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WHY SYMMETRY?

Some personal reflections

P. Roman
Boston University, Emeritus

Abstract • What is symmetry? • Why is symmetry important in science? • Historical
developments. • Mathematical characterization of Symmetry. • Basic areas
where symmetry principles are used. • Some special topics.

Thanks to the enthusiasm and administrative skills of Bruno Gruber, and to
the adroitness of his assistants, as well as the generosity of many sponsors, for
thirty years now we have been regaled with a periodic sequence of inspiring,
exciting, pleasurable encounters centered on the topic “Symmetries in Science”.
Since this is, unfortunately, the last occasion when this group of colleagues (nay
friends) meet, perhaps it will be not amiss to distance ourselves, briefly, from
details of our field, and spend some time on contemplating the deeper, perhaps
we may say philosophical aspects of Symmetry.

What follows will certainly not be a scholarly, exhaustive, authoritative treat-
ment of the topic. I can only transmit to you very individualistic, almost per-
sonal thoughts (or rather sentiments) about the topic in question. There have
been, virtually, whole libraries written on symmetry, and I cannot add more
wisdom. I shall not even be systematic in my exposition, and won’t attempt to
give credit to the workers in the field. If I quote opinion of authors, these will
be haphazard and far from comprehensive. Further, I’ll take the viewpoint of
a physicist, neglecting, for instance, crystallography, chemistry, biology. Even
within physics, my treatment will be prejudiced by the views of the quantum
theory of “fundamental particles” and interactions.

Let us now start with the question: What is symmetry? To answer in
the broadest sense, it will be well to go back in time as far as the early stage
of mankind’s awakening. Perplexed and troubled by the apparent diversity,
complexity, and unpredictability of nature, man conceived and took solace in
the notion of an all-embracing, ultimate harmony of the Universe. “Harmony”,
that is congruence of parts, balance and unification of elements, is but one of the
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synonyms we use for “symmetry”. In fact, only the belief in some underlying
symmetry makes it possible for us to develop science. We shall come back
to this point later; right now I’d like to quote Hermann Weyl, one of the four
greatest mathematicians of the 20th century, to succinctly sum up these thoughts.
“Symmetry is one of the ideas” - Weyl notes - “by which man throughout the
ages has tried to comprehend and create order, beauty, and perfection.” This
applies to science, art, and human conduct in general.

Well then: why is symmetry important for science? Once again, we must
delve deeper and ask first what is science? Contrary to what is taught in most
junior high schools, science is not “the explanation of Nature”. Nature, be it
even objective reality, just is. It cannot be “explained”, at least not as far as
science is concerned. Existence is a primary category, including, by the way,
ourselves, too. (Which would imply that the explainer himself must be ex-
plained.) And certainly science is much more than “the description of Nature”.
That alone would be ad hoc, incidental, utterly unsatisfying. We have gone
far beyond such a casual phenomenology and even empiricism. We want to
“understand”, and we have in part succeeded. Indeed, as Anatole France has
put it: “The wonder is not that the field of stars is so vast, - but that man has
measured it”. And Einstein went even further: “The most incomprehensible
thing about our Universe is that it can be comprehended”, says he. Compre-
hended? What do we mean by that? Perhaps surprisingly, several humanists
of the past came near to a comprehensive characterization of science. Goethe
says: “Herein consists the scientific method: that we show the concept of a
single phenomenon in its connection with the rest of the world of ideas.” And
the twentieth century German writer Hermann Hesse tells us: “Every science is
. . . a kind of ordering, simplifying; an attempt to make digestible for the spirit
that which is indigestible.”

Indeed, we are safe to say: Science is the attempt to correlate individual
phenomena and events into a coherent framework (or systems of such frame-
works). The correlation of part-entities into a coherent framework must satisfy
two criteria (at least): 1. It should be systematic, comprehensible, attractive,
nay: beautiful; 2. it should have predictive power, that is, the framework should
encompass special items that are extensions of the already encompassed ones.

A minute’s reflection then tells us: the essential feature of a scientific theory is
structure. And the framework for studying, analyzing, understanding, enjoying
structure is mathematics. That is why Wigner spoke of the “unreasonable
effectiveness of mathematics in the natural sciences” and came to the conclusion
that “mathematics does play a sovereign role in physics”, “it is, in a very real
sense, the correct language” of science.

Finally, we are back at the concept of symmetry. Mathematics deals with
structures in two basic ways: a) by topology, b) by algebra. Topological struc-
tures use mostly analysis; algebraic structures are much more varied and use
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mostly construction and composition. The concept of symmetry is a central
part of algebraic systems in revealing and classification of structures. This is
the answer to our question: why is symmetry so important for science.

Now that we have clarified the basic role of symmetry in scientific thinking,
we may come back for a moment to reconsider our earlier casual observation,
viz. that symmetry is a crucial element in the perception of beauty. The con-
nection to science goes both ways. We recognize willingly and with ease a
structure that, analyzed in terms of symmetry, is beautiful. Conversely, a struc-
ture scrutinized by symmetry-analysis becomes acceptable to us only if we find
that it is beautiful. It will be well to remember Einstein’s dictum: “A theory is
acceptable to us only if it is beautiful”. A similar statement was made by Dirac
when someone, in public, questioned him as to why he chose precisely his ex-
perimentally then unsupported equation out of other possible ones. “Because
it was beautiful” he answered. And, of course, beauty is created, assessed,
enjoyed via symmetry. Thus the circle closes.

We shall now remark on the historical development of the idea of symme-
try. Already to prehistoric man obvious, natural, concrete, geometric symmetry
in Nature was manifest: he recognized the patterns on sea-shells or the multi-
farious forms of snowflake crystals. Later these geometric symmetries became
consciously imitated and applied in art - to be soon abstracted to more sophisti-
cated manifestations (such as balance of colors), and applied to music (both in
the guise of harmony as well as rhythmic patterns). These roles of symmetry
continued and were amplified up to the present, but a discussion would lead us
too far.

Concerning rather the evolution of symmetry-ideas in science, we observe
that the development was slower. If we disregard such fancies as the orders of
Celestial Spheres and their music, it appears that the implanting of symmetry-
ideas into physics begins only with the late renaissance. But Galileo, and later
even Newton, relied on symmetry principles only unconsciously and implicitly.
Nevertheless, Newton made a giant step forward. He realized that in the study of
phenomena one must make a clear distinction between the underlying dynamical
law on the one hand and the initial conditions on the other. The former are
rigorously structured; the latter are entirely irrelevant and haphazard, in that
they are not encompassed by the law. This separation made analytical science at
all possible. The for us at present important thing here is that the set of possible
initial conditions is obtained by applying onto the system certain symmetry
transformations. For example, subjecting the system to a translation in space,
we obtain a (shifted) initial coordinate. Subjecting the system to a Galilei
transformation, we obtain an initial state with a changed velocity. Furthermore,
if we know the relation between two initial specifications (given by a symmetry
transformation), then the resulting dynamical development in the second case
can be obtained from that pertaining to the first case by means of a certain
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code (given by a symmetry transformation) which does not depend on the
particular nature of the relevant specifications. Finally, the mathematical form
of the dynamical law cannot depend on the specific nature of the actual initial
specifications: this means that the dynamical law is covariant (form invariant)
under the pertinent symmetry transformations. We now see what fundamental
role symmetry considerations play in the very foundations of “doing science”
- but of course Newton did not use this language: he relied on his ingenious
instinct.

In the century or so following Newton, symmetries of known dynamical
laws were noted and described - but just as an interesting afterthought or obser-
vation. Also, various conservation laws were established (derived sometimes
tortuously, from the equations of motion), but without understanding (or even
noting) their relation to symmetries.

The turning point came at the beginning of the twentieth century. Two great
breakthroughs occurred at that time. The first was the establishment of rela-
tivity theory. Einstein was faced with a problem. There was a discrepancy
between the symmetries of mechanics and those of electrodynamics. The laws
of mechanics possessed Galilean symmetry (as we now call it), those of elec-
tromagnetism had Lorentz symmetry. With his unerring insight and intuition,
Einstein chose the latter as the guiding principle of physics. Thus was the theory
of special relativity born. For the first time in history, a symmetry consideration
became a guiding principle. From then on, it was not acceptable just to propose,
by trial and error or otherwise, a law of nature (and then examine its properties,
including symmetry), but rather it became obligatory to insist that any law of
nature should be formulated so that it exhibits Lorentz covariance. (We now
speak more generally of Poincaré covariance.) Thus postulates of symmetry
became guiding principles of exploration. That this was a radical change in
outlook may be illustrated by the fact that the Galilei symmetry group which
Einstein replaced by the Poincaré symmetry, had not ever been consciously
explored earlier; only in the 1960’s were we treated to a systematic study of the
Galilei group - even the name was not common knowledge. (Parenthetically
it should be mentioned that the inhomogeneous Galilei and Poincaré groups
are not closely related: the latter is purely kinematical, the former dynamical,
because it contains the equations of motion, too.)

At about the same time that Einstein radically changed our views on symme-
try transformations, Hilbert and his school in Göttingen made great progress in
the mathematical handling and application of symmetry. Here the connection
between symmetry and conservation laws was clarified, and by Noether’s theo-
rem the derivation of such laws was rendered almost automatic (for continuous
symmetries, at least).

The second great breakthrough in the history of symmetries occurred in the
1920’s when modern quantum theory was born. Symmetries play a much more
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fundamental role in quantum theory than in classical physics. The reason for
this is the linear structure of quantum theory: that is, the superposition principle.
More explicitly: the set of states of a system corresponds to a set of vectors
in a suitable Hilbert space, and so symmetry operations connecting different
states give rise to linear operations in Hilbert space. These linear operations
thus carry a representation of the symmetry in the Hilbert space of the system.
Later we shall say a bit more about symmetries in quantum theory, but right
now we shall just recall two names: Eugene Wigner and Hermann Weyl. These
giants recognized very early the never-before-thought-of power of symmetry
principles in the quantum world.

Wigner’s 1928 book, applying representations of symmetry groups to atomic
and molecular physics, opened a new world and revolutionized spectroscopy as
well as chemistry. And when in 1939 he classified the unitary representations of
the Poincaré group in Hilbert space, he gave thereby a definition of elementary
particles which, essentially, is still valid. In fact, as Heisenberg remarked in
1973: “We will have to give up . . . the concept of fundamental elementary
particles [and] should rather accept the concept of fundamental symmetry”.

On the other hand, Weyl, among several achievements in quantum symmetry
theory, discovered the basic ideas of gauge symmetry, which eventually grew
into the present fundamental theory of fields and particles, the Standard Model.

Next I will turn briefly to the mathematical characterization of symmetry.
When we talk of a symmetry, we mean thereby an automorphism of a given
system onto an equally possible description of the system. The details (both of
the specification of the system and of the particular features of the mapping)
vary enormously from case to case, but the principle is the same. Systems that
are related by a symmetry transformation form an equivalence-class. Thus, a
symmetry transformation leads to an equivalent alternative description of the
system, i.e. it is a canonical transformation in classical physics and a unitary
transformation in quantum theory.

Most frequently we recognize not an isolated symmetry but a (finite or infi-
nite) set of them which, as an algebraic system, satisfies the axioms of a group.
Why such a conglomeration of closely related symmetries occur is not at all
clear to me, except for space-time groups.

It is amusing to note that, for continuous space-time symmetries (and only for
those) one may take not the active but instead the passive view of description.
This consists of the following. Instead of saying that a state with transformed
data is a possible state of the same system as seen by a different observer, we
could also say that the system has been physically transformed into another one,
and the two descriptions are both given by the same observer. It is not clear to
me whether this is a triviality or whether it has some deeper meaning.
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Often the terms “symmetry” and “invariance” are used interchangeably. This
is a mistake. Any symmetry transformation can be performed on any system,
and it gives an alternative description of the system. The question is: do some
selected features of the system remain unchanged or not? In particular, for a
given physical system, is the dynamical behavior of the transformed system
the same as for the original? If yes, then we can say: the dynamical law is in-
variant under the symmetry transformation, we have an invariant law, we have
an “invariance”. This must be distinguished from covariance of an equation,
which simply means that the form of some equation doesn’t change. In addition,
the term “an invariant” has also several different meanings. Mostly, a selected
quantity whose numerical value does not change under a symmetry transforma-
tion is called “an invariant of the system”. Also, Casimir operators (see later)
of a symmetry group are “invariants”. In addition, a state which belongs to the
trivial one-dimensional (scalar) representation of some symmetry group, is also
often called “an invariant state”.

A piece of art with perfect symmetry may appear boring. Nature seems to
know this: indeed, very often we encounter broken symmetries. There are sev-
eral mechanisms operative here. First, if the system is not isolated, properties
of the environment may break the symmetry (such as the vertical gravitational
field on the surface of the Earth). We can safely disregard these as trivial cases.
Important (and not fully understood) are what one may call dynamical (or ex-
plicit) symmetry breakings. For a set of circumstances a symmetry holds, but
for other dynamical circumstances (other forces) only a subset of these are main-
tained. (Example: Systems governed fully by “strong interaction dynamics”
have iso-SU(2) symmetry, but systems governed by electrodynamical dynam-
ics [or which simultaneously are subject to strong and electromagnetic forces]
exhibit only U(1) symmetry.) Often a clash of symmetries causes symmetry
breaking. These phenomena lead sometimes to uneasy situations which we call
“approximate symmetries”. But apart from the explicit symmetry breaking,
more fundamental and more interesting is the case of spontaneous symmetry
breaking. We have here a situation where the equation of motion (the dynam-
ics)is invariant under a certain symmetry, but there are solutions which do not
conform with the symmetry. This is a typical quantum phenomenon. The cause
of such behavior is that the ground state of the system (“the vacuum state”) is not
invariant under the symmetry. In fact, it is degenerate. A related spontaneous
quantum symmetry breaking occurs in field theory when a so-called “triangular
(or similar) anomaly” occurs. Here the associated renormalization procedure
causes the effective breaking of symmetry. Spontaneous symmetry breaking
has enormous importance both in condensed matter physics as well as in the
quantum theory of fundamental particles. In the latter case, for example, it
leads to gauge particles’ achieving of mass, so that alone with this spontaneous
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symmetry breaking becomes the gauge theory of the electroweak interactions
possible.

Broken symmetries provide again an occasion to point out the difference
between symmetry and invariance. Even if a conservation law (invariance)
does not hold, symmetry may still be a useful and even powerful computational
concept. A good example is provided by current algebras. In the presence of
weak interactions the iso-SU(2) vector current is no longer conserved. Yet
the SU(2) algebra of the vector current holds, and leads to important physical
conclusions. More than this: the SU(2) axial-current is never conserved, but
the axial SU(2) symmetry algebra holds and leads to very deep physical results.

As a final remark to the topic of symmetry breaking we note that (in all types
of it) the breaking is not haphazard and disorderly, but is subject again to some
symmetry argument.

Above we have repeatedly pointed out the fundamental roles of symmetries
in physics. As a way of summary and overview, we will now explicitly list the
major areas where symmetry principles are used in the every day praxis of
physics.

1. Symmetry principles provide a most valuable heuristic guide in the search
for dynamical laws. We believe that all fundamental laws of nature share certain
symmetry properties, and specific branches of physics or specific systems may
exhibit additional symmetries. (We do not yet have, and may never have, a
“theory of everything”.) We intuit, from masses of observations, particular
symmetry properties, and then formulate laws so as to satisfy these symmetries
in a general and unified frame.

2. Once the appropriate fundamental equations have been found, symmetry
properties furnish powerful tools for their solution. This topic has two major
aspects:

2.a) The symmetries restrict the forms the solutions can take. Roughly speak-
ing, all admissible solutions will be classified by their symmetry character. This
is why, for example, the solutions of Lorentz covariant equations can be only
tensors or spinors. Similarly, the possible state vectors of a quantized system
must be and are labelled by appropriate characteristics (viz, eigenvalues of gen-
erators and values of Casimir operators) of the symmetry group allowed for by
the dynamical equations.

2.b) Invariance of the dynamical law under some symmetry gives rise to
conservation laws: constants of motion can be constructed. The existence of
such constants then leads to selection rules: processes that would connect states
with different values of the conserved quantity are forbidden.

The treatment is particularly striking in the framework of quantum theory.
It is easy to show that the (self-adjoint generator of the) unitary operator re-
alizing a symmetry is a constant of motion if and only if it commutes with
the Hamiltonian (or S-matrix). This means that then its expectation value is
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time independent; and if a state is an eigenstate of it with some eigenvalue at
a given time, then the same state at a later time will be still an eigenstate be-
longing to the same eigenvalue. It is important to note here that invariance of
the Hamiltonian and dynamical invariance of the system are equivalent state-
ments. In particular, we have a conservation law if and only if there exists a
symmetry (which, specifically, leaves the Hamiltonian invariant). In praxis,
we encounter mainly symmetry groups, and the physically interesting entities
(conserved observables) are the self-adjoint generators corresponding to the
infinitesimal unitary transformations. Besides these generators (all conserved,
but of course not all simultaneously measurable) we have also certain polyno-
mials of these generators, the so-called Casimir invariants in the enveloping
algebra, which automatically commute not only with the Hamiltonian (i.e. are
conserved) but also with the generators. This explains why eigenvalues of the
Casimir operators plus those of a selected set of commuting generators can be
used as a complete set of state labelling parameters.

We further note that invariance of the dynamics under a symmetry trans-
formation manifests itself in quantum theory also in the equality of transition
amplitudes for the original and the transformed pair of systems; a very useful
facet, both for establishing a symmetry and for exploiting its consequences.

3. Established symmetry properties greatly facilitate the computation of spe-
cific quantities that are of interest. For example, a lengthy calculation of matrix
elements can be shortened by invoking some symmetry property. Further, ma-
trix elements pertaining to different processes become related by symmetries
(cf. branching relations). In particular, if a symmetry holds, transition proba-
bilities between pairs of different states (i.e. rates of different processes) can be
expressed in terms of a small number of invariant amplitudes. (In fact, experi-
mentally observed relations between cross sections may be utilized to spot the
symmetry that underlies the processes.)

Quantum numbers labelling states of composite systems can be easily com-
puted from those of the constituents, if a symmetry holds.

Perturbational calculations are also facilitated in the presence of a known
symmetry. (For example, a symmetry imposes restrictions on admissible trial-
functions.)

Finally, symmetry principles often give, without any detailed calculation,
the general pattern of a perturbation’s effect when applied to an unperturbed
state or system. Actually, about 40 years ago attempts were made to reveal the
entire level system of an object by using only symmetry arguments, assuming
the operation of some very powerful symmetry group – this without explicitly
solving the energy eigenvalue equation. These attempts in particle theory went
under the name of “dynamical groups” and “spectrum generating algebras”.

In the rest of this individualistic survey I would like to pinpoint some isolated
special topics which, to me, appear interesting and not too outdated.
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1. There is, first of all, the topic of superselection rules, discovered by Wigner,
Wightman and Wick in the 1950’s. Suppose there is a generator of some
symmetry which is simultaneously measurable (commutes) not only with the
Hamiltonian but also with all observables of a system. (A typical example is
the operator of electric charge.) Then this observable is not only conserved but
has a tremendous structural effect on the system’s quantum theory. It forces the
Hilbert space to decompose into incoherent subspaces: the superposition prin-
ciple becomes restricted. Matrix elements of transition operators between these
incoherent subspaces are automatically zero – hence the name “superselection
rule”. Even the concept of an observable becomes restricted if a superselection
rule operates. Thus, a symmetry property can influence the entire structure
of a quantal system. I feel that this topic has not yet been given sufficient
consideration.

2. Particle theorists used to distinguish between space-time symmetries and in-
ternal symmetries. (The Poincaré group, its possible conformal extension, the
de Sitter group etc. represent the first category; isospin-SU(2), flavor-SU(3)
etc. the second. Of course, there are further symmetries too, e.g. permutation
symmetry, which do not really fit in any category.) Somewhat misleadingly,
Wigner used to call internal symmetries “dynamical symmetries” because they
seem to be connected to specific forces. In the 1960’s beautiful attempts were
made to find some large symmetry group that nontrivially combines and contains
both the space-time and the internal symmetries, and reveals their connection.
Unfortunately, it soon turned out that such attempts, however successful they
seemed to be in particular aspects, are doomed because of deep lying alge-
braic reasons pertinent to the Poincaré algebra (O’Raiffertaigh’s theorem). So
the issue had to be dropped. But then, less than ten years later, gauge theo-
ries triumphed. The gauge symmetry idea lingered in the minds for decades.
The wonderful facet of gauge theories is that the form and even the relative
strengths of interactions becomes determined by local gauge invariance. This
is an entirely new aspect of invariance, the key being the local character of the
transformations. When the vexing problem of how to obtain masses for gauge
fields was solved by spontaneous symmetry breaking, and when the difficult
formalism of renormalization in gauge theories was mastered, the unification
of weak and electromagnetic forces was accomplished. Soon, strong inter-
action dynamics was also encompassed by an (unbroken) color-SU(3) gauge
invariance of the quark-gluon system. The necessary ingredients of confine-
ment and asymptotic freedom are also connected to the specifics of the gauge
group. More than that: an important ingredient in the renormalizability of the
quantum field theory is precisely gauge invariance. Thus, finally, the relation
of space-time to “internal” symmetries acquired a new and satisfying aspect.
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In the fiber bundle representation of gauge theories, the fiber built at each base
space-time point “contains” the appropriate “internal” gauge symmetry, rela-
tive to that point. This is implied by the locality principle underlying the gauge
symmetry concept.

In rapid sequel to these breakthroughs, courageous efforts were made to
unify the electroweak and strong interactions in some Grand Unified Theory
(GUT). Several gauge groups have been considered, primarily anSU(5) system.
Notwithstanding the formal attractiveness and some numerical successes of
GUT, several serious problems blemish the picture. First, because quarks and
leptons appear in the same representation of the Big Gauge Group, baryon and
lepton numbers are not conserved. In particular, baryon decays are predicted.
The calculated lifetime of the proton, unfortunately, is about two orders of
magnitude shorter than the experimentally allowed lower limit. Second, the
calculated relations between the masses of the fundamental fermions do not
appear to be correct. Then there is the obnoxious hierarchy problem: roughly
speaking, why is there a stable enormous gap between the energy scales of
symmetry breaking of the GUT group to the Standard Model symmetry, and
the breaking of the letter to the SU(3) [color] × U(1)[e.m.] world we live
in? This difficulty is connected to uncertainties, ambiguities, and technical
problems pertaining to the symmetry breaking Higgs scalars. It is possible that
supersymmetry (see below) may alleviate these problems. On the other hand,
personally, I also feel uneasy about the subtleties of the various renormalization
schemes and regularization methods that must be used to get any numerical
results at all from GUTs. In any case, the last word about GUT has not yet been
spoken.

It is interesting to observe that the “greater” the symmetry, the more unifica-
tion of particles and forces we obtain. The earlier the Universe, the hotter and
more energetic, the higher is the symmetry. Thus, it may well be that the dream-
land of an “ultimate unification” will be achieved by finding the “primeval”
(pre-Planck state) symmetry of the Universe.

3. Yet another relatively novel symmetry idea in particle theory is that of super-
symmetry. This implies quasi a symmetric role between fermions and bosons.
According to such schemes, to every fermion there corresponds a boson and
vice versa. Mathematically, supersymmetry may be realized by enlarging the
Poincaré group Lie algebra to a graded algebra. This is done by adjoining to the
tensorial generators of the Poincaré group one (or more) 4-spinor generators,
with appropriate commutators and anticommutators. One may reformulate the
theory by considering the fields as functions not only of the usual vectorial
Minkowski coordinates but also of suitable spinorial “coordinates”. If such an
attractive symmetry of Nature really exists, it must be badly broken, because the
“new” accompanying particles (s-lepton and s-quark bosons, gauginofermions,
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etc.) ought to have an enormous mass compared to their customary partners.
So far there is no evidence of s-particles, and personally I find it odd to have
a basic symmetry which, to manifest itself, must be badly broken to start with.
I say this despite the fact that supersymmetry, made into a local gauge the-
ory in the spinor coordinates, may perhaps include quantum gravity. Even this
“11-dimensional supergravity theory” seems by now to have been subsumed (to-
gether with all super-string theories) into what is fancifully called “M -theory”.
But the discussion would take us into even more unsafe waters.

4. There is one system that, by definition, is unique: this is our Universe. Yet,
even in cosmology symmetries play a basic role. It is generally accepted (and
used even as a guiding principle) that the Universe is endowed by the basic sym-
metries of spatial isotropy and spatial homogeneity. (The latter may be even
crucial for us to do science, since it guarantees that laws of nature are every-
where valid.) These symmetries are often called the “cosmological principle”.
Any deviation from these symmetries, global or even local, have tremendous
cosmological and astrophysical consequences. At one time (the 1950’s) the
idea was put forward that the Universe possesses also temporal homogeneity
(in the sense of stationarity). This was referred to by Hoyle and Bondi as the
“perfect cosmological principle”. Its consequence was shocking: it lead to
the beautifully attractive steady-state-theory of the cosmos. But observation
of the thermal cosmic background radiation refuted this convenient model and
gave way to the big bang picture. In the latter, a problem is encountered: the
traditional dissociation of initial conditions and laws becomes obscure.

Concomitantly, the role and application of symmetries pertaining to the pre-
Planck period ought to be thought over more carefully. There is also another
area of cosmology where symmetry (more accurately symmetry breaking) plays
a substantial role, to which we already hinted above. If some GUT theory of
all interactions and matter prevailed at the “earliest time” (when time could be
defined at all), then, to end up with the present features of the world, it must
have been broken in successive steps. Each step can be described as a phase
transition. These, again, are ruled by symmetry considerations. Together with
these phase transitions of GUT, some “space-time” symmetries are also affected.
In particular, PC is presumably broken - this permits the over-preponderance
of matter versus anti-matter. However, the most amazing discrete space-time
symmetry, TCP, remains unbroken. This symmetry has deep consequences: it
ensures that to every particle there belongs an antiparticle with the same mass
and lifetime. Here again we see the world-shaping role of symmetries.

Instead of summarizing, let us ask one more question: Why do we love
symmetries? Because symmetries are such a basic feature of nature, including
our mental apparatus, that they enable us to discover, explore, analyze - even,
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to some extent, understand - structure. And structure, recognized and properly
contemplated, allows us to enjoy and adore the miracle of the Creation.
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Abstract In this talk I shall introduce our recent works on general pairing interactions
and pair truncation approximations for fermions in a single-j shell, including the
spin zero dominance, and features of eigenvalues of fermion systems in a single-j
shell interacting by a J-pairing interaction.
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1. Introduction

It is my great pleasure to talk to you here. I would like to thank the organizers,
especially Dr. Bruno Gruber. I am extremely glad to see many of my friends
again today in this beautiful city Bregenz.

My talk consists of four subjects:

Spin 0+ ground state dominance

Pair approximations for fermions in a single-j shell

Regularities of states in the presence of Jmax-pairing

Solutions for cases of n = 3 and 4 with HJ

2. 0+ ground state dominance

A preponderance of 0+ ground states was discovered by Johnson, Bertsch
and Dean in 1998 [1] using the two-body random ensemble (TBRE), and was
related to a reminiscence of generalized seniority by Johnson, Bertsch, Dean
and Talmi in 1999 [2]. These phenomena have been confirmed in different
systems [3, 4].

Let us take a simple system consisting of four particles in a single-j shell.
The Hamiltonian that we use is as follows:
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Table 1. The angular momenta which give the lowest eigenvalues for 4 fermions in single-j
shells when GJ = −1 and all other parameters are 0.

2j G0 G2 G4 G6 G8 G10 G12 G14 G16 G18 G20

7 0 4 2 8
9 0 4 0 0 12
11 0 4 0 4 8 16
13 0 4 0 2 2 12 20
15 0 4 0 2 0 0 16 24
17 0 4 6 0 4 2 0 20 28
19 0 4 8 0 2 8 2 16 24 32
21 0 4 8 0 2 0 0 0 20 28 36

H =
∑
J

GJAJ† · AJ ≡
∑
J

GJ

√
2J + 1

[
AJ† × AJ

](0)
,

AJ†
M =

1√
2

[
a†j × a†j

](J)

M
, AJ

M = −(−1)M 1√
2

[ãj × ãj]
(J)
M , (1)

where GJ is given by

GJ = 〈j2J |V |j2J〉 .

Here V is a two-body interaction.
We have used a two-body random ensemble to confirm the interesting phe-

nomenon of 0+ ground state dominance, and discovered an empirical method
to predict the probability of the ground state to have a spin I [5]. We keep only
one GJ to be −1 and all others 0 :

GJ = −δJJ′ .

We then diagonalize the Hamiltonian to find the angular momenta which give
the lowest eigenvalues. They are shown in Table I. We count how many different
GJ’s give the lowest eigenvalue to an angular momentum I . The number is
denoted as NI. For example for j = 21

2 and n = 4, N0=5, N2=N4=N8 =
N20=N28=N36=1 and all others are equal to 0. The total number of different
GJ’s is N = 2j+1

2 . Then the I g.s. probability is approximately predicted as

P pred(I) = NI/N. (2)

Fig. 1 shows a comparison between P pred(0) and PTBRE(0), which is
obtained by diagonalization of a TBRE Hamiltonian for four fermions in a
single-j shell. Fig. 2 shows a comparison between P pred(I) and PTBRE(I)
for examples of various systems.

One can see that the agreements between the P pred(I) and PTBRE(I) are
very good. It is therefore important to diagonalize H with GJ = −δJJ′ . For
this purpose we introduce the J-pair approximation for low-lying states.
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Figure 1. Comparison between P pred(0) and PTBRE(0) of four fermions in a single-j shell.
The solid squares are obtained by 1000 runs of a TBRE Hamiltonian and the open squares are
predicted by Eq. (2).
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Figure 2. Comparison between P pred(I) and PTBRE(I) for more complicated systems.
The solid squares are obtained by 1000 runs of a TBRE Hamiltonian and the open squares are
predicted by Eq. (2).
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Figure 3. Ground state spin I for four fermions in a single-j shell for J = 6 in (a) and 14 in
(b) as a function of j. The solid squares are obtained by diagonalizing HJ in the full shell-model
space, and open circles are obtained by truncating the space to two pairs with spin J only.

3. Pair Approximation for Fermions in a single-j shell

Our Hamiltonian is defined as

HJ = −AJ† · AJ . (3)

We first point out that the low-lying eigenvalues of HJ can be approximated
by wavefunctions of pairs with spin J :

Φ(I) =
1√
N

[
AJ† × AJ† × · · · × AJ†

](I)
|0〉 , (4)

where 1√
N

is the normalization factor. It is very easy to prove that the J-pair
truncation (with one pair and one particle) describes the low-lying states exactly
in three-body systems.

Fig. 3(a) shows the spin of the ground state of j4 configuration for J = 6.
The ground states with spin 0 are obtained by exact shell-model calculations and
by the J-pair approximation. Fig. 3 (b) shows the similar thing for J = 14. Fig.
4 shows energy levels obtained by the shell-model calculation and by the J-pair
approximation when j = 25/2, J = 14 and n = 4. For the low-lying states,
the pair approximation is very good. Giving the four low-lying states, two of
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Figure 4. A comparison of low-lying spectra, obtained from two pairs with spin J = 14
(the column on the left hand side) and by a diagonalization of the full space (the columns in the
middle and on the right hand side) for the case of four nucleons in a single-j (j = 25/2) shell.
The middle column plots the shell-model states which are well reproduced by the two J = 14
pairs, and the right column plots the shell-model states which are not well reproduced by two
J = 14 pairs. All the levels below 0+

1 in the full shell-model space are included. One sees that
the low-lying states with I = 2+

1 , 6+
1 , 12+

1 , and 10+
1 are well reproduced.
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them (6+
1 and 10+

1 ) compete to be the ground state. Their energies are almost
the same in both the exact shell-model calculation and the pair approximation.
This is why we failed to predict the ground state in this case, see Fig. 3 (b). For
the n=5 and 6 cases that we have examined, the low-lying states are reasonably
well approximated by the J-pair truncation.

So far J is general, between 0 and 2j − 1. Now let us take a very special
value, Jmax = 2j − 1. For H = Hmax = H2j−1, the I = Imax = 4j − 6
corresponds to the lowest state, and I = Imax − 2 state to the second lowest.
These two states can be constructed by using pairs with angular momenta of
either Jmax or Jmax − 2. However, pairs with angular momentum Jmax − 2
do not present a good approximation of the other I states, while those with
angular momentum Jmax do. For example, for n = 4, |J2

max, I = 0〉 is exact
but |(Jmax − 2)2, I = 0〉 is not exact, |J2

max, I(≤ j)〉 is almost exact (� −2)
but |(Jmax − 2)2, I(≤ j)〉 are not.

4. Regularities of states in the presence of HJmax

We first point out that eigenvalues of low I states (n = 3, 4, 5) are approx-
imately integers. This can be proved in terms of six-j symbols for n = 3 [6].
For n = 4, one can prove this in terms of nine-j symbols [7].

Another regularity may be exemplified below by j = 21/2 and n = 3 and
4. Among many states of n = 4 with the same I , the lowest eigenvalue is
expressed as EI (obtained by a shell-model diagonalization). The EI of four
fermions in a single-j (j = 21/2) shell with I between 18 to 25 are shown in
Table II. Note that there is no eigenvalue lower than −2 when I is smaller than
18. The eigenvalue of the I

(3)
max(= 3j−3) state with three fermions in the same j

shell is −59
26=−2.26923076923077 (denoted as E

I
(3)
max

). From Table II, one sees
that the EI’s of n = 4 with 18≤ I ≤ 25 are very close to E

I
(3)
max

and also very

close to that of an I state constructed by ΨI =

[
a†j ×

[
a†j × a†j × a†j

](I
(3)
max)

](I)

(denoted as FI). This indicates that the last added particle behaves just like a
spectator and do not contribute to the total energy of the system.

We have calculated overlaps between the above states of n = 4 and the
ΨI. They are almost 1 within a precision of 10−5. This phenomenon has been
confirmed for n up to 6 (j ≥ 11/2).
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Table 2. A comparison between eigen-energies obtained by diagonalizing HJmax in the full
shell-model space (the column “(SM)”) and matrix elements 〈ΨI |H|ΨI〉 (column “FI”) for
n = 4 and j = 21/2.

I EI (SM) FI (coupled)
18 -2.26923076925915 -2.26923076923498
19 -2.26923076930701 -2.26923076930702
20 -2.26923078555239 -2.26923077167687
21 -2.26923078386646 -2.26923078385375
22 -2.26923245245008 -2.26923102362432
23 -2.26923165420128 -2.26923165276669
24 -2.26930608933736 -2.26924197057701
25 -2.26925701778767 -2.26925692933680

5. Solutions for the case of n = 3

We take the following basis for three fermions

|j3[jJ ]I, M〉 =
1√

N
(I)
jJ;jJ

[
a†j × AJ†

](I)

M
|0〉,

where N
(I)
jJ;jJ is the diagonal matrix element of the normalization matrix

N
(I)
jJ′;jJ = 〈0|

([
a†j × AJ′†

](I)

M

)† [
a†j × AJ†

](I)

M
|0〉.

In general this basis is over-complete and the normalization matrix may have
zero eigenvalues for a given I . Here J is not necessarily equal to Jmax.

The N
(I)
jJ′;jJ and 〈j3[jK ′]I, M |HJ|j3[jK]I, M〉 can be evaluated analyti-

cally:

N
(I)
jJ′;jJ = δJ′,J + 2Ĵ Ĵ ′

{
J j I
J ′ j j.

}
,

〈j3[jK ′]I, M |HJ|j3[jK]I, M〉 = − 1√
N

(I)
jK′;jK′N

(I)
jK;jK

N
(I)
jK′;jJN

(I)
jJ;jK,

where L̂ is a short hand notation of
√

2L + 1.
For a fixed J and any I , we construct one state |j3J : I〉 = |j3[jJ ]I〉 and

all other states |j3K : I〉, which are orthogonal to |j3J : I〉, as follows:

|j3K : I〉 = |j3[jK]I〉 −
N

(I)
jK;jJ√

N
(I)
jJ;jJN

(I)
jK;jK

|j3[jJ ]I〉, (K = J),

|j3J : I〉 = |j3[jJ ]I〉.
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One easily confirms that all matrix elements of the Hamiltonian, 〈j3K ′ :
I|HJ|j3K : I〉, are zero, except for K ′ = K = J :

〈j3[jJ ]I|HJ|j3[jJ ]I〉 = −N
(I)
jJ;jJ = −1 − 2(2J + 1)

{
J j I
J j j.

}
.

Thus, all the eigenvalues of HJ for n = 3 with any angular momentum I
are zero except for the state with one pair of spin J , which has the eigenvalue
E

J(j)
I = −N

(I)
jJ;jJ .

As by-products, we obtain a number of sum rules for six-j symbols. The
procedure to derive these sum rules is straightforward. As is well known, the
summation of all eigenvalues with a fixed I is equal to n(n−1)

2 times the number
of I states, where n is the particle number. For n = 3, the number of states can
be expressed by a compact formula [8].

If we use E
J(j)
I to denote the non-zero eigenvalue of H = HJ for any I , we

have ∑
J

E
J(j)
I =

∑
J

[
−1 − 2(2J + 1)

{
j I J
j j J

}]
= −n(n − 1)

2
D(j3, I) ,

where D(j3, I) denotes the dimension of states with spin I for n = 3.
For I ≤ j (j is a half integer), using the explicit expression for D(j3, I), we

have ∑
J=even

2(2J + 1)
{

j I J
j j J

}
= 3

[
2I + 3

6

]
− I − 1

2
,

where [ ] means to take the largest integer not exceeding the value inside.
Our new sum rules of six-j symbols will be given in [7] in detail.

6. Summary

In this talk, I discussed four interesting aspects concerning general pairing
interactions and pair truncation approximations for fermions in a single-j shell.
I first discussed an empirical rule to predict the spin I ground state probability.
I then showed that pairs with spin J are reasonable building blocks for the
low-lying states of a Hamiltonian with an attractive J-pairing interaction only.
I also presented two interesting regularities of eigenvalues of a Hamiltonian
with Jmax-pairing interaction: for low I states of n up to 5 we found that the
eigenvalues are asymptotic integers; some of n = 4 states may be traced back
to n = 3. Finally I proved for the case of n = 3 that the eigenvalues are written
in terms of six-j symbols. This result leads to new sum rules for six-j symbols.
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SUPERSYMMETRY IN NUCLEI

F. Iachello
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Abstract The concept of spectrum generating superalgebras and associated dynamic su-
persymmetries is introduced and placed within the general context of symmetry
in physics. Applications of this concept to the study of spectra of atomic nuclei
are presented.

1. Introduction

In the last 40 years the concept of spectrum generating algebras and dynamic
symmetries has been extensively used to study physical systems. In the late
1970’s this concept was enlarged to spectrum generating superalgebras and as-
sociated supersymmetries. In this article, dynamic symmetries are first placed
within the context of symmetries in physics and applications to the structure
of atomic nuclei are reviewed. Subsequently, the concept of dynamic super-
symmetries is introduced and placed within the context of supersymmetry in
physics. Applications to the study of spectra of nuclei are reviewed.

2. Symmetries

Symmetry is a wide-reaching concept used in a variety of ways.

2.1 Geometric symmetries

These symmetries are the first to be used in physics. They describe the
arrangement of constituent particles into a structure. An example of symmetries
of this type is the arrangement of atoms in a molecule. The mathematical
framework needed to describe these symmetries is finite groups, sometimes
called point groups. In Fig.1, the molecule C60 is shown as an example. The
symmetry of this molecule is Ih. Geometric symmetries are used to reduce
the complexity of the equations describing the system through the construction
of a symmetry adapted basis. The Hamiltonian matrix in this basis is block
diagonal.

23

B. Gruber (ed.), Symmetries in Science XI, 23–35.
C© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



24 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

Figure 1. The fullerene molecule C60 is shown as an example of geometric symmetry, Ih.

2.2 Space-time symmetries

These symmetries fix the form of the equations governing the motion of the
constituent particles. An example is provided by Lorentz invariance that fixes
the form of the Dirac equation to be

(iγµ∂µ − m)ψ(x) = 0. (1)

The mathematical framework needed to describe these symmetries is continuous
groups, in particular Lie groups, here the Lorentz group SO(3, 1).

2.3 Gauge symmetries

These symmetries fix the form of the interaction between constituent particles
and/or with external fields. An example is provided by the Dirac equation in
the presence of an external electromagnetic field

[γµ(i∂µ − eAµ) − m]ψ(x) = 0. (2)

Electrodynamics is invariant under the gauge transformationA′
µ(x) → Aµ(x)−

∂µΛ(x). Also here the mathematical framework is Lie groups, in the case of
electrodynamics being U(1). In view of the fact that the strong and weak forces
appear to be guided by gauge principles, gauge symmetries have become in
recent years, one of the most important tools in physics.

2.4 Dynamic symmetries

These symmetries fix the interaction between constituent particles and/or
external fields (hence the name dynamic). They determine the spectral proper-
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Figure 2. The spectrum of the non-relativistic hydrogen atom is shown as an example of
dynamic symmetry of the Schrödinger equation, SO(4).

ties of quantum systems (patterns of energy levels). They are described by Lie
groups.

The earliest example of this type of symmetry is provided by the non-
relativistic hydrogen atom. The Hamiltonian of this system can be written
in terms of the quadratic Casimir operator C2 of SO(4) as [1]

H =
p2

2m
− e2

r

= − A

C2(SO(4)) + 1
, (3)

where A is a constant that depends on m and e. As a result, the energy eigen-
values can be written down explicitly in terms of quantum numbers

E(n, 
, m) = − A

n2
(4)

providing a straightforward description of the spectrum, Fig.2.
Another example is provided by hadrons. These can be classified in terms of

a flavor SUf(3) symmetry [2]. The mass operator for hadrons can be written
in terms of the Casimir operators of isospin, SU(2), and hypercharge, U(1),
as

M = a + b [C1(U(1)] + c

[
C2(SU(2)) − 1

4
C2

1 (U(1))
]

(5)

leading to the mass formula [4]

M(Y, I, I3) = a + bY + c[I(I + 1) − 1
4
Y 2]. (6)
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Figure 3. The spectrum of the baryon decuplet is shown as an example of dynamic symmetry
of the mass operator, SUf (3).

This mass formula provides a very realistic description of hadron spectra, Fig.3.
The concept of dynamic symmetry was introduced implicitly by Pauli in the

above mentioned paper [1], expanded by Fock [5], and, reintroduced in explicit
form, by Dothan, Gell-Mann and Ne’emann [6] and Barut and Böhm [7]. It
has been used extensively in the last 25 years and has produced many important
discoveries. A mathematical definition is given in [8].

A dynamic symmetry is that situation in which:
(i) The Hamiltonian H is written in terms of elements, Gα, of an algebra G,

called spectrum generating algebra (SGA), Gα ∈ G.
(ii) H contains only invariant (Casimir) operators, Ci, of a chain of algebras

G ⊃ G′ ⊃ G′′ ⊃ . . .
H = f(Ci). (7)

When a dynamic symmetry occurs, all observables can be written in explicit
analytic form. For example, the energy levels are

E = 〈H〉 = α1〈C1〉 + α2〈C2〉 + . . . (8)

One of the best studied cases is that of atomic nuclei, to be described in the
following section.

3. Dynamic symmetries of the Interacting Boson Model

Atomic nuclei with an even number of nucleons can be described as a col-
lection of correlated pairs with angular momentum J = 0 and J = 2. When
the pairs are highly correlated they can be treated as bosons, called s and d.
The corresponding model description is called Interacting Boson Model [9].
The spectrum generating algebra (SGA) of the Interacting Boson Model can be
easily constructed by introducing six boson operators

bα(α = 1, . . . , 6) ≡ s, dµ(µ = 0,±1,±2) (9)
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which span a six-dimensional space. The corresponding algebraic structure
is that of U(6). The elements of U(6) can be written as bilinear products of
creation and annihilation operators

Gαβ = b†αbβ (α, β = 1, . . . , 6). (10)

Since we are dealing with a system of bosons, the basisB is the totally symmetric
irreducible representation of U(6) with Young tableau

[N ] ≡ �� . . .� (11)

where N is the total number of bosons (pairs).
The model Hamiltonian and other operators are written in terms of creation

and annihilation operators

H = E0 +
∑
αβ

εαβb†αbβ +
∑

αα′ββ′
vαα′ββ′b†αb†α′bβbβ′ . (12)

It can be rewritten in terms of elements of U(6) as

H = E0 +
∑
αβ

ε′αβGαβ +
∑

αα′ββ′
vαα′ββ′GαβGα′β′ . (13)

The fact that U(6) is the SGA of this problem becomes then obvious.
The dynamic symmetries of the Interacting Boson Model can be constructed

by considering all possible breakings of U(6).
There are three and only three dynamic symmetries that include the angular

momentum algebra SO(3) as a subalgebra, corresponding to the breakings:

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2) (I),
U(6) ⊃ SU(3) ⊃ O(3) ⊃ O(2) (II),
U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2) (III). (14)

When a dynamic symmetry occurs, all properties can be calculated in explicit
analytic form. In particular, the energies of the states are given in terms of
quantum numbers by [10, 11, 12]

E(I)(N, nd, v, n∆, L, ML) = E0 + εnd + αnd(nd + 4)
+βv(v + 3) + γL(L + 1)

E(II)(N, λ, µ, K, L, ML) = E0 + κ(λ2 + µ2 + λµ +
+3λ + 3µ) + κ′L(L + 1)

E(III)(N, σ, τ, ν∆, L, ML) = E0 + Aσ(σ + 4)
+Bτ(τ + 3) + CL(L + 1) (15)
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Figure 4. An example of U(5) dynamic symmetry in nuclei: 110Cd.

where the various terms are the eigenvalues of the Casimir operators in the
appropriate irreducible representations.

Several examples of dynamic symmetries in nuclei have been found. Three
of these examples are shown in Figs. 4,5,6. In the last 25 years, theInteracting
Boson Model has provided a classification of spectra of even-even nuclei.

4. Supersymmetry

In the 1970’s a new concept, supersymmetry, was introduced in physics,
originally for applications to particle physics. This concept was implicitly
introduced by Miyazawa [13]. Later Ramond [14] and Neveu and Schwartz
[15] introduced it within the context of dual models. The concept became very
popular after the work of Volkov and Akulov [16] and, especially, Wess and
Zumino [17]. Supersymmetry, a symmetry that involve bosons and fermions,
has become in the last 20 years one of the most important concepts in physics
and has today wide reaching applications.

4.1 Geometric supersymmetries

Contrary to the case of geometric symmetries, this subject has not been
much studied. An example is the introduction of a superlattice [18]. The
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Figure 5. An example of SU(3) dynamic symmetry in nuclei: 156Gd.

Figure 6. An example of SO(6) dynamic symmetry in nuclei: 196Pt.

mathematical framework to describe it is point supergroups, that is discrete
subgroups of supergroups.

4.2 Space-time supersymmetries

These supersymmetries fix the form of the equation governing the motion
of mixed systems of bosons and fermions. An example is the original Wess-
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Zumino Lagrangian [17]

L = −1
2

(∂µA(x))2 − 1
2

(∂µB(x))2 − 1
2
iψ̄(x)γµ∂µψ(x)

−1
2
m2[A2(x) + B2(x)] − 1

2
imψ̄(x)ψ(x)

−gmA(x)
[
A2(x) + B2(x)

]
− 1

2
g2

[
A2(x) + B2(x)

]
−igψ̄(x) [A(x) − γ5B(x)] ψ(x).

The mathematical framework here is continuous supergroups, as for example
the SuperPoincaré group.

4.3 Gauge supersymmetries

These fix the form of interactions. For example in a supersymmetric gauge
theory one has the occurrence of both bosonic and fermionic gauge fields with
related properties.

4.4 Dynamic supersymmetries

These symmetries fix the interaction between constituent particles. They
produce patterns of energy levels for mixed systems of bosons and fermions.
They are a very ambitious unifying concept. A mathematical definition of
dynamic supersymmetries is given in [19].

A dynamic supersymmetry is that situation in which:
(i) The Hamiltonian H is written in terms of elements G∗

α of a graded algebra
G∗.

(ii) H contains only Casimir operators of a chain of algebras G∗ ⊃ G∗′ ⊃
G∗′′ ⊃ . . . The subalgebras can be either graded or not.

One of the best studied cases is again that of atomic nuclei, where supersym-
metries were introduced in 1980 [19], as described in the following section.

5. Dynamic Supersymmetries of the Interacting
Boson-Fermion Model

In nuclei with an odd number of nucleons at least one is unpaired. Fur-
thermore at higher excitation energies, some of the pairs may be broken. A
comprehensive description of nuclei requires a simultaneous treatment of cor-
related pairs (bosons) and of fermions [20]. The corresponding model has
been called Interacting Boson-Fermion Model [22]. The building blocks in this
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model are:

Bosons : s(J = 0); dµ(J = 2;µ = 0,±1,±2)

Fermions : aj,m(m = ±j,±(j − 1), . . . ,±1
2

(16)

The model Hamiltonian can be written as

H = HB + HF + VBF (17)

with

HB = E0 +
∑
αβ

εαβb†αbβ +
∑

αα′ββ′
vαα′ββ′b†αb†α′bβbβ′

HF = E′
0 +

∑
ik

ηika
†
iak +

∑
ii′kk′

uii′kk′a†ia
†
i′akak′

VBF =
∑
αβik

wαβikb
†
αbβa†iak. (18)

In order to study the possible symmetries of a mixed system of bosons and
fermions, a new mathematical framework is needed, namely that of graded Lie
algebras (also called superalgebras).

A set of elements
Gα, Fi (19)

are said to form a Lie superalgebra if they satisfy the following commutation
relations

[Gα, Gβ] = cγ
αβGγ

[Gα, Fi] = dj
αiFj

{Fi, Fj} = gα
ijGα (20)

plus super Jacobi identities. [Graded semisimple Lie algebras with Z2 grading
have been classified by V. Kac [22]]. By inspection of Eq.(18) one can see that
the combined boson-fermion Hamiltonian can be written in terms of elements
of the graded superalgebra G∗ ≡ U(n/m)

Gαβ = b†αbβ

Gij = a†iaj

F †
αi = b†αai

Fiα = a†ibα (21)

These elements can be arranged in matrix form(
b†αbβ b†αai

a†ibα a†iaj

)
. (22)
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The basis upon which the elements act is the totally supersymmetric irrep of
U(n/m) with Young supertableau

[N} ≡ �� . . . � . (23)

For applications to Nuclear Physics, N = NB+NF , n = 6 and m =
∑

j(2j+
1) ≡ Ω, where Ω is the total degeneracy of the fermionic shell. A dynamic
supersymmetry occurs whenever the Hamiltonian of Eq.(18) can be written in
terms only of the Casimir operator of U(n/m) and its subalgebras.

5.1 Supersymmetry in nuclei found

One of the consequences of supersymmetry is that if bosonic states are
known, one can predict fermionic states. Both are given by the same energy
formula. Indeed all properties of the fermionic system can be found from a
knowledge of those of the bosonic system. Supersymmetry has thus a predic-
tive power that can be tested by experiment. After its introduction in the 1980’s,
several examples of spectra with supersymmetric properties were found, relat-
ing spectra of even-even nuclei with those of odd-even nuclei (odd proton or
odd neutron). In the first example, j = 3/2 fermions were coupled to s and
d bosons. States were classified then in terms of the group U(6/4) [23]. An
example is shown in Fig.7, referring to the pair of nuclei Os-Ir. Other cases
were subsequently found, for example j = 1/2, 3/2, 5/2 fermions with s and
d bosons, described algebraically by U(6/12) [24].

5.2 Supersymmetry in nuclei confirmed

Supersymmetry in nuclei has been recently confirmed in a series of experi-
ments involving several laboratories. The confirmation relates to an improved
description of nuclei in which proton and neutron degrees of freedom are explic-
itly introduced. The model with proton and neutron bosons is called Interacting
Boson Model-2. The basic building blocks of this model are boson operators
bαπ, bαν(α = 1, . . . , 6) , where the index π(ν) refers to proton (neutron). The
boson operators span a (six+six)-dimensional space with algebraic structure
Uπ(6) ⊕ Uν(6). Consequently, when going to nuclei with unpaired particles,
one has a model with two types of bosons (proton and neutron) and two types of
fermions (proton and neutron), called Interacting Boson-Fermion Model-2. If
supersymmetry occurs for this very complex systems one expects now to have
supersymmetric partners composed of a quartet of nuclei, even-even, even-odd,
odd-even and odd-odd, for example

194Pt 195Pt
195Au 196Au

Spectra of even-even and even-odd nuclei have been known for some time.
However, spectra of odd-odd nuclei are very difficult to measure, since the
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Figure 7. An example of supersymmetry in nuclei: the pair of nuclei 190Os−191 Ir, U(6/4).

density of states in these nuclei is very high and the energy resolution of most
detectors is not sufficiently good. In a major effort that has involved several
laboratories for several years it has now been possible to measure spectra of odd-
odd nuclei. In particular, the magnetic spectrometer at the Ludwig-Maximilians
Universität in Münich, Germany can separate levels only a few keV apart. It
has thus been possible to measure the spectrum of 196Au, the missing super-
symmetric partner of 194Pt, 195Pt and 196Au [25, 26, 27].

6. Implications of supersymmetry in nuclei

(a) Particle Physics
Supersymmetry has been sought in Particle Physics for decades. The con-

firmation of supersymmetry in nuclei indicates that this very complex type of
symmetry can occur in Nature. It gives hope that, although badly broken, super-
symmetry may occur in particle physics. However, supersymmetry in nuclear
physics is a symmetry that relates composite objects (pairs) with fundamental
objects (nucleons). Can it be the same in particle physics?

(b) Condensed matter physics
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Some supersymmetric theories have been constructed in condensed matter
physics [28]. Nambu has suggested that supersymmetry may occur in Type II
superconductors [29].

Recently, it has been suggested that cuprate materials (high-Tc superconduc-
tors) may display supersymmetry. This case is being investigated at the present
time [30].

7. Conclusions

A form of supersymmetry has been found and confirmed in Nuclei!
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01000 México, D.F. MEXICO

moshi@fisica.unam.mx

Abstract It is well known that the analysis of a relativistic n-body problem invariant under
the transformations of the Poincaré group and involving one time has only been
done for n = 1. For n > 1 one uses the second quantization formalism of field
theory. In this paper we state it in the ordinary space time coordinates associated
with the n-bodies as Dirac did it in the one body case. We apply the formalism
first to the two body problem if the interaction is of an harmonic oscillator form
and then extend it to n particles.

1. Introduction

In non-relativistic quantum mechanics the passage from the single body to a
many body problem, for non-interacting particles, is a trivial summation of the
single body Hamiltonians.

In the relativistic case if we want to use a similar procedure and keep the
problem invariant under Poincaré transformations, we have to deal with the
times associated with each body.

In this paper we show first that for a system of n-particles, with the same
mass and spin (1/2) we can, with the help of appropriate matrices, formulate the
many body problem in the center of mass reference frame, with the appearance
of only one time.

While our procedure applies to arbitrary n-body problems, the algebra in-
creases as a function of n. Thus the simplest problem we can attack is the
two-body problem for which we give a procedure to determine its spectra start-
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ing from its non-relativistic formulation and then we indicate the generalization
to n-particles.

2. A formulation of the relativistic many body problem

A many body problem usually starts with the case of non-interacting particles
and, for simplicity, of the same mass.

In the non relativistic case the wave equation can be written as(
1

2m

n∑
s=1

p2
s

)
ψ = i

∂ψ

∂t
(1)

In the relativistic case, and taking particles of spin 1
2 , an obvious generaliza-

tion from the Dirac equations would be

n∑
s=1

(γµ
s pµs + 1)ψ = 0 (2)

where repeated indices µ are summed with respect to the values µ = 0, 1, 2, 3
and the index µ = 0 refers to the time, and where we use the units � = m =
c = 1. The pµs is a covariant energy-momentum four vector of the s particle
and γµ

s are the contravariant matrices related to

γ0
s = βs, γi

s = βsαis, i = 1, 2, 3; s = 1, 2, . . . n (3)

with β and α having the usual definitions[1] .
The Eq. (2) is certainly an invariant of the Poincaré group but is not satis-

factory because it introduces n times through p0s = −i∂/∂x0
s.

How can we find a many body problem, still invariant under the Poincaré
group but, in an appropriate system of reference, involving only one time?[2];
[3].

We start by denoting by uµ a unit time like four vector which means that
there is a reference frame in which it takes the form

(uµ) = (1, 0, 0, 0). (4)

With the help of the four vector (3) we can define the Lorentz scalars[3]

Γ =
n∏

r=1

(
γµ

r uµ

)
, Γs =

(
γµ

s uµ

)−1

Γ, (5)

where (γµ
s uµ)−1 eliminates the corresponding term in Γ and Γs is still in product

form.
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We now propose that instead of Eq. (2) we have the Lorentz invariant one
[3]

n∑
s=1

Γs(γµ
s pµs + 1)ψ = 0 (6)

With the help of the total energy momentum four vector

Pµ =
n∑

s=1

pµs, µ = 0, 1, 2, 3, (7)

we show that, in the frame of reference where (uµ) = (1, 0, 0, 0), Eq. (6) takes
the form [

Γ0
n∑

s=1

p0s +
n∑

s=1

Γ0
s(γs · ps + 1)

]
ψ = 0, (8)

where boldface letters mean three dimensional vectors and

Γ0 ≡
n∏

r=1

γ0
r , Γ0

s ≡ (γ0
s)−1Γ0, (9)

Multiplying Eq. (8) by Γ0 and making use of Eqs. (2,7,9) we obtain[
− P 0 +

n∑
s=1

(αs · ps + βs)
]
ψ = 0 (10)

where we used a metric in which P0 = −P 0 and the latter is the zero component
of Pµ i.e. the total energy of the system.

We would like that Eq. (6) represents the system of particles where the center
of mass is at rest and this can be achieved if we define

uµ = Pµ(−PτP
τ)−

1
2 (11)

as when Pi = 0, i = 1, 2, 3, we have ui = 0, u0 = 1.
For interactions depending on the relative coordinates

xst
µ ≡ xµs − xµt, (12)

we can define
xst
⊥µ ≡ xst

µ − (xst
τ uτ)uµ (13)

and thus suppressing the indices s, t we have that

r2 ≡ (x⊥µxµ
⊥) (14)

is a Poincaré invariant and this is also true for any function of it.
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3. The Hamiltonian of the n-body relativistic problem and
its Foldy-Wouthuysen transformation

Continuing with the analysis of the n-particle relativistic non-interacting
system in Eq. (10) we see that involves both positive and negative energies
as αs merges the large and small components. We are only interested in the
positive ones so we make a unitary transformation, well known for the one body
case, i.e.the Foldy-Wouthuysen one[4]

(α · p + β) → β
√

1 + p2 , p2 = p · p (15)

where β is a diagonal matrix with eigenvalues either 1 or −1. For the positive
energy case β should be replaced by 1 and thus the Hamiltonian in Eq. (10)
becomes

n∑
s=1

√
1 + p2

s , P =
n∑

s=1

ps = 0 (16)

We have now to add a potential interaction and the most convenient way is
to do it in the frame of reference in which the non-interacting Hamiltonian has
the form of Eq. (16), and assume that there it is of the oscillator type i.e.

V =
ω2

2n

n∑
s>t=1

(rs − rt)2 (17)

where we note that we are using the frame of reference where � = m = c = 1
so all the variables involved in Eqs. (16-17) are dimensionless.

It is now convenient to pass to the Hamilton-Jacobi variables, which will be
denoted by a dot above them i.e.

ṙs = [s(s+1)]−
1
2

[ s∑
t=1

rt−srs+1

]
, 1 ≤ s ≤ n−1, ṙn = n−1

2

n∑
t=1

rt (18)

and similarly for ṗs. The hamiltonian becomes

H =
n∑

s=1

√
1 + (ps − n−1P)2 +

ω2

2

n−1∑
s=1

ṙ2
s (19)

because from Eq. (16) P = 0, while (ps − n−1P) is translation invariant and
can be expressed only in terms of the first n − 1 variables ṗs

4. The particular case when n = 2

In Eq. (19) we proposed a simple general expression for the Hamiltonian
of the n-body relativistic problem. To understand its properties better we shall
discuss in this section the case of n = 2.
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From (18) we see that the dotted momentum variables for n = 2 become

ṗ1 =
1√
2
(p1 − p2), ṗ2 =

1√
2
(p1 + p2) (20)

and in particular

[p1 − 1
2(p1 + p2)] = −[p2 − 1

2(p1 + p2)] =
1√
2
ṗ1 (21)

so that we can write (19) as

H = 2
√

1 + (ṗ2
1/2) +

ω2

2
ṙ2
1 (22)

Developing the square root by the binomial rule we get the wave equation
corresponding to the Hamiltonian (22) in the form

{2 + 1
2 [ṗ2

1 + ω2ṙ2
1] − 1

4 ṗ4
1 + . . . }ψ = Eψ (23)

Clearly then we can use harmonic oscillator states as our starting point in a
variational numerical calculation

We shall not follow the procedure of Eq. (23) as we wish to developed a
method that can be applied, in principle, to the n-body problem. We thus return
to Eq. (22) and do the canonical transformation

ρ = − 1√
ω

ṗ1, π =
√

ωṙ1 (24)

The Hamiltonian H of Eq. (22) then becomes

H =
ω

2
(π2 + ρ2) + 2

√
1 +

ωρ2

2
− ω

2
ρ2 (25)

where now a coordinate appears under the square root. We can then use the
harmonic oscillator wave functions of frequency 1 to denote

|nlm >= Rnl(ρ)Ylm(θ, ϕ) (26)

with

Rnl(ρ) = Anlρ
lL

l+
1
2

n (ρ2)e−ρ2/2, Anl =
[

2n!
Γ(n + l + 3

2)

]1
2

(27)

to obtain a numerical matrix whose elements are

< n′lm|H|nlm > (28)
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where we note that the matrix is diagonal in l, m as L2, L0 are integrals of
motion. The matrix element (28) reduces then to a numerical term plus a radial
integral i.e.

< n′lm|H|nlm >

=
ω

2

{
−

[
n(n + l + 1

2)
]1

2
δn′n−1 + (2n + l + 3

2)δn′n

−
[
(n + 1)(n + l + 3

2)
]1

2
δn′n+1

}
+2

∫ ∞

0
Rn′l(ρ)

√
1 +

ω

2
ρ2Rnl(ρ)ρ2dρ (29)

The last integral in Eq. (29) can then be evaluated with the help of the gen-
erator functions of Laguerre polynomial and gives rise to Whittaker functions.

The integrations involve now harmonic oscillator functions of frequency 1
and thus are also of order 1, so the magnitude of the effect, as compared with the
separation ω of the energy levels of the oscillators, has to do with the difference
in behavior when ω � 1 and ω � 1.

5. Conclusion

We discussed the n-body relativistic Hamiltonian that starts with the formu-
lation of the problem for non interacting particles with spin 1

2 and the same
mass, which is Poincaré invariant but involves only one time. This problem is
analyzed with the help of the Foldy-Wouthuysen transformation (15) so that it
is restricted only to the positive energy part, which is the one we are interested.
We then, for simplicity, add a potential part of the harmonic oscillator type (17)
to arrive finally at the Hamiltonian (19).

In Eq. (19) the relative moment appear under a square root while the coordi-
nates are quadratic. Thus a canonical transformation of the type (24) exchanges
the momenta and coordinates and thus we are confronted with a a Hamiltonian
quadratic in the momenta and with square roots in the position coordinates.
The last problem is a standard one for many bodies in which we can use as
starting functions those of the n-body translationally invariant non-relativistic
Hamiltonian. In this way we reduce our problem to the one discussed normally
in the non-relativistic case[5].
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Abstract The connection between the enhancement factor (1 + κ) of the photonuclear E1
sum rule and the orbital angular momentum g-factor (g�) of a bound nucleon is
investigated in the framework of the Landau-Migdal theory for isospin asymmet-
ric nuclear matter. Special emphasis is put on the role of gauge invariance to
establish the κ − g� relation.

Keywords: Nuclear Magnetic Moments, Giant Resonances, Sum Rules

1. Introduction

The enhancement factor (1 + κ) of the photonuclear E1 sum rule and the
orbital angular momentum g-factor (g�) of a bound nucleon have attracted the
attention of nuclear theorists as well as experimentalists for a long time, since
these quantities reflect the presence of exchange forces and mesonic degrees
of freedom in nuclei [1]. More than 30 years ago, Fujita and Hirata [2] used
the isospin symmetric Fermi gas as a model for an N=Z nucleus to derive the
simple relation 1 + κ = 2 g�,IV between κ and the isovector (IV) part of g�

in first order perturbation theory. Later it has been shown [3] that, because of
the presence of correlations between the nucleons, only a part of the total κ is
related to g�,IV. It has been argued [4] that this part of κ is related to the sum
of the E1 strength in the region of the isovector giant dipole resonance (GDR).
In more recent years [5], this modified κ− g� relation has been used to analyse
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the results of photo-neutron experiments [6] and photon scattering experiments
[7], in particular for nuclei in the lead region.

On the other hand, as early as 1965, Migdal and collaborators [8] used an
approach based on a gas of quasiparticles to relate κ to the parameters charac-
terizing the interaction between the quasiparticles (the Landau-Migdal param-
eters). Combining this relation with the more general one between g�,IV and
the Landau-Migdal parameters [9], their approach suggested that the relation
1 + κ = 2 g�,IV holds more generally without recourse to perturbation theory.
The fact that their result involves the total κ instead of just a part of it reflects
the quasiparticle gas approximation.

The main advantage of the Landau-Migdal theory [9], which is based on
the Fermi liquid approach due to Landau [10], is that symmetries, like gauge
invariance and Galilei invariance, are incorporated rigorously. The Fermi liquid
approach to discuss sum rules in nuclear matter has therefore turned out to be
very fruitful, and has been used in several papers on giant resonances [11].
However, to the best of our knowledge, a general discussion of the κ-g� relation
is still lacking. In view of this fact, and also in view of the strong recent interest
in nuclear giant resonances [12] and the recent attempts to extend the range of
applicability of the Landau-Migdal theory [13], in this paper we will present a
general discussion on the κ-g� relation in isospin asymmetric nuclear matter.
The aims of our work are as follows: First, we will extend the relations obtained
previously for the orbital g-factor [14] and the E1 enhancement factor [2] to
the case of N = Z, putting special emphasis on the role of gauge invariance.
Second, we will identify the physical processes which are taken into account in
the κ-g� relation. For more detailed discussions and formal derivations of the
results we refer to ref.[15].

2. The orbital g-factor

Consider a nucleon (quasiparticle) in nuclear matter at the Fermi surface. Its
orbital angular momentum g-factor may be defined in terms of its electromag-
netic current j by the relation1

j(q = 0) ≡ p

M
g� , (1)

where M is the free nucleon mass and p the momentum. In the Landau-Migdal
theory, the current j is, up to a normalization factor, equivalent to the effective
electromagnetic vertex Γeff , which is defined as that part of the full vertex Γ
which is irreducible in the particle-hole (ph) channel. That is, the integral

1This identification, which holds in nuclear matter, follows directly from the definition of the magnetic
moment, see ref.[14].
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equation for the full vertex Γ can be written in the form (see Fig.1)

Γ = Γeff − i Teff A Γ (2)

where A is the pole part of the ph propagator, and the vertex Γeff as well as the
interaction Teff are by definition irreducible in the ph channel2. The effective

= +

Figure 1. Integral equation for the vertex (shaded square) in terms of the ph-irreducible vertex
(shaded circle) and the ph-irreducible interaction (white square).

vertex Γeff is renormalized by meson exchange currents, 2p-2h excitations, NN
excitations, etc. Some examples are shown in Fig.2. Similarly, the effective
interaction Teff is also renormalized by processes like 2p-2h excitations, see
Fig. 3 for examples.

= + + . . .+

Figure 2. Examples for diagrams contained in the effective vertex Γeff . The first one represents
the noninteracting part, the second a meson exchange current part, and the third one shows a
2p-2h excitation process.

= + + . . .

Figure 3. Examples for diagrams contained in the effective interaction Teff . The first one
represents the “bare” ph interaction, and the second one a 2p-2h excitation process. If the
external particles are on the Fermi surface, Teff becomes the Landau-Migdal interaction.

2More precisely, they are irreducible with respect to states which have ph cuts, see ref.[15] for details. In
the Landau-Migdal theory [9] these quantities are usually denoted as Γ(ω) and T(ω).
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The use of gauge invariance and Lorentz invariance (or Galilei invariance
in the nonrelativistic case), combined with the integral equation (2), allows the
determination of the quasiparticle current j(q = 0). The arguments, which
are very general and hold also in relativistic field theory [14], are explained in
detail in ref.[15]. In terms of the orbital g-factor of eq.(1), the results for the
proton (p) and neutron (n) can be expressed as follows:

g�(p) =
M

µp
− MvF

3pF
F1(pn)

µn

µp

N

A
β (3)

g�(n) =
MvF

3pF
F1(pn)

Z

A
β . (4)

Here the quantity β =

[
1 −

(
N − Z

A

)2
]− 1

3

expresses the neutron excess,

µp and µn are the chemical potentials (i.e., Fermi energies including the rest
masses) of protons and neutrons, pF and vF are the Fermi momentum and Fermi
velocity for the case N=Z, and F1(pn) is the dimensionless 
 = 1 Landau-
Migdal parameter for the pn-interaction at the Fermi surface [9]3.

In spite of the simplicity of the results (3) and (4), they are very general
and include all possible effects of meson exchange currents and configuration
mixings. Fig.4 shows some examples for diagrams, drawn in the particle-
particle channel, which contribute to the renormalization of the orbital g-factors.
We can make several important observations from eqs.(3) and (4): First, since

Figure 4. Examples for meson exchange current and configuration mixing processes which
contribute to the renormalization of the orbital g-factors.

F1(pn) < 0, the orbital g-factor of the proton is enhanced, while that of the
neutron is negative. Second, one can show that F1(pn) depends only weakly

on the neutron excess, and up to O
(

N − Z

A

)
, the dependence on the neutron

excess is as shown by the factors N/A and Z/A in (3) and (4). In symmetric

3The relation to the more familiar parameters F1 and F ′
1 is F1(pn) = F1 − F ′

1.
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nuclear matter and in the nonrelativistic limit (µp = µn = M ), the corrections
to the g-factors are purely isovector, while in matter with neutron excess the
proton g-factor is renormalized more strongly than the neutron one. Third, the
g-factors satisfy the following relation:

Z

A

µp

M
g�(p) +

N

A

µn

M
g�(n) =

Z

A
, (5)

which is the extension to N = Z of the well known fact [14, 16] that the
isoscalar orbital g-factor is renormalized exclusively by relativistic effects.

3. The E1 sum rule and the κ − g� relation

The strength function (cross section) for absorption of unpolarized photons
by a nucleus in its ground state |0 > is given by

σ(ω) = 4π2
∑

n

|〈n|ĵ(q)
1√
ω
|0〉|2 δ(ω − ωn0) (6)

LWL−→ 4π2
∑

n

|〈n|ĵ(q = 0)
1√
ω
|0〉|2 δ(ω − ωn0), (7)

where ĵ denotes the current operator4, ωn0 = En−E0 is the excitation energy
of the state |n >, and the long wave length limit (LWL) indicated in (7) holds
if |q|R << 1, where R is the nuclear radius. The (energy non-weighted) sum
rule then becomes:

S ≡
∫ ∞

0
dω σ(ω) = 4π2

∑
n

1
ωn0

|〈n|ĵ(q = 0)|0〉|2 (8)

= −2π2〈0| [[H, D] , D] |0〉, (9)

where D is the dipole operator. This sum rule, however, is not directly observ-
able, because the LWL contradicts the integration up to ω = ∞. (Note that for
a real photon we have |q| = ω.) It is therefore important to investigate whether
it is possible to identify a part of the sum rule which is valid in the region of the
GDR, where the LWL is justified. For this purpose, we again use the methods
based on gauge invariance and the Landau-Migdal theory: The cross section in
the LWL can be expressed in terms of the current-current correlation function
Π(q, ω) as

σ(ω) =
4π

ω
ImΠ(q = 0, ω) (ω > 0). (10)

4In order to eliminate the spurious effect of the center of mass motion, the current operator in this context
is defined in terms of the effective charges qp = ep N/A and qn = −ep Z/A, see ref. [15] for details.We
also note that, for the case of unpolarized photons, the current operator ĵ as well as the dipole operator D in
eq.(9) refer to any space component, e.g., the 3-component. With this choice, the current-current correlation
functions Π of this section refer to the 33-component.
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Gauge invariance can then be used to derive a Ward-Takahashi identity for the
correlation function [15], which gives in the low energy limit

S = 2π2 Π(q = 0, ω = 0). (11)

In nuclear matter, one must take the limit ω → 0 first before setting q = 0.
Because the correlation function can be expressed in terms of the full vertex Γ,
one can use the integral equation (2) to split Π into 2 pieces:

Π = iΓeff A Γ + iΓ0 B Γeff ≡ ΠA + ΠB , (12)

where the quantity A is the same as in eq.(2) and represents the product of
the pole parts of particle and hole propagators, and B is the rest (product of
particle-particle propagators, etc.) in the decomposition of the product of two
propagators (SS = A + B). The part ΠA is shown graphically in Fig. 5, and
an example of a graph which contributes exclusively to ΠB is shown in Fig. 6.

Figure 5. Graphical representation of the part ΠA in eq. (12). The symbols are the same as
used in Fig.1.

The difference between ΠA and ΠB is that the former contains ph cuts while
the latter has only cuts due to higher excited states like 2p-2h etc. If we use the
RPA equation for the vertex (eq.(2)), we see that ΠA agrees with the familiar
correlation function of the RPA theory, which is the starting point of almost all
calculations of response functions, but processes like meson exchange currents,
2p-2h configuration mixings etc., are included in the definition of the effective
vertex and the effective interaction.

In nuclear matter, one can now again use gauge invariance to completely
specify the part ΠA and the associated part SA of the sum rule (11). The result
can be expressed by the following relation:

SA = (TRK) (1 + κA) , (13)

where (TRK)=2π2e2
p

NZ

AM
is the Thomas-Reiche-Kuhn sum rule value, and

1 + κA = g�(p) − g�(n), (14)
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Figure 6. Example of a diagram which contributes exclusively to ΠB of eq.(12).

where the orbital g-factors are given in (3) and (4). An equivalent way to express
the same result is as follows,

g�(p) = 1 +
N

A
κA (15)

g�(n) = −Z

A
κA (16)

with

κA = −MvF

3 pF
F1(pn)

[
1 −

(
N − Z

A

)2
]− 1

3

. (17)

The remaining part of the LWL sum rule, SB ≡ (TRK) κB, which originates
from ΠB, has no connection to the orbital g-factors and cannot be specified by
using only symmetry principles.

One can now argue that the quantity κA can be approximately identified
with the enhancement factor κGDR, which is extracted from the area under the
Lorentzian of the GDR curve. The details are discussed in ref.[15], and the
essential points of the argument are as follows:

First, only the part ΠA in eq.(12) involves the full vertex Γ, which is a solution
to the RPA equation (2). Therefore, the associated strength function σA(ω)
is the result of a renormalized RPA calculation, which produces a resonance
structure due to the collective superposition of ph pairs. The part ΠB has no
such resonance structure.

Second, in general the contribution Π(i) of a given time ordered diagram
i to the correlation function can be split into its A and B-parts according
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to Π(i) = Π(i)
A + Π(i)

B . Examples for diagrams which have both A and B-
parts are shown in Fig. 7. The diagrams Π(i) in these examples involve

Figure 7. Example for diagrams with 2p-2h admixtures originating from the effective vertex
(left) and from the effective interaction (right). These diagrams contribute to both ΠA and ΠB .

“high energy denominators” of the form (ω − ∆E(2p − 2h))−1. Their A-
parts are obtained from Π(i) by replacing these high energy denominators by
(∆Eeff(1p − 1h) − ∆E(2p − 2h))−1, where ∆Eeff(1p− 1h) refers to the ex-
citation energy of the ph state entering the vertex in the first diagram, and to the
average of the ph states entering and leaving the interaction in the second dia-
gram of Fig. 7. As long as, on the average, ∆E(2p−2h) >> ∆Eeff(1p−1h),
we have the approximate relation

Π(i)(q = 0, ω = 0) � Π(i)
A (q = 0, ω = 0) , (18)

which indicates that the A-part gives the dominant contribution of the diagram i

to the sum rule: S(i) � S
(i)
A . Under this condition, the B-part, which gives rise

to the spreading width of ph-states in the low energy region, gives only a minor
contribution to the sum rule. This in turn implies that the main contribution
from ΠB to the LWL sum rule comes from those diagrams which involve no
ph cuts at all, like the example shown in Fig. 6. It is known that, because of the
short range nature of the tensor force, these diagrams involve large excitation
energies, on the average several hundred MeV [17]. Therefore, these diagrams,
for which the LWL is unjustified anyhow, will contribute to the sum rule only
in the high energy region well beyond the GDR.

In conclusion of the above discussion, we can say that the approximate rela-
tion κA � κGDR holds, although it is difficult to specify it more quantitatively
without using model calculations.

For the sake of illustration of the κ−g� relation (14), let us discuss the nuclei
in the 208Pb region. The empirical values of g�(p) and g�(n) for nuclei in the
lead region have been derived by Yamazaki (see ref.[1]) as g�(p) � 1 + 0.13,
g�(n) � −0.08. These values are very close to the ones calculated in ref. [16]
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from configuration mixing and meson exchange current effects, see table 7.12
of ref. [16].

From eq. (14) one then obtains the estimate κA � 0.21. In the analysis of ref.
[7], which uses the experimentally measured scattering cross section to extract
the total photoabsorption cross section via dispersion relations, it was concluded
that “any reasonable prescription gives (experimental) values of κGDR between
0.2 and 0.3”, where κGDR was extracted from the area under a Lorentzian curve
fitted to the GDR. This indicates at least a qualitative consistency between theory
and experiment, since our κA can be identified with κGDR as discussed above.

4. Summary and conclusions

In this work we used the Landau-Migdal theory to discuss the orbital g-factor
of a quasiparticle and the E1 sum rule for isospin asymmetric nuclear matter.
The relations obtained for the orbital g-factors are in principle exact and hold
also in relativistic field theory. For the E1 sum rule, we had to restrict ourselves
to a nonrelativistic framework because of the problems arising from the center
of mass motion.

We have split the strength function into two parts, where one comes from the
p-h cuts including the effects of the higher excited states and meson exchange
currents via their real parts, and the other comes from cuts at higher excitation
energies. We have shown generally that the former part is related to the orbital
g-factors, while the latter part has no relation to them. The former part has a
close relation to the collective excitations of the system, i.e., the zero sound
modes in infinite systems and the giant resonances in finite nuclei. We have
discussed the importance of the κ− g� relation, which effectively separates the
observable part of the LWL sum rule, which is related to the strength function
in the low energy region, from the rest. Our discussions, which do not rely on
perturbation theory, can serve to put many previous investigations on the κ−g�

relation on a theoretically firm basis.
Concerning possible extensions, we would like to remark the following

points: First, the methods used here to relate κ to g� refer to infinite nuclear
matter, and it would be interesting to investigate to what extent they can be
applied also to finite nuclei. Second, as we mentioned in the Introduction, very
interesting attempts are now being made to extend the range of applicability of
the Landau-Migdal theory to give a more general description of nuclear col-
lective vibrations. The basic idea is to generalize the definition of the quantity
A, which appears for example in the equation for the vertex (2), so as to in-
clude also more complicated configurations. It would be very interesting to see
whether the results derived in this paper can be extended according to these
lines.
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Abstract Starting from an oriented three–dimensional Euclidean space as a subspace of the
quaternions we introduce a simple transmission of information. The Euclidean
space is split into a plane carrying information and a line of information transmis-
sion, thus having the structure of a Heisenberg algebra. The plane together with
an additional periodic time scale is a Heisenberg group. This structure is given by
any 2+1–splitting of the three–dimensional Euclidean space. The centers of the
Heisenberg groups form the special unitary group of H. Schrödinger represen-
tations and spin 1

2
–representations as well as links between them are discussed,

and the results are applied to the transmission of information.
Based on the tangent bundle on S2 and the Hopf fibration, a natural princi-

pal and a complex line bundle are constructed for a smooth vector field X in
three–space. These are bundles of normed states respectively bundles of states
of qubits attached to the points in the domain of the vector fields. The fibres
represent carriers of quantum information. A natural connection form yields the
horizontal flow on both bundles. Quantum information is transmitted along this
flow. This transmission yields a one–parameter group of unitary operators and a
Schrödinger equation governing the evolution of the information. In addition this
concept of quantum information contains classical information. Thus quantum
information transmission is directly related to quantum information transmis-
sion. This method is generalized to transmit entangled states along two possibly
different field lines of X .

The appendix deals with the Hopf fibration in detail.

Keywords: Heisenberg group, Schrödinger representation, spin representation, quantum in-
formation, information transmission, spin structures, Hopf fibration
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1. Introduction

Our primary interest in these notes is a (mathematical) description of the
transmission of information and quantum information. Both sorts of informa-
tion rely on the inscription of information in a two–dimensional real plane, the
information carrier. In order to link the geometry of the information carrier with
the transmission of information, the latter is formulated in a geometric fash-
ion. The ingredient unifying the inscription of information and its transmission
along an information channel is a Heisenberg algebra G. The channel together
with the carrier of information form a three–space. A symplectic structure on
the carrier plane turns the three–space into a Heisenberg algebra. The sym-
plectic structure yields a natural scalar product on the three–space. Naturally
associated with G is the (reduced) Heisenberg group G, a Lie group with G as
its Lie algebra.

To treat both G and G on the same basis, a four–dimensional space is needed,
namely the skew field of quaternions H. Both G and H determine each other in
a unique fashion. Since H carries a natural Minkowski metric (evolving from
the geometry on S3) with the center R ·e of H as time axis, time is implemented
on both the center of G, the information channel, and the center of G, a group
Ua(1) isomorphic to U(1). The transmission of the information in the carrier
plane of G and hence of G is practically performed by modulating each bit onto
signals by means of the Schrödinger representation.

The common treatment of the Heisenberg algebra, the Heisenberg group, the
quaternions and SU(2) offers a link between these mathematical notions and
signal theory.

The means to describe this link is the geometry of H reflected by the
spin 1

2–representation, which carries a natural two–by–two splitting of H. This
splitting together with the information channel causes G and G and, moreover,
naturally yields the Schrödinger representation. The spin 1

2–representation to-
gether with the symplectic structure resemble the geometry of a constant mag-
netic field in three–space with field lines parallel to the information channel.
In fact, this sort of implementation of the geometry of H is used in magnetic
resonance imaging (cf. [14]).

Since one of the simplest forms of information transmission follows the
field lines of a vector field X in an open set O of a Euclidean three–space,
we consider a series of natural bundles caused by this field assumed to be
a singularity free gradient field. These bundles globally reflect the interplay
between the quaternions and Heisenberg algebras. One of these bundles is a
complex line bundle Fa based on the two–by–two splitting mentioned above.
The points of the complex line are called internal variables. The points serve as
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carriers of bits of classical information. Restricting this bundle to the image of a
field line yields via the geodesic flow on it a transmission of initially prescribed
classical information along a field line. A more restrictive but simpler way is
to use the horizontal flow of a prescribed connection form on the complex line
bundle to transmit this information.

The complex line bundle Fa mentioned can be obtained by pulling back the
tangent planes on S2 by the so–called Gauss–map ε (assigning to each point
x ∈ O the unit vector of the value of the vector field at x).

This observation is the key to relate quantum information to the vector field
(and, in turn, to classical information). Instead of pulling back the tangent
planes of S2 by ε, the fibres over S2 of the Hopf fibration of S3 are pulled
back by ε. These fibres can naturally be regarded as normed states up to a
global phase factor of the Hilbert space H. These normed states up to a global
phase factor are nothing else but qubits. Thus the points on S2 are qubits and
the elements in the fibres over them are normed states. Pulling back the Hopf
fibration by ε to O naturally associates with each point on any field line a fibre
of states. In this way the points of field lines correspond to qubits. The fibres
are collected together to the quantum state bundle K. The fibres of K over each
point in O naturally yield complex lines and hence a complex quantum line
bundle L containing the quantum state bundle K.

There is a natural bundle projection mapping the quantum line bundle L
fibrewisely onto Fa, the complex line bundle encoding classical information.
In this sense Fa can be complemented to L. This complementation is directly
linked to the two–by–two splitting of H.

A connection form on L yields a horizontal flow on L. Initial quantum
information is prescribed in the fibre over an initial point on the field line. The
horizontal flow provides a unitary evolution of quantum information along the
field line. This evolution is called the transmission of quantum information
along the field line.

Using the projection from L to Fa yields the transmission of classical infor-
mation, as well.

The above outlined construction of a transmission of quantum information is
extended to a transmission of entangled quantum information possibly follow-
ing two different integral curves of the vector field. The Hilbert space in this
case is H ⊗ H. The 2–sphere, being the complex projection space CaP (H) of
H is replaced by the complex projection space CaP (H⊗H) of H⊗H. Instead
of the Hopf fibration the tautological complex line bundle on CaP (H ⊗ H) is
used. The Gauss map is generalized to a map from O to CaP (H⊗H) in order
to construct the pull–back of the tautological bundle to O. A natural connection



58 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

form yields a horizontal flow allowing to transmit entangled information along
two possibly different field lines of X .

2. The Geometric Setting

2.1 The Quaternions

As mentioned in the introduction, we are interested in a geometric description
of information transmission in a three–dimensional oriented Euclidean space.
However, since time shall also be considered, we need to have four dimensions.
Therefore, the quaternionsform the basis of our investigation.

Definition 1. We define the quaternions H as

H :=
{

l ∈ End
(
C2

)
| l + l̃ = ( tr l) · id 2

}
. (1)

A natural scalar product on H is given by

< l1, l2 > :=
1
2

tr (l1 ◦ l̃2) ∀ l1, l2 ∈ H (2)

and we fix an orientation µ on H.

There are several ways of linking the quaternions with the oriented Euclidean
space E, < , >E, µE. On the one hand, if e denotes the neutral element in H,
we have an orthogonal splitting

H = R · e ⊕ E.

On the other hand, we may also start with the Euclidian space E and orthogo-
nally extend it by R · e to get H.

The scalar product < , > on H becomes the scalar product on E when
restricting it to elements in E, and, vice versa, the extension of the scalar
product < , >E on E to H gives us < , > again.1 Hence in the following we
will denote both the scalar product on H and the one on E by < , >.

With this splitting the quaternions form a skew field under the multiplication

u · v := (λµ− < u1, v1 >)e + λv1 + µu1 + u1 × v1 (3)

for all u = λe + u1, v = µe + v1 ∈ H. Here × denotes the cross product in E
given by the orientation µE.

From this multiplication we see that R · e is the center of H.

1The same is true for the orientations on E and .
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The central part of the multiplication (3) can be used to define a natural
Minkowski metric gM on H:

Definition 2. For any two vectors u, v ∈ H we set

gM(u, v) = gM(λe + u1, µe + v1) := −(λµ− < u1, v1 >).

Defined like this, gM is a natural Minkowski metric on H. Hence we can refer
to the center R · e of H as a time axis.

Considering the description of information transmission, we can use this
splitting of H and take the spatial components to be elements of E, while time
is described by the time axis R · e.

Another aspect we will make frequent use of in the sequel is the fact that
the complex numbers can be embedded into the quaternions. Of course, this
embedding is not unique. We choose a ∈ S2 ⊂ E as an imaginary unit and
define

Ca := R · e ⊕ R · a.

Looking at the multiplication in H, we see that a is indeed the imaginary unit
in Ca:

a2 = − < a, a > ·e = −e.

With the identification 1 �→ e, i �→ a we thus show that Ca is isomorphic to
the complex line C. From this isomorphism we also see that there are as many
embeddings of C into H as there are elements a ∈ S2.

Ca contains the time axis R · e. The multiplication by a transfers the time
axis R · e into R · a.

Notation:. The unitary group of Ca is denoted by Ua.
It provides us with a periodic notion of time by means of the exponential

map (cf. (7) in section 4).

From these embeddings of the complex numbers into the quaternions we can
see that ⋃

a∈S2

Ua = S3 ≡ SU(2).

This allows us to regard any quaternion as a complex number:
Given k ∈ H, we have k

|k| ∈ S3 and there is an element a ∈ S2 and
t ∈ [0, 2π) so that

k = |k| · k

|k| = |k| · eta. (4)
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For the Lie algebra su(2) of SU(2) we find

su(2) ≡ E

as linear spaces. The cross product in E is the Lie bracket.

Finally, fa denotes the orthogonal complement of Ca in H so that

H =: Ca ⊕ fa. (5)

This gives us the following splittings of H and E:

H = R · e ⊕ E
= R · e ⊕ R · a ⊕ fa

= Ca ⊕ fa.

Hence fa is also the orthogonal complement of a in E.

2.2 The Symplectic Plane

We study the plane fa in more detail: The complex line Ca acts on fa from
the right. Thus fa is a Ca–linear space and thus C–linear and — because of its
dimension — a complex line.

The set of all complex lines fa, a ∈ S2, gives us the tangent space of S2, i.e.

TS2 =
⋃

a∈S2

{a} × fa.

We want to use the plane fa as a two–dimensional carrier of (classical)
information. In order to have a measure of information, we need a volume
form on fa (cf. [3]). Since the real dimension of fa is two, the following
definition of a symplectic form on fa provides us with the required volume
form:

Definition 3. By

ωa : fa × fa −→ R

ωa(v, w) := < v × a, w >

we define a symplectic structure on fa.

Clearly
ωa(v, w) = µE(v, a, w).

It can be shown that

Lemma 4. Starting from the symplectic plane (fa, ωa) we can reconstruct the
quaternions H with their scalar product < , > .
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For a proof see [2] or [14].

Now we have a carrier of information fa with a volume form ωa on it. The
axis R · a serves as the channel of information transmission while R · e can
be considered as a time axis, so our starting point is given by the following
framework:

H = R · e ⊕ R · a ⊕ fa = R · e ⊕ E

R · e time axis
R · a channel of information transmission
fa plane carrying information,

symplectic plane

3. Information Transmission along Integral Curves of
Vector Fields

In this section we consider the case that the transmission of information
follows the trajectories of a vector field. The vector field looked at here is taken
to be a singularity free gradient field

X : O −→ O × E

x �−→ (x,a(x))

defined on an open set O ⊂ E, where a denotes the principal part.
The field vector a(x) now takes the role of a ∈ S2 as we described it in

section 2. For every a(x) ∈ E we have an orthogonal splitting

E = R · a(x) ⊕ Fa
x

where Fa
x again is the orthogonal complement of a(x) in E.2 If x varies in O,

this gives rise to a complex line bundle

Fa :=
⋃
x∈O

{x} × Fa
x ⊂ O × E.

Each of the fibres carries a symplectic structure

ωa(x; h, k) :=< h × a(x), k > ∀h, k ∈ Fa
x.

We have:

Lemma 5. The complex line bundle Fa completely determines the underlying
vector field X , i.e. its principal part a.

2Hence a
x is the analogue of Fa introduced in section 2.
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For a proof we refer to [5], [14] and [2].
In view of this lemma the elements of the fibres of the complex line bundle are

also called internal variables of the vector field. They encode bits of (classical)
information.

We now have a bundle of planes each functioning as a two–dimensional
carrier of information. Via R · a(x) each plane is equipped with a channel of
information transmission, but we do not yet have a transmission of information
from one plane to another.

In order to have such a kind of information transmission we will look at the
U(1)–principal bundle associated to Fa.

Definition 6. Let Pa
x be the circle in Fa

x centered around 0 with radius

|a(x)|− 1
2 . Then

Pa :=
⋃

x∈O
{x} × Pa

x

is a submanifold of Fa and a U(1)–principal bundle.

Here the right action of U(1) on the fibres Pa
x of Pa is realized by the action of

Ua
x(1) ⊂ Ca

x, where Ua
x(1) is the unitary group of Ca

x in analogy to Ua ⊂ Ca

and the isomorphism between C and Ca (cf. subsection 2.1).

We will now consider a specific example, namely the Coulomb field:

Definition 7. The Coulomb field is defined as

X : O → O × E

x �→ (x,a(x))

with
a(x) = γmM · x

|x|3 .

For reasons of simplicity we set the Coulomb constant γ and the charges m and
M equal to 1 and thus consider the vector field with principal part a(x) = x

|x|3 .

For this field, the fibres Pa
x are circles with radius |x|. This means that along

straight lines in O, the principal bundle Pa has the form of a double cone without
its vertex with a cone angle of 45◦.

An integral curve β : I → O of X with β(1) = x0 for a given x0 ∈ O with
|x0| = 1 has the form

β(t) = x0 · |3t − 2| 13

(cf. [14]).

We want to describe an information transmission on Pa|β. One way is to
look at the horizontal lifts of Pa|β. For a detailed discussion of this approach
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see [4] and section 13 of these notes. Another way is to look at the geodesics
on Pa|β, which we will do here. First of all we need a Clairaut chart of Pa|β.

The restriction Pa|β of the principal bundle can be parametrized by the
Clairaut chart x : U → E given by

x(u, v) := (3 v(s) − 2)
1
3 · eu x

|x| · vx0 + (3 v(s) − 2)
1
3 · x

|x|

for a given initial vector vx0 ∈ Pa|β. HereU = {(u, v) ∈ R2| 0 < u < 2π+µ}
with µ > 0, ν < v < ∞ for some 2

3 ≤ ν < 1.

For the geodesics α on Pa|β we find

α(s) = x(u(s), v(s))

= (3 v(s) − 2)
1
3 · eu(s) x

|x| · vx0 + (3 v(s) − 2)
1
3 · x

|x| (6)

with

u(s) =
√

2 arctan
(

s√
2c

+
c1

c

)
+ c2

and

v(s) = ±1
3

((
1√
2
s + c1

)2

+ c2

) 3
2

+
2
3
. (7)

The constant c gives the slope of the geodesic in the Clairaut chart, the integra-
tion constant c1 determines the “forward movement” on the cone to the point
where α starts, and the second integration constant c2 fixes the starting point
of the rotation, i.e. the phase. The choice of the sign in (7) determines the
orientation of the geodesic.

We now have:

Lemma 8. The geodesics described by (5) provide us with a means of trans-
mitting information between the fibres of Pa|β.

As a conclusion of this section, we want to add a remark on how this example
might be generalized (cf. [14]). We start with an arbitrary singularity free
gradient field on O ⊂ E with principal part b and an integral curve γ with

γ̇(t) = b(γ(t)) and γ(1) = x0

for some initial x0 ∈ O. If there is a solution γ(t) of form γ(t) = x0 · δ(t) with
δ(1) = 1, this solution curve can be lifted to a horizontal lift γhor of γ with
γhor(t) = vx0 · δ(t). Here vx0 denotes an initial vector in Pa|β at x0 (see also
section 13).
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4. Vector Fields and Heisenberg Groups Linked to
Information Transmission

4.1 Heisenberg Algebras and Heisenberg Groups

In the preceding section we discussed the transmission of information from
a completely spatial point of view. Now we want to introduce time. As we
already mentioned in section 2.1, one natural way is to take R · e as a time axis.
However, we may also regard R · a(x) generated by the field vector a(x) as a
time axis in E. To see this, we look at the multiplication in the quaternions.
There we have

(R · e ⊕ E) · a(x) = (R · e ⊕ R · a(x) ⊕ Fa
x) · a(x) = R · a(x) ⊕ R · e ⊕ Fa

x

as well as
a(x) · (R · e ⊕ E) = R · a(x) ⊕ R · e ⊕ Fa

x.

Hence R · a(x) is a linear time axis. We may also define a periodic concept
of time, i.e. a “watch”. In the 2+2–splitting H = Ca

x⊕Fa
x we have the unitary

group Ua
x ⊂ Ca

x. This allows us to link R · a(x) and Ua
x via the exponential

map

exp a
x

: R · a(x) −→ Ua
x ⊂ Ca

x

exp a
x
(t · a(x)) := cos t · e + sin t · a(x). (8)

Linking both the linear and the periodic time concept with the plane of
information transmission Fa

x gives rise to the concepts of Heisenberg algebras
and Heisenberg groups:

Definition 9. We define the Heisenberg algebra Ga
x as

Ga
x := R · a(x) ⊕ Fa

x

together with the Lie bracket

[λ1 · a(x) + h1, λ2 · a(x) + h2] := ωa(x; h1, h2) · a(x).

Since we have Fa
x and the symplectic structure ωa(x; . . . , . . .), in analogy to

lemma 4 we know that Ga
x allows the reconstruction of the quaternions.

Definition 10. The Heisenberg group

Ga
x := |a(x)|− 1

2 · Ua
x(1) ⊕ Fa

x

is defined with the rescaled multiplication

(k1 + h1) · (k2 + h2) =
(
|a(x)|− 1

2 e
t1

x
|x| + h1

)
·
(
|a(x)|− 1

2 e
t2

x
|x| + h2

)
:= |a(x)|− 1

2 e
(t1+t2) x

|x| e
1
2
ωa(x;h1,h2) x

|x| + h1 + h2.
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The multiplication first rescales any two elements so that they are in Ua
x(1)⊕Fa

x

and then again rescales them after the multiplication. This method allows us
to inherit the group structure of Ua

x to circles in Ca
x with radius not equal to 1.

The center of Ga
x is Ua

x .

It can be shown thatGa
x is the Heisenberg algebra belonging to the Heisenberg

group Ga
x, since

TeG
a
x = R · a(x) ⊕ Fa

x = Ga
x.

Moreover, we now see that there is a natural link between Ga
x and H. In con-

structing H out of Ga
x, the choice of e is by no means artificial, but rather natural

(cf. lemma 4).

Having in mind the transmission of information, we look at the Schrödin-
ger representation ρν

x, which allows a modulation of information on signals
ψ ∈ S(R, C).

To do so, we first need to define a coordinate system on Fa
x. We choose

a (unit) vector v in Fa
x and define the coordinate system via eq := v and

ep := eq · a(x)
|a(x)| = eq × a(x)

|a(x)| , since the multiplication with a(x)
|a(x)| = x

|x|
amounts to a rotation about π/2. Then we can define:

Definition 11. The Schrödinger representation with frequency ν is given by

ρν
x : Ga

x −→ U(L2(R, C))

ρν
x(z + h)(ψ)(ξ) := e−νti · e− 1

2
|a(x)|νpxqxi · e|a(x)|νpxξi · ψ(ξ − qx)

with z + h = e
t x
|x| + qxeq + pxep ∈ Ga

x, ξ ∈ R and ν ∈ R\{0}.
There are two characteristics determining the Schrödinger representation.

The first one is the frequency ν that has to be chosen. The second one is the
coordinate system eq, ep we had to fix in Fa

x, i.e. the vector v ∈ Fa
x we chose.

The theorem of Stone–von Neumann gives us further information about the
classification of the Schrödinger representations:

Theorem 12. The representation ρν is irreducible for any ν ∈ R\{0}. Each
irreducible representation ρ̃ of a Heisenberg group Ga which is identical with
ρν on its center is equivalent to ρν.

This means that the equivalence classes of the Schrödinger representations are
determined by ν. As has been shown by Kirrilov (cf. [15]), for a given ν we get
all representations of the equivalence class by varying the choice of v ∈ Fa

x.
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4.2 Vector Fields and Heisenberg Groups

Now consider a vector field a(x) for which we can describe the geodesics
on Pa|β as in section 3. These geodesics have the form

α(s) = x(u(s), v(s)) = ϕ(v(s)) · eu(s)
a(x)
|a(x)| · vx0 + ψ(v(s)) · a(x)

|a(x)|
where u(s) fixes the rotation on the rotational surface Pa|β by means of the

factor e
u(s)

a(x)
|a(x)| at the point given by v(s). The parameter v(s) determines the

progress between the planes, i.e. the fibres given by a(x).

These geodesics may now be used to link the single Schrödinger represen-
tations. The field vector a(x) fixes a Heisenberg group Ga

x. Let z ∈ Ua
x ,

ψ ∈ S(R, C) and ξ ∈ R. Then ϕ(v(s)) · eu(s)
a(x)
|a(x)| fixes the coordinates qx and

px in Fa
x and we have

ρν
x

(
z + qxex

q + pxex
p

)
(ψ)(ξ) :

= e−νtie−|a(x)|ν u(s)v(s)
2

ie|a(x)|νu(s)ξiψ(ξ − v(s)).

The frequency ν determines the speed of progress.

Thus by now we have described two ways of information transmission:

Proposition 13. The transmission of information can be given

(1) by the geodesics α on Pa|β
and

(2) via the modulation of information on signals by means of the Schrödinger
representations ρν

x.

5. The Spin Group and Heisenberg Groups

In this section, we will leave the context of vector fields to discuss Heisenberg
groups and Schrödinger representations in conjunction with the spin group
SU(2) and the spin representations, especially the spin 1

2–representation.

To do so,the Heisenberg group under consideration is no longer determined
by the vector a(x) of a given vector field with principal part a, but we simply
choose an element of the 2–sphere, i.e. we choose a ∈ S2. This is equivalent
to considering a vector field with a(x) ≡ a ∈ S2 for all x ∈ O.

The resulting Heisenberg groups and Heisenberg algebras are given by
Ga = Ua ⊕ fa and Ga = R · a ⊕ fa, respectively, if we choose a ∈ S2;
the Schrödinger representation with frequency ν is given by

ρν(eta + qeq + pep)(ψ)(ξ) = e−νtie−ν pq
2

ieνpξiψ(ξ − q)
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for all eta + qeq + pep ∈ Ga, all ψ ∈ S(R, C) and all ξ ∈ R.

The choice of a ∈ S2 is arbitrary, but we can show that using the group
structure of the 3–sphere we can link all Heisenberg groups with each other.
The tool we need is provided by the inner automorphisms on H.

Definition 14. By the conjugation

τk : H −→ H, h �−→ k · h · k−1

with k ∈ Ḣ = H\{0} we define an inner automorphism on the quaternions.

Since the elements in S2, embedded into the quaternions, have length 1, for any
a, b ∈ S2 there is an element k ∈ S3 such that

τk(a) = b,

i.e. the group of inner automorphisms of H operates transitively on S2 (as well
as on S3).

Thus τk links all the Heisenberg groups Ga, a ∈ S2, with each other. The
same approach links all the Heisenberg algebras as well as all the Schrödinger
representations we get from choosing elements in S2. For example, we have

τk(R · a) = R · b and τk(fa) = F b

for the Heisenberg algebras. So we have found an isomorphism linking Ga and
Gb, say. Thus we have shown:

Proposition 15. Since we can transform any Heisenberg group (Heisen-
berg algebra, Schrödinger representation) into any other Heisenberg group
(Heisenberg algebra, Schrödinger representation) by means of the inner auto-
morphisms τk, k ∈ S3, it is enough to look at the transmission of information
in one direction. This link is provided by the group structure of S3, i.e. by the
symmetry group SU(2) of H.

So now we have shown that indeed it is possible to look at one specific Heisen-
berg group in the sequel.

We start with the link between the Heisenberg groups and the spin group.

5.1 Heisenberg Groups and SU(2) Determining each
other

5.1.1 The Heisenberg groups determine SU(2). First of all we recall
that, as a set, we have

SU(2) = S3 =
⋃

a∈S2

Ua.
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For the multiplication in SU(2), we observe that for any two elements
w1, w2 ∈ SU(2) we find a1, a2 ∈ S2 such that w1 ∈ Ua1(1) and w2 ∈ Ua2(1).
Hence

w1 · w2 = (cos t1 · e + sin t1 · a1) · (cos t2 · e + sin t2 · a2)

for suitable t1, t2 ∈ [0, 2π).

It can be shown3 that the product

(cos t1 · e + sin t1 · a1) · (cos t2 · e + sin t2 · a2)

is in SU(2) again and that the multiplication is the same as the one we have in
SU(2). Thus it is sensible to make this kind of approach.

Furthermore the product can explicitly be described by the data given by the
Heisenberg groups. This does not seem to be clear for a1 · a2, but we can show
that the set {Ga, a ∈ S2} provides us with the appropriate data:

The product a1 · a2 = a1 × a2− < a1, a2 > ·e is neither in Ga1 not in Ga2 .
We will look at the summands separately.

Let F a := span (a1, a2). Then a1 × a2 is perpendicular to F a and for
b := a1×a2

|a1×a2| ∈ S2 we have F b = F a. Thus

b = (F a)⊥E = (span (a1, a2))⊥E.

Therefore we have

− < ωb(a1, a2)b, b > = −ωb(a1, a2) < b, b >

= −ωb(a1, a2)
= − < a1 × b, a2 >

= −µE(a1, b, a2)
= µE(b, a1, a2)
= < a1 × a2, b >

and hence
a1 × a2 = −ωb(a1, a2)b.

So the vector a1 × a2 is given by the family of Heisenberg groups Ga, a ∈ S2.
Now let cos ϕ :=< a1, a2 >. Since

|a1 × a2| = |a1| · |a2| · sin ϕ = sinϕ

3The explicit calculation can be found in [14].
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it follows that

−ωb(a1, a2) =< a1 × a2, b >=< a1 × a2,
a1 × a2

|a1 × a2|
>= |a1 × a2| = sinϕ.

From

cos ϕ = ±
√

1 − sin2 ϕ

we deduce that

< a1, a2 >= ±
√

1 + (ωb(a1, a2))2,

so that < a1, a2 > is also a datum given by the Heisenberg groups.
As a result we have:

Proposition 16. By means of the inner automorphisms τk, the Heisen-
berg groups can be transformed into each other. Hence the group structure of
SU(2) can be described by only one Heisenberg group together with the inner
automorphisms τk.

Corollary 17. Starting from SU(2) ≡ S3 we get any sphere S3
R with radius

R by a rescalation. Hence any sphere S3
R in H can be reconstructed from a

Heisenberg group.

5.1.2 The spin group SU(2) determines the Heisenberg groups. To
describe how the spin group determines the Heisenberg groups, we again choose
an element a ∈ S2. In reconstructing Ga we split it into the parts that need to
be given by SU(2):

The center Ua of Ga is given by the meridian in SU(2) which runs
through the chosen a ∈ S2.

The symplectic plane fa is defined as the tangent space of S2 (the equator
of S3) at the point a.

The symplectic form ωa is given by

ωa(h1, h2) := − < a,
1
2
[h1, h2] > ∀h1, h2 ∈ fa. (9)

Here < , > is the scalar product in H and

[h1, h2] := h1h2 − h2h1

is the commutator in H, which is also the Lie bracket in su(2).

Proof of equation (9).
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For any two h1, h2 ∈ fa we have

− < a,
1
2
[h1, h2] > = − < a,

1
2
(h1h2 − h2h1) >

= − < a,
1
2
h1 × h2 > + < a,

1
2
h2 × h1 >

= − < h1 × h2, a >

= −µE(h1, h2, a)
= µE(h1, a, h2)
= < h1 × a, h2 >

= ωa(h1, h2),

as was originally defined on fa.

5.2 Spin 1
2
–Representations

Before we can extend this link between SU(2) and the Heisenberg groups
to their representations, we have to take a look at the spin 1

2–representation
and define it within our setting. As a representation space we want to take the
quaternions so we start with a remark on the linear structure of H.

The quaternions H form a real four–dimensional algebra. However, by con-
sidering the splitting

H = Ca ⊕ fa

we get a complex structure on H, since both Ca and fa are Ca–linear spaces.
Thus H is a complex two–dimensional space. We will use this complex structure
on H to define a spin representation. Because of dim a H = 2, we will look at
the spin 1

2–representation:

Definition 18. The spin 1
2–representation r on H = Ca ⊕ Fa is defined as

r : SU(2) −→ U(Ca ⊕ fa)
u �−→ r(u)

with

r(u) : Ca ⊕ fa −→ Ca ⊕ fa

z′ + h �−→ u(z′ + h) = uz′ + uh.

Because of the inner automorphisms τk, k ∈ S3, and the orthogonality of
the splitting Ca⊕Fa, this definition is independent of the choice of a ∈ S2. In
addition, there is a Hermitian product < | > on H inherited from the one on
Ca (i.e. the one on C).



Applications of the Heisenberg Group 71

Clearly, the spin 1
2–representation is unitary and irreducible.

There is another way of writing this representation.
Let u ∈ SU(2). Then u = eta ∈ Ua(1) for some a ∈ S2. Thus we can

write

r(u)(z′ + h) = r(eta)(z′ + h) = etaz′ + he−ta (10)

for all z′ + h ∈ Ca ⊕ fa. Here we used the fact that z · h = h · z for any
z ∈ Ca, h ∈ fa, where z is the complex conjugate of z in analogy to the
conjugation in C (cf. [2]).

Note that here a is the same vector both in the splitting Ca ⊕ Fa and in the
meridian Ua. For another splitting Cb ⊕ F b, the unitary group Ua(1) does not
operate on F b as Ub(1) does.

The restriction of r to the meridian Ua gives us a reducible representation
r|Ua . From (10) we can easily see that there are two invariant subspaces, namely
Ca and fa.

The representation r|aU also allows us to easily read off the character χr of r
at eta ∈ Ua:

χr(eta) = eta + e−ta,

which is in accordance with the “usually known” character of the spin 1
2–

representation.

5.3 The Spin 1
2
–Representation r and the Schrödinger

Representations ρν

5.3.1 Construct r out of ρν. Now we have all the prerequisites to
show how the spin 1

2–representation can be constructed out of the Schrödinger
representations ρν. One important aspect is that the center of any Heisenberg
group Ga is contained in the spin group SU(2).

We choose an element z ∈ SU(2); we wish to construct r(z).
The element z can be written in the form z = eta for a suitable a ∈ S2. This

fixes the Heisenberg group the representation of which we want to use, namely
Ga.

In a next step we choose the frequencies ν1 = 1 and ν2 = −1. Then we
have two representations ρ1|aU and ρ−1|aU of the center Ua of Ga which read

ρ±1|aU(eta)(ψ)(ξ) = e∓ti · ψ(ξ).

We will establish the required link by means of the characters. The characters
of ρ1 and ρ−1, respectively, are

χρ1(eta) = e−ti and χρ−1(eta) = eti.
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We set
χ := χρ1 + χρ−1 , χ(eta) = e−ti + eti.

This
is the character of the spin 1

2–representation r|aU(eta). An induction process
provides us with r|aU itself (up to isomorphy).

This procedure can be repeated for all meridians Ub(1), b ∈ S2. Since r|aU
and r|Ub(1) are linked via τk we thus get the whole representation r. Hence we
have shown:

Theorem 19. The spin 1
2–representation r is determined by the family of

Schrödinger representations ρ±1 of the Heisenberg groups Ga, a ∈ S2.

5.3.2 Construct ρ±1 out of r. We now start with the spin 1
2–represen-

tation r. By choosing an element a ∈ S2 we determine the Heisenberg group
Ga whose representation shall be constructed.

Let eta + h ∈ Ga; we want to describe ρ±1(eta + h).
The character χr of the spin 1

2–representation r, given by

χr(eta) = e−ti + eti,

defines two representations of Ua, the center of Ga, namely

χ1
r(e

ta) := e−ti and χ2
r(e

ta) := eti.

By the theorem of Stone–von Neumann we know that the equivalence classes
of ρ1 and ρ−1 are fixed by their restrictions to the center.

We choose v ∈ F a with |v| = 1 and thus get a coordinate system v, v · a on
fa. In the same manner we choose a vector−v ∈ F−a and so have a coordinate
system on F−a.

Hence the two representations ρ1 and ρ−1 are uniquely determined. Again,
their explicit form is given by an induction process as it is described for example
by Schempp ([15]) or in [14].

As a result we have:

Theorem 20. The Schrödinger representations ρ1 and ρ−1 of the Heisenberg
group Ga can be reconstructed starting from the spin 1

2–representation r|aU .

So far, we only got the two representations ρ1 and ρ−1. In the next section we
will briefly discuss how other Schrödinger representations may be gained from
spin representations.

5.3.3 Link between spin s–representations and ρν for ν ∈ Z. What
the spin 1

2–representation cannot do is to give us Schrödinger representations
with frequencies unequal to ±1. Hence we make use of the
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spin s–representation with character

χs(eta) = e−2sti + e(−2s+2)ti + . . . + e2sti

for any eta ∈ Ua. In the same way we described above, the character of the
spin s–representation determines the Schrödinger representations given by

ρ−2s|aU, ρ−2s+2|aU, . . . , ρ2s−2|aU, ρ2s|aU (11)

Vice versa we can show that the sum of the characters of the Schrödinger
representations in (11) gives us the character of the spin s–representation and
hence provides us – up to isomorphy – with the spin s–representation itself.

5.4 The Spin 1
2
–Representation and Signals

We will look at the geometry of the 3–sphere more closely; in particular the
great circles of S3 are one focus of interest.

Definition 21. A great circle K ⊂ S3 is a circle on S3 with center 0. This
means that both K and S3 have the same center.

The great circles of S3 are the left (right) cosets of the operation of Ua on S3.
We will establish a link between this geometry of the 3–sphere and the spin

1
2–representation:4

Lemma 22. The left cosets of the operation of Ua on S3 are given by

Ua(1) · k = r(Ua(1))(k) ∀ k ∈ S3.

Proof 1. For k = z′ + h ∈ S3 ⊂ Ca ⊕ Fa we have

Ua(1) · k = Ua(1) · (z′ + h)
= {z(z′ + h) | z ∈ Ua(1)}
= {zz′ + zh | z ∈ Ua(1)}
= {r(z)(z′ + h) | z ∈ Ua(1)}
= r(Ua(1))(z′ + h)
= r(Ua(1))(k).

This means that the left cosets consist of

r(Ua(1))(k), k ∈ S3.

4See also [2] and [14].
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The analogous result for right cosets is shown accordingly.

Any great circle can be split up into a circle in Ca and a circle in fa. The
radii of these circles are unequal to 1, in general. Hence it seems that unless the
coset Ua · k = Ua, we cannot use the Schrödinger representation to modulate
the information contained in Ua · k onto signals.

However, there is a related approach, which allows just this modulation of
the information on the great circles onto signals. We again look at the spin
1
2–representation r(z)(k) = zz′ + hz−1 of z ∈ Ua. Since |k| = |z′ + h| = 1
and since the splitting Ca⊕Fa is orthogonal, by knowing |h|, we have also |z′|
given. This means that if we have h, we know on which circle in Ca the vector
z · z′ is. This information is enough as z runs through all of Ua. In particular,
the circle

h · Ua ⊂ fa

is representative for Ua · k and thus also for r(Ua)(k).

The spin 1
2–representation can be generated by ρ1 + ρ−1, and since

(ρ1 + ρ−1)(h · Ua) is a subset of S(R, C), we have:

Proposition 23. The information inscribed in the great circles of the 3–
sphere S3 can be modulated onto signals.

This subject will be taken on in section 13 again.

6. A First Resummee

Let us hold for a moment and recollect what we got so far.

We started with splittings of the quaternions. One of them was the 1 + 3–
splitting, which provided us with a notion of a linear concept of time together
with a three–dimensional Euclidean space based on special relativity.

We then continued by splitting up the Euclidean space E. This 1+2–splitting
provided us with a Heisenberg algebra setting.

Thus we have a description of an information transmission with both space–
and time components in three and four dimensions.

In a next step we established a link between the spin group SU(2) and
Heisenberg groups Ga; a link we extended to comprise also the spin 1

2– and the
Schrödinger representations.

This means that we have a link between a representation coming from a
classical setting, namely the Schrödinger representation, and a representation
used in quantum mechanics, i.e. the spin 1

2–representation. Thus we have
entered a discussion of connecting a classical point of view with a quantum
point of view. (Hence this link is also a link between a macroscopic and a
microscopic approach.) This will be discussed in detail in sections 8 and 13.
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7. Ingredients of Quantum Information — a Geometric
Setting

We now want to focus on quantum information and a description of its
transmission. In particular, we want to investigate the link between the classical
description of information transmission as given in earlier sections and quantum
information transmission as we will describe it here. We start with a short
clarification of the terms we will use in the following.

The objects of interest in quantum information are quantum bitsqubits (qubits)
and their states; in particular the normed states of qubits. We will begin with a
traditional description of these notions.

The setting is provided by a two–dimensional Hilbert space over the complex
numbers C. For simplicity we take this Hilbert space to be C2 with the natural
Hermitian product < | >. Then the collection of normed states is given by
the 3–sphere S3 ⊂ C2. A state ψ ∈ C2 can be represented for example as
ψ = z1 · (1, 0)+z2 · (0, 1) with z1, z2 ∈ C and (1, 0), (0, 1) the canonical basis
of C2 (in literature ψ is often referred to as a qubit).

For a normed state ψ ∈ S3, the product ψ · ψ is a probability density. This
density is invariant under phase factors of ψ. Thus we consider ψ up to a (global)
phase factor. This is what we mean by a qubit. Hence for a description of the
qubit itself (whose normed state is given by ψ), the relevant entity is the coset
ψ · U(1). Thus we refer to the coset ψ · U(1) as a qubit.

The quotient S3/U(1), i.e. the orbit space of the U(1)–action on S3, leads
us to the complex projective space CP2 of C2 (cf. appendix 3.4). CP2 is
diffeomorphic to the 2–sphere S2 ⊂ S3. Thus a qubit is an element in the
complex projective space CP2 and vice versa.

On the other hand C2 can be given the structure of a skew field, the quater-
nions (cf. section 5.2). Hence S3 = SU(2) and therefore

CP2 = SU(2)/U(1). (12)

In order to link the Hilbert space with signal transmission as formulated in
proposition 13 we realize it in terms of thequaternion quaternions H generated
by a three-dimensional oriented Euclidean space E as done in section 2.1.

The fibration CP2 = SU(2)/U(1) (Hopf fibration) is studied in more detail
in a geometric fashion in the appendix 3.4.

As general references on quantum information and quantum computing see
[7], [11] and [13] as well as the literature cited there.

8. The Quantum State Bundle of a Gradient Field

The vector field X under consideration here is the same as in section 3, i.e. a
non-vanishing gradient field of a smooth R–valued function f defined on an
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open set O with values in a Euclidean R–linear oriented space E of dimension
three. The principal part of X is denoted by a. It assigns the gradient of f to
any x ∈ O. The flow of grad f will be brought in connection with quantum
information.

First of all we will link X with S2 in order to have access to the space of
qubits:

Assigning the unit vector

ε(x) :=
a(x)
|a(x)|

to each x ∈ O yields a smooth map

ε : O −→ S2,

the Gauss map, which is the direction field of X .

Given a level surface Sx through x ∈ O, the vector ε(x) is the oriented unit
normal to Sx in x.

Hence the vector field X is naturally linked to the space S2 of qubits, the
equator of the 3–sphere S3 in C2, which is the space of normed states in the
Hilbert space C2.

The aim of this section is to construct a U(1)–principal bundle K over O for
which each fibre Kx is the normed state space of the qubit ε(x) ∈ S2.

In order to link the geometry of E to the space S2 of qubits and hence to X ,
we now fix an element a ∈ S2 as a reference point and replace C2 by the skew
field of quaternions H split according to (5) into H = Ca ⊕ Fa.

The skew field H is turned into a Ca–linear space by setting

F a = q0 · Ca

for a fixed unit vector q0 ∈ F a. Clearly q0 · z = z · q0 for all z ∈ Ca. Thus

H = Ca ⊕ Ca · q0 = Ca ⊕ q0 · Ca,

a left–linear (right–linear) space. The Hermitian form is here defined with
respect to the left–linear structure as

< z1 + z2 · q0 | z′1 + z2 · q0 > := z̄1 · z′1 + z̄2 · z′2
for all z1, z2, z

′
1, z

′
2 ∈ Ca (cf. section 5.2).

The relation between qubits and their state spaces mentioned in section 7 is
here given by the Hopf fibration

SU(2)/Ua(1) = S2
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with the projection
prHopf : SU(2) −→ S2

defined by
prHopf(k) := τk(a).

Here τk is an inner automorphism of H (cf. definition 14 and the appendix,
which deals with the Hopf projection in detail (especially appendix 3.1)). In
appendix 1 we show that τk is an isometry and hence respecting any orthogonal
splitting of H. If τk(a) = b, the state space of a qubit b ∈ S2 is hence

τ−1
k (b) = k · Ua(1)

providing us with a relation between the state spaces of different qubits (cf. sec-
tion 5.4). Furthermore we point out that the vector k in τk(a) = b can naturally
be constructed out of a and b if b = ±a as shown in theorem 43 in appendix
3.2.

The quantum state bundle K will now be constructed as a subbundle of
O × S3:

Definition 24. The fibre Kx of the quantum state bundle K is defined as

Kx := pr−1

Hopf(ε(x)) ∀x ∈ O.

Thus the bundle K consists of

K :=
⋃
x∈O

Kx.

Clearly, K ⊂ O × S3 is a smooth submanifold if equipped with the subspace
topology. It contains normed states only.

Describing the link between K and the Hopf fibration more closely, for all
kx ∈ Kx and for any x ∈ O we embed the fibres of K into SU(2) by

ε̂ : K −→ SU(2)
ε̂(kx) := kε(x).

Then K is the pull–back of the Hopf fibration over S2 and hence a Ua–principal
bundle over O for which the diagram

K
ε̂−→ SU(2)

prO ↓ ↓ prHopf

O
ε−→ S2

(13)
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is commutative. prO is the projection to O assigning to any kx ∈ K the point
x ∈ O. This again reveals the smooth manifold structure of K. All the maps
in diagram (13) are smooth.

SU(2) consists of all normed states of the collection S2 of all qubits. Each
state in SU(2) can be considered to describe quantum information. Hence K
is a bundle of states over the collection O of points identified with qubits via ε.

This provides us with the following result (cf. section 3):

Proposition 25. K can be viewed as a collection of internal variables which
encode quantum information.

We now shall illustrate the position of the fibres on S3 with respect to the
splitting (5):

Any coset
Kτk(a) := k · Ua(1)

of normed states is a great circle on SU(2) for any k ∈ SU(2) (cf. lemma 22).
The splitting H = Ca⊕ fa for a fixed a ∈ S2 ⊂ SU(2) yields the components

K
a

τk(a) ⊂ Ca and Kfa

τk(a) ⊂ fa

of Kτk(a) obtained by the orthogonal projections pr a and prfa from H to Ca

and fa, respectively. Thus Kτk(a) is on the torus

Tk := K
a

τk(a) ⊕ Kfa

τk(a).

There are two extreme cases, namely if there is either no fa–component or no
Ca–component. Of course, the coset Ua(1) is in the degenerate torus

Te := Ua(1) + {0}.

Let us investigate under which circumstances the other extreme case, namely

Kτk(a) ⊂ fa (14)

can hold true, i.e.
k · Ua(1) ⊂ fa.

Assuming that equation (14) holds is the same as

k · z ∈ fa ∀ z ∈ Ua(1)

which implies
k ∈ fa.

Since, moreover,
τk(a) = k · a · k−1 = −a,
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we obtain

Lemma 26. Given a ∈ S2, the fibres Ka and K−a are in Ca. Moreover,

Kτk(a) ⊂ fa ⇐⇒ k ∈ fa.

Thus k ∈ fa is the necessary and sufficient condition for Kτk(a) to be on the
degenerate torus

Ta = {0} + q0 · Ua(1).

for the unit vector q0 ∈ fa. In all other cases with k = e the tori are not
degenerate.

9. A Natural Connection Form on K

9.1 A Natural Connection Form on SU(2)

The principal bundle (SU(2), prHopf, S
2, Ua(1)) (the Hopf fibration) ad-

mits a natural connection form αS2
:

Lemma 27. The R–valued one–form

αS2
(k; ζ) :=< prHopf(k) · k, ζ > ∀ k ∈ SU(2) and ∀ ζ ∈ TkSU(2).

is Ua–equivariant and hence a connection form on SU(2).

Proof 2. In fact, the form αS2
is Ua–invariant, i.e.

αS2
(kz; ζz) = < prHopf(kz) · kz, ζz > = < prHopf(k) · k, ζ >

for all z ∈ Ua, any k ∈ SU(2) and any ζ ∈ TkSU(2).

Moreover,

αS2
(k; ka) = < kak−1 · k, ka > = < ka, ka > = 1

since ka ∈ S3. This shows that

αS2
(k; ζ) = ζ ∀ ζ ∈ TkKx and ∀ k ∈ Kx.

Let us have a closer look at αS2
. Since for any ζ ∈ TkKx we obviously have

ζ = ζ ′ · k

for some ζ ′ ∈ su(2) = TeSU(2), the connection form αS2
can be rewritten as

αS2
(k; ζ) =< prHopf(k) · k, ζ ′ · k >
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and therefore, due to |k| = 1, as

αS2
(k; ζ) =< τk(a), ζ ′ >=< prHopf(k), ζ ′ > (15)

for all k ∈ SU(2) and all ζ ′ ∈ su(2).

The connection form αS2
allows us to describe the horizontal space of the

Hopf fibration more explicitly: Splitting su(2) = E into

su(2) = R · prHopf(k) ⊕ TprHopf(k)S
2,

which may be reformulated into

su(2) · k = R · τk(a) · k ⊕ Tτk(a)S
2 · k,

due to (15) we deduce

ker αS2
(k; ...) =

(
Tτk(a)S

2
)
· k ∀ k ∈ SU(2). (16)

This is to say that the horizontal space

Hork := kerαS2
(k; ...)

has a geometric meaning, namely

Hork =
(
Tτk(a)S

2
)
· k = Tk(S2 · k).

S2 · k is a sphere in S3 of constant latitude ϑ
2 if k = e

ϑ
2
·a (cf. equation (A.14)

in the appendix).
The horizontal distribution Hor :=

⋃
k∈ Hork is Ua–equivariant since αS2

is Ua–invariant. Moreover, for any smooth family k(t) ∈ pr−1

Hopf(b) with

k(0) = k and b ∈ S2,
(k(t) · z)· = k̇(0) · z

holds true. Hence from

prHopf(k(t) · z) = prHopf(k(t)) = b

we conclude that

TprHopf(k̇(0) · z) = TprHopf(k̇(0)).

Since Hork ⊕ TkKx = TkK and ker TprHopf = TKx, it is obvious that

TprHopfHork = Tτk(a)S
2. (17)
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9.2 A Natural Connection Form on K

Now our aim is to define a natural connection form on the bundle K of
normed quantum states, which would then allow us to describe a transmission
of information.

Definition 28. The connection form on K is given by the pull–back

α := ε̂∗αS2

which is written in more detail as

α (kx; ζ) := αS2
(kε(x); T ε̂(ζ))

for any x ∈ O, any kx ∈ K and any ζ ∈ TkxK.

Obviously, α is Ua–invariant.

If we map the horizontal subspace

Horkx := kerα (kx; ...) ∀ kx ∈ K and ∀x ∈ O

by TprHopf ◦ T ε̂, it is identified by diagram (13) as

TprHopf ◦ T ε̂ (Horkx) = Tε ◦ TprO (Horkx)

= Tε(x)S
2.

We therefore want to determine ker Txε at any x ∈ O. To do so let us
consider a smooth curve

σ : (−ϑ, ϑ) −→ O

with fixed positive ϑ ∈ R and σ(0) = x. Then

Tε(σ̇) =
(

a(σ)
|a(σ)|

)·

and hence

Tε(σ̇) =
da(σ̇)
|a(σ)| − d ln |a(σ)|(σ̇) · a(σ)

|a(σ)|
or

Tε(σ̇) =
da(σ̇)
|a(σ)| − d ln |a(σ)|(σ̇) · ε(σ).

Thus
Tε(σ̇) = 0 ⇐⇒ da(σ̇) = d ln |a(σ)|(σ̇) · a(σ).

In general, a curve σ satisfying

Tε(σ̇) = 0
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is not identical with the integral curve βx of a passing through x at 0. In fact

Tε(β̇) = 0 ⇐⇒ ε(βx) = const.

The condition (ε(βx))· = 0 obviously is identical with the condition that the
image of βx is a straight line segment.

If Sx denotes the level surface of f (for which grad f = a) through x ∈ O

Txε(h) = WSx(h) ∀h ∈ TxSx,

where WSx is the Weingarten map, since ε(y) is the unit normal at Sx for any
y ∈ Sx. Hence for any x ∈ O

Txε(h) = WSx(h) − d ln |a(x)|(h) · ε(x)

holds true. This yields

Txε(v) = 0 ⇐⇒ da(x)(v) = d ln |a(x)|(v) · a(x)

for all v ∈ E. Obviously,

TprO : Hork −→ Tprk
O ∀ k ∈ K (18)

is an isomorphism as can be shown accordingly to (17).

The vector field X on O is lifted horizontally to TK by using the inverse of
(18). The lifted vector field is denoted by Xhor.

For any integral curve βx with β(0) = x there is exactly one integral curve
βhor

kx
of Xhor such that for any given x ∈ O and prescribed kx ∈ Kx

β̇hor
kx

(t) ∈ Hor
βhor

kx

(t) ∀ t

and

βhor
kx

(0) = kx.

βhor
kx

is called the horizontal lift of βx with initial condition kx. Thus there is a
flow Φ on K which restricted to K|imβx

propagates initial data in Kx with the

velocity given by βx due to (18). Hence βhor
kx

and βx have the same speed. The
flow Φ we call the horizontal flow over βx. This will be our basic ingredient
for quantum information transmission (cf. section 12).
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10. The Quantum Line Bundle on O

We now want to extend the normed state bundle K to a complex line bundle,
the quantum line bundle consisting of all possible states of the qubits ε(x) ∈ S2

such that the quantum state bundle K is contained in this quantum line bundle.
It is the quantum analogue of Fa introduced in section 3.

For any x ∈ O, the circle Kx ⊂ K determines a complex line Lx in H given
by

Lx := k · Ca

for each k ∈ Kx. Since Ua(1) operates on K from the right, the field Ca

operates on Lx from the right, as well. Thus

L := K · Ca ⊂ O × SU(2)

is naturally equipped with the structure of a complex line bundle, called the
quantum line bundle. The canonical projection from L to O is also denoted by
prO.

Obviously, Lx consists of all states of the qubit ε(x) ∈ S2 and Kx ⊂ Lx is
the collection of all normed states for any x ∈ O.

For anyv ∈ S2 there is a unique complex line LS2

v ⊂ H containing pr−1

Hopf(v)
and

LS2
:=

⋃
v∈S2

LS2

v ⊂ S2 × H

is a complex line bundle, a submanifold of S2 × H. Obviously

L = ε∗LS2
.

However, L = ε∗TS2 = Fa.

10.1 A Horizontal Flow on the Quantum Line Bundle

The quantum line bundle L is associated to K with typical fibre Ca. More
precisely, L is the quotient of the action

(K × Ca) × Ua −→ K × Ca

((k, z′), z) �−→ (kx · z, z−1 · z′).

The reason for this is that the multiplication map

m : (K × Ca) × Ua −→ K · Ca = L

fibrewisely defined by

(kx, z′) · z �−→ kxz · z−1z′ = kx · z′
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factors over the quotient K × Ca/Ua and, therefore, yields a bundle isomor-
phism. Here kx, z′ and z vary over K, Ca and Ua, respectively.

The horizontal distribution Hor in TK constructed in the previous section
is mapped by Tm to TL and yields a Ua–invariant distribution in TL, the
horizontal distribution Hor , which is a vector bundle. Moreover, for each
kx ∈ Kx ⊂ Lx and any x ∈ O,

Horkx
∩ TkxK = Horkx . (19)

By a standard procedure Hor yields a connection on L (cf. [10] or [6]). The
map TprO restricted to Horkx

is an isomorphism onto TxO for any kx ∈ L, as
can be easily seen. Hence by the map

Tpr−1
O : TM −→ Hor

the vector field X is uniquely lifted to Tpr−1
O ◦ X ◦ TprO : L → Hor , which

will also be called Xhor. It is called the horizontal lift of X . Its flow, denoted
by Φ again, is called the horizontal flow, which, restricted to K, yields the
horizontal flow Φ on K constructed in the previous section.

10.2 A Connection to the Magnetic Monopole

The bundle L is the associated bundle to the identity representation of Ua(1)
on Ca. Of course, choosing the representation assigning with et·a the number
em·t·a for a fixed m ∈ Z for any t yields another complex line bundle Lm, say.
This line bundle plays a fundamental role in the geometric description of the
magnetic monopole (cf. [9]).

11. Classical Versus Quantum Information Geometrically
Formulated

The bundles Pa, Fa, K and L provide us with bundles of internal variables
of the vector field. Internal variables are the carriers of information. Classical
information is encoded in Pa and Fa (cf. section 3) while quantum information
is encoded in K (in terms of normed states) and in L.

Let us link these two sorts of descriptions of information. In fact, the link will
be based on the 2+2–splitting (5) of the quaternions introduced in section 2. We
will see that classical information enters quantum information as a component.

The complex lines in Fa are precisely all Fa
x where x varies in O. This is to

say that

Lemma 29.

Fa = ε∗TS2.
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We will next show how classical information can be extracted from quantum
information in L. For each x ∈ O,

Ca
x ⊕ Fa

x = H,

where Ca
x = Cε(x). This is to say that

Ca ⊕ Fa = O × H

for Ca =
⋃

x∈O

{x} × Ca
x. Quantum information is fibrewisely encoded in L.

Clearly
L ⊂ Ca ⊕ Fa.

The bundle projection

Pr | : L|O −→ Fa|O (20)

coincides fibrewisely with the bundle projection

Pr | x : Lx −→ Fa
x ∀x ∈ O

which is the restriction of the orthogonal bundle projection of

Ca ⊕ Fa|O
Pr−→ Fa|O

to Lx. The extraction of classical information out of quantum information is
hence performed by (20).

We thus investigate under what circumstances Pr | x is not surjective. This
happens precisely if Lx ∩ Cε(x) = {0}.

Given kx · z ∈ Lx ∩ Cε(x) for some z ∈ Ca, we deduce for kx · z ∈ Cε(x)

that
kx · z = τk(z′)

for some z′ ∈ Ca, since Cε(x) = τkx(Ca) (cf. section 5). Thus

kx = z′ · z−1 ∈ Ca,

and hence

kx · z′ ∈ Cε(x) ⇐⇒ ε(x) =
a(x)
|a(x)| = a.

Therefore we may state

Lemma 30. Pr | x is an isomorphism for all x ∈ O\{ε−1(±a)}.

The following corollary is immediate:
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Corollary 31. Any kx ∈ Lx is of the form

kx =
(
kx − Pr | x(kx)

)
+ Pr | x(kx).

Hence any Pr | x(kx) may be regarded as a classical component of the bit of
quantum information kx.

Thus we may regard classical information as part of quantum information.

Concerning the quantum state bundle K, corollary 31 implies:

Proposition 32. Quantum information encoded in Kx (and Lx) is expressed
in terms of information encoded in Ua(1) (and Ca) and classical information
encoded in Pa

x (and Fa
x) for any x ∈ O.

This indeed shows geometrically that classical information can be comple-
mented to quantum information (cf. proposition 23) and extracted from quantum
information.

12. The Transmission of Quantum Information

Transmission of quantum information from one fibre in L to another one is
a unitary transformation, i.e. the multiplication by a phase factor. Along an
integral curve β we factor this transformation in a unitary one Ũ t on the initial
fibre followed by another unitary transformation (another phase factor) caused
by parallel transport ([3]). We here focus on the parallel transport only.

Let us consider the horizontal flow Φ on L|imβ. Quantum information is
transmitted from one fibre to another one by means of Φ. It is also known as
parallel transport. Its restriction to Kis the horizontal flow Φ on K. Both are
Ua(1)–equivariant, since the horizontal distribution in TL is equivariant. This
is to say

Φ(t)(kx · z) = Φ(t)(kx) · z ∀ z ∈ Ua

for any initial value on Lβ(0), say, and all t in the open domain D of βx. Clearly
Φ(t) is the multiplication by a phase factor on Lβx(t) and thus Φ(t) is unitary.
We set

Φ(t)(kx) := βhor
x (t) with βhor

x (0) = kx

for all kx ∈ K and any t ∈ D. Here x is an initial point of βx.

The integral curve βx passing through x at t = 0 satisfies

βx(t1 + t2) = ββx(t1)(t2) (21)

for all t1, t2 for which t1 + t2 is in the domain D of definition of βx. Clearly
there is an open interval I centered at zero for which I + I is in D.

Obviously Φ shares the property (21) with βx.
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To describe the transmission entirely on H, we will extend Φ(t) to a map on
all of H. Due to (5) and F a = Ca · q0 for a fixed unit vector q0 ∈ F a,

kx(t) · (Ca ⊕ Ca · q0) = H (22)

holds true for all t and hence allows to decompose any quaternion in terms of
the left–hand side of (22) in a unique fashion. Thus we define

U t(kx(t))(z1 + z2 · q0) := Φ(t)(kx)(z1 + z2 · q0)

for all z1, z2 ∈ Ca and any t in the domain of βx. Since Φ(t) acts on kx ∈ Lx

by multiplication of a phase factor, U t is unitary on H.

Therefore Φ(t) yields a one–parameter group

U t : H −→ H ∀ t ∈ D (23)

generated by Hx, say, where Hx is a Hermitian Ca-linear map on H.
Thus the transmission of any state k ∈ Lx to a state in Lβx(t) at t ∈ D is

given by
k(t) := U t(k) ∀ t ∈ D.

In that sense the one–parameter group U t describes the transmission of quantum
information.

Obviously
dU t

dt
= iHx ◦ U t ∀ t ∈ R.

Clearly
Hx ∈ su(2) = E.

A normed state kx ∈ Kx evolves along βx by

kβx(t)(t) := eiHx·t(kx) ∀x ∈ O

for which obviously

k̇βx(t)(t) = iHx · kβx(t)(t) ∀ t ∈ R

holds true. Specifying a level surface S of f we observe that

S
H−→ Herm H

y �−→ Hy

is smooth.

Clearly the operator Hx(t) ∈ SU(2) maps Lx into Lβx(t) for any t ∈ D and
any x ∈ O by construction.
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Due to (19) the one–parameter group (23) governs the transmission of quan-
tum information of K, as well.

Note that so far Lx is not regarded as a phase space of any sort.

Given x ∈ O with ε(x) = ±a, we choose a reference point v ∈ Lx (with
|v| = 1, say,), so that Lx = R · v ⊕ R · v · a and Lx = Ca. Then Lx is a phase
space and R · a+ Lx can naturally be turned into a Heisenberg algebra with ωa

as symplectic structure.

By means of proposition 23 we have:

Lemma 33. For any x ∈ O with ε(x) = ±a, the transmission of quantum
information by means of Φ can be modulated on signals, provided Lx is turned
into a phase space.

13. Transmission of Classical out of Quantum
Information

The aim of this section is to link classical information transmission with
quantum information transmission. Both transmissions follow the trajectories
of a singularity free vector field with principal part a. However they do so in
different fashions, as we will see now. Again we merely concentrate on the
parallel transport.

The complex line bundle Fa shall now be equipped with a natural connection
form αcl. It is defined by

αcl(hx; ζ) :=< ε(x) · hx, ζ > ∀hx ∈ Fa
x and ∀ ζ ∈ ThxO

for any x ∈ O. 5

The one–form Pr∗ αcl is Ua(1)–equivariant and extracts from each kx ∈ Lx

the classical part in the sense of corollary 31.
Setting

Horclhx
:= kerαcl(hx, . . .) ∀hx ∈ Fa and ∀x ∈ O

implies

Pr (Horkx) = HorclPr kx
∀ kx ∈ Lx and ∀x ∈ O\{ε(±a)}.

The link between quantum and classical information expressed in corollary
31 can be extended to comprise also the transmission of classical information
encoded in Pa: Since

TKx ⊂ λxTUε(x)(1) ⊕ µxTPa
x ∀x ∈ O

5αcl differs from the connection form determined by a as presented in [5] and [2]. There the field strength
explicitly enters. However, for sake of simplicity we here work with αcl.
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for suitable λx, µx ∈ R, it follows that

Lemma 34. For all kx ∈ Kx and for all x ∈ O\{ε−1(±a)},

Horkx = λx · HorUε(x)(1)
kx

⊕ µxHor
a
x

kx

where HorUε(x)(1)
kx

and Hor
a
x

kx
denote the orthogonal projections of Horkx onto

TUa(1) and Hor
a
x

kx
, respectively.

Clearly

µx · Hor
a
x

kx
⊂ TPa

x.

This finally shows:

Proposition 35. The transmission of classical information is completed by
transmission of information in λx ·Uε(x)(1) to be turned into a transmission of
quantum information encoded in state spaces of qubits.

The transmission of classical information is performed by the horizontal flow
Φcl of the horizontal lift of β̇x0 of a field line with initial condition x0. Indeed

Pr Φ(t) = Φcl ∀ t.

Let us return to the unitary transformation Ũ t introduced in the beginning of
section 12. and choose some smooth L2–map

ψ : Lx0 −→ Ca

for which
∫

ψψωx0 = 1 with the symplectic structure ωx0 caused by the mul-
tiplication by a in Ca. We might regard

ψ · ψ : Lx0 −→ R

as a smooth density function for the distribution of quantum information. Since
the transmission of quantum information along an integral curve βx0 is unitary,
the map ψ evolves by

ψt := ψ ◦ U−t ∀ t. (24)

We hence may write
ψt = Ũ t(ψx0)

where Ũ t is the unitary operator on L2(Lx0 , C
a) determined by (24). Ũ t is a

continuous one–parameter group. Using Stone’s theorem (cf. [1]), Ũ t can be
written as

Ũ t = eitHa
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for some Hermitian operator H , and thus the evolution of ψ is governed by a
Schrödinger type of equation

∂

∂t
ψt = i · H · ψt.

The projection from Lx0 to Fa is a Ca–linear isomorphism for x ∈ O\{ε(±a)}.
We may thus transfer the classical density ψtψt via this projection to a function
ψt ·ψt on Fa

x0
. A continuity equation for ψt ·ψt and a symplectic transformation

(replacing the unitary transformation in the quantum case) in the initial fibre
together with the representation of the metaplectic group then yield the quan-
tization of homogenous quadratic polynomials on Fa

x0
. The extension of this

quantization to all inhomogeneous quadratic polynomials is achieved by the
metaplectic representation and the Schrödinger representation (cf. [4]) of the
semi–direct product of the metaplectic group and the Heisenberg group Ga

x0
.

The inhomogeneous quadratic polynomials are identical with the Hamiltonian
on Fa

x0
to be quantized by this method (cf. [3]).

14. The Transmission of Entangled States

As an outlook, we briefly sketch the transmission of two–fold entangled
states on a simple example.6 We intend to transmit two entangled states along
two possibly different trajectories of a vector field.

Following the idea of the transmission of states along vector fields as ex-
pressed in section 13, we need to replace H by H ⊗ H, the 3–sphere S3 by
S7 and S2 by an appropriate manifold. Finally ε has to be generalized accord-
ingly. At first we begin by treating two integral curves of the vector field X
simultaneously.

The above setting in section 13 is generalized by considering the vector field
X × X with principal part

a × a : O × O −→ E × E,

a smooth map. For any initial condition (x1, x2) ∈ O × O the map

(β1, β2) : (−λ, λ) −→ O × O

is an integral curve of X ×X provided β1 and β2 are field lines of X satisfying

β1(0) = x1 and β2(0) = x2.

Indeed, for any t ∈ (−λ, λ)

(β1, β2)·(t) = β̇1(t) × β̇2(t) = a(β1(t)) × a(β2(t))

6We will expand on it in [2].
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holds true.

Next let us consider the analogue of the Hopf fibration used for the vector
field X .

Any normed state χ ∈ H⊗H is up to a global phase factor on the great circle
χ ·Ca∩S7. Hence the complex projective space CaP (H⊗H) is the collection
of the states modulo global phase factors.

To talk of a pair of two single qubits along a trajectory of the vector field
X ×X , we need to form S2 ×S2. Each element v ∈ S2 determines a complex
line Fv, say. By appendix 3.4 both Fv and Fw are fibres of L, namely Lx1 and
Lx2 , respectively, if ε(x1) = v and ε(x2) = w. Thus for any pair (v, w) ∈
S2 × S2 we may form

Fv ⊗ Fw,

a Ca–complex line again. Therefore we have the map

S : S2 × S2 → CaP (H × H)

defined by
S
(
(v1, v2)

)
= Fv1 ⊗ Fv2

for any v1, v2 ∈ E.
This observation allows to generalize ε to a map ε⊗, say, defined on O ×O.

In fact
ε⊗ := S ◦ (ε × ε)

maps the field vector a(x1) × a(x2) of X × X into the Ca–complex line

S(a(x1) × a(x2)) ∈ CaP (H ⊗ H)

for any x1, x2 ∈ O. On CaP (H ⊗ H) we have the tautological bundle (cf. ap-
pendix 3.4). This bundle can be pulled back by ε⊗ to O ×O yielding L⊗, say.
The fibre of L⊗ at (x1, x2) ∈ O × O is Lx1 ⊗ Lx2 .

The connection form α on the quantum line bundle L⊗ generalizes to α⊗
on the tautological bundle over CaP (H ⊗ H) by setting

α⊗ := α ⊗ α .

Obviously α⊗ is Ua(1)–equivariant, since k ⊗ z ∈ S7 for all z ∈ Ca and all
k ∈ S7.

The horizontal subspace of α⊗ and the horizontal transmission are con-
structed analogously as for α .

Mapping S2 into the diagonal of S2 × S2 yields the transmission of two
entangled states along one field line of X .
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Appendix
In this appendix we will give a detailed description of the Hopf fibration and the Hopf

projection. They provide us with a powerful tool which we have used frequently in this paper.

1. Inner Automorphisms
The Hopf fibration of S3 over S2 can geometrically be described most easily if inner auto-

morphisms are used. In definition 14, an inner automorphism

τk : H −→ H

for any k ∈ Ḣ was given by the conjugation by k, i.e.

τk(h) = k · h · k−1 ∀h ∈ H.

Hence
τk(k) = k ∀ k ∈ H.

Any automorphism of the skew field H is an inner automorphism. Since τt·k = τk for any
t ∈ R, t �= 0,

τ : H −→ Aut H

k 	−→ τk (A.1)

yields a homomorphism of SU(2) to Aut H with {±e} as kernel as well as a natural action of
Ḣ on H.

Obviously τk is an R−algebra isomorphism of H satisfying τk(R · e) = R · e and τk(E) =
τk(su(2)) = su(2). The latter is due to

< e, h > = tr h = 0 ∀h ∈ E.

As in every Lie group the inner automorphism τk with k ∈ SU(2) = S3 determines an
R−linear automorphism on the Lie algebra su(2) = E. It is the tangent map of τk at the
identity e ∈ SU(2) ⊂ H, that is

Teτk(h) =
d

dt

(
k · h(t) · k−1)∣∣∣∣

t=0

= k · h · k−1 ∀h ∈ E

for a smooth family h(t) ∈ S3 with h(0) = e and ḣ(0) = h. Thus

Teτk = τk ∀ k ∈ SU(2), (A.2)

due to the linearity of τk. Instead of Teτk the notation Adk is common. Adk is called the adjoint
representation. From (A.2) we read off that

Adk = τk ∀ k ∈ SU(2).

In fact τk ∈ SO(E) for all k ∈ SU(2) = S3, as we see from the definition of the scalar
product < , > on H (cf. (2) in definition 1):

< τk(h), τk(h′) >=
1

2
· tr τk(h) · τ̃k(h′) =< h, h′ > . (A.3)
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Because of (A.2) and (14) the assignment

k 	→ Adk|E = τk|E ∀ k ∈ SU(2)

determines the representation

AdSU(2) : SU(2) −→ SO(E).

Lemma 36. The map AdSU(2) is a surjection with {±e} as kernel. Thus SO(E) is diffeomor-
phic to the real projective space RP (E) of E.

Proof 3. We consider τk(h) for k ∈ SU(2) and h ∈ E and expand it into

τk(h) =
1

|k|2 · (λ2 · h + λ · [u, h] − u · h · u). (A.4)

where k = λ · e + u with λ ∈ R and u ∈ E and k−1 = k
|k|2 with k = λ · e − u. Here [ , ] is

the commutator in H again. More explicitly, we can write (15) as

τk(h) =
1

|k|2 · (λ2 · h + 2λ · u × h − u × h × u+ < u, h > ·u).

Since

τk(u) =
1

|k|2 · (λ2 · u − u2 · u) = u, (A.5)

the rotation axis of τk is R ·u ⊂ E. Thus the rotation τk can be described in the plane u⊥ ⊂ E,
the orthogonal complement of u in E. The plane u⊥ is called the rotation plane of τk. For a
unit vector h ∈ u⊥ we have

< τk(h), h >=
1

|k|2 · (λ2 − |u|2).

Thus, if ϑk denotes the angle of rotation of τk,

cos ϑk =
λ2 − |u|2
λ2 + |u|2 . (A.6)

This shows that τ : SU(2) −→ SO(E) mapping any k ∈ SU(2) to τk ∈ SO(E) is a surjection
map with {±e} as kernel, as we claimed.

Now let k = λ · e + u with λ ∈ R and a non-vanishing u ∈ E. The unit vector u
|u| yields the

splitting E = R · u
|u| ⊕F

u
|u| where F

u
|u| is the orthogonal complement of u

|u| in E. Hence any

h ∈ E is split into h = ζ · u
|u| + h′ with h′ ∈ F

u
|u| and ζ =< h, u

|u| >. Hence

τk(h) = ζ · u

|u| + τk(h′)

since τk(u) = u according to (A.5). This means that τk(h) precesses about the rotation axis
R · u by the angle ϑk.

Hence we started to present the rotation τk ∈ SO(E) in detail. So far we determined
the rotation axis and the rotation angle in the plane perpendicular to this axis. Without loss of
generality, we can assume that k is a unit vector. In the next section we will relate these geometric
entities with the vector k on the unit–sphere S3 ⊂ H.
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2. Rotation Angle and Latitude of an Element in SU(2)

In order to compute the rotation angle in terms of the latitude of an element k ∈ SU(2),

we now want to rewrite the action of τk in terms of k2

|k|2 . As in the previous section, we split

any h ∈ E into h = ζ · u
|u| + h′ with h′ ∈ F

u
|u| and ζ =< h, u

|u| >. The image τk(h′) of

h′ ∈ F
u
|u| is computed as

τk(h′) = k · h′ · k−1 = k · h′ · k

|k|2

and therefore is

τk(h′) =
k2

|k|2 · h′ (A.7)

since h′ · k = h′ · (λ · e − u) = (λ · e + u) · h′ = k · h′. Thus

τk(h) = ζ · u

|u| +
k2

|k|2 · h′

for h = ζ · u
|u| + h′.

Clearly k2

|k|2 ∈ S3 and
∣∣∣ k2

|k|2 · h′
∣∣∣ = |h′|. Any unit quaternion can obviously be represented

in terms of some k ∈ Ḣ as

k2

|k|2 =
k

k

due to |k|2 = k · k = k · k for all k ∈ H and, therefore,

τk(h) = ζ · u

|u| +
λ · e + u

λ · e − u
· h′ = ζ · u

|u| +
k

k
· h′.

The oriented rotation angle ϑk (called rotation angle in the sequel) of τk is determined by
the equation

< τk(h′), h′ > = <
k2

|k|2 · h′, h′ > = |h′|2 · cos ϑk

and hence

< τk(h), h >= ζ2 + |h′|2 · cos ϑk.

ϑk shall now be evaluated in terms the components of k ∈ H.

To this end and in view of (A.7) we observe that for any k ∈ H its square k2 can be expressed
as

k2 = (λ · e + u)2 = (λ2 − |u|2) · e + 2 · λ · u, (A.8)

yielding

k2

|k|2 =
λ2 − |u|2
λ2 + |u|2 · e + 2 · λ · |u|

|k|2 · u

|u| (A.9)
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and hence (
k

|k|
)2

= e · cos ϑk +
u

|u| · sin ϑk = e
ϑk· u

|u| (A.10)

with cos ϑk = λ2−|u|2
λ2+|u|2 . (according to (A.6)) and thus sin ϑk = 2λ · u

|k|2 . k2

|k|2 = e
ϑk· u

|u| and,
In turn,

k

|k| = e
ϑk
2 · u

|u| . (A.11)

In terms of the Minkowski metric gM characterized by

−gM (k, k) = λ2 − |u|2

for all k ∈ S3 (cf. definition 2), equation (A.9) reads

k2

|k|2 =
−gM (k, k)

< k, k >
· e + 2 · λ · |u|

|k|2 · u

|u| . (A.12)

This formula allows to express |k|2 in terms of gM (k, k) as

gM (k, k) = −|k|2 · cos ϑk,

which expresses the fact that τ : Ḣ → Aut H is associated with a natural Minkowski metric
(cf. (A.7)).

In terms of the oriented rotation angle ϑk of τk, the vector τk(h) ∈ E is revealed in terms of

the geometry of R · u
|u| + F

u
|u| as

τk(h) = ζ · u

|u| +
λ2 − |u|2
λ2 + |u|2 · h′ +

2 · λ · |u|
|k|2 · u

|u| × h′

(due to (A.7)). Equation (A.6) yields

τk(h) = ζ · u

|u| + h′ · cos ϑk +
u

|u| × h′ · sin ϑk

or

τk(h) = pr · u
|u|

(h) · u

|u| + e
ϑk· u

|u| · pr
F

u
|u| (h) ∀h ∈ E (A.13)

where pr · u
|u|

and pr
F

u
|u| are the projections from E onto R · u

|u| and F
u
|u| , respectively. Hence

cos ϑk = 0 ⇔ |λ| = |u|.

To identify the geometric meaning of the rotation angle ϑk in terms of the position of k in S3

let us consider the plane spanned by λ · e and u. This plane is nothing else but C
u
|u| . In fact k,

λ · e and u form a right triangle. The oriented angle between k and λ · e shall be denoted by βk.
Then with (A.10) and (A.11) we have

ϑk = 2βk. (A.14)

Thus we have shown:
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Theorem 37. Any k ∈ S3 given by k = λe+u with u ∈ E is of the form k = e
βk· u

|u| , where
βk is the latitude of k on the 3–sphere. Then the axis of rotation of τk is R · u and the rotation
angle ϑk is twice the latitude βk.

Assuming the rotation angle ϑk is fixed, then the unit vector k2

|k|2 varies on all of the two-

dimensional sphere S2
ϑk

⊂ S3 given by

S2
ϑk

:= e · cos ϑk + S2 · sin ϑk, (A.15)

provided u
|u| varies in S2. The 2–sphere S2

ϑk
is the sphere of constant latitude ϑk

2
. This is to

say that the rotation angle ϑk of τk fixes the latitude of the unit vector k2

|k|2 ∈ S3 within S3 by
(A.14). Two inner automorphisms with the same rotation angles may have different rotations
axes and thus may rotate in different tangent planes of S2.

Finally we want to compute the Euler angles of τk with k ∈ S3. Splitting k into k = λ ·e+u
and expressing u in terms of a basis e1, e2, e3 ∈ S2 as u =

∑3
i=1 ξiei yields due to (A.11)

τk = e
ϑk
2 ·∑3

i=1 ξiei

and

τk =
3∏

i=1

eΦiei

with the Euler angles

Φi =
ϑk

2
· ξi i = 1, 2, 3.

3. The Hopf Fibration

The natural action
ψ : SU(2) × S2 −→ S2

of SU(2) on the unit sphere S2 ⊂ E is defined by

ψ(k, u) := τk(u) ∀ k ∈ SU(2) and ∀u ∈ S2.

Fixing some c ∈ S2 allows us to write any k ∈ SU(2) in the form k = etc with t ∈ R
(cf. (4)).

To compute the stable group

Su := {g ∈ SO(E) | g(u) = u}
at u ∈ S2 we investigate whether etc · u = u for all t ∈ R. This is equivalent to

c × u = 0,

which holds iff c = ±u, showing that the stable group at u is the commutative group Uu(1).
Clearly U(1) acts on Uu(1) via the field isomorphism

iu : C → Cu

sending 1 and i to e and u, respectively. Thus we have shown:

Lemma 38. The stable group Sb of any b ∈ S2 is isomorphic to SO(F b) where F b = b⊥E .
More exactly, the isomorphism maps any rotation g ∈ Sb into g|F b .
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3.1 The Hopf Projection
We now fix a ∈ S2 for the remainder of these notes. For each b ∈ S2 there is some

gb ∈ SO(E) such that

b = gb(a).

Therefore, we have a projection

SO(E)
pra−→ S2

g 	−→ g(a). (A.16)

Let us look at the stable group more closely. Obviously

Sb =
{

expSO(E) t · b | t ∈ R
}

.

Moreover,

pr−1
a (b) = gb · pr−1

a (a) = gb · Sa if b = gb(a).

Thus

S2 = SO(E)/Sa.

Combining τ of (A.0) in appendix 1 with the projection pra yields the surjective map

pra ◦ τ : SU(2) −→ S2,

which will be called the Hopf projection in the sequel and will be denoted by prHopf. Due to
equation (A.15),

prHopf(k) = τk(a)

for any k ∈ SU(2) and thus prHopf is smooth. Clearly

τ−1(Sa) = Ua(1).

The construction made so far is subsumed as follows:

Theorem 39. The following commutative diagram of smooth maps visualizes the above
construction:

SU(2)
τ−→ SO(E)

prHopf ↘ ↙ pra

S2

Moreover, (
SU(2), prHopf, S

2, Ua(1)
)

is a principal bundle, the Hopf fibration.
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3.2 A Reconstruction Formula
In this subsection we start with a, b ∈ S2 and will determine k ∈ SU(2) for which b = τk(a).

To this end we will split k into

k = λe + µu (A.17)

with λ, µ ∈ R and u ∈ S2. Obviously

λ2 + µ2 = 1

According to (A.5), R · u is the axis of rotation of τk. To see how a is rotated by τk about R · u
we decompose a into

au :=< a, u > u and a⊥ := a− < a, u > u.

Clearly
a⊥ ∈ F u

is the component of a that is rotated while au is left invariant. We set

cos β :=< a, u > (A.18)

for some β ∈ R and observe that

τk(a⊥) = eϑ·u · a⊥

since F u is the plane of rotation. Again, ϑ denotes the angle of rotation of τk (cf. (A.11)).
Moreover

< τk(a), u >=< a, τ−1
k (u) > .

Therefore we have

Proposition 40.

< b, u >=< a, u >= cos β. (A.19)

Hence
b − a ∈ F u.

Equation (A.19) expresses that a and b are on the same cone with vertex in 0 ∈ E. The cone
has β as cone angle and R · u as axis of rotation.

Applying τk to a⊥ yields

eϑ·u · a⊥+ < a, u > ·u = b.

We define bu and b⊥ in analogy to au and a⊥ and apply τk to a. This yields for k2 = eϑ·u

τk(au) = bu

and, therefore,
τk(a⊥) = b⊥.

From (A.11) we obtain
eϑu = b⊥ · a−1

⊥
or

eϑu = − 1

|a⊥|2 (b⊥ × a⊥− < b⊥, a⊥ > ·e)
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due to

a−1
⊥ =

1

|a⊥| · a⊥.

Since, moreover, |a⊥| = |b⊥|, we easily verify

eϑ·u =<
a⊥
|a⊥| ,

b⊥
|a⊥| > ·e +

a⊥
|a⊥| ×

b⊥
|b⊥| .

Thus k2 is entirely determined by the unit vectors a⊥
|a⊥| and b⊥

|b⊥| in F u.

Proposition 41. The components of k2 formed with respect to the splitting

H = R · e + E

are

(λ2 − µ2) · e =<
b⊥
|b⊥| ,

a⊥
|a⊥| > ·e

and

2λ · µ · u =
a⊥
|a⊥| ×

b⊥
|b⊥|

which are directly related to the rotation angle ϑk of τk as seen from (A.9).

Since k · Ua = Ca ∩ S3, the coset K := k · Ua(1) is a great circle inclined from R · e if
k �= e. Let us remark the following:

Lemma 42. Given a right coset k · Ua(1) for some k ∈ SU(2) and a fixed vector a ∈ S2

there is some k′ ∈ k · Ua(1) such that the axis of rotation R · u′ of τk′ is perpendicular to a.
Here u′ ∈ S2. If, moreover,

b := τk′(a) = prHopf(k),

the axis of rotation of τk′ is R · a×b
|a×b| .

Proof 4. To see this we represent any element in K with respect to a fixed k ∈ K as

k(t) := k · et·a

and split k according to (A.17). Thus

k(t) = λ · cos t + λ · a · sin t + µu · cos t + µ · u · a sin t.

The rotation axis of τk(t) is

R · (λa · sin t + µu · cos t + µu · a · sin t)

according to (A.5). If this axis shall be perpendicular to a for some t0 ∈ R,

λ · sin t0 + µ· < u, a > · cos t0 = 0

has to hold. If λ �= 0, the solution t0 is hence determined by

tan t0 = −µ

λ
· < a, u >
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(Clearly there is some k ∈ K for which λ �= 0.) Since k = e
ϑ
2 ·u, the parameters λ and µ are

identified as λ = cos ϑ
2

and µ = sin ϑ
2

and we finally find

tan t0 = − tan
ϑ

2
· < a, u >

or

tan t0 = − tan
ϑ

2
cos β,

due to (A.18).

The preceding lemma allows us to solve the problem mentioned in the beginning of 3.2,
namely to determine the vector k in τk(a) = b more closely for a given pair a, b ∈ S2.

The solution is rather easy. Without loss of generality we may assume that the rotation axis
of τk (where k still has to be constructed), is perpendicular to a due to lemma 42. Thus k has to
be of the form

k = e
ϑ
2

a×b
|a×b| . (A.20)

The rotation angle ϑ of τk is obtained up to 2π from |a × b| as

sin ϑ = |a × b|

due to the formula

|a × b| = |a| · |b| · sin ϑ = sin ϑ.

Therefore, as a summary of the preceding lemmas, we have the following theorem:

Theorem 43. For each fixed a ∈ S2 the projection

prHopf : SU(2) −→ S2

defined by

prHopf(k) = τk(a) ∀ k ∈ SU(2)

is a (smooth) surjection with

pr−1

Hopf(τk(a)) = k · Ua(1).

Any coset k · Ua(1) with k ∈ SU(2) contains some k′ such that the axis of rotation of τk′ ∈
SO(E) is perpendicular to R · a. Hence given b ∈ S2 the coset pr−1

Hopf(b) ⊂ SU(2) is of the

form

pr−1

Hopf(b) = e
ϑ
2 · a×b

|a×b| · Ua(1)

where ϑ satisfies

|a × b| = sin ϑ.
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3.3 The Hopf fibration and the geometry of the tangent
bundle of the 2–sphere

In order to relate the Hopf fibration with the geometry of the tangent bundle of the 2–sphere
we consider

S :=
⋃

x∈S2

S′
x ⊂ TS2,

the collection of unit circles S′
x formed with respect to the Riemannian metric the sphere S2

inherits from the inclusion S2 ⊂ E.
On the sphere S2 we choose some point a, say. Moreover we fix some v0 in the S′

x. This
allows us to define an action

Φ : SO(E) −→ S

as

Φ (g) = g(v0) ∀ g ∈ SO(E).

Clearly

pra : SO(E) −→ S2

mapping a into g(a) for any g ∈ SO(E) is compatible with Φ , in the sense that

prS2 ◦ Φ (g) = pra(g) ∀ g ∈ SO(E)

where prS2 : TS2 −→ S2 is the canonical projection (stable groups of pra operate via Φ on
the tangent planes of S2).

Since

E = R · a + TaS2,

the map Φ is a bijection. In fact, it is a diffeomorphism. Moreover, SO(TaS2) maps S′
a into

itself. Thus the diagram

SO(E)
ΦS−→ S

pra ↘ ↙ pr
S2a

S2

commutes (cf. (A.15)). Hence we have:

Theorem 44. The Hopf fibration is related to S by the commuting diagram

SU(2)
τ−→ SO(E)

ΦS−→ S

prHopf ↘ ↓ pra ↙ pr
S2

S2

This shows that the Hopf fibration is a spin structure of S2.
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3.4 Tautological Bundles
The Hopf fibration as presented in theorem 43 admits an interpretation in terms of a tauto-

logical bundle over the complex projective space CaP (H), the manifold of all Ca–lines in H.
To verify this we write any Ca–line in H in the form k · Ca with k ∈ H. The projective space
CaP (H) will be mapped diffeomorphically onto S2. At first we observe that

k · Ca ∩ S3 = k · Ua ∀ k ∈ S3.

Thus the orbit space S3/Ua of the Ca–action on S3 corresponds bijectively to CaP (H). We
may hence identify CaP (H) with the orbit space S3/Ua. Using the identification of SU(2)
with S3, the 2 : 1–map

τ : S3 −→ SO(E)

yields the desired correspondence between orbit spaces

τa : S3/Ua −→ SO(E)/SO(F a) = S2,

say, given by
τa(k · Ua) := τk · τ(Ua) ∀ k ∈ S3.

It is a smooth one–to–one map of the orbit space S3/Ua onto SO(E)/SO(F a). However, the
latter is identical to S2. With this identification,

k · Ua = τk(a)

holds true by (A.15).

The fibre at b ∈ S2, say, of the principal bundle
(
SU(2), prHopf, S

2, Ua
)

is hence k · Ua,

where τk(a) = b. Accordingly, the fibre over the coset
k · Ua ∈ S3/Ua is k · Ua itself. This is the reason why the Hopf fibration over S2

CaP (H) = S3/Ua

is called the tautological principal bundle over CaP (H).
Accordingly, the complex line bundle

L
aP ( ) −→ CaP (H)

with the complex line k · Ua as fibre over k · Ca ∈ CaP (H) over any k ∈ H is called the
tautological complex line bundle over CaP (H).
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Studies / Notas de Matemàtica 154. Amsterdam: North Holland.

[7] Bouwmeester, D., A. Ekert, and A. Zelinger (eds.): 2000, Physics of Quantum Information:
Quantum Cryptography, Quantum Teleportation, Quantum Computation. Berlin, Heidel-
berg, New York: Springer.

[8] Cover, T.M. and J.A. Thomas: 1991, Elements of Information Theory. New York: John
Wiley & Sons.

[9] Greub, W. and H. Petry: 1975, ‘Minimal Coupling and Complex Line Bundles’, J. of Math.
Phys. 16(6).

[10] Kobayashi, S. and K. Nomizu: 1996, Foundations of Differential Geometry, Vol. I. New
York: John Wiley & Sons, classics library edition.

[11] Lomonaco, Jr., S.J. (ed.): 2001, ‘Quantum Computation. A Grand Mathematical Chal-
lenge for the Twenthy-First Century and the Millennium’, Proceedings of the Symposia of
Applied Mathematics. Providence, Rhode Island: American Mathematical Society.

[12] Mosseri, R. and R. Dandaloff: 2001, ‘Geometry of Entangled States, Bloch Spheres and
Hopf Fibrations’. arXiv:quant-ph/010837 v1.

[13] Nielsen, M.A. and I.L. Chuang: 2000, Quantum Computation and Quantum Information.
Cambridge University Press.

[14] Pods, S.: 2003, ‘Die Theorie der Heisenberggruppen zur Beschriebung einer Informa-
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Abstract We report on recent results on the Quantum Field Theory of mixed particles. The
quantization procedure is discussed in detail, both for fermions and for bosons
and the unitary inequivalence of the flavor and mass representations is proved.
Oscillation formulas exhibiting corrections with respect to the usual quantum
mechanical ones are then derived.

1. Introduction

The chapter of particle mixing and oscillations [1] is one of the most impor-
tant and fascinating in the book of modern Particle Physics. This is especially
true after the recent experimental results [2] which finally confirm, after a long
search, the reality of neutrino oscillations [3, 4]: this represents indeed the first
clear evidence for physics beyond the Standard Model.

Many unanswered questions about the physics of particle mixing are however
still there, in particular from a theoretical point of view. Apart from the problem
of the origin of mixing and of the small neutrino masses, difficulties arise already
in the attempt to find a proper mathematical setting for the description of mixed
particles in Quantum Field Theory (QFT).
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It is indeed well known [5] that mixing of states with different masses is
not allowed1 in non-relativistic Quantum Mechanics (QM). In spite of this fact,
the quantum mechanical treatment is the one usually adopted for its simplicity
and elegance. A review of the problems connected with the QM of mixing
and oscillations can be found in Ref.[7]. Difficulties in the construction of the
Hilbert space for mixed neutrinos were pointed out in Ref.[8].

Only recently [9]-[22] a consistent treatment of mixing and oscillations in
QFT has been achieved and we report here on these results.

The main point of our analysis [9] consists in the observation that a problem
of representation (i.e. choice of the Hilbert space) may arise when we start to
mix fields with different masses. This has to do with the peculiar mathematical
structure of QFT, where unitarily inequivalent representations of the algebra
of fields do exist [14, 24]: a classical example is the one of theories with
spontaneous breakdown of symmetry. This situation is in contrast to the one of
QM, which deals with systems with a finite number of degrees of freedom and
where only one Hilbert space is admitted (von Neumann theorem).

On this basis, a careful analysis of the usual mixing transformations in QFT
reveals a rich non-perturbative structure associated to the vacuum for mixed
particles, which appears to be a condensate of particle-antiparticle pairs, both
for fermions and bosons. The vacuum for the mixed fields is a generalized
coherent state à la Perelomov [25].

The structure of flavor vacuum reflects into observable quantities: exact
oscillation formulas [11, 18] are derived in QFT exhibiting corrections with
respect to the usual QM ones. We also show that a geometric phase is associated
to flavor oscillations [26].

The material here presented is organized in the following way:
In Section 2, the mixing transformations are studied in QFT, both for fermions

and bosons, in the case of two flavors. The currents and charges for mixed
fields are also introduced and then used in Section 3 to derive exact oscillation
formulas for charged fields (bosons and fermions). The case of neutral fields is
treated in Section 3.3.

The geometric phase for oscillating particles is studied in Section 4. In
Section 5 the case of three flavor mixing is considered and the deformation of
the associated algebra due to CP violation is discussed. Finally, in Section 6, a
space dependent oscillation formula for neutrinos is derived using the relativistic
flavor current.

1See however also Ref.[6].
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2. Mixing transformations in Quantum Field Theory

In this Section we study the quantization of mixed fields both for Dirac
fermions and for charged bosons [9, 10, 18]. For simplicity, we limit ourselves
to the case of two generations (flavors) although the main results presented
below have general validity [14]. Three flavor fermion mixing [19] is discussed
in §5.

2.1 Fermion mixing

Let us consider2 two flavor fields νe, νµ. The mixing relations are [3]

νe(x) = cos θ ν1(x) + sin θ ν2(x)

νµ(x) = − sin θ ν1(x) + cos θ ν2(x) , (1)

Here νe, νµ are the (Dirac) neutrino fields with definite flavors. ν1, ν2 are the
(free) neutrino fields with definite masses m1, m2, respectively. θ is the mixing
angle. The fields ν1 and ν2 are expanded as

νi(x) =
1√
V

∑
k,r

[
ur
k,i(t)α

r
k,i + vr

−k,i(t)β
r†
−k,i

]
eik·x, i = 1, 2 . (2)

where ur
k,i(t) = e−iωk,itur

k,i and vr
k,i(t) = eiωk,itvr

k,i, with ωk,i =
√

k2 + m2
i .

The αr
k,i and the βr

k,i (r = 1, 2), are the annihilation operators for the vacuum
state |0〉1,2 ≡ |0〉1 ⊗ |0〉2: αr

k,i|0〉1,2 = βr
k,i|0〉1,2 = 0. The anticommutation

relations are:

{να
i (x), νβ†

j (y)}t=t′ = δ3(x − y)δαβδij , α, β = 1, .., 4 , (3)

{αr
k,i, α

s†
q,j} = δkqδrsδij; {βr

k,i, β
s†
q,j} = δkqδrsδij, i, j = 1, 2 . (4)

All other anticommutators are zero. The orthonormality and completeness
relations are:

ur†
k,iu

s
k,i = vr†

k,iv
s
k,i = δrs , ur†

k,iv
s
−k,i = vr†

−k,iu
s
k,i = 0 , (5)∑

r

(ur
k,iu

r†
k,i + vr

−k,iv
r†
−k,i) = 1I . (6)

In QFT the basic dynamics, i.e. the Lagrangian and the resulting field equa-
tions, is given in terms of Heisenberg (or interacting) fields. The physical
observables are expressed in terms of asymptotic in- (or out-) fields, also called

2We refer to neutrinos, but the discussion is clearly valid for any Dirac fields.



108 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

physical or free fields. In the LSZ formalism of QFT [14, 24], the free fields, say
for definitiveness the in-fields, are obtained by the weak limit of the Heisenberg
fields for time t → −∞. The meaning of the weak limit is that the realization
of the basic dynamics in terms of the in-fields is not unique so that the limit for
t → −∞ (or t → +∞ for the out-fields) is representation dependent.

Typical examples are the ones of spontaneously broken symmetry theories,
where the same set of Heisenberg field equations describes the normal (sym-
metric) phase as well as the symmetry broken phase. Since observables are
described in terms of asymptotic fields, unitarily inequivalent representations
describe different, i.e. physically inequivalent, phases. It is therefore of crucial
importance, in order to get physically meaningful results, to investigate with
much care the mapping among Heisenberg or interacting fields and free fields,
i.e. the dynamical map.

With this warnings, mixing relations such as the relations (103) deserve a
careful analysis, since they actually represent a dynamical mapping. It is now
our purpose to investigate the structure of the Fock spacesH1,2 andHe,µ relative
to ν1, ν2 and νe, νµ, respectively. In particular we want to study the relation
among these spaces in the infinite volume limit. As usual, we will perform all
computations at finite volume V and only at the end we will put V → ∞.

Our first step is the study of the generator of Eqs.(103) and of the underlying
group theoretical structure. Eqs.(103) can be recast as [9]:

να
e (x) = G−1

θ (t) να
1 (x) Gθ(t) (7)

να
µ(x) = G−1

θ (t) να
2 (x) Gθ(t) , (8)

where Gθ(t) is given by

Gθ(t) = exp
[
θ

∫
d3x

(
ν†
1(x)ν2(x) − ν†

2(x)ν1(x)
)]

, (9)

and is (at finite volume) an unitary operator: G−1
θ (t) = G−θ(t) = G†

θ(t),
preserving the canonical anticommutation relations (104). Eq.(9) follows from
d2

dθ2 να
e = −να

e , d2

dθ2 να
µ = −να

µ with the initial conditions να
e |θ=0 = να

1 ,
d
dθνα

e |θ=0 = να
2 and να

µ |θ=0 = να
2 , d

dθνα
µ |θ=0 = −να

1 .

Note that Gθ is an element of SU(2) since it can be written as

Gθ(t) = exp[θ(S+(t) − S−(t))] , (10)

S+(t) = S†
−(t) ≡

∫
d3x ν†

1(x)ν2(x) . (11)

By introducing then

S3 ≡ 1
2

∫
d3x

(
ν†
1(x)ν1(x) − ν†

2(x)ν2(x)
)

, (12)
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the su(2) algebra is closed (for t fixed):

[S+(t), S−(t)] = 2S3 , [S3, S±(t)] = ±S±(t) . (13)

The action of the mixing generator on the vacuum |0〉1,2 is non-trivial and we
have (at finite volume V ):

|0(t)〉e,µ ≡ G−1
θ (t) |0〉1,2 . (14)

|0(t)〉e,µ is the flavor vacuum, i.e. the vacuum for the flavor fields. Note that
G−1

θ (t) is just the generator for generalized coherent states of SU(2) [25]:
the flavor vacuum is therefore an SU(2) (time dependent) coherent state. Let
us now investigate the infinite volume limit of Eq.(14). Using the Gaussian
decomposition, G−1

θ is written as [25]

exp[θ(S− − S+)] = exp(− tan θ S+) exp(−2 ln cos θ S3) exp(tan θ S−)

where 0 ≤ θ < π
2 . We then compute 1,2〈0|0(t)〉e,µ and obtain

1,2〈0|0(t)〉e,µ =
∏
k

(
1 − sin2 θ |Vk|2

)2 ≡
∏
k

Γ(k) = e
∑

k ln Γ(k). (15)

where the function |Vk|2 is defined in Eq.(25) and plotted in Fig.1. Note that
|Vk|2 depends on |k|, it is always in the interval [0, 1

2 [ and goes to zero for |k| →
∞. By using the customary continuous limit relation

∑
k → V

(2π)3

∫
d3k, in

the infinite volume limit we obtain (for any t)

lim
V→∞ 1,2〈0|0(t)〉e,µ = lim

V→∞
e

V
(2π)3

∫
d3k ln Γ(k)

= 0 (16)

since Γ(k) < 1 for any value of k and of m1 and m2 (with m2 = m1).
Notice that (16) shows that the orthogonality between |0(t)〉e,µ and |0〉1,2 is

due to the infrared contributions which are taken in care by the infinite volume
limit and therefore high momentum contributions do not influence the result
(for this reason here we do not need to consider the regularization problem of
the UV divergence of the integral of ln Γ(k)). Of course, this orthogonality
disappears when θ = 0 and/or when m1 = m2 (in this case Vk = 0 for any k ).

Eq.(16) expresses the unitary inequivalence in the infinite volume limit of
the flavor and the mass representations and shows the non-trivial nature of
the mixing transformations (103), resulting in the condensate structure of the
flavor vacuum. In Section 3 we will see how such a vacuum structure leads
to phenomenological consequences in the neutrino oscillations, which may be
possibly experimentally tested.

By use of Gθ(t), the flavor fields can be expanded as:

νσ(x) =
∑

r=1,2

∫
d3k

(2π)
3
2

[
ur
k,i(t)α

r
k,σ(t) + vr

−k,i(t)β
r†
−k,σ(t)

]
eik·x , (17)
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with (σ, i) = (e, 1), (µ, 2). The flavor annihilation operators are defined as
αr

k,σ(t) ≡ G−1
θ (t)αr

k,iGθ(t) and βr†
−k,σ(t) ≡ G−1

θ (t)βr†
−k,iGθ(t). In the refer-

ence frame such that k = (0, 0, |k|), we have the simple expressions:

αr
k,e(t) = cos θ αr

k,1 + sin θ
(
U∗

k(t) αr
k,2 + εr Vk(t) βr†

−k,2

)
(18)

αr
k,µ(t) = cos θ αr

k,2 − sin θ
(
Uk(t) αr

k,1 − εr Vk(t) βr†
−k,1

)
(19)

βr
−k,e(t) = cos θ βr

−k,1 + sin θ
(
U∗

k(t) βr
−k,2 − εr Vk(t) αr†

k,2

)
(20)

βr
−k,µ(t) = cos θ βr

−k,2 − sin θ
(
Uk(t) βr

−k,1 + εr Vk(t) αr†
k,1

)
(21)

where εr = (−1)r and

Uk(t) ≡ ur†
k,2(t)u

r
k,1(t) = vr†

−k,1(t)v
r
−k,2(t) = |Uk| ei(ωk,2−ωk,1)t (22)

Vk(t) ≡ εr ur†
k,1(t)v

r
−k,2(t) = −εr ur†

k,2(t)v
r
−k,1(t) = |Vk| ei(ωk,2+ωk,1)t (23)

|Uk| =
|k|2 + (ωk,1 + m1)(ωk,2 + m2)

2
√

ωk,1ωk,2(ωk,1 + m1)(ωk,2 + m2)
(24)

|Vk| =
(ωk,1 + m1) − (ωk,2 + m2)

2
√

ωk,1ωk,2(ωk,1 + m1)(ωk,2 + m2)
|k| (25)

|Uk|2 + |Vk|2 = 1. (26)

The condensation density of the flavor vacuum is given by

e,µ〈0(t)|αr†
k,iα

r
k,i|0(t)〉e,µ = sin2 θ |Vk|2, i = 1, 2 , (27)

with the same result for antiparticles3. Note that the |Vk|2 has a maximum at
√

m1m2 and |Vk|2 � (m2−m1 )2

4|k|2 for |k| � √
m1m2 .

2.2 Boson mixing

Let us now consider boson mixing [10, 18] in the case of charged fields. We
define the mixing relations as:

φA(x) = cos θ φ1(x) + sin θ φ2(x)

φB(x) = − sin θ φ1(x) + cos θ φ2(x) (28)

3In the case of three flavors [9, 19], the condensation densities are different for different i and for antiparticles
(when CP violation is present)
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Figure 1. The fermion condensation density |Vk|2 as a function of |k| for m1 = 1, m2 = 100
(solid line) and m1 = 10, m2 = 100 (dashed line).

where generically we denote the mixed fields with suffixes A and B. Let
the fields φi(x), i = 1, 2, be free complex fields with definite masses. Their
conjugate momenta are πi(x) = ∂0φ

†
i(x) and the commutation relations are

the usual ones:

[φi(x), πj(y)]t=t′ =
[
φ†

i(x), π†
j(y)

]
t=t′

= iδ3(x − y) δij (29)

with i, j = 1, 2 and the other equal–time commutators vanishing. The Fourier
expansions of fields and momenta are:

φi(x) =
∫

d3k

(2π)
3
2

1√
2ωk,i

(
ak,i e−iωk,it + b†−k,i eiωk,it

)
eik·x (30)

πi(x) = i

∫
d3k

(2π)
3
2

√
ωk,i

2

(
a†k,i eiωk,it − b−k,i e−iωk,it

)
eik·x , (31)

where ωk,i =
√

k2 + m2
i and

[
ak,i, a

†
p,j

]
=

[
bk,i, b

†
p,j

]
= δ3(k−p)δij , with

i, j = 1, 2 and the other commutators vanishing.
We proceed in a similar way as for fermions and write Eqs.(28) as

φσ(x) = G−1
θ (t) φi(x) Gθ(t) (32)

with (σ, i) = (A, 1), (B, 2), and similar expressions for πA, πB. We have

Gθ(t) = exp[θ(S+(t) − S−(t))] . (33)
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The operators

S+(t) = S†
−(t) ≡ −i

∫
d3x (π1(x)φ2(x) − φ†

1(x)π†
2(x)) , (34)

S3 ≡ −i

2

∫
d3x

(
π1(x)φ1(x) − φ†

1(x)π†
1(x) − π2(x)φ2(x) + φ†

2(x)π†
2(x)

)
(35)

close the su(2) algebra (at a given t).
As for fermions, the action of the generator of the mixing transformations

on the vacuum |0〉1,2 for the fields φ1,2 is non-trivial and induces on it a SU(2)
coherent state structure [25]:

|0(t)〉A,B ≡ G−1
θ (t) |0〉1,2 . (36)

We will refer to the state |0(t)〉A,B as to the flavor vacuum for bosons. The
orthogonality between |0(t)〉A,B and |0〉1,2 can be proved [18]. The Fourier
expansion for the flavor fields is:

φσ(x) =
∫

d3k

(2π)
3
2

1√
2ωk,i

(
ak,σ(t) e−iωk,it + b†−k,σ(t) eiωk,it

)
eik·x (37)

with (σ, i) = (A, 1), (B, 2), and similar expressions for πA, πB.
The annihilation operators for the vacuum |0(t)〉A,B are defined ak,A(t) ≡
G−1

θ (t) ak,1 Gθ(t), etc. We have:

ak,A(t) = cos θ ak,1 + sin θ
(
U∗

k(t) ak,2 + Vk(t) b†−k,2

)
, (38)

ak,B(t) = cos θ ak,2 − sin θ
(
Uk(t) ak,1 − Vk(t) b†−k,1

)
, (39)

b−k,A(t) = cos θ b−k,1 + sin θ
(
U∗

k(t) b−k,2 + Vk(t) a†k,2

)
, (40)

b−k,B(t) = cos θ b−k,2 − sin θ
(
Uk(t) b−k,1 − Vk(t) a†k,1

)
. (41)

These operators satisfy the canonical commutation relations (at equal times).
As for the case of the fermion mixing, the structure of the flavor ladder operators
Eqs.(38)-(41) is recognized to be the one of a rotation combined with a Bogoli-
ubov transformation. Indeed, in the above equations appear the Bogoliubov
coefficients:

Uk(t) ≡ |Uk| ei(ωk,2−ωk,1)t , Vk(t) ≡ |Vk| ei(ωk,1+ωk,2)t (42)

|Uk| ≡
1
2

(√
ωk,1

ωk,2
+

√
ωk,2

ωk,1

)
, |Vk| ≡

1
2

(√
ωk,1

ωk,2
−

√
ωk,2

ωk,1

)
(43)

|Uk|2 − |Vk|2 = 1 , (44)
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|Vk|2
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Figure 2. The boson condensation density |Vk|2 as a function of |k| for m1 = 1, m2 = 10
(solid line) and m1 = 2, m2 = 10 (dashed line).

Note the difference with respect to the fermionic case Eq.(26).
The condensation density of the flavor vacuum is given for any t by

A,B〈0(t)|a†k,iak,i|0(t)〉A,B = sin2 θ |Vk|2, i = 1, 2 , (45)

with same result for antiparticles. The function |Vk|2 is maximal at |k| = 0

(|Vmax|2 = (m1−m2)2

4m1m2
) and |Vk|2 �

(
∆m2

4|k|2
)2

for |k|2 � m2
1
+m2

2
2 . A plot is

given in Fig.2 for sample values of the masses.

2.3 Currents and charges for mixed fields

We now study the transformations acting on a doublet of free fields with
different masses. The results of this Section clarify the meaning of the su(2)
algebraic structure found before and will be useful in the discussion of neutrino
oscillations.

2.3.1 Fermions. Let us consider the Lagrangian for two free Dirac fields,
with masses m1 and m2:

L(x) = Ψ̄m(x) (i ∂ − Md) Ψm(x) (46)

where ΨT
m = (ν1, ν2) and Md = diag(m1, m2). We introduce a subscript m

to denote quantities which are in terms of fields with definite masses.
L is invariant under global U(1) phase transformations of the type Ψ′

m =
eiα Ψm: as a result, we have the conservation of the Noether charge Q =
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d3x I0(x) (with Iµ(x) = Ψ̄m(x) γµ Ψm(x)) which is indeed the total charge

of the system (i.e. the total lepton number). Consider then the global SU(2)
transformation [16]:

Ψ′
m(x) = eiαjτj Ψm(x), j = 1, 2, 3. (47)

with τj = σj/2 and σj being the Pauli matrices. For m1 = m2, the Lagrangian
is not generally invariant under the above transformations. We have indeed:

δL(x) = iαj Ψ̄m(x) [τj, Md] Ψm(x) = −αj ∂µJµ
m,j(x) (48)

Jµ
m,j(x) = Ψ̄m(x) γµ τj Ψm(x), j = 1, 2, 3. (49)

Explicitly:

Jµ
m,1(x) =

1
2

[ν̄1(x) γµ ν2(x) + ν̄2(x) γµ ν1(x)] (50)

Jµ
m,2(x) =

i

2
[ν̄1(x) γµ ν2(x) − ν̄2(x) γµ ν1(x)] (51)

Jµ
m,3(x) =

1
2

[ν̄1(x) γµ ν1(x) − ν̄2(x) γµ ν2(x)] (52)

The charges Qm,j(t) ≡
∫

d3x J0
m,j(x) satisfy the su(2) algebra (at equal

times): [Qm,j(t), Qm,k(t)] = i εjkl Qm,l(t) . Note that 2Qm,2(t) is indeed
the generator of mixing transformations introduced in §2.1. Also note that
Casimir operator is proportional to the total (conserved) charge: Cm = 1

2Q
and that, since Qm,3 is conserved in time, we have

Q1 ≡ 1
2
Q + Qm,3 , Q2 ≡ 1

2
Q − Qm,3 (53)

Qi =
∑

r

∫
d3k

(
αr†

k,iα
r
k,i − βr†

−k,iβ
r
−k,i

)
, i = 1, 2. (54)

These are nothing but the Noether charges associated with the non-interacting
fields ν1 and ν2: in the absence of mixing, they are the flavor charges, separately
conserved for each generation.

2.3.2 Bosons. The above analysis can be easily extended to the boson
case. We consider the Lagrangian

L(x) = ∂µΦ†
m(x)∂µΦm(x) − Φ†

m(x)MdΦm(x) (55)

with ΦT
m = (φ1, φ2) being charged scalar fields and Md = diag(m2

1, m
2
2).
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We have now [16]

Φ′
m(x) = eiαj τj Φm(x) (56)

δL(x) = i αj Φ†
m(x) [τj , Md] Φm(x) = −αj ∂µ Jµ

m,j(x) , (57)

Jµ
m,j(x) = i Φ†

m(x) τj

↔
∂µ Φm(x) , j = 1, 2, 3. (58)

Again, the corresponding charges Qm,j(t) satisfy the su(2) algebra and the
mixing generator for bosons is proportional to Qm,2(t).

2.4 Generalization of mixing transformations

We have seen in §2.1 how the fields νe and νµ can be expanded in the same
bases as ν1 and ν2, see Eq.(17). As observed in Ref.[13], however, such a
choice is actually a special one, and a more general possibility exists. Indeed,
in the expansion Eq.(17) one could use eigenfunctions with arbitrary masses
µσ and write the flavor fields as [13]:

νσ(x) =
∑

r=1,2

∫
d3k

(2π)
3
2

[
ur
k,σα̃r

k,σ(t) + vr
−k,σβ̃r†

−k,σ(t)
]
eik·x, (59)

where uσ and vσ are the eigenfunctions with mass µσ (σ = e, µ). We denote by
a tilde the generalized flavor operators introduced in Ref.[13]. The expansion
Eq.(59) is more general than the one in Eq.(17) since the latter corresponds to
the particular choice µe ≡ m1, µµ ≡ m2. The relation between the general
flavor operators of Eq.(59) and those of Eq.(17) is(

α̃r
k,σ(t)

β̃r†
−k,σ(t)

)
= J−1(t)

(
αr

k,σ(t)
βr†
−k,σ(t)

)
J(t) , (60)

J(t) =
∏
k,r

exp

⎧⎨⎩i
∑
(σ,j)

ξk
σ,j

[
αr†

k,σ(t)βr†
−k,σ(t) + βr

−k,σ(t)αr
k,σ(t)

]⎫⎬⎭ .

where ξk
σ,j ≡ (χσ − χj)/2 with cot χσ = |k|/µσ and cot χj = |k|/mj.

Thus the Hilbert space for the flavor fields is not unique: an infinite number
of vacua can be generated by introducing the arbitrary mass parameters µσ. It is
obvious that physical quantities must not depend on these parameters. Similar
results are valid for bosons, see Ref.[18].

3. Flavor oscillations in QFT

As an application of the theoretical scheme above developed, we study flavor
oscillations, both for fermions and for bosons. The QFT treatment leads to exact
oscillation formulas exhibiting corrections with respect to the usual QM ones.
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3.1 Neutrino oscillations

Let us now return to the Lagrangian Eq.(46) and write it in the flavor basis
(subscript f denotes here flavor)

L(x) = Ψ̄f(x) (i ∂ − M) Ψf(x) (61)

whereΨT
f = (νe, νµ) andM =

(
me meµ

meµ mµ

)
. Obviously,L is still invariant

under U(1). We then consider the SU(2) transformation [16]:

Ψ′
f(x) = eiαjτj Ψf(x), (62)

δL(x) = iαj Ψ̄f(x) [τj, M ] Ψf(x) = −αj ∂µJµ
f,j(x) , (63)

Jµ
f,j(x) = Ψ̄f(x) γµ τj Ψf(x), j = 1, 2, 3. (64)

The charges Qf,j(t) ≡
∫

d3x J0
f,j(x) satisfy the su(2) algebra. Note that,

because of the off–diagonal (mixing) terms in the mass matrix M , Qf,3 is not
anymore conserved. This implies an exchange of charge between νe and νµ,
resulting in the phenomenon of flavor oscillations.

Let us indeed define the flavor charges for mixed fields as

Qe(t) ≡
∫

d3x ν†
e(x)νe(x) =

1
2
Q + Qf,3(t) (65)

Qµ(t) ≡
∫

d3x ν†
µ(x)νµ(x) =

1
2
Q − Qf,3(t) (66)

where Qe(t) + Qµ(t) = Q. They are related to the Noether charges as

Qσ(t) = G−1
θ (t)Qi Gθ(t) (67)

with (σ, i) = (e, 1), (µ, 2). From Eq.(67), it follows that the flavor charges are
diagonal in the flavor ladder operators:

Qσ(t) =
∑

r

∫
d3k

(
αr†

k,σ(t)αr
k,σ(t) − βr†

−k,σ(t)βr
−k,σ(t)

)
, (68)

with σ = e, µ. We work in the Heisenberg picture and define the state for a
particle with definite (electron) flavor, spin and momentum as4:

|αr
k,e〉 ≡ αr†

k,e(0)|0〉e,µ = G−1
θ (0)αr†

k,1|0〉1,2 , (69)

4Similar results are obtained for a muon neutrino state: |αr
k,µ〉 ≡ αr†

k,µ(0)|0〉e,µ.
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where |0〉e,µ ≡ |0(0)〉e,µ. Note that the |αr
k,e〉 is an eigenstate of Qe(t), at

t = 0: Qe(0)|αr
k,e〉 = |αr

k,e〉. We thus have e,µ〈0|Qσ(t)|0〉e,µ = 0 and

Qk,σ(t) ≡ 〈αr
k,e|Qσ(t)|αr

k,e〉

=
∣∣∣{αr

k,σ(t), αr†
k,ρ(0)

}∣∣∣2 +
∣∣∣{βr†

−k,σ(t), αr†
k,ρ(0)

}∣∣∣2 (70)

Charge conservation is ensured at any time: Qk,e(t) + Qk,µ(t) = 1. The
oscillation formulas for the flavor charges are then [11]

Qk,e(t) = 1 − sin2(2θ) |Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)

+ sin2(2θ) |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)
, (71)

Qk,µ(t) = sin2(2θ) |Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)

+ sin2(2θ) |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)
. (72)

This result is exact. There are two differences with respect to the usual formula
for neutrino oscillations: the amplitudes are energy dependent, and there is an
additional oscillating term.

In the relativistic limit (|k| � √
m1m2) we obtain (θ = π/4):

Qk,µ(t) �
(

1 − (∆m)2

4|k|2

)
sin2

[
∆m2

4|k| t

]
+

(∆m)2

4k2
sin2

[(
|k| +

m2
1
+ m2

2

4|k|

)
t

]
. (73)

The usual QM formulas [3], are thus approximately recovered. Observe that
for small times we have:

Qk,µ(t) � (m2 − m1)
2

4

(
1 +

m2
1
+ m2

2

2|k|2 +
(m1 + m2)

2

4|k|2

)
t2. (74)

Thus, even for the case of relativistic neutrinos, QFT corrections are in principle
observable (for sufficiently small time arguments).

We also note that the above quantities are not interpreted as probabilities,
rather they have a sense as statistical averages, i.e. as mean values. This is
because the structure of the theory for mixed field is that of a many–body theory,
where does not make sense to talk about single–particle states. This situation
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has a formal analogy with QFT at finite temperature, where only statistical
averages are well defined.

We now show [15] that the above results are consistent with the generalization
introduced in §2.4, i.e. that the exact oscillation probabilities are independent
of the arbitrary mass parameters.

It can be indeed explicitly checked that

〈α̃r
k,e|Q̃σ(t)|α̃r

k,e〉 = 〈αr
k,e|Qσ(t)|αr

k,e〉 (75)

which ensure the cancellation of the arbitrary mass parameters.
Note that the flavor charge operators Qσ(t) are invariant under the action of

the Bogoliubov generator Eq.(60); however this is not sufficient to guarantee the
result Eq.(75) which is non-trivial and provide a criterion for the selection of the
observables for mixed fields [22]. As a matter of fact, the number operators for
mixed fields are not good observables since their expectation values do depend
on the arbitrary mass parameters. In §3.3 we will consider another observable,
the momentum operator.

3.2 Meson oscillations

The bosonic counterpart of the above oscillation formulas can be derived in
a similar way by use of the flavor charges for boson fields [18]. By defining the
mixed bosonic state as:

|ak,A〉 ≡ a†k,A(0) |0〉A,B (76)

and the flavor charges (σ = A, B):

Qσ(t) =
∫

d3k
(
a†k,σ(t)ak,σ(t) − b†−k,σ(t)b−k,σ(t)

)
, (77)

we obtain A,B〈0|Qσ(t) |0〉A,B = 0 and

Qk,σ(t) ≡ 〈ak,A|Qσ(t) |ak,A〉

=
∣∣∣[ak,σ(t), a†k,A(0)

]∣∣∣2 −
∣∣∣[b†−k,σ(t), a†k,A(0)

]∣∣∣2 . (78)
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The conservation of the total charge gives
∑

σ Qk,σ(t) = 1 and the oscillation
formulas are:

Qk,A(t) = 1 − sin2(2θ) |Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)

+ sin2(2θ) |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)
, (79)

Qk,B(t) = sin2(2θ) |Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)

− sin2(2θ) |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

)
. (80)

Thus also for bosons, the non-trivial structure of the flavor vacuum induces cor-
rections to the usual QM expressions for flavor oscillations. The most obvious
difference with respect to fermionic case is in the negative sign which makes it
possible a negative value for the bosonic flavor charges. This only reinforces
the statistical interpretation given above, i.e. we are not dealing anymore with
probabilities for single particle evolution. As already noted for neutrinos, in
the relativistic limit the usual QM formulas are (approximately) recovered.

3.3 Mixing and oscillations of neutral particles

The above scheme is only valid for charged fields, since in the case of neutral
fermions (Majorana) and bosons, the (flavor) charges vanish identically. It is
however possible to identify also in this case the relevant observables for the
description of flavor oscillations.

As an example, let us consider the case of a neutral boson field, analogous
treatment can be done for the Majorana field [20]: the notation is the same as
in §2.2, the mixing relations being given by Eq.(28). The expansion for the
neutral field is (with x0 ≡ t):

φi(x) =
∫

d3k

(2π)
3
2

1√
2ωk,i

(
ak,i e−iωk,it + a†−k,i eiωk,it

)
eik·x, (81)

with i = 1, 2 and a similar expansion for the conjugate momenta πi(x).
The generator of the mixing transformations can be written as by Gθ(t) =
exp[θ(S+(t) − S−(t))] with

S+(t) ≡ −i

∫
d3x π1(x)φ2(x), S−(t) ≡ −i

∫
d3x π2(x)φ1(x) (82)

S3 ≡ −i

2

∫
d3x (π1(x)φ1(x) − π2(x)φ2(x)) (83)
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The SU(2) structure is thus still present, although being not related to any flavor
charges.

The flavor annihilation operators take now the following form [20]:

ak,A(t) = cos θ ak,1 + sin θ
(
U∗

k(t) ak,2 + Vk(t) a†−k,2

)
, (84)

ak,B(t) = cos θ ak,2 − sin θ
(
Uk(t) ak,1 − Vk(t) a†−k,1

)
. (85)

where the Bogoliubov coefficients coincide with those above defined for charged
bosons.
We then consider the momentum operator, defined as [14]: P j ≡

∫
d3xΘ0j(x),

with Θµν ≡ ∂µφ∂νφ−gµν
[

1
2(∂φ)2 − 1

2m2φ2
]
. For the free fields φi we have:

Pi =
∫

d3x πi(x)∇φi(x) =
∫

d3k
k
2

(
a†k,iak,i − a†−k,ia−k,i

)
, (86)

with i = 1, 2. The momentum operator for mixed fields is:

Pσ(t) ≡ G−1
θ (t)Pi Gθ(t) =

∫
d3k

k
2

(
a†k,σ(t)ak,σ(t) − a†−k,σ(t)a−k,σ(t)

)
,

(87)
with σ = A, B. Note that the total momentum is conserved in time: PA(t) +
PB(t) = P1 + P2 ≡ P. Let us now consider the expectation values of the
momentum operator for flavor fields on the flavor state |ak,A〉A,B , defined as in
Eq.(76). Obviously, this is an eigenstate of PA(t) at time t = 0:

PA(0) |ak,A〉 = k |ak,A〉, (88)

which follows from P1 |ak,1〉 = k |ak,1〉 by application of G−1
θ (0).

At time t = 0, the expectation value of the momentum (normalized to the
initial value) gives A,B〈0|Pσ(t)|0〉A,B = 0 and:

Pk
σ (t) ≡ 〈ak,A|Pσ(t)|ak,A〉

〈ak,A|Pσ(0)|ak,A〉

=
∣∣∣[ak,σ(t), a†k,A(0)

]∣∣∣2 −
∣∣∣[a†−k,σ(t), a†k,A(0)

]∣∣∣2 , (89)

with σ = A, B, which is of the same form as the expression one obtains for the
charged field. The oscillation formulas coincide with those in Eqs.(79),(80).
Similar results are valid for Majorana neutrinos [20].
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4. Geometric phase for oscillating particles

Let us now see how the notion of geometric phase [27] enters the physics of
mixing by considering the example of neutrino oscillations.

We consider here two flavor mixing in the Pontecorvo approximation [26],
for an extension to three flavors see Ref.[28]. The flavor states are:

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉 (90)

|νµ〉 = − sin θ |ν1〉 + cos θ |ν2〉 . (91)

The electron neutrino state at time t is [3]

|νe(t)〉 ≡ e−iHt|νe(0)〉
= e−iω1t

(
cos θ |ν1〉 + e−i(ω2−ω1)t sin θ |ν2〉

)
, (92)

where H|νi〉 = ωi|νi〉, i = 1, 2. The state |νe(t)〉, apart from a phase factor,
reproduces the initial state |νe(0)〉 after a period T = 2π

ω2−ω1
:

|νe(T )〉 = eiφ|νe(0)〉 , φ = − 2πω1

ω2 − ω1
. (93)

We now show how such a time evolution does contain a purely geometric part.
It is straightforward to separate the geometric and dynamical phases following
the standard procedure [27]:

βe = φ +
∫ T

0
〈νe(t)| i∂t |νe(t)〉 dt

= − 2πω1

ω2 − ω1
+

2π

ω2 − ω1
(ω1 cos2 θ + ω2 sin2 θ) = 2π sin2 θ . (94)

We thus see that there is indeed a non-zero geometrical phase βe, related to
the mixing angle θ, and that it is independent from the neutrino energies ωi

and masses mi. In a similar fashion, we obtain the Berry phase for the muon
neutrino state:

βµ = φ +
∫ T

0
〈νµ(t)| i∂t |νµ(t)〉 dt = 2π cos2 θ . (95)

Note that βe + βµ = 2π.
Generalization to n−cycles is also interesting. Eq.(94) can be rewritten for

the n−cycle case as

β(n)
e =

∫ nT

0
〈νe(t)| (i∂t − ω1) |νe(t)〉 dt = 2π n sin2 θ , (96)
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Eq.(96) shows that the Berry phase acts as a “counter” of neutrino oscillations,
adding up 2π sin2 θ to the phase of the (electron) neutrino state after each
complete oscillation.

In Ref.[26], a gauge structure and a covariant derivative were introduced in
connection with the above geometric structures.

The case of three flavor mixing has been analyzed in Ref.[28]. The above
result also applies to other (similar) cases of particle oscillations, for example to
Kaon oscillations. Finally, we note that a measurement of the above geometric
phase would give a direct measurement of the mixing angle independently from
the values of the masses.

5. Three flavor fermion mixing

We now consider some aspects of fermion mixing in the case of three flavors
[9, 19]. This is particularly relevant because of the possibility of CP violation
associated with it. Among the various possible parameterizations of the mixing
matrix for three fields, we choose to work with the standard representation of
the CKM matrix [1]:

Ψf(x) = U Ψm(x) (97)

U =

⎛⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎠ ,

with cij = cos θij and sij = sin θij, being θij the mixing angle between νi, νj

and ΨT
m = (ν1, ν2, ν3), ΨT

f = (νe, νµ, ντ).
As shown in Ref.[9], the generator of the transformation (97) is:

να
σ (x) ≡ G−1

θ (t) να
i (x)Gθ(t), (98)

with (σ, i) = (e, 1), (µ, 2), (τ, 3), and

Gθ(t) = G23(t)G13(t)G12(t) , (99)

where Gij(t) ≡ exp
[
θijLij(t)

]
and

L12(t) =
∫

d3x
[
ν†
1(x)ν2(x) − ν†

2(x)ν1(x)
]
, (100)

L23(t) =
∫

d3x
[
ν†
2(x)ν3(x) − ν†

3(x)ν2(x)
]
, (101)

L13(δ, t) =
∫

d3x
[
ν†
1(x)ν3(x)e−iδ − ν†

3(x)ν1(x)eiδ
]
. (102)
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It is evident from the above form of the generators, that the phase δ is unavoid-
able for three field mixing, while it can be incorporated in the definition of the
fields in the two flavor case.

In Ref.[19], the flavor vacuum and the flavor annihilation operators were stud-
ied for the above mixing relations. Oscillation formulas were derived exhibiting
CP violation. Here we do not report on these results, rather we comment on the
algebraic structure associated with the generator Eq.(99). Indeed, the generators
Eqs.(100)-(102) can be obtained by acting on the triplet ΨT

m = (ν1, ν2, ν3) with
global phase transformations, in analogy with what has been done in §2.3.1.
One then obtains the following set of charges [19]:

Q̃m,j(t) =
∫

d3xΨ†
m(x) F̃j Ψm(x) , j = 1, 2, ..., 8. (103)

where F̃j ≡ 1
2 λ̃j and the λ̃j are a generalization of the usual Gell-Mann matrices

λj:

λ̃1 =

⎛⎝ 0 eiδ2 0
e−iδ2 0 0

0 0 0

⎞⎠ , λ̃2 =

⎛⎝ 0 −ieiδ2 0
ie−iδ2 0 0

0 0 0

⎞⎠

λ̃4 =

⎛⎝ 0 0 e−iδ5

0 0 0
eiδ5 0 0

⎞⎠ , λ̃5 =

⎛⎝ 0 0 −ie−iδ5

0 0 0
ieiδ5 0 0

⎞⎠

λ̃6 =

⎛⎝ 0 0 0
0 0 eiδ7

0 e−iδ7 0

⎞⎠ , λ̃7 =

⎛⎝ 0 0 0
0 0 −ieiδ7

0 ie−iδ7 0

⎞⎠ ,

λ̃3 =

⎛⎝ 1 0 0
0 −1 0
0 0 0

⎞⎠ , λ̃8 =
1√
3

⎛⎝ 1 0 0
0 1 0
0 0 −2

⎞⎠ . (104)

These are normalized as tr(λ̃jλ̃k) = 2δjk. Thus the matrix Eq.(97) is generated
by Q̃m,2(t), Q̃m,5(t) and Q̃m,7(t), with {δ2, δ5, δ7} → {0, δ, 0}.

The interesting point is that the algebra generated by the matrices Eq.(104)
is not su(3) unless the condition ∆ ≡ δ2 + δ5 + δ7 = 0 is imposed: such a
condition is however incompatible with the presence of a CP violating phase.
When CP violation is allowed, then ∆ = 0 and the su(3) algebra is deformed.
To see this, let us introduce the raising and lowering operators, defined as [1]:

T̃± ≡ F̃1 ± iF̃2 , Ũ± ≡ F̃6 ± iF̃7 , Ṽ± ≡ F̃4 ± iF̃5 (105)

We also define:

T̃3 ≡ F̃3 , Ũ3 ≡ 1
2

(√
3F̃8 − F̃3

)
, Ṽ3 ≡ 1

2

(√
3F̃8 + F̃3

)
(106)
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Then the deformed commutators are the following ones:

[T̃+, Ṽ−] = −Ũ− e2i∆Ũ3 , [T̃+, Ũ+] = Ṽ+ e−2i∆Ṽ3 ,

[Ũ+, Ṽ−] = T̃− e2i∆T̃3 , (107)

all the others being identical to the ordinary su(3) ones [1].

6. Neutrino oscillations from relativistic flavor current

A realistic description of neutrino oscillations requires to take into account
the finite size of source and detector and the fact that in current experiments
what is measured is the distance source-detector rather than the time of flight
of (oscillating) neutrinos. Thus various approaches were developed, based on
wave-packets and leading to a space-dependent oscillation formula [29]-[35].

Here we report about recent results, showing how an exact expression for
QFT space-dependent oscillation formula can be found by using the above
defined flavor states and relativistic flavor currents [21]. Such an approach was
first proposed in Ref.[36] in the context of non-relativistic QM (see also Ref.
[7]). We thus consider the flux of (electron) neutrinos through a detector surface

Φνe→νe(L) =
∫ T

t0

dt

∫
Ω
〈νe|J i

e(x, t)|νe〉 dSi (108)

The neutrino state is described by a wave packet:

|νe(x0, t0)〉 = A

∫
d3k e−i(ωk,1t0−k·x0)f(k)αr†

k,e(t0) |0(t0)〉e,µ (109)

The flavor current is: Jµ
e (x) = ν̄e(x)γµνe(x). In Ref.[21] it is shown that

e,µ〈0|Jµ(x, t)|0〉e,µ = 0 and

〈νe|Jµ
e (x, t)|νe〉 = Ψ̄(x, t) Γµ

(
1 1
1 1

)
Ψ(x, t) (110)

with

Ψ(x, t) ≡ A

∫
d3k

(2π)
3
2

eik·x f(k)

(
ur
k,1 Xk,e(t)∑
s vs

−k,1 (�σ · k)sr Yk,e(t)

)
(111)

Xk,e(t) = cos2 θe−iωk,1t + sin2 θ
[
e−iωk,2t|Uk|2 + eiωk,2t|Vk|2

]
Yk,e(t) = sin2 θ|Uk|χ1χ2

[
1

ωk,2 + m2
− 1

ωk,1 + m1

] [
e−iωk,2t − eiωk,2t

]
where �σ · k =

(
k3 k−
k+ −k3

)
and χ i ≡

(
ωk,i+mi

4ωk,i

) 1
2
.
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Figure 3. QFT flux (thick line) vs. standard formula (thin line) for θ = π/4, σk = 10,
m1 = 1, m2 = 3, Q = 50.

The expression in Eq.(110) contains the most general information about
neutrino oscillations and can be explicitly evaluated once the form of the wave-
packet is specified. A similar expression can be easily obtained for the other
quantity of interest, namely 〈νe|J µ

µ (x, t)|νe〉.
An oscillation formula in space is then obtained in Ref.[21] in the case of

spherical symmetry and by assuming a gaussian wave packet for the flavor state:

fk =
1

(2πσ2
k)

1
4

exp
[
−(k − Q)2

4σ2
k

]
(112)

Such an expression can be evaluated numerically (see Fig.(3)) and it reduces
[21] to the standard formula [31, 30] in the relativistic limit:

Φνe→νe(z) � 1 − 1
2

sin2(2θ) (113)

+
1
2

sin2(2θ) cos
(
2π

z

Losc

)
exp

[
−

( z

Lcoh

)2
− 2π2

( σx

Losc

)2
]

with Losc = 4πQ
∆m2 and Lcoh = LoscQ√

2πσk
being the usual oscillation length and

coherence length [31, 30].

7. Summary

In this report we have discussed recent results in the area of field mixing
and oscillations. We have shown that a consistent field theoretical treatment is
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possible, both for fermions and for bosons, once we realize the unitary inequiv-
alence of the mass and flavor representations. The flavor Hilbert space is thus
constructed and the flavor vacuum is shown to have the structure of a SU(n)
generalized coherent state, for the case of mixing among n generations5. We
have then discussed the algebraic structure of the currents and charges associ-
ated with field mixing.

On the basis of these results, exact oscillation formulas have been calculated,
exhibiting non-perturbative corrections with respect to the usual QM ones. The
usual formulas are shown to be approximately valid in the relativistic region.
Exact oscillation formulas in space can also be derived by use of the relativistic
flavor currents.

We have also shown that a geometric phase is associated to flavor oscillations
and discussed the role of the CP violating phase in connection with the algebra
of currents associated to three flavor mixing.

For lack of space, we have omitted other interesting development, in par-
ticular we would like to mention the analysis, in the above framework, of the
neutrino oscillations in matter (MSW effect) [37]. An interesting new line of re-
search is the investigation of the issue of Lorentz invariance for the flavor states
[38]: deformed dispersion relations for neutrino flavor states may be indeed
incorporated into frameworks encoding the breakdown of Lorentz invariance
[39].
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Abstract Non-linear Jaynes-Cummings models, in particular two-photon interactions be-
tween one or two modes of the electromagnetic field and few-level atoms or
molecules, are of great interest to the understanding of quantum electrodynam-
ics, with many applications in spectroscopy and problems of biology. Experi-
mentally, theories of quantum electrodynamics can be tested by allowing single
atoms of a beam to be present in a high-Q cavity, and allowing interaction with
radiation in the cavity. We present here a formalism by deriving a two-photon
interaction Hamiltonian exactly without approximations and apply the formalism
to study several two-photon processes in high-Q cavities.

1. Introduction

Cavity quantum electrodynamics (QED) is the study of the interaction of
single atoms with one or two modes of the radiation field in a high Q cavity.
In a typical experiment velocity selected Rydberg atoms are made to cross the
cavity such that only one atom is in the cavity at a time. The atom is capa-
ble of interacting with the field before exiting the cavity. Experiments in high
Q cavities allow test of fundamental atom-field theoretical models. One such
model is the Jaynes-Cummings model (JCM) [1], dealing with the interaction
of two-level atoms with a single-mode quantized electromagnetic field. This
model has served as the fundamental tool to theoretically study single atom-
photon interactions. One of the most interesting features of the JCM is the
“collapse” and “revival” phenomena of the atomic population inversion [2]. In-
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teresting developments are the single-photon and two-photon micromasers [3].
A unique feature of the micromaser is the generation of nonclassical radiation
in the steady state.

There have been many efforts to consider nonlinear versions of the JCM, for
instance a two-photon model [4], useful to study two-photon process of single
atoms. Two-photon interactions between atoms and radiation give rise to inter-
esting nonlinear effects such as the two-photon absorption and the two-photon
micromaser. It has recently been shown that spatially confined photobleaching
can be achieved by using two-photon excitation, the confinement being much
sharper than that produced by one-photon excitation [5]. Two-photon excita-
tion is also a valuable tool having great potential in imaging biological systems
using laser-scanning microscopy [6].

In this paper, we present a brief review of two-photon cavity QED work done
by us recently. The paper is organized as follows: in section 2 we present a dis-
cussion of various approaches to obtain two-photon interaction Hamiltonians
of the JC type and in particular discuss a method of obtaining the Hamiltonian
using a unitary transformation. In section 3 we discuss two-photon absorp-
tion and obtain a master equations for the photon probability. We also discuss
coherence that follows from two-photon absorption. In section 4 we discuss
trapping states in a two-photon micromaser and discuss the possibility of ob-
taining a photon number state. In section 5, we discuss possible macroscopic
quantum superpositions and in section 6 we present some results using a Raman
interaction model and discuss cloning of coherent states.

2. Two-Photon Hamiltonians

There are several methods to obtain two-photon Hamiltonians:

a adiabatic elimination of a level in a three-level atom [7],

b effective phenomenological Hamiltonians [8], and

c the solution of the quantum mechanical three-level atom problem [9].

All of these methods rely on the assumption of large detuning of the intermediate
level of a three-level system in order to describe interactions involving two
photons simultaneously. We proposed an unitary transformation [10], later
generalized by Wu [11] to obtain exact two-photon interaction Hamiltonians,
valid for all detunings including zero as well as high detunings. The procedure
also allows the inclusion of dynamical Stark shifts in the formalism.

The interaction of a three-level atom and one mode of the radiation field is

H = �ω a†a +
3∑

i=1

Eiσii + �g1

(
σ21a + σ12a

†
)

+ �g2 (σ32a + σ23a
†) , (1)
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where σij =| i〉〈j | and i, j refer to the atomic levels; g1 and g2 being the atom-
photon coupling constants. a† and a are the photon creation and annihilation
operators. The atomic levels 1 and 3 have the

same parity, while level 2 has opposite parity. The unitary transformation,
U = exp(S), where,

S = α (σ21a − σ12a
†) + β (σ32a − σ23a

†) (2)

with β = −g2

g1
α, leads to an effective Hamiltonian

Heff = exp(S)H exp(−S) ,

where,

Heff = �ω N + E0 + �µ σ33 + �η σ11 + �λ (σ31 a2 + σ13 a†2) . (3)

We note that level 2 is effectively eliminated and the transformed Hamiltonian is
explicitly two-photon. Expressions for N, E0, µ, η, λ can be found in reference
[12]. The effective Hamiltonian can be diagonalized. The eigenvalues E±

n are
given by

E+
n = �ω (n + 1) + E1+E3

2 − ∆
2 + 1

2

√
∆2 + 4�2

[
g2
1(n + 2) + g2

2(n + 1)
]

E−
n = �ω (n + 1) + E1+E3

2 .
(4)

The corresponding eigenfunctions are given by,

| Ψ+
n 〉 = sin θn | 3, n〉 + cos θn | 1, n + 2〉 ,

| Ψ−
n 〉 = cos θn | 3, n〉 − sin θn | 1, n + 2〉 ,

(5)

where
cos θn = r(n+2)1/2

[n(r2+1)+2r2+1]1/2 ,

sin θn = (n+1)1/2

[n(r2+1))+2r2+1]1/2 .

(6)

Here r = g1

g2
and n is the photon number. | Ψ±

n 〉 represent dressed states of the
atom-field system, expressed in terms of atom-photon states | j, n〉 =| j〉⊗ | n〉.
The dressed-state basis is convenient for our purpose.

3. Two-photon absorption

As an application of the Hamiltonian of eq. (3), consider the absorption of
two photons of single frequency by an atom. A possible experimental arrange-
ment is one in which a beam of monoenergetic atoms, obtained by a velocity
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selector, traverses a high-Q cavity containing a single-mode electromagnetic
field, such that a single atom crosses the cavity at a time. Each atom interacts
with the field and exits the cavity. Cavity damping and spontaneous decay
processes are assumed to be negligible.

The absorption process is described by an equation for the reduced density
operator of the photon field, obtained after tracing out the atomic variables.
Analytic solutions are obtained from the equation describing the diagonal el-
ements [13,14]. An analysis using the two-photon effective Hamiltonian was
carried out and the resulting equation was solved in the high as well as zero
detuning limits [15].

Suppose that initially atoms are prepared in the ground state and the field
in the cavity is a superposition of photon number states. If the atom exits the
cavity in the excited state, two photons would be absorbed. Following standard
procedure [16], the following master equation is derived:

dρ

dt
= − i

�
[cos2 θn−2E

+
n−2 + sin2 θn−2En−2, ρ(t)]

−Rτ2

2�2
[sin2 θn−2 cos2 θn−2

(
E+

n−2 − E−
n−2

)2
ρ(t)

+ρ(t) sin2 θn−2 cos2 θn−2 (E+
n−2 − E−

n−2)
2

− 2 cos θn sin θn√
(n + 1)(n + 2)

(E+
n − E−

n )a2ρ(t)a†2

cos θn sin θn√
(n + 1)(n + 2)

(E+
n − E−

n )] . (7)

In the above equation R is the average rate of injection of atoms in the cavity,
n = a†a and τ is the interaction time of each atom. Let us consider high and
low detuning limits of the above equation.

3.1 High detuning limit master equation

In the large detuning limit the master equation takes the form,

dρ

dt
= − i

�

[
a†a(�ω +

�2g2
1

∆
), ρ(t)

]
−KL

{
a†2a2ρ(t) + ρ(t)a†2a2 − 2a2ρ(t)a†2

}
(8)

where KL =
(
Rτ2g2

1g
2
2�2

)
/2∆2. The high-detuning limit master equation,

except for a Stark shift term �2 g2
1

∆ a†a term, is the same as that obtained by
Guerra et al. [16]. It may be noted that the two-photon coupling constant KL is
given in terms of known parameters and is not arbitrary.
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3.2 Zero-Detuning limit master equation

Consider now the case of zero detuning. Obviously, theories based upon the
high detuning limit is not applicable for this case. In our formalism genuine
two-photon absorption is possible even for zero detuning. In this limit, the
master equation for the photon probability, Pn = 〈n | ρ | n〉, becomes

dPn

dt
= −Rτ2g2

1n(n − 1)
n(r2 + 1) − 1

Pn +
Rτ2g2

1(n + 1)(n + 2)
n(r2 + 1) + 2r2 + 1

Pn+2 . (9)

Defining x = Rτ2g2
1t we have,

d〈n〉
dx

= −2〈n(n + 1)〉 − (r2 + 1)
2r2

d〈n2〉
dx

(10)

One interesting feature of the rate equation is that absorption of photons is highly
dependent on the statistics of the field, as can be seen from the result 〈n(n −
1)〉 = 〈n〉2 g(2)(t), where g(2)(t) is the second-order correlation function. A
particularly simple solution of the master equation can be obtained in the mean

field approximation, i.e., 〈n2〉 = 〈n〉2, |〈n(t)〉−1|1+2γ

〈n(t)〉 = K exp(−2x). Here, K

is the initial value |〈n(0)〉−1|1+2γ

〈n(0)〉 , and γ = (1 + r2)/2r2. One feature of the
master equation given by eq. (10) is the second term which has the effect of
reducing absorption, since d

dx〈n2〉 < 0.

3.3 Coherence in two-photon absorption

Two photon absorption is capable of producing non-classical light, while one-
photon absorption is known to destroy quantum features. As the two-photon
absorbers cross the cavity, the residual radiation in the cavity will be found in
either a vacuum state | 0〉 or in a one-photon state | 1〉. It has been known for
sometime that the final state of the radiation is a coherent superposition [17],
i.e.,

| Ψ〉 = α | 0〉 + β | 1〉 . (11)

Coherence is demonstrated by non-zero off-diagonal matrix elements of the
photon density operator, ρ =| Ψ〉〈Ψ | . It is convenient to transform the density
operator to the form

ρI(t) = e+iM ρ(t) e−iM ,

where

M =
t

�

(
cos2 θn−2 E+

n−2 + sin2 θn−2 E−
n−2

)
.

Taking off-diagonal matrix elements of eq. (7), we obtain,

1
R

d

dt
〈n | ρI(t) | n+µ〉 = An 〈n | ρI(t) | n+µ〉+Bn 〈n+2 | ρI(t) | n+µ+2〉 ,

(12)
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where the coefficients are given by

An = − τ2

2�2

{
Y 2

n + Y 2
n+µ

}
,

Bn =
τ2

�2
Yn+2Yn+µ+2 ,

Yn = sin θn−2 cos θn−2(E+
n−2 − E−

n−2) .

From eq. (12) it follows that
∑∞

n=0〈2n | ρI(t) | 2n〉 and,
∑∞

n=0〈2n + 1 |
ρI(t) | 2n + 1〉 are constants of the motion.We now demonstrate that a linear
combination

∑∞
n=0 D2n〈2n | ρI(t) | 2n + 1〉 is also a constant of the motion,

where the constants D2n must satisfy the condition

D2n+2/D2n = −B2n/A2n+2 . (13)

To demonstrate this, multiply eq. (12) by D2n, sum over both sides over n, and
choose µ = 1. We obtain,

1
R

∞∑
n=0

D2n
d

dt
< 2n | ρ(t) | 2n + 1 >

=
∞∑

n=0

D2n [A2n 〈2n | ρ(t) | 2n + 1〉 + B2n 〈2n + 2 | ρ | 2n + 3〉] .(14)

In view of the fact that A0 = 0, the right side of eq. (14) can be written as
∞∑

n=0

(D2n+2 A2n+2 + D2n B2n) 〈2n + 2 | ρ(t) | 2n + 3〉 .

If the coefficients satisfy condition (13),
∑∞

n=0 D2n 〈2n | ρ(t) | 2n + 1〉 is a
constant of the motion, i.e.,

∞∑
n=0

D2n 〈2n | ρ(t) | 2n + 1〉 =
∞∑

n=0

D2n < 〈2n | ρ(0) | 2n + 1〉 . (15)

It can be seen that in the steady state 〈2n|ρI(t)|2n + 1〉 → 0 as t → ∞, for
n = 1, 2, 3, · · · . Hence,

〈0 | ρ(∞) | 1〉 =
∞∑

n=0

D2n

D0
〈2n | ρ(0) | 2n + 1〉 (16)

Eq. (16) gives the residual coherence in terms of the initial field density operator.
D2n/D0 can be calculated from eq. (13). The result is

D2n

D0
=

Γ(n + 1
2)Γ(β+)Γ(β−)

Γ(n + β+)Γn + β−)

√
(2n + 1)Γ(2n + 2α)

πΓ(2α)22n
, (17)
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where

α =
2r2 + 1

2(r2 + 1)
,

and,

β± = 1 +
(r2 − 1)
8(r2 + 1)

± 1
8

√
8 +

(r2 − 1)2

(r2 + 1)2
.

The residual coherence obtained as output of two-photon absorption, is quite
different from that predicted in ref. [17]. A numerical evaluation using a initial
coherent field, and large average photon number, gives a higher value of the
asymptotic coherence than that obtained in ref. [17]

Recently, Ezaki et al. [18] proposed that a phase state of the form | ψoutput〉 =
1√
2
(| 0〉+ eiϕ | 1〉 can be obtained, from an initial coherent state | α〉, α =| α |

eiϕ, by a pure two-photon absorption process. Such a state could be important
for quantum information processing. It has been shown, however, that although
there is a residual coherence, the output state in strictly not a phase state [19].T
he steady-state density operator used in ref.[18] does not satisfy the condition
of a pure state trρ2 = trρ = 1. Numerically, for | α |� 1, trρ2(∞) � 0.818. A
calculation using the method proposed by the present authors yields [19], for
r = 1 and | α |� 1, the result trρ2(∞) � 0.940. While coherence is enhanced,
it still does not lead to a pure state.

4. Two photon micromaser

A micromaser provides experimental realizations of cavity QED, and allows
tests of fundamental concepts of atom-field interactions. There is considerable
interest in determining the statistical properties of the micromaser radiation.
The radiation , under suitable conditions, demonstrates trapping, a state in which
the atom cannot add any more photons, i.e., the radiation attains a maximum
number of photons. Another interesting question is whether a photon number
state can be realized within the cavity.

Suppose that atoms, prepared in the excited state, enter the cavity; the atom-
cavity radiation interactions being the effective two-photon Hamiltonian given
by eq. (3). A recursion relation for the steady-state photon probability can be
derived [12] following the general method proposed by Filipowicz et al. [20]:

Pn =
[
A + B

(n + 1)
(2n + 1)2

sin2 D(
√

C2 + 2n + 1 − C)
]

Pn−1

+B
(n − 1)

(2n − 1)2
sin2 D(

√
C2 + 2n − 1 − C)Pn−2 . (18)
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The parameters are given by:

A =
nb

(nb + 1)
, B =

4R

γ(nb + 1)
, C =

∆
2�g

, D =
τg

2
.

Here nb is the average number of thermal photons and we assumed g1 = g2 =
g. The cavity damping rate γ = ω

2πQ, where Q is the quality factor of the
cavity. Trapping states occur when, for a suitable interaction time τ, the photon
probability Pn is truncated at some value of n. The excited atoms cannot add
any more photons under the circumstance. From eq. (18) it follows that n = 0
is a trapping state, the vacuum trapping state, if(√

C + 3 − C
)

D = jπ , (19)

where j is an integer. Then Pn = 0 for n ≥ 1. For zero detuning, the trapping
condition becomes τg = 2πj√

3
. Trapping states can also be realized in the non-

vacuum (n = 0) states provided the following two conditions are satisfied:(√
C2 + 2k − 1 − C

)
D = jπ ,

and (√
C2 + 2k + 1 − C

)
D = lπ .

These can be written as:

C =
l2(2k − 1) − j2(2k + 1)√

4lj(l − j)[j(2k + 1) − l(2k − 1)]
, D = π

√
jl(l − j)

j(2k + 1) − l(2k − 1)
.

(20)
Since D > 0 we must satisfy j(2k + 1) > 
(2k − 1) and 
 − 1 ≥ j ≥ k ≥ 3.
For arbitrary C and D, it is difficult to find integer 
, j, k that would satisfy the
above conditions. Consider a special case, j = k, 
 = k + 1. In this case we
have

C =
(2k2 − 1)

2
√

k(k + 1)

and
D = π

√
k(k + 1) .

With these expressions for C and D, and using the recursion relation (18), it is
possible to numerically evaluate 〈n〉 as a function of k; trapped states will be
indicated by dips in 〈n〉 as function of k. Corresponding values of the variance
show both super-Poissonian and sub-Poissonian nature of the radiation field
[12].



Two-Photon interactions in Cavity QED 137

4.1 Photon Number States

A number state (Fock state), a state of a definite number of photons, is a
highly desirable object since such a state would be ideal to carry information
in quantum information processing, apart from being an interesting example
of non-classical radiation. Several proposals have been made for the gener-
ation of photon number states utilizing atom-photon interactions in high Q
microcavities. Among various schemes are state reduction [21,22], quantum
non-demolition [23], and the combination of non-selective and conditional mea-
surement schemes [24]. Generation of number states by utilizing two-photon
interactions have also been suggested [25,26].

We now investigate the conditions under which a number state can be ob-
tained in our model. Non-vacuum trapping can lead to the generation of a
number state in the limit B → ∞, which corresponds to γ → 0 for given
R. Consider the case of trapping with n = k and nb = 0. If trapping is
to happen, we must have Pk = Pk+1 = Pk+2 = · · · = 0, with non-zero
Pk−1, Pk−2, · · · . Using the recursion relation (18) it is straightforward to ex-
press Ps, (s = 0, 1, 2, · · · , k − 2) in terms of P0. Furthermore, in the B → ∞
limit we have,

Ps = P0

s∏
n=1

B
(n + 1)

(2n + 1)2
sin2 D

(√
C2 + 2n + 1 − C

)
(21)

Using the normalization, P0 + P1 + P2 + · · ·+ Pk−2 = 1, and the result Ps is
O(B2−k+s), s = 0, 1, 2, · · · , k − 3, we have, in the limit of large B, only two
nonzero probabilities, Pk−1 and Pk−2, given by Pk−1 → k−2

2k−3 , Pk−2 → k−1
2k−3 .

Thus B → ∞ limit reduces the number of available probabilities to two,
a result that can be shown numerically [12]. In terms of these probabilities,
the average number of photon 〈n〉 and the dispersion σ2 are given by 〈n〉 =
2(k−1)(k−2)

2k−3 , σ2 = 1
2(2k−3) .

Further, if k is also large, 〈n〉 ∼ k and σ ∼ 1
2k1/2 and the probabilities, Pk−1

and Pk−2 become the same, indicating the approach to a photon number state.

5. Macroscopic Quantum Superpositions

One of the most interesting results of cavity QED is the generation of macro-
scopic quantum superpositions, Schrödinger cat states. For example, the so-
called “even” and “odd” states have been shown to arise in two-photon micro-
masers, in the high detuning limit, when trapping conditions are fulfilled [27].
Atom-field interactions also produce entanglement. The important question
is whether under certain circumstances disentanglement can occur leading to
“pure states” of the field and that of the atom. For example, it has recently been
suggested that entanglement is present at all times for a system that initially
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was disentangled [28]. On the contrary, it has been shown that an initially dis-
entangled state, with interactions described by the JCM , lead to entanglement
followed by disentanglement, the latter occurring at precisely half the “revival”
time, in the collapse-revival regime of the micromaser [29]. Our objective here
is to reexamine the conditions under which “pure states” of the field can be
generated in the interacting atom-field system.

We consider two-photon cavity QED in which a beam of atoms, each in a
linear superposition of of its ground state | 1 >, and its excited state | 3 >, enters
a high-Q cavity having a initial radiation field, a superposition of photon number
states | n >, and interact through the Hamiltonian given by eq. (3). Each atom
spends a fixed time, τ, inside the cavity. Since the cavity is assumed to be
lossless, the time development of the cavity field will only take place when the
atoms are in the cavity. The time evolution of the atom-field system is described
by the evolution operator U(t), given by U(t) = exp [i(H − H0)t/�], where
H0 = �ω(a†a + σ33 − σ11) + (E1 + E3)/2.

The set of eigenstates | Ψ±
n 〉, with n = 0, 1, 2 · · · , together with the states

| 1, 0〉 = − | Ψ−
−2〉 and | 1, 1〉 =| Ψ+

−1〉 form a complete basis. Let at t = 0, as
the first atom enters the cavity, the atom-photon state being given by

| Ψ(0)〉 =
∞∑

n=0

Sn | n〉 ⊗ {α | 1〉 + β | 3〉} . (22)

Expressed in terms of the dressed states,

| Ψ〉 = A | 1, 0〉 + B | 1, 1〉 +
∞∑

n=0

{An | Ψ+
n 〉 + Bn | Ψ−

n 〉} . (23)

The coefficients in (23) are given by

A = αS0 ,
B = αS1 ,

An = β sin θnSn + α cos θnSn+2 ,
Bn = β cos θnSn − α sin θnSn+2 .

(24)

The time development of the state is governed by the U(t). Hence, the state of
the system at time t is,

| Ψ(t)〉 = A | 1, 0〉 + B exp(−iω−1t) | 1, 1〉
∞∑

n=0

An exp(−ωnt) | Ψ+
n 〉 +

∞∑
n=0

Bn | Ψ−
n 〉 . (25)

At t = τ, as the atom exits the cavity and the atomic state is not measured, it is
reasonable to assume that the state of the atom and that of the field in the cavity
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becomes disentangled, i.e.,

| Ψ(τ)〉 =
∞∑

n=0

S′
n | n〉[α′ | 1 > +β′ | 3〉] . (26)

S′
n depend on τ. Using the dressed states in (26) and comparing with eq. (25),

we have,

A = α′S′
0 ,

B exp(−iω−1τ) = α′S′
1 ,

An exp(−ωnτ) = α′S′
n+2 cos θn + β′S′

n sin θn ,
Bn = β′S′

n cos θn − α′ sin θnS′
n+2 .

(27)

Using eq. (24), we have,

αS0 = α′S′
o,

αS1 exp(−iω−1τ) = α′S′
1,

[α cos θnSn+2 + β sin θnSn] exp(−iωnτ) = α′S′
n+2 cos θn + β′S′

n sin θn,
β cos θnSn − α sin θnSn+2 = β′S′

n cos θn − α′S′
n+2 sin θn.

(28)
From (28), we have,

S′
n =

β

β′ [sin
2 θn e−iωnτ + cos2 θn] Sn +

α

β′ sin θn cos θn [ e−iωnτ − 1] Sn+2.

(29)
A similar relation will exist for the state at any time ti and that at time ti + τ.

We now investigate how a steady-state of the radiation in the cavity can be
achieved [27]. At t = τ, the first atom just exits the cavity.The field inside the
cavity at that instant is given by,

ρF
1 (τ) = trA[U(τ) ρF(0) ρA U †(τ)] . (30)

Here, ρA =| ΨA〉〈ΨA |, where | ΨA〉 = α | 1〉 + β | 3〉 and the trace over the
atomic states indicates that the state of the exiting atom is not measured [28].
As more and more atoms cross the cavity, the field in the cavity is determined
by iteration. After k − 1 atoms cross, the field in the cavity is given by,

ρF
k = trA[U(τ) ρF

k−1 ρA U †(τ)] . (31)

If the iterations tend to a limit, the field in the cavity will have a steady state,
corresponding to a fixed point of the map. In the steady- state, the field will not
change even as more atoms cross the cavity. If the steady-state is to be a “pure
state”, the field density operator will be of the form ρss

F =
∑

n,m Sss
n Sss∗

m |
n〉〈m | . This implies that the atom-field state must be disentangled and be of
the form

| Ψss〉 =
∑

n

Sss
n | n〉 ⊗ (α | 1〉 + β | 3〉) . (32)
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In the steady-state, ρF(ti + τ) = ρF(ti). The photon state in the steady-state
then can be obtained from eq. (29), by putting α/ = α, β/ = β. We thus have
the recursion relation

Sn+2 = −β

α
tan θn Sn = − β

αr

√
n + 1
n + 2

Sn . (33)

The disentangled steady-state must satisfy the condition exp{−iω−1τ} = 1,
i.e., ω−1τ = 2πj, where j = 1, 2, 3, · · · . Thus the interaction time τ satisfies
the condition [

−∆
2

+
1
2

√
∆2 + 4�2g2

1

]
τ

�
= 2πj . (34)

Thus, the atom-field system undergoes cycles of entanglement followed by
disentanglement. It is to be noted that eq. (34) is not a trapping condition, but
rather a condition of disentanglement.

From the recursion relation (33) it follows that two distinct normalized states,
| Ψeven〉 and | Ψodd〉 are generated. These are,

| Ψeven〉 =
∞∑

n=0

S2n | 2n〉 , | Ψodd〉 =
∞∑

n=0

S2n+1 | 2n + 1〉 . (35)

The steady-state photonic state, therefore, in general, is a superposition of
| Ψeven〉 and | Ψodd〉. From (33), the even and odd expansion coefficients are
given by:

S2n =
(
− β

αr

)n
√

(2n)!
2nn!

S0 (36)

S2n+1 =
(
− β

αr

)n 2nn!√
(2n + 1)!

S1 , (37)

where, n = 1, 2, 3, .... We thus have,

| Ψeven〉 =
∞∑

n=0

(
− β

αr

)n
√

(2n)!
2nn!

S0 | 2n〉 ≡ S(ζ) | 0〉 , (38)

where S(ζ) is the squeeze operator, and

ζ = σ eiϕ , S0 =
1√

cosh σ
,

β

αr
= eiϕ tanσ .

The | Ψeven〉 is thus a squeezed vacuum state. The odd-photon state | Ψodd〉
is also given by

| Ψodd〉 =
∞∑

n=0

(
− β

αr

)n 2nn!√
(2n + 1)!

S1 | 2n + 1〉 . (39)

The properties of the above state has been studied in ref. [30].
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6. Raman interactions, Quantum information, and
cloning

The fundamental concept in quantum computation is the qubit, the quantum
bit, usually a two-state system. Unlike the classical bit, a qubit is a linear
superposition of the states. Recently, quantum information processing using
continuous spectrum systems have been suggested [31]. Continuous systems
could be easier to manipulate experimentally. For instance, a qubit could be
formed by the superposition of | Ψeven〉 and | Ψodd〉 discussed in the previous
section. Such a possibility has been conjectured recently [30].

Another interesting system for quantum information processing is a cavity
QED experiment involving Raman interactions of a three-level atom (in the
Λ configuration), in a two-mode cavity. The Hamiltonian of such a system is
a simple generalization of that of the two-photon single-mode case discussed
earlier. The Hamiltonian can be written as H = H0 + Hint, with

H0 = �ω1N1 + �ω2(N2 − 1) + E1 , (40)

and

Hint = E0 −E1 + �ω2 +
�λ

2
(a†1a2σ12 + a†2a1σ21) +

�ω

2
(σ22 − σ11) , (41)

where, ai and a†i , i = 1, 2, are photon mode operators of frequencies ωi. The
operators N1 = a†1a1 + 1− σ11 and N2 = a†2a2 + 1− σ22 are constants of the
motion. All parameters including ω can be found in ref. [10]. The eigenvalues
and of H are:

E+
n1,n2

= E1 + �ω1n1 + �ω2n2 ,

E−
n1,n2

= E+
n1,n2

− �

[√
(∆

2 )2 + g2
1n1 + g2

2(n2 + 1) − ∆
2

]
.

(42)

E1 and E2 are the energies of the lower and upper states respectively and ∆ is
the detuning. The eigenfunctions, denoted | Ψ±

n1n2
〉, are given by

| Ψ+
n1,n2

〉 = − sin θn1,n2 | 1; n1, n2〉 + cos θn1,n2 | 2; n1 − 1, n2 + 1〉 ,

| Ψ−
n1,n2

〉 = cos θn1,n2 | 1; n1, n2〉 + sin θn1n2 | 2; n1 − 1, n2 + 1〉 ,
(43)

where, | 1〉 and | 2〉 are the lower and upper atomic states, respectively, and
| ni〉 is the photon number state. Furthermore,

sin θn1,n2 =
r
√

n2 + 1√
[n1 + r2(n2 + 1)]

, cos θn1,n2 =
√

n1√
[n1 + r2(n2 + 1)]

.

We now discuss entanglement and disentanglement phenomena associated
with the interaction of the atoms and the modes of radiation in the cavity. The
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time evolution of an arbitrary atom-field state is given by the unitary operator
U(t) = exp

[
−i(H − H0) t

]
.

Consider the disentangled atom-field state at t = 0,

| Ψ〉 =
∞∑

n1,n2=0

Cn1,n2 | n1, n2 > {α | 1〉 + β | 2〉} . (44)

The time development of | Ψ〉 is given by | Ψ(t) >= U(t) | Ψ〉. Using the
iteration procedure discussed in Section 5, one obtains the following two-term
recursion relation for the steady state [32],

Cn1,n2 = −
(

βr

α

)√
n2 + 1

n1
Cn1−1,n2+1, (n1 = 1, 2, · · · ; n2 = 0, 1, 2, · · · ) .

(45)
From this we obtain,

Cn1,n2 =
(
− α

βr

)n2

√
(n1 + n2)!

n1!n2!
Cn1+n2,0 . (46)

The dynamics governed by the Raman Hamiltonian (40,41) conserves the
total number N̂ = a†1a1 + a†2a2 of photons in the two modes. The operator
δN̂,N, which is equal to unity when the operator produces N , zero otherwise, is
a constant of the motion. Accordingly, if the cavity fields, prior to the entrance
of the first atom in the cavity, had probabilities PN = 〈Ψ(t) | δN̂,N | Ψ(t)〉
of N̂ having the value N , then, < Ψ(t) | δN̂,N | Ψ(t)〉 = 〈Ψ | δN̂,N | Ψ〉.
Therefore, the coefficients Cn1+n2,0 = CN,0 are determined by the probabilities
PN of the initial state of radiation. Thus [32]

PN =
∞∑

n1,n2=0

| Cn1,n2 |2 δn1+n2,N =| CN,0 |2
[
1+ | α

βr
|2
]N

. (47)

As a particular example, consider the initial photonic state to be such that
mode 1 is a coherent state | γ〉 and mode 2 is the vacuum state | 0〉. Then

PN =
| γ |2N

N !
e−|γ|2 ,

and therefore, using Eeqs. (46) and (47), we obtain,

Cn1,n2 = e−
1
2
|γ|2 1√

n1!

⎛⎝ γ√
1+ | α

βr |2

⎞⎠n1

1√
n2!

⎛⎝ − α
βrγ√

1+ | α
βr |2

⎞⎠n2

.

(48)
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Accordingly, the steady state of the electromagnetic field inside the cavity is a
two-mode coherent state and so the effect of the atom-field interactions is to
give rise to the following relationship between the initial input state and the
output state

| γ〉1⊗ | 0〉2 →| γ√
1+ | α

βr |2
〉1⊗ |

−αγ
βr√

1+ | α
βr |2

〉2 , (49)

where the subscripts indicate the modes of the radiation field. It is interesting
to note that cloning of the coherent states can be achieved. In this sense, the
cavity atom-field system is a cloning machine. Note that for the case α

βr = −1,
the two output states become identical signifying perfect cloning.The cloning
is different from those considered previously in that the output cloned states
are not identical to the input coherent state. However, one obtains a unique
output for a given initial state. If one wants to clone the coherent state | γ〉,
then one needs to have a coherent state |

√
2γ〉 initially inside the cavity. The

single-atom cavity QED behaves actually like a quantum beam splitter. Details
are discussed in [32].
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Abstract We review here some general properties of antiferromagnetic Heisenberg spin
chains, emphasizing and discussing the rôle of hidden symmetries in the classi-
fication of the various phases of the models. We present also some recent results
that have been obtained with a combined use of Conformal Field Theory and of
numerical Density Matrix Renormalization Group techniques.

1. Introduction and Summary.

For quite some time low-dimensional magnetic systems (i.e. (quantum) spins
on 1D and/or 2D lattices) have been considered essentially only as interesting
models in Statistical Mechanics with no realistic counterpart. It is only in
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recent times that systems that can be considered to a high degree of accuracy as
assemblies of isolated or almost isolated spin chains and/or of spin ladders (a
few chains coupled together) have began to be produced and have hence become
experimentally accessible, thus renewing the interest in their study, which is by
now one of the most active fields of experimental and theoretical research in
Condensed Matter Physics.

In this paper we will discuss only some relevant properties of isolated spin
chains, referring to the literature [15] for a general review of the properties of
spin ladders.

More than one decade ago it was pointed out [20, 5] that integer spin chains
(more specifically, spin-1 chains, but extensions to different values of the spin
have also been devised in the literature [43]) possess unexpected and highly non-
trivial hidden symmetries, whose spontaneous breaking manifests itself through
the appearance of unusual and highly nonlocal “string” order parameters. The
string order parameters, together with the more conventional magnetic order
parameters, can be used to classify the various phases that the phase diagram
of one-dimensional magnets can display.

In the present paper, which is a slightly enlarged version of the talk presented
by one of us (G.M.) at the XIII Conference on “Symmetries in Physics” we will
concentrate, without pretensions to full generality, on the discussion of a few
models of antiferromagnetic Heisenberg chains, of their phase diagrams and
on the rôle of hidden symmetries in their explanation. The paper is organized
as follows. In Sect.2 we review some general facts concerning Heisenberg
spin chains and discuss how in the continuum limit one can map a “standard”
(see below for the terminology) Heisenberg chain onto an effective field theory
described by a nonlinear sigma-model, and how the presence in the latter of
a topological term can account for the radically different behaviors of integer
versus half-odd-integer spin chains. In Sect.3, concentrating on spin-1 chains,
we consider the effects of the addition to the “standard” model of biquadratic
exchange terms and/or of Ising-like as well as of single-ion anisotropies, and
how the addition of such terms can drive the model away from what is commonly
called the “Haldane phase” (again, see below for an explanation) towards other
phases. In this context we will introduce in a more explicit manner the notion of
hidden symmetries and discuss their rôle. Sects.4 and 5 will be devoted to the
discussion of more recent results that have been obtained by some of us [17] with
a careful and combined use of analytical (effective actions and Conformal Field
Theory) and numerical (Density Matrix Renormalization Group) techniques.
The final Sect.6 is devoted to the conclusions and to some general comments.
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2. General Features of Spin Chains.

Let us begin by discussing here what can be considered as the “standard”
model of an isotropic antiferromagnetic (AFM ) Heisenberg chain with nearest-
neighbor (nn) interactions, which is described by the Hamiltonian:

H = J

N∑
i=1

−→
S i·

−→
S i+1 ≡ H⊥ + Hz (1)

H⊥ =
1
2
J⊥

N∑
i=1

{
S+

i S−
i+1 + S−

i S+
i+1

}
; Hz = Jz

N∑
i=1

Sz
i Sz

i+1; J⊥ = Jz = J

(2)
where, for each i = 1, ..., N ,

−→
S i is a spin operator1:[

Sα
i , Sβ

j

]
= i�δijε

αβγSγ
i ; α, β, γ = x, y, z;

−→
S 2

i = �2S(S + 1) (3)

(S integer or half-odd integer) located at the i − th site of a one-dimensional
lattice of N sites, interacting with its neighbors with an AFM (J > 0) nn
interaction of strength J . Later on we will consider more general models in
which J⊥ = Jz will be allowed2.

It may be useful to define a vector −→n i as: −→n i =:
−→
S i/�S, whereby:[

nα
i , nβ

j

]
=

i

S
εαβγnγ

i ; −→n 2 = 1 +
1
S

(4)

Although one is ultimately interested in the thermodynamic (N → ∞) limit,
for finite N one can adopt either periodic boundary conditions (PBC’s), by
imposing: −→

S i+N =
−→
S i ∀i (5)

by which the system is actually considered to “live” on a circle, or open boundary
conditions (OBC’s), where

−→
S 1 is coupled only to

−→
S 2 and

−→
S N only to

−→
S N−1

3.
The Hamiltonian of Eq.(1) has an obvious (global) O(3) symmetry and, for
PBC’s, it is also invariant under the (discrete) translation group of the lattice.

In the classical limit (� → 0 and S → ∞ with: �S = const.) the spins
(the −→n i’s) become (see Eq.(4)) classical vectors (and −→n i ∈ S2, the unit

1and: S±
i = Sx

i ±iSy
i .

2J⊥ = 0, in particular, corresponds to the one-dimensional Ising model, a trivially soluble classical model.
Notice however that an Ising model in a transverse magnetic field becomes a genuinely quantum and nontrivial
model.

3In which case the Hamiltonian should be actually rewritten as: H = J

N−1∑
i=1

−→
S i·−→S i+1.
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sphere in R3). The minimum-energy configuration of the spins corresponds
to: −→n i·−→n i+1 = const. = −1. Neighboring spins are then aligned antiparallel
to each other and, in the absence of any external magnetic field, can point in
a common but otherwise arbitrary direction on the sphere. This is the Néel
state. Let us remark that, at variance with the ferromagnetic (J < 0) case,
in which neighboring spins are all aligned parallel, at the quantum level the
Néel state is not an eigenstate of the Hamiltonian (1). This points to the fact
that quantum fluctuations will play a much more relevant rôle in the (quantum)
antiferromagnetic case than in the ferromagnetic one.

The classical energy of the Néel state is of course: EN = −JN(�S)2. In
this state the O(3) symmetry is spontaneously broken down to O(2)4, and the
state exhibits long-range order (LRO).

Elementary excitations over the Néel state are well-known to be in the form of
spin waves [38]: coherent deviations of the spins with a dispersion: ω(

−→
k ) ∝ k

in the long-wavelength limit (ka � 1, with a the lattice spacing). Hence, the
(classical) spectrum of the Hamiltonian (1) is gapless. We would like to stress
that nothing of what has been said hitherto depends on the value of the spin.
At the classical level, the spin S 5 can be simply reabsorbed into a redefinition
of the coupling constant (J → J(�S)2) and will contribute only an essentially
irrelevant and additional multiplicative overall scale factor.

All this is elementary and well known. Let us turn now to the quantum case6.
In the early 30’s Bethe [8] and Hulthén [30], employing what has been known
since as the “Bethe-Ansatz”, were able to show that the quantum S = 1/2
Heisenberg chain is actually an integrable model. We will not discuss here the
Bethe-Ansatz in any detail [38], but will only summarize the main features of
the solution of the S = 1/2 model. The (exact) ground state is nondegenerate,
it exhibits only short-range AFM correlations, but no LRO. Parenthetically,
this is in agreement with a general, and later, theorem [14]. The (staggered)
static spin-spin correlation functions:

Gα(i − j) = (−1)|i−j| 〈Sα
i Sα

j

〉
; α = x, y, z (6)

where 〈...〉 stands for the expectation value in the ground state, are all equal
and decay algebraically to zero at large distances. We recall here that genuine
LRO would imply (we omit here the index α):

lim
|i−j|→∞

G(i − j) = ON = 0 (7)

4Translational symmetry, if present is also broken, as the Néel state is not invariant under translations of
a lattice spacing as the original Hamiltonian but only of twice the lattice spacing. This has important
consequences on the location of the Goldstone mode [4, 40, 55] in momentum space, that we will not discuss
here, however.
5Or better S.
6From now on we will set for simplicity = 1.



Low-dimensional spin systems . . . 149

this defining the Néel order parameter ON (actually the square of the equi-
librium staggered (i.e. sublattice) magnetization). On the other extreme, an
exponential decay of the correlations of the form, say:

G(i − j) ≈
|i−j|→∞

exp{− |i − j| /ξ}P (|i − j|) (8)

with P (.) some inverse power of |i − j| would imply a finite correlation length
ξ and a mass gap (or, better, a spin gap) ∆ in the excitation spectrum roughly
given by: ∆ ∝ cξ−1,with c a typical spin-wave velocity. Algebraic decay of
correlations (formally corresponding to ξ → ∞) implies then that the system
is gapless. Summarizing, the main features of the S = 1/2 Heisenberg AFM
chain are that it has a (quantum) disordered ground state, with only short-range
AFM correlations, and that it is gapless. It is therefore a (actually the first)
prototype of a (quantum disordered and) quantum critical system [48]. It can be
said then that, as compared with the classical limit, the system remains gapless
but quantum fluctuations destroy LRO.

About thirty years later Lieb, Schutz and Mattis [36] (LSM ) proved an
important theorem stating that an S = 1/2 chain has either a degenerate ground
state or is gapless. No surprise that the Bethe solution obeys the Lieb-Schutz-
Mattis theorem, which is however of much wider reach, as it can cover models
that are more general than the “standard” nn chain, such as, e.g., the Majumdar-
Ghosh [37] model, another integrable model that we will nor discuss here,
though. The results of LSM were extended later on by other authors [3]
beyond S = 1/2 to cover all the half-odd-integer values of the spin. One
can then take as rigorously proven that (at T = 0) isotropic half-odd-integer
Heisenberg chains (with constant nn interactions) are all quantum disordered
and quantum critical (i.e. gapless). This result was thought for quite some
time to be “generic”, i.e. valid for chains of arbitrary spin until, in the early
80’s, Haldane [28] put forward what has become known since as “Haldane’s
conjecture”, according to which half-odd-integer spin chains should be quantum
disordered and gapless but integer spin chains should instead exhibit a spin gap
and an exponential decay of correlations. This implied that, contrary to what
happens in the classical limit, the physical behavior of spin chains should be a
highly discontinuous function of the value of the spin.

Completely rigorous proofs of (the second part of) Haldane’s conjecture are
still lacking. However, strong support to it comes from the analysis of the
continuum limit of the Heisenberg chain, which we will briefly describe now,
referring to the existing literature [1, 6, 23] for more details.

The canonical partition function for the Hamiltonian of Eq.(1) at temperature
T = (kBβ)−1 (with kB the Boltzmann constant):

Z = Tr {exp [−βH]} (9)
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can be written as a spin coherent-state path-integral [32], whereby the spin
variables get replaced, inside the path-integral, by classical variables according
to: −→

S i → SΩ̂i (10)

with Ω̂i a classical unit vector:
∣∣∣Ω̂i

∣∣∣ = 1. The next (and perhaps the most

important) step in Haldane’s analysis is the parametrization of the Ω̂i’s as7:

Ω̂i = (−1)i n̂i

√√√√1 −
(−→

l i

S

)2

+
−→
l i

S
(11)

with: |n̂i| = 1 and: n̂i·
−→
l i = 0. The n̂i’s are assumed to be slowly-varying (on

the scale of the lattice spacing). In this way, capitalizing, so-to-speak, on the
information gained from the Bethe-Ansatz solution of the S = 1/2 model, they
incorporate the information that the system still retains some short-range AFM

ordering, which would be global only for n̂i = const. (and
−→
l i = 0). The

−→
l i’s

can be shown [1] to be the (local) generators of angular momentum. In the
semiclassical (large S) limit, an expansion of the action in the path-integral up
to lowest (second) order in the

−→
l i’s is justified. Taking then the continuum

limit together with a gradient expansion, and integrating out the
−→
l i’s, one ends

up with the following expression for the partition function:

Z =
∫

[Dn̂] δ
(
n̂2 − 1

)
exp{−SE − iSB} (12)

where [Dn̂] stands for the functional measure and the δ inside the integral is a
functional δ. The first term in the action is given by:

SE =

L∫
0

dx

β∫
0

dτ

{
1
2g

[
1
c
|∂τn̂|2 + c |∂xn̂|2

]}
; n̂ = n̂(x, τ) (13)

where L(= N × lattice spacing) is the length of the chain, g = 2/S is the
coupling constant and: c = 2JS is the spin-wave velocity. This is simply the
Euclidean action of an O(3) nonlinear sigma model [6, 23, 59] (NLσM ). The
second term is the integral of a Berry phase [50], and is given by:

SB =
θ

4π

L∫
0

dx

β∫
0

dτn̂· (∂τn̂×∂xn̂) (14)

7This is what is known in the literature as “Haldane’s mapping”.
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with: θ = 2πS. The coefficient of θ is easily recognized to be the Pontrjagin
index [11, 41, 44], or winding number, of the map:

n̂ : R2
comp �→ S2 (15)

from spacetime compactified to a sphere and the two-sphere where n̂ takes
values, and it is an integer: SB is therefore a topological term, and: SB = 2πnS,
n ∈ Z. Therefore, exp {−iSB} ≡ 1 for integer S (θ = 0 mod (2π)), but:
exp {−iSB} = (−1)n (θ = π mod (2π)) if the spin is half-odd integer. This
will generate interference between the different topological sectors, and it is the
at the heart of the different behaviors of the two types of chains.

The pure (θ = 0 in our case) (1 + 1) O(3) NLσM is a completely inte-
grable model [60]. It has a unique ground state, and the excitation spectrum is
exhausted by a degenerate triplet of massive excitations that are separated from
the ground state by a finite gap. On the contrary, the θ = π model was shown
[45] to be gapless. Therefore, Haldane’s conjecture is fully confirmed by the
analysis of the continuum limit of the Heisenberg model.

We would like only to mention in passing that quite a similar behavior occurs
in spin ladders [15, 19, 46], namely even-legged ladders are gapped, while odd-
legged ladders are gapped for integer spin and gapless for half-odd-integer spin.
This “even-odd” effect has been shown [19, 51] to have the same topological
origin an in single chains.

How do these results compare with the gaplessness (irrespective of the value
of S) of the S → ∞ classical limit? The answer resides in the dependence
of the spin gap on S. Already at the mean-field level, but more accurately
from large-N expansions and/or renormalization group analyses [42], it turns
out that the spin gap ∆ behaves as: ∆ ∝ exp {−πS} for large S 8. Hence,
integer-spin chains become exponentially gapless for large S, and the classical
limit is recovered correctly.

3. More general Models. Hidden Symmetries and String
Order Parameters.

In view of what has been said up to now, the second part of Haldane’s
conjecture is by far the most intriguing part of it. Therefore integer spin chains
are the most interesting ones, and we will concentrate from now on on S = 1
chains.

What has been called in the previous Section the “standard” AFM Heisen-
berg model is actually a member of at least two larger families of models that
we will illustrate briefly here. The first class of models, that we will call
“θ−models”, includes a biquadratic term in the spins, and is described, setting

8∆ ∝ exp {−πnlS} for spin ladders [19], where nl is the number of legs of the ladder.
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J = 1, by the Hamiltonian:

H =
N∑

i=1

{
cos θ

(−→
S i·

−→
S i+1

)
+ sin θ

(−→
S i·

−→
S i+1

)2
}

(16)

with θ = 0 corresponding of course to the “standard” model. Most of the phase
diagram has been obtained [5] numerically, except for the points at θ = ±π/4,
that correspond to integrable models. The point θ = π/4 is the Sutherland
model [53], while θ = −π/4 is the integrable model [7, 54] of Babujian and
Takhatajan9. Both models are gapless, while the entire region−π/4 < θ < π/4
is known (numerically, again) to be gapfull. This whole region has been called
the “Haldane phase”. It includes a particularly interesting point that has been
studied extensively by Affleck, Kennedy, Lieb and Tasaki [2] (AKLT ), namely
θ = θ∗, with: tan θ∗ = 1/3. The corresponding Hamiltonian (omitting an
irrelevant overall numerical factor) is given by:

HAKLT =
N∑

i=1

{
−→
S i·

−→
S i+1 +

1
3

(−→
S i·

−→
S i+1

)2
}

(17)

This model is not completely integrable, but the ground state is known, it is
unique in the thermodynamic limit and can be exhibited explicitly. The ultimate
reason for this is that, apart from numerical constants, the i − th term in curly
brackets is just:

−→
S i·

−→
S i+1 +

1
3

(−→
S i·

−→
S i+1

)2
= 2

[
P2(i, i + 1) − 1

3

]
(18)

where P2(i, i + 1) is the projector [39] onto the state of total spin Stot = 2
of the pair of S = 1 spins located at sites i and i + 1. Therefore, the ground
state of HAKLT must lie in the sector of the Hilbert space that is annihilated
by all the projectors. It was shown by AKLT that the exact ground state
(also called the “Valence-Bond-Solid” (V BS) state) can be constructed as a
linear superposition of states Φσ that have the following characteristics. Let:
σ = {σ1, ...σN} be a given spin configuration, with: σi = 0,±1, i = 1, ..., N .
Then, Φσ is such that:

i) Sz
i Φσ = σiΦσ and moreover: ii) If a given spin is, say, +1, then the

next nozero spin must be −1, and viceversa. Typical such states correspond
therefore to spin configurations of the form:

σ = {+00 − 0 + −000 + ...} (19)

9This point is also known familiarly as the “Armenian point”.
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In other words, “up” and “down” spins do alternate in Φσ, but their spatial
distribution is completely random, as an arbitrary number of zeroes can be
inserted between any two nonzero spins. So, if a given spin in nonzero, we can
predict what the value of the next nonzero spin will be, but not where it will
be located. There is therefore no long-range (Néel) order in any conventional
sense in the V BS ground state, but a sort of “Liquid Néel Order” (LNO).
Conventional Néel order would be characterized by a nonvanishing of (at least
one of) the Néel order parameters:

Oα
N = lim

|i−j|→∞
(−1)|i−j| 〈Sα

i Sα
j

〉
; α = x, y, z (20)

In the V BS state and (numerically) in the whole of the Haldane phase one finds
instead [2, 5]: Oα

N = 0, α = x, y, z, and this is consistent with the absence of
a “rigid” Néel order.

There remains however what we have called the “liquid” Néel order, and it
has been argued convincingly in the literature [20, 5] that this is connected with
the nonvanishing of a novel class of order parameters that we will discuss now
briefly. Let us begin by defining the string correlation functions as:

Gα
S(n) =: −

〈
Sα

0 exp

[
iπ

n−1∑
l=1

Sα
l

]
Sα

n

〉
; α = x, y, z; n > 0 (21)

These are similar to the standard two-point correlation functions:

Gα(n) =: (−1)n 〈Sα
0 Sα

n〉 (22)

whose asymptotic (n → ∞) limit yields the Néel order parameter(s), except
that a string of exponentials of intermediate spins has been inserted between
the leftmost and the rightmost spins.

The string order parameters (SOP ’s) Oα
S are then defined as:

Oα
S = lim

n→∞Gα
S(n) (23)

It turns out [2, 25] that the string correlation functions are strictly constant
in the AKLT ground state, namely:

Gα
S(n) ≡ const. = Oα

S =
4
9

(24)

The ground-state spin-spin correlation functions have also been evaluated
exactly for the V BS state [2], and they turn out to be given by:

Gα(n) =
4
3

(
1
3

)n

(25)
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In other words: Gα(n) ∝ exp {−n/ξAKLT}, where the correlation length
ξAKLT is given, in units of the lattice spacing, by:

ξAKLT =
1

log 3
� 0.91 (26)

less than unity in units of the lattice spacing, implying a rather large spin gap.
So far for the ground state of the AKLT model. String and ordinary cor-

relation functions as well as Néel and string order parameters have also been
evaluated (numerically away from the AKLT point) for other points of the Hal-
dane phase [25]. For example, at the Heisenberg point, exact diagonalization
methods10 have shown that the string correlation functions are not strictly con-
stant, but still decay exponentially to a value of the string order parameter that is
somewhat smaller (Oα

S � 0.36...) than the AKLT value (Oα
S = 4/9 � 0.44...)

but still nonzero. The spin correlation length was also found [25] to be slightly
larger than the AKLT value, but still finite. So, there is convincing evidence
that the entire Haldane phase is characterized by vanishing Néel order param-
eters but by nonzero SOP ’s. There is also convincing numerical evidence
[25] that the string order parameters vanish at the integrable boundaries of the
Haldane phase (i.e. for θ = ±π/4).

That the nonvanishing of the SOP ’s is connected to the breaking of a sym-
metry, and hence to the onset of an ordering that is not apparent in the original
Hamiltonian was clarified in a seminal paper by Kennedy and Tasaki [5] (KT ).
With reference to a given configuration {σ}, and defining N(σ) as the number
of odd sites at which the spins are zero, one defines a new configuration {σ}
via:

σi = exp

⎡⎣iπ

i−1∑
j=1

σj

⎤⎦σi (27)

and then a unitary operator U via:

UΦσ = (−1)N(σ) Φσ (28)

In a nutshell, the action of U amounts to leaving the first nonzero spin unchanged
and to flipping every other nonzero spin proceeding to the right of the chain.
For example:

{+ + 0 − +00 + 0 − 0 + +} �→ {+ − 0 −−00 + 0 + 0 + −}
{0 + −00 + 00 − +00−} �→ {0 + +00 + 00 + +00+} (29)

and so on. It is obvious that U is a unitary11. What is less obvious is that
the unitary transformation is a nonlocal one, in the sense that U cannot be

10With the Lanczos method and for chains with up to no more than 14 sites.
11Notice also that: N (σ) = N (σ), as zero spins are mapped into zero spins.
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written as a product of unitary operators acting at each single site. This has
the important consequence that symmetries that are local (in the above sense)
for the Hamiltonian H will of course remain symmetries of the transformed
Hamiltonian H̃ (as U is unitary) but need not survive as local symmetries of
H̃. Specifically, the symmetry group of H is SU(2), that includes a discrete
Z2×Z2 subgroup of rotations of π around the coordinate axes. Explicitly, the
transformed Hamiltonian has the form [5]:

H̃ =
∑

i

{
cos θhi + sin θ

(
h2

i

)}
(30)

where:

hi = −Sx
i Sx

i+1 + Sy
i exp

{
iπ

(
Sz

i + Sz
i+i

)}
Sy

i+1 − Sz
i Sz

i+1 (31)

and it evident that Z2×Z2 is the only local surviving symmetry group of the
transformed Hamiltonian H̃. Even more important is how the string order
parameters transform. The result is [5]:

Oα
S (H) = Oα

ferro

(
H̃
)

(32)

where:
Oα

ferro

(
H̃
)

= lim
|i−j|→∞

〈
Sα

i Sα
j

〉
|H̃ (33)

and the r.h.s stands here for an average taken w.r.t. the ground state of the
transformed Hamiltonian. The transformed order parameter is now a ferro-

magnetic order parameter. Therefore: Oα
S (H) = 0 =⇒ Oα

ferro

(
H̃
)

= 0,

and this implies the onset of a spontaneous ferromagnetic polarization in the
α − th direction in the ground state of H̃. This in turns entails a partial (if

Oα
ferro

(
H̃
)

= 0 for just one value of α) or total (if this happens in more

than one direction) spontaneous breaking of the discrete Z2×Z2 symmetry. It
is known [4, 55] that spontaneous breaking of a continuous symmetry is ac-
companied by massless excitations (the Goldstone modes), while breaking of a
discrete symmetry usually implies the opening of a gap (the most conspicuous
and familiar example being the 2D Ising model). Therefore, KT were led to
consider the spontaneous breaking of the Z2×Z2 symmetry as the origin of the
Haldane gap.

One has however to be a bit careful on this point. It appears to be true that
spontaneous (partial or total) breaking of the Z2×Z2 symmetry implies the
generation of a spin gap. But:

i) The converse need not be true. We will see that there are spin models that
exhibit gapped phases12 while retaining the full Z2×Z2 symmetry, and:

12The so-called “large-D” phases of the “λ− D” model to be discussed immediately below.
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ii) The mere nonvanishing of (one or more) string order parameters is not
enough to fully determine in which (gapped) phase the system is. It is the full set
of order parameters, both string and Néel, that allows for a full characterization
of the various phases. In particular, the Haldane phase is fully characterized
by the vanishing of all the Néel order parameters and by all the three string
parameters being nonzero.

We turn now to a different class of models, the so-called “λ − D” family of
models13. They are described by the family of Hamiltonians (parametrized by
two real parameters, λ and D):

H =
N∑

i=1

{
Sx

i Sx
i+1 + Sy

i Sy
i+1 + λSz

i Sz
i+1 + D (Sz

i )2
}

(34)

The “standard” (isotropic) AFM Heisenberg model corresponds of course
to λ = 1 and D = 0. λ = −1 (and D = 0) can be easily shown14 to correspond
to a (isotropic) ferromagnetic Heisenberg model. |λ| = 1 introduces an “Ising-
like” anisotropy, while D = 0 introduces what is called “single-ion” anisotropy.

The model can be solved exactly for S = 1/2 [33], but no exact solutions
are available for integer spin. There are obvious asymptotic limits when either
λ (resp. D) is large and D (resp. λ) not too large, so that the “λ-term” (resp.
“D-term”) can be considered as a zeroth-order Hamiltonian and the rest as a
perturbation:

i) |λ| � 1. The reference ground state is either a Néel AFM state (λ > 0)
or a ferromagnetic (λ < 0) state.

ii) |D| � 1. For D > 0 (the so-called “large-D” phase) the reference state
becomes a planar state with Sz

i = 0 for all i’s, while for D < 0 the reference
state is a state where Sz

i = 0 is excluded, hence a state where the S = 1 spins
become effectively two-level systems, and a detailed map of the model into an
effective spin-1/2 model [17, 47] can be successfully performed. For |λ| = 1
and D = 0 the symmetry group of the Hamiltonian is O(2)×Z2 (the Z2 factor
corresponding to a reflection in the x − y plane: Sz

i → −Sz
i ).

Apart from these limiting cases, the model has been studied analytically [49]
as well as numerically [10, 13, 26, 52] , and the corresponding phase diagram
is displayed in Fig.16.

The various sectors of the phase diagram can be characterized as follows
[13, 17, 22]:

i) the Haldane phase. The ground state is unique with total component
Sz

tot = 0 of the spin. The order parameters are: Oα
N = 0, Oα

S = 0, α = x, y, z.
The (Haldane) gaps are in different spin channels according to the sign of D,

13This is the class of models on which the Bologna group is currently working.
14By performing a rotation of π around the z-axis on one of the two sublattices (i.e. on every other site).
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Figure 1. Phase diagram of the λ−D spin-1 Hamiltonian of Eq. (34). The indicated regions
are explained in the text.

but nonzero in any case. The isotropic, Heisenberg point λ = 1, D = 0 is in
this phase, and lies on a line separating the two subphases, that are denoted as
H1 and H2 in the literature [10].

ii) The Néel phase. The ground state is doubly degenerate, and the order
parameters are: Oα

N = Oα
S = 0 for α = x, y, but: Oz

N,Oz
S = 0.

iii)The large-D phase.The ground state is unique, it is gapped, but here:Oα
S =

Oα
N = 0 ∀α.
iv) The two XY phases. These are both gapless phases. They are dis-

tinguished by the nature of the low-lying spin excitations (spin-1 in the XY 1
phase, spin-2 in the XY 2 phase).

v) The ferromagnetic phase. The ground state is doubly degenerate, with
maximal magnetization: Sz

tot = ±N , and the phase is gapped. In this case
it is the ferromagnetic order parameter that is nonvanishing, and actually [6]:
Oz

ferro = 1 (the other two being zero). Also: Oz
S(j, k) = (−)j−k−1, while:

Ox,y
S = 0.
Anticipating some of the numerical results of Sect.5, we give below, in Figs.2

and 3, some examples [6] of the behavior of the various correlators and order
parameters as functions of the parameters of the model.
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Figure 2. Ordinary and string correlation functions in the Haldane phase: (a) Gz(k), (b)
1
2
(−)k〈S+

0 S−
k 〉, (c) Gz

S(k) and (d) Gx
S(k). Selected values of the parameters are (D = 0.5, λ =

1). Note that with this choice the transverse correlation length is appreciably larger than the
longitudinal one. The data have been obtained with finite-size DMRG on a chain of L = 100
spins (S = 1) with PBC and M = 216 states (Sect.5 for details).

Figure 3. Order parameters relevant to the Néel-Haldane-large D transitions plotted versus
the anisotropy coefficient D of Eq. (34) fixing λ = 1: (a) Oz

N defined in Eq. (20); (b) Oz
S and

(c) Ox
S defined in Eq. (23). The asymptotic values are extrapolated using an algebraic best-fit

function O∞ + C/|i − j|γ on the DMRG data (same choices as in Fig.1). Near D � −0.3
Oz

N and Ox
S do not vanish in the same point due to finite-size effects and to a moderate number

of DMRG states.
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Concerning the nature of the transitions between the various phases [10, 13,
17], both the Haldane-large-D and the Haldane-Néel transition lines are critical
(gapless) lines. The two critical lines merge at a tricritical point (at D � λ � 3),
above which the Haldane phase disappears and the transition (a large-D-Néel
transition,now) is first-order. The XY -ferromagnetic transition is instead a
first-order one, as well as the large-D-ferromagnetic transition. Finally, The
Haldane-XY transition is considered [13] to be of the Berezinskii-Kosterlitz-
Thouless [7, 34] (BKT ) type, as well as the XY -large-D transition.

The “λ − D” model has also been studied by KT . Applying the same
nonlocal unitary transformation that was discussed previously, they showed that
the transformed Hamiltonian, whose explicit form we will not give here, is still
given in terms of the operators hi (see Eq.(31)), and retains therefore Z2×Z2

as the only local symmetry,just as in the case of the Hamiltonian of Eq. (16).
Therefore, the same conclusions as before apply concerning the connection of
the nonvanishing of the string order parameters with the spontaneous breaking
of the Z2×Z2 symmetry.

In the present paper we will address mainly to the detailed nature of the
Haldane-large-D and Haldane-Néel critical transition lines. It is known that
the (large distance) critical behavior of one-dimensional quantum systems is
well described by Conformal Field Theory [12, 21, 24, 27, 33] (CFT ). In the
next Section we will report on a proposal of an effective CFT for the “λ−D”
model on the Haldane-large-D critical line. This allows for the prediction of the
operator content of the theory, and hence also for the prediction of the structure
of the conformal tower of excited states above the ground state. To confirm the
predictions, we will report also on extended numerical analyses, whose details
will be reported elsewhere [18], that fully confirm the theoretical predictions.

4. Conformal Field Theory and Effective Actions.

Let us begin by recalling some basic results and examples of CFT that will
be used in the forthcoming analysis of the critical properties of the spin-1 λ−D
chain.

It is well known [21, 27] that critical properties of two-dimensional systems
are completely classified by CFT ’s: since in 2D the conformal group is infinite
dimensional, the Hilbert space of a conformally invariant theory can be com-
pletely understood in terms of the irreducible representations of its algebra, the
Virasoro algebra. We recall that the latter has an infinite number of generators,
denoted with Ln, L̄n (n ∈ Z) for its holomorphic and antiholomorphic part
respectively, satisfying the commutation relations:

[Ln, Lm] = (m − n)Lm+n +
c

12
(m3 − m)δm+n,0 (35)
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and similarly for the L̄n. The constant c is called the central charge of the algebra
or the conformal anomaly. Since we are interesting in a comparison between
theoretical predictions and numerical data, which are performed on a finite
lattice, we will consider a CFT defined on a cylinder with spatial dimension
of finite length L. In this case [12, 21], the energy and the momentum operator
are represented respectively by:

H =
2π

L

(
L0 + L̄0 −

c

12

)
(36)

P =
2π

L

(
L0 − L̄0

)
(37)

In order for H to be bounded from below, we must restrict our attention to
highest weight representations of the Virasoro algebra, for which there exists a
highest weight (or primary) state |∆, ∆̄〉 satisfying:

L0|∆, ∆̄〉 = ∆|∆, ∆̄〉 , Ln|∆, ∆̄〉 = 0 for n > 0 (38)

and analogous relations with respect to the L̄n generators.
Each of these representations is thus identified by the values of the central

charge c and of the couple (∆, ∆̄) (the conformal dimensions). They fix both
the energy and the momentum of the primary state |∆, ∆̄〉, according to:

E0
∆,∆̄ =

2π

L
(∆ + ∆̄ − c

12
) (39)

P 0
∆,∆̄ =

2π

L
(∆ − ∆̄) (40)

Notice that, in a finite geometry (with PBC), the vacuum state, corresponding
to ∆ = ∆̄ = 0, has a non zero energy (Casimir effect):

E0
vac = − πc

6L
(41)

Also, the two-point correlation function of the operator creating a given primary
state out of the vacuum (|∆, ∆̄〉 = O∆,∆̄|0〉) has an algebraic decay whose
critical exponents are determined by the values of the conformal dimensions
(∆, ∆̄): one has [21, 27]

〈O∆,∆̄(z, z̄)O∆,∆̄(0, 0)〉 ∝ 1
z2∆z̄2∆̄

(42)

Finally, from the primary state |∆, ∆̄〉 one can obtain all excited (or sec-
ondary) states by applying strings of powers of Ln, L̄n with n < 0. It is easy to
see that, if m, n < 0, the commutation relations (35) imply : L0(Lm)j|∆, ∆̄〉 =
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(∆ + mj)|∆, ∆̄〉, L̄0(L̄n)k|∆, ∆̄〉 = (∆̄ + nk)|∆, ∆̄〉, so that the secondary
states have energies and momenta:

E
(r,r̄)

∆,∆̄
− E0

vac =
2π

L
(∆ + ∆̄ + r + r̄) , (43)

P
(r,r̄)

∆,∆̄
=

2π

L
(∆ − ∆̄ + r − r̄) (44)

with r, r̄ ∈ N and a degeneracy that can be explicitly calculated for each repre-
sentation. It may happen that some of these states have null norms. In this case
the true (non-degenerate) Hilbert space of states is obtained after projecting out
these null vectors, which therefore do not contribute to the operator content
of the corresponding CFT . The quantity in brackets in the right hand side of
Eq. (43) yields the coefficients with which the energy of the corresponding
state scales to zero in the thermodynamic limit. It is therefore called “scaling
dimension” and will be denoted by d

(r,r̄)

∆,∆̄
in the sequel.

Let us examine some examples. We will consider only unitary theories,
corresponding [21] to the following two sets of values of the central charge c:

c = 1 − 6
p(p + 1)

, p = 3, 4, . . . ; (45)

c ≥ 1 . (46)

The first set of values corresponds to the so called minimal models [21, 27],
whose primary states are of finite number. Their conformal dimensions are
given by the formula:

∆rs, ∆̄rs =
[(p + 1)r − ps]2 − 1

4p(p + 1)
, 1 ≤ s ≤ r ≤ p − 1 , r, s ∈ Z (47)

Theories with c ≥ 1 have instead an infinite number of primary states.
The simplest case of a CFT corresponds to c = 1/2 (p = 3 in Eq. (45)) and

describes the universality class of the two-dimensional Ising model. According
to (47), there are only three primary operators: the identity I corresponding to
the vacuum, (∆, ∆̄) = (0, 0), the Ising spin σ with (∆, ∆̄)σ = (1/16, 1/16)
and the energy density ε with (∆, ∆̄)ε = (1/2, 1/2). Notice that the spin-spin
correlator 〈σ(x)σ(0)〉 decays with a critical exponent ηz = 4∆σ = 0.25. In
Table 1 we list the lowest conformal (primary and secondary) states, together
with their scaling dimensions and momenta. As explained in the next section,
a comparison with the numerical data given in the last column will allow us
to conclude that the Haldane-Néel critical transition line is indeed of the Ising
type.

We discuss now briefly the c = 1 case, which exhibits a much richer structure.
It corresponds to the field theory of a free compactified bosonic field, i.e. to a
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Table 1. Columns 1-4 show the conformal dimensions (∆, ∆̄),(r, r̄), the scaling dimensions
d
(r,r̄)

∆,∆̄
and the momenta P

(r,r̄)

∆,∆̄
of the lowest conformal states in the c = 1/2 minimal model.

The numerical results in the last column are explained in Sect.5.
Notice that the states with ∆ = ∆̄ = 0, (r, r̄) = (1, 0), (0, 1) do not appear since they
correspond to null vectors.

(∆, ∆̄) , (r, r̄) d
(r,r̄)

∆,∆̄
P

(r,r̄)

∆,∆̄
d(num)

(0, 0) ; (0, 0) 0 0
(1/16, 1/16) ; (0, 0) 1/8 0 0.1250 ± 0.0004
(1/2, 1/2) ; (0, 0) 1 0 0.962 ± 0.001

(1/16, 1/16) ; (1, 0), (0, 1) 9/8 ±2π/L 1.0959 ± 0.0008
1.100 ± 0.003

(1/2, 1/2) ; (1, 0), (0, 1) 2 ±2π/L 1.87 ± 0.02
1.87 ± 0.02

(0, 0) ; (2, 0), (0, 2) 2 ±4π/L 1.904 ± 0.004
1.86 ± 0.01

Gaussian model with Lagrangian:

L =
1
2

[
1
v
(∂τΘ)2 + v(∂xΘ)2

]
(48)

where Θ represents an angular variable spanning a circle of a given radius
R and the constant v, which has the dimension of a velocity, is called spin
velocity. If we assume for Θ, and hence for its dual field Φ15, periodic boundary
conditions, the Hilbert space of the theory splits into a direct sum of distinct
topological sectors labeled by the winding numbers n, m ∈ Z of the fields Θ
and Φ respectively. The primary fields are then vertex operators of the form
[21, 27]

Vmn = exp
(
i
√

4πKnΦ + i
√

π/KmΘ
)

(49)

whose scaling dimensions are given by

dmn =
(

m2

4K
+ n2K

)
, K =

π

R2
(50)

Notice that the latter depend explicitly on the radius of compactification. Thus
we obtain a different c = 1 theory for each value of R, i.e. of K. For example,
K = 1 corresponds (via fermionization [21, 27]) to a 1D model of free Dirac
(FD) fermions. The K = 1/2 point is said to be self-dual (SD) since it is
invariant under the duality transformation Θ ⇔ Φ, m ⇔ n, while the point
K = 2 corresponds to the BKT critical theory.

15If we decompose the field Θ in its holomorphic and antiholomorphic part, Θ(z, z̄) = Θh(z) + Θah(z̄),
the dual field is defined as Φ = Θh(z) − Θah(z̄).



Low-dimensional spin systems . . . 163

We remark also that the energy operator (∂Θ)2 has conformal dimension 2
for any value of R and hence it is always marginal. The effect of adding it to
the Lagrangian (48) results only in a change of the coupling constant in front,
which, in turn, can be absorbed into a rescaling of the radius of compactification
of Θ. Thus we generate a continuous line of inequivalent critical c = 1 theories,
corresponding to different values of K.

It is well known [27] that the Gaussian model (48) describes the contin-
uum limit of the spin 1/2 XXZ chain with anisotropy parameter ∆, as long
as −1 ≤ ∆ ≤ 1. From the exact Bethe-ansätz results, one can show [27]
that the interesting cases ∆ = −1, 0, 1 corrrespond to the SD, FD and BKT
points of the bosonic theory, respectively. We would like to show now, that the
Gaussian model (48) describes also the critical properties of the spin-1 λ − D
Hamiltonian (34) on the Haldane-large-D transition line. In doing so, we will
also establish a relationship between the coupling constants D, λ of the discrete
model and those of the continuum theory, namely the spin-wave velocity v and
the compactification radius. This will allow us to make quantitative theoretical
predictions to be compared, in next section, to the numerical results.

In the spirit of Haldane’a mapping, we start from a classical solution, which
for D > λ − 1, is a planar state where the unit vectors Ω̂j(τ) that represent

our spins (
−→
S j → SΩ̂j(τ) , see Sect.2) are Néel ordered in the xy-plane:

Ω̂j(τ) = (cos(θ0 + jπ), sin(θ0 + jπ), 0). Hence we make the Haldane-like
ansätz:

Ω̂j(τ) = (−1)jn̂j(τ)

√
1 −

l2j(τ)
S2

+ ẑ
lj(τ)

S
(51)

where n̂j(τ) = eiθj(τ) ∈ O(2)xy, ẑ is the unitary vector (0, 0, 1), and the
fluctuation field lj is supposed to be small. Thus, as for the isotropic case, it is
possible to obtain an effective Lagrangian that describes the low-energy physics
of the Hamiltonian (34) in the continuum limit. Carrying out this calculation
as explained in Sect.2, one obtains in this case a Gaussian model (48), where
now Θ = θ/

√
g and

g =
1
s

√
2 (1 + D + λ); v = s

√
2 (1 + D + λ) (52)

In other words, we have a free theory for a bosonic field Θ, which is compactified
along a circle of radius 1/

√
g. Thus, the operator content of the theory can be

read from Eq. (49): the list of primary operators is exhausted by the vertex
oprators Vmn whose scaling dimensions are given by Eq. (50), with K = π/g.

In addition, the scaling dimensions (50) fix also the (non universal) critical
exponents of the correlation functions. For instance it is easy to see that the
transverse spin-spin correlator should decay according to:

〈S+(0)S−(x)〉 ≈ 〈eiθ(0)e−iθ(x)〉 ∝ |x|−η with η = 2d10 = g/2π . (53)
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5. The Density Matrix Renormalization Group and Spin
Chains.

The code we have used for density matrix renormalization group (DMRG)
calculations follows rather closely the algorithms reported in White’s seminal
papers [56, 57], with the following points to be mentioned:
• The superblock geometry was chosen to be [Bs • |Bs′

ref•] with PBC, where
Bs′

ref is the (left ↔ right) reflected of block Bs′ with s′ sites. The rationale for
adopting this configuration is that, being effectively on a ring, the two blocks are
always separated by a single site, for which the operators are small matrices that
are treated exactly (no truncation) [57]. In this way we expect a better precision
in the correlation functions calculated fixing one of the two point on these sites
and moving the other one along the block. Moreover, whenever the system has
an underlying antiferromagnetic structure (typically when a staggered field is
switched on), this geometry seems to be the one that preserve it at best, both
for even and odd values of s.
• We used the finite-system algorithm with three iterations. This prescription
should ensure the virtual elimination of the so-called environment error [35],
which is expected to dominate in the very first iterations for L < L∗(m) (see
below). Normally the correlations are computed at the end of the third iteration,
once that the best approximation of the ground state is available. This has the
advantage of using less memory during the finite-size iterations but requires the
storage of all the matrices needed to represent, on the reduced basis of the last
step, the operators entering the correlation functions of interest. At the moment,
disk storage is the ultimate factor that limits the size of the systems that we are
able to treat.
• We always exploit the conservation of Sz

tot. With the exception of the fer-
romagnetic phase, that we do not address now, the ground state(s) is (are) at
Sz

tot = 0 [10]. In order to maximize their accuracy, the correlations are cal-
culated targeting only the lowest-energy state within this sector. However, in
order to analyze the energy spectrum, we had to target also the lowest-energy
states in the other sectors |Sz

tot| = 1, 2, . . . and/or a few excited states within
the Sz

tot = 0 sector, depending on the phase of interest. On the one hand, this
requires a modification of the basic Lanczos method to go beyond the lowest
eigenvalue of the superblock Hamiltonian. On the other hand, once the Nt

eigenvalues of interest are found, one can build the block density matrix as the
average (mixture) of the matrices associated with the corresponding Nt eigen-
vectors. At present we are not aware of any specific ”recipe” other than that of
equal weights.

Going back to the modified Lanczos routine, our DMRG code implements
the so-called Thick Restart algorithm of Wu and Simon [58]. Once Sz

tot is
fixed, in a given run we want to determine simultaneously the first Nt levels
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|Sz
tot; b〉 with b=0,1,2,. . . , Nt− 1 (the ground state being identified by (Sz

tot =
0,b= 0)). Then, as in the conventional Lanczos scheme, we have to push the
iteration until the norms of the residual vectors and/or the differences of the
energies in consecutive steps are smaller than prescribed tolerances (10−9 −
10−12 in our calculations). The delicate point to keep under control is that,
once the lowest state |Sz

tot; 0〉 is found, if we keep iterating searching for higher
levels the orthogonality of the basis may be lost, just because the eigenvectors
corresponding to these levels tend to overlap again with the vector |Sz

tot; 0〉. As
a result, the procedure is computationally more demanding to the extent that one
has to re-orthogonalize the basis from time to time. Typically, we have seen that
this part takes a 10-20% of the total time spent in each call to the Lanczos routine.
We have also observed that if this re-orthogonalization is not performed, one of
the undesired effects is that the excited doublets (generally due to momentum
degeneracy) are not correctly computed. More specifically, it seems that while
the two energy values are nearly the same in the asymmetric stages of the
iterations, when the superblock geometry becomes symmetric (s = s′ in the
notations of the preceding point) the double degeneracy is suddenly lost and
only one of the two states appears in the numerical spectrum.

So far for the specific algorithm. Now, the crucial point to consider in accu-
rate DMRG calculations is the choice of M , that is, the number of optimized
states. White argued [57] that the convergence of the ground state energy is
almost exponential in M with a step-like behaviour, probably related to the
successive inclusion of more and more complete spin sectors. Unfortunately,
the effective accuracy gets poorer when we deal with energy differences and
correlation functions, for which little is known about convergence. It must be
told, however, that despite its name the DMRG performs somehow better for
systems with a definite gap rather than for gapless (critical) ones. We refer to
the papers by Andersson, Boman and Östlund [5] and by Legeza and Fáth [35]
where, for different systems and in terms of different observables, the following
common feature emerges: Even if the quantum system is rigorously critical in
the limit L → ∞, the DMRG truncation introduces a spurious length, L∗(m),
which, as expected, diverges as M is increased. (Our analysis of the accuracy
of the energy levels in some selected points of the λ − D chain near criticality
leads to a similar conclusion [18]). Hence, even if we are technically able to
deal with sizes L > L∗(m) (at a given M ), as far as criticality is concerned we
cannot rely completely on the DMRG data because the system experiences an
effective length which should be absent in the critical regime.

Therefore, our strategy can be summarized as follows: We fix a rather high
value of M such that the trustable values of L are sufficiently large to see
the scaling limit of CFT , but not too large as compared to L∗(m). In other
words, even in the study of (supposed) critical systems, we prefer to exploit
the computing resources to include as many DMRG states as possible, and
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to refine the calculations with finite-size iterations, rather than trying to take
naı̈vely the limit L → ∞. In addition, to judge whether M is sufficiently large
or not we checked the properties of translational and reflectional invariance that
the correlation functions should have 16. To be specific, if G(0, k) is a certain
correlation function computed starting at j = 0, we have always increased M
(at the expenses of L) until the bound |G(
, 
 ± k) − G(0, k)|/G(0, k) � 0.05
was met for k varying from 0 to 
 = L/2, possibly with the exception of the
ranges where G(0, k) is below numerical uncertainties (10−6, say).

The quality of the numerical analysis of the critical properties depends heav-
ily on the location of the critical points of interest. As far as the transitions
from the Haldane phase are concerned, it is convenient to fix some representa-
tive values of λ and let D vary across the phase boundaries. This preliminary
task of finding Dc(λ) turns out to be crucial for subsequent calculations and is
divided in two steps. First, one has to get an approximate idea of the transition
points using a direct extrapolation in 1/L of the numerical values of the gaps,
computed at increasing L with a moderate number of DMRG states. Clearly,
one may want to explore a rather large interval of values and so the increments
in D will not be particularly small (0.1, say). Then, the analysis must be refined
around the minima of the curves ∆E-vs-D with smaller increments in D and a
larger value of M . In our problem, the approach that seems to give better results
is standard finite-size scaling (FSS) theory [26, 29] (for instance as compared
to the phenomenological renormalization group).

Once the critical point is located, we take full advantage of the conformal
structure by looking at the finite-size spectrum (see Eqs. (41) and (44)) of
relevant and marginal operators. In practice, we select a number of states that
tend to become degenerate with the ground state and look for straight lines in
the ∆E-vs-L−1 plot. Then, from a best fit we expect to have a very small
offset (ideally a zero gap in the thermodynamic limit) and a slope given by the
scaling dimension d multiplied by the velocity prefactor, v, which is absent
in the field-theoretical formulation but has to be determined (in terms of the
microscopic parameters) in a lattice system. In the latter case, Eq. (41) should
contain also a term e∞L, e∞ being the energy density of the problem at hand.
Actually, due to the prefactor v, we have to imagine a self-consistent procedure:
Depending on the type of the transition we have in mind (that is, depending on
the central charge c), we stick on one or more levels in the spectrum that have
exactly d = 1. Then the slope of these is nothing but v. Once the velocity is
estimated, one uses Eq. (41) to best fit the product cv and see whether the value
of c and the hypothesis on the universality class are self-consistent or not.

16In [18] it is shown that, in general, Gx,y
S (j,k) behaves nontrivially under j ↔ k, due to the fact that the

ground state is not necessarily in the Sz
tot = 0 sector.
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To clarify the matter, let us start with the simpler case of the Haldane-Néel
transition, that is thought to be in the 2D Ising universality class. Fixing λ = 0.5
we find Dc(0.5) = −1.2, and the β-function method [29] yields ν(0.5) =
1.023 ± 0.009, as far as the gap exponent, ∆E ∝ (D − Dc)ν is concerned.
Moreover, we observe the following nontrivial feature of the spectrum: The
massless modes described by the CFT seem to be all and only the levels
within Sz

tot = 0, while those with Sz
tot = 0 mantain a finite energy gap in the

limit of large L. Hence, the reference state for the calculation of v will be the
second excited state in Sz

tot = 0, corresponding to the primary field of conformal
dimensions (1/2,1/2). Using quadratic extrapolations in 1/L we get v = 2.44,
and consequently e∞ = −2.0011961 ± 0.0000006 and c = 0.5008 ± 0.0008,
thereby confirming the Ising universality class. The scaling dimensions can be
estimated from the slopes of the straight lines in a plot like that of Fig.3. In Table
1 the theoretical values anticipated in Sect.4 are compared with these numerical
estimates. The overall agreement is good (7 % in the worst case). Note that all
the marginal operators have nonzero momentum and so they cannot represent
a valid perturbation to the continuum Hamiltonian in as much as they would
break translational invariance. The absence of marginal operators suggests that
each point of the Haldane-Néel transition corresponds to the same c = 1/2
theory and the line in the phase diagram is ”generated” by the mapping from
the discrete spin model to the continuum CFT. Repeating the same passages at
λ = 1 we get Dc(1) = −0.315, ν(1) = 1.003± 0.006 together with v = 2.65,
e∞ = −1.62651, c = 0.498±0.002, that is, again a c = 1/2 continuum theory.

We now pass to an example of numerical investigation of a c = 1 line of
critical points, namely the transition from the Haldane to the large-D phase.
In the past [20], a similarity with the critical fan of the Ashkin-Teller model
has been suggested. The operator content of this model arises from Ginsparg’s
orbifold construction [24] and consists of a number of K-independent scaling
dimensions plus the contributions coming from the pure Gaussian part (free
boson) discussed in the previous Section. The fact that we do not observe K-
independent dimensions (apart from trivial secondaries of the identity) indicates
that the continuum description of our spin-1 Hamiltonian with PBC at the
Haldane-large-D transition should be purely Gaussian rather than ”orbifold-
like”.

In order to support this claim, we try again to match the whole spectrum of the
relevant and marginal operators (d ≤ 2). The difference with the c = 1/2 case
is that here we have to fix not one but two nonuniversal parameters, v and K (see
Eq. (50)). As regards the former, the velocity stems from the first and second
excited states in Sz

tot = 0. Note that in choosing these levels we are assuming,
self-consistently, that K > 1 so that the two secondaries of the identity (d = 1)
come first than the primaries with (m = 0, n = ±1), having d0,±1 = K. As
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Figure 4. Energy differences, divided by 2π, plotted vs 1/L at the Ising transition (λ =
0.5, D = −1.2). Points represent the numerical values obtained with multi-target DMRG runs
(M = 216) collecting nine excited states within Sz

tot = 0. Continuous lines are best-fit whose
slopes are given in Table 1, together with the theoretical predictions of the scaling dimensions
(the labels on the right indicate the multiplicities, all correctly met).

far as the Luttinger parameter K is concerned, we have to inspect the spectrum
in other sectors of Sz

tot too. In particular, the first excited state lies in |Sz
tot| = 1,

that corresponds to m = ±1, n = 0 in Eq. (50). The value of K is obtained
from the slope d±1,0 = 1/4K in a plot similar to that of Fig.3. More generally,
in order to check the self-consistency of the hypothesis c = 1, we have computed
the finite-size spectrum of relevant and marginal operators in different sectors
of Sz

tot for a couple of critical points on the Haldane-large-D line (first two rows
of Table 2). Once that v and K are numerically determined, the structure of the
Gaussian spectrum is correctly reproduced (including the multiplicities) and the
overall comparison is satisfactory since, in worst cases, the relative difference
does not exceed 3% (see plots and tables of Ref. [17]). The agreement with the
theoretical predictions of the mapping in the planar regime is also remarkable.
If we plug the coordinates of the critical points in the formulae of g and v
for the Gaussian model derived above (Eq. (52)), we obtain v = g = 2.07,
K = π/g = 1.52 at (λ = 0.5, D = 065) and v = g = 2.45, K = π/g = 1.28
at (λ = 1, D = 0.99).
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Table 2. Velocity, central charge and ground state energy density for some critical points on the
Haldane-large-D transition line. The numbers are the outcome of DMRG calculations with L =
16, 20, 24, 32, 48, 64 and M = 405, for cases with K > 1, or L = 16, 20, 24, 28, 32, 36, 40
and M = 400, for cases with K < 1. The last two columns contain the numerical estimate of
the nonuniversal parameter K, (according to the procedures described in the text) and the gap
exponent obtained from the CFT formula ν = 1/(2 − K). The error on e∞ is typically of one
unit in the last digit or better.

[λ, Dc(λ)] v c e∞ K ν

(0.50, 0.65) 2.197 ± 0.004 1.008 ± 0.003 −0.908765 1.580 ± 0.004 2.38
(1.00, 0.99) 2.588 ± 0.006 0.997 ± 0.003 −0.859152 1.328 ± 0.004 1.49
(2.59, 2.30) 3.70 ± 0.04 0.99 ± 0.01 −0.675099 0.85 ± 0.01 0.870
(3.20, 2.90) 4.445 ± 0.005 1.133 ± 0.006 −0.59132 0.526 ± 0.007 0.678

Enforced by these quantitative predictions, we try to approach the multicrit-
ical point where the c = 1 line meets the c = 1/2 one. Supposedly, the central
charge at this point is c = 3/2 and it has been proposed [49] that the corre-
sponding CFT is a SU(2)2 Wess–Zumino–Witten–Novikov model. If this was
true, the two lines should join at the point where the effective Gaussian theory
has K = 1 [27] (FD point). Using λ � D in the expression of g we find that
K = π/g(λ) = 1 is satisfied for λ � 2, while it is believed [13] that the mul-
ticritical point lies at λ � 3. We guess that the two lines join at K < 1, and in
order to test this conjecture we study two more points: (λ = 2.59, D = 2.30),
again on the c = 1 line, and (λ = 3.20, D = 2.90) proposed in [13] as the
multicritical point itself. Altough the steps are conceptually the same as above,
here we encounter two additional complications. First, due to the closeness (or
almost coincidence in the multicritical case) of the Ising transition, we observe
the merging of the two (quasi)critical spectra. Hence, we have to target more
states and separate the ones belonging to c = 1 from the ones belonging instead
to c = 1/2. Second, we observe sizeable finite-size corrections from irrelevant
operators. In fact, our analysis shows that we are moving at values of K smaller
than one towards K = 1/2 where certain irrelevant operators become marginal.
As explained in [17], the last two rows of Table 2 are obtained by extracting
K not from the first excited state, but rather from half the sum of the pair of
levels with m = 0, n = ±1 in Sz

tot = 0, to get rid of finite-size corrections.
As anticipated, moving to the right of the Haldane-large-D line the value of
K keeps on decreasing towards 1/2 (SD point) where we argue that this line
meets the Haldane-Néel one and a first order transition starts.

We close the section with a few comments on the hidden topological order
measured by string order parameters (Eq. 23). It is expected that, leaving the
Haldane phase, the Z2×Z2 symmetry is partially or totally restored. More
precisely, when the c = 1 line is crossed, both Oz

S and Ox,y
S vanish. As

customary, we can introduce two off-critical exponents that control the closure
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of these order parameters. For instance, fixing λ and varying D about Dc(λ):

Oz
S ∝ (Dc − D)2βz

S , Ox
S ∝ (Dc − D)2βS (54)

Now, according to FSS arguments (sec. 5.1 of [24]), βS and βz
S are related,

via the gap exponent ν, to their counterparts at criticality, that is, the scaling
dimensions of the operators entering the associated string correlation functions.
These dimensions, in turn, can be extracted from the slopes, ηS and ηz

S, in the
log-log plots of Ox,z

S (D = Dc) evaluated at half of the chain. Using the
relation 2βS = νηS (and analogously for the z channel) we find the values
reported in Table 3 for a couple of critical points already discussed above. We
should observe that the scaling dimensions ηS/2 and ηz

S/2 are not contained
in the c = 1 spectra cited above. However, we notice also that the numerical
estimates of ηz

S are rather close to the values 2 d0,±1

4 = K/2 and that these levels
actually exist in the effective continuum theory provided that half-integer values
of n are allowed in Eq. (50). In the XXZ spin-1/2 formulation this is known
to correspond to twisted boundary conditions on the chain. Thus, considering
that the calculations presented here for the spin-1 case are with PBC, it’s
not surprising that the scaling dimensions associated with Ox,z

S are absent in
the numerical spectra. Nonetheless, we believe that the closeness to K/2 is
not accidental and in Ref. [17] we speculated about the possibility that the
longitudinal string correlation functions (Eq. (21) with α = z) acquires, in the
continuum limit, the asymptotic form

Gz
S(r) ∼ 〈exp [∓i

√
πKΦ(0)] exp [±i

√
πKΦ(r)]〉 (55)

so that the lattice string Sz
0 exp

[
iπ

∑r−1
l=1 Sz

l

]
is somehow related to the contin-

uum twist operator exp [±i
√

πKΦ(r)].

[λ, Dc(λ)] 2βS 2βz
S ηS ηz

S

(0.50,0.65) 0.597 ± 0.009 1.91 ± 0.02 0.251 ± 0.002 0.804 ± 0.003
(1.00,0.99) 0.407 ± 0.002 1.10 ± 0.01 0.2733 ± 0.0006 0.741 ± 0.002

Table 3. Exponents associated with the vanishing string order parameters at the Gaussian
transitions taking place at the points indicated in the first column (see text for definitions). All
the numbers are obtained with FSS on the data at L = 32, 48, 64, 80, 100 and M = 300.

6. Conclusions.

In the present paper we have reviewed, to the best of our knowledge, part of
the status-of the-art concerning Heisenberg spin chains, including biquadratic
interaction terms and various kinds of anisotropies, concentrating on the rôle of
hidden symmetries in the various families of spin models. We have discussed
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how the inclusion of anisotropy terms can drive the “standard” Heisenberg
chain away from the Haldane phase and how hidden symmetries (and their
spontaneous breaking) are of great help in classifying the “massive” (gapfull)
phases of the model. The location of the critical lines of the model has been
accurately obtained numerically, confirming and extending earlier predictions
[13].

The combined use proposed here of analytical and numerical [(CFT ) and
(DMRG), respectively] techniques to investigate the critical properties of the
models has proved to be a rather successful strategy to clarify the nature and
structure of the critical phases of the models. Numerical simulation techniques
(Monte Carlo and DMRG, to quote only the most known ones) are of more and
more frequent and extended use in almost all branches of Theoretical Physics. A
blind use of them can however be more dangerous than helpful in understanding
the physical properties of the systems for whose study they are employed.
We believe instead that an “educated” use of numerical techniques in support
of analytical approaches, as described here, can result in a powerful synergy
that can be of great help in understanding the physics of many problems in
Theoretical Physics.
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Abstract The wave packets both linear and nonlinear such as solitons (signals) described
by a complex time-dependent function are mapped onto positive probability dis-
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1. Introduction

Quantumlike systems [1] were considered recently [2] because their com-
pletely classical behavior can be studied in detail using formalism and methods
of quantum mechanics. Among these methods, there is quantum tomogra-
phy [3–8] which uses as an important ingredient the Radon transform [9, 10]
of a function of two variables. The physical systems which demonstrate the
quantumlike behavior are, for example, the beams of charge particles [11],
photon-beams propagating along the optical fibers [1], electric or acoustic sig-
nals depending on time and space coordinates [1, 2]. The electromagnetic waves
and wave packets propagating paraxially through optical waveguides obey to
the Schrödinger-like equation found by Fock and Leontovich [12]. The Fock–
Leontovitch approximation was intensively used in fiber-optics problems [13–
15]. The propagation of acoustic waves, in particular, in ocean is also described
in the paraxial approximation by Schrödinger-like equation [16].

On the other hand, the thermal wave model of charged particle beams in ac-
celerators was suggested [17] and developed [18]. Within the framework of this
model, the charged particle beams are also described by the Schrödinger-like
equation. Classical transmission line for electric signals was shown recently to
be described by Schrödinger-like equation [19]. Another example of quantum-
like approach to purely classical problems is the analysis of signals of different
nature (electromagnetic, acoustic, seismic, biological, etc.). The signal is de-
scribed by a function of time and this function is associated with the so-called
analytic signal function [20–23]. The complex analytic signal f(t) has ex-
actly the same mathematical properties as the wave function of a quantum state
ψ(x) has. In view of this, in signal processing all known methods of quantum
mechanics can be applied [24, 25]. In particular, some notion of quantum me-
chanics like entanglement can be applied to describe space–time correlations
of electromagnetic signals in media [26].

The Schrödinger-like equation can be either linear or nonlinear. The linear
equation corresponds to the standard Schrödinger equation [27] of quantum
mechanics. Electromagnetic fields of high intensity, for example, in optical
fibers have nonlinear properties. The nonlinear properties are described, at the
lowest order, by the nonlinear Schrödinger equation with cubic nonlinearity.
There exist other types of nonlinearities [28, 29]. The interesting solutions
to many types of nonlinear equations correspond to solitary waves or soli-
tons. There is huge mathematical literature on solitons (see, for example, [30]).
The nonlinear Schrödinger equation governs the nonlinear dynamics of some
other quantumlike systems, such as large-amplitude wave packet propagation
in plasmas, large-amplitude dynamics of surface gravity waves, the transverse
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and longitudinal collective dynamics of intense high-energy charged-particle
beams in both conventional and plasma-based accelerators.

Another important example of the nonlinear equation with soliton solutions is
the Gross–Pitaevskii equation [31]. This equation describes the states of Bose–
Einstein condensate (BEC). Different (bright, dark, grey) solitons in BEC have
been experimentally observed [32–34].

All the systems mentioned are united by the feature that they are described
by linear or nonlinear equations of the Schrödinger-like type. Also interesting
solutions to these equations are either packets of different sorts in the linear case,
e.g., coherent states [35–39], squeezed states [40, 41], correlated states [42]
corresponding to minimization of Robertson–Schrödinger [35, 43] uncertainty
relation (see also [44]), or to the solitary waves in nonlinear cases.

The tomographic map [7, 8, 45] provides the tool to map analytic signal or a
solution to linear or nonlinear Schrödinger equation onto the standard probabil-
ity distribution function. In view of the linear or nonlinear equations describing
different variants of quantum or quantumlike systems, the tomographic prob-
ability representation, which we call the probability representation, can be
written down. The advantage of this probability representation is that all dif-
ferent types of the objects like analytic signal, quantum wave packets, states of
quantumlike photon beams and charged particle beams, solitary waves can be
treated as standard positive probability distributions. The evolution equations
for the probability distributions are similar in some sense to the Fokker–Planck
equation of classical stochastical processes and we will call these equations
Fokker-Planck-type equations. It is worthy noting that the tomographic map
was shown [46] to be in one-to-one correspondence to a specific version of the
star-product quantization scheme [47]. Also it was clarified recently [48] that
the tomographic probability is related to known object of quantum information
theory called quantum probability measure [49].

The aim of this article is to review the results on quantumlike systems related
to linear charged-particle-beam transport [50] and nonlinear systems described
by nonlinear Schrödinger equation [51] and by the Gross–Pitaevskii equation
in the BEC case [52] using the tomographic probability representation. To do
this, we also consider Wigner–Moyal [53, 54] phase space representation of the
equations under discussion.

The paper is organized as follows.
In Section 2 we review the Weyl–Wigner map and in Section 3 we construct

tomographic map, with the tomographic map for chirped soliton being elabo-
rated in Section 4. In Section 5 we study the particle beam propagation and in
Section 6 we consider the propagator of particle beam in the phase space. In Sec-
tion 7 we show tomographic representation of particle beams and in Section 8
we develop perturbation approach to the tomographic evolution equation, with
the example of quadrupole being given in Section 9. In Sections 10–13 nonlin-
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ear Schrödinger equations are studied. In Section 14 Bose–Einstein condensate
is considered and in Section 15 the Gross–Pitaevskii equation is reviewed, while
in Section 16 solitons of BEC are studied. A general relation among different
transforms of analytic signal is given in Section 17. Conclusions and remarks
are presented in Section 18.

2. Phase-space representation

In this section, we review the approach called symplectic tomography of the
quantum state. The real meaning of this scheme is a map of the complex wave
function ψ(x) of a real variable x (−∞ < x < ∞) onto a family of probability
distributions w(X, µ, ν) of a random real variable X (−∞ < X < ∞) labeled
by two real parameters µ (−∞ < µ < ∞) and ν (−∞ < ν < ∞).

We use dimensionless variables. The map can be realized by the following
steps.

First, one constructs the density matrix [55] which is a complex function of
two variables x and x′ (although the quantities depend on the timelike variable,
for simplicity, hereafter we adopt notations that do not indicate explicitly such
a dependence)

ρψ(x, x′) = ψ(x)ψ∗(x′). (1)

Then one uses the Weyl–Wigner map of the density matrix onto the real Wigner
function on the phase space W (q, p) [53] of two real variables p and q

Wψ(q, p) =
1
2π

∫
ρψ

(
q +

u

2
, q − u

2

)
eipu du. (2)

The Wigner function takes real values. If the wave function is normalized∫
|ψ(x)|2 dx = 1,

the Wigner function is also normalized∫
Wψ(q, p) dq dp = 1.

Ville used this map in the analytic signal theory [56].
The inverse of the Fourier transform (37) defining the Wigner function in

terms of the density matrix reads

ψ(x)ψ∗(x′) =
∫

Wψ

(
x + x′

2
, p

)
e−ip(x−x′) dp. (3)

One can see that the Wigner function determines the complex wave function
up to a constant factor:

ψ∗(0)ψ(x) =
∫

Wψ

(x

2
, p

)
e−ipx dp. (4)
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Modulus of the constant factor |ψ(0)| is determined by the relationship

|ψ(0)|2 =
∫

Wψ (0, p) dp. (5)

We suppose that ψ(0) is not equal to zero.
Thus, given the Wigner function one can reconstruct the complex wave func-

tion up to the constant phase factor. This means that the Wigner function con-
tains the same information that the density matrix does. Also this means that
the Wigner function contains the same information that the wave function ψ(x)
does (up to the constant phase factor). The Wigner function can be identified
with the so-called Weyl symbol of the density operator describing the quantum
state. There exist different kinds of symbols of operators. As it was shown re-
cently [46] tomograms can be also identified with a specific symbol of a density
operator.

3. State tomogram

Let us now construct the tomographic map.
To do this, we use the integral Radon transform of the Wigner function

w(X, µ, ν) =
∫

Wψ(q, p)δ(X − µq − νp) dq dp . (6)

In this formula, the Dirac delta-function term δ(X − µq − νp) collects values
of the Wigner function Wψ(q, p) from the line in the phase space which is
described by the expression obtained by equating the argument of Dirac delta-
function to zero. One can prove [57] that, for normalized Wigner function,
the function w(X, µ, ν) is a normalized probability distribution function of a
random variable X (called tomogram of the Wigner function), i.e., one has∫

w(X, µ, ν) dX = 1, (7)

and this distribution function can be used for the new formulation of quantum
mechanics with the probability instead of the wave function. This tomogram
was called symplectic tomogram [8], since it is related to linear symplectic
transform in the phase space.

There is another form of the map (44) given in terms of the Fourier transform
[we used the Fourier transform of delta-term in (44)]

w(X, µ, ν) =
∫

Wψ(q, p) exp
[
ik(X − µq − νp)

] dk dq dp

2π
. (8)

The Fourier integral form of the tomogram (46) gives the possibility to get
easily the inverse transform [7]

Wψ(q, p) =
∫

w(X, µ, ν) exp
[
i(X − µq − νp)

] dX dµ dν

(2π)2
. (9)
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Thus, given the symplectic tomogram w(X, µ, ν) one can find the Wigner
function W (q, p). Using known relationships (36), (37) and (41) of the Wigner
function W (q, p) and the wave function ψ(x), one can obtain the expression
for tomograms in terms of the wave function

w(X, µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y) exp
(

iµ

2ν
y2 − iX

ν
y

)
dy

∣∣∣∣2 . (10)

This formula shows that for a complex function ψ(x) one can find the tomogram.
Formula (10) was found for the quantum wave function and noncommutative
tomography of analytic signal in [22]. But it can be used for other arbitrary
aims as well. The goal which we are going to reach is to use this formula for
the description of wave packets and solitons.

4. Fourier transform of a chirped packet

There are some properties of tomograms to be used. The homogeneity prop-
erty [45] follows from relations (44) and (10)

w(λX, λµ, λν) =
1
|λ| w(X, µ, ν). (11)

This means that, in reality, the tomogram is the function of two real variables.
For example, one can take

µ = cos θ, ν = sin θ. (12)

In this case, the symplectic tomogram is given by the formula

w(X, θ) =
∫

W (q, p)δ(X − q cos θ − p sin θ)dq dp. (13)

This relation of the Wigner function W (q, p) and the tomographic probability
w(X, θ) (called tomogram of the optical tomography scheme) was used to point
out the possibility to reconstruct the phase-space distribution in terms of the
optical tomogram in [3, 4]. The symplectic tomogram is simpler than the optical
tomogram because the reconstruction formula for the Wigner function (9) does
not contain the singular terms of the Radon transform (see [3, 4]). Nevertheless,
the useful property of the optical tomogram is the fact that it depends on two
variables only. The relation of the optical tomogram w(X, θ) to the wave
function reads

w(X, θ) =
1

2π| sin θ|

∣∣∣∣∫ ψ(y) exp
(

i cot θ

2
y2 − iX

sin θ
y

)
dy

∣∣∣∣2 . (14)
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The integrand in the above expression (14) is similar to the Green function of the
quantum harmonic oscillator and the tomogram coincides with modulus squared
of the fractional Fourier transform of ψ(y) [23]. The tomogram w(X, θ) is used
in quantum optics in the scheme of measuring quantum photon states by means
of the so-called optical homodyne tomography [5, 58]. It was also discussed in
the context of quantum-optics measurements and signal detection, respectively,
in [6] and [59]. Thus the tomogram w(X, µ, ν) determines completely the
Wigner function and the complex function ψ(x) (up to a phase factor), if it is
known for real parameters satisfying the constraint

µ2 + ν2 = 1. (15)

But one can use other constraints too. Thus, the homogeneity property (11)
implies that the particular values of symplectic tomogram, e.g., w(1, µ, ν),
w(X, 1, ν) and w(X, µ, 1) determine the whole tomogram and, consequently,
the complex function ψ(x) (up to the phase factor) and the Wigner function
W (q, p) completely.

Another property can be obtained by change of variables in (10)

y

ν
= z, (16)

which gives the following expression for the tomogram

w(X, µ, ν) =
|ν|
2π

∣∣∣∣∫ ψ̃(z, µ, ν)e−iXzdz

∣∣∣∣2 , (17)

where the function ψ̃(z, µ, ν) is the function describing “a chirped soliton”
[we mean that ψ(y) in (10) is considered as a soliton solution of a nonlinear
equation]

ψ̃(z, µ, ν) = ψ(z, ν) exp
(

i

2
µνz2

)
. (18)

Expression (17) is convenient for numerical calculations because it gives the
tomogram in terms of the standard Fourier transform of the chirped soliton. In
terms of optical tomogram, the expression can be rewritten as

w(X, θ) =
| sin θ|

2π

∣∣∣∣∫ ψ̃(z, θ)e−iXzdz

∣∣∣∣2 , (19)

where

ψ̃(z, θ) = ψ(z, sin θ) exp
(

iz2

4
sin 2θ

)
. (20)

The formula obtained was used to make plots of soliton tomograms in [51].
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5. Integrals of motion and propagator

Within the framework of the thermal wave model, a charged-particle beam
as a whole is described by the beam wave function Ψ(x, z) where (in the one-
dimensional case) x and z are the transversal and longitudinal coordinates,
respectively. The complex beam wave function satisfies a Schrödinger-like
equation [17]

iε
∂Ψ
∂z

= −ε2

2
∂2

∂x2
Ψ + U(x, z)Ψ, (21)

where ε is the beam emittance. The solution to equation (21) can be presented in
terms of the propagator G(x, x′, z) which is the matrix element of the “evolution
operator” Û(z), namely,

G(x, x′, z) = 〈x | Û(z) | x′〉, (22)

and one has
Ψ(x, z) = Û(z)Ψ(x, 0), (23)

or

Ψ(x, z) =
∫

G(x, x′, z)Ψ(x′, 0) dx′. (24)

Thus, the propagator satisfies the equation[
iε

∂

∂z
+

ε2

2
∂2

∂x2
− U(x, z)

]
G(x, x′, z) = iε δ(z) δ(x − x′). (25)

In analogy with the proper quantum mechanics, a quantumlike integral of mo-
tion Î(z), which satisfies the following condition

∂Î(z)
∂z

+
i

ε

[
Ĥ, Î

]
= 0, (26)

where Ĥ is the Hamiltonian of the thermal wave model, and in the coordinate
representation reads

Ĥ = −ε2

2
∂2

∂x2
+ U(x, z) , (27)

with U(x, z) being the potential-energy term, can be naturally introduced [18].
Consequently, according to the quantum-mechanical case [60, 61], the operators
of the form

Î(z) = Û(z) Î(0) Û †(z) (28)

are integrals of motion. The physical meaning of the integrals of motion (28)
is the following. The integral of motion “remembers” the initial value of the
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observable Î(z) at the value of the longitudinal coordinate z = 0. There are
two specific integrals of motion — initial momentum

p̂0(z) = Û(z) p̂ Û †(z) (29)

and initial position

x̂0(z) = Û(z) x̂ Û †(z), (30)

in which the position and momentum operators in the coordinate representation
read

p̂ = −iε
∂

∂x
, x̂ = x. (31)

One can check that the quantumlike propagator G(x, x′, z) satisfies the fol-
lowing equations, which are analogs of the equations for the Green function
discussed in quantum mechanics [60, 61]

p̂0(z)G(x, x′, z) = iε
∂

∂x′ G(x, x′, z) (32)

and
x̂0(z)G(x, x′, z) = x′ G(x, x′, z), (33)

where the operators x̂0(z) and p̂o(z) act on the coordinate x of the propagator.

6. The particle-beam propagator for Wigner function

In this section, we develop the concept of particle-beam propagator in the
phase space, making use of the Wigner quasidistribution function.

According to [18] one can introduce the density operator, which in the phase-
space representation is described by the Wigner function (we introduce the
parameter ε and the longitudinal coordinate z)

ρw(x, p, z; ε) =
1

2πε

∫ +∞

−∞
Ψ∗

(
x +

y

2
, z

)
Ψ

(
x − y

2
, z

)
exp

(
i
py

ε

)
dy,

(34)
which is normalized ∫

ρw(x, p, z; ε) dx dp = 1. (35)

Note that, in addition, for the beam state described by the beam wave function,
the beam’s Wigner function satisfies “the purity” condition

2πε

∫
ρ2

w(x, p, z; ε) dx dp = 1. (36)
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The Wigner function satisfies the Moyal-like evolution equation

∂ρw

∂z
+ p

∂ρw

∂x
+

i

ε

[
U

(
x +

iε

2
∂

∂p

)
− U

(
x − iε

2
∂

∂p

)]
ρw = 0, (37)

which is the von Neumann equation for the density operator in the Wigner–Weyl
representation.

One can introduce the propagator for the Moyal-like evolution equation by
the formula

ρw(x, p, z; ε) =
∫

π(x, p, x′, p′, z; ε) ρw(x′, p′, 0; ε) dx′ dp′. (38)

The propagator π(x, p, x′, p′, z; ε) satisfies the equation

∂π

∂z
+ p

∂π

∂x
+

i

ε

[
U

(
x +

iε

2
∂

∂p

)
− U

(
x − iε

2
∂

∂p

)]
π

= δ(z)δ(x − x′)δ(p − p′). (39)

If one introduces the classical-like Liouville operator

L̂ ≡ ∂

∂z
+ p

∂

∂x
−

(
∂U

∂x

)
∂

∂p
, (40)

the Moyal-like equation can be rewritten as

L̂ρw =
∞∑

k=1

(−1)k

(2k + 1)!

( ε

2

)2k ∂2k+1U

∂x2k+1

∂2k+1ρw

∂p2k+1
, (41)

and, according to the quantum formalism, it is easy to see that the propagator of
the Wigner function is expressed in terms of the propagator of the beam wave
function as follows:

π(q, p, q′, p′, z; ε) =
1

2 π

∫
G

(
q +

u

2
, q′ +

s

2
, z

)
G∗

(
q − u

2
, q′ − s

2
, z

)
× exp

(
−ipu + ip′s

)
du ds. (42)

7. Propagator in probability representation

Using the approach of the previous section, one can define the following
tomographic-probability-distribution function for the particle beam [62],[63]

w(X, µ, ν, z; ε) =
∫

exp [−ik(X − µx − νp)] ρw(x, p, z; ε)
dk dx dp

(2π)2
,

(43)
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which contains all information on the Wigner quasidistribution ρw. The func-
tion w(X, µ, ν, z; ε), also called the marginal distribution, has all the features
of a classical distribution function of the random variable X .

In the tomographic representation, one can obtain the Fokker–Planck-like
equation for the marginal distribution w(X, µ, ν, z; ε) of the form

∂w

∂z
− µ

∂

∂ν
w +

i

ε

[
U

(
− 1

∂/∂X

∂

∂µ
+ i

νε

2
∂

∂X

)
−U

(
− 1

∂/∂X

∂

∂µ
− i

νε

2
∂

∂X

)]
w = 0. (44)

Following [64] one can represent equation (43) in the form

L̂w =
2
ε

∞∑
n=1

(−1)n

(2n + 1)!
U (2n+1) (q̂)

(νε

2

)2n+1 ∂2n+1w

∂X2n+1
, (45)

where

L̂ ≡ ∂

∂z
− µ

∂

∂ν
− νU (1)(q̂)

∂

∂X
, (46)

with

U (2n+1)(q̂) ≡ ∂2n+1

∂x2n+1
U(x = q̂) and q̂ = − 1

∂/∂X

∂

∂µ
.

One can introduce the propagator for the tomographic probability (below we
take ε = 1 and omit it)

w(X, µ, ν, z) =
∫

Π(X, µ, ν, X ′, µ′, ν′, z)w(X ′, µ′, ν′, 0) dX ′ dµ′ dν ′

(47)
and the propagator for the beam density matrix

ρ(X, X ′, z) = Ψ(X, z)Ψ∗(X ′, z) , (48)

such that

ρ(X, X ′, z) =
∫

K(X, X ′, Y, Y ′, z) ρ(Y, Y ′, 0) dY dY ′,

which is related to the Green function (propagator) of the beam wave function
as

K(X, X ′, Y, Y ′, z) = G(X, Y, z)G∗(X ′, Y ′, z) . (49)
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The propagator for the density matrix is related to the propagator for the tomo-
graphic probability by the relationship [64]

K(X, X ′, Z, Z ′, z) =
1

(2π)2

∫
1
|ν ′| exp

{
i

(
Y − µ

X + X ′

2

)
−i

Z − Z ′

ν ′ Y ′ + i
Z2 − Z

′2

2ν ′ µ′
}

×Π(Y, µ, X − X ′, Y ′, µ′, ν′, t) dµ dµ′ dY dY ′ dν ′ .
(50)

The tomographic propagator is expressed in terms of the propagator of the beam
wave function as follows:

Π(X, µ, ν, X ′, µ′, ν′, z)

=
1

(4π)2

∫
k2G

(
a +

kν

2
, y , z

)
G∗

(
a − kν

2
, z̃ , z

)
δ (y − z̃ − kν′)

× exp
[
ik

(
X ′ − X + µa − µ′ y + z̃

2

)]
dk dy dz̃ da. (51)

8. First order Born approximation

Since in quantum mechanics the perturbation theory for solving the Schrö -
din - ger equation is well developed, one can apply the results of this theory to
problems of electron optics given in the quantumlike domain. Thus, the beam
wave function Ψ(x, z), being the solution to a Schrödinger-like equation with
the Hamiltonian

H = H0 + V (x, z) ,

where V (x, z) is a small perturbative potential (aberration potential) and H0

is unperturbed Hamiltonian, can be written in the form (for simplicity, we take
emittance ε = 1)

Ψ(x, z) ≈ Ψ0(x, z) +
1
i

∫ z

0
dz′

∫
dx′ G0(x, x′, z, z′)V (x′, z′)Ψ0(x′, z′) dx′.

(52)
Here, Ψ0(x, z) is the solution of the Schrödinger-like equation with the Hamil-
tonian H0 and the propagator G0(x, x′, z, z′) corresponds to evolution with the
unperturbed Hamiltonian H0, namely,

Ψ0(x, z) =
∫

G0(x, x′, z, z′) Ψ0(x′, z′) dx′. (53)

Formula (52) is a first Born approximation for the beam wave function in the
case of small perturbative potential V (x, z).
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One can use relation (52) to express perturbed tomographic probability
in terms of the beam wave function and the Green function of unperturbed
Schrödinger-like equation. Analogously, for the perturbative solution of the
Schödinger-like equation, one can obtain directly the perturbative solution of
the tomographic evolution equation in the form

w(X, µ, ν, z) = w0(X, µ, ν, z)

+
∫ z

0
dz′

∫
dX ′ dµ′ dν ′ Π0(X, µ, ν, X ′, µ′, ν′, z, z′)

×i

[
V

(
− 1

∂/∂X ′
∂

∂µ′ −
iν′

2
∂

∂X ′ , z
′
)

−V

(
− 1

∂/∂X ′
∂

∂µ′ +
iν′

2
∂

∂X ′ , z
′
)]

w0(X ′, µ′, ν′, z′), (54)

where the propagator Π0 corresponds to the evolution of unperturbed tomo-
graphic probability.

The function w0(X, µ, ν, z) is the solution to the Fokker–Planck-like equa-
tion with unperturbed Hamiltonian H0. The formula obtained corresponds to
a first Born approximation of the perturbation series. The normalization factor[∫

w(X, µ, ν, z) dX
]−1

should be taken into account in (53).
The Wigner quasidistribution in a first Born approximation has the form

ρω(x, p, z) = ρ(0)
ω (x, p, z) − i

∫ z

0
dz′

∫
π0(x, p, x′, p′, z, z′)

×
[
V

(
x′ +

i

2
∂

∂p′
, z′

)
− V

(
x′ − i

2
∂

∂p′
, z′

)]
×ρ(0)

ω (x′, p′, z′) dx′ dp′, (55)

where ρ
(0)
ω is the solution of the Moyal-like equation for the Hamiltonian H0

and the propagator π0 corresponds to the unperturbed Hamiltonian.

9. Parametric oscillator model

The quadrupole case corresponds to the Hamiltonian (here we use dimen-
sionless variables and put emittance ε = 1)

H = −1
2

∂2

∂x2
+

x2

2
. (56)

For this case, the propagator for the beam wave function is

G(x, x′, z) =
1√

2πi sin z
exp

{
i

2

[
cot z

(
x2 + x

′2
)
− 2xx′

sin z

]}
. (57)
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Due to the relation of the propagator (57) to the kernel of fractional Fourier
transform [23] (the reader interested to know how fractional Fourier transform
is used in optics, we address, for example, to [65]), one can conclude that in
electron optics the charged-particle-beam propagation realizes the fractional
Fourier transform of the beam wave function.

The linear in x and ∂/∂x integrals of motion are

A(z) =
eiz

√
2

(
x +

∂

∂x

)
, A†(z) =

e−iz

√
2

(
x − ∂

∂x

)
. (58)

The integrals of motion (29) and (30) read

p̂0(z) =
A(z) − A†(z)

i
√

2
(59)

and

x̂0(z) =
A(z) + A†(z)√

2
. (60)

In the case of z-dependent quadrupole potential

U(x, z) =
k1(z)

2
x2, (61)

there exist linear integrals of motion for the electronic beam which have the
explicit form

A(z) =
i√
2

[
ξ(z)

(
−i

∂

∂x

)
− ξ̇(z)x

]
, (62)

A†(z) = − i√
2

[
ξ∗(z)

(
−i

∂

∂x

)
− ξ̇∗(z)x

]
, (63)

where we take units with k1(0) = 1. Also the complex function ξ(z) satisfies
the equation

ξ̈(z) + k1(z)ξ(z) = 0, (64)

with the initial conditions

ξ(0) = 1, ξ̇(0) = i. (65)

The integrals of motion (29) and (30) for z-dependent quadrupole are given by
(59) and (60) with A(z) and A†(z) given by (62) and (63).

The product of two linear integrals of motion (62) and (63)

J(z) = A†(z)A(z)

is the quadratic integral of motion which in the classical case is the Ermakov
invariant [66] discussed in the quantum case in [67].
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The propagator for the tomographic probability in the case of z-independent
quadrupole potential k1 = 1 reads

Π(X, µ, ν, X ′, µ′, ν′, z) = δ(X − X ′) δ(ν ′ − ν cos z + µ sin z)
×δ(µ′ − ν sin z − µ cos z). (66)

For the case of (61), one has the propagator

Π1(X, µ, ν, X ′, µ′, ν′, z) = δ(X − X ′)

×δ

(
ν ′ − 1

2i
[ξ̇ − ξ̇∗]ν − 1

2i
[ξ − ξ∗]µ

)
×δ

(
µ′ − 1

2
[ξ̇ + ξ̇∗]ν − 1

2
[ξ + ξ∗]µ

)
. (67)

Now we evaluate the influence of the aberration on the z-independent beam
due to the quartic term

V (x) = λx4, (68)

where λ is a small parameter. The discussion of polynomial aberrations in optics
is presented in [68]. In our case, the influence of the aberration on the tomo-
graphic probability w0(X, µ, ν, z) provides perturbed tomographic probability
of the form

w(X, µ, ν, z) = w0(X, µ, ν, z) + λ

∫ z

0
dz′

∫
dX ′ dµ′ dν ′ δ(X − X ′)

×δ
(
ν ′ − ν cos[z − z′] + µ sin[z − z′]

)
×δ

(
µ′ − ν sin[z − z′] − µ cos[z − z′]

)
×

[
ν ′ ∂

∂µ′

(
ν ′2 ∂2

∂X ′2 − 1
(∂/∂X ′)2

∂2

∂µ′2

)]
w0(X ′, µ′, ν′, z′). (69)

In order to calculate the influence of the aberration potential (68) in a first Born
approximation, we used the following formula:

(a + b)4 − (a − b)4 = 8 ab (a2 + b2),

where

a = − 1
∂/∂X ′

∂

∂µ′ , b = − iν′

2
∂

∂X ′ .

Analogously, one can find the influence of the aberration on the Wigner qua-
sidistribution.
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10. Phase-space form of nonlinear equations

Let us consider the following generalized nonlinear Schrödinger equation
(NLSE):

i
∂ψ

∂s
= −1

2
∂2ψ

∂x2
+ U

[
|ψ|2

]
ψ, (70)

where s and x are the time-like and space-like variables and ψ = ψ(x, s) is a
complex wave function describing the system’s evolution in the configuration
space; U = U

[
|ψ|2

]
is an arbitrary real functional of |ψ|2.

In this section, we derive the evolution equations for solitons in the phase-
space Weyl–Wigner–Moyal representation. For the case of cubic NLSE

i
∂ψ

∂s
= −1

2
∂2ψ

∂x2
+ q0|ψ|2ψ, (71)

the density matrix (36) satisfies the following evolution equation:

i
∂ρ(x, x′, s)

∂s
= −1

2

(
∂2

∂x2
− ∂2

∂x′2

)
ρ(x, x′, s)

+
{

U

[∫
δ(x − y)ρ(x, y, s) dy

]
−U

[∫
δ(x′ − y)ρ(x′, y, s) dy

]}
ρ(x, x′, s), (72)

where

U

[∫
δ(x − y)ρ(x, y, s) dy

]
= q0

∫
δ(x − y)ρ(x, y, s) dy (73)

is the potential-energy functional of the density matrix for nonlinear Schrödinger
equation (71) with cubic nonlinearity.

The transition to the evolution equation for the Wigner function can be done
using the standard algebra, which provides the following recepie. One has
to make the replacement ρ → W in (71) along with the following replace-
ment [61]:

∂

∂x
ρ (x, x′) −→

(
1
2

∂

∂q
+ i p

)
W (q, p),

∂

∂x′ ρ (x, x′) −→
(

1
2

∂

∂q
− i p

)
W (q, p),

(74)

x ρ (x, x′) −→
(

q +
i

2
∂

∂p

)
W (q, p),

x′ ρ (x, x′) −→
(

q − i

2
∂

∂p

)
W (q, p).



Quantum tomography, wave packets and solitons 191

This replacement can be easily obtained, in view of Fourier transform prop-
erties. For Fourier transform, the action on a function by different operators
can be given in the form of action on the Fourier component of the function
by the corresponding operators. It provides the following Moyal-like form of
nonlinear equation (71) for the Wigner function

∂W (q, p, s)
∂s

= −p
∂W (q, p, s)

∂q
+

1
i

{
U

[
ρ

(
q +

i

2
∂

∂p
, q +

i

2
∂

∂p
, s

)]
−c.c.

}
W (q, p, s), (75)

where the arguments of the potential energy are replaced by the operators which
act onto the Wigner function. For the cubic NLSE

U(z) = q0z, (76)

one has a simple form of the equation

∂W (q, p, s)
∂s

+ p
∂

∂q
W (q, p, s)

−2q0Im ρ

(
q +

i

2
∂

∂p
, q +

i

2
∂

∂p
, s

)
W (q, p, s) = 0. (77)

Using the relation

ρ(x, x) =
∫

W (x, p)
dp

2π
, (78)

one has
∂W (q, p, s)

∂s
+ p

∂W (q, p, s)
∂q

−2q0 Im
∫

W

(
q +

i

2
∂

∂p
, P, s

)
dP

2π
W (q, p, s) = 0. (79)

In (74), (76), and (150) the arguments of the density matrix and Wigner function
are replaced by operators and the operators act on the Wigner function itself.
Equations (74) and (76) can be presented in the form of Moyal-like series [69].
It is easy to see that, for an arbitrary nonlinear potential U(z), equation (74)
can be written in terms of the following nonlinear-functional partial differential
equation for the Wigner function only

∂W (q, p, s)
∂s

+ p
∂W (q, p, s)

∂q

−2 Im

{
U

[∫
W

(
q +

i

2
∂

∂p
, P, s

)
dP

2π

]}
W (q, p, s) = 0. (80)

One can see that the above nonlinear equation in the Moyal representation has a
specific form of the equation with nonlocal quadratic interaction of the Wigner
function with itself.
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11. Probability representation of nonlinear equations

Now we consider the relation of the density matrix, Wigner function and
tomogram. For arbitrary (pure and mixed) states,

W (q, p) =
1
2π

∫
w(X, µ, ν) exp [−i(µq + νp − X)] dµ dν dX. (81)

One can also calculate the density matrix in the coordinate representation

ρ(X, X ′) =
1
2π

∫
w(Y, µ, X−X ′) exp

[
i

(
Y − µ

X + X ′

2

)]
dµ dY. (82)

In view of this relation, by using the following substitution rule

ρ(x, x′, s) −→ w(X, µ, ν, s),

xρ −→
[
−

(
∂

∂X

)−1 ∂

∂µ
+

i

2
ν

∂

∂X

]
w,

∂ρ

∂x
−→

[
µ

2
∂

∂X
− i

(
∂

∂X

)−1 ∂

∂ν

]
w, (83)

x′ρ −→
[
−

(
∂

∂X

)−1 ∂

∂µ
− i

2
ν

∂

∂X

]
w,

∂ρ

∂x′ −→
[

µ

2
∂

∂X
+ i

(
∂

∂X

)−1 ∂

∂ν

]
w

in the evolution equation (71), one obtains the tomographic form of the nonlinear
equation under consideration. The substitution rule can be easily obtained (see
[70, 64]) using the same rules that we applied to derive nonlinear equation in
the Moyal form. Since the symplectic tomography map is similar to Fourier
transform, calculating the action of differential operators on the function and
corresponding tomogram is straightforward

∂w(X, µ, ν, s)
∂s

+ µ
∂w(X, µ, ν, s)

∂ν
− 2 Im U

{∫
w(y, µ′, 0, s)

× exp

[
i

(
y + µ′

[(
∂

∂X

)−1 ∂

∂µ
− i

2
ν

∂

∂X

])]
dy dµ′

2π

}
×w(X, µ, ν, s) = 0. (84)

In the above equation (83), one has the integro-differential operator in the expo-
nent, which acts on the tomographic probability function. The integral operator
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(∂/∂X)−1 is defined by the following action on the Fourier component of the
function f(X):

(
∂

∂X

)−1

f(X) =
(

∂

∂X

)−1 ∫
f̃(k)eikXdk =

∫
f̃(k)
ik

eikXdk.

For the case of cubic NLSE, one has

∂w(X, µ, ν, s)
∂s

+ µ
∂w(X, µ, ν, s)

∂ν
− 2q0 Im

{∫
w(y, µ′, 0, s)

× exp

[
i

(
y + µ′

[(
∂

∂X

)−1 ∂

∂µ
− i

2
ν

∂

∂X

])]
dy dµ′

2π

}
×w(X, µ, ν, s) = 0. (85)

It should be pointed out that equation (84) has the solutions which in course
of the evolution process preserve the positivity and normalization. Thus the
soliton solutions of the nonlinear equations can be mapped onto probability
distribution functions.

The meaning of the probability distributions is the following. If x is a co-
ordinate and p is the momentum, the value X = µx + νp is the position in a
reference frame in the phase space (x, p), the reference frame being scaled and
rotated. The parameters of the scaling λ and rotation θ are determined by the
real parameters µ and ν, namely, µ = eλ cos θ and ν = e−λ sin θ.

The probability distributions w(X, µ, ν) determine soliton solutions ψ(x) in
the corresponding representation. Consequently, in the tomographic representa-
tion soliton solutions of nonlinear dynamic systems are solutions of generalized
Fokker–Planck-type equations for the standard probability distributions. Such
representation can be useful from mathematical point of view since the analysis
of probabilities and their asymptotics can be additionally incorporated (using
existing theorems on the behaviour of the probability distribution functions).

12. Solitons of cubic nonlinear Schrödinger equation

In this section, we study bright soliton in both tomographic and Weyl–Wigner
representations. The envelope bright soliton of cubic NLSE (71) for q0 < 0 is

Ψb(x, s) =
(

2 |E|
|q0|

)1/2

sech
[√

2 |E| ξ
]
exp

{
i

[
V0x −

(
E +

V 2
0

2

)
s

]}
,

(86)
where E is a negative real constant, V0 is an arbitrary real constant and ξ =
x − V0s (see, for example, [71]). Thus, the corresponding optical tomogram
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can be obtained, in view of (19) and (20), and it is given by the formula

wb(X, θ, s) =
|E sin θ|
|q0|π

∣∣∣∣∫ sech
[√

2|E|(y sin θ − V0s)
]

× exp
{

i

[
V0y sin θ −

(
E +

V 2
0

2

)
s

]
+

i sin 2θ
4

y2 − iXy

}
dy

∣∣∣∣2 .

The Wigner function of bright soliton for V0 = 0 can be obtained using (36)
and (37) and it is given by the formula

Wb(x, p) =
|E|
|q0|

∫
sech

[√
2|E|

(
x +

u

2

)]
×sech

[√
2|E|

(
x − u

2

)]
eipudu. (87)

It has been recently shown that a modified NLSE (70) with

U [|ψ|2] = q0|ψ|2β,

i.e.,

i
∂Ψ
∂s

= −1
2

∂2Ψ
∂x2

+ q0|Ψ|2βΨ, (88)

for q0 < 0 and any real positive value of β, has the following envelope soliton-
like solutions [72]:

Ψ(x, s) =
[
|E| (1 + β)

|q0|

]1/2β

sech1/β
[
β
√

2 |E| ξ
]

× exp
{

i

[
V0x −

(
E +

V 2
0

2

)
s

]}
, (89)

where the real numbers V0 and E are arbitrary and negative, respectively, and
still ξ = x − V0s (V0 is the soliton velocity). It should be noted that the case
β = 1 (ordinary envelope bright soliton of the cubic NLSE [73] can be easily
recovered [72]).

Correspondingly, the tomogram and Wigner function of the soliton solution
of generalized nonlinear Schrödinger equation are given by the formulas (V0 =
0) which are obtained, in view of (19), (20) and (36), (37), respectively, and
they read

w(X, µ, ν) =
1

2π|ν|

∣∣∣∣∣
[
|E|(1 + β)

|qo|

]1/2β ∫
sech1/β

[
β
√

2|E| y
]

× exp
(

iµ

2ν
y2 − iXy

ν

)
dy

∣∣∣∣2 (90)
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and

W (x, p) =
[
|E|(1 + β)

|q0|

]1/β ∫
sech1/β

[
β
√

2|E|
(
x +

u

2

)]
×sech1/β

[
β
√

2|E|
(
x − u

2

)]
eipudu. (91)

13. Measuring of space and amplitudes of
electromagnetic field

In the previous sections, we have discussed the tomography of solitons con-
sidering the tomograms as additional characteristics of soliton solutions of non-
linear dynamic equations. But there exists another experimental aspect of tomo-
grams because the tomograms can be directly measured in different situations.
Thus, the problem of tomography of some phenomena which is described by a
complex function ψ(x) is equivalent to the problem of measuring the amplitude
|ψ(x)| and the phase ϕ(x) of the complex function ψ(x) = |ψ(x)| exp iϕ(x).
The function ψ(x) can describe a soliton but it can describe some signal con-
nected with different processes, as well, e.g., in optical fibers, in plasma, etc. In
all processes where one needs to measure the amplitude and phase by measuring
experimentally only intensities, the tomography can be used as an instrument
for achieving this aim. We consider two different possibilities which are based
on symplectic tomogram (10). The density matrix can be reconstructed ei-
ther by measuring the tomogram of the optical tomography scheme w(X, θ) or
tomogram w(X, 1, ν) (we call it Fresnel tomogram [74]).

Now we show that both tomograms can be obtained in two different and
realizable processes. The optical tomogram can be rewritten in terms of the
fractional Fourier transform (which is reduced to the Green function of the
harmonic oscillator) [23]. In fact, one has

w(X, Θ) =
∣∣∣∣ 1√

2πi sin Θ

∫
ψ(y) exp

[
i cot Θ

2
(
y2 + X2

)
− iXy

sin Θ

]
dy

∣∣∣∣2 .

(92)
In this formula, we take ν = sin Θ and µ = cosΘ.
The phase factor exp

[(
iX2/2

)
cot Θ

]
does not change the value of the tomo-

gram.
The tomogram presented in such form coincides with the value of the wave

function at the point x at the time moment t if the initial value of the wave func-
tion at the time moment t = 0 is equal to ψ(y). This means that to reconstruct
the initial value of the wave function ψ(x), including both the amplitude |ψ(x)|
and phase ϕ(x), ψ(x) = |ψ(x)| exp iϕ(x), one can measure the tomogram,
i.e., amplitude squared of the wave function which evolves in the quadratic
potential well. This situation can be perfectly realized in optical fibers with a
parabolic profile of the refractive index, so-called “selfoc” (linear propagation).
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In fact, the light beams in optical fibers obey to the Schrödinger-like equation
which follows from the Helmholtz equation in the Fock–Leontovich approx-
imation [12]. But the time t in the Schrödinger equation is replaced by the
longitudinal coordinate z and the Planck’s constant is replaced by the wave-
length. Thus, to measure the input field amplitude and phase, it is sufficient to
measure the tomogram which is the field intensity in each cross-section of the
fiber given by longitudinal coordinate 0 < z ≤ 2π.

Another possibility is related to the formula

w(X, 1, ν) =
∣∣∣∣ 1√

2πiν

∫
exp

i(X − y)2

2ν
ψ(y) dy

∣∣∣∣2 . (93)

This formula is equivalent to formula (10) in which we put µ = 1 and added
nonessential phase factor exp

(
iX2/2ν

)
. One can see that the tomogram is

expressed in terms of Fresnel integral. Another type of Fresnel tomography
was discussed recently in [75]. Thus the tomogram for “time moment” ν is
equivalent to the intensity of free propagating signal. In fact, the kernel in
(93) is the Green function of a free particle. Since due to homogeneity the
Fresnel tomogram w(X, 1, ν) is equivalent to the tomogram w(X, µ, ν), while
measuring the intensity of free propagating signal, one measures both the phase
and amplitude of the input signal ψ(y). If one measures the field in optical fiber,
the structure of the output field can be evaluated by measuring free propagation
of the light beam. There is a peculiarity in using formula (93). For complete
reconstructing the amplitude, one needs to know the intensity for arbitrary large
values of time (or longitudinal coordinate z). Practically the length or duration
can be chosen to fit appropriate accuracy of the measurement (window).

Thus, the approach suggested has a potential to be applied to measuring the
phase of the fields propagating nonlinearly, e.g., in optical fibers.

14. Solitons in Bose–Einstein condensate

The states of Bose–Einstein condensates (BEC) are described by solutions
of nonlinear Gross–Pitaevskii equation [31, 76, 77]. In comparison with NLSE,
this equation contains additional linear term which depends on the potential-
energy term (e.g. a harmonic-oscillator potential energy of a trap). The tomo-
graphic probability distribution map was used in [57] to write down linear von
Neumann equation for density matrix [55] in the form of classical-like equation
for the standard positive probability density.

Our aim is to obtain a combination of both the tomographic approach to
NLSE developed in [51] and the approach to von Neumann equation given
in [57] and to apply a generalization of this approach to nonlinear Gross–
Pitaevskii equation [52]. The solitons in BEC were observed experimentally in
[32–34]. Within the framework of tomographic approach, the bright [78–80]
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and dark [81–85] solitons of Bose–Einstein condensate can be associated with
the probability distribution functions, which describe completely the solitons
in BEC. In the tomographic probability representation, the solutions to Gross–
Pitaevskii equation have the form of positive probability distribution functions.
This means that one can associate with solitons of BEC such characteristics
as entropy, which is determined by the probability distribution and use all the
mathematical tools of the probability theory.

15. Gross–Pitaevskii equation

The nonstationary Gross–Pitaevskii equation describes the Bo - se–Ein - stein
condensate. It has the form (see, for example, [86])

i
∂ψ

∂s
= −1

2
∂2ψ

∂x2
+ U(x)ψ + g|ψ|2ψ. (94)

One can see that this equation contains sum of linear and nonlinear terms.
Using the change of variables given by the tomographic map, one can obtain
the Gross–Pitaevskii equation in the tomographic form

∂w(X, µ, ν, s)
∂s

+ µ
∂w(X, µ, ν, s)

∂ν
− 2q0 Im

{∫
w(y, µ′, 0, s)

× exp

[
i

(
y + µ′

[(
∂

∂X

)−1 ∂

∂µ
− i

2
ν

∂

∂X

])]
dy dµ′

2π

}
w(X, µ, ν, s)

−2 Im

{
U

[(
∂

∂x

)−1 ∂

∂µ
− i

2
ν

∂

∂X

]}
w(X, µ, ν, s) = 0. (95)

One can see that the equation obtained contains two contributions. One con-
tribution is nonlinear potential of BEC, the other one is related to an external
potential. The equation obtained is one of the main results of this paper. The
potential energy can be chosen as the harmonic oscillator potential

U =
ω2x2

2
. (96)

One can also get the Moyal form of the Gross–Pitaevskii equation by the same
method, it reads

∂W (q, p, s)
∂s

+ p
∂W (q, p, s)

∂q
− 2q0 Im

∫
W

(
q +

i

2
∂

∂p
, P, s

)
dP

2π

×W (q, p, s) − 2 Im

[
U

(
q +

i

2
∂

∂p

)]
W (q, p, s) = 0. (97)

The Moyal form of the obtained equation also has two contributions. One is
related to nonlinear potential (cubic one). Another one contains an external
potential (oscillator potential for trapped BEC).
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16. Tomograms of solitons in Bose–Einstein condensate

In this section, we consider the 3D Gross–Pitaevskii equation describing
mean field of the BEC (see, f.i., [86]):{

− �2

2m
∇2 + gN |ψ(�r, t)|2 +

1
2
m

[
ω2
⊥(x2 + y2) + ω2

zz
2
]}

ψ(�r, t)

= i�
∂

∂t
ψ(�r, t), (98)

where g = 4π2a/m, a is the s-wave scattering length, m is the atomic mass, N
is the number of atoms in the condensate, and ω⊥ and ωz are axial and longitu-
dinal oscillation frequencies of the atoms in the trapping potential, respectively.

As it was shown in [80] this equation can be analyzed by using a variational
procedure leading to the variational ansazts of a guessed stationary solution in
the form of bright soliton

ψa(�r) =
1√

2πσ2
⊥
z

exp
(
−x2 + y2

2σ2
⊥

)
sech

(
z


z

)
. (99)

This solution is important for explosive potential for which ω2
z < 0. Here

σ⊥ and 
z are the variational parameters, which describe the transverse and
axial widths of the wave function. Notice that solution (99) is factorized into
two terms depending on the transverse (x, y) and longitudinal (z) coordinates.
This allows us to use tomographic approach developed in the previous sections
to analyze the longitudinally dependent part of the solution (99). Indeed, the
quasi-1D limit of the 3D Gross–Pitaevskii equation, for σ⊥ � 
z gives the
following equation:[

− �2

2m

∂2

∂z2
+ g1DN |φ|2 + �ω⊥ +

1
2
mω2

zz
2

]
φ = i�

∂φ

∂t
, (100)

where g1D = 2a�ω⊥ is the renormalized quasi-1D coupling constant. The
normalized solution φ(z, t) for the 1D Gross–Pitaevskii equation can be written
in the form of bright-soliton-like wave, namely,

φ(z, t) =
1√
2
z

sech

(
z


z

)
exp

(
− iµt

�

)
, (101)

where µ is the chemical potential. The z-dependent part is essentially the longi-
tudinal factor of the guessed variational ansatz for the stationary solution (99).
To determine the tomographic probability distribution of the longitudinal mo-
tion let us use our equation (10), where now the complex function ψ(y) is given
in the above notation by equation (101) with the substitution z → yL, where
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L =
√

�/mω⊥ is the normalization length for the 1D Gross–Pitaevskii equa-
tion (100). It should be pointed out that the soliton solution under consideration
is approximate solution to the initial 3D Gross–Pitaevskii equation.

The tomographic probability distribution is given by

w(X, µ, ν) =
1

2π|ν|

∣∣∣∣∫ √
γ

2
sech (γy) exp

(
iµ

2ν
y2 − iX

ν
y

)
dy

∣∣∣∣2 , (102)

where the dependence on the parameter γ = L/
z governing the width of the
longitudinal soliton distribution is shown.

To illustrate the behaviour of the tomogram, we take µ = cos θ, ν = sin θ.
The 3D plot of the tomogram of the bright-soliton-like solution (101) is

displayed in the X–θ plane in Figure 1, while the corresponding density plot
is shown in Figure 2 [52]. The spread of the tomographic map is basically
governed by the dimensionless parameter γ = L/
z. The value of γ in Figures
1 and 2 is adopted from experimental condition reported in [87], where L =
1.4 µm and the axial width distribution 
z = 1.7 µm.

Figure 1. Plot of the tomogram of the bright soliton for γ = L/lz = 0.82 (L = 1.4 µm and
�z = 1.7 µm) corresponding to the experimental conditions of BEC reported in [87].

3D plot of the tomogram of the bright soliton for various values of the parameter

z are shown in Figure 3, 
z = 2 µm, in Figure 4, 
z = 1.4 µm and in Figure 5,

z = 1 µm.
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Figure 2. Density plot corresponding to the tomogram displayed in Figure 1.

Figure 3. Plot of the tomogram of the bright soliton for γ = L/lz = 0.7 (L = 1.4 µm and
�z = 2 µm).
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Figure 4. Plot of the tomogram of the bright soliton for γ = L/lz = 1 (L = 1.4 µm and
�z = 1.4 µm).

Figure 5. Plot of the tomogram of the bright soliton for γ = L/lz = 1.4 (L = 1.4 µm and
�z = 1 µm).

17. Wavelet-like transforms, quasidistributions and
tomograms

In this section, following [25] we present a unified general construction of
three types of transforms. The first class consists of wavelet-type transforms, the
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second of quasidistributions, and in the third class the tomographic transforms
are. Quasidistributions are transforms like the Wigner–Ville one. Husimi–Kano
positive quasidistributions will be also discussed.

In quantum mechanics, quasidistributions describe a quantum state in terms
of phase-space quasiprobability densities. In signal analysis, quasidistributions
describe the structure of analytic signals in the time–frequency plane. There
also exist quasidistributions characterizing the signal structure in the time–scale
plane. We refer to quasiprobability densities because the corresponding func-
tions are not conventional probabilities, being either complex or nonpositive.
The corresponding observables do not commute and the uncertainty relation
prevents the existence of a joint probability distribution function for noncom-
muting observables.

The general setting for our construction is as follows [25].
Signals f(t) are considered to be vectors | f〉. With α being a set of param-

eters, {U(α)} is a family of operators.
In this setting, three types of transforms are defined.
Consider a reference vector | h〉 chosen in such a way that out of the set

{U(α) | h〉 =| h〉} a complete set of vectors can be chosen to serve as a basis.
Completeness relation for the vectors | h, α〉means existence of measure dµ(α)
in the unity operator decomposition∫

| h, α〉〈h, α | dµ(α) = 1̂.

Two of the transforms considered are given by scalar products

W
(h)
f (α) = 〈U (α) h | f〉, Qf(α) = 〈U (α) f | f〉. (103)

If U (α) is operator of unitary irreducible representation of some Lie group,
transform (103) is matrix element of the irreducible representation.

We will denote the transforms of the W
(h)
f -type as wavelet-type transforms

and those of the Qf-type as quasidistribution transforms.
In general, if U (α) are unitary operators, there are self-adjoint operators

B (α) such that

W
(h)
f (α) = 〈h | eiB(α) | f〉, Q

(B)
f (α) = 〈f | eiB(α) | f〉. (104)

In this case, because B (α) has a real valued spectrum, another transform may
be defined by means of Dirac (or Kronecker) delta function

M
(B)
f (X) = 〈f | δ

(
B (α) − X

)
| f〉. (105)

Equation (105) defines what we call the tomographic transform of analytic sig-
nal or tomogram. In contrast to the quasiprobabilities, the transform M

(B)
f (X)

is positive and it can be correctly interpreted as a probability distribution.
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For a normalized vector | f〉, 〈f | f〉 = 1, the tomogram is a normalized
function ∫

M
(B)
f (X) dX = 1

and, therefore, it may be interpreted as a probability distribution for the random
variable X corresponding to the observable defined by the operator B (α).

The three classes of transforms are mutually related

M
(B)
f (X) =

1
2π

∫
Q

(kB)
f (α) e−ikX dk,

(106)
Q

(B)
f (α) =

∫
M

(B/p)
f (X) eipX dX.

Wavelet-type transforms, quasidistributions, and tomograms are related by the
formulae

Q
(B)
f (α) = W

(f)
f (α), (107)

W
(h)
f (α) =

1
4

∫
eiX

[
M

(B)
f1

(X) − iM
(B)
f2

(X)

−M
(B)
f3

(X) + iM
(B)
f4

(X)
]

dX, (108)

where

| f1〉 =| h〉+ | f〉, | f3〉 =| h〉− | f〉,
| f2〉 =| h〉 + i | f〉, | f4〉 =| h〉 − i | f〉.

Another important case concerns operators U(α), which can be represented
in the form

U(α) = eib(α)Phe−ib(α),

with Ph being a projector on a reference vector | h〉. This creates a quasidistri-
bution of the Husimi–Kano type

H
(b)
f (α) = 〈f | U(α) | f〉.

Tomograms and Wigner functions of solitons considered in previous sections
can be described in view of the constructions presented above. Also wavelet
transforms can be applied to the soliton solutions of nonlinear equations.

18. Conclusions

In this paper, we have reviewed the tomographic probability distribution
associated to wave packets of linear equation for particle beams as well as to
the soliton solutions of nonlinear equations.
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Nonlinear dynamical equations like nonlinear Schrödinger equation or Gross–
Pitaevskii equation have been presented in the form of equation (a nonlinear
generalization of the Fokker–Planck equation) for the standard probability dis-
tribution function.

Specific cases of solitons for a family of modified nonlinear Schrödinger
equation have been studied in the tomographic representation explicitly.

The possibility to use both tomograms (of the symplectic and Fresnel types)
to reconstruct the phase of linear or nonlinear signals by measuring the signals’
intensities has been discussed.

One has to point out that measuring the tomograms in experiments for deter-
mining the field states in optical fibers has to be elaborated. The mathematical
aspects of solving the nonlinear equations in the tomographic representation
have also to be better studied because till now the nonlocal interaction of un-
known probability distributions in kinetic equations in the form found in this
paper has not been discussed in the literature. On the other hand, since the
soliton solutions are known and can be easily obtained in the standard repre-
sentation, the solution of nonlinear equations in the form of kinetic equation
for tomogram can be also obtained.
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1. Introduction

In the first Symmetries in Science meeting in 1979 at Carbondale we pre-
sented preliminary results for a quantization of the classical kinematic for non–
relativistic systems which are localized and moving on a smooth manifold M .
Our paper [7] ‘On Global Properties of Quantum Systems’ was published in
the Proceedings of Symmetries in Science series. We developed subsequently
(with Bernd Angermann) [8, 9] a quantization method on smooth manifolds —
the ‘Quantum Borel Kinematics’ (QBK); for a recent review see [10]. In 1992 a
suitable time dependence was proposed (with Jerry Goldin) (see the review [11]
and a more general ‘Borel Quantization’ (BQ) which emerged from geometrical
and topological considerations; it indicated a nonlinear extension of quantum
mechanics. We participated in some of the later editions of Symmetries in Sci-
ence series, often together with members of the ‘Clausthal group’, e.g. Vlado
Dobrev, Jerry Goldin, Wieland Groth, Jörg Hennig, Wolfgang Lücke, Hans-
Jürgen Mann, Peter Nattermann, Wolfgang Scherer, Christoph Schulte, Pavel
Šťovı́ček and Reidun Twarock. The results, different aspects and applications
of Borel Quantization can be found the volumes of ‘Symmetries in Science’.
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Our interest in quantum mechanics on manifolds was connected with the
following situation: During 1970–1980 some of our colleagues in quantum
theory and in particle physics thought that Lie groups and their representations
are a major key to model and to understand particle physics. In this context we
worked e.g. on spectrum generating algebras and on embeddings of physical Lie
algebras. Based on Mackey’s theory of induced representations we wrote a pa-
per [12] on a quantization of particles moving on homogeneous G–spaces. We
realized that the geometry of the G–space does not contain ‘enough’ informa-
tion for a time evolution on G. Furthermore, we failed to generalize Mackey’s
method to physical important non–homogeneous spaces. Group theory was
obviously a very successful model, but it was too ‘rigid’: If one chooses the
group and its representation, the complete mathematical framework is already
given; there does not appear the flexibility which one wants for a description
of physical systems. Hence those mathematical formalisms which are ‘close’
to group theory and which are in addition more ‘flexible’ became interesting.
Among such formalisms are: nonlinear and non–integrable representations of
Lie algebras and their deformations in the sense of Gerstenhaber. A further
promising field for a geometric modelling are differential geometrical and al-
gebraic notions on M . Here one views physical laws e.g. as relation between
geometrical or algebraic objects living on M . Following the pioneering papers
of George Mackey [13] and Irving Segal [14], we found a path to understand
quantizations of a system on a topologically nontrivial configuration space and
how the quantized system ‘feels’ the topology. This leads to Quantum Borel
Kinematics characterized by topological quantum numbers and one additional
quantum number D. This D is connected with the structure of the infinite–
dimensional Lie algebra spanned by quantized kinematical operators.

In our kinematical design a physical interpretation of D was obscure. It be-
came more transparent in 1988 when Jerry Goldin and one of the authors (HDD)
realized that two approaches are equivalent: the quantized Borel kinematics on
Euclidean configuration spaces and the representations of non–relativistic cur-
rent algebras on multiparticle configuration spaces for indistinguishable objects
found by Goldin and co-workers [15]. The quantum number D appears in front
of an additional term in the generalized momentum operator as well as in the
momentum current. Jerry Goldin and HDD introduced, based on this observa-
tion, a generic time dependence for pure states and derived a family of nonlinear
Schrödinger equations [16] — DG equations — with nonlinear term propor-
tional to D. Special generalizations to mixed states (von Neumann equations)
are known [17]. A direct connection of the DG family to certain nonlinear
gauge transformations [18, 19] and an interpretation of D through nonlinear
transformation [20] was elaborated.

Some of these developments are reviewed and commented in this contribu-
tion.
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2. Borel Kinematic

2.1 Classical Case

We start with a classical model for the kinematic of a system (particle) lo-
calized and moving on a smooth manifold M . The kinematic is characterized
by the following set of observables:

Generalized positions
f ∈ C∞(M, R)

realized by real functions on M , and
generalized momenta

X ∈ V ect(M)

realized by smooth vectorfields on M .

We define the tuple

S(M) = (C∞(M, R), V ect(M))

as the generic KINEMATIC on M (or covariance algebra of M ). S(M) has
the following properties:

a V ect(M) is a (∞–dimensional) Lie algebra of a subgroup of the diffeo-
morphism group DIFF(M) of M ;

b C∞(M, R) can be viewed as an (∞–dimensional) Abelian Lie algebra;

c f and X defined on M form a semidirect sum

S(M) = C∞(M, R) ⊕s V ect(M).

For physical reasons (see section 2.3) we restrict V ect(M) to the subset of
complete vectorfields V ect0(M); this subset spans a partial Lie algebra) (the
Lie bracket of two complete vector fields may not be complete) and the corre-
sponding kinematic S0 (M) has partial Lie algebra structure.

2.2 Quantization of S0(M)

To quantize the classical object S0(M) we construct a map from S0(M) into
the set of essentially self-adjoint operators on a common dense domain in a
separable Hilbert space H

Q = (Q, P) : S0(M) −→ SA(H)

sending
f −→ Q(f), X −→ P(X)

We realize H as L2(M, C, dν), i.e. the space of square integrable complex
functions over M ; dν is a standard measure on M . We assume furthermore
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that there is no internal degree of freedom like spin. The map can be viewed as
a representation of an infinite dimensional (partial) Lie algebra.

The following properties I.-III. are assumed for Q to be a quantization map:
I. In L2(M, C, dν) operators Q(f) act as multiplication operators by f , i.e.

Q(f)Ψ = fΨ.

II. The Lie algebra structure of S0(M) survives, i.e. Q is a partial Lie algebra
homomorphism.
III. P(X) is a local operator, i.e. supp (P(X)Ψ) ⊂ supp Ψ.

These assumptions have the following background:
Ad I. Consider a set of localization regions B ⊂ M ; choose for this set the

Borel field B(M) over M and define the quantization map:

Q : B ∈ B(M) −→ E(B) ∈ SA(H).

The states of the system are given by normed positive trace–class operators W .
The expectation value of a measurement of E(B) in a state W is

Tr(WE(B)) = µW(B) (1)

(Tr(.) denotes trace) and contains information on the probability of localization
of the system in state W in the region B. Using properties of position mea-
surements we assume that the r.h.s. of (36) is (elementary) spectral measure on
B(M). With our realization of the spectral theorem we find property I.

Ad II. The algebraic structure of S0(M) reflects that the classical system is
localized and moving on M . Also the quantum system lives on M . Hence this
algebraic structure should ‘survive’ under the quantization map. In this sense
quantizations are based “on an algebra” [21].

Our later analysis shows that there are different possibilities for such maps
which are related to unitarily inequivalent quantizations. Therefore the informa-
tion encoded in the classical system is not sufficient to characterize its quantized
form; one needs additional information — so called ‘quantum information’.

Ad III. For M = Rn we know that the momentum operator acts in H as a
self-adjoint differential operator. It is plausible to expect also that P(X) acts
locally on complex functions over M as differential operator. Hence in our
design we have to define differential operators (of finite order) on functions in
L2(M, C, dν). For this we sketch two notions (A, B) and their relation (C):

A. To define derivatives of complex functions over M one needs a differen-
tiable structure DS on the point set M × C. The restrictions of DS give the
differentiable structure DS(M) of M (smooth manifold)

DS(M × C)|M = DS(M)

and the restriction to C yields the standard differentiable structure of C,

DS(M × C)| = DS(C)
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Geometrical objects with these properties are complex line bundles on M
with hermitian connection, L(M × C, pr, C, 〈.〉 ,∇). Some sections of L are
square integrable. The Hilbert space L2(M, C, dν) can be viewed as the space
of square–integrable sections of L.

The structure of the set {L} of such bundles is known. Denoting the curvature
of the connection ∇ in L by R, one can construct such L if and only if

1
2πi

∫
S

R ∈ Z

for all closed 2-surfaces S in M. In terms of cohomology the de Rham class of
1

2πiR has to be integral, [
1

2πi
R

]
∈ H2(M, Z), (2)

i.e. there is a strong bundle isomorphism between two complex line bundles, if
and only if their Chern classes in H2(M, Z) coincide.

For each of these inequivalent classes there is a set of inequivalent connec-
tions labelled by

H1(M, U(1)) = π∗
1(M),

i.e. by elements of the character group of the fundamental group of M .
These algebraic invariants classify the line bundles together with their dif-

ferentiable structures and covariant derivatives ∇, we are looking for. We have
no result whether the introduction of differentiable structures to our model via
line bundles is unique. For internal degrees of freedom complex vector bundles
can be used [22, 23].

B. For physical reasons we want to avoid nonlocal effects, i.e. we quantize the
kinematic by local operators Q(f) and P(X). The position operators are local
by construction; the locality of P(X) is equivalent to condition III. Note that
we assume locality only for QS0(M); other operators representing observables
could be nonlocal.

C. The locality condition is linked with differential operators defined via
differentiable structures [24]: if there is a differentiable structure DS(M ×C),
then the locality of P(X) implies that P(X) is a differential operator of finite
order with respect to DS(M × C).

The arguments in section 2.2 are related to our generalization of Mackey’s
imprimitivity theorem on homogeneous spaces. Our review [10] and references
therein have utilized such a generalization.

2.3 A Classification Theorem for Quantization Maps

With the assumptions I. – III. we derived a classification theorem for the
quantization maps
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Theorem

The set {Q} of unitarily inequivalent quantization maps

Q(.) : S0(M) −→ SA(H)

on a Hilbert space H which is realized with square–integrable sections of a
hermitian line bundle, Q(S0(M)), is labelled by the triple

(J, α, D) ∈ H2(M, Z) × π∗
1(M) × R.

Here H2(M, Z) labels the set of closed two–forms J which satisfy the integrality
condition (2), π∗

1(M) denotes the character group of the fundamental group of
M . For a fixed J we have classification by (α, D).

Explicit form of the map Q(α,D) = (Q (α,D)),P(α,D)) can be found in [9, 10,
21]. Details for the case M = R3 are given in section 2.4.

The operators Q(J,α,D)(f) and P(J,α,D)(X) are essentially self-adjoint (we
used complete vector fields) on a common invariant domain; the representation
Q(.)(S0(M)) is irreducible; α is a topological quantum number; D is inde-
pendent of the topology and is related to the algebraic structure of S0(M).
Hence there are inequivalent quantizations for systems on topologically trivial
manifolds.

REMARKS

a Quantum Borel kinematics are based on a classical configuration space
in contrast to geometric (pre–)quantization [25] which works on a sym-
plectic space or more specially on the phase space. In both methods the
topological quantum numbers play (with different motivations) an es-
sential role. However, the quantum number D appears only in quantum
Borel kinematics. This gap was closed recently: Jörg Hennig and Peter
Nattermann showed in [26, 21] that geometric quantization of the kine-
matic corresponds to our approach, if one uses (1

2 − iγ)–density instead
of a 1

2–density; the imaginary part of the density is proportional to the
quantum number D.

b We sketch in paragraphs A, B, C formulations of quantum Borel kinematic
for more general situations:

A. If the system has internal degrees of freedom like spin, the Hilbert
space is spanned by vector–valued functions. There are two types
of quantum maps: type 0 in which different vector components
are not mixed; this type is described in [22]. In type 1 a mixing
is allowed; Michael Drees gave some preliminary results [23]. A
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discussion of the quantum Borel kinematic for a spinning particle
can be found in [22, 23].

B. If there exists an external field or potential on M , i.e. a closed
2-form B, an additional term in the commutator of the momen-
tum observables appears. Hence a quantization map based on M
exists only if B fulfils the integrality (admissibility) condition (2).
We refer to [10, 21]. However, such external potentials were al-
ready included in an indirect way in our earlier discussion, since
the quantum number J is responsible for the existence of both the
line bundles and the admissible closed external one–forms.

C. The physical background of D cannot be completely clarified in a
kinematical framework. One can calculate how expectation values
of momenta depend on D. But this dependence can be analyzed
only if it is explicitly known. We discuss this in section 3.

2.4 Applications of the Classification Theorem

The theorem shows that for topologically trivial as well as non–trivial mani-
folds ‘different quantizations’ exist. This means that the probabilities of certain
observables measured in certain states depend on (J, α, D). One and the same
classical system yields — after the quantization maps — a set of different
quantum systems. Additional information — the already mentioned ‘quantum
information’ — is necessary to choose or to determine (J, α, D). The source
of this information can be, e.g., first principles or experimental results.

As the first example of inequivalent quantizations we consider a topologi-
cally trivial manifold M = R3 with vector fields X(�g) = �g(�x).�∇ and with
quantization map Q(D)(S0(R3)),

Q(f) = f

P(D)(X) = −i��g.�∇ + (−i
�
2

+ D) div �g (3)

Different D yield unitarily inequivalent representations and hence different
quantum systems.

The representations of S0(Rn) for multiparticle configuration spaces for
N indistinguishable objects can be viewed also as representations of non–
relativistic inhomogeneous current algebras. Jerry Goldin and co-workers [15]
constructed such representations; they derived the above result (38) and found
independently the quantum number D.

Now let us mention some systems on topologically non–trivial smooth man-
ifolds and their different quantizations (see also Table 1):

The physics of N indistinguishable particles — anyons — and distinguish-
able particles on a 2–dimensional Euclidean space (in the framework of cur-
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Table 1. Examples of elementary quantum Borel kinematics [10].

QS∗) M π1(M) H1(M,Z) H2(M,Z)

Topological
quantum
numbers

a R3 {e} 0 0 —

b R3\R Z Z 0 ϑ ∈ [0, 1)

c R3\O = R+ × S2 {e} 0 Z n ∈ Z

d R3 × R+ × S2 {e} 0 Z n ∈ Z

e R3 × R+ × RP 2 S2 Z2 Z2 m ∈ Z2

f R3 × SO(3) Z2 Z2 Z2 m ∈ Z2

g S2 {e} 0 Z n ∈ Z

h S1 Z Z 0 ϑ ∈ [0, 1)

i Kp π1(Kp) Z2p Z
n ∈ Z,

ϑ1. . .ϑ2p ∈ [0, 1)

∗) QS — Quantum system:
a Spinless particle in R3

b Aharonov-Bohm configuration
c Dirac’s monopole
d 2 distinguishable particles in R3

e 2 indistinguishable particles in R3

f Rigid body
g Symmetric top
h Rotator with fixed axis
i Particle on orientable surface of genus p

rent algebra) was discussed by Jerry Goldin and co-workers. A review (in
Borel quantization) of indistinguishable and distinguishable particles on 2–
dimensional manifolds can be found in [24]. Parastatistics appears for N indis-
tinguishable particles on manifolds with dimension > 3 [24]. Aharonov–Bohm
situations were discussed as topological effects in [25]. The quantum maps for
systems on non–orientable 2–dimensional manifolds (Möbius strip and Klein
bottle) were treated in [26]. For quantizations on the trefoil knot see [27]. A re-
cent review of many aspects in quantum Borel kinematics can be found in [10]
together with some further examples of configuration spaces with nontrivial
topology.
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3. Borel Dynamics

3.1 Difficulties with Q(.)(S0(M))

Quantum Borel Kinematic holds for any fixed time t, it considers a ‘frozen’
system and it carries no direct information on a t–dependence. Hence a principle
is needed to construct related dynamical equations. As explained before one
hopes that this could be a key for a physical interpretation of the quantum
number D.

As a plausible model for an evolution of pure states we choose a dynamical
group {Dt,g; t ∈ R} with a linear operator Dg as generator acting on H; g
denotes a Riemannian structure on M . In the Heisenberg picture we relate the
quantized momentum P(.)(X) to Dg, i.e. we assume the existence of a map

C∞(M, R) → V ect0(M)

such that

[Dg, Q(f)] = −iP(.)(Xf) for all f ∈ C∞(M, R).

In analogy to Hamiltonian mechanics in phase space we specialise this map
with

Xf = gradg f.

To analyze this ansatz consider the ∇–lift of the Laplace Beltrami operator ∆g

on M (with metric g) is a candidate for D. Hence we write (with some operator
K = Q(V ))

Dg = −1
2
∆∇

g + K.

The commutator between Dg and f has with (38) for all f ∈ C∞(M, R) the
form

[Dg, f ] = iP(gradg f) − iD∆gf.

A comparison with the previous result yields D = 0. Thus our ansatz for a
dynamical group (in the Heisenberg picture) fails; it leads to the trivial result
D = 0 [28]. This failure is partly connected with the implicit assumption that
evolutions of wave functions are linear.

3.2 Nonlinear evolutions from Q(D)(S0(R
3))

An alternative method is to start with the assumption that the positional
probability is conserved. Consider again a system in M = R3. We assumed
[5]

∂

∂t

∫
R3

�(x, t)d3x = 0, �(x, t) = Ψ(x, t)Ψ(x, t).
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This implies indirectly that a pure state remains a pure state. With a suitable
behaviour of Ψ at infinity we are allowed to apply the Gauss theorem and find

∂

∂t
�(x, t) = −∇�j(x, t) (4)

with a vector field density �j depending on the wave function Ψ.
How to construct�j in our model? Consider the above equation as an operator

equation in the 1–particle sector F1 of the Fock space generated from a cyclic
vacuum |0〉 . The generic operators Q(f), P(D)(X) correspond to operator–
valued densities �, �jD in F1:

Q(f) =
∫

f(x)�(x, t)d3x

P(D)(X) =
∫

�g(x)�jD(x, t)d3x

We have already �(x, t) = ΨΨ. We get for �jD(x, t) from (38)

�jD(x, t) = �j0(x, t) − D∇�(x, t), �j0(x, t) =
�

2mi
(Ψ · ∇Ψ −∇Ψ · Ψ)

and with (4)
∂

∂t
�(x, t) = −∇�j0(x, t) + D∇�(x, t).

This is a Fokker–Planck type equation. For D = 0 we have the quantum
mechanical continuity equation with the usual quantum mechanical current.
The term proportional to the quantum number D is a quantum mechanical
diffusion current which is characteristic for the model.

Any ansatz for a time dependence of Ψ(x, t) has to respect this Fokker–
Planck equation. We use this fact to construct an evolution of first order in ∂t,
with the usual linear terms and with an additional term F depending e.g. on
the wave function Ψ:

i�
∂

∂t
Ψ(x, t) = (− �2

2m
∆ + V (x) + F [Ψ] Ψ

Inserting this ansatz into the Fokker–Planck equation, a non linear Schrödinger
equation with a complex nonlinear term is obtained,

i�
∂

∂t
Ψ(x, t) = (− �2

2m
∆ + V (x) + iIm F [Ψ] + Re F [Ψ])Ψ,

where

Im F [Ψ] = �
D

2
∆�

�
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is enforced through Q(D), and Re F [Ψ] is independent of D (arbitrary).
We see that the imaginary part of F is fixed by the quantization method, but

there is no information on the real part. We assume for Re F a function of the
wave function which is of the same type as ImF , i.e.

• complex homogeneous of order zero
• rational with derivatives not higher than second order in the numerator
• Euclidean invariant.
With these assumptions for Re F Doebner and Goldin obtained a family

of singular nonlinear Schrödinger equations (DG equations) for a particle with
mass m, potential V parametrized by �, D, c1,..., c5:

i�
d

dt
Ψ =

[
− �2

2m
∆ + V (�x) +

1
2

�D
∆�

�
+ �D′

5∑
i=1

ciRi [Ψ]

]
Ψ

R1 [Ψ] =
m

�
∇�j0

�
, R2 [Ψ] =

∆�

�
, R3 [Ψ] =

m2

�2

(∇�j0)2

�2

R4 [Ψ] =
m2

�2

(∇�j0)2

�2
, R5 [Ψ] =

(∇�2)
�2

.

The choice of the real nonlinearity corresponds to the ‘gauge generalization’
used in another derivation of the DG equations (see sections 4.1, 4.2).

Independently of the known fact (see e.g. the review [11]) that the usual
framework of quantum mechanics does not allow fundamental nonlinear evo-
lutions for pure states, one may argue that a small nonlinearity (small D) can
be treated approximately with the usual methods. With this precaution some
results for atomic spectra were derived; for the hydrogen atom present preces-
sion experiments show no difference to the linear theory. This leads to an upper
bound for D [29]

D > 10−7 �
m

There are discussions on DG type nonlinearities in quantum optics (‘nonlinear
photons’) [29].

For an exact calculation of observable effects a new framework of quantum
mechanics is necessary. There are indications how to formulate general re-
quirements (e.g. [30]), but there is by no means a complete and mathematically
acceptable theory which incorporates fundamental nonlinearities.

The mathematical structures and properties of DG equations and the men-
tioned precaution for their physical applications are partly known; we quote
(the following list is incomplete):

Cauchy problem [31]; Lie symmetries [32]; solutions for stationary states
[16], time dependent solutions for certain coefficients [33]; generalizations
for: arbitrary smooth M [21], mixed states [17]; other methods for a derivation
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via: nonlinear gauge transformations [19], generalized Ehrenfest relations [17],
stochastic processes [34]. Further applications are known for anti–particles [35]
and the dynamics for D–branes.

4. Borel Kinematic and Nonlinear Structures

Our quantum number D yields a family of nonlinear evolution equations
for pure states with a nonlinearity proportional to D. This indicates a hidden
nonlinear structure in Q(0)(S0(R3)). We assume in the following M = R3.

4.1 Nonlinear Gauge Transformations

In connection with the properties of stationary solutions of the DG family
a group G of nonlinear gauge transformations was introduced [18]. They are
invertible transformations N

N : Ψ ∈ H −→ NΨ = N [Ψ] ∈ H (5)

with N depending on Ψ(x, t), x, t. They are restricted by the assumption that
the positional probability density is invariant:

N [Ψ]N [Ψ] = ΨΨ.

The reason for this restriction is the following: N should transform a given
system, i.e. a given Ψ, to a ‘physically equivalent’ one: “equivalent” means
that the results of measurements on both systems are the same.

Behind the notion of ‘physical equivalence’ is the ‘principle’ that the posi-
tional density �(x, t) for all x and t determines the outcomes of the measure-
ments of all observables [36]. Such N build a nonlinear gauge group G.

Now applying N to the usual (linear) Schrödinger equation, i.e. to a system
with linear evolution operator

DS = i�∂t +
�2

2m
∆ − V (x), DSΨ = 0,

a (family of) nonlinear Schrödinger equations is obtained,

DS ◦ N [Ψ] = 0.

The result is a subfamily in the DG family.
By construction it describes the physics of a system which is equivalent to the

linear system. A generic procedure (gauge generalization) to construct ‘new’
systems is the gauge generalization. This is a generic procedure for families of
partial differential equations depending on coefficients which are related to each
other; the breaking of this relation is our model for a “gauge generalization”
[18, 19]. This gauge generalization leads to the DG family; some of its members
are inequivalent, they represent systems with new physical properties.
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Sections 3.2 and 4.1 show that the DG equations can be derived from two
different structures:

• From a geometric structure via a representation of an inhomogeneous
diffeomorphism group acting on the configuration space and with a t–dependence
from a conservation of positional probability density.

• From a nonlinear structure via nonlinear transformations of positional
probability densities between physically equivalent systems applied to a t–
dependence of the linear system and gauge generalization.

4.2 Nonlinear Tangent Map

Another method to describe a hidden nonlinear structure of Q(0) (S0(R3))
more directly was recently presented [20].

Let N ∈N as in (5) be a group of nonlinear transformations in H . To intro-
duce convenient transformation properties for operators we consider physically
interesting ones which are (often) essentially selfadjoint. They can be viewed
as generators iA of a one parameter group Uε of unitary transformations

Ut = exp itA.

Take a path {UtΨ, t ∈ [−ε, ε]} in H . Then

d

dt
(UtΨ)|t=0 =

d

dt
(Ψ + itAΨ)|t=0 = iAΨ.

Hence iAΨ appears as a tangent map T of Uε. Take now a transformed path
N(Uε) and define the transformed generator iA by the tangent map T (N) of
N(Uε):

d

dt
N(UεΨ)|t=0 = iA Ψ.

Hence we have the N-tangent map

T (N) : A → A .

For linear N we get the usual result. For nonlinear N the resulting operator A
is in general nonlinear. The N-tangent map is a Lie algebra isomorphism. One
can extend the method formally to non essentially selfadjoint operators.

We apply now the N-tangent map to quantize kinematical observables. Sim-
ilarly as in section 4.1 we restrict N such that the N-tangent mapped elements
in Q(D)(S0(R3)) are again linear and of order 0 or 1, i.e.

1. Q(f) is a linear multiplication operator, i.e. f
2. P(D)(X) is a linear differential operator of order 1.
Condition 1. is fulfilled by construction; condition 2. is equivalent to the

relation
P

(0)(�g · ∇) = �g1 · ∇ + g0
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with �g1(x), g0(x) depending on �g(x). The last condition implies [14] a set N
of non linear transformations. We write this (formally) in polar decomposition

Ψ = R exp iS, N[Ψ] = N[R, S] = R (R, S) exp iS (R, S)

The form of N is

R (R, S) = Rκ+1r(S)
S (R, S) = γ lnR + t(S) + 1

with κ, γ ∈ R, and real functions r(S) and t(S). The functions �g1, g0 are

�g1 = +
�
i
�g

g0 = (
�
2i

+
1
4
γ)div �g

The transformations N(κ, γ, r(S), t(S)) build a group N.

4.3 Applications of the Nonlinear Tangent Map

We consider the behaviour of Q(D)(S0(R3)) under N. For D = 0, i.e. for
Q(0)(S0(R3)), we have (see (38))

Q(f) = f

P(0)(X) =
�
i
�g · ∇ − i

�
2
div �g.

Hence with γ = 4D

Q(D)(S0(R3)) = Q(0)(S0(R3))

holds. Representations of Q(D)(S0(R3)) with different D which are inequiva-
lent under linear unitary transformations are ‘equivalent’ with respect to certain
non–unitary ones. It is interesting to apply the N-tangent map to the linear
Schrödinger equation. For N we find that

D0
S ◦ N [Ψ] = 0, N ∈ N

leads to a subfamily of generalized NLSE which contain (after gauge general-
ization) the DG family. After gauge generalization a “general” DG family is
constructed.

If one applies N to an ordered polynomial generated from P(D)(X), Q(f)
one gets a nonlinear quantization of all observables of polynomial type. The
partial Lie algebra structure of these nonlinear operators is known.
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5. Summary and Outlook

We started with a geometrical framework to quantize the kinematic of a sys-
tem living on a topologically nontrivial manifold (Quantum Borel Kinematic).
We showed how the quantization depends on the topology through topological
quantum numbers. Since inhomogeneous diffeomorphisms are used as models
for the kinematic, a new quantum number of non–topological origin appears.
If a time dependence is introduced to the quantized kinematic through conser-
vation of probability, this quantum number is the root of nonlinear Schrödinger
equations (DG equations) for pure states. Properties of stationary solutions
of the DG equations lead to the introduction of nonlinear gauge transforma-
tions which transform a system in a physically equivalent one. Applied to
the linear Schrödinger equation, nonlinear gauge transformations in G lead af-
ter gauge generalization to the DG equations. A more direct indication of an
intrinsic structure of the quantum Borel kinematic utilizes N–tangent maps,
N ∈N , which transform linear quantized kinematical operators into nonlinear
ones. These N–tangent maps can describe a nonlinear quantization of polyno-
mial observables; for the Hamiltonian a generalized family of DG equations
appears.

Topological effects in quantum mechanics and the topological quantum num-
bers are a well established field with few applications to real systems, e.g. in-
distinguishable particles in R, anyons, Bohm–Aharonov situations. Nonlinear
quantum mechanics for pure states is an interesting but controversial field. On
one hand it seems to be plausible that quantum theory is a linearization of a
more involved theory and that nonlinear evolutions derived from first principles
are a key stone for a formulation of such a framework. On the other hand we
know that linear structures are deeply rooted in the mathematical and physical
formulation of quantum theory. The present formalism does not allow nonlin-
ear operators; only for approximations see [37]. A ‘new’ formalism is not yet
developed. There is no experimental indication for a fundamental nonlinearity.
However, deviations from usual quantum mechanics are discussed in connec-
tion with quantum mechanical precision experiments and with new possibilities
for an experimental design. In this connection topological viewpoints as well
as nonlinearities in the evolution are of interest.
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SEEING SCIENCE
THROUGH SYMMETRY

An Interdisciplinary Multimedia Course

L.I. Gould
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University of Hartford
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Abstract Seeing Through Symmetry is a course that introduces non-science majors to the
pervasive influence of symmetry in science. The concept of symmetry is used both
as a link between subjects (such as physics, biology, mathematics, music, poetry,
and art) and as a method within a subject. This is done through the development
and use of interactive multimedia learning environments to stimulate learning.
Computer-based labs enable the student to further explore the concept by being
gently led from the arts to science. This talk is an update that includes some
of the latest changes to the course. Explanations are given on methodology and
how a variety of interactive multimedia tools contribute to both the lecture and
lab portion of the course (created in 1991 and taught almost every semester since
then, including one in Sweden).

1. Introduction

Symmetry is something that we are all probably aware of, for better or for
worse, in our everyday lives: A desirable situation can occur in the supermar-
ket, when a shopper attempts to find another tomato in the pile that looks just
like the nice one already selected. In the faculty dining room, on the other
hand, a colleague sometimes guesses which of two apparently identical metal
dispensers contains the hot water for tea; and, failing the determination, releases
coffee onto a tea bag!

The subject of symmetry has been written about extensively. There are
numerous works on symmetry in science, art, mathematics, philosophy, music,
poetry, and information processing. From the World Wide Web, two journals
([1], [3]), articles from conference proceedings [5], and collections of essays
[2] can be found many examples covering all of those subjects. . . and more.
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The term “symmetry” used here has no meaning apart from some operation.
With this in mind one can put forth the following fairly standard definition: An
object is symmetric under a particular operation if it appears unchanged after
that operation has been performed. A very simple example: the square has
rotational symmetry because after rotating it about its center through 90◦, in its
plane, the square appears as it did prior to the rotation. A more complicated
example: In the figure below there are four letters “T” and one letter “O”. The
whole figure has reflectional symmetry about two perpendicular lines passing
through the center of the “O”, 2-fold rotational symmetry about the same center,
and infinite-fold rotational symmetry of just the “O” (if it was a perfect circle)
with respect to that center.

Trial restriction
Furthermore, if you begin at the center and go counterclockwise through the
“T” at the upper right (UR), the “T” at the upper left (UL), and back to the
“O”, the word “OTTO” is spelled. The identical word is spelled again if you go
clockwise (from the “O” to UL to UR and back to the “O”). Hence, one has what
can be dubbed a palindromic symmetry, usually called a palindrome (the same
palindrome occurs by going clockwise or counterclockwise using the bottom
half of the figure). Finally, starting at the “O”, going the counterclockwise route
through the top half of the figure, followed by a clockwise route through the
bottom half of the figure, will again bring you back to the “O”; thus tracing out
a figure eight which, moreover, repeats under those combined operations. The
Italian word for “eight” is “otto”!

If one defines an object’s “image” as the result of having performed a partic-
ular operation on the object, then a more concise definition of symmetry is: An
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object is symmetric under a particular operation if it is identical to its image.
Even briefer is: Symmetry means invariance under change (cf. [9],19).

2. Foundations for the course

Students taking the course work up to a definition of symmetry: starting in
a qualitative way, by observing pleasing patterns in the arts and in the sciences,
they go on to characterize symmetry using elementary mathematical notions.
That gives them the raw material from which to abstract and formulate a general
definition of symmetry as the course’s key concept.

The concept of symmetry can be fundamentally regarded as coming from
the area of philosophy — most basic of all the disciplines. It is therefore not
so surprising that the concept of symmetry applies to such a diverse set of
disciplines (see, e.g., Van Fraassen [10]). I would even argue that it applies to
all disciplines. (Indeed, thinking is itself an activity that appears to require the
identity of ideas under change of mental state.)

So a small but important part of the course is devoted to understanding
the philosophical aspects of symmetry. One such aspect could be called the
“epistemology of symmetry”: How valid is our concept of symmetry? Where
are its limitations? For example: Do we mean that an object is symmetric if
it appears so? (Is the right side of your face the true mirror image of the left
side?) Are there symmetries that lie below appearances? (Are all the laws of
physics symmetric? If you drop an object at one place will its motion be the
same as when you drop the object after having moved two feet to the right or
after having waited for one minute?)

Educators at other universities1 have also thought about the value of teaching
symmetry. A particularly good description of symmetry’s value for education
in general and for science education in particular is given by P. Klein [8]:

It aims at [an] interdisciplinary approach since it deals first with formal conditions
of understanding applicable to all possible objects of experience;

It relates objects of learning to each other, thus rendering possible shaped, un-
derstanding learning;

All formal laws raise from and remain closely related to sensual experience;

A deep feeling of comfort is raised by having symmetrical orders open to our
senses; this affects our sense of beauty;

1Only a small number of schools have (or had) courses explicitly based on symmetry. Some examples are
by G. Darvas at The Institute for Advanced Symmetry Studies in Budapest, I. Halpern at the University of
Washington, J. Kapraff [6] at the New Jersey Institute of Technology, E. Merzbacher at Williams College, D.
Nagy at Arizona State University, A. Rosenberg at Swarthmore College, M. Senechal at Smith College, and
S. Wait at Rensselaer Polytechnic Institute. But those courses have not taken the same approach as the one
discussed here with regard to the method used, kinds of disciplines discussed, and the laboratory-enriching
“hands-on” experience.
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Learning with symmetries may be based on action, and action will continue to
give a basis of understanding for complicated problems: the promoting unity of
action, of sensual and intellectual activity in understanding will be experienced;

These activities may be abstracted and formalized towards mathematics, simple
enough, yet basic, thus evolving the mathematical interpretation of the world.

Symmetry, as utilized in the Seeing Through Symmetry course, is what I
would call a “hub concept”. It is as if it stood for the axis of a cylinder consisting
of a multidisciplinary world with ties to disciplines constituting the surface, and
with the disciplines, as a consequence, tied to each other. Through this hub
many aspects of the scientific and artistic worlds can be better understood and
appreciated. For example, a concept of symmetry common to mathematics,
physics, and music can enable students to interrelate those disciplines — not
only by acquiring some new understanding of each through the concept, but
also by seeing a commonality of each through that concept; and, by using that
commonality, it is possible for advances in one discipline to lead to advances
in another. Explaining further: the concept of “translational symmetry”, when
given its precise mathematical formulation, can be used to explain the physics
of sine waves, which in turn can be applied to understanding why a musical tone
sounds the way it does. The physics of sound and the sound of music can then
feed into each other, each area contributing to the other. (An interrelationship
of such disciplines is perhaps strange for many academic specialists. But in
the Middle Ages it was a matter of course: For example, music was part of
the mathematical sciences called the “quadrivium”, a division of the seven
liberal arts. There music was personified by Pythagoras because he was able to
relate pleasing sounds made by a taut string that was plucked, after having one
part of it held down so as to divide the string’s length into the ratio of lengths
corresponding to the ratio of positive integers.)

Some details about the course
Seeing Through Symmetry was created in 1991 and taught almost every year

since then; including during the summer of 2000, as a result of an invitation
to teach the lecture portion at the University of Skövde, Sweden. Currently,
a book and instructor’s manual is being written to augment the course notes
(handouts) and the laboratory manual.

Seeing Through Symmetry enables students to develop their quantitative
abilities and analogical thinking by using symmetry both as a method within a
discipline and as a bridge between disciplines. Starting with the topics of sym-
metry in art, in poetry, and in music, we then go on to display and interrelate
those topics to symmetry in areas such as mathematics, physics, chemistry, biol-
ogy, and cosmology. Thus students “see through” (i.e., understand) the concept
of symmetry as well as “see the world” through (i.e., by means of employing)
the concept of symmetry. They develop inter-relational and scientific abilities,
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in part, through the medium of a highly graphical laboratory experience; this
utilizes computers in order to explore the many facets of symmetry including
the generation of their own patterns through the use of software packages and
elementary programming.

Integrative skills in this course develop in a variety of ways. A primary
one is the use of communication skills for a term project, through speaking,
writing, and class presentation. The term project incorporates course concepts
of science/math and requires students to display their creative and analytical
abilities. Throughout this project, as one of the course’s integrative benefits,
students not only see interrelations between subjects within the realm of science
but also between that realm, the humanities in general, and their own discipline
in particular. (Examples are given in the Term Project section.)

Lectures
These are multimedia interactions. Several films are shown. One of them is

an easily understood general introduction to a variety of symmetries. Another
stresses the glories of learning as seen through the mind of the prototype “Re-
naissance man”, Leonardo da Vinci2 An audio tape is employed to demonstrate
the use of the Golden Ratio in Bartok’s “Divertimento for Strings”. A laser and
“grating” exhibit the wave interference phenomenon called “diffraction”; and
glow-discharge tubes of hydrogen and helium illustrate how the spectrum of
each, seen through the grating, can lead us to an understanding of what stars are
made of. A special feature of the course is a computer-animation-and-sound
show.3

It illustrates symmetry in art, geometry, geophysics, and both cellular and
molecular biology. It also dynamically illustrates “broken” symmetry through
a portion of a motion picture showing the “sickling” (change of shape from
circular to crescent moon) of a red blood cell — a manifestation of the disease
called “sickle cell anemia”.

The course has been changed more and more towards encouraging students
to refer to their own experiences throughout the development of any topic. They
are also able to try things out on the computer which illustrate ideas discussed
in class. The point here is that science begins from an individual’s observations

2Some Films: (a) Bobker, Lee R. 1992. “Leonardo: A Journey of the Mind”. c©Vision Associates, Inc.
for IBM. VHS. 40 minutes; (b) Bregman, Judith, Davisson, Richard, and Holden, Alan. 1967; “Symmetry”
c©Polytechnic Institute of Brooklyn. New York: Contemporary Films/McGraw-Hill. 16 mm. 10.5 minutes.
∗) (c) Robinson, Peter. 1970. “Aspects of Symmetry”. c©Polytechnic Institute of Brooklyn. 16 mm. 15
minutes.∗)
∗) I am grateful to A. Rosenberg, Emeritus professor from Swarthmore College, for bringing this film to my
attention.
3Created by D.P. Buckley (Quinnipiac University) and L.I. Gould.
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of the world. It is a highly imaginative probing into the workings of nature (not
just a rigid compilation of facts and formulas).

Over the years the subject matter of the course has been broadened. Some of
the more recent topics which Seeing Through Symmetry includes are: the nature
of fractals, the structure and function of DNA, the nature of the chemical bond
through explanations of electric forces, an introduction to the mathematical
theory of groups with applications to design and to computer algorithms, the
application of waves to some aspects of the strange world of quantum physics,
and the very important issue of scientific methodology (as exhibited in part
through the use of Venn diagrams to illustrate class inclusions and methods of
concept formation).

During the early years of the course, a national grant4 enabled a colleague
enabled us to outfit a multimedia classroom. The room contained 12 nodes,
each with a Mac computer (plus desk lamp) in a space that easily accommodated
two or three students, an instructor node with another Mac tied to a projection
system at the front center of the classroom, and a laser printer; all connected via
an Ethernet network.5 Because each node’s computer screen faces the front of
the room, the instructor could monitor its activity. There was also a VCR player
connected to an overhead projector. The instructor node permitted access to
each of the student nodes (e.g. for loading software or transferring files). The
equipment was completed by a variety of hardware and software packages used
both in teaching and in the laboratory portion of the course.6

Labs
Once-a-week labs give the student a deeper understanding of the course. Dis-

cussion is continually encouraged among the participants. Students normally
work in groups of three or less. (A typed report is required for each lab and may
come from one or more students in the group.) Earlier labs feed into later ones
as lower-level abstractions feed into higher-level ones. Several of the labs are
briefly described below in relation to the question: What is the activity and how

4National Science Foundation Instrument and Laboratory Improvement grant awarded in 1993 (No. DUE-
9352670).
5The course can also be adapted to run on Windows machines, if the need arises.
6Some of the Hardware used in the Labs and Lecture (and supported by a range of software packages): A
typical Apple computer used is an iMac. There is also the Universal Laboratory Interface (ULI) box plus
Test Leads, Ultrasonic Motion Detector, Student Force Sensor, Microphone/Amplifier, Heart Rate Monitor,
and Light Sensor (all obtained from Vernier Software, Oregon); headphones, tuning forks, masses, clamps,
aluminum rods, 1.5 V batteries; Hi/Low Intensity Lamp, and polarizers. In addition there are diffraction
gratings through which students can view the spectrum from different sources of light (the sun, incandescent
bulbs, fluorescent bulbs, and from hydrogen and mercury discharge tubes). Other materials required for
the course are meager but necessary for giving students the sense that the scientific enterprise is heavily
dependent on quantitative measurements and computations (e.g., a calculator whose display should show at
least 5 places to the right of the decimal point but need only perform the operations of addition, subtraction,
multiplication, division, and taking the square root).
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does it connect to other areas of the course so as to convey the interdisciplinary
experience? (Subjects referred to are covered earlier during lecture.)

Intricacies of Coloration:
Coordinates, Translations, Groups and Tessellations — Stu-
dents continue learning (from an earlier lab) how to use a simple computer
algorithm (based on the Logo language) to see: (a) how coordinates of points
can be represented by the computer; (b) how different colors are determining
factors for the nature of translationally symmetric designs; (c) an instance from
the mathematical theory of groups; and (d) how algorithms can be created to
tessellate the screen. Hence students learn (or re-learn) the analytical-geometry
basics of locating objects in space; see how this is related to design, to poetry,
and to music through the creation of symmetries and “broken” symmetries; un-
derstand how art can be a manifestation of group theory in mathematics and how
the latter can be used to create art; and glimpse “infinity” through symmetries
that can go on and on through time and space.

Patterns in Music: Sound and Sight — At our School of Music
each group of students gains a literal “hands-on” introduction to elementary
ideas in music and music symmetry through exploration of the visual and aural
aspects of the keyboard. Students: (a) learn about symmetrical patterns that
can be associated with the keyboard, both visual and (what I would call) “aural
temporal”; (b) relate the psychophysical concepts of pitch and frequency to each
other and to the Fibonacci sequence; and (c) perform the broken symmetry
of musical “rounds”. As a result of this lab students can interrelate music,
mathematics, art, and physics, with even a little psychoacoustics.

Experiencing Motion In Space and Time — In this lab and the ones
that follow, students see the value of technology for investigating aspects of
certain natural phenomena including those which exist beyond the range of
human vision and hearing. The computer with auxiliary devices attached to it
“extends” our visual and auditory senses. This in turn makes it possible for us
to understand the manner in which symmetric aspects of nature contribute to
our sense of the world of motion, sound, and light.

Students build on their experience of graphical representations (as intro-
duced in an earlier lab) through the visualization of scientific data obtained via
the simultaneous monitoring and display of different phenomena by computer
equipment. This enables them to: (a) see the value of technology’s omnipresent
concept of voltage through the display of battery outputs as a function of time;
(b) understand aspects of motion through experiencing the movement of their
hand, using an ultrasonic motion detector; (c) conceptualize some details of the
periodic phenomenon, “simple harmonic motion”, that has time-translational
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invariance, using a mass-on-a-spring connected to a force probe. Students can
see the obvious tie to mathematics, as well as to epistemology (i.e., how we ac-
quire knowledge about the world; in this case, scientific knowledge). They can
also see connections to art, music, and poetry. For example, the stressed-and-
unstressed pattern in poetry’s sonorous iambic pentameter may be represented
through the use of visual voltage steps exhibiting a similar periodicity in time.

Building Symmetry from Symmetry: The Fourier Spectrum
— In this introduction to the addition of symmetrical wave patterns, the student
learns about: (a) “Fourier synthesis”, as manifested in complex periodic sounds,
with their corresponding shapes, occurring when two or more simple periodic
sounds with their corresponding shapes, resembling “sine wave” shapes, are
combined, or “synthesized” (although true sine-wave shapes are referred to as
“Fourier components”, our simple approximate shapes will also be so referred
to); (b) “Fourier decomposition”, a method showing how complex periodic
shapes can be broken down (or “decomposed”) into their Fourier components,
enabling students to look at the “shape” of their voice and of their heartbeat; and
(c) how to synthesize their voice and heartbeat from the Fourier components.

There are a variety of interconnections gleaned from this lab. Ties to mathe-
matics are obvious. But in addition, connections can be made to the technology
of “electronic” music and voice production, the visual arts, biology (e.g., how
does the structure and function of the vocal chords and heart relate to the na-
ture of the waves they produce?), and, most remarkably, to the limitations of
a certain type of knowledge through the Heisenberg Uncertainty Relation in
quantum physics (e.g., why is it that to be able to precisely locate a particle’s
position is to be unable to precisely locate its velocity?).

A list of Lectures and Labs appears below.

2.1 Recent syllabus for seeing through symmetry

Lectures

a Symmetry in Nature and in Art: An Overview

b Building Blocks for Symmetry: Points, Polygons, and Philosophy

c Tessellating Space: Constructions in the Plane, Diversions in Space

d Patterns in Flatland: Translations, Rotations, & Reflections . . . to Escher
and Fractals!

e Patterns of Motions in the Physical World: Sliding, Turning, Flipping,
and the Theory of Groups

f Rhyme and Reason: Patterns in Poetry and Music
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g Regularities in Waves: From Water through Sound . . . to Light and Chance!

h Symmetry through Space & Time: Projectiles and Planets

i Symmetry in Spacetime: Black Holes and the Cosmos

j Coordination in Chemical Structures, Crystals, and Life

k The Ambidextrous World of Light

l Symmetry Broken: Chaos . . . and the World of Elementary Particles

Labs

a Computer Drawing: Reflections, Rotations, and Designs

b Learning Algorithms through the Language of Logo

c Drawing & Hearing Patterns: Polygonal Symmetry and Fibonacci Tones

d Intricacies of Coloration: Coordinates, Translations, Groups, and Tes-
sellations

e Finding an Iterated Function System (IFS) for Fractal Images

f Patterns in Music: Sound and Sight

g Experiencing Motion In Space & Time

h Symmetry of Oscillations: Sine Waves and Sound

i Building Symmetry from Symmetry: The Fourier Spectrum

j Waviness: In Water and Light

k On Balls and Bombs: The Geometry of Projectile Motion∗

l Bounced, Flipped, Rotated & Decomposed Light: From Mirrors to Spec-
tra ∗

m “Slipping” Symmetry: Crystals and Chaos∗

∗ (in preparation)
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2.2 Prerequisites for the course

The labs are explicit enough so that there is almost no necessity for instructor
supervision, an important aspect of a single-instructor overseeing 24 students
in a lab that must normally be completed within 2 hours.

There is no algebra needed beyond solving one equation in one unknown. As
to geometry — none is expected beyond a small subset of concepts from high
school (such as the idea of“a point”, “a line”, and “an angle”). Furthermore,
there is always a brief review of the mathematical ideas when they are needed.
Concepts from science, no matter how elementary, are also carefully presented
so as to attempt to connect ideas to the student’s normal experience. As a
consequence, even some of the most profound concepts of mathematics (such
as “group” and “limit”) appear to have been understood. It seems — from class
discussions, exams, and term projects — that students are adequately prepared
for the course.

Museum Report
As a result of visiting several science museums in this country, in Canada,

and overseas, I have experienced the joys of seeing creative exhibits which
frequently employ a hands-on approach to science. Consequently, I ask my
students to partake in such an experience by submitting a rather open-ended
report of their experience. They are only asked to describe their observations,
explaining what they saw, and to make remarks critiquing (pro or con) exhibits
they found notable.

The report (to my surprise and joy, given its lack of structured requirements)
has been one of the most successful parts of the course. It is not focused on
symmetry per se, but on the scientific method (spoken about in class) of making
observations and drawing conclusions. Students, often going with their friends
in order to compare their experiences, are genuinely delighted to partake of the
exhibits and critically examine them.

Term Project
This is the capstone experience of the course. The student is advised to

start researching possible topics early in the course and invited to consult with
the instructor throughout the course. In order to maximize the value of this
experience, there are several stages spread out over half a semester. These
consist, in order, of a report on their Preliminary Idea, a Progress Report, a
Class Presentation, and the Final Report. The project must draw on a library
search of the literature and incorporate quantitative aspects of the course.

Over the years there have been some outstanding projects. One was by a
philosophy major on the application of symmetry principles to metaphysics.
Another, by a business major, found concepts of symmetry in the stock mar-
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ket. One student did an in-depth search for her video-supported report on “The
Symmetries in Synchronized Swimming”, a sport in which she has also par-
ticipated. Another student grew crystals and researched “Crystal Structure and
Symmetry”. A music student wrote an original composition to explain symme-
try in tonal elements using set theory and vectors; he titled his project “The 4
Arms of Chenrezi” because of the manner in which the “moods” of this Tibetan
Tantric deity relate to the moods of his composition. Then, going beyond the
course’s mostly 2-dimensional symmetries in geometry, another student did a
project titled “Polyhedra and Tessellations of Space”. Another example was
titled “Symmetry in Human Relationships”. This was a very creative and highly
interdisciplinary project, supported through the use of graphs and space-time
diagrams, which integrated (fairly successfully) ideas from geometry, wave the-
ory, and simple harmonic motion with ones from her own observations of the
manner in which humans interact.

In conclusion
Seeing Through Symmetry is designed to help students find pleasurable

values in the areas of science and technology through interactions among a
variety of disciplines. Because of this it gives students ample opportunity
for relating concepts of symmetry to their own disciplines. It thus enables
and motivates them also to gain understanding of technical areas outside their
major. Such understanding could then feed back to give them a better grasp
and appreciation of their own subject.

Even wider: Seeing Through Symmetry is intended to give students an un-
derstanding and an appreciation of the many important areas spawned by human
creativity. It is to show them that the World is of a piece. And it is to convey
the sense that where the human mind journeys there are no barriers.
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Abstract Representations of algebras on spaces with operators as basis vectors are dis-
cussed. These spaces are constructed using the properties of Clifford algebras.
Thus the bases for these representations have, apart from their usual symmetry
properties, an “internal” structure determined by the properties of a Clifford al-
gebra. The elements of the Clifford algebra serve both, as operators and basis
elements (“operator states”).

In ref.[7] it was shown how to construct representation spaces in terms of
the “operator states”, and moreover how to construct semisimple Lie algebras in
terms of the “operator states”. In the current article some of the basic concepts
of this approach are summarized in the introduction. Then the algebra su(4) ∼
so(6), based upon the Clifford algebra C4, is analyzed from the point of view of
“operator state” representations. Assuming space-time properties for su(4) ∼
so(6) physical conclusions are drawn, based upon the internal relationships of the
various subalgebras which are assigned physical meaning. The Dirac γ matrices
are shown to carry, as “operator states”, the 4-dimensional vector representation
of so(4). Differential operator realizations are obtained on these spaces, as well
as differential operator realizations for noncommuting variables on these spaces.
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Introduction

In references [1] and [2] the algebras su(4) ∼ so(6) and their symmetry
subchains were studied. In [8] boson and fermion realizations were given for
these algebras and their semisimple subalgebras, while in [7] “operator states”
were used to realize the familiar finite dimensional irreducible representations
for these algebras. That is, the elements of the algebra itself (operators) serve
as basis vectors (states) for the representations of algebras. The elements of the
algebras thus have a dual character: they are operators and states at the same
time. Which of the two properties of an “operator state” is to be used depends
on the particular situation, namely whether an element of the algebra serves in
its function as an operator, or whether it serves as a vector to be acted upon by an
operator. It is then clear that, since operator and basis vectors are all elements
of the algebra, no elements external to the algebra need to be made use of. For
example, the physical vacuum state itself becomes an element of the algebra,
and the vectors (states) will have an internal algebraic structure which may be
open to physical interpretation.

In [7] this approach was applied to the construction of irreducible finite
dimensional representations, to be referred to as irreps. It was demonstrated
in [7] that the operators - serving as basis vectors for an irrep of an algebra
- can be used to construct larger algebras, which then contain the original
algebra as subalgebra. For example, the basis (operator) states for the two
four-dimensional irreps [1000] and [1110] of su(4), being operators having
definite transformation properties with respect to su(4), can be used to construct
the algebra su(4). If the direct product of these operator states is formed,
4× 4∗ = 15+1, then the set of the 15 operator states of [2110] of su(4) which
is obtained in this manner, forms a basis for the selfadjoint 15-dimensional
representation of su(4). Moreover, the 15 operator states of this set of operators
are the 15 operators of the algebra su(4). It was also shown that the six operator
states which form bases for the irreps [1100] and [2211] of su(4) also transform
like the two irreps [100000] and [111110] of su(6). It follows then that the
operator states of the 35-dimensional irrep contained in 6 × 6∗ = 35 + 1 are
the elements of the algebra su(6).

Since the operator states have this dual property of being both, an operator
and a vector (state), the composition law (product) of two elements depends
upon whether a given element is considered to act as an operator, or to serve as
a vector. Moreover, the direct product of two elements of an algebra depends
upon whether these elements are applied in their role as operators or whether
they are considered to be vectors. Finally, the choice of a particular ideal may
modify a product of an operator acting upon an operator which serves as a state.
An operator, taken as a state, has to satisfy the conditions which are imposed
by certain ideals which define the space. A familiar example in physics is the
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condition imposed upon the vacuum state by annihilation operators, fi|0 >= 0.
This condition must hold for all the states of a representation. That is, every
state has to act upon the vacuum, and thus any operator Op, considered as a
state, becomes Op |0 >. Two simple examples will be given below in order to
briefly demonstrate the concept of the operator state method by means of su(2)
as an example.

Before the examples can be discussed it is first necessary to define, and list,
the various products (and maps) used in [7] and in this article:

Let a, b, c, d denote elements of a Clifford algebra C. The products (maps)
used are

(a) the associative multiplication law · of two operators a · b = ab

(b) the Clifford algebra product (1/2)(ab + ba) = {a, b}+

(c) the commutator (ab − ba) = [a, b]

(d) the direct product (a × b) = (a1b2)

(e) a product ◦ (map) (F+ × F ) × (F+ × F ) → F+ × F ,

((a × b) , (c × d)) → (a × b) ◦ (c × d) = (a(bc) × d) = (a × (bc)d) ,

a(bc) = a · (b · c) the associative multiplication law (a), and

(a × b), (c × d), (a(bc) × d) elements of F+ × F

with a, c elements of F+ and b, d elements of F .
For this map it holds that either

(bc) = 0 , or (bc) = p1p2

and
f+

i · p1p2 = f+
i , p1p2 · fi = fi

For the definition of p1p2 see further below.

(f1) a “derivation law” on F+ × F+, a, c, d elements of F+, b an element of
F

(ab) · (c × d) = ((ab)c × d) + (c × (ab)d)

(f2) a “commutator” on F+ ×F , a, c elements of F+ and b, d elements of F :

(ab) · (c × d) = ((ab)c × d) + (c × d(−ab))

Applying to (f) the map,
× → · (dot)
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the multiplication laws (f) go over into the derivation law (an operator acting
upon a direct product state) and the commutator respectively.

(g) independent direct product spaces (“independent particles”):

(a × b)(c × d) = (ac × bd), or

(a1b2)(c1d2) = (a1c1 × b2d2)

The spaces F+ and F , referred to above, are quotient spaces of the Clifford
algebra C4 with respect to certain left and right sided ideals. Again a brief
summary will be given here, for details see [7].

Consider the set of four elements

{f1, f+
1 , f2, f+

2 }

which satisfy the anticommutation rules

(1/2)({f+
i , fk}+ = δik1 , {fi, fk}+ = 0 , {f+

i , f+
k }+ = 0 .

That is, these operators satisfy Fermi particle statistics, f+
i f+

i = 0, andf+
i f+

j =
−f+

j f+
i , for i not j. (Later on it will be convenient to absorb a square root 2

into the definition of the f ’s).
These four elements generate the 16-dimensional Clifford algebra C4 by

forming all possible products with respect to the associative multiplication law
(a). This algebra is obviously closed with respect to the associative multiplica-
tion law (a), and thus also with respect to the commutator (c). In fact, the space
C4, with respect to the commutator (c), is the Lie algebra u(4). For details see
[7].

Defining the two elements

pi = 1 − f+
i fi , pipi = pi , i = 1, 2

the operator p1p2 has the property of a vacuum state,

fk · p1p2 = 0 , f+
i · p1p2 = f+

i ,

p1p2 · fk = fk , p1p2 · f+
i = 0 .

and thus the “vacuum operator state” p1p2 is defined within the algebra C4

itself.
The two sets

{p1, f+
1 } , {p2, f+

2 }

and
{p1, f1} , {p2, f2}
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generate the two sets

F+ = {p1, f+
1 } · {p2, f+

2 } = {p1p2 , f+
1 p2 , p1f

+
2 , f+

1 f+
2 },

and
F = {p1, f1} · {p2, f2} = {p1p2, f1p2 , p1f2 , f2f1}

The sets F+ and F in turn generate the 16 dimensional Clifford algebra C4 and
u(4)in two ways

(1) F+ · F = C4 ∼ u(4), with the associative multiplication law (a) for the
product elements ab ·cd in F+ ·F , with a · b = ab an element of F+, and
c · d = cd an element of F . The commutator of the elements of F+ · F
closes to u(4).

Or, by using the direct product basis,

(2) F+ × F = C4 ∼ u(4), with the multiplication law (e)

(ab × cd) ◦ (ef × gh) = (ab(cd · ef) × gh)

for the elements (ab× cd) and (ef × gh) of F+ × F , with ab and ef in
F+ and cd and gh in F .

The commutator for the elements of F+ × F closes with respect to the
multiplication law (e) to the algebra u(4).

Case (2) goes over into case (1) by means of the map

× −→ ·
F+ × F −→ F+ · F

multiplication (e) −→ multiplication (a)

Two simple example will serve to illustrate some of the comments made
above:
The two operators

{1, f+1} (= {p1 , f+} · 1)
with f · 1 = 0 , (condition on representation space,

generates left ideal)

and with f2 = 0 , ff+ + f+f = 1 (algebraic properties)

form a basis for a two-dimensional spin representation for su(2) with generators

{s+ =
1√
2
f+ , s− =

1√
2
f , s0 = f+f − 1/2}

[s0, s+] = s+ , [s0, s−] = −s− , [s+, s−] = s0
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One obtains

s+ · 1 =
1√
2
f+ · 1 =

1√
2
f+1,

s+ · f+1 =
1√
2
f+ · f+1 = 0 , from algebraic property (f+)2 = 0

s− · f+1 =
1√
2
f · f+1 =

1√
2
(−f+f + 1)1 =

1√
2
1

with f · 1 = 0 , (defining the space)

s− · 1 =
1√
2
f · 1 = 0 , with f · 1 = 0 ,

s0 · 1 = (f+f−1/2) · 1 = −(1/2)1 , with f · 1 = 0 ,

s0 · f+1 = (f+f − 1/2) · f+1 = −(1/2)1 , with f · 1 = 0 , (f+)2 = 0

In these equations an element of the algebra acts, as operator, upon another
element of the algebra, which serves as a basis vector, and maps this basis
vector upon another operator which serves as a basis vector. The operators
which serve as basis vectors however must satisfy the conditions which define
the vector space. That is, the defining relations for the vector space must be
applied to them. Therefore the action of an operator A upon an operator B, AB,
can be different from the action of the the same two operators if B serves as a
vector (the operator which serves as a vector may be mapped into an invariant
subspace, and therefore to zero via the relationship which defines the ideal).

A second simple example is the following. The four operators of F+ form
a basis for an the 3 + 1-dimensional representations of su(2), while the four
operators of F form a basis of (in this case equivalent) 3 + 1 dimensional
representation. The bases for the 3-dimensional irreps are obtained from the
direct product of two spin representations of su(2),

{1, f+1} × {1, f+1}
{1, 1f} × {1, 1f} ,

The bases for the 3-dimensional irreps are given by (the operator 1 is now
suppressed where the context is clear)

{f+ × f+,
1√
2
(f+ × 1 + 1 × f+), (1 × 1)}, f · 1 = 0,

{f × f,
1√
2
(f × 1 + 1 × f), (1 × 1)}, 1 · f+ = 0
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Using the multiplication law (f1) one obtains

s+ · (f+ × f+) = (
1√
2
f+ · f+) × f+ + f+ × (

1√
2
f+ · f+) × f+ = 0,

s− · (f+ × f+) = (
1√
2
f · f+) × f+ + f+ × (

1√
2
f · f+) × f+ =

=
1√
2
((−f+f + 1) × f+ + f+ × f+ × (−f+f + 1)) =

=
1√
2
(f+ × 1 + 1 × f+)

s− · 1√
2
(f+ × 1 + 1 × f+) = (1 × 1)

etc.

1. Space-Time Symmetries

In reference [1] the algebra su(4) was studied in view of a possible micro-
scopic picture for the su(6) Interacting Boson Model of the Nucleus (IBM). In
this article the algebra su(4) is studied in view of applications to space-time
symmetries. The methods used in [7] will be applied in this article. In particular
representations of su(4) and its subalgebras in terms of algebraic states will be
discussed.

There are two su(4) symmetry chains which contain the orbital angular
momentum subalgebra so(3)l. These are (see [8])

so(3)l × so(3)T

� �
su(4) so(3)l

� �
so(5) so(4)

(1)

For these chains the following algebraic state representations will be ob-
tained:
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su(4) : [1000] × [1110] = [2110] + [1111]
4 × 4 = 15 + 1

so(5) : (1/2, 1/2) × (1/2, 1/2) = ((11) + (10)) + (00)
4 × 4 = 10 + 5 + 1

so(4) ∼ so(3)S × so(3)Q :
(1/2, 1/2) × (1/2, 1/2) =
= (((11) + (1 − 1) + (10)V ) + ((10)V + (00))) + (00)

4 × 4 = ((4 + 4 + 3) + (3 + 1)) + 1

so(3)l × so(3)T :
(1; 0) × (1; 0) = (1; 1) + (1 × 0) + (0; 1) + (0; 0)

(3 + 1) × (3 + 1) = (3 × 3) + (3 × 1) + (1 × 3) + 1

so(3)l :
(1 + 0) × (1 + 0) = ((1 + 1 + (1 + 0)V ) + ((1 + 0)V + 0)) + 0
(3 + 1) × (3 + 1) = ((3 + 3 + (3 + 1)) + ((3 + 1) + 1) + 1

(2)

First the representations will be found which transform according to the chain

su(4) −→ so(5) −→ so(4) −→ so(3)l

The operators of the so(5) subalgebra of su(4) ∼ so(6) are

so(5) = (H ′
1 = f+

1 f1 − 1/2, H ′
2 = f+

2 f2 − 1/2,

E(−11) = E(−110) = f+
2 f1,

E(−10) =
1√
2
(E(−101) + E(−10 − 1)) =

1√
2
f1,

E(0 − 1) =
1√
2
(E(0 − 11) + E(0 − 1 − 1)) =

1√
2
f2,

E(−1 − 1) = E(−1 − 10) = f2f1,

E(1 − 1) = E(1 − 10) = f1 + f2,

E(10) =
1√
2
(E(10 − 1) + E(101))

= f+
1 , E(11) = E(110) = f+

1 f+
2 ,

E(01) =
1√
2
(E(01 − 1) + E(011)) =

1√
2
f+
2 ) (3)
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These operators act upon the product states of F+ × F as

(Op×)a × b = ((Op a) × b − a × (b Op)) (4)

It was shown in [7] that the direct product operator state f+
1 f+

2 × p1p2 belongs
to su(4) weight (100−1), and so(5) weight (110), eq.(3.6) and eq.(3.7) of ref.
[7]. In fact, this state is an so(5) extremal state with highest so(5) weight (11).
Acting upon this state with the so(5) operators one obtains

H×
1 (f1 + f+

2 × p1p2) = (f1 + f1 − 1/2)×(f+
1 f2 + ×p1p2)

= 1(f+
1 f+

2 × p1p2)
H×

2 (f+
1 f+

2 × p1p2) = (f+
2 f2 − 1/2) × (f+

1 f+
2 × p1p2)

= 1(f+
1 f+

2 × p1p2)
E(1 − 1)×(f+

1 f+
2 × p1p2) = (f+

1 f2) × (f+
1 f+

2 × p1p2) = 0
E(10)×(f+

1 f+
2 × p1p2) = ((1/2)f+

1 ) × (f+
1 f+

2 × p1p2) = 0
E(11)×(f+

1 f+
2 × p1p2) = (f+

1 f+
2 ) × (f+

1 f+
2 × p1p2) = 0

This shows that the operator state f+
1 f+

2 × p1p2 belongs indeed to the highest
so(5) weight (1, 1). Acting upon this state with the lowering operator E(−10)×
of so(5) one obtains

F+ × F −→ F+F

E(−10)×(f+
1 f+

2 × p1p2)

=
1√
2
(f+

2 p1 × p1p2 − f+
1 f+

2 × p2f1) −→
1√
2
f+
2 (5)

The arrow indicates the map from the direct product onto the space of the
Clifford algebra, as introduced in [7].

The state given by eq.(5) has so(5) weight (01). Upon restriction of so(5) to
so(4) the weight remains the same, while the state becomes extremal. In fact,
this state generates one of the two four-vector representations of so(4) which
are contained in the direct product [1000] × [1110].

Making use of the so(4) operators

so(4) = (H ′
1 = f+

1 f1 − 1/2, H ′
2 = f+

2 f2 − 1/2,

E(−11) = f+
2 f1, E(−1 − 1) = f2f1,

E(1 − 1) = f+
1 f2, E(11) = f+

1 f+
2 ) (6)

the states of the four-vector representation V (10) of so(4) are obtained as
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1√
2
f+
2 p1 × p1p2 − f+

1 f+
2 × f1p2);

1√
2
f+
2 ; (01)

�

1√
2
f+
1 p2 × p1p2 + f+

1 f+
2 × f2p1);

1√
2
f+
1 ; (10)

�

�

1√
2
− f+

1 p2 × f+
2 f+

1 p1p2 × f2p1);

1√
2
f2; (0 − 1)

�
(7)

1√
2
(f+

2 p1 × f2f1 + p1p2 × f1p2);

1√
2
f1; (−10)

The calculation of the states, as given above for a × b ∈ F+ × F , could have
been carried out on the space F+F ∼ CA, by using the commutator [Op, ab]
for the states ab ∈ F+F .

The state
1√
2
(f+

1 p2 × p1p2 − f+
1 f+

2 × p1f2) also belongs to so(4) weight

(10), and is orthogonal to the state
1√
2
(f+

1 p2 × p1p2 + f+
1 f2 + ×p1f2). Thus

this state generates a second, equivalent four-vector representation of so(4).
On the space F+F ∼ CA this state becomes

1√
2
(f+

1 p2 − f+
1 f+

2 f2) =
1√
2
(f+

1 e2) (8)

The four operator states which span the representation Ve(10) are, on CA,
obtained as

Ve(10) = (
1√
2
f+
1 e2,

1√
2
f+
2 e1,

1√
2
f2e1,

1√
2
f1e2)

so(4) weights: (10) (01) (0 − 1) (−10)
(9)

The basis (operator) states for the representation spaces V (10) and Ve(10)
can be represented as operators acting on the space F+. Acting on F+ yields
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the matrix representations

f+
1 = 0 0 0 0

1 0 0 0
0 0 0 0
0 0 1 0

f+
2 = 0 0 0 0

0 0 0 0
1 0 0 0
0 −1 0 0

f1 = 0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

f2 = 0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

(10)

f+
1 e2 = 0 0 0 0

1 0 0 0
0 0 0 0
0 0 −1 0

f+
2 e1 = 0 0 0 0

0 0 0 0
1 0 0 0
0 1 0 0

f1e2 = 0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

f2e1 = 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

(11)

The bases for the spaces V (10) and Ve(10) can be re-expressed in terms
of the γ matrices. That implies that the γ matrices form bases for the spaces
V (10) and Ve(10), a fact which will be made use of later on. One obtains

V (10) = (
1√
2
f+
1 ,

1√
2
f+
2 ,

1√
2
f2 ,

1√
2
f1)

so(4) weights

(10) (01) (0 − 1) (−10)
∼ (γ1 = f+

1 + f1, γ2 = f+
2 f2, γ3 = i(f+

1 − f1), γ4 = f+
2 − f2)

γ2
i = 1, i = 1, 2, 3, γ2

4 = −1, γiγj = −γiγj

(12)
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where the γ-matrices represent a Cartesian basis for the space V (10). Moreover,
for the second four-vector representation one obtains

Ve(10) = (
1√
2
f+
1 e2,

1√
2
f+
2 e1, − 1√

2
f2e1,

1√
2
f1e2)

so(4) weights : (10) (01) (0 − 1) (−10)
∼ (γ1e2, γ2e1, γ3e2, γ4e1), e2

i = 1
(13)

The spaces V (10) and Ve(10), over the reals R, carry the four dimensional
(defining) vector representation of so(4). On the other hand the subset of
real unitary (i.e. orthogonal) matrices of su(4) forms the subgroup so(4) of
su(4). Under restriction of su(4) to its subgroup so(4) the two inequivalent
four dimensional representations F+ = [1000] and F = [1110] of su(4) go
over into the spin representation (1/2, 1/2) of so(4).

The six dimensional (real unitary) representation [1100] of su(4) ∼ so(6)
is the defining representation of so(6). With respect to the symmetry chain
su(4) ∼ so(so6) → so(5) → so(4) the representation [1100] decomposes as
follows,

su(4) so(5) so(4)
[1100] → (1, 0) + (0, 0) → ((1, 0) + (0, 0)) + (0, 0)

6 → 5 + 1 (4V + 1) + 1
(14)

This is a consequence of general properties of representation theory. For the
special case of direct product operator states, as discussed in this article, the
branching of [1100] as shown in eq.(14), can be easily observed from eq.(4.10)
and eq.(4.11) of ref. [7]. But it is also observed that, for the case of the operator
states, the map from the direct product operator states F+ × F+ and F × F
onto the Clifford algebra states F+F ∼ CA, does not yield a representation
for su(4) ∼ so(6), so(5) or so(4). (Instead, the three surviving states span
the representation space for the two three dimensional representations of the
subalgebra su(3) of su(4) ([1100] = [100] + [110] of su(3) → [100], [110]
of su(3)). This implies that for a single species of fermions there exists no
six dimensional representation for so(6). There exists however, for a single
species of fermions, a five dimensional representation for so(5), as well as
two (equivalent) four vector representations V (10) and Ve(10) of so(4). These
representations are contained in the 15-dimensional (real orthogonal) represen-
tation [2110] of su(4) ∼ so(6).

The representation [2110] of su(4) contains in addition to the two so(4)
four-vector representations the representations (1, 1), (1,−1) and (0, 0). The
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basis operator states for these representations are obtained as

F+ × F

→ F+F

|(11), (11) >= f+
1 f+

2 × p1p2

→ f+
1 f+

2 =
√

2Q+

|(11), (00) >=
1√
2
(p1p2 × p1p2 + f+

1 f+
2 × f1f2)

→ 1√
2
(p1 + p2 − 1) = −

√
2Q3

|(11), (1 − 1) >= p1p2 × f1f2

→ f1f2 = −
√

2Q−
|(1 − 1)(1 − 1) >= −f+

1 p2 × f2p1

→ −f+
1 p2 = −

√
2S+

|(1 − 1)(00) >=
1√
2
(−f+

2 p1 × f2p1 + f+
1 p2 × f1p2)

→ 1√
2
(f+

1 f1 − f+
2 f2) =

√
2S3

|(1 − 1)(1 − 1) >= −f+
2 p1 × f1p2

→ f+
2 f1 =

√
2S−

|(00)(00) >= (1/2)(p1p2 × p1p2 + f+
2 p1 × f2p1 +

− f+
1 p2 × f1p2 + f+

1 f+
2 × f1f2)

→ (1/2)e1 (15)

The subalgebra so(3)l of so(4) is of particular importance, since in space-
time it corresponds to orbital angular momentum. Its embedding in the sym-
metry chain is given by

so(3)l = (l0 = f+
1 f1 − 1/2, l+ =

1√
2
f+
1 γ2, l− =

1√
2
γ2f1) (16)

With respect to so(3)l the so(4) four vector representation V (10) decom-
poses into the representations l = 1 and l = 0. The basis states for these two
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so(3)l representations are obtained as

|l = 1, m = 1 >=
1√
2
(f+

1 p2 × p1p2 + f+
1 f+

2 × f2p1)

→ 1√
2
f+
1

|l = 1, m = 0 >= (1/2)(f+
2 p1 × p1p2 + f+

1 p2 × f1f2

+ p1p2 × f2p1 − f+
1 f+

2 × f1p2)
→ (1/2)(f+

2 + f2)

|l = 1, m = −1 >=
1√
2
(−f+

2 p1 × f1f2 + p1p2 × f1p2)

→ 1√
2
f1

and

|l = 0, m = 0 >= (1/2)(−f+
2 p1 × p1p2 − f+

1 p2 × f1f2

+ p1p2 × f2p1 + f+
1 f+

2 × f1p2)
→ −(1/2)(f+

2 − f2) (17)

Next, the representations will be determined which transform according to
the chain

su(4) ∼ so(6) → so(3)l × so(3)T → so(3)l

The algebra so(3)l × so(3)T is given as

so(3)l × so(3)T = (l0 = f+
1 f1 − 1/2, l+ =

1√
2
f+
1 γ2, l− =

1√
2
γ2f1,

T0 = (1/2)e1e2, T+ =
1√
2
(f+

2 f+
1 f1 − f2p1) ,

T− =
1√
2
(f2f

+
1 f1 − f+

2 p1)) (18)

The basis states of the representation [2110] are obtained as:

l = 1, T = 1 : l0 = 1, 0 −1

T0 = 1 −f+
1 f+

2 × f2p1,
1√
2
(−p1p2 × f2p1 + f+

1 f+
2 × f1p2), p1p2 × f1p2

−f+
1 f+

2 f2 −(f2p1 + f+
2 f+

1 f1) f1p2

|11; 11 > |10; 11 > |1 − 1; 11 >

T0 = 0 1√
2
(f+

1 p2 × f2p1 − f+
1 f+

2 × p1p2),

−f+
1 (f+

2 − f+
2 )

|11; 10 >
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T0 = 0 (1/2)(−f+
1 p2 × f1p2 + f+

2 p1 × f2p1

−p1p2 × p1p2 − f+
1 f+

2 × f1f2)
−e2

|10; 10 >

T0 = 0 − 1√
2
(f+

2 p1 × f1p2 + p1p2 × f1f2)

f1(f
+
2 − f+

2 )
|1 − 1; 10 >

T0 = −1 f+
1 p2 × p1p2

1√
2
(f+

2 p1 × p1p2 + f+
1 p2 × f1f2) −f+

2 p1 × f1f2

f+
1 p2 f+

2 p1 × f2f
+
1 f1 −f+

2 f1f2

|11; 1 − 1 > |10; 1 − 1 > |1 − 1; 1 − 1 >

(19)

l = 1, T = 0 :

1√
2
(f+

1 p2 × f2p1 + f+
1 f+

2 × p1p2)

f+
1 (f+

2 + f2)
|11; 00 >

(1/2)(f+
2 p1 × f2p1 − f+

1 p2 × f1p2

+p1p2 × p1p2 − f+
1 f+

2 × f2f1)
(1/2)e1

|10; 00 >

1√
2
(p1p2 × f1f2 − f+

2 p1 × f1p2)

f1(f
+
2 + f2)

|1 − 1; 00 >

(20)

l = 0, T = 1 :

T0 = 1
1√
2
(−f+

1 f+
2 × f1p2 − p1p2 × f2p1)

f+
2 f+

1 f1 − f2p1 = 2T+

|00; 11 >

T0 = 0 −(1/2)(f+
1 p2 × f1p2 + f+

2 p1 × f2p1

−p1p2 × p1p2 − f+
1 f+

2 × f1f2)
(1/2)e1e2 = T0

|00; 10 >

T0 = −1 − 1√
2
(f+

2 p1 × p1p2 − f+
1 p2 × f1f2)

−f+
2 p1 + f2f

+
1 f1 = 2T−

|00; 1 − 1 >

(21)
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A change of basis to spherical l states and Cartesian T states yields the three
T = 1 triplets which have good angular momentum l = 1, l0 = 1, l0 = 0 and
l0 = −1. These states are

F+F

|11; 11 > −|11; 1 − 1 > −f+
1 ∈ V (10)

|11; 10 > −f+
1 (f+

2 − f2) = −f+
1 γ4

|11; 11 > +|11; 1 − 1 > f+
1 e2 ∈ Ve(10)

|10; 11 > −|10; 1 − 1 > −(f+
2 + f2) = −γ2 ∈ V (10)

|10; 10 > −e2

|10; 11 > +|10; 1 − 1 > (f+
2 − f2)e1 = γ4e1 ∈ Ve(10)

|1 − 1; 11 > −|1 − 1; 1 − 1 > f1 ∈ V (10)
|1 − 1; 10 > f1(f+

2 − f2) = f1γ4

|1 − 1; 11 > +|1 − 1; 1 − 1 > f1e2 ∈ Ve(10)

l = 0, T = 1 :
|00; 11 > −|00; 1 − 1 > (f+

2 − f2) = γ4 ∈ V (10)
|00; 00 > −e1e2

|00; 11 > +|00; 1 − 1 > −(f+
2 + f2)e1 = −γ2e1Ve(10)

l = 1, T = 0 :
|11; 00 > f+

1 (f+
2 + f2) = f+

1 γ2 =
√

2l+
|10; 00 > e1 = 2l0
|1 − 1; 00 > −f1(f+

2 + f2) = −f1γ2 =
√

2l−

(22)

In eq.(22) the l-states are given as spherical states, while theT -states are given
in Cartesian states. The basis states for the two four-vector representations
V (10) and Ve(10) are easily identified. Moreover it is seen that the so(3)l

singlet state γ4 = |l = 0;m = 0 > of the basis V (10), eq.(12), transforms like
a T = 1 triplet state.

At the level of the subalgebras so(4), so(5) and so(3)l of so(6) the two rep-
resentations F+ = [1000] and F = [1110] become equivalent. The following
equivalence relations hold for these algebras

f+
1 f+

2 ∼ p1p2, f+
1 p2 ∼ f2p1, f+

2 p1 ∼ −f1p2, p1p2 ∼ f1f2

φ1 ∼ φ∗
4, φ2 ∼ −φ∗

3, φ3 ∼ −φ2 + ∗, φ4 ∼ φ∗
1

(23)

Thus one can, at the so(5) level, substitute in the representation [1100] of su(4)
the states F for the second F+ of the pair F+ ×F+ (which will then no longer
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be a representation of su(4)). One obtains, with the states characterized by
| so(6); so(3)l, so(3)T ; l0, T0 >,

F+ × F

→ F+F so(3)l

|[1100]; 10; 10 >=
1√
2
(φ1φ2 − φ2φ1)

=
1√
2
(f+

1 f+
2 × (−f2p1) − f+

1 p2 × p1p2),

→ − 1√
2
f+
1 , |l = 1, m = 1 >

|[1100]; 10; 00 >= (1/2)(φ4φ2 − φ2φ4 + φ1φ3 − φ3φ1)
= (1/2)(p1p2 × (−f2p1) − f+

1 p2 × f1f2

+ f+
1 f+

2 × f1p2 − f+
2 p1 × p1p2),

→ − (1/2)(f+
2 + f2), |l = 1, m = 0 >

|[1100]; 10; 0 − 1 >=
1√
2
(φ4φ3 − φ3φ4)

=
1√
2
(p1p2 × f1p2 − f+

2 p1 × f1f2)

→ 1√
2
f1, |l = 1, m = 0 >

|[1100]; 01; 01 >= (1/2)(φ4φ2 − φ2φ4 − φ1φ3 + φ3φ1)
= (1/2)(p1p2 × (−f2p1) − f+

1 p2 × f1f2

− f+
1 f+

2 × f1p2 + f+
2 p1 × p1p2)

→ (1/2)(f+
2 − f2), |l = 0, m = 0 >

|[1100]; 01; 00 >= (1/2)(φ2φ3 − φ3φ2 + φ1φ4 − φ4φ1)
= (1/2)(f+

1 p2 × f1p2 − f+
2 p1 × (−f2p1)

+ f+
1 f+

2 × f1f2 − p1p2 × p1p2)
→ − (1/2)e1e2, |l = 0, m = 0 >

|[1100]; 01; 0 − 1 >= (1/2)(φ2φ3 − φ3φ2 − φ1φ4 + φ4φ1)
= (1/2)(f+

1 p2 × f1p2 − f+
2 p1 × (−f2p1)

− f+
1 f+

2 × f1f2 + p1p2 × p1p2)
→ (1/2)1, |l = 0, m = 0 > (24)



256 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

The same can be done via the so(3)l×so(3)T chain. The states of this chain
are labelled by | so(6); l T ; l0T0 >. One obtains, at the so(3)l level, the states
(not a so(3)l × so(3)T representation)

l = 1 :

so(3)l × so(3)T → F+F so(3)l

|[1100]; 10; 10 > → − 1√
2
f+
1 |l = 1, m = 1 >

|[1100]; 10; 00 > → − 1√
2
(f+

2 + f2) |l = 1, m = 0 >

|[0110]; 10; 0 − 1 > → 1√
2
f1 |l = 1, m = −1 >

and the three
singlet states l = 0 :

|[1100]; 01; 01 > → (1/2)((e1e2 + 1) |l = 0, m = 0 >

|[1100]; 01; 00 > → 1√
2
(f+

2 − f2) |l = 0, m = 0 >

|[1100]; 01; 0 − 1 > → (1/2)((e1e2 − 1) |l = 0, m = 0 >

(25)

Comparing the three singlet states of eq.(25) with the three singlet states
of eq.(24) one observes the mixing of the singlets. This is a consequence of
constructing these representations of so(3)l through two different chains.

2. Differential Operator Realizations on Space-Time

In the preceding section it was found that the Dirac γ matrices, eq.(12), and an
equivalent set of matrices, eq.(13), form basis elements for the four dimensional
vector representation spaces V (10) and Ve(10) of so(4). The spaces V (10) and
Ve(10) are assumed to be defined over the field of real numbers R and carry
real orthogonal representations of the group so(4). The general element of the
space V (10) is given by

γ = x1γ1 + x2γ2 + x3γ3 + x4γ4 ∈ V (10) , xi ∈ R (26)

Later on the variables xi will be considered as space-time coordinates.
Differential operator realizations on the spaces V (10) and Ve(10) can be

found for the elements of the algebras so(4), so(3)l, so(3)S, and so(3)Q . The
set of five elements

(γ1, γ2, γ3, γ4, γ5 = e1e2) (27)
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represents a basis for the 5-dimensional defining representation (10) of so(5),
while the linear span of the set of six elements

(γ1, γ2, γ3, γ4, γ5 = e1e2, γ6 = 1)
γiγj = γjγi, i, j = −1, 2, 3, 4, γ2

1 = γ2
2 = γ2

3 = 1 , γ2
4 = −1 ,

γ2
5 = γ2

6 = 1 , γiγ6 = γ6γi ,
(28)

carries the reducible representation (10) + (00) of so(5). All these basis el-
ements represent states obtained from a single fermion species, and none of
these spaces carries a representation of either su(4) or so(3)l × so(3)T as can
be seen from eq.(4.1) and eq.(4.2) of ref. [7]. It requires a minimum of two
fermion species to build the 6-dimensional irreducible representations for these
algebras.

Eq.(4.8) of ref. [7] gives the action of the operators with respect to the bases
eq.(26-28). This equation should read as

((Op1)a)b − a(b(Op1)) = [(Op1), ab]

which can be obtained by using the associativity of the multiplication law and
by adding and subtracting a(Op1b) = (aOp1)b.

The following differential operators are obtained:

so(3)l : l0 = f+
1 f1 − 1/2 =

i

2
γ1γ3 → l0 = i(x1∂2 − x2∂1)

l1 =
i

2
γ1γ2, → l1 = i(x2∂3 − x3∂2)

l2 =
i

2
γ3γ2, → l2 = i(x3∂1 − x1∂3)

l+ =
1√
2
f+
1 γ2 γ2, I− =

1√
2
γ2f1, [l1, l2] = −il3

(29)

so(4) : l0 = i(x1∂2 − x2∂1), l1 = i(x2∂3 − x3∂2),
l2 = i(x3∂1 − x1∂3),
k1 = (x1∂4 + x4∂1), k2 = (x2∂4 + x4∂2),
k3 = (x3∂4 + x4∂3))

(30)

su(2)S : S0 =
i

2
(x3∂1 − x1∂3) −

1
2
(x2∂4 + x4∂2) =

1
2
(l2 − k2)

S+ =
1

2
√

2
(il3 − l1 + k1 − ik3)

S− =
1

2
√

2
(−il3 − l1 + k1 + ik3)

(31)
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su(2)Q : Q0 =
i

2
(x3∂1 − x1∂3) −

1
2
(x2∂4 − x4∂2) =

1
2
(l2 + k2)

Q+ =
1

2
√

2
(il3 − l1 − k1 + ik3)

Q− =
1

2
√

2
(−il3 − l1 − k1 − ik3)

(32)

su(2)S+Q :
S0 + Q0 = i(x3∂1 − x1∂3) = l2

S+ + Q+ =
1√
2
((x2∂1 − x1∂2) + i(x3∂2 − x2∂3))

= − 1√
2
(l1 − il3)

S− + Q− =
1√
2
((x2∂1 − x1∂2) − i(x3∂2 − x2∂3))

= − 1√
2
(l1 + il3) (33)

l2 = S0 + Q0, l1 = − 1√
2
(S+ + Q+ + S− + Q−),

l3 = − 1√
2
(S+ + Q+ − S− − Q−) (34)

The differential operators obtained on the space V (10) show important re-
lationships among the subalgebras. These relationships hold for the states of
a single particle species, as listed by eq.(4.1) of ref. [7]. This analysis shows
that there is an intrinsic orbital angular momentum l which is related to spin S
and quasispin Q. But since the component of angular momentum l2 needs to
be diagonalized the eigenstates of S0 and Q0 are linear combinations of eigen-
states of l2. Spin S and quasispin Q are given as a combination of a rotation
and a pure Lorentz transformation.

3. Scalar Products

Let ρΛ denote a (infinitesimally) unitary representation of a simple Lie alge-
bra L on a (linear) space VΛ. Then

(X, Y )Λ = αΛ trace (X)+ρΛ(Y ) , X, Y ∈ L, (35)

defines a scalar product which is positive definite if L is compact. The factor
αΛ depends upon the representation Λ
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The 16-dimensional space of the CA carries a realization of the Lie algebra
u(4) ∼ su(4) + u(1). The elements of su(4) have, in any representation, the
property that their trace is zero, while u(1) is a multiple of the identity operator.
Thus the scalar product can be extended to the entire CA. From the associativity
of the CA multiplication law upon which the anticommutator is based, and the
property ρ(X)+ = ρ(X+) it follows that

(X, Y )CA = (1/4) trace ρCA(X+Y ) , X, Y ∈ CA ∼ su(4)+u(1) , (36)

defines a scalar product on the CA.
The scalar product can be used to introduce scalar products for algebraic

substructures of the CA on appropriately chosen subspaces. For example, the
fermion F+ forms such an algebraic substructure and can be represented on
its own space F+. The scalar product (X, Y )CA induces a scalar product
(X, Y )F+ on the space F+. One obtains

p1p2 · p1p2 = p1p2 , f+
1 p2 · p1p2 = f+

1 p2 , etc.
p1p2 · f+

1 p2 = 0 , f+
1 p2 · f+

1 p2 = 0 ,
p1p2 · f+

2 p1 = 0 , f+
1 p2 · f+

2 p1 = 0 ,
p1p2 · f+

1 f+
2 = 0 , f+

1 p2 · f+
1 f+

2 = 0 ,

(37)

where use has been made of the operator-state property of the elements involved,
insofar that the operator acts upon an operator, representing a state, and maps
this state upon another operator representing a state. It follows

ρ(p1p2) = 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ρ(f+
1 p2) = 0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0

ρ(f+
2 p1) = 0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0

ρ(f+
1 f+

2 ) = 0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

(38)

The orthonormality for the basis states of F+ is easily checked,

(p1p2, p1p2) = trace ρ(p1p2) = 1
(f+

1 p2, p1p2) = trace ρ(p2f1p1p2) = trace (0) = 0, etc.,

with αF+ = 1.
For any pair of elements of F+

Z = z1 p1p2 + z2f
+
1 p2 + z3f

+
2 p1 + z4f

+
1 f+

2

W = w1 p1p2 + w2f
+
1 p2 + w3f

+
2 p1 + w4f

+
1 f+

2 , zi, wi ∈ C,
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it holds that
(Z, W )F+ = z1w̄1 + z2w̄2 + z3w̄3 + z4w̄4 (39)

where the bar denotes complex conjugation.
Similarly one obtains a matrix realization of the γ matrices on the space F+

from the action of the γ upon the operator states F+,

γ1 = 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

γ2 = 0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

γ3 = 0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

γ4 = 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

γ5 = 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

γ6 = 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(40)
The γi, i = 1, 2, 3, 4, 5, 6, form a basis for the 5 + 1 dimensional (re-

ducible) representation of so(5). The general element is given as

X = x1γ1 + x2γ2 + x3γ3 + x4γ4 + x5γ5 + x6γ6, xi ∈ R. (41)

For the symmetric scalar product one obtains

(X, Y )so(5) = gijxiyj , gij = diag (111 − 11) ,

i, j = 1, 2, 3, 4, 5 xi, yj ∈ R. (42)

For the hermitian product (X, Y )H on the space eq.(40) one obtains,

(X, X)H = trace (ρ(X)+ρ(X)) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 , xi real

The five dimensional so(5) representation space (10), and the so(4) space
V (10), are obvious subspaces of the 5+1 dimensional representation of so(5).

Once a space-time interpretation is given for the real parameters xi at the
so(5), so(4), and so(3)l levels, the algebra chains, together with the rela-
tionships which hold between the scalar product at the various levels, will
yield a physical interpretation for the complex parameters at the su(4) and
so(3)l × so(3)T levels.

4. The One Fermion Species Dirac Equation

An operator

D = γ1∂1 + γ2∂2 + γ3∂3 + γ4∂4 + γ5∂5 + γ6∂6 = γi∂i (43)
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is introduced which acts upon plane wave functions of the type

exp(−i(x1p1 + x2p2 + x3p3 −
1
c
E1t1 −

1
c
E2t2 −

1
c
E3t3)) (44)

where the xi and pi denote ordinary space and linear momentum coordinates,
while the Ei and ti denote three different energies and three different times.
The operator D acting upon the wave function eq.(44) yields

γ1p1 + γ2p2 + γ3p3 − γ4
1
c
E1 − γ5

1
c
E2 − γ6

1
c
E3 (45)

An operator D′ is introduced (dual, if t2 and t3 are purely imaginary)

= γ1∂1 + γ2∂2 + γ3∂3 + γ4∂4 − γ5∂5 − γ6∂6 (46)

The operator D′ has the property that DD′ is obtained as

DD′ = ∂1∂1 + ∂2∂2 + ∂3∂3 − ∂4∂4 − (γ5∂5 + γ6∂6)2 (47)

and that the action of DD′ upon the plane wave function yields

p2
1 11 + p2

2 11 + p2
3 11 −

(
1
c

)2

E2
1 11 − (γ5

(
1
c

)2

E2
2 + γ6

(
1
c

)2

E2
3)2 (48)

Now, γ5 = e1e2 is an so(4) singlet while γ6 = 1 is an so(6), so(5) and
so(4) singlet. This implies, as it has been pointed out earlier, that the basis
given by eq.(28) does not carry a representation of so(6), while with respect to
so(5) it transforms like 5+1. And with respect to the Lorentz algebra so(4) the
basis vectors transform like (4 + 1) + 1. This then appears to indicate that the
so(6) symmetry is spontaneously broken, leading to the disappearance of the
time coordinate t3 and the appearance of the mass m0 in the form of the so(6)
invariant E3/c2 = m0. At the so(5) level the time t2 is still not broken, but it
is broken at the physical so(4) symmetry level, leading to the disappearance of
the time coordinate t2 and the appearance of the mass breaking term m∆ in the
form E2/c2 = m∆. Thus eq.(44), (45), and (48) go over into

exp(−i(x1p1 + x2p2 + x3p3 −
1
c
E1t1 − m∆ct2 − m0ct3)) (49)

γ1p1 + γ2p2 + γ3p3 − γ4
1
c
E1 − γ5m∆c − γ6m0c (50)

p2
1 11 + p2

2 11 + p2
3 11 −

(
1
c

)2

E2
1 11 − (γ5m∆c + γ6m0c)2 (51)

The operators eq.(50) and (51) act upon the spin representation F+. The
γ5 term has the effect to split the mass of the two 2-spinors (f+

1 p2, f+
2 p1) and
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(f+
1 f+

2 , p1p2) of F+, namely

γ5f
+
1 p2 = −f+

1 p2 , γ5f
+
1 f+

2 = f+
1 f+

2 ,

γ5f
+
2 p1 = −f+

2 p1 , γ5p1p2 = p1p2.
(52)

Thus, the pair f+
1 p2, f+

2 p1 has mass (m0 − m∆) and the pair f+
1 f+

2 , p1p2 has
mass (m0 + m∆).

It is apparent from the description given above that the 4-spinor is not made
up from a particle pair and its corresponding antiparticle pair. In fact, these two
pairs belong to the two inequivalent spin representations [1000] and [1110] of
su(4). However, at the so(5) and so(4) level, these two representations become
equivalent, and thus pairs may be substituted.

The two species representation F+ ×F+ contains the 6-dimensional repre-
sentation [1100] of su(4). By following the symmetry chains it is seen that this
representation transforms like the direct sum (l = 1, T = 0)+(l = 0, T = 1),
at the so(3)l × so(3)T level, and like l = 1, l = 0, l = 0, l = 0, at the so(3)l

level. The operator γ4 is found to transform like l = 0 singlet at this level. The
coordinate associated with γ4 is time. The operators γ5 and γ6 are also l = 0
singlets. Thus it appears that time should be associated with these two operators
too, in particular since mass, and mass breaking terms, can be introduced in
this manner. The three l = 0 singlets form then an so(3)T time triplet T = 1.

5. Differential Operator Realizations for Noncommuting
Variables

Non-commuting variables αi, i = 1, 2, are introduced which satisfy the
properties

α1α2 = −α2α1

∂1∂2 = −∂1∂2

∂iαk = −αk∂i + ∂ik i, k = 1, 2

(53)

where the symbol ∂k denotes the partial derivative with respect to the variable
αk. Note that we do not require

αiαk = −αkαi , i, k = 1, 2

∂i∂k = −∂k∂i , i, k = 1, 2
(54)

from which would follow αiαi = 0, ∂i∂i = 0, i = 1, 2.
On the quotient space of the Clifford algebra C4 with respect to the left ideal

lL
α0

1α
0
2 11 + α1

1α
0
2f

+
1 + α0

1α
1
2f

+
2 + α1

1α
1
2f

+
1 f+

2 (55)
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with respect to the variables αi, a differential operator realization is obtained
for the fermion creation and annihilation operators,

fi = ∂i , f+
i = αi(1 − αi∂i) (56)

These operators act upon the space spanned by the monomials in the non-
commuting variables

V (α1, α2) = (αm
1 αn

2 , m, n = 0, 1, 2, 3, . . .) (57)

With respect to the operators eq.(56) the subspace of eq.(57), spanned by the
elements

V ′ = (α0
1α

0
2, α1

1α
0
2, α0

1α
1
2, α1

1α
1
2) (58)

forms an invariant subspace. This is the case since the operators fi = ∂i

lower the power of the variables αi, while f+
i αi = 0. Thus, the action of the

operators fi = ∂i and f+
i = αi(1−αi∂i) on the invariant subspace is equivalent

to αiαi = 0, ∂i∂i = 0, i = 1, 2.
On the space V (α1, α2) the creation and annihilation operators satisfy the

following anticommutation relations,

{f+
i , fk} = ∂ik − 2α2

i∂i∂iδik

{f+
i , f+

k } = 2α4
i∂i∂iδik

{fi , fk} = 2∂i∂iδik

(59)

while, on the space V ′ the standard anticommutation relations are satisfied.
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FERMIONIC O(8) AND BOSONIC U(36)
SYMMETRY SCHEMES
FOR HEAVY N=Z NUCLEI

V.K.B. Kota
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Ahmedabad 380 009, India

Abstract Isoscalar (T = 0) plus isovector (T = 1) pairing hamiltonian in LS-coupling,
which is important for heavy N=Z nuclei, is solvable in terms of a O(8) algebra
for some special values of the mixing parameters that measures the competition
between T = 0 and T = 1 pairing. The O(8) algebra is generated, amongst
others, by the T = 0 and T = 1 pair creation and annihilation operators. Shell
model algebras, with only number conserving operators, that are complementary
to the O(8) ⊃ O(6) and O(8) ⊃ O(5) ⊗ SU(2) sub-algebras are discussed in
detail. Dyson boson mapping of the O(8) pairing hamiltonian and the addition
of quadrupole degrees of freedom give the interacting boson model with the s
(� = 0) and d (� = 2) bosons carrying spin-isospin degrees of freedom (ST )
= (10) ⊕ (01). Spectrum generating algebra for this model is U(36). The
U(6)⊗ U(6) and O(36) sub-algebras of U(36) are discussed with applications
to heavy N=Z nuclei.

Keywords: Shell model, Interacting boson model, Spectrum generating algebras, O(8) alge-
bra, U(36) algebra, N=Z nuclei, Wigner’s SU(4), proton drip-line.

1. Introduction

In the last few years study of the structure of heavy odd-odd N=Z nuclei
(with A ≥ 60) near the proton drip line has become an area of intense research
as these nuclei are expected to give new insights into neutron-proton (np) cor-
relations that are hitherto unknown. For example, four particle correlations
with possible Wigner’s spin-isospin SU(4) symmetry, possible formation of a
condensate of T = 0 np Cooper pairs, new structures in energy levels due to the
competition between isoscalar (T = 0) and isovector (T = 1) pairing, delay in
angular momentum alignments at high spins, an enhanced probability to form
an odd-odd nucleus by addition or removal of deuteron-like pair to even-even
nuclei etc. With the development of radioactive ion beam (RIB) facilities and
large detector arrays, there are now experimental results for the energy spectra
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of 62Ga, 66As, 70Br and 74Rb [1] with many isospin T = 0 and T = 1 levels
identified; in future it is expected that many spectroscopic details of these nuclei
will be available. Besides developing models based on shell model and mean-
field methods [2] for describing and predicting the spectroscopic properties of
these and other N=Z odd-odd nuclei in the A=60-100 region, there are also
attempts to develop algebraic models (symmetry schemes) [3-16] as they will
give analytical insights into the structure of these nuclei. Given the hamiltonian
to be a sum of isoscalar and isovector pairing hamiltonians in LS-coupling for
the nucleons, it is solvable in some special situations using O(8) algebra and its
subalgebras generated by the pair creation and destruction operators. This is
first shown by Flowers and Szpikowski [3] for the case with nucleons in a single

-shell. The ‘complementary’ (a notion introduced by Moshinsky [17]) number
conserving algebras, with several 
-orbits, corresponding to the O(8) algebras
is a topic of discussion in this article. Going beyond pairs coupled to angular
momentum 
12 = 0 and including nucleons pairs with 
12 = 2 and representing
the fermion pairs by ideal bosons, one has the spin-isospin invariant interact-
ing boson model (IBM-ST) [18, 19] with U(36) spectrum generating algebra
(SGA); it should be added that the algebraic (group theoretical) interacting bo-
son model (IBM-1 or just IBM) with scalar s(
 = 0) and quadrupole d(
 = 2)
bosons for quadrupole collective states was introduced in nuclear physics by
Arima and Iachello [19]. The U(36) model allows one to study not only pairing
but also (quadrupole) deformation effects in heavy N=Z nuclei. The purpose of
this article is to give an overview of the developments in the group theoretical
aspects of the fermionic O(8) and bosonic U(36) symmetry schemes. Sec-
tion 2 deals with the fermionic O(8) symmetry schemes. In Section 3 a brief
discussion of the Dyson boson mapping of the pairing hamiltonian is given.
The boson mappings allows one to go beyond the symmetry limits of the O(8)
model and also show the way to the bosonic U(36) model. Section 4 deals with
the bosonic U(36) symmetry limits. Finally Section 5 gives conclusions.

2. O(8) symmetry schemes

Let us begin with m nucleons in several 
 orbits 
1, 
2, . . ., then the single
nucleon states are a†

�m� ; 1
2
ms ; 1

2
mt

|0〉 and they are 4Ω in number where Ω =∑
i (2
i + 1). For a single 
-orbit, pair states are defined by two nucleon states

with orbital angular momentum zero (L = 0). Then by antisymmetry, two
nucleon pair states have spin(S) and isospin (T ) to be (ST ) = (10) ⊕ (01).
With this, the isoscalar and isovector pair creation operators D†

µ(
) and P †
µ(
)
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respectively are

D†
µ(
) =

√
2
 + 1

2

(
a†

�1
2

1
2

a†
�1
2

1
2

)0,1,0

0,µ,0

, P †
µ(
) =

√
2
 + 1

2

(
a†

�1
2

1
2

a†
�1
2

1
2

)0,0,1

0,0,µ
(1)

Note that we are using (L, S, T ) order in (1). For the multi-orbit case one can
define the generalized isoscalar and isovector pair operators D†

µ and P †
µ as linear

combinations of single orbit D†
µ(
)’s and P †

µ(
)’s respectively except for phase
factors,

D†
µ =

∑
�

β� D†
µ(
) , P †

µ =
∑

�

β� P †
µ(
) ; β� = +1 or − 1 (2)

Now it is possible to define the pairing hamiltonian in LS-coupling,

Hpairing = −(1 − x)
∑

µ

P †
µPµ − (1 + x)

∑
µ

D†
µDµ (3)

Note that Pµ = (P †
µ)† and

Pµ(
) = (Pµ(
))† = (−1)µ
√

(2
 + 1)/2 (ã�1
2

1
2
ã�1

2
1
2
)0,0,1
0,0,−µ

where ã is related to a by

a�m� ; 1
2
ms ; 1

2
mt

= (−1)�+1+m�−ms−mt ã�−m� ; 1
2
−ms ; 1

2
−mt

.

Similarly Dµ and Dµ(
) are defined. At this stage it is also necessary to de-
fine spin (S1

µ), isospin (T 1
µ), Gamow-Teller ((στ)1,1

µ,µ′) and number (n̂ or the
equivalent Q0) operators,

S1
µ =

∑
�

√
2
 + 1

(
a†

�1
2

1
2

ã�1
2

1
2

)0,1,0

0,µ,0

T 1
µ =

∑
�

√
2
 + 1

(
a†

�1
2

1
2

ã�1
2

1
2

)0,0,1

0,0,µ

(στ)1,1
µ,µ′ =

∑
�

√
2
 + 1

(
a†

�1
2

1
2

ã�1
2

1
2

)0,1,1

0,µ,µ′

n̂ = 2
∑

�

√
2
 + 1

(
a†

�1
2

1
2

ã�1
2

1
2

)0,0,0

0,0,0

, Q0 =
n̂

2
− Ω

(4)
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By evaluating the commutators it can be shown that the 28 operators P †
µ, Pµ,

D†
µ, Dµ, S1

µ, T 1
µ, (στ)1,1

µ,µ′ and Q0 generate the following algebras:

O(8) : P †
µ, Pµ, D†

µ, Dµ, S1
µ, T 1

µ, (στ)1,1
µ,µ′ , Q0

O(6) : S1
µ, T 1

µ, (στ)1,1
µ,µ′

OS(5) : D†
µ, Dµ, S1

µ, Q0

OT(5) : P †
µ, Pµ, T 1

µ, Q0

OS(3) : S1
µ

OT(3) : T 1
µ

(5)

The O(6) algebra in (5) is nothing but Wigner’s spin-isospin supermultiplet
SU(4) algebra; its significance will be discussed later. Note that OS(3) ∼
SUS(2), OT(3) ∼ SUT(2) and SU(4) ⊃ SUS(2) ⊗ SUT(2). Quadratic
Casimir operators of the groups in (5) are (besides S2 for OS(3) and T 2 for
OT(3)),

C2(O(8)) = 2

(∑
µ

P †
µPµ +

∑
µ

D†
µDµ

)
+ C2(O(6)) + Q0(Q0 − 6)

C2(O(6)) = S2 + T 2 + (στ) · (στ)
C2(OS(5)) = 2

∑
µ

D†
µDµ + S2 + Q0(Q0 − 3)

C2(OT(5)) = 2
∑

µ

P †
µPµ + T 2 + Q0(Q0 − 3)

(6)
In (6), the dot-product is defined by Ak · Bk = (−1)k

√
2k + 1(AkBk)0 and

similarly Ak1k2 · Bk1k2 is defined.
Firstly it is seen from (5) that the pairing hamiltonian (3), for any x, has O(8)

symmetry as it contains only the generators of O(8). Moreover, by examining
the quadratic Casimir invariants in (6), it is seen that the pairing hamiltonian
(3) is solvable in the situations x = 0, 1,−1 and the corresponding subalgebras
(group-subgroup chains) of O(8) are,

x = 0 : O(8) ⊃ O(6) ⊃ OS(3) ⊕ OT(3)
x = 1 : O(8) ⊃ [OS(5) ⊃ OS(3)] ⊗ OT(3) (7)

x = −1 : O(8) ⊃ [OT(5) ⊃ OT(3)] ⊗ OS(3)

All the group-subgroup chains in (7) have number non-conserving operators.
We will now consider these chains in more detail in terms of their “comple-
mentary” number conserving group chains.
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2.1 O(8) ⊃ O(6) ⊃ OS(3) ⊕ OT(3) chain and the
complementary U(4Ω) ⊃ [U(Ω) ⊃ O(Ω)] ⊗ SUST(4)
chain

In the (
1, 
2, . . .)m space, there is a U(4Ω) algebra generated by the opera-
tors

uL,S,T
µ�,µS ,µT

(
1, 
2) =
(

a†
�1

1
2

1
2

ã�2
1
2

1
2

)L,S,T

µ�,µS ,µT

(8)

and with respect to U(4Ω), all the m-nucleon states behave as the totally
antisymmetric irreducible representation (irrep) {1m}. With good (LST ),
U(4Ω) algebra can be decomposed into product of space U(Ω) and spin-isospin
SUST(4) algebras. With this, one has the group chain,

U(4Ω) ⊃ [U(Ω) ⊃ O(Ω) ⊃ OL(3)] ⊗ [OST(6) ⊃ OS(3) ⊕ OT(3)] (9)

Note that SUST(4) ∼ OST(6). Following the results in Appendix A and B
of [13] it is straight forward to write down the generators and the quadratic
Casimir operators (C2’s) of the groups in (9),

U(4Ω) : uL,S,T
µ�,µS ,µT

(
1, 
2)

U(Ω) : 2 uL,0,0
µ�,0,0(
1, 
2)

U(4) : XS,T =
∑

�

√
2
 + 1 u0,S,T

0,µS ,µT
(
, 
)

O(6) ∼ SU(4) : XS,T , (ST ) = (10), (01), (11)

O(Ω) : 2 uL=odd,0,0
µ�,0,0 (
, 
), V L

µ (
1, 
2) with 
1 > 
2 ;

V L
µ (
1, 
2) = 2

[
α(
1, 
2)(−1)�1+�2+L

] 1
2 ×{

uL,0,0
µ,0,0(
1, 
2) + α(
1, 
2)(−1)LuL,0,0

µ,0,0(
2, 
1)
} ,

|α(
1, 
2)|2 = 1, α(
1, 
2)α(
2, 
3) = −α(
1, 
3)

C2(U(Ω)) = 4
∑

�1,�2,L

(−1)�1+�2uL,0,0(
1, 
2) · uL,0,0(
2, 
1)

C2(O(Ω)) = 8
∑

�,L=odd

uL,0,0(
, 
) · uL,0,0(
, 
)

+
∑

�1>�2;L

V L(
1, 
2) · V L(
1, 
2)

C2(U(4)) =
∑
S,T

XS,T · XS,T (10)

It should be noted that O(Ω) is not unique and in the multi-orbit case there
are several O(Ω)’s as defined by distinct α(
1, 
2)’s in (10). Using (10), it can
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be proved that,

C2(U(Ω)) + C2(U(4)) = n̂(4 + Ω)
C2(U(4)) = C2(O(6)) + n̂2/4 (11)

C2(U(Ω)) − C2(O(Ω)) = 2

[∑
µ

P †
µPµ +

∑
µ

D†
µDµ

]
+ n̂

The third equality in (11) is most important and it is valid only when

β�1β�2 = −α(
1, 
2) , 
1 = 
2 (12)

The relations in (12) with β’s defining the pair operators in multi-orbit case (see
Eq. (2)) and α’s defining O(Ω) generators (see Eq. (10)), via C2(O(8)) given
in (6), connect O(8) with O(Ω). In fact using (6,11) it is seen that,

C2(O(8)) = −C2(O(Ω)) + Ω(Ω + 6) , (13)

∑
µ

P †
µPµ +

∑
µ

D†
µDµ =

1
2
{−C2(O(Ω)) − C2(O(6)) − Q0(Q0 − 6) + Ω(Ω + 6)} (14)

Thus, clearly the chain (9) is equivalent to the O(8) ⊃ O(6) ⊃ OS(3)⊕OT(3)
chain and it solves the pairing hamiltonian (3) for x = 0. One important result
that follows from (2,10,12) is that in the multi-orbit case, there are multiple
definitions of pair operators P and D as given by (2) and for each of these
definitions there is a unique O(Ω) as defined by (10,12). Multiple definitions
of pair operators is not possible in the single 
 case considered in [3, 4, 5]. In
all the previous studies involving several orbits, the choice β� = 1 is made
[4-6,8-11]. It can be shown that D†

µ =
∑

� β� D†
µ(
) and P †

µ =
∑

� γ� P †
µ(
)

with β� = γ� (except for the choice β�1 = γ�1 = 1), it is not possible to have
O(8) algebra. Thus O(8) will not allow for solving the isovector plus isoscalar
pairing hamiltonian with β’s different for the isoscalar and isovector parts.

In order to construct the spectra generated by the group chain (9), we will
now turn to the irreps of the groups in (9) and their reductions. Throughout this
review, we use Wybourne’s [20] notations{−−}, [−−−], 〈− − −〉 respectively
for denoting U(N), O(N) and Sp(N) irreps. Our starting point is {1m} irrep
of U(4Ω). Its reduction to U(Ω) irreps is simple as U(Ω) appears in the direct
product subgroup with other group being SU(4) ∼ O(6) (or U(4)). The U(4)
irreps {f} = {f1f2f3f4} uniquely define (by transposition) the U(Ω) irreps
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[20],

U(Ω) : {f̃} =
{

4f43f3−f42f2−f31f1−f2

}
;∑

i

fi = m, f1 ≥ f2 ≥ f3 ≥ f4 ≥ 0

O(6) : [P1, P2, P3] =[
f1 + f2 − f3 − f4

2
,
f1 − f2 + f3 − f4

2
,
f1 − f2 − f3 + f4

2

]
(15)

Analogous to the U(Ω) irreps, one can write the O(Ω) irreps by introducing
the quantum numbers v and [p1p2p3] as (see [3]),

O(Ω) : {µ̃} =
{
4µ43µ3−µ42µ2−µ31µ1−µ2

}
⇔ v, [p1, p2, p3]∑

i

µi = v, µ1 ≥ µ2 ≥ µ3 ≥ µ4 ≥ 0,

[p1, p2, p3] =[
µ1 + µ2 − µ3 − µ4

2
,
µ1 − µ2 + µ3 − µ4

2
,
µ1 − µ2 − µ3 + µ4

2

]
(16)

With {1m}U(4Ω) → {f̃}U(Ω) ⊗ [P1P2P3]OST (6), the important reduction that

is needed is {f̃}U(Ω) → v [p1p2p3] of O(Ω) (of course [P1P2P3] → (ST )
and v, [p1p2p3] → L are also needed). Before addressing this problem, let us
examine the matrix elements of the quadratic Casimir invariants. Using the
general results

〈C2(U(N))〉{F1F2,...} =
∑

i

Fi(Fi + N + 1 − 2i)

〈C2(O(N))〉[ω1ω2,...] =
∑

i

ωi(ωi + N − 2i)
(17)

it is seen that

〈C2(O(6))〉[P1P2P3] = P1(P1 + 4) + P2(P2 + 2) + P 2
3

〈C2(O(Ω))〉v,[p1p2p3] = v(Ω + 3 − v/4)
−

[
p1(p1 + 4) + p2(p2 + 2) + p2

3

]
⇒ 〈C2(O(8))〉v,[p1p2p3] = Q(Q + 6) −

[
p1(p1 + 4) + p2(p2 + 2) + p2

3

]
(18)

where Q = Ω − v/2. The last equality follows from (13). From (14,18) it
is clear that the states with v = 0 will be lowest in energy for the pairing
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hamiltonian (3) with x = 0. Therefore it is meaningful to consider v = 0 and
v = 2 states and workout the allowed OST(6) irreps. For {λ}U(Ω) → [η]O(Ω)
one has the rule [20]

{λ}U(Ω) =
∑

η

Γδηλ [η]O(Ω)

{δ} = {0}, {2}, {4}, {22}, {6}, {42}, {222}, . . .
(19)

In (19) Γδηλ is the multiplicity of {λ} in the reduction {δ} ⊗ {η} → {λ}.
The form of the U(Ω) irreps in (15) shows that in (19) the irreps {δ} must
be of the type {4r2s}. Then the corresponding U(4) irreps are of the type
{r + s, r + s, r, r} and the equivalent O(6) irreps are [P00], P = s. This
gives via (19) the allowed O(6) irreps for a given [p1p2p3] of O(Ω) to be
[P ]⊗ [p1p2p3], a result used in [7]. Applying this for the case with v = 0 (then,
[p1p2p3] = [0]) one has

m = 4k, v = 0 → [P ] , P = 0, 2, 4, . . . , 2k
m = 4k + 2, v = 0 → [P ] , P = 1, 3, . . . , 2k + 1 (20)

For a symmetric O(6) irrep, it is easy to write down the allowed (ST ) values,

P = S + T + 2r, r ≥ 0 (21)

Using (20) and (21) the spectrum can be constructed. The energies are given
by

〈Hpairing(x = 0)〉m,v=0,P,(ST) =
1
2
P (P + 4) +

m

4

(m

2
− 2Ω − 6

)
(22)

and they depend only on the supermultiplet quantum number P . It is seen from
Eqs. (21,22) that in the isospin space the spectrum is soft with P (P +4) spacing
for the P multiplets (this is like the O(6) limit of IBM [19] but in isospace). Note
that due to O(6) or Wigner’s SU(4), in the symmetry limit the ground states
exhibit four particle correlations, |m = 4k, GS 〉 = (D†.D†+P †.P †)k |0〉 for
m = 4k and |m = 4k + 2, GS 〉 = (D† ·D† + P † · P †)kP † |0〉 for isovector
and |m = 4k + 2, GS 〉 = (D†.D† + P †.P †)kD† |0〉 for isoscalar ground
states with m = 4k + 2.

For completeness let us consider the classification of v = 2 states. In this
case [µ̃] = [2] ⊕ [11] giving [p] = [p1p2p3] = [1] and [111] respectively. Then
(19) gives,

[p] = [1] : [p] = [111] :
{f̃} = {4r2s} ⊗ {2} ⇔ [s] ⊗ [1] {f̃} = {4r2s} ⊗ {11} ⇔ [s] ⊗ [111]
⇒ [P ] = [s + 1] ⊕ [s] ⊕ [s − 1] ⇒ [P ] = [s − 1, 1,−1] ⊕ [s, 1]

⊕[s + 1, 1, 1]
m = 4k : s = 1, 3, 5, . . . , 2k − 1 m = 4k : s = 1, 3, 5, . . . , 2k − 1
m = 4k + 2 : s = 0, 2, 4, . . . , 2k m = 4k + 2 : s = 0, 2, 4, . . . , 2k

(23)
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It should be pointed out that the methods for evaluating P † and D† matrix
elements in the symmetry defined basis are developed for the v = 0 case in [4]
and for v = 2 (using the so-called vector coherent states) in [7]. The v = 0
results are used extensively in numerical studies of the pairing hamiltonian (3)
for any strength x (with β� = 1) in [5, 6]. However the v = 2 formalism is not
yet applied in numerical studies but, as discussed ahead, is useful in the context
of IBM-ST.

2.2 O(8) ⊃ [OS(5) ⊃ OS(3)] ⊗ OT(3) chain and the
complementary U(4Ω) ⊃
[U(2Ω) ⊃ Sp(2Ω) ⊃ O(Ω) ⊗SUT(2)] ⊗SUS(2)
chain

In order to identify the number conserving group chain that is complementary
to O(8) ⊃ [OS(5) ⊃ OS(3)] ⊗ OT(3), obviously one has to start with the
U(2Ω) ⊗ SUS(2) subalgebra of U(4Ω) algebra. As U(2Ω) contains O(Ω) ⊗
SUT(2) as a subalgebra, for completing the group chain, one has to find the
subalgebras between these two algebras. It is easy to see that Sp(2Ω) is the
subalgebra one is looking for. Therefore the complementary group-subgroup
chain is,

U(4Ω) ⊃ [U(2Ω) ⊃ Sp(2Ω) ⊃ {[O(Ω) ⊃ OL(3)] ⊗ SUT(2)}] ⊗ SUS(2)
(24)

We will now establish this result.
The generators and the quadratic Casimir operators (C2’s) of the groups in

(24) are,

U(2Ω) :
√

2 uL,0,T
µ�,0,µT

(
1, 
2)

US(2) : Y S =
∑

�

√
2(2
 + 1) u0,S,0

0,µS ,0(
, 
)

Sp(2Ω) :
√

2 uL,0,T
µ�,0,µT

(
, 
), L + T = odd; V L,T
µ,µT

(
1, 
2), 
1 > 
2

V L,T
µ,µT (
1, 
2) =

√
2
[
α(
1, 
2)(−1)�1+�2+L+T

] 1
2 ×{

uL,0,T
µ,0,µT

(
1, 
2) + α(
1, 
2)(−1)L+TuL,0,T
µ,0,µT

(
2, 
1)
}

|α(
1, 
2)|2 = 1, α(
1, 
2)α(
2, 
3) = −α(
1, 
3)

C2(U(2Ω)) = 2
∑

�1,�2,L,T

(−1)�1+�2uL,0,T(
1, 
2) · uL,0,T(
2, 
1)

C2(Sp(2Ω)) = 4
∑

�,L+T=odd

uL,0,T(
, 
) · uL,0,T(
, 
)
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+
∑

�1>�2;L,T

V L,T(
1, 
2) · V L,T(
1, 
2)

C2(US(2)) =
∑
S

Y S · Y S

(25)

It should be noted that Sp(2Ω) is not unique in the multi-orbit case and just as
O(Ω), it is defined by distinct α(
1, 
2)’s in (25). Using (25), it can be proved
that,

C2(U(2Ω)) + C2(US(2)) = n̂(2 + 2Ω)
C2(US(2)) = 2S2 + n̂2/2

C2(U(2Ω)) − C2(Sp(2Ω)) = 4

[∑
µ

D†
µDµ

]
− n̂

(26)

The third equality in (26) is valid only when (12) is satisfied. Comparing (26)
with (6), it is seen that Sp(2Ω) in (24) is related to OS(5),

C2(OS(5)) = −1
2
C2(Sp(2Ω)) + Ω(Ω + 3) , (27)

2
∑

µ

D†
µDµ = −1

2
C2(Sp(2Ω)) − S2 − Q0(Q0 − 3) + Ω(Ω + 3) (28)

Thus, clearly the chain (24) is equivalent to the O(8) ⊃ [OS(5) ⊃ OS(3)] ⊗
OT(3) chain and it solves the pairing hamiltonian (3) for x = 1.

In order to construct the spectra generated by the group chain (24), we will
now turn to the irreps of the groups in (24) and their reductions. Just as before,
the starting point is {1m} irrep of U(4Ω). Its reduction to U(2Ω) irreps is
simple as U(2Ω) appears in the direct product subgroup with the other group
being SUS(2) (or US(2)). The U(2) irreps {f} = {f1f2} uniquely define (by
transposition) the U(2Ω) irreps,

U(2Ω) :
{

2f21f1−f2

}
; f1 + f2 = m, f1 ≥ f2 ≥ 0, S = (f1 − f2)/2

(29)
Now the Sp(2Ω) irreps can be written as,

Sp(2Ω) : 〈2µ11µ2〉 ; vS = 2µ1 + µ2 t =
µ2

2
(30)



O(8) and U(36) Symmetry Schemes 275

The vS and t (reduced isospin) quantum numbers are introduced by examining
the eigenvalue expression for C2(Sp(2Ω)),

〈C2(Sp(2Ω))〉〈λ1λ2...〉 =
∑

i

λi (λi + 2Ω + 2 − 2i)

⇒ 〈C2(Sp(2Ω))〉〈2
µ11µ2 〉 =

2
[
Ω(Ω + 3) −

(
Ω − vs

2

)(
Ω − vs

2
+ 3

)
− t(t + 1)

]
(31)

General rules for obtaining U(2Ω) ⊃ Sp(2Ω) and Sp(2Ω) ⊃ O(Ω)⊗SUT(2)
are given in [20]. Here we consider only the v = 0 states (note that v labels
O(Ω) irreps). Firstly, it is seen from the results given in [20] that in the reduction
Sp(2Ω) ⊃ O(Ω) ⊗ SUT(2), it is possible to get [0] irrep of O(Ω) only when
the Sp(2Ω) irreps are of the type 〈2r〉 (i.e. for the reduced isospin t = 0); note
that we are restricting to m even. For {λ}U(2Ω) → 〈µ〉Sp(2Ω) one has the rule
[20]

{λ}U(2Ω) =
∑

µ

Γβµλ 〈µ〉Sp(2Ω)

{β} = {0}, {12}, {14}, {22}, {16}, {2212}, {32}, . . .
(32)

From the form of U(2Ω) irreps in (29), it is clear that {β} in (32) must be of
the type {22α112α2}. As {µ} is {2r} type (see the discussion just above (32)),
the U(2Ω) irreps follow from {22α112α2} ⊗ {2r}. Now using (29) gives,

m −→ S = 0, 2, 4, . . . ,
m

2
S −→ vS = (m − 2S) − 4α ; α ≥ 0

(33)

Finally to obtain vS → [0]O(Ω)T the following procedure can be adopted: (i)
consider U(2Ω) ⊃ [U(Ω) ⊃ O(Ω)] ⊗ SUT(2) and S = 0 ⇔ {2λ}U(2Ω); (ii)
use the expansion{2λ} = {1λ}{1λ}−{1λ+1}{1λ−1}; (iii) reduce{1λ}U(2Ω) →
{f1f2}UT (2){f̃}U(Ω) = [T ]{f̃}U(Ω); (iv) apply (iii) to each part on the r.h.s of
the equation in (ii) and then symbolically,

{1λ}{1λ} − {1λ+1}{1λ−1} =∑
T1,T2

[
[T1]{f̃1}

]
⊗

[
[T2]{f̃2}

]
−

∑
T3,T4

[
[T3]{f̃3}

]
⊗

[
[T4]{f̃4}

]
(v) say{f̃1}⊗{f̃2}gives a{4r2s} type irrepx12 times (note that only{4r2s}U(Ω)

can give [0]O(Ω)) and similarly define x34 and then,

{2r}U(2Ω) ⇔ S = 0 −→
∑
T1,T2

(T1 × T2)x12 − (T3 × T4)x34 .
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(vi) use, from (33), the reduction S = 0 → vS = m, m − 4, . . . , 2 or 0.
Starting from m = 0, 2, 4 . . . and applying (i)-(vi), vS → [0]O(Ω)T is obtained
by successive subtraction. Then one can identify the rule,

vS → T =
(vS

2

)
− 2β ; β ≥ 0 (34)

Using Eqs. (33,34) we have m → SvST classification for v = 0 states and for
these v = 0 states

〈Hpairing(x = 1)〉m,S,vS ,T = −1
4

(m − vS) (4Ω + 6 − m − vS) + S(S + 1)
(35)

independent of T . For large Ω and a fixed S, the spacing between different
vS multiplets is constant giving vibrational spectrum (with isospin multiplets)
in the isospace and vS/2 can be viewed as the phonon number. Even phonon
number states appear for m = 4k and odd phonon states appear for m = 4k+2.
In the symmetry limit, the ground state for m = 4k is (D† · D†)k |0〉.

2.3 O(8) ⊃ [OT(5) ⊃ OT(3)] ⊗ OS(3) chain and the
complementary U(4Ω) ⊃
[U(2Ω) ⊃ Sp(2Ω) ⊃ O(Ω) ⊗ SUS(2)] ⊗SUT(2)
chain

All the results for the O(8) ⊃ [OT(5) ⊃ OT(3)] ⊗ OS(3) chain can be
obtained from Sect. 2.2 by simply interchanging S ⇔ T everywhere. For
example, for v = 0 the quantum numbers and the energy formula are (see also
[5]),

vT = 2S, 2S + 4, . . . , vT ≤ m; T =
m − vT

2
− 2α′ , α′ ≥ 0

〈Hpairing(x = −1)〉m,S,vT ,T =

−1
4

(m − vT) (4Ω + 6 − m − vT) + T (T + 1) (36)

Most significant result that follows from Eq. (36) is that in the symmetry limit
one obtains rotational spectra (for a fixed S and fixed vT ) in the isospin space.
The ground state for m = 4k is (P † · P †)k |0〉.

In summary, the symmetry chains (7) generate vibrations (x = 1), rotations
(x = −1) and soft (x = 0) spectra in isospace. For equal T = 0 and T = 1
strengths (x = 0) there is Wigner’s SU(4) symmetry. All these results are
valid for the O(Ω) irrep [0] (v = 0) which lies lowest in energy. Using masses
calculated from a mass model it is established recently that odd-odd N=Z nuclei
with A > 60 should exhibit signatures of SU(4) symmetry [21]. Similarly there
is also a search for vibrations in isospin space using experimental data for nuclei
around 56Ni [22].
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3. Dyson boson mapping

Intermediate to the full fermion description of N=Z nuclei in terms ofHpairing

and its extensions (for general x and/or non degenerate single particle energies
only numerical studies as carried out for example in [5, 6] are possible) and
IBM-ST boson model (discussed ahead in Sect.4) is the study using Dyson
boson mapping of the fermion H’s. The Dyson boson mapping is defined by

a†ia
†
j −→ B†

ij −
∑
k,l

B†
ikB

†
jlBkl

aiaj −→ Bji (37)

a†iaj −→
∑

k

B†
ikBjk

where the boson creation and annihilation operators satisfy the usual boson
commutation relations, [B†

ijB
†
kl] = 0, [BijBkl] = 0 and [BijB

†
kl] = δikδjl −

δilδjk and also B†
ij = −B†

ji. The Dyson map of Hpairing in (3) is obtained by
rewriting (37) in angular momentum coupled representation and then following
the steps: (i) introducing coupled boson creation (and destruction) operators
B†

(�1
1
2

1
2
)(�2

1
2

1
2
)LMLSMsTMT

; (ii) restricting the bosons B’s to L = 0 bosons

(hereafter called s-bosons); (iii) defining collective s-bosons

s†SMS ;TMT
=

∑
�

√
(2
 + 1)/2Ω β� B†

(�1
2

1
2
)(�1

2
1
2
)00;SMS ;TMT

with (ST ) = (01)⊕ (10); (iv) mapping first D†
µ, P †

µ, Dµ and Pµ into B† and B
operators and then converting them into s† and s operators via the replacements

B†
(�1

2
1
2
)(�1

2
1
2
)00,SMS ;TMT

→
√

2(2
 + 1)/Ω β� s†SMS ;TMT

and similarly B → s. First results of Dyson mapping of Eq. (3) are due to
Dobes and Pittel [8] and more detailed investigation are given in [9, 10, 11].
Applying the steps (i)-(iv), the Dyson mapping for Hpairing is (see for example
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[9])

Hpair. → −(1 + x)

[
Ωn̂s:S − n̂s:Sn̂s:T − 3

2

{(
s†01s

†
01

)00
(s̃10s̃10)

00

}00

−9
∑

S=0,2

√
2S + 1 χ(S)

{(
s†10s

†
10

)S0
(s̃10s̃10)

S0

}00
⎤⎦

−(1 − x)

[
Ωn̂s:T − n̂s:Sn̂s:T − 3

2

{(
s†10s

†
10

)00
(s̃01s̃01)

00

}00

−9
∑

T=0,2

√
2T + 1 χ(T )

{(
s†01s

†
01

)0T
(s̃01s̃01)

0T

}00
⎤⎦ (38)

In (38), χ(J) is the 9 − j symbol

⎧⎨⎩
1
2

1
2 1

1
2

1
2 1

1 1 J

⎫⎬⎭. Writing the S = 2 term

in (38) in terms of the number operator n̂s:S and the S = 0 term (similarly
for the T = 2 term) and converting all the terms into dot-products, Eq. (9) of
Ref. [10], which looks different but more appealing, is recovered. Similarly the
Dyson boson mapping including spin-orbit term in (3) is given in [11]. Some
important results that follow from all the mapping studies are:

i. Naive hermitization (adopted by Van Isacker et al [9]) with H → (H +
H†)/2, Eq. (38) corresponds to a boson model with s bosons (
 = 0
bosons) carrying (ST ) = (10) ⊕ (01) and interacting with a one plus
two-body force. The SGA for this model is Us:ST(6) and it admits two
symmetry limits,

Us:ST(6) ⊃ [Os:ST(6) ∼ SUs:ST(4)] ⊃ Os:S(3) ⊕ Os:T(3) (I)
Us:ST(6) ⊃ Us:S(3) ⊕ Us:T(3) ⊃ Os:S(3) ⊕ Os:T(3) (II)

(39)

For x = 0 the boson mapping is hermitian and the boson hamiltonian
reduces to a linear combination of the Casimir operators of the algebras in
chain (I) in (39). Thus the SU(4) symmetry of the O(8) fermion model
is preserved for low-lying states by the interacting s-boson model. The
O(5) limits of the O(8) model are similarly recovered by the chain (II) in
(39) with isoscalar or isovector boson number is zero (they are generated
by the U(3) groups in (39)). Thus the s-boson model keeps (in fact for
any x) the physics given by the fermion O(8) model for low-lying states;
see [9] for more details.
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ii. Palchikov et al [10] used the hermitization procedure with s†10 → (1 +
x)1/4s†10, s10 → (1 + x)−1/4s10, s†01 → (1 − x)1/4s†01 and s01 → (1 −
x)−1/4s01. They calculated the overlaps of the exact lowest eigenstates
(ground states with S = T = 0) for m = 4k (boson number N =
2k) systems with α-particle like structure (A†)k |0〉 where A† = (s†10 ·
s†10sinθ − s†01s

†
01cosθ). The overlaps are found to be > 97% for all

x values in (3). Note that θ = 0 for x = −1, π/4 for x = 0 and
π/2 for x = 1. Even for excited states (generated by breaking 1,2,
. . . α particle structures), the θ are found to be state independent. For
odd-odd systems the ground states are close to (A†)k(s†10)

S(s†01)
T |0〉;

(ST ) = (10) ⊕ (01). Moreover the α particle structure of the ground
state wavefunctions is also supported by realistic calculations with SDI
interaction in a single j-shell. An important consequence of all these
results is that it is possible to start with a four particle correlated structure
for proton-neutron systems and develop a model for N=Z nuclei similar
to the broken-pair model [23] known for identical particle systems.

iii. Juillet and Josse [11] studied the effects of spin-orbit force on properties
such as the relative position of T = 0 and T = 1 states in odd-odd N=Z
nuclei. Using Dyson mapping and perturbation theory they showed that
∆E = EGS(J = 0, T = 1) − EGS(J = 1, T = 0) = xgf(N) −
V 2

so [h1(
) + xh2(
)](N + 3)/g where f is some function of N , h’s
are some functions of 
, g is the overall strength of Hpairing and Vso is
spin-orbit strength. Then it is clear that, for x ∼ 0, even a small spin-
orbit strength (it will break the SU(4) symmetry) favors isovector ground
states as seen in A ≥ 62 nuclei.

An important outcome of the boson mappings is the recognition that the
interacting boson model with s bosons carrying (ST ) = (10)⊕ (01) is equiva-
lent to the O(8) pairing model. Then a natural extension is to include d bosons
so that quadrupole deformation effects can be included in a group theoretical
framework (the corresponding extension of the O(8) model is not available and
appear to be more complex than the corresponding sd boson model). The inter-
acting boson model with s (
 = 0) and d (
 = 2) bosons carrying spin-isospin
degrees of freedom (ST ) = (10) ⊕ (01) is called IBM-ST and the SGA for
this model is U(36). Now we will consider the symmetry limits of IBM-ST in
some detail.

4. IBM-ST and U(36) symmetry schemes

In IBM-ST, the spin-isospin invariant interacting boson model (also called
IBM-4), quadrupole collective states are generated by interacting s (
 = 0)
and d (
 = 2) bosons with six spin-isospin degrees of freedom (three from
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(ST ) = (10) and three from (ST ) = (01)). Given the one boson creation and
destruction operators b†�,m�; S,mS ; T,mT

and

b̃�,m�; S,mS ; T,mT
= (−1)1+m�+mS+mT b�,−m�; S−mS ; T,−mT

,

the 1296 triple tensors (
b†�,s,T b̃�′S′,T ′

)L0,S0,T0

M0,MS0
,MT0

generate the model’sUsdST(36)SGA. Dynamical symmetry limits ofinteracting
boson model IBM-ST correspond to the group chains starting with UsdST(36)
generating boson number N and ending with OL(3) ⊗ [OS(3) ⊕ OT(3)] or
OJ(3) ⊗ OT(3) generating states with good LST or JT ; �J = �L + �S. Before
going further it is useful to write down the number, spin, isospin and angular
momentum operators,

n̂s;S =
√

3
(
s†(10)s̃(10)

)0,0,0
, n̂s;T =

√
3
(
s†(01)s̃(01)

)0,0,0

n̂d;S =
√

15
(
d†(10)d̃(10)

)0,0,0
, n̂d;T =

√
15

(
d†(01)d̃(01)

)0,0,0

n̂S = n̂s;S + n̂d;S , n̂T = n̂s;T + n̂d;T , N̂ = n̂S + n̂T

n̂s = n̂s;S + n̂s;T , n̂d = n̂d;S + n̂d;T , N̂ = n̂s + n̂d

L1
S;µ =

√
30

(
d†(10)d̃(10)

)1,0,0

µ,0,0
, L1

T ;µ =
√

30
(
d†(01)d̃(01)

)1,0,0

µ,0,0

S1
s;µ =

√
2
(
s†(10)s̃(10)

)0,1,0

0,µ,0
, S1

d;µ =
√

10
(
d†(10)d̃(10)

)0,1,0

0,µ,0

T 1
s;µ =

√
2
(
s†(01)s̃(01)

)0,0,1

0,0,µ
, T 1

d;µ =
√

10
(
d†(01)d̃(01)

)0,0,1

0,0,µ

�L = �LS + �LT , �S = �Ss + �Sd , �T = �Ts + �Td (40)

In (40) ns, nd, nS and nT give the number of s-bosons, d-bosons, T = 0
pairs and T = 1 pairs respectively. At the primary level, identified by the first
subgroup of UsdST(36), IBM-ST has 4 symmetry limits [12] :

I. Decomposing the sdST space into orbital sd and spin-isospin ST spaces
gives Usd(6)⊗UST(6) limit chains. The Usd(6) admits the three (U(5),
SU(3) and O(6)) IBM subgroup chains while UST(6) admits two chains
just as in (39).

II. Decomposing the sdST space into S (with (ST ) = (10)) and T (with
(ST ) = (01)) spaces gives UsdS(18) ⊕ UsdT(18) limit chains and they
preserve (nS, nT ). The group chains admitted by the two U(18) groups
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are same those of IBM-3 U(18) SGA; see [24]. These subgroups can be
combined with each other at various levels to give all the group chains in
limit II. All symmetry chains here will break the SUST(4) symmetry.

III. Decomposing the sdST space into s and d boson spaces gives UsST(6)⊕
UdST(30) limit chains. They preserve (ns, nd) (the case with nd = 0 is
nothing but the s boson model discussed in Section 3). The UdST(30)
admits at the first level OdST(30), Ud(5) ⊗ USdTd

(6) and UdS(15) ⊕
UdT(15) and the subgroups of these groups will follow from I and II and
they can be combined at various levels.

IV. The generalized pairing group in the total sdST space is OsdST(36) and
this gives the OsdST(36) limit chains. At the first level O(36) subgroups
are OsdS(18)⊕OsdT(18), Osd(6)⊗OST(6) and OsST(6)⊕OdST(30).
Further subgroups of these will follow easily from I, II and III and they
can be combined at various levels to give the group chains in limit IV;
see Fig. 1 in [13]. Some of the group chains here (also in limit III) admit
Wigner’s SUST(4) symmetry.

In the last few years some of the group chains in I and IV are studied in detail
and the results are briefly discussed here.

4.1 Usd(6) ⊗ UST(6) limit chains

The group-subgroup chains in the UsdST(36) ⊃ Usd(6)⊗UST(6) limit can
be written down easily usinginteracting boson model IBM chains and Eq. (39),

Usd(6) chains: : Usd(6) ⊃ U(5) ⊃ O(5) ⊃ OL(3)
Usd(6) ⊃ SU(3) ⊃ OL(3)
Usd(6) ⊃ O(6) ⊃ O(5) ⊃ OL(3)

(41)

UST(6) chains : UST(6) ⊃ US(3) ⊕ UT(3) ⊃ OS(3) ⊕ OT(3)
UST(6) ⊃ [OST(6) ∼ SUST(4)] ⊃ OS(3) ⊕ OT(3)

(42)
The UsdST(36) irrep being {N}, the Usd(6) and UST(6) irreps will have same
Young tableaux structure {f} = {f1f2 . . . f6},

∑
i fi = N and f1 ≥ f2 · · · ≥

f6 ≥ 0. Thus the lowest irrep is {N} and the next one is {N − 1, 1}. In the
Usd(6) sector they correspond to IBM states and pnIBM (proton-neutron IBM
or IBM-2) states with F -spin F = N/2 − 1 respectively. Using the chains in
(41,42) studied so far are: (i) competition between T = 0 and T = 1 pairing
and the resulting signatures [14]; (ii) Binding energies (BE) of T = 0 and
T = 1 ground states in N=Z nuclei [16]. Here (ii) is discussed in some detail
and (i) is differed to Section 4.3.

Considering only {N} irrep but otherwise ignoring the space part (assuming
ground states have L = 0), the spin-isospin structure of the states is governed
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by the two chains in (42). The allowed O(6) irreps are ωST = N, N −2, . . . , 1
or 0 and ωST → (ST ) is given by (21). This gives correctly the ground state
(ST ) = (00) for even-even and (10) ⊕ (01) for odd-odd nuclei. Similarly,
SUS(3) generates T = 0 pairs NT=0 (nS in (40)) and SUT(3) generates
T = 1 pairs NT=1 (nT in (40)) with N = NT=0 +NT=1; note that NS → S =
NS, NS − 2, . . . , 1 or 0 and similarly NT → T . The problems (i) and (ii) are
addressed by using a hamiltonian that mixes the two chains in (42). The general
group theoretical problem need to be solved here is transformation brackets
between the chains U(N ) ⊃ U(Na) ⊕ U(Nb) ⊃ O(Na) ⊕ O(Nb) ⊃ . . .
and U(N ) ⊃ O(N ) ⊃ O(Na) ⊕ O(Nb) ⊃ . . . for symmetric U(N ) irreps
with N = Na + Nb. For the problem at hand, (Na,Nb) = (3, 3). For the
O(36) chain discussed ahead solutions for several other (Na,Nb) are needed
(for example (6,30), (18,18) etc.). Before giving a complete solution to this
problem let us mention that using the mixing hamiltonian

Hmix = E0 + α1C1(UST(6)) + α2C2(UST(6)) + α3C2(OST(6))
+α4C2(US(3)) + α5C2(OT(3)) (43)

the known values of BE(T = 0) − BE(T = 1) are well described for N=Z
nuclei in the mass range 56Ni to 100Sn with predictions for many unknown cases
[16]. The Casimirs of O(6) ∼ SU(4) and OT(3) have clear physical meaning
and that of US(3) has its origin in spin-orbit force. Thus IBM-ST gives a good
‘local’ mass formula for N=Z nuclei in a region of current experimental interest.

4.2 Transformation brackets between
U(N ) ⊃ U(Na) ⊕ U(Nb) ⊃ O(Na) ⊕ O(Nb) and
U(N ) ⊃ O(N ) ⊃ O(Na) ⊕ O(Nb) chains

For symmetric U(N ) irreps {n} in the U(N ) ⊃ U (Na) ⊕ U (Nb) ⊃
O (Na) ⊕ O (Nb) ⊃ K chain, the irrep labels for other groups in the chain
and their reductions are given by (assuming that Na ≥ 3, Nb ≥ 3)∣∣∣∣ U(N ) ⊃ U (Na) ⊕ U (Nb) ⊃ O (Na) ⊕ O (Nb) ⊃ K

{n} {na} {nb} [ωa] [ωb] α

〉
na = 0, 1, 2, · · · , n; nb = n − na

ωa = na, na − 2, . . . , 0 or 1, ωb = nb, nb − 2, . . . , 0 or 1 (44)

In (44) label(s) α for the irreps of K need not be specified as the algebra K do
not play any role in the present discussion. On the other hand, for symmetric
U(N ) irreps {n} in the U(N ) ⊃ O(N ) ⊃ O (Na) ⊕ O (Nb) ⊃ K chain, the
irrep labels for other groups in the chain and their reductions are,∣∣∣∣ U(N ) ⊃ SO(N ) ⊃ SO (Na) ⊕ SO (Nb) ⊃ K

{n} [ω] [ωa] [ωb] α

〉
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ω = n, n − 2, . . . , 0 or 1, ωa + ωb = ω, ω − 2, . . . , 0 or 1 (45)

As the states in (44) and (45) both form complete set of states, in general it is
possible to expand one in terms of the other,

|nω (ωa ωb) α〉 =
∑
na

Cn,ω,ωa,ωb
na

(Na,Nb) |n (na nb) (ωa ωb) α〉 (46)

In (46)
∑

na
| Cn,ω,ωa,ωb

na (Na,Nb) |2 = 1 and in the summation, na = ωa, ωa+
2, · · · , n or n−1 and nb = n−na = ωb, ωb +2, · · · , n or n−1. A realization
of the states |n ω (ωa ωb) α〉 is in terms of the eigenstates of N dimensional
harmonic oscillator solved in bispherical co-ordinates in N = Na + Nb di-
mensions [25]. This involves Laguerre and Jacobi polynomials. Similarly,
the corresponding realization of |n (na nb) (ωa ωb) α〉 basis states is obtained
by solving the oscillator equation in Na and Nb co-ordinates separately (each
of them involve a Laguerre polynomial). Now the transformation brackets
(C−−−

− ’s) in (46) are derived using a novel convolution identity for Laguerre
polynomials. This identity was derived by Vander Jeugt [26] via SU(1, 1) al-
gebra with: (i) using the generators J0, J± and expanding the simultaneous
eigenstates |kx > of the SU(1, 1) Casimir operator C = J2

0 − J0 − J+J− and
the operator X = 2J0 − J+ − J− in terms of the standard (C, J0) eigenstates
|km >; (ii) defining (Laguerre) polynomials via < kx|km > / < kx|k0 >;
(iii) writing SU(1, 1) Clebsch - Gordan coefficients in terms of a terminating
generalized hypergeometric series; (iv) introducing (Jacobi) polynomials as in
(ii) but via the tensor product of two irreps (k1)⊗ (k2). Then the final formula
is [27],

|n ω (ωa ωb) α〉 = (−1)φr+φrab Rn ω (ωa ωb) ×

×
r+rab∑
ra=0

(−1)φra+φrb
C (r, rab, ra, ωa, ωb)
Mn (na nb) (ωa ωb)

|n (na nb) (ωa ωb) α〉 ;

Rn ω (ωa ωb) =

=

⎡⎣ 4(r!) (rab!)
(
ω + N

2 − 1
)
Γ
(
ω + N

2 − rab − 1
)

Γ
(
ω + N

2 + r
)
Γ
(
ωa + Na

2 + rab

)
Γ
(
ωb + Nb

2 + rab

)
⎤⎦1/2
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Mn (na nb) (ωa ωb) =

[
4 (ra!) (rb!)

Γ(ωa + ra + Na
2 ) Γ(ωb + rb + Nb

2 )

]1/2

C (r, rab, ra, ωa, ωb) =
(−1)rab Γ

(
ωa + rab + Na

2

)
(r + rab)!

r! rab! Γ
(
ωa + Na

2

) ×

× 3F2

(
ωa + ωb + rab + N

2 − 1, −ra, −rab

ωa + Na
2 , −r − rab

; 1
)

n = 2r + ω, ω = 2rab + ωa + ωb,

ra + rb = r + rab, na = 2ra + ωa, nb = 2rb + ωb (47)

Standard phase convention is to use φk = k, k = r, rab, ra, rb. It should be
noted that the final formula given by (47) for the C−−

−− coefficients in (46) is
independent of the specific realizations used in the derivation. The formula
involves a terminating 3F2(1) generalized hypergeometric series. More impor-
tantly, though it is derived assuming Na ≥ 3, Nb ≥ 3, in fact it is proved to
be applicable for all Na,Nb [27]. The result in (47) takes much simpler form
for the important situation with ω = n and this is used in many applications
[13, 24].

4.3 OsdST(36) ⊃ OSsTs(6) ⊕ OdST(30) ⊃ OL(3) ⊗ OST(6)
limit

In the OsdST(36) ⊃ OSsTs(6) ⊕ OdST(30) ⊃ OL(3) ⊗ OST(6) limit the
group chain and the irrep labels for the basis states are [13],∣∣∣∣ UsdST(36) ⊃ OsdST(36) ⊃ OSsTs(6) ⊕ [OdST(30) ⊃ {Od(5)

{N} [ω] [ωs] [ωd] [ω1ω2]
⊃ OL(3)} ⊗ OSdTd

(6)] ⊃ OL(3) ⊗ OST(6)
L [σ1σ2σ3] L [σaσbσc]

⊃ OL(3) ⊗ [OS(3) ⊕ OT(3)] ⊃ OJ(3) ⊗ OT(3)
L S T �J = �L + �S T

〉
(48)

The reduction of {N} → [ω] and [ω] → [ωs] [ωd] is simple (see (21),(44)),
N → ω = N, N − 2, . . . , 0 or 1 and ω = 2r + ωs + ωd ; r = 0, 1, 2, . . . , ω

2 .
Other irreps in (48) follow from the results given in [13]. Table I gives the
irrep labels for low-lying states with ω = N for odd-odd nuclei. It is seen that
ωd acts as a phonon number and the symmetry limit generates several extra
levels for each phonon excitation as compared to the vibrational nuclei. In the
OsdST(36) ⊃ OSsTs(6) ⊕ OdST(30) ⊃ OL(3) ⊗ OST(6) limit studied are
[12, 13, 15]: (i) number of T = 0 pairs in the ground states of even-even and
odd-odd nuclei; (ii) some of the spectroscopic properties of 74Rb; (iii) B(E2)
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values for low-lying states and also for the yrast band in N=Z odd-odd nuclei
with (ST ) = (01); (iv) two nucleon transfer strengths for exciting the ground
states of N=Z even-even nuclei to states of N=Z odd-odd nuclei. Let us discuss
(i) and (iii) briefly.

A quantity of physical interest which is much discussed in recent literature
(see for example [14]) is number of T = 0 (or pn) pairs (NT=0) in the ground
states (GS’s) of heavy N≈Z nuclei as it will determine the role of pn pairing near
the proton drip line. With Tz =(N−Z)/2 and the assumption of good Wigner
spin-isospin SU(4) will determine the ground state OST(6) ∼ SUST(4) irreps,

Even-Even Nuclei: N=Z or N = Z
OST(6) : [T ] S = 0, T = |Tz|, N + T = even
Odd-odd Nuclei: N=Z
OST(6) : [1] (ST ) = (10) ⊕ (01), N = odd, T = 0 or 1
Odd-odd Nuclei: N = Z
OST(6) : [T, 1] (ST ) = (0, |Tz|) or (1, |Tz|), N + T = odd

(49)

As in the O(6) limit of IBM it is expected that GS’s have [ω]OsdST (36) = [N ] and
ωd of OdST(30) takes smallest possible value. These and (49) will determine
uniquely, for any nucleus, the structure of GS’s in the OsdST(36) ⊃ OSsTs(6)⊕
OdST(30) ⊃ OL(3) ⊗ OST(6) limit. The operator N̂T=0 whose expectation

value
〈
N̂T=0

〉
gives number of T = 0 pairs is already given in (40) (there it is

denoted as n̂S). Using the C-coefficients of Sect. 4.2 with (Na,Nb) = (6,30),
(3,3) and (15,15) one can derive the analytical formulas [13],〈

N̂T=0

〉N,[T ](0,T)

even-even
=

(N − T )
4(T + 3)(N + 16)

[T (N + T + 4) + 6(N + 16)]〈
N̂T=0

〉N,[1](1,0)

odd-odd, N=Z
= (9N2 + 162N + 101)/16(N + 16) ,〈

N̂T=0

〉N,[1](0,1)

odd-odd, N=Z
= (7N2 + 94N − 101)/16(N + 16)〈

N̂T=0

〉N,[T,1](S,T)

odd-odd, N�=Z

= δS,1 +
(

3 + δS,1
2

T + 1

)
(N − T + 29)(N − T − 1)

4(T + 3)(N + 16)

+
(

15 + δS,1
2T

T + 1

)
(N + T + 3)(N − T − 1)

64(N + 16)
, S = 0, 1

(50)

Eq. (50) show that there is even-even to odd-odd staggering in the symmetry
limit in the number of T = 0 pairs. One can go beyond the symmetry limit and
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carry out mixing calculations using,

Hmix = α C2 (OSsTs(6)) + β C2 (SUsS(3)) + γ [C2 (SUdST(30))] (51)

In (51), β/α measures the competition between T = 0 and T = 1 pairing; for
s-bosons the energy for T = 0 pairs is ε(Ts = 0)/α = 5 + 4(β/α) and for
T = 1 pairs ε(Ts = 1)/α = 5. Results of the mixing calculations are given in
detail in [15, 13]. Here it suffices to state that the C-coefficients of Section 4.2
allow the calculations to be performed. It should be added that the results of
OsdST(36) ⊃ OSsTs(6) ⊕ OdST(30) ⊃ OL(3) ⊗ OST(6) limit are similar to
the results obtained [14] using Usd(6) ⊗ UST(6) limit.

For detailed spectroscopy, a quantity of great interest is B(E2)’s along the
Yrast band. The OsdST(36) ⊃ OSsTs(6)⊕OdST(30) ⊃ OL(3)⊗OST(6) limit
gives, for odd-odd N=Z nuclei for the (ST ) = (01) band (note that for A > 60
nuclei ground states have T = 1), for the ratio R(N, L) = B(E2; N, L →
N, L − 2)/B(E2; N, 2+ → N, 0+), which is parameter free, the expression
[13],

R(N, L)
N→∞, N>>L−→ 5(L + 5 − 5(−1)L/2)

2(L + 28)
; L = 2, 4, 6, 8, . . . (52)

Thus in the symmetry limit, for odd-odd nuclei, B(E2)’s exhibit a isospin (see
Table I for s and d boson isospins for yrast levels, they alternate between 0 and
1) dictated ∆L = ∆J = 4 staggering for the yrast levels with T = 1. For
example R(9, L) = 1, 0.21, 1.06, 0.29, 1.04, 0.27, 0.95, 0.17, 0.79 for L = 2, 4,
6, 8, 10, 12, 14, 16, 18 respectively.

5. Conclusions

In this article given is a short review of the developments in the fermionic
O(8) and bosonic U(36) symmetry schemes for heavy N=Z nuclei. Briefly dis-
cussed is also their applications. Clearly, more detailed study of v = 2, 4 states
in the O(8) model are needed and they will be useful in shell model mapping
of IBM-ST model as they will give one and two d boson states respectively.
It should be added that already there are attempts (see [28]) in this direction
by exploiting the SU(4) algebra present in the O(8) and IBM-ST symmetry
schemes. Similarly a detailed study of the various symmetry schemes of the
U(36) IBM-ST model are needed. Towards this end it is necessary to solve the
problem of transformation brackets between U(N ×M) ⊃ U(N )⊗U(M) ⊃
O(N )⊗O(M) ⊃ . . . and U(N×M) ⊃ O(N×M) ⊃ O(N )⊗O(M) ⊃ . . ..
Finally we add that the identification of U(36) ⊃ O(36) limits led to the iden-
tification of a new U(12) ⊃ O(12) symmetry limit of pnIBM and with this
complete classification of symmetry chains for the pnIBM model is obtained
recently; see Table II.
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OST (6) irrep [ωd] [ω1ω2] Lπ [σ1σ2σ3] [ωs]

[0] [0] [0] 0+ [0] [0]
[1] [1] 2+ [1] [1]
[2] [2] 4+ [0] [0]

[2] [2]
2+ [0] [0]

[2] [2]
[0] 0+ [2] [2]

[3] [3] 6+ [1] [1]
[3] [3]

−− −− −− −− −−
[1] [0] [0] 0+ [0] [1]

[1] [1] 2+ [1] [0]
[1] [2]

[2] [2] 4+ [0] [1]
[2] [1]
[2] [3]

2+ [0] [1]
[2] [1]
[2] [3]

[11] 3+ [11] [1]
1+ [11] [1]

[0] 0+ [2] [1]
[2] [3]

[3] [3] 6+ [1] [0]
[1] [2]
[3] [2]
[3] [4]

Table 1. Quantum numbers for low-lying states in the OsdST (36) ⊃ OSsTs(6)
⊕ OdST (30) ⊃ OL(3) ⊗ OST (6) limit with ω = N . Note that (ST ) = (00) for even-
even nuclei with [0]OST (6) and (ST ) = (10) ⊕ (01) for odd-odd nuclei with [1]OST (6).
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Complete Classification of pn-IBM Symmetry Schemes
proton bosons π and neutron bosons ν

with � = 0 (sπ , sν) and � = 2 (dπ , dν)
SGA: U(12)

good quantum numbers: N , L, MFz = (Nπ − Nν)/2
↗ Usd(6) ⊗ SU(2)
↗ Uπ(6) ⊗ Uν(6)

Usdπν(12)
↘ Us(2) ⊕ Ud(10)
↘ Osdπν(12)

↗ O(6) ⊗ O(2)
O(12)

↘ O(2) ⊕ O(10)

↗ U(5) ⊗ SU(2)
U(10)

↘ O(10) ⊃ O(5) ⊗ O(2)

U(6)’s generate U(5), SU(3) and O(6) symmetries
SU(2)’s generate F-spin, O(2)’s generate Fz

U(6) ⊗ SU(2) generates mixed symmetry states,
(scissors 1+ states in rotational nuclei)

seen in 156Gd, 196Pt, 134Ba, 94Mo
Uπ(6) ⊗ Uν(6) ⊃ SUπ(3) ⊗ SUν(3) → triaxial shapes

O(12) breaks F-spin symmetry and it is generated

by the pairs:

[
s†πs†ν +

√
5β

(
d†

πd†
ν

)0
]

, β = ±1

V.K.B. Kota, Pramana-J. Phys. 60, 59 (2003).

Table 2. Overview of pnIBM symmetry limits.
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Abstract The notion due to R.G. Newton and E.P. Wigner (1949) of an elementary sys-
tem ES is sharpened to a system on a Lie group G-manifold as configuration
space and the unitary irreducible representations (IR) of G as states. We study
pairs of elementary systems with configuration space taken as the direct product
(G×G)-manifold and with an interaction invariant under the right action of the
subgroup diag(G×G). The (G×G)-manifold is split into a new external group
manifold 〈X〉 transformed by left action, and a new internal group manifold 〈x〉
unchanged under diag(G×G). By use of Kronecker products we transform IR
pair states to external/internal coordinates. The general concept of fusion due to
de Broglie (1932-34) is expressed in the new coordinates as the limit where x
goes to the identity element. For elementary Poincaré systems, the distinction
between massive Mackey and covariant fields becomes crucial. The presence
of a full Poincaré-manifold and of corresponding observables are illuminated
by position operators. The space translation parameters of the Poincaré group
are related to the relativistic position operators of Newton and Wigner. For two
Dirac elementary systems of equal mass m we recover by fusion the field of
Bargmann and Wigner (1948) of spin S = 1 which can be rewritten in terms of
a massive vector field. The total mass of the Bargmann-Wigner field is shown to
be minimal, M = 2m. Interaction schemes are sketched for pairs of Euclidean
and Poincaré-manifolds and ES. By Frobenius reciprocity, the process of fusion
allows for a counterpart termed scission. Scission is constructed by use of the
theory of induced representations.

Keywords: Elementary systems, Lie group G-manifolds, external/internal coordinates, de
Broglie-fusion.

1. Introduction

Our aim is to sharpen the classical theory of elementary systems due to
E. Schrödinger [19], V. Bargmann, E.P. Wigner [2], T.D. Newton [16], A.S.
Wightman [22], and others, extend it to several elementary systems, get insight
into the concept of fusion as proposed by de Broglie, compare [4], and describe
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interaction schemes. We use standard tools of a Lie group G and its irreducible
representations and exemplify some concepts with the familiar group G =
SU(2).

(i) Groups and irreducible representations: Our first observation is that the
group G provides a geometric G-manifold. Once the manifold is equipped with
an invariant measure, there is a scalar product and a Hilbert space HG of square
integrable functions on G. The set of unitary irreducible representations (IR)
of G provide an orthogonal and complete basis of this Hilbert space, compare
Appendix A. The Lie algebra LG provides operators on this Hilbert space with
definite Hermitian properties and so allows to construct observables for the
notion of a physical system associated with the group.

(ii) Left and right group actions: The multiplication law of a Lie group,
g1, g2 ∈ G → g1g2 ∈ G, provides the left and right G-actions g′ : g → (g′)−1g
and g′ : g → gg′ which when applied to functions f = f(g) yield operator
representations. Moreover the left and right actions on G commute with one
another.

(iii) Kronecker products: An important role in Lie group representations
applied to physics is played by the Kronecker product. This product arises
naturally from the direct product group (G × G) with elements (g1, g2). The
direct product group has a subgroup diag(G×G) with elements (g1, g1). The
corresponding group/subgroup reduction of representations yields the standard
Kronecker product. In examples we shall often assume for simplicity that G be
simply reducible (Wigner), that is, that any IR of G appears with multiplicity 1
or 0 in the Kronecker product.

2. Elementary systems on G-manifolds.

Consider a Lie group G and Dj, one of its irreducible representations.
Elementary Systems of general type:

A first standard definition of an elementary system ES associated with (G, Dj)
according to Newton and Wigner [16] is a (set of) state(s) ψ = ψ(x) in a Hilbert
space HG/G0 of square integrable functions such that

(ESa): ES admits a geometric unitary action of G on HG/G0 over a coset
space G/G0 of the form (Tgψ)(x) = ψ(g−1x),

(ESb): the states of ES under G transform irreducibly with the representation
Dj.

In physics one says that the system ES represents a geometric symmetry
group G. The irreducibility (ESb) implies that the state space of ES does not
admit a subspace invariant under G. This novel description of elementary sys-
tems by irreducibility abandons the classical atomistic notion of an indivisible
piece of matter and replaces it by a notion in terms of fields, states, and groups
of symmetry. Actually Newton and Wigner [16] p. 400 distinguish between an



Interaction and fusion of elementary systems 293

elementary system and an elementary particle. For an elementary system they
require only - that it should not be useful to consider the particle as a union of
other particles-.

What then are the possible elementary systems for a given group? Given
a Hilbert space for the system S, assumption (Ia) allows to decompose it into
orbits under G. By standard theorems, any orbit can be characterized by a
stability group G0 as a homogeneous or coset space G/G0. Therefore the
geometric G-action on functions over a fixed orbit may be traced back to a
representation of G explicitly reduced w.r.t the subgroup G0. Applying this
to all irreducible representations of G we obtain all possible irreducible states
according to assumption ESb. The G-action on G/G0 is an instance of a Lie
transformation group, with all the implications on the Lie theorems as discussed
in Gilmore [7] pp. 87-119. We also refer to Wigner for the attempt to partially
rewrite the states of a system in terms of irreducible representations [23] pp.
210-219.

Elementary Systems on G-manifolds:
There is a sharper notion of elementary systems implicit in the work of Newton
and Wigner [16] and Wightman [22]. Here we identify an IR Dj of G with
an elementary system or elementary particle on a configuration space taken as
a G-manifold and quantum numbers j, m, k. An elementary particle is then
a square integrable state on HG whose domain of definition or configuration
space is the full group G.

To keep a clear distinction between different appearances of the same groups,
from now on we shall denote by boldface G a group manifold serving as part
of configuration space for ES’s, and by G a group acting on such manifolds.

Compared to the previous notion, the sharper notion of an elementary system
arises as a special case where we restrict to a single orbit G/I = G with I the
identity subgroup of G. The orbit G/I as a manifold has maximal dimension
and so we shall have to interpret the additional parameters which may appear in
it, see below. For fixed G, the possible elementary systems on the G-manifold
are in one-to-one correspondence with the set of its irreducible representations.

For the case of relativistic elementary systems with G the Poincaré group,
there is a subtle interplay between these notions and the group parameters which
we shall analyze in a later section.

3. Two elementary systems: The (G × G)-manifold and
its submanifold splitting under diag(G × G).

We shall adopt the sharper notion of elementarity and develop some of its
consequences.
(i) We adopt the direct product manifold (G×G) as the configuration space of
two interacting elementary particles. This approach extends to more than two
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elementary particles, see remark 2 at the end of this section.
(ii) For the interaction we assume as symmetry group the right G-action of the
diagonal group diag(G × G) ∼ G on (G × G).
(iii) We introduce on (G × G) in Prop 1, Def 2 the new external/internal co-
ordinates 〈X, x〉 := 〈g1, g1(g2)−1〉. The symmetry group acts on X from the
right and keeps x. There is a second G-action on (G × G), Prop 3, which
commutes with the symmetry group, keeps X , and acts on x from the right.
This group allows the construction of interaction operators.

First we summarize some group properties. The direct product (G × G)
is the group with elements (g1, g2) and multiplication rule (h1, h2)(g1, g2) :=
(h1g1, h2g2). The multiplication rule allows to define new left and right actions
on (G×G). In the spirit of elementary systems on G-manifolds, we assume as
the configuration space of two elementary particles the direct product manifold
(G × G) with coordinates (g1, g2) corresponding to pairs of group elements.
There are natural left and right actions (G × G) on the manifold (G × G).

The right G-action of the diagonal subgroup on (G × G) reads

(g, g) : (g1, g2) → (g1g, g2g). (1)

In our interpretation, the diagonal subgroup with this right action
on the product manifold with elements (g1, g2) becomes the symmetry group

of two interacting elementary systems. The free particles belong to a single
Kronecker product IR of (G×G). The interaction we assume to commute not
with the two independent right actions of (G × G) but only with the right
action eq. 17 of the diagonal subgroup which transforms the two particle
coordinates in the same way. It follows that the symmetry group in going from
non-interacting to interacting particles subduces to a subgroup. The restriction
of the symmetry group for an interacting system reflects the view of standard
quantum theory: When we speak of a relativistic invariant interaction between
relativistic particles, we consider transformations which affect the coordinates
of these particles in the same way. We illuminate this view by two examples.

Example 1: Action of diag(SU(2) × SU(2)).
Consider a two-electron atom (without spin). Without the electron-electron

interaction, the 2-electron states correspond to irreducible representations Dl1 ,
Dl2 of (SU(2) × SU(2)). The Coulomb repulsion of the two electrons com-
mutes only with the diagonal subgroup diag(SU(2) × SU(2)), with IRs de-
termined by the total orbital angular momentum L. In example 3 below we
describe simple interactions schemes for a pair of SU(2)-manifolds.

Our aim is to find new coordinates on the product manifold (G × G) with
simple transformation properties under the action eq. 17 of the symmetry group
diag(G × G). We also wish to characterize interaction operators commuting
with this group.
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Example 2: Separation of dynamics in external and relative coordinates.
Consider a quantum system of two non-relativistic particles of coordinate

vectors x1, x2 and equal mass m and a Hamiltonian

H =
1

2m
((p1)2 + (p2)2) + V (x1 − x2). (2)

The Hamiltonian is invariant under those (diagonal) translations which act in
the same way on both particles. In the new external and internal coordinates
and momenta

X : =
1
2
(x1 + x2), P := p1 + p2,

x : = x1 − x2, p :=
1
2
(p1 − p2) (3)

the Hamiltonian becomes

H =
1

4m
P 2 +

1
4m

p2 + V (x). (4)

Clearly the Hamiltonian separates in terms of the new coordinates. The solution
of the eigenvalue equations may be written as

ψ(X, x) = exp(iK · X)φ(x). (5)

The first factor dependent on X is a plane wave. It corresponds to a single
IR characterized by K of the diagonal translation group, which is a symmetry
group of the system.

Our aim is now to generalize the notion of external and internal coordinates
to (G×G) manifolds for non-abelian groups. Once we have achieved this goal
we can take up the notion [16] of a composite elementary system by saying that
it can be described exclusively in terms of the external coordinates. Moreover
by the process of fusion we can remove the internal coordinates and return to a
single elementary particle.

1 Prop: Internal and external coordinates on (G × G).
For (g1, g2) ∈ (G × G), the group element x := g2g

−1
1 is easily shown

from (g1g)(g2g)−1 = g1g
−1
2 to be invariant under the right action eq. 17 of

diag(G × G).
2 Def: Replace the pair (g1, g2) of group coordinates on the (G × G)-

manifold by the new pair

〈X, x〉 := 〈g1, g1g
−1
2 〉, (6)

call X the external coordinate and x the internal or relative coordinate of the pair
(1, 2) of systems. Both (X, x) by themselves are G-manifolds, i.e. admit as
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manifolds the parameters of G. We use pointed brackets for the external/internal
coordinates. Note that their transformation properties under left or right group
actions must be inferred from their expression eq. 6 in terms of the original
product coordinates (g1, g2)!

The right action eq. 17 of the diagonal group on the new pair of coordinates
is

(g, g) ∈ diag(G × G)
(g1, g2) → (g1g, g2g),
〈X, x〉 → 〈Xg, x〉 (7)

So under this right action of diag(G×G), the product manifold (G×G) splits
into the external manifold X , transformed by right G-action, and the internal
manifold x which is left unchanged. Since we shall adopt diag(G × G) as the
symmetry group of the interacting system, any state of this system must corre-
spond to a single IR of this group. From the transformation properties of 〈X, x〉
under diag(G × G) we shall derive below that the external G-submanifold X
in the two-particle state carries this overall IR of the composite system.

We turn to the interaction and to the role played by the internal coordinate x.
Interaction operators commuting with the right action of diag (G × G) must
essentially act on x. To find such operators we now construct complementary
G-actions which
(i) commute with the right action of diag(G × G) and
(ii) keep X but transform x.

Condition (i) is fulfilled by the general left action of (G×G) on (G×G). We
use inverse group elements for left actions and so anticipate the homomorphism
properties under the geometric action on states. Expressed in terms of 〈X, x〉
the left action yields

(g1, g2) → (l−1
1 , l−1

2 )(g1, g2) = (l−1
1 g1, l

−1
2 g2)

〈X, x〉 → 〈l−1
1 g1, l

−1
1 g1g

−1
2 l2〉 = 〈l−1

1 X, l−1
1 xl2〉. (8)

To fulfill in addition condition (ii) we must restrict the left action in eq. 7 as
(l−1

1 , l−1
2 ) → (e, l−1

2 ) and obtain from eq. 7 under this restricted left G-action
a corresponding right G-action on x,

(e, l−1
2 ) : 〈X, x〉 → 〈X, xl2〉. (9)

3 Prop: Interaction operators commuting with the right action of diag
(G × G) on (G × G):

Any operator built from the left action of (I × G) on (G × G) commutes
with the right action of the symmetry group diag(G×G), leaves X unchanged,
and transforms x → xl2 by right G-action. These interaction operators include
all operators from the Lie and enveloping algebra of the right action on x.
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Remark 1: It is possible to devise a second independent G-action beyond eq.
9 which keeps X and acts on the internal coordinate from the left according to
p ∈ G : 〈X, x〉 → 〈X, px〉. By use of the transforms g1 = X, g2 = x−1X
inverse to eq. 6 one deduces in terms of the initial coordinates on the product
manifold the G-action p : (g1, g2) → (g1, g2(g−1

1 p−1g1)). This left G-action
on x can be shown to commute both with the right G-action of the symmetry
group diag(G × G) and with the right G-action on x described in Prop 3.

Remark 2: We indicate the generalization to more than two particles: For
three particles, the configuration space is taken as the direct product (G ×
G × G)-manifold. As the symmetry group we assume the right action of the
diagonal subgroup diag(G × G × G) ∼ G. After applying the coordinate
transformation of the form
(g1, g2, g3) → 〈X, x2, x3〉 := 〈g1, g1g

−1
2 , g2g

−1
3 〉,

the symmetry group acts exclusively on X = g1. G-actions only on x2 =
g1g

−1
2 , x3 = g2g

−1
3 could be constructed which would provide interaction op-

erators commuting with the symmetry group.
Remark 3: In classical relativistic phase-space mechanics there is a no-

interaction theorem [5], [21] 535-545: From assuming standard Poisson rela-
tions between the Poincaré group generators and the individual particle coor-
dinates and momenta, and from a relativistic world-line condition it follows
that no interaction is allowed. A unified approach to the classical dynamics
of N interacting relativistic particles is given in [1]. The authors start from a
configuration space built as the semidirect product of the Poincaré group with
the product of N 4-vectors. The full Poincaré group enters this configuration
space. Its action as given in section IV of [1] transforms all 4-vectors in the
same way.

A one-time quantum approach to the relativistic many-body problem is de-
veloped and applied in [15]. The authors introduce relative coordinates and
interactions depending on them.

These approaches share certain geometric and group relations with the present
approach through G-manifolds, but the treatment of classical versus quantum
mechanics, the role of symmetry and dynamical groups, and the setting of time
coordinates requires further comparative studies.

4. Examples of internal coordinates on (G × G).

Translation groups.

For the continuous commutative and additive translation group T = (a) we
get, upon writing group multiplication by addition, for the internal coordinate,
x = g1(g2)−1 → (a1 − a2) which is the relative coordinate as expected.

This result is in line with Example 2 considered earlier.
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Inhomogeneous matrix groups.

The Euclidean and Poincaré group are semidirect products of a normal trans-
lation group with a matrix group T ×s G with elements (a, g) and product
(a1, g1)(a2, g2) = (a1 + g1a2, g1g2). For the present purpose which involves
right actions it is convenient to rewrite the product form of the group elements
according to

(a, g) = (0, g)(a′, e) = (ga′, g), (a, g)−1 = (−a′, g−1), a′ := g−1a. (10)

We get from eq. 6 by group multiplication and use of eq. 10 the internal group
coordinate

x = (a1, g1)(a2, g2)−1 = (g1a
′
1, g1)(−a′2, g

−1
2 ) = (0, g1)(a′1 − a′2, e)(0, g

−1
2 )
(11)

Therefore, up to left and right homogeneous transformations, the internal group
coordinate x always is the difference of two translation vectors. This result is
in line with intuitive expectations about a two-particle relative coordinate.

5. Kronecker products and two-particle state
decompositions on (G × G).

Kronecker product representations allow to analyze a class of two-particle
states and interactions on (G × G).

The (G×G)-manifold supports a Hilbert spaceHG×HG with a basis given
by products of IR of G.

We first give results from representation theory, use a notation familiar from
SU(2) and disregard multiplicity. Group/subgroup relations imply subduction
rules for the IR. Under right action eq. 17 of the diagonal subgroup diag(G×G)
on (G × G), the IR Dj1 × Dj2 of (G × G) can be decomposed by Wigner
coefficients into IR Dj3 with respect to this action,

D
((j1,j2)j3)
m3k3

(g1, g2)

=
∑

m1k1m2k2

〈j1m1j2m2|j3m3〉Dj1
m1k1

(g1)D
j2
m2k2

(g2)〈j1k1j2k2|j3k3〉,∑
k1k2

Dj1
m1k1

(g1)D
j2
m2k2

(g2)〈j1k1j2k2|j3k3〉

=
∑
m3

〈j1m1j2m2|j3m3〉D((j1,j2)j3)
m3k3

(g1, g2). (12)

The second line arises from the first one by use of the orthogonality relations
of the Wigner coefficients. Next we subduce IR from (G×G) to diag(G×G)
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and find [
Dj1

m1k1
(g1)D

j2
m2k2

(g2)
]
g1=g2

=
∑

j3m3k3

〈j1m1j2m2|j3m3〉Dj3
m3k3

(g1)〈j1k1j2k2|j3k3〉 (13)

In the frame of Newton and Wigner [16] extended to two elementary particles,
we now interpret the second line of eq. 11 as an IR coupled two-particle state ψ
on (G×G) since it transforms irreducibly under the left action of diag(G×G).
Next we transform this state by eq. 6 to the group manifolds 〈X, x〉.

Upon insertion of g1 = X, g2 = x−1X into eq. 11 we find with eq. 12 and
by use of the representation property

ψ(X, x, (j1, m1), (j2, m2), (j3, k3))

:=
∑
k1,k2

Dj1
m1k1

(X)Dj2
m2k2

(x−1X)〈j1k1j2k2|j3k3〉

=
∑
s2s3

Dj3
s3k3

(X)Dj2
m2s2

(x−1)〈j1m1j2s2|j3s3〉. (14)

In eq. 13, the IR two-particle state on (G×G) eq. 11 with right-hand Wigner
coupling is written in terms of the new external and internal G-manifolds.
Under the right action of the symmetry group diag(G×G), the total IR Dj3(X)
is carried entirely by the external manifold X . The label k3 of Dj3 is fixed and
transforms under the right action of diag(G × G). The sum over the label s3

reflects the remaining coupling between the external and internal G-manifolds.
The IR Dj2(x−1) is linked to j3, j1 by a triangle condition ∆(j1, j2, j3) between
the IR.

Example 3: Casimir two-particle interactions.
It follows from Prop 3 in particular that the second order Casimir operator of

G acting from the left (or right, since x by itself is a G-manifold) on x, denoted
by C2(x), is invariant under the symmetry group diag(G × G).

The state eq. 11, first line is an eigenstate of the second-order Casimir
operators C2(g1), C2(g2), and, eq. 13, an eigenstate of
C2(X), C2(x). Applying C2(x) to the expression in eq. 13 for the example
G = SU(2) we find the eigenvalue j2(j2+1). For fixed representation Dj3(X)
we can even find the spectrum of the Casimir operator C2(x): Its states of
eigenvalue j2(j2 +1) are degenerate and labelled by j1. The degeneracy ranges
over all j2 such that ∃j1 : ∆(j1, j2, j3) where ∆ denotes the triangle condition
of IR. In any such case we can construct a state of type eq. 13. The possible
values of j1 for fixed j2, j3 label the degeneracy which therefore is given by

deg(j2)|j3 = j2 + j3 − |j2 − j3|. (15)
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For example for j3 = 1, j2 = 1/2 we get deg(1/2)1 = 1. -
Example 4: Hamiltonian two-particle interactions.
It is natural to extend the Casimir interaction into an interaction operator

O = C2(x) + V (x) (16)

whose action on the internal group coordinates x resembles the Hamiltonian
in a two-body Schroedinger equation. The eigenstates of the general operators
in eq. 16 still have the term Dj3(X) as functions of X but will have a more
general dependence on x than the state eq. 13. In particular we cannot expect
a single IR of the commuting group eq. 9.

6. Fusion of two elementary systems on (G × G).

De Broglie’s theory of fusion is formulated in terms of wave equations, see
[4]. It has no relation to nuclear fusion. We approach the geometry of de
Broglie fusion with the groups (G × G) > diag(G × G), the external/internal
coordinates on (G × G), and the Kronecker products of IR.

Consider the diagonal restriction (g1, g2) → (g1, g1). In the external/internal
coordinates on (G × G) eq. 6 we have 〈X, x〉 → 〈X, e〉.

4 Def: Fusion of two elementary systems is the limit x → e taken for
Kronecker coupled two particle states on (G × G).

Under this fusion two elementary particles go into a single elementary particle
while the internal submanifold shrinks to a point. The irreducible two-particle
state eq. 13 under fusion x → e in agreement with eqs. 11, 12 reduces to
Dj3

m3k3
(X).

Fusion may be achieved by the action of an operator. We can construct a
two-body operator, invariant under the right action of diag(G×G), which fuses
the two particles into a single one. Define the fusion integral operator F acting
on a function φ(x) as

(F ∗ φ)(x) :=
∫

dµ(x̃)δ(e, x̃)φ(x̃) = φ(e). (17)

The kernel of this operator may be rewritten by use of Appendix A in terms of
characters,

δ(e, x̃) =
∑

j

(|j|/|G|)χj(x̃). (18)

Then clearly the application of this operator to a two-particle product state,

F ∗
[
Dj1

m1k1
(g1)D

j2
m2k2

(g2)
]

=
∑

j3m3k3

〈j1m1j2m2|j3m3〉Dj3
m3k3

(X)〈j1k1j2k2|j3k3〉, (19)
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produces a sum of fused irreducible single-particle states as functions of X
with corresponding algebraic probability amplitudes. An additional projector
P j3m3k3 would reduce this sum to the components of a single irreducible state.
By construction, two elementary particles can fuse only into a state j3 contained
in the Kronecker product (j1 × j2) of their individual IR.

7. Elementary systems on the Poincaré-manifold.

We turn to the group theory of massive relativistic fields. From the covariant
fields defined on massive orbits of Minkowski momentum space we pass to
irreducible Mackey representations of the Poincaré group. As was stressed by
Bargmann and Wigner [3] p.212, two descriptions which are equivalent as IR
may be quite different with respect to appearance, observables and possible
interactions. The most important relations between different forms of IR of the
Poincaré group are discussed in [17].

7.1 Mackey and covariant fields.

Following [17] I p. 112-114, we write down the construction of the induced
Dirac representations for S = 1/2 and mass m. The full group is the Poincaré
semidirect product group P = T ×s G, with T the group of space-time trans-
lations and G = Sl(2, C). For the little group K = SU(2) < G of massive
fields we choose a finite unitary IR d(k).

The standard Mackey functions f(g) = fMa(g) have (i) the induction prop-
erty, (ii) the transformation under right action, and (iii) the scalar product

(i) k ∈ K < G : f(kg) = d(k)f(g),
(ii) (TMa

g′ f)(g) =: f̃(g) = f(gg′),

(iii) (f, f ′) =
∫

dµ(c)(f(g), f ′(g))K, dµ(cg) = dµ(g) (20)

The operators TMa
g′ have the homomorphism property

TMa
g′1

TMa
g′2

= TMa
(g′1g′2). (21)

The covariant fields according to [17] are constructed by using instead of K the
larger subgroup G = Sl(2, C) and a finite (non-unitary) representation D(g)
which when restricted to K is required to be unitary. The covariant field is
determined from the Mackey field as

φ(g) := D−1(g)f(g) (22)
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The properties (i,ii,iii) eq. 19 for φ(g) are then derived (!) from eqs. 19 and 21
and read

(i) k ∈ K < G : φ(kg) = φ(g),
(ii) (TCo

g′ φ)(g) =: φ̃(g) = D(g′)φ(gg′),

(iii) (φ, φ′) =
∫

dµ(c)(φ(g), D+(g)D(g)φ′(g)). (23)

The group operators TCo
g′ were redefined in this equation. In [17] it is shown that

the standard wave equations of covariant fields are projection equations which
assure the irreducibility in the reduction of D(g) under Sl(2, C) ↓ SU(2).
Note from (i) eq. 22 that φ(g) becomes a function exclusively on the cosets
K\G. Compared to a function on the full group, the covariant field is truncated
with respect to the parameters of K. The new transformation operators TCo

g

(ii) resemble the group action on a tensor field. The typical fields used for
elementary particles are of covariant form. We particularize these equations
to the Poincaré group, the semidirect product T ×s Sl(2, C) of the space-time
translation group T and the group Sl(2, C) with elements (a, g), a ∈ T , g ∈
Sl(2, C). The Lorentz representation is L(g), g ∈ Sl(2, C). For the covariant
form we extend SU(2) to Sl(2, C) and choose D(g) as the Dirac representation.
The cosets G/H can be labelled by (0, c), c ∈ Sl(2, C)/SU(2) which is a
manifold of dimension 3, see Appendix B. A crucial observation is that these
cosets are in one-to-one correspondence to the points of the mass shell: We
can reinterpret each coset c by a vector k pointing to a fixed point of the mass

shell in Minkowski momentum space, k = L(c−1)
0
k,

0
k = (mc/h, 0, 0, 0),

with L being the Lorentz representation of c−1. The orbit has the structure

SL(2, C)/SU(2) and the representative point L(e)
0
k = (mc/h, 0, 0, 0) and so

applies to any massive IR of the Poincaré group with little group SU(2). The
covariant relativistic fields apparently represent elementary systems of general
type. They appear as vector-valued functions on the massive part of Minkowski
momentum space.

7.2 From covariant to Mackey fields.

The covariant massive fields were derived in eq. 22 from the Mackey fields.
Now we wish, starting from the irreducible covariant fields as input, to recon-
struct the Mackey fields. For the converse to eq. 22 we find

5 Prop: Mackey fields from covariant fields.
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Given a covariant relativistic field with the properties (i − iii) eq. 22 and a
representation D(g) of K, define a Mackey field and its transformation by

fMa(g) := D(g)fCo(g)
(ii) (TMa

g′ fMa)(g) := fMa(gg′)

(iii) (fMa, f ′Ma) =
∫

dµ(c)(fMa(g), f ′Ma(g))K, (24)

Then we can prove from eq. 22 (i − iii) the Mackey left transformation rule
eq. 19,

(i) k ∈ K < G : fMa(kg) = D(kg)fCo(kg)
= D(k)fMa(g). (25)

7.3 Obstruction of Poincaré-manifolds by covariant fields.

We turn to the interpretation of the fields in terms of G-manifolds. The
Mackey fields are proper induced representations of the Poincaré group, they
are defined on any element (a, g), a ∈ T, g ∈ Sl(2, C) of the 10-parameter
Poincaré G-manifold.

This is not the case for covariant fields. Due to the property (i) eq. 22, these
fields are functions on the cosets SU(2)\Sl(2, C). They are truncated w.r.t a
three-parametric left subgroup SU(2) of Sl(2, C) and therefore depend on 3
real parameters out of 6 parameters of Sl(2, C) . By this property they are
adapted and can be interpreted on massive orbits or mass shells in Minkowski
momentum space of type Sl(2, C)/SU(2). The group G acts on the covariant
fields as a Lie transformation group.

The covariant fields then fail to meet the crucial assumptions of being full
irreducible representations of the Poincaré group made in section 2 for ele-
mentary systems on this G-manifold. This failure also obstructs the approach
of section 3 with left and right actions and external/internal coordinates. By
the reconstruction of eq. 23, we can recover the Mackey fields only up to this
subgroup SU(2) in the form fMa(c).

A way to overcome these obstructions is found as follows:
6 Prop: All 10 Poincaré group parameters can be found for recon-

structed Mackey fields.
In the reconstructed fields, we reintroduce the missing SU(2) subgroup by a

right action of Sl(2, C). For c ∈ SU(2)\Sl(2, C) from a set of coset generators
and g ∈ Sl(2, C) we have a unique pair u′, c′ with cg = u′c′, u′ ∈ SU(2), c′ ∈
SU(2)\Sl(2, C).

Conversely, since the products u′c′, u′ ∈ SU(2), c′ ∈ SU(2)\Sl(2, C)
cover Sl(2, C), for any product u′c′, u′ ∈ SU(2), c′ ∈ SU(2)\Sl(2, C) we
can find a pair c, g such that u′c′ = cg, as is shown in the lemma of Appendix
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B. Applied to the reconstructed Mackey field we get

(TMa
g fMa)(c) = fMa(cg) = fMa(u′c′) = D(u′)fMa(c′). (26)

Written out in more detail, the elements of the Poincaré group are (a, g), a ∈
T, g ∈ Sl(2, C). The reconstructed Mackey fields depend on cosets (0, c), c ∈
SU(2)\Sl(2, C). Acting on (0, c) from the right first with the translation
(a, e) and then with the element g ∈ Sl(2, C) we find with the Lorentz action

k = L(c−1)
0
k

(0, c)(a, e)(0, g) = (ca, u′c′),
(T(a,e)(0,g′)f

Ma)(0, c) = fMa(c a, u′c′)

= exp(ikµaµ)D(u′)fMa(0, c′) (27)

The Mackey fields by eq. 26 are now augmented by 4 translation parameters
aµ and 3 parameters of u′ ∈ SU(2). Together with the 3 coset parameters of
c′ we get all 10 Poincaré parameters. Part of the translation parameters (c a, e)
in eq. 26 will be interpreted in section 8 as position variables.

7 Prop : Right actions on covariant and reconstructed Mackey fields.
For the right group action on covariant and Mackey fields we have the fol-

lowing results: Applied from the right, Sl(2, C) and its Lie generators act on
covariant fields as a Lie transformation group and form a Lie algebraLSl(2, C).
Here the Lie generators involves only the ” group parameters of the coset
SU(2)\Sl(2, C).

The group action ofSl(2, C) applied from the right to (reconstructed) Mackey
fields and its Lie generators can be found by standard methods from the struc-
ture function as first-order differential operators in the group parameters. The
generators form the Lie algebra LSl(2, C) and in general involve all the 10
parameters of the group, see [7].

Example 5: Generators of SU(2) on coset spaces.
We illustrate the difference between actions on G/I = G and on G/H, H =

I with G = SU(2). We adopt the standard Euler angle parameters α, β, γ from
Edmonds [6]. The generators for the left action of SU(2) on SU(2) from [6]
p. 64 take the form

L1 = −i

[
− cos(α) cot(β)

∂

∂α
− sin(α)

∂

∂β
+

cos(α)
sin(β)

∂

∂γ

]
,

L2 = −i

[
− sin(α) cot(β)

∂

∂α
+ cos(α)

∂

∂β
+

sin(α)
sin(β)

∂

∂γ

]
,

L3 = −i
∂

∂α
. (28)

and fulfill the standard commutation rules of LSU(2). For the coset space
SU(2)/U(1) of dimension 2, the coset representatives depend only on the two
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Euler angles α, β. The generators for the left action of SU(2) on the coset
space SU(2)/U(1) are obtained from the expressions of eq. 27 by dropping
the derivatives with respect to the parameter γ. With the replacement (α, β) →
(φ, θ), the new generators take the form familiar from the action of SU(2) on
R3 with the same orbit structure, [6] p. 11. This is another Lie group action,
and so the commutator relations must be the same as before.

8. Relativistic position operators and coordinates.

Position operators for relativistic fields were considered first by Newton and
Wigner in [16]. Wightman [22] discusses localizability and Mackey imprim-
itivity in terms of representations of the Euclidean subgroup of the Poincaré
group. Lorente and Roman [13] analyze position and spin operators for a wide
variety of relativistic fields. With the present analysis we wish to demonstrate
the presence of the Poincaré manifold beyond Minkowski space and the dis-
tinction between Mackey and covariant analysis.

8.1 Position operators for relativistic Mackey fields.

First we consider in line with [16] the Klein-Gordon field ψ(k). The essential
condition on the localized eigenstates of the position operators is eq. (6a) in [16].
It demands that the scalar product between a localized state and its Euclidean
translate vanishes. The localized Klein-Gordon state is then found as

ψloc(kl, k0) = exp(ikrar)
√

k0, (k0)2 =
∑

j

(kj)2 + (
mc

h
)2. (29)

It is an eigenstate of the Newton-Wigner position operators [16] defined as

QWi,r := (−i)
[

∂

∂kr
+

kr

2(k0)2

]
, r = 1, 2, 3. (30)

So far we did not distinguish between covariant and Mackey fields. For the
Klein-Gordon field this distinction collapses and so our previous analysis is
correct. Since we have to consider differential operators with respect to kµ, in
general we expect a distinction between position operators acting on Mackey
and on covariant fields respectively. It turns out that the position operators are
simpler for Mackey fields.

The massive fields depend on four momenta, but these in turn are constrained
to a mass shell. We shall often write the fields as functions ψ(kl, k0) of four
momentum variables but keep in mind that k0 = k0(k1, k2, k3).

Our present approach to Mackey position operators runs as follows: Con-
sider a shift ks = −ks → ks(vs) = ks + vs of the momenta, applied to
a massive Mackey field. Since the mass shell is conserved, the component

k0 =
√∑

j(kj)2 + (mc/h)2 must change according to k0 → k0(vs) =
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j(kj)2 + 2ksvs + (ks)2 + (mc/h)2. The standard generator on the trans-

formed fields depending on the momentum shift is obtained by differentiation
of the fields first w.r.t ks, k0, then w.r.t vs = −vs and subsequent evaluation at
vs = 0,

QMa,s = (−i)(
∂

∂ks
)tot = (−i)

[
∂

∂ks
+

ks

k0

∂

∂k0

]
, (31)

By the upper index tot we indicate that we mean the total differentiation of
the field w.r.t ks. This expression differs from the one given by Newton and
Wigner. For the general form of a massive Mackey field

ψ = exp(i
∑

j

kjaj)ψ0(kl, k0) (32)

this operator yields

QMa,sψ = exp(i
∑

j

kjaj)
[
as − i

∂

∂ks
− i

ks

k0

∂

∂k0

]
ψ0(kl, k0). (33)

In particular if ψ0,loc(kl, k0) = (k0)α, we find

QMa,s exp(i
∑

j

kjaj)(k0)α =
[
as − iα

ks

(k0)2

]
exp(i

∑
j

kjaj)(k0)α. (34)

so that this field is an eigenfunction of the new position operator. Applied to
a localized Mackey field with α = 1/2, the Mackey position operators eq. 34
give the same eigenvalues as the ones of Newton and Wigner.

We find that the eigenvalues of the position operators yield essentially the
three parameters of the Euclidean translation group. This is to be expected
since the Mackey fields live on the Poincaré G-manifold and therefore must
depend on all parameters of this group. The momenta stand for the cosets c of
Sl(2, C)/SU(2) and therefore are functions of the group parameters.

8.2 Position operators for fields with spin.

Position operators for relativistic fields with spin were analyzed by Newton
and Wigner [16]. The fields are constructed by the technique of Bargmann
and Wigner [3]. The Bargmann-Wigner field equations are copies of the Dirac
equation. Since the Dirac field and equation is constructed in covariant form,
the Bargmann-Wigner fields too belong to this form.

Newton and Wigner consider massive relativistic Bargmann-Wigner fields
with spin s. The scalar product of these fields from [3] p. 89 and [16] eq.(15)
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is

〈ψWi, ψWi〉

=
∫

d3k k−2α
0 (ψMa(k)+ψMa(k)),

k0 =
√∑

(kj)2 + (mc/h)2, (35)

with 2α = 2s + 1 and kµ on the mass shell. The position operators of [16] are
essentially given by momentum derivatives as in eq. 31. Modifications arise first
of all by making these derivatives hermitian with respect to the scalar product
eq. 34. Newton and Wigner construct completely symmetric states of spin s
in terms of pure spin variables. To these they apply projection operators which
assure that the projected fields obey the general Bargmann-Wigner equations
given in [3]. In [16] eq. (22) they construct the position operators and in [16] eq.
(21b) their eigenstates in momentum space. These Wigner position operators
refer to covariant fields and their transformation properties.

We have argued above that the covariant fields should be replaced by Mackey
fields in order to describe them as genuine states on the full Poincaré G-
manifold. It would be of interest to find corresponding Mackey position opera-
tors which refer to the Mackey form of fields with spin s and their transformation
properties, and to relate them to the Wigner type. This detailed elaboration and
comparison cannot be given here.

The main point for considering position operators in relation to the presence
of Poincaré G-manifolds can be seen without detailed analysis: Clearly the
Mackey fields become explicit functions of the Euclidean translation parameters
of the Poincareé G-manifold. Moreover the construction of position operators
shows that these translation parameters are associated with observables of the
fields on the full Poincaré G-manifold. More work is necessary in order to
display the three SU(2) parameters which are missing in the covariant fields.

9. From Dirac fields to Bargmann-Wigner fields by fusion.

We now wish to derive the Bargmann-Wigner field equations from the con-
struction of certain Kronecker products of Dirac spinors. As a result we shall
reinterpret the mass of the Bargmann-Wigner field. We shall use covariant
fields in order to keep in line with the standard references. The Dirac IR of the
Poincaré group we denote by D(m,1/2). Each Dirac spinor will be described
by a four-component object depending on momentum variables. The Dirac
equation we take as

(Pχ)(k) = (h/mc)
∑

µ

γµkµχ(k) = χ(k) (36)
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According to Schrödinger [19] and to [17] this equation is a projection on a
single IR of SU(2).

The spinor χ(k) for general k on the mass shell is determined from its

value χ(
0
k) by the Dirac and Lorentz representations D(c), L(c) of an element

c ∈ Sl(2, C). We still have the freedom of choosing the two first Dirac spinor

components as functions of
0
k. Consider two such spinors and the Kronecker

product of their transformations. These Kronecker products fall into the sym-
metric and the antisymmetric part. Construct three basis functions for the
symmetric Kronecker product according to the spin coupling rules 1

2 ×
1
2 → 1,

M = 1 : ψ(1, 2,
0
k) = χ1(1,

0
k)χ1(2,

0
k),

M = 0 : ψ(1, 2,
0
k) =

√
1
2
(χ1(1,

0
k)χ2(2,

0
k) + χ2(1,

0
k)χ1(2,

0
k)),

M = −1 : ψ(1, 2,
0
k) = χ2(1,

0
k)χ2(2,

0
k). (37)

Application of D(κ) to the products yields 10 symmetric basis functions of a
symmetric bilinear field with components

ψij(1, 2, k) =
1
2

[χi(1, k)χj(2, k) + χj(2, k)χi(1, k)] (38)

To write the spinors as explicit functions on the Poincaré group with elements
(a, g) we apply to both the same translation operator and introduce

(T(a,e)χ)(s, k) = exp i(kµaµ)χ(s, k), s = 1, 2. (39)

Since the Poincaré group elements for both spinors are identified, (a1, g1)
=(a2, g2), we speak of the fusion of the representations. We could even identify

the components of the two spinors at k =
0
k without getting a trivial result in eq.

36.
Both spinors obey the same Dirac projection equation. Application to ψ

from eq. 38 of the matrix operator P = P (k) from the left yields

(Pψ)i,j =
1
2

[(Pχ(1, k))iχ(2, k)j + χ(1, k)i(P (χ(2, k))j]

= ψi,j. (40)

Similarly one finds under application from the right

(ψPT)i,j = ψi,j. (41)

These two equations are the Bargmann-Wigner equations for ψij.
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8 Prop: Symmetric Bargmann-Wigner field from two Dirac fields. The
Bargmann-Wigner field and equations can be obtained by the fusion of two
symmetrized Dirac spinor representations D(m,1/2). It can be shown that the
Bargmann-Wigner equations imply that the field ψ belongs to the single irre-
ducible massive vector field and representation D(2m,1).

The mass M = 2m of the Bargmann-Wigner field can be directly verified
from the transformation properties of the product bases eq. 36 under transla-
tions. One finds in particular

(TCo
(0,a′)(T(a,g)χ))(k) = exp i(kµa′µ + (L(g−1)k)µaµ)χ(L(g−1)k),

(TCo
(0,a′)ψ)(k) = exp i 2(kµa′µ + (L(g−1)k)µaµ)ψ(L(g−1)k)

(42)

The second line results from the bilinear form eq. 38 of ψ and implies that the
wave vector for the Bargmann-Wigner field is Kµ = 2kµ and hence the mass
is M = 2m. This is the minimal mass in the Kronecker product of two Dirac
representations of equal mass according to Joos [9]. Again we emphasize [17]
that a single IR D(M,S) of the Poincaré group has different realizations in terms
of fields and field equations.

By a detailed analysis of the Dirac representation of Sl(2, C) and its relation
to the Lorentz group, the Bargmann-Wigner field can be related to a massive
vector field. This analysis is given for example in [14] pp. 30-32 in a non-
standard metric, compare also [11]. In this way one finally arrives at a relativistic
massive vector field which resembles the construction by fusion of the photon
suggested by de Broglie.

There exists an antisymmetric counterpart of the Bargmann-Wigner con-
struction eqs. 39, 41. The corresponding antisymmetric field corresponds to
D(2m,0). This antisymmetric field can be rewritten in terms of a scalar Klein-
Gordon field as shown in [11].

10. Elementary systems in interaction.

We sketch two interacting elementary systems were use can be made of the
external and internal submanifolds 〈X, x〉.

10.1 Euclidean invariant interactions.

Consider two elementary systems on the Euclidean group G = ISO(3,
R). The submanifolds 〈X, x〉 are as given in eq. 11. Let C(X), C(x) denote
the Casimir operators corresponding to the squares of the momenta and hence
related to the kinetic energy. An interaction operator of type

H = C(x)/(2µ) + V (|a′1 − a′2|2) (43)
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commutes with the symmetry group diag(G×G) given as a function of group
elements and generators of the dynamical group. But, since the second potential
part V is not expressible by the right G-action of the dynamical group G, we
can no longer expect a single IR of G w.r.t x. Since V and hence H are invariant
under the rotation subgroup SO(3, R), the eigenvalues of H belong to fixed IR
of the rotation group.

10.2 Interacting Dirac spinor fields.

As an example of a non-trivial interacting relativistic system we consider
two Dirac fields in interaction. We denote the single-particle observables of
these particles by upper indices 1, 2. The Poincaré group parameters for mass,
translation parameters and momenta are then (mi ai, gi) i = 1, 2 with m1 =
m2. We have a correspondence between g ∈ Sl(2, C), coset generators c and

momenta by k(g) = L(g−1)
0
k= L(c−1)

0
k where g = uc, u ∈ SU(2). We pass

from two group elements (a1, g1),(a2, g2) with the help of the relations of eqs.
10, 11 and Appendix C to the external and internal group elements (A, G) =
(a1, g1) , (a, g) = (0, g1)(a

′1 − a
′2, g−1

2 ). We have extracted from (a, g) two
pure Lorentz transformation to the left and to the right. Since the interaction
operator will be covariant under Lorentz transformations, these factor does not
affect the interaction and hence may be dropped.

Reduced masses and some relevant scalar products are treated in Appendix
C.

For the part depending on the external G-manifold we may choose for ex-
ample the IR D(M′,0), a Klein-Gordon field ψ(K) of spin S = 0 and obeying
a Klein-Gordon equation

(
∑

ν

KνKν − (M ′c/h)2)ψ(K) = 0. (44)

The alternative IR D(M′,1) for the external G-manifold requires extra consid-
eration on the spin. Note that the mass M ′ in both cases obeys M ′ ≥ 2m. We
can use a plane wave solution for the external manifold.

The interaction may be constructed as an operator acting on the internal
coordinates (a, g) or rather (a, k(g)). We can take this interaction operator as
an extension of the free Dirac operator w.r.t. (a, g) with reduced mass µ, see
Appendix C, minimally coupled to an electromagnetic field in the form

(h/µc)
∑

ν

γν(kν − eµ

h
Aν(k))χ(k) = χ(k). (45)

This equation is Lorentz invariant and therefore allows to drop the two
Lorentz transformations appearing in the internal coordinates (a, g). It is cus-
tomary to consider eq. 45 in position rather than momentum space. The trans-
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form to position space involves a Fourier transform. The mass shell condition
in position space is expressed by the usual second order differential equation.
A new feature in position space is that the distinction between the forward and
backward light cone in momentum space has no local counterpart [17] p.146-
148. This leads to the doubling of orbits and hence IR of the Poincaré group,
and to the appearance of positive and negative energy solutions. Moreover the
equation may be simplified by a Foldy-Wouthuysen transformation of the type
reviewed in [20].

Eq. 45, with an appropriate choice of the vector potential Aµ, serves as the
basis for a description of the relativistic hydrogen atom or of positronium. We
refer to the classical treatment by Pauli [18] pp. 155-166 and to [12]. From
field theory [8] one can construct improved versions of the vector potential.

11. Scission of an elementary system.

Fusion was analyzed in section 3 in terms of reduction of representations for
the group/subgroup scheme (G × G) > diag(G × G). Frobenius reciprocity
for the converse induction of representations in the present interpretation leads
to the notion of scission of elementary systems of general type. Again we stress
that scission here is a concept of group theory and has no relation to nuclear
scission. By the process of scission, a single ES is decomposed into a pair of
ES. The IR of the three ES are again linked by the same triangle condition as
in fusion.

Frobenius reciprocity applies to the group/subgroup pair under consideration.
It relates two reductions of reducible representations: (1) An IR of the group
under restriction to the subgroup can be reduced into IRs of the subgroup. (2) A
representation of the group, induced from an IR of the subgroup, can be reduced
into the IRs of the full group. Both processes are reciprocal to one another.

We now induce from an irreducible representation of H = diag(G × G) a
reducible representation of (G × G). The coset generators of H < (G × G)
and their transformation under (G × G) we choose as

c̃i := (e, ci), ci ∈ G,

(g1, g2)(e, ci) = (e, cj)(g1, g1),
g2ci = cjg1 (46)

The elements ci, cj run over G. We choose the irreducible representation
Dj3

m3k3
(g1) of diag(G × G) and get the induced representation

Dj3↑
lm3,ik3

(g1, g2) = δ(c−1
l g2ci, g1)D

j3
m3k3

(g1) (47)
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This representation is reducible into the IR of (G×G). The explicit reduction
may be obtained by use of standard Young operators and reads

Dj3↑
lm3,ik3

(g1, g2)

=
∑

j1m1k1j2m2k2

C(lj3m3, j1m1j2m2)

Dj1
m1k1

(g1)D
j2
m2k2

(g2)C(j1k1j2k2, ij3k3),

C(lj3m3, j1m1j2m2) =
[
|j1||j2|
|G||j3|

]1/2∑
µ2

Dj2
µ2m2

(c−1
l )〈j1m1j2µ2|j3m3〉,

C(j1k1j2k2, ij3k3) =
[
|j1||j2|
|G||j3|

]1/2 ∑
κ2

Dj2
k2κ2

(ci)〈j1k1j2κ2|j3k3〉. (48)

The reduction coefficients C obey the two unitary relations∑
j1m1j2m2

C(lj3m3, j1m1j2m2)C(j1m1j2m2, ij3k3) = δ(cl, ci)δm3,k3 ,∑
ij3m3

C(j′1k1j
′
2k2, ij3m3)C(ij3m3, j1m1j2m2) = δj′1j1δj′2j2δk1m1δk2m2 .

(49)

Frobenius reciprocity assures that the multiplicities obey

m(j3 ↑ (j1 × j2)) = m((j1 × j2) ↓ j3) (50)

The multiplicities take the values 1, 0 due to the assumed simple reducibility.
9 Prop : Scission of elementary systems. Now we give the scission inter-

pretation of the induced representation in terms of elementary particles. The
induced representation eq. 47 is a two-particle state. Particle 1 is in an ele-
mentary irreducible state Dj3 whereas particle 2 is in a reducible state located
at g2 = clg1c

−1
i . The reduction process yields the possible irreducible product

states Dj1 × Dj2 of two elementary particles. For given j3, the possible IRs
of the pair are restricted through reciprocity such that j3 must be contained in
the Kronecker product (j1 × j2). We can construct a scission operator S. It
would create from the irreducible state Dj3 of the first particle a second parti-
cle in a reducible state localized at g2. Next we could project with an operator
P j1m1k1j2m2k2 the reducible two-particle state into an irreducible one. Products
of the coefficients C would yield the corresponding amplitudes.

The product of the scission and projection operators are the counterparts of
the fusion and projection operator introduced in the previous section. The rules
for the possible triples (j1, j2, j3) in scission by Frobenius reciprocity eq. 50
are identical to the rules in fusion.
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12. Conclusion.

A novel approach to the geometry and dynamics of elementary systems is
based on direct products of G-manifolds. External and internal coordinates split
under the right action of the diagonal symmetry group G. Various directions of
future research open up and deserve investigation in detail.

13. Appendix.

13.1 A: Orthogonality and completeness of unitary
representations.

We use the notation familiar from SU(2). |G| denotes the invariant integral
over G, |j| the dimension of the IR Dj.

The orthogonality and completeness relations of the IR of a compact Lie
group G, [3] pp. 134-158, read∫

Dj1
k1m1

(g−1)Dj2
m2k2

(g)dµ(g) = δ(j1j2)δ(m1m2)δ(k1k2)
|G|
|j1|

,∑
jmk

|j|
|G|D

j
mk(g

′)Dj
km(g−1) = δ(g′, g) (51)

13.2 B: Parameters, cosets and multiplication rules for
Sl(2, C).

We start from a double coset decomposition of a general element g ∈
Sl(2, C) into left and right factors (u1, u2) ∈ SU(2) and a double coset repre-
sentative q(λ),

g = u1q(λ)u2,

q(λ) =
[

λ 0
0 λ−1

]
, λ > 0 (52)

This equation is easily shown by diagonalizing the positive definite hermitian
matrices gg+ and g+g respectively and taking the square roots of the eigen-
values. For (u1, u2) we use a factorization into three Euler angles (αi, βi, γi).
The Lorentz transformation corresponding to q(λ) is a boost between the co-
ordinates x0, x3 so that the rotation u3(γ1) commutes with it. Therefore we
must eliminate one parameter say α2 in the product eq. 51 to get a unique
parametrization in terms of 6 real Lorentz parameters (α1, β1, γ1, λ, β2, γ2).

The coset representatives of SU(2)\Sl(2, C) are now given by

c = c(λ, β2, γ2) = q(λ)u2(β2, γ2). (53)
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Given the set 〈c〉 of coset generators from eq. 53, the right action of g has a
coset decomposition,

cg = u′c′. (54)

For Prop 5 in section 5 we wish to prove the stronger converse
Lemma: For any pair u′ ∈ SU(2), c′ ∈ SU(2)\Sl(2, C) and any c ∈
SU(2)\Sl(2, C) there exists a unique g ∈ Sl(2, C) such that eq. 54 holds.
Proof: For any chosen fixed u′, c′, we choose c and g := (c)−1u′c′. Clearly eq.
54 is fulfilled.

13.3 C: Observables in the relativistic 2-body system.

Consider two relativistic particles with rest masses m1, m2, momenta k1, k2,
and translation parameters a1, a2. We introduce new external and internal mo-
menta and translation parameters by[

K
k

]
=

[
1 1
m2
M −m1

M

] [
k1

k2

]
,

[
k1

k2

]
=

[
m1
M 1
m2
M −1

] [
K
k

]
,[

A
a

]
=

[
m1
M

m2
M

1 −1

] [
a1

a2

]
,

[
a1

a2

]
=

[
1 m2

M
1 −m1

M

] [
A
a

]
. (55)

We define the masses M := m1 +m2, µ := m1m2/(m1 +m2). But the mass
M must be distinguished from the mass M ′ of the external state. This mass
M ′ is determined by the square of the momentum observable K = k1 + k2 as

〈K, K〉 = (
M ′c
h

)2 ≥ (
Mc

h
)2. (56)

One can verify the following relations between relativistic scalar products of
4-vectors referring to the two particles on one hand and to the external and
internal vectors on the other:

1
2m1

〈k1, k1〉 +
1

2m2
〈k2, k2〉 =

1
2M

〈K, K〉 +
1
2µ

〈k, k〉,

〈k1, a1〉 + 〈k2, a2〉 = 〈K, A〉 + 〈k, a〉 (57)

The first row relates the mass Casimir operators and the second one the expres-
sions appearing in the unitary space-time translation operators.

A similar relation allows to rewrite the sum of the generators of Lorentz
transformations for the two particles as a sum of generators of Lorentz trans-
formations with respect to the external and internal coordinates.
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Abstract The propagation of electrons in static and uniform electromagnetic fields is a
standard topic of classical electrodynamics. The Hamilton function is given by a
quadratic polynomial in the positions and momenta. The corresponding quantum-
mechanical problem has been analyzed in great detail and the eigenfunctions and
time evolution operators are well-known. Surprisingly, the energy-dependent
counterpart of the time-evolution operator, the Green function, is not easily ac-
cessible. However in many situations one is interested in the evolution of a system
that started with emitted particles that carry a specific energy. In the following
we present a suitable approach to study this type of matter waves arising from a
localized region in space. Two applications are discussed, the photodetachment
current in external fields and the quantum Hall effect in a fermionic electron gas.

Keywords: Green function. Electric and magnetic fields. Hall effect.

1. Introduction

In quantum mechanics, static and uniform electric and magnetic fields are
represented by a quadratic Hamiltonian (i.e. a second order polynomial in the
canonical coordinates ri and momenta pi). Moshinsky and Winternitz carried
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out a detailed group-theoretical analysis of this class of Hamiltonians and their
eigenfunctions [40]. Quadratic Hamiltonians are connected to linear canon-
ical transformations [39] and therefore a general phase-space approach gives
valuable information for their classification in different dimensions. Nieto used
the Moyal phase-space representation to develop a general method for deriv-
ing the time-evolution operator for quadratic Hamiltonians [41]. However, its
energy-dependent counterpart, the Green function, withstands such a system-
atic analysis and is not available in analytic form for many physical relevant
potentials. Also other methods, like the Feynman path-integral approach, are
not capable to derive the exact energy-dependent Green function.

In experiments, the energy of particles is often easier controlled than the time
of travel. Under these circumstances, the energy-dependent Green function is
relevant for the description of the system. Monochromatic particle sources arise
in numerous applications of quantum mechanics. In accelerator physics sources
located far away from the scattering region lead to boundary conditions in the
form of incoming plane waves. In this contribution, we study the behaviour
of spatially localized electron sources in perpendicular, homogeneous electric
and magnetic fields. Our discussion is based on the framework of quantum
source theory, a variant of the scattering formalism that is especially suited to
describe scattering events restricted to a region of finite volume [9, 11, 36, 34].
The idea of quantum sources was first promoted by Schwinger [47] but has not
found widespread attention. Therefore, we briefly introduce the concept and
some basic results derived from it, and stress its connection to the propagator
approach to quantum mechanics [18]. In fact, stationary elastic scattering at
pointlike sources is fully described in terms of the energy Green function. Sev-
eral fundamental properties of the quantum system, like the scattering wave
function, current density distribution, cross section, and local density of states,
immediately follow from this functional. Here, we explore in detail isotropic
point sources in crossed external static fields both in two- and three-dimensional
configuration space. The results are in agreement with experimental findings
in a recent photodetachment experiment, and offer an alternative viewpoint to-
wards the anomalous Hall effect observed in low-dimensional semiconductor
devices.

2. Elastic scattering and quantum sources

In preparation for our later discussion, we illustrate the quantum source
formalism using potential scattering in external static fields as an example.
We assume that the potential V (r) represents a localized disturbance, and that
the charged quantum particles otherwise move in the external electromagnetic
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potentials A(r), Φ(r):

H = H0 + V (r) =
1

2m
(p − qA(r)/c)2 + qΦ(r) + V (r) . (1)

The scattering solutions ψ(r), which are eigenfunctions of the Hamiltonian H
with energy E, then usually are decomposed into two parts, ψ(r) = ψin(r) +
ψsc(r), where the incident wave is a solution for the unperturbed system H0:
H0ψin(r) = Eψin(r), whereas the remainder ψsc(r) represents the scattering
wave. By comparison with (1), we find that ψsc(r) obeys:

[E − H0 − V (r)] ψsc(r) = V (r)ψin(r) . (2)

Hence, ψsc(r) is a solution to the inhomogeneous Schrödinger equation of the
full Hamiltonian H = H0 + V (r), where we denote the right-hand side in (2)
as the source term σ(r):

σ(r) := V (r) ψin(r) . (3)

Equation (2) suggests the following physical interpretation: The incoming wave
ψin(r), via the perturbation V (r), feeds particles into the scattering wave ψsc(r)
that is governed by the Hamiltonian H. While not commonly seen in standard
quantum theory, inhomogeneous partial differential equations are familiar from
other branches of physics, the heat conduction equation and Maxwell’s equa-
tions being examples for the introduction of sources. For these problems, a
sophisticated mathematical framework in the form of Green functions has been
developed. Accordingly, we introduce the energy-dependent Green function
G(r, r′; E) for the Hamiltonian H defined via [16]

[E − H0 − V (r)] G(r, r′; E) = δ(r − r′). (4)

Formally, the solution to equation (2) is given by a convolution integral com-
prising the source term and the Green function

ψsc(r) =
∫

d3r′ G(r, r′; E)σ(r′). (5)

We infer that the scattering wave generated by the source σ(r) allows for an
interpretation as the linear superposition of “fundamental” waves G(r, r′; E)
emitted from point sources Cδ(r − r′) located at r′.

2.1 Connection to the propagator

In the continuous spectrum of H, the Green function is not uniquely defined.
Depending on our choice for G(r, r′; E), we obtain a set of wave functions
ψsc(r) that differ only by eigenfunctions ψhom(r) of H. This ambiguity is re-
solved by the demand that G(r, r′; E) presents a retarded solution that enforces
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outgoing-wave behaviour of the scattering wave ψsc(r) at large distances from
the source. The representation of G(r, r′; E) as a Laplace transform of the
quantum propagator K(r, t|r′, t0) [18] guarantees the proper choice of bound-
ary conditions for the Green function [16]:

G(r, r′; E) = − i
�

lim
η→0+

∫ ∞

0
dT eiET/ −ηT/ K(r, T |r′, 0). (6)

where K(r, t|r′, t0) denotes the coordinate space representation of the time
evolution operator U(t, t0)

K(r, t|r′, t0) := 〈r|U(t, t0)|r′〉. (7)

Since for a conservative system, U(T, 0) = exp(−iHT/�) holds, we may
formally integrate (6) to obtain:

G(r, r′; E) = lim
η→0+

〈
r
∣∣∣∣ 1
E − H + iη

∣∣∣∣ r′〉 . (8)

Therefore, the Green function represents the resolvent assigned to the Hamil-
tonian H in configuration space. According to (8), G(r, r′; E) indeed acts as
an “inverse” to the operator E − H.

At least in principle, knowledge of the full Green function permits the exact
evaluation of the scattering wave ψsc(r) (5). In general, however, G(r, r′; E)
is not available in analytic form. In the favourable situation that we can find an
expression for the Green function G0(r, r′; E) associated with the unperturbed
Hamiltonian H0, G(r, r′; E) formally may be expanded into a series via the
Dyson equation:

1
E − H

=
1

E − H0

[
1 + V

1
E − H

]
. (9)

Replacing G(rr′; E) by G0(r, r′; E), i. e., neglect of the rescattering terms that
involve the perturbation V, is equivalent to the leading order of perturbation
theory in the conventional scattering formalism, which we will endorse in the
following.

While the quantum propagators K(r, t|r′, t0) are tabulated for a fairly exten-
sive set of potentials [21, 32], few energy Green functions are available in closed
form for problems in more than one spatial dimension. This list includes free
particles in two and three dimensions, as well as the Coulomb problem [26, 27],
uniformly accelerated quantum motion [10, 13, 19, 49], the isotropic harmonic
oscillator [3], motion in a homogeneous magnetic field [15, 20], and paral-
lel electric and magnetic fields [17, 35], all in three-dimensional configuration
space.
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2.2 Currents generated by quantum sources

A first obvious quantity of interest are the currents associated with the scat-
tering wave ψsc(r) generated by the source σ(r) (5). The current density dis-
tribution j(r) is defined in the usual fashion via

j(r) =
�
m
#[ψsc(r)∗∇ψsc(r)] −

qA(r)
m

|ψsc(r)|2, (10)

where A(r) denotes the vector potential, and displays the spatial distribution of
the quanta in the scattering wave, i. e., is directly related to the differential cross
section of the scattering process. Integration of j(r) over a surface enclosing
σ(r) will yield the total current J(E) emitted by the source which, in turn, is a
measure of the total scattering rate. For a concise expression, we first note that
the inhomogeneous Schrödinger equation (2) gives rise to a modified equation
of continuity. Instead of ∇ · j(r) = 0, valid for a stationary system in the
absence of sources, we now find:

∇ · j(r) = −2
�
# [σ(r)∗ψsc(r)] . (11)

Thus, the inhomogeneity σ(r) acts also as a source for the particle current j(r).
Since the current is conserved outside the source region, the surface integral may
be replaced by a spatial integration over ∇ · j(r) covering the source volume,
and upon insertion of (5) for the scattering wave in (11), we obtain a bilinear
expression for the total flux J(E):

J(E) = −2
�
#
[∫

d3r

∫
d3r′σ(r)∗G(r, r′; E)σ(r′)

]
. (12)

For pointlike sources σ(r) = Cδ(r−r′), where C is a measure for the source
strength, the calculation of the scattering currents simplifies considerably. In
this case, the scattering wave is a multiple of the Green function, ψsc(r) =
CG(r, r′; E), and the pattern of the current distribution follows from (10).
Point sources yield a particularly simple expression for the total cross section:

J(r′; E) = −2|C|2

�
lim
r→r′

#
{
G(r, r′; E)

}
. (13)

In passing, we remark that for r → r′, the Green function G(r, r′; E) diverges in
more than one spatial dimension, while its imaginary part remains well-defined
in the limit and is proportional to the scattering rate. The statement (13) is
closely related to the optical theorem of conventional scattering theory [45].

For reference, we list the total currents emitted by a free-particle point source
of unit strength (C = 1) in one-, two-, and three-di - men - sio - nal configuration
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space. For E > 0, they read:

J
(1D)
free (E) =

2m

�3k
, J

(2D)
free (E) =

m

�3
, J

(3D)
free (E) =

mk

π�3
, (14)

where k =
√

2mE/� denotes the wave number of the particles.

2.3 Density of States

Somewhat surprisingly, the local density of states (LDOS) n(r′; E) of the
quantum system, i. e., the accumulated density |ψ(r)|2 of the eigenfunctions of
the system with energy E, evaluated at r′, is, apart from a prefactor, identical to
the total current J(r′; E) emitted by a point source located at the same position.
Formally, this equivalence is established from equation (8) by setting r = r′
and using the distribution relation [24] #[(z + iη)−1] = −π sgn η · δ(z) that
holds in the limit η → 0. Thus, we formally obtain:

#[G(r′r′; E)] = −π
〈
r′ |δ(E − H)| r′

〉
. (15)

The right-hand side of this relation formally contains the spatial representation
of the density of states operator δ(E − H), and we conclude that the LDOS is
linked to the imaginary part of the Green function. In conjunction with (13),
this implies that the density of states is directly proportional to the previously
defined total current J(r′; E):

J(r′; E) =
2π

�
|C|2n(r′; E). (16)

We note here that the localized eigenstates of H that make up the discrete
spectrum of the Hamiltonian are irrelevant for the imaginary part of the Green
function, and thus do not contribute to the current. It is the unbounded solutions
in the continuous spectrum of H that are entirely responsible for the outgoing
wave character of G(r, r′; E) and constitute J(r′; E). From (16), we conclude
that a non-vanishing density of states is therefore directly related to an extended
flow pattern in position space. We will show examples of this behaviour in
Section 5.6.

2.4 Construction of the Green function

In the following, we will briefly discuss some techniques that are useful in
establishing the energy Green function for simple systems.

Matching of solutions For one-dimensional systems, the inhomogeneous
Schrödinger equation (2) reduces to a linear ordinary differential equation of
second order, and if it exists at all, the Green function G(z, z′; ε) is always
available as a product of solutions ψε,<(z<) and ψε,>(z>) that behave regularly
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in the sectors z → ±∞, respectively, and are matched at the source position
z = z′:

G(z, z′; ε) =
2m

�2

ψε,<(z<)ψε,>(z>)
W [ψε,<, ψε,>]

. (17)

Here we introduced the symbols z< = min(z, z′) and z> = max(z, z′), and
W [ψε,<, ψε,>] denotes the Wronskian of the two solutions. The basic example
for this strategy is the free particle problem in one spatial dimension, where for
E > 0 (E < 0) ψε,<(z<) and ψε,>(z>) are outgoing (evanescent) waves in
either direction:

G
(1D)
free (z, z′; E) =

⎧⎨⎩
− m

2κ
exp(−κ|z − z′|) (E < 0) ,

− im
2k

exp(ik|z − z′|) (E > 0) .
(18)

Here, k =
√

2mE/�, κ =
√
−2mE/� again denote the wave number of the

particle. In passing, we remark that the few higher-dimensional Green functions
that can be found in analytical form usually have been determined by formal
extensions of this technique [3, 10, 26, 49].

Eigenfunction expansion In section 2.1, we found a formal position space
representation for the retarded energy Green function as a special resolvent of
the Hamiltonian operator H. Expanding (8) into a complete set of eigenstates
|ψε〉 of H (where H|ψε〉 = ε|ψε〉), we may alternatively express the Green
function as a sum over all properly normalized eigenfunctions ψε(r) = 〈r|ψε〉
of the system:

G(r, r′; E) = lim
η→0+

∑
|ψε〉

ψε(r′)∗ψε(r)
E − ε + iη

. (19)

We will encounter an example of this decomposition in Section 3.3.1.

Complex convolution
We noted before that the quantum propagator K(r, t|r′, t0) is generally more

easily available than the Green function G(r, r′; E) [21, 32]. In part, this situ-
ation is the consequence of the simple composition properties of K(r, t|r′, t0).
Assume that the (conservative) Hamiltonian H of the system can be writ-
ten as the sum of commuting, lower-dimensional parts: H = H1 + H2,
where H1H2 = H2H1. Then, the corresponding evolution operator obeys
U(T, 0) = eiHT/ = eiH1T/ eiH2T/ = U1(T, 0)U2(T, 0), and thus reduces
to a product of its constituents. This property is transferred to their spatial
representations, the propagators:

K(r, t|r′, t0) = K1(r1, t|r′1, t0)K2(r2, t|r′2, t0) , (20)

where r1, r2 are the projections of r onto the subspaces of H1, H2.
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Unfortunately, the simple multiplicative property (20) does not extend to
the energy domain. We may, however, exploit it to derive a corresponding
statement for the Green functions Gν(rν, r′ν; E). Equation (6) shows that the
evolution operator U(T, 0) and the resolvent operator [E−H]−1, which yields
the Green function in configuration space (8), are linked through a Laplace
transform. Since the image of a product of Laplace transforms is represented
by the convolution integral of the images of the factors, we obtain [E−H]−1 =
i

2π

∫
dE′ [E′ − H1]−1[E − E′ − H2]−1, or, in position representation:

G(r, r′; E) =
i

2π

∫ ∞

−∞
dE′ G1(r1, r′1; E

′) G2(r2, r′2; E − E′). (21)

Due to the generally complicated form of the energy-dependent Green function,
the practical value of this relation is limited. We will, however, present an
application in the following section.

3. Matter waves in crossed electric and magnetic fields

As our example of interest, we study quantum sources of charged particles
in an environment of homogeneous, static electric and magnetic fields E , B.
The Hamiltonian H in this case may be written as the sum of commuting parts
H‖(r‖) and H⊥(r⊥) in the sense of Section 2.4 and reads:

H‖(r‖) = − �2

2m

∂2

∂r2
‖
− qr‖E‖ , (22)

H⊥(r⊥) =
1

2m

[
−i�∇⊥ − q

2
(B × r⊥)

]2
− qr⊥ · E⊥ . (23)

Here, the subscripts in r‖ and r⊥ denote the directions parallel and perpendicular
to the magnetic field B, respectively. We chose the electromagnetic potentials
A(r) = 1

2(B × r) and Φ(r) = −r · E as particular gauge in H = H‖(r‖) +
H⊥(r⊥) (22), (23), but all observable quantities, e. g. the currents j(r) and J(E)
(10), (12), are invariant under gauge transformations, unlike the propagator and
Green function. (We note that under a change of gauge field χ(r, t), the source
term (3) must be correspondingly modified.)

3.1 The quantum propagator

According to the composition properties outlined in Section 2.4, the propa-
gator for a particle in homogeneous fields E , B at arbitrary angle may be written
as a product (20):

KE,B(r, t|r′, 0) = K‖(r‖, t|r′‖, 0)K⊥(r⊥, t|r′⊥, 0) , (24)

Here, K‖(r‖, t|r′‖, 0) is the propagator for a uniformly accelerated particle in
one dimension that has been known from the beginnings of quantum mechanics
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[10, 18, 31, 32]:

K‖(r‖, t|r′‖, 0) =
√

m

2πi�t
(25)

× exp

{
i
�

[
m

2t
(r‖ − r′‖)

2 +
qt

2
E‖(r‖ + r′‖) −

q2E2
‖ t3

24m

]}
,

whereas K⊥(r⊥, t|r′⊥, 0), the propagator for a charge moving in two dimensions
subject to perpendicular electric and magnetic fields, was unraveled much later
[25, 41, 14]:

K⊥(r⊥, t|r′⊥, 0) =
mωL

2πi� sin(ωLt)
exp

{
i
�

[q

2
B · (r′⊥ × r⊥) (26)

+
qt

2
E⊥ · (r⊥ + r′⊥) + 2mvD · (r⊥ − r′⊥) − m

2
v2
Dt

+
mωL

2
cot(ωLt)

[
(r⊥ − r′⊥)2 − 4vD · (r⊥ − r′⊥)t + v2

Dt2
]]}

.

In this expression, we introduced the Larmor frequency ωL and the drift velocity
vD:

ωL = qB/(2m) , vD = (E × B)/B2 . (27)

Interestingly, Schwinger derived the relativistic propagator much earlier [46],
but apparently no simple transition to the non-relativistic case exists.

The equations (25) and (26) reveal a simple symmetry property of the prop-
agator under translations of the coordinate origin:

KE,B(r, t|r′, 0) = exp
{

iq
�

[
1
2
B · (r′ × r) + r′ · Et

]}
KE,B(r − r′, t|o, 0) .

(28)
(Alternatively, the symmetry (28) may be viewed as the effect of a gauge trans-
form that shifts the origin of the potentials [34].) Of primary interest in our study
is the corresponding energy Green function GE,B(r, r′; E) (4). Its analytical
expression is unknown, however. Hence, the results displayed in subsequent
figures were obtained by numerical evaluation of the integral representation (6).
Fortunately, the symmetry (28) of the propagator, together with (6), permits to
predict the behaviour of GE,B(r, r′; E) under coordinate transformations:

GE,B(r, r′; E) = exp
{

iq
2�

B · (r′ × r)
}

GE,B(r − r′,o; E + qr′ · E) . (29)

This relation immediately extends any result obtained for r′ = o to general
source locations r′ = o.
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3.2 Purely magnetic field

As a simple example, we first inquire into the dynamics of a charge in a purely
magnetic field (E = o). In two spatial dimensions, the relevant propagator
K⊥(r⊥, t|o, 0) (26) reduces to:

K
(2D)
B (r⊥, t|o, 0) =

mωL

2πi� sin(ωLt)
exp

{
imωL

2�
r2
⊥ cot (ωLt)

}
. (30)

As the propagator is periodic in t, we may expand it into a series using the
generating function of the Laguerre polynomials Lk(z) [1]:

1
1 − z

exp
{

xz

z − 1

}
=

∞∑
n=0

Ln(x) zn , (31)

where we set z = e2iωLt and x = mωLr2
⊥/�. This procedure yields:

K
(2D)
B (r⊥, t|o, 0) =

mωL

π�
e−mωLr2

⊥/2
∞∑

n=0

Ln

(
mωLr2

⊥
�

)
e−i(2n+1)ωLt .

(32)
This form is easily recognized as the decomposition of the time evolution oper-
ator U⊥(t, 0) into the eigenfunctions of H⊥ (23) populating the Landau levels
En = (2n + 1)�ωL.

The two-dimensional energy Green function G
(2D)
B (r⊥,o; E) follows from

(32) after the Laplace transform (6) which immediately yields an infinite series
expression:

G
(2D)
B (r⊥,o; E) =

mωL

π�
e−mωLr2

⊥/2 lim
η→0

∞∑
n=0

Ln

(
mωLr2

⊥/�
)

E − �ωL(2n + 1) + iη
,

(33)
which clearly resembles the formal eigenfunction expansion (19). In the im-
portant case r⊥ → o, we extract the density of states for a two-dimensional gas
of charges subject to a magnetic field:

n
(2D)
B (E) = − 1

π
#{G(2D)

B (o,o, E)} =
mωL

π�

∞∑
n=0

δ
[
E−�ωL(2n+1)

]
. (34)

Here, we again made use of the distribution relation#[(z+iη)−1] = −π sgn η ·
δ(z) [24] that holds for η → 0. The resulting discrete δ–array is indicated in
Figure 1. Equation (34) expresses the fact that the eigenstates take on only the
discrete energy values En.

In three spatial dimensions, we have to multiply the propagator K
(2D)
B

(r⊥, t|o, 0) with the free-particle propagator in one dimension K
(1D)
free

(r‖, t|0, 0) =
√

m/(2πi�t) exp
[
imr2

‖/(2�t)
]
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Figure 1. Electronic density of states in two (left panel) and three dimensions (right panel)
in a purely magnetic field. The dashed line denotes Wigner’s threshold law (14), valid for free
particles.

that follows from (25) once we set E‖ = 0. Its Laplace transform (6) is the

free-particle energy Green function G
(1D)
free (r‖, 0; E) (18) that we derived in the

preceding section. Similarly, we may transform the product of K
(1D)
free (r‖, t|0, 0)

with the series expansion of K
(2D)
B (r⊥, t|o, 0) (32) to determine the three-

dimensional Green function of a charge in a homogeneous magnetic field:

G
(3D)
B (r,o; E) =

mωL

π�
e−mωLr2

⊥/2 (35)

×
∞∑

n=0

Ln

(
mωLr2

⊥/�
)
G

(1D)
free

[
r‖, 0; E − (2n + 1)�ωL

]
.

(A representation in closed form is stated in [15].) Only the terms with positive
effective energy (E − (2n + 1)�ωL > 0) contribute to the density of states

n
(3D)
B (E) = − 1

π#[G(3D)
B (o,o; E)], as comparison with (18) shows. With the

help of (14), (18) we find:

n
(3D)
B (E) =

m3/2ωL√
2 π2�2

∞∑
n=0

Θ
[
E − (2n + 1)�ωL

]√
E − (2n + 1)�ωL

. (36)

This superposition of effectively one-dimensional free-particle sources is dis-
played in Figure 1. In passing, we point out that the limes B → 0 in (36) is not
well-defined; only after averaging over a small energy range δE, the Wigner
free-particle law n

(3D)
free (E) = mk/2π2�2 (14) will emerge. Finally, we note

that the result (35) extends to the case of parallel electric and magnetic fields
E ‖ B, once the free particle Green function in the sum is replaced by the
one-dimensional Green function for a uniformly accelerated particle [17, 35].
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3.3 Crossed electric and magnetic fields

Unlike the case of a purely magnetic or parallel fields, the energy-dependent
Green function GE,B(r,o; E) for a particle in crossed electric and magnetic
fields E , B is not available in closed form. Thus, in this section we limit our
considerations to the current emitted by a point source, or equivalently, the
density of states n(o; E). In a purely magnetic field, the degeneracy of the
energy spectrum leads to peculiar shapes of the density of states functionals
nB(E) (see Figure 1). The presence of an additional perpendicular electric
field E lifts these degeneracies and renders a broadened Landau level structure.

3.3.1 Density of states in two dimensions. We first examine the two-
dimensional case. Here, the Green function G

(2D)
E×B(r⊥,o; E) in perpendic-

ular fields is formally given by the Laplace transform (6) of the propagator
K⊥(r⊥, t|o, 0) (26). Since we are only interested in the imaginary part of the
Green function at r⊥ = o (13), (16) we may rewrite this relation and express
the density of states n

(2D)
E×B(o; E) as the Fourier transform of the propagator:

n
(2D)
E×B(o; E) =

1
2π�

∫ ∞

−∞
dT eiET/ K⊥(o, T |o, 0) . (37)

(Formally, the density of states operator δ(E−H) (15) is the Fourier transform
of the time evolution operator U(T, 0) = exp(−iHT/�), and the identity (37)
follows in configuration space representation.) Alternatively, we may determine
n

(2D)
E×B(o; E) by direct summation over a complete set of eigenstates of H⊥(r⊥).

We will explore both routes below.

Eigenfunction method A complete set of eigenfunctions for a charge in
perpendicular fields is conveniently determined in the Landau gauge A =
(−By, 0, 0) [29]. Here, we assume that the magnetic field points into the z
direction while the electric field component E⊥ is aligned to the y–axis, so the
charges drift along the x–axis. The corresponding Hamiltonian H′

⊥(x, y) is
given by:

H′
⊥(x, y) =

1
2m

(−i�∂x + qBy)2 − 1
2m

∂2
y − qE⊥y . (38)

The eigenfunctions are products of shifted oscillator functions with a plane
wave in drift direction, and read properly normalized:

ψn,yc(x, y) =
(

qB
2π�

)1/2

exp
[

i
�

(mvD − qByc) x

]
1√
l
un

(
y − yc

l

)
,

(39)
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where

un(ξ) =
(

1
2nn!

√
π

)1/2

e−ξ2/2Hn (ξ) . (40)

Here, the magnetic length l =
√

�/(qB) determines the extension of the wave
function in the direction of E⊥, while the continuous variable yc denotes its
centroid. Hn (ξ) is a Hermite polynomial of order n [1]. The terms in the
corresponding eigenenergy En(yc):

En(yc) = (2n + 1)�ωL + mv2
D/2 − qE⊥yc , (41)

reflect the Landau level, the kinetic energy of the drift motion and the potential
energy in the electric field, respectively. Summation over all eigenstates (39)
yields the density of states (37):

n
(2D)
E×B(o; E) =

∞∑
n=0

∫ ∞

−∞
dyc δ

[
E − En(yc)

] ∣∣ψn,yc(o)
∣∣2 (42)

=
qB

2π�

∞∑
n=0

1
2nn!

√
π Γ

e−E2
n/Γ2 [

Hn(En/Γ)
]2

.

Comparison with (40) shows that the density of states is itself a sum over squares
of regularly spaced oscillator functions, albeit in energy space; their width Γ
and shifts En are given by:

Γ = qE⊥l = E⊥
√

q�
B , En = E − (2n + 1)�ωL − mv2

D/2 . (43)

Note that the centers of these oscillator states coincide with the Landau levels,
apart from a constant shift due to the drift motion. As E⊥ → 0, the width Γ tends
towards zero, and the discrete energy levels familiar from a purely magnetic
field emerge (34).

Propagator method To obtain the density of states (42) using the propagator
transform (37), we must first extract the function K⊥(o, t|o, 0) from (26):

K⊥(o, t|o, 0) =
mωL

2πi� sin(ωLt)
exp

{
imv2

Dt

2�

[
ωLt cot(ωLt) − 1

]}
. (44)

This expression formally resembles the propagator in a purely magnetic field
(30), and the generating function expansion (31) again yields the series expan-
sion of K⊥(o, t|o, 0). As a function of the width parameter Γ defined above
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(43), it reads:

K⊥(o, t|o, 0) =
qB
2π�

e−Γ2t2/(4 2)
∞∑

n=0

Ln

(
Γ2t2

2�2

)
× exp

{
− it

�

[
(2n + 1)�ωL +

mv2
D

2

]}
. (45)

Indeed, the density of states in crossed fields (42) follows after term-by-term
integration of this sum in (37), as can be shown using the Fourier transform [1]:∫ ∞

−∞
dt e−(t−ix)2

[
Hn(t)

]2 = 2nn!
√

π Ln(2x2) . (46)

For a more detailed discussion of this approach, see [37]. While the method
appears unnecessarily complicated for the determination of n

(2D)
E×B (o; E), the

propagator formalism clearly offers an advantage when evaluating the Green
function G

(2D)
E×B(r⊥,o; E) for r⊥ = o, since a single numerical integration (6)

will suffice to obtain the complete Green function. We will show examples
below.

Canonical transformation method The result gained by the two previous
methods is also consistent with the mapping of the original Hamiltonian in
crossed fields in equation (38) to the Hamiltonian of a shifted harmonic os-
cillator. Details of the corresponding canonical transformation and its unitary
representation are discussed in [33, 34].

Properties of the density of states functional The functional form of the
two-dimensional density of states (42) in crossed fields is a major topic in
Refs. [34, 37]. Here we content ourselves with a short summary of the main
features. As noted above, the density of states consists of a sum over equally
weighted harmonic oscillator eigenstates that appear not in configuration space
but as functions of the energy E. As the eigenfunctions un(ξ) (40) form an
orthonormal set, the total contribution of each sum term, i. e., each Landau level
is given by: ∫ ∞

−∞
dE n

(2D)
n,E×B(E) =

eB
2π�

. (47)

This result is in accordance with the quantization of the Landau levels in a
purely magnetic field (34). For each Landau level n, the density of states has
a Gaussian envelope with width Γ that is split into n + 1 intervals by the n
simple zeroes ξn,j (j = 1, . . . , n) of the polynomial Hn(ξ). In Fig. 2, we
plot the resulting density of states for various electric field strengths E⊥. For
small E⊥, the overlap between adjacent Landau levels is negligible, as the
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Figure 2. Two-dimensional local density of states (LDOS) n(o; E) (in units of m/(π�2))
and integrated LDOS N(o; E) (in units of qB/(2π�)) at four different electric fields E =
2000, 4000, 8000, 12000 V/m and for a magnetic field B = 5 T as a function of the scaled
energy E/(�ωL) according to equation (42). Near the nth Landau level at E = (2n + 1)�ωL,
the DOS renders the probability distribution of a one-dimensional harmonic oscillator in the nth
eigenstate.

DOS drops off exponentially between them. With increasing electric field, the
Landau levels broaden and finally coalesce. We infer from equation (40) that
the classical turning point of harmonic motion, ξtp

n =
√

2n + 1, provides a
practical measure for the width of the partial density of states n

(2D)
n,E×B(E). The

populated region in energy between adjacent Landau levels n − 1, n is then
approximately given by the ratio:

combined half widths of levels Γ(ξtp
n−1 + ξtp

n )
level spacing 2�ωL

∼ 2
√

2n
mE⊥√
q�B3

. (48)

The overall extension of the modulated Landau levels increases with n1/2 for
fixed fields. Note that all features of n

(2D)
n,E×B(E), including the nodes, scale

linearly in width with the electric field E⊥. While for small ratios in (48)
individual levels remain well separated, with increasing overlap the density of
states becomes a smooth function of the energy E. This transition is clearly
visible in Figure 2.
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Figure 3. Electronic density of states in two (left panel) and three dimensions (right panel) in
perpendicular electric and magnetic fields (B = 0.5 T, E⊥ = 200 V/m).

3.3.2 Extension to three dimensions. In three dimensions, besides the
Green function GE,B(r,o; E) even the density of states functional n

(3D)
E,B (o; E)

defies evaluation in closed form. However, simple integral representations are
available. Starting from the identity (37), we may employ the composition
property (24) in order to obtain an integral representation:

n
(3D)
E,B (o; E) =

1
2π�

∫ ∞

−∞
dT eiET/ K⊥(o, T |o, 0)K‖(0, T |0, 0) . (49)

Alternatively, we may formally perform the integration in (49), which leads to a
convolution integral of the individual transforms, similar to (21). This approach
yields a simple composition theorem for the density of states:

n
(3D)
E,B (o; E) =

∫ ∞

−∞
dE′ n(2D)

E×B(o; E′)n(1D)
E‖ (0;E − E′) . (50)

While the former expression is better suited for numerical calculations, (50)
yields more physical insight: Inserting the series expansion (42) into (50),we in-
fer that the three-dimensional density of states can again be interpreted as a sum
over individual Landau levels n, where their actual contribution n

(3D)
n,E,B(o; E)

follows from convolution of the oscillator function
[
un(En/Γ)

]2
(40) with the

one-dimensional density of states n
(1D)
E‖

(0;E −E′). (In the case of perpendic-
ular fields (E‖ = 0), these integrals can be expanded into series of parabolic
cylinder functions [7], but we will not elaborate this point further.) In Figure 3
we compare the analytic two-dimensional solution (42) and the corresponding
three-dimensional density of states (49) in orthogonal fields. The close rela-
tion between both functionals is clearly displayed, as well as the separation of
n

(3D)
E,B (o; E) into individual Landau levels.
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3.4 Spin

A slight complication occurs if the motion of charges with spin, like electrons,
is considered, since the spin interacts with the magnetic field B. However,
for uniform magnetic field, this interaction merely causes a constant effective
energy shift ∆E = ±1

2 g�ωL if we select the magnetic field direction as axis of
quantization. Thus, the Green functions for each spin component follow from its
scalar counterpart by adjusting their energy, G↑,↓(r, r′; E) = G(r, r′; E±∆E).
Similarly, the spin dependent densities of states become

n↑,↓(E) = n

(
E ± 1

2
g�ωL

)
, (51)

and the total density of states including spin can be mapped back to the scalar
quantity: n↑↓(E) = n↑(E) + n↓(E). Hence we defer the inclusion of spin for
the moment.

4. Application: Photodetachment

In a photodetachment experiment, electrons are detached from negatively
charged ions A− due to the interaction with a laser field:

A− + hν → A + e− . (52)

The detached electron is emitted with a definite energy E given by the difference
between its binding energy (or affinity) and the photon energy. This process
allows a description in terms of quantum sources. In near-threshold detachment
(E → 0), it is reasonable to model the ion as a point source because its size is
small compared to the de Broglie wavelength of the emitted electron. (Here,
we consider only the generation of s–waves. For the general case of multipole
emission, see Ref. [11].) The photodetachment current in external fields is
then linked to the relevant energy-dependent Green function: For a laser beam
illuminating the ions for the duration T , their survival probability is given by

R(E) ∝ exp[−J(E)T ], (53)

where J(E) denotes the total current defined in equation (13). In practice, an
external electric field can provide a virtual double-slit environment that allows
to probe the energy of the emitted electron (and thereby the electron affinity of
the ion) with extreme accuracy [5, 6, 11].

The combination of electric and magnetic fields imprints a non-trivial struc-
ture on the detachment rate and allows to identify features of the underlying
energy-dependent Green function. Unfortunately a direct experimental obser-
vation of these features is obscured by several effects. Typically, the negative
ions are confined in an ion trap, where they still have a large kinetic energy.



334 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.0001  0.0002  0.0003  0.0004  0.0005  0.0006

T
ot

al
 c

ur
re

nt
 [a

rb
itr

ar
y 

un
its

]

Energy [eV]

Figure 4. Thermally averaged curves for the total photocurrent as a function of the electron
energy. Magnetic field: B = 1.07 T, ion mass: m = 32 u. Solid line: T = 400 K, dashed line
T = 950 K (see also [7], Figure 2). The substructure and broadening of the Landau levels due
to the perpendicular electric field is visible. However, the features are washed out (compared to
Figure 3) due to the averaging over a wide range of electric field values.

In a thermal ion cloud the momentum distribution P (p) is given by Maxwell’s
expression:

P (p) =
1

(2πmkBT )3/2
exp

(
−p2/(2mkBT )

)
. (54)

In an external magnetic field, the charges will experience an electric field in
their rest frame due to the transformation of the fields [28] that accounts for the
Lorentz force,

E⊥(p) =
1
m

p × B. (55)

This electric field is exactly perpendicular to the momentum and the external
magnetic field. A stationary source will only emerge if we consider the photon-
electron interaction in the rest frame of the ion. Hence, we employ the three-
dimensional Green function for crossed electromagnetic fields to describe the
photodetachment of moving ions in a purely magnetic field.

The averaging effect of varying electric fields due to the thermal motion is
displayed in Figure 4. A comparison with the plot for a single value of the
electric field (right panel in Figure 3) shows that the substructure of the Landau
levels changes. Some features are still visible, like the division of the first level
due to the zero of the first Hermite polynomial. Another complication stems
from the Zeeman splitting of the ionic energy levels in an external magnetic
field. Experimentally, usually a superposition of many allowed transitions is
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Figure 5. Ratio of surviving ions R(∆Ω) in photodetachment of S− in an external magnetic
field as a function of the laser detuning ∆Ω. The solid line is the theoretical prediction, the
circles represent experimental data [56]. Parameters used: B = 1 T, ion mass m = 32 amu,
T = 2100 K.

observed. A recent experiment is compared to the theory sketched here in
Ref. [56]. As shown in Figure 5 the agreement is excellent and underlines the
validity of the quantum source approach. An alternative theoretical description,
together with earlier experimental data is put forward in [7, 8].

5. Application: Quantum Hall effect

Another application of the Green function in crossed fields is the quantum
Hall effect in a two-dimensional electron gas (2DEG). In Figure 6 we show
the basic geometry of the sample. In the system, a constant current is sent
along the x-axis of the sample. Perpendicular to the surface of the electron
gas a strong magnetic field is applied. In a classical picture, initially electrons
entering the sample are deflected to one edge, and a potential across the sample
builds up until the Lorentz force is compensated by the induced electric field.
The electrons then drift in the crossed fields with the constant velocity vD

(27) perpendicular to both fields. (Note that this mechanism leads to a loss-
free stationary current in the presence of an electric field, unlike conventional
transport theory, where the current is limited by inelastic scattering instead.)
The linear relation between electric field and current density in two dimensions
is expressed by the conductivity tensor σ:(

jx

jy

)
=

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
. (56)
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Figure 6. Schematic picture of a Hall bar. A constant current Ix is flowing along the x-axis.
Perpendicular to the current and an external magnetic field, the Hall field is established along the
y-axis to counterbalance the deflection of the electrons. Experiments record the Hall potential
Uy and the longitudinal potential Ux.

Its inverse, the resistivity tensor ρ, is related to the conductivity via

ρxy =
σyx

σ2
xx + σ2

xy

, ρxx =
σxx

σ2
xx + σ2

xy

. (57)

We remark that for σxy = 0, vanishing resistivity ρxx implies vanishing con-
ductivity σxx. In the setup shown in Figure 6, for stationary current density
jx and transverse electric field Ey, the current jy has to be zero. We will now
explore different models for the conductivity in the two-dimensional Hall effect.

5.1 Drift transport of electrons

5.1.1 Classical transport. In this section we will review the classical
transport of electrons in a Hall sample. We will take a modest level of scattering
of the conduction electrons into account. In a simple Drude-like model the
dynamics of the electrons is governed by the Lorentz force, amended for a term
that incorporates friction via a relaxation time τ :

m
dv
dt

= eE + ev × B − m

τ
v. (58)

Under stationary conditions v is constant and together with the current density
j = Nev the components of the conductivity tensor in equation (56) become

σ =
e2Nτ

m

1
1 + ω2

Cτ2

(
1 −ωCτ

ωCτ 1

)
, (59)
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Figure 7. Classical trajectories from a point source �S located at x = y = 0. The magnetic
field B = 5 T is oriented perpendicular to the plane, the electric field E = 4000 V/m along ey .
Left panel: Energy E = �ωL, right panel: E = 3�ωL. While the radius of cyclotron motion
varies, the average drift velocity vD = E/B is the same in both panels.

where ωC = 2ωL = eB/m. Inverting this matrix we extract the resistivity
components

ρxy =
B

Ne
, ρxx =

m

Ne2τ
. (60)

In order to connect this picture to the classical drift of electrons in crossed fields
we use the relation

Ey = ρxyjx =
B

Ne
jx, jy = 0. (61)

Solving for vcl
x = jx/(eN) yields vcl

x = vD = Ey/B: The current density
along the x-direction is given by the electron density N , multiplied by the drift
velocity vD. Some classical electron trajectories are shown in Figure 7. As we
will see in the next section, the quantum mechanical picture radically diverts
from these results.

If we assume a field independent carrier density N , equation (60) leads to
the classical Hall effect: The Hall resistivity ρxy is linearly dependent on the
magnetic field B, and the constant of proportionality renders the number of
carriers that participate in the transport.

5.1.2 Quantum mechanical drift. What do the quantum current and
transport look like in our quantum source model of electronic matter waves?
Equations (10) and (13) yield quantum mechanical expressions for the currents
originating from a point source. In Figures 8 and 9 we plot the spatial current
distribution generated in a magnetic field of B = 5 T and an electric field of
Ey = 4000 V/m. In the first plot we chose E = �ωL which corresponds to



338 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

Figure 8. Current density from a point source �S located at x = y = 0 in crossed fields
B = 5 T, Ey = 4000 V/m (cf. Figure 7). The electron energy is E = �ωL. Left panel: The
component jx(x, y) at x = −0.1 µm. Right panel: Spatial current flow. The arrows indicate
the direction of the current and their length is proportional to |j|1/4.

the first maximum in the density of states (42) (see Figure 3), whereas in the
second plot the energy E = 3�ωL is close to a minimum in the total current.
Some corresponding classical trajectories are shown in Figure 7. The quantum
mechanical current distribution shows some intriguing features: In the vicinity
of the source (located at the origin), a complicated flow pattern emerges. At
some distance from the source, the current follows the classical drift direction,
but is split into two stripes with anti-parallel current vectors. We will discuss
the implications of these oppositely flowing currents again in Section 5.6.

The current distribution for stronger Hall fields is depicted in Figure 10. Here
the drift velocity is vD = 4000 m/s. Three classical trajectories are included in
the plot. The nearly circular orbits of Figure 7 are distorted to trochoidal shapes
[43], and also the quantum mechanical current profile changes considerably.

Total current vs. current density The equation of continuity is valid for
any surface enclosing the point source, and therefore the spatial current density
integrated over such a closed surface must yield the total current, which by (16)
is proportional to the density of states (42). Since the total current is available in
analytic form, we may use this relation to cross-check our numerical evaluation
of the spatial current density. As a function of E, the functional (42) repeatedly
virtually drops to zero. This almost vanishing total current does not imply
vanishing current density, however, as Figure 9 demonstrates: Circular flow
patterns lead to a very small net-flow from the source region. Further away the
contributions of oppositely directed flows cancel each other almost perfectly.
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Figure 9. Current density from a point source �S located at x = y = 0 in crossed fields
B = 5 T, Ey = 4000 V/m (cf. Figure 7). The electron energy is E = 3�ωL. The arrows indicate
the direction of the spatial current flow and their length is proportional to |j|1/4.

Figure 10. Current density from a point source �S located at x = y = 0 in perpendicular
fields B = 2 T, Ey = 8000 V/m. The electron energy is E = �ωL. The arrows indicate the
direction of the current flow and their length is proportional to |j|1/4. Three classical trajectories
of electrons with the same energy are also shown.

Recovering the drift velocity In order to define an average velocity along
the drift direction we proceed as follows: For a slice along the y-axis at some
fixed distance x from the source we calculate the integrated density �(x; E)
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using

�(x; E) =
∫ +∞

−∞
dy |G(r = (x, y),o; E)|2 (62)

and then define the ratio

vav
x (x; E) = J(o; E)/�(x; E) (63)

as the average velocity. This procedure yields values very close to the classical
drift velocity vD = 800 m/s in both cases illustrated. However, J(o; E) and
�(x; E) are drastically different for the two energies chosen in Figures 8 and 9.
(We note that the local velocity fieldv(r) = j(r)/|G(r = (x, y),o; E)|2 greatly
varies with r. Only the integrated quantity reproduces the drift.) Furthermore,
it is important to realize that the intensity of the current J(o; E) is exponentially
suppressed at certain energies as shown in Figure 3. This is in sharp contrast
to the classical picture, where a constant drift transport occurs for all energy
values of the injected electrons.

5.2 Fermionic matter waves

The density of states is a single-particle quantity. In a solid, many electrons
take part in the conduction process. For a non-interacting system, the available
single-particle energy levels are occupied according to Fermi-Dirac statistics.
Taking spin into account, two electrons may share each state. For a system
that exhibits a point spectrum of the energy levels (e.g. atoms, or a purely
magnetic field in two dimensions (34)), the resulting electronic configuration
is similar to the shell structure of atoms. For a continuous spectrum, the Fermi
energy controls the integrated carrier density of the system, which at temperature
T → 0 is given by the integrated density of states N(o; EF):

N(o; EF , Ey,B) =
∫ EF

−∞
dE n(o; E, Ey,B). (64)

In crossed electric and magnetic fields, (64) is available in closed form; see
Ref. [34], Appendix C. Clearly, N(o; EF) depends on the external magnetic
and electric fields.

Here, we should point out that in multi-electron systems Coulomb-type in-
teractions will occur. In the following we will ignore these interactions. The
Pauli principle (which requires antisymmetric wave-functions for fermions) en-
sures that two electrons sharing the same spin will not be at the same position.
Moreover scattering events that redistribute the electrons to different energy
states take place only if the process involves filled initial and empty final states.
At T → 0, these states are available only close to the Fermi level of the system.
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Figure 11. [

Top left: Fluctuation of the Fermi energy as a function of the magnetic field
for fixed carrier concentration. Top right: Fluctuation of the current carrier
concentration as a function of the magnetic field for fixed Fermi energy. Lower
panels: Corresponding resistivity plots (the dashed line denotes the average
number of carriers).

5.3 Fermi energy in open and closed system

Closed system If we treat the two-dimensional electron gas as a system that
is closed and decoupled from reservoirs, the number of electrons is a fixed
quantity. The Fermi energy is determined from the relation

N = const = N(o; EF , Ey,B) =
∫ EF

−∞
dE n(o; E, Ey,B). (65)

Changing the external fields (and therefore the density of states n(o; E)) leads
to jumps in the Fermi energy as depicted in Figure 11 (top left panel): The upper
limit of the integral has to be adjusted in order to keep the number of carriers N
constant. Another implication of constant carrier density is a linear relationship
between ρxy andB (60). Thus different mechanisms have to be invoked in order
to explain the existence of finite Hall “plateaus” of constant conductivity in the
closed system. Proposals include the formation of one-dimensional conduction
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channels along the edges of the sample, and disorder. In a one-dimensional
device Landauer quantization gives rise to discrete values of the conductivity.
Disorder is supposed to lead to localized states populated by electrons which
do not participate in the transport but nevertheless allow to adjust the Fermi
energy smoothly [22].

Open system In the following we consider the implications of an open Hall
system, where electrons can enter and leave the system through the contacts. In
this picture the Fermi energy is fixed, while the number of particles fluctuates
around the average free-particle value observed for B = 0. In Figure 11 (upper
right panel) we plot the oscillations of

N(o; EF , E ,B)/N (2D)
free (EF) (66)

as a function of the magnetic fieldB. For comparison, we also show the resulting
Hall resistivity ρxy = B/(Ne) in Figure 11 (lower right panel) together with its

classical counterpart obtained by using N = N
(2D)
free (EF) (14). The following

section is devoted to a detailed discussion of this curve. Here, we merely note
that the difference in carrier density vanishes at the intersection points of both
resistivity curves. Otherwise, excess charges will be present whose electrostatic
interaction will lead to potentials that subsequently alter the Fermi energy of
the system. In the present discussion we will neglect this feedback mechanism.

Experimental evidence for fluctuations Experiments show two types of
fluctuations in quantum Hall systems as a function of the external magnetic
field:

Density fluctuations are directly observed in [44] and fit well into the picture
of an open system. These results contradict the basic theoretical assumptions for
quantum Hall systems in Ref. [22, 55], where N = const is used to determine
the currents.

According to another experiment [53, 54] the electrostatic potential measured
atop the two-dimensional quantum Hall system fluctuates as a function of the
magnetic field. These changes are interpreted by the authors as variations of
the (local) chemical potential. However, according to the basic ideas of most
quantum Hall theories [22], disorder should buffer these oscillations and lead to
a smooth variation of the Fermi-energy. The implications of these observations
are profound, since, in the view of a closed system, jumps of the chemical
potential would prevent the formation of Hall plateaus [22] (see Figure 11).
Disorder must be invoked to allow smooth variation of the Fermi energy. From
the viewpoint of an open system, these fluctuations are correlated with the
intersections of the classical and quantum mechanical Hall resistivities. The
excess charges lead also to a varying electrostatic potential above the Hall
system. In an open system, disorder is not an essential ingredient of plateau



Propagation in crossed electric and magnetic fields 343

Figure 12. Schematic sketch of a possible variation of the Hall potential and the Fermi energy
throughout the sample according to [2].

formation. A careful analysis of these intersection points and their matching to
the observed fluctuations is crucial to investigate this issue.

5.4 Fermi energy and Hall potential variations

Up to now we considered only the injection of electrons from a single point
source. We will now extend the formalism to cover a continuous “wire” of
point sources along the current injecting contacts. Also, we will introduce
the possibility of a local variation of the Fermi energy EF(y)and the Hall field
Ey(y), as sketched in Figure 12. The current of a macroscopic device with width
W is given by integrating the current density over the width of the device:

Ix =
∫ W

0
dy jx(x, y) =

∫ W

0
dy σxyEy(y) . (67)

For a given form of the Hall potential and the Fermi energy we are now in a
position to calculate the resistivity ρ.

5.5 Calculation of the Hall resistivity and the current flow

For the realistic calculation of a Hall resistivity curve we have to incorporate
some material parameters in the theory:

a Electrons in solids are characterized by an effective mass m∗.

b Similarly the magnetic g-factor of the electron depends on the material
and possibly on the magnetic field B.

c In some materials additional degeneracies appear (e.g. the “valley split-
ting” in silicon).
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d All observations are made at a finite temperature T .

e The electric field and Fermi energy may vary along the direction of the
Hall field Ey.

f In a multi-electron system Coulomb interactions between the electrons
and the positive background charges occur.

g In a non-perfect sample disorder and electron-phonon interactions are
present.

5.5.1 A new expression for the Hall conductivity. The combination of
the quantum source model with the Pauli principle allows us to obtain a purely
quantum mechanical expression for the current along the drift direction. Work-
ing in the eigenfunction expansion for the Green function (see Section 3.3.1),
each eigenstate supports the current

jn,yc
x (r) =

�
m
#{ψn,yc(r)

∗∂xψn,yc(r)} +
eAx

m
|ψn,yc(r)|2. (68)

The properly weighted current is given by

jx(r; E) =
∞∑

n=0

∫
dyc δ[E − En(yc)]jn,yc

x (r). (69)

A short calculation yields

jx(r; E) = vD

∞∑
n=0

∫
dyc δ[E − En(yc)] |ψn,yc(r)|2

+
eB
m

∞∑
n=0

∫
dyc δ[E − En(yc)] (yc − y) |ψn,yc(r)|2. (70)

We already evaluated the first term in (42). A (macroscopic) conductivity is
obtained by integrating over y. Since the second integral runs over a function
antisymmetric in (y−yc), the second term vanishes. Inserting vD = E/B gives

jx(r; E) =
eE
B n

(2D)
E×B(r; E). (71)

Without integration, the second term is responsible for the complicated flow
pattern seen in the current pictures analyzed in Section 5.1.2. In a many electron
system with Fermi energy EF the conductivity in Ohms law j = σ ·E becomes

σxy =
e

B

∫ EF

−∞
dE n

(2D)
E×B(r; E) =

e

BN(r; EF), (72)

σxx = 0. (73)
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We emphasize that this expression couples the specific form of the density of
states in crossed electromagnetic fields with the drift velocity. It is not possible
to separate the quantity N(r; EF) from the drift velocity and introduce it as an
independent classical parameter.

5.5.2 A simple model for the quantum Hall effect including scattering.
The previous model is not complete, because the longitudinal resistance

is always zero. Experiments show a non-vanishing σxx if EF coincidences
with a Landau-level. A natural extension of the model is the incorporation of
scattering. A simple, yet instructive model for the Hall effect that incorporates
effects 1–4 is presented in [34, 37]. We start from a conductivity tensor similar
to the classical expression (59). However, we take into account the external
field and energy dependence of all quantities:

σ(E) =
e2n(o; E)τ(E)

m

1
1 + ω2

Cτ(E)2

(
1 −ωCτ(E)

ωCτ(E) 1

)
. (74)

We will not consider a locally varying electric field. The discussion also assumes
that the electrons are injected at a point-contact located at o. We can lift this
restriction by introducing a position dependent Fermi-level [23] in the system

EF(r) = EF(o) + e r · E . (75)

Usually, unequal Fermi levels result in a current. In the Hall geometry this
current along the electric field is absent as the electrons only drift perpendicular
to the magnetic and electric fields. From the symmetry relation (29) we obtain
a translational invariance in the sense that

n(r; EF(r)) = n(o; EF(o)). (76)

Therefore we can regard the local density of states as the global density of
states in the system. A more sophisticated model, which incorporates a (slow)
variation of the electric fields and the Fermi energy, is sketched in Section 5.6.
In the Appendix we show, that the Lorentz-force model for the conductivity
may be replaced by the expression for the probability current defined in (13).

For T → 0, the total conductivity is obtained by integrating over the occupied
energy range

σ =
∫ EF

−∞
dE σ(E). (77)

For strong magnetic fields, the energy-dependent relaxation time τ(E) satisfies
[ωCτ(E)]2 � 1, except in the vicinity of EF , and the transversal component
σxy thus mirrors the integrated density of states N(o; EF) (64)

σxy =
e

B

∫ EF

−∞
dE

n(o; E)
1 + [ωCτ(E)]−2

=
e

BN(o; EF) (78)
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Figure 13. Quantum Hall effect for a constant magnetic field B = 19 T. Effective mass
m∗ = 0.2me, T = 1.5 K. Notice that any substructure of the Landau levels is washed out by
thermal averaging. The dashed line shows the classical Hall line. The lower dash-dotted line
is proportional to the longitudinal resistance ρxx. Corresponding experimental data is shown in
[51].

[cf. (60)]. The last expression is already known from our first model: The
quantization of the plateaus in the Hall effect does not depend on the scattering.

The longitudinal component is more difficult to evaluate since it involves
assumptions about the scattering events. If we assume that only electrons with
energies close to the Fermi energy contribute significantly to σxx, we obtain:

σxx(EF) =
e

B

∫ EF

−∞
dE n(o; E)

ωCτ(E)
1 + ω2

Cτ(E)2
≈ Dn(o; EF). (79)

Here D denotes some constant that may depend on the material parameters and
the fields. For finite temperature, significant scattering may also take place in
an energy range of several kBT around EF . The value of σxx(T ) then follows
after suitable averaging [52]

σxx(T ) =
∫

dE

(
−∂f(E, T )

∂E

)
σxx(E), (80)

where f(E, T ) denotes the Fermi-Dirac distribution

f(E, T ) =
1

e(E−EF )/(kBT) + 1
. (81)

The Hall resistivity for a fixed magnetic field In early experiments on the
quantum Hall effect, the resistivity was measured under the condition of a fixed
current along the x-axis (Ix = const) and a fixed magnetic field [51]. By
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varying the gate voltage in the experimental Si–MOSFET system, the Fermi
energy is adjusted. We will assume a linear relationship between the gate
voltage and the Fermi energy. Then, the value of the Hall field Ey is a solution
of the implicit equation

Ey = ρxy(EF , Ey,B) jx (82)

for given EF ,B, jx. Here, the resistivity ρxy is related to the conductivity
components (78), (80) via (57). For the interpretation of data, we have to in-
clude an additional degeneracy besides spin that occurs in silicon, the “valley
splitting” which effectively doubles each level, leading to a total of four repeti-
tions of each Landau level. Introducing the additional valley quantum number
v = ±1

2 and the corresponding energy shift Ev [50], the density of states given
in equation (51) becomes

n↑,↓,valley(o; E) = n (o; E ± g�ωL/2 ± vEv) . (83)

Temperature dependence If the ratio kBT/(�ωL) becomes close to unity,
the Hall plateaus disappear, since σxx(T ) as given by equation (80) is no longer
approaching zero between two Landau levels. However, the introduction of
an effective mass m∗ can lead to large modifications of ω∗

L = eB/(2m∗).
Since the width kBT is independent of material parameters, it can be used as
an independent energy scale to access the values of m∗, g∗. In Figure 13 we
assume an effective mass m∗/me = 0.2. A higher effective mass would be
inconsistent with the reported temperature of T = 1.5 K, since a smaller energy
range �ω∗

L cannot accommodate four separated peaks of individual width kBT .
Thus, the temperature dependence of ρxy may be used to determine some of
the material parameters of the system.

The Hall resistivity as a function of the magnetic field Nowadays, GaAs–
heterostructures are commonly used to provide the two-di - men - sional electron
gas for the quantum Hall effect. Advantages are cleaner samples with very high
mobilities and the absence of valley splittings. However, in these samples the
number of electrons for B = 0 is virtually constant and largely independent of
the gate voltage. Therefore the magnetic field is varied while keeping the gate
voltage fixed. In Figure 14 we show a typical plot of the resulting resistivity.
As mentioned before, the intersection points of the averaged or classical Hall
resistivity with the quantum mechanical result for ρxy deliver important infor-
mation: They allow to analyze the spin splitting and other parameters of the
system.

5.5.3 Fractional effects. As shown before, the electric field leads to
additional zeroes in the density of states and consequently to subdivided Landau
levels. Their fractional values of the filling factor are analyzed in [37] and
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Figure 14. Quantum Hall effect at strong magnetic fields (B > 1 Tesla) for a non-interacting
two-dimensional electron gas. The plot shows the Hall resistance ρxy and longitudinal resistance
ρxx as a function of the magnetic field B for fixed Fermi energy (EF = 0.868 meV). Effective
mass m∗ = me, effective g-factor g = 1

2
, current density jx = 0.2 A/m, τ(EF ) = 10−11 s,

T = 0.1 K. The dashed line represents the classical Hall resistance ρxy with a constant level
density. Experimental results are shown in [42]. Note that jx is chosen fairly large in order to
show the substructure of the Landau levels.

displayed in Figure 14. Experimentally, the appearance of the fractional filling
factors arising from the electric field might be difficult to detect, since uniform
and high current densities are required at very low temperatures. Furthermore,
the fractional quantum Hall effect may overshadow the single-particle structure
if Coulomb interactions dominate the Hall field contribution. Experiments
show plateaus in ρxy for simple fractions of the filling factor in the first (n = 0)
Landau level. In the presented model such features are not explained. The effect
is attributed to collective modes of the system that are caused by interactions
between the electrons [55]. We explicitly did not include Coulomb interactions
in our model system.

The best candidates for the detection of field-induced fractional filling factors
are exactly half-filled odd Landau levels, since they are left largely unaffected by
the averaging caused by a non-uniform electric field. (A similar effect prevails in
three dimensions, where the dip associated with the second Landau level is still
visible in Figure 4 despite extensive averaging over different field strengths.) In
contrast, according to the standard theory of the fractional quantum Hall effect
half-filled levels do not induce plateau formation.
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Figure 15. Quantum mechanical current density from an extended “wire” (shaded region).
The electron emitting region extends from y = 0 to 0.2 µm. Left panel: The component jx(x, y)
at x = −0.1 µm. Right panel: Spatial current flow. The arrows indicate the direction of the
current and their length is proportional to |j|1/4. In this example, an effective edge current forms
with unequal magnitudes at each edge. The bulk also carries a constant current flow.

5.5.4 Hall-field dependence of the plateau width. Another signature
of the presence of an electric field dependent broadening of Landau levels is
the breakdown behavior for high currents. Kawaji and co-workers conducted
extensive experiments on the characteristics of the breakdown and find exper-
imentally a dependency that is exactly the same as the one obtained in equa-
tion (48): The width of the plateaus decreases linearly with increasing current.
The experimental observation of this behaviour is reported in [4, 30, 48].
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5.6 Current distribution

The form of the Hall potential is actually experimentally accessible [2], and
a schematic result is sketched in Figure 12. We should note that the theory
presented here could be applied for any given variation of the Hall potential
and the Fermi energy. A starting point for models that provide this input could
be the self-consistent potentials obtained in Refs. [12, 38]. For the sake of
simplicity, let us discuss here only a straightforward extension in which we
treat the emission of independent electrons along a constant Hall field. We
already calculated the current distribution for a point source. For the “wire”
described above, we obtain the global current profile by summing over the
current contributions of the point sources. Here, we will use eq. (75) and
assume that the Hall field is constant across the probe.

Figure 15 displays the resulting flow pattern. The previously described op-
positely flowing currents are shifted to the edges, while in the bulk a uniform
current emerges. In this way effective “edge” currents are established in a
model of an electron emitting contact of finite width. We should note that the
magnitudes of the oppositely directed edge currents differ, as already seen for
point sources.

6. Conclusions

The quantum source formalism provides an excellent basis for the analysis of
the propagation of matter waves in external fields. While some classical proper-
ties of the motion of particles prevail in the quantum mechanical case, a smooth
transition from quantum to classical mechanics is generally not observed. The
Landau quantization due to the magnetic field and the combination with an
electric field have profound implications for the spatial current distribution and
intensity.

Present-day nanotechnological devices, operated at very low temperatures,
can actually provide experimental data for the propagation of electronic matter
waves and allow to test theoretical predictions. We analyzed a simple model of
the quantum Hall effect as one example. Even this non-interacting electron pic-
ture already shows a wealth of interesting features and gives access to important
parameters of the system.
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Abstract In this article we present a review of the work on Group theory of ordinary and
basic Hypergeometric transformations and the application of the transformations
of ordinary hypergeometric series in Quantum Theory of Angular Momentum.

1. Introduction

The fact that the coupling / recoupling coefficients of Quantum Theory of
Angular Momentum (QTAM) were related to the hypergeometric functions [1],
[2] and the use of a balanced (or Saalschützian) transformation formula to obtain
what was claimed to be a new symmetry [3] for the Racah (or 6-j) coefficient
was the starting point for a study of the symmetries of these angular momentum
coefficients in terms of generalized hypergeometric functions of unit argument.
Early studies [4] in this area of QTAM established that if the 3-j coefficient
is to be written as a 3F2(1), a set of six 3F2(1)s is necessary and sufficient
to account for the 72 symmetries of the 3-j coefficient [5]. In the case of the
6-j coefficient it was shown that there exist a set of three 4F3(1)s [6] and an
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equivalent set of four 4F3(1)s [7]. These two sets were shown to be related to
each other through the reversal of hypergeometric series [8] and this completed
an understanding of the symmetries of the 6-j coefficient in terms of the sets of
4F3(1)s demonstrating a confirmation of Askey’s remark [9] that the 3-j and
6-j coefficients that arise in QTAM are hypergeometric functions and many of
their elementary properties are best understood when considered as such.

Wu observed [10] that while the 3-j and the 6-j coefficient can be related to a
3F2(1) and 4F3(1), respectively, the 9-j coefficient cannot be related to a 7F6(1)
but that it is related to a new hypergeometric function [11] was yet another
starting point. This led to the simplest known formula for the 9-j coefficient,
a triple sum series due to Alisauskas, Jucys and Bandzaitis [12] being related
[13] to a triple hypergeometric series, with unit arguments. From a novel way
of looking at the symmetries of the 9-j coefficient, the Bailey transform for a
Saalschützian 4F3(1) and a transformation of a Kampé de Fériet function into
a Saalschützian 4F3(1) or its Bailey transform were derived [14].

The above results were reviewed in an earlier contribution to the Symmetries
in Science series symposium [15]. Section 2 reviews the Group theoretical as-
pects of hypergeometric transformations and the 24 Kummer solutions of the
Gauss second order ordinary differential equation being related to the symme-
tries of the cube. In section 3, the beta integral method to generate new transfor-
mations from old is reviewed and more results obtained recently are presented.
Section 4 relates the 7F6(1) forms for the 6-j coefficient with the sets of 4F3(1)s
using a Whipple transformation and presents an understanding of the symme-
tries of the 6-j coefficient in terms of these sets. In section 5, a q-generalization
of the new summation theorem obtained for the 3F2(a, a, x; 1+a, 1+a+N ; 1),
where N is a non-negative integer is derived.

2. Group theoretical aspects of hypergeometric
transformations

Pfaff’s transformation ([16], p.68) also referred to as Saalschütz’s theorem
[17]:

2F1(a, b; c; x) = (1 − x)−a
2F1(a, c − b; c;

x

x − 1
) (1)

when iterated generates the well-known Euler transformation formulae [8]:

2F1(a, b; c; x) = (1 − x)−a
2F1(a, c − b; c;

x

x − 1
) (2)

= (1 − x)−b
2F1(c − a, b; c;

x

x − 1
) (3)

= (1 − x)c−a−b
2F1(c − a, c − b; c; x), (4)
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on each of which is superposed the trivial numerator parameter permutation
symmetry:

2F1(a, b; c; x) = 2F1(b, a; c; x), (5)

so that we have a set of eight transformations. If we denote the Pfaff transfor-
mation by g1, and the numerator parameter permutation of the 2F1 by g2, then
these two elementary transformations satisfy the properties:

g2
1 = 1, g2

2 = 1, (g1g2)4 = 1

and the group generated by the two elements subjected to these relations is the
dihedral group D8, also known as the group of symmetries of the square. It is a
subgroup of the symmetric group S4, the permutation group on four elements.

Erdélyi and Weber [18] stated that the recursive use of the Thomae [19] trans-
formation for a 3F2(1) resulted in a new transformation. This was the starting
point for a study of the group theory of transformations. Bayer, Louck and Stein
[20] showed that the group of transformations of the non-terminating 3F2(1)
transformation is S5 and that the group of transformations of the terminating
balanced (or Saalschützian) 4F3(1) series is S6. The study of the group theory
of the terminating 3F2(1) transformations, obtained by a recursive application
of the terminating version of the Thomae transformation was done by Srinivasa
Rao et al. [21].

The remark of Hardy [22] that the Thomae transformation for the non-
terminating 3F2(1):

3F2

(
a, b, c ; 1

d, e

)
=

Γ(d, e, s)
Γ(a, s + b, s + c) 3F2

(
d − a, e − a, s ; 1

s + b, s + c

)
(6)

where Γ(x, y, · · · ) = Γ(x)Γ(y) · · · and s = d + e− a− b− c is the parameter
excess,

is an expression of the theorem that

1
Γ(β1)Γ(β2)Γ(β1 + β2 − α1 − α2 − α3)

F

(
α1, α2, α3

β1, β2

)
is a symmetric function of the five arguments

β1, β2, β1 + β2 − α2 − α3, β1 + β2 − α3 − α1, β1 + β2 − α1 − α2,

clearly implies a group theoretical interpretation for the Thomae formula. As
in the case of the terminating 3F2 series, a recursive use of this transformation
results in our obtaining a set of ten non-terminating Thomae transformations
([23], Appendix 1). In [24], the following function was constructed:

f(x1, x2, x3, x4, x5)

=
1

Γ(s, 2x4, 2x5)
3F2

(
2x1 − s, 2x2 − s, 2x3 − s ; 1

2x4, 2x5

)
(7)
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where s = x1+x2+x3−x4−x5. That this function is symmetric in all the five
variables is a consequence of the Thomae transformation for non-terminating
3F2(1) has been proved as follows: the function f(�x) ≡ f(x1, x2, x3, x4, x5)
is manifestly invariant for permutations of (x1, x2, x3) and (x4, x5). Consider
the permutation p : x1 → x2 → x3 → x4 → x5 → x1, which is a per-
mutation of order 5. Upon relabeling the parameters of the 3F2(1) in f(�x) as

3F2

(
a, b, c ; 1

d, e

)
, it is straight forward to see that corresponding to

f(�x) = f(p.�x) (8)

we get:

3F2

(
a, b, c ; 1

d, e

)
=

Γ(d, s)
Γ(d − a, s − a) 3F2

(
e − c, e − b, a ; 1

e, s + a

)
, (9)

belonging to the set of ten Thomae transformations. Since f(�x) is invariant
under this permutation p of order 5, and under the transposition, x4 → x5,
manifestly, the group generated by these two generators (viz. p and the trans-
position) is the complete group of permutations on 5 elements, i.e. the sym-
metric group S5. This result is, obviously, a succinct, quintessential one-line
statement for the group of Thomae transformations.

The two-term relation for the terminating balanced (or Saalschützian) 4F3

of unit argument is:

4F3

(
A, B, C,−n; 1
E, F, G

)
=

(F − C)n(G − C)n

(F )n(G)n

×4 F3

(
E − A, E − B, C ,−n; 1
E, E + F − A − B, E + G − A − B

)
(10)

where the Pochhammer symbol is defined for n ≥ 1 as:

(a)n =
Γ(a + n)

Γ(a)
= a(a + 1)(a + 2) · · · (a + n − 1), with (a)0 = 1.

(11)

A recursive use of this terminating 4F3 transformation results in a set of twenty
transformations ([23], Appendix 2). In this case, the function:

f(x1, x2, x3, x4, x5, x6)
= (x1 + x2 + x3 + x4, x1 + x2 + x3 + x5, x1 + x2 + x3 + x6)n

× 4F3

(
x1 + x2, x2 + x3, x3 + x1,−n; 1
x1 + x2 + x3 + x4, x1 + x2 + x3 + x5, x1 + x2 + x3 + x6

)
(12)
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with (x, y, · · · )n = (x)n(y)n · · · and x1 + x2 + x3 + x4 + x5 + x6 = 1 −
n, for some non-negative integer n, being symmetric in all the six variables
x1, x2, x3, x4, x5, x6 is a consequence of the 4F3(1) transformation.

Hardy’s clue enabled us [25] to look for the invariance groups for all the
known transformations of basic hypergeometric series. A summary of these
results is presented below:

The Heine transformation, in the standard notation [26]:

2φ1(a, b; c; q, x) =
(a, bz; q)∞
(c, z; q)∞

2φ1(c/a, z; bz; q, a), (13)

when iterated yields a set of 12 transformations [27]. The invariance group is
the dihedral group D12 – the group of symmetries of the hexagon (sometimes
also denoted as D6). We construct the function:

f(x1, x2, x3, x4, x5, x6)

=
(

x1x4,
x2x6

x1
; q
)

∞
2φ1

(
x1x3

x2
,
x1x5

x6
; x1x4; q,

x2x6

x1

)
, (14)

whose invariance under the dihedral group acting on the six variables x1, · · · , x6

generates the set of 12 Heine transformations.

The function:

f(x) = f(x1, x2, x3, x4, x5)

=
(

x1x2x3

x4x5
, x2

4, x
2
5; q

)
∞

3φ2

(
x1x4x5

x2x3
, x2x4x5

x1x3
, x3x4x5

x1x2

x2
4, x

2
5

; q,
x1x2x3

x4x5

)
(15)

is symmetric in the five variables x1, · · · , x5. For the cyclic permutation: p =
(14325) – by this we mean the permutation x1 → x4 → x3 → x2 → x5 → x1:

p.(x1, x2, x3, x4, x5) = (x4, x5, x2, x3, x1) (16)

On relabeling the parameters of the 3φ2s for the equation: f(x) = f(p.x),
where x is the five component vector, we get the transformation:

3φ2

(
a, b, c
d, e

; q,
de

abc

)
=

(
b,

de

ab
,
de

ac

)
∞

3φ2

(
d
b
, e

b
, s

de
ab

, de
ac

; q, b
)

, (17)

which is the q- analogue of the non-terminating Thomae transformation. The
defined function is manifestly invariant under the permutations (x1, x2, x3) and
(x4, x5). f(x) is also invariant under the transposition x4 ↔ x5, as well as the
above cyclic permutation p of order 5. Hence, the group generated by p and
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the transposition is S5 which is thus the invariance group of the q-analogue of
the Thomae non-terminating transformation.

Let x1, · · · , x6 satisfy the condition: x1x2x3x4x5x6 = q1−n for some non-
negative integer n. Then the function:

f(x) = f(x1, x2, x3, x4, x5, x6)

= qn(n−1)/2(x1x2x3x4, x1x2x3x5, x1x2x3x6; q)n
1

(x1x2x3)n

×4φ3

(
q−n, x2x3, x1x3, x1x2

x1x2x3x4, x1x2x3x5, x1x2x3x6
; q, q

)
, (18)

being symmetric in the variables x1, · · · , x6 is a manifestation of the q-analogue
of the terminating balanced (Saalschützian) 4F3(1) transformation. The invari-
ance group is S6 and the proof is along the same lines as that given above.

The above are the q-analogues of the results [24] of Bayer, Louck and Stein
[20] for ordinary hypergeometric series transformations.

For terminating 3φ2 series, the q-analogue of the Whipple transformation
obtained by Sears [27] is:

3φ2

(
q−n, b, c

d, e
; q, q

)
=

(
c, de

bc ; q
)
n

(d, e; q)n
(b)n

3φ2

(
q−n, d

c
, b

c
de
bc

, q1−n

c

; q,
q

b

)
,

(19)

which when recursively applied yields 72 transformations, as in the case of the
terminating 3F2(1) investigated in [23]. This 72-element group cannot be a
subgroup of S5 by Cayley’s and Lagrange’s theorems (since 72 is not a factor
of 120). Thus, it is shown in [24] that the invariance group of the terminating
3φ2 series transformations is a 72-element subgroup of S6 generated by the
permutations: (24) and (123456).

It was also shown in [24] that the transformations of the very-well-poised
8φ7 series belong to the invariance group (of order 1920), which is a subgroup
of signed permutations on 5 elements coincides with the Weyl group of a root
system of type D5.

In 1836, Kummer published a set of six distinct solutions for the second oder
ordinary Gauss differential equation characterized by three regular singular
points. Each of these six solutions has four forms which are related to each
other by Euler’s transformations (2)–(4). Thus, there are in all 24 solutions of
the Gauss hypergeometric equation which can be found in most classical text
books [28]. Recently, Posser [29] related these solutions of Kummer to one
another through a finite group (of order 24, or 48 if one includes the mirror
symmetries) of transformations. It is remarkable that these 24 solutions have
been related [25] to the (rotational) group of symmetries of the cube. This is
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achieved through the function:

f(x) = 2F1(
1
2

+ x1 + x2 + x3,
1
2

+ x1 + x2 + x4;

1
2

+ x1 − x6; −
x1 + x6

x3 + x4
), (20)

where the six variables x1, · · · , x6 (identified with the six faces of a cube labeled
as 1, · · · , 6 such that labels of the opposite faces of the cube add to 7) satisfy
the constraint:

6∑
i=1

xi = 0.

The symmetries of the cube can then be associated with the 24 permutations of
a group ε G (a subgroup of the 720 permutations belonging to S6) of the indices
labeling its faces. Identifying the four arguments of the above 2F1 with a, b, c, z,
if we denote by g ε G one of these symmetries then f(g.x) will correspond to
one of the Kummer solutions. In [25] it is shown that the 24 complete Kummer
solutions (up to a constant) can be related to the permutations which generate
the symmetries of the cube and that the mirror symmetries, or the reflection
symmetries of the cube, are the ones which correspond to the interchange of the
numerator parameters of the 2F1 function. The intimate connection between
the symmetries of the cube and the 24 Kummer solutions of the Gauss dif-
ferential equation, is an aesthetically beautiful result discovered 90 years after
the discovery of the Gauss equation and 66 years after Kummer established its
complete set of solutions.

3. Beta Integral Method

In [30] it is shown how from known identities for hypergeometric series,
with lesser number of numerator and denominator parameters, involving the
argument z, 1−z or combinations of their powers, identities for hypergeometric
series with more number of numerator and denominator parameters but at some
fixed argument (usually 1) can be derived. The basic idea is to multiply the
known hypergeometric series identity by za−1(1− z)b−1, integrate term-wise,
use the beta integral representation for the hypergeometric function and rewrite
the result in terms of a new hypergeometric series. This beta integral method
has been automated using computer algebra and the software package HYP of
Krattenthaler [31] to generate some old and some new results. In this section we
present more results which add to the large collection of known hypergeometric
identities.

The Chapter 11 in the second Notebook of Ramanujan [33] – systematically
studied and edited by Bruce C. Berndt [34], over a period of more than two
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decades (1975 - 1997) – contains many results on quadratic transformations
of hypergeometric series and many theorems on products of hypergeometric
series. Most of these transformations can be used in our beta integral method
and we get many interesting results, many of them new.

To illustrate the procedure in this beta integral method, consider Entry 2
of Ramanujan in Chapter 11 of his second Notebook ([34], p.49), which after
x → −x and relabeling of the parameters reads:

2F1(a, b; 2b;
−2x

1 − x
) = (1 − x)a

2F1(
a

2
,
a + 1

2
;
2b + 1

2
; x2). (21)

The 2F1 functions are written as series, both sides are multiplied by the factor
xd−1(1 − x)e−d−1 and integrated term-by-term with respect to the variable
x from the limits 0 to 1 and using the standard properties of the beta and
gamma functions, it is straight forward to obtain the following result after
minor simplifications:

3F2

(
a, b, d ; 2

2b, 1 + d − e

)
=

Γ(e, a − d + e)
Γ(a + e,−d + e)

× 4F3

(
a
2 , a

2 + 1
2 , d

2 , d
2 + 1

2 ; 1
b + 1

2 , a
2 + e

2 , a
2 + e

2 + 1
2

)
, (22)

where a, b or d must be a negative integer. This result is similar to one which
will be obtained from the transformation T2136 of [31] and Bailey’s result
([32], (4.18)).

Entry 3 of Ramanujan ([33], Ch. XI, Vol. 2), due to Gauss [35] and (4.10)
in [32] is:

2F1(r, m; 2m;
4x

(1 + x)2
) = (a + x)2r

2F1(r, r − m +
1
2
; m +

1
2
; x2), (23)

after replacing x → −x, yields by the beta integral method, after multiplying
by xδ−1(1 − x)ε−δ−1 and integrating with respect to the variable x:

4F3

(
r, m, δ, 1 − ε

2m, 1+δ−ε
2 , 1 + δ−ε

2

; 1
)

=
Γ(ε, 2r + ε − δ)
Γ(ε − δ, 2r + ε)

×4F3

(
r, r − m + 1

2 , δ
2 , δ+1

2
m + 1

2 , r + ε
2 , r + ε+1

2

; 1
)

,

(24)

which is a combination of the two transformations T2136 and T2140 in [31].
Entry 15 of Ramanujan ([33], Ch. XI, Vol. 2) in terms of hypergeometric

series ([34], Part II, p.59) is:

0F1(γ; x)0F1(δ; x) = 2F3

(
1
2(γ + δ), 1

2(γ + δ − 1); 4x
γ, δ, γ + δ − 1

)
, (25)
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after multiplication by xα−1(1 − x)β−α−1 and integration results in:

F 1:0;1
1:1;1

(
α : −;−;
β : γ ; δ

; 1, 1
)

= 3F4

(
α, 1

2(γ + δ), 1
2(γ + δ − 1)

β, γ, δ, γ + δ − 1 ; 4
)

, (26)

where α being a negative integer assures the convergence of the hypergeometric
series, since it has 4 as its argument.

If x is arbitrary, Entry 16 of Ramanujan ([33], Ch. XI, Vol. 2) in terms
of hypergeometric series, after a brief calculation ([34], Part II, p.59) can be
written as:

0F2(m + 1, n + 1;x)0F2(m + 1, n + 1;−x)

= 3F8

(
1
3(m + n + 1), 1

3(m + n + 2),
1
2(m + n + 1), 1

2(m + n + 2),
1
3(m + n + 3)
m + 1, n + 1, 1

2(m + 1), 1
2(m + 2), 1

2(n + 1), 1
2(n + 2)

;−27
64

x2

)
,

(27)

which by the beta integration method results in the new transformation:

F 1:0;0
1:2;2

(
α : −− ; −−
β : m + 1, n + 1; m + 1, n + 1 ; 1,−1

)
= 5F10

(
1
2α, 1

2α + 1
2 , 1

3(m + n + 1), 1
3(m + n + 2),

1
2(m + n + 1), 1

2(m + n + 2), m + 1, n + 1, 1
2(m + 1),

1
3(m + n + 3)
1
2(m + 2), 1

2(n + 1), 1
2(n + 2), 1

2β, 1
2β + 1

2

;−27
64

)
. (28)

Entry 18 of Ramanujan ([33], Ch. XI, Vol. 2) and ([34], Part II, p.61):

1F1(−β; γ;−x)1F1(−β; γ; x) = 2F3

(
−β, β + γ
γ, 1

2γ, 1
2(γ + 1) ;

x2

4

)
, (29)

results in:

F 1:1;1
1:1;1

(
δ : −β;−β
ε : γ; γ

;−1, 1
)

= 4F5

(
−β, β + γ, 1

2δ, 1
2(δ + 1)

γ, 1
2γ, 1

2(γ + 1), 1
2ε, 1

2(ε + 1)
;
1
4

)
. (30)

Corresponding to Example 7 after Entry 20 ([34], part II, p.63), which is a
special case of Entry 18 of Ramanujan with β = −1

2 and γ = 1:

1F1(
1
2
; 1;x)1F1(

1
2
; 1;−x) = 1F2(

1
2
; 1, 1;

x2

4
), (31)
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we get the result:

F 1:1;1
1:1;1

(
δ : 1

2 ; 1
2

ε : 1; 1 ;−1, 1
)

= 3F4

(
1
2 , 1

2δ, 1
2(δ + 1)

1, 1, 1
2ε, 1

2(ε + 1)
;
1
4

)
, (32)

which is the same as the result (30) with β = −1
2 and γ = 1, except for the

4F5 reducing to a 3F4, due to a numerator and a denominator parameter in the
former having the same value 1

2 .

However, though Example 8 after Entry 20 has been shown ([34], part II, p.64),
to be a special case of Entry 18 of Ramanujan with β = −1, γ = 3

2 and x
replaced by x

2 , viz.:

1F1(1;
3
2
;
x

2
)1F1(1;

3
2
;−x

2
) = 2F3(1,

1
2
;
3
2
,
3
4
,
5
4
;
x2

16
), (33)

the result we derive from it by our beta integral method:

F 1:1;1
1:1;1

(
δ : 1; 1
ε : 3

2 ; 3
2

;
1
2
,−1

2

)
= 4F5

(
1, 1

2 , 1
2δ, 1

2(δ + 1)
3
2 , 3

4 , 5
4 , 1

2ε, 1
2(ε + 1)

;
1
16

)
,

(34)

is interestingly not a special case of (30) with β = −1, γ = 3
2 and x replaced

by x
2 .

Example 9, after Entry 20 of Ramanujan ([33], Ch. XI, Vol.2) is obtained by
setting β = −1 and γ = n + 1 in Entry 18 as pointed out by ([34], p. 64,
Part II). In this case the product of 1F1s related to a 2F3 transformation yields
the derived result which is (30) when the parameters are set to β = −1 and
γ = n + 1.
Entry 21 of Ramanujan in his second Notebook ([33], Ch. XI), a three-term re-
lation, is originally due to Kummer ([37], p.82) and in hypergeometric notation
([34], p.64, Part II) it is:

2F1(m, n;
m + n + 1

2
;
1 + x

2
)

= Γ
(

1
2 , m+n+1

2
m+1

2 , n+1
2

)
2F1(

m

2
,
n

2
;
1
2
; x2)

+ Γ
(

−1
2 , m+n+1

2
m
2 , n

2

)
2F1(

m + 1
2

,
n + 1

2
;
3
2
; x2)



Group Theoretical aspects of Hypergeometric Functions 365

and this results, in our method, in the transformation:

3F2

(
m, n,−r + s
m+n+1

2 , s
;
1
2

)
= Γ

(
1
2 , m+n+1

2
m+1

2 , n+1
2

)
4F3

(
m
2 , n

2 , r
2 , r+1

2
1
2 , s

2 , s+1
2

; 1
)

+ Γ
(

−1
2 , m+n+1

2 , r + 1, s
m
2 , n

2 , r, s + 1

)
4F3

(
m+1

2 , n+1
2 , r+1

2 , r + 1
3
2 , s+1

2 , s
2 + 1

; 1
)
(35)

We have seen how several results can be derived from known linear and
quad - ra - tic transformations of ordinary hypergeometric series, using the beta
integral me - thod.

4. 6-j coefficient in terms of sets of 7V6

In [38], it was shown that the highly symmetric form of the Racah or 6-j
angular momentum recoupling coefficient, due to Regge [39], which exhibits
the 144 symmetries of the coefficient, can be formally cast into a 5F4(1) form.
Though the 5F4(1) exhibits the 144 symmetries, it has the property that for
real integral and half integral values of the angular momenta, the numerator
and denominator parameters are integers. The termination of the series, which
occurs due to the numerator parameter being a negative integer, unfortunately,
occurs after the zero due to the denominator parameter! Hence, this formal
expansion represents a divergent series and is not useful.

The claim that a new symmetry was found by Minton [40] for the 6-j coef-
ficient which did not satisfy even the triangle inequalities [41] led us to the set
I [6] of 4F3(1)s for the 6-j coefficient. Racah’s [42] achievement was to show
that the recoupling coefficient for three angular momenta, W (abcd; ef), can be
written as a single sum series (independent of the 3-j coefficients and hence of
the projection quantum numbers of angular momenta), viz:

{
a b e
d c f

}
= (−1)a+b+c+d W (abcd; ef) (36)

= N
∑
P

(−1)P (P + 1)! {
4∏

i=1

(P − αi)!
3∏

j=1

(P − βj)!}−1,

(37)
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with

N = (−1)a+b+c+d % (a, b, e) % (c, d, e) % (a, c, f) % (b, d, f), (38)

%(x, y, z) =
[
(−x + y + z)!(x − y + z)!(x + y − z)!

(x + y + z + 1)!

]1/2

, (39)

α1 = a + b + e, α2 = c + d + e, α3 = a + c + f, α4 = b + d + f,

β1 = a + b + c + d, β2 = a + d + e + f, β3 = b + c + e + f (40)

and

Pmin ≤ P ≤ Pmax, (41)

Pmin = max(α1, α2, α3, α4), Pmax = min(β1, β2, β3). (42)

By setting in (37), s = βk − P, k = 1, 2, 3, in succession, a set I of three
series expansions, and in turn, the set I of the following three 4F3(1)s has been
obtained in [6]:{

a b e
d c f

}
= (−1)E+1N Γ(1 − E)

× [Γ(1 − A, 1 − B, 1 − C, 1 − D, F, G)]−1

×4F3(ABCD ; EFG ; 1), (43)

where

A = e − a − b, B = e − c − d, C = f − a − c, D = f − b − d,

E = −a − b − c − d − 1, F = e + f − b − c + 1,
G = e + f − a − d + 1, (44)

for k = 1 and for k = 2 and 3, the numerator and denominator parameter sets
are:

A = a − b − e, B = d − c − e, C = a − c − f, D = d − b − f,

E = −b − c − e − f − 1, F = a + d − b − c + 1,
G = a + d − e − f + 1, (45)

and

A = b − a − e, B = c − d − e, C = c − a − f, D = b − d − f,

E = −a − d − e − f − a, F = b + c − a − d + 1,
G = b + c − e − f + 1. (46)

The Minton procedure was to apply a Saalschützian 4F3(1) transformation to the
4F3(1) in (43) (with the parameters given by (44)) and identify the transformed
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4F3(1) with a 6-j coefficient using again (43). We have shown in [5] that this
procedure will, at best, result in a j → −j−1 substitution for one or more of the
six angular momenta in the 6-j coefficient, which violates triangle inequalities
[41], though it is a mathematically valid symmetry in quantum theory of angular
momentum.

A hypergeometric series is called very well-poised if the numerator (ai) and
denominator (bi) parameters of the hypergeometric series are such that:

ai + bi = 1 + a0, for i = 1, 2, · · ·n,

and amongst the parameters ai occurs 1+a0/2. The standard abbreviated nota-
tion for a very well-poised hypergeometric series uses its numerator parameters
only and it is:

r+1Vr(a0; a2, a3, · · · , ar; z) =

= r+1Fr

(
a0, 1 + a0

2 , a2, a3, · · · , ar
a0
2 , 1 + a0 − a2, 1 + a0 − a3, · · · , 1 + a0 − ar

; z
)

.

(47)

The transformation of a balanced or Saalschützian 4F3(1) series into a well-
poised 7F6(1) series, with the special form of the second parameter, was given
by Whipple [43]:

4F3

(
x, y, z,−n
u, v, w

; 1
)

= Γ
(

v + w − x, 1 + y − u, 1 + z − u, 1 − n − u
1 + y − n − u, 1 + z − n − u, 1 + y + z − u, 1 − u

)
×

7F6

(
a, 1 + a

2 , w − x, v − x, y,
a
2 , v, w, 1 + z − u − n,

)
,

z, −n
1 + y − u − n, 1 + y + z − u

; 1
)

(48)

in which a = y+z−u−n = w+v−x−1 (and x+y+z−n+1 = u+v+w)
and the 7F6(1) in the expression above can be written in the shortened notation
for the very well-poised hypergeometric series as:

7F6(−;−; 1) ≡ 7V6(a; w − x, v − x, y, z,−n). (49)

Recently, Alisauskas [44] has claimed that he has found a new expression for
the 6-j coefficient of SU(2) and it is (with minor changes in the notation):{

a b e
d c f

}
= ∇(a, c, f)∇(b, d, f)∇(e, d, c) % (a, b, e)
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×
∑

j

(−1)d+c+f−(a+b+e)/2+j (2j + 1)
∇2(1

2(b + e − a), d, j)∇2(1
2(a − b + e), c, j)∇2(1

2(a + b − e), f, j)
,

(50)

where

∇(x, y, z) = %(x, y, z)
(x + y + z + 1)!
(−x + y + z)!

and he states that the sum is the well-poised 7F6(1). He also obtains another
expression for the 6-j coefficient by substituting a → −a − 1, b → −b − 1,
which is also a well-poised 7F6(1).

We use of the Whipple transformation for the 4F3(1) forms of the 6-j coef-
ficient, and since in this set of 4F3(1)s all the four numerator parameters are
negative integers, there are four different ways in which the given transforma-
tion can be used to obtain well-poised 7V6(1) forms for the 6-j coefficient. In
the table given below are the four different permutations and the corresponding
7V6(1) forms we obtain for the 6-j coefficient.

Parameter permutation 7V6 (parameters)
(4231);(231) 7V6(A+B+C-E; G-D,F-D,A,B,C)
(3241);(231) 7V6(A+B+D-E; G-C,F-C,A,B,D)
(2341);(231) 7V6(A+C+D-E; G-B,F-B,A,C,D)
(1234);(231) 7V6(B+C+D-E; G-A,F-A,B,C,D)

These are the only independent 7V6 forms for the 6-j coefficient. Of these,
the one corresponding to the second of the three 4F3(1) forms (45) for the 6-j
coefficient corresponds to the ‘new’ expression reported by Alisauskas.

In our approach we have shown [5] that there are two sets of 4F3(1)s which are
related to each other by ‘reversal’ of series, which completely maps the set I
of three 4F3(1)s – explicitly given here in this section – onto the set II of four
4F3(1)s). From the table given above, it is clear that we get for each of the
4F3(1)s belonging to set I of hypergeometric functions, a set of four 7V6(1)s.
It is straight forward to then observe that each of these 7V6(1)s will account
for only 12 of the 144 symmetries of the 6-j coefficient. For instance, the first
entry in the table above clearly shows that the symmetries exhibited are due
to the permutations of the parameters A, B, C (S3) and the parameters F, G
(S2). It is also clear from an examination of the table that the 12 symmetries
corresponding to each of the four 7V6(1)s are distinctly different. Thus, we can
conclude, that if we want to express the 6-j coefficient as a 7V6(1), then a set of
12 of 7V6(1)s is necessary and sufficient to account for the 144 symmetries
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of the 6-j-coefficient.

Equivalently, corresponding to the set II of four 4F3(1)s, one can write down a
set of 16 7V6(1)s, each of which will account for only 9 of the 144 symmetries of
the 6-j coefficient, enabling us to draw the conclusion that if the 6-j coefficient
is represented as a 7V6(1) derived by the use of the Whipple transformation on
the 4F3(1) belonging to set II of 4F3(1)s for the 6-j coefficient, then a set of
16 7V6(1)s is necessary and sufficient to account for the 144 symmetries of the
6-j coefficient.

This completes our understanding of the 144 symmetries of the 6-j coefficient in
terms of the equivalent sets of 12 or 16 7V6(1)s. The ‘new’ expression obtained
by Alisauskas is just one member of the set of 12 7V6(1)s.

5. A q-generalization of a new 3F2 summation theorem

Ramanujan’s Example 7, after Entry 43, in Chapter XII, of the first Notebook
reads is:

π

tan(πx)
2x(

2x x
)2

(1 − 2x)

(∑ 1
2x

− 1
2

∑ 1
x

+
1

1 − 2x
− π

2
tan(πx)

)

=
1
12

+
x

1
· 1
32

+
x(x + 1)

2
· 1
52

+ &c.(XII, 43, Ex.7)

where, x is his notation for the gamma functionΓ(x+1). In [45], we have stated
and proved a new summation theorem for the 3F2(x, a, a; 1+a, 1+a+N ; 1),
and showed that the above entry is a very special case of that theorem. Also,
for x = 1, a = 1/2 and N = 0, our theorem reduces to Dixon’s theorem
for a well-posed 3F2(1). In this section, we obtain a q-generalization of the
Krattenthaler-Srinivasa Rao Theorem [30].

Let us define the following q-analogue of the digamma function (see [46,
(2.10)]), with q being a fixed complex number with |q| < 1,

ψ̃q(x) := −(1 − q)
∞∑

n=0

xqn

1 − xqn
. (51)

Then we have the following theorem:

Theorem 1. Let N be a non-negative integer and a be a complex number which
is not of the form q−m, where m is a non-negative integer. If |x| > |qN+2|, then
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3φ2

[
a, a, x

aq, aqN+1 ; q,
qN+2

x

]
=

(1 − a)
(1 − q)

(qN+1; q)∞ (aq/x; q)∞
aN+1 (aqN+1; q)∞ (q/x; q)∞

×
(
ψ̃q

(
aqN+1/x

)
− ψ̃q(a) − ψ̃q(qN+1) + ψ̃q(q)

−
N∑

k=1

(1 − q)
(1 − qk)

(q/a; q)k (q−N; q)k

(q; q)k (x/aqN; q)k
xk

)
. (52)

Proof. We start with the 3φ2-series

3φ2

[
a, x, aδ

aq, aq1+N ; q,
qN+2

δx

]
.

Clearly, for δ = 1 this series reduces to the 3φ2-series on the left-hand side
of 52. To the above 3φ2-series we apply the three-term transformation formula
(see [47, (3.3.3); Appendix (III.33)])

3φ2

[
A, B, C
D, E

; q,
DE

ABC

]
=

(E
B , E

C , Cq
A , q

D ; q)∞
(C, Cq

D , q
A, E

BC ; q)∞
3φ2

[
C, D

A , Cq
E

Cq
A , BCq

E

; q,
Bq

D

]

−
( q

D , Eq
D , B, C, D

A , DE
BCq , BCq2

DE ; q)∞
(D

q , E, Bq
D , Cq

D , q
A, E

BC , BCq
E ; q)∞

× 3φ2

[
Aq
D , Bq

D , Cq
D

q2

D , Eq
D

; q,
DE

ABC

]
, (53)

with A = a, B = x, C = aδ, D = aq, E = aqN+1. Since for this choice of
parameters we have Aq/D = 1, the second 3φ2-series on the right-hand side of
53 reduces to 1, as a result of the application of 53 to our 3φ2-series we obtain
the expression

(aqN+1/x, qN+1/δ, δq, 1
a; q)∞

(aqN+1, δ, q
a, qN+1/δ; q)∞

3φ2

[
δ

qN , aδ, q

δq, δx
qN

; q,
x

a

]

−
( 1

a, qN+1, x, aδ, q, aqN+1

δx , δx
aqN ; q)∞

(a, aq1+N, x
a, δ, q

a, qN+1

δx , δx
qN ; q)∞

.
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To ensure convergence of the latter 3φ2-series we must have |x| < |a|, which
in turn requires that |a| > |qN+2|. So, let us for the moment

assume these two restrictions.

We continue by applying the following 3φ2 transformation formula (see [47,
(3.2.7); Appendix (III.9)])

3φ2

[
a, b, c
d, e

; q,
de

abc

]
=

(e/a, de/bc; q)∞
(e, de/abc; q)∞

3φ2

[
a, d/b, d/c
d, de/bc

; q,
e

a

]

to our series. Thus we obtain the expression

1
1 − δ

(
(x, δx/aqN, aqN+1/x, qN+1/δ, 1/a; q)∞
(δx/qN, x/a, aqN+1, q/a, qN+1/δx; q)∞

3φ2[
δ/qN, q/a, δ
δq, δx/aqN ; q, x

]
− (1/a, qN+1, x, aδ, q, aqN+1/δx, δx/aqN; q)∞

(a, aqN+1, x/a, δq, q/a, q1+N/δx, δx/qN; q)∞

)
. (54)

For convergence of the latter 3φ2-series, we assume that, in addition to the re-
strictions that we already imposed, we have |x| < 1.

We now compute the limit of 54 as δ → 1, by using de l’Hôpital’s rule. A
straight-forward calculation shows that this limit is exactly equal to the right-
hand side of 52.

As it stands, the assertion is only demonstrated for |qN+1| < |x| < min{1, |a|}.
However, by analytic continuation, Equation 52 is true for any values of x and a
for which the 3φ2-series on the left-hand side converges, i.e., for |x| < |qN+1|.
�
In [46, (2.12)] it was shown that, although the limit limq↑1 ψ̃q(qA) does not
even exist, we have

lim
q↑1

(
ψ̃q(qA) − ψ̃q(qB)

)
= ψ(A) − ψ(B),

where ψ(z) is the ordinary digamma function, ψ(z) := Γ′(z)/Γ(z). Therefore,
if in 52 we replace a by qa and x by qx, and then let q → 1, we obtain the
formula
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3F2

[
a, a, x

a + 1, a + N + 1 ; 1
]

=
a Γ(a + N + 1) Γ(1 − x)

N ! Γ(a − x + 1)
× (ψ(a − x + N + 1) − ψ(a) − ψ(N + 1) + ψ(1)

−
N∑

k=1

(1 − a)k(−N)k

k · k! (a − x + 1)k

)
. (55)

In view of ψ(1) = −γ, where γ is the Euler–Mascheroni constant, this formula
agrees almost with Theorem 1 from [48],

3F2

[
a, a, x

a + 1, a + N + 1 ; 1
]

=
a Γ(a + N + 1) Γ(1 − x)

N ! Γ(a − x + 1)
× (ψ(a − x + 1) − ψ(a) − ψ(N + 1) − γ

−
N∑

k=1

(a)k (−N)k

k · k!(a − x + 1)k

)
. (56)

However, it is not too difficult to see directly that these two forms agree. In fact,
we are going to derive a q-analogue of the form 56, by starting from 52. As it
will turn out, this q-analogue will not be as elegant as 56. In this q-analogue, a
simplification takes place only if q = 1.

It is sufficient to just consider the sum on the right-hand side of 52,

N∑
k=1

(1 − q)
(1 − qk)

(q/a; q)k (q−N; q)k

(q; q)k (x/aqN; q)k
xk.

For our purposes it will be necessary to write this sum as a limit,

lim
δ→1

N∑
k=1

(1 − q)
(1 − qkδ)

(q/a; q)k (q−N; q)k

(q; q)k (x/aqN; q)k
xk

= lim
δ→1

(
N∑

k=0

(1 − q)
(1 − qkδ)

(q/a; q)k (q−N; q)k

(q; q)k (x/aqN; q)k
xk − 1 − q

1 − δ

)
.

In hypergeometric notation this is

1 − q

1 − δ

(
3φ2

[
q/a, δ, q−N

δq, x/aqN ; q, x
]
− 1

)
.
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We transform this 3φ2-series by using the transformation formula (see [47,
(3.2.5); Appendix (III.13)])

3φ2

[
A, B, q−N

D, E
; q,

DEqN

AB

]
=

(E/B; q)N

(E; q)N
3φ2

[
q−N, B, D/A
D, Bq1−N/E

; q, q
]

,

where N is a nonnegative integer. Thus we arrive at the expression

lim
δ→1

1 − q

1 − δ

(
(x/aδqN; q)N

(x/aqN; q)N
3φ2

[
q−N, δ, aδ
δq, aδq/x

; q, q
]
− 1

)
.

This limit can be easily evaluated by means of de l’Hôpital’s rule. The result is

−(1 − q)
N∑

k=1

x
aqk

1 − x
aqk

+
N∑

k=1

(1 − q)
(1 − qk)

(a; q)k (q−N; q)k

(q; q)k (aq/x; q)k
qk.

We have thus derived the following corollary.

Corollary 2. Let N be a non-negative integer and a be a complex number which
is not of the form q−m, where m is a non-negative integer. If |x| > |qN+2|, then

3φ2

[
a, a, x

aq, aqN+1 ; q,
qN+2

x

]
=

(1 − a)
(1 − q)

(qN+1; q)∞ (aq
x ; q∞

aN+1 (aqN+1; q)∞ ( q
x; q)∞

×
(

ψ̃q

(
aqN+1/x

)
+ (1 − q)

N∑
k=1

x
aqk

1 − x
aqk

− ψ̃q(a) − ψ̃q(qN+1) + ψ̃q(q)

−
N∑

k=1

(1 − q)
(1 − qk)

(a; q)k (q−N; q)k

(q; q)k (aq/x; q)k
qk

)
. (57)

The first terms in parentheses on the right-hand side,

ψ̃q

(
aqN+1/x

)
+(1−q)

N∑
k=1

x
aqk

1 − x
aqk

= ψ̃q

(
aqN+1/x

)
−(1−q)

N∑
k=1

1

1 − aqk

x

,

do not fit together to add up to ψ̃q (aq/x). However, in the limit q ↑ 1 (where
we have replaced a by qa and x by qx), this expression tends to

ψ (a − x + N + 1) −
N∑

k=1

1
a + k − x

,
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which does indeed tend to ψ(a − x + 1).

We now list some an interesting special case:
• If we choose N = 0 in 52, then we obtain the formula

3φ2

[
a, a, x
aq, aq

; q,
q2

x

]
= −

(
1 − 1

a

)
(1 − q)

(q; q)∞ (aq/x; q)∞
(aq; q)∞ (q/x; q)∞

(
ψ̃q (aq/x) − ψ̃q(a)

)
. (58)

This is a q-analogue of Example 5 of Section 10 of Chapter 10 of Ramanujan’s
second Notebook ([34], p. 26, Part II).
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AND DISCRETE QUANTUM GRAVITY

M. Lorente
Departamento de Fı́sica,

Universidad de Oviedo,

33007 Oviedo, Spain

P. Kramer
Institut für theoretische Physik

Universität Tübingen,
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Abstract Starting from the defining transformations of complex matrices for the SO(4)
group, we construct the fundamental representation and the tensor and spinor
representations of the group SO(4). Given the commutation relations for the
corresponding algebra, the unitary representations of the group in terms of the
generalized Euler angles are constructed. These mathematical results help us to
a more complete description of the Barret-Crane model in Quantum Gravity. In
particular a complete realization of the weight function for the partition function
is given and a new geometrical interpretation of the asymptotic limit for the Regge
action is presented.

Keywords: SO(4) group, tensor representation, spin representation, quantum gravity, spin
networks.

1. Discrete models in quantum gravity

The use of discrete models in Physics has become very popular, mainly for
two reasons. It helps to find the solutions of some differential equations by
numerical methods, which would not be possible to solve by analytic methods.
Besides that, the introduction of a lattice is equivalent to the introduction of
a cut-off in the momentum variable for the field in order to achieve the finite
limit of the solution. In the case of relativistic field equations -like the Dirac,
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Klein-Gordon, and the electromagnetic interactions- we have worked out some
particular cases [1].

There is an other motivation for the discrete models and it is based in some
philosophical presuppositions that the space-time structure is discrete. This is
more attractive in the case of general relativity and quantum gravity because it
makes more transparent the connection between the discrete properties of the
intrinsic curvature and the background independent gravitational field.

This last approach was started rigorously by Regge in the early sixties [2].
He introduces some triangulation in a Riemannian manifold, out of which he
constructs local curvature, coordinate independent, on the polyhedra. With the
help of the total curvature on the vertices of the discrete manifold he constructs
a finite action which, in the continuous limit, becomes the standard Hilbert-
Einstein action of general relativity.

Regge himself applied his method (“Regge calculus”) to quantum gravity in
three dimensions [3]. In this work he assigns some representation of the SU(2)
group to the edges of the triangles. To be more precise, to every tetrahedron
appearing in the discrete triangulation of the manifold he associates a 6j-symbol
in such a way that the spin eigenvalues of the corresponding representation
satisfy sum rules described by the edges and vertices of the tetrahedra. Since
the value of the 6j-symbol has a continuous limit when some edges of the
tetrahedra become very large, he could calculate the sum of this limit for all
the 6j-symbols attached to the tetrahedra, and in this way he could compare it
with the continuous Hilbert-Einstein action corresponding to an Euclidean non
planar manifold.

A different approach to the discretization of space and time was taken by
Penrose [4]. Given some graph representing the interaction of elementary units
satisfying the rules of angular momentum without an underlying space, he
constructs out of this network (“spin network”) the properties of total angular
momentum as a derived concept. Later this model was applied to quantum
gravity in the sense of Ponzano and Regge. In general, a spin network is a
triple (γ, ρ, i) where γ is a graph with a finite set of edges e, a finite set of
vertices v, ρe is the representation of a group G attached to an edge, and iv is
an intertwiner attached to each vertex. If we take the product of the amplitudes
corresponding to all the edges and vertices (given in terms of the representations
and intertwiners) we obtain the particular diagram of some quantum state.

Although the physical consequences of Penrose’s ideas were soon considered
to be equivalent to the Ponzano-Regge approach to quantum gravity, the last
method was taken as guiding rule in the calculation of partition functions. We
can mention a few results. Turaev and Viro [6] calculated the state sum for
a 3d-triangulated manifold with tetrahedra described by 6j-symbols using the
SU(2)q group. This model was enlarged to 4-dimensional triangulations and
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was proved by Turaev, Oguri, Crane and Yetter [7] to be independent of the
triangulation (the “TOCY model”).

A different approach was introduced by Boulatov [8] that led to the same
partition function as the TOCY model, but with the advantage that the terms
corresponding to the kinematics and the interaction could be distinguished.
For this purpose he introduced some fields defined over the elements of the
groups SO(3), invariant under the action of the group, and attached to the
edges of the tetrahedra. The kine - ma - ti - cal term corresponds to the self
interacting field over each edge and the interaction term corresponds to the fields
defined in different edges and coupled among themselves. This method (the
Boulatov matrix model) was very soon enlarged to 4-dimensional triangulations
by Ooguri [9]. In both models the fields over the matrix elements of the group
are expanded in terms of the representations of the group and then integrated
out, with the result of a partition function extended to the amplitudes over all
tetrahedra, all edges and vertices of the triangulation.

A more abstract approach was taken by Barret and Crane, generalizing Pen-
rose’s spin networks to 4 dimensions. The novelty of this models consists in the
association of representation of the SO(4) groups to the faces of the tetrahedra.
We will come back to this model in section 5.

Because we are interested in the physical and mathematical properties of the
Barret-Crane model, we mention briefly some recent work about this model
combined with the matrix model approach of Boulatov and Ooguri [10]. In this
work the 2d– quantum space-time emerges as a Feynman graph, in the manner
of the 4d– matrix models. In this way a spin foam model is connected to the
Feynman diagram of quantum gravity.

In this paper we have tried to implement all the mathematical consequences
of Barret-Crane model using the group theoretical properties of SO(4) applied
to the 4d-triangulation of manifolds in terms of 4-simplices. It turns out that
when we take into account the description of spin representations of SO(4) the
weight function given by Barret and Williams is incomplete; besides the values
for the areas in the Regge action can be calculated in our paper directly from
geometrical considerations.

2. The groups SO(4, R) and SU(2) × SU(2)

The rotation group in 4 dimensions is the group of linear transformations
that leaves the quadratic form x2

1 + x2
2 + x2

3 + x2
4 invariant. The well known

fact that this group is locally isomorphic to SU(2) × SU(2) enables one to
decompose the group action in the following way:

Take a complex matrix (not necessarily unimodular)

w =
(

y z
−z̄ ȳ

)
, y = x1 + ix2,−z̄ = x3 + ix4, (1)
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where w satisfies w w+ = det(w).
We define the complete group action

w → w′ = u1wu2, (2)

where u1, u2 ∈ SU(2) correspond to the left, right action, respectively,

u1 =
(

α β
−β̄ ᾱ

)
∈ SU(2)L , αᾱ + ββ̄ = 1,

u2 =
(

γ δ
−δ̄ γ̄

)
∈ SU(2)R , γγ̄ + δδ̄ = 1.

The complete group action satisfies:

w′ w′+ = det(w′) = w w+ = det(w), (3)

or x′
1
2 + x′

2
2 + x′

3
2 + x′

4
2 = x1

2 + x2
2 + x3

2 + x4
2 , which corresponds to

the defining relation for SO(4, R).
In order to make connection with R4, we take only the left action w′ = u1w

and express the matrix elements of w as a 4-vector⎛⎜⎜⎝
y′

−z̄′
z′
ȳ′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
α β 0 0

−β̄ ᾱ 0 0
0 0 α β
0 0 −β̄ ᾱ

⎞⎟⎟⎠
⎛⎜⎜⎝

y
−z̄

z
ȳ

⎞⎟⎟⎠ . (4)

Substituting y = x1+ix2 ,−z̄ = x3+ix4, and α = α1+iα2 , β = β1+iβ2,
we get ⎛⎜⎜⎝

x′
1

x′
2

x′
3

x′
4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
α1 −α2 β1 −β2

α2 α1 β2 β1

−β1 −β2 α1 α2

β2 −β1 −α2 α1

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ . (5)

Obviously, the transformation matrix is orthogonal. Similarly for the right
action w′ = wu+

2 we get⎛⎜⎜⎝
y′

−z̄′
z′
ȳ′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
γ̄ 0 δ̄ 0
0 γ̄ 0 δ̄

−δ 0 γ 0
0 −δ 0 γ

⎞⎟⎟⎠
⎛⎜⎜⎝

y
−z̄

z
ȳ

⎞⎟⎟⎠ , (6)

and after substituting γ = γ1 + iγ2 , δ = δ1 + iδ2, we get⎛⎜⎜⎝
x′

1

x′
2

x′
3

x′
4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
γ1 γ2 −δ1 δ2

−γ2 γ1 δ2 δ1

δ1 −δ2 γ1 γ2

−δ2 −δ1 −γ2 γ1

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ , (7)
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where the transformation matrix is orthogonal.
If we take the complete action(

y′ z′
−z̄′ ȳ′

)
=

(
α β

−β̄ ᾱ

)(
y z

−z̄ ȳ

)(
γ̄ −δ
δ̄ γ

)
,

we get⎛⎜⎜⎝
y′

−z̄′
z′
ȳ′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
αγ̄ βγ̄ αδ̄ βδ̄

−β̄γ̄ ᾱγ̄ −β̄δ̄ ᾱδ̄
−αδ −βδ αγ βγ

β̄δ −ᾱδ −β̄γ ᾱγ

⎞⎟⎟⎠
⎛⎜⎜⎝

y
−z̄

z
ȳ

⎞⎟⎟⎠ =

=

⎛⎜⎜⎝
α β 0 0

−β̄ ᾱ 0 0
0 0 α β
0 0 −β̄ ᾱ

⎞⎟⎟⎠
⎛⎜⎜⎝

γ̄ 0 δ̄ 0
0 γ̄ 0 δ̄

−δ 0 γ 0
0 −δ 0 γ

⎞⎟⎟⎠
⎛⎜⎜⎝

y
−z̄

z
ȳ

⎞⎟⎟⎠(8)

and taking y = x1 + ix2 , −z̄ = x3 + ix4 we get the general transformation
matrix for the 4-dimensional vector in R4 under the group SO(4, R) as⎛⎜⎜⎝

x′
1

x′
2

x′
3

x′
4

⎞⎟⎟⎠ =

=

⎛⎜⎜⎝
α1 −α2 β1 −β2

α2 α1 β2 β1

−β1 −β2 α1 α2

β2 −β1 −α2 α1

⎞⎟⎟⎠
⎛⎜⎜⎝

γ1 γ2 −δ1 δ2

−γ2 γ1 δ2 δ1

δ1 −δ2 γ1 γ2

−δ2 −δ1 −γ2 γ1

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ .

(9)

Notice that the eight parameters α1, α2, β1, β2, γ1, γ2, δ1, δ2 with the con-
straints α2

1 + α2
2 + β2

1 + β2
2 = 1 , γ2

1 + γ2
2 + δ2

1 + δ2
2 = 1, can be considered

the Cayley parameters for the SO(4) group [11].

3. Tensor and spinor representations of SO(4, R)

Given the fundamental 4-dimensional representation of SO(4, R) in terms
of the parameters α, β, γ, δ, as given in (9),

x′
µ = gµνxν, (10)

the tensor representations are defined in the usual way

Tk′
1k′

2...k′
n

= gk′
1k1

. . . gk′
nknTk1k2...kn , (11)(

k′
i, ki = 1, 2, 3, 4

)
.
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For the sake of simplicity we take the second rank tensors. We can decompose
them into totally symmetric and antisymmetric tensors, namely,

Sij ≡ xiyj + xjyi (totally symmetric),

Aij ≡ xiyj − xjyi (antisymmetric).

If we subtract the trace from Sij we get a tensor that transforms under an
irreducible representation. For the antisymmetric tensor the situation is more
delicate. In general we have

A′
ij ≡ x′

iy
′
j − x′

jy
′
i = (gi�gjm − gj�gim) A�m. (12)

This representation of dimension 6 is still reducible. For simplicity take the
left action of the group given in (5). The linear combination of the antisymmetric
tensor components are transformed among themselves in the following way:

⎛⎝ A′
12 + A′

34

A′
31 + A′

24

A′
23 + A′

14

⎞⎠ =

⎛⎝ A12 + A34

A31 + A24

A23 + A14

⎞⎠ , (13)

⎛⎝ A′
12 − A′

34

A′
31 − A′

24

A′
23 − A′

14

⎞⎠ =

=

⎛⎝ α2
1 + α2

2 − β2
1 − β2

2 −2 (α1β2 − α2β1) −2 (α1β1 + α2β2)
2 (α1β2 + α2β1) α2

1 − α2
2 + β2

1 − β2
2 2 (α1α2 − β1β2)

2 (α1β1 − α2β2) −2 (α1α2 + β1β2) α2
1 − α2

2 − β2
1 + β2

2

⎞⎠
×

⎛⎝ A12 − A34

A31 − A24

A23 − A14

⎞⎠ . (14)

In the case of the right action given by (7) the 6-dimensional representation
for the antisymmetric second rank tensor decomposes into two irreducible 3-
dimensional representation of SO(4, R). For this purpose one takes the linear
combination of the components of the antisymmetric tensor as before:

⎛⎝ A′
23 − A′

14

A′
31 − A′

24

A′
12 − A′

34

⎞⎠ =

⎛⎝ A23 − A14

A31 − A24

A12 − A34

⎞⎠ , (15)
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23 + A′

14

A′
31 + A′

24

A′
12 + A′

34

⎞⎠ =

=

⎛⎝ γ2
1 − γ2

2 − δ2
1 + δ2

2 2 (γ1γ2 + δ1δ2) −2 (γ1δ1 − γ2δ2)
−2 (γ1γ2 − δ1δ2) γ2

1 − γ2
2 + δ2

1 − δ2
2 2 (γ1δ2 + γ2δ1)

2 (γ1δ1 + γ2δ2) −2 (γ1δ2 − γ2δ1) γ2
1 + γ2

2 − δ2
1 − δ2

2

⎞⎠×

×

⎛⎝ A23 + A14

A31 + A24

A12 + A34

⎞⎠ . (16)

Therefore the 6-dimensional representation for the antisymmetric tensor de-
composes into two irreducible 3-dimensional irreducible representation of the
SO(4, R) group.

For the spinor representation of SU(2)L we take(
a′1
a′2

)
=

(
α β

−β̄ ᾱ

)(
a1

a2

)
, a1, a2 ∈ ⊂ (17)

Let ai1i2...ik , (i1, i2, . . . ik = 1, 2) be a set of complex numbers of di-
mension 2k which transform under the SU(2)L group as follows:

ai′1...i′k = ui′1i1 . . . ui′kikai1...ik , (18)

where ui′1i1 , ui′2i2 . . . are the components of u ∈ SO(2)L. If ai1...ik is totally
symmetric in the indices i1 . . . ik the representation of dimension (k + 1) is
irreducible. In an analogous way we can define an irreducible representation of
SU(2)R with respect to the totally symmetric multispinor of dimension (
+1).

For the general group SU(4, R) ∼ SU(2)L ⊗ SU(2)R we can take a set of
totally symmetric multispinors that transform under the SO(4) group as

ai′1...i′k j′1...j′� = ui′1i1 . . . ui′kik v̄j′1j1 . . . v̄j′�i�a
i1...ikj1...j� (19)

where ui′1i1 . . . are the components of a general element of SU(2)L and v̄j′�i�
are the components of a general element of SU(2)R. They define an irreducible
representation of SO(4, R) of dimension (k + 1)(
 + 1) and with labels (see
next section)


0 =
k − 


2
, 
1 =

k + 


2
+ 1. (20)

4. Representations of the algebra SO(4, R)

Let J1, J2, J3 be the generators corresponding to the rotations in the planes
(x2, x3), (x3, x1), and (x1, x2) respectively, and K1, K2, K3 the generators cor-
responding to the rotations (boost) in the planes (x1, x4), (x2, x4) and (x3, x4)
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respectively. They satisfy the following conmutation relations:

[Jp, Jq] = iεpqrJr , p, q, r = 1, 2, 3,

[Jp, Kq] = iεpqrKr,

[Kp, Kq] = iεpqrJr. (21)

If one defines Ā = 1
2

(
J̄ + K̄

)
, B̄ = 1

2

(
J̄ − K̄

)
,

with J̄ = (J1, J2, J3) , K̄ = (K1, K2, K3), then

[Ap, Aq] = iεpqrAr , p, q, r = 1, 2, 3,

[Bp, Bq] = iεpqrBr,

[Ap, Bq] = 0, (22)

that is to say, the algebra so(4) decomposes into two simple algebras su(2) ×
su(2)

Let φm1m2 be a basis where Ā2, A3 and B̄2, B3 are diagonal. Then a unitary
irreducible representation for the sets {A± ≡ A1 ± iA2, A3} and {B± ≡ B1±
iB2, B3} is given by

A±φm1m2 =
√

(j1 ∓ m1) (j1 ± m1 + 1)φm1±1,m2 ,

A3φm1m2 = m1φm1m2 , −j1 ≤ m1 ≤ j1, (23)

B±φm1m2 =
√

(j2 ∓ m2) (j2 ± m2 + 1)φm1m2±1,

B3φm1m2 = m2φm1m2 , −j2 ≤ m2 ≤ j2.

We change now to a new basis

ψjm =
∑

m1+m2=m

〈j1m1j2m2 | jm〉φm1m2 (24)

that corresponds to the Gelfand-Zetlin basis for so(4),

ψjm =

∣∣∣∣∣∣
j1 + j2 , j1 − j2

j
m

〉
.

In this basis the representation for the generators J̄ , K̄ of so(4) are given by
[12]

J±ψjm =
√

(j ∓ m) (j ± m + 1)ψjm±1,

J3ψjm = mψjm, (25)

K3ψjm = ajmψj−1,m + bjmψjm + aj+1,mψj+1,m,
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where

ajm ≡
((

j2 − m2
) (

j2 − 
2
0

) (

2
1 − j2

)
(2j − 1) j2 (2j + 1)

)1/2

, bjm =
m
0
1

j (j + 1)
,

with 
0 = j1 − j2 , 
1 = j1 + j2 + 1 the labels of the representations.
The representation for K1, K2 are obtained with the help of the commutation

relations.
The Casimir operators are(

J̄2 + K̄2
)
ψjm =

(

2
0 + 
2

1 − 1
)
ψjm, (26)

J̄ · K̄ψjm = 
0
1ψjm. (27)

The representations in the bases ψjm are irreducible in the following cases


0 = j1 − j2 = 0,±1
2
,±1,±3

2
,±2, . . . ,


1 = j1 + j2 − 1 = |
0| + 1, |
0| + 2, . . . ,
j = |j1 − j2| , . . . , j1 + j2.

If we exponentiate the infinitesimal generators we obtain the finite represen-
tations of SO(4, R) given in terms of the rotation angles. An element U of
SO(4, R) is given as [13]

U (ϕ, θ, τ, α, β, γ) = R3 (ϕ)R2 (θ)S3 (τ) R3 (α) R2 (β)R3 (γ) , (28)

where R2 is the rotation matrix in the (x1x3) plane, R3 the rotation matrix in
the (x1x2) plane and S3 the rotation (“boost”) in the (x3x4) plane, and

0 ≤ β, ψ, θ ≤ π , 0 ≤ α, ϕ, γ ≤ 2π.

In the basis ψjm the action of S3 is as follows:

S3 (τ)ψjm =
∑
j′

dj1j2
j′jm (τ) ψj′m, (29)

where

dj1j2
j′jm (τ) =

∑
m1m2

〈j1j2m1m2 | jm〉e−i(m1−m2)τ
〈
j1j2m1m2

∣∣ j′m
〉

(30)

is the Biedenharn-Dolginov function [14].
From this function the general irreducible representations of the operator U

in terms of rotation angles is [13]:

U (ϕ, θ, τ, α, β, γ)ψjm =
∑
j′m′

Dj1j2
j′m′jm (ϕ, θ, τ, α, β, γ) ψj′m′ , (31)
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where

Dj1j2
j′m′jm (ϕ, θ, τ, α, β, γ) =

∑
m′′

Dj′
m′m′′ (ϕ, θ, 0)dj1j2

j′jm′′ (τ)Dj
m′′m (α, β, γ) .

(32)
We now give some particular values of these representations. In the case of

spin j = 1/2 we know

R3 (α) R2 (β)R3 (γ) =

(
cos β

2 eiα+γ
2 i sin β

2 e−i( γ−α
2 )

i sin β
2 eiγ−α

2 cos β
2 e−i(α+γ

2 )

)
Introducing the new parameters α + γ = δ , γ − α = η and the variables

x1 = cos
β

2
cos

δ

2
, x2 = cos

β

2
sin

δ

2
,

x3 = sin
β

2
sin

η

2
, x4 = sin

β

2
cos

η

2
,

we have

R3 (α) R2 (β)R3 (γ) =
(

x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
. (33)

Similarly we have

R3 (ϕ) R2 (θ)S3 (τ) =
(

y1 + iy2 y3 + iy4

−y3 + iy4 y1 − iy2

)
, (34)

with

y1 = cos
θ

2
cos

ϕ + τ

2
, y2 = cos

θ

2
sin

ϕ + τ

2
,

y3 = sin
θ

2
sin

τ − ϕ

2
, y4 = sin

θ

2
cos

τ − ϕ

2
.

For the Biedenharn-Dolginov function we have some particular values [15]

d
[j+,0]
jmm (τ) = ij−m2j

√
2j + 1Γ (j + 1) ×

×
(

Γ
(
m + 3

2

)
Γ (j+ − m + 1) Γ (j+ − j + 1) Γ (j + m + 1)

Γ
(

3
2

)
Γ (j+ + m + 2) Γ (j+ + j + 2) Γ (j − m + 1) Γ (m + 1)

) 1
2

× (sin τ)j−m Cj+1
j+−j (cos τ) , (35)

where j+ ≡ j1 + j2 , j− = j1 − j2 = 0, and Cν
n (cos τ) are the Gegenbauer

(ultraspherical) polynomials which are related to the Jacobi polynomials by

Cν
n (cos τ) =

Γ
(
ν + 3

2

)
Γ (2ν + n)

Γ (2ν) Γ
(
ν + n + 1

2

)P
(ν− 1

2
,ν− 1

2)
n (cos τ) ,
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from which it can be deduced that

d
[j+,0]
000 (τ) =

1
j+ + 1

sin ((j+ + 1) τ)
sin τ

. (36)

From the asymptotic relations of Cν
n (cos τ) it can be proved

d
[j+,0]
jmm (τ) −→

j+→∞
ij−m

jm+1
+

cos
[
(j+ + 1) τ − 1

2 (j + 1)π
]

(sin τ)m+1 . (37)

5. Relativistic spin network in 4-dimensions

We address ourselves to the Barret-Crane model that generalized Penrose’s
spin networks from three dimensions to four dimensions [16]. They characterize
the geometrical properties of 4-simplices, out of which the tesselation of the
4-dimensional manifold is made, and then attach to them the representations of
SO(4).

A geometric 4-simplex in Euclidean space is given by the embedding of an
ordered set of 5 points in R4(0, x, y, z, t) which is required to be non-degenerate
(the points should not lie in any hyperplane). Each triangle in it determines a
bivector constructed out of the vectors for the edges. Barret and Crane proved
that classically, a geometric 4-simplex in Euclidean space is completely char-
acterized (up to parallel translation an inversion through the origin) by a set of
10 bivectors bi, each corresponding to a triangle in the 4-simplex and satisfying
the following properties:

i) the bivector changes sign if the orientation of the triangle is changed;

ii) each bivector is simple, i.e. is given by the wedge product of two vectors
for the edges;

iii) if two triangles share a common edge, the sum of the two bivector is
simple;

iv) the sum (considering orientation) of the 4 bivectors corresponding to the
faces of a tetrahedron is zero;

v) for six triangles sharing the same vertex, the six corresponding bivectors
are linearly independent;

vi) the bivectors (thought of as operators) corresponding to triangles meeting
at a vertex of a tetrahedron satisfy tr b1 [b2, b3] > 0 i.e. the tetrahedron
has non-zero volume.

Then Barret and Crane define the quantum 4-simplex with the help of bivectors
thought as elements of the Lie algebra SO(4), associating a representation to
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each triangle and a tensor to each tetrahedron. The representations chosen
should satisfy the following conditions corresponding to the geometrical ones:

i) different orientations of a triangle correspond to dual representations;

ii) the representations of the triangles are “simple” representations ofSO(4),
i.e. j1 = j2;

iii) given two triangles, if we decompose the pair of representations into its
Clebsch-Gordan series, the tensor for the tetrahedron is decomposed into
summands which are non-zero only for simple representations;

iv) the tensor for the tetrahedron is invariant under SO(4).

Now it is easy to construct an amplitude for the quantum 4-simplex. The
graph for a relativistic spin network is the 1-complex, dual to the boundary
of the 4-simplex, having five 4-valent vertices (corresponding to the five
tetrahedra), with each of the ten edges connecting two different vertices
(corresponding to the ten triangles of the 4-simples each shared by two
tetrahedra). Now we associate to each triangle (the dual of which is an
edge) a simple representation of the algebra SO(4) and to each tetrahedra
(the dual of which is a vertex) a intertwiner; and to a 4-simplex the product
of the five intertwiner with the indices suitable contracted, and the sum for
all possible representations. The proposed state sum suitable for quantum
gravity for a given triangulation (decomposed into 4-simplices) is

ZBC =
∑
J

∏
triang.

Atr

∏
tetrahedra

Atetr.

∏
4−simplies

Asimp. (38)

where the sum extends to all possible values of the representations J .

6. The triple product in R4

Before we apply the representation theory developed in previous sections to
the Barret-Crane model we introduce some geometrical properties based in the
triple product that generalizes the vector (cross) product in R3. Given three
vectors in R4, we define the triple product:

u ∧ v ∧ w = −v ∧ u ∧ w = −u ∧ w ∧ v = −w ∧ v ∧ u = v ∧ w ∧ u =
= w ∧ u ∧ v,

u ∧ u ∧ v = u ∧ v ∧ u = v ∧ u ∧ u = 0. (39)

If the vectors in R4 have cartesian coordinates

u = (u1, u2, u3, u4) , v = (v1, v2, v3, v4) , w = (w1, w2, w3, w4) ,
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we define an orthonormal basis in R4

ı̂ = (1, 0, 0, 0) , ĵ = (0, 1, 0, 0) , k̂ = (0, 0, 1, 0) , 
̂ = (0, 0, 0, 1) .

The triple product of these vectors satisfies

ı̂ ∧ ĵ ∧ k̂ = −
̂ , ĵ ∧ k̂ ∧ 
̂ = ı̂ , k̂ ∧ 
̂ ∧ ı̂ = −ĵ , ı̂ ∧ ĵ ∧ 
̂ = k̂

.
In coordinates the triple product is given by the determinant

u ∧ v ∧ w =

∣∣∣∣∣∣∣∣
ı̂ ĵ k̂ 
̂

u1 u2 u3 u4

v1 v2 v3 v4

w1 w2 w3 w4

∣∣∣∣∣∣∣∣ . (40)

The scalar quadruple product is defined by

a · (b ∧ c ∧ d) =

∣∣∣∣∣∣∣∣
a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

∣∣∣∣∣∣∣∣ = [abcd] = − [abdc] =

= − [acbd] = [acdb] and so on. (41)

It follows: a · a ∧ b ∧ c = b · a ∧ b ∧ c = c · a ∧ b ∧ c = 0.
We can use the properties of the three vector for the description of the 4-

simplex. Let {0, x, y, z, t} be the 4-simplex in R4. Two tetrahedra have a
common face

{0, x, y, z} ∩ {0, x, y, t} = {0, x, y} .
Each tetrahedron is embedded in an hyperplane characterized by a vector

perpendicular to all the vectors forming the tetrahedron. For instance,
{0, x, y, z} is characterized by a = x ∧ y ∧ z,
{0, x, y, t} is characterized by b = x ∧ y ∧ t.

x y

z

0

t



390 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

The vector a satisfies a · x = a · y = a · z = 0,
the vector b satisfies b · x = b · y = b · t = 0.
The triangle {0, x, y} shared by the two tetrahedra is characterized by the

bivector x∧ y. The plane where the triangle is embedded is defined by the two
vectors a, b, forming the angle φ, given by

cos φ = a · b.
The bivector a ∧ b can be calculated with the help of trivectors as

a ∧ b = [x y z t]∗ (x ∧ y) .

Obviously a ∧ b is perpendicular to x ∧ y

〈a ∧ b, x ∧ y〉 = (a · x) (b · y) − (a · y) (b · x) = 0. (42)

For completeness we add some useful properties of bivectors in R4. The six
components of a bivector can be written as

Bµν = xµyν − xνyµ , µ, ν = 1, 2, 3, 4 , B =
(
J̄ , K̄

)
,

J1 = (x2y3 − x3y2) , J2 = (x3y1 − x1y3) , J3 = (x1y2 − x2y1) ,
K1 = (x1y4 − x4y1) , K2 = (x2y4 − x3y1) , K3 = (x3y4 − x4y1) .

The six components of the dual of a bivector are
∗B =

(
K̄, J̄

)
, ∗Bαβ = 1

2bµν εµναβ.
We take the linear combinations of J̄ , K̄

M̄ =
1
2
(
J̄ + K̄

)
, N̄ =

1
2
(
J̄ − K̄

)
. (43)

They form the bivector
(
M̄, N̄

)
, whose dual is:

∗ (M, N) = (M,−N) , (44)

therefore M̄ can be considered the self-dual part, N̄ the antiselfdual part of
the bivector M̄, N̄ M̄ and N̄ coincides with the basis for the irreducible ten-
sor representations of section 3. The norm of the bivectors can be explicitly
calculated.

‖B‖2 = 〈B, B〉 = J2 + K2 = ‖x‖2 ‖y‖2 − |x, y|2 =
= ‖x‖2 ‖y‖2 sin2 φ(x, y) = 4Area2 {0, x, y} , (45)

‖∗B‖2 = 〈∗B,∗ B〉 = J2 + K2 = ‖B‖2 . (46)

Finally, the scalar product of two vectors in R4 can be expressed in terms of
the corresponding U (2, C/) matrices

Let X ⇔
(

x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
, Y ⇔

(
y1 + iy2 y3 + iy4

−y3 + iy4 y1 − iy2

)
.

Then
Tr

(
X+Y

)
= x1y1 + x2y2 + x3y3 + x4y4. (47)
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7. Evaluation of the spin sum for the relativistic spin
network

The five tetrahedra in the 4–simplex are numbered by k = 1, 2, 3, 4, 5 and the
triangles are indexed by the pair k, l of tetrahedra which intersect on the triangle
kl. To each triangle we associate a simple representation of SO(4) labelled by
jkl, that corresponds to the same spin for each part of the SU(2)⊗SU(2) group.
The matrix representing an element g ∈ SU(2) in the irreducible representation
of spin jkl belonging to a triangle is denoted by ρkl(g). An element hk ∈ SU(2)
is assigned to each tetrahedron k. The invariant I is defined by integrating a
function of these variables over each copy of SU(2):

I = (−1)
∑

k<�

2jk�
∫

h∈SU(2)5

∏
Trρk�

(
hkh

−1
�

)
(48)

The geometrical interpretation of this formula given by Barret [17] is that since
the manifold SU(2) is isomorphic to S3, each variable h ∈ SU(2) can be
regarded as a unit vector in R4. This unit vector can be identified with the
vector perpendicular to the hyperplane where the tetrahedron is embedded.
The two variables hk, hl correspond in this picture to the two vectors a, b that
were defined in the last section.

In our opinion there is some disagreement between the conditions given in
Ref. [16] and the application of formula (2.1) in Ref.[17]. In the former paper an
irreducible representation of SO(4) with two labels j1 = j2 is assigned to each
triangle in the 4–simplex. In the last paper, a representation ofSU(2) is assigned
to each triangle. Therefore we have the standard values for the trace of a general
representation of the group SU(2) with spin j, namely, sin (2j + 1) φ/ sin φ
(Formula 4.1 of Ref. 17).

The disagreement can be avoided if one takes the trace with respect to the
irreducible representation of SO(4) as described in Sections 3 and 4, where the
parameters of the groupSO(4) are the3+3 cartesian independent coordinates of
the two unit vectors hk, h�, as defined before, or the 6 rotation angles of formula
(28). In the last case we choose a system of reference for R4 such that one unit
vector corresponding to hk, say a, has components (0, 0, 0, 1) and the other one
h�, say b, is located in the plane (x3x4) forming an angle τ with the first vector.
In this particular situation all the rotation angles α = β = γ = ϑ = ϕ = 0 and
the representation is restricted to S3(τ).

From (31) and (32) the general element representation of SO(4) is restricted
to

Dj1j2
j′m′jm(0, 0, τ, 0, 0, 0) = dj1j2

j′jm(τ) ≡ d
[j+,j−]
j′jm (τ). (49)
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In the case of a simple representations of SO(4) j− = j1 − j2 = 0, and the
trace becomes

trD[j+,0]
j′m′jm(τ) =

j+∑
j=0

j∑
m=−j

d
[j+,0]
jjm (τ). (50)

Obviously this expression does not coincide with formula (4.1) of Ref. [17]
except in the term

d
[j+,0]
000 (τ) =

1
j+ + 1

sin
((

1
j++1

)
τ
)

sin τ
, Ref [15], (IV.2.9).

For other values of the Biedenharn-Dolginov function we can use the asymp-
totic expression (37) for m = j. With this formula it is still possible to give
an geometrical interpretation of the probability amplitude encompassed in the
trace. In fact, the spin dependent factor appearing in the exponential of (37)

ei(2jk�+1)τk� , (51)

corresponding to two tetrahedra k
 intersecting the triangle k
, can be inter-
preted as the product of the angle between the two vectors hk, h� perpendicular
to the triangle and the area Ak� of the intersecting triangle.

For the proof we identify the component of the antisymmetric tensor
(
J̄ , K̄

)
with the components of the infinitesimal generators of the SO(4) group

Jµν ≡ i

(
xµ

∂

∂xν
− xν

∂

∂xµ

)
.

From (43) and (45) we have ‖B‖2 = 4 (Ak�)
2 = 2

(
M̄2 + N̄2

)
But M̄2 and N̄2 are the Casimir operators of the SU(2)⊗SU(2) group with

eigenvalues j1 (j1 + 1) and j2 (j2 + 1).
For large values of j1 = j2 = jk� we have

2
(
M̄2 + N̄2

) ∼= 4j2
k� + 4jk� + 1 = (2jk� + 1)2 ,

therefore 1
2 (2jk� + 1) = Ak� where Ak� is the area of the triangle characterized

by the two vectors hk and h� and jk� is the spin corresponding to the represen-
tation ρk� associated to the triangle kl. Substituting this result in (51) we obtain
the asymptotic value of the amplitude given by Barret and Williams [18]
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Abstract The positive and not completely positive maps of density matrices, which are con-
tractive maps, are discussed as elements of a semigroup. A new kind of positive
map (the purification map), which is nonlinear map, is introduced. The density
matrices are considered as vectors, linear maps among matrices are represented
by superoperators given in the form of higher dimensional matrices. Probability
representation of spin states (spin tomography) is reviewed and U(N)-tomogram
of spin states is presented. Properties of the tomograms as probability distribu-
tion functions are studied. Notion of tomographic purity of spin states is intro-
duced. Entanglement and separability of density matrices are expressed in terms
of properties of the tomographic joint probability distributions of random spin
projections which depend also on unitary group parameters. A new positivity cri-
terion for hermitian matrices is formulated. An entanglement criterion is given
in terms of a function depending on unitary group parameters and semigroup of
positive map parameters. The function is constructed as sum of moduli of U(N)-
tomographic symbols of the hermitian matrix obtained after action on the density
matrix of composite system by a positive but not completely positive map of the
subsystem density matrix. Some two-qubit and two-qutritt states are considered
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as examples of entangled states. The connection with the star-product quantisa-
tion is discussed. The structure of the set of density matrices and their relation to
unitary group and Lie algebra of the unitary group are studied. Nonlinear quan-
tum evolution of state vector obtained by means of applying purification rule of
density matrices evolving via dynamical maps is considered. Some connection
of positive maps and entanglement with random matrices is discussed and used.

Keywords: Unitary group, entanglement, adjoint representation, tomogram, operator sym-
bol, random matrix.

1. Introduction

The states in quantum mechanics are associated with vectors in Hilbert
space [1] (it is better to say with rays) in the case of pure states. For mixed
state, one associates the state with density matrix [2, 3]. In classical mechanics
(statistical mechanics), the states are associated with joint probability distribu-
tions in phase space. There is an essential difference in the concept of states in
classical and quantum mechanics. This difference is clearly pointed out by the
phenomenon of entanglement. The notion of entanglement [4] is related to the
quantum superposition rule of the states of subsystems for a given multipartite
system. For pure states, the notion of entanglement and separability can be
given as follows.

If the wave function [5] of a state of a bipartite system is represented as the
product of two wave functions depending on coordinates of the subsystems, the
state is simply separable; otherwise, the state is simply entangled. An intrinsic
approach to the entanglement measure was suggested in [6]. The measure was
introduced as the distance between the system density matrix and the tensor
product of the associated states. For the subsystems, the association being
realized via partial traces. There are several other different characteristics and
measures of entanglement considered by several authors [7–13]. For example,
there are measures related to entropy (see, [14–24]). Also linear entropy of
entanglement was used in [25–27], “concurrences” in [28, 29] and “covariance
entanglement measure” in [30]. Each of the entanglement measures describes
some degree of correlation between the subsystems’ properties.

The notion of entanglement is not an absolute notion for a given system but
depends on the decomposition into subsystems. The same quantum state can be
considered as entangled, if one kind of division of the system into subsystems
is given, or as completely disentangled, if another decomposition of the system
into subsystems is considered.

For instance, the state of two continuous quadratures can be entangled in
Cartesian coordinates and disentangled in polar coordinates. Coordinates are
considered as measurable observables labelling the subsystems of the given sys-
tem. The choice of different subsystems mathematically implies the existence
of two different sets of the subsystems’ characteristics (we focus on bipartite
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case). We may consider the Hilbert space of states H(1, 2) or H(1′, 2′). The
Hilbert space for the total system is, of course, the same but the index (1, 2)
means that there are two sets of operators P1 and P2, which select subsystem
states 1 and 2. The index (1′, 2′) means that there are two other sets of oper-
ators P ′

1 and P ′
2, which select subsystem states 1′ and 2′. The operators P1,2

and P ′
1′,2′ have specific properties. They are represented as tensor products of

operators acting in the space of states of the subsystem 1 (or 2) and unit oper-
ators acting in the subsystem 2 (or 1). In other words, we consider the space
H , which can be treated as the tensor product of spaces H(1) and H(2) or
H(1′) and H(2′). In the subsystems 1 and 2, there are basis vectors | n1〉 and
| m2〉, and in the subsystems 1′ and 2′ there are basis vectors | n′

1〉 and | m′
2〉.

The vectors | n1〉 | m2〉 and | n′
1〉 | m′

2〉 form the sets of basis vectors in the
composite Hilbert space, respectively. These two sets are related by means of
unitary transformation. An example of such a composite system is a bipartite
spin system.

If one has spin-j1 [the space H(1)] and spin-j2 [the space H(2)] systems,
the combined system can be treated as having basis
| j1m1〉 | j2m2〉.

Another basis in the composite-system-state space can be considered in the
form | jm〉, where j is one of the numbers |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2

and m = m1 + m2. The basis | jm〉 is related to the basis | j1m1〉 | j2m2〉
by means of the unitary transform given by Clebsch–Gordon coefficients C
(j1m1j2m2|jm). From the viewpoint of the given definition, the states | jm〉
are entangled states in the original basis. Another example is the separation of
the hydrogen atom in terms of parabolic coordinates used while discussing the
Stark effect.

The spin states can be described by means of the tomographic map [31–
33]. For bipartite spin systems, the states were described by the tomographic
probabilities in [34, 35]. Some properties of the tomographic spin description
were studied in [36]. In the tomographic approach, the problems of the quantum
state entanglement can be cast into the form of some relations among the
probability distribution functions. On the other hand, to have a clear picture of
entanglement, one needs a mathematical formulation of the properties of the
density matrix of the composite system, a description of the linear space of the
composite system states. Since a density matrix is hermitian, the space of states
may be embedded as a subset of the Lie algebra of the unitary group, carrying
the adjoint representation of U(n2), where n2 = (2j + 1)2 is the dimension
of the spin states of two spinning particles. Thus one may try to characterize
the entanglement phenomena by using various structures present in the space
of the adjoint representation of the U(n2) group.
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The aim of this paper is to give a review of different aspects of density matri-
ces and positive map and connect entanglement problems with the properties of
tomographic probability distributions and discuss the properties of the convex
set of positive states for composite system by taking into account the subsystem
structures. We used [6] the Hilbert–Schmidt distance to calculate the measure
of entanglement as the distance between a given state and the tensor product of
the partial traces of the density matrix of the given state. In [37] another measure
of entanglement as a characteristic of subsystem correlations was introduced.
This measure is determined via the covariance matrix of some observables. A
review of different approaches to the entanglement notion and entanglement
measures is given in [38] where the approach to describe entanglement and
separability of composite systems is based, e.g., on entropy methods.

Due to a variety of approaches to the entanglement problem, one needs to
understand better what in reality the word “entanglement” describes. Is it a
synonym of the word “correlation” between two subsystems or does it have to
capture some specific correlations attributed completely and only to the quantum
domain?

The paper is organized as follows.
In section 2 we discuss division of composite systems onto subsystems and

relation of the density matrix to adjoint representation of unitary group in generic
terms of vector representation of matrices; we study also completely positive
maps of density matrices. In section 3 we consider a vector representation of
probability distribution functions and notion of distance between the proba-
bility distributions and density matrices. In section 4 we present definition of
separable quantum state of a composite system and criterion of separability. In
section 5 the entanglement is considered in terms of operator symbols. Particu-
lar tomographic probability representation of quantum states and tomographic
symbols are reviewed in section 6. Symbols of multipartite states are studied in
section 7. In section 8 spin tomography is reviewed. An example of qubit state
is done in section 9. The unitary spin tomogram is introduced in section 10
while in section 11 dynamical map and corresponding quantum evolution equa-
tions are discussed as well as examples of concrete positive maps. Conclusions
and perspectives are presented in section 12.

2. Composite system

In this section, we review the meaning and notion of composite system in
terms of additional structures on the linear space of state for the composite
system.
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2.1 Difference of states and observables

In quantum mechanics, there are two basic aspects, which are associated with
linear operators acting in a Hilbert space. The first one is related to the concept
of quantum state and the second one, to the concept of observable. These two
concepts of state and observable are paired via a map with values in probability
measures on the real line. Often states are described by Hermitian nonnegative,
trace-class, matrices. The observables are described by Hermitian operators.
Though both states and observables are identified with Hermitian objects, there
is an essential difference between the corresponding objects. The observables
have an additional product structure. Thus we may consider the product of two
linear operators corresponding to observables.

For the states, the notion of product is redundant. The product of two states
is not a state. For states, one keeps only the linear structure of vector space.
For finite n-dimensional system, the Hermitian states and the Hermitian ob-
servables may be mapped into the Lie algebra of the unitary group U(n). But
the states correspond to nonnegative Hermitian operators. Observables can be
associated with both types of operators, including nonnegative and nonpositive
ones. The space of states is therefore a convex-linear space which, in principle,
is not equipped with a product structure. Due to this, transformations in the
linear space of states need not preserve any product structure. In the set of
observables, one has to be concerned with what is happening with the product
of operators when some transformations are performed. State vectors can be
transformed into other state vectors. Density operators also can be transformed.
We will consider linear transformations of the density operators. The density
operator has nonnegative eigenvalues. In any representation, diagonal elements
of density matrix have physical meaning of probability distribution function.

Density operator can be decomposed as a sum of eigenprojectors with coef-
ficients equal to its eigenvalues. Each one of the projectors defines a pure state.
There exists a basis in which every eigenprojector of rank one is represented
by a diagonal matrix of rank one with only one matrix element equal to one
and all other matrix elements equal to zero. Other density matrices with similar
properties belong to the orbit of the unitary group on the starting eigenprojector.
Depending on the number of distinct nonzero values determines the class of the
orbit. Since density matrices of higher rank belong to an appropriate orbit of a
convex sum of the different diagonal eigenprojectors (in special basis), we may
say that generic density matrices belong to the orbits of the unitary group acting
on the diagonal density matrices which belong to the Cartan subalgebra of the
Lie algebra of the unitary group. Any convex sum of density matrices can be
treated as a mean value of a random density matrix. The positive coefficients of
the convex sum can be interpreted as a probability distribution function which
makes the averaging providing the final value of the convex sum. The set of
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density matrices may be identified with the union of the orbits of the unitary
group acting on diagonal density matrices considered as elements of the Cartan
subalgebra.

2.2 Matrices as vectors, density operators and
superoperators

When matrices represent states it may be convenient to identify them with
vectors. In this case, a density matrix can be considered as a vector with addi-
tional properties of its components. If the identifications are done elegantly, we
can see the real Hilbert space of density matrices in terms of vectors with real
components. In this case, linear transforms of the matrix can be interpreted as
matrices called superoperators. It means that density matrices–vectors under-
going real linear transformations are acted on by the matrices representing the
action of the superoperators of the linear map. This construction can be contin-
ued. Thus we can get a chain of vector spaces of higher and higher dimensions.
Let us first introduce some extra constructions of the map of a matrix onto a
vector. Given a rectangular matrix M with elements Mid, where i = 1, 2, . . . , n
and d = 1, 2, . . . , m, one can consider the matrix as a vector �M with N = nm
components constructed by the following rule:

M1 = M11, M2 = M12, Mm = M1m,

(1)

Mm+1 = M21, . . .MN = Mnm.

Thus we construct the map M → �M =t̂ �MMM.

We have introduced the linear operator t̂ �MM which maps the matrix M onto

a vector �M. Now we introduce the inverse operator p̂ �MM which maps a given
column vector in the space with dimension N = mn onto a rectangular matrix.
This means that given a vector �M = M1, . . . ,MN , we relabel its components
by introducing two indices i = 1, . . . , n and d = 1, . . . , m. The relabeling is
accomplished according to (0). Then we collect the relabeled components into
a matrix table. Eventually we get the map

p̂ �MM
�M = M. (2)

The composition of these two maps

t̂ �MMp̂ �MM
�M =1 · �M (3)

acts as the unit operator in the linear space of vectors.
Given a n×n matrix the map considered can also be applied. The matrix can

be treated as an n2-dimensional vector and, vice versa, the vector of dimension
n2 may be mapped by this procedure onto the n×n matrix.
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Let us consider a linear operator acting on the vector �M and related to a
linear transform of the matrix M . First, we study the correspondence of the
linear transform of the form

M → gM = M l
g (4)

to the transform of the vector

�M → �Ml
g = Ll

g
�M. (5)

One can show that the n2×n2 matrix Ll
g is determined by the tensor product of

the n×n matrix g and n×n unit matrix, i.e.,

Ll
g = g ⊗ 1. (6)

Analogously, the linear transform of the matrix M of the form

M → Mg = Mr
g (7)

induces the linear transform of the vector �M of the form

�M → �Mr
g = t̂ �MMMr

g = Lr
g

�M, (8)

where the n2×n2 matrix Lr
g reads

Lr
g = 1 ⊗ gtr. (9)

Similarity transformation of the matrix M of the form

M → gMg−1 (10)

induces the corresponding linear transform of the vector �M of the form

�M → �Ms = Ls
g

�M, (11)

where the n2×n2 matrix Ls
g reads

Ls
g = g ⊗ (g−1)tr. (12)

Starting with vectors, one may ask how to identify on them a product structure
which would make p̂ �MN into an algebra homomorphism. An associative alge-
braic structure on the vector space may be defined by imitating the procedure
one uses to define star-products on the space of functions on phase space. One
can define the associative product of two N -vectors �M1 and �M2 using the rule

�M = �M1 � �M2, (13)
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where

�Mk =
N∑

l,s=1

Kk
ls( �M1)l( �M2)s. (14)

If one applies a linear transform to the vectors �M1, �M2, �M of the form

�M1 → �M′
1 = L �M1, �M2 → �M′

2 = L �M2, �M → �M′ = L �M,

and requires the invariance of the star-product kernel, one finds

�M′
1 � �M′

2 = �M′, if L = G ⊗ G−1tr, G ∈ GL(n).

The kernel Kk
ls (structure constants) which determines the associative star-

product satisfies a quadratic equation. Thus if one wants to make the corre-
spondence of the vector star-product to the standard matrix product (row by
column), the matrix M must be constructed appropriately. For example, if
the vector star-product is commutative, the matrix M corresponding to the
N -vector �M can be chosen as a diagonal N×N matrix. This consideration
shows that the map of matrices on the vectors provides the star-product of the
vectors (defining the structure constants or the kernel of the star-product) and,
conversely, if one starts with vectors and uses matrices with the standard mul-
tiplication rule, it will be the map to be determined by the structure constants
(or by the kernel of the vector star-product).

The constructed space of matrices associated with vectors enables one to
enlarge the dimensionality of the group acting in the linear space of matrices
in comparison with the standard one, i.e., we may relax the requirement of
invariance of the product structure. In general, given a n×n matrix M the left
action, the right action, and the similarity transformation of the matrix are related
to the complex group GL(n). On the other hand, the linear transformations
in the linear space of n2-vectors �M obtained by using the introduced map
are determined by the matrices belonging to the group GL(n2). There are
transformations on the vectors which cannot be simply represented on matrices.
If M → Φ(M) is a linear homogeneous function of the matrix M , we may
represent it by

Φab = Baa′, bb′Ma′b′ .

Under rather clear conditions, Baa′,bb′ can be expressed in terms of its nonnor-
malized left and right eigenvectors:

Baa′,bb′ =
∑

ν

xaa′(ν)y†bb′(ν),

being an index for eigenvalues, which corresponds to

Φ(M) = xMy† =
n2∑

ν=1

x(ν)My†(ν).
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There are possible linear transforms on the matrices and corresponding linear
transforms on the induced vector space which do not give rise to a group structure
but possess only the structure of algebra. One can describe the map of n×n
matrices M (source space) onto vectors �M (target space) using specific basis
in the space of the matrices. The basis is given by the matrices Ejk (j, k =
1, 2, . . . , n) with all matrix elements equal to zero except the element in the jth
row and kth column which is equal to unity. One has the obvious property

Mjk = Tr (MEjk) . (15)

In our procedure, the basis matrix Ejk is mapped onto the basis column-vector
�Ejk, which has all components equal to zero except the unity component related
to the position in the matrix determined by the numbers j and k. Then one has

�M =
n∑

j,k=1

Tr (MEjk) �Ejk. (16)

For example, for similarity transformation of the finite matrix M , one has

�Ms
g =

N∑
j,k=1

Tr
(
gMg−1Ejk

)
�Ejk. (17)

Now we will define the notion of ‘composite’ vector which corresponds to
dividing a quantum system into subsystems.

We will use the following terminology.
In general, the given linear space of dimensionality N = mn has a structure

of a bipartite system, if the space is equipped with the operator p̂ �MM and the
matrix M (obtained by means of the map) has matrix elements in factorizable
form

Mid → xiyd. (18)

This M = x ⊗ y corresponds to the special case of nonentangled states. Oth-
erwise, one needs

M =
∑

ν

x(ν) ⊗ y(ν).

In fact, to consider in detail the entanglement phenomenon, in the bipartite
system of spin-1/2, one has to introduce a hierarchy of three linear spaces. The
first space of pure spin states is the two-dimensional linear space of complex
vectors

| �x〉 =
(

x1

x2

)
. (19)

In this space, the scalar product is defined as follows:

〈�x | �y〉 = x∗
1y1 + x∗

2y2. (20)
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So it is a two-dimensional Hilbert space. We do not equip this space with a
vector star-product structure. In the primary linear space, one introduces linear
operators M̂ which are described by 2×2 matrices M . Due to the map discussed
in the previous section, the matrices are represented by 4-vectors �M belonging
to the second complex 4-dimensional space. The star-product of the vectors �M
determined by the kernel Kk

ls is defined in such a manner in order to correspond
to the standard rule of multiplication of the matrices.

In addition to the star-product structure, we introduce the scalar product of
the vectors �M1 and �M2, in view of the definition

〈 �M1 | �M2〉 = Tr (M †
1M2), (21)

which is the trace formula for the scalar product of matrices.
This means introducing the real metric gαβ in the standard notation for scalar

product

〈 �M1 | �M2〉 =
4∑

α,β=1

(M1)∗αgαβ(M2)β, (22)

where the matrix gαβ is of the form

gαβ =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ , gαjgjβ = δαβ. (23)

The scalar product is invariant under the action of the group of nonsingular 4×4
matrices 
, which satisfy the condition


−1 = 
†g
. (24)

The product of matrices 
 satisfies the same condition since g2 = 1.
Thus, the space of operators M̂ in the primary two-dimensional space of spin

states is mapped onto the linear space which is equipped with a scalar product
(metric Hilbert space structure) and an associative star-product (kernel satisfy-
ing the quadratic associativity equation). In the linear space of the 4-vectors
�M, we introduce linear operators (superoperators), which can be associated

with the algebra of 4×4 complex matrices.
Let us now focus on density matrices. This means that our matrix M is

considered as a density matrix ρ which describes a quantum state. We consider
here the action of the unitary transformation U(n) of the density matrices and
corresponding transformations on the vector space. If one has the structure of
a bipartite system, we also consider the action of local gauge transformation
both in the “source space” of density matrices and in the “target space” of the
corresponding vectors.
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The n×n density matrix ρ has matrix elements

ρik = ρ∗ki, Tr ρ = 1, 〈ψ|ρ|ψ〉 ≥ 0. (25)

Since the density matrix is hermitian, it can always be identified as an element
of the convex subset of the linear space associated with the Lie algebra of U(n)
group, on which the group U(n) acts with the adjoint representation

ρ → ρU = UρU †. (26)

The system is said to be bipartite if the space of representation is equipped with
an additional structure. This means that for

n2 = n1 · n2,

where, for simplicity, n1 = n2 = n, one can make first the map of n×n matrix
ρ onto n2-dimensional vector �ρ according to the previous procedure, i.e., one
equips the space by an operator t̂�ρρ. Given this vector one makes a relabeling
of the vector �ρ components according to the rule

�ρ → ρid,ke, i, k = 1, 2, . . . , n1, d, e = 1, 2, . . . , n2, (27)

i.e., obtaining again the quadratic matrix

ρq = p̂ρq�ρ�ρ. (28)

The unitary transform (26) of the density matrix induces a linear transform of
the vector �ρ of the form

�ρ → �ρU = (U ⊗ U∗)�ρ. (29)

There exist linear transforms (called positive maps) of the density matrix, which
preserve its trace, hermicity, and positivity. In some cases, they have the fol-
lowing form introduced in [39]

ρ0 → ρU = LUρ0 =
∑

k

pkUkρ0U
†
k,

∑
k

pk = 1, (30)

where Uk are unitary matrices and pk are positive numbers.
If the initial density matrix is diagonal, i.e., it belongs to the Cartan subalgebra

of the Lie algebra of the unitary group, the diagonal elements of the obtained
matrix give a “smoother” probability distribution than the initial one. A generic
transformation preserving previously stated properties may be given in the form
(see [39, 40])

ρ0 → ρV = LV ρ0 =
∑

k

Vkρ0V
†
k ,

∑
k

V †
k Vk = 1. (31)
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For example, if Vk (k = 1, 2, . . . , N) are taken as square roots of orthogonal
projectors onto complete set of N state, the map provides the map of the den-
sity matrix ρ0 onto diagonal density matrix ρ0d which has the same diagonal
elements as ρ0 has. In this case, the matrices Vk have the only nonzero matrix
element which is equal to one. Such a map may be called “decoherence map”
because it removes all nondiagonal elements of the density matrix ρ0 killing
any phase relations. In quantum information terminology, one uses also the
name “phase damping channel.” More general map may be given if one takes
Vk as N generic diagonal density matrices, in which eigenvalues are obtained
by N circular permutations from the initial one. Due to this map, one has a new
matrix with the same diagonal matrix elements but with changed nondiagonal
elements. The purity of this matrix is smaller then the purity of the initial one.
This means that the map is contractive. All matrices with the same diagonal
elements up to permutations belong to a given orbit of the unitary group.

For a large number of terms with randomly chosen matrices Vk in the sum
in (31), the above map gives the most stochastic density matrix

ρ0 → ρs = L1ρ0 = (n)−11.

Its four-dimensional matrix L1 for the qubit case has four matrix elements
different from zero. These matrix elements are equal to one. They have the
labels L11, L14, L41, L44. The map with two nonzero matrix elements L41 =
L44 = 0 provides pure-state density matrix from any ρ0. The transform (30)
is the partial case of the transform (31). We discuss the transforms separately
since they are used in the literature in the presented form.

One can see that the constructed map of density matrices onto vectors pro-
vides the corresponding transforms of the vectors, i.e.,

�ρ0 → �ρU =
∑

k

pk(Uk ⊗ U∗
k)�ρ0 (32)

and
�ρ0 → �ρV =

∑
k

(Vk ⊗ V ∗
k )�ρ0. (33)

It is obvious that the set of linear transforms of vectors, which preserve their
properties of being image of density matrices, is essentially larger than the
standard unitary transform of the density matrices.

Formulae (32) and (33) mean that the positive map superoperators acting on
the density matrix in the vector representation are described by n2×n2 matrices

LU =
∑

k

pk(Uk ⊗ U∗
k) (34)

and
LV =

∑
k

Vk ⊗ V ∗
k , (35)
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respectively.
The positive map is called “noncompletely positive” if

L =
∑

k

Vk ⊗ V ∗
k −

∑
s

vs ⊗ v∗s,
∑

k

V †
k Vk −

∑
s

v†svs = 1.

This map is related to a possible “nonphysical” evolution of a subsystem.
Formula (34) can be considered in the context of random matrix representa-

tion. In fact, the matrix LU can be interpreted as the weighted mean value of
the random matrix Uk ⊗ U∗

k . The dependence of matrix elements and positive
numbers pk on index k means that we have a probability distribution function
pk and averaging of the random matrix Uk ⊗ U∗

k by means of the distribution
function. So the matrix LU reads

LU = 〈U ⊗ U∗〉. (36)

Let us consider an example of a 2×2 unitary matrix. We can consider a matrix
of the SU(2) group of the form

u =
(

α β
−β∗ α∗

)
, |α|2 + |β|2 = 1. (37)

The 4×4 matrix LU takes the form

LU =

⎛⎜⎜⎝

 m m∗ 1 − 

−n s −q n
−n∗ −q∗ s∗ n∗
1 − 
 −m −m∗ 


⎞⎟⎟⎠ . (38)

The matrix elements of the matrix LU are the means

m = 〈αβ∗〉,

 = 〈αα∗〉,
n = 〈αβ〉, (39)

s = 〈α2〉,
q = 〈β2〉.

The moduli of these matrix elements are smaller than unity.
The determinant of the matrix LU reads

detLU = (1 − 2
)
(
|q|2 − |s|2

)
+ 4 Re

[
q∗m∗n + mns∗

]
. (40)

If one represents the matrix LU in block form

LU =
(

A B
C D

)
, (41)
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then

A =
(


 m
−n s

)
, B =

(
m∗ 1 − 

−q n

)
, (42)

and
D = σ2A

∗σ2, C = −σ2B
∗σ2, (43)

where σ2 is the Pauli matrix.
One can check that the product of two different matrices LU can be cast in

the same form. This means that the matrices LU form a 9-parameter compact
semigroup. It means that the product of two matrices from the set (semigroup)
belongs to the same set. It means that composition is inner like the one for
groups. There is a unity element in the semigroup, however, there exist elements
which have no inverse. In our case, these elements are described, e.g., by
the matrices with zero determinant. Also the elements, which are matrices
with nonzero determinants, have no inverse elements in this set, since the map
corresponding to the inverse of these matrices is not positive one. For example,
in the case 
 = 1/2 and m = 0, one has the matrices

A =
(

1/2 0
−n s

)
, B =

(
0 1/2
−q n

)
. (44)

The determinant of the matrix LU in this case is equal to zero. All the matrices
LU have the eigenvector

�ρ0 =

⎛⎜⎜⎝
1/2
0
0

1/2

⎞⎟⎟⎠ , (45)

i.e.,
LU�ρ0 = �ρ0. (46)

This eigenvector corresponds to the density matrix

ρ1 =
(

1/2 0
0 1/2

)
, (47)

which is obviously invariant of the positive map.
For random matrix, one has correlations of the random matrix elements, e.g.,

〈αα∗〉 = 〈α〉〈α∗〉.
The matrix Lp

Lp =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ (48)
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maps the vector

�ρin =

⎛⎜⎜⎝
ρ11

ρ12

ρ21

ρ22

⎞⎟⎟⎠ (49)

onto the vector

�ρt =

⎛⎜⎜⎝
ρ11

ρ21

ρ12

ρ22

⎞⎟⎟⎠ . (50)

This means that the positive map (48) connects the positive density matrix
with its transpose (or complex conjugate). This map can be presented as the
connection of the matrix ρ with its transpose of the form

ρ → ρtr = ρ∗ =
1
2

(
ρ + σ1ρσ1 − σ2ρσ2 + σ3ρσ3

)
.

There is no unitary transform connecting these matrices.
There is noncompletely positive map in the N -dimensional case, which is

given by the generalized formula (for some ε)

ρ → ρs = −ερ +
1 + ε

N
1N.

In quantum information terminology, it is called “depolarizing channel”.
For the qubit case, matrix form of this map reads

L =

⎛⎜⎜⎝
1−ε
2 0 0 1+ε

2
0 −ε 0 0
0 0 −ε 0

1+ε
2 0 0 1−ε

2

⎞⎟⎟⎠ . (51)

Thus we constructed the matrix representation of the positive map of density
operators of the spin-1/2 system. This particular set of matrices realize the
representation of the semigroup of real numbers −1 ≤ ε ≤ 1. If one considers
the product ε1ε2 = ε3, the result ε3 belongs to the semigroup. Only two
elements 1 and −1 of the semigroup have the inverse. These two elements form
the finite subgroup of the semigroup. The semigroup itself without element ε =
0 can be embedded into the group of real numbers with natural multiplication
rule. Each matrix L has an inverse element in this group but all the parameters
of the inverse elements η live out of the segment −1, 1. The group of the real
numbers is commutative. The matrices of the nonunitary representation of this
group commute too. It means that we have nonunitary reducible representation
of the semigroup which is also commutative. To construct this representation,
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one needs to use the map of matrices on the vectors discussed in the previous
section. Formulae (31) and (35) can be interpreted also in the context of the
random matrix representation, but we use the uniform distribution for averaging
in this case. So one has equality (35) in the form

LV = 〈V ⊗ V ∗〉 (52)

and the equality
〈V †V 〉 = 1, (53)

which provides constraints for the random matrices V used.
Using the random matrix formalism, the positive (but not completely posi-

tive) maps can be presented in the form

L = 〈V ⊗ V ∗〉 − 〈v ⊗ v∗〉, 〈V †V 〉 − 〈v†v〉 = 1.

One can characterize the action of positive map on a density matrix ρ by the
parameter

κ =
Tr (Lρ)2

Tr ρ2
=

µLρ

µρ
≤ 1.

As a remark we note that in [39] the positive maps (30) and (31) were used to
describe the non-Hamiltonian evolution of quantum states for open systems.

We have to point out that, in general, such evolution is not described by
first-order-in-time differential equation. As in the previous case, if there are
additional structures for the matrix in the form

ρid,ke → xiydzkte, (54)

which means associating with the initial linear space two extra linear spaces
where xi, zk are considered as vector components in the n1-dimensional linear
space and yd, te are vector components in n2-dimensional vector space, we see
that one has bipartite structure of the initial space of state [bipartite structure of
the space of adjoint representations of the group U(n)].

Usually the adjoint representation of any group is defined per se without
any reference to possible substructures. Here we introduce the space with
extra structure. In addition to being the space of the adjoint representation of
the group U(n), it has the structure of a bipartite system. The generalization
to multipartite (N -partite) structure is straightforward. One needs only the
representation of positive integer n2 in the form

n2 =
N∏

k=1

n2
k. (55)

If one considers the more general map given by superoperator (35) rewritten
in the form

LV = 〈V ⊗ V ∗〉, 〈V †V 〉 = 1,
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the number of parameters determining the matrix LV can be easily evaluated.
For example, for n = 2,

V =
(

a b
c d

)
, V ∗ =

(
a∗ b∗
c∗ d∗

)
,

where the matrix elements are complex numbers, the normalization condition
provides four constraints for the real and imaginary parts of the matrix elements
of the following matrix:

LV =

⎛⎜⎜⎝
〈|a|2〉 〈ab∗〉 〈ba∗〉 〈bb∗〉
〈ac∗〉 〈ad∗〉 〈bc∗〉 〈bd∗〉
〈ca∗〉 〈cb∗〉 〈da∗〉 〈db∗〉
〈cc∗〉 〈cd∗〉 〈dc∗〉 〈dd∗〉

⎞⎟⎟⎠ ,

namely,

〈|a|2〉 + 〈|c|2〉 = 1, 〈|b|2〉 + 〈|d|2〉 = 1, 〈a∗b〉 + 〈c∗d〉 = 0.

Due to the structure of the matrix LV , there are six complex parameters

〈ab∗〉, 〈ac∗〉, 〈ad∗〉, 〈bc∗〉, 〈bd∗〉, 〈cd∗〉

or 12 real parameters.
The geometrical picture of the positive map can be clarified if one considers

the transform of the positive density matrix into another density matrix as the
transform of an ellipsoid into another ellipsoid. A generic positive transform
means a generic transform of the ellipsoid, which changes its orientation, values
of semiaxis, and position in the space. But the transform does not change
the ellipsoidal surface into a hyperboloidal or paraboloidal surface. For pure
states, the positive density matrix defines the quadratic form which is maximally
degenerated. In this sense, the “ellipsoid” includes all its degenerate forms
corresponding to the density matrix of rank less than n (in n-dimensional case).
The number of parameters defining the map 〈V ⊗ V ∗〉 in the n-dimensional
case is equal to n2(n2 − 1).

The linear space of Hermitian matrices is also equipped with the commutator
structure defining the Lie algebra of the group U(n). The kernel that defines
this structure (Lie product structure) is determined by the kernel that determines
the star-product.

3. Distributions as vectors

In quantum mechanics, one needs the concept of distance between the quan-
tum states. In this section, we consider the notion of distance between the
quantum states in terms of vectors. First, let us discuss the notion of distance
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between conventional probability distributions. This notion is well known in
the classical probability theory.

Given the probability distribution P (k), k = 1, 2, . . . N , one can introduce
the vector �P in the form of a column with components P1 = P (1), P2 =
P (2), . . . , PN = P (N). The vector satisfies the condition

N∑
k=1

Pk = 1. (56)

This set of vectors does not form a linear space but only a convex subset.
Nevertheless, in this set one can introduce a distance between two distributions
by using the one suggested by the vector space structure of the ambient space:

D2 =
(

�P1 − �P2

)2
=

∑
k

P1kP1k +
∑

k

P2kP2k − 2
∑

k

P1kP2k. (57)

Of course, one may use other identifications of distributions with vectors.
Since all P (k) ≥ 0, one can introduce Pk =

√
P (k) as components of the

vector �P . The �P can be thought of as a column with nonnegative components.
Then the distance between the two distributions takes the form

D2 =
(

�P1 − �P2

)2
= 2 − 2

∑
k

√
P1(k)P2(k). (58)

The two different definitions (56) and (57) can be used as distances between
the distributions.

Let us discuss now the notion of distance between the quantum states deter-
mined by density matrices. In the density-matrix space (in the set of linear space
of the adjoint U(n) representation), one can introduce distances analogously.
The first case is

Tr (ρ1 − ρ2)
2 = D2 (59)

and the second case is

Tr (
√

ρ1 −
√

ρ2)
2 = D2. (60)

In fact, the distances introduced can be written naturally as norms of vectors
associated to density matrices

D2 = |�ρ1 − �ρ2|2 (61)

and

D2 =
(

�(
√

ρ1) − �(
√

ρ2)
)2

, (62)

respectively.
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In the above expressions, we use scalar product of vectors �ρ1 and �ρ2 as well
as scalar products of vectors �(

√
ρ
1
) and �(

√
ρ
2
), respectively.

Both definitions immediately follow by identification of either matrices ρ1

and ρ2 with vectors according to the map of the previous sections or matrices√
ρ1 and

√
ρ2 with vectors. Since the density matrices ρ1 and ρ2 have nonneg-

ative eigenvalues, the matrices
√

ρ1 and
√

ρ2 are defined without ambiguity.

This means that the vectors �(
√

ρ
1
) and �(

√
ρ

2
) are also defined without am-

biguity. It is obvious that using this construction and introducing linear map
of positive vectors �√ρ, one induces nonlinear map of density matrices. Other
analogous functions, in addition to square root function, can be used to create
other nonlinear positive maps.

4. Separable systems and separability criterion

According to the definition, the system density matrix is called separable
(for composite system) but not simply separable, if there is decomposition of
the form

ρAB =
∑

k

pk

(
ρ
(k)
A ⊗ ρ

(k)
B

)
,

∑
k

pk = 1, 1 ≥ pk ≥ 0. (63)

This is Hilbert’s problem of biquadrates. Is a positive biquadratic the positive
sum of products of positive quadratics? In this formula, one may use also
sum over two different indices. Using another labelling in such sum over two
different indices, this sum can be always represented as the sum over only one
index. The formula does not demand orthogonality of the density operators
ρ

(k)
A and ρ

(k)
B for different k. Since every density matrix is a convex sum of pure

density matrices, one could demand that ρ
(k)
A and ρ

(k)
B be pure. This formula

can be interpreted in the context of random matrix representation reading

ρAB = 〈ρA ⊗ ρB〉, (64)

where ρA and ρB are considered as random density matrices of the subsystems
A and B, respectively. One can use the clarified structure of the density matrix
set as the union of orbits obtained by action of the unitary group on projectors
of rank one with matrix form containing only one nonzero matrix element.
Then the separable density matrix of bipartite composite system can be always
written as the sum of n1n2 tensor products (or corresponding mean tensor
product), i.e., in (64) the factors are state projectors. Each of tensor products
contains random unitary matrices of local transforms of the fixed local projector
for one subsystem and for the second subsystem. It means that an arbitrary
projector of rank one of a subsystem can be always presented in the product
form ρ

(k)
A = u

(k)
A ρAu

(k)†
A , where u

(k)
A is a unitary local transform and ρA is a

fixed projector.
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There are several criteria for the system to be separable. We suggest in the
next sections a new approach to the problem of separability and entanglement
based on the tomographic probability description of quantum states. The states
which cannot be represented in the form (63) by definition are called entangled
states [38]. Thus the states are entangled if in formula (63) at least one coeffi-
cient (or more) pi is negative which means that the positive ones can take values
greater than unity.

Let us discuss the condition for the system state to be separable. According
to the partial transpose criterion [41], the system is separable if the partial trans-
pose of the matrix ρAB (63) gives a positive density matrix. This condition is
necessary but not sufficient. Let us discuss this condition within the framework
of positive-map matrix representation. For example, for a spin-1/2 bipartite
system, we have shown that the map of a density matrix onto its transpose be-
longs to the matrix semigroup of matrices L. One should point out that this
map cannot be obtained by means of averaging with all positive probability dis-
tributions pk. On the other hand, it is obvious that the generic criterion, which
contains the Peres criterion as a partial case, can be formulated as follows.

Let us map the density matrix ρAB of a bipartite system onto vector �ρAB.
Let the vector �ρAB be acted upon by an arbitrary matrix, which represents the
positive maps in subsystems A and B. Thus we get a new vector

�ρ
(p)
AB =

(
LA ⊗ LB

)
�ρAB. (65)

Let us construct the density matrix ρ
(p)
AB using the inverse map of the vectors

onto matrices. If the initial density matrix is separable, the new density matrix
ρ

(p)
AB must be positive (and separable).

In the case of the bipartite spin-1/2 system, by choosingLA = 1 and withLB

being the matrix coinciding with the matrix gαβ, we obtain the Peres criterion
as a partial case of the criterion of separability formulated above. Thus, our
criterion means that the separable matrix keeps positivity under the action of the
tensor product of two semigroups. In the case of the bipartite spin-1/2 system,
the 16×16 matrix of the semigroup tensor product of positive contractive maps
(52) is determined by 24 parameters. Among these parameters, one can have
some correlations.

Let us discuss the positive map (52) which is determined by the semigroup
for the n-dimensional system. It can be realized also as follows.

The n×n Hermitian generic matrix ρ can be mapped onto essentially real
n2-vector �ρ by the map described above. The complex vector �ρ is mapped onto
the real vector �ρr by multiplying by the unitary matrix S, i.e.,

�ρr = S�ρ, �ρ = S−1�ρr. (66)
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The matrix S is composed from n unity blocks and the blocks

S
(jk)
b =

1√
2

(
1 1
−i i

)
, (67)

where j corresponds to a column and k corresponds to a row in the matrix ρ.
For example, in the case n = 2, one has the vector �ρr of the form

�ρr =

⎛⎜⎜⎝
ρ11√

2 Re ρ12√
2 Im ρ12

ρ22

⎞⎟⎟⎠ . (68)

One has the equalities
�ρ2
r = �ρ2 = Tr ρ2. (69)

The semigroup preserves the trace of the density matrix. Also the discrete
transforms, which are described by the matrix with diagonal matrix blocks of
the form

D =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎠ , (70)

preserve positivity of the density matrix.
For the spin case, the semigroup contains 12 parameters.
Thus, the direct product of the semigroup (52) and the discrete group of the

transform D defines positive map preserving positivity of the density operator.
One can include also all the matrices which correspond to other not completely
positive maps. The considered representation contains only real vectors and
their real positive transforms. This means that one can construct representation
of semigroup of positive maps by real matrices.

5. Symbols, star-product and entanglement

In this section, we describe how entangled states and separable states can be
studied using properties of symbols and density operators of different kinds,
e.g., from the viewpoint of the Wigner function or tomogram. The general
scheme of constructing the operator symbols is as follows [36].

Given a Hilbert space H and an operator Â acting on this space, let us suppose
that we have a set of operators Û(x) acting transitively on H parametrized by n-
dimensional vectors x = (x1, x2, . . . , xn). We construct the c-number function
fÂ(x) (we call it the symbol of the operator Â) using the definition

fÂ(x) = Tr
[
ÂÛ(x)

]
. (71)
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Let us suppose that relation (71) has an inverse, i.e., there exists a set of operators
D̂(x) acting on the Hilbert space such that

Â =
∫

fÂ(x)D̂(x) dx, Tr Â =
∫

fÂ(x) Tr D̂(x) dx. (72)

One needs a measure in x to define the integral in above formulae. Then, we
will consider relations (71) and (72) as relations determining the invertible map
from the operator Â onto the function fÂ(x). Multiplying both sides of Eq. (2)
by the operator Û(x′) and taking the trace, one can satisfy the consistency
condition for the operators Û(x′) and D̂(x)

Tr
[
Û(x′)D̂(x)

]
= δ

(
x′ − x

)
. (73)

The consistency condition (73) follows from the relation

fÂ(x) =
∫

K(x,x′)fÂ(x′) dx′. (74)

The kernel in (74) is equal to the standard Dirac delta-function, if the set of
functions fÂ(x) is a complete set.

In fact, we could consider relations of the form

Â → fÂ(x) (75)

and
fÂ(x) → Â. (76)

The most important property of the map is the existence of the associative
product (star-product) of the functions.

We introduce the product (star-product) of two functions fÂ(x) and fB̂(x)
corresponding to two operators Â and B̂ by the relationships

fÂB̂(x) = fÂ(x) ∗ fB̂(x) := Tr
[
ÂB̂Û(x)

]
. (77)

Since the standard product of operators on a Hilbert space is an associative
product, i.e., Â(B̂Ĉ) = (ÂB̂)Ĉ, it is obvious that formula (77) defines an
associative product for the functions fÂ(x), i.e.,

fÂ(x) ∗
(
fB̂(x) ∗ fĈ(x)

)
=

(
fÂ(x) ∗ fB̂(x)

)
∗ fĈ(x). (78)

Using formulae (71) and (72), one can write down a composition rule for two
symbols fÂ(x) and fB̂(x), which determines the star-product of these symbols.
The composition rule is described by the formula

fÂ(x) ∗ fB̂(x) =
∫

fÂ(x′′)fB̂(x′)K(x′′,x′,x) dx′ dx′′. (79)
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The kernel in the integral of (79) is determined by the trace of the product of
the basic operators, which we use to construct the map

K(x′′,x′,x) = Tr
[
D̂(x′′)D̂(x′)Û(x)

]
. (80)

The kernel function satisfies the composition property K ∗ K = K.

6. Tomographic representation

In this section, we will consider an example of the probability representation
of quantum mechanics [42]. In the probability representation of quantum me-
chanics, the state is described by a family of probabilities [43–45]. According
to the general scheme, one can introduce for the operator Â the function fÂ(x),
where

x = (x1, x2, x3) ≡ (X, µ, ν),

which we denote here as wÂ(X, µ, ν) depending on the position X and the
parameters µ and ν of the reference frame

wÂ(X, µ, ν) = Tr
[
ÂÛ(x)

]
. (81)

We call the function wÂ(X, µ, ν) the tomographic symbol of the operator Â.
The operator Û(x) is given by

Û(x) ≡ Û(X, µ, ν) = exp
(

iλ

2
(q̂p̂ + p̂q̂)

)
exp

(
iθ

2
(
q̂2 + p̂2

))
| X〉〈X |

× exp
(
− iθ

2
(
q̂2 + p̂2

))
exp

(
− iλ

2
(q̂p̂ + p̂q̂)

)
= Ûµν | X〉〈X | Û †

µν. (82)

The tomographic symbol is the homogeneous version of the Moyal phase-space
density. The angle θ and parameter λ in terms of the reference phase-space
frame parameters are given by

µ = eλ cos θ, ν = e−λ sin θ,

that is, q̂ and p̂ are position and momentum operators

q̂ | X〉 = X | X〉 (83)

and | X〉〈X | is the projection density. One has the canonical transform of
quadratures

X̂ = Ûµν q̂ Û †
µν = µq̂ + νp̂,
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P̂ = Ûµν p̂ Û †
µν =

1 +
√

1 − 4µ2ν2

2µ
p̂ − 1 −

√
1 − 4µ2ν2

2ν
q̂.

Using the approach of [46] one obtains the relationship

Û(X, µ, ν) = δ(X − µq̂ − νp̂).

In the case we are considering, the inverse transform determining the operator
in terms of the tomogram [see Eq. (72)] will be of the form

Â =
∫

wÂ(X, µ, ν)D̂(X, µ, ν) dX dµ dν, (84)

where

D̂(x) ≡ D̂(X, µ, ν) =
1
2π

exp (iX − iνp̂ − iµq̂) . (85)

The trace of the above operator, which provides the kernel determining the
trace of an arbitrary operator in the tomographic representation, reads

Tr D̂(x) = eiXδ(µ)δ(ν).

The function wÂ(X, µ, ν) satisfies the relation

wÂ (λX, λµ, λν) =
1
|λ| wÂ(X, µ, ν). (86)

This means that the tomographic symbols of operators are homogeneous func-
tions of three variables.

If one takes two operators Â1 and Â2, which are expressed through the
corresponding functions by the formulas

Â1 =
∫

wÂ1
(X ′, µ′, ν′)D̂(X ′, µ′, ν′) dX ′ dµ′ dν ′,

(87)

Â2 =
∫

wÂ2
(X ′′, µ′′, ν′′)D̂(X ′′, µ′′, ν′′)dX ′′ dµ′′ dν ′′,

and Â denotes the product of Â1 and Â2, then the function wÂ(X, µ, ν),
which corresponds to Â, is the star-product of the functions wÂ1

(X, µ, ν) and
wÂ2

(X, µ, ν). Thus this product

wÂ(X, µ, ν) = wÂ1
(X, µ, ν) ∗ wÂ2

(X, µ, ν)

reads

wÂ(X, µ, ν) =
∫

wÂ1
(x′′)wÂ2

(x′)K(x′′,x′,x) dx′′ dx′, (88)
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with kernel given by

K(x′′,x′,x) = Tr
[
D̂(X ′′, µ′′, ν′′)D̂(X ′, µ′, ν′)Û(X, µ, ν)

]
. (89)

The explicit form of the kernel reads

K(X1, µ1, ν1, X2, µ2, ν2, Xµ, ν)

=
δ
(
µ(ν1 + ν2) − ν(µ1 + µ2)

)
4π2

exp
(

i

2

{
(ν1µ2 − ν2µ1) + 2X1 + 2X2

−
[

1 −
√

1 − 4µ2ν2

ν
(ν1 + ν2) +

1 +
√

1 − 4ν2µ2

µ
(µ1 + µ2)

]
X

})
.

(90)

7. Multipartite systems

Let us assume that for multimode (N -mode) system one has

Û(�y) =
N∏

k=1

⊗Û
(
�x(k)

)
, (91)

D̂(�y) =
N∏

k=1

⊗D̂
(
�x(k)

)
, (92)

where
�y =

(
x

(1)
1 , x

(1)
2 , . . . , x(1)

m , x
(2)
1 , x

(2)
2 , . . . , x(N)

m

)
. (93)

This means that the symbol of the density operator of the composite system
reads

fρ(�y) = Tr
[
ρ̂

N∏
k=1

⊗Û(�x(k))
]
. (94)

The inverse transform reads

ρ̂ =
∫

d�y fρ(�y)
N∏

k=1

⊗D̂(�x(k)), d�y =
N∏

k=1

m∏
s=1

dx(k)
s . (95)

Now we formulate the properties of the symbols in the case of entangled and
separable states, respectively.

Given a composite m-partite system with density operator ρ̂.
If the nonnegative operator can be presented in the form of a “probabilistic

sum”
ρ̂ =

∑
�z

P(�z)ρ̂(a1)
�z ⊗ ρ̂

(a2)
�z ⊗ · · · ⊗ ρ̂

(am)
�z , (96)
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with positive probability distribution function P(�z), where the components of
�z can be either discrete or continuous, we call the state a “separable state”.
Without loss of generality, all factors in the tensor products can be considered
as projectors of rank one. This means that the symbol of the state can be
presented in the form

fρ(�y) =
∑

�z

P(�z)
m∏

k=1

f (ak)
ρ (�xk, �z). (97)

Analogous formula can be written for the tomogram of separable state. We
point out that in the multipartite case one can introduce random symbols and
represent the symbol of separable density matrix of composite system as mean
value of pointwise products of symbols of subsystem density operators. As in
the bipartite case, one can use sum over different indices but this sum can be
always reduced to the sum over only one index common for all the subsystems.
It is important that for separable state its symbol always can be represented as
the sum containing number of summants which is equal to dimensionality of
composite system. Each term in the sum is equal to mean value of random
projector. The random projector is constructed as the product of diagonal pro-
jectors of rank one in each subsystem considered in random local basis obtained
by means of random unitary local transforms.

8. Spin tomography

Below we concentrate on bipartite spin systems.
The tomographic probability (spin tomogram) completely determines the

density matrix of a spin state. It has been introduced in [31, 32, 36]. The
tomographic probability for the spin-j state is defined via the density matrix by
the formula

〈jm | D†(g)ρD(g) | jm〉 = W (j)(m,�0), m = −j,−j + 1, . . . , j, (98)

where D(g) is the matrix of SU(2)-group representation depending on the
group element g determined by three Euler angles. It is useful to generalize the
construction of spin tomogram.

One can introduce unitary spin tomograms w(m, u) by replacing in above
formula (98) the matrix D(g) by generic unitary matrix u. For the case of
higher spins j = 1, 3/2, 2, . . ., the n×n projector matrix

ρ1 =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0
0 0 · · · 0
· · · · · ·
· · · · · ·
0 0 · · · 0

⎞⎟⎟⎟⎟⎠ , n = 2j + 1 (99)
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has the unitary spin tomogram denoted as

w1(j, u) = |u11|2, w1(j − 1, u) = |u12|2, . . . w1(−j, u) = |u1n|2.
(100)

Other projectors

ρk =

⎛⎜⎜⎜⎜⎝
0 0 · · · · · · 0
· · · · · · ·
0 · · · 1 · · · 0
· · · · · · ·
0 0 · · · · 0

⎞⎟⎟⎟⎟⎠ , (101)

in which unity is located in kth column, have the tomogram wk(m, u) of the
form

wk(j, u) = |uk1|2, wk(j − 1, u) = |uk2|2, . . . wk(−j, u) = |ukn|2.
(102)

In connection with the decomposition of any density matrix in the form

ρ =
∑
jk

ρjkEjk, (103)

the unitary spin tomogram can be presented in form of the decomposition

wρ(m, u) =
∑
jk

ρjkwjk(m, u), (104)

where wjk(m, u) are basic unitary spin symbols of transition operators Ejk of
the form

wjk(m, u) = 〈jm | u†Ejku | jm〉. (105)

If one uses a map
ρ → ρ′, (106)

the unitary spin tomogram is transformed as

wρ(m, u) → w′
ρ(m, u) =

∑
jk

ρ′jkwjk(m, u). (107)

If the transform (106) is a linear one

ρjk → ρ′jk = Ljk,psρps, (108)

the transform reads

w′
ρ(m, u) =

∑
ps

ρpsw
′
ps(m, u). (109)
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Here
w′

ps(m, u) =
∑
jk

Ljk,pswjk(m, u) (110)

is the linear transform of the basic tomographic symbols of the operators Ejk.
Let us now discuss some properties of usual spin tomograms.
The set of the tomogram values for each �0 is an overcomplete set. We need

only a finite number of independent locations which will give information on
the density matrix of the spin state. Due to the structure of the formula, there
are only two Euler angles involved. They are combined into the unit vector

�0 = (cos φ sin ϑ, sin φ sin ϑ, cos ϑ). (111)

This is the Hopf map from S3 to S2.
The physical meaning of the probability W (m,�0) is the following.
It is the probability to find, in the state with the density matrix ρ, the spin

projection on direction�0 equal to m. For a bipartite system, the spin tomogram
is defined as follows:

W (m1m2�01�02) = 〈j1m1j2m2 | D†(g1)D†(g2)ρD(g1)D(g2) | j1m1j2m2〉.
(112)

It completely determines the density matrix ρ. It has the meaning of the joint
probability distribution for spin j1 and j2 projections m1 and m2 on directions
�01 and �02. Since the map ρ � W is linear and invertible, the definition of
separable system can be rewritten in the following form for the decomposition
of the joint probability into a sum of products (of factorized probabilities):

W (m1m2�01�02) =
∑

k

pkW
(k)(m1�01)W̃ (k)(m2�02). (113)

This form can be considered to formulate the criterion of separability of the
two-spin state.

One can present this formula in the form

W (m1m2�01�02) = 〈W (m1�01)W̃ (m2�02)〉, (114)

where we interpret the positive numbers pk as probability distributions. Thus
separability means the possibility to represent joint probability distribution in
the form of average product of two random probability distributions.

The state is separable iff the tomogram can be written in the form (113)
with

∑
k pk = 1, pk ≥ 0. It seems that we simply use the definition but, in

fact, we cast the problem of separability into the form of the property of the
positive joint probability distribution of two random variables. This is an area of
probability theory and one can use the results and theorems on joint probability
distributions. If one does not use any theorem, one has to study the solvability of
relation (113) considered as the equation for unknown probability distribution
pk and unknown probability functions W (k)(m1�01) and W (k)(m2�02).
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9. Example of spin-1/2 bipartite system

For the spin-1/2 state, the generic density matrix can be presented in the form

ρ =
1
2

(1 + �σ · �n) , �n = (n1, n2, n3), (115)

where �σ are Pauli matrices and �n2 ≤ 1, with the vector �n for a pure state being
the unit vector. This decomposition means that we use as basis in 4-dimensional
vector space the vectors corresponding to the Pauli matrices and the unit matrix,
i.e.,

�σ1 =

⎛⎜⎜⎝
0
1
1
0

⎞⎟⎟⎠ , �σ2 =

⎛⎜⎜⎝
0
−i
i
0

⎞⎟⎟⎠ , �σ3 =

⎛⎜⎜⎝
1
0
0
−1

⎞⎟⎟⎠ , �1 =

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ .

(116)
The density matrix vector

�ρ =

⎛⎜⎜⎝
ρ11

ρ12

ρ21

ρ22

⎞⎟⎟⎠ (117)

is decomposed in terms of the basis vectors

�ρ =
1
2

(
�1 + n1�σ1 + n2�σ2 + n3�σ3

)
. (118)

This means that the spin tomogram of the spin-1/2 state can be given in the
form

W

(
1
2
,�0

)
=

1
2

+
�n ·�0

2
, W

(
−1

2
,�0

)
=

1
2
− �n ·�0

2
. (119)

We can consider tomograms of specific spin state. If the state is pure state
with density matrix

ρ+ =
(

1 0
0 0

)
, (120)

the spin tomogram W (m,�0), where

m = ±1
2
, �0 = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

has the values

W+

(
1
2
,�0

)
= cos2

θ

2
, W+

(
−1

2
,�0

)
= sin2 θ

2
. (121)
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The tomogram of the pure state

ρ− =
(

0 0
0 1

)
, (122)

has the values

W−
(

1
2
,�0

)
= sin2 θ

2
= cos2

π − θ

2
,

(123)

W−
(
−1

2
,�0

)
= cos2

θ

2
= sin2 π − θ

2
.

The spin tomogram of the diagonal density matrix

ρd =
(

ρ11 0
0 ρ22

)
(124)

equals
Wd(m,�0) = ρ11W+(m,�0+) + ρ22W−(m,�0−). (125)

The generic density matrix which has eigenvalues ρ11 and ρ22 can be presented
in the form

u0ρdu
†
0, (126)

where the unitary matrix u0 has columns containing components of normalized
eigenvectors of the density matrix ρ.

This means that the tomogram of the state with the matrix ρ reads

Wρ(m,�0) = 〈m | u†u0ρdu
†
0u | m〉. (127)

The elements of the group can be combined

u†u0 = ũ. (128)

Thus the tomogram becomes

Wρ(m,�0) = Wd(m,�0′), (129)

where the angle �0′ corresponds to the Euler angle calculated from the product
of two unitary matrices u†

0u.
One can use the property of numbers ρ11 and ρ22 to interpret formula (125)

as averaging
Wd(m,�0) = 〈W (m,�0′)〉, (130)

where one interprets two functions W+(m,�0) and W−(m,�0′) as the realization
of “random” probability distribution function W±(m,�0). Then one has

Wρ(m,�0) = 〈W (m,�0′)〉. (131)
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The new vector�0′ has the parameter θ′ obtained from the initial parameter θ by
action of the unitary matrix on the initial unitary matrix u.

Inserting these probability values into relation (113) for each value of k, we
get the relationships

W

(
1
2
,
1
2
,�01,�02

)
=

1
4

+
1
2

(∑
k

pk�nk

)
·�01 +

1
2

(∑
k

pk�n
∗
k

)
·�02

+
∑

k

pk

(
�nk ·�01

)(
�n∗

k ·�02

)
, (132)

W

(
1
2
,−1

2
,�01,�02

)
=

1
4

+
1
2

(∑
k

pk�nk

)
·�01 −

1
2

(∑
k

pk�n
∗
k

)
·�02

−
∑

k

pk

(
�nk ·�01

)(
�n∗

k ·�02

)
, (133)

W

(
−1

2
,
1
2
,�01,�02

)
=

1
4
− 1

2

(∑
k

pk�nk

)
·�01 +

1
2

(∑
k

pk�n
∗
k

)
·�02

−
∑

k

pk

(
�nk ·�01

)(
�n∗

k ·�02

)
. (134)

One has the normalization property

1/2∑
m1,m2=−1/2

W (m1m2�01�02) = 1. (135)

One easily gets

W

(
1
2
,
1
2
,�01,�02

)
+ W

(
1
2
,−1

2
,�01,�02

)
=

1
2

+

(∑
k

pk�nk

)
·�01. (136)

This means that the derivative in �01 on the left-hand side gives

∂

∂�01

[
W

(
1
2
,
1
2
,�01,�02

)
+ W

(
1
2
,−1

2
,�01,�02

)]
=

(∑
k

pk�nk

)
. (137)

Analogously

∂

∂�02

[
W

(
1
2
,
1
2
,�01,�02

)
+ W

(
−1

2
,
1
2
,�01,�02

)]
=

(∑
k

pk�n
(�)
k

)
. (138)
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Taking the sum of (132) and (133)) one sees that

1
2

∂

∂�0i

∂

∂�0j

[
W

(
1
2
,−1

2
,�01,�02

)
+ W

(
−1

2
,
1
2
,�01,�02

)]
= −

∑
k

pk(nk)i(n
(�)
k )j. (139)

Since we look for the solution where pk ≥ 0, we can introduce

�Nk =
√

pk�nk, �N
(�)
k =

√
pk�n

(�)
k . (140)

This means that the derivative in (138) can be presented as a tensor

−Tij =
∑

k

(Nk)i(N
(�)
k )j. (141)

One has ∑
k

pk�nk =
∑

k

√
pk

�Nk, (142)

∑
k

pk�n
�
k =

∑
k

√
pk

�N
(�)
k . (143)

The conditions of solvability of the obtained equations is a criterion for separa-
bility or entanglement of a bipartite quantum spin state. Using the arguments
on the representation of the tomogram (tomographic symbol) as sum of ran-
dom basic projector symbols we get that for two qubits the separable state has
the tomogram with following properties. All four values of joint probability
distribution function are equal to mean values of product of two cosine of two
different angles squared, product of sine of two different angles squared and
product of sine and cosine squared, respectively. The entangled matrix does
not provide such structure.

As an example, we consider the Werner state. For the Werner state (see, e.g.,
[47]) with the density matrix

ρAB =

⎛⎜⎜⎝
1+p
4 0 0 p

2

0 1−p
4 0 0

0 0 1−p
4 0

p
2 0 0 1+p

4

⎞⎟⎟⎠ ,

(144)

ρA = ρB =
1
2

(
1 0
0 1

)
,

one can reconstruct the known results that for p < 1/3 the state is separable
and for p > 1/3 the state is entangled, since in the decomposition of the density
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operator in the form (113) the state

ρ0 =
1
4

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (145)

has the weight p0 = (1 − 3p)/4.
For p > 1/3, the coefficient po becomes negative.
There is some extension of the presented consideration.
Let us consider the state with the density matrix (nonnegative and Hermitian)

ρ =

⎛⎜⎜⎝
R11 0 0 R12

0 ρ11 ρ12 0
0 ρ21 ρ22 0

R21 0 0 R22

⎞⎟⎟⎠ , Tr ρ = 1. (146)

Using the procedure of mapping the matrix onto vector �ρ and applying to the
vector the nonlocal linear transform corresponding to the Peres partial transpose
and making the inverse map of the transformed vector onto the matrix, we obtain

ρm =

⎛⎜⎜⎝
R11 0 0 ρ12

0 ρ11 R12 0
0 R21 ρ22 0

ρ21 0 0 R22

⎞⎟⎟⎠ . (147)

In the case of separable matrix ρ, the matrix ρm is a nonnegative matrix. Cal-
culating the eigenvalues of ρm and applying the condition of their positivity,
we get

R11R22 ≥ |ρ12|2, ρ11ρ22 ≥ |R12|2. (148)

Violation of these inequalities gives a signal that ρ is entangled. For Werner
state (143), Eq. (148) means

1 + p > 0, 1 − p > 2p, (149)

which recovers the condition of separability p < 1/3 mentioned above.
The joint probability distribution (112) of separable state is positive after

making the local and nonlocal (partial transpose-like) transforms connected
with positive map semigroup. But for entangled state, function (112) can take
negative values after making this map in the function and replacing on the
right-hand side of this equality the product of two matrices D(g) by generic
unitary transform u. This is a criterion of entanglement in terms of unitary spin
tomogram of the state of multiparticle system.

A simpler and more transparent case is the generalized Werner model with
density matrix

ρ =
1
4

(1 + µ1σ1 ⊗ τ1 + µ2σ2 ⊗ τ2 + µ3σ3 ⊗ τ3) . (150)
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Here the density matrix is expressed in terms of tensor products of two sets of
Pauli matrices σk and τk (k = 1, 2, 3), which are chosen in the standard form.

Its eigenvalues are

1−µ1−µ2−µ3, 1+µ1 +µ2−µ3, 1+µ1−µ2 +µ3, 1−µ1 +µ2 +µ3.

These eigenvalues are related to the vertices of a regular tetrahedron. The
partially time-reversed density matrix is

ρ̃ =
1
4

(1 − µ1σ1 ⊗ τ1 − µ2σ2 ⊗ τ2 − µ3σ3 ⊗ τ3) , (151)

which may be viewed as

ρ̃ = L(1)⊗L(2)ρ with L(1)ρ(1) = ρ(1), L(2)ρ(2) = 1−ρ(2). (152)

The eigenvalues of this are

1+µ1 +µ2 +µ3, 1+µ1−µ2−µ3, 1−µ1 +µ2−µ3, 1−µ1−µ2 +µ3.

These form an inverted tetrahedron and they have the common domain which
is a regular octahedron. The unitary spin tomograms can be written down by
inspection and we may verify that all the relations required by the separability
criterion (see the next section for details) are satisfied by any point inside the
octahedron for ρ and for L(1)⊗L(2)ρ but the relations connected with positivity
condition expressed in terms of positivity of unitary spin tomogram fail when
it lies outside.

10. Tomogram of the group U(n)

In this section we discuss in more detail the separability criterion using
introduced notion of unitary spin tomogram.

In order to formulate a criterion of separability for a with spin j1 and j2, we
introduce the tomogram w(�l, �m, g(n)) for the group U(n), where

n = n1n2, n1 = 2j1 + 1, n2 = 2j2 + 1,

and g(n) are parameters of the group element. Vectors �l and �m label a basis
| �l, �m〉 of the fundamental representation of the group U(n). For example,
since this representation is irreducible, being reduced to the representation of
the U(n1)⊗U(n2) subgroup of the group U(n), the basis can be chosen as the
product of basis vectors:

| j1, m1〉 | j2, m2〉 =| j1, j2, m1, m2〉. (153)
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Due to the irreducibility of this representation of the group U(n) and its sub-

group, there exists a unitary transform u
�l�m
j1j2m1m2

| �l, �m〉 such that

| j1, j2, m1, m2〉 =
∑
�l�m

u
�l�m
j1j2m1m2

| �l, �m〉, (154)

| �l�m〉 =
∑

m1m2

(u−1)�l�mj1j2m1m2
| jl, j2, m1, m2〉. (155)

One can define the U(n) tomogram for a Hermitian nonnegative n×n density
matrix ρ, which belongs to the Lie algebra of the group U(n), by a generic
formula

w(�l, �m, g(n)) = 〈�l, �m | U †(g(n))ρU(g(n)) | �l, �m〉. (156)

Formula (156) defines the tomogram in the basis | �l, �m〉 for arbitrary irreducible
representation of the unitary group. But below we focus only on tomograms
connected with spins.

Let us define the U(n) tomogram using the basis | j1, j2, m1, m2〉 namely
for fundamental representation, i.e.,

w(j1,j2)(m1, m2, g
(n))

= 〈j1, j2, m1, m2 | U †(g(n))ρU(g(n)) | j1, j2, m1, m2〉. (157)

This unitary spin tomogram becomes the spin-tomogram [34] for the g(n) ∈
U(2) ⊗ U(2) subgroup of the group U(n). The properties of this tomogram
follow from its definition as the joint probability distribution of two random
spin projections m1, m2 depending on g(n) parameters.

One has the normalization condition∑
m1,m2

w(j1,j2)(m1, m2, g
(n)) = 1. (158)

Also all the probabilities are nonnegative, i.e.,

w(j1,j2)(ml, m2, g
(n)) ≥ 0. (159)

Due to this, one has ∑
m1,m2

|w(j1,j2)(ml, m2, g
(n))| = 1. (160)

For the spin-tomogram,

g(n) →
(

�O1, �O2

)
(161)

and
w(j1,j2)(ml, m2, g

(n)) → w(m1, m2, �O1, �O2). (162)
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The separability and entanglement condition discussed in the previous sec-
tion for a bipartite spin-tomogram can be considered also from the viewpoint
of the properties of a U(n) tomogram. If the two-spin n×n density matrix ρ is
separable, it remains separable under the action of the generic positive map of
the subsystem density matrices. This map can be described as follows.

Let ρ be mapped onto vector �ρ with n2 components. The components are
simply ordered rows of the matrix ρ, i.e.,

�ρ =
(
ρ11, ρ12, . . . , ρ1n, ρ21, ρ22, . . . , ρnn,

)
. (163)

Let the n2×n2 matrix L be taken in the form

L =
∑

s

psL
(j1)
s ⊗ L(j2)

s , ps ≥ 0,
∑

s

ps = 1, (164)

where the n1×n1 matrix L
(j1)
s and the n2×n2 matrix L

(j2)
s describe the positive

maps of density matrices of spin-j1 and spin-j2 subsystems, respectively. We
map vector �ρ onto vector �ρL

�ρL = L�ρ (165)

and construct the n×n matrix ρL, which corresponds to the vector �ρL. Then
we consider the U(n) tomogram of the matrix ρL, i.e.,

w
(j1,j2)
L (ml, m2, g

(n))

= 〈j1, j2, m1, m2 | U †(g(n))ρLU(g(n)) | j1, j2, ml, m2〉. (166)

Using this tomogram we introduce the function

F (g(n), L) =
∑

m1,m2

∣∣∣w(j1,j2)
L (m1, m2, g

(n))
∣∣∣ . (167)

For separable states, this function does not depend on the U(n)-group parameter
g(n) and positive-map matrix elements of the matrix L.

For the normalized density matrix ρ of the bipartite spin system, this function
reads

F (g(n), L) = 1. (168)

For entangled states, this function depends on g(n) and L and is not equal to
unity. This property can be chosen as a necessary and sufficient condition
for separability of bipartite spin-states. We introduce also tomographic purity
parameter µk of kth order by the formula

µk(g(n), L) =
∑

m1m2

∣∣∣w(j1,j2)
L (m1, m2, g

(h))
∣∣∣k .
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For identity semigroup element L and specific g
(n)
0 unitary transform diago-

nalizing the density matrix, the tomographic purity µ2 is identical to purity
parameter of the state ρ. The parameters for k = 2, 3, . . ., correspond to
Tr ρk+1.

In fact, the formulated approach can be extended to multipartite systems too.
The generalization is as follows.

Given N spin-systems with spins j1, j2, . . . , jN , let us consider the group
U(n) with

n =
N∏

k=1

nk, nk = 2jk + 1. (169)

Let us introduce the basis

| �m〉 =
N∏

k=1

| jkmk〉 (170)

in the linear space of the fundamental representation of the group U(n). We
define now the U(n) tomogram of a state with the n×n matrix ρ:

wρ(�m, g(n)) = 〈�m | U †(g(n))ρU(g(n)) | �m〉. (171)

For a positive Hermitian matrix ρ with Tr ρ = 1, we formulate the criterion of
separability as follows.

Let the map matrix L be of the form

L =
∑

s

ps

( N∏
k=1

⊗L(k)
s

)
, ps ≥ 0,

∑
s

ps = 1, (172)

where L
(k)
s is the positive-map matrix of the density matrix of the kth spin

subsystem. We construct the matrix ρL as in the case of the bipartite system
using the matrix L. The function

F (g(n), L) =
∑
�m

|wρL(�m, g(n))| ≥ 1 (173)

is equal to unity for separable state and depends on the matrix L and U(n)-
parameters g(n) for entangled states.

This criterion can be applied also in the case of continuous variables, e.g.,
for Gaussian states of photons. Function (173) can provide the measure of
entanglement. Thus one can use the maximum value (or a mean value) of
this function as a characteristic of entanglement. In the previous section, we
considered the generalized Werner states. Using the above criterion, one can
get the domain of values of the parameters of the states for which one has
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separability or entanglement. In fact, the separability criterion is related to the
following positivity criterion of finite or infinite (trace class) matrix A. The
matrix A is positive iff the sum of moduli of diagonal matrix elements of the
matrix UAU † is equal to a positive trace of the matrix A for an arbitrary unitary
matrix U .

11. Dynamical map and purification

In this section, we consider the connection of positive maps with purification
procedure. In fact, formula

ρ → ρ′ =
∑

k

pkUkρU †
k, (174)

where Uk are unitary operators, can be considered in the form

ρ → ρ′ =
∑

k

pkρk, pk ≥ 0,
∑

k

pk = 1. (175)

Here the density operators ρk read

ρk = UkρU †
k, (176)

and the maps which are not sufficiently general keep the most degenerate density
matrix fixed. This form is the form of probabilistic addition. This mixture of
density operators can be purified with the help of a fiducial projector P0

ρ′ → ρ′′ = N

⎡⎣∑
kj

√
pkpj

ρkP0ρj√
Tr ρkP0ρjP0

⎤⎦ , (177)

where P0 and N is a normalization constant

N−1 = Tr

⎛⎝∑
kj

√
pkpj

ρkP0ρj√
Tr ρkP0ρjP0

⎞⎠ . (178)

The normalization is unnecessary if all ρk are mutually orthogonal. We call
this map a purification map. It maps the density matrix of mixed state on the
density matrix of pure state.

The map (174) could be interpreted as the evolution in time of the initial
matrix ρ0 considering unitary operators Uk(t) depending on time. Thus one
has

ρ0 → ρ(t) =
∑

k

pkUk(t)ρ0U
†
k(t). (179)
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In this case, the purification procedure provides the dynamical map of a pure
state

| ψ0〉〈ψ0 |→| ψ(t)〉〈ψ(t) |, (180)

where | ψ(t)〉 obeys a nonlinear equation and, in the general case, this map
does not define a one parameter group of transformations not even locally.

For some specific cases, the evolution (179) can be described by a semigroup.
The density matrix (179) obeys then a first-order differential equation in time
for this case [27–29].

More specifically, the reason why there is no differential equation in time for
the generic case is due to the absence of the property

ρij(t2) =
∑
mn

Kmn
ij (t2, t1)ρmn(t1), (181)

where the kernel of evolution operator satisfies

Kmn
ij (t3, t2)Kpq

mn(t2, t1) = Kpg
ij (t3, t1). (182)

Thus, via a purification procedure and a dynamical map applied to a density
matrix we get a pure state (nonlinear dynamical map). This map can be used
in nonlinear models of quantum evolution. All the linear positive maps both
completely positive and not completely positive are contractive. This means,
for example, that purity parameter µ = Tr ρ2 after performing the positive map
generically becomes smaller. There are maps for which the purity parameter is
preserved, for example,

ρ → ρtr, ρ → −ρ +
2
N

1. (183)

These linear maps include also unitary transform

ρ → uρu†. (184)

All the maps obtained by means of convex addition of density matrices are
contractive. There are no linear maps which provide dilation. The existence of
such maps would mean that there are matrices L̃jk,ps of positive maps satisfying
the condition

L̃L = 1, L̃ = L−1. (185)

For example, for the matrices Lε the inverse matrices exist for ε = 0. But
these inverse matrices do not provide positive trace preserving maps. Since
the purification procedure provides a positive map, which increases the purity
parameter, the composition of linear map with the purification map provides
the possibility to recover the initial density matrix ρ which was the object of
action of a positive linear map. It means that the purification map L̂p can give

L̂P0(Lρ) = 1ρ (186)
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for any density matrix ρ but the choice of fiducial projector depends on ρ (the
initial condition).

Thus one has also for completely positive maps

ρ → ρ′ =
∑

k

ρ′k, ρk = VkρV †
k ,

∑
k

V †
k Vk = 1. (187)

Making polar decomposition

ρk =
√

ρ0kUk, UkU
†
k = 1, ρ0k ≥ 0

and introducing the positive numbers pk = Tr ρ0k, we construct the map

ρ′ → ρ′′ =

⎧⎨⎩∑
kj

√
pkpj

ρ̃kP0ρ̃j + ρ̃jP0ρ̃k√
T ρ̃kP0ρ̃jP0

⎫⎬⎭ ,
∑

k

pk = 1, pkρ̃k = ρk.

(188)
The matrix ρ′′ is a matrix of rank one for projector P0. The projector P0

is not orthogonal to matrix ρk. Taking N orthogonal projectors P
(s)
0 (s =

1, 2, . . . , N) and obtaining N projectors ρ′′s, one can combine them in order to
get the initial matrix ρ. It means that one can take convex sum of the N pure
states ρ′′s to recover the initial mixed state ρ. Another way to make the state
with higher purity was demonstrated using the modified purification procedure
in [48]. For qubit state, one has

ρ = p1ρ1 + p2ρ2 + κ
√

p1p2
ρ1P0ρ2 + ρ2P0ρ1√

Tr ρ1P0ρ2P0
, p1 + p2 = 1, (189)

where the decoherence parameter 0 ≤ κ ≤ 1 is used. If κ ∼ 1, we increase
purity.

Let us discuss the map (187) using its matrix form, i.e.,

ραβ → ρ′αβ =
∑
ij

Lαβ,ijρij. (190)

The matrix Lαβ,ij is expressed in terms of the matrices Vk as

Lαβ,ij =
∑

k

(Vk)αi(V ∗
k )βj. (191)

One can construct another positive map [49]

ρ → ρ′ =
∑

k

rkTr (Rkρ) , (192)

where rk are density matrices and Rk are positive operators satisfying the nor-
malization condition ∑

k

Rk = 1. (193)
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The matrix corresponding to this map (called entanglement breaking map [50])
reads

Lb
αβ,ij =

∑
k

(rk)αβ(R∗
k)ij. (194)

The entanglement breaking map is contractive positive map. There exist some
special cases of completely positive maps. For example,

ρ → −ερ +
1 + ε

N
ρ (195)

differs from the depolarizing map by replacing the unity operator by the density
operator. Another map reads

ρ → 1 − diag ρ

N
. (196)

The decoherence map (phase damping map) of the kind

ρij →
{

ρij, i = j
λρij, i = j,

(197)

where |λ| < 1 provides contractive map with uniform change of off-diagonal
matrix elements of the density matrix.

Let us discuss the property of tomogram of bipartite system with density
matrix ρ12. If the density matrix is separable, than the depolarizing map of the
second subsystem provides the following density matrix

ρ12 → ρε = −ερ12 +
1 + ε

N2
ρ(1) ⊗ 12, (198)

where
ρ(1) = Tr2(ρ12) (199)

and 12 is the N2-dimensional unity matrix. Then one has the property of unitary
spin tomogram

wε(m1, m2, g
(n)) = −εw12(m1, m2, g

(n)) +
1 + ε

N2
w(m1, m2, g

(n)), (200)

where g(n) is matrix of U
(
(2j1 + 1)(2j2 + 1)

)
unitary transform;

wε(m1, m2, g
(n)) is the tomogram of transformed density matrix of bipartite

system;
w(m1, m2, g

(n)) is the unitary spin tomogram of tensor product of partial trace
ρ(1) over the second subsystem’s coordinates of the density matrix ρ12 and unity
operator 12;
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w12(m1, m2, g
(n)) is the unitary spin tomogram of the state with density matrix

ρ12.
The criterion of separability means

j1∑
m1=−j1

j2∑
m2=−j2

∣∣∣∣ 1 + ε

2j2 + 1
w(m1, m2, g

(n)) − εw12(m1, m2, g
(n))

∣∣∣∣ = 1 (201)

for arbitrary g(n) and ε.
For Werner states ρW , the tomogram of transformed state (in this case, it

means that p → −εp) is related to the initial-state tomogram wW

wε(m1, m2, g
(n)) = −εw12(m1, m2, g

(n)) +
1 + ε

4
. (202)

The criterion of separability yields

1/2∑
m1,m2=−1/2

∣∣∣∣1 + ε

4
− εwW(m1, m2, g

(n))
∣∣∣∣ = 1. (203)

Equality (203) takes place for arbitrary g(n) and ε only for |p| ≤ 1/3. For
p > 1/3, the above sum depends on g(n) and ε and it is larger than one.

It is obvious if one calculates the tomogram using the element of the unitary
group of the form

g
(n)
0 =

⎛⎜⎜⎝
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞⎟⎟⎠ . (204)

At this point, the sum (203) reads

1/2∑
m1,m2=−1/2

∣∣∣∣1 + ε

4
− εwW(m1, m2, g

(n))
∣∣∣∣ = 3

∣∣∣∣1 + εp

4

∣∣∣∣+∣∣∣∣1 − 3pε

4

∣∣∣∣ . (205)

One can see that this sum equals to one independently on the value of parameter
|ε| ≤ 1 only for values |p| ≤ 1/3 . For p = 1, the maximum value of the sum
equals 2 = (1 + 3ε)/2 (ε = 1). This value can characterize the degree of
entanglement of Werner state.

We have introduced positive nonlinear map of density matrix which is pu-
rification map. The purification map can be combined with contractive maps
discussed. The tomographic-probability distributions under discussion can be
completely described by their characteristic functions. This means that the re-
lation of tomogram property to entanglement can be formulated in terms of the
properties of characteristic functions.



The geometry of density states, positive maps, and tomograms 437

One can also check the criterion using example of two-qutrite pure entangled
state with wave function

| ψ〉 =
1√
3

1∑
m=−1

| um〉 | vm〉. (206)

The sum defining the criterion of separability for specific U(9) transform g
(n)
0

which is diagonalizing the hermitian matrix Lε | ψ〉〈ψ | reads

F (ε, g(n)
0 ) = 8

∣∣∣∣1 + ε

9

∣∣∣∣ +
∣∣∣∣1 − 8ε

9

∣∣∣∣ . (207)

For 1/2 > ε > 1/8, this sum is larger than one, that means that the state is
entangled. For ε = 1/2, the function has maximum and it is equal to 5/3.

The entanglement of the considered state can be detected using partial trans-
position criterion too.

For the case of pure entangled state of two-qutrite system with the wave
function

| Φ〉 =
1√
2

(
| u1〉 | v1〉+ | u0〉 | v0〉

)
, (208)

in which the states with spin projections m = −1 do not participate, the partial
transpose criterion does not detect entanglement. But our criterion yields for
specific U(9) transform g

(n)
0 , which diagonalizes the hermitian matrix Lε |

Φ〉〈Φ | the following expression for the function F (ε, g(n)
0 ), which reads

F (ε, g(n)
0 ) = 5

|1 + ε|
6

+
|1 − 5ε|

6
. (209)

The function takes maximum value for ε = 1/2 that equals to 3/2. This value
is smaller than 5/3 of the previous case. It corresponds to our intuition that the
superposition of three product states of two qutrite system is more entangled
than the superposition of only two such product states.

The criterion can be extended to multipartite spin system.
We have to apply for n-partite system the transform of the density matrix ρ

of the form
L�ε = L(1)

ε1
⊗ L(2)

ε2
⊗ . . . ⊗ L(n)

εn
, (210)

where the transform L
(k)
εk acts as depolarizing map on the kth subsystem. If the

state is separable

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ . . . ⊗ ρ

(n)
k ,

∑
k

pk = 1, pk ≥ 0, (211)
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each of the terms ρ
(j)
k (j = 1, 2, . . . , n) in the tensor product is replaced by the

term

ρ
(j)
k → −εjρ

(j)
k +

1 + εj

Nj
1j. (212)

This means that the transformed density matrix reads

ρ → L�ερ =
∑

k

pk

⎡⎣ n∏
j=1

⊗
(
−ερ

(j)
k +

1 + εj

Nj
1j

)⎤⎦ . (213)

The unitary spin tomogram of the transformed density matrix takes the form
(�ε = ε1, ε2, . . . , εn)

w�ε(m1, m2, . . . , mn, g(N)) =
∑

k

pkw
(k)
pr (m1, m2, . . . , mn, g(N), �ε), (214)

where N =
∏n

s=1(2js + 1) and element g(N) is the unitary matrix in N -

dimensional space. The tomogram w
(k)
pr (m1, m2, . . . , mn, g(N), �ε) is the joint

probability distribution of spin projections ms = −js,−js + 1, . . . , js, which
depends on the unitary transform g(N) in the state with density matrix

ρk =
n∏

s=1

⊗
(
−εsρ

(s)
k +

1 + εs

Ns
1s

)
. (215)

For the elements

g(N)
pr =

n∏
s=1

⊗us(2js + 1),

where us(2js +1) is unitary matrix, the tomogram (214) takes the form of sum
of the products

w�ε(m1, m2, . . . , mn, g(N)
pr ) =

∑
k

pk

n∏
s=1

wk

(
ms, us(2js + 1), εs

)
, (216)

with wk(ms, us(2js + 1), εs) being the unitary spin tomograms of the sth spin

subsystem with transformed density matrix Lεsρ
(s)
k . If one uses as the matrix

us(2js+1), the matrix of unitary irreducible representation of the SU(2) group,
the tomogram wk depends only on the two parameters defining the point on the
sphere S2.

For a separable state of the multipartite system, one has∑
m1,...,mn

∣∣∣w�ε(m1, m2, . . . , mn, g(N))
∣∣∣ = 1 (217)

for all elements g(N) and all parameters �ε.
For entangled state, there can be some values of parameters �ε and group

elements g(N) for which the sum is larger than one.
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12. Conclusions

We summarize the results of the paper.
The notion of entangled states (first discussed by Schrödinger [4, 51]) has

attracted a lot of efforts to find a criterion and quantitative characteristics of
entanglement. A criterion based on partial transpose transform of subsystem
density matrix (complex conjugation of the subsystem density matrix or its time
reverse) provides the necessary and sufficient condition of separability of the
system of two qubits and qubit-qutritt system [52]. The phase-space represen-
tation of the quantum states and time reverse transform (change of the signs of
the subsystem momenta) of the Wigner function in the case of Gaussian state
was applied to study the separability and entanglement of photon states in [13].
Recently it was pointed out that the tomographic approach of reconstructing the
Wigner function of quantum state [43–45] can be developed to consider the pos-
itive probability distribution (tomogram) as an alternative to density matrix (or
wave function) because the complete set of tomograms contains the complete
information on the quantum state [42]. This representation (called probability
representation) was constructed also for spin states including a bipartite system
of two spins. Up to now the problem of entanglement was not discussed in the
tomographic representation. Some remarks on tomograms and entanglement
of photon states in the process of Raman scattering were done in [53]. The
tomographic approach has the advantage of dealing with positive probabilities
and one deals with standard probability distributions which are positive and
normalized.

We studied the properties of separable and entangled state of multipartite
system using the tomographic probability distributions. The positive and com-
pletely positive maps of density matrices [39, 54] induce specific properties of
the tomograms. The properties of the positive maps were studied in [55]. We
formulated necessary and sufficient conditions of separability and entanglement
of multipartite systems in terms of properties of the quantum tomogram. Since
the tomograms were shown [36] to be related to the star-product quantization
procedure [56], we discuss entanglement and separability properties in terms
of generic operator symbols. The tomographic symbols of generic spin opera-
tors were studied in [36]. Then we focused on properties of entanglement and
separability of a bipartite system using spin tomograms (SU(2)-tomograms)
and tomograms of the U(N)-group.

The idea of the approach suggested can be summarized as following.
The positive but not completely positive linear maps of a subsystem density

matrix do preserve the positivity of separable density matrix of the composite
system. These maps contain also maps which do not preserve the positivity
of the initial density matrix of an entangled state for the composite system.
It means that the set of all linear positive maps of the subsystem density ma-
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trix (this set is semigroup) creates from the initial entangled positive density
matrix of composite system a set of hermitian matrices including the matrices
with negative eigenvalues. To detect the entanglement we use the tomographic
symbols of the obtained hermitian matrices. The tomographic symbols of state
density matrices (state tomograms) are standard probabilities. In view of this
the tomographic symbols of the obtained hermitian matrices corresponding to
initial separable state preserve all the properties of the probability representation
including positivity and normalization. But in case of entangled state the tomo-
graphic symbols of the obtained hermitian matrices can take negative values.
The different behaviour of tomograms of separable and entangled states of com-
posite systems under action of the semigroup of positive maps of the subsystem
density matrix provides the tomographic criterion of the separability.

To conclude, we point out the main result of the work.
We found the criterion of separability which is given by equation (173). The

criterion is valid for multiparticle spin system. The criterion can be called “to-
mographic criterion” of separability. The tomographic criterion can be consid-
ered also for symplectic tomograms of multimode photon states. The condition
of separability is sufficient because there always exists a unitary group element
by means of which any hermitian matrix can be diagonalized. It means that
tomographic symbol of nonpositive hermitian matrix has nonpositive values
for some unitary group parameters. The suggested criterion is connected with
properties of the constructed function (173) which for given density matrix
depends on unitary group parameters g and the parameters of positive map
semigroup L. For separable density matrix the dependence on unitary group
parameters and the semigroup parameters disappears and the function becomes
constant equal to unity. For entangled states the function differs from unity
and depends on both group and semigroup parameters. The suggested criterion
can be considered as some complementary test of separability together with
other criteria available in the literature (see, for example, [38, 52]). We point
out that suggested criterion differs from available usual ones by the kind of the
necessary numerical calculations. To apply this criterion one needs to calculate
the sum of moduli of diagonal matrix elements of product of three matrices.
One of the matrices is hermitian and two others are unitary ones. This proce-
dure does not need the calculation of the eigenvalues of a matrix. The structure
of positive (including not completely positive) map semigroup with elements
L needs extra investigation (see, for example, [57]). We found also a test of
entanglement based on the property of unitary spin tomogram.

The discussed purification map can be applied to find new quantum evolution
equations in addition to known ones [58–61]. The application of different forms
of positive maps [55, 62] and supermatrix representation of the maps [63, 64] are
useful for better understanding of the computations. Entanglement phenomena
can be considered using symbols of density matrix of different kinds, e.g.,
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particular quasidistributions [65] as well as tomographic symbols [36]. The
difference of symbols of entangled and separable density operators for different
schemes of the star-product quantization needs further investigations as well
as test of entanglement of some generalizations of Werner state [66, 40] in
multipartite case. A relation of tomographic approach to different positive
maps [67] should be investigated. The tomographic symbols are analytic in
group parameters. This can be used to find extrema of tomograms which give
information on degree of entanglement.
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Abstract A minimal requirement for different inertial observers to be equivalent is that
each one is perceived by the other as existing always in the past and in the
future. This aspect is formalized in the notion of mutual objective existence.
Using just this notion, we show that, in the bidimensional case (x0, x1), the
linear transformations A(x0, x1) connecting two different frames form a Lorentz
group (or its contractions, Galilei and Carroll). In three dimensions (one time)
x0 and two space variables x1 and x2) the transformations compatible with the
mutual objective existence are the product of A1(x0, x1)A2(x0, x2), where both
A1 and A2 are one of the previous transformations, times a space transformation
R(x1, x2), which is obliged to be Euclidean when both A1 and A2 are Lorentzian.

Keywords: PACS: 03.30 - Special Relativity

In memory of Ruggiero de Ritis

1. Introduction
In 1905 Einstein published his theory of electrodynamics of moving bodies

[7], accepted in the body of physical science under the name of the special
theory of relativity. Since, thanks to the formulation of Minkowski [8], the
carrier manifold for the perception of the external world became space-time.
In the words of Minkowski:
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“Henceforth space by itself, and time by itself are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent
reality”.

Only a “kind of union” of space and time is to be allowed. Our aim is to
discuss and investigate this kind of union.

Usually space and time are distinguishable in a relativity world model due
to the indefinite nature of the associated pseudo Riemannian structure of the
space-time manifold. This is the property that Reichenbach [9] calls the singular
nature of time.

In our approach, however, we do consider a four dimensional continuum
as the stage for the events of the external world, but we do not assume any
preexisting (pseudo)Riemannian structure (this approach is more close to the
spirit of the General Relativity). We have to rely on a more deep distinction
between space and time. Indeed we may rely on Weyl’s [10] analysis of space,
time and matter:

“Time is the primitive form of the stream of consciousness. It is a fact, however
obscure and perplexing to our minds, that the contents of consciousness do not
present themselves simply as being, but as being now filling the form of the
enduring present with a varying content.

So that one does not say this is but this is now, yet now no more. It we project
ourselves outside the stream of consciousness and represent its contents as an
object, it becomes an event happening in time, the separate stages of which stand
to one another in the relation of earlier and later.

Just as time is the form of the stream of consciousness, so one may justifiably
assert that space is the form of external material reality”.

Existence is therefore perceived as here and now.
A minimalist translation of Weyl’s assertions into a mathematical object is

provided by the notion of reference frame, i.e. a rank one (1 − 1) tensor field
T defined on the four dimensional continuum M with the property T · T ∝ T .
By writing T as the tensor product of a column vector (identifying a concept of
time) and a row vector (identifying a concept of space) we give M a separation
into space and time. The identification of an equivalence class of reference
frames will allow a “kind of union” of the individual separations into space and
time in such a way that existence is shared objectively by all of them.

2. Reference frames: space and time

A reference frame imparts a natural temporal grain of the space-time mani-
fold and a natural transverse spatial location. A suggestive intuitive model of
this separation is obtained by imagining that at each instant of time one could
take a photograph of the entire cosmos. Imagine these photographs bond into a
book. The book stands for the whole space-time and the leaves of the book stand
for the spatial location. The temporal grain is determined by one-dimensional
line transverse to the spatial leaves. A curve in the book which intersects any
leaf just once is a world line.
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To give our presentation a tutorial character, we make the assumption that
M is actually a vector space. Therefore T can be written as a matrix, tensor
product of a column vector

ε ≡

⎛⎜⎜⎝
e0

e1

e2

e3

⎞⎟⎟⎠
and the row vector α ≡ (a0, a1, a2, a3) to obtain T = ε⊗α, i.e. (T )k

j = eja
k,

with the requirement that Tr T = a0e0 + a1e1 + a2e2 + a3e3 = α(ε) = 0. If
we normalize T by requiring Tr T = 1, we get T 2 = T .

We may associate an ordinary differential equation with ε by setting

dx0

ds
= a0 ,

dx1

ds
= a1 ,

dx2

ds
= a2 ,

dx3

ds
= a3.

Any solution of these equations defines a world-line and will be called an
observer associated with the reference frame T . A representative observer will
be the solution defined by the initial conditions

x0(s = 0) = 0 , x1(s = 0) = 0 , x2(s = 0) = 0 x3(s = 0) = 0 .

Spatial leaves associated with the reference frame T are defined by the vectors
y ≡ (y0, y1, y2, y3) which satisfy α(y) = a0y0 + a1y1 + a2y2 + a3y3 = c; a
representative leaf will be the one defined by c = 0. It is possible to choose a
mutual orientation between space and time by requiring α(ε) > 0.

It is now clear that existing objects for the reference frame T should have
a world line with tangent vector vm at the point m of space-time such that
α(vm) = 0. Those world-lines for which α(vm) = 0 will be perceived as
existing only at a given instant of time, not here but all over the line, and will
not be perceived neither in the past nor in the future. Therefore, we shall say
that two reference frames are mutually compatible if T1 ·T2 = 0 and T2 ·T1 = 0,
i.e. observers of either one are perceived as existing by all other observers of
the other reference frame.

This property, for the two frames of reference, will be called the mutual
objective existence (m.o.e.) condition.

It is not difficult to show that the m.o.e. condition does not define an equiv-
alence relation, i.e. it does not satisfy the transitivity property. On the other
hand, if we want to define an objective existence, the notion should not privi-
lege one frame with respect to the others. To determine equivalence classes of
frames, the best efficient way is to act with a group of linear transformations
on a fiducial one, say T0, and require that all frames obtained from T0 pairwise
satisfy the m.o.e. condition.

Therefore we get an equation for the permissible transformations ϕa by
requiring that
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(ϕ∗
aT0) · (ϕ∗

bT0) = 0 , ϕ∗
bT0) · (ϕ∗

aT0) = 0 ,

It is convenient to search for one-parameter groups of permissible transfor-
mations and look for their permissibility (i.e. the composition of any two is still
permissible); this amounts to look for one parameter subgroups in the connected
component of the identity for GL(4, R).

If the transformation ϕa is identified with the matrix A, in terms of the row
vector α and the column vector ε of T0, we have the permissibility condition in
the form

α(A · ε) > 0 , (ATα) · ε > 0 ,

where AT stands for the transposed matrix of A.
To solve this inequality equation for the unknown matrix A will be the main

aim of this paper and the group of transformations satisfying the inequality will
be the relativity group determined by the m.o.e. condition.

3. The two-dimensional transformation group

In this section we consider T0 = ε ⊗ α with α = (1, 0) and ε =
(

x0

x1

)
.

Neglecting translations, a generic 2-dimensional linear finite transformation
with positive determinant, when written in the form(

x′
0

x′
1

)
= A(λ0, λ1)

(
x0

x1

)
≡

≡

⎛⎜⎜⎝
c1e

λ0 − c0e
λ1

c1 − c0

eλ1 − eλ0

c1 − c0

−c0c1
eλ1 − eλ0

c1 − c0

c1e
λ1 − c0e

λ0

c1 − c0

⎞⎟⎟⎠(
x0

x1

)
=

= B−1

(
eλ0 0
0 eλ1

)
B, where B =

(
c1 1
c0 1

)
exhibits, for fixed c’s, the following useful properties:

A(λ0, λ1)A(λ′
0, λ

′
1) = A(λ0 + λ′

0, λ1 + λ′
1), det A = eλ0+λ1 .

The λ′s play the role of evolution parameters.
A simultaneous rescaling of x0 and x1 by the factor e−(λ0+λ1)/2, which is in

any case real and positive, does not modify the physical descriptions and gives

A(λ) =
1

c1 − c0

(
c1e

λ − c0e
−λ e−λ − eλ

−c0c1

(
e−λ − eλ

)
c1e

−λ − c0e
λ

)
(1)

where λ = (λ0 − λ1)/2.
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Figure 1. On two-dimensional transformation group.

i) If λ is imaginary (λ → iµ), the reality of A obliges c1 = −c0 = ic and
(An)00 = cos nµ : the m.o.e. condition is violated only if µ is a ratio-
nal number, but in any case matter transforms continuously in antimat-
ter. Following Feynman [11] we are here identifying particles travelling
backwards in time with antiparticles.

Here and in the following we are dealing with discrete transformations;
in the next, we will find other situations in which (An)00 not necessarily
becomes zero for some n. This implies that the m.o.e. condition is not
necessarily violated, but the time direction of an observer is inverted for a
different observer and what is matter for the first one becomes antimatter
for the second one. For this reason we will discard them.

ii) If λ is real, the c’s are real and the quadratic form (c1x0 − x1)(c0x0 − x1)
is invariant. The world line associated with the column vector (x0, 0)T ,
which is representative of an observer who is always in the origin of his
frame, is transformed by An in a world line (x′

0n, x′
1n)T which, when

n → ∞ or n → −∞, tends to the line c1x
′
0 − x′

1 = 0 or to the line
c0x

′
0 − x′

1 = 0. If c0 and c1 have equal sign, (x′
0n, x′

1n)T crosses the
(0, x′)T line and must be discarded (see fig. 1B), while, if they have
opposite sign, (x′

0n, x′
1n)T moves between the previous lines, which may

be considered asymptotic limits (see fig. 1B), and never passes through
the x′ line. The m.o.e. condition is also satisfied in two interesting
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limit cases: the Carroll case, c1c0 = 0, in which one of the asymptotes
coincides with the x0 axis (see fig. 1C) and the Galilei case, c1c0 → ∞,
in which one of the asymptotes coincides with the x1 axis (see fig. 1D)

The previous quadratic form may be written in normal form. This choice
follows the well known Reichenbach analysis [9], who showed that the syn-
chronization procedure which is symmetric and transitive is the one in which
two observers are synchronized in such a way that light signals take the same
time in going from one to the other. This implies the synchronization identity
∂x′

0

∂x0
=

∂x0

∂x′
0

, that is to say A00(λ) = A00(−λ), or c0 = −c1 = c.

We must remark that other authors [12] - [15] have derived in the past the
Lorentz transformations without introducing the constance of the light speed,
under conditions compatible with space-time rotations.

4. The three-dimensional transformation group

In this section we consider T0 = ε ⊗ α with α = (1, 0, 0) and ε =
(x0, x1, x2)T .

As in the bi-dimensional case, it is convenient to express the 3-dimensio - nal
transformation matrix A with positive determinant in the form:⎛⎝ x′

0

x′
1

x′
2

⎞⎠ = A

⎛⎝ x0

x1

x2

⎞⎠
where

A =
1

det C

⎛⎝ c0ic̃0ie
λi c0ic̃1ie

λi c0ic̃2ie
λi

c1ic̃0ie
λi c1ic̃1ie

λi c1ic̃2ie
λi

c2ic̃0ie
λi c2ic̃1ie

λi c2ic̃2ie
λi

⎞⎠
and c̃ji are the minors with sign of the elements of the matrix

C =

⎛⎝ 1 1 1
c10 c11 c12

c20 c21 c22

⎞⎠ , det C = c̃00 + c̃01 + c̃02
˜̃cik = cik det C.

Notice that

A(λ0, λ1, λ2) A(λ′
0, λ

′
1, λ

′
2) = A(λ0 + λ′

0, λ1 + λ′
1, λ2 + λ′

2)
An(λ0, λ1, λ2) = A(nλ0, nλ1, nλ2) , det A = eλ0+λ1+λ2 .

The matrix A is generic among those with positive determinant; its nine
elements are in fact depending on nine parameters (3 λ′s and 6 c’s) which may
be also complex, A being in any case real. Then, at least one of the λ’s, e.g.



Objective existence and relativity groups 451

λ0, must be real; a simultaneous rescaling of the x variables by the real factor

e
λ1+λ2

2 gives the following form for A00:

A00 =
1

det C
(c̃00e

µ0 + c̃01e
µ + c̃02e

−µ),

where µ0 = λ0 −
λ1 + λ2

2
and µ =

λ1 − λ2

2
.

(2)

All c’s real if µ is real, while, if µ is imaginary, c10 and c20 are real, c11 =
c∗12, c21 = c∗22.
It will be useful in the next to use the following identities:

(c̃00x
′
0 + c̃10x

′
1 + c̃20x

′
2) = eµ0(c̃00x0 + c̃10x1 + c̃20x2) ,

(c̃01x
′
0 + c̃11x

′
1 + c̃21x

′
2) = eµ(c̃01x0 + c̃11x1 + c̃21x2) , (3)

(c̃02x
′
0 + c̃12x

′
1 + c̃22x

′
2) = e−µ(c̃02x0 + c̃12x1 + c̃22x2).

We treat in the next paragraph the real case; in the subsequent one we will
consider the complex one.

4.1 Real eigenvalues

4.1.1 Carroll-like or Galilei-like possibilities. It is clearly very useful
to look for connections between the 3-dimensional case and the 2-dimensional
one discussed in the previous section. It is of particular interest to analyze
the possibility of factorizing the matrix A in terms of matrices, acting non
trivially only on a coordinate plane; we denote them by G(x0, x1), F (x0, x2)
and R(x1, x2), where both F and G are matrices met in section 3 and R is
any transformation in the plane (x1, x2). As the m.o.e. condition is heavily
dependent on the behaviour of the element A00, it is convenient to look for
those factorizations which assure that, if F00 and G00 satisfy that condition also
A00 does it. Then we have four possibilities: FGR, GFR, RFG and RGF .
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The first two decompositions have the form

A = FGR =

⎛⎜⎜⎜⎜⎜⎝
A00
G00

0 −Ã11Ã20F22
A20R22

0 1 0

A20
G00

0 −Ã11Ã00
A20R22

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

G00
−Ã10G00G11

A20
0

A10 G11 0

0 0 1

⎞⎟⎟⎟⎟⎠ ·

·

⎛⎜⎜⎜⎜⎜⎝
1 0 0

0 A11
G11

A12
G11

0 − Ã12R22

Ã11
R22

⎞⎟⎟⎟⎟⎟⎠ ,

A = GFR =

⎛⎜⎜⎜⎜⎜⎝
A00
F00

−Ã10G11

Ã00
0

A10
F00

G11 0

0 0 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

F00 0 −Ã20F00F22
A10

0 1 0

A20 0 F22

⎞⎟⎟⎟⎟⎠ ·

·

⎛⎜⎜⎜⎜⎜⎝
1 0 0

0 Ã22Ã00
A10G11

−Ã21Ã00
A10G11

0 A21
F22

A22
F22

⎞⎟⎟⎟⎟⎟⎠ ,

respectively, where A10 = A00Ã00 + A10Ã10 and A20 = A00Ã00 + A20Ã20.
Notice that the first decomposition is meaningless if A20 = 0, while the

second one is not allowed when A10 = 0. If these two conditions were verified
simultaneously, we would have det A + A00Ã00 = 0, which is against the
m.o.e. condition. So, at least one of the previous decompositions is allowed. In
both cases, if either A10 or A20 are null, the matrix A is the product of a Carroll
transformation times another transformation, which may be Lorentz or Galilei
or Carroll (if both A01 and A02 are null) times a generic space transformation.

If we look for the possibility of factorizing A in the forms RFG or RGF,
we meet the symmetrical situation in which A10 and A20 are substituted by A01

and A02. As before, at least one of the decompositions is allowed.

4.1.2 General case. Relations (3) suggest the following transformation
for the space variables:

X1 =
c̃11x1 + c̃21x2

det C
, X2 =

c̃12x1 + c̃22x2

det C
,
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x1 = c̃22X1 − c̃21X2 , x2 = −c̃12X1 + c̃11X2 .

In terms of these new variables the transformation depends only on the three
variables c̃00, c̃01, c̃02. In fact(

x′
0 X ′

1 X ′
2

)T = A
(

x0 X1 X2

)T
,

where

A =

⎛⎜⎜⎜⎜⎝
A00 eµ − c̃01

det C
eµ0

c̃01

det C
(eµ − A00) (

c̃01

det C
)2eµ0 + (1 − c̃01

det C
)eµ

c̃02

det C
(e−µ − A00)

c̃02

det C
(

c̃01

det C
eµ0 − eµ)

e−µ − c̃02

det C
eµ0

c̃01

det C
(

c̃02

det C
eµ0 − e−µ)

(
c̃02

det C
)2eµ0 + (1 − c̃02

det C
)e−µ

⎞⎟⎟⎟⎟⎠ ,

and A00 is given by (2).

Relations (3) become:

c̃00x
′
0 − X ′

1 − X ′
2 = eµ0(c̃00x0 − X1 − X2) ,

c̃01x
′
0 + X ′

1 = eµ(c̃01x0 + X1) (4)

c̃02x
′
0 + X ′

2 = e−µ(c̃02x0 + X2) .

We may now look at the consequences of the m.o.e. condition, which formally
states that (x0, 0, 0) cannot be transformed in (x′

0, X
′
1, X

′
2), where x′

0 = 0,
which implies that (An)00 = c̃00e

nµ0 + c̃01e
nµ + c̃02e

−nµ, when n is supposed
to be a continuous variable, cannot never be zero; in the discrete case this
condition implies that (An)00 cannot never change sign when going from n to
n + 1.

Coming back to the possible decompositions described in the previous sub-
section, we can apply to F and G the Reichenbach criterion, which implies
F00 = (F−1)00, G00 = (G−1)00. Then

c̃00e
nµ0 + c̃01e

nµ + c̃02e
−nµ = c̃00e

−nµ0 + c̃01e
−nµ + c̃02e

nµ ,

or
c̃00 sinhnµ0 + (c̃01 − c̃02) sinhnµ = 0
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If µ = 0, the transformation becomes trivial. So we must have:
a) either c̃01 = c̃02, c̃00 = 0
b) or c̃01 = c̃02, µ0 = 0.
Let us now discuss these two cases separately:

CASE a): c̃01 = c̃02, c̃00 = 0.
The transformation A reduces to

A =

⎛⎜⎜⎜⎜⎝
cosh µ eµ − 1

2
eµ0 e−µ − 1

2
eµ0

1
2

sinhµ
1
4
eµ0 +

1
2
eµ 1

4
eµ0 − 1

2
eµ

−1
2

sinhµ
1
4
eµ0 − 1

2
eµ 1

4
eµ0 +

1
2
e−µ

⎞⎟⎟⎟⎟⎠
This transformation implies

X ′
1 + X ′

2 =
1
2
eµ0(X1 + X2) ,(

X ′
0 + 2X ′

1

) (
X ′

0 + 2X ′
2

)
= (X0 + 2X1) (X0 + 2X2)

The vector (1, 0, 0) transforms in a vector such that X ′
1 = −X ′

2, X ′2
0 −

4X ′2
1 = X2

0 − 4X2
1 . The transformation is in fact bidimensional; it couples a

Lorentz with another time-space transformation which obey the m.o.e. condi-
tion.

CASE b): c̃01 = c̃02, µ0 = 0.

(An)00 =
1 + 2 c̃01

c̃00
cosh nµ

1 + 2 c̃01
c̃00

X ′
0 =

c̃0ie
µi

det C
X0, X ′

1 =
c̃01

det C
(eµX0 − X ′

0),

X ′
2 =

c̃01

det C
(e−µX0 − X ′

0)−

The m.o.e. condition implies either

i)
c̃01

c̃00
> 0 (and then 1 +

c̃00

c̃01
> 1, 1 + 2

c̃01

c̃00
> 1) or

ii)
c̃01

c̃00
< −1

2
(and then 1 +

c̃00

c̃01
> −1, 1 + 2

c̃01

c̃00
< 0)
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X ′
0 −

det C

c̃00
(X ′

1 + X ′
2) = X0,

X ′
0 +

det C

c̃01
X ′

1 = eµX0, (5)

X ′
0 +

det C

c̃01
X ′

2 = e−µX0.

If we combine the square of the first relation with the product of the last two,
eliminating the mixed term in X ′

0(X
′
1 +X ′

2), we obtain the following invariant:

X ′2
0 +

(
1 + 2

c̃00

c̃01

)(
X ′

1 −
(

1 +
c̃00

c̃01

)
X ′

2

)2

+

−X ′2
2

(
c̃00

c̃01

)2 (
1 + 2

c̃00

c̃01

)
= inv

In the case i) we have

(
1 + 2

c̃00

c̃01

)
>0; if this is the case, the bidimensional

transformation in the plane

(
X0, X1 − (1 +

c̃00

c̃01
)X2

)
corresponds to a trans-

formation which is incompatible with the m.o.e. condition, as shown in the
previous section. Only the case ii), in which the space structure is Euclidean,
is then admissible.

4.2 Complex eigenvalues (µ1 → iµ , µ2 → −iµ)

The reality of the transformation A obliges C and C̃ to have the following
form:

C =

⎛⎝ 1 1 1
c1k sin(ν − α1) c1e

iα1 c1e
−iα1

c2k sin(ν − α2) c2e
iα2 c2e

−iα2

⎞⎠
C̃ =

⎛⎝ 2iδ kδeiν −kδe−iν

2ih2 g2 − ih2 −g2 − ih2

−2ih1 −g1 + ih1 g1 + ih1

⎞⎠ ,

where

gi = ci(cos αi − k sin(ν − αi)), hi = ci sin αi, δ = c1c2 sin(α1 − α2) .

As

(An)00 =
c̃00e

nµ0 + c̃01e
inµ + c̃02e

−inµ

c̃00 + c̃01 + c̃02
=

enµ0 + k cos(nµ + ν)
1 + k cos ν

,
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the m.o.e. existence is violated if µ0 = 0 either for n → +∞ or for n → −∞.
Then µ0 = 0; moreover (An)00 is always positive if |k| > 1 and change
continuously sign if |k| < 1.
If we put

X0 = kδx0 , X1 = g2x1 − g1x2 , X2 = h2x1 − h1x2 ,

relations (10) imply

X ′
0 + kX ′

2 = inv ,

(X ′
0 + (cos νX ′

1 − sin νX ′
2))

2 + (sin νX ′
1 − cos νX ′

2)
2 = inv.

The last invariant implies situations which are not compatible with the m.o.e.
existence (e.g., the case |k| < 1).

In conclusion complex eigenvalues are not compatible with the m.o.e. exis-
tence.

4.3 Remark

So far we have derived the possible forms of finite linear transformations,
which satisfy the condition that different instants of time x0, going from −∞
to +∞, of an observer are transformed into different instants of time x′

0, going
from −∞ to +∞, of another observer.

In the bidimensional case we have found that the unique transformations
which obey this rule have Lorentz form, which may restrict, for particular
values of the parameters, to Galilei or Carrol ones.

In the three-dimensional case, the transformations, which are compatible
with the previous condition, may be combinations of two transformations A
(in (x0, x1)) and B (in (x0, x2)), where A and B may be any of the previous
three transformations. If A and B are not both Lorentzian the space structure is
not specified. Viceversa, if they are both Lorentzian, the space structure must
necessarily be Euclidean.

The analysis for the four dimensional space-time can be repeated along the
same lines; it becomes more cumbersome and therefore will not be pursued
here. However we will make few comments on how to generalize this picture
to the context of general relativity.

5. On the transition to General Relativity and conclusions

Having translated Weyl’s assertion into a tensorial object, i.e. a rank one
(1, 1)−tensor field T with the property T ·T ∝ T, it is not difficult to extend
our approach to a framework were Minkowski space-time is replaced by a four-
dimensional differential manifold M. In this more general setting the column
vector ε is replaced by a vector field and the row vector is replaced by a 1-form
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α = a0dx0 + a1dx1 + a2dx2 + a3dx3. These two geometrical objects define
T = ε ⊗ α and require that α(ε) > 0 all over M, therefore we may choose a
normalization such that Tr (T ) = α(ε) = 1 and get T · T = T . For simplicity
we still denote the normalized tensor T by ε ⊗ α, with the understanding that
now α(ε) = 1. We notice that to have a splitting of M into space and time, we
have to require that α admits an “integrating factor”, i.e. α ∧ dα = 0 and that
ε is a complete vector field, i.e., for any initial condition, integral curves for ε
exist from −∞ to +∞ in the evolution parameter.

By selecting a fiducialT0, we may consider a subgroup of the diffeomorphism
group for M, which satisfy (ϕ∗

aT0) · (ϕ∗
bT0) = 0 and (ϕ∗

bT0) · (ϕ∗
aT0) = 0.

We may again write the equation for the transformation ϕ in the form

α(ϕ∗ε) > 0 , (ϕ∗α)(ε) > 0 .

Now we have to solve this inequality for the diffeomorphism ϕ.
When T is such that α = dτ and ε defines a congruence of world-limes (a

family of observers) which are solutions of a second order differential equation
associated with a flat generalized connection [16] (observers will be inertial
observers), we are back to the situation we have already described in the pre-
vious sections. A generalized solution of the previous inequalities in terms of
the allowed diffeomorphisms will be considered elsewhere, here we close by
stressing that the mutual objective existence condition is able to capture the no-
tion of causality (earlier and later) along with an objective meaning of a “kind
of union” of space and time for a class of equivalent observers more general
than inertial ones.
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SURVIVAL OF QUASI-SPIN STRUCTURE
IN ISOMERS OF N ∼ 82 NUCLEI

H. Nakada, T. Matsuzawa and K. Ogawa
Department of Physics,

Chiba University,

Chiba 263-8522, JAPAN

Abstract The structure of isomers in N ∼ 82 nuclei is reinvestigated. It is pointed out
that the quasi-spin structure survives in the isomers and the final states of their
decays, as a partial dynamical symmetry. Using this group structure, an extended
seniority reduction formula is derived and the presence of pair excitations out of
the Z = 64 core is revealed. By taking into account the core excitation, an
anomaly in neutron effective charges for N = 81 and N = 83 nuclei is greatly
reduced.

Keywords: Quasi-spin, isomer, shell structure, E2 transition

1. Introduction

As is well-known, atomic nuclei have magic numbers, which originate from
the shell structure formed by spherical single-particle orbits. However, recent
experiments show that the magic numbers are not rigorous and somewhat de-
pend on proton and neutron numbers (Z and N , respectively). It is now an
important and contemporary question how stiff individual shells are.

The subshell closure at Z = 64 in N ∼ 82 nuclei was established about 25
years ago [10]. High excitation energy (Ex) of the 2+ state and relatively low Ex

of the 3− state in 146Gd, as well as a kink in the two-proton separation energy
(S2p), give the indication for the subshell closure. Moreover, E2 transition
strengths of isomers in Z > 64, N = 82 nuclei were measured [7, 8, 14],
and their Z-dependence was successfully described by a (0h11/2)n shell model
assuming the 146Gd core [11]. At a glance, this seems to indicate that theZ = 64
core is very stiff. On the other hand, the kink in S2p is not so conspicuous as in
S2n at N = 82. In addition, systematic calculations for Ex(10+) suggest the
presence of sizable pair excitations out of the Z = 64 core [2].
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We have reinvestigated the structure of the isomers in the Z > 64, N ∼ 82
nuclei [12, 13]. Aided by the survival of quasi-spin structure in the isomers,
some of the problems have been solved.

2. Brief survey of quasi-spin

For each spherical single-particle orbit j, the creation and annihilation oper-
ators (a†jm, ajm) form an O(4Ωj) algebra, where Ωj = (2j + 1)/2. There is
an SU(2) subalgebra known as the quasi-spin (QS), whose generators are

Sj+ =

√
Ωj

2
[a†ja

†
j]

(0) , Sj− = (Sj+)† Sj0 =
1
2
(Nj − Ωj) , (1)

where Nj denotes the number operator. The quadratic Casimir operator of the
QS defines the so-called seniority νj,

Sj =
1
2
(Sj+Sj− + Sj−Sj+) + S2

j0 = Sj(Sj + 1) , Sj =
1
2
(Ωj − νj) . (2)

We can apply well-known results of the SU(2) algebra such as the Clebsch-
Gordan coefficients and the Wigner-Eckart theorem. There is a unitary sym-
plectic algebra dual to the QS, USp(2Ωj) [19], whose generators are [a†jãj](λ)

(λ = odd). Note that the angular momentum operators are proportional to the
generators with λ = 1.

For a shell comprised of multiple orbits (j1, j2, · · · , jk), we may consider the
product of the QS group, SU(2)j1⊗SU(2)j2⊗· · ·⊗SU(2)jk

. While this product
group structure is usually broken via mixing among different representations,
the total seniority ν =

∑
j νj remains a good quantum number in spherical

nuclei. It is commented that if and only if the single-particle energies are
degenerate, we again have an SU(2) structure [9, 3],

SU(2)j1 ⊗ SU(2)j2 ⊗ · · · ⊗ SU(2)jk
⊃ SU(2)j1⊕j2⊕···⊕jk

. (3)

3. Previous studies of Z > 64, N = 82 nuclei

The Z > 64, N = 82 nuclei systematically have isomers with Jπ = 10+ (for
even-Z) or 27/2− (for odd-Z). Decay out of these isomers is highly dominated
by the E2 transition. The E2 transition strengths from the isomers have been
measured [7, 8, 14]. Lawson investigated the structure of the isomers, assuming
the (0h11/2)n configuration on top of the 146Gd inert core (n = Z − 64). The
two-body interaction matrix elements are determined from the observed levels
in 148Dy, which show that the QS SU(2)0h11/2

is a good dynamical symmetry.
The Wigner-Eckart theorem for SU(2)0h11/2

derives the seniority reduction
formulae (SRF). For the E2 transition of the 10+ and 27/2− isomers, the SRF
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gives

〈(0h11/2)
n Jπ

f ||T (E2)||(0h11/2)
n Jπ

i 〉

=
Ω − n

Ω − ν
〈(0h11/2)

ν Jπ
f ||T (E2)||(0h11/2)

ν Jπ
i 〉 , (4)

since T (E2) is a QS-vector. This leads to B(E2) ∝ (Ω − n)2, indicating
that the E2 transition is vanishingly weak at Z � 70. This nature, called
seniority isomerism, seems to be observed in the experiments. Owing to the
success of Lawson’s model, the (0h11/2)n configuration (n = Z−64) has often
been assumed for proton degrees of freedom, when analyzing data of Z > 64,
N ∼ 82 nuclei.

However, Lawson’s model has a problem. The 1d3/2 and 2s1/2 orbits lie
very closely to 0h11/2 in this region, indicating significant mixing due to the
pairing interaction. If this mixing is taken into consideration, the minimum of
B(E2) with respect to Z is displaced, in disagreement with the data. Noticing
this problem, Blomqvist gave a conjecture based on the BCS approximation [4],

〈(ξr)n Jπ
f ||T (E2)||(ξr)n Jπ

i 〉 =
Ω − 〈Nξ〉

Ω − ν
〈ξν Jπ

f ||T (E2)||ξν Jπ
i 〉 , (5)

where ξ denotes 0h11/2 in this case and r represents all the other orbits. From
this conjecture, Blomqvist argued that the suppression of 〈N0h11/2

〉 at Z � 70
due to the mixing to 1d3/2 and 2s1/2 should be compensated by the excitation
across the Z = 64 gap. However, the particle number conservation U(1)N is
broken in the BCS approximation. Assessment of the influence of the U(1)N

symmetry could be important.

4. Survival of quasi-spin structure in N = 82 nuclei

In solving the problem for the isomers of the Z > 64, N = 82 nuclei,
a key ingredient is the survival of the quasi-spin (QS) structure. The total
seniority ν should be a good quantum number in the Z > 64, N = 82 nuclei,
because they are spherical. Both the 10+ (27/2−) isomers and the 8+ (23/2−)
final states of their decays have ν = 2 (ν = 3). Since the j values of the
neighboring orbits are not so high, this seniority should be solely carried by
0h11/2. This means that, although ξ = 0h11/2 is not isolated, the isomers and
the decay final states belong to a specific representation of the product group
SU(2)j1 ⊗ SU(2)j2 ⊗ · · · ⊗ SU(2)jk

= SU(2)ξ ⊗ [SU(2)r]k−1. Namely, for
the isomer |i〉 and the final state |f〉, we have

[H,S2
j ]|i〉 � [H,S2

j ]|f〉 � 0 , (6)

and the product QS group gives a partial dynamical symmetry [1]. It is noted that
the dual group USp(2Ωξ) ⊗ [USp(2Ωjr)]k−1 is also a good partial symmetry.
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Figure 1. Comparison of calculated and experimental binding energies for N = 82 nuclei.

Based on this QS structure, we have proven Eq. (5) as an extension of the
SRF [12], maintaining the number conservation U(1)N . An additional assump-
tion is needed for the exact derivation: a similarity in the pairing part of the
wave-functions between the initial and final states. It is also proven [12] that
this assumption is fulfilled if Vξ (two-body interaction between nucleons in the
ξ orbit) in H holds the SU(2) × USp(2Ωξ) symmetry, which is connected to
the short-range character of the residual interaction among nucleons.

Thus Blomqvist’s conjecture should be correct. As already mentioned, ap-
proximate degeneracy among 0h11/2, 1d3/2 and 2s1/2 necessarily leads to sig-
nificant mixing of the configurations involving 1d3/2 and 2s1/2 via the pairing
interaction. The observed Z-dependence of B(E2) showing a minimum at
Z � 70 indicates that the depletion of 〈N0h11/2

〉 due to the mixing has to be
compensated by the core excitation. Therefore, contrary to the naive expecta-
tion from the success of Lawson’s model, the Z = 64 core should not be very
stiff.

In order to confirm quantitatively the above mechanism resulting from the
survival of the QS structure, we have carried out a shell model calculation. We
take a (0g7/21d5/21d3/22s1/20h11/2)n model space on top of the 132Sn core
(n = Z − 50), with the truncation N0g7/2

+ N1d5/2
≥ 8 and ν ≤ 3. The

effective Hamiltonian consists of the single-particle energies and the modified
surface-delta interaction with the parameters adjusted to data of energies in
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Figure 2. Comparison of calculated and experimental energy levels for even-Z, N = 82
nuclei.



464 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

Figure 3. Comparison of calculated and experimental energy levels for odd-Z, N = 82
nuclei.
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146Gd and neighboring nuclei. In Fig. 1, we compare the calculated binding
energies, in relative to the binding energy of 146Gd, with the experimental data.
Energy levels of even-Z, N = 82 nuclei are presented in Fig. 2, both for π = +
and π = − levels. Those of odd-Z, N = 82 nuclei are shown in Fig. 3. It is
remarked that the π = − (π = +) levels of the even-Z (odd-Z) nuclei, which
are out of the model space in Lawson’s model, are also reproduced.

By using the wave-functions obtained above, we have calculated the E2
transition strengths from the isomers. The calculated B(E2) values and their
Z-dependence are shown in Fig. 4, in comparison with the experimental data
and the results of Lawson’s model. In reproducing the E2 strengths, we have
introduced a single additional adjustable parameter, the effective charge for
protons. Apart from it, it is clear that the Z-dependence of the E2 strengths is
reproduced very well.

In the present calculation, Eq. (5) is exact for the decays of the 10+ isomers,
because of the seniority truncation and the short-range character of the residual
interaction. Although this is not the case for the decays of the 27/2− isomers,
Eq. (5) still holds to an excellent approximation. As discussed above, the
minimum of B(E2) at Z � 70 is reproduced in the balance between the
coupling of 0h11/2 to the (1d3/22s1/2) orbits and a sizable pair excitation from
(0g7/21d5/2) to 0h11/2. In Fig. 5, the calculated number expectation values in
the isomers 〈N0h11/2

〉 and 〈N1d3/2
+ N2s1/2

〉 are depicted. In comparison, the
number expectation values in the model without the Z = 64 core excitation
(i.e. the (1d3/22s1/20h11/2)n model) are also presented. This figure clarifies
the significance of the Z = 64 core excitation.

5. N = 81 and 83 nuclei

In Z > 64, N = 83 nuclei with odd-Z, the 17+ isomers have systematically
been observed. It is considered, in the first approximation, that these isomers are
formed by a neutron in the 1f7/2 orbit which is coupled to the 27/2− states of the
N = 82 nuclei. In Z > 64, N = 81 nuclei with even-Z, 27/2− isomers have
been observed. These are considered to have a 0h11/2 neutron-hole coupled
to the 10+ states of the N = 82 nuclei. In both cases the isomers decay via
E2 transitions. The E2 strengths have been measured via the lifetimes of the
isomers [15, 16, 5, 6, 17, 18].

The systematics of the E2 strengths from the isomers in the N = 81 and
83 nuclei was analyzed by using simple models, in which Lawson’s model (i.e.
the (0h11/2)n configuration) was assumed for proton degrees of freedom, and a
1f7/2 neutron (a 0h11/2 neutron-hole) is added for the N = 83 (N = 81) case.
The contribution of a neutron (or a neutron-hole) may shift the minimum with
respect to Z in the B(E2) values. From this analysis, quite anomalous values
were obtained for the neutron effective charges; eeff

ν � 3.6e for the N = 83
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Figure 4. B(E2) values from 10+ and 27/2− isomers in Z > 64, N = 82 nuclei. The lines
show the results of Lawson’s model.
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Figure 5. Calculated 〈N0h11/2〉 and 〈N1d3/2 +N2s1/2〉 in the 10+ and 27/2− isomers. Solid
lines (dotted lines) are the results with (without) the Z = 64 core excitation.

nuclei, which is remarkably larger than eeff
π , and vanishing eeff

ν for the N = 81
nuclei.

Since we now know that the pair excitation out of the Z = 64 core is
important in the N = 82 nuclei, it will be interesting to see how the core ex-
citation affects the structure of the N = 81 and 83 isomers. For this purpose,
we have carried out shell model calculations in relatively large model spaces.
For the N = 83 nuclei, we take the [π(0g7/21d5/21d3/22s1/20h11/2)]n ×
[ν(0h9/21f7/20i13/2)]1 model space (n = Z − 64). For the N = 81 nuclei,
the [π(0g7/21d5/21d3/22s1/20h11/2)]n × [ν(0g7/21d5/21d3/22s1/20h11/2)]−1

model space is adopted. In both cases, truncations by the total seniority and by
the particle number excited out of π(0g7/21d5/2) are introduced, in a consistent
manner with the N = 82 nuclei. For the proton-neutron interaction, we use a
Yukawa form with the range of one-pion exchange. The strength of the inter-
action, as well as the single-neutron energies, are adjusted to the experimental
energies of the relevant nuclei. We have confirmed that, in the 17+ isomers
and the 15+ final states of their decays in the N = 83 nuclei, the mixings of
ν(0h9/2)1 and ν(0i13/2)1 configurations are negligibly small. In the N = 81
nuclei, the ν(0h11/2)−1 configuration necessarily dominates in the 27/2− iso-
mers and the 23/2− final states, due to the high J value and the conservation
of the total seniority.
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Figure 6. B(E2) values from 17+ isomers in Z > 64, N = 83 nuclei.

Nevertheless, the proton states do not necessarily remain pure in the N = 81
and 83 nuclei. For instance, in the 27/2− isomer of the N = 81 nuclei,
[|π 10+〉⊗ |ν 0h−1

11/2〉]
(27/2) and [|π 8+〉⊗ |ν 0h−1

11/2〉]
(27/2) may couple to each

other. However, even if we take into account this coupling of proton configura-
tions, we can derive a formula both for the 17+ isomers of the N = 83 nuclei
and for the 27/2− isomers of the N = 81 nuclei [13], such as

〈Z Jπ
f ||T (E2)||Z Jπ

i 〉 = Tp

Ω0h11/2
− 〈Nπ0h11/2

〉
Ω0h11/2

− ν
+ Tn . (7)

Here we have assumed that the orbit occupied by the last neutron (or neutron-
hole) is unique. Tp and Tn denote appropriate proton and neutron matrix el-
ements which are almost independent of Z. In practice, Tp and Tn are sums
of several terms, including the mixing amplitudes of the proton configurations.
Eq. (7) clarifies the Z-dependence of the E2 strengths from the isomers. The
minimum of the B(E2) values with respect to Z may be shifted from Z � 70
in the N = 82 nuclei, because of the almost constant neutron contribution.
However, the amount of the shift depends on the mixing amplitudes of the pro-
ton configurations. This point was not taken into consideration in the previous
analysis.

In Fig. 6, we compare the shell model results of the B(E2) values from the
17+ isomers of the N = 83 nuclei with the experimental data. We present the
results for the 27/2− isomers of the N = 81 nuclei in Fig. 7. We have fixed



Survival of Quasi-Spin Structure 469

Figure 7. B(E2) values from 27/2− isomers in Z > 64, N = 81 nuclei.

the proton effective charge eeff
π to the value obtained in the N = 82 nuclei, and

adjusted eeff
ν to the measured B(E2) values of these isomers in the N = 81

and 83 nuclei. The observed Z-dependence of the B(E2) values is reproduced
for both cases. It is remarked that eeff

ν is the same for the N = 81 and 83 cases.
Although eeff

ν looks relatively large and its origin is still an open problem, the
anomaly in eeff

ν is greatly reduced.

6. Summary

We have reinvestigated the structure of isomers in N ∼ 82 nuclei. The quasi-
spin structure survives in the isomers and the final states of their decays as a
partial dynamical symmetry. This symmetry is quite useful to clarify the physics
relevant to the isomers and their decays. Via the quasi-spin group structure,
an extended seniority reduction formula has been derived. This reveals the
presence of pair excitations out of the Z = 64 core, contrary to the earlier
model assuming a single configuration. Effects of the core excitation in the
isomers of the N = 81 and 83 nuclei have also been investigated. The anomaly
in neutron effective charges in their E2 decays is greatly reduced by the effect
of the core excitation.
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Abstract It has been shown that the irreversible dynamics of a system in a dissipative
environment can be described by an effective one-particle Hamiltonian (in the
classical case) or an effective one-particle Schrödinger equation (in the quantum
mechanical case) without taking into account the environmental degrees of free-
dom explicitly. In the quantum mechanical case, the description can be achieved
either by a nonlinear modification of the Schrödinger equation or an explicitly
time-dependent Hamiltonian operator - where both forms are connected via a
non-unitary transformation, corresponding to a non-canonical transformation on
the classical level. Taking into account an external magnetic field, in both for-
malisms, an additional unphysical gauge-dependent term occurs in the equations
of motion. This shortcoming can be eliminated if the Lagrangian and Hamiltonian
that provide Maxwell’s equations of electrodynamics undergo, in the dissipative
case, the same kind of transformation as the mechanical degrees of freedom of
the system. As a result, a consistent description in terms of exact analytical wave
packet-solutions for the dissipative motion in a magnetic field can be obtained
that will be discussed in detail.

Keywords: Dissipation, magnetic field, dissipative Hamiltonians, nonlinear Schrödinger
equations, wave packet dynamics

Abbreviations: SE - Schrödinger equation;
NLSE - Nonlinear Schrödinger equation
WP - Wave packet

1. Introduction

Classical mechanics in its Lagrangian and Hamiltonian forms is a very fun-
damental theory - not only because also other essential physical theories, e.g.,
electrodynamics, can be formulated in Lagrangian and Hamiltonian ways - but,
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also, because the underlying equations of quantum mechanics can be obtained
from this form of classical mechanics. However, classical Hamiltonian mechan-
ics, as well as quantum mechanics, are reversible theories, i.e., the direction of
time does not matter; whereas the world surrounding us obviously prefers one
direction of time: everything - including ourselves - is ageing; we observe an
“arrow of time”. Therefore, the question of how to resolve this obvious dis-
crepancy between the observable, macroscopic world and fundamental theories
governing the behaviour of the microscopic world has attracted the interest of
scientists for a long time and many different answers describing classical and
quantum mechanical systems with broken time-reversal symmetry have been
given - some more satisfactory, others less.

In this paper, the irreversible dynamics of a system interacting with a dissi-
pative environment that exerts a frictional force proportional to velocity shall be
considered. Further, the description of the dissipative system shall be given by
an effective one-body Hamiltonian (classical) or one-body Schrödinger equa-
tion (SE) (quantum mechanical) for the system alone, including the frictional
effect of the environment, but not its details.

It has been shown that it is possible to reach this goal with explicitly time-
dependent Hamiltonians [7, 8] or nonlinear modifications of the SE [9, 10],
where both formalisms are uniquely connected via a non-canonical (classical)
or non-unitary (quantum mechanical) transformation [11, 12, 13].

New problems emerge when a magnetic field is included. In both formalisms,
apparently unphysical, gauge-dependent, additional terms occur in the equa-
tions of motion or in the potential. This caused, e.g., Wagner [14] to reject
the method using time-dependent Hamiltonians on physical grounds. It will be
shown in the following how this shortcoming can be eliminated and a consistent
description of dissipative systems can be reached - also with the presence of
a magnetic field - what the corresponding quantum mechanical solutions look
like and what properties they possess.

The paper is arranged as follows: in Section 2, a short description of the
two effective formalisms for the description of dissipative systems without
magnetic field is given; in Section 3, a constant magnetic field is included,
the corresponding changes in the formalisms and the resulting problems are
discussed; in Section 4, it is shown how the problems can be solved giving
also the electromagnetic field a proper and consistent treatment; the correct
quantum mechanical solutions for the motion in a magnetic field are given in
Section 5 and their properties discussed in Section 6. Finally, some conclusions
and perspective are presented.
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2. Effective Descriptions of Dissipative Systems without
Electromagnetic Fields

2.1 Modified Hamiltonian Formalism

The most frequently-used, explicitly time-dependent approach for the de-
scription of dissipative, frictionally-damped systems is the one by Caldirola [7]
and Kanai [8]. They start with the Lagrangian

L̄CK = eγt
[m

2
ẋ2 − V (x)

]
= eγt L (1)

which, via the Euler-Lagrange equation, yields an equation of motion including
a linear velocity-dependent frictional force,

mẍ + mγẋ +
∂

∂x
V (x) = 0 , (2)

with the friction coefficient γ.
From this Lagrangian, the canonical momentum p̄ is obtained in the usual

way via

∂

∂ẋ
L̄CK = mẋeγt = peγt = p̄ . (3)

It is important to realize that the canonical momentum p̄ is not only different
from the physical (kinetic) momentum p = mẋ, but, in particular, the transition
from the physical variables x and p = mẋ to the canonical variables x̄ = x and
p̄ = peγt represents a non − canonical transformation.

With the canonical momentum, the Hamiltonian corresponding to L̄CK can
be obtained in the usual way as

H̄CK =
1

2m
e−γt p̄2 + eγtV (x) , (4)

which yields the proper equations of motion equivalent to the Newton-type
equation (2).

The transition to quantum mechanics is achieved - in position space - replac-
ing the canonical momentum by a differential operator according to

p̄ → p̄op =
�
i

∂

∂x
. (5)

Substituting this into the Hamiltonian H̄CK, finally leads to the modified SE

i�
∂

∂t
Ψ̄CK (x, t) = H̄CK,op Ψ̄CK (x, t)

=
{

e−γt

(
− �2

2m

∂2

∂x2

)
+ eγtV

}
Ψ̄CK(x, t) . (6)
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An apparent violation of the uncertainty principle - connected with the form
of the kinetic momentum - has been criticized by several authors [15, 16,
17], but, it was possible to show [11] that the unphysical result is due to a
wrong interpretation of the wave function Ψ̄ which neglects the fact that the
aforementioned non-canonical transformation of the variables is connected with
a non-unitary transformation of the wave functions.

2.2 Modified Method of Madelung and Mrowka

In order to circumvent possible problems connected with Hamiltonians for
dissipative systems and their quantization, several attempts were made adding
a friction-term directly to the Hamiltonian operator [18, 19, 20, 21]. Most of
these approaches use - as a guideline to finding the proper form of the additional
term - Ehrenfest’s Theorem, in the sense that this term should provide the
above-mentioned frictional force in the equation of motion for the mean values.
However, this does not allow for a unique definition of the the friction-term;
therefore, several different ones are proposed in the literature, each with some
physical shortcoming.

We tried to avoid this ambiguity by breaking the time-symmetry not on the
level of the averaged equation of motion, but on the level of the density function 1

�(r, t) = Ψ∗(r, t)Ψ(r, t), modifying a method used by Madelung and Mrowka
[22, 23] to ’rederive’ the time-dependent SE without making use of the classical
Hamiltonian formalism but only using Newton’s equation of motion.

Madelung und Mrowka’s basic idea is to separate the (real) continuity equa-
tion for the probability density �(r, t),

∂

∂t
� + ∇j =

∂

∂t
� + ∇ (� v) = 0 , (7)

into two (complex) equations for the wave function Ψ(r, t) and its complex
conjugate Ψ∗(r, t).

The density �, as well as the current density j= �v, were assumed - in analogy
to optics - to be bilinear forms of some complex field amplitudes α(r, t) and
β(r, t) (with β = α∗),

� = α · β (8)

j = C(β∇α − α∇β).

Separation can be achieved if a separation function f(r, t) is introduced,

1Bold face quantities denote vectors.
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α̇ + C∆α + fα = 0 (9)

β̇ − C∆β − fβ = 0.

The physical meaning of the separation function becomes obvious when
Eqs.(9) are used to determine the mean value of Newton’s equation of motion,

< F > = m
d

dt
< v >= m

d

dt

∫
2C

(
β̇∇α − α̇∇β

)
dr

= m

∫
� (−∇(2Cf)) dr. (10)

This yields f = 1
2mCV , where V is the potential of the problem and the con-

stant C can be determined by comparison with, e.g., spectroscopic experiments
to be C = �/2mi. Inserting all of this into Eqs.(9) and replacing α by Ψ, the
first of Eqs.(9) is just the time-dependent SE,

i�
∂

∂t
Ψ (r, t) =

(
− �2

2m
∆ + V (r)

)
Ψ (r, t)

= H̃CK,opΨ̄ (r, t) = HL Ψ (r, t) . (11)

Our modification consists of an additional diffusion term to the continuity
equation, thus arriving at the Fokker-Planck-type equation

∂

∂t
� + ∇ (� v) − D∆� = 0 (12)

with diffusion coeffecient D.
Due to the diffusion term, a separation, in general, is no longer possible;

however, it can be achieved if the additional condition

−D
∆�

�
= γ (
n�− < 
n� >) (13)

where < . . . > denote mean values calculated according to < . . . >=
∫

Ψ∗ . . .
Ψdr, is fulfilled. After separation, the SE contains an additional logarithmic
nonlinear term, (the logarithmic NLSE),

i�
∂

∂t
Ψ =

{
HL + γ

�
i

(
nΨ− < 
nΨ >)
}

Ψ . (14)

When Ehrenfest’s theorem is considered, the physical meaning of the non-
linear term becomes obvious as the logarithmic term gives rise to the additional
friction-term mγ <ṙ > in the classical equation of motion.
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The connection with the afore-mentioned time-dependent approach of Cal -
di - ro - la and Kanai can be found using Schrödinger’s original definition of
action [24],

Sc =
�
i

nΨ, (15)

(note that Sc is complex if Ψ is complex) which allows for writing the SE
(divided by Ψ) as a Hamilton-Jacobi-Equation

∂

∂t
Sc + H (r,∇Sc, t) = 0 . (16)

The same form can be achieved for the NLSE (14), if the transformed action
and Hamiltonian

S̄c = eγtSc and H̄ = eγtH (17)

are introduced,
∂

∂t
S̄c + H̄ = 0 . (18)

The operator corresponding to H̄ is then just the Caldirola-Kanai opera-
tor, H̄op, and the above-mentioned non-unitary connection between the wave-
functions is given by

S̄c = 
nΨ̄ = eγt
nΨ = eγtSc ; (19)

for further details, see [11, 12, 13].

3. Motion of a Charged Particle in a Constant Magnetic
Field, without and with Dissipation

3.1 Problematic Aspects of the Modified Hamiltonian

The classical Lagrangian function for the motion in a magnetic field is given
by

L =
m

2
v2 +

q

c
v · A − V (r) (20)

with the position vector r = (x1, x2, x3), the corresponding velocity v =
(ẋ1, ẋ2, ẋ3), the charge q of the particle and the velocity of light c. We assume
the direction of the magnetic field is that of x3, B = (0, 0, B) and the vector
potential has the form A = 1

2(B × r). The motion in the x3-direction will be
that of a free particle and, therefore, suppressed in the further treatment of the
problem; in this case r will have the meaning r⊥ = (x1, x2).

With the canonical momentum

∂L

∂xi
= pi = mẋi +

q

c
Ai, (21)
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the corresponding Hamiltonian can be written as

H =
1

2m
(p − q

c
A)2 + V (r) , (22)

which yields the equations

ẍ1 − ωcẋ2 = 0, ẍ2 + ωcẋ1 = 0 (23)

for the motion in the (x1, x2)-plane, where ωc = qB/mc is the cyclotron
frequency. Eqs.(23) describe the motion on a circle with constant radius and
constant angular velocity −ωc.

Including the frictional force, we assume the same transformed Hamil - ton-
Jacobi-equation to be valid as in the case without magnetic field but, now, with
the transformed Hamiltonian function

H̄ =
1

2m
e−γt(p̄ − eγtq

c
A)2 + eγtV (r) = T̄ + V̄ , (24)

again with p̄i = eγtpi.
The corresponding equations of motion (with V = qΦ; Φ: electric potential)

are:

ẍ1 − ωcẋ2 + γẋ1 + γ
q

mc
A1 +

q

m

∂

∂x1
Φ = 0, (25)

ẍ2 + ωcẋ1 + γẋ2 + γ
q

mc
A2 +

q

m

∂

∂x2
Φ = 0.

These equations depend explicitly on the vector potential A and are, there-
fore, not gauge-invariant - which led to the aforementioned rejection of this
approach in the presence of magnetic fields.

3.2 Problematic Aspects of the Modified
Madelung-Mrowka Me - thod

Without dissipation, the inclusion of a magnetic field in the Madelung-
Mrowka method can be achieved by simply changing the definition of the
probability current into

j = �v = C(β∇α − α∇β) − a� (26)

with a constant vector a still being a bilinear form in α and β. Separation of
the continuity equation now leads to the equation

α̇ + C∆α − (a∇α) − α

2
diva + fα = 0 (27)
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for α, which, inserted into the averaged equation of motion, yields for the mean
value of the force

< F >= m

∫
�

{
−∇(2Cf − 1

2
a2) − ȧ + v × rota

}
dr. (28)

In this case, the separation constant has the form

f =
1

2mC
qΦ(r) +

a2

4C
=

i

�

(
qΦ +

1
2m

q2

c2
A2(r)

)
, (29)

where C has the same form as before and a is proportional to the vector potential
A according to a = q

mcA(r).
Using the relation

1
c

∂

∂t
A = −E −∇Φ, (30)

equivalent to one of Maxwell’s homogeneous equations (with E=electric field
vector), Eq.(28) can be written as

< F >=
∫

�
{
qE +

q

c
(v × B)

}
dr (31)

which is equivalent to Eqs.(23); and the SE corresponding to Eq.(27) is given
by

i�
∂

∂t
Ψ =

{
1

2m

(
�
i
∇− q

c
A
)2

+ qΦ

}
Ψ = HL,MΨ . (32)

Considering the dissipative case, the change for the current is the same as
in (26), only the diffusion term in the Fokker-Planck equation leads - together
with the condition of separability (13) - to the additional terms γ(
nα + Z)α
on the lhs of Eq.(27). Without magnetic field, the choice Z = − < 
nα > was
sufficient to guarantee conservation of probability and fulfilment of all physical
requirements. Here, the complex quantity Z = ZR + iZI, or, more precisely,
the gradient of its imaginary part, must fulfil an additional condition since the
mean value of the force is now given by

< F >=
∫

�
{

qE +
q

c
(v × B) − mγv

}
dr − γ

∫
�
{q

c
A + �∇ZI

}
dr.

(33)
The first integral on the rhs of Eq.(33) provides the desired equation of

motion but the second integral must vanish! Without magnetic field, ∇ZI = 0
is valid; with magnetic field, however, this must be modified. The choice
∇ZI = − q

cA(〈r〉) with < r >= classical trajectory allows for obtaining the
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correct classical equations of motion but introduces an additional term into the
NLSE that now reads

i�
∂

∂t
Ψ =

{
HL,M + γ

�
i

(
nΨ − 〈
nΨ〉) − γ
q

c
(A(〈r〉) · r)

}
Ψ . (34)

What is the origin and physical meaning of this additional term
−γ q

cA(〈r〉) · r, apart from the fact that it is necessary to guarantee the validity
of the averaged equations of motion, including a frictional force proportional to
velocity? For ∇ZI = 0, the frictional force would be proportional to momen-
tum, p = mv +q

cA, instead of velocity, thus depending on the vector potential
A and is, therefore, not gauge-invariant, facing the same problem as described
in Section 3.1 for the other approach. The answer to the aforementioned ques-
tions will be given in the next section. NB: the mean value of the additional
term in the NLSE (34) vanishes according to

< A(〈r〉) · r > = A(〈r〉) < r >

=
B

2
(− < x2 >< x1 > + < x1 >< x2 >) = 0. (35)

4. Inclusion of the Electromagnetic Field Aspect

The energy of a system in a magnetic field - and thus its Hamiltonian - has
not only a contribution from the mechanical aspect but, also, from the electric
and magnetic fields. These can be taken into account by

Hfield =
∫

dr Hfield (36)

with the Hamiltonian density

Hfield =
1
8π

(E2 + B2) (37)

and the total Hamiltonian is given by

Htot = H + Hfield. (38)

From the Lagrangian corresponding to the field contribution,

Lfield =
∫

drLfield

with Lfield = 1
8π(E2 − B2), Maxwell’s equations can be derived [25], where

the homogeneous ones are equivalent to
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1
c

∂

∂t
A = −E −∇Φ, B = ∇× A. (39)

Transition to the canonical level, including dissipation, should also change,
according to (17), Hfield into H̄field,

H̄field = eγt Hfield. (40)

On the canonical level, the form of the homogeneous Maxwell’s equations
(39) should be unchanged, i.e.,

1
c

∂

∂t
Ā = −Ē −∇Φ̄, B̄ = ∇× Ā (41)

should be valid.
Since - apart from the electric charge q - the electric potential Φ can be

identified with the potential V if no external potentials are present, it follows
from Eq.(24) that

qΦ̄ = V̄ = eγtV = eγtqΦ. (42)

Inserting this into the first of Eqs. (41), a way to keep these equations
consistent is, therefore, to also define Ē = eγtE, B̄ = eγtB and Ā = eγtA.
This implies that

L̄field =
1
8π

eγt(E2 − B2) = eγtLfield (43)

which is also in agreement with the Caldirola-Kanai form for a dissipative
Lagrangian of a mechanical system.

The Hamiltonian density H̄field can then be written in a form similar to T̄ ,
namely

H̄field =
1
8π

e−γt(Ē2 + B̄2) (44)

and the mechanical Hamiltonian takes the form

H̄ =
1

2m
e−γt(p̄ − q

c
Ā)2 + qΦ̄. (45)

This Hamiltonian is identical with the one in Eq.(24) and would yield the
same problematic equations of motion (25), including the terms depending on
the vector potential. However, from Eq.(41), follows now (in the absence of an
external electric field E) that

∇Φ̄ = eγt∇Φ = −1
c

∂

∂t
Ā = −1

c

∂

∂t
(eγtA). (46)
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For a time-independent vector potential A on the physical level, i.e.
∂
∂tA = 0, it follows with

∂

∂t
Ā = γĀ = γeγtA (47)

that

∂

∂xi
Φ = −1

c
γAi. (48)

Therefore, the last two terms on the lhs of Eqs.(25) cancel and we obtain the
desired equations independent of the vector potential,

ẍ1 − ωcẋ2 + γẋ1 = 0, ẍ2 + ωcẋ1 + γẋ2 = 0. (49)

Note that, without dissipation, i.e. for γ = 0, the term∇Φ̄ and, consequently,
∇Φ disappears, i.e. Φ and, thus, V on the physical level is just a constant (with
respect to spatial variables) and will be chosen to be zero in the following.

From Eq.(48) follows, with V = qΦ, that agreement with the classical
equations for the scalar and vector potential can be achieved, if the potential V̄
fulfils

− ∂

∂xi
V̄ = −eγt ∂

∂xi
V = γ

q

c
Āi = γeγtq

c
Ai. (50)

Since, so far, the electromagnetic contribution is treated only on a classical
level, the occurring variables are represented quantum mechanically by their
respective mean values. So, the potential V̄ that enters the quantum mechanical
description on thecanonical level can be given (up to a purely time-dependent
additive term) as

V̄ = −γ
q

c
A(< r >) · reγt, (51)

which corresponds on the physical level to the additional potential-term

V = −γ
q

c
A(< r >) · r. (52)

This is, however, exactly the term that had to be added in the log NLSE (34)
in order to obtain the proper equations of motion for the mean values!

Therefore, after the aforementioned non-unitary transformation, the Caldirola-
Kanai Hamiltonian (including V̄ ) and the log NLSE (including V ) describe the
same physical problem of a frictionally-damped motion - also in the presence
of a constant magnetic field.
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5. Quantum Mechanical Solutions in a Magnetic Field,
without and with Dissipation

5.1 Solutions without Dissipation

From the time-dependent quantum mechanical problem of the two-di - men -
sio - nal motion in a magnetic field without dissipation, as described by the
SE (32), the corresponding time-independent problem can be obtained via the
product ansatz Ψ(r, t) = ψN(r) exp(− i ENt). The eigenfunctions ψN(r),
belonging to the energy eigenvalues EN = (N + 1

2)�ωc with integer quantum
numbers N , were called Schrauben functions by Jannussis [26] and are of the
form

ψN(r) =

(
b

2π

(
b

2

)N 1
N !

) 1
2

exp
{

iq

�c
A(r0)r −

b

4
(r − r0)2

}
| r − r0 |N e−iNφ (53)

where φ = arctan(x2 − x02/x1 − x01), b = qB/�c = mωc/� with cyclotron
frequency ωc.

An elegant way of obtaining these eigenfunctions has been shown by Moshin-
sky [21]. Rewriting the Hamiltonian of Eq.(32) (in components), using atomic
units (m = q = � = 1) and b′ = 2mb = ωc

2 , yields

H⊥ =
1
2
[(p2

1 + p2
2) + b′2(x2

1 + x2
2)] + b′[−(x1p2 − x2p1)] . (54)

This H⊥ can be expressed in terms of circular creation and annihilation
operators,

η± =
1√
2

(√
b′x± − 1√

b′
∂

∂x∓

)
, ξ± =

1√
2
(
√

b′x∓ +
1√
b′

∂

∂x±
) , (55)

using circular coordinates x± = 1√
2
(x1 ± ix2), as

H⊥ = b′[(η+ξ+ + η−ξ− + 1) − (η+ξ+ − η−ξ−)] = b′(2η−ξ− + 1) . (56)

With the help of ξ± | 0 >= 0, one can obtain the ground state solution | 0 >
and, applying the creation operators, also all the excited states as:

|N, z0 >= b′
1
2 (πN !)−

1
2 b′

N
2 [(x1 − x01) + i(x2 − x02)]N

exp{−(b′/2)[(x1 − x01)2 + (x2 − x02)2]} exp[ib′(x02x1 − x01x2)] , (57)
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the so-called coherent states, centered at (x01, x02), where

z0 =
√

b′(x01 + ix02).

For b′ = 2mb, they are (up to the sign of the phase factor) identical with the
Schrauben functions.

By superpositioning the Schrauben functions or coherent states, solutions in
the form of Gaussian wave packets (WPs) can be obtained - if the initial state
is chosen as a Gaussian [22], i.e.,

ΨWP(t) = e−iωc
2

t
∞∑

N=0

AN|N, z0 > e−iNωct

=
(

b

2π

) 1
2

exp
{
− b

4
(R − a(t))2

+
i

�

[(
m 〈ṙ〉 − q

c
A(〈r〉)

)
(R − a(t)) + K(t)

]}
(58)

where R = r − r0, R − a = r− < r >, see also Fig.1.
Using the orthonormality of the coherent states and appropriate initial con-

ditions, the coefficients AN can be determined as

AN =

((
b

2

)N 1
N !

)1/2

|a0|N exp
{
− b

4
a2

0 −
iq

�c
A(r) · a0

}
. (59)

The corresponding density �WP = Ψ∗
WPΨWP is given by

�WP(r, t) =
b

2π
exp

{
− b

2
(R − a(t))2

}
, (60)

i.e., it attains its maximum value along a circle with the classical radius | a |.

5.2 Solutions with Dissipation

On the canonical level, without time-dependence, the Caldirola-Kanai
Hamiltonian

H̄ =
1

2m
e−γt(p̄ − Ā)2 (61)

can be canonically quantized (i.e. p̄ → i∇) and expressed in terms of modi-
fied creation/annihilation operators. This allows one to obtain coherent states
modified accordingly. For details, see [23].

Considering the time-dependent situation on the canonical level, the potential
V̄ = −γA(< r >)·reγt must be included, and again time-dependent Gaussian
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Figure 1. r: vector of position in the (x1, x2) plane; < r >: classical trajectory; r0: center
of circular motion; R = r − r0 with | R | = radius of circular motion; a =< r > −r0 with
| a | = classical radius.
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WPs can be obtained as solutions; however, with complex coefficient of the
quadratic term in the exponent,

ΨWP,CK = N̄CK exp
{

eγt

[
− b̄ + iγ

4
(R − a(t))2

+
i

�

[
< p > (R − a(t)) + e−γtK̄(t)

]]}
(62)

where a(t) follows the classical damped trajectory, N̄CK = (b̄′eγt/π)1/2 with

b̄′ = (b′2 − γ2

4 )1/2 = 1
2(b2 − γ2)1/2 = b̄

2 and K̄(t) is again a purely time-
dependent phase factor - not relevant for the following discussions.

The corresponding density is given by

�̄CK = |Ψ̄WP,CK(r, t)|2 = N̄CKN̄∗
CK exp

{
eγt

[
− b̄

2
(R − a(t))2

]}
. (63)

The WP-solution on the physical level can be obtained either using the
non-unitary transformation


nΨWP,NL = e−γt
nΨ̄WP,CK (64)

with subsequent normalization of the WP ΨWP,NL, or by direct solution of the
log NLSE

i�
∂

∂t
ΨWP,NL =

{
1

2m

(
�
i
∇− q

c
A
)2

+ γ
�
i

(
nΨWP − 〈
nΨWP〉)
}

ΨWP,NL

−
{

γ
q

c
(A(〈r〉) · r)

}
ΨWP,NL . (65)

One obtains, with b = 2b′ and b̄ = (b2 − γ2)1/2, the WP as

ΨWP,NL = NNL exp
{
− b̄ + iγ

4
(R − a(t))2

+
i

�

[
< p > (R − a(t)) + e−γtK̄(t)

]}
(66)

with the corresponding density
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�NL(t) = |ΨWP,NL(r, t)|2 =
b̄

2π
exp

{
− b̄

2
(R − a(t))2

}
, (67)

where b̄ = m(ω2
c − γ2)1/2.

From here, it follows that the maximum of the WP on the physical level
spirals to the origin of the circular motion, r0, with exponentially-decreasing
radius, a (t) = a0e

−γt.

6. Properties of the Dissipative Wave Packet Solutions in
a Magnetic Field

The WP-solutions of the NLSE allow a direct physical interpretation of its
properties. Gaussian WPs are characterized by two parameters: their maximum
and their width. As has been shown, the maximum follows the classical circular
motion with exponentially-decaying radius.

The width in position space is proportional to a quantity, α, that my be
time-dependent and is proportional to the mean square deviation of position
according to

α2
i =

2m

�
< x̃i

2 >=
2m

�

(
< x2

i > − < xi >2
)
. (68)

This quantity enters the quantum mechanical contribution to the energy (if
< H >= E = Eclass + Ẽ) as

ẼNL =
∑
i=1,2

�
4

[(
α̇i −

γ

2
αi

)2
+

1
α2

i

+
(ωc

2

)2
α2

i

]
(69)

and can also contribute to the probability current

jNL = �v − D∇� =

⎛⎜⎜⎝
η̇1 +

(
α̇1
α1

)
x̃1 + ωc

2 x̃2

η̇2 +
(

α̇2
α2

)
x̃2 − ωc

2 x̃1

⎞⎟⎟⎠ · � (70)

(with x̃i = xi− < xi >) if α is time-dependent.
The above-mentioned WP (66) is a particular solution of the NLSE with

constant width, α2 = (ω2

4 − γ2

4 ) = const.
General WP-solutions have time-dependent coefficients of the quadratic term

in the exponent. This coefficient fulfils a complex nonlinear Riccati equation
that can be transformed into a (real) nonlinear Ermakov equation for α (see,
e.g., [24]).

The log NLSE including magnetic field provides for each direction xi an
equation of the form
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α̈i +
(

ω2
c − γ2

4

)
αi =

1
α3

i

. (71)

Three qualitatively-different cases can be distinguished:
1) ωc > γ: undercritical damping (strong magnetic field);
2) ωc = γ: aperiodic limit (’resonance’ case);
3) ωc < γ: overcritical damping (weak magnetic field).

In each case, different contributions to ẼNL and jNL occur.

6.1 Undercritical Damping, ωc > γ

In this case, WP-solutions with constant width exist. Therefore, they do not
provide any contribution to the current (that would be proportional to α̇/α).
The contribution to the quantum mechanical (ground state) energy is constant
and higher than in the case without dissipative environment,

ẼNL = 2
�
4

ω2
c

Ω
=

�
2
ωc

(ωc

Ω

)
>

�
2
ωc = const (72)

with Ω = (ω2
c − γ2)1/2. This could be interpreted as a partial backtransfer of

energy from the bath to the system - just by being in contact with the environ-
ment.

But there exist also WP-solutions that show an oscillatory behaviour of the
WP-width according to

α2
i = α2

i0

⎧⎨⎩β2
i0

[
sin(Ω

2 t)
Ω
2

]2

+ cos2(
Ω
2

t)

⎫⎬⎭ , (73)

with the relative change in time of the width also oscillating,

α̇i

αi
=

(
β2

i0
Ω
2

− Ω
2

)
cos(Ω

2 t) sin(Ω
2 t){

β2
i0

[
sin(Ω

2
t)

Ω
2

]2

+ cos2(Ω
2 t)

} , (74)

where βi0 = 1
α2

i0
.

This causes oscillatory contributions to the quantum energy and current.
The current oscillations should lead to emission of radiation in the mm range
(estimated power radiated from a small sample of solid: approx. P = 0.03W ;
this should be measurable with today’s experimental methods). Further details
will be published elsewhere (see [25]).
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6.2 Aperiodic Limit, ωc = γ

Here, the Ermakov equation has the same form as that of the WP for the
free motion without friction and magnetic fields, so the time-dependence of the
width has the form

α2
i = α2

i0

{
1 + (βi0t)2

}
(75)

and the contribution to the current, given by

α̇i

αi
= βi0

βi0t

1 + (βi0t)2
, (76)

is Lorentzian-shaped in time, i.e., after an initial increase, it decreases till it
finally approaches zero asymptotically.

Most interesting, however, is the behaviour of the quantum mechanical en-
ergy contribution - since it grows proportional to t2, ẼNL ∝ t2. This means,
while the classical contribution of the energy connected with the motion of
the WP-maximum is exponentially decreasing, there is a backtransfer of en-
ergy from the environment to the quantum mechanical degrees of the system in
a resonance-type fashion. This does not contradict classical thermodynamics
since this energy does not cause an acceleration of the motion of the WP-
maximum. A similar situation was also obtained in the case of the damped
harmonic oscillator (for details, see [26]).

6.3 Overcritical Damping, ωc < γ

In this case, the WP-width and the contribution to the current can be expressed
with A = ±

√
γ2 − ω2

c as

α2
i = α2

i0

⎧⎨⎩eAt +

(
βi0

A
2

)2

sinh2(
A

2
t)

⎫⎬⎭ (77)

and

α̇i

αi
=

A

2

eAt +
(

βi0
A
2

)2

sinh(A
2 t) cosh(A

2 t){
eAt +

(
βi0
A
2

)2

sinh2(A
2 t)

} . (78)

After a steep initial increase, the contribution to the current approaches,
asymptotically, a finite value that is identical with its initial value.
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Also here a backtransfer of energy from the environment to the quantum
mechanical degrees of freedom is possible. The time-dependence is more com-
plicated than in the case with resonance.

7. Conclusions and Perspectives

In this paper, it has been shown that it is possible to find a consistent effective
description - classical, as well as quantum mechanical - of a system interacting
with a dissipative environment in a magnetic field without violating any physical
principles.

Further aims are:

i) experiments to measure the predicted quantum mechanical effects (e.g.
oscillating currents, backtransfer of energy from the bath, etc.). An advantage
of the systems considered here (in comparison with the harmonic oscillator) is
that the magnetic field, and hence ωc, can be better and more accurately ma-
nipulated than the frequency of an harmonic oscillator;

ii) a further transformation of the canonical Hamiltonian H̄(t), that is ex-
plicitly time-dependent, should be found to obtain - on the canonical level - a
Hamiltonian that not only provides the correct equations of motion, but, also
is a constant of motion (similar to the case of the damped harmonic oscillator,
see [12, 13]);

iii) an extension of the formalism that works for mechanical systems, with-
out and with magnetic fields, to other Lagrangian/Hamiltonian systems - e.g.,
relativistic problems, field theories, etc. - following the same scheme: a) find-
ing a non-canonical/non-unitary transformation of L, H to obtain the correct
equations of motion and to achieve canonical quantization; b) further canoni-
cal/unitary transformation to obtain a constant of motion; c) back-transformation
to the physical level to obtain the corresponding NLSE that allows for a direct
physical interpretation of the quantum mechanical results.
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[25] Nuñez, M., Hess, P.O., and Schuch, D.: 2003, submitted for publication

[26] Schuch, D.: 2002, J. Phys. A.: Math. Gen. 35, 8615



FROM QUANTUM GROUPS
TO GENETIC MUTATIONS

A. Sciarrino
Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”
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Abstract In the framework of the crystal basis model of the genetic code, where each codon
is assigned to an irreducible representation of Uq→0(sl(2)⊕ sl(2)), single base
mutation matrices are introduced. The strength of the mutation is assumed to
depend on the “distance” between the codons. Preliminary general predictions
of the model are compared with experimental data, with a satisfactory agreement.

Keywords: Quantum groups, genetic code, codon, crystal basis model

1. Introduction

Among the numerous and important questions offered to the theoretical
physicist by the sciences of life, the ones relative to the genetic code present a
particular interest. The DNA structure and the mechanism of polypeptid fix-
ation from codons possess appealing aspects for the theorist and, indeed, the
first proposal of genetic code may be ascribed to G. Gamow [1] in 1954, less
than year after the discovery of DNA by Watson and Crick. Let us briefly recall
some essential features, see e.g. [2]. First the DNA macromolecule is consti-
tuted by two linear chains of nucleotides in a double helix shape. There are four
different nucleotides, characterised by their bases: adenine (A) and guanine (G)
(purines family), cytosine (C) and thymine (T) (pyrimidines family). Note also
that an A (resp. T) base in one strand is connected, with two hydrogen bonds,
to a T (resp. A) base in the other strand, while a C (resp. G) base is related
to a G (resp. C) base, with three hydrogen bonds. The genetic information is
transmitted via the messenger ribonucleic acid or mRNA. During this opera-
tion, called transcription, the A, G, C, T bases in one strand of the DNA are
associated respectively to the U, C, G, A bases, (U denoting the uracile base) of
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Table 1. The eukaryotic or standard code code. Upper labels denote different irreps.

codon
amino

acid
JH JV J3,H J3,V codon

amino

acid
JH JV JH,3 JV,3

CCC Pro P 3/2 3/2 3/2 3/2 UCC Ser S 3/2 3/2 1/2 3/2

CCU Pro P (1/2 3/2)1 1/2 3/2 UCU Ser S (1/2 3/2)1 −1/2 3/2

CCG Pro P (3/2 1/2)1 3/2 1/2 UCG Ser S (3/2 1/2)1 1/2 1/2

CCA Pro P (1/2 1/2)1 1/2 1/2 UCA Ser S (1/2 1/2)1 −1/2 1/2

CUC Leu L (1/2 3/2)2 1/2 3/2 UUC Phe F 3/2 3/2 −1/2 3/2

CUU Leu L (1/2 3/2)2 −1/2 3/2 UUU Phe F 3/2 3/2 −3/2 3/2

CUG Leu L (1/2 1/2)3 1/2 1/2 UUG Leu L (3/2 1/2)1 −1/2 1/2

CUA Leu L (1/2 1/2)3 −1/2 1/2 UUA Leu L (3/2 1/2)1 −3/2 1/2

CGC Arg R (3/2 1/2)2 3/2 1/2 UGC Cys C (3/2 1/2)2 1/2 1/2

CGU Arg R (1/2 1/2)2 1/2 1/2 UGU Cys C (1/2 1/2)2 −1/2 1/2

CGG Arg R (3/2 1/2)2 3/2 −1/2 UGG Trp W (3/2 1/2)2 1/2 −1/2

CGA Arg R (1/2 1/2)2 1/2 −1/2 UGA Ter (1/2 1/2)2 −1/2 −1/2

CAC His H (1/2 1/2)4 1/2 1/2 UAC Tyr Y (3/2 1/2)2 −1/2 1/2

CAU His H (1/2 1/2)4 −1/2 1/2 UAU Tyr Y (3/2 1/2)2 −3/2 1/2

CAG Gln Q (1/2 1/2)4 1/2 −1/2 UAG Ter (3/2 1/2)2 −1/2 −1/2

CAA Gln Q (1/2 1/2)4 −1/2 −1/2 UAA Ter (3/2 1/2)2 −3/2 −1/2

GCC Ala A 3/2 3/2 3/2 1/2 ACC Thr T 3/2 3/2 1/2 1/2

GCU Ala A (1/2 3/2)1 1/2 1/2 ACU Thr T (1/2 3/2)1 −1/2 1/2

GCG Ala A (3/2 1/2)1 3/2 −1/2 ACG Thr T (3/2 1/2)1 1/2 −1/2

GCA Ala A (1/2 1/2)1 1/2 −1/2 ACA Thr T (1/2 1/2)1 −1/2 −1/2

GUC Val V (1/2 3/2)2 1/2 1/2 AUC Ile I 3/2 3/2 −1/2 1/2

GUU Val V (1/2 3/2)2 −1/2 1/2 AUU Ile I 3/2 3/2 −3/2 1/2

GUG Val V (1/2 1/2)3 1/2 −1/2 AUG Met M (3/2 1/2)1 −1/2 −1/2

GUA Val V (1/2 1/2)3 −1/2 −1/2 AUA Ile I (3/2 1/2)1 −3/2 −1/2

GGC Gly G 3/2 3/2 3/2 −1/2 AGC Ser S 3/2 3/2 1/2 −1/2

GGU Gly G (1/2 3/2)1 1/2 −1/2 AGU Ser S (1/2 3/2)1 −1/2 −1/2

GGG Gly G 3/2 3/2 3/2 −3/2 AGG Arg R 3/2 3/2 1/2 −3/2

GGA Gly G (1/2 3/2)1 1/2 −3/2 AGA Arg R (1/2 3/2)1 −1/2 −3/2

GAC Asp D (1/2 3/2)2 1/2 −1/2 AAC Asn N 3/2 3/2 −1/2 −1/2

GAU Asp D (1/2 3/2)2 −1/2 −1/2 AAU Asn N 3/2 3/2 −3/2 −1/2

GAG Glu E (1/2 3/2)2 1/2 −3/2 AAG Lys K 3/2 3/2 −1/2 −3/2

GAA Glu E (1/2 3/2)2 −1/2 −3/2 AAA Lys K 3/2 3/2 −3/2 −3/2

RNA. Then, a triplet of nucleotides or codon will be related to an amino-acid.
More precisely, a codon is defined as an ordered sequence of three nucleotides,
e.g. AAG, AGA and GAA, and one enumerates in this way 4×4×4 = 64
different codons.

In the universal eukariotic code (see Table 1), 61 of such triplets encode the
amino-acids, while the three codons UAA, UAG and UGA, which are called
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non-sense or stop-codons, play the role to stop the biosynthesis process. Indeed,
the genetic code is the association between codons and amino-acids. But since
one distinguishes only 20 amino-acids 1 related to the 61 codons, it follows
that the genetic code is degenerate. From Table 1, one remarks the presence
of 3 sextets, 5 quadruplets, 1 triplet, 9 doublets and 2 singlets of codons, each
multiplet corresponding to a specific amino-acid. Since its appearance on the
earth life has been characterized by its continuous change. Spontaneous ge-
netic mutations, i.e. modifications of the DNA genomic sequences, play a
fundamental role in the evolution. In the present paper I only deal with point
mutation, that is with single base (single nucleotide) changes. More gener-
ally, mutations include changes of more than one nucleotide, insertions and
deletions of nucleotides, frame-shifts and inversions. The point mutations are
usually modelled by stationary, homogeneous Markov process, which assume:
1) the nucleotide positions are stochastically independent one from another,
which is clearly not true in functional sequences;
2) the mutation is not depending on the site and is constant in time, which ignores
the existence of “hot spots” for mutations as well as the probable existence of
evolutionary spurts;
3) the nucleotide frequencies are equilibrium frequencies.

Moreover, phenomenologically, a change of the 3rd nucleotide is more fre-
quent than the change of the 1st nucleotide, the latter being more frequent than
the change of the second one.

In the following the labels i, j run in the set analysed, e.g. i, j ∈ {C, T, G, A}
(T being replaced by U in RNA) for single nucleotides changes or i, j run in
a 20-dim set for the amino-acids substitution matrix or in a 64-dim set for for
the codon substitution matrix. The transition matrix Q, where Qij > 0 (i = j)
represents the transition rate between the j state and the i state, in the chosen
unit of “time”, and it is normalised to

0 > Qii = 1 −
∑
j �=i

Qij (1)

The evolution matrix P, where Pij(t) gives the probability that the j state at
time t = 0, will be replaced, at time t, by the i state, satisfies the differential
equation

dPij(t)
dt

=
∑

k

Pik(t)Qkj −→ P(t) = P(0) expQ t P(0) = 1 (2)

1Alanine (Ala), Arginine (Arg), Asparagine (Asn), Aspartic acid (Asp), Cysteine (Cys), Glutamine (Gln),
Glutamic acid (Glu), Glycine (Gly), Histidine (His), Isoleucine (Ile), Leucine (Leu), Lysine (Lys), Methionine
(Met), Phenylalanine (Phe), Proline (Pro), Serine (Ser), Threonine (Thr), Tryptophane (Trp), Tyrosine (Tyr),
Valine (Val).
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In the Markov model, with discretized time τ , we have

P((n + 1)τ) = Q P(nτ) (3)

The most simple reversible model describing single nucleotide changes de-
pends on 1 parameter and the most complex not reversible model depends on
12 parameters [3] 2. These models consider the DNA sequences as set of nu-
cleotides each nucleotide evolving independently of the others. They are not
able to make, a priori, any prediction on the reversibility of a mutation and nat-
urally predict that a nucleotide change happens at the same rate independently
of which codon it belongs to and are indeed unable to explain:
i) the dependence of mutations on the nature of the neighbouring nucleotides
[5]. These features can of course be accounted introducing more new unknown
parameters or new type of models, see [6];
ii) the fact that mutations occur more frequently between amino acids with
similar physical-chemical properties, which generally have similar functional
roles. Generally in the literature it is stated that the nature of the 2nd nu-
cleotide strongly determines the physical-chemical properties. In the seventies
Konopolchenko and Rumer [7] have remarked that amino acids with similar
physical-chemical properties can be described by assigning a suitable charge
Q to the first dinucleotide (called “root” by the authors) of the codon, in par-
ticular “strong roots” (“weak roots”), corresponding to multiplets of codons of
dimension 4 (≤ 3), have Q > 0 (Q < 0). Note that sextets appear as the sum
of a quartet and of a doublet.

The aim of this paper is to propose a model in which the strength of the
mutation depends on a suitably defined distance between codons. This model
reduces to the Markov model if the distance dependence is assumed constant,
but it is able, in principle, to take into some account the points i)-ii). The
first requirement to build such a model is to identify codons as mathematical
objects, in particular as vectors in a suitable space. This will be done in the
framework of the crystal basis model of the genetic code [8]. In this model the 4
nucleotides are assigned to the (4-dim fundamental) irreducible representation
(irrep.) (1/2, 1/2) of Uq→0(sl(2) ⊕ sl(2)) with the following assignment for
the values of the third component of �J for the two sl(2) which in the following
will be denoted as slH(2) and slV (2):

C ≡ (+1
2 , +1

2) T/U ≡ (−1
2 , +1

2) G ≡ (+1
2 ,−1

2) A ≡ (−1
2 ,−1

2) (4)

and the codons, triple of nucleotides, to the 3-fold tensor product of (1/2, 1/2).
The assignment of the codons to the different irreps. and the correspondence
with the encoded amino acid in the eukaryotic code is provided in Table 1.

2For a review of the different Markov models with a large list of the original papers, see Cap. 3 of [4]
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Let us emphasize that the assignment of the codons to the different irreps.
is a straightforward consequence of the assumed labelling of the nucleotides
eq.(4) and of the Kashiwara’s theorem on the tensor product of irreps. in the
crystal basis [9]. In the following we call nearest codon codons differing by
only one nucleotide. The effects of a single nucleotide mutation in the codons
are represented, neglecting the mutations into or from the three stop codons
which are not detectable in the considered set of experimental data, by a 61x61
(symmetric) matrix, whose elements, in first approximation, will be assumed
vanishing if non connecting nearest codons.

In [10] it has been shown that amino acids with similar properties can grouped
together looking to the content of the irrep. of the first dinucleotide (or “root”),
in particular to the values of the charge Q and of the third generator of slV (2).
The charge Q can be expressed as3

Q = 4J3,H + CV (J3,V + 1) − 1 (5)

In that paper the analysis has been performed for 10 physico-chemical prop-
erties: the Chou–Fasman conformational parameters, which give a measure
of the probability of the amino acid to form respectively a helix, a sheet and
a turn; the Grantham polarity; the relative hydrophilicity; the thermodynamic
activation parameters at 298 K: ∆H (enthalpy, in kJ/mol), ∆G (free energy, in
kJ/mol) and ∆S (entropy, in J/mole/K); the dissociation constants at 298 K; the
isoelectronic point, i.e. the pH value at which no electrophoresis occurs. The
strength of the mutation inducing operator is assumed to depend on the distance
between the initial codon and the final codon, i.e. the codon appearing as result
of the mutation. In the literature many attempts to define distance between
codons exist based on the similarity of their physico-chemical properties or of
those of the encoded amino-acid. Sometimes the distance between amino acids
is defined by the strength of their mutation. Here I follow a completely different
approach as I define a priori a distance and then I try to derive the strength of
their mutation.

2. The mutation matrix

In order to be able to define the distance we make a correspondence between a
codon and a point in n-dim. Euclidean space. For sake of simplicity, presently
we assume a 1-dim space.4 The correspondence between codons and real
numbers is realized through the eigenvalues of the following operator

X̂ = [α Q1 − β J1
3,V (J1

3,V − 1) + 4γ (CH + CV )] 2 (J3,H + ηJ3,V ) (6)

3Note that the numerical values of eq.(5) are slightly different from those of [7].
4The use of a 2-dim space, related to the roots of the two commuting sl(2), may seem the most naturale
choice.
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Table 2. Dinucleotides representation content and charge Q.

dimer JH JV J3H J3V Q dimer JH JV J3H J3V Q

CC 1 1 1 1 7 GC 1 1 1 0 5
CU 0 1 0 1 1 GU 0 1 0 0 1
CG 1 0 1 0 3 GG 1 1 1 −1 3
CA 0 0 0 0 −1 GA 0 1 0 −1 −1
UC 1 1 0 1 3 AC 1 1 0 0 1
UU 1 1 −1 1 −1 AU 1 1 −1 0 −3
UG 1 0 0 0 −1 AG 1 1 0 −1 −1
UA 1 0 −1 0 −5 AA 1 1 −1 −1 −5

where α, β, γ and η are real positive parameters (η > 1 as mutations between
pyrimidines and purines (transversions, ∆J3,V = 0) occur less frequently than
mutations between pyrimidines or purines (transitions ∆J3,H = 0)); Q1 and
J1

3,V are, respectively, the “charge”, given by eq.(5), and the third generators of
slV (2) of the first dinucleotide of the codon XY Z, that is XY , and CH, J3,H

(resp. CV , J3,V ) are the Casimir operator and the third generator of slH(2)
(resp. slV (2)) for the trinucleotide state or codon,

X̂ ψ(XY Z) = r(XY Z) ψ(XY Z) (7)

where ψ(XY Z) is the state ∈ V , V being the space of the irreps. of

Uq→0(slH(2) ⊕ slV (2)) ,

corresponding to the XYZ codon and, using the same notation for the operators
and for their eigenvalues,

r = [α Q1 − β J1
3,V (J1

3,V − 1) + 4γ (CH + CV )] 2 (J3,H + ηJ3,V ) (8)

the values of the quantities appearing in eq.(8) are given in Table 2 and Table 1.
The transition matrix between the codon i = XY Z and the codon j = X ′Y ′Z ′
is

Qji = F (dji) qji j = i (9)

where F (dji), the strength of the transition, is a decreasing function of the
argument and dji is the distance between the initial and final codon

dji = |r(X ′Y ′Z ′) − r(XY Z)| (10)

and qji is the element of a matrix q such that

qji = 1 i,j nearest codons qji = 0 otherwise (11)

If the strength are considered as constants, our model is essentially equivalent
to a reversible Markov model with constant parameters. Of course there is an
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arbitrary infinite way of defining the correspondence between a codon and a
point of an Euclidean space. Our choice is such that to a larger variation of the
charge, i.e. to a larger variation of the physical-chemical properties, corresponds
a larger distance and that the distance between codons in the same irrep. is lower
that codon in different irreps.. Generally, from eq.(8), the distance between two
codons, differing by a nucleotide in the middle position or in the first position,
is larger, due to the change of the value of the charge, than the distance between
two codons, differing by a nucleotide in the third position. At this stage our
model can be considered as a markovian model with neighbours depending
parameters.

3. Amino acid substitution matrices

In this section we recall the definition and the differences between the exper-
imentally determined mutation matrix. The sequences alignment of proteins is
a most powerful tool to get insights on the protein functions and to compute
substitution rates due to evolutionary processes. The first scheme was proposed
in the seventies by M. Dayhoff [11] and it is generally considered as the standard
scheme. It is based on the alignments of protein sequences that are at least 85%
identical. The evolutionary distance in measured in “accepted point mutation”
(PAM). Two sequences are said to be 1 PAM distant if they differ on average
by one accepted-point mutation per 100 amino acids. The term “accepted”
means that the mutation of the amino acid has been incorporated into the pro-
tein’s progeny, i.e. the mutation has not produced harmful consequences. The
original Dayhoff matrix, by construction, was biased by the sample of proteins
available at that time, mainly small globular proteins, and emphasized the rate
of mutation in the highly mutable amino acids. A matrix, taking into account
substitutions poorly represented in the original Dayhoff’s analysis and making
use of a statistics about 35 times higher, was computed in ref. [12] and it is
known as PET91. 5 We make a comparison between our data and the 1-PAM
PET91 matrix, see Table II of [12]. In that table the data are referred to the
substitution of the amino acids, so we cannot compare them directly with our
predictions, which refer to the codon mutations. We have to consider for each
amino acid the multiplet of codons encoding it and then to consider only the
one-nucleotide mutation. In this process we have to take into account the pre-
ferred codon usages, which depend on the biological species and on the type of
gene analysed. In this preliminary analysis we make the simple (and definitely
incorrect) assumption of an uniform codon usage. The experimental Dayhoff

5To study the relations for distant sequences a more reliable model has been proposed in 1992 [13], which
is presently known as block substitution matrix (BLOSUM).
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matrix entries between the amino acids a and b are identified as

Mab =
∑
i,j

fa
i M ij

ab (12)

where fa
i is the frequency of the i codon in the amino acid a,M ij

ab is the substi-
tution rate matrix for the codons and the sum is over all the codons encoding
the amino acids a and b and differing by only one nucleotide. The comparison
with experimental data requires one more assumption. We have to compare the
matrix

P(t) = expQ t (13)

with the x − PAM mutation matrix Mx−PAM which is computed at a x dis-
tance between the amino acids sequences. Commonly 1−PAM evolutionary
distance is considered to correspond to a time interval of ≈ 1x107 years and
the correspondence between the PAM matrix and the instantaneous rate matrix
is

M1−PAM = expQ t ≈ 1 + 0.1Q (14)

i.e. the unit of time is chosen τ0 = 1x108 years. It should be remarked that
the above matrices, by construction, are really divergence matrices, that is they
provide the probability that the j state in the first sequence, will be replaced by
the i state in the second x− PAM distant sequence. Moreover these matrices
have been build up assuming a symmetric probability of mutation between two
amino acids and, consequently, the estimated rate is lower for the amino acid
which has a larger frequency. Therefore, strictly speaking, a direct compar-
ison between the rate matrix eq.(9) and the amino acid substitution matrices
is uncorrect. However, as in the present work we present only semiquantita-
tive comparison, our conclusions should not be sensibly affected by the above
remarks.

4. Predictions of model

4.1 Stability

From the assignment of the codons to the different irreps., see Table 1, and
the assumed distance, see eq.(10), we can make a set of general predictions,
independently of the structure of the F function and of the detailed values of
α, β, γ and η. Considering a single-nucleotide mutation, each codon can make
transition in the (9) nearest codons. Some of these codons can be synonymous
(silent mutations) or stop codons (nonsense mutations), both being unobservable
in the framework of the substitution matrices. However, without a thorough
analysis of their physical-chemical properties and/or their functional functions,
we should expect amino acids encoded by multiplets of the same dimension to
be approximately equally stable, i.e. the diagonal entries of the mutation matrix
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Table 3. Relative mutability for the 20 amino acids with respect to Ala, arbitrarily fixed to 100,
from Table III of [12].

amino acid PET91 Dayhoff amino acid PET91 Dayhoff

Ala 100 100 Leu 54 40
Arg 83 65 Lys 72 56
Asn 104 134 Met 93 94
Asp 86 106 Phe 51 41
Cys 44 20 Pro 58 56
Gln 84 93 Ser 117 120
Glu 77 102 Thr 107 97
Gly 50 49 Trp 25 18
His 91 66 Tyr 50 41
Ile 103 96 Val 98 74

M should be of the same order. In the crystal basis model, see Table 1, not all
the codons are on the same foot as they belong to different irreps. spaces. We
indeed expect that mutations between codons in the same irrep. to occur more
frequently than mutations between different irreps., provided that the values of
J1

3,V are close and the signs of their charge Q are the same. This requires that
we have to compare respectively long multiplets and short multiplets between
them. Moreover in each fixed space, the codons represented by highest or
lowest weight are “surrounded” by a smaller number of nearest codons. From
an analysis of the positions of the codons in the different irreps., we derive,
from eq.(8), a hierarchy in the stability.

Gly > Pro > Ala > Thr > Ser∗

Phe > Lys > Ile∗∗ > Asn

Leu∗ > V al Glu > Asp

His ≈ Gln Trp >> Met (15)

where the * (**) is written to recall that we are dealing with a sextet (triplet), so
our analysis is less reliable. A comparison with the experimental data from the
PET91 and Dayhoff matrices for the average mutability, see Table 3, shows a
remarkably satisfactory agreement (higher stability implies lower mutability).
Note that the comparison between His and Gln which, at first sight, is not
satisfactory with the Dayhoff data, should be analyzed on the light of the wide
range of variation of the values of the average relative mutability for the doublets
(between 20 and 134). A more detailed analysis should require an evaluation
of the form of the F functions and of the values of the constants appearing in
eq.(8).
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4.2 Relation between rates

In the following we use the standard notation Y = C, U (pyrimidines) and R =
G, A (purines) and N for any nucleotide. First we look for qualitative prediction
for the rate of transition between two amino acids a and b (R(a ⇔ b)) which
follow directly from eq.(9) and from the assumed behaviour of the F function,
without any information of the values of α, β, γ. From an inspection of eqs.(10),
(8), (5) and Tables 2, 1, we can write a set of inequalities between the rates for
several amino acids. The results of our analysis are reported in Table 4 where
for any couple of amino acids we write the experimental values (Exp) taken
from PET matrix [12]. Of course we cannot make any more precise statement
on the range of the inequalities, due to the yet undefined F function.

Table 4. Theoretical inequalities for the rate mutations between two couples of amino acids.
In the last two columns the experimental rate, from [12], for each couple.

Theor: Rate(I) < Rate(II) Exp-I Exp-II
R(Asp ⇔ Ala) < R(Glu ⇔ Ala) 63 82
R(His ⇔ Pro) < R(Gln ⇔ Pro) 58 81
R(Gly ⇔ Arg) < R(Gly ⇔ Ser) 70 129
R(Gly ⇔ Asp) � R(Gly ⇔ Glu) 66 70
R(Trp ⇔ Arg) � R(Met ⇔ Thr) 7 123
R(Gly ⇔ Arg) � R(Gly ⇔ Glu) 70 70
R(Gln ⇔ Arg) < R(His ⇔ Arg) 154 164
R(Asn ⇔ Asp) < R(Asn ⇔ Ser) 284 344
R(Lys ⇔ Gln) < R(Asn ⇔ His) 122 150
R(Lys ⇔ Arg) < R(Asn ⇔ Ser) 334 344
R(Ala ⇔ Thr) < R(Ala ⇔ Ser) 267 284
R(Met ⇔ Thr) < R(Met ⇔ V al) 123 201
R(Tyr ⇔ Asp) < R(Tyr ⇔ Ser) 23 43
R(Tyr ⇔ Ser) < R(Tyr ⇔ His) 43 134
R(V al ⇔ Leu) < R(V al ⇔ Ala) 161 226
R(V al ⇔ Ala) < R(V al ⇔ Ile) 226 504
R(Ser ⇔ Thr) < R(Ser ⇔ Ala) 278 297
R(Pro ⇔ Thr) < R(Pro ⇔ Leu) 69 97
R(Pro ⇔ Thr) < R(Ser ⇔ Ala) 69 297
R(Pro ⇔ Ala) < R(His ⇔ Arg) 150 164
R(Ile ⇔ Thr) < R(His ⇔ Arg) 149 164
R(His ⇔ Arg) < R(Pro ⇔ Ser) 164 190
R(Thr ⇔ Ile) < R(Thr ⇔ Ser) 134 325

From the experimental data that R(Phe ⇔ Leu) > R(Phe ⇔ Tyr) (Exp.:
230 | 179) we derive η > 2. Then we expect

R(Ala ⇔ Pro) < R(Ala ⇔ V al) Exp: 23 | 193 (16)

Let we remark that the following mutations between doublets: Asn ⇔ Lys
(AAY ⇔ AAR), Asp ⇔ Glu (GAY ⇔ GAR), His ⇔ Gln (CAY ⇔ CAR),
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share the common features to involve a mutation in the 3rd nucleotide and to
have the same 2nd nucleotide A. So from the assumption that the middle nu-
cleotide is the one which strongly determines the physical-chemical properties,
comparable mutation rates should be expected. On the contrary in our model,
from eq.(8), we expect different rates, except for a numerical coincidence for
at most two of the considered mutations. The experimental rates are different
(resp.: 150 | 478 | 233). So we derive the following inequality:

|60γ − 4β − 10α| > |12γ − 2α| > |36γ − 4β − 2α| (17)

Let us note that our analysis puts into evidence:
a) a dissimilarity between the transversions C ⇔ A and U ⇔ G, which
apparently has not before either remarked;
b) a “penalty”, in the form of an increase of the distance, appears for mutations
between codons with |J3,H| or |J3,V | > 1/2.

Let us recall once more that in the determination of the mutation rate the
mutability, the frequency of occurrence and the codon distribution frequency
of the considered amino acid play a role.

5. Conclusions

It is believed that the mutations are essentially random effects, especially in
the non coding sequences. For the coding sequences it is known the presence
of evolutionary bias. Our analysis concerns only the coding sequences and
provides indication of the presence of general pattern and symmetry, not before
observed. By trial and errors, following the leading idea to incorporate in a
suitable metric in a n-dim. space the effects of the near neighbours and the
influence of the physical-chemical properties of the different amino acids in the
rate mutation, we have build a simple model which is able to reproduce in a
semi-quantitative way the hierarchy of the most frequently observed mutation
between amino acids. The predictions well agree with the experimental data
of PET91. One should check that no inconsistency appears in the computed
inequalities. This is true for the reported set, but it has to be carefully checked
for all the mutations rates. It should also be noticed that the model is able to
explain some puzzling features, for example:

a the almost equality of the rates R(Gly ⇔ Asp) and R(Gly ⇔ Arg)
(Exp.: 70), the first mutation resulting from the transition of the 1st
nucleotide, GGR ⇔ AGR, and the second from the transitions of the
2rd nucleotide, GGR ⇔ GAR;

b the fact that R(Gln ⇔ His) (CAR ⇔ CAY , transversion of the 3rd
nucleotide) is lower than R(Gln ⇔ Glu) (CAR ⇔ GAR, transversion
of the 1st nucleotide)
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c the fact that R(Ser ⇔ Thr) is lower than R(Ser ⇔ Ala) although any
codon of the sextet Ser can go into the multiplet encoding Thr by single
nucleotide change while only the codons of the quartet UCN can go into
the multiplet encoding Ala, by single nucleotide change.

A more quantitative analysis requires to take into account the normalisation of
the transition matrix ∑

j

Qji = 1 ∀i (18)

and to evaluate the function F of eq.(8). Moreover one should know the codon
usage frequency. The parametrization in terms of only 4 parameters (which
indeed can be reduced to 3 as one can be absorbed in the function F ) and
the identification of a codon with a real number may be a too simple choice.
Going on with the analysis, likely, one will face some inconsistencies between
the theoretical relations. Hopefully these pathologies can be cured with slight
modifications of eqs.(8) and (10).

It is appropriate to underline that this approach can be easily generalized
to describe more complex phenomena, neglected in this paper, as the multiple
nucleotide changes, the observed presence of hotspots for the mutations, the
variation of the mutations with the type of proteins, the probable occurrence of
spurts in the evolution, the scaling behavior of the mean parameter substitution
in function of the total length of genome [14], etc. A criticism can be raised
against this model: it is essentially based on the properties of the genetic code
while the accepted mutations are the replacement of an amino acid by a similar
one. Some of the chemical properties which mostly influence the chances
of mutations, like the hydrophobicity, charge, size, are related to the genetic
code, [10], but many of the physical chemical properties of the amino acids are
believed to have been more imposed by natural selection than by genetic code
constraints. If the plausibility of the model is confirmed, this arises a puzzling
question. The comparison for the mutation rates between the predicted values
of the theoretical time evolution operator P(t) and the experimental values of
the evolution distance matrix M, which can be criticized from many points of
view, has been done as the amino acid mutation matrix is, at my knowledge,
the only source of mutation data with a large statistics, obtained by analysing
many thousands of proteins.
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Abstract The structure positive of unitary irreducible representations of the noncompact
uq(2, 1) quantum algebra that are related to a positive discrete series is examined.
With the aid of projection operators for the suq(2) subalgebra, a q-analog of the
Gel’fand–Graev formulas is derived in the basis corresponding to the reduction
uq(2, 1) → suq(2) × u(1). Projection operators for the suq(1, 1) subalgebra
are employed to study the same representations for the reduction uq(2, 1) →
u(1)× suq(1, 1). The matrix elements of the generators of the uq(2, 1) algebra
are computed in this new basis. A general analytic expression for an element of
the transformation bracket 〈U |T 〉q between the bases associated with above two
reductions (the elements of this matrix are referred to as q-Weyl coefficients) is
obtained for a general case where the deformation parameter q is not equal to a
root of unity. It is shown explicitly that, apart from a phase, q-Weyl coefficients
coincide with the q-Racah coefficients for the suq(2) quantum algebra.

1. Introduction

It is well known that the group theory methods are widely used in the theory
of nucleus. They form the basis of nuclear spectroscopy and of various nuclear
models, including the shell model, models dealing with collective degrees of
freedom, and the interacting boson model. Since group theory or algebraic
models usually admit an analytic solution, they are employed to study various
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properties of nuclear systems in particular, some of their asymptotic properties.
For example, the popular Elliott model, based on SU(3) symmetry, was suc-
cessfully employed by Belyaev and his colleagues [1] to analyze the asymptotic
properties of the generalized density matrix. The discovery of quantum alge-
bras and groups that was made more than 20 years by mathematical physicists
of Leningrad school [2]–[4] gave new impetus to the development of algebraic
methods in theoretical physics, in particular, to searches for applications of
the representations of quantum groups and algebras in physics. For example,
the construction of q analogs of various nuclear models became a new field
of research in theoretical nuclear physics. The point is that quantum algebras
involve an additional variable parameter, the deformation parameter q. This
renders models based on quantum algebras more adaptable and extends their
potential in describing physical systems (see, for example, the study of Raychev
et al [5] and the review article of Bonatsos and Daskaloyannis [6]) which is
devoted to applications of quantum algebras in the theoretical nuclear physics).
However, the searches for physical applications of quantum algebras must be
preceded by a detailed investigations of their irreducible representations. In
this connection, the structure of unitary irreducible representations of the com-
pact uq(3) algebra was examined in details in [7]–[16]. In our opinion it
is important to extend these results on the noncompact uq(2, 1) quantum al-
gebra. The classical algebra u(2, 1) describes the dynamical symmetry of a
two-dimensional harmonic oscillator and of some other physical systems. In
view of this, a comprehensive analysis of unitary irreducible representations of
its quantum analogs may be helpful in constructing respective physical mod-
els. In the present study, we restrict our consideration to the unitary irreducible
representations associated with a positive discrete series.

Unitary irreducible representations of conventional (nondeformed)
u(n, m) algebras were studied by Gel’fand and Graev [17] (see also [18]),
who showed, among other things, that the unitary irreducible representations
of the u(2, 1) algebra can be divided into three discrete series. The series of the
highest weight unitary irreducible representations or a negative discrete series
consists of representations such that each includes the highest weight vector
|H〉 that is, a vector annihilated by any raising generator of the algebra.

A positive discrete series is the series of representations such that each in-
cludes the lowest weight vector |L〉 that is, a vector annihilated by any lowering
generator. There is yet another series, that is referred to as an intermediate one
and which is formed by unitary irreducible representations having neither the
highest weight vector |H〉 nor the lowest weight vector |L〉. For this reason,
this series deserves a dedicated consideration.

Gel’fand and Graev [17] presented explicit expressions for the matrix ele-
ments of generators associated with the above representations that is, the matrix
elements of the generators Aik of the u(n, m) algebra in the basis corresponding
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to the following reduction of this algebra to the chain of subalgebras:

u(n, m) → u(n, m− 1) → . . . → u(n) → . . . → u(2) → u(1), n ≥ m. (1)

However these authors did not give a regular procedure for deriving the expres-
sions that they quoted in [17]. For the u(n, 1), these formulas were derived
in [19]–[21], but there is no derivation of such formulas for the general case
of the u(n, m) algebras. In this study, we extend, the approach proposed by
Vilenkin in [22] for the case of the u(2, 1) classical algebra and examine the
structure of its unitary irreducible representations associated with the positive
series. These results obtained in this way are readily generalized to the case
of negative discrete series. The intermediate discrete series of unitary irre-
ducible representations will be considered in a separate paper. As in [7]–[16],
we assume that the deformation parameter q is specified by an arbitrary positive
number and define q-numbers and q-factorials as follows:

[n] =
qn − q−n

q − q−1
, (2)

[n]! = [n][n − 1] . . . [2][1] , [0]! = 1. (3)

Below, we employ brackets to denote q-numbers, enclose the signatures of
unitary irreducible representations in Dirac brackets, and reserve parentheses for
the weight of a vector, for example, the symbol |〈f1f2f3〉(m1m2m3)〉 stands for
a basis vector of a weight (m1m2m3) in the unitary irreducible representation
D〈f1f2f3〉 = D〈f〉.

2. Positive discrete series of unitary irreducible
representations

The u(2, 1) algebra is known to involve nine generators Aik (i, k = 1, 2, 3)
satisfying the same commutation relations that the corresponding generators of
the compact u(3) classical Lie algebra. However, properties of the u(2, 1) gen-
erators under Hermitian conjugations differ from those of the u(3) generators.
The “compact” generators A11, A22, A33, A12 and A21 of the u(2, 1) algebra
have the same Hermitian properties, as the u(3) generators,

A+
ik = Aki , (4)

whereas the “noncompact” generators A13, A23, A31 and A32 satisfy the rela-
tions

A+
13 = −A31 , (5)

A+
23 = −A32 . (6)

The minus sign in formulas (5) and (6) generates a fundamental distinction
between the structure of any unitary irreducible representation of the u(2, 1)
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algebra and the structure of the corresponding unitary irreducible representation
of the u(3) algebra: all unitary irreducible representations of the compact u(3)
algebra are finite-dimensional, whereas all unitary irreducible representations
of the noncompact u(2, 1) algebra(with the exception of the trivial identity
representation ) are infinite-dimensional. The noncompact uq(2, 1) quantum
algebra is also specified by nine generators Aik (i, k = 1, 2, 3) satisfying the
same commutation relations as the generators of the uq(3) compact quantum
algebra. The explicit expressions for these commutators can be found in [7].

As to their properties with respect to Hermitian conjugation, those in (4) and
(6) remain valid, whereas, in view of the relations

A+
13 = Ã31 = A32A21 − qA21A32 = A31 , (7)

A+
31 = Ã13 = A12A23 − q−1A23A12 = A13 , (8)

for the uq(3) algebra, that in (5) must be replaced by

A+
13 = −Ã31 . (9)

With the aid of (7) and (8), this relation can be recast into either of the
following two equivalent forms:

A+
13 = −A31 + (q − q−1)A21A12 , (10)

or
A+

13 = −q2A31 + (1 − q2)A32A21 . (11)

For the uq(2, 1) algebra, we will consider the unitary irreducible represen-
tation D〈f〉 of the lowest weight (f) = (f1f2f3):that is, we assume that, in the
space of this representation, there is the lowest weight vector |L〉 that satisfies
the relations

Aii|L〉 = fi|L〉 , (i = 1, 2, 3) (12)

annihilated by a pair of lowering generators

A31|L〉 = 0 and A32|L〉 = 0 . (13)

Also it is annihilated by one raising generator

A12|L〉 = 0. (14)

It is assumed that this vector is normalized by the relation

〈L|L〉 = 1 . (15)

All the other basis vectors |X〉 of this unitary irreducible representation can be
derived by applying the generators A13, A23 and A21 to |L〉

|X〉 = Ag
21A

k
23A

�
13|H〉. (16)
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In order to construct a basis of any unitary irreducible representation of the
uq(2, 1) algebra, it is necessary to specify a chain of subalgebras, and this can
be done, as it is well known, in three ways. The first way is to use the U -spin
subalgebra involving the generators A11, A12, A21, and A22, in which case the
respective reduction is

uq(2, 1) → uq(2) → uq(1) . (17)

One can also use the generators A22, A23, A32, and A33 forming the basis of
the T -spin subalgebra or the generators A11, A13, A31, and A33 generating the
V -spin subalgebra. Either of these two subalgebras correspond to the reduction

uq(2, 1) → uq(1, 1) → uq(1) . (18)

In this study, we restrict our consideration to the case of U and T -spin bases.

3. Basis vectors and matrix elements of the generators in
the basis associated with
U -spin reduction

First, we consider that the generators A11, A12, A21, and A22 form a basis of
the U -spin algebra, which is a compact subalgebra of the noncompact quantum
uq(2, 1) algebra, the generators

U+ = A12 , U− = A21 , U0 =
1
2
(A11 − A22) (19)

generating the compact suq(2) subalgebra.
In the case of U -spin reduction, the basis of an unitary irreducible represen-

tation of the u2(2, 1) algebra can be derived in the same way as the basis of
uq(3) algebra [11]:

|〈f1f2f3〉m3UMU〉q =
1

N(k
)N(UMU)
AU−MU

21 PUAk
23A

�
13|H〉 (20)

where
m3 = f3 − k − 
 , (21)

U =
1
2
(f1 − f2 − k + 
) , (22)

MU =
1
2
(m1 − m2) , −U ≤ MU ≤ U , (23)

PU =
∞∑

r=0

(−1)r [2U + 1]!
[r]![2U + r + 1]!

Ar
21A

r
12 (24)
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is the projection operator for the suq(2) algebra [23],

N(UMU) =

√
[2U ]![U − MU]!

[U + MU]!
, (25)

N(k
) are normalization factors, and

|L〉 = |〈f〉f3ULUL〉, UL =
1
2
(f1 − f2) (26)

is the lowest weight vector. The main distinction between the uq(2, 1) and
uq(3) algebras lies in the normalization factor N(k
). In the Appendix, it is
shown that, in the latter case, the square of the normalization factor has the
form:

N2(k
) =
[k]![
]![f1 − f2 − k + 
 + 1]![f1 − f2]!

[f1 − f2 − k]![f1 − f2 + 
 + 1]!

× [f2 − f3 + k − 2]![f1 − f3 + 
 − 1]!
[f1 − f3 − 1]![f2 − f3 − 2]!

. (27)

Here, we impose the conventional requirement that the arguments of all q-
factorials be nonnegative integers. This requirement ensures that the square of
the norm of basis vectors is positive. It also follows that a nonzero vector exists
only under the conditions from

f1 ≥ f2,

f1 − f3 ≥ 1, (28)

f2 − f3 ≥ 2, (29)

0 ≤ k ≤ f1 − f2.

At the same time, no condition is imposed on the exponent 
 (
 = 0, 1, 2, ...),
with the result that, in the case of a U -basis, an unitary irreducible representation
of the uq(2, 1) algebra is infinite-dimensional.

In [17], each basis vector of the lowest weight unitary irreducible represen-
tation was characterized by the scheme∣∣∣∣∣∣

m13 m23 m33

m12 m22

m11

〉
, (30)

where the integers mij satisfy the conditions:

m13 ≥ m23 ≥ m33 ≥ 0, (31)
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m12 ≥ m13 + 1 ≥ m22 ≥ m23 + 1, (32)

m12 ≥ m11 ≥ m22. (33)

The numbers in the first row in (30) represent the signature of a unitary irre-
ducible representation of the uq(2, 1) algebra. They are related to the compo-
nents of the lowest weight by the equations

f1 = m13 + 1, (34)

f2 = m23 + 1, (35)

f3 = m33 − 2. (36)

The numbers in the second row in (30) represent the signature of a unitary
irreducible representation of the uq(2) subalgebra. In our notation,

m12 = f1 + 
, (37)

m22 = f2 + k. (38)

The number in the third row is

m11 = U + MU + m22. (39)

From the condition f1 ≥ f2, it follows

m13 ≥ m23. (40)

The condition f2 − f3 − 2 ≥ 0 means that

m23 ≥ m33 − 1. (41)

Combining these conditions, we obtain

m13 ≥ m23 ≥ m33 − 1. (42)

At the same time, the condition 0 ≤ k ≤ f1−f2 is equivalent to the constraints

m13 + 1 ≥ m22 ≥ m23 + 1. (43)

With regard for the allowed values of the exponent 
, 
 = 0, 1, 2, . . ., we derive

m12 ≤ m13 + 1. (44)

The condition −U ≤ MU ≤ U leads to the constraints

m12 ≥ m11 ≥ m22. (45)
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A comparison of formulas (42)–(45) with (31)–(33) demonstrates that our con-
straints on the structure of basis vectors are identical to the constraints on the val-
ues of mij in the Gel’fand–Graev schemes, with the only exception that, in our
case, there exists a unitary irreducible representation for which m23 = m33−1.
This means that there are unitary irreducible representations corresponding to
the Gel’fand–Graev signature,

{m13m23m33} = {m13, m33 − 1, m33}, (46)

which are beyond the standard constraints (31). The existence of such non-
standard discrete series of unitary representations of the u(2, 1) algebra was
indicated in [20], and [21]. The uq(2, 1) algebra has analogous special series
of unitary irreducible representations.

Further, it should be noted that at f1 = f2, in which case k = 0, the condition
that the norm N2(0
) is positive requires fulfillment of inequality

f3 − f2 − 1 + 
 > 0 (47)

for all values of 
, including 
 = 1. Therefore, the lowest weights correspond-
ing to f1 − f3 > 0 are allowed at f1 = f2 (that is, at m13 = m33). Therefore,
there is an additional nonstandard series of the lowest weight unitary irreducible
representations such that condition (31) is violated for them. Those are char-
acterized by Gel’fand–Graev signatures {m23 − 2, m23 − 2, m23}.

Let us now consider the matrix elements of generators in the U basis. In the
basis specified by (20), the weight generators Aii ((i = 1, 2, 3)) naturally have
a diagonal form are diagonal form, their matrix elements being given by

m1 = f1 + 
 − (U − MU), (48)

m2 = f2 + k + (U − MU), (49)

m3 = f3 − k − 
, (50)

where
m1 + m2 + m3 = f1 + f2 + f3. (51)

The action of the generators A12 = U+ and A21 = U− are well known from
the theory of angular momenta:

U±|〈f〉m3UMU〉q

=
√

[U ∓ MU][U ± MU + 1] |〈f〉m3UMU ± 1〉q . (52)

The matrix elements of the generators A13, A23, A31, A32 are given by the q-
analogs of Gel’fand–Graev formulas

Aij|〈f〉m3UMU〉 =
∑
U′

aij(m′
3U

′M ′
U) |〈f〉m′

3U
′M ′

U〉, (53)
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where
U ′ = U ± 1/2, M ′

U = MU ± 1/2 (54)

and
aij(m′

3U
′M ′

U) = q〈m′
3U

′M ′
U|Aij|m3UMU〉q . (55)

The list of these matrix elements is given in the Table 1; their derivation is given
in [24].

4. Basis vectors and matrix elements of the generators in
the basis associated with
T -spin reduction.

Let us consider the structure of the unitary irreducible representations D〈f〉
of the lowest weight (f1f2f3) in the case of the reduction

uq(2, 1) → uq(1, 1) (56)

of the uq(2, 1) algebra to the uq(1, 1) subalgebra specified by generators A22,
A23, A32, and A33, or to the suq(2) subalgebra of a noncompact T -spin, the
generators in latter case being

T+ = A23, T− = A32, T0 =
1
2
(A22 − A33). (57)

We note that the condition (1) imposed in [17] on a chain of subalgebras is not
satisfied in formulas (56). For this reason, the results obtained in [17] are not
valid in the case of the T -spin basis even for classical u(2, 1) algebra, not to
mention its deformation uq(2, 1).

Before proceedings to discuss the uq(2, 1) algebra as a whole, it is reasonable
to recall general information about the suq(1, 1) subalgebra and its unitary
irreducible representations. The generators of the suq(1, 1) subalgebra satisfy
the well-known commutation relations

[T0, T+] = T+, (58)

[T0, T−] = −T−, (59)

[T+, T−] = [2T0]. (60)

Under Hermitian conjugation, they transform as follows:

T+
0 = T0, (61)

T+
+ = −T−. (62)

The unitary irreducible representations DT of the positive discrete series are
infinite-dimensional; the respective T -spin is given by

T = −1
2
, 0,

1
2
, 1,

3
2
, 2, . . . (63)
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Table 1. Matrix elements of the generators of the noncompact uq(2, 1) algebra for the unitary
irreducible representation D{〈f〉+} associated with the positive discrete series (U -basis used
here was derived from the lowest weight vector |L〉).

a13

(
m3 − 1, U +

1

2
, MU +

1

2

)
= q−U+MU

[
[� + 1][f1 − f3 + �][2U + k + 2][U + MU + 1]

[2U + 1][2U + 2]

]1/2

a23

(
m3 − 1, U +

1

2
, MU − 1

2

)
=

[
[� + 1][f1 − f3 + �][2U + k + 2][U − MU + 1]

[2U + 1][2U + 2]

]1/2

a13

(
m3 − 1, U − 1

2
, MU +

1

2

)
= −qU+MU+1

[
[k + 1][f2 − f3 + k − 1][2U − �][U − MU ]

[2U ][2U + 1]

]1/2

a23

(
m3 − 1, U − 1

2
, MU − 1

2

)
=

[
[k + 1][f2 − f3 + k − 1][2U − �][U + MU ]

[2U ][2U + 1]

]1/2

a31

(
m3 + 1, U − 1

2
, MU − 1

2

)
= −qU−MU

[
[�][f1 − f3 + � − 1][2U + k + 1][U + MU ]

[2U ][2U + 1]

]1/2

a32

(
m3 + 1, U − 1

2
, MU +

1

2

)
= −

[
[�][f1 − f3 + � − 1][2U + k + 1][U − MU ]

[2U ][2U + 1]

]1/2

a31

(
m3 + 1, U +

1

2
, MU − 1

2

)
= q−U−MU−1

[
[k][f2 − f3 + k − 2][2U − � + 1][U − MU + 1]

[2U + 1][2U + 2]

]1/2

a32

(
m3 + 1, U +

1

2
, MU +

1

2

)
= −

[
[k][f2 − f3 + k − 2][2U − � + 1][U + MU + 1]

[2U + 1][2U + 2]

]1/2
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The T -spin projection M (or the weight of a vector) is an eigenvalue of the
operator of the T -spin projectionT0, takes the positive values:

M = T + 1, T + 2, . . . (64)

the lowest weight being T + 1. We assume that the lowest weight vector
|H〉 = |T, T + 1〉 is known and that it satisfies the requirements

T−|L〉 = 0, (65)

T0|L〉 = (T + 1)|L〉, (66)

and the normalization condition

〈L|L〉 = 1. (67)

The basis vectors of a higher weight can be obtained from the lowest weight
vector by the formula

|TM〉 =
1

N(TM)
TM−T−1

+ |TT + 1〉. (68)

The square norm of a vector is derived in this way has a form (x = M −T −1)

N2(TM) = (−1)x〈L|Ax
32A

x
23|L〉 = [x][2T + x + 1]N2(T, M + 1)

=
[−T + M − 1]![T + M ]!

[2T + 1]!
. (69)

It can be seen that the condition N2(TM) > 0 imposes no constraints on
x = 0, 1, 2, . . .; therefore, the unitary irreducible representation is infinite-
dimensional. Nonzero matrix elements of the generators in the basis specified
(68) are given by

〈TM |T0|TM〉 = M, (70)

a23 = 〈TM + 1|A23|TM〉 = {[−T + M ][T + M + 1]}1/2, (71)

a32 = 〈TM − 1|A32|TM〉 = −{[T + M ][−T + M − 1]}1/2. (72)

The Casimir operator for the suq(1, 1) algebra has the same form as for the
suq(2) algebra:

C2(suq(1, 1)) = T−T+ + [T0 + 1/2]2. (73)

All vectors in (64) are the eigenvectors of this operator and correspond to the
same eigenvalue:

C2(suq(1, 1))|TM〉 = [T + 1/2]2|TM〉. (74)
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We also need the extremal projection operator PT = PT
T+1.T+1 for the discrete

series of the lowest weight unitary irreducible representation. As in the case of
the suq(2) algebra, we seek the expression for the extremal projection operator
in the form of series:

PT =
∑
r=0

CrT
r
+T r

−. (75)

In what follows, we apply this projection operator only to those vectors |T +1〉
that have a specific weight M = T + 1, but which, in general, do not have
a specific value of T -spin that is, to vectors that are represented by linear
combinations of

|T + 1〉 =
∑
T ′

|T ′, T + 1〉. (76)

In contrast to the case of suq(2) algebra, however, the sum over T ′ is finite
in the case under study, because the inequality T ′ ≤ M ′ − 1 must hold for the
basis vectors |T ′M ′〉 of the positive discrete series. In the case (76) it means
that T ′ ≤ T . Hence the variable T ′ in the sum (76) runs through the values
from Tmin = −1/2 or 0 up to T , depending on whether T is an integer or a
half-integer. By applying the operator in (75) to the vectors in (76), can show
that only a finite number of terms in (75) make a non-vanishing contribution,
namely, those that satisfy T + 1 − r ≤ 1 or 1/2 (that is, r ≤ T or T + 1/2).
Hence, the terms in (75) that involve higher powers r can be disregarded.

The projection operator PT satisfies the equations

T−PT = 0, (77)

PT |T, T + 1〉 = |T, T + 1〉. (78)

From (77) it follows that the coefficients Cr satisfy the recursion relation

Cr−1 + [r][−2T + r − 1]Cr = 0. (79)

From this relation, we obtain

Cr = C0
[2T − r]!
[r]![2T ]!

, r ≤ 2T. (80)

From the condition (78), it follows that

C0 = 1. (81)

At r = 2T + 1, relation (80) is meaningless, but we have shown above that we
do need the coefficients Cr for r > T or T + 1/2. Thus, it is sufficient, for our
purposes, to use the simple projection operator

PT =
r=2T∑
r=0

[2T − r]!
[r]![2T ]!

T r
+T r

−. (82)
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A projection operator of a more general form can be represented as

PT
MM′ =

(−1)−T−M′−1

N(TM)N(TM ′)
T−T+M−1
− PTT−T+M′−1

+ . (83)

As a matter of fact, Vilenkin [22] used similar projection operators (of course,
only for q = 1) long ago to derive the harmonic projections of polynomials
depending on n Cartesian variables.

Let us present yet another relation helpful for subsequent computations

PT
T+1,MPT

M,T+1 =
(−1)T+M+1

N2(TM)
PTTM−T−1

− TM−T−1
+ PT = PT . (84)

From this equation, it follows

PTTM−T−1
− TM−T−1

+ PT = (−1)M−T−1N2(TM)PT . (85)

We now return to a consideration of the lowest weight unitary irreducible repre-
sentations of the uq(2, 1) algebra. As in the case of the uq(3) algebra, the basis
vectors of the unitary irreducible representation D〈f〉 of the uq(2, 1) algebra
that correspond to the lowest weight (f) = (f1f2f3) will be represented in a
form

|〈f〉m1TMT〉q =
1

N(sp)N(TMT)
AM−T−1

23 PTAs
13A

p
21|H〉, (86)

where

T =
1
2
(f2 − f3 + p + s − 2), (87)

M = T + 1, T + 2, . . . . (88)

The normalization factor N(TMT) is determined by formula (69), while the
projection operator PT is given by (82). The normalization factor N(sp) for
the vectors of T -spin basis is calculated by a method similar to that used for
the norm of the vectors of the U -spin basis described in the Appendix (see also
[24]). The square of this norm is

N2(sp) =
[s]![p]![f1 − f2]![f1 − f3 + s − 1]!

[f1 − f2 − p]![f1 − f3 − 1]!

× [f2 − f3 + s − 2]![f2 − f3 + p − 2]!
[f2 − f3 − 2]![f2 − f3 + p + s − 2]!

. (89)

From the analysis of the norm of the basis vectors, we derive the conditions

f1 ≥ f2, (90)
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f2 − f3 − 2 ≥ 0, (91)

0 ≤ p ≤ f1 − f2. (92)

There is no constraints on the exponent s; that is, s = 0, 1, 2, ...Since the number
of values of the projections M is infinite, this means that the representations
under study are infinite-dimensional. The constraints in (91) and (92) on the the
signature of unitary irreducible representations are identical to those obtained
for the U -spin basis. For this reason, the classification of the standard and
nonstandard discrete series for the T -basis remains unchanged, as might have
been expected.

Let us now proceed to discuss the matrix elements of generators. For the
weight generators Aii in the T -spin basis, only diagonal matrix elements do not
vanish. They are given by

a11(m1TM) = a11(m1m2m3) = m1 = f1 − p + s, (93)

a22(m1TM) = a22(m1m2m3) = m2 = f2 + p − T + M − 1, (94)

a33(m1TM) = a33(m1m2m3) = m3 = f3 − s + T − M + 1. (95)

The matrix elements of the generators A23 = T+ and A32 = T− can be deter-
mined by formulas (71) and (72).

The remaining four non-diagonal generators act on the T -basis vectors as
follows

Aij|〈f〉m1TM >q=
∑
T ′

aij(m′
1T

′M ′) |〈f〉m′
1T

′M ′〉q (96)

where
T ′ = T ± 1/2, M ′ = M ± 1/2, (97)

and
aij(m′

1T
′M ′) = q〈m′

1T
′M ′|Aij|m1TM〉q. (98)

These matrix elements are presented in Table 2(the derivation of these ex-
pressions is given in [24].

5. Weyl coefficients 〈U |T 〉q for the positive discrete series
of unitary irreducible representations of the uq(2, 1)
quantum algebra

By definition, the Weyl coefficient 〈U |T 〉q for an irreducible representation
〈f〉 of the uq(2, 1) quantum algebra has a form

〈U |T 〉q = q〈{f}m3UMU|{f}m1TMT〉q

=
(−1)k+�

N(k
)N(UMU)N(sp)N(TM) q〈L|A�
31A

k
32P

UAa
12A

b
23P

TAp
21A

s
13|L〉q,

(99)
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Table 2. Matrix elements of the generators of the noncompact uq(2, 1) quantum algebra for
the unitary irreducible representation D{〈f〉+} of the positive discrete series (T -spin basis used
here was constructed with the aid of the lowest weight vector |L〉).

a12

(
m1 + 1, T +

1

2
, M − 1

2

)
=

[
[s + 1][f1 − f3 + s][2T − p + 1][−T + M − 1]

[2T + 1][2T + 2]

]1/2

a13

(
m1 + 1, T +

1

2
, M +

1

2

)
= qT−M+1

[
[s + 1][f1 − f3 + s][2T − p + 1][T + M + 1]

[2T + 1][2T + 2]

]1/2

a12

(
m1 + 1, T − 1

2
, M − 1

2

)
=

[
[p][f1 − f2 − p + 1][2T − s][T + M ]

[2T ][2T + 1]

]1/2

a13

(
m1 + 1, T − 1

2
, M +

1

2

)
= q−T−M

[
[p][f1 − f2 − p + 1][2T − s][−T + M ]

[2T ][2T + 1]

]1/2

a21

(
m1 − 1, T − 1

2
, M +

1

2

)
=

[
[s][f1 − f3 + s − 1][2T − p][−T + M ]

[2T ][2T + 1]

]1/2

a31

(
m1 − 1, T − 1

2
, M − 1

2

)
= −q−T+M−1

[
[s][f1 − f3 + s − 1][2T − p][T + M ]

[2T ][2T + 1]

]1/2

a21

(
m1 − 1, T +

1

2
, M +

1

2

)
=

[
[p + 1][f1 − f2 − p][2T − s + 1][T + M + 1]

[2T + 1][2T + 2]

]1/2

a31

(
m1 − 1, T +

1

2
, M − 1

2

)
= −qT+M

[
[p + 1][f1 − f2 − p][2T − s + 1][−T + M − 1]

[2T + 1][2T + 2]

]1/2
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where |L〉 is the lowest weight vector of the irreducible representation 〈f〉:

a = U − MU, b = −T + M − 1, (100)

and the normalization factors N(k
), N(UMU), N(sp), and N(TM) and the
projection operators PU and PT were defined in the foregoing. Since the weight
in the left hand side of Eq. (99 ) for the matrix element is equal to the weight
of the right hand side, we conclude that the parameters k and 
 are related to s
and p by the equations

U − MU = p − s + 
, (101)

T − M + 1 = s − 
 − k. (102)

The computation of the above matrix element is performed by making use
of the commutation relations between the generators raised to a power. The
scheme of the computations is identical to that in the case of the uq(3) algebra
[25]. Taking into account the explicit form of projection operator PU , we arrive
at

B = q〈L|A�
13A

k
32P

UAr
21A

a
12A

b
23P

TAp
21A

s
13|L〉q

=
∑

r

(−1)r [2U + 1]!
[r]![2U + r + 1]! q〈L|A�

31A
k
32A

r
21A

a+r
12 Ab

23P
TAp

21A
s
13|L〉q.

(103)

With the aid of commutation relations, we transfer the operator Ar
21 in the matrix

element to the left until it appears immediately after vector 〈L| and consider
that 〈L|A21 = 0. The expression for B then takes the form

B =
∑

r

[2U + 1]![k]!
[r]![k − r]![2U + r + 1]!

B1, (104)

where
B1 = q〈L|A�+r

31 Ar+a
12 Ak−r

32 Ab
23P

TAp
21A

s
13|L〉q. (105)

To compute the matrix element B1, the generators A32 must be transferred
to the right until they appear immediately before the projection operator PT ,
whereupon the equation A32P

T = 0 is taken into account. As a result the
matrix element B1 reduces to the expression

B1 =
[k]![b]!

[k − r]![b − k + r]!

∏
t

[f3 − f2 − a + b − k − 
 − r − t] B2, (106)

where
B2 = q〈L|A�+r

31 Aa+r
12 Ab−k+r

23 PTAp
21A

s
13|L〉q. (107)
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Considering that, in the case of T -spin basis,

2T = f2 − f3 + p + s − 2 (108)

and that all factors in the product
∏
t

are negative, we recast the product into the

form∏
t

[f3−f2−a+b−k−
−r−t] = (−1)k−r [f2 − f3 + p + 
 + k − 1]!
[f2 − f3 + p + l + r − 1]!

. (109)

Further, we transfer the generators Ab−k+r
23 in the expression for the matrix

element B2 to the left until they appear immediately after the vector 〈L|, which
annihilates them, and consider that 〈L|Ay

21 = δy,0〈L|. As a result we have

B2 =
[a + r]!

[a − b + k]! q〈L|A�+r
31 Ab−k+r

13 Aa−b+k
12 PTAp

21A
s
13|L〉q. (110)

The commutation of generators A�+r
31 and Ab−k+r

13 whereupon the condition
〈L|Az

13 = δz,0〈L| is taken into account, gives the ultimate expression for the
matrix element B2:

B2 = (−1)�+r+s [a + r]![
 + r]![f1 − f3 + 
 + r − 1]!
[p]![s]![f1 − f3 + s − 1]!

× q〈L|As
31A

p
12P

TAp
21A

s
13|L〉q

= (−1)�+r [a + r]![
 + r]![f1 − f3 + 
 + r − 1]!
[p]![s]![f1 − f3 + s − 1]!

N2(sp). (111)

Combining the above results, we reduce the expression for the Weyl coefficients
〈U |T 〉q of the form

〈U |T 〉q =
{

[2U + 1][2T + 1][k]![−T − 1 + M ][U + MU]![T + M ]!
[p]![s]![
]![U − MU]![f1 − f3 + s − 1]!

× [f1 − f2 − k]![f1 − f2 + 
 + 1]![f2 − f3 + s − 2]![f2 − f3 + p − 2]!
[f1 − f2 − p]![f2 − f3 + k − 2]![f1 − f3 + 
 − 1]!

}1/2

×
∑

r

(−1)r [U − MU + r]![
 + r]![f1 − f3 + 
 + r − 1]!
[r]![2U + r + 1]![k − r]![
 − s + r]![f2 − f3 + p + 
 + r − 1]!

.

(112)
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The substitution r = k − n allows to rewrite the last formula as follows

〈U |T 〉q =
{

[2U + 1][2T + 1][k]![−T + M − 1]![U + MU]![T + M ]!
[s]![p]![
]![U − MU]![f1 − f3 + s − 1]!

× [f1 − f2 − k]![f1 − f2 + 
 + 1]![f2 − f3 + s − 2]![f2 − f3 + p − 2]!
[f1 − f2 − p]![f2 − f3 + k − 2]![f1 − f3 + 
 − 1]!

}1/2

×
∑

n

(−1)k+n[U − MU + k − n]![
 + k − n]!
[n]![k − n]![2U + 1 + k − n]![
 − s + k − n]!

× [f1 − f3 + 
 + k − n − 1]!
[f2 − f3 + p + 
 + k − n − 1]!

. (113)

6. Relation between the q-Weyl coefficients for the
uq(2, 1) quantum algebra and q-Racah coefficients for
the suq(2) quantum algebra.

The explicit expression for the q-Weyl coefficient for the uq(3) algebra was
obtained in [25], and its relation to the Racah coefficient for the suq(2) quantum
algebra was established there. Here, we show that the expression (113) for the
q-Weyl coefficient for the uq(2, 1) quantum algebra can also be related to the q-
Racah coefficients for the suq(2) quantum algebra. Our consideration is based
on one of five general formulas in [25] for the q-Racah coefficient for the suq(2)
quantum algebra [namely, formula (5.31) in [25]]:

Uq(abed; cf) = (−1)a+d−c−f

{
[2c + 1][2f + 1][a + b + c + 1]!
[a + e + f + 1]![c + d + e + 1]!

× [b + d + f + 1]![a − b + c]![−a + b + c]![a + e − f ]![b − d + f ]!
[a + b − c]![a − e + f ]![b + d − f ]![c + d − e]![c − d + e]!

× [−b + d + f ]![−c + d + e]!
[−a + e + f ]!

}1/2

×
∑

n

(−1)n[2b − n]![b + c − e + f − n]!
[n]![−a + b + c − n]![b − d + f − n][a + b + c + 1 − n]!

× 1
[b + d + f + 1 − n]!

. (114)

A comparison of the expression (114) with formula (113) for the Weyl coef-
ficient for the positive discrete series of the representations of uq(2, 1) reveals
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the summands in the two formulas coincide, provided

a = T =
1
2
(f2 − f3 + p + s − 2), b = j3 =

1
2
(
 + k),

c = j2 =
1
2
(f2 − f3 + p − s + 
 + k − 2)), (115)

d = U =
1
2
(f1 − f2 + 
 − k), e = j1 =

1
2
(f1 − f3 − p + s − 2),

f = j =
1
2
(f1 − f2). (116)

Further, the substitution of parameters a, b, c, d, e and f from the formulas (115)
and (116) gives the relation between the q-Weyl coefficient (113) for the uq(2, 1)
quantum algebra and q-Racah coefficient for the suq(2) quantum algebra,

〈U | T 〉q = (−1)s

√
[2U + 1][2T + 1]
[2j2 + 1][2j + 1]

U(Tj3j1U ; j2j)q

= (−1)k U(j1j2jj3; UT )q. (117)

7. Conclusion

In this study, the projection operators for the suq(2) subalgebra have used to
explore the positive discrete series of unitary irreducible representations of the
noncompact uq(2, 1) quantum algebra. The q-analog of the Gel’fand–Graev
formulas has been derived in the basis associated with the reduction uq(2, 1) →
suq(2) × u(1). It seems that the reduction uq(2, 1) → u(1) × suq(1, 1) for
the discrete series of the lowest weight representations has been considered
for the first time in the present study. With the aid of the projection operator
for the suq(1, 1) subalgebra, we constructed the basis of the representation for
this reduction and calculated the matrix elements of the generators. We have
obtained analytic expressions for the elements of the transformation brackets
〈U |T 〉q relating the U -spin and T -spin bases of the lowest weight irreducible
representations. By the analogy with q-Weyl coefficients for the uq(3) algebra
[25], they can be called the q-Weyl coefficients for the noncompact uq(2, 1)
algebra. It has been explicitly shown that these q-Weyl coefficients are equiv-
alent (apart from phase factor) to specific q-Racah coefficient for the uq(2)
algebra or are proportional to the q–6j symbol for the suq(2) algebra. The
negative discrete series was discussed by us in [26]. The intermediate discrete
series requires a dedicated investigation, and this will be done in our further
publication.
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Appendix: Normalization of the U -spin basis vectors of the
uq(2, 1) algebra (positive discrete series).

The structure of the U -basis vectors is described by formulas (19)–(26).
Here, we use the transformation properties of the “noncompact” generators under Hermitian

conjugation and the properties of projection operator P U :

(P U )+ = P U , (A.1)

(P U )2 = P U , (A.2)

AU−MU
12 AU−MU

21 P U = N2(UMU )P U . (A.3)

With allowance for these formulas, the square of the norm N2(k�) takes a form:

N2(k�) = (−1)k+� 〈L|A�
31Ã

k
32P

UAk
23A

�
13|L〉, (A.4)

where
Ã31 = A32A23 − qA23A32. (A.5)

Since, by definition, the relation

A31 = A32A21 − q−1A21A32 (A.6)

holds we can represent the generator Ã31 in the form

Ã31 = A31 − (q − q−1)A21A32. (A.7)

From the relations
A12P

U = P UA21 = 0 (A.8)

it follows that
N2(k�) = (−1)k+� 〈L|A�

23A
k
13P

UAk
31A

�
32|L〉. (A.9)

A straightforward computation of N2(k�) by transferring of lowering generators to the lowest
vector |L〉 is rather cumbersome. In view of this, we will try to construct a recursion relation
between the expressions for N2(k�) for various values of k and �, bearing in mind that

〈L|P U |L〉 = 〈L|L〉 = 1. (A.10)

We begin by establishing a relation between N2(k�) and N2(k − 1, �). In the expression for
N2(k�), we replace, for this purpose, Ak

32 by Ak−1
32 P U+1/2A32. This is legitimate because,

in (A.9), the projection operator P U+1/2 taken in this combination is equivalent to the identity
operator. Indeed, we have

P U+1/2A32P
U =

∑
r

(−1)r [2U + 2]!

[r]![2U + r + 2]!
Ar

21A
r
12A32P

U = A32P
U , (A.11)
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since the generators Ar
12 and A32 commute and since Ar

12P
U = δr,0P

U . We now consider the
application of the generator A32 to the projection operator P U :

A32P
U =

∑
r

(−1)r [2U + 1]!

[r]![2U + r + 1]!
A32A

r
21A

r
12 =

=
∑

r

(−1)r [2U + 1]!

[r]![2U + r + 1]!
(q−rAr

21A32 + [r]Ar−1
21 A23) Ar

12. (A.12)

From here on, we use the commutation relations from [7, 25] for generators raised to a power.
In view of the relation P U+1/2A21 = (A12P

U+1/2)+ = 0, the application of this operator on
the projection operator P U+1/2 from the left yields

P U+1/2A32P
U = P U+1/2

(
A32 − A31A12

[2U + 2]

)
, (A.13)

where
[2U + 2] = [f1 − f2 − k + � + 2]. (A.14)

As a result, the square of the norm becomes

N2(k�) = (−1)k+�

〈
L

∣∣∣∣A�
31A

k−1
32 P U+1/2

(
A32 − A32A21

[f1 − f2 − k + � + 2]

)
Ak

23A
�
13

∣∣∣∣L〉.

(A.15)
Commuting the generators A32 and Ak

23, we arrive at

A32A
k
23A

�
13 |L >= [k][f3 − f2 − k − � + 1]Ak−1

23 A�
13 |L > . (A.16)

and
A31A12A

k
23A

�
13 |L〉 = [k]A31A

k−1
23 A�+1

13 |L > . (A.17)

The commutation of the generators A32 and A�
31 makes it possible to derive the relation

A32A
�
13 =

(
A�

13 − [�]q�−1A�−1
13 A12q

−(A22−A33−1)
)

. (A.18)

Transferring the generator A31 to the right until it appears immediately in front of the lowest
weight |L〉, which annihilates it, we obtain

P U+1/2A32A12A
k
23A

�
13|L〉 = [k][� + 1][f3 − f1 − �]P U+1/2Ak−1

23 A�
13|L〉; (A.18)

therefore, we have

P U+1/2A32P
UAk

23A
�
13 |L〉

= [k]([f3 − f2 − k − � + 1] − [� + 1][f3 − f1 − �]

[f1 − f2 − k + � + 2]
P U+1/2Ak−1

23 A�
13 |L〉

= − [k][f1 − f2 − k + 1][f2 − f3 + k − 2]

[f1 − f2 − k + � + 2]
P U+1/2Ak−1

23 A�
13 |L〉. (A.19)

Thus, the square of the norm, N2(k�), takes the form

N2(k�) = (−1)k+�−1 [k][f1 − f2 − k + 1][f2 − f3 + k − 2]

[f1 − f2 − k + � + 2]

× 〈L|A�
31A

k−1
32 P U+1/2Ak−1

23 A�
23|L〉. (A.20)
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In other words we have derived a recursion relation between N2(k�) and N2(k − 1, �),

N2(k�) =
[k][f1 − f2 − k + 1][f2 − f3 + k − 2]

[f1 − f2 − k + � + 2]
N2(k − 1, �). (A.21)

The recursion relation

N2(0�) = (−1)� 〈H|A�
31P

UA�
13|H〉 = [�][f1 − f3 + � − 1] N2(0, � − 1) (A.22)

can be obtained in a similar way.
Using these recursion relations, we arrive at an ultimate expression for for the square of the

norm in (A.9):

N2(k�) =
[k]![�]![f1 − f2]![f1 − f2 − k + � + 1]![f2 − f3 + k − 2]![f1 − f3 + � − 1]!

[f1 − f2 − k]![f1 − f2 + � + 1]![f1 − f3 − 1]![f2 − f3 − 2]!
.

(A.23)
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† Université Pierre et Marie Curie
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Abstract The general normal ordering problem for boson strings is a combinatorial prob-
lem. In this talk we restrict ourselves to single-mode boson monomials. This
problem leads to elegant generalisations of well-known combinatorial numbers,
such as Bell and Stirling numbers. We explicitly give the generating functions
for some classes of these numbers. Finally we show that a graphical represen-
tation of these combinatorial numbers leads to sets of model field theories, for
which the graphs may be interpreted as Feynman diagrams corresponding to the
bosons of the theory. The generating functions are the generators of the classes
of Feynman diagrams.
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1. Boson Normal Ordering

In this note we give a brief review of the combinatorial properties associated
with the normal ordering of bosons, and the model Feynman graphs which
result.

Combinatorial sequences appear naturally in the solution of the boson normal
ordering problem [1], [2].

The normal ordering problem for canonical bosons [a, a†] = 1 is related to
certain combinatorial numbers S(n, k) called Stirling numbers of the second
kind through [3]

(a†a)n =
n∑

k=1

S(n, k)(a†)kak, (1)

with corresponding numbers B(n) =
∑n

k=1 S(n, k) called Bell numbers. In
fact, for physicists, these equations may be taken as the definitions of the Stirling
and Bell numbers. For quons (q-bosons) satisfying [a, a†]q ≡ aa† − qa†a = 1
a natural q-generalisation [4] of these numbers is

(a†a)n =
n∑

k=1

Sq(n, k)(a†)kak. (2)

In the canonical boson case, for integers n, r, s > 0 we define generalized
Stirling numbers of the second kind Sr,s(n, k) through (r ≥ s):

[(a†)ras]n = (a†)n(r−s)
ns∑

k=s

Sr,s(n, k)(a†)kak, (3)

as well as generalized Bell numbers Br,s(n)

Br,s(n) =
ns∑

k=s

Sr,s(n, k). (4)

For both Sr,s(n, k) and Br,s(n) exact and explicit formulas have been found
[1, 2]. We refer the interested reader to these sources for further information on
those extensions. However, in this note we shall only deal with the classical Bell
and Stirling numbers, corresponding to B1,1(n) and S1,1(n) in our notation.

2. Generating Functions

In general, for combinatorial numbers g(n) we may define an exponential
generating function G(x) through [6]

G(x) =
∞∑

n=0

g(n)
xn

n!
. (5)
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Figure 1. Arrow graphs for (a†a)n n = 1, 2, 3.

For the Bell numbers, the generating function takes the particularly nice form
[5]

G(x) =
∞∑

n=0

B(n)
xn

n!
= exp(exp(x) − 1). (6)

Some initial terms of the sequence {B(n)} are {1, 2, 5, 15, 52, 203, 877, . . .}.

3. Graphs

A convenient way of representing combinatorial numbers is by means of
graphs. To illustrate this, we now consider a graphical method for illustrat-
ing the combinatorial numbers associated with the normal order expansion of
(a†a)n.

A single arrow represents a “time-segment” of a line corresponding to the
“propagator” (a†a). Thus we may concatenate one, two or more arrows to form
a single line, or propagator (a†a). However, two lines correspond to two distinct
propagators a†2a2, and so on. Further, the constitutent arrows are labelled, for
example by time, and so they may only be concatenated respecting the time
ordering. These rules are illustrated by the diagrams of Figure 1, in which we
consider the cases of 1, 2, and 3 arrows respectively. We have pre-emptively
labelled these numbers as Bell numbers - which fact we demonstrate below.
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Figure 2. Arrow graphs for (a†a)4.

For the case of 4 arrows (Figure 2) we have additionally given the individual
associated symmetry factors (in fact Stirling numbers) which add to B(4) = 15.
It should be clear from this illustration how the time-ordering rules are applied
to give the symmetry coefficients. Thus there is only one way in which we can
concatenate 4 arrows respecting time-ordering (first grouping), 4 ways in which
we can divide the arrows into a set of 3 and 1, and so on.

From these first few examples it would seem that these graphs are essentially
like the Feynman Diagrams of a zero-dimensional (no integration) Model Field
Theory associated with H = a†a. In other words, at order n the total number

of graphs would appear to be B(n) while the individual coefficients of a†kak

are given by S(n, k). In order to show that this is indeed the case, we must be
able to count the number of graphs associated with a given number n of arrows.
To do this we can use the First of Three Great Results.

4. First Great Result

This First Great Result is sometimes known as the connected graph theorem
[7]. It states that if C(x) =

∑∞
n=1 c(n)xn/n! is the generating function of

labelled connected graphs, viz. c(n) counts the number of connected graphs of
order n, then

A(x) = exp(C(x)) (7)
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is the generating function for all graphs.
We may apply this very simply to the case of the arrow graphs above. For

each order n, the connected graphs consist of the single graph obtained by
concatenating all the arrows into one propagator. Therefore for each n we have
c(n) = 1; whence, C(x) = exp(x)− 1. It follows that the generating function
for all the arrow graphs A(x) is given by

A(x) = exp(exp(x) − 1) (8)

which is the generating function for the Bell numbers.
Such graphs may be generalised to give graphical representations for the

extensions Br,s(n) [8].
However, just as an abstract group is capable of more than one presentation,

there are many graphical representations for a given combinatorial sequence;
and we now give an alternative one for the numbers B(n), S(n, k) due to Bender
and collaborators [9], [10].

5. Second Great Result

As before, we shall be counting lines. A line starts from a white dot, the
origin, and ends at a black dot, the vertex. What we refer to as origin and
vertex is, of course, arbitrary. At this point there are no other rules, although
we are at liberty to impose further restrictions; a white dot may be the origin
of 1,2,3,. . . lines, and a black dot the vertex for 1,2,3,. . . lines. We may further
associate strengths Vs with each vertex receiving s lines, and multipliers Lm

with a white dot which is the origin of m lines. Again {Vs} and {Lm} play
symmetric roles; in this note we shall only consider cases where the Lm are
either 0 or 1.

We illustrate these rules for four different graphs corresponding to n = 4.
There is an generating function G(x, V, L) which counts the number g(n)

of graphs with n lines arising from the above rules [11]:

G(x, V, L) = exp(
∞∑

m=1

Lm
xm

m!
dm

dym
) exp(

∞∑
s=1

Vs
ys

s!
)

∣∣∣∣∣
y=0

≡
∞∑

n=0

g(n)
xn

n!
(9)

Consider the following example: Lm = 0 for all m = 1, that is, we allow
only one line from each origin (with multiplier 1); there is no restriction on the
number of lines to a vertex, and Vs = 1 for all s. We give an example of the
cases n = 1, 2, 3, 4 in Figure 4. Note that for correct counting the lines should
be labelled, as they were in the case of the arrows above.
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Figure 3. Some examples of 4-line graphs.

The generating function G(x) which counts the lines corresponding to the
above rules follows immediately from Eq.(9)

G(x) = exp(
∞∑

m=1

Lm
xm

m!
dm

dym
) exp(

∞∑
s=1

Vs
ys

s!
)

∣∣∣∣∣
y=0

= exp(
x

1!
d

dy
) exp(

∞∑
s=1

ys

s!
)

∣∣∣∣∣
y=0

= exp(xd/dy) exp(ey − 1)|y=0

= exp(ex − 1) ≡
∞∑

n=0

B(n)
xn

n!
. (10)

The penultimate step is a consequence of the Taylor expansion.
We thus have yet another representation of the integer sequence {B(n)}.

Note that when L ≡ {Lm} and V ≡ {Vs} are integer sequences we obtain an
integer sequence from Eq.(9). A convenient method of obtaining the resulting
integer sequence is afforded by the next useful result.
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Figure 4. Graphs of second type for B(n), n = 1, 2, 3.

6. Third Great Result

Straightforward manipulation of series shows the following: Define

Ai(x) =
∞∑

n=0

ai(n)
xn

n!
i = 1, 2, 3. (11)

Then if
A1(xd/dy)A2(y)|y=0 = A3(x) (12)

we have
a3(n) = a1(n)a2(n). (13)

This is a useful and rather surprising equality.
Using the results of the previous section, Eq.(13) enables us to create graph-

ical representations of products of integral sequences. For example: if in the
case above we chose Lm = 1 for all m, enabling any number of lines from each
origin (with multiplier 1), the resulting sequence of graphs would have given
us a representation of the integer sequence {B(n)2} [9].

We exemplify the possibilities offered by application of the Third Great
Result by our two final examples.

Example 1: Generating function for the sequence {B(n)B(n + 1)}.
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From Eqs.(11) and (13), the required generating function is given by

G(x, V, L) = A1(xd/dy)A2(y)|y=0 (14)

where A1(x) is the generating function for {B(n)} and A2(x) is that of {B(n+
1)}. Note that A1(x) = exp(exp(x) − 1) from Eq.(8), while A2(x) =
(d/dx)A1(x) = exp(exp(x) − 1 + x).

This shows that the graphs for the sequence{B(n)B(n+1)}may be obtained
by putting Lm = 1 for all m, so that there are any number of lines emanating
from an origin, and with multiplicity 1. For the sequence {B(n + 1)} we have
Vs = 1 for all s = 2 and V2 = 2, so that any number of lines may end at a
vertex, and all have strength 1 except for the case where two lines meet at a
vertex, when the strength is 2. The generating function is, according to Eq.(13),

G1(x, V, L) =
∞∑

n=0

B(n)B(n + 1)
xn

n!
. (15)

It may be explicitly obtained after some formal algebraic manipulation based
on the Dobiński formula [12]

B(n) =
1
e

∞∑
k=0

kn

k!
(16)

as

G1(x, V, L) =
∞∑

k=0

1
k!

exp(exp((k + 1)x) − 2). (17)

The formal series (17) diverges for all x > 0, although having finite Taylor
coefficients forx = 0. Such formal series are nevertheless useful in representing
integer sequences.

Example 2: In our last example we retain all the derivative terms in Eq.(11)
but choose V1 = V2 = 1;Vs = 0, s > 2, thus allowing vertices where at most
two lines meet. The corresponding generating function is defined by

G2(x, V, L) =
∞∑

n=0

B(n)I(n)
xn

n!
(18)

where the Involution numbers I(n) = 1, 2, 4, 10, 26, 76, . . . are defined through
their generating function

GI(x) = exp(x +
x2

2
) =

∞∑
n=0

I(n)
xn

n!
(19)
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and are special values of the Hermite polynomials Hn(x)

I(n) = Hn(
1√
2i

)/(−
√

2i)n.

Consequently

G2(x, V, L) =
∞∑

n=0

B(n)Hn(
1√
2i

)(
−x√

2i
)n/n! (20)

=
∞∑

k=0

1
k!

exp(kx(1 +
kx

2
) − 1). (21)

In obtaining Eq.(21) we have used the standard form of the generating function
of the Hermite polynomials. Again, we must consider the series Eqs.(20) and
(21) as formal power series, since for example they diverge for x > 0.

In conclusion, we emphasize that the expressions of Eqs.(17) and (21) con-
stitute exact solutions of Model Field Theories defined by the appropriate sets
{Vs} and {Lm}. Many other applications and extensions of the ideas sketched
in this note will be found in [8].
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Abstract A problem of quantum number assignment is solved for the particle-rotor model
of an odd mass nucleus with one high-j valence nucleon coupled to the triaxially
superdeformed core. An algebraic method is developed by applying the Holstein-
Primakoff transformation both to the total angular momentum and to the single-
particle angular momentum. The allowed nuclear states are restricted by Bohr’s
symmetry and D2 symmetry, which are characteristic to the nuclear Hamiltonian.
A set of quantum numbers is assigned to each physical level by comparing the
algebraic expression with the exact solution from the diagonalization of the rotor
Hamiltonian.

Keywords: Bohr’s symmetry, D2 symmetry, triaxial rotor, odd nucleus

1. Introduction

Recently, triaxial superdeformed bands in 163Lu nucleus have been ob-
served [1], which are interpreted in terms of the wobbling motion [2] as proposed
by Bohr and Mottelson [34]. Our present investigation is motivated by this ex-
perimental result on the one hand, and by the theoretical interest in the quantum
numbers specifying the physical states for the triaxially superdeformed (TSD)
bands in connection with our previous algebraic approach [4] on the other hand.
We have already proposed the level scheme for the triaxially deformed rotor
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nearly thirty years ago. This was the first application of the Holstein-Primakoff
(HP) transformation to nuclear physics. The difference between our treatment
and the wobbling motion in Bohr-Mottelson’s textbook is in the order of ap-
proximation. We took account the whole effect coming from the next to leading
order in 1/I , in addition to the leading one, where I is the total angular momen-
tum. This treatment gives an algebraic expression for the energy eigenvalue,
which reproduces the exact values in the axially symmetric limit for the prolate
shape nucleus only if we choose the z-axis as quantization axis [5, 6].

In this paper we extend our scheme to the odd mass nuclei by introducing
two kinds of HP bosons for the total angular momentum I and for the single-
particle angular momentum j. Special attention is paid to Bohr’s symmetry
as well as the D2 symmetry. Our interest is focused rather on the theoretical
aspects, but it is meaningful to mention that some reasonable agreement with
the experimental data has been attained for the energy difference between two
superdeformed bands (i.e. TSD1 and TSD2) as functions of angular momentum,
and also for the ratio of E2 transitions among these bands [8]. Our model
gives two quantum numbers corresponding to the rotor angular momentum
R = I − j and its component along the quantization axis. Sufficient accuracy
of the algebraic expression allows us to assign the quantum numbers to the
levels obtained from the exact diagonalization of the rotor Hamiltonian. We
discuss a further extension of our treatment to the case of the rotor-plus-single
particle Hamiltonian.

2. Holstein-Primakoff boson expansion

2.1 z-axis as a quantization axis

We consider the case where the z-axis is chosen as the quantization axis as in
our old paper [4]. Then, the total angular momentum I and the single-particle
angular momentum j operators are expressed in terms of bosons through the
Holstein-Primakoff (HP) transformations.

I+ = Ix + iIy = −a†(2I − n̂)1/2, I− = I†+,

Iz = I − a†a = I − n̂,

j+ = jx + ijy = (2j − k̂)1/2b, j− = j†+,

jz = j − b†b = j − k̂, (1)

where a and b are two kinds of boson operators which commute with each other.
It can easily be confirmed that the components along the principal axes of the
rotor, Ii (i = 1, 2, 3; or x, y, z), satisfy the commutation relations [Ii, Ij] =
−iIi×j with − sign, while ji satisfy [ji, jj] = iji×j with + sign. The operator
Ii commutes with jj, i.e. [Ii, jj] = 0.
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We express the rotor Hamiltonian

Hrot =
∑

i

(Ii − ji)2

2Ji
≡

∑
i

Ai(Ii − ji)2 (2)

in terms of these bosons. Then we diagonalize Hrot using Eq. (1) in two steps.
We expand Hrot up to the order n̂/I and k̂/j. In the first step, the bosons a and
b are transformed into other bosons α and β in order to diagonalize the terms of
0th order in n̂/I and k̂/j, and in the second step α and β are transformed into
the final bosons ρ and σ to include also the terms in first order n̂/I and k̂/j of
Hrot. The transformation in the first step is given by

α = η+

√
Ia +

√
jb†√

I − j
− η−

√
Ia† +

√
jb√

I − j
,

β =
√

ja† +
√

Ib√
I − j

, (3)

with

η2
± =

1
2

(
ξ

ζ
± 1

)
, (4)

where

ξ = Az −
1
2
(Ax + Ay), η =

1
2
(Ay − Ax), ζ =

√
ξ2 − η2. (5)

In the symmetric limit of Ax = Ay (prolate shape), η2
+ becomes 1 and η2−

vanishes. However, in the limit of Az = Ay (oblate shape), both of η2± diverge
because of ξ = η. Thus, the transformation (1) is applicable near the prolate
shape nucleus, but not near the oblate shape.

In the second step, α and β are transformed into the final boson operators
ρ and σ through the following boson Bogoliubov transformations with coeffi-
cients x, y, z and t regarded as infinitesimals,

ρ = α + xα† − zβ − tβ†,
σ = β + yβ† + zα − tα†. (6)

We finally arrive at the energy eigenvalues of Hrot as

EInσκ = ξ

(
I − j + nσ +

1
2
− κ

)2

− 1
8
(Ax + Ay)

+Az

(
I − j + nσ +

1
2

)2

−2ζ

(
I − j + nσ +

1
2

)(
I − j + nσ +

1
2
− κ

)
.

(7)
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In Eq. (7), κ is defined by the relation,

κ = I − j + nσ − nρ, (8)

where nρ and nσ are the eigenvalues of the boson numbers n̂ρ = ρ†ρ and
n̂σ = σ†σ, respectively. In the axially symmetric limit for the prolate shape
(η = 0, A⊥ ≡ Ax = Ay), Eq. (7) continuously goes to

EInσκ = (Az − A⊥)κ2 + A⊥(I − j + nσ)(I − j + nσ + 1). (9)

This expression is equivalent to the energy eigenvalue of Hrot in the limit of
prolate shape, i.e. (Az − A⊥)R2

z + A⊥R(R + 1). Thus, we find that R
corresponds to I − j + nσ and κ to Rz.

2.2 D2 symmetry and Bohr’s symmetry

In this subsection, we consider the basic symmetry in the nuclear Hamiltonian
and in the nuclear states. The rotor itself is composed of many nucleons and the
last odd nucleon is coupled to this rotor. There is the D2-symmetry ([34]), i.e.
the rotor Hamiltonian is invariant with respect to rotations through the angle π
about each of three principal axes, i.e. R̂i = exp{−iπ(Ii − ji)} (i = 1, 2, 3).
This symmetry group is a point group composed of three rotations together
with an identity. When we define body-fixed principal axes of a nuclear system
with quadrupole deformation described in terms of deformation parameters, β
and γ, the nuclear state is described in the 5-dimensional space of collective
coordinates (θi, β, γ), where the set of Euler angles θi (i = 1, 2, 3) corresponds
to the direction of the deformed body. Then, the number of different ways in
choosing the direction of principal axes for a nuclear state is twenty-four, and
the set of finite rotations among these directions composes the octahedral group
O8. The effect of such a transformation on the nuclear wavefunction can be
compensated by a suitable change of the deformation parameter γ to leave the
nuclear state invariant. These transformations represented in the 5-dimensional
space compose Bohr’s symmetry group [7]. The invariance of the nuclear state
under these symmetry transformations restricts κ to even integer values (i.e.
κ = 0,±2,±4, · · · ). Thus, among four kinds of D2-representation classified
by the set of eigenvalues ri of the rotation operators R̂i, only the eigenstate
characterized by (r1, r2, r3) = (+, +, +) (i.e. A-type) is allowed as a physical
state of the nucleus. Consequently, the nuclear state with the quantum number
K = 0 does not exist for the angular momentum I =odd, and the state of
I = 1 is excluded from rotational bands. Such a strong condition imposed on
the nuclear state is in sharp contrast to the rotational motion of a general rigid
body [9].

The Hamiltonian in Eq. (2) with three moments of inertia, which are given
by the formulae in Eq. (19) or (20) below, is invariant under D2 symmetry
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transformation. However, the approximate Hamiltonian up to the order of 1/I

and 1/j violates the D2 symmetry in general. If we choose R̂2 = exp{−iπ(Iy−
jy)}, then there appear the following relations:

R̂2I±R̂†
2 = −I∓, R̂2IzR̂

†
2 = −Iz,

R̂2j±R̂†
2 = −j∓, R̂2jzR̂

†
2 = −jz. (10)

As Ik commutes with jk′ for any k and k′, the operators a and b in Eq. (1)
satisfy the following relations:

R̂2n̂R̂†
2 = 2I − n̂, R̂2k̂R̂†

2 = 2j − k̂,

R̂2a
†R̂†

2 = −
√

2I − n̂

n̂ + 1
a, R̂2b

†R̂†
2 = −

√
2j − k̂

k̂ + 1
b. (11)

The combinations I+I− + I−I+, I2
z , j+j− + j−j+ and j2

z are of diagonal form
when written in terms of n̂ and k̂, and have nothing to do with the expansion in
1/I and 1/j. As for the combinations I2

+ + I2−, j2
+ + j2− and I+j− + I−j+, we

expand the square roots up to the first order of the small quantities (I − n̂)/I

and (j − k̂)/j, i.e.

I2
+ + I2

− ∼= 2(I − 1
2
)(a†a† − a†a†aa

2I
) + h.c.,

j2
+ + j2

− ∼= 2(j − 1
2
)(b†b† − b†b†bb

2j
) + h.c.,

I+j− + I−j+
∼= −a†b†

√
Ij(2 − n̂

2I
− k̂

2j
) + h.c. . (12)

With the help of Eq. (11), these terms are proven to be invariant under the
transformation R̂2. Thus, the approximated Hamiltonian up to the order of
1/I and 1/j is proved to be D2-invariant. However, the D2-invariance is not
guarateed if we stop the expansion at the lowest order in Eq. (1). To see this
concisely, we consider the following lowest order expansions for the even-mass
nucleus as given in the textbook of Bohr-Mottelson ([34]).

I+
∼= −

√
2Ia†, I− ∼= −

√
2Ia, Iz = I − a†a

I+I− + I−I+
∼= 2I(1 + 2n̂) (13)

We can easily find that the term R̂2(I2
+ + I2−)R̂†

2 equals to I2
+ + I2−, but the

transformation R̂2(I+I− + I−I+)R̂†
2 yields 2I(1 + 4I − 2n̂), which is not

equal to (I+I− + I−I+) in Eq. (13). If we introduce H ′ = (H + R̂2HR̂†
2)/2

to restore D2 invariance of the Hamiltonian given by Eq. (13), H ′ becomes
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(Ax − Ay)I(a†a† + h.c.)/2 − AzI
2 + (Ax + Ay)(I + 2I2)/2. As the linear

order in n̂ disappears, H ′ can not be diagonalized by a linear transformation of
the boson a.

Next, we investigate the difference between the expansion in n̂/I , which
is used in deriving Eq. (7), and the expansion in (I − n̂)/I , which is used in
Eq. (12). We apply the latter to the Hamiltonian in Eq. (2) and get

EInσκ = (ξ − C)(I − j + nσ +
1
2
− κ)2 − 1

8
(Ax + Ay) −

C

4

+ Az(I − j + nσ +
1
2
)2

− 2ζ ′(1 − D)(I − j + nσ +
1
2
)(I − j + nσ +

1
2
− κ) (14)

with

ξ′ = 2Az −
1
2
(Ax + Ay), ζ ′ =

√
ξ′2 − η2, C =

3
2

Az

ζ ′2
, D =

Azξ
′

ζ2
. (15)

The expression given by Eq. (14) coincides with the exact one in the limit of
a prolate nucleus, and provides a better approximation than Eq. (7). However,
the difference between Eq. (7) and Eq. (14) is small. For example, for γ = 40◦
and I =39/2, the difference is at most 3.6%. For the larger I and for the smaller
γ this difference becomes negligible, so that we employ the expression given
by Eq. (7) in what follows.

As R = I + (−j), the allowed value of R = I − j + nσ runs over I +
j, I + j − 1, · · · , |I − j|. Correspondingly, the quantum number nσ takes the
values 0, 1, · · · , 2j. However, as explicitly shown by Eq. (25) in subsection 2.5.,
independent nuclear states are labeled by Ω(= jz) > 0 in the axially symmetric
limit. This causes a further restriction ofnσ to the valuesnσ = 0, 1, · · · , j−1/2.

From D2 symmetry, Rz = κ = 0,±2,±4 · · · for even values of R, and
±2,±4 · · · for odd values of R. Since Rz must be less than R, the maximum
value of κ is R for even R, and R− 1 for odd R. As a result, the D2 symmetry
selects special levels as the physical ones from all the states of the triaxially
deformed rotor [9], i.e. the level of higher (lower) energy among the two with
κ = |κ| and κ = −|κ| for the case of even (odd) R.

2.3 x-axis as a quantization axis

In the case where the x-axis is chosen as the quantization axis, we follow the
same argument as in subsection 2.1. by exchanging x, y and z into z, x and y,
respectively, in Eq. (1). If we use the same definition of η± as in Eq. (4), the
quantities ξ and η in Eq. (5) are replaced by

ξ = −Ax +
1
2
(Az + Ay), η =

1
2
(Az − Ay), ζ =

√
ξ2 − η2. (16)
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Then, η± diverges in the symmetric limit of Ax = Ay (prolate shape), because
of ξ2 − η2 = 0. However, η2

+ continuously goes to 1 and η2− goes to 0 in the
symmetric limit of Ay = Az (oblate shape). Thus, we can apply the boson Bo-
goliubov transformation near the oblate shape nucleus. For the triaxial nucleus
between the prolate and the oblate limit, the energy eigenvalue corresponding
to Eq. (2) in the previous case is replaced, in the present case, by

EInσnρ = −ξ

(
nρ +

1
2

)2

− 1
8
(Az + Ay)

+ Ax

(
I − j + nσ +

1
2

)2

+ 2ζ
(

I − j + nσ +
1
2

)(
nρ +

1
2

)
.(17)

In this expression, we have not employed κ but nρ. In the axially symmetric
limit of oblate shape, the energy EInσnρ in Eq. (17) becomes Ax(I − j +nσ −
nρ)2 + Az[(I − j + nσ)(I − j + nσ + 1)− (I − j + nσ − nρ)2]. On the other
hand, the eigenvalue of Hrot in the oblate limit is AxR2

x +Az[R(R+1)−R2
x].

Thus, we find that R = I − j + nσ and Rx = I − j + nσ − nρ. Therefore, the
quantum number nρ is interpreted as the wobbling quantum number describing
the precession of the rotor around x-axis. However, we must notice that nρ

does not take the values 0, 1, · · · as proposed in the textbook ([34]). As we
have seen in the previous subsection, the rotor states are realized only for Rx ≡
κ = R−nρ = even due to Bohr’s symmetry. Hence, nρ = 0, 2, · · · , R for R ≡
I − j + nσ = even, corresponding to the rotor levels with negative Rx, which
are lower than those with positive Rx. On the other hand, nρ = 1, 3, · · · , R−2
for R ≡ I − j + nσ = odd, corresponding to the rotor levels with positive
Rx, which are higher than those with negative Rx. The smaller nρ (larger κ) is
favourable for the yrast states.

Thus, the successive increase of the wobbling quantum number nρ by one
unit is not allowed, and moreover the lowest order approximation of the boson
expansion in nρ violates the D2-invariance. Therefore, any concept of harmonic
approximation cannot arise from the wobbling motion of a rotor with quadrupole
deformation.

2.4 Moments of inertia

The components of the quadrupole moment are assumed to be proportional
to the moments of inertia Ji for i = x, y and z, which are determined by the
mass distribution, i.e.

Q0 ∝ Jx + Jy − 2Jz,

Q2 ∝
√

3
2
(Jy − Jx). (18)
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Figure 1. The comparison between the rigid-body moments of inertia (top) and the hydrody-
namical moments of inertia (bottom). The solid lines correspond to Jx, the dashed lines to Jy

and the dotted lines to Jz . The ordinate is in arbitrary units and the abscissa is γ.

We consider two models to define the functional dependence of the moments
of inertia on the deformation parameters β and γ.

(a) Irrotational flow model:

Ji ∝ β2 sin2(γ − 2π

3
i),

Q2

Q0
= −tan(2γ)√

2
(19)
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(b) Rigid-body model:

Ji ∝ 1 −
√

5
4π

β cos(γ +
2π

3
i),

Q2

Q0
= −tan(γ)√

2
. (20)

In both Eqs. (19) and (20), i on the r.h.s. runs over 1, 2 and 3, corresponding to
i = x, y and z on the l.h.s. of these equations. The behavior of the moments of
inertia for the irrotational flow model is more sensitive to γ than for the rigid-
body model. The phase of γ is chosen so that Jx takes its maximum within
the region of 0 ≤ γ ≤ 60◦ in both models. We compare Eqs (19) and (20) in
Fig. 1.

2.5 The single-particle Hamiltonian

We consider the particle-plus-rotor model for an odd mass nucleus with one
valence nucleon in a high-j orbital coupled to the triaxially deformed core. We
assume that the single-particle Hamiltonian Hsp is given by

Hsp ∝ cos γY20 −
sin γ√

2
(Y22 + Y2−2)

=
V

j(j + 1)
{cos γ(3j2

z − j2) −
√

3 sin γ(j2
x − j2

y)}. (21)

Our interest is in the total Hamiltonian describing the microscopic behavior
of the odd nucleon moving in the deformed mean-field produced by the core
nucleons, i.e.

Htot = Hrot + Hsp. (22)

It is obvious that the total Hamiltonian is invariant under the D2 transformations
as well as one of Bohr’s transformations defined in the 5-dimensional space,
i.e.

R2(x, y, z, β, γ) = (y,−x, z, β,−γ). (23)

Note that two successive operations of R2, i.e. R2
2, is realized by one of the

D2 operations, R̂3 = exp{−iπ(Iz − jz)}.
For the case where the odd nucleon is in a certain single-j shell, the diago-

nalization of Htot can be attained in principle with the physical space spanned
by {|IMK〉|jΩ〉; K = −I,−I + 1, · · · , I; Ω = −j,−j + 1, · · · , j}, where
the quantum numbers K = Iz and Ω = jz are the projections of the total spin
I and the single-particle spin j onto the intrinsic z-axis, respectively. How-
ever, almost 3/4 of the resultant eigenstates turn out to be of zero-norm due
to the symmetry of the Hamiltonian, and those unphysical solutions should be
eliminated.
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In order to avoid such a redundancy, we project out relevant states from the
beginning, i.e.

(1 + e−iπ(Iy−jy))(1 + e−iπ(Iz−jz))|IMK〉|jΩ〉
= {1 + (−1)K−Ω}{|IMK〉|jΩ〉 + (−1)I−j|IM − K〉|j − Ω〉}.(24)

In this way we provide a complete set of relevant wave functions as√
2I + 1
16π2

{DI
MK(θi)χ

j
Ω + (−1)I−jDI

M−K(θi)χ
j
−Ω};

|K − Ω| = even, Ω > 0. (25)

Employing this complete set, we diagonalize Htot to obtain the λ-th eigenstates
in the form [10]

Ψ(jIMλ) =
∑
Ω>0

∑
|K−Ω|

CjIλ
ΩK{DI

MK(θi)χ
j
Ω + (−1)I−jDI

M−K(θi)χ
j
−Ω}.

(26)
The problem of the assignment of quantum numbers cannot be solved only
by the exact diagonalization of Htot. For this purpose we need a further step,
which will be discussed in the next section.

3. Application of boson expansion method to Htot

Here we discuss a possible extension of the HP boson expansion method to
Htot. As for the model in which one valence nucleon is in the single high-j
orbital, we can apply the HP transformation defined in Eq. (1) to Htot. Then,

expanding
√

2I − n̂ and
√

2j − k̂ in Eq. (22) and retaining up to the first order
in 1/I and 1/j, we rewrite Htot in terms of bilinear and quadratic forms of
boson operators a, a†, b and b†. By the boson Bogoliubov transformation from
the set of original boson operators (a, a†, b, b†) to the new set of boson operators
(α, α†, β, β†), we transform Htot into the new form as

Htot = H0 + H2 + H4, (27)

where H0 is the part independent of the new boson operators (α, α†, β, β†), and
H2 is composed of bilinear forms like

α†α + αα†, β†β + ββ†, α†β† + β†α† + αβ + βα

and α†β + βα† + αβ† + β†α. (28)

H4 is composed of all possible quadratic forms of the new boson operators.
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Here we consider the most general boson Bogoliubov transformation in the
space of two kinds of bosons as⎛⎜⎜⎝

a
a†
b
b†

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cos χ 0 sin χ 0

0 cos χ 0 sin χ
− sin χ 0 cos χ 0

0 − sin χ 0 cos χ

⎞⎟⎟⎠
⎛⎜⎜⎝

cosh ϑ sinhϑ 0 0
sinhϑ cosh ϑ 0 0

0 0 cosh ϕ sinhϕ
0 0 sinh ϕ cosh ϕ

⎞⎟⎟⎠

×

⎛⎜⎜⎝
cos ω 0 sin ω 0

0 cos ω 0 sin ω
− sin ω 0 cos ω 0

0 − sin ω 0 cos ω

⎞⎟⎟⎠
⎛⎜⎜⎝

α
α†
β
β†

⎞⎟⎟⎠ . (29)

This transformation introduces 4 parameters, i.e. ϑ, ϕ, ω and χ. These are
just enough to eliminate the 4 non-diagonal terms given by Eq. (28). Since in
practice such a simultaneous elimination in an algebraic way is difficult, we
propose an alternative method as follows.

In the first step, we reduce artificially the number of parameters by requiring
ϑ = −ϕ, for example, and impose the vanishing of two terms, α†β† + β†α† +
αβ+βα and α†β+βα†+αβ†+β†α, in order to separate two kinds of bosons,
α and β. Hence, two parameters, ϑ and ω, can be solved as functions of χ. In
the second step, we diagonalize H2 in the variable-separated form as follows.

H2 = A(α†α + αα†) + C(α†α† + αα)
+B(β†β + ββ†) + D(β†β† + ββ)

=
A

|A|
√

A2 − C2(ρ†ρ + ρρ†) +
B

|B|
√

B2 − D2(σ†σ + σσ†),

(30)

where new bosons, ρ and σ, are introduced through the new boson Bogoliubov
transformation given by

α = ξ+ρ + ξ−ρ†, β = η+σ + η−σ† (31)

with

ξ± = {1
2
(

|A|√
A2 − C2

± 1)}1/2, η± = {1
2
(

|B|√
B2 − D2

± 1)}1/2. (32)

In the variable-separated form of H2 in the first line of Eq. (30), the 4 co-
efficients, A, B, C and D are already determined as functions of χ. Notice
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that these two steps are meaningful only when the following inequalities are
satisfied.

−1 < tanh 2ϑ < 1, |A| > |C|, and |B| > |D|. (33)

In practice, shifting the value of χ, we look for a certain region of χ, where all of
these inequalities are satisfied, and determine the boson transformations. In the
final step, we apply the transformation in Eq. (31) to the quadratic terms in H4,
and retain only the diagonal contributions written in terms of n̂ρ = ρ†ρ and n̂σ =
σ†σ. Practice of such a calculation is in progress. Preliminary calculations have
been successful in finding the region of χ where we get desirable solutions.

We expect that such a treatment provides formulas which are good approx-
imations to the energy levels given by the exact diagonalization. Comparison
between both results enables us to assign a set of quantum numbers (nσ, nρ) or
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Figure 2. The comparison of the energy levels derived from the case of z-axis as a quantization
axis with the exact results for I = 39/2 and j =13/2 as functions of γ from 0◦ to 40◦. The
ordinate is in an arbitrary unit. The numerals inside the parenthesis denote (nσ , κ). The lines
without marks are exact results, and the lines with the signs of pluses, crosses and asterisks are
on Eq. (7).

(nσ, κ) (κ = I − j + nσ − nρ) to each physical state determined by the total
Hamiltonian Htot.

4. Numerical Results

In our single-j model, one valence nucleon is assumed to be in the unique-
parity orbital of i13/2 with j = 13/2. We will compare the exact results attained
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Figure 3. The comparison of the energy levels derived from the case of x-axis as a quantization
axis with the exact results for I = 39/2 and j =13/2 as functions of γ from 0◦ to 60◦. The
numerals inside the parenthesis denote (nσ , nρ). The lines without marks are exact results, and
the lines with the signs of pluses, crosses and asterisks are on Eq. (17).

from diagonalization of Hrot with two approximate solutions, i.e. Eqs. (7) and
(17). In Fig. 3, both the approximate energy levels calculated from Eq. (7)
and the exact ones for I = 39/2 are plotted as functions of γ (0◦ ≤ γ ≤
40◦). Similarly, in Fig. 2, both the approximate energy levels calculated from
Eq. (17) and the exact ones for the same I value are plotted as functions of γ
(0◦ < γ < 60◦). The prolate limit corresponds to γ = 0◦ and the oblate limit
to γ = 60◦. In both figures, the rigid-body moments of inertia, i.e. Eq. (20),
are adopted with a common proportional constant (=1). The ordinates are in
arbitrary units, but the scales of all figures are common. The numerals inside
the parenthesis in Fig. 2 denote the assigned pair of quantum numbers (nσ, κ).
In this case, I−j is odd as 39/2−13/2 = 13, so that κ runs over 2, 4, 6, · · · , 12
for nσ = 0. For the case of nσ = 1, κ starts from 0 and increases by 2 units.
In Fig. 2, κ = 2 corresponds to nρ = 11, κ = 4 to nρ = 9, κ = 6 to nρ = 7,
since κ = I − j + nσ −nρ. The reason why the approximate energies become
better for larger κ (smaller nρ) is that the approximate energies given by Eq. (7)
becomes better for smaller nρ.

In Fig. 3 the assigned pair of quantum numbers inside the parenthesis stands
for (nσ, nρ). Since I − j = 13 is odd, nρ runs over 1, 3, 5, · · · , 12 for the case
of nσ = 0. As is seen in the figure, Eq. (17) becomes a better approximation for
larger γ (near oblate shape) and for smaller nρ. Comparing Figs. 2 and 3, we



550 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

78

80

82

84

86

88

90

92

94

96

98

0 10 20 30 40 50 60

E
ne

rg
y 

(A
rb

itr
ar

y 
U

ni
t)

γ (Degrees)

I=39/2 (j=13/2)

(0,1)

(1,0)

(0,3)

(0,5)

(1,2)

(0,7)

(0,1)

(1,0)

(0,3)

(0,5)

(1,2)

(0,7)

Figure 4. The energy levels derived from the exact diagonalization of the rotor Hamiltonian
for I = 39/2 and j =13/2 as functions of γ. The numerals inside the parenthesis denote (nσ ,
nρ).

recognize that the approximation given by Eq. (17) is preferable, i.e. choosing
the x-axis for the quantization, as far as the levels near yrast in the region of
triaxial deformation, typically γ ∼ 20◦, are concerned.

In Fig. 4, the energy eigenvalues obtained from the exact diagonalization of
the rotor Hamiltonian are shown as a function of γ for I =39/2 together with
the quantum numbers (nσ, nρ), which are assigned from Eq. (17). For the case
nσ=1, nρ takes the values 0, 2 · · · . Similarly, in Fig. 5 the energy eigenvalues
from the exact diagonalization of Hrot are shown as a function of γ for I =37/2
together with the assigned quantum numbers (nσ, nρ). As I − j = 12 is an
even number in Fig. 5, nρ starts from 0, 2, · · · for the nσ=0 case, and from 1,
3, · · · for the nσ=1 case. As the scales of the ordinates are the same in Figs. 3
and 4, we see that the yrast level with (0,1) for I =39/2 lies near to the yrare
level with (1,1) for I =37/2. Thus, we adopt (0,1) for the odd R band (the
triaxially deformed superdeformed band 2, i.e. TSD2) and (1,1) for the even R
band (the triaxially deformed superdeformed band 1, i.e. TSD1) in the analysis
of 163Lu [8].

5. Summary

We have derived an algebraic expression for the triaxially deformed rotor in
an odd mass nucleus by applying the Holstein-Primakoff (HP) transformation to
the angular momenta I and j. We have considered two alternative cases. One is
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Figure 5. The energy levels derived from the exact diagonalization of the rotor Hamiltonian
for I = 37/2 and j =13/2 as functions of γ. The numerals inside the parenthesis denote (nσ ,
nρ).

the case where the z-axis is chosen as the quantization axis so that the algebraic
expression coincides with the exact formula in the prolate limit. Another is the
case where the x-axis is chosen as the quantization axis so that the algebraic
expression coincides with the exact formula in the oblate limit.

We have clarified that the selection of physical quantum numbers from the
HP boson numbers is uniquely determined by the D2-symmetry together with
Bohr’s symmetry. The quantum number assignment is established by the com-
parison of the energy levels derived from the exact diagonalization of the rotor
Hamiltonian with two algebraic formulas expressed in terms of HP boson num-
bers.

We have proposed a possible extension of our method to the general case
which includes a single-particle potential. Such an approach is now in progress.
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Abstract This is a review of the dissipative quantum model of brain in the form of an
extended abstract of recent works addressing to the question of the scientific
understanding of brain and consciousness in the frame of quantum field theory.
The intrinsic dissipative character of the brain dynamics appears to be a possible
root of consciousness mechanisms.

Keywords: Brain, consciousness, quantum dissipation, entanglement, quantum field theory

1. Introduction

The study of the brain is a real challenge to physiologists, to biologists, to
physicians, to psychologists and today it is very difficult to sustain the point of
view that such a challenge does not call into game also the physicists. Actually,
the same is true for the study of the biological systems in general. However,
it has been not always an accepted fact the one that Physics may bring its own
specific contribution to the understanding of living systems. By myself I had
to work not a little to accept the view that “understanding” living matter is a
problem to be solved not only by the biologists, but also by the physicists.
The thought that everything is encoded in the ordered molecular patterns of the
DNA was quite consoling to me: understanding living matter is a problem for
biologists, I thought. However, in a natural way, being a physicist, I asked the
question: “What is the dynamical mechanism generating ordered patterns?”
Then, I was no more able to shift that problem to my friends in biology. Their
job is to analyze and to list in all possible details the molecular components of
living matter and see how they fit together. Molecular engineers can do almost
everything today. But even biological engineers do not deal with the generation
of ordering. They are only engineers. One cannot ask them questions about the
dynamical generation of the ordering. Such kinds of questions have to be asked
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to physicists. Thus I realized how important is to mark the distinction between
naturalism and science: naturalism is necessary to the progress of science,
which means that without the efforts in collecting data and making detailed
observations you cannot even think of making any progress in knowledge.
But naturalism is not sufficient. It is only phenomenology. Soon or later you
will ask questions about the “dynamics”, questions which naturalism cannot
answer. Of course, also asking questions about the dynamics is a necessary but
not sufficient condition for making science. So you need both, phenomenology
and dynamics. The Italian writer Italo Calvino writes in his book “Le città
invisibili” (The invisible towns) that Marco Polo describes a bridge stone by
stone. Then the Kublai Kan asks: “Which one is the stone that sustains the
bridge?”. Polo: “The bridge is not sustained by one specific stone, but by the
line of the arch formed by the stones”. Kublai Kan remains silent, reflecting
upon those words. Then he says: “Why are you telling me about the stones? I
only care about the arch”, and Polo: “Without stones there is no arch”. Thus
we need to know both, the stones and the line of the arch. Today we know
the “stones” of brain and living matter in great details. However, we know
practically nothing about the “line of the arch” of life.

In one of the previous edition of this series of Conferences (Symmetries
in Science II, in 1986) I had the occasion to report about an interesting and
intriguing aspect of the mechanism of spontaneous breakdown of symmetry in
quantum field theory (QFT) consisting in the change of scale, from microscopic
to macroscopic scale. Such a change of scale is possible in quantum theory
since the theory internal consistency requires the existence of collective modes,
whose coherent behavior manifests as a property of the system as a whole, as a
macroscopic quantum system. Could this scenario possibly apply also to living
matter and to brain?

Herbert Fröhlich in the middle of the 1960s proposed the model of living
matter as a collective system of coherent electric dipole waves. Since 1982,
with Emilio Del Giudice, Marziale Milani and Sivia Doglia, and later on with
the late Giuliano Preparata, we have been working at a quantum field theoretical
approach to living matter, inspired by the Fröhlich proposal. Some time later, in
1995 I have been attracted by the Ricciardi and Umezawa paper [23] on the brain
treated as a many-body system in condensed matter physics. I have extended
that quantum model of brain to the dissipative dynamics and the inclusion of
such a distinctive treat of the brain, namely that it is an open system continu-
ously interacting with the environment (this is the meaning of dissipation), has
revealed useful also in approaching some discussion on Consciousness.

The present paper is in a good part an extended abstract of the qualitative
description of the dissipative quantum model of brain presented in ref. [33].
I also shortly comment here on some new developments concerning quantum
noise, entanglement and chaos in the dissipative model. In my exposition I
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will closely follow few sections of my book My Double unveiled [33]. I will
completely avoid to present the mathematical formalism. It can be found in
[30, 2, 18, 19].

2. Statistical order and dynamical order

In many respects living matter appears to be a real mystery. It presents several
levels of spatial organization (cells, tissues and other ordered domains), time
ordering (sequentially ordered chains of chemical reactions), functional orga-
nization (functional differentiation among different parts and compartments,
hierarchical and temporal sequences of functions). Thus, from one side, there
is the high level of space and time ordering, and the high and stable functional
efficiency; on the other side, there is the randomness of kinematics which rules
any chemical reaction.

Macroscopic laws exhibiting ordering and regularities in the behavior of
ensembles of large number of entities, say atoms or molecules, are predicted
by statistical mechanics.

In his book What is life? [24] Schrödinger however points out that such an
order, or, in his words, such “regularities only in the average” (ibidem p.78)
emerging from the “statistical mechanisms” is not enough to explain the “enig-
matic biological stability” (ibidem p.47). Pretending to explain the biological
functional stability in terms of the regularities of statistical origin would be the
“classical physicist’s expectation” that “far from being trivial, is wrong”(ibidem
p.19).

Schrödinger calls it the “naı̈ve physicist” answer and he argues that it is
wrong since there is biological evidence (he refers to hereditary phenomena)
which shows that very small groups of atoms, “much too small to display exact
statistical laws”(ibidem p.20), have control of observable large scale features,
very sharply and strictly determined, of the organism. According to him, this is
the point where the “Quantum Mechanics evidence” enters into play: namely,
by explaining the stability of configurations of a small number of atoms, which
has no explanation in classical physics, Quantum Mechanics (QM) explains the
stability of certain biological features.

Although the data available to Schrödinger have drastically changed due to
the enormous progress of molecular biology, this progress in fact supports his
arguments on the “smallness” of the number of the atoms controlling the system
macroscopic features in a highly stable way; the most striking example is the
one of the DNA: its strict and stable atomic ordering has a determinant rôle in
the biological macroscopic organization.

I want here to stress Schrödinger’s distinction (ibidem p.80) between or-
dering generated by the “statistical mechanisms” and ordering generated by
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“dynamical” quantum (necessarily quantum!) interactions among the atoms
and the molecules.

Molecular biology has collected so many successes; we know so much about
so many components of biological systems. The question is now how to put
together all these data so to derive the complex behavior of the whole system.

Chemical efficiency and functional stability to the degree observed in living
matter seem to be out of reach of any probabilistic approach solely based on mi-
croscopic random kinematics. It is a fact that there is no available computation
or even abstract proof which shows how to obtain the characteristic chemi-
cal efficiency and stability of living matter by resorting uniquely to statistical
concepts.

Classical statistical mechanics and short range forces of molecular biology,
although necessary, do not seem to be completely adequate tools. It appears to
be necessary to supplement them with a further step so to include underlying
quantum dynamical features. In Schrödinger words: “it needs no poetical
imagination but only clear and sober scientific reflection to recognize that we
are here obviously faced with events whose regular and lawful unfolding is
guided by a “mechanism” entirely different from the “probability mechanism”
of physics” (ibidem p.79).

3. The quantum model of brain

The model of brain as a many-body system was conceived between 1966 and
1967, in the exciting scientific atmosphere of the Istituto di Fisica Teorica in
Naples. In one of his last papers, dedicated to Eduardo Caianiello, Umezawa
writes: “His Institute was not just an institute of theoretical physics, but included
mathematical and experimental section for information and brain science. This
gave me a very enjoyable environment. Practically everyday I met theorists
and experimentalists on brain science”. He then adds, “Since I was deeply
involved in the subject of order and long range correlation in many-body sys-
tems, I naturally asked myself the question “is there any long range correlation
associated to brain? If there is long range correlation, each constituent of the
system should be trapped by this correlation and its individual behavior should
not be freely exhibited and should instead be controlled by the correlation. In
that case we do not observe individual cells, but the quasi-cells (in analogy to
the term quasi-particle). . . ” [29].

It was clear to Umezawa that the mechanism of the dynamical generation of
long range correlation in spontaneous breakdown of symmetry was of such a
general validity and so relevant that it could not be “confined” to the domains
of particle physics and solid state physics. For the first time there was the
possibility to give a quantitative description of collective modes for a physical
system not on a purely statistical, kinematic basis, but on a dynamical ground.
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These collective modes do not describe in fact the collective behavior of an
ensemble of elements of the kind described by Statistical Mechanics. They
are dynamically generated as long range correlation among the system com-
ponents. For example, the phonon in the crystal is not the cooperative mode
of a large number of atoms in the statistical sense. It is a truly long range
interaction mode among the atoms. The ordered patterns observed in crystals,
superconductors, superfluids, ferromagnets and other solid state systems are
not collective phenomena of statistical origin. They are macroscopic manifes-
tations of the quantum dynamics.

Lashley’s experimental work was suggesting that “masses of excitations...
within general fields of activity, without regard to particular nerve cells” [16, 21]
were involved in the determination of behavior. In the middle of the 1960’s
Karl Pribram, motivated by experimental observations, started to formulate his
holographic hypothesis. Information appears indeed in such observations to be
spatially uniform “in much the way that the information density is uniform in
a hologram” [7, 9]. While the activity of the single neuron is experimentally
observed in form of discrete and stochastic pulse trains and point processes,
the “macroscopic” activity of large assembly of neurons appears to be spatially
coherent and highly structured in phase and amplitude [8, 9].

The formulation of the quantum brain model was motivated by the experi-
mental findings confirming the existence of almost simultaneous responses in
several regions of the brain to some external stimuli and that these responses
could not be explained in terms of single neuron activity [20, 21].

Brain functioning cannot depend too strictly on the functioning of each sin-
gle neuron since specific activities of the brain manifestly persist in spite of
destructive action on local parts of the brain or after treatments with electric
shock or with drugs and in spite of the continuous changes in the number of
living neurons. In the brain metabolic activity constituent macromolecules un-
dergo chemical changes or disassembly within a couple of weeks and are then
replaced by new ones. Despite such a continuous molecular “turn over”, the
brain functions appear to be highly stable over long period of time. Still in
Lashley words, in “all behavior [. . . ] it is the pattern and not the element that
counts” [16].

Ricciardi and Umezawa write in the Introduction of their paper: . . . “in the
case of natural brain, it might be pure optimism to hope to determine the nu-
merical values for the coupling coefficients and the thresholds of all neurons
by means of anatomical or physiological methods” . . . “many questions im-
mediately arise . . . is it essential to know the behavior in time of any single
neuron in order to understand the behavior of natural brain? Probably the an-
swer is negative. The behavior of any single neuron should not be significant
for functioning of the whole brain, otherwise a higher and higher degree of
malfunctioning should be observed . . . ”.
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The observed non-local, diffuse activity of the brain thus suggest that the
brain states are characterized by dynamical long range correlation among the
constituents. The generation of such long range correlation occurs through the
dynamical mechanism of spontaneous breakdown of symmetry: the resulting
mathematical model is a QFT model where brain is described as a macroscopic
quantum system.

The quantum model of brain was formulated in order to describe short-term
and long-term memory and the brain’s capability to recall stored information.

Although it is estimated that in the brain there are about 1010 neurons, in-
terconnected by a myriad of dendritic branches and synaptic connections in
an intricate series of neuron nets, and ten times as many glia cells, it appears
that memory is not “wired” into individual neuron nets: incoming information
seems to involve large regions of brain cells aggregates [20, 21, 9, 10].

Another feature of memory activity is the lack of “conscious simultane-
ous recall” of several recorded information. Rather, it is often our common
experience that once some information has been recalled, another sometimes
completely different information is subsequently recalled, too, in a mechanism
of “association of ideas” through a path or sequence of memories. This suggests
that stored information can be recalled according to serial, rather than parallel,
processes [23].

The above features of memory activity are taken to be experimental evidences
on which the quantum brain model is to be based. The formal apparatus of the
model is the QFT of many-body physics and the starting point is that the brain
is a system in interaction with the external world from which it receives stimuli
carrying information.

Stimuli coming to the brain from the external world should be coded and
their effects on the brain should persist also after they have ceased; this means
that stimuli should be able to change the state of the brain pre-existing the
stimulation into another state where the information has been “printed” in a
stable fashion. This means that the state where information is recorded under
the action of the stimuli must be a ground state in order to realize the stability,
of the recorded information; and that symmetry is broken in that state in order
to allow the coding of the information.

4. Spontaneous breakdown of symmetry and collective
modes

In QFT the dynamics (i.e. the Lagrangian or the Hamiltonian, or simply the
field equations) is in general invariant under some group, say G, of continu-
ous transformations. Spontaneous breakdown of symmetry occurs when the
minimum energy state (the ground state or vacuum) of the system is not in-
variant under the full group G, but under one of its subgroups. Then it can be
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shown [14, 28] that collective modes, the so-called Nambu-Goldstone boson
modes, are dynamically generated. Propagating over the whole system, these
modes are the carrier of the ordering information (long range correlation): or-
der manifests itself as a global property dynamically generated. The long range
correlation modes are responsible for keeping the ordered pattern: they are co-
herently condensed in the ground state. In the crystal case they keep the atoms
trapped in their lattice sites. The long range correlation thus forms a sort of
net, extending over all the system volume, which traps the system components
in the ordered pattern. This explain the macroscopic collective behavior of the
components as a “whole”.

It is very important to remark that the spontaneous breakdown of symmetry is
possible since in QFT there exist infinitely many ground states or vacua which
are physically distinct (technically speaking, they unitarily inequivalent). In
QM, on the contrary, all the vacua are physically equivalent and thus there
cannot be symmetry breakdown.

The brain is modeled by Ricciardi and Umezawa by following the above
scheme. Stimuli coming to the brain from the external world should be coded
and their effects on the brain should persist also after they have ceased; this
means that stimuli should be able to change the state of the brain pre-existing
the stimulation into another state where the information has been “printed” in
a stable fashion. This means that the state where information is recorded under
the action of the stimuli must be a ground state in order to realize the stability
of the recorded information; and that symmetry is broken in that state in order
to allow the coding of the information. Recording of information is represented
by coherent condensation of collective modes in the ground state.

Since collective modes are massless bosons, their condensation in the vacuum
does not add energy to it: the stability of the ordering, and therefore of the
registered information, is thus insured. Long-term memory is modelled in this
way.

The observable specifying the ordered state is called the order parameter. It
is a measure of the condensation of the Nambu-Goldstone modes in the ground
state and acts as a macroscopic variable.

The order parameter is specific to the kind of symmetry of the dynamics
and its value is considered to be the code specifying the information printed
in that ordered vacuum. Non-local properties, related to a code specifying the
system state, are dynamical features of quantum origin: it is in this way that the
stable and diffuse, non-local character of memory is represented in the quantum
model; it is derived as a dynamical feature rather than as a property of specific
neural nets (which would be critically damaged by local destructive actions).

It may also happen that under the action of external stimuli the brain may
be put into an excited state, i.e. a quasi-stationary state of greater energy than
the one of the ground state. Such an excited state also carries collective modes
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in their non-minimum energy state. Thus this state also can support recording
some information. However, due to its higher energy such a state and the
collective modes are not stable and it will sooner or later decay: short-term
memory is then modelled by the condensation of long range correlation modes
in the excited states. Different types of short-term memory are represented by
different excitation levels in the brain state.

Another possibility is the excitation of collective modes out of the ground
state. This brings us to the mechanism of recall of the stored information. In
Umezawa’s words: “I noticed that this could provide a remarkable mechanism
for memory recollection. Suppose that an ordered pattern was printed on the
brain by condensation mechanism in the vacuum which was induced by certain
external stimuli. Though an order is stored, brain is not conscious of this
because it is in the ground state. However, when a similar external stimulation
comes in, it easily excites the massless boson associated with the long range
correlation. Since the boson is massless, any small amount of energy can
cause its excitation. During the time of excitation, brain becomes conscious of
the stored order (memory). This explains recollection mechanism.” [29]. The
excited modes have finite life-time and thus the recall mechanism is a temporary
activity of the brain, according indeed to our common experience. This also
suggests that the capability to be “alert” or “aware” or to keep our “attention”
focused on certain subjects (information) for a short or a long time may have
to do with the capability of the brain to be put into an excited state with short
or long life-time.

The short-term memory mechanism has been further analyzed in terms of
non-equilibrium phase transitions in the context of the quantum model [25].

5. Brain as a mixed system and the overprinting problem

The brain model should explain how memory remains stable and well pro-
tected within a highly excited system, as indeed the brain is. Such a “stability”
must be realized in spite of the permanent electrochemical activity and the con-
tinual response to external stimulation. The electrochemical activity must also,
of course, be coupled to the correlation modes which are triggered by external
stimuli. It is indeed the electrochemical activity observed by neurophysiology
that provides [26, 27] a first response to external stimuli.

This has suggested to model the memory mechanism as a separate mechanism
from the electrochemical processes of neuro-synapic dynamics: the brain is then
a “mixed” system involving two separate but interacting levels. The memory
level is a quantum dynamical level, the electrochemical activity is at a classical
level. The interaction between the two dynamical levels is possible because of
the specificity of the quantum dynamics: the memory state is a macroscopic
quantum state due to the coherence of the correlation modes.
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The problem of the coupling between the quantum dynamical level and the
classical electrochemical level is then reduced to the problem of the coupling of
two macroscopic entities. Such a coupling is analogous to the coupling between
classical acoustic waves and phonons in crystals. Acoustic waves are classical
waves; phonons are quantum long range modes. Nevertheless, their coupling is
possible since the macroscopic behavior of the crystal “resides” in the phonon
modes, so that the coupling acoustic waves-phonon is equivalently expressed
as the coupling acoustic wave-crystal (which is a perfectly acceptable coupling
from a classical point of view).

The quantum model of brain fits the neurophysiological observations of
memory nonlocality and stability. However, several problems are left open.
One is that of memory capacity, the overprinting problem: Suppose a specific
code corresponding to a specific information has been printed in the vacuum.
The brain then sets in that state and successive recording of a new, distinct
(i.e. of different code) information, under the action of a subsequent external
stimulus, is possible only through a new condensation process, corresponding
to the new code. This last condensation will superimpose itself on the former
one (overprinting), thus destroying the first registered information.

In the following section I will discuss how the dissipative character of brain
dynamics may solve the problem of memory capacity.

Let me finally stress that the quantum variables in the quantum model of
brain are basic field variables (the electrical dipole field) and the brain is de-
scribed as a macroscopic quantum system. Stuart, Takahashi and Umezawa
[26] have indeed remarked that “it is difficult to consider neurons as quantum
objects”. In other models of brain the relevant variables are binary variables
describing the neuron’s on/off activity. However, in the quantum model “we do
not intend”, Ricciardi and Umezawa say “to consider necessarily the neurons
as the fundamental units of the brain”.

6. Dissipation and brain

In the quantum brain model spontaneous breakdown of dipole rotational
symmetry is triggered by the coupling of the brain with external stimuli. Once
the dipole rotational symmetry has been broken (and information has thus been
recorded), then, as a consequence, time-reversal symmetry is also broken: Be-
fore the information recording process, the brain can in principle be in anyone
of the infinitely many (unitarily inequivalent) vacua. After information has
been recorded, the brain state is completely determined and the brain cannot be
brought to the state configuration in which it was before the information print-
ing occurred. What I am saying is nothing but the content of the well known
warning ...NOW you know it!..., which tells you that since now you know, you
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are another man, not the same one as before...Once you have known, you cannot
go back in time.

Thus, the same fact of getting information introduces the arrow of time into
brain dynamics. Due to the memory printing process, time evolution of the brain
states is intrinsically irreversible: getting information introduces a partition in
the time evolution, it introduces the distinction between the past and the future,
a distinction which did not exist before the information recording. There is thus
an irreversible exchange of energy between the brain and the environment.

The available quantum formalism is not well suited to treat problems where
the energy is dependent on time. Thus one only can study systems which are
isolated from other systems, so that their energy cannot be exchanged and thus
it remains constant in time.

When the system under study is not an isolated system one has to incorporate
in the treatment also the other systems (which constitute the environment) to
which the original system is coupled. The full set of systems then behaves
as a single isolated (closed) one. At the end of the required computations,
one extracts the information regarding the evolution of the original system by
neglecting the changes in the remaining systems.

In many cases, the specific details of the coupling of our system with the
environment may be very intricate and changeable so that they are difficult
to be measured and known. One possible strategy is to average the effects
of the coupling and represent them, at some degree of accuracy, by means
of some “effective” interaction. Another possibility is to take into account
the environmental influence on the system by a suitable choice of the vacuum
state (the minimum energy state or ground state). The chosen vacuum thus
carries the signature of the reciprocal system-environment influence at a given
time under given boundary conditions. A change in the system-environment
reciprocal influence then would correspond to a change in the choice of the
system vacuum : the system ground state evolution or “story” is thus the story
of the trade of the system with its environment. The theory should then provide
the equations describing the system evolution “through the vacua”, each vacuum
corresponding to the system ground state at each time of its history.

In conclusion, in order to describe open quantum systems first of all one
needs to use QFT (Quantum Mechanics does not have the many “inequivalent”
vacua!). Then one also needs to use the time variable as a label for the set of
ground states of the system [3]: as the time (the label value) changes, the system
moves to a “new” (physically inequivalent) ground state (assuming continuous
changes in the boundary conditions determining the system-environment cou-
pling). Here, “physically inequivalent” means that the system observables, such
as the system energy, assume different values in different inequivalent vacua,
as is expected to happen in the case of open systems.
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One thus gets a description for the open systems which is similar to a col-
lection of photograms: each photogram represents the “picture” of our system
at a given instant of time (a specific time label value). Putting together these
photograms in “temporal order” one gets a movie, i.e. the story (the evolution)
of our open system, which includes the system-environment interaction effects.

The evolution of the N -coded memory can be represented as a trajectory
of given initial condition running over time-dependent states |0(t) >N , each
one minimizing the free energy functional. Recent results [19] show that such
trajectories have chaotic character. This is a feature which fits experimental ob-
servations by Freeman [7, 8, 9] who indeed finds characteristic chaotic behavior
in neural aggregates of the olfactory system of laboratory pets.

The mathematical representation of the environment must explicitly satisfy
the requirement that the energy lost by the system must match the energy gained
by the environment, and vice-versa. All other details of the system-environment
interaction may be taken into account by the vacuum structure of the system,
in the sense above explained. Then the environment may be represented in the
simplest way one likes, provided the energy flux balance is preserved. One
possible choice is to represent the environment as the “time-reversed copy” of
the system: time must be reversed since the energy “dissipated” by the system
is “gained” by environment.

Summarizing, the system has thus been doubled. The environment is mathe-
matically represented as the time-reversed image of the system, i.e. as the system
“double”. What the system loses, the environment gains. Let me denote the
system degrees of freedom by Ak, and the “doubled” degrees of freedom by
Ãk. The suffix k here generically denotes kinematical variables (e.g. spatial
momentum) or intrinsic variables of the fields fully specifying the field degree
of freedom. The structure of the vacuum turns out to be a condensate of couples
of Ak and Ãk.

I stress that the “tilde” or doubled mode is not just a mathematical fiction.
It corresponds to a real excitation mode (quasiparticle) living in the system as
an effect of its interaction with the environment: the couples AkÃk represent
the correlation modes dynamically created in the system as a response to the
system-environment reciprocal influence. It is the interaction between tilde and
non-tilde modes that controls the time evolution of the system: the collective
modes AkÃk are confined to live in the system. They vanish as soon as the
links between the system and the environment are cut. Technically speaking,
the modes Ak and Ãk are entangled modes, which means that the memory
states cannot be factorized in terms of states of Ak modes alone and of Ãk

modes alone. In other words this entanglement mathematically represents the
impossibility to cut the links between the brain and the external world (a closed,
i.e. fully isolated, brain is a dead brain according to physiology).
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I observe that corresponding to different subjects (systems) we will have
“different” representations of the environment, each of them being indeed a
(time-reversed) “copy” of the corresponding subject. Therefore we have that
the environment is “subjectively represented” by each subject. I will discuss
more on the subjective representation of the world in the following Sections.

7. Dissipative quantum brain dynamics

Let us now see how quantum dissipation solves the overprinting problem in
the quantum model of brain [30].

Let Aκ denotes the dipole wave quantum (dwq) mode, namely the Nambu-
Goldstone mode associated to the spontaneous breakdown of rotational electri-
cal dipole symmetry. Ãκ will denote its “doubled mode”. The Ã mode is the
“time-reversed mirror image” of the A mode and represents the environment
mode. Let NAκ and NÃκ

denote the number of Aκ modes and Ãκ modes,
respectively.

Taking into account dissipativity requires [30] that the memory state, iden-
tified with the vacuum |0 >N , is a condensate of equal number of Aκ and
Ãκ modes, for any κ: such a requirement ensures that the flow of the en-
ergy exchanged between the system and the environment is balanced. Thus,
the difference between the number of tilde and non-tilde modes must be zero:
NAκ −NÃκ

= 0, for any κ. Note that the label N in the vacuum symbol |0 >N
specifies the set of integers {NAκ , for any κ}which indeed defines the “initial
value” of the condensate, namely the code number associated to the informa-
tion recorded at time t0 = 0. Note now that the requirement NAκ −NÃκ

= 0,
for any κ, does not uniquely fix the set {NAκ , for any κ}. Also |0 >N ′ with
N ′ ≡ {N ′

Aκ ;N ′
Aκ −N ′

Ãκ
= 0, for any κ} ensures the energy flow balance

and therefore also |0 >N ′ is an available memory state: it will correspond, how-
ever, to a different code number (i.e. N ′) and therefore to a different information
than the one of code N .

The conclusion is that fixing to zero the difference NAκ −NÃκ
= 0, for any

κ, leaves completely open the choice for the value of the code N .
Thus, infinitely many memory (vacuum) states, each one of them correspond-

ing to a different code N , may exist: A huge number of sequentially recorded
information data may coexist without destructive interference since infinitely
many vacua |0 >N , for all N , are independently accessible in the sequential
recording process. Recording information of code N ′ does not necessarily pro-
duce destruction of previously printed information of code N = N ′, contrary
to the non-dissipative case. In the dissipative case the “brain (ground) state”
may be represented as the collection (or the superposition) of the full set of
memory states |0 >N , for all N . In the non-dissipative case the “N -freedom”
is missing and consecutive information printing produces overprinting.
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Let me remind that there does not exist in the infinite volume limit any unitary
transformation which may transform one vacuum of codeN into another one of
code N ′: this fact, which is a typical feature of QFT, guarantees that the corre-
sponding printed information data are indeed different or distinguishable ones
(N is a good code) and that each information printing is also protected against
interference from other information printing (absence of confusion among in-
formation data).

The effect of finite (realistic) size of the system may however spoil unitary
inequivalence. In the case of open systems, in fact, transitions among (would
be) unitary inequivalent vacua may occur (phase transitions) for large but finite
volume, due to coupling with the external environment. The inclusion of dis-
sipation leads thus to a picture of the system “living over many ground states”
(continuously undergoing phase transitions). Note that even very weak (al-
though above a certain threshold) perturbations may drive the system through
its macroscopic configurations. In this way, occasional (random) weak pertur-
bations are recognized to play an important rôle in the complex behavior of the
brain activity.

The possibility of transitions among different vacua is a feature of the model
which is not completely negative: smoothing out the exact unitary inequivalence
among memory states has the advantage of allowing the familiar phenomenon
of the “association” of memories: once transitions among different memory
states are “slightly” allowed the possibility of associations (“following a path
of memories”) becomes possible. Of course, these “transitions” should only
be allowed up to a certain degree in order to avoid memory “confusion” and
difficulties in the process of storing “distinct” informational inputs [30, 2]. It is
interesting to observe that Freeman, on the basis of experimental observations,
shows that noisy fluctuations at a microscopic level may have a stabilizing effect
on brain activity, noise preventing to fall into some unwanted state (attractor)
and being an essential ingredient for the neural chaotic perceptual apparatus
[8, 9].

I also observe that the dwq may acquire an effective non-zero mass due to
the effects of the system finite size [2, 30, 32]. Such an effective mass will then
act as a threshold for the excitation energy of dwq so that, in order to trigger
the recall process, an energy supply equal or greater than such a threshold
is required. When the energy supply is lower than the required threshold a
“difficulty in recalling” may be experienced. At the same time, however, the
threshold may positively act as a “protection” against unwanted perturbations
(including thermalization) and contributes to the stability of the memory state.
In the case of zero threshold any replication signal could excite the recalling
and the brain would fall into a state of “continuous flow of memories” [30].

Summarizing, the brain system may be viewed as a complex system with
(infinitely) many macroscopic configurations (the memory states). Dissipation,
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which is intrinsic to the brain dynamics, is recognized to be the root of such a
complexity, namely of the huge memory capacity.

Of course, the brain has several structural and dynamical levels (the basic
level of coherent condensation of dwq, the cellular cytoskeleton level, the neu-
ronal dendritic level, and so on) which coexist, interact among themselves and
influence each other’s functioning. Dissipation introduces the further richness
of the replicas or degenerate vacua at the basic quantum level. The crucial point
is that the different levels of organization are not simply structural features of
the brain, their reciprocal interaction and their evolution is intrinsically related
to the basic quantum dissipative dynamics.

The brain’s functional stability is ensured by the system’s “coherent re-
sponse” to the multiplicity of external stimuli. Thus dissipation also seems
to suggest a solution to the so called binding problem, namely the understand-
ing of the unitary response and behavior of apparently separated units and
physiological structures of the brain.

I finally note that, when considering dwq with time-dependent frequency,
modes with longer life-time are found to be the ones with higher momentum.
Since the momentum is proportional to the reciprocal of the distance over which
the mode can propagate, this means that modes with shorter range of propagation
will survive longer. On the contrary, modes with longer range of propagation
will decay sooner. The scenario becomes then particularly interesting since this
mechanism may produce the formation of ordered domains of finite different
sizes with different degree of stability: smaller domains would be the more
stable ones. Remember now that the regions over which the dwq propagate are
the domains where ordering (i.e. symmetry breakdown) is produced. Thus we
arrive at the dynamic formation of a hierarchy (according to their life-time or
equivalently to their sizes) of ordered domains [2].

8. Understanding Consciousness?

Is it possible to apply “scientific methods” to the study of consciousness?
Together with Schrödinger, a physicist or a neuroscientist would ask the ques-

tion: What kind of material process is directly associated with consciousness
[24]? Thus, for a physicist or a neuroscientist the starting point to investigate
consciousness is the physical brain. But “where” in the brain? In which one
of its regions should one look in order to find some special tissue or neuronal
circuit or anything special out of which consciousness comes out?

In recent years proposals have been advanced [15, 13] that consciousness
finds its root in the activity of the cytoskeleton. A possible hint in such a
direction is provided by the fact that anesthetic substances produce the loss
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of consciousness by interfering with the normal cytoskeleton activity. Even if
much is known, a fully understanding of the activity of anesthetic molecules
has not yet been reached.

According to Hameroff and Penrose [13], consciousness might find its origin
in the non-computational nature of the brain quantum state, which is supposed
to be characterized by the coherent collective state of the microtubules. Here I
will not consider the Hameroff-Penrose model, neither other models. Rather,
I would like to report about some physiological aspects of the brain which,
according to Susan Greenfield [10], might be relevant in understanding con-
sciousness. On the other hand, the dissipative quantum model of brain seems
to be in quite well agreement with the physiologically based Greenfield’s con-
clusions.

The problem of the “location” of functions in the brain is a recurring problem
in neuroscience. However, although the search of the location of functions such
as memory, vision and other functions relating to the external world, has been
carried on for a long time, such functions have not been found to be related
to respective single brain regions. Neuroscientists now know from laboratory
observations that several brain regions act cooperatively and simultaneously,
as a connected whole [16, 21, 9, 10, 11] in performing functions of the brain
which relate it to the outside world. On the basis of such experimental obser-
vations, it has been suggested [4, 10] that the same would also be the case for
consciousness, so that there would be no specific neuronal circuits or neuronal
populations committed to consciousness generation. Thus, a first property of
consciousness, consistent with these observations is the one of being “spatially
multiple” and “temporally unitary” [10]

But consciousness, according to Greenfield, also appears to be a continuum
and it derives from a specific stimulus. The property of being a continuum
means that consciousness grows as the brain develops: consciousness is not
“all or none”, it is more “like a dimmer switch that grows as the brain does”
[10, 12]. The manifestation of consciousness in different degrees (as values
in a continuous scale) is not only referred to different beings (animals versus
humans) or to different stages of the growth (children versus adults), but also
to different moments of one’s mental experience, perhaps consequent to some
external action.

On the other hand, it is a common experience that one is always conscious of
something, never of nothing and not of everything at once. This is the content
of the third property of consciousness. One is always conscious of “some kind
of focus, epicentre or trigger” [10, 12].

Which ones are the physiological features which may possibly support these
last two properties of consciousness? In order to answer to such a question,
one should consider that the brain presents an extremely dense network of
connections between the neurons (ranging from 10 to 100,000 connections
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between each of the 100 billion brain cells) and that a distinction has to be made
between structural or anatomical connectivity, which is quite stable (quasi-
stationary), and functional or effective connectivity, which, on the contrary,
may be highly dynamic with modulation times of the order of hundreds of
milliseconds. The dynamic cooperativity of neurons is sustained by such an
intricate net of connections: neural cooperativity is thus an emergent property
of neurons which could not be inferred by single neuron observation [1, 9].
Observations also show that the connectivity of non-specialized neurons grows
as the brain develops and relates to the external world. The growth of the
connectivity is observed to be related to brain age, with training in performing
certain operations and in general with the brain’s experience in relating to its
environment. For example, the production of a large quantity of tubulin is
observed in the visual cortex of baby rats when they first open their eyes (starting
of the critical learning activity). Such a production decreases when the critical
learning activity is over [5]. Moreover, the plasticity of the functional neural
connections, the fact that they are not “hard wired” [34], but dynamical, implies
that the brain can learn, it is an “adaptive” system, able to perform a large
and rich spectrum of activities within a wide range of changeable boundary
conditions.

The connected domains of neurons thus change in time by assembling and
disassembling, and recruiting time by time a different number of neurons. The
Libet experiments [17] show that under the external stimulus a (relatively) re-
stricted number of neurons are first recruited in the brain response. Such a
response was clearly recorded by electroencephalogram, but the subject did not
report any conscious feeling of the stimulus at this stage. Only after 500 mil-
liseconds or so, when the instrumentation recorded the neural activity spreading
over a much larger region of the brain, did the subject report “the feeling” of the
external stimulus. The set of neurons firstly responding to the external stimu-
lus, which act as a quite robust “seed” for the connection spreading (as a “stone
thrown in a puddle” generating spreading rings of waves on the water surface,
in the Greenfield picture), may physically represent the epicentre. This is a
pre-conscious stage. Consciousness sets in with the observed time-delay, when
the larger assembly of correlated neurons is formed. The emergence of con-
sciousness is thus described by this growing population of neurons, gradually
recruited in about half a second. The continuous, experience-related, formation
of neural connectivity supports the view of consciousness as a continuum.

The dynamics of the connection formation is such that the same number of
neurons are never correlated in exactly the same extent in exactly the same way.
Thus one never has the same consciousness. The physical property which can
sustain such a scenario is the modulation of the neuronal activity. And this may
be obtained by means of some chemical messengers able to influence the degree
of sensibility of the neurons to a certain input signal. The chemical action does
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not produce the cell excitation, but makes it more receptive to the recruiting
signal from the epicentre. These chemicals thus “cooperate” to the enlargement
of the connected neural domain starting from the epicentre. Apparently, these
chemicals are indeed the target of those drugs (such as prozac, amphetamine,
LSD) which are known to modify our consciousness states. Consciousness is
triggered when the assembly of correlated neurons is sufficiently extended.

I will consider in the next section a few more results of the dissipative quan-
tum model which appear to fit particularly well with the above physiological
observations.

9. Life-time and localizability of correlated domains

The dissipative quantum model of brain provides a first understanding of
how opposite features, such as “non-locality” from one side and “localization”
from the other side, may be not mutually incompatible. Rather they correspond
to different dynamical regimes, continuously merging one into the other, in
dependence on the behavior of well specified variables and parameters. In the
quantum model, domains of correlated dwq may be dynamically generated.
The size and the life-time of these domains appear to depend on the number
of links that the brain sets with its environment and on internal parameters, in
agreement with the observed plasticity of the brain.

It is also interesting that physiological observations show that the recruitment
of neurons in correlated domains occurs not in a process of “one cell to another
one at a time”, as in the traditional view of neuronal communication through
electrical signals, but “all at once over an ever larger group” and is mediated
by “a chemical, than can bias large number of neurons to be activated simulta-
neously” [10]. The emergence of such a simultaneous coherent cooperativity
among neurons is exactly what the dissipative quantum model predicts. The
quantum model provides the dynamical ground which manifests in simultane-
ous neuronal activation under the “recruiting signal”. The further, necessary
step forward to be made is to disclose how the underlying dynamics controls
the details of the chemical scenario.

Let me comment on what it can happen in the case of very small or very
large neuronal assembly.

Very small neuronal assembly can occur, for example, when the epicentre
is so weak (the external driving stimulus is not so strong) that a large number
of neurons cannot be excited in a collective mode. In the quantum model this
corresponds to having very few “links” interlaced with the external world, and in
this model we expect sudden shifts from one vacuum (one memory) to another
one (another memory) of the too small correlated domain, a typical situation
of “confusion”. When one is dreaming the external inputs are not so strong,
the number of links with the external world is in fact small. Since the EEG
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of a dreaming subject turns out to be similar to when the subject is awake,
some (low) degree of consciousness may be attached to the dreaming activity.
It is the case of “fragile, little bits of consciousness” [10], I would say of very
short and unstable permanence in one single vacuum of the correlated domain,
with sudden transitions to other vacua; in fact in dreams we experience sudden
change of scenarios, of facts, we feel flooded by a rapid succession of emotions.
It would be interesting to study other cases of an extreme low number of links
with the external world such as in autism and coma states.

Another cause of too small neuronal assembly may be in the weak neuronal
recruitment; in other words, in the low level of connectivity. Physiology tells us
that this is the case of the brain with a low level of relation and experience with
the external world. These are also the cases where the dissipative model predicts
small correlation lengths (correlated domains of small size) due to lack of links
to the outside world, or else a low coherence in the correlation. Typically, in
such cases the subject appears to be easily “distracted” from a certain object
by another upcoming sensory input. He can be emotionally taken by a new
scenario, apparently dominated by any epicentre triggered from the outside.

What can be the phenomenology in the opposite case of abnormally large
neuronal assembly? The dissipative model would predict a more strict inequiv-
alence among the vacua, namely a stronger resistance in switching from one to
another one of them, an inclination to “fixations”, to be trapped in one of the
vacua and to remain fixed on the information, image or idea, there coded. This
is also expected on physiological grounds, where, in the absence of competing
epicenters, the subject is expected to show a strong continuity, a perseverance
in what he has come to think. Such a sort of control on the incoming change-
able stimuli will make the world appear to him as remote, grey, as in clinical
depression cases where the patient appears unable to get emotionally involved,
“the opposite of the glowing bright colors of the child’s perspective” [10].

10. A trade with my Double

The mathematical and physical meaning of the tilde-system is to describe
the environment to which the brain is permanently coupled (linked). Since the
brain is intrinsically an open system, the tilde-system can never be neglected.
We have seen that this is the meaning of the entanglement. The tilde-modes
thus might play a rôle in the conscious as well in the unconscious brain activity.
The tilde-modes might tell us also something about that fuzzy region between
fragile consciousness and the obscure unconscious core of the dream activity.

The nonlinearity of the coupling of A with Ã describes the self-inter - action
or back-reaction process for the A system [30]. Ã thus plays a rôle in such
self-coupling or “self-recognition” processes. The Ã system is the “mirror in
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time” image, or the “time-reversed copy” of the A system. It actually duplicates
the A system, it is the A system’s Double.

The rôle of the Ã modes in the self-interaction processes has led me to con-
jecture that the tilde-system is actually involved in consciousness mechanisms
[30]. Thus the specific dissipative character of the dynamics strongly point to
consciousness as a “time mirror”, as a “reflection in time” which manifests as
nonlinear coupling or dialogue [6] with the inseparable own Double [30]. In
some sense, the unavoidable coupling with the external world is “internalized”
in the dialectic, permanent relation with the Double.

The “doubling” of the self is actually a very old literary metaphor. Sosia
in the Plautus comedy Amphitruo, or the falling in love of Narcissus with
himself mediated by his “reflection” in the water, are famous examples of such
a metaphoric use of the “doubling ”. The ancient Vedic tradition consciousness
also flows between two poles: an identity of self and an identity with the
processes of the Universe.

Consciousness seems thus to emerge as a manifestation of the dissipative
dynamics of the brain. In this way, consciousness appears to be not solely
characterized by a subjective dynamics; its roots, on the contrary, seem to be
grounded in the permanent “trade” of the brain (the subject) with the external
world, on the dynamical relation between the system A and its Sosia or Double
Ã, permanently joined (conjugate) to it.

I am absolutely not saying that A acts as a mirror of the outside world. On
the contrary, consciousness is reached “through” the opening to the external
world. The crucial rôle of dissipation is that self-mirroring is not anymore a
“self-trap” (as for Narcissus), the conscious subject cannot be a closed system.
Consciousness is only possible if dissipation, openness onto the outside world
is allowed. Without the ”objective” external world there would be no possibility
for the brain to be an open system, and no Ã system would at all exist. The very
same existence of the external world is the prerequisite for the brain to build up
its own “subjective simulation” or representation of the external world.

The informational inputs from the external world are the “images” of the
world. Once they are recorded by A they become the “image” of A: Ã is the
“address” of A, it is identified with (is a copy of) A. We have seen that such a
process implies a “breakdown”, a “lack” of symmetry: memory as “negation”
of the symmetry which makes things indistinguishable among themselves [31];
memory as “non-oblivion”, literally the αληθεια, i.e. the word used by the
ancient Greeks to denote the “truth”.

As already mentioned, the finiteness of the correlated domains implies that
recording memories requires some expense of energy. Thus, unavoidably, we
are led to make a “choice”, an “active” selection among the many inputs we
receive: we record only those that we judge worthwhile to expend some energy
for, the ones to which we attribute a “value”, which involve our “emotion”. It
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is the specific information received through those selected inputs which then
becomes “our memory”, it becomes “our truth” (αληθεια, indeed). It is here,
in such a map of values, that our memory depicts our “identity” and, since our
choice is unavoidable, the emergence of the identity is also a “necessary” event.
In fact, mathematically speaking, in the model the brain state is “identified” by
the collection of the memory codes.

We are not simply spectators or victims of “passive perceptions”. Plasticity
allows agency, volition and intentionality which have a non-negligible rôle in
the raising of our consciousness. Pribram remarks [22] that there is always
an “attention” content in the input, an “intention” content in the output, and
a “thought” content in the memory processes and all of it participates in a
“vast unconscious processing”. Freeman stresses that brain actually processes
meanings rather than information, meanings are “intended actions”, namely
the meaning is in the subject and arises from the “active” perception of that
subject. In the light of Freeman’s suggestion, the tilde-modes express meanings
or “meaningful representations” rather than just representations.

The conclusion is that one reaches “an active point of view” of the world
[6, 31], which naturally carries in it the “unfaithfulness” of subjectivity. But
such unfaithfulness is precious. It is exactly in such an unfaithfulness that the
map of the values (Freeman meanings) which identify the subject has to be
searched.

The openness to the external world, dissipation, thus implies the capability
of the brain to respond to the external stimuli at each specific instant of time, to
be “present”, namely to singling out at each specific instant of time one specific
vacuum among those entering the superposition of the brain state. From one
side, openness thus guaranties against the risk of remaining “trapped” in one
single vacuum, without updating the vacuum “choice” to the present time, it
guaranties “presence”, “conscious feeling” of that specific, “actual” vacuum.
On the other hand, it also avoids blind travelling, running without “looking
inside”, over the superposition of memory states which makes the brain state.
In the absence of the healthy or normal state of openness, too small or too
large neuronal correlated assembly may turn into “low level of consciousness”.
The unconscious brain activity may be then related to lack of openness or
to too high level of openness (too many inputs in a too rapid succession),
which paradoxically may correspond to “closure”, producing too slow, or even
absent, adaptive capability to the present or too high emotional arousal. In
the dissipative quantum model unconscious brain activity and consciousness
appear to be merging dynamical regimes, different modulations in the dialogue
with the Double.

On the basis of the above discussion it appears that the conscious identity
emerges at any instant of time, in the “present”, as the minimum energy brain
state which separates the past from the future, that “point” on the “mirror of
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time” where the conjugate images A and Ã join together. In the absence of such
a mirroring there is neither consciousness of the past nor its projection in the
future. The subject identity may only emerge in the dissipative dynamics, in its
interplay with the objective external world. Eventually, the intrinsic dissipative
nature of the brain excludes any model of consciousness centered exclusively on
“first person” inner activity. Dissipation manifests itself as a “second person”,
the Double or Sosia, to dialogue with [31, 33].
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Abstract Beta-decay is studied in the odd-mass isotopes of Cs and Xe in the proton-neutron
interacting boson-fermion model (IBFM2). The model provides a consistent
description of the energy levels and the electromagnetic properties as well as the
beta-decay rates.

Keywords: Beta-decay, interacting boson-fermion model

1. Introduction

The interacting boson model (IBM) [2, 10] and the interacting boson-fermion
model (IBFM) [11, 12] have been successful in describing a variety of nuclear
structure phenomena in even-even and odd-even nuclei. One remarkable char-
acter of these models is their symmetry limits. The IBM is known to have its
symmetry limits like SU(5), SU(3) and O(6) limits corresponding to the vibra-
tional, the rotational and the γ-unstable nuclei. The symmetries in IBFM are
known as the nuclear supersymmetries. Many of the even-even isotopes of Xe
have been known as showing the O(6) limit of the IBM, i.e., the γ-unstable
limit. They have been extensively studied by using the IBM, together with their
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neighboring odd-even nuclei by the IBFM [1, 3, 5, 24]. As one of the possible
applications of the IBFM, we consider here the description of beta-decay rates
in odd mass nuclei. Beta-decay rates are very sensitive to details of the wave
functions and therefore can provide a test of the nuclear model.

The application of the proton-neutron interacting boson-fermion model
(IBFM2) to the beta decay was proposed for nuclei in the region 52 ≤ Z ≤
58 [6]. Later the study was extended to Ru and Tc nuclei [16, 17] and for
beta transitions from even-even to odd-odd nuclei [18]. For beta transitions
from spherical Rh to Pd odd mass nuclei, this approach was very successful
[25, 26, 27]. In that case (near the SU(5) limit of the IBM) the wave functions
were dominated by few big components in the SU(5), i.e., the vibrational basis,
and the calculation of beta-decay rates tested those components.

In the present report, we analyze the beta-decay from Cs to Xe isotopes of
mass number A = 125, 127, 129. These isotopes can be considered to be
around the O(6) limit of the IBM[28]. The wave functions are very complex,
therefore one can have a more sensitive test of the model than in the spherical
case. We calculate the energy levels and electromagnetic matrix elements. We
then calculate the beta-decay rates. This final step is parameter free and provides
a unique test of the model.

2. The IBFM2 model

In the IBFM2, an odd-A nucleus is described by coupling an odd nucleon to
an even-even core of proton- and neutron-bosons. The Hamiltonian is written
as

H = HB + HF + V BF, (1)

where HB is an IBM2 Hamiltonian consisting of the single d-boson energy, the
quadrupole interaction, the Majorana interaction and so on:

HB = εd nd + κ (QB
ν · QB

π)

+
1
2
ξ2 ((d†νs

†
π − d†πs†ν) · (d̃νsπ − d̃πsν))

+
∑

K=1,3

ξK ([d†νd
†
π](K) · [d̃πd̃ν](K))

+
1
2

∑
L=0,2,4

cν
L ([d†νd

†
ν]

(k) · [d̃νd̃ν](k)) (2)

where nd is the total d-boson number,

QB
ν = d†νsν + s†νd̃ν, +χν [d†νd̃ν](2), (3)

QB
π = d†πsπ + s†πd̃π + χπ [d†πd̃π](2) (4)
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are the boson quadrupole operators, where s†ρ and d†ρ are the s-boson and
the d-boson creation operators, sρ is the s-boson annihilation operator. The
symbol ρ represents either ν (neutron) or π (proton). The modified d-boson
annihilation operator d̃ρ is related to the d-boson annihilation operator by
d̃ρ,m = (−1)mdρ,−m. The Hamiltonian of the odd fermion HF is

HF =
∑

i

εi ni (5)

where εi is the quasi-particle energy of the ith orbital while ni is its number
operator. The interaction between the bosons and the odd particle V BF in-
cludes the quadrupole interaction, the monopole interaction and the exchange
interaction:

V BF =
∑
i,j

Γij

(
[a†i ãj](2) · QB

ρ′
)

+ A
∑

nindρ′

+
∑
i,j

Λj
ki

{
:
[[

d†ρãj

](k)
a†isρ

](2)

: ·
[
s†ρ′ d̃ρ′

](2)

+Hermitian conjugate} , (6)

where the symbols ρ and ρ′ denote π (ν) and ν (π) respectively, if the odd
fermion is a proton (a neutron). The creation operator of the odd particle is
written as a†jm, while the modified annihilation operator is defined as ãjm =
(−1)j−maj−m. We adopt the orbital dependence based on a microscopic
derivation[22]:

Γi,j = (uiuj − vivj)Qi,j Γ (7)

Λj
k,i = −βk,iβj,k

(
10

Nρ(2jk + 1)

)1/2

Λ (8)

where ui and vi are the BCS unoccupation and occupation amplitudes, and

βi,j = (uivj + viuj)Qi,j (9)

Qi,j =
〈

li,
1
2
, ji||Y (2)||lj,

1
2
, jj

〉
. (10)

The parameters Γ, A and Λ determine the strengths of the quadrupole, monopole
and the exchange interactions.
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Table 1. IBM2 parameters. The unit is MeV except for dimensionless χν . The parameters
χπ = −0.80 and ξ1 = ξ2 = 0.24 MeV, ξ3 = −0.18 MeV are fixed.

odd nuclei core nucleus εd κ χν cν
0 cν

2
125Cs 124Xe 0.70 −0.145 0.00 0.05 −0.10

125Xe, 127Cs 126Xe 0.70 −0.155 0.20 0.10 −0.10
127Xe, 129Cs 128Xe 0.70 −0.170 0.33 0.30 0.00

129Xe 130Xe 0.76 −0.190 0.50 0.30 0.10

Table 2. Single-particle energies (MeV) of the proton orbitals in Cs.

d5/2 g7/2 s1/2 d3/2 h11/2 h9/2 f7/2

0.05 0.00 3.35 3.00 1.50 7.00 8.00

Table 3. Parameters in the boson-fermion interaction (MeV) for Cs.

isotope Γ A Λ
125Cs 0.90 −0.60 1.65
127Cs 0.76 −0.66 2.30
129Cs 0.74 −0.80 2.90

3. Calculations

3.1 Hamiltonian and energy levels

The IBM2 parameters for the even-even Xe isotopes are taken from Ref. [20].
Table 1 shows the cores for the considered Cs and Xe isotopes and the IBM2
parameters.

The odd-mass Cs isotopes are described by coupling an odd proton to the
even-even Xe cores. The proton single-particle energies are taken from Ref. [8]
(only the energy of d5/2 has been reduced from the original value of 0.20 MeV to
0.05 MeV). The BCS equations are solved with the orbitalsg7/2, d5/2, s1/2, d3/2,

h11/2, h9/2 and f7/2 with the gap energy of ∆ = 12/
√

A MeV. The adopted
single-particle energies are shown in Table 2. The quasi-particle energies and
the u, v-factors calculated with them have been used in HF and V BF. In the
IBFM2 calculation for positive-parity states we include the fermion orbitals
with positive parity. In the boson-fermion interaction, the quadrupole and the
monopole interactions are included between the odd proton and the neutron
bosons, in addition to the exchange interaction of the quadrupole type. We
allow the interaction strengths Γ, A, Λ vary gradually depending on the mass
number. In Table 3 we present the parameter values inV BF interaction potential.

The results of the calculation are shown in Fig. 1. The experimental data
are taken from Refs. [13, 14, 23]. A generally reasonable agreement is seen.
To see more detail, the calculated 3/2+

1 systematically comes lower than the
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Figure 1. Comparison between the calculated (IBFM) and the exp. energy levels of positive
parity in 125,127,129Cs.

Table 4. Single-particle energies (MeV) of the neutron orbitals in Xe. The energy of g7/2 has
been changed.

d5/2 g7/2 s1/2 d3/2 h11/2
125Xe 0.00 0.30 1.55 2.00 1.30
127Xe 0.00 0.35 1.55 2.00 1.30
129Xe 0.00 0.40 1.60 2.00 1.30

experimental counterpart, while the calculated 5/2+
1 lies higher. This difference

may be explained by the Coriolis effect. The locations of the yrast states with
I ≥ 7/2 are reasonably well reproduced. Nevertheless, we notice that the
∆I = 1 structure consisting of 9/2+, 13/2+, 17/2+, 21/2+ yrast and 11/2+,
15/2+, 19/2+ yrare states, was proposed as intruder proton g9/2 configuration
in 125Cs [9], as well as some levels in 127Cs [15]. These levels are not presented
in Fig. 1, but we notice that the excitation energies of these levels, calculated
in the valence shell space, are very close to the g9/2 experimental ones. This
could be the reason why they have not been observed.

The odd-mass Xe isotopes are described by coupling an odd neutron hole
to the neighboring even-even Xe cores. The single-particle energies are taken
from Ref.[5], except small modifications for g7/2 and h11/2.

The adopted single-particle energies are shown in Table 4.
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Table 5. ]

Parameters in the boson-fermion interaction (MeV) for Xe.
isotope Γ A Λ
125Xe 0.39 −0.42 0.40
127Xe 0.44 −0.42 0.40
129Xe 0.50 −0.42 0.40
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Figure 2. Comparison between the calculated (IBFM) and the exp. energy levels of positive
parity in 125,127,129Xe.

The parameter values used in V BF are shown in Table 5. These values are
almost identical to the approximate projection from the IBFM1 values in Ref.
[5].

The results of the calculation are shown in Fig. 2. The experimental data are
taken from Refs. [19, 13, 14, 23]. A reasonable agreement is seen. In 127Xe,
there are two different interpretations about the spin of the 510 keV level.
Although Ref.[14] adopts I = 3/2, Refs.[5, 19] insist on I = 5/2 because
of very weak beta-decay from I = 1/2 in 127Cs and the level systematics in
neighboring nuclei. We have chosen the latter on the basis of level systematics.
However, the spin of 510 keV is still an open problem. The wave functions and
organization of the levels into bands in the present IBFM2 calculation are in
very good agreement with the recent analysis in IBFM1 [5].
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3.2 Electromagnetic properties

The electromagnetic transition operators are

T (E2) = eB
π QB

π + eB
ν QB

ν +
∑
i,j

e′i,j [a†i ãj](2) (11)

where

e′i,j = − 1√
5
(uiuj − vivj)

〈
i||r2Y (2)||j

〉
. (12)

For M1,

T (M1) =

√
3
4π

⎛⎝gB
π LB

π + gB
ν LB

ν +
∑
i,j

e
(1)
i,j [a†i ãj](1)

⎞⎠ (13)

where

e
(1)
i,j = − 1√

3
(uiuj + vivj) 〈i||gll + gss||j〉 . (14)

The boson effective charges eB
π = eB

ν = 0.150 eb that we take in order to
explain the experimental data in these odd-mass nuclei are somewhat larger
than the ones determined from the corresponding even-even cores (≈0.108 eb)
[21]. This difference may be due to a polarization effect caused by the odd
fermion. In fact the polarization of the boson core by the odd fermion was also
observed in previous calculations in this region, in the signature dependence of
the energy levels[24]. For the odd proton in Cs eF

π = 1.5 e, while for the odd
neutron in Xe eF

ν = 0.5 e. For the magnetic dipole operator, the boson g-factors
for all the isotopes are: gB

ν = 0, gB
π = 0.8 µN. For the odd proton in Cs, the spin

g-factor is reduced by the factor of 0.85, while for the odd neutron in Xe, the
spin g-factor is reduced by the factor of 0.5. Figure 3 shows the results of the
calculations. On the basis of calculated excitation energies and electromagnetic
properties we may conclude that the IBFM2 description of the analysed Cs and
Xe isotopes is realistic. The calculated electromagnetic transitions and static
moments are in reasonable agreement with experimental data. However, the
beta-decay rates, where both the parent and the daughter wave functions are
involved, can give a severer test.



582 XIII SYMPOSIUM ON “SYMMETRIES IN SCIENCE”

Cs B(E2)

[e2b2]

5/2+
1 → 1/2+

1

125 127 129
0

0.1

0.2

0.3

0.4

×•
×
•

×
•

µ

[µN]

1/2+
1

125 127 129
0

0.5

1.0

1.5

2.0

×• ×• ×
•

Xe
B(E2)

[e2b2]

3/2+
1 → 1/2+

1

125 127 129

A

0

0.1

0.2

0.3

0.4

×

•

×• ×•

µ

[µN]

1/2+
1

125 127 128

A

−2.0

−1.5

−1.0

−0.5

0

×
•

×
•

×•

Figure 3. B(E2) values and magnetic moments. The symbols • with the error bars denote the
experimental data, while the symbols × show the calculated values.

3.3 Beta-decay

The Fermi
∑

k t±(k) and the Gamow-Teller
∑

k t±(k)σ(k) transition oper-
ators of the IBFM2 can be constructed by the transfer operators [22, 4, 6, 12]:

A†(j)
m = ζja

†
jm +

∑
j′

ζjj′s
†[d̃a†j′ ]

(j)
m ,

(∆nj = 1, ∆N = 0) (15)

B†(j)
m = θjs

†ãjm +
∑
j′

θjj′ [d†ãj′ ](j)m

(∆nj = −1, ∆N = 1). (16)

The former creates a fermion, while the latter annihilates a fermion simultane-
ously creating a boson. Either operator increases the sum nj +2N by one unit.
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The conjugate operators are:

Ã(j)
m = (−1)j−m

{
A

†(j)
−m

}†

= ζ∗j ãjm +
∑
j′

ζ∗jj′s[d
†ãj′ ](j)m

(∆nj = −1, ∆N = 0) (17)

B̃(j)
m = (−1)j−m

{
B

†(j)
−m

}†

= −θ∗jsa
†
jm −

∑
j′

θ∗jj′ [d̃a†j′ ]
(j)
m

(∆nj = 1, ∆N = −1) (18)

where the asterisks mean complex conjugate. These decrease nj + 2N by one
unit. The IBFM image of the Fermi

∑
k t±(k) and the Gamow-Teller transition

operator
∑

k t±(k)σ(k) are written as

OF =
∑

j

−
√

2j + 1
[
P (j)

ν P (j)
π

](0)
, (19)

OGT =
∑
j′j

ηj′j

[
P (j′)

ν P (j)
π

](1)
(20)

respectively, where

ηj′j = − 1√
3

< l′
1
2
; j′||σ||l1

2
; j >

= −δl′l
√

2(2j′ + 1)(2j + 1)W

(
lj′

1
2
1;

1
2
j

)
. (21)

The transfer operators P
(j)
ρ are chosen from Eqs. (15)-(18) depending on the

nuclei. In the present case,

P (j)
π = Ã(j)

π , (22)

P (j)
ν = B̃(j)

ν . (23)

The square of the beta-decay matrix elements are

〈MF〉2 =
1

2Ii + 1
|
〈
If ||OF||Ii

〉
|2 (24)

〈MGT〉2 =
1

2Ii + 1
|
〈
If ||OGT||Ii

〉
|2 (25)
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from which the ft value is calculated by

ft =
6163

〈MF〉2 + (GA/GV)2 〈MGT〉2
(26)

in units of second where (GA/GV)2 = 1.59. The coefficients ηj, ηjj′ , θj, θjj′

appearing in Eqs. (15)- (18) are calculated by the formulation of Refs. [22, 12]:

ζj = uj
1

K ′
j

, (27)

ζjj′ = −vjβj′j

(
10

N(2j + 1)

)1/2 1
KK ′

j

, (28)

θj =
vj√
N

1
K ′′

j

, (29)

θjj′ = ujβj′j

(
10

2j + 1

)1/2 1
KK ′′

j

. (30)

where N is Nπ or Nν, depending on the transfer operator, and K, K ′
j, K ′′

j are
determined by

K =

⎛⎝∑
jj′

β2
jj′

⎞⎠1/2

, (31)

and the conditions∑
αJ

〈
odd;αJ ||A†j||even;0+

1

〉2
= (2j + 1)u2

j , (32)

∑
αJ

〈
even;0+

1 ||B†j||odd;αJ
〉2

= (2j + 1)v2
j . (33)

The formulas (27)-(33) are valid when the odd nucleon is a particle. If the latter
half of a major shell is partly occupied (e.g., N = 73), we consider the fully
closed shell as the vacuum (e.g., N = 82 core to deal with 66 < N < 82),
according to the convention of IBM and IBFM. In this case, the microscopic
derivations are done for the holes in the shell. For example, Eq. (15) is an IBFM
image of a hole creation operator. Then the formulas corresponding to (27)-(33)
can be obtained by interchanging uj and vj. The scheme is essentially the same
as in Ref.[6]. Although some previous works introduced overall normalization
factors to account for the absolute values of the beta-transition rates, we did
not introduce any adjustable parameters in the beta-decay operators. For Xe,
because the odd neutron is a hole in respect to the boson core, uj and vj are
interchanged in Eqs. (5)-(33).
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Figure 4. The beta-decay rates from ACs to AXe shown in terms of log10 ft values. The
symbols • with the error bars denote the experimental data, while the symbols × show the
calculated values.
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Figure 4 shows the log10 ft values of the beta-decay rates from the ground
states 1/2+

1 in Cs to the yrast and the yrare 1/2+ and 3/2+ levels in Xe. The
experimental values have been derived by electron capture and β+ experiments
in Refs.[13, 14, 23]. By taking the wave functions from our calculations, the
decay rates from the ground states (1/2+

1 ) to the ground states (1/2+
1 ) are

reproduced very well. In addition, we obtain reasonable agreement in decays
to 1/2+

2 , 3/2+
1 and 3/2+

2 , except for the decay to 3/2+
1 in 127Xe. The decay

rates to higher excited levels are very sensitive to details in wave functions. In
that sense, we notice a reasonable agreement in log10 ft values for decays to
the 3/2+

3 levels in A = 125, 127 and 129: theoretical values 6.402, 6.887 and
7.147, compared to the experimental data 6.360(70), 6.308(12) and 6.400(50),
respectively.

4. Discussion

It is remarkable that once the wave functions are determined from the en-
ergy levels and the electromagnetic moments, the beta-decay rates values are
obtained in a parameter-free calculation. In fact, in contrast to shell model cal-
culations of the beta-decay rates, we do not use any additional normalization.
Concerning the structures of wave functions, the ground states of 125,127,129Cs
are dominated by two orbitals g7/2 and d3/2 (30∼40% each). The orbital d5/2

has comparable amount of mixture, too. The mixture of the component s1/2

(10∼15%) is small. In the daughter nuclei 125,127,129Xe, the dominant com-
ponent of the ground state is s1/2 (80∼90%). The main contribution to the

Gamow-Teller matrix elements comes from the term: [[d̃ν νs1/2](3/2)πd3/2](1)

in Eq. (20). Concerning the decay to the first excited states, the states 3/2+
1 in

Xe have the main component of d3/2. The main contributions to the Gamow-

Teller matrix elements come from the terms: [[d̃ν νd3/2](3/2)πd3/2](1) and

[[d̃ν νd3/2](5/2)πd3/2](1), but cancellation occurs in these two contributions.
That is one reason why log ft values to the 3/2+

1 states are larger (i.e., the
matrix elements are smaller) than log ft values to the ground states (1/2+

1 ).
It would be interesting if simple explanation of the above difference is found
based on the O(6) symmetry basis.

On the basis of calculated beta-decay rates, the present calculation strongly
supports the IBFM description of positive parity states in odd Xe isotopes,
reported in Ref.[5]. On the other side, it does not confirm the structure of low-
lying positive parity states in odd Cs isotopes, as described in the first calculation
for these nuclei [3]. In fact, the main difference between that calculation and
the present work is that in Ref.[3], due to a weak, almost negligible exchange
interaction, the wave functions are not very much mixed, while in the present
calculation characterized by a strong exchange interaction, they show a strong
configuration mixing. In the case of a weak exchange interaction for Cs isotopes,
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the wave functions of the parent nuclei give beta-decay rates that are one to two
orders of magnitude different, even for the decays to the daughter ground states.
Recent calculations for odd mass [8] and odd-odd [7] Cs isotopes, with strong
exchange interaction seem to be far more realistic, in the light of the present
calculation.

5. Conclusions

We have performed an IBFM2 analysis of A = 125, 127 and 129 isotopes
of Cs and Xe. The agreement of the calculated energy levels and electromag-
netic transition properties with the experimental data suggest that the choice
of interaction parameters is realistic. In order to test how realistic the wave
functions are, we have calculated the beta-decay rates from Cs to Xe nuclei. In
our approach this type of calculation is a very sensitive test of wave functions,
because it is parameter free, without any normalization of theoretical results.
In addition to transition rates to ground states, it also gives transition rates to
excited levels of daughter nuclei. The results of beta-decay calculations are in
very good agreement with observed data. The present analysis of beta-decay in
O(6) like nuclei, together with recent calculations for spherical nuclei, shows
that the IBFM2 is appropriate for calculation of beta-decay properties in odd
nuclei. The next subjects will be to extend the calculations to odd nuclei of
other mass regions including the Gamow-Teller transition strength distribu-
tions to higher-excited states, and also to the beta decay between even-even and
odd-odd nuclei.
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TRIAXIALITY AND CHIRALITY
IN NUCLEI AROUND MASS 130
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338-8570, Japan

Abstract Nuclei around mass 130 have many interesting features such as high-spin isomers,
backbending phenomena, even-odd energy staggering of quasi-γ band caused by
a soft triaxial deformation, and features recently referred to as “chiral bands”.
Moreover, the beta-decays and electron-captures in this region provide us with
necessary information for predicting the abundance of nuclei in the environment
of super-nova explosions. The nuclei in this region are neither vibrational nor
rotational. Thus it is very difficult to treat them in terms of conventional mean field
theories. To overcome this difficulty, we construct many-body states in terms of
collective nucleon pairs which have angular momenta zero (S) and two (D). The
purpose of this paper is to understand many seemingly different features in this
region in a self-consistent and unified way. In order to understand systematics,
we introduce effective interactions which depend smoothly on the neutron and
proton numbers. It is found that energy spectra of the yrast and quasi-γ-bands of
Xe, Ba and Ce isotopes are nicely reproduced along with inter- and intra-band E2
transitions, which simulate the typical features of the O(6) limit of the interacting
boson model.

The description of even-even nuclei in terms of S and D pairs is, however,
not enough for the backbending phenomena. For the description of these phe-
nomena we introduce another pair made of neutrons only in the h11/2 orbital.
The extended model quite well reproduces the backbending phenomena of yrast
bands and also the nature of 10+ isomers in this region.

For the description of the phenomena in nuclei with odd mass number, we
need to extend our model space to include an unpaired particle in addition to the
even-even core, and for odd-odd nuclei we need both an unpaired proton and an
unpaired neutron. Energy spectra of odd-A Xe, Ba and Ce isotopes are found to
be quite well reproduced by this simple extension of the model.

In some of odd-odd nuclei, chiral bands have been reported, where the three
angular momenta of the neutron, the proton and the even-even core can form
both right-handed and left-handed systems, which cannot be transformed into
each other by rotations. Our model can reproduce spectra of these experimental
doublet bands quite naturally, and predicts the E2 and M1 features of these
bands, most of which are not observed experimentally.
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Keywords: Triaxiality, collective states, chiral bands, pair-truncated shell model

1. Introduction

Xe, Ba and Ce isotopes around mass A = 130 belong to a typical transitional
region between spherical and deformed shapes. The even-even nuclei in this
region seem to be soft with regard to theγ-deformation with an almost maximum
effective triaxiality of γ ∼ 30◦ [1, 2]. The low-lying states, showing a rich
collective structure in this region, were investigated extensively in terms of
various models, such as the interacting boson model (IBM) [3, 4, 5, 6], the
fermion dynamical symmetry model (FDSM) [7], the pair-truncated shell model
(PTSM) [8, 9, 10, 11, 12, 13] and the nucleon-pair shell model [14, 15, 16]. As
shown in Ref. [4], the excitation spectra of the even-even nuclei in the Xe-Ba
mass region can be well approximated by the O(6) dynamical symmetry limit
of the IBM.

In many nuclei of this region the backbending phenomena have been ob-
served. The basic mechanism of these phenomena has been regarded as the
crossing of the ground state band with the s band originating from the align-
ment of two νh11/2 quasi-particles. A few theoretical studies were made using
an extended IBM, where one of the IBM sd-bosons is replaced by a pair of
nucleons with high spin [17, 18, 19, 20]. The description was quite successful,
but the Pauli effect had to be incorporated rather implicitly into the interactions
between the bosons. In order to construct an effective shell-model space by
retaining the successful aspects of the IBM, but eliminating its boson image,
we introduce an SD+H version of the PTSM, which consists of a high-spin
pair made of nucleons in 0h11/2 orbitals, in addition to the collective S and
D nucleon pairs [13]. The PTSM exactly conserves rotational invariance and
nucleon number.

Recently, experimental investigations of odd-odd nuclei in the A ∼ 130 mass
region [21, 22, 23, 24, 25, 26, 27] have resulted in the observation of systematic
doublet bands built on unique-parity 0h11/2 valence proton and neutron orbitals.
These structures are interpreted as a manifestation of chirality in the angular
momentum coupling, which was predicted by Frauendorf and Meng [28] in the
context of the tilted axis cranking model. In odd-odd nuclei with mass around
130, we can think of two physically different configurations (right and left),
where the angular momenta of the triaxial core, the proton and the neutron
are perpendicular to each other. Originating from these two configurations
in the intrinsic frame, it has been predicted that two energetically degenerate
bands called “chiral bands” appear in experimental odd-odd spectra. Up to
now theoretical investigations of chiral bands have been made through semi-
classical approaches using mean field approximations. However, there was
no microscopic study which did not break rotational symmetry and particle
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number conservation of the interactions. In this paper we clarify the difference
of internal structures of the doublet bands by applying the PTSM.

The paper is organized as follows: In section 2, the framework of the PTSM
and its effective interaction in the model space are presented, and the PTSM
calculations are carried out for Xe, Ba and Ce isotopes with mass A ∼ 130,
where the effective interactions are smoothly changed as functions of valence
particles. In section 3 we extend the PTSM to incorporate a high-spin pair in
0h11/2 orbitals for the study of backbending phenomena. In section 4 we extend
the PTSM for the application of odd-A nuclei, and carry out calculations for Xe,
Ba and Ce odd-A isotopes. In section 5 we apply the PTSM to odd-odd nuclei,
and reproduce energy levels of doublet bands and electromagnetic transitions,
and analyze the internal structure of the doublet bands. Principal results are
summarized in section 6.

2. Framework of the PTSM and its SD-pair truncation

In the shell model calculation, the number of configurations increases expo-
nentially with the number of particles, and the treatment becomes soon infea-
sible for the present computers. Therefore, if the number of valence nucleons
is large, we need to abandon the treatment by the full-fledged shell model, and
have to think about a truncation of the space.

In the first stage of the PTSM, we truncate the collective subspace to the space
which is constructed only in terms of collective S and D pairs. The S and D
pairs, as building blocks of the model, are defined in terms of pair-creation
operators as,

S† =
∑

j

αjA
†(0)
0 (jj), (1)

D†
M =

∑
j1j2

βj1j2A
†(2)
M (j1j2), (2)

where the structure coefficients α and β are determined by variation in the
present approach for each nucleus. Here the creation operator of a pair of
nucleons with total spin J and projection M is defined as follows,

A
†(J)
M (j1j2) = [c†j1c

†
j2

](J)
M . (3)

Here c†j represents a single particle creation operator in orbital j. The many-
body states are thus constructed in terms of collective S and D pairs,

|SnsDndJη〉 =
(
S†

)ns
(
D†

)nd

|−〉 , (4)

where J indicates the total spin of a many-body state, η is a quantum num-
ber which is necessary to uniquely specify the state, and ns + nd represents
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Table 1. Adopted single-particle energies for neutron-holes and proton-particles, which are
extracted from experiment [29, 30, 31] (in MeV).

j 2s1/2 0h11/2 1d3/2 1d5/2 0g7/2

εν 0.332 0.242 0.000 1.655 2.434
επ 2.990 2.793 2.708 0.962 0.000

the number of valence pairs for a specific nucleus. Here angular momentum
coupling is carried out exactly, but for simplicity it is not denoted explicitly.

In order to describe open-shell nuclei, we use the above states in both neutron
and proton spaces to couple them to a total angular momentum state. The total
state is expressed as follows,

|Φ(Jη)〉 =
[∣∣S n̄s

ν D n̄d
ν Jνην

〉
⊗ |S ns

π D nd
π Jπηπ〉

](J)
, (5)

where n̄ν = n̄s + n̄d and nν = ns + nd are numbers of neutron-hole pairs and
proton-particle pairs, respectively. In this atomic mass region we treat neutrons
as holes and protons as particles so that N=82 and Z=50 become the nearest
closed shells.

We adopt pairing plus quadrupole interactions as effective interactions (τ =
ν or π),

H =
∑
jmτ

εjτc
†
jmτcjmτ

+
∑

τ

[
−G0τP

†(0)
τ P (0)

τ − G2τP
†(2)
τ · P̃ (2)

τ − κτ : Qτ · Qτ :
]

+κνπQν · Qπ, (6)

where εjτ , G0τ , G2τ , κτ and κνπ represent the single particle energies and the
strengths of monopole-pairing, quadrupole-pairing and quadrupole-quadrupole
interactions of like particles, and that of the quadrupole-quadrupole interaction
between neutrons and protons, respectively. The detailed definitions of the
interactions are given in Refs. [8, 9, 10, 11, 12, 13].

As for single-particle levels, all the five orbitals 0g7/2, 1d5/2, 1d3/2, 0h11/2

and 2s1/2 are considered in the major shell of 50 ≤ N(Z) ≤ 82, where valence
neutrons (protons) are treated as holes (particles). The adopted single-particle
energies, listed in Table 1, have been extracted from experimental excitation
energies in Refs. [29, 30, 31].

In order to study the systematics of Xe, Ba and Ce isotopes, the strengths of
the effective interactions are smoothly changed as functions of the numbers of
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Figure 1. Energy spectra of the yrast and quasi-γ bands for Xe isotopes as a function of
neutron number N . Experimental data are taken from Ref. [32].

pairs as follows (in MeV),

G0ν = 0.140 − 0.010 n̄ν, (7)

G2ν = 0.000 + 0.005 n̄ν + 0.003 nπ, (8)

κν = 0.050 + 0.005 n̄ν, (9)

G0π = 0.150 − 0.010 nπ, (10)

G2π = 0.018 − 0.002 nπ + 0.002 n̄ν, (11)

κπ = 0.030 + 0.005 nπ, (12)

κνπ = 0.070. (13)

Figure 1 shows the energy spectra of yrast and quasi-γ bands for Xe iso-
topes. We have obtained a good agreement with experiment up to spin 6 except
N=80. For N=80 a higher spin pair seems necessary because the quadrupole
collectivity is not so dominant near the closed shell. The first 8+ states are
not well reproduced, which implies the effect of higher spin pairs originating
from the h11/2 orbital. Energy spectra for Ba isotopes are shown in figure 2.
We see a better agreement with experiment, compared to Xe isotopes, because
quadrupole collectivity becomes now dominant. The experimental energy stag-
gering for the even-spin and odd-spin members of the quasi-γ-band, indicating
γ-instability, is well reproduced theoretically. The spectra for Ce isotopes are
shown in figure 3. All three figures 1 to 3 show that theoretical quasi-γ-band
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Figure 2. Energy spectra of the yrast and quasi-γ bands for Ba isotopes. Experimental data
are taken from Ref. [32].
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Figure 3. Energy spectra of the yrast and quasi-γ bands for Ce isotopes. Experimental data
are taken from Ref. [32].
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Figure 4. B(E2) values from the ground state to the first 2+ state for Xe, Ba, Ce isotopes.
Experimental data are taken from Ref. [33].

energies decrease as a function of the number of neutron-hole increases, but
they cease to decrease at N = 74, which well reproduces the experimental
trend.

Next let us turn to the E2 transition rates. The E2 transition operator is
defined as

T (E2; µ) = eνQνµ + eπQπµ, (14)

where eτ represents the effective charge of the nucleon, and the operator Qτ is
the quadrupole operator with the oscillator parameter b = 1.005A1/6 fm. The
effective charges are assumed to follow the conventional relation eν=−δe and
eπ=(1 + δ)e [34], and the adopted values are δ=0.70 + 0.10(n̄ν + nπ).

In figure 4 the calculated B(E2) values from the ground state to the first 2+

state for Xe, Ba and Ce isotopes are compared with experiment. The overall
trend is well reproduced, but we have no good agreement with experiment for
132
58 Ce74. We infer that the calculated deformation is small compared to the

experimental one. After N=74 the nuclei rapidly develop deformation, and we
may need higher spin pairs such as G-pairs to get large deformation.

Table 2 shows relative B(E2) values between low-lying states for 134Ba,
132Ba and 130Ba. It is seen that the theoretical results reproduce very well
the experimental data, which simulate the O(6) limit prediction of the IBM.
Especially, transitions from the 5+

1 state to others are quite important for the
appearance of the O(6) symmetry.
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Table 2. Comparison of relative B(E2) values between low-lying states for 134Ba, 132Ba and
130Ba. Experimental data are taken from Refs. [35, 36, 37].

134Ba 132Ba 130Ba O(6)
Jπ

i → Jπ
f SD expt. SD expt. SD expt.

2+
2 → 2+

1 100 100 100 100 100 100 100
→ 0+

1 0.17 0.9(2) 0.063 2.7(4) 4.9 6.2(7) 0
3+
1 → 2+

2 100 100 100 100 100 100 100
→ 4+

1 15 ≥2.6 30 38(6) 36 22(3) 40
→ 2+

1 0.29 1.1 2.7 2.6(4) 14 4.5(6) 0
4+
2 → 2+

2 100 100 100 100 100 100 100
→ 3+

1 21 1.3 ≤50(11) 9.9 0
→ 4+

1 24 73 65 73(10) 79 54(10) 91
→ 2+

1 23 2.4 1.6 1.8(3) 0.25 2.3(4) 0
5+
1 → 3+

1 100 100 100 100 100 100 100
→ 4+

2 67 42 ≤45(7) 43 46
→ 6+

1 9.1 17 33 45
→ 4+

1 1.8 0.49 ≤2.2(3) 6.8 0

3. High-spin states

Although the SD version of the PTSM well describes the low-lying states
of nuclei as shown in section 2, it cannot describe an irregular yrast sequence in
high-spin states, i.e., the backbending phenomenon. This phenomenon, in mass
around 130, is caused by the neutron 0h11/2 orbital. Therefore it is absolutely
necessary to incorporate this orbital and to extend the SD version of the PTSM
to the SD+H version of the PTSM by including a pair in the 0h11/2 orbital. In
the second stage of the PTSM, we extend the PTSM to incorporate this high-spin
pair (H pair).

The H pair creation operator is defined in terms of the creation operator for
the h11/2 orbital,

H
†(K)
M = [c†11/2 c†11/2]

(K)
M . (15)

Here K takes on the angular momenta 0, 2, 4, 6, 8 and 10. Using this H pair,
the many-body states are now expressed as follows,

|SnsDndHnhJη〉 =
(
S†

)ns
(
D†

)nd
(
H†

)nh

|−〉 , (16)

where J and η are the total spin and another quantum number as before. Here
we assume nh = 0 or nh = 1 for computational simplicity. In this paper we
investigate N=76 isotones as examples. In Table 3 we show the strengths of
two-body interactions, which are slightly different from those used for the SD
version of the PTSM because the introduction of the H pair suggests a different
effective interaction. Here for 134Ce we assume only the K=10 component
for computational reasons, so that the effective interactions for this nucleus are
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Table 3. Force strengths used for N=76 isotones (in MeV).

G0ν G2ν κν G0π G2π κπ κνπ
130Xe 0.150 0.026 0.100 0.150 0.030 0.025 0.070
132Ba 0.150 0.026 0.100 0.170 0.040 0.030 0.080
134Ce 0.120 0.032 0.140 0.120 0.042 0.050 0.060
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Figure 5. Comparison of experimental energy spectrum (expt.) with the SD+H version of
the PTSM results (SDH) for the nucleus 130Xe. The experimental data are taken from Ref. [32].

very different from those used for 130Xe and 132Ba. Single-particle energies
are the same as used before.

Figure 5 shows a comparison of calculated results and experimental data of
energy levels of 130Xe. Our calculation reproduces quite well the energy levels
for the yrast and quasi-γ bands. Especially the staggering seen in 2+

2 , 3+
1 , 4+

2 ,
5+
1 in the quasi-γ band is well reproduced. Figure 6 shows a comparison of

calculated results and experimental data of energy levels of 132Ba. Our PTSM
calculation reproduces the energy levels of yrast and quasi-γ bands [13]. The
backbending phenomena in 132Ba were studied in terms of the extended IBM
[20]. In that work only yrast states were calculated and the backbending at
10+ was reproduced. However, their agreement with experiment is not so good
compared with ours. Figure 7 shows a comparison of calculated results and
experimental data of energy levels for 134Ce. We can fairly reproduce the yrast
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Figure 6. Comparison of experimental energy spectrum (expt.) with the SD+H version of
the PTSM results (SDH) for the nucleus 132Ba. The experimental data are taken from Refs. [36,
38, 39].
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Figure 7. Comparison of experimental energy spectrum (expt.) with the SD+H version of the
PTSM results (SDH) for the nucleus 134Ce. The experimental data are taken from Refs. [40, 41].

and quasi-γ bands, but the agreement is not so good compared to 132Ba and
130Xe. This is due to the fact that we only consider K=10 angular momentum
for the H pair in this nucleus. Because of this truncation, the dimensions of 2+

states for 132Ba and 130Xe are 5138 and 928 respectively, whereas it is 484 for
134Ce, and the nuclear model spaces are completely different. Nevertheless, we
can reproduce the yrast states, and the effect of the H pair is very important to
describe the backbending phenomena. The yrast states of Ce isotopes were also
studied by the extended IBM [18], and good results were obtained like ours.

Backbending plots for N = 74 isotones are shown in figure 8. As seen
from the figure, the experimental level spacings between 8+ and 10+ are very
small, and they are well reproduced. In figure 9 the B(E2) values between
yrast states are shown as a function of spin J . Here the effective charges are
taken as eν=−1.00e and eπ=2.00e. The broken line for 134Ce uses the effective
charges eν=−1.90e and eπ=2.90e, which are determined to fit experimental
B(E2; 2+

1 → 0+
1 ) value. The rapid drop of B(E2) values occurs at the point of

backbending, and our calculation reproduces the decrease ofB(E2; 10+
1 → 8+

1 )
values for 132Ba and 134Ce. For 130Xe, the B(E2; 8+

1 → 6+
1 ) value is reduced

instead of B(E2; 10+
1 → 8+

1 ). We infer that the number of proton pairs is only
two and the hexadecapole degree of freedom is effective. Unfortunately we
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experiment (expt.) with the SD+H version of the PTSM results (SDH) for 130Xe, 132Ba and
134Ce. The experimental data are taken from Refs. [32, 38, 40].

cannot reproduce the experimental B(E2) values for 134Ce, but we believe that
experimental data might be erroneous because theoretically it is quite hard to
produce a value of B(E2; 4+

1 → 2+
1 ) which is smaller than B(E2; 2+

1 → 0+
1 )

in any existing collective models.

4. Odd-A

For a description of odd-A nuclei, we add an unpaired particle to the even-
even SD pair core and consider a SD pair+1 particle state. The state is now
written as

|jSnsDndJη〉 =
[
c†j

∣∣SnsDndJ ′η′
〉](J)

, (17)

where J is the total spin and η is an additional quantum number. The number
2ns+2nd+1 represents the total number of valence particles. Here we use
Eqs. (7) ∼ (13) for the strengths of the interactions by counting the number of
the last particle as one half of the pair. Figure 10 shows energy levels of the
odd Xe isotopes. The orderings of 11/2− and 9/2− and of 13/2− and 15/2−
are reversely predicted for 129Xe, but pretty well reproduced for 131Xe and
133Xe. For the ordering and position of these negative-parity states we may
need an octupole interaction, which is missing in the present calculation. Our
calculation successfully reproduces the mild change of the ordering of 3/2+
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and 1/2+ states between the three Xe nuclei. Figure 11 shows energy levels
of the odd Ba isotopes. For 131Ba and 133Ba the energy levels of 7/2+ and
9/2+ states are predicted high in energy, but the other states are reproduced
well. Like Xe isotopes, the smooth change of ordering is seen for the 3/2+ and
1/2+ states. Some calculations were also done for Ba and Xe isotopes by the
FDSM [7]. In these calculations, the energies of positive-parity states were well
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reproduced, but no energy levels of negative-parity states were given. Figure 12
shows energy levels of odd Ce isotopes. Concerning the first 5/2+ state of
137Ce, our calculation seems to fail in reproducing the experimental energy, but
theoretically we predict another 5/2+ state at 880 keV, and the experimental
observation might correspond to this theoretically predicted level. Although
reproducing energy levels of odd-A nuclei is much more difficult compared
to even-even nuclei, the agreement is rather well, considering the fact that the
effective interactions are solely determined for even-even nuclei and no further
adjustment is made for odd-A nuclei.

5. Chiral bands

In the final stage of the extension of the PTSM, we add a neutron and a proton
to the even-even core made of collective S and D nucleon pairs. Experimentally
one observes pairs of almost degenerate bands, members of which differ by
∆J = 1. They are interpreted to arise from the angular momentum coupling
of a neutron and a proton in the 0h11/2 orbital to the triaxial core, and called
chiral bands [21, 22, 23, 24, 25, 26, 27]. Thus we only take into account the
νh11/2 ⊗ πh11/2 state, which corresponds to Eq. (17) with j=11/2,

|Φ(ηJ)〉 =
[∣∣jν Sn̄sν

ν Dn̄dν
ν ηνJν

〉
⊗ |jπSnsπ

π Dndπ
π ηπJπ〉

](J)
, (18)

where the interactions are assumed exactly the same as before (Eqs. (7) ∼
(13)). The comparison between experimental energy spectrum corresponding
to the νh11/2 ⊗πh11/2 configuration and that in the PTSM is given in figure 13
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for 132La. It is noticed that good agreement between theoretical spectrum of
the PTSM and experimental data is achieved. The PTSM result predicts the
existence of the 8+

2 , 9+
2 , and 10+

2 levels in the low-lying states.
The calculated B(E2) values of the yrast states and partner states for 132La

and those of the yrast states of 132Ba are shown as a function of spin J in
figure 14. It is seen that in the yrast states of 132La the theoretical values of
B(E2) are very similar to those of 132Ba. Meanwhile, in the partner states of
132La, theoretical B(E2) values are smaller than those of 132Ba. This suggests
that the yrast band has a pure structure made of a neutron and a proton in h11/2

orbital which are coupled to the 132Ba core, while the partner band has a rather
different structure compared to the yrast band.

The M1 transition operator is defined as follows,

T (M1; µ) = µN

√
3
4π

∑
τ=ν,π

[g�τjτ + (gsτ − g�τ)sτ ]µ, (19)

where µN is the nuclear magneton, and g�τ and gsτ are g factors for orbital
and spin angular momentum, respectively. The jτ and sτ are the total and spin
angular momenta, respectively. In this study we use the free value for g�τ and
0.70 times the free value for gsτ . The adopted values are g�ν = 0, g�π = 1.00,
gsν = −2.68 and gsπ = 3.91.

The calculated B(M1) values of the yrast states and partner states for 132La
are shown as a function of spin J in figure 15. The B(M1) between yrast
states are large from odd spin to even spin, and small from even spin to odd
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spin. On the contrary, for the partner bands, both B(M1) values are found to
be very small. This result tells us that yrast states and partner states, which
form ∆J = 1 bands, have very different structures. Furthermore, staggering of
B(M1)/B(E2) for the yrast states are observed for nuclei in this region [25],
and the calculations predict that a similar situation holds also in 132La. The
experimental confirmation is urgently necessary.

The calculated expectation numbers of D pairs of the yrast states and partner
states for 132La and those of the yrast states of 132Ba are shown as a function
of spin J in figure 16. The yrast band in 132La is interpreted as having the
structure of a neutron-hole and a proton-particle in addition to the 132Ba core.
Comparing the number of D pairs in 132La and that in 132Ba, we can understand
the structure of the core. The results show that the yrast states in 132La have
a structure which is very similar to 132Ba for angular momentum states larger
than 12+, whereas the partner band has a slight different structure compared
to 132Ba, which suggests that the partner band consists of a mixture of many
excited bands.

6. Summary and Conclusions

Many theoretical investigations have been carried out on nuclei with mass
numbers around 130, which exhibit many interesting features coming from the
soft triaxial deformation. However, there are only very few researches on odd-
A or odd-odd nuclei due to the difficulty of a theoretical treatment. Especially
there is no work which systematically treats odd-A and odd-odd nuclei in a
framework consistent with even-even nuclei. Here we have proposed the PTSM
which can systematically treat even-even, odd-A and odd-odd nuclei on the
equal footing. As another aspect, the model has the feature that it drastically
and efficiently truncates the gigantic shell model space.

For even-even nuclei, the subspace of the shell model space is built by the
angular momentum zero (S) and two (D) pairs. For a description of odd-A or
odd-odd nuclei, an unpaired neutron or proton is added to the even-even core.
As realistic applications of the PTSM to Xe, Ba and Ce isotopes, we have used
an effective interaction which varies smoothly as a function of neutron and pro-
ton numbers. Spectra of both yrast and quasi-γ bands are reproduced very well.
We have also applied the same interaction to odd-A and odd-odd isotopes. For
the odd-A nuclei the reproduction is very good except for negative-parity states
which implies the necessity of an octupole interaction. For odd-odd nuclei, our
model has revealed that in fact those almost degenerate bands have quite differ-
ent structures. Our model can reproduce spectra of these experimental doublet
bands quite naturally and predict E2 and M1 features of those bands, most of
which are not observed experimentally. Further experimental investigation is
urgently needed.
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Finally we would like to assert that researches by the IBM, the IBFM and the
IBFFM are still quite important and necessary for the study of nuclei especially
in the deformed region, since at present we have a limitation on the number of
pairs for computational reasons. We hope that our present framework gives the
microscopic foundation of these phenomenological models in future.
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