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Preface to the Second Edition 

Since the publication of the first edition of this book, there have been many im­
portant new developments in the field of molecular physics. The new methods and 
results which are most significant for students are treated extensively in this second 
edition. Among these are in particular single-molecule spectroscopy and the field of 
molecular electronics, which is in a stage of rapid development, including the areas 
of electroluminescence and organic light-emitting diodes. In addition, we have ex­
tended and corrected the earlier material in a number of places. We have also included 
exercises in this new edition; they will allow students to deepen their understanding 
and offer a basis for further individual study. The complete solutions to the exercises 
can be found on the Internet under www.springeronline.com/3-540-40792-S. 

We are grateful to Mr. C.-D. Bachem and Dr. Th. Schneider of the Springer­
Verlag for their continuous and very agreeable cooperation during the preparation of 
the book. We thank our colleague Prof. W. D. Brewer for his competent translation. 

Stuttgart, February 2004 H. Haken . H. C. Wolf 



Preface to the First Edition 

This textbook is intended for use by students of physics, physical chemistry, and 
theoretical chemistry. The reader is presumed to have a basic knowledge of atomic 
and quantum physics at the level provided, for example, by the first few chapters in 
our book The Physics of Atoms and Quanta. The student of physics will find here 
material which should be included in the basic education of every physicist. This 
book should furthermore allow students to acquire an appreciation of the breadth 
and variety within the field of molecular physics and its future as a fascinating area 
of research. 

For the student of chemistry, the concepts introduced in this book will provide 
a theoretical framework for that entire field of study. With the help of these con­
cepts, it is at least in principle possible to reduce the enormous body of empirical 
chemical knowledge to a few fundamental rules: those of quantum mechanics. In 
addition, modem physical methods whose fundamentals are introduced here are be­
coming increasingly important in chemistry and now represent indispensable tools 
for the chemist. As examples, we might mention the structural analysis of complex 
organic compounds, spectroscopic investigation of very rapid reaction processes or, 
as a practical application, the remote detection of pollutants in the air. 

The present textbook concerns itself with two inseparably connected themes: 
chemical bonding and the physical properties of molecules. Both have become 
understandable through quantum mechanics, which had its first successes in the 
elucidation of atomic structure. While the question of chemical bonding is mainly 
connected with the ground state of the electrons and its energy as a function of 
the internuclear separation of the bonded atoms, an explanation of other physical 
properties of molecules generally requires consideration of excited states. These can 
refer both to the electronic motions and to those of the nuclei. 

The theoretical investigation of these themes thus requires the methods of quan­
tum mechanics, and their experimental study is based on spectroscopic methods, 
in which electromagnetic waves over a wide spectral range serve as probes. In this 
way, it becomes possible to obtain information on the structure of a molecule, on 
its electronic wavefunctions and on its rotations and vibrations. We include here the 
theoretical and experimental determination of binding energies and the energies of 
excited states. In the theoretical treatment, we shall meet not only concepts familiar 
from atomic physics, but also quite new ones, among them the Hartree-Fock approx­
imation, the Born-Oppenheimer approximation, and the use of symmetry properties 
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in group theory. These ideas likewise fonn the basis of the quantum theory of solids, 
which is thus intimately connected to molecular physics. 

In spite of the central importance held by the combination of molecular physics 
and quantum chemistry, there previously has been no textbook with the aim we have 
set for the present one. That fact, along with the extremely positive reception of 
our introductory text The Physics of Atoms and Quanta by students, teachers and 
reviewers, has stimulated us to write this book. We have based it on lecture courses 
given over the past years at the University of Stuttgart. We have again taken pains 
to present the material in a clear and understandable fonn and in a systematic order, 
treating problems from both an experimental and from a theoretical point of view 
and illustrating the close connection between theory and experiment. 

Anyone who has been concerned with molecular physics and quantum chemistry 
will know that we are dealing here with practically limitless fields of study. An 
important, indeed central task for us was therefore the choice of the material to be 
treated. In making this choice, we have tried to emphasise the basic and typical 
aspects wherever possible. We hope to have succeeded in providing an overview 
of this important and fascinating area of research, which will allow the student to 
gain access to deeper aspects through study of the published literature. For those 
who wish to delve deeper into the great variety of research topics, we have provided 
a list of literature sources at the end of the book. There, the reader will also find 
literature in the area of reaction dynamics, which is presently experiencing a period 
of rapid development, but could not be included in this book for reasons of internal 
consistency. In addition, we give some glimpses into rather new developments such 
as research on photosynthesis, the physics of supramolecular functional units, and 
molecular microelectronics. 

The book is thus intended to fulfill a dual purpose: on the one hand to give an 
introduction to the well-established fundamentals of the field of molecular physics, 
and on the other, to lead the reader to the newest developments in research. 

This text is a translation of the second Gennan edition of Molekalphysik and 
Quantenchemie. We wish to thank Prof. W. D. Brewer for the excellent translation 
and the most valuable suggestions he made for the improvement of the book. 

We thank our colleagues and those students who have made a number of useful 
suggestions for improvements. In particular, we should like to thank here all those 
colleagues who have helped to improve the book by providing figures containing 
their recent research results. The reader is specifically referred to the corresponding 
literature citations given in the figure captions. We should also mention that the 
present text makes reference to our previous book, The Physics of Atoms and Quanta, 
which is always cited in this book as I. 

Last but not least we wish to thank Springer-Verlag, and in particular Dr. 
H. J. Kolsch and C.-D. Bachem for their always excellent cooperation. 

Stuttgart, January 1995 H. Haken . H. C. Wolf 
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1 Introduction 

1.1 What Is a Molecule? 

When two or more atoms combine to form a new unit, that new particle is termed 
a molecule. The name is derived from the Latin word molecula, meaning "small 
mass". A molecule is the smallest unit of a chemical compound which still exhibits 
all its properties, just as we have seen the atom to be the smallest unit of a chemical 
element. A molecule may be decomposed by chemical means into its component 
parts, i. e. into atoms. The great variety of materials found in the world of matter 
is a result of the enormous variety of possible combinations in which molecules 
may be constructed out of the relatively few types of atoms in the Periodic Table of 
elements. 

The simplest molecules are diatomic and homonuclear; that is, they are made up 
of two atoms of the same type, such as H2, N2, or O2. In these cases, one should 
imagine the electron distribution as shown in Fig. 1.1 (upper part): there are electrons 
which belong equally to both atoms, and they form the chemical bond. The next 
simplest group is that of diatomic molecules containing two different atoms, so­
called heteronuclear molecules, such as LiF, HCl, or CuO; see Fig. 1.1 (lower part). 
In these molecules, in addition to chemical bonding by shared electrons, which is 
termed homopolar or covalent bonding, another bonding mechanism is important: 
heteropolar or ionic bonding. 

We shall explain some of the basic concepts of molecular physics at this point 
by using as an example the molecule NaCl (in the gas phase). Figure 1.2 shows 
the potential energy of the system sodium + chlorine as a function of the distance 
between the atomic nuclei. At large internuclear distances, the interaction between 
a neutral sodium and a chlorine atom is quite weak and the potential energy of 
the interaction is thus nearly zero; a slight attractive interaction can, however, be 
caused by the weak mutual polarisation of the electronic charge clouds. If we bring 
the neutral atoms close together, at a distance of ca. 0.6 nm a repulsive interaction 
occurs. This fact can be used to define the size of the atoms, as discussed in more 
detail in I. (We denote the book The Physics of Atoms and Quanta, by H. Haken and 
H. C. Wolf, as I. We assume knowledge of the atomic physics treated in that book 
and will refer to it repeatedly in the following.) 

At an internuclear distance of 1.2 nm, however, the state in which an electron 
from the sodium atom passes onto the chlorine atom becomes more energetically 
favored, and the system Na+/Cl- is thus formed by charge transfer. When the 
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Fig.i.l. Electron distributions in the small molecules H2, C12, and HCl, shown schematically. 
The nuclear separations are 0.74 A in H2, 1.27 A in HCl, and 1.99 A in Cl2 

distance is further decreased, the effective interaction potential becomes practically 
the same as the attractive Coulomb potential between the two ions. An equilibrium 
state is finally reached at a distance of 0.25 nm, due to the competition between this 
attractive potential and the repulsion of the nuclei and the closed electronic shells of 
the ions; the repulsion dominates at still smaller distances. This eqUilibrium distance, 
together with the electron distribution corresponding to it, determine the size of the 
molecule. 

Continuing through molecules containing several atoms, such as H20 (water), 
NH3 (ammonia), or C6H6 (benzene), with 3, 4, or 12 atoms, respectively, we come to 
large molecules such as chlorophyll or crown ethers, and finally to macromolecules 
and polymers such as polyacetylene, which contain many thousands of atoms and 
whose dimensions are no longer measured in nanometres, but instead may be nearly 
in the micrometer range. Finally, biomolecules such as the giant molecules of de­
oxyribosenucleic acids (DNA), which are responsible for carrying genetic informa­
tion (see Sect. 20.6), or molecular functional units such as the protein complex of 
the reaction centre for bacterial photosynthesis (cf. the schematic representation in 
Fig. 1.3), are also objects of study in molecular physics. These molecules will be 
treated in later sections of this book, in particular in Chap. 20. 

The last example already belongs among the supramolecular structures, giant 
molecules or functional units, whose significance for biological processes has be­
come increasingly clear over the past years. When molecules of the same type, 
or even different molecules, group together to make still larger units, they form 
molecular clusters and finally solids. 
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Fig. 1.2. The potential energy E for NaCl and Na+Cl- as a function of their internuclear 
distance R, in the gas phase 

1.2 Goals and Methods 

Why does the molecule H2 exist, but not (under normal conditions) the molecule H3? 
Why is NH3 tetrahedral, but benzene planar? What forces hold molecules together? 

How large are molecules, and what electrical and magnetic properties do they 
have? Why does the optical spectrum of a molecule have orders of magnitude more 
spectral lines than that of an atom? These are some of the questions which can be 
answered more or less simply when we begin to treat the physics of molecules. 

The goal of molecular physics is to learn about and to understand the structure, 
the chemical bonding, and the physical properties of molecules in all their variety. 
From this basis, one would then like to derive an understanding of the function, the 
reactions, and the effects of molecules in physical, chemical, and biological systems. 

The incomparably greater variety of molecules as compared to atoms has as a con­
sequence that one cannot obtain a basic understanding of all the other molecules 
by considering the simplest one, as is possible in atomic physics beginning with 
hydrogen. In the physical investigation of molecules, spectroscopic methods play 
a special role, as they do in atomic physics as well. However, many more spec­
troscopic methods are required, in particular because in molecules, unlike atoms, 
there are more internal degrees of freedom such as rotations and vibrations. In the 
following, it will become clear just how varied and numerous are the methods of 
investigation which are used in molecular physics. 

We shall see the importance of microwave and infrared spectroscopies, and how 
fine details of molecular structure can be uncovered with the techniques of magnetic 
resonance spectroscopy of electrons and nuclei. We will, however, also gain access to 
the wide experience on which chemical methods are based, the various calculational 
techniques of quantum chemistry, and a great variety of experimental methods, 
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Fig. 1.3. The reaction centre for bacterial photosynthesis as a molecular functional unit. 
This schematic drawing shows the photoactive molecules, which are embedded in a larger 
protein unit. The latter is in tum embedded in a cell membrane. Light absorption by the 
central chlorophyll dimer is the first step in the charge separation which sets off the chemical 
processes of photosynthesis. This topic will be treated further in Sect. 20.7. The picture, based 
on the X-ray structure analysis by Deisenhofer, Huber, and Michel (Nobel prize 1988), is 
taken from the newspaper "Die Zeit" 

beginning with structure determination using X-ray or neutron scattering, mass 
spectrometry, and photoelectron spectroscopy. 

The goal of quantum chemistry is to make available the tools with which the 
electron distribution in molecules, their chemical bonding, and their excited states 
may be calculated. Its boundary with molecular physics can of course not be defined 
sharply. 

1.3 Historical Remarks 

The first precise ideas about molecules resulted from the observation of quantitative 
relationships in chemical processes. The concept of the molecule was introduced 
in 1811 by the Italian physicist Avogadro in connection with the hypothesis which 
bears his name, according to which equal volumes of different ideal gases at the 
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same temperature and pressure contain equal numbers of atoms or molecules. This 
allowed a simple explanation of the law of constant and multiple proportions for 
the weights and volumes of gaseous reactants in chemical reactions. These laws and 
hypotheses are likewise found at the beginning of atomic physics; they are treated 
in Sect. 1.2 of I and will not be repeated here. 

The investigation of the behaviour of gases as a function of pressure, volume, 
and temperature in the course of the 19th century led to the kinetic theory of gases, 
a theoretical model in which molecules, as real particles, permit the explanation of 
the properties of gases and, in a wider sense, of matter in general. On this basis, 
Loschmidt in the year 1865 made the first calculations of the size of molecules, 
which within his error limits are still valid today. 

In the second half of the 19th century, many chemists (we mention here only 
Kekuie, the discoverer of the structure of benzene) made the attempt to obtain 
information about the atomic and geometric structure of molecules using data from 
chemical reactions. With the advent of modem atomic and quantum physics in 
the 20th century, an effort has also been made to gain an exact understanding of 
chemical bonding. Following the pioneering work of Kassel on heteropolar and of 
Lewis and Langmuir on homopolar bonding (1915-1920), Hund, Heitler, London and 
others after 1927 laid the foundations of a quantitative quantum theory of chemical 
bonding, and thus of quantum chemistry. Since then, a multitude of researchers 

Fig. 1.4. A transmission electron microscope image of hexadecachloro copper phthalocyanine 
molecules. The molecules form a thin, oriented layer on an alkali halide crystal which serves 
as substrate. The image was made with a high-resolution 500 kVj transmission electron mi­
croscope and was processed using special image-en-hancement methods. The central copper 
atoms and the 16 peripheral chlorine atoms may be most clearly recognised. (This picture was 
kindly provided by Prof. N. Uyeda of Kyoto University) 
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have contributed to the increasing degree of refinement of these theoretical ideas in 
numerous research papers. 

The various instrumental and experimental advances which have allowed an in­
creasingly detailed analysis of the physical properties of countless molecules will be 
treated in those chapters of this book which deal with the respective methods. It can 
be most readily verified that such experimental methods tell us much about molecu­
lar structure - to be sure indirectly, but yet precisely - if we can view the molecules 
themselves. Using the methods of X-ray scattering and interference, this becomes 
possible with high accuracy when sufficiently large, periodically recurring units can 
be simultaneously investigated, i. e. with single crystals. An example is discussed in 
the next chapter in connection with the determination of the sizes of molecules; see 
Fig. 2.2. With the modem techniques of transmission electron microscopy (Fig. 1.4), 
and in particular using the scanning tunnel microscope (Fig. 1.5), it is now possible 
to obtain images of individual molecules. The existence of molecules and an un­
derstanding of their physical properties have long ceased to be simply hypotheses: 
instead, they are established experimental results and form the basis for our under­
standing of many structures and processes not only in chemistry, but also in many 
other fields such as biology, materials science, and technology. 

Fig. 1.5. An image of benzene molecules made with a scanning tunnel microscope. The 
benzene was evaporated onto a Rhenium (111) surface together with CO molecules, which 
serve to anchor the larger molecules and are themselves nearly invisible. As a result of the 
substrate-molecule interaction, we see in the picture partially localised states which make 
the benzene molecules appear to have a reduced (threefold) symmetry; what is seen are thus 
not the individual C atoms, but rather molecular orbitals. (From H. Ohtani, R.J. Wilson, S. 
Chiang, and C.M. Mate, Phys. Rev. Lett. 60, 2398 (1988); picture provided by R.J. Wilson) 
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1.4 The Significance of Molecular Physics 
and Quantum Chemistry for Other Fields 

Molecular physics and quantum chemistry provide the connecting link between our 
knowledge of atomic structure and our efforts to gain a comprehension of the physi­
cal and biological world. They form the basis for a deeper understanding of chemical 
phenomena and for knowledge of the countless known and possible molecules, their 
physical properties and their interactions. They lead us to an understanding of mi­
croscopic forces and bonding structures, of the electrical, magnetic, and mechanical 
properties of crystals and other materials used in science and technology. They pro­
vide us with the fundamentals needed to understand the biological world: growth, 
reproduction, and perception; metabolic processes, photosynthesis in plants, and all 
of the basic processes of organic life. In short, all living things become compre­
hensible only if we understand the molecular structures which underlie them, the 
molecules which are actively and passively involved in life-processes, together with 
their functions and their interactions. 

Small molecules such as H2 or HCI are particularly suitable as examples to 
introduce important principles, theoretical treatments and experimental methods. 
These small molecules will therefore assume an important place in this book, due to 
their relative simplicity and clarity. In the following chapters, we shall learn about 
a number of methods and concepts using as examples small molecules in the gas 
phase. In the process, however, we must not forget how varied, and correspondingly 
complex, the world of molecules as a whole is. To a greater degree than in atomic 
physics, we will have to consider the multiplicity of phenomena in our material 
world, the details and not just the basic principles, in order to gain an understanding 
of molecular physics. The next chapters aim to give an idea of this multiplicity of 
detail. 

In the foreground of our considerations will be the individual molecule: isolated 
molecules in a gas. In contrast to atoms, molecules have internal degrees of freedom 
involving motions of the component atomic nuclei, which give rise to rotations 
and to vibrations. We shall discover spectroscopy to be the most important method 
for elucidating molecular structure, just as in atomic physics; but in the case of 
molecules, the microwave and infrared regions of the spectrum, where rotational 
and vibrational excitations are found, will occupy much more of our attention. 

The interactions of molecules with each other and with other types of molecules 
finally will lead us to the physics of fluids, to solid state physics, and to the physical 
and structural fundamentals of biology. In this book, we shall restrict the treatment of 
those fields to the basic knowledge which is required for understanding the molecules 
themselves. Conversely, we shall learn a much greater amount about methods and 
results which are essential for an understanding of phenomena in the above fields. 
Our goal, here as in I, will be to begin with observations and experimental results, 
and from them, to work out the basic principles of molecular physics and quantum 
chemistry. This book thus does not intend to provide specialised knowledge directly, 
but rather to smooth the way for the reader to gain access to the enormous body of 
technical literature. 
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An important current application of molecular physics is in the field of envi­
ronmental technology. The study of the molecular composition of the Earth's atmo­
sphere, and its modification due to the combustion of wood, coal and petroleum on 
the Earth and by automobile exhaust gases and other products of modem industrial 
technologies, as well as the elucidation of the photochemical processes which occur 
in the atmosphere through interaction with sunlight: all of these are of elementary 
importance for investigations into how we can protect the natural environment. We 
recall here as an example the "ozone hole" and its dramatic consequences for life on 
the Earth. 

In astrophysics, the identification of molecules in space plays an important role. 
A goal of these investigations is to find small molecules which can be considered to 
be the original building blocks for biomolecules and thus for life on the Earth. 



2 Mechanical Properties of Molecules, 
Their Size and Mass 

Only in recent years and in particularly favorable cases has it become possible to 
directly generate images of molecules. In order to determine their sizes, masses, and 
shapes, there are however numerous less direct but older and simpler methods which 
date back even to the field of classical physics. Such methods are the subject of the 
following sections. 

2.1 Molecular Sizes 

If by the "size" of a molecule we mean the spatial extent of its electronic shells, rather 
than the internuclear distances of its component atoms, then we can start from rather 
simple considerations in order to determine the size of a small molecule containing 
only a few atoms. Following Avogadro, we know that I mole of an ideal gas at 
standard conditions occupies a volume of 22.4 . 10-3 m3 and contains N A molecules, 
where NA is Avogadro's number, 6.02205.1023 mol-I. When we condense the gas 
to a liquid or a solid, its volume will decrease by a factor of about 1000. If we 
now assume that the molecules just touch each other in the condensed phase, then 
from the above data we calculate the order of magnitude of the molecular radii to 
be 10-10 rn, i. e. 0.1 nrn or 1 A. In a similar manner, starting with the density Q of 
a liquid, we can calculate the volume occupied by its individual molecules if we 
assume that they are spherically close-packed or if we know the packing, i. e. their 
spatial arrangement. 

Additional, more precise methods for determining molecular sizes based on 
macroscopic measurements are the same as those which we have already met in 
atomic physics. We shall repeat them only briefly here: 

- From determinations of the p V isotherms of real gases and using Van der Waals' 
equation of state for the pressure p and the volume V: 

(p + ;2) (V - b) = RT , (2.1) 

(where T is the absolute temperature, R the ideal gas constant, and p and V refer 
to one mole), we can obtain numerical values for the quantity b, the covolume. 
In the framework of the kinetic theory of gases, it is equal to 4 times the actual 
volume of the molecules. Van der Waals' equation of state must be used instead 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004



10 2 Mechanical Properties of Molecules, Their Size and Mass 

Molecule b d 
Table 2.1. Measured values for the covolume b in 
Van der Waals' equation of state (2.1), in units ofliter 

H2 0.0266 2.76 mol-I, and the molecular diameters d in A calculated 

H2O 0.0237 2.66 from them, for several gas molecules. After Barrow 

NH3 0.0371 3.09 
CH4 0.0428 3.24 
02 0.0318 2.93 
N2 0.0391 3.14 
CO 0.0399 3.16 
CO2 0.0427 3.24 
C6H6 0.155 4.50 

of the ideal gas equation when the interactions between the particles (a/V2) 
and their finite volumes (b) are taken into account. Table 2.1 contains measured 
values of b and the molecular diameters calculated from them for several gases. 

- From measurements of so-called transport properties such as diffusion (transport 
of mass), viscosity (transport of momentum), or thermal conductivity (transport 
of energy), one obtains the mean free path I of molecules! in the gas and from 
it, their diameters, in the following way: 
For the viscosity or internal friction of a gas, we have 

1 r-:; 
7J = -(21'1 v2 

3 
(2.2) 

«(2 = density, v2 = mean squared velocity of the molecules). We know that the 
molecules do not have a single velocity, but instead obey the Maxwell-Boltzmann 
distribution. 
With the equation: 

1-
P = -(2V2 

3 

for the gas pressure p, (2.2) can be modified in terms of directly measurable 
quantities. Substituting, we obtain 

(2.3) 

Thus, by determining the pressure, density, and viscosity of a gas, we can calcu­
late its mean free path. 

- Another method makes use of the thermal conductivity. For the thermal conduc­
tivity A., we find: 

1 Cv r-:; 
A. = -N-Iyv2 

3 NA 

1 In I, the mean free path is denoted by A. 

(2.4) 
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(N is the number density of the molecules, Cv is the molar heat capacity at 
constant volume, and N A is Avogadro's number). 

We see that a low thermal conductivity is typical of gases with molecules of large 
mass, since then v2 is small at a given temperature. 

From the mean free path I, we obtain the interaction cross section and thus the 
size of the molecules, as indicated in Sect. 2.4 of I. We find: 

(2.5) 

(where N is again the number density of the molecules and d is their diameter 
assuming a circular cross section). Some data obtained in this manner are collected 
in Table 2.2. 

Molecule d 

2.3 
3.0 
3.4 
3.8 

Table 2.2. Diameter d (in A) of some small molecules 
derived from gas-kinetic interaction cross sections 

For N2 (nitrogen) under standard conditions, it is found that N = 2.7 . 1025 m-3, 

I = 0.6 . 10-7 m, and from this the diameter of the molecules is d = 3.8· 10-10 m. 
For the mean time between two collisions of the molecules, we find, using 

r# = I, the value r = 1.2 . 10-10 s . 

All of the methods mentioned treat the molecule in the simplest approximation as 
a sphere. To determine the true form and shape of molecules, more sophisticated 
physical methods are needed. 

Methods involving interference of scattered X-rays or electron beams, which 
were also mentioned in I, permit the determination of the molecular spacing in solids, 
and therefore of the molecular sizes including an anisotropy of the molecules, i. e. 
when they deviate from spherical shapes. See I, Sect. 2.4, for further details. For these 
methods, one also needs single crystal samples or at least solids having a certain 
degree of long-range order. When the molecules are in a disordered environment, 
for example in a liquid or a glass, one may obtain less clear interference patterns due 
to short-range order present in the glass or the liquid. Short-range order means that 
particular intermolecular distances occur with especially high probabilities. 

The distances between atoms within a molecule, i. e. between the component 
atoms of the molecule, can be determined through interference of electron beams 
diffracted by the molecules. For this purpose, the intensity distribution in the electron 
diffraction pattern must be measured. Making the assumptions that each atom within 
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the molecule acts as an independent scattering centre, and that the phase differences 
in the scattered radiation depend only on the interatomic distances, one can derive 
values for the characteristic internuclear separations in molecules, as illustrated in 
Fig. 2.1. 
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Fig. 2.1. Radial distribution functions D de­
scribing the electron density as a function of 
the bond length R between atomic nuclei in 
the molecules PH(CH3h and PH2CH3, ob­
tained from electron diffraction patterns. The 
maxima in the distribution functions can be 
correlated with the internuclear distances in­
dicated. [After Bartell, J. Chern. Phys. 32, 
832 (1960)] 

If one wishes to measure the precise electron density distribution of a molecule, 
and thereby obtain more information from X-ray interference patterns of single 
crystals besides just the crystal structure and the distances between the molecular 
centres of gravity, then the relative intensities of the interference maxima must be 
precisely measured. The scattering of X-rays by a crystal is essentially determined by 
the three-dimensional charge distribution of its electrons, which can be reconstructed 
from the measured intensities of the interference patterns using Fourier synthesis. 
One thus obtains maps of the electron density distribution in molecules, such as 
the one shown in Fig. 2.2. Electrons directed at the crystal are also scattered by the 
electronic shells of its component atoms or molecules and can likewise be used to 
obtain electron density maps. Electron diffraction is, to be sure, applicable only to 
thin film samples, owing to the shallow penetration depth ("information depth") of 
the electron beams. 

The case of neutron diffraction is quite different. Since neutrons are scattered 
primarily by nuclei and, when present, by magnetic moments, neutron diffraction can 
be used to determine directly the structure of the nuclear framework of a molecule. 
The electronic structure can, in contrast, be investigated only to a limited extent by 
using neutrons. 

A microscopic image of molecules can be obtained with the electron microscope. 
The spatial resolution of transmission electron microscopes has become so high in 
recent decades that structures in the range of 1 to 2 A can be imaged. An example 
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Fig. 2.2. Cross sections through the molecular plane of napthalene (left) and anthracene. The 
contour lines representing the electron density are drawn at a spacing of 1/2 electron per 
A3; the outermost, dashed line just corresponds to this unit. (After 1.M. Robertson, Organic 
Crystals and Molecules, Cornell University Press (1953» 

is shown in Fig. 1.4, Chap. 1. A further example is given in Fig. 2.3, which shows 
an image of a thin fullerene (C60) crystal taken with a high-resolution transmission 
electron microscope. The nearly spherical C60 molecules can be readily recognised 
(see also Fig. 4.18) in their densely-packed arrangement. Although imaging of 
molecules using the field emission microscope (see Fig. 2.14 in I) has as yet attained 
no great practical significance, the scanning tunnel microscope (STM), developed in 
the years following 1982, promises to become an important tool for the identification, 
imaging, and perhaps even for the electrical manipulation of individual molecules. 

Since the introduction of the STM by Binnig and Rohrer in 1982 and its further 
development, it has become possible to obtain detailed images of surfaces at atomic 
or molecular resolution. In the original, simplest version, employing a constant 
tunnelling current, the STM functions are indicated schematically in Fig. 2.4. 

A probe electrode having an extremely thin point is brought so close to a con­
ducting surface that a low operating voltage (mV to V) gives rise to a measurable 
current between the probe and the surface without a direct contact; the current is 
due to the tunnel effect (cf. I, Sect. 23.3). This so-called tunnel current depends very 
strongly on the distance from the probe to the surface. The probe is now scanned 
over the surface, varying its distance z with the aid of a feedback circuit in such 
a way as to keep the tunnel current constant. An image of the surface is then obtained 
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Fig. 2.3. (a) A transmission electron microscope image 
of a thin C60 crystal in the (111) direction. The spatial 
resolving power of the apparatus was 0.17 nm. The pic­
ture was taken using the HREM (high resolution elec­
tron microscopy) method and a special image processing 
technique. (b) For comparison: the calculated image from 
a crystal having a thickness corresponding to 2 unit cells 
(4.9 nm). (From S. Wang and P. R. Busek, Chern. Phys. 
Lett. 182, (1991), with the kind permission of the authors) 

by plotting the distance z as a function of the surface coordinates x and y. This is 
shown schematically in the lower part of Fig. 2.4. With this type of microscope, it is 
also possible to image individual molecules adsorbed onto a surface. An example at 
molecular resolution is shown in Fig. 1.5. 

A further development of the STM is the force microscope. Here, the quantity 
directly measured is not the tunnel current, but rather the force between the probe and 
the substrate surface; it can thus be used even with insulating substrates. With the aid 
of such scanning microscopes, the structures of molecules and their arrangements 
on surfaces can be made visible. The recrystallisation of molecules on surfaces can 

Fig. 2.4. A schematic representation of a scan­
ning tunnel microscope. The tunnel current h 
between the surface being imaged and the probe 
electrode, which has the form of an extremely 
thin point, is plotted as a function of the surface 
spatial coordinates x, y using the distance z of 
the probe from the surface 
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(b) 

Fig. 2.5. (a) An STM picture ofnapthalene molecules on a Pt (111) substrate. (b) A schematic 
representation of the orientation of napthalene molecules on the Pt (111) surface. [From 
V. M. Hallmark, S. Chiang, J. K. Brown, and Ch. Woll, Phys. Rev. Lett. 66, 48 (1991). 
A review was given by J. Frommer, Angew. Chern. 104, 1325 (1992)] 

also be followed as a function of time. An additional example of a molecular image 
made with the STM is shown in Fig. 2.5. 

A quite different method of determining the sizes of molecules can be applied to 
molecular layers. Long-chain hydrocarbon molecules which carry a water-soluble 
(hydrophilic) group at one end, while the opposite end is hydrophobic, can spread 
out to form monomolecular layers on a water surface. This was first shown by the 
housewife Agnes Pockels in 1891. The technique was developed further by Lord 
Rayleigh, whom she informed of it, and later in particular by Langmuir. He was 
able to show that the molecules can be compressed up to a well-defined smallest 
distance on the water surface, so that they touch each other in equilibrium. From 
the molecular mass and density, one can then determine the number of molecules 
per unit surface area. From this, a numerical value for the cross-sectional area of the 
molecules can be calculated. This method can of course be applied only to molecules 
having a very special structure. Details are given in Fig. 2.6. 

We should mention here that these monomolecular layers, so-called Langmuir­
Blodgett films, have been the subject of considerable renewed interest in recent 
years. They can, for example, be transferred from the water onto substrates, and 
several layers can be placed one atop the other. Thus, the behaviour and interactions 
between individual molecules in structures of low dimensionality or at precisely 
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Fig. 2.6. Schematic representation of the arrangement of fatty acid molecules on an aqueous 
surface. The water molecules are indicated by 0, hydrophilic oxygen or hydroxyl groups 
by @, and hydrophobic carbon atoms or CHz groups by @. More information is given in 
Sect. 20.7 

defined distances and relative positions from one another can be studied. These 
layers are also used as models for biological membranes. It is a goal of present-day 
research to build artificial molecular functional units from such ordered layers; cf. 
Sect. 20.7. 
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Fig. 2.7. Defining the "size" of a molecule: 
one can distinguish between do, the distance 
at which two colliding molecules detectably 
touch; dT, the closest distance of approach 
which is attained in collisions at a kinetic 
energy kT; and dMin, the distance which 
corresponds to a minimum in the interaction 
potential. Here, we mean the interaction po­
tential between two neutral molecules, not 
to be confused with the intramolecular po­
tential. The interaction typically follows an 
R-6 law for the attractive part and R- 12 for 
the repulsive part 
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The methods discussed above yield rather precise values for the sizes of 
molecules in a relatively simple manner. As we shall see in later chapters, there is 
a whole series of spectroscopic techniques with which one can obtain considerably 
more detailed knowledge about the structure of a molecule, the spatial arrangement 
and extent of its components, its nuclear framework, and the effective radius of its 
electronic shells. 

In any case, when speaking of "size", we must define the physical property 
which we are considering. This is illustrated in Fig. 2.7. If, for example, we wish 
to determine the size of a molecule by measuring collision cross sections, we can 
define either the distance of closest approach of the collision partners, dT , or else the 
distance do at which the electronic shells of the collision partners detectably overlap, 
or finally the distance dMin at which the interaction energy E takes on its minimum 
value, to be the molecular size. In this process, we must keep in mind that molecules 
are not "hard", but rather are more or less strongly deformed during the collision, as 
is indicated in Fig. 2.7 in defining the distance dT . T stands for temperature, since 
the molecules have a mean energy kT in the collisions. The electronic wavefunctions 
are also not sharply bounded. It should therefore not be surprising that the measured 
values of molecular size differ according to the method of measurement; for example, 
for the H2 molecule, we find the numerical values (in A) 2.47 from the viscosity, 
2.81 from the Van der Waals equation, and Re = 0.74 A from spectroscopic data for 
the equilibrium distance of the centres of gravity of the two H nuclei in H2. 

2.2 The Shapes of Molecules 

Molecules are spherical only in rare cases. In order to investigate their spatial 
structures, one has to determine both the arrangement of their nuclear frameworks 
and also the distributions and extensions of their electronic shells. This is illustrated 
further in Fig. 2.8 by two simple examples. 

The nuclear framework, i. e. the bond lengths of the atomic nuclei which make 
up the molecule and their relative orientations to one another, can be determined 
very precisely. Aside from X-ray, electron and neutron diffraction, spectroscopic 
methods such as infrared absorption spectroscopy and nuclear magnetic resonance 
(NMR) are required for this determination; they will be treated in detail later in this 
book. 

We list some small molecules in Table 2.3 as examples. 
The precision with which these data can be derived from an analysis of electron 

and X-ray diffraction on ordered structures is very great. Internuclear distances can be 
quoted with certainty to a precision of ±0.01 A and angles to ± 1 o. As we mentioned 
above, the boundaries of the electronic shells of molecules are not precisely defined, 
since the electron density falls off continuously with increasing distance from the 
nuclei; however, surfaces of constant electron density (contour surfaces) can be 
defined, and thus regions of minimal electron density can be located, upon which 
precise bond length determinations can be based. If surfaces of constant spatial 
electron density are cut by a plane, their intersections with the plane (of the drawing) 
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3.A 
Co-volume 

3.S.A 

Fig. 2.S. As a rule, molecular contours deviate from a spherical form. For example, here we 
show the molecules 02 and H20. In addition to the bond lengths and the bond angles, the 
spatial extension of the molecular electronic shells is an important measurable quantity 

Table 2.3. Structure of some small molecules 

diatomic, homonuclear H2 H-H bond length 0.74 A 
12 I-I bond length 2.66 A 
02 0-0 bond length 1.20 A 

diatomic, heteronuclear HCl H-Cl bond length 1.28 A 
triatomic, symmetric-linear CO2 O-C-O bond length 1.15 A 

triatomic, bent H2O 0 bond length 0.97 A 
H H L105° 

tetratomic, symmetric· pyramidal NH3 N NH bond length 1.01 A 
H 

H H 

pentatomic, tetrahedral ClLJ H CH bond length 1.09 A 
C 

H H 
H 

polyatomic hydrocarbons, C2H6 H H 
paraffines ethane H-C-C-H C-C bond length 1.55 A 

H H C-H bond length 1.09 A 
L(H-C) = 109.5° 
L(HCH) = 111.5° 

H H 
C C 

aromatics C6H6 HC CH C-H bond length 1.08 A 
benzene C C C-C bond length 1.39 A 

H H 

biological macromolecules DNA double helix 200 A long 
105 - 106 atoms 
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Fig. 2.9. An electron den­
sity diagram of the nickel 
phthalocyanine molecule. 
As in Fig. 2.2, the H atoms 
are not visible, since they 
are poorly detected by X-ray 
diffraction methods com­
pared to atoms with higher 
electron densities. The con­
tour lines represent the 
electron density. Their inter­
val corresponds to a density 
difference of one electron 
per A 2, and the dashed lines 
represent an absolute density 
of 1 electron per A 2. The 
lines around the central Ni 
atom have a contour interval 
corresponding to 5 electrons 
per A 2. After Robertson 

yield electron density contour lines. Adding the structure of the nuclear framework, 
when it is known, produces pictures of molecules like that shown in Fig. 2.9. 

2.3 Molecular Masses 

The mass of a molecule, like that of an atom, can be most readily determined by 
weighing it. One mole of a substance, i. e. 22.41 of gas under standard conditions 
of temperature and pressure, contains N A = 6.022 . 1023 molecules. From the mass 
of a mole, one can therefore determine the mass of a molecule by dividing by the 
number of molecules, i. e. Avogadro's number. 

A particularly important method of determining molecular masses is mass spec­
troscopy, making use of the deflection of beams of charged molecules by electric 
and magnetic fields. The basic principles of this method are described in I, Sect. 3.2. 
In atomic physics, mass spectroscopy is used for the precise determination of atomic 
masses and for the investigation of isotopic mixtures; in molecular physics, it can 
be used in addition for analysis and for the determination of molecular structures. 
Electron bombardment can be employed to decompose many molecules into frag­
ments. By investigating the nature of the fragments using mass spectroscopy, one 
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43 

Gas 

n-butane 
CH3CH2CH2CH3 

28 Charge/mass 
ratio 

Mass spectrum 

Fig. 2.10. A schematic drawing of a mass spectrometer, which functions by means of elec­
tromagnetic deflection of ionised molecular fragments. As an example, the mass spectrum 
of the butane molecule is shown in the inset. Maxima corresponding to fragments of masses 
between 5 and 58 can be recognised; we will not discuss their detailed interpretation here. 
After Barrow 

can obtain information on the structure of the original molecule by attempting to 
reconstruct it from the fragments, like a puzzle. An example is shown in Fig. 2.10. 

Other methods are especially important in the case of biological macromolecules. 
For example, from the radial distribution of molecules in an ultracentrifuge, one can 
determine their masses. When the size of the molecules becomes comparable to the 
wavelength of scattered light, the angular distribution of the light intensity gives 
information on the shape and size of the scatterers and thus indirectly on their 
masses. Light scattering is caused by different parts of the molecule and these 
different scattered rays can interfere, giving rise to an angular distribution of the 
scattered radiation which no longer corresponds to simple Rayleigh scattering. The 
principle is illustrated in Fig. 2.11. 

Using the methods which are referred to as small-angle X-ray and neutron 
scattering (SAXS, SANS), a measurement or at least an estimate of the spatial 
extent of larger molecules is often possible. 

In the case of macromolecules, the methods mentioned above can fail for several 
reasons, in particular when it is desired to investigate the shape, size, and mass of the 
molecules in their natural environment, i. e. frequently in the liquid phase. On the one 
hand, the size and shape of the molecules can change with changing surroundings; 
on the other, the methods are based to some extent on isolating the molecules from 
their environment. In these cases, other methods can be applied, such as osmosis 
through membranes, the equilibrium or velocity distribution of sedimentation in the 
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Fig. 2.11. Light which is scattered from dif­
ferent parts of larger molecules can inter­
fere, leading to an intensity distribution of 
the scattered light which differs from that 
for Rayleigh scattering. From it, informa­
tion on the size and shape of the scattering 
molecules can be obtained. This method is 
not very specific, but is experimentally rel­
atively simple 

gravitational field of the Earth or in the centrifugal field of an ultracentrifuge, the 
transport of molecules under the influence of an electric field in paper or in a gel, 
called electrophoresis, or filtration through micropores. These methods, which are 
applied also to biologically active molecules, will not be discussed in detail here. 

2.4 Specific Heat and Kinetic Energy 

The momentum and kinetic energy of molecules were derived in the 19th century by 
applying the atomic hypothesis to thermodynamic properties of gases. 

The mean kinetic energy of molecules in a gas is given by the expression 

- m­
Eki = -v2 

n 2 ' (2.6) 

where v2 is again the mean squared velocity of the molecules in the gas, and m is 
their mass. 

For the pressure p we have, from elementary thermodynamics, 

2 -
p = -NEkin 

3 

(N = particles/unit volume). 
Because of the equation of state of an ideal gas, 

pV=nRT, 

(2.7) 

(2.8) 

where n is the number of moles of the gas, V its volume, R the gas constant, and 
T the absolute temperature, it then follows for the individual molecules that 

- 3 
Eki = -kT 

n 2 ' (2.9) 

with k = R/ N A = Boltzmann constant; and since the number of degrees of freedom 
of translational motion is 3, for the energy per degree of freedom f we find: 
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- 1 
Ekinj = 2kT . 

For the total energy of a mole of particles, we then have 

3 
Emo1e = 2RT 

and for the specific heat at constant volume 

dE 3 
Cv = - =-R 

dT 2 

and at constant pressure 

(2.10) 

(2.11) 

(2.12) 

With monoatomic gases, these values are in fact found in measurements; for 
molecular gases, higher values are measured. This is due to the fact that molecules, 
in contrast to atoms, have additional degrees of freedom, which are associated 
with rotational and vibrational motions, and that these motions also contribute to 
the specific heat. The rotational degrees of freedom each contribute 4kT to Cv . 
In general, a molecule has three rotational· degrees of freedom corresponding to 
rotations around the three principal body axes, i. e. the axes of the ellipsoid of the 
moment of inertia. In the case of a linear molecule, all the mass points lie on a line, 
and the moment of inertia around the corresponding axis vanishes; there are then 
only two rotational degrees of freedom. We thus find for the specific heat of di- or 
triatomic molecules, respectively, initially ignoring quantum effects, the following 
formulas: 

5 
Cv = -R or 3R; 

2 

7 
Cp = -R or 4R. 

2 
(2.13) 

In addition, internal vibrations can be excited in a molecule. They contribute one 
degree of freedom for a diatomic molecule, three for a triatomic molecule, and 3n - 6 
for a molecule with n atoms. The number of these degrees of freedom and thus of 
the normal modes (cf. Chap. 10) can be calculated in the following way: each atom 
contributes three degrees of freedom of motion; for n atoms, there are 3n degrees 
of freedom. Three of these correspond to the translational motion of the centre of 
gravity of the whole molecule and three to rotations. A molecule containing n atoms 
thus has 3n - 6 vibrational degrees of freedom. This formula is valid for n 2: 3. In 
a diatomic molecule, owing to its two rotational degrees of freedom, there is exactly 
one vibrational degree of freedom. 

The mean thermal energy per degree of freedom is twice as large as for translation 
and rotation, since in the case of vibrations, both kinetic and potential energy must be 
taken into account. The specific heats of poly atomic molecules are correspondingly 
larger at temperatures at which the vibrations can be thermally excited. 
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Fig. 2.12. The temperature de­
pendence of the specific heat of 
a gas. The curve corresponds 
approximately to the hydrogen 
molecule, H2. With decreasing 
temperature, the degrees of free­
dom of vibrations and rotations 
are "frozen in" in two steps 

In all these considerations, it must be remembered that the vibrational and ro­
tational states in molecules are quantised. The energy quanta have different magni­
tudes, depending on the molecular structure, and are generally smaller for rotations 
than for vibrations. They can be thermally excited only when the thermal energy 
kT is sufficiently large in comparison to the quantum energy hv. One thus ob­
serves a temperature-dependent specific heat C v or C p for molecules, as indicated 
schematically in Fig. 2.12. At very low temperatures, only the translational degrees 
of freedom contribute to the specific heat and one measures the value C v = i R. 
With increasing temperature, the additional degrees of freedom of the rotation are 
excited, and at still higher temperatures, those of molecular vibrations also contribute 
to the measured C v. One can thus draw conclusions about the number and state of 
motion of the atoms in a molecule even from measurements of its specific heat. 

Problems 

2.1 The potential curves of diatomic molecules can be described empirically. For 
ionic molecules, the following approximation is suitable: 

e2 
Pier) = --- + (3exp(-r/Q) + h . 

41l"£or 

For molecules consisting of neutral atoms, one uses e.g. : 

Pn(r) = _C;r 6 + (3exp(-r/Q) . 

Here, r is the distance between the particles, Q is roughly the sum of their ionic radii, 
and lEis the potential energy of a pair of ions which are separated by an infinite 
distance (Na+ + Cl-). How close together would one have to bring e.g. a sodium 
and a chlorine atom in order to form Na+Cl-? 

Hint: Simplify the constant to C = 0, and consider the fact that the repulsive potential 
(3 exp( -r / Q) becomes effective only at very short distances. Use h = 1.42 eV. 
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2.2 Imaging of organic molecules with the transmission electron microscope is 
possible only under favourable conditions. According to FreyerZ, the following 
inequality holds for the resolution dp of a molecule: 

dp > SIN . 
- C· -JJ. Ncr 

In this expression, we have used the following symbols: 

dp point resolution in A (1 A = 1O-10m) 
SI N required signal/noise ratio (ca. 5) 
C contrast (ca. 0.1 for one layer of scattering centres) 
J electron-efficiency factor (ca. 25%, i.e. only every 4th electron contributes) 
Ncr damage threshold (in electrons per surface area (in A -2)). 

The contrast C is proportional to vn, where n is the number of scattering centres 
(atoms) which lie behind each other. A commercial microscope requires a dose of 
ca. 100 A -2 to attain a theoretical resolution of 1 A (naturally, only the theoretical 
resolution is quoted in the specifications); this dose lies near the damage threshold 
Ncr for organic molecules. 

How many molecules would have to be stacked up to yield dp = 1 A? With 
hexadeca chloro copper phthalocyanine molecules of thickness 3.4 to 3.8 A, one 
obtains the typical layer thickness used for organic microscopy samples. 

2.3 The masses of organic molecules can be so large that the single and double­
focusing mass spectrometers as well as quadrupole mass spectrometers (mass range 
typically 1- 1000 u) used in atomic physics no longer work. Particularly critical is 
the ionisation process and the danger of fragmentation which accompanies it. 

In a time-oj-flight spectrometer, large molecules are frozen into a thin layer of 
small solvent molecules on a substrate S. Let the substrate be at a potential Us. 
A laser pulse (tuned to the absorption frequency of the small molecules) vaporises 
part of the layer and releases some of the large molecules, which are then ionised 
by a beam of UV light. Let the detector be at the potential Ud and at a distance of 
d = 50 cm from the substrate. Take the potential difference to be I Us - Ud I = 2000 V. 
When does a singly-ionised molecule of mass m = 4000 u reach the detector after 
a collision-free flight through vacuum? Sketch the time dependence of the current 
in the detector. 

2.4 C60 is dissolved in benzene (concentration 1.297· 10-4 mOl/I) and spread 
onto water in a Langmuir trough. C60 is water-insoluble and hydrophobic, and forms 
a Langmuir or Langmuir-Blodgett film after the benzene has evaporated. 

How large is the area per molecule which is occupied by a C60 molecule if the 
total surface area of the film is 16.87 cm2 and 0.1 ml of the solution was used to 
make it? 

2 J. R. Freyer, Mol. Cryst. Liq. Cryst. 96, 275 (1983) 
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The van der Waals area of C60 is 78.5 A2.3 What follows from this for the film 
described above? 

2.5 For the determination of the molecular masses of macromolecules (proteins or 
synthetic polymers), the method of osmometry is employed. Van't Hoff's equation 
for the osmotic pressure x of ideal dilute solutions is: 

xV = nNAkT 

where n is the number (in moles) of dissolved molecules in the volume V, k is 
Boltzmann's constant, and N A is Avogadro's number. This equation can be extended 
to non-ideal solutions by expressing it in the form of a virial expansion in the molar 
particle concentration c = n / V: 

xV = nNAkT (1 + ac + ... ) . 

Similarly to the covolume b in the van der Waals equation for non-ideal gases, the 
"osmotic virial coefficient" a describes the actual volume of the dissolved macro­
molecules. If vp is the occupied volume, by which the volume for free motion of the 
other molecules is reduced, then we have 

1 
a = 2 NAVp. 

The osmotic pressure of polystyrene solutions in toluene is determined by measuring 
the height h of a solution of density 0.867 g/cm3 which just compensates the osmotic 
pressure. As a function of the mass concentration c' one obtains the following values 
at 25°C: 

c' [mg/cm3] 3.2 4.8 5.7 6.9 7.8 

h [cm] 3.11 6.22 8.40 11.73 14.90 

Calculate from this the molecular mass of the polymer molecules. Which value for 
the molecular radius do you obtain if you consider the molecules to be approximately 
spherical? 

2.6 The velocity of sound in a gas is determined by its specific heats Cv and Cp 
according to: 

cs = Jr:T 
where r = C p / C v and M is the molecular mass of the molecules. Derive the veloc­
ity of sound for an ideal gas of (a) diatomic, (b) linear triatomic, and (c) nonlinear 
triatomic molecules at high temperatures (but T is not high enough to allow the occu­
pation of vibrational energy levels). Estimate the velocity of sound in air (consisting 
of N2 and O2) at 25°C. 

3 P. Heiney et aI., Phys. Rev. Let. 66, 2911 (1991) 
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Macroscopic materials properties such as the dielectric constant 8 and the permeabil­
ity J1, are determined by the electric and magnetic characteristics of the basic building 
blocks of matter. We show in Sects. 3.1 through 3.4 how the electric properties of 
molecules can be investigated by measuring 8 and the index of refraction, n. Sec­
tions 3.5 through 3.8 give the corresponding information about magnetic moments 
and polarisabilities from determinations of the magnetic susceptibility. 

3.1 Dielectric Properties 

Molecules are in general electrically neutral. However, they can possess an electric 
dipole moment p (and other, higher moments such as a quadrupole moment), and 
their electrical polarisability is generally anisotropic. In this section, we will show 
how information about the electrical characteristics of molecules can be obtained 
from measurements of macroscopic materials properties, particularly in the presence 
of electric fields. The most readily accessible quantity here is the dielectric constant 
8; it is most simply determined by measuring the capacitance of a condensor with 
and without a dielectric consisting of the material under study. The ratio of the two 
measured values is the dielectric constant. The present section concerns itself with 
the definition of the dielectric constant and with its explanation on a molecular basis. 

For the quantitative description of electric fields, we require two concepts from 
electromagnetic theory: 

- The electric field strength E. It is derived from the force which acts on a test 
charge in an electric field. 

- The electric displacement D. It is defined by the surface influence charge density 
produced on a sample in a field. 

In a medium with the dielectric constant 8, the displacement Dm is given by 

with 

12 As 
80 = 8.85 . 10- -. 

Vm 

(3.1) 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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(The notation er is also used, where r stands for 'relative', instead of the quantity 
denoted above by 10; the product ereo is then called e.) 

The dimensionless dielectric constant 10 is a scalar quantity in isotropic materials 
and a tensor in anisotropic materials. 10 is always larger than I in matter. In dielectric 
materials, the numerical value of 10 is only slightly greater than I and is nearly 
independent of the temperature. In paraelectric materials, 10 can be much greater 
than 1 and decreases with increasing temperature. As we shall see in the following, 
paraelectric materials consist of molecules which have permanent electric dipole 
moments. In dielectric materials, the dipole moment is induced by an applied electric 
field. 

Some values of 10 for dielectric and paraelectric materials are given in Table 3.1. 

Table 3.1. Numerical values of 10 (under standard conditions). The materials in the left column 
are dielectric, the others are parae1ectric 

He 
Hz 
Nz 

1.00007 
1.00027 
1.00058 

HzO 
Ethanol 
Benzene 

78.54 
24.30 
2.27 

LiF 
AgBr 
N14CI 

9.27 
31.1 
6.96 

In addition, the electric polarisation P is also defined by means of the equation 

P = Dm - D or Dm = eoE + P , (3.2) 

where Dm is the displacement in the material and D that in vacuum. 
P measures the contribution of the material to the electric displacement and 

has the dimensions and the intuitive meaning of an electric dipole moment per unit 
volume. 

From (3.1) and (3.2), it follows that 

P = (10 - l)eoE = XeoE . (3.3) 

The quantity 10 - 1 is also referred to as the dielectric susceptibility X. 
The polarisation can be explained on a molecular basis. It is the sum of the 

dipole moments p of the N molecules in the volume V. We thus have 

1 N 
P = - '" Pi = piN, V~ 

l=! 

(3.4) 

where pi denotes the contribution which, averaged over space, each molecular dipole 
moment makes to the polarisation P. In the case of complete alignment of all 
the dipole moments parallel to the field, we find P = Np. In (3.4), it should 
be considered that the number density N (number of molecules per unit volume) 
depends on Avogadro's number NA (number of molecules in a mole of substance) 
through the equation N = N A (Q / M), where Q is the density and M the molar mass 
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Fig. 3.1. The electric dipole moment of two charges +q 
and -q at a distance d is equal to p = qd; its direction 

p = q d points from the negative towards the positive charge 

of the substance. Thus, according to (3.3) and (3.4), a relation exists between the 
macroscopic quantity measured, EO, and the molecular property dipole moment p. 

We refer to an electric dipole moment of a molecule when the centres of charge 
of its positive and negative charges do not coincide. For example, two point charges 
+q and -q at a distance d (Fig. 3.1) have the dipole moment 

p=qd [Asm]. (3.5) 

The vector of the dipole moment points from the negative to the positive charge. 
In addition to the unit [As m], the unit Debye (D) is also used, with 1 D = 
3.336· 10-30 A s m. Two elementary charges at a distance of 1 A = 10-10 m have 
a dipole moment of 1.6 . 10-29 As m = 4.S D. This is the order of magnitude of 
molecular dipole moments. Molecules with finite dipole moments are called polar. 
Polar molecules such as HCI or NaCl have a permanent dipole moment p, which in 
the case of predominantly ionic bonding can even be calculated quite accurately as 
the product of charge times bond length. The dipole moment of HCI is 1.OS D and 
that of H20 is 1.S5 D. We shall discuss polar molecules in more detail in Sect. 3.3; 
however, we first treat nonpolar molecules in the following Sect. 3.2. 

3.2 Nonpolar Molecules 

Centro symmetric molecules such as H2, O2, N2, or CCl4 are nonpolar, i. e. they have 
no permanent dipole moments which remain even when E = o. They can, however, 
have an induced dipole moment in a field E f= O. For this dipole moment Pind, 

induced by polarisation in the external field, we have: 

Pind = aEloc , a = polaris ability, dimension [Asm2 IV] , 

E10c = field strength at the molecule . 
(3.6) 

The polarisability a is a measure of the ease of displacement of the positive charge 
relative to the negative charge in the molecule, and is thus an important molecular 
property. The resulting polarisation is called the displacement polarisation. It is 
useful to distinguish two cases: 

- When the induced dipole moment results from a displacement of the electronic 
clouds relative to the positive nuclear charges, we speak of an electronic polari­
sation; 

- When, in contrast, a displacement of massive positive ions relative to massive 
negative ions occurs, we speak of ionic polarisation. 
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The polaris ability a is thus the sum of an electronic and an ionic contribution, 
a = ael +aion' Instead of the polaris ability a, the quantity a' = a/4:rrco is frequently 
used. It is called the polarisability volume. 

When we refer to the polaris ability a, then strictly speaking we mean the polar­
isability averaged over all directions in the molecule, a. In reality, for all molecules 
excepting those having spherical symmetry, a depends on the direction of the ef­
fective field E relative to the molecular axes; a is thus a tensor. If the anisotropy of 
the polarisability is known, it can be used to draw conclusions about the structure of 
the molecule. The anisotropy can be measured using polarised light, by aligning the 
molecules and measuring the dielectric constant c in the direction of the molecular 
axis. This type of alignment can be produced, for example, by an applied electric 
field. The double refraction exhibited by some gases and liquids in an applied electric 
field, referred to as the electro-optical Kerr effect, is based on this kind of alignment. 
Another possibility for aligning the molecules and measuring their polarisabilities 
in different molecular directions is to insert them into a crystal lattice. A typical 
result, e. g. for the CO molecule, is a polarisability along the molecular symmetry 
axis three times larger than perpendicular to it. 

In strong electric fields, as found for example in laser beams, there are in addition 
to the linear term in (3.6) also nonlinear tenns which must be considered; they are 
proportional to the second, third, or higher powers of Eloc. In practice, the most 
important term is the quadratic one, proportional to Efoc' The coefficient f3 in the 
term f3Efoc is called the hyperpolarisability. 

The dimensions of a are, from (3.6), [A s m2 V-I]. The dimensions of a' are 
simpler: they are those of a volume. For molecules having axial symmetry, it is 
sufficient to determine two values of the polarisability, perpendicular and parallel to 
the molecular axis. The (electronic) polarisability is an indication of how strongly 
the electron distribution in the molecule is deformed by an applied electric field. 
When the molecule contains heavy atoms in which some of the electrons are farther 
apart from their nuclei, then the electron distribution is less rigidly connected to the 
nuclei and the electronic polaris ability is correspondingly large. 

Some numerical values for the polarisabilities of simple molecules are given in 
Table 3.2. 

Table 3.2. Polarisability volumes a' in units of 10-30 m3 

(i' a' 1- all 
H2 0.79 0.61 0.85 
02 1.60 
Ch 3.2 6.6 

C6H6 10.3 6.7 12.8 
H2O 1.44 
CC14 10.5 
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In gases at moderate pressures, the molecules do not mutually influence each 
other. The total polarisation P of the observed volume can thus be calculated using 
(3.4), as the sum of the polarisations of all the molecules within the volume. We 
then find the following expression for the polarisation resulting from the induced 
moments of molecules having a number density N, assuming complete alignment 
of their moments by the applied field: 

P = N Pind = NaEloc . 

With 

N= NAQ 
M 

(3.7) 

(3.7a) 

(Q = density, M = molecular mass), 

we obtain for the displacement polarisation 

P = NAQaE. 
M 

(3.8) 

In the case of dilute gases, the local field E10c at the position of each molecule is 
naturally equal to the applied field E. 

From (3.8) and (3.3), it follows that 

NA(2 
e = 1 + --a. 

Meo 
(3.9) 

We thus obtain the polarisability a of the molecules by measuring the dielectric 
constant e. 

In a dielectric of greater density, one has to take into account the fact that 
the local field Eloc is not equal to the applied field E. In the neighbourhood of 
a molecule under consideration, there are other molecules whose charge distributions 
give a contribution to the local field. This must be allowed for in computations; cf. 
Fig. 3.2. For the local field, we have: 

P 
Eloc = E+N-, 

co 
(3.10) 

where here, N refers not to the particle number density, but rather to the depolarising 
factor. 

The depolarising Jactor defined above depends on the shape of the sample and 
can be calculated for a given shape. 

Fig. 3.2. The definition of the local field Eloc: in a di-
E electric medium, the applied field E is augmented by 

the field resulting from the induced surface charges. 
This Lorentz field, assuming a spherical cavity, is equal 
to P/3£o 
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Following Lorentz, the field inside a spherical cavity in a dielectric can be 
calculated using a depolarising factor N = 1/3, and thus 

1 P 
E10c = E+ --. 

3 eo 
(3.11) 

Then, from (3.7), we have 

Pind = P = PM = Ci (E + ~ P) 
N NM2 3 eo 

(3.12) 

Using (3.3), we eliminate E from (3.12) to yield 

PM (P 1 P) P(e+2) 
NM! = Ci eo(e - 1) + :3 eo = 3eo(e _ 1) Ci 

and we obtain: 

e-IM INA 
--- = --Ci == PMol . 
e + 2 Q 3 eo 

(3.13) 

This is the Clausius-Mosotti equation. It defines the molar polarisation PMol and 
connects the macroscopic measurable quantities e, M, and Q with the molecular 
quantity Ci. 

So far, we have considered only the polarisation in a static E field. We now 
make some remarks concerning the behaviour of molecules in an alternating field; 
in particular, the electric field in a light beam is relevant. The applied electric field 
oscillates at the frequency v and would reverse the polarisation of matter in the 
field at that frequency. In general, this succeeds for the displacement polarisation 
up to frequencies corresponding to the infrared range, and the contribution of the 
polarisability to the polarisation remains constant. At higher frequencies, it is neces­
sary to distinguish between the electronic and the ionic polarisations. For the latter, 
the time required to reverse the polarisation is typically about equal to the period 
of a molecular vibration. The ionic contribution to the displacement polarisation 
therefore vanishes when the frequency of the light increases from the infrared to 
the visible range, i. e. when it becomes greater than the important molecular vibra­
tion frequencies. The nuclei in the molecules, and their charge distributions, have 
too much inertia to follow the rapidly reversing field of the polarising light beam at 
higher frequencies. At the frequencies of visible light, only the less massive electrons 
can follow the alternating field, leading to reversal of the polarisation; thus only the 
electronic part of the displacement polarisation contributes at these frequencies. 

From the Maxwell relation eJL = n2 (JL = permeability constant, n = index of 
refraction), considering that for molecules, as a rule JL ~ 1 and therefore n = ,Je, it 
follows from (3.13) that the Lorentz-Lorenz equation: 

(3.14) 
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holds. RM is the molar refraction. The optical polaris ability f3 (not to be confused 
with the hyperpolarisability introduced above!) is the polaris ability at the frequencies 
of visible or ultraviolet light. It differs, as explained above, from the static polaris­
ability a, and depends on the frequency of the light. This frequency dependence is 
called dispersion. An example: the index of refraction, n, of water at 20 DC has the 
value 1.340 for A = 434 nm and n = 1.331 for A = 656 nm. The molar refraction 
RM of a particular molecule can be divided up into contributions from the different 
chemical groups and bonds within it. This is of interest for the determination of 
molecular structures. 

3.3 Polar Molecules 

The displacement polarisation which we have discussed so far, and the values of c 
and P to which it gives rise, are only slightly or not at all dependent on the tem­
perature. In contrast, there are many materials in which c and P decrease strongly 
with increasing temperature. The explanation depends on the concept of orientation 
polarisation, which is to be distinguished from displacement polarisation. While 
the latter as discussed above is induced by an applied electric field, an orientation 
polarisation occurs in materials whose molecules have permanent electric dipole 
moments, Pp (Debye, 1912). Such molecules are termed polar, and materials con­
taining them are called paraelectric. The orientation polarisation is based on the 
alignment of permanent dipoles by an applied electric field. It should be mentioned 
that the permanent dipole moments are usually much larger than induced moments; 
some numerical values are given in Table 3.3. 

For comparison, we can calculate the induced dipole moment Pind in a field E = 
105 V /cm, using a polarisability a' = 10-24 cm3, typical of nonpolar molecules, 
i. e. aco = 10-40 As m2 /V; we find Pind = acoE = 10-33 As m, i. e. 3 orders of 
magnitude smaller than the typical permanent dipole moments as shown in Table 3.3. 

A glance at Table 3.3 shows that the measurement of molecular permanent dipole 
moments can allow the determination of important structural data: while for the CO2 

molecule, one observes a zero dipole moment and thus concludes that the molecule is 
linear, 0 - C - 0, the nonvanishing dipole moment of the water molecule indicates 
a bent structure for H20. 

Table 3.3. Permanent dipole moments Pp in units of 10-30 Asm (1 D = 3.3356 . 10-30 Asm) 

HF 6.0 H2 0 
HCl 3.44 H2O 6.17 
HBr 2.64 CH30H 5.71 
CO 0.4 KF 24.4 
CO2 0 KCl 34.7 
NH3 4.97 KBr 35.1 
C6H6 0 
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Thus, the displacement polarisation [see (3.7)] 

(3.15) 

is independent of or only slightly dependent on the temperature, and at least in part 
follows an applied ac field up to very high frequencies (those of UV light!) owing to 
the small inertia of the displaced electrons; it thus makes a contribution to the index 
of refraction n. 

In contrast, the orientation polarisation 

Por = LPp = Np' 
V p 

(3.16) 

is dependent on the temperature (and on the frequency of the applied field). The 
alignment of the permanent dipoles Pp in an electric field E is the result of a com­
petition between the orientation energy Wor = -Pp . E, which tends to produce 
a complete alignment of the dipoles parallel to the field, and the thermal energy 
Wth ~ kT, which tends to randomise the directions of the dipoles in the applied 
field. As a result of this competition, each dipole contributes only pi < p to the total 
polarisation, averaged over time. 

Due to this competition, an equilbrium is reached which nearly corresponds 
to a Boltzmann distribution. The calculation (Langevin, 1900) gives the following 
result for the mean value of cos () at higher temperatures, kT » Pp . E = pEcos (), 
where () is the angle between the directions of p and E and the interaction between 
the dipoles themselves can be neglected: 

-- ppE 
cos() =--

3kT 
and (3.17) 

This is known as Curie's law; it was first derived in this form for temperature 
dependent paramagnetism. It states that the orientation polarisation is proportional 
to the reciprocal of the absolute temperature. 

(A less approximate calculation for the mean value of p yields the equation 

I - (PE) P = p cos () = pL kT 

with the Langevin function 

eX + e-x 1 1 
L(x) = - - = cothx - - . 

eX - e-X x x 

At room temperature, kT ~ 5 . 10-21 W s and the orientation energy Wor of the 
dipoles in a field of E = 105 V jcm is about 10-22 W s. The condition pEjkT « 1 
is thus fulfilled and the function L can be expanded in a series which is terminated 
after the first term. This yields pi = p2 Ej3kT, the so-called high-temperature 
approximation. ) 
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Now that we know the contribution of permanent dipoles to the polarisation, we 
should like to calculate the dielectric constant of a dilute system (with £ - I « I), 
by adding together the displacement polarisation and the orientation polarisation to 
give an overall polarisation. We refer to (3.3), (3.9) and (3.17) and obtain 

£=I+N a+-- =I+X. ( p~) 
380kT 

(3.18) 

When the interaction of the dipoles among themselves can no longer be neglected, 
i. e. especially in condensed phases, then instead of the Clausius-Mosotti equation, 
the Debye equation holds: 

8 - I M I Pp 
( 

2 ) 
8 + 2e = 380 N A a + 3kT == PMol • (3.19) 

Experimentally, a and Pp are determined from a measurement of 8 as a function 
of the temperature. When the molar polarisation PMo1 is plotted against liT, from 
(3.18) one finds a straight line. Its slope yields p and its intercept gives a. For 
nonpolar molecules, the slope is zero. Figure 3.3 shows some experimental data. 
For gases, one finds (8 - I) = 1 ... 10 . 10-3; forliquid water at room temperature, 
8 = 78.5. 

The orientation polarisation is produced against the inertial mass of the whole 
molecule and thus, already at lower frequencies than for the displacement polarisa-
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tion, it cannot follow a rapidly-changing ac field. This is because not only must the 
outer electrons move with the field relative to the atomic cores, or the atomic cores 
relative to one another within the molecule, but rather the whole molecule has to 
reorient at the frequency of the applied ac field. Assuming that a typical time for 
molecular rotation in a liquid is about 10-12 s, then the molecules can no longer fol­
low the field reversals at frequencies above about 1011 s-l (in the microwave range). 
The Debye equation (3.19) is then replaced by the Clausius-Mosotti equation (3.13), 
or by the Lorentz-Lorenz equation, respectively. 

3.4 Index of Refraction, Dispersion 

In ac fields at high frequencies, for example in a light beam, one usually measures 
the index of refraction n instead of the dielectric constant c. According to Maxwell, 
they are related by n = .j8ii ({L = permeability); for {L = 1, we have n = .;e. 

The frequency dependence of c or of n reflects the different contributions to the 
polarisation, the displacement and the orientation. In the frequency range of visible 
light, as mentioned above, only the electronic displacement polarisation is present. 

The frequency dependence of c or of n in the optical range, called the dispersion, 
can be calculated to a good approximation using a simple model in which the 
molecules are treated as damped harmonic oscillators having an eigenfrequency wo, 
a mass m, and a damping constant y. The displacement x of the oscillator from its 
zero point, multiplied by the elementary charge e, then represents the dipole moment 
of the molecule. The E-field of the light oscillates with the circular frequency w. We 
then obtain the oscillator equation: 

mx + yx + mW6x = eEoeiwt . 

A stationary solution of this equation is 

x(t) = Xeiwt 

with 

eEo 
x = m(w6 _ ( 2) + iyw . 

(3.20) 

(3.21) 

(3.22) 

This complex expression can be rewritten as the sum of a real and an imaginary part: 

or 

x = X' - iX" . 

A corresponding solution holds for the dipole moment p 
separation x) and thus, according to (3.9) and (3.7a), 

(3.23) 

(3.24) 

ex (charge e and 
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N N ex 
£ = I + -a = I + - -- , (3.25) 

£0 £0 Eo 

£ = £' - i£/1 , (3.26) 

i. e. we obtain a complex dielectric constant, where £' and £/1 are given by the real 
and the imaginary parts of the parenthesis in (3.23), respectively. 

The real and imaginary parts of £ are related to one another by the so-called 
Kramers-Kronig relations. Losses (absorption, £/1) and refraction (dispersion, £') 
thus are connected. There exists for example no loss-free material with a large 
dispersion. Since £ is complex, the Maxwell relation requires the index of refraction 
also to be complex; we obtain: 

it == J £' - i£/1 = n + ik . 

The real quantities nand k are shown in Fig. 3.4. 

n, £' 

----------~-----------w 

Fig. 3.4. Real and imaginary parts of the index of 
refraction due to the displacement polarisation in the 
neighbourhood of a resonance, for a damped oscilla­
tor 

As can be seen, this model may be extended almost intact to give a quantum­
mechanical description; then each molecule must be described by a whole set of 
oscillators. Which of these oscillators is active at a given excitation frequency de­
pends on whether its frequency is near to the corresponding eigenfrequency. 

The dielectric constant £ is the sum of contributions from the displacement 
polarisation and the orientation polarisation. The following relation holds: 

£ = I + Xel + Xion + Xor , 

where Xor denotes the contribution of the orientation polarisation to the suscepti­
bility, etc. This contribution is often denoted as Xdip (for dipolar). The frequency 
dependence of this contribution is not described by a calculation similar to that 
given above for Xel and Xion; instead, it must be treated as a relaxation process. 
Xor decreases with increasing frequency, because a certain time is required for the 
reorientation of the molecular dipoles in the ac field: the relaxation time. In Fig. 3.5, 
the overall frequency dependence of £ is shown schematically. Measured values of 
the dielectric constant £ and the absorption coefficient k in the low frequency range 
are shown in Fig. 3.6 for a particular molecule, namely water, H20. In this frequency 
range, the orientation polarisation is dominant. 

Starting with the static value £ = 78.5, which hardly changes up to a frequency 
of about lO lD Hz, we pass through frequencies where first the molecular vibrations 
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Fig. 3.5. Schematic representation of the frequency dependence of the dielectric constant 8 for 
a paraelectric substance. The contributions to the susceptibility of the orientation polarisation 
and the ionic and electronic displacement polarisations at zero frequency are denoted by 
Xor(O), Xion(O), and Xe\(O), resp. They thus give the static value of the dielectric constant. 
Only one resonance frequency has been assumed for the ionic and the electronic polarisations, 
respectively 
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and then the electronic clouds can no longer follow the excitation field, giving finally 
n = 1.33, corresponding to E: = 1.76, for visible light. 

As we have seen, the quantity E: is complex and strongly dependent on the mea­
surement frequency in certain ranges. For this reason, many different experimental 
methods, in addition to simple capacity measurements in a condensor, must be ap-
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plied to determine it over a wide frequency range. Other methods use for example 
the index of refraction of electromagnetic waves, absorption and reflection in all 
spectral ranges, or the polarisation of scattered radiation. 

3.5 The Anisotropy of the Polarisability 

To complete the discussion of the behaviour of molecules in an electric field, we 
should mention the fact that up to now, we have for simplicity's sake practically 
ignored anisotropies. Only spherically symmetrical molecules such as for example 
CCl4 have an isotropic polarisability, i. e. one which has the same value for all 
angles between the electric field and the molecular axes. In general, as mentioned 
in Sect. 3.2, the polarisability of a molecule is anisotropic; this means that the 
quantities c and n vary depending upon the orientation of the molecule relative to 
a measuring field - for example, the direction of polarisation of a light beam. From 
a knowledge of the anisotropy of the polarisability, one can thus obtain information 
about the shape of the molecules. In gases and liquids, the rapid molecular motions 
cause an averaging over all possible orientations of the molecules relative to the 
E-vector of the light. If one wishes to measure the anisotropy directly, the molecules 
must be oriented, for example by substituting them into a molecular crystal. The 
measured dielectric constants c of such crystals may then show a strong anisotropy. 

Another possibility is the electro-optical Kerr effect, discovered in 1875. This 
term is applied to the observation that many molecular substances exhibit double 
refraction in strong electric fields. This comes about in the following way: in an 
electric field, the molecules tend to align themselves in such a manner that their 
dipole moments are parallel to the field. If the molecules are anisotropic with respect 
to Ct, the relation between Ct and c or the index of refraction n gives rise to a difference 
between n for light with its electric field vector parallel to the direction of the applied 
field and for light whose electric field oscillates perpendicular to the applied field. 

A further important consequence of anisotropic polarisability is the depolarisa­
tion of light scattered by molecules due to an anisotropy or to motion of the molecules. 
To illustrate this point, Fig. 3.7 shows the angular distribution of scattered radiation 
from a spherically symmetric molecule for unpolarised and for polarised incident 
light. This is the angular distribution of a Hertzian dipole oscillator. If the molecule 
is no longer spherically symmetric, or if it moves during the scattering process, de­
viations from this angular distribution occur. Polarised incident light is depolarised 
more strongly as the electronic shells of the scattering molecule become more asym­
metric; very long or very flat molecules exhibit a high degree of depolarisation. Thus, 
one can obtain more information about the structure and motions of molecules. 

Finally, we mention here the optical activity of some organic molecules. This 
refers to the difference in their indices of refraction for left and right circularly 
polarised light, i. e. circular dichroism. It is caused by the asymmetric arrangement 
of the atoms in the molecule. Particularly in the case of large molecules, one can 
learn something about the asymmetry of the electron density in the molecule from 
this effect. 
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Fig. 3.7. Rayleigh scattering depends in a characteristic way on the scattering angle e. The 
diagram shows the spatial distribution (in the plane) of the light intensity scattered by an 
isotropic, spherical sample. The full curve holds for unpolarised light, the dashed curve is 
for polarised incident light. This angular distribution diagram is for a spherically symmetric 
molecule. It may also change when the scattering particles move; thus, one can investigate 
motional processes of molecules or of functional groups in molecules by measuring the 
anisotropy of Rayleigh scattering 

3.6 Molecules in Magnetic Fields, Basic Concepts and Definitions 

The macroscopic magnetic properties of matter are measured collectively by deter­
mining the materials constant /L, the permeability. The following relation holds: 

magnetic flux density Bm in matter 

/L = magnetic flux density B without matter' 
(3.27) 

A derived quantity is the magnetic polarisation, which is a measure of the contribution 
due to the matter in the sample: 

J = Bm - B = (/L - l)/LoH (3.28) 

(H is the magnetic field strength). 
J can be defined by the expression 

magnetic moment M 
J = /Lo . 

Volume 
(3.29) 

/Lo is the so-called magnetic field constant or permeability constant of vacuum, 
with the numerical value /Lo = 1.256· 10-6 V s A-I m -1, which is defined by the 
proportionality of the flux density to the magnetic field strength, B = /LoH in 
vacuum, or 

(3.30) 

in matter. 
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Fig. 3.8. A magnetic balance or Fara­
day balance. An inhomogeneous magnetic 
field exerts an attractive force on a para­
magnetic sample and a repulsive force on 
a diamagnetic sample. The force is pro­
portional to the magnetic moment of the 
sample and to the field gradient. Magnetic 
susceptibilties can be determined in such 
an apparatus 

In addition, the magnetic susceptibility 

K=J.L-1 (3.31 ) 

is used; J.L and K are dimensionless number quantities. 
Materials with K < 0, J.L < 1 are called diamagnetic. In such materials, the atoms 

or molecules have no permanent magnetic moments. Materials with K > 0, J.L > 1 
are paramagnetic; here, the atoms or molecules have permanent moments, which 
can be oriented by an applied magnetic field. 

The magnetic susceptibility of a sample can be determined by measuring, for 
example, the force it experiences in an inhomogeneous magnetic field (Faraday 
balance, Fig. 3.8); or alternatively by measuring the inductance of a coil in which the 
sample has been placed. A modem method for paramagnetic materials is electron spin 
resonance (ESR), which will be treated in Chap. 19. Some values of the susceptibility 
are shown in Table 3.4. 

Table 3.4. Magnetic susceptibilities K at room temperature (after R. W. Pohl) 

Diamagnetic Materials 

H2 
H20 
NaCl 
Cu 
Bi 

- 0.002 . 10-6 

- 9.0.10-6 

- 13.9.10-6 

-7.4- 10-6 

- 153.10-6 

Paramagnetic Materials 

02 
02 liquid 
DY2(S04h ·8H20 
Al 
CuS04·5H20 

1.86. 10-6 

3620.10-6 

6 320 003 . 10-6 

21.2. 10-6 

176.10-6 

The macroscopic materials properties J.L and K can be explained, measured, and 
calculated in terms of the microscopic properties of the molecules involved, just 
like the electrical quantity 8 and in an analogous manner. Conversely, from a meas­
urement of the macroscopic quantities, the magnetic properties of the molecules 
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can be derived. This will be demonstrated in the following. An understanding of 
these materials properties is important for understanding molecular structure and for 
chemistry. 

A para- or diamagnetic object having a volume V experiences a magnetic polar­
isation or magnetisation in a magnetic field B, given by the following expression: 

J = (JL - I)B . (3.32) 

It thus acquires a magnetic moment M parallel to the direction of the applied field; 
this moment per unit volume is given by 

J = JLoM . 
V 

(3.33) 

In a molecular picture, the moment M is interpreted as the sum of the time-averaged 
contributions m' from the n molecules, i. e. 

,n , 
J=JLomy-=JLomN. (3.34) 

From (3.32) and (3.34) it follows for m' that: 

,_ J _ B(JL - 1) 
m ---- . 

JLoN JLoN 
(3.35) 

We now define a molecular property, the magnetic polarisability {3: 

m' JL-l K 
{3=-=-=-. 

B /-toN JLoN 
(3.36) 

This is reasonable, since experimentally, JL is a materials constant independent of B. 
In condensed matter, the applied magnetic flux density may differ from the flux 

density which acts at the site of a molecule within the sample. This has to be taken 
into account appropriately. 

{3 has the dimensions [Am4 IV s], and the product {3JLo has the dimensions [m3]. 

From a measurement of the susceptibility K, one thus obtains using (3.31), (3.35), 
and (3.36) the molecular quantity {3. 

3.7 Diamagnetic Molecules 

The electronic shells of most molecules possess no permanent magnetic moments. 
They have an even number of electrons whose angular momenta add to zero; they 
thus lack magnetic moments and are diamagnetic. Like all materials, however, these 
molecules acquire an induced magnetic moment mind in an applied magnetic field B, 
which, according to Lenz's rule, is opposed to the inducing field, i. e. is negative. 
This diamagnetic contribution to the magnetisation has only a slight temperature 
dependence. From (3.35) we find 
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(3.37) 

and 

(3.38) 

The quantity f3 is in fact the magnetic polarisability. It is negative for diamagnetic 
molecules and is an essentially temperature-independent molecular property. As 
a numerical example, we consider the diamagnetic hydrogen molecule, H2, for 
which a determination of JL (Table 3.4) yields 

Am2 
f3 = - 2.4 . 10-30 -- . 

Vs/m2 

In a laboratory field B = I V s/m2, the induced magnetic moment of each molecule 
is then equal to 

Am4 
m' = - 3 .10-30 --1 Vs/m2 = - 3 .10-30 Am2 . 

md Vs 

This numerical value is small compared to the Bohr magneton, JLB = 9.27· 10-24 

Am2 . 

The values of induced magnetic moments are always much less than the Bohr 
magneton JLB, the unit of atomic magnetism, and thus are small compared to the 
permanent magnetic moments of atoms or molecules. 

Fig. 3.9. The anisotropy of the magnetic polarisability. If Bo is applied perpendicular to the 
plane of the benzene ring, the polarisability is maximal due to the ring current induced in the 
:n: electron system 
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The magnetic polaris ability of non-spherically symmetrical molecules is in gen­
eral anisotropic. For example, in the benzene molecule the measured values perpen­
dicular and parallel to the plane of the molecule are 

/Loth = - 152 . 10-36 m3 and /Lof311 = - 62 . 10-36 m3 . 

The anisotropy is in this case intuitively understandable: the JT-electrons can re­
act to an inducing magnetic field more easily in the plane of the molecule than 
perpendicular to it, producing a current loop in the plane; see Fig. 3.9. 

The anisotropy of the magnetic polaris ability in benzene or in other molecules 
with aromatic ring systems is an important indication of the delocalisation of the 
JT-electrons along chains of conjugated double bonds (see also Sect. 18.3). Diamag­
netism is indeed based upon the production of molecular eddy currents by a change in 
the external magnetic flux. The diamagnetic susceptibility is therefore greater when 
the electronic mobility along closed loops perpendicular to the applied magnetic 
field is larger. 

3.8 Paramagnetic Molecules 

As already mentioned, there are also molecules with permanent magnetic dipole 
moments. Examples are molecules of the gases 02 and S2 (cf. Sect. 13.3). Their 
electronic ground states are triplet states having total spins of S = 1. Also in 
this class are the so-called radicals, i. e. molecules with unpaired electronic spins 
(S = 1/2), or organic molecules in metastable triplet states (S = 1) (cf. Fig. 15.1). 
A consideration of how the paramagnetism of a molecule results from its spin and 
orbital functions will be given in later chapters of this book. 

For paramagnetic molecules, one observes in contrast to diamagnetic substances 
large and positive values of the permeability, which increase with decreasing tem­
perature. Experimentally, a proportionality to I/T is usually observed. This param­
agnetic behaviour can be understood in a quite analagous manner to the orientation 
polarisation in electric fields: it results from a competition between the aligning 
tendency of the applied field B, with its orientational energy Wor = -mp • B, 
and the thermal motions of the molecules, whose energy Wth = kT tends towards 
a randomisation of the molecular orientation. 

Without an applied field, the directions of the permanent moments mp are ran­
domly distributed, and the vector sum of the moments is, as a time and spatial 
average, equal to zero as a result of the thermal motions of the molecules. In an 
applied field, a preferred direction is defined and each molecular moment makes 
a contribution to the time-averaged magnetisation M. 

The contribution m* of an individual molecule with a permanent moment mp to 
the macroscopic moment M can be written as 

m* = xmp , (3.39) 
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where the index p is used here to indicate that permanent magnetic moments are 
meant. The factor x, which is in general small, can be readily calculated by analogy 
to the procedure used for the electronic orientation polarisation in Sect. 3.3. In 
sufficiently dilute systems, in which the interactions between the molecules may be 
neglected, we find as a good approximation 

Imp· Bm 
x ~ ----'---

3 kT 
(3.40) 

Making use of the relations (3.35), (3.36), (3.39), and (3.40), we find after simple 
rearrangements the paramagnetic contribution to the magnetic polarisation: 

L m* 1 m~{LoN B 
J = {Lo -v- = "3 kT (3.41) 

and 

1 m~{LoN 
K = ----'---

3 kT 
(3.42) 

This is Curie's Law, which describes the temperature dependence of paramagnetism. 
Using (3.41) and (3.36) we obtain the following relation: 

(3.43) 

which in tum allows us to calculate the permanent moment of a paramagnetic 
molecule by making use of the magnetic polaris ability f3 obtained from (3.36). 
For 02, the measured value (from K, Table 3.4) 

Am4 
f3 = 5.5 . 10-26 -­

Vs 

at T = 300 K leads, using (3.43), to 

mp = 2.58 . 10-23 A m2 

for the magnetic moment. This value is of the order of magnitude of the Bohr 
magneton {LB. Other magnetic moments determined in this manner are, for example, 
1. 70 . 10-23 A m2 for the NO molecule and 4.92 . 10-23 A m2 for the iron ion Fe+++. 
Here, the magnetic moment was derived to be sure from the classical formula, 
i.e. Curie's law. One can arrive at a quantum-theoretical formula by replacing the 
square ofthe magnetic moment, m~, in (3.42) by its quantum-mechanical expectation 

value g~p,~ F(F + I). For the O2 molecule, one obtains in this way a magnetic moment 
of 2 {LB. 

The overall susceptibility of a substance is given by the sum of the diamagnetic 
contribution and the paramagnetic contribution, when the latter is present. 
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We thus have 

{t = Kdia + Kpara 

{tomp ( 2) = 1 + N {tOf3dia + -- = 1 + K • 
3kT 

(3.44) 

The molecular quantities f3dia and mp are found by plotting the measured macroscopic 
values of K or {t against IjT, as we have already seen in the case of the electrical 
properties of matter in Sect. 3.3. 

There are many molecules which are diamagnetic in their ground states but 
which have paramagnetic electronically excited states. Particularly important and 
interesting are the triplet states of many organic molecules. We shall have more to 
say on this topic, especially in Sect. 15.3 and in Chap. 19. 

At low temperatures, in certain materials, predominantly in the solid state, a pre­
ferred parallel or antiparallel ordering of the spins and thus of the magnetic moments 
of the molecules is observed even in the absence of an applied magnetic field, i. e. 
spontaneously. This is termed ferromagnetism or antiferromagnetism. In the case of 
molecular substances, the latter is more common; i. e. the paramagnetic molecules 
order at low temperatures with their spins in pairs having antiparallel orientation. 

In the chapters up to now, we have met with a number of the most important basic 
quantities for molecular physics, mainly from the experimental point of view. We 
now tum in the following four chapters to the theory of chemical bonding. Chapters 4 
and 5 are of general interest, while Chaps. 6 and 7 contain more extended theoretical 
approaches and may be skipped over in a first reading of this book. 

Problems 

3.1 a) Molecules with permanent electric dipole moments tend to orient along the 
direction of an applied electric field; this tendency is opposed by thermal disorder. 
According to the rules of statistical mechanics, we can calculate the probability that 
a molecular dipole p rotates from an angle () between the dipole axis and the direction 
of an applied field E to an angle () + L1(). Try to derive the thermally-averaged value 
cos() = L(pEjkT). Here, L(x) is the Langevinfunction 

1 
L(x) = cothx - - . 

x 

b) How strong must the electric field be in order to orient a hydrogen molecule 
(p = 6.17 . 10-30 As cm) exactly along the field direction at room temperature? 

c) Some water is dissolved at a very low concentration in (nonpolar) n-hexane. 
What field strength would be required in order to obtain 50% of the maximum 
theoretically possible polarisation at room temperature (approximate estimate)? 

d) What degree of orientation could be attained at a realistic field strength of 
E = 105 V jcm on cooling to liquid helium temperature (T = 4.2 K)? 
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3.2 How will a water molecule (dipole moment p = 1.85 D) orient in the neigh­
bourhood of an anion? What local electric field is produced by the water molecule 
at the position of the ion when its centre is located at a distance of (a) 1.0nm; (b) 
0.3 nm; and (c) 30 nm from the centre of the ion? 

3.3 How large is the induced dipole moment Pind in benzene (a) in an electric field 
corresponding to the breakdown field of air (106 V I m; and (b) in the focus of a laser 
with a power P = 107 Wand a beam cross-sectional area of A = 100 j.1m2? 

3.4 NO molecules are paramagnetic with a permanent magnetic moment of 
JLp = 1.7.10-23 Am2. How strong a magnetic field B must be applied in order 
to produce a paramagnetic contribution to the magnetisation of an NO sample at 
room temperature which is 1 % of the theoretical maximum (saturation) value (at 
which all the molecules would be oriented parallel to the applied field)? 

3.5 For the capacities C and Co of a parallel-plate capacitor with and without 
a dielectric (of relative dielectric constant cr), the following relation holds: 

C COCr 
- = - =Cr· 
Co co 

In a series of experiments with camphor at various temperatures, a capacitor with 
Co = 5.01 pF was used; derive the dipole moment and the polaris ability volume 
of the camphor molecule from the following experimental data (molecular mass 
M = 152.23 g): 

o 20 40 60 80 100 120 140 160 200 

p [g/cm2] 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.96 0.95 0.91 

C [pF] 62.6 57.1 54.1 50.1 47.6 44.6 40.6 38.1 35.6 31.1 

Note: The polarisability defined by Pind = aE has the very non-intuitive units of 
A2 s2 m2 II; it is therefore often replaced by the so called polarisability volume a' 
(see Sect. 3.2): 

, a 
a =--

4Jrco 

in units of 10-30 m3 = 1 A3. The value of a' in SI units [10-30 m3] then corresponds 
exactly to that of a in cgs units [10-24 cm3]. 

3.6 How large is the polaris ability volume of water for light of wavelength 589 nm, 
if its index of refraction at 20 DC has the value 1.3330 for 589 nm? 
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3.7 According to a simple model, the dipole moment of water (p = 1.85 D) is 
formed by addition of the dipoles of the two H-O bonds at an angle of 104.5°. 
What is the dependence of the dipole moment of hydrogen peroxide, H202, on the 
azimuthal angle between the two -OH groups, if the OOH angle is 90°? What angle 
do you calculate on the basis of experimental data giving a dipole moment of 2.13 D? 

3.8 Can the water vapour content of the air be determined by measuring its dielec­
tric constant c? Consider that the saturation vapour pressure of water in air at 40°C 
is 50 mbar and the dielectric constant of N2 is c = 1 + 5.8· 10-4 . At what relative 
humidity does the water vapour give the same contribution to Cair as the N2? 

3.9 Find the polarisability volume and the dipole moment of the chloroform 
molecule, CHCI3, for which the following dielectric constants have been measured 
as a function of the temperature (melting point -64°C: 

-70 -60 -40 -20 o +20 

Cr 3.1 3.1 7.0 6.5 6.0 5.5 5.0 

1.64 1.64 1.61 1.57 1.53 1.50 

3.10 Calculate the dielectric constant of chlorobenzene, C6H5CI, at 25°C. Its 
density at this temperature is 1.107 g/ cm2; for the molecular polarisability volume, 
a value of 1.2 . 10-29 m3 is reported, and the dipole moment is 1.57 D. 

3.11 The anisotropic diamagnetism of benzene can be explained to first order in 
terms of ring currents (L. Pauling, J. Chern. Phys. 4, 673 (1936)). Calculate the ring 
current produced by an applied magnetic field above and below the molecular plane, 
by expressing the centripetal force in terms of the Lorentz force on a free electron. 
Take account of the fact that in benzene there are 6 7r electrons. 

The anisotropy of the diamagnetic susceptibility K of a planar molecule is defined 
by: 

KJ + K2 
L1K = K3 - --2- . 

The susceptibilities KJ and K2 hold for a field applied in the plane of the molecule, 
while K3 is obtained with B perpendicular to the plane. As a first approximation, 
we have Ki = Enkn with i = 1, 2, where kn are the contributions of the individual 
atoms in the molecule. For i = 3, the contribution of the ring current must be added 
in: K3 = Enkn + L1K. 

The magnetic polaris ability fJ is the microscopic quantity which corresponds to 
the macroscopic susceptibility: 

K 
fJ=-

/J-o N 
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(N is the particle density). It is likewise anisotropic; for the benzene molecule, the 
following values are measured: 

JLofJJ.. = 152· 10-36 m3 and JLofJlI = 62 . 10-36 m3 . 

Calculate the effective radius of the ring current in benzene using these values. 

(Hint: how is the magnetic moment defined?) 

3.12 An example of the dielectric function is given by NaCl molecules in ionic 
crystals. In the infrared spectral region, there are longitudinal and transversal "opti­
cal" lattice vibrations with frequencies ilLO and ilTO , which lead to the following 
relation for the index of refraction: 

il2 - vi 
n2 = £(w) = £(00) . --=L=O_---=­

ilTO - w2 

with 

£(0) illo 
£(00) ilTO 

(Lyddane-Sachs-Teller relation) . 

Sketch the function using the following parameters: £(0) = 5.62, £(00) = 2.25, 
ilTO = 3.1 . 1013 rad·s- I . How large is £(w) for ilTO < w < ilLO? What is the 
"residual radiation" in this connection? 



4 Introduction to the Theory 
of Chemical Bonding 

In this chapter, we begin by reviewing the most important concepts of quantum me­
chanics and then discuss the difference between heteropolar and homopolar bond­
ing. In the following sections, we treat the hydrogen molecule-ion and the hydrogen 
molecule, using the latter to illustrate various important theoretical methods. Finally, 
we tum to the topic of hybridisation, which is particularly significant for the carbon 
compounds. 

4.1 A Brief Review of Quantum Mechanics 

Classical physics failed to explain even the structure of the atom. Consider, for 
example, the hydrogen atom, in which one electron orbits around the nucleus. 
The (charged) electron behaves as an oscillating dipole and would, according to 
classical electrodynamics, continuously radiate away energy, so that it must fall 
into the nucleus after a short time. Furthermore, the appearance of discrete spectra 
is unexplainable. Particular difficulties occur in the attempt to explain chemical 
bonding; we will treat this topic in more detail in the next section. Molecular physics 
can clearly not get along without quantum mechanics. We therefore start with a brief 
review of the basic concepts of quantum mechanics, keeping the hydrogen atom in 
mind as a concrete example. For a more thorough treatment, we refer the reader to 
I, Chaps. 9 and 10. 

We assume the atomic nucleus to be infinitely massive, so that we need consider 
only the electron's degrees of freedom. Its energy is given by 

E = E kin + Epo! , (4.1) 

where the kinetic energy may be written as 

(4.2) 

mo is here the mass of the electron, and v is its velocity. In order to arrive at the 
correct starting point for a quantum-mechanical treatment, we replace the velocity 
v by the canonically conjugate variable p, the momentum, according to: 

mov =p, (4.3) 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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so that we can write the kinetic energy in the form 

1 2 
Ekin = --p . 

2mo 

The potential energy can be given as a position-dependent potential: 

Epot = VCr) 

(4.4) 

(4.5) 

where r = (x, y, z). The energy expression (4.1) can then be written as a Hamilton 
function 

1 2 
H= -p +V(r). 

2mo 
(4.6) 

This expression is the starting point for the quantisation. According to Jordan's rule 
we must replace the momentum p by a momentum operator: 

or, in vector notation, 

ti 
p=-;-v. 

1 

The Hamilton function (4.6) thus becomes the Hamiltonian operator: 

1 (ti )2 H= - -;-'11 +V(r). 
2mo 1 

(4.7) 

(4.8) 

(4.9) 

If we calculate the square of the nabla operator, we obtain the Laplace operator '112, 
defined by: 

a2 a2 a2 
'112= _+_+_. 

ax2 ay2 az2 (4.10) 

We can then finally write the Hamiltonian operator in the form 

ti2 
H = __ '112 + VCr) . 

2mo 
(4.11) 

Using this operator, we can formulate the time-dependent Schr6dinger equation, 
which contains a time- and position-dependent wavefunction !fr(r, t): 

a 
H!fr(r, t) = i ti- !fr(r, t) . at (4.12) 

In many cases, the Hamiltonian is itself not explicitly time-dependent. In such 
a case, one can simplify the time-dependent Schr6dinger equation (4.12) by making 
the substitution 
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1/I(r, t) = exp (-*Et) 1/I(r) , (4.13) 

i. e. by separating out a time-dependent exponential function and leaving the position­
dependent function 1/I(r). Inserting (4.l3) into (4.12), differentiating with respect to 
time and dividing out the exponential function which occurs in (4.13), we obtain the 
time-independent Schrodinger equation: 

H1/I = E1/I . (4.14) 

In solving either (4.12) or (4.14), we must take into account the boundary conditions 
for 1/1, which depend on the position vector r. In general, they state that 1/1 vanishes 
when r goes to infinity. As can be quite generally shown, the SchrOdinger equation 
(4.14), together with the boundary conditions, yields a set of so-called eigenvalues Ev 
and corresponding eigenfunctions 1/Iv, where v is an index denoting the quantum 
numbers. Therefore, in place of (4.14), we could write 

(4.15) 

According to the basic postulate of quantum mechanics, the values obtained as the 
result of a measurement are just those which occur as eigenvalues in (4.15). In 
measurements of quantities other than the total energy, different values may result 
from each individual measurement. In this case, the theory can in general predict 
only expectation values, e. g. for position, momentum, kinetic or potential energy. 
These expectation values are defined by 

x = f 1/1* (r, t)x1/l(r, t)dV , 

Px = f 1/I*(r, t)px1/l(r, t)dV , 

f * (ti2 2) Ekin = 1/1 (r, t) - 2mo V 1/I(r, t)dV , 

Epo! = f 1/1* (r , t) V(r) 1/I(r, t)dV . 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

The quantities Px, x, ... have now become operators in (4.l6)-(4.19). We can use 
them to construct expressions for additional operators, e. g. for the angular momen­
tum operator, using the relation 

L=[r,p], 

or, applying (4.8), 

(4.20) 

We now consider the hydrogen atom, or, more generally, an atom having the nuclear 
charge Z and containing only one electron. It is not our intention here to develop 
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the quantum mechanics of the hydrogen atom in detail; this is done in I, Chap. 10. 
Instead, we wish only to remind the reader of some basic results. In the case of the 
hydrogen atom, the Hamiltonian is given explicitly by 

fi,z 1 Ze2 
H = __ V2 - ----

2mo 4Jr€o r 
(4.21) 

Since the Hamiltonian depends only on the radius but not on the angles in a spherical 
polar coordinate system, it is useful to transform (4.21) to spherical polar coordinates 
using 

r ~ r, e, ¢. (4.22) 

As may be shown, the wavefunction can then be written in the form 

(4.23) 

where the indices n [ m refer to quantum numbers: n is the principal quantum 
number, [ the angular momentum quantum number, and m the magnetic quantum 
number. The wavefunction thus can be separated into a radial part R, which depends 
only on r, and an angular part Pt eem¢. The energy is found to be 

moZ2e4 1 
En = - 2/j,2(4Jr€O)2 n2 . 

(4.24) 

It thus depends only on the principal quantum number n, which can take on the 
values 1, 2, 3 .... This characterises the bound states of the atom. 

In the following, the angular dependence of 1/1 is mainly of interest. We therefore 
remind the reader of the simpler angular momentum states, cf. Fig. 4.1. For [ = 0, 
there is one state, which does not depend on angles, i. e. it has spherical symmetry. 

We denote the angle-dependent factor in (4.23) by: 

For 1= 0,1, we obtain the following expressions for Ft,m: 

[=0 

[= 1 

1 
Foo =--, J41f 

Fl 0 = {3 cos e = {3:. , '14; V4;r 

F1±1 =± {3sinee±i¢=± (3x±y, , 'Is; 'Is; r 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

where, in the last term of these equations, we have expressed the angular dependence 
by using Cartesian coordinates x, y, z. The radial function Rn,l which occurs in (4.23) 
has the explicit form 
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Fig. 4.1. Representation of the angular momentum functions for an s-state (spherically sym­
metric) and the p-functions (real representation) 

R N -Knr lL2l+1 (2 ) 
n.l = n,le r n+l Kn r , 

where N is a nonnalisation factor, defined in such a way that: 

100 
R2r2dr = 1 . 

The constant Kn is given by the expression: 

1 moZe4 
Kn = ----. 

n h,24lTeo 

(4.29) 

(4.30) 

(4.31) 

The function L~~/ is defined as a derivative of the Laguerre polynomials Ln+1, 

according to 

L21+1(n) _ d 21+1 L /dn21+1 
n+! '" - n+! '" , (4.32) 

whereby the Laguerre polynomials themselves can be calculated using a differenti­
ation fonnula: 

(4.33) 

In the simplest case, n = I, I = 0, we obtain 

(4.34) 
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and thus 

L1 = dLJ/de = -1 , (4.35) 

so that R1,o is given by 

(4.36) 

Some examples are shown in Fig. 4.2. 

4.2 Heteropolar and Homopolar Bonding 

A theory of chemical bonding must be able to explain why it is possible for certain 
atoms to form a particular molecule, and it must be able to calculate the binding 
energy of the molecules formed. Before the development of quantum mechanics, one 
special type of bonding - heteropolar bonding - seemed to be easily explainable, but 
the other type - homopolar bonding - could not be understood at all. An example of 
heteropolar bonding (heteropolar = differently charged) is provided by the common 
salt molecule, NaCI (cf. Fig. 1.2). The formation of its bond can be imagined to 
take place in two steps: first, an electron is transferred from the Na atom to the 
CI atom. The now positively-charged Na+ ion attracts the negatively-charged CI­
ion and vice versa, owing to the Coulomb force, which thus is responsible for the 
bonding. Considered more carefully, this explanation is only apparently complete, 
since it gives no theoretical justification for the electron transfer from Na to Cl. The 
theoretical basis for this transfer was given only by the quantum theory, according 
to which it is energetically more favorable for the electron to leave the open shell 
of the Na atom and to pass to the CI atom, completing its outermost shell. Thus, to 
properly explain even heteropolar bonding, we require quantum mechanics. 

The question of the explanation of homopolar bonding was even more difficult. 
How, for example, could a hydrogen molecule, H2, be formed from two neutral 
H atoms? Here, the quantum theory provided a genuine breakthrough. Its basically 
new idea can be discussed by using as an example the Hi hydrogen molecule­
ion, which corresponds to neutral H2 from which an electron has been removed. 
The remaining electron must hold the two protons together. According to quantum 
mechanics, it can do this (pictorially speaking) by jumping back and forth between 
the two nuclei, staying for a while near one proton and then for a while near the other. 
Its probability of occupying the space between the two protons is thus increased; it 
profits from the Coulomb attraction to both nuclei and can thus compensate for the 
repulsive Coulomb force between the protons, as long as they do not approach each 
other too closely. We shall show in Sect. 4.3 that this picture can be precisely defined 
by calculating the wavefunctions of Hi. We will see there how the wave nature of 
the electron plays a decisive role. The wavefunctions which describe the electron's 
occupation of the space near the one proton or the other interfere constructively 
with each other, increasing the probability of finding the electron between the two 
protons and giving rise to a bonding state. A similar picture is found for the hydrogen 
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Fig. 4.2. (a) The radial part of the wavefunctions R(Q = 2Kr) == R(r) (4.29) of the H-atom 
is plotted against the dimensionless coordinate Q. The indices (l,0), (2,1)'00' on the curves 
correspond to (n, I), where n is the principal quantum number and I the angular momentum 
quantum number. (b) The corresponding probability amplitudes in the radial dimension, i. e. 
41TQ2 R(Q), are plotted against the dimensionless coordinate Q 
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molecule, H2 (cf. Fig. 1.1). It is interesting that destructive interference is also 
possible - the occupation probability is then reduced and even becomes zero along 
the plane of symmetry between the two nuclei - and an antibonding state is produced, 
which releases the bound H atoms. 

Let us now tum to the quantum mechanical calculation. 

4.3 The Hydrogen Molecule-Ion, H~ 

In this section, we start to develop the quantum theory of chemical bonding. The 
simplest case of chemical bonding is that of the hydrogen molecule-ion, Ht. This 
molecule can be observed as a bound state in a gas discharge in hydrogen atmosphere; 
in such a discharge, electrons are removed from the hydrogen molecules. The binding 
energy ofHt, identical to its dissociation energy, has been found to be 2.65 eV. Here, 
we are dealing with two hydrogen nuclei, i. e. protons, but only one electron. The 
two nuclei are distinguished by using the indices a and b (cf. Fig. 4.3). If they 
are separated by a very large distance, we can readily imagine that the electron is 
localised near either the one nucleus or near the other. Its wavefunction is then just 
like that of the ground state of the hydrogen atom. In the following, we denote the 
distance of the electron to nucleus a or to nucleus b as ra or rb, respectively. If we 
call the wavefunction of the hydrogen ground state belonging to nucleus a <Pa, it 
must obey the Schr6dinger equation 

(4.37) 

Ha 

and a corresponding equation holds for the wavefunction <Pb, with the energies E~ 
and Eg being equal: 

(4.38) 

If we now let the two nuclei approach one another, then the electron, which was 
originally near nucleus a, for example, will respond to the attractive Coulomb force 
of nucleus b. Correspondingly, an electron which was originally near nucleus b 

Fig. 4.3. Overview sketch of the hydrogen molecule-ion. 
The two nuclei (protons) are denoted as a and b, and 
their separation as Rab. ra and rb give the distance of the 
electron to nucleus a or nucleus b, respectively 
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Fig. 4.4. The hydrogen molecule-ion: the potential energy V of the electron due to the 
Coulomb attraction to the two nuclei a and b is plotted against the x-coordinate. The dashed 
curves show the potential energy of the electron in the field of one nucleus, a or b. The solid 
curve is the total potential energy. The binding energy EO of the electron in the field of a single 
nucleus is also indicated 

will now respond to the Coulomb attraction of nucleus a. We therefore need to 
write a Schrodinger equation which contains the Coulomb potentials of both nuclei 
(Fig. 4.4). Furthermore, in order to calculate the total energy, we need to take into 
account the Coulomb repulsion of the nuclei. If we denote the nuclear separation 
by Rab, then this additional energy is equal to e2 j4JT:£oRab . 

Since this additional term does not affect the energy of the electron, it simply 
results in a shift of the energy eigenvalues by a constant amount. We shall initially 
leave off this constant, and add it back in at the end of the calculation. 

These considerations lead us to the Schrodinger equation 

(4.39) 

in which the wavefunction 1/1 and the energy E must still be calculated. 
We now make an approximate determination of the wavefunction 1/1. To this 

end, we make use of an idea borrowed from perturbation theory in the presence 
of degenerate levels. The electron could, in principle, be found near nucleus a or 
nucleus b (cf. Fig. 4.5), and would have the same energy in either case; compare 
(4.37) and (4.38). These two states, <Pa and <Pb, are thus degenerate in energy. Now, 
however, the other nucleus also affects the electron and perturbs its energy levels; 
we can expect that this would lift the degeneracy of the two states. Exactly as in 
perturbation theory with degeneracy, we take as a trial solution to (4.39) a linear 
combination of the form: 

(4.40) 

where the two coefficients c] and C2 are still to be determined. To calculate them, 
we proceed in the usual manner: we first insert the trial function (4.40) into (4.39) 
and obtain 
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a b 

r • 
a b 

Fig. 4.5. (Upper part) The wavefunction ¢a of the electron when it is localised in the field 
of nucleus a, and the corresponding wavefunction ¢b of the electron near nucleus b. (Lower 
part) When the internuclear spacing between a and b is decreased, the two wavefunctions ¢a 
and ¢b begin to overlap in the central region 

(_~V2 -~ -~) Cl<Pa 
, 2mo lIa 41Tcora, 41Tcorb 

+ (_~V2 -~ -~) C2<Pb = E(Cl<Pa +C2<Pb). 
, 2mo lib 41Tcorb, 41Tcora 

(4.41) 

In the two large parentheses in (4.41), we have collected the terms in such a way that 
the operator Ha acts on <Pa and the operator Hb on <Pb. We can now refer to (4.37) 
and the corresponding equation for <Pb to simplify these expressions, by putting for 
example E~<Pa in place of Ha<Pa and correspondingly for Hb<Pb. 

If we now bring the right -hand side of (4.41) to the left, we obtain 

(4.42) 

Although <Pa and <Pb are functions of the position coordinates, the coefficients 
Cl and C2 are assumed to be position-independent. In order to find a position­
independent equation for the c's, we multiply (4.42) by <P~ or <Pb' as accustomed 
from perturbation theory, and integrate over the electronic coordinates. In the fol­
lowing, we assume that the functions <Pa and <Pb are real, which is the case for the 
ground state wavefunction of hydrogen. We have to keep in mind that the functions 
<Pa and <Pb are not orthogonal, i. e. that the integral 

f <Pa<PbdV = S (4.43) 
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is not equal to zero. If we multiply (4.42) by ¢a and then integrate over electronic 
coordinates, we obtain expressions which have the form of matrix elements, namely 
the integrals: 

(4.44) 

(4.45) 

which we denote by the letters C and D. The meaning of the first integral becomes 
immediately apparent if we recall that -e¢; is the charge density of the electron; 
(4.44) is then nothing other than the Coulomb interaction energy between the elec­
tronic charge density and the nuclear charge e (compare Fig. 4.6). In the integral 
(4.45), in contrast, instead of the electronic charge density, the expression -e¢a¢b 
occurs. This means that the electron in a sense spends part of its time in state ¢a 
and the rest in state ¢h> or in other words, that there is an exchange between the two 
states. The product ¢a¢b is therefore called the exchange density and integrals in 
which such products are found are termed exchange integrals (cf. Fig. 4.7). These 
integrals express an effect which is specific to quantum theory. If we had multiplied 
(4.42) by ¢b instead of ¢a and integrated, we would have found expressions quite 
similar to (4.44) and (4.45), with only a permutation of the indices a and b. Since, 
however, the problem is completely symmetric with respect to these indices, the new 
integrals would have the same values as the original ones. 

x 

Fig. 4.6. An intuitive picture of the integral (4.44), which gives the Coulomb interaction energy 
of an electron cloud having the probability distribution ¢~ in the Coulomb field of a nucleus. 
The charge density distribution ¢~ (shaded region) is plotted along with the potential energy 
(solid curve) of a point charge in the Coulomb field of nucleus h. In calculating the integral, 
at each point in space the value of ¢~ is multiplied by the value of -e2j47TBorb at the same 
point, and the products are then integrated over all space 
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x 

Fig. 4.7. An intuitive picture of the meaning of the integral (4.45). The three functions <Pa, 
<Pb, and -e2/47T80rb which occur in the integral are plotted. The integral contains the product 
of these three functions, which is non-zero only where the two wavefunctions <Pa and <Pb 
overlap; this is the region shaded heavily in the figure. The integral is obtained by taking the 
functional values of <Pa, <Pb, and -e2/47T8orb at each point in space, multiplying them, and 
then integrating this product over all space 

Collecting all the terms obtained through multiplying by <Pa and integrating, we 
find that (4.42) has become the following equation: 

(!J.E + C) c] + (!J.E S + D) C2 = 0 , (4.46) 

and correspondingly after multiplication of (4.42) by ¢b and integration, we obtain 
the equation: 

(!J.E S + D) c] + (!J.E + C) C2 = 0 . (4.47) 

These are two simple algebraic equations for the unknown coefficients c] and C2. 

In order that the equations have a non-trivial solution, the determinant of their 
coefficients must vanish, i. e. 

(!J.E + C)2 - (!J.E S + D)2 = 0 . (4.48) 

This is a quadratic equation for the energy shift !J.E, which in the present case can 
be solved quite simply by bringing the second term in (4.48) to the right-hand side 
and taking the square root of both sides: 

(!J.E + C) = ±(!J.E S + D) . (4.49) 

The two possible signs, ±, occur because of taking the square root. Inserting (4.49) 
into (4.46) or (4.47), we obtain immediately for the upper sign 

C2 = -c] = -c. (4.50) 
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x 

Fig. 4.8. The anti symmetric wavefunction 0/- is formed by taking the difference of CPa and CPb. 
Its occupation probability can be seen to vanish in the plane of symmetry between the two 
nuclei 

In this case, the total wavefunction is given by 

(4.51) 

The constant c is fixed by the normalisation of the total wavefunction 1ft. The 
corresponding wavefunction is represented in Fig. 4.8. If we take the lower sign in 
(4.49), we obtain C2 = c[ = c for the coefficients and thus for the total wavefunction: 

(4.52) 

(compare Fig. 4.9). Using (4.49), we can calculate the energies corresponding to 
(4.51) and (4.52), setting E = EO - .6.E. 

The antisymmetric wavefunction has the electronic energy 

C-D 
E=Eo+-­

l-S 

and the symmetric wavefunction corresponds to the energy 

° C+D E=E +--. 
I+S 

a 
x 

b 

(4.53a) 

(4.53b) 

Fig. 4.9. The symmetric wavefunction 0/+ is formed by adding the wavefunctions CPa and CPb. 
Due to the overlap between CPa and CPb, the occupation probability in the region between the 
two nuclei is increased 
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As can be seen by considering Figs. 4.6 and 4.7, the quantities S, C, and D depend 
on the internuclear distance, whereby 0 < S :::: 1 and C, D < o. If the nuclei 
are allowed to approach one another, the electronic energy splits into two terms 
according to (4.53a) and (4.53b). In order to decide whether bonding occurs via 
the electron, we must still add the Coulomb repulsion energy between the protons, 
e2 j4rrsoRab, to (4.53a) or (4.53b). Furthermore, we must compare the energy at 
a finite internuclear separation Rab with that at infinite separation, where C and D 
are zero. We thus have to examine 

(4.54) 

As shown by numerical calculation, the overlap integral S hardly changes the result, 
so that we can leave it out of our further discussion. 

Let us first consider the behaviour of C as a function of the internuclear dis­
tance Rab. If Rab is large compared to the spatial extent of the wavefunction <Pa (or 
<Pb), then C is practically equal to the potential energy Epo! of a point charge in the 
potential of the other nucleus, i. e. equal to _e2 j4rrsoRab. For large distances Rab, C 
and the last term in (4.54) thus compensate each other. However, for small distances 
Rab -+ 0, the last term in (4.54) becomes infinite, while C approaches a (negative) 
finite value. This can be seen directly from (4.44), since for Rab -+ 0, the distance ra 
becomes equal to rb and (4.44) then becomes the same as the expectation value of 
the potential energy in the hydrogen atom, which as is well known is finite. The sum 
C + e2 j4rrsoRab is thus positive and there is no bond formation. 

The final decisive factor in the question of bond formation is thus D (4.45), 
which contains the exchange density. For Rab -+ 0, <Pb and <Pa become identical, so 
that D and C are the same and D cannot compensate the effect of e2 j4rrsoRab. If 
Rab is now allowed to increase, then both e2 j4rrsoRab and D, which have opposite 
signs, decrease in magnitude. A numerical calculation shows that in a certain region, 
Ebinding becomes negative (cf. Fig. 4.10). The corresponding state is termed a bonding 
state. Conversely, no bonding occurs in the state (4.51); it represents a non-bonding 
or "antibonding" state. 

As must be clear from our discussion, the bonding effect is based entirely upon 
the occurrence of the exchange density <Pa<Pb in D. The bonding of the hydrogen 
molecule-ion is thus a typically quantum-mechanical phenomenon. Nevertheless, 
one can form an intuitive picture of the bonding and non-bonding effects. 

As may be seen from Fig. 4.9, the occupation probability of the electron in the 
region between the two nuclei in the bonding state is relatively high. It can thus 
profit from the Coulomb attraction of both nuclei, lowering the potential energy of 
the whole system. In the non-bonding state (Fig. 4.8), the occupation probability for 
the electron between the two nuclei is low; in the centre, it is in fact zero. This means 
that the electron is affected by the attractive force of practically one nucleus only. 

For the decrease in energy of the hydrogen molecule-ion as compared to the 
hydrogen atom, the above calculation gives the result 1.7 eV; the experimental value 
is 2.65 eV. Our trial wavefunction thus indeed gives a bound state, but it is weakly 
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Fig. 4.10. The energy E of the hydrogen molecule-ion including the mutual Coulomb repulsion 
of the nuclei. The energy curves are plotted against the internuclear separation Rab for the 
bonding and the antibonding states 

bound compared to what is found experimentally. An improvement in first order can 
be obtained by using the trial wavefunction 

1{1 = c (e-ara/ao + e-arb/aO), 

where ao is the first Bohr radius and a is a variational parameter. In the energy 
minimum, it is found that a = 1.24, i. e. the effective Bohr radius ao/a is reduced. 
The result of this reduction is that the electron cloud perpendicular to the bonding 
axis is more strongly concentrated in the region between the nuclei; the Coulomb 
interaction between the electron and the nuclei is thus intensified. This interpretation 
is supported by the precise numerical solution of (4.39). 

4.4 The Hydrogen Molecule, H2 

4.4.1 The Variational Principle 

We now tum to the problem of chemical bonding when more than one electron 
participates in bond formation. However, before we consider in detail the simplest 
example, i. e. the hydrogen molecule H2, we make some preliminary remarks which 
are of fundamental importance for other problems in quantum mechanics, also. 

We shall often encounter the task of solving a SchrOdinger equation 

HI[/ = EI[/ , (4.55) 

which will frequently tum out not to be possible in closed form. In addition to the 
method of perturbation theory, which we have already discussed, there is a funda­
mentally different and very important approach based on the variational principle. 



66 4 Introduction to the Theory of Chemical Bonding 

In order to explain it, we suppose the SchrOdinger equation (4.55) to have been 
multiplied by lJt* and integrated over all of the coordinates on which lJt depends. We 
then obtain 

f lJt* HlJtdV, ... dVn 
E = "-;;------­f lJt* lJtdV, ... dVn 

(4.56) 

Here, n is the number of electrons, while dVj, j = 1, . .. ,n is a volume element 
referring to the j-th electron for the integration over its coordinates. 

Since the Hamiltonian H is the operator belonging to the total energy of the 
system, expression (4.56) is just the expectation value of the total energy, which in 
the present case is identical with the energy eigenvalue of the SchrOdinger equation. 
What would happen, though, if for lJt we used some arbitrary wavefunction instead 
of a solution of the SchrOdinger equation? Then (4.56) still has the dimensions of an 
energy, but it is not necessarily equal to the correct eigenvalue of the Schrodinger 
equation which we are seeking. Applying mathematics, one can at this point prove 
an extremely important relation: if we in fact do not use a true eigenfunction of 
the ground state of the system for lJt, but rather some other wavefunction, then its 
corresponding energy expectation value will always be larger than the eigenvalue 
of a solution to (4.55). In this sense, we can give a criterion for how well we have 
approached the true eigenfunction: the lower the calculated expectation value (4.56), 
the better the trial wavefunction used to obtain it. 

We shall use this criterion repeatedly later on. Now, however, we want to set out to 
determine the wavefunctions and the energy of the hydrogen molecule in the ground 
state, at least approximately. In choosing a suitable approximate wavefunction, our 
physical intuition will play an essential role. Depending on which aspects of the 
physical problem are emphasised, we will arrive at different approaches, which are 
known by the names of their original authors: the Heitler-London and the Hund­
Mullikan-Bloch methods. In addition to these approaches, we will meet up with 
improvements such as the so-called covalent-ionic resonance (Sect. 4.4.3), and also 
a wavefunction which includes all the others described as special cases, and thus 
opens the way to a first general treatment of the many-electron problem in molecules 
(Sect. 4.4.5). 

4.4.2 The Heitler-London Method 

The two atomic nuclei (protons) are distinguished by the indices a and b, and the 
two electrons by the indices 1 and 2. Due to the fact that the Coulomb force acts 
between all four particles, we need to introduce the corresponding distances, which 
are defined in Fig. 4.11. In order to write down the Hamiltonian, we recall the 
energy balance from classical physics. We are dealing with the kinetic energies 
of electron 1 and electron 2, and with the various contributions to the Coulomb 
interaction energy. We first translate the classical expression for the kinetic energy 
into quantum-mechanical terms! If p, and P2 are the momenta of electrons 1 and 2, 
then the (classical) kinetic energy is given by 
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Fig. 4.11. An overview sketch of the hydrogen molecule. 
The two nuclei are denoted by the indices a and h, the 
two electrons by 1 and 2. The internuclear, interelec­
tronic, and electron-nuclear distances with their respec­
tive notations are shown in the figure 

@-----(±) 
a b 

1 z 1 Z 
Ekin = -2 PI + -2 Pz· 

rno rno 
(4.57) 

We now need to convert PI and pz to quantum-mechanical operators using the rule 
(4.7); in the process, we must add the indices I and 2 to the spatial coordinates. We 
thus obtain 

n a 
Pxl = i aXI ' 

n a 
PxZ = i axz ' 

n a 
Pyl = i aYI ' 

n a 
PyZ = i ayz ' 

or, using the nabla operator, 

n a 
pzl = i aZI ' 

n a 
pzz = i azz ' 

For the kinetic energy operator, we then obtain 

nZ nZ 
H kin = ---Vr - --vi· 

2rno 2rno 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

The square of the nabla operator can once again be expressed as the Laplace operator: 

aZ aZ a2 
V2 __ +_+_ 

I - ax2 ayZ azz 
I I I 

(4.62) 

and correspondingly for the index 2. Adding the various contributions to the Coulomb 
interaction energy to the kinetic energy operator (4.61), we obtain for the Hamiltonian 

n2 eZ n2 eZ 
H= --Vl- __ V2 - ---

,2rno 4:n-coral ,2rno I 4Jl"£orb2, 

HI H2 

(4.63) 
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We again assume that the nuclei are infinitely massive. Our task is now to solve the 
Schr6dinger equation 

HIf/(rr, r2) = EIf/(rr, r2) (4.64) 

with the Hamiltonian (4.63). If the nuclei were infinitely far apart, it would be 
sufficient to consider them separately, i. e. to solve the equations 

( _!f...-V? _ e
2 

) <Pa(rr) = Eo<Pa(rr) , 
2mo 4Jl'Coral 

(4.65) 

( _!f...- Vi - e
2 

) <Pb(r2) = Eo<Pb(r2) . 
2mo 4JTE'orb2 

(4.66) 

However, we are dealing here with a two-electron problem; accordingly, we must 
take the Pauli exclusion principle into account, i. e. we have to consider the fact that 
electrons have a spin. If the two hydrogen atoms did not influence each other, we 
could immediately write down the overall wavefunction using the wavefunctions <Pa 
and <Pb which occur in (4.65) and (4.66). As we can see by insertion into a Schr6dinger 
equation with H = Hr + H2, a solution would be: 

(4.67) 

In order to take the existence of spin into account, we have to mUltiply this trial 
solution by appropriate spin functions. The reader who is not familiar with the spin 
formalism should not be disturbed at this point, as we need only a few properties of 
the spin functions and will then be able to dispense with them completely during the 
further course of the calculation. 

We denote the function referring to an electron with spin "up" by a. (This type 
of spin wavefunction was denoted in I, Sect. 14.2.2 as <Pt.) If we are dealing with 
electron 1, we call the wavefunction a(I). If both electrons have their spins in the 
same direction ("up"), then our wavefunction becomes 

(4.68) 

This function, however, does not obey the Pauli principle, which states in its mathe­
matical formulation that a wavefunction must be antisymmetric in all the coordinates 
of the electrons (i. e. spatial and spin coordinates). In other words, when we exchange 
the indices 1 with the indices 2 everywhere, the wavefunction must change its sign. 
The wavefunction (4.68) does not have this property; however, the following wave­
function does have it: 

(4.69) 

If we factor out the spin functions a(I) and a(2), the wavefunction assumes the 
simple form 

(4.70) 

lJiu 
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i. e. it is the product of a spin function and a spatial wavefunction. (In quantum 
mechanics, wavefunctions which are symmetric with respect to exchange of the 
electronic spatial coordinates are termed gerade, abbreviated "g", from the German 
for "even"; anti symmetric wavefunctions are denoted by a "u", for ungerade = 
"odd".) 

Looking forward to an important general approach for representing many­
electron wavefunctions, we write (4.69) in a still different form. It may be represented 
as a determinant: 

D _lcc¢a(rl )a(l) ¢a(r2)a(2) I 
- ¢b(rda(l) ¢b(r2)a(2) . 

If we calculate this determinant following the usual rule 

D = product of the main diagonal 

- product of the secondary diagonal , 

(4.71) 

then we obtain just the expression (4.69). The determinant has a clearly apparent 
structure: the rows refer to the states a and b, and the columns refer to the numbers 
1 and 2 of the two electrons. 

Although (4.70) refers to two electrons whose spins are parallel and directed 
upwards, we can also construct wavefunctions for electrons with parallel spins which 
point downwards. We denote the spin function of a single electron whose spin is in 
the downwards state by f3; then the total wavefunction becomes 

1/1 = f3(I)f3(2)l/Iu . (4.72) 

For completeness, we also give the third wavefunction, belonging to the subs tate of 
the "triplet" state in which the spins are parallel. This state has its z-component of 
the total spin equal to zero, and is given by 

I 
1/1 = ,J2[a(1)f3(2) + a(2)f3(l)] I/Iu . (4.73) 

As the following calculation shows, the wavefunction 1/1 does not belong to the state 
which is lowest in energy, since its spins are parallel. We need to find a wavefunction 
whose spins, in contrast, are antiparallel, i. e. one in which the one electron is 
described by a "spin up" function a and the other by a "spin down" function f3. Here, 
expanding on (4.68), there are a number of possibilities. One of them is: 

(4.74) 

Other functions can be found by starting with (4.74) and exchanging the coordinates 
rl and r2 or the arguments of a or f3, i. e. 1 and 2, or by exchanging everything at the 
same time. None of these combinations is antisymmetric as it stands. We therefore 
will attempt to find a combination of (4.74) with some of these other possible trial 
functions which is anti symmetric and which can be written as the product of a spin 



70 4 Introduction to the Theory of Chemical Bonding 

part and a spatial part, similarly to (4.70). This is in fact possible, as one discovers 
after some trial and error, and leads to the wavefunction 

1/1 = ,[¢a(rl)¢b(r2) + ¢a(r2)¢b(rd], [a(l),B(2) - a(2),B(I)] . (4.75) 

IJig 

The spin function is clearly anti symmetric here, while the spatial function I/Ig is sym­
metric. If we exchange the spatial and spin coordinates of the two electrons simul­
taneously, this overall wavefunction changes sign: it is antisymmetric, in agreement 
with the Pauli exclusion principle. 

The spin functions were here only a means of establishing the required symmetry 
of the total wavefunction. Since, however, no operators occur in the Hamiltonian 
of the SchrOdinger equation (4.64) which act in any way upon the electronic spins, 
we can treat the spin functions just as a number when inserting (4.70) and (4.75) 
into that equation, and can divide them out from both sides. The resulting equation 
contains only the spatial functions I/Ig or I/Iu • This means that in the approximation 
to which we are calculating here, the interaction of the spins with one another 
(the spin-spin interactions) and of the spins with the spatial functions (spin-orbit 
interactions) are not taken into account. From now on, we concern ourselves only 
with the functions I/Ig and I/Iu and compute the energy expectation values belonging 
to these wavefunctions. 

Following the basic idea of Heitler and London, we take these wavefunctions I/Ig 

and I/Iu as trial solutions of the SchrOdinger equation with the Hamiltonian (4.63), 
which contains all the Coulomb interactions between the electrons and the protons, 
and imagine that we can then approximate the exact energy by applying (4.56). We 
thus have the task of calculating the energy eigenvalues for these wavefunctions. 
This calculation is not difficult, but it requires some patience. 

As a first effort towards the calculation of the eigenvalues, we consider the 
normalisation integral which occurs in the denominator of (4.56). It has the form: 

f f II/I(rl' r2)1 2 dV1dV2 

= f f [¢a(rl)¢b(r2) ± ¢a(r2)¢b(rd]* 

. [¢a(rl)¢b(r2) ± ¢b(r2)¢a(rl)] dVl dV2 . (4.76) 

After multiplying out all the terms (and assuming that ¢a and ¢b are real), we obtain 

f ¢~dVI f ¢~dV2 + f ¢~dV2 f ¢~dVI 
± f ¢a(rl)¢b(rd dVI f ¢a(r2)¢b(r2) dV2 

± f ¢a(r2)¢b(r2) dV2 f ¢a(rd¢b(rl) dV1 • (4.77) 

As a result of the normalisation of the wavefunctions ¢a and ¢b, the first two 
expressions can be reduced to: 
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f ¢~ dVI = f ¢~ dV2 = 1 , (4.78) 

while the remaining two expressions are squares of the overlap integral 

(4.79) 

We can thus write the normalisation integral (4.76) in the simple form 

(4.80) 

In evaluating the numerator of the energy expectation value (4.56), we encounter, 
analogously to (4.77), altogether four expressions, which occur in pairs of equivalent 
terms. 

We begin with the expression 

If ¢a(rl)¢b(r2) {HI + H2 - 4 e
2 

llBorbl 
e2 e2 e2 } - + +---

4JTcora2 4JTcoRab 4JTcOr12 

. ¢a(rl)¢b(r2) dVldV2 . (4.81) 

Since the Hamiltonian HI in (4.81) acts only on ¢a, we can use the fact that ¢a 
obeys the Schrodinger equation (4.65) in our further calculations. Applying the 
same considerations to H2 , we can simplify (4.81) to the form: 

f f ¢a (rl )2¢b(r2)2 

{ 
e2 e2 e2 e2 } 

. 2Eo - - + + dVl dV2 . 
4JTcOrbl 4JTcOra2 4JTcoRab 4JTcOr12 

'--v-' '-.,-' '-.,-' '-v-' '-.,-' 

(4.82) 

I) 2) 3) 4) 5) 

For what follows, it is useful to examine the meaning of the terms in (4.82) individ­
ually. 

1) Owing to the normalisation of the wavefunctions ¢a and ¢b, the expression 

reduces to 

2Eo, (4.83) 

i. e. the energy of the two hydrogen atoms at infinite distance from each other. 
2) The expression 

(4.84) 

represents the Coulomb interaction energy of nucleus b with electron 1 in state a. 
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3) The integral 

f <Pb(r2)2 (- 4 e
2 

) dV2 = C < 0 
liBora2 

(4.85) 

is the Coulomb interaction energy of electron 2 in state b in the field of nucleus a. 
From the symmetry of the problem, it follows that the two integrals 2) and 3) are 
equal. 

4) Owing to the normalisation of the wavefunctions <Pa and <Pb, the expression 

reduces to 

4liBORab 

This is the Coulomb repulsion energy of the two nuclei. 
5) The integral 

represents the repulsive Coulomb interaction energy of the two electrons. 

(4.86) 

(4.87) 

Adding up the contributions (4.83) through (4.87) we obtain a contribution to 
the energy expectation value of (4.81) (which we abbreviate as E) 

A ~ 
E = 2Eo + 2C + ERl + ---

4licoRab 
(4.88) 

This is, however, still not the final result, since on inserting the wavefunctions lJtg 

or lJtu into the expression (4.56) for the energy eigenvalue, we also obtain exchange 
terms of the form 

± f f <Pb (rl )<Pa (r2){ . .. }<Pb (r2)<Pa (rl) dVl dV2 , (4.89) 

where the expression in curly brackets, { ... }, is the same as in (4.81). Explicitly 
written out, (4.89) thus becomes 

(4.90) 
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The various terms have the following forms and meanings: 
1) The expression 

f f ¢b(rl)¢a (r2) (±2Eo)¢a (rl)¢b(r2) dVl dV2 

reduces on applying the definition (4.79) of the overlap integral S to 

±2EoS2. (4.91) 

This is the energy of the two separated hydrogen atoms multiplied by the square of 
the overlap integral S. 

2) The exchange integral 

± f ¢a(r2)¢b(r2) dV2 f ¢b(rl) (- e
2 

) ¢a(rl) dV1 
4JT8orbl 

(4.92) 

, "~----------~----------~ s D 

is the product of the overlap integral S and the one-electron exchange integral D 
[compare (4.45)]. 

3) The exchange integral 

± If ¢b(rl)¢a(r2) (- e
2 

) ¢a(rl)¢b(r2) dVldV2 
4JT8ora2 

reduces in exact analogy with (4.92) to 

±SD. (4.93) 

4) The exchange integral 

± If ¢b(rl)¢a(r2) ( e
Z 

) ¢a(rj)¢b(r2) dVjdVz 
4JT8oRab 

reduces directly to 

(4.94) 

i. e. to the square of the overlap integral S multiplied by the Coulomb interaction 
energy between the two nuclei. 

5) The exchange integral 

± If ¢b(r])¢a(r2) e
2 

¢a(rj)¢b(r2) dVjdV2 = ±ECE 
4JT8or12 

(4.95) 

represents the Coulomb interaction energy between the two electrons, but computed 
using not the normal charge density, but rather the exchange density. This integral is 
therefore referred to as the Coulomb-exchange interaction. 
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The total contribution of (4.91)-(4.95), which we abbreviate as £, is then given 
by 

2 
- 2 e 2 

E = ±2EoS ± 2DS ± ECE ± S . 
47TBORab 

(4.96) 

We now recall our original task, which was to compute the numerator of (4.56), 
using the wavefunctions tflg and tflu. If we multiply all the functions within tflg or tflu, 

respectively, by each other, then we obtain (as already pointed out) contributions of 
the type (4.81) twice, and contributions of the type (4.89) twice. Finally, we have 
to divide the whole thing by the normalisation integral. We then obtain for the total 
energy of the hydrogen molecule the following expression: 

(4.97) 

where the upper or lower sign applies in the energies E and £, according to whether 
the wavefunction tflg or tflu was used: 

2C + ERI 2DS + ECE e2 
Eg = 2Eo+ + + , 

1 + S2 1 + S2 47TBORab 
(4.98) 

2C + ERI 
Eu = 2Eo + 2 l-S 

2DS+ ECE e2 
----:::--+---

1 - S2 47TBORab 
(4.99) 

In order to determine whether or not chemical bonding occurs, we must test whether 
Eg or Eu is lower than the energy of the two infinitely separated H atoms, given by 
2Eo. Various effects are in competition here, as we can see on closer examination 
ofthe individual terms in e. g. (4.98). Thus, C, the potential energy of an electron in 
the Coulomb field of the opposite proton, is negative [cf. (4.84)], while the Coulomb 
interaction energy between the two electrons, ERI , is positive. Furthermore, the 
last term in (4.98), which describes the Coulomb repulsion of the protons for each 
other, is also positive. In addition, there are the typically quantum-mechanical effects 
represented by the exchange interactions, which can be summarised in 

K = 2DS+ ECE. (4.100) 

While DS is negative, the Coulomb-exchange interaction between the electrons, 
ECE, is found to be positive. Whether or not chemical bonding finally comes about 
thus depends on the numerical values of the individual integrals. 

It is not our purpose here to deal with the numerical evaluation of the integrals in 
detail. This evaluation reveals that the overall contribution of the exchange integrals 
(4.100) is negative; this makes the energy corresponding to the even (g) wavefunction 
lower than that of the odd (u) wavefunction. Furthermore, for the even wavefunction 
tflg , the nett effect of the various Coulomb interactions is to yield an energy lower 
than that of two free hydrogen atoms. This state is therefore referred to as the 
bonding state. The lowering of the energy is - in addition to the effects of exchange 
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Fig. 4.12. The binding energy 
of the hYProgen molecule as 
a functiomof the internuclear 
distance Ri1b, taking the repulsive 
Coulomb interaction of the nuclei 
into account. (Lower curve) The 
electron spins are antiparallel. 
(Upper curve) The electron spins 
are parallel< 

(4.100) - due to the fact that the electrons can both occupy the region between the 
two nuclei simultaneously and thus can profit from the attractive Coulomb potential 
of both protons, in such a way as to compensate the repulsive potential between 
the electrons themselves and between the nuclei. This is similar to the case of Hi 
discussed earlier. The energy lowering depends on the distance between the nuclei; 
an energy minimum is found for a particular internuclear distance (Fig. 4.12). As can 
be seen in the figure, the odd wavefunction l/Iu does not lead to an energy lowering; 
for this reason, the corresponding state is called the antibonding (or non-bonding) 
state. 

The dissociation energy, which is equal to the difference between the minimum 
energy at the equilibrium nuclear distance (bond length) and the energy at a distance 
Rab = 00, is found from a calculation based on the wavefunction given above to be 
3.14 eV. The observed binding energy, which is equal to the dissociation energy, is, 
in contrast, 4.48 eV; however, it should be remembered that the nuclei themselves 
make a contribution through their kinetic energy. If this contribution, which was 
neglected in our calculation where we assumed the nuclear masses to be infinite, 
is subtracted, we arrive at a binding energy of 4.75 eV. We see that there is still 
a considerable difference between the calculated and the measured binding energies. 
This means that the wavefunctions of the Heitler-London model are still a very rough 
approximation. Although they show us that the bonding in the hydrogen molecule 
can be understood theoretically, they can give only a rough approach to the form 
of the true wavefunctions. In order to improve the wavefunctions, some additional 
effects must be taken into account; we shall discuss here one of the most typical, 
which is called covalent-ionic resonance. 

4.4.3 Covalent-Ionic Resonance 

In the previous section, we used as a wavefunction for the two electrons in the 
hydrogen molecule one in which the first electron spends its time for the most part 
near one nucleus, while the second electron is near the opposite nucleus. In this case, 
which is termed "covalent", the wavefunction has the form 
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(4.101) 

where N is a normalisation factor. 
It is of course possible, at least with a certain probability, that both electrons are 

on one of the hydrogen atoms; the wavefunction is then of the form: 

(4.102) 

Since the two nuclei are equivalent, both electrons could just as well be near nu­
cleus b, which would correspond to the wavefunction 

(4.103) 

The functions (4.102) and (4.103) describe states in which there is a negatively 
charged hydrogen ion present. They are therefore referred to as "ionic" states. The 
states represented by (4.102) and (4.103) are energetically degenerate, and so we 
must form a linear combination to obtain the overall wavefunction. We do this in 
a symmetric form: 

(4.104) 

so that (4.104) has the same symmetry as (4.101). Now we must expect that nature 
does not choose exclusively the wavefunction (4.101) nor the wavefunction (4.104), 
since the electrons repel each other to some extent but can also be near the same 
nucleus some of the time. Both situations are possible, and thus according to the basic 
rules of quantum mechanics, the most realistic wavefunction should be constructed 
as a linear combination of the two possible states, (4.101) and (4.104): 

(4.105) 

where the constant c represents a variable parameter, which must be adjusted so as 
to minimise the energy expectation value belonging to the wavefunction (4.105). 

4.4.4 The Hund-Mullikan-Bloch Theory of Bonding in Hydrogen 

Along with the Heitler-London method, which we have described above, a second 
method is often used in molecular physics; in general, it does not give such good 
results for the total binding energy as the Heitler-London method, but it does allow 
the spatial probability distribution of the electrons to be more closely delineated. 
This is particularly important for spectroscopic investigations of molecules, since in 
such work, usually only one electronic state undergoes a change and it is just this 
change which one wishes to describe theoretically. 

In this method, one at first ignores the fact that two electrons are present. Instead, 
we consider the motion of a single electron in the field of the two nuclei or, in 
other words, we begin with the solution of the hydrogen molecule-ion problem. We 
examined this solution in Sect. 4.3; it has the form: 
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1/Ig(r) = N[¢a(r) + ¢b(r)] . (4.106) 

The idea is now to place both of the electrons of the hydrogen molecule into the state 
(4.106). To solve the Schrodinger equation with the Hamiltonian (4.63) for the two 
electrons, we therefore take as trial wavefunction 

(4.107) 

where R1 and R2 include both the spatial coordinates r1 and r2 and the spin coor­
dinates. We shall concentrate our attention here on the case of antiparallel spins, so 
that the spin function is anti symmetric and has the form 

1 
spin function = y'2[a(1),B(2) - a(2),B(1)] . (4.108) 

The total wavefunction (4.107) is clearly antisymmetric with respect to the spatial 
and spin coordinates of the electrons. Using the trial function (4.107), the expectation 
value of the total energy can again be computed. It is found to be higher in energy 
than that ofthe Heitler-London method, i. e. not as realistic. The method we have just 
described is called the LCAO method, for Linear Combination of Atomic Orbitals. 
Such a linear combination, e. g. (4.106), represents the wavefunction of a single 
electron in a molecule and is therefore termed a Molecular Orbital (MO). 

This method can be extended to more complex molecules, as we shall see later. 
However, it requires some modifications for many molecules, and we shall treat the 
most important and most characteristic of them in this book. 

4.4.5 Comparison of the Wavefunctions 

In later chapters, we will be concerned with finding suitable trial wavefunctions 
for molecules containing more than two electrons. We therefore now compare the 
different trial functions for the hydrogen molecule in its ground state with the 
electronic spins antiparallel. For the sake of clarity, we leave off the normalisation 
factor of the functions I/fg on the right-hand side of the following equations, since 
we are interested only in the structure of the wavefunctions. The trial functions are 
then given by: 

Heitler-London 

I/fg = [¢a(1)¢b(2) + ¢a(2)¢b(1)] 

Heitler-London + ionic 

I/fg = [¢a(1)¢b(2) + ¢a(2)¢b(1)] + c[¢a(1)¢a(2) + ¢b(1)¢b(2)] 

Hund-Mullikan-Bloch 

I/fg = [¢a(1) + ¢b(I)] [¢a(2) + ¢b(2)] . 

(4.109) 

(4.110) 

(4.111) 

We will now show that all these trial functions, (4.109-4.111), are special cases of 
a more general wavefunction, which we construct in this section. In the process, 
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----~--------x ~--~-----+------~X 
a a 

Fig. 4.13. A visualisation of the substitution (4.112) 

we mix into the wavefunction which originally referred to atom a a portion of the 
wavefunction from atom b and vice versa for the wavefunction originally referring 
to atom b. We thus make the substitution (see Fig. 4.13): 

where d is a constant coefficient, with d :s 1. 
We thereby define a new wavefunction according to 

Iftg(l, 2) = [<Pa(1) + d<pb(I)] [<pb(2) + d<pa(2)] 

+ [<Pa(2) + d<pb(2)] [<pb(l) + d<Pa(I)] . 

This can be transformed by a simple calculation into: 

Iftg (1,2) = (1 + d2 )[<Pa(I)<Pb(2) + <Pa(2)<Pb(1)] 

+ 2d[<Pa(I)<Pa(2) + <Pb(I)<pb(2)] . 

(4.112) 

(4.113) 

(4.114) 

If we now set d = 0, then we obtain the Heider-London trial wavefunction, (4.109). 
On the other hand, d = 1 yields the Hund-Mullikan-Bloch trial function, (4.111). If 
we factor out (1 +d2 ) from the right-hand side of(4.114) and put it into the common 
normalisation constant, a comparison between (4.114) and (4.110) gives the result 

2d 
--=c. 
1 +d2 

(4.115) 

In other words, the trial function (4.110), which contained an improvement to the 
original Heitler-London function through the addition of an ionic part, is also in­
cluded as a special case in (4.113). The trial function (4.113) can be improved still 
further by including the wavefunctions of excited atomic states in the linear com­
bination of (4.112). These considerations show us a first, important way towards 
formulating the wavefunctions for molecules with many electrons. 

4.5 Hybridisation 

An important case which is of particular interest for organic chemistry is that of 
hybridisation. In considering it, we also for the first time deal with atoms containing 
more than one electron. In forming molecules, the electrons in the inner, closed 
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atomic shells are not strongly influenced; chemical bonding occurs via the outer 
electrons (valence electrons), which are more weakly bound to their atomic nuclei. 
In the carbon atom, two of the six electrons are in the Is orbital, two in the 2s orbital, 
and two are distributed among the three orbitals 2px, 2py, and 2pz. The I degeneracy 
of the n = 2 shell, which was found to hold in the hydrogen atom, is lifted here. 
However, the 4 eV energy splitting between the 2s and 2p states is not very large, 
and there is in fact an excited state of the carbon atom in which an electron from the 
2s state has made a transition into the 2p state. In this case, the states 2s, 2px, 2py, 
and 2pz each contain one electron. Let us now consider these singly-occupied states 
carefully while we allow external forces to act on an electron by bringing a hydrogen 
atom close to the carbon atom. These external forces can, so to speak, compensate 
the energy difference which still remains between the 2s and the 2p states, making 
them practically degenerate in energy. 

As we know from perturbation theory in the presence of degeneracy, in such a case 
we have to take linear combinations of the old functions, which were degenerate. 
For example, instead of the 2s- and 2p-functions, we construct two new functions 
having the form: 

Vr+ = Vrs + VrPx 
Vr- = Vrs - VrPx . 

(4.116) 

Linear combinations of this type can shift the centre of gravity of the electronic charge 
clouds relative to that of the s-function (see Fig. 4.14). Exactly this phenomenon 
occurs in hybridisation. 

---.o!!'--+-f--.:>'lIL-.... x ., 
\ 
\ .. 

.. i 

'-" 

Fig. 4.14. The shape of the wavefunctions in the case 
of diagonal hybridisation. The s-function <Ps (dashed 
curve) and the p-function <Pp (dot-dashed curve) as well 
as the function which results from their superposition 
(solid curve) are plotted against the distance from the 
nucleus. The figure clearly shows how the centre of 
gravity of the wavefunctions shifts to the right on super­
posing the two functions <Ps and <Pp 

Let us consider several types of hybridisation, beginning with the most well­
known case, that of methane, Cf4, where the carbon atom is surrounded by four 
hydrogen atoms. Experimentally, it is known that the carbon atom sits at the centre of 
a tetrahedron with the four hydrogen atoms at its vertices (Fig. 4.15). Interestingly, 
the four degenerate wavefunctions of the n = 2 shell in the carbon atom can be 
used to form four linear combinations whose centres of gravity are shifted precisely 
towards the four vertices of a tetrahedron. If we remember that the wavefunctions 
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Fig. 4.15. (Left) The electron density distribution of the four orbitals in tetrahedrally hybridised 
carbon. (Right) An exploded view of the hybrid orbitals 

of the p states have the form f(r)x, f(r)y, and f(r)z, then it becomes clear that 
the following linear combinations produce the shifts in the charge centres of gravity 
described above (tetrahedral configuration): 

Vrl = 4(Vrs + VrPx + Vrpy + Vrpz) , 

Vr2 = 4(Vrs + Vrpx - Vrpy - Vrp) , 

Vr3 = 4(Vrs - VrPx + Vrpy - Vrp) , 

Vr4 = 4(Vrs - VrPx - Vrpy + Vrpz) . 

(4.117) 

These wavefunctions are mutually orthogonal in the quantum-mechanical sense, as 
one can readily verify by inserting the Vrj for j = 1, ... ,4 into J Vrj(r)Vrk(r)dV 
and using the orthogonality of the Vrs, Vr Px' Vr Py' and Vr pz functions. This type of 
orthogonality is not to be confused with orthogonality of the spatial orientation! 
U sing these new linear combinations, (4.117), we can "tune" the electrons of the 
carbon atom to the tetrahedral environment. Each one of the four wavefunctions 
in (4.117) can now form a chemical bond with the corresponding hydrogen atom 
(Fig. 4.15). 

Taking as an example the direction of vertex 1, we denote the carbon hybrid 
wavefunction Vrl in (4.117) more precisely as VrCl, and that of the hydrogen atom at 
this vertex as VrHl. Similarly to the case of the hydrogen molecule, we now generate 
a wavefunction for each of the two electrons involved in the bond formation; these 
take the following form, according to the LeAD prescription: 

(4.118) 

Owing to the difference between the carbon atom and the hydrogen atom, the constant 
coefficient c will always be =1= 1 (in contrast to the hydrogen molecule), and it must 
be determined by applying the variational method. 

In the present case, we have oriented our considerations to the experimental 
finding that the four hydrogen atoms are located at the vertices of a tetrahedron. One 
could now be tempted to ask the question as to whether the wavefunctions (4.117) 
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are initially present and the hydrogen atoms then locate themselves at the vertices 
of the tetrahedron thus defined, or conversely the hydrogen atoms first move to the 
vertices of a tetrahedron and thereby cause the carbon wavefunctions to generate 
corresponding hybrid orbitals. From the quantum-mechanical point of view, such 
speculations are pointless. The positions of the hydrogen atoms and the orientation 
of the hybrid wavefunctions are mutually consistent. The overall configuration is 
adopted by the C~ molecule in such a way as to minimise the total energy. 

The tetrahedral hybridisation just discussed, i. e. an arrangement of the wave­
functions resulting in tetrahedral symmetry, is not the only type of hybridisation 
possible for the carbon atom. We have already mentioned a second type, diagonal 
hybridisation, which is expressed in the wavefunctions (4.116) (see Fig. 4.14). 

For carbon, still a third type of hybridisation is possible, the trigonal config­
uration, in which the S-, Px-, and py-wavefunctions hybridise as suitable linear 
combinations to yield hybrid orbitals in three preferred directions within a plane. In 
order to give the reader an impression of how such hybrid orbitals are written, we 
show them explicitly (Fig. 4.16): 

1{Il = /f(1{Is + .Ji1{lpx) , 

1{12 = /f(1{Is + /f1{lpy - /f1{lpJ ' 

1{13 = /f(1{Is - /f1{lpy - /f1{lpJ . 

(4.119) 

These wavefunctions are also mutually orthogonal in the quantum-mechanical sense. 
Clearly, in generating these three hybrid wavefunctions, no use is made of the 

fourth original carbon wavefunction, 2pz. It plays an additional role in bonding, as 
we shall see directly. We consider the case of ethene, C2~. Here, two carbon atoms 
take on the trigonal configuration. The hydrogen-carbon bonds are again formed by 
wavefunctions of the type given in (4.118), where for 1{ICI we insert, e. g. 1{12 from 
(4.119). One carbon-carbon bond is formed by the first of these wavefunctions, with 
each carbon atom contributing one electron. However, the electrons occupying the 
pz-orbitals are still left over. These remaining atomic orbitals form linear combi­
nations, in analogy to the hydrogen molecule in the Hund-Mullikan-Bloch model, 

Fig. 4.16. (Left) The density distribution of the three orbitals in the case of trigonal hybridis­
ation of carbon. (Right) An exploded view of the orbitals 
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Fig. 4.17. The electron density distribution of the hybrid orbitals of the carbon atom in ethene, 
C214. (Left) The two carbon atoms are located at the two opposite nodes, and each takes 
on a trigonal configuration together with the corresponding hydrogen atoms. (Right) The 
perpendicularly-oriented pz functions of the two carbon atoms form an additional carbon­
carbon bond 

giving rise to an additional carbon-carbon bond. We thus have a case of double bond 
fonnation between the two carbon atoms (Fig. 4.17). This configuration is referred 
to as sp2 or trigonal hybridisation. 

An especially elegant example of trigonal hybridisation is provided by the 
"Buckminster-Fullerene" molecule, C60, known for short as "fullerene", which was 
discovered in 1985. This molecule has attracted considerable attention because of its 
properties, which are quite unusual in a variety of ways. It consists of 12 pentagonal 
and 20 hexagonal units, i. e. altogether 32 rings, and has the shape of a soccer ball 
with a diameter of roughly 7 A; see Fig. 4.18. As in benzene, the p-orbitals which 
extend outside the spherical surface of the molecule are not localised and their 
electrons can move as 1T-electrons throughout the molecule. C60 can fonn various 
compounds, such as C60H60. In addition to C 60 , other molecules of the Cn structure 
have been identified, with n varying from 32 up to several hundred. These molecules 
can also act as cages, in which other atoms can be trapped, or in which different Cn 

molecules can be enclosed in a multiple-shell structure, like Russian dolls. 

Fig. 4.18. The structure of the C60 molecule, 
"Buckminster-Fullerene", discovered in a molecular 
beam. [After H.W. Kroto, lR Heath, S.C. O'Brien, 
RF. Curl, and RE. Smalley, Nature 318, 162 (1985)]. 
It can also be produced by vapourising graphite in a he­
lium atmosphere. [See W. Kriitschmer, K. Fostiropou­
los, and D.R Hoffmann, Chern. Phys. Lett. 170, 167 
(1990)] 
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Problems 

4.1 Consider a particle of mass m which is moving in one dimension in a potential 

1 Vo for x <-a 
Vex) = 0 for Ixl .::: a 

Vo for x > a 

with Vo > O. 

(Region I) 
(Region II) 
(Region III) 

"box" potential 

Investigate the possible energy eigenvalues for the case that 0 < E < Vo, by 
solving the one-dimensional time-independent Schr6dinger equation. 

a) Take the following trial functions in the different regions: 

I: 1/I(1)(x) = A(l)eKx +B(1)e-KX 

II: 1/I(2)(x) = A(2)eikx +B(2)e-ikx 

III: 1/I(3)(x) = A(3)eKX +B(3)e-KX 

How do k and K depend on the energy E? Show that k and K obey the relation 

k2 +K2 = C2 

and find the constant C, which is independent of E. 

(1) 

b) The six coefficients A (j), B(j) (j = I, 2, 3) can be determined by applying the 
following considerations: 

1. Boundary conditions: owing to the normalisation of the wavefunctions, they 
must vanish for x -+ ±oo. What follows from this for B(1) and A (3)? 

2. Continuity conditions: from the requirement that the wavefunctions and their 
derivatives be continuous at the junctions of the different regions, you can obtain 
a set of homogeneous linear equations for the coefficients A (1), A (2), B(2), and 
B(3). Show that nontrivial solutions are obtained only if either 

K = +k· tanka or K = -k· cotka (2) 

is fulfilled. Determine for both cases the nontrivial solutions of the system 
of homogeneous linear equations. Discuss the symmetry of the wavefunctions 
using a sketch. 

3. Normalisation condition: calculate the remaining coefficients using the normal­
isation condition for the wavefunction. 

c) The allowed energy eigenvalues can be graphically constructed by using the 
intersections of the curves from 1. and 2. What is the minimum number of energy 
eigenvalues? Which symmetries do the corresponding wavefunctions have? 

d) The limiting case Vo -+ 00 describes the infinitely deep one-dimensional 
potential well. For this special case, find the allowed eigenfunctions 1/1 n (x) and their 
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eigenvalues En. Give expressions for the matrix elements Amn = J 1/1;' (x)A 1/In (x)dx 
for the operators A = X, x2, and p = ~ 1x (take En > Em for n > m and let n = 1 
be the ground state). 

e) Let the system be in the state 1/I(x, 0) = ~[1/I1 (x) + 1/12 (x)] at time t = O. What 

is the time-dependent solution 1/I(x, t)? Calculate the corresponding time-dependent 
expectation values < x>, < x 2 >, and < p >. Also calculate the same expectation 
values for the state given by 1/I(x, 0) = ~ [1/11 (x) + 1/13 (x) ] at time t = O. 

4.2 Calculation of expectation values using the example of the hydrogen atom: for 
the following computations, start with the ground-state wavefunction: 

-3/2 { r} 1 1/I1oo(r) = RlQ(r)Yoo(e, ¢) = 2ao exp -- r:t= ; 
ao v41r 

here, ao denotes the first Bohr radius. 

a) Show that the expectation values of configuration and momentum variables 

<x>, <Px>, <y>, <Py>, <Z>, <pz> 

vanish identically. 

b) Now give the expectation values for the squared quantities: 

2 2 2 2 2 2 
<X >, <Px>' <y >, <Py>' <z >, <Pz> 

and demonstrate the validity of the uncertainty relations. What expectation values 
do you find for the kinetic and potential energies? 

Hint: Use spherical polar coordinates. The following indefinite integrals can be 
integrated readily by parts. For calculating the expectation values in (a) and (b), 
choose r = 0, 00 as limits for the integrals. 

f dr reAr = (f - :2 ) eAr 

f 4 Ar (r4 4r3 12r2 24r 24) Ar 
drr e = ---+----+- e . )", )",2 )",3 )",4 )",5 

The integrals over the angles can likewise be solved in an elementary fashion. 

c) Starting with a general hydrogen eigenstate IJInlm, calculate the expectation 
values for the angular-momentum operators L 2 , Lx, L y , and L z. 
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Hint: 

- The eigenvalue equations for L 2 and L z are known. 
- The commutation relation 

Lx L = ifiL 

holds. 
- Use the operators L± = Lx ± iLy and demonstrate the commutation relations 

[L±, L z]. 
- The components of the angular momentum operator are Hermitian. 

4.3 The wavefunctions 1/f of the hydrogen molecule-ion can be approximately con­
structed by taking linear combinations of two hydrogen ground-state wavefunctions 
CPa and CPb. Begin with the approach: 

(3) 

a) Calculate the normalisation factor c from (3) by expressing it in terms of 
the overlap integral S (cf. part (d)). Assume the wavefunctions CPa and CPb to be 
normalised. 

b) using the normalised wavefunctions 1/f+/-, find the expectation value of the 
Hamiltonian: 

and compare the result with the equation 

° C±D E=E +--. 
l±S 

(4) 

c) Justify the approach in equation (3) by variation of the expectation value of 
the Hamiltonian, making use of the more general form: 

1/f = c] CPa + C2CPb • 

Which normalisation is found and what energy E results? Vary E in terms of the 
parameters c] and C2. 

d) Now determine the energy of the electron in the hydrogen molecule-ion as 
a function of the nuclear distance Rab, by computing the integrals which occur in 
equation (4), S, C, D, and EO. The integrals can be computed in prolate-elliptical 



86 4 Introduction to the Theory of Chemical Bonding 

coordinates (~, 7], ({J) (see the sketch in the solutions). Use the following transforma­
tions: 

~ = ra + rb 
Rab 

ra - rb 
7]=--. 

Rab 

As in the case of the usual spherical coordinates, ({J denotes the angle of rotation 
about the z-axis. 

Give the range of values of the new coordinates ~, 7], and ({J and compute the 
differential volume element dV in the new coordinate system. Start with the volume 
element in spherical coordinates. 

As a trial wavefunction for further calculations, choose the following hydrogen 
ground state: 

({J(r; a) = _1_ (~)3/2 exp {_ ar} . 
y'n ao ao 

In this expression, a > 0 denotes a variational parameter for the Bohr radius 
ao = 4lrEon2/me2. 

- First compute the overlap integral S: 

S(a) = f ({Ja(ra; a) ({Jb(rb; a) dV . 

- What do you find for the Coulomb interaction energy C? 

C(a) = f ({Ja(ra; a) (4-e2 ) ({Ja(ra; a) dV . 
lrEorb 

- Compute the exchange integral D: 

D(a) = f ({Ja(ra; a) (~) ({Jb(rb; a) dV 
4lrEora 

- and the "generalised" ground-state energy EO(a): 

e) Finally, give the explicit expression for the total energy (E plus the Coulomb 
repulsion energy of the two nuclei) and sketch it as a function of the internuclear 
distance Rab for the value a = 1, and as a function of the variational parameter a at 
a fixed internuclear distance Rab ~ 1 A, taking the integral S to be constant in both 
cases. 

f) For the functions 1/1+ and 1/1-, compute the expectation values of position and 
momentum« x >, < p ». 
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Hint: 

- For the generating functions, cf. Problem 4.2; 
- in prolate-elliptical coordinates: 

Rab 
z = -~11· 

2 

4.4 Prove the variational principle of quantum mechanics: 

f tJI* H tJI dVj ... dVn 
~-------------> E f tJI* tJI dVj ... dVn - , 

where the Schr6dinger equation 

H4J=E4J (5) 

holds and E is the lowest eigenvalue of (5). Here, tJI is a function which is not 
necessarily an eigenfunction of (5) but satisfies the same boundary conditions as the 
eigenfunctions. 

Hint: Expand tJI in terms of the eigenfunctions of the Schr6dinger equation (5). 

4.5 Show that the general solution tJI of the many-body SchrOdinger equation 
H tJI = E tJI can be written as a product of single-particle wavefunctions C(J, 

tJI = lliC(Ji, if the Hamiltonian H can be represented as a sum of single-particle 
Hamiltonians Hi, i.e. the relation H = IJiHi holds, with Hi¢i = EiC(Ji, and 
[Hi, C(J j] = 0 for i f=. j. How is E determined as a function of the Ei's? 

4.6 Using the notation a(j) for the spin wavefunction ofa particle j with its 
spin "up", and f3(j) for that of the particle with its spin "down", show that the 
wavefunctions 

1 
-yI2 [a(1)f3(2) + f3(1)a(2)] tJlu and 

1 
-yI2[a(1)f3(2) - f3(1)a(2)] tJlg 

represent a state of total spin 1 (with a vanishing z-component) or of total spin 0, 
respectively. Here, tJlu/ g is the odd/even superposition of the products of two single­
particle wavefunctions in the hydrogen molecule. 
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Hint: For the components of the total spin, we have Sz = Slz + S2zCand analogously 
for the x and y-components). Determine the matrix elements of S2 = S; + S; + S; 
in the basis {10:(1)0:(2) >, 10:(1).8(2) >, 1.80)0:(2) >, 1.8(1).8(2) >}. Use the ladder 
operators: 

Sl± = SIx ± iSly 

with 

and 

4.7 Particularly in the case of organic molecules, chemical bonds are frequently 
described in terms of hybridisation. To this end, linear combinations of all the degen­
erate orbitals of the valence electrons of the atoms which participate in the bonding 
are formed. In the following problem, start with hydrogen-like wavefunctions 1/1 
belonging to the principal quantum number n = 2, i.e. the 2s and 2p states. 

a) Determine the points of maximum (charge) density for diagonal or sp­
hybridised electrons. Use wavefunctions of the form 

1 
1/11/2 == 1/1± = y'2(1/Is ± 1/Ipi) , 

with 1/Is ex (1 - yr)exp{-yr} and 1/Ipi ex YXiexP{-yr}, (Xi = X, y, z). Maximise 
the occupation probability density as a function of position. 

b) Compare the result of part (a) with the centres of gravity of the charge. In order 
to determine the centre of gravity of the charge or the average value with respect to 
position, you must integrate the wavefunctions including their normalisation factors: 

1/Is = _1_ (1 -~) exp {-~} 
.J8na3 20: 20: 

1 X {r } 1/1 - -- -exp --
px - .J8na3 20: 20:· 

c) Show that the wavefunctions for tetrahedral hybridisation (sp3) (4.117) have 
their maximum charge density at the vertices of a tetrahedron (cf. Problem (a)). 

d) Verify whether the wavefunctions of parts (a) and (c) are orthonormal in the 
sense of quantum mechanics, i.e. that 

f 1/Ij 1/Ik dV = 8 jk . 



5 Symmetries and Symmetry Operations: 
A First Overview 

In this chapter, we cover the fundamentals and theoretical approaches which we will 
need for - among other things - determining the wavefunctions and the energies of 
the 1T-electrons in benzene. A second example will be the ethene molecule. 

5.1 Fundamental Concepts 

Symmetries and symmetry operations playa still more important role in molecular 
physics than they do in the quantum theory of atoms. In the present section, we will 
cast an initial glance at this topic, and will then directly apply some of the knowledge 
we have gained. In Chap. 6, we shall again treat the subject of symmetries and 
symmetry operations systematically and in more detail. 

In molecular physics, it is generally important to know the geometry of the 
molecule of interest from experimental studies before attempting a theoretical treat­
ment. We will have the task of calculating the wavefunctions, or also the possible 
vibrational motions of the nuclei, taking this observed symmetry into account. We 
can draw on the example of the benzene molecule as a starting point for our con­
siderations (Fig. 5.la). It is planar and has the shape of an equilateral hexagon, i. e. 
if we rotate the molecule through an angle of 600 about an axis perpendicular to its 
plane, it remains unchanged. Another example is provided by H20, which remains 
unchanged if it is rotated through an angle of 1800 about an axis perpendicular to its 
plane (see Fig. 5.2). NH3 is symmetric with respect to rotations of 1200 (Fig. 5.3). 
The ICli ion is planar and is unchanged by a rotation of 900 (Fig. 5.4), while all 

a 

~ ~ 
l-C~ 

H- C C-H 
\ I 
C=C 

~ '8 

b 

Fig. 5.1a-c. Benzene, C6H6. (a) structure formula; (b) charge density of the a-electrons; (c) 
charge density of the n-e1ectrons 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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CI 
I 

CI-I - CI 
I 

CI 

Fig. 5.4. IC14 

H 

Fig. 5.3. NH3 

H-C-N 

Fig. 5.5. HCN 

linear molecules, such as HCN (Fig. 5.5), are symmetric with respect to a rotation 
about the common internuclear axis through any arbitrary angle ¢. 

Making use of these examples, we discuss more precisely just what is meant 
by symmetry and symmetry operations. For this purpose, we first carry out a little 
thought experiment: we imagine that in H20, the initially quite identical hydrogen 
nuclei are distinguishable, and then we rotate the water molecule in such a way that 
the two protons exchange places. We then make the protons again indistinguishable. 
After the rotation of the molecule, one can thus no longer see that it had been rotated 
at all. In the course of such a rotation through an angle ¢, the coordinates of the 
individual atoms in the molecule are of course changed. Using the standard notation 
for molecules, we denote the rotation as C. In order to specify the angle ¢ through 
which the rotation took place, we can put it as an index on C: C¢. We shall use that 
notation occasionally in this section. However, it is more usual to choose the index 
as the number n, which tells us how many times a rotation must be repeated until the 
original state is again restored; in other words, n¢ = 2IT. For example, if ¢ = 60° 
(or in radians, ¢ = IT/3), we find n = 6. In the benzene molecule, the rotational 
symmetry can thus be described as C6. 

We now consider the effect of a rotation on the Cartesian coordinates. They can 
be written compactly in terms of the position vector 

r=(} (5.1) 

A rotation through the angle ¢ corresponds to a new position vector r'. The relation 
between r and r' is .then given by: 

r' = C¢r, (5.2) 
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where C'" means: carry out a rotation of r through the angle ¢. As we know from 
elementary mathematics, the primed and unprimed coordinate systems are related 
by the equations: 

X' = x cos ¢ + y sin ¢ , 

y' = -x sin ¢ + Y cos ¢ , 

z' = z. 
(5.3) 

In order to keep the notation simple, in the following we will leave off the angle ¢ 
or the number n as index to C: 

C'" -+ C. (5.4) 

Since the distance from the origin remains constant in a rotation, we can immediately 
write down the relation 

(5.5) 

i. e. we could also write 

r' = r. (5.6) 

The rotation operation can now be applied to the coordinates of any particle we wish; 
not only to the protons in hydrogen, but also to, e. g. the electron in a hydrogen atom. 
The application of the rotation operator C to the wavefunctions 1jr(r) of the hydrogen 
atom then means simply that we rotate the coordinates r, i. e. the following relation 
holds: 

C1jr(r) = 1jr( Cr) = 1jr(r') . (5.7) 

Let us consider how the wavefunctions transfonn under the rotation C according to 
(5.7). We begin with the Is-function of hydrogen, which has the fonn 

1jr(r) = Ne-r/ro (5.8) 

(cf. Fig. 4.1), where N is a nonnalisation constant. According to the definition (5.7), 
and taking the relation (5.6) into account, we obtain 

C1jr(r) = Ne-r'/ro = Ne-r/ro . (5.9) 

Under rotation, the wavefunction of the hydrogen atom in the Is-state thus remains 
unchanged, or in other words, it is invariant with respect to a rotation C. 

Let us see as a preparation for future use how the p functions transfonn; they 
can be represented using either real or complex functions. Starting with the real 
representation, we associate the wavefunction 

(5.10) 
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with a "dumbbell" lying along the x-direction (compare Fig. 4.1). The function fer), 
which depends only on the radius r, can be written in the form 

fer) = N e-r/ ro , (5.11) 

but any distance-dependent function, e. g. the radial functions for larger values of 
the principal quantum number, would also meet the requirements of which we make 
use in the following. The other two dumbbells are given by 

1{r Py = Y fer) (5.12) 

and 

1{r pz = zf(r) . (5.13) 

Consider now what happens when we let the rotation operator C for a rotation 
about the z-axis act on these wavefunctions according to the general definition (5.7). 
We obtain: 

C1{rpx = x' fer') = cos¢xf(r) + sin¢yf(r) = cos¢1{rpx + sin¢1{rpy , 

C1{r Py = y' fer') = - sin ¢x fer) + cos ¢y fer) = - sin ¢1{r Px + cos ¢1{r Py , 

C1{r pz = 1{r pz . 
(5.14) 

In (5.14), the first step (from left to right) was carried out according to (5.7), the 
second according to (5.3), and for the third, we made use of the definitions (5.10) and 
(5.12). Application of the rotation operation C thus transforms the wavefunctions 
1{r Px' 1{r Py' and 1{r pz among themselves. This already shows us the tip of the iceberg 
of a general truth which we shall meet again in a much more general context. We 
note in this connection that the p-functions of the hydrogen atom just referred to 
all belong to the same energy. As we shall show generally later on, wavefunctions 
which belong to the same energy are transformed into linear combinations of the 
same set of wavefunctions by symmetry operations. The question will also arise as 
to whether there are not simple cases where a wavefunction is transformed into itself 
on application of a symmetry operation. This in fact is true in the present case, if 
instead of the real representation of the p-state wavefunctions we use certain linear 
combinations of them. These are complex and are eigenfunctions of the operator for 
the z-component of angular momentum. They are given by 

(5.15) 

where N is again a normalisation constant. The form x±i y can be treated as a complex 
variable in the complex plane, and we introduce the usual polar coordinates for it: 

x + iy = rei'" . (5.16) 
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Then (5.15) becomes 

(5.17) 

In the complex plane, a rotation through an angle cPo means that the original angle cP 
is to be replaced by cP + cPo. We thus obtain 

(5.18) 

and therefore 

(5.19) 

and, correspondingly, 

C ,I, - -i</>o ,I, 
</>0'1'- - e '1'- • (5.20) 

The relations (5.19) and (5.20) naturally mean that the application of the rotation 
operator leaves the functions 1/1+ and 1/1- unchanged aside from a constant factor 
ei</>o or e-i</>o. 

5.2 Application to Benzene: 
the 7r-Electron Wavefunctions by the Hiickel Method 

As is known experimentally, the benzene molecule, C6H6, is planar: the H atoms 
lie in the same plane as the C atoms, which are joined to form a hexagonal ring 
(cf. Fig. 5.1a). If we look at a particular carbon atom, we find that it has a trigonal 
arrangement for the bonds to the two neighbouring C atoms and the H atom which 
extends outside the ring. Just as in ethene (see Sect. 4.4), we see that each carbon 
atom has one pz orbital, containing one electron, left over after forming the trigonal 
hybrid orbitals. All such pz orbitals in the 6 different carbon atoms are energetically 
equivalent; an electron could, in principle, occupy anyone of these states. Let 
us now recall the basic approach of the LCAO method, i. e. the method of linear 
combinations of atomic orbitals (cf. Sect. 4.4.4). It requires us first to search for the 
wavefunction of each single electron in the field of all the atomic cores, i. e. here in 
the field of all 6 carbon atoms. In principle we are dealing here with a generalisation 
of the hydrogen molecule problem; however, an electron can now be spread over six 
atoms instead of over two. 

We suppose that all the orbitals of the carbon atoms which lie in the molecular 
plane, i. e. the Is orbitals and the hybrid orbitals made up of the 2s, 2px, and 2py 
atomic orbitals, have been filled with electrons of lower energies. These hybrid 
orbitals in benzene are referred to as u orbitals (Fig. 5.1b). (We shall have more to 
say about the notation for orbitals in Chap. l3.) Similarly to the case of ethene, some 
electronic wavefunctions remain: those derived from the 2pz states; they extend 
outwards perpendicular to the molecular plane and are localised on the individual 
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Fig. 5.6. The pz function ¢(r) is transformed into 
¢(r - R j ) by a translation through the vector R j 

carbon atoms. We can assume that the electrons which the carbon atoms contain in 
these orbitals move independently of each other in the fields of the carbon atomic 
cores, including the already-occupied a orbitals. We will justify this assumption in 
detail later on; for the moment, we have the task of determining the wavefunction 
of an electron in a field which is symmetric with respect to rotations of 60° about 
an axis perpendicular to the molecular plane. We apply the Hund-Mullikan-Bloch 
method just as in the case of the hydrogen molecule: we represent the wavefunction 
we are seeking as a linear combination of wavefunctions located on the carbon 
atoms, more precisely the 2pz wavefunctions. The molecular orbitals which result 
are called 7i orbitals. In order to make use of our symmetry considerations, we 
first investigate the behaviour of such a function belonging to the carbon atom with 
index j. According to Fig. 5.6, we can represent this function as 

(5.21) 

where for concreteness we will keep in mind a representation of the function (5.13). 
When we carry out a rotation through an angle of 60° (see Fig. 5.7), we obtain the 
result 

(5.22) 

where we have used the definition (5.21). As a result of the symmetry ofthe problem, 
the vector Rj , which points from the centre of the molecule towards the nucleus of 
carbon atom j, can be interpreted as a rotated vector which was produced from the 
vector Rj - 1 by a rotation through 60° (Fig. 5.7): 

(5.23) 

Then instead of (5.22), we can write 

(5.24) 

Next, we can factor out the operator C6 from the parenthesis in (5.24), yielding: 

Fig. 5.7. On rotation through 60° (small arrows), the vectors Rj 
are transformed into one another 
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Now, the z-direction is not influenced at all by a rotation about tbe z-axis, and 
furthermore the distance r - R j - 1 remains unchanged by a rotation. Therefore, 
(5.25) is equivalent to: 

(5.26) 

Thus, with tbe aid of some mathematical reformulations, we have obtained the result 
that a pz-wavefunction on one carbon atom is transformed by a 60° rotation of tbe 
molecule into the corresponding wavefunction on an adjacent carbon atom: 

(5.27) 

Following these elementary preparations, we shall now see how useful symmetry 
considerations can be in molecular physics. To this end, we consider the wavefunction 
o/(r) of an electron which moves throughout the whole molecule in its potential field, 
as mentioned above. The corresponding Schrodinger equation is given by: 

H(r)o/(r) = Eo/(r) , (5.28) 

where the Hamiltonian H contains tbe kinetic energy of the electron and its potential 
energy in the molecular potential field. A rotation through 60° leaves this Hamiltonian 
unchanged, i. e. we obtain the relation 

CH(r) = H(r') = H(r) . (5.29) 

Now, we apply the rotation operation C to both sides of (5.28), yielding: 

CH(r)o/(r) = ECo/(r) . (5.30) 

Using (5.29), the operation C on tbe left side of (5.30) acts only on the wavefunction: 

H(r)Co/(r) = ECo/(r) . (5.31) 

If we compare the left sides of (5.30) and (5.31) and remember tbat tbey remain 
valid for any arbitrary wavefunction o/(r), we can by subtraction obtain an operator 
equation: 

CH-HC=O. (5.32) 

The rotation operator C and the Hamiltonian H thus commute. This is anotber way of 
expressing the fact that the Hamiltonian is invariant under tbe rotation C. It follows 
from (5.31) tbat if o/(r) is a solution of the SchrOdinger equation, tben so is Co/(r). 

We now assume for the moment that only a single wavefunction belongs to tbe 
energy E, i. e. that tbe energy level is not degenerate. In such a case, when two 
apparently different wavefunctions belong to the same energy, tben there is a contra­
diction unless the two wavefunctions are in fact identical aside from a multiplicative 
constant which we will call A; we thus obtain the relation: 
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C1jr(r) =A1jr(r) . (5.33) 

Mathematically, one can show that in general, a relation like (5.33) always holds un­
der rotation operations. This is related to the fact that for rotations, there always exists 
a number M such that an M -fold application of the rotation operation transforms the 
wavefunction back into itself. Formally, this means that 

CM = 1. (5.34) 

We now use relation (5.33) to determine the coefficients of the LCAO wavefunction in 
a simple way. We represent 1jr as a linear combination of the atomic wavefunctions <P j 
according to 

(5.35) 

Inserting (5.35) into (5.33), we obtain 

Cl C<Pl (r) + c2C<p2(r) + ... + c6C<p6(r) 

= A[cl<Pl(r) + c2<P2(r) + ... + c6<P6(r)] . 
(5.36) 

ever, as we have just seen, the application of a rotation to the wavefunction <P j, 
produces simply an exchange of the index j of the "base" carbon atom. Using this 
fact, (5.36) is changed into 

(5.37) 

Since here the individual wavefunctions <P j are linearly independent of each other, 
(5.37) can be valid only if the coefficients of the same functions <Pj on the left and 
the right sides of the equation are equal. This leads immediately to the relations 

Cl = AC6 , 

C2 = ACI , 

C3 = AC2 , 

To solve them, we take the trial solution 

(5.38) 

(5.39) 

where Co is a normalisation constant. If we apply the rotation operation in the case of 
benzene six times, the molecule is returned to its original state; from this, it follows 
that 

(5.40) 
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According to the calculational rules for complex numbers, (5.40) has the solution 

A = e21fki/6 , (5.41) 

with k an integer which must be chosen according to: 

k=0,1,2, ... ,5 

or 

k = 0, ±l, ±2, +3. (5.42) 

We now insert the result (5.39) together with (5.41) and (5.42) into (5.35) and obtain 
the explicit form which the wavefunction must take, namely: 

6 

1/1 = Co L e21fkij/6cpj(r) . 

j=l 

(5.43) 

This is the wavefunction of the 1T-electrons of benzene (compare Fig. 5.1c). We 
have thus succeeded in solving the Schrodinger equation without having to carry out 
any calculations involving the Hamiltonian operator. Symmetry alone was sufficient 
to fix the coefficients uniquely, leaving only the normalisation constant Co to be 
determined. 

5.3 The Hiickel Method Revisited. 
The Energy of the 7r-Electrons 

As we know, the carbon atom has two electrons in the Is shell ("core electrons") 
and in addition 4 electrons in the n = 2 shell. These four electrons participate in 
bonding to other atoms and are therefore called valence electrons. We have seen that 
a distinction is made in the bonding of carbon in the benzene molecule between a­
and 1T-electrons. The wavefunctions of the a-electrons are located in the plane of 
the molecule, while the 1T-electrons, which originate with the pz atomic orbitals, are 
oriented perpendicularly to the molecular plane; it is for them a nodal plane. 

We select one of these 1T-electrons and assume that it moves in the combined 
potential ofthe nuclei, the a and core electrons, and the other 1T-electrons. The direct 
interaction of the electrons with each other is thus replaced by an effective potential. 
As we shall see later, and should already know from atomic physics (cf. I), such 
a procedure can be justified in the framework of the Hartree-Fock approximation. 
The Hamiltonian which refers to the 1T-electrons is then 

HHiickel = ""' [_ ~ \12 + ~(r )] 
1f ~ 2m fL fL' 

fL 0 

(5.44) 

where the sum over fL runs from 1 - 6, enumerating the six 1T -electrons of the carbon 
atoms. Equation (5.44) clearly contains a sum of Hamiltonians, each one of which 
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refers to a single electron. Therefore, the Schr6dinger equation belonging to (5.44) 
can be solved by finding the wavefunctions of the individual electrons as solutions 
to the SchrOdinger equation 

[-~ V2 + Vcr)] 1/I(r) = E1/I(r) . 
2mo 

The potential in (5.45) can be decomposed into two parts: 

(5.45) 

(5.46) 

of which one part, Vn(r), is due to the nuclei and the other part, VS(r), to the a­
and n-electrons. Following the prescription of the Hund-Mullikan-Bloch method, 
we represent the wavefunction of a single electron as a linear combination of atomic 
wavefunctions, in this case the carbon 2pz wavefunctions, as follows: 

N 

1/1 = L cjf!>j(r) . 
j=] 

(5.47) 

The coefficients c j are still unknown and can be determined with the aid of the 
variational principle, according to which the left-hand side of 

"--cf ;c-1/I*_H--,-1/I_d_V = E 
f 1/1*1/1 dV 

(5.48) 

is to be minimised by a suitable choice of the coefficients. Inserting (5.47) into the 
numerator of (5.48), we obtain 

Lcjcj'. f ¢jH¢j'dV , 
jj' ~ 

(5.49) 

Hjjl 

where we will use the abbreviation Hjj' in what follows. In the same way, we find 
the denominator of (5.48): 

LcjCj'.j ¢j¢j'dV. 
jj' '-v-' 

(5.50) 

Sjj' 

The energy on the right-hand side of (5.48) is a function of the coefficients, so that 
we can write 

(5.51) 

A necessary condition for obtaining a minimum in E is that the derivatives with 
respect to the coefficients c j and cj vanish: 
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aE aE 
- = - = 0 . (5.52) 
aCj acj 

For computational reasons, it is more practical to multiply equation (5.48) on both 
sides by the denominator and consider the resulting expression, 

(5.53) 
jj' jj' 

We now differentiate this equation with respect to the coefficients cj, obtaining 

(5.54) 

We have already set the derivatives of E with respect to cj equal to zero in (5.54), 
using (5.52). Equation (5.54) is a system of equations for the coefficients Cj which 
we can write explicitly in the form 

(Hll - SllE)Cl + (H12 - S12E)C2 + ... + (HIN - SlNE)cN = 0, 

(H21 - S21E)Cl + (H22 - S22E)C2 + ... + (H2N - S2NE)CN = 0 , 
(5.55) 

Since this is a system of homogeneous equations, the determinant of its coefficients, 

Hll - ESll H12 - ES12 ... HIN - ES1N 

=0, (5.56) 

must vanish, if we wish to obtain a nontrivial solution. This is clearly not a very 
simple problem, since we are already dealing with a 6 . 6 determinant. 

Using symmetry considerations, however, one can solve this problem very sim­
ply! In the previous section, we saw that the coefficients are known [compare (5.43)]. 
It is therefore unnecessary to solve the determinant equation (5.56); instead, we can 
substitute the known coefficients directly into the system (5.55). In this way, we 
can determine the energy E for the general system (5.55) explicitly. In order to 
emphasise the essentials, we assume the following simplifications: 

Sjj = I , 

Hjj = A, 

j:j=J' 

Hj,j-l = Hj,j+l = B , otherwise = 0 . 
(5.57) 

These conditions are equivalent to neglecting the overlap between the wavefunctions 
and considering interaction energies only within one atom and with next-neighbour 
atoms. We now insert the simplifications (5.57) and the form of the coefficients Cj 

[from (5.43)], 
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C j = Co e21Cijk/6 , 

into, e. g. the first line of (5.55), thus obtaining 

e21Cik/6(A _ E) + e21Ci2k/6 B + e21Ci6k/6 B = 0 , 

which can be immediately resolved into the form 

E = A + B( e21Cik/6 + e -21Cik/6) . 

(5.58) 

(5.59) 

(5.60) 

All the other lines of (5.55) give the same result. Using the real representation, (5.60) 
can be written as 

(2Jrk) 
E = A + 2B cos 6 . (5.61) 

In this equation, k takes on the values prescribed by (5.42), i. e. 

k = 0, ±1, ±2, +3. (5.62) 

Taking into account the fact that the exchange integral B is negative, 

(5.63) 

we obtain the term diagram shown in Fig. 5.8 for the Jr-electrons of benzene. It can 
be filled with the carbon electrons, starting from the lowest energy level and taking 
the Pauli exclusion principle into account. The energies shown in Fig. 5.9 are then 
obtained. 

E 

-'-_-'-_--'-_-+-_-'-_-'-_...l....-_ k Fig. 5.8. The term diagram for the JT-eiectrons 
-3 -2 -1 

k=-2 --

k=-l * 

o 2 3 of benzene 

k=3 

-- k=2 

* k=l 

* k=O 

Fig. 5.9. The states occupied by the JT-eiectrons of 
benzene. [Note that E( -k) = E(k)] 
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The use of symmetry considerations brought a considerable simplification com­
pared to traditional theoretical methods in this case. We were able to determine the 
coefficients explicitly beforehand, without having to solve the system of equations 
(5.55). In particular, we did not need to calculate the determinant (5.56) and find its 
eigenvalues explicitly, which otherwise would have been necessary. Furthermore, 
our calculation using the Hiickel method has the advantage that we can also treat 
excited states according to the term diagram of Fig. 5.8, since their energies are 
already known from (5.60). 

5.4 Slater Determinants 

Let us return to the solution of the many-electron problem, for example in the case 
of benzene. Here, we make use of two pieces of knowledge which we had gained 
previously: if the Hamiltonian consists of a sum of operators, then - generalising the 
method used for the hydrogen molecule - the wavefunction of all the electrons may 
be written as a product of the wavefunctions of individual electrons. In doing this, it 
is important to take the spin of each electron into account using the spin functions a 
(spin up) and {3 (spin down). In order that the overall wavefunction be antisymmetric 
in the spatial and the spin coordinates as required by the Pauli exclusion principle, 
we use a determinant for the ground state wavefunction, generalising the approach 
given by (4.71). In this determinant, the counting index of the electrons is the row 
index and the quantum number of the state occupied by the electron is the column 
index. The determinant thus has the form: 

tJt(l, 2, . " ,6) = 

1/1[ (r[)a(1) 1/1[ (r[){3(1) 1/I2(r[)a(1) 1/I2(r[){3(1) ... 

1/1[ (r2)a(2) 1/1[ (r2){3(2) 

(5.64) 

This expression is called a Slater determinant. Clearly, writing down such determi­
nants is tedious; they are therefore often abbreviated in the form: 

(5.65) 

where the arguments of 1/1 refer to the electrons and the indices of the wavefunctions 1/1 
to the individual states, and we assume that each wavefunction is occupied by two 
electrons having antiparallel spins. Equation (5.65) thus yields the determinant (5.64) 
if we make the following replacements 

(5.66) 

and use the convention that a bar over the wavefunction refers to an electron with its 
spin down. 
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5.5 The Ethene Wavefunctions. Parity 

As an additional example of the power of symmetry considerations, we treat the 
ethene molecule (Fig. 5.10). This molecule evidently has a centre of inversion 
symmetry at the midpoint of the line joining the two C atoms; i. e. if we reverse the 
signs of all the coordinates, x, y, z becoming -x, -y, -z, then the entire molecule 
remains unchanged. If we subject the wavefunction 1jr of a single electron to this 
mirror operation, and again assume that the wavefunctions are nondegenerate, we 
obtain 1jr(r) = A z1jr(r). This means that A can take on only the values + lor -1. We 
then find 

1jr( -r) = ±1jr(r) , (5.67) 

or, as one also says, 1jr has even parity (upper sign) or odd parity (lower sign). 

The wavefunctions of the individual x-electrons are taken, as in the hydrogen 
molecule-ion, to be linear combinations of the 2pz wavefunctions of the two carbon 
atoms (cf. Fig. 5.11): 

y 

c c 
Fig. 5.11. The definitions of Rl and Rz 

¢l (r) = ¢r.,- - Rd, ¢z(r) = ¢(r - Rz) , 

1jr(r) = Cl¢l (r) + cz¢z(r) . 

For the atomic wavefunctions, we have the symmetry properties 

¢l (-r) = -¢z(r) 

and 

¢z( -r) = -¢l (r) , 

as one can readily see by making use of the explicit representation of ¢: 

¢ = Nze-r/ ro . 

(5.68) 

(5.69) 

(5.70) 

(5.71) 



5.6 Summary 103 

Inserting (5.68) into (5.67) and making use of the properties (5.69) and (5.70), we 
obtain 

Comparing the coefficients of the same wavefunctions on the left and right-hand 
sides of (5.72), we find the relations 

(5.73) 

With this relation, we can substitute in the linear equation (5.54) for the coefficients, 
just as we did in the case of benzene; now, however, we have to deal with only two 
coefficients. In complete analogy to the calculation for benzene, we obtain 

E=A±B, (5.74) 

where 

B < O. (5.75) 

We can see that Cl = C2 leads to a bonding state and Cl = -C2 to an antibonding 
state. The term diagram which results is given in Fig. 5.12. 

~A-B 

A + B Fig. 5.12. The tenn diagram of ethene 

5.6 Summary 

In Chaps. 4 and 5, using concrete examples we have demonstrated some funda­
mental concepts required for the (at least approximate) calculation of the electronic 
wavefunctions of molecules, i. e. the molecular orbitals. We can summarise the basic 
ideas as follows: 

1. The wavefunction of all the electrons of a molecule is approximated as a product 
or a determinant containing the wavefunctions of the individual electrons. 

2. The individual wavefunction (molecular orbital) is constructed as a linear com­
bination from atomic wavefunctions (LCAO method). 

3. The coefficients of the LCAO wavefunctions are determined by using symme­
try considerations, giving a considerable reduction in the computational effort 
required. 

Clearly, some important questions are raised by the points 1)-3): 
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1. Why is it allowable to use the approximation I)? This question leads us to the 
Hartree-Fock method and its extensions, which we treat in Chap. 7. 

2. and 3) How can we generalise the symmetry considerations? We take up this 
question in Chap. 6, where we treat molecular symmetries in a quite general 
way. 

In Chaps. 6 and 7, the reader will thus gain a detailed introduction to the modem 
electron theory of molecules, which will allow him or her to delve into the scientific 
literature dealing with this subject. 

Problems 

5.1 Investigate the Jr-electron system of the polyenes (cf. sketch in the solutions). 
Assume that the u bonds form a solid molecular skeleton with fixed bond lengths d, 
while the Jr electrons are essentially free to move between the carbon atoms. (The 
u electrons result from the Sp2 hybridised carbon orbitals, while the Jr electrons 
come from the nonhybridised 2 p orbitals.) That is, in our model, the motion of the Jr 
electrons along the bond axes corresponds to the charge motion in a quantum wire. 
The equation of motion is then 

Here, Vab is a constant potential along the bond a - b, and </J(x) is the molecular­
orbital wavefunction of a Jr electron. 

a) What boundary conditions are required for a simple connection (cf. sketch)? 

b) What are the boundary conditions for the Jr electrons at the ends of the 
molecule? 

c) Now consider explicitly the butadiene molecule, with two double bonds and 
thus four Jr electrons. The effective Hamiltonian is given by: 

fi2 d2 

Heff = -- - + Vex) 
2m dx2 

with 

Vex) = { 0 for . O::s x ::s 5d 
00 otherwIse 

Determine the energy eigenvalues and the molecular-orbital wavefunctions. 
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5.2 As shown in Chap. 5, of the four valence electrons from each carbon atom 
in a benzene ring, three are combined in trigonally-hybridised wavefunctions, so 
that all six pz states are energetically equivalent and are delocalised over the whole 
ring structure, forming so called n orbitals. Starting from the LCAO method and 
employing the cyclic symmetry, one arrives at a trial wavefunction for these n 
electrons. 

6 

1ft = L e2rrkij/6 C{Jj(r) (k = 0, ±1, ±2,3) . (1) 
j=l 

Employing the variational principle, 

f l/I* H l/I dVl ... dVn • . "--;,--------- = mm > E , f l/I* l/I dVl ... dVn -

determine the energy eigenvalues under the following assumptions: 

1. The wavefunctions C{J j are normalised and overlap only with their immediate 
neighbours, i.e. 

f C{JjC{Jj' dV = Sjj' = (J for j' = j ± I 11 for j' = j 

° otherwise 

and 
2. the matrix elements of the Hamiltonian H are given by 

f C{JjHC{Jj' dV = Hjj' = B for j' = j ± 1 I A for j' = j 

° otherwise 

Hint: The energies can be determined directly from the equation 

by making use of the trial functions (l). 



6 Symmetries and Symmetry Operations. 
A Systematic Approach* 

This chapter provides a systematic approach to the application of group theory for 
the determination of molecular wavefunctions. We treat molecular point groups, 
the effect of symmetry operators on wavefunctions, and then the basic concepts of 
the theory of group representations. The method is demonstrated using the explicit 
example of the H20 molecule. 

6.1 Fundamentals 

In the preceding chapter, we saw how we could determine the JT-electron orbitals 
of benzene in an especially elegant way by making use of the rotational symmetry 
of the molecule. In this chapter, we shall deal systematically with symmetries and 
symmetry operations, keeping concrete examples of molecules in mind. The symme­
try properties of a molecule are characterised by the possible symmetry operations, 
e. g. rotations. In the course of such a symmetry operation, every point in space is 
transformed into another point, keeping the lengths of all distances constant. The 
object before and after the operation is indistinguishable. 

N 

HI314HI21 

H(1) 
Fig. 6.1. The NH3 molecule. The numbers 1,2, and 3 are used to 
denote the positions of the hydrogen atoms 

As a first example, we choose the NH3 molecule, which can be described as 
a trigonal pyramid (Fig. 6.1). The three hydrogen atoms are located at the vertices 
of the equilateral basal triangle, and the nitrogen atom is directly above the centroid 
of the triangle. If the molecule is rotated about an axis passing through the N atom 
and the centroid, by an angle of 120° in the positive sense (i. e. counterclockwise as 
seen from above), then the H atoms exchange their places in the following manner: 
H3 ~ HI, HI ~ H2, and H2 ~ H3 (cf. Fig. 6.2). The N atom maintains its 
position. The state attained after each such rotation is indistinguishable from the 
original state, since the H atoms are all equivalent. In the course of these operations, 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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3 2 

r1.\\~ ~ 
Fig. 6.2. The effect of the symmetry operation C3, i. e. 
a rotation of 120° about a vertical axis 

1~2 3~1 
~ 

neither lengths nor angles within the molecule are changed; the operations can 
therefore be considered to be symmetry operations. Analogous considerations hold 
for the reflection operations sketched in Fig. 6.3. The mirror planes are perpendicular 
to the basal triangle of the molecule and each one contains a bisector of the triangle. 
Thus, a reflection in the 0'1 plane exchanges the atoms H2 and H3, while HI and N 
remain unchanged. 

Symmetry operations are not to be confused with so-called symmetry elements. 
In the above example of the NH3 molecule, the symmetry operation C3 tells uS how 
to carry out a rotation through 120°. The set of all points which do not change their 
spatial positions during this symmetry operation form the symmetry element "axis 
of rotation", which is likewise denoted by C3. In the case of the reflections in 0'1, 0'2, 

and 0'3, the symmetry element is the respective mirror plane. A symmetry element is 
defined as the set of all points on which the symmetry operation is carried out. In the 
case of elementary or non-composite symmetry operations (Table 6.1), the symmetry 
element is equivalent to the set of all points which remain fixed in space when the 
symmetry operation is carried out. If at least one point remains invariant in the 
course of an operation (for higher symmetries: one line or one plane), the operation 
is referred to as a point symmetry operation. An example is inversion, i, in which 
the origin of the coordinate system forms the symmetry element and a coordinate 
vector r is transformed into -r. Furthermore, it is useful for mathematical reasons to 

3 2 

X=,~, 
3 1 

~ ~ ,D., 1 2 

3 3 

===::;. '~, 2 

°3 
Fig. 6.3. The effects of the symmetry oper­
ations 0'1,0'2, and 0'3, i. e. ofthe reflections 
illustrated 
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Table 6.1. Elementary and composite symmetry operations with the corresponding symmetry 
elements 

Symbol Symmetry operation Symmetry element 

E "Identity operation" Identity 

en Rotation through 2lf / n n -fold axis of rotation 

a Reflection Mirror plane 

Inversion (reflection at 
an inversion centre) 

Rotation through 2lf/n 
followed by reflection 
(Improper rotation) 

Translation-reflection 
(translation followed by 
a reflection) 

Centre of inversion 
symmetry 

n-fold axis of rotary 
reflection symmetry 

Translation-reflection plane 

en Screw operation Screw axis 
(Translation followed by 
a rotation through 2lf/n) 

define the identity E formally as a symmetry operation. In this operation. all points of 
a three-dimensional object remain unchanged. In the case of polymers with a regular 
chain conformation or of crystal lattices, two additional symmetry operations can 
occur, which depend on the periodicity of the molecular chain or the lattice: the screw 
operation (translation + rotation), and the translation-reflection operation. Table 6.1 
lists first the four simple point symmetry operations: the identity E, reflection a, 
rotation C, and inversion i; and then the combined point symmetry operations: 
improper rotation S, translation-reflection a, and the screw operation en, with their 
corresponding symmetry elements. 

We can gain an intuitive understanding of the individual symmetry operations 
by considering an equilateral triangle as in Figs. 6.2 through 6.4. The symmetry 
operations result here in a permutation of the vertex numbers as shown in the figures. 
We will show with a few examples how a concatenation of two symmetry operations 
produces a new symmetry operation, which in the case of Fig. 6.4 can in fact be 
expressed through an operation that was already defined. Looking at Fig. 6.4a, we 
first carry out the reflection a2 and then the rotation C3. The final product of this 
composite operation, shown on the right in the figure, could also have been obtained 
by reflecting the original triangle through the symmetry element al (Fig. 6.4b). We 
thus see that the relation C3a2 = al holds (note that the operations on the left-hand 
side of this equation are to be read from right to left!). Now, what will happen if we 
reverse the order of the reflection and the rotation, i. e. first rotate and then reflect, 
as shown in Fig. 6.5a? The resulting triangle could also be obtained by a reflection 
through the a3 plane (Fig. 6.5b). We thus obtain the operator relation a2C3 = a3. 
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b 3 2 

P='~3 
Fig. 6.4. (a) Effect of the symmetry operation (Y2 followed by C3. (b) The same effect as in 
(a) is produced by (YI 

Comparing the result of Fig. 6.4a with that of Fig. 6.5a, we can see that the results 
of a combined rotation and reflection depend on the order in which the operations 
are performed. 

In other words, symmetry operations do not commute, at least in the present case. 
Quite generally, one can show that the product of two rotations again is equivalent 
to a rotation, while the product of a reflection followed by a rotation, or a rotation 
followed by a reflection, is equivalent to a reflection. Two successive reflections can 
be replaced by a rotation. We can summarise these results in a group operation table, 
as shown in Table 6.2. 

We have thus arrived at the concept of a group. A group consists of a set of 
elementary operations with the following properties: concatenating two operations A 
and B yields a new operation, which likewise belongs to the group, according to 
A B = C. The set of symmetry operations contains an identity operation E which 
is defined so that E A = A E = A. Every operation A has an inverse operation 

b 3 

--+--2 

Fig. 6.5. (a) The effects of the symmetry operations C3 followed by (Y2. (b) The same effect 
as in (a) is produced by (Y3 
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Table 6.2. The multiplication table for the symmetry group C3v. A multiplication BA leads 
to the new elements listed in the table 

Operation A 

C3v E C3 C 2 
3 0'1 0'2 0'3 

Operation B E E C3 C 2 
3 0'1 0'2 0'3 

C3 C3 C 2 
3 E 0'3 0'1 0'2 

C 2 
3 C 2 

3 E C3 0'2 0'3 0'1 

0'1 0'1 0'2 0'3 E C3 C 2 
3 

0'2 0'2 0'3 0'1 C 2 
3 E C3 

0'3 0'3 0'1 0'2 C3 C 2 
3 E 

A -I, with A A -I = E. It can then be shown that A -I A = E also holds. For the 
operations A, B, and C, an associative law is valid: (A B) C = A (B C). 

When the operations all mutually commute, i. e. A B = B A for all A and B in 
the group, the group is called Abelian. Using the group table, it is easy to verify 
that the symmetry operations E, C3 , cj, ai, 0'2, and 0'3 form a group. Following 
a notation convention which we will discuss in detail below, this group is called C3v. 

From the symmetry operations of a molecule which form a group, we can often 
choose certain operations which among themselves fulfill the conditions for forming 
a group; these symmetry operations are placed in a subgroup of the original group. 
The multiplication table in Table 6.2 shows that the operations E, C3 , and cj form 
a subgroup of C3v. In addition to NH3, another example of a molecule with the point 

z y 

tLx Fig. 6.6. The symmetry elements of the point group C3v' 
The molecule chloromethane (CH3Cl) is shown as an 
example 
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group C3v is chloromethane. It is shown in Fig. 6.6, together with the symmetry 
elements of the group C3v. 

6.2 Molecular Point Groups 

For the classification of the molecular point groups, we use the notation intro­
duced by SchOnflies. (Another notation, preferred by crystallographers, is that due to 
Hermann-Mauguin.) In the following section, we have collected all the point groups 
of molecules. We begin with molecules which allow the smallest possible number of 
symmetry operations in addition to the identity operation which is a member of all 
point groups. We then consider molecules with higher degrees of symmetry. Some 
examples are given in Fig. 6.7. 

Molecules without an axis of rotational symmetry belong to the point groups 

CI: This point group contains, aside from the identity E, no additional symmetry 
elements. example: NHFCI. 

Cs: The only symmetry element is a mirror plane. Example: NOCl (in Fig. 6.7, first 
row, left). 

Ci : The only symmetry element is the centre of inversion symmetry, i. Example: 
ClBrHC -CHClBr in the trans-conformation. 

All the other point groups refer to molecules with axes of rotational symmetry 
(rotation groups). 

Cn: Molecules with an n-fold rotational axis (n f= 1) as their only symmetry 
element. Examples: Hz Oz (Cz) and Ch C -CH3 (C3 ). Linear molecules without 
a centre of inversion symmetry belong to the rotation group Coo; they in 
addition possess an infinite number of mirror planes which intersect in the 
molecular axis (Coov ). 

Sn: Molecules which have as their only symmetry element an axis of rotational­
reflection symmetry of even order (n = 2m, beginning with m = 2). (For an 
example, see Fig. 6.7.) The point group S2 contains only the inversion i and 
the identity operation E; therefore, Sz == Ci . 

Cnh: Molecules with a rotational axis of order n > 1 (Clh == Cs) and a (horizon­
tal) mirror plane perpendicular to it. (The term "horizontal" results from the 
convention that the rotation axis is taken to be vertical.) The 2n symmetry 
operations follow from those of the rotation group Cn and its combination with 
the reflection Uh; Sn = Uh Cn. If n is an even integer, the molecule contains 
a centre of inversion symmetry due to Sz == i. Example: butadiene in the planar 
trans conformation, CZh. These molecules are invariant under the following 
elementary symmetry operations: identity operation E; rotation by 1800 about 
an axis perpendicular to the plane of the image and passing through the centre 
of gravity of the molecule; reflection in the plane perpendicular to that axis and 
containing all the atoms of the molecule; and finally inversion about the centre 
of gravity of the molecule, which is also a centre of inversion symmetry. 
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0+0, 

" H ' H 

Fig. 6.7a,b. Some examples of point groups. (a) 1st row, left: NOCI, point group Cs ; centre: 
ClBrHC-CHClBr in the trans confonnation, point group Ci; right: H202, point group C2. 
2nd row, left: CbC-CH3, point group C3; centre: point group S4; right: butadiene in the 
planar trans confonnation, point group C2h . (b) 1st row, left: H2CCI2, point group C2v; 
centre: H3C-CH3, side view; right: ditto, but viewed along the C-C molecular axis. The 
CH3 groups make an angle which is not a multiple of rc/3; point group D3. 2nd row, left: 
H2C-CH2, point group D2h; centre and right: as in the 1st row centre, but the CH3 groups 
make an angle of rc /3, i. e. the hydrogen atoms of one methyl group fit in the gaps between 
hydrogens of the other group 
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Cnv : Molecules with a rotational axis and n mirror plane(s), all of which contain 
the rotational axis. The mirror plane is "vertical", since it contains the axis of 
rotation; it is denoted as av. In the case n > 2, the symmetry operation Cn 
creates additional equivalent, vertical mirror planes. The symmetry operations 
of the point group Cnv are the rotations about the n-fold axis of rotation and the 
n reflections in the mirror planes. If n is an even integer, a distinction is made 
between two different classes of mirror planes: every second mirror plane is 
denoted as av, while the planes between are called ad (for dihedral). Examples: 
H2CCl2 (C2v), NH3 (C3v). The group Coov contains linear molecules without 
a mirror plane perpendicular to the molecular axis (for example OCS); the 
symmetry operations are: infinitely many rotations about this axis, and just as 
many reflections in planes containing the molecular axis. 

Dn: Molecules with an n-fold rotational axis (Cn , n :::: 2) and a twofold rotational 
axis perpendicular to the principal axis. An example of D3 is H3C - CH3, if 
the CH3 groups are staggered relative to each other by an angle which must 
not be a multiple of :rr 13. 

Dnh: This point group contains, in addition to the symmetry elements of the point 
group Dn , a plane ah perpendicular to the principal axis (i. e. horizontal). Com­
bining the rotation operations of the rotation group Dn with the reflections ah 
yields n improper rotations Sn (Sn = ahCn) and n reflections av (av = C2ah) 
in addition to the operations of Dn. If n is even, the n mirror planes are divided 
into nl2 av planes (containing a C2 axis perpendicular to the principal axis) 
and nl2 ad planes (containing the angle bisectors between two C2 axes per­
pendicular to the principal axis). Here, when n is even, a centre of inversion 
symmetry is again present, due to S2 = i. Furthermore, linear molecules with 
a symmetry centre (Dooh) should be mentioned here. 

Dnd: This point group contains, in addition to the symmetry operations of the 
group Dn , n reflections ad in planes containing the Cn axis and bisecting 
the angles between two neighbouring C2 axes. The combination C2ad = 
anC2n = S2n(C2 - Cn) produces n additional improper rotations S~n (k = 
1, 3, ... ,2n - 1). This point group has a centre of inversion symmetry when 
n is an odd number. An example for the point group D3d is H3C - CH3, when 
the H atoms of the two CH3 groups are offset into the gaps of the opposing 
group. 

We now consider molecules which have more than one symmetry axis of more 
than twofold symmetry. The most important of these point groups are those which 
are derived from the equilateral tetrahedron and the regular octahedron (Fig. 6.8). 
Their pure rotation groups - that is the groups of operations which consist only of 
rotations about symmetry axes - are denoted by T and o. The symmetry group of 
the regular octahedron is at the same time that of a cube, since the latter has the 
same symmetry elements. In addition, a regular octahedron can be inscribed within 
a cube in such a manner that the sides and the vertices of the cube are equivalent with 
respect to the octahedron. 0 is thus the pure rotation group of a cube. An equilateral 
tetrahedron can also be inscribed within a cube. The vertices of the cube are now, 
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Fig. 6.8. Upper part: An equilateral tetrahedron inscribed 
in a cube; Lower part: A regular octahedron in a cube 

however, no longer equivalent (four of the cube's vertices are now also vertices of 
the tetrahedron). The equilateral tetrahedron thus has a lower symmetry than that of 
a cube; T must be a subgroup of o. Figure 6.9 shows the axes of rotation belonging 
to the groups T and o. 

Fig. 6.9. Examples of the rotational axes of the equilat­
eral tetrahedron (rotation group T) (Upper part) and of 
the regular ocathedron (rotation group 0) (Lower part) 
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T: The symmetry elements are the 4 threefold and the 3 twofold axes of the regular 
tetrahedron, which permit 12 rotational symmetry operations. The 4 C3 axes 
of this rotation group pass through the centroid and one vertex each of the 
tetrahedron. The C2 axes pass through the midpoints of opposite edges of the 
tetrahedron. 

0: The 3 fourfold, the 4 threefold, and the 6 twofold rotational axes form the 
symmetry elements of the rotation group of the regular octahedron and allow 
24 rotational symmetry operations. The C4 axes pass through opposite vertices, 
the C3 axes through the centroids of opposite faces, and the C2 axes through 
the midpoints of opposite edges of the octahedron. 

Td: The full symmetry group of the equilateral tetrahedron consists of the rotational 
elements of the group T as well as 6 reflections in the ad mirror plane and 
6 fourfold axes of improper rotation, S4. The molecules CH4, P4, CCI4, and 
a number of complex ions with tetrahedral symmetry belong to this point group. 
Oh: Adding all 9 mirror planes of the cube to the pure rotation group 0, we ob­
tain the important group Oh. Examples of this symmetry are the molecule SF6, 
the ion (PtCI6)2-, and numerous octahedral coordination compounds. The mir­
ror planes 3ah and 6ad which belong to the group Oh give rise to the additional 
symmetry operations 6S4 , 8S6, and i. Finally, we also mention the icosahedral 
groups, which are currently relevant due to the interest in C60. 

6.3 The Effect of Symmetry Operations on Wavefunctions 

In Sect. 5.2, we showed using the example of benzene how a rotation of the coordinate 
system causes a transformation of the wavefunctions. We now want to expand on 
what we learned there in two ways: 

1. We generalise to the case of arbitrary symmetry operations, not just rotations. 
2. The wavefunctions may refer not only to a single electron, but to several. 

In order to study the effects of symmetry operations on wavefunctions, let us 
assume that the set of mutually degenerate wavefunctions 

(6.1) 

all belong to a particular energy eigenvalue of a SchrOdinger equation. 
We first consider just one single symmetry operation, which we denote by A. 

Since the Hamiltonian is supposed to be invariant with respect to the transforma­
tion A, it must commute with A. However, this means that not only Iftl, but also 
A applied to 1ft! is an eigenfunction of the SchrOdinger equation belonging to the 
same energy as the set (6.1) [compare (5.29)-(5.32)]. Since (6.1) were supposed to 
be the only wavefunctions belonging to this energy, it must necessarily be possible 
to represent A 1ft! as a linear combination of these wavefunctions, having the form: 

M 

A 1ft! = L aim Iftm . (6.2) 
m=1 
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The coefficients aIm in this equation are constants, while the wavefunctions naturally 
depend upon the electronic coordinates. A relation of the form (6.2) holds not only 
for tJtl , but also for any wavefunction in the set (6.1), so that we obtain 

M 

AtJtj = LajmtJtm. (6.3) 
m=1 

Here, the coefficients a jm depend on the one hand on the index of the wavefunction 
which occurs on the left, but on the other hand also on the indices of the wavefunctions 
tJtm on the right. In this sense, we can say that the effect of the operator A on tJt 
corresponds to the multiplication of the vector (6.1), which is then to be written as 
a column vector, by a matrix [ajm]: 

(6.4) 

The identity operation, which leaves the vector (6.1) unchanged, is denoted by E. 
Let us now see what happens if we let first the operator A and then the operator B 

act on tJtj . We thus investigate the effect of the product BA when it is applied to the 
wavefunction tJtj , whereby in analogy to (6.3) we may assume that 

M 

BtJtj = LbjmtJtm (6.5) 
m=1 

holds. 
We first insert the right side of (6.3) into BA tJtj = B(A tJtj ), obtaining 

BA tJtj = B(A tJtj ) = B (t,ajmtJtm) . (6.6) 

However, since B has nothing to do with the coefficients, but rather acts only on the 
wavefunction tJt which follows them, we can write for the right-hand side of (6.6): 

(6.7) 

and then use (6.5): 

M M 

Lajm LbmltJtl . (6.8) 
m=1 1=1 

The two summations over I and m can be exchanged, so that we finally obtain instead 
of (6.6) the following equation: 

BA tJtj = t (t, ajmbm) tJtl . (6.9) 

'-..,-' 

Cj/ 
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Application of the product BA to IPj thus yields again a linear combination of the 
fJ/j, with however new coefficients C jl. We can therefore associate a matrix C with 
the operator product BA, 

(6.10) 

where according to (6.9), the coefficients cjl are related to the coefficients ajm and 
bml through the equation 

M 

cjl = Lajmbml . 
m=1 

(6.11) 

This is simply the product rule for the matrices A' = [ajm], B' = [bml]andC' = [Cjl], 

with A' B' = C'. We thus recognise the fundamental concept that the operators 
A, B, ... can be represented by matrices, including the rule for matrix multiplication, 
but with the operator product BA corresponding to the matrix product A' B', that is 
in reversed order. 

Let us now see what the inverse of A does. We first write the expression 

(6.12) 

and use as a trial function for A -1fJ/m on the right-hand side of (6.12) the following 
expression: 

M 

A-1IJFm(r) = LlmllJFl. 

1=1 

Going through the following straightforward steps 

M 

fJ/j(r) = LajmA-1fJ/m 

m=l 
M M 

= L ajm L ImlfJ/1 
m=1 1=1 

M M 

= L LajmlmlfJ/1 
m=1 1=1 

we obtain 

M 

Lajmlml = 8jl ; 

m=1 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

or, if we collect ajm and Iml into matrices A' = [ajm] and F' = [fmzl, we get the 
equivalent matrix equation 



6.4 Similarity Transformations and Reduction of Matrices 119 

A' F' = E' . (6.18) 

However, this means that F' is none other than the inverse of the matrix A': 

F' = A,-1 . (6.19) 

The operator A -1 is thus associated to the matrix A,-I. 
Let us summarise: as we saw in Sect. 6.1, the symmetry operations which we 

denoted as A, B, C, ... form a group. Each application of a group element A, ... 
to the set of wavefunctions is associated with a matrix A', ... , which transforms the 
wavefunctions among themselves. The product of two group elements corresponds 
to a matrix product according to the rule 

BA ~ A'B', (6.20) 

whereby one has to take care that the order of the corresponding matrices is reversed 
relative to that of the operators in the product. The inverse of the operation A, i. e. 
A-I, corresponds to the inverse of the matrix A', i. e. A,-1 . Furthermore, the identity 
operation E naturally corresponds to the unit matrix E'. Finally, as we know from 
linear algebra, matrices obey an associative law, e. g. (A' B')C' = A' (B' C'). We thus 
can see that all of the properties of the original group of operations A, B, C are to 
be found in the corresponding matrices A', B', C', .... The matrices A', B', C', ... 
themselves form a group; this group of matrices is referred to as a representation of 
the (abstract) group with the elements A, B, C, .... 

6.4 Similarity Transformations and Reduction of Matrices 

We now recall a bit of knowledge which we acquired when considering rotations: we 
saw that a real representation of the wavefunctions exists such that rotations transform 
the p-functions into linear combinations [cf. (5.14)], and a complex representation, 
where rotations simply cause the wavefunctions to be multiplied by a constant factor 
[cf. (5.19)]. This leads us to the general question as to whether we cannot find a basis 
set of wavefunctions in the present more complicated case which keeps the number 
of wavefunctions involved in a transformation A to a minimum. This question will 
lead us into a few basic mathematical considerations. As the reader will soon see, 
we are looking for a similarity transformation. We consider the matrix C' = (Ckj), 
which possesses an inverse and whose indices k and j run just through the set of 
indices I, ... , M of the wavefunctions. We introduce a new set of wavefunctions Xk 

according to 

M 

Xk = L(C'-1h j 'Jlj . 
j=1 

The inversion of (6.21) is naturally 

(6.21) 
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M 

tf/j = L CjkXk . (6.22) 
k=1 

We now apply the symmetry operation A to Xb leading in a simple manner to 

M M M 

AXk = L(C'-lhIA tf/I = L(C'-lhl L almtf/m . (6.23) 
1=1 1=1 m=1 

Now, we express tf/m on the right-hand side of (6.23) again in terms of Xk according 
to (6.22): 

M M M 

AXk = L(C'-lhl Lalm LCmjXj . (6.24) 
1=1 m=1 j=1 

Rearranging the sums leads to 

AX. ~ t,[t,(CH)H ~al,c'j] Xj . (6.25) 

bkj 

In this equation, we have introduced the abbreviation bkj, defined by: 

M M 

bkj = L(C'-lhl LalmCmj . (6.26) 
1=1 m=! 

The reader who is familiar with matrix algebra will recognise that the right-hand 
side of (6.26) contains simply a product of matrices. If we collect the elements of bkj 

into a matrix k, we can rewrite (6.26) in the form 

k = C'- I A'C' . (6.27) 

In the language of matrix algebra, the matrix k is obtained from A' by means of 
a similarity transformation. The group properties remain unaffected by this trans­
formation: if we multiply out the individual elements in (6.27), the products from 
C'- I C' just yield unity. Now from mathematics, we know that a similarity trans­
formation can change a matrix A' into a simpler form, in which only the elements 
along the main diagonal and nearby, in the shape of square arrays, are nonzero; 
cf. Fig. 6.10. This form is called the "Jordan normal form" or "block form". If the 
powers of A' remain finite, i. e. if Am, n -+ 00 are all finite, then A' can even be 
diagonalised. One could be tempted to believe that we can always take the matrix A' 
to be diagonal. 

Unfortunately, a difficulty arises at this point, when namely the general corre­
spondence 
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A -+ C'-l A'C' = A' 
B -+ C,- 1 B' C' = iJ' 

Fig. 6.10. The typical structure of a reduced matrix (block 
form). Outside the boxes, all the matrix elements are zero 

(6.28) 

holds. Then, in the case of group elements which do not commute, it can happen that 
we cannot choose C' in such a way that all the matrices k, iJl, ... are simultaneously 
diagonalised. 

Now there is an important branch of mathematics dealing with the theory of group 
representations, in which it is shown that a minimal representation of A', B', ... can 
be obtained by applying the similarity transformation (6.28). What does such a rep­
resentation mean? It means that one can choose the basis set of the wavefunctions Xk 
in such a way that on application of all the symmetry operations of the group, only 
a certain subset of the Xk are transformed into each other. In other words, the basis 
of the Xk can be decomposed into components. These components naturally have, in 
general, a much simpler behaviour under transformations than the original tjlj. And 
now comes what is perhaps the most wonderful idea to arise out of the combination 
of group theory with quantum mechanics: we had assumed a certain basis set tjlj or 
Xk in our considerations; but the transformation properties of the Xk do not depend at 
all any more on the concrete quantum-mechanical problem at hand, but rather only 
on the underlying symmetry group. 

Thus, instead of finding the wavefunctions directly as solutions to the Schr6dinger 
equation, which can be very complicated, it will offen suffice to use group theory to 
determine what transformation behaviour the basis vectors have in their representa­
tions. We can then require this symmetry behaviour of the wavefunctions, just as we 
did in the case of ethene or of benzene (see Chap. 5). In those cases, we could deter­
mine the coefficients for the construction of 1{f from atomic wavefunctions uniquely. 
In the general case, this will not always be possible, but in any event, the number 
of unknown coefficients can be drastically reduced by using the group properties. 
The transformation behaviour of basis functions under particular symmetry groups 
is tabulated in the literature. Treating this topic in detail here would by far overreach 
the framework of this book; it would become an encyclopedic listing, which would 
not permit any useful physical insights. For this reason, we shall treat only a few 
such symmetry properties and their notation as examples. 
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6.5 Fundamentals of the Theory of Group Representations 

6.5.1 The Concept of the Class 

For later application, let us learn some fundamental concepts from the theory of 
group representations. The number of elements in a group is called its order and is 
often denoted by the letter h. Thus, h = 4 for the group C2v and h = 6 for C3v. 
Two elements A, B of a group are called conjugate to one another if there exists an 
element C such that 

(6.29) 

holds. If we represent the group operations by matrices, then (6.29) simply denotes 
a similarity transformation; one thus speaks of a similarity transformation also in 
the case of abstract group relations such as (6.29). If we multiply (6.29) from the 
left by C and from the right by C-1, we obtain 

A = CBC- 1 , (6.30) 

which means just that the conjugate relationship is reciprocal. A class is then defined 
as the set of all the elements of the group which are conjugate to each other. In order 
to find out which elements belong to the same class, we have to investigate the 
similarity transformations. Taking as an example the group C3v, we first choose the 
element E and go through all the transformations C, obtaining 

E-1EE = E, 

C)lEC3 = E, 

(6.31) 

(6.32) 

and corresponding relations, in each of which E appears on the right-hand side, since 
E multiplied by any element of the group yields that same element. It follows from 
these relations that E is in a class by itself. Taking as a second example o"v, we look 
for elements in the same class as O"v. We take 

(6.33) 

which follows immediately from the properties of E. In order to verify the next 
example in the equation 

(6.34) 

we look at the group table of the group C3v (Table 6.2) and immediately obtain the 
result in the left-hand side of the equations (6.34). Since cj = E, where we can 
write the left side as C3C~, we find C)l = C~. Finally, we look again at the group 
table, and can verify the last equation in (6.34). In a similar manner, we obtain the 
results 
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( 2) -1 ( 2) , C3 U vC3 = U v ' 

U;1 (UvUv ) = U v , 

,-1 , " 
U v UvUv = U v ' 

,,-1 " , 
U v UvUv = U v . 

123 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

Clearly, the elements uv , u~ and u~ belong to the same class. If we begin with u~ 
instead of uv , we can arrive at U v by inverting C3 and from there to the other class 
member u~. One can easily convince oneself that such operations never lead outside 
the class itself. In a similar way, we can show that C3 and cj belong to a class. The 
order of this class is the number of its elements; the class containing uv , u~ and u~ 
thus has the order 3, while the order of the class to which C3 and cj belong is 2. 

6.5.2 The Character of a Representation 

A central tool in the theory of group representations is the "character". As we have 
seen, each element of a group can be associated with a matrix. The term character 
denotes the trace, or in other words the sum of the diagonal elements, of this matrix. 

For the matrix 

... ] 

... , 
akk 

we thus have 

k 

Character of A' = Trace(A') = L all . 

1=1 

Fig. 6.11. N2H2 

(6.39) 

(6.40) 

Let us see how the character of a representation, which initially may very well be 
reducible, can be determined. We take as an example the N2H2 molecule, whose 
geometric structure is shown in Fig. 6.11. One can readily convince oneself that 
the symmetry operations of the group C2h leave this molecule invariant. These are 
the following operations (cf. Fig. 6.12): the identity operation E, rotation by 1800 

about an axis which is perpendicular to the plane of the figure and passes through 
the centre of gravity of the molecule, reflection in a plane perpendicular to this axis 
and containing the atoms of the molecule, and finally inversion through the centre 
of gravity, which is simultaneously a centre of inversion symmetry. The group table 
is given in Table 6.3. 
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U 

cJ ~4= ~4 
1 1 d 

u u 

1~4 
1 

C2 = 4;-L( 

u 

1~4 = 4~' 
d 

Fig. 6.12. The effect of the symmetry operations a, C2, and i on the N2H2 molecule. The 
arrows marked 'u' and 'd' refer to 'up' and 'down' 

Table 6.3. Group multiplication table 

C2h E C2 a 

E E C2 a 
C2 C2 E a 
a a E C2 

a C2 E 

We now seek a particular representation by considering the lengths of the N - H 
bonds in the various positions of the molecule, denoting them as ,1Rl and ,1R2 
(compare Fig. 6.13). This example also makes it clear that the objects which are 
operated upon by the symmetry operations may be not only wavefunctions [cf. (6.1)], 
but also geometric forms. The identity operation E changes nothing in the molecule, 
so that we immediately obtain the representation 

E (,1R 1) = (1 0) (,1R1) • 
,1R2 ° I ,1R2 

(6.41) 

On rotation about an axis perpendicular to the plane of the figure through the midpoint 
of the N-N bond, ,1R1 is transformed to ,1R2 and ,1R2 to ,1Rl. We thus obtain 

Fig. 6.13. The distances LlRl and LlR2 in N2H2 
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C2 (~~~) = (~~) (~~~) . (6.42) 

The molecule is invariant under a reflection in a plane which is identical to the plane 
of Fig. 6.13. For this operation, we find 

C1h (~~~) = G n (~~~) (6.43) 

Finally we find for the inversion: 

i (~~~) = (~~) (~~~) (6.44) 

The matrices which occur in (6.41)-(6.44) are those special ones which we were 
seeking, for which we can immediately give the sum of the diagonal elements as the 
respective characters. We thus arrive at Table 6.4. 

Table 6.4. 

C2h Character 

E = G~) 2 

C2 = (~~) 0 

C1h = G~) 2 

= (~~) 0 

At the left in the first column are the symmetry operations, followed by their matrix repre­
sentations; in the second column, the corresponding characters are listed 

As we shall show later, the representation given by the matrices in Table 6.4 
is reducible. Mathematically, it is possible to find the irreducible representations 
systematically and to describe them in character tables. It is found that not only one 
set of matrices can represent a given group of symmetry operations, but rather that 
the representation can be realised in various ways, i. e. using various sets of matrices. 
These different possibilities for representations are formally distinguished by using 
indexed Greek letters, e. g. n, r 2, etc. We thus obtain the following character table 
(Table 6.5): 

In the upper left -hand comer of this table is the symbol for the symmetry group, 
in the present case C2h. To the right in the same row are the symbols for the 
group operations, i. e. the identity operation E, rotation about a twofold symmetry 
axis C2, reflection in a horizontal plane C1h, and inversion i. The next row contains 
the characters belonging to the representation r[ and corresponding to the respective 
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Table 6.5. Character table for CZh 

CZh E Cz ah 

Prelim. Name 

n 1 
rz -1 -1 
r3 -1 -1 
r4 -1 -1 

group elements. The following rows contain the characters for the representations 
r2, .... 

Now, how large is the number of irreducible representations of a group? It is, as 
can be proven mathematically, equal to the number of classes in the group. If we 
choose a particular irreducible representation, then the character of all the operations 
is the same within the same class. This can be readily understood, since the elements 
within a class differ only by similarity transformations from one another; however, 
the trace of a matrix is unchanged by a similarity transformation, i. e. the characters 
remain the same. As can be shown for the group C2h, each of the 4 elements forms 
a class by itself; there are thus 4 classes, each of which contains a single element. 

Table 6.6. Character table for C3v 

E 

1 
1 
2 -1 

C2 
3 

1 
1 

-1 

av 

-1 
0 

a' v a"v 

1 1 
-1 -1 

0 0 

Let us consider a further example, the character table for the point group C3v . 

It is given in Table 6.6. As we saw above, C3 and C~ form a class by themselves, 
and likewise av , a~, and a" v' This naturally means, considering what was said above 
about characters and classes, that the characters of C~ for all representations r 1, r 2, 

r3 are the same as those of C3, as we can see from the character Table 6.6. The same 
is true of av , a~, and a" v' For this reason, Table 6.6 contains redundant information; 
it can be condensed into the more compact form of Table 6.7. 

Table 6.7. Character table for C3v 

C3v E 2C3 3av 

rl 
rz -1 
r3 2 -1 0 
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In this latter table, the numbers 2 and 3 in front of C3 and (Tv indicate how many 
operations there are in the respective class. We note that E and i are always each in 
a class by themselves. 

At this point, we need an additional concept, the dimension of an irreducible 
representation. This is the dimensionality of the matrices in the representation. Since 
the character of E is just the number of elements in the main diagonal and thus is 
equal to the dimension of the corresponding irreducible representation, we can see 
that the character of E gives the dimension of the representation. In the literature, 
following a convention introduced by Mullikan, somewhat different character tables 
are often used, as shown in the following example (Table 6.8) for the group C3v. 

Table 6.8. Complete character table for C3v 

C3v E 2C3 3av Operation 

Al z x z + yZ, zz 

Az -1 Rz 
E 2 -1 0 (x, y)(Rx , Ry) (xz - yZ, xy)(xz, yz) 

The first row begins with C3v, and all of the group operations are familiar, as is 
the block of characters which is listed below them; what is new is the notation AI, 
Az, E for the irreducible representations. The E which appears here as a symbol for 
an irreducible representation is not to be confused with the E which occurs in the 
first row and denotes a symmetry operation of the group. The letters A and E denote 
a particular behaviour with respect to symmetry, which we will discuss below. The 
fifth column, containing z, Rz , indicates which coordinates [here (z) or (Rz )] exhibit 
the particular symmetry behaviour denoted by the A I, ... beginning the same row. It 
is thus made clear that, for example, the z coordinate in a Cartesian coordinate system 
is invariant with respect to the operations of A I, i. e. the matrix of the transformation 
reduces to aI, which is then identical to the character of the representation of the 
particular symmetry operation. In the last row, x and y thus serve as a basis. Finally, 
in the last column of Table 6.8, those basis elements are given which can be formed 
from the squares or from quadratic or bilinear expressions using x, y and z. 

6.5.3 The Notation for Irreducible Representations 

Let us now explain the reason for the change of notation from r to AI, Az, etc. The 
purpose of this change is to show by means of the symbol for a particular representa­
tion whether it is one- or multidimensional and which special symmetry properties it 
has. The letters A and B refer to one-dimensional irreducible representations, with A 
reserved for representations which are symmetric with respect to rotations about the 
axis of highest symmetry and B for those which are antisymmetric. The character of 
the symmetric representation is + 1 and that of the anti symmetric representation is 
-1. The letters E and T (or r) denote two- or three- dimensional representations. 
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The indices g and u are added to A or B when the representation is even (g) or odd (u) 
with respect to inversion. A prime or double prime is added to the symbol to denote 
symmetric or anti symmetric behaviour with respect to reflection in the horizontal 
mirror plane. The indices 1 and 2 are added to A or B when the corresponding 
representation is symmetric (1) or antisymmetric (2) with respect to the C axis, with 
the C2 axis being perpendicular to the principal axis, or, if C2 is not present, to 
a vertical mirror plane. The indices 1 and 2 on E and F are complicated and will not 
be discussed here. This notation is summarised in Table 6.9. 

Table 6.9. Notation for irreducible representations 

Dimension of the Characters under the operation Symbols 

representation E Cn O'h CZ or O'v 

A 
-1 B 

2 2 E 
3 3 T 

Ag Bg Eg Tg 
-1 Au Bu Eu Tu 

A' B' 
-1 A" B" 

Al BI 
-1 A2B2 

* C2-axis perpendicular to the principal axis 

In order to give the reader an example of the use of this new notation Ag, etc., 
we give here the character table for the group C2h (Table 6.10): 

Table 6.10. Character table for C2h 

C2h E C2 O'h 

Ag Rz x 2,y2,Z2,xy 

Bg -1 1 -1 Rx,Ry xz,yz 

Au -1 -1 z 

Bu -1 -1 x,y 

6.5.4 The Reduction of a Representation 

An important question is naturally that of how we can reduce or decompose a repre­
sentation and how we know which irreducible representations are contained in it. The 
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characters help us to answer this question. If, for example, we consider the matrix A 
shown in Fig. 6.10, we can on the one hand find its character by taking the sum of 
its diagonal elements. On the other hand, this matrix contains the matrices of the 
individual irreducible representations, which have their own group characters, and 
we can see at once that the character of the reducible representation must be equal to 
the sum of the characters of the irreducible representations which it contains. This 
is naturally true of each element in the group to which the matrices correspond. 

Let us consider the characters which occur in the example of the symmetry 
operations relating to the lengths ,1R1, ,1R2 in the N2H2 molecule. These characters, 
according to Table 6.4, are given by 2,0,0, and 2. The question is now: How can we 
relate these characters to those of the irreducible representations which are given in 
Table 6.5? This means that for each group operation, E, C2, i, and O'h, a suitable sum 
of the characters of the representations must be found. We thus arrive at Table 6.11, 
i. e. precisely the desired combination (2,0,0,2). 

As is shown by group theory, and as we shall demonstrate in the following, the 
decomposition is unique. In addition to finding by trial and error which combinations 
of the individual irreducible representations lead to the given reducible representa­
tion, one can also proceed systematically. As we just pointed out, the character of the 
reducible representations for each group element is equal to the sum of the characters 
of the irreducible representations contained in them. This can be expressed by the 
following formula: 

(6.45) 

Here, X is the character of the in general reducible representation which corresponds 
to the group operation R, where R can be anyone of the symmetry operations. On 
the right-hand side, a sum is taken over the various irreducible representations which 
are distinguished by an index i, whereby ni is the number of equivalent irreducible 
representations, i. e. the number of equivalent blocks in the matrix (see Fig. 6.14). 

Equation (6.45) has a certain formal similarity to relations from quantum me­
chanics, where for example an arbitrary wavefunction 1/1 can be decomposed into 
a linear combination of wavefunctions 1/Ii. In fact, an orthogonality relation of the 
form 
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A(R} Fig. 6.14. An example of the reduction of a matrix with 
two irreducible representations 

A(R} 
B(R} 

* LXj (R-l) Xi(R) = 8ij 
R 

(6.46) 

holds here also; the sum is to be carried out over all of the symmetry operations R. 
Here, Xj with the argument R-1 has now taken the place ofthe complex conjugate 
of the wavefunction, 1Jrj, familiar from quantum mechanics. For the derivation of 
relation (6.46) we refer to the problems at the end of this chapter. In complete analogy 
to quantum mechanics, employing (6.45) and (6.46), we can however show how often 
an irreducible representation i is contained in the reducible representation. To this 
end, we multiply (6.45) by Xi (R- 1) and sum over the individual group elements. We 
thus obtain: 

(6.47) 

We saw above that the characters of the irreducible representations are the same 
when they refer to the different elements of a group belonging to the same class. For 
this reason, it is sufficient to sum over only those elements which belong to different 
classes, taking into account how many elements are in each class. We thus arrive at 
the formula 

(6.48) 

Here, the summation is to be carried out over the classes. The meaning of the various 
quantities in (6.48) is summarised in Table 6.12. 

We again consider as an example the group C2h (Table 6.10) and look at the 
representation r 1, which has the characters 2, 0, 0, 2. The order of the group is 
h = 4. Applying formula (6.48), we obtain the following relations: 

nAg = i(l ·2· 1+1·0· 1+1·0· 1 + 1·2·1) = 1 (6.49) 

E C2 

and 

n Bg = i {I . 2 . 1 + 1 . 0 . (- 1) + 1 . 0 . 1 + [1 . 2 . (-I)]} = 0 , (6.50) 

as can readily be seen. In a corresponding manner, we find 
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nAu = 0 (6.51) 

nBu = 1 . (6.52) 

We thus obtain the result that the representation r1 can be decomposed into the 
representations Ag and Bu. We can take an additional important step: our goal is, 
finally, to construct electronic wavefunctions (or molecular vibrational functions) 
which correspond to irreducible representations. These then give the minimal set of 
functions which are mutually degenerate, i. e. which belong to the same energy. 

Table 6.12. The meaning of the quantities occurring in (6.48) 

ni: Number of times that the i-th irreducible repre-
sentation occurs in the reducible representation 

h: Order of the group 

Q: Class of the group 

N: Number of operations in the class Q 

R: Group operation 

X(R): Character of R in the reducible representation 

Xi(R): Character of R in the irreducible representation 

6.6 Summary 

The method which we have applied in this chapter can be summarised as follows: 
Many molecules exhibit symmetries. Under a symmetry operation, the molecule 

is left unchanged. The symmetry operations form a group, in which the product of 
two operations is given by the group table. If the symmetry operations are applied 
to a set of mutually degenerate wavefunctions, these functions undergo a linear 
transformation among themselves. The transformation coefficients form a matrix, 
and the group of the symmetry operations can be represented by matrices. By 
a suitable choice of the basis of the wavefunctions, the matrices can be brought into 
a simple (block) form: this corresponds to decomposing the representation into its 
irreducible representations. The characters (traces of each matrix) are a valuable aid 
to finding the irreducible representations. 

If we wish to apply this method to the exact (or more often, approximate) elec­
tronic wavefunctions for a particular molecule, the following essentials are sufficient: 
we need calculate only those wavefunctions which belong to a particular irreducible 
representation of the symmetry group of the molecule under consideration. Then, 
e. g. in the LeAO method, we can determine exactly the unknown coefficients or at 
least reduce their number drastically. We shall demonstrate this using the example 
of the H20 molecule. 
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6.7 An Example: The H20 Molecule 

In this section, we want to derive the one-electron wavefunctions of the H20 
molecule. We use the molecular orbital method, where the orbitals 1/1 are repre­
sented as linear combinations of atomic wavefunctions ¢ j : 

(6.53) 

The coefficients C j are to be determined with the aid of the variational method which 
we have already used in Sect. 5.3; we remind the reader of the formula 

J 1/1* H1/IdV . , 
J 1/I*1/IdV = Mm .. (6.54) 

If we insert (6.53) into (6.54) and assume the atomic orbitals to be practically 
orthogonal to each other, we obtain a result with which we are already familiar: 

L(Hij - Ea8;j) cja) = 0 . 
j 

(6.55) 

As we know, this is a set of homogeneous linear equations, which has a nontrivial 
solution only when the determinant of the coefficients is zero. This condition fixes 
a set of eigenvalues which are identical to the energy values E, as well as the 
corresponding wavefunctions. 

We now make use of the basic ideas of Sect. 5.2, where we saw that the coeffi­
cients c j could be entirely or partially determined by using group-theoretical con­
siderations, without the need to solve the generally complicated equations (6.55). 
As a concrete example, we consider the water molecule, H20. Our goal is to deter­
mine the molecular orbitals 1/1 in such a way that they correspond to the irreducible 
representations of the symmetry operations of the molecule, in this case H20. To 
this end, we undertake the following steps: 

1. We determine the symmetry group of the molecule. 
2. We choose the atomic orbitals from which the molecular orbitals are to be 

constructed according to (6.53). 
3. The atomic orbitals are used as a basis set, from which a representation of the 

symmetry group is generated. The details of this process will become clear in 
the following. 

4. The representation obtained in step 3) is then decomposed into its irreducible 
representations. We thus obtain the possible linear combinations of atomic or­
bitals which can be used to form the molecular orbitals. 

The H20 molecule is shown in Fig. 6.15, which also indicates its various sym­
metry elements. The molecule clearly may be placed into a Cartesian coordinate 
system in such a way that the H atoms lie in the plane spanned by the x- and z-axes. 
The xz-plane is a symmetry plane (mirror plane), on which the reflection symme­
try operation (J~ can be carried out. The yz-plane, perpendicular to the xz-plane, is 
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Fig. 6.15. H20 with its symmetry elements 

x 

likewise a plane of symmetry on which the operation denoted by av is performed. 
An additional symmetry element is the z-axis, around which a twofold rotation, 
transforming the H atoms into one another, can be carried out. All together, these 
symmetry operations yield the symmetry group C2v. Its mUltiplication table is given 
as Table 6.13.· 

C2v E C2 crv cr' Table 6.13. Group multiplication table for C2v 
v 

E E C2 crv cr' v 
C2 C2 E cr' v crv 

crv crv cr' v E C2 
cr' v cr' v crv C2 E 

The following properties can readily be derived from this multiplication table: 
the group is a commutative group (Abelian group), i. e. each pair of elements A 
and B obeys a multiplication rule AB = BA. From this property it follows im­
mediately that each element is in a class by itself, and since there are 4 elements, 
there must be 4 classes. These 4 classes correspond to 4 irreducible representations 
which are all inequivalent. It can then be seen that each irreducible representation 
is one dimensional. The corresponding character table, which can be derived using 
mathematical methods, is shown by Table 6.14. 

Table 6.14. Character table for C2v 

C2v E C2 crv cr' v 

Al Z x2,y2,z 

A2 -1 -1 Rz xy 
BI -1 1 -1 x, Ry XZ 

B2 -1 -1 y, Rx yz 
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z 

~~ ' 
z z 

y 

x ---+-~x 

z 
z y 

x --,=",,j-'=-~ x 

Fig. 6.16. Basis wavefunctions for H20 
(schematic drawing). Upper row: the 
Is functions from the two hydrogen 
atoms 1 and 2; middle and lower rows: 
the 2s and 2p functions of the oxygen 
atom 

We now have to consider which atomic orbitals we will choose as a basis. Since 
the hydrogen atoms are in their ground states before forming chemical bonds to the 
oxygen, and since it requires a considerable excitation energy to raise them to the 
first excited state with principal quantum number n = 2, it seems reasonable to use 
Is orbitals for the wavefunctions which are contributed by the hydrogen atoms. In 
the case of the oxygen atom, the Is functions form a closed shell, which practically 
does not participate in bond formation. For this reason, we use the wavefunctions 
of the next shell; these are the 2s and 2p orbitals. We then have the following 
wavefunctions as a basis set of atomic orbitals ¢{ s\, sz, 2s, 2px, 2py, and 2pz 
(compare Fig. 6.16). (More precisely, we should write here e. g. ¢s! instead of s\, 

etc.) We now wish to decompose the matrices ofthe representation according to the 
basis set of these six wavefunctions. As the calculation shows, however, it suffices to 
consider separately the wavefunctions s\ and sz, which come from the two hydrogen 
atoms, and those which come from the oxygen atom, i. e. 2s, 2px, 2py, and 2pz. It 
may thus be shown that the matrices of the representation can be decomposed into 
blocks corresponding to Hand 0 (cf. Fig. 6.17). 

Let us look at the behaviour of the wavefunctions of the hydrogen atoms more 
closely. They form a basis Sj, Sz. These functions, as we have already seen in the case 
of the hydrogen molecule, are localised near the protons and otherwise correspond 
to the s functions of hydrogen (compare Sect. 4.3). We can examine just how these 
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Fig. 6.17. Matrix representation for the basis set (6.16). The 
functions belonging to H and to 0 are each transformed 
among themselves 

functions transform under the symmetry operations. For example, the operation E 
transforms SI and S2 into themselves. On reflection in the O"v plane, in contrast, the 
two hydrogen atoms exchange places and thus the two wavefunctions SI and S2 are 
transformed into one another. If we apply similar considerations to all the other 
symmetry operations, we readily obtain the relations 

(6.56) 

from which the matrices of the reducible representation can be read off. Taking the 
traces of these matrices, we obtain the characters, which are collected in Table 6.15. 

C2v E C2 (J"v 

2H(ls) 2 0 0 
(J"' v 
2 

Table 6.15. The characters of the representation given in 
(6.56) 

As in the previous section, we decompose the reducible representation that occurs 
in (6.56) into irreducible representations; this can be done in two ways: one is to use 
the formula (6.47) with which we met previously, 

1 
n; = h L X(R)X;(R) ; 

R 

(6.57) 

and the other is by means of direct comparison with the character table. We shall 
leave both methods as an exercise to the reader, since the procedure was covered in 
detail in the previous section, and simply give the results in Table 6.16. 

It thus becomes clear that the reducible representation in (6.56) decomposes into 
the irreducible representations Al and B2 . 

We must now deal with the problem of how to transform the set of matrices 
belonging to a reducible representation explicitly into the set of matrices belonging 
to the irreducible representation. We recall that in Sect. 6.4 we found that a matrix 
could be transformed into block form by carrying out a similarity transformation. 
This, however, means simply transforming to a new basis. The transformation from 
the basis of the reducible representation to the basis of the irreducible representation 
is naturally a complicated problem in the general case; fortunately there exists 
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C2v E C2 a' 
Table 6.16. The characters of Al and B2 and their sums, 

av v which yield the characters of 2H(1s) 

Al 1 1 
B2 -1 -1 1 
2H(1s) = 2 0 0 2 
Al +B2 

a procedure for generating an irreducible representation from a given basis. For this 
purpose, a so-called projection operator Pi is used. Intuitively speaking, this operator 
projects the basis of the reducible representation onto a basis of the irreducible 
representation. The derivation of the following important formula will be treated in 
a problem and its solution at the end of this chapter; we therefore simply state it and 
show how it can be applied by giving an example. The formula is: 

1 L -1 A 

Pi = h R Xi(R )R. (6.58) 

Here, Pi is the projection operator, which projects the original basis, GD in the 

present case, onto a new basis belonging to the irreducible representation denoted 
by the index i. How this "works" we shall see directly. The symbol h again denotes 
the order of the group, R are the group operations, Xi is the character belonging 
to the i-th representation of the group operation R-1, and R is the (in general 
reducible) representation matrix which corresponds to the group operation R. Let 
us first consider the irreducible representation AI; the index i in (6.58) thus refers 
to "representation AI". For R we insert the operations E, C2, av and a~, we use the 
characters given in Table 6.14, and we denote the matrices belonging to E, C2, av, 
and a~ as E, (:2, av, and a~, respectively; then we obtain 

(6.59) 

If we now put the matrices given in (6.56) into this expression, we find 

i. e. 

(6.61) 

In a similar manner, for the irreducible representation B2 we obtain the result 

PB = - E - C2 - a + a =-1 [ A A 'J 1 ( 1 
2 4 v v 2-1 

-1) 1 . (6.62) 
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What do the results (6.61) or (6.62) mean in terms of the basis? To answer this 

question, we apply PAl to the original basis G~} this yields the result: 

1) (Sl) = ~ (Sl + S2) . 
1 S2 2 Sl + S2 

(6.63) 

No matter which wavefunction we start with, i. e. with Sl or with S2, we always 
obtain the projection onto a certain linear combination, namely Sl + S2. If, on the 
other hand, we apply PB2 , then the plus sign in (6.63) becomes a minus sign: 

( Sl) 1 ( 1 - 1) (Sl) 1 ( Sl - S2) 
PB2 S2 = 2 -1 1 S2 = 2 -Sl + S2 . 

(6.64) 

From this we can see that the basis wavefunctions for the irreducible representations 
A 1 and B2 are given by 

1 
1/tI = 2 (Sl + S2) , 

I 
Vr2 = 2(Sl - S2) . 

(6.65) 

B2 : 

One can, in addition, show that the projection operators belonging to A2 or Bl yield 
zero, i. e. (6.65) are in fact the basis functions for the irreducible representations 
belonging to the group C2v which are generated by the basis functions Sl and S2. 

The result (6.65) should naturally not be at all new or surprising to us: recalling the 
hydrogen molecule-ion, for which quite similar symmetry considerations hold, we 
remember that there, too, we found these two wavefunctions, the symmetric and the 
anti symmetric function. However, there it was accomplished without using group 
theory, but rather by solving directly the equations for the coefficients. 

We now tum to the somewhat more complicated case of the basis wavefunctions 
for the oxygen atom. Here, as we remember, the basis consists of the functions 2s, 
2px, 2py, and 2pz. We thus initially have a 4-dimensional reducible representation. 
Let us consider the effect of the symmetry operations individually; we again assume 
that the oxygen atom is located at the origin of a Cartesian coordinate system. 
Application of the identity operation E naturally yields the unit matrix. Considering 
the application of a rotation by 1800 about the z-axis, we must take into account 
the fact that such a rotation changes the signs of the functions Px and PY' while 
the S function and the pz function are left unchanged. A reflection through the 
av plane changes the sign of the py function, but leaves all the other wavefunctions 
unchanged. Using these facts, we can immediately write down the matrices of the 
representation. We summarise them in the formulas (6.66): 
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E (2~") COO) C') 0100 2px 
2py 0010 2py , 
2pz 0001 2pz 

C (2~") (' 0 0 0) C') = 
0-1 0 0 2px 

z 2py o 0 -10 2py 
2pz o 0 0 1 2pz 

(6.66) 

u (2~") (I 0 00) C') 0-1002px 
v 2py o 0 10 2py 

2pz o 0 01 2pz 

C') COO) C') 0-' 2px = 0 1 0 0 2px . 
v 2py 0 0 -1 0 2py 

2pz 00 0 1 2pz 

It is now an easy matter to set up the character table for the reducible representa­
tions given in (6.66) and, e. g. by trial and error, to find the irreducible representations 
contained in this reducible representation. Or we can use (6.57) as we did before, 
which can again be left as an exercise to the reader. The result is found to be the 
decomposition of the representation (6.66) into the representations 2A1 + B1 + Bz. 
Application of the projection operator (6.58) allows us to find the basis which be­
longs to each irreducible representation. We thus obtain the following schematic 
result: 

A1 : 2s, 2pz , 

Az: -, 

B1 :2py, 

Bz: 2px . 

(6.67) 

The empty space following Az indicates that there is no wavefunction which can be 
constructed from the original basis and which transforms according to the symmetry 
operations in the representation Az. 

Let us summarise our results concerning the new basis functions of the molecular 
orbitals using both the hydrogen and the oxygen wavefunctions; these are set out in 
Table 6.17. 

o Orbitals H Orbitals 

A12s,2pz 0/1 = !(SI + S2) 
Az 
B12py 
B2 2px 0/2 = !(S1 - S2) 

Table 6.17. The basis functions for the irreducible 
representations 
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Fig. 6.18. The 2py function of oxygen, which belongs to the repre­
sentation B1 

From the original 6 atomic orbitals, a basis of 6 new molecular orbitals has been 
constructed. 

What can we now expect from group theory, and what are its limitations? In 
Table 6.17, we have collected wavefunctions which have the same symmetry prop­
erties. Thus in the case of the irreducible representation BJ, only the wavefunction 
belonging to the state 2py has the corresponding symmetry properties (Fig. 6.18). 
In the case of the irreducible representation B2, the two wavefunctions 2px and 1/12 
have, in contrast, the same symmetry behaviour (Fig. 6.19). The advantage is now 
found in the fact that in choosing the wavefunctions which are to be used as basis 
functions in formula (6.53), we need consider only those functions belonging to the 
same irreducible representation. 

For example, for B 1 the entire molecular orbital Vr is reduced to the wavefunction 
which comes from the oxygen 2py state, i. e. Vr = ¢2py. This is quite clearly 
a non-bonding orbital. For the representation B2 , we must however use a linear 
combination of the wavefunctions 2px and Vr2, i. e. Vr = C1 (2px) +C2Vr2. Ifwe insert 

z z 

x + --------~--------x 

z 

= x 

Fig. 6.19. The function 2 Px of the oxygen atom which belongs to the representation B2 forms 
a bonding state together with the Vr2 function of the hydrogens. (For the antibonding state cf. 
Fig. 6.21) 
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z z 

y 

x ---*--x 

z z 

y 

+ ----+---~x = x 

Fig. 6.20. The atomic functions of oxygen which belong to the representation Al (above) and 
those of the hydrogen atoms (below left) yield the wavefunction shown at the lower right as 
a bonding function. The function 2pz does not playa major role here. (For the antibonding 
state cf. Fig. 6.21. The 2pz wavefunction, which has no great influence, is not shown there) 

this wavefunction into the extremal condition (6.54), we obtain two equations for 
the unknown coefficients CI and C2. Setting the determinant of the coefficients equal 
to zero then yields two energy eigenvalues. Here, one state is bonding and the other 
is antibonding. For the irreducible representation A2 , we have no basis functions, 
while for A I there are three wavefunctions which are to be used (Fig. 6.20). The 
wavefunction for the molecular orbital then takes on the form 1/1 = CI (2s) +C2 (2 Px) + 

c31/11. In this case, there are three wavefunctions with three energy eigenvalues which 
are obtained from the solution of the secular equation. The result is shown in Fig. 6.20 
for the bonding state. 

A schematic overview of the wavefunctions obtained for H20 is given in 
Fig. 6.21. A qualitative energy term diagram, as found from the solution of the 
secular determinant, is reproduced in Fig. 6.22. We begin with the lowest energy 
values: there are clearly two bonding orbitals (symmetry A I, B2 which are occupied 
by four electrons in total. Then (in the centre of the diagram) there are two nonbond­
ing states (of symmetry Al and BI) which are likewise occupied by four electrons; 
these come from the 2px and 2py orbitals of the oxygen atom. Finally, there are the 
antibonding states (symmetry B2, AI) which remain unoccupied. We leave it as an 
exercise to the reader to find the wavefunctions of the ammonia molecule in a similar 
manner. 
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B2 9°~ _ 
H H @O®_iO® 

2py til 2 Antibonding 

A, @ 
H H °A - @®- H H 

25 til, Antibonding 

A, ~" D 
B, /~" H H H H 

Nonbonding 

B2 9°~ +@~-~ H H 

2py til 2 Bonding 

A, @ 
H H + @O'@-A 

25 til, Bonding 

Fig. 6.21. An overview of the H20 wavefunctions found in this section. Their arrangement 
here corresponds to the energy-level diagram Fig. 6.22 

Oxygen 
atomic orbitals 

Hydrogen 
atomic orbitals 

Fig. 6.22. The energy term scheme of H20 
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Problems 

6.1 a) Which symmetry operations leave 

1. an equilateral triangle 
2. a square, and 
3. three collinear equidistant points (~ on aline) 

invariant? Consider here all the objects to be two-dimensional. Under the assumption 
that the centres of gravity of the square and the triangle (line) coincide, determine 
the orientation of the triangle (line) relative to the square for which the number of 
common symmetry operations is a maximum. 

b) Show for all the cases in part (a) that the symmetry operations in each case 
form a group. 

c) Let the vertices or the points on the line represent atoms between which the 
interaction potentials Vjk operate; the potentials are assumed to be invariant with 
respect to the symmetry operations. 

What is the minimum number of different V jk in each case, depending on the 
position of the triangle (or the line) in the square, which is required to express the 
overall potential V = Ljk Vjk? 

d) What are the conditions for energetically significant positions (maxima, min­
ima)? Determine the overall potential V explicitly for the four cases of maxi­
mum symmetry and compare the results numerically for Vjk ex: exp[ -QTjk] and 
for Vjk ex: rYk. The parameters which occur (a and the bond lengths in the three 
objects) should be chosen appropriately. Which arrangement gives the minimum 
potential energy? 

6.2 Prove the orthogonality relation (6.46) for characters. 

Hint: We start from the following relation (based on Schur's Lemma): 
I) If R -+ VCR) and R -+ VCR) are two inequivalent irreducible representations of 
a group, then the equation 

V(R)A = A VCR) 

cannot be satisfied by any matrix A independent of R, except by A = O. 
II) Any matrix A which is independent of R and which obeys the equation 

V(R)A = AV(R) 

is necessarily a multiple of the unit matrix. 

(1) 

(2) 

II) can also be formulated as follows: if A commutes with all the matrices of an 
irreducible representation, then A is necessarily a multiple of the unit matrix. 

We also suggest some intermediate steps: let R -+ VCR) (g-dimensional) and 
R -+ VCR) (g'-dimensional) be two inequivalent irreducible representations of the 
finite group. We express the matrices V and V in terms of their elements: 
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U(R) = Uik(R) , (3) 

VCR) = vlm(R) (4) 

and write 

(5) 

Let C be an arbitrary matrix with g rows and g' columns. We define 

L U(R)CV- I (R) = A , (6) 
R 

where the sum runs over all the elements R of the group. Then A remains invariant 
under the following transformation: 

U(Ro)A V-I (Ro) = A , (7) 

where Ro is an arbitrary element of the group. Proof? 
From part I) of the general theorem, the important intermediate result follows 

that the matrix A = 0, i.e. 

L L Uik(R)ckIVlm(R) = O. (8) 

R kl 

What follows from this if Ckl is chosen arbitrarily (e.g. only one Ckl f=. O)? In a similar 
way, we deal with part II) of the theorem and thus obtain the first main result: 

1 L A {.!. for i = m, k = I 
-h Uik(R)Ulm(R) = og h . 

ot erWlse 
R 

for each irreducible representation R ~ U(R) and 

1 " A h ~ Uik(R) vlm(R) = 0 
R 

(9) 

(10) 

for two arbitrary irreducible representations R ~ U(R) and R ~ VCR). Making 
use of the definition of the characters, 

L uii(R) = X(R) (11) 

and 

L uu(R) = X(R) (12) 
I 

or 
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L Vii(R) = X'(R) , (13) 

we obtain 

1 " ~ h 7' X(R)x(R) = 1 . (14) 

For any two inequivalent irreducible representations, we find correspondingly 

~ L X(R)X:' (R) = 0 . (15) 
R 

The expressions XCR) and X'(R) can be cast in a different form. If the repre­
sentation matrices are unitary, then Ulm = u:;'l and it follows that X = X*, where 
the asterisk denotes the complex conjugate. Furthermore, V-I(R) = V(R-I) and 
therefore 

(16) 

It thus follows that 

(17) 

If we distinguish the irreducible representations by indices i, j, then we can combine 
equations (14) and (15) into a single orthogonality relation. What form does it take? 

6.3 In preparation for Problem 6.4, we first treat the concept of the projection 
operator. We employ Dirac's bra and ket notation (cf. I). Let a vector space be 
"spanned" by the vectors Ik, m), k = 1, ... , K, m = 1, ... , M K ; i.e. each arbitrary 
vector Iv) in this space can be expressed as a linear combination of the Ik, m). The 
Ik, m) are orthonormalised in the following sense: 

(18) 

where the 8's are the Kronecker symbols. Show that 

L Ikm) (kml (19) 
m 

is a projection operator which projects onto the subspace k which is spanned by the 
vectors Ikm) with k fixed. 

Give an intuitive interpretation of this fact by identifying the Ikm) with the 
vectors Vkm of a Euclidean space. 

Hint: Represent Iv) as a linear combination of the Ikm) and use (18) and (19). 
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6.4 Prove that the projection operator (6.58) has the property claimed there: 

(20) 

where Xj(R) = Xj(R- 1). For R, we can use here the matrix representation of the 
symmetry operator R with an arbitrary but given basis. 

Hint: introduce new basis vectors Ikm), in which the matrix representation is com­
pletely reduced (cf. the box representation in Fig. 6.14, with k as the number of 
the box and m the index of the basis vectors within this box). Now insert the unit 
operator 

1= L Ikm) (kml (21) 
k.m 

into the projection operator before and after R and use the form of the completely 
reduced matrix representation of R. Make use of Xj(R) in the form 

Xj(R) = L 8JLv u~v (22) 
JLV 

and use relation (19) from Problem 6.2, as well as 

(k, miRII, n) = 8kl u~n . (23) 

The final result is 

1 1 
Pj = - L Ii, n) (j, nl = - I j . 

g n g 
(24) 

Why does this result show the property claimed for Pj ? 
Note also the further consequences given at the end of the solution to this 

problem. 

6.5 Show with the help of formula (6.57) that the representation (6.66) can be 
decomposed into the representations 2AJ + Bl + B2 . Making use of (6.58), derive 
the basis belonging to each of these irreducible representations. 



7 The Multi-Electron Problem 
in Molecular Physics and Quantum Chemistry 

In this chapter, we shall meet up with some approaches to treating the multi- or many­
electron problem in molecular physics and quantum chemistry. Among them are the 
Slater determinant approach and the Hartree-Fock equations to which it leads, which 
we will discuss for both closed and open electronic shells. An important concept 
is the correlation energy between electrons, and we will introduce several general 
methods for dealing with it. 

7.1 Overview and Formulation of the Problem 

7.1.1 The Hamiltonian and the Schrodinger Equation 

In the following sections, we continue what was begun in Chaps. 4 and 5, where we 
already introduced some important methods using simple molecules as examples. 
Here, we deal with approaches to finding the electronic wavefunctions of molecules 
in general, including complex molecules. In the general case, N electrons with the 
coordinates r j, j = 1, ... , N move in the Coulomb field of the M nuclei with 
coordinates RK, K = 1, ... ,M and nuclear charge numbers ZK, and are also 
coupled to each other via the Coulomb interactions. The nuclei are taken to be 
fixed at their equilibrium positions RK , which they possess in the molecule under 
consideration. For an electron with the coordinate r j, we thus find an overall potential 
given by: 

V(rj) = L VK(rj) , 
K 

(7.1) 

where the individual contributions consist of the Coulomb interaction energies be­
tween the electron j and the nucleus K: 

ZKe2 
VK(rj) = ------

47rE'oIRK -rjl 
(7.2) 

The Hamiltonian for the electron with index j then contains the operators for the 
kinetic energy and the potential energy, i. e. it is given by: 

li,2 
H(rj) == H(j) = --VJ + V(rj) . 

2mo 
(7.3) 
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(In a more exact treatment, the spin-orbit interaction would also have to be taken 
into account, but we shall neglect it here.) Between the electron with index j and 
an electron with index [ there is in addition a Coulomb interaction, whose potential 
energy is given by: 

(7.4) 

The interaction energy of all the electrons may then be written as: 

(7.5) 

The factor 1/2 guarantees that the Coulomb interactions between each pair of elec­
trons are not counted twice in the sum, since the indices j and [ run over all electrons 
independently of one another, the only limitation being that an electron does not 
interact with itself, i. e. j f= [. 

After these preparatory definitions, we are ready to write down the Hamiltonian 
of the overall system; it has the form: 

N 

H = L H(j) + Hint. 
j=! 

The Schr6dinger equation is then 

(7.6) 

(7.7) 

where the wavefunction 1ft depends on all the electronic coordinates. Although the 
Hamiltonian H does not explicitly contain the electron spins, it is still important that 
the wavefunction 1ft also be a function of the spin coordinates, so that we can take 
the Pauli exclusion principle into account in a suitable manner, as we have already 
seen in Sect. 4.4. While it is in fact possible to solve the one-electron SchrOdinger 
equation corresponding to the Hamiltonian (7.3) by using suitable approximations 
or numerical methods, the solution of the many-electron problem described by (7.6) 
and (7.7) presents considerable difficulties, since the electrons interact with each 
other. Even when there are only two electrons moving in a predetermined potential 
field (7.1), the problem cannot be solved exactly. We must therefore search for 
suitable approximate approaches; this process can be aided by applying our physical 
intuition. 

7.1.2 Slater Determinants and Energy Expectation Values 

One such approximate method can be found in the form of the Slater determinant, 
which we have already introduced in Sect. 4.4. Each individual electron is described 
by a wavefunction 1jr; these are distinguished by their quantum numbers, denoted 
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as q. In addition, an electron can be in either a spin-up state a or in a spin-down 
state f3. The electron with index j thus can occupy states ofthe type 

(7.8) 

or 

(7.9) 

For the following considerations, it is expedient to introduce a unifonn notation for 
the wavefunctions with spin up or with spin down. We call them Sm and adopt the 
convention: 

SI/2 = a, 

Ll/2 = f3 . 
(7.10) 

The index m = 1/2 clearly refers to spin up and the index m = -1/2 to spin down 
electrons. We can now combine (7.8) and (7.9) into the fonn 

(7.11) 

We have abbreviated the functions on the right-hand side of (7.11) as the wave­
function Xk(]); here, k is a quantum number which includes the quantum numbers 
q andm: 

k = (q, m) . (7.12) 

In order to avoid an overly complicated notation for our method, we let the 
index k take on the successive values 1, ... , N. This scheme is quite sufficient to 
allow us to distinguish the different quantum states, and by a suitable renumbering 
it can be related to (7.12); we will not concern ourselves here with the details of this 
purely fonnal correspondence. Using the wavefunction Xb we can write the Slater 
detenninant in a simple way: 

1 
1/1= -

v'Nf 

Xl (1) 
Xl (2) 

XN(I) 
XN(2) 

Xl (N) '" XN(N) 

(7.13) 

As we have already seen in some examples in Sect. 4.4, the Slater determinant 
takes the Coulomb interaction of the electrons among themselves into account in 
a summary manner. We will now prove this in general. To this end, we first fonnulate 
the expectation value for the energy using the Hamiltonian (7.6) and the determinant 
(7.13): 

It = (/ 1/1* H 1/1 dVl, .,. , dVN) , (7.14) 
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where the angular brackets refer to the spin functions. The evaluation of the integrals 
on the right-hand side of (7.14) is a tedious matter, and we relegate it to Appendix AI. 
Here, it suffices to give the final result: 

E = L Hk,k + ~ L(Vkk',kk' - Vkk',k'k) . (7.15) 
k k,k' 

In this expression, the symbol 

(7.16) 

represents the expectation value of the Hamiltonian (7.3) for a single electron in the 
quantum state k. The angular brackets imply an expectation value with respect to 
the spin functions, as already noted, while the integral over dV refers to the spatial 
coordinates of the electrons. Because we have assumed product wavefunctions (7.11) 
and owing to (7.12), (7.16) can be simplified to 

Hqq = f 1/I;(r) H(r) 1/Iq(r) dV . (7. 16a) 

We have already met the quantities Vkk',kk' and Vkk',k'k as special cases in previous 
sections. 

(7.17) 

represents the interaction of the charge density of electron (1) in state k with the 
charge density of electron (2) in state k'. This is a Coulomb interaction energy, 
which has an obvious classical interpretation. On the other hand, we also obtain the 
expression 

(7.18) 

which, generalising our earlier results, can be termed the Coulomb exchange inter­
action energy. 

Equation (7.15) is the most important result of this chapter. As we know from 
Sect. 4.4, a variational principle holds in quantum mechanics, and it states that 
the energy E, which is calculated approximately in (7.15), is always greater than 
or at most equal to the exact energy. The attempt to minimise this energy E by 
making a suitable choice of the wavefunctions 1/1 q leads to the so-called Hartree­
Fock equations, which we shall present below for various important special cases. 
In solving these Hartree-Fock equations, we will arrive at the "self-consistent field" 
(SCF) method. 



7.3 The Hartree-Fock Method for a Closed Shell 151 

7.2 The Hartree-Fock Equation. 
The Self-Consistent Field (SCF) Method 

Depending on how the individual electronic states are filled with electrons having 
parallel or antiparallel spins, (7.15) takes on various explicit forms. We will find 
different expressions for closed shells and open shells. Then, in Sects. 7.5 through 7.7, 
we explore the limits of the Hartree-Fock method described here, and try to show 
what approaches must be taken in order to improve the technique. As the reader will 
see, an extensive field remains to be explored, including the rational application of 
high-speed computers to the problem of calculating energy expectation values and 
wavefunctions. 

As a first step, we attempt to simplify the expressions V in (7.17) and (7.18), 
recalling the assumption of product wavefunctions in (7.8) and (7.9). Inserting these 
into (7.17), we can split the right side into an integral over the spatial functions and 
a matrix element referring to the spin functions: 

where 

Since the spin functions are normalised, we find immediately that 

For the exchange interaction, we obtain: 

where 

But now we have 

(SmSm') i= 0 only when 
, 

m=m. 

(7.19) 

(7.20) 

(7.21) 

(7.22) 

The exchange interaction thus operates only between electrons having the same 
spins. 

7.3 The Hartree-Fock Method for a Closed Shell 

In this section, as we have already said, we shall investigate some special cases of 
the energy expression (7.15), and in the process introduce the Hartree-Fock method. 
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We first consider the problem of so-called closed shells. In this case we are dealing 
with electronic levels characterised by quantum numbers q which are filled with 
pairs of electrons having their spins antiparallel. There are thus N /2 electrons with 
spin up and N /2 electrons with spin down. Let us take a closer look at the terms in 
(7.1S) keeping this aspect in mind: the energy expression (7.16) now occurs twice 
with the same quantum numbers q, since it refers once to the spin up and once to 
the spin down electrons. Instead of the sum over all quantum numbers k, we can 
therefore replace the first sum in (7.1S) by quantum numbers over q if we multiply 
the sum by a factor of 2. The Coulomb interaction (7.19) refers to both electronic 
spin directions, so the double sum Lkk' in (7.1S) requires a factor of 4. In the case 
of the exchange interaction (7.21), which enters (7 .IS) with a negative sign, the spin 
quantum numbers belonging to k and k' are the same, so that once for "spin up" and 
once for "spin down" results in a factor of just 2. It should thus be clear that for the 
case of a closed shell, expression (7.1S) reduces to: 

Ii = 2 L Hqq + L (2Vqql,qql - Vqql.qlq) . (7.23) 
q qq' 

Equation (7.23) can be used as the starting point of a variational calculation, 
for which we normalise it, taking into account the condition that the individual 
electronic wavefunctions be normalised. We need not explicitly apply the condition 
that they are mutually orthogonal, since it can be shown that the wavefunctions can 
always be chosen to be orthogonal within the determinant. This follows from the 
fact that columns or rows can be added together without changing the value of the 
determinant; using the Schmidt orthogona1isation scheme, it can be seen that the 
wavefunctions can always chosen to be mutually orthogonal as long as they were 
linearly independent to begin with. We thus require: 

(tf/* I Htot! tf/) = Min.! (7.24) 

and take as a supplementary condition: 

f 1/I;1/IqdV = 1, q = 1, ... ,N , (7.2S) 

from which the normalisation of the overall wavefunction naturally follows: 

(tf/* I tf/) = 1 . (7.26) 

Variation with respect to a wavefunction 1/Iq means that we formally differentiate 
the right-hand side of the energy expression (7.23) with respect to 1/Iq and drop the 
integration over the corresponding electronic coordinates. Applying this method, we 
immediately obtain the relation 

(7.27) 
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where the 8 q are Lagrange multipliers which take into account the supplementary 
condition (7.25). 

The resulting equation for 1/Iq can be interpreted as a kind of Schri::idinger equa­
tion. The first term in (7.27) represents the operators for the kinetic and potential 
energy of the wavefunction 1/Iq in the field of the fixed atomic nuclei. The second 
term can be interpreted in a simple way if we remind ourselves that 

(7.28) 

is the charge density of electron (2) in the state q'. The sum then clearly represents 
the Coulomb interaction energy of electron (1) in the field of the charge densities 
(7.28). This term can be understood in terms of classical physics. Important and 
new, in contrast, is the third term in expression (7.27), which describes the Coulomb 
exchange interaction. Here, electron (1) is in wavefunction 1/Iq and experiences the 
exchange density of electron (2); the latter is given by the expression 

(7.29) 

From the physical meaning of the terms on the right-hand side of (7.27) which we 
have just discussed, it follows that the parameter 8 q can be seen as the energy of 
an electron in the quantum state q. The set of equations (7.27) are distinguished 
from the usual Schri::idinger equation in that they contain non-linear expressions in 
1/1 q, 1/1 q'. 

These equations (7.27) can be solved by an approach which is referred to as the 
"self-consistent field" method. The first step is to assume that the wavefunctions 1/1 q 

are already known, at least approximately. In the next step, these assumed wavefunc­
tions are inserted into the expressions for the charge density (7.28) and the exchange 
density (7.29), while the wavefunctions which follow H and which occur behind the 
integrals are taken as still to be determined. The set of equations (7.27), which has 
thus been linearised, is then solved for the 1/Iq, and the resulting wavefunctions are 
reinserted into the charge and exchange densities (7.28) and (7.29), giving improved 
starting values for a new iteration. This procedure is continued until, at least in prin­
ciple, the wavefunctions obtained are practically identical to those assumed in the 
previous step. The method thus leads to an internally consistent set of wavefunctions, 
as is implied by the name "self-consistent field" method. 

7.4 The Unrestricted SCF Method for Open Shells 

If closed shells are present, as was assumed in the previous section, then in the 
Hartree-Fock approach the individual electronic states are each occupied by two 
electrons having anti parallel spins. In the case of open shells, the electronic states 
which refer to the orbital motion of the electrons and which correspond to a pair of 
electrons with spin up and spin down may be different states. The Slater determinant 
then takes on the following form [using the notation of (5.65)]: 
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(7.30) 

where the functions 1/fl .. . 1/fM refer to electrons having spin up, and the functions 
1/f M+ 1 ... Vi M+N to electrons with spin down. In the following, we shall also allow 
wavefunctions belonging to different spin directions to have the same dependence on 
the spatial coordinates. We therefore allow the case that some of the orbital quantum 
numbers of the group M + 1, . .. , M + N are identical to some of those of the group 
1, ... , M. Since the spins ofthese two groups are different, the determinant (7.30) 
does not vanish. The normalisation factor of the determinant is given by; 

[(M + N)!]-l j 2 . (7.31) 

By a proper choice of the 1/f' s, the expectation value of the energy of the molecular 
Hamiltonian is to be minimised. We assume that the wavefunctions in (7.30) are 
mutually orthogonal. This expectation value can then be obtained directly from 
(7.15) by a specialisation analogous to Sect. 7.2, so that we simply give the result 
here. It is 

_ M+N I M+N M+N 

E = (tftIHltft) = L Hjj + 2: L L ~j,;j 
j=1 ;=1 j=1 

1 M M M+N M+N 

- 2: (L L ~j,ji + L L ~j,ji)' 
;=1 j=1 ;=M+l j=M+l 

(7.32) 

'-.-' 
t-spins ,!.-spins 

Let us consider the different terms in (7.32). The Hjj in the first sum are defined by 
(7.16a). We remember that they refer to the energy expectation value for a single 
electron in the state j, where the energy consists of the kinetic energy of the electron 
and its potential energy in the field of the nuclei. In the following double sum, 
the quantities ~j,;j represent the Coulomb interaction energies between the charge 
densities of the electrons in states i and j. This interaction includes both electrons 
of like spin and those of opposite spin. The next two sums are expressions for 
the exchange interaction, which acts only between electrons having the same spin 
direction. When we vary the energy E in (7.32) by varying a wavefunction 1/f; or 1/fj, 

keeping the normalisation condition (7.25) in mind, we obtain the corresponding 
Hartree-Fock equations. 

7.5 The Restricted SCF Method for Open Shells 

In the preceding section, we met the so-called unrestricted open-shell SCF method. 
There, the wavefunctions for the many-electron problem were taken to have the 
form of Slater determinants, which are easy to deal with. However, this type of 
wavefunction is not necessarily an eigenfunction of the total spin. We will now 
introduce a formulation for the wavefunctions which is already an eigenfunction of 
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Fig. 7.1. The excitation of an electron from the state m 
into the state n, accompanied by a spin flip 

the total spin operator. This approach is threfore called the "restricted open-shell 
method". We shall treat triplet wavefunctions; the approach is principally due to 
Roothaan. We assume that one electron from a filled shell, where the electronic 
states each contain one spin-up and one spin-down electron, is taken from a state m 
and put into the state n, and that its spin is flipped in this process (see Fig. 7.1). 
A wavefunction thus results in which the z-component of the total spin is equal to 
-1 . n. We write this wavefunction as _ ~ lJt;:.. The indices m and n indicate that the 
electron was excited from the state m into the state n. The number 3 at the upper left 
means that the wavefunction belongs to a triplet state, and the lower-left index -1 
indicates that the z-component of the total spin has the quantum number Sz = -1. 
This wavefunction can be written as a determinant in the abbreviated form 

(7.33) 

where the normalisation factor is still to be included. In order to go from this state to 
one where the z-component of the total spin is Sz = 0, we need only use the ladder 
operator for the z-component of the total spin; it is given by: 

S+ = I)o"x(j) + iO"y(J)] . 
j 

(7.34) 

In this equation, O"x and O"y are the usual Pauli spin matrices, and the arguments 
(J) enumerate the electrons which are acted upon by the spin operators. An ele­
mentary but tedious calculation then gives (leaving out the normalisation factor) the 
wavefunction 

(7.35) 

which belongs to the total spin S = 1 and to the z-component Sz = O. If we apply 
the raising operator for the z-component of the spin a second time, we obtain the 
wavefunction 

(7.36) 

As we already have seen in the unrestricted open-shell model, we can calculate the 
energy in a relatively simple manner. We obtain the following expression: 
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g g g 

3£ = 2 L Hkk + L L(2Vkl,kl - Vkl,lk) 
k=1 k=1 1=1 

closed shell 

+ Hmm + Hnn + Vmn,mn - Vmn,nm 
\ J (7.37) 

open shell 

g g 

+ L(2Vkm,km - Vkm,mk) + L(2Vkn,kn - Vkn,nk) 

k=1 k=1 

closed - open shell interaction 

which reflects the interaction energies within the closed shell, the interaction energy 
between the two electrons in the now effectively open shell, and the interaction 
energy between the two shells. The quantities which occur in (7.37) are the same as 
in the preceding section. By variation of the energy £ with respect to the individual 
wavefunctions, the Hartree-Fock equations can again be derived. As was shown 
by the examples in Sects. 7.2-7.4, the energy eigenvalues calculated using Slater 
determinants can be interpreted in a quite simple manner. This should, however, not 
obscure the fact that we are dealing here only with an approximation. 

7.6 Correlation Energies 

The Hartree-Fock method, which begins with the Slater determinants, is the most 
widely-used computational technique in atomic and molecular physics. It allows the 
exact calculation of the interaction effects between the electrons and the nuclei, and 
the approximate calculation of the overall interaction effects of the electrons among 
themselves. As one can readily see, the energy would be reduced even further by 
allowing the electrons to avoid each other spatially, not only in a global way by 
applying the Pauli exclusion principle, which requires the probability density for 
two electrons having the same spin at the same point in space to vanish. Electrons 
with antiparallel spins also have a Coulomb repulsion and will try to avoid each other 
in order to reduce the total energy. Compared to the Hartree-Fock energy, in which 
the Pauli principle has been taken into account via the Slater determinants, there 
remains an additional energy reduction which would occur in an exact calculation 
and which results from taking correlations into account, i. e. the tendency towards 
mutual avoidance by the electrons. The definition of the correlation energy is thus 

Correlation energy = exact nonrelativistic energy - Hartree-Fock energy. 

7.7 Koopman's Theorem 

Once the electronic wavefunctions and the corresponding energies have been cal­
culated for a molecule with a closed-shell configuration using the SCF method, the 
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ionisation of the molecule can also be treated, at least approximately. This is done 
by applying Koopman's theorem, which might better be called Koopman's approx­
imation. It states the following: ionisation, consisting of the removal of an electron 
from a molecule with closed shells, can be represented as the removal of an electron 
from a given self-consistent field orbital, leaving the other electrons unaffected. This 
is, in general, a good approximation, although it neglects the following effects: 

1. the reorganisation energy of the electrons in the ion; 
2. the difference between the correlation energy of the neutral molecule and that 

of the ion. 

The second point is clear, since the correlation energy is generally neglected in the 
Hartree-Fock method. The first point is due to the fact that the charge distribution 
of the electrons gives rise to an effective potential for each particular electron. If 
an electron is then removed, this effective potential is naturally altered. Koopman's 
theorem thus states that, in general, the alteration is small. 

7.8 Configuration Interactions 

As we mentioned above, the Hartree-Fock method leaves an important effect out of 
consideration, by not taking into account the correlations between the electrons. For 
this reason, other methods have been developed which can treat electron correlations, 
at least partially. We begin with a single Slater determinant: 

(7.38) 

where we want to assume, in contrast to the Hartree-Fock method, that the wave­
functions Xk are already known. The indices k naturally denote the quantum numbers 
of the individual electrons. For simplicity, we represent these quantum numbers by 
a single symbol, which however places no limitation on the method. Since the wave­
functions 1/1 remain the same (except perhaps for a factor of -1) when we permute 
the indices k j, we can assume that the quantum numbers k are already ordered in 
some particular fashion, e. g. in the sequence 

(7.39) 

If the wavefunctions Xk of the individual electrons form a complete set in the 
mathematical sense, then the determinants (7.38) also form a complete set for each 
anti symmetric wavefunction 1/1 of N electrons. This means that we can represent any 
arbitrary wavefunction 1/1, even in a many-electron problem, as a linear combination 
of determinants like (7.38). If we take as a trial function 

L Cklk2 ... kN I/Ikl •... kN ' 

kl <k2<···kN 

(7.40) 
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then the wavefunction we are seeking can be determined by finding the coefficients 
Ck\,k2 .... In principle, the method for solving the many-electron problem is no differ­
ent from that for a single-electron problem, where we can represent the wavefunction 
we are seeking as a linear combination of known wavefunctions; the only difference 
is that the combinations of indices become somewhat more complicated. We insert 
(7.40) into the SchrOdinger equation: 

HtJt=EtJt, (7.41) 

where H is the Hamiltonian for the kinetic energy of the electrons and their potential 
energies in the field of the nuclei and of the other electrons [cf. (7.6)]. We add primes 
to the indices k in (7.40), multiply the equation thus obtained by tJt:\ ... kN' integrate 
over all the electronic coordinates, and take the expectation value with respect to the 
spin variables. We thus obtain expressions of the type: 

(/ tJt:\, ... ,kNHtJtk\" .. ,k'tvdVl .. ,dVN) , (7.42) 

where the angular brackets represent the calculation of the expectation value with 
respect to the spin variables. The evaluation of (7.42) is given in Appendix Al for 
the special case that the set of quantum numbers k~, , .. , k~ is the same as the set 
k1, • " , kN • It is not difficult to generalise this result to the case (7.42), so that we 
simply give the final answer here: 

N 

L L HkjkjCk\ ... kj ... kN 
j=l kj 

N 

+ L L Vkikjk;k'jCk\ ... k; ... k'j ... kN = E Ck\ ... kN . 
ij=l k;k'j 

(7.43) 

The quantities Hkk' and Vkk'k"klll are generalisations of those previously defined in 
(7.16)-(7.18), i.e. 

/ * [_li2 
2 ] Hkk' = 0/ k (r) 2mo V' + V(r) o/k' (r) dV (Sk ISk') . (7.44) 

The angular brackets indicate the orthogonality relations between the spin wave­
functions Sk, Sk', which denote spin up (Sk == a) or spin down (Sk == fJ)· Vkk',k"k'" 
describes the Coulomb interaction energy between the electrons: 

/ * * e2 
Vkk',k"k'" = o/k(rJ)o/k,(r2)---

4Jr8or12 (7.45) 

. o/k" (rJ) o/klll (r2) dVj dV2 (Sk ISk") (sk,lsklll) . 

The sums on kj and k'J run over all the quantum numbers in (7.43). In order to keep 
the notation in agreement with (7.40), we, however, must introduce the following 
convention: the coefficients C in (7.40) are defined only for quantum numbers which 
fulfill the condition (7.39). We stipulate that: 
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1. Coefficients occurring in (7.43) vanish if two or more of the quantum numbers 
indicated by their indices are identical. 

2. If the rule (7.39) is broken, the indices of the coefficients will be reordered in 
such a way that it is restored to validity. Depending on whether the permutation 
is even or odd, the sign can change. 

Equations (7.43) are a system of linear, homogeneous equations which can be solved 
numerically using modem techniques with a digital computer, as long as the number 
of coefficients has a limit and is not allowed to become infinite. This method is 
often combined with the LCAO approach. In that case, the matrix elements Hkk' 
and Vkk',k"klll are evaluated by setting the electronic wavefunctions 1frk equal to linear 
combinations of atomic orbitals ¢ j with free coefficients. These coefficients can 
then be fixed in a first step, e. g. by solving the Hartree-Fock equations. The matrix 
elements Hkk, and Vkk',k"klll can then be given as particular linear combinations of 
integrals over atomic orbitals ¢ j. For the numerical solution of the many-electron 
problem using a supercomputer, the following steps are thus necessary: 

1. Evaluation of integrals of the type 

(7.46) 

The latter integrals are referred to as multiple-centre integrals. 
2. Solution of the linear equations, i. e. calculation of the coefficients Ck] , ... ,kN and 

the corresponding energy eigenvalues. 

7.9 The Second Quantisation* 

The results of the preceding section can be formulated in a much more elegant 
fashion by using the so-called second quantisation. As we have already seen in I, 
the photon field can be quantised by establishing a correspondence between each 
light wave with a particular wavevector k (and a given polarisation direction) and 
a harmonic oscillator which describes the energy of the wave. The energy expression 
can be written in harmonic form and thus gives rise to a Hamiltonian HL which can 
be expressed in terms of creation and annihilation operators bt, bk for the light 
quanta: HL = Lk nwkbth. Starting with classical waves, we can thus describe the 
creation and annihilation of light quanta, or photons. The operators bt, bk obey the 
following commutation relations: 

bt bt - bt bt = 0 , 
bk bk, - bk, bk = 0 , 

bkbt - bt bk = Ow. 

(7.47) 

(7.48) 

(7.49) 
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Now, however, we know that electrons also have a wave character, which is reflected 
in the Schr6dinger equation. If we quantise this electron-wave field, we arrive at the 
particle character of the electrons. Just as in the quantisation of the photon field, 
where the creation and annihilation operators describe the creation or annihilation 
of light quanta, they here describe the creation or annihilation of electrons. Denoting 
the electronic state by its quantum numbers, e. g. k or j, we postulate the following 
commutation relations: 

+ + + + 0 ak a j + a j ak = , 
ak b j + a j ak = 0 , 

ataj+ajat=Ojk. 

(7.50) 

(7.51) 

(7.52) 

These differ from the relations for photons in that there is a ( + )-sign in the middle, 
which is due to the fact that, in contrast to photons (bosons), two electrons (fermions) 
cannot be in the same quantum state. Equation (7.50) fulfills this requirement; if 
j = k, then it follows from (7.50) that 

(7.53) 

That is, if we try to create two electrons in the same state, this double creation, 
no matter which state we apply it to, always yields zero. The other commutation 
relations with the (+) signs then follow from self-consistency requirements which 
we cannot treat in detail here. The method is now applied as follows: the Schr6dinger 
equation 

HIf/=EIf/ (7.54) 

has the following form in the second quantisation: 

H = L at ajHij +! L at aj akalVijkl, (7.55) 
ij ijkl 

where the matrix elements are given by (7.44) and (7.45). The expression (7.55) has 
the advantage that it holds for any number of electrons. If one is treating a particular 
problem in which a certain number N of electrons is present, then the Schr6dinger 
equation can be solved, at least in principle, by constructing If/ as a linear combination 
of all possible functions in which precisely N electrons occur. We denote the vacuum 
state as CPo; it is characterised by the relation 

aj CPo = o. (7.56) 

Then a state having N electrons with the quantum numbers kl ... kN can be built up 
by N-fold application of the creation operator to the state CPo: 

(7.57) 

The complete trial wavefunction is then given by a linear combination of the functions 
defined in (7.57), 
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The coefficients in this equation are still unknown quantities, which must be deter­
mined through, e. g. a minimisation of the expectation value of E. The trial function 
(7.58) may contain completely unrestricted sums over the individual quantum num­
bers k. If two quantum numbers are the same, the wavefunction (7.58) vanishes by 
construction, due to (7.53). Furthermore, if sets of quantum numbers are identical, 
then by reordering the operators a+ they can be brought into a special form, e. g. in 
agreement with (7.39), whereby depending on whether the permutation is even or 
odd, the sign remains unchanged or is reversed. Finally, we treat the computation of 
matrix elements in second quantisation. For this purpose, we make use of Dirac's 
bra and ket notation. If Q is an operator which, as for example (7.55), can be for­
mulated in terms of creation and annihilation operators, then the matrix element of 
the wavefunctions 'h l .... • kN (7.57) and I[.rk; , ... ,k'tv is given by 

(7.59) 

Here, it is expedient to write (I[.rk; , ... J<N I in the form 

(7.60) 

where the annihilation operators act to the right (cf. Problem 7.5). 
As can be seen by comparing the method of 2nd quantisation with that described 

in Sect. 7.8, the two are equivalent, but the 2nd quantisation is more elegant, because 
the resulting equations can be very simply found by substituting (7.58) into (7.54). 
Also, it is clear from the beginning which quantum numbers are to be used. In 
addition, the 2nd quantisation permits some novel approaches to the explicit solution 
of the problem. 

7.10 Resume of the Results of Chapters 4-7 

In Chaps. 4-7, we have gained an overview of the methods available for determining 
the electronic wavefunctions in molecules and their energy eigenvalues. Chapter 4 
was devoted in particular to the LCAO method, i. e. the construction of molecular 
orbitals for a single electron by taking linear combinations of atomic orbitals; as 
an illustration, we treated there the simple molecules Hi and H2 • Furthermore, 
the hybridisation of the wavefunctions of carbon was introduced there. Chapter 5 
presented a first insight into the way in which the calculation of the coefficients in 
the LCAO method can be simplified or eliminated by making use of the symmetry 
properties of the molecule; this was demonstrated for benzene and ethene. In Chap. 6, 
we then made a systematic survey of symmetries and symmetry operations as well 
as of the basic concepts and methods of the theory of group representations. These 
methods were then applied in detail to the wavefunctions of the H20 molecule. As 
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we saw, it is possible to reduce considerably the number of equations required for the 
LCAO approach by making use of symmetry. Finally, Chap. 7 introduced a series of 
methods for dealing with the many-electron problem. Simple approaches are based 
on the Slater determinant and the Hartree-Fock method which is associated with 
it. In order to take electron correlations into account, linear combinations of Slater 
determinants must be employed. An equivalent, but more elegant method is found 
in the 2nd quantisation, which we also treated briefly. 

In the following Chaps. 8-10, we now tum to the experimental results obtained 
on small, simple molecules. 

Problems 

7.1 a) Why does the Slater determinant automatically obey the Pauli principle as 
an approach to formulating the product wavefunction Itf/), and why is it a solution 
to the SchrOdinger equation when the Hamiltonian can be written as a sum of 
single-particle operators? We then have 

I 
tf/ = t.Ti Det(x) 

yN! 

N 

and H = L H(j) . 
j=] 

b) Expectation values of the wavefunction tf/ of an operator Q are then found to 
be 

Q = J-m (f Det(x*) Q Det(x) dV] ... dVN ) . 

Express this average value for the Coulomb interaction 

in terms of matrix elements Vkk',k"k lll , for the case that the single-particle wavefunc­
tions Xkj (j) are pairwise orthonormal. Show also that one finally obtains 

I 1 
2 L Vel, m) = 2 L (Vkk',kk' - Vkk',k'k) . 

lfom k#' 

7.2 a) The Hartree-Fock method is an iterative variational method for determining 
the total wavefunction tf/ approximately, so that 

/) [(tf/ IHlo11 tf/) ] = 0 . 
(tf/ltf/) 

(1) 
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As an approximation for tJt, one uses a Slater determinant consisting of N orthonor­
malised single-particle states 1 1/Ik) , k = 1, ... ,N, which must be determined, with 
k = (q, m), where the quantum numbers q refer to the spatial part and the m to the 
spin part of the electronic wavefunctions. 

Consider closed shells in the calculations that follow. The Hamiltonian H in (1) is 
the sum of the single-particle Hamiltonians H (i) of the N electrons (i = 1, . . . , N) 
and also contains the two-particle operators of the Coulomb interactions and the 
exchange interactions. Since orthogonality of the 11/1 q) is required, (1) is to be varied 
under the following condition: 

(2) 

Show that carrying out the variation in the case of closed shells leads to the following 
Hartree-Fock equations: 

(3) 

Hint: It is sufficient to use the results of Problem 7.1 b and to carry out the variation 
with respect to 1/1;. 

b) For the solution of (3), we calculate the charge density e 11/I~?)(2)12 and the 

exchange density e 1/1;,(0) (2)1/I~0) (2) using a test function 1/I~0). Inserting these expres­

sions into the appropriate integrals in equation (3) and replacing 1/Iq(l) by 1/I~1)(1), 
we obtain a determining equation for the first approximation 1/I~1l(1). Its solution is 
then the first improvement of 1/Iq and the starting point for the next iteration step. 
The iteration process is continued until the approximations converge. Show that the 
method is self-consistent; i.e. what is found for 1/I~n+l) when 1/I~n-l) = 1/I~n)? 

7.3 Formulate Roothaan's wavefunctions for the triplet state in 2nd quantisation 
(Sect. 7.9). 

Hint: Replace the indices k etc. there by k t or k .}, so that k now refers to the 
quantum numbers of the spatial wavefunction and the arrows indicate the spin state. 
Write the wavefunction of the filled shell in the form 

g n attatt CPo , CPo: vacuum state. 
k=l 

Which operators a+ and a have to be employed in order to obtain the wavefunctions 
3 .T,n 3.T,n 3 .T,n? 
-1 '¥m' O'¥m' 1 '¥m· 
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Hint: Start with the assumption that as in Fig. 7.1, an electron with spin t in state 
m is annihilated (annihilation operator) and then is newly created in the state n '" 
(creation operator). The spin-increasing operator (7.34) corresponds to 

(Why?) Make use of the commutation relations (7.50) and (7.51) as well as of (7.56). 

7.4 What are the solutions and the energy eigenvalues of the Schr6dinger equation 
HIjI = EIjI in 2nd quantisation when H = L::l Ekat ak for wavefunctions IjI with 
N electrons each? 

7.5 Calculate the following matrix elements in second quantisation: 

with 

Q = Ekatak, Q = L Ekatak, 
k 

Ek and VJ;J2;hh are given numerical values ("c numbers"). 

Hint: using the commutation relations, put all of the annihilation operators on the 
right and apply (7.56). 

7.6 Compute (7.37) using 2nd quantisation. 

Hint: Introduce the corresponding indices into the Hamiltonian (7.55) as in Prob­
lem 7.2, and use the approach of Problem 7.3 for 1jI. 



8 Overview of Molecular Spectroscopy Techniques 

Spectroscopy using electromagnetic radiation in all wavelength regions, in the ra­
diofrequency range, with microwaves, in the infrared, in the visible spectral region 
and in the ultraviolet region, extending out to the spectral region of extremely 
short-wavelength gamma radiation, is the most important source of experimental 
information for molecular physics. In this and the following chapters, we shall deal 
with this topic. The experimental methods associated with these spectroscopies will 
be described in more detail where necessary. In this chapter, in Sects. 8.1 and 8.2, 
we first give the classification of the spectroscopic methods according to the spec­
tral region studied, as required to obtain the desired information. This will serve 
as an introduction to the following Chaps. 9-14. In Sect. 8.3, we then indicate 
some additional methods, namely laser spectroscopy, photoelectron spectroscopy, 
and magnetic resonance, which are treated in the later Chaps. 15, 18, and 19. 

8.1 Spectral Regions 

Here, we first want to give a summary of the various spectral regions in the electro­
magnetic spectrum. See also Fig. 8.1. 

Beginning with the smallest energies, the spectral regions can be classified and 
characterised; we note that the boundaries between the regions are, however, not 
sharply defined. They were determined in the past by the different methods and 
instrumentation available for the production, transmission, and detection of the 
radiation, as well as by convention. 

- In the region of radio frequencies, i. e. in the range from a few kHz up to several 
100 MHz, we find the nuclear resonance transitions. 

log (v/Hz) 21 

Fig. 8.1. The spectrum of electromagnetic radiation from the radiofrequency range up to 
gamma radiation, in units of frequency and of wavelength. The visible region is shaded 
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The term microwaves refers to electromagnetic waves in the range from about 
1 to 100 GHz. This is the region of electron spin resonance spectroscopy, but also 
that of rotational spectroscopy, especially on small molecules in the gas phase. 
The upper end of this range already overlaps with the spectral region of the far 
infrared. 

- The infrared spectral region extends from the upper part of the microwave range 
to the beginning of the visible region, at a wavelength near 800 nm. The long 
wavelength part, the far infrared region (A. = 0.1 - 1 mm) is applicable to the 
excitation of rotational spectra, while the short wavelength end (the near infrared, 
A. = 10-3 - 10-1 mm) is the region where the characteristic vibrational spectra 
of molecules are observed: the so-called rotational-vibrational spectra. 

- Electronic transitions of the valence electrons begin already in the infrared; 
however, they lie mostly in the visible and the UV spectral regions. Here, the 
band spectra of molecules in the proper sense are observed, i. e. spectra consisting 
of electronic transitions with superimposed rotational and vibrational transitions. 

- Beyond the short wavelength end of the ultraviolet region, and overlapping with 
it, is the X-ray region and then the region of y-radiation. With radiation of such 
high quantum energies, transitions and states of the inner electrons, i. e. those in 
inner shells, can be investigated, especially by photoelectron spectroscopy. 

In the different spectral regions, and also in the various scientific disciplines, 
a variety of units for measuring the frequencies and the wavelengths of the radia­
tion are in conventional use, in part for practical reasons and in part for historical 
ones. Some important conversion formulas for units which measure energy are the 
following: 

1 cm-1 = 29.979 GHz = 1.2398.10-4 eV (8.1) 

kcal -1 
1 -- = 0.349cm . 

kmol 
(8.2) 

Measuring energies in [cm -1] or in [s -1] is a widespread and convenient practice, 
but strictly speaking, it is incorrect. The unit V, or wavenumber, is defined by the 
relation 

_ 1 v energy 
v - - - - - -- [cm- 1]. 

- A. - c - hc 

For the unit of frequency, we have 

c energy [S-I]. 
v=;::=-h-

Energy may also be expressed in terms of tim, that is by (hj2rr)2rr v. 

8.2 An Overview of Optical Spectroscopy Methods 

(8.3) 

(8.4) 

We can, to a good approximation, express the total excitation energy E of a molecule 
as the sum of the above-mentioned individual excitations, in particular as the sum 
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of the partial excitations of the rotational, the vibrational, and the electronic levels. 
We thus have 

E = Eel + EVib + Era! , (8.5) 

where el, vib, and rot refer to electronic, vibrational, and rotational excitations, 
respectively. 

Figure 8.2 illustrates the vibrational and rotational levels in two different elec­
tronic excitation states of a molecule, I and II, and the possible transitions between 
them. According to this diagram, one can distinguish between three types of optical 
spectra, as follows: 

- Rotational spectra are transitions between the rotational levels of a given vibra­
tionallevel in a particular electronic state. Only the rotational quantum number 
changes in these transitions; we denote it by 1. These spectra lie in the region of 
microwaves or in the far infrared. They are treated in the following Chap. 9. They 
consist typically of a large number of closely spaced, nearly equidistant spectral 
lines. Rotational spectra may also be observed by means of Raman spectroscopy; 
see Chap. 12. 

II 

I 

Rotational-vibrational spectra consist of transitions from the rotational levels 
of a particular vibrational state to the rotational levels of another vibrational 
state in the same electronic term. The electronic excitation state thus remains 
the same. The quantum numbers 1 and v change; v characterises the quantised 

__ j' Vi 

---------------------=.---- 4 

3 

~~~~-j~.----~----I+--------- 2 
===10 5 
--===-~==~O----_r-----------

-5 

-----o---------,~----------- o 

5 

__ j" V" 

====10= 4 
j" 

3 

-----0--------------------- 0 

Fig. 8.2. Vibrational levels (quan­
tum numbers v) and rotational levels 
(Quantum numbers J) of two elec­
tronic excitation states of a molecule, 
denoted by I and II. The three ar­
rows refer (from left to right) to tran­
sitions in the rotational, the rotational­
vibrational, and in the electronic spec­
tra of the molecule 
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vibrational levels. These spectra lie in the infrared spectral region. Rotational­
vibrational spectra are treated in Chap. 10. They consist of a number of "bands", 
i. e. groups of closely-spaced lines, the so-called band lines. These spectra can 
also be observed with Raman spectroscopy, as well as with infrared spectroscopy. 
Electronic spectra consist of transitions between the rotational levels of the 
various vibrational levels of one electronic state and the rotational and vibrational 
levels of a different electronic state. This is termed a band system. It contains 
all the vibrational bands of the electronic transition being observed, each one 
with its rotational structure. In general, all three quantum numbers change in 
these transitions, i. e. J, v, and those which characterise the electronic state. The 
spectra lie in the near infrared, the visible, or the ultraviolet regions. Electronic 
transitions in molecules are treated in Chap. 13. The band systems of all the 
allowed electronic transitions of a molecule together make up the band spectrum 
proper of the molecule. 

In molecular spectroscopy, it is generally accepted practice when referring to 
transitions between two terms to list first the energetically higher-lying term, then 
the lower one. The direction of the transition, i. e. absorption or emission, can be 
denoted by an arrow between the two term symbols. If the various terms in a series 
are not numbered, then one frequently denotes the upper term with a prime, e. g. 
J' or Vi, and the lower term with a double prime, e. g. J" or v". 

The spectral lines in molecular spectra, i. e. transitions between two terms, may 
be described in the following manner: 

vhc = E~J - E~J + E~ib - E~ib + E;ot - E;ot [Joule] 

= L1EeJ + L1Evib + L1Erot , 
(8.6) 

where el, vib, and rot again refer to the electronic, vibrational, and rotational energies. 
In general, the following relation holds: 

L1EeJ » L1Evib » L1Erot . (8.7) 

For rotational spectra, we have L1EeJ = L1Evib = 0; only the rotational term changes 
in the transitions, i. e. 

vhc = E;ot - E;ot . (8.8) 

Rotational-vibrational spectra correspond to transitions with L1EeJ = 0; the transi­
tions take place between the terms of vibration and rotation. We then have: 

(8.9) 

A rotational-vibrational band is the total of all the band lines L1Erot which belong 
to a particular term transition L1Evib. If the electronic energy also changes, then all 
three terms in (8.6) change in the transition and the band system of the corresponding 
electronic transition L1EeJ is obtained. It contains all the vibrational bands (L1Evib) 
with their characteristic rotational structures. The terminology band spectrum of 
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Rotational- Electronic 
vibrational bands bands 

r-~~~~~~""--------~~~~~~------

1mm 100lJ,m 

Fig. 8.3. An overview of the spectral positions of the absorption spectra of a small molecule. 
The numerical values are approximately correct for Hel 

a molecule (in the wider sense) refers to the band systems of all the possible electronic 
transitions. 

The positions of the three types of spectra within the electromagnetic spectrum 
are indicated for a small molecule in Fig. 8.3. 

In molecular spectroscopy, it is usual to employ the following notation for the 
tenns E/hc (measured in wavenumbers): 

For rotational terms 

Erot(J) == F(1) ; 
hc 

for vibrational terms 

EVib(V) == G(1) ; 
hc 

and for electronic terms 

Eel (v) el 
--==T. 

hc 

The overall term of a molecule can thus be written as 

Etotlhc == T = r l + G(v) + F(v, 1) . 

Spectral lines can then be denoted by: 

v = Llrl + LlG + LlF [cm- I ]. 

8.3 Other Experimental Methods 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

We should mention at this point that there are other methods of investigation in 
addition to rotational, vibrational, and electronic spectroscopies, which also give us 
insights into the structure and dynamics of molecules. 

Laser spectroscopy permits the study of molecules with a spectral resolution 
which was completely unattainable in earlier times. It also makes possible the time 
resolution of molecular spectra down to the femtosecond range, and thus allows 
the study of the dynamics of molecular states and processes. Important additional 
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infonnation is gained from photoelectron spectra, in particular with respect to the 
analysis of the energy states of inner electrons. More about these two topics will be 
presented in Chap. 15. 

Magnetic resonance of nuclei and electrons gives particularly detailed structural 
infonnation, which cannot be obtained with other spectroscopic methods. These 
techniques will be treated in Chaps. 18 and 19. 

Problems 

8.1 Assume that a molecule exhibits radiative transitions between the two excited 
states a and b and the ground state. The lifetimes of the excited states are Ta = 10 s 
and Tb = 1 ns. Calculate the energy uncertainties of the excited states and also the 
linewidths of the corresponding transitions (in cm- I ). 

8.2 The energy difference between two rotational levels of a molecule is 20.15 cm -1. 

An ensemble is taken to contain 105 molecules; how large is the thermal occupation 
of the higher level at a temperature of (a) 29 K; (b) 290 K; and (c) 2900 K? How do 
these occupations change when the energy difference lies in the range of electronic 
transitions at 20 150cm-1? 



9 Rotational Spectroscopy 

The rotational energies of molecules are quantised: that is, they can be changed only 
through the absorption or emission of energy quanta. Rotational spectroscopy permits 
the measurement of these energy levels; from them one obtains information about the 
structure and bonding of the molecules. The essential concepts can be explained and 
understood using the simplest molecules as examples, i. e. the diatomic molecules. 
Sects. 9.1-9.3 are devoted to this task. The multiplicity of possible rotations in larger 
molecules can be only briefly touched upon in this book; we do this in Sect. 9.5. 

9.1 Microwave Spectroscopy 

The rotational spectra of molecules are observed almost exclusively as absorption 
spectra, because the spontaneous emission probability is very small as a result of the 
low transition energies; see also Chap. 16 and Sect. 5.2.3 in I. The rotational spectra 
lie in the microwave region of the electromagnetic spectrum, so that one requires 
a far infrared (Fourier) spectrometer or a microwave spectrometer to observe them. 

To generate microwaves, a reflection klystron is often used; in this way, fre­
quencies between 1 and 100 GHz can be produced. Klystrons have very low noise. 
They can, however, be tuned over only a narrow spectral region. More tunable are 
backwards-wave generators (also called carcinotrons). These are travelling-wave 
tubes in which the oscillation frequency (in the GHz range) can be tuned over a large 
range through variation of the electrical operating conditions. Another tunable gener­
ator is the so called magnetron. Gunn diodes (fabricated from e.g. GaAs) are gaining 
in importance as microwave sources, as are avalanche diodes (from InP); with them, 
radiation in the range from 1 to 150 GHz can also be produced. 

Detection of the microwaves is usually performed using a microwave diode. 
Owing to the small absorption coefficients and to the necessity to work at low 
(sample) gas pressures and thus avoid pressure broadening of the spectral lines as 
much as possible, the longest possible absorption paths are employed (in the range of 
several metres). For quantum energies larger than several 10 cm -1, infrared Fourier 
spectrometers can be used to measure rotational spectra. 

To improve the detection sensitivity and for a more exact frequency determi­
nation, one normally employs an effect-modulation technique. This means that the 
energy levels under investigation are modulated in such a way that the intensity of 
absorption and thus of the observed signals are also modulated. With this technique, 
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the signal/noise ratio and thereby the precision of the measurement can be improved; 
this can be achieved in microwave spectroscopy by allowing an oscillating electric 
field to act on the sample molecules: The field creates a periodic oscillating Stark 
effect that modulates the signal. The modulation is carried out with field strengths of 
typically 100 V cm- l and at frequencies between 50 Hz and 100 Hz, and is referred to 
as Stark modulation. In the detection section of the spectrometer, only the modulated 
signals are amplified and detected. This allows background and noise components 
to be separated from the radiation which is to be measured. The resonance between 
the radiation and the level being studied is thus periodically switched on and off. 
In this manner, the frequency of the microwave radiation and thus of the otational 
transitions can be determined with an accuracy of better than 10-6. 

Corresponding to the selection rules for the interaction of molecules with electro­
magnetic radiation, only molecules with permanent electric dipole moments permit 
the observation of rotational spectra. This selection rule for electric dipole radia­
tion can be intuitively understood: a polar molecule which is rotating appears to 
have a time-dependent dipole moment to a stationary observer. The rotation of such 
molecules is therefore active with respect to optical absorption, meaning that the 
rotation leads to the absorption of electromagnetic radiation when the frequencies 
match. For homonuclear diatomic molecules such as H2, N2, or O2 , this does not 
apply, because they have no permanent dipole moments; they thus exhibit no rota­
tional spectra. The same is true of all larger molecules without a permanent dipole 
moment, for example CCl4 - unless the rotation leads to a distortion and thereby 
to a rotationally-induced dipole moment, or unless the molecule is at the same time 
subject to an asymmetric vibration and thus has an induced dipole moment which 
can be acted on by the oscillating electric field of the radiation. 

9.2 Diatomic Molecules 

9.2.1 The Spectrum of the Rigid Rotor (Dumbbell Model) 

Figure 9.1 shows as an example of a typical rotational spectrum of a diatomic 
molecule the spectrum of HCI. Figure 9.2 shows a schematic illustration of the 
rotation spectrum of another linear symmetric top molecule with a smaller line 
spacing, together with the coresponding energy term scheme, which we shall now 
derive. The spectrum consists of a large number of nearly equidistant lines with 
a characteristic temperature-dependent intensity distribution. This spectrum can be 
understood as the spectrum of a rigid rotor, i. e. the spectrum of a system in which 
the two atoms are rigidly attached to one another. This so-called Dumbbell Model is 
the simplest model for the rotation of a diatomic molecule. In classical mechanics, 
the rotational energy of such a rotor can be calculated according to the equation 

E _low2 
rot - 2:17 [Joule] , (9.1) 

where e is the moment of inertia about an axis of rotation perpendicular to the 
line joining the two masses ml, m2, and w is the angular velocity of the rotation; 
cf. Fig. 9.3. 
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Fig. 9.1. The rotational spectrum of Hel in the gas phase; absorption spectrum. The minima 
in transmission correspond to maxima in the absorption 
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Fig. 9.2. The energy-level scheme for the rotation of a diatomic molecule (linear symmetric 
top) and its transmission spectrum. The energy is plotted in the upper part of the figure, 
increasing with increasing J; the lower part shows the transmission spectrum. The selection 
rule for optical transitions is t1 J = ± 1; the intensity distribution in the spectrum is explained 
in the text. The first few lines in the spectrum are so weak that they are not visible on the scale 
of this figure 
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Fig. 9.3. The rotation of a diatomic molecule about its 
centre of gravity. In the case of a non-rigid rotor (lower 
part of the figure), the two atoms can oscillate relative to 
one another with the force constant k of the chemical bond 

The moment of inertia eJ of this dumbbell relative to its centre of gravity S is 
equal to 

(9.2) 

where Rl and R2 are the distances of the masses ml andm2 from S and R = Rl +R2. 
The mass mr is called the reduced mass and is given by: 

(9.3) 

The angular momentum (along an axis perpendicular to the molecular symmetry 
axis) is equal to 

ILI=eJw, (9.4) 

where L is the symbol for angular momentum and ILl or simply L stands for its 
magnitude. 

We first make an estimate. Taking as a trial formula for the quantisation of the 
angular momentum: 

ILl = nn (n = 0, 1,2, ... ) (9.5) 

we obtain from (9.4) the smallest possible value of the rotational frequency w = 2:nv: 

L n 
Wn=l = eJ = mr R2 . (9.6) 

If, for example, we insert the atomic masses of H and CI, and their internuclear 
distance in the HCI molecule, known from gas-kinetic measurements to have the 
value R = 1.28· 10-10 m, we find 

Vn=l = 6.28 . 1011 Hz , or A = 0.47 mm . 
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This rotational frequency, calculated in a semi-classical fashion, is very close to the 
smallest absorption frequency measured in the rotational spectrum of HCI, which 
has the value 

I!min obs = 6.25 . 1011 Hz , orA = 0.48 mm . 

This simple calculation indeed gives the order of magnitude of the frequency to 
a surprising degree of accuracy, but it is nevertheless too simple, if one wishes to 
understand the entire rotational spectrum. For the energy states of the rotor, we in 
fact find from (9.1) and (9.4): 

(9.7) 

With L = nn, this becomes 

(9.8) 

This expression does not give a satisfactory result when compared with experiment, 
if it is assumed that the lines in the rotational spectrum are due to transitions between 
neighbouring quantum levels. Instead, the problem must be treated quantum mechan­
ically from the beginning by solving the time-independent SchrOdinger equation for 
the rotation. The orbital angular momentum L of a particle of mass mr orbiting at 
a distance R from the origin can be calculated in just the same way as that of the 
electron in the hydrogen atom; we can therefore make use of the computation of 
the angular-momentum eigenfunctions for the H atom (compare I, Sect. 10.2, and 
Chap. 11 in this book). For a rigid rotor, we thus obtain the energy eigenvalues: 

n2 
Erot = -n(n + 1), 

2<9 

i. e. instead of (9.5), we must introduce a different quantisation condition 

ILl = njn(n + 1) . 

(9.9) 

(9.10) 

In the case of rotation, it is usual to denote the quantum number by I instead 
of by n; thus for the rotational levels of the rigid rotor, we obtain the following 
expression in place of (9.8): 

n2 
Erot = - I(I + 1) 

2<9 
[Joule] (J = 0, 1,2, ... ) . (9.11) 

Introducing term values F(]), which in spectroscopy are usually given in the units 
cm -1, we divide (9.11) by he and obtain: 

F(]) = Erot = B I(J + 1) 
he 

(9.12) 
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with the so-called rotational constant B, 

h 
B=--

8n2c8 
(9.13) 

This constant is a characteristic value which can be extracted from the measured 
rotational spectrum. It is inversely porportional to the moment of inertia of the 
molecule; its determination therefore yields basic information about the structure of 
the molecule being investigated. 

Each of the rotational eigenvalues (9.11) and (9.12) has its characteristic angular­
momentum eigenfunction, whose squares give the probability that the angles ff and ¢ 
have values in the range dQ = sin ffdffd¢. These are the same as those we met in 
I on solving the SchrOdinger equation for the hydrogen atom (cf. Chap. 10 in I). 
Each eigenfunction with the quantum number I is associated with 21 + 1 functions 
having the "magnetic" quantum number M = I, I - 1, ... - 1; i. e. each state 
characterised by I is (21 + I)-fold degenerate, so long as no additional interaction 
is present which would lift the degeneracy. 

The quantum number M is a measure of the components of angular momentum 
relative to a quantisation axis, which is defined for example by an applied electric 
field. In that case - see the Stark effect, Sect. 9.4 - the degeneracy with respect to M 
is lifted except with respect to the sign of M. 

Summarising the results for the rigid rotor, we have 

- a quantisation of angular momentum, 

ILl = J 1(J + 1) Ti 

with the quantised z-component L z = MTi, 
- energy eigenvalues Erot = Bhcl(J + 1) 
- with the rotational constant defined in (9.13), 

h 
B=--

8n2c8 

The energy difference between two energy levels whose quantum numbers I differ 
by 1, that is the rotational quantum E(J + 1) - E(1), increases with increasing 1. 
This means that the rotational energy increases with I for a constant internuclear 
distance, and we thus obtain a term scheme like the one shown in Figs. 9.2 and 9.4. 

We now introduce the selection rules for optical transitions (electric dipole 
radiation), 111 = ±I (and 11M = 0, ±I, with different polarisations referred to as 
u and n transitions), and find the following expression for the quantum energy of the 
lines in the rotational spectrum corresponding to a transition between a level with 
the quantum number I and one with 1+ 1; that is, from (9.12), we find that the term 
difference FH! - FJ is given by the condition 

(9.14) 

For the wavenumbers of the rotational lines we then obtain 
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Parity Fig. 9.4. Energy levels for the rotation of a rigid 
+ diatomic molecule, with parities as indicated. The 

selection rule L'J.J = 1 yields the spectrum con­
sisting of equidistant lines, as shown. Parity will 
be explained in Sect. 12.4 

+ 

+ 

+ 

(9.15) 

We thus calculate, as observed, a spectrum having equidistant lines with a spacing 
equal to 2B, from which one can derive the rotational constant B; cf. Figs. 9.2 
and 9.4. Since the moment of inertia of the molecule is in the denominator of B, 
heavier molecules have their spectra at longer wavelengths with a smaller energy 
spacing between the lines than lighter molecules with smaller moments of inertia. 

Some examples for spectroscopically determined rotational constants are given 
in Table 9.1. 

Table 9.1. Rotational constants of some diatomic molecules 

iH; 
iH35Cl 
12Ci60 

iH79Br 
39K35Cl 

2B=121.6 cm-1 

20.79 
3.84 

14.9 
0.257 

* The rotational spectrum of H2 is not directly observable; cf. Chap. 12 

From the B values, as we have shown above, the internuclear distance R of the 
centres of gravity of the two atoms in the molecule can be determined. For i H35CI, 
we obtain the equilibrium internuclear distance by using the numerical value for B 
given in Table 9.1: 
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~~ 10 
Re = - = 1.287 . 10- m 

mr 

(the index e here stands for "equilibrium"). 
Rotation of the molecule about the cylinder axis can be neglected; the moment 

of inertia for this rotation is namely very small, and the energy intervals between 
the levels are according to (9.9) or (9.11) correspondingly extremely large. For the 
transition from 1 = 0 to 1 = 1, a very large amount of energy would thus be 
required, and such transitions do not occur under the usual spectroscopic conditions. 
Furthermore, even if such a transition were to take place, no spectral line would be 
observed owing to the lack of change in the dipole moment. 

9.2.2 Intensities 

The intensities of the lines (cf. Fig. 9.2) are given by the degree of degeneracy 
of the terms FJ for different values of 1, by the thermal occupation probabilities 
of the rotational levels, and by the selection rules, taking the quantum-mechanical 
transition moments to be constant. As we mentioned above, each level with the 
quantum number 1 is (21 + I)-fold degenerate with respect to the magnetic quantum 
number M. The degree of degeneracy is thus 21 + 1. The statistical weight of the states 
corresponds to this value, as long as the degeneracy is not lifted. The selection rules 
follow from the symmetry of the wavefunctions on application of time-dependent 
perturbation theory; cf. Chap. 16 in I and Chap. 16 in this book. 

The two important selection rules which we have already used above can be 
understood in an intuitive picture: 

- only polar molecules, i. e. molecules with a permanent electric dipole moment, 
have a rotational spectrum which can be observed in optical spectroscopy; 
transitions with .t11 = ±l are optically allowed, i. e. transitions in which the 
angular momentum of the molecule changes by n. This angular-momentum 
difference corresponds to the angular momentum of the optical quantum which 
is taken up on absorption or given off on emission, so that conservation of angular 
momentum is obeyed. 

Finally, in order to understand completely the intensity distribution in the spectrum, 
we need to know which initial states for absorption are occupied at the absolute 
temperature T of the measurements. The thermal energy at room temperature cor­
responds to about 1/40eV or 200cm- l ; it is thus in general much larger than the 
rotational constant B which gives the spacing of the lowest rotational terms. In ther­
mal equilibrium at room temperature, many rotational levels are therefore occupied. 
Quantitatively, the occupation probability N J of a level with rotational quantum 
number 1 is given by: 

NJ = gJ e-(EJ-Eo)/kT = (21 + l)e-BhcJ(J+l)/kT 

No go Degeneracy Thermal occupation 
(9.16) 
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In this expression, g J and go are the statistical weights of the states with the corre­
sponding quantum numbers, and are equal to the degree of degeneracy 21 + 1, with 
go = 1. The intensity ratio of the lines in the absorption spectrum is proportional 
to the ratio of the occupation probabilities NJ and No. All together, we thus find 
from (9.16) an intensity profile like that shown in Figs. 9.1 and 9.2. For small values 
of 1, the intensity of the lines increases with increasing 1 due to the increasing 
statistical weights; for larger values of 1, the decrease of the exponential function in 
(9.16) dominates. Between these two extremes there is an intensity maximum. By 
differentiation of (9.16), we can readily show that the value of the quantum number 
at the maximum, 1rnax, is given by: 

(9.17) 

where 1rnax is the integer which lies closest to the numerical value calculated from 
(9.17). The position of the most intense transition is given only approximately 
by (9.16), because the intensity distribution depends not only on the occupation 
probabilities alone, but also on the squares of the transition moments, which are 
calculated from the initial and final state wavefunctions and thus also depend on 
the quantum number 1. A complete rotational spectrum, as shown in Fig. 9.1, 
cannot in general be registered with a single spectral apparatus, owing to the broad 
range of frequencies involved. Matching the spectral data of different devices with 
respect to intensities is not always a simple procedure. The intensity ratios of the 
absorption lines corresponding to different 1 values are therefore best determined 
from a rotational-vibrational spectrum; see Sect. lOA. 

9.2.3 The Non-rigid Rotor 

When rotational spectra are analyzed with a high precision, it becomes apparent 
that the absorption lines are not exactly equidistant; instead, their spacing becomes 
smaller and smaller as the quantum number 1 increases. To understand this, one has 
to assume that the internuclear distance of the atoms in the molecule changes with 
changing rotational quantum number 1. It increases with increasing rotational en­
ergy, i. e. with increasing values of 1, due to a centrifugal distortion of the molecule. 
The moment of inertia becomes larger as a result of this distortion. We thus must 
abandon the rigid rotor model in favor of the non-rigid rotor, in which the two 
nuclei are attached to one another by a bond with an elastic force constant k. This 
fact becomes particularly important for the analysis of rotational spectra in which 
molecular vibrations are also involved, so-called rotational-vibrational spectra. If the 
molecule is not only rotating, but also vibrating, the deviations from the rigid rotor 
model depend on the type and the frequency of the vibrations and are often much 
stronger than in the case of purely rotational motion. 

But first we consider only the rotation of a diatomic molecule, that is the model 
of the rotating non-rigid dumbbell. For a quantitative description, one must assume 
that the rotor is not rigid, and that an elastic bond exists between the two atoms, 



180 9 Rotational Spectroscopy 

having a force constant k (cf. Fig. 9.3). A rotation, or rather the centrifugalforce that 
it generates, produces a stretching of the molecule. Classically, we can calculate the 
new internuclear distance R to be: 

(9.18) 

where Re denotes the equilibrium internuclear distance in the molecule at rest, and 
(V is the circular frequency of the rotation. 

We thus have an equilibrium between the centrifugal force, which tends to stretch 
the molecule, and the elastic bonding force between the atoms. Qualitatively, it can 
be seen that a stretching increases the distance between the two masses m 1 and m2 

and thus the moment of inertia; this reduces B and the energy values E J are lowered. 
The quantitative calculation follows from (9.18): 

(9.19) 

From this, we find 

(9.20) 

in which we have replaced R by Re as a result of 

3 3 3 ( 3.1R ) R = (Re + .1R) = Re 1 + R; + ... .1R 
, - «1. 

Re 
(9.21) 

For the total energy, 

L2 1 
E t = -- - -k(R - R)2 

ro 2mrR~ 2 e 

this model calculation based on classical physics then leads by a few simple steps 
to: 

(9.22) 

If we now make the transition from classical mechanics to quantum mechanics and 
replace L 2 by J(J + 1 )n2, as usual, we finally obtain for the rotational energy: 

n2 n4 

Erot = --2 J(J + 1) - 2 6 J\J + 1)2 
2mrRe 2kmr Re 

and for the rotational terms: 

E 
F(]) = ~ = BJ(J + 1) - DJ2(J + 1)2 

he 

[Joule] (9.23) 

(9.24) 
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where we have introduced a centrifugal stretching constant D defined by (9.23) in 
a way analogous to the definition of B. Eq. (9.24) holds for a simple harmonic force 
field; in the case of an anharmonic force, terms with higher powers of J must be 
taken into account. This constant D is much smaller than B; it follows from (9.23) 
that 

(9.25) 

Insertion of numerical values into (9.25) and comparison with (9.13) yields ap­
proximately 10-3 to 10-4 for the relative magnitude Dj B. The stretching term 
DJ2 (J + 1)2 in (9.23) is thus nearly negligible as long as J is small, but it may 
become important for large J. A measurement of D combined with (9.25) yields the 
force constant k of the bond and from it, the frequency 

or (9.26) 

of the valence oscillation along the direction of a line joining the two nuclei in the 
molecule, as we shall show in Sects. 10.2 and 10.3. There, we will also discuss more 
precise methods of studying these vibrations. 

The term scheme of the non-rigid rotor can be found from that of the rigid rotor 
by shifting the terms as illustrated in Fig. 9.5. The spectrum is then slightly modified, 
as is also indicated schematically in the figure. The frequencies of the lines in the 

J Rigid 
rotor 

10 -----.... 
..................... 

9------ ............... 

Nonrigid 
rotor 

-----
-----

8 ------________ _ 

7 -------_ 

6-----
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Nonrigid 

Fig. 9.5. The energy levels and the 
spectrum of a non-rigid rotor com­
pared to a rigid rotor. A value D = 
10-3 B has been assumed for the 
stretching constant D. The levels of 
the rigid rotor, which are equidistant 
with a spacing of 2B, are shifted to­
wards lower energies in the non-rigid 
rotor, and the shift increases with in­
creasing 1. This effect is exaggerated 
in the figure 
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Table 9.2. A comparison between experimental and calculated values for the positions of the 
rotational absorption lines of RCI, in cm-I [from (9.24) and (9.27) with 2B = 20.79 cm-I 
and 4D = 0.00016 em-I] 

J-+J+l Experimental Calculated for 

rigid non-rigid rotor 

0-1 20.79 20.79 20.79 
3-4 83.03 83.16 83.06 
6-7 145.03 145.53 144.98 
9-10 206.38 207.90 206.30 

rotational spectrum of the non-rigid rotor may be found from (9.23) by applying the 
selection rule LJJ = ±1 for a radiative transition: 

VJ--->J+I = F(J + 1) - F(J) = 2B(J + 1) - 4D(J + 1)3 [cm- I ]. (9.27) 

The selection rules remain unchanged, since the symmetries of the rotational states 
are not changed by the elastic force of the bond. 

As an example we give the numerical values for the simple case of HCI. From Ta­
ble 9.1, we find for this molecule, assuming that it is a rigid rotor, 2B = 20.79 cm- I . 

For the non-rigid rotor, the correction term is found to be 4D = 0.OO16cm- l ; see 
Table 9.2. 

Table 9.2 compares the measured and calculated spectral line positions for the 
HCI molecule using the quoted values of the constants. 

9.3 Isotope Effects 

The extreme precision with which molecular moments of inertia can be determined 
with rotational spectroscopy by measuring B leads to an important application. From 
the line shifts, the masses of isotopes can be determined by investigating molecules 
containing different isotopes of the same elements. From the line intensities, the 
relative abundances of the isotopes can also be found. Since the moment of inertia 
is inversely proportional to the rotational constant B, molecules containing heavy 
isotopes have rotational lines corresponding to lower quantum energies and smaller 
line spacings. Naturally, the isotope effect is particularly large in the case of hydro­
gen. The rotational constant 2B of light hydrogen, H2, is 121.52cm-l ; for heavy 
hydrogen, D2 or 2H2, it is found experimentally to be 2B = 60.86 cm- I , i. e. nearly 
exactly half as large due to the doubled mass and the resulting doubling of the 
moment of inertia. By the way, we can also see from this result that the internuclear 
distance in the H2 molecule is hardly changed when the heavier isotopes are present. 
In other molecules, the differences are smaller. For example, for the 12CO molecule, 
2B is found to be 3.842 cm- I , and for the l3CO molecule containing the heavy 



isotope of carbon, 2B is equal to 3.673 cm- I . Figure 9.6 shows as an example the 
differences in the rotational spectra of eo containing the isotopes 12e and l3e. 

In polyatomic molecules, the internuclear distances of the various atoms in 
the molecule can also be determined from the isotope effect. As an example, we 
consider here the linear molecule carbon oxysulphide, oes. As we have already 
mentioned, a measurement of the rotational constant B of a linear molecule allows 
the determination of the moment of inertia perpendicular to the symmetry axis, but 
this quantity alone does not permit the calculation of both bond lengths from the 
central e atom to the 0 and S atoms. By carrying out measurements on molecules 
substituted with different isotopes, such as for example e032s and e034s, one can, 
however, determine the individual eo and es bond lengths from the moments of 
inertia, assuming that the CS bond length does not change on changing the isotopic 
composition of the molecule. This is shown in the following. 

We define the molecular centre of gravity by the equation 

moRa + meRe = msRs , (9.28) 

where Ro, Re and Rs are the distances of the 0, e, and S atoms from the centre of 
gravity (see Fig. 9.7); then the moment of inertia is found to be 

e = moR~ + meR~ + msR~ . (9.29) 

Fig. 9.7. The carbon oxysulphide molecule, OCS, in­
dicating the definitions of the masses and the distances 
of the 0, C, and S atoms from their common centre of 
gravity 
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In addition, for the distances we have 

RO = Reo+Re and RS = Res - Re, (9.30) 

where Reo and Res are the internuclear distances of the 0 and S atoms from the 
central e atom (bond lengths). 

Inserting (9.30) into (9.28) yields 

MRe = mSRes - moReo , (9.31) 

where M = mO + me + ms is the total mass. 
Now we insert (9.30) into (9.29) and obtain 

8 = mo(Reo + Re)2 + meRc + ms(Res - Re)2 

= MRC + 2Re(moReo - msRes) + mORco + mSRcs . 
(9.32) 

Using (9.31), we finally find the following expression for the moment of inertia: 

z... z... (moReo - mSReS)2 
8 = moRco + mS RcS - """'----=--"""'----M---'---=-~ (9.33) 

For molecules containing various isotopes, one finds different 8 values as a result 
of the differing masses. 

Equation (9.33) connects a measurable quantity, the moment of inertia 8, with 
two unknown quantities, the bond lengths Reo and Res. If one wishes to deter­
mine these bond lengths, then it is necessary to measure the moments of inertia 8 
of two molecules with different isotopic compositions; one then obtains two mea­
sured quantities 8 1 and 82 and two unknowns, the bond lengths which are to be 
determined. In this way, the bond lengths Reo = 1.16 A and Res = 1.56 A were 
found by substituting sulphur isotopes of relative atomic masses 32 and 34 into the 
oes molecule. 

9.4 The Stark Effect 

The modification of the quantum energy of spectral lines or the splitting of energy 
levels by a static electric field is known to us from atomic physics under the name 
Stark effect. In molecular physics, a static electric field leads to a lifting of the 
(2J + I)-fold degeneracy of the rotational levels, since different states belonging 
to the same J but with different values of the M quantum number have differing 
probability distributions for their charge densities relative to the molecular symmetry 
axes, and thus correspond to different polarisations by an electric field. For diatomic 
molecules, the energy shift can be written as: 

p2E2 J(J + 1) - 3M2 
!J.E J,M = -2h-c-B -J(-J-+-1-)-(2-J---1-)-(2-J-+-3-) , (9.34) 
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Fig. 9.8. The Stark splitting of the rotational 
terms J = 0, 1, 2, shown schematically. The 
Stark effect is the same for the positive and the 
negative signs of the quantum number M. The 
Stark shift is given by L1E = - p2 E2 /6hB 
for the state with J = O. Without an electric 
field, one observes two transitions, at 2B and 
at 4B; in the presence of an electric field, the 
transition frequency at 2B is shifted, while 
that at 4B splits into two components 
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where the direction of the E field now gives the quantisation axis for the M quanti­
sation. 

In (9.34), p is the electric dipole moment of the molecule and E is the electric 
field strength; the quantum number M enters only quadratically. One thus obtains 
a splitting into (J + 1) sublevels, as shown in Fig. 9.S. As in atomic physics, the 
selection rule for optical transitions allows transitions with fJ.M = 0, so-called 
n: transitions, as well as transitions with fJ.M = ±l, the a transitions. Furthermore, 
the usual selection rule for electric dipole radiation holds, i. e. fJ.J = ±l. The 
splitting is very small; typical values of fJ.vjv lie between 10-4 and 10-3 at an 
electric field strength of 103 V jcm. 

The Stark effect is important because it can be used relatively easily as an aid 
to the measurement of rotational spectra. One simply adds a central electrode to the 
microwave cavity in which the gas being studied absorbs microwave radiation, and 
uses it to apply the required static electric field. The energy terms to be measured 
can then be shifted or, if an alternating field is applied, they can be modulated at 
the frequency of the applied field. Some important applications of the Stark effect 
in molecular physics are: 

- the determination of the quantum number J from the splitting pattern of individ­
ual rotational lines according to (9.34); 
the determination of molecular electric dipole moments p from the magnitude of 
the splitting or the term shifts in the applied field. This is an important method for 
measuring the dipole moments of molecules. It complements the usual method 
of measuring the dielectric constant EO to determine dipole moments, as discussed 
in Sect. 3.3; 

- the Stark effect is essential for experimental rotational spectroscopy because 
it can be employed for effect modulation with a corresponding improvement 
in signal/noise ratio and precision in the measurement of rotational absorption 
spectra. 
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9.5 Polyatomic Molecules 

In order to describe the rotation of a polyatomic molecule we require, as we know 
from classical mechanics, three principal elements of the inertial tensor, B A, B Band 
Be in the general case, with respect to the three principal axes A, Band C. These 
are three mutually perpendicular directions about which the moment of inertia takes 
on maximal or minimal values. If the molecule has a symmetry axis, then it is one 
of the principal axes of the inertial tensor. Figure 9.9 shows some of the important 
types of small polyatomic molecules. 

We denote the molecule-fixed coordinate system by x, y, z; then the kinetic 
energy of rotation of such a molecule is given by: 

(9.35) 

where Lx, L y , and L z are the components of angular momentum along the corre­
sponding principal axes. 

In order to calculate the rotational levels of a polyatornic molecule, the various 
axes and moments of inertia must be taken into account. In the general case, the 
so-called asymmetric top molecule, all of the principal elements of the inertial tensor 

Fig. 9.9. Important molecular structural types of small polyatornic molecules. From left to 
right and from top to bottom: linear symmetric top, asymmetric top, symmetric top [distorted 
tetrahedron (example: CH3CI)]. spherical top, tetrahedral (example: CCI4), and octahedral 
(example: SF6) 
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are different from each other; an example is the H20 molecule. The solution of 
the Schr6dinger equation for such a molecule yields (21 + 1) different eigenvalues 
and eigenfunctions for each 1 value. There is, however, no general formula for 
such molecules, and each one must be analyzed individually. There is no preferred 
symmetry axis, and therefore none of the principal angular momentum components 
Lx, Ly or Lz is quanti sed. We shall treat this problem in more detail in Sect. 11.2. 
This general case of the asymmetric top will therefore not be discussed further at 
this point. 

A simpler case is that of the symmetric top molecule. This term refers to 
a molecule in which two of the principal elements of the inertial tensor are the 
same, for symmetry reasons. Examples are NH3, CH3CI, and C6H6. The solution of 
the Schr6dinger equation in this case again yields a quanti sed total angular momen­
tum according to 

ILl = It) 1(J + 1) , 1 = 0,1,2 .... (9.36) 

There is now a special symmetry direction within the molecule owing to the charge 
distribution. If we take the x-axis to be the direction whose moment of inertia is 
different from the other two, then x is this special direction, and a second quantisation 
condition holds for the component of the total angular momentum along the x-axis 
of the molecule: 

ILlx = K·It. (9.37) 

The quantum number K introduced here can take on the values 0, ±I, ... ,±1. It 
refers to the molecular axis, while the quantum number M introduced earlier refers 
to an externally determined quantisation axis (e. g. by an applied field). 

We thus now have a second quantisation condition for the angular momentum 
relative to the x-axis; cf. also Sect. 11.2. The energy of the rotational levels is then 
given by: 

Era! = Bhc1(J + 1) + ChcK2 with 

B = 8rr2:ex and C = 8:2c (~x - ~J (9.38) 

The (21 + I)-fold degeneracy is thus lifted. However, for K t= 0, the two-fold 
±IKI degeneracy remains, since K enters (9.38) quadratically. This means that the 
rotational energy is the same for +K and -K, since these two states differ only in 
the sense of their rotation. We can make further distinctions between 

- cigar-shaped molecules with ex < ey = ez (prolate spheroids). An example is 
CH3CI, where x is the direction of the axis of 3-fold symmetry between the CI 
and the C atoms. In this case, C > ° and the levels are shifted to higher energies 
with increasing K; 

- pincushion-shaped molecules, with ex > ey = ez (oblate spheroids). An 
example is the benzene molecule; here, C < ° and the levels are shifted to 
smaller energies with increasing K values. 
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With the selection rules 1J.1 = ±l and IJ.K = 0, we obtain from (9.38) the same 
spectrum for a symmetric top - insofar as it is rigid - as for the linear rotor. This can 
be intuitively understood, since changes in the rotation around the symmetry axis 
are not associated with a dipole moment. The second quantum number K leads to 
a change in the spectrum only when centrifugal stretching is taken into account. In 
the case of the rigid rotor, according to (9.38) the K dependence cancels when the 
term difference between I and I + I is taken. 

For the non-rigid symmetric top, the energy terms Era! are found to be given by 

Era! = Bhcl(l + 1) - ChcK2 - DJ12(J + 1)2 - DJKl(J + l)K - DKK4 
(9.39) 

with the stretching constant D. The selection rules for dipole radiation are IJ. I = ± 1 
and IJ.K = O. As an example, Fig. 9.10 shows a portion of the rotational spectrum 
of CH3F. The selection rules IJ. I = ± 1 and IJ. K = 0 apply here. For CH3F, fitting 
of (9.39) to the observed spectrum gives the numerical values B = 0.851204 cm- I , 

DJ = 2.00· 10-6 cm-I and B = 1.47.10-5 cm- I . 

For the intensities, the degree of degeneracy of the rotational levels is important. 
Corresponding to the quantum numbers I and K, and since K enters the energy 
expression quadratically, all the levels (except for K = 0) are doubly degenerate. 
In addition, the condition for the orientation of the angular momentum with respect 
to an externally determined quantisation axis, denoted by the quantum number M, 
must be considered; see Sect. 9.2.1. This quantum number is to be sure not required 
for the calculation of the rotational energy, for example using (9.38), but it is needed 
to characterise other properties of the states, e. g. their symmetries and degrees of 
degeneracy. 

In the case of a linear symmetric top, with K = 0, each level has a (21 + I)-fold 
degeneracy with respect to M (cf. Sect. 9.2.1). In the spherical top, in contrast, 
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Fig. 9.10. A portion of the rotational spectrum of the symmetric top molecule CH3F, shown 
schematically. The states characterised by the quantum number J (upper part) are split further 
according to the quantum number K (lower part). After Banwell 
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there is in addition to the (21 + I)-fold degeneracy with respect to an external 
quantisation axis a further (21 + I)-fold degeneracy with respect to the orientation 
of the angular momentum relative to one of the molecular axes. Each level belonging 
to a particular 1 is thus (21 + 1)2-fold degenerate. In molecules with still lower 
symmetry, the degeneracy is still more complicated. As we already discussed in 
Sect. 9.3, the M degeneracy can be lifted by an externally applied electric field 
(Stark effect), up to a two-fold degeneracy related to the sign of M. 

It naturally holds equally well for poly atomic molecules that the approximation 
of a rigid molecular framework is only roughly applicable. In reality, distortions of 
the molecule due to rotations, and more especially to vibrations, must be taken into 
account. This can be done, as in the case of a dumbbell molecule, by introducing 
correction terms. In addition to the correction term which was already discussed 
for the rigid dumbbell rotor, there is a correction term proportional to K2 for the 
symmetric top molecule, (9.38). 

Those molecules with tetrahedral symmetry occupy a special place among poly­
atomic molecules, e. g. CIt! and CCl4 (spherical top). In this case, all three moments 
of inertia with respect to the X-, y- and z-axes are equal for symmetry reasons, 
and the permanent electric dipole moment p is zero. These molecules therefore 
have no infrared active rotational spectra. For the rotational energy, we find once 
again Erat = Bhc 1( 1 + 1) with B = 8nte' For CCI4, the measured value is 
B = 5.24 cm -1. We mention here in advance that they are also inactive in Raman 
spectroscopy, since their polarisabilities are isotropic. A more detailed discussion of 
the rotational states of poly atomic molecules is to be found in Sect. 11.2. 

At the conclusion of this section on molecular rotations, we should mention that 
a rotation about the cylinder axis of linear molecules (including poly atomic linear 
molecules), i. e. streched linear symetric tops, has not been taken into consideration 
so far. The reason is that the moment of inertia about this axis is practically equal to 
zero, owing to the distribution of mass in the molecule. The rotational constant B is 
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Fig. 9.11. Bond lengths in pm and an­
gles in the planar molecule pyridine, 
derived from rotational spectra. After 
Labhart 
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therefore extremely large, larger than the binding energy of the molecule, and this 
rotation is practically unobservable spectroscopically. The quantum number K is 
zero. 

The great precision with which one can obtain structural data even for somewhat 
larger molecules is illustrated in Fig. 9.11, using as an example the pyridine molecule. 
All of the internuclear distances and the bond angles in molecules which are not too 
large can be determined precisely using spectroscopic methods. 

9.6 Some Applications of Rotational Spectroscopy 

An application of microwave spectroscopy in every-day life is the microwave oven 
in the kitchen. It makes use of the absorption of microwaves in foods in order to 
heat them. In this case, it is primarily the water molecules which are raised to high 
rotational states by absorption of microwave quanta. This additional rotational energy 
of the water molecules is passed on to their environment as heat, thus warming the 
foods. 

A very different application is the rotational spectroscopy of molecules in radio 
astrophysics. More than 80 different molecules in interstellar space have thus far 
been identified on the basis of their rotational spectra, including water, ammonia and 
formaldehyde. These discoveries have given rise to detailed speculations concerning 
the origin of biological molecules and thus of life. For such studies, one observes 
the microwave spectra in emission. The relative intensity of different rotational 
transitions of a molecule gives information about the temperatures in interstellar 
matter. 

Problems 

9.1 With which of the following molecules can one observe a pure microwave 
rotational spectrum: H2, H20, H20 2, CH4 , CH3CI, CH2Ch, NH3, N~CI, HCI, 
HBr, CS2? 

9.2 a) Find the rotational constant B and the moment of inertia as well as the bond 
length of 79Br19F, in whose spectrum there is a series of equidistant lines with a line 
spacing of 0.7143 cm- I. Which line has the greatest intensity at room temperature? 
What is the spectral position of the transition J = 9 -+ J = 10 (in wavenumbers)? 
b) How many times per second does the BrF molecule rotate in the state (i) J = 0, 
(ii) J = 1 and (iii) J = 1O? (Note that E = ~Ehu2.) 

9.3 Compute the rotational constant of the H37CI and 2D35Cl molecules, which 
differ from H35CI, with B = 10.5909 em-I, in that different isotopes are involved. 
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9.4 The transition moment between two rotational levels of a linear molecule 
depends to a good approximation only on the electric dipole moment of the molecule 
and can thus be taken to be constant for all pure rotational transitions. In the pure 
rotational spectrum of H35Cl gas, one finds equal intensities for the two lines at 
106.0 and 233.2cm-1. What is the temperature of the gas (B = 1O.6cm- I )? 

9.5 The microwave rotational spectrum of H79Br contains three consecutive lines 
at 84.544, 101.355, and 118.112 cm- I . To which transitions J" ~ J' do these 
lines belong? How large is the rotational constant B and the centrifugal stretching 
constant D in each case? Determine the bond length and the approximate vibrational 
frequency of the molecule. 

9.6 The bond lengths in the linear triatomic molecule H -C=N are 0.1063 nm for 
the CH and 0.1155 nm for the CN bonds. Compute the moment of inertia 8 and the 
rotational constant B, making use of the relative masses H = 1, C = 12 and N = 14. 

9.7 The geometry of an ammonia molecule, NH3, corresponds to that of a sym­
metric top with a bond length of 101.2 pm and an HNH angle of 106.7°. Find the 
rotational energy levels and the transition frequencies. 

Keep in mind that for the principal moment of inertia of the symmetric top of 
bond length R and bond angle e parallel to the symmetry axis, we have 

811 = 2mHR2(l - cos e) 

and perpendicular to the symmetry axis, 

9.8 Calculate the frequency ofthe valence oscillation (stretching vibration) ofHCl 
parallel to the molecular axis (B = 10.591 cm-1, D = 5.3 . 104 cm-1). How can the 
deviation from the experimental value of 2991 cm-1 be understood? 

9.9 In a space exploration programme, it is planned to investigate the CO content 
of Saturn's atmosphere. The investigations are to be carried out from a satellite 
carrying a microwave apparatus in orbit around the planet. At which frequencies 
are the first four rotational transitions to be expected for 12C160 with a bond length 
of 112.82 pm? In order to determine the relative abundance of the isotope 13C, the 
1 ~ 0 transition of the corresponding molecule must be resolved. What resolution 
must be attained by the apparatus? 

9.10 How do the rotational levels J = 2 and J = 3 split in an electric field? How 
does the spectrum of the absorption line J = 2 ~ J = 3 change due to the Stark 
effect (the selection rules are 11J = ±l and 11m] = O)? How can this result be used 
to verify the identification of the J values in rotational spectra? 
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9.11 In agreement with the laws of classical mechanics, the rigid rotor would have 
the continuous energy spectrum 

1 2 
Wrot,class = :2 6Jw 

with arbitrary values of the circular frequency w. According to quantum mechanics, 
the circular frequency does not enter the discrete energies 

Wrot,QM = hcBJ(J + 1) , 

since a sharply defined spatial description of the orbit does not exist. 
Nevertheless, calculate w(J) to get a rough intuitive feeling by setting the clas­

sical and the quantum-mechanical energies equal. Compare the wavenumber of the 
radiation from classical electrodynamics to that which results from the quantum 
theory. 



10 Vibrational Spectroscopy 

In contrast to atoms, molecules have internal degrees of freedom: their vibrational 
states can be excited, for example. The spectroscopy of these vibrations yields 
information on the structure and the bonding of the molecules. Here, as for molecular 
rotations, the fundamentals are best studied in diatomic molecules; this includes 
the coupling between vibrations and rotations (Sects. 10.1-1004). Following an 
overview of the extensive field of vibrations of larger molecules in Sect. 10.5, we 
treat applications of molecular vibrations to radiation sources and lasers in Sects. 
10.6-10.8. 

10.1 Infrared Spectroscopy 

Within molecules, the atoms can undergo vibrations around their equilibrium posi­
tions, where they are located in the electronic ground state which we have considered 
up to now. These vibrations can appear in the optical spectra of the molecules; their 
frequencies lie in the infrared spectral region. The measurement of spectra in the in­
frared is at present carried out either with the aid of a grating spectralphotometer or, 
increasingly, using Fourier spectrometers. Light sources in the infrared are thermal 
radiation sources such as the Nernst rod (85% Zr02, 15% Y203) or the so-called 
Globar; the latter is a rod of SiC, which is heated to about 1500 K by means of 
an electric current. The spectral maximum of its thermal radiation then lies near 
3000 cm -\ . In the far infrared region, gas plasma sources are superior; for example, 
the plasma in a mercury or xenon high-pressure lamp can be used. 

For the detection of infrared radiation, thermal detectors such as bolometers or 
the Golay cell, which is based on the heating of a volume of gas by absorbed IR 
radiation, may be employed. However, the most sensitive radiation receivers are 
special photoconductive detectors sensitised to the infrared range, and photodiodes 
made of suitable semiconductor materials which can be tailored to the desired wave­
length range, sensitivity, response time, and other parameters. Vibrational spectra 
are usually investigated in the form of absorption spectra; the transition probabili­
ties for spontaneous emission from excited vibrational states are very small, so that 
vibrational spectroscopy in emission is hardly practicable; it can however be carried 
out with induced emission transitions. Another method for the study of vibrational 
spectra is Raman spectroscopy, which we shall treat in Chap. 12. 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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One can readily understand why molecular vibrations lie in the infrared spectral 
region; this can be shown by a simple estimate for the HCI molecule. We assume 
that in this molecule, the H+ and Cl- ions are bound together at their equilibrium 
distance Re by electrostatic attraction according to Coulomb's law. If we increase 
the bond length to R, we create a restoring force FR which is given by: 

(10.1) 

The index e stands here for "equilibrium". 
The force constant k can be calculated in this model: assuming a pure Coulomb 

force, we find 

dF 2e2 
k- - ----:;­

- dr - 4n£oR~ 
(10.2) 

Inserting the measured equilibrium bond length Re = 1.28 . 10-10 m, we find k = 
220 Nm- 1. The eigenfrequency in this mass-and-spring model is given by 

a 1 (jJ = 2nv = - s- , 
mr 

with mr = reduced mass. This is the classical oscillator frequency. 

Inserting the numerical values, we find 

v = !!!.-.- = 5.85 . 1013 Hz 
2n 

and A = 5.12(vlm. 

(10.3) 

The measured values for HCI, k = 516Nm-1 and A = 3.5(vlm, are of the same order 
of magnitude as those resulting from our greatly simplified model. We can conclude 
from this that the basic assumptions of the model are correct, but that we must refine 
it further. 

At this point we give some typical numerical values for the force constants of 
different types of chemical bonds: 

Covalent bonds, as in H2 : 

Double bonds, as in O2: 

Triple bonds, as in N2: 

Ionic bonds, as in NaCI: 

5·102 Nm-1 

12.102 Nm- 1 

20.102 Nm- 1 

1.102 Nm- 1 

10.2 Diatomic Molecules: Harmonic Approximation 

We first consider again the vibrations of the simplest molecules, i. e. the diatomics. 
The vibrational spectrum of a diatomic molecule consists, when it is observed at 
low spectral resolution, of one line in the infrared at the frequency v, and a series 
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Fig. 10.1. The vibrational spectrum of CO in the gas phase. The fundamental vibration is at 
2143 cm- I , and the first hannonic is at 4260 cm -I; measured with a poor spectral resolution. 
After Banwell 

of "harmonics" with strongly decreasing intensities at the frequencies 2v, 3v, 4v, 
... , as shown in Fig. 10.1, taking the CO molecule as an example. Here, v is the 
frequency of the stretching vibration of the molecule. In this mode of vibration, 
the internuclear distance in the molecule changes periodically with the period of 
oscillation. If the resolution is sufficiently increased, it is seen that each of these 
lines has a characteristic substructure; they consist of a manifold of nearly equidistant 
lines. Figure 10.2 shows this structure, also for the case of CO. It is very similar to 
the rotational spectra treated in Chap. 9 and arises from the fact that the vibrating 
molecules also rotate, and that vibration and rotation are coupled. Such spectra are 
therefore called rotational-vibrational spectra or band spectra, since the lines occur 
in groups which form a "band". There are no vibrational spectra of free molecules 
without rotational structure. However, the structure does not appear when the spectral 

2060 2100 2140 2180 2220 
cm-1 _ 

----p-----+------- R---~·I 

Fig. 10.2. The fundamental vibration of the CO molecule, measured at a high spectral reso­
lution. Left and right of the centre at v = 2143.28 cm- I are the P and R branches. Evaluation 
according to (10.30--32) yields ve = 2169.7 cm- I , Xe = 0.0061, Be = 1.924 cm- I , and 
ex = 0.0091 cm- I 
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resolution is insufficient or when, as in the condensed phases, interactions with other 
molecules of the same or different types broaden the lines to such an extent that 
inhomogeneously broadened vibrational bands without resolved rotational structure 
result. 

We at first leave rotational structure out of the discussion and consider only the 
vibrations. We calculate the energy levels of the vibrations of a diatomic molecule 
initially using the dumbbell model as introduced above, in terms of a harmonic 
oscillator with a force constant k along the line connecting the two nuclei in the 
molecule. We thus approximate the potential V of the bond as a parabolic potential 
with 

k 2 
V = - (R - R) 2 e, (10.4) 

where R is the deviation from the equilibrium distance Re. The quantum-mechanical 
calculation yields the following energy levels (see Sect. 9.4 in I): 

v=0,1,2, ... [Joule] . (10.5) 

In this equation, W is the classical oscillator frequency as in (10.3). The lowest energy 
(for v = 0) is the zero-point energy (Eyib)O = fiwj2. 

If we now use terms, measured in cm -1, instead of the energy levels, we have to 
divide the levels EYib in (10.5) by he. In molecular spectroscopy, it is also usual to 
denote these vibrational terms by G v and to write 

EYib (1) Gv = -- = We V + '2 
he 

(10.6) 

The vibrational constant introduced here, which is often used in molecular spec­
troscopy, is defined by 

(10.7) 

and is the wavenumber corresponding to the classical frequency, as calculated from 
(10.3). 

In the following, we will not use this notation in terms of We, in order to avoid 
confusion with the use of W as a circular frequency; instead, we will use only the 
symbol v for the measured energies, when they are quoted in wavenumbers. The 
eigenfrequency of the harmonic oscillator, as in (10.5), will be denoted correspond­
ingly by Ve , and the wavenumber by ve. 

A new quantum number v has also been introduced in (10.5); it measures the 
quantisation of the vibrations. With increasing quantum number v = 2,3, ... , 
vibrational states with higher and higher energies are reached. For v = 0, we find 
from (10.5) the zero-point energy (EYib)O = fiwj2, which is not understandable 
in classical terms. Its existence results from the uncertainty relation for position 
and momentum (cf. I, Sect. 7.3). Even in the lowest vibrational level (v = 0), the 
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vibrational energy is thus not equal to zero, but instead it has the value lkv/2. The 
vibration frequency w = 27TVe can again be calculated as 

If -I 
W= - S . 

mr 
(10.8) 

Here, it is important to note that the vibration frequency depends on the reduced mass 
of the molecule. In molecules containing atoms of very different masses, m 1 » m2, 
mr is not very different from m2. This can be understood intuitively, since in such 
a molecule, practically only the lighter mass m2 is in motion, oscillating as if against 
a solid wall consisting of the greater mass mI. 

The energy levels in a parabolic potential according to (10.5), and the corre­
sponding occupation probabilities 11/121 of the oscillator, are shown in Fig. 10.3. 
From the figure it also becomes clear that for large vibrational quantum numbers, 
the occupation probabilities calculated from quantum mechanics become similar to 
those calculated classically. If we state in advance that the selection rule for op­
tical transitions requires that the vibrational quantum number change by one unit, 
i. e. L1 v = ± 1, then we may expect a spectrum consisting of only a single line, 
owing to the fact that the energy levels are equidistant, with the quantum energy 
Ev+1 - Ev = hVe or the wavenumber ve (cm- I ). 

As a general selection rule for the appearance of vibrational spectra, we find as 
for rotational spectra that the vibration of the molecule must be accompanied by an 
electric dipole moment, which changes in the corresponding transition. This is the 
selection rule for electric dipole radiation. 

Fig. 10.3. A potential curve for the harmonic oscillator, with 
energy levels and occupation probabilities IVrv(R - Re)12. 
After Hellwege 



198 10 Vibrational Spectroscopy 

In the case that atoms of the same type oscillate relative to one another, for 
example in a homonuclear diatomic molecule such as H2, N2, or O2, no dipole 
moment is present and there is no change in a dipole moment. In such molecules, 
vibrational or rotational-vibrational transitions are forbidden in the optical spectra. 
Their vibrational frequencies are therefore termed "optically inactive". 

Nevertheless, these frequencies can be observed. On the one hand, in the discus­
sion of the Raman effect in Chaps. 12 and 17, we shall see that they occur in Raman 
spectra owing to a change in the polarisability accompanying the vibrations. On the 
other hand, the frequencies can also be observed directly in the infrared spectra - to 
be sure, with intensities reduced by several orders of magnitude - because the dipole­
free molecules usually have electric moments of higher orders. The path length in 
the absorbing gas must then be made accordingly long, since the corresponding 
transitions show considerably reduced transition probabilities. 

10.3 Diatomic Molecules. The Anharmonic Oscillator 

In reality, the potential curve of a diatomic molecule is not parabolic, as we assumed 
in the previous section. The true potential must be asymmetric with respect to the 
equilibrium distance Re, as one can readily see. A reduction of the internuclear 
distance relative to Re leads namely to an increase in the repulsion between the 
two atoms, since the attractive Coulomb potential is superposed with a repulsive 
potential of shorter range, which prevents the two atoms from penetrating each other 
and produces a stable equilibrium distance (see Fig. 1.2). The potential curve thus 
becomes steeper for R < Re. On the other hand, an increase of the internuclear 
distance leads to a weakening of the chemical bond and finally to dissociation. In 
this range, i. e. for R > Re , the potential curve becomes flatter. A more realistic 
potential curve than that of a harmonic oscillator is shown in Fig. 10.4, again using 
HCI as an example. 

An often-used empirical approach which agrees well with experience is the 
so-called Morse potential: 

(10.9) 

Here, De is the dissociation energy and a is a quantity which is characteristic of the 
molecule under consideration: 

It depends on the reduced mass and the harmonic oscillator frequency. 
The parameter a in the Morse potential thus contains the wavenumber corre­

sponding to a harmonic oscillator, as well as the dissociation energy and the reduced 
mass, all quantities specific to the molecule. 

In the neighbourhood of the minimum in the potential curve, the deviations of 
the Morse potential from a harmonic (parabolic) potential are in fact small, and the 
harmonic oscillator is a good approximation in this region. For R = Re, V = 0, 
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Fig. 10.4. The Morse potential curve for the Hel molecule. A harmonic potential is drawn 
in as a dashed curve for comparison. The dissociation energy from the potential minimum is 
called De 

and for R -+ 00, V is equal to De. At small internuclear distances, R -+ 0, the 
approximate potential of (10.9) is no longer valid. 

At large deviations, R > Re, the Schrodinger equation must be solved using the 
Morse potential for the potential energy, if one wishes to calculate the anharmonic 
oscillator. This is possible in closed form. 

In this way, we arrive at the energy terms of the anharmonic oscillator; cf. 
Fig. 10.5. To a good approximation, they are given by: 

(10.10) 

or 

G v = ve(v + ~) - xeve(v + ~)2 . 

In fact, one often uses a generalisation of (10.10) for the evaluation of experimental 
data; it contains further terms with higher powers of (v + ~), in particular the term 

+Yenwe(v + ~)3. 
We note that here the symbol We is used for the circular frequency 2nve, and 

it should not be confused with the constant We as frequently used in molecular 
spectroscopy; compare (10.6) and (10.7). 

In (10.10), We = 2nve is thus the value of the frequency of vibration, which 
we shall soon define more precisely, and Xe is the so-called anharmonicity constant, 
which is defined by the expression 

nwe 
Xe = --. 

4De 
(10.11) 

The constant X e, which is the quotient of the (classical) vibrational energy and four 
times the dissociation energy, is always positive and is usually of order 0.01. 
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Fig. 10.5. The energy levels of an anharmonic oscillator. The three arrows correspond to 
the fundamental frequency and the first two harmonics in the vibrational spectrum. One can 
readily recognise the increase of the average internuclear distance with increasing quantum 
number v 

Strictly speaking, still higher tenns should be included in (10.10), as we men­
tioned above; they contain higher powers of (v + ~). These are, however, very small 
corrections and will be neglected in the following. 

The meaning of We can be seen from a comparison of (10.10) with the tenns of 
the harmonic oscillator, (10.5). We can rewrite (10.10) in the fonn: 

(10.12) 

and see by comparing with (10.5) that we need to replace the vibration frequency W 

in (10.5) by 

(10.13) 

when we make the transition from the harmonic to the anharmonic oscillator. In the 
anharmonic oscillator, the vibration frequency as in (10.13) decreases with increasing 
quantum number v. In the hypothetical (because of the zero-point oscillation) case 
Ev = 0, i. e. v = -1/2, when the molecule would be in a state of no vibration and 
at rest, we would have 

W = We' (10.14) 

The vibration freqeuncy We of the harmonic oscillator is thus a purely theoretical 
quantity, which is equal to the hypothetical vibration frequency of the anharmonic 
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oscillator without zero-point oscillations, i.e. with an infinitely small amplitude. The 
index e means "equilibrium" here, too. 

The highest vibration frequency in reality is that at v = 0; it is equal to: 

Wv=o = We (1 - ~) . (10.15) 

The zero-point energy of the anharmonic oscillator is therefore slightly smaller 
than that of the harmonic oscillator. Equation (10.10) thus describes the increasingly 
closer approach of the energy levels with increasing quantum number v, in agreement 
with the experimental evidence. The highest discrete bound level is at the energy De. 
Above De, there are only continuum states, and the molecule is dissociated. This 
region is called the dissociation-limit continuum. 

The average internuclear distance of an anharmonic oscillator increases with 
increasing vibrational quantum number v, in contrast to the case of the harmonic 
oscillator, due to the asymmetric potential curve. This is clear from Figs. 10.5 
and 10.6. This change in internuclear distance is also the cause of thermal expansion 
in solid materials: at higher temperatures the molecular oscillators are on the average 
in vibrational states with higher quantum numbers v, i. e. with larger intermolecular 
distances R. 

30000 

20000 

10000 

OL---~~------~------~-------
1.0 2.0 3.0 

R(Al-

Fig. 10.6. The vibrational levels of the H2 molecule and the potential curve which results 
from them. The dashed curve is the corresponding Morse potential. The continuum region 
above the dissociation energy is shaded. After Herzberg 
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As Fig. 10.5 illustrates schematically, it is necessary in quoting the dissociation 
energy to distinguish whether it is measured from the minimum of the potential 
curve or from the lowest term, with v = O. We shall denote these two quantities by 
the symbols De and Do. The values for the H2 molecule can be read off from the 
experimental curve in Fig. 10.6. 

We give a few numerical examples for clarification: in the 1 H35Cl molecule, the 
wavenumber of the stretch vibration is found to be v = 2900 cm-1 and Xe = 0.0174. 
Using (10.10), we calculate from this De = 5.3 eV. This quantity should be larger 
than the measured dissociation energy Do by an amount equal to the zero-point 
energy, here 0.2 eV; compare Fig. 10.5. The experimental value is Do = 4.43 eV. 
The agreement is thus not very good. The total number of discrete vibrational levels 
between the zero point energy and the energy value Do gives the largest possible 
quantum number Vmax here, with 

(10.16) 

yielding Vmax = 22, as compared to 14 if a harmonic oscillator were assumed, i. e. 
if Xe = O. 

Table 10.1 contains some further examples of measured values for diatomic 
molecules. 

Since the experimentally determined dissociation energy of a molecule, Do, 
measures the energy difference between the dissociation limit and the zero-point 

Table 10.1. Fundamental vibrational constants, force constants k, and dissociation energies 
Do of some diatomic molecules. After Engelke 

Molecule V [em-I] k [Nm-1] Do 
(v = 0 ---+ v = I trans.) [kcal/mol] 

H2 4159.2 5.2.102 104 
D2 2990.3 5.3 104 
HF 3958.4 8.8 135 
HCl 2885.6 4.8 103 
HBr 2559.3 3.8 87 
HI 2230.0 2.9 71 
CO 2143.3 18.7 257 
NO 1876.0 15.5 150 
F2 892.0 4.5 38 
Cl2 556.9 3.2 58 
Br2 321.0 2.4 46 
12 231.4 1.7 36 
02 1556.3 11.4 119 

N2 2330.7 22.6 227 
Li2 246.3 1.3 26 
Na2 157.8 1.7 18 
NaCI 378.0 1.2 98 
KCI 278.0 0.8 101 
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energy of the molecule, the dissociation energies of molecules with different isotopic 
compositions should differ by an amount equal to the difference in the zero-point 
energies, if - as is true to a good approximation - the energy of the chemical bonds 
depends only weakly or indetectably on the isotopic mass. 

In this connection, the measured values for the hydrogen molecule are interesting. 
The numerical value for the dissociation energy of heavy hydrogen, 2H2 or D2, is 
4.55 eV and is therefore 0.077 eV or 621 em-I larger than that for the light isotope 
1 H2. This difference is close to the difference of the zero-point energies: 

!voeH2 ) - !voeH2 ) , 

where Vo refers to the quantum energy of the valence vibration of the hydrogen 
molecule. The measured values for the lowest vibrational transition, i. e. for the 
transition v = 0 -+ v = 1, are 4159cm-1 for IH2 and 2990 em-I for 2H2. The 
difference of these vibrational energies should be equal to twice the difference of 
their zero-point energies. In fact, the calculated numerical value of 584 em -I lies 
close to the experimental value quoted above, 621 em-I. This agreement can in fact 
be taken as experimental proof for the existence of zero-point oscillations if the 
assumption is made that the dissociation energy resulting from the potential curve, 
De, is the same for light and heavy hydrogen. In the case of heavy hydrogen, an 
amount of energy Do which is larger by the difference of the zero-point energies 
must be applied in order to reach the dissociation limit, if the lowest possible ground 
state of the molecules lies at an energy which is (lj2)hvo above the minimum of the 
potential curves. 

A modem method for separating molecules with different isotopic compositions 
is based on this difference in dissociation energies of isotopically different molecules 
due to their different zero-point energies. The molecules to be separated are irra­
diated with intense light from a laser whose quantum energy has been chosen to 
be sufficiently high to cause dissociation of one type of molecule in the isotopic 
mixture, but not the other(s). 

From the energy terms we can derive the absorption spectrum of an anharmonic 
oscillator by applying the selection rules. The selection rule .1v = ±l for the har­
monic oscillator must be modified somewhat in the case of the anharmonic oscillator; 
in addition to the singly-excited vibrations, harmonics can also be produced with 
a reduced transition probability. We have 

.1v = ±l, ±2, ±3 ... , (10.17) 

where the relative intensities are roughly in the ratios 1 : Xe : x~ : x~ ... 
Since Xe is a small number [cf. the values in Table 10.1, from which Xe may be 

calculated using (10.11)], the intensities decrease rapidly in the order shown. These 
are the "harmonics" which were mentioned earlier; compare also Fig. 10.1. The 
anharmonicity of the molecular vibrations is thus responsible for their occurrence. 

The quantum energies of the transitions with .1v = ±l are now no longer 
the same for all values of v, i. e. between all the vibrational terms in the potential 
curve; instead, they decrease with increasing v. In the harmonic approximation, 
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the vibrational spectrum (without harmonics) contained only a single line Ve , but 
with an anharmonic potential, we obtain a series of lines of decreasing intensity, in 
agreement with observations; it more or less converges for very large v. 

The transitions from the ground state with v = 0 are by far the most important, 
since - as will be explained below - the higher vibrational levels are hardly occupied 
in thermal equilibrium and therefore play no significant role as initial states for 
absorption processes. 

The energy of the most intense vibrational line from v = 0 to v = 1 is, from 
(10.10), 

and for the wavenumber, we find by substitution 

L1E 
VV+--O = - = vve[l - xe(v + 1)] 

he 

and therefore 

(10.18) 

(10.19) 

The absorption transitions with L1v = 2 and L1v = 3, which we have called "har­
monics", are correspondingly given by: 

and 

A numerical example is given in Table 10.2. 

v V 

0-+ 1 VI = 2885.9 cm- I 

0-+2 ih = 5668.0cm-1 

0-+3 V3 = 8347.0cm-1 

0-+4 V4 = 10 923.5 cm- I 

Table 10.2. Vibrational tranSItIons for I H35Cl, as 
described by (10.19) with ve = 2988.9 cm- I and 
Xe = 0.0174cm-1 

Still higher harmonics have such small transition probabilities that they cannot 
be observed, in general. 

The numerical value for the first vibrational transition, VI = VI+--O, thus differs 
from the quantity ve which we introduced above for the harmonic oscillator. For 
H2, one finds for example VI = 4159.2cm- l , and from it the calculated quantity 
ve = 4395 cm-1 with Xe = 0.0168. 
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In the following, we use numbers as indices on the frequency v or the wavenum­
ber li only to distinguish different vibrations of a molecule; this is necessary in 
polyatomic molecules, which have more than one type of vibration. Transitions 
between different quantum numbers v" and Vi of a vibration will be denoted by 
a parenthesis, e. g. li( Vi, v"). The symbol lie will be used in the anharmonic oscillator 
(as already mentioned) for the calculated quantity obtained from the application of 
(l 0.19) to the observed vibrational transitions; it cannot be measured directly. 

The occupation of the energy levels Ev having different vibrational quan­
tum numbers v is, in thermal equilibrium, proportional to the Boltzmann factor 
e- Ev / kT and thus depends on the temperature. Since room temperature corresponds 
to 200 cm -I as calculated from kT/ hc, the occupation factor for HCl molecules, 
with a vibrational quantum energy of 2886 cm -\, is very small at this temperature. 
Therefore, most HCl molecules at room temperature will be in the ground state, with 
v = O. For this reason, the absorption spectrum consists for the most part only of 
the transition from v = 0 to v = 1. It is usual to denote this transition by 1 ~ 0, 
i. e. to write the higher level first. In order to observe the absorption transitions from 
levels with higher vibrational quantum numbers v, it is necessary either to raise the 
temperature of the molecules or to excite them into a higher quantum state directly 
by irradiation with light or by a chemical reaction. In this case, one can often also 
observe emission transitions between states having higher quantum numbers. How­
ever, thermal equilibrium is for the most part quickly reestablished via radiationless 
processes. 

10.4 Rotational-Vibrational Spectra of Diatomic Molecules. 
The Rotating Oscillator 
and the Rotational Structure of the Bands 

Vibrational spectra of molecules have, as we mentioned in Sect. 10.1, a clear-cut 
rotational structure, i. e. they consist of bands with many individual lines at a spacing 
of the order of a few cm- I , when the spectrum from the gas phase is analyzed with 
a sufficient spectral resolution. This rotational structure is based on the fact that 
a rotational transition occurs at the same time as the vibrational transition. Now that 
we have studied the (hypothetical) non-rotating oscillator in Sect. 10.3 - it represents 
a relatively good approximation when the spectral resolution is not very high - we 
will take up the rotating oscillator in this section. It corresponds to the real behaviour 
of molecules in the gas phase. We will again explain the basic facts using a diatomic 
molecule as an example. A typical spectrum, that of the HBr molecule, is shown in 
Fig. 10.7. 

The coupling of the vibrational and rotational motions in a molecule can be 
understood in terms of classical physics. If, however, we first ignore this coupling 
and consider the excitation of a diatomic molecule in the first approximation to be 
simply the sum of the excitation of a harmonic oscillator and of a rigid rotor, then in 
the simplest case we obtain the energy levels 
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Fig. 10.7. A band in the rotational-vibrational spectrum of the HBr molecule, showing the 
term scheme and the transitions. The origin of the band with the wavenumber v (v" = 0, 
Vi = 1, J' = 1" = 0) is denoted here by Va. It is also called the "zero line". This line is not 
observed, since the Q branch is not allowed here. The spectra are observed in absorption. In 
thermal equilibrium, in general only the lowest vibrational state with v" = 0 is occupied 

E(v,1) = Evib(V) + E rot(1) 

= w(v + ~) + BhcJ(J + 1) 
(10.20) 

with the selection rules L1 v = ± 1 and L1 J = ± 1. 
In the rotational-vibrational spectrum, transitions are naturally also allowed in 

which only the rotational quantum number changes, L1v = 0, L1J = ±l. These 
are the pure rotational transitions treated in Chap. 9. In contrast, in most cases 
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(e. g. HBr, see Fig. 10.7) vibrational transitions without a change in the rotational 
quantum number, .1v = ±1, .11 = 0, are not allowed; that is, usually a change in 
the vibrational state must be accompanied by a change in the rotational state. We 
shall not derive the reaSOn for this here. 

However, this fact can be understood in an intuitive manner: a vibrational tran­
sition corresponds to a sudden change of the bond length. The classical analogy is 
an ice skater who changes his rotational velocity by extending or retracting his arms 
while performing a pirouette. One can imagine a change in the rotational state of 
a molecule during a vibrational transition in just this manner - the selection rule 
.1 I = 0 is valid only when the angular momentum of the molecule is parallel to its 
cylinder axis. 

These rotational and vibrational terms are illustrated schematically in Fig. 10.8 
for a Morse potential. The corresponding transitions are shown in Fig. 10.7 for a por­
tion of a typical rotational-vibrational spectrum. One observes different "branches" 
in the spectrum of a vibrational transition (v+ 1) +- v, i. e. in a band. In the simplified 
case of a harmonic oscillator, these are 

- the P branch, with I' - I" = -1. With l' = 1+1 and 1" = I, we have 
v = 171<-0 - 2B(J + 1), where 171<-0 denotes the pure vibrational transition 
without rotation (forbidden here). Then the lines of the P branch have v < VI <-0, 

E 

~gwv"=o 

R 

Fig. 10.S. Rotational-vibrational levels in the electronic ground state and in an excited elec­
tronic state. Only the lowest-lying rotational and vibrational terms are drawn. Transitions 
between the levels in the electronic ground state give rise to the rotational-vibrational spec­
trum. Transitions between the levels of different electronic states contribute to the electronic 
band spectrum; see Chap. 14 
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and the line spacings relative to V1 <-0 are 2B, 4B, ... as in the spectrum of 
a rigid rotor; 

- the R branch, with J' - J" = +1. With l' = J + 1 and 1" = J, we find 
v = VI <-0 + 2B(J + 1), i. e. v> VI <-0, and the line spacings relative to VI <-0 are 
likewise 2B, 4B, ... ; 

- in some cases, depending on the molecular system, also a Q branch, with £1 J = O. 
If the rotational constant B is the same for both the vibrational levels which are 
involved in the transition, the Q branch (when it is allowed) consists of a single 
line at VI..-O, the so-called band origin; otherwise, it contains a series of closely­
spaced, almost equidistant lines. In many cases, depending on symmetry, for 
example HBr (Fig. 10.7), the Q branch is not allowed. 

The line spacings in the rotational-vibrational spectrum again yield the rota­
tional constant B, as we have already seen in Chap. 9 for pure rotational spectra. 
This constant can thus be determined by infrared absorption without resorting to 
microwave spectroscopy. The line intensities within the various branches are, in the 
first instance, determined by the occupation numbers of the rotational levels; cf. 
Sect. 9.3. Again, we remind the reader that the rotational quanta are usually very 
small compared to the thermal energy kT and therefore a Boltzmann distribution 
according to their degrees of degeneracy can be expected for the occupations of the 
rotational levels. On the other hand, as mentioned already, in an absorption transition 
from the v = 0 to the v = 1 state, the upper vibrational level with its rotational 
sublevels is nearly unoccupied in thermal equilibrium owing to the large magnitude 
of the vibrational energy quanta. The thermal energy kT at room temperature corre­
sponds to about 200 cm -I, as mentioned above, while typical vibrational quanta are 
of the order of 1000 cm- I . The Boltzmann factor NIl N = e- i1E/ kT is thus much 
less than 1. The intensities in the absorption spectrum are then determined by the 
degeneracy factors, which increase with increasing J, and by the decreasing thermal 
occupation probabilities of the initial-state rotational levels of the v = 0 state with 
increasing J. The same is true of the transitions to v = 2, v = 3, etc. in the case of 
the anharmonic oscillator. 

When the rotational-vibrational spectrum is measured at a sufficiently high spec­
tral resolution, one finds that the lines within the branches are not exactly equidistant. 
The spacings become smaller with increasing distance from the origin at VI..-O. This 
is due to the coupling between vibrations and rotations. The two motions are in 
fact not mutually independent; one cannot simply add the energies of the vibrational 
and rotational transitions, but instead must take the interaction of the two types of 
nuclear motion into account by introducing into the energy or term values mixed 
terms depending on both v and J. 

As we have already seen, the vibrations of a molecule take place on a much 
faster time scale than its rotations. During a single rotation, a molecule vibrates 
several thousand times. The rotor therefore sees an internuclear distance (R) which 
is averaged over many vibrations. In the case of the anharmonic oscillator, the 
average internuclear distance (R) increases with increasing quantum number, v, i. e. 
with increasing vibrational excitation (see Sect. 10.3). The moment of inertia then 
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also increases and the rotational constant B becomes smaller. In addition to the 
rotational stretching of the molecule which we have already treated in Sect. 10.3, 
there is thus a vibrational stretching. 

This leads to the following relation for the time-averaged moment of inertia: 

(B(v + 1)) > (B(v)) > Be, (10.21) 

where Be is the moment of inertia at the equilibrium bond length Re. Correspond­
ingly, the rotational constant B becomes dependent on the vibrational state v, so 
that we should write Bv to be more precise. We must thus differentiate between the 
rotational constants Be, Bo, and Bv. Thus Bv for v > 0 is smaller than the rotational 
constant Bo for the ground state with v = o. 

This behaviour is described by the formula 

Bv = Be - a(v +~) (+ terms of higher order) (10.22) 

Here, Be means the rotational constant in the hypothetical state without vibrations, 
and a is a molecule-specific positive number, with a « Be. Due to the zero-point 
energy, from (10.22) we find for the quantity Bo in the vibrational state with quantum 
number v = 0: 

a 
Bo = Be -"2. (10.23) 

In the same way, the stretching of the molecule by centrifugal force depends in 
the anharmonic oscillator on the vibrational quantum number v. The stretching 
constant D in the equilibrium state without vibrations, which was introduced in 
(9.24) and (9.25), thus becomes 

(10.24) 

with a correction factor 13 « De. The rotational energy terms are thus changed by 
the vibrations. We note here that the factor 13 should not be confused with other 
quantities denoted by 13, for example in Sects. 3.2 and 3.7. 

Taking into account the anharmonicity, i. e. using a Morse potential, and con­
sidering (10.22) and (10.23), we now obtain an expression for the rotational energy 
which has been improved as compared to (10.20): 

Ev.J = nwe(v + ~) - xenwe(v + ~)2 + hcBvJ(J + 1) 

- hcDvJ2(J + 1)2 

and for the terms, measured in the unit cm -1, 

Tv.J = Gv + Fv.J 

= ve(v + ~) - xeve(v + ~)2 + BvJ(J + 1) - Dv[J(J + 1)]2 

= ve(v + ~) - xeve(v + ~)2 + BeJ(J + 1) - De[J(J + l)f 
- aJ(J + l)(v + ~) - j3[J(J + l)f(v + ~) . 

(10.25) 

(10.26) 

(10.27) 
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In these expressions, we have omitted correction terms of the form (v + 4)n with 
powers n > 2. A spectrum containing the "corrections" according to (10.26) and 
(10.27) and a term scheme which leaves them out for simplicity are shown in 
Fig. 10.7. When f3 « a, the last term in (10.25), and correspondingly in (10.26) and 
(10.27), can be neglected in general. 

The rotational-vibrational spectrum corresponds to transitions between the terms 
Ev,] or Tv,]. The condition for it to be observable is again that the molecule be polar. 
Then for the observed transitions we have 

v = ~[E(v', I') - E(v", 1")], with the convention 
he 

v' > v". (10.28) 

Leaving out the stretching terms in (10.25), we find 

v = ve(v' - v") - xeve[(v' + 4)2 - (v" + 4)2] 

+ Bv,I'(I' + 1) - Bv"I"(J" + 1) . 

the selection rules for electric dipole radiation are given by: 

f1I = ±1 , f1v = 0, ±1, ±2 ... , 

(10.29) 

where for the harmonic oscillator, f1 v > 1 is not allowed and Xe = O. For f1 v = 0, we 
obtain the pure rotational spectrum in a vibrational state with the quantum number 
Vi = v". 

Owing to the selection rule f1I = ±1, there are two branches in the rotational­
vibrational spectrum. The P branch refers, as above, to the series of transitions with 
f1 I = -I, and the R branch to the series with f1 I = + 1. 

The spectral lines in the P branch (1' = 1,1"= 1+ 1) have the wavenumbers 

Vp = v(v', v") - 2Bv,,(1 + 1) - (Bv" - Bvl ) 1(1 + 1) (10.30) 

and those in the R branch (1' = I + I, 1" = I) are given by 

VR = v(v', v") + 2Bv,,(1 + 1) - (Bv" - Bv,)(1 + 1)(1 + 2) . (10.31) 

The spectral lines of a band in the P branch therefore lie on the long-wavelength 
side of the pure vibrational line v( v', v"), the so-called zero line, which itself cannot 
be observed, while those in the R branch are on its short-wavelength side. The lines 
are no longer equidistant, due to the last terms in (10.30) and (10.31). The lines 
in the P branch move further apart with increasing 1, while those in the R branch 
converge. This makes the structure of the spectrum in Fig. 10.7 understandable. 

The zero line, v(v', v"), corresponds to the transition with f1I = 0, which is 
usually forbidden; it is the purely vibrational transition. It can thus not be observed 
directly, for the most part. See also Fig. 10.7. 

For this line (i. e. for the Q branch, when it is observable), we find 

(10.32) 
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The first tenn in (10.32) yields the wavenumbers of the fundamental vibration and 
the hannonics Llv > 1, which occur because of anhannonicity, as multiples of the 
wavenumber (ve - Xe ve). The second, much smaller tenn causes the hannonics to 
move closer together; compare Fig. 10.5. The wavenumbers of the purely vibrational 
lines have to be derived from the rotational-vibrational spectrum by applying (10.30) 
and (10.31). 

Experimentally, one can then determine three quantities which are character­
istic of the molecule under investigation: the pure vibration with the wavenumber 
v(v', v"), and the two rotational constants Bv' and Bv" (and from them, Be and a). 
This is accomplished by measuring as many lines as possible in the spectrum and 
then finding the best fit to equations (10.30) and (10.31). As an example, we give 
the data derived from the spectrum of the CO molecule: 

Be = 1.924cm- l , Xe = 0.0061, ve = 2169.2cm- l , a = 0.0091 cm- 1 ; 

see also Fig. 10.2. 
As a further example of the analysis of the spectra, we give some experimental 

data for HCI. In this case, for the vibrational frequency with hannonics, the following 
values were measured: 

v(l *- 0) = ve(1 - 2xe) = 2885.9 cm-I , 

v(2 *- 0) = 2ve(1 - 3xe) = 5668.0cm-1 , 

v(3 *- 0) = 3ve(1 - 4xe) = 8347.0cm-1 . 

From these data, we calculate Xe = 0.017. 
From the measured values 

a -I 
Bo = Be - 2" = 1O.440cm and 

3a -I 
BJ = Be -:2 = 1O.137cm , 

it follows that Be = 10.591 cm-I and a = 0.303 cm- I. The eigenfrequency ve is 
found to be 2989 cm-I. 

From Bo and Be, the internuclear distance R can furthermore be detennined, as 
shown in Sect. 9.2; and from Ve, the force constant and the vibrational frequency Ve 

of the molecule can be derived. In this case, one obtains Ro = 1.2838· 10-8 cm 
for the internuclear distance in the v = 0 state, and the calculated quantity Re = 
1.2746· 10-10 m in the hypothetical state without zero-point oscillation. The force 
constant k is found to be 4.8 . 102 Nm-I, and the period of vibration TI = v-I = 
(cve)-I = 1.17.10-14 s. 

These are the measured data which infrared spectroscopy gives us for the inves­
tigation of diatomic molecules. From the force constants and the anharmonicities, 
one can detennine the shape of the potential curve and from it, can reach conclusions 
about chemical bonding in the molecule. 

Strictly speaking, some additional influences on the energies of the levels and 
the transitions should be taken into account: the effect of the centrifugal stretching 
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on the rotational constant B, its effect in tum on the vibrational potential, and 
the Corio lis coupling. These effects can, however, often be neglected at attainable 
spectral resolutions. We leave their treatment to the specialised literature. 

10.5 The Vibrational Spectra of Poly atomic Molecules 

Although diatomic molecules have only one vibrational degree of freedom and 
can oscillate only in the direction parallel to their bonding axes - hence the name 
valence or stretching vibration - molecules with more than two atoms have several 
vibrational degrees of freedom. In addition to stretching vibrations, they can undergo 
vibrations in which the bonding angles change: so-called bending vibrations. In 
order to describe their behaviour, we use the concept of normal modes of vibration, 
which we shall discuss in the following. However, we will need to make only minor 
extensions of our previous considerations in order to understand the vibrational 
spectra of polyatomic molecules. 

The vibrations of a system of elastically coupled point masses can be described 
in terms of a superposition of the allowed normal modes of the system, as one learns 
from classical mechanics. The simplest case is that of two identical pendulums 
coupled by a spring. For this system, we find two normal modes with frequencies 
VI and V2, the symmetric and the anti symmetric vibrations (Fig. 10.9), and these 
normal modes can be observed as spectral lines of the system by Fourier analysis 
of its motions. Spectroscopy does exactly this: the frequency analysis of a time­
dependent behaviour. 

The normal modes are defined as motions in which all the point masses of the 
system move with the same frequency and with a fixed phase relation. The motion 
of the whole system is a pure harmonic oscillation. One normal mode can be excited 
without exciting any others, i. e. they can be completely decoupled from each other, 
as long as the amplitudes are kept small and nonlinearities are thus avoided. 

The number f of the normal modes of a system is equal to the number of 
its degrees of freedom, which are not already occupied by other forms of motion. 
A system of N point masses initially has 3N degrees of freedom. If the masses are 
coupled together to form a molecule, then there are 3 degrees of freedom for the 
translational motion (motions of the centre of gravity of the whole molecule) and 
3 degrees of freedom for rotations (only 2 in the case of a linear molecule, because 

Fig. 10.9. The fundamental oscillations of two coupled pendulums: symmetric and antisym­
metric oscillations (normal modes) 
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the rotation about the cylinder axis does not contribute); we thus have for the internal 
motions of the molecule 

f = 3N-6 (10.33) 

as the number of degrees of freedom, or, for a linear molecule, f = 3N - 5. 
In the case of a diatomic molecule, we find f = 3 . 2 - 5 = 1; there is only 

one normal mode, namely the stretching vibration. For a linear triatomic molecule, 
we have f = 9 - 5 = 4. As an example, we consider the linear C02 molecule. 
Here, the vibrations can be described as the superpositions of the four normal modes 
sketched in Fig. 10.10, with the eigenfrequencies VI, V2, and V3. Just these vibrations 
are in fact observed. The vibrational patterns are shown in Fig. 10.10. One of the 
vibrations, the bending mode, is doubly degenerate and is therefore to be counted 
twice, since the bending can occur within the plane of the figure or perpendicular to it. 
The relative frequencies of these vibrations can be estimated: the highest frequency, 
corresponding to V3 = 2349 cm- I , is that of the asymmetric stretching vibration, 
because it stretches the "springs" most strongly. The symmetric stretching vibration 
has a wavenumber of VI = 1337 cm- I , and the bending mode has V2 = 667 cm- I . 

In general, the frequencies of stretching modes are higher than those of bending 
modes. 

However, for the C02 molecule we can readily see that not all the vibrational 
modes can be observed in infrared absorption, i. e. not all are infrared active. For 
infrared activity, a periodic change of the electric dipole moment is required, as 
we have seen. The symmetric CO2 molecule has no electric dipole moment in its 
equilibrium state. When it oscillates in the symmetric stretching mode VI, its sym­
metry is maintained and no dipole moment is produced. In contrast, the asymmetric 
stretching mode V3 and the bending mode V2 are infrared active. The dipole moment 
which is induced in the V2 mode is perpendicular to that induced in the V3 mode and 
thus also perpendicular to the cylinder axis of the molecule, so the corresponding 
rotational-vibrational bands are referred to as the perpendicular band (for V2) and 
the parallel band (for V3). 

v, 

Fig. 10.10. The normal modes of the C02 and H20 molecules. The following wavenumbers 
correspond to the vibrations: C02 VI: 1337 em-I; V2: 667 em-I; V3: 2349 em-I. H20 vI: 
3657 em-I; V2: 1595 em-I; V3: 3756 em-I 
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As an example of a nonlinear triatomic molecule, Fig. 10.10 also shows the 
normal modes of the water molecule, H20. Here, again, the frequency of the bending 
mode V2 is lower than those of the two other vibrational modes, in which the force 
constants are more strongly loaded. In the normal modes VI and V2, the axis of 
two-fold symmetry through the centre of the molecule is maintained; both modes 
are thus referred to as symmetric, in contrast to the V3 mode. One can readily see 
by examining Fig. 10.10 that the dipole moment of the H20 molecule changes 
periodically in all three normal mode of vibration; they are thus all infrared active. 
Due to the presence ofthese molecules in the air, the H20 and CO2 lines are observed 
in every infrared spectrum, unless the optical path of the infrared spectrometer is 
evacuated. 

An additional example of an experimentally observed spectrum is given by 
Fig. 10.11, which shows a portion of the infrared spectrum of the HCN molecule. 
One can see the two rotational-vibrational bands belonging to the two normal mode 
vibrations V2 and V3, as well as a harmonic band at 2V2. The selection rules are 
again L1 v = ± 1 and L1 J = ± 1 for the stretching vibrations of linear molecules, but 
L1 J = ± 1 and L1 J = 0 for the bending mode vibrations of linear molecules and for 
the vibrational bands of symmetric top molecules, such as CH3I, NH3, or C6H6. 

One can also readily understand that no change in the rotational state of the 
molecule occurs along with the normal vibrational modes just mentioned. We thus 
observe allowed transitions in which only the vibrational quantum number v changes, 
i. e. the spectrum contains not only the P and R branches, but also the (narrow) 
Q branch. The Q branch in a rotational-vibrational spectrum, as mentioned in 
Sect. 10.4, refers to all of the transitions between two vibrational states Vi and v" 
in which the rotational quantum number J remains unchanged. If the spacing of 
the rotational levels were the same in both vibrational states, this would be a single 

) 
600 800 1300 1500 3200 3600 cm-1 

Fig. 10.11. A portion of the rotational-vibrational spectrum of the HeN molecule. The V2 

vibration is a bending mode. Since it is a so-called perpendicular band, P, Q and R branches 
are allowed. For the 2V2 harmonic band and the parallel band V3 (stretching mode), only the 
P and R branches are allowed for reasons of symmetry. After Steinfeld 
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Fig. 10.12. A portion of the rotational-vibrational spectrum of C02. Upper part: The band 
of the bending mode, ])2; Lower part: the band of the asymmetric stretching mode, ])3 as 
examples for the differing selection rules: in the upper spectrum, there are P, Q and R 
branches; in the lower spectrum, the Q branch is forbidden. The quantum numbers J for 
the rotational levels are not given here. In Sect. 12.4, we explain that, due to the inversion 
symmetry of the C02 molecule and the nuclear spin I = 0 of the 0 atom, every second 
rotational level is suppressed. The line spacing is therefore 4B instead of the usual 2B. If 
the inversion symmetry is destroyed by substituting one of the 160 atoms by a heavier 180 
isotope (i. e. in the molecule J60-C-180), one observes that the spacing of the rotational 
lines is halved 

line. In fact, the rotational constants BvI and BVff, and therefore the rotational level 
spacings, differ somewhat from each other; for this reason, the Q branch consists of 
a number of closely-spaced lines. Figure 10.12 shows the rotational-vibrational band 
of the bending mode (V2 = 667 cm -1) of CO2 as an example of a band with a Q 
branch, in contrast to the stretching mode (V3 = 2349 cm -1), where the Q branch, 
with L\ J = 0, is forbidden. 

In the case of the symmetric top molecules, the quantum number K also becomes 
important; see Sects. 9.6 and 11.2. The selection rules, which we give here without 
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Fig. 10.13. A section of the rotational-vibrational spectrum of the CH31 molecule. Besides 
the fundamental vibrations VI to V6, the following combinations occur: at 1770 cm-1 (2V6 
and V2 + V3), at 2130 cm- 1 (V2 + V6), at 2320 cm- 1 (V5 + V6), and at 2480 cm-1 (2V2) 

derivation, are 11K = 0 for parallel bands and 11K = ±1 for perpendicular bands. 
These selection rules can also be understood intuitively: for vibrations parallel to 
the molecular axis, the projection of the angular momentum on this axis does not 
change during a vibration, i. e. 11K = O. 

Of course, every vibrational transition is surrounded by its accompanying ro­
tational transitions, i. e. the whole band spectrum, as can be clearly seen in Figs. 
10.11 and 10.12. Naturally, polyatomic molecules can also exhibit anharmonicity; 
accordingly, as in the diatomic molecules, one observes harmonics at 2v, 3v, etc. 



10.5 Polyatomic Molecules 217 

with strongly decreasing intensities. In addition, the deviation from purely harmonic 
behaviour leads to combined vibrations, such as VI + v2, VI - v2, or 2vI + v2. Some 
examples in the case of the CH3I molecule are shown in Fig. 10.13. In molecules 
with several normal mode vibrations, it can happen that one normal mode has nearly 
the same frequency as a harmonic or a combined vibration of other normal modes. 
Such a Fermi resonance can lead to an apparent strong increase in the intensity of 
the affected harmonic band or the band of the combined vibration. 

Molecules containing more nuclei have larger numbers of normal mode vibra­
tions. In order to resolve and classify them, one requires symmetry considerations, 
which we shall not treat further here; however, see Chaps. 5 and 6. Figure 10.14 
shows the normal modes of the benzene molecule; they include vibrations which are 
not infrared active. We shall return to this question and to the possibility of never­
theless observing them in Chap. 12, which deals with the Raman effect. If one does 
not take care to observe isolated molecules, i. e. at a high dilution in the gas phase, 

Fig. 10.14. The normal modes of the benzene molecule, C6H6. In the case of degenerate 
vibrational modes, only one component is shown. After Herzberg 
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and to use a high spectral resolution, then only a single, unresolved line is observed 
for each vibrational transition instead of the rotational-vibrational bands with their 
well-defined structure; this is equally true in the case of polyatomic molecules as for 
diatomics. It is especially the case for molecules in the condensed phases. 

10.6 Applications of Vibrational Spectroscopy 

From a precise analysis of their vibrational spectra, one can obtain important data 
concerning the structure and bonding in molecules. The spectra can allow bond­
ing angles and bond lengths, force constants and the potential curve for bonding 
to be calculated with high precision. By measuring the vibrational frequencies for 
many quantum numbers v, one can also determine the dissociation energy of the 
molecule (extrapolation by the method of Birge and Sponer). We shall however 
not treat this topic further here. For polyatomic molecules, infrared spectroscopy 
is therefore an important method for structural analysis. In analytical chemistry, 
infrared spectroscopy is furthermore a useful aid to the identification of molecules 
or of molecular fragments. The frequencies at which particular molecular subunits 
absorb in the infrared are characteristic of those units. Even with unresolved rota­
tional structure, i. e. in the condensed phases, the presence of particular molecular 
subunits in a sample can be determined by the detection of these characteristic 
frequencies. Table 10.3 gives typical numerical values for the quantum energies of 
some important vibrations. 

C-H stretch 
C-Hbend 
C-C stretch 
C=C stretch 

2850 - 3000 cm- i 

1350 - 1460 cm- i 

700 - 1250cm- i 

1600 - 1700 cm- i 

Table 10.3. Wavenumber values of some typ­
ical subunit vibrations 

When two groups that would have similar vibration frequencies if they were mea­
sured individually, are present in a molecule, then resonance between their vibrations 
can occur, with a resulting frequency shift similar to that seen in the Fermi reso­
nances; cf. Sect. 10.5. A well-known example is the case of the carbonyl group 
C=O with v = 1715cm- l , and the C=C double bond with v = 1650cm- l . In 
the ketene radical, C=C=O, where these two frequencies should be observed, one 
instead finds the wavenumbers 2100 and 11 00 cm -I; the values are thus strongly 
shifted from those which would be observed for the isolated molecular subunits. 

The characteristic frequencies are also influenced by the surroundings of the 
molecule, in particular by the state of matter. As a rule, one finds Vgas > Vliquid > Vsolid, 

i. e. the frequencies are lowered by interactions with the molecular surroundings. The 
stretch mode vibration of HCI decreases by about 100 cm-I on liquefaction and by 
an additional 20 cm -Ion solidification. These changes produced by the environment 
however depend strongly on the type of vibrations and on the molecule considered. 
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10.7 Infrared Lasers 

The basic principles of the laser, a light source with unusual and for many appli­
cations revolutionary properties, were already treated in I, Chap. 21. The laser has 
opened many new possibilities in experimental molecular physics. There are some 
important types of laser in which the laser-active medium consists of molecules; an 
example is the C02 laser. Although we have thus far spoken only of the absorption 
in the rotational-vibrational spectra, we shall now make use of the fact that the cor­
responding transitions can also be observed in emission, in particular by stimulated 
emission. 

The vibrational spectra of the CO2 molecule are employed in the C02 laser for 
the production of infrared laser radiation. The laser tube contains a mixture of N2 
and CO2 molecules as the laser-active medium. The vibrational transition of the 
N2 molecule at 2360cm- l , with its associated rotational levels, is excited in a gas 
discharge by collisions with electrons and ions. As indicated in Fig. 10.15, the N2 
molecules can transfer their excitation energy in a radiationless manner to the CO2 
molecules through collisions. This process has a high yield, since the asymmetric 
stretching vibration V3 of C02 lies at 2349 cm -I. There is thus a resonance between 
the rotational-vibrational levels of the nitrogen molecule and those of C02. In 
addition, this excited state ofN2 is metastable and thus long-lived, because a radiative 
transition to the ground state is forbidden. 

Induced emission is now possible starting from the rotational-vibrational levels 
of CO2 in the 2349 cm- I region into the symmetric stretch vibration band VI at 
1390 cm -I. All the transitions from the excited state at V3 into the rotational levels 
of the VI state, taking the selection rule 111 = ±1 into consideration, are allowed 
and contribute to the laser process. There are thus many (about 100) discrete laser 
frequencies in a range of ca. 1000 cm- I , the difference between VI and V3. This 
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Fig. 10.15. The rotational and vibra­
tional energy levels of the N2 and C02 
molecules which are employed in the 
C02 laser. A description is given in the 
text 
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corresponds to microwave radiation with a wavelength of about 1O.6IJ..m. The C02 
laser is particularly important in the field of materials processing, because it can be 
made to yield high energy densities in a relatively simple manner. 

10.8 Microwave Masers 

The laser principle, i. e. the production of coherent radiation through stimulated 
emission, was first demonstrated in the microwave range by using the inversion 
vibration of the NH3 molecule. In the year 1955, Gordon, Zeiger, and Townes 
reported the construction of the first ammonia maser. The word maser is an acronym 
for Microwave Amplification by Stimulated Emission of Radiation. When, a short 
time later, the principle was applied to visible light, the word laser was coined; it 
refers to Light Amplification by Stimulated Emission of Radiation. 

The NH3 molecule belongs to the class of symmetric top molecules. It has the 
form of a triangular pyramid with the three H atoms at the vertices of the base 
and the N atom at the apex. One of the normal mode vibrations of this molecule, 
with the frequency V2, is a motion in which the N atom oscillates towards the basal 
plane containing the H3 group, periodically changing the height of the molecule. 
The value of V2 is 2.85· 1013 s-I, corresponding to 950 cm- I. The potential barrier 
for the passage of the N atom from one side of the molecule to the other through 
the plane of the H atoms is high, and in classical physics an excitation energy of 

3hv2 ;;, 0.3 eV would be required for the motion to occur. This mode is called 
the inversion vibration because it leads to an inversion of the molecule, i.e. to its 
reversal, like an umbrella turned inside out by the wind. Figure 10.16 shows the 
structure of the NH3 molecule, the double potential for the inversion vibration, and 
the vibrational levels. 

A similar doubling of the potential curve due to inversion is found in all XY3 
molecules with the structure of a non-planar top. The two configurations with X 
above or below the Y3 plane cannot be converted into one another by any rotation of 
the molecule; but they are energetically in resonance. This leads to a splitting into 
pairs of levels, the inversion doubling. To be sure, it can be understood only in the 
framework of quantum mechanics. 

Quantum-mecanically, the tunnel effect (cf. I, Sect. 23.3) can be invoked to 
explain how the N atom can pass through the barrier represented by the plane of the 
three H atoms even though it has an excitation energy less than 0.3 eV. It can thus 
oscillate continuously between the two sides of the H3 plane. If the potential barrier 
were infinitely high, there would be two degenerate wavefunctions for the N atom 
on the one side and on the other side of the H-atom plane. 

This degeneracy is called the inversion degeneracy. When the height of the 
potential barrier is finite, the degeneracy is lifted, and pairs of symmetric and an­
tisymmetric wavefunctions are formed from the previously isolated, degenerate 
wavefunctions. The vibrational levels split into pairs of levels; this is called inver­
sion splitting. This process is quite analogous to the formation of symmetric and 
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a b H, /H 
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H/ 'H 

I 

v 

3 

H 

o 
Fig. 10.16. (a) The structure of the NH3 molecule. The N atom can occupy a position above 
or below the plane formed by the three H atoms. This leads to a splitting of the energy levels 
and a double potential curve whose barrier can be penetrated due to the tunnel effect in the 
inversion vibration. (b) The potential curve for an NH3 molecule. The distance ofthe N atom 
from the H3 plane is denoted by r; the scale is arbitrary. V is the height of the potential barrier. 
The dashed horizontal lines are the vibrational levels which would be found if the potential 
curve had only a single minimum. The inversion splitting increases strongly with increasing 
quantum number v. After Herzberg 

anti symmetric wavefunction pairs in the Hi molecule-ion from the previously de­
generate H2 wavefunctions; compare I, Sect. 23.4. If a wavepacket is formed from 
these new wavefunctions at a time t = 0, it describes in the course of time the 
oscillation of the N atom between the two localised states, with an oscillation fre­
quency w = L\ E / n, where L\ E is the splitting energy which is defined in Fig. 10.16. 
This frequency is called the inversion frequency. In the NH3 molecule in its ground 
state, the frequency Vi (where i stands for inversion) has the value 23870 MHz or 
1\ = 0.796 cm-1; it thus lies in the microwave range. Between the symmetric and 
the anti symmetric states, an electric dipole transition at this frequency is allowed: it 
is the maser transition. 

In order to build a practical maser (see Fig. 10.17), one forms a beam of NH3 
molecules and passes it through an inhomogeneous electric quadrupole field. The 
electric field induces a dipole moment in the normally non-polar molecules and 
produces a quadratic Stark effect. The quadrupole separator distinguishes molecules 
in the symmetric and the anti symmetric states of the inversion vibration. If the 
dimensions are properly chosen, only the molecules in the anti symmetric state can 
pass through the quadrupole field region and enter the resonator which is tuned to 
the frequency of 23 870 MHz. 

In this resonator, a radiation field builds up, at first through spontaneous emission 
and then through stimulated emssion from the anti symmetric state into the symmetric 
state, which is initially not populated, due to the selection by the quadrupole field; the 
device acts as a self-exciting oscillator. This arrangement can also be used as a very 
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Fig. 10.17. An NH3 maser. The molecules are selected by means of the Stark effect and 
focussed into a resonant cavity. A resonant radiation field is built up there; it can serve as an 
oscillator or as an amplifier 

narrow-band amplifier at the inversion frequency. The accuracy of the frequency of 
such a molecular amplifier, vj Llv (Llv is the bandwidth at the frequency v) is very 
great, more than 1010. 

Problems 

10.1 Which of the following molecules exhibit a vibrational absorption spectrum 
in the infrared: H2, HCl, CO2, OCS, H20, ClL), C2H4 , C2H6, CH3CI, C6H6, N2, 
N-? 

3 . 

10.2 How many vibrational degrees offreedom do the following molecules have: 
(a) HBr, (b) OCS (linear), (c) S02 (nonlinear), (d) H-O-O-H (nonlinear), (e) 
H-C=C-H (linear), and (f) C6H6? 

10.3 What is the wavelength of a photon which induces a transition between two 
adjacent levels of a harmonic oscillator with the following properties: reduced mass 
mr = mproton, force constant f = 855 Njm? 

10.4 The energy levels of a general harmonic motion are always given by the 
relation 

Ev = 1Uv (v + ~) v = 0, 1,2, .... 

Calculate the minimal excitation energy for the following oscillators: 

a) a pendulum 1 m long under the influence of the Earth's gravitational field; 
b) the balance wheel of a watch (v = 5 Hz); 
c) the 33 kHz quartz oscillator of a clock; 
d) the bond between two oxygen atoms (k = 1177 N jm). 
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10.5 In a measurement carried out on 14N160, the centre frequencies of the first 
two vibrational transitions are found at 1876.06cm-1 (the "fundamental" vibra­
tion) and 3724.20 cm- I (the "first harmonic"). Find the vibrational constant Ve, the 
anharmonicity constant X e , the zero-point energy and the force constant of the bond. 

The maximum of the vibrational energy Ev can be found analytically if the 
vibrational quantum number is treated as a continuous variable. Use this method to 
determine the dissociation energy of NO and evaluate the method. 

10.6 In the state v = 0, one observes for the molecules HCI, DCI, HD and 
D2 the following vibrational frequencies: HCI: 2885 cm- I ; DCI: 1990 cm- I ; HD: 
3627 cm- I ; and D2: 2990 cm- I . Find the energy balance (in kllmol) for the reaction 

HCI + D2 --+ DCI + HD 

taking into account the zero-point energies of the molecules involved. Is the reaction 
exothermic or endothermic? 

10.7 Calculate the force constants of the halogen-hydrogen bonds by making use 
of the frequencies of the fundamental vibrations of the hydrogen halides: 

HF 

4141.3 2988.9 2649.7 2309.5 

10.8 In the iodine molecule, h, a vibrational constant of ve = 215 cm- I and an 
anharmonicity constant of Xe = 0.003 are measured. What intensity ratio of the "hot 
band" (v = 1 --+ 2) to the fundamental band (v = 0 --+ 1) would you expect at 
a temperature of 300 K? 

10.9 Numerous functional groups exhibit characteristic vibrational frequencies 
which are only slightly influenced by their bonding to larger molecules. For example, 
the stretching vibration of the 0-H group is at 3600 cm -I, that of the C -0 single 
bond at 1150 cm -I, and that of the C=S double bond at 11 00 cm -I. Estimate from 
this the frequencies of the stretching vibrations of O-D and C-S. 

10.10 The structural data for the I H35Cl molecule found experimentally are 
bond length: 127.5 pm 
force constant of the bond: 516.3 Nlm 
atomic masses: I H: 1.673 . 10-27 kg; 35Cl: 58.066 . 10-27 kg. 
Find from these data 

a) the zero-point energy and the energy Vo of the fundamental vibration; 
b) the rotational constant B; 
c) the spectral locations (in em -1) of the innermost three lines of the P and the 

R branches; 
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d) Can you explain the differences between the spectrum calculated in part (c) and 
that experimentally measured? 

10.11 The selection rules for rotational-vibrational transitions are L1v = 0, ±l, 
±2, ... , L1J = ±1, and L1MJ = 0, ±1. Determine the number of "partial transi­
tions" in a transition with J' - J" = ±1 as a function of the quantum numbers 
J' or J". 

Give the intensity distribution of the rotational lines in a vibrational band under 
the assumption that each "partial transition" makes the same contribution to the 
intensity. 

10.12 Find the wavenumber vR(h) of the band edge of the R branch for the 
fundamental band of IH35Cl. Here, JK is the value of J for which the rotational 
lines begin to tum back along the wavenumber scale for increasing J. 

Hint: the spacing of the J states of the vibrational levels v = 0 and v = 1 of I H35CI 
is v(1, 0) = 2885.9 cm- I ; the rotational constants differ for v = 0 and v = lowing 
to the vibrational stretching: Bo = 10.440 cm- I and BI = 10.137 cm- I. 

10.13 For RbH, one finds experimentallyve = 936.8 cm- I andxeve = 14.15 cm- I; 
the bond length is Re = 236.7 pm. Sketch the Morse potential Veff(R) for the elec­
tronic ground state. 

When the molecule rotates, the rotational term adds to the potential energy, so 
that an effective potential is obtained: 

Veff(R) = VCR) + B(R)J(J + 1) 

in which B(R) is the rotational constant which depends on the nuclear distance R. 
Sketch Veff for J = 40 and for J = 100. What is the influence of the rotation on the 
bonding strength and on the dissociation energy? 

10.14 a) The first five vibrational levels of IH35Cl lie at 1481.86, 4367.50, 
7149.04, 9826.48 and 12399.8 cm- I. What is the dissociation energy of this 
molecule? b) The rotational-vibrational spectrum of I H35Cl is determined essen­
tially by the values found in (a) for the vibrational constant ve and the anharmonicity 
constant Xe as well as the rotational constant B = 10.59 cm- I. Calculate from these 
values the corresponding quantities for 2D35Cl. How does the rotational-vibrational 
spectrum change? c) What is the dissociation energy of the molecule with heavy 
hydrogen, 2D35Cl? How can one make use of the difference from the result in (a)? 

Hint: The potential curves of isotopic molecules are identical, since the latter differ 
only in the masses of the atoms they are composed of. 

10.15 In the electronic ground state of the S02 molecule, the two S-O bonds each 
has a length of 1.43 A and the bond angle is 120°. While the bond lengths remain 
unchanged in the excited state, the bond angle becomes 110°. Describe qualitatively 
the vibronic structure of the UV absorption of S02 vapour at room temperature. 



11 The Quantum-Mechanical Treatment 
of Rotational and Vibrational Spectra 

Taking the diatomic molecule as an example, we introduce the Born-Oppenheimer 
approximation, which then permits the approximate separation of the molecular 
wavefunctions into electronic and nuclear parts. The rotational and vibrational mo­
tions are described by the nuclear wavefunction. We then consider the rotation of tri­
and poly atomic molecules, giving a detailed discussion of both the symmetric and 
the asymmetric tops. In the treatment of molecular vibrations, the concept of normal 
coordinates plays an important role; here, again, symmetry considerations prove to 
be very useful, and we discuss them in the final sections of this chapter. 

11.1 The Diatomic Molecule 

11.1.1 The Born-Oppenheimer Approximation 

In the preceding chapters, we dealt with the rotational and vibrational spectra of 
molecules and treated them in a "semi-classical" way. This means that we first in­
vestigated the motions of the atomic nuclei in the molecule using classical mechanics, 
and then applied empirically established quantisation rules. In this chapter, we justify 
that procedure by carrying out a strict quantum-mechanical calculation, based from 
the beginning on the SchrOdinger equation. The various stages of approximation will 
be clarified in the process. 

We begin with diatomic molecules; they will allow us to learn some important 
concepts which can later be applied to molecules with more than two atoms. As 
a first step, we show how the motions of the nuclei can be separated from those of 
the electrons. As we shall see, the electronic motions, which are quantum-mechanical 
in nature, mediate an interaction between the nuclei. The nuclear motions may in 
tum be separated to a good approximation into rotations and vibrations, and quantum 
mechanics also gives us the coupling terms between these motions. 

The simplest examples of diatomic molecules are the hydrogen molecule-ion, 
Hi, and the hydrogen molecule, H2. If we include different isotopes of hydrogen, the 
two atoms may have differing masses, m [ and m 2. The atomic nuclei have coordinates 
denoted by Rl and R2 . The following treatment could just as well be extended to 
molecules with several electrons, whose coordinates are given by r[,r2, ... ,rn ; 

however, in order to keep the procedure as clear as possible and the notation as 
simple as possible, we choose as an explicit example the hydrogen molecule-ion 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004



226 11 The Quantum-Mechanical Treatment of Rotational and Vibrational Spectra 

with a single electronic coordinate r. The wavefunction tJt then depends on the 
corresponding coordinates, i. e. r, R1, and R2 , and obeys a Schrodinger equation 
containing the following contributions: the kinetic energy of the electron and the 
two nuclei, the energy of the Coulomb interaction of the electron with the nuclei, 
and the Coulomb interaction energy between the nuclei. The SChrodinger equation 
is then given by 

__ V2 __ V2 __ V2 _ _ ____ _ ( 
li2 li2 li2 e2 e2 

2mo 2m}} 2m2 2 47T8olr - Rli 47T8olr - R21 

+ e
2 

) tJt(r, R}, R2 ) = E tJt(r, R 1, R2 ) . 
47T801Rl - R21 

(11.1) 

The Laplace operator V refers to the electron, while the two other Laplace operators 
refer to the two nuclei as denoted by their indices 1 and 2. The solution of this equation 
is a complicated many-body problem, which we can reduce considerably by applying 
some physical considerations. We use the fact that the masses of the nuclei are much 
greater than that of the electron: we can thus expect that the nuclei move much more 
slowly than the electron, or in other words, the electron can immediately follow the 
nuclear motions. This is the basic idea of the Born-Oppenheimer approximation. 

In a first step, we find the wavefunction for the electronic motions while holding 
the nuclei fixed; the nuclear coordinates are then merely parameters in the electronic 
wavefunction. As we know, a direct interaction between the nuclei is caused by 
the electron(s), and is added to their Coulomb repulsion energy. In a second step, 
we then find the wavefunctions for the nuclear motions in the overall potential just 
described. 

In order to carry out this program, we require a trial wavefunction tJt which is 
expressed as a product, whose first factor represents the electronic motions with fixed 
nuclear coordinates, while the second factor takes the nuclear motions themselves 
into account. The trial function is thus given by: 

(11.2) 

If we insert this function into the Schrodinger equation (11.1), we must apply the 
product rule for differentiation, since the nuclear coordinates occur in both factors 
on the right-hand side of (11.2): 

a2 a2 a1/l aeP a2 

axi (1/IeP) = 1/1 axi eP + 2 ax} ax} + eP axi 1/1 . (11.3) 

We then obtain in place of (11.1) the SchrOdinger equation 
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(11.4) 

Here, we have already collected the terms in a manner which will make them 
easier for us to interpret physically. The brackets in the first line clearly contain 
the Hamiltonian of the electron which is moving in the field of the fixed nuclear 
coordinates RJ and R2. We now choose the wavefunction 1/1 of the electron in such 
a way that it obeys the corresponding Schrodinger equation 

(11.5) 

As we know from the theory of the Schrodinger equation, it has in general a whole 
series of eigenvalues or energy values W, which we can distinguish by the values of 
the corresponding quantum numbers. Furthermore, the energy W also depends on 
the nuclear coordinates RJ and R2 , which enter (11.5) as fixed parameters. We thus 
write 

W = W(R j , R2 ) . (11.6) 

If we make a shift of the coordinates in (11.5): 

(11.7) 

which is simply a shift of the coordinate origin, then we can see that the whole 
problem, including the determination of W, depends only on the difference of the 
nuclear coordinates 

(11.8) 

We can thus take W to be a function of the nuclear coordinate difference 

W = W(R] - R2) . (11.9) 

As we shall show in more detail below, the last line on the left-hand side of (11.4) 
is a perturbation term, which is smaller than the first term by a factor of maim] or 
malm2. We therefore initially neglect this term. The method we are applying here is 
called the Born-Oppenheimer approximation, as we mentioned above. 

We now replace the left-hand side of (11.5) in the first line of (11.4) by its right­
hand side, thus obtaining a SchrOdinger equation which refers only to the nuclear 
coordinates: 
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[ 
n} 11,2 e2 ] 

--2 V? - -2 vi + 4 IR R I + W(R] - R2 ) c!J = Ec!J . 
m 1 m2 7TEO 1 - 2 

01.10) 

As we can see, a direct interaction energy between the nuclei comes about via the 
electronic energy which occurs in 01.5). This should not be surprising, since we 
already know from the theory of homopolar bonding (cf. Sects. 4.3 and 4.4) that 
a force between the nuclei is generated by the exchange of their electrons. 

The SchrOdinger equation (11.1 0) exhibits a formal analogy to the problem of 
the motion of an electron around a nucleus of finite mass. As we know from atomic 
physics, we can introduce new coordinates to simplify a problem of this type, namely 
the centre-of-mass coordinates: 

(11.11) 

and the relative coordinates: 

(11.12) 

In order to recalculate the Schrodinger equation for these new coordinates, we need 
also the mass at the centre of gravity, 

(11.13) 

and the reduced mass mr 

(11.14) 

Using the corresponding transformation formulas, we can immediately write down 
the resulting SchrOdinger equation for the wavefunction CP(Rs, R) = c!J(R] , R2 ): 

( 
11,2 2 11,2 2 ) - -

--Vs - -Vr + VCR) c!J(Rs, R) = E c!J(Rs, R) , 
2ms 2mr 

where the operator for the potential energy is given explicitly by 

e2 
VCR) = -- + W(R) . 

47TEOR 

01.15) 

(11.16) 

V is thus the sum of the energy of the electron in the field of the two nuclei and the 
Coulomb interaction energy of the nuclei with each other. 

The separation of the coordinates into centre-of-mass and relative coordinates 
makes it possible for us to attempt a separation of the wavefunctions of the 
SchrOdinger equation 01.15) into functions for the centre-of-mass and the rela-
tive motions: 

CP(Rs, R) = eiK-Rs X(R) . (11.17) 

The energy eigenvalues of (11.15) then take on the form 
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_ Tt2K2 
E = E + -- , 01.18) 

2ms 

where E results from the relative motion, while the second term represents the kinetic 
energy of the centre-of-mass motion. 

We now tum to a discussion of the relative motion. As we know from the theory 
of electronic structure of diatomic molecules, the potential energy VCR) depends 
only on the magnitude of the position vector; in other words, V is spherically 
symmetrical. In analogy to the treatment of the electronic motions in the hydrogen 
atom, we introduce polar coordinates at this point. The coordinates R, i}, and ¢ 
naturally refer here to the relative motions of the two nuclei, and we are only 
making use of a formal similarity to the hydrogen-atom problem. We transform the 
kinetic-energy operator to these polar coordinates and immediately carry out the 
separation of the wavefunctions into radial and angular parts, as is familiar from the 
hydrogen-atom problem: 

X(R) = f(R)F(i}, ¢) . 01.19) 

We then obtain the SchrOdinger equation 

[ Tt2 I a ( 2 a ) L 2 ] ----- R - +--+V(R) fF= EfF. 
2mr R2 aR aR 2mrR2 

01.20) 

In this equation, L is the operator for the angular momentum. As we know from the 
hydrogen-atom problem, we can choose the angular functions F in such a way that 
they are at the same time eigenfunctions of the square of the angular momentum 
operator and of one of its components, e. g. the z-component: 

L2 F j .M = Tt2 J(J + I)Fj,M , 

LzFj,M = TtMFj,M , 

(l1.20a) 

(l1.20b) 

where we have used the standard notation for the angular momentum quantum 
numbers in molecules, J and M; they take on the roles of I and m in the hydrogen­
atom problem. The quantisation rules here, as there, are given by: 

J = 0,1,2, ... 01.20c) 

and 

- J :::: M :::: J, M an integer. (11.20d) 

The angular dependence of F is illustrated for several cases in Fig. 4.1 in this book, 
as well as in I, Fig. 10.2. Due to (11.20a), we can replace L2 in (11.20) by ti2 J(J + 1) 
and then divide F out of the resulting Schr6dinger equation. We then obtain in place 
of (11.20) the SchrOdinger equation 

[ ti2 a2 ti2 1 a ti2 J(J + 1) ] _ --- - --- + + VCR) f= Ef 
2mr aR2 mr R aR 2mrR2 ' 

01.21) 
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which refers only to the radial motion. Since the quantum number M does not 
occur in (I 1.21), but there are 21 + 1 different M values for each 1 according to 
(I1.20d), and thus just as many different wavefunctions, the energy E is (21 + 1)­
fold degenerate. In (11.21), we have rewritten slightly the kinetic-energy operator 
from (11.20). 

The Schr6dinger equation (11.21) is a second-order linear differential equation, 
which could be integrated using standard methods from the theory of differential 
equations. However, we are more interested here in elucidating the physical content 
of (11.21), in order to establish the connection to the results of Chaps. 9 and 10. 
To this end, we make two approximations, which are well justified in the present 
example. For one, we assume the expression 

(11.22) 

to be a small perturbation. Secondly, we search for a suitable explicit representation 
of the potential V( R). The theory of molecular bonding indeed gives us such a repre­
sentation; it is shown in Fig. 4.12. We of course are interested in stable bound states 
of the two nuclei, and so we need consider only values of the nuclear coordinates 
corresponding to internuclear distances in the neighbourhood of the energy mini­
mum. We denote the resulting equilibrium internuclear distance by Re. Expanding 
the potential function V in powers of the displacement R - Re, we obtain for the 
vicinity of the minimum the following expression: 

(11.23) 

We first consider the case of angular momentum 1 = O. Neglecting (11.22) and 
using the approximation (11.23), we find that (11.21) becomes 

(11.24) 

where we have set E = Ev + V(Re). Equation (11.24) is none other than the 
Schr6dinger equation of a harmonic oscillator, which we already know well; in this 
case, the oscillator is centred around a point that is displaced from the coordinate 
origin by a distance Re. The wavefunction of the ground state is thus given by 

(11.25) 

where N is a normalisation factor and Ro is given by 

(11.26) 

The energy values for the ground state and the excited states are then enumerated by 
the quantum number v = 0, 1, ... ; the eigenvalues are 
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Ev = (v + ~)nw, 01.27) 

with the frequency w given by 

(11.28) 

We thus see that the two nuclei can carry out a harmonic oscillation along the 
axis joining their centres. Since the amplitude of this oscillation, as we know from 
experiment and can also calculate theoretically, is much smaller than the internuclear 
distance, it is certainly a good approximation to express the contribution from the 
rotational energy, proportional to 1/ R2, through a replacement of R2 by R~. If we 
include states having J f. 0, then the energy is given by: 

(11.29) 

This energy expression is identical to that of (10.20), except for the first term in the 
sum, and the constants can be identified immediately. The first term comes from 
the binding energy of the nuclei at the equilibrium distance (and assuming infinite 
nuclear masses), and the second term from the vibrational energy, while the last term 
arises from the rotation. The rotational quantum number takes on the usual values, 
J = 0,1, .... 

If we introduce the moment of inertia 8, defined by 

(11.30) 

then (11.29) can also be written in the form 

(11.31) 

The last expression in (11.31) is the quantum-mechanical analogue of the classical 
formula for the kinetic energy of a rotating dumbbell consisting of two masses 
mr/2 at a distance of 2Re . We have thus reproduced the dynamics of a diatomic 
molecule, as they were already derived in the previous chapters as a model to explain 
the experimental data [cf. (10.20)]. Here, however, we have seen how a systematic 
quantum-mechanical treatment leads to the correct expressions for the wavefunctions 
and the energies, and which approximations were made in the process. The latter 
can be improved as a next step, e. g. by using a perturbation-theory approach. We 
then find the results which were introduced and discussed in Chaps. 9 and 10, and 
which for example take into account the anharmonicity. In the following section, 
we merely want to show that the terms which we neglected in this chapter are, in 
fact, small. The reader who wishes to hurry on can skip over these estimates of the 
relative importance of the neglected terms without missing information which is 
vital to understanding the rest of the book. 
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11.1.2 Justification of the Approximations 

We begin with the expression (11.22). This operator is to be applied to a wave­
function, so that in order to estimate its importance, we must consider the whole 
expression, operator applied to wavefunction. We compare the resulting quantity 
arising from the term in (11.22) with the kinetic energy in the Hamiltonian (11.24). 
As we know from the theory of harmonic oscillators, the kinetic energy is of the 
same order of magnitude as the total energy, so that for the first term in (11.24), we 
can make the estimate: 

l1? a2 

- 2mr aR2 f = fiwf . (11.32) 

For the corresponding expression resulting from (11.22), we obtain by using the 
explicit form in (11.25) an estimate: 

fj,2 1 a fj,2 1 m (j) 

---- f ':'::j --(R - Re)-r- f, 
mr R aR mr Re fj, 

(11.33) 

which may be rewritten in the form 

= fiw (R - Re) f . 
Re 

(11.34) 

Here, the variable R has been weighted by the distribution function (11.25), according 
to which R - Re decreases as a quadratic exponential function over a distance Ro as 
in (11.26). As can readily be seen from numerical examples, the relation 

R - Re« Re (11.35) 

holds, so that we finally obtain, instead of (11.34), the estimate 

(11.34) « fiwf . (11.36) 

Thus we have demonstrated that this term is considerably smaller than the term 
(11.32). A similar type of estimate also allows us to justify the replacement of R2 
by R~ in the expression for the rotational energy. Let us now turn to the justification 
of the Born-Oppenheimer approximation. We consider the effect of the Laplace 
operator with respect to the nuclear coordinates RI on the electronic wavefunctions: 

(11.37) 

We want to proceed as explicitly as possible and therefore use wavefunctions which 
are known from the theory of molecular bonding (cf. Sect. 4.3): 

(11.38) 

where <PI and <P2 are the electronic wavefunctions which are localised on atoms 1 
and 2, respectively. Since <PI depends only on the relative coordinates r - RJ, we 
immediately obtain 
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We now recall that on the average, the kinetic energy is of the same order as the total 
energy W: 

11,2 
__ V2cp ~ Wcp . 

2mo 
(11.40) 

However, since in 01.4) the perturbation term contained a factor I/ml and not 
a factor limo, we multiply (11.40) by molml and obtain: 

(11.41) 

From this we see that the energy which results from the perturbation term is a factor 
of mo 1m 1 smaller than the energy of the electron according to (11.40). If m 1 becomes 
sufficiently large, then the term (11.41) is arbitrarily small. Here, we still have to 
take account of the fact that W is independent of the nuclear masses ml and m2. 

Since the Laplace operator V2 means effectively that we multiply the wavefunctions 
by a factor 1 ILength2, we can formally take the square root of the left side of (11.41) 
to obtain an estimate for the absolute value of nV1jF: 

01.42) 

In precisely the same way, we obtain for the function of the nuclear coordinates an 
estimate of the order of magnitude: 

nIVR1 <P1 ~ JmlEK<P (EK: energy of the nuclear motions). 01.43) 

Using (11.42) and (11.43), we can multiply the left and the right sides by each other 
as follows: 

01.44) 

We now recall the fact that the nuclei are oscillating and that the energy of the 
oscillations depends on the nuclear masses according to 

1 
E K ex: tuv ex: r.;;:' 

'\Iml 
(11.45) 

Furthermore, we recall the hydrogen atom, remembering that the electronic energy 
is proportional to the electron's mass: 

W ex: mo. (11.46) 

If we now introduce (11.45) and 01.46) into (11.44), we can see that the left-hand 
side of the resulting expression is proportional to molmi/4, i. e. that this term can 



234 11 The Quantum-Mechanical Treatment of Rotational and Vibrational Spectra 

be neglected relative to the other terms which we considered in (11.4), presuming 
that the mass of the nucleus is sufficiently large; this is already the case to a good 
approximation even for the proton. 

The estimates which we have just made may appear to the precise-minded reader 
to be somewhat superficial, since we have repeatedly estimated the magnitude of 
operators applied to wavefunctions. The estimates can, however, be made quite exact 
by calculating the corresponding expectation values. 

11.2 The Rotation of Tri- and Polyatomic Molecules 

11.2.1 The Expression for the Rotational Energy 

In the previous section, we carried out a strict quantum-mechanical calculation for 
a diatomic molecule. In the process, we saw how assumptions which appeared 
reasonable in view of classical mechanics could be justified in detail. We also 
saw where approximations were to be made and how they could be put on a firm 
foundation. The insights we gained will now allow us to treat tri- and polyatomic 
molecules, letting ourselves be guided by the principles of classical mechanics 
without neglecting the correct quantum-mechanical procedures. 

The starting point for our treatment is again the SchrOdinger equation, which we 
write down for the example of a triatomic molecule; in the present chapter, we take 
only the nuclear motions into consideration. The potential energy then depends only 
on the relative coordinates, which we abbreviate as follows: 

(11.47) 

Here, R j , j = 1,2,3 is the coordinate of the nucleus having index j, as before. 
It is known from classical mechanics that conservation of the total linear momen­
tum holds for such a system. This is also true in quantum mechanics, where only 
those quantities can be exactly measured simultaneously whose associated operators 
commute with one another. In our case, the momentum operator P, given by 

(11.48) 

commutes with the Hamiltonian of the SchrOdinger equation: 

(11.49) 

One can readily convince oneself of this, since each differentiation of a coordinate 
commutes with another differentiation with respect to the same or another coordinate. 
P therefore certainly commutes with the Hamiltonian of the kinetic energy in (11.49), 
Furthermore, it is easy to see that P also commutes with the potential energy V, 
since the relation 
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holds, due to the dependence on the relative coordinates, and therefore the individual 
terms in the commutator of P with V cancel out. We can then split off the centre-of­
mass motion with the wavefunction eiK .R from the overall wavefunction cP for the 
nuclear motion; here, ItK is the total linear momentum of the molecule. 

Let us now consider the angular momentum. Here, we can easily verify that the 
angular momentum operator 

(11.51) 

commutes with the kinetic-energy operator in (11.49). Similarly, we can show that 
(11.51) commutes with the potential energy V, as long as V is invariant with respect 
to the common rotation of the relative coordinates Rjk . We will assume this in the 
following. Let us now investigate the remaining degrees of freedom and take the 
triatomic molecule as an example. Each nucleus carries three degrees of freedom, 
since we are assuming the nuclei to be point masses. The whole molecule then has 
9 degrees of freedom, of which 3 refer to the motions of the centre of mass and 3 to 
the rotational motions. The remaining 3 degrees of freedom must then refer to the 
internal motions, which, analogously to the diatomic molecule, will be vibrations. 
We have already seen this in Sect. 10.5. 

We can make these considerations intuitively clear in another way: the coordi­
nates of the three nuclei define a plane which contains the centre of mass of the 
molecule. This plane can istelf rotate about two perpendicular axes, giving two de­
grees of freedom; in addition, there is the rotation of the overall nuclear coordinates 
within the plane. Thus, three oscillations in the plane also remain in this way of 
considering the molecule. 

We tum now to the investigation of the rotational motions and the corresponding 
energies; this topic continues the discussion of Sect. 9.4. As we know from classical 
mechanics, a fundamental role in rotational motion is played by the inertial tensor: 

(11.52) 

Its individual elements are given by the relations 

8 yy = Lmi(xt + zt), 

(11.53) 
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Since the nuclei are assumed to be point masses, the sum extends over the three 
nuclei with the point-like mass distributions mi. Here, in analogy to the diatomic 
molecule, we assume that the nuclear coordinates lie at the potential minima and 
no oscillations are taking place, in the approximation we are presently considering 
(the vibrations will be investigated later). We choose the coordinate system for the 
triatomic molecule so that the plane of the molecule is the xy-plane and the z-axis 
is perpendicular to the molecular plane; then all the coordinates Zi = O. With the 
definitions (11.53), the inertial tensor then reduces to 

(11.54) 

By rotating the coordinate system around the z-axis, we can cause the non-diagonal 
elements in (11.54) to vanish, so that we reduce the tensor to its principal-axis values: 

[
eX 0 0 1 e = 0 e y 0 . 
o 0 ez 

(11.55) 

(This form of the inertial tensor can always be obtained, even for polyatomic 
molecules.) 

In classical mechanics, the angular momentum vector is related to the vector of 
the angular velocity of rotation by the equation: 

L=ew. (11.56) 

In this expression, Land w are vectors, while e is a tensor of rank 2, i. e. a matrix. 
The kinetic energy may then be written in the form: 

Erot = ~wew, (11.57) 

where w is the transposed vector w. In the case that e is diagonal, the following 
relations are valid: 

Ly = eyWy , 

L z = ezwz · 

1 L2 1 L2 1 L2 
Erot = "2 eX + "2 e Y + "2 e Z 

• 
X y Z 

(11.58) 

(11.59) 
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The total angular momentum L in classical mechanics is given by a vector sum of 
the angular momenta of the individual atoms: 

(11.60) 

In quantum mechanics, the momenta Pi are replaced in the well-known manner 
according to Jordan's rule by the gradient operators: 

(11.61) 

For the angular momenta of each nucleus, the usual commutation relations hold: 

(11.62) 

and, in addition, the relations found from cyclic permutations of the indices i, j 
and k. For different nuclei, the angular momentum operators all mutually commute. 
The relations (11.62) can be applied equally well to the total angular momentum 
operator L (11.60), as one can readily calculate. 

11.2.2 The Symmetric Top 

Let us see what the quantisation of angular momentum means for the energy Erot 

(11.59). We first consider the case that the moments of inertia obey the relation 

As a result of the equation 

which is also valid for the operators, we can write (11.59) in the form 

1122112 
H t = --(L - L ) + --L 

ro 2 Bx z 2 B z Z' 

(11.63) 

(11.64) 

(11.65) 

where we have written H (for the Hamiltonian operator) instead of the energy E. 
Since the operators L 2 and L z commute with each other and with the Hamiltonian, 
we can choose the wavefunctions for the Schrodinger equation in such a way that they 
are simultaneously eigenfunctions of all three operators. In this way, we arrive again 
at (11.20a) and (11.20b); following the usual convention, we denote the quantum 
numbers belonging to L z by k, with - J :s k :s J and k an integer. Often, the notation 
K = Ikl is used. The quantity nk can be interpreted as the component of the total 
angular momentum along the z direction, which was chosen to coincide with the 
principal z-axis of the molecule. We now imagine that the operator for Erot is applied 
to the corresponding wavefunction F],K; then we can replace the operators L2 and 
L; by their eigenvalues n2 [J(J + 1)] and n2k2 . Equation (11.65) thus becomes 
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(11.66) 

and we have thus succeeded in calculating the rotational energy. 
Since each value of K refers to the quantum numbers k = K and k = - K, 

with the corresponding wavefunctions, the energy is doubly degenerate for K -j. 0 
and only non-degenerate for K = O. While the quantum number k relates to the 
projection of the angular momentum onto the molecule-fixed z axis, the quantum 
number M, that we found in (l1.20b), refers to the projection onto the space-fixed 
axis (which we will now call the z'-axis). This leads to the question as to whether an 
M quantum number is also valid in the present case. We consider a rotation of the 
coordinate system between the space-fixed axes x', y', and z' and the molecule-fixed 
axes x, y, z. In particular, for the z' -component of the angular momentum, L z', we 
find: 

(11.66a) 

where the constants a, b, and c depend on the rotation angles. Relation (11.66a) 
initially holds for the classical vectors, but it can be transferred directly to the 
quantum-mechanical calculation, so that it also holds for the angular momentum 
operators. 

We now ask whether we can measure the square of the angular momentum (cor­
responding to the operator L2) and also its component along the z' -axis (operator L z') 

exactly and simultaneously. As we know from I, Sect. 10.2, L 2 commutes not only 
with L z, but also with Lx and Ly and thus also with the linear combination (11.66a). 
L 2 and L z' thus can be simultaneously and exactly measured. The eigenvalue of the 
operator L2 is of course fJ? J(J + 1), while we denote the eigenvalue of L z' again 
by 'tiM, in agreement with the previous notation. As we showed in I, it follows from 
the operator algebra for Lx, L y, and L z (or, equivalently, for Lx" Ly', and Lz') and 
from the requirement of continuity of the wavefunctions, that 0 :s J and J is an 
integer, while -J :s M:s J, with M also an integer. The quantum number M can 
be measured by applying an electric or a magnetic field to the molecules along the z' 
direction. Since however L z' does not commute with L~ (except when a = b = 0), 
but the energy operator depends upon L;, then in this case (of an applied field along 
the z' -axis), the energy (11.65) is no longer exactly measureable. 

11.2.3 The Asymmetric Top 

We now take up the case that the moments of inertia of the molecule along the 
principal axes are all different. The kinetic energy of the rotational motion can be 
written as 

(11.67) 

where we have used the abbreviation 
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A 1£1-1 . 
j = 'il!Yj , ) =x,y,z. (11.68) 

We introduce creation and annihilation operators for the z-component of the angular 
momentum, which we define as in I, Sect. 10.2, using the equation: 

(11.69) 

The application of the operator L+ to a wavefunction with angular momentum 
quantum number k transforms it into a wavefunction with the quantum number 
k + 1, and the operator L_ reduces k by one unit in a corresponding manner. 
Equation (11.69) may be resolved into the operators for Lx and Ly as follows: 

(11.70) 

and 

(11.71) 

If we insert Lx and Ly from these equations into (11.67), rearrange and introduce 
the abbreviations 

(11.72) 

then we find the following expression for the Hamiltonian of the rotation: 

(11.73) 

We now make use of the property that (11.69) raises or lowers the quantum number 
k by one unit. Applying the corresponding operator twice to the angular-momentum 
eigenfunctions F},k, we obtain 

and 

The coefficients a and b are given explicitly by 

a},k = J J(J + 1) - k(k + 1)) J(J + 1) - (k + l)(k + 2) , 

b},k = J J(J + 1) - k(k - 1)) J(J + 1) - (k - 1)(k - 2) , 

(11.74) 

(11.75) 

(11.76) 

as one can verify by calculation using the formulas (10.36) and (10.37) from I. 
Furthermore, we of course have 

(11.77) 
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1 2 2 
-(L+L_ + L_L+)FJk = Ii [J(J + 1) - k ]FJk 2 ' , (11,78) 

holds, We now have the task of finding the eigenvalues and eigenfunctions of the 
operator (11,73), i, e, we must solve the Schr6dinger equation 

(11,79) 

Here, we have expressed the eigenvalue on the right-hand side in the special form 
li2A, Due to the appearance of the creation and annihilation operators in Hrot (11,73), 
we cannot simply assume that k is a good quantum number; instead, we expect linear 
combinations of the form 

+J 

f = L CkFJ,k, 

k=-J 

(11,80) 

In calculating these eigenfunctions, we can limit ourselves to functions FJ,k with 
fixed values of J, since L 2 and Hrot commute, Inserting (11,80) into (11,79) and 
using equations (11,74-78), we find the relation 

+J 

L (acka J,k F J,k+2 + aCkbJ,kFJ,k-2 

k=-J 

(11,81) 

in which we have transferred the eigenvalue A to the left-hand side and have divided 
out the common factor li2 , The coefficients a, {3, and Az are contained in the Hamil­
tonian Hrot ; aJ,k and bJ,k are defined by (11,76), In the following, we also use the 
abbreviations 

gJ,k = 2{3J(J + 1) + (Az - 2{3)k2 . (11,82) 

In the following equations, since J has a fixed value, we leave it out of the notation; 
i. e, we make the replacements: 

aJ,k -+ ak , 

bJ,k -+ bk , 

gJ,k -+ gk ' 

(11,83) 

Since the angular-momentum eigenfunctions F for different values of the quantum 
number k are linearly independent, a relation of the type (1 1, 81) can be satisfied 
in general only if the coefficients of the same angular-momentum eigenfunctions 
vanish individually, Renumbering the indices, we obtain the equations 

(11,84) 

Here, we have to remember that due to (11,76), the coefficients ak and bk can be 
equal to zero. In order to illustrate the meaning of (11 ,84), we consider some special 
cases, from which the reader can draw conclusions about the general method. 
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For the case that the angular-momentum quantum number J = 0, we find 
directly: 

J=O (go - A)CO = 0 , (11.85) 

i. e. the eigenvalue is given simply by go, and because of (11.82) with J = k = 0, 
we have go = O. We therefore find that the rotational energy Erot = O. 

For J = I, there are two possibilities, depending on whether k is even or odd. If 
k is even, then the only possibility is that k = 0 and the corresponding equation is: 

J = 1 (go - A)CO = 0 . (11.86) 

In this case, from (11.82), go == g].o = 4f3, so that after reversing the replacements 
(11.72) and (11.68), we have 

Erot = fi2 (_1 + _1 ) . 
2 ex e y 

In contrast, if k is odd, we obtain two equations from (11.84), having the form: 

(gl - A)Cl + 0 = 0 , 

0+ (g-l - A)Cl = 0 , 
(11.87) 

where g] == gl,l and g-l == gl,-l yield gl = g-l = 2f3 + Az. The eigenvalues which 
result from (11.87) are the same, A = 2f3 + Az ; i. e. the energy Erot = fi2A is doubly 
degenerate and is equal to 

fi2 ( 1 1) fi2 1 
Erot = 4 ex + e y +"2 e z . 

Now we examine the case of J = 2. The Eqs. (11.84) divide into one set for even k 
and one set for odd k. For even k we find the three coupled equations 

J = 2, (g2 - A)c2 + acoao = 0 , 

ab2c2 + (gO - A)cO + aC2a_2 = 0 , 

acobo + (g-2 - A)cO = 0 , 

where the following relations for the coefficients hold: 

ao == a2 0 = 2J6 , 

bo == b2,o = 2J6 , 

a-2 == a2,-2 = 2J6 , 

b2 == b2,2 = 2J6 . 

These equations have a non-trivial solution only if the determinant 

g2 - A aao 0 
ab2 go - A aa_2 = 0 
o abo g-2 - A 

(11.88) 

(11.89) 
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vanishes, which, as always, yields a secular equation for the eigenvalues A. With the 
known coefficients, this third-order equation for A can be readily solved. 

In the case that k is odd, Eqs. (11.84) split into two uncoupled equations: 

and 

(g-l - A)c-l = 0 , 

with 

gl == g2,1 = 10,8 + Az , 

g-l == g2,-1 = 10,8 + A z , 

(11.90) 

(11.91) 

from which again the eigenvalues A can be read off directly. Finally, for J = 3, the 
system of Eqs. (11.84) splits into equations for the case that k is even or odd. For the 
latter, we find a system of equations whose determinant of coefficients has the form: 

X-A X 0 0 
x X-A X 0 

=0. 
0 x X-A x 

(11.92) 

0 0 x X-A 

The symbol x indicates here that non-zero coefficients occur at the corresponding 
positions in the determinant. From this form, the general rule for setting up the 
equations and the associated secular determinant can be seen. Non-zero terms occur 
only along the main diagonal and the neighbouring two subdiagonals. This, by the 
way, makes it possible to solve the system of equations in a step-by-step manner. The 
last equation represents a condition of self-consistency, which is equivalent to the 
vanishing of the determinant (11.92). In this way, it is possible to calculate the energy 
eigenvalues ti2 A and the corresponding eigenfunctions for any desired value of the 
quantum number J. We have thus completed our task of computing the rotational 
energies of the molecule. 

In the next section, we turn to molecular vibrations. 

11.3 The Vibrations of Tri- and Polyatomic Molecules 

In the diatomic molecule, we saw that the nuclei can undergo harmonic oscillations 
about their equilibrium positions, at least for small amplitudes. The molecule thus 
behaves as if the two point masses were joined together by an elastic spring. We 
now examine a molecule with three or more atoms, and consider the vibrations of 
its nuclei. Our goal is to derive the Hamiltonian for these vibrations; this will be 
simpler if we first treat the vibrations using classical mechanics. We thus obtain 
equations for coupled oscillators, which can be decoupled by introducing the normal 
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coordinates. As a result, we can represent the Hamilton function as the sum of 
individual Hamilton functions (one for each normal mode) and can easily carry out 
the quantisation. 

As we know from experiments, and as can be calculated from the quantum­
mechanical theory of the bonding forces in molecules, the nuclei maintain average 
distances from one another, and these distances are determined by minima in the 
potential energy curve. They can undergo hannonic oscillations about these equi­
librium positions, as long as the displacements are not too great. The potential 
energy V of the M nuclei, which depends on their positions as given by the vectors 
Rj , j = 1, ... , M, can be expanded in a series about the equilibrium positions Rj,o, 
with the displacements denoted as ~j: 

We thus obtain the following expansion, up to terms of second order in ~j: 

M 

V(RI, R2, ... ,RM) = V(RI,o, R2,o,··. ,RM,o) + L(Y'jV)~j 
j=1 

(11.93) 

(11.94) 

The derivatives Y'j V and a2 v/al;j/al;j'/I are of course to be evaluated at the positions 
Rj = Rj,o. Since these are the equilibrium positions, we have 

(11.95) 

so that the second term on the right-hand side of (11.94) vanishes. In the third term 
of (11.94), the indices I and I' denote the coordinates x, y, and z, i. e. for example, 
19jx means the x-component of the displacement vector ~j. The sum over j, i' runs 
over j = 1, ... ,M and i' = 1, ... ,M. Since V(RI.O, ••• ,RM.O) is a constant, 
independent of the rs, the remaining part of the potential energy of the nuclear 
vibrations which interests us is 

(11.96) 

In order to be able to write W in a simple form, we introduce new variables IJ, defined 
by: 

l;j,x ---+ 1J3(j-IHI , 

l;j,y ---+ 1J3(j-IH2 , 

l;j,z ---+ 1J3(j-IH3 , 

(11.97) 

which clearly requires us to change the numbering of the indices so that the index k 
of IJk takes on the following values: 
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k=I, ... ,3M=M. 

For W, we obtain in this way a potential expression ofthe form 

1 
W = 2 L T}kAkk' T}k' , 

k,k' 

with 

a2v 
Akk' = ---. 

aT}kaT}k' 

(11.98) 

(11.99) 

(11.100) 

From this, it follows immediately that Akk, is a symmetric matrix. To find the 
Hamilton function, we still need the kinetic energy, which is given by 

(11.101) 

It is reasonable to use the new definitions (11.97) here, also; this can be done easily 
with the aid of the relation: 

mk = m[(k-llj3+1J . (11.102) 

The square brackets in (11.102) mean that one is to take the largest whole number 
corresponding to the quotient (k - 1)/3: 

For k = 1 , we find [k; 1 ] == [~J = 0 ; 

for k = 2, we find [~J = 0 ; 

for k = 3 , we find [~J = 0; and only 

for k = 4, do we find [~J = 1 ; 

for k = 5 , we find [~J = 1 , etc .. 

Inserting the masses mk defined in (11.102), we can write the kinetic energy of the 
vibrations of the nuclei in a readily understandable way as 

(11.103) 

Using (11.99) and (11.103), we obtain as our first important result the Hamilton 
function: 
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H = Ekin + W = ~ Lmk~~ + W, (11.104) 
k 

in which we should still express the velocities ~k in terms of the corresponding 
momenta, Pk = mk~k. in keeping with the spirit of the Hamilton formalism. Since 
W is quadratic or bilinear in the displacements T/k. equation (11.104) represents the 
energy of coupled oscillators. Their equations of motion are: 

_ .. aw 
mkT/k =-­

aT/k 

or, when we insert W from (11.99), 

3M 

mkr;k = - L Akk'T/k' , 
k'=l 

where Akk' is given by (11.100). 

(11.105) 

(11.106) 

The coefficients Akk, in (11.99) can be combined into a matrix A according to: 

and likewise the masses m in (11.103), which form a diagonal matrix m: 

Wand E kin then take on the simple forms 

and 

1 ·T - • 
Ekin = 'i.B m B. 

(11.107) 

(11.108) 

(11.109) 

(11.110) 

Our next goal is to carry out a transformation of the vector B into another vector 
which will allow W to be expressed in a form analogous to (11.1 09), but with the 
matrix A in diagonal form. The first difficulty is that when we transform the B to 
new coordinates, we have no guarantee that Ekin will remain in the form (11.110) 
with m as a diagonal matrix. In order to carry out a simultaneous diagonalisation of 
Wand Ekin, we resort to a trick, by making the following transformation to a new 
vector ~: 

(11.111) 

The square root of the diagonal matrix m is defined simply as a new diagonal matrix 
whose elements are the square roots of the diagonal elements of the original matrix: 
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_ 1/2 m l _ 1/2 
[ 

- 1/2 1 
m = m 2 

Inserting (11.111) in (11.109), we find 

W - I)oT - -1/2A - -1/2)0 
- 2~ m m ~ . 

In the following, we abbreviate the matrix product in (11.113) as 

in- I / 2 A in- I / 2 = B . 

(11.112) 

(11.113) 

(11.114) 

As can easily be verified, B, like A, is a symmetric matrix. With these changes, 
(11.109) and (11.110) take on the form 

and 

I ·2 
Ekin = 2~ . 

(11.115) 

(11.116) 

In all these considerations, we must take into account the fact that B or ~ are 
simply time-dependent vectors, just as the variables ~ from which they are derived. 
It is easy to see that the equations of motion (11.106) for the TJk take on the following 
form as equations for the !;k: 

~k = - L Bkk, i;k' (11.117) 
k' 

or, written as a matrix equation, 

~ = -B ~ . (11.118) 

To solve this differential equation, we use the trial function 

~(t) = eiwt ~(O) + c.c .. (11.119) 

The equations represented by (11.118) are linear, so it is sufficient to substitute the 
first part of (11.119) into (11.118), to determine w and ~ (0), and only then to include 
the complex conjugate part of the solution from (11.119), so that ~ will be real. We 
thus insert ~ (t) = eiwt ~ (0) into (11.118), carry out the differentiation with respect 
to time, and divide out the common factor eiwt . We are then left with the linear 
algebraic equations 

(11.120) 

They have a non-trivial solution only if the determinant 



11.3 The Vibrations of Tri- and Polyatomic Molecules 247 

det (B - (J} 1) = 0 (11.121) 

vanishes. Here, 1 is the unit matrix. A thorough mathematical analysis shows that 
the frequencies ware, in fact, real. We of course might have expected this from 
the beginning, since for our system, energy conservation must hold and a complex 
quantity w would mean that the system were damped or would show exponential am­
plitude growth, which would certainly be in contradiction to the energy conservation 
theorem. 

Equations of the form (11.120) lead, as is well known, to a whole set of fre­
quencies, the so-called eigenfrequencies, which in general are different from one 
another. Each eigenfrequency corresponds to a particular eigenvector ~(O), and thus, 
according to (11.111), to a particular vector B(O); they are uniquely determined up 
to a constant factor (as long as degeneracies do not occur). The vibrations which are 
thus described are the normal modes. If we decompose the time-dependent vectors 
~ or B into their components, then it follows from (11.119) that all the components 
oscillate with the same frequency; this is a property typical of the normal modes. For 
the determination of the eigenvectors and their symmetry behaviour, group theory, 
which we introduced in Chap. 6, again proves to be a fundamental aid. We shall 
discuss this point in more detail in Sect. 11.4. 

We now distinguish the frequencies and eigenvectors by means of the index k, 
so that instead of (11.119), we can more precisely write 

(11.122) 

As a more detailed analysis shows, three of the eigenfrequencies vanish, owing to 
the fact that the equations allow solutions which correspond to a uniform translation 
of all the nuclei at the same time. In what follows, we ignore these frequencies 
and their eigenfunctions, since they were already included in the treatment of the 
centre-of-mass motion. 

As we already noted, A and therefore B are symmetric matrices. The eigen­
functions of symmetric matrices have the property that they obey the orthogonality 
relations 

(11.123) 

We expand the general vector ~ (t) as a superposition of the eigenvectors ~ (0): 

~(t) = L ,Bj(tHj(O) . 
j 

(11.124) 

Since the eigenvalues w of (11.120) occur in pairs with positive and negative signs, 
we must assume that the time-dependent function ,B j has the general form 

(11.125) 

We now recalculate the expression for the kinetic energy Ekin in terms of the variables 
,B j by using the expansion (11.124); we find 
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(11.126) 

or, if we make use of the orthogonality relations (11.123), 

(11.127) 

We proceed in a similar way with W, by inserting (11.124) into (11.115) and thus 
obtaining 

W = ! L f3/t)~J (0) B L f3k(t)~k(O) . (11.128) 
j k 

We take into account the fact that the relations (11.120) are fulfilled for each value 
of the index k; i. e. 

(11.129) 

and finally apply the orthogonality relations (11.123). We can then express W in the 
simple fonn: 

(11.130) 

Let us examine the expression for the total energy which we obtain as the sum 
of E kin and W, i. e. Hvib = Ekin + W; using (11.127) and (11.130), we find the result 

Hvib = L ! (~~ + w~f3~) . (11.131) 
k 

This expression has a very simple interpretation: we can see that the total energy 
can be written as the sum o/independent oscillators. This fact becomes particularly 
clear if we identify f3k with the spatial coordinate Qk of an oscillator and ~k with its 
momentum, Pk, setting the mass m fonnally equal to 1: 

f3k ~ Qk} 
~k ~ Pk . 

m = 1 

(11.132) 

Let us summarise: we have seen that in the case of elastic bonds between the nuclei 
of a molecule, the kinetic and potential energies can be written with the aid of 
a coordinate transfonnation in such a way that they appear as the sum of the energies 
of uncoupled harmonic oscillations. 

We can now complete the final step. As we know, the energy of a harmonic 
oscillator is readily quantised. The SchrMinger equation is then: 

Hvib cP = Evib cP , 
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where Hvib is given by 

HVib = L !(Pl + wiQ~) . 
k 

It is frequently more elegant to introduce the creation and annihilation operators for 
vibrational excitations in place of the variables Qk and Pk: 

Bi = (WkQk - iPk)/J2nwk , 

Bk = (WkQk + iPk)/J2nwk . 

Then Hvib can be written as 

HVib = Lnwk(Bi Bk +!) , 
k 

where ! Lk nwk represents the zero-point oscillation energy. 
A few concluding remarks are appropriate here. Quite obviously, we have not 

treated tri- and polyatomic molecules in such a consistent way as the diatomic 
molecules, where we started with the Schrodinger equation and showed that a suitable 
coordinate transformation could bring it into a form where the quantisation of the 
translational, the rotational, and the vibrational motions became clearly evident. We 
could have done the same thing in the case of triatomic or polyatomic molecules, but 
showing the individual steps of the coordinate transformation would have then been 
extremely lengthy and tedious. We therefore chose a simpler approach, in which 
we started from classical mechanics, which also yields the correct result. Naturally, 
in a more precise treatment, we would have to consider additional effects; this is 
true for the diatomic molecules as well. For example, we would have to take into 
account anharmonicities in the potential energy curve when the displacements from 
the equilibrium nuclear positions become larger, etc. 

11.4 Symmetry and Normal Coordinates 

In Chap. 5, we have seen with the aid of some straightforward examples how the 
calculation of electronic wavefunctions can be simplified by making use of molecular 
symmetries. In Chap. 6, we presented the basic mathematical tools needed to utilise 
symmetry properties, giving a detailed treatment of the fundamentals of the theory 
of group representations. Symmetry considerations are also useful in dealing with 
molecular vibrations: here, they help to determine the normal coordinates in an 
easy way. We shall demonstrate this using a simple example, namely a diatomic 
molecule (cf. Fig. ILl). In the major part of this section, knowledge of Chaps. 5 
and 6 is unnecessary, so that the reader who has not yet studied those chapters can 
still profitably read the present one. 
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Our starting point is the classical Hamilton function for the nuclear vibrations, 

Hvib = Ekin + V ; (11.133) 

but we note that all our considerations could just as well be applied to a Hamiltonian 
operator. However, it is more intuitively clear to deal initially with the classical 
expression. The kinetic energy is given by 

ml' 2 m2' 2 
Ekin = 2~1 + 2~2' (11.134) 

and the potential energy may be written in the form 

(11.135) 

We consider here a one-dimensional problem as shown in Fig. 11.1, so that the 
vectors all lie along the x-axis. As in Sect. 11.3, we introduce the coordinates of the 
zero-point of the vibrations, Rj.o, so that we can give the potential energy (11.135) 
in the form: 

(11.136) 

We now examine symmetry operations T which leave the Hamilton function 
(11.133) invariant, i. e. we consider those transformations which transform H onto 
itself: 

TH=H. (11.137) 

The symmetry operation which we have in mind here is a reflection along the y-axis, 
which changes the sign of the x-component of every vector and simultaneously 
exchanges the indices 1 and 2. The reflection thus transforms both the equilibrium 
positions Ro and the displacements ~, according to: 

RI,o ~ R2,O, ~I,x ~ -~2,x , 
(11.138) 

R 2,o ~ RI,O, ~2,x ~ -hx. 

m,i~'· 
a 

r ~t!: ' --x 

R1.o R2.0 

Fig. 11.1. The one-dimensional motion of two point masses with m I = m2. Their equilibrium 
positions are separated by a distance vector a and are located symetrically with respect to the 
origin of the coordinate axes, i. e. R2,O = -RI,o. The displacements from the eqUilibrium 
positions are in the x-direction and are denoted by ~I and ~2 
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Let us first consider the kinetic energy (11.134). Since the transformation exchanges 
the indices on ~l and ~2, we obtain an expression for the energy in which the masses 
m 1 and m2 have been permuted; it is thus no longer of the form (11.134). We obtain 
the same form only in the case that ml = m2. We thus recognise a first condition for 
the existence of molecular symmetry, i. e. that the mass points which are carried into 
one another by the symmetry operation must contain the same masses. If we insert 
the result of the transformation (11.138) into (11.136), we can immediately see that 
the potential energy V has remained unchanged. 

We now investigate just how the equations of motion behave under these reflec­
tions. The equations of motion which belong to the energy (11.133) are: 

ml~l = K(~2 - ~j) , 

ml~2 = -K(~2 - ~d . 

(11.139) 

(11.140) 

If we now carry out the transformation (11.138), then (11.139) is transformed into 

-ml~2 = K(-~l +~2) 

and (11.140) into 

-ml~l = -K(-~l +~2). 

Clearly, however, we could write (11.141) in the form: 

ml~2 = -K(~2 - ~j) 

and (11.142) in the form: 

ml~l = K(~2 - ~l) . 

(11.141) 

(11.142) 

(11.143) 

(11.144) 

Aside from the order in which the equations occur, these expressions are identical 
with the original (11.139) and (11.140). The equations of motion are, as our example 
demonstrates, likewise invariant under this symmetry operation. 

The variables ~l and ~2 form the basis of the representation of the symmetry 
group. It contains only two elements, namely the identity operation E and the 
reflection a. Let us see how these operations affect the basis vectors ~l and ~2. For 
E, we find 

E (~I'X) = (~I'X) = (~~) (~I'X) , X = 2 . 
~2,x ~2,x ~2,x 

(11.145a) 

Considering the transformations (11.138), we obtain 

(11.145b) 

where we have inserted matrices into the third term which would have the same 

effect as the corresponding operations E or a on (t::). The sums of the diagonal 
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elements, i. e. the traces of the matrices, are the characters of the group, which we 
have indicated as the last entry in (11.145a) and (11.145b) for E and a. 

According to group theory, there are two irreducible representations for the group 
represented by E and a; their characters are listed in the second and third rows of 
Table 11.1. 

E 

2 o 

Table 11.1. The group characters; the upper row is for the 
reducible representation (11.145), and the middle and last 
rows for the two irreducible representations 

-1 

From the table, we can see immediately that the first row can be represented as 
the sum of the entries in the second and third rows. From this we know (cf. Chap. 6) 
that the reducible representation given in (11.145) can be decomposed into the two 
irreducible representations which we have called r 1 and n. The representations 
belonging to n or r2 can be constructed immediately by using (6.58), but, in the 
present case, they can also be seen directly. As we have already learned in Chap. 5 
in the discussion of parity, functions may be classified in terms of their even or odd 
parity, i. e. whether they remain unchanged or change their signs under a reflection. 
If we set 

~2.x = ~l.x , (11.146) 

then we can readily calculate the following equation: 

a (~l.X) = (-hx) = (-1) (~l.X) . 
~l,x -hx ~l.x 

(11.147) 

That is, this basis vector is transformed into itself with a negative sign by the 
reflection; it thus has odd parity. In the case 

~2.x = -hx , (11.148) 

in contrast, the calculation yields 

a ( ~I.X) = ( ~l'X) = (+1) ( ~I.X) 
-hx -hx -hx 

(11.149) 

that is, the basis vector in this equation has even parity. Using (6.58), as we have 
already done in Sect. 6.7, we obtain the column vectors on the left-hand sides of 
(11.147) and (11.149) automatically; these are already the normal coordinates. In 
order to convince ourselves ofthis fact, we use the relation (11.146) associated with 
(11.147), or the corresponding relation (11.148) associated with (11.149). In the 
former case, we obtain on inserting (11.146) into (11.139) the following result: 
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(11.150) 

with the solution 

~2 = ~l = a + bt . (11.151) 

Here, we are dealing with a translational motion of both masses, i. e. not an oscillation 
at all. On the other hand, if we insert (11.148) into (11.139), we find 

(11.152) 

which is the equation of motion of a harmonic oscillator. The solution may be found 
immediately by using an exponential function as a trial solution, ~l (t) = ~l (0) eiwt . 

For the frequency w, we obtain the relation: 

2 ~K mlW = 2K, that is W = -. 
ml 

(11.153) 

The solutions ~l, ~2 can then be written directly in the form 

(11.154) 

and 

(11.155) 

where we have again used relation (11.146). The solutions (11.154) and (11.155) 
can be rewritten in the form of a vector equation as follows: 

(11.156) 

From this last equation, we can see that 

(11.157) 

is the normal coordinate we were seeking; it becomes a real normal coordinate on 
addition of its complex conjugate, as indicated in 01.156). 

From this simple example it is clear that the use of symmetries and the trans­
formation properties of the normal coordinates reduces the computational effort 
required. Instead of solving the coupled Eqs. (11.139) and (11.140) directly, we had 
only to solve much simpler decoupled ones, (11.150) and (11.152). 

Let us now see how the procedure works in the general case by referring to 
Fig. 11.2. In the case shown at the left of the figure, where the masses are all 
different, even the kinetic energy shows no symmetry at all, so that here, we cannot 
make use of symmetry considerations. In the case shown in the centre of Fig. 11.2, 
we find mirror symmetry with respect to a vertical axis passing through mass m3, 
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L 
m, : m, 

Fig. 11.2. Left: Three nuclei of a molecule in the plane of the page and equidistant from one 
another. There is no symmetry here, since the masses m], m2 and m3 are all different. Centre: 
Since here m] = m2, but m] = m2 i= m3, only the symmetry operation ofrefiection through 
the dashed vertical line is possible. Right: If all the masses are equal, then the symmetry 
operations of the group C3v are possible. In each case we have assumed that the nuclear 
interactions also allow the symmetry operations indicated 

as long as the potentials are also invariant under the reflection. This is by no means 
obvious, since the potential depends on the electronic wavefunctions, and their 
distribution could, for example, be asymmetric. However, if we assume that the 
potential is also symmetric, then we can make use of the mirror symmetry of the 
molecule to find the normal coordinates. In the case of the right side of Fig. 11.2, 
the three identical point masses can be transformed into one another by a variety 
of symmetry operations, as discussed in detail in Sects. 6.2 and 6.3. If we choose 
the coordinates of the equilibrium positions as given in Fig. 11.3, then the effect 
of the symmetry operations can be described quite easily. Let us first consider the 
equilibrium positions themselves. On reflection through the vertical line passing 
through 3, the vectors R1,O and R2,O are converted into one another, while the 
third vector R3,O is transformed into itself. The displacements ~1 and ~2 exchange 
their indices, with the x-coordinate changing sign while the y-coordinate remains 
unchanged. The index of ~3 remains unchanged, while the x-coordinate changes its 
sign and the y-coordinate is unchanged. A rotation of the molecule by 60° about 
an axis perpendicular to the page causes a cyclic permutation of the indices of the 
equilibrium position vectors Rj,o and has the same effect on the displacements ~j, 
with each vector ~j also being rotated by 60°. With the aid of a model in which 
each pair of masses is joined by a spring, and all the springs have the same force 
constants, one can readily see that the potential energy is also invariant with respect 
to these symmetry operations. We leave this as an exercise to the reader. 

The basis of the reducible representation is determined by a vector made up of 
the two components of ~], the two components of ~2, and the two components of 
~3. It is thus a six-dimensional vector, which we can write using the variables TJ 
introduced in Sect. 11.3 as 

B= 

TJ6 

By subjecting this vector to the various transformations of the group C3v , i. e. the 
reflections and rotations given in Figs. 6.2 and 6.3: E, C3 , C~, O'v, O'v', and O'v", the 
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~2 

Fig. 11.3. A triatomic molecule having C3v symmetry, showing the equilibrium positions R j,O 

and the displacement vectors ~j for the nuclei which are indexed by j = 1,2, 3 

matrices of the representation can be found in a similar manner to the relations 
(11.145). There, the matrices corresponding to the various operations were given 
in the third term, and the characters could be read off as their traces. Using the 
character table, Table 6.8, it is then possible to carry out the decomposition of the 
reducible representation into its irreducible representations, as we did here according 
to Table 11.1 and in (11.147) and (11.149). Now we must use relation (6.58). 
Analogously to (11.147) and (11.149), we then find fixed relationships between the 
individual components of the vectors of the representations. This then means that 
we have obtained the normal coordinates directly. We leave it to the reader as an 
exercise to derive these normal coordinates for the case shown in Fig. 11.4. 

AA 
Fig. 11.4. The normal modes ofthe molecule shown in Fig. 11.3. In addition, there are three 
"improper" normal modes, namely two translations and one rotation (in the plane) 

11.5 Summary 

In this chapter, we have treated the motions of the atomic nuclei in molecules 
quantum-mechanically. We have seen, using the example of a diatomic molecule, 
how the motions can be split up into translations, rotations, and vibrations. The trans­
lational motion is not subject to a quantisation condition (aside from the "particle-in­
a-box" quantisation given by the dimensions of the container, which gives practically 
continuous energy levels when a macroscopic container is considered). In contrast, 
we were able to derive the quantised energy levels for rotations and vibrations, and 
could make clear which approximations were introduced in the process. We then 
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investigated the rotational motions of poly atomic molecules, including those of the 
asymmetric top, i. e. a molecule in which the moments of inertia along all three 
principal axes are different. Finally, we studied molecular vibrations, dividing the 
problem into two parts: the classical problem of determining the normal coordinates, 
and the problem of the quantisation. We described the derivation of the normal co­
ordinates for a diatomic molecule, which can oscillate only along the x-axis, and -
in less detail - for a triatomic molecule within the molecular plane. We saw in the 
latter case how useful group theory can be. 

Having determined the normal coordinates classically, one can then construct the 
Hamiltonian in a very simple manner, as a sum of Hamiltonian operators for indi­
vidual harmonic oscillators, so that the quantum-mechanical problem can be solved 
immediately. The wavefunction is found to be the product of the individual oscillator 
wavefunctions, each one referring to a particular normal mode. In determining the 
normal coordinates, we found that some of the degrees of freedom can automatically 
be dropped, since they are due not to vibrations, but instead to translational and rota­
tional motions. We mention this fact for completeness, since we did not demonstrate 
it in the general case. 

Problems 

11.1 Consider a molecule with M atoms, in which the nuclei at coordinates Rj 

have the masses m j. The masses of the nuclei are in general much greater than 
those of the electrons, i.e. the electrons can follow the nuclear motions directly. 
Then the nuclear motions can be treated to a good approximation as independent of 
the electronic motions, whereby one distinguishes in analogy to classical mechanics 
between translational and rotational motions. In the following, let L be the total 
angular momentum of the molecule, i.e. 

where L j is the angular momentum of nucleus j. 
Furthermore, let the Hamiltonian be given as follows: 

with RM,J := RJ - RM. 

The potential V is assumed to be invariant with respect to simultaneous rotation 
of the relative coordinates RM,J' Show that the square of the angular momentum 
operator commutes with the Hamiltonian, i.e. that [L2, H) = O. It is sufficient to 
demonstrate this result for the example of M = 3. 



12 Raman Spectra 

Along with infrared spectroscopy and microwave spectroscopy, a further important 
method of investigating the rotational and vibrational spectra of molecules is Raman 
spectroscopy. It is based on the inelastic scattering of light from molecules, which 
is known as the Raman effect. The rotational and vibrational frequencies of the 
molecules which scatter the light are present in the scattered spectrum as difference 
frequencies relative to the elastically-scattered primary light. In this chapter, we shall 
explain how this scattered-light spectrum arises and what information it contains 
(Sects. 12.1-12.3). In the final section, 12.4, we then discuss the statistics of nuclear 
spin states and their influence on the rotational structure of the spectrum. This last 
section refers not only to the Raman effect, but also to rotational spectra in general, 
and can thus be regarded as a complement to Chap. 9. 

12.1 The Raman Effect 

As we have already seen, light can be emitted or absorbed by molecules, if the 
resonance condition .1E = hv is fulfilled. In addition, however, as we know from 
classical physics, light of any wavelength can be scattered. Elastic or Rayleigh 
scattering, as described by classical physics, is explained in terms of the force acting 
on the electronic shells of the molecule due to the E vector of the light. This force 
induces an electric dipole moment Pind = aE, which oscillates at the frequency of 
the light and, acting as a Hertzian dipole, emits on its own part a light wave of the 
same frequency. This scattered radiation is coherent with the radiation field which 
induces it. 

In the year 1928, Raman observed frequency-shifted lines in the spectrum of 
scattered light. The frequency shift relative to the primary light corresponded to 
the vibrational and rotational frequencies of the scattering molecules. This process, 
which had been predicted theoretically by Smekal in 1925, is called the Raman effect 
and forms the basis of Raman spectroscopy. The Raman-scattered light, in contrast 
to Rayleigh scattering, is not coherent with the primary light. Frequency shifts to 
smaller energies (Stokes lines) as well as shifts to higher energies (anti-Stokes lines) 
are observed. The frequency shift is independent of the frequency of the primary light 
and is a unique property of the scattering molecules. The entire Raman spectrum of 
a molecule is shown schematically in Fig. 12.1. It is the structure of this spectrum 
which we want to elucidate. 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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Rayleigh line 

a 

5 o 5 o 5 o 

4B 

Fig. 12.1. The total Raman spectrum of a diatomic molecule, represented schematically. The 
Rayleigh line at the frequency vp of the primary light is surrounded directly by the rotational 
Raman lines. Spaced at frequency shifts corresponding to the molecular vibrations, Vvib, are 
the rotational-vibrational Raman lines, the Q, S, and 0 branches. The corresponding anti­
Stokes lines at vp + Vvib are much weaker and usually cannot be observed. The same is true 
of the harmonics at 2Vvib 

To observe the Raman spectrum, a high spectral resolution is required, owing 
to the smallness of the frequency shifts. The order of magnitude of these shifts is 
1 cm- I in the rotational Raman effect. Using primary light in the visible range, with 
a wavenumber vp (p stands for primary) of the order of 20 000 cm -I, we also need to 
supress the unshifted and many times more intense elastically scattered light in order 
to observe these small shifts; for this reason, a double or even a triple monochromator 
is often used for the detected beam. Furthermore, the smallest possible linewidth 
of the primary light is also necessary; otherwise, it is impossible to separate the 
weak Raman-scattered lines from the Rayleigh line, which is orders of magnitude 
more intense. For this reason, laser light is often used as the primary light source in 
Raman measurements. As is well known, lasers can be used to produce very intense 
monochromatic beams of light, with linewidths much smaller than the expected 
Raman shifts. Figure 12.2 gives a schematic drawing of a typical experimental 
set-up. 

12.2 Vibrational Raman Spectra 

We at first leave the molecular rotations out of consideration and assume that the 
molecule exhibits only vibrations. In the case of free molecules, we must naturally 
later revise this assumption. 

The classical explanation of the vibrational Raman effect begins with the ex­
planation of Rayleigh scattering. In this theory, it is assumed that the scattering 
molecule initially is not vibrating or rotating. When primary light of frequency vp 

(also denoted by vo) and an electric field strength E = Eo cos(2nvpt) strikes the 
molecule, a dipole moment is induced in its electronic shells, which oscillates with 
the same frequency vp as the E vector of the primary light. We then have 
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Fig. 12.2. An experimental set-up for observing 
the Raman effect. Detection is carried out pref­
erentially perpendicular to the direction of the 
incoming primary light beam, in order to keep 
the intensity of the primary light in the detector 
as small as possible 

(12.l) 

If, on the other hand, the molecule is already vibrating at one of its characteristic 
vibrational frequencies, then the oscillations of the induced moment are amplitude 
modulated at the frequency Vvib of the molecular vibration, assuming that the polar­
isability a of the molecule changes as a function of the internuclear distance R of 
the vibrating atomic nuclei. The polaris ability can be expanded as a series in powers 
of the internuclear distance R: 

da 
a(R) = aeRo) + -(R - Ro) + higher order terms . 

dR 

Due to the molecular vibrations, R is time-dependent. It obeys the equation: 

R = Ro = q cos(2rrvvibt) . 

Combining this equation with (12.2), we find 

pet) = aE = [a(Ro) + :~ cos(2rrvvibf) ] Eo cos(2rrvpt) , 

(12.2) 

(12.3) 

(12.4) 

or, rewriting using the well-known trigonometric identity cos a cos 13 = Hcos(a + 
13) + cos(a - 13)], 

1 da 
pet) = aeRo) Eo cos(2rrvpt) + "2 dR Eoq {cos[2rr(vp + Vvib)t] 

+ cos[2rr(vp - Vyib)t]} . (12.5) 

In this way, sidebands are produced in the scattered light spectrum, having the 
frequencies vp ± Vyib. 
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This is the 1 st order vibrational Raman effect. With decreasing intensity, one can 
also observe Raman lines with vp ± 2Vvib, vp ± 3Vvib, etc. due to the ever-present 
anharmonicity, i. e. the terms of higher order in the series expansion of a(R) in 
(12.2). These are called the Raman effect of second, third, ... order. 

A vibration is thus Raman-active if da / dR i= 0, that is, the polarisability a of the 
molecule must change as a function of the internuclear distance R during a vibration. 
This is always the case for diatomic molecules. For this reason, homonuclear and 
thus nonpolar molecules such as H2 or N2 are Raman-active. Their rotational and 
vibrational spectra can be measured using the Raman effect, although they are 
not accessible to microwave or infrared spectroscopies because the transitions are 
forbidden by symmetry. 

In the case of polyatomic molecules with centres of inversion, infrared and Raman 
spectroscopies complement each other when one wishes to observe the molecular 
vibrations. In such molecules, the infrared active normal modes are Raman-inactive, 
and the infrared forbidden normal modes are Raman-allowed. This can be illustrated 
by the example of the C02 molecule: the symmetric stretching vibration VI (cf. 
Fig. 10.10) is infrared inactive, since the centres of positive and negative charge in 
the molecule coincide during the vibration. This motion is, however, Raman-active, 
since the polarisability changes periodically as a result of the stretching vibration. 
The asymmetric stretching vibration V2, in contrast, is infrared active, since here, an 
electric dipole moment is present: however, it is Raman-inactive, because the changes 
in the polaris ability due to the shortening and lengthening of the two C-O bonds in 
the molecule just compensate each other. Similarly, it can readily be seen that the 
bending vibration is Raman inactive. This mutual exclusion of infrared and Raman 
activity holds only for molecules with an inversion centre. 

The classical theory of the Raman effect which we have described here explains 
many of the observations well, but it fails when the intensities are considered. In 
the classical picture, the same intensities would be expected for the lines which are 
shifted to lower energies and those shifted to higher energies, i. e. the Stokes and 
anti-Stokes lines. In fact, the Stokes lines are much more intense. 

This is understandable in the light of the quantum-mechanical treatment of the 
Raman effect, which is given in Sect. 17.2. In this theory, the Raman Effect is treated 
as inelastic photon scattering, which in the case of the Stokes lines begins with 
a level having a small vibrational quantum number v (in particular v = 0) and ends 
with a level having a higher quantum number Vi (for example Vi = 1), while the 
reverse process occurs in the anti-Stokes effect: the scattering begins in an excited 
vibrational level and ends in a level with a smaller v, e. g. in the ground state; see 
Fig. 12.3. So, for the Stokes lines without rotation, the wavenumber of the scattered 
light is given by: 

V = vp - Vvib (or 2Vvib etc.) (12.6) 

and for anti-Stokes lines: 

v = vp + Vvib (or 2Vvib etc.) . 
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Fig. 12.3. A schematic representation of vibrational Raman scattering, to illustrate the Stokes 
and anti-Stokes scattering. Primary light of wavenumber vp connects a real excitation state of 
the molecule with a virtual state. The Raman-scattered light has lost energy (Stokes lines) or 
gained energy (anti-Stokes lines) relative to the primary light 

The difference vp - v is called the Raman shift. As we already pointed out, vp is 
the wavenumber of the primary light which excites the transition and VYib is the 
wavenumber of the molecular vibration. 

In the case of Stokes Raman scattering, the molecule takes on energy from the 
photon; in anti-Stokes scattering, it gives up energy to the photon. The intensity 
ratios between Stokes and anti-Stokes lines are thus given by the occupation proba­
bilities n of the initial states, and these can be calculated from the Boltzmann factor 
in thermal equilibrium. They are, in any case, different for Stokes and anti-Stokes 
transitions. The intensity of the anti-Stokes lines of course must decrease with de­
creasing temperature, since this process presumes that the molecule is initially in 
an excited vibration state, and the number of such molecules decreases when the 
temperature is lowered. 

For the intensities, we then find 

[anti-Stokes n(v = 1) -hv ib/kT ----- -e v 

[Stokes - n(v = 0) - . 
(12.7) 

If we set VYib = 1000 cm -1 and T = 300 K in this expression, we obtain a numerical 
value of e-5, i. e. 0.7%0 for the relative intensity. 

Quantum-mechanically, the selection rules are L1 v = ± 1 (and ±2, ±3, with much 
smaller probabilities, since here the nonlinear contributions to the polaris ability 
are responsible for the transitions). This subject will be treated in more detail in 
Sect. 17.2. 
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12.3 Rotational Raman Spectra 

Now we tum to the rotational Raman effect (Figs. 12.4,5). Here, again, one observes 
a series of scattering lines on both sides of the Rayleigh (i. e. the primary) line, 
but now with spacings corresponding to the rotational quanta. Here, also, many 
aspects of the observed effect can be understood classically. The polarisability of 
a nonspherical molecule is, as we have already discussed in Sect. 3.2, anisotropic 
and must be treated as a tensor with the principal polarisabilities all and a-.l, where 

Rotational Raman spectrum 

AJ=+2 AJ=-2 

iU 
J= 0 

vp v 
Stokes Antistokes 

Fig. 12.4. A diagram explaining the occurrence of 
rotational Raman spectra. To the left and right of the 
Rayleigh line vp are the Stokes and the anti-Stokes 
lines of the Raman spectrum 

parallel and perpendicular refer to the long and short axes of the polaris ability tensor, 
i. e. usually the body axis and an axis perpendicular to it. The rotation of a molecule 
therefore also leads to a periodic modulation of the dipole moment induced by 
the E field of the primary light and thus to a modulation of the frequency of the 
scattered radiation. This frequency modulation, however, occurs at 2vrolo since the 
same polaris ability as at the beginning of the rotation recurs after a rotation through 
1800 owing to the tensor symmetry. The additional lines accompanying the primary 
light thus occur at spacings corresponding to twice the rotational frequency. 

This can be made clear by a simple demonstration experiment, which is shown 
in Fig. 12.6. The light from a lamp operated at a frequency of 50 Hz is reflected by 
two white balls in a dumbbell model which can rotate about an axis perpendicular 
to the line joining the balls and represents a linear dumbbell-molecule. The reflected 
light then contains, in addition to the unshifted component modulated at 50 Hz, two 
sidebands at the shifted frequencies (50 ± 2vrot). This could be demonstrated by 
a simple frequency meter. 

This classical model gives an explanation of the rotational Raman effect which 
is at least qualitatively satisfactory. It is determined by the difference all - a-.l, i. e. 
the anisotropy in the polarisability of the molecule, and occurs only when all - a-.l 

is nonzero. This condition is fulfilled for all diatomic molecules, even for nonpolar 
molecules such as H2, N2, as well as for CO2. For symmetric tetrahedral molecules 
such as CH4 or CCl4, in contrast, one finds all = a-.l, and there is thus no rotational 
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Fig. 12.5. The complete rotational Ra­
man spectrum of a diatomic molecule 
consists of many nearly equidistant 
lines with a spacing of 4B. Term 
scheme and intensity distribution are 
explained in the text. The selection rule 
is L1 J = ±2. The Raman shift v - vp is 
negative for Stokes lines and positive 
for anti-Stokes lines 

Raman effect. The classical explanation for the occurrence of the doubled rotational 
frequency in the spacing of the Raman lines is reproduced in quantum mechanics in 
tenus of modified selection rules which correspond to a two-photon process. 

The quantum-mechanical treatment of the rotational Raman effect as inelastic 
photon scattering accompanied by the uptake or release of rotational quanta leads to 
the selection rule ,1 J = ±2 in the case of the linear rotor. For the rigid rotor with 
energy levels F(]) = hcBJ(J + 1), the shift of the rotational Raman lines relative 
to the primary light is given by 

L 

z 

Fig. 12.6. A demonstration experiment for the rota­
tional Raman effect, after Auer. The light of a lamp L 
is reflected by two spheres which are rotating around 
the axis D. A frequency meter Z indicates the rota­
tional frequency as an additional frequency to that of 
the modulation of the light (50 Hz). More details are 
given in the text 
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17rot = ±B[(1 + 2)(1 + 3) - l(l + 1)] = ±B[4l + 6] 

where the sign is relative to the primary frequency of the exciting light. 
For the wavenumber of the Raman-scattered light, we find 

In a transition with L1l = +2, the molecule is raised to a higher rotational state by 
the scattering process. The wavenumber of the scattered light is therefore smaller 
than that of the primary light, 17p. The Stokes lines of the spectrum thus appear on the 
low-frequency side of the primary light. For the anti-Stokes lines, with L1l = -2, 
the reverse is true. 

The rotational Raman spectrum of a linear molecule thus has the structure which 
is shown in Fig. 12.4. The first Raman line, with 1 = 0, is located at a distance 6B 
from 17p, the primary line, and then the other lines follow at a constant spacing 
of 4B. The intensity distribution in a rotational Raman spectrum is given, as in the 
rotational spectra treated earlier, by the thermal populations and the multiplicities 
of the 1 terms. It is demonstrated in Fig. 12.5. In addition, this figure makes clear 
that due to the smallness of the rotational quanta, the number of rotational lines 
in the spectrum may be quite large. The difference in thermal populations between 
neighbouring levels is, as a result of the smallness of the rotational quanta, very little 
in comparison to kT; thus the difference in intensity between the Stokes and the 
anti-Stokes lines is also small. 

I I I I I I I I I I I I I I I I I I I 

25 21 17 13 9 5 Q1 5 9 13 17 21 

1700 1650 1600 1550 1500 1450 1400 cm-1 

IV-Vpl 
Fig. 12.7. A section of the rotational-vibrational Raman spectrum of oxygen, 1602. This is 
a vibrational line (Stokes line) with its accompanying rotational lines. In the centre, at the 
energy of the vibrational wavenumber ve = 1556cm-1, we see the Q branch (.1.1 = 0) 
as a broad line. For 1602 (l = 0), the lines with even 1 are missing; cf. Sect. 12.4. After 
Hellwege 
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The selection rules depend on the symmetry of the molecule. For the symmetric 
top, e. g. CH3Cl, we have .t11 = 0, ±1, ±2, and .t1K = 0. Its rotational Raman 
spectrum has more lines than that of the linear rotor; we shall however not go into 
this further here. In the case K = 0, the selection rule .t1 1 = ±2 holds. 

We are now in a position to understand the rotational structure in the vibrational 
Raman spectrum. Each vibrational Raman line is accompanied by rotational lines, 
which can be understood in the same way as the rotational structure in a rotational­
vibrational spectrum, but taking into account the different selection rules for Raman 
transitions. Figure 12.7 shows, as an example of a measured spectrum, a section 
of the Raman spectrum of 160 2 , namely the vibrational line at ve = 1556 cm- i , 

and its accompanying rotational lines. The structure of this Raman spectrum corre­
sponds to that of the infrared vibrational spectrum, but now the selection rules are 
.t1v = ±1 (±2, ... ), .t11 = 0, ±2. The comparison gives the differences between 
a rotational-vibrational spectrum and a rotational-vibrational Raman spectrum; this 
is illustrated schematically in Fig. 12.8. 

Let us now compare the rotational-vibrational spectrum (without the Raman 
Effect) to the corresponding Raman spectrum, referring to Fig. 12.8. 

are 
In the rotational-vibrational spectrum of a diatomic molecule, for .t1v = 1 there 

the R branch, VYib + Vrob .t1 1 = 1, Vrot = 2B(J + 1) 

the P branch, Vyib - Vrob .t1 1 = -1, Vrot = 2B 1 

and possibly 

the Q branch, VYib, .t11 = 0. 
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Fig. 12.S. A vibrational Raman spectrum (right) compared to a rotational-vibrational spectrum 
(left), schematically. Only a section of each spectrum is shown. The selection rules and 
therefore the rotational structure of the two spectra are different. Here, we show only Stokes 
lines in the Raman spectrum, i. e. lines having a lower frequency than that of the primary light. 
The Raman shift is vp - VYib, where vp refers to the primary light and VYib to a vibrational 
wavenumber 
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By contrast, in the Raman spectrum, for Stokes lines with Ll v = + 1, we have 

the S branch, vp - Vvib + vrot. LlJ = 2 

the Q branch, vp - Vvib, LlJ = 0 (12.9) 

the 0 branch, vp - Vvib - Vrot, LlJ = -2. 

Here, Vrot is an abbreviation for the rotational energy, B(4J + 6); see (12.8). 
The anharmonicity and the coupling have been left out of these considerations; 

cf. Chap. 9. Both effects lead to small shifts in the spectra, as we have already seen in 
Sects. 9.2.3 and 9.5; these can usually not be determined so accurately in the Raman 
spectrum. For large molecules, the rotational fine structure of the Raman spectrum 
is barely resolvable. 

The whole Raman spectrum of a molecule was already indicated schematically 
in Fig. 12.1, and now becomes clear. Immediately adjacent to the Rayleigh line, the 
line from the primary light, we see the rotational lines. At a spacing corresponding to 
the vibrational line, Vvib, one observes the Stokes region of the rotational-vibrational 
lines, and with reduced intensity on the other side, the anti-Stokes lines. This structure 
repeats with decreasing intensity as "harmonics" in the range ±2Vvib. 

Raman spectroscopy is thus a second method for measuring molecular rotational 
and vibrational quanta. What, then, are its advantages, or at least the differences, 
relative to infrared or microwave spectroscopies? 

- By properly choosing the primary light, one can shift the investigation of rota­
tional and vibrational spectra from the microwave and infrared spectral ranges to 
more conveniently accessible spectral regions, namely into the range of visible 
light. 

- There are vibrations and rotations of molecules which are visible in the Raman 
spectrum, but not in the infrared or microwave spectra. For example, diatomic 
homonuclear molecules such as H2, N2, or 02 can be investigated only with 
Raman spectroscopy, since their rotations and vibrations are infrared inactive. 

- From the polarisation behaviour of Raman spectra, one can obtain information 
about the polarisability tensor of the molecules. A depolarisation of the Raman 
spectrum as compared to the primary light allows the motions of the molecules 
in the surrounding medium during the scattering process, particularly in liquids, 
to be studied; the molecules change not only their positions, but also their 
orientations in the course of these motions. When the molecule moves during 
the scattering process, the polarisation diagram for the scattered radiation can 
deviate from that calculated for a motionless molecule. 

- In the Raman effect, in contrast to the usual single-photon spectroscopies, the 
parity of the state is conserved. The reason for this is the fact that two photons 
take part in the overall process. In single-photon dipole processes, the parity 
changes; in two photon processes, it changes twice, i. e. it returns to its initial 
value. 

- The intensity of the Raman effect is largely independent of the frequency of 
the primary light, as long as the quantum energy of the light is sufficiently far 
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removed from that of an electronic transition. The light quantum of excitation 
of the Raman effect, hvp, ends in a so-called virtual level; cf. Fig. 12.3. If the 
quantum energy of the primary light approaches that of an electronic transition, 
i. e. a real excitation level, then the Raman scattering intensity increases. This 
amplification of the Raman spectrum is called the resonant Raman effect. 

Using the resonant Raman effect, particular parts (having vibrational degrees of 
freedom) of large, complex molecules can be investigated specifically, by intention­
ally using primary light whose frequency is near to that of a real excitation in the 
molecular subgroup. In that case, the portion of the Raman spectrum originating 
from the particular subgroup and containing its rotational and vibrational structure 
is strongly enhanced relative to the Raman spectra of other molecular subgroups. 

12.4 The Influence of Nuclear Spins on the Rotational Structure 

In the rotational spectrum and in the rotational-vibrational spectrum of homonuclear 
diatomic molecules such as H2, N2, and O2, and quite generally in the spectra of 
molecules with a centre of inversion symmetry, such as CO2, characteristic intensity 
differences are observed in the lines originating from levels with an even rotational 
quantum number J as compared to those originating from levels with an odd value 
of J. Examples are shown in Figs. 12.7 and 12.11. Since such spectra are often 
(but not exclusively - see for example the rotational-vibrational spectrum of CO2 

in Fig. 10.12) investigated as Raman spectra, we will consider this interesting and 
important aspect of molecular spectra at this point. The effect is due to the influence 
of the nuclear spins on the spectra. 

The nuclear spins and the magnetic moments of the nuclei of course interact 
with the electronic shell of a molecule, but the influence of this interaction on the 
electronic spectra is comparatively small. The resulting hyperfine structure of the 
molecular terms and the spectral lines is based on the same interaction mechanism 
as in atoms. It can be investigated by using high-resolution spectroscopy, but we will 
not deal with this here; the subject is treated in more detail in I, Chap. 20. 

The observed intensity variations in the Raman spectra are due, however, to 
a different phenomenon of fundamental importance: the influence of the nuclear spins 
on the statistics, that is the relative probability with which particular molecular states 
occur. In molecules with two identical nuclei, the observed intensity distribution in 
the spectrum is a result of the influence of the nuclear spins on the symmetry of the 
overall wavefunction of the molecular state. It is due to the Pauli exclusion principle, 
according to which the overall wavefunction of fermions, i. e. particles with half­
integral spins, must be anti symmetric with respect to exchange of the particles. 
In the case of bosons, with integral spins, the wavefunction must be symmetric 
under particle exchange. Here, we are dealing with nuclear fermions (e. g. 1 H, with 
I = 1/2) and nuclear bosons (e. g. 160, with I = 0). 

Let us consider the H2 molecule in order to explain this effect; see Fig. 12.9. 
The two protons in the molecule are fermions with spin 1/2. The spins of the two 
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protons may be parallel; then the molecule has a total nuclear spin quantum number 
of I = 1. The spin wavefunction is symmetric with respect to particle exchange, 
as the particles are indeed identical when their spins are parallel. This kind of 
hydrogen is called ortho hydrogen, o-Hz. The two nuclear spins could, however, also 
be antiparallel, and the total spin quantum number would then be O. In this case, 
the spin wavefunction is antisymmetric with respect to exchange of the nuclei, and 
this configuration is termed para hydrogen, p-Hz. The statistical weight of the two 
configurations is 3:1, as shown in Table 12.1. 

Table 12.1. 0- and p-hydrogen 

I MJ Wavefunction Character 

o-Hz tt 
0 jz<H + it) triplet 

-1 H 

p-Hz 0 0 ~(H - it) 
,f2 

singlet 

The overall wavefunction of the molecule is the product of the spatial functions 
(including rotation) and the spin functions. Exchange of the nuclei means in the case 
of a dumbbell molecule simply a reversal of the dumbbell, equivalent to an inversion 
in space. Under this operation, the rotational eigenfunctions for J = 1,3,5, '" 
change their signs (cf. Sect. 11.1); they have negative parity and are anti symmetric 
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with respect to exchange. The rotational functions with J = 0, 2, 4, ... remain 
unchanged; they have positive parity and are symmetric. 

The overall parity is the product of the parities of the functions contributing to the 
total system. For particles with half-integral spin, it must be negative. Then o-H2, i. e. 
hydrogen molecules with I = 1 and thus positive parity of the spin function, must 
have rotational states with negative parity, i. e. J = 1,3,5, ... with the statistical 
weight 3, if the remaining spatial function has positive parity, as is in fact the case 
for the ground state of hydrogen. As we shall see in Sects. 13.3 and 13.4, this is 
true of the state denoted by 1 I7;, the ground state of the hydrogen molecule. Para 
hydrogen, with I = 0 and negative parity of the spin function, must have rotational 
functions with J = 0, 2, 4, ... , so that the overall product gives a negative parity 
for the total wavefunction. 

Between these two types of hydrogen, which by the way can be separated from 
each other macroscopically, transitions are rather strictly forbidden. Only transitions 
within the term system with even J and within that with odd J are possible, if 
the nuclei are completely uncoupled. The weak coupling between the nuclear spins 
and the electronic shells does, however, make transitions between the two systems 
possible, with a very small transition probability. 

At the lowest temperatures, only P-H2 is stable; o-H2, due to its J = 1, i. e. 
because a rotational quantum is excited, is metastable. The spontaneous conversion 
of O-H2 into P-H2 by flipping of a nuclear spin occurs very slowly, over a time of 
years. This process can be accelerated by addition of paramagnetic materials or other 
catalysts, so that pure P-H2 can be prepared at low temperatures. It remains in the 
P-H2 state for some time even after warming and evaporation to H2 gas. The case 
of deuterium or heavy hydrogen, 2H2 or D2, is just the reverse: the nuclear spin of 
2H is I = 1, the nucleus is a boson, and at low temperatures, ortho-D2 is stable and 
para-D2 is metastable. 

Normally, thermal equilibrium is established between the two H2 modifications. 
Hydrogen in this case is a mixture of P-H2 and o-H2 in the ratio 1:3. This has the 
following consequences for the rotational spectrum (see Fig. 12.10): 

- In the rotational spectrum, there can be no transitions with .6. J = ± 1, and 
therefore no allowed transitions at all. They would in any case be infrared 
inactive due to the lack of a dipole moment in H2. 

- Rotational Raman lines with .6. J = ±2 are, in contrast, allowed. They belong 
alternately to 0- and p-H2. For this reason, alternating intensities are observed in 
the Raman spectrum, as can be seen in Fig. 12.10. 

The observed alternating intensities in the spectra of other homonuclear molecules 
can be understood in an analogous manner. For 160 2 , with I = 0, all the levels with 
even J quantum number are lacking, for example. Here, the electronic wavefunc­
tion in the ground state has negative parity (term symbol 3 I7;). In order to make 

the overall wavefunction symmetric ct60 is a boson) with respect to exchange, the 
rotational wavefunctions must also have negative parity. Thus, the rotational lines 
with even J are missing in the spectrum; compare Fig. 12.7. For 14N, with I = 1, 
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Fig. 12.10. The rotational Raman spectrum of the H2 molecule. The overall spectrum is 
a superposition of the spectra of ortho and para hydrogen, with the intensity ratio 3:1. The 
direct line at the centre of the spectrum is the Rayleigh line 

all the lines in the Raman rotational branches are observed in the spectrum of the 
N2 molecule, but with alternating intensities in the ratio 1 :2, which results from 
the possible spin configurations in the molecule. These are parallel, with f tot = 2, 
and antiparallel, with f tot = 0; see Fig. 12.11. For N2 molecules with two different 
isotopes, i. e. 14N15N, this alternating intensity is lacking in the Raman spectrum. 

,! I , ! 
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Fig. 12.11. The rotational-vibrational Raman spectrum of the nitrogen molecule, 14N2. In 
the centre, at the position of the vibrational wavenumber ve = 2330 cm- I , the Q branch 
(,1J = 0) appears as a broad line. In 14N2, with I = 1, an alternating intensity of the 
rotational lines with a ratio 1:2 is observed. After HeUwege 
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We mention an historical fact in this connection: the observed alternating in­
tensities in the rotational Raman spectrum of 14N was explained already in 1929 
by Heitler and Herzberg, who noted that the 14N nucleus must be a Boson and 
not a Fermion, as had been assumed up to that time on the basis of the prevailing 
model of nuclei as consisting of protons and electrons. The neutron had not yet been 
discovered, and the nuclear spin [ = 1 of 14N was as yet unknown. 

In general, the following rules hold, which we give here without a detailed 
derivation: 

The ratio of the statistical weights of antisymmetric and symmetric states of the 
nuclear spins in a diatomic molecule with two identical nuclei having the nuclear 
spin quantum number [, or in a polyatomic molecule with a centre of inversion, such 
as C02, is 

[ 

[+1 
(12.10) 

This is then also the intensity ratio of alternate lines in the rotational spectrum; for 
H2, with [ = 1/2, we find 3:1, for N2, with [ = 1, we find 2:1, and for O2, with 
[ = 0, one of the two components is completely lacking, i. e. 1 :0. 

The molecule C160 2 is particularly illustrative; it is linear and therefore has 
a centre of inversion symmetry. Here, only rotational levels with an even quantum 
number J are allowed, since the electronic ground state has positive parity e 17;). 
We pointed this fact out already with respect to the rotational-vibrational spectrum 
of the CO2 molecule, shown in Fig. 10.12, without being able to explain it at that 
point. On the other hand, if one investigates molecules having two different oxygen 
isotopes, e. g. 160C 180, then the symmetry is lowered, since the two 0 nuclei are 
now different. For this molecule, all the rotational terms are observed in the spectrum, 
which thus contains twice as many lines. 

The influence of the nuclear spins on the statistics of the possible molecular 
states which we have described cannot be explained within classical physics and 
presents an impressive demonstration of the correctness of quantum-mechanical 
concepts, in particular the Pauli principle. Simply observing the intensity pattern in 
the rotational spectrum of a molecule permits the determination of the nuclear spin 
quantum number [from (12.10). 

Problems 

12.1 Calculate the spacing of the lines in the pure rotational spectrum of H2, with 
a bond length of7 4.14 pm. Which experimental method would you apply to observe 
this spectrum? 

12.2 For which of the following molecules can a pure rotational Raman spectrum 
be expected: H2, H20, HCI, C~, CH3Cl, CH2CI2, CH3CH3, SF6? 
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12.3 Which of the following molecules exhibit irifrared active and which exhibit 
Raman active vibrational modes: N2, C2H4, CH30H, HD, CCI4, CS2, S02, NH3, 
BeCh, CH3COCH3 (acetone), (CO)sRe-Re(CO)5 (inorganic complex)? 

12.4 The moments of inertia of the ammonia molecule NH3 are G 1- = 2.86 . 10-47 

kg m2 and Gil = 4.38 . 10-47 kg m2. Describe its rotational Raman spectrum when 
it is excited by the 366.732 nm line of a nitrogen laser. 

12.5 a) In the irifrared absorption spectrum and in the Raman spectrum of 
a molecule A2B2, one finds the following line intensities: 

cm -I IR Raman 

3374 - strong 
3287 very strong; PR structure 
1973 - very strong 
729 very strong; PQR structure -
612 - weak 

What molecular structure do you deduce from these data? Attribute individual vibra­
tional modes to the observed spectral lines, taking into account the known vibrational 
frequencies of frequently-occurring bonds in order to identify the molecule A2B2. 
b) The IR and Raman spectra of a molecule AB2 contain the following spectral lines: 

cm- I IR Raman 

3756 very strong -
3652 strong strong; polarised 
1595 very strong -

The rotational structure of all the IR vibrational bands is complex and exhibits neither 
PR nor PQR structures. 

Elucidate the molecular structure on the basis of these data, and associate the 
lines with the normal modes. What is the molecule? 

12.6 Among the normal modes of dinitrogen oxide, N20, and nitrogen dioxide, 
N02, there are in each case some which are observed both in infrared absorption 
spectroscopy and in Raman spectra. While the vibrational bands of N20 all exhibit 
PR structures (without a Q branch), for N02 one observes a much more complex 
rotational structure. 

What conclusions concerning the structures of the two molecules can be derived 
from this information? 
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12.7 The electronic terms of various states of diatomic homonuclear molecules are 
th "'11 . 1 ..... + 1 ..... + 1 ..... - 1 ..... - 3 ..... - In din e 10 OWIng: ~g' ~U' ~g' ~U' ~g' g, an u' 

a) To which values of the rotational quantum number J do the existing and/or the 
forbidden terms belong if the nuclear spins are h = I B = O? b) To which values 
of J do the more frequently and the less frequently occurring terms belong if the 
nuclear spins are I A = I B = I? 

12.8 a) List the symmetrical and antisymmetrical nuclear spin states of a homonu­
clear diatomic molecule with nuclear spins h = IB = 1 (e.g. D2, N2) and give their 
abundance ratios. b) Show that the nuclear spin states which belong to the total 
nuclear spins I tot = 2 and I tot = 0 are symmetric and those belonging to I tot = 1 are 
antisymmetric. 

12.9 Rotational states which occur more frequently due to nuclear spin effects are 
called ortho states, and those which are less frequent are called para states. Give 
the rotational levels J which belong to ortho and to para fluorine, 19F2. What are the 
statistical weights of the two types of molecules? 

Hint: The electronic ground state is I Ei and the nuclear spin is I = !. 
12.10 The total nuclear spin Itot of a diatomic homonuclear molecule with IA = 
Is = I is found by vector addition to be 

Itot = 21, 21 - 1, . .. ,0 . 

For integer values of I, the nuclear spin states with 

Itot = 2/, 21 - 2, ... ,0 

are symmetric with respect to exchange of the nuclei while the others are antisym­
metric. In the case of half-integer values of I, in contrast, the symmetric states 
are 

Itot = 2/, 21 - 2, . .. , 1 , 

while all the others are antisymmetric. Show that from the (2/tot + 1 )-fold degeneracy 
of each nuclear spin state, one can derive the general formula 

for the ratio of the statistical weights of anti symmetric to symmetric states. 
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Having presented in Chaps. 9 and 10 a treatment of the rotational and rotational­
vibrational spectra of molecules, which lie in the microwave and the infrared spectral 
regions, respectively, we tum in this and in the following chapter to electronic 
transitions in molecules, and thus to band spectra in the general sense. These spectra 
are observed in the near infrared, in the visible, and in the ultraviolet spectral ranges, 
and consist of a very large number of lines with a structure which is often difficult 
to analyze. When observed with a spectrometer having a limited resolution, they 
appear as structureless, band-like spectra; hence the name 'band spectrum'. In this 
chapter, we present the fundamentals needed to understand the molecular quantum 
numbers. Following another detailed treatment of diatomic molecules in Sect. 13.3, 
we give a preview of the subject for larger molecules in Sect. 13.4. 

13.1 The Structure of Band Spectra 

A band spectrum, as we indicated in Chap. 8, exhibits a threefold structure: it contains 
a number of often clearly separated groups of bands, the so-called band systems; 
each band system consists of a number of bands; and each band is made up of a large 
number of band lines, which occur in an ordered fashion. 

This threefold structure of the spectrum corresponds to the three contributions 
to the total energy of a molecule, that is the electronic excitations, the vibrational 
excitations, and the rotational excitations of the molecule. 

The electronic excitation determines the position of a band system in the spec­
trum. All the bands of a particular band system belong to the same electronic 
excitation. The position of a band within the band system is given by the change 
in the vibrational energy between the initial and the final states. The change in the 
electronic quantum number and the change in the vibrational quantum number are 
thus constant for all the lines of a band. The band lines are distinguished from each 
other by the differences of the rotational quantum numbers. 

The complete spectrum of a molecule thus consists of the the rotational- vibra­
tional and the electronic transitions. The terms for the possible excited states of the 
molecule can be written in the form 

(13.1) 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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For the wavenumbers of the lines in the band spectrum, the corresponding formula 
is: 

v = Llrl + LlG + LlF 

T ,el T"el G' Gil F' F" = - + Vi - v" + v',]' - v",]"· (13.2) 

Electronic transitions occur between the various possible electronic excited states 
of one or more electrons and the ground state. We require an analysis of the elec­
tronic transitions if we wish to understand the electronic structure, bonding, excited 
states, behaviour towards chemical reaction, dissociation energies, and other physical 
properties of molecules. The ground state and the excited states can be characterised 
by eigenfunctions and quantum numbers, which must be derived and defined for 
molecules on the basis of the well-tested methods which have previously been ap­
plied to atoms. 

13.2 Types of Bonding 

Owing to the great variety of molecules and the marked differences in their structures, 
it is useful to distinguish among three limiting cases of the chemical bonding and 
thus of the type of molecule: 

Ionic molecules such as the alkali halides NaCI or LiF are strongly polar; i. e. 
an electron is transferred more or less completely from one bonding partner to 
the other. These molecules, in terms of their electronic excitations, are basically 
similar to the atoms or ions of which they are formed. In solution, they dissociate 
readily into their component ions, e. g. NaCl into Na+ + Cl-. 
Van der Waals molecules such as Hg2 or Cd2 are formed preferentially through 
bonding of neutral atoms, which contain only filled electronic shells and therefore 
can form only weak bonds with other atoms by means of induced dipole moments. 
The bonding is provided by so-called Van der Waals forces, which fall off rapidly 
with distance. The atomic states are maintained still more strongly than in the 
case of ionic molecules. These molecules dissociate into neutral atoms. 
The most important and physically most interesting class are the atomic 
molecules such as H2, N2, O2, or AIH, as examples of diatomic molecules. 
Their bonding is due to formation of homopolar or covalent bonds, which comes 
about when electrons of the bonding partners in unfilled atomic orbitals form 
new orbitals, belonging in common to both atoms, i. e. molecular orbitals. These 
molecules can dissociate from their ground states into neutral atoms. This group 
contains a vast number of molecules known from organic chemistry. 

13.3 Electronic States of Diatomic Molecules 

We first consider the last-named type of molecules and attempt to establish a con­
nection between atomic and molecular orbitals and to understand it. Here, as in the 
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theory of chemical bonding which we treated in Chaps. 4 through 7, it is instructive 
to begin with the hydrogen molecule-ion, Hi, or with the hydrogen molecule, H2 . 

As we have seen in the latter case (Sect. 4.3), we can construct the electronic wave­
functions for all of the electrons in the molecule to a good approximation out of 
symmetrised or antisymmetrised products of one-electron wavefunctions. We there­
fore begin with such one-electron wavefunctions. On the other hand, atoms such as 
N, 0, etc. bring with them a number of electrons in filled or partly-filled shells into 
the molecule. We must thus consider how these various atomic orbitals change or 
combine as linear combinations when we allow two such atoms to approach each 
other and form bonds. 

We shall take the following approach: 

- Molecular orbitals will be built up using linear combinations of atomic orbitals; 
The available electrons will be filled into the molecular orbitals in such a way that 
each orbital contains a maximum of two electrons (Pauli exclusion principle); 
In filling energetically degenerate orbitals, first each molecular orbital will be 
singly occupied, before a double occupation is allowed. The spins of the electrons 
will be preferentially all parallel (Hund's rule). 

Now, in order to understand the molecular orbitals, we leave the vibrations 
and rotations out of consideration, as in Chaps. 4-7, and consider a fixed nuclear 
framework. In those chapters, we dealt primarily with the construction of molecular 
orbitals from atomic wavefunctions; here, instead, we want to introduce mainly 
the definition and derivation of the important quantum numbers. As an example of 
a simple molecule, we consider a homonuclear, diatomic molecule AB made up of 
the two atoms A and B according to the reaction A + B -+ A B. In each of the two 
atoms, the electrons are associated with certain atomic orbitals A, B. Beginning with 
the separated atoms at a distance R = 00, we create the molecule at its equilibrium 
bond length Re by gradually bringing the atoms together. In this configuration, the 
electrons experience not only the Coulomb field of their original nucleus, but also 
that of the other nucleus; it has rotational symmetry with respect to the internuclear 
axis. If we now in a thought experiment further reduce the internuclear distance until 
the two nuclei merge, i. e. AB -+ (AB), then the electronic states of the molecule 
must be transformed into those of an atom with atomic number equal to the sum of 
the atomic numbers of A and B. By a mutual approach of the atoms, one thus arrives 
at the combined-nucleus atom with the molecular orbitals (AB). 

The simplest example of a "molecule" is the Hi ion, consisting of two protons 
and one electron. The associated combined-nucleus atom would be the He+ ion, 
while the separation to R = 00 would give an H atom and an H+ ion. The potential 
curves for the H2 and Hi molecules are shown in Fig. l3.1. 

The energy order of the electronic terms of normal, strongly bound molecules 
with small internuclear distances can be understood by referring to the combined­
nucleus atom. A small separation of the nuclei, e. g. going from He+ to Hi, gives rise 
to a strong electric field along the internuclear axis. This field affects the electronic 
terms in the manner known from the Stark effect in atoms. For more weakly bound 
molecules with larger internuclear distances, a better approximation is to start from 
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Fig. 13.1. The potential curves and electron density distributions for the ground and excited 
states of H2 and Hi. These results were calculated using the Hund-Mulliken molecular 
orbital approximation method. The unit of the internuclear distance R here is the Bohr radius, 
aH = 0.529 . 10-8 cm. After Hellwege 

the separated atoms. These two limiting cases can serve as an orientation and aid 
to understanding the term diagrams of molecules and the formation of molecular 
orbitals from atomic orbitals. 

We start with the idea that we can form the molecule AB by allowing the atoms 
A and B to approach each other, simultaneously transforming the atomic orbitals of 
A and B into molecular orbitals AB. Then the following changes occur in the atoms 
(cf. Chap. 4): 

- The central symmetry of the Coulomb potential is removed. An additional electric 
field along the molecular axis (z-direction) acts on the electrons. 
The electrons are associated with both atoms at the same time. 

- The electronic terms which were originally degenerate are split. 

This has the following consequences: first of all for the quantum numbers which 
characterise the states; at an infinite internuclear distance, the atomic electrons can 
be described by eigenfunctions with the 4 quantum numbers n (principal quantum 
number), l (angular momentum), mz (magnetic quantum number), and ms (spin 
projection quantum number); but on close approach of the nuclei, whereby the 
Coulomb field loses its central symmetry, the angular momentum quantum number 
l is no longer a good quantum number, while the magnetic quantum number mz, 
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referred to the internuclear axis as quantisation axis, retains its validity. The orbital 
angular momentum 1 of the electrons precesses about the internuclear axis z with 
a quantised z-component. For this component, we find 

Iz=m/n, with m/=I, I-I, ... ,-I. (13.3) 

The energy of these states in the axially symmetric field of the nuclei is, in contrast 
to its behaviour in a magnetic field, just the same for orientations of Iz along the +z­
direction as along the - z direction, since the effect of an electric field on a precessing 
electron is independent of the sense of the precessional motion. This degeneracy can, 
to be sure, be lifted by a perturbation, such as rotation of the molecule. Otherwise, 
the energy depends only on even powers of m, this means on Imil. 

For this reason, a new quantisation condition is introduced in molecular physics, 
characterised by the quantity A: 

A = Imil = I, 1- 1, ... ,0. (13.4) 

Although the orbital angular-momentum quantum number is no longer valid, it still 
has a meaning. For one thing, it is still approximately valid for the inner, well 
shielded electronic shells; but even where the interaction is stronger, it will tell us 
the origin of a particular atomic orbital which contributes to a molecular orbital. For 
this reason, the quantum number I is retained in molecular physics. We will now 
give a more detailed discussion of the notation for the electronic states with their 
quantum numbers. Orbital wavefunctions of electronic states with A = 0, 1, 2, ... 
are called a, Jr, 8 ... orbitals, analogously to the notation s, p, d for electronic 
states in atoms with I = 0, 1,2 .... Molecular orbitals with A i= 0 are two-fold 
degenerate, corresponding to the quantum numbers ±m. This degeneracy can be 
lifted by an additional perturbation such as a rotation of the whole molecule. As for 
the atomic electrons, the relations I :s n - 1 and A :s I apply. The various angular 
momentum states are thus denoted as in the following scheme: 

m/: 0 
A: 0 
Symbol: a 

±1 
1 

±2 ±3 
2 3 
8 ¢ 

Apart from the a states, all the angular momentum states are doubly degenerate; 
furthermore, each of these states has two possible orientations of the spin relative to 
the quantisation axis, ms = ±!. Thus, a states can hold 2 electrons and all other 
states can hold 4. 

For an additional characterisation of orbitals with the same A, the quantum 
numbers from the originally separated atoms are used. They are written after the 
symbol for A, and the original term is denoted by an index, for example alsA, a2pB, 
which expresses the fact that the corresponding electrons have the quantum number 
A = 0 and were originally present, i. e. before the formation of the molecule, on 
atoms A and B as Is or 2p electrons, respectively. We thus denote the molecular 
electronic states by the symbols A n I. 
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The orbitals having the same value of A can also be distinguished by putting the 
original quantum numbers n and I before the symbol for the molecular orbital, which 
is indicated by lower-case Greek letters , e. g. lsa, 2sa, 2pa, or2prr. This notation is 
particularly common when the description begins with the combined-nucleus atom 
(AB). The quantum numbers n and I are then those referring to (AB). For example, 
a 3drr electron of a molecule is an electron with the quantum numbers n = 3, I = 2, 
and A = 1. If the real molecule is approached from both limiting cases, infinite 
internuclear distance or zero internuclear distance, then the quantum numbers n 
and I which lead to a particular electronic function of the molecule are in many cases 
different for the originally-separated atoms and for the combined-nucleus atom. 
In contrast, the quantum number A is always a "good" quantum number over the 
whole range from very small to very large internuclear distances. While the angular 
momentum precesses about the internuclear axis, which serves as quantisation axis, 
its projection on this axis remains constant. 

Finally, one also indicates the symmetry of the orbitals. Orbital wavefunctions 
are termed "gerade" (from the German for "even"), index g, or "ungerade" (odd, 
index u) depending on whether they are symmetric or anti symmetric with respect 
to a centre of symmetry, i. e. to inversion. Thus, ag denotes an even, or inversion­
symmetric, function and au an odd function with A = O. This is particularly important 
in the case of homonuclear molecules. 

If molecular orbitals are formulated by taking a linear combination of the atomic 
Is orbitals from atom A and atom B, then one finds symmetric and antisymmetric 
combinations, i. e.: 

1 
agls = ,J2(alsA + alsB) , 

1 
auls = ,J2(alsA - alsB) . 

(13.5) 

The function au corresponds to an antibonding state, as was shown in Sect. 4.4 and 
6.7. Antibonding states are also denoted by an asterisk, i. e. a:. 

>. 
0) .... 
Q) 
c 

UJ 

CD 

Atom A I Molecule I Atom B 

Fig. 13.2. An energy level diagram of the 
molecular orbitals of the H2 molecule. The 
linear combinations of the two S electrons 
lSA and lSB yield a bonding orbital a and 
an antibonding orbital a* 
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Fig. 13.3. Upper part: In the H2 molecule, the two 
electrons can both occupy the lowest, bonding 
orbital. Lower part: In the He2 molecule, two 
electrons are in a bonding orbital and two in an 
antibonding orbital. The state is not bound, and 
a stable He2 molecule does not exist in its ground 
state 

Atom A I Molecule I Atom B 

In (13.5), the factor 1/.J2 is a normalisation factor, as already introduced in 
Chap. 4; here we neglect the overlap integral S. For the hydrogen molecule, these 
two electron configurations are represented in Fig. 13.2. Each of these molecular 
orbitals can be occupied by at most two electrons, which differ in their spin projection 
quantum numbers ms = ±1/2. The two electrons in the H2 molecule can both 
occupy the bonding orbital a, so that the molecule has a stable ground state with 
a configuration denoted as lsa2 (a 2 means that two electrons are involved). This is 
not the case for the molecule He2, as shown in Fig. 13.3. Of the 4 electrons, two have 
to occupy the antibonding orbital a*, so that the electron configuration is lsa2 Isa*2, 
and the non-bonding effect of the two a* electrons predominates. The ground state 

Table 13.1. Possible electronic states in 

AD MD nih Multiplicity molecules. The atomic orbitals (AO) are 

orbital spin combined into molecular orbitals (MO). 

2po~ <2Kt> <2Kt> 2 
Their spatial extent is indicated sche-, 
matically, along with their multiplicities , 

--{ 2pTt; ~ ~ 2 2 and spins 
2p 

~ ~ 2pTtu 2 2 . . 
\ 

2pog <2Kt> It>0 2 \ 

2s(J~ @ e 2 
25 -< 2s(J9 @ @ 2 

1s(J~ @ e 2 
1 s -< 1s(J9 @ @ 2 
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is thus unstable. However, if one of the electrons is excited from the antibonding 
orbital la* into a bonding state 2a, then the bonding contribution predominates. 
The He2 molecule, which is not stable in its ground state, thus has a bound excited 
state. A molecule of this type is termed an excimer (for excited dimer). Its electron 
configuration is then given by Isa 2 1sa* 2sa. 

If we consider diatomic molecules with more electrons, then all the possible 
orbitals must be filled with electrons in the order of increasing energy, taking the 
Pauli principle into account. Each pair of electrons in the molecule, according to this 
principle, must differ in at least one of the four quantum numbers (n, t, A, and ms). 
All the electrons with the same n, t, and A are combined into an electronic shell. 
Filled electronic shells have no spin or orbital angular momentum. Table 13.1 gives 
an overview of the possible electronic states and shells for n = 1 and 2. 

Figure 13.4 shows a further example, the lowest possible electron configuration 
for the nitrogen molecule N2, as an MO (molecular orbital) diagram. The allowed 
electronic states are successively filled with the 14 available electrons. However, it 

-it< 2S9 -it< 2so 

1so" 

If 
1so" 

I; it-< >it- it-< >it-
1so 1so 

1s 'S 1s 1s 

'r· 
9 

3r-
9 

AO MO AO 
Fig. 13.4. Left-hand part: The molecular orbitals of N2, showing their origins from atomic 
orbitals and their electron occupations in the ground state, following the molecular orbital 
scheme. The energy ordering of the molecular orbitals derived from the 2p atomic orbitals 
can be found from experiment and from detailed calculations induding the electron-electron 
interactions. The level order shown here is realised in the molecules H2 through N2. In a simple 
first-order picture, one would expect that the splittings 2paj2pa* and 2pnj2pn* would be 
located symmetrically with respect to the original position, i. e. with respect to the atomic 
orbitals, as in Table 13.1. Right-hand part: The same scheme for the 02 molecule; this level 
sequence holds also for F2 
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Fig. 13.5. Ordering of the molecular orbitals in a homonuclear diatomic system. At the left, 
the term symbols in the combined-nucleus atom are shown; on the right are those for the 
separated atoms, and in the centre, for the molecule. The connection between the left and the 
right sides of the diagram is in reality not linear; the lines were assumed here for simplicity, 
but the true variation of the term energies with R must be calculated. The positions of some 
molecules in the diagram are indicated. After Herzberg 

should be noted that the order of the four highest orbitals in Fig. 13.4 does not agree 
with that given in Table 13.1. This is because the table contains the term ordering 
obtained from the separated-atom model, but in the N2 molecule, a slightly different 
order is found for the molecular orbitals derived from the 2p atomic orbitals. This 
comes about because of the influence of the remaining (inner) electrons, which we 
have not yet considered. More about this subject is given in the correlation diagram, 
Fig. 13.5. 

Two electrons each occupy the orbitals IsO' and lsO'* and the orbitals 2sO' and 2sO'* 
in Fig. 13.4. Of the remaining six electrons, four occupy the 2pn orbital, and the last 
two enter the 2pO' orbital. The six uppermost electrons in the energy-level diagram 
give rise to the bonding: they occupy 3 bonding orbitals. This corresponds to a triple 
bond, symbolised in the chemical literature by N=N. 

If we continue on from the N2 molecule to the 02 molecule (also shown in 
Fig. 13.4), we have two more electrons to place in orbitals. For them, the 2pn* 
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orbital is available. Its antibonding character reduces the strength of the bonding in 
oxygen compared to N2, giving a double bond, 0=0. 

Furthermore, according to Hund's rules, we expect that the spins of the two 2px* 
electrons will be parallel, since the 2 px* orbital is only half filled with two electrons. 
This agrees with observations, which show the 02 molecule to be paramagnetic, with 
the spin quantum number S = 1. 

Alltogether, the electron configuration of the N2 molecule can be given as 
agls2a; Is2ag2s2a;2s2ag2p2xu2p4, arising from the atomic electron configuration 
Is22s22p3 of the N atom. In the O2 molecule, we have an additional X;2p2 molecular 
orbital. 

Finally, Fig. 13.5 shows a so-called correlation diagram, indicating the relation­
ship between orbitals at a large internuclear distance - where the ordering is obtained 
directly from the atomic orbitals of the separated atoms - and orbitals at a small 
internuclear distance, where it is determined by the combined-nucleus atom. Each 
orbital on the left side of the diagram becomes an orbital on the right side; the order­
ing of orbitals of different types, e. g. of x and a orbitals, can change as a function of 
the intenuclear distance, with the electrons in a particular orbital having a bonding 
or an antibonding character. The internuclear distance increases from left to right 
in the diagram. We will not go into the details of this diagram, which indicates the 
energy ordering of the molecular orbitals. Light molecules such as H2 lie to the left 
in the diagram, near to the combined-nucleus limit, while heavy molecules, such as 
P2, lie to the right, near the separated-atom limit. Nitrogen is in between. 

13.4 Many-Electron States and Total Electronic States 
of Diatomic Molecules 

For a molecule with several outer electrons, the mutual coupling of the electrons 
must be taken into account, in order to characterise the overall or total electronic 
state. As in an atom, the angular momenta of the inner electrons in closed shells 
add vectorially to give zero; a few outer electrons remain outside the closed shells. 
Their angular momentum coupling is referred to the molecular internuclear axis as 
quantisation axis. The coupling of the one-electron angular momenta Ii, with the 
index i referring to the i-th electron, to a total orbital angular momentum L having 
the magnitude .jL(L + 1) n is taken into account by introducing a new quantum 
number A, which measures the component of L along the internuclear axis (i. e. 
md. It obeys the relation L z = An; A, in contrast to L, is a good quantum number 
even in the non-centrally symmetric potential of the molecule. 

We must keep in mind that the coupling of the Ii to one another to a resultant 
L in molecules is usually weaker than the coupling of each individual electron to 
the axially-symmetric field of the nuclei. The vectors Ii of the outermost electrons 
in unfilled shells therefore each precess alone around the internuclear axis with 
a quantised component ±A, where here, A = m[ [and not Imll as in (13.4)]. For the 
resultant total orbital angular momentum along the internuclear axis, the quantisation 
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Fig. 13.6. Notation for defining the molecular 
angular momentum quantum numbers. Upper 
part: The orbital angular momentum An as the 
component of L along the internuclear axis of 
the molecule AB. Lower part: The spin En as 
the component of S along the magnetic field 

Z produced by An 

Z 

condition of the axial or z-component is given by 

with A = IEA;I ; (13.6) 

see Fig. 13.6. 
In this equation, the sum is algebraic, since all the components A; of the individual 

angular momenta lie along the internuclear axis. Due to the strength of the axially 
symmetric electric field, the coupling behaviour of the orbital angular momenta in 
the electronic shell of a molecule has a certain similarity to the Paschen-Back effect 
for atoms in a strong magnetic field. In general, one obtains several different overall 
states for a given electron configuration. These states are denoted by the values 

A=0,1,2, ... (13.7) 

and the corresponding symbols 17, fl, ..1, ... , with a notation analogous to that for 
one-electron states, a, n, [) .... 

A 17 term, with A = 0, is simple; all the other terms are doubly degenerate, 
since each value of A corresponds to two opposite senses of precession of the 
electrons, according to (13.6). Here, again, states of different parity, even and odd 
states E g, Eu, flg, flu, are possible. 

Finally, we still have to consider the electron spins, i. e. the fourth quantum 
number ms. The spins are hardly influenced by the electric field along the internuclear 
axis. Instead, they couple vectorially to a total spin S with the quantum number 
S = Ems;. Only the projection of the total spin on the quantisation axis, denoted 
by 17, is of importance. The electronic motion produces a magnetic field which 
for A > ° is parallel to the axis, and the vector S precesses around it, with only 
its component En along the axis being quantised. This component can take on all 
integral values between +S and -S; we thus have 
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with E = S, S - 1, ... - S (13.8) 

(cf. Fig. 13.6). 
Depending on the number of electrons, E is a whole integer or a half-integer. 
The quantum number E is not to be confused with the term symbol E (see 

above), nor with a summation sign. 
The associated quantum number S determines the multiplicity (2S + 1), which 

characterises each state of a given A. For two electrons, S can take on the values 
S = 1 or S = 0, i. e. the multiplicities 1 and 3 are possible, corresponding to singlet 
and triplet states. 

As a result of the magnetic spin-orbit coupling between L and S, each term 
belonging to a particular value of A splits into a multiplet of 2S + 1 terms. These 
are distinguished by their values of the quantum number of the resultant electronic 
angular momentum of the electronic shell along the internuclear axis, Q ::s I A + E I ; 
see Fig. 13.7. Due to the strong coupling of the orbital and spin angular momenta 
to the axis, the axial component Q of the total electronic angular momentum is in 
general more significant than the angular momentum itself. However, A and E can 
be oriented in the same direction as the internuclear axis or opposite to it; thus, 
for e. g. A = 1, E = 1, Q can take on the values 2 or O. The magnitude of the 
splitting can be calculated in terms of the spin-orbit interaction energy W LS = ALS. 
We shall not show the calculation here, however. This type of coupling of the one­
electron angular momenta is not the only possible one; it corresponds to the coupling 
which we have referred to in atoms as Russell-Saunders coupling. Depending on the 
strength of the interaction between the various spin and orbital angular momenta, 
other coupling cases are possible. 

It is important to realise that Q is not a measure of the total angular momentum of 
the molecule, as is J = L + S in the case of an atom, but instead only of the electronic 
part. The total angular momentum also includes the important contribution from the 
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Fig. 13.7. The orbital angular momentum and the total 
spin yield the quantum number {2 as the sum of A 
and E, i. e. as the sum of the quantum numbers and 
therefore of the projections on the internuclear axis. 
The electronic angular momentum vector I is shown in 
the lower part of the figure. It should in fact be denoted 
by I' in order to distinguish it from I in Fig. 13.8 
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Fig. 13.8. The coupling of angular momenta in molecules. Orbital angular momenta and spins 
couple to tbe electronic angular momentum with component g along the internuclear axis. 
The dumbbell angular momentum of the molecular rotation is denoted by N. The vector sum 
of Nand g gives the total angular momentum 1. This is Hund's coupling case A 

molecular rotation, i. e. the dumbbell angUlar momentum N. We shall return to this 
point later; see also Fig. l3.8. 

The quantum numbers of a molecular wavefunction are written in analogy to 
the atomic case as 2S+ 1 A Q ; that is, one writes the multiplicity at the upper left and 
the quantum number Q of the resultant angUlar momentum along the internuclear 
axis to the lower right of the A -term symbol. Frequently, Q is left off. In addition, 
there are the symmetry symbols u and g (see above). In the case of homonuclear 
molecules, the eigenfunctions are even or odd depending on whether the molecule 
has an even or odd number of uneven electronic orbitals. We give as an example the 
state characterised by the configuration symbol (2pn) (3sa) (3dn) 4,13/2; this means 
that there are three valence electrons with 

n = 2, 1=1, )..=1 

n = 3, 1=0, )..=0 

n = 3, 1=2, ).. = 1 . 

For the orbital angUlar momentum we find 

A=I+1=2, therefore a ,1 state . 

For the resultant spin, we have 

thus 2S + 1= 4. 

The spin and the orbital angular momentum are anti parallel, giving 

Q=2-~=1· 

Due to the multiplicity of 4, the configurations 

4,17/2, 4,15/2, and 4,13/2 

are also possible. 
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Fig. 13.9. Allowed configurations of the two outer electrons in the 02 molecule, as an example 
of the configuration ni, and the energies of the corresponding terms 

Furthermore, the term symbol takes into account whether a molecular function is 
symmetric or anti symmetric with respect to reflection in a plane through the internu­
clear axis. In this sense, 17+ and 17- mean symmetric or antisymmetric, respectively. 
Finally, the symbols g and u denote the parity, i. e. whether the wavefunction retains 
or changes its sign on inversion through a centre of symmetry of the molecule. 

As a second example, we consider a system of two electrons, one of them in 
a ag orbital, the other in a Jru orbital. We obtain A = 1, i. e. we must have a n 
state. Since there are two spins present, a triplet state with S = 1 or a singlet state 
with S = 0 are possible. One of the electrons has the index 'g' and the other the 

Configurations 

150g 250g 2pOg 2pnu 

[ill DO CJ 
[] [I] D CJ 
[] OJ 0 CJ 3r; 

[] D m CJ 1r~ 
[JJ IDI 0 [CJ 11T U 

(150~ 250~ unstable) 

w 

Term diagram 

11T 
u 

100 

50 

Fig. 13.10. The ground state and the lowest excited states of the H2 molecule. The electron 
configurations and a simplified term diagram are shown 
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Table 13.2. Possible combinations and quantum numbers for the electron configuration 
(JT2p)2, corresponding to the ground state of 02. 5 additional configurations, which are 
forbidden by the Pauli principle, are not shown in the table 

Al A2 SI S2 A 2] State 

+ + Pauli forbidden 

+ ~} 2 0 

I III 

-1 -1 + ~} -2 0 
-1 -1 

-1 + !} 0 
-1 1 

1 

I + 32]-

-1 =} 0 -1 
-1 

-1 + 0 0 12]+ 
-1 + 0 0 

index 'u', so the overall wavefunction must be odd; we thus obtain the states 3 flu 
and I flu as possibilities for the configuration O"g1Tu. In a similar manner, one finds 
that, for example, a configuration JT2, i. e. two JT electrons, can have the quantum 
numbers A = 2 and 0 and the overall states 117+, 117-, 1.1, 317+,317-, and 3.1. 
Taking the Pauli principle into account, in the configuration (2p1Tu)2 for example, 
we find only the three possibilities 317;;, I L1g, and IE:. This is demonstrated using 
the example of the electron configuration of the O2 molecule in Table 13.2 and 
in Fig. 13.9. For the H2 molecule, Fig. 13.10 shows some of the possible excited 
electronic configurations and the observed (simplified) term diagram of the lowest 
excited states. A complete term diagram for the singlet and the triplet systems of H2 
is given in Fig. 13.11. 

In order to characterise a molecular term completely, the quantum symbols of 
the individual electrons are written before the symbol for the overall term. 

The ground state of the H2 molecule, which contains two electrons with the 
molecular quantum numbers IsO", can be characterised by the symbol (O"g Is)2 117:­
Other electron configurations of the ground states ofhomonuc1ear diatomic molecules 
are shown in Table 13.3. It is noticeable that many, but not all ofthe ground states of 
molecules are singlet states, with S = O. In Table 13.3, B2 and O2 offer exceptions 
to this rule, with S = I giving paramagnetic ground states. 

When equivalent electrons are present in the molecule, i. e. electrons with the 
same quantum numbers n, I, and m or A, then, as mentioned, we require the Pauli 
principle in order to decide which electronic states are allowed. To this end, we 
imagine the individual electrons to be uncoupled, as we did in the atomic case, and 
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Fig. 13.11. Electronic terms of the H2 molecule. The vibronic terms are indicated only for 
the ground state. The lowest-lying triplet state, npa 31J: (n = 2), is unstable; we have thus 
indicated only the dissociation continuum in the diagram. After Herzberg 

assume a small internuclear distance R for the molecule, i. e. a strong electric field 
along the quantisation axis. Then each pair of electrons in the molecule must differ 
in at least one of the four quantum numbers n, t, ml = ±A and ms = ±!. 

In this way, we arrive at the electronic shells of the molecule, i. e. at groups of 
electrons having the same n, t, and A = Imtl. An initial overview of this process is 
given by Table 13.1. For example, it becomes clear in this way that a given a orbital 
can contain at most two electrons having antiparallel spins; in a n,8, or higher 
orbital, there can however be four electrons with ml = ±A and ms = ±!. 

An electron configuration (lsag)2 thus gives only the molecular state 1 Ei, but 

the configuration (2pnu )2 gives three states, 3 Ei, 1 L1g , and 1 Ei. The indices g and u 
refer to a homonuclear molecule. Now, in order to denote the electronic states which 
actually occur in such a molecule, we have to consider how to distribute the available 
electrons among the allowed orbitals. By filling all the electrons into the orbitals in 
the order of increasing energy and taking the Pauli exclusion principle into account, 
we have defined the ground state of the molecule. For the H2 molecule, for example, 
it is the 1 Ei state, in which both of the electrons occupy lsa orbitals. The ground 
state of the O2 molecule, in agreement with Hund's rules for the successive filling 
of electronic shells, which we already know from atomic physics, is paramagnetic, 
3 Ei- See also Fig. 13.9. 
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Table 13.3. Electron configurations of diatomic homonuclear molecules (the molecules in 
parentheses are not stable) 

Molecule Configuration Ground state 

agls a;ls ag2s a;2s :n:u2p ag2p :n:;2p a;2p 

H+ 2 t 2Eg 

H2 H lEg 

Het H t 2Eu 

(He2) H H lEg 

Li2 H H H lEg 

(Be2) H H H H lEg 

B2 H H H H tt 3 Eg 

C2 H H H H ttH lEg 

N2 H H H H ttH H lEg 

02 H H H H HH H H 3 Eg 

F2 H H H H HH H HH lEg 

(Ne2) H H H H HH H ttH H lEg 

In order to obtain the energy ordering of the molecular orbitals, we start from 
the atomic orbitals in the two limiting cases of the combined-nucleus atom and the 
separated atoms, and make the connection to the molecular orbitals. This is indicated 
in Fig. 13.5 for diatomic, homonuclear molecules. With continuously increasing 
internuclear distance, the orbitals at the left side of Fig. 13.5 must be transformed 
into those on the right side. In drawing the (qualitative) correlation lines connecting 
these two limiting cases, one must keep in mind that orbitals of the same symmetry 
belong together. Lines between states of the same symmetry may not cross each 
other, as is shown by a quantum-mechanical calculation (lifting of the degeneracy!). 
In Fig. 13.5, the approximate positions of some molecules are indicated on the 
diagram. Hydrogen, H2, lies near the combined-nucleus-atom limit; N2, in contrast, 
is much nearer to the separated-atom limit. We are now in a much better position to 
understand the electron configurations of some homonuclear molecules which are 
given in Table 13.3. 

Of course, the electron configurations described here determine not only the 
ground states of the molecules considered, but also their possible excited states. 
Figure 13.11 shows a term diagram derived in this way for the H2 molecule, with 
singlet and triplet term systems. It also contains the notation for the terms and for 
the electron configurations. 

Since the arrangement of the electrons also has a decisive influence on the 
bonding of the atoms in the molecule, it is understandable that a different potential 
curve is associated with each different arrangement of the electrons, i. e. with each 
excited state. As a rule, the outermost electron, the valence electron, is responsible 
for the bonding; if it is excited, the bond is generally weakened. For this reason, the 
equilibrium internuclear distance Re of the excited states is usually larger and the 
dissociation energy D is usually smaller than in the ground state. Figure 13.12 shows 
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an example of this in the potential curves for the excited hydrogen molecule. These 
curves are calculated from the measured values of the dissociation energies and of 
the vibrational quanta. 

We give here without further proof the selection rules for electric dipole transi­
tions: they are L1A = 0, ±1; L1S = 0, i.e. intersystem crossings between states of 
different multiplicities are forbidden. This rule is relaxed somewhat due to spin-orbit 
coupling, as is the case also in heavy atoms. An example of such intersystem bands 
is provided by the oxygen bands observed in the atmosphere, corresponding to the 
transition 3 E ~ 1 E of the 02 molecule; see also Fig. 13.9. Furthermore, only 
transitions with a change in parity, u ~ g or g ~ u, are allowed. 

The electronic states of larger molecules are classified according to the same 
principles as those of the diatomic molecules we have discussed here. We shall not 
treat this topic in detail. 

As we mentioned above, in carrying out the coupling of angular momenta ac­
cording to the scheme 

where the vector L precesses about the internuclear axis and S about the magnetic 
field defined by A, we have still not taken the angular momentum of the molecular 
rotation into account. The total angular momentum of a molecule in fact is determined 
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by the interaction of N with the electronic angular momentum g. We thus have 
g + N = J, where J denotes the total (spatially fixed) angular momentum of the 
molecule; see Fig. 13.8. Due to the fact that the rotation of the molecule as a whole 
produces an additional magnetic field, the possibilities for coupling of the various 
angular momentum vectors are numerous. The competition between the magnetic 
fields which give rise to the coupling between the vectors of the molecular rotation, 
the orbital angular momentum, and the electronic spin can give rise to a variety of 
different coupling cases, in a similar manner as we have seen in atomic physics; the 
Zeeman and the Paschen-Back effects describe the limiting cases. 

These different coupling cases which can occur in the interaction between the 
electronic motions and the molecular rotation were explained and classified by Hund. 
They differ in the level of significance of the molecular axis as quantisation axis. 
Here, we have limited ourselves to Hund's Case A, out of the five cases A, E, C, 
D and E distinguished by Hund when the molecular axis dominates as quantisation 
axis (see Fig. 13.8). The remaining cases and their influence on the molecular terms 
and spectra, for example the molecular analogue of jj -coupling in atomic physics, 
will not be treated here, since that would go beyond the framework of an introductory 
text. Their precise treatment permits a complete analysis of the quantum numbers 
A, E, and Q which characterise the electron configurations of the two electronic 
levels representing the initial and final states of a band system. It thus allows the 
elucidation of all the statements which can be made concerning a molecule on the 
basis of spectroscopic investigations. 

13.5 An Example: the Electronic States of H2 

To summarise and give an example, we consider once again the electronic configu­
rations and the molecular orbitals of the simplest molecule, H2. For this discussion, 
we refer to Fig. 13.11. 

The molecule contains 2 electrons and thus has singlet and triplet states. In the 
ground state, both are a electrons with A = 0; it is thus a I E state. Its symmetry 
is even (g), therefore one writes I E g• Finally, we take into account the symmetry 
with respect to reflection in planes which pass through both nuclei. In this case the 
molecule is symmetric and the wavefunctions are unchanged by such a reflection. 
The complete term symbol is thus lsa; lEt. 

The lowest excited states are those in which one of the two Is electrons is raised 
into a bonding 2s or 27r orbital (Table 13.1), i.e. lsag2sag, lsag2pag, or lsag2p7ru . 

The first of these configurations is similar to the ground state, and its term symbol 
is thus I Et. For the second configuration, we must write I E:, because one of the 
electrons is in an odd (u) 2p orbital. The third term is also odd, but now due to 
A = Al + A2 = 1 we have the symbol I IIu. The energy sequence of these 3 terms 
is found from Table 13.1, as shown in Fig. 13.11: IE: < I IIu < lEt-

Additional possible states are formed when one of th two electrons is raised into 
a state of principal quantum number 3, 4, or higher. For example, if the electron 
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configuration is (lsa nt!), one obtains as possible terms (lsa nda) ! E g , (lsa ndn) 
! Jlg, and (lsa nd8) ! L1g in that energy sequence. 

For optical transitions, the selection rules are L1A = 0, ±l (i.e. E -+ E or 
E -+ Jl) and L1S = 0, and thus also L1.Q = 0, ±1. Finally, for the symmetry 
properties, the rule is that the sign (+ or -) must not change, but the g character 
must be changed to u or vice versa. 

Now we consider the triplet states with S = 1. According to Pauli, the lowest 
possible electronic configurations are lsag2sag, lsag2pag, and lsag2pnu • They give 
rise, in energetic sequence, to the terms 3 E;;, 3 Jl, and 3 Ei. The state which belongs 

to 3 E;; is not bonding, and the molecule dissociates when excited into this state. It 
is therefore shown in Fig. 13.11 as a continuum. 

Problems 

13.1 What information is contained in the term symbols 1 E+,! E;;, 3CP3, 3cp:;, and 
3m-? 
'¥ g3· 

13.2 Two different atoms A and B with the electron configurations Is and ls22s22p 
form the molecule AB. List the possible electronic terms for AB. 

13.3 a) What are the electron configurations of the molecules 01", 02, 02" and 
02-? 

2 • 

b) Determine the term symbols 2S+! A~u of the ground states for the molecules 
in (a). Justify as necessary your choice of the ground state. 

c) How do the electron configuration and the term symbol change as a result of 
the energetically lowest allowed transition in O2 ? 

13.4 The excited state 3 Jlu of the hydrogen molecule H2 is stable with respect to 
the two H atoms which result from a dissociation of this state. One of the two neutral 
dissociation products is in its ground state, the other in an excited state. 

What is the electron configuration of the molecule in the state described above? 
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Electronic transitions in molecules lead to spectra which are extraordinarily rich 
in lines, because not only does the electronic state change during the transition, 
but so also do the vibrational and rotational states. Therefore, the analysis of the 
resulting band spectra can be very tedious and complex. In Sects. 14.1 through 14.4, 
we discuss the most important concepts for the understanding and the analysis of 
these spectra. Section 14.6 again contains some remarks on the extension to larger 
molecules. 

14.1 Vibrational Structure of the Band Systems 
of Small Molecules; The Franck-Condon Principle 

In the preceding chapter, we considered the electron configurations of molecules as 
though they were stationary and rigid. We now proceed to include the vibrations 
of the atomic nuclei in our model. We recall the Born-Oppenheimer approximation 
discussed in Sect. 11.1, which allows us to separate the electronic and nuclear 
motions in thought, and to a considerable extent in practice, as well. 

In this section, we will concern ourselves with the electronic band spectra of 
molecules, i. e. with electronic transitions which are accompanied by changes in 
their vibrational states. This defines in a certain sense the overall structure of the 
spectra. The finer structure can be described only by including also the effects of 
molecular rotations on the spectrum, which we shall do in the following section. 

For each electronic state, we expect to find a specific potential curve giving 
the potential energy of the nuclear configuration as a function of the internuclear 
distance coordinate, as we have already seen in Chap. 10. In addition to the energies 
Eo and E 1 for the ground and excited states of the electron, the most important 
quantities which we need to know and understand are the equilibrium internuclear 
distance Re and the dissociation energy D in the various electronic states; cf. Figs. 
13.1 and 13.12. The equilibrium distances Re are usually larger in the excited states 
than in the ground state, since the bonding is normally weakened by excitation of 
an electron. The reverse case can occur, however, e. g. when the excitation lifts 
an electron from an antibonding orbital into a bonding orbital. Some additional 
examples of potential curves for excited states are given in Fig. 14.1, where we have 
chosen the O2 molecule as an example. The potential curves shown there are those 
associated with the states given in the term diagram of Fig. 13.9. Each potential curve 
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contains vibrational states, as we have already discovered in Chaps. lO and 11. The 
frequency and thus the quantum energy of a particular normal mode of the molecule 
in general changes from one electronic state to another. This is particularly easy 
to understand in the case of a diatomic molecule: the frequency of the stretching 
vibration is determined by the binding force between the two nuclei, and that force 
changes on electronic excitation. The vibrational quantum number v is denoted as 
v" in the lower state and as Vi in the upper state when referring to transitions. 

Let us first consider the absorption of radiation. Electronic transitions from the 
ground state of the molecule, which has an electronic energy E:1 and the vibrational 
quantum number v" = 0, into an excited electronic state generally lead to not only 
one absorption line, but instead to a large number of lines: a band or band system. 
The band structure is based upon the fact that, as explained in Fig. 14.2, the elec­
tronic transitions are accompanied by changes in the vibrational quantum number; 
this means that the transitions are of the type E:1 (v") ~ E~1 (Vi). Furthermore, a ro­
tational structure is also superposed onto these vibrational transitions; we shall say 
more about this in the following section. The intensity of such electronic-vibronic 
transitions is determined by the transition matrix elements (and by the electronic 
selection rules), which we will treat in more detail later, especially in Sect. 16.4. We 
will see there that the purely electronic part of these matrix elements is independent 
of the vibrational quantum number to a first approximation. For the vibronic part of 
the transition matrix elements connecting vibrational states with the quantum num­
bers Vi and v", there are no strict selection rules; there are only rules which result 
from the important and intuitively evident Franck-Condon principle. This principle 
makes statements about the probabilities of the individual vibronic transitions, and 
therefore about the line intensities in the band spectrum, as well as about the general 
structure of the spectrum. 
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Fig. 14.2. Left part of figure: A schematic representation of a band system: transitions originate 
in the ground state (v" = 0) and lead with differing intensities to various vibrational levels 
having the quantum numbers Vi = 0, 1, 2, , ... The rotational structure is superposed onto 
these transitions. Right part: The vibrational structure in absorption from the electronic ground 
state E" and from the level v" = 0 into an excited electronic state E' with the vibrational 
levels Vi = 0, 1, .,. 6, as it may be observed in the spectrum (schematic) 

We will explain the Franck-Condon principle by referring to Fig. 14.3, initially 
leaving off the rotational terms and considering only the vibrations. It takes into 
account in an intuitively clear way the fact that the electronic motions are rapid 
in comparison to the nuclear motions: during an electronic transition, the position 
and velocity of the nuclear coordinates will thus not change noticeably. Electronic 
transitions then occur mostly vertically in the diagram shown in Fig. 14.3; that is, they 
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R 

Fig. 14.3. An explanation of the Franck­
Condon principle. Absorption from the vibra­
tional ground state is strongest for that particular 
transition into a vibrational level of the excited 
electronic state whose wavefunction maximum 
lies directly over the maximum of the ground 
state in the potential diagram. Transitions to other 
vibrational terms are also possible, but with re­
duced probabilities. The total energy and two po­
tential curves are plotted as functions of the nu­
clear coordinates (internuclear distance R). The 
zero points of the two curves are shifted due to 
the electronic excitation. Vibrations occur within 
each of the two potential curves. Here, the wave­
functions for v" = 0 and Vi = 6 are shown as an 
example 
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maintain the internuclear distance R, and their highest probability is between those 
parts of the vibrational functions for which the amplitudes, and thus the occupation 
probabilities of the nuclei at that position, are greatest. 

In a classical picture, the nuclei spend the most time at the turnaround points of 
the vibration, i. e. the points where the vibrational levels intersect the potential curves. 
(This is true in a quantum-mechanical picture, also, with the exception of the lowest 
vibrational level, v = 0: in this level, the occupation probability is highest in the 
centre of the level, midway between its intersections with the potential curve.) The 
transitions thus take place with the highest probability from or to these intersection 
points (or to the centre of the level v = 0). Owing to the finite width of the probability 
distribution, however, there is not a single sharp transition with a well-defined 
vibrational excitation energy, but rather a whole series of vibrational transitions of 
differing transition probabilities to neighbouring levels. The quantum-mechanical 
formulation (Sect. 16.4) states that the transition probability is determined by the 
Franck-Condon integral: 

(14.1) 

i. e. the overlap integral of the nuclear vibrational function Xv" associated with the 
electronic ground state E", and the function Xv' belonging to the excited electronic 
state E', at the same internuclear distance R, integrated over the entire volume of 
the molecule (nuclear coordinates); cf. Sect. 16.4. 

In the special case that the internuclear distance does not change on electronic 
excitation, R~ = R~, then the two potential curves have their minima directly above 
one another. The vertical transition from v" = 0 to Vi = 0 is then strongest and all 
the other vibronic transitions are weaker, assuming that the molecule is initially in 
its electronic ground state with v" = O. Compare Fig. 14.4, left-hand part. 

However, usually the equilibrium distance is larger in the excited state, i. e. 
R~ < R~, and the excitation tends to weaken the bonding. If only the v" = 0 level, 
the zero-point vibrational level, is thermally occupied in the electronic ground state, 
then one will observe transitions from v" = 0 into several Vi levels of the excited 
electronic state, depending on the values of the Franck-Condon integrals. The energy 
differences between the initial and final states, that is the quantum energies of the 
vibronic lines in the band spectrum, are then given by 

.1E = hv = E~l + hV~[(V' + !) - X~(V' + !)2] 

- {E~l + hV~[(V" + !) - X~(V" + !)2]} . (14.2) 

In this expression, E~l and E~l are the electronic energies in the ground state and the 
excited electronic state, respectively, and hv~ and hv~ are the vibrational quanta in 
the ground and excited states, extrapolated to the equilibrium internuclear distance as 
described in Sect. 10.3. Since we have as yet not taken the rotation ofthe molecules 
into account, (14.2) is valid only for the zero lines of the bands. It can also be used 
to calculate the band edges (see Sect. 14.2). 
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Fig. 14.4. The Franck-Condon principle. Depending on whether the internuclear distance in 
a molecule stays the same (left), increases somewhat (centre), or increases strongly (right) 
on electronic excitation, different intensity patterns are found for the various vibronic bands 
associated with an electronic transition. In each case, only one transition is indicated, beginning 
in the region of the highest occupation probability for the initial state, v" = O. In the spectra, 
the maximum intensity will be observed for the 0,0 transition (left), for a higher vibrational 
state (centre), and near to the dissociation limit (right) 

In summary, the different intensity distributions within the band spectra shown 
in Fig. 14.4 can be understood. If the equilibrium internuclear distance Re in the two 
electronic states is the same, then the bands with v" ---+ Vi = 0 ---+ 0, 1 ---+ 1, 2 ---+ 2 
are the most intense. If the excited electronic state has a somewhat larger bond length, 
(R~ > R~), then the vertical transition from v" into e. g. the upper vibrational level 
Vi = 2 can be observed, and it will be the strongest line in the absorption spectrum 
(Fig. 14.4, centre). Transitions to larger or smaller values of Vi are less probable, and 
one finds the intensity distribution shown in the figure. If the change in bond length 
on electronic excitation is very large, as in Fig. 14.4 (right-hand part), then vertical 
transitions will lead to levels with still larger values of Vi, and even into the region 
of the dissociation continuum. 

When absorption of radiation is accompanied by an increase in the bonding 
strength of the molecule, then the band spectrum has a different intensity distribution. 
The line with the smallest quantum energy no longer has the highest intensity; the 
distribution is similar to that shown in the centre of Fig. 14.4. In this case, one 
observes in addition to the line or band corresponding to v" = 0 ---+ Vi = 0 (0,0 
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Fig. 14.5. Edge diagrams of band spectra for the case of no change in the internuclear distance 
on excitation (diagonal line) and for the case of a change on excitation (parabolic curves). 
The upper branch of the parabola refers to emission (Vi = const., v" = 2, 3, 4 ... ); the lower 
branch refers to absorption (v" = const., Vi = 2, 3, 4 ... ) 

line) also lines with Vi = 1, Vi = 2, etc., which are however more intense than the 
0,0 line. 

This intensity distribution in the band systems, which can be understood in terms 
of the Franck-Condon principle, is clarified with the help of a two-dimensional 
diagram, in which the transitions between two vibrational terms are plotted on 
a coordinate system Vi, v". In these so-called edge diagrams, Fig. 14.5, the quantum 
number v" of the vibrations in the lower electronic state is used as the abscissa and 
the quantum number Vi of the vibration in the upper electronic state as ordinate. 
The intensity of the bands corresponding to transitions v" ---* Vi or Vi ---* v" is then 
plotted in the resulting coordinate system. If the potential curves in the upper and 
lower electronic states are directly above one another (Fig. 14.4, left-hand part), 
the most intense bands lie on a diagonal in the edge diagram; otherwise (Fig. 14.4, 
centre and right-hand part), they lie on a parabola of variable curvature. In Fig. 14.5, 
the left branch of the parabola corresponds to absorption, and the right branch to 
emission. Instead of the band intensities of the observed transitions, one can also 
plot the quantum energies of the bands in an edge diagram; in this way, the term 
differences of the vibrational terms can be displayed and determined in a clearcut 
manner. 

It follows from the Franck-Condon principle that the band system has very 
different shapes depending on how the internuclear distance changes on electronic 
excitation. The two extreme cases are particularly important: either no change of the 
internuclear distance on excitation, or an extremely large change. These two limits, 
called the group spectrum and the series spectrum, are explained in Fig. 14.6. 

In the case R~ = R~, the group spectrum shown in the left part of Fig. 14.6 is 
obtained. It consists of the transitions L1 v = ° (i. e. the diagonal line in the edge 
diagram) and the subdiagonals, with L1v = ±1 (at a lower intensity). The spectrum 
thus contains a few groups of closely-spaced bands; such a spectrum can be seen for 
example in the band spectra of CN and of C2 (observable in a carbon arc). In the case 
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Fig. 14.6. The most intense vibrational bands in a "group spectrum" (left part; internuclear 
distance in both electronic states stays roughly the same) and in a "series spectrum" (right 
part, corresponding to a large change in the internuclear distance). Compare also Figs. 14.4 
and 14.5 

that R~ > R~, one sees in absorption, in contrast, a series of bands having the same 
lower levels (cf. Fig. 14.4). In emission, there is a shifted series of bands having the 
same upper levels. Such a series spectrum, which can be observed for example from 
the h molecule, is shown on the right in Fig. 14.6. The spacings of the bands give 
directly the vibrational quanta in the different electronic states. 

In this way, the intensity distribution within the vibronic components of the spec­
trum, i. e. within a band system, gives information on the change of the equilibrium 
internuclear distance Re between the molecular ground and excited states. This is 
readily understood with the help of the Franck-Condon principle. 

In emission, one in principle observes the same band spectra as in absorption. 
Many investigations of molecules are indeed carried out in emission, since it is readily 
observed in a gas discharge. Here, again, the Franck-Condon principle applies and 
one observes "vertical" transitions from the upper potential curve to that of the ground 
state, as shown in Fig. 14.7. However, the initial state for emission is not necessarily 
identical with the endpoint of an absorption process. The coupling of the radiation 
field to the excited state reached through absorption is often relatively weak, so that 
collisions with other molecules between the absorption and the emission processes 
permit relaxation of the excited molecules, accompanied by an adjustment to a new 
equilibrium internuclear distance. 

How rapidly such a relaxation process of the excited state and its thermalisation 
take place depends sensitively on the probability of interactions of the molecules with 
their environment, i. e. on the pressure in the case of a gas sample. A molecule isolated 
in outer space has very few possibilities to give up its excess vibrational energy to 
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Fig. 14.7. Absorption and fluorescence (dashed) according to the Franck-Condon principle. 
When the potential curves of the ground and excited electronic states are shifted relative to one 
another, then the absorption transitions occur at higher quantum energies than the emission 
transitions. This is due to relaxation of the vibrational energy in the excited state, so that 
emission occurs from the lowest vibrational level of the excited electronic state 

its environment, because the probability for the emission of vibrational quanta as 
radiation having the same frequency as the vibrations is small, and collisions with 
other molecules, which would allow direct exchange of energy, are also rare. For 
a molecule in a condensed phase, on the other hand, the thermalisation process, that 
is the establishment of an equilibrium value of the vibrational energy corresponding 
to kT (T = absolute temperature), takes place on a time scale of picoseconds. 
The emission spectrum of a molecule thus depends not only on the temperature, 
but also on its possibilities to give up vibrational quanta with Vi :F 0 before the 
emission occurs - it then begins preferentially at the level Vi = O. This is indicated 
schematically in Fig. 14.8; it is clear from this figure that a sort of mirror-image 
relation between the absorption spectrum and the emission spectrum exists, with the 
0,0 (Vi = v" = 0) transition at its midpoint. 
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Fig. 14.8. Absorption and fluorescence in 
a molecule. In the absorption spectrum, the vibra­
tional structure of the excited electronic state can 
be observed; in fluorescence, that of the ground 
state is seen. The fluorescence spectrum is shifted 
towards lower energies relative to the absorp­
tion spectrum. The vibrationless 0,0 transition 
(v' = v" = 0) can be common to both spectra 
if the shift is small, and the remaining parts of 
the spectra are then mirror images. The linewidth 
shown here is typical of a spectrum taken in the 
condensed phase (in solution). Rotational struc­
ture is not resolved 

14.2 The Rotational Structure of Electronic Band Spectra 
in Small Molecules; Overview and Selection Rules 

The most noteworthy characteristic of molecular band spectra in comparison to 
atomic line spectra is the enormous number of lines they contain, when observed at 
a sufficiently high resolution. One requires not only a high spectral resolution of the 
apparatus, but also the elimination of Doppler and pressure broadening of the lines 
(cf. I, Sect. 16.2), as far as possible. Then a quite distinct "fine structure", consisting 
of a very large number of lines, is observed for the electronic-vibronic transitions 
described in the previous section. This is due in the main to rotational transitions. 
The spectrum of the iodine molecule, for example, exhibits more than 20 000 lines in 
the visible spectral region! A small fraction of these lines has already been explained 
as due to vibrational structure. In Fig. 14.9 (left-hand part), this is shown once again. 
However, the very large number of lines can be understood only by considering that 
each of the vibrational levels which we have treated thus far also contains rotational 
structure (Fig. 14.9, right-hand part). Without a sufficiently high spectral resolution 
of this structure, only "band edges" are seen, with a shading effect, i. e. a continuous 
decrease of the emission or absorption intensity towards one side of the band. 

We shall at first limit ourselves to the simplest case of a diatomic dumbbell 
molecule. For the wavenumber of a transition between two terms, 

(14.3) 
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Fig. 14.9. Left part: An explanation of the large number of lines in a band spectrum. Each 
transition arrow in the left part of the figure refers not to an individual spectral line, but to 
the edge or zero line of a whole band; compare the right part of the figure. Below, some 
band systems from the term diagram are plotted schematically; each line here refers to the 
whole band. The observed spectrum is the superposition of band systems, which can also be 
combined into series of band systems. After R. W. Pohl. The vibrational quantum numbers are 
denoted by s in this figure, and the symbols for the subspectra are historical. The transitions 
are indicated here in emission, for simplicity from only two vibrational levels. 15 refers to 
transitions from the vibrational level s = 5 in the electronic state I. The right-hand part of 
the figure shows on an enlarged frequency scale a band of the molecule AlB which is shaded 
towards its long-wavelength side. Its edge line is at J.... = 435 nm, and the rotational structure is 
resolved. The observed spectrum (II) is the superposition of three branches (P, Q, R). These 
are plotted above as a Fortrat diagram on the right-hand side of the figure. Note that the 
frequency scale in the right-hand part of the figure is greatly enlarged compared to that in the 
left-hand part, so that each "line" now appears as a band with resolved line structure 
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we have 

- - T' - Til - T,el - T" el + G' - Gil + F' - F" V - - v' v" v',l' v",J" 

= ~rl+~G+~F. (14.4) 

The spectrum which one obtains on changing the electronic energy, ~Tel, contains 
all the vibrational bands, ~Gv, with their associated rotational structure, ~F. The 
band systems are to be found mainly in the visible and ultraviolet spectral regions 
and, with all of the electronic transitions taken together, they make up the band 
spectrum of the molecule. 

If we now consider essentially the rotational part, we find for electric dipole 
transitions, the most important selection rules to be the following: 

~J = J' - 1" = 0, ±1 (except for J' = J" = 0) (14.5) 

and 

~A=±1 and ~E=O (14.6) 

(insofar as the spin-orbit coupling is not too strong). Furthermore, the parity selection 
rule, which requires that the initial and final states for the transition have different 
parities, applies here. 

14.3 The Rotational Structure of the Band Spectra 
of Small Molecules; Fortrat Diagrams 

The typical structure of a band spectrum, including rotational transitions, is shown 
in Fig. 14.10. It can be decomposed into three "branches", which we have already 
introduced in Sect. 10.4 and called the P, Q, and R branches. An empirical descrip­
tion of the lines of a band spectrum was given more than 100 years ago in terms of 
the Deslandresformula (1885): 

v = A ± 2Bm + em2 . (14.7) 

In this formula, the index m = !, ~, ~, ... is incremented beginning at a gap in 
the series of lines which is called a zero point; the two signs of the second term 
correspond to the R branch (+) and the P branch ( - ). For B = 0, the Q branch is 
obtained. 

The explanation of the rotational structure of the band spectra should be clear in 
the light of what we have already said, and will be discussed by referring to Fig. 14.10. 
Each vibrational level with the quantum number v' or v" has its associated rotational 
levels, 

E1'I = B l hc1"(J" + 1) 
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Fig. 14.10. The explanation of the rotational structure of bands. In the left half of the figure, 
the relation of the band branches P, Q, and R to the term diagram is shown schematically. 
For the analysis of the spectra, the wavenumbers of the lines are plotted in a Fortrat diagram 
against an index, which here is the quantum number J". The observed total spectrum can thus 
be decomposed into its P, Q, and R branches. From the line spacings, one can determine the 
rotational constants B' and B". The right half of the figure shows a spectrum of AlH, as in 
Fig. 14.9. Note the direction of the frequency axis 

and 

E1' = B'hcJ'(J' + 1) , 

if we consider only the limit of the rigid rotor. We must, however, take into account 
the fact that the rotational constant B" in the lower potential curve is different 
from the constant B' in the upper curve. The lines in the band spectrum are due 
to transitions between potential curves, which correspond to the electronic energies 
E" and E', and associated levels with the quantum numbers v", J" in the lower and 
v', J' in the upper electronic states (potential curves). 

The overall energy of a molecular state is thus given by 

E tot = Eel + Evib + Bhc J(J + 1) , (14.8) 

where Eel refers to the electronic energy and EVib to the vibronic energy. For a tran­
sition between two states we then have, in simplified form, 

L1Etot = L1(Eel + Evib) + L1[BhcJ(J + 1)] (14.9) 
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and for the observable spectral lines, 

v = vv',v" + .6. [Bl(J + 1)] , (14.10) 

where vv',v" refers to the electronic-vibronic transition without rotation, l' = 1" =0, 
between the states (E", v") and (E', v'). This 0,0 transition (with l' = 1" = 0) is 
thus the reference point for the rotational structure. It is also called the zero line of 
a band; cf. Sect. 14.1. The selection rules for 1 depend on the type of electronic 
transition. 

If both the electronic states which participate in the transition, i. e. the upper and 
the lower state, have no angular momentum relative to the molecular axis and are 
thus 1}J states, then the following selection rule holds: 

.6.1 = ±1; 

otherwise, the selection rule is 

.6. 1 = ° or ± 1, but not 1" = ° to l' = ° . 
From (14.10), we obtain 

v = vv',v" + B'l'(1' + 1) - B" 1"(J" + 1) . (14.11) 

In contrast to the rotational-vibrational spectra which we treated earlier (Sects. 
lOA and 10.5), the rotational constants B' and B" belong not only to different 
vibrational levels in the same electronic state, where they are usually not too different 
in magnitude, but instead to two different electronic states. Due to the fact that on 
electronic excitation of a molecule, the internuclear distance R and thus the moment 
of inertia can change by a large amount, B' and B" will now often have quite different 
values. The quadratic terms in (14.11) are thus not just a small correction, as they 
were in the case of rotational-vibrational spectra, but instead can predominate over 
the linear terms for larger values of 1. 

We now denote the transitions with .6.J = -1 as the P branch, those with .6.J = 
+ 1 as the R branch, and those with .6. 1 = ° as the Q branch, as in Chap. 10; then 
for the spectral lines of these three branches, we obtain the following expressions: 

P branch, .6.1 = -1,1" = l' + 1 

vp = vv',v" - (B' + B")(J' + 1) + (B' - B")(J' + 1)2 

with l' = 0, 1,2 ... 

R branch, .6.1 = +1, l' = 1" + 1 

VR = vv',v" + (B' + B")(J" + 1) + (B' - B")(J" + 1)2 

with 1" = 0, 1,2 ... 

Q branch, .6.1 = 0, l' = 1" 

vQ = vv',v" + (B' - B") 1" + (B' - B") 1"2 

with 1" = 1, 2, 3 ... . 

It is important to note that no line is allowed at the band origin, vv', v". 

(14.12) 

(14.13) 

(14.14) 
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The expressions (14.12-14) for the allowed rotational transitions have the same 
form as the empirical relation (14.7) and demonstrate the physical significance of 
the coefficients A-C introduced there. We obtain the old Deslandres formula by 
identifying the index m with J. 

A graphical representation of (14.12-14) as a VI J plot yields parabolas, which 
are called Fortrat parabolas (Fig. 14.11), since v is a quadratic function of J. These 
Fortrat diagrams present a clear overview of a band spectrum, because they show 
the spectral lines belonging to different spectral branches and different rotational 
quantum numbers, which in the measured spectrum are often mixed together, in 
a spatially ordered and separated form. Conversely, the observed spectrum of the 
bands is obtained from the Fortrat diagram by projecting the points in the diagram 
onto the v axis; cf. Figs. 14.9 and 14.10. 

The band origin VV',v lI , also called the zero line, is missing in all three branches. 
If B' < B", meaning that R~ > R~ and thus e' > e", then the lines of the P 
branch lie on the low-energy side of the band origin, and their spacing increases with 
increasing J, while the R branch lies on the other side, with rapidly decreasing line 
spacing. In this case, as can be seen in Fig. 14.11, the order of the lines can even 
reverse for large J values and bend back towards lower energies. Bands with this 
characteristic are termed red-shaded. The lines of the Q branch likewise lie on the 
low-energy side of the origin, and the line spacing also increases with increasing J. 
In the less common case that B' > B", i. e. R~ < R~ and e' < e", meaning 
that the electronic excitation increases the strength of the bonding, the shape of the 
Fortrat parabolas is reversed, and the bands are violet-shaded. The overall spectrum 
of a band is a superposition of the three (or two) branches. 

In the special case that the internuclear distance remains unchanged on electronic 
excitation, and therefore B' = B", one can see from (14.14) that the Fortrat parabolas 
degenerate to straight lines. The Q branch then consists of a single line, and the P 
and R branches are a series of equally spaced lines with the spacing 2B, as in the 
pure rotational-vibrational spectra. There are also transitions with.!J.J = ±2, which 
however have much reduced intensities. They give rise in the spectrum to 0 and S 
branches. 

J J J p a R 

v v v 
S'< S" S' >S" S' = S" 

Fig. 14.11. Plots of the band lines as Fortrat diagrams (cf. Fig. 14.10) yield characteristic 
curves, depending on whether the rotational constant in the upper state is smaller, larger, or 
the same as in the lower state 
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Thus the "shading" of a band spectrum allows direct conclusions to be drawn 
as to whether the rotational constant of the molecule increases or decreases on 
electronic excitation, i. e. in the dumbbell model, whether the bond length decreases 
or increases on excitation. 

The complete analysis of the numerous lines in a band spectrum is a tedious 
process, both in terms of their measurement and in terms of data reduction, and 
would in many cases be a nearly impossible task without the aid of computers. 
However, as we have already shown, even a rough analysis gives information about 
changes in the form of the molecule on electronic excitation. The rotational structure 
of even a single band is sufficient for the spectroscopic identification of the molecule; 
it is thus a kind of molecular fingerprint. In this way, for example in astrophysical 
observations the CO molecule could be detected in the atmosphere of the planet 
Venus by identification of its absorption bands. 

When molecules become more complex, that is when they contain more than two 
atoms and are no longer linear, a complete analysis of their band spectra including 
the entire rotational structure becomes much more complicated. The spectra then 
contain many branches which interpenetrate and overlap one another, making an 
analysis of all the lines nearly impossible. 

If, however, a quantitative analysis of the rotational structure of all the bands of 
a band system is possible, then it yields numerical values for a number of quantities 
characteristic of the molecule investigated: 

The rotational constants B' and B" for all the vibrational levels v' and v", and from 
them the moments of inertia for molecular rotation at the equilibrium internuclear 
distances Re in the two electronic states participating in the transition, as well as 
the vibrational stretching constant (){ (cf. Sect. lOA), and finally the internuclear 
distances R~ and R~ of the two states; 

- the vibrational wavenumbers of the molecular vibrations in the two electronic 
states including their anharmonicities, i. e. also the calculated quantities v~ and 
v~ as well as x~ and x~ ; 

- the spacing v(v' = 0, v" = 0) between the lowest levels of the two potential 
curves, and from it the calculated energy spacing without vibrations; 

- and finally, when the angular momentum coupling is analyzed (which we have 
not discussed in detail), the quantum numbers Q' and Q". 

When transitions to and between a number of different electronic excited states can 
be investigated, then the corresponding potential curves of the molecule, and thus 
its excitations, can be studied. 

Furthermore, electronic band spectra with their complete rotational and vibra­
tional structure can of course also be measured for symmetrical molecules such as 
H2, N2, and 02, for which pure rotational or rotational-vibrational spectra are unob­
servable, or observable only with very low intensities, due to the lack of an electric 
dipole moment. The rotational and vibrational structure which accompanies allowed 
electronic transitions thus becomes observable. 

Finally, we mention without giving further details that the intensity distribution 
of the lines in a band spectrum can be used for a spectroscopic determination of 
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the temperature of the gas being investigated. The occupation of the rotational and 
vibrational levels in thermal equilibrium is determined by the temperature, and is in 
tum responsible for the relative intensity of the transitions in the spectrum. 

14.4 Dissociation and Predissociation 

As can be seen in Fig. 14.12, dissociation limit of a molecule merges into a con­
tinuum of states, and the potential curve becomes horizontal for large values of R. 
If a molecule is so strongly excited that its total energy lies in the region of the 
dissociation continuum of one of the electronic states, then it can dissociate. An 
excitation of this kind can take place in thermal collisions, at a sufficiently high 
temperature; however, here we wish to consider the possibility of dissociation and of 
the determination of the dissociation energy by means of the absorption of radiation. 

Fig. 14.12. The potential curve of a small molecule. The 
region of discrete vibrational levels merges into a region of 
continuous energy levels above the dissociation energy D 

The direct photodissociation ofamolecule, as in the reaction AB+hv -* A + B, 
by rotational-vibrational excitation alone, without electronic excitation, is nearly al­
ways impossible. As a single-quantum process, it is forbidden by the selection 
rules for vibrational transitions, which allow only transitions with small changes in 
the vibrational quantum number v, as well as by the Franck-Condon principle (cf. 
Fig. 14.13). As a result of the availability of infrared lasers with very high pho­
ton fluences (for example the CO2 laser), photodissociation as a multiple-quantum 
process, with absorption of a number of vibrational quanta h Vvib according to the 
reaction scheme AB + nhvvib -* A + B, or A* + B*, has become feasible and is 
in fact used in molecular physics for the production of molecular fragments. The 
asterisk on A * and B* means that these fragments are in electronic excited states. 
We must, to be sure, keep in mind that such a multiple-quantum process is not to be 
understood as a cascade of successive multiple absorptions of a vibrational quantum 
h Vvib; instead, it takes place via virtual states. (See Sect. 17.2 for a discussion of 
virtual states.) As we have seen, the spacing of the vibrational levels, i. e. the magni­
tude of the vibrational quanta, becomes smaller and smaller as the dissociation limit 
is approached along the potential curve (Sect. 10.3). The dissociation of a molecule 
AB according to the reaction scheme 

AB + nhvvib = A + B* (+Ekin) (14.15) 

is therefore not possible as a simple cascade process. 
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o 

I 
Fig. 14.13. The dissociation of a molecule by absorption of radiation without simultaneous 
electronic excitation is very improbable according to the Franck-Condon principle; it is in 
fact nearly impossible. The slanted transition arrow in the figure is forbidden because of the 
accompanying large change in the internuclear distance; the vertical transition is forbidden 
because it would require a sudden change in the velocities ofthe vibrating nuclei. In addition, 
it would involve a large L1v 

Absorption of radiation can, however, readily lead to dissociation if it is accompa­
nied by an electronic excitation into a higher-lying electronic state, and an additional 
strong vibrational excitation results, assuming that the two participating potential 
curves are suitably shifted relative to one another. According to the Franck-Condon 
principle, transitions from the vibrational ground state of the lower electronic state, 
i. e. v" = 0, can be observed for a converging band series v' = 1, 2, ... of the 
excited electronic state up to the point of convergence K. For the corresponding 
wavenumber of the point of convergence, V K, it follows from Fig. 14.14 that 

hCVK = D" + EAt. (14.16) 

Here, D" refers to the dissociation energy in the lower electronic state, and EAt to the 
excitation energy of the atomic fragments A and B resulting from the dissociation. 
If this energy is in fragment B alone, i. e. B*, and if it emits its excitation energy 

E 

Fig. 14.14. The determination of the dissoci­
ation energy of a small molecule in its ground 
state (D") and in an excited electronic state 
(D'). The excitation energy of the excited 
atom resulting from the dissociation is de­
noted by EAt, and that of the molecule by 
EMo\, while K is the experimentally deter-

R mined convergence point of the bands 
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as a quantum of radiation, then the determination of EAt is straightforward; in other 
cases, it can often be problematic. Depending on which of the molecular or atomic 
excitation energies in Fig. 14.14 are known, the observation of the convergence point 
K can lead to the quantities D" or D', that is the dissociation energy in the ground 
state or in the excited state. It must be remembered that the calculated dissociation 
energy, relative to the minimum of the potential curve, is to be distinguished from 
the real energy D which begins at the vibrational ground level v" = 0; cf. Sect. 10.3. 
In any case, the dissociation energies of numerous small diatomic molecules such as 
H2, 02, and 12 have been determined in this way. The molecular excitation energy 
EMol in Fig. 14.14 can be found directly from the transition v" = 0 to v' = 0 in the 
band system. From it, the dissociation energy in the excited state, 

(14.17) 

can be determined. In the case of the 12 molecule, the spectrum of which contains 
a very large number of lines in the visible spectral region, the dissociation energy 
can be readily determined, and its measurement is even suitable as an experiment 
for a teaching laboratory. For the point of convergence to the continuum limit, one 
finds by extrapolating the spacing of neighbouring band edges to high values of the 
quantum number v', i. e. to small vibrational quanta, the value K = 2.48 eV. With 
EAt = 0.94eV, it follows that 12 has a dissociation energy D" = 1.54eV. 

If the point of convergence cannot be determined directly or precisely, then 
the spacing of neighbouring band edges, ..1v, is plotted as a function of v' for the 
transitions from v" = 0 and extrapolated to ..1v = O. From the formula (14.2) for 
the band edge, 

(14.18) 

it follows for the differences between the states v and v + 1: 

(14.19) 

i. e. a linear decrease of ..1v with increasing v. The extrapolation to ..1v = 0 yields 
the quantum number Vk for the vibrational term corresponding to the band edge, and 
from it, using the edge formula, 

K 2 
- = Co + Cl Vk - C2vk . 
he 

(14.20) 

If the excitation takes place with a quantity of energy E > K, then the excess energy 
can appear as kinetic energy of the fragments according to the relation 

or AB + E ~ A + B* + Ekin • (14.21) 

Occasionally, one observes band series which are smeared out some distance 
below the dissociation limit, i. e. in a region which lies below the convergence point 
for the vibrational quanta, and which show no rotational structure. It can be demon­
strated by chemical means that dissociation products result from the absorption of 
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radiation by these smeared-out bands. This possibility of a dissociation induced by 
radiation which has a longer wavelength than that corresponding to the dissociation 
continuum is known as predissociation. This term refers to a radiationless transi­
tion of the molecule from a discrete rotational-vibrational level (v", i") of a bound 
electronic state into the dissociation continuum of another electronic state. 

Predissociation is explained in Fig. 14.15. The molecule being investigated has 
the potential curve a in the figure. By excitation with radiation, one can populate 
discrete levels below the dissociation limit and continuous states above it. If the 
molecule in an excited state has a potential curve like b, i. e. if it can dissociate 
from the state b with less energy than from state a, then there is a possibility that 
when it is in an excited level of a in the neighbourhood of the crossing point of the 
two potential curves, it can undergo a radiation less transition into the state band 
dissociate with less energy than would be necessary from state a. The probability of 
such a transition is especially large at the crossing point, since the Franck-Condon 
principle applies to such radiationless processes and the two molecular states are 
the same both in terms of their energies and in terms of their nuclear coordinates 
at the crossing point. The bands belonging to state a become diffuse owing to the 
uncertainty relation for energy and lifetime, because the possibility of a transition 

R -----4_ 

Fig. 14.15. The explanation of predissociation: two potential curves a and b of a small 
molecule, which cross each other, are illustrated with their vibrational terms and dissociation 
continua. At the crossing point of the two curves, a radiationless transition of the molecule 
from state a to the electronically excited state b can take place; this state can then dissociate 
with less energy than state a. This leads to a shortening of the lifetimes of the vibronic 
levels in a and thus to a line broadening in the spectrum. If, for example, light absorption 
from a lower-lying state a' (not shown) excites the molecule into state a, one would expect 
a series of vibronic bands up to the dissociation continuum of a, assuming that the potential 
curves are suitably shifted relative to one another. At the crossing point with the potential 
curve b, a dissociation can result from the excitation of a' to a, even when the excitation 
energy is smaller than the dissociation energy of potential curve a. This is the phenomenon 
of predissociation 
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from a to b shortens the lifetimes of the rotational-vibrational levels in a. This, in 
tum, leads to a broadening of the lines, so that the various rotational lines of a given 
band overlap those of the neighbouring bands. 

At the crossing point of the two potential curves in Fig. 14.15, a transition can 
take place in a time which is typically ofthe order of 10-10 to 10-13 s. The lifetimes 
of the vibronic levels without the possibility of a radiationless deactivation is of the 
order of 

10-8 s. The ratio of these times gives a measure of the shortening of the lifetimes 
of the levels and of the corresponding line broadening in the spectrum. An additional 
possibility for predissociation occurs in those cases where the crossing electronic 
state is a nonbonding state, which has no discrete rotational and vibrational levels, 
but instead only a dissociation continuum. An example is shown in Fig. 14.16. 

Fig. 14.16. The origin of the continuum in the spec­
trum of a hydrogen lamp. Collisions in a gas discharge 
produce excitations into the triplet system. The low­
est state of this system is non-bonding; compare the 
term diagram in Fig. 13.10. The emission spectrum 
is therefore continuous, since there are no vibrational 
terms in a non-bonding state 

14.5 Applications of Band Spectra of Smaller Molecules 

Band spectra have a number of applications. First of all, they are of course an 
indispensable aid to the investigation and elucidation of molecular structure and 
chemical bonding. Their analysis yields important information about the shape and 
position of the potential curves of molecules in their ground and excited states. 
Furthermore, the molecular vibrations and rotations can be detected and analyzed 
using spectroscopic methods in the visible or UV regions instead of microwave 
or infrared spectroscopies, as we have seen. Vibration and rotation can also be 
investigated in emission; this is in general practically impossible in the microwave or 
infrared spectral regions because of the small transition probabilities for spontaneous 
elll1SSlOn. 

Molecular band spectra are also used in light sources. In the ultraviolet, the 
hydrogen lamp is frequently used as a source of continuous radiation. In this appli­
cation, hydrogen molecules are excited by collisions in a gas discharge from their 
ground state 1 IJi into various excited states, including some whose population by 
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absorption of radiation from the ground state is forbidden. One of these is the second­
lowest triplet state, 3 Ei. It has no allowed radiative transition to the ground state, 
but a transition to the 3 E;; state is allowed; this is a nonbonding state. Its potential 
curve is thus not parabolic, with a minimum corresponding to the bond length, but 
rather a curve which decreases continuously with increasing R (see Fig. 14.16). 
Transitions into this state yield a continuum, as shown in the figure. 

There are several applications of the electronic band spectra of molecules for 
the generation of light in lasers. In the N2 laser, transitions in the band spectrum 
of N2 molecules are used to produce laser light. In excimer lasers, one makes use 
of the fact mentioned in Sect. 13.3 that there are molecules which have an excited 
electronic state which is bound, although the ground state is nonbonding, i. e. the 
ground state has no vibrational levels. Transitions from such a metastable excited 
dimeric state into the ground state then do not occur at discrete frequencies, but 
instead are continuous. Such molecules are called excimers (excited dimers), when 
they consist of dimers of two molecules (MM)* or of two atoms (AA)*. Examples 
of the latter are the noble-gas fluorides used in excimer lasers. One thus obtains 
a "continuous" emission over a certain wavelength range, and the possibility of 
constructing a laser with tunable-wavelength emission. 

Excimers are in addition interesting as the active medium in lasers because the 
emitting state, a dimeric state, is different from the absorbing monomeric state. 
The emission is therefore shifted to lower quantum energies, and the population 
inversion which is required for laser action is more easily obtained. Among organic 
molecules, excimers were first observed with pyrene in solution. Figure 14.17 shows 
the decrease of the blue monomer emission and the increase of the green excimer 
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Fig. 14.17. The relative intensity of the fluorescence from pyrene in a benzene solution 
as a function of the concentration c; from Th. Forster and K. Kasper, Z. Elektrochem. 59, 
976 (1955). With increasing concentration, the probability for an excited and a ground-state 
molecule to collide and form an excited dimer (excimer) increases. The molecules are ordered 
as dimers in the pyrene crystal; its fluorescence is therefore pure excimer emission. This is 
already an example for spectroscopy of larger molecules 
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fluorescence with increasing concentration of pyrene molecules in a solution, due to 
the formation of molecular complexes by the reaction M + M* -+ (MM)*. This last 
example carries us over into the next section, in which we discuss large molecules. 

14.6 The Electronic Spectra of Larger Molecules 

Our knowledge of the spectra of small molecules, particularly diatomics, and the 
information obtainable from them about molecular structure and bonding, can be 
extended in principle to larger molecules, which consist of more atoms. However, it 
then becomes more difficult to arrive at a reasonably complete description, because 
the number of possible excitations, the vibrations and rotations, the possibilities for 
rearrangements and dissociation within the molecule, and in general the number 
of allowed energetic and bonding states of the electrons increase strongly with 
increasing molecular size and complexity. For most polyatomic molecules, full 
knowledge of all the molecular data is therefore unobtainable. One has to be content 
with an understanding of the important aspects of the spectra and the bonding, and 
of the electrons in certain bonds. In the following, we therefore attempt to give only 
an overview of some particularly important and characteristic areas of information 
about larger molecules, especially in the almost infinite area of organic compounds. 

The most important common characteristic of the electronic terms of polyatomic 
molecules is the fact that the excitation of a variety of different electrons within 
the molecule is possible. We can distinguish three typical limiting cases of possible 
excitations: 

- Absorption by nonbonding electrons, which are not involved in the formation 
of chemical bonds in the molecule, but belong to a localised group within it, 
a so-called chromophore; 

- light absorption by bonding electrons, which can lead to the dissociation of the 
molecule; and 

- absorption by nonbonding but de localised electrons which are spread over the 
entire molecule or a major part of it. 

We consider first the absorption by groups within the molecule which are not pri­
marily responsible for its chemical bonding. They are attached to a relatively large 
molecule complex or form a part of it. One refers to chromophoric groups (from the 
Greek for "carrier of colour"), with localised electronic orbitals, i. e. orbitals which 
extend over only a few nuclei; these groups exhibit a characteristic light absorption 
which causes little change in the rest of the molecule and which often produces 
a typical colour. 

Examples from the area of inorganic molecules include the transition-metal 
complexes of elements such as Fe, Ti, or Co, where the excitation states of the 
atomic electrons remain intact in the molecule. These atomic-electronic spectra can, 
however, be modified in characteristic ways by the presence of the other electrons 
in the molecule with their typical symmetry properties. In the case of molecules 
containing atoms whose light absorption takes place through inner-shell electrons 
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rather than valence electrons, such as the rare-earth salts, the observed spectra can 
be understood as atomic or ionic spectra which have been only slightly perturbed by 
chemical bond formation. 

In the area of organic molecules, there are likewise many specific absorption 
spectra due to chromophores. The carbonyl group C=O, for example in the molecule 

is thus characterised by its absorption around 290 nm, nearly independently of the 
position of the group within a larger molecular complex. This absorption is due to the 
excitation of an electron of oxygen into a previously empty n orbital of the carbonyl 
bond. An excitation of this kind is called a (n* +- n) transition, i. e. a transition 
from a nonbonding orbital into a n orbital. A C=C double bond can be excited by 
a (n* +- n) transition in the region of 180 nm. The symbol n stands for nonbonding, 
while n* refers to an excited n orbital. 

Furthermore, there can be absorption of radiation by bonding electrons, which 
playa decisive role in the chemical bonding of the molecule. Such excitations can 
lead to dissociation of the molecule. The absorptions of saturated hydrocarbons such 
as methane or ethane, which have a bonds, lead to a* orbitals; they are thus (a* +-a) 
transitions. A relatively large amount of energy is needed for these transitions, and the 
absorption lies typically in the short-wavelength ultraviolet region around 120 nm. 

Finally, absorption by electrons in non-localised orbitals, which are not primarily 
responsible for the bonding in the molecule, is especially interesting. 

A well-known and important example of this type of absorption is benzene; cf. 
also Chap. 5. In the benzene molecule, not every electron pair can be associated with 
a particular bond between two atoms. Since each C atom in the molecule bonds to 
one H atom, three electrons per C atom are left over for the formation of additional 
bonds. Two of them form sp2 hybrid orbitals and participate in localised a bonds to 
the neighbouring C atoms. This hybridisation means that the formation of chemical 
bonds is accompanied by a reordering ofthe carbon electrons from 2s22 p2 to 2s2 p3; 
the necessary energy of 4.2 eV is supplied by the binding energies as a result of the 
formation of the bonds. The remaining 6 valence electrons in the benzene molecule, 
one from each of the 6 C atoms, can form three localised double bonds. From the 
empirical fact that in benzene, all six bonds between the C atoms are equivalent, 
it was realised that these 6 electrons, as 2pz electrons, form so-called n bonds, 
i. e. bonds in which the electrons are delocalised around the entire molecule, with 
a nodal plane in the plane of the benzene ring. These n bonds are weaker than 
the a bonds and can be excited by quanta of lower energies than are necessary 
for the a-bond electrons. Such excitations are denoted as (n* +- n) transitions, in 
which a n electron is lifted by absorption of radiation into a n* orbital. They are 
the lowest-energy electronic excitations of aromatic molecules. These transitions 
exhibit a well-defined vibrational structure, since the excitation takes place between 
bound states of the molecule, in which the bonding remains intact, so that molecular 
vibrations are also preserved. 
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Fig. 14.18. The absorption spectrum of the long-wavelength transition (S2 +- So) in benzene. 
The optical density OD (see 328) is plotted against the wavenumber (lower scale) and the 
wavelength (upper scale). (Upper part): Benzene in the gas phase at its room-temperature 
saturation vapour pressure, with an optical path length of 10 cm. The partially resolved 
rotational-vibrational structure can be seen. The strongest maximum in each progression 
corresponds to an excitation of the totally-symmetric vibration AIg of benzene (breathing 
mode; cf. Fig. 10.14), v = 923 cm- I , by 1,2,3,4,5,6, and 7 quanta. The 0,0 transition is 
forbidden, and the absorption between 37 000 and 37 500 cm -I is therefore very weak. We 
cannot go into the details of the vibrational structure here; this is done in Steinfeld, p. 415. 
(Centre): Benzene dissolved in cyclohexane, at room temperature. The vibrational structure is 
similar, but considerably less detail can be resolved. (Lower part): The absorption spectrum of 
polycristalline benzene at 170 K. This spectrum is shifted somewhat relative to the spectrum 
in solution; in addition, a second progression of vibrational bands can be seen. The origin 
of this is the crystal symmetry, which changes the symmetry of the excited states of the 
molecules. At still lower temperatures (liquid helium temperature), the absorption lines in the 
crystal become considerably sharper 
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The absorption spectra of benzene (Fig. 14.18) thus exhibit the vibrational struc­
ture characteristic of the molecule in the various stages of electronic excitation. It 
remains intact when the molecules are observed in solution or in the solid state, as 
well as in the gas phase; however, the spectral lines are broadened in the condensed 
phases. In particular, no rotational structure is present there, since the whole rota­
tional structure is smeared out or hidden within the linewidth or band width, insofar 
as the molecules are still able to rotate. In Fig. 14.18, the long-wavelength absorption 
of benzene in the solid state (crystal) is compared with the same spectrum in solution 
and in the gas phase; the latter two spectra were, however, recorded with relatively 
poor spectral resolution. The similarity of these spectra is obvious. 

In Fig. 14.19, for comparison, we show the absorption spectra of the larger 
aromatic molecules illustrated in Fig. 14.20: napthalene, anthracene, tetracene, and 
pentacene. With increasing extension of the n electron system, i. e. with increasing 
size of the molecular rings, they are shifted to longer wavelengths. The same is 
true ofthe emission spectra (Fig. 14.21), which are mirror images ofthe absorption 
spectra around the longest-wavelength absorption transition. Referring to Fig. 14.19, 
we note here that the transition probabilities of the different electronic transitions 
are different; this means that the absorption strengths, measured by the extinction 
coefficient B in different spectral ranges, have different magnitudes. We will not 
consider this fact in more detail at this point. 
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Fig. 14.19. Absorption spectra of the aromatic ring molecules shown in Fig. 14.20 in the 
visible and the ultraviolet regions, in solution. The continuous shift of the spectra to smaller 
quantum energies, i. e. to longer wavelengths, with increasing size of the molecules can be 
readily seen 
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Fig. 14.21. Flourescence spectra of some polyacenes (in solution at room temperature). The 
spectra are, to a first approximation, mirror images of the longest-wavelength part of the 
absorption spectra shown in Fig. 14.19 

The benzene ring is a particularly well known and thoroughly-investigated ex­
ample of conjugated double bonds, which are a common and important phenomenon 
in organic chemistry. In this case, successive C atoms in a ring or a chain are joined 
alternately by single and by double bonds; resonance occurs between these bonds, 
leading to an effective delocalisation of the electrons. An isolated, i. e. not conju­
gated C-C double bond absorbs light in the ultraviolet near 7 eV. Double bonds in 
conjugated chains absorb at longer wavelengths. 

Some important representatives of this group of molecules, which have more or 
less delocalised molecular orbitals, also referred to as "conjugated", are the linear 
polyenes known in organic chemistry. These are linear systems of n conjugated dou­
ble bonds, -C=C-C=, with two end groups that close off the chain. Figure 14.22 
shows the absorption spectra of the polyenes with n = 1 to 7 and two phenyl groups 
on the ends of the chain. The increasing shift of the absorption towards longer 
wavelengths with increasing conjugation number n can be readily seen. It can be 
explained in a model with a free electron which can move along the chain, as we 
shall show below. 

A prominent member of this class of compounds is retinal, Fig. 14.23. This dye, 
bound to a certain protein, forms rhodopsin, which is responsible for the elementary 
visual process in the human eye. While retinal in solution absorbs at 380 nm, the 
spectrum of retinal bound to the protein is shifted to longer wavelengths and has 
its maximum near 500 nm. The absorption spectrum extends over the entire visible 
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Fig. 14.22. Absorption spectra (long-wavelength part, lowest electronic transitions) of linear 
dipheny1 polyenes, C6HS-(CH=CH)n-C6HS in solution at -196°C, with n = 1 to 7. The 
absorption belongs to the polyene chain, -(CH=CH)n, and can be understood to a good 
approximation on the basis of a model with an electron gas which is free to move along the 
chain. [After K.w. Hausser, R. Kuhn, and A. Smakula, Z. Phys. Chern. B29, 371 (1935)] 

~o 

~o 

Fig. 14.23. The retinal molecule can be converted 
by light absorption from its all-trans-conformation 
(above) to cis-retinal (below). This is the first step in the 
visual process in the human eye. As a simplification, 
the CH3-groups are indicated by lines and the H atoms 
along the conjugated chain system are not drawn in 



322 14 The Electronic Spectra of Molecules 

spectral region. Absorption of a photon in the eye by retinal [as a (n* +- n) or 
a (n* +- n) transition] leads to an isomerisation of the molecule from the cis- to 
the all-trans-conformation (see Fig. 14.23). This isomerisation produces the nerve 
impulse which is interpreted by the brain as "seeing". We shall have more to say 
about this topic in Sect. 2004. 

Another molecule from the group of the polyenes which has considerable sig­
nificance in biology is fJ-carotene, Fig. 14.24, with 11 conjugated double bonds; it 
gives carrots their yellow colour. This and related molecules, the carotenoids, play 
an important role in photosynthesis: the conversion of solar energy into biomass. 

The electronic excitation states of the polyenes and molecules with similar 
structures can be understood in an intuitively clear first approximation by using the 
model of a particle in a box or in a one-dimensional potential well; see also Chap. 9 
in 1. For the energy eigenvalues of an electron of mass rno in a one-dimensional 
potential well oflength a, the following relation holds, as we showed in I, Sect. 9.1, 
Eq. (9.14): 

n2h2 
En = --, with n = 1, 2, 3, . .. . 

8rnoa2 
(14.22) 

Fig. 14.24. The structure of the carotene molecule. 
At the left, we indicate how the complete molecular 
structure with all the C- and H-atoms as well as the 
CH3-groups would look. In the structural sketch at 
the right, these symbols are left out for clarity 
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If we populate this potential-energy scheme with the 22 electrons from the 11 double 
bonds of the conjugated chain of ,a-carotene and take into account the fact that each 
level n can hold only two electrons (with antiparallel spins), then the levels n = I 
to n = 11 are occupied in the ground state. The observed longest-wavelength 
absorption of the molecule at 450 nm would then correspond to a transition from 
n = 11 to n = 12, that is into the lowest unoccupied level. This implies an energy 
difference of 

2 2 h2 
f1E = (E12 - Ell) = (12 - 11 )--2 . 

8moa 
(14.23) 

Inserting the observed absorption at f1 E = 450 nm, we can calculate the length of the 
potential well, i. e. the length of the conjugated chain, a = 17.7 A. This is of the right 
order of magnitude for the length of the molecule, which can be determined more 
precisely by other methods. The agreement indicates that this model of an electron 
which is delocalised over the whole length of the molecule is a good approximation. 

The delocalisation and free mobility of the :rr electrons along conjugated double 
bonds is related to the metallic conductivity of solids. It leads to a large and strongly 
anisotropic electrical polarisability of the molecules, and to a strongly anisotropic 
diamagnetism. The induced currents which are characteristic of diamagnetism on 
application of an external magnetic field are, for example, much stronger in the 
plane of an aromatic molecule than perpendicular to it. Correspondingly, the dia­
magnetic susceptibility of aromatic molecules for a magnetic field perpendicular to 
the plane of the rings is at least a factor of three larger than in the plane; cf. also 
Sect. 3.7. 

We cannot describe here in detail the multiplicity of spectra and excited states 
which are encountered for large molecules. An important and, especially for physi­
cists, interesting group of excitations are those referred to as charge-transfer, ac­
ceptor, or donor transitions. In these transitions, excitation by radiation causes an 
electron to be completely or partially (in the quantum-mechanical sense) transferred 
from one part of the molecule to another. This changes the whole charge distribu­
tion within the molecule, its dipole moment, and thus in general also its structure 
and its coupling to its surroundings. The spectra are often very broad, at least in 
the condensed phases, and unstructured as a result of this coupling. As an exam­
ple from the area of inorganic chemistry, we mention the well-known deep violet 
MnO:! ion (the perrnanganate ion), with absorption between 430 and 700 nm. Here, 
the electronic transition occurs between the ligands, i. e. the 0 atoms surrounding 
the Mn ion, and the inner d orbitals of the central ion. Examples from the area 
of organic chemistry are the complexes between aromatic molecules such as an­
thracene and the tetracyano benzene molecule, which serves as electron acceptor. 
The latter is a benzene molecule in which four of the six H atoms are replaced by 
CN- groups. 
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Problems 

14.1 a) How many vibrational levels are there below the dissociation limit of 
the electronic ground state e fIu) and the excited state e fIg) in the C2 molecule? 
Calculate from this its dissociation energies. 

Hint: the vibrational constants ve and the anharmonicity constants Xe of the molecule 
in these two states are 

Table 14.1. 

Ground state 
Excited state 

1641.4cm-1 

1788.2cm-1 

Xe 

0.00711 cm-I 
0.00919 cm-I 

b) The 0-0 transition in absorption from the ground state into the excited state 
is at 19378 em-I and the point of convergence of the continuum is at 39 231 em-I. 
The dissociation products are a C atom in its ground state and one in an excited state 
with an excitation energy of 10 308 em-I. How large are the dissociation energies 
of the two states? The results of parts (a) and (b) are not identical; which value do 
you consider more precise? 

14.2 In a Birge-Sponer diagram, one plots the energy intervals ,1E between neigh­
bouring vibrational levels v and v + 1 against the quantum number v and extrapolates 
to ,1E = 0 in order to find the convergence point of the limiting continuum. Apply 
this method to find the dissociation energy of the 12 molecule from the following 
data: 

Table 14.2. 

v 0 5 10 30 50 70 75 80 

207.2 200.7 172.1 134.7 82.3 67.0 52.3 

14.3 a) An important transition in the 02 molecule produces the so called 
Schumann-Runge band in the UV spectrum of oxygen. The wavenumbers of the 
transitions from the ground state into the vibrational levels of the electronically 
excited state 3 E;; in em-I are: 

50062.6; 50725.4; 51369.0; 51988.6; 52579.0; 53143.4; 53679.6; 54177 .0; 54641.8; 
55078.2; 55460.0; 55803.1; 56107.3; 56360.3; 56570.6 

Find the dissociation energy of the excited electronic state with the aid of a Birge­
Sponer plot (cf. Problem 14.2) 
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b) The excited electronic state dissociates into an oxygen atom in its ground 
state and an oxygen atom in an excited state whose excitation energy is found from 
the atomic absorption spectrum to be 15875 cm-1. (This energetic oxygen atom is 
among other things responsible for the formation of atmospheric ozone.) In contrast, 
dissociation of the oxygen molecular ground state yields two atoms in their ground 
states. Using this information, calculate the dissociation energy of the ground state 
of molecular oxygen. 

14.4 The vibrational energy of carbon monoxide, CO, in its ground state is observed 
in the infrared spectrum at 2140 cm -1. The band system of the first strong electronic 
transition appears in the absorption spectrum at room temperature at 155 nm and 
exhibits a vibrational progression with a band interval of 1480 cm -1. Each vibra­
tional band consists of red-shaded P, Q, and R branches, whose analysis yields the 
rotational constant B' = 1.61 cm-1 in the excited state and B" = 1.93 cm-1 in the 
ground state. The band origins of the three branches are P(2), Q(1) and R(O). 

a) What information about the two electronic states involved can you derive from 
these data? 

b) Find the strongest vibronic transitions in the spectrum by applying the Franck­
Condon principle and sketching the potential curves to scale; use the harmonic 
oscillator potential U(R) = !k(R - Re)2. 

c) Which electron configurations belong to the terms of the two states? 

14.5 Why are the absorption spectra of polyatomic molecules often continuous or 
diffuse at A. < 200 nm? 

14.6 In a linear polyene, an electron is in a delocalised molecular orbital which 
extends over a length of 10 A. How large is the minimum excitation energy of this 
electron from its ground state? What is the probability that the electron is located in 
the region between 0 and 2 A from the outer end of the conjugated bond system? 



15 Further Remarks on the Techniques 
of Molecular Spectroscopy 

In molecular spectroscopy, the energy levels of molecules which are connected by 
absorption, by radiationless processes, or by the emission of radiation are investi­
gated (Sects. 15.1 through 15.3). The method oflaser spectroscopy of cold molecules 
in a supersonic molecular beam has been the source of major advances in molec­
ular spectroscopy (Sect. 15.4). With this technique, one can also study short-lived 
and weakly bound complexes and clusters; the new modification of carbon, the 
Fullerenes, were discovered in this way (Sect. 15.4). An important experimental 
tool is the tunable dye laser (Sect. 15.5). Employing a combination of these modern 
methods, it has proved possible to resolve the rotational structure of the vibronic 
bands of large molecules with two-photon absorption or excitation spectroscopy 
(Sect. 15.6). Using pulsed lasers, dynamic processes within and on molecules down 
to the femtosecond range can be investigated (Sect. 15.7). 

Another experimental technique which is in a state of rapid development is pho­
toelectron spectroscopy. Using this method, discussed in Sect. 15.8, the spectroscopy 
of inner-shell electrons as well as of valence electrons is possible. In the form of 
ZEKE spectroscopy, it can even resolve rotational lines in the spectra of molecular 
ions (Sect. 15.9). 

15.1 The Absorption of Light 

Aside from the energy difference between two molecular states which are connected 
by transitions corresponding to spectral lines, an important experimental quantity is 
the transition probability itself. In contrast to the case of atoms, where transitions can 
be classified as entirely "allowed" or "forbidden", in molecules all the intermediate 
stages between completely allowed and strongly forbidden transitions are found. The 
transition probabilities are determined by the electronic structures of the initial and 
final states. In Chap. 16, we shall concern ourselves with the quantum-mechanical 
derivation of these transition probabilities. Experimentally, they can be determined 
from the absorption strength or the lifetimes and quantum yields of the emission as 
fluorescence or as phosphorescence. 

The absorption of light by molecules at a concentration C in a homogeneous 
sample of thickness x is governed by the Lambert-Beer law: 

(15.1) 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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(We have used a capital C for the concentration in this expression in order to avoid 
confusion with the velocity of light, c.) In (15.1), 10 is the incident light intensity 
and I the intensity transmitted by the sample, and a is the characteristic absorption 
coefficient of the molecules under consideration, which is defined by this equation. 
We have already met this law in a more general form as the definition of the 
interaction cross-section in I, Sect. 2.4.2. It gives the particular interaction cross­
section for the absorption of light by molecules. The molecule-specific quantity B, 

the molar absorption coefficient, is defined by (15.2): 

log ( 7 ) = BCX . (15.2) 

The relation between B and a is thus B = a/lnlO = aI2.303. The dimension of B 
is lI(concentration·length) or, more commonly, M-1 cm-1. M is the abbreviation 
for mol dm -3; 1 M thus means 1 mole of a substance in one liter of solvent. The 
quantity B is therefore also referred to as the molar decadic absorption coefficient or 
extinction coefficient. From the definition of M as moles per volume we can derive 
yet another unit for B, namely cm2 mol-lor cm2 mmol-1, where mmol stands for 
10-3 moles. We thus have 1 M- 1 cm- 1 = 1 cm2 mmol- I ; the latter unit expresses 
more clearly the fact that B is a molar interaction cross-section for light absorption. 
The "optical density" OD is defined as the product BCX, and the "transmissivity" as 
the ratio T = 1110. 

The extinction coefficient B is specific to the absorbing molecule and depends on 
the frequency of the light being absorbed. A transition between two electronic states 
of a molecule always includes a large number of vibrational and rotational levels, as 
we showed in Chap. 14; these levels belong to the potential curves of the initial and 
final states in the molecule, and give rise to a frequency range Ll v for the transition. 
The overall intensity of an electronic transition is therefore measured in terms of an 
integral: 

A = f B(v)dv , [M-1 cm-1 S-I] or [cm2 mmol- 1 S-I] , (15.3) 

which is called the integral absorption coefficient. It is related to the (dimensionless) 
oscillator strength f by the equation 

(15.4) 

(where mo is the mass, e the charge ofthe electron, and n is the index of refraction 
of the medium). Inserting the numerical values, we find 

1 44 . 10-19 
f= . A (15.5) 

n 

with A measured in cm2 mmol- I s-l. 
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Very strong electronic transitions have f = 1, and 8 lies between 104 and 105 

[M-1 cm-I ]. The oscillator strength f depends directly on the transition matrix 
element 821 as defined in Sect. 16.3.6, i. e. on the wavefunctions of the initial and 
the final states. For an electric dipole transition between two states 1 and 2 with the 
dipole transition moment 

821 = f 1/I~eT1hdV (15.6) 

(where 1/11 and 1/12 are the wavefunctions of the states, e the elementary charge, r is 
the distance between the centres of charge, and V is the volume), we find 

8n2 mOv2] 2 
f = 3--,;;2 18 211 . (15.7) 

The oscillator strength can therefore be calculated if the wavefunctions are known. 
It is spread over a more or less large number of vibronic and rotational levels in the 
spectrum; cf. Chap. 16, especially Sect. 16.3.6. 

The transition dipole moment 821 == M = e . r is a measure of the charge shift 
which accompanies the transition 2-1. It follows from (15.7) that 

82] = 0.25249 . 109 It [D] 
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Fig. 15.1. A typical tenn diagram for a molecule with singlet and triplet systems, explaining 
the most important radiative and non-radiative processes. Intersystem crossing as well as 
a radiative transition between the two systems (phosphorescence, absorption) are more or less 
strongly forbidden. Internal conversion and intersystem crossing (i.e. vibrational relaxation) 
are radiationless processes ("Jablonski-Diagram") 
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in units of Debyes. Here, V21 is the average transition frequency. From (15.7) it can be 
readily calculated that for the frequency v = 6 . 1014 S-I (A = 500nm), the oscillator 
strength f = 1 is attained for a transition dipole moment of 6J = 3.5· 10-29 Cm. 
This corresponds to a dipole consisting of two elementary charges at a distance of 
2.1A. 

The Lambert-Beer law is in general obeyed very well. Deviations are possible 
when the molecules interact with each other, but also when the light source is so 
intense that thermal equilibrium is disturbed by the radiation, or when a long-lived 
state is populated and thus the absorbing ground state has a reduced population 
during the irradiation. 

The energy absorbed by a molecule can be released again in several quite differ­
ent ways. If we first leave out photochemical processes, in which the molecules are 
modified or destroyed, then the energy can be released through radiationless pro­
cesses or by fluorescence or phosphorescence. We will explain these latter two terms 
below. An overview of the most important radiative and radiationless or non-radiative 
transition processes in molecules is given in Fig. 15.1. 

15.2 Radiationless Processes 

Radiationless or non-radiative processes are in particular those processes in which 
electronic excitation energy is converted to vibrations, rotations, and translational 
motions of the molecules. Such processes are very important in the condensed 
phases, i. e. for molecules in liquids and in solids. They are for example the reason 
that molecules in general emit radiation only from their lowest excited electronic 
states, no matter what wavelength was used to excite them, and the emission gives 
a high yield only when the energy difference to the ground state is sufficiently 
large; it must be larger than several times the characteristic vibrational quantum 
energy in the electronic ground state. After excitation of the molecule, it can transfer 
the excitation energy via internal conversion processes (cf. Figs. 15.1 and 15.2) to 
vibrational and rotational quanta and thus release it to the molecular environment. 
Only when the possibility of energy release to the environment is eliminated, as is the 
case for example for isolated molecules in interstellar space, can these radiationless 
processes be avoided. Another important non-radiative process is the intersystem 
crossing between the singlet and triplet systems; it is enhanced by the spin-orbit 
coupling, and is also shown in Fig. 15.2. 

The so called Kasha Rule is based on the internal conversion process. It states 
that a molecule in the condensed phase is in general only able to emit from the lowest 
electronic state. This is the vibration-free state SI or - in the case of sufficiently 
strong intercombination due to spin-orbit coupling - T I. 

The fact that the spectral distribution in the fluorescence spectrum of molecules 
is usually independent of the excitation wavelength, but the fluorescence intensity 
is not, is employed in excitation spectroscopy. One measures the intensity of the 
fluorescence emission in a fixed wavelength range as a function of the wavelength or 
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Fig. 15.2. Some non-radiative processes: 
an intersystem crossing between the sin­
glet and the triplet systems is made pos­
sible by spin-orbit coupling and thus can 
occur more readily when several atoms 
with high atomic numbers are present in 
the molecule. Phosphorescence, which is 
a radiative intersystem crossing, produces 
emission with a long decay time 

quantum energy of the light used for excitation. The fluorescence intensity then in­
creases with the number of absorbed quanta. In this way, one can observe absorption 
spectra even in cases where transmission through the sample is not observable, i. e. 
when the absorption is very strong. To be sure, the quantitative determination of the 
absorption coefficients in this manner is usually not possible, because a quantitative 
relation between the number of quanta absorbed and the number emitted can be 
established only when perturbing effects such as saturation of the absorption and 
self-absorption of the fluorescence radiation can be avoided. 

Excitation spectroscopy is particularly important as an extremely sensitive 
method for measuring weak absorptions. In such cases, in the usual absorption 
spectroscopy one is forced to determine the ratio of two quantities which are nearly 
the same, i. e. the incident and the transmitted intensities. However, in the excitation 
spectrum, only the emitted quantum flux is measured. In the case of weak absorption, 
this can be done with considerably improved accuracy. An example of an excitation 
spectrum is given later, in Fig. 21.8. 

15.3 The Emission of Light 

Radiative transitions from the vibronic levels (usually the lowest) of an excited 
electronic state (usually the first excited state) into the vibronic levels of the ground 
state are calledfiuorescence (see also Fig. 15.1 and Sect. 14.1). The Franck-Condon 
principle holds for these transitions just as for absorption of radiation; i. e. the 
transitions take place preferentially between levels which are directly above one 
another as in Fig. 15.2. Fluorescence occurs at quantum energies which are smaller 
than, or at most equal to, the energy of the absorbed radiation, as can be understood 
directly from Fig. 15.1. The only line common to both the absorption spectrum and 
the fluorescence spectrum, at least when the temperature is sufficiently low, is the 
0,0 line, i. e. the transition between the states with v" = 0 and Vi = O. Relative to 
this line, the absorption spectrum and the fluorescence spectrum extend in a mirror­
image fashion towards higher and lower frequencies, respectively; cf. Figs. 14.8, 
14.19, and 14.21. If higher vibronic levels of the electronic ground state, with 
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V" > 0, are populated thermally at higher temperatures, so that they can also provide 
initial states for absorption, then the region of overlap between the absorption and 
the fluorescence spectra becomes larger. 

The decay time of the fluorescence following excitation by a short pulse of light 
is a measure of the radiative lifetime of the emitting state. In order to determine it, the 
fluorescence must be excited by a light pulse which is short compared to the decay 
time; the latter is then found from the time dependence of the emission intensity 
following the excitation. For allowed transitions, decay times in the nanosecond 
range are typical. The quantum yield TJ is defined by 

number of emitted quanta 
TJ= . 

number of absorbed quanta 
(15.8) 

If there are no competing radiationless processes, the quantum yield is 1. Values 
near 1 are in fact observed for e. g. the well-known and often-used fluorescence dyes 
such as rhodamine or anthracene. All competing non-radiative processes reduce the 
quantum yield and shorten the radiative lifetime. 

Besides fluorescence, one often observes (especially in the case of organic 
molecules) an emission with a much longer decay time, which is called phospho­
rescence. In molecular physics, phosphorescence denotes emission from an excited 
triplet state, i. e. from a state with a total spin quantum number S = 1. Previously, 
and sometimes even today in solid-state physics, phosphorescence refers in general 
to light emission with a long decay time. The longer decay time is a result of the 
forbidden intersystem crossing for a transition from an excited triplet state into the 
singlet ground state, i. e. the fact that spin-flip processes are forbidden in optical 
transitions. The triplet nature of the excited states can be verified by electron spin 
resonance; see Chap. 18. 

We will now consider how radiative transitions between the terms T1 and So can 
take place in spite of the fact that they are forbidden. Most molecules are diamagnetic 
in their ground states, since all of the electron spins are paired to give an overall 
spin of zero. This is also true of many excited states, and the fluorescence which 
we have just described therefore corresponds to singlet-singlet transitions, that is 
transitions between states with S = 0. As we have already seen in atomic physics, 
however, spin-orbit coupling allows forbidden singlet-triplet transitions to occur; in 
these, an electronic spin flip accompanies a radiative optical transition. This is called 
intercombination in atomic physics, or, in molecular physics, where the process 
often occurs nonradiatively, intersystem crossing. There is thus a certain, usually 
very small probability for the excitation of molecules by light absorption from the 
singlet So ground state into a triplet state T1, or conversely for the emission from 
the triplet state into a singlet state. This probability is increased by the presence 
of atoms with high atomic numbers within the molecule or nearby, as we have 
learned in atomic physics (see I, Sect. 12.8). In molecular physics, this is termed 
the intramolecular or (if it is based on an interaction with the surroundings of 
the molecule) the intermolecular heavy-atom effect. It is, for example, responsible 
for the fact that the dibromonapthalene molecule, i. e. a naphthalene molecule in 
which two protons have been replaced by bromine atoms, has an So - T1 absorption 
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which is several orders of magnitude stronger than that of unsubstituted naphthalene. 
Correspondingly, the lifetime of the metastable Tl state, insofar as it is limited by 
radiative deactivation, is shorter in the Br-substituted naphthalene molecule. 

A molecule which has been excited into a higher triplet state expends its excitation 
energy to its environment, if possible in a rapid series of non-radiative processes as 
rotational and vibronic quanta. When it then arrives at the lowest electronic triplet 
state Tl, it can release its remaining excitation energy, depending on the degree of 
spin-orbit coupling, via a forbidden, and therefore slow radiative transition as shown 
in Fig. 15.2. The triplet state is thus metastable; its lifetime and the radiative decay 
time for phosphorescence emission can be of the order of minutes. 

A further spectroscopic quantity for the investigation of molecules is the deter­
mination of the polarisation of the absorption, fluorescence, and phosphorescence. 
The polarisation of any transition between two different electronic states can be 
computed from knowledge of the symmetries of the states. It can be measured by 
holding the molecules in a fixed spatial orientation or by carrying out measurements 
with polarised light relative to transitions of known polarisations. A loss of the de­
gree of polarisation between absorption and emission, a so-called depolarisation, 
can for example be caused by motion of the molecule or of a part of the molecule 
during the time between the two processes. Measurements of the polarisation can 
thus be used to study molecular motions. 

15.4 Cold Molecules 

In condensed phases, molecular spectra consist of relatively broad inhomogeneous 
lines or bands without resolved rotational structure, and they therefore do not permit 
the determination of detailed spectral properties of the molecules. On the other hand, 
the analysis of the numerous lines of molecular spectra even in the gas phase, in 
particular for more complex molecules, with their enormous multiplicity of spectral 
lines and overlapping spectral regions from different series of rotational and vibra­
tionallevels, is nearly impossible. Simply cooling the molecules to low temperatures 
in order to reduce the number of occupied rotational and vibronic energy levels is 
possible only to a limited extent if the experiments are carried out in the gas phase. 
In the past decade, considerable progress has been made in this area by cooling 
molecules in a supersonic molecular beam. 

If one allows a gas to expand into vacuum from a region of high pressure (several 
atmospheres) through a suitable nozzle at a high velocity (supersonic velocities), an 
adiabatic expansion accompanied by cooling occurs, whereby the thermal energy 
of the molecules is converted into directed kinetic energy in the direction of the 
expansion. This is explained in detail in Fig. 15.3. 

In the region of the nozzle, energy is exchanged among the molecules by colli­
sions, resulting in a translational cooling (i. e. a reduction of the width of the velocity 
distribution) and a cooling of the rotational and vibrational degrees of freedom ac­
companied by an increase in the velocity component in the direction of the beam. 
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Fig. 15.3. Molecular spectroscopy in a supersonic molecular beam. The molecules are cooled 
by allowing them to stream out of a nozzle (upper part), whereby their disordered motion 
is converted into a directed motion with a selected translational velocity u (centre). The 
broad thermal velocity distribution at the initial temperature TJ (lower left) is thus converted 
to a narrow distribution with a correspondingly reduced effective temperature T2 for the 
molecular rotation and vibration. After Levy 

The width of the resulting velocity distribution is a measure of the temperature 
(Fig. 15.3). 

In order to cool a molecular gas for spectroscopic measurements, one mixes 
a small amount of the desired gas with a large amount of a monatomic carrier gas, 
e. g. helium. On expansion of this mixture through the nozzle, the carrier gas is first 
translationally cooled. The molecules can then give up rotational and vibrational 
energy to the cold atoms through collisions, i. e. to the cold thermal reservoir of the 
monatomic carrier gas. 

The degree of cooling obtainable depends on the interaction cross-sections for 
collisions with exchange of rotational and vibrational energy; it leads to a drastic 
reduction of the temperatures Tt. Tr , and Tv for the translational, rotational, and 
vibrational degrees of freedom, compared to the temperature of the environment. 
One can obtain 'It = 0.5 to 20 K, Tr = 2 to 50 K, and Tv = 10 to 100 K in this way; 
that is, those degrees of freedom of the molecules under investigation are "cooled" 
so strongly that they would correspond in thermal equilibrium to the temperatures 
quoted. Excitation spectroscopy is then employed to measure the spectra, which still 
contain numerous lines. The absorption of the light from a tunable laser of narrow 
bandwidth is detected by means of the emission intensity from the molecular beam. 
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Fig. 15.4. The spectral resolution of the spectrum of NOz is drastically improved by adding 
the NOz gas to a helium supersonic beam. Upper part of figure: a section of the absorption 
spectrum ofNOz in the gas phase, obtained by conventional absorption spectroscopy at 300 K. 
Lower part of figure: The excitation spectrum of NOz in a He supersonic beam; expanded 
wavenumber scale. After Levy 

At such low rotational and vibrational temperatures, only the lowest rotational­
vibrational levels in the electronic ground state are occupied. This reduces the 
number of possible initial states for absorption transitions and thus the number of 
lines in the spectrum by a considerable amount. The spectrum still contains a large 
number of lines, but it can be much more readily analyzed. Impressive examples 
for the increase in spectral resolution of molecular spectroscopy by means of this 
technique are shown in Figs. 15.4 and 15.5. Figure 15.4 gives a section of the 
absorption spectrum of NOz measured using conventional absorption spectroscopy, 
and below it the highly resolved spectrum obtained with excitation spectroscopy 
from a supersonic molecular beam. Figure 15.5 explains a further refinement of the 
technique with a resulting large number of resolvable lines. 

This supersonic-beam spectroscopy is very interesting for an additional reason: 
in the beam, one can also observe weakly bound molecular complexes, so-called 
Van der Waals molecules or clusters, which would dissociate immediately at higher 
temperatures (e. g. room temperature). These are associations of a few molecules to 
form weakly bound complexes. Clusters with up to 105 atoms or molecules as their 
components have also been found. This opens up a new possibility for investigating 
the interaction potentials between molecules and gives rise to a new transition region 
between molecular and solid-state physics. 

The physics of clusters has a long history; in previous times, one referred to 
colloids. For example, it has long been known that finely dispersed colloidal gold can 
be used to colour glass ruby red. By changing the size distribution of finely divided 
metal clusters in glasses, one can colour them in various hues. This phenomenon 
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Fig. 15.5. A section of the N02 excitation spectrum, obtained using a narrow-band dye laser 
for excitation. Above: a Doppler-limited spectrum; N02 in an absorption cell at T = 300 K, 
p = 0.3 mbar. Centre: a Doppler-reduced spectrum showing the region which is shaded 
in the upper spectrum, obtained from a collimated molecular beam of pure N02. Below: 
as in the centre spectrum, but from a very cold molecular beam using 1 bar Ar carrier gas 
with 5% N02 added. It can be clearly seen that rotational lines corresponding to higher 
quantum numbers become less intense at the lower beam temperature. The 2 -+ 3 transition 
belongs to a different band system. The frequency markers are spaced at intervals of 63 MHz. 
Nomenclature: 80,8 -+ 90,K~' S = +1/2 means a transition from the state with Nil = 8, 
Ka = 0, Kc = 8 to the state with N' = 9, K~ = 0, K~ variable, and J = N + 1/2, where N is 
the quantum number of rotational angular momentum of the molecule and Ka and K c are the 
projections of N on the molecular a or c axes, respectively. (Provided by W. DemtrOder) 
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was explained in 1908 by Mie in tenns of size-dependent plasma resonances of the 
metallic electrons. Since about 1980, interest in the study of such clusters has grown 
strongly. Important knowledge for various fields, such as catalysis, photography, 
the structure of amorphous substances, and the fonnation of large molecules in 
interstellar space can be obtained from cluster physics. 

At present, supersonic molecular beams are an important preparation method, in 
particular for molecular clusters. Figure 15.6 shows an experimental set-up for the 
study of clusters. 

In the cold molecular beam, rather unusual molecules can be discovered. For 
example, at a beam temperature of 0.3 mK, it has proved possible to identify the 
helium dimer, He2, cf. Fig. 13.3. Its binding energy corresponds to a temperature 
of 1 mK [J. Chern. Phys. 98, 3564 (1993)]. This molecule has surprising properties: 
because of its small binding energy, the average internuclear distance is 55 A, and it 
can exist only in its ground state, without rotational or vibrational excitations. A direct 
measurement of the size of this unusual molecule was carried out with the aid of 
an apparatus in which the transmission of helium dimers (and momomers) through 
a nanopore filter was measured using a cold molecular beam (J. Chern. Phys. 104, 
1151 (1996)). The mean internuclear distance was determined in this way to be 
62 ± 1OA. 

There are also stable clusters and large molecules which are produced in such 
cold molecular beams. A particularly notable molecule which was discovered in this 
way is Buckminster-Fullerene, C60 , consisting of 60 carbon atoms, which resembles 
a soccer ball and has icosahedral symmetry (see Fig. 4.18). This molecule can now 
be prepared in other ways, e. g. by vaporising graphite in a helium atmosphere. An 
especially sensational discovery was that C60 doped with alkali metal ions in the 
solid phase is superconducting, with an unexpectedly high transition temperature. 
Still larger molecules, such as C70, have since also been prepared. 
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Fig. 15.6. An apparatus for the production and investigation of clusters. The clusters from the 
nozzle pass through an entrance diaphragm (skimmer) into the detection chamber, where they 
are ionised by an electron beam or by light. The analysis is perfonned in a mass spectrometer, 
which also detects the molecular fragments that are often fonned on ionisation of the clusters 



338 15 Further Remarks on the Techniques of Molecular Spectroscopy 

In the few years since the discovery of the Fullerenes, a number of new devel­
opments have been made; in addition to C60 and C70, still other related but more 
complex forms have been found. The structures and the bonding of these molecules 
have been investigated with all the available spectroscopic methods. In particular, it 
could be shown that smaller atoms or molecules can be enclosed in the C60 or C70 

balls; this has initiated a new chapter in the chemical physics of molecules. 

15.5 Dye Lasers 

For high-resolution molecular spectroscopy of cold molecules with very sharp energy 
terms, one requires spectrographs of high resolving power, or else tunable light 
sources with extremely small bandwidths. Using the latter, the molecular absorption 
can be measured with excitation spectroscopy by detecting the emission as a function 
of the excitation wavelength. If the spectral bandwidth of the light source is less than 
the energy width of the terms of the molecules, then they can be resolved in the 
spectrum. 

The most important light source which can be tuned continuously over a large 
frequency range is the dye laser; see I, Sect. 21.1. In dye lasers, the laser medium 
consists of suitable organic dye molecules in solution. The corresponding term 
diagram is shown in Fig. 15.7. 

The dye is optically pumped from its ground state So into higher vibronic levels of 
the excited electronic state Sj. These levels, coupled to those of other molecules and 
to the solvent, are practically continuous in solution. Following a rapid radiationless 
relaxation to the lowest vibronic levels of Sl, emission from there into the likewise 
nearly continuous vibronic levels of the electronic ground state So occurs. Since the 
latter are not thermally populated and their excess energy is quickly released to the 
environment by radiationless processes, the population inversion necessary for laser 
action is readily obtained. The desired laser frequency is selected from the broad 
spectral emission range of the dye, which can extend over several 1000 cm-1, by 
tuning the laser resonator. 

51 

\....l...----T1 
Fig. 15.7. The term diagram of an organic dye for a dye 
laser. The region of emission from the vibronic levels 
of the excited electronic state S 1 into the vibronic levels 

~~~~~L____ of the ground state So extends over several lOOOcm-1
, 

depending on the dye. Intersystem crossing to the triplet 
state Tj decreases the laser power. Further details are given 

50 in the text 
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15.6 High-Resolution Two-Photon Spectroscopy 

In larger molecules, the individual rotational lines in the electronic or vibronic­
electronic transitions lie so close together that they can no longer be resolved 
by conventional spectroscopic methods. Larger molecules therefore do not exhibit 
line spectra, but instead broad bands; the Doppler broadening resulting from the 
thermal motions in the gas phase prevents the resolution of the lines and thus 
a precise measurement of the rotational and vibrational energies in the excited 
state. For the benzene molecule, C6H6, the Doppler width at room temperature is 
1.7 GHz = 0.05 cm-1, while the energy of the Sl ~ So transition lies in the range 
of 40 000 cm-1. 

In such a case, the method of Dopplerjree two-photon spectroscopy can be 
applied to advantage; it was first used in atomic spectroscopy and is described in I, 
Sect. 22.4. The light from an extremely narrow-band, tunable laser impinges as 
two oppositely-directed beams on the molecules to be studied. If a single molecule 
interacts with two photons which are travelling in opposite directions, the Doppler 
shifts are equal and opposite and compensate each other, assuming that both beams 
have exactly the same frequency. In that case, no Doppler broadening is observed 
and the determination of the transition frequency can be made much more exactly. 
Attainable precisions are of the order of 1 MHz. 

hv 

hv 
So 

Fig. 15.8. The principle of two-photon absorption spectroscopy 
with fluorescence detection: the molecule is excited from its ground 
state So by a two-photon transition, here into the state Sl. The 
absorption is detected by the resulting fluorescence 

In this process, the molecule is raised to a state whose energy corresponds to the 
sum of the two photon energies. The absorption bands which lie in the ultraviolet 
region can thus be excited by blue light. To be sure, the selection rules for two­
photon absorption are different from those for conventional single-photon processes 
(Sect. 17.3). Two-photon absorption is detected as an excitation spectrum using the 
UV fluorescence (see Fig. 15.8). 

The power of this method is illustrated in Fig. 15.9 using the example of the 
S 1 ~ So absorption spectrum of the benzene molecule in the gas phase, as obtained 
in measurements with varying spectral resolutions. The resolution in the upper 
spectrum is 1 cm-1, while it is Doppler limited to 0.06 cm-1 in the centre spectrum; 
only in the lower spectrum, where the Doppler broadening has been eliminated, 
giving a resolution of 0.003 cm-1 , can the individual rotational lines in the spectrum 
be distinguished. 
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Fig. 15.9. The two-photon absorption spectrum of benzene from the electronic transition 
Sl ~ So, measured with varying spectral resolutions. In the upper part of the figure, taken at 
a resolution of 1 cm- 1 , one can recognise the vibrational structure of the electronic transition. 
The middle part of the figure shows a spectrum with resolution limited by Doppler broadening 
to 0.06 cm-1; it represents the Q branch of the strongest vibrational band. In the bottom 
spectrum, the resolution was improved to 0.003 cm-1 by using Doppler-free spectroscopy. 
The individual rotational lines can now be resolved. The following notation is used for the 
vibrational bands: 146 means the nonnal mode 14, which is excited in the final state (here 
Sd by 1 quantum, but has 0 quanta of excitation in the initial state (ground state So). From 
H.J. Neusser and E.w. Schlag, Angew. Chern. 104, 269 (1992) 
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Fig. 15.10. An energy-level diagram to illustrate resonance-enhanced 
two-photon ionisation. A first light quantum h VI is tuned to a real ro­
vibronic excitation level of the molecule being studied; a second light 
quantum hV2 ionises the molecule. The ions, and thus the absorption 
process of the quantum hVI itself, can be detected by a mass spec­
trometer. The measurement can also be carried out in a Doppler-free 
manner. See also H.J. Neusser and E.W. Schlag, Angew. Chern. 104, 
269 (1992) 

There are thus numerous rotational lines hidden within the Doppler-broadened 
vibrational bands, which can be observed only when the Doppler broadening is elim­
inated. High-resolution spectroscopy makes it possible to determine the rotational 
constants and the centrifugal stretching constants for a molecule with a precision of 
10-6 cm-I in the ground state So as well as in the excited state SI. This in tum yields 
exact information on the molecular structure. 

Another related technique for the optical spectroscopy of larger molecules at 
high resolution is resonance-enhanced two-photon ionisation. It is used in particular 
for the investigation of the weakly bound Van der Waals molecular complexes which 
can form in supersonic beams. 

In this technique, the molecule or complex is first excited by a quantum h VI in 
the range of the S I *- So transition, as shown in Fig. 15.10. This initial excitation 
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Fig. 15.11. The experimentally determined struc­
ture of the Van der Waals complex C6H6-Ar2, as 
an example of the power of Doppler-free molecular 
spectroscopy. This (short-lived) complex is formed 
in a supersonic molecular beam. Its detection is per­
formed with the aid of a mass spectrometer. See also 
H.J. Neusser and E.W. Schlag, Angew. Chern. 104, 
269 (1992) 
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quantum is produced by a tunable dye laser with a very narrow bandwidth. A sec­
ond light quantum hV2, which is emitted by a second dye laser with a relatively 
broad frequency distribution, ionises the excited molecule; thus the name resonance 
enhanced two-photon ionisation. The resulting ions are mass-selected and detected 
in a mass spectrometer. An example is shown in Fig. 15.11, which illustrates the 
structure of the Van der Waals complex formed by benzene and argon, C6H6 - Ar2, 
as found from an analysis of the vibrational and rotational structure of this complex; 
it can be studied only in a supersonic molecular beam. 

15.7 Ultrashort Pulse Spectroscopy 

The investigation of the velocities of molecular processes or reactions has progressed 
enormously in the past decades. The first studies of chemical rearrangements and 
reactions with optical spectroscopy were performed more than 40 years ago using 
flash lamps in the microsecond range; Nobel prizes were given to Norrish and Porter 
and to Eigen for this work. 

In more recent times, it has become possible to produce light pulses of lengths in 
the range from pico- to femtoseconds using lasers. The current limit for short pulse 
times is about 5 ps, corresponding to a wave train only a few wavelengths long. 

Pico- and femtosecond light pulses are necessary if one wishes to study ultra­
rapid dynamic processes of and on molecules, such as intra- and intermolecular 
energy transfer, relaxation between the rotational and vibrational levels of molecules 
following perturbation by light excitation or by disturbance of thermal equilibrium, 
or the rates of chemical reactions. 

The most important experimental technique for these studies is the pump-probe 
method. A first light pulse raises the molecule into a short-lived excited state, and 
a second pulse probes the excitation, for example by measuring the short-lived 
absorption of the excited state. By varying the time interval between the first and 
the second light pulse, one can determine the lifetime of the excited state from 
the change in the probe signal as a function of this time interval. Available laser 
technology permits pulse lengths and pulse intervals of a few fs, so that dynamic 
processes can be investigated down to about 10 fs. 

An impressive example is the photodissociation of the Nal molecule; cf. 
Fig. 15.12. Using an excitation pulse of 310 nm wavelength, the N aI molecule 
is excited into a state [NaI]*; in this state, it can dissociate into Na + I, but it can also 
remain in the [NaI]* state with a certain probability and dissociate only after one or 
more periods of oscillation. This temporal behaviour is observed with the second, or 
probe, pulse. If this pulse detects the absorption of the free Na atom at 589 nm - see 
the upper curve in Fig. 15.12 - then it can be used to follow the time development of 
the dissociation. The degree of dissociation increases with the period of oscillation 
of the [NaI]* complex, 1.25 ps == 27 cm- l ; the transition from the bound state to the 
dissociated state can take place with this period. The dissociation is complete after 
about 10 oscillation periods. 



o 2 4 

Delay time (ps) 

6 

15.8 Photoelectron Spectroscopy 343 

Fig. 15.12. A femtosecond-spectro­
scopic investigation of the dissociation 
reaction NaI -+ [NaI]* -+ Na + I. The 
absorption is plotted as a function of the 
delay time between the excitation light 
pulse and the probe pulse. The absorp­
tion is determined here as the intensity 
of the laser-induced fluorescence, i. e. as 
an excitation spectrum. Upper curve: the 
absorption of the free Na atom at its res­
onance frequency, 589 nm (Na D lines). 
Lower curve: the absorption of the com­
plex, i. e. the Na absorption away from 
the resonance. Further details are given 
in the text. From A.H. Zewail, Science 
242, 1645 (1988) 

If one sets the probe pulse outside the Na resonance absorption wavelength, on 
the other hand, the absorption of Na which is still bound in the complex [NaI]* 
can be measured. The absorption frequency in this case depends on the momentary 
internuclear distance between Na and I, so that absorption is observed each time that 
the oscillation of the complex gives rise to the internuclear distance corresponding 
to the probe pulse light frequency. The result of such a measurement is shown as 
the lower curve in Fig. 15.12. The oscillatory decrease in this absorption with the 
vibrational period of the complex can be readily seen. The dissociation probability 
in each period is about 0.1. 

Ultrashort pulse spectroscopy in the time range of pico- to femtoseconds thus 
allows the time development of chemical reactions to be observed. The term 'chem­
istry' has been suggested as a name for this field of research. 

15.8 Photoelectron Spectroscopy 

With the spectroscopic methods in the infrared, visible, and near ultraviolet spectral 
regions which we have thus far discussed, one can investigate more or less exclusively 
the outer, weakly bound electrons of a molecule. The methods of photoelectron 
spectroscopy have made great strides in recent years for the study of the inner 
electronic shells of molecules. In these methods, the photoelectric effect is employed, 
i. e. the fact that irradiation with light of a sufficiently high quantum energy can 
release electrons from their bound states; see I, Sect. 5.3. The sample is irradiated 
with monochromatic UV- or X-radiation, and the kinetic energy kin of the electrons 
released is measured in an electron velocity analyzer. In the simplest case, the energy 
is given by the basic equation of the photoeffect: 

(15.9) 
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Fig. 15.13. The basis of photoelectron spectroscopy is the pho­
toelectric effect. An incident photon with the energy h v ionises 
an atom or molecule (ionisation energy I). The excess energy 
appears as the kinetic energy of the photoelectrons which are re­
leased in the process 

where hv is the quantum energy of the excitation light and EB is the binding energy 
of the electrons; cf. Fig. 15.13. 

For the excitation, one requires intense, monochromatic radiation. Since even 
for the outer valence electrons, the ionisation energies amount to several eV, the 
radiation must be in the ultraviolet or X-ray range. For this purpose, either the line 
spectrum of a gas discharge is used (e. g. the He (I) line from the Is2p -+ Is2 
transition at 58.43 nm or 21.22 eV), or, if more strongly bound electrons are to 
be studied, characteristic X-ray lines can be employed. Synchrotron radiation is 
especially suitable as a radiation source for this technique (see I, Sect. 5.1), since it 
is tunable (or selectable) over a wide frequency range. 

The energy of the electrons is determined by deflecting them in an electric 
or magnetic analyzer, in a similar way as in an elmo determination or in a mass 
spectrometer (I, Sects. 3.2 and 6.4). These energy analyzers can presently attain an 
energy resolution of better than 2 meV, i. e. 10 cm- I . Figure 15.14 gives a schematic 
representation of an experimental set-up. 

Excitation Sample Electron spectrometer Data analysis 

I X-rays 

I UV-lights 

Fig. 15.14. Schematic drawing of an experimental set-up for the electron spectroscopy of 
atoms, molecules, or solids. The excitation is performed with radiation of various types, 
which must be as monochromatic as possible. The electrons released from the sample are 
focussed and analyzed with respect to their kinetic energies in an electron spectrometer, then 
amplified and detected. [After K. Siegbahn, Phys. HI. 42, 1 (1986)] 
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The term UPS (Ultraviolet Photoelectron Spectroscopy) is used when the exci­
tation is produced by UV radiation, and XPS (X-ray Photoelectron Spectroscopy) 
when it is performed with X-radiation. In the process of releasing electrons with 
X-rays, one in the first approximation measures the atomic binding energies of the 
inner-shell electrons even in molecules, since they are influenced only weakly by 
chemical bonding and are determined for a given atom mainly by its ionisation state. 
The characteristic atomic electron binding energies can thus be used for the analysis 
of the atomic composition of a sample - hence the name "ESCA", which stands for 
'Electron Spectroscopy for Chemical Analysis'. There are, however, some effects 
due to chemical bonding, especially on the outer electrons. 

Figure 15.15 shows as an example the photoelectron spectrum of the N 2 molecule, 
and, for comparison, the molecular orbital diagram of the nitrogen molecule, which 
we have discussed earlier (Sect. 13.3). In the spectrum, photoelectrons from the 
reaction N2 + hv -+ Nt + e- + Ekin from all the orbitals for the 14 electrons of 
the molecule can be analyzed, to be sure with different degrees of energy resolution. 
This makes the inner-shell orbitals, and not just the valence electrons, accessible 

N atom N2 molecule Intensity _ 
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Fig. 15.15. The photoelectron spectrum of the N2 molecule. The binding energies of the 
photoelectrons are computed from their measured kinetic energies and plotted in eV on the 
vertical scale. Comparison with the calculated molecular orbital scheme (cf. also Fig. 13.4) 
shows that the term energies of the inner-shell electrons of a molecule can be determined by 
photoelectron spectroscopy 
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Fig. 15.16. The photoelectron spectrum (right) and the term diagram for the 02 molecule. The 
0t ion can be formed not only in its vibrational ground state, but also in excited vibrational 
states in the photoemission process. Then one can observe the vibrational structure of the 0t 
molecule, here in cm-1, relative to the vibrationless transition at 0.95· 105 cm-1 

to study. Figure 15.16 demonstrates with the example of the O2 molecule that 
the ion resulting from photoionisation can also be excited into a vibrational level, 
following the Franck-Condon principle. Photoelectron spectroscopy thus also allows 
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Fig. 15.17. The photoelectron spectrum of the valence electrons of benzene, C6H6, after 
excitation with the He I line at hv = 21.22 eV from a helium gas-discharge lamp. A unique 
identification of the measured binding energies in terms of the molecular orbitals is possible, 
but will not be explained in detail here. Vibronic structure can also be seen. [More information 
can be found in L. Karlsson, L. Mattson, R. Jadmy, T. Bergmark, and K. Siegbahn, Phys. Scr. 
14,230 (1976)] 
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Fig. 15.18. The photoelectron spectrum of ethyl 
propionate in the gas phase. The spectrum shows 
the Is core electrons of carbon (binding energy 
around 293 eV) and of oxygen (binding energy 
around 538 eV). The splitting of the two elemental 
lines corresponds to the different chemical shifts 
of the atoms, depending on their bonding in the 
molecule. Oxygen is present in the C=O group 
and in the chain; carbon as C=O, CH2, and CH3 

the measurement of the vibrational quanta of the ionisation products. The vibrational 
structure in transitions from antibonding u orbitals is also resolved in Fig. 15.15. 
From the structure of the photoelectron spectrum, one can also determine whether 
bonding or antibonding orbitals were excited: the vibrational structure has a different 
intensity in the two cases. Finally, Fig. 15.17 gives another example, this time of 
the photoelectron spectrum of a larger molecule, benzene, with photoelectrons from 
numerous orbitals. 

An important additional application of photoelectron spectroscopy is the study 
of the influence of chemical bond formation on the binding energies of inner-shell 
electrons in complex molecules. This can be explained using the example of ethyl 
propionate, 

0 H H 
F, II I I 

F-C -C-O-C-C-H 
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Fig. 15.19. The Is electron lines of carbon in ethyl trifiuoroacetate, as examples of the chemical 
shift in photoelectron spectroscopy. One can distinguish four lines of equal intensities, which 
originate from the four carbon atoms with different chemical environments in the molecule. 
After K. Siegbahn, J. Pure Appl. Chem. 48, 77 (1976) 
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In this molecule, 0 occurs in two different bonding states, and carbon in four, of 
which two are very similar. In the photoelectron spectrum of the Is-electrons, one 
can indeed distinguish 2 groups of electrons from the 0 atoms and 3 groups from the 
C atoms in the spectrum, and these can be attributed to the various structural groups in 
the molecule; cf. Fig. 15.18. The concept of chemical shifts is used in photoelectron 
spectroscopy as well as in nuclear magnetic resonance spectroscopy (Chap. 18) and 
in Mossbauer spectroscopy, where it plays an important role. A further example is 
shown in Fig. 15.19. 

Photoelectron spectroscopy thus provides an important complement to the optical 
spectroscopies for the investigation of the structure and the bonding of molecules. 

15.9 High-Resolution Photoelectron Spectroscopy 

For the application of photoelectron spectroscopy to the spectroscopic analysis 
of molecules, its low spectral resolution proves to be a hindrance. In conventional 
photoelectron spectroscopy, the best attainable resolution is about 1 meVor 10 cm- l . 

When the photoelectrons are produced by light from a narrow-band dye laser acting 
on molecules in a supersonic molecular beam, the energy resolution is limited by 
the precision with which the kinetic energy of the photoelectrons can be measured. 
Using conventional photoelectron spectroscopy, it is naturally not possible to resolve 
the rotational structure in the spectrum of larger molecules. How can this situation 
be improved? 

A spectral resolution which is two orders of magnitude better (about 2511eV, 
i. e. 0.2 cm- l ) can be attained with a new technique, that of Zero Kinetic Energy 
PhotoElectron Spectroscopy (ZEKE-PES). It thus permits the investigation of low­
energy vibrations in cluster ions, such as that of phenol-water, or the rotationally 
resolved spectroscopy of large molecular ions, such as the benzene cation. 

In the ZEKE method, light of a fixed wavelength is not used, as in conventional 
photoelectron spectroscopy, nor is the kinetic energy of the emitted photoelectrons 
analyzed to obtain information about the molecular states; instead, the light wave­
length is varied and only those electrons are detected that are emitted with no kinetic 
energy (or a very small kinetic energy) from the sample. These extremely low-energy 
electrons (ZEKE or threshold electrons) are released when the energy of the pho­
ton just corresponds to the energy difference between an initial state of the neutral 
molecule and a final state of the ion, i. e. no excess kinetic energy is transferred to 
the emitted electron. 

The unwanted electrons with kinetic energy are distinguished from the "genuine" 
ZEKE electrons by means of an electric field pulse which extracts the emitted elec­
trons after a time delay. During the field-free delay time, the kinetic electrons leave 
the region of the sample and can thus be discriminated from the ZEKE electrons, 
since the two groups arrive at the detector at different times. A second version, the 
field ionisation of highly excited Rydberg states, which converge to (ro)vibronic 
levels of the molecular ion (Pulsed Field Ionisation, PFI), is on the whole simpler 
to carry out and yields an even higher resolution. However, while the ZEKE method 
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Fig. 15.20. A fully rotationally-resolved ZEKE spectrum of the benzene cation via the rovi­
bronic state S161 (1' = 2, K' = 2, + 1) as resonant intermediate state. For the case shown here, 
that of a symmetric top, the quantum numbers J and N denote the total angular momentum 
(N without electron spin) and K its projection on the symmetry axis. The spectrum shown, and 
similar spectra recorded via other intermediate states, clearly demonstrate that the benzene 
cation has D6h symmetry. [For more details, see R. Lindner, H. Sekiya, B. Beyl, and K. Miiller­
Dethlefs, Angew. Chemie 105, 631 (1993); also K. Miiller-Dethlefs and E.W. Schlag, Ann. 
Rev. Phys. Chern. 42, 109 (1992)] 

can be generally applied to neutral molecules and anions, the PFI technique cannot 
be used for the latter, since no Rydberg states exist for them. An example of the ex­
cellent energy resolution of ZEKE photoelectron spectroscopy is given in Fig. 15.20, 
which shows a fully resolved spectrum of the benzene cation, C6H6. 

Problems 

15.1 a) Transmission measurements of a 0.005 molar benzene solution in a stan­
dard quartz cuvette with an optical path of 1 cm yield a transmission of 16% at 
256 nm. Compute the optical density and the extinction coefficient e of dissolved 
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benzene at the wavelength quoted. What transmission would the same solution give 
in a I mm cuvette? 

b) The absorption band of the benzene solution at 256 nm has a width of 
4000 cm -1. How large is the oscillator strength of the transition? What transition 
dipole moment do you calculate from this? 

15.2 The growth of plants on the sea floor decreases strongly with increasing 
depth. At what depth do the plants have access to 50% and to 10% of the light 
intensity which they would experience at the surface of the sea, taking the extinction 
coefficient of sea water in the visible range to be 6.2 . 1O-5 1/mol cm? 

15.3 The oscillator strength of an electronic transition can be calculated from the 
molecular orbitals of the two states which it connects. Consider an electron in a one­
dimensional potential well of length L and calculate the oscillator strength of the 
transitions n -+ n + 1 and n -+ n + 2. 

Using the potential-well model, estimate the excitation energy of tJ-carotene. 
Take a mean bond length of R = 140 pm for the polyene chain, and assume that the 
chromophore is limited to the conjugated TC bonds. Compare to Fig. 20.16; evaluate 
your result. 

15.4 a) In order to reduce the number oflines in the absorption spectrum of gaseous 
H2, the gas is cooled. At what temperatures do the rotational and vibrational degrees 
of freedom "freeze out"? 

b) What values would you obtain for HCI? 
c) Which methods would you use to cool the gases to the required temperatures? 

(Hint: the condensation point of H2 is Tc = 20.3 K, and that of HCI is Tc = 
188.2K). 

15.5 From the optical spectra of stars, one can obtain information about their 
suiface temperatures and escape velocities. Calculate these two quantities for an 
object in whose spectrum a shift of the spectral line of the ion 48Ti 8+ from 654.2 nm 
to 706.5 nm at a linewidth of 0.618 A is observed. 

15.6 a) In the absorption spectrum of an organic molecule, the So -+ S1 transition 
and the So -+ S2 transition can be distinguished. For which of the two absorption 
lines do you expect a greater line width, if you could separate out the rotational and 
vibrational substructures from the spectrum (idealised model)? 

b) Why are triplet absorption lines (e.g. So -+ T1) in general narrower than 
singlet absorption lines (e.g. So -+ S])? 

15.7 In the photoelectron spectrum of CO, excited through irradiation with the He 
resonance line at 58.4 nm, one observes the following maxima (the kinetic energy 
of the photoelectrons is quoted): 



7.2eV 
4.9 eV (with a vibrational series, spacing 0.2 eV) 
1.7 eV (with a vibrational series, spacing 0.3 eV) 
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Sketch the spectrum and attribute the lines to particular ionisation processes. From 
which orbitals do the electrons originate? What information can be gained from the 
vibrational structure of the bands? 

15.8 The photoelectron spectrum of water, excited by the 21.21 eV He resonance 
line, exhibits bands at 9.0 eV and at 7.0 eV; they are accompanied by vibrational lines 
with a spacing of 0.41 eV for the more energetic and 0.125 eV for the less energetic 
band. 

What is the effect of photoernission on the vibrations of the molecule? What 
is the bonding character of the orbitals from which the electrons are emitted? 
(Hint: the vibrational constants for non-ionised H20 are VI = 3657 cm-I for the 
symmetric stretch and V2 = 1595 cm- I for the bending vibration.) 



16 The Interaction of Molecules with Light: 
Quantum-Mechanical Treatment 

Following an outline of time-dependent perturbation theory, we treat in detail the 
spontaneous and stimulated emission and the absorption of light by molecules. In 
particular, we derive the transition probabilities and the Einstein coefficients. The 
Franck-Condon principle and a discussion of the selection rules for transitions will 
again play an important role in our considerations. 

16.1 An Overview 

In the preceding chapters, we gained a general knowledge of a number of the 
spectroscopic properties of molecules. In the present one, we now want to lay 
the foundation for a strict quantum-mechanical treatment of those processes. As 
in atoms, electrons in molecules can undergo transitions when they absorb light, 
and can also emit light in spontaneous or stimulated (induced) emission processes. 
Molecules, like atoms, can furthermore scatter light. At high radiation intensities, 
such as those obtainable with lasers, nonlinear optical processes also occur, e. g. the 
absorption of two or more photons by a molecule. In the case of molecules, however, 
some additional important properties are present, due to the additional degrees of 
freedom of the rotations and vibrations; these molecular motions can also give rise to 
the absorption or the spontaneous or stimulated emission of radiation. Furthermore, 
transitions are possible in which a change in the electronic state is accompanied 
by a change in the molecular vibrations or rotations; in such electronic transitions, 
quanta of the molecular vibrations or rotations can thus be created or annihilated. 
A new effect, when compared to atoms, is Raman scattering by molecules, where the 
energy of the incident light quantum is split into a quantum of molecular vibration 
and a re-emitted light quantum. The same process can be observed with rotational 
quanta. Along with these processes, in which a light quantum is first absorbed and 
then another is emitted, i. e. where two light quanta are involved, there are other 
processes involving two or more light quanta. An example of these is two-photon 
emission or absorption. 

The most important goal of the quantum-mechanical treatment which we will 
carry out in this chapter is the calculation of the transition probability per unit time, 
i. e. the mean number of transitions which a molecule undergoes in one second under 
the influence of light, or in emitting light quanta. As we shall see, this transition prob­
ability is determined in the main by the so-called optical transition matrix element. It 
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follows from the quantum-mechanical treatment that all processes conserve energy, 
whereby the total energy of the molecule plus light before and after the correspond­
ing absorption or emission is conserved. The selection rules can be derived from 
the optical matrix element, i. e. from the transition matrix element just mentioned. 
This matrix element contains the wavefunctions of the coupled motions of the elec­
trons and the molecular vibrations and rotations. An important technique consists of 
evaluating the matrix elements by separating the electronic and nuclear coordinates 
in a suitable fashion. This involves the Born-Oppenheimer approximation and the 
Franck-Condon principle (cf. Sect. 14.1). 

Our method of proceeding in this chapter will be the following: under the assump­
tion that the light intensity is not too great, we develop time-dependent perturbation 
theory in first order to describe absorption as well as spontaneous and stimulated 
emission. We then write the Hamiltonian operator which describes the interaction 
between the radiation field on the one hand and the degrees of freedom of the mole­
cule with its electronic and nuclear motions on the other. Thereafter, we will apply 
the initially quite general results of perturbation theory to this particular interac­
tion of radiation with molecules; we discuss the various types of absorption and 
emission, derive the Einstein coefficients for these processes, and then tum to the 
Franck-Condon principle. Finally, we describe the methods which can be used to 
arrive at the selection rules. 

16.2 Time-Dependent Perturbation Theory 

In I, Sect. 15.2, we treated time-independent perturbation theory in detail. For the 
treatment of the interaction of radiation with matter, however, we must make use 
of time-dependent perturbation theory, recalling in the process a number of ideas 
which we have already used for the time-independent theory. 

The basic Schr6dinger equation which underlies the problem can be written in 
the form 

(16.1) 

where Ho is the unperturbed Hamiltonian, and H S represents the perturbation oper­
ator. The exact meaning of Ho and H S will be specified later; here, it will suffice to 
mention some very general properties of Ho and H S in preparation for our further 
discussion. We first consider the Schr6dinger equation containing the unperturbed 
operator Ho, i. e. 

(16.2) 

In (16.2), the Hamiltonian Ho is supposed to be independent of time, so that we can 
write its solution in the form 

1ft~(t) = exp (-~Evt) <Pv . (16.3) 
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The energy eigenvalues Ev and the unperturbed wavefunctions ¢v, which are inde­
pendent of time, are fixed by the time-independent SchrOdinger equation 

Ho¢v = Ev¢v, v = 1,2, .... (16.4) 

The indices v are, of course, the quantum numbers. In the following, we assume 
that the wavefunctions ¢v and the corresponding eigenvalues Ev are already known. 
We then represent the solution of (16.1) which we are seeking as a superposition of 
unperturbed wavefunctions in the form 

00 

Wet) = L cv (t)1/Ie ' (16.5) 
v=l 

where the coefficients cvU) depend explicitly on time and are still to be determined. 
Since the wavefunctions ¢v form a complete basis set, the approach taken in (16.5) 
is mathematically exact. We must now compute the coefficients cv(t); to this end, 
we substitute (16.5) into (16.1) and, taking (16.3) into account, obtain the result 

(16.6) 
v v v v 

Because of (16.4), the second term on the left-hand side and the first term on the 
right-hand side of (16.6) cancel each other. In order to arrive at equations for the 
coefficients c, we mUltiply Eq. (16.6) by 1/IZ* and integrate over the coordinates on 
which 1/1 depends, in complete analogy to the procedure used for time-independent 
perturbation theory. The coordinates are, in general, the electronic and the nuclear 
coordinates of the molecule. We thus find 

(16.7) 

where we have used the abbreviation 

(16.8) 

The integral f ... dV symbolises an integration over all the coordinates on which 
¢v depends. The solution of the system ofEq. (16.7) is completely equivalent to the 
solution ofthe original Eq. (16.1) and therefore in general just as difficult to obtain. 

We now consider a situation in which the system initially, at time t = 0, is in the 
unperturbed quantum state K, i. e. 1/1(0) = ¢K' We then have as initial condition for 
the coefficients 

(16.9) 

where 

DtJX = 1 for f.L = K, DJlK = 0 for /L =1= K . 
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We now assume that the perturbation is small. We can then expect that for times 
which are not too long, the coefficients C JL (t) differ only by small amounts from their 
initial values (16.9). In this approximation, we may assume that we can replace the 
coefficients cy(t) on the right-hand side of (16.7) by those given in (16.9). We then 
immediately arrive at a new system of equations: 

. 1 S 
cJL(t) = in HJLK . (16.10) 

Since H~y, according to (16.8), contains the time-dependent wavefunctions 1/1~* and 
1/1~, this matrix element is itself time dependent. We integrate both sides of (16.10) 
over time, employing the initial condition (16.9), and obtain the result: 

CJL(t) = ~ t H~K(T) dT + 8JLK . In 10 (16.11) 

In order to arrive at results which we can compare with experiment, it is expedient 
to specify the right -hand side of (16.11) more precisely. We insert the wavefunction 
(16.3) on the right-hand side of (16.8) and assume that H S is time independent; then 
we can write (16.8) in the form 

H~K = exp(iwJLKt)H~K(O) , 

where we have used the abbreviations 

and 

(16.12) 

(16.13) 

(16.14) 

Since we are interested in finding out which states are repopulated as a result of the 
perturbation, we consider the case t-t f= K, i. e. a final state t-t which is different from 
the initial state K. With this assumption, we can immediately compute the integral 
over time in (16.11) by making use of (16.12-14), finding 

-1. S 
cJL(t) = --[exp(IwJLKt) - l]HJLK (O) 

nWJLK 
for (16.15) 

An exact measure of how strongly the state t-t f= K is populated as a result of the 
perturbation is given by the square of the probability amplitude C JL (t), i. e. 

(16.16) 

Inserting (16.15) into (16.16) and performing a minor rearrangement of the expo­
nential function to give a sine function yields the result 

(16.17) 
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Instead of computing the occupation probability (16.16), it is often more expedient 
to determine the transition probability per unit time, i. e. the number of transitions 
per second. The transition probability per second is given by the time derivative of 
(16.16) or (16.17): 

d Ic!-'(t)12 
W!-'K = dt 

or, more explicitly, 

(16.18) 

(16.19) 

If we apply this formula to the absorption of radiation by molecules, we find 
a peculiar difficulty: as we know, a certain number of molecules is transferred 
per unit time from the initial state K to the final state fL, and the transition rate 
given by (16.18) is experimentally independent of time. However, if one plots the 
calculated transition probability (16.19) against time, it is seen to be a periodically 
oscillating function of t, which is therefore by no means independent of time. Here, 
it would seem that we have a contradiction between theory and experiment; it can 
be eliminated, however, if we think about the precise experimental conditions. One 
indeed finds such a periodic back-and-forth in the transition probability if the incident 
radiation is extremely monochromatic, i. e. coherent. This condition is often fulfilled 
in nuclear magnetic resonance, as well as in some experiments with laser radiation. 
In our present considerations, we have assumed that the radiation was emitted by 
conventional sources (thermal sources), which have a finite frequency bandwidth. 
The molecular states are also often broadened, e. g. due to the finite lifetime of 
excited energy levels. The assumption that the transition frequency W!-'K is infinitely 
sharp is thus not justified; instead, we must assume that the initial state or the final 
state, or both, have a continuous spectrum of levels. 

Let us first consider the case that the final states have a continuous spectrum. We 
shall proceed in two steps: in the first, we imagine the continuous energy spectrum to 
be approximated by a series of closely-spaced discrete energy levels. This is referred 
to as a quasi-continuum. In the second step, we make the transition to the limiting 
case of a true continuum. That is, we first take the sum over W!-'K of the transition 
probabilities with final states in a quasi-continuum, i. e. we replace (16.19) by 

w= LW!-'K. 

!-,EQ 

(16.20) 

The sum thus extends over all the quantum numbers fL of states which are located 
within the interval {2 of the quasi-continuum. It is often useful to replace the quantum 
number fL, which in general stands for a whole set of individual quantum numbers, 
by the energy E and a further set of quantum numbers q: 

fL -+ E, q . (16.21) 



358 16 The Interaction of Molecules with Light: Quantum-Mechanical Treatment 

We now consider the number of states It E Q. In particular, these states are supposed 
to belong to an energy continuum 

E ... E+dE. (16.22) 

The number Z of states in this interval (16.22) can be expressed in the form 

Z = Q(E)dE. (16.23) 

We take into account the fact that the density of states Q (E) can also depend on the 
other quantum numbers q: 

Q (E) = Qq(E) . (16.24) 

With these considerations, we obtain instead of (16.20) the expression 

(16.25) 

where we have used the abbreviation 

(16.26) 

Let us look a bit more carefully at the integrand in (16.25), abbreviating 
(E - EK)/n as x. If we plot the function sin(xt)1x against x, then we obtain the 
curves shown in Fig. 16.1. They tell us that in the limit t -+ 00, the function sin(xt)1x 
becomes practically infinitely sharply concentrated around the point x = 0; it thus 
acts like a 8-function, which can be proven mathematically to be in fact the case. 
Since, however, 

1+00 sin(xt) 
--dx=1T: 

-00 x 

sin(xt) 
x 

(16.27) 

Fig. 16.1. The function sin(xt)1x is plotted against x for 
two values of the parameter t (fully-drawn and dashed 

X curves). For increasing t-values, it becomes more and 
more concentrated around x = 0 
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and on the other hand 

£:00 8(x)dx = 1 , (16.27a) 

we have to multiply the 8-function by a factor of Jr in order to make it quantitatively 
equivalent to the function lim sin(xt)/x. Then, for sufficiently long times, we can 

1-+00 

replace the function sin(xt)/x by Jr 8(x). Using this replacement, we obtain as the 
final result, instead of (16.25), the following expression: 

W = L f Qq(E) 2: 8(E - EK ) IH;K(0)1 2dE . 
q 

(16.28) 

The 8-function in (16.28) ensures that the energy E of the final state will be equal 
to that of the initial state EK ; it thus guarantees the conservation of energy. After 
carrying out the integration over E, we find 

(16.29) 

where the density of states Qq(E) is to be evaluated at the energy E = EK • In the 
literature, the result (16.29) is often called Fermi's Golden Rule. Taking the example 
of the emission of light by molecules, we shall see in Sect. 16.3 how the density of 
states Qq(E) can be calculated explicitly. 

For many applications it is more practical not to replace the quantum numbers {t 

of the final states by E, q as in (16.21), but rather to let the sum over {t in (16.20) 
formally remain, remembering that the sum is finally to be expressed as an inte­
gral over continuously-variable quantum numbers. We then obtain the very simple 
formula 

(16.30) 

Similar considerations may be persued in the case that the initial states are contin­
uous. In this case, one does not sum over all the final states, but instead an average 
over the initial states is performed. We then find instead of (16.28) the following 
relation for the overall transition probability per second: 

1 
W = z L W/LK 

/LEQ 

(16.31) 

with 

Z = L LQq(E) dE , (16.32) 
q !1E 

where Z can be interpreted as the number of initial states. 
Expression (16.30) for the transition probability per unit time will prove to be 

fundamental to the further developments in this chapter; we shall see explicitly how 
it is to be employed. 
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16.3 Spontaneous and Stimulated Emission 
and the Absorption of Light by Molecules 

16.3.1 The Form of the Hamiltonian 

In this section, we are interested in putting some physical meaning into the expres­
sions (16.29) and (16.30) for the transition probability per unit time derived in the 
previous section. We first tum our attention to the evaluation of the matrix element 
H~K (0). In order to calculate it, we need the wavefunctions of the initial and final 
states and the explicit form of the perturbation operator. The starting point for our 
considerations is the SchrOdinger equation (16.1), which we first write in the general 
form 

iii tit = Htf/ , (16.33) 

where we must still specify the Hamiltonian and the wavefunctions more precisely. 
We consider a molecule with N electrons having the coordinates rl ... r N. If nec­
essary, we could also include the spin variables explicitly; however, we will not do 
this in the following. Furthermore, the wavefunction depends upon the M nuclear 
coordinates, which we denote by RI ... RM . The wavefunction must also contain 
the radiation field, which is described by the number of photons nk,e associated with 
light waves having a wavevector k and a polarisation direction e. In the following, 
we combine k and e into a single index A and write n),. instead of nk,e' Finally, tf/ also 
depends upon the time, so that in general, we must write 

(16.34) 

The Hamiltonian H in (16.33) is given by 

(16.35) 

In this expression, Hel-n is the Hamiltonian which contains the kinetic energies of 
the electrons and the nuclei as well as all of the Coulomb interactions which occur 
between these particles. The spin-orbit coupling may also be included here, but we 
shall however not do this explicitly. HL is the Hamiltonian of the radiation field, and 
H S is the perturbation which results from the interaction of the radiation field with 
the molecule, i. e. its electrons and nuclei. 

The unperturbed Hamiltonian Ho includes those parts of (16.35) which refer 
to the electrons and the nuclei and their mutual interactions, added to the energy 
operator for the radiation field, i. e. 

Ho = Hel-n + HL . (16.36) 

We have already described the Hamiltonian Hel-n in Chap. 11, and it should not 
be necessary to repeat it here. The Hamiltonian for the quantized radiation field 
was derived in I, Sect. 15.5; we remind the reader of the most important steps in 
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that derivation. We begin with the electromagnetic field, representing the classical 
electric field vector E (r, t) by an operator E (r) according to: 

E(r, t) =} E(r) . (16.37) 

In order to clarify its properties, we expand the position-dependent field strength as 
a series of partial waves with polarisation directions e).. and wavevectors k)..: 

E(r) = L e)..N)..[ib).. exp(ik).. . r) - ibi exp( -ik).. . r)] . 
).. 

The various symbols in (16.38) have the following meanings: 

(16.38) 

A is an index which distinguishes the individual plane waves having 
wavevector k)..and polarisation vector e)..; 

w).. is the circular frequency of the light wave A; 
N).. is a normalisation factor, with 

= (16.39) 

£0 is the dielectric constant and V the normalisation volume in which 
the waves propagate, assuming periodic boundary conditions; 
are creation and annihilation operators for light quanta 
with the index A. 

The vector potential enters in the form: 

A(r) = Le)..~N)..[b).. exp(ik).. ·r) +bi exp(-ik).. ·r)]. 
).. w).. 

(16.40) 

In a classical description, b).. and bi are time-dependent amplitudes, which, how­
ever, in the quantum-mechanical picture become operators, obeying the following 
commutation relations: 

b)..bt - btb).. = 8)..).., , 

b)..b).., - b)..,b).. = 0 , 

bibt - btbi = 0, 

(16.41) 

which we have already seen in (7.47-49), but with different indices. They are de­
fined in analogy to the commutation relations for the quantum-mechanical harmonic 
oscillator, which should be well known to us. In this formalism, the energy of the 
electromagnetic field can be represented as the sum of the energies of a series of 
uncoupled harmonic oscillators: 

(16.42) 



362 16 The Interaction of Molecules with Light: Quantum-Mechanical Treatment 

Equation (16.42) can be interpreted as a sum over the number operators bt b)., each 
one multiplied by the energy of a quantum of radiation, Ii ill).. 

We must now consider the form of the H S in more detail. If we are dealing with 
an electron which is moving within an atom, then the dipole approximation is often 
sufficient: 

H S = er . E(ro) , (16.43) 

where e is the elementary charge and r the coordinates of the electron, and E(ro) is 
the electric field vector of the radiation field at the position of the atom. In the case 
of larger molecules, however, this dipole approximation may no longer be valid; 
we therefore use the exact description here, based on the vector potential. As an 
example, we consider the Hamiltonian of a single electron moving in the potential 
field of the atom and of the vector potential A of the radiation field. From I, Chap. 14, 
this Hamiltonian is given by: 

1 2 
HeJ = - (p - eA) + V , 

2mo 
(16.44) 

where V and A are functions of the electronic coordinates. In the following, we 
assume (as can always be done for the electromagnetic field) that the divergence of 
A vanishes: 

divA = o. (16.45) 

Multiplying out the parentheses in (16.44), we obtain 

1 2 e e2 2 
HeJ = -p + V - -A . P + -A , 

2mo mo 2mo 
(16.46) 

where, owing to (16.45), we did not need to take account of the order of the operators 
A and p. The first two terms in (16.46) are the operators of the kinetic and the potential 
energy, and the third and fourth terms give the interaction of the radiation field with 
the electron. If the intensity of the light field is not too great, we can neglect the term 
quadratic in A, so that for the interaction operator between the radiation field and 
the electron, we obtain the expression: 

s e 
H = --A(r)· p. (16.47) 

mo 

In all these expressions, the momentum operator is naturally given by the usual 
prescription: 

Ii 
p= -;-v. 

1 
(16.48) 

Up to now, we have considered the interaction of only a single electron with the 
radiation field. In a molecule, the electromagnetic field interacts with not only the 
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whole set of electrons, but also with the nuclei. For this reason, we must replace the 
perturbation operator in (16.47) by a sum over the electronic indices and the nuclear 
indices. We then have for e. g. the electrons, the substitutions r ~ r j, p ~ P j. Our 
perturbation operator is thus expressed in terms of sums over the electronic indices j 
and the nuclear indices K: 

(16.49) 

In this equation, ZK is the nuclear charge of the nucleus with index K. We have 
now determined all of the components of the Hamiltonians for the molecule (i. e. the 
electronic and nuclear motions), for the radiation field, and for their interactions. 

16.3.2 Wavefunctions of the Initial and Final States 

Before we apply the perturbation theory developed in Sect. 16.1, we must agree on 
what kinds of initial and final states we are going to deal with. We will need their 
wavefunctions for the evaluation of the matrix elements and for the determination of 
the corresponding energies. As the initial state, we take one in which the molecule 
and the radiation field have not yet begun to interact. Since the unperturbed Hamil­
tonian Ho (16.36) is the sum of two terms, the overall initial-state wavefunction ¢K 
(using the notation of Sect. 16.1) may be written as the product of the initial state of 
the molecule, ¢Qa (r; R), with the initial state of the radiation field, CPa: 

(16.50) 

The index Qa includes all the quantum numbers which determine the initial state 
of the molecule, both for the electrons and for the nuclei. The vector r summarises 
all of the electronic coordinates, the vector R all of the nuclear coordinates in the 
molecule. The final state ¢I-' can be written in a manner analogous to (16.50): 

(16.51 ) 

16.3.3 The General Form of the Matrix Elements 

Our task is now to compute the matrix elements H~K(O) [cf. (16.14)]. We first take 

a closer look at the interaction operator H S (16.49), by inserting (16.40) into (16.49) 
and employing the definition of N)", (16.39). Owing to the separation of (16.49) into 
two sums, we find two contributions to H S , H S = H~ + H~, of which we give the 
first term explicitly, as an example: 

(16.52) 
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In this expression, we have used the abbreviation 

(16.53) 

Instead of 0). (-k).), we can also write 0: (k).). 
The operator 0). is a function of the coordinates r j and the momentum operators 

P j of all the electrons of the molecule, but not of the radiation field operators 
h:, h).. Equation (16.52) evidently consists of a sum over the following individual 
expressions: 

1 
h). .JV0).(k).) (16.54) 

and 

(16.55) 

The perturbation operator H; for the nuclei is constructed in a completely analogous 
manner. 

As we shall see further below, the expression (16.54) describes the annihilation 
of a photon, while (16.55) describes its creation. In what follows, we consider those 
parts of the perturbation operator which act on the electronic coordinates, i. e. (16.54) 
and (16.55). As we know, (16.28) guarantees that energy is conserved. If we thus 
irradiate the molecules with light of a correspondingly high frequency, at which 
electronic transitions can take place, or if we observe light of such a frequency 
in emission, then these parts of the perturbation operator are acting. Let us insert 
the wavefunctions (16.50) and (16.51) and the parts (16.54) and (16.55) of the 
perturbation operator into the matrix element (16.14)! Since both the wavefunctions 
and the perturbation operator consist of products of functions or of operators which 
refer either to the radiation field or to the molecular coordinates (i. e. the electronic 
or nuclear coordinates), the matrix element (16.14) can also be split into factors 
containing the individual parts (16.54) or (16.55). For the factor with (16.54), we 
then find 

f ¢: h). .Jv 0). (k).)¢K dV = MmoleculeMradiation . (16.56) 

In this equation, Mmolecule is defined by 

Mmolecule = f ¢Qe.Jv 0). (k).)¢Qa dVel dVn . (16.57) 

The integration which is indicated by dVel dVn is to be performed over all the co­
ordinates of the electrons and the nuclei of the molecule. We deal with the evaluation 
of this matrix element in Sect. 16.4. 
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We first discuss the second factor in (16.56), namely Mradiation. Here, we use the 
bra and ket notation, as we have done previously in the discussion of the harmonic 
oscillator (cf. I, Sect. 9.4 and Exercises). We then have: 

(16.58) 

in the case that we take the perturbation operator (16.54), and 

(16.59) 

in the case of the perturbation operator (16.55). 
In order to evaluate these matrix elements, we recall that the wavefunctions CPe 

and CPa are eigenfunctions of the unperturbed Hamiltonian, i. e. of (16.42). In the 
simplest case, the vacuum state is present, with no photon in the radiation field and 
CPa = CPo. In the matrix element (16.58), the annihilation operator b).. then acts on 
the vacuum state, which as we know yields zero, so that (16.58) vanishes. In the 
matrix element (16.59), in contrast, a photon in the state A (with the wavevector k).. 
and the polarisation vector e)..) is created. As we learned in the quantum-mechanical 
treatment of the harmonic oscillator, the matrix element (16.59) is non-vanishing 
only when the final state CPe contains just this one photon: 

(16.60) 

These results can be extended to generalised initial and final states; it will suffice 
for our purposes to consider a particular photon state A, which is occupied by n).. 

photons (where n).. is an integer). The wavefunctions CPa or CPe then have the general 
form 

(16.61) 

We can then make use of the following scheme: Absorption: the number 

(16.62) 

is decreased by one: 

(16.63) 

As is known from the quantum theory of the harmonic oscillator, the matrix element 
responsible for absorption (16.58) is given by 

Mradiation = ..;n;. . (16.64) 
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Emission: the number n!. in (16.60) increases by one: 

(16.65) 

The matrix element responsible for emission, (16.59), is then given by 

Mradiation = In!. + 1 . (16.66) 

Following these preliminary considerations, we can tum to the calculation of the 
matrix element (16.14), which contains the whole perturbation operator (16.49). In 
this process, we shall however continue to take only the electronic part of the matrix 
element, i. e. the first sum in (16.49), into account. The matrix element (16.14) is then 
to be computed with the whole perturbation operator for the electronic coordinates. 
We thus obtain a sum of the matrix elements having the index A (16.56), which 
we have just finished calculating. This will permit us to determine the transition 
probabilities for the emission and the absorption of radiation directly. 

16.3.4 Transition Probabilities and the Einstein Coefficients 

As the first case, let us investigate spontaneous emission. 
In this case, there are initially no radiation quanta present, i. e. cJ>a = cJ>o, and the 

molecule is in an excited electronic state. As we have already seen, the perturbation 
operator (16.55) creates a quantum of radiation ofthe type A. We now sum over the 
index A as in (16.52). Finally, we have to evaluate the matrix element, by inserting 
a particular final-state wavefunction cJ>e = h~o cJ>o with a particular index Ao. Since, 
however, 

(16.67) 

the only term in the sum over A which remains is the term with A = AO. If we also 
recall that h!. cJ>o = 0, then that part of the matrix element which is derived from the 
first sum in (16.52) is seen to vanish completely. 

Let us summarise all these results: the matrix element (16.14) of the perturbation 
operator (16.52) can now be written in the form 

s . 1 f * + H/LK(O) =.JV ¢Qe(r, R)O!.o¢Qa(r, R)dVe1dVn . (16.68) 

In order not to allow the expressions to become overly complex, we have left off the 
argument -k!.o here and in the following (compare Problem 16.1). On the left-hand 
side, the indices /L, K are abbreviations for the quantum numbers of the initial and 
the final state of the molecule and the radiation field. We thus have the following 
correspondence: 
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Initial state 

Final state 

Molecule 

f.L = Qa , 

K = Qe, 

Radiation 

Vacuum, 0 

Photon AO 

Energy 

E" = EQ.,Mol . 

EK = EQe,Mol + liwJ...o . (16.69) 

E Q.,Mol and E Qe,Mol are the energies of the molecule in the corresponding quantum 
states. Because of (16.69), we denote the matrix element (16.68) more explicitly as 

s 1 f * + HQ J...O'Q 0 = ITT <PQ (r, R)O, <pQ.(r, R) dVeldVn . e, , a, y V e "-0 
(16.70) 

We now tum to the computation of the transition probability per unit time, W, as 
in (16.30). Since the quantum numbers Qa, Qe of the molecule are fixed, we need 
only to sum over the final states of the radiation field and to replace the index AO 
in (16.70) by A. If we now set i':..E = EQa,Mol - EQe,Mol, then we obtain 

2Jr Lis 12 w=- HQ J....Q 0 8(liwJ...-i':..E). Ii e, 0, a, 
J... 

(16.71) 

We must now evaluate the sum over A by making use of the 8-function which it 
contains (while keeping the polarisation direction e of the emitted radiation quanta 
fixed). In fact, the wavevectors kJ... of the radiation quanta belong to a continuum: 
the vectors kJ... vary continuously in magnitude and direction. As we have seen in 
Sect. 16.1, energy is to be conserved. If the initial and final states of the molecule 
have discrete energy values, then the energy of the radiation quanta is likewise fixed 
at a particular discrete value Ii w. Since, however, w = ck, the magnitude of k is also 
fixed. On the other hand, the direction of k remains continuously variable. 

As we show explicitly in Appendix A.2, we can proceed with the calculation of 
the transition probability per second, W, as follows: we begin with light waves of the 
form UJ... ex exp(ik . r), which are normalised to I within a finite volume V through 
the prefactor Jv, i. e. 

(16.72) 

The volume V may be supposed to have the shape of a cube of edge length L. The 
waves are subjected to periodic boundary conditions, i. e. for example 

(16.73) 

This condition and the corresponding ones for the y- and z-directions require that 

2Jrnx 

kX=T' 
2Jrny 

k y =-­
L 

(16.74) 

where nx, ny and nz are integers (and not to be confused with the radiation quantum 
numbers nJ...). We now consider the sum over the final states of the radiation quanta, 
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Fig. 16.2. The meaning of the solid angle element dS? 

which are denoted by the discrete numbers nx , ny, and nz and their k vectors within 
an element of solid angle dQ (cf. Fig. 16.2). We then take the limit V -+ 00 (i. e. 
L -+ (0), letting the k vectors become continuous and the sum Ln n n EdQ become x, y. z 
an integral. From Appendix A.2, we then have the relation 

L'" -+ -; f ... k2 dkdQ. 
A (2JT) 

(16.75) 

This limit is a special case of the limit represented by (16.25-30). In fact, for the 
case of radiation quanta, we can express the wavenumber k in terms of the energy E 
using the relation 

E = fi w = fi ck , 

that is, 

E 
k=­fie' 

so that the right-hand side of (16.75) becomes 

VI! 2 
(2JT)3 (fie)3 ... E dEdQ . (16.76) 

Within the integral in (16.30) or (16.76), however, there is a 8-function, which 
selects just that radiation quantum energy fi w which is required by the law of 
conservation of energy: 

EQa = EQe + fiw . (16.77) 

Using these results, we obtain 

W = 2JT ~ (fiUJ)2 [HS [2dQ. 
fi (2JT)3 (fie)3 Qe,AO; Qa,O (16.78) 
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In order to arrive at the final result, we insert (16.68), (16.70) into (16.78) with 
(16.53). This yields 

2 

dQ. 

(16.79) 

W gives the number of photons spontaneously emitted per unit time into the solid 
angle element dQ and having the polarisation vector e. This is, however, precisely 
the quantity which Einstein introduced phenomenologically for the spontaneous 
emission rate in his derivation of Planck's radiation formula. 

The Einstein coefficient aL for spontaneous emission (with a polarisation vec­
tor e) is found by comparison of 

(16.80) 

with (16.78),(16.79). 
In Sect. 16.3.6, we give the Einstein coefficients in the so-called dipole ap­

proximation, as well as carrying out the spatial average over all the polarisation 
directions. 

Here, we consider the optical lifetime of an excited state having the quantum 
numbers Qa. The transition probability W per unit time for the transition of a mole­
cule with the quantum numbers Qa to the final state Qe with emission of a photon 
of polarisation vector e into the solid angle element dQ is given in (16.78), (16.79). 
We denote it more precisely as W(a -+ e, e, dQ). The optical lifetime r of the 
(excited) initial state a can then be found immediately by taking the sum of the tran­
sition probabilities into all of the energetically lower-lying states of the molecule, as 
follows: 

1 - = L:W(a-+ e,e,dQ). 
r 

The sum extends over all the final states of the molecule, as mentioned, over the total 
solid angle, and over the 2 possible polarisation states of the photons. The optical 
lifetime is related to the finite linewidth ofthe excited state (compare I, Sect. 16.2). 

We now tum to stimulated or induced emission. 
We assume initially that a particular number n of radiation quanta, which belong 

to a particular light wave having the index AO (i. e. the wavevector kAo and the 
polarisation vector e), are present in the radiation field. The normalised initial state 
wavefunction of the radiation field, CPa, is then given by 

1 + n 
CPa = Ci (bA ) CPo . 

vn! 0 
(16.81) 

Let us allow the perturbation operator (16.52) to act on (16.81) in the matrix 
element H~K (0), (16.14), and take into account only those interactions which increase 
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the number of photons; we then recognise that there are two types of final states: 
depending upon whether the index A in the sum in (16.52) is equal to AD or not, we 
obtain 

(16.82) 

or 

(16.83) 

In case (a), a light quantum of the same type as that in the initial state is added 
to the radiation field. In case ({3), a light quantum of a different sort is emitted 
spontaneously. In order to calculate the overall transition probability into all the final 
states, we must set up the matrix element H~K for the cases (16.82) and (16.83) 
using the wavefunctions ¢Qa and ¢Qe of the molecule, take its absolute square, and 
sum over all the final states as in (16.30). In the process, we must keep track of the 
meaning of the energy difference E{' - EK which occurs in the o-function. 

In case (a), EK , the energy of the initial state, is given by the sum of the energy 
of the molecule, Ea,Mol, and the energy of all n light quanta in the initial state, i. e. 
n nw).o: 

(16.84) 

The energy E {' of the final state is given by the corresponding expression: 

(16.85) 

We thus obtain 

(16.86) 

The o-function ensures the conservation of energy: 

nw).o = E a•Mol - Ee.Mol == 11E , (16.87) 

where the right-hand side is positive, since the molecule makes a transition from an 
excited state into an energetically lower-lying state. (Conversely, one could say that 
this is a precondition for the emission of a quantum of radiation.) 

In case ({3), we find 

(16.88) 

(16.89) 

and therefore 

(16.90) 



16.3 Emission and Absorption of Light by Molecules 371 

Corresponding to the cases (a) and ({3), the transition probability per unit time W, 
(16.30), consists of two parts: 

(16.91) 

The factor (n + 1) in the first sum is due to (16.66), since the matrix element occurs as 
its square. We can decompose this factor into nand 1 and add the expression which 
multiplies the 1 to the sum in the second line of (16.91); this, however, yields just 
the sum (16.71), which we have already found for the case of spontaneous emission. 
The remaining expression in (16.91), 

(16.92) 

is the induced or stimulated emission rate. 
In (16.92), no sum over the radiation quantum index A occurs. On the other 

hand, it is necessary to integrate over a continuum in order to evaluate the function. 
The formalism thus forces us to start with a more realistic initial state, consisting of 
a wavepacket. We assume it to be made up of plane waves within a range L1kx , L1ky 
and L1kz of wavenumbers and with a corresponding frequency width, L1w = cL1k. If 
M modes are present, the normalised wavefunction is given by 

(16.93) 

In order to be quite explicit, we have used the index k in (16.93) instead of A. The 
sum over k in (16.93) becomes a sum over Ao in (16.92): 

(16.94) 

Setting 

i = x, y, z , (16.95) 

where L is the edge length of the normalisation cube, we find 

(16.96) 

where, in a second step, we have introduced spherical polar coordinates with an 
element of solid angle dQ. Using (16.95), (16.96), and L1E = liw, we obtain the 
following expression for the transition probability of stimulated emission of photons 
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into a solid angle dQ: 

277: 1 S 12 Win=n-- H. . n2 L1w Qe,AO. Qa,O 
(16.97) 

With (16.53) and (16.68), (16.97) can also be written in the form 

(16.97a) 

where the matrix element ( ... )Qe,Qa is to be evaluated with the wavefunctions ¢Qe 

and ¢Qa (cf. 16.97). 
We can write Win in the form 

(16.98) 

in which 

(16.99) 

is the Einstein coefficient for the stimulated emission of photons with the polarisaton 
vector e into dQ. The quantity 

nnw 
Qe(w, dQ) = L1wVdQ (16.100) 

is the total energy of the n photons divided by the frequency bandwidth, the solid 
angle, and the volume, or in other words, Qe is the energy density per unit frequency 
interval, unit solid angle, and unit volume. A comparison of equations (16.78-80) 
with (16.99) yields the important Einstein relation for the ratio of spontaneous and 
stimulated emission probabilities as a function ofthe frequency [cf. also (5.22) in I; 
note that we used capital letters to denote the Einstein coefficients in I, but we use 
small letters in the present book]: 

(16.101) 

An additional comparison between spontaneous and stimulated emission can be 
made as follows: the relation (16.92) can also be expressed in a different way. We 
determine the rate of spotaneous emission P per number of modes (not photons!) 
(cf. Appendix A.2) in the volume V, the solid angle dQ, and the frequency range 
L1w(w . .. w + L1w) which we have just been considering. Dividing (16.78) by this 
number, 

(16.102) 
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we find 

- W 1 
W=-=-Win , 

Nm n 
(16.103) 

so that the ratio of the stimulated emission to spontaneous emission rates is equal 
to n, i. e. the total number of photons in this frequency range. 

Absorption. The calculation of the transition probability Wabs for molecules which 
make transitions from their ground states to an excited state by absorption of a quan­
tum of radiation from a wavepacket whose wavevectors lie in a solid angle element 
dQ can be carried out analogously to that for stimulated emission. The essential 
difference lies in the fact that we are now dealing with a molecule initially in its 
ground state instead of in an excited state, and that a photon is removed from the 
wave with quantum index Ao. The explicit form of EJi- and EK is thus changed: 

(16.104) 

In addition, the factor (n + 1) in the first term of (16.91) is to be replaced by n, in 
accordance with (16.64) [instead of (16.66)], while the second term (sum) in (16.91) 
vanishes entirely. We again must average over the initial states of the radiation field. 
We then obtain for the transition probability of absorption per unit time 

(16.105) 

where bI,e = bte' so that the Einstein coefficient for absorption is equal to the 
coefficient for stimulated emission (cf. 5.18 in I). The absorption rate is proportional 
to the energy density Qe of the incident light as defined in (16.100). 

16.3.5 The Calculation of the Absorption Coefficient 

In order to compute the absorption coefficient ex, we introduce the energy flux density 
I(w) = Qe(w, dQ) cdQ (energy flux per second per unit area) into (16.105), so that 

bie 
Wabs = I(w)-' 

c 
(16.106) 

holds. The decrease of the number of photons n per second is equal to Wabs for 
a single molecule. If there are N molecules, then we find 

dn - = -WabsN . 
dt 

By introducing the definition 

nnwc 
I(w) =-­

.1w 

(16.107) 

(16.108) 



374 16 The Interaction of Molecules with Light: Quantum-Mechanical Treatment 

(with n = n/V: photon number density) and inserting it into (16.107), we obtain 

dI(w) 2 Nnw 
edt = -I(w)b1,e VLlw . (16.109) 

Writing dx = edt, we find the equation for the absorption as a function of sample 
thickness: 

dI(w) -- = -I(w)etC , 
dx 

(16.110) 

with C = (N/V) being the concentration of the molecules; then the absorption 
coefficient et is given by 

bi en W 
et= -'--

cLlw 
(16.111) 

We have thus succeeded in expressing the absorption coefficient introduced in 
Sect. 15.1 in terms of the Einstein coefficient bL. At the same time we can see that 
the Lambert-Beer law is simply the solution of the differential equation (16.110). 

Since the transition probabilities Wabs and Win playa completely symmetric role, 
we find quite generally for a system of noninteracting, partially inverted molecules 

dI N2 - N1 - = I etC 
edt N 

(16.112) 

where N2 is the number of molecules in their excited states (inverted), and N1 is the 
number in the ground state. Expression (16.112) is, incidentally, of fundamental im­
portance for the laser action of molecules. When N2 - N1 > 0, then an amplification 
of the intensity I takes place and light is produced instead of being absorbed. 

16.3.6 Transition Moments, Oscillator Strengths, and Spatial Averaging 

a) Transition Moments and the Dipole Approximation 

We will now explain the concept of the transition moment, which occurs in the 
expression for the optical transition probability per unit time. As we have seen, 
the transition probability per second is determined by the matrix element (16.70), 
wherein the operator 0)" is given by (16.53). Since all the essentials for the following 
discussion can be derived for a single electron, we consider only one term in the 
sum over j and thus leave off the index j. We assume that the light wavelength is 
much greater than the spatial extent of the molecule, so that the factor exp(ik)" . r) 
changes only slightly over this region. If we then choose the origin of our coordinate 
system to be at the centre of gravity of the molecule, we can replace the exponential 
function by 1. This is the so-called dipole approximation, which we now wish to 
examine in more detail. (If we instead expand the exponential function as a power 
series in (k)" . r), then we obtain the multipole series of matrix elements, in which 
both electric and magnetic multipoles can occur.) 
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We thus consider matrix elements having the form 

PILK = f O/;Po/KdV , (16.113) 

where the wavefunctions and the integration over dV may refer to more than one 
particle. Equation (16.113) is thus an integral which is to be computed over the initial 
and the final states, in which the momentum P occurs as the operator. Matrix elements 
of the momentum operator may be reformulated in terms of matrix elements of the 
position operator r or of the dipole-moment operator 

8=er, (16.114) 

as we shall now demonstrate. Here, e is the elementary charge and r is the coordinate 
vector of the particle. In order to make clear the relation between rand p, we recall 
the classical relation between the momentum and the velocity of a particle, given by 

P =rnOT (16.115) 

(rno is the mass of the particle). This well-known relation from classical mechanics 
can be interpreted quantum-mechanically as a relation between matrix elements in 
the following manner: 

f Jt, df * 
PILK == o/IL -;Vo/KdV = rno dt o/lLro/KdV . (16.116) 

(As we have already mentioned, the integrals may extend over the coordinates of 
several particles.) We now assume that the time dependence of the wavefunctions 
enters into the integrals explicitly, i. e. that 

(16.117) 

We can then carry out the differentiation with respect to time directly and thereby 
obtain 

(16.118) 

in which 

1 
WILK = li(EIL - EK) . 

The matrix element r ILK is of course defined by 

r ILK = f ¢;r¢KdV . (16.119) 

If we multiply r ILK by the elementary charge e, we obtain the dipole moment 8 
(16.114). Because of (16.116), we can replace matrix elements containing the oper­
ator P everywhere by matrix elements containing 8, using the relation 

(16.120) 
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The matrix element 19JLK = f ¢: er¢KdV is referred to as the transition moment or 
as the transition dipole moment. 

For computing the Einstein coefficients within the dipole approximation, we can 
therefore use the transition moment in place of the matrix elements of the momentum 
operator, remembering that in (16.120), WJLK = was a result of energy conservation. 

b) Oscillator Strengths 

Along with the Einstein coefficients, the quantity "oscillator strength" is also used 
to describe optical transitions. This concept had already been defined before the in­
troduction of quantum mechanics, for the description of the dispersion of light using 
oscillator models. The theory of dispersion can also be developed on a quantum­
mechanical basis, but we shall not do that here; the result is that the quantum­
mechanical expression for the atomic polarisability as a function of the radiation 
frequency has a form which is quite analogous to the classical formula, but the 
oscillator strengths fQa-+Qe are now given as matrix elements for the transition 
Qa --+ Qe, in the following manner: 

(16.121) 

From (16.121), we can derive (15.4) as follows: we begin with the integral 
absorption coefficient A (15.3), which is obtained from c(v) = Ca(w)/(ln 10) [cf. 
(15.3)] by integration over the entire absorption band: 

A = f s(w)dv. (16.121a) 

If we now express a in (15.3) in terms of the Einstein coefficient bL = b1, e as in 
(16.111) and carry out the integration over the interval.1v == .1w/2n, then we find 

A = Cnwbi.e/(2nc In 10) . (16.121b) 

Using (16.99), we write the Einstein coefficient in terms of the absolute square 
of the dipole matrix element, i.e. Il9Qe ,QaI 2• Applying the dipole approximation, 
using (16.120), and carrying out the averaging over the spatial orientations of the 
molecules [see (16.126) below], which gives a factor of ~ before leQe,Qa 12, we then 
obtain 

w 1 12 A = C 6cnso In 10 eQe,Qa . (16.121c) 

If we solve this equation for Il9Qe,QaI2 and insert the result in (16.121), then on 
cancelling common factors we find 

4moccoln 10 
f= A, 

Ce2 
(16.121d) 
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i. e. (15.4), as we expected. With the same approximations, we can express a direct 
relation between the oscillator strength f and the Einstein coefficient hi (after spatial 
averaging) as follows: 

c) Spatial Averaging over the Polarisation Directions 
in Spontaneous Emission 

(16.122) 

The Einstein coefficient given in (16.79) and (16.80) refers to the emission of photons 
with a given polarisation vector e. Frequently, one wishes to know the Einstein 
coefficient for the case of an average over all the possible polarisation directions of 
the emitted light. To obtain it, we apply the dipole approximation and consider the 
expression 

(16.123) 

where the bar refers to a spatial average. To carry out this averaging, we imagine a co­
ordinate system in which the z-axis is parallel to the direction of the vector rfLK. (The 
fact that the matrix element r fLK represents a complex vector is of no consequence; 
its components are then simply complex numbers.) The initially randomly-oriented 
polarisation vector e thus makes an angle fJ with r fLK, i. e. with the z-axis (Fig. 16.3). 
We can now carry out the spatial averaging using elementary geometrical consid­
erations, by averaging over the solid-angle element dQ, which can be expressed as 

dQ = sin fJdfJd<jJ . (16.124) 

The average (16.123) is then given explicitly by 

(16.125) 

The absolute square of r fLK does not depend on the angles and can be removed from 
the integrals. The integrals can then be computed in an elementary manner, and we 

rflK 

Fig. 16.3. The relative positions of e and r ILK 
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obtain the final result 

(16.126) 

In order to find the Einstein coefficient averaged over all polarisation directions, we 
thus simply need to multiply (16.79) and (16.80) by the factor ~. 

16.4 The Franck-Condon Principle 

Our treatment thus far applies to quite general motions of the electrons and the nuclei 
in a molecule. In order to proceed with the calculation of the corresponding matrix 
elements (16.68), we require some approximations, which however will make the 
physical content of the problem more clear. The goal of this section is to deepen 
our understanding within a quantum-mechanical framework of the Franck-Condon 
principle, which we introduced in Sect. 14.1. 

Our first task is to separate the electronic motions from the nuclear motions. To 
this end, we apply the Born-Oppenheimer approximation, which was discussed in 
Sect. 11.1. We thus write the wavefunctions which refer to the electrons and the 
nuclei in the form of products: 

(16.127) 

in which we make the fundamental assumption that the electrons can follow the 
nuclear motions immediately. The quantum numbers of the overall initial state, 
electrons and nuclei together, are denoted by Qa, those of the electrons alone by qa, 
and those of the nuclei by Ka. The electronic and nuclear coordinates are abbreviated 
as follows: 

r =rl,r2, ... ,rN" 
(16.128) 

R = Rl, R2, ... , RM . 

In a similar manner, we denote the quantum numbers in the final state by Qe, etc. 
Because of the separation (16.127), the matrix element (16.70) assumes the form 
(up to constant factors): 

ex: f I/I;e (r, R) (L eik"rje).. . Pi )I/Iqa (r, R) f X;e,Ke (R)xqa,Ka (R) dVnuc1 dVel , 
) 

(16.129) 

which we will use as a starting point. Within the integrals, there are two different 
types of wavefunctions, namely the electronic wavefunctions I/I(r, R), which contain 
the nuclear coordinates as parameters, and the wavefunctions X(R) of the nuclear 
motions. We now want to make it clear that the spatial variation of I/I(r, R) as 
a function of R is much more gradual than that of X(R). We recall the specific 
form of 1/1, which we saw in Chap. 4 in the treatment of Hi and of H2: there, the 
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electronic wavefunctions were found to depend upon the difference vectors r - Rj , 

where R j is the position coordinate of nucleus j. The atomic orbitals which occur in 
the LCAO method (cf. Chap. 4) vary over the spatial extent ro of the corresponding 
wavefunctions. This extent is, however, much greater than the vibrational amplitude 
of the nuclear wavefunctions X(R). 

The integral over dVnucl which occurs in (16.129) thus in fact contains the product 
of a function which varies gradually with position, i. e. the expression under the first 
integral in (16.129), with a strongly varying function, i. e. that within the second 
integral. This allows us to take the first integral at a fixed position R = Ro, at which 
the second integrand X* X has its maximum value. Then we can rewrite (16.129) as 

f If/;e (r, Ro)( L eik)J j eA' P j ) If/qa (r, Ro) dVel 
] 

. f X;e,Ka(R)Xqa,Ka(R)dVnucl. (16.129a) 

We can therefore replace the integration over electronic and nuclear coordinates by 
a product of integrals over the electronic coordinates alone and over the nuclear 
coordinates alone. The transition from (16.129) to (16.129a) may be justified in 
a strict mathematical sense by applying the mean value theorem of integral calculus. 

We now begin by investigating the integral which describes the nuclear motions: 

(16.130) 

Here, we must recall a result of the Born-Oppenheimer approximation concerning 
the nuclei. We saw that the force between the nuclei consists not only of their mutual 
Coulomb repulsion, but also has a contribution due to the electrons. The electronic 
energy W which determines this force (1l.9) depends on which of the electronic 
wavefunctions are occupied. This implies in particular that the nuclear coordinates 
before and after an optical transition must not necessarily have the same equilibrium 
positions, but instead may be shifted, depending on which electronic states are 
present. This shift in the equilibrium positions of the nuclei can be represented in an 
intuitively clear manner by using a so-called configuration coordinate [cf. Fig. 16.4, 
as well as (14.3) and (14.4)]. Even ifthe oscillatorwavefunctions of the nuclei before 
and after the transition are, for example, both in their ground states, the integral in 
(16.130) is still in general smaller than 1, since the equilibrium positions are shifted 

Fig. 16.4. The displacement of the equilibrium posi­
tions of the nuclei (and of their wavefunctions) before 
and after an optical transition of the electrons, illus­
trated by means of the configuration coordinate X 
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and the overlap of the wavefunctions is thus incomplete. Owing to this shift of the 
nuclear equilibrium positions, the wavefunctions in (16.130) are no longer mutually 
orthogonal, even when they have different quantum numbers Ke and Ka. Different 
quantum numbers, however, mean that the number of vibrational quanta in the initial 
and final states are not the same; this means that in the course of an optical transition, 
vibrational quanta can be created or annihilated. There is thus no strict selection rule 
for the change in the vibrational quantum number during an electronic transition, as 
we noted already in Chap. 14. 

Let us now have a look at the part of the matrix element (16. 1 29a) which refers 
to the electronic coordinates, i. e. 

f tJI;e(r, Ro)(L eik).'rje)... Pj)tJlqa(r, Ro)dVel. 

J 

(16.131) 

We assume that the wavelength of the light is much greater than the extent of the 
molecular orbitals, so that we can ignore the spatial variation of the exponential 
function exp(ik . r) and replace it by exp(ik . ro), with ro referring to an average 
coordinate within the molecule. (This, as we have already seen, is the dipole approx­
imation.) We can then extract this constant factor from the integral and finally leave 
it off entirely, since it cancels on taking the absolute square of the matrix element. 
The remaining part of the matrix element (16.131) is then given by 

f tJI;e(r, Ro)(~e)... Pj)tJlqa(r, Ro)dVel. (16.132) 

J 

This matrix element clearly does not depend on the vibrational quantum numbers, 
but only on the average nuclear coordinate Ro (compare Sect. 14.1). 

The matrix element (16.132) is still difficult to evaluate, because the wavefunc­
tions tJI* and tJI refer to all of the electrons in the molecule. In order to proceed, we 
make use of the Hartree-Fock approximation, according to which the initial-state 
wavefunction (as well as that of the final state) can be written in the form 

(16.133) 

For simplicity, we have written this Slater determinant in terms of the spatial wave­
functions, without the spin parts. As in Sect. 7.1.2, we could however readily take 
the spin dependence into account. In (16.133), we have split up the overall quantum 
numbers of the electrons, qa, into the individual quantum numbers q], q2, ... of 
the states occupied by single electrons. The quantum numbers of the final state are 
distinguished from those of the initial state by a prime: 

qa = (ql, q2, ... qN) , 

qe = (q~, q;, ... q~) . 
(16.134) 
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As we know (cf. also the Appendix), a determinant can be represented as the sum 
of the products of all the possible combinations of the indices, with a + or - sign 
depending on whether the permutation is even or odd. According to (16.133) and the 
corresponding expression for lJIqe , two determinants occur in (16.132) and must be 
multiplied, and then the integration over the electronic coordinates is to be carried 
out. This evaluation of the matrix element gives a very limited physical insight, 
and so we shall simply present its result and refer the reader who is interested in 
the details to the Appendix. We find the following: the set of quantum numbers qa 
(16.134) must agree with the set qe except for one pair, where ql 'I qf, with I an 
integer from the series 1 ... N (N is the total number of electrons in the molecule). 
In other words, in an optical transition only one electron changes its state and all 
the others remain in their respective initial states. Due to the indistinguishability of 
electrons, the identity of this one electron is arbitrary. The matrix element (16.132) 
is then reduced to the expression 

(16.132) = e).. . Pq;,q[ = e· f 'I/r;;(r)p'l/rq[(r)dV . (16.135) 

We can now apply group-theoretical considerations to (16.135), which will show 
whether the matrix element is in principle nonvanishing or if it is zero due to 
symmetry properties. If we drop the Hartree-Fock approximation, then it is possible 
that several electrons will be excited during an optical transition, and the excitation 
energy can then be spread in a complicated way over the excitation states of the 
various electrons. 

16.5 Selection Rules 

Whether or not an optical transition can occur depends on the optical matrix elements. 
Applying group theory, it is possible to determine which matrix elements vanish, 
i. e. which transitions are forbidden, or, conversely, which matrix elements can be 
non-zero (but do not have to be!). Group theory can, however, make no predictions 
about the magnitudes of the non-zero matrix elements. 

In order to become familiar with this method, we first consider the so-called 
direct product. In Chap. 6, we introduced the wavefunctions lJIj as a basis for the 
representation of a transformation group. We now consider, along with one such 
basis, which we denote as lJIi!), a second basis denoted as lJI?). We can also permit 

the set of the lJIY) to be identical with the lJIP). We then form a new set of basis 

functions from lJIP), lJI?) by taking the direct product, lJIi!) lJI?). If we then apply 
a symmetry operation to such a product, each of the factors is transformed into 
a linear combination of the basis functions belonging to its set, and the product itself 
becomes a linear combination of the products lJIP) lJI?). It may be shown in detail 

that the product lJIi!) lJI?) also provides a set of basis functions for the representation 
of the group. In particular, applying the matrix rules, we can show that the characters 
of the representation of a direct product are equal to the products of the characters 
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of the representations of the original functions. The direct product of two irreducible 
representations is, as stated, a new representation, which is itself either irreducible or 
reducible to irreducible representations. Tables 16.1 and 16.2 show some examples. 

Clv E 

A, 
Al 
B, -1 
Bl -1 

A,A, 
A,Al 
AlB, -1 
A1Bl -1 
B,Bl 

C3v E 2C3 30"v 
Table 16.2. Examples of irreducible 
representations of direct products of the 

A, group C3v 
Al -1 
E 2 -1 0 

A2A2 1 = Al 
A2E 2 -1 0 =E 
EE 4 0 = A, +A2+E 

In the same manner, products of three or more functions, i. e. 

1/1(1) 1/1(1) I/Ik(3) 
I } 

(16.136) 

may be used as basis functions. These functions need not be just wavefunctions, 
but could also be the variables x, y, z which occur, for example, in dipole matrix 
elements (16.119). Finally, operators are also transformed linearly under symmetry 
operations and thus can form the basis for a representation; an example is the 
momentum operator, Px = (,liji)ajax, py = ('liji)ajay, pz = (fiji)ajaz. We could, 

for example, replace I/Iy) in (16.136) by the components of the momentum operator. 

The optical matrix elements can be written as integrals having the form 

f 1/1(1) 1/1(1) 1/1(3) dV 
I } k ' 

(16.137) 

where the integration extends over all the variables which occur in the I/I's, e. g. over 
the coordinates of one or more electrons. We can now decompose the basis (16.136) 
with respect to the symmetry operations of the given molecule into its irreducible 
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representations. It can be shown mathematically that integrals of the form (16.137) 
vanish with respect to such symmetry operations unless the integrand is invariant 
under all the operations of the point group. We demonstrate this with two simple 
examples: 

1) In the one-dimensional integral 

f+a 
-a f(x)dx (16.138) 

we take f(x) to be noninvariant with respect to the reflection x ~ -x; let us assume 
that f( -x) = - f(x). We replace x by -x in (16.138), which leaves the value ofthe 
integral unchanged, and obtain 

f +a f+a f+a 
-a f(x)dx = -a f( -x)dx = - -a f(x)dx, 

from which it follows that 

f+a 
2 -a f(x)dx = 0 , 

i. e. the integral vanishes. 
2) In the two two-dimensional integrals (with limits ±oo) 

I j = f f hex, y)dxdy, j = 1,2 (16.139) 

let the functions transform as follows under a rotation operation: 

( cosa sina) (II) 
- sina cosa h . 

Then, on the one hand, the values of the integrals (16.139) remain unchanged under 
the rotation, but on the other hand, the following equation holds: 

(h) (cosa 
h - -sina 

sina) (h) . 
cosa h 

Since the determinant 

I cosa - 1 sina 
- sina cosa - I 

is non-vanishing (except for cos a = 1, i. e. d = 2:rrn, n = 0, ±1, ... ), it follows 
that h = h = O. 

In order to determine whether integrals of the form (16.137) can differ from 
zero for given basis functions (and operators), we can proceed as follows: we de­
compose the product (16.136) into its irreducible representations. Then the integrals 
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can be non-vanishing only if the identical representation is among the irreducible 
representations. The following mathematical theorems are useful: 

Theorem: The representation of a direct product (of 2 basis sets) contains the com­
plete symmetrical representation only if the original basis functions belong to the 
same irreducible representation of the point group. In the case of a triple product, the 
integral may be nonzero only if the representation of the product of two functions is 
the same as the representation of the third function or contains the representation of 
the third function. In this case, the functions or operators can be grouped together 
in expedient ways. For example, the representation of lliP) . operator· tVk(2) can be 

first examined with respect to tV?) tV?) to find out if it contains a representation of 
the operator (e. g. Px, PY' pz)· 

We show the application of these theorems using the example of the point group 
C2v, which we have met in the treatment of the H20 molecule in Sect. 6.7, and 
consider the dipole matrix element 

(16.140) 

We thus identify tV; with tV?) in (16.137), r with tV?), and tVK with tV?). We assume 
that tV; and tVK already belong to an irreducible representation whose symmetry 
properties are listed in Table 16.1. Now we still need the irreducible representations 
of r = (x, y, z), which we determine here as a little exercise (but can also read 
off directly from Table 16.3). As one can readily see from Fig. 6.5, the following 
transformation rules hold for the symmetry operations (see Table 16.3): 

Table 16.3. 

In the last column, the characters are given, i. e. the traces of the representation 
matrices which can be found directly from the matrices themselves. How these 
representations r decompose into the irreducible representations can be easily seen 
by using these characters X and formula (6.47), or by trial and error. The latter 
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E C2 o"v 0"' 
Table 16.4. Upper row: characters for the representation 

v of r; Lower rows: characters of the irreducible represen-
r 3 -1 tations which contribute to r 
Al 1 
BI -1 -1 
B2 -1 -1 

method can be easily applied using Table 16.3 and the characters it contains, as one 
can see from Table 16.4. The result is 

(16.141) 

Let us now return to our original goal and apply the theorem quoted above to (16.140). 
We first combine lJI;, lJIK ; then we can use Table 16.1 and investigate which products 
of the lower left columns yield one of the irreducible representations in (16.141), 
i. e. A \, B\, or B2 . We thus obtain Table 16.5. 

r 

AlAI 
A2B2 
A2BI (or BIA2) 

Table 16.5. Left column: r and its irreducible represen­
tations; Right column: W; WK and its representation prod­
ucts, which yield AI, BI, and B2 

The second column of the table shows the wavefunctions between which an 
optical dipole transition is allowed. All other transitions are forbidden. In Sect. 6.7, 
we can find examples of LeAO wavefunctions having the corresponding symmetry 
properties. 

Using Table 6.14, we can read off the facts that z belongs to the representation 
AI, x to the representation B I , and y to the representation B2 . With these correspon­
dences, we can determine which polarisation directions are allowed (or forbidden) 
in optical dipole transitions. Thus, for example, only the polarisation x is allowed 
in the transition A2 -+ B2. We leave it to the reader as an exercise to show that 
x, y, z each forms a basis by itselffor the irreducible representations AI, B[, and B2, 

respectively. 

16.6 Summary 

In this relatively long chapter, we have treated the spontaneous and stimulated 
emission as well as the absorption of light using first-order perturbation theory, with 
the creation or the annihilation of one photon in each case. From the transition 
probabilities (per unit time), we obtained the Einstein coefficients for emission and 
absorption; they are determined by the optical matrix elements. The latter may be 



386 16 The Interaction of Molecules with Light: Quantum-Mechanical Treatment 

simplified to give the dipole matrix elements or transition moments and related to the 
oscillator strengths. The Born-Oppenheimer approximation and the Franck-Condon 
principle allow us to separate the optical matrix elements into the product of a matrix 
element for the electronic transition with the nuclear coordinates held constant, and 
a matrix element for the vibrational transition of the nuclei. Finally, we have shown 
how it is possible to derive selection rules for the optical transitions by making use 
of group theory. 



17 Theoretical Treatment of the Raman Effect 
and the Elements of Nonlinear Optics 

We first introduce time-dependent perturbation theory in higher orders, and then 
apply it to a quantum-mechanical treatment of the Raman effect and of two-photon 
absorption. 

17.1 Time-Dependent Perturbation Theory in Higher Orders 

The methods developed in the preceding Chap. 16 will now permit us to deal 
with the Raman effect on a quantum-theoretical basis, having discussed it from the 
experimental standpoint in Chap. 12. Furthermore, we are now in a position to treat, 
for example, the two-photon processes of nonlinear optics. For the mathematical 
description, it will prove expedient in the following sections that we at first do 
not specify the interaction, but instead develop the formalism on a general basis. 
However, to gain an intuitive picture, we can consider the following problem: we 
imagine an electron which is moving in a fixed potential field, e. g. that of an atomic 
nucleus or of a whole molecule. This electron is then exposed to a radiation field. 
If the radiation field is weak, then it can be considered as a small perturbation; we 
can then describe the emission and absorption of single photons by the electron in 
a molecule, as we showed in Sect. 16.3. 

In nuclear magnetic resonance, it has long been possible to detect multiple­
quantum transitions, as well; more recently, lasers have provided a light source 
which is so intense that the observation of multiple-quantum transitions in the 
visible or the UV spectral regions is also feasible. For multiple-quantum processes, 
which also occur in light scattering, it no longer suffices to employ only the first­
order approximation of time-dependent perturbation theory (cf. Sect. 16.2). Instead, 
one must systematically take the higher orders of the perturbation into account. We 
shall now demonstrate just how this can be done in general, keeping Sect. 16.2 in 
mind and using the same notation that we introduced there. Our starting point is 
again the Schr6dinger equation (16.1). We expand the desired solution in terms of 
the solutions of the unperturbed Schr6dinger equation (16.2) in the form given by 
(16.5), i. e. 

00 

tJI(t) = I>v(t) tJI~ . (17.1) 
v=1 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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The coefficients are found to obey (16.7), which we repeat here: 

(17.2) 

with the matrix elements H~v as defined in (16.8). At the initial time t = to, only the 
state having the quantum number K is occupied, i. e. 

cv(to) = g ;~~ ~;:} = OVK • (17.3) 

Equation (17.3) at the same time defines the zeroth order of our perturbation method. 
The coefficients in this approximation are denoted by a zero as superscript, that is 
we define 

(17.4) 

The basic idea of perturbation theory is the following: since the perturbation H S 

is assumed to be relatively small, the coefficients Cv will not differ too much from 
those in (17.4) at times which are not too long. It is then apparent that we can use 
(17.4) as trial values for Cv on the right-hand side of (17.2), in order to obtain as the 
result an improved value, c~l), on the left-hand side of (17.2). Using this approach 
and (17.3), (17.4) as starting values, we arrive at the following relation for the cv's 
on the right-hand side: 

(17.5) 

By integrating over time, we obtain immediately an explicit expression for the c/L's 
in the first-order approximation: 

(17.6) 

Here, we have still written the initial time in the general form to. The Kronecker 
delta 0/LK guarantees that the initial condition (17.3) will be obeyed. In evaluating the 
integral (17.6), we must keep in mind that H~K is time dependent [compare (16.8) 
with (16.3)]. The coefficients (17.6) yield an improvement as compared to those of 
(17.4). 

It is apparent that this process can be continued to higher orders, by inserting the 
now improved values of c~l) on the right-hand side of (17.2) and thus obtaining still 
further improved coefficients c~2) on the left-hand side. By imagining this process to 
proceed still further, we obtain after the (l + l)-th step the relation: 

C~+l)(t) = c~) + (-ijn) 1t H~v('r) c~)(r) dr . 
to 

(17.7) 

(We could also obtain this expression in a mathematically well-defined manner by 
equipping the perturbation HS with an "infinitesimal parameter" c and expanding c /L 
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as a series in 8, i. e. 
00 

c = '""' 81 c(l) 
IL ~ IL' 

1=0 

then inserting this series into (17.2), carrying out a comparison ofthe coefficients, 
and integrating the result over time from to to t.) Relation (17.7) is a recursion 
formula; applying it, we can compute c~+l) whenever we have determined c~) in 
a previous step. 

We can see most of the important features by examining the case 1 = 1; then, of 
course, we have instead of (17.7) the expression 

c~) (t) = (-ijfi) L /,t H~ILI (r) c~l (r) dr + c~) . (17.8) 
ILl to 

For 1 = 0, we arrive back at the case (17.6) which we have already treated, given 
here in a slightly more generalised notation: 

c~l)(t) = (-ijfi) L /,t H~IIL2(r)drc~l + c~l. (17.9) 
1L2 to 

As we have already seen, we have to take c~) as given at the time t = to, so that 
these quantities can be assumed to be known. We then have the task of expressing 
the coefficients in second order, c~), in terms of the c~). This is possible if we first 
express the coefficients c~) which occur in (17.8) in terms of the c~) by using (17.9); 
accordingly, we insert (17.9) into (17.8) and find 

C(2) (t) = c(O) + (-ijfi) '""' r H S (r) drc(O) 
IL IL ~ 1" ILILI ILl 

ILl to 

(17.10) 

In a corresponding fashion, we can employ the general expression (17.7), succes­
sively eliminating all the intermediate results c~) . 

In the (I + 1)-th approximation, c~+l) is given by 

C(l+l) (t) = c(O) + (-ijfi) '""' r H S (r) dr c(O) 
IL IL ~ 1t, ILILI ILl 

ILl to 

(17.11) 
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The coefficients we were originally seeking, c{L(t), are obtained by letting the per­
turbation series go to infinite order: 

(17.12) 

17.2 Theoretical Description of the Raman Effect 

We have described the Raman effect in Chap. 12, in that chapter primarily from 
the experimental standpoint. As we saw there, incident light with a frequency Vo 

is scattered inelastically by molecules, leading to a new frequency VI. In Chap. 12, 
we also denoted Vo by vp (p for "primary") and VI by vp ± Vyib or vp ± Vrot. In this 
section, we treat the vibronic Raman effect; the description of the rotational Raman 
effect is analogous. 

From the quantum-mechanical point of view, the effect can be explained as 
follows: a photon of frequency Vo produces a transition in a molecule from the 
electronic ground state with quantum numbers qa into an excited intermediate state 
with quantum numbers qi; during the transition, the vibronic state, which has, e. g. v 
quanta initially, changes also to a state with v" vibrational quanta. This transition is 
a so-called virtual transition, in which energy conservation is not necessarily fulfilled. 
The molecule then makes a second transition from the virtual intermediate state to 
the final state, which has the same electronic quantum numbers as the initial state, 
but a different number ofvibronic quanta, Vi (see Fig. 17.1). If the vibronic energy is 
now greater than in the initial state, then the increase in energy must be obtained from 
the difference of the absorbed and emitted photons. The emitted photon thus has 
a smaller quantum energy n w, i. e. a lower frequency than the incident photon, and 
VI < Vo; this is termed the Stokes shift. However, especially through the availability 
of lasers it has now become possible also to produce anti -Stokes Raman lines, which 
have VI > Vo. 

In order to describe the Raman effect theoretically, we make use of time­
dependent perturbation theory of higher order, which we have developed in the 
previous section. We consider a second-order process and, as a first step, we calcu­
late the time integrals which occur in (17.10). Using the same notation, we write 

w, 
~ 

(17.13) 

Fig. 17.1. The Raman effect: 
absorption of a light quan­
tum with the energy fi wo 
and emission of another 
light quantum of energy 
fiwI 
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As a result of the fonn of the unperturbed wavefunctions according to (16.3), we 
can express the matrix element (16.8) as 

(17.14) 

For simplicity, we take the initial time to = O. We are now interested in the coefficient 
which describes a second-order transition, i. e. for example the absorption of a photon 
and the emission of a second photon. In the notation of (17.13) and (17.14), this 
coefficient is given by the third tenn on the right-hand side of (17.1 0), which we 
denote by c~)' : 

The integrals over time can be readily evaluated, yielding 

1t 1Tl _ exp(i w/lxt) - 1 exp(i W/1/11 t) - 1 
... drldr2 - - + -----'--'-'---

o 0 W/1KW/1IK W/1/11 W/1IK 
(17.16) 

The two tenns which occur in (17.16) have quite different meanings and magnitudes. 
We have previously seen the factor (eiWJLKt - 1) j W/1K within the first tenn of (16.15); 
as we saw there, this expression in the end leads to a a-function, which guarantees 
that energy is conserved. In the neighbourhood of W/1K = 0, a singularity occurs, 
and, if we do not integrate over a frequency continuum, it leads to an increase of 
the coefficient c~)', proportional to the time. In the factor IjW/1I" the denominator 
remains nonzero for the processes we are considering. The second tenn in (17.16) 
contains transition frequencies between the virtual states /II and the final state /I, 
in which energy is with certainty not conserved. This tenn in (17.16) thus exhibits 
oscillatory behaviour but does not increase with time, and can therefore be neglected. 
Using these results from (17.16), we obtain the following expression for (17.15): 

(2)' _ 1 exp(i W/1Kt) - 1 S.eff 
c/1 - -; H/1K ' 

It W/1K 

where we have introduced the abbreviation 

S.eff _ '" H~/1l (O)H~IK(O) 
H/1K - ~ • 

/11 
(E/11 - E K ) 

(17.17) 

(17.18) 

This abbreviation permits us to make a direct comparison between the coefficients 
(17.17) and the coefficients which we have seen earlier in (16.15). Clearly, the 
matrix element we calculated there is to be substituted by (17.18), but all other 
considerations remain the same. We can thus immediately write down the transition 
probability per unit time in the form 

(17.19) 
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in which the quantum numbers f.1- of the final state (or the quantum numbers K of the 
initial state) are spread over a continuum Q. 

In order to apply this general formula to the Raman effect, we must consider in 
more detail the individual states and the energies which occur here, first directing 
our attention to the states of the radiation field. The wavefunction of the initial state 
with the index K can be written (as we have already shown in Chap. 16) as a product 
of the wavefunction ¢Qa of the molecule (i. e. electrons and nuclei) with that of the 
radiation field in the initial state, CPa: 

K : ¢QaCPa . (17.20) 

The index Qa in this expression summarises all of the quantum numbers of the 
electrons and the nuclei of the molecule in the initial state. The initial state of the 
radiation field is in general occupied by n photons of the type Ao: 

1 + n 
CPa = rI(hA ) CPo· 

vn! 0 
(17.21) 

The energy belonging to (17.20) can, in a readily understandable way, be written in 
the form: 

(17.22) 

where wAo == 2nvo. 
In order to evaluate the matrix elements, we require the perturbation operator 

which we have already given in (16.52) but will repeat briefly here: 

(17.23) 

In this equation, V is the normalisation volume for the waves in the radiation field, 
while OA was defined in (16.53) and is an operator which refers to the electronic 
motions. The final state, with index f.1-, is written as 

(17.24) 

in which the final state of the radiation field differs from that of (17.21) in that now one 
photon fewer of type AO is present, while one photon of type A 1 has been created. This 
is precisely the effect of Raman scattering. The perturbation operator H S includes 
both the creation and the annihilation of photons. Since the perturbation operator 
however enters (17.18) two times, it can cause two different processes, which differ 
in the order of photon absorption and emission. 

These two paths are best made clear in so-called Feynman diagrams (Figs. 17.2 
and 17.3), and we recommend that the reader compare the following text with the 
corresponding figures. The first path (Fig. 17.2) takes the following course: in the 
initial step, a photon of type Ao is absorbed, leading to the intermediate virtual state 
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~ AO~rf 
__ ...... _ .. u~ 

Oe 

Final state 

OJ 

virtual 

Oa 

Initial state 

Fig. 17.2. Feynman diagrams (to be read from right to left!) for the absorption and emission 
of a quantum of radiation. The molecule is initially in the state associated with the quantum 
numbers Qa, in which it absorbs a photon denoted by the quantum numbers Ao. It thereby 
makes a transition into the intermediate state Qj. Finally, it emits the photon Al and in the 
process makes a transition into the final state Qe 

with index /LI, which takes the form 

(17.25) 

where Qi summarises the quantum numbers of the molecule in the intermediate 
state, while the wavefunction of the radiation field is distinguished from that in the 
initial state by having one photon fewer of type AO: 

cpo = I (b+)n-Icp 
1 ./(n _ I)! AD 0 • 

(17.26) 

(If only one photon was initially present in the radiation field, then of course we now 
have the vacuum state.) 

For this process, the associated matrix element is given by 

S r.:j * 1 r.: 1 s 
HJLIK(O) = "In ¢Qi,/VOAo¢QadVeldVn = "In ,.;vHQi.Ao;Qa.O' (17.27) 

In this equation, we have used the abbreviations of (16.68) and (16.70). If we read 
the indices which occur in (17.15, 18) from right to left, then the matrix element 
which refers to this process occurs first. The second matrix element is the one which 
refers to the second step in the process, namely the emission of a photon of type A I, 

where Al is supposed to be different from Ao. This matrix element is then given by: 

(17.28) 

Combining these results, we find the contribution to the effective matrix element 
(17.18) for the first path to be as follows: 

H S•eff _ L H~e.Al;Qi.oH~i.Ao;Qa.O r.: 
Q A 'Q A - "In. 

e. ). a. 0 E Q' M 1 - EQ M 1 - nw, 
Qi 10 0 a. 0 "'0 

(17.29) 

The structure of (17.18), however, contains a second path (cf. Fig. 17.3), since the 
operator which enters into the matrix element H~K can both create and annihilate 
photons. In this second path, the first step is the creation of a photon of type AI; it is 
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Fig. 17.3. As in Fig. 17.2, but now the emission 
of one quantum occurs before the absorption 
of the other .. 

Oe OJ Oa 

Final state virtual Initial state 

then present in the final state, so that the intermediate state with index J-Ll is given as 

(17.30) 

with the radiation field in the intermediate state represented by 

(17.31) 

The associated matrix element is then 

(17.32) 

In the second step, one of the photons of type AD which was originally present is 
annihilated. This is described by the matrix element 

The energy denominator is found to be 

E"I - EK = EQi,Mol + nfiwAo + fiWAJ - EQa,Mol - nfiwAO 

= EQi,Mol - EQa,Mol + fiWAI • 

(17.33) 

(17.34) 

Both paths must be taken into account in the overall expression (17.18), so that we 
obtain as the final result for the effective matrix element: 

(17.35) 

The sums in (17.35) run over all the intermediate levels in the molecule. This result 
can now be inserted into (17.19), with summation of the final states and averaging 
over the initial states. The summation of the final states may be carried out exactly 
as in the case of spontaneous emission, which we treated in Sect. 16.3.4, summing 
the wavevectors within a solid-angle element dQ. The average (or summation) over 
the initial states just corresponds to the computation of the average which we carried 
out for the case of the absorption of radiation, also in Sect. 16.3.4. 
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Up to this point, our treatment has been kept quite general, without any specific 
assumptions about the internal structure of the electronic and nuclear states of the 
molecule. However, in order to obtain results which may be compared with exper­
iment, we must now specify the exact meaning of these states and of the quantum 
numbers Qa, Qe, and Qi which characterise them. To help us in this examination of 
the molecular states, we employ the Born-Oppenheimer approximation, which we 
have already used in Sect. 16.4. It allows us to separate the molecular wavefunc­
tions, which depend on all of the electronic coordinates and on all of the nuclear 
coordinates, into a particular product of individual wavefunctions: 

¢Qa(r, R) = 1jJqa(r, R)Xqa,v(R) , 

¢Qj(r, R) = 1jJqj(r, R)Xqj,v,,(R) , 

¢Qe(r, R) = 1jJqe(r, R)xqe,v,(R) . 

(17.36) 

(17.37) 

(17.38) 

The first factor 1jJ in each case refers to the electronic motions with the nuclear 
coordinates R held fixed, while the functions X refer to the nuclear motions with 
respect to the coordinates R. As we recall, the wavefunctions X and their associated 
energies are functions of both the electronic state (characterised by its quantum 
numbers qa, etc.) and of the vibrational quantum number v which determines the 
vibronic excitation level. The energies associated with (17.36-38) can be written in 
the form 

EQa,Mol = Eqa,el + Eqa,v 

EQj,Mol = Eqj,el + Eqj,v" 

EQe,Mol = Eqe,el + Eqe,v' . 

(17.39) 

(17.40) 

(17.41) 

The quantum numbers Q have been separated here, as in (17.36-38), into those 
of the electronic states, q, and those of the vibronic states, v, v", and Vi; the latter 
are the vibrational quantum numbers of the initial, the intermediate, and the final 
states, respectively, as defined at the beginning of this section. The energy EMol 
is the total energy of the molecule, Eel that of its electrons, and Ev the molecular 
vibrational energy. With the specifications (17.36-41), we can rewrite the effective 
matrix element as follows: 

HS,eff = In L (el . ! X;e,v,f)qeqjXqj,v"dVn)(! X;j,v"f)qjqaXqa,VdVneo) 

Qe,Qa . " Eqj,el - Eqa,el + Eqj,v" - Eqa,v - fiwJ.o 
q10 V 

1:: " (eo' ! Xq* v,f)qaqjXqj,v"dVn)(! Xq* v"eqjqaXqa,vdVnej) 
+v n ~ e, 10 

. " Eqj,el - Eqa,el + Eqj,v" - Eqa,v + fiwJ.j 
q10 V 

(17.42) 

In this equation, dVn is the volume element in nuclear coordinate space, i. e. dVnuc1ear, 
and eo, e] are the polarisation vectors of the incident and the scattered light waves, 
respectively. The abbreviations f)qjqa = f);aqj stand for the electronic matrix element 
which we have already discussed in Sect. 16.3.4, 
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(17.43) 

where we have set 

(17.44) 

and have replaced the exponential function in the operator 0;,. by 1; this, as we 
have seen earlier, is a good approximation when the size of the molecule is small 
compared to the wavelength of the radiation. In this approximation, (17.43) can also 
be expressed in terms of the transition moment (16.118) (cf. Sect. 16.3.6). 

To arrive at useful selection rules, we can often apply another approximation. 
The change of the energy between the vibronic levels is in general much smaller 
than the energy difference between the electronic states. For this reason, we can set 

(17.45) 

and, in addition, employ the approximation of (17.44). Because of (17.45), the 
quantum number v", which is a summation index for the sums in (17.42), drops out 
of the expressions. 

This permits us to carry out a very pleasing simplification: as can be proven 
mathematically, a complete set of wavefunctions implies a so-called completeness 
relation, which in our case takes the form 

(17.46) 
V" 

The 8-function on the right-hand side can be more precisely expressed as 

(17.47) 

where R j, Rj are the nuclear coordinates. We can, however, choose these coordinates 
from the beginning to be normal coordinates, and we will make use of this fact in 
the following. 

With the aid of (17.46), we can reduce the double integrals which occur in the 
sums in (17.42) to single integrals, so that this equation can be put into the very 
simple form 

H S•eff f * dY. Q Q = el . Xq v,aXqa v n eo . e, a a,' 
(17.48) 

In (17.48), we have introduced the polaris ability tensor a, which, as can be seen 
from a comparison with (17.42), has the following components: 

ajk = L ( (@qaq)j(@qjqah + (@qaqjh(eqjqa)j ), 

qj Eqj.el - Eqa,el - nw Eqj,el - Eqa,el + nw (17.49) 

where j, k refer to the spatial coordinates x, y, and z. 



17.2 Theoretical Description of the Raman Effect 397 

This polarisability tensor was derived in the theory of dispersion, which we 
review briefly here. If a static or oscillating electric field E is allowed to act on an 
atom or a molecule, the electronic charge clouds (and possibly also the nuclei) are 
displaced so that an electric dipole moment p is induced as a result. If the field 
strength is not too great, there is a linear relation between p and E, i. e. 

p=aE. 

Since the directions of p and E are not necessarily collinear, a is in general a tensor 
quantity. As a detailed quantum-mechanical calculation within the theory of disper­
sion shows, the expression (17.49) for a can be obtained by applying perturbation 
theory. Since the electronic wavefunctions, which enter into the computation of a, 
are functions of the nuclear coordinates R, i. e. ¢Q = ¢Q (r, R), a of course also 
depends on these coordinates. 

To obtain selection rules for vibrational Raman transitions, we expand the po­
larisability tensor in the normal coordinates R j of the nuclei about their equilibrium 
positions in the molecule. This yields 

(17.50) 

If we insert this relation into (17.48), then the selection rules are determined by 
whether or not the expression 

goes to zero or remains finite. The Kronecker delta on the right-hand side of this 
equation, Dvvl, is due to the orthogonality of the wavefunctions Xqa,v, Xqa,v" 

Let us examine the terms on the right-hand side of (17.51). The firstterm, aoDvvl, 
requires that the vibrational quantum number remain unchanged, i. e. it does not 
describe the Raman effect, but instead the elastic scattering of photons. We therefore 
look at the second term and consider a typical summand, which we can rewrite in 
the form 

( aa;J 0 f X;a, Vi R j Xqa, vdVn , (17.52) 

since the first factor does not depend on the nuclear coordinates and can therefore 
be extracted from the integral. The functions Xqa,v' , Xqa,v depend on all the normal 
coordinates of the nuclei. As we have seen in Sect. 11.3, the normal coordinates 
allow us to represent the Hamiltonian for the molecular vibrations as the sum of 
Hamiltonians for individual harmonic oscillations (of the various normal modes). 
As a consequence, the wavefunctions, e. g. Xqa,v(R), can be expressed as products 
(we leave off the index qa in the following expressions): 

(17.53) 
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where M is the number of vibrational degrees of freedom of the molecule. Corre­
spondingly, we have 

(17.54) 

Substituting (17.53) and (17.54) into (17.52) and separating the integral into integrals 
over the individual nuclear coordinates, we find 

f X:; (Rt ) XVI (Rt)dVl ... f X:j (Rj)RjXvj(Rj)dVj 

... fX*1 (RM) XVM(RM)dVM . VM 
(17.55) 

Apart from the integral with the index j, these are all orthogonality integrals, so that 

V~ = Vk, k =1= j 

must hold, i. e. these vibrational quantum numbers do not change. Inserting the usual 
oscillator functions for X in the remaining integral 

(17.56) 

we obtain on applying the theory of the quantum-mechanical harmonic oscillator 
the following selection rule: 

The corresponding transitions are called the fundamental transitions. 
The next term in (17.51), which is due to the third term on the right-hand side 

of (17.50), can be discussed in a similar manner. In the double sum, we have either 
j =1= k or j = k. In the case that j =1= k, two integrals similar to (17.56) occur, leading 
to the selection rules 

and 

v~ == VI, 1 f. j, k 

vj = Vj ± 1 , 

v~ = Vk ± 1 . 

In the case that j = k, the integral 

is found from a generalisation of (17.56). For the oscillator wavefunctions, we then 
find the selection rules 



17.2 Theoretical Description of the Raman Effect 399 

i. e. the creation or annihilation of two vibrational quanta, or else 

vj = 0, 

i. e. no Raman effect at all. 
In this manner, one can include higher and higher terms in the expansion (17.50), 

(17.51), of course keeping in mind the relative size of the various terms. As is shown 
by a detailed treatment, the size ofthe terms goes as (l;/ro)n, where l; is the average 
vibrational amplitude of the nuclei, and ro is a measure of the spatial extent of the 
electronic wavefunctions. Due to l; « ro, the intensity of higher vibrational quantum 
transitions decreases rapidly. 

Along with the selection rules which we have discussed here, some others can 
be derived on the basis of symmetry considerations. Just as there are irreducible 
representations for the electronic wavefunctions, one can also find them for the 
molecular vibrations and apply the results of Chap. 6 to these. This is true in 
particular of the symmetry selection rules (cf. Sect. 16.5). We can take into account 
the fact that quantities such as (aex/aRj)R j and (a2ex/aRjaRk)RjRk transform like 
ex itself under the symmetry operations of the point groups. Every component ex jk 
of ex transforms like XjXk; as a result, the fundamental transitions in the Raman 
effect are due in general only to those normal modes R; which transform under the 
operations of the point groups as linear combinations of x jXk, e. g. x2 - y2, Z2, xy. 
Such vibrational Raman transitions are based only on the vibrational modes which 
change the molecular polarisability; otherwise, the right side of (17.51) would be 
reduced to a quantity proportional to the Kronecker delta Dv'v, and no Raman effect 
would occur. There are also transitions, with a small probability, in which the 
vibrational quantum number changes by ±2, ±3. Therefore, the vibrational modes 
which exhibit infrared and Raman fundamentals belong to mutually-exclusive sets 
when the molecule has a centre of symmetry. This fact is used to identify particular 
molecular geometries. 

A special situation, termed resonant Raman scattering, occurs when the fre­
quency of the incident laser light, vo, is near to the resonance frequency of one of 
the molecular eigenstates (i. e. electronic and vibronic). The energy denominator in 
(17.42) then becomes very small compared to its value for normal Raman scattering, 
and the transition probability becomes extremely large. In this limit, the vibrational 
energy differences (17.45) can no longer be neglected relative to the other quantities 
in the energy denominator, so that the transition amplitude (17.42) can no longer be 
reduced to the symmetrical form (17.48), (17.49). As a result, the usual selection 
rules for the normal Raman effect do not apply to resonant Raman transitions. One 
finds that certain transitions which are forbidden in the normal Raman effect are 
allowed in the resonant Raman effect. 

We mention also that time-resolved resonant Raman scattering has been devel­
oped to the point of being a useful technique for the observation of the populations 
of large molecules in electronically excited states. 
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17.3 Two-Photon Absorption 

If we consider the second-order perturbations which occur in the interactions between 
radiation and molecules, then we find not only the Raman effect discussed in the 
previous section, but also the processes of two-photon absorption and emission 
(compare the Feynman diagrams of Fig. 17 Aa,b). As an example, we consider here 
two-photon absorption, limiting our treatment to the case of the absorption of two 
photons from the same light wave. In this case, the perturbation operator (17.23) 
first annihilates one photon, and then, in a second step, a second one. 

We can carry out the calculations in exact analogy to those of the previous 
section, so that we need only point out the decisive differences here. The initial state 
K again consists of a product of the molecular state wavefunction ¢Qa with that of 
the radiation field, CPa: 

In the radiation field, there are initially n photons present: 

1 + n 
CPa = r;;;(bA ) CPo· 

",n 0 

The energy of the initial state is thus given by 

(17.57) 

(17.58) 

(17.59) 

In the first step, the perturbation operator (17.23) gives rise to the annihilation of 
a photon, so that we go from the initial state (17.57) to an intermediate state of the 
form 

(17.60) 

where the intermediate state of the radiation field is represented by 

1 b+ n-l,... 
CPj = J(n - I)! (Ao) '¥o . (17.61) 

a b 

~Z~~ 
Oe 

Final state 

OJ 

virtual 

Oa 

Initial state 

Oe 

Final state 

OJ 

virtual 

Oa 

Initial state 

Fig. 17 .4a,b. Feynman diagrams for (a): Two-photon absorption; and (b) two-photon emission 
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The energy of the intermediate state is then 

EILI = EQi,Mol + nWO(n - 1) . (17.62) 

The evaluation of the matrix element is identical to that in the previous section, so 
that we need only repeat the result here: 

S r.: 1 S 
H IL1K (0) = v n .JV HQi,Ao;Qa,O . (17.63) 

In the second step, a final state is produced in which the annihilation operator bAo in 
the perturbation operator has acted on the intermediate state, giving 

¢Qe C/Je , (17.64) 

a state which contains only n - 2 photons: 

1 b+ n-2C/J 
C/Je = .!(n_2)!(AO) o· (17.65) 

The matrix element can be evaluated in a manner corresponding to (17.63); it is 
found to be 

s 1 r--1S 
HILILI (0) = .JVvn - 1 HQe,AO;Qi,O . (17.66) 

If we insert all these results into (17.18), we obtain 

H S H S 
H S,eff _ r.: ~1 L Qe,AO; Qi,O Qi,AO; Qa,O 

Q A 'Q A - vnv n - 1 • 
e, 0, a, 0 Qi EQi,Mol - EQa,Mol + nwo 

(17.67) 

Since the transition probability per unit time, W, is proportional to the absolute 
square of (17.67), we obtain the especially important result: 

Wex n(n -1) ex [2. (17.68) 

The last proportionality is a result of the fact that the intensity [ of the incident 
light wave is proportional to the number of photons the wave contains, and that for 
n sufficiently large, we can neglect the 1 relative to n. Relation (17.68) states that 
the number of transitions per second which a molecule undergoes in two-photon 
absorption is proportional to the square of the incident intensity. This fact was 
employed by Kaiser and Garrett to measure the length of ultra-short laser pulses. 
Furthermore, it is important to note that different selection rules hold for two-photon 
absorption from those for normal single-photon absorption. In the latter case, in 
the dipole matrix elements ("transition moments"), the parity of the initial-state and 
final-state wavefunctions must be different (even -+ odd or odd -+ even), but in 
two-photon transitions, the parity of the wavefunctions remains unchanged. This is 
immediately clear from (17.67), where the parity changes in going from the initial 
state to the intermediate state, and then changes back again in the transition from the 
intermediate state to the final state; overall, it thus remains unchanged. 
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In this and the next chapter, we illustrate some of the contributions which can be 
made to molecular physics by the methods of magnetic resonance spectroscopy. 
These methods occupy a place at the low end of the energy scale (see Fig. 8.1) of 
the spectroscopic techniques. In the magnetic resonance methods, one makes use 
of the spins and magnetic moments of nuclei and electrons as probes to study the 
electronic structure, dynamics, and reactivity of molecules. The investigations are 
usually carried out in the condensed phases, i. e. in solutions or on solid samples. 

In nuclear magnetic resonance, the nuclear spin is the probe which samples the 
structure and dynamics of the electron clouds around it, as well as the coupling to 
other nuclei in its neighborhood. Since its first demonstration in 1946, this spectro­
scopic technique has been developed into what is now perhaps the most important 
and powerful method of all the various molecular spectroscopies. Here, we can de­
scribe only the fundamentals of the method (Sect. 18.1) and the most important basic 
aspects of nuclear resonance on hydrogen nuclei (proton resonance) in molecules 
(Sect. 18.2). The study of dynamic processes (Sect. 18.3), resonance using other 
nuclei besides H (Sect. 18.4), and applications of two-dimensional and spatially­
resolved spectroscopies (Sects. 18.5 and 18.6) illustrate the far-reaching capabilities 
of this spectroscopic method. 

IS.1 Fundamentals of Nuclear Resonance 

We first treat nuclear magnetic resonance, in the present chapter. The fundamentals 
of this spectroscopy are described in detail in I, Chap. 20. In order to explain the 
significance of the method for obtaining structural information on molecules, we 
remind the reader again of those basic aspects of the technique. 

18.1.1 Nuclear Spins in a Magnetic Field 

Atomic nuclei can have a magnetic moment 

ILl = Y I , (18.1) 

where I is the angular momentum (spin) of the nucleus and y is the magnetogyric 
ratio. If we introduce the nuclear magneton flN as the unit of the nuclear magnetic 
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moment (it is smaller than the Bohr magneton ILB by the ratio of the electron mass 
to the proton mass), then we obtain 

_ glILN I 
JLI - 11, ' with ILN = 0.505 . 10-26 Am2 . (18.2) 

This equation defines the nuclear g-factor, gl = (yn/ILN); it is a dimensionless 
number which one can also use to describe the magnetic moments of nuclei. The 
factor gl, in contrast to the Lande grfactor of the electronic shells, cannot be 
computed from a combination of quantum numbers, but instead must be measured 
experimentally for each nucleus with nonvanishing spin I. 

The nuclear spin vector obeys the relation 

III = J I(I + 1) 11, • (18.3) 

The nuclear spin quantum number 1 (also called "nuclear spin") can be an integer 
or a half-integer. It is a property of the nuclear ground state and takes on values 
between 0 and 8 for stable nuclei (the value 8 is for the metastable nuclide l~~Hf). 

Only the component of the spin and the magnetic moment in the direction of 
a quantisation axis, the so called z component, can be experimentally observed. This 
quantisation axis can be defined for example by the direction of an external magnetic 
field Bo. The z components obey 

(18.4) 

and 

(18.5) 

There are thus 21 + 1 possible quantised orientations for the nuclear angular momen­
tum vector and the nuclear magnetic moment relative to the quantisation axis. For 
simplicity, one frequently refers to the largest possible value of (JL)z as the nuclear 
moment, i.e. ILl = gIIILN. 

The magnetic moment JL I and the g r factor can have a positive or a negative sign. 
A positive sign means that JL I and I have the same direction, as would be expected 
from classical electrodynamics for a rotating positive charge. A negative sign means 
that the two vectors are antiparallel. Table 18.1 gives the values of I, gl, and ILl for 
some nuclides which are important to nuclear resonance spectroscopy. 

Owing to its magnetic moment, a nucleus in an external magnetic field Bo has 
the magnetic interaction energy 

(18.6) 

with the magnetic quantum number ml = 1,1 - 1, ... - I. 
The energy difference between two adjacent orientations of the magnetic moment 

in a field Bo, i. e. for transitions with ~m I = ± 1, is 

(18.7) 
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Nucleus I gl ILl (in ILN) 
Table 18.1. Properties of some 
atomic nuclei that are important 

1H 112 5.5856912 2.7928456 in the nuclear spin resonance 
2H 0.8574376 0.8574376 spectroscopy of molecules 
13e 112 1.40482 0.70241 
14e 0 0 0 
14N 1 0.4037607 0.4037607 
170 5/2 -0.757516 -1.89379 
19F 112 5.257732 2.628866 
31p 1/2 2.26320 1.1316 

If electromagnetic radiation of frequency 

L1E gl/1N 
v=- = --Bo 

h h 
(18.8) 

is applied to a sample containing the corresponding nuclei in a direction perpendic­
ular to the direction of Bo, this radiation can be absorbed by the sample and can give 
rise to transitions between the possible orientations of the nuclear spin as found from 
(18.6). This process is called nuclear spin resonance, see Schema 18.1. As shown in 
detail in I, Chap. 20, resonance refers to an equality of the frequency of the applied 
radiation to the Larmor precession frequency of the nuclear spins in the field Bo. 

Equation (18.8) is fulfilled for protons in a field of 1 T (= 10 kG) at the frequency 
v = 42.576 MHz. This corresponds to radiation with a wavelength A of about 7 m, 
and the energy quanta L1E are equivalent to about 1.8 . 10-7 eV. 

In general, one can also write the resonance condition in the convenient form 

/11 
V = 762.3 -Bo 

I 

when v is quoted in S-1 and Bo in Gauss. 
Nuclear spin resonance is often abbreviated as NMR (for nuclear magnetic 

resonance). 

Nullfeld 

/ 
( 

/ 

\ 
\ 

mit Feld Bo 
Schema 18.1. The energy states of a proton in 
a magnetic field Bo 
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18.1.2 Detection of Nuclear Resonance 

The principle of a nuclear resonance experiment in its simplest form is shown in 
Fig. 18.1. More details are given in I, Sect. 20.6. At present, superconducting magnets 
with B between 10 and 20 T and higher are available for NMR measurements; 
still higher fields with correspondingly higher resonance frequencies are extremely 
interesting for improving the sensitivity of the measurements. The NMR signal is, 
indeed, due to only the small fraction of the transitions by which the population 
of the energetically higher state, N2 , differs from that of the lower state, Nl in 
thermal equilibrium. At resonance, the electromagnetic radiation (hf field) stimulates 
transitions in both directions; the net absorption is due to the excess of absorption 
transitions over stimulated emission transitions. The difference in the populations, 
relative to the total number of nuclei present, is given by: 

(18.9) 

For protons at room temperature and Bo = 1.4 T, that is [using (18.8)] at v ~ 
60 MHz, this relative population difference is 2.6 . 10-6. There is thus only a small 
fraction of spins in excess in the lower state over those in the upper state, and only 

Sample 

v-

Sample 
Fig. 18.1. Diagrams illustrating the principles of a nuclear magnetic 
resonance apparatus which measures the absorbed high-frequency 
power. The resonance can be detected at a fixed magnetic field and 
variable hf frequency, or with a fixed frequency and variable magnetic 
field. Upper part: The impedance ofthe hf coil changes at resonance, 
because energy is transferred from the oscillating hf field to the nu­
clear spin system. This can be detected by a bridge circuit. Lower part: 
This drawing shows the so called induction method: at resonance, the 
precessing nuclear magnetisation produces an alternating magnetic 
field perpendicular to the direction of the static applied field Bo and 
to the applied hf field. Detection is accomplished by means of in­
duction in a receiver coil. Still other methods of NMR detection are 
described in I, Sect. 20.6 
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these provide a detectable absorption signal. The remaining fraction of the nuclei 
undergoes the same number of transitions in absorption as in stimulated emission 
under the influence of the radiation field, and thus yields no net effect for the 
measurement. An increase in the strength of the applied static magnetic field and 
thus of the resonance frequency by a factor of 10 therefore increases the detection 
sensitivity by the same factor. 

The actual construction of a nuclear resonance spectrometer is described in I, 
Chap. 20, in more detail. There, we explain also why most nuclear resonance ex­
periments today are carried out using pulsed-hf methods, in which the signal is then 
Fourier transformed from the time domain to the frequency domain; this is called 
Fourier-transformed NMR (FT-NMR). We shall not repeat this discussion here. 

Nuclear magnetic resonance spectroscopy differs from optical spectroscopy in 
several characteristic ways: 

The energy quanta are very small (10-4 _10-8 eV); 
- Magnetic dipole transitions and not electric dipole transitions are observed; 
- The wavelength of the radiation used is large compared to the dimensions of the 

sample; this means that all the nuclei in the sample can be excited coherently. 

Nuclear magnetic resonance of protons, i. e. employing the nuclei of hydrogen 
atoms in molecules, is particularly important, especially in view of its application to 
the investigation of the enormous variety of organic molecules. It can be applied to 
permit the use of nuclear spins as probes of the structure and bonding in molecules. 
Two measurable quantities are especially important in this process: the chemical 
shift and the coupling constants. These quantities will be discussed in the following 
section, taking proton resonance as an example. 

18.2 Proton Resonance in Molecules 

18.2.1 The Chemical Shift 

The reason for the great importance of nuclear magnetic resonance in molecular 
physics lies in the fact that one can obtain extremely detailed structural data on 
molecules with its aid. We illustrate this here using the example of proton resonance 
in ethyl alcohol, CH3CH20H. In what follows, we shall see that the most important 
properties of nuclear resonance on molecules and the value of the technique in 
molecular physics can be understood by referring to the ethanol spectrum. Figure 18.2 
shows the proton resonance spectrum of this compound. The 3 groups of protons 
in the molecular functional groups CH3, CH2, and OH give rise to three groups of 
resonance signals with relative intensities (i. e. the areas under the absorption curves) 
of 3 :2: I at somewhat different resonance frequencies; or, if the measuring frequency 
is held fixed, at somewhat different magnetic fields. This is due to the chemical shift, 
which refers to the following phenomenon: 

The resonance frequency in Eq. (18.8) is not, in fact, determined by the applied 
static magnetic field Bo alone; instead, the field entering this equation is the local 
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6 5 4 3 2 ppm 

OH 

6 5 4 3 2 ppm 

Fig. 18.2. The nuclear magnetic resonance spectrum of ethanol, CH3CH20H. The signal 
intensity in the receiver is plotted as a function of the transition frequency or of the magnetic 
field strength at resonance. This is measured in ppm (parts per million) relative to a suitable 
standard compound. In the upper spectrum, one can see three signals having areas with the 
ratios 1:2:3. They are due to the proton spins in the -OH, the -CH2, and the -CH3 groups, 
with 1, 2, and 3 protons, respectively. Owing to the differences in chemical bonding, the 
resonance frequencies or the resonance field strengths of the protons in the different groups 
differ by a few ppm. The lower spectrum is similar, but was measured at a higher resolution. 
The CH2 signal is now seen to be split into a quartet of lines due to the indirect spin-spin 
interaction with the protons of the CH3 group, while the CH3 signal is split into a triplet by the 
indirect interaction with the CH2 protons; see also Fig. 18.11 The protons of the OH group are 
rapidly exchanged between different molecules; the indirect interactions are thereby averaged 
out and the line remains unsplit 

field at the position of the nucleus being studied. It is not equal to Bo, because the 
application of an external field Bo to an atom or a molecule induces a current, and 
thereby a magnetic moment in the electronic shells, which is directed antiparallel 
to the applied field, according to Lenz's rule. One therefore refers to diamagnetic 
shielding; cf. Fig. 18.3. For the local or effective field which acts on the nucleus, we 
then have 

B JocaJ = Bo - Binduced , 

and, since the strength of the induced field is proportional to the applied field, 

BJocaJ = Bo - aBo. (18.10) 
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Fig. 18.3. Diamagnetic shielding as the source of the chem­
ical shift: the diamagnetic electron clouds in the neighbour­
hood of the nucleus produce a magnetic field at the nucleus 
which is oppositely directed to the applied field Bo 

The magnitude of the diamagnetic shielding depends on the density and the bonding 
state of the electrons in the neighbourhood of the probe nucleus. Protons in different 
molecular groups have different shielding constants (J as a result of their different 
electronic environments. The nuclear resonance frequency is then given by 

(18.11) 

that is, nuclei in differing chemical environments and thus with differing shielding 
constants (J have different resonance frequencies v in a given field Bo. 

Figure 18.4 shows the different resonance fields for the OH protons and the CH3 
protons in methanol, CH30H, at a given resonance frequency, as a result of their 
differing shielding factors. The product (JBo measures the chemical shift and is often 
denoted by o. This explains the three groups oflines seen in Fig. 18.2 for the alcohol 
CH2CH30H, with the intensity ratios 1 :2:3 corresponding to the numbers of protons 
in the -OH, -CH2, and -CH3 groups: these groups oflines represent the resonance 
signals of the protons in the molecular groups, and the areas of the absorption lines 
are proportional to the numbers of nuclei taking part in each resonance. 

--i 
l, 

, , 
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-L' OHI 
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Fig. 18.4. The energy levels of the protons of the 
methyl group and of the OH group of methyl al­
cohol, CH30H, in an applied field Bo. The differ­
ent chemical shifts of these groups have the result 
that the NMR signals from the protons in the two 
groups appear at differing values of Bo. At a fixed 
frequency of 100 MHz, the resonant field strength 
is about 2.35 T, and the interval between the signals 
from OH and CH3 protons is about 3.2I-LT; after Ban­
well. The shielding constant for protons in the OH 
group is smaller than for protons in the CH3 group, 
so that the resonance signal from the OH protons ap­
pears at a lower applied field strength than that of the 
CH3 protons 
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The significance of the chemical shift for understanding chemical bonding can 
be made clear by considering the difference between the C-H and the O-H bonds. 
The 0 atom is a better electron acceptor than the C atom; therefore, the electron 
density on the H atom in an O-H bond is smaller than that in a C-H bond. This 
leads to a larger diamagnetic shielding for the CH protons, and thus to a larger 
chemical shift. For the local fields, we find the relation: 

BCH = Bo(l - acH) < BOH = Bo(l - aOH) . 

At a fixed frequency of the hf field B1, the resonance condition for the CH protons 
therefore occurs at a somewhat larger applied static field Bo than that of the OH 
protons; cf. Fig. 18.4. 

A diamagnetic shielding and resulting chemical shift can be produced not only 
by the binding electrons in the immediate neighbourhood of the probe nucleus, as 
in our example, but can be caused also by other electrons near the nucleus. The 
induced magnetic field at the position of the nucleus can be either antiparallel or 
parallel to the applied field Bo and can thus amplify the latter. Some examples are 
shown in Fig. 18.5. In the acetylene (ethyne) molecule, the protons are shielded by 
the electrons of the triple C=C bonds; in benzene, the delocalised Tf -electrons in the 
plane of the ring induce a field at the positions of the protons which is parallel to the 
applied field Bo, and thus effectively increases it. 

Although the shielding constant a is a quantity which is a property of the 
molecule and does not depend on the applied field, the shift itself is proportional to 
the field. This is an additional reason for choosing high magnetic fields in NMR: the 
spectral resolution is increased, by increasing the spacing between resonance lines 
from different molecular subgroups with differing chemical shifts, when a greater 
magnetic field strength is used. 

H 

Fig. 18.5. The principle of diamagnetic shielding: the protons in the ethyne molecule (left) 
experience a reduction of the applied field Bo due to the field-induced electronic currents. In 
the benzene molecule, C6H6 (right), these can lead in contrast to an additional magnetic field 
at the proton sites which adds to the applied field Bo. In this case, Bo is not shielded but is 
instead amplified. For clarity, only the upper ring of 1T electrons is shown; below the plane of 
the molecule, a second identical ring is present, with its currents in the same sense as those of 
the upper ring 
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According to its definition, the chemical shift is referred to the chemical shift of 
a completely free, nonshielded proton without an electronic environment as standard; 
in this case, a would be zero. Since, however, it would be experimentally difficult 
to carry out measurements with such a standard, one uses instead a compound with 
narrow, reproducible NMR lines as standard for the chemical shift. The shift is 
defined as the ratio of the frequency displacement L1 v of a proton group, relative to 
the resonance frequency Va of the standard compound, to the frequency Va; this very 
small quantity is measured in ppm (i. e. units of 10-6). Usually, a fixed hf frequency 
is employed; then the resonance field strength and its shift are measured. Denoting 
the resonance field of the probe nuclei in the sample by Bprobe and that of the same 
type of nuclei in the standard compound as Bstandard, we define (5 by: 

(5 = Bstandard - Bprobe . 106 [ppm] . 
Bstandard 

(1S.12) 

According to (lS.12), (5 is a dimensionless number. The usual standard is tetramethyl 
silane, Si(CH3)4 (TMS), a compound which is readily soluble in many solvents (not 
water, however) and has 12 equivalent protons. The absolute magnitude of a is of 
lesser interest; it can, to be sure, be calculated if one has sufficient knowledge of the 
electron density distribution around the probe nucleus. There are, however, hardly 
any exact calculations to be found in the literature. More important for purposes of 
analysis and for the determination of molecular structures are relative measurements 
which can be compared to a standard compound, since the values of the shifts 
are specific for various groups and bond types and are known, at least empirically. 
When protons having a particular chemical shift are observed in a sample of unknown 
composition, then some conclusions can be drawn from the measured shifts about 
the bonds or groups which are present in the sample. Figure IS.6 shows the values 
of the chemical shift for some groups which are of importance in organic chemistry. 
Other compounds as well, such as NH3, Si~, or H2 , also have their characteristic 
chemical shifts 8. 

14 12 

0- Si(CH3). 

-- RCH) 
---R-NH2 

- Ar- CH3 

- ArOCH3 
--ROH 

----ArOH 
--Ar-H 

---CHO 
CqOH 
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Fig. 18.6. Ranges of the values of the chemical shift for the proton resonance in the case of 
different bond types. In this figure, AT stands for aromatic and R for non-aromatic subgroups. 
The shifts 8 are quoted relative to Si(CH3)4, TMS, for which 8 = 0 is assumed 
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18.2.2 Fine Structure and the Direct Nuclear Spin-Spin Coupling 

The additional splittings which can be seen in the chemically-shifted lines in the 
spectrum of ethanol (lower spectrum, Fig. 18.2) are called fine structure -not to 
be confused with the "fine structure" in the optical spectra of atoms. In the case 
of atomic spectra, the fine structure is caused by the magnetic interactions of the 
electronic spins with the orbital motions; here, in NMR spectra, the cause is the 
magnetic interaction between the nuclear magnetic moments. This can be either 
a direct diople-dipole interaction between the moments of two nuclei, or an indirect 
interaction which arises through the polarisation of the electronic shells around the 
nuclei. The interaction is in both cases referred to simply as the spin-spin coupling. 

The direct magnetic dipole-dipole interaction between the moments of two nuclei 
A and B can be readily calculated. The field B A which nucleus A with an orientation 
corresponding to a quantum number m [ produces at the position of nucleus B at 
a distance r depends on the direction fJ of the line joining the two nuclei relative to 
the applied field Bo (see Fig. 18.7). Its z-component has the magnitude 

/Lo (1) 2 BA = --g[/LNm[ 3" (1 - 3 cos fJ). 
4n r 

(18.l3) 

The magnetic interaction energy between 2 similar nuclei is then 

[Joule] . 

If we assume that nucleus A is a proton with spin 1/2, then there are two possible 
orientations, m[ = ±1/2, i. e. a (in the direction of the field) and f3 (opposing the 
field). Nucleus B therefore experiences an effective field of Bo ± BA , and it thus has 
two resonance fields with a spacing of 2B A; the resonance signal becomes a doublet. 
The same is true in reverse for the resonance signal of nucleus A. The energy spacing 
or the frequency spacing of the two components of the doublet is denoted by J, and 
this symbol also defines the spin-spin coupling constant, which is normally quoted 
in frequency units, i. e. Hz. 

Nucleus 
B , 

Fig. IS.7. Two nuclei A and B in a spherical polar co­
ordinate system, defining the angles for the magnetic 
dipole-dipole interaction. The magnetic field which 
is produced at the position of nucleus B by the mag­
netic moment of nucleus A depends on the angle 7J 
between the line joining the two nuclei and the applied 
magnetic field Bo [see Eq. (18.13)]. If the molecule 
is rotating, 7J passes through all possible values and 
the time-averaged orientation factor (1 - 3 cos2 7J) is 
equal to O. This interaction is then averaged away 
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Inserting the numerical values for typical nuclear moments, we obtain values 
for BA of order 10-4 T at an internuclear distance of 0.2 nm. Such large spin-spin 
interactions J are indeed observed in the solid phase. In solid samples, one can even 
use the direct spin-spin interaction to determine the internuclear distances according 
to (18.13). 

In the liquid phase, however, the angle 7'} between the interacting nuclei and Bo 
usually varies rapidly relative to the nuclear resonance frequency or Larmor fre­
quency. This causes an averaging of the function (1 - 3cos27'}) to zero, and as a result 
the field Bnucl at the position of another nucleus vanishes when averaged over the 
precession period of the nuclei; the direct dipole-dipole interaction is thus averaged 
out. The spatial average over cos2 7'}, as we saw in Chap. 16, gives just the value 
1/3. This may be different in the case of molecules, however, which may move 
sufficiently slowly in solution that the interaction is not averaged away; this can be 
true for example of large, biologically active molecules. 

18.2.3 Fine Structure and the Indirect Spin-Spin Coupling 
Between Two Nuclei 

On the other hand, the indirect magnetic spin-spin coupling of the nuclei, which is 
mediated by the binding electrons between them, is not averaged away by motions. 
The reason for this is the Fermi contact interaction between electrons and nuclei, 
which we treated in I, Sect. 20.3. It produces an indirect spin-spin coupling of the 
nuclei which is 102 to 104 times smaller than the direct interaction, and is isotropic. 

This coupling can be most simply understood for a system of two nuclei with 
spins of 1/2 and two binding electrons with paired spins. Figure 18.8 shows the 
spin arrangement. The two nuclei A and B with spins hand IB may be different 
nuclides, for example l3C and IH in a CH- group, or they may be identical nuclei 
with different chemical shifts, so that they would give rise to two resonance lines in 
the NMR spectrum without coupling; see Fig. 18.9. We can take as an example the 
l3C- 1H bond. Without spin-spin coupling, one resonance line is observed for the 
proton and another for the l3C nucleus, at a quite different resonance field strength. 
The binding electron SA which is nearest to the l3C nucleus will have its spin 
antiparallel to that of the nucleus in the most favourable energy state. Then, following 
the Pauli exclusion principle, the spin of the other binding electron, SR, is fixed in 

Fig. 18.8. The indirect magnetic spin-spin coupling, for ex­
ample in the H2 molecule or the l3C- 1H bond. The proton 
with spin IA polarises the spin SA of a binding electron in its 
neighbourhood. According to the Pauli principle, the spin ori­
entation of the second binding electron S B is then antiparallel 
to SA, and thus the orientation of the second nuclear spin, IB, 
is energetically favoured when it is antiparallel to IA (Upper 
sketch) relative to the parallel orientation (Lower sketch). The 
energy spacing between the two orientations is measured as the 
coupling constant J, which is positive in the present case 
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t 

" t ~ 

1 
Fig. 18.9. The magnetic coupling between two nuclei 
A and B: their resonance lines are shifted relative to one 
another by the chemical shift difference .18 (Upper draw­
ing). The coupling then splits each resonance line into two 
components. From the magnitude of the splitting, one can 
obtain the coupling constant J. Here, the case of J < .18 
is shown 

the direction antiparallel to SA, and one of the two possible spin orientations of the 
proton spin IB is energetically more favourable, namely the orientation antiparallel 
to SB and thus also antiparallel to the spin IA of the 13C nucleus. The energy spacing 
between the two orientations of the nuclear spins is quoted in terms of the spin-spin 
coupling constant J in Hz. Without the coupling, each nucleus, 13C and 1 H, exhibits 
a single NMR line; these single lines split in the presence of the spin-spin coupling 
mediated by the binding electrons into a doublet with a spacing of J between its 
two components, according to the scheme explained in Fig. 18.9. In contrast to the 
chemical shift, this splitting, which arises from an intramolecular magnetic field, is 
independent of the applied static field strength Bo. This indirect spin-spin coupling 
is also found in the H2 molecule, where the spins of the two protons are coupled via 
the two binding electrons. 

However, one should note here that the relative orientation of the spins I A and I B 

is not fixed, e.g. in the form t -J" by the indirect spin-spin coupling. The coupling 
merely has the effect that the two orientations of the nuclear spins which are sketched 
in Fig. 18.8, antiparallel, t -J" and parallel, t t, differ in energy by a very small 
amount. Both configurations are thus found with equal probabilities in the molecule, 
but there is a small energy splitting between them and thus the possibility of observing 
the indirect spin-spin coupling. 

If, as is the case in the -CH2 - group in ethanol, two protons are bound to 
the same C atom, then there is likewise a coupling of the two proton spins via 
the C atom; however, it plays only an indirect role through the electrons. This is 
explained in Fig. 18.10: one proton tends to orient the spin of the binding electron 
which is closest to it in the C - H bond in such a way that their spins are antiparallel. 
The second electron in the C-H bond, which is closer to the C atom, has its spin 
antiparallel to the first. This has the effect that the electron near the C atom in the 
second C - H bond tends to align its spin parallel to that of the first electron near 
the C atom, as is required by Hund's rule: it states that the parallel spin orientation 
for two otherwise equivalent electrons on the same atom is energetically more 
favourable. This then gives a favoured orientation for the spin of the second proton, 
as can be seen in Fig. 18.10. Overall, this indirect spin-spin coupling leads to an 
energetically favoured parallel orientation of the two proton spins relative to the 
anti parallel orientation. The coupling constant J is therefore negative for this spin-
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Fig. 18.10. The spin-spin coupling between two protons bound to 
the same C atom, which has a negative coupling constant; for exam­
ple, in a CH2 group. The parallel orientation ofthe two proton spins 
IH (black arrows) is energetically more favoured than the antiparal­
leI orientation. This coupling is mediated by the binding electrons; 
the nucleus of the C atom is not directly involved. According to 
Hund's rule, a parallel spin orientation for the two electrons as 
indicated on the C atom is more favourable than the anti parallel 
orientation. This explains the reversal of the nuclear spin coupling 
in comparison with Fig. 18.8 

spin interaction. The remarks about the probability of different spin orientations in 
the previous paragraph apply here as well. 

The interaction between two protons that is mediated by binding electrons can 
also be measurable over several intervening bonds. Thus, for the proton-proton 
coupling in the configuration H -C-H, a coupling constant of J = -10 to -15 Hz 
is found, but for H-C-C-H, it is J = +5 to +8 Hz. In the configuration 
H-C-C-C-H, i. e. over three intervening C atoms, the proton spin-spin coup­
ling becomes unmeasurably small. 

Some numerical values for the coupling constants J are given in Table 18.2. 

Nuclei Molecule J [s-l] Table 18.2. Coupling constants J in Hz 
for some nuclei in various types of bonds 

H-H H2 276 or different molecules 
H-C Cf4 125 
H-O H2O 73 
H-Si Sif4 -202 
C-C CH3CH3 35 
C-F CF4 -259 
H ... H H-C-H -(10 - 15) 

H-C-C-H 5-8 
H-C-C-C-H ~O 

18.2.4 The Indirect Spin-Spin Interaction Among Several Nuclei 

We have thus far assumed that the two coupled nuclei A and B have different chemical 
shifts whose difference is large compared to the coupling constant J. The spectrum 
of two coupled nuclei A and B with spins 1/2, which we have so far assumed for 
simplicity both to be protons, thus consists of two doublets with the same intensities, 
as indicated in Fig. 18.9; the spacing of the two component lines in each doublet 
corresponds to the coupling constant J, and the centres of the doublets are separated 
by the difference of the chemical shifts o. If the difference in the chemical shifts 
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(typically a few hundred Hz for H in different types of bonds) is no longer large 
compared to the coupling constant (typically a few Hz), then a superposition of the 
perturbing fields can occur, resulting in (especially) differing intensities, but also in 
differing splittings of the component lines relative to the unperturbed lines. Finally, 
if .<18 approaches 0, the two innermost lines of the doublets meet and form a single 
line, while the outermost lines vanish. In spite of the coupling, the spectrum exhibits 
only single lines. Such nuclei are termed equivalent. 

The behaviour of equivalent nuclei in NMR is especially simple. One refers 
to chemical equivalence when the same type of nuclei have the same chemical 
shifts, while magnetic equivalence means that the angular dependence of the energy 
terms in an applied field due to the direct spin-spin interaction is the same for both 
nuclei. The two protons in the CH2 group, or the three protons in the CH3 group 
of CH3CH20H (Fig. 18.2) are each chemically equivalent. Magnetic equivalence 
is found when the groups are sufficiently free to rotate, e.g. in solution, so that the 
anisotropy can be averaged out. 

Here, at least when the spectral resolution is only moderate, one observes only 
one line for each of the two proton groups. An isolated CH3 group, or an isolated CH2 
group, thus each has only one proton resonance line. The coupling within a group 
of magnetic and chemically equivalent nuclei has no influence on the spectrum 
and therefore does not lead to a splitting as described above (Sect. 18.2.3). In this 
case, there is a rapid exchange between the equivalent nuclei by means of so-called 
spin diffusion or flip-flop processes, in which only the spins are exchanged, not the 
particles themselves. This causes the splitting, which is in principle present, to be 
averaged out and to become unobservable. An isolated CH3 or CH2 group thus gives 
rise to only one resonance line each. 

The situation is different when there are several mutually inequivalent groups 
within the molecule, e.g. in ethanol, the mutually inequivalent CH2 protons on the 
one hand and the CH3 protons on the other. These groups are then no longer isolated, 
but rather can interact with each other. The protons in the CH2 groups differ, as 
shown above, from those in the CH3 groups by their differing chemical shifts; the 
two groups of protons are thus not equivalent to one another. The resonance of the 
CH3 protons in Fig. 18.2 is split into three lines with intensity ratios 1 :2: 1 by the spin­
spin coupling with the CH2 protons. The coupling with one CH2 proton namely splits 
the line from the CH3 protons into two component lines, and the coupling with the 
second CH2 proton causes another splitting with the same coupling constant, so that 
the centre lines fall together. This produces the splitting pattern of the CH3 protons; 
cf. Fig. 18.11. One can summarise this as follows: the spin configurations of the two 
CH2 protons in their interaction with the CH3 protons can be tt, t {-, {- t, H. The 
two middle configurations are energetically equivalent. 

Now, in order to understand the splitting of the line from the CH2 protons, we 
must, in tum, investigate the possible spin configurations of the 3 protons in the 
CH3 group. Here, there are 8 possibilities, of which only 4 are energetically distinct: 
ttt; tH; H t; Ht; t H; {-H; H t; {-H This explains the intensity ratio of 
1:3:3:1 for the four component lines in the CH2 proton resonance in Fig. 18.2, as 
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Fig. 18.11. The splitting pattern for the in­
teractions with several equivalent nuclei. 
The nuclear resonance signal of the two 
equivalent protons in the CH2 group is split 
into four component lines by the three CH3 
protons; conversely, the CH3 signal is split 
into three lines by the two CH2 protons. 
The reason why the OH signal is not split 
and also does not contribute to the other 
splittings is explained in the text 

illustrated in the diagram of Fig. 18.11. In general, it is found that N equivalent 
protons split the resonance line of a neighbouring group into N + 1 component 
lines. The intensity ratios are given by the number of ways of producing each of 
the energetically different configurations, i. e. the binomial coefficients, which can 
be represented by using Pascal's triangle, Fig. 18.12. This is an arrangement of 
numbers in which the entries in a particular row are obtained by adding their two 
nearest neighbour numbers in the preceding row. 

N Pascal's triangle 

o 
1 

2 
3 
4 

5 
6 

2 1 
1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 
1 6 15 20 15 6 1 

Fig. 18.12. Pascal's triangle: N equivalent protons split 
the resonance line of a neighbouring group into N + 1 
lines; their intensity ratios can be read off the triangle. 
The numbers in a particular row are found by adding the 
two neighbouring entries in the row above 

Finally, the resonance of the OH-group protons in Figs. 18.2 and 18.11 is still 
lacking. We should expect from the above discussion that this proton would give rise 
to a doublet splitting of the lines of the CH2 and CH3 protons, due to its two possible 
spin orientations, and that its own resonance line would be split into a triplet by the 
interaction with the CH2 protons, while the three components would again be split 
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into quartets by the CH3 protons. These splittings are in general not observable, as 
can be seen in Fig. 18.2, because ethanol usually contains a small amount of water 
impurity. 

The vanishing of the expected splittings is due to a chemical exchange of the 
hydroxyl protons with the protons of water. When the protons are exchanged between 
different molecules, the lifetime of a given spin configuration is limited by the 
exchange rate. The protons donated by water molecules, which undergo a rapid 
chemical exchange with the OH protons of the ethanol, have statistically distributed 
spin orientations and therefore shorten the lifetime of a particular OH-proton spin 
orientation. Since the fine structure splittings discussed above have magnitudes of 
the order of J = 1 Hz, an exchange frequency of J /2n ~ 0.1 S-1 is already sufficient 
to make the splitting OJ) unobservable, according to the relation Jexch < 1/2nov. 
Here, by exchange we are referring to chemical exchange. Only when a proton 
remains on the molecule without exchange for a time longer than r = 1/2nov can 
it produce a splitting of the lines of other proton groups in the molecule. If water 
is used as the solvent for ethanol, the exchange occurs much more rapidly; only in 
extremely anhydrous ethanol does the exchange become sufficiently slow that the 
splitting of the proton resonance lines from the OH group and the splitting of the 
lines of the other groups in the spectrum of Fig. 18.2 by the OH protons become 
observable. The occurrence or nonoccurrence of line splittings, or, more generally, 
of line broadening, can thus contribute to knowledge of a proton exchange rate. This 
is at the same time an example of the fact that NMR is also useful for the observation 
of dynamic processes and the determination of their rates. 

While the chemical shift is proportional to the applied magnetic field strength Bo, 
as shown in Sect. 18.2.1, the fine structure which results from the direct or indirect 
dipole-dipole interactions of the nuclear moments is independent of the applied field. 
This simplifies the analysis of NMR spectra, by allowing a comparison of spectra 
measured at different field strengths to distinguish the two effects. It is still another 
reason for the desirability of high magnetic field strengths in NMR spectroscopy. 
The various mechanisms which are responsible for the line frequencies in a high­
resolution spectrum can thus be more easily separated and analysed by carrying 
out the measurements at several fields Bo and thus in several different frequency 
ranges. However, the chemical shifts and the spin-spin couplings are often of the 
same order of magnitude; then the analysis becomes more difficult, as indicated 
above. 

18.3 Dynamic Processes and Relaxation Times 

In the preceding sections, we have seen that the linewidths in nuclear resonance 
spectra can yield information about the rates of processes which take place in the 
molecules under investigation or in the sample. As we have already mentioned, 
the resolvable structure of an NMR spectrum depends on whether and how rapidly 
the molecules are moving. If, for example, we place a system of similar molecules 
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in a disordered fashion into a matrix, then the anisotropic direct dipole-dipole in­
teraction will depend on the orientation and distance of each molecule relative to 
its neighbours, as seen from Eq. (18.12), and the resonance lines will have a cor­
responding inhomogeneous linewidth, which can be as much as 1 mT for small 
intermolecular distances. The smaller, isotropic indirect spin-spin interaction is in 
general hidden within this linewidth and therefore not observable. If we now trans­
form the rigid matrix into a liquid and thereby give the molecules the freedom to 
move and change their orientations rapidly, then the resonance frequency of each 
molecule will become time-dependent through the anisotropic spin-spin interaction. 
This can lead to an averaging out of the interaction and thus to a narrowing of the 
spectral lines. 

This effect can be understood as follows: when the exchange frequency v is 
small compared to the splitting 8v, expressed as a frequency, then the splitting 
corresponds to two separated states, A and B. If v is of the same order of magni­
tude as 8v, the lifetimes of the separated states become shorter and the linewidth 
correspondingly greater (lifetime broadening of A and B). If, however, v becomes 
large compared to 8v, the two previously separate states are now no longer dis­
tinguishable; instead, one obtains a new state AB, in which the different fields or 
frequencies are averaged out due to the rapidity of the exchange. The resonance 
lines appears narrow and unsplit, as in a homogeneous field. Depending on the 
origin of the rapid exchange, this phenomenon is called exchange narrowing or 
motional narrowing. This is explained more fully in Fig. 18.13 using a simulated 
example. 

The time-energy uncertainty holds in classical physics, also; in order to distin­
guish a resonance frequency v + L1 v from a frequency v, the number n of oscillations 
measured in the time T must differ by at least 1 for the two frequencies, i. e. T must 
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Fig. 18.13. The exchange narrowing of magnetic res­
onance lines: two nuclei, A and B, differ in their reso­
nance frequencies by 8v. The uppermost curve shows 
the resonance spectrum without exchange (schemat­
ically). The exchange frequency increases in going 
from the upper to the lower curves. The lines are at 
first broadened due to the shortening of the lifetimes 
ofthe states, then they merge together and finally, for 
very rapid exchange, there is only a single sharp line 
in the centre between the two original lines (from top 
to bottom). We quote the numerical values as an exam­
ple: 8v = 30 Hz, the exchange rate A ;=00 B = 1 s-i 
for the uppermost curve, 102 s -\ for the middle curve, 

v- and 104 s-\ for the bottom curve 
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be at least long enough that 

n = rv and n + 1 = rev + Llv) , (18.14) 

that is, 

1 
r=-. 

Llv 
(18.15) 

If now the resonance frequency changes in times shorter than 1/ Ll v, that is if the 
molecule moves more rapidly, then the variation of the resonance frequency can no 
longer be detected; instead, one measures a time-averaged intermediate frequency. 
The broad resonance line becomes narrow. This is referred to as motional narrowing. 

For protons, at LlB = 1 mT, we find 

(18.16a) 

and 

(LlV)-1 ~ 2.5 . 10-5 s . (18.16b) 

The reorientation times for molecules in low-viscosity liquids are much shorter, 
typically 10-10 s. The anisotropic spin-spin coupling is thus averaged out, and the 
NMR spectrum consists of sharp lines as shown in the lower spectrum in Fig. 18.2. 

In a similar manner, an anisotropic interaction can be averaged away by a rapid 
exchange of nuclei between different molecules, e.g. of protons between water and 
the OH - groups of alcohols as in Sect. 18.2.3. If this exchange takes place quickly 
enough, i. e. more rapidly than would correspond to the frequency range which 
is averaged over, then with increasing exchange rate it at first leads to lifetime 
broadening, and then, at a sufficiently rapid rate, to an exchange narrowing of 
the signals. The velocities of configurational changes in molecules, that is of the 
rearrangement of groups within the molecule, can be determined an an analogous 
way, when they lead to an averaging out of the different chemical shifts of the 
differing configurations; see Figure 18.13. 

In general, the linewidths of NMR signals open up the possibility of studying 
motional or exchange processes in molecules. Such processes are also the origin of 
many temperature dependencies in the measured resonance spectra. In many cases, 
for example, the averaging out of anisotropies through motions is not possible at 
low temperatures, but becomes so with increasing temperature and thus leads to 
a narrowing of the resonance lines in the spectrum. 

In solids, where motional narrowing is not possible at all due to the rigid lattice 
structure, a dynamic averaging-out of the anisotropic interactions can be produced 
by multiple resonance and pulse methods. For example, using multiple resonance 
techniques with two or more differing frequencies or resonance fields, the spins of 
one type of nuclei can be selectively resonated and caused to flip rapidly between 
their allowed orientations. This allows them to be decoupled from a second type 
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of nuclei. With special pulse sequences, one can therefore suppress the anisotropic 
interactions with other nuclei and the line broadening which they cause. 

This is the basis of the high-resolution NMR technique known as spin decoupling. 
With its use, for example, the coupling of the CH3 protons to the CH2 protons in the 
spectrum of ethanol (cf. Figs. IS.2 and IS.II) can be removed by applying an intense 
second radiofrequency signal which causes one of the groups of protons to flip its 
spins so rapidly that the other group experiences only its average orientation. The 
quartet or the triplet of lines in Fig. 18.11 then collapses to a single line. Such spin­
decoupling methods in many variations find application in high-resolution NMR 
spectroscopy. 

Linewidths in resonance spectra can frequently be described in terms of the two 
relaxation times Tj and T2. These times were introduced and defined in I, Sect. 14.5. 
The time Tj measures the length of time in which an excited spin state returns to 
thermal equilibrium through interactions with the environment (production of heat) 
or with other spins. The time T2 is a measure of the rate of loss of phase coherence 
among the spins within a particular spin system. Relaxation times can be determined 
quite directly using pulse methods, such as the spin-echo method described in I, by 
following the time development of the nuclear magnetisation after a brief disturbance 
of the thermal equilibrium magnetisation. 

Longitudinal or spin-lattice relaxation, with the time constant T j , is produced in 
the main by fluctuations of neighbouring molecules or of paramagnetic impurities 
which generate fluctuating magnetic fields at the positions of the relaxing nuclei. It 
measures the spinflip rate of the nuclei relative to the quantisation axis z determined 
by Bo, and with it, the transfer of energy to the nuclear environment. Typical Tj 
times in NMR are in the range between 10-4 and 10 s in liquids and between 10-2 

and 103 s in solids. 
Transverse or spin-spin relaxation, with time constant T2, is a measure of the 

change in the phase relation between the spins of otherwise equivalent nuclei in 
the xy plane perpendicular to the direction of the static field, z. This can be caused 
by somewhat different local fields acting at different nuclear sites, or else a phase 
exchange can be produced by the spin-spin interaction of equivalent nuclei. Both 
processes contribute to the effective relaxation time T~. Since the longitudinal relax­
ation naturally also destroys the phase relation, the overall transverse relaxation rate 
of a single type of nuclei with spin 1/2 is given by: 

1 1 1 
-=-+-
T2 T~ 2Tj· 

(1S.17) 

Typical values of T2 in solids lie in the range of 10-4 s. In liquids, T2 has similar 
values to T j ; see above. 

If the sample is irradiated with such a high radiofrequency power level that 
the population difference between the resonant levels given by the thermal energy 
kT can no longer be maintained by Tj-relaxation processes, the signal intensity no 
longer increases proportionally to the rf power, and the resonance lines are broadened. 
Except in the case of this saturation broadening, the linewidth is determined by T2, as 
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long as no additional mechanisms contribute to an inhomogeneous line broadening. 
The uncertainty relation for the energy width of a resonance line limited by T2 gives 
,1£ = h/T2. From this it follows that the frequency width of a homogeneous line is 
given by 

1 
DV= --. 

2JTT2 

When T2 has a value of 1 s, the linewidth is thus of the order of 0.1 s-1 . 

(18.18) 

Measurement of relaxation times opens up a broad field for the investigation of 
dynamic processes of spins and thus of the molecules to which they belong. 

18.4 Nuclear Resonance with Other Nuclei 

Of course, nuclear magnetic resonance in molecules is not limited to protons, about 
which we have mainly spoken thus far. All nuclei with nonvanishing nuclear spins 
can in principle be used for nuclear magnetic resonance spectroscopy. The same 
interaction mechanisms apply here as to protons, i. e. the chemical shifts and spin­
spin coupling. 

Both quantities are, to be sure, usually considerably larger for other nuclei and 
thus more readily measurable than for protons. This is due to the fact that in larger 
atoms, there are more electrons and they are spread over a larger volume than in 
hydrogen. The possibilities for diamagnetic shielding and spin polarisation are thus 
increased. 

For the investigation of organic molecules, the nuclide 13C (natural abundance 
1 %) is of importance; for biologically relevant molecules, 31p (abundance 100%) is 
significant. 

Other nuclei with I > 1/2, such as 14N (I = 1), or Cl and Br (I = 3/2) split the 
resonance lines of neighbouring nuclei with which they have spin-spin interactions 
into (21 + 1) components, since these nuclei have (21 + 1) possible spin orientations 
in an applied field. 

In addition, nuclei with I > 1 have an electric quadrupole moment. This 
moment is SUbjected to an orienting interaction in an electric field gradient; such field 
gradients occur in molecules, owing to the directed chemical bonds. The orienting 
tendency of the field gradient acts in competition with the magnetic orientation of the 
nuclear spins in the applied field and leads to an additional relaxation mechanism, 
shorter relaxation times, and thus to line broadening in the spectrum. 

If the nuclear quadrupole moment is known, the electric field gradients in mol­
ecules and solids can be determined by means of nuclear quadrupole resonance 
(NQR); see also I, Sect. 20.8. 
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18.5 Two-Dimensional Nuclear Resonance 

18.5.1 The Basic Concepts 

The goal of this method, which is experimentally and theoretically quite demanding, 
is to determine the structures of large molecules, e.g. proteins. The nuclear spins 
serve as probes, which, due to the very small diameter of the nuclei on the order 
of 10-15 m, are extremely well localised. Their interactions are very sensitive to 
the local environment. However, on the other hand, their interaction energies are 
very small, less than 0.2 J mol-I, corresponding to a thermal energy of 30 mK. The 
information about the molecular structure is obtained from the interactions between 
pairs of nuclei. The most important interactions for this purpose are the magnetic 
dipole-dipole interaction, which allows the determination of the distances between 
the interacting nuclei, and the scalar J couplings, from which dihedral angles can 
be obtained. Finally, the interaction of the nuclear spins with their surroundings 
gives rise to the chemical shift. Thus far, chemical shifts from some hundreds of 
spins in a molecule could be measured with a precision of 16 - 18 bits, i. e. with 
an accuracy of ca. 1/300 000. The distances between thousands of proton pairs can 
be determined with a precision of ca. 0.1 A. In addition, several hundred dihedral 
angles can be measured with uncertainties of < 10° (in each case with respect to 
one molecule). The difficulty of the method results from the weakness of the nuclear 
spin interactions, so that ca. 1014 - lOIS spins are required for a measurement time 
of ca. one hour. At the same time, one has to struggle against a poor signal/noise 
ratio. Thus two problems must be solved: 

1. the optimisation of the signal/noise ratio; and 
2. collection and analysis of the enormous quantity of information about a partic­

ular molecule. 

The established method of determining the interactions consists of I-dimensional 
Fourier transform spectroscopy, which was treated in I, Sect. 20.6, and which we 
will recall briefly here. The sample is polarised by a strong, constant magnetic field 
applied parallel to the z axis. Then an rf pulse (radio-frequency pulse) is applied in 
a particular direction (e.g. along the y axis) during a well-defined time, giving rise 
to a IT /2 pulse, represented as 

(Jr /2) 
Mkz ---+ Mkx. (18.19) 

The M's are the components of the magnetisation of the k-th nucleus. Following this 
pulse, a so called free induction decay occurs. It is a result of the fact that depending 
on the local field, different nuclear spins have different precession frequencies. These 
different frequencies could be due to e.g. different chemical shifts. The measured 
signals are due to the magnetisations caused by the nuclear spins in the x and y 
directions. 

(18.20) 
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Here, Mkx is proportional to hx, where hx is the spin of nucleus k in the x direction. 
In a quantum-mechanical treatment, Mx, My, and M z as well as I = (lx, /y, /z) 
become operators, as we discuss below. The magnetisations in the x, y directions 
can be combined into a complex magnetisation: 

(18.21) 

Let us consider a simple example, in which no relaxation processes take place, 
no spin-spin interactions are present, and only chemical shifts occur. Then P+, here 
considered as a classical variable, can be represented by a superposition 

p+ = L ak expi.Qkt , 

k 

(18.22) 

where the frequencies fh are the precession frequencies of the individual spins. In 
order to obtain a frequency spectrum, i. e. the energy values, one Fourier transforms 
(18.22) in the form: 

P+(w) =.!.. {T exp-iwt P+(t)dt . 
T Jo (18.23) 

The Fourier transformation can also be carried out for interacting spins. This is 
because the Schr6dinger equation is linear. This method is well suited for the mea­
surement of chemical shifts, but it gives no information about the spatial relations 
between the spins. Therefore, we tum to 2-dimensional Fourier-transform spec­
troscopy. The underlying pair interactions are: 

1. the J coupling 

(18.24) 

which leads to multiplet splitting in high-resolution spectra in the liquid phase. 
In this case, an oscillatory transfer of spin ordering takes place between two 
spins hand /z, i. e. the two spin directions flip back and forth, as we shall see 
below; 

2. the magnetic dipole-dipole interaction, which is described by a tensor Dmn. 
Its modulation in time, for example due to motion of the nuclei, gives rise to 
relaxation processes (even in isotropic solutions). This causes a multiexponential 
drift towards thermal equilibrium, producing a cross-relaxation between spins, 
as we shall also see below. This then makes it possible to reconstruct the 3-
dimensional molecular structure. 

These interactions also influence I-dimensional spectra, but there it is impossible 
to distinguish between two independent signals and a spin-spin doublet. A first 
answer to this problem is provided by 2-dimensional spectroscopy making use of 
double-resonance experiments. 

Here, we tum to the important second answer, a method which has become 
known under the trademark COSY. The original suggestion was due to Jean Jeener 
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(1971), and the first experimental realisation was by R. R. Ernst in 1974. The com­
puter methods for determining molecular structures were developed in particular by 
K. Wuthrich (1986). The following diagram shows the basic principle of a measure­
ment: 

First, as mentioned above, a JT /2 pulse is applied, which flips the spins from the z 
direction into the x, y plane and allows them to precess there. After a predetermined 
time t], a second JT /2 pulse is applied, and after an additional delay t2, the signal 
is measured. Clearly, the emitted signal s depends both on the time t] and on the 
time t2. In the course of a measurement, both times t] and t2 must be varied. By 
Fourier transforming the function s = s(t], t2) with respect to the two arguments, we 
obtain a function Sew], (2). This signal, converted to an intensity, can be plotted in 
the two-dimensional w] , W2 plane. The result is a 2-dimensional spectrum in which, 
as we shall see, the precession frequencies during the time-evolution period t] are 
correlated with those during the period t2. As we shall also see, the diagonal and 
cross peak are a measure of the elements of the transfer matrix. 

Let us now describe the most important transfer processes (Fig. 18.14, schematic): 

;L ________ J\ H R 0 
' .. ---------,/ 

nl I II 
C--C--NII_-C--C--N-
I II 1~:::j]J I 
R 0 @< >@ 

-N 

Jkl 

coherent transfer cross relaxation 

~-===------~ 
-t~ 

Fig. 18.14. A schematic representation of the two pair interactions which are relevant for NMR 
spectroscopy. The scalar interaction Jkl which is mediated through the bonds contributes to 
the Hamiltonian and leads to a coherent transfer of spin order between the spins h and II. The 
time-modulated dipole-dipole interaction Dmn leads to a mUltiexponential cross relaxation 
between the spins 1m and In. These two interactions allow the sequential attribution of the 
resonances of neighbouring spins in the peptide fragment shown, and thus allow the structural 
parameters to be determined. The J interaction, mediated by three bonds, is a measure of the 
dihedral angle around the central bond, while the dipole-dipole interaction gives a measure 
of the distance between the nuclei. (After R. R. Ernst et at., cf. the literature list) 
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1. the scalar coupling is the basis for in particular the homonuclear 2-D correlation 
spectrum and is detennined by the COSY method mentioned above; 

2. the internuclear relaxation is based on the nuclear Overhauser Effect (see below) 
and is determined by the NOESY method; 

3. finally, we mention also chemical exchange, which is studied by the EXSY 
method. 

Let us explain the basic ideas of these experiments using an example. We select 
one of the tenns in the sum of Eq. (18.22) and thus consider only one spin. We 
associate the complex plane, z = x + iy, with the x, y plane, allowing us to describe 
the motion of the spins in this plane by an exponential function ei.QI t. If the precession 
after the first JT /2 pulse has continued for a time tl, then the direction of the spins 
is given by the function z = ei.QJtl. Now, a certain manipulation of the system that 
is to be measured is carried out; for example, the spin-spin interactions are modified 
in a particular way. The spin under consideration will then precess under the new 
conditions at a different frequency Q2. This precessional motion is followed during 
the time t2 and the resulting position of the spins in the z plane is then determined. 
The signal will depend, as mentioned above, on the times tl and t2. 

(18.25) 

and thus 

(18.26) 

When the Fourier transfonnation is perfonned, we again obtain a 2-dimensional 
representation. 

IS.S.2 The Quautum-mechanical Theory of COSY 

The starting point is the SchrMinger equation 

(18.27) 

which refers to the two spins with indices k and I. The Q are the precession fre­
quencies, which also contain the infonnation about chemical shifts and enter the 
Hamiltonian Ho; we have already met up with the interaction tenn, which here en­
ters the second part of the Hamiltonian as HI. This SChrodinger equation is a model, 
insofar as the interaction between the spins would be more exactly described by 

(18.28) 

However, as can be shown by transforming to a rotating coordinate system, the 
interaction tenns for the x and y axes cancel for the most part, so that (18.27) 
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represents at least a good approximation. Here, the I are spin operators, in which we 
leave off the factor n in order to keep the following formulas as simple as possible. 
The operators Ho and HI commute. The spins evolve under the combined effect of 
Ho and HI. but the order in which they act on the spins is unimportant, so that in the 
following, we can treat first the one effect and then the other. As we know, Ho gives 
rise to the spin precession, so that we must concern ourselves in particular with HI. 

In the following, we assume that the transformation to a rotating coordinate 
system has already been made, so that Q k and Q I give only the chemical shifts. At 
an initial time, a pulse 

Hpulse = const. BxChx + fix) (18.29) 

acts upon the system, with Bx independent of time in the rotating system. The 
treatment of the various effects is not particularly difficult using the representation 
of the SchrOdinger equation that we have chosen here, but it leads to very long 
formulas whose physical meaning is not readily apparent. We therefore introduce 
the Heisenberg representation, which is treated in more detail in the problems at 
the end of this chapter. Here, it will be sufficient to explain the most important 
properties of the SchrOdinger representation and of the Heisenberg representation. 
In the SchrOdinger representation, the time-dependent solution lJt of the Schr6dinger 
equation is first found, and the connection to measured values is made via expectation 
values, written e.g. as 

f lJt*(x, t) ex lJt(x, t)dx or (lJt(t) I D IlJt(t)) . (18.30) 

In the Heisenberg representation, the time evolution which is contained in the wave­
function lJt is included in a certain manner in the operator D, here the dipole operator, 
so that we must now evaluate expectation values of the form 

(lJt(O) I D(t) IlJt(O») . (18.31) 

As we shall soon see, the Heisenberg representation has the great advantage that 
we can determine the time evolution of the operators directly and can immediately 
interpret them. 

Let us now consider the effect of HI upon a spin in a classical treatment. Then 
we can write the interaction term HI in the form 

(18.32) 

where the part in parentheses can be interpreted as an effective field which is mag­
netically connected to the spin with index k upon which it acts. This effective field 
clearly acts in a manner analogous to Q k and leads to a precession of the spin, i. e. to 
its rotation around the z axis. We thus obtain the time evolution of the spins in the 
form 

hx -+ hx cos Q't + h y sin Q't , (18.33) 
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where the angular velocity Q is given by 

(18.34) 

As we shall see, the quantum-mechanical treatment introduces an important new 
term, which is then the motivation for the 2-dimensional nuclear resonance experi­
ment that we are considering here. The fact that the experiment can be successfully 
carried out is, by the way, an indirect indication of the validity of quantum mechanics, 
which cannot be substituted by classical physics. 

Let us now consider the effect of the operator H] upon the x component of spin 
k in a quantum-mechanical treatment; we write it in the form 

(18.35) 

As we shall show in the problems at the end of this chapter, in the quantum­
mechanical treatment, a new factor appears in the second term in the Heisenberg 
representation as compared to (18.33), namely liz. This factor will be seen to be 
fundamental. Now, at the same time, both terms of the operator 

act upon the spin, so that we obtain a further precessional motion 

hAO) -+ hx(t]) = hAO) cOS(Qkt1) + hy(O) sin(Qkt1) 

hy(O) -+ h y(t1) = -hAO) sin(Qkt1) + hy(O) cOS(Qkt1) 

(18.36) 

(18.37) 

which occurs in addition to the motion described by (18.35). If we substitute (18.37) 
into (18.35), we obtain the result (18.38) 

+ 2[lky COS(Qkt]) - hx sin(Qkt1)]/lz sin(nhlt1) . 
"-,.--' '-,..--' 

2 3 

Here, the components of the spins refer to the initial time t = 0: 

h = h(O) , II = 11(0) . 

(18.38) 

(18.39) 

Since only the transverse component of the spins couples to the oscillating electro­
magnetic field, in a measurement the precession frequency of the spin k would "light 
up": 

(hx) # 0, 

(Ilz) # 0 , 

(18.40) 

(18.41) 

Now, however, the decisive effect enters: we apply a second n /2 pulse, with its mag­
netic field pointing in the x direction. We thus prepare a new quantum-mechanical 
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initial state in the rotating coordinate system. The application of the n: /2 pulse leads, 
as we know, to another rotation around the x axis according to the rules 

hx -+ hx 

h y -+ hz 

liz -+ -Ily • 

(18.42) 

(Cf. the problems at the end of this chapter.) The rules (18.42) in particular lead to 
the replacement 

(18.43) 

which we now must insert into (18.38). 
We now consider what further time evolution hx undergoes. Contribution 1 in 

(18.38) contains a coupling between l and k and is uninteresting in terms of our 
treatment. Term 2 yields a new initial state for the further time evolution after the 
n: /2 pulse. This initial state is given by: 

(18.44) 

It evolves further under the influence of the chemical shift and of 

(18.45) 

whereby we find 

(18.46) 

and the additional term 

1 . 
- 2, Ilx sm(n: Ikl t2) . (18.47) 

If we insert (18.47) into (18.44) and take the precession into account, we obtain in 
particular for the evolution of hx the contribution 

(18.48) 

As we see, the operator hx, which refers to spin k, now includes contributions 
resulting from the precessional motion of the spin of index l. Expression (18.48) 
thus implies a coupling between the spins k and l, whereby the contribution of spin k 
results from the time tl in the signal, while the contribution of spin l results from the 
time t2 during the measurement process. If we now measure the transition of spin l 
via its x component, the corresponding matrix element is found to be nonzero 

(18.49) 



430 18 Nuclear Magnetic Resonance 

as is also 

(18.50) 

We thus obtain for the signal Mx 

(18.51) 

If we decompose the cosine and sine functions into individual exponential functions 
then we can see that two components occur in the time interval tl, namely ilk ± 7r Jkl, 
and correspondingly in t2 the components ill ± 7r AI. Imagining the signal to be 
Fourier transformed, we plot it in the WI, W2 plane and obtain Fig. 18.15. 

Clearly, the strength of the interaction energy J between the spins and their 
chemical shifts ilk, ill can be read off this diagram directly. 

Let us summarise our results: owing to the interaction term 

(18.52) 

the angular momentum component in the x direction obtains an additional contribu­
tion of the form (cf. (18.35)) 

(18.53) 

which thus, roughly speaking, reflects the precession of the spins k at the frequency 
ilk within the first time interval. If we now apply the second 7r /2 pulse, then the 
roles of k and I are exchanged (cf. (18.43)). The radiation which is due to the y 
component of spin I now becomes measurable and with it the associated frequency 
ill (compare (18.48)), 

~ g(ilZt2) . (18.54) 

Fig. 18.15. An example of the information which can be derived from the frequencies Qk, QI 

and hi in the two-dimensional spectrum. In a real molecule, a large number of such peaks 
occurs and they must be individually analysed 
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In both cases, owing to the spin-spin interactions, additional oscillations at the 
angular frequency rr Jkl occur. The net signal is thus 

(18.55) 

and represents the connection between spins which we were seeking. 
For completeness, we now discuss the remaining terms. The term 

(18.56) 

can be treated exactly like the term we just discussed. The term which appears in 
formula (18.38) above, 

(18.57) 

is uninteresting for our discussion. It remains invariant with respect to 

(18.58) 

and describes only a precession during the time interval t2. This is not observed 
when a 2-dimensional Fourier transformation is carried out, since the associated 
frequencies are either close to zero or twice as high, and do not lie in the region 
of Q, where Q is the overall precession frequency, i. e. in the non-rotating coordinate 
system. 

In the preceding derivations, we derived relations between spin operators. These 
relations can, on the one hand, be interpreted in a very intuitive fashion, but on 
the other hand, they can be "translated" into relations between classical quantities 
by taking expectation values using the wavefunctions which are appropriate to the 
problem, namely coherent spin functions (cf. the problems at the end of this chapter). 

In this section, we have treated the coherent interactions mediated by the J coup­
ling. This is the origin ofthe name COSY (coherent spectroscopy). In the next section, 
we tum to the incoherent interactions, whereby in particular relaxation processes are 
considered, which we have neglected in the preceding section. 

18.5.3 The Investigation of Dynamic Processes 
Using 2-Dimensional Exchange Spectroscopy, in particular NOESyl 

The investigation of dynamic processes, such as chemical exchange, cross relaxation, 
the nuclear Overhauser effect, spin diffusion and cross polarisation by means of 2-D 
spectroscopy has, as we have mentioned above, a number of advantages as compared 
to the I-D techniques. This is particularly the case when the system contains an 
extended network of exchange processes which occur simultaneously. The nuclear 
Overhauser effect consists of the transfer of magnetisation between the spins and in 
resulting intensity variations. Cross relaxation depends both on the character of the 

1 Here, we follow to a large extent the treatment in Chap. 9 of Ernst, Bodenhausen, and 
Wokaun; see the literature list. 
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motional process and also on the distance between the spins which are interacting. 
The 2-D methods are especially useful for the study of slow dynamic processes with 
rates which are too slow to influence the lineshapes. Two-dimensional exchange 
spectroscopy is thus particularly well-suited for the investigation of cross relaxation, 
the transient Overhauser effect and spin diffusion in solids. When applied to chemical 
exchange, the information content of the 2-D exchange spectra is greatest when the 
temperature is chosen so that the exchange rate is large compared to the longitudinal 
relaxation and small compared to the spectral parameters which are influenced by 
the exchange. The basic idea of 2-D exchange spectroscopy consists in frequency 
marking of the longitudinal magnetisation at the various sites before the exchange 
takes place, so that after the exchange, the path of the magnetisation can be traced 
back to its origin. While the magnetisation is put into a nonequilibrium state, the 
concentrations of the chemical species remain in a constant dynamic equilibrium 
during the whole experiment. 

¢1 ¢2 ¢3 

------...a.-D _t1 ...o......a.-D _'tm -------&.....oI~ 
Fig. 18.16. The basic scheme for 2-D exchange spectroscopy, where t] and t2 are the evolution 
and detection intervals, respectively. The exchange time Tm is usually held constant in a 2-D 
experiment, but it can be varied, so that a 3-D spectroscopy results. (After Ernst et at.) 

Let us consider the basic sequence shown in Fig. 18.16. Here, a pair of nonse­
lective nl2 pulses is applied. Nonselective means that these pulses act in a similar 
manner on all the spins considered. A pair of such nonselective n 12 pulses separated 
by the evolution period f] is used to prepare the nonequilibrium populations at the 
beginning ofthe mixing time Tm. For simplicity, we consider a symmetric chemical 
exchange between two positions with the same concentrations (kAB = kBA = k), 

the same spin-lattice relaxation times (Rt = Rf = Rd, and the same transverse 
relaxation times (T2A = Tf = T2)' The transverse magnetisation, which is excited 
by the first nl2 pulse in the y direction, precesses freely during the time interval fl. 
When the exchange is slow, we can neglect its effects on the linewidth during this 
time interval, and we obtain two complex components of the magnetisation, which 
is treated as a classical quantity: 

M!(tl) = MAoeWAtl-tllTz , 

M1(td = MBOeWBtl-tIITz . 

(18.59) 

(18.60) 

When the second pulse is applied along the y axis, the real components of the 
transverse magnetisation are converted into components of the longitudinal mag­
netisation: 
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MAz(Tm = 0) = -MAOcosQAtle-tl/T2 , (18.61) 

MBz(Tm = 0) = -MBO cos QBtle-tl/T2 . (18.62) 

The y component remains unchanged by this pulse and is usually wiped out by an 
inhomogeneous magnetic field. In the case that the second pulse does not correspond 
exactly to Tr /2, it is to be recommended that the contributions to the magnetisation 
which tends towards MAO and M BO in the interval tl be eliminated by phase changes. 
The tl modulated longitudinal components in equations (18.61) and (18.62) move 
due to chemical exchange or to cross relaxation from one position to another, while 
the spin-lattice relaxation erases the memory of the original marking, so that we 
obtain 

(18.63) 

and 

1 + MBz(Tm = 0)"2(1 + e-2krm)e-TmfTt , (18.64) 

where k is the rate constant of the exchange process. The final Tr /2 pulse in the y 
direction converts the longitudinal components into an observable transverse mag­
netisation. Following the 2-D Fourier transformation, a cross peak appears at the 
position (WI, (2) = (QA , QB) with an integrated amplitude of IBA (Tm) if amagneti­
sation component which precesses at the frequency Q A during the time interval tl 
then assumes a precession frequency Q B during the time t2. The amplitudes hZ(Tm) 

of the diagonal and cross peaks depend on the equilibrium magnetisation MLO and 
on mixing coefficients a, so that we find in general 

IAA(Tm) = aAA(Tm)MAO , 

IBB(Tm ) = aBB(Tm)MBo , 

IAB(Tm ) = aAB(Tm)MBo , 

IBA(Tm ) = aBA(Tm)MAo . 

(18.65) 

(18.66) 

(18.67) 

(18.68) 

The mixing coefficients here correspond to the exponential factors in Eqns. (18.63) 
and (18.64) and are given by 

1 
aAA = aBB = -(1 + e-2krm)e-Tm/Tl 

2 
(18.69) 

and 

(18.70) 
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Fig. IS.17. Transfer of the frequency-marked longitudinal polarisation in the 2-D exchange 
spectroscopy of a symmetric two-site system. The amplitudes of the diagonal peaks, which are 
proportional to aAA (Tm) = aBB( Tm), decay bi-exponentially, while the cross-peak amplitudes, 
proportional to aBA(Tm ) = aAB(Tm ), at first increase due to the exchange before they again 
decrease owing to spin-lattice relaxation. (After Ernst et al.) 

The paths which lead to the diagonal and the cross peaks are indicated schematically 
in Fig. 18.17. Note that for systems lacking resolved couplings, the appearance of 
a cross peak is sufficient evidence that an exchange has taken place. In the case that 
the two sites are symmetric, as we have discussed here, i. e. for MAO = MBo, the 
exchange rate can be determined from the ratio of the peak intensities or maxima, 

(18.71) 

These expressions can be generalised to the case of exchange between M sites, 
where chemical exchange takes place simultaneously with cross relaxation. The 
great advantage of the 2-D scheme is the possibility that it offers to study networks 
with a large number of sites. Although a number of experiments with differing values 
of t1 is necessary in the 2-D method, it offers a notable sensitivity due to the fact that 
all the processes are studied at the same time, which is not possible with the I-D 
method. 

The nuclear Overhauser effect discussed here gives unique information on mol­
ecular structures in solution which cannot be obtained by any other technique. Such 
measurements have taken on major importance in molecular biology, where they 
permit the complete determination of the 3-D structures oflarge biomolecules. Two­
dimensional spectroscopy based on the nuclear Overhauser effect is abbreviated as 
NOESY. 
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18.6 Applications of Nuclear Magnetic Resonance 

Nuclear spin resonance spectroscopy has been developed in the past decades with the 
help of very sophisticated experimental techniques to a method with which one can 
analyse the structures and the bonding in molecules in more detail than with all of 
the other methods available to physicists and chemists. This is true not only of small 
molecules, but also of polymers and large, biophysically and biochemically relevant 
functional units. This method is indispensable both for analysis and for structural 
investigations, and it belongs among the most important tools of the chemist. 

It can furthermore be applied to the study of dynamic processes, of the motions 
of molecules or parts of molecules, and of molecular reactions. In recent years, 
position-resolved nuclear spin resonance, called spin tomography, and in general 
the in vivo resonance methods, have gained considerable importance in biology and 
medicine. As explained in more detail in I, Sect. 20.7, in tomography the spatial 
positions of the nuclear spins in an inhomogeneous magnetic field are marked by 
their splittings and thus their resonance frequencies. It thus becomes possible to 
investigate molecules and their reactions in the interior of living organisms without 
damaging them. Important applications are the study of metabolic processes and of 
the mechanisms of action of pharmaceutical compounds in vivo. 

In addition to protons, as we have already mentioned in Sect. 18.4, also the 
nuclides l3e, 19p, and 31 P are often used as probes for NMR studies. However, the 
method allows the invesitgation of any nucleus which has a nonvanishing nuclear 
spin. Additional information can be obtained from nuclear quadrupole resonance 
using nuclei with I > 1 in the electric field gradients associated with chemical 
bonds. 

Problems 

18.1 a) Although the nuclear spin is a purely quantum-mechanical quantity, it 
can be described classically in terms of an angular momentum. Write the equation 
of motion of a nuclear spin in a magnetic field B and derive from it the Larmor 
frequency of its precessional motion. 

b) The Earth's magnetic field at the equator has a strength of 1.3· 10-5 T. What 
is the Larmor frequency with which a proton spin would precess around the field 
direction? 

18.2 a) Por an NMR laboratory at a university, the purchase of an apparatus is 
planned with which experiments on proton spin resonance can be carried out. The 
salesperson of a supplier suggests a spectrometer with a fixed magnetic field of 
2.166 T and variable rf frequency. A student thinks about this briefly and then 
advises against the purchase. Why? 
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b) The advice of the student is followed and a different spectrometer is purchased, 
which operates at a fixed frequency of 30.256 MHz. At what magnetic field does it 
detect the resonance of protons, and of 13C nuclei? 

18.3 In the NMR spectrum of a molecule AB, four lines at D = 5.8,5.7,1.1 
and 1.0 ppm are observed. A 100 MHz spectrometer was employed using TMS as 
standard. Determine the chemical shifts of the nuclei A and B (in D) and the coupling 
constant 1 between them (in Hz) for the case that 1 « D. 

18.4 The electron density of an atom is influenced by the inductive effect of a 
neighbouring atom X. Order the resulting chemical shifts of the X-methyl groups 
N-CH3, O-CH3 and C-CH3 according to their strengths. 

18.5 Describe the NMR spectrum of the fluorine nucleus in vinyl fluoride, 
HzC = CHF. The molecule contains three inequivalent protons Ha, Hb and Hc; 
the differences of the chemical shifts of the individual protons are considerably 
larger than their coupling constants, which have the values given: 

lHa,Hb = 5 Hz lHa. F = 85 Hz 

lHb.Hc = -3Hz lHb,F = 50Hz 

lHc,Ha = 13 Hz lHc,F = 20Hz 

18.6 Describe (qualitatively) the proton resonance spectrum of 1,1 ,2-trichloroethane, 
CHzCI- CHClz, in deuterochloroform, CDCh. 

18.7 In the molecule l-nitropropane, H~C-CH~ - CH2-NOZ, there are three 
types of inequivalent protons (Ha, Hb, and HC). In the NMR spectrum, one finds 
triplets at 1.03 ppm and 4.38 ppm, along with a sextet at 2.07 ppm (with relative 
intensities of 1:5:10:10:5:1). Determine the chemical shifts Da, Db, and Dc. What 
information can you give about the coupling constants lab, lac, and hc? 

18.8 a) What proton resonance spectrum would you expect from acetaldehyde, 
CH3CHO (lHH = 2.9Hz), if the chemical shifts of the protons are 2.20 and 
9.80ppm? b) An external magnetic field of 1.5T or 7.0T is applied. What are 
the differences in each case between the local magnetic fields in the two regions of 
the molecule? 

18.9 Describe the proton resonance spectrum of CD3COCDzH, which is often 
present as an impurity in the fully deuterated solvent acetone, CD3COCD3. Assume 
that no coupling exists between CD3 and CDzH. 
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18.10 Using a simple model, one can arrive at an expression for the motional 
narrowing of NMR lines. 

At the site of a magnetic dipole (spin), let a B-field fluctuate statistically between 
the two states Bo + Bi and Bo - Bi (e.g. due to changes in the anisotropic dipole­
dipole interaction). This gives rise to a phase shift of the spin relative to its neighbours 
and thus to a transverse relaxation within the time T2 . 

How does T2 depend on the average fluctuation time r? Use the analogy between 
the phase shift 4> and the path length L which a particle undergoing a "random walk" 
of step length s traverses after n steps, (L 2) = ns2 (for the mean square path length). 
Keep in mind that spins with a phase shift of 4> > I no longer contribute to the 
resonance signal. 

What is the connection between the linewidth L1 v and the width L1 Vo = 
(1j2n)yB; found in a rigid lattice? 

18.11 Why do NMR spectra taken in solids in general exhibit greater linewidths 
than those in liquids? 

18.12 a) In an NMR measurement with a 60 MHz spectrometer, the resonance 
lines of the two methyl groups of N,N-dimethylnitrosoamine, (CH3hN-NO, are 
observed at a spacing of 39 Hz. The rotation of the NO group leads to rapid changes 
in the magnetic environment and thereby to an exchange narrowing of this resonance. 
Determine the exchange frequency above which only a single line is observed. b) In 
the proton resonance spectrum of methyl cyclohexane, at low temperatures two 
groups of lines are observed, which can be attributed to the methyl protons. Explain 
why these two groups merge together at higher temperatures. 

18.13 Two-dimensional (n-dimensional) Fourier transformation NMR aids in "de­
convoluting" complex spectra by sorting out the interactions. The trick employed is 
to switch on or off certain interactions by external manipulation of the Hamiltonian 
during the course of a pulsed resonance measurement. As long as the Hamiltonian 
No. n is in effect, the time is counted along the axis tn (n = 1, 2, ... ). 

a) What is the maximum time which is available for the manipulation of an 
individual experiment? b) Which interactions can be switched off by a ~-r-1r-r 
pulse sequence, and which by irradiating with a second radiofrequency? 

18.14 What is a Carr-Purcell pulse sequence? How does it work in simple physical 
terms? 

18.15 Show how the Heisenberg representation follows from the Schri::idinger rep­
resentation. 

Hint: start with the formal solution 

I/fx, t) = eiHt/ ft I/f(x, 0) (1) 
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of the time-dependent Schr6dinger equation (proof of (I)?) and express the expecta­
tion value J 1/1* D 1/1 dx using (1). This can be written as J 1/1* (x, 0) V(t) I/I(x, 0) dx 
(proof? H is Hermitian!). Give an expression for Vet). Why does V obey the equation 

d- i - i - -
dt D = "h,[H, D] == "h,(HD - DR)? (2) 

Can these results be generalised to J I/Ij V 'h dx? 

18.16 When does the term coherence apply to spins? 

Hint: Form the wavepacket al t> +bl t> from the spin wavefunctions I t> and 
1--1-> in Dirac's bra-ket notation and compute the expectation value of Ix. 

How does it change in the course of time, if the spin is subjected to a constant 
magnetic field in the z direction? 

18.17 Determine the "motion" of the spin component hx and for hyIlz according 
to the Heisenberg equation of motion (2) from problem 18.15, where in a rotating 
coordinate system, H can be written in the form 

What are the time-dependent solutions of the resulting equations? 

18.18 Show that the operator relation in the Heisenberg representation, 

h(t) = h(O)ei.Qt, h = Ix ± iIy , 

can be interpreted as a precessional motion by going to expectation values 

(l/flh(t)Il/f) , 

where l/f = l/f(0) is a coherent spin function: 

l/f(0) = exl t> +.81 t>, lexl 2 + 1.81 2 = 1 . 

18.19 Decompose the electromagnetic field into its modes ex: eikx and show that 
the interaction operator between a spin i and a mode has the form 

(3) 

where g is a coupling constant. What is this constant? In (3), only resonant terms 
are included ("rotating wave approximation"). Discuss this approximation. 

Hint: Start from the interaction energy of a spin i with a magnetic field, and express 
the field in terms of the vector potential which can be decomposed into its modes 
according to Eq. (16.40). 
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18.20 The Hamiltonian for a spin ~ in a constant magnetic field, which is also 
interacting with a mode of the electromagnetic field, is 

Write the Heisenberg equation for b+. Add to it a damping term -Kb+ and solve for 
a precessing spin by going to expectation values with coherent spin functions for the 
precessing spin. What follows from this for the operator equations in Sect. 18.5.2? 



19 Electron Spin Resonance 

The use of the electron spin in resonance spectroscopy allows important insights to 
be gained into the structure and dynamics of paramagnetic molecules (Sects. 19.1 
through 19.4). This is particularly true of molecules in triplet states, with a total 
spin quantum number of S = 1 (Sect. 19.5). Especially useful, in part due to 
their great detection sensitivities and excellent spectral resolutions, are the various 
multiple resonance techniques (Sects. 19.6 through 19.8); they were to some extent 
developed for problems in molecular physics and have since become important in 
other areas, for example in solid-state physics. 

19.1 Fundamentals 

Electron spin resonance spectroscopy (ESR) is less important to molecular physics 
than is NMR spectroscopy, because molecules are in general diamagnetic and thus do 
not give rise to an ESR signal; there are, in contrast, only a very few molecules which 
do not contain at least one nucleus with a nonzero nuclear spin and magnetic moment, 
and therefore most molecules are accessible to NMR methods. ESR spectroscopy is 
limited to those molecules which contain an unpaired electron and are paramagnetic; 
in these cases, ESR is a very important experimental method, from which one can 
learn a great deal about the structure, bonding, and dynamics of the molecules. 

Which molecules are paramagnetic? The most important groups are 

- Molecules containing paramagnetic atoms as integral parts of their structures, in 
particular the case when, as for the rare earth atoms or transition-element atoms, 
the paramagnetism arises through inner electrons. Examples are the ions Fe3+ or 
[Fe(CN6) ]3-. The outer or valence electrons may in these cases have their spins 
paired, and thus be diamagnetic. 

- Molecules with an unpaired outer electron, called radicals. There are stable 
radicals, for example DPPH (diphenyl-picryl hydrazyl), which is often used as 
a standard for the calibration of resonance fields due to its well-known and pre­
cisely measurable g-factor (see below). There are also radicals which are formed 
from diamagnetic molecules under the influence of a solvent, through chemical 
reactions, or upon irradiation, and vanish after a short time by recombining with 
the split-off molecular fragments. 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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Molecules in the triplet state, whether it be their ground state, as for 02, NO, or 
N02, or a metastable excited triplet state, as in napthalene (cf. also Sect. 13.4). 
When the lifetimes are 10-6 s or longer, these excited states may also be studied 
using stationary-state ESR. 

The fundamentals of ESR spectroscopy and the experimental methods used to 
carry it out were already described in I, Chap. 13. An electron with its magnetic 
moment Its = Js(s + 1) gsltB (s = spin quantum number, i. e. 1/2, ItB = Bohr 
magneton, gs = electronic g-factor = 2.0023 for the free electron) has two possible 
orientations in a magnetic field Bo, given by ms = ±~, with the energy splitting 
L1E = gsltBBO' Here, ms is the magnetic spin quantum number; see Energy-level 
Schema 19.1. The relation 

/ 
/ 

ms = +1/2 

----« hv= g~BBo 

'\ 
'\ ms= -1/2 

Zero field in a field Bo 

hv = L1E = gsltBBo 

Schema 19.1. The energy states of an electron in 
a magnetic field Bo. The magnetic moment of the 
electron is negative, so that its vector is antiparallel 
to its spin (arrows). In the state ms = -1/2, the 
magnetic moment is aligned parallel to Bo, and this is 
the energetically lower state. In nuclear spin resonance 
(cf. Sect. 18.1), a similar energy-level scheme holds 
if ms is replaced by mI; however, the magnetic 
moment of the proton is positive. Therefore, the state 
m I = + 1 /2 lies energetically lower than m I = -1/2; 
the directions of the two arrows would thus also have 
to be reversed 

(19.1) 

is the fundamental equation of ESR. If electromagnetic radiation having this fre­
quency v is applied perpendicular to the direction of Bo, then the resonance condition 
is fulfilled for a free electron, and transitions between the two allowed orientations 
of the electronic spin, i. e. ESR, can be observed. The numerical value of v is 

~ = 2.8026 . 1010 [Hz] 
Bo [T] 

(19.2) 

for the frequency of the allowed magnetic dipole transitions with L1ms = ± 1. The 
field Bo is usually chosen to have a strength of the order of 0.1 to 1 T, so that the 
resonance frequency lies in the microwave range, i. e. is of the order of GHz. 

The signal intensities in ESR spectra are proportional to the number of unpaired 
spins in the sample, as long as saturation effects are avoided (i. e. if the relaxation 
times TI are not too long and the microwave power is not too great). As in NMR, only 
the temperature-dependent difference of populations between the spin orientations 
parallel and antiparallel to the applied field Bo contribute to the signal. The detection 
limit is inversely proportional to the linewidth and in conventional ESR spectrometers 
is ofthe order of 1010 spins for a linewidth of 1 G = 10-4 T. 

Spin-lattice relaxation, similarly to the case of NMR, is produced by time­
varying magnetic perturbing fields with a correlation time of the order of the Larrnor 
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frequency. Such perturbing fields can be due to the motions of neighbouring magnetic 
moments in solution or in a solid. A typical value of TJ at room temperature for 
molecules in solution is TJ ~ 10-7 s; this relaxation time becomes longer at lower 
temperatures. The transverse relaxation time T2 takes on similar or shorter values. 

19.2 The g-Factor 

The simplest quantity which can be determined in an ESR measurement is the g­
factor of the paramagnetic electron, as in Eq. (19.1). In molecules, the g-factor is 
usually anisotropic; however, its anisotropy is often hidden due to motions of the 
molecules in solution or to a disordered molecular arrangement in a solid host. 
Surprisingly, nearly all radicals, as well as the triplet states of organic molecules 
and even the paramagnetic electronic states in many ionic crystals have g-factors 
which differ from that of the free electron by a very small amount, i. e. by a few 
tenths of a percent. This demonstrates that one is dealing for the most part with 
electrons which appear to have no orbital angular momentum, i. e. with I = 0. This 
can result from their being in fact s electrons, or else they can be electrons in orbitals 
which belong to the entire molecule and can be classified as nonlocalised orbitals 
at the location of an atom in the molecule, which likewise have no orbital angular 
momentum. 

Molecules which contain atoms with paramagnetic electrons in their inner shells, 
and also some ionic crystals, can have g-factors which result from a combination of 
spin and orbital quantum numbers and which may be much greater than 2. In this 
case, the paramagnetic electrons are localised on one atom, and the coupling between 
their spins and orbital moments must be taken into account. Just how the spin and 
orbital moments couple to give a total magnetic moment, and how the corresponding 
grfactor is defined, has already been discussed in I, Sects. 12.7, 12.8, and 13.3.5. 
However, even such molecules can have electronic states with g = 2, that is with 
practically pure spin magnetism. This can be due to the fact that the atom or ion 
has an electronic configuration with L = 0, as is the case of Fe3+, with 5 unpaired 
d electrons and S = 5/2, L = 0, and the configuration 6SS/ 2 . Another possibility is 
that Russell-Saunders coupling has been broken by the strong internal electric field 
of the chemical bonds in the molecule or the crystal, so that the quantum number L 
is no longer valid. 

The g-factor as defined here in Eq. (19.1), by the way, includes the "chemical 
shift" caused by local currents induced by the applied field at the location of the 
magnetic moment. 

19.3 Hyperfine Structure 

In addition to the electronic g-factor, in ESR one can measure the interaction between 
the magnetic moment of the paramagnetic electron and the nuclear moments of nuclei 
with nonvanishing spins I. The energy terms and the resonance line of the electrons 
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are split by this hyperfine interaction with the nuclear spin J into a multiplet of 2I + 1 
terms or a corresponding number of component lines. The hyperfine interaction is 
the most important contribution of ESR to molecular physics. It can be understood as 
follows: the nuclear spin - or rather the nuclear moment - produces a magnetic field 
which adds to or subtracts from the applied field Eo, depending on its orientation. 
A dipolar contribution to the interaction will be averaged out in solution by the 
molecular motions, and only the scalar or contact interaction remains. This magnetic 
interaction with the s electrons which surround the nucleus with spherical symmetry 
cannot be described in terms of a dipole-dipole interaction; it is isotropic and is not 
averaged out by motions. The field at the position of the electron is then given by 

(19.3) 

where m I is the magnetic nucleus, i. e. m I = J, J - 1, ... , - J, and a is the hyperfine 
coupling constant for the particular electron/nucleus configuration, which here is 
measured in units of magnetic field. 

• 

< a > 

mr =+1;2 

mr = -1;2 

mr =-1;2 

mr =+ 1;2 

8 0 

1 
ms= +-

2 

1 
ms= --

2 

Fig. 19.1. The hyperfine interaction between an electron and a nucleus with spin I = 1/2 gives 
four levels with two ESR lines of equal intensities. The hyperfine splitting is denoted by a. 
The twofold degeneracy of the magnetic states of an electron in the absence of a magnetic field 
is lifted by the field Bo to give two levels with ms = ±1/2; this gives one ESR line (dashed 
transition). A proton has in addition two allowed orientations corresponding to mI = ±1/2, 
leading to a displacement of the terms as in (19.3) and thus to two ESR lines, each with half 
the original intensity, split by a 
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This is illustrated in Fig. 19.1 for a proton, with I = ~ and m / = ~. The resonance 
condition is now fulfilled for two values of the field, and it is given by 

hv = g/LB (Bo ±~) . (19.4) 

Due to the selection rules L1ms = ±1, L1m/ = 0, a proton splits the ESR line of an 
electron into two lines, as we have already seen for the case of a hydrogen atom in I, 
Chap. 20. The energy splitting is equal to 

(19.5) 

if we denote the hyperfine coupling as an energy by the same symbol, a. The con­
version can be carried out with the aid of (19.1) (1 Gauss corresponds to 2.8 MHz). 
Each electronic term is displaced by an amount 

(19.6) 

For the interaction of a paramagnetic molecular electron with a nucleus of spin 1, 
the number of hyperfine levels with equal statistical weights is 21 + 1, since such 
a nucleus has 21 + 1 allowed orientations relative to the magnetic moment of the 
electron or to the applied field. A typical order of magnitude for this hyperfine inter­
action is 10-3 - 10-4 T, if we quote it in magnetic-field units. Figure 19.2a shows 
the case of a nucleus with I = 3/2. 
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Fig. 19.2. (a) The hyperfine splitting ofthe term ms of an electron by a nucleus with I = 3/2; 
it is split into 4 components, corresponding to m / = 3/2, 1/2, -1/2, - 3 /2. (b) The hyperfine 
structure caused by three equivalent nuclei with I = 1/2 yields four lines with the intensity 
ratios shown. The numerical value is for the methyl radical anion, CH3 
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When the paramagnetic electronic state interacts with several equivalent nuclei, 
then the number and relative probability of the spin orientations of these nuclei must 
be taken into account in order to understand the observable hyperfine structure. For 
N equivalent protons, one finds N + 1 hyperfine component lines. Their intensity 
distribution is given by Pascal's triangle, just as for the component lines in the 
nuclear spin-spin coupling; see Fig. 18.12. Here, the term equivalence means that 
the magnetic interaction with the electron has the same strength for each proton. 
This is illustrated using the example of the methyl radical anion, CH:3, in Fig. 19.2b. 
The spectrum consists of four equidistant lines with an intensity ratio of 1 :3:3: 1; it 
results as shown in Fig. 19.2b from the statistical weights of the ms-values of +3/2 
to -3/2 which occur for the three equivalent protons. 

~ 
a 

1 

60'"'" 2 
5 h 3 

4 

Fig. 19.3. The ESR spectrum of the benzene radical anion, C6H6' in solution. The ESR 
absorption (for experimental reasons shown as the derivative signal) is plotted against the 
magnetic field Bo. One observes 7 hyperfine component lines with a splitting a = 0.375 mT 

Figure 19.3 shows as another example the ESR spectrum of the benzene radical 
anion, (C6H6) - , which can be readily produced by electron transfer from alkali metal 
atoms to neutral benzene molecules in solution. The unpaired electron is uniformly 
distributed around the benzene ring, as can be seen from the hyperfine splitting 
pattern of its ESR signal, which we discuss here. Its hyperfine interactions with the 
6 protons lead to 7 lines having the intensity ratios 1:6:15:20:15:6:1 (Fig. 19.4). It 
follows from these ratios that all 6 protons are equivalent. Benzene radical cations, 
(C6H6)+, can also be produced electrolytically or by electron abstraction using 
sulphuric acid; the ESR spectrum of the cation is very similar to that of the anion. 
An additional electron is thus distributed around a benzene ring in a similar way as 
a missing electron. 

In the napthalene radical anion (Fig. 19.5), the spin distribution of the additional 
electron is no longer uniformly spread over all the C atoms, and the hyperfine 
interaction is thus no longer the same with all 8 protons. If they were all equivalent, 
one would observe an ESR spectrum consisting of 21 + 1 = 9 lines with intensity 
ratios of 1:8:28:56:28:16:1, as can be read off from Pascal's triangle. The actual 
observed spectrum can be understood as follows: the C atoms at the a positions, 
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4 5 6 

Fig. 19.4. Pascal's triangle, for determining the number and relative weight of the hyperfine 
components from the interaction of an electron with 6 equivalent protons, i. e. in the benzene 
radical. The interaction with N equivalent protons leads to N + 1 equivalent lines having the 
intensity ratios given in the diagram. See also Fig. 18.12 

a. 
8 1 

7~2~ 
6~3 

5 4 

0.2 mT 

Fig. 19.5. The ESR spectrum of the napthalene radical anion in solution, similar to Fig. 19.3. 
Here, there are two groups of protons with differing hyperfine constants, probability density 
of the unpaired electron is larger at the a positions (1, 4, 5, 8) than at the f3 positions (2, 
3, 6, 7). The measured values of the hyperfine splitting constants are aa = 0.495 mT and 
a~ = 0.186 mT. Using Eq. (19.8), one can calculate the spin density of the unpaired electrons 
from these values. It is 0.22 at the a position and 0.08 at the f3 position 
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i. e. at the positions 1,4,5, and 8, are equivalent to one another, as are the fJ atoms at 
positions 2, 3, 6, and 7, but the probability density of the electron near the ex positions 
is larger than that near the fJ positions. The protons on the 4 equivalent ex C atoms thus 
lead to a splitting of the ESR line into 5 lines with the intensity ratios 1 :4:6:4: 1. Each 
of these component lines is then split again by the (smaller) hyperfine interaction 
with the mutually equivalent fJ protons into 5 sublines. The resulting spectrum is 
shown in Fig. 19.5. The coupling constants act andafJ are a measure of the probability 
density of the unpaired electron at the corresponding positions. 

These examples show how ESR hyperfine structure can be used to determine 
the electron density distribution, or, more precisely, the spin density distribution in 
a molecule, and thus to characterise the molecular orbitals in more detail. 

Still more information can be obtained from a quantitative analysis of the hyper­
fine splitting. The hyperfine interaction between an electron and a nucleus has, in gen­
eral, an anisotropic part and an isotropic part, as mentioned above. The anisotropic 
part can be understood as a magnetic dipole-dipole interaction between the magnetic 
moment of the nucleus and that of the electron, and it has the well-known angular 
dependence of the dipole-dipole interaction [cf. Eq. (18.13)]. It is found for example 
for electrons in p orbitals. In these orbitals, the electron is at a finite distance from 
the nucleus, and thus experiences the magnetic field of a pointlike magnetic dipole 
produced by the nucleus. Its magnitude and sign depend on the orientation of the 
molecule in the applied field. When molecules move rapidly in solution, this interac­
tion is averaged over time to zero and cannot be observed. For this reason, the ESR 
lines of paramagnetic molecules in solution are usually much sharper than those of 
the same molecules in the solid phase. If only this anisotropic hyperfine interaction 
existed, no hyperfine structure could be measured in liquid solutions. 

The other, isotropic part of the hyperfine interaction is more important in mole­
cular physics. The isotropic or Fermi contact interaction, which was introduced in I, 
Sect. 20.3, is the magnetic interaction between the magnetic moments of electrons 
at the location of the nucleus and the nuclear moment. It is independent of the orien­
tation of the radical or molecule and is therefore observed even for molecules which 
are in rapid and disordered motion, as is the case in solution. It is nonvanishing 
only for those electronic orbitals which do not have a node at the position of the 
nucleus, i. e. mainly for s electrons, which have a spherically symmetric distribution 
around the nucleus. This interaction energy between a proton and an electron has 
the magnitude [cf. Eq. (20.11) in I] 

(19.7) 

where 11{!(0) 12 is the electron density at the nucleus and a the observable hyperfine 
splitting energy. 

For the ground state of the hydrogen atom, the measured value of the hyperfine 
splitting is 50 mT, if we again quote a as a magnetic field. That is, the s electron of the 
H atom is acted on by a magnetic field of 50 mT due to the proton. This is, by the way, 
the largest known hyperfine splitting for protons. We take the probability density of 
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the hydrogen Is electron at the nucleus to be 1 for purposes of normalisation, and 
can then use the general relation 

a=QR, R = 50mT (19.8) 

to determine the electron densities Q at the nuclei of other atoms from the measured 
values of the hyperfine splitting a for protons. Strictly speaking, Q is not an electron 
or spin density, but rather the probability density of the electron at the nucleus, and 
is thus dimensionless. 

We will discuss this further using the example of the methyl radical anion, 
CH3 (see Fig. 19.2b). The ESR spectrum of this radical consists of 4 lines with 
the intensity ratios 1:3:3:1 and a separation of 2.3 mT. We conclude from this that 
the unpaired electron has hyperfine interactions with 3 equivalent protons. The spin 
density at each of the protons is, from (19.8), equal to 

2.3 
n= - =0.046 
'" 50 ' 

that is, about 5% . 

The electron thus spends about 5% of its time at each of the protons as a Is electron, 
and the remaining 85% in the neighbourhood of the C atom. 

The measured coupling constant a is, according to (19.8), proportional to the 
spin density and thus to the electron density at the position of a nucleus; i. e. the 
electron density is greater, the larger the measured splitting a. From a measurement 
on the benzene radical, for example, with the assumption of a uniform distribution 
of the unpaired electron around the ring with its six C atoms, one finds that 1/6 
electron leads to a coupling constant of -0.375 mT. A whole electron as a:rr electron 
in the neighbourhood of a C atom then gives for the proton bound to the atom 
a = 6(-0.375) mT = -2.25 mT. This means according to (19.8) that the relative 
probability density of all six protons together is 5%. The remaining 95% is spread 
equally among the C atoms. For such C-H bonds, the McConnell relation can be 
applied: it states that the isotropic hyperfine structure coupling constant ai of the 
proton in the C - H bond and the associated spin density Qi of the unpaired :rr electron 
on the neighbouring C atom are proportional to each other, with 

ai = QQi, Q = -2.25mT 

Qi = spin density, normalised to I for a whole electron, i. e. 
IJ Qi = 1, where the sum runs over all i nuclei involved. 

(19.9) 

Using this important relation, one can compute the electron densities at the positions 
of the various C atoms in a molecule from the measured hyperfine splitting constants 
of the protons, taking electron density and spin density to be equal. The C atoms 
themselves do not contribute a hyperfine structure to the resonance spectrum if they 
are present as the most abundant form of carbon, 12C. This isotope has a nuclear spin 
of I = O. The stable isotope l3C, with a natural abundance of 1 % and I = 1/2, gives 
rise to a hyperfine splitting, however. Its hyperfine interaction with the paramagnetic 
electron of the radical cannot be seen in Figs. 19.3 and 19.5, due to the small natural 
abundance of l3C. 
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Unpaired electron 

Fig. 19.6. The indirect coupling between the spin of an unpaired electron and a nuclear spin 
in its neighbourhood, using the methyl radical as an example. The unpaired electron in the 
pz orbital polarises the spin of one of the two (Y electrons of the C-H bond; therefore, both 
(Y electrons are polarised, since their spins must remain antiparallel. This leads to a coupling 
with the proton spin. In the centre, the case of "positive" coupling is indicated; at the right, the 
"negative" coupling via two C atoms is shown. In the latter case, one also refers to a negative 
spin density 

At this point, we should mention an additional important interaction mechanism, 
which is responsible for the fact that the hyperfine splitting in C - H groups treated in 
the previous paragraphs can occur at all. The unpaired electrons which we considered 
in the methyl radical or the benzene radical are electrons from the p orbitals of the 
C atom; cf. Fig. 19.6. Electrons in the p orbitals should, however, have no hyperfine 
interactions with the C atoms or with the H atoms which lie in the plane perpendicular 
to the p orbitals, since their spin densities at the nucleus are zero. The hyperfine 
structure shown in Figs. 19.3 and 19.5 nevertheless is observed; to be sure indirectly, 
through spin polarisation. 

We shall explain this phenomenon using the methyl radical as an example, as in 
Fig. 19.6. The unpaired electron is in a pz orbital of the C atom and therefore has 
a spin density of zero at the sites of the H nuclei; in this case, one should expect 
no hyperfine structure. Since, however, hyperfine structure is in fact observed, there 
must be an indirect coupling between the spins of the electron and the protons. We 
have already met up with such a coupling in Sects. 18.2.3 and 18.2.4. The unpaired 
electron in the pz orbital has a tendency to favour the parallel orientation of the 
spin of one of the two a electrons of the C atom in the C - H bond; this follows 
from Hund's rule. It also means that the second a electron in each of the three C-H 
bonds has a preferred orientation in the opposite sense, which follows from the Pauli 
exclusion principle. The nuclear spins of the protons orient preferentially antiparallel 
to the neighbouring electronic spins, and therefore, finally, parallel to the unpaired 
spin in the pz orbital. This indirect interaction can thus be described by assuming 
that an electron experiences a contact interaction having a certain probability with 
a given H atom. The probability can be expressed in terms of a spin density of the 
unpaired electron at the location of the carbon atom or the protons, as in (19.9). The 
corresponding hyperfine interaction is then observable. 

Here, again, it is true that the interaction energy which leads to a mutual spin 
orientation is small compared to the quantum energy of the electron spin reso­
nance, similarly to the case of the indirect nuclear spin-spin interaction discussed 
in Chap. 18. Thus, when we say that "the spins have a tendency to orient parallel 
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or antiparallel to each other" (which is also referred to as spin polarisation), then 
we mean that both spin orientations occur, but that they have a (small) difference in 
energy. 

This example is intended to show how electron spin resonance can contribute to 
the elucidation of the electron distribution in a molecule and thus to a better under­
standing of molecular structure and chemical bonding. The quantity Q in Eqns. (19.8) 
and (19.9) is, as we mentioned, strictly speaking a spin density and not an electron 
density. The indirect mechanism of the interaction also makes it clear that the spin 
density can take on negative values: if the coupling extends over an additional C 
atom, as is shown on the right in Fig. 19.6, this leads to a further application ofHund' s 
rule and thus to an antiparallel orientation between the proton spin and the spin of 
the unpaired electron. Clearly, this spin polarisation mechanism is closely related to 
that of the indirect nuclear spin-spin coupling which we treated in Sect. 18.2.3. 

In any case, the observation ofhyperfine structure in the ESR spectra of molecules 
opens a way to the experimental determination of the electron density distributions 
in molecules, and thus of the spatial distribution of the molecular orbitals. 

19.4 Fine Structure 

The term "fine structure" is applied in ESR spectroscopy to a magnetic interaction 
between the spins and orbital angular momenta of different electrons. It is thus found 
only in molecules or molecular states with more than one unpaired electron. 

The paramagnetic state of a molecule can, as we have thus far assumed, be 
based on the existence of an electron with an unpaired spin s = 1/2 within the 
molecule. This is a doublet state, since the electron has two possible orientations 
in the field Bo. However, as we have already pointed out, there are also molecular 
states in which two electrons have their spins parallel; such triplet states with a spin 
quantum number S = I occur for example as metastable excited states in organic 
molecules; cf. Fig. 15.1. 

For the purposes of ESR, we can treat this triplet state as one particle with spin 
S = 1, i. e. lSI = JS(S + 1)11 with S = 1. In the applied field Bo, such a state 
will split into three substates with ms = 0 and ±1. The substates are equidistant, 
and for transitions with L1m = ±l, we would expect only a single resonance line. 
However, in addition to the splitting by the field Bo, the substates are shifted by the 
dipole-dipole interaction of the magnetic moments of the two electrons which form 
the S = 1 state. In a somewhat simplified description, this leads to an additional 
magnetic field D which each electron experiences as a result of the interaction with 
the other electron, as illustrated in Fig. 19.7. A more precise treatment is given in 
Sect. 19.5. 

In the state Sz = ms = +1, i. e. both electrons with their spins parallel to the 
applied field, the additional dipole field adds to Bo; in the state with Sz = m s = -1, 
the applied field is reduced by the same amount; cf. Fig. 19.7. This results in an 
increase in the energies of both states relative to the state m s = O. The middle sublevel 
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Fig. 19.7. For a state with the overall spin quantum number S = 1, i. e. with two parallel 
electron spins, there are three possible spin orientations in an applied magnetic field (centre 
and right parts of figure), ms = + 1, 0, -1. This gives three energy terms in a field. The terms 
Sz = ms = ± 1 are shifted by the dipole-dipole interaction D, while the term Sz = 0 remains 
unshifted. The fine structure energy is also often denoted by the same two symbols D and E 

remains unshifted, because for ms = 0, the dipolar field is oriented perpendicular to 
Bo in this case. 

If the applied field Bo is smaller than the dipolar field D, and in the limit as it 
is reduced to zero, the energy difference between the substates with Sz = ± 1 and 
Sz = ° persists, and the term diagram behaves as shown in Fig. 19.8, left part. The 
degeneracy for the case Bo = ° is lifted by the dipole-dipole interaction. If Bo 1= 0, 
one expects two resonance lines with .1ms = ± 1, and they are in fact observed in the 
spectrum. Their splitting allows the determination of the dipolar field D and thus of 
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Fig. 19.8. The zero-field splitting of a triplet state (left) between Sz(= ms) = ±l and 0, and 
the splitting and allowed transitions in an applied field Bo. In a field Bo i= 0, one observes 
two ESR transitions. Without the applied field, no quantisation axis z is defined; the symbols 
X, Y and Z are then used to characterise the states, instead of Sz and ms, as in Fig. 19.10 
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the interaction energy. When the electrons are localised, the interaction energy of the 
two electronic moments at a distance r can be calculated to a good approximation in 
terms of the dipole-dipole interaction; see (19.10). The magnetic field which the two 
electrons produce at each other's locations is given in the high-field approximation 
and for f} = 90° by: 

fLo 3 1 
D = --gefLB-

4n 2 r3 
[Vsm-2] = [Tesla] . (19.10) 

A measurement of D thus gives the distance r between the two electrons which form 
the triplet state within a model assuming localised electrons, corresponding to the 
so called point-dipole model. 

The fine structure thus leads to a splitting of the triplet electronic state even with­
out an external field, the so called zero-field splitting, with three allowed transitions. 
In a high applied field one obtains two transitions, as shown in Fig. 19.8. 

The model described in this section and the previous one, with two localised 
electrons at a fixed distance r, is oversimplified to the degree that the electrons are 
distributed over a large portion of the molecule, or delocalised. An exact calculation 
of the fine structure interaction is therefore carried out in detail in Sect. 19.5. 

19.5 Calculation of the Fine Structure Tensor 
and the Spin Wavefunctions of Triplet States 

In this section, we wish to treat the energies of the triplet state levels in detail. The 
basis for this treatment is naturally the Hamiltonian operator, which contains the 
orbital motions of the electrons with coordinates r\ and r2, the energy of the spins 
in the applied magnetic field, and the dipole interaction between the spins. This 
Hamiltonian has the form 

H(r\, r2, 1,2) = Ho.space + HO,spins + H S , (19.11) 

where the first term on the right-hand side refers to the orbital motions and HO.spins 
is given explicitly by 

1 A 

HO,spins = /igefLBBo' S. (19.12) 

In this expression, Bo is the applied magnetic field, while the spin operator S contains 

the vector sum of the spin operators of the two electrons, S = S\ + S2, and has the 
usual three components 

(19.13) 

The hat over S denotes an operator. As in I, the relation (S2) = /i2S(S + 1) holds. 
The dipole interaction operator in (19.11) is given explicitly by 
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(19.14) 

It is obtained in a straightforward manner from the classical interaction energy of 
two magnetic dipoles by replacing the magnetic moments by the products of the spin 
operators with geJ-LB/fi. Without the dipole interaction operator (19.14) in (19.11), 
the eigenfunctions of the Hamiltonian H can be readily found. They take the form 
of products: 

I/I(rl' r2, 1, 2) = 31/1(rl, r2) 0'(1, 2) , 

where the first factor refers only to the orbital motions of the triplet-state electrons 
and the second factor a to their spins 1 and 2. 

It is our goal to derive a Hamiltonian which refers only to the spin wavefunctions, 
and not to the orbital wavefunctions of the electrons. As can be shown in detail, the 
orbital motions are influenced only weakly by the spin interactions, so that the 
operator (19.12) remains a good approximation and it is sufficient to replace the 
interaction energy HS (19.14) by its quantum-mechanical average: 

(19.15) 

Equation (19.15) thus means that the distance r12 between the two electrons can 
be averaged over by using the probability distribution 31/1*31/1. Considering the 
expressions which result from inserting (19.14) into (19.15) in more detail, we 
initially look at the expression obtained from the first term in brackets in (19.14). 
The integral is a scalar quantity, so that we can just as well write it within the scalar 
product of 81 and 82, obtaining 

1 J-L022AAf3 13 A f A 2" . -geJ-LB SI S2 1/1*-3 1/1 dVl dV2 = SI . . .. dVldV2S2 . 
fi 4Jl' r 12 

(19.16) 

In order to be able to extract the spin operators from the second term in brackets 
in (19.14), we write the corresponding part of (19.15) in the form 

(19.17) 

In this expression, we have indicated by horizontal brackets how the terms are to be 
interpreted. First, the scalar product of 81 and r12 is taken, and likewise that of r12 

and 82. The product r12 . r12 in the centre has the properties of a tensor, as can be 
shown mathematically, and it can be written explicitly in the form 

IX12 . X12 X12· Yl2 X12· Z12] 

r12 . r12 = Y12· X12 Y12· YI2 Y12· ZI2 • 

ZI2 . X12 Z12· YI2 Z12· ZI2 

(19.18) 
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Using this formalism, we can rewrite (19.15) in the simple way 

(19.19) 

2F 

where the spin operators referring to electrons 1 and 2 are extracted to the left or 
to the right, respectively. The integral remaining in the centre has the properties of 
a tensor, which we have abbreviated as 2F. For clarity, we write this tensor with its 
components once more: 

(19.20) 

where we define 

i, j = x, y, z (19.21) 

and 

rl2.x = X12, r12,y = Y12, .... (19.22) 

As one can readily see from this explicit representation, Fij is symmetric. A tensor 
of this type can be brought into diagonal form by a suitable choice of the coordinate 
system, so that the nondiagonal elements vanish: 

Fij = 0 for i::/= j . (19.23) 

In what follows, we will always assume that Fij has already been diagonalised. In 
this coordinate system, the diagonal elements of F take on the following form: 

F = _1_ . flo g2112 / 31[/* (r~2 - 3X~2) 31[/ dV dV 
xx 2~2 4 erB 5 1 2 n n r 12 

(19.24) 

F = _1_. fLO g211 2 /31[/* (rr2 - 3Yi2) 31[/dV dV 
yy 2h2 4n erB rT2 1 2 

(19.25) 

1 / (r2 3 2 ) F = - . flo g2112 31[/* 12 - Z12 31[/ dV dV 
zz 2~2 4 erB 5 1 2· n n r 12 

(19.26) 

As can be readily verified by direct calculation, the trace, i. e. the sum of the diagonal 
elements, is zero: 

Fxx + Fyy + Fzz = 0 . (19.27) 

For the spin Hamiltonian (19.15), we obtain finally the form 

(19.28) 
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We now want to show that (19.28) can also be expressed directly in terms of the 
overall spin 

(19.29) 

that is, that we can write 

(19.30) 

To show this, we insert (19.29) into (19.30) and multiply out the terms of the sum in 
(19.29), leading immediately to 

(19.31) 

Considering the first term on the right-hand side, we see that it can be written in the 
form: 

AA A2 A2 A2 
SIFSI = FxxSlx + FyySly + FzzSlz . (19.32) 

However, as we know from the spin matrices, the following relation holds: 

A2 A2 A2 ti2 

SIx = Sly = Slz = 4 . (19.33) 

Using these values, (19.32) becomes 

ti2 

(Fxx + Fyy + Fzz ) 4 = O. (19.34) 

This expression is equal to zero, as indicated, since the trace of F is zero. Similarly, 
one can show that the second term on the right side of (19.31) is zero. Due to the 
symmetry of the tensor F, the last two terms are equal and yield just the expression 
(19.28); this ends our little ancillary computation, showing that we can replace 
(19.28) by (19.30). 

We now come to the important concept of the fine structure constants. Since 
the tensor F is traceless, we can characterise it by two constants. We choose these 
constants to have the following values, for reasons which will become clear later: 

(19.35) 

and 

(19.36) 

Using the expressions (19.24)-(19.26) for the elements on the main diagonal of F, 
we can write D and E explicitly in the forms 

3 f (r2 3 2 ) D = - /Lo g2 ,,2 3lJ!* 12 - Z12 3lJ! dV dV 
4 4 ef"'B 5 I 2 

:rr r 12 
(19.37) 
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and 

(19.38) 

As can be derived from the definitions of D and E, the order of magnitude of 
the fine structure interaction corresponds to the dipole-dipole interaction energy of 
two electrons, i. e. two Bohr magnetons, at a distance which is of the order of the 
dimensions of the molecule. For the triplet state in napthalene, measurements yield 
D = O.1012cm- j and E = O.OI41cm- 1. As one can also see from the quantity 
in parentheses in (19.37) for D, it is a measure of the deviation from spherical 
symmetry, while in E, the quantity in parentheses is a measure of the difference 
in spatial extent of the wave functions in the y and x directions. Clearly, equations 
(19.37) and (19.38) are related to the spatial extent of the wavefunctions and thus to 
the shape of the molecule. 

The fine structure constants D and E, which can be obtained from ESR spectra, 
thus give information about the mean values of the squared distances of the electrons, 
which are described by the spatial wavefunctions; see also (19.10). The principal 
axes x, y, and z of the fine structure tensor are, in the case of symmetrical molecules, 
identical to the molecular symmetry axes x, y, and z. These axes are determined 
by the wavefunctions, which are in tum oriented by the molecular skeleton. We 
abbreviate the integral J 1/1* Q31/1dVjdV2 as (Q), where the operator Q corresponds 
to x2 , y2, Z2; this makes Table 19.1 readily understandable. 

Table 19.1. The relation between the fine structure constants D and E and the symmetry and 
spatial extension of the wavefunctions 

Fine structure constants Wavefunctions Examples 

D=O, E=O spherically symmetric all atoms 
(x2) = (y2) = (Z2) 

D =1= 0, E = 0 three- or more-fold triphenyl, 
axis of symmetry coronene 
(x2) = (y2) 

E>O stretched in the carbenes (BPG) 
y-direction 
(y2) > (x2) 

E<O stretched in the x napthalene, anthracene 
direction 
(y2) < (x2) 

D>O plate or disk-shaped carbenes -C 

D < 0 dumbbell or club-shaped biradicals, e. g. 
-C=C=C-
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Following these preparations, we can tum to our further task, namely the com­
putation of the spin wavefunctions and the corresponding energies when both the 
dipole interaction and an applied magnetic field are present. The basic Hamiltonian 
for the spins in that case takes on the form 

(19.39) 

where S is the spin operator for the overall spin of the two electrons. We have 
assumed in writing (19.39) that the coordinates refer to the principal axes of the fine 
structure tensor. We have neglected the term 

(19.40) 

in the Hamiltonian (19.39), since it is simply a constant for the triplet state. We now 
have the task of solving the Schr6dinger equation for the spin wavefunctions a. It is 
given by 

Hspina = lOa . (19.41) 

In order to solve this problem, we use the so called zero-field functions, which 
correspond to the principal axes of the fine structure tensor. We first give these 
wavefunctions and then examine their properties using some examples, which will 
permit us to recognise their suitability. For single electrons, we use the notation a, {3 
to denote the spin wavefunctions, as already defined in Chap. 4. We introduce the 
following functions: 

1 
rx = ,J2[{3(1){3(2) - a(1)a(2)] , (19.42) 

1 
ry = ,J2[{3(1){3(2) + a(l)a(2)] , (19.43) 

1 
r z = ,J2[a(I){3(2) + {3(1)a(2)] . (19.44) 

As can be readily verified with the help of relations between the spin functions as 
defined in I, the following equations hold for the r functions: 

Sxry = inrz , 

SyrZ = inrx , 

Szrx = inry , 

Sy rx = -ilirz , 

Sz ry = -inrx , 

Sx rz = -inry , 

(19.45) 

(19.46) 
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as well as 

(19.47) 

Clearly, the application of a component of the spin operator to one of the spin 
wavefunctions causes it to be transformed into another of the functions. 

Let us first consider the case that the applied magnetic field Bo is zero. We claim 
that the wavefunctions introduced in (19.42)-(19.44) are then already eigenfunctions 
of the Hamiltonian (19.39), which enters the SchrOdinger equation (19.41). To 
verify this claim, we ask how the operators .5;, ... act upon the individual spin 
wavefunctions. As can be easily calculated using the relations (19.45) and (19.46), 
one finds that 

A2 A A A • 2 
Sz Tx = Sz(SzTx ) = SzlfiTy = fi Tx , 
A2 A A A. 2 
Sy Tx = Sy(Sy Tx) = Sy( -lfiTz ) = fi Tx , 

or, using also Eq. (19.47), we find the result 

HspinTx = (D - E)Tx . 

(19.48) 

(19.49) 

(19.50) 

This shows immediately that the spin operator applied to Tx reproduces the wave­
function, i. e. that this wavefunction is an eigenfunction of the Spin-Hamiltonian 
operator with the energy eigenvalue 

e = (D - E). (19.51) 

In a similar manner, one finds for the wavefunctions Ty and Tz the corresponding 
eigenvalues: 

Ty: e = D + E, (19.52) 

and 

Tz : e = 0 . (19.53) 

The resulting term diagram for the zero-field states is given in Fig. 19.9a and b. 
Let us now turn to the general case of a nonzero applied magnetic field having 

the components 

(19.54) 

As can be seen by inserting the wavefunctions Tx , Ty and Tz , they are no longer 
eigenfunctions of the spin operator. We therefore need to take linear combinations 
of these wavefunctions, i. e. 

(19.55) 

In this equation, cx, cy and Cz are constants which are still to be determined. If we 
now substitute (19.55) into the Schrodinger equation (19.41) with the Hamiltonian 
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Fig. 19.9. (a) An explanation of the zero-field spin functions and of optically-detected 
magnetic resonance, ODMR. The three triplet substates Tx, Ty and Tz of a molecule have the 
energy spacings D + E, D - E, and 2E. They differ, in general, in terms of their probabilities 
of being populated or depopulated by transitions, as a result of symmetry properties. The spin­
orbit interaction, which weakens the selection rule forbidding intercombination transitions 
between the singlet and the triplet systems, has differing strengths for the different substates. In 
this example, we have assumed that the state Tx has the largest radiative transition probability. 
By inducing transitions in the microwave spectral range, one can pump population from the 
Ty or Tz sub states into Tx, thereby increasing the phosphorescence intensity. In this way, 
in particular the zero-field resonance can be detected. The energy scale within the circle is 
magnified ca. 105 times relative to that of the left-hand part of the figure. (b) The zero-field 
splitting and zero-field transitions of a triplet state. The sign of E is opposite to that in 
Fig. 19.9a 

(19.39) and multiply the resulting equation by LX or Ly or LZ' thus taking the spin 
matrix elements, we obtain a secular equation system, as we have often seen in 
applying perturbation theory; it can be written in the form: 

[ 
D - E - 8 -igeJLBBoz igeJLBBoy ] [cx] 
i~eJLBBoz ~ + E - 8 -igeJLBBox cy = 0 . 

-lgeJLBBOy 1geJLBBOx -8 Cz 

(19.56) 

Setting the determinant which is defined by the matrix on the left of (19.56) equal 
to zero, we can determine the eigenValues 8. In the special case that the applied 
magnetic field Bo is parallel to one of the principal axes, Eq. (19.56) is easy to solve, 
since then the secular determinant leads to a quadratic equation in 8. The results are 
given in Table 19.2 and in Fig. 19.10 for the cases: 

Bo II x, Bo II y, and Bo II z . (19.57) 

A term diagram such as the one shown in Fig. 19.10 for the example of the 
triplet state of napthalene is obtained. It should be clear that due to the zero-field 
splitting of a triplet state, two ESR lines at different resonance field strengths occur. 
A measurement of the ESR spectra as a function of the angle between the applied 
magnetic field and the principal axes of the molecule permits the determination 
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Table 19.2. The energy eigenvalues e of the Schrodinger equation (19.41) with the Hamiltonian 
(19.39) for Bollx, Boily, Bollz 

Bollx BoilY Bollz 

eo (D-E) (D+E) o 

0.5 Tesla 

Bo Ilx lIy liz 

Fig. 19.10. The term diagram for the triplet terms of napthalene as a function of the applied 
field strength Bo. The direction of Bo is - from left to right - parallel to the x, y, and z axes 
of the molecule, respectively; x is the long and y the short axis in the molecular plane, while 
z is the axis perpendicular to the plane. One observes two anisotropic ESR transitions with 
L1ms = ±1. The (forbidden) transition with L1ms = 2 is also indicated by dashed arrows 

of the fine structure tensor and thus an investigation of the distribution of the two 
triplet-state electrons over the molecule. 

Finally, we should also mention that a complete determination of the fine structure 
tensor is possible only when the molecules are oriented - that is, in a solid matrix. 

19.6 Double Resonance Methods: ENDOR 

In experimental molecular physics, various double and multiple resonance methods 
have considerable importance, in particular for increasing sensitivities and spectral 
resolutions. Here, we will briefly describe two of these, ENDOR and ODMR. 

The technique of Electron Nuclear Double Resonance (ENDOR for short) can be 
explained using the example of a hydrogen atom, with one electron and one proton; 
cf. Fig. 19.11. In molecular physics, we could just as well be considering an unpaired 
electron in a radical, which is coupled to a proton. This system has four states in 
an applied magnetic field, which we denote by the symbols t t H tt t t (in 



462 19 Electron Spin Resonance 

I 
I 

I 
I 

I ----(: 
90 = 0 

\ 
\ 
\ 
\ 

t~/ __ ........ . 
L---< / tt"---

4 

\ : I 

\ H . __ .............. TI': 2 
, \-----<,./ : NMR 

'",,---- ' , t ............. . 

Fig. 19.11. An energy level diagram illustrating the coupling between electronic and nuclear 
spins (spin I = 1/2) with ESR and NMR transitions, The electron spin can be parallel 
or antiparallel to the direction of the applied field (left). For the nuclear spin (right-hand 
arrows), the same is true (centre). The hyperfine interaction, here assumed to be smaller than 
the Zeeman energy, is superposed on this energy splitting (right). In considering the energetic 
ordering of the terms, one must keep in mind that the magnetogyric ratio of electrons has the 
opposite sign from that of protons. For more details of the ENDOR technique, see the text; 
cf. also Sect. 20.5 and Fig. 20.14 in I 

order of increasing energy). The first arrow refers in each case to the direction of the 
electronic spin and the second to the direction of the proton spin. The energy diagram 
in Fig. 19,11 shows, going from left to right, the energy of the electronic moment 
in the field Bo, the energy of the nuclear moment, and the energy of the hyperfine 
interaction. In an ESR spectrum, transitions with ,1ms = ±l are allowed, i. e. the 
two transitions 1-3 and 2-4 which are indicated in the figure. Their observation, and 
the determination from their difference of the hyperfine interaction with the proton, 
is not possible with sufficient precision in every case; for example, when the ESR 
lines are inhomogeneously broadened by interactions with additional nuclei and thus 
consist of a superposition of many lines with differing hyperfine interactions, then 
the resolution of the individual lines is no longer possible. 

A direct observation of the nuclear resonance transitions with ,1m I = ± 1, that 
is the transitions from 1 to 2 or from 3 to 4 in Fig. 19,11, which would give the same 
information, is often difficult or impossible. Owing to the much smaller detection 
sensitivity for NMR, one would require many more spins than are needed for the 
ESR measurement, and the resonance lines can also be strongly broadened due to 
nuclear spin relaxation under the influence of the electronic moments. 

ENDOR consists in using the intensity of the ESR signal to detect the nuclear 
resonance. To achieve this, resonant microwaves are applied to the sample at such 
a high power that an ESR line, for example the 1-3 transition, is partially saturated; 
that is, it is reduced in intensity, because the population difference between the 
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terms 1 and 3 has been decreased. If now resonant radiation corresponding to 
one of the two proton resonance transitions, e.g. 3-4, is applied, it will produce 
a change in the populations of the two participating nuclear substates and a reduction 
of the population of state 3. This, in tum, leads to a de-saturation of the ESR 
signal, since now the population difference between the states 1 and 3 is increased. 
This causes the intensity of the ESR absorption signal for the transition 1-3 to 
increase correspondingly with simultaneous application of rf at the nuclear resonance 
frequency 3/4. 

In ENDOR spectroscopy, one thus observes nuclear resonance - here the res­
onance transition 3-4 - by using the intensity of the ESR signal - here 1-3 - as 
detector. This allows an enhancement of the detection sensitivity for NMR by many 
orders of magnitude; also, the hyperfine interactions of the electron with different 
nuclei can by individually observed by irradiating the sample with the con;esponding 
nuclear resonance frequencies, which in the ESR spectrum are hidden within the 
inhomogeneously broadened resonance line. 

ENDOR spectroscopy is applied with great success to the elucidation ofhyperfine 
structures, and thus to obtaining structural information in molecular physics and in 
solid-state physics. 

19.7 Optically Detected Magnetic Resonance (ODMR) 

Another important double resonance method, Optically Detected Magnetic Reso­
nance (abbreviated ODMR), is based on the use of the intensity of an electronic 
transition in the optical spectral range as detector for electron spin (or also nuclear 
spin) resonances, which are induced by simultaneous irradiation using microwaves 
or high-frequency radiation of the appropriate frequency. This method was described 
in I, Sect. 13.5, with an example from atomic physics. 

Here, we take an example from molecular physics, namely the investigation 
of the metastable triplet state T1 in organic molecules (Sect. 15.3), to illustrate 
the method. The energy splitting diagram of an electronic molecular term, as in 
Fig. 19.9, applies to a metastable excited state T1 that lies roughly 20000 cm-1 

above the ground state So, and from which an emission transition of long lifetime, 
i. e. a phosphorescence transition, can lead to So. Now, for reasons of symmetry 
which we shall not discuss here, the transition probability for emissions from T1 
to So differs for the three magnetic fine-structure substates, which are denoted by Tx , 

Ty , and Tz and are indicated in Fig. 19.9. If one observes the optical emission 
and at the same time pumps population from a substate with a smaller transition 
probability into one with a larger probability by inducing transitions between two of 
the three spin levels Tx , Ty and Tz , this increases the intensity of the phosphorescence 
observed. This is in general the unresolved superposition of the emissions in the 
optical spectrum from the three substates. Then electron spin resonance can be 
optically detected through the change in intensity of an emission in the visible or 
the UV range. An example of an experimental setup for zero-field measurements 
is shown in Fig. 19.12. If the observed emission spectrum belongs to two different 
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Fig. 19.12. A schematic representation of an experimental setup for ODMR. The phosphores­
cence spectrum here is the superposition of the spectra from two different molecules, denoted 
by the presence or absence of an asterisk in the figure. The ODMR apparatus allows a change 
in the phosphorescence intensity to be produced selectively by irradiation with hf power, and 
thus yields a correlation between the optical spectrum and the hf resonance frequencies. It is 
obtained by simultaneously monitoring the intensity change of individual phosphorescence 
lines and irradiating with microwave power of frequencies corresponding to the resonant 
transitions in the molecular triplet state 

types of molecules, then one observes a change in the phosphorescence intensity 
at a particular wavelength only when the frequency of the hf-radiation corresponds 
to a zero-field transition of the triplet state Tl in the particular molecule to which 
that emission line belongs. If the emission intensity of a line belonging to the other 
molecule is observed, it will change at the frequencies characteristic of the zero-field 
resonance transitions of that molecule. 

Figure 19.13 shows an example of such a measurement, the three zero-field 
resonance transitions of the anthracene molecule with optical detection. From the 
observed frequencies (ODMR frequencies in zero field), one obtains directly the 
fine structure constants D and E of the molecule. The three zero-field resonance 
transitions shown are allowed magnetic dipole transitions. 

There are numerous variations on this method; see below. They all have as 
a common characteristic an enhancement of the detection sensitivity for small spin 
concentrations. Furthermore, when the optical spectrum consists of a superposition 
of sometimes relatively broad bands from several different molecules, one can, us­
ing these methods, attribute the different spectral lines to the different molecules; 
cf. Fig. 19.12. The microwave frequencies at which one observes ODMR signals as 
a change in the optical emission intensity are namely molecule-specific properties 
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Fig. 19.13. ODMR in zero applied field, from the anthracene molecule. Upper part: the 
molecular principal axes x, y, and z. Centre: the zero-field splitting of the triplet state Tl 
into states with relative energies 0, D + E, and D - E, with the three allowed resonance 
transitions. Optical emission takes place with a higher intensity from the uppermost substate 
in each case; thus, high-frequency transitions between this substate and the other two states 
increase the emission probability and thereby the observed phosphorescence intensity. This 
change in intensity is used to detect the resonance corresponding to the hf transitions. Lower 
part: the ODMR lines observed on irradiation with hfpower at quantum energy 2E, D + E, 
and D - E. The transition D + E is observed as electron-electron double resonance by 
simultaneous irradiation with 2E quanta. [After J.-U. von Schiitz, F. Giickel, W. Steudle, and 
H.C. Wolf, Chern. Phys. 53, 365 (1980)] 

and therefore represent a sort of fingerprint of the participating molecule. The reso­
lution of such overlapping optical spectra is thus improved, and a clearcut correlation 
is obtained between the optical spectrum, the hf-resonance spectrum, and the partic­
ular molecule. Figure 19.14 shows an especially instructive example of how ODMR 
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Fig. 19.14. An example of the power of the ODMR method for the analysis of complex 
spectra. In the fluorescence spectrum of photosynthesising bacteria (left-hand part offigure), 
between the wavelengths 586 and 783 nm alone, 11 different fluorescing molecules can be 
detected by ODMR. In the right-hand part of the figure, the corresponding ODMR spectra 
are plotted, i. e. the intensity of the optical emission at the given wavelength is drawn as 
a function of the frequency of the hf power applied to the sample. Using the fine structure 
constants D and E determined from these spectra, the individual molecules can be identified. 
They consist of various protoporphyrins, phaeophorbides, and chlorophyllides. [After J. Beck, 
J.-U. von Schlitz, and H. C. Wolf, Photochemistry and Photobiology, ed. A. Zewail, Harwood 
Acad. Publ. (1983)] 

allows the individual analysis of the spectra of a number of molecules which over­
lap to give a fluorescence spectrum with very little structure. This figure represents 
the fluorescence spectrum of photosynthetic bacteria; it consists of relatively broad, 
overlapping bands. When the ODMR spectrum is observed at discrete wavelengths, 
it can be shown that the overall spectrum is a superposition of the emission from nu­
merous different molecules. Eleven of these are detected individually in the ODMR 
spectra shown in Fig. 19.14. Employing the measured fine structure constants which 
are characteristic of the different molecules, one can analyse them. They are in the 
main chlorophylls and their precursors, which are produced in intermediate stages 
of biosynthesis and are all present simultaneously in the bacteria. 

In the examples of optically detected resonance which we have given so far, the 
resonance detection was accomplished by observation of the triplet-singlet emission, 
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i. e. phosphorescence. One can readily understand by referring to Fig. 19.9 that 
a change of the level populations and thus of the effective lifetime of the triplet state Tl 
can also lead to a change in the steady-state population of the ground state So and the 
excited state Sl, since these three states are strongly coupled together in the steady 
state, so that any change in the population of one of them has an influence on the 
other two. This is the basis for the detection of magnetic resonance using Sl --+ So 
fluorescence (FDMR, Fluorescence Detected Magnetic Resonance) or using the 
absorption Sl ~ So (ADMR, Absorption Detected Magnetic Resonance). These 
methods become especially important when the intensity of the phosphorescence 
Tl --+ So is too weak to permit its use for detection. 

Finally, this double resonance technique can also be inverted, by measuring the 
absorption spectrum Sl ~ So or the phosphorescence spectrum Tl --+ So with 
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Fig. 19.15. An ODMR spectrum taken in a high magnetic field and measured at 35 GHz, 
of triplet excitons in a 1,4-dibromonapthalene crystal. In the upper part of the figure, the 
ODMR spectrum of the triplet terms ms = + 1, 0, -I is plotted; in the lower part of the 
figure shows, for comparison, the ESR spectrum with conventional detection. In the ODMR 
spectrum, the spectrally resolved phsophorescence emission from the three triplet sublevels +, 
0, and - is observed as a function of the applied magnetic field, with simultaneous irradiation 
at the microwave resonance frequency of 35 GHz. The resulting ESR transitions change 
the populations of the three sublevels and thus the intensities of the three phosphorescence 
components. In this way, one can determine the fine structure constants as well as the relative 
population and depopulation rates of the levels. [After R. Schmidberger and H. C. Wolf, 
Chern. Phys. Lett. 16,402 (1972)] 
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simultaneous irradiation of one of the microwave transitions between Tx , Ty , and 
Tz in Fig. 19.9, or between the states 1 + 1), 10), and 1 - 1) in Fig. 19.10. If the 
detection apparatus is modulated at this microwave frequency, one observes only 
the absorption or phosphorescence spectrum of that particular molecule which has 
its resonance at the frequency being applied. A superposition of the absorption or 
phosphorescence spectra of a number of different molecules can then be resolved 
into individual spectra,if the microwave frequency characteristic of each different 
molecule is applied and the resulting variation in the optical spectrum is regis­
tered. One thus obtains the correspondence between the microwave frequency and 
each particular molecule. These methods are termed Microwave Induced Absorption 
(MIA) or Phosphorescence Microwave Double resonance (PMDR). 

The ODMR method can, by the way, be applied not only in zero field, but 
also with success in an external field Bo. An example of such high-field ODMR 
measurements is shown in Fig. 19.15, which represents spectra obtained from the 
triplet state Tl of 1,4-dibromonapthalene, taken at a microwave frequency of about 
35 GHz using an ESR spectrometer and a monochromator for the optical detection. 

ODMR in its various forms has become an important method of investigation 
in molecular physics and also in solid-state physics for elucidating the structures of 
colour centres and of doping and defect centres. Its particular importance lies in the 
increase in the detection sensitivity of ESR obtained by the use of the much more 
energetic quanta in the optical region for detection, as well as in its selectivity. This 
allows the mutual assignment of ESR and optical spectra. 

19.8 Applications of ESR 

In summary, we can say that electron spin resonance is an important method for the 
determination of the electronic and the geometric structures of paramagnetic mole­
cules, and, more generally, of paramagnetic states, and thus is a significant technique 
for molecular physics. These structural determinations are accomplished especially 
through the observation of the hyperfine structure and fine structure. From linewidths 
and relaxation times, one obtains information on the motions of spins, molecular 
groups, and whole molecules, as well as on molecular reactions. Finally, the method 
is particularly suitable for the simple and exact determination of the concentrations 
of unpaired spins, and thus also for the measurement of spin susceptibilities, as we 
have already pointed out in Sect. 3.6. At sufficiently low temperatures, one can also 
observe the establishment of magnetic order in the condensed phase. The unpaired 
spins in many organic radicals exhibit, at low temperatures and sufficiently close 
spacing, a tendency towards antiferromagnetic coupling. 
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Problems 

19.1 How many lines are to be found in th ESR spectra of the radicals e 2CF2Hr, 
[ J3CF2Hr, e2CF2Dr, and [12CClH2P 

19.2 a) Relate the hyper fine structure lines of the ESR spectrum of the napthalene 
radical (see figure) to the possible orientations ofthe proton spins (aO! = 0.495 mT, 
afJ = 0.186 mT). 

I I 

a. 
8 1 

7~213 
6~3 

5 4 

0.2 mT 

b) Describe the ESR spectrum of l-iodonapthalene and 2-iodonapthalene. As­
sume that the electron densities and therefore the coupling constants of these two 
molecules, which are simply substituted at different sites, are unchanged from those 
of unsubstituted napthalene. 

c) How does the spectrum change if the napthalene molecule is substituted not 
with an iodine atom but rather with a methyl group, CH3? 

19.3 a) Sketch the ESR spectrum of the amino radical, [NH2r, which contains an 
14N nucleus (I = 1) and two equivalent protons (I = D; the hyperfine structure 
constants are 1.03 mT for Nand 0.35 mT for H. 

b) What hyperfine structure is exhibited by the azide radical, [14N3r? The three 
nitrogen atoms are equivalent. 

19.4 From the hyperfine splitting in the ESR spectrum of a singly-negatively­
charged benzene molecule, one can derive a simple rule for determining the spin 
density in aromatic radical anions. This makes it possible to sketch the molecular 
orbitals of the unpaired electrons. 

We denote the spin density of the free :rr electron on the i -th carbon atom (Ci ), 

normalised to 1, by Qi; i. e. L Qi = 1. Then the McConnell equation holds for the 
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isotropic hyperfine structure coupling constant ai between the electron spin and the 
nuclear spin of the proton in the Ci - H bond: 

ai = QQi with Q = (-) 2.25 mT . 

a) Use the data given in problem 19.2 to find the spin density ofthe unpaired electron 
in the napthalene radical-anion. 

b) The spin densities at the three inequivalent carbon sites in the singly­
negatively-charged anthracene molecule are 0.193, 0.097, and 0.048. What does 
the corresponding ESR spectrum look like? 

19.5 In an ESR spectrometer which operates at a fixed frequency of 8.5002 GHz, 
the resonance signal of atomic hydrogen is found to be a doublet at 277.97 mT and 
328.67 mT. Calculate from this the g-factor of the electron in the hydrogen atom. 
How large is the hyperfine structure coupling constant? 

19.6 What are the relative intensities of the hyperfine structure lines in the ESR 
spectrum of the radicals [CH3]" and [CD3]"? 

19.7 Does rotation of the benzene radical-anion about a symmetry axis perpen­
dicular to the molecular plane lead to an averaging out of the hyperfine structure 
in the ESR spectrum? If 'yes': at what rotational frequency is this the case? Which 
rotational state (quantum numbers J and K) does this correspond to? (Hint: The 
principal components of the moment of inertia tensor are ell = 2.96 . 10-45 kg m2 

and e1- = 1.47.10-45 kgm2 .) 

19.8 In the ESR spectrum of sodium nitrite, NaN02 , one would expect a hyperfine 
structure owing to the interaction of the triplet electron spin with the nuclear spin of 
the nitrogen. Explain why this hyperfine structure is not observed in single crystals. 
(Hint: What are excitons?) 

19.9 The spin Hamiltonian of a molecule in the triplet state contains an expression 
for the dipole-dipole interaction of the two electronic spins. It can be represented 
with the help of the two fine structure parameters D and E, where: 

and 

Here, 3 tJI is the triplet wavefunction and rl2 is the distance between the two electrons, 
with riz = xrz + Yr2 + ziz; the integration is over all of configuration space. 
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A measurement of the zero-field (Bo = 0) splitting of the triplet state allows the 
detennination of D and E. 

For the planar pyrazine molecule, one finds D = 0.3 cm- I . Use this to compute 
the average distance r between the two electrons in the triplet state. 

P N 

(Hint: The expressions for D and E are given here as is usual in cgs 
units; in order to transform to SI units, one has to multiply the right­
hand sides by the factor /-to I 4n. Note also that in general, numerical 
values are quoted for Dlhc and Elhc. 

19.10 In the literature, the expressions for D (19.37) and E (19.38) often appear in 
a somewhat different form. What are the corresponding expressions in the cgs unit 
system? 

19.11 Derive the system of equations (19.56), and the results in Table 19.2. 

19.12 From ODMR measurements on benzene, napthalene, anthracene and tetra­
cene, the values of the fine structure constants D and E of the triplet states have 
been determined. 

a) Order the four molecules named according to the sizes of their D and E values. 
What is the value of E for benzene? b) For D, values between 0.06 and 0.15 cm- I 

are found. How large is the average distance between the two triplet electrons in 
these two extreme cases? 

19.13 In the method known as ADMR (absorption-detected magnetic resonance), 
the microwave transitions between the individual triplet sublevels are detected by 
means of a change in the optical absorption of the singlet ground state. This is based 
on a redistribution of population between triplet states with different decay constants 
(spin polarisation): if for example the spin population is pumped by microwave 
irradiation from a short-lived sublevel into a long-lived level, then the overall triplet 
population is increased, while the popUlation of the singlet state decreases. 

a) Sketch an ADMR spectrum in which the change .t1!I! in the transmission of 
a sample at a fixed frequency of observation is plotted against the applied microwave 
frequency. Assume that there is always a redistribution of population into a more 
rapidly decaying sublevel. 

b) Derive a linear relation between the relative transmission .t1! I! and the change 
in the fraction So of molecules in the So state. 

c) With a sample of the photosynthetic bacterium Rhodobacter sphaeroides GA, 
an optical density of 0.23 is measured at 894 nm. In the ADMR spectrum at 10 K, 
irradiation with a microwave frequency of 659 MHz (D + E transition) produces 
a relative transmission change of -440 ppm. Calculate from this the change .t1So in 
the popUlation of the So state. 



20 Macromolecules, Biomolecules, 
and Supermolecules 

This chapter is intended to widen the horizons of physicists with regard to the 
enormous variety of large molecules, and to their significance for physics, chemistry, 
and biology (Sect. 20.1), as well as to the question of what molecular physicists have 
already contributed, and can in the future contribute, to this field. Our overview here 
must necessarily be limited and thus rather superficiaL It is intended in the main for 
students of physics, who might otherwise be left with the impression after studying 
a text on molecular physics that diatomic molecules are the most important. The 
present chapter is intended to make it clear that this is not so; and that, on the contrary, 
the investigation of complex molecular functional units (Sects. 20.5 to 20.7) offers 
many fascinating and unanswered questions to challenge the molecular physicist. 

20.1 Their Significance for Physics, Chemistry, and Biology 

In molecular physics, small molecules have initially occupied the most prominent 
place, for good reasons. The physicist wishes to determine, understand and calculate 
the physical properties of the objects investigated in the most precise and complete 
manner possible. This is incomparably more straightforward in the case of a small 
diatomic molecule such as Hel than for a large molecule like chlorophyll, not to 
mention a macromolecule from among the proteins, for example. 

The variety of molecules is however enormous, and it becomes even more so 
when one considers larger molecules. An essential component of this variety is the 
formation of hybrid bonds by the carbon atom and the resulting ability to enter into 
multiple covalent bonding. Macromolecules are everywhere; they form the material 
basis of all biological structures and processes. Life and all biological processes, 
the occurrences within living cells, within organisms, and their interactions with 
the environment, are all due essentially to the chemistry of macromolecules. Along 
with natural macromolecules such as proteins, DNA, or cellulose, we find in our 
modem environment a great number of synthetic macromolecules like polyethylene, 
polystyrene, or Teflon. One can hardly imagine our present-day life without these 
materials. 

When macromolecules are formed out of many, usually identical small molecular 
units, called monomers, then we term them polymers. Macromolecules can also be 
formed when identical or different molecules group together to give new units under 
the influence of intermolecular forces, especially Van der Waals forces; one then 
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obtains supermolecules, molecular clusters, and inclusion compounds. Molecules 
can also fonn larger units through covalent binding, yielding supramolecules. When 
their functions, e.g. in biological systems, can be carried out only through the 
fonn of these specifically organised macromolecules, they are also called molecular 
functional units. 

The investigation and understanding of such molecular functional units is still in 
its early stages. The contributions of physicists have initially been in the area of struc­
ture determinations using the physical methods of X -ray and neutron diffraction and 
magnetic resonance techniques. Physicists can develop appropriate spectroscopic 
methods and apply them in order to understand the statics, the dynamics, and the 
reactive behaviour of these functional units. Physics has an important role to play 
in understanding the functions of these molecules and how they are determined by 
molecular organisation, and in the investigation of their confonnation and configu­
ration, that is the construction of the molecules from atomic units and their spatial 
structures, as well as the possible reactions of the molecules with each other and 
with other molecules. It can be confidently predicted that in these fields, the interdis­
ciplinary, collaborative work of physicists, chemists, and biologists will have a great 
and increasing significance in the future. In these sections, we attempt to show which 
contributions can be made specifically by physicists, using as examples a small and 
subjective selection of supramolecules, macromolecules, and functional units. 
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Fig. 20.1. The molecular structures of three 
important classes of polymers 
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20.2 Polymers 

Among the largest artificially produced "molecules" are the socalled polymers. 
A typical polymer, which is familiar from daily life, is polyethylene, a saturated 
hydrocarbon with the formula (CH2)n (Fig. 20.1, upper part), where n lies between 
5000 and 50000. The polymer molecules consist of long saturated hydrocarbon 
chains with differing chain lengths. In the polymeric material, there is no strict 
mutual ordering of these chains, aside from molecules which are oriented parallel to 
one another over limited regions of space. 

For physicists, the polymer polydiacetylene is of particular interest (Fig. 20.1, 
lower part), since the polymerisation reaction can take place within a single crystal 
of the subunits. It is formed from the monomer R-C=C-C=C-R' following the 
mechanism illustrated in Fig. 20.2. Here, Rand R' stand for two of many possible 

b 

I Monomer 

d=5.11 A 

I Polymer 

d=4.91 A 

• C 
o 0 
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o H H 0 0 11 I 1110 
CH - 0 -S-O-C-C=C-C=C-C-O-S- 0 -CH 

3 II I I II 3 o H H 0 

Fig. 20.2. The polymerisation of polydiacetylene. In the upper part of the figure, the X-ray 
structure of the monomeric diacetylene TS6 is shown (the notation refers to a particular side 
group, in general denoted by R); in the lower part of the figure, the structure of the polymerised 
crystal is indicated. The protons in the molecule are not shown. The complete formula of the 
TS6 monomer is given at the bottom of the figure 
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Fig. 20.3. The mechanism of the solid-state polymerisation of diacetylene. The fonnation 
of dimers is initiated by irradiation with light; the further progress of the polymerisation is 
thennally activated as an addition reaction. At the ends of the oligomer chains, the reactive 
radical electrons of the diradicals which are fonned in the course of the polymerisation 
reaction are indicated as dots. After H. Sixl 

substituent groups, of which Fig. 20.2 shows one example. The groups Rand R' can 
also be the same. 

On polymerisation, the neighbouring monomers, which are stacked one above the 
other in the crystal, bind together to form chains by means of a so called 1,4 addition, 
forming various reaction intermediates in the process (1 and 4 refer to the numbering 
of the 4 central C atoms in the monomers). To induce the polymerisation and to 
maintain its progress, radiation and/or thermal energy are necessary. Accompanied 
by reorientation of the molecules and the formation of new bonds, first dimers, 
then trimers, tetramers (Fig. 20.3), and finally polymers with a large value of n are 
formed. The special feature of this reaction is that it takes place in the solid state 
in a single crystal, retaining the crystalline order; a single crystal of the monomer 
molecules is therefore converted into a polymer crystal. The uniform orientation of 
the polymer molecules in the ordered crystal allows the investigation of the initial 
and intermediate stages of the polymerisation using spectroscopic methods, which 
is not possible for other polymerisation reactions. The intermediate products of 
the polymerisation are diradicals, that is molecules with an unpaired electron at 
each end, as well as carbenes, i. e. molecules with reactive end groups containing 
a C atom, and two non-saturated electrons ("dangling bonds"). Excitation by optical 
radiation is necessary to initiate the transformation steps, and thermal energy is 
required to maintain the addition reaction, i. e. to continue the polymerisation. These 
processes can be followed step by step using the methods of optical and ESR 
spectroscopy and can thus be investigated in detail. Figure 20.4 shows as an example 
the absorption spectrum of the oligomers during the course of the polymerisation 
reaction. Oligomeric molecules, i. e. molecules which are made up of only a few 
monomeric units, thus become accessible to investigation and can at the same time 
be used as probes for the elucidation of the polymerisation process. 
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Fig. 20.4. The absorption spectrum of a diacetylene crystal after the initiation of the polymeri­
sation reaction (upper curve) and at various times during the following thermally activated 
addition reaction. The tempering times at - K were (from top to bottom) 0, 15, 35, 65, 80, 
150, and 240 min. The numbers 2, 3,4,5, and 6 refer to the intermediate diradical stages DRn 
going from the dimer to the hexamer; for n :::: 6, one sees essentially the dicarbenes DCn . 

These are molecules with carbon-like (-C - ) reactive end groups at each end. After H. Sixl 

The solid-state polymerisation of diacetylene is furthermore a good example 
of the "topochemical principle". This states that solid-state reactions of molecules 
proceed with a minimum of molecular rearrangements. The monomer molecules 
must be ordered within the crystal in such a way that they can form bonds with their 
neighbours with only a small deviation from their equilibrium shapes and positions. 
This is made possible in diacetylene by attaching suitable substituent groups. During 
the reaction, the lattice parameters of the crystal may change only slightly; only then 
is it possible that the single crystal will remain intact throughout the solid-state 
polymerisation. 

Another molecule which has been of particular interest to molecular physics is 
polyacetylene, (CH)n (Fig. 20.1, centre). This long-chain polyene has alternating 
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Fig. 20.5. A scanning tunnel microscope image of a polyacety1ene foil. The foil contains more 
or less disordered strands of polymer molecules. A certain degree of preferred orientation was 
obtained by stretching the foil. The length of the picture corresponds to 125 !-lm. (Kindly 
placed at our disposal by M. Schwoerer) 

double and single bonds and can, like most polymers, be prepared only in disordered 
or partially ordered form. This is illustrated by Fig. 20.5. Polyacetylene is a polymer 
which can be made electrically conducting by "doping": the addition of oxidants such 
as AsFs or FeCl), or of reducing agents such as alkali metals, i. e. the production 
of an excess or a deficiency of electrons, increases the electrical conductivity by 
many orders of magnitude to values of order 105 Scm-I. The "record" at present is 
800000 Scm-I; in this way, one can obtain conducting polymers. 

To understand the electrical conduction in polyacetylene, the concept of con­
ductivity through defects has been developed; they are referred to as solitons by 
theoretical physicists. In this concept, so called alternating-bond defects are impor­
tant, such as those found in molecules of the polyacetylene structure, or as formed by 
breaking a double bond and thus creating an electron-hole pair. Figure 20.6 shows 
as an example the removal of an unpaired electron by a dopant, giving a rniss-

Fig. 20.6. A neutral and a charged "soliton" defect 
in the conjugated JI'-electron chain of polyacety­
lene. The upper part of the picture shows a neu­
tral soliton, consisting of an alternating-bond de­
fect and an unpaired electron (i. e. a free radical), 
which can move along the conjugated chain. In the 
lower part of the picture, an electron has been re­
moved from the neutral soliton by oxidation. The 
remaining positively-charged soliton is likewise de­
localised along the chain and is mobile 
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ing electron or hole, at such a defect. It is distributed over several carbon atoms 
in the molecule and can propagate as a wave along the molecular chain owing to 
the quantum-mechanical energy equivalence; exchange with neighbouring chains is 
also possible. This mechanism makes the conductivity of such molecular systems 
understandable. The search for the optimum conditions under which one can ob­
tain conducting polymers or, in general, molecular systems with a high electrical 
conductivity is one of the currently important research areas of molecular physics. 

20.3 Molecular Recognition, Molecular Inclusion 

Can one molecule "recognise" another? Can it choose a specific molecule from 
within a group of others, identify it and bind to it? These questions occupy the 
attention of a modem branch of chemistry, which is referred to as supermolecular 
chemistry. Molecular interactions are indeed the basis of many highly selective 
recognition, transport, and regulatory processes in biological systems. As examples 
we mention the binding of a biologically important molecule to a protein complex, 
enzymatically regulated reactions, antigen-antibody association, or, as the most 
spectacular example, the replication and transcription of the genetic code in the 
reproduction and genetics of living organisms. 

Molecular recognition can be carried out by supermolecules. According to 
K.L. Wolf, these are molecules whose covalent bonds are saturated and which 
are held together by intermolecular forces. The smaller component is termed the 
"substrate", the larger the "receptor"; "supermolecules" are thus formed, as illus­
trated schematically in Fig. 20.7. The binding of the substrate to the receptor must 
be selective and specific. Molecular recognition is then based upon the storage and 
readout of information with the aid of such supermolecules, formed by the selective 
interactions of suitable molecules .. The fitting together of the substrate and the re-

ItecePtor IJ 
'-.... !:> Complex formation ~ 

!Substrate 0 
Supermolecule 

I!\ 
Recognition Catalysis Transport 

Fig. 20.7. The "receptor" and the "substrate" bind together to form a supermolecule or 
supermolecular complex. This forms the basis for the concept of of "molecular recognition", 
important in the catalysis and transport processes of molecular units 
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ceptor must/can be determined either electronically or geometrically, corresponding 
to the famous postulate of E. Fischer (1894), according to which the molecules fit 
together like a key into a lock. 

[18) crown-6 
18C6 

Dibenzyl [18) crown-6 
D818C6 

Fig. 20.8. Two crown ether molecules; the C atoms are not drawn in. Notation: the ring size, 
that is the number of bonds in the ring, is first given in square brackets, followed by "crown" 
or "c" for the class of molecules, and finally the number of donor positions is noted. In the 
ethers shown, these are the 6 oxygen atoms 

• 

Fig.20.9. Using a hard-sphere model, it can be shown that a K+ ion just fits into the cavity 
of the crown ether [18] crown 6 and forms a complex there. After Vogtle 

As an example, in Fig. 20.8 we show a molecule from the series of the crown 
ethers, which play an important role in this field of molecular physics. In this 
molecule, the ring of six 0 atoms and twelve C atoms forms a cavity which is just 
the right size to permit a K+ ion to fit into it in an optimal manner (Fig. 20.9). A larger 
alkali-element ion would no longer fit into the cavity, while a smaller one would be 
less strongly bound. If one wishes to prepare a supermolecule with a different alkali 
ion in the centre, then another crown ether with a suitable specific cavity size can be 
chosen; cf. Table 20.1. 

In recent years, many molecules have been prepared which are effective in the 
selective binding of substrates having quite a range of shapes, sizes, and structures. 
They have an eminent value for reactions, catalysis, transport processes, and most 
especially as models for biochemical reactions. This new supermolecular chemistry 
will have to be studied by chemists and physicists working together if the great 
research potential which it promises is to be realised. 
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Table 20.1. A comparison of the diameters of various alkali-metal cations and crown 
compounds* 

Cation Diameter [pm] 

Li+ 136 
Na+ 190 
K+ 266 
Cs+ 338 

* After Vogtle 

o 
Host 

+ 

Guest 

Crown Diameter [pm] 

[12] C4 (9) 120-150 
[15] C5 (10) 170-220 
[18] C6 (7) 260-320 
[21] C7 (11) 340-430 

00 Molecular 
inclusion 

·o~ 
O~O -Oe... Lattice 

r inclusion 

Fig. 20.10. Inclusion compounds can be formed by the molecular enclosure of a guest atom 
or molecule in a host molecule, or by lattice inclusion within the crystal lattice of the host 
molecules. After Vogtle 

Supermolecules or molecular structures consisting of two or more different 
molecules have long been known in the form of inclusion compounds or Clathrates. 
Such compounds can accept other molecules of suitable size into cavities in their 
own structures or lattices and bind them there. In this process, binding forces are 
not decisive; instead, the geometrical enclosure is important. It can be a molecular 
enclosure as in the crown ethers, or an inclusion into the crystal lattice, as exemplified 
by Fig. 20.10. An example of a lattice inclusion is shown in Fig. 20.11, which 
illustrates the lattice structure of urea, a molecule having the formula 

The cavities of its lattice can trap for example n-paraffines, n-fatty acids, halogenated 
hydrocarbons, or indeed even benzene molecules. The channel-like cavities in the 
urea lattice have a diameter of 520 pm; this limits the size of the molecules which 
can be bound there. 

A number of host substances for Clathrates are known, with a great variety of 
guest molecules. Such molecular complexes have great practical as well as theoretical 
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500 pm 

Fig. 20.11. The lattice of the urea molecular crystal permits inclusion 
of paraffine molecules. After Vogtle 

interest. When inclusion is made possible by the specific lattice structure, then these 
molecular complexes also bridge the gap to solid state physics. 

The concept of a supennolecule was expanded to include those of the supra­
molecule and into the area of supramolecular chemistry, in particular through the 
work of J. M. Lehn. In general, one speaks of a supramolecule or of a molecular 
functional unit when two molecules are bound together in such a way that they fulfill 
a new function. In the narrower sense, the tenn is applied to compounds which are 
held together by intennolecular forces, i. e. to host-guest complexes, self-organised 
associates and molecular films. In a wider sense, however, these are all molecular 
compounds which are covalently bonded to yield new units. The significance of such 
systems in chemistry, biology, and physics is immense. One needs only consider the 
variety of possible applications as catalysts, sensors or novel materials. We shall 
have more to say about these systems in Sect. 20.7 and in Chap. 21. 

20.4 Energy Transfer, Sensitisation 

Molecular systems can also lead to the conversion of optical radiation along the 
lines of the following series of steps: light absorption by one partner in the system; 
transfer of the excitation energy to the other partner; and emission of radiation by 
the latter. An example from the field of supennolecular chemistry is the europium 
(III) cryptate of the macrobicyclic ligand polypyridine, shown in Fig. 20.12. The 
tenn cryptate is applied to molecular complexes in which one partner (the Eu ion) 
is almost completely enclosed by the other partner. Although the free europium ion 
in solution does not fluoresce, the complexes exhibit strong luminescence. As is 
shown by the excitation spectrum (Fig. 20.13), this luminescence is excited by the 
absorption of light in the organic ligand, followed by energy transfer to the emitting 
Eu ion. By enclosing the metal ion in its molecular cavity, this ligand at the same time 
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Fig. 20.12. The molecular structure of a europium (III) 
cryptate with a macrobicyclic polypyridine ligand, enclos­
ing the Eu3+ ion. [After 1.M. Lehn, Angew. Chern. 100,92 
(1988)] 

500 400 300 

Fig. 20.13. Right: an excitation spectrum, that is the spectrum of absorbed light which 
gives rise to an emission at 700 nm, corresponding to the fluorescence of the molecule 
shown in Fig. 20.12. Left: the emission spectrum; it belongs to Eu3+, while the absorption 
is accomplished by the organic ligand. This follows from the agreement of the excitation 
spectrum shown with an absorption band of the organic macrocycle. This is an example of 
intramolecular energy transfer from excited states of the ligand to excited states of the Eu3+ 
ion. The latter emits with a high yield, owing to its screening from the solvent by the organic 
partner. The measurements were carried out on a 10-6 molar solution at room temperature 

prevents the supression of the Eu emission by radiationless deactivation processes 
via the solvent molecules. 

The radiationless transfer of electronic excitation energy between molecules 
over somewhat greater distances up to about 100 A is an important process in many 
molecular systems. This energy transfer is accomplished by a resonant interaction 
between an electronically excited molecule D (for donor, cf. Fig. 20.14 and a mol­
ecule A (for acceptor) in its electronic ground state. The condition for resonance is 
an overlap between the emission spectrum of the donor and the absorption spectrum 
of the acceptor, and a sufficiently small distance between D and A. 
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Fig. 20.14. Energy transfer by the Forster process: the light 
energy absorbed by molecule 1, the donor D, can be trans­
ferred to molecule 2, the acceptor A, at a distance r. The 
relative orientation of the molecular dipoles /-to and /-tA 
(cf. Sect. 15.1) is taken into account in the orientation fac­
tor K2 

The interaction mechanism can be either the exchange interaction or the Coulomb 
interaction. The Coulomb interaction can be expressed in the well-known multipole 
expansion, where the term with the longest interaction range is the dipole-dipole 
interaction. Such an energy transfer was first calculated by Forster and is therefore 
known as the Forster process. 

For the energy transfer rate kO-+A from molecule D to molecule A over a dis­
tance r (Fig. 20.14), one finds 

kO-+A = ~ [ Ro ] 6 
TO r 

i. e . ....., r-6 , 

where (TO)-I is the radiative decay rate of the donor, and the so called Forster 
radius Ro is the intermolecular distance at which the probability for direct emission 
of light by molecule D and that for radiationless energy transfer from molecule D to 
molecule A are equal. 

In the Forster process, the energy transfer rate kO-+A decreases as the sixth 
power of the distance r between the participating molecules. In the case of higher 
multipole terms, one also finds a power law for kO -+A , however with notably shorter 
ranges: kO-+A ....., r-X with x 2: 8. For the exchange interaction, one finds even 
an exponential dependence on the distance r, so that an energy transfer via this 
mechanism is effective only over small distances (of a few A). 

Forster obtained the following expression for Ro in the case of a dipole-dipole 
interaction: 

2 100 d 6 5 K V 6 
Ro = 7.096393 . 10 . - . !o(V) . SA(V) . - [m ] , 

n4 0 v4 
(20.1) 

where K2 is a numerical factor of the order of 1 which takes into account the 
relative orientation of the two molecules, n is the index of refraction of the medium 
between the two molecules, and the integral expresses the overlap between the 
fluorescence !o of the donor and the absorption SA (in [1 . mol-I. cm- I]) of the 
acceptor. The fluorescence spectrum is normalised in this expression: 

100 
!o(v) dv = 1 . 

Typical numerical values of the Forster radius Ro, i. e. the distance over which this 
energy transfer is significant, are in the range of 50 A for organic molecules. 
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Fig. 20.15. a-d. A schematic illustration of sensitised fluorescence. (a) The host crystal H 
contains a small concentration of guest molecules G. The crystal is exposed to light, which 
is absorbed primarily by the host. The fluorescence consists mainly of guest light. (b) The 
fluorescence light quanta emitted from host and guest, QWH and QG, differ in their spectra, 
i. e. in their colours, and can thus be detected separately. The quantum ratio QG I QH is plotted 
here against the guest concentration eG. (c) The excitation light is absorbed in the crystal by 
the host; the excitation energy diffuses within the crystal as SI excitons. When an exciton 
reaches a guest molecule G during its lifetime, it is trapped there, and light is emitted by the 
guest G. (d) Excitation energy from the exciton band SIH of the host is transferred to the guest 
molecule, which is isolated in the host lattice. Emission takes place from the SlG excitation 
state of the guest. [After H. C. Wolf, Die Feste Materie, Umschau Verlag, Frankfurt (1973)] 

An important application of energy transfer in photophysics is sensitisedfluores­
cence. It is responsible for the fact that solid anthracene (cf. Fig. 14.21) containing 
a relative concentration of only 10-5 of tetracene as an impurity or "guest"molecule 
does not fluoresce in the blue-violet as does pure anthracene, but instead in the 
yellow-green. The energy absorbed by anthracene is transferred with a high effi­
ciency to the tetracene impurities and re-emitted by them; see Fig. 20.15. 

This can also be expressed in the following way: by dissolving tetracene in 
anthracene, one can increase the probability of its excitation through light by many 
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orders of magnitude. By using suitable energy transfer systems, one can thus direct 
the energy preferentially to particular molecules, for example to molecules in which 
a photochemical reaction is desired. 

Such processes play an important role in biological systems, for example in the 
so called antenna complexes which collect light for photosynthesis (cf. Sect. 20.6), 
as well as in technical applications, e.g. in photography. 

20.5 Molecules for Photoreactions in Biology 

Life on the Earth requires sunlight; without it, the natural lifeforms all around us 
could not exist. The Sun supplies the energy required for photosynthesis, i. e. for 
the process which is indispensable to the formation of the material structure and 
the functions of naturallifeforms. Many other processes which are important to life 
employ light -we mention here only the phototropic growth of plants, and vision in 
the realm of animals and human beings. 

All these fundamental chemical processes in the biological world take place 
via photoreceptors. Molecules contained in them are responsible for the primary 
processes of photochemistry and photophysics in living organisms. They absorb 
light and transfer the absorbed energy to a site where the primary chemical processes 
are initiated. In order to understand their functions, one requires the methods of 
investigation of the molecular physicist. More about this subject will be given in 
Sect. 20.7. 

The most important of these molecules is chlorophyll, Fig. 20.16. It consists 
of a large ring, the macrocycle of the porphyrin ring with delocalised electrons, 
i. e. conjugated double bonds, responsible for the characteristic light absorption, and 
a so called phytol tail, which serves to make the molecules soluble in a membrane and 
to attach them in the proper way to the associated proteins. The absorption spectra 
of two somewhat different chlorophyll molecules and of carotene, i. e. of molecules 
which can selectively absorb light, are shown in Fig. 20.17. The absorption spectrum 
can be shifted somewhat by making slight modifications in the molecular structure or 
by differing modes of insertion into the proteins which carry them. Living organisms 
make use of this fact when they exist under conditions where the light has a different 
spectral composition than that of normal sunlight, for example in swamp water. In 
the process of photosynthesis, chlorophyll molecules have at least two functions: 
they serve to absorb radiation energy as light antennae, and they are responsible for 
the primary process of photosynthesis in the reaction centre, namely the primary 
charge separation, the transfer of an electron; cf. also Sect. 20.7. 

Another group of pigment molecules important for photosynthesis in plants and 
animals are the carotenoids. One member of this group, f3-carotene, is also shown in 
Figs. 20.16 and 20.17. In this case, the electronic structure which is responsible for 
the photoreaction is a linear chain of alternating double and single bonds, a polyene 
structure. Carotenoids, that is molecules with a basic structure similar to that of 
f3-carotene, are contained in the photosynthesis apparatus of many photosynthetic 
plants and bacteria. 
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Fig. 20.16. The molecular structures of chloro­
phyll b and of ,B-carotene. The areas containing 
conjugated double bonds, which are essential 
for the absorption of light, are shaded in the fig­
ure. The C atoms are not shown in the rings or 
chains, and the H atoms not at all. Dashes with­
out an atomic symbol indicate CH3 groups (not 
shown). After Dickerson and Geis 

The absorption spectrum of carotenoids (Fig. 20.17) is complementary to that of 
chlorophyll and therefore allows a more efficient use of the solar spectrum by the 
"antennae" which are responsible for light collection in the photosynthesis apparatus. 
In addition, the lowest-lying excited triplet state of these molecules, in the infrared 
at about 8000 cm - J , is also important: it provides for the radiationless removal of 
excess energy, when more light quanta are absorbed by the chlorophyll than can 
be processed by the photosynthesis apparatus. It thereby protects the organisms 
against damage when they are exposed to too much light, and especially against the 
formation of the extremely reactive excited singlet state of oxygen, 10;. 

This state can, in fact, be formed by a radiationless transition from the triplet 
ground state, 302, according to the reaction scheme: 

when the deexcitation of the chlorophyll molecule from its triplet ground state 
3chlorophyll is not complete, owing to strong irradiation by light. With the reaction 

3chlorophyll* + ICAR --+ Ichlorophyll + 3CAR* , 

the carotenoid opens an additional deexcitation channel for the removal of excited­
state chlorophyll and thereby prevents the above-mentioned competing reaction from 



488 20 Macromolecules, Biomolecules, and Supermolecules 

C Chlorophyll b -
o 
li o 
en 
.0 
« 

300 400 

Jl-Carotene 

500 600 

.' 
" I' 
II 
, I 
, I 
I I 
I I 
, I 

I 
I 

700 
"A(nm)-

Fig. 20.17. The absorption spectrum in the visible of the two chlorophyll molecules chloro­
phyll a and b, and of ,B-carotene 

forming 10~. The carotenoids thus make possible a more rapid removal of excess 
population from the excited 3chlorophyll* state. (We use an asterisk here to denote 
an excited electronic state.) Excited singlet oxygen already formed is converted to 
harmless 302 by the reaction 

10~ + ICAR -+ 302 + 3CAR* . 

The excited triplet state 3CAR* which results from this reaction rapidly gives up its 
energy as follows: 

3CAR* -+ lCAR + phonons . 

This is the basis for the protective action of carotenoids against light-sensitised 
reactions. 

The light energy absorbed by the pigment molecules in the antenna system, 
i. e. the chlorophylls and carotenoids, is conducted within the molecular structure 
of the photosynthesis apparatus to the reaction centre. There, the photochemical 
reaction begins. 

The molecule responsible for the process of light detection in the eye has, like 
carotene, a chain of conjugated double bonds as its absorbing structure: it is called 
retinal (Fig. 20.18). When it is bound together with the protein opsin, the resulting 
complex is named rhodopsin. In this molecule, absorbed light causes a cis-trans 
isomerisation, that is the spatial reorientation of a bond, as shown in Fig. 20.18. This 
intramolecular reorientation, the primary process of vision, is then converted into 
a nerve impulse in the optic nerve by the molecular functional units surrounding 
the rhodopsin molecules. Such intramolecular reorientations play an important role 
in many other processes of photobiology, e.g in the regulation of plant growth 
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Fig. 20.18. Retinal can be isomerised from the cis- configuration to the trans-configuration 
by absorption of visible light. The protein opsin, to which the retinal is bound, forms together 
with it the molecular complex rhodopsin; it employs this isomerisation reaction as the light­
detection mechanism in the eye. Before the absorption of light, the retinal is bound to opsin 
in the cis-conformation. In the trans-conformation, this molecular complex is unstable and 
dissociates into retinal and opsin; the process is reversible 
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Fig. 20.19. A schematic representation of the photoisomerisation of ll-cis-rhodopsin. Light 
is absorbed by the ground state So, raising it to the excited state SI. The colour is blue-green, 
and the pulse length amounts to 10 fs. From the excited state, a radiationless transition to the 
all-trans form takes place. After C. V. Shank et aI., Science 254, 412 (1991) 
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by light input through so called phytochromic molecules, which are related to retinal 
and in which likewise a cis-trans isomerisation represents the primary step of the 
photoreaction. 

With modern laser-spectroscopic methods, one can even measure the velocities 
of such isomerisation processes. Figure 20.19 shows a schematic representation of 
the photoprocess in rhodopsin obtained from bovine eyes. The photoisomerisation 
is completed after 200 femtoseconds. 

20.6 Molecules as the Basic Units of Life 

The most important molecular components in the biological realm are the proteins 
and the nucleic acids. They provide the basic units of the molecular structures from 
which alllifeforms are constructed. Proteins are the fundamental building blocks of 
living organisms, while nucleic acids provide for storage and transfer of information. 

Proteins are polymers constructed from amino acids. The latter are bifunctional 
molecules, i. e. molecules with two reactive end groups, an amino group, - NH2, at 
one end of the molecule, and a carboxylic acid group, -COOH, at the other. The 
general structural formula of an amino acid is: 

R 
I 

H2N-C-COOH. 
I 
H 

In this formula, R represents one of many possible side groups, which can have 
rather diverse chemical properties. If R is simply an H atom, for example, then the 
resulting amino acid is called glycine; with the side group 

it is valine. Amino acids can polymerise to give so-called polypeptides (Fig. 20.20) 
through a condensation of their reactive end groups with elimination of H20. The 
sequence of different amino acids, distinguished by their side groups R, is relevant 
for the biological properties of the polypeptides. These chains with typical lengths 
of 60 to 600 amino acids coil up and fold to form a three-dimensional protein 
structure (Fig. 20.21). The molecular masses of such molecules are in the range 
10 000 to 200 000. In nature, just 20 different amino acids with differing side groups 
occur. The sequence of these side groups along the polypeptide chain is determined 
by the genetic code, i. e. by a structural prescription which is passed on during 
cell division. The code determines which protein is to be synthesised and how its 
molecular structure, the primary structure, is to be formed. Certain regions of the 



20.6 Molecules as the Basic Units of Life 491 

r 
;I:-Z 

\ 
;I:-~ 

/ o = n 
,\-, 

I 0 \ 
I \ \ , :x: \ 

Fig. 20.20. A schematic representation of a peptide chain. Through elimination of a water 
molecule, amino acids can bind together, forming so-called peptide bonds. The backbone 
of the chain consists of many identical units. The variable side chains R determine the 
characteristic properties of each protein chain. The symbol S indicates here a crosslink to 
another part of the chain in the form of a disulphide bond. A different type of crosslinking is 
formed by hydrogen bonds (dashed lines). After Dickerson and Geis 

Fig. 20.21. A strongly schematised view of myoglobin. It contains 153 amino acids in its 
chain and has a molecular mass of 17 000, thus being a relatively small protein molecule. The 
chain is folded into 8 segments (labelled A through H) by bending of the cylindrical a-helix. 
The bends between the segments are denoted by the letters of the adjacent two segments, 
e.g. AB. The pocket formed by E and F holds the heme group, which is an Fe atom in the 
centre of a porphyrin ring. An 02 molecule can bind to this central Fe atom, allowing the 
myoglobin to store oxygen (binding position W). After Dickerson and Geis 



492 20 Macromolecules, Biomolecules, and Supermolecules 

polypeptide chain then coil up to give a helical structure, and the helices further 
fold together to form a three-dimensional molecule; one refers to the secondary 
and tertiary structures. An example is shown in Fig. 20.22. This structure makes 
it clear just how such a protein can provide an electronically and geometrically 
precisely-defined site which can receive another molecule, e.g. as in Fig. 20.21, the 
iron-containing compound heme. 

A protein is thus a folded polymer made up of amino acids in a specific sequence. 
There are many possible tertiary structures and functions of proteins. For example, 
they can serve as carriers for metal atoms or small organic molecules. Such globular 
proteins with a diameter from 2 to 20 nm can carry out numerous biochemical 
functions: as enzymes, which show strong catalytic activity; as carriers of oxygen 
(hemoglobin); as electron transfer agents (cytochrome); and many others. Proteins 
can however also occur as polypeptide chains which are twisted together to form 
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Fig. 20.22. The backbone of deoxyribonedeic acid 
(DNA) is a long polymer which is made up of alter­
nating phosphate and deoxyribose molecules. They are 
bound together by an ester bond at the 3' and 5' posi­
tions of the sugar molecules. The shaded boxes indicate 
the positions of one of the four possible bases. After 

H Dickerson and Geis 
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long cordlike structures. These are important structural and supporting elements; 
they are called fibre proteins, and form structural parts of hair, skin, and muscles. 

The most important carriers of information for organic life are the nucleic acids, 
in particular the DNA's, deoxyribonucleic acids. They make up the central informa­
tion storage units in the nuclei of cells, from which with the help of ribonucleic acids 
(RNA's) the stored information can be passed on and made use of in the biosynthesis 
of proteins. 

The primary contribution which can be made by molecular physicists in the 
investigation of these fundamental building blocks of life are in the areas of structure 
determinations and the elucidation of intermolecular binding mechanisms. 

DNA, deoxyriboneuleic acid, is shown in Figs. 20.22 and 20.23; it is the most 
important nucleic acid, because it as a rule is used to store and recall genetic infor­
mation. It is a long-chain polymer made up of molecules of the sugar deoxyribose 
(the general composition formula of the sugars is Cx(H20)y, with x and y between 
5 or 6, respectively) together with phsophate groups which alternate with the sugar 
molecules to form a chain; cf. Fig. 20.22. Each of the individual units is covalently 
bound to one of the 4 purine or pyrimidine bases, which are symbolised by A (ade­
nine), C (cytosine), G (guanine), and T (thymine); they are all shown in Fig. 20.23. 
These side groups are thus arranged at regular intervals along the polymer chain. 

H 

Aden ine 
Guanine 

Fig. 20.23. The four bases of DNA, shown joined into pairs by hydrogen bonds 

The genetic information is coded in terms of the sequence of the bases along the 
DNA strand. A group of three bases - a codon - characterises a particular amino 
acid, i. e. it gives the prescription to insert that amino acid into a protein chain being 
synthesised. For coding the 20 different amino acids from which natural proteins 
are made, there are thus 43 = 64 distinct codons, since 4 different bases can occur 
in a given position. A second strand, bound to the first strand to form a double 
helix (by hydrogen bonding between the bases), contains the same information; 
cf. Fig. 20.24. This information can be called up by messenger RNA, which has 
a structure similar to that of DNA, and passed on as a recipe for protein biosynthesis; 
as mentioned, each triplet of bases, i. e. each codon, specifies a particular amino acid 
that is to be inserted into the protein strand. The information stored in the codons is 
transferred to the messenger RNA and brought to the site where protein synthesis 
is taking place. Figure 20.24 shows again the structure of DNA in a very schematic 
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Fig. 20.24. A schematic representation of DNA. Left: a structural model of the deoxyribonu­
cleic acid molecule (DNA). Right: some of the structural units of DNA, shown spread out 
in a two-dimensional manner. The different shapes in the centre indicate how only certain 
nucleotides can form base pairs by hydrogen bonding 

way. The contributions of physicists to the elucidation of these mechanisms has 
been considerable. The most important of them was the determination of the double 
helix structure of DNA using X-ray diffraction by Crick and Watson in the year 
1960. Further significant contributions have been measurements and calculations of 
the internal motions of biomolecules, of their folding and oscillations, and of their 
dynamics on being inserted and reformed in living organisms. In this area, there have 
also been important contributions by means of infrared and NMR spectroscopies. 

20.7 Molecular Functional Units 

The great variety of highly specific reactions which molecules must undergo or 
initiate, especially in biological systems, is made possible by their being ordered, 
held fixed, or moved in a controlled fashion at particular distances, with particular 
orientations and with specific electronic interactions relative to one another or to 
different molecular partners. One refers to molecular functional units, meaning 
structures made up of several molecules, which can carry out complex processes 
such as molecular recognition, information storage or transfer, catalysis, or following 
specific reaction paths. The elucidation of the structure and functions of such units is 
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currently the object of interdisciplinary research efforts and represents a fascinating 
application of the capabilities and methods of molecular physics. We have already 
seen in Sect. 20.5 how proteins can function as receptor-substrate units for transport 
and reaction processes in biochemical systems. 

Many biologically significant molecular processes can occur only with the aid of 
molecular membranes. These are constructed oflong-chain molecules with different 
end groups on the two ends of the chain, for example a hydrophobic and a hydrophilic 
group. (The terms hydrophobic and hydrophilic refer to groups which are water­
insoluble, like -CH3, or water-soluble, like -OH.) Membranes serve as separating 
partitions between different regions, e.g. in a cell, or as matrices for active molecular 
units such as proteins, and thus permit oriented and spatially separated reactions and 
transport processes to take place; see Fig. 20.25. 

Membranes can be artificially prepared by placing long-chain amphiphilic mol­
ecules onto a liquid surface. This means that the molecules are soluble in differing 
media at the two ends of their chains. A frequently used group of molecules are the 
fatty acids, for example stearic acid, chemical formula C17H35COOH. They consist 
of a long zig-zag chain of CH2 groups with a polar -COOH group at one end and 
a nonpolar -CH3 group at the other. The -COOH group is water-soluble, while 
the rest of the molecule is not. As early as 1891, the amateur researcher Agnes 
Pockels observed that such molecules dissolve in a two-dimensional manner on 
a water surface, without entering the volume. Their polar heads point downwards 
and dip into the water; the hydrocarbon tails point upwards into the air. If the area 

Fig. 20.25. A model of a cell membrane. It consists of a lipid bilayer with embedded protein 
complexes. The latter can to some extent diffuse between different regions of the membrane 
and can extend through the membrane on both sides. [After S. J. Singer and G. 1. Nicholson, 
Science 175, 723 (1972)] 
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in which the molecules are two-dimensionally dissolved is reduced by a movable 
barrier, a continuous monomolecular layer of fatty-acid molecules can be produced 
on the surface of the water. 
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Fig. 20.26. The preparation of Langmuir-Blodgett films. Amphiphilic molecules, that is 
molecules with a water-soluble and an insoluble end, dissolve two-dimensionally on a water 
surface, spreading to form a monomolecular layer. They can then be compressed to give 
a continuous two-dimensional film and can be attached to a substrate by dipping the latter 
into the water and pulling it out again. This process can be repeated many times. One can thus 
prepare ordered thin films of a chosen thickness. [see also Nachr. Chern. Techn. 36, Nr. 10 
(1988)] 
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Such layers can be drawn out as a monomolecular film onto a glass or metal plate 
by dipping the plate into the water and pulling it out again, as shown in Fig. 20.26. 
By repeating this process and carrying it out properly, one can stack up several 
such layers with the same or opposite orientations and thereby prepare mono- or 
multilayers on a solid substrate. This is the means of obtaining so-called Langmuir­
Blodgett films, which can serve as models for molecular membranes. The sizes 
of molecules can also be determined in this way, as we showed in Sect. 2.1. Other 
molecules can be inserted into the membranes, thus giving an array of molecules with 
a known separation and orientation for experiments. The technology of Langmuir­
Blodgett films opens up many possibilities for the physical investigation of large 
molecules and for the creation of molecular architectures. Physicists are, for example, 
interested in questions of the ordering and the possibilities of differentiation in such 
structures. 

One of the most important molecular functional units, without which photosyn­
thesis and therefore most forms of life would not be possible, is the reaction centre 
of photosynthetic systems which we have already mentioned in Sect. 20.5. The 
structure of this centre in the case of photosynthetic bacteria has been determined 
recently by X-ray diffraction measurements on single crystals of the reaction centre 
units. Figure 20.27 shows how the reaction centre complexes are arranged within 
membranes in the interior of bacterial cells. A small number of molecules is embed­
ded in a surrounding protein with a predetermined orientation and a well-defined 
spacing. They have the function of carrying out the primary step of photosynthesis, 
in which the energy of absorbed sunlight is used to create a charge separation across 
the membrane, i. e. to produce a spatially separated electron-hole pair. The chemical 
nature of the molecules and their relative orientations must be such that the charge 
separation occurs rapidly and with a high quantum yield, that recombination of the 
separated charges does not occur, and that these processes take place in the mem­
brane in such a way that the separated charges are available as the starting point for 
the chemical reactions of photosynthesis. How this is possible will be explained in 
what follows, referring to Fig. 20.27. 

The starting point for the photoreaction in the reaction centre is a pair of chloro­
phyll molecules, the so-called primary donor; this refers to its function as donor of the 
electron for the charge separation. It was shown through ESR and ENDOR spectra 
even before the X-ray structure determination, by the way, that the starting point for 
photosynthetic charge separation is a chlorophyll dimer in the reaction centre. The 
light which is absorbed by other nearby chlorophyll molecules, the so-called anten­
nae, and whose energy has been conducted to the primary donor by energy transfer 
processes, causes an electron in the donor to be released. It is transferred via the 
two neighbouring molecules, a chlorophyll monomer and a phaeophytin monomer 
which has a similar structure, to a quinone molecule, called the primary acceptor. 
An iron complex is clearly also involved in this process, in addition to the quinone. 
The extremely complex chemical part of the photosynthesis process then begins at 
the primary acceptor. The electron which was removed from the primary donor is 
replaced via the intermediary of another pigment-protein complex, cytochrome. The 
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Cell membrane Intracytoplasma membrane 

Lipid bilayer 

Fig. 20.27. The reaction centre of bacterial photosynthesis is embedded in membrane struc­
tures within the intracytoplasmic membrane of the bacteria in the form of a protein complex 
RZ. Other complexes, here denoted as 800, 850, and 870 according to the wavelength of their 
optical absorption maxima, contain the chlorophyll molecules which serve as light antennae 
to absorb incident sunlight. They transfer the centre RZ 

entire process of directed charge separation lasts 200 ps and is subdivided into several 
steps over the intermediate molecules; this evidently serves to prevent a recombi­
nation of the separated charges. In Fig. 20.28, the whole reaction centre complex is 
indicated schematically, with the orientations, but not the intermolecular distances, 
shown to scale. The left-hand part of the reaction centre, Fig. 20.28, is nearly a copy 
of the right-hand side; its function is still unclear. The overall reaction which takes 
place can be summarised in the balance equation 

with an energy gain of 2870 kJ per mole of glucose, C5H1206. 
From the point of view of photophysics, the reaction centre is a functional unit 

that solves the problem of a light-induced charge separation in an efficient and 
controlled manner, which is still not possible to duplicate in the laboratory using 
other molecules. The reaction centre will be taken as an example by those who wish 
to construct artificial molecular units with comparable functions. 
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Fig. 20.28. The molecular structure of the reaction centre of bacterial photosynthesis, ac­
cording to the X-ray structure determination of Michel, Deisenhofer, and Huber. The figure 
shows the relative spatial arrangement of the molecules, but with somewhat exaggerated 
intermolecular spacings. Charge separation, i. e. the removal of an electron as a result of 
light absorption, begins at the primary donor P; it is a chlorophyll dimer. The electron is 
transferred quite rapidly via a bacteriochlorophyll molecule BCA and a bacteriophaeophytin 
molecule B P A to the quinone molecule Q A; this process takes less than 200 ps. Then the 
chemical part of the dark reaction begins. The function of the left -hand branch of the reaction 
centre, denoted here by a subscript B, is still not completely understood. Bacteriochlorophyll 
differs from bacteriophaeophytin through a centrally located Mg atom. The times which are 
indicated were measured using laser spectroscopy. The first step, from PA to BPA (3.5 ps), 
could be separated using an improved time resolution into two steps across the BC A mole­
cule. [W. Holzapfel, U. FinkeJe, W. Kaiser, D. Oestehelt, H. Scheer, H. U. Stilz, and W. Zinth, 
Chern. Phys. Lett. 160, 1 (1989)] 

The elucidation of the structure and charge-separation dynamics of the reaction 
centre is an example of a great success in the application of molecular-physical 
methods to the solution of problems in biological physics. 

Only by employing a number of highly developed modem research tools has it 
been possible to elucidate the structure and dynamics of this complicated functional 
system. Among them are structure determinations by X-ray diffraction, spectroscopy 
in all wavelength ranges, and especially also magnetic single and multiple resonance 
techniques and laser spectroscopy, which gives time resolutions down to the fem­
tosecond range. Here, there are many fascinating objects to be found for physical 
and chemical research. 
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Problems 

20.1 Fluorescent molecules can give up their excitation energy to neighbouring 
molecules not only via the radiation field, i. e. by emission and reabsorption, but 
also through a direct Coulomb interaction of their transition dipole moments. This 
radiationless process is called the Forster mechanism. 

The probability of an energy transfer from an excited donor D* to an acceptor 
A in its ground state, i. e. for the process D* + A -+ D + A * , is given according to 
Forster by 

Here, we used the following symbols: 

k ET : the rate of radiationless energy transfer; 
K: constant depending on the orientation of the molecules; 

statistical average in solution: /(2 = 2/3; 
c: the velocity of light in vacuum; 
n: the index of refraction of the medium; 
NA: Avogadro's number; 
T e: the mean natural fluorescence lifetime; 
r: the distance between D and A; 
8 A (iJ): the extinction coefficient of A; 
fD(V): the fluorescence spectrum of D. 

a) Explain the presence of the terms K2, 1/ r6, and J f D (V).s A (v). 
b) One defines a critical distance Ro (the "Forster radius") at which the proba­

bilities of Forster transfer and fluorescence of D* are equal: 

R3 = 
9(ln 1O)2K2crlv 
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Since the absorption and emission spectra of the donor D are symmetric with respect 
to the wavenumber V, fD(V) can be expressed in terms of ED(2vO - v); then for the 
overlap integral, we obtain: 

Calculate the distance Ro for an aqueous solution of fluorescein (Iv = 1.3 . 
108 cm3/mo12 ; Vo = 19700 cm-I ; n = 1.34; r = 5,1.10-9 s; K = D. 

c) At a concentration of Co = 3.1.10-3 molll, the probability that two fluorescein 
molecules are at a distance of r :s Ro is about 64%. How does the yield ¢ of the 
energy transfer depend on the concentration C for c » Co and for c « co? 

20.2 The Forster theory of radiationless energy transfer via the Coulomb interaction 
can be tested by synthesising a system donor-polymer chain-acceptor (D-Kn-A), 
so that the distance between D and A is determined by the number of monomers n 
in the chain: 

r = n· a + b with a = 3.1 A and b = 8.9 A . 

For a molecule containing twelve monomers, the efficiency of the Forster transfer is 

found to be ¢ = 15% (i. e. k +~ET. = 0.15). How large is the Forster radius Ro? 
ET emlSSlOn 

How long is the corresponding polymer chain? 

20.3 One method of making ordered layers of organic molecules is the so called 
self-assembly technique. This refers to the chemisorption of dissolved molecules 
onto the surface of a substrate which is dipped into the solution. For example, if 
one brings a single-crystal gold surface, Au(111), into contact with a solution of an 
n-alkanethiol, CH3-(CH2)n_I-SH (or, generally, R-S-H) in hexane, then cova­
lent gold-thiolate bonds (Au-S-R) are formed by elimination of hydrogen, so that 
the alkyl chains are attached via the sulphur atoms to the surface. In thermodynamic 
equilibrium after some time an ordered monolayer of alkyl chains is formed on the 
gold substrate. 

a) The process offormation of the layer can be followed in situ. In the experiment 
described above [M. Grunze, Physica Scripta T49, 711 (1993)], a surface-sensitive 
method, second harmonic generation (SHG) was used to measure a time of 10 min. 
for layer formation, while ellipsometry measurements gave a time of 40 min. Can 
you explain this discrepancy, even if you are not familiar with the two methods? 

b) From systematic NEXAFS measurements (near-edge X-ray absorption fine 
structure), one concludes that the alkanethioles form well-ordered layers only above 
a certain length (n 2: 12), in which all the alkyl chains are stretched out and (for 
n = 22) form an angle of 35° with the surface plane. Try to give an explanation of 
this fact. 

c) In an investigation of the layer with a scanning tunnel microscope, one can 
identify holes of diameters 20 - 60 A and 2.5 A depth. What causes them? 
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In the experimental investigation of the physical properties of molecules one deals 
as a rule with a very large number of individual molecules which are collected all 
together within the sample volume. They all contribute to the measured quantities, 
and conclusions regarding the properties and behaviour of the individual molecules 
can be reached only by considering the averaged values obtained from these many 
contributors. 

In some of the earlier chapters of this book (in particular in Chap. 2), we have 
already shown that there are also experiments in which molecules can be observed 
individually. This applies especially molecules on surfaces or isolated within a solid 
matrix. From such studies, an new, particularly fruitful branch of molecular physics 
has developed in the last 15 years. We owe many new insights into the properties 
and possible applications of molecules in physics, chemistry and biology to this 
new branch of molecular studies. Using modern physical measurement methods, 
researchers strive for - and are attaining - the possibility of investigating smaller 
and smaller dimensions. Thus, molecular and even submolecular resolution has been 
achieved, opening the possibility of making single molecules the object of study. 

This chapter, like Chap. 22, Molecular Electronics, treats very current topics in 
research. Therefore, in contrast to most of the other chapters in this book, we place 
more emphasis on referring to the original scientific literature. We also mention 
some reviews in the literature [1--4] *. 

21.1 Introduction: Why? 

The subject of this chapter are single-molecule experiments in the condensed phases: 
in crystals, in a solid matrix or in a liquid, but not in the gas phase. The fascinating 
topic of spectroscopy of single particles such as electrons, atoms and ions in elec­
tromagnetic traps (e.g. in Paul traps; cf. I, Chap. 2) has thus far little importance 
for molecules: apart from the fact that one would have to work in very high vac­
uum and with extremely cold molecules, the micro-motion of the molecules at the 
temperatures reached so far is usually still too large to allow them to be effectively 
trapped. 

* The numbers in square brackets refer to the literature list at the end of this book, here to 
references for Chap. 21 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
© Springer-Verlag Berlin Heidelberg 2004
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Here, we want to treat three areas of current research in more detail: 

- the imaging of single molecules with the electron microscope, X-ray scattering 
and the various scanning-probe microscopes, in particular with the scanning 
tunnel microscope (STM) and the atomic force microscope (AFM); 
optical spectroscopy of single molecules; and 

- the measurement of electrical conductivity through single molecules. 

Why is it so interesting to investigate single molecules? 
We can answer this question only in a rather general way in the present intro­

duction: 

- one obtains new and more detailed information about the structure and physical 
properties of molecules if they can be investigated individually instead of being 
limited to average quantities obtained from a large number of particles; 
the quantum mechanics of the interactions of molecules with electromagnetic 
waves can be studied in more depth; 

- one can employ the molecules as probes to investigate properties of the substrate, 
the host or the matrix in which they are located. The local environment of the 
molecules and its time fluctuations can be studied. In this way, we can gain 
important and interesting knowledge for materials science and for chemical and 
biological processes. 

We shall have more to say about these topics in the following sections. 

21.2 The Imaging of Single Molecules 
with X-ray and Electron Beam Methods 

Already in Sect. 2.1, we considered the question of the sizes of molecules and of the 
extent to which their imaging and elucidation are possible with the aid of X-ray or 
electron diffraction and with the transmission electron microscope. 

With a transmission electron microscope (TEM), one can attain a resolution of 
better than 1.5 A. This allows the imaging of single molecules (cf. Figs. 1.4 and 2.3). 
But this resolution can in general be achieved only by the use of a special analysis 
method in which an average is taken over many similar molecules in order to attain 
the necessary contrast in the image. For this method, one requires an ensemble of 
many molecules which are ordered within the sample, i. e. a crystalline or crystal-like 
ordering. 

With the scanning electron microscope (SEM), single macromolecules may be 
imaged with a resolution of a few A, so that details of their structures may be 
discerned. However, the samples must be prepared in such a manner that changes 
in the molecular structure may occur: a mold is taken, usually by vapour-depositing 
metal atoms. The resulting metal layer is scanned with the point focus of an electron 
beam, and the intensity distribution of the resulting backscattered electrons generates 
the image. 
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More information can be obtained from diffraction methods, using X-rays or 
electron beams. We recall here that an accelerating voltage of 10 kV corresponds 
to an electron wavelength of 12 pm; this wavelength is thus smaller than molecular 
dimensions. 

The methods of X-ray diffraction, in particular, allow the precise determination 
of the positions of nearly all the atoms in larger molecules. However, in order to 
reach such a high resolution, the molecules must be ordered in single crystals. From 
the measured spatial intensity distribution of the scattered radiation, one obtains 
by Fourier synthesis not only the centres of gravity but also the spatial density 
distribution of the electrons which give rise to the scattering. Thus, the spatial extent 
and the relative positions of the molecules or of their constituent groups can be 
imaged, i. e. the size, shape and structure of the molecules. This method in particular 
also permits large biomolecular functional units to be imaged with a resolution of 
down to 1 A. Examples are shown in Figs. 1.3 and 20.28. 

21.3 Scanning Thnnel and Atomic Force Microscopes 

The scanning tunnel microscope (STM) was originally developed in 1981 by Binning 
and Rohrer for surface analysis; it has opened up novel possibilities for imaging 
molecules with atomic resolution. The principle of this instrument was described 
already in Chap. 2 and in Fig. 2.4: it makes use of the strong distance dependence 
of the tunneling current between a metal tip (ideally with a single atom at its point, 
made e.g. of platinum-rhodium or of tungsten) and the nearby substrate to scan out 
a depth profile of the substrate. In this manner, one obtains images consisting of 
a plot of the height coordinate z as a function of the surface coordinates x and y. 
Motion of the tip in three dimensions is achieved by a piezoelectric cylinder which 
can be made to contract or expand by an applied voltage. For the STM, the substrate 
must be electrically conducting. Single molecules can be observed only if they are 
immobilised on the substrate; this can be attained by embedding them in a close 
layer or through a strong interaction with the substrate, whereby molecular motions 
are limited preferentially by working at low temperatures. 

The imaging of molecules is based here on the tunneling of electrons between the 
tip and the conducting substrate, which is at a minimal distance. The intensity of the 
tunneling current depends exponentially on the tip-substrate distance. Measuring 
this current initially permits imaging of the surface topography and the electron 
density of states with a spatial resolution which is limited by the sharpness of 
the tip. It also depends on the local electron density of the substrate. This in tum 
depends to differing extent on the orbitals of the molecules being investigated, on 
those of the substrate, and on their mutual interactions. Tunneling measurements are 
insofar actually a spectroscopic method; however, one must take into account that 
the molecular states which are the object of interest may be influenced by the nearby 
probe tip as well as by the electronic states of the substrate. One in fact measures 
the overall system tip/absorbate/substrate and has to derive the desired molecular 
information from this combined measurement. 
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Fig. 21.1. An STM image of Cu phthalocyanin molecules on a MOS2 surface. The image shown 
has dimensions of 10 nm x 10 nm. The insert shows the molecular structure to the same scale. 
From C. Ludwig et al., J. Vac. Sci. Technol. B12, 1963 (1994); see also C. Ludwig et al., 
Z. Phys. B86, 397 (1992) 

Figure 21.1 shows as an illustration of the STM technique in molecular physics 
an image of copper phthalocyanin on a MoS2 substrate. One can readily recognise 
how the "active" electron density is distributed within the molecule. The resolution is 
atomic, i. e. the different atoms or groups within a molecule can be distinguished. An 
additional example of a molecular image made with the STM was already discussed 
in Sect. 2.1 (see Fig. 2.5). 

Another important scanning-probe microscope is the atomic force microscope 
(AFM) (Fig. 21.2). The AFM does not measure the tunnel current, but instead the 
attractive or repulsive interaction force between the tip and the substrate which varies 
from place to place; at a sufficiently small distance between tip and substrate, this 
force becomes measurable. The force also depends on the electron density distribu­
tion at the surface 0 the sample, but it is independent of the electrical conductivity of 
the sample and its substrate. The AFM can thus be used even with an insulating sub­
strate. The quantity measured is here the deviation of the flexible beam (cantilever) 
on which the probe tip is mounted. The deviation can be detected for example by 
means of a light beam reflected from the cantilever, or also by capacitance changes. 

The mechanism of imaging with the AFM is complex. It depends on specific 
properties of the sample surface and on the physical nature of the interaction poten­
tials. Van der Waals forces, ionic, magnetic and electrostatic forces can all contribute 
to image formation. Since most macromolecular systems are electrical insulators, 
the AFM is particularly well suited to imaging of polymers and biomolecules. The 
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Fig. 21.2. With the atomic force microscope (be­
low), in contrast to the tunnel microscope (above), 
the interaction force between the substrate and the 
probe tip is measured as a function of position. The 
tip is attached to a flexible beam (cantilever). Its 
bending is detected optically (by reflected light) or 
via capacitance changes 

Fig. 21.3. A schematic representation of how a CO molecule is picked up from a Cu surface 
by a scanning microscope probe and is set down on the surface again 

Fig. 21.4. Six molecules of Cu-DTBPP (copper tetrabutyl-phenylporphyrin) on a Cu (100) 
surface before (left) and after a sequence oflateral motions using an STM probe tip. The size 
of the image is 26 x 26 nm. After J. K. Gimzewski and C. Joachim, Science 283,1683 (1999) 
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scanning probe microscopes STM and AFM are complementary in many respects 
and each can contribute mutually to the investigation of molecular structures. 

With the STM or the AFM, single molecules can under the right circumstances be 
moved on suitable substrate surfaces. Two examples, motion of the small molecule 
CO and a larger organic molecule are shown in Figs. 21.3 and 21.4. One can also 
follow the time evolution of the crystallisation process of molecules on substrates in 
this manner. 

21.4 Optical Spectroscopy of Single Molecules 

21.4.1 Overview 

Optical spectroscopy of single molecules (or atoms) was first achieved in the gas 
phase by the method of photoionisation spectroscopy. To this end, the molecule 
is first excited from its ground state 1 by laser light of frequency (VI2 into a real 
excited state 2 (cf. Fig. 21.5). This is a resonant level, so the absorption cross-section 
is large. From this level, a second light quantum of frequency (V2i leads to the 
ionisation continuum. To detect the two-step resonant excitation and the following 
ionisation of the molecule, the photoelectron emitted is individually counted by 
means of the usual methods. In this way, single molecules can be detected in gas at 
very low pressures. More details can be found in V. Letokhov, Laser Photoionisation 
Spectroscopy (Academic Press 1987). 

Detection and spectroscopic investigation of single molecules in the condensed 
phases, in particular as guest molecules in a matrix, is also possible with modem 
methods of laser spectroscopy [2,3]. Here, the initial goal was to determine the 
properties of a molecule directly rather than by averaging over a large number of 
molecules as in conventional methods where many molecules are simultaneously 
detected. By detection of single molecules, one can test and possibly correct the un­
derlying assumption that each molecule in such an average measurement contributes 
in the same way to the observed signal. In addition, it has been found that single 
molecules can be valuable as spectroscopic probes for the investigation of processes 

Fig. 21.5. Photoionisation spectroscopy for the detection 
of single molecules (or atoms) in the gas phase. Detec­
tion of the molecule in state 2, which has been excited 
by light of quantum energy nw12, is achieved by counting 
single photoelectrons after absorption of light with the 
quantum energy nwzi, which can be detected individu­
ally. Cf. V. Letokhov, Laser Photo ionisation Spectroscopy 

-""'""'----.... A (Academic Press 1987) 
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in their respective matrix. To a certain extent, single-molecule spectroscopy has 
become an independent branch of spectroscopy. With it, one can investigate line 
positions, line shapes, linewidths and their variations with changing temperature or 
applied electric and magnetic fields, and thus obtain information about the molecules 
themselves or about the matrix in which they are contained. A good overview of 
possibilities and results in this field is given in [2-4]. It is also very important for the 
efforts to develop molecular electronics (Chap. 22 to be able to specifically address 
single molecules. 

In order to select a single molecule spectroscopically against the background 
of the host substance in which it is located, one has to arrange the experimental 
conditions so that only one molecule within the observed volume is in resonance 
with the radiation used for the investigation. A particularly suitable method for 
doing this is excitation spectroscopy, in which the excitation of the molecule being 
investigated into a fluorescent state is carried out using a tunable laser in as a narrow­
band configuration, i. e. very selectively. Furthermore, the excitation light which is 
scattered or not absorbed in the sample can be readily separated from the fluorescence 
light. If the laser induced fluorescence light is collected from the small excited volume 
using mirrors or lenses and is focused onto a detector, it is possible to observe a signal 
which originates from a single molecule. 

To detect single molecules, one thus requires: 

- a small sample volume which contains only a few of the molecules under inves­
tigation; 

- a low concentration of the "impurities" or "guest molecules" in the matrix; 
- a high spectral selectivity to guarantee that only one "type" of molecule will be 

excited by the laser beam; and 
- an experimental arrangement with high sensitivity, in order to detect the opti­

cal signal (e.g. the fluorescence) of a single molecule with a sufficiently good 
signal/noise ratio separately from the background signal, which is produced by 
e.g. scattered excitation light. In the absence of background radiation, the single­
molecule fluorescence in suitable systems is so intense that one readily obtains 
1000 photons per second. A signal of this magnitude can easily be detected. 

The sample volume under investigation is limited by the focal spot size of the laser 
(several [tm2) and by the sample thickness. Usually, itis smaller than 10 to 100 [tm3 , 

i. e. a few picolitres. In a 1 molar solution, ca. 1012 molecules are still to be found 
in this volume. If one wants to have only one molecule in the sample volume, one 
therefore requires very small concentrations of the oder of 10-12 mol/mol. The 
matrix must also be free of other molecules which could give rise to unwanted 
background signals. These are the conditions under which one works in single­
molecule spectroscopy with spatial selection, i. e. in particular every kind of single­
molecule spectroscopy at room temperature. 

Higher concentrations, in the range of 10-7 _10-9 mol/mol, are sufficient if in 
addition to spatial selection, also is employed spectral selection. If - as we shall 
show later - the 104 essentially identical molecules which are then within the sample 
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volume differ spectrally only minimally, it is still possible to excite only one single 
molecule out of this 104 by using a very narrow-band laser. For this purpose, the 
spectral terms of the molecules must be very sharp, and therefore this method can 
be applied successfully only at low temperatures. 

More details can be found in Ref. [5]. 

21.4.2 Experimental Methods 

In order to detect individual guest molecules in a transparent matrix spectroscopi­
cally, one thus excites them to fluorescence with a laser. The fluorescence intensity 
is then measured as a function of the photon energy of the exciting laser. One thus 
obtains the excitation spectrum as an indirect absorption spectrum of the substance 
being studied. This method is, as we have mentioned, especially sensitive because 
the emitted photons can be counted individually and because the emitted light can be 
readily separated from scattered excitation light owing to its different photon energy. 

The most effective collection of the photons can be achieved in various possible 
ways. Confocal microscopy has proved to be particularly useful (cf. Fig. 21.6a). 
Here, a microscope objective lens with a short focal length focuses the excitation 
laser light onto the sample, and the same objective collects the fluorescence radiation 
for detection. Another possibility is represented by near-field excitation or near-field 
microscopy. Here, the excitation is carried out by an optical fibre which has been 
drawn out to a very fine tip positioned in the near-field region of the sample, i. e. its 
distance to the sample is markedly smaller than the wavelength of the light used; 

b 

c 

Fig. 21.6. Some experimental arrangements for single-molecule spectroscopy: (a) Confocal 
arrangement with a microscope objective; (b) a near-field setup with excitation via a very thin 
optical fibre and light collection using a microscope objective; (c) excitation by a single-mode 
fibre and collection with a parabolic mirror (see also [10]) 
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compare Fig. 21.6b. In the oldest and still useful method, as shown in Fig. 21.6c, the 
sample is placed directly on the end of a single-mode optical fibre. This arrangement 
is located at the focal point of a parabolic mirror with a large numerical aperture, 
which collects the emitted light. If spectral selection is to be used in addition to 
spatial selectivity, then the spectral width of the tunable laser light must be less than 
the individual widths of the absorption lines of the molecules. This topic is treated 
in more detail in Sect. 4.4. 

21.4.3 Single-Molecule Spectroscopy with Relatively Limited Resolution: 
Spatial Selection 

Single-molecule spectroscopy at room temperature is - as mentioned above - made 
possible by using very small molecular concentrations, usually in thin films and with 
a very strong focusing of the excitation light beam. With this method, one can also 
investigate fluorescence signals from very dilute volumes in which the individual 
absorbing and fluorescing molecules are present at larger mutual distances (2: ll-tm) 
with spatial resolution. If the experimental arrangement is provided with a scanning 
mechanism of the type known from the scanning-probe microscopies, two- or three­
dimensional images of the molecular distribution within the sample can be obtained. 
An example is shown in Fig. 21.7. 

The spectroscopic signals from single molecules or fluorophores can be detected 
in this way. A fluorophore denotes smaller molecules with a high quantum yield for 
fluorescence which are attached as markers to larger molecules that themselves do 
not fluoresce. Such fluorophores can be used to follow dynamic processes involving 
single macromolecules in solution or as adsorbates, and to distinguish marked mol­
ecules from unmarked ones. One of the earliest examples can be found in Ref. [5]. 

Using this method, single molecules on surfaces, in matrices, in solution and in 
membranes have been studied. One can observe the different fluorescence lifetimes 
of excited states in different nano-environments or the bleaching out of dye molecules 
after longer irradiation times. Diffusion and migration processes as well as confor­
mation changes in single molecules or of fluorophore-marked macromolecules such 
as proteins can be followed [6,7]. 
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Fig. 21.7. A near-field fluorescence 
image (4.5 x 4.5 !-lm) of individual 
oxazine molecules on a PMMA sub­
strate. Each maximum corresponds to 
a single molecule. After W. E. Moer­
ner and M. Orrit, Science 283, 1670 
(1999), Fig. 3 
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An interesting possibility of applying single-molecule spectroscopy, particularly 
to bio-macromolecules, makes use of Forster energy transfer (cf. Sect. 20.4) between 
a donor D and an acceptor A. Using the fluorescence resonant energy transfer 
technique (FRET), the distances between donor and acceptor (both intermolecular 
and intramolecular can be determined in the range from 1.5 to 8 nm; from the 
efficiency of the resonant energy transfer between the absorbing fluorophore D 
and the emitting fluorophore A, one obtains as in Eq. (20.1) information about the 
distance and relative orientation of D and A. If D and A are observed as single 
molecules, one can obtain information about the conformations and interactions in 
larger molecules, e.g. in proteins, by using these fluorophores as markers. More 
details are to be found in [1,2] and in [9]. An overview of applications of single­
molecule spectroscopy to biological systems can be found in [2] and in [8]. 

Molecules or parts of molecules (e.g. pieces of DNA) which have been marked 
with fluorophores can also be employed in analytical chemistry to attain a hith­
erto unknown sensitivity, i. e. the detection of individual molecules. The ultimate 
analytical goal of a detection limit of one molecule is thus being approached. 

A more complete treatment of methods and results is to be found in [1] and [2]. 

21.4.4 Measurements with a High Spectral Resolution at Low Temperatures: 
Spectral Selection 

High spectral resolution, i. e. excitation with a very narrow linewidth, is in particular 
necessary in single-molecule spectroscopy when the concentration of the guest 
molecules under investigation in their matrix is so large that spatial selection alone 
is not sufficient. In such cases, one requires an additional spectral selection. In order 
to understand this technique, we need to discuss the linewidths in the electronic 
spectrum of a molecule. 

The 0-0 absorption line, i. e. the transition from the vibration-free ground state 
with the vibrational quantum number v = 0 into the likewise vibrationless excited 
state Sj of an unperturbed molecule (see Fig. 21.8) can be extremely sharp. In the 

Fig. 21.8. A schematic representation of some of the electronic energy levels of a molecule 
with a singlet ground state So and an excited state Sj as well as a lowest-lying triplet state Tj. 

Vibronic states are associated with each electronic level. Excitation at the energy of the 0-0 
transition leads to singlet emission (fluorescence) or to population of Tj via intersystem 
crossing at the rate kisc. The triplet state decays with the rate kT. See also Sect. 15.1 
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limiting case of the naturallinewidth, the width of an allowed dipole-dipole transition 
is in the range of JIH = 10 to 100 MHz. In the condensed phase, one would observe 
such a sharp homogeneous line for all the chemically identical molecules if the 
local environments of all the molecules present within the sample volume were also 
identical. 

In real samples, however, this is not the case. Each molecule has a slightly 
different nano-environment, i. e. a somewhat different solvent shift. The distribution 
of the resonance frequencies can be caused by e.g. local inhomgeneities or by internal 
electric or magnetic fields or field gradients. Thus each molecule has its own 0-0 
absorption frequency which is slightly shifted from the ideal centre frequency. The 
roughly Gaussian distribution of the centre frequencies of the individual absorbers 
gives rise to a Gaussian band shape, whose width is many times broader than the 
(Lorentzian) line profile of a single absorber. The resulting more or less strongly 
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Fig. 21.9. A simulated absorption spectrum of N molecules in a disordered matrix. As N 
decreases from 10 000 to 10, the integrated absorption also decreases; this is the reason for 
the amplification factors shown at th right. The ratio of homogeneous to inhomogeneous 
linewidth is assumed here to be about 1 :40. In reality, it is 1: 104 to 1: 106 in glass hosts, with 
homogeneous linewidths of 10-1 to 10-3 cm-1 and an inhomogeneous width of 103 cm-1 
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broadened absorption profile is referred to as an inhomogeneously broadened line 
or band. The inhomogeneous "line" observed by the usual spectroscopic methods 
is thus the envelope of a large number of homogeneous lines, since the number of 
molecules contributing to the absorption is large. Fig. 21.9 shows as an illustration 
the simulated absorption spectrum of a sample with 10 000, 1000, 100 and 10 
molecules. While with 10 000 molecules the substructure of the individual lines is 
hardly discernible, with 10 molecules their homogeneous absorption lines can be 
readily distinguished. 

This is the basis of spectral hole-burning; this topic is discussed in more detail 
in Sect. 22.5, Molecular Storage Elements. We refer here to Figs. 22.32 and 22.33 
for additional infonnation. 

Inhomogeneous broadening makes it possible to select individual molecules. 
Since different guest molecules in the matrix have somewhat differing resonance 
frequencies, if the overall concentration is sufficiently low, one can use the tunabil­
ity of a narrow-band laser to excite the various molecules within the sample volume 
individually and separately. This is spectral selection. One has only to take care 
that the number of molecules within the excitation frequency width YH in the laser 
beam is not greater than 1; i. e. one works preferentially at a low doping concentra­
tion or in the wings of the frequency spectrum of the inhomogeneous broadening. 
Fig. 21.10 shows as an example the single-molecule spectra of 3 molecules in 
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Fig. 21.10. The fluorescence excitation spectrum of three individual pentacene molecules 
in p-terphenyl; the crystal structure of p-terphenyl is also shown in the inset. The abscissa 
value 0 MHz corresponds to a wavelength of 592.362 nm. The fluorescence intensity is plotted 
against the frequency shift of the extremely narrow-band excitation light. Kindly provided by 
C. Brauchle and Th. Basche 
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Fig. 21.11. Molecules which are suitable for 
single-molecule spectroscopy with a high spec­
tral selectivity: pentacene, terrylene, and di­
benzoanthracene 

a crystalline matrix. Here, it becomes clear that single molecules can be observed 
separately with a good signal/noise ratio, and how the optical addressing of single 
molecules is possible even at higher concentrations. 

For this type of single-molecule spectroscopy, one requires molecules and ma­
trices with very specific properties. Therefore, its application has thus far been 
limited to a small number of systems. In particular, the guest molecules being in­
vestigated must have an intense optical transition with a strong O-phonon line and 
a high fluorescence quantum yield. The extremely sharp lines give rise to absorp­
tion cross-sections which can be a million times larger than the physical size of 
the molecules (geometrical cross-section). They can reach 104 nm2 as compared to 
a value of some 10-2 nm2 at room temperature. Measurements with spectral selec-

p 

Fig. 21.12. An experimental setup for observing single-molecule spectra (after [3]). The 
sample S is located at the end of an optical fibre (for excitation) at the focal point of a parabolic 
mirror P. The fluorescence radiation emitted is guided by a plane mirror and lenses through 
a filter to the spectrograph SP or to a photomultiplier PM; the signals are stored and processed 
in the computer PC 
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tion must be carried out at low temperatures, below ca. 50 K, because the O-phonon 
lines used for their detection are sharp and observable only at low temperatures. 
Polycyclic aromatic hydrocarbons such as pentacene are well suited for this method 
(Fig. 2UI). As matrices, organic crystals such as p-terphenyl, so called Schpolski 
matrices or polymers such as polyethylene can be employed. Figure 21.12 shows an 
experimental setup for single-molecule spectroscopy. 

21.4.5 Some Experimental Results 

What can we learn from single-molecule spectroscopy? There are many interesting 
applications in molecular physics and in materials science, but also to fundamental 
questions in quantum optics. Here, single-molecule spectroscopy shares an equally 
important position with single-atom spectroscopy in the gas phase, which likewise 
is undergoing a rapid development. Magnetic spin resonance can also be applied to 
single molecules. 

For molecular physics, the possibility of measuring the naturallinewidth, which is 
in the limiting case determined by the natural lifetime ofthe excited state, is especially 
interesting. Thus, for pentacene molecules at 1.6 K and a low excitation intensity, 
a homogeneous linewidth of Llv = 7.8 ± 0.2 MHz was determined (cf. Fig. 2U3). 
Using the relation Ll v = 1/(2n ·f), this value corresponds to a lifetime of t = 2004 ns. 
Measurements of the lifetime by means of photon echo experiments on samples 
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Fig. 21.13. The fluorescence excitation spectrum of a single pentacene molecule in a thin 
p-terphenyl crystal at 1.5 K. The concentration is 8· 10-9 mol/mol = 1.7· 1013 cm-3 . The 
centre at 0 MHz corresponds to an absorption wavelength of 592.407 nm. From W. P. Amrose, 
Th. BascM, and W. E. Moemer, J. Chern. Phys. 95, 7150 (1991); see also W. E. Moemer and 
Th. BascM, Angew. Chern. 105,537 (1993) 
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Fig.21.14. Saturation broadening: the single-molecule line of dibenzoanthracene in a naph­
thalene crystal is broadened by increasing excitation intensity (after [10]). The frequency of 
the unsaturated line serves as zero point 

containing a large number of pentacene molecules yielded a value of t = 21.7 ns, in 
good agreement. 

With increasing excitation intensity, one observes saturation broadening, exactly 
as in magnetic resonance (compare Fig. 21.14. It can be used to derive the transverse 
relaxation time T2 which enters into the Bloch equations (cf. Sect. 14.5 in I). It is 
a measure of the time in which phase coherence between the resonant excitation 
light and the molecular two-level system (So/S[) is lost, i. e. the phase relaxation. 

The vibronic structure of the molecular transition can also be resolved with 
a high spectral resolution, and thus the frequencies of the intramolecular vibra­
tions in the electronic ground state (see Fig. 21.15). For this purpose, one does not 
generally apply the usual method of excitation spectroscopy in which the total un­
resolved fluorescence light is observed as a function of the narrow-band excitation; 
instead, the spectrally resolved fluorescence following the excitation is detected. In 
the case of a weak electron-phonon coupling, it likewise consists of very narrow 
lines and permits an exact analysis of the vibrations of the molecule in its specific 
environment. 

A further application of single-molecule spectroscopy is in materials science. 
The extremely sharp spectral lines of the guest molecules can be used as probes 
of their immediate environments, the nano-environment of the molecules in the 
host or matrix, and for the internal dynamics of the matrix. Even at very low 
temperatures, in glasses and in polymers there are dynamic displacement processes 
which can be investigated, including their temperature dependences, using single­
molecule probes. Also disorder phenomena, defects and phase transitions in the 



518 

Z' 
·iii 
c 
(]) 

C 
(]) 
() 
c 
(]) 
() 
en 
~ 
0 
:J 

u::: 

300 

250 

200 

150 

100 

50 

0 

21 Experiments on and with Single Molecules 

250 500 750 1000 1250 1500 1750 2000 

Relative Frequency [cm-1) 

Fig. 21.15. The fluorescence spectrum of a single terrylene molecule in p-terphenyl with 
resolved vibrational structure. After [11] 

host system can be investigated in this manner. Furthermore, one can switch the 
fluorescence signals - for example of terrylene molecules in a matrix of single­
crystal p-terphenyl- between two well-defined frequencies [12] and thus construct 
a molecular switch. 

In addition, single-molecule spectroscopy also permits fundamental investiga­
tions into the interaction of light with matter, and thus in quantum optics. Here, 
time-resolved single-molecule spectroscopy is of particular importance. 

The emission signal detected from a single molecule is indeed due to the suc­
cessive emission of many photons by the same molecule; they are all collected by 
the detector. The time evolution of this process of successive emission can also be 
studied. One observes the characteristic phenomena of bunching and antibunching, 
which we explain in the following: 

The photo-physical dynamics of a typical molecule under continuous excitation 
at a fixed laser frequency is represented schematically in Fig. 21.16. The photons 
are not emitted statistically, but rather one observes a characteristic time behaviour 
which is known as bunching and anti bunching. This time structure yields additional 
information about the emitting system. 

We first treat antibunching, i. e. the occurrence of characteristic time intervals 
between the emitted photons which are of the order of the lifetime of the excited 
state (typically TS 1 = 10 ns), or at the inverse Rabi frequency. This is a typically 
quantum-optical effect in the interaction of light with electronic two-level systems. 
It was originally discovered in the resonance fluorescence from single Na atoms. Its 
significance is that the probability for the simultaneous arrival of two photons at the 
detector is vanishingly small, and it can be readily understood: 

Immediately following the emission of a photon at the time t, the quantum system 
is in its ground state and the probability of emission of a second photon is zero. On 
the average, with continuous excitation, a time equal to one-half of a Rabi period 
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Fig. 21.16. A schematic representation of the time evolution of photon emission from a single 
molecule. The triplet-state lifetime TT determines the spacing ofthe photon groups (bunching), 
while the inverse Rabi frequency y-I determines the spacing of the individual photons within 
a group (antibunching). The numerical values given are for pentacene. After [3] 

must pass before the molecule can again emit a photon with a high probability. 
The fluorescence photons therefore follow one another in a more or less orderly 
sequence, like drops of water from a dripping faucet - and not statistically, as one 
would expect from a classical light source or with very weak excitation intensity. 

At a sufficiently high excitation laser intensity, one can thus observe Rabi oscilla­
tions while the laser pumps the single molecule between its ground and excited states. 
With coherent excitation, the "pseudospin" undergoes a Rabi oscillation between the 
two states of the two-level system. Its frequency is given by Q = IJLI2ELlln, where 
JLI2 is the transition dipole moment and EL is the electric field strength of the laser 
light. Rabi oscillations and the Rabi period are explained in Sect. 22.6. Incoherent 
transition, for example to intramolecular vibronic modes, determine the relaxation 
time T. 

The occurrence of anti bunching at the Rabi frequency is of course washed out 
when more than one molecule contribute to the emitted radiation. The investigation 
of this fundamental phenomenon of quantum optics became possible only after the 
introduction of single-atom and single-molecule spectroscopy. 

We now return to Fig. 21.16 and to the bunching effect. This term denotes the 
observation that the flux of photons at the Rabi intervals is interrupted by long dark 
periods with a characteristic length of TT, the bunch spacing. This bunching is due 
to the fact that the molecule, e.g. pentacene, represents in reality not a two-level 
system, but instead a three-level system: it also has a triplet state T I (Fig. 21.8, see 
also Sect. 15.2), which we can consider here to be non-emitting. Rather, it de-excites 
the molecule by a radiationless process. The probability of an intersystem crossing 
process from S] to T] is 0.5% for pentacene, i. e. on the average after 200 emitted 
singlet photons, one radiationless transition S] ~ T] into the triplet state occurs. 
The molecule then stops emitting. The length of the dark period corresponds to the 
lifetime TT of the triplet state; it lies in the range of milliseconds, and the spacing of 
the bunches gives on the average TT. 
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From the time evolution of single-molecule emission, one can thus derive the 
lifetime, yield, and intersystem crossing rate of the triplet state. We will not discuss 
here the experimental techniques of time resolution with autocorrelation methods; 
more details can be found in Ref. [11]. 

Single-molecule spectroscopy can be extended along the lines of ODMR 
(Sect. 19.7), if one additionally irradiates the system with microwaves and thereby 
produces transitions among the three sublevels of the triplet state T 1, whose life­
times are in general not all the same. On resonance, the irradiation with microwaves 
changes the lifetime of the excited triplet state and thus also the intensity and bunch­
ing behaviour of the fluorescence-light emission. One can thus observe optically­
detected magnetic resonance on single molecules, of single electronic spins (cf. [13]), 
and - with additional irradiation at an appropriate radiofrequency - even of single 
protons (cf. [14]). 

21.5 The Electrical Conductivity of Molecules 

21.5.1 Molecular Wires 

The question as to how well individual molecules conduct an electrical current be­
came relevant as soon as the topic of molecular electronics (Chap. 22) came under 
discussion. When we make the transition from the macroscopic to the microscopic 
world, then the question becomes: what do we mean here by conductivity? How 
readily do charge carriers pass from an electrode, e.g. a microscopic metal con­
tact, to a counterelectrode when the two electrodes are connected only by a single 
molecule? And furthermore: how does this charge transport depend upon the elec­
tronic and structural properties of the molecule, in particular on its length? Other 
important questions relate for example to the influence of the electrode material, the 
temperature, and of applied field strengths. 

A molecule, which is supposed to serve as a "molecular wire" or bridge and to 
transport electrons between two molecular systems, or, more simply, between two 
electrodes, is a quantum object. Its conductivity is closely related to the physical 
nature of its surroundings, especially of the electrodes. We distinguish here three 
limiting cases [15]: 

The most interesting is the limiting case of coherent resonant tunneling of the 
charge carriers through the bridge. This process is possible when the conduction 
bands, or more precisely the Fermi energies of these bands are the same for both 
electrodes and isoenergetic with a molecular orbital of the bridge molecule. Here 
we assume that electrons (or holes) can move within this orbital, so that it represents 
a sort of "conduction band" of the molecule. This is particularly relevant for a LUMO, 
the lowest unoccupied molecular orbital (cf. Sects. 5.3 and 13.3). One expects 
a "conductivity" which is independent of the length of the bridge, i. e. of the molecule. 
A "resistance" occurs only at the points of contact between the molecule and the 
electrodes. 
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As charge carriers, the conduction electrons of the metal, i. e. the electrons at the 
Fermi level, are available as we know from solid-state physics. They have the Fermi 
velocity VF and a corresponding wavelength AF. In typical metals, it lies in the range 
of atomic dimensions, and is thus similar in size to the relevant molecular dimensions. 
Within the molecule, the molecular orbitals are available as conducting paths; each 
orbital is a channel for charge transport. The conductivity (i. e. the reciprocal of 
the resistance) of a channel can be calculated quantum-mechanically according to 
Landauer [16] from the scattering of the electron in the channel and is given by 
G = Go' T, where Go = 2 e2 /h(~ 12900 Q-1) is the quantum of conductivity and 
T is the transmission coefficient. T can vary between 1, i. e. complete transmission 
with the conductivity 2 e2/h, and 0, i. e. complete backscattering. The transmission 
is a measure of the efficiency with which the molecule stretches out the electronic 
wavefunctions of the metallic electrodes. 

The total conductivity is found as the sum of all the individual conductivities, 
G = Go z=f Tn, where N is the number of active channels and Tn the transmission 
probability of the nth channel. The number of active channels is determined by the 
number of molecular orbitals which at the given applied voltage are in resonance 
with the Fermi energy of the metal. Of importance is thus: where are the HOMO 
and LUMO levels of the molecule relative to the Fermi level of the metal of the 
electrodes. Changes in the applied voltage (bias) give rise to shifts of these levels 
relative to one another; this then changes the transmission. 

If the energy states of the electrons which are available for tunneling in the 
electrodes (i. e. in general their Fermi levels) are at some distance from those of 
the molecular orbitals, then in the main only a nonresonant, but coherent motion 
of the electrons is possible, through exchange via the orbitals in the molecule. 
Figure 21.17 shows the case of a molecule with a large gap between the HOMO 
and LUMO and with electrodes whose Fermi energy lies in the middle of this gap. 
This applies to for example short organic molecules with conjugated double bonds 

Energy 

LUMO 

HOMO 

Fig. 21.17. Energy levels, schematically, for a molecule which bridges the gap between two 
metal electrodes. The occupied electronic states in the metal up to the Fermi energy EF are 
shaded. When the energy gap Eg between the molecular HOMO and LUMO is located as 
shown in the sketch, then there is no flow of electrons to speak of between the electrodes and 
the molecule 
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between metallic electrodes. Experimentally, the conductivity in such cases should 
decrease exponentially with increasing length of the bridge. If the position of the 
Fermi level of the electrodes is shifted relative to the energy of the molecular orbital 
by an applied voltage, it is possible under suitable circumstances to go from one of 
the two limiting cases to the other. 

If one wishes to investigate whether a particular organic molecule with con­
jugated double bonds and thus with delocalised n electrons is suitable for use as 
a molecular wire, then two system properties are of special importance: 

- Where do the HOMO and LUMO levels of the molecule lie relative to the Fermi 
level of the electrode material? The energy differences between these levels 
determine the transmission of electrons through the wire as a function of the 
applied voltage (bias). By changing this bias, one can vary the transmission by 
activating different molecular orbitals as conducting channels. 

- How is the organic molecule electronically coupled to the electrodes and how 
does charge injection into the wire occur? 

The transport of charge carriers trough the bridge molecule can finally also become 
incoherent or dissipative if inelastic scattering of the charge carriers takes place 
within the bridge. Scattering centres can be for example internal vibrations of the 
molecule, if these are sufficiently strongly coupled to the electronic states in the 
"wire". Only in this case is the molecular wire similar to that one normally classifies 
as an electrical wire. Its conductivity then obeys Ohm's law, and its conductivity is 
inversely proportional to the length of the bridge. Figure 21.18 explains the limiting 
cases of coherent and dissipative conductivity. 

The dissipative mechanism of conductivity is certainly more likely to occur the 
longer the molecules and the higher the temperature. In any case, the conductivity of 
a molecule between two electrodes can be understood only if one takes into account 
that it is limited by the Fermi levels of the metal electrodes, by the metal-molecule 
contacts, and by the "transparency" of the molecule. In all measurements, it must 
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Fig. 21.18. Limiting cases for a flux of electrons through a molecule from a donor D to an 
acceptor A along a bridge (D-bridge-A triad). Lower part: the charge carriers tunnel without 
localisation in the bridge. Their velocity depends on the distance. Upper part: hopping 
transport along the bridge; the velocity is less dependent on the distance 
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be remembered that one measures a combination of the electrode and the molecular 
properties. 

The analysis of real measurements is more difficult than implied by these simple 
models. Inequivalent electrode materials, lack of homogeneity of the applied electric 
field and the great variety of molecular orbitals in the case of large molecules make 
a unique analysis difficult even when the experimental problems, especially the 
placement of the electrodes, are under satisfactory control. It is usually only partially 
possible, and there are thus hardly any really satisfactory data for the conductivities 
of individual molecules available. 

21.5.2 Experimental Results 

Only a few measurements of the electrical conductivity of individual molecules are 
currently available. The central problem is to place contacts at both ends of a single 
molecule. How can an individual molecule be contacted? 

This problem can be solved by attaching end groups, e.g. thiol groups, to the 
molecule, which readily form chemical bonds with a metal surface, e.g. Au, so 
that the molecule first binds at one end to a metal electrode. The essential step 
in the experiment then consists in bringing a clean gold surface into contact with 
a solution containing the molecules to be investigated, with thiol ( -SH) end groups. 
The molecules arrange themselves into a monolayer on the metal surface (so called 
self assembly technique), whereby the hydrogen from the SH group is replaced by 
a covalent bond between the sulphur and the Au surface (Fig. 21.19). Thus the Au 
contact serves as one electrode. 

The second contact for a resistance measurement can be the tip of a scanning 
microscope probe. The molecules couple only weakly to this tip, but one can address 
different molecules on the counterelectrode. Another, more elegant method is the 
break-junction technique, which has the additional advantage that it produces a sym­
metric arrangement of electrodes (Fig. 21.19). This method consists of producing 
a gap in a wire which has been drawn out to be extremely thin by nanomanipulation 
methods. The wire is stretched in a controlled manner until it breaks; in this way, 
one can produce gaps of width less than loA in a controlled way. Into such a gap in 
a gold wire, for example a 1,4-dithiolbenzene molecule can be inserted and forms 
a bond at each end with the gold electrodes. In the example shown in Fig. 21.19, the 
measured width of the gap, 8.5 A, is just the right size to allow the molecule to fit 
into it [17]. 

The resistance (drastically simplified) of such a molecule between two Au elec­
trodes can be calculated from current-voltage measurements to be of the order 
of 25MQ [16]. Other measurements yield 900MQ [18]. However, one must be 
careful here; as mentioned above, the measurement reflects the overall system of 
electrode-contact, molecule, and electrode-contact, and it is not possible to say with 
certainty to which part of the system the measured resistance belongs. Furthermore, 
the current-voltage curve is not simply a straight line, as in a truly ohmic contact. The 
quantisation of charge and of the transport path in the form of molecular orbitals, 
i. e. the quantisation of the conductivity, apparently plays a role here. We cannot 



524 21 Experiments on and with Single Molecules 

A 
• ••• ••• •• • ••••• •• •• Au •••• 

• •• •••• • • • • •• • 

B 

_~SAM 

• ••• • • •• • ••••• •• •• Au •• • • • •• •••• • • • • •• • 
_~SAM 

! 

Fig. 21.19. A break junction for the measurement of the conductivity of a single benzene-
1,4-dithiol molecule. The thin gold wire (A) is covered with a monomolecular layer of the 
molecules by dipping into a solution (B: self assembly, SAM). On further stretching, the 
wire breaks (C), leaving the two ends (electrodes) covered with the molecules. The distance 
between the two ends is then decreased until the first conducting contact is produced (D). 
After [17] 

discuss this point in more detail here; we merely wish to demonstrate that electrical 
measurements can be carried out even on relatively small single molecules. 

A different experimental setup is shown in Fig. 21.20: a molecule of Fullerene, 
C6Q, is mounted between a planar Au electrode and the tip of a scanning probe 
microscope which serves as counterelectrode. The current-voltage relation obtained 
is linear, and permits at least the formal calculation of a resistance. 

In the case of larger molecules, the preparation of the electrodes is simpler, since 
their spacing need not be so small; however, the problem of producing contacts 
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Fig. 21.20. Conductivity measurements on a C60 molecule between a Au electrode and a W 
probe tip.At a distance of 11.4 A, the resistance of the system tip-C60-Au surface was found 
to be R = 5.5 Mr.!. After J. J. Joachim and J. K. Gimzewski, Europhys. Lett. 30, 409 (1995) 

between the electrodes and the molecules remain. Thus far, there have been only 
a few measurements which can be clearly analysed. Particularly strong interest was 
aroused by the question as to whether DNA, the carrier of genetic information 
(cf. Sect. 20.6), is an electrical conductor [19]. In this case, it was possible to carry 
out current-voltage measurements on single strands of lengths of ca. 600 nm. These 
and other measurements however indicate that the molecule must be considered to 
be an insulator. 

A nice example of the measurement of the electrical conductivity of a large 
molecule is shown at the conclusion of this section in Fig. 2l.2l. Here, a carotene 
molecule is held within a self-organised monolayer of the saturated hydrocarbon 
dodecane (12 C atoms) on gold surface. The bonding of the two types of molecules 
to the substrate is again provided by thiol groups at their ends. The Pt probe tip 

Fig. 21.21. A conductivity measurement on 
a carotene molecule embedded in a monomolec­
ular layer of I-dodecane-thiol on a Au surface. The 
Pt probe tip which serves as counterelectrode is at 
the same time the cantilever of a scanning force 
microscope. After [20] 
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of a conducting scanning force microscope serves as counterelectrode, and it can 
simultaneously be used to adjust the mechanical force acting on the molecule. 

An ohmic behaviour is observed, with a resistance of 4.2 ± 0.7 GQ. The con­
ductivity of the carotene molecule, with its conjugated double bonds (cf. Sect. 14.6), 
is thus more than 106 times better than that of the alkane chains of the same length. 
One can therefore consider the carotene molecule to be a molecular wire within an 
insulating matrix. We shall have more to say about this in Sect. 22.3. 

However, here again, caution is necessary. It is still quite unclear what the 
mechanism of the observed electrical conductivity is, whether a resistance in the unit 
Ohm is even defined in this situation, whether other processes are responsible for the 
charge transport, and even the experimental results are the subject of considerable 
controversy. An introduction to the problems raised is to be found in Ref. [15]. 
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As a conclusion to this book, we have taken the opportunity of giving an overview of 
a field which on the one hand is quite fascinating because of the goals it has set itself, 
but on the other is still quite uncertain in regard to its eventual limits and potentials. 

22.1 What Is It? 

For some years now, the imaginations of molecular and solid-state physicists have 
been fired by a new idea, or a new catchword, referring to a novel application of 
their research: molecular electronics. What is it? Molecular electronics is the generic 
term for efforts and speculations which have the goal of complementing or replacing 
present-day conventional electronic devices, particularly microelectronics based on 
silicon and related semiconductor materials, by electronic devices which make use 
of molecules and molecular functional units, utilising the specific properties of 
molecular substances. This goal has been set for the not-too-distant future. The 
attraction of such ideas is due to the hope of a further significant miniaturisation 
as compared to silicon-based devices, of being able to use the enormous variety of 
molecules offered by organic chemistry, and, perhaps, of finding materials which 
are readily available and easily produced. 

In considering the requirements of an electronics based on molecules, one finds 
that the following functions would be needed: 

Molecules or molecular functional units which can serve as switches: molecular 
systems which are bistable with regard to light or to electric or magnetic fields; 

- Molecules or molecular functional units usable as conductors: for some years, 
organic metals (i.e. molecular solids with a metallic electrical conductivity) and 
even organic superconductors have been known; 

- Molecules or molecular functional units which perform as logic elements: it must 
be possible to make such devices by combining switches and conductors; 

- Molecules or molecular functional units able to provide information storage, 
i.e. memory devices which permit the writing and readout of information by 
means of light or electric or magnetic-field pulses. 

What, then, is molecular electronics? The concept can perhaps best be defined as 
follows: molecular electronics includes all of the phenomena and processes in which 

H. Haken et al., Molecular Physics and Elements of Quantum Chemistry
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organic molecular materials play an active role in the processing, transmission, and 
storage of information. Molecular electronics can be even more precisely defined: 
as the art of preparing molecules which behave in a similar manner to present-day 
transistors, diodes, connecting wires, and other essential components of integrated 
circuitry. 

If we use this definition, then there is at present hardly such a thing as molecular 
electronics. Whether it will someday exist, and what it would then be like, we do not 
yet know; but we can already apply ourselves to tasks in basic research which will 
prepare the ground for its possible development, which foresee its applications in the 
future and keep them in mind. This is an area requiring the combined efforts of solid­
state and molecular physicists and chemists; the concept of molecular electronics 
may thus serve as a stimulus for varied and interdisciplinary research programmes. 
There are, already, some notable results. Molecules have been found which can 
conduct an electrical current, which can serve as switches and which can store 
information. 

However, being able to produce individual circuit elements is only part of the 
story. To build a functioning computer, many millions of molecular-electronic circuit 
elements of various types must be attached to a substrate and suitably connected. 
This is a task of which we still do not know if it can ever be completed. Some 
overviews can be found in Refs. [1-4] *. 

22.2 Molecules as Switching Elements 

The possibility of modulating a particular physical property of a molecular system 
by means of an external excitation, e.g. with light or with an electric field, is of 
central importance to the goal of producing molecular or supramolecular switching 
elements. Thus, considerable effort have been made to find dynamic molecular 
systems which can be reversibly modified between various states so that they can 
carry out the function of a molecular switching element. They must permit some 
physical property of the supermolecule or the overall system to be changed reversibly 
by a specific (brief) external influence such as a light pulse. If the molecules switch 
only themselves and not some other property or some other part of the overall 
system, then they are to be sure interesting as optical storage elements, but they are 
not switching elements in the sense we mean here. 

Such an active system will be denoted here as a molecular switch; when it is 
switched by a light pulse, then specifically it is a photoswitch. In this connexion, 
photochromic organic compounds are of particular interest. They can form the 
starting point for producing bistable supermolecules whose physical behaviour can 
be controlled by light. 

In order to use molecules as switches which are activated by light, one would 
like to have a molecule A which can be changed to a configuration B (Fig. 22.1) 

* The numbers in square brackets refer to the literature list at the end of this book; here to 
references for Chap. 22 
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• 

• ® .. 

Fig. 22.1. Photochromism: a molecule in the configuration A is converted to the configura­
tion B by light of wavelength AA. Light of wavelength A8 brings the molecule back to its 
original configuration A 

by absorption of light of wavelength AA; this process should be reversed by light 
of wavelength AB. This behaviour is called photochromism; one requires bistable 
molecules. The configurations A and B must be stable even without the presence 
of the light signal used for switching, and the switching process must be rapid and 
repeatable a large number of times without photochemical damage to the molecules. 

An example are the fulgides, whose photochemistry is based on a valence iso­
merisation: a ;r-bond is transformed into a CT-bond, accompanied by ring closure; 
cf. Fig. 22.2. Such molecules are interesting as switches because in only one of the 
two switching states, namely in the closed "c" configuration, is there a conjugated 
chain of double bonds through the molecule and perpendicular to its long axis. This 
can influence the physical behaviour of substituents which can be attached at both 
ends of the fulgide molecule. By substitution with different side groups, the location 
of the fulgide absorption can be changed and the stability of the molecule and its 
ability to bond to other systems can be varied within wide limits. 

H 0 -{rll 
s ::...#(Co 

/I 
o 

UV 

VIS 

Fig. 22.2. Molecules as switches: the molecule thiophene fulgide is photochromic and can 
be switched reversibly by light between the two valence-isomeric configurations shown. The 
dashes along the perimeter of the molecular structures indicate CH3 - groups which are not 
shown in the drawing to save space. 

The measurements shown in Fig. 22.3 illustrate the spectral behaviour of such 
a colouration and bleaching cycle. On colouration, the molecules exhibit a decrease 
in UV absorption and, due to the ring closure and the lengthening of the chain 
of conjugated double bonds, the appearance of a new absorption near 600 nm. The 
previously nearly colourless substance becomes coloured. Bleaching, i.e. irradiatiion 
with light of this wavelength, restores the original state. The process can be repeated 
many times: it is thus reversible. The quantum yield lies in the range of 20% at 
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Fig. 22.3. Colouration and bleaching of the thiophene fulgide molecule (in solution), as 
shown in Fig. 22.2. Upper part: the optical density. Lower part: changes in the optical density 
through the effect oflight at the wavelength indicated by the arrows. From [4] 

room temperature. It decreases for the colouration reaction only a little on cooling 
to low temperatures. The bleaching process is accompanied by a ring opening and 
a transition of the molecule into a non-planar state; because of the different geometry, 
it is thermally activated. Therefore, its quantum yield decreases with decreasing 
temperature and becomes very small at low temperatures. 

The reversible photochromism is maintained when the fulgide molecule is dis­
solved in a solid matrix, e.g. in perspex, PMMA. Amorphous layers are also re­
versibly switchable. In an ordered crystal, the reversible photochromism is, however 
(apparently due to steric hindrance in the isomerisation process) limited to surface 
regions. 

The velocity of the individual isomerisation reactions permits them to be com­
pleted in times in the picosecond range [5]. Fulgides thus appear to be well suited as 
light-switchable molecules. A molecular light-activated switch made in this manner, 
with which one can reversibly interrupt the directed transport of excitation energy 
between a "donor" D and an "acceptor" A is shown in Fig. 22.4. In the E configu­
ration, an optical excitation can be transferred from D to A, since the lowest excited 



>­
C> 
"-
Q) 
c 

W 

0 

E-Isomer 

FE 
.. 

~. 

22.2 Molecules as Switching Elements 531 

UV 

VIS 

C-Isomer 

A o A 

Fig. 22.4. A molecular switch: as the E isomer, the fulgide molecule transfers excitation 
energy from the donor D (an anthryl group) to an acceptor A (a rhodamine group). The 
fluorescence of A is observed when D is optically excited. If the fulgide is placed into its 
C state by light of a suitable wavelength, the S[ state of the fulgide acts as a trap and the 
acceptor is not excited. This process can be repeated many times. From [6] 

state S} of the E isomer lies between those of D and A. In configuration C, the 
fulgide molecule in contrast acts as a trap for the excitation energy, since its state S1 
is now the lowest excitation state of the overall system. Switching on and off of 
energy transport between D and A is measured by the existence or disappearance 
of acceptor fluorescence following donor excitation. The energy transport is very 
rapid; the measured duration for it is ca. 1 ps [6]. 

Another group of photochromic molecules which are suitable as molecular 
switches are the diaryl-ethenes, the dithienyl-ethenes and similar molecules, in which 
the photochromic process likewise is accompanied by an isomerisation with opening 
and closing of a ring structure (Fig. 22.5). Here, again, light of a suitable wavelength 
switches a ring-closure reaction between two isomers, in which the heterocycles are 
either conjugated (closed ring, coloured, absorption in the visible) or non-conjugated 
(open ring, colourless, UV absorption). The switching process thus produces or re­
moves an absorption in the visible at the expense of a UV absorption (Fig. 22.5). In 
this group of compounds, also, the physical and chemical properties can be varied 
within wide limits through variation of the possible substituents on the two aryl, 
thienyl or other groups. Thus e.g. in the molecule shown in Fig. 22.5, bleaching is 
possible using light of wavelength 800 nm, i.e from a diode laser. 

In spite of the steric hindrance also associated with the isomerisation of the 
diaryl-ethenes, the observation of the photochromic reaction has even been reported 
in a diaryl-ethene single crystal [8]. Other important questions are related to the 
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Fig. 22.5. (Upper part) An example of a dithienyl-ethene molecule. On the left the open 
configuration is shown, on the right the closed configuration. The closed configuration contains 
a longer intramolecular chain of conjugated double bonds. This gives rise to the new absorption 
at 800 nm. The Lower part shows the change of the absorption A on irradiation of the open 
configuration with light at 365 nm. From [7] 

possibility of reading out the position of the switch without its being changed by 
the readout process. This is possible with some molecules which have an absorption 
band without a photochromic reaction. Furthermore, this is generally possible using 
characteristic molecular vibrations in molecular infrared spectroscopy. 

There are numerous systems and phenomena which can be modulated by pho­
tochromic molecules. If for example a suitable molecule of the diaryl-ethenes is in­
serted into a long polymer chain, then all its properties can be modified, i.e. switched 
on and off, which are based on an interaction passed along the chain between donor 
and acceptor groups at its ends [7,9]. Such a property is e.g. a flow of electrons along 
the polymer chain which serves as a "molecular wire" by light or by electrochemical 
switching. 

Another light-activated switch in which the flow of electrons through a molecule 
can be controlled is shown by the diaryl-ethene in Fig. 22.6. The two pyridinium 
rings at the left and right ends of the molecule are insulated from each other in 
the open-ring form and they then show no measurable interactions. When however 
a light pulse of suitable wavelength (UV) closes the central ring, the delocalised 
7r electron system connects the two ends of the molecule; the maximum in the 
optical absorption thereby shifts from 352 to 662 nm. Only in this "closed" state is 
electron flow possible. 

Finally, photochromic molecules can be of particular importance in biological 
processes. Insertion of photo-isomerable molecules into biomacromolecules makes 
it possible to switch on and off their functions such as biocatalysis, electron transfer 
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Fig. 22.6. A schematic representation of the switching on and off of a flow of electrons 
through the molecule shown, one of the group of dithienyl-ethenes. After [21] 

or specific binding to substrates [10]. We cannot develop this topic further here; 
however, we recall the effects of the cis-trans reaction of retinal in bacteriorhodopsin 
and in the visual process (Sect. 20.5). 

There are a number of other molecules which can be inserted into supramolecular 
systems and serve as light-activated switches. Switching of molecular systems can 
be initiated by other influences, also, for example by electric fields. One then refers 
to electrochrornism. An example of combined photo- and elecrochromism is found 
in Ref. [23]. This area will certainly be of great future importance. 

22.3 Molecular Electrical Conductors 

Are there organic molecules which are suitable for use as electronic conductors to 
connect other molecules together in an electrical circuit? One can immediately think 
of "molecular wires", which we shall treat in Sect. 22.4, or also of the so called 
organic metals. 

These are crystalline compounds which are in general composed of two partners, 
of which the one serves as an electron donor and the other as an electron acceptor. The 
organic partners are often arranged in stacks, so that they yield a one-dimensional or 
low-dimensional conductivity when conduction is achieved through overlap of the 
Jr -orbitals of neighbouring molecules; cf. Fig. 22.7. 
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Fig. 22.7. The crystal structure of the radical-anion salt 2,5 dimethyl-dicyanoquinone-diirnine 
(DCNQI), with copper as its inorganic partner. In the centre of the picture, a chain of Cu ions 
can be seen; they are, however, not responsible for the metallic conductivity of the material. 
Around them are four stacks of the organic partner molecules. Conductivity takes place along 
these stacks. The stacks are joined together via -CN groups through the central Cu, so that the 
one-dimensionality is somewhat reduced. [After P. Erk, S. Hlinig, 1. U. v. Schlitz, H. P. Werner, 
and H. C. Wolf, Angew. Chern. 100,286 (1988)]. The molecular structure diagram atthe upper 
left shows the H atoms as dots only 

As an example, we consider the radical anion salts of dicyanoquinone-diimine 
(DCNQI). Their structure (Fig. 22.7) illustrates the stacking of the organic molecular 
units. The possibility of an electronic connexion between the stacks is provided by 
the central metal ions, i.e. between the central metal and the nitrogen atoms of 
the -CN groups of DCNQI. The metal counterions of the salt (Cu, Ag, Li and 
others) as well as the substituent groups of the DCNQI molecules (e.g. -CH3, 
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Cl, Br, I) can be varied over a wide range without essentially changing the crystal 
structure. 

The extremely high conductivity and the metallic character even at low tempera­
tures of one of these compounds, the Cu salt of DCNQI substituted with two methyl 
groups as shown in Fig. 22.7 and in the upper curve of Fig. 22.8, demonstrate why 
it is referred to as an organic metal. The conductivity of this salt at low temperatures 
is as high as that of copper at room temperature, and it increases monotonically 
with decreasing temperature, as is typical of metals. To answer the question of what 
the mechanism of this conductivity is and why it takes on a metallic character, it 
is necessary to apply a whole battery of various experimental methods from mol­
ecular and solid-state physics. One of those is magnetic resonance spectroscopy; 
it tells us for example that the high conductivity is directed primarily along the 
stacks of the organic molecules. This can be seen from the influence of the mo­
bile charge carriers on the relaxation behaviour of the proton spins in the DCNQI 
molecules. 
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Fig. 22.S. The temperature-dependent electrical conductivity of some Cu salts ofDCNQI. The 
compounds differ in the nature of the substituents on the DCNQI molecules; cf. Fig. 22.7. Me­
refers to a -CH3 group (methyl), while I or Br are iodine or bromine atoms as substituents 
in place of the methyl groups; compare the molecular structure in Fig. 22.7. The crystal 
structures are very similar in each case. The conductivity ranges from that of an organic metal 
even down to very low temperatures (uppermost curve) to that of a metal-like semiconductor 
(the two lowest curves; one of them is for a metal alloy). From [4] 
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It is a matter of great interest to compare the conductivities of different salts 
of this family of compounds which differ either in the identity of the metal ion or 
in the substituent groups on the DCNQI molecules. For such a comparison, it is 
important that the different salts have essentially the same crystal structure: only the 
intermolecular distances are slightly variable, and the molecular orientations show 
only small differences. 

Most of these salts exhibit a behaviour similar to that of the two lowest curves 
in Fig. 22.8: they have a rather good conductivity at room temperature, which 
with decreasing temperature first increases slightly, then however shows a strong 
decrease at lower temperatures. This behaviour is similar to that of a "metallic 
semiconductor" and is typical of one-dimensional conductors, in which a phase 
transition at low temperatures (Peierls transition) puts an end to the metal-like state. 
These compounds are hardly worthy of consideration as "molecular wires". 

On the other hand, the slightly altered geometric and electronic configurations 
of the copper compound belonging to the uppermost curve in Fig. 22.8 are evidently 
sufficient to cause deviations from one-dimensionality by increasing the stack-to­
stack interactions through bonds between the central copper ions and the - CN groups 
of DCNQI. This suppresses the phase transition, and the high metallic conductivity 
persists down to very low temperatures. A slight modification of the molecular 
structural units is enough to cause significant changes in the physical behaviour of 
these salts [11]. 

This example clearly shows how cautious one should be with words like "mole­
cular wires". It is precisely the deviation from one-dimensionality which is important 
here. In terms of molecular electronics, this means that the lateral size of molecular 
wires must not be too small. From the great multiplicity of chemically possible 
substances, one must search out those few whose structural properties, and the elec­
tronic properties to which they give rise, are suitable for the projected application. 
A relatively large number of organic metals has been known for some years, includ­
ing even organic superconductors. It is an engaging task for molecular physics and 
quantum chemistry to find the structural principles of molecules which show these 
properties. 

The influence of dimensionality on the conductivity behaviour of "molecular 
conductors" can be followed very nicely in detail by considering the example of the 
Cu salts of DCNQI. 

The Peierls transition occurs at low temperatures for most DCNQI crystals. It 
lifts the equidistant arrangement of the stacks of DCNQI molecules by dimerisation 
(or also trimerisation), so that each two molecules are separated from the other 
molecules by a greater distance and form a pair. This structural change makes an 
insulator (or a semiconductor with a large band gap) out of the metallic conducting 
crystal; its resistance increases reversibly by many orders of magnitude at the phase 
transition. A hysteresis can also occur. An example is shown in Fig. 22.9. Such 
a Peierls transition can take place only in one-dimensional conductors. 

When a Peierls transition occurs in a Cu salt of DCNQI, this means that the 
central Cu atoms can no longer produce a sufficiently strong interaction between the 
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Fig. 22.9. The conductivity of crystals of (Me - Me - DCNQIhCu as a function of the 
temperature. hs means undeuterated and d6 means that the two CH3 groups are fully deuter­
ated; two alloys are also shown. One can recognise the phase transition for the deuterated 
substances, as well as a hysteresis and reentry into the conducting phase at the lowest tem­
peratures. From [12] 

stacks via the CN groups and thus guarantee multi-dimensionality. This can happen 
on lowering the temperature due to the resulting minor change in th crystal structure 
[11]. A sufficient interaction between the stacks requires a very subtle geometric 
and energetic overlap of the orbitals of the eu ion and the eN groups. This can be 
reduced on lowering the temperature. It can by the way sometimes be restored at 
still lower temperatures, producing a so called reentry behaviour, since the overlap 
can change further due to contraction of the crystal. An example of this is shown in 
Fig. 22.9. 

It is an interesting question as to whether the molecular wavefunctions can have 
an observable influence on the critical overlap of the molecular functions with the eu 
orbitals on optical excitation. In other words: can the Peierls transition be avoided 
by optically exciting the molecules in the crystal? Or, expressed still differently: can 
the Peierls transition be switched on and off by optical excitation, thus switching the 
crystal between a metallic conducting and an insulating behaviour? 

In order to detect such an inverse Peierls transition, one has to measure the 
electrical conductivity of a crystal in an optically excited state. The excited state has 
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Fig. 22.10. A schematic drawing of the experimental arrangement for measuring the optically 
induced transient electrical conductivity (OITEL) in an alloy crystal of undeuterated and 6-
fold deuterated (Me - Me - DCNQIhCu. The optical excitation is carried out with a ps-light 
pulse, and the change in conductivity is detected in a time-resolved manner. From [13] 

only a short lifetime of a few nanoseconds. Within this time, one has to be able to 
measure a change in the conductivity. 

This can be done using the setup shown in Fig. 22.10 for optically-induced 
transient electrical conductivity (OITEL). An example of such a measurement is 
given in Fig. 22.11. Following excitation by a short light pulse in the temperature 
range of the phase transition, one detects a change in the conductivity from the 
insulating into the highly conducting range. This altered, high conductivity remains 
for a period of many nanoseconds; this is the time required for the crystal to relax 
back to its original state. 

Naturally, it must be experimentally excluded that the effect is not purely thermal, 
i.e. a heating of the crystal by the light pulse. Furthermore, one must separate out the 
(much smaller and more short-lived) normal photoconductivity effect, in which new 
charge carriers are generated in the crystal by the light pulse. Therefore, Fig. 22.11 
shows for comparison the transient conductivity in an insulating state outside the 
range of the phase transition. For more details, the reader is referred to the original 
literature [12,13]. 

The experiments in any case show that the organic molecules described here can 
also serve as a switch, in which a light pulse can rapidly and reversibly change the 
electrical conductivity by many orders of magnitude. In this case, the switching is 
due to a light-induced phase transition. 

22.4 Molecular Wires 

Perhaps the simplest element of an integrated electronic circuit is the connexion 
of the components among themselves and with the world outside - the "wires". 
Usually, their function is to transport electrical charge or excitation energy from one 
part of the functional unit to another. One distinguishes photonic molecular wires 



<t: 
E 

t 

4 

3 

2 

0 

0.6 

0.4 

0.2 

0 

4 

3 
2 

1 

o 

22.4 Molecular Wires 539 

0 200 400 600 

0 20 40 60 

.~u •••••••••• u.~~~ ••• 

o 2000 4000 6000 

--.. ns 
Fig. 22.11. The transient conductivity, i.e. the time-dependent conductivity following a flash of 
light, in crystals of (Me-Me-DCNQIhCu (compare Fig. 22.9) following optical excitation with 
a ps-light pulse. The measurement is carried out at three different temperatures. The working 
points OP! and OP3 are in the range of the phase transitions at a higher temperature and a lower 
temperature (reentry, cf. Fig. 22.9). OP2 represents a measurement in the nonconducting range 
between the two phase transitions. While at OP, and OP3 the high metallic conductivity is 
restored during a time ranging from ns to ms, in the temperature range of OP2 only short-lived 
charge carriers are generated, giving rise to a considerably smaller and shorter-lived increase 
in conductivity. From [13] 

which transport excitation energy and electronic molecular wires for the transport 
of electrical charge. 

Let us first consider the wires for transporting electrical charge. We have already 
treated their fundamentals in Sects. 21.5 and 22.3. The conductivity of a molecule 
which acts as a "wire" was shown there to be a combined result of three factors: 
the Fermi level and the density of states of the two electrodes and the transmission 
capability of the molecule itself. 

There are many long, thin molecules in which electrons, in particular Tr electrons 
in conjugated double-bond systems, are delocalised over many bonds and over a large 
region. These delocalised electrons can in principle transport charge from one end of 
a molecular functional unit to the other, and thus carry out the function of a molecular 
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wire. Examples of such molecules are polyenes, polythiophenes, polypyrroles and 
other polymers. If one wants to understand quantitatively the electrical conductivity 
of such molecular wires, then one encounters the problems which we have already 
discussed in Sect. 21.5: the conductivity depends essentially on the contacts, i.e. one 
has to know how to inject the charge carriers into the conducting molecule, and one 
has to understand the mechanism of conduction within the molecule. Incoherent 
hopping from atom to atom within the molecule or coherent tunneling via the 
molecular orbitals are, as described above, the two limiting cases for the conduction 
mechanism in a molecular wire. We know, however, that these models must be 
modified and refined in order to understand real systems. We cannot go into further 
details of this refinement here. 

Quantitative measurement and analysis of the conductivity of molecular wires 
is difficult, especially due to the nano-dimensions, and has thus far been possible 
in only a few cases. The simplest arrangement (Fig. 22.12), namely the molecule 
as a long, thin connexion between the two electrodes of a metal/molecule/metal 
nanocontact, is difficult to set up experimentally. 

Fig. 22.12. A simple scheme for a molecular wire between 
two electrodes 

We will therefore limit ourselves here to the description of a few typical experi­
ments. 

One can detect charge flow through a "wire" electrically by means of a current­
voltage measurement. A very simple example, in which the wire consists of only 
a single molecule, is shown in Fig. 21.20. The current through a C60 molecule 
between a gold electrode and a scanning probe microscope tip made of tungsten 
increases linearly with the applied voltage. With an electrode distance of 11.4 A, 
one obtains here a nominal resistance of 5.5 MQ. This high resistance however still 
corresponds to ca. 1011 electrons passing through the molecule per second. A still 
larger number, namely 1012 electrons per second, flow through the benzene dithiolate 
molecule in a break-junction contact (see Sect. 21.5). 

The conductivity mechanism through a single molecule can have very different 
origins, as already pointed out above in Sect. 21.5.1. One therefore speaks in general 
of the "electronic transparency" of a molecule. When this transmission ability is 
based on electron exchange between the orbitals in the molecule, then it decreases 
exponentially with increasing length. How strong this assumption is depends on the 
energy gap between the LUMO and the HOMO of the molecule. Furthermore, the 
electronic interaction between the molecule and the electrodes is important. It has 
been estimated that a current flow of 10 pA through a polyene of 10 nm length, i.e. 
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C90H92, should be possible at an applied voltage of 100mV. This would correspond 
to an ohmic resistance of 1010 Q. Measurements on similar molecules support this 
estimate (cf. Refs. [2] and [15] in Chap. 21). 

The electron flow through molecular wires can also be detected chemically. 
This was achieved for example using the arrangement shown in Fig. 22.13. Here, 
carioviologenes serve as the wires. These are long-chain molecules of the carotene 
type, which are substituted at their ends with pyridinium groups, which can take on 
or give up electrons. These carioviologene molecules are embedded in the membrane 
of a vesicle of phospholipid molecules. The detection of an electron transfer between 
an inner oxidising and an outer reducing phase via the embedded carioviologenes 
was carried out by observation of the reduction of hexacyanoferrate (III) within the 
vesicle to hexacyanoferrate (II). The carioviologenes are thus functioning molecular 
wires in a supermolecular system . 
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Fig. 22.13. Carioviologene molecules as molecular wires embedded in a membrane which 
has formed a vesicle. From [16] 

A further interesting and broad field of research is light induced charge separation 
in molecules and molecular chains. When due to light absorption at one end of the 
molecular unit, the donor D, an electron is released, it can pass through the molecular 
wire which serves as a bridge to the other end of the molecule if a molecular group 
is there that can serve as an acceptor A to take up the electron; see Fig. 22.14. One 
obtains a charge-separated state, i.e. the molecule has an unpaired electron at its 
one end and the corresponding hole at the other. The supermolecule D-wire-A has 
a large dipole moment during the lifetime of the charge separation. Measurement of 
this dipole moment can serve to detect the charge separation. 

Another possibility of investigating charge separation is the measurement of 
the transient light absorption of the ionised donor D+ or the electron-occupied 
acceptor A -. After a very short light pulse which forms D+, a white light pulse 
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Fig. 22.14. Schematic of the light-induced charge sep­
aration in a triad consisting of a donor-bridge-acceptor 

that is briefly and measurably delayed relative to the first light pulse measures the 
absorption by D+ and, if possible, also of A -. Owing to the short lifetimes of these 
states, a very high time resolution is required; such measurements are carried out on 
molecules in solution, Especially interesting for molecular-electronics applications 
is such a charge separation when the molecules are arranged on a substrate as 
an oriented Langmuir-Blodgett layer. This has also already been experimentally 
demonstrated [15]. 

22.5 Molecules as Energy Conductors 

A further topic from molecular physics with a view to molecular electronics is the 
possibility of transporting excitation energy through molecules. Here, it would be 
desirable to find molecules in which energy that is absorbed at one end is trans­
ported to an end group at the other end of the molecule, see Fig. 22.15. In such 
a supramolecule, the middle portion thus acts like a wire; to be sure, not a wire for 
electrical conduction, but rather a wire for the transmission of electronic excitation 
energy without charge transport. Since the excitation is carried out by photons, one 
can also refer to a photonic wire. 

Measurements on polyene molecules which have been substituted at one end by 
an excitation group such as anthryl (A) and at the other end by a detector group 

~ 
~ 1t-bridge 

Fig. 22.15. Schematic of a molecular photonic wire. Optical excitation of a donor D can 
lead to photon emission at the acceptor A if the excitation energy is transmitted through the 
molecular bridge. Here, the bridge consists of a molecule with conjugated double bonds, 
e.g. a polyene. The excitation light is converted to fluorescence light from the acceptor 
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Fig. 22.16. Molecules as energy conduc­
tors. Molecular groups R and RJ are at­
tached to polyene molecules of different 
lengths, here with 5 or with 9 double bonds. 
The R group can act as a donor, the RJ 
group as an acceptor for electronic exci­
tation energy. The donors here are the an­
thryl group A, which can be substituted 
in different positions along the chain, or 
else the naphthyl group N. The acceptor 
is tetraphenyl porphyrin (TPP). In the up­
per part of the figure, a molecule is shown 
which has been substituted at only one end; 
the other end is terminated by a -CHO 
group. The -CH2 groups serve to stabilise 
the chains 

like tetraphenyl porphyrin (TPP) (see Fig. 22.16) appear to indicate that this kind 
of energy conduction is in principle possible. Determinations of the absorption, 
fluorescence, and excitation spectra of these molecules (Figs. 22.17 and 22.18) yield 
the following results: 

The various molecular partners retain their identities to a high degree even 
after being joined together to form a supramolecule: their electronic states and 
vibronic structures remain specific to the structural subunits of the supramolecule. 
A localised excitation of the aromatic end groups is possible. In Fig. 22.17, 
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Fig. 22.17. The absorption spectrum (-) 
and the emission spectrum ( ... ) of the mol­
ecule 9-anthryl- Pn -tetraphenyl porphyrin 
in solution at 180 K. Pn means that the 
polyene chain contains n double bonds . 
Above: n = 5, Below: n = 9. 9-
anthryl means that the anthryl group is 
substituted at the 9th position (compare 
Fig. 22.16). The excitation of the flu­
orescence was carried out at a wave­
length of 257 nm. (From F. Effenberger, 
H. Schlosser, P. Bauerle, S. Maier, H. Port, 
and H. C. Wolf, Angew. Chern. 100, 274 
(1988) 
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Fig. 22.18. The excltatlOn spectra of 
9-anthryl-Pn-tetraphenyl porphyrin at 
180 K in solution, n = 5 ( ... ) and 
n = 9 (-). The intensity of the TPP 
emission at 665 nm is plotted as a func­
tion of the wavelength of the excita­
tion light. The maximum at ca. 250 nm 
corresponds to absorption by the an­
thryl group (S3 excitation) and indicates 
in especially clear way that energy is 
transported to the TPP. (From S. Maier, 
H. Port, H. C. Wolf, F. Effenberger, and 
H. Schlosser, Synth. Met. 29, E 517 
(1989)) 

one sees for example an excitation band in the absorption spectrum which is 
characteristic of the anthryl end group (in the 250 nm region), and also absorption 
bands characteristic of the other substituent, tetraphenyl porphyrin (TPP) (most 
noticeable is the strong absorption band at ca. 430 nm, the Soret band), as well as 
the absorption bands of the polyene, which shift in a characteristic way towards 
longer wavelengths as the chain length of the molecules is increased. 
There is, however, a clear modification of the intensities of the bands and the 
electronic energies of the component molecules, depending on the type of substi­
tution and the length of the polyene. These changes show that the binding exerts 
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Fig. 22.19. In an anthracene-oligothiophene-prophyrin triad, the excitation from the donor 
along the bridge to the acceptor can also occur through participation of the excited states of 
the oligothiophene followed by internal conversion. This is a possible scheme for directed 
intramolecular energy transport. The relative energy positions of the oligo thiophene excited 
states depends on the chain length n. From [19] 
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a mutual influence on the electronic orbitals, leading to their partial merging, but 
without a complete loss of the identity of the partners. 
An intramolecular energy transport from one end, at the anthryl substituent, to 
the other end, with TPP, is in fact observed. It is mediated by electronic states 
which evidently belong to the whole supramolecule. This intramolecular energy 
transport is for example noticeable in Fig. 22.18, which shows the excitation 
spectrum of the TPP emission. One sees that the TPP emission can be excited 
by light in the absorption range of the anthryl group, in the range of the TPP 
absorption itself, and possibly also in the range of the polyene absorption. 

- Directed energy transport can be understood in these molecules in terms of the 
Forster mechanism (see Sect. 20.4). However, it remains an interesting question 
whether here also electronic states contribute to the energy transport which 
belong to the whole supermolecule and therefore lead via internal conversion 
(Sect. 15.2) from the absorber over the bridge to the emitter to popUlation of the 
lowest S, state in the overall molecule (cf. Fig. 22.19, compare also Ref. [18]). 

These substituted polyene molecules are thus interesting candidates, or at least model 
substances for the further study of molecules and functional units that might be of use 
in molecular electronics. In particular, one could imagine that the insertion of mol-

Fig. 22.20. A light-collecting molecule, consisting of a central porphyrin unit which emits 
light when excitation energy absorbed by one of the four anthryl groups is transferred via the 
quinquethiophene chains to the centre of the molecule. From [19] 
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ecular switches into the polyene chains would influence this energy transport [17]. 
It might also be possible to place the polyene chains into monomolecular layers or 
membranes and to use them for the transport of electronic excitation energy across 
the layer or the membrane. 

A very nice example of directed energy transport is shown in Fig. 22.20 [19]. 
Here, four anthracene groups are connected via thiophene molecules to a central 
porphyrin group. The light energy absorbed by the four anthracenes is transmitted to 
the porphyrin, which acts as light collector, and excites it, causing it to emit light. In 
a quantitative comparison of the excitation spectra of anthryl-thiophene-porphyrin 
supermolecules with 1,2,3, and 4 anthryl-thiophene-porphyrin chains (Fig. 22.21), 
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Fig. 22.21. The absorption (-), excitation ( ... ), and fluorescence spectra of porphyrin 
molecules with 1, 2, 3, and 4 anthryl-quinquethiophene side groups. The molecule with four 
side groups is shown in Fig. 22.20. Detection of the excitation spectrum is carried out at the 
maximum of the fluorescence yield. The relative intensity of the anthryl absorption (at 40 000 
cm -I) to the porphyrin absorption (at 23 000 cm -I) increases in the series of 1 to 4 anthry I 
absorbers by a factor of four. From [19] 
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Fig. 22.22. A schematic drawing of the antenna complexes which serve to collect light in 
the reaction centre of bacterial photosynthesis. Here, we see the molecular arrangement of 
the antenna proteins LH2 of the purple bacterium R. acidophila. At the left is the ring-shaped 
bacteriochlorophyll a molecule which absorbs at 850 nm; on the right, the position of the BChl 
a molecules, which absorb at 850 nm, between the protein helices which form the support 
framework for the light-collecting molecules is indicated. From W. Kiihlbrandt, Nature 374, 
497 (1995) and G. McDermott et aI., Nature 374, 517 (1995) 

it becomes clear that the excitation probability for the porphyrin emission increases 
in proportion to the number of anthryl groups, as would be expected from the 
energy-transfer model. 

The anthryl groups serve so to speak as antennae for the excitation of the por­
phyrin group within the molecule. The most spectacular example of an antenna 
function of molecular groups in the directed energy transport to a reaction cen­
tre is represented by the antenna complexes of plant or bacterial photosynthesis 
(Fig. 22.22). In these, the light energy absorbed by a number of chlorophyll mol­
ecules is transferred with high efficiency to a central group, where photosynthesis 
begins with the primary charge separation process (see Sect. 20.7). 

By the way, the directed transport of excitation energy from a donor D or sensi­
tiser molecular group via a bridge (consisting of fatty-acid molecules whose length 
could be varied) to an acceptor group A was investigated as early as 1971 by Kuhn 
and Mobius [20] (compare Fig. 22.23). The molecules were oriented in Langmuir­
Blodgett layers and detection of the energy transfer (by the Forster mechanism) 
was accomplished using the acceptor fluorescence. The direction of energy transfer 
was determined here by the geometric arrangement of the molecules. The fatty-acid 
molecules serve only to fix A and D relative to one another and relative to the 
substrate. 
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Fig. 22.23. A cross-section through a system of Langmuir-Blodgett layers. The system is 
irradiated by UV light, which can be absorbed only by the donors D. In the first zone (1), 
the acceptors are at a distance of 50 A from the donors. Directed energy transport and yellow 
fluorescence light are observed. When the acceptor molecules are at a distance of 150 A 
in zone (2), they no longer receive the energy absorbed by D; one then observes the blue 
fluorescence light of the "donors", which no longer have recipients for their excitation energy. 
In zone (3), there is no fluorescence at all, since the acceptors cannot absorb the excitation 
light. From [20] 

22.6 Molecular Electronic Functional Units 

It is a highly interesting and very topical challenge for researcher to put the fun­
damental ideas of molecular electronics into practice and to construct electronic 
functional units which can be used as circuit elements in working electronic or 
optoelectronic devices. Such functional units are supramolecular structures which 
are designed to fulfill specific functions. The greatest hurdle to be overcome is the 
lack of stability of arrangements in which organic molecules serve as the active ele­
ments. Organic molecules are incomparably more sensitive towards environmental 
influences such as oxygen or other gases, moisture, high and low temperatures and 
light than are the inorganic materials which are employed with such great success in 
modern electronics and optoelectronic devices. Thus, progress in developing mole­
cular electronic functional units has been slow, despite the great efforts of numerous 
research groups. 

The fabrication of an electronic functional unit requires a number of steps. First 
of all, one must have a concept of the molecules required, synthesise them and 
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investigate their properties. The second step consists of inserting these molecules 
into supramolecular architectures, in membranes or thin layers, and of verifying that 
the resulting unit has the desired properties. Finally, in a third step, these basic units 
must be connected together with other components of the electronic system in order 
to permit them to be addressed by other molecular units or by physical signals from 
outside the system. 

An old and important goal of molecular electronics is the preparation of a single­
molecule molecular rectifier. This would be a molecule which allows an electric 
current to flow only asymmetrically, i.e. in which for example the electrical con­
ductivity from its left side to the right is much greater than in the reverse direction. 

Fig. 22.24. The structural formula of a molecular functional 
unit which is intended to fulfill the function of a "molecular 
rectifier". A is an electron acceptor group, D a donor group. 
See also D. Haarer, Informationstechnik 34,4 (1992) 

This type of molecular functional unit is shown schematically in Fig. 22.24. At 
one end, it contains a molecule A which serves as an electron acceptor -for example, 
a molecular group with a -CN substituent. At the other end, there is a molecular 
group D with donor properties, which readily gives up electrons, e.g. a molecule 
with amino substituents. The molecule in the centre is insulating, but it can allow 
the tunneling of charge carriers from the two ends due to its short length. Since the 
A unit has a tendency to attract electrons, an electron which is added to D will tend 
to move from D to A; the whole unit has an effectively polar character. 

There have been attempts since the beginning of the field of molecular electronics 
to put this idea into practice and to prepare this type of molecular rectifier or diode. 
However, some important problems have proved to be difficult to solve, in particular 
irreversible changes in parts of the molecules through oxidation and reduction, 
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Fig. 22.25. The structure of the molecule HDQ-3CNQ, which can act as a molecular 
rectifier [21] 
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i.e. through receiving or donating an electron, as well as the problem of attachment 
of the functional unit to a metallic or semiconducting surface. 

Success was attained after much effort using the molecule HDQ_3CNQ (hexa­
decyl-quinolinium-tricyano-quinone-dimethanide) [21] (Cf. Fig. 22.25.) Schemati­
cally, it can be described as T - D+ - Jt - A -; here, D+ is quinolinium, the electron 
donor, J! is a J! electron bridge, and A-is tricyano-quinone-dimethanide, the elec­
tron acceptor. T stands for the hexadecyl group; it is attached to the actual rectifier 
molecule in order to permit the preparation of monomolecular films in which the 
molecules are ordered in a unified manner, using the Langmuir-Blodgett technique. 

Au Au 

I 

AI 

Substrate 

Fig. 22.26. An experimental setup for molecular rectification using HDQ_3CNQ [21]. The 
external electrical leads were attached using a GalIn alloy in order to provide a symmetrical 
electrical situation at both electrodes. From [21] 

The molecules were laid down as one or more Langmuir-Blodgett layers onto 
an Al electrode. The counterelectrodes, also made of AI, were prepared by vapour 
deposition (Fig. 22.26). With this arrangement, the current-voltage curves shown in 
Fig. 22.27 were measured; they exhibit a rectifier characteristic. From the experi­
mental data, the electron transfer rate was estimated to be about kET = 0.5 electrons 
per molecule per second. 

With these experiments, the possibility of obtaining unimolecular rectification 
has clearly been demonstrated. An application is however still very distant, among 
other things because of the poor stability of the molecular films. 

Another functional unit which is the goal of efforts using organic molecules is 
the transistor. In a field-effect transistor (Fig. 22.28), the current which flows in 
a semiconductor between two electrodes, the source and the drain, can be controlled 
by an electric field which is applied in the form of a voltage at a third electrode, 
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Fig. 22.27. The current-voltage curve of a molecular rectifier as in Fig. 22.26. After [21] 

the gate. The gate electrode is insulated from the semiconductor; it acts via the field 
effect and regulates the current in the conducting channel of the device. 

The operation of a transistor is an interesting problem in solid-state physics, and 
we shall not discuss it in more detail here. To do so, we would have to deal more 
deeply with the properties of organic molecules in the solid state, especially with 
their conductivity. Here, we mention only that organic transistors, in particular on 
the basis of oligothiophene molecules, can already be fabricated, and the prospects 
for their practical application are good. As electrodes, conducting polymers are 
used, and transistors can be prepared which are flexible, robust and small (a few 
11m) [22]. They are, however, slow in comparison to transistors made of inorganic 
semiconductors, particularly due to the low charge-carrier mobilities in the organic 
layers. Current research is aimed at finding additional, suitable organic materials 
and at developing preparation methods for obtaining high-quality thin layers of 
well-defined thickness from these materials. 

Source Drain ~~--7'~- a-6T 

Insulator 

Fig. 22.28. A field-effect transistor made of thin organic films with metallic contacts. The 
organic semiconducting material is the oligothiophene a-6T. After Gamier et al., Adv. Mat. 2, 
592 (1990) and [22] 
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There are numerous other possible areas of application in which the physical 
and especially the photo physical properties of organic molecules appear interest­
ing. We mention in particular light-emitting diodes based on the phenomenon of 
electroluminescence. We treat these in more detail in Sect. 22.9. 

22.7 Nanotubes 

In the course of preparing and investigating Fullerenes (cf. Sects. 4.5 and 15.4), 
a further interesting phase of carbon was discovered, cylindrical Fullerenes or carbon 
nanotubes. They can be understood as rolled-up sheets of graphite which are packed 
within one another as concentric cylinders. One to ten or more of these cylinders 
form a nanotube. The outer diameters of the tubes lie in the range between 1.5 and 
40 nm. They can be up to several rnicrometres long [23,24]. 

It is also possible to prepare single-wailed tubes intentionally. Their structure is 
that of a rolled-up graphite plane which is closed at its ends by a rounded, Fullerene­
like cap (Fig. 22.29. The graphite planes can be rolled up under various angles to 
form a cylinder; thus, in AFM images the two structures shown in Fig. 22.29 can be 
distinguished: the chair and the zig-zag structures. 

At a diameter of for example 1.4 nm,the length of the nanotubes can be up to 
several J.Lm. After preparation, the tubes are generally ordered in bundles or less 
ordered, like spaghetti. Using modem methods of nanomanipulation, it is however 

Fig. 22.29. Schematic representation of a carbon nanotube in the two possible conformations, 
which are metallic and semiconducting, resp. After [23] 
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possible to extract single thin-walled tubes. These are highly interesting, particularly 
because of their electrical properties: they are long molecular wires, if one considers 
a nanotube to be a macromolecule [25]. 

The two conformations have very different conductivities: nanotubes in the chair 
conformation are metallic conductors, while the zig-zag conformation is found to be 
semiconducting. One can thus prepare either a metal or a semiconductor from the 
same material simply by changing the roll-up angle. 
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Fig. 22.30. The current-voltage characteristic of a carbon nanotube, measured at 5 mK. 
After [24] 

Owing to their rigid structure, these one-dimensional conductors do not undergo 
a Peierls transition even at low temperatures. As could be expected from their small 
sizes, the electronic states which contribute to conduction along the tube axes are 
quantised. One therefore obtains discrete steps in the current-voltage curves (see 
Fig. 22.30). They are a result of the fact that the number of discrete electronic 
states for charge transport increases on increasing the applied voltage. This resonant 
tunneling through discrete electronic states permits the study of the quanti sed states. 
To a good approximation, they correspond to the states of a square-well potential 
with electrons at the Fermi wavelength (e.g. AF = 0.35 nm) and energy steps of 
0.06eV. 

Figure 22.31 shows the experimental setup for the measurement of the electrical 
conductivity of nanotubes. The Pt electrodes, prepared by photolithography, are at 
a distance of 140 nm. With a bias voltage V G applied to a third electrode without 
contact to the nanotubes, one can shift the electrostatic potential of a nanotube 
relative to the Fermi level of the Pt electrodes and thus measure the resonant states 
for electrons in the tube. Resonant tunneling occurs when the discrete states of 
the electrons in the square-well potential of the tube are isoenergetic with the Fermi 
level of the electrodes. One can also construct a single-electron field-effect transistor 
using nanotubes [26]. 
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Fig. 22.31. Measurement of the electrical conductivity of carbon nanotubes with two Pt 
electrodes. This arrangement can also be used as a molecular transistor. From [26] 

Nanotubes thus exhibit the characteristics of molecular wires with fascinating 
electronic properties, and are suitable candidates for molecular electronic devices. 

22.8 Molecular Storage Elements, Hole-Burning 

Will it be possible also to use molecules for information storage and retrieval (mol­
ecular memories)? Can one for example change the state of a molecular system by 
the action of light into a new state which is distinguishable from the initial state and 
which is stable, and then read out this stored information or erase it by a second light 
quantum? Is it possible to construct a functional unit with a high storage density in 
this way, i.e. with a large amount of stored information in a small volume? 

An interesting approach to this problem is based on the phenomenon of photo­
chemical or photophysical hole-burning, Fig. 22.32. Although an isolated molecule 
often exhibits a sharply defined absorption spectrum, the emission and absorption 
spectra of molecules in a solid matrix, e.g. in an inorganic or organic glass, usually 
consist of broad bands. The individual molecular spectral lines are inhomogeneously 
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Fig. 22.32. Inhomogeneous broadening of molecular spectral lines in a matrix as the basis of 
the process of hole-burning. In an amorphous or disordered lattice, the electronic excitation 
terms and therefore the transition frequencies of a molecule are distributed over a large energy 
range, since the molecules experience different local environments (left-hand part). Each 
individual configuration has a particular absorption spectrum consisting of a zero-phonon line 
and phonon sidebands. The overall absorption results from a superposition of the individual 
absorption curves (right-hand part). After J. Friedrich and D. Haarer, Angew. Chern. 96, 96 
(1994) 
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Photoproduct 
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Fig. 22.33. Photochemical hole-burning: laser light of a narrow bandwidth is used to irradiate 
an inhomogeneously broadened spectral line. This bums a hole into the absorption line, 
having the width of the laser bandwidth or the homogeneous linewidth nom of the individual 
molecules. The absorption line of the photoproduct appears at some other point in the spectrum. 
[After S. VOlker, Ann. Rev. Phys. Chern. 40, 499 (1989)] 

broadened, because there are many different local environments for the molecules 
within the matrix. These various local environments shift the energy levels of the 
molecules by different amounts (solvent shift). The observed spectrum is then a su­
perposition of many individual sharp lines, which cannot be resolved or distinguished 
from each other. 

If one can now modify a molecule by absorption of a light quantum in its struc­
ture or its interaction with the environment, so that it can no longer absorb a light 
quantum of the same energy at a later time, then this molecule is removed from the 
ensemble of absorbing molecules within the inhomogeneous line. A "hole" appears 
in the line at the position of the individual absorption of the bleached molecule. This 
is the principle of the hole-burning method; compare Fig. 22.33. This rearrange­
ment (tautomerism) can lead to hole burning if one considers also the molecular 
environment; relative to this environment, the two tautomeric configurations may be 
inequivalent and differ more or less in their spectral properties due to the different 
solvent shift. The first organic molecule to which this method was successfully ap­
plied was porphyrin. In its case. the absorbed light causes a rearrangement of the 
central H atoms as shown in Fig. 22.34. This reduces its absorption coefficient at the 
frequency in the spectrum where the initial absorption occurs (this is hole-burning); 
the absorption coefficient is correspondingly increased at some other frequency out­
side the inhomogeneously broadened line shown here. Depending on whether the 
hole-burning process involves a rearrangement within the molecule itself or in its 
environment, one refers to photochemical or to non-photochemical hole-burning. 
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Fig.22.34. In the molecule porphyrin (free base), the two central H atoms can be switched by 
light absorption back and forth between two configurations (photoisomerisation). In a solid 
solution, this leads to a "hole" in the absorption spectrum. Optical hole-burning with organic 
molecules was first investigated with this model system. The isomerisation by light occurs 
only at low temperatures. At room temperature, the central protons move readily between the 
two configurations, as can be verified using proton-spin resonance (NMR) 

One can also obtain sharp molecular absorption lines using narrow-band laser 
light when the molecules are dissolved in glasses or crystalline matrices with in­
homogeneously broadened absorption. If the quantum energy of the laser light is 
changed in small steps, many holes can be burned adjacent to one another in a broad 
absorption line. In this way, one could attempt to store information in molecular 
systems. An important problem in molecular physics is the search for such stor­
age media which are insensitive to aging and radiation damage. The stability and 
reversibility of the storage system are decisive for its possible practical applications. 

In this connexion, the molecule bacteriorhodopsin, which occurs in nature and 
can be obtained from bacteria, is extremely interesting. It is suitable for the stable 
and reversible storage of information and thus also for optical holography. This has 
been demonstrated by Oesterhelt, Briiuchle and Hampp [27] in an impressive series 
of experiments. 

The hole-burning technique can be used not only for information storage, but 
also for molecular spectroscopy. If a sharp hole can be burned in a broad absorption 
line, and the width of the hole approaches the limit of the homogeneous linewidth 
for the observed transition, then the transition energy can be determined much 
more precisely than with conventional absorption spectroscopy. Molecules, with 
their sharp absorption lines, can then also be used as probes to analyse the local 
environment in glasses or in biological matrices. The width of the hole is in the 
limiting case determined by the lifetime of the excited state, which can thus also be 
measured in this way. More information on this topic was already given above in 
Sect. 21.4.5. 

It has also been shown that spectral hole-burning in systems with inhomo­
geneously broadened absorption lines can be used for optical holography and as 
molecular computers. The properties of the light are converted into photochemical 
modifications of the irradiated material; the stored patterns can then be processed 
using logical operations as desired. Applied electric fields are an important external 
parameter for the dynamics of such systems. See also Ref. [28]. 
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22.9 Electroluminescence and Light-Emitting Diodes 

A light emission from materials which are not excited by light, as in photolumines­
cence, but rather by the application of an electric field, is called electroluminescence. 
The field can lead to the injection of electrons and holes into the electroluminescent 
material if suitable electrodes are used. The recombination of these charge carriers 
produces excited states in the material, which then return to the ground state with 
accompanying light emission. 

Electroluminescent devices have considerable practical applications as light­
emitting diodes (LED's) . In particular, they are the most important component in 
integrated optoelectronic devices, where they serve to transform electrical signals 
into optical ones. 

Organic molecules and polymers can also be used for this purpose. If one is 
thinking of practical applications, the long-term stability of the devices is very im­
portant. In this sense, the polymer poly(p-phenylene vinylene) (PPV) is an interesting 
candidate, as was first shown by the research group of R. H. Friend: cf. Fig. 22.35. 

Figure 22.35 shows a device which can be used to observe and investigate the 
electroluminescence. The light-emitting PPV layer is located between one electrode 
which injects electrons, here a calcium electrode, and a second electrode which 
injects holes, here a thin, transparent film of indium-tin oxide (ITO) on glass. Such 
devices are similar to Schottky diodes which are well-known in solid-state physics. 
An electric current passed through such a diode, i.e. from the metallised glass surface 
to the calcium (or aluminium) cover layer, causes excitations in the PPV and gives 
rise to light emission. The light emerges through the glass substrate; a potential 
difference of a few volts is sufficient for this process. 

In order to attain high quantum yields and good stability, a number of improve­
ments have been made on the simple device shown in Fig. 22.35; a detailed discussion 
of these would take us too far afield here, however. In addition to the polymer shown 
in the figure, other small organic molecules in a suitable matrix can be successfully 
used in the fabrication of light -emitting diodes. 

Polymers as active materials for electroluminescence are especially promising 
because the colours of their luminescence can be varied between wide limits by 
making minor changes in the chemical nature of the molecules, and because the 

1 /Galcium 

/~H/'~'l~/'l~/' .... PPV 
ITO 

L-1 ______ -J .... Glass 

Fig. 22.35. Right-hand part: schematic of a setup for producing electroluminescence. The 
polymer PPV is sandwiched between two electrodes with differing work functions for elec­
trons or holes (here Ca and ITO, i.e. a glass plate covered with a thin layer of indium-tin 
oxide). Recombination of the injected charge carriers within the PPV produces light which 
can exit through the glass substrate. Left-hand part: a monomer of the polymer PPY. For 
details see R. H. Friend et aI., Nature 347, 539 (1990) and P. L. Bum et aI., Nature 356, (1992) 
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polymer materials can be prepared and used as large-area sheets. This has opened 
up an interesting area of applications of molecular systems and polymers for many 
fields of technology, in electronics and communications (see Ref. [29]). 

22.10 The Future: Intelligent Molecular Materials 

These few examples are intended to show how the photophysics and photochemistry 
of organic molecular systems can contribute to the search for a way to realise 
molecular electronics. It seems clear that here lies a broad and fascinating area for 
subtle basic research. It is also clear that this research can not simply concentrate its 
efforts on individual molecules, but instead has to consider molecules acting together 
with other molecules or as functional units. It therefore becomes apparent that only 
a close cooperation between organic chemists, molecular physicists, and solid-state 
physicists can yield useful and interesting results, and that such a cooperation is thus 
very necessary. Possible applications are an attractive but still distant goal. Already 
today, one hears the terms "intelligent materials", "intelligent functional units", 
or "intelligent supramolecules". They refer to molecular systems with properties 
like those which we know from biological systems. Self-reproduction, correction 
of defects and errors, self-organisation and adaptation to external conditions are 
among the abilities which make a functional unit "intelligent"; they are possessed 
by molecular systems in the living world, and appear as a far-off goal for molecular 
physicists and quantum chemists in the future laboratory. 

Problems 

22.1 When the principle of photochemical hole-burning is applied to an optical 
data storage device, its functionality can be extended by another dimension: in 
additional to the two spatial dimensions, the frequency space is available. 

In the absorption spectrum of quinizarine in a glass-like matrix (ethanol/methanol) 
at 1.3 K, the inhomogeneous linewidth of the 0,0 band is 700 cm- I () .. max ~ 515 nm). 
Using an extremely narrow-band laser, one can bum holes in this line having a width 
of 0.55 cm- I . How may "optical bits" could theoretically be written within the broad 
line? 

The diffraction-limited optical information density at A = 500 nm lies in the 
range of 108 bits/cm2 . What is the maximum value which can be attained using the 
method of optical hole-burning? What are the practical problems associated with 
the latter method? How could optical data storage be extended to include a fourth 
dimension? 
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22.2 The term photochromism refers to the change in the absorption spectrum of 
a particular molecule on irradiation with visible or UV light. The origin of this 
intramolecular phenomenon is a photochemical reaction in which the molecule is 
transferred from state A to state B. a) Such bistable molecules could be used as 
optical data storage media. The data are written by means of the photoreaction 
A --+ B and read by means of the reverse reaction B --+ A. Formulate the criteria 
which the substances suitable for such data-storage media must fulfill. b) Fulgides 
exhibit photochromic behaviour which is based on a photo-induced ring closure/ring 
opening reaction between the E and C isomers (Fig. 22.36). The cyclisation for 
example of furane fulgide under irradiation with UV light can be followed by 
registering an absorption spectrum between each two irradiation intervals (figure, 
right-hand part). The growth of the absorption band at 20000 cm- i signals the 
formation of the cyclic C isomer. 

The points during such an irradiation at which all the spectra intersect is termed 
an isobestic point. Justify its existence. In the irradiation sequence shown, there is 
(on closer examination) no well-defined isobestic point. What do you conclude from 
this? 

Fig. 22.36. Left: the structures and absorption spectra of two isomers of furane fulgide. 
Right: furane fulgide in toluene; the change in the absorption on irradiation with UV light 
(A = 366 nm, initial state is the E isomer) 



Appendix 

A.1 The Calculation of Expectation Values 
Using Wavefunctions Represented by Determinants 

A.I.1 Calculation of Determinants 

We begin by reminding the reader briefly of the definition of a determinant, which is 
given in the theory of linear equations. The detenninant is associated with a matrix 

A = (ajk) (AI) 

where the indices j and k take on integral values 1,2, ... , N. This determinant is 
denoted by Det A, and can be represented in the standard fonn: 

all a12 ... alN 

a21 an .. . 
DetA = (A.2) 

First, we deal with the calculation of the value of such a detenninant. We consider 
a pennutation which is derived from the N-tuple 

(1,2, ... , N) (A.3) 

that we denote by 

(A4) 

All together, there are N! = 1·2·3· .... (N - 1) . N such pennutations. If N = 5, 
then there are 5! = 1 ·2·3 ·4·5 = 120 pennutations of the numbers (1,2,3,4,5). 
Some examples are given in (A.5): 

(1,2,3,4,5)) 
(2, 1, 3,4,5) . 

(1,2,5,4,3) 

Now, the detenninant (A2) consists of a sum of products of the fonn 

(A5) 
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(A.6) 

Depending on whether the number of steps leading from (A3) to (AA) is even or 
odd, one refers to an even or an odd permutation. The number of steps is denoted 
by P. In the caclulation of the determinant, the individual products (A6) are to be 
multiplied by the factor 

(A.7) 

i.e. by (+ I) if P is even and by ( -1) if P is odd. Then the sum is carried out over all 
pemutations (A4), including the original term (A3). We thus obtain the following 
prescription for the calculation of a determinant: 

DetA = L(-l)Palkja2k2 ... aNkN. (A8) 
P(k) 

The index P(k) on the summation means that the sum runs over all the permutations 
of k. 

A.1.2 Calculation of Expectation Values 

We now tum to the computation of quantum-mechanical expectation values, in 
which we will represent the wavefunction of a molecule as the determinant of 
wavefunctions of the individual electrons. We thus replace the matrix elements a jk 

by wavefunctions, with the index j referring to the electron and the index k to the 
quantum number( s) of the wavefunction: a jk ~ Xk (r j). For simplicity, we assume 
that the quantum numbers are ordered from 1 through N. Of course, the whole 
procedure can also be applied to arbitrary quantum numbers. In order to use formula 
(A8), we consider permutations of the quantum numbers k and then employ the 
substitution 

(A9) 

where we have written X(j) instead of x(r j) for brevity. 
We thus write the determinant of the overall wavefunction, tJt = Jm Det X, in 

the form 

Detx = L(-I)PXkj (l)xk2(2) ... XkN(N)· 

P(k) 

(AlO) 

The normalisation factor will be taken into account later. We now want to compute 
the expectation value of an operator Q with respect to this wavefunction: 

(All) 

where the angular brackets denote the expectation value with respect to the spin 
variables. We will specify the operator Q more precisely in the following. 
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We begin by setting 

1) Q = 1 . (AI2) 

From the computation of (All) with Q = 1, we obtain the normalisation factor. 
Inserting the determinants for l/f and l/f* into (All) and multiplying out the sums 
given by (A 10), we find expressions of the form 

We have thus split up the integral over the coordinates of all the electrons into 
a product of integrals over the coordinates of the individual electrons. The quantum 
numbers derived from the left-hand determinant in (All) have been denoted by 
a prime. Since the single-electron wavefunctions are mutually orthogonal and are 
normalised, only those terms in (AI3) are nonvanishing for which the quantum 
numbers are the same, i.e. for which 

(AI4) 

These terms have the value 1. As there are N! permutations of the quantum numbers 
k = 1, ... N, we obtain immediately the result 

(A.lS) 

We now consider the case that the operator Q refers only to a single electron, the 
one with the index io: 

2) Q = H(Jo) . (AI6) 

Here, io is a number from the set of the indices i = 1, 2, ... N which enumerate 
the electrons. We introduce the abbreviation 

(AI7) 

so that the corresponding term from the expression (A.l3) can be written more 
compactly: 

Due to the orthogonality of the wavefunctions, the relations 

k~ = kJ, k; = k2, ... io, ... k'tv = kN 

(AI8) 

(AI9) 

must hold for all of the quantum numbers except those which refer to the index 
io. However, since the primed quantum numbers differ from the corresponding 
unprimed quantum numbers only by a permutation, but all quantum numbers must 
be the same except for those with the index io, it follows automatically that the last 



564 Appendix 

pair of quantum numbers must also be the same. Then, in the case that (A.19) is 
fulfilled, (A.18) reduces to 

(kjaIH(jo)lkja ) = (jxia H(r) Xja dV) . (A.20) 

Keeping the index jo fixed, we find that there remain (N - I)! permutations of the 
quantum numbers. Then the expression (A.ll) with (A. 16) reduces to 

N 

(ALl 1) = (N - I)! L(kIH(jo)lk) . (A.2I) 
k=l 

For later applications, Q will often consist of a sum of contributions H(jo), in which 
the H(j) differ only in terms of the electron coordinates, but not in their form: 

N 

LH(j) = H. (A. 22) 
j=l 

As the next case, we consider an operator Q represented by: 

(A.23) 

Since the indexing of the electronic coordinates must have no influence on the final 
result of the computation of the expectation value, the replacement of H(j) by (A.22) 
means that the result (A.2I) should simply be multiplied by the number of the terms 
in (A.22), i.e. by N. We then obtain the expression 

(jDet(X*) QDet(x)dVl ... dVN) = N! L(kIHlk) . 
k 

(A.24) 

Assuming that the wavefunction IJI is obtained from the determinant of the X's with 
a normalisation factor k, then we obtain as our final result 

(jlJl*QlJldVl ... dVN) = L(kIHlk). 
k 

(A.25) 

We now consider the computation of expectation values when the operator Q de­
scribes an interaction between an electron with the coordinates r[ and an electron 
with the coordinates r m : 

4) Q = V(l,m). 

An explicit example would be a Coulomb interaction of the form 

e2 
V(l,m)=--

4Jl'8or[m 

(A.26) 

(A.27) 
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Due to the symmetry of the interaction, we can assume that 

1< m. (A.28) 

Analogously to (A.13), we again pick out a single element from those which are 
obtained on multiplying out the two determinants, and, extending (A.18), we write 
this element in the form 

(A.29) 

where the factors (k;lk/) and (k~ Ikm ) are to be left out at the positions marked by (I) 
and (m), respectively. The matrix element 

(A. 30) 

enters in their place. With the exception of the indices I and m, the orthogonality 
relations must be fulfilled, leading immediately to the expressions 

k; = k[, ... (I), ... (m), ... k't, = kN , (A.31) 

where only the positions of the indices (I) and (m) are excepted. Since, again, 
the primed quantum numbers differ from the unprimed quantum numbers only by 
a permutation, expressions (A.31) lead to the result that either the relations 

(A.32) 

or else 

(A.33) 

must hold. Now, a simple but tedious consideration shows that (A.33) results from 
(A.32) through an odd permutation. Since, for fixed I and m, there are (N - 2)! 
permutations, we obtain for the expectation value of the overall determinant the 
following expression: 

(jDet(x*) V(I, m) Det(x)dV[ ... dVN} = (N - 2)! L(Vkk',kk' - Vkk',k'k) , 
k#' 

(A. 34) 

where we have used the abbreviations 

(A.35) 

and 

(A.36) 
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in an obvious manner. The minus sign in the second term of the sum comes from 
the abovementioned odd permutation. The Coulomb interaction of all the electrons 
(7.5) enters into the Hamiltonian (7.6). We therefore compute also 

(jDet(x*) ~ L V(l, m) Det(x) dVI ... dVN) . 
li=m 

(A.37) 

Since the integrals in (A.36) and (A.37) cannot depend on the indices I and m of the 
electronic coordinates, we can replace the sum Lli=m by the factor N . N - N = 
N(N - 1), where the subtraction - N is due to the condition that I =f. m. Finally, we 
then obtain 

(A.37) = ~N! L(Vkk',kk' - Vkk',k'k) . 
k#' 

(A.38) 

The result (7.15) is obtained as the sum of (A.24) with (A.23) and (A.38) after 
dividing by the normalisation factor N! [cf. (A.15)]. 

A.2 Calculation of the Density of Radiation 

We first determine the number of modes dN in a volume V and in the frequency or 
wavenumber interval dk (dv). We assume a finite normalisation volume V. Initially, 
we give a one-dimensional example, and assume that the field strength has the form 

E = Eo sin(kx) . (A.39) 

We fix the value of k by requiring that E vanish at the boundaries x = 0 and x = L 
(where L is the length of the normalisation "volume"). This is fulfilled if we choose 

nn 
k=T' n=I,2,3, .... (A.40) 

The wavenumber of an electromagnetic wave is related to its frequency by the 
equation 

W= ek. (A.41) 

On the other hand, we of course have 

W = 2nv. (A.42) 

From these two equations, we obtain 

en 
v = 2L . (A.43) 

Since n is an integer, we can enumerate the waves. Using (A.43), we then find for 
the number of allowed waves in the interval dv 

2L 
dn = -dv. (A.44) 

e 
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In this way, we have solved our problem of finding the number of waves in the 
frequency interval dv, at least in one dimension. In reality, we are of course dealing 
with three dimensions. Then the wavenumbers ki are given by 

nn; 
ki = L' ni = 1,2,3, ... , i = x, y, z . (A.45) 

We define k = Jk2; + k~ + k; and n = In-; + n~ + n;. In complete analogy to 

(A.43), we obtain the relation 

en 
v = 2L . (A.46) 

In order to describe the number of allowed waves in the frequency interval v, v + dv, 
we consider a coordinate system in which the axes correspond to the numbers nx , ny, 
and nz . Each point in this space with integral values of the coordinates represents 
a possible state of oscillation of the electromagnetic field. If we choose the frequency 
interval to be sufficiently large, we can assume that the points can be calculated as 
if they formed a continuum. The number of points in a spherical shell of thickness 
dn is then given by 4nn2dn. Since the numbers n j must all be positive, this result 
has to be divided by the number of octants in the sphere, i.e. by 8. And since we 
are dealing with two polarisation directions (helicity states) of the electromagnetic 
waves, which must be counted separately, we need to multiply our result by 2. We 
thus obtain for the number of allowed states in a spherical shell 

(A.47) 

Using (A.46) to express n in this formula, we obtain the number of allowed waves 
in the frequency interval v, v + dv: 

(A.48) 

By applying a similar argument to travelling plane waves, whose wavevectors lie 
within a solid angle dQ, we obtain 

(A.49) 

and therefore 

I: ... = ~f···k2dkdQ. 
k (2n) 

(A.50) 
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Kerr effect, electro-optical, 30, 39 
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Laplace operator, 52, 67, 226, 233 
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NMR, 418, 420 
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Neutron diffraction, 12,20 
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NMR (nuclear magnetic resonance), 405 
NMR spectroscopy, 462, 494 
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397,399 
symmetric, of water molecule, 214 

Normalisation integral, 70 
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Quadrupole moment, 27 

nuclear electric, 422 
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Quasi-continuum, 357 
Quinone, 497 

Rabi oscillations, 519 
Radial wavefunctions 

of hydrogen atom, 229 
Radiation field 

operator, 360, 364 
Radiation sources 

thermal, 193, 357 
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Raman spectroscopy, 167,257,266 
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381 

Representation theory, of groups, 107, 121, 
122 

Resonance frequency, 405, 407, 411 
Resonance spectroscopy 

double or multiple, 461 
magnetic, 3, 441 
optically detected (ODMR), 463 

Resonant Raman effect, 267 
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R branch, 305 
of bands, 205, 309 

Rotational symmetry, 112 
Rotational symmetry operations, 116 
Rotational temperature, 335 
Rotational-vibrational bands, 168,213,218 
Rotational-vibrational excitation, 310 
Rotational-vibrational level, 313 
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360 
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399,401 
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Separation approach, 228 
Series spectrum, 300 
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Signal/noise ratio, 172, 185 
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Single-photon spectroscopy, 266 
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Vibrational Raman spectrum, 258 
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Vibrational Raman transitions, 397 
Vibrational spectra, 193, 197,225,265 
Vibrational spectroscopy, 193 
Vibrational temperature, 335 
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Vibrational transitions, 296, 310 
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Energy Conversion Table 

J eV K 

1 Joule (1) = 1 6.24246. 1018 5.03404· 1022 7.24290· 1022 

1 eVolt (eV) = 1.60210· 10-19 1 8.06548· 103 1.16045· 104 

= 1.98648· 10-19 1.23985.10-4 I 1.43879 

1 K = 1.38066.10-23 8.61735.10-5 6.95030.10-1 1 

Explanation 

The energy E is quoted in Joule (J) or watt-seconds (Ws) 

1J = 1 Ws. 

In spectroscopy, one frequently quotes the term values in wavenumbers v = E/he. 

The conversion factor is 

E/v = he = 1.98648.10-23 J/cm- I . 

Another energy unit, especially in collision experiments, is the electron volt (eVolt, 
eV). The voltage V is given in volts, and the energy conversion factor is obtained 
from E = eV: 

E/V = e = 1.60219.1019 J/V . 

In the case of thermal excitation with the heat energy kT, the absolute temperature 
is a measure of the energy. From E = kT we obtain the conversion factor 

E/T = k = 1.38066· 10-23 J/K . 


