpotentials of the two electrodes are strong functions of the 
concentrations of lithium on the surface of the electrode particles. The cell is consi-
dered to have reached the end of discharge when its voltage drops to 3.0 V [10]. 

Fig. 2.2. A schematic representation of a typical Li-ion cell [10]. 
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          The positive electrode is made of lithium metal oxides (e.g. LiCoO2, LiNiO2 
or LiMn2O4) for storing the lithium ions. The negative carbon electrode is made of 
graphite or petroleum coke. The electrolyte is usually a salt dissolved in an organic 
solvent, but batteries with other solvents such as propylene carbonate also exist. An 
example of an employed salt is LiPF6. The operating voltage of the Li-ion batteries 
is critical and over(dis)charging results in fast aging and may cause fire or even 
exploding batteries. As discussed in chapter 1, an essential electronic protection 
circuit is consequently required to prevent over(dis)charging. Applications include 
mobile phones, shavers, camcorders, portable audio products and laptop computers. 
 
2.2.3 Summary 
 
          Several types of rechargeable battery systems have been discussed in this 
section. The main characteristics of the discussed battery types are summarised in 
Table 2.2 [1]. 
 
Table 2.2. Overview of the main characteristics of the most important rechargeable battery 

systems. 
 

 
 
 
 
 
 
 
 
 

2.3 History of State-of-Charge indication 
 
          In this section, previous and current SoC technologies will be presented. For 
almost as long as rechargeable batteries have existed, systems capable of indicating 
the amount of charge available inside a battery have been around. In 1938 Heyer 
introduced a single-meter device on which the value of a storage battery capacity is 
indicated [11]. The battery capacity is indicated on the basis of the measured 
battery voltage and a measured voltage drop across a sense resistor. When the 
battery is fully charged the device indicates 100% capacity (see Fig. 2.3). A simple 
test is done to determine when the battery should be replaced. In this test the 
voltage drop across a sense resistor during discharge from 100% capacity is 
measured. It is assumed that the voltage drop will be small in a fresh battery and 
high in an aged battery, implying that the battery should be replaced. Replacement 
is required when the battery capacity falls below 70% in the discharge test (see  
Fig. 2.3). 
          In 1963 Curtis Instruments pioneered gauges for monitoring the SoC, the 
‘fuel’ level, of vehicle traction batteries. One of the methods used by Curtis 
involves predicting a battery’s remaining capacity by measuring the amount of time 
elapsed since the loaded voltage dropped below a certain value. For example, when 
a battery is discharged from 24.25 V for a period of 3 minutes, the remaining 
capacity falls from 100% to 90%, etc. [12]. A compensation method for different 
discharge rates is also presented. 
 

Battery system NiCd NiMH Li-ion 
Average operating voltage (V) 1.2 1.2 3.6 

Energy density (Wh/l) 90 – 150 160 – 310 200 – 280 
Specific energy (Wh/Kg) 30 – 60 50 – 90 90 – 115 

Self-discharge rate (%/month) at 20°C 10 – 20 20 – 30 1 – 10 
Cycle life 300 – 700 300 – 600 500 – 1000 

Temperature range (°C) –20 – 50 –20 – 50 –20 – 50 
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Fig. 2.3. Battery capacity indicator developed by Heyer (1938) [11]. 
 
          Several monitors based on the average voltage were available in those days, 
such as Sears battery monitor, a range indicator (by Motovator) and the 
aforementioned Curtis fuel gauge. Of these, the Curtis fuel gauge was found to be 
the most sophisticated and accurate [13]. Curtis SoC gauges were even used on the 
Moon (see Fig. 2.4) [14].  

 
Fig. 2.4. Astronauts exploring the Moon in Lunar Roving Vehicles in 1971–1972 relied on 

early Curtis gauges [14]. 
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          In one of the Curtis patents filed by Finger et al. in 1975 the current flowing 
from the battery is sent to an integrator module, which registers the current 
depletion [15]. During charging, the current is integrated in the integrator module 
providing a continuous display of the SoC and information needed to regulate the 
charge rate. 
          An account of the attempts made to develop an SoC indicator for a nickel–
cadmium battery was given by Lerner in 1970 [16]. He concluded that the only 
reliable way of estimating the SoC is to use a current-sharing method. In this 
method, the current output of a battery having a known SoC is compared with that 
of a battery having an unknown SoC. The SoC of the unknown battery can be 
deduced from the outcome of this comparison. 
          In 1974 York et al. introduced an SoC indicator in which the value of the 
measured battery voltage is indicated with respect to two voltage levels stored in 
the system [17]. In a first state it is indicated that the battery voltage is greater than 
a first voltage level and in a second state it is indicated that the battery voltage is 
less than the first voltage level but greater than a second voltage level. Finally, a 
third state indicates that the battery voltage is less than the second voltage level and 
disables the load connected to the battery. The magnitude and duration of the 
voltage reduction are monitored by a threshold circuit, which produces an output 
whenever the terminal voltage falls below the lower threshold value. As a response 
to the voltage reduction, a number of pulses are generated. An electronic counter is 
used for counting the pulses and accumulating the counts. An integral proportional 
to the total time that the terminal voltage is below the lower threshold voltage is 
generated. The output of the integration provides an indication of the SoC. A 
principal advantage of this method is that SoC can be indicated despite sudden 
disconnection and reconnection of a battery.  
          The main concept of determining a battery’s SoC on the basis of a 
comparison between the measured battery voltage and predetermined threshold 
values that correspond to different SoC values is also presented in [18]–[20]. In 
[18] the average current consumption of a portable device is determined by using a 
capacitor for energy storage. The capacitor is charged and discharged between two 
voltage thresholds in a certain measured time. The number of charging processes 
occurring in the measured time are counted and used to calculate the average 
current consumption. The maximum error obtained for the average current 
calculation using the above method was smaller than 5% [18]. In [19] it is shown 
that the approximation of the accumulated operating time of a rechargeable battery 
is a function of the internal resistance of the rechargeable battery. The SoC is 
measured relative to the rechargeable battery’s maximum capacity. The 
applications presented in [18], [19] are described in the field of mobile telephony. 
In [20] voltage levels are measured during battery charge and discharge and 
compared with predetermined values, which are modified as a function of 
temperature. The stored battery charge or discharge curves are divided into curve 
portions defined by voltage levels and rates of changes of the voltage levels. Each 
curve portion defines a particular SoC of the battery. Measured voltage levels and 
rates of changes are then associated with the predetermined charge or discharge 
curve portion and the defined SoC. 
          In 1974 Brandwein et al. developed a device for monitoring nickel–cadmium 
batteries [21]. In addition to voltage measurements, the current that flows into and 
out of the battery and the battery temperature are measured and used in order to 
provide SoC indication. The battery voltage is stored as an analog voltage signal at 
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different temperatures. [22] presents an equivalent circuit diagram of the battery 
that uses current, voltage and temperature measurements as inputs. The measured 
values are compared with the corresponding values obtained in calculations using 
the equivalent circuit diagram. The parameters in the equivalent circuit diagram and 
the state variables are varied so that the measured values are matched and the SoC 
can be inferred from the adjusted parameters. 
          In 1975 Christianson et al. developed a method in which a battery’s SoC is 
indicated on the basis of the open-circuit voltage (OCV) calculation [23]. The OCV 
is directly proportional to the battery SoC and can be calculated using the following 
equation: 
 

OCV = Vbat + IR                                  (2.1) 
 
where Vbat is the battery terminal voltage, I the actual battery current – regarded as a 
positive value during discharge and a negative value during charge – and R is the 
internal resistance. Note that OCV = Vbat when I = 0, but after current interruption 
this takes a while due to several relaxation processes occurring inside a battery. In 
addition to the OCV, the method presented by Eby et al. in 1978 also uses the 
voltage under load to determine the SoC of an LA storage battery during a 
discharge cycle [24]. The battery’s initial OCV is stored in a settable memory. It 
has been demonstrated that in the case of LA batteries the OCV has a linear 
correlation to the charge level of the battery under a defined set of circumstances. 
The discharge rate can be determined at any moment in time as a comparison 
function between voltage under load and the corresponding OCV. 
          The first impedance measurements of batteries appear to have been made by 
Willihnganz in 1941 [25]. They involved excitation of the electrochemical cell by 
an ac voltage of small amplitude of about 5 mV and evaluation of the resistive and 
reactive components or other related parameters such as the modulus of impedance 
and phase angle. As such measurements encompass a wide range of ac signal 
frequencies, various characteristic parameters of the electrochemical cell and the 
kinetics of the associated reactions can be evaluated [25]. As an alternative, 
Dowgiallo et al. (1975) and Zaugg (1982) developed methods for determining a 
battery’s SoC on the basis of impedance measurements [26], [27]. The phase angle 
between the ac voltage across the battery terminals and the ac current through the 
battery (measured as a voltage through a sense resistor) is continuously monitored. 
The method presented in [26] relates to nickel–cadmium batteries and can be used 
in equipment such as transmitters, receivers, tape recorders, movie cameras, 
aircraft, electric vehicles, small calculators and computers. In the system developed 
by Muramatsu in 1985 the relationships between the battery impedance at different 
frequencies (defined as impedance spectroscopy), remaining capacity and SoH are 
used to detect a battery’s SoC and SoH [28]. Predetermined values based on this 
relationship are stored in look-up tables and used to determine the battery’s SoC 
and SoH. Look-up tables are tables in which fixed values of measured parameters, 
such as voltage, current, impedance and temperature, can be stored and used in 
order to indicate the SoC. 
          In 1984 Peled developed a method for determining the SoC of lithium-ion 
batteries [29]. The presented method is based on predetermined voltage and 
temperature measurements that are used as input parameters for look-up tables. 
After a current step and a short resting period, a battery’s OCV and temperature are 
measured. The measured value is compared with a corresponding predetermined 
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value stored in a look-up table. The outcome of this comparison is used to indicate 
the SoC. In the system developed by Kopmann (1987) the terminal voltage, the 
current and time are measured during each battery charging and discharging cycle 
[30]. These values are also used as inputs for look-up tables. The characteristic of 
the terminal voltage curve during charging and discharging is used to minimise the 
differences between the measured values and the battery’s actual SoC. [31] presents 
a method for determining the SoC of NiMH batteries in notebook applications. The 
method uses the battery’s temperature, voltage and discharge/charge rate measure-
ments to determine the SoC, using look-up tables. A possible hardware and 
software implementation is also presented. These techniques can be employed for 
any other battery technology by modifying the look-up tables. 
          In 1981 Finger of Curtis Instruments patented a method according to which 
the SoC of Lead-Acid (LA) batteries is determined during a quiescent interval with 
no current flowing through the battery [32]. The battery terminal voltage is 
measured after a current step and the combination of these two measurements 
(battery voltage and time) is used for battery OCV recovery characteristics 
determination. This predictable time function of voltage recovery is substantially 
independent of the actual voltage level of the terminal voltage. 
          [33] presents an SoC indicator for a lithium-ion battery based on a cell OCV. 

OCV relationship is obtained by defining the battery charge amount when the OCV 
of the cell is 3.9 V as SoC = 100% and defining the battery charge amount when 
the OCV of the cell is 3.5 V as SoC = 0%. By defining SoC = 100% and SoC = 0% 
the SoC can be correctly calculated and displayed even when a battery ages. 
          The methods presented in [34]–[38] use Coulomb counting, i.e. battery 
current measurement and integration, as a basis. The method developed by Aylor 

previously described OCV method and coulometric measurements (Coulomb 
counting). The paper states that it is possible to compensate for the weakness of 
both techniques and provide an accurate SoC indication by combining these two 
measurements. Coulometric measurements are used in short time operations, in 
which the accumulation of error is negligible. The error that is accumulated in 
coulometric measurement techniques can be corrected by taking an OCV reading 
every time the battery has rested sufficiently. A method for predicting the OCV 
before the battery voltage has fully stabilised has been developed in order to reduce 
the required rest period of the OCV measurements. It should be noted that this 
method is limited to LA-type batteries because of the unique linear relation 
between the OCV and the specific gravity that exists in LA batteries. In [39] it is 
indicated that the method presented in [34] could provide 99% accuracy (1% error) 
for charge detection, but at a high cost of realization. The application described in 
[37] relates to a battery pack using NiMH batteries or any other battery technology 
such as LA, lithium polymer, etc., operating in a hybrid–electric power train for a 
vehicle. Besides Coulomb counting, the systems presented by Kikuoka [35] and 
Seyfang [36] also compensate for temperature, charging efficiency of the battery, 
self-discharge and aging. In [36] a battery’s capacity is monitored and compared 
with the initial capacity to obtain an indication of the battery’s SoH. When the 
battery is fully discharged or fully charged a particular set of parameters, such as 
the conversion efficiency of each battery, are ‘learned’ and updated to take into 
account the battery’s aging. Besides Coulomb counting and voltage, current and 

The SoC is calculated on the basis of a stored SoC–OCV relationship. The SoC–

(1992) holds for LA batteries [34]. The described technique is a combination of the 
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temperature measurements, [38] presents a mathematical model that is implemen-
ted on a computer that simulates a battery’s behaviour. 
          The methods presented in [40]–[42] also use adaptive methods for 
determining a battery’s SoC. In 1997 Gerard et al. developed a method in which  
a battery’s ‘state variables’ are replaced with neural weights with the aim of 
providing portable equipment users with an accurate estimation of the remaining 
working time, e.g. how much time is left until the battery voltage reaches the end-
of-discharge voltage defined in a portable device [40]. Two artificial neural 
networks are used to model the system’s implementation, more precisely, to adapt 
the prediction of the current discharge curve to the general behaviour of the 
employed battery pack. A mean error of about 3% has been found using this 
implementation method. In 1999 Salkind et al. developed a method for SoC and 
SoH prediction based on fuzzy logic modelling for two battery systems – lithium–
sulphur dioxide (Li-SO2) and NiMH [41]. The method involves the use of fuzzy 
logic mathematics to analyse data obtained by impedance spectroscopy and/or 
Coulomb counting techniques. The maximum error between the measured SoC and 
the model-predicted SoC obtained using the above method for a limited data set in 
the case of lithium–sulphur dioxide cells was +/– 5%. In 2000 Garche et al. 
developed a method in which the Kalman filters (KF) are used to implement an 
adaptive method in connection with parameter estimation to determine SoC [42]. 
The basis of the filter is a numeric battery model description. The battery voltage is 
estimated on the basis of the current and temperature measurements and the results 
are compared with the measured battery voltage value. Adaptivity of the model is 
based on a comparison of the estimated values with observed battery behaviour. A 
more detailed description of these adaptive methods will be given in section 2.5.  
          In 2000 Bergveld et al. developed a method for estimating the SoC of a 
rechargeable lithium-ion battery [1], [43]. The basis of the algorithm is current 
measurement during the charge or discharge state and voltage measurement during 
the equilibrium state (state in which no current is flowing into or out of the battery 
and all the conditions inside the battery are fully stabilised). In the charge and 
discharge states the determination of the SoC relies on calculating the charge 
withdrawn from or supplied to the battery by means of current integration and 
subtracting this charge from or adding it to the previously calculated SoC. So in 
these states Coulomb counting is applied and the battery is viewed as a simple 
linear capacitor. 
          In addition to simple Coulomb counting the effect of the overpotential is also 
considered in the discharge state. Due to this overpotential, the battery voltage 
during discharging is lower than the Electro-Motive Force (EMF equals the sum of 
the equilibrium potentials of a battery’s electrodes), which in equilibrium equals the 
OCV presented above. The value of the overpotential depends on the discharge 
current, the SoC, age and temperature. Especially at low temperatures and low SoC 
values the remaining charge cannot be withdrawn from the battery due to a high 
overpotential caused mainly by diffusion limitation of the electrochemical 
reactions, because otherwise the battery voltage will drop below the end-of 
discharge voltage defined in the portable device. This leads to an apparent capacity 
loss, which at low temperatures of e.g. 0°C may amount to more than 5%. So a 
distinction should be made between the charge that is available in the battery and 
the charge that can be withdrawn from the battery under certain conditions. As 
overpotentials are temperature dependent, temperature measurements must also be 
carried out in the discharge state [1]. 
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          In the equilibrium state, a battery’s SoC is determined by means of voltage 
measurements. Because only a negligibly small current flows in this state, the 
measured voltage approaches the battery’s EMF. The algorithm uses a stored EMF 
versus-SoC curve to translate a measured voltage value into an SoC value 
expressed in % of the maximum capacity. The EMF-versus-SoC curve remains the 
same even when the battery ages and the temperature dependence of this curve is 
relatively low [1], [44]. The EMF method can also be used to calibrate the SoC 
system because the same SoC has been found for a certain measured EMF, 
irrespective of the battery’s age and temperature. This calibration is important, 
because in the charge and discharge states the calculated SoC will eventually drift 
away from the real value due to e.g. measurement inaccuracy in the current and the 
integration in time of this inaccuracy [1]. A complete description of this algorithm, 
which is also the starting point of this book, will be given in the next chapter. 
          Table 2.3 summarises the most important points of the history of SoC 
development outlined above.  
 

Table 2.3. History of SoC development. 
 

Year Researcher/ 
Company 

Method 

1938 Heyer Voltage measurements 
1963 Curtis Voltage measurements and threshold in 

voltage levels 
1970 Lerner Comparison between two batteries (one 

with a known SoC) 
1974 Brandwein Voltage, temperature and current 

measurements 
1975 Christianson OCV 
1975 Dowgiallo Impedance measurements 
1975 Finger Coulomb counting 
1978 Eby OCV and voltage under load 
1980 Kikuoka Book-keeping 
1981 Finger Voltage relaxation 
1984 Peled Look-up tables based on OCV and T 

measurements 
1985 Muramatsu Impedance spectroscopy 
1986 Kopmann Look-up tables based on V, I and T 

measurements 
1988 Seyfang Book-keeping and adaptive system 
1992 

 
Aylor OCV, OCV prediction and coulometric 

measurements 
1997 Gerard Voltage and Current Measurements, 

Artificial Neural Networks 
1999 Salkind Coulomb counting, impedance 

spectroscopy, fuzzy logic 
2000 

 
Garche Voltage and Current Measurements, 

Kalman filters 
2000 Bergveld Book-keeping, overpotential, EMF, 

maximum capacity learning algorithm 
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        As will be shown later in this chapter, the actual State-of-Charge indication 
integrated circuits (ICs) are based on the methods indicated in this table. More 
detailed information on the applied methods will be given in section 2.5. 
 
2.4 A general State-of-Charge system 
 
          In science, the standard unit used to express battery capacity is Coulomb 
(named after the French physicist C. A. Coulomb, 1736–1806), which describes the 
time a battery can produce a given current. The Coulomb is the unit of electric 
charge corresponding to one ampere-second (As). In practice, however, cell  
or battery capacity is more commonly expressed in ampere-hours (Ah) or 
milliampere-hours (mAh). Of great importance for users is to know a battery’s 
SoC. In [37] SoC is defined as the percentage of the full capacity of a battery that is 
still available for further discharge. In [25] it is the ratio of a cell’s available 
capacity and its maximum attainable capacity. For a proper understanding of what 
the term ‘SoC’ really implies a clear definition is needed: SoC is the percentage of 
maximum possible charge that is present inside a rechargeable battery. The SoC 
measurement method and the computational model based on the correct SoC 
definition must be simple, convenient, practical and reliable. 
          Fig. 2.5 shows an example of a practical SoC system. The battery may 
include a plurality of battery cells connected in series and/or parallel, each of the 
battery cells having at least two terminals. The SoC system may include an 
analogue-to-digital converter (ADC) for converting a voltage drop between at least 
two sense resistor connection pins as a measure of the current (I) into a digital 
signal and also for converting the measured analogue values of the battery voltage 
(V) and temperature (T) into digital signals. 
          A microprocessor/microcontroller (in which the SoC algorithm is stored) 
determines a battery system’s SoC on the basis of the measured signals. Two types 
of memory are needed. Basic battery data, such as the amount of self-discharge as a 
function of T and the discharging efficiency as a function of I and T, are read from 
the read-only memory (ROM). When the SoC algorithm is based on EMF 
measurements, the EMF–SoC relationship can be stored in ROM together with 
other battery-specific data. The random access memory (RAM) is used to store the 
history of use, such as the number of charge/discharge cycles, which can be used to 
update the maximum battery capacity. Each part of this system (software algorithm 
or hardware device) will influence the ultimate accuracy of the SoC indication (e.g. 
inaccuracy in the V, T and I measurements will result in inaccuracy in the final 
SoC). Also important is the calibration of the SoC, because if the SoC algorithm is 
based on, say, current measurement and integration, the error caused by the current 
measurement inaccuracy will accumulate over time. 
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Fig. 2.5. General functional architecture of a State-of-Charge system. 
         
    
2.5 Possible State-of-Charge indication methods 
 
          For an efficient discussion of SoC indication methods, some of the terms 
commonly used in the battery SoC industry should be defined.       
 
Ampere-hour. A measure of electric charge defined as the integral product of 
current (in Amperes) and time (in hours). 
 
Cell. The basic electrochemical unit used to generate electrical energy from stored 
chemical energy or to store electrical energy in the form of chemical energy. A cell 
consists of two electrodes in a container filled with an electrolyte. 
 
Battery. Two or more cells connected in an appropriate series/parallel arrangement 
to obtain the operating voltage and capacity required for a certain load. The term is 
also frequently used for single cells. 
 
Li-ion cells. Cells containing a liquid organic or polymer electrolyte in which the 
anode and cathode are both made of intercalation compounds [46]. 
 
C-rate. A charge or discharge current equal in Amperes to the rated capacity in Ah. 
Multiples larger or smaller than the C-rate are used to express larger or smaller 
currents. For example, the C-rate is 1100 mA in the case of an 1100 mAh battery, 
while the C/2 and 2C-rates are 550 mA and 2.2 A, respectively. 
 
Capacity. A battery’s electrical energy content expressed in ampere-hours. 
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Maximum capacity. Maximum amount of capacity that can be removed from a 
battery under defined discharge conditions. 
 
Cycle life. The number of cycles that a cell or battery can be charged and 
discharged under specific conditions before the available capacity in Ah fails to 
meet specific performance criteria. This will usually be 80% of the rated capacity. 
 
Cut-off voltage. The lowest operating voltage at which a cell is considered 
depleted. Also often referred to as end-of-discharge voltage or final voltage [34]. 
 
Self-discharge. The recoverable loss of a cell’s useful capacity on storage due to 
internal chemical action. This is usually expressed in a percentage of the rated 
capacity lost per month at a certain temperature because batteries’ self-discharge 
rates are strongly temperature-dependent. The self-discharge mechanism is a local 
redox process caused by decomposition of the electrolyte [46]. Other important 
sources for the self-discharge are micro-shorts and shuttle-molecules. 
 
Spread. Difference between characteristics of batteries of the same type. 
 
State-of-Health (SoH). A ‘measurement’ that reflects a battery’s general condition 
and its ability to deliver the specified performance in comparison with a fresh 
battery.  
 
State-of-Charge (SoC). The percentage of the maximum possible charge that is 
present inside a rechargeable battery. 
 
Depth-of-Discharge (DoD). The amount of capacity withdrawn from a battery 
expressed as a percentage of its maximum capacity. 
 
Depth-of-Charge (DoC). The amount of capacity put into a battery expressed as a 
percentage of its maximum capacity. 
 
Remaining run-time. The estimated time that a battery can supply current to a 
portable device under valid discharge conditions before it will stop functioning.  
 
          As indicated in section 2.3, there are several methods for determining the 
SoC of a battery. Some early, very inexpensive fuel gauges simply measured 
voltage. Battery voltage is a highly inaccurate indication of a battery’s capacity 
because it changes with temperature, discharge rates and aging. Another known 
method for measuring SoC involves impedance measurements. The measurements 
obtained are compared with previously generated standard reference curves. Yet 
another prior-art method used to determine battery SoCs involves estimating the 
SoC on the basis of a battery’s response to current or voltage pulses. These pulse 
systems yield only a very general impression of a SoC and are used primarily to 
determine whether a battery is still useable. This first group of methods will be 
called direct measurements below.  
          Another known method is to measure the current flowing into and out of a 
battery and to integrate this current over time in order to determine its capacity [1]. 
When using these current integrators one must correct the estimation of the SoC 
obtained because several battery-related factors affect the accuracy of the 
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estimation. These factors include temperature, history, charge and discharge 
efficiencies and cycle life. The integration of current is referred to in the literature 
as Coulomb counting [1]. When discharging ‘efficiency’, self-discharge and 
capacity loss are compensated for, this method can be regarded as a book-keeping 
system [1]. 
          The main problem in designing an accurate SoC indication system is the 
unpredictability of the behaviour of both batteries and users. For this reason use 
must be made of an adaptive system based on direct measurement, book-keeping or 
a combination of the two [1]. In order to clarify all aspects, these methods will be 
discussed separately below. 
 
2.5.1 Direct measurement 
 
          The direct measurement method refers to the measurement of battery 
variables such as the battery voltage (V), battery impedance (Z) and voltage 
relaxation time (τ) after application of a current step. Most relations between 
battery variables and the SoC depend on the temperature (T). This means that the 
battery temperature should also be measured, besides the voltage or impedance. 
The basic principle of a SoC indication system based on direct measurement is 
shown in Fig. 2.6. 

Fig. 2.6 Basic principle of a SoC indication system based on direct measurement. 
 

           The main advantage of a system based on direct measurement is that it does 
not have to be continuously connected to the battery. The measurements can be 
performed as soon as the battery has been connected [1]. 
 
Voltage measurements. Although voltage measurement has been a popular method, 
especially for mobile phone applications, it does not produce the most accurate 
results. Determining the remaining capacity of a cell simply by measuring its 
voltage level may be less expensive and may use less computing power of the host 
CPU than Coulomb counting, but under real-life conditions voltage measurements 
alone can be very misleading [47]. While it is true that a given cell voltage level 
will continually drop during discharge, the voltage level in relation to remaining 
charge varies greatly with cell temperature and discharge rate. Fig. 2.7 shows an Li-
ion battery voltage curve during discharge at different discharge rates. 
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Fig. 2.7. Li-ion battery voltage curves at different discharge rates. 
 
          The important point illustrated in Fig. 2.7 is the relationship between the cell 
voltage and its discharged capacity. It can be seen that the voltage discharge curve 
depends strongly on the discharge rate. The error in SoC estimation based on 
voltage measurement can be corrected by the system if the dependence of the 
battery voltage on the cell temperature and discharge rate is known. However, 
when those measured curves are included the process becomes more complicated 
and expensive than a Coulomb counting approach [47]. 
 
The EMF method. The term EMF stands for electromotive force. It is a battery’s 
internal driving force for providing energy to a load. In principle, the EMF can be 
inferred from thermodynamic data and the Nernst equation (or equations derived 
from it) [1]. Another method with which the EMF can be obtained is called linear 
interpolation. With this method the average battery voltage, calculated at the same 
SoC, is inferred from the battery voltages during two consecutive discharge and 
charge cycles using the same currents and at the same temperature. Fig. 2.8 shows 
the EMF curve obtained at 25°C with the linear interpolation method using Sony’s 
US18500G3 Li-ion battery. 
          In another known method the EMF is determined on the basis of voltage 
relaxation. The battery voltage will relax to the EMF value after current 
interruption. This may take a long time, especially when a battery is almost empty, 
at low temperatures and after a high discharge current rate [44]. In another EMF 
determination method – linear extrapolation – the battery voltages obtained with 
different currents with the same sign and at the same SoC value are linearly 
extrapolated to a current of value zero [1]. 
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Fig. 2.8. EMF curve obtained with the linear interpolation method. 
 
          The EMF of an Li-ion battery has been found to be a good measure of battery 
SoC. It has been demonstrated that the relationship between the EMF and the SoC 
does not change during cycling of the battery if the SoC is expressed in relative 
capacity [1]. The temperature dependence of the EMF is small, except when the 
battery is almost fully discharged or almost fully charged. 
          When the SoC algorithm is based on the EMF an accurate method for EMF 
implementation is required. Three of the EMF implementation methods used in 
practice will be presented below. 
 
(a) Look-up table. A table in which fixed values of the measured parameters can be 
stored and used in order to indicate SoC. The size and accuracy of the look-up 
tables in SoC indication systems depend on the number of stored values. One of the 
main drawbacks of this method is that even in the case of a single type of battery it 
is difficult to take into account every point of the EMF curve in order to provide an 
accurate SoC indication system. When many measurement points are included the 
process becomes more complicated and expensive than other approaches, and will 
probably not provide any significant advantages. 
 
(b) Piecewise linear function. In this method the EMF curve is approximated with 
piecewise linear functions. A possible example with 10 intervals is shown in  
Fig. 2.9 for Sony’s US18500G3 Li-ion battery. The intervals in voltage and  
the corresponding SoC are presented in Table 2.4. 
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Fig. 2.9. Piecewise EMF curve for the US18500G3 Li-ion battery from Sony. 
 

Table 2.4. Possible EMF curve implementation (see also Fig. 2.9). 
 

Interval number Interval voltage limits [V] SoC [%] 
1 4.08 – 4.20 90 – 100 
2 4.06 – 4.08 84 – 90 
3 4.02 – 4.06 81 – 84 
4 3.98 – 4.02 72 – 81 
5 3.88 – 3.98 61 – 72 
6 3.80 – 3.88 39 – 61 
7 3.68 – 3.80 8 – 39 
8 3.54 – 3.68 4 – 8 
9 3.22 – 3.54 0.5 – 4 
10 3.00 – 3.22 0.0 – 0.5 

 
          With the aid of Eq. (2.2), the SoC for any measured battery equilibrium 
voltage value, i.e. EMF, can be calculated: 
 

)SoCSoC(
VV

VEMFSoCSoC lh
lh

l
l −

−
−

+=             (2.2) 

 
where Vl and Vh are fixed and specific values from the EMF curve representing the 
voltages corresponding to the SoCl [%] and SoCh [%] SoC values, e.g. in table 2.4 
Vl = 4.08 V and Vh = 4.2 V corresponding to SoCl = 90% and SoCh = 100%, 
respectively. 
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          When enough voltage and SoC intervals are chosen, this method will allow 
more flexibility (possibility of implementation for other types of battery) and 
precision in SoC estimation based on the EMF curve in comparison with a look-up 
table implementation. The problems of spread, temperature and aging remain to be 
solved. 
 
(c) Mathematical function. In this method the EMF curve is approximated with a 
mathematical function. A possible example in which the EMF of an Li-ion battery 
with intercalated electrodes will be modelled as a difference in equilibrium 
potentials of positive and negative electrodes will be given in chapter 4 [1], [49].  
          Using an adaptive method for updating the equation parameters taking into 
consideration factors like spread, temperature and aging of the batteries, this 
method will probably offer the best solution for a practical EMF implementation.  
 
Impedance measurements. The ratio of a complex voltage and a complex current is 
in general a complex quantity. The ratio V/I is generally denoted as the impedance 
Z (see for instance [50]). This definition is not always correctly applied in the 
battery-related literature. Impedance data on many practical battery designs are 
reported in [51]. A useful way of studying processes in electrochemical systems 
including biological processes, batteries and capacitors is to make impedance 
measurements over a wide range of frequencies, usually referred to as 
Electrochemical Impedance Spectroscopy (EIS). 
          The electrochemical impedance (or ac impedance) of a battery characterises 
its dynamic behaviour, that is, its response to an excitation of small amplitude. In 
principle, any type of excitation signal may be used (sine wave, noise, step, . . .). In 
practice, sine waves are however usually used. In galvanostatic (constant current) 
mode, the dc current I (polarization current) charging or discharging the battery is 
modified using a sinusoidal current: 
 

        ∆I = Imax sin (2πft)                                            (2.3) 
 
at frequency f, which is superimposed to I, yielding a sinusoidal voltage response: 
 

     ∆V = Vmax sin (2πft + φ)                                    (2.4) 
 
around the dc voltage V at the battery’s terminals. The amplitude Vmax and the 
phase angle φ depend on the frequency f and Vmax also depends on the amplitude 
Imax of the applied ac current. In contrast, in potentiostatic mode (constant voltage), 
the dc voltage V at the battery’s terminals is modified using a sinusoidal voltage 
 

         ∆V = Vmax sin (2πft)                            (2.5) 
 
at frequency f, which is superimposed onto V, yielding a sinusoidal current 
response: 
 

      ∆I = Imax                          (2.6) 
 
around the dc current I flowing through the battery. In this case, the amplitude Imax 
and the phase angle φ depend on the frequency f and Imax also depends on the 
amplitude Vmax of the applied ac voltage. In both cases, the impedance is defined by 

sin (2πft – φ)         
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  ϕje
I
V

fZ
max

max)( =                                          (2.7) 

 
Therefore, the electrochemical impedance of a battery is a frequency-dependent 
complex number characterised by either its real and imaginary parts or its modulus 
and phase angle φ. 
          It should be noted that the voltage amplitude Vmax must not exceed about 10 
mV to ensure that impedance measurements are performed under linear conditions. 
In this case the excitation and response signals are actually sine waves and the 
measured impedance does not depend on the amplitude of the excitation signal. 
Such a condition is easily fulfilled in potentiostatic mode with Vmax being directly 
imposed by the experimenter. In galvanostatic mode, Imax must be determined so 
that Vmax is close to 10 mV at all frequencies, especially at the lowest analysed 
frequency at which the modulus of the battery impedance is maximum. High power 
ac currents (of several A) may be required for high capacity batteries whose 
impedance values are in the mΩ range. Impedance diagrams may be presented as a 
Bode plot (modulus in log scale versus frequency and phase angle versus 
frequency) or, more frequently, a Nyquist plot (imaginary part versus real part). In 
the latter case, electrochemists generally plot the negative of the imaginary part on 
the ordinate axis, so that the capacitive loops appear in the upper quadrants. The 
general shape of the Nyquist diagram of the complex electrochemical impedance of 
a high-capacity LA battery cell is given in Fig. 2.10. 
 

Fig. 2.10. Shape of the Nyquist diagram of the complex impedance of a high-capacity lead–
acid battery cell (frequencies in Hz) [51]. 

 
The Nyquist diagram of Fig. 2.10 presents: 
 
(a) an inductive part at frequencies higher than 100 Hz; 
(b) a high-frequency resistance RHF in the range of mΩ, which is the real part of the 
impedance at frequencies higher than 100 Hz; 
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(c) a first and small capacitive loop (size R1) for frequencies between 0.1 and 100 
Hz corresponding to the electrochemical reaction with the fastest kinetics; 
(d) a second and large loop (size R2) for frequencies lower than 0.1 Hz 
corresponding to the electrochemical reaction with the slowest kinetics.  
          Measurements of battery impedance as a function of frequency are not 
practical for SoC indication in a portable device because a signal with a frequency 
sweep has to be applied. Some dependence of the impedance on the SoC can be 
found in a laboratory set-up, but this dependence will usually be smaller than the 
dependence on a large temperature range as encountered in portable devices. The 
impedance measurements are used in portable products mainly as a means of 
indicating the battery’s condition (SoH). Battery wear-out can be detected by an 
increase in the internal resistance, so the value of the internal resistance can be 
assessed by simply applying a current step to test whether the battery is of poor 
quality and should be replaced [1]. 
 
2.5.2 Book–keeping systems 
 
          Book-keeping is a method for SoC indication that is based on both current 
measurement and integration. This can be denoted as Coulomb counting, which 
literally means ‘counting the charge flowing into or out of the battery’. These 
Coulomb counting data and other relevant data of the battery such as self-discharge 
rate, temperature, charge/discharge efficiency, history (e.g. cycle life), etc. will be 
used as input for the book-keeping system. The following Li-ion battery effects can 
be compensated for in a book-keeping system [1]: 
 
Discharging ‘efficiency’. Depending mainly on the SoC, T and I, only part of the 
available charge inside a battery can be retrieved. The main mechanisms behind 
this ‘efficiency’ are reaction kinetics and diffusion processes. These mechanisms 
involve reaction-rate and diffusion constants, which are temperature-dependent. 
Moreover, increased depletion of reacting species at the electrode surfaces occurs at 
larger currents and reaction-rate constants change over time as a battery ages. 
Consequently, a battery that may seem empty after it has been discharged with a 
relatively high current can still be discharged further after a rest period and/or with 
a lower current. In general, less charge can be obtained from a battery at low 
temperatures and/or large discharge currents. A battery’s age also influences the 
discharging efficiency, for example due to increased internal resistance. 
 
Self-discharge. Any battery will gradually loose charge, which will become 
apparent when a battery is left unused for some time. A Coulomb counter cannot 
measure this quantity of charge as no net current flows through the battery 
terminals. A battery’s self-discharge rate will depend strongly on temperature and 
on the SoC. 
 
Capacity loss. The maximum possible battery capacity in Ah decreases when a 
battery ages. The capacity loss depends on many factors. In general, the more the 
battery is misused, for example overcharged and overdischarged on a regular basis, 
the larger the loss will be. In most commercial book-keeping systems voltage 
measurement is often used to update the maximum battery capacity so as to deal 
with capacity loss [1].  
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          The overall accuracy of ‘Coulomb counting’ depends on the accuracy of the 
current measurement across the full operating range of the battery system, in both 
the charging and discharging modes. Typically, the current measuring device 
measures the voltage across a shunt resistor connected in series to the battery 
system and converts the measured voltage into a current. This current is integrated 
and used to determine the SoC of the battery system. Higher current levels require 
substantially lower shunt resistor values and higher power dissipation ratings. The 
low resistance of such a shunt results in a very small voltage drop across the shunt, 
which must be measured in order to determine the smaller charge and discharge 
currents in the battery system. Since the function of the battery monitoring system 
is to provide time integration of the battery current in order to track the battery’s 
SoC, even small errors in the measurement of the current can cause large errors in 
the SoC measurement to accumulate over time. One of the common errors when the 
signals to be measured are really small is the offset of the current measurement 
device. 
          A particular example of a book-keeping system for a mobile phone 
application is illustrated in Fig. 2.11 [52].  

Fig. 2.11. Book-keeping system in a mobile phone application. 
 

          The book-keeping module (BKM) continuously monitors the battery and 
reports the obtained information (voltage, temperature, current measurements and 
integration) to the processor. The processor uses this information and the battery 
identification data to determine the SoC. The battery identification data consist of 
data allowing the determination of the battery’s capacity. Those data are stored in 
the electrically erasable ROM (EEPROM) and are continuously updated by the 
processor. The processor uses one-wire interface to communicate with the battery. 
This means that the battery pack needs only three output connections: battery 
power, ground and one-wire interface. 
          The BKM can work in two different modes: 
The sensitive mode. When a telephone is in idle mode, its consumption will be low, 
so greater accuracy will be needed to measure the current. The sensitive mode 
requires a measurement with high sensitivity. 
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The normal mode. During communication the consumption current is quite high in 
comparison with the idle mode. The normal mode is also used in the charge mode. 
 
          A high sensitivity, referred to as the lowest current value that needs to be 
measured, is very important for  ensuring that all the charge flowing from and to a 
battery is monitored. The minor charge variations are not important for users, but  
they are essential for the system’s reliability. The system must have some internal 
registers (see Fig. 2.12) that accumulate the minor variations. These registers are 
described below.  

Fig. 2.12. Block diagram of the book-keeping support module (BKM). 
 
Current register. Measurement of the current flowing into and out of a battery at 
the sampling moment. 
 
SOC (SoC counter). Maintains a net accumulated charge flowing into and out of a 
battery. The reading in this register is an indication of the remaining capacity. This 
register is reset each time a low indication is given. 
 
CCA (charging current accumulator). Accumulates the total charging current 
throughout a battery’s life. It is only updated when the battery receives current. 
 
DCA (discharging current accumulator). Accumulates the total discharging current 
throughout a battery’s life. It is only updated when the battery provides current. 
 
The DCA and CCA registers give information to the battery system needed to 
determine the end of life of the rechargeable battery based on total charge/discharge 
current throughout its lifetime. 
 
 
2.5.3 Adaptive systems 
 
          The main problem in designing an accurate SoC indication system is the 
unpredictability of both battery behaviour and user behaviour. For this reason an 
adaptive system has to be used, which is based on direct measurement, book-
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keeping or a combination of the two [1]. Some examples of existing adaptive SoC 
systems will be described in this section. 
          In [42], [53]–[55] optimum Kalman filters are presented for implementing an 
adaptive method in connection with parameter estimation to determine SoC. The 
basis of the filter is a numeric battery model description. In [42] the battery voltage 
is estimated on the basis of current and temperature measurements and then  
the results are compared with the measured battery voltage value (see Fig. 2.13). 
The inner (internal) parameter contains at least the SoC, but could also contain 
additional battery variables, such as an estimated value of the battery series 
resistance (which will give information on the battery’s SoH). The model may 
contain the direct measurement function or the book-keeping function or a 
combination of the two. The system starts with a basic set of information describing 
standard behaviour of the type of battery concerned.  
          Adaptivity of the model is based on a comparison of the estimated values 
with observed battery behaviour. This comparison is made whenever possible. The 
purpose of a Kalman filter is to estimate a system’s state on the basis of 
measurements, which contain errors. The filter has the advantage of being 
sequential – it needs only the system variables of the previous sample and the 
forcing terms and observations of the current sample. 

 
Fig. 2.13. Method for SoC and SoH determination using a Kalman filter [42]. 

      
          In [53]–[55] Plett shows how the EKF (extended KF) may be used to 
adaptively identify unknown parameters in a cell model, in real-time, given cell 
voltage, current and temperature measurements. Five mathematical state-space 
models for modelling LiPB hybrid electrical vehicle (HEV) cell dynamics are 
discussed. The models with a single state are simple, but perform poorest. Adding 
hysteresis and filter states to the model improves performance, at some cost in 
complexity. The final model includes terms that describe the dynamic contributions 
due to open-circuit voltage, polarisation time constants, electrochemical hysteresis, 
ohmic loss and the effects of temperature. The results demonstrate that it is possible 
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to achieve a root-mean-squared modelling error that is smaller than the level of 
quantization error expected in an implementation. It is concluded that EKF 
provides the best solution for long-term SoC estimation [55]. 
          [40] presents an application in which a battery’s ‘state variables’ are replaced 
with neural weights with the aim of providing the portable equipment user with an 
accurate estimation of the remaining working time, i.e. how much time is left until 
the battery voltage reaches the cut-off value. 
          Two artificial neural networks (ANN), ANN_A and ANN_O, are used to 
model the system’s implementation, more precisely to adapt the prediction of the 
current discharge curve to the general behaviour of the employed battery pack (see 
Fig. 2.14). An ANN requires at least two phases: a training phase to set the synaptic 
weights at those offering the ‘best compromise’ and an evaluation phase to test the 
accuracy of the ANN using previously unseen samples. 2860 discharge curves (260 
cycles for 11 batteries) were used to train the system. It has been demonstrated that 
the ANN (even with online adaptation) can be useful even for small products. A 
mean error of about 3% has been found using this implementation method. 

Fig. 2.14. Schematic representation of smart battery management using ANN [40]. 
 

          [56] presents a method of SoC determination suitable for mobile 
communication applications. The effects of pulse current loads are investigated 
using a three-layer feed-forward artificial neural network, which is trained using the 
back propagation algorithm (for adjusting the weights and biases of each neuron on 
the basis of the error between SoC and the network’s output). The paper 
demonstrates the use of artificial neural networks for characterising the discharge 
patterns for Li-ion batteries under pulsed loads typical of those required by the 
mobile telecommunications system. 
          In [41] SoC and SoH prediction based on fuzzy logic modelling is 
demonstrated for two battery systems, lithium–sulphur dioxide and NiMH. The 
method involves using fuzzy logic mathematics to analyse data obtained by 
impedance spectroscopy and/or Coulomb counting techniques. Data may be 
categorised by ‘crisp’ or ‘fuzzy’ sets. Crisp sets categorise data with certainty, e.g. 
a set of temperatures between 30°C and 40°C. With fuzzy sets, the set in which 
data can be categorised is uncertain, e.g. the temperature is ‘warm’. This linguistic 
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descriptor ‘warm’ is a subset of a set of all temperatures and is defined by its 
membership function. The degree to which an element of the ‘temperature’ set 
belongs to the fuzzy subset ‘warm’ is indicated by a quantity referred to as its 
‘degree of membership’ or fit fuzzy unit value. 
 

 
Fig. 2.15. Membership function for temperature. 

 
          Fig. 2.15 shows an example of three subsets, defined by their membership 
functions, ‘cold’, ‘warm’ and ‘hot’, of the ‘universe of discourse’ ‘temperature’ set. 
Using the above method for a limited data set the maximum error between the 
measured SoC and the model-predicted SoC obtained for lithium–sulphur dioxide 
cells was found to be +/– 5%. 
 
2.5.4 Summary 
 
          A number of possible methods for SoC determination have been presented in 
this section. They were followed by descriptions of three of the best-known 
adaptive methods, which have as inputs measured battery variables such as voltage, 
impedance and current, and use these variables in order to accurately predict the 
SoC and the remaining time of use for an application. The SoC determination 
methods are summarised in Table 2.5 along with their fields of application, 
advantages and drawbacks [57]. 
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Table 2.5. Overview of methods for SoC determination [57]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2.6 Commercial State-of-Charge indication systems 
 
          The actual State-of-Charge technologies used by leading battery-
management IC producers in practice will be presented in this section. Among 
those producers are Benchmarq/Unitrode/Texas Instruments, Dallas 
Semiconductor/Maxim, Linear Technology, PowerSmart/Microchip, Analog 
Devices, Xicor, Atmel and Mitsumi, to name but a few (see Table 2.6). Numerous 
manufacturers are offering SBS (smart battery system)-compatible [58] battery ICs, 
chargers and software drivers. These companies include AMI, Award Software, 
Hitachi, MCC, Microchip, O2 Micro, Phoenix Technologies, SystemSoft and VLSI 
Technologies. 

 
 
 
 

 

 
 
 

 
 
 

 

 

 

 

 
 

 

 
 
 

Technique Field of application Advantages Drawbacks 
Discharge 

test 
Used for capacity 

determination at the 
beginning of life 

Easy and accurate; 
independent of SoH 

Offline, time-
intensive, modifies the 

battery state, loss of 
energy 

Coulomb     
counting 

 

All battery systems, 
most applications 

Accurate if enough 
re-calibration points 

are available and with 
good current 

measurements 

Sensitive to parasite 
reactions; 

needs regular re-
calibration points 

OCV Lead, Lithium, Zn/Br Online, cheap, OCV 
prediction 

Needs long rest time 
(current = 0) 

EMF Lead, Lithium Online, cheap, EMF 
prediction 

Needs long rest time 
(current = 0) 

Linear 
model 

Lead Photovoltaic 
 

Online, easy 
 

Needs reference data 
for fitting parameters 

Impedance 
spectroscopy 

All systems 
 

Gives information on 
SoH and quality 

Temperature sensitive, 
cost intensive 

D. C. 
Internal 

resistance 

Lead, NiCd 
 

Gives information on 
SoH; possibility of 

online measurements 

Good accuracy, but 
only for a short time 

interval 
Artificial 
Neural 

Networks 

All battery systems Online Needs training data of 
a similar battery, 

expensive to 
implement 

Fuzzy logic All battery systems Online Ask a lot of memory 
in real-word 
application 

Kalman 
filters 

All battery systems, 
PV, dynamic 
application 

Online 
Dynamic 

 

Difficult to implement 
the filtering algorithm 

that considers all 
features as e.g. 

nonnormalities and 
nonlinearities 
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Table 2.6. Main battery-management IC producers. 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
  
         Book-keeping Texas Instruments (TI) SoC ICs such as the bq2040, bq26220 
[59], bq2060, bq2063 and many others are available on the market. In 2003, TI 
announced the release of its bq26500 battery fuel gauge – a SoC IC that incorporate 
an on-board processor to calculate the remaining battery capacity and system run-
time (time-to-empty). The device measures the charge and discharge currents using 
an integrated low-offset voltage-to-frequency converter. A separate ADC on the IC 
is used to measure battery voltage and temperature. Two count registers accumulate 
charge and discharge counts, which are generated by sensing the voltage between 
the two sense resistor pins. Using the measurement inputs, the bq26500 runs a 
proven book-keeping algorithm (Coulomb counting that is also compensated for 
self-discharge and discharge rates) to accurately calculate remaining battery 
capacity and system run-time. The bq26500 compensates remaining battery 
capacity and run-times for temperature variations. The host system processor 
simply reads the data set in the bq26500 to retrieve remaining battery capacity, run-
time and other critical information that is fundamental to comprehensive battery 
and power management, including available power, average current, temperature, 
voltage, time-to-empty and full charge [60]. In the TI ICs, a self-discharge count 
register counts at a rate of one count every hour at 25°C [61]. The self-discharge 
count rate doubles approximately every 10°C up to 60°C and is halved every 10°C 
below 25°C down to 0°C. This value is useful in estimating the battery self-
discharge on the basis of capacity and storage temperature conditions. 
          The Microchip P3 SMBus Smart Battery ICs contain advanced battery 
control algorithms to determine remaining capacity, run-times and various other 
data relating to power-management systems [62]. These book-keeping algorithms 
also rely on a battery cell model that provides performance information of the 
particular chemical system in use. The cell models are often referred to as ‘look-up 
tables’ or LUTs. The look-up tables are stepwise approximations of the 
performance response curves that can be drawn when looking at discharge 
performance as a function of for example temperature and discharge rate. There are 
two look-up tables that define the predictive model for the lithium-ion cell 
chemistry. One look-up table predicts values of residual capacity (the capacity that 
cannot be removed from a battery due to discharging efficiency) that are used in 
remaining time calculations. The second is a predictive model of lithium self-
discharge. The self-discharge parameter table predicts self-discharge rates as a 
function of temperature and total capacity loss. To create look-up tables from cell 

Texas Instruments 
Battery-management 

ICs 

Philips Semiconductors 
Charge-control and monitor 

ICs 

Microchip Technology Inc 
 

Battery-management ICs 

Hitachi America Ltd 
 

Power-management µCs 

Zilog Inc 
µC-based charge controller 

Integrated Circuit 
Systems Inc  

Charge-control ICs 

Linear Technology 
Corp  

Battery-management 
ICs 

Maxim Integrated 
Products 

Charge-control ICs, SMBus-
control ICs 

National Semiconductor 
Corp  

Battery-management ICs 

Analog Devices 
Battery-management 

ICs 

Xicor 
Battery-management ICs 
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data enough test points must be generated to create a series of curves that can be 
broken down into intervals to estimate the curvature with a stepwise approximation. 
Some LUT ‘tables’ are illustrated in Fig. 2.16. 
          The top left graphic in Fig. 2.16 represents the charge efficiency model for 
NiMH chemistry, the top right represents Li-ion discharge cell models. In the 
second row of the figure, the discharge performance and self-discharge of NiMH 
batteries are represented on the left and right, respectively. 

Fig. 2.16. Microchip 3D batteries models [63]. 
 

          Maxim battery-management devices for Li-ion cells with a Coulomb counter, 
temperature converter and 15 bytes of user EEPROM, such as the DS2760 high-
precision Li-ion battery monitor or 2438 integrated current accumulator (ICA), are 
available in practice. For the Maxim book-keeping algorithms to function 
accurately while minimising computational complexity and parametric data 
storage, certain assumptions are made. 
          Charge efficiency and pack self-discharge rate are assumed negligible in the 
case of Li-ion applications and are ignored [48]. The fuel gauging equations work 
by comparing the ICA value with expected ‘empty’ and ‘full’ values for that cell 
type, which are stored in the IC user EEPROM. These data are generated by 
characterising the cell type over the application’s expected temperature range and 
current consumption. This information is subsequently stored in a pack-resident 
memory for the algorithms to later extract and modify. Information should be 
gathered on several packs so that average or typical values can be stored in every 
production pack. For best accuracy, the data should be collected on assembled 
packs containing the production circuit as opposed to individual cells [48]. 
          To collect the data, the cell pack is fully charged at each temperature and 
fully discharged at each rate and each temperature. All collected data points are 
arranged as shown in Table 2.7. Since only the difference between points is 
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important, the absolute values of the data do not matter, they have been normalised 
to the lowest value (standby current empty at 40°C). This reduces the number of 
data needed to be stored since standby empty 40°C is now always 0. 

 
 

Table 2.7. Cell characterisation data. 

          The active empty and standby empty points are defined as the capacity at 
which the battery reaches the empty voltage (as defined by the user) under the load 
of the active current and standby current, respectively [64]. The characterisation 
data are stored in two pages of the IC EEPROM memory. When characterisation of 
the cell pack is complete, calculating remaining capacity is very simple. The 

temperature and discharge rate. 
          The main drawback of all the discussed ICs is that none of them includes an 
adaptive method allowing for spread in battery and user behaviour, a large 
temperature and current range and aging of the cells under all realistic user 
conditions. 
 
 
2.7 Conclusions 
 
          An overview of the state-of-the-art of State-of-Charge indication of 
rechargeable batteries, including a historical development of SoC technologies, has 
been given in this chapter. The general operational mechanism of batteries and the 
characteristics of the best-known three battery types were given in section 2.2. 
          The focus in section 2.3 was on the historical development of SoC indication. 
A general functional architecture of a SoC system was described in section 2.4. 
          Three basic methods for SoC indication were identified in section 2.5, 
including that of direct measurement. A particular direct measurement method is 
the EMF method. The advantage of this method is that the EMF curve does not 
depend on many parameters. The fact that it does not depend on aging or battery 
temperature, makes it potentially suitable for State-of-Charge indication. The main 
drawback of the EMF method is that it does not provide continuous indication of 
State-of-Charge. 
          A book-keeping system has been discussed with reference to a mobile phone 
application. The main problem in the case of book-keeping systems is defining 
reliable calibration opportunities that occur often enough during a battery’s use [1]. 
          Also described above are three of the best-known adaptive methods, which 
have as inputs measured battery variables such as voltage, impedance and current, 
and use these variables in order to accurately predict the SoC and the remaining 
time of use for an application. Using at least one of these adaptive systems should 

characterisation data are used to find the cell full and empty points on the basis of 
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improve a system’s ability to cope with aging and temperature effects and spread in 
battery and user behaviour [1]. 
          The focus in section 2.6 was on commercially available SoC systems. In this 
section a couple of the actual technologies used by most companies in practice 
were discussed. The drawback of all the discussed ICs is that none of them includes 
a real adaptive method allowing for spread in battery and user behaviour, a large 
temperature and current range and aging of the cells under all realistic user 
conditions. 
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 Chapter 3 
A State-of-Charge indication algorithm 
 
    
          As discussed in chapter 2, many advances have been made in State-of-
Charge (SoC) indication in recent years, both through continued improvement of 
the SoC algorithms and through the development of more accurate hardware 
systems. Nevertheless, there is still no “ideal” SoC system that gives accurate 
indications under all realistic user conditions. The “ideal” SoC system is obviously 
one that is not expensive, can handle all battery chemistries, can operate over a 
wide range of load currents and can deal with the aging effect. Leading 
semiconductor companies (e.g. Philips [1]–[3], NXP Research, Texas Instruments 
[4]–[6], Microchip [7], [8] Maxim [9], [10], etc.) are paying more and more  
attention to accurate State-of-Charge indication in attempts to find that ideal system.  
          A SoC algorithm that combines some form of adaptivity with direct 
measurement and book-keeping systems was developed and implemented by 
Bergveld et al. in 2000 [1]–[3]. By implementing the mathematical models 
described in [1], this algorithm was found to be the most sophisticated and 
accurate [11], [12]. This chapter will give a complete description of this algorithm, 
which serves as the starting point of this book. This chapter is organised as follows. 
An introduction to the algorithm is given in section 3.1. Section 3.2 describes the 
models and states of the SoC indication system. The main aspects of the algorithm 
are given in section 3.3. The focus in section 3.4 is on accuracy problems. Section 
3.5 presents concluding remarks. 

 
3.1 An introduction to the algorithm 
 
          The SoC indication algorithm presented by Bergveld et al. in [1]–[3] aims to 
eliminate the main drawbacks and combine the advantages of the direct 
measurement and book-keeping methods described in Chapter 2. The basis of the 
SoC algorithm is Electro-Motive Force (EMF) measurement during equilibrium 
and current measurement and integration during charge and discharge. During 
discharge, in addition to simple Coulomb counting, the effect of the overpotential is 
also considered [1]. A method has also been developed for updating the value of 
the maximum capacity for coping with capacity loss due to the aging effect. The 
algorithm will be described below for a Panasonic CGR17500 Li-ion battery, but 
the basis of the algorithm holds for other types of Li batteries, too. The rated 
capacity of this battery is 720 mAh.  
 
3.2 Battery measurements and modelling for the State-of-Charge 

indication algorithm 
 
          The battery model applied in the developed SoC indication algorithm 
describes the battery EMF and overpotential behaviour, neither of which can be 
measured directly. The EMF and overpotential curves have been measured with an 
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accurate battery tester and implemented in the Battery Management System (BMS) 
using mathematical-function approximations [1], [13]. Both the measurement and 
the implementation method contribute to the final accuracy of the SoC indication. 
The EMF and overpotential measurement and modelling methods used in [1] will be 
described further on in this section.  
 
3.2.1 EMF measurement and modelling 
 
           Two measurement methods for EMF determination are considered in [1]: 
voltage relaxation and linear interpolation. A comparison with the EMF curves 
obtained in voltage relaxation and interpolation is shown in Fig. 3.1 [1]. The 
voltage relaxation measurements were performed by charging and discharging a 
battery in small 15 mAh increments at a rate of 0.1 C. Each charge and discharge 
was followed by a rest period of 30 minutes, after which the voltage was sampled. 
This voltage was assumed to be equal to the EMF. The battery was charged and 
discharged in 48 steps. The battery was charged with a current of 0.1 C-rate up to 
4.1 V in the interpolation method. After a rest period of 30 minutes, the battery was 
discharged at a rate of 0.1 C to 3 V. In order to average the results of the charging 
and discharging cycles, each nth discharge curve was averaged with each (n+1)st 
charge curve. 

 
Fig. 3.1. Comparison of the EMF curve obtained in voltage relaxation and interpolation 

measurements. The EMF values obtained in the voltage relaxation measurements are 
represented as squares; measurement points were obtained after charging (■) and discharging 
(□). The curve (x) represents the mathematical average of the (■) and (□) curves. The solid 

line represents the EMF curve obtained in interpolation. The x-axis shows SoC [%] 
normalised to maximum capacity; all measurements were performed at 25°C [1]. 

 
          Fig. 3.1 shows that the two curves obtained in voltage relaxation after charge 
and discharge steps are not identical. This is due to the hysteresis effect [1], [14]–
[17]. The greatest hysteresis occurs at a capacity of roughly 30% and amounts to 
approximately 40 mV (around 12% SoC when only the EMF curve obtained after 
discharge steps is taken into account in an SoC indication system). More 
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information on the EMF hysteresis will be given in chapter 4 of this book. The 
interpolated EMF and the mathematical average of the voltage relaxation curves are 
practically identical. Only a small deviation occurs when the battery is almost 
empty, which is partly due to longer relaxation times needed during discharging. In 
this case rest times of 30 minutes were not enough [1].   

Fig. 3.2. Measured EMF curves obtained in voltage relaxation after discharge steps at 
different temperatures: 0°C, 25°C and 45°C. The x-axis shows SoC [%] normalised to 

maximum capacity [1]. 

 
Fig. 3.3. Measured interpolated EMF curves obtained for different charge/discharge cycles at 
25°C. Cycle 17/18 (∆), cycle 181/182 (◊), cycle 607/608 (□), cycle 616/617 (■). The x-axis 

shows SoC [%] normalised to maximum capacity [1]. 
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          Fig. 3.2 shows the EMF curves obtained in voltage relaxation after discharge 
steps at different temperatures [1]. It illustrates that the temperature dependence of 
the EMF is almost zero at 50% SoC. At SoC values higher than 50%, the EMF 
decreases at low temperatures. At values lower than 50% SoC, the EMF increases 
at low temperatures. The maximum error in the SoC in the temperature range from 
0°C to 45°C occurs around 30% SoC and amounts to 8% when only the EMF curve 
at 25°C is taken into account in an SoC indication system.  
          Fig. 3.3 shows EMF curves interpolated for different charge/discharge 
cycles. The EMF curves are practically the same for all cycle numbers when plotted 
on the normalised capacity axis. The maximum difference is only 10 mV. The EMF 
curves plotted with an absolute capacity axis will differ, because the absolute 
battery capacity decreases when a battery ages. The absolute capacity values that 
were found for cycles 14, 289 and 615 were 733 mAh, 707 mAh and 660 mAh, 
respectively. It can be concluded from Fig. 3.3 that the EMF curve depends on the 
aging effect to only to a limited extent, which makes it potentially suitable for SoC 
indication. The EMF method can also be used to calibrate the SoC system because 
in charge and discharge states the calculated SoC will eventually drift away from 
the real value due to e.g. measurement inaccuracy in the current and the integration 
in time of this inaccuracy. 
          The EMF curves were further simulated using a model similar to the one 
described in section 4.4 of this book. Temperature dependence was taken into 
account only in the term RT/F [1].  
 
3.2.2 Overpotential measurement and modelling 
 
          The second model presented here is the overpotential model. A battery’s 
voltage during the discharge state is lower than the EMF due to overpotential. As 
overpotential represents the difference between EMF and the discharge/charge 
battery voltage, an EMF should first be determined. The method presented in [1] 
considers a battery discharge curve at 0.1 C-rate as a reference for the overpotential 
calculation. The difference between the reference curve and different discharge 
curves at current rates of 0.2 C-rate, 0.4 C-rate, 0.8 C-rate and 1 C-rate, 
respectively, has been considered for the overpotential interpretation [1].  
         The overpotential prediction also yields remaining run-time prediction. When 
current is drawn from a battery during discharging overpotentials occur. A battery 
will appear empty to a user even if a certain amount of capacity is still present 
inside the battery, because the battery voltage drops below the End-of-Discharge 
voltage (VEoD) defined in a portable device (e.g. 3 V in the case of a Li-ion battery). 
This is illustrated in Fig. 3.4, which shows the remaining run-time (tr) plotted along 
the horizontal axis to explain this effect.     
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Fig. 3.4. Schematic representation of EMF (dashed) and discharge voltage (solid) curves 
leading to an empty battery at tr = tempty . The battery appears empty at t0. The x-axis shows 

the remaining run-time. 
 

          As can be seen in Fig. 3.4, discharging starts at point A and the battery 
voltage drops at an overpotential η that is a function of the discharge current I and 
temperature T. At this moment a remaining run-time tr = ti is calculated on the basis 
of the following equation: 
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where QA [C] is the battery capacity at the beginning of discharging at point A and 
QB [C] represents the battery capacity at point B calculated on the basis of: 
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where SoC (EMFB) [%] represents the SoC calculated on the basis of the estimated 
EMF at point B and Qmax represents the battery’s maximum capacity. The estimated 
EMFB is a sum of the End-of-Discharge voltage and the predicted overpotential η.  
          At point B, tr = t0 and the remaining capacity is zero under the present I and T 
conditions. The battery will be completely empty (point tr = tempty in Fig. 3.4) when 
the battery voltage reaches the End-of-Discharge voltage and the overpotential 
equals zero. Hence, a distinction should be made between the charge available in a 
battery (i.e. SoC) and the charge that can be withdrawn from the battery under 
certain conditions, expressed in remaining run-time. It can be concluded that 
prediction of the overpotential at point B will also yield a more accurate remaining 
run-time prediction.  
          Four types of overpotential are identified in [1]: Li+ transport overpotential in 
the electrolyte, total kinetic or reaction overpotential, Li+ diffusion overpotential in 
both the LiCoO2 electrode and the LiC6 electrode. On the basis of this identification 
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an overpotential model that considers the ohmic, kinetic (ηΩk), diffusion (ηd) and 
increase in the overpotential when the battery becomes empty (ηq) has been 
formulated as follows [1]:  
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where η is the total overpotential (in [V]), I denotes the applied discharge current 
(in [A]), RΩk(T) is the temperature-dependent “ohmic” and “kinetic” resistance (in 
[Ω]), Rd(T) is the temperature-dependent “diffusion” resistance (in [Ω]) and )(Tdτ  
denotes the temperature-dependent “diffusion” time constant (in [s]). The 
dimensionless function Uq(I) is an inverse step function, with Uq(I) = 1 for 
discharging ( 0≤I ) and Uq(I) = 0 for charging (I > 0). The variable Qin (t) is the 
charge present inside the battery at time t, which means that Qin expresses SoC in 
[C]. Finally, )(Tqτ  is a temperature-dependent time constant associated with the 
increase in overpotential in an almost empty battery (in [s]) [1]. Simulation results 
of the mathematical overpotential implementation showed good agreement with the 
measured overpotential data [1]. 
 
 
3.3 States of the State-of-Charge algorithm 
 
          The algorithm proposed in [1]–[3] operates in five different states: initial 
state, equilibrium state, transitional state, discharge state and charge state. The 
state diagram illustrating the basic structure of the algorithm is shown in Fig. 3.5. 
          When a battery is first connected to the SoC system, the algorithm will start 
up in the initial state. In this state the initial SoC is determined on the basis of 
voltage and temperature measurements and the stored SoC-EMF relationship. This 
initial SoC is shown to the user, as it is assumed to be unacceptable for users to 
have to wait for more than a few seconds before being able to check the available 
capacity after the system has been switched on. Depending on whether the battery 
is charged, discharged or in equilibrium, the algorithm will then shift to the 
appropriate state. 
          In the equilibrium state hardly any current is drawn from the battery. This 
situation will for example occur when a mobile phone is in standby mode. The 
current will in this case be only a few mA, which is lower than a small current Ilim 
defined in the system (e.g. 2 mA in a mobile phone application). At this very low 
current value, the battery voltage will be very close to the EMF value, providing 
that the voltage is stable. So, stable voltage is necessary to allow the algorithm to 
change to this state. In this state the SoC is determined on the basis of voltage 
measurements and the stored SoC-EMF relationship. 
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Fig. 3.5. State diagram of the SoC algorithm [1]. 

 
          The transitional state is used when the algorithm changes from either the 
charge or the discharge state to the equilibrium state. In this state it is determined 
whether the battery voltage is stable and the algorithm is allowed to enter the 
equilibrium state. This is achieved by calculating the derivative of the battery 
voltage over time dV/dt and comparing it with a threshold value dV/dtlim stored in 
the SoC system to check the voltage stable condition [1]. The dV/dtlim threshold 
should be chosen to be small enough to ensure that the battery voltage is constant in 
time and that the battery reaches the equilibrium state. 
          In the charge state, a charger is connected to the battery and a positive 
current larger than Ilim flows into the battery. The SoC is determined by Coulomb 
counting. At the end of the charge state, the system passes through the transitional 
state to the equilibrium state. 
          In the discharge state, the battery is discharged and a negative current larger 
in module than Ilim flows out of the battery. In addition to simple Coulomb counting 
the effect of the overpotential is also considered. As has been shown in section 3.2 the 
prediction of the overpotential also yields a remaining run-time prediction. At the end 
of the discharge state, the system passes through the transitional state to the 
equilibrium state. 
          In practice, any battery will lose capacity during cycling. A simple method 
for updating the maximum capacity Capmax to take capacity loss into account is 
described in [1] (see also Fig. 3.6).  
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Fig. 3.6. Simple method for updating Qmax to take capacity loss into account [1]. 

 
          As shown in Fig. 3.6, for the mechanism for updating the maximum capacity 
it is necessary for the system to run through a sequence of states: equilibrium state, 
discharge state, transitional state and equilibrium state. The new value of Capmax is 
simply calculated by relating the charge Qout drawn from the battery mainly in the 
discharge state and to a much lesser extent in the transitional state to the difference 
in SoC (SoCS-SoCE) before and after discharging. The Qout is measured with the 
Coulomb counting method. The SoCS and SoCE values are inferred from a stored 
EMF-SoC relationship. The method can be made more complex by enforcing a 
minimum value of Qout for the update to be valid. Moreover, only small changes in 
Capmax should be allowed. Finally, the update mechanism should be allowed to 
occur only under “standard” conditions, for example a discharge rate that is not 
higher than 1 C-rate and a temperature that is within the range from 10°C to 40°C. 
A similar updating mechanism can be implemented during charging [1]. 
           In summary, in which state the algorithm is operating will depend on the 
value and sign of the current flowing into or out of the battery and on whether the 
battery voltage is stable. The main aspects of the described SoC algorithm will be 
discussed in the next section of this chapter. 
 
 
3.4 Main issues of the algorithm 
 
          An accurate battery model is essential for accurate SoC indication. As has 
been shown in the previous sections, the model applied in the SoC indication 
algorithm described in [1]–[3] combines maximum capacity adaptation with a 
battery’s EMF and overpotential behaviour. The EMF and overpotential curves are 
measured indirectly by a battery tester [1]. The main aspects of the measurement, 
modelling and implementation methods applied in [1] for EMF, overpotential and 
maximum capacity adaptation will be further discussed in this section. This will lead 
to identification and better understanding of the SoC inaccuracy sources, which will 
be useful for improving SoC system accuracy. 
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3.4.1 EMF measurement, modelling and implementation  
 
          Two measurement methods have been considered for EMF determination: 
voltage relaxation and linear interpolation. A rest period of 30 minutes has been 
considered to obtain an EMF value by means of voltage relaxation [1].  
          Fig. 3.7 illustrates what happens to the battery voltage after application of a 
discharge step. As can be seen, during the transition process, a battery’s OCV 
(Open-Circuit Voltage) doesn’t instantaneously coincide with its EMF, but relaxes 
to it. Especially at low temperatures this may take a long time; see Fig. 3.7. The 
value of the OCV changes from 3.680 V immediately after the current interruption 
and to about 3.729 V after 480 minutes. It follows from Fig. 3.7 that the OCV is 
constant after about 400 minutes. The voltage after 30 minutes differ approximately 
4 mV from the voltage after 480 minutes. This means that if it is assumed in this 
example that the equilibrium state is reached after 30 minutes, the inaccuracy in the 
SoC indication will be about 1%, as can be inferred from the sensitive part of the 
EMF curve. This situation will be even worse in the case of aged batteries at low 
SoC and temperature values [12]. It can be concluded that a 30 minutes’ rest period 
is not enough for accurate EMF curve determination. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.7.  Voltage relaxation after a discharge current step of 0.1°C-rate at 18% SoC and 

5°C. The x-axis represents the time of the transitional state in minutes. 
 

          The linear interpolation method considers the average battery voltage of the 
charge and discharge cycles at the same SoC and temperature in order to obtain the 
EMF curve. The battery voltage is averaged to minimise the overpotential influence 
and the hysteresis effect in the EMF determination method [14]–[17]. However, as 
shown in [18], the EMF hysteresis causes a maximum difference of 30 mV (about 
8% SoC) at around 30% SoC between the EMF measured by means of voltage 
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relaxation after charge steps and the EMF measured by means of voltage relaxation 
after discharge steps. When the EMF obtained by means of linear interpolation is 
considered in this example the inaccuracy of the SoC indication will be at least 4%. 
It can be concluded that the linear interpolation method is not an accurate solution 
for EMF determination. 
          It is concluded in [1] that the EMF depends on the aging effect to only a 
limited extent when plotted on a relative SoC scale. For an analysis of this 
conclusion the maximum battery capacity determination method applied in [1] must 
be explained. The maximum battery capacity has been defined as the capacity 
obtained from a battery during discharging to 3 V at a C-rate of 0.1 after charging 
to 4.1 V at a rate of 0.1°C. The maximum capacity value is used to plot the EMF 
curves on a relative axis in [1]. For an accurate calculation of a battery’s maximum 
capacity, two SoC states with corresponding EMF voltages should be identically 
defined for a fresh and an aged battery. The two defined battery SoC states are an 
empty and a full battery SoC. An empty battery state, or 0% SoC, may be assumed 
for example when the equilibrium voltage has a value of 3 V. A full battery state, or 
100% SoC, may be assumed for example when the battery voltage has a value of 
4.1 V. However, as mentioned in [1], the battery overpotential increases with aging. 
This means that when the same voltage limits and current C-rates are used during 
charging/discharging a fresh and an aged battery the calculated maximum battery 
capacity value will be influenced by the increase in the battery’s overpotential. In 
conclusion, the maximum capacity value measured in [1] was also influenced by 
the increase in the overpotential. When the overpotential effect is eliminated from 
the maximum capacity calculation the “real” maximum battery capacity will have a 
higher value than the value measured in [1]. In this situation the compared EMF-
SoC curves, also illustrated in Fig. 3.3 of this chapter, may represent a smaller 
difference in maximum battery capacity. This conclusion can also explain the 
similarity between the EMF curves obtained for a fresh and an “aged” battery. 
More measurements are needed to check the influence of aging on the EMF-SoC 
relationship. This will be done in chapter 6 of this book.            
          The temperature influence is simply considered in the factor RT/F in the 
EMF model presented in [1]. However, each parameter of the EMF model may  
be temperature-dependent. In conclusion, in order to obtain more accurate SoC 
indication, an EMF model in which the influence of temperature on the EMF model 
parameters is included should be further considered. Another factor that should be 
considered is the EMF model dependency on the battery chemistry. The presented 
EMF model was developed for a Panasonic CGR17500 Li-ion battery. The positive 
electrode of this type of battery consists of LiCoO2 and the negative electrode is 
made of LiC6. If e.g. another lithium metal oxide (e.g. LiNiO2 or LiMn2O4) were to 
be used to store the lithium ions, the EMF-SoC relationship could be different. For 
this reason an adaptive method needs to be used that also takes into consideration 
different battery chemistries for the EMF model description. In conclusion, an 
adaptive solution will also allow extension of the EMF model applicability to other 
types of battery chemistries. This will be discussed in chapter 8 of this book. 
          During implementation of the EMF detection method, false entries into the 
equilibrium state were detected [1]. This influenced the EMF estimation and  
the system’s calibration accuracy [1]. For a proper understanding of this problem 
the EMF detection method applied in [1] must be explained. In this method the 
derivative of the battery voltage over time dV/dt is calculated and compared with a 
threshold value dV/dtlim stored in the SoC system in order to determine the battery 
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voltage stable condition. In most practical applications a battery will not reach a 
completely relaxed state because a certain amount of current will always be flowing 
into or out of the battery. A good example is the standby current in a mobile phone 
application. As shown in [19] a dV/dtlim threshold that is dependent on the SoC and 
temperature should be chosen for accurate equilibrium state detection. However, as 
has been further proven, even when longer t times are chosen, the dV/dt may have a 
value close to zero while the voltage is still relaxing. In conclusion, it is very 
difficult to distinguish between a stable and an unstable battery voltage condition 
by considering only dV/dt measurements. Also, when the same threshold value 
dV/dtlim is considered for equilibrium state detection in the case of all SoC values 
the risk of false detections seems to be quite high. More specifications for 
equilibrium state detection will be given in the next chapter of this book. 
 
3.4.2 Overpotential measurement, modelling and implementation 
 
          The overpotential measurement method applied in [1] regards the 
overpotential as a difference between a reference battery discharge curve obtained 
at 0.1 C-rate and the battery discharge curves obtained at 0.2, 0.4, 0.8 and 1 C-rate. 
In conclusion, the measurement method assumes that the battery overpotential (η) 
is linear as a function of the discharge current rates. A clear definition of battery 
overpotential is needed to analyse this assumption. By definition, a battery’s 
overpotential represents the difference between the battery’s EMF and the 
charge/discharge battery voltage.  
         Fig. 3.8 illustrates the battery overpotentials measured at 0.25 and 0.5 C-rate 
and the calculated battery overpotential at 0.25 C-rate. The measured overpotentials 
were obtained as a difference between a measured EMF and measured discharge 
curves at 0.25 and at 0.5 C-rate discharge current rates. The measurements were 
carried out at 25°C. The calculated battery overpotential at 0.25 C-rate was 
obtained as a difference at the same SoC, between the overpotential measured at 
0.5 C-rate and the overpotential measured at 0.25 C-rate. As can be seen in Fig. 3.8, 
the calculated overpotential at 0.25 C-rate differs from the measured overpotential 
at 0.25 C-rate. It can be concluded from Fig. 3.8 that the battery overpotential is not 
linear as a function of the discharge current rates.  
          The value of the overpotential depends on the discharge current, the SoC, age 
and temperature. Especially in the case of old cells, the remaining charge cannot be 
withdrawn from a battery at low temperatures and low SoC values due to a high 
overpotential, because otherwise the battery voltage would drop below the End-of-
Discharge voltage [1]. In conclusion, the overpotential model parameters should be 
C-rate-temperature-and age-dependent. The model developed in [1] does not 
include temperature and age dependence in the overpotential description. Another 
important factor is the overpotential model dependency on the battery chemistry. 
Like the EMF model, the overpotential model was also developed for a CGR17500 
Li-ion battery. The model parameters were obtained by means of curve fitting using 
measurements obtained for batteries of this type. An important study will be a 
comparison between the overpotential behaviour of a CGR17500 Li-ion type of 
battery with that of a Li battery with a different chemistry.  
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Fig. 3.8.  Measured battery overpotentials at 0.25 (η0.25) and 0.5 C-rate (η0.5) and 
calculated battery overpotential at 0.25 C-rate ∆ (η0.5 – η0.25). The x-axis shows SoC [%], 

normalised to maximum capacity.  
 
3.4.3 Adaptive systems  
 
          To obtain an accurate SoC indication system, the unpredictability of the 
behaviour of both batteries and users should be considered. This unpredictability 
necessitates the use of an adaptive system. As already mentioned above, the EMF 
and the overpotential models should include an adaptive method in order to  
deal with the aging effect and different battery chemistries. More accurate 
measurements of the EMF dependence on the aging effect are needed. Such 
measurements are important for batteries that have a considerable capacity loss. If a 
battery’s EMF will change due to the aging effect then the method considered in [1] 
for updating the maximum capacity will probably not yield accurate results. As 
already mentioned above, the overpotential model should also include an adaptive 
method to adapt the system parameters to the capacity loss. In conclusion, an 
important improvement in SoC and remaining run-time indication accuracy can be 
achieved by implementing new adaptive solutions.  
          Finally, more tests of the SoC system under different conditions, e.g. at 
different charge/discharge currents and temperatures with aged and different 
batteries chemistries, will be necessary to check the SoC algorithm accuracy.  
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3.5 General remarks on the accuracy of SoC indication systems  
 
          SoC indication, for example in the form of a remaining run-time indication, 
must be accurate to within less than one minute under all practical conditions, 
including aging of the battery, for the system to be perceived as reliable by its 
users. Before considering improvements and recent developments in the fields of 
SoC and remaining run-time indication we will first further consider the accuracy 
of SoC systems in the remainder of this chapter.  
          A system’s accuracy is based on a qualification of the expected closeness of 
the result of a measurement to the actual value [20]. The generally accepted 
quantitative measure relating to accuracy is uncertainty. The uncertainty of a 
measurement is a parameter that characterises the range of the values within which 
a measurement’s actual value lies. It expresses our lack of knowledge of the 
measurand (the particular quantity to be measured) [20].  
          Several types of errors are covered in SoC indication systems. Typical errors 
in SoC indication systems are errors in the voltage and temperature measurements, 
errors in the current measurement and integration in time of these errors. A 
measurement’s error is composed of two components, which are together 
responsible for the combined uncertainty of the measurement. These components 
are the random and the systematic errors [1], [20]. The random errors in an SoC 
indication system are caused by spread in battery behaviour and by measurement 
inaccuracy. These errors can lead to a probability distribution around the estimated 
SoC and remaining capacity values. One way of minimising the effects of such 
errors is by averaging the results of repeated measurements. The systematic error is 
the error that persists even after averaging of an infinite number of repeated 
measurements. An example of a systematic error in an SoC indication system is an 
incorrect or incomplete inclusion of battery behaviour in a system [1]. Systematic 
errors may lead to a situation in which a portable device stops operating while the 
estimated remaining capacity is still larger than zero. Once a systematic error is 
known, it can be quantified and corrected, for example by calibrating the voltage, 
current and temperature measurements.  
          To assess the combined uncertainty in an SoC indication system, all possible 
error sources must first be identified. This can be done for example with the aid  
of statistical inference techniques (e.g. curve fitting) or by means of a pool of 
information on the variability of the measurement results (e.g. the specifications 
provided by a device’s manufacturer) [20]. A next step is to check how these errors 
propagate through the measurement chain and how they affect the final SoC 
indication inaccuracy. This is systematically done by means of the error budget, 
e.g. a table that catalogues all contributions to the final error. For further 
information on the subject of accuracy the reader is referred to [20]. 
          The general remarks concerning uncertainty and error identification 
presented in this section will be of particular importance in Chapter 7, with respect 
to a newly developed SoC algorithm.  
 
 
3.6 Conclusions 
           
          In this chapter a State-of-Charge indication system has been presented that 
calculates the SoC in percentages and also indicates the remaining run-time of a 
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portable application powered by a Li-ion battery [1]. This algorithm serves as the 
starting point of this book. 
• The main problem involved in EMFs obtained by means of voltage relaxation is 
that a longer rest period is necessary for an accurate EMF curve determination. The 
main problem involved in EMFs obtained by means of linear interpolation is the 
hysteresis effect. A simplified EMF model has been considered for the EMF-SoC 
relationship implementation. To enhance the accuracy of the SoC indication 
system, the influence of battery temperature must be included in the EMF model. 
And a new EMF detection method should be developed. New measurements, 
modelling and detection methods for battery EMFs will be presented in chapter 4. 
• As discussed in section 3.3, during current flow, Coulomb counting and 
overpotential prediction are considered in the SoC system [1]. The prediction of the 
overpotential also yields remaining run-time prediction. As concluded in section 
3.4, the difference between two discharge curves does not yield an accurate 
overpotential determination. Another conclusion relates to the developed over-
potential model. This model should further include the influence of temperature and 
C-rate to improve the accuracy of the SoC and the remaining run-time indication. 
New measurements and modelling methods for battery overpotentials will be 
presented in chapter 5. 
• The effect of a battery’s aging on the accuracy of the EMF and overpotential 
models needs to be studied further, also with a view to validation of the maximum 
capacity adaptation method presented in [1]. In this method it is assumed that the 
EMF curve depends on the aging effect to only a limited extent. Adding more 
adaptive solutions to the SoC indication system will improve the system’s ability to 
cope with the aging effect and to sustain the accuracy of the SoC and the remaining 
run-time indication. New measurements of the battery aging effect and new 
adaptive systems will be presented in chapter 6. 
• Finally, more tests under different conditions (e.g. different temperatures and C-
rates and using batteries of different ages) will have to be carried out to investigate 
the accuracy of the SoC indication system in greater detail. This will be done in 
chapters 7 and 8. 
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 Chapter 4 
Methods for measuring and modelling  
a battery’s Electro-Motive Force  
  
           
          Electro-Motive Force (EMF) measurement and, modelling are described in 
this chapter and simulation results are presented. EMF measurement by means of 
linear interpolation and voltage-relaxation methods is presented in section 4.1. A 
new EMF prediction model is described in section 4.2. This model is needed for a 
correct interpretation of the EMF measurement results. The focus in section 4.3 is 
on EMF hysteresis, a phenomenon discovered during analysis of the measurement 
results. A new EMF model that also includes EMF temperature dependence and 
simulation results obtained with this model are presented in section 4.4, in which 
the simulation results are also compared with the measurement results. Section 4.5 
presents concluding remarks. 

  
4.1 EMF measurement 
        
          EMF is a battery’s internal driving force for providing energy to a load. The 
battery voltage only equals the EMF when no current flows and the voltage has 
relaxed to its equilibrium value, i.e. the EMF.  
          Two EMF determination methods will be considered in this chapter:  linear 
interpolation and voltage relaxation [1]–[3]. Sony’s US18500G3 Li-ion batteries 
were used in all the experiments and simulations discussed in this chapter. At the 
time of testing the batteries were fairly new, having undergone 9 discharge/charge 
cycles. Table 4.1 presents the main characteristics of the US18500G3 Li-ion 
battery. 
 

Table 4.1. US18500G3 Li-ion battery characteristics.  
 
 
 
 
 
 
 
 

           
           
          In the linear interpolation method the average battery voltage, calculated at 

the same SoC, is inferred from the battery voltages during two consecutive 
discharge and charge cycles at the same C-rate and temperature. The average of the 
charge and discharge voltages is taken in order to minimise the possible effects of 
overpotential and hysteresis in the EMF function. In the calculations discussed in 

Battery      Characteristics 
Chemical system        Lithium-ion 

Cell Type      US18500G3 
Cell diameter at most 18.4 mm 
Cell Length at most 49.3 mm 

Capacity (0.2 C-rate), typical 1180 mAh  (3.0 V cut off) 
Capacity (0.2 C-rate), 

minimum 1100 mAh  (3.0 V cut off) 

Cell weight 33 g 

doi: 10.1007/978-1-4020-6945-1_4, © Springer Science + Business Media B.V. 2008 
for Battery-Powered Applications. 
V. Pop et al., Battery Management Systems. Accurate State-of-Charge Indication 63
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this chapter the EMF was determined using the linear interpolation method, which 
comprises the following steps. First a battery is fully charged to 4.2 V at a constant 
0.05 C-rate. At the end of the charge cycle the SoC level is defined to be 100%. 
The charging step is followed by a rest period of 24 hours,  after which a discharge 
step is applied at a constant 0.05 C-rate until the battery voltage reaches 3 V. At the 
end of the discharge cycle the SoC level is defined to be 0%. The low C-rate value 
was chosen to minimise the effect of the overpotential. The long rest periods were 
chosen to ensure that a new cycle would always start in the equilibrium state. This 
way the effect of a not-fully-relaxed voltage is eliminated from the EMF 
determination. Fig. 4.1 shows the EMF curve obtained at 25°C using the linear 
interpolation method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1. EMF curve (EMF) obtained with the linear interpolation method at 25°C. Vch 
represents the battery voltage measured during charging and Vd that measured during 

discharging. The horizontal axis shows the SoC [%] normalised to maximum capacity. 
 
          As during (dis)charging, the battery voltage was found to be (lower) higher 
than the EMF (see Fig. 4.1). The linear interpolation method is based on the 
assumption that at a given SoC the overpotential is symmetrical during discharge 
and charge cycles. As the overpotential is time- and SoC-dependent [1], the starting 
point in time and SoC of the experiment during the charge and discharge cycles 
should be the same to obtain a symmetrical overpotential. Fig. 4.2 shows the charge 
and discharge overpotentials determined as a difference between the EMF obtained 
by means of voltage-relaxation, as will be described below, and the charge/ 
discharge voltage.  
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Fig. 4.2. The charge (ηch) and discharge (ηd) overpotentials obtained as the difference 
between the EMF and charge/discharge voltage at 0.05 C-rate and 25°C, the same C-rate 

current and T conditions as used in the linear interpolation method. The EMF was 
experimentally determined by means of voltage relaxation [1]. The horizontal axis shows the 

SoC [%] normalised to maximum capacity. 
 
          It can be concluded from Fig. 4.2 that the charge and discharge 
overpotentials are not symmetrical. This non-symmetry is caused by a different 
build-up of the overpotential as a function of SoC in the charge and discharge 
cycles, particularly at low SoC values. More information on the overpotential will 
be given in chapter 5. Linear interpolation is therefore not a preferred method for 
determining the EMF. 
          In another known method the EMF is determined via voltage relaxation. The 
battery voltage will relax to the EMF value after current interruption. This may take 
a long time, especially when a battery is almost empty, at low temperatures and 
after a high discharge current rate. Fig. 4.3 illustrates what happens to the battery 
voltage after a discharge step at 0.25 C-rate current and 5°C. In order to guide the 
eye, the battery voltage during the relaxation period has been plotted as a function 
of logarithm of the relaxation time in Fig. 4.4. As can be seen in Figs. 4.3 and 4.4, 
the Open-Circuit Voltage (OCV) does not coincide with the battery’s EMF voltage 
for the greater part of the relaxation process. The value of the OCV changes from  
3 V after the current interruption to about 3.748 V after 600 minutes. It can be 
observed in Fig. 4.4 that the OCV becomes constant after about 100 minutes. The 
voltage after 30 minutes differs by approximately 15 mV from the voltage after 600 
minutes. This means that when in this example it is assumed that the equilibrium 
state is reached after 30 minutes, the inaccuracy in SoC indication will be about 
4.2%; see Fig. 4.3. 
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 Fig. 4.3.  Voltage-relaxation after a discharge current step of 0.25 C-rate at 0% SoC and 5°C. 
The horizontal axis shows the time in [min.]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 4.4.  Voltage-relaxation after a discharge current step of 0.25 C-rate at 0% SoC and 5°C. 
The horizontal axis shows the logarithm of the time log10(Time[min.]). 

 

A (30 min., OCV=3.733 V => SoC=22.9%) 

B (600 min., EMF=3.748 V => 
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          In the experiment discussed in this chapter the voltage-relaxation method was 
applied as follows. First, the battery was charged at a 0.1 C-rate in 25 steps. For 
each step in the experiment a limit of 4.2 V in voltage and 50 mAh in capacity was 
assumed. Four “Deep-Charge” steps at 0.05 C-rate were then applied. At the end of 
these steps the SoC level was defined to be 100%. Each charge step was followed 
by a rest period. The rest period was chosen as a function of SoC, i.e. at low SoCs 
long relaxation times of 24 hours were used and at higher SoCs shorter relaxation 
times of 8 hours. After charging, 25 discharge steps of 50 mAh each were applied 
at a 0.1 C-rate and a voltage limit of 3 V. Four “Deep-Discharge” steps at 0.05 C-
rate were then applied. At the end of these steps the SoC level was defined to be 
0%. Each discharge step was followed by a rest period chosen in the same way as 
in the case of the charge steps. The low C-rate was chosen to obtain an equilibrium 
voltage faster. The experiment was repeated at different C-rates and temperatures, 
each time yielding 29 points of the EMF-SoC curve.   
          The 29 measured EMF points were fitted using a newly developed method in 
which the shape of the curve is also taken into consideration. In this way, 20000 
fitted points were obtained, which yielded measured EMF values for each 0.005% 
increment in SoC value. Fig. 4.5 illustrates the EMF curve obtained with the 
voltage-relaxation method during the discharge cycles.  
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.5. Measured EMF data points (EMFm) and the fitted EMF curve (EMFf) obtained with 
the voltage-relaxation method during the discharge cycles. The horizontal axis shows the 

SoC [%] normalised to maximum capacity. 
 

         Fig. 4.6 presents the EMF obtained with the voltage-relaxation method as a 
function of SoC at three temperatures, i.e. 0, 25 and 45°C, during the discharge 
cycles. In order to guide the eye, the differences between the EMF values obtained 
at different temperatures have been indicated in Fig. 4.7.  
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Fig. 4.6. EMF measured by means of voltage-relaxation during the discharge cycles as a 
function of SoC at three temperatures. The horizontal axis shows the SoC [%] normalised to 

maximum capacity. 

 
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Fig. 4.7. EMF difference as a function of SoC at three temperatures. The horizontal axis 
shows the SoC [%] normalised to maximum capacity. 

 

          It can be concluded that the maximum difference between the EMF measured 
at 25°C and that measured at 45°C is about 29 mV at around 4% SoC. This means 
that when the temperature effect is not taken into consideration and the EMF curve 
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is modelled only at 25°C, the SoC indication system based on the EMF will yield 
an SoC value of 3.6% at 45°C, whereas the actual SoC value will be 4.1%. The 
inaccuracy, calculated as the difference between the actual SoC value measured at 
25°C and the SoC value measured at 45°C, will be 0.5% [4]. This effect will be 
more pronounced at low temperatures and in the flat region of the EMF-SoC curve, 
where even minor differences in the EMF will cause substantial errors in SoC. 
          In summary, the voltage-relaxation method is recommended for EMF 
determination. For accurate SoC determination, the EMF dependence on the 
temperature effect should moreover be taken into consideration. 
 
 
4.2 Voltage prediction 

 
  This section presents a new mathematical model for the Li-ion battery 

voltage-relaxation process. Using this model the equilibrium voltage, i.e. EMF, can 
be predicted accurately (i.e. with less than 1% SoC error) and within a short time 
(i.e. less than 6 minutes). It should be noted that the model parameters will be 
adapted on-line on the basis of battery voltage measurements, so the overall 
concept can be used for any other battery chemistry. An important advantage of the 
voltage-relaxation model is that it can speed up SoC indication on the basis of the 
EMF. This is necessary to calibrate for drifts resulting from the Coulomb counting 
and to improve the maximum capacity adaptation capabilities [1]. 

 
4.2.1 Equilibrium detection 
 
          It is important that the system is able to reach the equilibrium state, because 
in this state less calculation effort is required, which will mean that the SoC 
indication system will consume less power. If the system is in equilibrium the SoC 
value calculated on the basis of the EMF-SoC relationship will moreover be more 
accurate and the maximum capacity adaptation capability can be improved [1]. If 
the system reaches the equilibrium stage before the battery voltage has stabilised 
the voltage will be higher (when current has been interrupted after a charge step) or 
lower (when current has been interrupted after a discharge step) than the EMF, 
leading to a too high (return from charge step) or too low (return from discharge 
step) predicted SoC value. When such an incorrect SoC value is used for 
calibration, the system’s accuracy will be compromised. The same holds for the 
updating of the maximum capacity. The latter problem is discussed in [1], [3], in 
relation to an experiment in which the maximum capacity was updated after 
applying a discharge step. Since the battery voltage had not fully relaxed by the 
time that the algorithm returned to the equilibrium state, the SoC predicted on 
return to the equilibrium state after the application of the discharge step was too 
low, and the resulting calculated maximum capacity was also too low. There are 
several methods for detecting the equilibrium state. They will be briefly introduced 
in this section. 
 
Fixed time to wait 
 
          A simple method is to wait for a fixed length of time after current 
interruption and to assume that the battery voltage is stable after this time. In this 
situation the longest possible, i.e. worst-case, relaxation time must be used to be 
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sure that the battery is indeed in equilibrium. In the case of low SoC and 
temperature values this may take a long time; see e.g. Figure 4.3. Such long rest 
periods are very rarely used in portable devices. The waiting time can be also 
chosen as a function of e.g. SoC and temperature but even then false entries into the 
equilibrium state are likely to occur due to e.g. spread between batteries. The 
system moreover has to wait until the battery has relaxed for the EMF value to 
become available and calibration or updating of maximum capacity becomes 
possible. 

 
Threshold for the change in battery voltage with time (dV/dt) 
 
          In order to allow the algorithm to change to the equilibrium state, the 
condition of a stable voltage has to be met. The voltage change in time, i.e. the 
derivative dV/dt, can be used to determine this: when dV/dt is below a certain 
threshold value the voltage may be assumed to be stable and the battery to be in 
equilibrium. Under normal conditions a battery will however never reach a fully 
relaxed state because a certain small current will always be present (e.g. in a mobile 
phone application the standby current). As already mentioned in chapter 3, due to 
the EMF and overpotential dependence on the SoC, it is difficult to distinguish 
between a relaxed and a non-relaxed battery voltage by using only dV/dt 
measurements. If the same threshold value is used for all SoC values to detect 
equilibrium (dV/dt < threshold) the risk of false detections seems to be quite high. 
Another disadvantage of this method is that the system has to wait until the battery 
has fully relaxed. This solution was proposed in [1]. In [3] the claim was that the 
battery is checked on having a stable voltage, without specifically mentioning the 
method. 
 
Voltage prediction  

 
          When a model of the voltage-relaxation process is available, the relaxation 
end value, i.e. the EMF, can be calculated on the basis of the relaxation conditions. 
The main advantage over using a fixed waiting time or dV/dt threshold is that the 
EMF value becomes available before a battery has fully relaxed. This allows the 
system to calibrate the SoC obtained in prolonged Coulomb counting even when a 
user does not leave enough time for full relaxation between successive charges or 
discharges. This of course imposes strong demands on the accuracy of the predicted 
relaxation end value. 
          Of the three described methods for determining whether a battery is in 
equilibrium the third is the most advantageous as it offers more calibration and 
update opportunities for the maximum battery capacity. Another two patented 
methods are to be found in the literature [5], [6]. 

 
 

4.2.2 Existing voltage-relaxation models used for voltage prediction 
 

          Two modelling methods known in the state-of-the-art for predicting voltage 
relaxation will be presented in this section. 
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Asymptotes method 
 
          The voltage-prediction method presented by Aylor et al. focuses on lead-acid 
batteries [5]. The principle of this method is that a battery’s OCV recovery curve 
(solid line) can be approximated by two asymptotes if plotted on a semi-log scale, 
as shown in Fig. 4.8 (the dashed line is the first asymptote and the solid line is the 
second asymptote). A new variable X is introduced instead of t (time) in order to 
obtain a linear equation, with X being the logarithm of time. 

 
        t [min.] = 10X                         (4.1) 

Fig. 4.8. Open Circuit Voltage as a function of X (the logarithm of time).  
 

          From Fig. 4.8 it can be inferred that 
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where M represents the slope of the second asymptote (the solid line in Fig. 4.8), 
Vocf denotes the fully stabilised Open-Circuit Voltage, Xp  denotes the value of X at 
the asymptotes’ intersection and Vo equals the battery voltage at t=1min. (X = 0). 
          After performing calculations for different types of lead-acid cells [5] 
concludes that an average value of 1.64 for Xp yields the greatest accuracy in 
voltage prediction. Therefore, according to Eq. (4.2)  
 

                         Vocf = M 1.64 + V0                    (4.3) 
 

         For M inferred from Voc = V (t = 6.6 min.) and V0  = V (t =1 min.) Eq. (4.3) 
becomes:                               
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                       Vocf = 2 (Voc – V0) + V0 = 2 Voc – V0                             (4.4) 
 

          Note that this method makes use of a fixed parameter obtained in laboratory 
experiments, i.e. Xp=1.64, to predict the relaxation end voltage. If this parameter  
Xp is not updated, the system will become progressively less accurate in predicting 
the voltage-relaxation end value, i.e. the EMF, as a battery ages and its voltage-
relaxation behaviour changes. Results obtained with this voltage-relaxation method 
applied to a Li-ion battery will be presented in section 4.2.5. 

 
dV/dt and temperature combined method 
 
          In [6] Hoenig et al. present a voltage-prediction model based on the 
measured battery OCV, the change in measured battery OCV over time (dOCV/dt), 
and the temperature measured at any time during the voltage-relaxation process. 
The invention is described in relation to lead-acid storage batteries having 
sufficient cells to produce a rated voltage of 24 V. Applicability to other battery 
chemistries is however also claimed. 
           In order to find the correct parameters for the system, a battery is charged 
and discharged in fixed steps, starting with an empty battery. Each time the charge 
or discharge current is interrupted three parameters are measured and recorded as 
data points until the battery voltage/OCV has stabilised. These parameters are the 
battery voltage (OCV), the rate of change of the battery OCV and the temperature. 
The battery OCV and temperature are measured instantaneously, while the rate of 
change of OCV is measured over a predetermined period, i.e. 30 seconds. These 
measurements performed in a laboratory using the selected lead-acid battery led to 
two equations for the predicted relaxation end voltage, depending on the battery 
voltage. The voltages were translated into single-cell voltages. Since the average 
single-cell voltage of lead-acid batteries is 2 V, 12 cells were used in the 24 V 
battery. 

   The aforementioned two equations are: 
 

for battery Open-Circuit Voltages below (2.08 V) (number of cells)  
 
                         Vp = 1.165OCV + 6.95 dOCV/dt – 0.167 T – 0.95            (4.5) 

 
and for battery Open-Circuit Voltages above (2.08 V) (number of cells)  
 
                       Vp =1.027 OCV + 9.288 dOCV/dt – 0.0197 T – 0.56             (4.6) 

 
where Vp denotes the predicted relaxation end voltage, OCV denotes the measured 
battery Open-Circuit Voltage and dOCV/dt represents the change in battery OCV 
over time. T denotes the battery temperature in °C. 
          The transfer OCV between Eqs. (4.5) and (4.6) can be determined via a 
rough OCV prediction or measurement. According to the patent, the transfer will 
occur around a battery SoC of 75%. It is claimed that the exact definition of this 
transfer point is not important, since the inaccuracy introduced by use of a wrong 
equation would be minimal in the region around 75% SOC. In the case described in 
the patent for the lead-acid battery rated at 24 V the value of 25 V is used as the 
decision point. This value can be translated to 2.08 V multiplied by the number of 
cells, i.e. 12. Note again that Eqs. (4.5) and (4.6) make use of fixed parameters 
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obtained in a laboratory experiment. When these parameters are stored in the 
system and the battery characteristics change, which will always happen due to 
ageing, the accuracy of the predicted voltage-relaxation end values will decrease 
over time. Results obtained with this voltage-relaxation method using a Li-ion 
battery will be presented in the next sections. 
          In summary, the main problem with the SoC indication method patented in 
[3] is accurate determination of a battery’s equilibrium. Of the available methods 
for determining a battery’s equilibrium voltage after relaxation that based on a 
voltage-prediction model seems the most attractive. The methods currently known 
in the literature however make use of fixed parameters in the prediction of the 
voltage-relaxation end value, which is a disadvantage, because changing battery 
characteristics due to aging will lead to decreasing prediction accuracy over time 
[5], [6]. 
           
4.2.3 A new voltage-relaxation model 
 
          The method described in this section is a voltage-prediction method without 
the need to store parameters beforehand. Instead, the voltage-relaxation end value is 
determined on the basis of the measured first part of a voltage-relaxation curve and 
mathematical optimisation/fitting of a function to this measured part of the 
relaxation curve. In addition to the unknown voltage-relaxation end value, the 
function contains three more parameters that are also found by fitting. This means 
that these parameters are updated for each individual situation, without the need to 
store values beforehand. The advantages are (i) that the EMF can be predicted with 
enough accuracy in the first few minutes after current interruption and (ii) that no 
previously stored parameters are used as in the methods described in [5] and [6]. 
The first advantage improves the SoC determination by offering more calibration 
opportunities and solving the problem of the inability to determine a battery’s exact 
equilibrium. It will also improve any SoC indication system based on the EMF 
method. The second advantage makes the method more suitable for dealing with 
battery aging than the voltage-prediction methods described in [5] and [6]. 
 
The model 
 
          The method can be described as follows. At the beginning of the relaxation 
process a battery’s actual open-circuit voltage does not coincide with the EMF. The 
cause of this difference is the overpotential built up during the preceding 
(dis)charge period. This overpotential makes the battery voltage during the 
(dis)charge process deviate from the EMF. The overpotential build-up is caused by 
various electrochemical processes that occur in the battery, such as Li+-ion 
diffusion in both electrodes, diffusion and migration of Li+ and other ions in the 
electrolyte, Butler-Volmer kinetic limitations at the surface of the electrodes, etc. 
[1]. The relaxation process is consequently generally speaking a complex function 
involving several factors, such as the SoC, amount of charge added or removed 
from the battery, temperature and aging. This large number of dependencies makes 
it difficult to predict the EMF at the very beginning of the relaxation period. For 
this reason, the relaxation process should be observed for a certain length of time to 
arrive at an accurate prediction of the final EMF value. 
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where parameters 0, 0, 0γ α δ> > >  are the rate-determining constants, Γ  is 
equal to +1 if the voltage is increasing (relaxation after a discharge step) and equal 
to –1 if the voltage is decreasing (relaxation after a charge step), V∞  is the final 

relaxation voltage (an asymptotical value, i.e. EMF), tV  is the relaxation voltage at 

time t, log ( )tδ  is the natural logarithm (with base e) of time [s] to the power of 

parameter δ and tε  is a random error term. Note that the model presented in Eq. 
(4.7) assumes an exponential multiplicative error structure1.  
           The parameters V∞ , α , δ , and γ  can be estimated by applying the 
concentrated Ordinary Least Squares (OLS) scheme. Therefore, Eq. 4.7 can be re-
written by taking squared values: 

 

                            2 2( ) ( )
log ( ) tV V

t tα δ

γ
∞Γ = −                             (4.8) 

 
Taking logarithm reduces Eq. (4.8) to a usual linear regression model: 
 

                      
2log( ) log( ) log(log( ))t tV V C A t D t ε∞ − = + + +                (4.9) 

where 2 log( )C γ= , 2A α= − and 2D δ= − . For each fixed value of V∞

            1, , ,t t t Ny x t t tβ ε′= + = …                           (4.10) 

where ( )2log
ii tt VVy −= ∞ , ( )1, log( ),log(log( ))

it i ix t t ′= , ( , , ) 'C A Dβ = , 

                                                 
1 Note that the model described by Eq. (4.7) can be formally written in an additive 

form, i.e. 
log ( )t tV V

t tα δ

γ ς∞

Γ
= − +  while the error term tς  is dependent on tV . 

te ε−

 [s] as the moments in time at which the battery voltages 

 [V] are observed during the relaxation process. This implies that 

the first part of the relaxation curve is sampled at N sample points 
general model for the voltage-relaxation process proposed in this section is 

 Eq. (4.9) 
can be written as the usual regression model  

i=1,..., N. In matrix notations it is written as 
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                                                    y X β ε= +                                                (4.11) 
 
where ( ) ',,1 Nyyy …= , ( ) ',,1 Nεεε …=  and ( )1, , 'NX x x= …  is a matrix of 

formed by ones, log( )it -values and log(log( ))it -values. After the initial OLS 

estimator has been obtained for β , i.e. )'ˆ,ˆ,ˆ(ˆ DAC=β , where 
1ˆ ( ' ) 'X X X yβ −=  based on an initial guess for V∞  used to calculate y, 

2
β̂Xy −  is calculated and minimised with respect to V∞  (where the OLS 

estimator β  is re-calculated each time V∞  is changed). This leads to an  

implementation that is simpler than minimising 
2

β̂Xy − with respect to V∞  and 

β  jointly. The initial guess of V∞  can be obtained for example by adding 100 mV 
to the first voltage sample in the case of relaxation after a discharge step, or by 
subtracting 100 mV in the case of relaxation after a charge step. Finally, the 
parameters in the original model of Eq. (4.7) will be recovered as 

)2/ˆexp(ˆ C=γ , 2/ˆˆ A−=α , 2/ˆˆ D−=δ . In summary, the voltage-prediction 
model of Eq. (4.7) is fitted to the measured relaxation curve described by sample 
points ( it ,

it
V

predicted relaxation end voltage V∞ . Since there are 4 unknown parameters in the 

model of Eq. (4.7) (V∞ , α , δ ,γ  ) at least 4 sample points are needed to solve the 
set of equations, i.e. N≥4. 
          The final objective of the voltage-relaxation model is to offer SoC indication 
accuracy that is better than that achieved on the basis of battery OCV or by means 
of Coulomb counting. In this book an SoC indication accuracy calculated on the 
basis of the predicted EMF voltage of within 1% SoC is considered acceptable. 
 
4.2.4 Implementation aspects of the voltage-relaxation model 
 
          To test the accuracy of the voltage-prediction model, a Li-ion US18500G3 
battery (rated capacity 1100 mAh) was charged and discharged using a Maccor 
battery tester in steps of 50 mAh at different C-rates (0.05, 0.1, 0.25 and 0.5 C-rate) 
and different temperatures (0, 5, 25 and 45°C). The voltage-relaxation 
measurements showed that the vertical part of the relaxation curve in the first 
moments of relaxation may yield substantial inaccuracies in the predicted end-
voltage value. To obtain an optimum value for the first sample time t1 that would 
minimise the error in the predicted voltage, roughly 500 relaxation curves obtained 
with the Maccor battery tester as described above were simulated with the aid of 
the model of Eq. (4.7) using MATLAB. It was found that at least the first 0.5 
minute after current interruption must be ignored. Voltage samples intended for 
fitting the model of Eq. (4.7) should be taken after this period of time. 
          Fig. 4.9 illustrates the voltage relaxation process after application of a charge 
step. The figure shows the battery voltage after a charge step at a 0.5 C-rate and 25°C. 
 

it , i.e. the columns in this matrix are regressors based on N available time instants

), i=1,..., N. This yields a predicted relaxation voltage curve and a 
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Fig. 4.9. Battery OCV relaxation after a charge step at 0.5 C-rate and 25°C. The data points 

measured in the first 5 minutes of the relaxation process (Vm) are used for the voltage 
prediction (Vp). The horizontal axis shows the time in [min.]. 

 
          The voltage eventually relaxes to a stable value of 3.710 V, i.e. the EMF 
corresponding to this SoC value. After 5 minutes of relaxation, the OCV (Vm) still 
differ 15 mV from the end value. This means that if the algorithm were to return to 
the equilibrium state after these 5 minutes, the battery voltage would still differs 15 
mV from the actual EMF, which would in this case correspond to a 2.5% SoC 
error. Returning to the equilibrium state after 60 minutes would in this case lead to 
an acceptable SoC error of less than 1%. This also means that in cases like the one 
illustrated in Fig. 4.9, a system cannot be calibrated until it has returned to the 
equilibrium state after 60 minutes. If a user starts recharging a battery before these 
60 minutes have elapsed, the calibration opportunity will be lost. In summary, it is 
crucial to accurately determine when the battery voltage has stabilised after 
application of a charge/discharge step, and this may take a long time. It follows 
from Fig. 4.9 that the SoC calculated via voltage prediction after five minutes of 
rest is very close to the final SoC value calculated on the basis of the EMF voltage. 
In this example the calculated SoC inaccuracy is –0.2% SoC. 
          In order to further investigate the accuracy of the voltage-prediction model 
several measurements were performed in a laboratory set-up. In these 
measurements a battery was charged and discharged and the end voltage after 
current interruption was estimated in real-time using the voltage model of Eq. (4.7). 
The model’s accuracy was again determined by comparing the SoC calculated with 
the aid of the EMF curve on the basis of the predicted EMF voltage using the 
model of Eq. (4.7) with an SoC calculated on the basis of a final EMF value 
obtained in the laboratory measurements, i.e. the final stabilised voltage after a long 
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period of relaxation. The first 0.5 minute of relaxation were ignored in formulating 
the model of Eq. (4.7). The total relaxation period was chosen so that the battery 
would be able to relax completely under all conditions.  
          In addition, the SoC was also determined using the EMF curve based on the 
instantaneous OCV values of the battery voltage during relaxation. As before, the 
error in this calculated SoC can be calculated by comparing it with the SoC based 
on the final EMF value measured at the battery terminals after a long relaxation 
time. The latter error gives an indication of the magnitude of the error that would 
occur when assuming the battery is in equilibrium after a fixed relaxation time. The 
SoC errors obtained when using the voltage-relaxation model of Eq. (4.7) or the 
instantaneous OCV value obtained for a discharge at 0.25 C-rate and 5°C are 
shown in Fig. 4.10.  

 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.10. Error in SoC calculated on the basis of a predicted voltage (SoCe(Vp)) obtained 
using the model of Eq. (4.7) compared with an error in SoC calculated on the basis of the 

instantaneous OCV (SoCe (OCV)) considered after a discharge step at 0.25 C-rate and 5°C. 
The horizontal axis shows the time in [min.]. 

 
          Fig. 4.10 shows that the error in the SoC based on the voltage prediction 
(SoCe(Vp)) is about 0.62% after five minutes of relaxation, whereas the SoC error 
obtained when using the instantaneous OCV value SoCe(OCV) is about 6.16% at 
that time. An SoC error SoCe(OCV) of 0.6% is obtained only after a relaxation 
period of 260 minutes. From this it can be concluded that voltage prediction results 
in better accuracy after five minutes than the battery’s OCV considered after five 
minutes, and it yields the same accuracy as obtained when a battery’s OCV is 
considered after 250 minutes of relaxation. The “speed” of the system based on 
EMF prediction and the voltage-relaxation model of Eq. (4.7) is improved 50 times 
in this situation (i.e. 250/5 = 50). This means that, by considering only the first five 

 

77



Chapter 4 

minutes of relaxation and ignoring the first half minute, the SoC can be predicted 
on the basis of the EMF curve with the same accuracy as obtained when using a 
fixed relaxation time of 250 minutes. Moreover, it can be concluded from Fig. 4.10 
that for the first 400 minutes the SoC values obtained on the basis of the predicted 
voltage are more accurate than the SoC values obtained on the basis of the battery’s 
OCV. After this point the two SoC values are more or less the same. Other 
measurement results obtained after interrupting a discharge at 0.25 C-rate and 25 
and 45°C are presented in Figs. 4.11 and 4.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 4.11. Same as Fig. 4.10, only now at 25°C.  
  
         In both Fig. 4.11 and Fig. 4.12 the error SoCe(Vp) obtained when using 
voltage prediction by fitting the model of Eq. (4.7) to the first part of the measured 
relaxation curve and using the predicted voltage in the EMF curve is smaller than 
the error SoCe(OCV) obtained by filling in the instantaneous OCV value in the 
EMF curve. Fig. 4.12 for example shows that voltage prediction leads to an error 
SoCe(Vp) of 0.3% when the first two minutes of the relaxation curve are considered 
and the first 0.5 minute is ignored in the model fitting process, whereas SoCe(OCV) 
is 0.83% at that time. In this example the SoC obtained via voltage prediction using 
Eq. (4.7) is more accurate throughout the entire relaxation time. So from the 
measurements presented so far it can be concluded that the voltage-prediction 
model yields results that are better than those obtained by just considering an OCV 
value, and that an SoC error of less than 1% will usually be obtained after five 
minutes of relaxation. 
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Fig. 4.12. Same as Fig. 4.10, only now at 45°C.  
  
          The same conclusions can be drawn from Figs. 4.13–4.15, in which the same 
curves are compared after the application of a charge step at 0.5 C-rate at various 
temperatures. In this case, SoCe(Vp) was obtained by fitting the model of Eq. (4.7) 
to the relaxation curve and ignoring the first 0.5 minute. 
         See for example Fig. 4.13 at a time of around four minutes. At this time, 
voltage prediction yields an SoCe(Vp) error of 1.3%, whereas the SoCe(OCV) error 
is 7.3%. An SoCe(OCV) error of around 1.3% is obtained after a rest period of 70 
minutes. So voltage prediction yields greater accuracy than the battery’s OCV 
considered after four minutes and the same accuracy as the OCV considered after 
70 minutes of relaxation. The “speed” of the system based on voltage-relaxation 
model is improved 17 times in this situation. Fig. 4.13 also shows that for the first 
110 minutes the SoC values obtained on the basis of the predicted voltage are more 
accurate than the SoC values obtained on the basis of the battery’s OCV. After this 
point the two SoC values are more or less the same. 
          It can be concluded from Figs. 4.9–4.15 that the SoC calculated on the basis 
of the predicted voltage after five minutes of relaxation at different SoC values, 
charge/discharge rates and temperatures yields an SoC prediction error of less than 
1%. A considerable gain in speed is achieved in comparison with using a fixed 
relaxation time, which means that after five minutes of relaxation the SoC of the 
battery can already be predicted with an error of less than 1% on the basis of the 
EMF curve, while the battery voltage has not yet relaxed to the EMF value. 
 
 
 
 
 

 

79



Chapter 4 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.13. Same as Fig. 4.10, only now after interruption of a charge step at 0.5 C-rate  
and 5°C. 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4.14. Same as Fig. 4.10, only now after interruption of a charge step at 0.5 C-rate  

and 25°C. 
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Fig. 4.15. Same as Fig. 4.10, only now after interruption of a charge step at 0.5 C-rate  
and 45°C.  

  
4.2.5 Comparison of results obtained with the different voltage-relaxation 

models 
 
          The method of fitting the voltage-prediction model of Eq. (4.7) on-line to the 
first part of the relaxation curve introduced in this chapter was compared with the 
prior-art voltage-prediction methods presented in [5] and [6]. For the asymptotes 
system described in [5] the first voltage sample was taken at 1 minute (X=0) and 
the second at 6.6 minutes (X=0.82). The same parameters as proposed in [6] were 
used for the system based on OCV, dOCV/dt and temperature, as well as OCV and 
dOCV/dt values at 6.6 minutes. The results were also compared with the results of 
the relaxation experiments used to draw Figs. 4.9 and 4.10. The results of the 
comparison are summarised in Table 4.2.  

 
Table 4.2. Comparison of results obtained with different voltage-prediction models 

 
 
 
 
 
 
 
 

 
 
          Columns one and two of Table 4.2 give the model’s name and the type of 
previous step, i.e. discharge (d) or charge (ch). The equilibrium and the predicted 

Model Step EMF [V] Vp [V] SoCt [%] SoCp [%] SoCe [%] 
d 3.748 3.753 20.19 21.11 –0.92 Asymtotes 

[5] ch 3.710 3.716 13.7 14.7 –1 
d 3.748 2.56 20.19 0 20.19 Combined 

model [6]  ch 3.710 0.7 13.7 0 13.7 
d 3.748 3.749 20.19 20.37 –0.19 New 

model 
(Eq. (4.7)) ch 3.710 3.711 13.7 13.9 –0.2 
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voltage (Vp) values in [V] of each of the three models are given in columns three 
and four respectively. Columns five and six denote the SoC indication calculated 
on the basis of EMF, (SoCt), and Vp, (SoCp), respectively. Column seven denotes 
the error in SoC calculated as the difference between the actual and the predicted 
SoC value. 
          It can be concluded from table 4.2 that the calculated SoC error SoCe 
obtained using the newly developed relaxation model after a discharge step is  
–0.19% SoC.  An SoC error of 0.92% is obtained when using the asymptotes model 
described by Eq. (4.4), whereas the combined model described by Eq. (4.5) yields 
an error of 20.19% SoC. 
          Table 4.2 clearly shows that the SoC error obtained with the new method 
proposed in this chapter is smaller than that obtained with the two prior-art systems. 
The asymptotes system of reference [5] worked remarkably well in this Li-ion 
battery experiment. However, it is based on a fixed parameter Xp, which will be 
different in the case of other batteries of the same type and older batteries. In fact, 
the new model also uses parameters t1 and N that describe which part of the 
relaxation curve is used for fitting Eq. (4.7). These parameters do not describe the 
actual relaxation curve but do influence the prediction accuracy. An advantage of 
the new model over the asymptotes method is that in addition to the relaxation end 
voltage, the time it takes to reach this voltage is also predicted. This time can be 
used for tuning parameters t1 and N of the model to achieve optimum fitting 
accuracy. This will be described in the next section. The combined method 
presented in [6] does not work properly in this Li-ion battery experiment. 
Apparently, new parameters need to be used in the equations. Better results will 
probably be obtained when the model is adapted for this type of battery, but even 
then the disadvantage of using fixed parameter values will remain. 
 
4.2.6 Summary 
 
          The proposed method of predicting the relaxation end voltage is to use the 
voltage-prediction model of Eq. (4.7), fit it to the first few minutes of the voltage-
relaxation curve after a charge or discharge step, perform this fitting process in 
real-time (i.e. along the lines discussed in this section), and ignore the first part of 
the curve, i.e. the first 0.5 minute. The results presented in this section show that 
after 6 minutes of relaxation the EMF value can be predicted with an accuracy that 
allows the SoC value inferred from the EMF curve using the predicted EMF value 
to have an error of less than 1%. 
          A first advantage is fast and accurate assessment of SoC using the EMF 
method while the battery is not in equilibrium. Secondly, no pre-characterisation of 
a battery is needed to determine model parameters, as is the case with prior-art 
voltage-prediction systems. All the parameters in the proposed model described by 
Eq. (4.7) are learned on-line using the samples (ti, Vti) of the first few minutes of the 
relaxation process. The only parameters are t1 (time at which the first voltage 
sample is taken) and N (number of samples used in the fitting process), which 
influence the fitting accuracy but have no direct link to the relaxation curve. 
Parameters in prior-art systems do have a direct link to the relaxation behaviour and 
must therefore be obtained via battery characterisation.  
          Thirdly, since the model parameters are calculated on-line, the dependencies 
of the voltage-relaxation on SoC, temperature, age, etc. are taken into account, 
which makes the model more widely applicable than prior-art voltage prediction 
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models. Since the model is ideal for fitting relaxation curves with multiple time 
constants, it can also be used for battery chemistries other than Li-ion. A detailed 
study of the voltage-relaxation model as a function of battery aging will be given in 
chapter 6.  
          Fourthly, in addition to the relaxation end voltage the proposed voltage-
prediction model can also predict the time it takes for the battery voltage to reach 
the predicted end value. This is not done in prior-art systems. This information can 
be used to tune the parameters t1 and N, which describe which part of the relaxation 
curve is used for fitting, to achieve optimum accuracy.  
          Finally, by using the mean of the samples of the voltage-relaxation curve 
low-pass filtering is achieved, which makes the system less vulnerable to voltage 
spikes. This filtering can be done because the prediction is based on a few minutes 
of voltage-relaxation involving a large number of voltage points. The N data points 
remaining after low-pass filtering describe a voltage-relaxation curve that is 
considerably smoother than the curve described by all the measured points. The 
prior-art systems discussed in this chapter use instantaneous voltage samples, 
which means that when a voltage spike occurs at the sampling instant, wrong 
predictions are made. Low-pass filtering of voltage samples could of course be 
applied to those systems too. 
 
 
4.3 Hysteresis 
 
          The charge/discharge EMF difference experimentally determined by means 
of the voltage-relaxation method described in section 4.1 will be investigated in this 
section. Fig. 4.16 presents the differences in charge/discharge EMFs obtained with 
the voltage-relaxation method at different temperatures. It follows from this figure 
that the maximum difference between the charge/discharge EMFs is 40 mV at 
around 5% SoC at 45°C. This means that when the EMF is used without taking the 
charge/discharge EMF difference into consideration, by e.g. modelling only the 
charge EMF curve, the SoC indication system based on the EMF will yield an SoC 
value of 5.1%, whereas the actual SoC value calculated on the basis of the 
discharge EMF is 6.1%. The inaccuracy will be 1% SoC. This effect will be more 
pronounced at low temperatures and in the flat region of the EMF-SoC curve, 
where even minor differences in the EMF will cause substantial errors in SoC.  
          Fig. 4.17 presents the differences in charge/discharge EMFs as a function  
of SoC at two C-rate currents. As can be seen, the difference in charge/discharge 
EMFs is consistently the same at SoC values higher than 4%. The small difference 
at low SoC values is explained by the different discharge C-rates used in the 
experiments. At higher C-rate currents the overpotential influence on the measured 
EMF curves becomes noticeable.      
          In order to further investigate the differences in charge/discharge EMFs three 
measurement artefacts that may have caused the difference were considered [8]. In 
the first place, due to the long rest periods chosen in the voltage-relaxation 
measurements, the self-discharge may have influenced the measured SoC-EMF 
values. Secondly, the battery voltage may not have reached the EMF equilibrium 
voltage by the end of the rest periods used in the voltage-relaxation experiment. 
Thirdly, in the voltage-relaxation method described in section 4.1 the different C-
rates and time periods chosen for the charge/discharge steps in comparison with the 
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“Deep-Charge/Discharge” steps, i.e. 0.1 C-rate and 0.05 C-rate, respectively, may 
have influenced the measured SoC-EMF values.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.16. The measured charge/discharge EMF difference as a function of SoC at three 
temperatures. The horizontal axis shows the SoC [%] normalised to maximum capacity. 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

C-rate currents at 25°C.  
Fig. 4.17. The measured charge/discharge EMF difference as a function of SoC at two
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          The first measurement artefact was investigated by considering two uniform 
self-discharge values of 3% SoC/month and 6% SoC/month at 25°C [1]. To this 
end the SoC [%] values on the horizontal axis of the measured EMF curves were 
corrected by taking the two assumed self-discharge values into account. The new 
voltage-relaxation model presented in section 4.2 was used to investigate the 
second measurement artefact. And the third measurement artefact was investigated 
by performing battery initialisation measurements and new voltage-relaxation 
measurements using the Galvanostatic Intermittent Titration Technique (GITT).  
          The initialisation measurement was conducted as follows. First, a battery was 
fully charged using the usual Constant-Current-Constant-Voltage (CCCV) charging 
method at 0.5 C-rate. In the CV mode the voltage was kept constant at 4.2 V until 
the current reached a 0.05 C-rate value. At the end of the CV mode the SoC level 
was defined to be 100%. The charging step was followed by a rest period of about 
4 hours, after which a discharge step was applied until the battery voltage reached 
2.6 V at a constant 0.5 C-rate. The discharge step was followed by a rest period of 
48 hours and a “Deep-Discharge” step at 0.001 C-rate until the battery voltage 
reached 2.6 V. After this “Deep-Discharge” step a rest period of 96 hours was 
applied. By the end of the rest period the battery voltage had reached the 
equilibrium voltage at a value of 3 V and the SoC level was defined to be 0%. The 
long rest periods were chosen to ensure that the equilibrium voltage, i.e. the EMF, 
would each time be reached. In addition, the maximum capacity was calculated by 
summating the total capacity obtained from the battery during the 0.5 C-rate and 
0.001 C-rate discharging steps, respectively.  
          To obtain EMF-SoC values by means of GITT the battery was further 
charged at 0.1 C-rate in 25 steps. For each step in the experiment a limit of 4.3 V in 
voltage and 4% in SoC was assumed. Each charge step was followed by a rest 
period. The rest period was chosen as a function of SoC, i.e. at low SoC values long 
rest periods of 24 hours were chosen and at higher SoC values shorter rest periods 
of 12 hours. After charging, 25 discharge steps of 4% SoC each followed at a 0.1 
C-rate and a voltage limit of 2.6 V. Each discharge step was followed by a rest 
period. The rest period was chosen as a function of SoC, i.e. at low SoC values long 
rest periods of 24 hours were chosen and at higher SoC values shorter rest periods 
of 12 hours where chosen. The low C-rate used in the experiments was chosen to 
obtain an equilibrium voltage faster. The advantage of the GITT method is that 
equal steps are considered during (dis)charging. Consequently, the build-up in time 
of the overpotential is also considered at different SoC levels. More information on 
the overpotential will be given in Chapter 5.    
          Fig. 4.18 illustrates what happens to the charge/discharge EMF difference 
when the battery self-discharge, the predicted EMF voltage and the GITT voltage-
relaxation measurements are considered.  
          A first conclusion that can be drawn from Fig. 4.18 is that self-discharge is 
not the cause of the charge/discharge EMF difference. A second conclusion is that 
predicting the EMF voltage on the basis of the first part of the measured voltage-
relaxation curve leads to smaller charge/discharge EMF differences at lower SoC 
values. This can be explained by the fact that at low SoC values (i.e. SoC values 
lower than 25%), rest periods of 24 hours were evidently not sufficient to obtain the 
equilibrium voltage.   
 
 
 

85



Chapter 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.18. The measured and calculated charge/discharge EMF difference at 25°C when the 
battery self-discharge (sd), the predicted EMF voltage (EMFp) and the voltage-relaxation 

measurements by means of GITT (EMFGITT) are considered.  
           
          The remaining small EMF difference may be explained by hysteresis 
between the charge and discharge EMF values. There are a few documented 
examples of hysteresis occurring in Li-ion battery systems [9]–[11]. They include 
the history-dependent equilibrium potential observed during the intercalation of 
lithium ions into carbon [10], [11]. In these articles it is assumed that the lithium 
atoms bind to hydrogen-terminated edges of hexagonal carbon fragments. This 
makes the capacity for the insertion of lithium strongly dependent on the hydrogen 
content of the carbon materials. If the inserted lithium binds to a carbon atom, 
which also binds to a hydrogen atom, a corresponding change will occur in the 
carbon-carbon bond, from (sp)2 to (sp)3. This bonding change in the host will lead 
to pronounced hysteresis during lithium insertion [10], [11]. 
          We do not claim to understand this complex process. The hysteresis may also 
be introduced by the LiCoO2 electrode. It may be tentatively concluded that a 
possible cause of the hysteresis could be the occurrence of phase transitions (ph). 
For further information on electrochemical hysteresis the reader is referred to [10]–
[12]. 
 
 
4.4 Electro-Motive Force modelling 
 
          A model for the EMF-SoC relationship will be presented in this section. This 
model can be used to calculate the SoC at a certain EMF and temperature. The 
EMF curves obtained by means of GITT as discussed in the previous section are 
approximated using a mathematical function in which the EMF of a Li-ion battery 
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with intercalated electrodes is modelled as the difference in equilibrium potentials 
between the positive and negative electrodes, according to 
  

−+ −= eqeq EEEMF                                            (4.12) 
 

where the equilibrium potential of the positive electrode ( +
eqE ) is given by 
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in which +

0E  is the standard redox potential of the LiCoO2 electrode in [V], jU +  
denotes the dimensionless interaction energy coefficient in the LiCoO2 electrode, 

jζ +  is a dimensionless constant, xLi the molar fraction of +Li  ions inside the 
positive electrode corresponding to the SoC of the LiCoO2 electrode, R is the gas 
constant [J (mol K)–1], F the Faraday constant [C mol-1] and T is the (ambient) 
temperature in [K]. In Eq. (4.14) a phase transition (ph) occurs at xLi=xph that results 
in a curvature change. According to recent literature on Li-ion batteries with an 
LiCoO2 electrode (see e.g. [1], [13]) the main phase-transition point lies near 
xph≈0.75. A phase transition is observed as a change in the slope of the equilibrium 
potential as a function of xLi. This change in the slope is realized in the present 
physical model by the change in interaction energy between the intercalated Li+ 
ions from a value +

1U  in phase 1 to a value +
2U  in phase 2 [1]. The values of the 

dimensionless constants +
1ζ  and +

2ζ  in phases 1 and 2 are chosen so that a 
continuous transition in equilibrium potential between phases 1 and 2 is obtained 
(see Eq. (4.14)). 
          The negative electrode is modelled in the same way 
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where −
0E  is the standard redox potential of the LiC6 electrode in [V], jU −  denotes 

the dimensionless interaction energy coefficient in the LiC6 electrode, jζ −  is a 
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dimensionless constant and Liz  is the molar fraction of the +Li ions inside the 
negative electrode. A phase transition occurring around zph≈0.25 is modelled in the 
negative electrode. As in the case of the positive electrode, the phase transition is 
observed as a change in the slope of the equilibrium potential as a function of zLi. 
This change in slope of the equilibrium potential is in the present physical model 
realized by a change in interaction energy between the intercalated Li+ ions from a 
value U–

1 in phase 1 to a value −
2U  in phase 2 [1]. The values of the dimensionless 

constants −
1ζ  and −

2ζ  in phases 1 and 2, respectively, are chosen so that a 
continuous transition is achieved from the equilibrium potential in phase 1 to that in 
phase 2 (see Eq. (4.16)). Under normal operating conditions Lix  will cycle 

between 0.5 and 1 and Liz  between 0 and 1 [1]. 
          Besides parameters characterising the electrode electrochemistry, parameters 
relating to the battery’s design are also needed to model the EMF-SoC relationship 
in a practical SoC indication system. As schematically indicated in Fig. 4.19, a 
fresh Li-ion battery can be characterised by the maximum capacity of the positive 

electrode ( +
maxQ ), the maximum capacity of the negative electrode ( −

maxQ ), the 

number of electrochemically active +Li  ions inside a fresh battery ( maxQ ) and the 

number of +Li  ions inside the negative electrode in a “fully” discharged (under 

standard operating conditions) battery ( −
0Q ). Finally, 

−
zQ  denotes the charge 

stored in the negative electrode at a given SoC.  
          In a new battery the number of electrochemically active +Li  ions inside the 
battery maxQ  will correspond to the maximum capacity of the positive electrode 

+
maxQ . It should be noted that because xLi cycles between 0.5 and 1 only half of the 

maximum capacity of the positive electrode +
maxQ  is cyclable. The number of 

cyclable electrochemically active Li+ ions therefore equals 2/maxmax
+−QQ . 

During the first activation cycles a portion of the Li+ ions will remain in the 
negative electrode (represented by −

0Q  in Fig. 4.19) and a portion will be 
consumed in the Solid Electrolyte Interface (SEI), in an irreversible process.  
The −

0Q  capacity can be explained by the Nernstian decrease in the LiC6 electrode 
equilibrium voltage when its SoC goes to zero. The SEI suppresses the 
decomposition of the electrolyte at electrode surface. For simplicity the SEI has not 
been illustrated in Fig. 4.19 and is not considered in the present physical model. As 
a result, the value of the maximum capacity of the positive electrode +

maxQ  will be 
larger than the capacity corresponding to the number of electrochemically active 

+Li  ions inside the battery (see Fig. 4.19).  
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Fig. 4.19. Schematic representation of the EMF-SoC relationship parameters relating to 
battery design. 

 
          Given the parameters shown in Fig. 4.19 and the experimentally determined 
SoC values, Lix  and Liz  can be inferred from            
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          Equations (4.17)–(4.19) can be understood as follows. It follows from Fig. 
4.19 that the Li+ ions move from the cobalt-oxide electrode to the graphite electrode 
during charging. At the end of charging the battery SoC is defined to be 100%, i.e. 

−
zQ  is equal to −

maxQ  and −
zQ  equals 2/maxmax

+− QQ  (Eq. (4.17)). It follows 
from Eqs. (4.17) and (4.19) that at 100% SoC Lix  = 

5.0/)]2/([ maxmaxmaxmax =−− ++ QQQQ  and zLi=1. During discharge the Li+ ions 
move from the graphite electrode to the cobalt-oxide electrode. At the end of 
discharging under standard operating conditions, −

zQ  = −
0Q . As can be inferred 

from Eqs. (4.17) and (4.19), the +−−= max0max /)( QQQxLi  will be a somewhat 

smaller than 1 and −−= max0 / QQz Li will be a little larger than 0. 

          +
eqE  and −

eqE  can be inferred from Eqs. (4.13), (4.14) and (4.15), (4.16), 
respectively. However, the EMF measurements showed that the phase transition 
does not take place instantaneously, but in a certain interval around the phase 
transition points. In order to achieve a smooth phase transition the following 
approximation was considered 
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where Φ  denotes a standard  normal cumulative distribution function and the 
parameters xσ  and zσ  determine the smoothness of the phase transitions in the 
positive and negative electrode, respectively.     
          In order to include the influence of temperature in the EMF-SoC relationship 
a linear dependence of each model parameter (par) was assumed according to  
 

  ( ) ( ) ( )ref refpar T par T T T par= + − ∆                (4.22) 
 

where refT  is the reference temperature (in this case 25°C) and T is the ambient 

temperature.  is each parameter’s sensitivity to temperature.  
           Different values for the model parameters can be used for the charge- and 
discharge-EMF in order to deal with the hysteresis effect. When another type of Li-
ion battery with a different EMF-SoC curve chemistry is used the model can be 
adapted by fitting, leading to new parameter values. This model is consequently not 
limited to the present type of Li-ion battery. Taking into account hysteresis and 
temperature, the presented method is assumed to be the best solution for practical 
EMF implementation.  
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          The results of the mathematical EMF implementation will be presented in the 
remainder of this chapter. The EMF equations described in this section need to be 
fitted to a measured EMF curve. Fig. 4.20 shows that the modelled EMF curve used 
in the system shows a good fit with the measured curve obtained with the Maccor 
battery tester via voltage relaxation according to the protocol discussed in section 
4.1 at all temperatures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.20. Accuracy of SoC indication using the EMF obtained via the voltage-relaxation 
curve versus the fitted EMF curve at 5, 25 and 45°C. The horizontal axis shows the SoC [%] 

normalised to maximum capacity. 
 

          It can be concluded that the maximum error in SoC, SoCe, is obtained at 5oC 
and around 16% SoC. This 1.2% SoC error corresponds to a 13.2 mAh capacity 
value, which can still be removed from the battery. As can be calculated using  
 

601
100

[%][min]
d

e
r C

SoCt =                    (4.23) 

 
for a new battery at a 0.5 C-rate mean discharge current Cd this implies around 1.4 
minutes of remaining run-time tr.  
          However, the SoC error will usually be smaller than 0.9% so it can be 
concluded that the error obtained in EMF implementation using the model 
presented in this section will generally provide enough accuracy to achieve a final 
accuracy of within 1.1 minutes or better in remaining run-time indication.  
          The EMF model parameters values used in the simulations illustrated in Fig. 
4.20 are summarised in Table 4.3. Column one gives the symbol of the EMF model 
parameter. The values and units of the EMF model parameters are given in columns 
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two and three, respectively. It should be noted that the +
2ζ  and −

2ζ  parameters 
were derived from Eqs. (4.14) and (4.16), respectively.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
+ See equation 4.22. 
† Parameter set to zero by identification condition. 

Parameter Value Unit 
+

1U  9.68 102 [1] 

+∆ 1U  –1.89 [T–1] + 

+
2U  1.63 104 [1] 

+∆ 2U  –5.14 101 [T–1] + 
−

1U  –6.92 103 [1] 

−∆ 1U  2.18 101 [T–1] + 
−
2U  –6.89 103 [1] 

−∆ 2U  2.16 101 [T–1] + 
+

1ζ  † 0.00 [1] 

+∆ 1ζ  2.22 10–4 [T–1] + 
−

1ζ  –2.14 10–5 [1] 
−∆ 1ζ  2.04 10–4 [T–1] + 

phx  8.44 10–1 [1] 

phx∆  1.58 10–6 [T–1] + 

phz  4.44 10–1 [1] 

phz∆  1.37 10–4 [T–1] + 

1xσ  1.72 10–2 [1] 

1xσ∆  –2.24 10–6 [T–1] + 

1zσ  1.22 10–1 [1] 

1zσ∆  8.98 10–4 [T–1] + 
−+ − 00 EE  * 1.12 101 [V] 

)( 00
−+ −∆ EE  * 2.52 10–2 [V T–1] + 

+
maxQ # 1.00 [1] 

−
maxQ  4.23 10–1 [1] 

maxQ  8.11 10–1 [1] 

−
0Q  9.63 10–4 [1] 

−∆ 0Q  4.34 10–5 [T–1] + 

Table 4.3. The battery EMF model parameter values. 
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* Only the −+ − 00 EE  difference is identifiable in the battery EMF obtained by 
means of the voltage-relaxation measurement method described in this chapter. The 

+
0E  and −

0E  can be separately inferred from voltage-relaxation measurements 
conducted for individual electrodes.  Such an experiment is not considered in this 
book, so the −+ − 00 EE  difference was assumed to be an estimable parameter. 
# The +

maxQ  parameter was not inferred from the battery EMF obtained by means 

of the voltage-relaxation measurement method described in this chapter. The +
maxQ  

was not estimated but normalised to be one. The other Q-related parameters were 
inferred as fractions from the +

maxQ  value. Those parameters are consequently all 
dimensionless. 
 
          It should be noted that the scope of the research discussed in this book was to 
achieve a high level of accuracy in SoC determination (see chapter 1). The EMF 
model parameters values presented in Table 4.3 were determined during the fitting 
process with this in mind. For this reason these parameters are in some cases out of 
their physical range.    
 
 
4.5 Conclusions 
 
          Methods for measuring and modelling the EMF function of Li-ion batteries 
have been presented in this chapter. The EMF function is used as input for a State-
of-Charge algorithm that calculates the SoC in percentages as well as the remaining 
run-time for portable applications. 
          Two EMF determination methods have been compared. Of the two, the 
voltage-relaxation method is recommended for EMF determination. A new voltage-
relaxation model that speeds up the SoC indication on the basis of EMF has been 
developed. It has been found that after current interruption the first 0.5 minute must 
be ignored to obtain a high level of voltage prediction accuracy. From the low 
calculated SoC error, i.e. always less than 1% when the voltage prediction starts 
after a rest period of five minutes, it can be concluded that the developed voltage-
relaxation model is the best solution for obtaining an accurate EMF value in a short 
time and under a wide range of conditions.   
          The effects of the temperature and hysteresis on the EMF-SoC curve and the 
influences on the SoC indication accuracy have been discussed. A mathematical 
model has been presented for the SoC-EMF relationship that also takes the effect of 
temperature into consideration. Good EMF fitting results have been obtained. 
These results yield an EMF prediction that is always better than 1.2% SoC and a 
remaining run-time prediction that is always better than 1.4 minutes.  
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 Chapter 5 
Methods for measuring and modelling  
a battery’s overpotential  
          
           
          During the charge and discharge states a battery’s voltage does not equal its 
Electro-Motive Force (EMF). The difference between the EMF and the voltage 
during current-flowing conditions is defined as the overpotential. Measurements, 
modelling and simulation results obtained for battery overpotentials are presented 
in this chapter. Overpotential measurements involving partial and full charge/ 
discharge steps are presented in section 5.1. Overpotential symmetry, a pheno-
menon discovered during the analysis of the measurement results, is also presented 
in this section. A new overpotential model that includes C-rate current dependency 
and the simulation results obtained with this model are presented in section 5.2. 
These results are also compared with the measurement results. Finally section 5.3 
presents concluding remarks. 
 

 
5.1 Overpotential measurements 
 
          A battery’s overpotential is defined as the difference between the battery’s 
EMF and its charge/discharge voltage [1]–[3]. Due to this overpotential, a battery’s 
voltage during the (dis)charge state is (lower) higher than the EMF voltage. The 
value of a battery’s overpotential depends on the charge/discharge current value, 
charge/discharge period, SoC, temperature, battery chemistry and aging. Two 
methods for measuring the battery overpotential will be presented in this section. 
The measurements presented in this chapter were carried out using fresh Sony 
US18500G3 Li-ion batteries. 
 
5.1.1 Overpotential measurements involving partial charge/discharge steps 
 
          As the overpotential represents the difference between a battery’s EMF and 
its charge/discharge voltage, a charge/discharge EMF was first experimentally 
determined by means of the Galvanostatic Intermittent Titration Technique (GITT) 
described in section 4.3. During this measurement the battery was charged/ 
discharged in equal steps of 4% SoC at 0.1 C-rate current and 25°C. The 4% SoC 
was inferred from the charge/discharge capacity obtained by means of Coulomb 
counting [1]–[7] and from the battery’s maximum capacity. Each charge/discharge 
step was followed by rest periods of 24 hours at low SoC values and 12 hours at 
high SoC values. It was assumed that the battery voltage had reached the 
equilibrium voltage value, i.e. the EMF, by the end of the rest periods. In order to 
obtain information on the battery’s overpotential the difference between the 
battery’s EMF and the voltage last measured after a charge/discharge step was 
considered. The charge overpotential consequently had a negative value and the 
discharge overpotential a positive value. 
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          Fig. 5.1 shows a battery overpotential calculated as the difference between 
the EMF and the voltage last measured after a charge (Vch) step of 25 minutes at 
28% SoC, 0.1 C-rate current and 25°C. It can be concluded from Fig. 5.1 that the 
charge battery overpotential ηch in this example is –37 mV.       
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.1. Battery charge overpotential (ηch) calculated as the difference between the EMF and 

the voltage last measured after a charge (Vch) step of 25 minutes at 28% SoC, 0.1 C-rate 
current and 25°C.  The horizontal axis shows the time in [min.].  

 
          An important advantage of using GITT voltage-relaxation measurements for 
overpotential calculations is that interpolation calculations are not needed for the 
charge/discharge battery overpotential comparison. The difference between the 
EMF and the voltage last measured after a charge/discharge step is calculated at 
each 4% SoC. The inaccuracy that could result from the measurement interpolation 
is consequently eliminated from the charge/discharge battery overpotentials 
comparison. Fig. 5.2 shows the battery overpotential calculated after 25-minute 
charge and discharge steps at 0.1 C-rate current, 4% SoC and 25°C. It can be 
concluded from Fig. 5.2 that the maximum overpotential after the discharge step is 
112 mV.  
          The GITT voltage-relaxation measurements showed that, especially at low 
SoC values, a rest period of 24 hours was not always sufficient to ensure 
equilibrium voltage. In order to investigate the influence of a not-fully-relaxed 
voltage in the battery overpotential calculation, the battery voltage was further 
predicted by using the new voltage-relaxation model developed in section 4.2.3. 
The voltage values measured during the rest periods, i.e. 24 hours at low SoC 
values and 12 hours at high SoC values, were used as input for the voltage-
relaxation model.  
 
 

 

ch 

Vch 

EMF 
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Fig. 5.2. The charge (ηch) and discharge (ηd) battery overpotentials calculated as the 
difference between the EMF voltage and the voltage last measured after a charge/discharge 
step at each 4% SoC (*). The horizontal axis shows the SoC [%] normalised to maximum 

capacity. 
 

           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.3. Same as Fig. 5.2 when the predicted battery voltage is considered. 
 

          In this example a period of 96 hours was considered for the voltage 
prediction (see section 4.2.3). Fig. 5.3 shows the battery charge/discharge 
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overpotentials calculated as the difference between the predicted battery voltage 
after 96 hours and the voltage last measured after a charge/discharge step. 
          It follows from Fig. 5.3 that a maximum discharge overpotential of 118 mV 
is obtained at 4% SoC. It can be concluded from Figs. 5.2 and 5.3 that  
the overpotential determined as the difference between the EMF and the Vch and the 
charge overpotential determined as the difference between the predicted voltage 
(Vp) and the Vch are consistently the same at all the SoC values. Similarly  
the discharge overpotential determined as the difference between the EMF and the 
voltage last measured after a discharge (Vd) step and the discharge overpotential 
determined as the difference between the Vp and the Vd are consistently the same at 
SoC values higher than 8%. Only a small voltage difference was observed at low 
SoC values. It can be concluded that rest periods of 24 hours at low SoC values and 
12 hours at high SoC values are generally sufficient to ensure an accurate battery 
overpotential.  
          It can be concluded from the partial (dis)charge step measurements shown in 
Figs. 5.2 and 5.3 that the battery overpotential increases at low SoC values and 
remains almost constant at SoC values higher than 12%. Another important 
conclusion relates to the shape of the battery (dis)charge overpotentials. It follows 
from Figs. 5.2 and 5.3 that the calculated mean charge and discharge battery 
overpotentials are symmetrical between 20 and 80% SoC. More information on the 
overpotential symmetry will be given later in this chapter. 
          Partial (dis)charge battery overpotential measurements as a function of 
temperature will be presented below. To obtain information on this temperature 
dependence the previously described measurements at 25°C were repeated at 5 and 
45°C. Fig. 5.4 shows the battery overpotential calculated after charge and discharge 
intervals of 4% SoC, 0.1 C-rate current and as a function of three temperatures. As 
can be seen in this figure, a maximum overpotential of 200 mV was obtained after a 
discharge step at 7% SoC and 5°C. 
          In order to investigate the influence of a not-fully-relaxed voltage in the 
battery overpotential calculation, the battery voltage at each temperature was 
further predicted by using the new voltage-relaxation model developed in section 
4.2.3. The voltage values measured at 5, 25 and 45°C during the rest periods, i.e. 24 
hours at low SoC values and 12 hours at high SoC values, were used as input for 
the voltage-relaxation model. In this example a rest period of 96 hours was 
considered for the voltage prediction. Fig. 5.5 shows the battery (dis)charge 
overpotentials calculated as the difference between the predicted battery voltage 
after 96 hours and the voltage last measured after a (dis)charge step at 5, 25 and 
45°C. 
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Fig. 5.4. The charge and discharge battery overpotentials calculated as the difference 

between the EMF voltage and the voltage last measured after a (dis)charge step at each 4% 
SoC (*) as a function of SoC at three temperatures.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.5. Same as Fig. 5.4 when the predicted battery voltage is considered.  
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          It follows from Figs. 5.4 and 5.5 that the overpotential increases at low SoC 
values and temperatures. In this case a maximum overpotential of 200 mV was 
obtained after a discharge step at 5°C. It can be concluded that the (dis)charge 
overpotentials determined by means of Vd(Vch) are consistently the same at all the 
SoC values. Only a small voltage difference was observed at low SoC values for 
the discharge overpotential. This means that rest periods of 24 hours at low SoC 
values and 12 hours at high SoC values are generally sufficient to ensure an 
accurate battery overpotential.  
          It can be concluded from the partial (dis)charge step measurements and Figs. 
5.2, 5.3, 5.4 and 5.5 that the battery overpotential increases at low SoC values, and 
remains almost constant at SoC values higher than 12%. The main drawback of the 
partial (dis)charge-step measurements is that complete information on the build-up 
of the overpotential in time cannot be obtained by using (dis)charge periods of 25 
minutes.  

 
5.1.2 Overpotential measurements involving full (dis)charge steps 
 
          In order to obtain information on the (dis)charge overpotential build-up  
in time, the difference between the (dis)charge EMF voltage experimentally 
determined using GITT and the full (dis)charge voltage curves was considered. The 
EMF was experimentally determined after a (dis)charge step by using GITT as 
described in section 4.3. Several full (dis)charge steps were carried out at 25°C. 
During these steps the battery was each time fully charged using the normal 
Constant-Current-Constant-Voltage (CCCV) charging method at 0.5 C-rate current. 
In the CV mode the voltage was kept constant at 4.2 V until the current reached a 
0.05 C-rate value. The SoC level was defined to be 100% at the end of the CV 
mode. The same 0.5 C-rate charge current was used in all the experiments to ensure 
that the same 100% SoC level would each time be reached. Each charging step was 
followed by a rest period of 4 hours. After this rest a discharge step was applied 
until the battery voltage reached 3 V at constant C-rate currents of 0.1, 0.25, 0.5, 
and 1 C-rate current, respectively. Each discharge step was followed by a rest 
period of 12 hours and by a “Deep-Discharge” step at 0.01 C-rate current. After this 
“Deep-Discharge” step a rest period of 12 hours was applied. The “Deep-
Discharge” step was performed to ensure that a new charge cycle would each time 
start at the same voltage and SoC value. The long rest steps were used to ensure 
that a new cycle would each time start at equilibrium voltage. In this way the 
effects of different initial SoC and voltage levels and of a not-fully-relaxed voltage 
were eliminated from the battery overpotential determination.  
          Fig. 5.6 shows the overpotential curves obtained for discharge at 25°C. All 
the overpotential curves were calculated as the difference, at the same SoC value, 
between the discharge EMF experimentally determined by means of GITT at 25°C 
and the discharge voltage curves measured at 25°C using the constant C-rate 
current method. 
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Fig. 5.6. Overpotential curves obtained at different C-rate currents at 25°C during discharge 

as a function of SoC. 
          
          It can be concluded from Fig. 5.6 that the overpotential increases more or 
less proportionally with the C-rate. Between 20 and 100% SoC the overpotential is 
moreover almost independent of the SoC, but it rises sharply at lower SoC values; 
a maximum overpotential of 475 mV was obtained after a discharge step at 1 C-
rate current and 3.8% SoC. 
          In order to obtain information on the battery overpotential dependence on 
temperature, the previously described measurements were repeated at 5 and 45°C.  
Fig. 5.7 presents the battery overpotential obtained with the above-described 
measurement method at three different temperatures during discharging cycles at 
0.25 C-rate. It follows from Fig. 5.7 that the overpotential increases for low 
temperatures. As an example when using the overpotential without taking into 
consideration the temperature effect by modelling only the overpotential curve at 
25°C, an overpotential value of 330 mV at 5°C will be calculated, when actually 
the overpotential value is 559 mV. The inaccuracy, calculated as the difference 
between the true overpotential value measured at 5°C and the overpotential value 
measured at 25°C, will be 229 mV [9].  
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Fig. 5.7. Overpotential curves for different temperatures obtained at 0.25 C-rate during 

discharge. The horizontal axis shows the SoC [%] normalized to the maximum capacity. 
 

          As shown in the previous section, the overpotential measured by means of 
partial (dis)charge steps was symmetrical. This overpotential symmetry in the full 
(dis)charge step measurement method will be further discussed below. Fig. 5.8 
shows the overpotential curves obtained at different discharge currents at 25°C and 
the overpotential curve obtained at 1 C-rate charge current at 25°C. All the 
overpotential curves were calculated as the difference, at the same SoC value, 
between the (dis)charge EMF experimentally determined by means of GITT at 
25°C and the (dis)charge voltage curves measured at 25°C using the constant-
current method described above. 
          It can be concluded from the full (dis)charge step measurements and Fig. 5.8 
that the battery overpotential increases at low SoC values and remains almost 
constant at SoC values higher than 20%. Another important conclusion relates to 
the shape of the battery (dis)charge overpotentials. It follows from Fig. 5.8 that 
between 20 and 80% SoC the calculated (dis)charge battery overpotential is 
symmetrical with respect to the horizontal axis. 
          In summary, the overpotential measurement methods compared in sections 
5.1.1 and 5.1.2 show that the build-up of the overpotential depends on the 
dis(charging) time, SoC, C-rate current and temperature.  
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Fig. 5.8. Overpotential curves obtained at different C-rate currents (same as Fig. 5.6) at 25°C 

during discharge (solid lines) and charge at 1 C-rate current (dashed line) as a function of 
SoC.  

                 
 

5.2 Overpotential modelling and simulation 
 
 
5.2.1 Overpotential modelling  
 
          In this section an overpotential equation inferred from previously developed 
physical models will be presented [1], [8].  The overpotential in which the ohmic, 
kinetic, diffusion overpotential and the increase in the diffusion overpotential when 
the battery becomes empty are considered is modelled as follows  
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where I[A] > 0 for discharge, I[A] < 0 for charge, RΩk(T)[Ω], 
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−Ω=Ω   denote the contributions of the “ohmic” and 
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“kinetic” resistance, ])[(0 ΩTRd  and ][/])[(])[,( 1 AIVTcTIRI
d =Ω  denote the 

contributions of the “diffusion” resistance, c2(T) ][ 2/1s  is a constant, ])[( sTdτ  
denotes the “diffusion” time constant, n0(T) (dimensionless) and 

][/])[(),( 51 AIATcTIn =  are parameters relating to the magnitude of the diffusion 
overpotential, 0 ( )qE T [J A–1] and ][/])[(])[,( 3

1 AIJTcJATIE I
q =−  denote the 

amount of energy that cannot be extracted from the battery when the current I 
increases,  ( )inQ t [C] denotes the charge present in the battery at time t[s] and 

== − ][][ 1
4

2/1
2 Acsc 1 numerically. Finally, )(Tqτ  is a time constant associated 

with the increase in overpotential in an almost empty battery in [s]. Simulation 
results of the mathematical overpotential implementation will be presented in the 
remainder of this chapter. 
 
5.2.2 Simulation results 
 
          The results of the mathematical implementation of the overpotential function 
will be presented in this section. The US18500G3 Li-ion battery was used in these 
experiments. The overpotential model described by Eq. (5.1) needed to be fitted to 
the measured overpotential curves.   
          Fig. 5.9 illustrates the overpotentials measured and fitted at four different  
full discharge current C-rates as a function of the relative SoC based on the 
mathematical implementation of the overpotential (see Eq. (5.1)) and the measured 
EMF. The measurements were carried out at 25°C. In order to guide the eye, the 
difference between the measured and fitted overpotentials at four different 
discharge currents has been plotted as a function of the relative SoC in Fig. 5.10.  
         It can be concluded from Figs. 5.9 and 5.10 that the maximum difference 
between the measured and fitted overpotentials at the 0.1 C-rate discharge current 
was obtained at low SoC values. At 1.85% SoC the obtained difference amounted 
to around 57 mV. This voltage error corresponds to a low SoC error (SoCe), i.e. 
SoCe = 0.4%, which can still be removed from the battery. It follows from Eq. (5.2) 
that even in the case of a new battery, at 25°C and at 0.1 C-rate mean discharge 
current this means that the SoC system will indicate 2.4 minutes more remaining 
run-time than is actually the case (See Eq. (5.2)).  
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where SoCe denotes the error in SoC in [%] and Cd denotes the mean discharge  
C-rate current. 
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Fig. 5.9. The measured (solid lines) and the fitted (dashed lines) overpotential curves 
obtained at different C-rate currents and 25°C during discharge (see also Fig. 5.6). The 

horizontal axis shows the SoC [%] normalised to maximum capacity.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.10. The difference between the measured and the fitted overpotentials obtained during 
discharge at different C-rate currents and 25°C (see also Fig. 5.9). The horizontal axis shows 

the SoC [%] normalised to maximum capacity.  
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           It follows from Figs. 5.9 and 5.10 that a very good fit (less than 10 mV 
difference) between the two curves is however usually obtained. Fig. 5.10 shows 
that the overpotential evolution can be accurately modelled for C-rate currents 
higher than 0.1, especially the part corresponding to low SoC values. This part of 
the curve is most important in practice because it describes the amount of charge 
remaining at a given C-rate current [1]. It can be concluded that the error generated 
in the overpotential implementation is small enough to allow a final accuracy 
within 2.4 minutes in the remaining run-time indication. More information on the 
overpotential implementation accuracy will be given in Chapter 7. 
          Based on the mathematical implementation of the overpotential described in 
this section, the overpotentials measured at four discharge C-rate currents have 
been fitted at 5, 25 and 45°C. Fig. 5.11 presents the measured and fitted battery 
overpotential at three different temperatures during discharge at 0.25 C-rate. In 
order to guide the eye, the difference between the measured and fitted overpotential 
at three temperatures and at 0.25 C-rate as a function of the relative SoC is plotted 
in Fig. 5.12.  
                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.11 Overpotential curves measured at 0.25 C-rate at various temperatures (solid lines; 

see also Fig. 5.7) and corresponding fitted curves (dashed lines) inferred from the 
mathematical implementation of Eq. (5.1). The horizontal axis shows the SoC [%] 

normalised to maximum capacity. 
 

          It follows from Figs. 5.11 and 5.12 that the maximum difference retrieved at 
low SoC between the measured and the fitted overpotential is obtained at 45°C. 
High accuracy in the overpotential modelling at low SoC is important because this 
part is considered for the remaining run-time calculation (see Fig. 3.4). In this 
situation, at 1.82% SoC the obtained overpotential difference had a value of 54 mV. 
This overpotential difference corresponds to a low capacity value (SoC=0.4% or 
4.4 mAh), which still can be removed from the battery. Even for a new battery and 
at 0.25 discharging C-rate this means that the SoC system will indicate 1 minute 
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more remaining run-time than in the real case (See Eq. (5.2)). In the majority of the 
cases a very good fit (under 10 mV difference) between the two curves is obtained. 
 

Fig. 5.12. Accuracy of the fitted overpotential curves versus the overpotential measured with 
the Maccor battery tester at 0.25 C-rate (see also Fig. 5.11). The horizontal axis shows the 

SoC [%] normalised to maximum capacity. 
 

          The overpotential model parameters values determined independently from 
the C-rate and used in the simulations illustrated in Figs. 5.9, 5.10, 5.11 and 5.12, 
respectively, are summarized in Table 5.1. Column one gives the symbol of the 
overpotential model parameters. The values of these parameters are given in 
columns two, three and four, respectively. Column five denotes the unit of the 
overpotential model parameters. 
  

Table 5.1. Battery overpotential model parameter values obtained at three temperatures. 
 

Parameter 5°C 25°C 45°C Unit 
kRΩ

 3.63 10–1 1.11 10–1 1.08 10–1 [Ω] 
c0 –2.40 10–1 –2.02 10–2 –1.16 10–2 [ΩA–1] 

0
dR  1.99 10–1 9.24 10–2 4.77 10–2 [Ω] 

c1 –1.13 10–2 –4.76 10–4 –7.86 10–3 [V] 
c2 1.00 1.00 1.00 [s1/2] 

dτ  3.41 10–1 1.05 7.77 10–1 [s] 
0
qE  1.10 10–7 2.21 103 1.00 106 [J A–1] 

c3 1.43 103 5.57 102 5.90 104 [J] 
c4 1.00 1.00 1.00 [A–1] 

qτ  0.00 5.42 10–2 3.41 10–3 [s] 

n0 1.37 1.81 3.27 [1] 
c5 2.60 10–2 1.06 10–2 2.40 10–2 [A] 
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          It should be noted that the scope of the method presented in this book was  
to achieve a high level of accuracy in SoC determination (see chapter 1).  The 
overpotential model parameters were determined with this in mind in the fitting 
process, in the same way as the parameters for the EMF model (see chapter 4). For 
this reason these parameters are in some cases out of their physical range.    
          In the remainder of this section it will be shown that the parameters obtained 
in the discharge overpotential modelling can also be effectively used to calculate 
the 1 C-rate charge current overpotential. Fig. 5.13 illustrates the measured and 
fitted overpotentials obtained at different C-rate discharge currents and at 1 C-rate 
charge current. It can be concluded from this figure that the charge overpotential 
evolution can be accurately modelled especially in the symmetrical part between 20 
and 80% SoC. More information on overpotential symmetry will be given in the 
next chapters of this book. 

 
 

Fig. 5.13. Measured (solid lines) and fitted (dashed lines) overpotential curves obtained at 
different C-rate discharge currents and at 1 C-rate charge current at 25°C (see also Fig. 5.8). 

The horizontal axis shows the SoC [%] normalised to maximum capacity. 

5.3 Conclusions 
 
          Methods for measuring and modelling battery (dis)charge overpotentials 
have been presented in this chapter. The measurement and modelling methods have 
been applied to fresh Sony US18500G3 Li-ion batteries. 
          Two methods for measuring battery overpotentials have been presented. In 
the first method the (dis)charge overpotential is obtained by means of partial 
(dis)charge steps at different temperatures. The EMF obtained with the aid of GITT 
and the newly developed voltage-relaxation model, have also been used in this 
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method. The advantage of using this method based on partial (dis)charge steps is 
that the GITT measurements can be used directly to obtain information on a 
battery’s (dis)charge overpotential.  
          The main drawback of this method is that insufficient information on the 
continuous build-up of the overpotential in time can be inferred from the duration 
of the (dis)charge step. This information has to be obtained using a second method 
involving full (dis)charge measurements. These two measurement methods show 
that the value of a battery’s overpotential depends on the (dis)charge C-rate current, 
the duration of the (dis)charge step, the SoC and the temperature. As has been 
shown, the battery overpotential increases at low SoC and temperature values.  
          A new phenomenon, i.e. overpotential symmetry, was discovered during the 
analysis of the measurements results. As has been shown, the calculated (dis)charge 
battery overpotential is symmetrical between 20 and 80% SoC. Properties of this 
phenomenon will be used in the next chapters to arrive at accurate battery 
modelling with due allowance for the aging effect.     
          An overpotential model inferred from previously developed physical models 
has been also presented. Good fitting results have been obtained with this 
overpotential model. These results allow overpotential predictions with an accuracy 
within 0.4% SoC or 2.4 minutes’ remaining run-time. The parameters obtained in 
the discharge overpotential fitting exercise have been used to fit the 1 C-rate charge 
current overpotential. It was found that the charge overpotential evolution can be 
accurately modelled especially in the symmetrical part between 20 and 80% SoC.  
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  Chapter 6 
Battery aging process 

          During a battery’s lifetime, its performance or "health" tends to deteriorate 
gradually due to irreversible physical and chemical changes that take place with 
usage. To ensure accurate State-of-Charge (SoC) calculation while a battery ages, 
the changes that take place in a battery’s overpotential and Electro-Motive Force 
(EMF) behaviour need to be fully understood.  
          This chapter presents a complete description of battery EMF and 
overpotential behaviour as a function of battery aging in relation to a US18500G3 
Li-ion type of battery. The main aspects of battery aging will be presented in 
section 6.1. EMF measurement by means of GITT as a function of battery aging 
will be presented in section 6.2. A comparison will be made with a fresh battery’s 
EMF. The focus in section 6.3 will be on overpotential measurements based on 
partial charge/discharge cycles as a function of battery aging. New adaptive 
systems for battery EMF and overpotential based on the phenomena discovered 
during analysis of the measurement results will be presented in section 6.4. These 
systems will enable accurate SoC calculation while a battery ages. The voltage 
prediction model developed in section 4.2 will also be used in the EMF adaptation 
method. Section 6.5 will present concluding remarks. 
 
 
6.1 General aspects of battery aging  
 
          The influences of temperature and C-rate on a fresh battery’s EMF and 
overpotential measurement and modelling have been discussed in chapters 4 and 5, 
respectively. To ensure accurate battery measurement and modelling, the influence 
of the aging effect must also be considered. General aspects of the aging of a 
US18500G3 Li-ion type of battery will be discussed in this section.  
   
6.1.1 Li-ion battery aging 
 
          Various degradation processes may contribute to battery aging, i.e. the 
electrolyte decomposition, the formation of surface films on both electrodes, 
compromised inter-particle contact at the cathode, etc. [1]. In previous literature has 
been reported that during the battery lifetime the formation of the Co3O4 will also 
take place. This mechanism has been adopted by the authors of this book in an 
adaptive Li-ion model through which the aging effect has been explained. 
Consequently, this mechanism has been considered also in this work to explain the 
battery EMF aging.  
          The decomposition of the LiCoO2 electrode in which xLi+ ions are 
intercalated can be represented as follows 
 
                            LixCoO2  →  (1–x)[Co3O4 + O2↑] /3 + xLiCoO2                        (6.1)           

for Battery-Powered Applications. 
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where the active electrode material decomposes into inactive Co3O4 material, which 
forms at the surface of the LiCoO2 electrode and will contribute to the increase in 
the battery’s impedance and hence overpotential, and to the decrease in maximum 
storage capacity.  
          The operational conditions determine whether an aged battery may still have 
acceptable remaining run-times (tr). A battery with a high impedance may still have 
acceptable run-times in portable devices that require low discharge C-rate currents, 
e.g. a CD player or a wireless mouse. In the case of portable devices that require 
high discharge C-rate currents, e.g. mobile phones, digital cameras or Electrical 
Vehicles (EVs), the remaining run-times will on the contrary be unacceptably short. 
An aged battery in such a device will have to be recharged more often than when 
the device was new. This will lead to even more wear-out.  
          The formation of Co3O4 species at the surface of the LiCoO2 electrode also 
contributes to the decrease in the amount of active LiCoO2. In this case the number 
of Li+ ions that can intercalate in the LiCoO2 electrode, i.e. the maximum capacity 
of the LiCoO2 electrode ( +

maxQ ), will decrease, causing the battery’s maximum 
capacity (Qmax) to decrease, too. A battery with a low Qmax value may still have an 
acceptable tr at low discharge C-rate currents, but the decrease in tr will become 
appreciable at higher C-rate currents. It can be concluded that the performance of 
the Li-ion will deteriorate during the battery’s lifetime due to the increase in 
impedance and/or decrease in Qmax. 
          The changing rate of a battery’s impedance and maximum storage capacity is 
strongly dependent on the operational conditions. High C-rate (dis)charge currents, 
high temperatures and voltage levels during charging will speed up the degradation 
of these two battery characteristics. To illustrate this, the discharge capacities (Qd) 
in mAh of two batteries (Qd1 and Qd2) have been plotted as a function of cycle 
number in Fig. 6.1. In both examples the discharge capacity was inferred from a 
complete discharge step at 0.5 C-rate current by means of Coulomb counting  
[1]–[9].  
          The decrease in discharge capacity can be expressed by      
 

               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 11100[%]

di

j
di

di Q
QQ                              (6.2) 

 
where Qdi [%] denotes the decrease in Qd [mAh] after j cycles and i the battery 
number.      
          During the operational conditions performed for battery 1 (continuous line in 
Fig. 6.1), the battery has been charged by means of the Constant-Current-Constant-
Voltage (CCCV) method until 4.3 V at 25°C. Clearly, the battery voltage rises 
during the CC period until the voltage value of 4.3 V is attained. Furthermore, the 
current decreases in the CV-region. Charging is terminated when the current cut-off 
value has reached a current of 0.05 C-rate. During the CC step a 4 C-rate current 
has been applied. After a resting period of 30 minutes, the battery was always 
discharged at 0.5 C-rate. Discharging was terminated when a voltage of 3.0 V was 
reached. The discharge step was followed by a resting period of 30 minutes. In this 
case, the discharge capacity after 220 cycles was 675 mAh, whereas the initial 
storage capacity had been 1165 mAh. It can be concluded from this example that 
the discharge capacity decreased by about 42% in 220 cycles. 
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Fig. 6.1. Discharge capacity Qd [mAh] as a function of cycle number, Cn.  Qd1 and Qd2 are 
the discharge capacities measured for battery 1 and 2, respectively, under two different 
operational conditions. Battery 1 has been charged by means of the Constant-Current-

Constant-Voltage (CCCV) method until 4.3 V at 25°C. Charging has been terminated when 
the current cut-off value has reached a current of 0.05 C-rate. During the CC step a 4 C-rate 

current has been applied. After a resting period of 30 minutes, the battery was always 
discharged until 3.0 V at 0.5 C-rate. Battery 2 has been partially (dis)charged between 30% 
and 70% SoC with 0.5 C-rate current at 25°C. The 40% SoC difference has been calculated 

as a fraction of the maximum capacity (Qmax) measured for a fresh battery. 
 

          In the second case (dashed line in Fig. 6.1), the battery has been partially 
(dis)charged between 30% and 70% SoC with 0.5 C-rate current at 25°C. The 40% 
SoC difference has been calculated as a fraction of the maximum capacity (Qmax) 
for a fresh battery. Each 50 cycles a complete (dis)charge has been performed. 
During charge the CCCV method has been applied until the 4.2 V voltage level. 
Similar charge termination conditions and discharging cycles with those for battery 
1 have been considered. The discharge capacity after 2000 cycles was 935 mAh, 
whereas the initial storage capacity had been 1150 mAh. So in 2000 cycles the 
discharge capacity decreased 19% relative to the initial storage capacity. 
          It should be noted that the decrease in the discharge capacity illustrated in 
Fig. 6.1 is a result of two combined battery processes, i.e. a decrease in battery 
capacity and an increase in battery impedance. A correct identification and 
separation of these two factors will be made in next section where the battery 
maximum capacity will be determined independently of the battery overpotential. 
     
6.1.2 Qmax measurements 
      
          For an accurate calculation of the maximum capacity of fresh and aged 
batteries, both 0 and 100% SoC states must be defined. In this book, 0% SoC is 
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assumed to correspond to a battery EMF of 3 V and 100% SoC to a battery EMF of 
4.175 V. The latter EMF value is based on experimental results obtained at 25°C. 
In repeated measurements it was observed that applying the normal CCCV 
charging method at 0.5 C-rate current causes a battery’s voltage to relax to 4.175 V 
at room temperature.    
          In the research discussed in this book, the Qmax of fresh and aged batteries 
was determined by applying the following measurement method. The fresh 
batteries were first charged at a constant maximum current at a 0.5 C-rate in CC-
mode until the maximum charge voltage of 4.2 V was reached in the subsequent 
CV-mode. The charging currents decreased in the CV-mode and the charging was 
ended at a predefined minimum current of 0.05 C-rate, at which the batteries were 
assumed to be fully charged. After a resting period of four hours, the batteries were 
discharged at 0.5 C-rate. Discharging was terminated when a voltage of 2.6 V was 
reached. The discharge step was followed by a resting period of 48 hours and a 
“Deep-Discharge” step at 0.001 C-rate until the battery voltage returned to 2.6 V. 
This “Deep-Discharge” step was followed by a resting period of 96 hours. By the 
end of this period the battery voltage had reached the equilibrium voltage of 3.000 
V, at which the SoC level was defined to be 0%. The batteries were allowed to rest 
for such a long time in order to ensure that the equilibrium voltage would always be 
reached. The aim of the “Deep-Discharge” step at a low C-rate value was to 
compensate for the overpotential effect. The maximum capacity was calculated by 
means of cumulative Coulomb counting applied during the 0.5 and 0.001 C-rate 
discharging current steps. 
 
 
6.2 EMF measurements as a function of battery aging 
 
          In [1]–[5] the EMF of Li-ion batteries is assumed to be dependent on aging to 
only a limited extent (see also chapter 3). New EMF measurement and modelling 
results as a function of battery aging will be presented in this section.  
          The accuracy of the voltage-relaxation model developed in section 4.2 as a 
function of battery aging will be discussed first. This model must yield highly 
accurate results for aged batteries to enable the influence of a not-fully-relaxed 
voltage on a battery’s EMF to be reliably assessed. In this model, EMF 
measurements are obtained by applying the Galvanostatic Intermittent Titration 
Technique (GITT) to both fresh and aged batteries. New results obtained for EMF 
hysteresis as a function of battery aging will also be presented below. At the end of 
this section the newly developed electrochemical EMF-SoC model described in 
section 4.4 will be used to explain EMF dependence on battery aging.   
 
6.2.1 The voltage-relaxation model as a function of battery aging 
 
          A new voltage-relaxation model was developed in section 4.2 of this book. It 
was shown that this model can be used to accurately predict a battery’s equilibrium 
voltage on the basis of only the first few minutes of the voltage-relaxation curve. 
Accurate results have been obtained by applying the voltage-relaxation model to 
fresh batteries under a large range of conditions. As mentioned in section 4.2, the 
model parameters are calculated and adapted on-line. This means that the voltage-
relaxation model should provide accurate results for aged batteries, too. This is 
important with respect to accurate interpretation of EMF measurements obtained 
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for aged batteries. Results obtained with the voltage-relaxation model as a function 
of battery aging at different SoCs and temperatures will also be presented in this 
section. Voltage-relaxation results obtained for a fresh battery will be compared 
with voltage-relaxation results obtained for a 42% Qdd battery (see section 6.1). The 
latter battery was chosen for the assessment of the accuracy of the voltage-
relaxation model on account of its more pronounced aging effect.  
          Fig. 6.2 analyses the voltage-relaxation process as a function of battery aging 
by comparing the Open-Circuit Voltage (OCV) of a fresh battery OCVf with that of 
an aged battery OCVa measured after a discharge step at the same SoC, C-rate 
current and temperature, i.e. 28% SoC, 0.1 C-rate current and 25°C, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.2. The relaxation processes of a fresh and an aged battery after a discharge step at 28% 

SoC, 0.1 C-rate current and 25°C as a function of time in [min.].        
           
          It follows from Fig. 6.2 that after a discharge step a battery’s OCV doesn’t 
coincide with its equilibrium voltage, i.e. EMF, during the relaxation process. The 
value of OCVf changes from 3.712 V immediately after the current interruption to 
about 3.746 V after 1440 minutes, whereas the value of OCVa changes from 3.663 
V immediately after the current interruption to about 3.748 V after 1440 minutes. It 
can be observed in Fig. 6.2 that in our experiment OCVf became constant after 
about 500 minutes, whereas OCVa reached the EMF after about 1200 minutes. A 
battery is assumed to be in equilibrium when the difference between the battery 
voltage measured during the relaxation process and the EMF voltage after 1440 
minutes is lower than 1 mV.  
          It can be concluded from Fig. 6.2 that the OCV evolution during the 
relaxation process of a fresh battery differs from that during the relaxation process 
of an aged battery. So when the same parameters are assumed for a fresh and an 
aged battery in the voltage-relaxation model the voltage prediction result will be 
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inaccurate. It should be noted that the OCV evolution during the relaxation process 
also provides information on a battery’s overpotential. More information on the 
overpotential will be given further on in this chapter. 
          The course of the SoC error (SoCe) calculated by means of voltage prediction 
(Vp), SoCe(Vp) for different SoCs and temperatures will be further considered in 
assessing the accuracy of the voltage-relaxation model. For the purpose of 
comparison, we will also consider the SoC error calculated by means of OCV, 
SoCe(OCV). The accuracy of the voltage-relaxation model was calculated using the 
SoCe determination method described in section 4.2. In this method, for each 
moment during the relaxation process, Vp and OCV are converted into an SoC 
value by using a reference EMF-SoC curve. SoCe(Vp) was therefore compared with 
SoCe(OCV) throughout the entire relaxation process. Fig. 6.3 shows the courses of 
SoCe(Vp) and SoCe(OCV) considered after a discharge step at 0.1 C-rate current and 
5°C as a function of time.  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.3. Error in SoC calculated on the basis of the predicted voltage, SoCe(Vp), compared 
with the SoC error calculated on the basis of the battery’s OCV, SoCe(OCV), considered 

after a discharge step at 32.4% SoC, 0.1 C-rate current and 5°C. The horizontal axis shows 
the relaxation time in [min.]. 

 
          It follows from Fig. 6.3 that the SoC calculated by means of voltage 
prediction, SoC(Vp) after two minutes of rest is close to the final SoC value 
calculated on the basis of the EMF voltage after full relaxation. The calculated SoC 
error, SoCe(Vp), is –0.4%, whereas the SoC error calculated on the basis of the 
battery’s OCV, SoCe(OCV), is 7.3%. From this example it can be concluded that 
the SoC accuracy calculated on the basis of the predicted voltage after two minutes 
of rest is equal to the SoC accuracy calculated on the basis of the OCV considered 
after 1000 minutes of rest. The system based on the SoC-EMF relationship and 
voltage-relaxation model works 500 times faster in this situation. It can also be 
concluded from Fig. 6.3 that for the first 1400 minutes the SoC accuracy calculated 
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on the basis of the predicted voltage is better than that inferred from the OCV. 
After this rest period both SoC indications are about equally accurate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.4. SoCe(Vp) compared with SoCe(OCV) after a discharge step at 32% SoC, 0.1 C-rate 

current and 25°C as a function of time in [min.]. 
 
 

            
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6.5. SoCe(Vp) compared with SoCe(OCV) after a discharge step at 32% SoC, 0.1 C-rate 

current and 45°C as a function of time in [min.]. 
 

          The courses of SoCe(Vp) and SoCe(OCV) measured after a discharge step of 
0.1 C-rate current, at 25 and 45°C are plotted in Figs. 6.4 and 6.5, respectively. It 
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follows from Fig. 6.4 that SoC (Vp) after five minutes of rest is close to the final SoC 
value calculated on the basis of the EMF voltage after full relaxation. In this case 
Vp leads to a –1% SoCe whereas OCV leads to a 3.4% SoCe. The latter error is 
reduced to 1% after a rest period of 200 minutes. So the system based on the SoC-
EMF relationship and voltage-relaxation model works 40 times as fast.  
          Similar conclusions hold for the situation measured at 45°C, as shown in Fig. 
6.5. In this case SoCe(Vp) is –1% after one minute of rest. SoCe(OCV) is 2.9% and 
1% after a rest period of 20 minutes:  a  20-fold improvement in “speed”.  
          The courses of SoCe(Vp) and SoCe(OCV) measured after a charge step at 0.1 
C-rate current and 5°C as a function of time are plotted in Fig. 6.6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.6. SoCe(Vp) compared with SoCe(OCV) after a charge step at 67% SoC, 0.1 C-rate and 
5°C as a function of time in [min.]. 

 
          Fig. 6.6 shows that SoC(Vp) calculated after a five minutes’ rest leads to an 
SoC value close to that based on the EMF voltage. SoCe(Vp) is –0.5% in this case, 
whereas SoCe(OCV) is –3.3%. An SoC error of –0.5% is obtained when the 
battery’s OCV is considered after a rest period of 200 minutes. So the system 
works 40 times faster. 
          A phenomenon similar to that illustrated in Fig. 6.6 can be seen in Figs. 6.7 
and 6.8, representing the situation at 25 and 45°C, respectively. In Fig. 6.7, for 
example, the value of SoC(Vp) after one minute’s rest is close to the final SoC 
calculated on the basis of the EMF voltage. The SoCe(Vp) calculated after this rest 
period is –0.5%, whereas the SoC error calculated on the basis of the OCV 
SoCe(OCV) is –4.9%. An SoC error of 0.5% is obtained when the OCV is 
considered after a rest period of 200 minutes. The “speed” is increased by a factor 
of 200. Similarly, in the example illustrated in Fig. 6.8, an SoC accuracy to within 
0.4% is obtained after two minutes of relaxation on the basis of Vp and the system’s 
“speed” based on the SoC-EMF relationship and voltage-relaxation model is 
improved 250 times.  
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Fig. 6.7. SoCe(Vp) compared with SoCe(OCV) after a charge step at 48% SoC, 0.1 C-rate and 
25°C as a function of time in [min.]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 6.8. SoCe(Vp) compared with SoCe(OCV) after a charge step at 48% SoC, 0.1 C-rate and 
45°C as a function of time in [min.]. 
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          In summary, the SoC of an aged battery calculated on the basis of the 
predicted voltage after a rest period of five minutes at different SoCs and 
temperatures is always accurate to within 1%. The voltage-relaxation model will 
therefore be used for a correct interpretation of the charge/discharge EMF obtained 
by means of GITT. 
 
6.2.2 EMF GITT measurement results obtained for aged batteries  
           
          In order to accurately determine the influence of battery aging on the EMF, 
Qmax should first be calculated. This calculation is necessary for a correct definition 
of SoC. Therefore, the Qmax experiment presented in section 6.1 was carried out 
using fresh and aged Li-ion batteries. It was observed that although the aged 
batteries were subjected to a “Deep-Discharge” step at a low C-rate value, the 
increase in the batteries’ overpotential still influenced the EMF values, i.e. 3.000 
and 4.175 V, at 0 and 100% SoC, respectively. As this influence was observed 
mainly at low and high temperatures, i.e. 5 and 45°C, respectively, the 
measurements were adjusted accordingly. For instance, if the battery EMF was 
found to reach a voltage level higher than 3 V, additional “Deep-Discharge” steps 
were applied after the 96 hour relaxation period. A similar correction was applied 
in the case of charging, by applying additional (dis)charging steps in order to obtain 
the EMF level of 4.175 V.  
         Let’s take as an example of correction through calculation a battery EMF of 
4.170 V after CCCV charging and a 4 hours’ resting period. In this example a 5 mV 
voltage and corresponding capacity have to be added to the measured EMF and 
capacity values. The capacity corresponding to the 5 mV EMF value can be 
inferred from previous measurements of the capacity-EMF relationship between 
4.170 and 4.175 V. A similar correction through calculation can be applied for 
discharging.             
          The described maximum capacity measurement yielded a Qmax value of 1173 
mAh for a fresh battery. This value will be regarded as the maximum reference 
capacity, Qmaxr below. The aged batteries discussed in section 6.1 have a Qmax1 = 
875 mAh and Qmax2 = 1110 mAh. The differences between the measured Qmax1 and 
Qd1 values and between the measured Qmax2 and Qd2 values, 200 mAh and 175 
mAh, respectively, are explained by the influence of the battery overpotential in the 
Qd measurement described in section 6.1. The capacity loss is calculated using Eq. 
(6.3). The capacity losses in aged batteries amount to Qloss1 = 25.4% and Qloss2 = 
5.4%. It should be noted that the Qloss1 value is lower than the acceptable battery 
capacity defined in the cycle life, i.e. 20% (see section 2.5). This battery will 
therefore be assumed to represent a worst-case scenario in the measurements and 
tests presented in this book. 
 

            
r

loss Q
Q

Q
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max100100[%] −=                            (6.3) 

           After the maximum battery capacity had been accurately determined, GITT 
measurements were carried out in order to determine the EMF as a function of 
battery aging. The following measurement method was applied. First, a battery was 
charged from 3 V at 0.1 C-rate in 25 steps. For each step a limit of 4.3 V in voltage 
and 4% SoC increase was assumed. Each charge step was followed by a rest period. 
The rest period was chosen as a function of SoC. At low SoCs long relaxation times 
of 24 hours are required, and at higher SoCs shorter relaxation times of 12 hours 
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are already sufficient. Next, 25 discharge steps of 4% SoC were induced (0.1 C-
rate) until the voltage limit of 2.6 V was reached. Each discharge step was again 
followed by a rest period. The rest period was also chosen as a function of SoC. In 
this way, 25 measured EMF data points were obtained for both charging and 
discharging. The low C-rate current was chosen in order to obtain an equilibrium 
voltage faster. The experiment was carried out at 5, 25 and 45°C.  
          Especially at low SoCs and temperatures, the battery voltage had not reached 
the EMF equilibrium voltage by the end of the rest periods (see also chapter 4). For 
this reason, the voltage-relaxation model presented in sections 4.2 and 6.2 was used 
to predict the EMF voltage. The voltages measured during the rest periods were 
used as input in the voltage-relaxation model. In this example, a 96 hours’ rest 
period was used for the voltage prediction for practical reasons (see sections 4.2 
and 6.2). 
          The 25 EMF points obtained by means of the GITT have been fitted 
according to a mathematical equation. It should be specified that the fitted EMF 
curve passes through the 25 measured points. Fig. 6.9 presents the EMF inferred by 
means of GITT as a function of aging during the discharge cycles at 25°C. The 
discharge EMF obtained for a fresh battery (EMFf) was compared with the 
discharge EMFs obtained for the aged batteries with 5.4% (EMFa5.4%) and 25.4% 
(EMFa25.4%) capacity loss. The differences between the EMFs obtained for a fresh 
battery and the aged batteries are plotted in Fig. 6.10. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.9. EMFs for fresh (f) and aged (a) batteries during discharging at 25°C as function of 
SoC. EMFa25.4% corresponds to battery 1 and EMFa5.4% corresponds to battery 2. The EMF 

measurements have been obtained by means of Galvanostatic Intermittent Titration 
Technique (GITT) for both fresh and aged batteries. The maximum capacity for both fresh 

and aged batteries equals the capacity taken out from the battery during a complete discharge 
cycle performed between the 4.175 and 3.0 V EMF levels.    
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Fig. 6.10. Differences in EMF between fresh (f) and aged (a) batteries during discharging at 

25°C as a function of SoC [%]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.11. EMFs obtained for fresh (f) and aged (a) batteries during discharging at 5°C as a 
function of SoC [%]. 

 
          According to Figs. 6.9 and 6.10, the difference between the fresh and aged 
battery EMF increases with aging. For instance, a difference of –48 mV was 
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obtained at 57.4% SoC. This means that when the EMF is used without taking into 
consideration the aging effect by modelling only EMFf, the SoC indication system 
based on the EMF will yield an SoC value of 57.4% for an aged battery (a25.4%), 
whereas the SoC value is actually 46.9%, implying an inaccuracy of –10.5%.  
          A possible explanation for the EMF dependence on battery aging will be 
given in section 6.2.4. Figs. 6.11 and 6.13 show the EMF dependencies obtained 
for fresh and aged batteries during the discharge cycle at 5 and 45°C, respectively. 
The differences between the “fresh” and “aged” EMFs at 5 and 45°C are plotted in 
Figs. 6.12 and 6.14, respectively. 
          These figures show that at all temperatures a similar increase in EMF 
differences was observed when the batteries aged. For instance, a difference of 
about –48 mV was obtained at 57.4% SoC at all the considered temperatures. The 
small difference between the EMFs measured at different temperatures and low 
SoCs is explained by the small number of interpolation points chosen at low SoCs 
in the experiments. It can be concluded that the chosen GITT measurement method 
does not influence the EMF determination during discharge.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.12. Differences in EMF between fresh (f) and aged (a) batteries during discharging at 
5°C as a function of SoC [%]. 
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Fig. 6.13. EMFs obtained for fresh (f) and aged (a) batteries during discharging at 45°C as a 

function of SoC [%]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.14. Differences in EMF between fresh (f) and aged (a) batteries during discharging at 

45°C as a function of SoC [%]. 
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6.2.3 The charge/discharge Electro-Motive Force difference as a function  
of battery aging  

 
          So far, the EMF measured by means of GITT has been considered during 
discharge only. However, as shown in chapter 4, the discharge and charge EMF 
curves differ due to the so-called hysteresis effect. Therefore, EMFs measured 
during charging will be discussed in this section.           
          Fig. 6.15 compares the charge EMF measured at 25°C in a fresh battery 
EMFf with the EMF of the battery with 5.4% capacity loss, EMFa5.4%, and that 
obtained for the 25.4% capacity loss battery EMFa25.4%. The difference between the 
EMFs obtained for the fresh battery and the aged batteries is plotted in Fig. 6.16.  
         It can be concluded from Figs. 6.15 and 6.16 that the maximum difference 
between EMFf and EMFa5.4% is 60 mV at 3.1% SoC. This leads to an SoC error of  
–0.8% when aging of the EMF curve is not considered. The measurement described 
above was repeated at 5 and 45°C. The results are illustrated in Figs. 6.17–6.20.           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.15. The charge EMFs at 25°C obtained for fresh (f) and aged (a) batteries. The 
horizontal axis shows the SoC [%] normalised to maximum capacity.  
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Fig. 6.16. The differences in EMF between fresh (f) and aged (a) batteries during charging at 

25°C plotted as a function of SoC [%] normalised to maximum capacity.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.17. The charge EMF obtained at 5°C EMF for fresh (f) and aged (a) batteries. The 
horizontal axis shows the SoC [%]. 
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Fig. 6.18. Differences in EMF between fresh (f) and aged (a) batteries during charging at 

5°C plotted as a function of SoC [%] normalised to maximum capacity. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.19. The charge EMF obtained at 45°C for fresh (f) and aged (a) batteries. The 
horizontal axis shows the SoC [%]. 
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Fig. 6.20. Differences in EMF between fresh (f) and aged (a) batteries during charging at 

45°C plotted as a function of SoC [%] normalised to maximum capacity.   
 

–139 mV was obtained between the fresh and the 5.4% capacity loss battery at 5°C 
and around 2.8% SoC. This leads to an SoC error of –1.7% when aging of the 
charge EMF curve is not considered. Moreover, the difference between the fresh 
and aged battery EMFs was consistently the same at all temperatures. For example, 

f a25.4% at 57.4% 
SoC for all three temperatures.  
          The EMF at 25°C obtained for fresh and aged batteries during charging and 

EMF curves is plotted in Fig. 6.22. A maximum EMF difference of 39 mV was 
obtained for the 5.4% capacity loss battery at 4.7% SoC. Ignoring this EMF 
difference leads to an error of –0.7% SoC. This effect will be more pronounced in 
the flat region of the EMF-SoC curve, where even small differences in EMF will 
cause substantial errors in SoC. For instance, a difference of about 24 mV was 
obtained for the EMF measured during the charge and discharge cycles in the case 
of the 5.4% capacity loss battery at 28.0% SoC. In this case ignoring the difference 
between the charge and discharge EMF will lead to an error in SoC of –6.7%.  
          The difference between the fresh and aged EMFs was moreover found to be 
consistently the same at all temperatures. It should also be noted that in GITT and 
voltage-relaxation measurement methods battery voltage is also predicted to ensure 
accurate EMF determination. The chosen measurement method did therefore not 
influence the determination of the EMF of the fresh and aged batteries. The EMF 
difference between charge and discharge (see Figs. 6.21 and 6.22) may be 
explained by hysteresis (H), which may be introduced by the LiCoO2 electrode. A 
possible cause of the hystereses could be phase transitions (ph). For further 
information on electrochemical hysteresis the reader is referred to [10]–[12].  

 

a difference of about –49 mV was obtained between EMF  and EMF

          It can be concluded from Figs. 6.15–6.20 that a maximum difference of  

discharging is illustrated in Fig. 6.21. The difference between the corresponding 
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Fig. 6.21. The charge/discharge EMF obtained at 25°C for fresh (f) and aged (a) batteries. 
The horizontal axis shows SoC [%] normalised to maximum capacity. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.22. The charge/discharge EMF difference (H) obtained at 25°C as a function of battery 
aging. The horizontal axis shows SoC [%] normalised to maximum capacity.  
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          From what has been said above it can be concluded that the charge/discharge 
EMF dependence on the aging effect should be considered to ensure accurate SoC 
determination.   
          
6.2.4 EMF modelling as a function of battery aging 
 
          A physical model for the EMF-SoC relationship in fresh batteries was 
presented in section 4.4. This model can be used to calculate the SoC 
corresponding to a given EMF and temperature. As discussed above, the measured 
EMF curve is however also dependent on battery aging. In this section the physical 
EMF model developed in section 4.4 will be used to explain the EMF dependence 
on battery aging in qualitative terms.  
          As expressed in Eq. (6.1), the LiCoO2 electrode will decompose during aging 
and an inactive layer may be formed at the LiCoO2 electrode surface. The amount 
of cyclable electrochemically active Li+ ions in the battery will consequently 
decrease. For this reason, the EMF model parameters relating to the battery’s 
design (Fig. 4.19) will also change, whereas the EMF parameters relating to the 
battery’s thermodynamics will remain unchanged. This situation is schematically 
represented in Fig. 6.23, in which the aged Li-ion battery is characterised by the 
same set of parameters as the fresh battery (Fig. 4.19). The defined parameters 
relating to the design of a fresh battery are also represented to enable comparison. 
    
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.23. Schematic representation of the EMF-SoC relationship parameters relating to the 

design of fresh and aged batteries. 
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          It follows from Fig. 6.23 that the amount of electrochemically active Li+ ions 
inside an aged battery 

maxaQ  exceeds the maximum capacity of the positive 

electrode +
maxaQ . This situation can be explained by the decomposition of the 

LiCoO2 electrode or the formation of a Co3O4 layer at the electrode surface (see Eq. 
(6.1)). In the case of an aged battery, an amount of electrochemically active Li+ 
ions will remain stored in the LiC6 electrode, resulting in a 

maxaQ  higher than 
+
maxaQ . The formation of the Co3O4 at the LiCoO2 electrode surface will also 

contribute to the increase in battery overpotential. During a battery’s lifetime, the 
amount of Li+ ions remaining inside the graphite at the end of discharging under the 
same operational conditions will therefore increase. This is represented by −

0Q and 
−
0aQ in Fig. 6.23. It should be noted that during a battery’s lifetime an amount of the 

Li+ ions will also be consumed in the Solid Electrolyte Interface (SEI), in an 
irreversible process [1].  
          Given the parameters shown in Fig. 6.23 and the experimentally observed 

SoC values, +
eqE  and −

eqE  of an aged battery can be determined in the same way 
using the model presented in chapter 4. From the situation described above it 
follows that the EMF model parameters relating to battery design will change 
during a battery’s lifetime. This means that, to obtain accurate SoC determination, 
the changing of these parameters with a battery’s aging must be taken into account. 

          Fig. 6.24 illustrates the +
eqE  and −

eqE  dependence on SoC in the case of a 
fresh and an aged battery.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.24. Schematic representation of the EMFs and positive and negative electrode EMF 

voltages of a fresh (a) and an aged (b) battery.  
 

          +
eqE  may have a voltage value between 3.6 and 4.3 V, whereas −

eqE ranges 
between 0.1 and 0.6 V. The EMF calculated for the fresh battery consequently has 
a voltage value between 3 and 4.2 V. These EMF limits correspond to 0 and 100% 
SoC, respectively. During the battery’s lifetime the LiCoO2 electrode will 
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decompose and an amount of the cyclable Li+ ions will remain stored inside the 

LiC6 electrode. Therefore, 2/Q maxa
+  will be lower than −

maxaQ . −
eqE  of an aged 

battery will consequently have a EMF value lower than 0.6 V at the 0% SoC level 
(see Fig. 6.24 (b)). To reach the defined 3 V EMF level at 0% SoC, the positive 
electrode must consequently be discharged to below the 3.6 V EMF level (see Fig. 
6.24 (b)). The EMF of the aged battery will then be calculated as a difference 
between different equilibrium potential levels with respect to the EMF calculated 
for a fresh battery. The EMF obtained for an aged battery will therefore differ from 
the EMF obtained for a fresh battery. In addition, the process of the battery’s 
degradation, induced mainly by the LiCoO2 electrode, will be accelerated. 
          The battery model presented in [13] was simulated in order to further 
investigate the EMF dependence on the aging effect. The aspects presented above 
were taken into account during the simulations. Good agreement was obtained 
between the qualitative explanation given in Fig. 6.24 and the results of the 
simulations. Furthermore, several batteries have been opened and measurements 
with reference electrodes have been performed. These measurements confirmed 
that the positive electrode decomposition mechanism is mainly responsible for the 
EMF aging effect. This enhances the confidence level of the EMF dependence on 
the aging process presented in this chapter. 
 
     
6.3 Overpotential dependence on battery aging 
 
          New overpotential measurements and modelling results obtained for Li-ion 
batteries as a function of aging will be presented in this section. The overpotential 
measurement results obtained for a fresh battery on the basis of partial 
charge/discharge cycles will be compared with those obtained for aged batteries. 
The temperature influence will also be considered in this comparison. The voltage-
relaxation model presented in sections 4.2 and 6.2 will be used to study the 
influence of a not-fully-relaxed voltage in the battery overpotential determination. 
New results regarding the overpotential symmetry as a function of battery aging 
will also be presented.   
 
6.3.1 Overpotential measurements as a function of aging 
 
          As the overpotential represents the difference between the EMF and the 
charge/discharge voltage, a charge/discharge EMF was first experimentally 
determined by means of GITT as described in section 6.2. During this measurement 
method the battery was charged/discharged in identical steps of 4% SoC at 0.1 C-
rate current. Each charge/discharge step was followed by a rest period chosen as a 
function of SoC. In order to obtain information on the battery overpotential, the 
difference between the EMF measured at the end of the relaxation period and the 
voltage last measured after a charge/discharge step was considered. This led to a 
charge overpotential with a negative value and a discharge overpotential with a 
positive value.  
          A major advantage of using GITT voltage-relaxation measurements for aged 
battery overpotential calculation is that interpolation calculations are not needed for 
the charge/discharge battery overpotential comparison. The difference between the 
EMF and the voltage last measured after a charge/discharge step is calculated at 
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each 4% SoC. This eliminates the inaccuracy that may result from the interpolation 
of the overpotential measurements from the charge/discharge battery overpotentials 
comparison. 
          Examples of the relaxation processes in a fresh and an aged battery are 
illustrated in Fig. 6.2. It follows from Fig. 6.2 and the situation described above that 
the overpotential increases with battery aging, which agrees with the aspects of 
battery aging considered in section 6.1. Fig. 6.25 shows the battery overpotentials 
calculated for a fresh and an aged Li-ion battery after charge and discharge steps at 
0.1 C-rate current and 25°C. It can be concluded from this figure that the maximum 
overpotential is 224 mV in the case of the 25.4% capacity loss battery at 2.9% SoC. 
          The GITT voltage-relaxation measurements showed that, especially at low 
SoC values, a 24 hours’ rest is not always sufficient for a battery to reach the 
equilibrium voltage, i.e. EMF. In order to investigate the influence of a not-fully-
relaxed voltage in the battery overpotential calculation, the battery voltage was 
further predicted by using the new voltage-relaxation model presented in section 
4.2. The voltages measured during the rest periods were used as input for the 
voltage-relaxation model. In this example a rest period of 96 hours was for practical 
reasons considered for the voltage prediction in the fresh and aged batteries. Fig. 
6.26 shows the battery charge/discharge overpotentials calculated as a difference 
between the predicted battery voltage after 96 hours and the voltage last measured 
after a charge/discharge step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.25. The overpotentials of fresh (f) and aged (a) batteries measured at 25°C.  

       
         The charge overpotential determined for fresh and aged batteries as a 
difference between EMF and Vchl and the charge overpotential determined as a 
difference between Vp and Vchl are consistently the same at all SoC values. Another 
conclusion relates to the discharge overpotential. The discharge overpotential 
determined for the fresh and aged batteries as a difference between EMF and the 
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voltage last measured after a discharge (Vdl) step and the discharge overpotential 
determined as a difference between Vp and Vdl are consistently the same at SoC 
values higher than 6.7%. Only a small voltage difference is observed at low SoCs 
between the discharge overpotentials obtained using the methods considered above. 
It can be concluded that 24 hours’ rest at low SoC values and 12 hours’ rest at high 
SoC values will usually be sufficient to ensure an accurate battery overpotential in 
fresh and aged batteries at 25°C. It follows from Fig. 6.26 that the maximum 
overpotential of the 25.4% capacity loss battery is 244 mV after a discharge step at 
2.9% SoC (see section 6.1).  
          From the measurements based on partial charge/discharge steps it follows 
that the battery overpotential increases at low SoC values and remains almost 
constant at SoC values higher than 20%. Another important conclusion relates to 
the shape of the battery charge/discharge overpotentials. From Figs. 6.25 and 6.26 
it follows that the mean calculated charge/discharge battery overpotential of fresh 
and aged batteries is symmetrical between 20 and 80% SoC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 6.26. The overpotentials of fresh (f) and aged (a) batteries measured at 25°C taking into 
account the voltage-relaxation model.  

 
           The partial charge/discharge battery overpotential measurements in fresh 
and aged batteries as a function of temperature will be further discussed in this 
section. In order obtain information on the battery overpotential dependence on 
temperature, the GITT and voltage-relaxation methods described above were 
applied at 5 and 45°C. Fig. 6.27 shows the battery overpotential calculated after 
charge and discharge steps of 4% SoC, at 0.1 C-rate current and 5°C. The 
maximum overpotential of the 25.4% capacity loss battery was evidently 310 mV 
after a discharge step at 3.2% SoC.  
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Fig. 6.27. The overpotentials of fresh (f) and aged (a) batteries measured at 5°C.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.28. The overpotentials of fresh (f) and aged (a) batteries measured at 5°C with the 

voltage-relaxation model plotted as a function of SoC [%]. 
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Fig. 6.29. The overpotentials of fresh (f) and aged (a) batteries measured at 45°C.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6.30. The overpotentials of fresh (f) and aged (a) batteries measured at 45°C with the 
voltage-relaxation model plotted as a function of SoC [%]. 
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          To enable comparison, the battery voltage was further predicted by using the 
new voltage-relaxation model presented in section 4.2. Fig. 6.28 shows the battery 
charge/discharge overpotentials calculated as a difference between the predicted 
battery voltage after 96 hours and the voltage last measured after a charge/ 
discharge step. A maximum overpotential of 317 mV was obtained for the 25.4% 
aged battery after a discharge step at 3.2% SoC. 
         Fig. 6.29 shows the battery overpotential after charge and discharge at 45°C. 
The maximum overpotential of the 25.4% capacity loss battery is 231 mV after a 
discharge step at 1.9% SoC. When the voltage prediction model is also considered 
the maximum overpotential increases by a value of 256 mV. This situation is 
presented in Fig. 6.30. 
          The results presented in Figs. 6.27–6.30 are again similar to the results 
obtained at 25°C, confirming that the rest periods were long enough for an accurate 
overpotential calculation and that the symmetry of charge and discharge 
overpotentials is also observed at other temperatures. The measurements based on 
partial charge/discharge steps show that the battery overpotential increases with 
aging at low SoCs and temperatures.  
 
 
6.4 Adaptive systems 
 
          In order to enable accurate battery modelling, new adaptive systems based on 
phenomena discovered during the analysis of the measurements of the battery 
Electro-Motive Force and overpotential models will be developed in this section. 
These adaptive systems are necessary because, as shown in sections 6.2 and 6.3, the 
behaviour of a battery’s EMF and overpotential changes with time due to the aging 
processes. It should be added that EMF and overpotential model parameter values 
are determined for a targeted battery chemistry/type of battery. Due to manufac-
turing spread not all batteries from the same manufacturing batch will behave 
identically. What’s worse is that the behaviour of a battery’s EMF and 
overpotential will change with the battery’s chemistry [1]. The parameter values 
must therefore be updated to ensure accurate modelling of batteries with different 
chemistries during their life cycles.  
           
6.4.1 Electro-Motive Force adaptive system 
 
          The proposed EMF adaptive method is based on the maximum capacity and  
GITT measurement methods (see Section 6.2) combined with the newly developed 
voltage-relaxation model (see section 4.2). In this chapter, the adaptive EMF 
method will be considered by applying the following measurement method. 
According to this method, a battery’s maximum capacity is determined during a 
complete charge cycle from a low SoC value, i.e. lower than 1% SoC. The battery 
is charged using the normal CCCV charging method [1]. The maximum capacity is 
calculated using the method described in [14]. The charging step is followed by a 
rest period of about 4 hours. In our calculation, the battery EMF voltage after the 
rest period had a value of 4.175 V and the SoC level was defined to be 100%. The 
battery was further discharged from 4.175 V at 0.1 C-rate current in steps of 4% 
SoC. The discharge step was followed by a rest period of 12 hours. By the end of 
the rest period the battery had reached the equilibrium state. In this way a first EMF 
point, EMF1, with the corresponding SoC, was determined (see Fig. 6.31). The 
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discharging was repeated until the battery voltage reached 3 V. The measurements 
were performed at 5, 25 and 45°C. An example measurement carried out at 7 EMF 
points using discharge steps of 4% SoC at 25°C is illustrated in Fig. 6. 31. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.31. The EMF points (EMF1, …, EMF7) measured after discharge  steps of 4% SoC at 

0.1 C-rate current and 25°C.  
  
          The chosen C-rate current, SoC step and rest period make the EMF 
adaptation method easy to implement, but the method described above is not 
restricted to any specific C-rate current, discharge SoC step or rest period, and can 
consequently be used for varying conditions. The newly developed voltage-
relaxation model could for example be used to avoid the long rest periods. Analysis 
of the voltage-relaxation results showed that a rest period of 15 minutes rest will 
always lead to SoC results that are accurate to within 0.5% SoC under a broad 
range of conditions. For this reason, a rest period of 15 minutes can be considered 
sufficient for accurate determination of a battery’s EMF.  
          An example of EMF adaptation in the 5.4% capacity loss battery (see section 
6.2) at 25°C will be further considered. In this example, 10 EMF predicted points 
are considered during discharging. The EMF predicted points are distributed along 
the horizontal axis. The voltage and time samples measured during the first 15 
minutes of the rest period are considered in this prediction. The 0 and 100% SoC 
levels with the corresponding EMF values, i.e. 3 and 4.175 V, respectively, are also 
considered in this example. The 12 EMF points are further fitted using the newly 
developed method in which the shape of the curve is also taken into account. The 
calculated EMF is illustrated in Fig. 6.32. To enable comparison, the EMF 
measured by means of GITT is also shown. The difference between the EMFs 
obtained by means of GITT and by means of the method described above is shown 
in Fig. 6.33. 
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Fig. 6.32. EMF obtained by means of 12 EMF predicted points (*) and the described 
adaptation method (EMFad) compared with EMF obtained by means of GITT (EMFGITT) at 

25°C using a 5.4% capacity loss battery. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.33. The difference between EMF obtained by means of GITT and EMF obtained by 

means of the described adaptation method (EMFad) at 25°C (see also Fig. 6.32).  
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          It can be seen in Figs. 6.32 and 6.33 that a maximum difference in EMF of 
36 mV was obtained at 1.1% SoC. This means that when the EMF adaptation 
method is used the SoC indication system based on EMF will in this case yield an 
SoC value of 1.3% whereas the actual SoC value calculated on the basis of the 
discharge EMF is 1.1%. The inaccuracy will be –0.2% SoC. This effect will be 
more pronounced in the flat region of the EMF-SoC curve, where even minor 
differences in EMF will cause substantial errors in SoC. A difference of about 8 
mV will for example be obtained between the EMF obtained using GITT and that 
obtained with the described adaptation method at 67% SoC. This means that when 
the EMF adaptation method is used, the SoC indication system based on EMF will 
in this case yield an SoC value of 66% whereas the actual SoC value calculated on 
the basis of the discharge EMF is 67%. The inaccuracy will be 1% SoC. It can be 
concluded that the newly developed EMF adaptation method will always yield an 
SoC that is accurate to within 1%. The EMF adaptation accuracy can be improved 
by considering a longer relaxation time in the voltage-relaxation model or more 
EMF points in the fitting method.  
  
6.4.2 Overpotential adaptive system 
 
          Besides a battery’s EMF curve, its overpotential development will also 
change over time. When this change in overpotential behaviour is not taken into 
account the accuracy of the overpotential model described in chapter 5 will 
gradually decrease as a battery ages.  
          The main problem with overpotentials is that they cannot be measured 
directly (see section 5.1). When a battery’s voltage has been measured and its EMF 
is known, an estimate of the overpotential can however be derived. A remaining 
difficulty is the fact that the overpotential depends on many factors, including a 
battery’s SoC, current, temperature, time, spread and age. Updating should 
therefore be initiated when most of these variables are constant. This section 
presents a new method for adapting a battery’s overpotential in accordance with the 
aging effect. The symmetry in the overpotential will also be used in this adaptive 
system.  
          The mechanism proposed for updating the overpotential model parameters 
takes advantage of the fact that the updating is performed during charging. The 
current will then be constant in CC mode and the temperature may also be 
considered constant because the charger will usually be used in-house, where 
temperature variations are limited. During normal CC charging the charge current 
will moreover not be interrupted, so after the overpotentials have been built up in 
the initial stages of charging the time variable will not play a dominant role.  
          The principle of the overpotential adaptive method is as follows. The 
overpotential model parameters of a fresh battery (ηf) are obtained by fitting the 
overpotential model (see Eq. (5.1)) to measured discharge overpotentials ( f

dη ) 
obtained at four C-rate currents together with the measured charge overpotential 
( f

chη ) obtained during CC charge mode (see chapter 5). ηch can also be measured 
for each SoC during CC charge mode by subtracting the EMF value from the 
measured battery voltage value. The SoC expressed as a percentage can be used to 
assess the EMF value during CC charge mode using the SoC-EMF relationship 
described in chapter 4. During a battery’s lifetime the charge overpotential ( a

chη ) 
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can therefore be continuously measured by using the ηch measurement method 
described above. A ratio at the same SoC, C-rate current and temperature can 
consequently be calculated for the fresh and the aged battery charge overpotentials. 
As shown in this chapter, the charge and discharge overpotentials are symmetrical 
with respect to the horizontal axis. For this reason, the a

chη / f
chη  ratio determined for 

the charge battery overpotential also works well for the discharge battery 
overpotential. The discharge overpotential of an aged battery ( a

dη ) can 
consequently be determined by using Eq. (6.5).  
 

f
ch

a
chf

d
a
d

η

η
ηη =                             (6.5) 

 
          It should be noted that the charge and discharge overpotentials of a fresh and 
an aged battery must be determined at the same SoC, C-rate current and 
temperature.  
          To enable accurate measurement of the charge overpotential during a 
battery’s lifetime, the EMF model parameters should also be adapted using the 
adaptation method described earlier in this section.  
 
 
6.5 Conclusions 
           
          A description of the behaviour of a battery’s EMF and overpotential as a 
function of aging has been presented. The measurement and modelling methods 
presented in this chapter have been applied to fresh and aged US18500G3 Li-ion 
batteries (Sony). As shown above, battery aging is a complex process that involves 
many battery parameters, e.g. impedance and capacity, the latter being the most 
important. These two factors must be correctly identified and separately analysed to 
obtain accurate battery measurements and modelling methods.  
           The EMF results obtained for two aged batteries by using GITT have been 
compared with those obtained for fresh batteries. Accurate results were obtained for 
the aged batteries, too, by applying the voltage-relaxation model under a broad 
range of conditions. This proved to be important for an accurate interpretation of  
EMF measurements obtained for aged batteries. The effects of temperature and 
hysteresis on the EMF curves of aged batteries have been discussed. These 
measurements show that the EMF depends on the aging effect. For this reason, the 
assumption regarding EMF presented in [1]–[5], i.e. that the EMF of a Li-ion 
battery depends on aging to only a limited extent, does not hold for US18500G3 Li-
ion batteries. The EMF mathematical model has been further used to explain the 
EMF dependence on battery aging. The difference in EMF is assumed to be mainly 
attributable to the decomposition of the LiCoO2 electrode. 
          Two possible methods for battery overpotential determination as a function 
of the aging effect have been presented. In the first method the charge/discharge 
overpotential is obtained via partial charge/discharge steps at different 
temperatures. The EMF measured by means of the Galvanostatic Intermittent 
Titration Technique (GITT) and the voltage-relaxation model have also been used 
in this method. The advantage of using the method based on partial 
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charge/discharge steps is that the GITT measurements can be used directly to 
obtain information on the charge/discharge battery overpotential.  
         The main drawback of the method based on partial charge/discharge steps is 
that full information on the build-up of an aged battery’s overpotential in time 
cannot be obtained from the applied charge/discharge period. This information was 
obtained by subjecting aged batteries to new measurements using a second method. 
The employed two measurement methods show that the value of a battery’s 
overpotential depends on the charge/discharge C-rate current, charge/discharge 
period, SoC, temperature and aging. A battery’s overpotential will for example 
increase at low SoCs and temperatures and with aging. The overpotential symmetry 
phenomenon discovered during the measurements has been discussed in relation to 
aged batteries. It has been shown that the calculated charge/discharge battery 
overpotential is symmetrical between 20 and 80% SoC. Aspects of this 
phenomenon have been used to adapt the overpotential model with aging.     
          This chapter also presents new adaptive systems for measuring a battery’s 
Electro-Motive Force and overpotential models for enabling accurate SoC 
determination. The EMF and overpotential model parameter values need to be 
updated in order to enable accurate modelling of batteries with different chemistries 
during the batteries’ life cycle. The EMF adaptive method combines the maximum 
capacity and the GITT measurement methods with the newly developed voltage-
relaxation model. A possible example of EMF adaptation for a 5.4% capacity loss 
battery by means of 10 EMF predicted points has been considered. This prediction 
is based on voltage and time samples measured during the first 15 minutes of the 
rest period. In this example the maximum inaccuracy in SoC prediction was found 
to be 1%. The basis of the proposed overpotential adaptive method is the 
overpotential symmetry. The mechanisms proposed for updating the overpotential 
model also take advantage of the fact that the update is performed during charging. 
A major advantage is that external conditions during a battery’s charging, such as 
charge current and battery temperature, will be constant. 
          The assumptions made in the considered EMF and overpotential adaptation 
methods make the update mechanism easy to implement, but the described methods 
are not restricted to any specific current or temperature, and may therefore be used 
for varying conditions. The presented adaptive systems should ultimately update 
EMF and overpotential model parameters and expand the model’s potential to 
include other types of batteries, too. More information on implementation aspects 
and test results obtained for aged batteries and different types of batteries will be 
given in chapter 8.   
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 Chapter 7 
Measurement results obtained with new SoC 
algorithms using fresh batteries 
 
 
           A complete description of EMF and overpotential behaviour of US18500G3 
Li-ion batteries has been given in chapters 4 and 5 of this book. In this chapter, a 
new SoC algorithm inferred from the SoC system described in [1] will be 
developed. The algorithm combines adaptive and predictive systems with Electro-
Motive Force (EMF) measurement during the equilibrium state and Coulomb 
counting (cc) [1]–[12] during the charge and discharge states. Besides cc, the 
effect of the battery overpotential (η) during discharge will be also considered. The 
goal of the SoC system is to predict the remaining run-time (tr) of an Li-ion battery 
with an uncertainty of 1 minute or less under all realistic user conditions, including 
a wide variety of load currents and a wide temperature range.  
          Basic issues concerning SoC and tr are presented in section 7.1. A new SoC 
algorithm and the method of implementing the algorithm states in a real-time SoC 
evaluation system are presented in section 7.2. The focus in section 7.3 is on the 
experimental results obtained with the real-time SoC evaluation system. The 
identification of sources of error in each state of the real-time SoC evaluation 
system is discussed in section 7.4. The conclusions of the error sources analysis are 
used to develop an improved SoC algorithm in section 7.5. They are also compared 
with the SoC algorithm introduced in section 7.2. Section 7.6 presents a 
comparison with a competitive SoC indication system, i.e. the bq26500 developed 
by Texas Instruments. These results prove that it is indeed possible to test SoC-
indication algorithms with the newly developed SoC evaluation system and show 
that the new approach is effective in improving remaining run-time indication 
accuracy. Finally, section 7.7 presents concluding remarks. 

 
 

7.1 Introduction 
 

          As already mentioned in the previous chapters of this book, several methods 
for SoC calculation are available in practice. This chapter presents a new method 
for predicting a battery’s SoC that aims to eliminate the main drawbacks and 
combine the advantages of the battery-related models described in chapters 4 and 5, 
respectively. The advantages of Electro-Motive Force (EMF) and overpotential will 
be combined in a new SoC indication algorithm. In order to ensure accurate SoC 
indication, the voltage-relaxation predictive method [13] and a new maximum 
capacity adaptive method [10] will be also considered in the SoC algorithm. The 
SoC calculation and battery overpotential prediction will also be used to calculate 
the remaining run-time available under the valid discharge conditions. In order to 
prove SoC and remaining run-time accuracy, the new SoC algorithm will be further 
implemented in a real-time SoC evaluation system.  
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7.2 Implementation aspects of the algorithm  
          
7.2.1 A new SoC algorithm 
 
          The basic structure of the SoC algorithm is schematically represented in  
Fig. 7.1. 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.1 Schematic representation of the SoC algorithm states. The horizontal axis shows  

the time. 
 

          The SoC algorithm starts up in the initial state (not represented in Fig. 7.1). 
In this state the initial SoC is determined on the basis of voltage (V) and 
temperature (T) measurements and the EMF model (EMFm) developed in section 
4.4. Dependent on whether the battery is being charged or discharged or is in 
equilibrium, the algorithm then shifts to the appropriate state.  
          In the equilibrium state the battery voltage (V) is stable and SoC is 
determined by means of voltage and temperature measurements and the EMF 
model (see Fig. 7.1).  
          In the discharge state SoC is determined by means of Coulomb counting, 
expressed as cc in Fig. 7.1. In addition to simple cc the effect of the overpotential is 
also considered (see Fig. 7.1). As will be shown later in this section the prediction 
of the overpotential also yields a remaining run-time prediction. Results of our 
mathematical overpotential implementation were presented in section 5.2. 
          In the charge state SoC is determined via Coulomb counting (see Fig. 7.1). 
The stable conditions of the charge state will be used in the SoC evaluation system 
in order to adapt the system to make allowance for the aging effect. One of the 
main advantages, which is also independent of the type of charge method used, is 
that the environmental temperature will in most practical cases be constant during 
the charge state.  
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          The transitional state is used when the algorithm changes from either the 
charge or the discharge state to the equilibrium state. In this state it is determined 
whether the battery voltage is stable and the algorithm is allowed to enter the 
equilibrium state. SoC is in this state determined by means of the voltage-
prediction model (Vpm) and EMFm (see Fig. 7.1). Results of Vpm were presented in 
section 4.2. The algorithm is assumed to be in the equilibrium state when the 
difference between the voltage predicted by means of the voltage-prediction model 
and the measured battery voltage is smaller than 1 mV.  
          In summary, in which state the algorithm is operating will depend on the 
value and sign of the current flowing into or out of the battery and on whether the 
battery voltage is stable or not, i.e. whether it has reached an EMF value.  
          In order to check the SoC and the remaining run-time accuracy, the new SoC 
algorithm was implemented in a real-time SoC evaluation system that operates  
in initial, standby, backlight-on, transitional, charge and discharge states. A state 
diagram illustrating the basic structure of the real-time SoC evaluation system is 
shown in Fig. 7.2. The backlight-on state is not included in this figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.2. State diagram of the real-time SoC evaluation system. 

 
          Each time the SoC evaluation system is switched on, it will start in the initial 
state (see Fig. 7.2). The SoC is in this state determined in the same way as in the 
initial state of the SoC algorithm.  
          In the standby state hardly any current is drawn from the battery. In this 
situation the battery is in equilibrium after full relaxation (see Fig. 7.1). The SoC is 
in the standby state (SoCs) therefore determined by means of V and T measurements 
and the stored EMFm. The current in the standby state is only a few mA, i.e. 1 mA 
in the SoC evaluation system described in this section, which is lower than the 10 
mA current limit (Ilim) defined in the SoC evaluation system (see Fig. 7.2). At this 
very low standby current value, the battery voltage will be very close to the EMF 
value, providing the voltage is stable. So, in order to allow the SoC evaluation 
system to change to this state, the condition of stable voltage has to be met. From 
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this state the system is able to switch to the charge, discharge, or backlight-on 
states. 
          In the backlight-on state a small negative current, i.e. 6 mA in the SoC 
evaluation system described in this section, is drawn from the battery. This will be 
the case when a user activates the screen of the SoC evaluation system. Because the 
current is still below the Ilim value, SoC will still be determined by means of V and 
T measurements and the stored EMFm. The SoC evaluation system will remain in 
this state for about 5 seconds (an arbitrarily chosen value) before automatically 
switching to the standby state. For these 5 seconds, all other transitions to the 
charge or discharge states will remain possible. 
          In the transitional state a small negative current, i.e. 1 mA in the SoC 
evaluation system described in this section, is drawn from the battery. The SoC is 
in this state determined in the same way as in the transitional state of the SoC 
algorithm. 
          In the charge state, a charger is connected to the battery and a positive current 
larger than the Ilim value flows into the battery (see Fig. 7.2). SoC in the charge 
state is determined by means of cc. The stable conditions during the charge state 
are exploited to adapt the maximum capacity value (Qmax) to allow for the aging 
effect.  
          As shown in chapter 6, any battery will lose capacity during cycling (see Fig. 
6.1). In order to ensure accurate SoC and tr calculation and to improve the SoC 
evaluation system capability to allow for the aging effect, a simple method for 
updating the maximum capacity taking capacity loss into account will be presented. 
In this method the stable conditions during charging are exploited to adapt Qmax to 
allow for the aging effect [10]. Fig. 7.3 shows how the maximum capacity is 
updated.  
     
 
 
 
       
 
 
 
 
 
 
 
 
 
 
Fig. 7.3. Schematic representation of the method for updating Qmax taking capacity loss into 

account. 
 
          It is necessary for the system to run through a sequence of states: standby 
state, charge state, transitional state and standby state (see Fig. 7.3). A new value of 
Qmax is determined as follows 
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where SoCsi and SoCsf denote the initial and final State-of-Charge in the standby 
state in [%] and Qch denotes the amount of charge flowing into the battery during 
the charge state in [mAh]. 
          The greatest advantages of this algorithm over the maximum capacity 
adaptation algorithm presented in [1] (see also Fig. 3.6) are:  
 

• during the charge state the current and temperature are more or less 
constant. These two variables can therefore be measured more easily than 
in the discharge state; 

• in a practical application the charging period will usually be longer than 
the discharging period, as a result of which, the Qmax inaccuracy caused by 
the inaccuracy generated in the SoCsf  and SoCsi determination will be 
smaller (see also section 7.4); 

• during the CV mode the overpotential will be smaller (see chapter 5), so 
the algorithm will reach the standby state sooner. This will improve the 
SoCsf determination accuracy; 

• if a battery is charged until the defined end-of-charge conditions are 
reached, i.e. 0.05 C-rate current in the CCCV algorithm, the SoCsf will 
automatically be 100%. The inaccuracy introduced at this point in the Qmax 
determination will consequently be very small. More information on the 
maximum capacity determination accuracy will be given in section 7.4.  

  
          In the discharge state, a negative current Id larger in modulus than the Ilim 
value flows out of the battery (see Fig. 7.2). SoC in the discharge state, SoCd, is 
determined by means of cc. In addition to SoCd, the remaining run-time available 
under the discharge conditions is also calculated during the discharge state. So 
besides simple cc, the effect of the battery overpotential is also considered in the 
remaining run-time calculation. The predicted battery overpotential at the 3 V End-
of-Discharge Voltage (VEoD) value is translated into a SoC-left percentage value 
SoCl by using the EMF model (see Fig. 3.4: SoCl = SoC at point B). tr [min.] is 
consequently inferred from SoCd [%], SoCl [%], Qmax [mAh] and Id [A] according to   
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          At the end of the discharge state, the system passes through the transitional 
state to the standby state. It can be concluded from the implementation method 
described above that in the charge and discharge states SoC is calculated by means 
of cc. Besides cc, the overpotential is also predicted for the tr calculation in the 
discharge state.  
          In summary, in which state the real-time SoC evaluation system is operating 
will depend on the value and sign of the current flowing into or out of the battery 
and on whether the battery voltage is stable or not.  
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7.2.2 Implementation aspects of the SoC algorithm 
 
          A performance analysis of the real-time SoC evaluation system must be 
carried out to test the accuracy of the SoC algorithm. This section describes the 
hardware structure of the real-time evaluation system. A test set-up was designed 
containing a computer with a National Instruments (NI) Data-Acquisition interface 
card, an SCB-68 National Instruments connector board, a 20 mΩ sense resistor 
(RS,) a Keithley 2420 3A Source Meter device with several digital Input/Output 
pins (Dig. I/O) used for (dis)charging the battery, a temperature box that can keep 
the battery at a constant temperature between –35°C and 65°C, an LM335National 
Semiconductor precision temperature sensor with an accuracy within ±1°C  
connected to the SCB-68 board and a safety box used as a device to prevent 
over(dis)charging of the battery. The SCB-68 board is a shielded board with 68 
screw terminals for easy connection to NI 68-pin products. The wiring diagram of 
the real-time operation system is given in Fig. 7.4. The PC and temperature box are 
not shown in this figure. 
          The battery voltage, current and temperature have to be monitored and the 
safety box has to be controlled to ensure that the Li-ion battery is never operated in 
an unsafe region. The temperature-sensor connections are indicated as ‘T’ in Fig. 
7.4. The real-time SoC evaluation system performs the voltage, current and 
temperature measurements with the aid of a 16-bit Analog-to-Digital Converter 
(ADC).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.4. Wiring diagram of the real-time SoC evaluation system. 
 

The measurement accuracy of the SoC evaluation system  
 
          The maximum error in the voltage, current and temperature measurements 
will be further discussed in this section. The maximum error in the voltage 
measurement, maxV∆ , can be obtained by means of 
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N
fs

offmax
V

VV
22

1
±=∆                         (7.3) 

 
where Voff denotes the maximum offset value, Vfs the full scale range of the ADC 
voltage and N the number of bits.    
          The measurement offset depends on the chosen ADC voltage range. A range 
of +/– 5 V that respects the voltage of Li-ion batteries was chosen for the voltage 
measurements [1]. In this range the ADC has a maximum offset value (Voff) of +/– 

fs
V. So the maximum voltage error is 0.88 mV. 
          Typically, the current is measured by measuring the voltage across a sense 
resistor (RS) connected in series with the battery. This measured current is 
integrated over time and used to determine the battery’s SoC. The higher current 
levels require substantially lower RS values and higher power dissipation ratings. 
The low RS resistance value results in a very small voltage drop across the shunt, 
which must be measured in order to determine the charge and discharge current in 
the real-time SoC evaluation system. Since one of the real-time SoC evaluation 
system’s functions is to provide a time integration of the battery current in order to 
determine the battery’s SoC, even small errors in the current measurement can 
cause substantial errors in the SoC measurement to accumulate over time (a 
common error when the signals to be measured are really small is offset of the 
current measurement device).  
          A range of +/– 2.5 A was chosen for the current measurements. This range 
corresponds to the GSM current maximum range. A voltage range of +/– 50 mV 
was chosen for the ADC to measure this current range. RS consequently equals  
20 mΩ. In this situation the ADC has an offset value Voff of +/– 0.029 mV [14]. In 

fs
measurements calculated using Eq. (7.3) will consequently be 0.03 mV. 
          A National Semiconductor precision temperature sensor with an accuracy 
within ±1°C was used for the temperature measurements (see Fig. 7.4). In 
conclusion, the described real-time SoC evaluation system is capable of providing 
all the functions, needed to test the SoC algorithm, i.e. the voltage, current and 
temperature measurements and the application of the charge/discharge currents.  
 
 
7.3 Results obtained with the algorithm using fresh batteries 
 
          A first set of tests was carried out with the described real-time SoC 
evaluation system to test the SoC algorithm accuracy and the SoC evaluation 
system validity. The following parts of the SoC algorithm were to this end 
implemented in the real-time SoC evaluation system: EMFm as a function of 
temperature, Vpm, ηm and Qmax adaptation.   
          The tests were carried out using full and partial charge/discharge cycles  
at different constant C-rate currents and temperatures. During the full 
charge/discharge cycles the battery was each time fully charged to 4.2 V with the 
normal Constant-Current-Constant-Voltage (CCCV) charging method at 0.5 C-rate 
current in the Constant-Current (CC) mode. In the CV mode the voltage was kept 
constant at 4.2 V until the current reached a 0.05 C-rate value. Each charge period 
was followed by a rest period of 2 hours. After this rest period a discharge step at 

0.8 mV [14] and a maximum resolution error of 0.076 mV for N = 16 and V  = 10 

the case of N = 16 and V  = 100 mV the maximum voltage error of current 
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0.1 C-rate current was applied until the battery voltage reached 3 V. This procedure 
was repeated at different constant discharge currents of 0.25, 0.5, 0.75 and 1 C-rate. 
          During the partial charge/discharge cycles the battery was charged to 
different SoC levels with the normal Constant-Current charging method at 0.5 C-
rate current. Each charge period was followed by a rest period of 2 hours. After this 
rest period a discharge step at 0.1 C-rate current was applied until the battery 
voltage reached 3 V. This procedure was repeated at different constant discharge 
currents of 0.25, 0.5, 0.75 and 1 C-rate. All the experiments were carried out using 
the same battery at 5, 25 and 45°C. 
          A Sony US18500G3 Li-ion battery was used in all the tests. At the time  
of testing the battery was fairly new, having undergone approximately 5 
discharge/charge cycles. The battery capacity was learned in the first charge cycle 
by using the method described in section 7.2. This showed that the Li-ion battery 
used in the measurements discussed in this section had a maximum capacity of 
1177 mAh. Table 7.1 summarises the experimental results.  
          The discharge C-rate current and temperature T in [°C] at which the tests 
were carried out are given in columns one and two, respectively. The initial SoC at 
the start of the experiments is referred to as SoCst, and the SoC remaining in the 
battery when the battery voltage equals VEoD calculated by means of the 
overpotential and EMF model (see section 7.2) is expressed as SoCl. These values 
are given in columns three and four, respectively. Columns five and six denote the 
remaining run-time predicted at the start of the experiment, trstp and the remaining 
run-time measured during the full discharge state, trstm, in minutes. The error in the 
remaining run-time, tre, at the end of the experiment, the relative error in the 
remaining run-time, trre, and the SoC at the end of the experiment, SoCend, are given 
in columns seven, eight and nine. SoCend was calculated on the basis of SoCst, Qmax 
and the capacity retrieved from the battery during the full discharge state. More 
information on SoC calculation during discharging will be given in section 7.4.2. 
The remaining run-time error, tre, equals the remaining run-time value calculated by 
the real-time SoC evaluation system at the 3 V End-of-Discharge voltage level. The 
relative error in the remaining run-time is defined as follows  
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= 100        (7.4) [15] 

 
          Two examples from Table 7.1 will be further explained below. The first 
example concerns the partial discharge at 0.25 C-rate current, 45°C and 58.4% 
SoCst. In this situation the SoC indicator makes a pessimistic estimation. At the 
beginning of the discharge step the SoC evaluation system indicated 142.8 minutes 
remaining run-time. After 146.4 minutes the battery reached the level of 3 V. This 
means that the inaccuracy of the SoC system was –3.6 minutes in remaining run-
time. In this example the relative error in remaining run-time trre is –2.5%.  
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97.1 2.1 609.9 616.9 –7.0 –1.1 1.0 
14.0 2.4 74.5 54.2 20.3 37.5 5.3 

 
5 

4.1 2.1 12.8 12.5 0.3 2.4 2.2 
96.5 0.3 617.6 629.5 –11.9 –1.9 0.3 
40.3 2.1 245.2 199.2 46.0 23.1 9.4 

 
25 

20.4 2.2 116.8 95.9 20.9 21.8 5.4 
99.0 2.3 620.8 642.4 –21.6 –3.4 –1.0 
58.0 1.8 360.8 371.2 –10.4 –2.8 0.7 

 
 
 
 
 

0.10 
 

45 
42.2 2.3 256.2 254.8 1.4 0.5 2.5 
97.2 2.5 243.2 242.4 0.8 0.3 2.9 
5.6 2.5 8.0 4.6 3.4 73.9 3.8 

 
5 

4.0 2.5 3.9 1.8 2.1 116.7 3.3 
98.4 2.6 246 251.5 –5.5 –2.2 0.4 
40.3 2.6 96.8 77.0 19.8 25.7 10.4 

 
25 

20.8 2.7 46.5 37.5 9.0 24.0 6.2 
99.0 2.8 247.0 254 –7.0 –2.8 0.0 
58.4 2.8 142.8 146.4 –3.6 –2.5 1.4 
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96.7 3.2 120.0 119.1 0.9 0.8 3.9 
5.6 3.0 3.3 0.5 2.8 560.0 5.2 

 
5 

4.0 3.0 1.3 0.1 1.2 1200.0 3.9 
98.3 3.2 122.1 124.7 –2.6 –2.1 1.2 
40.2 3.2 47.5 37.3 10.2 27.3 11.2 

 
25 

20.9 3.2 22.7 17.9 4.8 26.8 7.0 
99.0 3.3 122.9 126.7 –3.8 –3.0 0.2 
58.2* 3.4 70.4 72.2 –1.8 –2.5 2.0 

 
 
 
 
 

0.50 
 

45 

42.0 3.4 49.6 48.9 0.7 1.4 3.9 
97.5 3.7 80.3 78.9 1.4 1.8 5.4 
5.6 3.6 1.7 0.1 1.6 1600 5.5 

 
5 

4.2 3.5 0.6 0.0 0.6 100.0 4.1 
98.3* 3.9 80.8 82.4 –1.6 –1.9 1.9 
40.2 3.9 31.1 24.1 7.0 29 12.0 

 
25 

20.7 3.6 14.6 11.3 3.3 29.2 7.7 
99.0 3.9 81.4 84.1 –2.7 –3.2 0.7 
58.2 4.0 46.4 47.7 –1.3 –2.7 2.4 

 
 
 
 

0.75 

 
45 

41.8 3.9 32.4 32.0 0.4 1.3 4.4 
97.6 4.3 59.9 58.8 1.1 1.9 6.1 
5.4 4.0 0.9 0.0 0.9 100.0 5.4 

 
5 

3.5 3.5 0.0 0.0 0.0 0.0 3.2 
98.4 4.5 60.3 61.6 –1.3 –2.1 2.4 
40.2 4.4 23.0 17.8 5.2 29.2 12.6 

 
25 

23.4 4.2 12.3 8.9 3.4 38.2 9.6 
99.0 4.5 60.7 62.8 –2.1 –3.3 1.2 
58.0 4.6 34.3 35.3 –1.0 –2.8 2.9 

 
 
 
 

1.00 

 
45 

41.6 4.5 23.8 23.4 0.4 1.7 5.1 

Table 7.1. Results obtained with the real-time SoC evaluation system using a fresh 
US18500G3 Li-ion battery at different C-rate currents, temperatures and initial SoCs. 

calculation discussed in sections 7.4.2 and 7.4.3.  
Test examples considered for the SoC and remaining run-time uncertainty 
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          In the second example an SoCst value of 14.0% was indicated at the 
beginning of a full discharge cycle performed at 0.1 C-rate current and 5°C. In this 
situation the SoC indicator made a too optimistic estimation. At the beginning of 
the discharge step the system indicated 74.5 minutes remaining run-time. After 54.2 
minutes the battery reached the level of 3 V. The inaccuracy of the SoC system was 
consequently 20.3 minutes in remaining run-time, whereas the relative error in the 
remaining run-time was 37.5%.  
         An important observation relates to the error in remaining run-time as a 
function of SoCst. It follows from Table 7.1 that the error in remaining run-time 
increased when the experiment began at lower SoCst values. This can be attributed  
mainly to the EMF hysteresis effect, which was not included in the SoC algorithm 
considered for these tests. 
          It follows from Table 7.1 that the calculated remaining run-time relative error 
sometimes exceeds 100%. For instance, a 1200% relative error was obtained for the 
partial discharge performed at 0.5 C-rate current and 5°C. At the beginning of the 
discharge step the system indicated 1.3 minutes remaining run-time. After 0.1 
minute the battery reached the level of 3 V. The reason for this high calculated 

error in remaining run-time amounted to 1.2 minutes, which may be considered 
acceptable from a practical point of view. For this reason a new goal was defined 

r
uncertainty of less than 1 minute when trstm has a value lower than 100 minutes and 
an indication with an error of 1% or less when trstm has a value higher than 100 
minutes under all realistic user conditions, including a wide variety of load 
currents and a wide temperature range. This goal proved a difficult challenge. 
          The error in remaining run-time expressed in minutes by tre, as a function of 
trstp [min.] is given in Fig. 7.5 to show just how close the measured data presented 
in Table 7.1 are to the actual data. trstp has been converted to a logarithmical scale 
and only error values lower than 25% (see Table 1) have been included. The 
accuracy limit values for the goal specified above are indicated by dashed lines in 
Fig. 7.5. For example, to satisfy the newly defined goal the modulus of tre must be 
less than or equal to 7 minutes at trstp = 700 minutes.   
           It can be concluded from Table 7.1 and Fig. 7.5 that an always better than 
20.3 minutes and 23.1% accuracy in the remaining run-time is obtained. These 

run-time calculation the sources of the errors in the SoC evaluation system must be 
identified. The general remarks concerning uncertainty presented in section 3.5 will 
therefore be applied to the real-time SoC evaluation system described above.  
 
 
 
 
 
 
 
 
 
 
 
 

for this work: prediction of the remaining run-time (t ) of any Li-ion battery with an 

error is that  the absolute error is much greater than the actual error. In this case the 

results do not meet the goal of this work. For a more accurate SoC and remaining 
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Fig. 7.5. The relative error in remaining run-time as a function of time converted to a 
logarithmical scale. 

 
 
7.4 Uncertainty analysis 
 
          No matter what precautions are taken, there will always be a difference 
between a quantity’s actual (but unknown) value and the result obtained in 
measurement. For an accurate SoC and tr calculation the sources of error in each 
step in the SoC evaluation system must be identified and minimised. In this book 
‘measurement uncertainty’ is a qualification of the expected closeness of a 
measurement result to the actual value [15].  
 
7.4.1 Uncertainty in the real-time SoC evaluation system 
 
          The sources of error in each step in the SoC evaluation system will now be 
identified.  
 
Initial state  
 
          In the initial state a battery’s SoC is calculated by means of V and T 
measurements and the stored EMFm. Accurate EMF-SoC curves have been 
obtained with a Maccor battery tester [16]. They were implemented in the SoC 
evaluation system using the physical EMF-SoC model (see chapter 4). The voltage 
(VM), current (IM), temperature (TM) and time (tM) measured with the Maccor are 
regarded as reference measurements. It was observed in repeated measurements and 
tests that the errors introduced in the EMF measurements by the spread between 
batteries and the EMF fitting (EMFf) and detection (EMFdt) methods used during 
the Maccor measurements (see chapter 4) are actually very small. They were 
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therefore ignored in the SoC and tr uncertainties calculation. The tests presented in 
this chapter were carried out using only fresh batteries. Errors introduced by the 
aging effect in the EMF-SoC and overpotential models were therefore also ignored.    
          The results obtained by applying the EMF model to an Li-ion battery as a 
function of three temperatures were presented in section 4.4. It was shown that the 
modelled EMF curve shows a good fit with the measured EMF curve obtained with 
the reference battery tester at 5, 25 and 45°C. The SoC error (SoCe) obtained for the 
discharge EMF had a maximum value of 1.2% SoC (see Fig. 4.20).  
          In the SoC evaluation system the battery voltage is assumed to have a stable 
EMF in the initial state. However, when the SoC evaluation system is switched on, 
a current larger in module than the limit current may flow into or out of the battery 
or may just have just flown into or out of it. This means that an unstable voltage 
measurement may introduce, an error in the SoCi calculation. The SoC evaluation 
system presented in this chapter was designed with a bipolar 16-bit Analog-to-
Digital Converter (ADC) for measuring voltage. The maximum voltage error is 
0.88 mV (see Eq. (7.3)). The voltage measurement will therefore also introduce an 
error in the SoCi calculation. In repeated measurements and tests it was observed 
that the errors introduced in the SoC evaluation system’s temperature and time (t) 
measurements are actually very small. They were therefore further ignored in the 
SoC and tr uncertainties calculation. From the situations described above it can be 
concluded that in the initial state errors will be introduced in the SoCi calculation by 
the voltage measurements and the modelling inaccuracy of EMFm. 
 
Standby state  
 
          A battery is assumed to be in equilibrium in the standby state and the SoC, 
expressed as SoCs, is calculated by means of V and T measurements and the stored 
EMFm. However, during the standby state a 1mA standby current is drawn from the 
battery. This means that an error will be introduced in the SoCs calculation due to 
unstable voltage measurement. As in the initial state, the V measurement and the 
modelling inaccuracy of EMFm will also introduce an error in the SoCs calculation. 
 
Backlight-on state 
 
          In the backlight-on state the SoC is determined on the basis of V and T 
measurements and the stored EMFm. However, during the backlight-on state a  
6 mA backlight-on current is drawn from the battery. Again an error will be 
introduced in the SoCb calculation due to unstable voltage measurement. So the 
voltage measurements and the inaccuracy in EMFm will introduce errors in the SoCb 
calculation. 
 
Transitional state 
 
          In the transitional state the voltage is not stable and SoCt is calculated by 
means of voltage and time measurements, Vpm and EMFm. However, during the 
transitional state a small current, i.e. Is, is drawn from the battery. This means that 
an error will again be introduced in the SoCt calculation due to unstable voltage 
measurement. So errors will be introduced in the SoCt calculation by the V 
measurements, Vpm and the modelling inaccuracy of EMFm. 
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          It can be concluded from the situations described above that the main errors 
in SoC calculation during the initial, standby, backlight-on and transitional states 
are the errors introduced in voltage measurement and those generated by the 
modelling inaccuracy of EMFm and Vpm.  
 
Charge state 
 
          In the charge state a positive current flows into the battery. The SoC in the 
charge state, SoCch, is determined by means of cc. The SoC evaluation system 
presented in this chapter was designed with a bipolar 16-bit Analog-to-Digital 
Converter (ADC) for measuring the current. The current is determined by 
measuring the voltage drop across a 20mΩ sense resistor connected in series with 
the battery (see Fig. 7.4). The maximum voltage error in current measurements 
equals 0.03 mV (see Eq. (7.3)). In this case the current error measured when the 
sense resistor value is calibrated will be 1.5 mA. To allow Qch [mAh] measured by 
means of cc to be translated into SoCch [%], Qmax must be known. The current 
measurement and integration and the Qmax measurements will consequently 
introduce errors in the SoCch calculation. 
 
Discharge state 
 
          In the discharge state a battery is discharged and a negative current larger in 
module than Ilim flows out of the battery. SoCd is determined by means of cc and 
Qmax calculations, which are also the main sources of errors in the SoCd calculation. 
In addition to SoCd, tr available under the discharge conditions is also calculated 
during the discharge state. As shown by Eq. (7.2) the remaining run-time is inferred 
from SoCd, SoCl, Qmax and Id. Therefore, in addition to simple cc, the effect of a 
battery’s overpotential must also be considered in the calculation of tr. Accurate 
overpotential curves obtained with a Maccor battery tester were implemented in the 
real-time SoC evaluation system using the overpotential model (ηm). The results 
obtained by applying the overpotential model to an Li-ion battery as a function  
of four C-rate currents were presented in section 5.2. As shown in that section,  
the modelled overpotential curve yields an SoCl error of 0.4%. In repeated 
measurements and tests it was observed that the errors resulting from spread in the 
overpotential model calculation are actually very small; they were therefore ignored 
in the remaining run-time uncertainty calculation. 
           From the situations described above it can be concluded that the main error 
in SoC calculation during the charge and discharge states is the error generated in 
cc, whereas the main errors in the tr calculation during the discharge state are the 
errors introduced by SoCd, SoCl, Qmax and the current measurement. In summary, 
the SoC and tr calculation uncertainties depend on the state in which the SoC 
evaluation system operates.  
          Fig. 7.6 presents a diagram illustrating the sources of error in the SoC-
evaluation system. The single-line blocks represent the errors introduced by the on-
line measurements in the SoC evaluation system, the grey blocks the errors 
generated by the battery models and off-line measurements, while the dashed and 
double-line blocks represent errors that have not been considered or have been 
ignored, and errors resulting from tr uncertainties calculation, respectively. Finally, 
the circles denote errors introduced by the variables measured on-line that were 
used as input for the battery model calculations. 
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Fig. 7.6. Schematic representation of the sources of error in the real-time SoC evaluation  

system. 
 
7.4.2 The SoC uncertainty 
                  
          Two examples from section 7.3 at different C-rate currents, SoCst and 
temperatures will be further considered for the SoC uncertainty calculation. 
          In the first example the SoC evaluation system runs through the following 
sequence of states: initial, standby, full charge, transitional, standby and full 
discharge. At the beginning of the test the SoC evaluation system was switched on 
and the initial state was entered (see Fig. 7.2). In this state a battery voltage of 3.01 
V and a battery temperature of 25°C were measured. These measurements and the 
stored EMFm yield an SoCi value of 0%. After a short rest period in which the 
battery voltage and temperature were continuously monitored the SoC evaluation 
system was switched to standby state (see Fig. 7.2). In this state a SoCs of 0% was 
calculated on the basis of V and T measurements and the stored EMFm.  
          A 0.5 C-rate positive current was then applied to the battery and the SoC 
evaluation system switched to the charge state (see Fig. 7.2). During this state the 
battery was fully charged using the usual Constant-Current-Constant-Voltage 
(CCCV) charging method at a 0.5 C-rate charging current. In the CV mode the 
voltage was kept constant at 4.2 V until the current reached 0.05 C-rate. The SoC 
during the charge state (SoCch) was calculated as follows 

 

max
100

Q
Q

SoCSoC ch
sch +=            (7.5) 

 
           During the CCCV charging a Qch of 1175 mAh was determined on the basis 
of cc and an assumed maximum capacity Qmax of 1188 mAh based on previous 
maximum capacity measurements obtained for this type of battery. The SoCch 
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consequently amounted to 98.9% (see Eq. (7.5)). However, by the end of the CV 
mode at 25°C the SoC level should by definition be 100%. This meant that SoCch 
had to be calibrated and a new SoCch value of 100% had to be programmed. In this 
example the error in SoCch was consequently 1.1%. This SoC error was calculated 
as the difference between the actual SoCch, i.e. 100%, and the SoCch calculated 
using Eq. (7.5), i.e. 98.9.  
          The sources of error in the SoCch calculation will be further discussed below. 
According to Eq. (7.5), SoCch is a function of three parameters: SoCs, Qmax and Qch. 
Each of these parameters contributes to the uncertainty in SoCch. The partial 
derivative of SoCch in Eq. (7.5) (and considering SoCs in unit value for simplicity) 
yields   
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where d(.)/(.) denotes the relative error in the quantity (.). Each of these relative 
errors will now be briefly considered to estimate their influence on the overall 
uncertainty.  
          After investigation and comparison with a reference current measurement 
method it was concluded that the Qch measurement introduces a 0.2% SoC relative 
error in SoCch .  
          The error introduced by SoCs was found to be very small and was therefore 
ignored in the SoCch uncertainty calculation.  
          The third parameter, Qmax, satisfies Eq. (7.1). So the error in Qmax follows 
from the errors in SoCs and Qch. The partial derivative of Qmax in Eq. (7.1) results in 
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where d(.)/(.) denotes the relative error in the quantity (.). 
          It can be concluded from Eq. (7.7) and the situation described above that the 
main error in maximum capacity is introduced by the assumed maximum capacity 
value, i.e. 1188 mAh. Therefore Qmax was recalculated and a new value of 1177 
mAh was programmed in the SoC evaluation system. It should be noted that other 
initial values could also be chosen for the maximum capacity. The same error 
calculation principle will then of course apply.  
          The charging was followed by a rest period of about 4 hours, during which a 
small current Is of 1 mA was drawn from the battery. At the beginning of the rest 
period the SoC evaluation system switched to the transitional state (see Fig. 7.2). 
To allow comparison, the SoC value during the transitional state was calculated 
using cc and also on the basis of the V, T, t, Vpm and EMFm measurements and 
calculations. The SoC during the transitional state, SoCt, was calculated by means 
of cc as follows 

max
100

Q
Q

SoCSoC d
cht −=               (7.8) 

 
where Qd was determined by means of cc. 
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          It follows from Eq. (7.8) that SoCt is a function of three parameters: SoCch, 
Qmax and Qd. Each of these parameters contributes to the uncertainty in SoCt. It 
should be noted that the values of the first two parameters, i.e. SoCch and Qmax, were 
calibrated at the end of the charge step. These two sources of error were therefore 
ignored in the SoCt uncertainty calculation. During the first two hours of the rest 
period an accurate charge Qd of about 2 mAh was measured by means of cc, and an 
SoCt value of about 99.8% was obtained at the end of the transitional state (see Eq. 
(7.8)). It can be concluded that the errors in the SoCt calculation introduced by the 
third parameter, i.e. Qd, may also be ignored.  
          During the transitional state SoCt was also calculated on the basis of the V, T, 
t, Vpm and EMFm measurements and calculations. The V and t measurements and 
Vpm yielded a voltage of 4.177V. This predicted voltage was used as input for the 
stored EMFm. This resulted in an SoCt of 99%.  
          After a two-hour rest period the SoC evaluation system switched to the 
standby state. At the beginning of the standby state a battery voltage of 4.177 V and 
a battery temperature of 25°C were measured. These measurements and the stored 
EMFm yield an SoCs of 99%. From the situations described above it can be 
concluded that the SoCs calculation after the two-hour rest period had an error of 
0.8% SoC. Another conclusion relates to Vpm. The EMF value predicted during the 
transitional state, i.e. 4.177 V, equals the EMF value at the beginning of the 
standby state. So the voltage-prediction model does not introduce any errors in  
the SoCt calculation.  
          At the end of the standby state a SoCs of 98.3% was calculated on the basis of 
the V, T, t and EMFm measurements and calculations, whereas the actual SoCs was 
99.7%. The actual SoCs value was calculated by means of cc. It can be concluded 
that the error introduced by EMFm contributed most to the SoCs error and amounted 
to –1.4% SoC.  
          A 0.5 C-rate negative current was then drawn from the battery and the SoC 
evaluation system switched to the discharge state (see Fig. 7.2). During this state 
the battery was discharged until the voltage reached a defined End-of-Discharge 
Voltage (VEoD) of 3 V at 0.5 C-rate discharging current. The SoC during the 
discharge state, SoCd, was calculated using  
 

  
max

100
Q
Q

SoCSoC d
sd −=             (7.9) 

  
         Eq. (7.9) shows that SoCd is a function of SoCs, Qmax and Qd. So SoCs and Qd 
will introduce errors in SoCd, because Qmax has been calibrated. During the 
discharge state a Qd of 1143 mAh was determined by means of cc. At the end of the 
discharge step an SoCd of 1.2% was calculated (see Table 7.1), whereas the actual 
SoCd was 2.6%. The actual SoCd was calculated by assuming the actual SoCs of 
99.7%. 
          The sources of error in the SoCd calculation will now be further discussed. 
By assuming the difference between SoCd and SoCs to be ∆SoCd and assuming 
absolute values for simplicity, Eq. (7.9) becomes  
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max

100
Q
Q

SoC d
d =∆                           (7.10) 

          It follows from Eq. (7.10) that the absolute error in SoCd will be the sum of 
the absolute errors in SoCs and ∆SoCd. The measurements showed that the error 
introduced by Qd during discharging was actually very small, so it was further 
ignored in the SoCd uncertainty calculation. It should also be noted that the Qmax 
value was calibrated. This means that the relative error in SoCd was introduced 
mainly by SoCs and equalled –1.4%.  
 
7.4.3 The remaining run-time uncertainty  
 
          The SoC evaluation system presented in this chapter also calculates the 
remaining run-time available under the discharge conditions (see Eq. (7.2)). The 
remaining run-time calculation method is schematically illustrated in Fig. 7.7.  

Fig. 7.7. Schematic representation of the calculation of the remaining run-time available 
under the discharge conditions (see also Fig. 7.6). 

 
          To allow tr to be calculated, an SoCl value is calculated at the beginning of 
the discharge state on the basis of the overpotential prediction and EMFm. In this 
example a SoCl of 3.2% was calculated, whereas the actual SoCl amounted to 2.6%. 
The actual SoCl was calculated by considering the actual SoCd at the end of 
discharging (see section 7.4.2). As a result, tr inferred from Eq. (7.2) using the 
measured SoCd (98.3%), SoCl (3.2%), Qmax (1177 mAh) and Id at the beginning of 
discharging (see Fig. 7.7), i.e. 0.55 A, was 122.1 minutes, whereas the actual tr was 
124.7 minutes. It should be added that the SoCd value at the beginning of 
discharging corresponded to the SoC value of the previous state.   
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          To obtain a high level of accuracy in the remaining run-time interpretation 
the actual tr was calculated in two different ways. First of all the remaining run-
time value measured by the real-time SoC evaluation system at the defined 3 V 
End-of-Discharge voltage level was assumed to be the true value. Then the actual 
SoCd and SoCl values were used to calculate the actual remaining run-time value. 
So in this example the tr calculation had an error of –2.6 minutes.  
         We will now consider the sources of error in the tr calculation. Taking the 
partial derivative of tr and considering tr in hours, SoC dimensionless, Qmax in 
[mAh] and Id in [mA], Eq. (7.2) results in 
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where trre denotes the relative error in tr, dId/Id the relative error in Id and dSoCd and 
dSoCl the error in SoCd, i.e. 0.014, and in SoCl, i.e. –0.007, respectively. It should 
be noted that dSoCl was calculated as a difference between the true and the 
measured SoCl values. For this calculation the second number after the decimal 
point has been also taken into consideration. 
          Eq. (7.11) shows that Qmax, Id, SoCd and SoCl contribute to the uncertainty in 
tr. The measurements showed that the error introduced by Id during discharging is 
very small. The errors introduced by Qmax and Id were therefore ignored in the tr 
uncertainty calculation.  
          It follows from Eq. (7.11) that the error in tr is –0.045 hour or –2.7 minutes. 
This calculated error corresponds well to the error obtained in the example. It can 
be concluded from the situations described above that the main errors in tr result 
from errors in SoCd, i.e. 1.8 minutes, and in SoCl, i.e. –0.9 minute. These two error 

          In the second example the SoC evaluation system runs through initial, 
standby, partial charge, transitional, standby and partial discharge states. At the 
beginning of the test the SoC evaluation system was switched on and the initial 
state was entered (see Fig. 7.2). In this state a battery voltage of 3.03 V and a 
battery temperature of 45°C were measured. These measurements and the stored 
EMFm yielded an SoCi value of 0.5%.  
          After a short rest period in which the battery voltage and temperature were 
continuously monitored the SoC evaluation system switched to the standby state 
(see Fig. 7.2). In this state a SoCs of 0.5% was calculated on the basis of V and T 
measurements and the stored EMFm.  
          A 0.5 C-rate positive current was then applied to the battery and the SoC 
evaluation system switched to the charge state (see Fig. 7.2). During this state the 
battery was partially charged to 3.98 V using the usual Constant-Current (CC) 
charging method at a 0.5 C-rate. The SoC during the charge state (SoCch) was 
calculated on the basis of SoCs, Qch and Qmax (see Eq. (7.5)). During the CC 
charging a Qch of 675 mAh was measured by means of cc, resulting in an SoCch of 
57.8% (see Eq. (7.5)). After investigation and comparison with a reference 
measurement it was concluded that the Qch measurement introduced an 0.2% SoC 
relative error in the SoCch calculation. The error introduced by SoCs was found to 
be very small and was further ignored in the SoCch uncertainty calculation. In this 
example the error in SoCch was 0.2%. This SoC error was calculated as the  

values have opposite signs, which mean that they do not (partly) cancel.
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difference between the actual SoCch, i.e. 58.0%, and the SoCch calculated using Eq. 
(7.5), i.e. 57.8%.  
          The charge step was followed by a rest period of about 2 hours during which 
a small current Is of 1 mA was drawn from the battery. At the beginning of the rest 
period the SoC evaluation system switched to the transitional state (see Fig. 7.2). 
To allow comparison, the SoC during the transitional state was calculated by means 
of cc and also on the basis of the V, T, t, Vpm and EMFm measurements and 
calculations. During the two-hour rest period a charge Qd of about 2 mAh was 
measured by means of cc, and a value of about 57.6% was obtained for SoCt at the 
end of the transitional state (see Eq. (7.8)). It can be concluded that the error 
introduced in the SoCt calculation by cc may be ignored.  
          During the transitional state SoCt was also calculated on the basis of the V, T, 
t, Vpm and EMFm measurements and calculations. The V and t measurements and the 
voltage-prediction model yielded a value of 3.854V. This predicted voltage was 
used as input for the stored EMFm. The SoC system consequently calculated a SoCt 
value of 58.4%.  
          After one hour’s rest the SoC evaluation system switched to the standby 
state. At the beginning of the standby state a battery voltage of 3.854 V and a 
battery temperature of 45°C were measured. These measured values lead to an SoC 
of 58.4%. It follows from this example that the error in SoCs amounted to 0.8%. 
The error in SoCs was calculated as the difference between the actual SoCs 
calculated by means of cc and the SoCs calculated on the basis of the V, T, t, Vpm 
and EMFm measurements and calculations. This SoC error was attributed to the 
influence of hysteresis in the EMFm on the basis of the good accuracy obtained in 
EMFm simulations at 58.4% SoC and 45°C (see Fig. 4.20). Another conclusion 
relates to the Vpm. From the situations described above it follows that Vpm does not 
introduce any errors in the SoCt calculation. So the error introduced by the EMFm, 
in particular the fact that hysteresis was not taken into account, contributed most to 
the SoCs error.  
          An 0.25 C-rate negative current was then drawn from the battery and the SoC 
evaluation system switched to the discharge state (see Fig. 7.2). During this state 
the battery was discharged to the End-of-Discharge Voltage level. During the 
discharge state a Qd of 671 mAh was determined by means of cc. At the end of the 
discharge step an SoCd value of 1.4% was calculated, whereas the actual SoCd 
amounted to 0.6%. The actual SoCd was calculated by assuming the actual SoCs to 
be 57.6%.  
          We will now consider the sources of error in the SoCd calculation. It follows 
from Eqs. (7.9) and (7.10) that the absolute error in SoCd will be the sum of the 
absolute errors in SoCs and ∆SoCd. The measurements showed that the error 
introduced by Qd during discharging was very small; it was therefore further 
ignored in the SoCd uncertainty calculation. The relative error in the SoCd was 
therefore introduced mainly by SoCs and equalled 0.8%.  
          To allow tr to be calculated, an SoCl value of 2.8% was calculated at the 
beginning of the discharge state, whereas the actual SoCl amounted to 0.6%. The 
actual SoCl was calculated by considering the actual SoCd at the end of discharging. 
tr inferred from the measured SoCd (58.4%), SoCl (2.8%), Qmax (1177 mAh) and Id 
at the beginning of discharging, i.e. 0.275 A, was consequently 142.8 minutes, 
whereas the actual tr was 146.4 minutes. In this example the tr calculation had an 
error of –3.6 minutes.  

163



Chapter 7 

          Let us now consider the sources of error in the tr calculation. The 
measurements showed that the error introduced by Id during discharging was very 
small; it was therefore ignored in the tr uncertainty calculation. From the situations 
described above and Eq. (7.11) it follows that the error in tr is –0.06 hour or –3.6 
minutes. This calculated error corresponds well to the error obtained in the 
example. It can be concluded that the main errors in tr resulted from errors in SoCd, 
i.e. 2 minutes, and in SoCl, i.e. 5.6 minutes. The errors introduced by SoCd and SoCs 
in the tr have the same sign, and must therefore be subtracted from one other (see 
Eq. (7.11)).           
          From the examples considered in this section it can be concluded that 
accurate modelling of the EMF=f(SoC) relationship (see chapter 4) and of the 
overpotential (see chapter 5) is not enough to obtain a high level of accuracy in 
remaining run-time prediction either.  
 
 
7.5 Improvements in the new SoC algorithm  
 
          In this section new methods for modelling the Electro-Motive Force and 
predicting a battery’s State-of-Charge-left (SoCl) will be described. Results 
obtained with these methods will also be compared with results of the EMF=f(SoC) 
and overpotential methods described in chapters 4 and 5. The models will be deve-
loped on the basis of the conclusions of the error analysis performed in section 7.4.  
 
 
7.5.1 A new State-of-Charge-Electro-Motive Force relationship 
 
          Accurate SoC fitting results were obtained with the EMF physical model 
developed in chapter 4. Although this model each time yielded a high level of 
accuracy – i.e. an error of less than 1.2% in SoC – for the discharge EMF (see Fig. 
4.20), this does not seem to be sufficient to guarantee a high level of accuracy in 
remaining run-time indication, too (see Table 7.1). It should be noted that for an 
accurate description of the EMF-SoC relationship, the hysteresis effect on the 
EMF, discussed in chapter 4, should also be considered. This section therefore 
presents a new method for determining SoC=f(EMF) in which the SoC during 
equilibrium is determined on the basis of the measured EMF and temperature 
without any need for mathematical inversion, which could compromise the SoC 
indication accuracy. The mathematical function contains a set of parameters that 
are found by fitting to available measured EMF curves. The advantage is that no 
numerical inversion is needed,  as in the method discussed in [1]. The function 
describing the SoC=f(EMF) relationship is given by Eqs. (7.12), (7.13) and (7.14). 
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o – EMF)/RT, F denotes the Faraday constant 
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(8.314 J (mol K)–1) and T the (ambient) temperature in [K]. x  denotes the absolute  
 

in which the dimensionless  x  = F( E
), EMF[V] is the measured Electro-Motive Force, R the gas constant 
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x
x
o  in [V] and the dimensionless a10, a11, 

p11, q11, a12, p12 and q12 are parameters obtained by fitting the measured battery 
EMF. 
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          In order to include the influence of temperature in the SoC=f(EMF) 
relationship, linear dependence of each of the model parameters was assumed 
according to  

 
        ( ) ( ) ( )ref refpar T par T T T par= + − ∆                       (7.15) 
 

where Tref is a reference temperature (e.g. 25°C), T is the ambient temperature and 
par(Tref) is the value of one of the SoC=f(EMF) model parameters at temperature 
Tref. The par∆  value is the sensitivity to temperature determined for each 
parameter par(Tref). 

 
7.5.2 A new State-of-Charge-left model  
 
          A new method for determining the remaining run-time will be proposed in 
this section. With this method it is not necessary to predict a battery’s 
overpotential, measure a battery’s voltage or use the EMF model under current 
flowing conditions. To this end a new predictive State-of-Charge-left (SoCl) 
mathematical function was developed as follows 
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st

and temperature T [oC]. β [T–1], δ [T–1] and the dimensionless α, γ, ς and ϑ  are 
parameters fitted to measured SoCl data. 
 

value of x and s  denotes the sign of x. E

          Using Eqs. (7.12) and (7.13), the SoC can be inferred from the measured 

where SoC  [%] denotes the SoC at the beginning of discharge at C-rate current C 

in which SoC denotes the dimensionless State-of-Charge and the dimensionless  A 
and w are parameter values determined by fitting the measured battery EMF.  
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          When the SoCl function described by Eq. (7.16) is substituted in Eq. (7.2) the 
remaining run-time at point B can be predicted immediately after discharging has 
started at point A (see Fig. 3.4). The function described by Eq. (7.16) contains a set 
of parameters that are found by fitting to available SoCl measured values. The 
advantages are that SoCl can be easily measured (see Fig. 3.4), that prediction of 
the overpotential, voltage measurement and EMF model calculation are not 
necessary under loading conditions and that the remaining run-time is calculated 
directly by only one function.  
 
7.5.3 Determination of the parameters of the new models  
 
         The parameters used in Eqs. (7.12) – (7.15) were found by fitting the 
SoC=f(EMF) relationship to measured charge/discharge EMF curves obtained with 
a reference battery tester at three temperatures. The charge/discharge EMF curves 
were measured with the voltage-relaxation method described in chapter 6. The 
EMF model parameters are summarised in Table 7.2.  
          Column one gives the symbol of the EMF model parameter. The values of 
the EMF parameter obtained for the charge and discharge EMFs are given in 
columns two and three, respectively. Column five indicates the units of the EMF 
model parameters. The SoC=f(EMF) parameters presented in Table 7.2 were used 
in the simulations whose results are shown in Figs. 7.8 and 7.9. 
          Figs. 7.8 and 7.9 show that the modelled charge/discharge EMF curve used 
in the system shows a good fit with the measured discharge curve obtained with the 
reference battery tester at all temperatures. The maximum error in SoC appears to 
be 0.8%. In Fig. 4.20 this was 1.2 %, so the new method gives a better result.  
          The SoCl parameters used in Eq. 7.17 will now be determined. To obtain 
information on SoCl the battery was discharged from different SoCst values at 
different constant C-rates and temperatures. The SoC value at the end of 
discharging was taken as the SoCl value. Another way of determining the SoCl 
value would be to apply the voltage-relaxation model and the newly developed 
SoC=f(EMF) relationship. This way the battery equilibrium voltage predicted after 
the first few minutes of the voltage-relaxation curve can be converted into an SoCl 
value by using the SoC=f(EMF) function. Verification showed that the 
aforementioned methods lead to the same predicted SoCl values. The measured 
SoCl values were used as input in the SoCl model (SoClm) described by Eq. (7.16). 
The SoClm model parameter values are presented in Table 7.3. Column one gives 
the symbol of the SoCl model parameter. The values and units of the SoCl model 
parameters are given in columns two and three. 
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Table 7.2. The battery SoC=f(EMF) model parameter values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ See Eq. (7.15). 
 

Table 7.3. SoC-left model parameters. 
 

 
 
 
 
 
 
 
 
 
+ See Eq. (7.15). 
 
          The SoCl values obtained on the basis of SoClm and fitted SoCl (SoClf) values 
(using Eq. (7.16)) are presented in Fig. 7.10. The difference between the measured 
and fitted SoCl values is indicated in Fig. 7.11 to show how close the measured 
values are to the fitted data. It follows from Figs. 7.10 and 7.11 that the maximum 
difference between the measured and fitted SoCl values equalled 0.6% at 45°C.  
 
 

Parameter Charge value Discharge value Unit 
E0 3.72 3.71 [V] 
∆E0 0.00 –3.52 10–4 [V T–1] + 
a10 2.42 2.04 [1] 
∆a10 –4.98 10–2 –4.26 10–2 [T–1] + 

a11 2.28 10–1 2.41 10–1 [1] 
∆a11 2.28 10–3 8.22 10–3 [T–1] + 

a12 3.06 10–2 2.05 10–2 [1] 
∆a12 –3.83 10–4 –2.46 10–4 [T–1] + 

a20 3.82 3.74 [1] 
∆a20 2.11 10–3 3.99 10–3 [T–1] + 

a21 –7.59 10–1 –7.59 10–1 [1] 
a22 2.46 10–4 6.77 10–4 [1] 
p11 1.29 1.35 [1] 
∆p11 1.742 10–2 3.58 10–3 [T–1] + 

p12 3.00 3.00 [1] 
∆p12 1.86 10–2 1.85 10–2 [T–1] + 

p21 1.06 1.06 [1] 
∆p21 –8.49 10–5 –8.01 10–5 [T–1] + 

p22
 2.00 2.00 [1] 

q11 0.00 0.00 [1] 
q12 1.00 1.00 [1] 
q21

 1.00 1.00 [1] 
q22

 0.00 0.0 [1] 
A 6.64 6.41 [1] 
∆A 2.813 10–3 3.27 10–3 [T–1] + 

w2 9.56 10–1 9.56 10–1 [1] 
∆w2 –1.62 10–4 –1.92 10–4 [T–1] + 

Parameter Value Unit 
ς  5.90 10–6 – 

ϑ  7.25 104 – 
γ  3.50 10–1 – 

δ  1.30 10–3 [T–1] + 

α  1.18 10–1  – 
β  3.75 10–3  [T–1] + 
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Fig. 7.8. Accuracy of SoC indication using the measured charge EMF curve versus the fitted 
EMF curve at 5, 25 and 45°C. The horizontal axis shows the SoC [%] normalised to  

maximum capacity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.9. Accuracy of SoC indication using the measured discharge EMF curve versus the 
fitted EMF curve at 5, 25 and 45°C as a function of the SoC [%] normalised to maximum 

capacity. 
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Fig. 7.10. Accuracy of SoC indication using the measured SoCl values versus the fitted 
values at 5, 25 and 45°C. The horizontal axis shows the C-rate. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Fig. 7.11. The difference between the measured and fitted SoCl values obtained during 
discharging at different currents at three temperatures (see also Fig. 7.10).  

 
7.5.4 Test results 
 

          Two sets of tests at constant and switching C-rate currents were carried out 
with the improved real-time SoC evaluation system in order to demonstrate the SoC 
algorithm accuracy and the SoC evaluation system validity. For these tests the 

45oC 

25oC 

5oC 
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following parts of the SoC algorithm were implemented in the real-time SoC 
evaluation system: the newly developed SoC=f(EMF) model (EMFm) as a function 
of temperature and hysteresis (see Eq. (7.14)), Vpm, the new SoClm as a function of 
the C-rate current, SoCs and temperature (see Eq. (7.16)) and the maximum 
capacity Qmax adaptation algorithm (see Fig. 7.3 and Eq. (7.1)).  
          To allow for the hysteresis effect in the EMF, two sets of parameters were 
stored in the real-time SoC evaluation system for the EMFm (see also Table 7.2). 
When the system was in the charge state before transition, the parameters 
corresponding to the charge state were used as input for the EMFm, while the 
parameters corresponding to the discharge were used as input for the EMFm when 
the previous state was discharge. Tests under conditions similar to those presented 
in Table 7.1 were carried out with the improved SoC algorithm to verify the SoC 
and remaining run-time accuracy. Table 7.4 shows the results (see also Table 7.1 
for comparison).  
  

Table 7.4. Results obtained with the improved real-time SoC evaluation system using fresh 
batteries. 

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
        One example from Table 7.4 will be further discussed below. An SoCst of 
41.8% and an SoCl of 5% were calculated using the newly developed SoC=f(EMF) 

C-rate 
current 

T 
[°C] 

SoCst 
[%] 

SoCl 
[%] 

trstp 
[min] 

trstm 
[min] 

tre 
[min] 

trre  
[%] 

SoCend  
[%] 

97.4 3.7 601.6 599.8 1.8 0.3 4.2 5 
61.8 3.1 376.9 370.0 6.9 1.9 4.2 
100.0 2.4 626.6 632.6 –6.0 –0.9 1.4 25 
38.2 1.7 234.3 234.3 0.0 0.0 1.7 
100.0 1.6 631.7 638.9 –7.2 –1.1 0.4 

 
 
 

0.10 
45 

51.5 1.3 322.3 324.3 –2.0 –0.6 1.6 

97.3 5.0 237.0 234.7 2.3 1.0 5.9 5 
42.7 3.9 99.6 102.7 –3.1 –3.0 2.7 
100.0 3.2 248.6 251.1 –2.5 –1.0 2.1 25 
36.3 2.3 87.3 86.5 0.8 0.9 3.4 
100.0 2.2 251.2 254.7 –3.5 –1.4 0.8 

 
 
 

0.25 
45 

51.3 1.8 127.1 127.6 –0.5 –0.4 2.0 
96.9 6.2 116.5 113.9 2.6 2.3 8.1 5 
41.8 5.0 47.3 46.9 0.4 0.9 5.4 
100.0 4.0 123.3 124.7 –1.4 –1.1 3.4 25 
36.2 3.1 42.6 42.3 0.3 0.7 3.4 
100.0 2.8 124.8 126.2 –1.4 –1.1 1.6 

 
 
 

0.50 
45 

51.4 2.4 62.9 62.9 0.0 0.0 2.4 
96.5 6.4 77.1 77.2 –0.1 –0.1 5.9 5 
40.8 5.9 29.9 30.1 –0.2 –0.7 5.5 
100.0 4.6 81.7 82.7 –1.0 –1.2 3.2 25 
57.1 3.9 45.5 46.0 –0.5 –1.1 4.6 
100.0 3.3 82.8 83.7 –0.9 –1.1 2.1 

 
 
 

0.75 
45 

51.3 2.9 41.4 41.7 –0.3 –0.7 2.6 
96.7 7.6 57.2 56.3 0.9 1.6 8.0 5 
39.7 6.8 21.1 20.8 0.3 1.4 7.4 
100.0 5.0 60.1 60.9 –0.8 –1.3 3.5 25 
36.2 4.6 20.3 20.2 0.1 0.5 4.7 
100.0 3.6 61.9 62.6 –0.7 –1.1 2.4 

 
 
 

1.00 
45 

51.1 3.4 30.6 31.0 –0.4 –1.3 2.7 
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and SoCl models at the beginning of the partial discharge step performed at 0.5 C-
rate and 5°C. The SoC evaluation system consequently calculated a trstp of 47.3 
minutes (see Eq. (7.2)), whereas the trstm amounted to 46.9 minutes. This implies an 
inaccuracy in remaining run-time prediction of 0.4 minute or 0.9%.  
          It follows from Table 7.4 that the improved SoC evaluation system yields a 
remaining run-time accuracy with an error of less than 3.1 minutes at trstm values 
lower than 100 minutes and an error of less than 3.0% at trstm values higher than 100 
minutes. In the majority of the measured cases an error of less than 1 minute, or 
1%, was however obtained. This leads to the conclusion that the improved SoC 
evaluation system offers more accurate remaining run-time indication.  
          Fig. 7.12 presents the tre [min.] as a function of trstp [min.] to show how close 
the measured results are to the data presented in Table 7.4 (see also Fig. 7.5 for 
comparison).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.12. The relative error in remaining run-time as a function of time in the improved SoC 
evaluation system tested at constant discharge C-rate currents. 

 

         A second set of tests were carried out to further validate the accuracy of the 
SoC evaluation system under an extended range of conditions. In these tests 
different switching C-rate currents were used for the discharging at different SoCst 
values and different temperatures. The results of these tests verified the accuracy of 
the SoCl model under different discharging conditions with due allowance for the 
battery’s behaviour over time. The switching between the C-rate currents was each 
time effected at 3.4 V. This low voltage level was chosen because the accuracy of 
the remaining run-time prediction was expected to be poorer at lower voltage/SoC 
levels. The measurement results are summarised in Table 7.5 (see also Table 7.1). 
The current switched from the C-rate initial value to the C-rate final value when the 
battery reached the 3.4 V voltage level.  
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Table 7.5. Results obtained with the improved real-time SoC evaluation system using fresh 
batteries and switching discharge C-rate currents. 

 
 
Fig. 7.13. The relative error in remaining run-time as a function of time in the improved SoC 

evaluation system tested at switching discharge C-rate currents. 

 

Initial 
C-rate 
current 

Final 
C-rate 
current  

T 
[°C] 

SoCst 
[%] 

SoCl 
[%] 

trstp 
[min] 

tre 
[min] 

trre 
[%] 

SoCend 
[%] 

0.10 0.20 43.3 2.9 259.5 –3.2 –1.2 1.9 
0.25 0.35 41.3 3.9 96.0 –1.4 –1.4 3.1 
0.50 0.40 42.1 5.0 47.6 –0.6 –1.2 4.75 
0.75 0.65 9 
1.00 0.90 

 
 

5°C 

45.1 5.8 25.2 –1.7 –6.3 3.4 
0.10 0.20 56.8 1.8 352.8 –4.3 –1.2 3.2 
0.10 0.50 98.2 2.3 615.7 –1.5 –0.2 1.2 
0.10 0.50 54.0 1.8 335.2 –2.3 –0.7 0.0 
0.10 1.00 98.4 2.3 617.0 –0.8 –0.1 1.1 
0.10 1.00 54.0 1.8 335.2 –1.5 –0.4 0.0 
0.25 0.35 35.1 2.3 84.2 1.6 1.9 3.2 
0.50 0.40 56.3 3.3 68.0 –1.7 –2.4 4.4 
0.50 1.00 98.5 3.9 121.5 –0.6 –0.5 3.0 
0.50 1.00 54.0 3.4 65.0 –1.1 –1.7 1.7 
0.75 0.65 56.5 3.9 45.0 –0.9 –2.0 4.9 
1.00 0.50 99.2 4.8 60.6 –2.1 –3.3 3.3 
1.00 0.50 58.3 4.7 34.4 1.8 –5.5 6.1 
1.00 0.90 

 
 
 
 
 
 

25°C 

35.2 4.5 19.7 0.5 2.6 5.2 
0.10 0.20 51.5 1.2 323.0 –0.4 –0.1 1.4 
0.25 0.35 51.6 1.8 127.9 –0.3 –0.2 1.9 
0.50 0.40 51.2 2.4 62.7 –0.3 –0.5 2.2 
0.75 0.65 51.6 2.9 41.7 0.0 0.0 2.9 

 
 

45°C 

1.00 0.90 51.4 3.4 30.8 –0.4 –1.3 2.8 

47.  5.7 36.1 –0.2 –0.6 5.6 
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          It follows from Table 7.5 that the SoC evaluation system calculations lead to 
an error of –0.8 minute or –0.1% in the case of full discharge effected with a 
switching C-rate current from 0.1 to 1 C. This means that the improved SoC 
evaluation system yields a maximum error of 2.1 minutes, corresponding to 1.7%, 
in remaining run-time prediction. In the majority of the cases presented in Table 7.5 
the error in remaining run-time prediction is however less than 1 minute, or 1%.  
          The relative error in remaining run-time as a function of trstp is indicated in 
Fig. 7.13 to show how close the results presented in Table 7.5 are to the actual data 
(see also Figs. 7.5 and 7.12 for comparison). 

 
 

7.5.5 Uncertainty analysis 
 
          Fig. 7.14 shows a diagram of the sources of error in the newly developed 
real-time SoC evaluation system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.14. Schematic representation of the sources of error in the improved real-time SoC 
evaluation system (see also Fig. 7.6 for comparison). 

 
          The new SoCl model contains fewer sources of error in the remaining run-
time calculation. In this case SoCl is calculated by means of one function. Accurate 
results were obtained with this model at different temperatures and C-rate currents 
(see Figs. 7.10 and 7.11). Another important improvement is the new SoC=f(EMF) 
model that also includes the temperature dependence and the charge/discharge 
hysteresis. Accurate results were obtained with this model for both charge and 
discharge EMFs (see Figs. 7.8 and 7.9). These two important improvements, 
identification of the sources of error and the subsequent uncertainty analysis, 
greatly improve the real-time SoC system’s accuracy in the case of fresh batteries.    
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7.6  Comparison with Texas Instruments’ bq26500 SoC 
indication IC 

 
          The SoC evaluation system presented in this chapter was tested together with 
the bq26500 SoC IC developed by Texas Instruments [17] for the purpose of 
comparison. Regarding our best knowledge at the time of performing these tests the 
bq26500 SoC monitor was one of the most advanced SoC indicators commercially 
available.  
 
7.6.1  The bq26500 SoC indicator         
 
          As mentioned in chapter 2 the bq26500 runs a book-keeping algorithm, i.e. 
Coulomb-counting algorithm combined with compensation for discharge C-rate 
current, temperature and self-discharge rate to calculate SoC and the remaining run-
time available at one C-rate discharge current. In order to allow for the aging effect 
(see Fig. 6.1) the battery capacity is learned in the course of a discharge cycle from 
full to empty.  
          The bq26500 SoC system contains several programmable registers accessible 
through a high-speed single-wire interface (HDQ), in which measured data, such as 
the rated battery capacity, compensation factors for the discharge C-rate current, 
temperature and self-discharge rate or the VEoD level, must be stored beforehand. 
The system chooses the compensation factors on the basis of voltage, current and 
temperature measurements. For a better understanding of the bq26500 system 
functionality, Fig. 7.15 gives the SoC and remaining run-time calculation diagram 
during charging and discharging. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.15. Diagram of the SoC and remaining run-time calculation performed by the bq26500 

(modified from [17]). 
 
          As can be seen in Fig. 7.15, four registers are important in SoC calculation in 
the bq26500: 
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NAC: Nominal Available Charge; 
CAC: Compensated Available Charge; 
LCR: Learning Count Register; 
LMD: Last Measured Discharge. 
 
          All four registers count in 3µVh units. To obtain a mAh unit the measured 
value must be divided by the value of the sense resistor, i.e. 20 mΩ. The NAC and 
CAC registers are the actual results of the capacity estimation. Basically, the NAC 
is a Coulomb counter compensated only for self-discharge (see Fig. 7.15). The user 
must set the self-discharge estimation rate (fsd) at 25°C. This rate is used to estimate 
the self-discharge capacity loss in one day when the battery is not being charged. 
The self-discharge rate is compensated for temperature by doubling the programmed 
rate for every 10°C increase or halving the programmed rate for every 10°C 
decrease. The CAC register reflects the capacity that is available under the current 
discharge conditions or the charge that is stored under the current charge 
conditions. It is obtained from the NAC register by multiplying its contents by a 
factor (fCT) smaller than or equal to one. Therefore, the value stored in the CAC 
register is always equal to or smaller than the contents of the NAC register. The fCT 
factor must be calculated on the basis of discharge cycle measurements executed at 
different C-rate currents and temperatures. The multiplication factors will change 
and CAC will acquire a different value as soon as the conditions (I and/or T) 
change.  
          The bq26500 measures a battery’s capacity under charge/discharge 
conditions and updates the last measured discharge (LMD) register with the latest 
measured value. The bq26500 retains the learned LMD value unless a full reset 
occurs. By measuring the capacity during a discharge cycle from full to a stored 
End-of-Discharge Voltage level (EDV1) without any disqualifying events, the 
bq26500 learns a battery’s maximum capacity. The EDV1 must be set to the 
threshold at which the remaining battery capacity is expected to be 6.25% of  
the maximum capacity. The bq26500 does not learn the capacity between EDV1 and 
VEoD levels, but assumes that the capacity is 6.25% of the LMD. The learned count 
register (LCR) has a value of LMD*6.25% added to the measured discharge from 
full to EDV1, so for the system’s SoC calculation accuracy it is important to set the 
EDV1 level to a value close to this 6.25%. NAC is adjusted to LMD/16 during a 
discharge (unless NAC already has a smaller value) when EDV1 is reached. If NAC 
reaches LMD/16 before the EDV1 level is reached, NAC is held at the LMD/16 
value until the EDV1 level is reached. So NAC is synchronised to the 6.25% 
capacity level at the EDV1 threshold.  
          The learning discharge cycles are disqualified by several conditions, which 
set a valid discharge flag (VDQ). If a learning cycle occurs with a significant 
reduction in learned capacity, the new LMD value will be restricted to a maximum 
LMD reduction during any single learning discharge of LMD/8. The maximum 
capacity will not be updated under the following conditions:  
 
a) low temperature: temperatures less than or equal to a certain programmed value, 
e.g. lower than 25°C, when the EDV1 threshold voltage is reached; 
 
b) light load: average currents less than or equal to 2 times the standby current 
when the EDV1 threshold voltage is reached; 
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c) fast voltage drop: ∆V ≤ (EDV1 − 256 mV) when EDV1 is reached; 
 
d) excessive charging: if the cumulative charge is greater than 255 mAh during a 
learning discharge cycle; 
 
e) reset: VDQ is cleared on reset; 
 
f) excessive self-discharge: if NAC reduction from self-discharge estimate exceeds 
12.48%; 
 
g) self-discharge at termination of learning cycle, e.g. self-discharge reduces NAC 
until NAC ≤ LMD/16. 
 
          The bq26500 can also calculate the remaining run-time in minutes for one 
discharge current value. The user must programme the discharge current value. The 
remaining run-time is further calculated by dividing the value of the CAC register 
by the value of the stored discharge current value.  
 
7.6.2 Comparison of the two SoC indicators 
 
          To enable comparison, a set of tests similar to those whose results are 
presented in Tables 7.1 and 7.4 were carried out using the bq26500. Table 7.6 
summarises the results. The discharge C-rate current and the temperature T in [oC] 
at which the measurements were carried out are given in columns one and two. The 
SoC, the predicted remaining run-time indicated at the start of the test and the 
remaining run-time measured during discharging to the 3V level are given in 
columns three, four and five, respectively (as in Table 7.1). The SoC calculated at 
the EDV1 level, SoCEDV1, is given in column six. As can be seen in Table 7.6, in 
some situations the bq26500 indicated an SoC value differing from 6.25% at the 
EDV1 level. Columns seven and eight denote the predicted remaining run-time at 
the SoCEDV1 level, trp and the measured remaining run-time from the SoCEDV1 level, 
trm. The remaining run-time indicated at the end of the experiment, tre, and the error 
in the remaining run-time, trer, calculated as the difference between the measured 
remaining run-time from the SoCEDV1 level, trm, and the predicted remaining run-
time at the SoCEDV1 level trp, are given in columns nine and ten. Consequently, 
when trm > trp the bq26500 will make a pessimistic estimation and when trm < trp the 
bq26500 will make an optimistic estimation. For consistency in the results of  
the comparison the predicted remaining run-time was calculated by dividing the 
value of the CAC register by the actual rate discharge current dAR [µV]. In this 

case the value of dAR was calculated as follows 
 

   
LSB

]m[R*]mA[IAR d
d

Ω
=              (7.17) 

 
where the LSB is 3µ. 
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Table 7.6. Full and partial discharge at constant C-rate currents and T using Texas 
Instruments’ bq26500 IC*. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*The TCOMP register has been programmed for these tests to the default value of 0x7C [18] 

+ Value indicated after a system reset and a full charge cycle.   

C-
rate 

T 
[°C] 

SoCst 
[%] 

trstp 
[min] 

trstm 
[min] 

SoCEDV1 
[%] 

trp 
[min] 

trm 
[min] 

tre 
[min] 

trer 
[min] 

93.9 206.3 491.5 6.2 18.4 275.4 0.0 257.0 
0.0 2.3 4.2 – – – – 1.9 

 
5 

0.0 2.3 8.9 – – – – 6.6 
100.0 421.0 560.6 6.2 26.0 87.6 0.0 61.6 
12.8 37.8 34.9 6.2 18.4 34.8 0.0 16.4 

 
25 

6.2 18.4 24.6 6.2 18.4 24.6 0.0 6.2 
11.9+ 74.7 551.1 – – – – 476.4 
32.0 134.6 132.2 6.2 26.3 38.7 0.0 12.4 

 
 
 
 
 

0.10 
 

45 
16.4 69.1 67.8 6.2 26.3 36.1 0.0 9.8 
70.8 55.1 184.9 6.2 7.4 148.9 0.0 141.5 
0.0 2.7 0.4 – – – – –2.3 

 
5 

1.6 1.8 1.3 – – – – –0.5 
100.0 201.5 219.6 7.0 12.6 93.2 0.0 80.6 
13.0 15.3 12.5 6.2 7.4 12.4 0.0 5.0 

 
25 

6.2 7.4 8.4 6.2 7.4 8.4 0.0 1.0 
100.0 251.3 223.6 6.2 15.7 29.7 0.0 14.0 
31.3 52.8 51.1 6.2 10.5 32.4 0.0 21.9 

 
 
 
 

0.25 

 
45 

15.5 26.2 24.9 6.2 10.5 23.4 0.0 12.9 
63.1 23.0 86.5 6.2 3.7 85.8 0.0 82.1 
0.6 0.3 0.1 – – – – –0.2 

 
5 

0.0 0.0 0.1 – – – – 0.1 
100.0 88.2 62.6 7.1 5.5 42.0 0.0 36.5 
12.7 7.5 4.7 6.0 3.6 4.5 0.0 0.9 

 
25 

6.2 3.7 3.0 – – – – –0.7 
100.0 125.7 111.5 6.2 7.9 34.9 0.0 27.0 
31.0 26.1 24.5 6.2 5.3 24.4 0.0 19.1 

 
 
 
 
 

0.50 
 

45 
15.0 12.7 11.5 6.2 5.3 11.4 0.0 6.1 
84.3 26.5 58.6 6.2 2.5 58.4 0.0 55.9 
0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 

 
5 

1.6 0.9 0.1 1.6 0.9 0.1 0.8 –0.8 
100.0 51.4 33.3 6.9 3.1 18.8 0.0 15.7 
12.5 4.9 1.5 6.2 2.5 1.4 0.0 –1.1 

 
25 

6.2 2.5 0.6 6.2 2.5 0.6 0.0 –1.9 
100.0 73.3 73.8 6.1 4.5 36.8 0.0 32.3 
30.7 17.2 15.5 6.1 3.4 15.5 0.0 12.1 

 
 
 
 

0.75 

 
45 

14.7 8.3 7.0 6.1 3.4 6.9 0.0 3.5 
91.6 22.9 43.9 6.0 1.8 43.8 0.0 42.0 
0.4 0.1 0.3 – – – – 0.2 

 
5 

4.2 1.2 0.2 – – – – –1.0 
100.0 33.8 49.6 7.1 2.1 47.5 0.0 45.4 
12.4 3.7 0.2 – – – – –3.5 

 
25 

6.2 1.8 0.2 – – – – –1.6 
100.0 48.1 54.8 7.1 3.0 33.9 0.0 30.9 
30.4 12.8 11.2 6.1 2.6 11.0 0.0 8.4 

 
 
 
 

1.00 

 
45 

14.4 6.1 4.8 6.1 2.6 4.6 0.0 2.0 
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          Two examples from Table 7.6 will be further explained. In the case of 0.5 C-
rate current and 25°C , SoCst was 12.7% and the battery voltage was higher than the 
defined EoD1 level. On the basis of these measurements the bq26500 SoC system 
calculated a trstp of 7.5 minutes, whereas the value of the trstm was 4.7 minutes. After 
0.2 minute’s discharge time the battery voltage reached the EoD1 level and the 
bq26500 system set the SoC to a value of 6%. Consequently, a new value of 3.6 
minutes was calculated for the remaining run-time, resulting in an 0.9 minute 
inaccuracy in the remaining run-time. This inaccuracy was calculated with due 
allowance for the remaining run-time value set at the EoD1 level. 
          In the second example the battery was fully charged by means of the CCCV 
method after a system reset. It should be noted that in the case of a system reset the 
bq26500 SoC system also resets the SoC value to 0%. Consequently, even when a 
battery is at a high SoC level, a 0% SoC value will be indicated. In this experiment 
the bq26500 SoC system indicated an SoC of 11.9% at the end of the charging, 
whereas the actual SoC was 100%. This high inaccuracy in the SoC value is 
attributable to the high battery SoC level at the beginning of charging and the 0% 
SoC considered by the bq26500 system at this level. The battery was then 
discharged to the 3 V level at 0.1 C-rate current and 45oC. At the beginning of 
discharging a remaining run-time of 74.7 minutes was predicted whereas trstm was 
551.7 minutes. 
          It follows from Table 7.6 that when tested under an extended range of 
conditions the bq26500 system consistently made very pessimistic remaining run-
time estimations. trm was consistently larger than trp. This means that a user of that 
system will recharge a battery more often, leading to more wear-out. The 
inaccuracy in the bq26500 measurements is mainly attributable to inaccurate SoC 
calculation after a system reset and at the EDV1 level. The battery maximum 
capacity adaptation algorithm will consequently not work accurately either. Due to 
the first factor the bq26500 will indicate 0% SoC when it is started after a reset, 
even if a battery is completely full. It should be noted that this is a common 
inaccuracy in book-keeping systems that do not calculate an initial SoC value. Due 
to the second factor the system will indicate 6.2% SoC on the basis of a voltage 
level measurement under any load condition. However, as shown in chapter 2, the 
battery voltage depends on many factors, including the discharge current, 
temperature, aging and battery chemistry. SoC indication based on voltage 
measurements under load conditions is therefore very inaccurate (see chapter 2).   
 
 
7.7 Conclusions 
 
          A new SoC algorithm has been presented in this chapter. The algorithm 
combines the advantages of battery Electro-Motive Force (EMF) and overpotential 
with the voltage-relaxation predictive method and the maximum capacity adaptive 
method. To test the SoC and the remaining run-time accuracy the new SoC 
algorithm was implemented in a real-time SoC evaluation system 
          Measurement results obtained with the SoC evaluation system using fresh 
US18500G3 Li-ion batteries under an extended range of conditions have been 
presented. In these results the error in remaining run-time was each time less than 

i.e. prediction of the remaining run-time of a Li-ion battery with an uncertainty of  
 

20.3 minutes or 23.1%. However, these results do not meet the goal of this work, 
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1 minute or less when trstm has a value lower than 100 minutes and an indication 
error of 1% or less when trstm has a value higher than 100 minutes under all realistic 
user conditions. To enable more accurate SoC and remaining run-time calculation 
the sources of error in the SoC evaluation system were identified. This led to the 
conclusion that accurate modelling of the EMF=f(SoC) relationship and the 
overpotential are not enough to ensure a high level of accuracy in remaining run-
time, too. For this reason new methods for modelling the SoC=f(EMF) relationship 
and predicting a battery’s State-of-Charge-left were developed.  
          In these new methods no mathematical inversion is needed to determine  
the SoC during equilibrium, and no battery overpotential calculation, voltage 
measurement or EMF model calculations under load conditions are needed for the 
SoCl calculation, as in the prior-art remaining run-time prediction method. New 
measurements were performed with the improved SoC evaluation system under an 
extended range of conditions. They showed that, with predictions with an error of 
less than 1 minute or 1% in most cases, the new SoC evaluation system greatly 
improves remaining run-time prediction accuracy.  
          The SoC evaluation system presented in this chapter was compared with 
Texas Instruments’ book-keeping bq26500 SoC IC. This comparison showed that 
the newly developed SoC evaluation system performs much better than the 
bq26500 SoC system under all the tested conditions. It should be noted that at the 
time of publication other newly developed SoC indicators are commercially 
available [19]–[21].   
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 Chapter 8 
Universal State-of-Charge indication for 
battery-powered applications 
 
 
           The battery EMF and overpotential were combined with the voltage-
relaxation predictive method and the maximum capacity adaptive method in a new 
SoC evaluation system in chapter 7. Accurate results have been obtained with the 
SoC evaluation system using fresh batteries under an extended range of conditions. 
However, the SoC=f(EMF), overpotential and SoCl models include a variety of 
parameters that change during cycling of the battery. For a more accurate 
determination of the SoC when a battery ages, innovative adaptive systems were 
developed in chapter 6.  
          Implementation aspects and results obtained with the overpotential adaptive 
system will be presented in section 8.2.  The focus in section 8.3 will be on a new 
adaptive system that combines the SoC=f(EMF) adaptive model under equilibrium 
conditions with an SoCl adaptive model under load conditions. Implementation 
aspects of the adaptive system in the SoC evaluation system will also be presented.  
Section 8.4 will present measurement results obtained with the adaptive SoC 
evaluation system. An uncertainty analysis will be discussed in section 8.5. The 
dream of the last 70 years of research in the field of SoC has been to design a 
universal SoC system that will adapt to any type of battery on line, without user 
intervention. Results obtained with the adaptive SoC evaluation system for another 
type of battery will be presented in section 8.6. These results prove that the 
developed SoC evaluation system is capable of adapting to batteries with different 
chemistries and of offering accurate, universal SoC indication. Designers will also 
be interested in the implementation requirements of the mathematical functions in a 
practical application. A possible implementation of the SoC evaluation system on a 
mobile phone platform will be presented in section 8.7. The usability of the SoC 
algorithm in a newly developed ultra-fast recharging algorithm will also be 
presented in this section. Finally, section 8.8 will present concluding remarks.  

 
 

8.1 Introduction 
 
         The real-time SoC evaluation system combining an on-line predictive 
algorithm with the Qmax and overpotential adaptive algorithms presented in chapters 
6 and 7 was tested using aged batteries. The goal of the SoC evaluation system is to 
predict the remaining run-time of any Li-ion battery with an uncertainty of 1 
minute or less when trst has a value lower than 100 minutes and an indication error 
of 1% or less when trst has a value higher than 100 minutes under all realistic user 
conditions, including a wide variety of load currents and over a wide temperature 
range.  

 
 
for Battery-Powered Applications. 
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8.2 Implementation aspects of the overpotential adaptive system 
 
          The overpotential adaptive method presented in chapter 6 combines the 
measured a

chη / f
chη  ratio with the overpotential symmetry phenomenon. A diagram 

illustrating the overpotential adaptation mechanism is shown in figure 8.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1. Diagram of the overpotential adaptation mechanism. 
 
          The SoC is determined on the basis of a starting SoC value when entering 
charge mode by adding the accumulated charge obtained by integrating the charge 
current. The latest value of Qmax is used to obtain the SoC value on a percentage 
scale. Each time a new set of the battery variables V, I and T is measured, the SoC 
evaluation system measures a new charge battery overpotential. So, the ratio 

a
chη / f

chη  is determined and fed to an Adaptive Control Unit (ACU). On the basis of 
the new value of the ratio in relation to earlier ratio values the ACU decides 
whether to update a

dη . This process is repeated an arbitrary number of times in the 
CC charging mode.  
          A set of tests was carried out using a US18500G3 Li-ion battery and the 
presented overpotential adaptation mechanism in order to test the system’s 
accuracy. By the time of testing, the battery had undergone approximately 600 
discharge/charge cycles. The tests were carried out using full charge/discharge 
cycles at different constant currents and 25°C. A maximum capacity value of 1176 
mAh and overpotential parameters values obtained for a fresh battery (see Table 
5.1) were stored in the SoC evaluation system at the beginning of the tests. During 
the charge cycles the battery was each time fully charged to 4.2 V with the normal 
CCCV charging method at 0.5 C-rate current in the CC mode. Each period of 
charging was followed by a rest period of 0.5 hour. After this rest period a 
discharge step at 0.5 C-rate current was applied until the battery voltage reached 3 
V. This procedure was repeated using a 0.75 C-rate discharging current. During the 
charge cycle a new maximum capacity value of 1108 mAh and a value of 1.4 for 
the a

chη / f
chη  ratio were obtained [1]. The measurements described above were 

repeated with the newly determined parameter values using different constant 
discharge currents (0.1, 0.25, 0.5, 0.75 and 1 C-rate).  
          Table 8.1 summarises the experimental results. A distinction has been made 
between results obtained without an adaptive system and the results obtained using 
the newly developed adaptive system. The discharge C-rate current at which these 

 

SoC algorithm 

T  

I  

V  

SoC 

 f
chη  = f (SoC, I, T, par1,…, parn) 

EMF curve
EMF

   a
chη  = EMF - V 

ACU 

Update a
dη  

 f
dη  = f (SoC, I, T, par1,…, parn) 

a
chη / f

chη  
  f

ch

a
chf

d
a
d

η

η
ηη =

 

 f
chη   

182



Universal State-of-Charge indication for battery-powered applications 

tests were carried out is given in column 1. The SoC indicated at the start, SoCst, 
and the SoC calculated by means of the overpotential and EMF models, expressed 
as SoCl, are given in columns two and three. Columns four, five and six denote the 
remaining run-time in minutes at the start of the experiment, the error in  
the remaining run-time at the end of the experiment and the relative error in the 
remaining run-time.  

 
Table 8.1 Results obtained with the real-time SoC evaluation system. 

 
 
 
 
 
 
 
 
 
 
 
          It follows from Table 8.1 that when the SoC evaluation system was used 
without an adaptive system, relative errors of 6.2% and 7.5% in remaining run-time 
were obtained at discharge currents of 0.5 and 0.75 C-rate. Under these conditions 
the SoC indicator made very optimistic estimations. For instance, at the start of the 
discharge step at 0.5 C-rate the system indicated 121.8 minutes remaining run-time. 
After 114.7 minutes the battery reached the level of 3 V. This means that trre 
calculated by Eq. (7.4) was 6.2%. In a second example the overpotential and 
maximum capacity adaptive methods were used to adapt the model parameters. It 
follows from Table 8.1 that, after adaptation, trre values of –0.4% and 0.4% were 
obtained for the 0.5 and 0.75 C-rate discharge currents, respectively. Under these 
conditions the SoC indicator made slightly pessimistic and optimistic estimations, 
respectively. For instance, at the start of the discharge step at 0.5 C-rate the system 
indicated 113.9 minutes remaining run-time. After 114.3 minutes the battery 
reached the level of 3 V, implying a trre value of –0.4%. It can be concluded that the 
adaptive SoC system yielded an error in remaining run-time of less than 0.6 minute, 
or 3%, in all cases. However, as discussed in chapter 7, accurate modelling of the 
EMF=f(SoC) relationship and overpotential is not enough to obtain a high level of 
accuracy in remaining run-time prediction when a battery is partially discharged. 
Therefore, new functions for the SoC=f(EMF) and State-of-Charge-left (SoCl) were 
developed in chapter 7. These functions led to a much higher level of accuracy in 
remaining run-time prediction in the case of fresh batteries.  
 
 
8.3 SoC=f(EMF) and SoCl adaptive system  
 
          To ensure accurate SoC and tr calculation while a battery ages, variations in 
the EMF and State-of-Charge-left model parameters need to be considered. Chapter 
6 described a new adaptive method for determining a battery’s EMF when the 
battery is in equilibrium. In this section a new adaptive method for determining a 
battery’s SoCl when the battery is under load conditions will be presented. This 

C-rate current SoCst [%] SoCl [%] trst [min] tre [min] trre [%] 
Measurement results obtained without adaptation 

0.50 98.3 3.4 121.8 7.1 6.2 
0.75 98.3 4.1 80.6 5.6 7.5 

Measurement results obtained with adaptation 
0.10 98.2 2.7 577.2 –18.0 –3.0 
0.25 98.2 3.2 229.7 –3.6 –1.5 
0.50 98.2 4.0 113.9 –0.5 –0.4 
0.75 98.2 4.9 75.2 0.3 0.4 
1.00 98.2 6.0 55.7 0.6 1.1 
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adaptive system was developed on the basis of phenomena discovered during the 
measurement analysis. 

In this method the SoCl model parameters are adapted to take a battery’s 
aging process into account. Each time a battery is discharged to the VEoD level an 
EMF value is predicted on the basis of the first few minutes of the relaxation 
process by means of the voltage-relaxation model presented in chapter 4 [2]. A 
measurement example is shown in Fig. 8.2, which illustrates what happens to a 
battery’s Open-Circuit Voltage (OCV) after a discharge step from 100% SoC at 0.1 
C-rate and 25oC to the VEoD level of 3 V. To enable comparison, the voltage Vp 
predicted on the basis of the OCV measured in the first 15 minutes of the relaxation 
process, OCVm, is also shown. The measurement was carried out using a 5.4% 
capacity loss battery (see chapter 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.2. The battery Open-Circuit Voltage and the voltage predicted after a discharge step 
from 100% SoC at 0.1 C-rate current and 25°C as a function of the relaxation time in [min.]. 

 
          As can be seen in Fig. 8.2, after a complete discharge step, the value of the 
battery’s OCV changes from 3.0 V immediately after the current interruption to 
about 3.37 V after 720 minutes. It follows from Fig. 8.2 that the voltage-prediction 
value based on the OCV measured in the first 15 minutes of the relaxation process 
is very close to the EMF value measured after 720 minutes. In this example the 
difference is only 13 mV. The predicted EMF value can be used as input for the 
adaptive SoC=f(EMF) model. In this case an SoCl value under the applied 
measurement discharge condition can be estimated. In this example a –0.1% SoC 
inaccuracy is obtained by comparing the SoC values obtained by means of EMF 
and by means of Vp. So, each time a battery is discharged to the VEoD level a new 
SoCl value can be accurately determined on the basis of Vp and the adaptive 
SoC=f(EMF) relationship.  
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          A general block diagram of how the SoC-EMF and SoCl adaptive system 
could be implemented in the SoC indication system is given in Fig. 8.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.3. Mechanism for updating parameters par1,…, parn in the 

SoC=f(EMF) and SoCl models. 
 
          An SoC value is calculated by means of battery voltage and temperature 
measurements and the stored SoC=f(EMF) model (EMFm) when the battery is in 
equilibrium. When current is flowing through the battery a remaining run-time 
value is calculated by means of current and temperature measurements and the SoCl 
model (SoClm). The EMFm and SoClm contain a set of parameters par1, …, parn that 
need to be updated when a battery ages to ensure more accurate battery SoC and 
remaining run-time calculations. After each current interruption a new set of battery 
variables V and T is measured and the SoC adaptive and predictive algorithm 
estimates new EMF ( es

mEMF ) and SoCl ( es
lmSoC ) values. These estimated values are 

stored in a memory, e.g. EEPROM. This process is repeated an arbitrary number of 
times after current interruption. The estimated samples are fed to an Adaptive Unit 
that decides whether to update the parameter set par1,…,parn of the EMFm and 
SoClm used for the SoC and remaining run-time calculation (see Fig. 8.3). Any 
optimisation algorithm can be used in the adaptive algorithm. Several examples can 
be found in the literature. Note that when the adaptive system is implemented as 
described in this chapter it will work at any values of V and T. 
 
 
8.4 Results obtained with the adaptive SoC system using aged 

batteries 
 
          In order to verify the SoC and remaining run-time accuracy, two sets of tests 
were carried out using the adaptive SoC evaluation system at different constant and 
switching C-rate currents and temperatures. The SoC=f(EMF) adaptive model as a 
function of temperature and hysteresis and the SoCl adaptive model as a function of 
the C-rate current, SoCs and temperature were combined with the cc, Vpm and the 
Qmax adaptation algorithm to obtain a complete on-line adaptive system.  
         The adaptive real-time SoC evaluation system was first tested in a set of tests 
similar to those whose results were presented in table 7.4. A 5.4% capacity loss 
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battery was used in all these tests (see chapter 6). New EMFm and SoClm parameters 
were learned off-line by means of the adaptive methods presented in section 8.3. 
Partial battery discharging was also considered in these tests, to prove that accurate 
modelling and adaptation of the SoC=f(EMF) relationship and the SoClm lead to a 
high level of accuracy in remaining run-time prediction under an extended range of 
conditions. This is an advantage over the algorithm presented in sections 7.2 and 
8.2, which yielded inaccurate remaining run-time results under partial discharge 
conditions. The results are presented in Table 8.2 (compare with Table 8.1). 
  

Table 8.2 Results obtained with the adaptive SoC evaluation system using aged batteries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          It follows from Table 8.2 that at the beginning of the discharge step from 
20.1% SoC at 0.10 C-rate and 25oC the system indicated 110.8 minutes remaining 
run-time. After 108.8 minutes the battery reached the level of 3 V. In this case an 
error of 2.0 minutes and a relative error of 1.8% in remaining run-time were 
calculated. Fig. 8.4 illustrates tre [min.] as a function of trstp [min.] to show how 
close the measured data presented in Table 8.2 are to the actual data.   
 
 

 

 
C-rate 
current 

T 
[°C] 

SoCst 
[%] 

SoCl 
[%] 

trstp 
[min] 

trstm 
[min] 

tre 
[min] 

trre 
[%] 

SoCend 
[%] 

94.8 7.1 516.6 497.3 19.3 3.9 3.9 5 
12.5 2.6 58.3 64.1 –5.8 –9.0 1.6 
99.5 2.9 569.1 576.8 –7.7 –1.3 1.5 25 
20.1 1.3 110.8 108.8 2.0 1.8 1.7 
100.0 1.8 578.5 585.6 –7.1 –1.2 0.6 

 
 
 

0.10 
45 

27.3 1.1 154.3 157.1 –2.8 –1.8 0.6 

94.6 13.8 190.4 198.4 –8.0 –4.0 9.5 5 
6.8 3.8 7.1 8.4 –1.3 –15.5 3.2 

99.25 4.9 222.3 224.8 –2.5 –1.1 3.8 25 
20.1 2.3 41.9 41.1 0.8 1.9 2.6 

 
 

0.25 

45 14.4 1.5 30.4 27.2 3.2 11.8 2.8 
95.2 17.5 91.5 94.5 –3.0 –3.2 12.9 5 
12.4 7.0 6.4 7.1 –0.7 –9.9 6.3 
99.0 7.3 108.0 108.8 –0.8 –0.7 6.5 25 
20.2 3.8 19.3 19.4 –0.1 –0.5 3.8 
100.0 4.3 112.8 113.5 –0.7 –0.6 3.8 

 
 
 

0.50 
45 

27.0 2.7 28.6 29.3 –0.7 –2.4 2.1 
95.2 23.9 56.0 58.0 –2.0 –3.4 17.5 5 
8.6 8.5 0.1 0.1 0.0 0.0 8.5 
99.0 9.4 70.4 70.5 –0.1 –0.1 8.8 25 
21.0 4.6 12.9 12.3 0.6 4.9 5.2 
100.0 5.5 74.2 74.1 0.1 0.1 5.7 

 
 
 

0.75 
45 

14.4 2.6 9.3 9.5 –0.2 –2.1 2.3 
94.7 31.0 37.5 39.8 –2.3 –5.8 21.4 5 
12.7 12.7 0.0 0.0 0.0 0.0 12.6 
99.0 10.6 52.1 51.9 0.2 0.4 10.9 25 
21.0 5.2 9.3 8.6 0.7 8.1 6.5 
100.0 6.5 55.1 54.5 0.6 1.1 7.6 

 
 
 

1.00 
45 

14.6 4.9 5.7 5.0 0.7 14.0 6.1 
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Fig. 8.4. Same as Fig. 7.12, only now showing results obtained with the adaptive SoC 
evaluation system using aged batteries. 

 
          It can be concluded that the newly developed adaptive system provides 
accurate remaining run-time prediction in the case of aged batteries. In our 
experiments a maximum error in remaining run-time accuracy of 5.8 minutes, or 
4%, was each time obtained. In most cases the error in remaining run-time 
indication was however very close to the goal of 1 minute, or 1%.           
          The adaptive SoC evaluation system was subjected to a second set of tests, 
similar to those whose results were presented in Table 7.5, again using aged 
batteries. The results are summarised in Table 8.3 (see also Table 7.5). The current 
switched from the initial C-rate to the final C-rate when the battery reached the 3.4 
V voltage level. The relative error in remaining run-time as a function of trstp is also 
indicated in Fig. 8.5, to show how close the measured data presented in Table 8.3 
are to the actual data. 
          It follows from Table 8.3 and Fig. 8.5 that the improved SoC evaluation 
system yielded a maximum error in remaining run-time prediction of 1.6 minutes, 
or 2.3%. In most cases the error in remaining run-time indication was however less  
than 1 minute, or 1%.  
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Table 8.3 Same as Table 8.2, only now obtained at switching discharge currents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.5. Same as 8.4, only now obtained at switching discharge C-rate currents. 
 
 
8.5 Uncertainty analysis  
 
          Fig. 8.6 presents a diagram showing the sources of error in the adaptive SoC 
evaluation system.  

 
 

 

 

C-rate 
current 

start 

C-rate 
current 

end 

T 
[°C] 

SoC
st 

[%] 

SoCl 
[%] 

trstp 
[min] 

trstm 
[min] 

tre 
[min] 

trre [%] SoCend 
[%] 

0.10 0.20 12.9 4.7 52.4 52.5 –0.1 –0.2 2.6 
0.25 0.35 6.6 4.2 6.1 5.5 0.6 10.7 4.5 
0.50 0.40 12.3 6.6 7.3 8.9 –1.6 –18.0 5.1 
0.75 0.65 7.0 6.9 0.1 0.1 0.0 0.0 7.0 
1.00 0.90 

 
 

5°C 

10.1 10.1 0.0 0.0 0.0 0.0 10.1 
0.10 0.20 20.6 3.2 111.4 108.9 2.5 2.3 2.9 
0.25 0.35 20.1 3.7 42.1 41.4 0.7 1.7 3.2 
0.50 0.40 8.3 3.2 6.6 6.4 0.2 3.2 2.8 
0.75 0.65 20.2 5.7 12.4 12.0 0.4 3.3 4.9 
1.00 0.90 

 
 

25°C 

20.2 6.2 9.0 8.8 0.2 2.3 5.9 
0.10 0.20 14.6 2.0 81.1 81.1 0.0 0.0 1.47 
0.25 0.35 14.0 2.7 29.0 29.4 –0.4 –1.4 1.2 
0.50 0.40 14.0 2.9 14.3 14.9 –0.6 –4.0 1.2 
0.75 0.65 13.7 3.5 8.7 9.1 –0.4 –4.4 1.9 
1.00 0.90 

 
 

45°C 

13.9 4.1 6.3 6.5 –0.2 –3.1 2.6 
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Fig. 8.6. Same as Fig. 7.14, only now for aged batteries (see also Fig. 8.3). 
 
          Fig. 8.6 contains two adaptive blocks for the EMF and SoCl calculation that 
were not included in the fresh battery uncertainty analysis. Fig. 8.6 shows that the 
initial SoC=f(EMF) and SoCl parameter values are updated on line via a decision 
ACU block (see also Fig. 8.3). This block should eliminate false adaptation 
situations that could adversely affect the remaining run-time indication accuracy. 
The adaptive system was developed to ensure accurate remaining run-time 
indication when a battery ages. It is based on the voltage-prediction model whose 
parameters are calculated on line and the maximum-capacity adaptive model. The 
system, which was developed in response to phenomena discovered during a 
thorough measurement analysis, greatly improves the real-time SoC system’s 
accuracy in the case of aged batteries (see Tables 8. 2 and 8.3).  
 
 
8.6 Results obtained with other Li-based battery 
 
          The dream of the last 70 years of research in the field of SoC field has been 
to design an accurate SoC system that will adapt on-line to any type of battery 
without user intervention (see Chapter 2). A possible solution that may help realise 
this dream was given in Chapters 7 and 8 of this book. Accurate results have been 
obtained with this adaptive SoC algorithm under an extended range of conditions 
using fresh (see Chapter 7) and aged US18500G3 (Sony) batteries (see Chapter 8). 
To find out whether the adaptive system would yield similarly good results with 
other types of battery, further tests were carried out using a different type of Li 
battery. Table 8.4 presents the main characteristics of this battery. The main 
characteristics of the US18500G3 battery are also presented for comparison.   
          It follows from Table 8.4 that this different battery also has a different 
chemistry. This means that the EMFm, SoClm and Qmax may show different 
behaviour, so use of the parameter values of the US18500G3 battery could lead to 
inaccurate SoC and tr indication. This will be discussed below. 
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Table 8.4. US18500VR Li-ion battery characteristics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.6.1 EMF and SoCl modelling results obtained for the Li-based battery 
 
          Fresh and fully activated batteries were used under each test condition. Since 
the employed commercial batteries were delivered with a specified SoC, the 
activation procedure started with Constant-Current discharging at 0.5 C-rate 
followed by a one-hour resting period. The batteries were then subjected to 3 
standard CCCV and subsequent 0.5 C-rate discharge cycles, after which constant 
charge/discharge behaviour was observed. The batteries were subjected to standard 
(s) charging at a constant maximum current ( max

sI ) at 1 C-rate in the CC-mode 

until the maximum charge voltage max
sV  of 4.2 V was reached in the subsequent 

CV-mode [3]. The charging currents were found to decrease in the CV-mode and 
charging was terminated at a predefined minimum current ( min

sI ) of 0.05 C-rate, 
after which the batteries were assumed to be fully charged. After a resting period of 
one hour the batteries were discharged at 0.5 C-rate. Discharging was terminated 
when the cut-off cell voltage of 3.0 V was reached. A single activation cycle was 
followed by a one-hour resting period. The activation cycles were carried out at  
25°C.  
 
SoC=f(EMF) measurements and fitting 
 
          The maximum capacity and GITT measurement methods were combined 
with the voltage-prediction model for the EMF determination. A maximum 
capacity of 1220 mAh was first determined by means of the maximum capacity 
adaptation method described in chapter 7. For consistency the same EMF values of 
3.0 and 4.175 V for the 0 and 100% SoC levels were defined for this method. Ten 
EMF predicted points with the corresponding SoCs were considered in the 
charge/discharge EMF determination. The voltage and time values measured during 
the 1-hour resting period were used as input for this prediction. The EMF points 
were fitted using the newly developed method in which the shape of the curve is 
also taken into consideration. The measurements were performed at 5, 25 and 45°C. 
The discharge EMF measured at 25°C is illustrated in Fig. 8.7. The EMF obtained 
for the US18500G3 battery is also shown for comparison. 
 

 

 

 

 

Battery Characteristics 
Chemical system Ni + Mn Co 

Cell Type VR US18500G3 
Cell diameter 18.4 mm max. at most 18.4 mm  
Cell Length 49.3 mm max. at most 49.3 mm  

Capacity (0.2 C-rate) 
Typical 

1180 mAh 
 (3.0 V cut 

off) 
1180 mAh  (3.0 V cut off) 

Capacity (0.2 C-rate) 
Minimum 

1100 mAh 
 (3.0 V cut 

off) 
1100 mAh  (3.0 V cut off) 

Cell weight 33 g 33 g 
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Fig. 8.7. EMF at 25°C as a function of the SoC [%]. 
 
          The difference between the two EMFs amounts to 290 mV at 10% SoC. This 
implies an SoC inaccuracy of 24% when the US18500G3 battery parameter values 
are used in the SoC determination during equilibrium. This means that the adaptive 
system will also have to adapt the EMFm parameters on the basis of a battery’s 
chemistry. 
          The EMF dependence on temperature and the difference in charge/discharge 
EMFs as a function of temperature are shown in Figs. 8.8 and 8.9. The different 
type of battery is evidently less dependent on temperature and shows smaller 
differences in charge/discharge than the US18500G3 battery (see Figs. 4.7 and 4.16 
for comparison). A difference between the charge/discharge EMF of 19 mV was 
for example measured at 19% SoC and 25°C. This implies a 1.5% inaccuracy in 
SoC. The EMF differences may be explained by hysteresis between the charge and 
discharge EMFs [4]–[6]. So, in order to ensure more accurate SoC and tr indication, 
the temperature dependence and the effects of differences in charge/discharge will 
have to be considered in the EMF modelling.     
          The new SoC=f(EMF) model described by Eqs. (7.13–7.16) was used to fit 
the SoC=f(EMF) relationship to charge/discharge EMF curves obtained at three 
temperatures. Figs. 8.10 and 8.11 show that the modelled charge/discharge EMF 
curve used in the system shows a good fit with the discharge curve obtained with 
the reference battery tester at all temperatures.  
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Fig. 8.8. Same as Fig. 4.7 for the new battery type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.9. Same as Fig. 4.16 for the new battery type. 
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Fig. 8.10. Same as Fig. 7.8 for the new battery type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.11. Same as Fig. 7.9 for the new battery type.  

 
          Figs. 8.10 and 8.11 show that a maximum error in SoC of 1.1% was 
obtained. So the newly developed adaptive SoC=f(EMF) method enables accurate 
SoC calculation during equilibrium in the case of other types of batteries, too. The 
EMF model parameter values used in the simulations illustrated in Figs. 8.10 and 
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8.11 are summarised in Table 8.5 (see also Table 7.2). The value of the EMF 
parameter obtained for the US18500G3 battery is also given for comparison. 
 

Table 8.5. The SoC=f(EMF) model parameter values. 

 

+ See Eq. (7.15). 
* x

oE  and z
oE  have been combined. The value obtained is represented by oE . 

 

          It follows from Table 8.5 that the charge and discharge EMF parameter 
values obtained for the different type of battery both differ from those obtained  
for the US18500G3 battery. Another conclusion relates to the parameter values 
calculated for the charge/discharge EMF. The charge EMF parameters obtained for 
the different battery are almost the same as those obtained for the discharge EMF. 
This leads to the conclusion that the hysteresis effect is less pronounced in the 
different battery. This indeed agrees with the measured data presented in Figs. 8.8 
and 8.9.  
 
 
 

 

 
 

 

Parameter  Charge value 
of different 

battery 

Discharge 
value of 
different 
battery 

Charge 
value  

of  
US18500G3 

Discharge 
value of 

US18500G3 

Unit 

E0
* 3.35 3.34 3.72 3.71 [V] 

∆E0 3.91 10–4 3.88 10–4  0.00 –3.52 10–4 [V T–1] + 
a10 4.24 102 4.24 102 2.42 2.04 [1] 
∆a10 –3.24 101 –3.24 101 –4.98 10–2 –4.26 10–2 [T–1] + 

a11 –4.23 102 –4.23 102 2.28 10–1 2.41 10–1 [1] 
∆a11 3.22 101 3.22 101 2.28 10–3 8.22 10–3 [T–1] + 

a12 –1.03 10–3 –1.03 10–3 3.06 10–2 2.05 10–2 [1] 
∆a12 –4.6 10–7 –1.08 10–6 –3.83 10–4 –2.46 10–4 [T–1] + 

a20 8.73 8.73 3.82 3.74 [1] 
∆a20 –1.13 10–2 –1.12 10–2 2.11 10–3 3.99 10–3 [T–1] + 

a21 –7.81 10–1  –7.81 10–1 –7.59 10–1 –7.59 10–1 [1] 
a22 1.89 10–4 1.91 10–4 2.46 10–4 6.77 10–4 [1] 
p11 2.82 10–4  1.29 10–4 1.29 1.35 [1] 
∆p11 –2.04 10–6 –2.92 10–6 1.742 10–2 3.58 10–3 [T–1] + 

p12 3.00 3.00 3.00 3.00 [1] 
∆p12 6.47 10–3 6.51 10–3 1.86 10–2 1.85 10–2 [T–1] + 

p21 1.04 1.04 1.06 1.06 [1] 
∆p21 1.53 10–5 1.52 10–5 –8.49 10–5 –8.01 10–5 [T–1] + 

p22
 2.00 2.00 2.00 2.00 [1] 

q11 0.00 0.00 0.00 0.00 [1] 
q12 1.00   1.00 1.00 1.00 [1] 
q21

 1.00 1.00    1.00 1.00 [1] 
q22

 0.00 0.00 0.00 0.0 [1] 
A 3.41 102 3.41 102 6.64 6.41 [1] 
∆A 6.98 10–1 6.81 10–1 2.813 10–3 3.27 10–3 [T–1] + 

w2 1.00 1.00 9.56 10–1 9.56 10–1 [1] 
∆w2 –2.35 10–6 –2.51 10–6 –1.62 10–4 –1.92 10–4 [T–1] + 
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SoCl measurements and fitting 
 
          To obtain information on SoCl the different battery was discharged from 
different SoCst values at different constant C-rates and temperatures.  After each 
discharge a two-hour rest period was applied. The voltage-relaxation model and the 
adaptive SoC=f(EMF) model were used to obtain the SoCl. The measured SoCl 
values were used as input for the SoClm described by Eq. (7.16). The result of the 
measured (SoClm) and fitted SoCl (SoClf) values is presented in Fig. 8.12. The 
difference between the measured and fitted SoCl values is indicated in Fig. 8.13 to 
show how close the measured and fitted data are to one another.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.12. Same as Fig. 7.10 for the new battery. 
 

          Figs. 8.12 and 8.13 show that the maximum difference between the measured 
and fitted SoCl occurred at 25°C and equalled 1.8%. The influence of the SoClm 
inaccuracy in the tr calculation will be discussed in the next section. 
          The SoCl model parameter values used in the simulations illustrated in Figs. 
8.12 and 8.13 are presented in Table 8.6 (see also Table 7.3). The values of the 
parameters obtained for the US18500G3 battery have been included for 
comparison. 

 
 
 
 
 
 
 
 
 
 

 

45oC 

25oC 

5oC 
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Fig. 8.13. Same as Fig. 7.11 for the new battery type.  

 
Table 8.6. SoC-left model parameters. 

 
 
 
 
 
 
 
 
 
 
 

 

+ See Eq. (7.16). 
 
 
8.6.2 Experimental results 
 
          The different type of battery was tested in a set of tests similar to those 
whose results are presented in Tables 8.2 and 8.3 at constant and switching 
discharge C-rate currents. The results are summarised in Tables 8.7 and 8.8. Figs. 
8.14 and 8.15 present tre [min.] as a function of trstp [min.] to show how close the 
measured data presented in Tables 8.7 and 8.8 are to the actual data.   
          It can be concluded that the newly developed adaptive system yields a 
maximum error in remaining run-time prediction of –2.8%, or 4.2 minutes. The 
worst-case inaccuracy was obtained at 0.5 C-rate current and 45°C. In most cases 
the error in remaining run-time indication was however very close to the goal of  
1 minute, or 1% (see Table 8.7).  

 

 

 

Parameter Value  
(different 
battery) 

Value  
(US18500G3) 

Unit 

ς  1.21 10–6 5.90 10-6 – 

ϑ  2.26 105  7.25 104 – 
γ  1.85 10–1 3.50 10–1 – 

δ  1.09 10–2 1.30 10–3 [T–1] + 

α  5.35 10–2 1.18 10–1  – 
β  3.63 10–3 3.75 10–3  [T–1] + 
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          An uncertainty diagram similar to that presented in Fig. 8.6 holds for the 
different type of battery, too. In this case the ACU will adapt the system model 
parameters on the basis of the battery’s chemistry. This means that the same 
adaptive models as used for the battery aging process can be used to adapt the 
system models to any type of battery chemistry.    
 

Table 8.7. Same as 8.2 for the new battery type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
C-rate 
current 

T 
[°C] 

SoCst 
[%] 

SoCl 
[%] 

trstp 
[min] 

trstm 
[min] 

tre 
[min] 

trre 
[%] 

SoCend 
[%] 

97.5 9.0 588.9 589.7 –4.5 –0.8 8.3 
67.2 7.8 395.3 395.3 0.1 0.0 7.6 

5 

73.3 7.6 437.2 437.4 –0.7 –0.2 7.5 
99.9 3.2 643.5 642.9 3.8 0.6 3.7 25 
64.0 3.0 405.9 405.3 2.3 0.6 3.4 
100.0 1.3 656.8 657.3 –3.3 –0.5 0.8 

 
 
 

0.10 

45 
48.2 1.1 313.4 315.4 –6.3 –2.0 0.1 
97.6 11.1 230.2 230.1 0.3 0.1 10.0 
67.0 9.6 152.8 151.7 1.6 1.1 10.0 

5 

73.1 9.7 168.8 168.6 0.3 0.2 9.8 
99.9 4.6 253.7 253.1 1.5 0.6 5.2 25 
64.0 4.5 158.4 157.6 1.3 0.8 4.9 
100.0 2.3 260.1 261.5 –3.8 –1.4 0.9 

 
 
 

0.25 

45 
48.1 2.0 122.7 125.9 –4.0 –3.2 0.5 
98.4 11.8 115.3 114.6 0.8 0.7 12.2 
67.0 11.5 73.9 72.9 0.7 1.0 12.0 

5 

73.1 11.5 82.0 81.8 0.2 0.2 11.6 
99.9 6.2 124.7 124.0 0.9 0.7 6.9 25 
52.7 5.8 62.4 63.5 –0.7 –1.1 5.2 
100.0 3.5 128.4 130.5 –2.8 –2.1 1.5 

 
 
 

0.50 

45 
48.1 3.1 59.9 64.1 –2.7 –4.2 1.1 
98.4 13.0 75.8 75.1 0.5 0.7 13.4 
67.0 12.6 48.3 47.5 0.4 0.8 13.0 

5 

73.4 12.8 53.8 53.2 0.3 0.6 13.1 
99.9 7.3 82.2 81.3 0.7 0.9 8.1 25 
52.8 6.8 40.8 41.8 –0.4 –1.0 6.4 
100.0 4.5 84.7 87.3 –2.2 –2.6 2.1 

 
 
 

0.75 

45 
48.1 4.0 39.1 44.0 –2.0 –4.9 1.7 
98.4 13.9 56.2 55.5 0.4 0.7 14.3 
66.8 13.2 35.7 35.7 0.0 0.0 13.4 

5 

73.5 12.9 40.3 39.3 0.4 1.0 13.5 
99.9 8.2 61.0 60.3 0.4 0.7 8.9 25 
52.8 7.7 30.0 31.0 –0.3 –1.0 7.2 
100.0 5.5 62.9 65.8 –1.9 –2.9 2.6 

 
 
 

1.00 

45 
48.1 4.8 28.8 34.7 –1.8 –5.9 2.1 
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Table 8.8. Same as 8.3 for the new battery type.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Initial 
C-rate 
current 

Final 
C-rate 
current  

T 
[°C] 

SoCst 
[%] 

SoCl 
[%] 

trstp 
[min.] 

tre 
[min.] 

trre 
[%] 

SoCend 
[%] 

0.10 0.20 67.6 7.2 401.9 3.2 0.8 9.5 
0.10 0.20 73.5 7.2 441.2 2.7 0.6 9.5 
0.10 0.50 98.5 7.4 606.2 1.6 0.3 12.5 
0.10 1.00 98.5 7.4 606.2 0.9 0.1 14.7 
0.25 0.35 67.0 9.2 153.9 1.8 1.2 10.9 
0.25 0.35 73.3 9.2 170.6 1.5 0.9 10.8 
0.50 0.40 67.0 10.9 74.7 1.3 1.8 11.0 
0.50 0.40 73.2 11.0 82.8 1.2 1.5 11.1 
0.50 1.00 98.5 11.3 116.1 0.9 0.8 14.7 
0.75 0.65 67.0 12.2 48.6 0.7 1.5 12.3 
0.75 0.65 73.2 12.2 54.1 0.6 1.1 12.3 
1.00 0.50 98.3 13.4 56.5 1.1 2.0 11.9 
1.00 0.90 67.0 13.2 35.8 0.5 1.4 13.2 
1.00 0.90 

 
 
 
 
 
 

5°C 

73.2 13.2 39.9 0.4 1.0 13.2 
0.10 0.20 63.8 3.0 404.6 2.3 0.6 4.7 
0.10 0.50 99.9 3.2 643.5 1.8 0.3 7.5 
0.10 1.00 99.9 3.2 643.5 0.9 0.1 9.5 
0.25 0.35 52.7 4.7 127.8 –1.2 –0.9 4.3 
0.50 0.1 99.9 6.2 124.7 3.0 2.5 3.6 
0.50 0.40 52.7 5.8 62.4 –1.0 –1.6 4.6 
0.50 1.00 99.9 6.2 124.7 0.6 0.5 9.2 
0.75 0.65 52.7 6.8 40.7 –0.4 –1.0 5.9 
1.00 0.50 99.9 8.2 61.0 1.1 1.8 6.9 
1.00 0.90 

 
 
 
 
 
 

25°C 

52.8 7.7 30.0 –0.3 –1.0 6.9 
0.10 0.20 48.1 1.1 312.8 –3.1 –1.0 0.8 
0.25 0.35 48.1 2.0 122.7 –2.9 –2.3 1.0 
0.50 0.40 48.1 3.1 59.9 –2.8 –4.5 1.4 
0.75 0.65 47.9 4.1 38.9 –2.2 –5.2 1.9 
1.00 0.90 

 
 

45°C 

48.1 4.8 28.8 –1.8 –5.8 2.4 
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Fig. 8.14. Same as Fig. 8.4 for the new battery chemistry type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.15. Same as Fig. 8.5 for the new battery type. 
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8.7 Practical implementation aspects of the SoC algorithm 
 
          Designers will also be interested in the implementation requirements of the 
mathematical functions in a practical application. Close quantitative agreement 
with the results of laboratory simulations using the battery models and measure-
ments in a real-time system in which the SoC system is implemented is of course 
important. The SoC indication system was first implemented in a real-time SoC 
evaluation system to test and evaluate it. The optimised SoC system’s implemen-
tation had to agree with a portable device’s hardware speed and memory 
requirements. An evaluation board on a portable device platform was therefore 
developed specially for this purpose. 
          One possible application of accurate SoC information would be for 
controlling charging. A battery would then always be correctly charged, implying a 
longer cycle life. The SoC indication system’s suitability for a new ultra-fast 
recharging algorithm for Li-ion batteries, i.e. boostcharging [7], will be discussed 
below.  
 
8.7.1 Hardware design of the evaluation board 
 
          The hardware required for the SoC indication algorithm’s implementation in 
a portable device platform will now be presented. To enable flexible hardware 
implementation, two boards were designed for the SoC algorithm: a measurement 
evaluation board and a controller board (see Fig. 8.16). A connectivity block 
ensures the connection between these two boards.  

Fig. 8.16. The measurement evaluation board (bottom right) and the controller board  
(top left). 
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The measurement evaluation board 
 
          The evaluation board contains different measurement, charging and 
discharging circuits. With these circuits different battery voltage, current and 
temperature measurement results can be compared to evaluate the SoC calculation 
accuracy. The evaluation board consists mainly of four blocks: a connectivity block 
used for connection to the controller board, a current protection block that prevents 
shortcircuits and high current flows, a measurement block to perform the voltage, 
current and temperature measurements and a charging and discharging block used 
to charge and discharge the battery. A schematic representation of the measurement 
circuit is shown in Fig. 8.17. There are three measurement ADC circuits: 
PCF50606 [8], ADS1256 [9] and ADE7759 [10]. Rsense1 and Rsense2 are 20 mΩ 
sense resistors used for the current measurement.  

Fig. 8.17. Schematic representation of the measurement circuit connections on the evaluation 
board. 

 
          A charger may be connected between pins 1 and 2 and a positive current will 
flow through the battery connected between pins 3 and 4 (see Fig. 8.17). The 
PCF50606 and/or the ADS1256 may be used to measure the voltage. The 
ADS1256 measures the differential voltage between Batt+ and Batt-, whereas  
the PCF50606 measures only the potential of Batt+. A function therefore had to be 
implemented for the PCF50606 voltage measurement. With this device the battery 
voltage will be calculated as the potential difference between the BATVOLT and 
ADCIN1 inputs (see Fig. 8.17).  
          The PCF50606 and/or the ADE7759 may be used for the current 
measurements. The current is measured as the voltage drop across a sense resistor, 
i.e. Rsense1 or Rsense2. The value of the current is calculated by dividing the 
measured battery voltage by the value of the sense resistor. The PCF50606 
measures only the value of the current, whereas the ADE7759 can also detect the 
direction of the current.  
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          The PCF50606 is also used for temperature measurements. The battery 
temperature is measured using an external Negative-Temperature-Coefficient 
(NTC) component, placed near to the battery. The main characteristics of the ADCs 
chosen for the V, T and I measurements, i.e. PCF50606 and ADE7759, will be 
discussed below.  
 
Philips Semiconductors’ PCF50606 
  
         The PCF50606 is an integrated solution for power-supply generation, battery 
management including charging, and dedicated multi-media phone functions. The 
device is controlled by a host controller through an Inter-Integrated Circuit (I2C) 
serial interface. On the evaluation board presented here the PCF50606 is used to 
measure battery voltage and temperature. Only the PCF50606 ADC module will 
therefore be described here. For more information on the PCF50606 the reader is 
referred to [8].  
          The ADC module consists of a 10-bit ADC with internal sample-and-hold, an 
input multiplexer and two high-voltage divider and subtractor circuits.  The ADC is 
a 10-bit resistive successive-approximation converter combined with an input 
multiplexer and a track-and-hold circuit. The input multiplexer allows conversion 
of 10 different inputs. The track-and-hold circuit ensures stable input voltages at 
the input of the ADC during the conversion. Two inputs of the ADC multiplexer 
are used to measure the battery voltage applied to the BATVOLT input. The ADC 
module allows different settings for the full-scale input voltage. A full-scale input 
voltage of 3–5.4 V was chosen for the battery voltage and temperature 
measurements discussed here.  
 
Analog Devices’ ADE7759 
  
          The main scope of this ADC is to measure the current that flows into or out 
of a battery. The ADE7759 is an active power and energy measurement IC, with a 
serial interface and a pulse output [10]. The ADE7759 incorporates two second-
order sigma-delta ADCs, a Coulomb counter, a reference circuit, a temperature 
sensor and all the signal processing required to perform active power and energy 
measurements. The Coulomb counter can be switched off if the ADE7759 is used 
with a current sensor.  
          The ADC is composed of two parts, i.e. a sigma-delta modulator and a digital 
low-pass filter. The sigma-delta modulator converts the input signal into a 
continuous serial stream of ‘1’s and ‘0’s, at a rate determined by the sampling 
clock. The 1-bit DAC in the feedback loop is driven by the serial data stream. If the 
loop gain is high enough, the average value of the DAC output (and therefore the 
bit stream) will approach that of the input signal level. The averaging is performed 
in the second part of the ADC, the digital low-pass filter. By averaging a large 
number of bits from the modulator, the low-pass filter can produce 20-bit data-
words that are proportional to the input signal level. ADE7759 has two fully 
differential voltage input channels. The maximum differential input voltage for 
input pairs is ±0.5 V. Each analog input channel has a PGA (Programmable Gain 
Amplifier) with possible gain selections of 1, 2, 4, 8, and 16. In addition to the 
PGA, Channel 1 also has a full-scale input range selection for the ADC. By using 
the gain register, the maximum analog input voltage can be set to 0.5 V, 0.25 V or 
0.125 V [10]. A range of +/–0.125 was chosen for the current measurements 
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performed in the context of the research discussed here. With a sense resistor of 20 
mΩ this implies a current range of +/– 6.25 A. 
          The ADE7759 needs to be attached to an external sampling clock. On the 
evaluation board presented in this chapter the ADE7759 clock is provided by the 
ADS1256 IC. The ADS1256 and ADE7759 circuits were to this end connected as 
shown in Fig. 8.18. The internal clock of the ADS1256 is attached to an 8 MHz 
Crystal Oscillator. The ADS1256 has a Clock Out, which generates a digital clock 
with the same frequency as the Crystal Oscillator. This clock can be attached to the 
ADE7759. 

Fig. 8.18. Schematic representation of the clock connectivity. 
 

The General Evaluation Controller Board 
 
          The controller board is used to control the evaluation board and to ensure 
communication with a computer. The SoC and tr are also calculated on this board. 
The battery voltage, temperature and current measured with the evaluation board 
are the inputs for the algorithm calculations. These analog variables are digitized 
and fed to the controller. The Advanced RISC Machine (4ARM) [11] controls the 
hardware of the evaluation board through two connectors on the back of the board. 
These connectors are connected to the evaluation board via the connectivity block. 
The board is controlled by the LPC2292 microcontroller [12], which is suitable for 
control applications. It has two universal asynchronous receiver transmitter 
(UART) interfaces, two Serial Peripheral Interface (SPI) busses and one I2C bus. 
The controller board also has a power supply and a debugging device, i.e. a Joint 
Test Action Group (JTAG) Macraigor Wiggler. A switch is used to set the board to 
In-System Programming (ISP) mode or In-Functional (IF) mode. 
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8.7.2 Software design of the evaluation board 
 
          In this section the software required for the evaluation and controller boards 
will be briefly presented. Several software and development tools were used to 
develop the software drivers for the evaluation and controller boards.  
 
Real-Time Operating System  
 
          Due to the complex hardware design, real-time programming was needed for 
the software implementation. The majority of the circuits would moreover have to 
run at the same time, implying a need for a multitasking implementation 
mechanism. The most efficient way of realizing this would be by using a Real-
Time Operating System (RTOS). Therefore, FreeRTOS [13] was chosen for the 
software implementation. FreeRTOS is a portable open source RTOS for embedded 
devices which provides the following features: two types of scheduling policies, i.e. 
pre-emptive (will always perform the highest available task) and cooperative 
(context will switch only if a task blocks), message queues, semaphores, trace 
visualization ability, etc. FreeRTOS allows tasks (parts of code that perform 
specific duties) to run quasi-concurrently. The tasks will appear to run all at the 
same time, performing specific jobs simultaneously. The scheduler will decide 
which task will be executed at a particular moment. For more information on 
FreeRTOS features, see [13]. 
 
The Integrated Development Environment (CrossWorks) 
 
          CrossWorks for ARM is a complete C-development system for ARM-7 
microprocessors such as the LPC2292. It comprises an ARM C compiler, a 
CrossWorks C Library and a CrossStudio integrated development environment. 
CrossWorks is capable of flashing the software directly into the microprocessor by 
using JTAG, visualising input/output registers and debugging in flash. In the 
present application CrossStudio was used for debugging and building the project. 
For more information on the CrossWorks features the reader is referred to [14]. 
 
The Borland Delphi development environment 
 
          For simple communication and control a Graphical User Interface (GUI) was 
designed in Borland Delphi. In this development environment a comport-
component is used to communicate with the controller board via a computer’s 
communication port. For more information on Borland Delphi, see [15].  
 
Software implementation  
 
          In order to offer high implementation flexibility the software structure was 
divided into layers. A general diagram of the software implementation is shown in 
Fig. 8.19.   
          The software application comprises four layers, i.e. a personal computer (PC) 
communication driver, an application layer and device and hardware 
communication driver layers. These parts each consist of one or more modules, 
which have their own task(s). These modules will be briefly explained below. 
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Fig. 8.19. General diagram of the software implementation. 
 
          The general control module represents the basis of the software application 
receiving all the notifications from the PC user input, measurement-ready ADCs, 
etc. When an event is received the general control module determines what action 
should be taken, e.g. calculate SoC by means of a particular function. The UART 
module enables communication with an external system. The commands given by 
the PC via the UART are received by the PC communication receive module. On 
the basis of the validity of these commands the PC communication transmit module 
will reply (ACKNOWLEDGE) or not reply (NACKNOWLEDGE). SoC and tr are 
calculated by the SoC module by means of the algorithm developed in chapters 7 
and 8. The PCF50606 and ADE7759/ADS1256 modules control the measurement 
circuits via the I2C and SPI module. Because PCF50606 is available on both the 
evaluation and the controller board, two PCF50606 modules are represented in Fig. 
8.19. Finally, the UBA2008 module contains all the functions needed to set up the 
P89LPC932 [16] on the evaluation board and the function of the charge/discharge 
module is to charge or discharge the battery. 
 
 
8.7.3 Measurement results 
 
          The battery voltage, temperature and current measurements obtained with the 
evaluation board are given as input to the SoC algorithm implemented on the 
controller board. The testability of the SoC algorithm models on a portable device 
platform will be discussed in this section. The implemented SoC algorithm 
combines Coulomb counting with the SoC=f(EMF) relationship, the SoClm and the 
Qmax adaptive system. But the flexible hardware and software implementation 
allows any other functions to be added. An example of t, V, I and T measurement 
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and SoC and tr calculation during discharging of a fresh Li-ion US18500G3 battery 
is given in Table 8.9. 
 

Table 8.9. Battery SoC and remaining run-time calculation during discharging. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
          During the standby mode (not illustrated in Table 8.9) the SoC algorithm 
calculates an SoC of 12% and a tr of 26 minutes by means of voltage and 
temperature measurements and the stored SoC=f(EMF) relationship. These values 
correspond well to the values calculated by the SoC evaluation system discussed in 
chapter 7. The voltage and temperature are measured with the PCF50606. An NTC 
resistor was applied in the hardware and a function for calculating the temperature 
in the software. An NTC developed by Vishay [17] was used for this application. 
The resistance values of this NTC at some specific temperatures are shown in Table 
8.10. 
 

Table 8.10. NTC resistance values at different temperatures. 

Temperature (°C) Resistance (Ω) 
–10 55050 

5 25340 
25 10000 
45 4372 

 
          It should be noted that tr during the standby state was calculated for an 
arbitrarily chosen 0.25 C-rate discharging current. A worst- and best-case value of 
tr can be given as alternatives, with the latter representing the minimum expected 
load and the former the maximum expected load [3]. When discharge starts a 
negative current of 0.25 C-rate flows out of the battery. In this case tr is calculated 
by means of cc, T measurement, SoCst and SoClm. The current that flows through 
the battery is measured by the ADE7759 as a voltage drop across the 20 mΩ sense 
resistor. Every second a software function calculates the average and integral of 
this current. When the current, the average or the integral has been measured or 
calculated, the ADE7759 task will notify the General control module. A new SoC 
and tr will then be calculated. 
 
 

 

 

 

Time 
[min.] 

V 
[V] 

I 
[mA] 

T 
[K] 

SoC 
[%] 

tr 
[min.] 

0.0 3.685 –277 297 12 26 
0.1 3.623 –277 297 12 26 
0.1 3.623 –277 297 12 26 
0.1 3.621 –277 297 12 26 
0.2 3.621 –277 297 12 26 
0.2 3.621 –277 297 12 26 
0.2 3.621 –277 297 12 26 
0.3 3.621 –277 297 12 26 
0.3 3.617 –277 297 12 25 
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The Graphical User Interface (GUI) 
 
          A GUI was designed to control the evaluation and controller boards. The 
GUI enabled the voltage, current and temperature measurements to be started and 
the measured and calculated values to be graphically displayed on the PC screen 
(see Fig. 8.20). A log-file could moreover be stored in the GUI, in which the 
measured and calculated values could be recorded per second.  

Fig. 8.20. Graphical User Interface. 
 
          The GUI screen consists of three tabs, i.e. settings, measurements and SoC. 
The setting tab is for the communication settings. These settings can switch the 
measurements on or off. The measurements tab displays the measured V, I, T and t 
values. The remaining run-time in hours and minutes [h:m], the standby time [h:m] 
and the SoC [%] calculations are displayed on the SoC tab (see Fig. 8.20). For later 
analysis and interpretation the measurement results and the calculations were also 
stored in a log-file. An example of such a log file is shown in Table 8.9.  

207



Chapter 8 

          This approach allows the developed SoC algorithm to be implemented in any 
battery-powered device in which the battery V, T and I are measured. The use of 
accurate SoC indication in a new charging concept known as boostcharging will be 
discussed in the next section.  
 
 
8.7.4 Boostcharging 
 
         Although all small rechargeable batteries can, in principle, be frequently 
recharged after operation, users often regard the long time needed to recharge such 
high-energy batteries as rather inconvenient. Ultra-fast recharging is in many 
circumstances not just desirable but actually necessary, for example in the daily 
activities of employees working in many utility and emergency services. Rayovac 
proposed a new ultra-fast charging method for NiMH batteries based on hardware 
modifications. A similar method for Li-ion batteries would however be far more 
complicated. 
          Charging times of up to 2 hours for Li-ion batteries are not uncommon. 
These long charging times are mainly due to the dedicated charging algorithm that 
has to be used to meet the strict safety and cycle-life requirements of Li-ion 
batteries. It is generally accepted that deviations from conventional, standard, 
recharging conditions lead to side-reactions with detrimental effects on the 
aforementioned aspects [18], [19]. Such side-reactions are more pronounced under 
more extreme voltage conditions, suggesting that their frequency of occurrence is 
dependent on a battery’s SoC. Boostcharging has been proposed as a new, ultra-fast 
recharging algorithm for Li-ion batteries [7], [21], [22]. Characteristic of 
boostcharging is that close-to-fully discharged batteries can be recharged with very 
high currents for a short period of time. This makes accurate SoC indication 
especially important in close-to-fully discharged batteries.  Boostcharging Li-ion 
batteries and additionally charging them to full capacity in the standard way does 
not have any negative effects on the batteries’ cycle life. Boostcharging has been 
shown to be very rapid. A fully discharged battery can for example be recharged to 
one-third of its rated capacity within 5 minutes [7]. 
           Boostcharging characteristics will be compared with characteristics of 
conventional charging methods below. Close attention has been paid to possible 
long-term effects of boostcharging in extended cycle-life studies. 
 
Experiments performed with the boostcharging algorithm 
 
          Boostcharging experiments were carried out using both cylindrical US18500 
(Sony) and prismatic LP423048 (Philips) Li-ion batteries [7]. The results were 
compared with results obtained for conventionally (CCCV) charged batteries. Fresh 
and fully activated batteries were used for each condition to be investigated. The 
activation procedure was the same as that described in section 8.6. The applied 
boostcharge (b) regimes are defined by max

bI , max
bV  and time (tb). These more 

specific conditions will be described along with the results below. The batteries’ 
temperatures were in all cases measured by Pt-100 sensors, which were glued 
directly onto the metallic casings (at mid-way positions). The experiments were 
performed in temperature-controlled boxes at an ambient temperature of 25°C. 
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Results and Discussion 
 
          A standard CCCV charging plot for a cylindrical Li-ion battery is shown in 
Fig. 8.21.  

Fig. 8.21. Voltage and current characteristics of a cylindrical Li-ion cell under standard 

CCCV charge conditions ( max
sI  = 1 C-rate, max

sV  = 4.2 V). CV charging was terminated at 
min
sI = 55 mA (0.05 C-rate) after about 100 min. 

 
          The battery voltage clearly increased during the CC period ( max

sI  = 1C-rate) 

until the max
sV  value of 4.2 V was reached. This caused the current to decrease in 

the CV region. Charging was terminated when the current cut-off value reached a 
current of 0.05 C-rate. Standard charging of course takes more than 100 min. In 
accordance with the nominal capacity, approximately 1100 mAh was delivered by 
the battery during the subsequent discharge period (not shown). 
          The simplest way of significantly accelerating the charging process is to 
immediately switch a battery to CV mode, i.e .without any limitations with respect 
to the maximum charging current. Fig. 8.22 shows such a CV-mode experiment 
carried out at maxV  = 4.2 and 4.3 V. The corresponding current levels are 
represented in the lower part of the figure.  
 

209



Chapter 8 

 
Fig. 8.22. Voltage and current characteristics of CV charging of a cylindrical Li-ion battery 

at Vmax = 4.2 V and = 4.3 V, respectively. Standard CCCV charging is shown for 
comparison. Imin = 0.05 C-rate in all cases. 

 
          Initially, high charging currents of up to 8 A flowed through the batteries. 
This current however decreased rapidly as a result of the increasing impedance of 
the cells, to level off after about 2 minutes, when the capacity reached 0.04 Ah. 
After the initial current peak the current decreased more slowly. Standard CCCV 
charging results are also illustrated in the figure to allow comparison. Remarkably, 
the current behaviour observed in the CV-mode in both 4.2 V experiments was 
exactly the same. Because the current and voltage curves are generally considered 
to be dependent on the established concentration curves [3], this suggests that 
diffusion limitations do not play a significant role in this region. As expected, the 
currents were significantly higher at Vmax = 4.3 V throughout the entire charging 
period. 
          Fig. 8.23 shows a comparison of the charge build-up as a function of time 
under the same CV and CCCV charging conditions as described above (compare 
with Fig. 8.22). The two distinct regions are clearly identifiable in the part 
representing the CCCV charging mode; during the constant-current mode the 
charge build-up was linear as expected. It began to deviate from this behaviour 
when the CV mode was entered after approximately 50 min. Such linear behaviour 
was of course not observed in the case of the CV-charged batteries, as constant 
currents were then not applied. The most striking difference between the two CV-
charged batteries and the CCCV-charged battery is that observed in the charging 
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times. 1 Ah could for example easily be obtained within 20 minutes at Vmax = 4.3 V 
whereas this took almost 60 minutes under standard charging conditions. 

 
Fig. 8.23. Capacity build-up in CV charging cylindrical Li-ion batteries at 4.2 V and 4.3 V. 

The capacity build-up during standard CCCV charging is shown for comparison. 
 

          Fig. 8.24 shows the impact of the maximum charging current on the total 
charging time of an empty cell to different levels of SoC at a moderate Vmax of 4.2 
V. The graph clearly shows that hardly any time profit is gained with maximum 
charging currents larger than 4 A in the case of a battery of 1100 mAh. This is due 
to the fact that the currents initially drop very rapidly (see Fig. 8.22). Moreover, the 
minimum time needed to charge to a desired SoC can easily be derived from this 
figure. For example, it takes less than 7 minutes to charge an empty battery to 30% 
SoC when Imax is limited to 3 A at a Vmax of 4.2 V.  
          The impact of the more severe CV charging conditions on the cycle life is 
shown in Fig. 8.25. A cycle life plot obtained under standard CCCV charging is 
included for comparison. Even under the moderate CCCV charging conditions the 
capacity loss is substantial, especially at high cycle numbers. Two regions can be 
clearly distinguished in the case of these cylindrical cells; in the first 300 cycles 
only 15 % of the original capacity is lost, whereas degradation is enhanced after 
this number of cycles. These two regions are attributable to two separate 
degradation processes, taking place at a different rate at each electrode; the slow 
degradation rate in the initial cycles is attributable to Li consumption in the 
growing SEI layer while, the high degradation rate is assumed to be attributable to 
decomposition of the LiCoO2 electrode (see Chapter 6). Allowing the maximum 
current to increase during CV charging at 4.2 V causes the high-rate degradation to 
become observable already after 160 cycles (see curve (a) of Fig. 8.25). Increasing 
Vmax to 4.3 V has an even more dramatic and unacceptable effect on the cycle-life; 
degradation of both the graphite and the LiCoO2 electrode are significantly 
enhanced, as curve (b) shows. Recent reference electrode measurements performed 
under boostcharge conditions clearly showed that no metallic Lithium deposition 
takes place. 
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Fig. 8.24. Impact of the initial current on the total charging time to various indicated levels of 
SoC in cylindrical Li-ion batteries. Charging commenced at 0% SoC in all cases. 

Fig. 8.25. Cycle life of cylindrical Li-ion batteries under high charging load conditions at Imax
 

= 4.5 C-rate, Vmax=4.2 V (a) and Imax
 = 4.5 C-rate, Vmax = 4.3 V (b). Cycle life upon standard 

CCCV charging (Imax
 =1C, Vmax=4.2V) is indicated by curve (c). 

 
          From the experiments described above it is clear that simply using CV 
charging is not feasible for ultra-fast charging of Li-ion batteries. Insight gained in 
recent modelling work showed that degradation is enhanced at higher SoC levels 
[20]. LiCoO2 electrodes are assumed to be far more sensitive to decomposition into 
Co3O4 and oxygen gas at relatively low Li contents (see chapter 6). This conversely 
suggests that detrimental effects of this and other side-reactions can be well 
controlled with a new strategy in which the severe charging conditions are applied 
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only during the initial stages of charging at low SoC values. This is why the 
charging algorithm referred to as “boostcharging” was introduced [7]. 
          The basic principles of boostcharging are schematically outlined in Fig. 8.26, 
which represents a short boostcharge period (tb), during which a max

bV  voltage is 
applied to a battery in the initial CV-mode.  

 
Fig. 8.26. Basic principles of boostcharging Li-ion batteries. A short boostcharge period 

(shaded region) is followed by standard CCCV charging. The voltage and current responses 
are indicated. 

 
          During the boostcharge period the currents may initially be very high. In the 
batteries whose results are presented in Fig. 8.22 they were up to 8 A. To ensure 
full charging, the boostcharging is followed by standard CCCV charging at much 
lower-currents. The entire boostcharge cycle can be characterised as CVCCCV 
charging. max

iV is not necessarily the same for both CV periods as schematically 
indicated in Fig. 8.26. If the currents to be used in the initial boostcharging period 
should for some reason be unacceptably high, an alternative option could be to 
apply a more moderate max

bI  during the initial boostcharge CC-mode (not shown in 
Fig. 8.26). In this case, too, the boostcharging has to be followed by standard 
CCCV charging. The entire charging sequence can then be denoted as 
CCCVCCCV, or alternatively (CCCV)2. 
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          Typical boostcharge results obtained with cylindrical cells are shown in Fig. 
8.27. During the relatively short boostcharge period (tb = 5 min.) a max

bV of either 
4.2 V or 4.3 V was applied to the batteries. After 5 minutes the charging regime 
was switched to standard CCCV-mode. Conventional CCCV charging results are 
shown for comparison. The resulting currents are represented by the corresponding 
curves. The higher max

iV values of course led to higher currents. Although the 
boostcharge period was relatively short, the capacity built up in this time was 
significant. This becomes apparent when the results shown in Fig. 8.27 are plotted 
versus the amount of charged capacity. This can be seen in Fig. 8.28. The lower 
part of Fig. 8.28 shows that the temperature rise is current-dependent, but is also 
fairly moderate under all boostcharge conditions. Even charging at extremely high 
currents of up to 5 C-rate did not cause the temperature to change by more than 
10°C. 

 
Fig. 8.27. Voltage and current transients for cylindrical Li-ion batteries under various 
boostcharging and (subsequent) standard charging conditions. The boostcharging was 

performed at 0<tb<5 min., max
bI =4.5 C-rate, max

bV =4.2 V followed by standard charging; 

0<tb<5 min., max
bI =4.5 C-rate, max

bV =4.3 V followed by standard charging. Standard 

charging conditions for t>0 min. and t>5 min. are max
sI =1 C-rate, max

sV =4.2 V. 
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Fig. 8.28. Same results as shown in Fig. 8.27, only now presented as a function of charged 
capacity. Also included is the temperature development under the various boostcharging and 

standard conditions. 
 
          Fig. 8.29 shows that recharging can be very quick under boostcharging 
conditions. At 0% SoC, about 60 and 33% of the nominal capacity of a completely 
discharged battery can be recharged within 10 and 5 minutes, respectively, at a 

max
bV of 4.3 V. These values are somewhat lower at lower max

bV  values and are 
very low under standard charging conditions, as is to be expected. 
          The impact of a battery’s initial SoC condition on the boostcharge capacity is 
represented in Fig. 8.30 for three different boostcharging times. The boostcharge 
conditions are max

bV = 4.3 V at max
bI = 5 A. These results clearly show that 

boostcharging is most effective at lower initial SoC values.  
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Fig. 8.29. Capacity build-up during boostcharging of cylindrical Li-ion batteries at 4.2 V and 
4.3 V. The capacity build-up during standard CCCV charging is shown for comparison. The 

same boostcharging conditions were used as indicated in Fig. 8.27, except that the 
boostcharging time was in this case not restricted to 5 minutes. 

Fig. 8.30. Impact of the boostcharging time and initial SoC at which boostcharging is 
initiated on the boostcharge capacity: The boostcharging times were 3, 5 and 10 minutes at 

max
bI =4.5 C-rate, max

bV =4.3 V. 
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          Fig. 8.31 shows a comparison of the cycle-life behaviour after standard 
charging (solid line) and boostcharging (dashed line). In the latter case the 5 
minutes’ boostcharging period was again followed by standard charging up to 
100% SoC. It is clear that boostcharging with additional standard CCCV charging 
does not have any negative impact on the cycle life in comparison with standard 
charging, implying that degradation begins at higher SoC levels.  
 

Fig. 8.31. Comparison of the cycle-life performance of cylindrical Li-ion batteries upon 
standard charging (solid line) and boostcharging (dashed line). The standard charging 

conditions were max
sI =1 C-rate, max

sV =4.2 V; the boostcharging conditions were 0<tb <5 

min., max
bI =4.5 C-rate, max

bV =4.3 V followed by standard charging. 
 
          Similar boostcharging experiments were performed with prismatic cells. 
Some cycle-life results obtained for the prismatic cells are shown in Fig. 8.32, in 
which the dashed curves correspond to max

bV = 4.3 V and max
bI  was limited to 2.4 

A (4 C-rate). The results obtained under even more extreme boostcharging 
conditions ( max

bV  was raised to 4.4 V while max
bI  remained at the same high value) 

are also represented. The boostcharging consequently comprised only CC charging 
and the entire charging algorithm can be characterised as CCCCCV. The charge 
capacity under the latter conditions was somewhat higher, as was to be expected. It 
should be noted that battery packs are generally equipped with safety electronics, 
generating a significantly higher internal resistance, which makes it possible to 
safely recharge the battery at these “compensated” high voltage levels. 
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Fig. 8.32. Comparison of the cycle-life performance of prismatic Li-ion batteries upon 

standard charging and boostcharging. The standard charging conditions were max
sI =1 C-

rate, max
sV =4.2 V; the boostcharging conditions were 0<tb <5 min.,  

max
bI =4 C-rate, max

bV =4.3 V and 4.4 V followed by standard charging. 

          The results show that boostcharging does not have a significant impact on 
cycle life. The observed differences are probably due to statistical variations, as the 
more severe boostcharging conditions led to somewhat better performance than the 
more moderate conditions. Also noteworthy is that no second degradation effect 
was observed up to cycle number 700, whereas this was the case with the 
cylindrical cells (compare Figs. 8.31 and 8.32).  
          It should be noted that in the experiments discussed in this section the 
boostcharging algorithm was applied mainly at low SoC levels. Applying the 
booscharging algorithm under the same conditions at higher SoC levels may lead to 
accelerated degradation of Li-ion batteries. This makes accurate SoC determination 
at low SoC levels very important for optimum implementation of the booscharging 
algorithm.            
 
 
8.8 Conclusions 
 
          Adaptive systems for different types of Li-ion batteries have been tested 
under an extended range of conditions. The adaptive systems are suitable for a 
State-of-Charge algorithm that calculates the SoC in percentage as well as the 
remaining run-time for any battery-powered application. 
          Two adaptive systems have been compared. Of the two, the SoC=f(EMF) 
and SoClm adaptive system is recommended for SoC and tr determination when a 
battery ages. An adaptive real-time SoC evaluation system has consequently been 
developed and tested. Significant improvements in remaining run-time prediction 

218



Universal State-of-Charge indication for battery-powered applications 

accuracy have been obtained with this new system. In most cases the maximum 
error in remaining run-time prediction was less than one minute, or 1% (see Figs. 
8.4, 8.5, 8.14 and 8.15). It can be concluded that the adaptive SoC system 
represents the best solution for obtaining accurate SoC and tr values. 
          The innovative SoC evaluation system has also been used to test a different 
type of battery. In those tests, new parameter values were learned by means of the 
previously developed adaptive systems. The results show that the SoC evaluation 
system is capable of adapting to batteries with different chemistries and of offering 
accurate, universal SoC indication.  
          A possible implementation of the SoC evaluation system on a mobile phone 
platform has also been presented in this chapter. The measured V, T, and I and 
calculated SoC and tr variables obtained with this system corresponded well to the 
values calculated with the SoC evaluation system discussed in chapter 7, implying 
that the SoC system’s memory and speed requirements correspond to those 
available in a portable application. 
          One possible application of accurate SoC information would be for control-
ling charging. In this chapter a special charging algorithm, i.e. boostcharging, has 
been presented. Boostcharging is used to recharge close-to-fully discharged 
batteries with very high currents for a short period of time without any detrimental 
effects. So accurate SoC calculation under these conditions is very important: a 
correctly charged battery will have a longer cycle life.  
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 Chapter 9 
General conclusions 
   
          State-of-Charge (SoC) and remaining run-time (tr) indication involves battery 
measurements and modelling. The main focus in this book has been on designing a 
universal SoC system that accurately calculates the SoC in percentage and a tr in 
minutes for an Li-based battery-powered device.  
          As stated in chapter 1, the dream of the last 70 years of research in the field 
of SoC has been to design a universal SoC system that adapts on-line to any type of 
battery without user intervention. Until this research was started, no one had 
succeeded in coming up with an SoC system that is accurate enough under all 
realistic user conditions. This book presents innovative, accurate solutions that 
enable on-line adaptation to different types of battery chemistry [1], [2].  
          Good measurement methods combined with an efficient testing scheme are 
the basis of developing any SoC system. Measurements are necessary to obtain 
accurate information on a battery’s behaviour under an extended range of operating 
conditions and to allow the development of accurate battery models. A proper 
understanding of battery behaviour is necessary to improve SoC and tr indication 
accuracy. Correct information on a battery’s Electro-Motive Force (EMF) dependence 
on battery aging was for example obtained only by applying accurate maximum 
capacity and EMF measurement methods. Those measurement methods and newly 
developed adaptive systems greatly improved, SoC indication accuracy under 
equilibrium conditions when a battery ages.  
          Also important with respect to understanding battery behaviour is over-
potential symmetry, a phenomenon discovered during the analysis of overpotential 
measurement results. The properties of this phenomenon have been used to arrive 
at accurate SoC determination with due allowance for aging effects. 
          Once a proper understanding of battery behaviour had been obtained, a 
physical or mathematically equivalent description in the form of a model could be 
built for different types of battery. The models presented in this book are 
consequently based on physical and electrochemical theory and the various 
processes can be easily recognised in them. They include a variety of parameters 
whose values depend on the determination method and experimental conditions. 
These models enable accurate simulation of battery behaviour under a wide variety 
of operating conditions.  
          The various modelling and simulation examples given in this book show that 
an accurate battery model is essential for proper SoC indication. A model has been 
developed that describes a battery’s EMF and overpotential behaviour, neither of 
which can be measured directly. The EMF and overpotential curves were obtained 
in battery measurements and were implemented in an SoC evaluation system using 
approximation by means of mathematical functions. Accurate modelling was 
likewise indispensable in arriving at a new voltage-prediction model that speeds up 
SoC indication on the basis of the EMF during the relaxation process. This model 
significantly improved the calibration and adaptation possibilities of the SoC 
system.  
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          A performance analysis of the SoC system was carried out to test the 
accuracy of the SoC algorithm. This was done by implementing the developed 
battery models in an SoC evaluation system. The simulated battery behaviour was 
checked by comparing it with measurements performed with a real-time SoC 
evaluation system. Close quantitative agreement between the simulation results 
obtained using the battery models and measurements using a real-time system 
based on the SoC algorithm was of course essential.  
          The next step was to identify the sources of error in the SoC evaluation 
system to arrive at more accurate SoC and remaining run-time calculation.  Using 
uncertainty analysis for the purpose of improving SoC indication proved to be an 
elegant and effective approach. This led to new SoC=f(EMF) and State-of-Charge-
left (SoCl) models. In these models the SoC during equilibrium and tr during 
discharge are calculated by means of one direct function. Voltage measurements 
and EMF calculations under current flowing conditions are not needed for the tr 
calculation. This is a major advantage over previously described systems,  showing 
that a proper understanding of sources of error allows significant SoC indication 
improvements.  
          Battery aging is a complex process that involves many battery parameters, 
the most important of course being storage capacity. Adaptive systems enabling 
accurate SoC determination when a battery ages have been developed. Adaptive 
models for Qmax and overpotential measurement are presented in this book. These 
models combine the advantages of the charging process with phenomena dis-
covered during the analyses of the measurements. Measurement analyses were also 
used in order to develop an SoC=f(EMF) and SoClm adaptive system.  
          The adaptive systems were then implemented in a real-time SoC evaluation 
system. They were used to test fresh and aged batteries under an extended range of 
conditions. In the great majority of the tests the error in the predicted remaining 
run-time was less than one minute, or 1%, which satisfies the goal of the research 
described in this book.  
           The system must of course also yield accurate results for other types of 
batteries. It was therefore extended and tested on a different type of battery. The 
previously developed adaptive systems were used to obtain new parameter values. 
The results show that the SoC evaluation system is indeed capable of adapting to 
different battery chemistries and providing accurate, universal SoC indication.  
          For a proper evaluation, the system developed during this study was 
compared with a competitive system, Texas Instruments’ book-keeping system 
bq26500 SoC IC. The two systems were compared by subjecting them to an 
identical series of tests. The comparison showed that the newly developed SoC 
evaluation system performs much better than the bq26500 SoC system under all 
conditions.  
         Designers will also be interested in the implementation requirements of the 
mathematical functions in a practical application. The optimised SoC system must 
agree with a portable device’s hardware speed and memory requirements. The SoC 
models were therefore implemented in a demonstration board incorporating a 
hardware platform of a mobile phone. The calculated SoC and tr values were found 
to agree with the values obtained in simulations, implying  that the SoC system 
requirements correspond to those available in portable applications. 
          One possible application of accurate SoC information is for controlling 
charging. This was investigated using a newly developed, ultra-fast recharging 
algorithm, i.e. boostcharging. Characteristic of boostcharging is that close-to-fully 
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discharged batteries can be recharged with very high currents for a short period of 
time without any detrimental effects. Accurate SoC calculation is very important 
under such conditions, for determining the conditions under which boostcharging is 
allowed.   
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