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Preface to the Second Edition

Since the publication of the first edition of this book, there have been many im-
portant new developments in the field of molecular physics. The new methods and
results which are most significant for students are treated extensively in this second
edition. Among these are in particular single-molecule spectroscopy and the field of
molecular electronics, which is in a stage of rapid development, including the areas
of electroluminescence and organic light-emitting diodes. In addition, we have ex-
tended and corrected the earlier material in a number of places. We have also included
exercises in this new edition; they will allow students to deepen their understanding
and offer a basis for further individual study. The complete solutions to the exercises
can be found on the Internet under www.springeronline.com/3-540-40792-8.

We are grateful to Mr. C.-D. Bachem and Dr. Th. Schneider of the Springer-
Verlag for their continuous and very agreeable cooperation during the preparation of
the book. We thank our colleague Prof. W. D. Brewer for his competent translation.

Stuttgart, February 2004 H. Haken - H.C. Wolf



Preface to the First Edition

This textbook is intended for use by students of physics, physical chemistry, and
theoretical chemistry. The reader is presumed to have a basic knowledge of atomic
and quantum physics at the level provided, for example, by the first few chapters in
our book The Physics of Atoms and Quanta. The student of physics will find here
material which should be included in the basic education of every physicist. This
book should furthermore allow students to acquire an appreciation of the breadth
and variety within the field of molecular physics and its future as a fascinating area
of research.

For the student of chemistry, the concepts introduced in this book will provide
a theoretical framework for that entire field of study. With the help of these con-
cepts, it is at least in principle possible to reduce the enormous body of empirical
chemical knowledge to a few fundamental rules: those of quantum mechanics. In
addition, modern physical methods whose fundamentals are introduced here are be-
coming increasingly important in chemistry and now represent indispensable tools
for the chemist. As examples, we might mention the structural analysis of complex
organic compounds, spectroscopic investigation of very rapid reaction processes or,
as a practical application, the remote detection of pollutants in the air.

The present textbook concerns itself with two inseparably connected themes:
chemical bonding and the physical properties of molecules. Both have become
understandable through quantum mechanics, which had its first successes in the
elucidation of atomic structure. While the question of chemical bonding is mainly
connected with the ground state of the electrons and its energy as a function of
the internuclear separation of the bonded atoms, an explanation of other physical
properties of molecules generally requires consideration of excited states. These can
refer both to the electronic motions and to those of the nuclei.

The theoretical investigation of these themes thus requires the methods of quan-
tum mechanics, and their experimental study is based on spectroscopic methods,
in which electromagnetic waves over a wide spectral range serve as probes. In this
way, it becomes possible to obtain information on the structure of a molecule, on
its electronic wavefunctions and on its rotations and vibrations. We include here the
theoretical and experimental determination of binding energies and the energies of
excited states. In the theoretical treatment, we shall meet not only concepts familiar
from atomic physics, but also quite new ones, among them the Hartree-Fock approx-
imation, the Born-Oppenheimer approximation, and the use of symmetry properties



Vi Preface to the First Edition

in group theory. These ideas likewise form the basis of the quantum theory of solids,
which is thus intimately connected to molecular physics.

In spite of the central importance held by the combination of molecular physics
and quantum chemistry, there previously has been no textbook with the aim we have
set for the present one. That fact, along with the extremely positive reception of
our introductory text The Physics of Atoms and Quanta by students, teachers and
reviewers, has stimulated us to write this book. We have based it on lecture courses
given over the past years at the University of Stuttgart. We have again taken pains
to present the material in a clear and understandable form and in a systematic order,
treating problems from both an experimental and from a theoretical point of view
and illustrating the close connection between theory and experiment.

Anyone who has been concerned with molecular physics and quantum chemistry
will know that we are dealing here with practically limitless fields of study. An
important, indeed central task for us was therefore the choice of the material to be
treated. In making this choice, we have tried to emphasise the basic and typical
aspects wherever possible. We hope to have succeeded in providing an overview
of this important and fascinating area of research, which will allow the student to
gain access to deeper aspects through study of the published literature. For those
who wish to delve deeper into the great variety of research topics, we have provided
a list of literature sources at the end of the book. There, the reader will also find
literature in the area of reaction dynamics, which is presently experiencing a period
of rapid development, but could not be included in this book for reasons of internal
consistency. In addition, we give some glimpses into rather new developments such
as research on photosynthesis, the physics of supramolecular functional units, and
molecular microelectronics.

The book is thus intended to fulfill a dual purpose: on the one hand to give an
introduction to the well-established fundamentals of the field of molecular physics,
and on the other, to lead the reader to the newest developments in research.

This text is a translation of the second German edition of Molekiilphysik and
Quantenchemie. We wish to thank Prof. W.D. Brewer for the excellent translation
and the most valuable suggestions he made for the improvement of the book.

We thank our colleagues and those students who have made a number of useful
suggestions for improvements. In particular, we should like to thank here all those
colleagues who have helped to improve the book by providing figures containing
their recent research results. The reader is specifically referred to the corresponding
literature citations given in the figure captions. We should also mention that the
present text makes reference to our previous book, The Physics of Atoms and Quanta,
which is always cited in this book as I.

Last but not least we wish to thank Springer-Verlag, and in particular Dr.
H. J. Kolsch and C.-D. Bachem for their always excellent cooperation.

Stuttgart, January 1995 H. Haken - H.C. Wolf
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1 Introduction

1.1 What Is a Molecule?

When two or more atoms combine to form a new unit, that new particle is termed
a molecule. The name is derived from the Latin word molecula, meaning “small
mass”. A molecule is the smallest unit of a chemical compound which still exhibits
all its properties, just as we have seen the atom to be the smallest unit of a chemical
element. A molecule may be decomposed by chemical means into its component
parts, i.e. into atoms. The great variety of materials found in the world of matter
is a result of the enormous variety of possible combinations in which molecules
may be constructed out of the relatively few types of atoms in the Periodic Table of
elements.

The simplest molecules are diatomic and homonuclear; that is, they are made up
of two atoms of the same type, such as Hy, N, or O,. In these cases, one should
imagine the electron distribution as shown in Fig. 1.1 (upper part): there are electrons
which belong equally to both atoms, and they form the chemical bond. The next
simplest group is that of diatomic molecules containing two different atoms, so-
called heteronuclear molecules, such as LiF, HCI, or CuO; see Fig. 1.1 (lower part).
In these molecules, in addition to chemical bonding by shared electrons, which is
termed homopolar or covalent bonding, another bonding mechanism is important:
heteropolar or ionic bonding.

We shall explain some of the basic concepts of molecular physics at this point
by using as an example the molecule NaCl (in the gas phase). Figure 1.2 shows
the potential energy of the system sodium + chlorine as a function of the distance
between the atomic nuclei. At large internuclear distances, the interaction between
a neutral sodium and a chlorine atom is quite weak and the potential energy of
the interaction is thus nearly zero; a slight attractive interaction can, however, be
caused by the weak mutual polarisation of the electronic charge clouds. If we bring
the neutral atoms close together, at a distance of ca. 0.6 nm a repulsive interaction
occurs. This fact can be used to define the size of the atoms, as discussed in more
detail in I. (We denote the book The Physics of Atoms and Quanta, by H. Haken and
H. C. Wolf, as I. We assume knowledge of the atomic physics treated in that book
and will refer to it repeatedly in the following.)

At an internuclear distance of 1.2 nm, however, the state in which an electron
from the sodium atom passes onto the chlorine atom becomes more energetically
favored, and the system Nat/Cl~ is thus formed by charge transfer. When the
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Fig. 1.1. Electron distributions in the small molecules Hy, Cl,, and HCI, shown schematically.
The nuclear separations are 0.74 A in Hp, 1.27 A in HC], and 1.99 A in Cl,

distance is further decreased, the effective interaction potential becomes practically
the same as the attractive Coulomb potential between the two ions. An equilibrium
state is finally reached at a distance of 0.25 nm, due to the competition between this
attractive potential and the repulsion of the nuclei and the closed electronic shells of
the ions; the repulsion dominates at still smaller distances. This equilibrium distance,
together with the electron distribution corresponding to it, determine the size of the
molecule.

Continuing through molecules containing several atoms, such as H,O (water),
NHj3 (ammonia), or C¢Hg (benzene), with 3, 4, or 12 atoms, respectively, we come to
large molecules such as chlorophyll or crown ethers, and finally to macromolecules
and polymers such as polyacetylene, which contain many thousands of atoms and
whose dimensions are no longer measured in nanometres, but instead may be nearly
in the micrometer range. Finally, biomolecules such as the giant molecules of de-
oxyribosenucleic acids (DNA), which are responsible for carrying genetic informa-
tion (see Sect. 20.6), or molecular functional units such as the protein complex of
the reaction centre for bacterial photosynthesis (cf. the schematic representation in
Fig. 1.3), are also objects of study in molecular physics. These molecules will be
treated in later sections of this book, in particular in Chap. 20.

The last example already belongs among the supramolecular structures, giant
molecules or functional units, whose significance for biological processes has be-
come increasingly clear over the past years. When molecules of the same type,
or even different molecules, group together to make still larger units, they form
molecular clusters and finally solids.
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Fig. 1.2. The potential energy E for NaCl and NatCl~ as a function of their internuclear
distance R, in the gas phase

1.2 Goals and Methods

Why does the molecule H; exist, but not (under normal conditions) the molecule H3?
Why is NHj tetrahedral, but benzene planar? What forces hold molecules together?
How large are molecules, and what electrical and magnetic properties do they
have? Why does the optical spectrum of a molecule have orders of magnitude more
spectral lines than that of an atom? These are some of the questions which can be
answered more or less simply when we begin to treat the physics of molecules.

The goal of molecular physics is to learn about and to understand the structure,
the chemical bonding, and the physical properties of molecules in all their variety.
From this basis, one would then like to derive an understanding of the function, the
reactions, and the effects of molecules in physical, chemical, and biological systems.

The incomparably greater variety of molecules as compared to atoms has as a con-
sequence that one cannot obtain a basic understanding of all the other molecules
by considering the simplest one, as is possible in atomic physics beginning with
hydrogen. In the physical investigation of molecules, spectroscopic methods play
a special role, as they do in atomic physics as well. However, many more spec-
troscopic methods are required, in particular because in molecules, unlike atoms,
there are more internal degrees of freedom such as rotations and vibrations. In the
following, it will become clear just how varied and numerous are the methods of
investigation which are used in molecular physics.

We shall see the importance of microwave and infrared spectroscopies, and how
fine details of molecular structure can be uncovered with the techniques of magnetic
resonance spectroscopy of electrons and nuclei. We will, however, also gain access to
the wide experience on which chemical methods are based, the various calculational
techniques of quantum chemistry, and a great variety of experimental methods,
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Fig. 1.3. The reaction centre for bacterial photosynthesis as a molecular functional unit.
This schematic drawing shows the photoactive molecules, which are embedded in a larger
protein unit. The latter is in turn embedded in a cell membrane. Light absorption by the
central chlorophyll dimer is the first step in the charge separation which sets off the chemical
processes of photosynthesis. This topic will be treated further in Sect. 20.7. The picture, based
on the X-ray structure analysis by Deisenhofer, Huber, and Michel (Nobel prize 1988), is
taken from the newspaper “Die Zeit”

beginning with structure determination using X-ray or neutron scattering, mass
spectrometry, and photoelectron spectroscopy.

The goal of quantum chemistry is to make available the tools with which the
electron distribution in molecules, their chemical bonding, and their excited states
may be calculated. Its boundary with molecular physics can of course not be defined

sharply.

1.3 Historical Remarks

The first precise ideas about molecules resulted from the observation of quantitative
relationships in chemical processes. The concept of the molecule was introduced
in 1811 by the Italian physicist Avogadro in connection with the hypothesis which
bears his name, according to which equal volumes of different ideal gases at the
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same temperature and pressure contain equal numbers of atoms or molecules. This
allowed a simple explanation of the law of constant and multiple proportions for
the weights and volumes of gaseous reactants in chemical reactions. These laws and
hypotheses are likewise found at the beginning of atomic physics; they are treated
in Sect. 1.2 of I and will not be repeated here.

The investigation of the behaviour of gases as a function of pressure, volume,
and temperature in the course of the 19th century led to the kinetic theory of gases,
a theoretical model in which molecules, as real particles, permit the explanation of
the properties of gases and, in a wider sense, of matter in general. On this basis,
Loschmidt in the year 1865 made the first calculations of the size of molecules,
which within his error limits are still valid today.

In the second half of the 19th century, many chemists (we mention here only
Kékulé, the discoverer of the structure of benzene) made the attempt to obtain
information about the atomic and geometric structure of molecules using data from
chemical reactions. With the advent of modern atomic and quantum physics in
the 20th century, an effort has also been made to gain an exact understanding of
chemical bonding. Following the pioneering work of Kossel on heteropolar and of
Lewis and Langmuir on homopolar bonding (1915-1920), Hund, Heitler, London and
others after 1927 laid the foundations of a quantitative quantum theory of chemical
bonding, and thus of quantum chemistry. Since then, a multitude of researchers

Fig. 1.4. A transmission electron microscope image of hexadecachloro copper phthalocyanine
molecules. The molecules form a thin, oriented layer on an alkali halide crystal which serves
as substrate. The image was made with a high-resolution 500 kV] transmission electron mi-
croscope and was processed using special image-en-hancement methods. The central copper
atoms and the 16 peripheral chlorine atoms may be most clearly recognised. (This picture was
kindly provided by Prof. N. Uyeda of Kyoto University)
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have contributed to the increasing degree of refinement of these theoretical ideas in
numerous research papers.

The various instrumental and experimental advances which have allowed an in-
creasingly detailed analysis of the physical properties of countless molecules will be
treated in those chapters of this book which deal with the respective methods. It can
be most readily verified that such experimental methods tell us much about molecu-
lar structure — to be sure indirectly, but yet precisely — if we can view the molecules
themselves. Using the methods of X-ray scattering and interference, this becomes
possible with high accuracy when sufficiently large, periodically recurring units can
be simultaneously investigated, i. e. with single crystals. An example is discussed in
the next chapter in connection with the determination of the sizes of molecules; see
Fig. 2.2. With the modern techniques of transmission electron microscopy (Fig. 1.4),
and in particular using the scanning tunnel microscope (Fig. 1.5), it is now possible
to obtain images of individual molecules. The existence of molecules and an un-
derstanding of their physical properties have long ceased to be simply hypotheses:
instead, they are established experimental results and form the basis for our under-
standing of many structures and processes not only in chemistry, but also in many
other fields such as biology, materials science, and technology.

Fig. 1.5. An image of benzene molecules made with a scanning tunnel microscope. The
benzene was evaporated onto a Rhenium (111) surface together with CO molecules, which
serve to anchor the larger molecules and are themselves nearly invisible. As a result of the
substrate-molecule interaction, we see in the picture partially localised states which make
the benzene molecules appear to have a reduced (threefold) symmetry; what is seen are thus
not the individual C atoms, but rather molecular orbitals. (From H. Ohtani, R.J. Wilson, S.
Chiang, and C.M. Mate, Phys. Rev. Lett. 60, 2398 (1988); picture provided by R.J. Wilson)
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1.4 The Significance of Molecular Physics
and Quantum Chemistry for Other Fields

Molecular physics and quantum chemistry provide the connecting link between our
knowledge of atomic structure and our efforts to gain a comprehension of the physi-
cal and biological world. They form the basis for a deeper understanding of chemical
phenomena and for knowledge of the countless known and possible molecules, their
physical properties and their interactions. They lead us to an understanding of mi-
croscopic forces and bonding structures, of the electrical, magnetic, and mechanical
properties of crystals and other materials used in science and technology. They pro-
vide us with the fundamentals needed to understand the biological world: growth,
reproduction, and perception; metabolic processes, photosynthesis in plants, and all
of the basic processes of organic life. In short, all living things become compre-
hensible only if we understand the molecular structures which underlie them, the
molecules which are actively and passively involved in life-processes, together with
their functions and their interactions.

Small molecules such as Hy or HCI are particularly suitable as examples to
introduce important principles, theoretical treatments and experimental methods.
These small molecules will therefore assume an important place in this book, due to
their relative simplicity and clarity. In the following chapters, we shall learn about
a number of methods and concepts using as examples small molecules in the gas
phase. In the process, however, we must not forget how varied, and correspondingly
complex, the world of molecules as a whole is. To a greater degree than in atomic
physics, we will have to consider the multiplicity of phenomena in our material
world, the details and not just the basic principles, in order to gain an understanding
of molecular physics. The next chapters aim to give an idea of this multiplicity of
detail.

In the foreground of our considerations will be the individual molecule: isolated
molecules in a gas. In contrast to atoms, molecules have internal degrees of freedom
involving motions of the component atomic nuclei, which give rise to rotations
and to vibrations. We shall discover spectroscopy to be the most important method
for elucidating molecular structure, just as in atomic physics; but in the case of
molecules, the microwave and infrared regions of the spectrum, where rotational
and vibrational excitations are found, will occupy much more of our attention.

The interactions of molecules with each other and with other types of molecules
finally will lead us to the physics of fluids, to solid state physics, and to the physical
and structural fundamentals of biology. In this book, we shall restrict the treatment of
those fields to the basic knowledge which is required for understanding the molecules
themselves. Conversely, we shall learn a much greater amount about methods and
results which are essential for an understanding of phenomena in the above fields.
Our goal, here as in I, will be to begin with observations and experimental results,
and from them, to work out the basic principles of molecular physics and quantum
chemistry. This book thus does not intend to provide specialised knowledge directly,
but rather to smooth the way for the reader to gain access to the enormous body of
technical literature.
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An important current application of molecular physics is in the field of envi-
ronmental technology. The study of the molecular composition of the Earth’s atmo-
sphere, and its modification due to the combustion of wood, coal and petroleum on
the Earth and by automobile exhaust gases and other products of modern industrial
technologies, as well as the elucidation of the photochemical processes which occur
in the atmosphere through interaction with sunlight: all of these are of elementary
importance for investigations into how we can protect the natural environment. We
recall here as an example the “ozone hole” and its dramatic consequences for life on
the Earth.

In astrophysics, the identification of molecules in space plays an important role.
A goal of these investigations is to find small molecules which can be considered to
be the original building blocks for biomolecules and thus for life on the Earth.



2 Mechanical Properties of Molecules,
Their Size and Mass

Only in recent years and in particularly favorable cases has it become possible to
directly generate images of molecules. In order to determine their sizes, masses, and
shapes, there are however numerous less direct but older and simpler methods which
date back even to the field of classical physics. Such methods are the subject of the
following sections.

2.1 Molecular Sizes

If by the “size” of a molecule we mean the spatial extent of its electronic shells, rather
than the internuclear distances of its component atoms, then we can start from rather
simple considerations in order to determine the size of a small molecule containing
only a few atoms. Following Avogadro, we know that 1 mole of an ideal gas at
standard conditions occupies a volume of 22.4 - 103 m3 and contains N molecules,
where N, is Avogadro’s number, 6.02205 - 10> mol~!. When we condense the gas
to a liquid or a solid, its volume will decrease by a factor of about 1000. If we
now assume that the molecules just touch each other in the condensed phase, then
from the above data we calculate the order of magnitude of the molecular radii to
be 1071m, i.e. 0.1 nm or 1 A. In a similar manner, starting with the density o of
a liquid, we can calculate the volume occupied by its individual molecules if we
assume that they are spherically close-packed or if we know the packing, i. e. their
spatial arrangement.

Additional, more precise methods for determining molecular sizes based on
macroscopic measurements are the same as those which we have already met in
atomic physics. We shall repeat them only briefly here:

— From determinations of the pV isotherms of real gases and using Van der Waals’
equation of state for the pressure p and the volume V:

a
(p + v3) (V—b)=RT, @1)
(where T is the absolute temperature, R the ideal gas constant, and p and V refer
to one mole), we can obtain numerical values for the quantity b, the covolume.
In the framework of the kinetic theory of gases, it is equal to 4 times the actual
volume of the molecules. Van der Waals’ equation of state must be used instead
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Table 2.1. Measured values for the covolume b in

Molecule b d Van der Waals’ equation of state (2.1), in units of liter
H, 0.0266 2.76 mol~!, and the molecular diameters d in A calculated
H,0 0.0237 2.66 from them, for several gas molecules. After Barrow
NH;3; 0.0371 3.09

CH4 0.0428 3.24

(0)) 0.0318 293

N2 0.0391 3.14

CcO 0.0399 3.16

CO, 0.0427 324

Ce¢Hg 0.155 4.50

of the ideal gas equation when the interactions between the particles (a/V?)
and their finite volumes (b) are taken into account. Table 2.1 contains measured
values of b and the molecular diameters calculated from them for several gases.
From measurements of so-called transport properties such as diffusion (transport
of mass), viscosity (transport of momentum), or thermal conductivity (transport
of energy), one obtains the mean free path I of molecules! in the gas and from
it, their diameters, in the following way:

For the viscosity or internal friction of a gas, we have

1 A
n= gel\/; 2.2)

(0 =density, 12 =mean squared velocity of the molecules). We know that the
molecules do not have a single velocity, but instead obey the Maxwell-Boltzmann
distribution.

With the equation:
1 —
= — 2
p 3QU

for the gas pressure p, (2.2) can be modified in terms of directly measurable
quantities. Substituting, we obtain

3
l=n)=. (2.3)
po

Thus, by determining the pressure, density, and viscosity of a gas, we can calcu-
late its mean free path.

Another method makes use of the thermal conductivity. For the thermal conduc-
tivity A, we find:

1. Cy. =
A= -N—LI/v? (2.4)
3 Ny

' In I, the mean free path is denoted by A.
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(N is the number density of the molecules, Cy is the molar heat capacity at
constant volume, and N, is Avogadro’s number).

We see that a low thermal conductivity is typical of gases with molecules of large

mass, since then v2 is small at a given temperature.
From the mean free path /, we obtain the interaction cross section and thus the
size of the molecules, as indicated in Sect. 2.4 of I. We find:

1
l=——,
V27 Nd>
(where N is again the number density of the molecules and d is their diameter

assuming a circular cross section). Some data obtained in this manner are collected
in Table 2.2.

(2.5)

Table 2.2. Diameter d (in A) of some small molecules

Molecule derived from gas-kinetic interaction cross sections
H, 2.3
(07 3.0
CO, 34
C,He 3.8

For N, (nitrogen) under standard conditions, it is found that N = 2.7 - 10%° m~3,

1 =0.6-10"" m, and from this the diameter of the molecules is d = 3.8 - 10~19m.
For the mean time between two collisions of the molecules, we find, using

r\/gzl, the value 7=1.2-10""0s.

All of the methods mentioned treat the molecule in the simplest approximation as
a sphere. To determine the true form and shape of molecules, more sophisticated
physical methods are needed.

Methods involving interference of scattered X-rays or electron beams, which
were also mentioned in I, permit the determination of the molecular spacing in solids,
and therefore of the molecular sizes including an anisotropy of the molecules, i.e.
when they deviate from spherical shapes. See I, Sect. 2.4, for further details. For these
methods, one also needs single crystal samples or at least solids having a certain
degree of long-range order. When the molecules are in a disordered environment,
for example in a liquid or a glass, one may obtain less clear interference patterns due
to short-range order present in the glass or the liquid. Short-range order means that
particular intermolecular distances occur with especially high probabilities.

The distances between atoms within a molecule, i.e. between the component
atoms of the molecule, can be determined through interference of electron beams
diffracted by the molecules. For this purpose, the intensity distribution in the electron
diffraction pattern must be measured. Making the assumptions that each atom within
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the molecule acts as an independent scattering centre, and that the phase differences
in the scattered radiation depend only on the interatomic distances, one can derive
values for the characteristic internuclear separations in molecules, as illustrated in

=T L S A B A A B Fig. 2.1. Radial distribution functions D de-
o 3k 4 scribing the electron density as a function of
L 4 the bond length R between atomic nuclei in
It PHICH3)2 |  the molecules PH(CH3); and PH,CHj3, ob-
tained from electron diffraction patterns. The
i 7 maxima in the distribution functions can be
U 1  correlated with the internuclear distances in-
B b dicated. [After Bartell, J. Chem. Phys. 32,
0 Ao 832 (1960)]
CH PH PC CHPHCC =—CH—~
2 - .
1 PHCH; A
0 A X ,
CH PH PC CH,PH =HH—
1 2 3 4
—RI(A)

If one wishes to measure the precise electron density distribution of a molecule,
and thereby obtain more information from X-ray interference patterns of single
crystals besides just the crystal structure and the distances between the molecular
centres of gravity, then the relative intensities of the interference maxima must be
precisely measured. The scattering of X-rays by a crystal is essentially determined by
the three-dimensional charge distribution of its electrons, which can be reconstructed
from the measured intensities of the interference patterns using Fourier synthesis.
One thus obtains maps of the electron density distribution in molecules, such as
the one shown in Fig. 2.2. Electrons directed at the crystal are also scattered by the
electronic shells of its component atoms or molecules and can likewise be used to
obtain electron density maps. Electron diffraction is, to be sure, applicable only to
thin film samples, owing to the shallow penetration depth (“information depth”) of
the electron beams.

The case of neutron diffraction is quite different. Since neutrons are scattered
primarily by nuclei and, when present, by magnetic moments, neutron diffraction can
be used to determine directly the structure of the nuclear framework of a molecule.
The electronic structure can, in contrast, be investigated only to a limited extent by
using neutrons.

A microscopic image of molecules can be obtained with the electron microscope.
The spatial resolution of transmission electron microscopes has become so high in
recent decades that structures in the range of 1 to 2 A can be imaged. An example
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Fig. 2.2. Cross sections through the molecular plane of napthalene (/eff) and anthracene. The
contour lines representing the electron density are drawn at a spacing of 1/2 electron per
A3; the outermost, dashed line just corresponds to this unit. (After J.M. Robertson, Organic
Crystals and Molecules, Cornell University Press (1953))

is shown in Fig. 1.4, Chap. 1. A further example is given in Fig. 2.3, which shows
an image of a thin fullerene (Cgp) crystal taken with a high-resolution transmission
electron microscope. The nearly spherical Csp molecules can be readily recognised
(see also Fig. 4.18) in their densely-packed arrangement. Although imaging of
molecules using the field emission microscope (see Fig. 2.14 in I) has as yet attained
no great practical significance, the scanning tunnel microscope (STM), developed in
the years following 1982, promises to become an important tool for the identification,
imaging, and perhaps even for the electrical manipulation of individual molecules.

Since the introduction of the STM by Binnig and Rohrer in 1982 and its further
development, it has become possible to obtain detailed images of surfaces at atomic
or molecular resolution. In the original, simplest version, employing a constant
tunnelling current, the STM functions are indicated schematically in Fig. 2.4.

A probe electrode having an extremely thin point is brought so close to a con-
ducting surface that a low operating voltage (mV to V) gives rise to a measurable
current between the probe and the surface without a direct contact; the current is
due to the tunnel effect (cf. I, Sect. 23.3). This so-called tunnel current depends very
strongly on the distance from the probe to the surface. The probe is now scanned
over the surface, varying its distance z with the aid of a feedback circuit in such
a way as to keep the tunnel current constant. An image of the surface is then obtained
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Fig. 2.3. (a) A transmission electron microscope image
of a thin Cgp crystal in the (111) direction. The spatial
resolving power of the apparatus was 0.17 nm. The pic-
ture was taken using the HREM (high resolution elec-
tron microscopy) method and a special image processing
technique. (b) For comparison: the calculated image from
a crystal having a thickness corresponding to 2 unit cells
(4.9 nm). (From S. Wang and P.R. Busek, Chem. Phys.
Lett. 182, (1991), with the kind permission of the authors)

by plotting the distance z as a function of the surface coordinates x and y. This is
shown schematically in the lower part of Fig. 2.4. With this type of microscope, it is
also possible to image individual molecules adsorbed onto a surface. An example at
molecular resolution is shown in Fig. 1.5.

A further development of the STM is the force microscope. Here, the quantity
directly measured is not the tunnel current, but rather the force between the probe and
the substrate surface; it can thus be used even with insulating substrates. With the aid
of such scanning microscopes, the structures of molecules and their arrangements
on surfaces can be made visible. The recrystallisation of molecules on surfaces can

Fig. 2.4. A schematic representation of a scan-
ning tunnel microscope. The tunnel current It
between the surface being imaged and the probe
electrode, which has the form of an extremely
thin point, is plotted as a function of the surface
spatial coordinates x, y using the distance z of
the probe from the surface
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Fig. 2.5. (a) An STM picture of napthalene molecules on a Pt (111) substrate. (b) A schematic
representation of the orientation of napthalene molecules on the Pt (111) surface. [From
V.M. Hallmark, S. Chiang, J.K. Brown, and Ch. W&ll, Phys. Rev. Lett. 66, 48 (1991).
A review was given by J. Frommer, Angew. Chem. 104, 1325 (1992)]

also be followed as a function of time. An additional example of a molecular image
made with the STM is shown in Fig. 2.5.

A quite different method of determining the sizes of molecules can be applied to
molecular layers. Long-chain hydrocarbon molecules which carry a water-soluble
(hydrophilic) group at one end, while the opposite end is hydrophobic, can spread
out to form monomolecular layers on a water surface. This was first shown by the
housewife Agnes Pockels in 1891. The technique was developed further by Lord
Rayleigh, whom she informed of it, and later in particular by Langmuir. He was
able to show that the molecules can be compressed up to a well-defined smallest
distance on the water surface, so that they touch each other in equilibrium. From
the molecular mass and density, one can then determine the number of molecules
per unit surface area. From this, a numerical value for the cross-sectional area of the
molecules can be calculated. This method can of course be applied only to molecules
having a very special structure. Details are given in Fig. 2.6.

We should mention here that these monomolecular layers, so-called Langmuir-
Blodgett films, have been the subject of considerable renewed interest in recent
years. They can, for example, be transferred from the water onto substrates, and
several layers can be placed one atop the other. Thus, the behaviour and interactions
between individual molecules in structures of low dimensionality or at precisely
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Fig. 2.6. Schematic representation of the arrangement of fatty acid molecules on an aqueous
surface. The water molecules are indicated by (O, hydrophilic oxygen or hydroxyl groups
by ©, and hydrophobic carbon atoms or CH; groups by ). More information is given in

Sect. 20.7

defined distances and relative positions from one another can be studied. These
layers are also used as models for biological membranes. It is a goal of present-day
research to build artificial molecular functional units from such ordered layers; cf.

Sect. 20.7.
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Fig. 2.7. Defining the “size” of a molecule:
one can distinguish between dy, the distance
at which two colliding molecules detectably
touch; dr, the closest distance of approach
which is attained in collisions at a kinetic
energy kT; and dmip, the distance which
corresponds to a minimum in the interaction
potential. Here, we mean the interaction po-
tential between two neutral molecules, not
to be confused with the intramolecular po-
tential. The interaction typically follows an
R~ law for the attractive part and R~12 for
the repulsive part
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The methods discussed above yield rather precise values for the sizes of
molecules in a relatively simple manner. As we shall see in later chapters, there is
a whole series of spectroscopic techniques with which one can obtain considerably
more detailed knowledge about the structure of a molecule, the spatial arrangement
and extent of its components, its nuclear framework, and the effective radius of its
electronic shells.

In any case, when speaking of “size”, we must define the physical property
which we are considering. This is illustrated in Fig. 2.7. If, for example, we wish
to determine the size of a molecule by measuring collision cross sections, we can
define either the distance of closest approach of the collision partners, dr, or else the
distance dy at which the electronic shells of the collision partners detectably overlap,
or finally the distance dysi, at which the interaction energy E takes on its minimum
value, to be the molecular size. In this process, we must keep in mind that molecules
are not “hard”, but rather are more or less strongly deformed during the collision, as
is indicated in Fig. 2.7 in defining the distance dy. T stands for temperature, since
the molecules have a mean energy k7 in the collisions. The electronic wavefunctions
are also not sharply bounded. It should therefore not be surprising that the measured
values of molecular size differ according to the method of measurement; for example,
for the H, molecule, we find the numerical values (in A) 2.47 from the viscosity,
2.81 from the Van der Waals equation, and R, = 0.74 A from spectroscopic data for
the equilibrium distance of the centres of gravity of the two H nuclei in H;.

2.2 The Shapes of Molecules

Molecules are spherical only in rare cases. In order to investigate their spatial
structures, one has to determine both the arrangement of their nuclear frameworks
and also the distributions and extensions of their electronic shells. This is illustrated
further in Fig. 2.8 by two simple examples.

The nuclear framework, i. e. the bond lengths of the atomic nuclei which make
up the molecule and their relative orientations to one another, can be determined
very precisely. Aside from X-ray, electron and neutron diffraction, spectroscopic
methods such as infrared absorption spectroscopy and nuclear magnetic resonance
(NMR) are required for this determination; they will be treated in detail later in this
book.

We list some small molecules in Table 2.3 as examples.

The precision with which these data can be derived from an analysis of electron
and X-ray diffraction on ordered structures is very great. Internuclear distances can be
quoted with certainty to a precision of +0.01 A and angles to +1°. As we mentioned
above, the boundaries of the electronic shells of molecules are not precisely defined,
since the electron density falls off continuously with increasing distance from the
nuclei; however, surfaces of constant electron density (contour surfaces) can be
defined, and thus regions of minimal electron density can be located, upon which
precise bond length determinations can be based. If surfaces of constant spatial
electron density are cut by a plane, their intersections with the plane (of the drawing)
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Fig. 2.8. As a rule, molecular contours deviate from a spherical form. For example, here we
show the molecules Oy and H,O. In addition to the bond lengths and the bond angles, the
spatial extension of the molecular electronic shells is an important measurable quantity

Table 2.3. Structure of some small molecules

diatomic, homonuclear H, H—-H bond length 0.74 A
I 1-1 bond length 2.66 A
0, 0-0 bond length 1.20 A
diatomic, heteronuclear HCI H-Cl bond length 1.28 A
triatomic, symmetric—linear CO, 0-C-0 bond length 1.15 A
triatomic, bent H,0 0 bond length 0.97 A
H H £105°
tetratomic, symmetric pyramidal || NH3 N NH bond length 1.01 A
H
H H
pentatomic, tetrahedral CHy H CH bond length 1.09 A
C
H H
H
polyatomic hydrocarbons, C,Hg H H
paraffines ethane | H-C—C—-H C—C bond length 1.55 A
H H C—H bond length 1.09 A
£(H-C) = 109.5°
4£(HCH) = 111.5°
H H
c C
aromatics CéHs |HC CH | C—H bond length 1.08 A
benzene Cc C C—C bond length 1.39 A
H H
biological macromolecules DNA double helix 200 A long
10° - 10° atoms
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Fig. 2.9. An electron den-
sity diagram of the nickel
phthalocyanine molecule.
As in Fig. 2.2, the H atoms
are not visible, since they
are poorly detected by X-ray
diffraction methods com-
pared to atoms with higher
electron densities. The con-
tour lines represent the
electron density. Their inter-
val corresponds to a density
difference of one electron
per A2, and the dashed lines
represent an absolute density
of 1 electron per A2. The
lines around the central Ni
atom have a contour interval
corresponding to 5 electrons
per A2, After Robertson

yield electron density contour lines. Adding the structure of the nuclear framework,
when it is known, produces pictures of molecules like that shown in Fig. 2.9.

2.3 Molecular Masses

The mass of a molecule, like that of an atom, can be most readily determined by
weighing it. One mole of a substance, i.e. 22.41 of gas under standard conditions
of temperature and pressure, contains Ny = 6.022 - 10?* molecules. From the mass
of a mole, one can therefore determine the mass of a molecule by dividing by the
number of molecules, i. e. Avogadro’s number.

A particularly important method of determining molecular masses is mass spec-
troscopy, making use of the deflection of beams of charged molecules by electric
and magnetic fields. The basic principles of this method are described in I, Sect. 3.2.
In atomic physics, mass spectroscopy is used for the precise determination of atomic
masses and for the investigation of isotopic mixtures; in molecular physics, it can
be used in addition for analysis and for the determination of molecular structures.
Electron bombardment can be employed to decompose many molecules into frag-
ments. By investigating the nature of the fragments using mass spectroscopy, one
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Fig. 2.10. A schematic drawing of a mass spectrometer, which functions by means of elec-
tromagnetic deflection of ionised molecular fragments. As an example, the mass spectrum
of the butane molecule is shown in the inset. Maxima corresponding to fragments of masses
between 5 and 58 can be recognised; we will not discuss their detailed interpretation here.
After Barrow

can obtain information on the structure of the original molecule by attempting to
reconstruct it from the fragments, like a puzzle. An example is shown in Fig. 2.10.

Other methods are especially important in the case of biological macromolecules.
For example, from the radial distribution of molecules in an ultracentrifuge, one can
determine their masses. When the size of the molecules becomes comparable to the
wavelength of scattered light, the angular distribution of the light intensity gives
information on the shape and size of the scatterers and thus indirectly on their
masses. Light scattering is caused by different parts of the molecule and these
different scattered rays can interfere, giving rise to an angular distribution of the
scattered radiation which no longer corresponds to simple Rayleigh scattering. The
principle is illustrated in Fig. 2.11.

Using the methods which are referred to as small-angle X-ray and neutron
scattering (SAXS, SANS), a measurement or at least an estimate of the spatial
extent of larger molecules is often possible.

In the case of macromolecules, the methods mentioned above can fail for several
reasons, in particular when it is desired to investigate the shape, size, and mass of the
molecules in their natural environment, i. e. frequently in the liquid phase. On the one
hand, the size and shape of the molecules can change with changing surroundings;
on the other, the methods are based to some extent on isolating the molecules from
their environment. In these cases, other methods can be applied, such as osmosis
through membranes, the equilibrium or velocity distribution of sedimentation in the
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Fig. 2.11. Light which is scattered from dif-
ferent parts of larger molecules can inter-
fere, leading to an intensity distribution of
the scattered light which differs from that
for Rayleigh scattering. From it, informa-
tion on the size and shape of the scattering
molecules can be obtained. This method is
not very specific, but is experimentally rel-
atively simple

gravitational field of the Earth or in the centrifugal field of an ultracentrifuge, the
transport of molecules under the influence of an electric field in paper or in a gel,
called electrophoresis, or filtration through micropores. These methods, which are
applied also to biologically active molecules, will not be discussed in detail here.

2.4 Specific Heat and Kinetic Energy

The momentum and kinetic energy of molecules were derived in the 19th century by
applying the atomic hypothesis to thermodynamic properties of gases.
The mean kinetic energy of molecules in a gas is given by the expression

— m—
Eyin = —v?, (2.6)
2

where v2 is again the mean squared velocity of the molecules in the gas, and m is
their mass.

For the pressure p we have, from elementary thermodynamics,

, 5

p= §N Exin 27
(N = particles/unit volume).

Because of the equation of state of an ideal gas,

pV = nRT, 2.8)

where 7 is the number of moles of the gas, V its volume, R the gas constant, and
T the absolute temperature, it then follows for the individual molecules that

— 3
Evn = 5kT s 2.9)

with k = R/ N, = Boltzmann constant; and since the number of degrees of freedom
of translational motion is 3, for the energy per degree of freedom f we find:
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— 1
Eiing = kT . (2.10)

For the total energy of a mole of particles, we then have

— 3
Emnle = ERT (2.11)

and for the specific heat at constant volume

dE 3
——— —Z-R 2.12
Cv T =7 (2.12)

and at constant pressure
5
Cp == CV + R = ER .

With monoatomic gases, these values are in fact found in measurements; for
molecular gases, higher values are measured. This is due to the fact that molecules,
in contrast to atoms, have additional degrees of freedom, which are associated
with rotational and vibrational motions, and that these motions also contribute to
the specific heat. The rotational degrees of freedom each contribute %kT to Cy.
In general, a molecule has three rotational degrees of freedom corresponding to
rotations around the three principal body axes, i.e. the axes of the ellipsoid of the
moment of inertia. In the case of a linear molecule, all the mass points lie on a line,
and the moment of inertia around the corresponding axis vanishes; there are then
only two rotational degrees of freedom. We thus find for the specific heat of di- or
triatomic molecules, respectively, initially ignoring quantum effects, the following
formulas:

7
CV=§R or 3R; C,,:ER or 4R. (2.13)

In addition, internal vibrations can be excited in a molecule. They contribute one
degree of freedom for a diatomic molecule, three for a triatomic molecule, and 3n —6
for a molecule with n atoms. The number of these degrees of freedom and thus of
the normal modes (cf. Chap. 10) can be calculated in the following way: each atom
contributes three degrees of freedom of motion; for n atoms, there are 3n degrees
of freedom. Three of these correspond to the translational motion of the centre of
gravity of the whole molecule and three to rotations. A molecule containing n atoms
thus has 3n — 6 vibrational degrees of freedom. This formula is valid for n > 3. In
a diatomic molecule, owing to its two rotational degrees of freedom, there is exactly
one vibrational degree of freedom.

The mean thermal energy per degree of freedom is twice as large as for translation
and rotation, since in the case of vibrations, both kinetic and potential energy must be
taken into account. The specific heats of polyatomic molecules are correspondingly
larger at temperatures at which the vibrations can be thermally excited.
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1 '7/2 Fig. 2.12. The temperature de-
pendence of the specific heat of
6, /_ a gas. The curve corresponds
c£> 2 / approximately to the hydrogen
(&) 5, N molecule, Hy. With decreasing
2 temperature, the degrees of free-
/ dom of vibrations and rotations
4/2 j are “frozen in” in two steps
% . . .
10 100 1000 10000
T(K) —

In all these considerations, it must be remembered that the vibrational and ro-
tational states in molecules are quantised. The energy quanta have different magni-
tudes, depending on the molecular structure, and are generally smaller for rotations
than for vibrations. They can be thermally excited only when the thermal energy
kT is sufficiently large in comparison to the quantum energy Av. One thus ob-
serves a temperature-dependent specific heat Cy or C, for molecules, as indicated
schematically in Fig. 2.12. At very low temperatures, only the translational degrees
of freedom contribute to the specific heat and one measures the value Cy = %R.
With increasing temperature, the additional degrees of freedom of the rotation are
excited, and at still higher temperatures, those of molecular vibrations also contribute
to the measured Cy. One can thus draw conclusions about the number and state of
motion of the atoms in a molecule even from measurements of its specific heat.

Problems

2.1 The potential curves of diatomic molecules can be described empirically. For
ionic molecules, the following approximation is suitable:

2
Pi(r) = —

- I .
dneer + Bexp(—r/o) + I

For molecules consisting of neutral atoms, one uses e.g. :
Pu(r) = —C/r® + Bexp(~r/g) .

Here, r is the distance between the particles, p is roughly the sum of their ionic radii,
and I is the potential energy of a pair of ions which are separated by an infinite
distance (Nat + C17). How close together would one have to bring €.g. a sodium
and a chlorine atom in order to form Na™C1~?

Hint: Simplify the constantto C = 0, and consider the fact that the repulsive potential
B exp(—r/o) becomes effective only at very short distances. Use Ig = 1.42¢€V.
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2.2 Imaging of organic molecules with the transmission electron microscope is
possible only under favourable conditions. According to Freyer?, the following
inequality holds for the resolution dj, of a molecule:

___SIN
_C’Vf'Ncr'

In this expression, we have used the following symbols:

dp

d, point resolution in A (1A = 1071%m)

S/N required signal/noise ratio (ca. 5)

C  contrast (ca. 0.1 for one layer of scattering centres)

f  electron-efficiency factor (ca. 25%, i.e. only every 4th electron contributes)
N, damage threshold (in electrons per surface area (in A~2)).

The contrast C is proportional to /n, where n is the number of scattering centres
(atoms) which lie behind each other. A commercial microscope requires a dose of
ca. 100 A=2 to attain a theoretical resolution of 1 A (naturally, only the theoretical
resolution is quoted in the specifications); this dose lies near the damage threshold
N, for organic molecules.

How many molecules would have to be stacked up to yield d, = 1 A? With
hexadeca chloro copper phthalocyanine molecules of thickness 3.4 to 3.8 A, one
obtains the typical layer thickness used for organic microscopy samples.

2.3 The masses of organic molecules can be so large that the single and double-
focusing mass spectrometers as well as quadrupole mass spectrometers (mass range
typically 1—1000u) used in atomic physics no longer work. Particularly critical is
the ionisation process and the danger of fragmentation which accompanies it.

In a time-of-flight spectrometer, large molecules are frozen into a thin layer of
small solvent molecules on a substrate S. Let the substrate be at a potential Us.
A laser pulse (tuned to the absorption frequency of the small molecules) vaporises
part of the layer and releases some of the large molecules, which are then ionised
by a beam of UV light. Let the detector be at the potential Uy and at a distance of
d = 50 cm from the substrate. Take the potential difference to be |Us—Uy| = 2000 V.
When does a singly-ionised molecule of mass m = 4000 u reach the detector after
a collision-free flight through vacuum? Sketch the time dependence of the current
in the detector.

24 Cg is dissolved in benzene (concentration 1.297 - 10™* mol/1) and spread
onto water in a Langmuir trough. Ceg is water-insoluble and hydrophobic, and forms
a Langmuir or Langmuir-Blodgett film after the benzene has evaporated.

How large is the area per molecule which is occupied by a Cgy molecule if the
total surface area of the film is 16.87 cm? and 0.1 ml of the solution was used to
make it?

2 J.R. Freyer, Mol. Cryst. Liq. Cryst. 96, 275 (1983)
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The van der Waals area of Cgg is 78.5 A2.3 What follows from this for the film
described above?

2.5 For the determination of the molecular masses of macromolecules (proteins or
synthetic polymers), the method of osmometry is employed. Van’t Hoff’s equation
for the osmotic pressure 7 of ideal dilute solutions is:

iV = nNpkT

where n is the number (in moles) of dissolved molecules in the volume V, k is
Boltzmann’s constant, and N, is Avogadro’s number. This equation can be extended
to non-ideal solutions by expressing it in the form of a virial expansion in the molar
particle concentration ¢ = n/V:

7V =nNpAkT (1 +ac+...).

Similarly to the covolume b in the van der Waals equation for non-ideal gases, the
“osmotic virial coefficient” « describes the actual volume of the dissolved macro-
molecules. If v, is the occupied volume, by which the volume for free motion of the
other molecules is reduced, then we have

Ol=§NAUp.

The osmotic pressure of polystyrene solutions in toluene is determined by measuring
the height 4 of a solution of density 0.867 g/cm? which just compensates the osmotic
pressure. As a function of the mass concentration ¢’ one obtains the following values
at 25°C:

¢ [mg/em®] 32 48 57 6.9 7.8

h [cm] 311 622 840 1173 1490

Calculate from this the molecular mass of the polymer molecules. Which value for
the molecular radius do you obtain if you consider the molecules to be approximately
spherical?

2.6 The velocity of sound in a gas is determined by its specific heats Cy and Cp
according to:

yRT
Cs =4 ——
M

where y = Cp/Cy and M is the molecular mass of the molecules. Derive the veloc-
ity of sound for an ideal gas of (a) diatomic, (b) linear triatomic, and (c) nonlinear
triatomic molecules at high temperatures (but 7 is not high enough to allow the occu-
pation of vibrational energy levels). Estimate the velocity of sound in air (consisting
of N, and O,) at 25 °C.

3 P. Heiney et al., Phys. Rev. Let. 66, 2911 (1991)
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Macroscopic materials properties such as the dielectric constant € and the permeabil-
ity u are determined by the electric and magnetic characteristics of the basic building
blocks of matter. We show in Sects. 3.1 through 3.4 how the electric properties of
molecules can be investigated by measuring ¢ and the index of refraction, n. Sec-
tions 3.5 through 3.8 give the corresponding information about magnetic moments
and polarisabilities from determinations of the magnetic susceptibility.

3.1 Dielectric Properties

Molecules are in general electrically neutral. However, they can possess an electric
dipole moment p (and other, higher moments such as a quadrupole moment), and
their electrical polarisability is generally anisotropic. In this section, we will show
how information about the electrical characteristics of molecules can be obtained
from measurements of macroscopic materials properties, particularly in the presence
of electric fields. The most readily accessible quantity here is the dielectric constant
€; it is most simply determined by measuring the capacitance of a condensor with
and without a dielectric consisting of the material under study. The ratio of the two
measured values is the dielectric constant. The present section concerns itself with
the definition of the dielectric constant and with its explanation on a molecular basis.

For the quantitative description of electric fields, we require two concepts from
electromagnetic theory:

— The electric field strength E. It is derived from the force which acts on a test
charge in an electric field.

— The electric displacement D. It is defined by the surface influence charge density
produced on a sample in a field.

In a medium with the dielectric constant ¢, the displacement D,, is given by

D, = eeyE (3.1)
with
A
g0 =8.85-10712 22
m

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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(The notation & is also used, where r stands for ‘relative’, instead of the quantity
denoted above by ¢; the product &;& is then called ¢.)

The dimensionless dielectric constant ¢ is a scalar quantity in isotropic materials
and a tensor in anisotropic materials. ¢ is always larger than 1 in matter. In dielectric
materials, the numerical value of ¢ is only slightly greater than 1 and is nearly
independent of the temperature. In paraelectric materials, ¢ can be much greater
than 1 and decreases with increasing temperature. As we shall see in the following,
paraelectric materials consist of molecules which have permanent electric dipole
moments. In dielectric materials, the dipole moment is induced by an applied electric
field.

Some values of ¢ for dielectric and paraelectric materials are given in Table 3.1.

Table 3.1. Numerical values of ¢ (under standard conditions). The materials in the left column
are dielectric, the others are paraelectric

He 1.00007 H,O 78.54 LiF 9.27
H, 1.00027 Ethanol 24.30 AgBr 31.1
N, 1.00058 Benzene 227 NH4ClI 6.96

In addition, the electric polarisation P is also defined by means of the equation
P=D,—D or D,=gE+P, (3.2)

where D,, is the displacement in the material and D that in vacuum.

P measures the contribution of the material to the electric displacement and
has the dimensions and the intuitive meaning of an electric dipole moment per unit
volume.

From (3.1) and (3.2), it follows that

P = (e — 1)eE = x&oE . (3.3)

The quantity £ — 1 is also referred to as the dielectric susceptibility x.
The polarisation can be explained on a molecular basis. It is the sum of the
dipole moments p of the N molecules in the volume V. We thus have

N
1
P=—S"p,=pN, 3.4
Vl;p, p (3.4)

where p’ denotes the contribution which, averaged over space, each molecular dipole
moment makes to the polarisation P. In the case of complete alignment of all
the dipole moments parallel to the field, we find P = Np. In (3.4), it should
be considered that the number density N (number of molecules per unit volume)
depends on Avogadro’s number N (number of molecules in a mole of substance)
through the equation N = N (0/M), where g is the density and M the molar mass
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Fig. 3.1. The electric dipole moment of two charges +g
and —q at a distance d is equal to p = gd; its direction
P=qd  points from the negative towards the positive charge

of the substance. Thus, according to (3.3) and (3.4), a relation exists between the
macroscopic quantity measured, &, and the molecular property dipole moment p.

We refer to an electric dipole moment of a molecule when the centres of charge
of its positive and negative charges do not coincide. For example, two point charges
+q and —q at a distance d (Fig. 3.1) have the dipole moment

p=qd [Asm]. (3.5

The vector of the dipole moment points from the negative to the positive charge.
In addition to the unit [Asm], the unit Debye (D) is also used, with 1D =
3.336 - 10739 A sm. Two elementary charges at a distance of 1 A = 10~'"m have
a dipole moment of 1.6 - 1072 Asm = 4.8 D. This is the order of magnitude of
molecular dipole moments. Molecules with finite dipole moments are called polar.
Polar molecules such as HCI or NaCl have a permanent dipole moment p, which in
the case of predominantly ionic bonding can even be calculated quite accurately as
the product of charge times bond length. The dipole moment of HCI is 1.08 D and
that of H,O is 1.85 D. We shall discuss polar molecules in more detail in Sect. 3.3;
however, we first treat nonpolar molecules in the following Sect. 3.2.

3.2 Nonpolar Molecules

Centrosymmetric molecules such as Hy, Oz, N3, or CCly are nonpolar, i. e. they have
no permanent dipole moments which remain even when E = 0. They can, however,
have an induced dipole moment in a field E # 0. For this dipole moment pj,q4,
induced by polarisation in the external field, we have:

Pind = @Ejoc , a = polarisability, dimension [Asm?/V], 3.6)
Ejo. = field strength at the molecule . ’

The polarisability « is a measure of the ease of displacement of the positive charge
relative to the negative charge in the molecule, and is thus an important molecular
property. The resulting polarisation is called the displacement polarisation. It is
useful to distinguish two cases:

— When the induced dipole moment results from a displacement of the electronic
clouds relative to the positive nuclear charges, we speak of an electronic polari-
sation;

— When, in contrast, a displacement of massive positive ions relative to massive
negative ions occurs, we speak of ionic polarisation.
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The polarisability « is thus the sum of an electronic and an ionic contribution,
o = ol + tign. Instead of the polarisability o, the quantity o’ = «/47ws, is frequently
used. It is called the polarisability volume.

When we refer to the polarisability «, then strictly speaking we mean the polar-
isability averaged over all directions in the molecule, @. In reality, for all molecules
excepting those having spherical symmetry, o depends on the direction of the ef-
fective field E relative to the molecular axes; « is thus a tensor. If the anisotropy of
the polarisability is known, it can be used to draw conclusions about the structure of
the molecule. The anisotropy can be measured using polarised light, by aligning the
molecules and measuring the dielectric constant ¢ in the direction of the molecular
axis. This type of alignment can be produced, for example, by an applied electric
field. The double refraction exhibited by some gases and liquids in an applied electric
field, referred to as the electro-optical Kerr effect, is based on this kind of alignment.
Another possibility for aligning the molecules and measuring their polarisabilities
in different molecular directions is to insert them into a crystal lattice. A typical
result, e. g. for the CO molecule, is a polarisability along the molecular symmetry
axis three times larger than perpendicular to it.

In strong electric fields, as found for example in laser beams, there are in addition
to the linear term in (3.6) also nonlinear terms which must be considered; they are
proportional to the second, third, or higher powers of Ej,.. In practice, the most
important term is the quadratic one, proportional to Elzoc. The coefficient B in the
term ﬂElzoc is called the hyperpolarisability.

The dimensions of « are, from (3.6), [Asm? V~!]. The dimensions of o' are
simpler: they are those of a volume. For molecules having axial symmetry, it is
sufficient to determine two values of the polarisability, perpendicular and parallel to
the molecular axis. The (electronic) polarisability is an indication of how strongly
the electron distribution in the molecule is deformed by an applied electric field.
When the molecule contains heavy atoms in which some of the electrons are farther
apart from their nuclei, then the electron distribution is less rigidly connected to the
nuclei and the electronic polarisability is correspondingly large.

Some numerical values for the polarisabilities of simple molecules are given in
Table 3.2.

Table 3.2. Polarisability volumes ¢ in units of 10730 m3

4 o) o)
Hy 0.79 0.61 0.85
0, 1.60
Cl, 32 6.6
CeHeg 10.3 6.7 12.8
H,O 1.44

CCly 10.5
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In gases at moderate pressures, the molecules do not mutually influence each
other. The total polarisation P of the observed volume can thus be calculated using
(3.4), as the sum of the polarisations of all the molecules within the volume. We
then find the following expression for the polarisation resulting from the induced
moments of molecules having a number density N, assuming complete alignment
of their moments by the applied field:

P= Npind = NO(E]OC . (37)
With
N,
N=a8 (3.72)
M

(0 = density, M = molecular mass),

we obtain for the displacement polarisation

N
P="2%E. (3.8)
M
In the case of dilute gases, the local field Ej, at the position of each molecule is
naturally equal to the applied field E.

From (3.8) and (3.3), it follows that

e=1+ Meoa . 3.9
We thus obtain the polarisability « of the molecules by measuring the dielectric
constant &.

In a dielectric of greater density, one has to take into account the fact that
the local field Ej,. is not equal to the applied field E. In the neighbourhood of
amolecule under consideration, there are other molecules whose charge distributions
give a contribution to the local field. This must be allowed for in computations; cf.
Fig. 3.2. For the local field, we have:

Ei =E+N£ , (3.10)
€0
where here, N refers not to the particle number density, but rather to the depolarising
factor.
The depolarising factor defined above depends on the shape of the sample and
can be calculated for a given shape.

Fig. 3.2. The definition of the local field Ej,: in a di-
electric medium, the applied field E is augmented by
the field resulting from the induced surface charges.
This Lorentz field, assuming a spherical cavity, is equal
to P/3go
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Following Lorentz, the field inside a spherical cavity in a dielectric can be
calculated using a depolarising factor N = 1/3, and thus

1P
Enw=E+-—. (3.11)
380

Then, from (3.7), we have

P ——PM E + i (3.12)
i = — = =« -——1. .
Pind N NAQ 3 €0

Using (3.3), we eliminate E from (3.12) to yield

PM P 1P P(e+2)
= _— = —
Nao g(e—=1) 3¢ 3g0(e — 1)
and we obtain:
—1M 1N,
£ =-"2a =Py . (3.13)

8+2—Q__3 &0

This is the Clausius-Mosotti equation. It defines the molar polarisation Py, and
connects the macroscopic measurable quantities ¢, M, and ¢ with the molecular
quantity o.

So far, we have considered only the polarisation in a static E field. We now
make some remarks concerning the behaviour of molecules in an alternating field;
in particular, the electric field in a light beam is relevant. The applied electric field
oscillates at the frequency v and would reverse the polarisation of matter in the
field at that frequency. In general, this succeeds for the displacement polarisation
up to frequencies corresponding to the infrared range, and the contribution of the
polarisability to the polarisation remains constant. At higher frequencies, it is neces-
sary to distinguish between the electronic and the ionic polarisations. For the latter,
the time required to reverse the polarisation is typically about equal to the period
of a molecular vibration. The ionic contribution to the displacement polarisation
therefore vanishes when the frequency of the light increases from the infrared to
the visible range, i. e. when it becomes greater than the important molecular vibra-
tion frequencies. The nuclei in the molecules, and their charge distributions, have
too much inertia to follow the rapidly reversing field of the polarising light beam at
higher frequencies. At the frequencies of visible light, only the less massive electrons
can follow the alternating field, leading to reversal of the polarisation; thus only the
electronic part of the displacement polarisation contributes at these frequencies.

From the Maxwell relation e = n? (1 = permeability constant, n =index of
refraction), considering that for molecules, as a rule i &~ 1 and therefore n = |/, it
follows from (3.13) that the Lorentz-Lorenz equation:

n2—1M 1
— = Ns8=R 3.14
120 3 AB = Rmol (3.14)
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holds. Ry is the molar refraction. The optical polarisability S (not to be confused
with the hyperpolarisability introduced above!) is the polarisability at the frequencies
of visible or ultraviolet light. It differs, as explained above, from the static polaris-
ability o, and depends on the frequency of the light. This frequency dependence is
called dispersion. An example: the index of refraction, n, of water at 20 °C has the
value 1.340 for A = 434 nm and n = 1.331 for A = 656 nm. The molar refraction
Ry of a particular molecule can be divided up into contributions from the different
chemical groups and bonds within it. This is of interest for the determination of
molecular structures.

3.3 Polar Molecules

The displacement polarisation which we have discussed so far, and the values of ¢
and P to which it gives rise, are only slightly or not at all dependent on the tem-
perature. In contrast, there are many materials in which ¢ and P decrease strongly
with increasing temperature. The explanation depends on the concept of orientation
polarisation, which is to be distinguished from displacement polarisation. While
the latter as discussed above is induced by an applied electric field, an orientation
polarisation occurs in materials whose molecules have permanent electric dipole
moments, p, (Debye, 1912). Such molecules are termed polar, and materials con-
taining them are called paraelectric. The orientation polarisation is based on the
alignment of permanent dipoles by an applied electric field. It should be mentioned
that the permanent dipole moments are usually much larger than induced moments;
some numerical values are given in Table 3.3.

For comparison, we can calculate the induced dipole moment pj,g in a field E =
10° V/cm, using a polarisability o' = 1072% cm?, typical of nonpolar molecules,
i.e. agg = 1070 Asm?/V; we find pig = agoE = 10733 Asm, i.e. 3 orders of
magnitude smaller than the typical permanent dipole moments as shown in Table 3.3.

A glance at Table 3.3 shows that the measurement of molecular permanent dipole
moments can allow the determination of important structural data: while for the CO,
molecule, one observes a zero dipole moment and thus concludes that the molecule is
linear, O — C — O, the nonvanishing dipole moment of the water molecule indicates
a bent structure for H,O.

Table 3.3. Permanent dipole moments py in units of 1073% Asm (1 D = 3.3356 - 1073° Asm)

HF 6.0 H, 0
HCl 3.44 H;0 6.17
HBr 2.64 CH;O0H 5.71
CO 04 KF 24.4
CO, 0 KCl1 34.7
NH;3 4.97 KBr 35.1
C¢Hg 0
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Thus, the displacement polarisation [see (3.7)]

Z Pind
Vv

Pipg = (3.15)
is independent of or only slightly dependent on the temperature, and at least in part
follows an applied ac field up to very high frequencies (those of UV light!) owing to
the small inertia of the displaced electrons; it thus makes a contribution to the index
of refraction n.

In contrast, the orientation polarisation

Py

Po = =22 = Np, (3.16)

is dependent on the temperature (and on the frequency of the applied field). The
alignment of the permanent dipoles pj, in an electric field E is the result of a com-
petition between the orientation energy Wy, = —p, - E, which tends to produce
a complete alignment of the dipoles parallel to the field, and the thermal energy
Wu =~ kT, which tends to randomise the directions of the dipoles in the applied
field. As a result of this competition, each dipole contributes only p’ < p to the total
polarisation, averaged over time.

Due to this competition, an equilbrium is reached which nearly corresponds
to a Boltzmann distribution. The calculation (Langevin, 1900) gives the following
result for the mean value of cos 6 at higher temperatures, kT > p,, - E = pE cos,
where 0 is the angle between the directions of p and E and the interaction between
the dipoles themselves can be neglected:

DE
0 =-""" d =N——r. 3.1
cos T an P, KT 3.17)

This is known as Curie’s law; it was first derived in this form for temperature
dependent paramagnetism. It states that the orientation polarisation is proportional
to the reciprocal of the absolute temperature.

(A less approximate calculation for the mean value of p yields the equation

_ pE
S = 0=pL|—
P = pcos D (kT)

with the Langevin function

X —X
L= 1 oma- L.
e —e* x X
At room temperature, kT ~ 5- 107! Ws and the orientation energy W, of the
dipoles in a field of E = 10° V/cm is about 10722 W s. The condition pE/kT <« 1
is thus fulfilled and the function L can be expanded in a series which is terminated
after the first term. This yields p’ = p?E/3kT, the so-called high-temperature
approximation.)
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Now that we know the contribution of permanent dipoles to the polarisation, we
should like to calculate the dielectric constant of a dilute system (with ¢ — 1 <« 1),
by adding together the displacement polarisation and the orientation polarisation to
give an overall polarisation. We refer to (3.3), (3.9) and (3.17) and obtain

2
p
=1+N P_1=1 ) 3.18
£ + <a+3€0kT) +x (3.18)

When the interaction of the dipoles among themselves can no longer be neglected,
i. e. especially in condensed phases, then instead of the Clausius-Mosotti equation,
the Debye equation holds:

e—1M 1 p;
M_ 1y Do)\ _p 3.19
e+20  3e A(“+3kT) Prvo (3.19)

Experimentally, & and p, are determined from a measurement of ¢ as a function
of the temperature. When the molar polarisation Py is plotted against 1/7T, from
(3.18) one finds a straight line. Its slope yields p and its intercept gives «. For
nonpolar molecules, the slope is zero. Figure 3.3 shows some experimental data.
For gases, one finds (s - 1) =1...10- 1073; for liquid water at room temperature,
e ="78.5.

The orientation polarisation is produced against the inertial mass of the whole
molecule and thus, already at lower frequencies than for the displacement polarisa-
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tion, it cannot follow a rapidly-changing ac field. This is because not only must the
outer electrons move with the field relative to the atomic cores, or the atomic cores
relative to one another within the molecule, but rather the whole molecule has to
reorient at the frequency of the applied ac field. Assuming that a typical time for
molecular rotation in a liquid is about 10712 s, then the molecules can no longer fol-
low the field reversals at frequencies above about 10!! s~! (in the microwave range).
The Debye equation (3.19) is then replaced by the Clausius-Mosotti equation (3.13),
or by the Lorentz-Lorenz equation, respectively.

3.4 Index of Refraction, Dispersion

In ac fields at high frequencies, for example in a light beam, one usually measures
the index of refraction n instead of the dielectric constant . According to Maxwell,
they are related by n = ,/ei (u = permeability); for u = 1, we have n = \/e.

The frequency dependence of ¢ or of n reflects the different contributions to the
polarisation, the displacement and the orientation. In the frequency range of visible
light, as mentioned above, only the electronic displacement polarisation is present.

The frequency dependence of ¢ or of # in the optical range, called the dispersion,
can be calculated to a good approximation using a simple model in which the
molecules are treated as damped harmonic oscillators having an eigenfrequency wy,
a mass m, and a damping constant y. The displacement x of the oscillator from its
zero point, multiplied by the elementary charge e, then represents the dipole moment
of the molecule. The E-field of the light oscillates with the circular frequency w. We
then obtain the oscillator equation:

mi 4 yx 4+ mwix = eEge" . (3.20)
A stationary solution of this equation is
x(f) = Xe (3.21)
with
eEy

X = . 3.22
m(wy — @?) + iyw 3:22)

This complex expression can be rewritten as the sum of a real and an imaginary part:

em(@, — &) ' i ) E (3.23)
i —1 *
m2(w2 — 0?)? + y2? m2(aR — w?)? + y2a? 0

or
X=X —-iX". (3.24)

A corresponding solution holds for the dipole moment p = ex (charge e and
separation x) and thus, according to (3.9) and (3.7a),
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N N

f=l4—a=1+-2 (3.25)
&o &g Eo

e=¢ —id", (3.26)

i.e. we obtain a complex dielectric constant, where ¢’ and &” are given by the real
and the imaginary parts of the parenthesis in (3.23), respectively.

The real and imaginary parts of ¢ are related to one another by the so-called
Kramers-Kronig relations. Losses (absorption, £”) and refraction (dispersion, &’)
thus are connected. There exists for example no loss-free material with a large
dispersion. Since ¢ is complex, the Maxwell relation requires the index of refraction
also to be complex; we obtain:

n=4¢e —ie" =n+ik.

The real quantities » and k are shown in Fig. 3.4.

Fig. 3.4. Real and imaginary parts of the index of
refraction due to the displacement polarisation in the
| w  heighbourhood of a resonance, for a damped oscilla-
Wo tor

As can be seen, this model may be extended almost intact to give a quantum-
mechanical description; then each molecule must be described by a whole set of
oscillators. Which of these oscillators is active at a given excitation frequency de-
pends on whether its frequency is near to the corresponding eigenfrequency.

The dielectric constant ¢ is the sum of contributions from the displacement
polarisation and the orientation polarisation. The following relation holds:

8:1+Xel+Xion+Xorv

where xor denotes the contribution of the orientation polarisation to the suscepti-
bility, etc. This contribution is often denoted as yqp (for dipolar). The frequency
dependence of this contribution is not described by a calculation similar to that
given above for e and xjon; instead, it must be treated as a relaxation process.
Xor decreases with increasing frequency, because a certain time is required for the
reorientation of the molecular dipoles in the ac field: the relaxation time. In Fig. 3.5,
the overall frequency dependence of ¢ is shown schematically. Measured values of
the dielectric constant € and the absorption coefficient £ in the low frequency range
are shown in Fig. 3.6 for a particular molecule, namely water, H,O. In this frequency
range, the orientation polarisation is dominant.

Starting with the static value ¢ = 78.5, which hardly changes up to a frequency
of about 10'° Hz, we pass through frequencies where first the molecular vibrations
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Fig. 3.5. Schematic representation of the frequency dependence of the dielectric constant & for
a paraelectric substance. The contributions to the susceptibility of the orientation polarisation
and the ionic and electronic displacement polarisations at zero frequency are denoted by
Xor(0), Xion(0), and xe1(0), resp. They thus give the static value of the dielectric constant.
Only one resonance frequency has been assumed for the ionic and the electronic polarisations,
respectively
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Fig. 3.6. Frequency dependence of the
dielectric constant ¢ and the absorp-
tion coefficient k for water. In the
relatively low frequency range shown
here, the dispersion is dominated by
the orientation polarisation. With in-
(o) RN S S W A W Y S S B S W R T creasing frequency, the water dipoles

10" 10" 102 can no longer follow the oscillating
wlsec™) field

and then the electronic clouds can no longer follow the excitation field, giving finally
n = 1.33, corresponding to ¢ = 1.76, for visible light.

As we have seen, the quantity ¢ is complex and strongly dependent on the mea-
surement frequency in certain ranges. For this reason, many different experimental
methods, in addition to simple capacity measurements in a condensor, must be ap-
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plied to determine it over a wide frequency range. Other methods use for example
the index of refraction of electromagnetic waves, absorption and reflection in all
spectral ranges, or the polarisation of scattered radiation.

3.5 The Anisotropy of the Polarisability

To complete the discussion of the behaviour of molecules in an electric field, we
should mention the fact that up to now, we have for simplicity’s sake practically
ignored anisotropies. Only spherically symmetrical molecules such as for example
CCly have an isotropic polarisability, i.e. one which has the same value for all
angles between the electric field and the molecular axes. In general, as mentioned
in Sect. 3.2, the polarisability of a molecule is anisotropic; this means that the
quantities ¢ and n vary depending upon the orientation of the molecule relative to
a measuring field — for example, the direction of polarisation of a light beam. From
a knowledge of the anisotropy of the polarisability, one can thus obtain information
about the shape of the molecules. In gases and liquids, the rapid molecular motions
cause an averaging over all possible orientations of the molecules relative to the
E-vector of the light. If one wishes to measure the anisotropy directly, the molecules
must be oriented, for example by substituting them into a molecular crystal. The
measured dielectric constants ¢ of such crystals may then show a strong anisotropy.

Another possibility is the electro-optical Kerr effect, discovered in 1875. This
term is applied to the observation that many molecular substances exhibit double
refraction in strong electric fields. This comes about in the following way: in an
electric field, the molecules tend to align themselves in such a manner that their
dipole moments are parallel to the field. If the molecules are anisotropic with respect
to «, the relation between « and ¢ or the index of refraction n gives rise to a difference
between n for light with its electric field vector parallel to the direction of the applied
field and for light whose electric field oscillates perpendicular to the applied field.

A further important consequence of anisotropic polarisability is the depolarisa-
tion of light scattered by molecules due to an anisotropy or to motion of the molecules.
To illustrate this point, Fig. 3.7 shows the angular distribution of scattered radiation
from a spherically symmetric molecule for unpolarised and for polarised incident
light. This is the angular distribution of a Hertzian dipole oscillator. If the molecule
is no longer spherically symmetric, or if it moves during the scattering process, de-
viations from this angular distribution occur. Polarised incident light is depolarised
more strongly as the electronic shells of the scattering molecule become more asym-
metric; very long or very flat molecules exhibit a high degree of depolarisation. Thus,
one can obtain more information about the structure and motions of molecules.

Finally, we mention here the optical activity of some organic molecules. This
refers to the difference in their indices of refraction for left and right circularly
polarised light, i. e. circular dichroism. It is caused by the asymmetric arrangement
of the atoms in the molecule. Particularly in the case of large molecules, one can
learn something about the asymmetry of the electron density in the molecule from
this effect.
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Fig. 3.7. Rayleigh scattering depends in a characteristic way on the scattering angle 6. The
diagram shows the spatial distribution (in the plane) of the light intensity scattered by an
isotropic, spherical sample. The full curve holds for unpolarised light, the dashed curve is
for polarised incident light. This angular distribution diagram is for a spherically symmetric
molecule. It may also change when the scattering particles move; thus, one can investigate
motional processes of molecules or of functional groups in molecules by measuring the
anisotropy of Rayleigh scattering

3.6 Molecules in Magnetic Fields, Basic Concepts and Definitions

The macroscopic magnetic properties of matter are measured collectively by deter-
mining the materials constant ., the permeability. The following relation holds:

_ magpetic flux density B,, in matter (327)
w= magnetic flux density B without matter - '

A derived quantity is the magnetic polarisation, which is a measure of the contribution
due to the matter in the sample:

J=B,—B= (- DuoH (3.28)

(H is the magnetic field strength).
J can be defined by the expression

magnetic moment M

J = o (3.29)

Volume

Wo is the so-called magnetic field constant or permeability constant of vacuum,
with the numerical value o = 1.256 - 1079 VsA~!m™!, which is defined by the
proportionality of the flux density to the magnetic field strength, B = uoH in
vacuum, or

B, = uuoH (3.30)

in matter.
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Fig. 3.8. A magnetic balance or Fara-
day balance. An inhomogeneous magnetic
field exerts an attractive force on a para-
magnetic sample and a repulsive force on
a diamagnetic sample. The force is pro-
portional to the magnetic moment of the
sample and to the field gradient. Magnetic
susceptibilties can be determined in such
an apparatus

In addition, the magnetic susceptibility
k=u—1 3.31)

is used; w and « are dimensionless number quantities.

Materials with x < 0, u < 1 are called diamagnetic. In such materials, the atoms
or molecules have no permanent magnetic moments. Materials with k > 0, u > 1
are paramagnetic; here, the atoms or molecules have permanent moments, which
can be oriented by an applied magnetic field.

The magnetic susceptibility of a sample can be determined by measuring, for
example, the force it experiences in an inhomogeneous magnetic field (Faraday
balance, Fig. 3.8); or alternatively by measuring the inductance of a coil in which the
sample has been placed. A modern method for paramagnetic materials is electron spin
resonance (ESR), which will be treated in Chap. 19. Some values of the susceptibility
are shown in Table 3.4.

Table 3.4. Magnetic susceptibilities « at room temperature (after R. W. Pohl)

Diamagnetic Materials Paramagnetic Materials

H, —0.002- 107 0, 1.86-107°
H,0 —9.0-107° 0, liquid 3620 - 107°
NaCl —13.9.107° Dy3(S0y4)3 - 8H,0 6320003 - 107°
Cu —7.4.107° Al 21.2-107°
Bi —153-107° CuSO;, - 5H,0 176 - 10~°

The macroscopic materials properties x4 and « can be explained, measured, and
calculated in terms of the microscopic properties of the molecules involved, just
like the electrical quantity € and in an analogous manner. Conversely, from a meas-
urement of the macroscopic quantities, the magnetic properties of the molecules
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can be derived. This will be demonstrated in the following. An understanding of
these materials properties is important for understanding molecular structure and for
chemistry.

A para- or diamagnetic object having a volume V experiences a magnetic polar-
isation or magnetisation in a magnetic field B, given by the following expression:

J=@W-1B. (3.32)

It thus acquires a magnetic moment M parallel to the direction of the applied field;
this moment per unit volume is given by

_ koM

1=

(3.33)

In a molecular picture, the moment M is interpreted as the sum of the time-averaged
contributions 7’ from the n molecules, i. €.

szW%zmwN. (3.34)

From (3.32) and (3.34) it follows for m’ that:

B(u—1
m=d__Br=-D (3.35)
uoN woN
We now define a molecular property, the magnetic polarisability B:
/
-1
p=t KT _ X (3.36)

B woN — poN

This is reasonable, since experimentally, . is a materials constant independent of B.
In condensed matter, the applied magnetic flux density may differ from the flux
density which acts at the site of a molecule within the sample. This has to be taken
into account appropriately.
B has the dimensions [A m*/V s], and the product B¢ has the dimensions [m?].
From a measurement of the susceptibility «, one thus obtains using (3.31), (3.35),
and (3.36) the molecular quantity §.

3.7 Diamagnetic Molecules

The electronic shells of most molecules possess no permanent magnetic moments.
They have an even number of electrons whose angular momenta add to zero; they
thus lack magnetic moments and are diamagnetic. Like all materials, however, these
molecules acquire an induced magnetic moment m;y,q in an applied magnetic field B,
which, according to Lenz’s rule, is opposed to the inducing field, i. e. is negative.
This diamagnetic contribution to the magnetisation has only a slight temperature
dependence. From (3.35) we find
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/ B(M_ 1)
m. ., =

ind — ’ 3.37
d o (3.37)

and

mgnd
=< 3.38
B B (3.38)
The quantity B is in fact the magnetic polarisability. It is negative for diamagnetic
molecules and is an essentially temperature-independent molecular property. As
a numerical example, we consider the diamagnetic hydrogen molecule, H;, for
which a determination of p (Table 3.4) yields

2
30 Am

= —3.103m?, = —24-10" )
KoB 3 m B Vs/m?

In a laboratory field B = 1V s/m?, the induced magnetic moment of each molecule
is then equal to

Am*
moyg=—3-10"——1Vs/m*= —3-107°°Am?.
Vs
This numerical value is small compared to the Bohr magneton, ug = 9.27 - 10~2*
Am?.
The values of induced magnetic moments are always much less than the Bohr

magneton (g, the unit of atomic magnetism, and thus are small compared to the
permanent magnetic moments of atoms or molecules.

By Bo

N

//

Fig. 3.9. The anisotropy of the magnetic polarisability. If By is applied perpendicular to the
plane of the benzene ring, the polarisability is maximal due to the ring current induced in the
7 electron system
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The magnetic polarisability of non-spherically symmetrical molecules is in gen-
eral anisotropic. For example, in the benzene molecule the measured values perpen-
dicular and parallel to the plane of the molecule are

poBL = —152-1073m3  and woBy = —62- 1036 m3 .

The anisotropy is in this case intuitively understandable: the w-electrons can re-
act to an inducing magnetic field more easily in the plane of the molecule than
perpendicular to it, producing a current loop in the plane; see Fig. 3.9.

The anisotropy of the magnetic polarisability in benzene or in other molecules
with aromatic ring systems is an important indication of the delocalisation of the
m-electrons along chains of conjugated double bonds (see also Sect. 18.3). Diamag-
netism is indeed based upon the production of molecular eddy currents by a change in
the external magnetic flux. The diamagnetic susceptibility is therefore greater when
the electronic mobility along closed loops perpendicular to the applied magnetic
field is larger.

3.8 Paramagnetic Molecules

As already mentioned, there are also molecules with permanent magnetic dipole
moments. Examples are molecules of the gases O, and S, (cf. Sect. 13.3). Their
electronic ground states are triplet states having total spins of § = 1. Also in
this class are the so-called radicals, i.e. molecules with unpaired electronic spins
(S = 1/2), or organic molecules in metastable triplet states (S = 1) (cf. Fig. 15.1).
A consideration of how the paramagnetism of a molecule results from its spin and
orbital functions will be given in later chapters of this book.

For paramagnetic molecules, one observes in contrast to diamagnetic substances
large and positive values of the permeability, which increase with decreasing tem-
perature. Experimentally, a proportionality to 1/7 is usually observed. This param-
agnetic behaviour can be understood in a quite analagous manner to the orientation
polarisation in electric fields: it results from a competition between the aligning
tendency of the applied field B, with its orientational energy Wor = —my - B,
and the thermal motions of the molecules, whose energy Wy, = kT tends towards
a randomisation of the molecular orientation.

Without an applied field, the directions of the permanent moments m,, are ran-
domly distributed, and the vector sum of the moments is, as a time and spatial
average, equal to zero as a result of the thermal motions of the molecules. In an
applied field, a preferred direction is defined and each molecular moment makes
a contribution to the time-averaged magnetisation M.

The contribution m* of an individual molecule with a permanent moment m;, to
the macroscopic moment M can be written as

m* = xmy , 3.39)
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where the index p is used here to indicate that permanent magnetic moments are
meant. The factor x, which is in general small, can be readily calculated by analogy
to the procedure used for the electronic orientation polarisation in Sect. 3.3. In
sufficiently dilute systems, in which the interactions between the molecules may be
neglected, we find as a good approximation

x A R (3.40)

Making use of the relations (3.35), (3.36), (3.39), and (3.40), we find after simple
rearrangements the paramagnetic contribution to the magnetic polarisation:

Ymt 1m2uoNB

- 4
J = o v 3T (3.41)
and
1 m2ugN
_ 2Tt (3.42)
3 kT

This is Curie’s Law, which describes the temperature dependence of paramagnetism.
Using (3.41) and (3.36) we obtain the following relation:

mp = /BT , (3.43)

which in turn allows us to calculate the permanent moment of a paramagnetic
molecule by making use of the magnetic polarisability 8 obtained from (3.36).
For O,, the measured value (from «, Table 3.4)

lg___55.10—26A_m4
' Vs

at T = 300K leads, using (3.43), to
my =2.58 1072 Am?

for the magnetic moment. This value is of the order of magnitude of the Bohr
magneton ug. Other magnetic moments determined in this manner are, for example,
1.70 - 10723 A m? for the NO molecule and 4.92 - 10~2* A m? for the iron ion Fet++,
Here, the magnetic moment was derived to be sure from the classical formula,
i.e. Curie’s law. One can arrive at a quantum-theoretical formula by replacing the
square of the magnetic moment, mg, in (3.42) by its quantum-mechanical expectation
value g&u3 F(F+1). For the O, molecule, one obtains in this way a magnetic moment
of 2 UB.

The overall susceptibility of a substance is given by the sum of the diamagnetic
contribution and the paramagnetic contribution, when the latter is present.
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We thus have

M = Kdia + Kpara

2
Hom
=1+N ; Pl=1 ) 44
+ (Moﬂma+ 3kT) +k (3.44)

The molecular quantities B4;, and m,, are found by plotting the measured macroscopic
values of « or w against 1/7, as we have already seen in the case of the electrical
properties of matter in Sect. 3.3.

There are many molecules which are diamagnetic in their ground states but
which have paramagnetic electronically excited states. Particularly important and
interesting are the triplet states of many organic molecules. We shall have more to
say on this topic, especially in Sect. 15.3 and in Chap. 19.

At low temperatures, in certain materials, predominantly in the solid state, a pre-
ferred parallel or antiparallel ordering of the spins and thus of the magnetic moments
of the molecules is observed even in the absence of an applied magnetic field, i.e.
spontaneously. This is termed ferromagnetism or antiferromagnetism. In the case of
molecular substances, the latter is more common; i. e. the paramagnetic molecules
order at low temperatures with their spins in pairs having antiparallel orientation.

In the chapters up to now, we have met with a number of the most important basic
quantities for molecular physics, mainly from the experimental point of view. We
now turn in the following four chapters to the theory of chemical bonding. Chapters 4
and 5 are of general interest, while Chaps. 6 and 7 contain more extended theoretical
approaches and may be skipped over in a first reading of this book.

Problems

3.1 a) Molecules with permanent electric dipole moments tend to orient along the
direction of an applied electric field; this tendency is opposed by thermal disorder.
According to the rules of statistical mechanics, we can calculate the probability that
amolecular dipole p rotates from an angle 6 between the dipole axis and the direction
of an applied field E to an angle 6 + A6. Try to derive the thermally-averaged value
cos@ = L(pE/kT). Here, L(x) is the Langevin function

1
L(x) =cothx — — .
x

b) How strong must the electric field be in order to orient a hydrogen molecule
(p = 6.17 - 1073% As cm) exactly along the field direction at room temperature?

¢) Some water is dissolved at a very low concentration in (nonpolar) n-hexane.
What field strength would be required in order to obtain 50% of the maximum
theoretically possible polarisation at room temperature (approximate estimate)?

d) What degree of orientation could be attained at a realistic field strength of
E = 10° V/cm on cooling to liquid helium temperature (T = 4.2 K)?
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3.2 How will a water molecule (dipole moment p = 1.85 D) orient in the neigh-
bourhood of an anion? What local electric field is produced by the water molecule
at the position of the ion when its centre is located at a distance of (a) 1.0 nm; (b)
0.3 nm; and (c) 30 nm from the centre of the ion?

3.3 How large is the induced dipole moment pinq in benzene (a) in an electric field
corresponding to the breakdown field of air (10° V/m; and (b) in the focus of a laser
with a power P = 107 W and a beam cross-sectional area of A = 100 um??

3.4 NO molecules are paramagnetic with a permanent magnetic moment of
pp = 1.7-1072 Am?. How strong a magnetic field B must be applied in order
to produce a paramagnetic contribution to the magnetisation of an NO sample at
room temperature which is 1% of the theoretical maximum (saturation) value (at
which all the molecules would be oriented parallel to the applied field)?

3.5 For the capacities C and Cy of a parallel-plate capacitor with and without
a dielectric (of relative dielectric constant &;), the following relation holds:

C £0&r
Co €0

= T

In a series of experiments with camphor at various temperatures, a capacitor with
Co = 5.01 pF was used; derive the dipole moment and the polarisability volume
of the camphor molecule from the following experimental data (molecular mass
M = 15223 g):

T[°C] 0 20 40 60 80 100 120 140 160 200
o [g/cm?] 099 099 099 099 099 099 097 096 095 091
C [pF] 62.6 57.1 541 501 476 446 406 381 356 31.1

Note: The polarisability defined by pina = oE has the very non-intuitive units of
A?s2m?/J; it is therefore often replaced by the so called polarisability volume o/
(see Sect. 3.2):
o = %
471,'80
in units of 1073 m? = 1 A3. The value of o’ in SI units [10~3° m?] then corresponds
exactly to that of & in cgs units [10724 cm?].

3.6 How large is the polarisability volume of water for light of wavelength 589 nm,
if its index of refraction at 20 °C has the value 1.3330 for 589 nm?
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3.7 According to a simple model, the dipole moment of water (p = 1.85D) is
formed by addition of the dipoles of the two H—O bonds at an angle of 104.5°.
What is the dependence of the dipole moment of hydrogen peroxide, H,O,, on the
azimuthal angle between the two —OH groups, if the OOH angle is 90°? What angle
do you calculate on the basis of experimental data giving a dipole moment of 2.13 D?

3.8 Can the water vapour content of the air be determined by measuring its dielec-
tric constant £? Consider that the saturation vapour pressure of water in air at 40 °C
is 50 mbar and the dielectric constant of N, is ¢ = 1 + 5.8 - 10~%. At what relative
humidity does the water vapour give the same contribution to &, as the N?

3.9 Find the polarisability volume and the dipole moment of the chloroform
molecule, CHCl3, for which the following dielectric constants have been measured
as a function of the temperature (melting point —64 °C:

T [°C] -8 -70 -60 -—-40 -20 O +20

&r 3.1 3.1 7.0 6.5 6.0 55 5.0

o [g/cm?] 165 164 164 1.61 157 153 150

3.10 Calculate the dielectric constant of chlorobenzene, C¢HsCl, at 25°C. Its
density at this temperature is 1.107 g/cm?; for the molecular polarisability volume,
a value of 1.2 - 1072° m3 is reported, and the dipole moment is 1.57 D.

3.11 The anisotropic diamagnetism of benzene can be explained to first order in
terms of ring currents (L. Pauling, J. Chem. Phys. 4, 673 (1936)). Calculate the ring
current produced by an applied magnetic field above and below the molecular plane,
by expressing the centripetal force in terms of the Lorentz force on a free electron.
Take account of the fact that in benzene there are 6 7 electrons.

The anisotropy of the diamagnetic susceptibility « of a planar molecule is defined
by:

K1+ K2
T

Ak = k3 —

The susceptibilities «; and k, hold for a field applied in the plane of the molecule,
while «3 is obtained with B perpendicular to the plane. As a first approximation,
we have k; = X, k, withi = 1, 2, where k, are the contributions of the individual
atoms in the molecule. For i = 3, the contribution of the ring current must be added
in: k3 = Xk, + Ax.

The magnetic polarisability 8 is the microscopic quantity which corresponds to
the macroscopic susceptibility:

N
woN
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(N is the particle density). It is likewise anisotropic; for the benzene molecule, the
following values are measured:

oBL =152-107%m> and peBy = 621076 m?.

Calculate the effective radius of the ring current in benzene using these values.
(Hint: how is the magnetic moment defined?)
3.12 An example of the dielectric function is given by NaCl molecules in ionic
crystals. In the infrared spectral region, there are longitudinal and transversal “opti-

cal” lattice vibrations with frequencies £2; o and 21, which lead to the following
relation for the index of refraction:

92 2
n? = s(w) = e(o0) - 0 ¥
.QT() - w2
with
e(0) _ 91%0

= (Lyddane-Sachs-Teller relation) .

e(0c0)  L10
Sketch the function using the following parameters: ¢(0) = 5.62, e(c0) = 2.25,
Q10 = 3.1- 10" rad-s~!. How large is e(w) for 210 < @ < 2107 What is the
“residual radiation” in this connection?



4 Introduction to the Theory
of Chemical Bonding

In this chapter, we begin by reviewing the most important concepts of quantum me-
chanics and then discuss the difference between heteropolar and homopolar bond-
ing. In the following sections, we treat the hydrogen molecule-ion and the hydrogen
molecule, using the latter to illustrate various important theoretical methods. Finally,
we turn to the topic of hybridisation, which is particularly significant for the carbon
compounds.

4.1 A Brief Review of Quantum Mechanics

Classical physics failed to explain even the structure of the atom. Consider, for
example, the hydrogen atom, in which one electron orbits around the nucleus.
The (charged) electron behaves as an oscillating dipole and would, according to
classical electrodynamics, continuously radiate away energy, so that it must fall
into the nucleus after a short time. Furthermore, the appearance of discrete spectra
is unexplainable. Particular difficulties occur in the attempt to explain chemical
bonding; we will treat this topic in more detail in the next section. Molecular physics
can clearly not get along without quantum mechanics. We therefore start with a brief
review of the basic concepts of quantum mechanics, keeping the hydrogen atom in
mind as a concrete example. For a more thorough treatment, we refer the reader to
I, Chaps. 9 and 10.

We assume the atomic nucleus to be infinitely massive, so that we need consider
only the electron’s degrees of freedom. Its energy is given by

E = Ekin + Epot P (41)
where the kinetic energy may be written as

m
En = 5207 ; 42

2
my is here the mass of the electron, and v is its velocity. In order to arrive at the
correct starting point for a quantum-mechanical treatment, we replace the velocity

v by the canonically conjugate variable p, the momentum, according to:

myv =p, (4.3)

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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so that we can write the kinetic energy in the form

1
Eiin = 5 —p" . 44
mo

The potential energy can be given as a position-dependent potential:
Epot = V(r) 4.5)

where r = (x, y, z). The energy expression (4.1) can then be written as a Hamilton
function

1
H=—p*+ V(). (4.6)
2m0

This expression is the starting point for the quantisation. According to Jordan’s rule
we must replace the momentum p by a momentum operator:

_hdo o _ha o kD

= ) =<, = - ) 4.7
Px idx Py 1 dy Pz 10z @.7)
or, in vector notation,
h
The Hamilton function (4.6) thus becomes the Hamiltonian operator:
1 (h_\*
H=— (TV) + V() . “4.9)
2m0 1

If we calculate the square of the nabla operator, we obtain the Laplace operator V2,
defined by:

02 9? 02
o ¢ 4.10
ox2 + ay? + 922 (4.10)

We can then finally write the Hamiltonian operator in the form
R,
H=——V "+ V(). (4.11)
2m0

Using this operator, we can formulate the time-dependent Schrédinger equation,
which contains a time- and position-dependent wavefunction y(r, £):

Hy(r,t) = ih%t//(r, 1. (4.12)

In many cases, the Hamiltonian is itself not explicitly time-dependent. In such
a case, one can simplify the time-dependent Schrodinger equation (4.12) by making
the substitution
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W(r, 1) = exp (—%Et) v (4.13)

i. e. by separating out a time-dependent exponential function and leaving the position-
dependent function ¥(r). Inserting (4.13) into (4.12), differentiating with respect to
time and dividing out the exponential function which occurs in (4.13), we obtain the
time-independent Schrédinger equation:

HY = Ey . (4.14)

In solving either (4.12) or (4.14), we must take into account the boundary conditions
for v, which depend on the position vector r. In general, they state that ¢ vanishes
when r goes to infinity. As can be quite generally shown, the Schrédinger equation
(4.14), together with the boundary conditions, yields a set of so-called eigenvalues E,,
and corresponding eigenfunctions ,, where v is an index denoting the quantum
numbers. Therefore, in place of (4.14), we could write

Hyr, = Er, . (4.15)

According to the basic postulate of quantum mechanics, the values obtained as the
result of a measurement are just those which occur as eigenvalues in (4.15). In
measurements of quantities other than the total energy, different values may result
from each individual measurement. In this case, the theory can in general predict
only expectation values, e. g. for position, momentum, kinetic or potential energy.
These expectation values are defined by

¥ = / W, Dxy(r, dv (4.16)

D, =f1ﬁ*(r,t)leﬁ(r,t)dV , 4.17)
2

E = / ) (—h—v2> v, Hav (4.18)
2m0

Epot = / W OV, DAV (4.19)

The quantities py, X, ... have now become operators in (4.16)—(4.19). We can use
them to construct expressions for additional operators, e. g. for the angular momen-
tum operator, using the relation

L=[r,p],
or, applying (4.8),
h
L= [ ,TV] . (4.20)
i

We now consider the hydrogen atom, or, more generally, an atom having the nuclear
charge Z and containing only one electron. It is not our intention here to develop
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the quantum mechanics of the hydrogen atom in detail; this is done in I, Chap. 10.

Instead, we wish only to remind the reader of some basic results. In the case of the

hydrogen atom, the Hamiltonian is given explicitly by
h? 2 1 Ze

H=—-—V

4.21
2m0 4778() r ( )

Since the Hamiltonian depends only on the radius but not on the angles in a spherical
polar coordinate system, it is useful to transform (4.21) to spherical polar coordinates
using

r—r6¢. 4.22)
As may be shown, the wavefunction can then be written in the form
Ynim () = Ry PJ"(cos6) €™, (4.23)

where the indices n [ m refer to quantum numbers: n is the principal quantum
number, / the angular momentum quantum number, and m the magnetic quantum
number. The wavefunction thus can be separated into a radial part R, which depends
only on r, and an angular part P/" e°™®. The energy is found to be

moZe* 1

Ep=m—n ©
2h2(4mep)? n?

(4.24)
It thus depends only on the principal quantum number n, which can take on the
values 1, 2, 3. ... This characterises the bound states of the atom.

In the following, the angular dependence of v is mainly of interest. We therefore
remind the reader of the simpler angular momentum states, cf. Fig. 4.1. For [ = 0,
there is one state, which does not depend on angles, i. €. it has spherical symmetry.

We denote the angle-dependent factor in (4.23) by:

Fim(6, ®) = P"(cos) e™ . (4.25)

For [ = 0, 1, we obtain the following expressions for F ,:

1
1=0 Foo= 7= (4.26)
3 3z
=V 0=\ 0; “-27)

:1

3 3 x4+
Fisi=+,/—sinfet® =+ [~ 2= (4.28)
8 8t r

where, in the last term of these equations, we have expressed the angular dependence
by using Cartesian coordinates x, y, z. The radial function R, ; which occurs in (4.23)
has the explicit form
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'

Fig. 4.1. Representation of the angular momentum functions for an s-state (spherically sym-
metric) and the p-functions (real representation)

Rut = Npje v r L2 Qu,r) (4.29)
where N is a normalisation factor, defined in such a way that:
x0
f R*dr=1. (4.30)
0
The constant k, is given by the expression:

_ 1mpZe*
" nh4mey

431

Kﬂ
The function Lﬁ’;rll is defined as a derivative of the Laguerre polynomials L,
according to

Lil_:—ll (Q) — dZH—l Ln_H/dQZH—l , (432)

whereby the Laguerre polynomials themselves can be calculated using a differenti-
ation formula:

Lys1(0) = e?d™*' (e7%" ) /dg" . (4.33)
In the simplest case, n = 1, [ = 0, we obtain

Li(@)=—0+1 (4.34)
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and thus

Ll =dL/do= -1, (4.35)
so that R o is given by

Rio=Ne™", (4.36)

Some examples are shown in Fig. 4.2.

4.2 Heteropolar and Homopolar Bonding

A theory of chemical bonding must be able to explain why it is possible for certain
atoms to form a particular molecule, and it must be able to calculate the binding
energy of the molecules formed. Before the development of quantum mechanics, one
special type of bonding — heteropolar bonding — seemed to be easily explainable, but
the other type — homopolar bonding — could not be understood at all. An example of
heteropolar bonding (heteropolar = differently charged) is provided by the common
salt molecule, NaCl (cf. Fig. 1.2). The formation of its bond can be imagined to
take place in two steps: first, an electron is transferred from the Na atom to the
Cl atom. The now positively-charged Na™ ion attracts the negatively-charged CI~
ion and vice versa, owing to the Coulomb force, which thus is responsible for the
bonding. Considered more carefully, this explanation is only apparently complete,
since it gives no theoretical justification for the electron transfer from Na to Cl. The
theoretical basis for this transfer was given only by the quantum theory, according
to which it is energetically more favorable for the electron to leave the open shell
of the Na atom and to pass to the Cl atom, completing its outermost shell. Thus, to
properly explain even heteropolar bonding, we require quantum mechanics.

The question of the explanation of homopolar bonding was even more difficult.
How, for example, could a hydrogen molecule, H,, be formed from two neutral
H atoms? Here, the quantum theory provided a genuine breakthrough. Its basically
new idea can be discussed by using as an example the Hf hydrogen molecule-
ion, which corresponds to neutral H, from which an electron has been removed.
The remaining electron must hold the two protons together. According to quantum
mechanics, it can do this (pictorially speaking) by jumping back and forth between
the two nuclei, staying for a while near one proton and then for a while near the other.
Its probability of occupying the space between the two protons is thus increased; it
profits from the Coulomb attraction to both nuclei and can thus compensate for the
repulsive Coulomb force between the protons, as long as they do not approach each
other too closely. We shall show in Sect. 4.3 that this picture can be precisely defined
by calculating the wavefunctions of H'{ . We will see there how the wave nature of
the electron plays a decisive role. The wavefunctions which describe the electron’s
occupation of the space near the one proton or the other interfere constructively
with each other, increasing the probability of finding the electron between the two
protons and giving rise to a bonding state. A similar picture is found for the hydrogen
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Fig. 4.2. (a) The radial part of the wavefunctions R(Q = 2kr) = R(r) (4.29) of the H-atom
is plotted against the dimensionless coordinate o. The indices (1,0), (2,1),... on the curves
correspond to (n, [), where 7 is the principal quantum number and / the angular momentum
quantum number. (b) The corresponding probability amplitudes in the radial dimension, i. e.
4m® R(p), are plotted against the dimensionless coordinate g
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molecule, Hy (cf. Fig. 1.1). It is interesting that destructive interference is also
possible — the occupation probability is then reduced and even becomes zero along
the plane of symmetry between the two nuclei — and an antibonding state is produced,
which releases the bound H atoms.

Let us now turn to the quantum mechanical calculation.

4.3 The Hydrogen Molecule-Ion, Hy

In this section, we start to develop the quantum theory of chemical bonding. The
simplest case of chemical bonding is that of the hydrogen molecule-ion, H; This
molecule can be observed as a bound state in a gas discharge in hydrogen atmosphere;
in such a discharge, electrons are removed from the hydrogen molecules. The binding
energy of H2+ ,identical to its dissociation energy, has been found to be 2.65 €V. Here,
we are dealing with two hydrogen nuclei, i. e. protons, but only one electron. The
two nuclei are distinguished by using the indices a and b (cf. Fig. 4.3). If they
are separated by a very large distance, we can readily imagine that the electron is
localised near either the one nucleus or near the other. Its wavefunction is then just
like that of the ground state of the hydrogen atom. In the following, we denote the
distance of the electron to nucleus a or to nucleus b as r, or r,, respectively. If we
call the wavefunction of the hydrogen ground state belonging to nucleus a ¢,, it
must obey the Schrodinger equation

h2 e?
(——V2 ~ doer ) Ga(ra) = E2 ¢u(ra) , (4.37)

2my

H,

and a corresponding equation holds for the wavefunction ¢, with the energies E?
and EY being equal:

E=E)=E°. (4.38)

If we now let the two nuclei approach one another, then the electron, which was
originally near nucleus a, for example, will respond to the attractive Coulomb force
of nucleus b. Correspondingly, an electron which was originally near nucleus b

\ Fig. 4.3. Overview sketch of the hydrogen molecule-ion.
a Rab @ The two nuclei (protons) are denoted as a and b, and

their separation as Rgp. 1, and rp give the distance of the
b electron to nucleus a or nucleus b, respectively
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E°

Fig. 4.4. The hydrogen molecule-ion: the potential energy V of the electron due to the
Coulomb attraction to the two nuclei a and b is plotted against the x-coordinate. The dashed
curves show the potential energy of the electron in the field of one nucleus, a or b. The solid
curve is the total potential energy. The binding energy E° of the electron in the field of a single
nucleus is also indicated

will now respond to the Coulomb attraction of nucleus a. We therefore need to
write a Schrodinger equation which contains the Coulomb potentials of both nuclei
(Fig. 4.4). Furthermore, in order to calculate the total energy, we need to take into
account the Coulomb repulsion of the nuclei. If we denote the nuclear separation
by R, then this additional energy is equal to &2 /4meoRap.

Since this additional term does not affect the energy of the electron, it simply
results in a shift of the energy eigenvalues by a constant amount. We shall initially
leave off this constant, and add it back in at the end of the calculation.

These considerations lead us to the Schrodinger equation

B, e’ e
( 2my dregr, 47t80rb) v v ( )

in which the wavefunction i and the energy E must still be calculated.

We now make an approximate determination of the wavefunction . To this
end, we make use of an idea borrowed from perturbation theory in the presence
of degenerate levels. The electron could, in principle, be found near nucleus a or
nucleus b (cf. Fig. 4.5), and would have the same energy in either case; compare
(4.37) and (4.38). These two states, ¢, and ¢, are thus degenerate in energy. Now,
however, the other nucleus also affects the electron and perturbs its energy levels;
we can expect that this would lift the degeneracy of the two states. Exactly as in
perturbation theory with degeneracy, we take as a trial solution to (4.39) a linear
combination of the form:

¥ =c1¢a + 20 , (4.40)

where the two coefficients ¢; and ¢, are still to be determined. To calculate them,
we proceed in the usual manner: we first insert the trial function (4.40) into (4.39)
and obtain
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¢ ¢a ¢b

-+

0 0, o,

+ 3
T T

a b

Fig. 4.5. (Upper part) The wavefunction ¢, of the electron when it is localised in the field
of nucleus a, and the corresponding wavefunction ¢ of the electron near nucleus b. (Lower
part) When the internuclear spacing between a and b is decreased, the two wavefunctions ¢,
and ¢, begin to overlap in the central region

h2 e2 62
_% t- 471£0ra _47180rb C1¢a
Ha
h2 ) 62 62
+ _2_mov QR e p— ¢y = E(Ci¢pa + C2) . (441)
Hp

In the two large parentheses in (4.41), we have collected the terms in such a way that
the operator H, acts on ¢, and the operator Hj, on ¢,. We can now refer to (4.37)
and the corresponding equation for ¢ to simplify these expressions, by putting for
example E2¢, in place of H,¢, and correspondingly for Hyy.

If we now bring the right-hand side of (4.41) to the left, we obtain

2 2
E'—E— E'— E— =0. 4.42
— 47T80rb Cl¢a + S— 47180ra C2¢b ( )
AE AE

Although ¢, and ¢, are functions of the position coordinates, the coefficients
c1 and ¢, are assumed to be position-independent. In order to find a position-
independent equation for the ¢’s, we multiply (4.42) by ¢* or ¢}, as accustomed
from perturbation theory, and integrate over the electronic coordinates. In the fol-
lowing, we assume that the functions ¢, and ¢, are real, which is the case for the
ground state wavefunction of hydrogen. We have to keep in mind that the functions
¢, and ¢, are not orthogonal, i. e. that the integral

/¢a¢de =S (4.43)
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is not equal to zero. If we multiply (4.42) by ¢, and then integrate over electronic
coordinates, we obtain expressions which have the form of matrix elements, namely
the integrals:

2
f ba(ra) (— ¢ )¢a<ra) av=c, (4.44)
47‘[807‘[,
2
f $a(ra) (— = )¢b<rb) V=D, (4.45)
TTEQT g

which we denote by the letters C and D. The meaning of the first integral becomes
immediately apparent if we recall that —e¢§ is the charge density of the electron;
(4.44) is then nothing other than the Coulomb interaction energy between the elec-
tronic charge density and the nuclear charge e (compare Fig. 4.6). In the integral
(4.45), in contrast, instead of the electronic charge density, the expression —e¢,¢;
occurs. This means that the electron in a sense spends part of its time in state ¢,
and the rest in state ¢, or in other words, that there is an exchange between the two
states. The product ¢,¢, is therefore called the exchange density and integrals in
which such products are found are termed exchange integrals (cf. Fig. 4.7). These
integrals express an effect which is specific to quantum theory. If we had multiplied
(4.42) by ¢ instead of ¢, and integrated, we would have found expressions quite
similar to (4.44) and (4.45), with only a permutation of the indices a and b. Since,
however, the problem is completely symmetric with respect to these indices, the new
integrals would have the same values as the original ones.

2

¢a

Fig. 4.6. Anintuitive picture of the integral (4.44), which gives the Coulomb interaction energy
of an electron cloud having the probability distribution ¢? in the Coulomb field of a nucleus.
The charge density distribution ¢2 (shaded region) is plotted along with the potential energy
(solid curve) of a point charge in the Coulomb field of nucleus b. In calculating the integral,
at each point in space the value of ¢? is multiplied by the value of —e?/4meqry at the same
point, and the products are then integrated over all space
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Fig. 4.7. An intuitive picture of the meaning of the integral (4.45). The three functions ¢,
é», and —e? /4megry which occur in the integral are plotted. The integral contains the product
of these three functions, which is non-zero only where the two wavefunctions ¢, and ¢
overlaps; this is the region shaded heavily in the figure. The integral is obtained by taking the
functional values of ¢, ¢p, and —e®/4megry at each point in space, multiplying them, and
then integrating this product over all space

Collecting all the terms obtained through multiplying by ¢, and integrating, we
find that (4.42) has become the following equation:

(AE+C)ci + (AE S+ D)c, =0, (4.46)

and correspondingly after multiplication of (4.42) by ¢, and integration, we obtain
the equation:

(AES+D)ci+ (AE+C)c, =0. (4.47)

These are two simple algebraic equations for the unknown coefficients ¢; and c;.
In order that the equations have a non-trivial solution, the determinant of their
coefficients must vanish, i. e.

(AE+C)? —(AES+D)*=0. (4.48)

This is a quadratic equation for the energy shift AE, which in the present case can
be solved quite simply by bringing the second term in (4.48) to the right-hand side
and taking the square root of both sides:

(AE + C) = £(AE S+ D) . (4.49)

The two possible signs, =+, occur because of taking the square root. Inserting (4.49)
into (4.46) or (4.47), we obtain immediately for the upper sign

C=—C=—cC. (4.50)
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.= ¢a- q)b

Fig. 4.8. The antisymmetric wavefunction v_ is formed by taking the difference of ¢, and ¢.
Its occupation probability can be seen to vanish in the plane of symmetry between the two
nuclei

In this case, the total wavefunction is given by

¥ = c(ba — d) (4.51)

The constant ¢ is fixed by the normalisation of the total wavefunction . The
corresponding wavefunction is represented in Fig. 4.8. If we take the lower sign in
(4.49), we obtain ¢, = ¢; = c for the coefficients and thus for the total wavefunction:

¥ =c(ba+ P) - 4.52)

(compare Fig. 4.9). Using (4.49), we can calculate the energies corresponding to
(4.51) and (4.52), setting E = E° — AE.
The antisymmetric wavefunction has the electronic energy

C-D

_ 50
E=E+ 15 (4.53a)
and the symmetric wavefunction corresponds to the energy
C+D
E=E"+——. 4.53b
+ 1+S ( )

> X

Fig. 4.9. The symmetric wavefunction v is formed by adding the wavefunctions ¢, and ¢y.
Due to the overlap between ¢, and ¢y, the occupation probability in the region between the
two nuclei is increased
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As can be seen by considering Figs. 4.6 and 4.7, the quantities S, C, and D depend
on the internuclear distance, whereby 0 < § < 1 and C, D < 0. If the nuclei
are allowed to approach one another, the electronic energy splits into two terms
according to (4.53a) and (4.53b). In order to decide whether bonding occurs via
the electron, we must still add the Coulomb repulsion energy between the protons,
€% /4megRyp, to (4.53a) or (4.53b). Furthermore, we must compare the energy at
a finite internuclear separation R,, with that at infinite separation, where C and D
are zero. We thus have to examine

C+D N e
1£8 471'80Rab .

Ebinding = (4.54)
As shown by numerical calculation, the overlap integral S hardly changes the result,
so that we can leave it out of our further discussion.

Let us first consider the behaviour of C as a function of the internuclear dis-
tance R,p. If Ry, is large compared to the spatial extent of the wavefunction ¢, (or
¢»), then C is practically equal to the potential energy Epq of a point charge in the
potential of the other nucleus, i. e. equal to —é? /4meoR,p. For large distances R, C
and the last term in (4.54) thus compensate each other. However, for small distances
Ry — 0, the last term in (4.54) becomes infinite, while C approaches a (negative)
finite value. This can be seen directly from (4.44), since for R, — 0, the distance r,
becomes equal to r;, and (4.44) then becomes the same as the expectation value of
the potential energy in the hydrogen atom, which as is well known is finite. The sum
C + €% /4meg R, is thus positive and there is no bond formation.

The final decisive factor in the question of bond formation is thus D (4.45),
which contains the exchange density. For R, — 0, ¢, and ¢, become identical, so
that D and C are the same and D cannot compensate the effect of e?/4megR,y. If
R is now allowed to increase, then both e?/4meg R, and D, which have opposite
signs, decrease in magnitude. A numerical calculation shows that in a certain region,
Ebinding becomes negative (cf. Fig. 4.10). The corresponding state is termed a bonding
state. Conversely, no bonding occurs in the state (4.51); it represents a non-bonding
or “antibonding” state.

As must be clear from our discussion, the bonding effect is based entirely upon
the occurrence of the exchange density ¢,¢, in D. The bonding of the hydrogen
molecule-ion is thus a typically quantum-mechanical phenomenon. Nevertheless,
one can form an intuitive picture of the bonding and non-bonding effects.

As may be seen from Fig. 4.9, the occupation probability of the electron in the
region between the two nuclei in the bonding state is relatively high. It can thus
profit from the Coulomb attraction of both nuclei, lowering the potential energy of
the whole system. In the non-bonding state (Fig. 4.8), the occupation probability for
the electron between the two nuclei is low; in the centre, it is in fact zero. This means
that the electron is affected by the attractive force of practically one nucleus only.

For the decrease in energy of the hydrogen molecule-ion as compared to the
hydrogen atom, the above calculation gives the result 1.7 eV; the experimental value
is 2.65 eV. Our trial wavefunction thus indeed gives a bound state, but it is weakly
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Antibonding

Bonding

Fig. 4.10. The energy E of the hydrogen molecule-ion including the mutual Coulomb repulsion
of the nuclei. The energy curves are plotted against the internuclear separation R, for the
bonding and the antibonding states

bound compared to what is found experimentally. An improvement in first order can
be obtained by using the trial wavefunction

v=c (e—ara/ao + e—("b/aO) ,

where ag is the first Bohr radius and « is a variational parameter. In the energy
minimum, it is found that &« = 1.24, i. e. the effective Bohr radius ag/« is reduced.
The result of this reduction is that the electron cloud perpendicular to the bonding
axis is more strongly concentrated in the region between the nuclei; the Coulomb
interaction between the electron and the nuclei is thus intensified. This interpretation
is supported by the precise numerical solution of (4.39).

4.4 The Hydrogen Molecule, H>

4.4.1 The Variational Principle

We now turn to the problem of chemical bonding when more than one electron
participates in bond formation. However, before we consider in detail the simplest
example, i. e. the hydrogen molecule H,, we make some preliminary remarks which
are of fundamental importance for other problems in quantum mechanics, also.

We shall often encounter the task of solving a Schridinger equation

HY = EW | (4.55)

which will frequently turn out not to be possible in closed form. In addition to the
method of perturbation theory, which we have already discussed, there is a funda-
mentally different and very important approach based on the variational principle.
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In order to explain it, we suppose the Schrodinger equation (4.55) to have been
multiplied by ¥* and integrated over all of the coordinates on which ¥ depends. We
then obtain

_ [W*HPAV, .. .4V,
T [y ...dV,

(4.56)

Here, n is the number of electrons, while dV;, j = 1,...,n is a volume element
referring to the j-th electron for the integration over its coordinates.

Since the Hamiltonian H is the operator belonging to the total energy of the
system, expression (4.56) is just the expectation value of the total energy, which in
the present case is identical with the energy eigenvalue of the Schrédinger equation.
What would happen, though, if for ¥ we used some arbitrary wavefunction instead
of a solution of the Schrodinger equation? Then (4.56) still has the dimensions of an
energy, but it is not necessarily equal to the correct eigenvalue of the Schrodinger
equation which we are seeking. Applying mathematics, one can at this point prove
an extremely important relation: if we in fact do not use a true eigenfunction of
the ground state of the system for ¥, but rather some other wavefunction, then its
corresponding energy expectation value will always be larger than the eigenvalue
of a solution to (4.55). In this sense, we can give a criterion for how well we have
approached the true eigenfunction: the lower the calculated expectation value (4.56),
the better the trial wavefunction used to obtain it.

We shall use this criterion repeatedly later on. Now, however, we want to set out to
determine the wavefunctions and the energy of the hydrogen molecule in the ground
state, at least approximately. In choosing a suitable approximate wavefunction, our
physical intuition will play an essential role. Depending on which aspects of the
physical problem are emphasised, we will arrive at different approaches, which are
known by the names of their original authors: the Heitler-London and the Hund-
Mullikan-Bloch methods. In addition to these approaches, we will meet up with
improvements such as the so-called covalent-ionic resonance (Sect. 4.4.3), and also
a wavefunction which includes all the others described as special cases, and thus
opens the way to a first general treatment of the many-electron problem in molecules
(Sect. 4.4.5).

4.4.2 The Heitler-London Method

The two atomic nuclei (protons) are distinguished by the indices a and b, and the
two electrons by the indices 1 and 2. Due to the fact that the Coulomb force acts
between all four particles, we need to introduce the corresponding distances, which
are defined in Fig. 4.11. In order to write down the Hamiltonian, we recall the
energy balance from classical physics. We are dealing with the kinetic energies
of electron 1 and electron 2, and with the various contributions to the Coulomb
interaction energy. We first translate the classical expression for the kinetic energy
into quantum-mechanical terms! If p; and p, are the momenta of electrons 1 and 2,
then the (classical) kinetic energy is given by
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1 Fig. 4.11. An overview sketch of the hydrogen molecule.
) The two nuclei are denoted by the indices a and b, the

f2 2
S two electrons by 1 and 2. The internuclear, interelec-
tronic, and electron-nuclear distances with their respec-
tive notations are shown in the figure
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We now need to convert p; and p, to quantum-mechanical operators using the rule
(4.7); in the process, we must add the indices 1 and 2 to the spatial coordinates. We
thus obtain

Pa=ip . Pa=ipc Pa=ipe (458)

px2=?%v py2=?—a%, pzz=;%2, (4.59)
or, using the nabla operator,

pL= ?Vly P2 = ?Vz . (4.60)
For the kinetic energy operator, we then obtain

Hign = e V2 ? \' 4.61)

- 2my 1 2mg 2
The square of the nabla operator can once again be expressed as the Laplace operator:

92 92 92

Ve S+ —+—
P wd ey 8

(4.62)

and correspondingly for the index 2. Adding the various contributions to the Coulomb
interaction energy to the kinetic energy operator (4.61), we obtain for the Hamiltonian

2 2 2 2
H=— _h_ 2__ ¢ — _h_ 2__ ¢
2mg | Admegras  2mo | Amegrs
H Hy
2 2 2 2

e e (4 e

- - + + . 4.63
dmegryy  dmegrgy  4meoRay  4megrys ( )
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We again assume that the nuclei are infinitely massive. Our task is now to solve the
Schrédinger equation

HY(r, ry) = EW(ry, r2) (4.64)

with the Hamiltonian (4.63). If the nuclei were infinitely far apart, it would be
sufficient to consider them separately, i. e. to solve the equations

h2 eZ

( —2—V12 - —-—) @a(r1) = Eoa(r1) , (4.65)
no 471807’a1
K2 &

( —2—V§ - ——) O (r2) = Eodp(r2) - (4.66)
no 47180?'1,2

However, we are dealing here with a two-electron problem; accordingly, we must
take the Pauli exclusion principle into account, i. €. we have to consider the fact that
electrons have a spin. If the two hydrogen atoms did not influence each other, we
could immediately write down the overall wavefunction using the wavefunctions ¢,
and ¢, which occur in (4.65) and (4.66). As we can see by insertion into a Schrodinger
equation with H = H; 4+ H,, a solution would be:

Ga(r)dp(r2) . 4.67)

In order to take the existence of spin into account, we have to multiply this trial
solution by appropriate spin functions. The reader who is not familiar with the spin
formalism should not be disturbed at this point, as we need only a few properties of
the spin functions and will then be able to dispense with them completely during the
further course of the calculation.

We denote the function referring to an electron with spin “up” by «. (This type
of spin wavefunction was denoted in I, Sect. 14.2.2 as ¢4.) If we are dealing with
electron 1, we call the wavefunction «(1). If both electrons have their spins in the
same direction (“up”), then our wavefunction becomes

Pa(r)p(r)a(Da(2) . (4.68)

This function, however, does not obey the Pauli principle, which states in its mathe-
matical formulation that a wavefunction must be antisymmetric in all the coordinates
of the electrons (i. . spatial and spin coordinates). In other words, when we exchange
the indices 1 with the indices 2 everywhere, the wavefunction must change its sign.
The wavefunction (4.68) does not have this property; however, the following wave-
function does have it:

¥ = @ (r)a(D)dp(r2)a(2) — ¢a(r2)a(2)dp(ra(l) . (4.69)

If we factor out the spin functions (1) and «(2), the wavefunction assumes the
simple form

¥ = a(D)(2) [¢a(r1)dp(r2) — Pa(r2)dp(r1)] (4.70)

Y
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i.e. it is the product of a spin function and a spatial wavefunction. (In quantum
mechanics, wavefunctions which are symmetric with respect to exchange of the
electronic spatial coordinates are termed gerade, abbreviated “g”, from the German
for “even”; antisymmetric wavefunctions are denoted by a “u”, for ungerade =
“odd”.)

Looking forward to an important general approach for representing many-
electron wavefunctions, we write (4.69) in a still different form. It may be represented

as a determinant:

_|eca(ra(l) @a(r)a(2) 4.71)

D=1 4ra)) dpre@)] -

If we calculate this determinant following the usual rule

D = product of the main diagonal
— product of the secondary diagonal ,

then we obtain just the expression (4.69). The determinant has a clearly apparent
structure: the rows refer to the states a and b, and the columns refer to the numbers
1 and 2 of the two electrons.

Although (4.70) refers to two electrons whose spins are parallel and directed
upwards, we can also construct wavefunctions for electrons with parallel spins which
point downwards. We denote the spin function of a single electron whose spin is in
the downwards state by f; then the total wavefunction becomes

v = BB, . 4.72)

For completeness, we also give the third wavefunction, belonging to the substate of
the “triplet” state in which the spins are parallel. This state has its z-component of
the total spin equal to zero, and is given by

1
v ﬁ[a(l)ﬂ(Z) +a@2)p)] Y, . (4.73)
As the following calculation shows, the wavefunction ¥ does not belong to the state
which is lowest in energy, since its spins are parallel. We need to find a wavefunction
whose spins, in contrast, are antiparallel, i.e. one in which the one electron is
described by a “spin up” function « and the other by a “spin down” function . Here,
expanding on (4.68), there are a number of possibilities. One of them is:

Ga(r)gp(r2)a(1)(2) . (4.74)

Other functions can be found by starting with (4.74) and exchanging the coordinates
ri and r, or the arguments of « or B, 1. e. 1 and 2, or by exchanging everything at the
same time. None of these combinations is antisymmetric as it stands. We therefore
will attempt to find a combination of (4.74) with some of these other possible trial
functions which is antisymmetric and which can be written as the product of a spin
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part and a spatial part, similarly to (4.70). This is in fact possible, as one discovers
after some trial and error, and leads to the wavefunction

¥ = [ha(r)¢s(r2) + ¢a(r2)dp(ri)] [(DB(2) — a(2)p(1)] . 4.75)

Vg

The spin function is clearly antisymmetric here, while the spatial function ¥, is sym-
metric. If we exchange the spatial and spin coordinates of the two electrons simul-
taneously, this overall wavefunction changes sign: it is antisymmetric, in agreement
with the Pauli exclusion principle.

The spin functions were here only a means of establishing the required symmetry
of the total wavefunction. Since, however, no operators occur in the Hamiltonian
of the Schrédinger equation (4.64) which act in any way upon the electronic spins,
we can treat the spin functions just as a number when inserting (4.70) and (4.75)
into that equation, and can divide them out from both sides. The resulting equation
contains only the spatial functions ¥ or ¥,. This means that in the approximation
to which we are calculating here, the interaction of the spins with one another
(the spin-spin interactions) and of the spins with the spatial functions (spin-orbit
interactions) are not taken into account. From now on, we concern ourselves only
with the functions ¥, and ¥, and compute the energy expectation values belonging
to these wavefunctions.

Following the basic idea of Heitler and London, we take these wavefunctions ¥,
and ¥, as trial solutions of the Schrodinger equation with the Hamiltonian (4.63),
which contains all the Coulomb interactions between the electrons and the protons,
and imagine that we can then approximate the exact energy by applying (4.56). We
thus have the task of calculating the energy eigenvalues for these wavefunctions.
This calculation is not difficult, but it requires some patience.

As a first effort towards the calculation of the eigenvalues, we consider the
normalisation integral which occurs in the denominator of (4.56). It has the form:

//I‘I’(ﬁ, r2)|* dVidV;

= //[¢a(r1)¢b(r2) £ ¢a(r) s (r)]1*
[ @a(r))dp(r2) £ P (r2)@a(r)] dV1dV, . (4.76)

After multiplying out all the terms (and assuming that ¢, and ¢, are real), we obtain
/¢§ dv; /¢§ dvy + / ¢2dv; / ¢; dVi
+ / Ga(r))p(r1) dV; /¢a(r2)¢b(r2) av,

i/¢a(r2)¢b(r2) dV2/¢a(V1)¢b(r1)dV1 . @.77)

As a result of the normalisation of the wavefunctions ¢, and ¢, the first two
expressions can be reduced to:
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/ $2dv, = / ¢pdvr =1, (4.78)

while the remaining two expressions are squares of the overlap integral

/¢a(r1)¢b(r1)dV =S. 4.79)

We can thus write the normalisation integral (4.76) in the simple form
20+ 5% . (4.80)

In evaluating the numerator of the energy expectation value (4.56), we encounter,
analogously to (4.77), altogether four expressions, which occur in pairs of equivalent
terms.

We begin with the expression

e e e

e 2 2 2
/ Pa(r1)s(r2) {Hl + Hy — n + }

471807‘1,1 B 47180ra2 47T80Rab 47T80r12
< @a(r1)@p(r2) dVidV, . (4.81)

Since the Hamiltonian H; in (4.81) acts only on ¢,, we can use the fact that ¢,
obeys the Schrodinger equation (4.65) in our further calculations. Applying the
same considerations to H,, we can simplify (4.81) to the form:

f Ga(r) @ (r2)?

eZ e2 62 2

. { 2Ey — ] avdv, . (4.82)

- - -
471807‘1,1 47[80ra2 47[80Rab 47[807‘12
—— S——— —— N e’
1) 2) 3) 4) 5)

For what follows, it is useful to examine the meaning of the terms in (4.82) individ-
ually.
1) Owing to the normalisation of the wavefunctions ¢, and ¢y, the expression

f [ Ga(r1)*@p(r2)*2Eg dV1dV,
reduces to
2Ey, (4.83)

i.e. the energy of the two hydrogen atoms at infinite distance from each other.
2) The expression

2
/ $a(r1)? (— ‘ ) vy =C <0 4.84)

47t80rb1

represents the Coulomb interaction energy of nucleus b with electron 1 in state a.
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3) The integral

2
/ B (r2)? (— ¢ ) dV,=C <0 (4.85)

dmegr s

is the Coulomb interaction energy of electron 2 in state b in the field of nucleus a.
From the symmetry of the problem, it follows that the two integrals 2) and 3) are
equal.

4) Owing to the normalisation of the wavefunctions ¢, and ¢, the expression

2
f f ba(r1)?dp(r2)> 4n; o dVidvs

reduces to

&

. 4.86
471’80Rab ( )

This is the Coulomb repulsion energy of the two nuclei.
5) The integral

2

f Ga(r1)*p(r2)* dvidV, = Ex (4.87)

4 Eor12
represents the repulsive Coulomb interaction energy of the two electrons.

Adding up the contributions (4.83) through (4.87) we obtain a contribution to
the energy expectation value of (4.81) (which we abbreviate as F)

2

E=2Ey+2C+ Epi + (4.88)

47'[8() Rab ’

This is, however, still not the final result, since on inserting the wavefunctions v,
or ¥, into the expression (4.56) for the energy eigenvalue, we also obtain exchange
terms of the form

i/ b (r)da(r){. . . }dp(r2)Pa(r1) dV1dV, , (4.89)

where the expression in curly brackets, {...}, is the same as in (4.81). Explicitly
written out, (4.89) thus becomes

+ / o (r1)ba(r2)@a(ri) s (r2)

2 e?. eZ eZ

2Ep 1) —
——

- + avidv, .
471’80rb1 47{807‘“2 47T80Ra1, 47T80r12
M e N e\

2) 3) 4 5)
(4.90)
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The various terms have the following forms and meanings:
1) The expression

/ o (r)a(r2)(£2E0)a (r)pp(r2) dV1dV,

reduces on applying the definition (4.79) of the overlap integral S to
+2E,S%. 4.91)

This is the energy of the two separated hydrogen atoms multiplied by the square of
the overlap integral S.
2) The exchange integral

2

) @q(r1) dV) 4.92)

47[807'1,1

i/¢a(r2)¢b(72) dV2f¢b(rl) <—

N D

is the product of the overlap integral S and the one-electron exchange integral D
[compare (4.45)].
3) The exchange integral

2

471'80ra2

i/ Db (r1)da(r2) <— ) Ga(r1)dp(r2) dVidV,

reduces in exact analogy with (4.92) to
+SD . (4.93)

4) The exchange integral

e2

47[80 Rab

+ / B (r1)da(r2) ( >¢a(r1)¢b(rz) avidv;

reduces directly to

2
2_ ¢ (4.94)

4megRap

i.e. to the square of the overlap integral S multiplied by the Coulomb interaction
energy between the two nuclei.
5) The exchange integral

&2

£ [[ 0nr00u(r2) - 0uru(r) AVids = £Ece (495)
TTEQT 12

represents the Coulomb interaction energy between the two electrons, but computed

using not the normal charge density, but rather the exchange density. This integral is

therefore referred to as the Coulomb-exchange interaction.
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The total contribution of (4.91)—(4.95), which we abbreviate as E, is then given
by

2
€ 2

E=+2E)S* +2DS+ Ecg + (4.96)

471'8()Rab

We now recall our original task, which was to compute the numerator of (4.56),
using the wavefunctions ¥, and ¥, . If we multiply all the functions within ¥, or ¥,
respectively, by each other, then we obtain (as already pointed out) contributions of
the type (4.81) twice, and contributions of the type (4.89) twice. Finally, we have
to divide the whole thing by the normalisation integral. We then obtain for the total
energy of the hydrogen molecule the following expression:

E+E

Egy=2m—
BTN 1w 2dviadv,

(4.97)

where the upper or lower sign applies in the energies Eand E, according to whether
the wavefunction ¥, or ¥, was used:

2C+ Epi 2DS+ Ecg &
E, =2E , 4.98
g ot T 1+82 47eoR, (4.98)
2C+ Ert  2DS+ Ecg &
E, =2E - . 4.99
u ot 1—s2 47eoR,, (4.99)

In order to determine whether or not chemical bonding occurs, we must test whether
E; or E, is lower than the energy of the two infinitely separated H atoms, given by
2E)y. Various effects are in competition here, as we can see on closer examination
of the individual terms in e. g. (4.98). Thus, C, the potential energy of an electron in
the Coulomb field of the opposite proton, is negative [cf. (4.84)], while the Coulomb
interaction energy between the two electrons, Egj, is positive. Furthermore, the
last term in (4.98), which describes the Coulomb repulsion of the protons for each
other, is also positive. In addition, there are the typically quantum-mechanical effects
represented by the exchange interactions, which can be summarised in

K =2DS+ Ecg . (4.100)

While DS is negative, the Coulomb-exchange interaction between the electrons,
Ecg, is found to be positive. Whether or not chemical bonding finally comes about
thus depends on the numerical values of the individual integrals.

It is not our purpose here to deal with the numerical evaluation of the integrals in
detail. This evaluation reveals that the overall contribution of the exchange integrals
(4.100) is negative; this makes the energy corresponding to the even (g) wavefunction
lower than that of the odd (u) wavefunction. Furthermore, for the even wavefunction
¥,, the nett effect of the various Coulomb interactions is to yield an energy lower
than that of two free hydrogen atoms. This state is therefore referred to as the
bonding state. The lowering of the energy is — in addition to the effects of exchange
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Fig. 4.12.' The binding energy
of the hydrogen molecule as
a function:iof the internuclear
distance Rj;, taking the repulsive
6 1 t Coulomb'interaction of the nuclei
into account. (Lower curve) The
electron spins are antiparallel.
21 (Upper curve) The electron spins
are parallel

i

(4.100) — due to the fact that the electrons can both occupy the region between the
two nuclei simultaneously and thus can profit from the attractive Coulomb potential
of both protons, in such a way as to compensate the repulsive potential between
the electrons themselves and between the nuclei. This is similar to the case of H;L
discussed earlier. The energy lowering depends on the distance between the nuclei;
an energy minimum is found for a particular internuclear distance (Fig. 4.12). As can
be seen in the figure, the odd wavefunction ¥, does not lead to an energy lowering;
for this reason, the corresponding state is called the antibonding (or non-bonding)
state.

The dissociation energy, which is equal to the difference between the minimum
energy at the equilibrium nuclear distance (bond length) and the energy at a distance
R, = 00, is found from a calculation based on the wavefunction given above to be
3.14eV. The observed binding energy, which is equal to the dissociation energy, is,
in contrast, 4.48 €V; however, it should be remembered that the nuclei themselves
make a contribution through their kinetic energy. If this contribution, which was
neglected in our calculation where we assumed the nuclear masses to be infinite,
is subtracted, we arrive at a binding energy of 4.75eV. We see that there is still
a considerable difference between the calculated and the measured binding energies.
This means that the wavefunctions of the Heitler-London model are still a very rough
approximation. Although they show us that the bonding in the hydrogen molecule
can be understood theoretically, they can give only a rough approach to the form
of the true wavefunctions. In order to improve the wavefunctions, some additional
effects must be taken into account; we shall discuss here one of the most typical,
which is called covalent-ionic resonance.

4.4.3 Covalent-Ionic Resonance

In the previous section, we used as a wavefunction for the two electrons in the
hydrogen molecule one in which the first electron spends its time for the most part
near one nucleus, while the second electron is near the opposite nucleus. In this case,
which is termed “covalent”, the wavefunction has the form
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Yeov = Nlga(ri)dp(r2) + ¢a(r2)dp(ry)] , (4.101)

where N is a normalisation factor.
It is of course possible, at least with a certain probability, that both electrons are
on one of the hydrogen atoms; the wavefunction is then of the form:

Ga(r1)a(r2) . (4.102)

Since the two nuclei are equivalent, both electrons could just as well be near nu-
cleus b, which would correspond to the wavefunction

G (r1)dp(r2) . (4.103)

The functions (4.102) and (4.103) describe states in which there is a negatively
charged hydrogen ion present. They are therefore referred to as “ionic” states. The
states represented by (4.102) and (4.103) are energetically degenerate, and so we
must form a linear combination to obtain the overall wavefunction. We do this in
a symmetric form:

Wion = N'[$a(r1)¢a(r2) + $p(r1)ds(r2)] (4.104)

so-that (4.104) has the same symmetry as (4.101). Now we must expect that nature
does not choose exclusively the wavefunction (4.101) nor the wavefunction (4.104),
since the electrons repel each other to some extent but can also be near the same
nucleus some of the time. Both situations are possible, and thus according to the basic
rules of quantum mechanics, the most realistic wavefunction should be constructed
as a linear combination of the two possible states, (4.101) and (4.104):

¥ =Wy + ¢ Yin , (4.105)

where the constant ¢ represents a variable parameter, which must be adjusted so as
to minimise the energy expectation value belonging to the wavefunction (4.105).

4.4.4 The Hund-Mullikan-Bloch Theory of Bonding in Hydrogen

Along with the Heitler-London method, which we have described above, a second
method is often used in molecular physics; in general, it does not give such good
results for the total binding energy as the Heitler-London method, but it does allow
the spatial probability distribution of the electrons to be more closely delineated.
This is particularly important for spectroscopic investigations of molecules, since in
such work, usually only one electronic state undergoes a change and it is just this
change which one wishes to describe theoretically.

In this method, one at first ignores the fact that two electrons are present. Instead,
we consider the motion of a single electron in the field of the two nuclei or, in
other words, we begin with the solution of the hydrogen molecule-ion problem. We
examined this solution in Sect. 4.3; it has the form:
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Yg(r) = N[@a(r) + ¢ (r)] . (4.106)

The idea is now to place both of the electrons of the hydrogen molecule into the state
(4.106). To solve the Schrodinger equation with the Hamiltonian (4.63) for the two
electrons, we therefore take as trial wavefunction

W(Ry, Ry) = y(r1)¥g(r,) - spin function , (4.107)

where R; and R; include both the spatial coordinates r; and r; and the spin coor-
dinates. We shall concentrate our attention here on the case of antiparallel spins, so
that the spin function is antisymmetric and has the form

spin function = L[oe(l);‘3(2) —a)p1)] . (4.108)
V2

The total wavefunction (4.107) is clearly antisymmetric with respect to the spatial
and spin coordinates of the electrons. Using the trial function (4.107), the expectation
value of the total energy can again be computed. It is found to be higher in energy
than that of the Heitler-London method, i. e. not as realistic. The method we have just
described is called the LCAO method, for Linear Combination of Atomic Orbitals.
Such a linear combination, e. g. (4.106), represents the wavefunction of a single
electron in a molecule and is therefore termed a Molecular Orbital (MO).

This method can be extended to more complex molecules, as we shall see later.
However, it requires some modifications for many molecules, and we shall treat the
most important and most characteristic of them in this book.

4.4.5 Comparison of the Wavefunctions

In later chapters, we will be concerned with finding suitable trial wavefunctions
for molecules containing more than two electrons. We therefore now compare the
different trial functions for the hydrogen molecule in its ground state with the
electronic spins antiparallel. For the sake of clarity, we leave off the normalisation
factor of the functions ¥, on the right-hand side of the following equations, since
we are interested only in the structure of the wavefunctions. The trial functions are
then given by:

Heitler-London

Yy = [9a(1)pp(2) + ¢a(2) ()] (4.109)
Heitler-London + ionic

Yy = [a(1)Pp(2) + ¢2(2)p(1)] + c[@a(1)a(2) + ¢p(1)5(2)] (4.110)
Hund-Mullikan-Bloch

¥y = [9a(1) + (D] [$a(2) + ¢5(2)] . (4.111)

We will now show that all these trial functions, (4.109-4.111), are special cases of
a more general wavefunction, which we construct in this section. In the process,
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¢a ¢a+ d ¢b

L

al b

Fig. 4.13. A visualisation of the substitution (4.112)

al

we mix into the wavefunction which originally referred to atom a a portion of the
wavefunction from atom b and vice versa for the wavefunction originally referring
to atom b. We thus make the substitution (see Fig. 4.13):

$a = ¢ +diy , o — Pp +dda , (4.112)

where d is a constant coefficient, with d < 1.
We thereby define a new wavefunction according to

Y(1,2) = [¢a(1) + dpp(1)] [¢5(2) + da(2)]
+ [0a(2) + ddp(D)] [¢6(1) + dgpa(1)] . (4.113)

This can be transformed by a simple calculation into:

We(1,2) = (1 + d)[Ba(1)¢6(2) + ¢a(2)p(1)]
+ 2d[¢pa(1)pa(2) + pp(DPp(2)] - (4.114)

If we now set d = 0, then we obtain the Heitler-London trial wavefunction, (4.109).
On the other hand, d = 1 yields the Hund-Mullikan-Bloch trial function, (4.111). If
we factor out (1 +d?) from the right-hand side of (4.114) and put it into the common
normalisation constant, a comparison between (4.114) and (4.110) gives the result

2d

4. 4115
1+ ¢ (@.115)

In other words, the trial function (4.110), which contained an improvement to the
original Heitler-London function through the addition of an ionic part, is also in-
cluded as a special case in (4.113). The trial function (4.113) can be improved still
further by including the wavefunctions of excited atomic states in the linear com-
bination of (4.112). These considerations show us a first, important way towards
formulating the wavefunctions for molecules with many electrons.

4.5 Hybridisation

An important case which is of particular interest for organic chemistry is that of
hybridisation. In considering it, we also for the first time deal with atoms containing
more than one electron. In forming molecules, the electrons in the inner, closed
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atomic shells are not strongly influenced; chemical bonding occurs via the outer
electrons (valence electrons), which are more weakly bound to their atomic nuclei.
In the carbon atom, two of the six electrons are in the 1s orbital, two in the 2s orbital,
and two are distributed among the three orbitals 2p,, 2p,, and 2p,. The I degeneracy
of the n = 2 shell, which was found to hold in the hydrogen atom, is lifted here.
However, the 4 eV energy splitting between the 2s and 2p states is not very large,
and there is in fact an excited state of the carbon atom in which an electron from the
2s state has made a transition into the 2p state. In this case, the states 2s, 2p,, 2p,,
and 2 p, each contain one electron. Let us now consider these singly-occupied states
carefully while we allow external forces to act on an electron by bringing a hydrogen
atom close to the carbon atom. These external forces can, so to speak, compensate
the energy difference which still remains between the 2s and the 2 p states, making
them practically degenerate in energy.

As we know from perturbation theory in the presence of degeneracy, in such a case
we have to take linear combinations of the old functions, which were degenerate.
For example, instead of the 2s- and 2p-functions, we construct two new functions
having the form:

¢+ - ws + %x
10— - ‘/fs - wpx .
Linear combinations of this type can shift the centre of gravity of the electronic charge

clouds relative to that of the s-function (see Fig. 4.14). Exactly this phenomenon
occurs in hybridisation.

(4.116)

Fig. 4.14. The shape of the wavefunctions in the case
of diagonal hybridisation. The s-function ¢; (dashed
curve) and the p-function ¢, (dot-dashed curve) as well
as the function which results from their superposition
(solid curve) are plotted against the distance from the
nucleus. The figure clearly shows how the centre of
gravity of the wavefunctions shifts to the right on super-
posing the two functions ¢ and ¢,

Let us consider several types of hybridisation, beginning with the most well-
known case, that of methane, CH,, where the carbon atom is surrounded by four
hydrogen atoms. Experimentally, it is known that the carbon atom sits at the centre of
a tetrahedron with the four hydrogen atoms at its vertices (Fig. 4.15). Interestingly,
the four degenerate wavefunctions of the n» = 2 shell in the carbon atom can be
used to form four linear combinations whose centres of gravity are shifted precisely
towards the four vertices of a tetrahedron. If we remember that the wavefunctions
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Fig. 4.15. (Left) The electron density distribution of the four orbitals in tetrahedrally hybridised
carbon. (Right) An exploded view of the hybrid orbitals

of the p states have the form f(r)x, f(r)y, and f(r)z, then it becomes clear that
the following linear combinations produce the shifts in the charge centres of gravity
described above (tetrahedral configuration):

Y1 =5V + Vp, + Vpy +¥p,)
V2= 3Ws + ¥p, — ¥p, — ¥p,)
V3= 3(¥s — ¥p, + Vp, — ¥p,)
Yo =5(Ws — Vp, — Vp, + ¥p,) -

These wavefunctions are mutually orthogonal in the quantum-mechanical sense, as
one can readily verify by inserting the ¥; for j = 1,... ,4 into [ Y)Y (r)dv
and using the orthogonality of the ¥, ¥p,, ¥, and ¥, functions. This type of
orthogonality is not to be confused with orthogonality of the spatial orientation!
Using these new linear combinations, (4.117), we can “tune” the electrons of the
carbon atom to the tetrahedral environment. Each one of the four wavefunctions
in (4.117) can now form a chemical bond with the corresponding hydrogen atom
(Fig. 4.15).

Taking as an example the direction of vertex 1, we denote the carbon hybrid
wavefunction ¥ in (4.117) more precisely as ¥, and that of the hydrogen atom at
this vertex as Y. Similarly to the case of the hydrogen molecule, we now generate
a wavefunction for each of the two electrons involved in the bond formation; these
take the following form, according to the LCAO prescription:

(4.117)

V(r) = Yo1(r) + ey (r) . (4.118)

Owing to the difference between the carbon atom and the hydrogen atom, the constant
coefficient ¢ will always be # 1 (in contrast to the hydrogen molecule), and it must
be determined by applying the variational method.

In the present case, we have oriented our considerations to the experimental
finding that the four hydrogen atoms are located at the vertices of a tetrahedron. One
could now be tempted to ask the question as to whether the wavefunctions (4.117)
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are initially present and the hydrogen atoms then locate themselves at the vertices
of the tetrahedron thus defined, or conversely the hydrogen atoms first move to the
vertices of a tetrahedron and thereby cause the carbon wavefunctions to generate
corresponding hybrid orbitals. From the quantum-mechanical point of view, such
speculations are pointless. The positions of the hydrogen atoms and the orientation
of the hybrid wavefunctions are mutually consistent. The overall configuration is
adopted by the CH4 molecule in such a way as to minimise the total energy.

The tetrahedral hybridisation just discussed, i.e. an arrangement of the wave-
functions resulting in tetrahedral symmetry, is not the only type of hybridisation
possible for the carbon atom. We have already mentioned a second type, diagonal
hybridisation, which is expressed in the wavefunctions (4.116) (see Fig. 4.14).

For carbon, still a third type of hybridisation is possible, the trigonal config-
uration, in which the s-, p.-, and p,-wavefunctions hybridise as suitable linear
combinations to yield hybrid orbitals in three preferred directions within a plane. In
order to give the reader an impression of how such hybrid orbitals are written, we
show them explicitly (Fig. 4.16):

v = S+ V20,)
Vo= 2+ 20 — 1000 (4.119)

RN AN N (VY

These wavefunctions are also mutually orthogonal in the quantum-mechanical sense.

Clearly, in generating these three hybrid wavefunctions, no use is made of the
fourth original carbon wavefunction, 2p,. It plays an additional role in bonding, as
we shall see directly. We consider the case of ethene, C;H,. Here, two carbon atoms
take on the trigonal configuration. The hydrogen-carbon bonds are again formed by
wavefunctions of the type given in (4.118), where for yc; we insert, e. g. ¥, from
(4.119). One carbon-carbon bond is formed by the first of these wavefunctions, with
each carbon atom contributing one electron. However, the electrons occupying the
p.-orbitals are still left over. These remaining atomic orbitals form linear combi-
nations, in analogy to the hydrogen molecule in the Hund-Mullikan-Bloch model,

Fig. 4.16. (Left) The density distribution of the three orbitals in the case of trigonal hybridis-
ation of carbon. (Right) An exploded view of the orbitals
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Fig. 4.17. The electron density distribution of the hybrid orbitals of the carbon atom in ethene,
CyHy. (Left) The two carbon atoms are located at the two opposite nodes, and each takes
on a trigonal configuration together with the corresponding hydrogen atoms. (Right) The
perpendicularly-oriented p, functions of the two carbon atoms form an additional carbon-
carbon bond

giving rise to an additional carbon-carbon bond. We thus have a case of double bond
formation between the two carbon atoms (Fig. 4.17). This configuration is referred
to as sp? or trigonal hybridisation.

An especially elegant example of trigonal hybridisation is provided by the
“Buckminster-Fullerene” molecule, Cgy, known for short as “fullerene”, which was
discovered in 1985. This molecule has attracted considerable attention because of its
properties, which are quite unusual in a variety of ways. It consists of 12 pentagonal
and 20 hexagonal units, i. e. altogether 32 rings, and has the shape of a soccer ball
with a diameter of roughly 7 A; see Fig. 4.18. As in benzene, the p-orbitals which
extend outside the spherical surface of the molecule are not localised and their
electrons can move as m-electrons throughout the molecule. Cgy can form various
compounds, such as CgoHgp. In addition to Cgp, other molecules of the C, structure
have been identified, with n varying from 32 up to several hundred. These molecules
can also act as cages, in which other atoms can be trapped, or in which different C,,
molecules can be enclosed in a multiple-shell structure, like Russian dolls.

Fig. 4.18. The structure of the Cgy molecule,
“Buckminster-Fullerene”, discovered in a molecular
beam. [After H.W. Kroto, J.R. Heath, S.C. O’Brien,
R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985)].
It can also be produced by vapourising graphite in a he-
lium atmosphere. [See W. Kriitschmer, K. Fostiropou-
los, and D.R. Hoffmann, Chem. Phys. Lett. 170, 167
(1990)]
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Problems

4.1 Consider a particle of mass m which is moving in one dimension in-a potential

Vofor x < —a (Region I)
Vix)y=4 0 for |x| <a (Region II) “box” potential
Vofor x >a (Region IIT)

with Vp > 0.
Investigate the possible energy eigenvalues for the case that 0 < E < Vg, by
solving the one-dimensional time-independent Schrédinger equation.

a) Take the following trial functions in the different regions:

L yDx) =AWex 4BDe
I y@(x) = AP eik* 4 BPeikx
IL: y®(x) = A® e +BO e

How do & and k depend on the energy E? Show that k and « obey the relation
K+ =C (1)

and find the constant C, which is independent of E.

b) The six coefficients A, BY(j = 1,2, 3) can be determined by applying the
following considerations:

1. Boundary conditions: owing to the normalisation of the wavefunctions, they
must vanish for x — 00. What follows from this for B() and A®?

2. Continuity conditions: from the requirement that the wavefunctions and their
derivatives be continuous at the junctions of the different regions, you can obtain
a set of homogeneous linear equations for the coefficients AV, A® | B®  and
B®_ Show that nontrivial solutions are obtained only if either

k = +k - tanka or Kk = —k - cotka )

is fulfilled. Determine for both cases the nontrivial solutions of the system
of homogeneous linear equations. Discuss the symmetry of the wavefunctions
using a sketch.

3. Normalisation condition: calculate the remaining coefficients using the normal-
isation condition for the wavefunction.

¢) The allowed energy eigenvalues can be graphically constructed by using the
intersections of the curves from 1. and 2. What is the minimum number of energy
eigenvalues? Which symmetries do the corresponding wavefunctions have?

d) The limiting case Vy — oo describes the infinitely deep one-dimensional
potential well. For this special case, find the allowed eigenfunctions ¥, (x) and their



84 4 Introduction to the Theory of Chemical Bonding

eigenvalues E,,. Give expressions for the matrix elements A,,, = f Y () Ay, (x)dx
for the operators A = x, x, and p = 24 (take E, > E,, forn > m and letn = 1
be the ground state).

¢) Let the system be in the state ¥(x, 0) = % [V (x)+ v (x)lattime r = 0. What

is the time-dependent solution v(x, #)? Calculate the corresponding time-dependent
expectation values <x>, <x?>>, and < p>. Also calculate the same expectation
values for the state given by ¢(x, 0) = %[1//1 (x) + ¢¥3(x)] at time ¢ = 0.

4.2 Calculation of expectation values using the example of the hydrogen atom: for
the following computations, start with the ground-state wavefunction:

_ 1
Y100(r) = Rio(NYoo(6, ¢) = 2a; > *exp {—aio} 7=

here, ag denotes the first Bohr radius.

a) Show that the expectation values of configuration and momentum variables
<X>, <py>, <Y>, <Py>, <>, <pP.>
vanish identically.

b) Now give the expectation values for the squared quantities:

<x?>, <p£>, <y*>, <p§>, <z*>, <p§>

and demonstrate the validity of the uncertainty relations. What expectation values
do you find for the kinetic and potential energies?

Hint: Use spherical polar coordinates. The following indefinite integrals can be
integrated readily by parts. For calculating the expectation values in (a) and (b),
choose r = 0, oo as limits for the integrals.

Ar __ r 1 A
/drre —(X—ﬁ)er
r2 2r 2
/drrZC“:(T—ﬁ+F)e}‘r
3 2
3 [T 3r 6r 6\ ,
/drre _<7_F+F—XZ e

4 ar o4y 1202 24 24 ar
dret=\y et T te)e

The integrals over the angles can likewise be solved in an elementary fashion.

¢) Starting with a general hydrogen eigenstate ¥,,,, calculate the expectation
values for the angular-momentum operators L2, L,, Ly, and L,.



Problems 85

Hint:

— The eigenvalue equations for L? and L, are known.
— The commutation relation

L x L=iRkL

holds.

— Use the operators Ly = L, & iL, and demonstrate the commutation relations
[Ls, L],

— The components of the angular momentum operator are Hermitian.

4.3 The wavefunctions ¥ of the hydrogen molecule-ion can be approximately con-
structed by taking linear combinations of two hydrogen ground-state wavefunctions
¢, and @p. Begin with the approach:

Yy = c(@a +9p)

Y =c(@a— p) - 3

a) Calculate the normalisation factor ¢ from (3) by expressing it in terms of
the overlap integral S (cf. part (d)). Assume the wavefunctions ¢, and ¢, to be
normalised.

b) using the normalised wavefunctions y,_, find the expectation value of the
Hamiltonian:

K2 &2 &2
H=|-——A- -
2my 4regr,  Amepry

E=E'+——. )

¢) Justify the approach in equation (3) by variation of the expectation value of
the Hamiltonian, making use of the more general form:

Y= c19q + C20p -
Which normalisation is found and what energy E results? Vary E in terms of the

parameters c; and 2.

d) Now determine the energy of the electron in the hydrogen molecule-ion as
a function of the nuclear distance R,,, by computing the integrals which occur in
equation (4), S, C, D, and EO. The integrals can be computed in prolate-elliptical
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coordinates (&, 77, @) (see the sketch in the solutions). Use the following transforma-
tions:

E — raR+rb
ab
Fg—Tp
n=
Rab

As in the case of the usual spherical coordinates, ¢ denotes the angle of rotation
about the z-axis.

Give the range of values of the new coordinates &, n, and ¢ and compute the
differential volume element dV in the new coordinate system. Start with the volume
element in spherical coordinates.

As a trial wavefunction for further calculations, choose the following hydrogen
ground state:

_ _ 1 o 3/2 ar
“’“"’”‘ﬁ(%) e""{‘a}~

In this expression, « > 0 denotes a variational parameter for the Bohr radius
ap = 4megh? /me?.

|

First compute the overlap integral S:

S(a) = fgoa(ra; @) pp(rp; ) dV .

What do you find for the Coulomb interaction energy C?
2

C(a)=f¢a(ra;a)< ¢ )goa(ra;a)dv.

47, E0rp

|

Compute the exchange integral D:
2

D(@) = [ 0a(ra; @) ( 4;; )gob(rb; @)dV

and the “generalised” ground-state energy E°(c):

e

0 h2 2
E"(a) =/¢a(ra;a) ——A - Qa(rg; @)dV .

2my Amegr,

e) Finally, give the explicit expression for the total energy (E plus the Coulomb
repulsion energy of the two nuclei) and sketch it as a function of the internuclear
distance R, for the value o« = 1, and as a function of the variational parameter « at
a fixed internuclear distance R, ~ 1 A, taking the integral S to be constant in both
cases.

f) For the functions ¥, and {_, compute the expectation values of position and
momentum (< x >, < p >).
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Hint:

— For the generating functions, cf. Problem 4.2;
— in prolate-elliptical coordinates:

x= %\/(52 —1)(1 — ) cos ¢

R, .
y= 7”\/@2 —1)(1 — ) sin ¢

4.4 Prove the variational principle of quantum mechanics:

[V HYAV.. AV,
[wswav,...av, =

where the Schrodinger equation
HO=EP ®)

holds and E is the lowest eigenvalue of (5). Here, ¥ is a function which is not
necessarily an eigenfunction of (5) but satisfies the same boundary conditions as the
eigenfunctions.

Hint: Expand ¥ in terms of the eigenfunctions of the Schrodinger equation (5).

4.5 Show that the general solution ¥ of the many-body Schrédinger equation
HY = EW can be written as a product of single-particle wavefunctions ¢,
W = [T;¢;, if the Hamiltonian H can be represented as a sum of single-particle
Hamiltonians H;, i.e. the relation H = X;H; holds, with H;¢; = E;¢;, and
[H;, ¢j1=0fori # j. How is E determined as a function of the E;’s?

4.6 Using the notation «(j) for the spin wavefunction of ‘a particle j with its
spin “up”, and B(j) for that of the particle with its spin “down”, show that the
wavefunctions

1 1
V2 V2
represent a state of total spin 1 (with a vanishing z-component) or of total spin 0,

respectively. Here, ¥, is the odd/even superposition of the products of two single-
particle wavefunctions in the hydrogen molecule.

[a(DB2) + pD(2)]¥,  and [e(1)B(2) — p(Da(2)] ¥,
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Hint: For the components of the total spin, we have S; = S),; + S2.(and analogously
for the x and y-components). Determine the matrix elements of §? = §2 + 52 + 52
in the basis {|a(1)a(2) >, [¢(1)8(2) >, |B(Da(2) >, |B(1)B(2) >}. Use the ladder
operators:

SH: = S]x + iSly and S2:t = Szx + iSzy
with

Si+la(D)>= S |p(H)>=0
Si-la(D)> = hlp(1)>

S14+1B(1)> = hla(D)> .

4.7 Particularly in the case of organic molecules, chemical bonds are frequently
described in terms of hybridisation. To this end, linear combinations of all the degen-
erate orbitals of the valence electrons of the atoms which participate in the bonding
are formed. In the following problem, start with hydrogen-like wavefunctions ¥
belonging to the principal quantum number n = 2, i.e. the 2s and 2p states.

a) Determine the points of maximum (charge) density for diagonal or sp-
hybridised electrons. Use wavefunctions of the form

1
V2

with ¥y o (1 — yr)exp{—yr} and ¥,; o yxiexp{—yr}, (x; = x, y, z). Maximise
the occupation probability density as a function of position.

Yip=vr =—Ws ¥,

b) Compare the result of part (a) with the centres of gravity of the charge. In order
to determine the centre of gravity of the charge or the average value with respect to
position, you must integrate the wavefunctions including their normalisation factors:

b= g (1- 5 o0 |5

1 x r
Vpx = Wi _ZZeXP[_Z} :

¢) Show that the wavefunctions for tetrahedral hybridisation (sp?) (4.117) have
their maximum charge density at the vertices of a tetrahedron (cf. Problem (a)).

d) Verify whether the wavefunctions of parts (a) and (c) are orthonormal in the
sense of quantum mechanics, i.e. that

fw;«/fde=ajk.



5 Symmetries and Symmetry Operations:
A First Overview

In this chapter, we cover the fundamentals and theoretical approaches which we will
need for — among other things — determining the wavefunctions and the energies of
the rr-electrons in benzene. A second example will be the ethene molecule.

5.1 Fundamental Concepts

Symmetries and symmetry operations play a still more important role in molecular
physics than they do in the quantum theory of atoms. In the present section, we will
cast an initial glance at this topic, and will then directly apply some of the knowledge
we have gained. In Chap. 6, we shall again treat the subject of symmetries and
symmetry operations systematically and in more detail.

In molecular physics, it is generally important to know the geometry of the
molecule of interest from experimental studies before attempting a theoretical treat-
ment. We will have the task of calculating the wavefunctions, or also the possible
vibrational motions of the nuclei, taking this observed symmetry into account. We
can draw on the example of the benzene molecule as a starting point for our con-
siderations (Fig. 5.1a). It is planar and has the shape of an equilateral hexagon, i. e.
if we rotate the molecule through an angle of 60° about an axis perpendicular to its
plane, it remains unchanged. Another example is provided by H,O, which remains
unchanged if it is rotated through an angle of 180° about an axis perpendicular to its
plane (see Fig. 5.2). NH3 is symmetric with respect to rotations of 120° (Fig. 5.3).
The ICl; ion is planar and is unchanged by a rotation of 90° (Fig. 5.4), while all

H H
N
C—C
Ve
H—¢  C—H
\ /
R
oW

Fig. 5.1a—c. Benzene, C¢Hg. (a) structure formula; (b) charge density of the o-electrons; (¢)
charge density of the w-electrons

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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N
0
7\ H
H H H
H
Fig. 5.2. H,0 Fig. 5.3. NH;
Cl
|
Cl—I-¢Cl H—-C—N
|
Cl
Fig. 5.4. ICl4 Fig. 5.5. HCN

linear molecules, such as HCN (Fig. 5.5), are symmetric with respect to a rotation
about the common internuclear axis through any arbitrary angle ¢.

Making use of these examples, we discuss more precisely just what is meant
by symmetry and symmetry operations. For this purpose, we first carry out a little
thought experiment: we imagine that in H,O, the initially quite identical hydrogen
nuclei are distinguishable, and then we rotate the water molecule in such a way that
the two protons exchange places. We then make the protons again indistinguishable.
After the rotation of the molecule, one can thus no longer see that it had been rotated
at all. In the course of such a rotation through an angle ¢, the coordinates of the
individual atoms in the molecule are of course changed. Using the standard notation
for molecules, we denote the rotation as C. In order to specify the angle ¢ through
which the rotation took place, we can put it as an index on C: C4. We shall use that
notation occasionally in this section. However, it is more usual to choose the index
as the number 7, which tells us how many times a rotation must be repeated until the
original state is again restored; in other words, n¢ = 2. For example, if ¢ = 60°
(or in radians, ¢ = x/3), we find n = 6. In the benzene molecule, the rotational
symmetry can thus be described as Cs.

We now consider the effect of a rotation on the Cartesian coordinates. They can
be written compactly in terms of the position vector

(5.1)

~
I
N R

A rotation through the angle ¢ corresponds to a new position vector r’. The relation
between r and ' is then given by:

r'=Cyr, (5.2)



5.1 Fundamental Concepts 91

where Cy4 means: carry out a rotation of r through the angle ¢. As we know from
elementary mathematics, the primed and unprimed coordinate systems are related
by the equations:

x' =xcos¢p + ysing ,

y = —xsing + ycos ¢, (5.3)
4

7=z.

In order to keep the notation simple, in the following we will leave off the angle ¢
or the number n as index to C:

Cy— C. (5.4)

Since the distance from the origin remains constant in a rotation, we can immediately
write down the relation

crl=(Cry=r*=r?, (5.5)
i.e. we could also write
r'=r. (5.6)

The rotation operation can now be applied to the coordinates of any particle we wish;
not only to the protons in hydrogen, but also to, e. g. the electron in a hydrogen atom.
The application of the rotation operator C to the wavefunctions ¥ (r) of the hydrogen
atom then means simply that we rotate the coordinates r, i. e. the following relation
holds:

Cy(r) = ¥(Cr) = y(r') . (5.7)

Let us consider how the wavefunctions transform under the rotation C according to
(5.7). We begin with the 1s-function of hydrogen, which has the form

Y(r) = Ne~"/"0 (5.8)

(cf. Fig. 4.1), where N is a normalisation constant. According to the definition (5.7),
and taking the relation (5.6) into account, we obtain

Cy@r) = Ne /"0 = Ne™"I" (5.9

Under rotation, the wavefunction of the hydrogen atom in the 1s-state thus remains
unchanged, or in other words, it is invariant with respect to a rotation C.

Let us see as a preparation for future use how the p functions transform; they
can be represented using either real or complex functions. Starting with the real
representation, we associate the wavefunction

VYp, = xf(r) (5.10)
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with a “dumbbell” lying along the x-direction (compare Fig. 4.1). The function f(r),
which depends only on the radius r, can be written in the form

f(r)y=Ne™n (5.11)

but any distance-dependent function, e. g. the radial functions for larger values of
the principal quantum number, would also meet the requirements of which we make
use in the following. The other two dumbbells are given by

VYp, = () (5.12)

and

Vp, =2f(r) . (5.13)

Consider now what happens when we let the rotation operator C for a rotation
about the z-axis act on these wavefunctions according to the general definition (5.7).
We obtain:

C¥p, = x' f(r') = cos ¢x f(r) + sin @y f(r) = cos p¥p, + sin SVp,
Crp, = Y fr') = —singx f(r) + cos ¢y f(r) = —singy,, + cos *Vp,

Cwl’z = 1p[’z :
(5.14)

In (5.14), the first step (from left to right) was carried out according to (5.7), the
second according to (5.3), and for the third, we made use of the definitions (5.10) and
(5.12). Application of the rotation operation C thus transforms the wavefunctions
VYpy» ¥p,, and ¥, among themselves. This already shows us the tip of the iceberg
of a general truth which we shall meet again in a much more general context. We
note in this connection that the p-functions of the hydrogen atom just referred to
all belong to the same energy. As we shall show generally later on, wavefunctions
which belong to the same energy are transformed into linear combinations of the
same set of wavefunctions by symmetry operations. The question will also arise as
to whether there are not simple cases where a wavefunction is transformed into izself
on application of a symmetry operation. This in fact is true in the present case, if
instead of the real representation of the p-state wavefunctions we use certain linear
combinations of them. These are complex and are eigenfunctions of the operator for
the z-component of angular momentum. They are given by

Vi = ¥p, £iY,, = N £iy) e, (5.15)

where N is again a normalisation constant. The form x =iy can be treated as a complex
variable in the complex plane, and we introduce the usual polar coordinates for it:

x+iy=re?. (5.16)
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Then (5.15) becomes
Yy = Nre "/moetie (5.17)

In the complex plane, a rotation through an angle ¢y means that the original angle ¢
is to be replaced by ¢ + ¢o. We thus obtain

Cyy €9 = el@+o0) (5.18)
and therefore

Cop¥y = €D, (5.19)
and, correspondingly,

Cop¥— = e Py (5.20)

The relations (5.19) and (5.20) naturally mean that the application of the rotation

operator leaves the functions v, and ¥_ unchanged aside from a constant factor
e'%0 or %0,

5.2 Application to Benzene:
the w-Electron Wavefunctions by the Hiickel Method

As is known experimentally, the benzene molecule, C¢Hg, is planar: the H atoms
lie in the same plane as the C atoms, which are joined to form a hexagonal ring
(cf. Fig. 5.1a). If we look at a particular carbon atom, we find that it has a trigonal
arrangement for the bonds to the two neighbouring C atoms and the H atom which
extends outside the ring. Just as in ethene (see Sect. 4.4), we see that each carbon
atom has one p, orbital, containing one electron, left over after forming the trigonal
hybrid orbitals. All such p, orbitals in the 6 different carbon atoms are energetically
equivalent; an electron could, in principle, occupy any one of these states. Let
us now recall the basic approach of the LCAO method, i.e. the method of linear
combinations of atomic orbitals (cf. Sect. 4.4.4). It requires us first to search for the
wavefunction of each single electron in the field of all the atomic cores, i. e. here in
the field of all 6 carbon atoms. In principle we are dealing here with a generalisation
of the hydrogen molecule problem; however, an electron can now be spread over six
atoms instead of over two.

‘We suppose that all the orbitals of the carbon atoms which lie in the molecular
plane, i.e. the 1s orbitals and the hybrid orbitals made up of the 2s, 2p,, and 2p,
atomic orbitals, have been filled with electrons of lower energies. These hybrid
orbitals in benzene are referred to as o orbitals (Fig. 5.1b). (We shall have more to
say about the notation for orbitals in Chap. 13.) Similarly to the case of ethene, some
electronic wavefunctions remain: those derived from the 2p, states; they extend
outwards perpendicular to the molecular plane and are localised on the individual
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Fig. 5.6. The p, function ¢(r) is transformed into
¢(r — R;) by a translation through the vector R;

carbon atoms. We can assume that the electrons which the carbon atoms contain in
these orbitals move independently of each other in the fields of the carbon atomic
cores, including the already-occupied o orbitals. We will justify this assumption in
detail later on; for the moment, we have the task of determining the wavefunction
of an electron in a field which is symmetric with respect to rotations of 60° about
an axis perpendicular to the molecular plane. We apply the Hund-Mullikan-Bloch
method just as in the case of the hydrogen molecule: we represent the wavefunction
we are seeking as a linear combination of wavefunctions located on the carbon
atoms, more precisely the 2p, wavefunctions. The molecular orbitals which result
are called 7 orbitals. In order to make use of our symmetry considerations, we
first investigate the behaviour of such a function belonging to the carbon atom with
index j. According to Fig. 5.6, we can represent this function as

®j@r) =¢(r —Rj), (5.21)

where for concreteness we will keep in mind a representation of the function (5.13).
When we carry out a rotation through an angle of 60° (see Fig. 5.7), we obtain the
result

Cej(r) = ¢;(Cer) = p(Cer — R;) , (5.22)

where we have used the definition (5.21). As a result of the symmetry of the problem,
the vector R;, which points from the centre of the molecule towards the nucleus of
carbon atom j, can be interpreted as a rotated vector which was produced from the
vector R;_; by a rotation through 60° (Fig. 5.7):

CsR;_1 =R; . (5.23)
Then instead of (5.22), we can write
Cepjr) = ¢(Cer — CsR;j_1) . (5.24)

Next, we can factor out the operator Cg from the parenthesis in (5.24), yielding:

ev Fig. 5.7. On rotation through 60° (small arrows), the vectors R;
are transformed into one another
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Cegj(r) = plC(r — Rj-1)] . (5.25)

Now, the z-direction is not influenced at all by a rotation about the z-axis, and
furthermore the distance r — R;_; remains unchanged by a rotation. Therefore,
(5.25) is equivalent to:

Co;(r) = ¢(r — Rj_1) . (5.26)

Thus, with the aid of some mathematical reformulations, we have obtained the result
that a p,-wavefunction on one carbon atom is transformed by a 60° rotation of the
molecule into the corresponding wavefunction on an adjacent carbon atom:

Cej(r) = ¢j1(r) . (5.27)

Following these elementary preparations, we shall now see how useful symmetry
considerations can be in molecular physics. To this end, we consider the wavefunction
¥ (r) of an electron which moves throughout the whole molecule in its potential field,
as mentioned above. The corresponding Schrodinger equation is given by:

Hr)y(r) = EY(r) , (5.28)

where the Hamiltonian H contains the kinetic energy of the electron and its potential
energy in the molecular potential field. A rotation through 60° leaves this Hamiltonian
unchanged, i. e. we obtain the relation

CH(r) = H(r') = H(r) . (5.29)
Now, we apply the rotation operation C to both sides of (5.28), yielding:

CH(r)Yy(r) = ECy(r) . (5.30)
Using (5.29), the operation C on the left side of (5.30) acts only on the wavefunction:

H@r)Cy(r) = ECy(r) . (5.31)

If we compare the left sides of (5.30) and (5.31) and remember that they remain
valid for any arbitrary wavefunction (r), we can by subtraction obtain an operator
equation:

CH-HC=0. (5.32)

The rotation operator C and the Hamiltonian H thus commute. This is another way of
expressing the fact that the Hamiltonian is invariant under the rotation C. It follows
from (5.31) that if {(r) is a solution of the Schrédinger equation, then so is Cy¥(r).

We now assume for the moment that only a single wavefunction belongs to the
energy E, i.e. that the energy level is not degenerate. In such a case, when two
apparently different wavefunctions belong to the same energy, then there is a contra-
diction unless the two wavefunctions are in fact identical aside from a multiplicative
constant which we will call A; we thus obtain the relation:
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Cy(r) =2y(r) . (5.33)

Mathematically, one can show that in general, a relation like (5.33) always holds un-
der rotation operations. This is related to the fact that for rotations, there always exists
anumber M such that an M-fold application of the rotation operation transforms the
wavefunction back into itself. Formally, this means that

cM=1. (5.34)

‘We now use relation (5.33) to determine the coefficients of the LCAO wavefunction in
asimple way. We represent ¥ as a linear combination of the atomic wavefunctions ¢;
according to

Yr)=cipr+ 22+ ...+ cods (5.35)
Inserting (5.35) into (5.33), we obtain

c1Ch1(r) + 2Cha(r) + ... + c6Cs(r)

5.36
= AMc11(r) + c2¢2(r) + ... + ceps(r)] . (5-36)

ever, as we have just seen, the application of a rotation to the wavefunction ¢;,
produces simply an exchange of the index j of the “base” carbon atom. Using this
fact, (5.36) is changed into

c196(r) + 291 () + ... +ce¢ps(r) = A1 () + ... + cepe(r)] . (5.37)

Since here the individual wavefunctions ¢; are linearly independent of each other,
(5.37) can be valid only if the coefficients of the same functions ¢; on the left and
the right sides of the equation are equal. This leads immediately to the relations

c1 = Acg ,
c2 = Acy,
c3=Acz, (5.38)
Ce = )\.C5 .

To solve them, we take the trial solution
cj=Mcy, (5.39)

where ¢y is a normalisation constant. If we apply the rotation operation in the case of
benzene six times, the molecule is returned to its original state; from this, it follows
that

AM=1. (5.40)
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According to the calculational rules for complex numbers, (5.40) has the solution
A= e¥h/s (5.41)
with k an integer which must be chosen according to:
k=0,1,2,...,5
or
k=0,£1,£2,43. (5.42)

We now insert the result (5.39) together with (5.41) and (5.42) into (5.35) and obtain
the explicit form which the wavefunction must take, namely:

6

Y=coy &™) (5.43)

j=1

This is the wavefunction of the m-electrons of benzene (compare Fig. 5.1c). We
have thus succeeded in solving the Schrodinger equation without having to carry out
any calculations involving the Hamiltonian operator. Symmetry alone was sufficient
to fix the coefficients uniquely, leaving only the normalisation constant ¢y to be
determined.

5.3 The Hiickel Method Revisited.
The Energy of the w-Electrons

As we know, the carbon atom has two electrons in the 1s shell (“core electrons”)
and in addition 4 electrons in the n = 2 shell. These four electrons participate in
bonding to other atoms and are therefore called valence electrons. We have seen that
a distinction is made in the bonding of carbon in the benzene molecule between o -
and m-electrons. The wavefunctions of the o-electrons are located in the plane of
the molecule, while the w-electrons, which originate with the p, atomic orbitals, are
oriented perpendicularly to the molecular plane; it is for them a nodal plane.

We select one of these m-electrons and assume that it moves in the combined
potential of the nuclei, the o and core electrons, and the other rr-electrons. The direct
interaction of the electrons with each other is thus replaced by an effective potential.
As we shall see later, and should already know from atomic physics (cf. I), such
a procedure can be justified in the framework of the Hartree-Fock approximation.
The Hamiltonian which refers to the w-electrons is then

) A2
pbuciel _ 3 [_zm—ovﬁ + V(ru):l , (5.44)

where the sum over y runs from 1 — 6, enumerating the six sr-electrons of the carbon
atoms. Equation (5.44) clearly contains a sum of Hamiltonians, each one of which
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refers to a single electron. Therefore, the Schrédinger equation belonging to (5.44)
can be solved by finding the wavefunctions of the individual electrons as solutions
to the Schrodinger equation

2
[—ﬁ—vz + V(r)] Y(r) = Ey(r) . (5.45)
2m0

The potential in (5.45) can be decomposed into two parts:
V(r) =V, () + Vi) (5.46)

of which one part, V,(r), is due to the nuclei and the other part, V5(r), to the o-
and m-electrons. Following the prescription of the Hund-Mullikan-Bloch method,
we represent the wavefunction of a single electron as a linear combination of atomic
wavefunctions, in this case the carbon 2 p, wavefunctions, as follows:

N
Y= cip;(r). (5.47)

j=1

The coefficients c; are still unknown and can be determined with the aid of the
variational principle, according to which the left-hand side of

[v*Hy dv _
[v*pdv

is to be minimised by a suitable choice of the coefficients. Inserting (5.47) into the
numerator of (5.48), we obtain

(5.48)

> chep - f ¢t Hpy dV (5.49)
i’ —
H.r

Ji

where we will use the abbreviation H; in what follows. In the same way, we find
the denominator of (5.48):

IR / iy dv . (5.50)
i’ N——
S

Ji

The energy on the right-hand side of (5.48) is a function of the coefficients, so that
we can write

E=E(c1, ¢}, 2,65, ...) . (5.51)

A necessary condition for obtaining a minimum in E is that the derivatives with
respect to the coefficients ¢; and ¢} vanish:
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dE  OE
—=—==0 (5.52)
dcj dc 7

For computational reasons, it is more practical to multiply equation (5.48) on both
sides by the denominator and consider the resulting expression,

ciey-Hy =E Y cleji- Sjy . (5.53)

s/ !’

¥ij ¥ij

We now differentiate this equation with respect to the coefficients ¢, obtaining
ZHJ']'/-CJ'IIEZCJ'/'S]']'/. (554)
7 ' J

We have already set the derivatives of E with respect to cjf equal to zero in (5.54),
using (5.52). Equation (5.54) is a system of equations for the coefficients c; which
we can write explicitly in the form

(Hi1 — SuBE)er + (Hiz — SpE)ey + ...+ (Hiy — SivE)ey =0,

(Hy1 — SnE)ey + (Hyp — SpE)ey + ...+ (Hoy — SoyE)ey =0,
(5.55)

(Hyy — SmE)c1 + (Hyv2 — SnmE)cy + ... + (Hyy — SnwE)ey =0
Since this is a system of homogeneous equations, the determinant of its coefficients,

Hyy— ESy1 Hip—ESp ... Hiy— ESiy
: : : =0, (5.56)
Hyy — ESyy Hyy — ESya ... Hyy — ESyn

must vanish, if we wish to obtain a nontrivial solution. This is clearly not a very
simple problem, since we are already dealing with a 6 - 6 determinant.

Using symmetry considerations, however, one can solve this problem very sim-
ply! In the previous section, we saw that the coefficients are known [compare (5.43)].
It is therefore unnecessary to solve the determinant equation (5.56); instead, we can
substitute the known coefficients directly into the system (5.55). In this way, we
can determine the energy E for the general system (5.55) explicitly. In order to
emphasise the essentials, we assume the following simplifications:

Sij=1, Sy=0, j#J . (5.57)
Hjj=A, Hj,j—lej,j+1:B7 otherwise =0 .

These conditions are equivalent to neglecting the overlap between the wavefunctions

and considering interaction energies only within one atom and with next-neighbour

atoms. We now insert the simplifications (5.57) and the form of the coefficients ¢ j

[from (5.43)],
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cj = coe™ S (5.58)
into, e. g. the first line of (5.55), thus obtaining

2K/O(A — ) 4 2TH/Op | (27i6k/6p _ () (5.59)
which can be immediately resolved into the form

E = A + B(e¥*/6 4 ¢=2mik/6y (5.60)

All the other lines of (5.55) give the same result. Using the real representation, (5.60)
can be written as

21k

In this equation, k takes on the values prescribed by (5.42), i.e.

k=0,+£1,42, 3. (5.62)
Taking into account the fact that the exchange integral B is negative,

B<0, (5.63)

we obtain the term diagram shown in Fig. 5.8 for the m-electrons of benzene. It can
be filled with the carbon electrons, starting from the lowest energy level and taking
the Pauli exclusion principle into account. The energies shown in Fig. 5.9 are then
obtained.

E

- ) L L L Lok  Fig.5.8. The term diagram for the 7-electrons
-3 -2 A 0 1 2 3 of benzene
— k=3

k=-2 —— - k=2
e

* I k=0 Fig. 5.9. The states occupied by the sr-electrons of

benzene. [Note that E(—k) = E(k)]
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The use of symmetry considerations brought a considerable simplification com-
pared to traditional theoretical methods in this case. We were able to determine the
coefficients explicitly beforehand, without having to solve the system of equations
(5.55). In particular, we did not need to calculate the determinant (5.56) and find its
eigenvalues explicitly, which otherwise would have been necessary. Furthermore,
our calculation using the Hiickel method has the advantage that we can also treat
excited states according to the term diagram of Fig. 5.8, since their energies are
already known from (5.60).

5.4 Slater Determinants

Let us return to the solution of the many-electron problem, for example in the case
of benzene. Here, we make use of two pieces of knowledge which we had gained
previously: if the Hamiltonian consists of a sum of operators, then — generalising the
method used for the hydrogen molecule — the wavefunction of all the electrons may
be written as a product of the wavefunctions of individual electrons. In doing this, it
is important to take the spin of each electron into account using the spin functions «
(spin up) and B (spin down). In order that the overall wavefunction be antisymmetric
in the spatial and the spin coordinates as required by the Pauli exclusion principle,
we use a determinant for the ground state wavefunction, generalising the approach
given by (4.71). In this determinant, the counting index of the electrons is the row
index and the quantum number of the state occupied by the electron is the column
index. The determinant thus has the form:

Vi(r)e(l) Yir)BA) Ya@r)e(l) Ya0r) ) ...

Y1(r)a(2) Y102)B(2)
w(1,2,...,6) = _

Y1(re)a(6) ¥1(re)B(6)
(5.64)

This expression is called a Slater determinant. Clearly, writing down such determi-
nants is tedious; they are therefore often abbreviated in the form:

U(1,2,...,6) = Y1, ¥y, Y2, ¥a. .. Ve, Yl (5.65)

where the arguments of v refer to the electrons and the indices of the wavefunctions
to the individual states, and we assume that each wavefunction is occupied by two
electrons having antiparallel spins. Equation (5.65) thus yields the determinant (5.64)
if we make the following replacements

Y- Ve, Y- Y, (5.66)

and use the convention that a bar over the wavefunction refers to an electron with its
spin down.
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5.5 The Ethene Wavefunctions. Parity

As an additional example of the power of symmetry considerations, we treat the
ethene molecule (Fig. 5.10). This molecule evidently has a centre of inversion
symmetry at the midpoint of the line joining the two C atoms; i. e. if we reverse the
signs of all the coordinates, x, y, z becoming —x, —y, —z, then the entire molecule
remains unchanged. If we subject the wavefunction ¥ of a single electron to this
mirror operation, and again assume that the wavefunctions are nondegenerate, we
obtain ¥(r) = A2y (r). This means that A can take on only the values +1 or —1. We
then find

Y(=r) =2y () , (5.67)

or, as one also says, ¥ has even parity (upper sign) or odd parity (lower sign).

Hw H
c=C
H~ ~H  Fig. 5.10. Ethene

The wavefunctions of the individual w-electrons are taken, as in the hydrogen
molecule-ion, to be linear combinations of the 2 p, wavefunctions of the two carbon
atoms (cf. Fig. 5.11):

Fig. 5.11. The definitions of R; and R,

$10r) =9 — R), &) =¢r —Ry),

Y(r) = c191(r) + c22(r) . (5.68)
For the atomic wavefunctions, we have the symmetry properties

$1(=1) = () (5.69)
and

$2(—1) = —1(r) (5.70)

as one can readily see by making use of the explicit representation of ¢:

¢ = Nze™ /"0 (5.71)
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Inserting (5.68) into (5.67) and making use of the properties (5.69) and (5.70), we
obtain

C191(=T) + c2¢2(—1) = —c12(r) — 21 (r) = €191 (r) L C22(r) . (5.72)

Comparing the coefficients of the same wavefunctions on the left and right-hand
sides of (5.72), we find the relations

¢ ==c, . (5.73)

With this relation, we can substitute in the linear equation (5.54) for the coefficients,
just as we did in the case of benzene; now, however, we have to deal with only two
coefficients. In complete analogy to the calculation for benzene, we obtain

E=A+B, (5.74)
where

B<0. (5.75)
We can see that ¢c; = ¢; leads to a bonding state and ¢; = —c; to an antibonding

state. The term diagram which results is given in Fig. 5.12.

A-B

A+B  Fig. 5.12. The term diagram of ethene

5.6 Summary

In Chaps. 4 and 5, using concrete examples we have demonstrated some funda-
mental concepts required for the (at least approximate) calculation of the electronic
wavefunctions of molecules, i. e. the molecular orbitals. We can summarise the basic
ideas as follows:

1. The wavefunction of all the electrons of a molecule is approximated as a product
or a determinant containing the wavefunctions of the individual electrons.

2. The individual wavefunction (molecular orbital) is constructed as a linear com-
bination from atomic wavefunctions (LCAO method).

3. The coefficients of the LCAO wavefunctions are determined by using symme-
try considerations, giving a considerable reduction in the computational effort
required.

Clearly, some important questions are raised by the points 1)-3):
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1. Why is it allowable to use the approximation 1)? This question leads us to the
Hartree-Fock method and its extensions, which we treat in Chap. 7.

2. and 3) How can we generalise the symmetry considerations? We take up this
question in Chap. 6, where we treat molecular symmetries in a quite general
way.

In Chaps. 6 and 7, the reader will thus gain a detailed introduction to the modern
electron theory of molecules, which will allow him or her to delve into the scientific
literature dealing with this subject.

Problems

5.1 Investigate the m-electron system of the polyenes (cf. sketch in the solutions).
Assume that the o bonds form a solid molecular skeleton with fixed bond lengths d,
while the 7 electrons are essentially free to move between the carbon atoms. (The
o electrons result from the sp® hybridised carbon orbitals, while the 7 electrons
come from the nonhybridised 2 p orbitals.) That is, in our model, the motion of the =
electrons along the bond axes corresponds to the charge motion in a quantum wire.
The equation of motion is then

2 32
— E -V, x) =0.
5 7P+ (E — Vay) $(x)
Here, V,; is a constant potential along the bond a — b, and ¢(x) is the molecular-
orbital wavefunction of a 7 electron.
a) What boundary conditions are required for a simple connection (cf. sketch)?

b) What are the boundary conditions for the m electrons at the ends of the
molecule?

¢) Now consider explicitly the butadiene molecule, with two double bonds and
thus four 7 electrons. The effective Hamiltonian is given by:

B d>
; —_—— 4V
Hs I A + V(x)
with
0 for 0<x<5d
V(x) = [ 00 otherwise )

Determine the energy eigenvalues and the molecular-orbital wavefunctions.
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5.2 As shown in Chap. 5, of the four valence electrons from each carbon atom
in a benzene ring, three are combined in trigonally-hybridised wavefunctions, so
that all six p, states are energetically equivalent and are delocalised over the whole
ring structure, forming so called 7 orbitals. Starting from the LCAO method and
employing the cyclic symmetry, one arrives at a trial wavefunction for these &
electrons.

Y= &) (k=0 %1, £23). (1)
Jj=1
Employing the variational principle,

[WrHEAV AV,
= n s
[ e wav,...dv, =

determine the energy eigenvalues under the following assumptions:

1. The wavefunctions ¢; are normalised and overlap only with their immediate
neighbours, i.e.

1 for j=ij
Jj'=1

/(ngOj/dV:Sjj’: o for
0 otherwise

1

and
2. the matrix elements of the Hamiltonian A are given by

+1

A for j=ij
f¢jH¢j/ dv = Hjj’ = B for j/ _]
0 otherwise

Hint: The energies can be determined directly from the equation

> Hiycy =E ) ciSy
j/ j/

by making use of the trial functions (1).



6 Symmetries and Symmetry Operations.
A Systematic Approach*

This chapter provides a systematic approach to the application of group theory for
the determination of molecular wavefunctions. We treat molecular point groups,
the effect of symmetry operators on wavefunctions, and then the basic concepts of
the theory of group representations. The method is demonstrated using the explicit
example of the H,O molecule.

6.1 Fundamentals

In the preceding chapter, we saw how we could determine the w-electron orbitals
of benzene in an especially elegant way by making use of the rotational symmetry
of the molecule. In this chapter, we shall deal systematically with symmetries and
symmetry operations, keeping concrete examples of molecules in mind. The symme-
try properties of a molecule are characterised by the possible symmetry operations,
e. g. rotations. In the course of such a symmetry operation, every point in space is
transformed into another point, keeping the lengths of all distances constant. The
object before and after the operation is indistinguishable.

H(3) H(2)

Fig. 6.1. The NH3 molecule. The numbers 1, 2, and 3 are used to
H() denote the positions of the hydrogen atoms

As a first example, we choose the NH3 molecule, which can be described as
a trigonal pyramid (Fig. 6.1). The three hydrogen atoms are located at the vertices
of the equilateral basal triangle, and the nitrogen atom is directly above the centroid
of the triangle. If the molecule is rotated about an axis passing through the N atom
and the centroid, by an angle of 120° in the positive sense (i. e. counterclockwise as
seen from above), then the H atoms exchange their places in the following manner:
H; — H;, H; — Hj;, and H, — H;j (cf. Fig. 6.2). The N atom maintains its
position. The state attained after each such rotation is indistinguishable from the
original state, since the H atoms are all equivalent. In the course of these operations,

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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Fig. 6.2. The effect of the symmetry operation Cs, i.e.

a rotation of 120° about a vertical axis
\ f—

neither lengths nor angles within the molecule are changed; the operations can
therefore be considered to be symmetry operations. Analogous considerations hold
for the reflection operations sketched in Fig. 6.3. The mirror planes are perpendicular
to the basal triangle of the molecule and each one contains a bisector of the triangle.
Thus, a reflection in the o} plane exchanges the atoms H, and Hj, while H; and N
remain unchanged.

Symmetry operations are not to be confused with so-called symmetry elements.
In the above example of the NH; molecule, the symmetry operation Cs tells us how
to carry out a rotation through 120°. The set of all points which do not change their
spatial positions during this symmetry operation form the symmetry element “axis
of rotation”, which is likewise denoted by C3. In the case of the reflections in o1, 03,
and o3, the symmetry element is the respective mirror plane. A symmetry element is
defined as the set of all points on which the symmetry operation is carried out. In the
case of elementary or non-composite symmetry operations (Table 6.1), the symmetry
element is equivalent to the set of all points which remain fixed in space when the
symmetry operation is carried out. If at least one point remains invariant in the
course of an operation (for higher symmetries: one line or one plane), the operation
is referred to as a point symmetry operation. An example is inversion, i, in which
the origin of the coordinate system forms the symmetry element and a coordinate
vector r is transformed into —r. Furthermore, it is useful for mathematical reasons to

1 2 2 1 Fig. 6.3. The effects of the symmetry oper-
ations o1, 07, and 03, i. €. of the reflections
illustrated
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Table 6.1. Elementary and composite symmetry operations with the corresponding symmetry
elements

Symbol Symmetry operation Symmetry element

E “Identity operation” Identity

Cn Rotation through 27r/n  n-fold axis of rotation

o Reflection Mirror plane

i Inversion (reflection at  Centre of inversion
an inversion centre) symmetry

Sn Rotation through 27r/n  n-fold axis of rotary
followed by reflection  reflection symmetry

(Improper rotation)

o Translation-reflection  Translation-reflection plane
(translation followed by
a reflection)

C, Screw operation Screw axis

(Translation followed by
a rotation through 27/n)

define the identity E formally as a symmetry operation. In this operation, all points of
a three-dimensional object remain unchanged. In the case of polymers with a regular
chain conformation or of crystal lattices, two additional symmetry operations can
occur, which depend on the periodicity of the molecular chain or the lattice: the screw
operation (translation + rotation), and the translation-reflection operation. Table 6.1
lists first the four simple point symmetry operations: the identity E, reflection o,
rotation C, and inversion i; and then the combined point symmetry operations:
improper rotation S, translation-reflection &, and the screw operation C,,, with their
corresponding symmetry elements.

We can gain an intuitive understanding of the individual symmetry operations
by considering an equilateral triangle as in Figs. 6.2 through 6.4. The symmetry
operations result here in a permutation of the vertex numbers as shown in the figures.
We will show with a few examples how a concatenation of two symmetry operations
produces a new symmetry operation, which in the case of Fig. 6.4 can in fact be
expressed through an operation that was already defined. Looking at Fig. 6.4a, we
first carry out the reflection 0, and then the rotation Cs. The final product of this
composite operation, shown on the right in the figure, could also have been obtained
by reflecting the original triangle through the symmetry element o; (Fig. 6.4b). We
thus see that the relation C302 = o7 holds (note that the operations on the left-hand
side of this equation are to be read from right to left!). Now, what will happen if we
reverse the order of the reflection and the rotation, i. e. first rotate and then reflect,
as shown in Fig. 6.5a? The resulting triangle could also be obtained by a reflection
through the o3 plane (Fig. 6.5b). We thus obtain the operator relation 0,C3 = o3.
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Fig. 6.4. (a) Effect of the symmetry operation o, followed by C3. (b) The same effect as in
(a) is produced by o

Comparing the result of Fig. 6.4a with that of Fig. 6.5a, we can see that the results
of a combined rotation and reflection depend on the order in which the operations
are performed.

In other words, symmetry operations do not commute, at least in the present case.
Quite generally, one can show that the product of two rotations again is equivalent
to a rotation, while the product of a reflection followed by a rotation, or a rotation
followed by a reflection, is equivalent to a reflection. Two successive reflections can
be replaced by a rotation. We can summarise these results in a group operation table,
as shown in Table 6.2.

We have thus arrived at the concept of a group. A group consists of a set of
elementary operations with the following properties: concatenating two operations A
and B yields a new operation, which likewise belongs to the group, according to
A B = C. The set of symmetry operations contains an identity operation E which
is defined so that EA = A E = A. Every operation A has an inverse operation

2 2
A = A\~
1 2 3 1 3 ! 2 1
~
b 3 3

/\
2 2 1

Fig. 6.5. (a) The effects of the symmetry operations C3 followed by o5. (b) The same effect
as in (a) is produced by o3

O3
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Table 6.2. The multiplication table for the symmetry group C3,. A multiplication BA leads
to the new elements listed in the table

Operation A

Cw E G ¢ o o o
Operation B E E Cs C% a1 oy 03
C3 C3 C % E 03 a1 fe}
c? c; E G o 03 o1
o1 a1 o) 03 E Cs C %
ay oy 03 o1 C % E C3
o3 03 o1 o) C3 C % E

A~', with AA~! = E. It can then be shown that A~' A = E also holds. For the
operations A, B, and C, an associative law is valid: (A B) C = A (B ().

When the operations all mutually commute, i.e. AB = B A for all A and B in
the group, the group is called Abelian. Using the group table, it is easy to verify
that the symmetry operations E, C3, C3, 01, 03, and o3 form a group. Following
a notation convention which we will discuss in detail below, this group is called Cs,.
From the symmetry operations of a molecule which form a group, we can often
choose certain operations which among themselves fulfill the conditions for forming
a group; these symmetry operations are placed in a subgroup of the original group.
The multiplication table in Table 6.2 shows that the operations E, C3, and C? form
a subgroup of Cs,. In addition to NHj, another example of a molecule with the point

Fig. 6.6. The symmetry elements of the point group Cs,.
The molecule chloromethane (CH3Cl) is shown as an
example
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group Cs, is chloromethane. It is shown in Fig. 6.6, together with the symmetry
elements of the group Cj3,.

6.2 Molecular Point Groups

For the classification of the molecular point groups, we use the notation intro-
duced by Schonflies. (Another notation, preferred by crystallographers, is that due to
Hermann-Mauguin.) In the following section, we have collected all the point groups
of molecules. We begin with molecules which allow the smallest possible number of
symmetry operations in addition to the identity operation which is a member of all
point groups. We then consider molecules with higher degrees of symmetry. Some
examples are given in Fig. 6.7.
Molecules without an axis of rotational symmetry belong to the point groups

C;: This point group contains, aside from the identity E, no additional symmetry
elements. example: NHFCL.

Cs: The only symmetry element is a mirror plane. Example: NOCI (in Fig. 6.7, first
row, left).

C;: The only symmetry element is the centre of inversion symmetry, i. Example:
CIBrHC—CHCIBr in the trans-conformation.

All the other point groups refer to molecules with axes of rotational symmetry
(rotation groups).

C,: Molecules with an n-fold rotational axis (n # 1) as their only symmetry
element. Examples: H>O, (C,) and Cl3C—CHj (C3). Linear molecules without
a centre of inversion symmetry belong to the rotation group C; they in
addition possess an infinite number of mirror planes which intersect in the
molecular axis (Cooyp).

S.: Molecules which have as their only symmetry element an axis of rotational-
reflection symmetry of even order (n = 2m, beginning with m = 2). (For an
example, see Fig. 6.7.) The point group S, contains only the inversion i and
the identity operation E; therefore, S, = C;.

C,.»: Molecules with a rotational axis of order n > 1 (Cy;, = Cs) and a (horizon-
tal) mirror plane perpendicular to it. (The term “horizontal” results from the
convention that the rotation axis is taken to be vertical.) The 2n symmetry
operations follow from those of the rotation group C, and its combination with
the reflection oy,; S, = o, C,. If n is an even integer, the molecule contains
a centre of inversion symmetry due to S, = i. Example: butadiene in the planar
trans conformation, Cyj,. These molecules are invariant under the following
elementary symmetry operations: identity operation E; rotation by 180° about
an axis perpendicular to the plane of the image and passing through the centre
of gravity of the molecule; reflection in the plane perpendicular to that axis and
containing all the atoms of the molecule; and finally inversion about the centre
of gravity of the molecule, which is also a centre of inversion symmetry.
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Fig. 6.7a,b. Some examples of point groups. (a) /st row, left: NOCI, point group Cy; centre:
CIBrHC~—CHCIBr in the frans conformation, point group C;; right: HyOz, point group C;.
2nd row, left: Cl13C—CHj3, point group Cs; centre: point group S4; right: butadiene in the
planar trans conformation, point group Cox. (b) Ist row, left: HyCClp, point group Cay;
centre: H3C—CHz, side view; right: ditto, but viewed along the C—C molecular axis. The
CHj3 groups make an angle which is not a multiple of 7/3; point group Ds. 2nd row, left:
H,C—CHa, point group Doy ; centre and right: as in the 1st row centre, but the CH3 groups
make an angle of /3, i. e. the hydrogen atoms of one methyl group fit in the gaps between

hydrogens of the other group
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: Molecules with a rotational axis and »# mirror plane(s), all of which contain

the rotational axis. The mirror plane is “vertical”, since it contains the axis of
rotation; it is denoted as o,. In the case n > 2, the symmetry operation C,
creates additional equivalent, vertical mirror planes. The symmetry operations
of the point group C,, are the rotations about the n-fold axis of rotation and the
n reflections in the mirror planes. If n is an even integer, a distinction is made
between two different classes of mirror planes: every second mirror plane is
denoted as o, while the planes between are called o, (for dihedral). Examples:
H,CCl, (C3,), NH3 (C3y). The group Cw, contains linear molecules without
a mirror plane perpendicular to the molecular axis (for example OCS); the
symmetry operations are: infinitely many rotations about this axis, and just as
many reflections in planes containing the molecular axis.

Molecules with an n-fold rotational axis (C,, n > 2) and a twofold rotational
axis perpendicular to the principal axis. An example of D3 is H3C — CHs, if
the CH3 groups are staggered relative to each other by an angle which must
not be a multiple of /3.

: This point group contains, in addition to the symmetry elements of the point

group D,, a plane o} perpendicular to the principal axis (i. e. horizontal). Com-
bining the rotation operations of the rotation group D,, with the reflections oy,
yields n improper rotations S, (S, = 0,C,) and n reflections o, (0, = C,0%)
in addition to the operations of D,,. If n is even, the n mirror planes are divided
into n/2 o, planes (containing a C, axis perpendicular to the principal axis)
and n/2 o, planes (containing the angle bisectors between two C, axes per-
pendicular to the principal axis). Here, when rn is even, a centre of inversion
symmetry is again present, due to S, = i. Furthermore, linear molecules with
a symmetry centre (D) should be mentioned here.

: This point group contains, in addition to the symmetry operations of the

group D,, n reflections o, in planes containing the C, axis and bisecting
the angles between two neighbouring C, axes. The combination Cyoy =
06,Con = $2,(Cy — Cy) produces n additional improper rotations S’z‘n *k =
1,3,...,2n — 1). This point group has a centre of inversion symmetry when
n is an odd number. An example for the point group D3, is H;C — CH3, when
the H atoms of the two CHj3 groups are offset into the gaps of the opposing

group.

We now consider molecules which have more than one symmetry axis of more

than twofold symmetry. The most important of these point groups are those which
are derived from the equilateral tetrahedron and the regular octahedron (Fig. 6.8).
Their pure rotation groups — that is the groups of operations which consist only of
rotations about symmetry axes — are denoted by 7 and O. The symmetry group of
the regular octahedron is at the same time that of a cube, since the latter has the
same symmetry elements. In addition, a regular octahedron can be inscribed within
a cube in such a manner that the sides and the vertices of the cube are equivalent with
respect to the octahedron. O is thus the pure rotation group of a cube. An equilateral
tetrahedron can also be inscribed within a cube. The vertices of the cube are now,
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Fig. 6.8. Upper part: An equilateral tetrahedron inscribed
in a cube; Lower part: A regular octahedron in a cube

however, no longer equivalent (four of the cube’s vertices are now also vertices of
the tetrahedron). The equilateral tetrahedron thus has a lower symmetry than that of
a cube; T must be a subgroup of O. Figure 6.9 shows the axes of rotation belonging
to the groups T and O.

Fig. 6.9. Examples of the rotational axes of the equilat-
eral tetrahedron (rotation group T) (Upper part) and of
the regular ocathedron (rotation group O) (Lower part)
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T: The symmetry elements are the 4 threefold and the 3 twofold axes of the regular
tetrahedron, which permit 12 rotational symmetry operations. The 4 C5 axes
of this rotation group pass through the centroid and one vertex each of the
tetrahedron. The C, axes pass through the midpoints of opposite edges of the
tetrahedron.

O: The 3 fourfold, the 4 threefold, and the 6 twofold rotational axes form the
symmetry elements of the rotation group of the regular octahedron and allow
24 rotational symmetry operations. The C4 axes pass through opposite vertices,
the C3 axes through the centroids of opposite faces, and the C; axes through
the midpoints of opposite edges of the octahedron.

T;: The full symmetry group of the equilateral tetrahedron consists of the rotational
elements of the group T as well as 6 reflections in the ¢, mirror plane and
6 fourfold axes of improper rotation, S4. The molecules CHy, P4, CCly, and
anumber of complex ions with tetrahedral symmetry belong to this point group.
Oy: Adding all 9 mirror planes of the cube to the pure rotation group O, we ob-
tain the important group O;,. Examples of this symmetry are the molecule SFg,
the ion (PtClg)?~, and numerous octahedral coordination compounds. The mir-
ror planes 3oy, and 60, which belong to the group Oy, give rise to the additional
symmetry operations 654, 8S¢, and i. Finally, we also mention the icosahedral
groups, which are currently relevant due to the interest in Cgp.

6.3 The Effect of Symmetry Operations on Wavefunctions

In Sect. 5.2, we showed using the example of benzene how a rotation of the coordinate
system causes a transformation of the wavefunctions. We now want to expand on
what we learned there in two ways:

1. We generalise to the case of arbitrary symmetry operations, not just rotations.
2. The wavefunctions may refer not only to a single electron, but to several.

In order to study the effects of symmetry operations on wavefunctions, let us
assume that the set of mutually degenerate wavefunctions

U, 0, ..., WUy (6.1)

all belong to a particular energy eigenvalue of a Schrédinger equation.

We first consider just one single symmetry operation, which we denote by A.
Since the Hamiltonian is supposed to be invariant with respect to the transforma-
tion A, it must commute with A. However, this means that not only ¥, but also
A applied to ¥, is an eigenfunction of the Schrodinger equation belonging to the
same energy as the set (6.1) [compare (5.29)—(5.32)]. Since (6.1) were supposed to
be the only wavefunctions belonging to this energy, it must necessarily be possible
to represent AY; as a linear combination of these wavefunctions, having the form:

M
AW = Z aim¥n - (6.2)
m=1
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The coefficients ay,, in this equation are constants, while the wavefunctions naturally
depend upon the electronic coordinates. A relation of the form (6.2) holds not only
for ¥y, but also for any wavefunction in the set (6.1), so that we obtain

M
AV =Y ajmWn . (6.3)
m=1

Here, the coefficients a, depend on the one hand on the index of the wavefunction
which occurs on the left, but on the other hand also on the indices of the wavefunctions
¥,, on the right. In this sense, we can say that the effect of the operator A on ¥
corresponds to the multiplication of the vector (6.1), which is then to be written as
a column vector, by a matrix [ay,]:

A= [ajm]. (6.4)

The identity operation, which leaves the vector (6.1) unchanged, is denoted by E.

Let us now see what happens if we let first the operator A and then the operator B
act on ¥;. We thus investigate the effect of the product BA when it is applied to the
wavefunction ¥;, whereby in analogy to (6.3) we may assume that

M
BY; = Z B jm Wi (6.5)

m=1

holds.
We first insert the right side of (6.3) into BAY; = B(AY;), obtaining

M
BAW; = B(AW;) =B (Z ajmwm) ) (6.6)
m=1

However, since B has nothing to do with the coefficients, but rather acts only on the
wavefunction ¥ which follows them, we can write for the right-hand side of (6.6):

M
Z ajmB W, 6.7)
m=1

and then use (6.5):

M M
D i ) bm¥i 6.8)
m=1 =1

The two summations over / and m can be exchanged, so that we finally obtain instead
of (6.6) the following equation:

M M
BAW; =) (Z a jmb,,,,) 7 (6.9)

=1 \m=1
—————
cji
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Application of the product BA to ¥; thus yields again a linear combination of the
¥;, with however new coefficients c;;. We can therefore associate a matrix C with
the operator product BA,

BA — [ci]l=C, (6.10)
where according to (6.9), the coefficients ¢ are related to the coefficients a,, and
by, through the equation

M
i =Y ajmbm . (6.11)
m=1

This is simply the product rule for the matrices A’ = [a ], B’ = [by]and C’ = [c;],
with A’B’ = C’. We thus recognise the fundamental concept that the operators
A, B, ... canberepresented by matrices, including the rule for matrix multiplication,
but with the operator product BA corresponding to the matrix product A’ B, that is
in reversed order.

Let us now see what the inverse of A does. We first write the expression

M
ATAY () =A"" (Zajmw,,,> 6.12)
m=1

and use as a trial function for A~',, on the right-hand side of (6.12) the following
expression:

M
AT, (D) = fur - (6.13)
=1

Going through the following straightforward steps

M
W) =) amA” W, (6.14)
=1

3
|

I
M=

Qjm Y ¥l (6.15)

1

-~
—

3
il

l
M=
M=

Ajm [t Wi (6.16)
m=1 I=1
we obtain
M
> S = 8515 6.17)
m=1

or, if we collect aj,, and f,,; into matrices A" = [a;,] and F' = [ f,,], we get the
equivalent matrix equation
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AF =E. (6.18)
However, this means that F’ is none other than the inverse of the matrix A’

F=A"1. (6.19)

The operator A~! is thus associated to the matrix A'~!.

Let us summarise: as we saw in Sect. 6.1, the symmetry operations which we
denoted as A, B, C, ... form a group. Each application of a group element A4, ...
to the set of wavefunctions is associated with a matrix A’, ..., which transforms the
wavefunctions among themselves. The product of two group elements corresponds
to a matrix product according to the rule

BA —» AR, (6.20)

whereby one has to take care that the order of the corresponding matrices is reversed
relative to that of the operators in the product. The inverse of the operation A, i. e.
AL corresponds to the inverse of the matrix A’,i.e. A’ ~1 Furthermore, the identity
operation E naturally corresponds to the unit matrix E’. Finally, as we know from
linear algebra, matrices obey an associative law, e. g. (A’B’)C’ = A’(B'C’). We thus
can see that all of the properties of the original group of operations A, B, C are to
be found in the corresponding matrices A, B’, C’, . ... The matrices A’, B/, C’, ...
themselves form a group; this group of matrices is referred to as a representation of
the (abstract) group with the elements A, B, C, ... .

6.4 Similarity Transformations and Reduction of Matrices

We now recall a bit of knowledge which we acquired when considering rotations: we
saw that areal representation of the wavefunctions exists such that rotations transform
the p-functions into linear combinations [cf. (5.14)], and a complex representation,
where rotations simply cause the wavefunctions to be multiplied by a constant factor
[cf. (5.19)]. This leads us to the general question as to whether we cannot find a basis
set of wavefunctions in the present more complicated case which keeps the number
of wavefunctions involved in a transformation A to a minimum. This question will
lead us into a few basic mathematical considerations. As the reader will soon see,
we are looking for a similarity transformation. We consider the matrix C’ = (¢y;),
which possesses an inverse and whose indices k and j run just through the set of
indices 1, ... , M of the wavefunctions. We introduce a new set of wavefunctions yy
according to

M
Xe= Y (C Y. (6.21)
j=1

The inversion of (6.21) is naturally
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M
W= Chxk - (6.22)
k=1

We now apply the symmetry operation A to xi, leading in a simple manner to

M M M
Axe =Y (CHaAE = (C"u ) am¥m - (6.23)
=1 =1 m=1

Now, we express ¥,, on the right-hand side of (6.23) again in terms of x; according
to (6.22):

M M M
Axe=)_(C™ D am Y cmjx; - (6.24)
I=1 m=1 j=1

Rearranging the sums leads to

MM M
Ay = Z |: (C" M Zalmcmj] Xi- (6.25)
1 m=1

=

by j

In this equation, we have introduced the abbreviation by ;, defined by:

M M
bej = (€™ amCmj - (6.26)
=1 m=1

The reader who is familiar with matrix algebra will recognise that the right-hand
side of (6.26) contains simply a product of matrices. If we collect the elements of by;
into a matrix A’, we can rewrite (6.26) in the form

A =ClAC . (6.27)

In the language of matrix algebra, the matrix A’ is obtained from A’ by means of
a similarity transformation. The group properties remain unaffected by this trans-
formation: if we multiply out the individual elements in (6.27), the products from
C'~1C’ just yield unity. Now from mathematics, we know that a similarity trans-
formation can change a matrix A’ into a simpler form, in which only the elements
along the main diagonal and nearby, in the shape of square arrays, are nonzero;,
cf. Fig. 6.10. This form is called the “Jordan normal form” or “block form”. If the
powers of A’ remain finite, i.e. if A, n — oo are all finite, then A’ can even be
diagonalised. One could be tempted to believe that we can always take the matrix A’
to be diagonal.

Unfortunately, a difficulty arises at this point, when namely the general corre-
spondence
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Fig. 6.10. The typical structure of a reduced matrix (block
form). Outside the boxes, all the matrix elements are zero

A— C'AC =4
- (6.28)
B—C 'BC =P
holds. Then, in the case of group elements which do not commute, it can happen that
we cannot choose C’ in such a way that all the matrices A’, B’, ... are simultaneously
diagonalised.

Now there is an important branch of mathematics dealing with the theory of group
representations, in which it is shown that a minimal representation of A’, B', ... can
be obtained by applying the similarity transformation (6.28). What does such a rep-
resentation mean? It means that one can choose the basis set of the wavefunctions yj
in such a way that on application of all the symmetry operations of the group, only
a certain subset of the y; are transformed into each other. In other words, the basis
of the ), can be decomposed into components. These components naturally have, in
general, a much simpler behaviour under transformations than the original ¥;. And
now comes what is perhaps the most wonderful idea to arise out of the combination
of group theory with quantum mechanics: we had assumed a certain basis set ¥; or
Xk in our considerations; but the transformation properties of the x; do not depend at
all any more on the concrete quantum-mechanical problem at hand, but rather only
on the underlying symmetry group.

Thus, instead of finding the wavefunctions directly as solutions to the Schrodinger
equation, which can be very complicated, it will offen suffice to use group theory to
determine what transformation behaviour the basis vectors have in their representa-
tions. We can then require this symmetry behaviour of the wavefunctions, just as we
did in the case of ethene or of benzene (see Chap. 5). In those cases, we could deter-
mine the coefficients for the construction of ¢ from atomic wavefunctions uniquely.
In the general case, this will not always be possible, but in any event, the number
of unknown coefficients can be drastically reduced by using the group properties.
The transformation behaviour of basis functions under particular symmetry groups
is tabulated in the literature. Treating this topic in detail here would by far overreach
the framework of this book; it would become an encyclopedic listing, which would
not permit any useful physical insights. For this reason, we shall treat only a few
such symmetry properties and their notation as examples.
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6.5 Fundamentals of the Theory of Group Representations

6.5.1 The Concept of the Class

For later application, let us learn some fundamental concepts from the theory of
group representations. The number of elements in a group is called its order and is
often denoted by the letter #. Thus, & = 4 for the group Cy, and & = 6 for Cs,.
Two elements A, B of a group are called conjugate to one another if there exists an
element C such that

B=ClAC (6.29)

holds. If we represent the group operations by matrices, then (6.29) simply denotes
a similarity transformation; one thus speaks of a similarity transformation also in
the case of abstract group relations such as (6.29). If we multiply (6.29) from the
left by C and from the right by C~!, we obtain

A=CBC™!, (6.30)

which means just that the conjugate relationship is reciprocal. A class is then defined
as the set of all the elements of the group which are conjugate to each other. In order
to find out which elements belong to the same class, we have to investigate the
similarity transformations. Taking as an example the group Cs,, we first choose the
element E and go through all the transformations C, obtaining

E'EE=E, (6.31)
C;'EC;=E, (6.32)

and corresponding relations, in each of which E appears on the right-hand side, since
E multiplied by any element of the group yields that same element. It follows from
these relations that E is in a class by itself. Taking as a second example o,,, we look
for elements in the same class as o,. We take

E Y o,E) =0, , (6.33)

which follows immediately from the properties of E. In order to verify the next
example in the equation

C;lo,C3 = Cylo) = Clo, = o), (6.34)

we look at the group table of the group Cs, (Table 6.2) and immediately obtain the
result in the left-hand side of the equations (6.34). Since Cg = E, where we can
write the left side as C3C3, we find C; ' = C?. Finally, we look again at the group
table, and can verify the last equation in (6.34). In a similar manner, we obtain the
results
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(€)) (0,C2) =0, (6.35)
av‘l(avau) =0y, (6.36)
01’)_101,0,/] =0, 6.37)
a;'_loval')' =o,. (6.38)

Clearly, the elements o,, 0, and o, belong to the same class. If we begin with o,
instead of o, we can arrive at o, by inverting C3 and from there to the other class
member o, . One can easily convince oneself that such operations never lead outside
the class itself. In a similar way, we can show that C3 and C% belong to a class. The
order of this class is the number of its elements; the class containing o, o, and o,
thus has the order 3, while the order of the class to which C5 and C% belong is 2.

6.5.2 The Character of a Representation

A central tool in the theory of group representations is the “character”. As we have

seen, each element of a group can be associated with a matrix. The term character

denotes the trace, or in other words the sum of the diagonal elements, of this matrix.
For the matrix

an  an
A/ = [a21 ay s ] , (6.39)
e .. akk

we thus have

k

Character of A’ = Trace(A') = Z aj . (6.40)
=1
H
N—N"
{ .
H Fig. 6.11. NoH,

Let us see how the character of a representation, which initially may very well be
reducible, can be determined. We take as an example the NoH, molecule, whose
geometric structure is shown in Fig. 6.11. One can readily convince oneself that
the symmetry operations of the group C,; leave this molecule invariant. These are
the following operations (cf. Fig. 6.12): the identity operation E, rotation by 180°
about an axis which is perpendicular to the plane of the figure and passes through
the centre of gravity of the molecule, reflection in a plane perpendicular to this axis
and containing the atoms of the molecule, and finally inversion through the centre
of gravity, which is simultaneously a centre of inversion symmetry. The group table
is given in Table 6.3.
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Fig. 6.12. The effect of the symmetry operations o, C», and i on the NoH, molecule. The
arrows marked ‘v’ and ‘d’ refer to ‘up’ and ‘down’

Table 6.3. Group multiplication table

Cy E C o i

Cy Cy E i o
o o i E Cr
i i o Cy E

We now seek a particular representation by considering the lengths of the N—H
bonds in the various positions of the molecule, denoting them as AR; and AR,
(compare Fig. 6.13). This example also makes it clear that the objects which are
operated upon by the symmetry operations may be not only wavefunctions [cf. (6.1)],
but also geometric forms. The identity operation E changes nothing in the molecule,
so that we immediately obtain the representation

AR\ _ (10\ (AR,
E (A Rz) - (0 1) (A Rz) . (641)
Onrotation about an axis perpendicular to the plane of the figure through the midpoint
of the N—N bond, AR, is transformed to AR, and AR, to AR;. We thus obtain

H
N N 4R,

AR,

H Fig. 6.13. The distances AR and AR, in NoH,
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AR\ _ (01) (4R
G <AR1) = (1 0) (ARZ) : (6.42)

The molecule is invariant under a reflection in a plane which is identical to the plane
of Fig. 6.13. For this operation, we find

AR\ _ (10\ (AR,
o (ARZ) = (O 1) (ARZ) . (6.43)
Finally we find for the inversion:
(AR _ {01\ (AR
’(AR1> = (1 o) (ARZ) ' (6.44)
The matrices which occur in (6.41)—(6.44) are those special ones which we were

seeking, for which we can immediately give the sum of the diagonal elements as the
respective characters. We thus arrive at Table 6.4.

Table 6.4.

Cop Character

At the left in the first column are the symmetry operations, followed by their matrix repre-
sentations; in the second column, the corresponding characters are listed

As we shall show later, the representation given by the matrices in Table 6.4
is reducible. Mathematically, it is possible to find the irreducible representations
systematically and to describe them in character tables. It is found that not only one
set of matrices can represent a given group of symmetry operations, but rather that
the representation can be realised in various ways, i. €. using various sets of matrices.
These different possibilities for representations are formally distinguished by using
indexed Greek letters, e. g. I'1, I3, etc. We thus obtain the following character table
(Table 6.5):

In the upper left-hand corner of this table is the symbol for the symmetry group,
in the present case Cy,. To the right in the same row are the symbols for the
group operations, i. e. the identity operation E, rotation about a twofold symmetry
axis Cy, reflection in a horizontal plane o}, and inversion i. The next row contains
the characters belonging to the representation /7 and corresponding to the respective
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Table 6.5. Character table for Cyy,

Con E Cy oy, i
Prelim. Name

I 1 1 1 1
Ie) 1 -1 -1 1
r 1 1 -1 -1
Iy 1 -1 1 -1

group elements. The following rows contain the characters for the representations
0. ...

Now, how large is the number of irreducible representations of a group? It is, as
can be proven mathematically, equal to the number of classes in the group. If we
choose a particular irreducible representation, then the character of all the operations
is the same within the same class. This can be readily understood, since the elements
within a class differ only by similarity transformations from one another; however,
the trace of a matrix is unchanged by a similarity transformation, i. e. the characters
remain the same. As can be shown for the group C,;, each of the 4 elements forms
a class by itself; there are thus 4 classes, each of which contains a single element.

Table 6.6. Character table for Cs3,

C3y E C3 C% Oy 01,) OJ,v
I 1 1 1

I 1 1 1 -1 -1 -1
I3 2 -1 -1 0 0 0

Let us consider a further example, the character table for the point group Cs,,.
It is given in Table 6.6. As we saw above, C3 and C3 form a class by themselves,
and likewise o,, 0,, and o”,,. This naturally means, considering what was said above
about characters and classes, that the characters of C g for all representations I, I,
I'; are the same as those of C3, as we can see from the character Table 6.6. The same
is true of 0,, o, and ¢”,,. For this reason, Table 6.6 contains redundant information;
it can be condensed into the more compact form of Table 6.7.

Table 6.7. Character table for Cs,

C3y E 2C3 30y

I} 1 1
I 1 1 -1
I 2 -1
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In this latter table, the numbers 2 and 3 in front of C3 and o, indicate how many
operations there are in the respective class. We note that E and i are always each in
a class by themselves.

At this point, we need an additional concept, the dimension of an irreducible
representation. This is the dimensionality of the matrices in the representation. Since
the character of E is just the number of elements in the main diagonal and thus is
equal to the dimension of the corresponding irreducible representation, we can see
that the character of E gives the dimension of the representation. In the literature,
following a convention introduced by Mullikan, somewhat different character tables
are often used, as shown in the following example (Table 6.8) for the group Cs,.

Table 6.8. Complete character table for C3,

C3y E 2C3 30, Operation

A 1 1 1 z x2 4+ y2, 22
Az R,
E 2 -l 0 ()R, Ry (¥ —y%, xy)(xz, y2)

—_
|

The first row begins with C3,, and all of the group operations are familiar, as is
the block of characters which is listed below them; what is new is the notation A,
A,, E for the irreducible representations. The E which appears here as a symbol for
an irreducible representation is not to be confused with the E which occurs in the
first row and denotes a symmetry operation of the group. The letters A and E denote
a particular behaviour with respect to symmetry, which we will discuss below. The
fifth column, containing z, R, indicates which coordinates [here (z) or (R,)] exhibit
the particular symmetry behaviour denoted by the Ay, ... beginning the same row. It
is thus made clear that, for example, the z coordinate in a Cartesian coordinate system
is invariant with respect to the operations of Ay, i. e. the matrix of the transformation
reduces to a 1, which is then identical to the character of the representation of the
particular symmetry operation. In the last row, x and y thus serve as a basis. Finally,
in the last column of Table 6.8, those basis elements are given which can be formed
from the squares or from quadratic or bilinear expressions using x, y and z.

6.5.3 The Notation for Irreducible Representations

Let us now explain the reason for the change of notation from I” to A;, Ay, etc. The
purpose of this change is to show by means of the symbol for a particular representa-
tion whether it is one- or multidimensional and which special symmetry properties it
has. The letters A and B refer to one-dimensional irreducible representations, with A
reserved for representations which are symmetric with respect to rotations about the
axis of highest symmetry and B for those which are antisymmetric. The character of
the symmetric representation is +1 and that of the antisymmetric representation is
—1. The letters E and T (or I") denote two- or three- dimensional representations.
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The indices g and u are added to A or B when the representation is even (g) or odd (u)
with respect to inversion. A prime or double prime is added to the symbol to denote
symmetric or antisymmetric behaviour with respect to reflection in the horizontal
mirror plane. The indices 1 and 2 are added to A or B when the corresponding
representation is symmetric (1) or antisymmetric (2) with respect to the C axis, with
the C, axis being perpendicular to the principal axis, or, if C; is not present, to
a vertical mirror plane. The indices 1 and 2 on E and F are complicated and will not
be discussed here. This notation is summarised in Table 6.9.

Table 6.9. Notation for irreducible representations

Dimension of the Characters under the operation Symbols
representation E C, i op C; or oy
1 1 A
1 - B
2 2 E
3 3 T
Ag B E; T,
-1 AuB E, Ty
A'B
_1 A// B//
Al By
-1 A B

* (Cy-axis perpendicular to the principal axis

In order to give the reader an example of the use of this new notation A, etc.,
we give here the character table for the group C,;, (Table 6.10):

Table 6.10. Character table for Cyj,

Con E C, i op

Ag 1 1 1 1 R x%,y2, 2%, xy
By 1 -1 1 -1 Ry, Ry  x7,yz

Ay 1 1 -1 -1 b4

By 1 -1 —1 1 X,y

6.5.4 The Reduction of a Representation

An important question is naturally that of how we can reduce or decompose a repre-
sentation and how we know which irreducible representations are contained in it. The
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characters help us to answer this question. If, for example, we consider the matrix A
shown in Fig. 6.10, we can on the one hand find its character by taking the sum of
its diagonal elements. On the other hand, this matrix contains the matrices of the
individual irreducible representations, which have their own group characters, and
we can see at once that the character of the reducible representation must be equal to
the sum of the characters of the irreducible representations which it contains. This
is naturally true of each element in the group to which the matrices correspond.

Let us consider the characters which occur in the example of the symmetry
operations relating to the lengths AR, AR; in the NoH, molecule. These characters,
according to Table 6.4, are given by 2,0,0, and 2. The question is now: How can we
relate these characters to those of the irreducible representations which are given in
Table 6.5? This means that for each group operation, E, C», i, and oy, a suitable sum
of the characters of the representations must be found. We thus arrive at Table 6.11,
i.e. precisely the desired combination (2,0,0,2).

Table 6.11. Decomposition of the characters of a re-

G P % ducible representation

Ag 1
B, 1 - - 1
Sum

Ag+B, 2 0 0 2

As is shown by group theory, and as we shall demonstrate in the following, the
decomposition is unique. In addition to finding by trial and error which combinations
of the individual irreducible representations lead to the given reducible representa-
tion, one can also proceed systematically. As we just pointed out, the character of the
reducible representations for each group element is equal to the sum of the characters
of the irreducible representations contained in them. This can be expressed by the
following formula:

X(R) =) nixi(R) . (6.45)

Here, x is the character of the in general reducible representation which corresponds
to the group operation R, where R can be any one of the symmetry operations. On
the right-hand side, a sum is taken over the various irreducible representations which
are distinguished by an index i, whereby #; is the number of equivalent irreducible
representations, i. e. the number of equivalent blocks in the matrix (see Fig. 6.14).

Equation (6.45) has a certain formal similarity to relations from quantum me-
chanics, where for example an arbitrary wavefunction ¥ can be decomposed into
a linear combination of wavefunctions ¥;. In fact, an orthogonality relation of the
form
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A (R) Fig. 6.14. An example of the reduction of a matrix with
two irreducible representations
A(R)
B(R)
1 _
W Y xR xu® =8 (6.46)
R

holds here also; the sum is to be carried out over all of the symmetry operations R.
Here, x; with the argument R~! has now taken the place of the complex conjugate
of the wavefunction, w;, familiar from quantum mechanics. For the derivation of
relation (6.46) we refer to the problems at the end of this chapter. In complete analogy
to quantum mechanics, employing (6.45) and (6.46), we can however show how often
an irreducible representation i is contained in the reducible representation. To this
end, we multiply (6.45) by x;(R™!) and sum over the individual group elements. We
thus obtain:

i=- Z X (R7Y) x(R) . (6.47)

We saw above that the characters of the irreducible representations are the same
when they refer to the different elements of a group belonging to the same class. For
this reason, it is sufficient to sum over only those elements which belong to different
classes, taking into account how many elements are in each class. We thus arrive at
the formula

1 _
no= XQ:Nx(R)Xi (R7Y) . (6.48)

Here, the summation is to be carried out over the classes. The meaning of the various
quantities in (6.48) is summarised in Table 6.12.

We again consider as an example the group Cy;, (Table 6.10) and look at the
representation I'j, which has the characters 2, 0,0, 2. The order of the group is
h = 4. Applying formula (6.48), we obtain the following relations:

nag=7(1-2-141-0-14+1-0-14+1-2-1) =1 (6.49)
E Cy i op
and
ng,=4{1-2-141-0-(=D+1-0-1+[1-2-(=D]} =0 (6.50)

as can readily be seen. In a corresponding manner, we find
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na, =0 (6.51)

u

ng, =1. (6.52)

u

We thus obtain the result that the representation I'; can be decomposed into the
representations A and B,. We can take an additional important step: our goal is,
finally, to construct electronic wavefunctions (or molecular vibrational functions)
which correspond to irreducible representations. These then give the minimal set of
functions which are mutually degenerate, i. e. which belong to the same energy.

Table 6.12. The meaning of the quantities occurring in (6.48)

n;: Number of times that the i-th irreducible repre-
sentation occurs in the reducible representation

Order of the group
Class of the group

Number of operations in the class O

Group operation
x(R): Character of R in the reducible representation

xi (R): Character of R in the irreducible representation

6.6 Summary

The method which we have applied in this chapter can be summarised as follows:

Many molecules exhibit symmetries. Under a symmetry operation, the molecule
is left unchanged. The symmetry operations form a group, in which the product of
two operations is given by the group table. If the symmetry operations are applied
to a set of mutually degenerate wavefunctions, these functions undergo a linear
transformation among themselves. The transformation coefficients form a matrix,
and the group of the symmetry operations can be represented by matrices. By
a suitable choice of the basis of the wavefunctions, the matrices can be brought into
a simple (block) form: this corresponds to decomposing the representation into its
irreducible representations. The characters (traces of each matrix) are a valuable aid
to finding the irreducible representations.

If we wish to apply this method to the exact (or more often, approximate) elec-
tronic wavefunctions for a particular molecule, the following essentials are sufficient:
we need calculate only those wavefunctions which belong to a particular irreducible
representation of the symmetry group of the molecule under consideration. Then,
e. g. in the LCAO method, we can determine exactly the unknown coefficients or at
least reduce their number drastically. We shall demonstrate this using the example
of the H,O molecule.
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6.7 An Example: The H2O Molecule

In this section, we want to derive the one-electron wavefunctions of the H,O
molecule. We use the molecular orbital method, where the orbitals i are repre-
sented as linear combinations of atomic wavefunctions ¢;:

Y= cip;. (6.53)
J

The coefficients c; are to be determined with the aid of the variational method which
we have already used in Sect. 5.3; we remind the reader of the formula

SV Hydv
—f v = Min! . (6.54)

If we insert (6.53) into (6.54) and assume the atomic orbitals to be practically
orthogonal to each other, we obtain a result with which we are already familiar:

> (Hj — Eu8;) ¢ =0. (6.55)
j

As we know, this is a set of homogeneous linear equations, which has a nontrivial
solution only when the determinant of the coefficients is zero. This condition fixes
a set of eigenvalues which are identical to the energy values E, as well as the
corresponding wavefunctions.

We now make use of the basic ideas of Sect. 5.2, where we saw that the coeffi-
cients c¢; could be entirely or partially determined by using group-theoretical con-
siderations, without the need to solve the generally complicated equations (6.55).
As a concrete example, we consider the water molecule, H,O. Our goal is to deter-
mine the molecular orbitals v in such a way that they correspond to the irreducible
representations of the symmetry operations of the molecule, in this case H,O. To
this end, we undertake the following steps:

1. We determine the symmetry group of the molecule.

2. We choose the atomic orbitals from which the molecular orbitals are to be
constructed according to (6.53).

3. The atomic orbitals are used as a basis set, from which a representation of the
symmetry group is generated. The details of this process will become clear in
the following.

4. The representation obtained in step 3) is then decomposed into its irreducible
representations. We thus obtain the possible linear combinations of atomic or-
bitals which can be used to form the molecular orbitals.

The H,0O molecule is shown in Fig. 6.15, which also indicates its various sym-
metry elements. The molecule clearly may be placed into a Cartesian coordinate
system in such a way that the H atoms lie in the plane spanned by the x- and z-axes.
The xz-plane is a symmetry plane (mirror plane), on which the reflection symme-
try operation o, can be carried out. The yz-plane, perpendicular to the xz-plane, is
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4 Fig. 6.15. H,O with its symmetry elements

likewise a plane of symmetry on which the operation denoted by o, is performed.
An additional symmetry element is the z-axis, around which a twofold rotation,
transforming the H atoms into one another, can be carried out. All together, these
symmetry operations yield the symmetry group Cy,. Its multiplication table is given
as Table 6.13.

Table 6.13. Group multiplication table for Cy,

Cay E Cy oy !
E E Cy Oy o’
Cy Cy E G{, Oy
oy oy o, E C
o o oy G E

The following properties can readily be derived from this multiplication table:
the group is a commutative group (Abelian group), i.e. each pair of elements A
and B obeys a multiplication rule AB = BA. From this property it follows im-
mediately that each element is in a class by itself, and since there are 4 elements,
there must be 4 classes. These 4 classes correspond to 4 irreducible representations
which are all inequivalent. It can then be seen that each irreducible representation
is one dimensional. The corresponding character table, which can be derived using
mathematical methods, is shown by Table 6.14.

Table 6.14. Character table for Cy,

Cy E C oy o,

Al 1 1 1 1 b4 22, y%, 2
Ay 1 1 -1 -1 R, xy
By 1 -1 1 -1 x, Ry Xz
By 1 -1 -1 1 v, Ry ¥z
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Fig. 6.16. Basis wavefunctions for H;O
(schematic drawing). Upper row: the
1s functions from the two hydrogen
atoms 1 and 2; middle and lower rows:
the 2s and 2p functions of the oxygen
atom

We now have to consider which atomic orbitals we will choose as a basis. Since
the hydrogen atoms are in their ground states before forming chemical bonds to the
oxygen, and since it requires a considerable excitation energy to raise them to the
first excited state with principal quantum number # = 2, it seems reasonable to use
1s orbitals for the wavefunctions which are contributed by the hydrogen atoms. In
the case of the oxygen atom, the 1s functions form a closed shell, which practically
does not participate in bond formation. For this reason, we use the wavefunctions
of the next shell; these are the 2s and 2p orbitals. We then have the following
wavefunctions as a basis set of atomic orbitals ¢;: 51, 52, 25, 2p,, 2py, and 2p;,
(compare Fig. 6.16). (More precisely, we should write here e. g. ¢;, instead of s,
etc.) We now wish to decompose the matrices of the representation according to the
basis set of these six wavefunctions. As the calculation shows, however, it suffices to
consider separately the wavefunctions s1 and s, which come from the two hydrogen
atoms, and those which come from the oxygen atom, i. e. 2s, 2p,, 2p,, and 2p,. It
may thus be shown that the matrices of the representation can be decomposed into
blocks corresponding to H and O (cf. Fig. 6.17).

Let us look at the behaviour of the wavefunctions of the hydrogen atoms more
closely. They form a basis sy, s;. These functions, as we have already seen in the case
of the hydrogen molecule, are localised near the protons and otherwise correspond
to the s functions of hydrogen (compare Sect. 4.3). We can examine just how these
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Fig. 6.17. Matrix representation for the basis set (6.16). The
H |2 functions belonging to H and to O are each transformed
A among themselves

functions transform under the symmetry operations. For example, the operation E
transforms s; and s, into themselves. On reflection in the o, plane, in contrast, the
two hydrogen atoms exchange places and thus the two wavefunctions s; and s, are
transformed into one another. If we apply similar considerations to all the other
symmetry operations, we readily obtain the relations

(-6 e@-CHE.
(-0 ) (-6

from which the matrices of the reducible representation can be read off. Taking the
traces of these matrices, we obtain the characters, which are collected in Table 6.15.

,  Table 6.15. The characters of the representation given in
Co E ¢ v

oy O
2H(1s) 2 O 0 2 (6.56)

As in the previous section, we decompose the reducible representation that occurs
in (6.56) into irreducible representations; this can be done in two ways: one is to use
the formula (6.47) with which we met previously,

1
= ; X(R)xi(R) ; (6.57)

and the other is by means of direct comparison with the character table. We shall
leave both methods as an exercise to the reader, since the procedure was covered in
detail in the previous section, and simply give the results in Table 6.16.

It thus becomes clear that the reducible representation in (6.56) decomposes into
the irreducible representations A; and B;.

We must now deal with the problem of how to transform the set of matrices
belonging to a reducible representation explicitly into the set of matrices belonging
to the irreducible representation. We recall that in Sect. 6.4 we found that a matrix
could be transformed into block form by carrying out a similarity transformation.
This, however, means simply transforming to a new basis. The transformation from
the basis of the reducible representation to the basis of the irreducible representation
is naturally a complicated problem in the general case; fortunately there exists
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Table 6.16. The characters of A; and B; and their sums,

/
Co E G ov oy ghich yield the characters of 2H(1s)
Al 1 1 1
B 1 - -1 1
2H(1s) = 0 2
AL+ B

a procedure for generating an irreducible representation from a given basis. For this
purpose, a so-called projection operator P is used. Intuitively speaking, this operator
projects the basis of the reducible representation onto a basis of the irreducible
representation. The derivation of the following important formula will be treated in
a problem and its solution at the end of this chapter; we therefore simply state it and
show how it can be applied by giving an example. The formula is:

I s PRI
Pi—ZZij,(R )R . (6.58)

Here, P; is the projection operator, which projects the original basis, (jl) in the
2

present case, onto a new basis belonging to the irreducible representation denoted
by the index i. How this “works” we shall see directly. The symbol /4 again denotes
the order of the group, R are the group operations, x; is the character belonging
to the i-th representation of the group operation R~!, and R is the (in general
reducible) representation matrix which corresponds to the group operation R. Let
us first consider the irreducible representation Aj; the index i in (6.58) thus refers
to “representation A;”. For R we insert the operations E, C», 0, and o7}, we use the
characters given in Table 6.14, and we denote the matrices belonging to E, C;, o,
and o, as E, C,, 6,, and 6,, respectively; then we obtain

Py =11-E4+1-C+1-8,+1-6)]). (6.59)

If we now put the matrices given in (6.56) into this expression, we find

1 1 0 01 01 1 0
(I RN R

1/1 1
PA1=5<1 1). (6.61)

In a similar manner, for the irreducible representation B, we obtain the result

i.e.

1 A A ~ ) _1 1 —1
PB2=Z[ —C2—0v+0u]—§(_1 1). (6.62)
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What do the results (6.61) or (6.62) mean in terms of the basis? To answer this

question, we apply P, to the original basis (il); this yields the result:
2

S1 _1 11 51 _1 s1+ 82
()30 D065

No matter which wavefunction we start with, i.e. with s; or with s,, we always
obtain the projection onto a certain linear combination, namely s; + s5. If, on the
other hand, we apply Pp,, then the plus sign in (6.63) becomes a minus sign:

sty 1 1 =1\ (s1)_1 51— $2
m(-30 DO

From this we can see that the basis wavefunctions for the irreducible representations
A1 and B; are given by

1
Ay Y= 5(51 +52),
(6.65)

By: Y= l(Sl —52) .
2

One can, in addition, show that the projection operators belonging to A, or B; yield
zero, i.e. (6.65) are in fact the basis functions for the irreducible representations
belonging to the group C,, which are generated by the basis functions s; and s;.
The result (6.65) should naturally not be at all new or surprising to us: recalling the
hydrogen molecule-ion, for which quite similar symmetry considerations hold, we
remember that there, too, we found these two wavefunctions, the symmetric and the
antisymmetric function. However, there it was accomplished without using group
theory, but rather by solving directly the equations for the coefficients.

We now turn to the somewhat more complicated case of the basis wavefunctions
for the oxygen atom. Here, as we remember, the basis consists of the functions 2s,
2px, 2py, and 2 p,. We thus initially have a 4-dimensional reducible representation.
Let us consider the effect of the symmetry operations individually; we again assume
that the oxygen atom is located at the origin of a Cartesian coordinate system.
Application of the identity operation E naturally yields the unit matrix. Considering
the application of a rotation by 180° about the z-axis, we must take into account
the fact that such a rotation changes the signs of the functions p, and p,, while
the s function and the p, function are left unchanged. A reflection through the
o, plane changes the sign of the p, function, but leaves all the other wavefunctions
unchanged. Using these facts, we can immediately write down the matrices of the
representation. We summarise them in the formulas (6.66):
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( 2 1000\ [ 2s
el2e| _[o100] [2p
2p, 0010 {2p,|"
2p, 0001/ \2p,
2s 10 00 2s
G 2Dy _ 0—-1 0 0] 1|2p:
2p, 00 -10]|2p, |
2p, 00 01/ \2p, 666
2s 1000\ /2s
2px 0-100] | 2ps
“l2p, | T loo 10| |2p ]
2p, 0001 2p,
2s 1000 2s
o |2e| o1 0 0] |2
v | 2p, 00-10]|2p,
\2p. 00 0 1/ \2p,

It is now an easy matter to set up the character table for the reducible representa-
tions given in (6.66) and, e. g. by trial and error, to find the irreducible representations
contained in this reducible representation. Or we can use (6.57) as we did before,
which can again be left as an exercise to the reader. The result is found to be the
decomposition of the representation (6.66) into the representations 2A| + B; + B;.
Application of the projection operator (6.58) allows us to find the basis which be-
longs to each irreducible representation. We thus obtain the following schematic
result:

Ay :2s,2p,,
Ay:—,

B, :2p,,
B, :2p, .

(6.67)

The empty space following A, indicates that there is no wavefunction which can be
constructed from the original basis and which transforms according to the symmetry
operations in the representation A;.

Let us summarise our results concerning the new basis functions of the molecular
orbitals using both the hydrogen and the oxygen wavefunctions; these are set out in
Table 6.17.

Table 6.17. The basis functions for the irreducible

O Orbitals H Orbitals .
representations

A125,2p; Y1 =3(s1+ %)
Ay

By 2py

By2py Y2 = 1(s1 — 52)
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4 Fig. 6.18. The 2p, function of oxygen, which belongs to the repre-
sentation By

From the original 6 atomic orbitals, a basis of 6 new molecular orbitals has been
constructed.

What can we now expect from group theory, and what are its limitations? In
Table 6.17, we have collected wavefunctions which have the same symmetry prop-
erties. Thus in the case of the irreducible representation B;, only the wavefunction
belonging to the state 2p,, has the corresponding symmetry properties (Fig. 6.18).
In the case of the irreducible representation B;, the two wavefunctions 2p, and ¥,
have, in contrast, the same symmetry behaviour (Fig. 6.19). The advantage is now
found in the fact that in choosing the wavefunctions which are to be used as basis
functions in formula (6.53), we need consider only those functions belonging to the
same irreducible representation.

For example, for B; the entire molecular orbital v is reduced to the wavefunction
which comes from the oxygen 2p, state, i.e. ¥ = ¢,,,. This is quite clearly
a non-bonding orbital. For the representation B;, we must however use a linear
combination of the wavefunctions 2 p, and ¥, i.e. ¥ = ¢;(2py) + c29,. If we insert

B,

S

N

Fig. 6.19. The function 2 px of the oxygen atom which belongs to the representation B, forms
a bonding state together with the v, function of the hydrogens. (For the antibonding state cf.
Fig. 6.21)
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A1 Zz

Fig. 6.20. The atomic functions of oxygen which belong to the representation A1 (above) and
those of the hydrogen atoms (below left) yield the wavefunction shown at the lower right as
a bonding function. The function 2p, does not play a major role here. (For the antibonding
state cf. Fig. 6.21. The 2p, wavefunction, which has no great influence, is not shown there)

this wavefunction into the extremal condition (6.54), we obtain two equations for
the unknown coefficients ¢; and c,. Setting the determinant of the coefficients equal
to zero then yields two energy eigenvalues. Here, one state is bonding and the other
is antibonding. For the irreducible representation A,, we have no basis functions,
while for A; there are three wavefunctions which are to be used (Fig. 6.20). The
wavefunction for the molecular orbital then takes on the form ¢y = ¢1(2s)+c2(2p,)+
c3y1. In this case, there are three wavefunctions with three energy eigenvalues which
are obtained from the solution of the secular equation. The result is shown in Fig. 6.20
for the bonding state.

A schematic overview of the wavefunctions obtained for H,O is given in
Fig. 6.21. A qualitative energy term diagram, as found from the solution of the
secular determinant, is reproduced in Fig. 6.22. We begin with the lowest energy
values: there are clearly two bonding orbitals (symmetry A;, B, which are occupied
by four electrons in total. Then (in the centre of the diagram) there are two nonbond-
ing states (of symmetry A; and Bj) which are likewise occupied by four electrons;
these come from the 2p, and 2 p,, orbitals of the oxygen atom. Finally, there are the
antibonding states (symmetry B, A;) which remain unoccupied. We leave it as an
exercise to the reader to find the wavefunctions of the ammonia molecule in a similar
manner.
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Fig. 6.21. An overview of the HO wavefunctions found in this section. Their arrangement

here corresponds to the energy-level diagram Fig. 6.22

A.B,B
2p 121,02 ss,
A
2s :
Oxygen H,0 Hydrogen
atomic orbitals atomic orbitals

Fig. 6.22. The energy term scheme of H,O
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Problems

6.1 a) Which symmetry operations leave

1. an equilateral triangle
2. asquare, and
3. three collinear equidistant points (~ on a line)

invariant? Consider here all the objects to be two-dimensional. Under the assumption
that the centres of gravity of the square and the triangle (line) coincide, determine
the orientation of the triangle (line) relative to the square for which the number of
common symmetry operations is a maximum.

b) Show for all the cases in part (a) that the symmetry operations in each case
form a group.

c) Let the vertices or the points on the line represent atoms between which the
interaction potentials Vj operate; the potentials are assumed to be invariant with
respect to the symmetry operations.

What is the minimum number of different Vj in each case, depending on the
position of the triangle (or the line) in the square, which is required to express the
overall potential V =3, Vj?

d) What are the conditions for energetically significant positions (maxima, min-
ima)? Determine the overall potential V explicitly for the four cases of maxi-
mum symmetry and compare the results numerically for Vi oc exp[—ar ] and
for Vi rjz.k. The parameters which occur (o and the bond lengths in the three
objects) should be chosen appropriately. Which arrangement gives the minimum
potential energy?

6.2 Prove the orthogonality relation (6.46) for characters.

Hint: We start from the following relation (based on Schur’s Lemma):
I If R - U(R) and R — V(R) are two inequivalent irreducible representations of
a group, then the equation

U(R)A = AV(R) (1)

cannot be satisfied by any matrix A independent of R, except by A = 0.
II) Any matrix A which is independent of R and which obeys the equation

U(R)A = AU(R) )

is necessarily a multiple of the unit matrix.

II) can also be formulated as follows: if A commutes with all the matrices of an
irreducible representation, then A is necessarily a multiple of the unit matrix.

We also suggest some intermediate steps: let R — U(R) (g-dimensional) and
R — V(R) (g’-dimensional) be two inequivalent irreducible representations of the
finite group. We express the matrices U and V in terms of their elements:
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U(R) = ug(R) , 3

V(R) = vjm(R) 4
and write

VHR) = Djm(R) . ©)

Let C be an arbitrary matrix with g rows and g’ columns. We define

Z URCV I (R) =4, (6)
R

where the sum runs over all the elements R of the group. Then A remains invariant
under the following transformation:

U(R)AV ™ (Ry) = A, (7

where Ry is an arbitrary element of the group. Proof?
From part I) of the general theorem, the important intermediate result follows
that the matrix A = 0, i.e.

Uikt (R)cy Vi (R) = 0. 3
>

R kI

What follows from this if ¢y is chosen arbitrarily (e.g. only one ¢ 7 0)? In a similar
way, we deal with part IT) of the theorem and thus obtain the first main result:

1 Lfor i=m k=1
- iRAmR = & . ’ 9
h guk( Y (R) lO otherwise 2

for each irreducible representation R — U(R) and
1 .
2 uik(R) bim(R) = 0 (10)
R

for two arbitrary irreducible representations R — U(R) and R — V(R). Making
use of the definition of the characters,

> ui(R) = x(R) (11)
and

D (R = xR (12)

I

or
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> R =% (R, (13)
we obtain
1
7D XRIR =1 s
R

For any two inequivalent irreducible representations, we find correspondingly
1 .
2 2 XRX(R)=0. (15)
R

The expressions X (R) and ¥’(R) can be cast in a different form. If the repre-
sentation matrices are unitary, then #;, = u},, and it follows that ¥ = x*, where
the asterisk denotes the complex conjugate. Furthermore, U~!(R) = U(R™!) and
therefore

2m(R) = upm (R7Y) . (16)
It thus follows that
X(R) = x(R7Y). (17)

If we distinguish the irreducible representations by indices i, j, then we can combine
equations (14) and (15) into a single orthogonality relation. What form does it take?

6.3 In preparation for Problem 6.4, we first treat the concept of the projection
operator. We employ Dirac’s bra and ket notation (cf. I). Let a vector space be
“spanned” by the vectors [k, m),k=1,... ,K,m =1, ..., Mg;i.e. each arbitrary
vector |v) in this space can be expressed as a linear combination of the |k, m). The
|k, m) are orthonormalised in the following sense:

(km|ln) = 81 Smn » 18)

where the §’s are the Kronecker symbols. Show that

> lkm) (km| (19)

is a projection operator which projects onto the subspace k£ which is spanned by the
vectors |km) with k fixed.

Give an intuitive interpretation of this fact by identifying the |km) with the
vectors vy, of a Euclidean space.

Hint: Represent |v) as a linear combination of the |km) and use (18) and (19).
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6.4 Prove that the projection operator (6.58) has the property claimed there:
1 R R
Pj= XR: Zi(RR, (20)

where ¥;(R) = x; (R™). For R, we can use here the matrix representation of the
symmetry operator R with an arbitrary but given basis.

Hint: introduce new basis vectors |km), in which the matrix representation is com-
pletely reduced (cf. the box representation in Fig. 6.14, with k as the number of
the box and m the index of the basis vectors within this box). Now insert the unit
operator

I= Z |km) (km| 1)

k,m

into the projection operator before and after R and use the form of the completely
reduced matrix representation of R. Make use of ¥;(R) in the form

XiR) =Y 8 it], 22)
ny

and use relation (19) from Problem 6.2, as well as

(k, m|R|l, n) = 8 ut, . (23)

The final result is
1 . . 1
P,-=§Z|J,n)(1,n|=§1j- 24

Why does this result show the property claimed for P;?
Note also the further consequences given at the end of the solution to this
problem.

6.5 Show with the help of formula (6.57) that the representation (6.66) can be
decomposed into the representations 2A; + B; + B,. Making use of (6.58), derive
the basis belonging to each of these irreducible representations.



7 The Multi-Electron Problem
in Molecular Physics and Quantum Chemistry

In this chapter, we shall meet up with some approaches to treating the multi- or many-
electron problem in molecular physics and quantum chemistry. Among them are the
Slater determinant approach and the Hartree-Fock equations to which it leads, which
we will discuss for both closed and open electronic shells. An important concept
is the correlation energy between electrons, and we will introduce several general
methods for dealing with it.

7.1 Overview and Formulation of the Problem

7.1.1 The Hamiltonian and the Schrédinger Equation

In the following sections, we continue what was begun in Chaps. 4 and 5, where we
already introduced some important methods using simple molecules as examples.
Here, we deal with approaches to finding the electronic wavefunctions of molecules
in general, including complex molecules. In the general case, N electrons with the
coordinates r;, j = 1,..., N move in the Coulomb field of the M nuclei with
coordinates Rx, K = 1,..., M and nuclear charge numbers Zg, and are also
coupled to each other via the Coulomb interactions. The nuclei are taken to be
fixed at their equilibrium positions Rk, which they possess in the molecule under
consideration. For an electron with the coordinate r ;, we thus find an overall potential
given by:

V) =) Vi), (7.1)
K

where the individual contributions consist of the Coulomb interaction energies be-
tween the electron j and the nucleus K:

ZK€2

VK(rj) = (72)

*4meo|Rg —rj|
The Hamiltonian for the electron with index j then contains the operators for the
kinetic energy and the potential energy, i.e. it is given by:

2

I
H@rj) = H(j) = _2_mov} + V(r)) (7.3)

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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(In a more exact treatment, the spin-orbit interaction would also have to be taken
into account, but we shall neglect it here.) Between the electron with index j and
an electron with index / there is in addition a Coulomb interaction, whose potential
energy is given by:

2

e
Wi=——"7-—. 7.4
7 4meglr; —r| (74)
The interaction energy of all the electrons may then be written as:
1 é?
Hip = = S — 7.5
nt 2 ; 47t80|rj —rl| ( )

The factor 1/2 guarantees that the Coulomb interactions between each pair of elec-
trons are not counted twice in the sum, since the indices j and / run over all electrons
independently of one another, the only limitation being that an electron does not
interact with itself, i.e. j # [.

After these preparatory definitions, we are ready to write down the Hamiltonian
of the overall system; it has the form:

N
H=) H()+ Hu. (7.6)
j=1

The Schrodinger equation is then
HY(@ry,...,ry) =E¥(ry,...,ry), (1.7)

where the wavefunction ¥ depends on all the electronic coordinates. Although the
Hamiltonian H does not explicitly contain the electron spins, it is still important that
the wavefunction ¥ also be a function of the spin coordinates, so that we can take
the Pauli exclusion principle into account in a suitable manner, as we have already
seen in Sect. 4.4. While it is in fact possible to solve the one-electron Schrédinger
equation corresponding to the Hamiltonian (7.3) by using suitable approximations
or numerical methods, the solution of the many-electron problem described by (7.6)
and (7.7) presents considerable difficulties, since the electrons interact with each
other. Even when there are only two electrons moving in a predetermined potential
field (7.1), the problem cannot be solved exactly. We must therefore search for
suitable approximate approaches; this process can be aided by applying our physical
intuition.

7.1.2 Slater Determinants and Energy Expectation Values

One such approximate method can be found in the form of the Slater determinant,
which we have already introduced in Sect. 4.4. Each individual electron is described
by a wavefunction ; these are distinguished by their quantum numbers, denoted
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as ¢. In addition, an electron can be in either a spin-up state « or in a spin-down
state 8. The electron with index j thus can occupy states of the type

Y (rja()) (7.8)

or

Y )B() . (7.9)

For the following considerations, it is expedient to introduce a uniform notation for
the wavefunctions with spin up or with spin down. We call them s,, and adopt the
convention:

Sip =,
12 (7.10)
s_1i2=8.
The index m = 1/2 clearly refers to spin up and the index m = —1/2 to spin down
electrons. We can now combine (7.8) and (7.9) into the form
xk()) = Vg )sm(j) - (7.11)

We have abbreviated the functions on the right-hand side of (7.11) as the wave-
function xx(j); here, k is a quantum number which includes the quantum numbers
g and m:

k=1(q,m). (7.12)

In order to avoid an overly complicated notation for our method, we let the
index k take on the successive values 1, ..., N. This scheme is quite sufficient to
allow us to distinguish the different quantum states, and by a suitable renumbering
it can be related to (7.12); we will not concern ourselves here with the details of this
purely formal correspondence. Using the wavefunction y;, we can write the Slater
determinant in a simple way:

x1(D) ... xn(D)
x12) ... xv (@)
. (7.13)

2l-

x1(N) ... xn(V)

As we have already seen in some examples in Sect. 4.4, the Slater determinant
takes the Coulomb interaction of the electrons among themselves into account in
a summary manner. We will now prove this in general. To this end, we first formulate
the expectation value for the energy using the Hamiltonian (7.6) and the determinant
(7.13):

F:</W*HWdV1,...,dVN>, (7.14)
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where the angular brackets refer to the spin functions. The evaluation of the integrals
on the right-hand side of (7.14) is a tedious matter, and we relegate it to Appendix Al.
Here, it suffices to give the final result:

E= Z Hep+ 5 Z(ka' w — Vi k) - (7.15)
kK

In this expression, the symbol

Hyy = < / Xz H(r) Xde> (7.16)

represents the expectation value of the Hamiltonian (7.3) for a single electron in the
quantum state k. The angular brackets imply an expectation value with respect to
the spin functions, as already noted, while the integral over dV refers to the spatial
coordinates of the electrons. Because we have assumed product wavefunctions (7.11)
and owing to (7.12), (7.16) can be simplified to

Hy = f I/J;(r) Hr)y,r)dVv . (7.16a)

We have already met the quantities Vi w and Vi vk as special cases in previous
sections.

Vi ikt = <[/ Xk(l)Xk/(2) | |Xk(1)Xk’(2) dVIdV2> (7.17)

represents the interaction of the charge density of electron (1) in state k with the
charge density of electron (2) in state k’. This is a Coulomb interaction energy,
-which has an obvious classical interpretation. On the other hand, we also obtain the
expression

Vi . = < / / KOO D12) dvldv2> , (7.18)

which, generalising our earlier results, can be termed the Coulomb exchange inter-
action energy.

Equation (7.15) is the most important result of this chapter. As we know from
Sect. 4.4, a variational principle holds in quantum mechanics, and it states that
the energy E, which is calculated approximately in (7.15), is always greater than
or at most equal to the exact energy. The attempt to minimise this energy E by
making a suitable choice of the wavefunctions v, leads to the so-called Hartree-
Fock equations, which we shall present below for various important special cases.
In solving these Hartree-Fock equations, we will arrive at the “self-consistent field”
(SCF) method.
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7.2 The Hartree-Fock Equation.
The Self-Consistent Field (SCF) Method

Depending on how the individual electronic states are filled with electrons having
parallel or antiparallel spins, (7.15) takes on various explicit forms. We will find
different expressions for closed shells and open shells. Then, in Sects. 7.5 through 7.7,
we explore the limits of the Hartree-Fock method described here, and try to show
what approaches must be taken in order to improve the technique. As the reader will
see, an extensive field remains to be explored, including the rational application of
high-speed computers to the problem of calculating energy expectation values and
wavefunctions.

As a first step, we attempt to simplify the expressions V in (7.17) and (7.18),
recalling the assumption of product wavefunctions in (7.8) and (7.9). Inserting these
into (7.17), we can split the right side into an integral over the spatial functions and
a matrix element referring to the spin functions:

Vi i = qu/,qq/ {($m (D)sm (1)) (s (D)8 (2))

where
2

Voo .aa = / 1/f;("l)l/f;/("2)———4J_["30

Y)Yy ) AVidY; . (7.19)
[ry —rp]

Since the spin functions are normalised, we find immediately that
(SmSm) = 1. (7.20)
For the exchange interaction, we obtain:

Vi wx = qu/,q’q<sm(1)sm’(1)) (sm(2)sm (2))

where
2
Vg .aq = / 'ﬂ;(r1)'ﬂ}(r2)4mo|ﬁ ey Vg r)Yq(r2) dVidv, . (7.21)
But now we have
(SmSm') 0 only when m =m'. (7.22)

The exchange interaction thus operates only between electrons having the same
spins.

7.3 The Hartree-Fock Method for a Closed Shell

In this section, as we have already said, we shall investigate some special cases of
the energy expression (7.15), and in the process introduce the Hartree-Fock method.
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We first consider the problem of so-called closed shells. In this case we are dealing
with electronic levels characterised by quantum numbers g which are filled with
pairs of electrons having their spins antiparallel. There are thus N/2 electrons with
spin up and N/2 electrons with spin down. Let us take a closer look at the terms in
(7.15) keeping this aspect in mind: the energy expression (7.16) now occurs twice
with the same quantum numbers g, since it refers once to the spin up and once to
the spin down electrons. Instead of the sum over all quantum numbers &, we can
therefore replace the first sum in (7.15) by quantum numbers over g if we multiply
the sum by a factor of 2. The Coulomb interaction (7.19) refers to both electronic
spin directions, so the double sum ), in (7.15) requires a factor of 4. In the case
of the exchange interaction (7.21), which enters (7.15) with a negative sign, the spin
quantum numbers belonging to k and k” are the same, so that once for “spin up” and
once for “spin down” results in a factor of just 2. It should thus be clear that for the
case of a closed shell, expression (7.15) reduces to:

E=2)Y Hyu+Y QViar — Varaa) - (7.23)
9 99’

Equation (7.23) can be used as the starting point of a variational calculation,
for which we normalise it, taking into account the condition that the individual
electronic wavefunctions be normalised. We need not explicitly apply the condition
that they are mutually orthogonal, since it can be shown that the wavefunctions can
always be chosen to be orthogonal within the determinant. This follows from the
fact that columns or rows can be added together without changing the value of the
determinant; using the Schmidt orthogonalisation scheme, it can be seen that the
wavefunctions can always chosen to be mutually orthogonal as long as they were
linearly independent to begin with. We thus require:

(W* | Het| %) = Min.! (7.24)

and take as a supplementary condition:

/w;wqu=1, g=1,...,N, (7.25)
from which the normalisation of the overall wavefunction naturally follows:
(*|w)=1. (7.26)

Variation with respect to a wavefunction v, means that we formally differentiate
the right-hand side of the energy expression (7.23) with respect to 1, and drop the
integration over the corresponding electronic coordinates. Applying this method, we
immediately obtain the relation

2

av; 1
471'8()712 2 wq( )

O, +2 3 [ 1wy @F
7 , (7.27)

-3 f U QW Q) dVa Y (1) = 9, (1) ,
q/

47‘[801‘12
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where the g, are Lagrange multipliers which take into account the supplementary
condition (7.25).

The resulting equation for ¥, can be interpreted as a kind of Schrodinger equa-
tion. The first term in (7.27) represents the operators for the kinetic and potential
energy of the wavefunction v, in the field of the fixed atomic nuclei. The second
term can be interpreted in a simple way if we remind ourselves that

elyy () (7.28)

is the charge density of electron (2) in the state q’. The sum then clearly represents
the Coulomb interaction energy of electron (1) in the field of the charge densities
(7.28). This term can be understood in terms of classical physics. Important and
new, in contrast, is the third term in expression (7.27), which describes the Coulomb
exchange interaction. Here, electron (1) is in wavefunction v, and experiences the
exchange density of electron (2); the latter is given by the expression

ey ()Y, (2) . (7.29)

From the physical meaning of the terms on the right-hand side of (7.27) which we
have just discussed, it follows that the parameter ¢, can be seen as the energy of
an electron in the quantum state g. The set of equations (7.27) are distinguished
from the usual Schrédinger equation in that they contain non-linear expressions in
wq’ 1:[/q’ .

These equations (7.27) can be solved by an approach which is referred to as the
“self-consistent field” method. The first step is to assume that the wavefunctions v,
are already known, at least approximately. In the next step, these assumed wavefunc-
tions are inserted into the expressions for the charge density (7.28) and the exchange
density (7.29), while the wavefunctions which follow H and which occur behind the
integrals are taken as still to be determined. The set of equations (7.27), which has
thus been linearised, is then solved for the ¥, and the resulting wavefunctions are
reinserted into the charge and exchange densities (7.28) and (7.29), giving improved
starting values for a new iteration. This procedure is continued until, at least in prin-
ciple, the wavefunctions obtained are practically identical to those assumed in the
previous step. The method thus leads to an internally consistent set of wavefunctions,
as is implied by the name “self-consistent field” method.

7.4 The Unrestricted SCF Method for Open Shells

If closed shells are present, as was assumed in the previous section, then in the
Hartree-Fock approach the individual electronic states are each occupied by two
electrons having antiparallel spins. In the case of open shells, the electronic states
which refer to the orbital motion of the electrons and which correspond to a pair of
electrons with spin up and spin down may be different states. The Slater determinant
then takes on the following form [using the notation of (5.65)]:
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V=1 UV Y - aanl s (7.30)

where the functions v, ...y refer to electrons having spin up, and the functions
Yy i1 Uy 4w to electrons with spin down. In the following, we shall also allow
wavefunctions belonging to different spin directions to have the same dependence on
the spatial coordinates. We therefore allow the case that some of the orbital quantum
numbers of the group M+ 1, ... , M + N are identical to some of those of the group
1, ..., M. Since the spins of these two groups are different, the determinant (7.30)
does not vanish. The normalisation factor of the determinant is given by:

(M + NV, (7.31)

By a proper choice of the y/’s, the expectation value of the energy of the molecular
Hamiltonian is to be minimised. We assume that the wavefunctions in (7.30) are
mutually orthogonal. This expectation value can then be obtained directly from
(7.15) by a specialisation analogous to Sect. 7.2, so that we simply give the result
here. It is

M+N M+NM+N
= (WHW) =Y Hj+ Z D Vi
j=1 i=1 j=I1
M+N M+N (7.32)
__( Vl]]l+ Z Z l]ﬂ)
i=1 j=1 i=M+1 j=M+1
4-spins J-spins

Let us consider the different terms in (7.32). The Hj; in the first sum are defined by
(7.16a). We remember that they refer to the energy expectation value for a single
electron in the state j, where the energy consists of the kinetic energy of the electron
and its potential energy in the field of the nuclei. In the following double sum,
the quantities V;;;; represent the Coulomb interaction energies between the charge
densities of the electrons in states i and j. This interaction includes both electrons
of like spin and those of opposite spin. The next two sums are expressions for
the exchange interaction, which acts only between electrons having the same spin
direction. When we vary the energy E in (7.32) by varying a wavefunction v; or ¥ i
keeping the normalisation condition (7.25) in mind, we obtain the corresponding
Hartree-Fock equations.

7.5 The Restricted SCF Method for Open Shells

In the preceding section, we met the so-called unrestricted open-shell SCF method.
There, the wavefunctions for the many-electron problem were taken to have the
form of Slater determinants, which are easy to deal with. However, this type of
wavefunction is not necessarily an eigenfunction of the total spin. We will now
introduce a formulation for the wavefunctions which is already an eigenfunction of
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n Fig. 7.1. The excitation of an electron from the state m
into the state n, accompanied by a spin flip

m —H— m—i—

2 —H— z—ﬁ—
-

the total spin operator. This approach is threfore called the “restricted open-shell
method”. We shall treat triplet wavefunctions; the approach is principally due to
Roothaan. We assume that one electron from a filled shell, where the electronic
states each contain one spin-up and one spin-down electron, is taken from a state m
and put into the state n, and that its spin is flipped in this process (see Fig. 7.1).
A wavefunction thus results in which the z-component of the total spin is equal to
—1 - h. We write this wavefunction as _3¥". The indices m and n indicate that the
electron was excited from the state m into the state #n. The number 3 at the upper left
means that the wavefunction belongs to a triplet state, and the lower-left index —1
indicates that the z-component of the total spin has the quantum number S, = —1.
This wavefunction can be written as a determinant in the abbreviated form

—3 ‘Iln"lt = |w1$l ce nggmenl ’ (733)

where the normalisation factor is still to be included. In order to go from this state to
one where the z-component of the total spin is S, = 0, we need only use the ladder
operator for the z-component of the total spin; it is given by:

Sy =) lox()) +ioy(N] - (7.34)
J

In this equation, o, and o, are the usual Pauli spin matrices, and the arguments
(j) enumerate the electrons which are acted upon by the spin operators. An ele-
mentary but tedious calculation then gives (leaving out the normalisation factor) the
wavefunction

0Um = {1V - VW ¥mWl — WV YV Yn W} (7.35)

which belongs to the total spin § = 1 and to the z-component S, = 0. If we apply
the raising operator for the z-component of the spin a second time, we obtain the
wavefunction

W = YW VU Y Wl - (7.36)

As we already have seen in the unrestricted open-shell model, we can calculate the
energy in a relatively simple manner. We obtain the following expression:
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8 8
E=2) Hu+).

k=1 k=11

Vi — Viaw)

M=

1

closed shell
+Hmm + Hnn + an,mn - an,nm

open shell

(7.37)

g g
+ Z(zvkm,km — Vion,mk) + Z(Zan,kn — Vinnk)
=1 =1

closed — open shell interaction

which reflects the interaction energies within the closed shell, the interaction energy
between the two electrons in the now effectively open shell, and the interaction
energy between the two shells. The quantities which occur in (7.37) are the same as
in the preceding section. By variation of the energy E with respect to the individual
wavefunctions, the Hartree-Fock equations can again be derived. As was shown
by the examples in Sects. 7.2-7.4, the energy eigenvalues calculated using Slater
determinants can be interpreted in a quite simple manner. This should, however, not
obscure the fact that we are dealing here only with an approximation.

7.6 Correlation Energies

The Hartree-Fock method, which begins with the Slater determinants, is the most
widely-used computational technique in atomic and molecular physics. It allows the
exact calculation of the interaction effects between the electrons and the nuclei, and
the approximate calculation of the overall interaction effects of the electrons among
themselves. As one can readily see, the energy would be reduced even further by
allowing the electrons to avoid each other spatially, not only in a global way by
applying the Pauli exclusion principle, which requires the probability density for
two electrons having the same spin at the same point in space to vanish. Electrons
with antiparallel spins also have a Coulomb repulsion and will try to avoid each other
in order to reduce the total energy. Compared to the Hartree-Fock energy, in which
the Pauli principle has been taken into account via the Slater determinants, there
remains an additional energy reduction which would occur in an exact calculation
and which results from taking correlations into account, i.e. the tendency towards
mutual avoidance by the electrons. The definition of the correlation energy is thus

Correlation energy = exact nonrelativistic energy — Hartree-Fock energy .

7.7 Koopman’s Theorem

Once the electronic wavefunctions and the corresponding energies have been cal-
culated for a molecule with a closed-shell configuration using the SCF method, the
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ionisation of the molecule can also be treated, at least approximately. This is done
by applying Koopman’s theorem, which might better be called Koopman’s approx-
imation. It states the following: ionisation, consisting of the removal of an electron
from a molecule with closed shells, can be represented as the removal of an electron
from a given self-consistent field orbital, leaving the other electrons unaffected. This
1s, in general, a good approximation, although it neglects the following effects:

1. the reorganisation energy of the electrons in the ion;
2. the difference between the correlation energy of the neutral molecule and that
of the ion.

The second point is clear, since the correlation energy is generally neglected in the
Hartree-Fock method. The first point is due to the fact that the charge distribution
of the electrons gives rise to an effective potential for each particular electron. If
an electron is then removed, this effective potential is naturally altered. Koopman’s
theorem thus states that, in general, the alteration is small.

7.8 Configuration Interactions

As we mentioned above, the Hartree-Fock method leaves an important effect out of
consideration, by not taking into account the correlations between the electrons. For
this reason, other methods have been developed which can treat electron correlations,
at least partially. We begin with a single Slater determinant:

iy ky = :/17—' [ Xk ) Xk P2) - - X P (7.38)
where we want to assume, in contrast to the Hartree-Fock method, that the wave-
functions yx; are already known. The indices & naturally denote the quantum numbers
of the individual electrons. For simplicity, we represent these quantum numbers by
a single symbol, which however places no limitation on the method. Since the wave-
functions ¥ remain the same (except perhaps for a factor of —1) when we permute
the indices k;, we can assume that the quantum numbers k are already ordered in
some particular fashion, e. g. in the sequence

k1<k2...<kN. (7.39)

If the wavefunctions x; of the individual electrons form a complete set in the
mathematical sense, then the determinants (7.38) also form a complete set for each
antisymmetric wavefunction ¥ of N electrons. This means that we can represent any
arbitrary wavefunction ¥, even in a many-electron problem, as a linear combination
of determinants like (7.38). If we take as a trial function

v = Z Cklkz...kN Wkl,..,kN » (740)

ky<ky<..ky
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then the wavefunction we are seeking can be determined by finding the coefficients
Ck, k,.... In principle, the method for solving the many-electron problem is no differ-
ent from that for a single-electron problem, where we can represent the wavefunction
we are seeking as a linear combination of known wavefunctions; the only difference
is that the combinations of indices become somewhat more complicated. We insert
(7.40) into the Schrodinger equation:

HY =EV , (7.41)

where H is the Hamiltonian for the kinetic energy of the electrons and their potential
energies in the field of the nuclei and of the other electrons [cf. (7.6)]. We add primes
to the indices k in (7.40), multiply the equation thus obtained by ¥/ , , integrate
over all the electronic coordinates, and take the expectation value with respect to the
spin variables. We thus obtain expressions of the type:

< / Ve dy A dVi dVN> , (7.42)

where the angular brackets represent the calculation of the expectation value with
respect to the spin variables. The evaluation of (7.42) is given in Appendix Al for

the special case that the set of quantum numbers k’l, e, kﬁ\, is the same as the set
ki, ..., ky. It is not difficult to generalise this result to the case (7.42), so that we
simply give the final answer here:
N
Z Z Hiji, .k
j=1 k}
v (7.43)
+ Z Z Viakjiekr Cry.o k) ky = B Cly ok -
ij=1 KK

The quantities Hyy and Vi are generalisations of those previously defined in
(7.16)—(7.18), i.e.

—hK2
Hjw = / Vi @) [Z—mOVZ + v<r)} Yo (r) dV (silsy) - (7.44)

The angular brackets indicate the orthogonality relations between the spin wave-
functions sk, s, which denote spin up (s = o) or spin down (sy = B). Viw wim
describes the Coulomb interaction energy between the electrons:

62

Vi prpm = * *,
k' Kk /ka Dy, ("2)47780r12 (7.45)
A (e Vi (r2) dVidVa (selsir) (sw|sir) .

The sums on k} and k”/ run over all the quantum numbers in (7.43). In order to keep
the notation in agreement with (7.40), we, however, must introduce the following
convention: the coefficients C in (7.40) are defined only for quantum numbers which
fulfill the condition (7.39). We stipulate that:
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1. Coefficients occurring in (7.43) vanish if two or more of the quantum numbers
indicated by their indices are identical.

2. If the rule (7.39) is broken, the indices of the coefficients will be reordered in
such a way that it is restored to validity. Depending on whether the permutation
is even or odd, the sign can change.

Equations (7.43) are a system of linear, homogeneous equations which can be solved
numerically using modern techniques with a digital computer, as long as the number
of coefficients has a limit and is not allowed to become infinite. This method is
often combined with the LCAO approach. In that case, the matrix elements Hpy
and Vi i are evaluated by setting the electronic wavefunctions ¥ equal to linear
combinations of atomic orbitals ¢; with free coefficients. These coefficients can
then be fixed in a first step, e. g. by solving the Hartree-Fock equations. The matrix
elements Hy and Vi pri can then be given as particular linear combinations of
integrals over atomic orbitals ¢;. For the numerical solution of the many-electron
problem using a supercomputer, the following steps are thus necessary:

1. Evaluation of integrals of the type

f¢;H¢,-dv,

R (7.46)

* * €
/¢j(1)¢j/(2)4———¢j//(1)¢j///(2) avidv, .
TTEOT12
The latter integrals are referred to as multiple-centre integrals.
2. Solution of the linear equations, i. e. calculation of the coefficients Cy, .. ry and
the corresponding energy eigenvalues.

7.9 The Second Quantisation™®

The results of the preceding section can be formulated in a much more elegant
fashion by using the so-called second quantisation. As we have already seen in I,
the photon field can be quantised by establishing a correspondence between each
light wave with a particular wavevector k (and a given polarisation direction) and
a harmonic oscillator which describes the energy of the wave. The energy expression
can be written in harmonic form and thus gives rise to a Hamiltonian H; which can
be expressed in terms of creation and annihilation operators by, by for the light
quanta: Hy, =), ﬁwkbk’Lbk. Starting with classical waves, we can thus describe the
creation and annihilation of light quanta, or photons. The operators b, by obey the
following commutation relations:

b b, —bibi =0, (7.47)
biby — by b =0, (7.48)
bibl, — bl by = S . (7.49)
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Now, however, we know that electrons also have a wave character, which is reflected
in the Schrddinger equation. If we quantise this electron-wave field, we arrive at the
particle character of the electrons. Just as in the quantisation of the photon field,
where the creation and annihilation operators describe the creation or annihilation
of light quanta, they here describe the creation or annihilation of electrons. Denoting
the electronic state by its quantum numbers, €. g. k or j, we postulate the following
commutation relations:

a,:r a;r + a; ak+ =0, (7.50)
achj+aja =0, (7.51)
afaj+ajaf =68 . (7.52)

These differ from the relations for photons in that there is a (4)-sign in the middle,
which is due to the fact that, in contrast to photons (bosons), two electrons (fermions)
cannot be in the same quantum state. Equation (7.50) fulfills this requirement; if
J =k, then it follows from (7.50) that

afaf =0. (7.53)

That is, if we try to create two electrons in the same state, this double creation,
no matter which state we apply it to, always yields zero. The other commutation
relations with the (4) signs then follow from self-consistency requirements which
we cannot treat in detail here. The method is now applied as follows: the Schrodinger
equation

HY =EWw (7.54)

has the following form in the second quantisation:

H = Z a;'_ ajH;; + % Z a;'_ a}_ ax aVij (7.55)
ij ijkl

where the matrix elements are given by (7.44) and (7.45). The expression (7.55) has
the advantage that it holds for any number of electrons. If one is treating a particular
problem in which a certain number N of electrons is present, then the Schrddinger
equation can be solved, atleast in principle, by constructing ¥ as a linear combination
of all possible functions in which precisely N electrons occur. We denote the vacuum
state as @y; it is characterised by the relation

aj @0 =0. (756)

Then a state having N electrons with the quantum numbers &; . . . ky can be built up
by N-fold application of the creation operator to the state @g:

qlkl---kN = a,: N aZ_NQO . (7.57)

The complete trial wavefunction is then given by a linear combination of the functions
defined in (7.57),
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= Z Cuy.ky @ G, - Py . (7.58)

The coefficients in this equation are still unknown quantities, which must be deter-
mined through, e. g. a minimisation of the expectation value of E. The trial function
(7.58) may contain completely unrestricted sums over the individual quantum num-
bers k. If two quantum numbers are the same, the wavefunction (7.58) vanishes by
construction, due to (7.53). Furthermore, if sets of quantum numbers are identical,
then by reordering the operators a™ they can be brought into a special form, e. g. in
agreement with (7.39), whereby depending on whether the permutation is even or
odd, the sign remains unchanged or is reversed. Finally, we treat the computation of
matrix elements in second quantisation. For this purpose, we make use of Dirac’s
bra and ket notation. If £2 is an operator which, as for example (7.55), can be for-
mulated in terms of creation and annihilation operators, then the matrix element of
the wavefunctions ¥, . . (7.57) and Wkiv-wk}\, is given by

Q‘Wkl,,,,,kN> . (7.59)

20 Kyt ky = <‘1’k;,...,k;V

Here, it is expedient to write CA in the form

, (7.60)

<<p() ak;V N akll

where the annihilation operators act to the right (cf. Problem 7.5).

As can be seen by comparing the method of 2nd quantisation with that described
in Sect. 7.8, the two are equivalent, but the 2nd quantisation is more elegant, because
the resulting equations can be very simply found by substituting (7.58) into (7.54).
Also, it is clear from the beginning which quantum numbers are to be used. In
addition, the 2nd quantisation permits some novel approaches to the explicit solution
of the problem.

7.10 Résumé of the Results of Chapters 4-7

In Chaps. 4-7, we have gained an overview of the methods available for determining
the electronic wavefunctions in molecules and their energy eigenvalues. Chapter 4
was devoted in particular to the LCAO method, i. e. the construction of molecular
orbitals for a single electron by taking linear combinations of atomic orbitals; as
an illustration, we treated there the simple molecules HEL and H,. Furthermore,
the hybridisation of the wavefunctions of carbon was introduced there. Chapter 5
presented a first insight into the way in which the calculation of the coefficients in
the LCAO method can be simplified or eliminated by making use of the symmetry
properties of the molecule; this was demonstrated for benzene and ethene. In Chap. 6,
we then made a systematic survey of symmetries and symmetry operations as well
as of the basic concepts and methods of the theory of group representations. These
methods were then applied in detail to the wavefunctions of the H,O molecule. As
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we saw, it is possible to reduce considerably the number of equations required for the
LCAO approach by making use of symmetry. Finally, Chap. 7 introduced a series of
methods for dealing with the many-electron problem. Simple approaches are based
on the Slater determinant and the Hartree-Fock method which is associated with
it. In order to take electron correlations into account, linear combinations of Slater
determinants must be employed. An equivalent, but more elegant method is found
in the 2nd quantisation, which we also treated briefly.

In the following Chaps. 8—10, we now turn to the experimental results obtained
on small, simple molecules.

Problems

7.1 a) Why does the Slater determinant automatically obey the Pauli principle as
an approach to formulating the product wavefunction |¥), and why is it a solution
to the Schrodinger equation when the Hamiltonian can be written as a sum of
single-particle operators? We then have

N
= J%Det(x) and H =) H(j).

j=1

b) Expectation values of the wavefunction ¥ of an operator £2 are then found to
be

1
Q= ﬁ(fDet(X*).Q Det(x)dVl...dVN>.

Express this average value for the Coulomb interaction

e? e?

Q B l, = =
V( m) 471'80{1’[ — r,,,| 47‘[80er

in terms of matrix elements Vip i, for the case that the single-particle wavefunc-
tions xx; () are pairwise orthonormal. Show also that one finally obtains

1 1
52 Vlm =23 Vewwe = Virws) -
I#m k!

7.2 a) The Hartree-Fock method is an iterative variational method for determining
the total wavefunction ¥ approximately, so that

5 [w] _0. 1)
(YY)
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As an approximation for ¥, one uses a Slater determinant consisting of N orthonor-
malised single-particle states |), k = 1, ..., N, which must be determined, with
k = (g, m), where the quantum numbers g refer to the spatial part and the m to the
spin part of the electronic wavefunctions.

Consider closed shells in the calculations that follow. The Hamiltonian H in (1) is
the sum of the single-particle Hamiltonians H(i) of the N electrons (i =1,... , N)
and also contains the two-particle operators of the Coulomb interactions and the
exchange interactions. Since orthogonality of the [1,) is required, (1) is to be varied
under the following condition:

/ YiedV =1. ¥)

Show that carrying out the variation in the case of closed shells leads to the following
Hartree-Fock equations: :

HO)W, (1) +2 Z | wor;

—wa @), o~

de Ye(1)

de Vg (1) =49, (1) . 3)

Hint: It is sufficient to use the results of Problem 7.1b and to carry out the variation
with respect to /.

b) For the solution of (3), we calculate the charge density e |1//;9) (2)|? and the
exchange density e 1//;,(0) (2)¥"(2) using a test function y{*). Inserting these expres-
sions into the appropriate integrals in equation (3) and replacing v, (1) by 1//;1)(1),
we obtain a determining equation for the first approximation w(gl) (1). Its solution is
then the first improvement of v, and the starting point for the next iteration step.

The iteration process is continued until the approximations converge. Show that the
method is self-consistent; i.e. what is found for "+" when y{*~D = y™?

7.3 Formulate Roothaan’s wavefunctions for the triplet state in 2nd quantisation
(Sect. 7.9).

Hint: Replace the indices k etc. there by k 1 or k |, so that k now refers to the
quantum numbers of the spatial wavefunction and the arrows indicate the spin state.
Write the wavefunction of the filled shell in the form

g
+ 7+ .

1_[ agray, Po ®j: vacuum state .

k=1

Which operators at and a have to be employed in order to obtain the wavefunctions
3 l]/” 3 yn 3 W" 9

m’ 0% m 1
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Hint: Start with the assumption that as in Fig. 7.1, an electron with spin 1 in state
m is annihilated (annihilation operator) and then is newly created in the state n |
(creation operator). The spin-increasing operator (7.34) corresponds to

> dhap
J
(Why?) Make use of the commutation relations (7.50) and (7.51) as well as of (7.56).

7.4 What are the solutions and the energy eigenvalues of the Schrodinger equation
HY = EV in 2nd quantisation when H = ) ;2| Exa; ai for wavefu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>