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Preface

Recently, the world has witnessed the convergence of online social network services
and online video services; users import videos from content-sharing sites and
propagate them among their social connections by re-posting them. Online social
networks have reshaped how multimedia content is generated, distributed, and con-
sumed on the Internet today. Given the massive amount of user-generated content
shared in online social networks, users are now engaged as active participants in the
social ecosystem rather than as passive receivers of media content. This revolution
is being driven further by the deep penetration of 3G/4G wireless networks and
smart mobile devices that are seamlessly integrated with online social networking
and media-sharing services.

Despite increasingly abundant bandwidth and computational resources, the ever-
increasing volume of data created by user-generated video content—along with the
boundless coverage of socialized sharing—presents unprecedented challenges. In
this book, we first present the challenges in social-aware video delivery. Then,
we present a primary framework for social-aware video delivery and a thorough
overview of the possible approaches. Moreover, we identify the unique character-
istics of social-aware video access and social content propagation and reveal, in
detail, the design and integration of individual modules that are aimed at enhancing
user experience in the social network context. Finally, we present future research
directions and discussions.

Shenzhen, Guangdong, China Zhi Wang
Burnaby, BC, Canada Jiangchuan Liu
Beijing, China Wenwu Zhu
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Chapter 1
Introduction

1.1 Background

Over the past decade, we have witnessed a rapid evolution toward a new generation
of networked, shared multimedia in the Web 2.0 era. Today, high-definition, 3D
and multi-view videos can be readily captured and viewed by personal computing
devices, and conveniently processed and stored with remote cloud resources.
Despite the increasingly abundant bandwidth and computational resources, the ever-
increasing data volume of user-generated video content and the boundless coverage
of socialized sharing present unprecedented challenges to both content and network
service providers. The highly diverse content origins and distribution channels
further complicate the design and management of online video sharing systems.
Here, we present a state-of-the-art survey of social-aware video delivery, identify
key issues in this promising field, and present solutions.

Online social network services connect users through “friending” (e.g., Face-
book), “following” (e.g., Twitter), or professional connections (e.g., LinkedIn). Such
applications have successfully changed how people connect to each other and how
they share information, including videos. Recently, the convergence of online social
network services and online video services allows users to import videos from video
sharing sites to their online social networks, where those videos are propagated
along the social connections between people who re-share them. Social behaviors
have dramatically reshaped how videos are disseminated to users: Specifically, many
people now receive videos directly from their friends. For example, the online music
video “Gangnam Style” attracted over one billion views within 6 months after it
was uploaded, due to its propagation over popular online social networks including
Twitter and Facebook. In 2015, the duration of videos watched and shared every day
by Facebook users totals approximately 500 years, and over 700 videos are shared
on Twitter every minute [26].

© The Author(s) 2016
Z. Wang et al., Social Video Content Delivery, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-33652-7_1
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2 1 Introduction

Conventional video delivery strategies, e.g., the original client/server streaming,
IP and application-layer multicast/peer-to-peer, and content delivery networks
(CDNs), mainly focus on improving the network delivery performance to meet the
increasing scale of video requests. These strategies have generally assumed that
the content comes from centralized service providers and that users only passively
receive the content [23]. For videos that are shared over social networks, however,
the access patterns are much more dynamic and are affected by individuals and their
social behaviors during propagation [18]. A more sophisticated system design for
social media content delivery is thus in demand.

1.2 Previous Efforts

Online social networks have become popular Internet services. Based on logs from
Flickr, LiveJournal, and Orkut, Mislove et al. studied the topology of the social
graph and confirmed the power-law, small-world, and scale-free properties [15].
Krishnamurthy et al. investigated Twitter and identified distinct classes of Twitter
users and their behaviors [2].

In online social networks, content spreads among users. A great deal of research
effort has been devoted to studying how information propagates through online
social networks. Kwak et al. [11] investigated the impact of users’ retweets on
information diffusion in Twitter. Dodds et al. used an epidemic model to study
information propagation by considering each piece of information as an infective
disease that spreads via social connections [7]. Kempe et al. investigated how to
maximize the spread of influence in an online social network [10], and Hartline
et al. utilized this understanding to achieve revenue maximization, by selecting the
best set of initial users to push the information. Domingos et al. assessed the value of
social networks in estimating the potential buyers of a product or a service, which
can be influenced by existing customers [8].

Many architectures have been proposed for large-scale content service systems,
including (1) server-based, e.g., CDN and cloud-based methods [17], (2) client-
based, e.g., P2P content delivery [13], and (3) hybrid, e.g., a CDN coupled
with a P2P delivery framework [25]. For Internet-scale social content services,
replicating the content across different geographic regions is a promising approach
for providing good-quality services to users [1]. Zhu et al. proposed allocating cloud
servers at the network edges to distribute multimedia content to users [27].

Content-Based Replication From the content aspect, traditional content delivery
primarily concerns itself with content popularity, and it allocates storage and
bandwidth resources accordingly [9]. Since 2005, a huge amount of content has
been generated by users. Exploring the “social networks” of content can effectively
help users fetch content precisely [5], i.e., content to be requested by users in the
future. However, online social networks have greatly changed the assumptions of
traditional replication algorithms [3], e.g., the distribution of content is shifted from
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a “central-edge” manner to an “edge-edge” manner, resulting in the hybrid long-
tailed and close-to-uniform popularity distribution. Li et al. studied content sharing
and observed a skewed content popularity distribution and the “power-law” activity
intensity distribution of users [12]. To better serve such social content, some social-
aware content replication schemes have been proposed.

Social-Based Replication User relationships and influences were studied in online
social networks. After a person shares a given item, that person’s friends may also
be attracted to request it. Pujol et al. investigated the difficulties of scaling an online
social network hosting system and designed social partitioning and replication
middleware, in which users’ friends’ data can be co-located in the same server [18].
Tran et al. also studied the partitioning of user-generated content by taking social
relationships into consideration [20]. Nguyen et al. investigated how to improve the
efficiency of a social media system in cases of server failure, by using the social
locality pattern [16]. Wang et al. observed that a social network can be used to
predict content access patterns in a standalone content sharing system, e.g., Youku
[21]. Wu et al. studied how to minimize the cost of migrating social media among
servers in different regions [24]. Cheng et al. studied using social media partitions
to balance the server load and preserve the social relationship [6].

1.3 Challenges in Social Video Delivery

Today’s social video content delivery systems are facing the following challenges.

Users, Not Service Providers, Determine How Videos Reach New Audiences First,
in an online social network, content is generated, propagated, and disseminated by
users. In 2014, YouTube reported that users uploaded over 100 h of video clips every
minute. Content delivery systems thus have to distribute a much larger volume of
user-generated videos than what has ever been handled by conventional content
providers [4]. Second, users share videos through social connections, and they tend
to receive videos from their friends. Consequently, service providers no longer have
tight and centralized control over the dissemination of content.

Dynamic Content Propagation Social propagation is affected by a combination
of factors, including social topology, user behaviors, and the inherent content
characteristics [22]. Because it has many influencing factors, propagation is highly
dynamic, and traditional content delivery strategies generally lack predictive tools
to infer such inherent dynamics.

Changes in the Popularity of Social Content Changes in content origins and
patterns of social propagation also change the popularity distribution of videos.
On one hand, the overall skewness of social video popularity distribution has been
amplified; on the other hand, certain initially unpopular videos can be rediscovered
and then shared among users with close social relationships. Video popularity is a
key factor in designing and optimizing video delivery systems, and the change thus
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has strong implications. For example, the request hit ratio can be degraded by over
70% when traditional cache strategies are used to handle online social content [14].

The increasing popularity of online social network services has fundamentally
changed the landscape of online video content delivery and requires a new set of
content delivery strategies, including content delivery overlay construction, network
resource allocation, and content deployment. In this book, we present these and
other strategies that can significantly improve video delivery quality within the
context of the convergence of online social network services and online video
services.

1.4 Social-Aware Video Delivery Framework

The challenges described above demand the joint study of user behavior, social
video popularity, and social propagation to improve the performance of content
delivery in the social network context. To this end, Fig. 1.1 illustrates a general
framework of social-aware video content delivery strategies. In this framework,
we collect social (e.g., social relationship and behaviors), content (e.g., types and
features), and context (e.g., time and location) information to study popularity and
propagation characteristics. Machine learning models have been designed to predict
the evolution of social video popularity and the propagation patterns (e.g., the size
of a social cascade). The prediction models estimate how videos will be shared
in different locations, and network resources can then be dynamically allocated
among these locations. In addition, content replication and caching strategies can be
incorporated to further improve the efficiency with which the content is shared [19].

This work explores the unique characteristics of social-aware video access and
the social propagation of content and closely examines the design and integration of
individual modules into the framework.

Input

Content

Social

Context

Pattern
Mining

Propagation
Charactersitics

Popularity Patterns

Learning
for Prediction

Propagation Prediction

Regional Popularity
Prediction

Social-Aware Content Delivery

Edge-network architecture

Replication strategies

Fig. 1.1 Framework of social-aware video content delivery
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Chapter 2
Popularity of Social Videos

We begin by investigating the popularity of videos propagated through online
social networks, including the popularity distribution and its evolution. Then, we
investigate predictive models that capture social video popularity.

2.1 Social Video Popularity: Distribution and Evolution

To investigate the distribution of social video popularity, we used a real-world
dataset from Renren (one of the largest online social networks in China), which
contained log records for 1 week, during which 3 million users issued 11 million
video shares and performed 87 million views [7]. We observed the following
popularity characteristics.

2.1.1 Amplified Skewness in Popularity Distribution

The Pareto principle (also known as the 80–20 rule) is widely used to describe the
skewness in distributions. For example, an analysis of YouTube shows that 10% of
the most popular videos account for 80% of all user requests [2]. One may wonder
whether social-network-based sharing results in a less skewed request distribution
across the videos because all videos have an equal chance of becoming popular.

We first study the popularity of popular videos. In Fig. 2.1, we plotted the fraction
of cumulative requests for videos against their popularity, ranked and normalized
between 0 and 1. Figure 2.1 shows a counterintuitive result: just 0:4% of the
videos account for more than 80% of the requests, while the remaining 99:6% of
the videos account for only 20% of the requests. The reason for these results is that
in online social networks, popular videos become even more popular because users

© The Author(s) 2016
Z. Wang et al., Social Video Content Delivery, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-33652-7_2
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Fig. 2.1 Skewness of requests across all videos

are more likely to recommend them to their friends. Less popular videos, however,
fade out quickly in the small online social communities.

We further study the number of requests issued to these social videos in a time
span of 1 day. As shown in Fig. 2.2, 80% of the videos have fewer than four requests,
and 90% of the videos have fewer than ten requests per day. Considering the huge
number of Renren users, this result confirms that social-network-based sharing will
lead to a more skewed popularity distribution across the videos.

To further analyze the distribution of requests issued in different time spans,
we examined videos that are shared on the first day. Because most users are more
interested in newly updated videos, this analysis avoids possible bias from the age
of the videos. We counted the cumulative requests for those videos within 1 day, 2
days, 1 week, and 1 month, respectively. Figure 2.3 shows the results. We observe
that the skewness increases as the time window increases, and it converges after 1
week.

Based on the above analysis, we note that social-network-based sharing has
affected the pattern of video popularity in existing video sharing systems. In par-
ticular, users’ interests significantly converge on a few very popular videos. These
videos are usually widely shared and recommended by many users, which helps
them become even more popular. In contrast, the less popular videos fade out
quickly in such an environment due to “social selection.” We also observe that the
popularity distribution is formed in a small time window of 1 week.
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2.1.2 Sharing in Small Social Groups

Because the fraction of unpopular social videos is so large, we investigated the
types of social groups in which these unpopular videos propagate, using traces from
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Fig. 2.4 Unpopular videos
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Weibo. Our traces recorded how 400,000 videos were shared by users in 1 month.
By randomly sampling 50 videos with different propagation sizes (the number of
users involved in a video’s propagation), we calculated the correlations between
the propagation sizes and the clustering coefficients (a larger clustering coefficient
indicates a closer connection between members) of the social groups formed by
the users involved in the propagations. In Fig. 2.4, each sample illustrates the video
propagation size versus the clustering coefficient of the corresponding social group.
There is relatively strong correlation between the propagation size and the clustering
coefficient; in other words, unpopular videos tend to be shared among small social
groups whose members are closely connected.

2.1.3 Popularity Dynamics

Although the videos show similar popularity distributions along the timeline, we
found that their relative positions in the distribution are highly non-stationary, i.e.,
some rarely requested (or low-ranked) videos may become frequently requested
(top-ranked) videos in the near future, dynamically.

We took a snapshot of the number of the added views for each video, every
500,000 requests for all videos. Figure 2.5 shows the scatter plots for the number
of new views received by a video at snapshots 2, 3, and 4 against the number
at snapshot 1. We calculate both the Pearson correlation coefficient (�p) [5] and
Spearman’s rank correlation coefficient (�s) [4]1 between the number of new views

1�p has been widely used to measure the strength of linear dependence between two variables, and
�s assesses how well the relationship between two variables can be described using a monotonic
function. The ranges of both �p and �s are from �1 to 1, where a value greater than 0 indicates a
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Fig. 2.5 The number of new views at snapshots 2, 3, and 4 versus that at snapshot 1

at different snapshots and the original number of views at snapshot 1. This figure
demonstrates the change in the number of views between two snapshots. Overall,
there is substantial non-stationarity in the popularity of individual videos: Although
the new views for two adjacent snapshots show a weak correlation, non-adjacent
snapshots show that the correlation declines quickly as the distance between any
two snapshots increases.

2.1.4 Popularity Evolution

We measured the evolution of video popularity in online social networks. Similar
to most streaming systems, our measurement shows that video requests are not
distributed uniformly but exhibit a diurnal pattern. The diurnal access pattern defines

positive correlation and a value less than 0 indicates a negative correlation. A value of 0:8 or more
is usually considered strong positive correlation [2].
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Fig. 2.6 Aggregated views of all videos in each hour in 1 week

how the number of requests to the video sharing system varies during a given period
of time, e.g., a day. To study such a pattern, we counted the number of views in each
time slot of 1 h for a whole week, and show the results in Fig. 2.6. First, requests are
slightly elevated over weekends. Second, there are local peaks around lunchtime,
especially on weekdays. Third, although it is common for the fewest requests to
appear in the early morning (at approximately 6 am) and for the most requests to
appear at approximately 10 pm, the large gap between the peak values and the lowest
values (by 20 times) exceeded our expectations.

The diurnal social video request pattern is important for capturing the bursts of
resource consumption within a given time period. Due to the diurnal request pattern,
the inter-arrival times within a given day do not simply follow an exponential
distribution. Instead, it can be better modeled as a non-homogeneous Poisson
process [4]. The request number in a given time slot can be computed based on
the diurnal pattern.

We further examined the popularity evolutionary patterns of videos with
varying popularity. From a 3-month period, we randomly selected 1000

high-popularity videos with more than 10,000 total requests per video, 1000
medium-popularity videos with 400–600 requests per video, and 1000 low-
popularity videos with �10 requests per video. Figure 2.7 shows the popularity
evolution of the three groups of videos. As shown, the low-popularity videos
attract only a few users even on the first day when they are shared. Subsequently,
their popularity decreases quickly to a near-zero level, showing that the average
lifetime of a low-popularity video is less than 1 day, suggesting that users quickly
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Fig. 2.7 Popularity evolution of videos with varying popularity

lose interest in these videos in the online social network. The medium-popularity
videos, on the other hand, show a very different evolutional pattern over time.
Although they also achieve their request peaks during the first day, their popularity
decreases much more slowly than the low-popularity videos. In contrast, the peak
value for high-popularity videos generally arrives only after 2 or 3 days, and these
videos remain popular at a relatively high level for a long time.

2.1.5 Popularity Comparison

We explored whether videos have similar popularity in online social networks and
traditional video sharing services. Among all video sharing sites that ever share
videos in Renren, Youku alone accounts for nearly 80% of all shared video views,
while the top five video sites together account for nearly 95% of all the requests.
Figure 2.8 shows the video views in Renren compared with those in Youku.

The sites exhibit a relatively close popularity relationship, which indicates that
the content itself plays an important role in a video’s popularity. The fitted curve
suggests that approximately 37% (1/2.67) of the video views on Youku come from
Renren. Note that we considered only the statistics of those Youku videos that were
ever shared in Renren. The ratio of videos from Youku that were ever shared in
Renren was approximately 11% in March 2011. The ratio had increased to 15%
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when we measured it again in October, 2011. Considering the benefits of this
interaction for both online social networks and traditional video sharing services,
we believe that this ratio of videos shared in online social networks will continue to
increase steadily in the future.

To analyze the correlation between the number of video views in Renren and
Youku with more specificity, we use the Pearson correlation coefficient (�p) and
Spearman’s rank correlation coefficient (�s). The value of �s is 0:84, indicating
a relatively high positive correlation and confirming the result in Fig. 2.8. As a
comparison, �p is 0:69, which is much smaller than �s and indicates that the
popularity of videos in Renren and Youku does not have a good linear correlation
relationship.

To understand the type of videos that are popular in Renren, we show the
correlation coefficients between the video views in Renren and three other statistics
in Table 2.1, including likes, dislikes, and comments. Our observations are as
follows. (1) The number of views has the highest correlation with traditional video
sharing services. Because a video is generally first uploaded to a traditional video
sharing service (e.g., YouTube) and then discovered and shared by users in online
social networks (usually after the video becomes popular), a video’s popularity
in a traditional video sharing service can be used as an important predictor of its
popularity when it is first shared in online social networks. (2) It is surprising that
there is little correlation between the number of likes/comments and the number of
views.
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Table 2.1 Correlation
between video views and
other statistics in Renren and
Youku

Correlation Views Likes Dislikes Comments

�p 0.6937 0.2780 0.0188 0.2203

�s 0.8493 0.6801 0.6186 0.6189

2.2 Social Popularity Prediction

The above observations suggest that content delivery mechanisms must be substan-
tially revised, and that social-aware factors (e.g., the number of previous re-sharers
and the age of the video in an online social network) will play important roles [1].
Meanwhile, the popularity prediction has to jointly consider both accuracy and
timeliness of the prediction results.

2.2.1 Social Popularity Prediction Framework

To capture the popularity of social video content, we investigated a systematic
methodology and an associated online algorithm for forecasting the popularity of
videos promoted by social media. Our social-forecast algorithm is able to make
predictions about the future popularity of videos while jointly considering both the
accuracy and the timeliness of the prediction. We consider the unique situational
conditions that affect videos propagated in social media, and we demonstrate how
this contextual information can be incorporated to improve the accuracy of the
forecasts.

We considered a generic Web 2.0 information sharing system in which videos
are shared by users through social media. The framework is illustrated in Fig. 2.9.
We assigned each video an index k 2 f1; 2; : : : ;Kg according to the absolute time
tk
init when it is first posted.2

After a video is first posted, it will propagate through social media for some
time duration. We assume a discrete time model in which a period can be minutes,
hours, days, or any suitable time duration. A video has an age of n 2 f1; 2; : : :g
periods if it has been propagated through social media for n periods. In each period,
the video is further shared and viewed by users depending on the sharing and
viewing status of the previous period. The propagation characteristics of video k
up to age n are captured by a dn-dimensional vector xk

n 2 Xn, which contains
popularity information such as the total number of views, as well as other contextual
information such as the characteristics of the social network over which the video
was propagated. We keep xk

n in an abstract form and call it the context (and
situational) information at age n.

2It is easy to assign unique identifiers for multiple videos that are generated/initiated at the same
time.
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Several points are worth noting regarding the contextual information.
First, the context space Xn can be different at different ages n. In particular, xk

n
can include all the history information for video k’s propagation characteristics up to
age n, i.e., xk

n includes all the information for xk
m;8m < n, as illustrated in Fig. 2.10.

Second, the contextual/situational information xk
n can be taken from a large space,

e.g., a finite space with a large number of values or even an infinite space. For
example, some dimensions of xk

n take values from a continuous value space and xk
n

may include all the past propagation characteristics (e.g., xk
m 2 xk

n;8m < n).
Third, at age n, xk

m;8m > n are not yet revealed because they represent future
situational and contextual information that is yet to be realized. Hence, given the
contextual information represented by xk

n at age n, the future contextual information
xk

m;8m > n are random variables.
We are interested in predicting the future popularity status of videos by the end of

a pre-determined age N, and the goal is to make that prediction as soon as possible.
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The choice of N depends on the specific requirements of the content provider, the
advertiser, and the web hosts. We will treat N as given, because the video sharing
events have daily and weekly patterns, and the active lifespans of most shared videos
through social media are quite limited [3]. Thus, the contextual information for
video k during its lifetime of N periods is collected in xk D .xk

1; x
k
2; : : : ; x

k
N/. For

expositional simplicity, we also define xnC D .xnC1; : : : ; xN/, xn� D .x1; : : : ; xn�1/
and x�n D .xn� ; xnC/.

Let S denote the popularity status space, which is assumed to be finite. For
instance, S can be either a binary space {popular, unpopular} or a more refined
space containing multiple levels of popularity such as {low popularity, medium
popularity, high popularity} or any such refinement. Let sk denote the popularity
status of video k by the end of age N. Because sk is realized only at the end of
N periods, it is a random variable at all previous ages. However, the conditional
distributions of sk will vary at different ages because those distributions are
conditioned on different contextual information. In many scenarios, the conditional
distribution at a higher age n is more informative for predicting future popularity
because more contextual information is available. Nevertheless, our model does not
require this assumption to hold.

2.2.2 Prediction Reward

For each video k, at each age n D 1; : : : ;N, we can make a prediction decision ak
n 2

S [fwaitg. If ak
n 2 S , we predict ak

n as the popularity status by age N. If ak
n D wait,

we choose to wait for the next period’s contextual information to decide, i.e., either
predict a future popularity status or wait again. When the prediction is used to make
a one-shot decision, introducing a “wait” option is of significant importance to allow
a trade-off between accuracy and timeliness. For each video k, at the end of age N,
given the decision action vector ak, we define the age-dependent reward rk

n at age n
as follows:

rk
n D

�
U.ak

n; s
k; n/; if ak

n 2 S

rk
nC1; if ak

n D wait
(2.1)

where U.ak
n; s

k; n/ is a reward function that depends on the accuracy of the
prediction (determined by ak

n and the realized true popularity status sk) and the
timeliness of the prediction (determined by the age n when the prediction is made).

The specific form of U.ak
n; s

k; n/ depends on how the reward is derived according
to the popularity prediction based on various economic and technological factors.
For instance, the reward can be set as the ad revenue derived from placing
appropriate ads with potentially popular videos, or it can be the cost of adequately
planning computation, storage, and bandwidth resources to ensure the robust
operation of the video streaming services. A reward function can be in the form of
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U.ak
n; s

k; n/ D �.ak
n; s

k/C� .n/, where �.ak
n; s

k/measures the prediction accuracy,
 .n/ accounts for the prediction timeliness, and � > 0 is a trade-off parameter that
controls the relative importance of accuracy and timeliness.

Let n� be the first age at which the action is not wait, i.e., the first time a forecast
is issued. The overall prediction reward is defined as the rk D rk

n� . According to the
equation reward, when the action is wait at age n, the reward is the same as that at
age nC1. Thus rk

1 D rk
2 D : : : D rk

n� . This suggests that the overall prediction reward
is the same as the age-dependent reward at age 1, i.e., rk D rk

1. For age n > n�,
the action an

k and the age-dependent reward rk
n do not affect the realized overall

prediction result because a prediction has already been made. However, we still
select actions and compute the age-dependent reward because it helps in learning
the best action and the best reward for this age n—which in turn will help decide
whether we should wait at an early age. Figure 2.11 provides an illustration on how
the actions at different ages determine the overall prediction reward.

Remarks. The prediction action itself does not generate rewards. It is the action
taken using the prediction results that is rewarding. In many scenarios, this action
can only be taken once and cannot be altered afterwards. This motivated the
formulation of the above overall reward function in which the overall prediction
reward is determined by the first non-wait action. Nevertheless, our framework
could easily be extended to account for more general overall reward functions which
may depend on all non-wait actions. For instance, the action could be revised when a
more accurate later prediction is made. In this case, the reward function U.ak

n; s
k; n/

in reward would depend not only on the current prediction action ak
n 2 S but also

on all non-wait actions after age n. We will use the reward function shown in reward
because of its simplicity for the exposition—but our analysis also holds for general
reward functions.
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Fig. 2.11 An illustration of the multi-stage decision making. If the first n actions are wait, then
rk

n D rk
nC1 which depends on later actions. If the age-n action is not wait, then rk

n ¤ rk
nC1, and rk

does not depend on later actions. However, we can still determine the reward of taking action at
age nC 1 just as if all actions before age nC 1 were wait
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2.2.3 Prediction Policy

We focus on prediction policies that depend on current contextual information.
Let �n W Xn ! S [ fwaitg denote the prediction policy for a video of age
n and � D .�1; : : : ; �N/ be the complete prediction policy. Hence, a prediction
policy � contains the actions for all possible contextual information at all ages.
For expositional simplicity, we also define �nC D .�nC1; : : : ; �N/ as the policy
vector for ages greater than n, �n� D .�1; : : : ; �n�1/ as the policy vector for ages
smaller than n and ��n D .�n� ; �nC/. For a video with contextual information xk,
the prediction policy � determines the prediction action at each age and hence the
overall prediction reward, denoted by r.xj�/, as well as the age-dependent rewards
rn.xj�/;8n D 1; : : : ;N. Let f .x/ be the probability distribution function of the
video’s contextual information, which also gives information about the popularity
evaluation patterns. The expected prediction reward of a policy � is, therefore,

V.�/ D
Z

x2X
r.xj�/f .x/dx: (2.2)

Note that the age-n policy �n will use the contextual information xn rather than x
to make predictions because xnC has not yet been realized at age n.

Our objective is to determine the optimal policy �opt that maximizes the expected
prediction reward, i.e., �opt D arg max

�
V.�/. This problem is referred to as

a complete information problem if f .x/ is known, and incomplete information
problem otherwise.

2.2.4 Prediction Using Complete Information

We consider the optimal policy design problem with the complete information of the
context distribution f .x/ and compute the optimal policy �opt. Even when having
the complete information, determining the optimal prediction policy faces great
challenges: First, the prediction reward depends on all decision actions at all ages;
Second, when making the decision at age n, the actions for ages larger than n are
not known since the corresponding context information has not been realized yet.

Given policies ��n, we define the expected reward when taking action an for xn

as follows:

�n.x0nj��n; an/ D
Z

x
IxnDx0

n
rn.xj��n; an/f .x/dx (2.3)

where IxnDx0
n

is an indicator function which takes value 1 when the age-n context
information is x0n and value 0 otherwise. The optimal ��.��n/ given ��n thus can
be determined by
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��n .xnj��n/ D arg max
a
�.xnj��n; a/;8xn: (2.4)

Equation (2.4) defines a best response function from a policy to a new policy F W
˘ ! ˘ where ˘ is the space of all policies. In order to compute the optimal
policy �opt, we iteratively use the best response function in (2.4) using the output
policy computed in the previous iteration as the input for the new iteration. Note that
a computation iteration is different from a time period, which is used to describe
the time unit of the discrete time model of the video propagation. A period can be
a minute, an hour, or any suitable time duration. In each period, the sharing and
viewing statistics of a specific video may change. “Iteration” is used for the (offline)
computation method for the optimal policy (which prescribes actions for all possible
context information in all periods). Given the complete statistical information (i.e.,
the video propagation characteristics distribution f .x/) of videos, a new policy is
computed using best response update in each iteration.

We prove the convergence and optimality of this best response update as follows.

Lemma 2.1. ��n .xnj��n/ is independent of �m;8m < n, i.e. ��n .xnj��n/ D
��n .xnj�nC/.

Proof. By the definition of age-dependent reward, the prediction actions before age
n do not affect the age-n reward. Hence, the optimal policy depends only on the
actions after age n.

Lemma 2.1 shows that the optimal policy �n at age n is fully determined by the
policies for ages larger than n but does not depend on the policies for ages less
than n. Using this result, we can show the best response algorithm converges to the
optimal policy within a finite number of computation iterations.

Theorem 2.1. Starting with any initial policy �0, the best response update con-
verges to a unique point �� in N computation iterations. Moreover, �� D �opt.

Proof. Given the context distribution f .x/ which also implies the popularity evolu-
tion, the optimal age-N policy can be determined in the first iteration. Since we break
ties deterministically when rewards are the same, the policy is unique. Given this,
in the second iteration, the optimal age-.N � 1/ policy can be determined according
to (2.4) and is also unique. By induction, the best response update determines the
unique optimal age-n policy after NC1�n iterations. Therefore, the complete policy
is found in N iterations and this policy maximizes the overall prediction reward.

Theorem 2.1 proves that we can compute the optimal prediction policy using a
simple iterative algorithm as long as we have complete knowledge of the popularity
evolution distribution. In practice, this information is unknown and extremely
difficult to obtain, if not possible. One way to estimate this information is based
on a training set. Since the context space is usually very large (which usually
involves infinite number of values), a very large volume of training set is required
to obtain a reasonably good estimation. Moreover, existing training sets may be
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biased and outdated as social media evolves. Hence, prediction policies developed
using existing training sets may be highly inefficient [6]. In [7], we also developed
learning algorithms to learn the optimal policy in an online fashion, requiring no
initial knowledge of the popularity evolution patterns.

To summarize, we formulate the online popularity prediction as a multi-stage
sequential decision and online learning problem. Our solution makes multi-level
popularity prediction in an online fashion and requires no a priori training phase
or dataset. It exploits the dynamically changing and evolving video propagation
patterns through social media to maximize the prediction reward. The algorithm
is easily tunable to enable trade-offs between the accuracy and timeliness of the
forecasts as required by various applications, entities, and/or deployment scenarios.

2.3 Summary

In this chapter, we studied the characteristics of social video popularity and its pre-
diction. We presented the changes of popularity distribution of social video content,
including the amplified skewness and the dynamical popularity evolution. Based
on these observations, we next investigated social video popularity prediction: an
age-dependent model has been proposed to infer social video popularity using both
content and context information.
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Chapter 3
Dynamical Social Video Propagation

The popularity of a shared video reflects its macroscopic aggregated views. In this
chapter, we take a closer look at the social propagation process for videos, which
determines how individual videos reach different users in online social networks.

3.1 Dynamic Social Video Propagation

The generation and re-sharing of a social video typically form a propagation tree
rooted at the user who generates the video or initiates the sharing (referred to as
the initiator or root). We refer to the users who re-share the video as spreaders and
users who receive the shared video as viewers (or receivers). A video’s popularity
can then be calculated as the sum of its spreaders and receivers.

In addition to the normal nodes that view and share videos, there are two
types of nodes that are worth highlighting. First, there are super spreaders during
propagation, who are followed by many viewers. The super spreaders—especially
those who appear early in the propagation stage—generally play an important role
in the further “explosion” of the propagation (i.e., attracting many viewers). Second,
there are free riders during propagation, who do not share videos at all and comprise
a large portion of the viewers. Free riders only consume videos shared by others.

An epidemic model describes the spread of a contaminative disease through
a population [2]. One classical epidemic model is the Susceptible-Infectious-
Recovered (SIR) model, as follows. Initially, a user shares a video from an external
video sharing site, and this initiator becomes infectious. All other users in the social
network are safe except the friends of the initiator. The shared video appears in the
news feed of the initiator’s friends and, thus, they become susceptible. Over time,
these friends gradually log into the social network and decide whether to watch
the video (infected) or not (immune). The infected users will decide whether to

© The Author(s) 2016
Z. Wang et al., Social Video Content Delivery, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-3-319-33652-7_3
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share after watching the video. They become recovered if they choose not to share,
and infectious if they choose to share. Again, these infectious users will make their
friends who are in the safe stage become susceptible.

Based on the propagation model, the parameters can be trained using propagation
data extracted from real-world logs to identify the connection between video
access and social activities to improve content delivery strategies. Large-scale
measurement studies have discovered interesting locality patterns in the propagation
structures [6].

3.1.1 Social Locality

The generation and re-share of a video in an online social network forms a
propagation tree rooted at the user who first posts the video. Any user who
re-shares that video becomes a new branch node in the propagation tree. Figure 3.1
shows the propagation sizes of videos in five different categories. Each sample
illustrates the number of propagation trees (with the same propagation size) versus
the size of these propagation trees. The size of most propagation trees is very small,
e.g., the size of over 90% of the propagation trees is smaller than 100.
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Fig. 3.2 Number of re-shares versus the time lag

3.1.2 Temporal Locality

In an online social network, users are more likely to re-share new video content,
i.e., videos that have been recently imported or re-shared. Figure 3.2 illustrates the
number of re-shares of a video in a timeslot (1 h) versus the time lag since the
propagation started. As shown, most of the re-shares happen in the most recent
hours, and the re-share number against the time lag follows a zipf-like distribution
with a shape parameter of s D 1:5070. More than 95% of the re-shares happen
within the first 24 h, indicating that users’ behaviors in social video sharing are
highly clustered around the time point when the video is first shared.

3.1.3 Geographical Locality

A large fraction of online videos are shared between users who are geographically
close to each other. In Fig. 3.3, we plot the CDF of distances between users who
join in the social propagation of the same video within an online social network.
The various curves show videos with different popularities as follows: (1) Popular
videos are those whose popularity is in the top 2%; (2) Unpopular videos are those
whose popularity is in the bottom 30%. In contrast to traditional video consumption,
unpopular social videos tend to be shared in local regions (e.g., the same city),
where users are located close to each other. For example, approximately 40% of the
distances between users sharing the same unpopular videos are close to 0 km.
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Fig. 3.4 Number of propagation trees versus the propagation depth

Next, we studied the propagation depth, which is defined as the average number
of social hops between users in the propagation tree and the root user. Figure 3.4
illustrates the propagation depth of videos in the same five categories. Each sample
represents the number of propagation trees (with the same propagation depth) versus
their propagation depth. In most of the propagation trees, the depth does not exceed
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10, i.e., users who re-share the same video are socially close to the root user, with
only a small number of social hops between them.

The limited propagation size and propagation depth indicate that in each
propagation tree, only users within a limited social range will be reached by the
video. This observation motivated us to design a peer-assisted replication feature
so that users who are both socially and geographically close to each other help
distribute videos among themselves effectively. The details will be presented in
Chap. 4.

We further studied the propagation structure of social videos and identified a
series of representative structures [1]. We defined a branching factor as the number
of viewers that directly follow a spreader and a share rate as the ratio of the viewers
who re-share the video after watching it. An interesting observation here is that the
branching factor and share rate are depth-independent: they are merely correlated to
the users’ distance (the number of social hops) from the root. As such, the branching
factor and share rate can be set to the same values for all spreaders and viewers,
regardless of the social distance to the root.

3.2 Modeling Social Video Content Propagation

In this section, we propose an extended epidemic model to capture video propa-
gation in online social networks. First, we describe the classical SIR model and
extend it to our S2I3R model. Then, we validate it based on real-world log data.
Finally, using this S2I3R model, we analyze an interesting observation from the
measurements.

3.2.1 A S2I3R Propagation Model

The classical epidemic model, SIR , which considers a fixed population with three
compartments [2]: Susceptible (S), Infectious (I), and Recovered (R). The initial
letters also represent the number of people in each compartment at a particular time
t, that is, at any time t, S.t/ is the number of individuals not yet infected with the
disease—those susceptible to the disease; I.t/ is the number of individuals who
have been infected with the disease and are capable of spreading it to those in the
susceptible category; and R.t/ is the compartment used for those individuals who
have been infected and then recovered from the disease. People in this category are
neither able to be infected again nor to transmit the infection to others.
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In the SIR model, we have the following ordinary differential equations:

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

dS.t/

dt
D �ˇ � S.t/ � I.t/ (3.1)

dI.t/

dt
D ˇ � S.t/ � I.t/ � � � I.t/ (3.2)

dR.t/

dt
D � � I.t/ (3.3)

where parameter ˇ is the infection rate of the disease, and parameter � represents
the recovery rate.

No direct mapping exists from the classical SIR model for video propagation
in an online social network; therefore, new compartments and new derivative
equations are required. The major compartments in a video propagation context are
as follows:

• Safe (S1) represents individuals who are far away from sharers. Initially, all users
are Safe except the friends of the initiator;

• Susceptible (S2) represents the individuals who have a chance to see the shared
video. If an individual shares a video, the shared video will appear in that
person’s friends’ news feeds, and any friends formerly in the Safe stage become
Susceptible;

• Infected (I1) represents the individuals who are watching the video. Note that
individuals at this stage still cannot infect others;

• Immune (I2) denotes the individuals who choose not to watch the video;
• Infectious (I3) denotes the individuals who choose to share the video after

watching it. Only individuals who are at the Infectious stage can infect other
individuals;

• Recovered (R) denotes the individuals who have watched the video, but choose
not to share it.

In the classical SIR model, the transition is time-dependent; in other words, at any
time, there is a chance that a particular stage transits to the next stage. In contrast, for
video sharing propagation in online social networks, the transition between stages
depends on decisions made at a certain time, e.g., the user chooses to watch or
not watch and, then, to share or not share. Therefore, we investigated an extended
epidemic model to estimate the video propagation [4], by introducing two temporary
decision stages in S2I3R: D1 and D2. The user makes the watching decision at stage
D1 and makes the sharing decision at stage D2.

The enhanced Safe-Susceptible-Infected-Immune-Infectious-Recovered (S2I3R)
model is illustrated in Fig. 3.5. For a particular video object, the propagation process
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Fig. 3.5 S2I3R model

moves through these stages: Initially, some user (the initiator) shares this video from
an external video sharing site and thereby becomes infectious. All other users in the
social network are safe except the friends of the initiator. The shared video appears
in the news feed of the initiator’s friends and thus they become susceptible. Over
time, these friends gradually log into the social network and decide whether to
watch the video (infected) or not (immune). The infected users will usually decide
whether to share after watching the video. They become recovered if they choose
not to share, or infectious if they choose to share. Again, these infectious users
cause their friends who are in the safe stage to become susceptible. Note that the
case of “not watched but shared” is not considered in the S2I3R model. That is
because this case accounts for only a small portion (e.g., less than 5 %) among all
“share” cases. Moreover, omitting this case lets us simplify the model and focus on
the more important parameters.
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The following derivative equations formally describe the relationships between
those compartments:

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

dS1.t/

dt
D �dI3.t/

dt
� F � S1.t/

N
(3.4)

dS2.t/

dt
D �dS1.t/

dt
� ˇ � S2.t/ (3.5)

dI1.t/

dt
D ˇ � S2.t/ � Pv � � � I1.t/ (3.6)

dI2.t/

dt
D ˇ � S2.t/ � .1 � Pv/ (3.7)

dI3.t/

dt
D � � I1.t/ � Ps (3.8)

dR.t/

dt
D � � I1.t/ � .1 � Ps/ (3.9)

where F is the number of the sharer’s friends and N is the number of total users
in the system. The transition rate from S to D1 is ˇ. Thus, a susceptible user will
spend 1=ˇ units of time to receive a shared video from a friend. The user then makes
a decision regarding whether to watch the video. We denote the probability of the
user watching the video as PV . Similarly, we denote the transition rate from I to D2
by � and the probability of a user deciding to share the video by PS.

The S2I3R model has four important parameters: ˇ, � , Pv , and Ps. These
parameters can be investigated using real-world log data. Specifically, for the Renren
system, the cumulative distribution function of 1=ˇ, the time span from share to
watch, is well fitted by a combined Weibull and a Generalized Pareto distribution

fk;�;�;�;	 .x/ D
8<
:
1 � e�.x=�/k x � 2100

1 �
�
1C 	 � x��

�

�� 1	
x > 2100

with parameters (k D 0:392, � D 1945, � D �2654, � D 6315, 	 D �0:669). The
cumulative distribution function of 1=� , the time span between watching a video
and sharing it, is well fitted by two combined Weibull distributions

fk1;�1;k2;�2.x/ D
(
1 � e�.x=�1/k1 x � 5

1 � e�.x=�2/k2 x > 5

with parameters (k1 D 1:168, �1 D 3:591, k2 D 0:497, �2 D 2:129)
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The cumulative distribution functions of both Pv and Ps follow a Generalized
Pareto Distribution

f�;�;	 .x/ D 1 �
�
1C 	 � x � �

�

�� 1	

with parameters (� D �0:004, � D 0:182, 	 D �0:215) and (� D �0:227,
� D 0:305, 	 D �0:048), respectively.

3.2.2 Model Validation

We have simulated the S2I3R model multiple times to validate its accuracy.
We generate 10,000 users participating in 100 video sharing propagations for
8640min (6 days). Specifically, we simulate the propagation of one video each
time and run it 100 times. For each video propagation, at each minute the simulator
checks and updates the state for each of the 10,000 users according to the derivation
Eqs. (3.4)–(3.9). The simulation runs 8640 cycles for each video propagation. The
work [3] provided a distribution of the number of friends in Renren that we use in
our simulation.

We extract a series of statistics such as the number of received, watched, and
shared videos for each user, the time span from share to watch, and the time span
from watch to share. We examine these statistics with the real dataset; specifically,
we compute R2, the coefficient of determination1 of the generated data and the real
data. We list the goodness of fit values, as well as the statistical fitting model names
and the corresponding R2 values from the simulation in Table 3.1. The high values of
R2 (above 0:99) indicate that our model accurately characterizes the users’ behaviors
in video propagation.

We next investigate the evolutionary patterns of the number of users at each
stage along the timeline. We again generate 10,000 users participating in 100 video
sharing propagations for 8640min (6 days). We run the model 100 times using

Table 3.1 Validation of S2I3R model

Fitting model R2 of fitting model R2 of simulation

Reception rate GPD 0.9978 0.9952

Share rate GPD 0.9959 0.9540

Time to watch WeibullC GPD 0.9991 0.9348

Time to share 2 Weibulls 0.9989 0.9813

1The coefficient of determination R2 is a goodness of fit statistic describing how well a variable fits

a set of observations, defined as 1�
P

i.yi�fi/2P
i.yi�Ny/2 , where f are generated data or modeled values, y are

the real data, and Ny is the mean of the real data.
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Fig. 3.6 Cumulated video views (I3 C R) and video shares (I3) along time

the same system settings (including ˇ, � , Pv , and Ps). Each iteration simulates a
propagation for one video. We calculate the average, maximum and minimum of
the cumulated video views (I3 C R) and video shares (I3) along the timeline in
Fig. 3.6. As the figure shows, the views and shares are quite diverse for each video—
even under the same system settings. This result confirms our earlier measurement
results from [4], in which we found that the number of video views and the number
of video shares have only very weak correlations with the average share rate (Ps)
and reception rate (Pv).

3.2.3 Implications

We use this model to analyze an interesting measurement finding—the limited
propagation range—and evaluate our proposed recommendation strategy, which
aims to increase the propagation range. The results found by Cheng et al. [1] showed
that the sizes of most propagation trees are below 100, and even the most popular
videos have relatively small tree sizes as compared with the total number of users in
the system. In other words, a vast majority of the cascades vanish quickly. Even the
most popular videos do not reach “epidemic” proportions in social networks. This
certainly contradicts the expectation that the shared videos will spread as broadly as
possible. Moreover, it is counterintuitive because many of the videos imported into
social networks are popular in the original video sharing sites.
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An underlying reason for the limited spread of videos in social networks is the
mechanism for social contagion [5]. According to the current contagion mechanism,
only a video shared by a user’s friend will appear on the user’s page. Videos
watched—but not shared—by a user’s friends will not appear on the user’s news
feed. In other words, even if a video is watched by many users, if they do not share
the video, the propagation will stop. Unfortunately, according to our statistics, only
16% of users on average will watch a video shared by a friend; among those, only
13% will share the video further. Assume that a user has n friends. For a sharer,
the expected number of friends who will share this video after watching is thus
n � 0:16 � 0:13, which we refer to as the epidemic index. When n is less than 48, the
epidemic index is less than 1; in this case, the number of sharers diminishes rapidly,
and the propagation quickly stops.

Because the number of friends, share rate, and reception rate are intrinsic system
properties that cannot be tuned, a practical way to boost propagation is to modify
the contagion mechanism; in particular, to leverage the users’ viewing information.
The simplest solution would be to set up the system so that after a user watches a
video, the link for that video would appear in the news feeds of that user’s friends.
This watching behavior would accurately reflect the popularity of the video among
friends and could be even more directly manipulated than the sharing behavior.
However, it does not preserve user privacy because the information about every
watched video is now distributed to all a user’s friends. Therefore, we suggest an
anonymous solution: For any user, after a video has been viewed by K friends of
that user, the video will appear in the user’s news feed as a system-suggested news
item, even if none of the friends have shared the video. A possible system-generated
comment with the shared video link might be “K friends have viewed this video.”
There is no need to mention the names of the friends, so that the privacy of other
users is well preserved. The key issue for this view-aware contagion strategy is to set
the threshold K. A small K would be more effective for promoting the propagation,
but might trigger excessive news feeds.

3.3 Summary

In this chapter, we studied the social propagation process, which determines the
social popularity. We presented the observed social propagation patterns, including
the social locality, temporal locality, and geographical locality. Based on our obser-
vations, we proposed an enhanced epidemic model to capture social propagation,
and presented implications based on our propagation model.
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Chapter 4
Propagation-Based Social Video
Content Replication

Online social network has reshaped the way multimedia content is generated,
distributed, and consumed on today’s Internet. Given the massive amount of user-
generated content shared through online social networks, users are moving toward
accessing this content directly from their preferred social network services. It is
intriguing to study the service provision of social content for global users that
provide a satisfactory quality of experience (QoE). In this chapter, we present
propagation-based social-aware delivery studies.

4.1 Inferring Propagation for Social Content Replication

We are facing the following challenges in distributing social content with satis-
factory QoE: (1) The huge amount of user-generated content (UGC) requires an
equally massive amount of storage and network resources. For example, YouTube
has hit a new record, with 100 h worth of videos uploaded by users every minute;
(2) Newly generated content tends to attract most of the users, but it is difficult to
estimate its popularity for the purposes of allocating services properly—a task that
is dynamically affected by social networks themselves [3]; (3) Social content has
close-to-uniform [6] but highly volatile popularity profiles because a large portion
of that content is shared among small social groups (e.g., family members).

Challenge (1) makes traditional service paradigms (e.g., C/S based on private
servers) unsuitable because it is too expensive to replicate all content to all servers.
Instead, a common practice for providing these content services is to replicate
content to servers in different geographic regions [1] by allocating resources from
the geo-distributed Content Delivery Network (CDN) or cloud, where content can
be dynamically distributed to serve users all over the world. Challenges (2) and (3)
make the traditional replication approaches, which work well only for content with
a skewed and stable popularity profile, unsuitable in the context of online social
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networks. Mislove et al. [7] observed a large reduction in the cache hit ratio when
traditional caching schemes were used to replicate social content.

Our previous study [9] revealed the key observation that social content, unlike
regular content, does not propagate among users randomly—instead, such content
propagates along the social-network topology based on several rules of social
propagation, due to the social behaviors including posting and re-sharing content.

Based on the social popularity and propagation investigated in the previous
chapters, we will present a general framework with propagation patterns and
predictions incorporated. Then, we develop a social-aware delivery system to
effectively distribute social content with superb QoE. In this chapter, we use the
most representative type of multimedia content—social videos—to investigate how
social content can be effectively replicated based on social propagation. However,
our design can be used to deliver a variety of multimedia types.

Based on the propagation patterns, we will also study propagation predictors
to guide content delivery. In particular, the propagation region predictor, global
audience predictor, and local audience predictor answer the following questions,
respectively: (a) Which videos should be replicated to which edge-cloud servers?
(b) How much bandwidth should be reserved for each video by the edge-cloud? and
(c) Which videos should be served by which peers?

Furthermore, we will present a propagation-based social content delivery frame-
work that employs a hybrid edge-cloud and peer-assisted video replication archi-
tecture. Based on the propagation predictions, videos are replicated by both the
edge-cloud servers and peers at different geographic locations as follows: (1) We
design the edge-cloud replication strategies according to the region predictor
and global audience predictor to determine the region selection and bandwidth
reservation; (2) We further design peer-assisted replication to function according
to the local audience predictor, performing social-aware cache replacement at
each peer.

4.2 Edge-Network Replication Architecture

According to our observations, users involved in social video propagation are
socially and geographically close to each other, and their social actions are clustered
over a short period of time. Accordingly, we propose a hybrid edge-cloud and
peer-assisted architecture for social video delivery. In this architecture, the edge-
cloud can support the time-varying bandwidth and storage allocations requested by
different regions, while the peers are able to contribute to each other in similar social
groups. Figure 4.1 illustrates the conceptual architecture of our design, in which two
overlays are presented as follows: (1) social propagation overlay based on the social
graph, which determines the video propagation among friends (i.e., which users
can share a generated video with their direct friends) who may further re-share the
video to more people, and (2) delivery overlay, which determines how video content
is delivered from edge-cloud servers to users or among users in a P2P paradigm.
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Fig. 4.1 Conceptual architecture of the propagation-based social-aware content replication system

This architecture not only makes use of the edge-cloud servers distributed among
different geographic regions to serve social videos to users in different regions, but
also schedules peers to cache the video content in their local storage so that they can
help each other download the videos.

In designing our Propagation-based Social-Aware Replication (PSAR) for social
content delivery, we will study edge-cloud replication, which controls how videos
are replicated to edge-cloud servers as well as peer-assisted replication, which
controls how videos are cached at peers.

4.2.1 Edge-Cloud Replication

In edge-cloud video replication, videos are generally replicated to servers located
in different geographic regions. The main purpose of edge-cloud replication is to
allow users in different regions to download the videos they request from their local
servers (which are located in the same regions as the users) to improve the quality
of video service [2].

We redesign the edge-cloud replication strategy by taking social propagation
into account. We first select the videos that are the most likely to propagate across
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geographic regions by evaluating a geographic influence index we have designed.
Because the videos selected using this index are more likely to attract users from
more regions in the future, we replicate them to more regions so that more users
will be served by local servers. Then, based on the local audience index, which
reflects a video’s popularity in the near future, we determine regions to replicate the
video to, and how much bandwidth to allocate to serve the video.

4.2.2 Peer-Assisted Replication

The reason we propose a joint edge-cloud and peer-assisted paradigm for social
video replication is twofold: (1) Social videos are generally shared within small
social groups, resulting in a close-to-uniform popularity distribution of the videos,
which require huge amounts of server resources to distribute to users. To scale the
delivery system, peer resources are created based on demand. (2) Users typically
share videos with their friends, who are geographically close to each other [8]. These
socially connected users tend to have good Internet connectivity for performing
peer-assisted video downloads [4].

In traditional peer-assisted video delivery, least-recently used (LRU) and least-
frequently used (LFU) cache replacement algorithms are widely used. However,
such algorithms depend solely on the static popularity of the video content and
cannot achieve good performance when the access patterns of videos are affected
by social activities in the online social network. Based on the local audience index
summarized from the propagation pattern, we also redesign the peer cache replace-
ment algorithm. Specifically, we let peers cache videos that not only improve the
peer contribution, i.e., caching these videos can improve the fraction of the video
content uploaded by peers over that uploaded by both peers and servers, but also
improve the possibility of peers serving unpopular videos to their local friends. In
turn, these friends benefit from their good Internet connectivity to the local peers.

4.2.3 Design Challenges

In PSAR, the replication of social video content faces great resource-allocation
challenges in the presence of multiple video propagations. Figure 4.2 illustrates an
example in which there are only two videos. In this figure, the circles represent users
who are located in different geographic regions (e.g., region 1 and region 2). User A
generates and shares video a in timeslot T . That video is re-shared by A’s friends C
and D in timeslot T C1. Concurrently, another user, B, generates a different video, b.
Both video a and video b will propagate across the social connections, and the two
propagation trees may intersect in the same region or at the same peer. In other
words, both region 1 and region 2 are involved in the two propagation trees, and both
videos may reach user K in timeslot T C 3. The resource allocation must determine
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Fig. 4.2 Resource allocation for two propagation trees

(1) how to serve video a and b using the edge-cloud servers in regions 1 and 2,
and (2) how to cache the videos a and b at peer locations to improve downloads for
others. This is a huge challenge when many videos are propagating at the same time.
Therefore, we will discuss the two problems separately for edge-cloud replication
and for peer-assisted replication, respectively.

4.3 Propagation Prediction for Replication

In this section, we establish the connection between social video propagation and
video replication, using the propagation prediction.

4.3.1 Propagation Region Prediction

Based on the dataset used in our measurement studies, Fig. 4.3 illustrates the
correlation between the number of regions involved in the video propagation and
the propagation size for different videos. Notably, a large propagation size generally
results in more regions (city-level locations) being involved in the propagation. In
particular, the relationship follows a logarithmic function. In PSAR, the propagation
size is utilized to determine whether a video should be replicated to more regions.
In particular, we design a geographic influence index as follows:

g.T/v D c1 log.c2s
.T�1/
v /; (4.1)
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Fig. 4.3 Number of regions in the propagation versus the size of the propagation

where s.T�1/v is the propagation size of the propagation tree of video v in timeslot
T � 1. A large g.T/v value indicates that more regions will be involved in the
propagation of the video. Intuitively, a video should be replicated to more regions
when the predicted number of regions involved in the propagation is larger than the
number of regions to which it has already been replicated.

4.3.2 Global Audience Prediction

To allocate bandwidth to serve a social video content, we design a global audience
predictor, based on a global audience index to evaluate the strength of a video’s
propagation in timeslot T , using the propagation information as follows: (1) the
current propagation size (s.T/v ); (2) the current propagation depth (h.T/v ); and (3) the
time lag since the propagation tree was formed (
.T/v ). The global audience index is
defined as follows:

e.T/v D zs.

.T/
v /.s.T/v =h.T/v /; (4.2)

where zs.

.T/
v / is a decreasing function to make use of the temporal locality that

can adjust the global audience index according to 
.T/v : more recently, generated or
shared videos will have a larger global audience index. Based on our observation in
Chap. 3, zs.t/ is defined as follows:
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zs.t/ D 1=.ts
NX

kD1

1

ks
/; (4.3)

where s is the zipf shape parameter and N is the number of hours between the
publication time of the earliest video and the publication time of the latest video.
In our design, e.T/v will be used to guide the replication. Larger e.T/v values indicate
that more users can join the propagation tree in timeslot T . The rationale for e.T/v is
as follows: (1) A larger s.T/v indicates that more users can be reached by the video,
and these users are the potential viewers (downloaders) of video v; (2) According
to the social locality, a small h.T/v indicates that users in the propagation tree are
still social-aware to the root user; therefore, the video can still reach more users;
(3) According to the temporal locality, a large 
.T/v slows down the propagation.
Based on the global audience index, we can determine how much bandwidth we
need to reserve for a video in a future timeslot in PSAR.

Figure 4.4 compares our social-aware global audience prediction and the tradi-
tional popularity estimation using only the historical popularity. The effectiveness
of our global audience prediction is verified as follows. In Fig. 4.4a, each sample
represents a video’s current popularity versus its popularity in the previous timeslot.
We observe that the video’s global audience is highly volatile over time, with only a
very small correlation between the current size of the audience and the previous size
of the audience. Our prediction is illustrated in Fig. 4.4b. Each sample represents
the current popularity versus the global audience index for the previous timeslot.
After incorporating the propagation patterns, the correlation coefficient is four times
larger, indicating that future popularity can be better predicted by our design.

4.3.3 Local Audience Prediction

In our architecture, a peer performs the cache replacement locally using not only
the perceived video’s popularity but also local social factors. To determine which
videos should be stored at a peer, we design a local audience predictor based on
the following information at peer i: (1) the local popularity, which is the number
of requests peer i receives for video v, denoted as pvi ; (2) the fraction of peer i’s
friends that can join the propagation tree of video v, denoted as f vi . The f vi value
is calculated by historical records for different video categories, i.e., peer i keeps
a record of the fraction of friends that have been attracted by each category in its
history; and (3) the time lag between the time when a propagation tree is constructed
and the time when the peer re-shares the video, denoted by 
.T/v . Based on the social
propagation patterns, we design a local audience index to perform the prediction as
follows:

qv D zs.

.T/
v /.pvi f vi /: (4.4)
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Fig. 4.4 Global audience
prediction. (a) New
popularity versus historical
popularity. (b) New
popularity versus the global
audience index
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In peer-assisted replication, videos with a smaller local audience index are more
likely to be dumped by the peer. The rationale is that a larger pvi f vi indicates that
peer i can potentially attract more users to re-share video v from its friends in the
future, and 
.T/v is utilized to reflect the temporal locality.

The effectiveness of the local audience predictor is verified by our data as well.
Figure 4.5 illustrates the CDF of the correlation coefficient between a friend’s video
category preference (calculated as a category preference vector) at time T and the
category preference at time T � 1. We observe that most of the friends’ preferences
can be inferred from their historical preference. In our dataset, the correlation
coefficient for 80% of the user preference measures [9] in two consecutive timeslots
can be larger than 0:8.
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4.4 Propagation-Based Replication Strategies

4.4.1 Region Selection in Edge-Cloud Replication

Based on the region prediction and the global audience prediction, we first select
the videos to be replicated and determine which regions they should be replicated
to, and, then, we reserve upload bandwidth at edge-cloud servers for these videos.
When performing video replication, we must also discover the videos that may
propagate to additional regions in the future. We use the geographic influence index
to perform region prediction for that purpose. To achieve better video download
quality, a video with a larger g.T/v should be replicated to more regions to serve users
locally. Parameters c1 and c2 are selected based on this measurement. Based on the
geographic influence index, we can predict whether the regions to which the video
has currently been replicated are sufficient.

Initial Replication After video v is first generated by a user in the online social
network, it will be stored by the server that is closest to that user’s friends.
Let dr;i; i 2 Fv denote the geographic distance between region r and user i,
where Fv is the set of friends of the root user of video v (“distance” based
on an Internet connectivity measurement can also be used, e.g., bandwidth or
RTT). The initial region is then selected by solving the following equation: rv D
arg minr2R

P
i2Fv

dr;i; where R is the set of regions that can be used for the
replication (determined by the cloud providers), and rv is the region selected for
the replication.
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Selecting Existing Videos for Replication According to our measurement study, we
observe that although there are a massive number of videos in the online social
network, in each timeslot, only a limited number of those videos are shared among
users. In particular, we observe that among the 350,860 videos in our study, by our
measurements, on average only 1919 are re-shared in any one timeslot (1 h). Thus,
in each timeslot, only a tiny fraction of the existing videos need to be replicated to
improve the service quality. The problem, then, is how to select the proper candidate
videos for replication. We observe that the overlapped fraction of the common
videos that are re-shared in timeslot T and T �1 compared with all videos re-shared
in timeslot T can be as large as 49%. In our design, the replication video set V .T/

is constructed as follows. We first build a candidate video set W .T/ by selecting
videos that were imported or re-shared in the previous timeslot. In particular, we
randomly choose 80% of the videos that were imported or re-shared in the previous
timeslot and 20% of the videos among the most popular ones in history. Second,
we choose the videos in W .T/ that have a geographic influence index g.T/v larger
than �.TC1/v , which is a control parameter that depends on the current replication
status of video v, to form the video replication set V .T/. In our experiments, we
let �.T/v D 0:8jR.T/

v j, where R
.T/
v is the set of regions to which v has already been

replicated. The rationale is that a video should be replicated to more regions if its
current replication status is below the requirement estimated from the geographic
influence index.

Selecting Replication Regions for Videos in V .T/ After constructing V .T/, the
videos in V .T/ must be replicated to more regions. Because these videos are the
candidates that can attract users from different regions, we must determine which
videos need to be replicated to which regions. In our design, we extend the
replication of a video to one additional region each time. The selection of the new
region is similar to the approach for selecting the initial region. We minimize the
geographic distance between the region and the potential users who may join the
propagation tree. Let L .T/

v denote the set of users who joined the propagation tree in
the previous timeslot. Then, the selection is made as follows:

rv D arg min
r2R�R.T/

v

X
i2S

k2L
.T/
v

Fk

dr;i; (4.5)

where Fk is the friend set of user k. The rationale behind this approach is that
because the users in L

.T/
v are those who joined the propagation tree in the previous

timeslot, it is likely that they will attract new video users due to the temporal locality
of propagation. We utilize these users’ friends’ locations as a sample of all the
users that can join the propagation tree. Then, we select the region that is closest
to all those users. The benefit of always extending a video to a new region in the
replication (i.e., rv is selected from R �R

.T/
v ) is that users in a popular propagation

tree are able to choose from among more regions from which to download the video
content. Moreover, our scheme improves the possibility that they will select the
preferred regions.
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4.4.2 Bandwidth Reservation for Social Content
at Edge-Cloud Servers

During each scheduled iteration, we allocate upload bandwidth at the edge-cloud
servers for the replicated videos. In our design, the amount of bandwidth reserved
depends on the social propagation strength, which can be evaluated by the global
audience index e.T/v . Let Vr denote the set of videos that are replicated in region r.
The bandwidth reservation is then performed as follows:

bv;rv D Brve
.T/
v =

X
v2Vrv

e.T/v ;8v 2 V .T/; (4.6)

where bv;rv is the amount of bandwidth to be reserved for video v in the selected
replication region rv when that region is fully loaded with requests. A video can
be extended to use more bandwidth than bv;rv when the region is not fully loaded.
Br is the upload capacity of region r. The rationale for the bandwidth reservation
is that videos with larger e.T/v tend to attract more users in the propagation in the
near future and, therefore, more upload bandwidth should be allocated for these
videos’ propagation to benefit the potential downloaders. Our edge-cloud replication
algorithm is illustrated in Algorithm 1.

Algorithm 1 Edge-Cloud Replication Algorithm.
1: procedure VIDEO AND REGION SELECTION

2: V .T/ ˚

3: if v is newly published then
4: V .T/ V .T/ [ fvg
5: rv  arg minr2R

P
i2Fv

dr;i

6: else
7: if v 2 W .T/ and g.T/v > �

.TC1/
v then

8: V .T/ V .T/ [ fvg
9: rv  arg min

r2R�R
.T/
v

P
i2

S
k2L

.T/
v

Fk
dr;i

10: end if
11: end if
12: end procedure
13: procedure BANDWIDTH RESERVATION

14: for all v 2 V .T/ do
15: if v is replicated at region rv then
16: bv;rv  Brv e.T/v =

P
v2Vrv

e.T/v
17: end if
18: end for
19: end procedure
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4.4.3 Cache Replacement in Peer-Assisted Replication

We have shown why the unique propagation patterns in social networks make it
extremely attractive to utilize a peer-assisted paradigm, which allocates a certain
amount of resources from the users to replicate the video content: Peers (users) are
likely to be able to serve their social neighbors with good Internet connectivity.
In our peer-assisted replication, we assume that users download video content
according to their individual demands. We then design a social-aware cache
replacement strategy for peers to determine which videos are cached to help other
users. The caching strategy used for peers can greatly affect the performance of a
P2P system [5].

Peer Cache Replacement A large local audience index indicates that the video
can potentially be downloaded by a great number of local friends; therefore, the
peer should keep the video to serve those friends. Thus, in our cache replacement
algorithm, the peer will try to dump cached videos with the smallest qv’s until it has
sufficient capacity to cache new videos.

4.5 Summary

We designed a propagation-based social-aware content delivery framework using a
data-driven approach. Based on known propagation patterns, which demonstrate
social, geographical, and temporal localities, we created propagation predictors
that enable propagation-based social-aware replication strategies to serve social
content to users. Specifically, we proposed three replication indices: a geographic
influence index, a global audience index, and a local audience index that guide
region selection, bandwidth reservation, and cache replacement, respectively, in the
proposed joint edge-cloud and peer-assisted replication framework.
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Chapter 5
Concluding Remarks

With the advances in online social networking, users rather than content providers
determine how videos reach other users. In this book, we surveyed recent research
on social video delivery with the goal of improving the quality of experience for
massive numbers of users. We identified the unique patterns and characteristics of
social video propagation and content popularity through large-scale log analyses.
We demonstrated a series of strategies with great potential, including content
replication, crowdsourced content caching, and network resource allocation. This
new and promising research area has many challenging issues that need to be
addressed in the near future—and we believe that a data-driven and social-aware
framework design will be a key part of the solution. Within this framework, a
deep understanding of user behavior, social propagation structures, knowledge of
content characteristics and context information, as well as social-relationship-based
collaborative content sharing mechanisms must be developed because all these
factors will play important roles.

Given the unique characteristics of social videos, a series of solutions have been
proposed in the literature, addressing various aspects of the challenges. We believe
the following research directions are worth further investigation.

Geo-Distributed Cloud for Social Video Distribution Geographical information
becomes useful as we move toward cloud platforms. Many new generations of
cloud-based multimedia services have emerged in recent years, and these services
are rapidly changing both operational and business models in the marketplace.
A prominent example is Netflix1 a major on-demand Internet video provider, which
migrated its entire infrastructure to the powerful Amazon Web Services (AWS)
cloud in 2012, using Elastic Cloud Computing (EC2) to transcode master video
copies and the Simple Storage Service (S3) for content storage. Several studies have
addressed using cloud resources for social content delivery. Wu et al. [2] considered

1Netflix: http://www.netflix.com.
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a generic geo-distributed cloud infrastructure that consists of multiple cloud sites
distributed across different geographical locations. Using the geo-distributed cloud
resources, social video content can be replicated to locations closer to users.

Instant Social Video Delivery With the rapid development of mobile networking
and end-terminals, anytime and anywhere data access has become readily available.
Given the capability for crowdsourced content capture and sharing, the duration
users expect videos to have has become shorter and shorter. Representative sites
such as Twitter’s Vine that are available exclusively to mobile users enable users
to create ultra-short video clips and to instantly post and share them with their
followers. Taking Vine as a case study [4], Zhang et al. presented evidence that
instant social videos have a short lifetime and a highly skewed popularity that
decays quickly over time. Videos in these trending social media sites are both more
fragmented and instantaneous—driven by the paradigm shift to mobile and cloud
computing. The results indicate that a middleware framework integrated with a pre-
fetching and viewing-time scheduling scheme is promising for providing improved
quality of experience.

Mobile Social Video Delivery Mobile caching, by replicating bandwidth-intensive
videos on edge-network devices (e.g., users’ smartphones) is becoming promising
for social video delivery. Previous studies have demonstrated that such device-to-
device (D2D) content sharing is possible when users are close to each other, and
the content to be delivered by users can tolerate delays [1]. However, in traditional
D2D content sharing, a user broadcasts generated content or re-shared content to
a set of random users that are close by. As a result, all content is disseminated
to users in the same way (e.g., random flooding), causing the following problems:
(1) In greedy flooding, smart devices in edge networks have to expend precious
power to cache and relay large amounts of content. As the number of user-generated
social content increases, such broadcasting mechanisms are inherently non-scalable;
(2) Social videos have heterogeneous popularity, while the conventional approaches
treat them all the same, leading to wasted resources carrying unpopular content;
(3) Because of dynamic mobility patterns, users may not be able to fetch content
timely.

To address these issues, a joint propagation- and mobility-aware device-to-device
replication strategy can be developed based on social propagation characteristics
and crowd mobility patterns in edge-network regions, e.g., an area of hundred-
meter range that users can move across. As illustrated in Fig. 5.1, using the social
graph and propagation patterns, we first estimate how content will be received by
users, and we then predict which regions users will be moving within and how long
they will stay. Rather than flooding content between users that are merely close to
each other, we disseminate social videos according to the influence of users and
the propagation of videos. In Fig. 5.1, for example, user e—while not a friend of
any other user—is moving to the region where users c and d are. Thus, e will be
selected to replicate the content generated by user a, and users c and d will receive
the content shared by user a at times T2 and T3, respectively.
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Fig. 5.1 Device-to-device replication affected by social topology, content propagation, and user
regional mobility. (a) Social topology. (b) Content propagation. (c) User regional mobility. (d)
Off-grid replication assignment

Crowdsourced Interactive Live Social Streaming Empowered by today’s rich
tools for media generation and collaborative production, the multimedia service
paradigm has been shifting from a conventional single source, to multi-source,
to many sources, and now, toward crowdsourcing. Crowdsourced live streaming
platforms such as Twitch.tv allow general users to broadcast their content to
massive numbers of viewers, thereby greatly expanding the content and user
bases. However, the resources available for these non-professional broadcasters are
limited and unstable, which can potentially impair the streaming quality and affect
viewers’ experiences. The diversity of live interactions among the broadcasters and
viewers can further aggravate the problem. Zhang et al. [3] presented an initial
investigation on modern crowdsourced live streaming systems. Taking Twitch as a
representative, they revealed that the view patterns are determined both by events
and by broadcasters’ sources. The current delay strategy on the viewer’s side
substantially impacts the viewers’ interactive experience, and there is a significant
disparity between the long broadcast latency and the short live messaging latency.
On the broadcaster’s side, dynamic uploading capacity is a critical challenge that
noticeably affects the smoothness of live streaming for viewers.
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