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  Pref ace   

 Channel coding is a process of detecting and correcting bit errors in digital com-
munication systems. It is also known as forward error control coding (FECC). 
FECC is performed both at the transmitter and at the receiver. At the transmit side, 
channel coding is referred to as encoder, where extra bits (parity bits) are added 
with the raw data before modulation. At the receive side, channel coding is referred 
to as the decoder. Channel coding enables the receiver to detect and correct errors, 
if they occur during transmission due to noise, interference and fading. 

 This book presents the salient concepts, underlying principles and practical 
applications of channel coding. In particular, this book will address the following 
topics as they relate to channel coding:

•    Automatic repeat request (ARQ)  
•   Block coding  
•   Convolutional coding  
•   Waveform coding  
•   Waveform capacity    

 This text has been primarily designed for electrical engineering students in the 
area of telecommunications. However, engineers and designers working in the area 
of wireless communications would also fi nd this text useful. It is assumed that the 
student is familiar with the general theory of telecommunications. 

 In closing, I would like to say a few words about how this book was conceived. It 
came out of my long industrial and academic career. During my teaching tenure at the 
University of North Dakota, I developed a number of graduate level elective courses 
in the area of telecommunications that combine theory and practice. This book is a 
collection of my courseware and research activities in wireless communications. 

 I am grateful to UND and the School for the Blind, North Dakota, for affording 
me this opportunity. This book would never have seen the light of day had UND and 
the State of North Dakota not provided me with the technology to do so. My heart-
felt salute goes out to the dedicated developers of these technologies, who have 
enabled me and others visually impaired to work comfortably. 
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 I would like to thank my beloved wife, Yasmin, an English Literature buff and a 
writer herself, for being by my side throughout the writing of this book and for 
patiently proof reading it. My darling son, Shams, an electrical engineer himself, 
provided technical support in formulation and experimentation when I needed it. 
For this, he deserves my heartfelt thanks. 

 Finally, thanks are also due to my doctoral student Md. Maruf Ahamed, who 
found time in his busy schedule to assist me with the simulations, illustrations and 
the verifi cation of equations. 

 In spite of all this support, there may still be some errors in this book. I hope that 
my readers forgive me for them. I shall be amply rewarded if they still fi nd this 
book useful.  

  Grand Forks, ND, USA     Saleh     Faruque    
  October 30, 2015 
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Chapter 1
Introduction to Channel Coding

Abstract  Channel coding, also known as forward error control coding (FECC), is 
a process of detecting and correcting bit errors in digital communication systems. 
Channel coding is performed both at the transmitter and at the receiver. At the trans-
mit side, channel coding is referred to as encoder, where extra bits (parity bits) are 
added with the raw data before modulation. At the receive side, channel coding is 
referred to as the decoder. Channel coding enables the receiver to detect and correct 
errors, if they occur during transmission due to noise, interference and fading. This 
book presents the salient concepts, underlying principles and practical realization of 
channel coding schemes, as listed below:

•	 Automatic repeat request (ARQ)
•	 Block coding
•	 Convolutional coding
•	 Concatenated coding
•	 Orthogonal coding

Topics
•	 Introduction to Channel Coding
•	 Types of Channel Coding
•	 Design Considerations
•	 Conclusions

1.1  �Introduction to Channel Coding

Channel coding, also known as forward error control coding (FECC), is a process 
of detecting and correcting bit errors in digital communication systems. Channel 
coding is performed both at the transmitter and at the receiver [1–4]. Figure 1.1 
shows the conceptual block diagram of a modern wireless communication system, 
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where the channel coding block is shown in the inset of the dotted block. At the 
transmit side, channel coding is referred to as encoder, where redundant bits (parity 
bits) are added with the raw data before modulation. At the receive side, channel 
coding is referred to as the decoder. This enables the receiver to detect and correct 
errors, if they occur during transmission due to noise, interference and fading. Since 
error control coding adds extra bits to detect and correct errors, transmission of 
coded information requires more bandwidth.

As the size and speed of digital data networks continue to expand, bandwidth 
efficiency becomes increasingly important. This is especially true for broadband 
communication, where the digital signal processing is done keeping in mind the 
available bandwidth resources. Hence, channel coding forms a very important pre-
processing step in the transmission of digital data (bit-stream). Since bandwidth is 
scarce and therefore expensive, a coding technique that requires fewer redundant 
bits without sacrificing error performance is highly desirable.

1.2  �Types of Channel Coding

Channel coding attempts to utilize redundancy to minimize the effect of various 
channel impairments, such as noise and fading, and therefore increase the perfor-
mance of the communication system. There are two basic ways of implementing 
redundancy to control errors. These are as follows:

Output
Signal

Input
Signal

Source
Coding

Source
Decoding

Channel
Decoding

Channel
Coding

Modulation

Demodulation

Receive
Antenna

Fig. 1.1  Block diagram of a modern full-duplex communication system. The channel coding 
stage is shown as a dotted block

1  Introduction to Channel Coding
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•	 Automatic repeat request (ARQ)
•	 Forward error control coding (FECC)

1.2.1  �ARQ Technique

The ARQ technique adds parity, or redundant bits, to the transmitted data stream that 
are used by the decoder to detect an error in the received data. When the receiver 
detects an error, it requests that the data be retransmitted by the receiver. This contin-
ues until the message is received correctly. In ARQ, the receiver does not attempt to 
correct the error, but rather it sends an alert to the transmitter in order to inform it that 
an error was detected and a retransmission is needed. This is known as a negative 
acknowledgement (NAK), and the transmitter retransmits the message upon receipt. 
If the message is error-free, the receiver sends an acknowledgement (ACK) to the 
transmitter. This form of error control is only capable of detecting errors; it has no 
ability to correct errors that have been detected. This concept is presented in Fig. 1.2.

1.2.2  �FECC Technique

In a system which utilizes FECC coding, the data are encoded with the redundant 
bits to allow the receiver to not only detect errors, but to correct them as well. In this 
system, a sequence of data signals is transformed into a longer sequence that 
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Fig. 1.2  Automatic repeat request (ARQ)
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contains enough redundancy to protect the data. This type of error control is also 
classified as channel coding, because these methods are often used to correct errors 
that are caused by channel noise. The goal of all FECC techniques is to detect and 
correct as many errors as possible without greatly increasing the data rate or the 
bandwidth. FECC codes are generally classified in two broad categories [4–10]:

•	 Block codes
•	 Convolutional codes
•	 Concatenated codes
•	 Orthogonal codes

�Block Coding

In block coding the information bits are segmented into blocks of k-data bits. The 
encoder transforms each k-bit data block into a larger block of n-bits, called coded 
information bits where n > k. The difference (n − k) bits are the redundant bits, also 
known as parity bits. These redundant bits do not carry information, but enable the 
detection and correction of errors. The code is referred to as (n, k) block code and 
the ratio k/n is known as “code rate”.

Figure 1.3a shows an encoding scheme using (15, 8) block code where an 8-bit 
data block is formed as M-rows and N-columns (M = 4, N = 2). The product, 
MN = k = 8, is the dimension of the information bits before coding. Next, a horizon-
tal parity, PH, is appended to each row and a vertical parity, PV, is appended to each 
column. The resulting augmented dimension is given by the product (M + 1) 
(N + 1) = n = 15, which is then transmitted to the receiver. The rate of this coding 
scheme is given by

	

r
k

n

MN

M N
= =

+ +( )
=

1 1

8

15)(
	

011

0

0

1

0

00

11

10

00

011

0

0

1

0

00

11

10

00

Transmit 
Data       PH

PV

0

0

0

1

1

0

000

011

0

0

1

0

00

01

00

00

0

0

0

1

1

0

000

011

0

0

1

0

00

01

00

00

Received 
Data         PH PH*

PV

PV*

Fig. 1.3  Illustration of (n, 
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Conversely, 1/r is a factor that increases the bit rate, and hence the bandwidth. 
For example, if Rb is the bit rate before coding and r is the code rate, then the coded 
bit rate will be Rb/r (b/s).

Upon receiving, the decoder (Fig. 1.3b) generates a new horizontal parity, PH*, 
and a new vertical parity, PV*. Now, if there is a single bit error, there will be a parity 
check failure in the respective column and the respective row (PH* = 1 and PV* = 1), 
identifying the location of the error. Today block coding is used in all digital 
communications.

�Convolutional Coding

In convolutional coding:

•	 k information bits enter into the convolutional encoder sequentially.
•	 The convolutional encoder generates n parity bits (n > k).
•	 These parity bits (known as encoded bits) are modulated and transmitted through 

a channel.
•	 At the receive side, the receiver decodes by means of code correlation and regen-

erates the information bits.

As an illustration, a convolutional encoder is constructed with the following 
specifications:

•	 Constraint length k = 3
•	 Rate r = 1/2

The corresponding encoder, based on a 3-bit shift register and two exclusive OR 
gates, is shown in Fig. 1.4.

The operation of the encoder is as follows:

•	 The initial content of the encoder is 0 0 0.
•	 Three information bits enter into the 3-bit shift register sequentially, one bit at a time.

Fig. 1.4  Encoder input/output relationships for k = 3, r = 1/2 (Mapping)

1.2  Types of Channel Coding
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•	 There are 6 shifts in the entire operation, generating 6 pairs of parity bits (12 par-
ity bits) after which the shift register is cleared. The outcome is a rate r = 6/12 = 1/2 
convolutional encoder.

•	 3-bit data has 23 = 8 combinations. Each combination generates a unique encoded 
bit pattern and stored in the look-up table.

•	 These encoded bits are modulated and transmitted through a channel.

Convolutional Decoder
Decoding is a process of code correlation, as presented below:

•	 A lookup table at the receiver contains the input/output bit sequences.
•	 In this process, the receiver compares the received data and generates a correla-

tion value.
•	 The correlation value for each data-set is stored in the look-up table.
•	 For k = 3, there are 8-possible outputs.
•	 The receiver validates the received data pattern by means of code correlation.
•	 This is a process of finding the closest match, as shown in the table.
•	 The code rate is given by r = ½ since there are 6 input bit sequences including the 

initial content of the shift register and there are 12 encoded data (r = 6/12 = 1/2) 
(Fig. 1.5).

�Concatenated Coding

There are two types of concatenated coding:

•	 Series concatenated coding
•	 Parallel concatenated coding

Series Concatenated Coding  originally developed by Forney [5] is well known 
for its excellent error control properties. A simple concatenated code, based on two 
codes in series, can be constructed as shown in Fig. 1.6.

Here, the high-speed user data is first encoded by means of an outer code, typi-
cally a block code. Next, the data and parity bits resulting from the outer code are 
interleaved and encoded by a rate ½ or rate ¾ convolutional encoder inner code. The 
encoded bit stream is then modulated and transmitted through a channel.

On the receive side, the impaired code is first decoded by an inner decoder, typi-
cally a Viterbi decoder, de-interleaved and then by an outer decoder. The essential 
feature of the concatenated coding scheme is that any errors which do not get 
detected by the inner code are corrected by the outer code.

Parallel Concatenated Coding  also known as turbo coding, uses two identical 
convolutional encoders, connected in parallel, and one internal interweaver. Turbo 
codes are a class of high-performance forward error correction (FEC) codes that 
closely approaches the theoretical channel capacity.

1  Introduction to Channel Coding
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Fig. 1.5  Convolutional decoder. The received data is compared with the look up table and finds 
the best match

Outer Channel Inner Channel

Data in

Data Out

Block
Encoder

Block
Interleaver

Block
De Interleaver

Block
Decoder

Convolutional
Encoder

Viterbi
Decoder

Channel

Noise

Fig. 1.6  Series concatenated coding based on block outer code and convolutional inner code

�Orthogonal Coding

Orthogonal codes are binary valued and have equal number of 1’s and 0’s. These 
codes can be used as (n, k) block codes where a k-bit data set can be represented by 
a unique n-bit orthogonal code (k < n). We illustrate this by means of an 8-bit orthog-
onal code, having 8-orthogonal and 8-antipodal codes for a total of 16 bi-orthogonal 
codes. We assume that an n-bit orthogonal code can be treated as an (n, k) block code. 

1.2  Types of Channel Coding
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We now show that, code rates such as rate ½, rate ¾ and rate 1 are indeed available 
out of orthogonal codes. The principle is presented below:

A rate 1/2 orthogonal coded modulation with n = 8 can be constructed by inverse 
multiplexing the incoming traffic, Rb (b/s), into 4 parallel streams (k = 4) as shown 
in Fig. 1.7. These bit streams, now reduced in speed to Rb/4 (b/s), are used to address 
sixteen 8-bit orthogonal codes, stored in an 8 × 16 ROM. The output of each ROM 
is a unique 8-bit orthogonal code, which is then modulated by a BPSK modulator 
and transmitted through a channel.

At the receiver, the incoming impaired orthogonal code is first examined by gen-
erating a parity bit. If the parity bit is one, the received code is said to be in error. 
The impaired received code is then compared to a lookup table for a possible match. 
Once the closest approximation is achieved, the corresponding data is outputted 
from the lookup table. A brief description of the decoding principle is given below:

An n-bit orthogonal code has n/2 1s and n/2 0s; i.e., there are n/2 positions where 
1s and 0s differ. Therefore, the distance between two orthogonal codes is d = n/2. 
This distance property can be used to detect an impaired received code by setting a 
threshold midway between two orthogonal codes. This is given by:

	
d

n
th =

4 	

Where n is the code length and dth is the threshold, which is midway between two 
valid orthogonal codes. Therefore, for the given 8-bit orthogonal code, we have 
dth = 8/4 = 2. This mechanism offers a decision process, where the incoming 
impaired orthogonal code is examined for correlation with the neighbouring codes 
for a possible match. Since the distance properties are the fundamental in error con-
trol coding, it can be shown that an n bit orthogonal code can correct t errors, as 
given below:

BPS Modulated

Fig. 1.7  Rate 1/2 orthogonal coded modulation with n = 8

1  Introduction to Channel Coding
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t

n
= -
4

1
	

In the above equation, t is the number of errors that can be corrected by means of an 
n-bit orthogonal code. For example, a single error-correcting orthogonal code can 
be constructed by means of an 8-bit orthogonal code (n = 8). Similarly, a three-error-
correcting orthogonal code can be constructed by means of a 16-bit orthogonal code 
(n = 16), and so on. Table 1.1 below shows a few orthogonal codes and the corre-
sponding error-correcting capabilities.

1.3  �Design Considerations

In any communication system, the use of channel coding is often achieved at the 
expense of other system characteristics. Therefore, trade-offs often need to be made 
in order to develop a system that meets not only the performance needs, but also 
adheres to the bandwidth and power constraints as well.

The first of these trade-offs is error performance versus bandwidth. Error-
correction coding can be implemented to increase error performance, but these tech-
niques require the transmission of additional bits, which will require an increase in 
bandwidth. Likewise, a system with limited power can reduce power without sacri-
ficing error performance by implementing an FECC technique. This will again 
introduce an increase in the number of bits that need to be transmitted by the sys-
tem, again at the expense of bandwidth. Both these trade-offs assume a real-time 
communication system. However, if a non-real-time system is used, FECC coding 
can be used to improve performance and reduce power, but there will be an increase 
in delay instead of bandwidth. These trade-offs need to be considered when a com-
munication system is being designed.

Several challenges, affecting minimum bandwidth and channel capacity, in 
designing digital communication systems, are introduced in this chapter. These are 
as follows [5, 10,11].

•	 Nyquist minimum bandwidth
•	 Shannon-Hartley capacity theorem

Table 1.1  Orthogonal codes and the corresponding error correcting capabilities

Code length n
Number of errors that can be corrected: 
t = (n/4) − 1

8   1

16   3

32   7

64 15

128 31

1.3  Design Considerations
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•	 Baseband modulation
•	 Waveform coding

1.3.1  �Nyquist Minimum Bandwidth

Every realizable system that contains non-ideal filtering will suffer from intersym-
bol interference (ISI). Intersymbol interference occurs when the tail of one pulse 
spills over and interferes with the correct detection of the adjacent symbol. Harry 
Nyquist showed in his 1928 paper “Certain Topics on Telegraph Transmission 
Theory” that the maximum theoretical number of symbols that can be received 
without ISI by a system with a transmission bandwidth of Rs Hertz is Rs/2.

Consequently, the sampling frequency, ΩT, must be at least two times greater 
than the modulation frequency, Ωm, of the transmitted data. This is known as the 
Nyquist condition, and is written as:

	 W WT m³ 2 . 	

If the Nyquist condition is satisfied, the transmitted data can be fully reconstructed 
at the receiver with the use of an ideal lowpass filter with gain T and cutoff fre-
quency Ωc, so that

	
W W W W Wm c T m m< < -( ) ³ 2 .

	

The spectrum of a signal, gp(t), sampled following the Nyquist condition is illus-
trated in Fig.  1.8. The spectrum of gp(t) sampled with W WT m< 2  is shown in 
Fig. 1.9.

The overlap in the sampled spectrum in Fig. 1.9 that is not present in Fig. 1.8 is 
known as aliasing and is the result of under sampling. Aliasing leads to the receiv-
er’s inability to fully reconstruct the signal, because the spectrum Gp(jΩ) cannot be 
separated by filtering. Therefore, in order for a communication system to accurately 
and completely receive a transmitted signal, the modulation technique used needs to 
adhere to the Nyquist condition.

Gp( jW)

0 Wm-Wm WT-WT -Wm WT -Wm-WT+Wm WT+Wm-WT

Fig. 1.8  Spectrum of the sampled signal with the Nyquist condition followed

1  Introduction to Channel Coding
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1.3.2  �Shannon-Hartley Capacity Theorem

Any modern communication system strives to maximize bit rate while minimizing 
error probability, transmission energy and bandwidth. Working against this goal is 
the presence of additive white Gaussian noise (AWGN) in all communication chan-
nels. Shannon showed in his 1948 paper that the system capacity C of a channel 
affected by AWGN can be written as [11]:

	
C W

S

N
= +æ

è
ç

ö
ø
÷log .2 1

	

The system capacity is a function of bandwidth W, average received signal power S, 
and average noise power N. This relationship is known as the Shannon-Hartley 
capacity theorem. When the bandwidth is in hertz and the base 2 logarithm is taken, 
the capacity is given in bits/s.

From this theorem, Shannon proved that it is theoretically possible to transmit 
information at a rate of R bits/s over a channel corrupted by AWGN with an arbi-
trarily small probability of error, so long as R < C.  In order to accomplish this, a 
sufficiently complicated coding scheme needs to be implemented. It should be 
noted that Shannon’s work set a limit on channel capacity, not achievable error per-
formance. Using the above equation, Shannon determined a bound for the achiev-
able performance of a practical system. This bound is shown graphically in Fig. 1.10 
as the normalized channel capacity C/W in bits/s/Hz versus the signal-to-noise ratio 
(SNR) of the channel.

1.3.3  �Baseband Modulation

In baseband modulation, the input waveforms are typically in the form of shaped 
pulses. Pulse and square waveforms are the most commonly used waveforms to 
represent digital data. Choice of return to zero (RZ) or non-return to zero (NRZ) 
data waveform depends on the application. NRZ is a binary code with no neutral 

Gp(jW)

0 Wm-Wm WT-WT

Fig. 1.9  Spectrum of the 
sampled signal with the 
Nyquist condition not 
followed

1.3  Design Considerations
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rest condition and requires half the bandwidth required by the RZ data code. Also, 
it offers better noise immunity than the unipolar data waveforms like RZ data code. 
The bit durations for RZ and NRZ data are shown in Figs. 1.11 and 1.12. The trans-
mission bandwidth of NRZ and RZ data varies due to the fact that they have differ-
ent bit duration. As a result, the bandwidth associated with them also varies. 
Figure 1.12 shows the bandwidth and power density associated with both RZ and 
NRZ data. According to the law of conservation of energy, the area under the two 
curves as shown in Fig. 1.12 is same. Therefore, the power magnitude |P (ω)|RZ is 
reduced to half of |P (ω)|NRZ.

1.3.4  �Waveform Coding

Waveform coding is a form of channel coding where a set of waveforms is trans-
formed into a set of orthogonal waveforms, so that the detection process is less 
subject to errors. There are two classes of waveform coding: (a) M-ary signaling 

1/8
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16

1/2
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systems
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C/W (bits/s/Hz)

Fig. 1.10  Normalized channel capacity versus channel SNR
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and (b) orthogonal coding. In M-ary signaling, a k-bit data set is used to address 
M = 2k modulated waveforms (e.g. MFSK). This process provides improved error 
performance at the expense of bandwidth. Similarly, in bi-orthogonal coding, a k-bit 
data set is directly mapped into 2n bi-orthogonal codes where n is the code length. 
This approach is also bandwidth inefficient, since the k-bit data set is directly 
mapped into 2 × 2k bi-orthogonal codes.

Fig. 1.11  RZ and NRZ 
binary data code
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Fig. 1.12  Power spectrum of RZ and NRZ binary data
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In this book, we introduce an alternate method of waveform coding that does not 
consume additional bandwidth and offers protection against errors. In the proposed 
method, a high-speed data stream is inverse multiplexed into several parallel 
streams. These parallel streams, now reduced in speed, are grouped into a number 
of subsets and mapped into a predetermined group of bi-orthogonal codes and mod-
ulated by means of an MPSK modulator. This methodology substantially reduces 
the required number of waveforms and enhances transmission efficiency.

Required
Number of
Waveforms

24 = 16

4

1
out of 

16
Input
Data

Required
Number of
Waveforms

24 = 16
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1
out of 

16Required
Number of
Waveforms

24 = 16

4

1
out of 

16
Input
Data

+

2
22 = 4 

2
22 = 4 

2
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Waveforms = 8

4
Input
Data

+

2
22 = 4 

22
22 = 4 

2
22 = 4 

22
22 = 4 

2
Out of

8

Required
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Waveforms = 8

4
Input
Data

a b

Fig. 1.13  Illustration of waveform coding. (a) Conventional method: a 4-bit data set requires 16 
waveforms. (b) Proposed method: a 4-bit data set partitioned into two sub-sets requires only 8 
wave forms

Table 1.2  Shows a comparison between the conventional M-ary signalling and the proposed 
method

Conventional method Proposed method Bandwidth reduction

# Bits (x) # Waveforms (2^x) # Waveforms (2x) Factor (2^x/2x)

1 2 2 1

2 4 4 1

3 8 6 1.333333333

4 16 8 2

5 32 10 3.2

6 64 12 5.333333333

7 128 14 9.142857143

8 256 16 16

9 512 18 28.44444444

10 1024 20 51.2

11 2048 22 93.09090909

12 4096 24 170.6666667

13 8192 26 315.0769231

14 16,384 28 585.1428571

15 32,768 30 1092.266667

16 65,536 32 2048

1  Introduction to Channel Coding
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Figure 1.13 illustrates the concept. In Fig. 1.3a we have a conventional method 
of waveform coding where a 4-bit data set is represented by 24 = 16 waveforms. This 
scheme is commonly viewed as being bandwidth inefficient since we need 16 wave-
forms to transmit a 4-bit data.

On the other hand, in the proposed method, as shown in Fig. 1.13b, when the 
same 4-bit data set is partitioned into two subsets, the number of waveforms reduces 
to 8. Similarly, in the conventional method, an 8-bit data set would require 28 = 256 
waveforms, while the proposed method requires only 2 × 8 = 16 waveforms. This is 
a substantial reduction of bandwidth indeed.

In the conventional method (Col-2, Table 1.2), a k-bit data set requires 2k wave-
forms where k = 1, 2, … Thus the number of waveforms increases rapidly as the 
length of the data set increases. For these reasons, the conventional method of wave-
form coding is bandwidth inefficient. In the proposed method, a k-bit data set 
requires only 2 k waveforms where k = 1, 2, … (Col-3, Table 1.2). Clearly, the pro-
posed method of waveform coding is bandwidth efficient. Our objective is to show 
that the proposed method of waveform coding applies to bi-orthogonal signaling. 
We also intend to show that there is a built-in error control mechanism in this 
scheme. Forward error control coding (FECC) schemes normally used in digital 
communication systems are not needed in the proposed method. Therefore the pro-
posed method is also cost-effective.

1.4  �Conclusions

•	 Channel coding is a process of detecting and correcting bit errors in digital com-
munication systems.

•	 It is also known as forward error control coding (FECC).
•	 Channel coding is performed both at the transmitter and at the receiver.
•	 At the transmit side, channel coding is referred to as encoder, where extra bits 

(parity bits) are added with the raw data before modulation.
•	 At the receive side, channel coding is referred to as the decoder. It enables the 

receiver to detect and correct errors if occur during transmission due to noise, 
interference and fading.

This book presents the salient concepts, underlying principles and practical real-
ization of channel coding schemes currently used in digital communication 
system.
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Chapter 2
Automatic Repeat Request (ARQ)

Abstract  ARQ technique adds parity or redundant bits to the transmitted data 
stream that are used by the decoder to detect an error in the received data. When the 
receiver detects an error, it requests that the data be retransmitted by the receiver. 
This continues until the message is received correctly. In ARQ, the receiver does not 
attempt to correct the errors, but rather it sends an alert to the transmitter in order to 
inform it that an error was detected and that a retransmission is needed. This is 
known as a negative acknowledgement, and the transmitter retransmits the message 
upon receipt. If the message is error-free, the receiver sends an acknowledgement 
(ACK) to the transmitter. This form of error control is only capable of detecting 
errors; it has no ability to correct errors that have been detected.

Topics
•	 Introduction
•	 The Basic Concept of ARQ
•	 ARQ Building Blocks
•	 Construction of ARQ for Serial Data Processing
•	 Construction of ARQ for Parallel Data Processing
•	 Merits and Demerits of ARQ System
•	 Conclusions

2.1  �Introduction to ARQ

Error control coding is a technique that adds redundant bits to minimize the effect 
of various channel impairments, such as noise and fading, and therefore increase the 
performance of the communication system [1–5]. There are two basic ways of 
implementing redundancy to control errors. The first is known as error detection and 
retransmission, which is also referred to as automatic repeat request (ARQ). The 
second method of error control through the use of redundancy is forward error con-
trol coding (FECC). In this chapter, our goal is to provide the basic understanding 
of error detection, focusing particularly on the following:
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•	 Describe the basic functional blocks used in ARQ system.
•	 Construct an ARQ system for processing serial data.
•	 Construct an ARQ system for processing parallel data.
•	 Provide examples.

2.2  �The Basic Concept

The ARQ technique adds parity or redundant bits to the transmitted data stream that 
are used by the decoder to detect an error in the received data [6, 7]. When the receiver 
detects an error, it requests that the data be retransmitted by the receiver. This contin-
ues until the message is received correctly. In ARQ, the receiver does not attempt to 
correct the errors, but rather it sends an alert to the transmitter in order to inform it 
that an error was detected and a retransmission is needed. This is known as a negative 
acknowledgement, and the transmitter retransmits the message upon receipt. If the 
message is error-free, the receiver sends an acknowledgement (ACK) to the transmit-
ter. This form of error control is only capable of detecting errors; it has no ability to 
correct errors that have been detected. This concept is presented in Fig. 2.1.

Briefly, the operation can be described as follows:

•	 The transmitter generates “parity-bits” from a block of raw data.
•	 The transmission includes both data and parity bits.
•	 The receiver computes the received data and looks for errors.
•	 If it detects an error, an ARQ message is sent over the reverse channel.
•	 Upon receiving the request, the transmitter retransmits the data.
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Fig. 2.1  Automatic repeat request (ARQ). (a) The functional block diagram. (b) Representation 
of negative acknowledgement (NAK) and positive acknowledgement (ACK)

2  Automatic Repeat Request (ARQ)



19

•	 The process continues until the receiver declares a valid data.

Although ARQ system cannot correct errors, it is an important building block in 
non-real-time digital communications where delay is not a problem, such as the Internet.

2.3  �ARQ Building Blocks

2.3.1  �Parity

A parity bit, also known as a check bit, is a bit added to the end of a string of binary 
word that indicates whether the number of bits in the word with the value one is 
even or odd [8, 9]. There are two types of parity bits:

•	 Even parity bit
•	 Odd parity bit

�Even Parity (Pe)

In the case of even parity, the number of bits whose value is 1 in a given word are 
counted. If the count of ones in a given word is even, the parity bit value is 0. This 
is defined as Pe = 0.

For example, a 2-bit word is said to be even, having an even parity bit as shown 
in the table below:

2-bit word Even parity (Pe)

0 0 0

1 1 0

Similarly, a 3-bit word is said to be even, having an even parity bit as shown in 
the table below:

3-bit word Even parity (Pe)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 0

�ODD Parity (Po)

In the case of odd parity, the number of bits whose value is 1 in a given word are 
counted. If the count of ones in a given word is odd, the parity bit value is 1. This is 
defined as Po = 1.

2.3  ARQ Building Blocks
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For example, a 2-bit word is said to be odd, having an odd parity bit as shown in 
the table below:

2-bit word Odd parity (Po)

0 1 1

1 0 1

Similarly, a 3-bit word is said to be odd, having an odd parity bit as shown in the 
table below:

3-bit word Odd parity (Po)

0 0 1 1

0 1 0 1

1 0 0 1

1 1 1 1

Likewise, a 4-bit data has 24 = 16 words, having 8 even parities and 8 odd 
parities.

From the above examples, we see that, an n-bit word has n/2 even parity bits and 
n/2 odd parity bits.

2.3.2  �Parity Is an Arithmetic Operation

Parity is an arithmetic operation, also known as Modulo2 or MOD2 addition. The 
following examples illustrate the operation:

Even Parity 

	 0 2 0 0 0 0MOD Add = + = 	

 1 2 1 1 1 0 1MOD Add ignore the carrywhich is= + = ( ) 	

Odd Parity 

	 0 2 1 0 1 1MOD Add = + = 	

 1 2 0 1 0 1MOD Add = + = 	

Similarly, a 3-bit word can be MOD2 added to generate an even parity and an odd 
parity as follows:

2  Automatic Repeat Request (ARQ)
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Even Parity 

	

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 0

+ + =
+ + =
+ + =
+ + = 	

Odd Parity 

	

0 0 1 1

0 1 0 1

1 0 0 1

1 1 1 1

+ + =
+ + =
+ + =
+ + = 	

Once again, in a given word, we see that when the number of 1’s is even, the par-
ity value is 0 and when the number 1’s is odd, the parity value is 1. Therefore, by 
counting the number of 1’s, the parity value of a given word can be determined 
simply by inspection.

2.3.3  �Parity Generator

A parity generator is an array of exclusive OR (EXOR) gaits that generate parity 
bits known as odd parity or even parity. The parity generators are used in the trans-
mit side as well as in the receive side. Briefly,

•	 ARQ is an arithmetic operation in digital system.
•	 It generates parity bits from a block of data.
•	 These parity bits are generated by means of a chain of exclusive OR gates (EXOR)

Our objective now is to examine exclusive OR gates and observe how parity bits 
can be generated by inspection.

�Two-Input EXOR

Consider the 2-input exclusive OR gate as shown in Fig. 2.2.

C

B

A

EXOR

Fig. 2.2  Two-input 
exclusive OR gate

2.3  ARQ Building Blocks
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The Boolean function of the exclusive OR gate is given by:

	

C AB AB

C A B

C A EXORB

= +
= Å
= 	

Where,

•	 A = 0 or 1
•	 B = 0 or 1
•	 C = − Output bit value

The truth table is given below:
Truth table of 2-input EXOR

A B C

0 0 0

0 1 1

1 0 1

1 1 0

From the above truth table, we see that:

•	 When both inputs are the same, the output is 0: Even parity
•	 When both inputs are not the same, the output is 1: Odd parity

Therefore, we can also determine the parity simply by inspection as shown in 
Fig. 2.3.

Fig. 2.3  Generation of parity bits by inspection

2  Automatic Repeat Request (ARQ)
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2.3.4  �Exclusive OR Chain Showing the Generation of Even 
Parity by Inspection

Figure 2.4 shows a chain of two exclusive OR gates. To determine the value of the 
parity, we use the following logic:

•	 If the input = even number of 1’s, then the output is even: Pe = 0
•	 If the input = odd number of 1’s, then the output is odd: Po = 1

Therefore, by inspection, we find that:

•	 For the first EXOR chain: Input =110 , which is even. Therefore, the parity value 
is 0, i.e. Pe = 0.

•	 For the second EXOR chain: Input =101, which is also even. Therefore, the par-
ity value is 0, i.e. Pe = 0.

2.3.5  �Exclusive OR Chain Showing the Generation of Odd 
Parity by Inspection

Figure 2.5 shows a chain of two exclusive OR gates. To determine the value of par-
ity, we use the following logic:

Fig. 2.4  Exclusive OR chain showing the generation of even parity by inspection

2.3  ARQ Building Blocks
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•	 If the input = even number of 1’s, then the output is even: Pe = 0
•	 If the input = odd number of 1’s, then the output is odd: Po = 1

Therefore, by inspection, we find that:

•	 For the first EXOR chain: Input =111, which is odd. Therefore, the parity value 
is 1, i.e. Po = 1

•	 For the second EXOR chain: Input =100, which is also odd. Therefore, the par-
ity value is 1, i.e. Po = 1.

Problem 2.1
Consider the exclusive OR chain as shown below:

A

B

C

D

Parity (P)

Y2 = C EXOR D

Y1 = A EXOR B

 

Fig. 2.5  Exclusive OR chain showing the generation of odd parity by inspection
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Find:

	(a)	 The following Boolean function:

•	 Y1
•	 Y2
•	 P (Parity)

	(b)	 If A = 1, B = 0, C = 1, D = 0, find the value of the corresponding parity value.
	(c)	 If A = 1, B = 1, C = 0, D = 1, find the value of the corresponding parity value.
	(d)	 Repeat part (b) and part (c) and give the parity values by inspection.

Solution:

(a)		  Y AEXORB1=

Y CEXORD2=

P Y EXORY

AEXORB EXOR CEXORD

=
=( ) ( )

1 2

	(b) and (c)	 Table below show the parity values for the corresponding input bit 
values.

A B C D Y1 Y2 P

1 0 1 0 1 1 0

1 1 0 1 0 1 1

4-Bit Data Input Parity

 

	(d)	Generation of parity by inspection
Since A = 1, B = 0, C = 1, D = 0
We can write:

	 A B C D Even parity+ + + = + + + = ( )1 0 1 0 0 	

Similarly, we have:

	 A B C D= = = =1 1 0 1, , , 	

Therefore we can write:

	 A B C D Odd+ + + = + + + = ( )1 1 0 1 1 	

2.3  ARQ Building Blocks
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Figures below show the parity values obtained by inspection.

•	 The first parity generator yields an even parity since the data is even: 
1 + 0 + 1 + 0 = 0.

•	 The second parity generator yields an odd parity since the data is odd: 
1 + 1 + 0 + 1 = 1.
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Data

Parity:

0
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1

1

0

1

Data

Parity:

1

 

2.4  �Construction of ARQ for Serial Data Processing

The ARQ technique adds a parity bit to the transmitted data stream that are used by 
the decoder to detect an error in the received data. Upon receiving, the receiver 
generates an additional parity bit out of the received data to detect an error and 
requests that the data be retransmitted, which is known as negative 

2  Automatic Repeat Request (ARQ)
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acknowledgement or “NAK” and the transmitter retransmits the message upon 
receipt. This continues until the message is received correctly. When the message is 
error-free, the receiver sends a positive acknowledgement to the transmitter, known 
as “ACK”. This form of error control is only capable of detecting errors; it has no 
ability to correct errors that have been detected.

We examine this by means of a 3-bit ARQ transceiver system for serial data com-
munication as shown in Fig. 2.6. It comprises a 3-bit parity generator at the transmit 
side and a 4-bit parity generator at the receive side. The operation is as follows:

•	 At the transmitter, the serial bit stream A B C are loaded into a serial to parallel 
shift register to generate a parity bit P.

•	 The parity generator generates a parity-bit (P), where P = A + B + C = 1 or 0.
•	 The transmitter then transmits data + parity = 3 + 1 = 4 bits to the receiver.
•	 The receiver computes a new parity bit Pr, where Pr = P + A + B + C = 1 or 0.
•	 If Pr = 1, it declares an error and an ARQ message is sent over the reverse chan-

nel as “NAK”.
•	 Upon receiving the request, the transmitter retransmits the data.
•	 The process continues until the receiver declares a valid data by transmitting a 0 

(Pr = 0), which is designated as “ACK”.

The ARQ process is governed by the following logic:

•	 If Pr = 1, then retransmit the data (NAK).
•	 If Pr = 0, then validate the data (ACK).

Where Pr is the parity generated by the receiver. This forms the basis of ARQ 
system.

Problem 2.2
Consider the 3-bit ARQ transceiver as shown below:

Transmitter

Data
Serial Data: C B A

P C B A

C B A

P

Channel

Receiver

P C B A C B A

Pr

ACK/NAK: ACK = Pr ==0 NAK = Pr =1

Fig. 2.6  Illustration of a 3-bit ARQ transceiver

2.4  Construction of ARQ for Serial Data Processing
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Transmitter

Data
Serial Data: 1 1 1

P

Channel

Receiver

Pr

ACK/NAK:  

If the input bit pattern is 1 1 1, and if there are no transmission errors, show the 
flow of data throughout the ARQ transceiver. Give the parity values generated and 
declare a verdict (ACK or NACK).

Solution:

•	 Input bit pattern = 1 1 1 (Odd)
•	 Transmit parity P = 1 + 1 + 1 = 1(Odd parity)
•	 Transmit data = Data + Parity = 1 1 1 1 (Even)
•	 Received data with no errors = 1 1 1 1 (Even)
•	 Receive parity Pr = 1 + 1 + 1 + 1 = 0 (Even)
•	 Verdict = ACK (No errors)

Figure below shows the data flow and parity.

Transmitter

Data
Serial Data: 1 1 1

1 1 1 1

1 1 1

1 1 1 10

0

0

1

1

P

Channel

Receiver

Pr=0

Pr=0  Verdict = ACK

Data
1 1 1

 

Problem 2.3

Consider the previous problem again. If the input bit pattern is 1 1 1, and if there is 
a transmission error for which the receiver receives a bit pattern 1 1 1 0, show the 
flow of data throughout the ARQ transceiver. Give the parity values generated and 
declare a verdict (ACK or NACK).

2  Automatic Repeat Request (ARQ)
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Solution:

•	 Input bit pattern = 1 1 1 (Odd)
•	 Transmit parity P = 1 + 1 + 1 = 1 (Odd parity)
•	 Transmit data = Data + Parity = 1 1 1 1 (Even)
•	 Received data with one error = 1 1 1 0 (Odd)
•	 Receive parity Pr = 1 + 1 + 1 + 0 = 1 (Odd)
•	 Verdict = NACK (Error) − Retransmit

Figure below shows the data flow and parity.

Transmitter

Data
Serial Data: 1 1 1

1 1 1 1 1 1 1 0(error)
1 1 1

1 1 1 00

1

0

1

1

P

Channel

Receiver

Pr=1

Pr=1  Verdict = NACK (Retransmit)

Data
Not Valid

 

2.5  �Construction of ARQ for Parallel Data Processing

Figure 2.7 shows the functional diagram of an ARQ system supporting 4-bit parallel 
data communication between a transmitter and a receiver. It comprises a 4-bit parity 
generator at the transmit side and 5-bit parity generator at the receive side.

As shown in the figure:

•	 The transmitter generates a parity-bit from a 4-bit word and transmits 4+1=5 bits 
to the receiver.

•	 The receiver computes a new parity from the received data comprising data plus 
a parity bit and looks for 1 or 0.

•	 If it is 1, it declares an error, an ARQ message is sent over the reverse channel.
•	 Upon receiving the request, the transmitter retransmits the data.
•	 The process continues until the receiver declares a valid data by transmitting a 0.

The ARQ process is governed by the following logic:

•	 If Y = 1, then retransmit the data (NAK).
•	 If Y = 0, then validate the data (ACK).

To illustrate this, let’s consider the following examples:

Example 2.1: (No Errors)
In this example (Fig. 2.7), let’s assume that there is no error.

2.5  Construction of ARQ for Parallel Data Processing
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Input data:

	

A

B

C

D

=
=
=
=

1

0

1

0 	

Parity bit generated from 4-bit data:

	 P A B C DT = + + + = + + + =1 0 1 0 0 	

Transmit bits:
Data and parity = ABCDPT = 10100 (5 bits transmitted)

Receive bits:

Receive Bits: 

A = 1

B = 0

C = 1

D = 0

PT = 0  

Receiver generates its own parity out of 5 bits as PR:

•	 P A B C D P EvenR T= + + + + = + + + + = ( )1 0 1 0 0 0

•	 Verdict: No error, ACK (Don’t care).

Transmission Lines
A

B

C

D

4-Bit
Transmitter

4-Bit
Receiver

ARQ MSG

ARQ
Output

(Y)
PRPT

A

B

C

D

A
B

C
D

A EXOR B 

C EXOR D

A EXOR B 

C EXOR D

Fig. 2.7  ARQ for parallel data processing. This example shows that no error has been detected 
and the verdict is ACK

2  Automatic Repeat Request (ARQ)
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ARQ Example 2.2: With an Error
In this example, let’s assume that there is a transmission error. Let this error be A, 
which is 0 instead of 1 (Fig. 2.8).

Transmit bits:

	

A 1

B 0

C 1

D 0

=
=
=
=
=PT 0 	

Transmit Bits

A=1

B=0

C=1

D=0

 

Receive bits: (A is in error at the receiver)

A = 0

B = 0

C = 1

D = 0

PT = 0

(Error)

 

Transmission Lines
A

B

C

D

4-Bit
Transmitter

4-Bit
Receiver

ARQ MSG

ARQ
Output

(Y)
PRPT

A

B

C

D

A
B

C
D

A EXOR B 

C EXOR D

A EXOR B 

C EXOR D

Fig. 2.8  ARQ for parallel data processing. This example shows that an error has been detected 
and the verdict is NAK (Retransmit data)

2.5  Construction of ARQ for Parallel Data Processing
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Receiver generates its own parity out of 5 bits as PR:

•	 P A B C D P OddR T= + + + + = + + + + = ( )0 0 1 0 0 1

•	 Verdict = NAK (Retransmit)

Problem 2.4: [This Problem Assumes That the Parity Is in Error]
Given:

Transmit bits:

	

A 1

B 0

C 1

D 0

=
=
=
=
=PT 0 	

Receive bits: (PT is in error at the receiver)

A = 1

B = 0

C = 1

D = 0

PT = 1 (Parity is in Error) 

Receiver generates its own parity out of 5 bits as PR:

•	 P A B C D P OddR T= + + + + = + + + + = ( )1 0 1 0 1 1

•	 Verdict = NAK (Retransmit)

2.6  �Merits and Demerits of ARQ System

This section will show that the ARQ system can only detect odd errors and cannot 
detect even errors. Let’s examine this by means of examples.

2.6.1  �Merits (ARQ Can Detect Odd Errors Only)

Consider the ARQ system as shown in Fig. 2.9. Here, we assume that there are three 
errors during transmission.

2  Automatic Repeat Request (ARQ)
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Transmit bits:

	

A

B

C

D

PT

=
=
=
=
=

1

0

1

0

0 	

Receive bits: (There are 3 errors at the receiver)

A = 1

B= 1

C= 1

D = 1

PT = 1

There are three errors

 

Receiver generates its own parity out of 5 bits as PR:

•	 P A B C D P OddR T= + + + + = + + + = ( )1 1 111 1 1

•	 Verdict = NAK (Correct verdict)

Therefore, ARQ can detect odd errors.

Transmission Lines
A

B

C

D

4-Bit
Transmitter

4-Bit
Receiver

ARQ MSG

ARQ
Output

(Y)
PRPT

A

B

C

D

A
B

C
D

A EXOR B 

C EXOR D

A EXOR B 

C EXOR D

Fig. 2.9  A 4-bit ARQ for parallel data processing. This example will show that it can detect odd 
errors only

2.6  Merits and Demerits of ARQ System
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2.6.2  �Demerits (ARQ Cannot Detect Even Errors)

Consider the ARQ system as shown in Fig. 2.9 again. Here, we assume that there 
are two errors during transmission.

Transmit bits:

	

A 1

B 0

C 1

D 0

=
=
=
=
=PT 0 	

Receive bits: (There are 2 errors at the receiver)

A = 1

B= 1

C= 1

D = 1

PT = 0

There are two errors

 

Receiver generates its own parity out of 5 bits as PR:

•	 P A B C D P EvenR T= + + + + = + + + + = ( )1 1 1 1 0 0

•	 Verdict = ACK (Wrong verdict)

Therefore, ARQ cannot detect even errors.

2.7  �Conclusions

•	 We have presented the basic concept of ARQ.
•	 We have also provided essential building blocks for ARQ.
•	 Construction of ARQ for serial data processing as well as for parallel data pro-

cessing were shown to illustrate the concept.
•	 It is also shown that ARQ system cannot detect even errors and can detect mul-

tiple odd errors.

2  Automatic Repeat Request (ARQ)
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Chapter 3
Block Coding

Abstract  In block coding, k information bits are segmented into rectangular blocks 
consisting of M rows and N columns. The input data stream is parsed into N-bit 
chunks and placed into the block one row at a time. Once the M rows are filled, the 
encoder adds parity, or redundant, bits to the block to form a larger block. This 
larger rectangular block consist of (M + 1) rows and (N + 1) columns, and contains n 
coded information bits where n > k. The difference, (n − k), are the parity bits. The 
purpose of the parity bits is to allow the decoder to detect and correct errors.

Topics
•	 Introduction to Block Coding
•	 Block Code Building Blocks
•	 Typical Rectangular Block Coding
•	 Code Rate and Bandwidth
•	 Modified Rectangular Block Coding
•	 Modulation and Transmission at a Glance
•	 Transmission Bandwidth at a Glance
•	 Conclusions

3.1  �Introduction to Block Coding

In forward error control coding (FECC), the data is encoded with the redundant bits 
to allow the receiver to not only detect errors but to correct them as well. In this 
system, a sequence of data signals is transformed into a longer sequence that con-
tains enough redundancy to protect the data. This type of error control is also clas-
sified as channel coding because these methods are often used to correct errors that 
are caused by channel noise. The goal of all FECC techniques is to detect and 
correct as many errors as possible without greatly increasing the data rate or the 
bandwidth [1–5].
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FECC codes are generally classified in two broad categories:

•	 Block codes
•	 Convolutional codes

Block codes are typically a memoryless technique that attempts to map the k input 
bits to n output bits, where n > k. The extra bits are referred to as parity bits. Block 
codes are usually denoted as (n, k) codes and have a code rate defined by k/n [6–8].

Convolutional codes are a technique that uses memory to produce n output bits 
from k input bits. The code rate is again defined as k/n. The code rate is an indication 
of the amount of redundancy for a particular code. A low value for the code rate relates 
to more error-correcting ability, but at the cost of increased bandwidth [9–14].

In any communication system, the use of channel coding is often achieved at the 
expense of other system characteristics. Therefore, trade-offs are often needed in 
order to develop a system that meets not only the performance needs, but also 
adheres to the bandwidth and power constraints as well. The first of these trade-offs 
is error performance versus bandwidth. Error-correction coding can be imple-
mented to increase error performance, but these techniques require the transmission 
of additional bits, which will require an increase in bandwidth. Likewise, a system 
with limited power can reduce power without sacrificing error performance by 
implementing an FECC technique. This will again introduce an increase in the 
number of bits that need to be transmitted by the system, again at the expense of 
bandwidth. Both these trade-offs assume a real-time communication system. 
However, if a non-real-time system is used, FECC coding can be used to improve 
performance and reduce power, but there will be an increase in delay instead of 
bandwidth. These trade-offs need to be considered when a communication system 
is being designed.

This chapter presents the key concepts, underlying principles and practical appli-
cation of block coding. Examples are provided to further illustrate the concept. In 
particular, the following topics are presented in this chapter:

•	 Block coding building blocks
•	 Typical rectangular block coding
•	 Code rate and bandwidth
•	 Modified rectangular block coding
•	 Modulation and transmission

3.2  �Block Code Building Blocks

In block coding, the basic building block is a parity generator, where parity is an 
arithmetic operation, also known as Modulo2 or MOD2 addition. We have pre-
sented this topic in Chap. 2 in details. However, a short description is presented here 
for convenience.

A 2-bit word can be MOD2 added to generate an even parity and an odd parity 
as follows:

3  Block Coding
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Even 
parity ODD parity

0 + 0 = 0 0 + 1 = 1

1 + 1 = 0 1 + 0 = 1

Similarly, a 3-bit word can be MOD2 added to generate an even parity and an 
odd parity as follows:

Even 
parity ODD parity

0 + 0 + 0 = 0 0 + 0 + 1 = 1

0 + 1 + 1 = 0 0 + 1 + 0 = 1

1 + 0 + 1 = 0 1 + 0 + 0 = 1

1 + 1 + 0 = 0 1 + 1 + 1 = 1

In a given word, we see that when the number of 1’s is even, the parity value is 0 
and when the number 1’s is odd, the parity value is 1. Therefore, by counting the 
number of 1’s, the parity value of a given word can be determined simply by inspec-
tion. We will use these analogies to construct block coding and see how block codes 
can detect and correct single errors.

3.3  �Typical Rectangular Block Coding

3.3.1  �Construction of Data Block

Block codes are a form of forward error correction (FECC) that can be used to both 
detect and correct errors. They are a type of parity check code that map k input binary 
bits to n output binary bits. They are characterized by the (n, k) notation. One type of 
block code is a rectangular code, which can be thought of as a parallel code structure.

In rectangular block coding, the k information bits are first segmented into rect-
angular blocks consisting of M rows and N columns. The input data stream is parsed 
into N-bit chunks and placed into the block one row at a time. Once the M rows are 
filled, the encoder adds parity, or redundant, bits to the block to form a larger block. 
This larger rectangular block consist of (M + 1) rows and (N + 1) columns, and con-
tains n coded information bits where n > k. The difference, (n − k), are the parity bits. 
The purpose of the parity bits is to allow the decoder to detect and correct errors. 
The rate of the rectangular code is defined as:

	

r
k

n

MN

M N
= =

+( )( )1 1+
.

	

(3.1)

Once the information bits are placed into the rectangular block, a series of parity 
calculations are performed on the data. Modulo-2 addition, which is equivalent to 

3.3  Typical Rectangular Block Coding
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the logical exclusive-OR operation, is used to perform the calculations. The rules of 
modulo-2 addition are given in the previous section, which is given by the following 
equation:

	 0 0 0 0 1 1 1 0 1 1 1 0+ = + = + = + =, , , ,	 (3.2)

To illustrate the concept, an example of a (n, k) block coding scheme utilizing a 
(15, 8) rectangular block coding technique is displayed in Fig. 3.1a as an M × N 
matrix, where

•	 M = Number of rows = 4
•	 N = Number of columns = 2
•	 n = (M + 1)(N + 1) = 15 and
•	 k = MN = 8
•	 r = k/n = 8/15 is the code rate

The input data stream is presented in Fig. 3.1a with the block assembled by the 
encoder given in Fig. 3.1b, which is the desired block of data having M rows and N 
columns, having M = 4, N = 2 and k = MN = 8. The ratio k/n, defined as the code rate, 
is an important designed parameter in channel coding, where the inverse of code 
rate 1/r is a factor which expands the transmission bandwidth.

3.3.2  �Encoder: Construction of Block Codes

Figure 3.2a shows the construction of a block code, commonly known as encoder. 
Here, the encoder performs a horizontal parity calculation on each row of data and 
the result, PH, is appended to the end of each row. Additionally, a vertical parity cal-
culation is performed on each column of data with the result, PV, being appended to 
the end of each column. An additional parity calculation is performed on the horizon-
tal parity column, PH, and placed at the end of the column. This ensures that both the 
parity row and parity column themselves have even parity. The entire block 
(data + parity) is then modulated and transmitted across the communication channel.

Fig. 3.1  (a) Serial data and (b) rectangular data block having M = 4, N = 2 and k = MN = 8

3  Block Coding
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3.3.3  �Decoder: Detection and Correction of Errors

At the receiving end (Fig. 3.2b), the decoder performs a series of additional parity 
calculations on the received block. A new horizontal parity, PH*, is calculated with 
the result appended to the end of each row. A new vertical parity, PV*, is also calcu-
lated and placed at the end of each column. These additional parity calculations are 
utilized by the decoder in the error detection and correction process.

3.3.4  �Example of Error Detection and Correction

Rectangular block coding is capable of detecting and correcting any single bit 
errors. If there is an error, a parity check failure (PH* = 1 and PV* = 1) will occur in 
the respective row and column. This allows the decoder to determine the location of 
the error and correct it. An example of an erroneous (15, 8) rectangular block coding 
scheme is presented in Fig. 3.3.

The input data stream is the same as before. The encoded block of data, shown 
in Fig. 3.3a, is generated as follows.

At the Encoder  Generate horizontal parity PH from each row.
•	 Generate vertical parity PV from each column.
•	 Transmit the entire content of the coded block to the receiver.

At the Decoder  Let’s assume that there is an error during transmission. The error 
is indicated in Fig. 3.3b by a circle. The decoder has no knowledge about this error. 
According to the protocol, the decoder performs the following:

Fig. 3.2  (a) Encoder: Encoded data at the transmitter with vertical parity, Pv, and horizontal parity, 
PH. (b) Decoder: Received data with an additional vertical and horizontal parity, Pv*, and horizon-
tal parity, PH*, respectively

3.3  Typical Rectangular Block Coding
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•	 Decoder generates horizontal parity PH* from each row.
•	 Decoder generates vertical parity PV* from each column.

In Fig. 3.3b, it can be observed that the location of the error is determined by the 
row and column in which the parity check failures occur. The decoder would then 
flip this bit to correct the error. This type of FECC technique, however, is only 
capable of correcting single bit errors. Rectangular block codes can detect some 
multi-bit errors, but are unable to correct them.

3.4  �Code Rate and Bandwidth

3.4.1  �Code Rate

In rectangular block coding, the k information bits are segmented into rectangular 
blocks consisting of M rows and N columns. Parity bits are generated from each row 
and each column to form a larger rectangular coded block. This larger rectangular 
block consist of (M + 1) rows and (N + 1) columns, and contains n coded information 
bits where n > k. The extra bits, (n − k), are referred to as parity bits. The purpose of 
the parity bits is to allow the decoder to detect and correct errors. Block codes are 
usually denoted as (n, k) codes and have a code rate defined by k/n. This is given by 
the following equation:

	 r k n= / 	 (3.3)

Where,

r = Code rate
k = Number of uncoded bit
n = Number of coded bits

Fig. 3.3  Example of an erroneous (n, k) rectangular block code. (a) The encoder block. (b) The 
decoder block

3  Block Coding
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3.4.2  �Bandwidth

In block coding, redundant bits (parity bits) are transmitted along with information 
bits, which will require an increase in bandwidth. Before modulation, this is given by:

	
Bandwidth Rb: / /BW R r n kb= = ( )

	 (3.4)

Where,

Rb = Input bit rate (b/s)
n = Number of bits after coding
k = Number of bits before coding

Problem 3.1
A rectangular block code is constructed by using M rows and N columns, where 
M = 4 and N = 3. Calculate the code rate.

Solution:

	

CodeRate r = =
+( ) +( )

= ´( ) ´( ) = =
k

n

MN

M N1 1
4 3 5 4 12 20 0 6/ / .

	

Problem 3.2

Consider the block of data as shown below:

 

	(a)	Construct the encoded data block at the transmitter.
	(b)	 If there is no error, construct the decoded data block at the receiver.
	(c)	 If the bit in  location row 1 and column 1 is in error, show how the receiver 

detects and corrects the error.

Solution:

	(a)	 Encoded Data Block

At the transmit end, the encoder performs a series of parity calculations on the 
data block. A horizontal parity, PH, is calculated with the result appended to the end 

3.4  Code Rate and Bandwidth
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of each row. A vertical parity, PV, is also calculated and placed at the end of each 
column. The entire block is then transmitted to the receiver.

 

	(b)	Decoded Data Block (No Error)

At the receiving end, the decoder performs a series of additional parity calcula-
tions on the received block. A new horizontal parity, PH*, is calculated with the 
result appended to the end of each row. A new vertical parity, PV*, is also calculated 
and placed at the end of each column. These additional parity values are all zeros. 
Therefore, there are no errors.

 

3  Block Coding
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	(c)	Decoded Data Block (With an Error)

Since the error occurs in location row 1 and column 1 (dotted circle), the corre-
sponding horizontal and vertical parity values are changed, indicating the location of 
the error. Therefore, this bit can be inverted to make the correction. See figure below:

 

Problem 3.3

Given:

•	 Bit rate Rb = 10 kb/s
•	 (49 × 36) block code

Find:

	(a)	 The (49 × 36) block coding scheme
	(b)	 Calculate the code rate r
	(c)	 Calculate the bandwidth without modulation
	(d)	 If the input bit rate Rb = 10 kb/s, calculate the required transmission bandwidth

Solution:

	(a)	 (49 × 36) block coding scheme:

•	 k = 36. Therefore the uncoded block can be constructed as: M × N = 6 × 6 matrix
•	 n = 49. Therefore the coded block can be constructed as: (M + 1)(N + 1) = 7 × 7 

matrix

3.4  Code Rate and Bandwidth
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	(b)	 Code rate r = k/n = 36/49 = 0.734694
	(c)	 BW = Rb/r = 10 kb/0.734694 = 13.61111 kHz

Drill Exercise

Given:

•	 A 16-bit data block arranged as a 4 × 4 matrix as shown below.
•	 During transmission, the bit in location row 3 and column 3 gets corrupted and 

the receiver decodes it as “0” as indicated by a circle.

	(a)	 Construct the encoded data block.
	(b)	 Construct the decoded data block and show how the receiver detects and cor-

rects the error bit.

 

3.5  �Modified Rectangular Block Coding

3.5.1  �Encoder

In an attempt to enhance the error correcting capability, a modified technique was 
developed [15]. This modified block coding scheme adds fewer parity bits, which 
results in a saving of bandwidth. As the input data stream enters the encoder, it is 
parsed into smaller k-bit data chunks. A horizontal parity calculation is then per-
formed on the k-bit data chunk. The parity calculations are computed using modulo-
2 addition. The k-bit data chunk is then placed into one of two rectangular blocks, 
each containing M rows and k columns. If the result of the horizontal parity calcula-
tion is even (a result of 0), the k-bit data chunk is placed into the “even’ block. If the 
result of the horizontal parity calculation is odd (a result of 1), the k-bit data chunk 
is placed into the “odd” block. This technique eliminates the need to transmit the 
horizontal parity column, PH, required in typical rectangular block coding. This is 
possible because the horizontal parity of the blocks is known to the decoder, since 
only k-bit data chunks consisting of even (or odd) parity are present in each block. 

3  Block Coding
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The savings depend on the number of rows in each block used by the encoder. The 
modified scheme then performs a vertical parity calculation, PV, and appends it to 
the end of each column. This is illustrated in Fig. 3.4, using 2-bit data chunks and 
the same 8-bit input data stream used in the rectangular block coding examples and 
shown previously.

3.5.2  �Decoder

As the data are received, they are placed in the appropriate parity block and a time-
stamp is appended to the end of the row corresponding to the order of arrival. This 
does not add to the amount of transmitted data because it is performed at the decoder. 
Once the parity row has been received, the decoder calculates a new vertical parity, 
PV*, for each column. It also calculates a new horizontal parity, PH*, for each row. 
For the horizontal parity calculations, the encoder uses the received data along with 
the parity value of the block. This is the same method as that used in typical rectan-
gular block coding.

The modified technique can detect and correct any single-bit error in each block for 
a total of two errors. The location of the error can be determined from the row and 
column in which a parity check failure (PH* = 1 and PV* = 1) occurred. A visual exam-
ple of a decoder using the modified block coding technique is displayed in Fig. 3.5.

Not only does the modified technique require fewer parity bits than typical rect-
angular block coding, but it also results in greater coding strength. This is due to the 
fact that there are fewer bits being transmitted over a potentially noisy channel. In 
typical rectangular block coding, the horizontal parity column is transmitted, which 
makes it susceptible to corruption by channel noise. If the horizontal parity bits are 
corrupted, they will affect the ability of the decoder to detect and correct errors in 
the received data. The modified technique proposed does not suffer from this 
because the horizontal parity column for each block is not transmitted over the com-
munication channel. Instead, it is determined by the decoder, based on the received 
demodulation frequency. Moreover, the proposed modified technique is capable of 
correcting any single bit error per block, for a total of two errors.

0 0 0

1 1 0

1 1

Transmit
Data PH

PV

a

Not
Sent} 0 1 1

1 0 1

1 1

Transmit
Data PH

PV

b

Not
Sent}

Fig. 3.4  Example encoder using the modified block coding technique. (a) Even parity block. (b) 
Odd parity block
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A major difference between the modified block coding scheme and typical rect-
angular block coding is the method in which the data are modulated and transmitted 
across the communication channel. If the entire block was modulated and transmit-
ted as in rectangular block coding, it would not be possible to reassemble the data. 
This is because the decoder would not know the order in which the data entered the 
encoder without the encoder adding a timestamp to the data. The timestamp would 
eliminate the bandwidth saved by the modified technique.

To accommodate this, as each parsed chunk of the input data stream is placed 
into one of the blocks, it is also modulated and transmitted across the communica-
tion channel. Modulation can be performed using any of the following modulation 
schemes:

•	 Amplitude shift keying (ASK), also known as on-off keying (OOK)
•	 Frequency shift keying (FSK)
•	 Phase shift keying (PSK)

Once the parity row of the block has been calculated, it is also modulated using 
the appropriate modulator and transmitted by means of the respective carrier fre-
quency. Since there are two parity blocks, the modified technique corrects two 
errors at the expense of two carrier frequencies (one for each parity block).

3.6  �Modulation and Transmission at a Glance

Once the data is encoded, it needs to be modulated before transmission. This is a 
fundamental requirement in wireless communication, where modulation is a tech-
nique that changes the characteristics of the carrier frequency in accordance to the 
input digital signal. Furthermore, the radiating device is an antenna, which is a 
reciprocal device that transmits and receives sinusoidal waves. The size of the 
antenna depends on the wavelength (λ) of the sinusoidal wave where,

a

0 0 0

1 1 0

1 1

Received
Data PH

PV

0

0

PH*

0 0PV*

1

4

Time
Stamp

b

0 1 1

1 0 1

1 1

Received
Data PH

PV

0

0

PH*

0 0PV*

2

3

Time
Stamp

Fig. 3.5  Example decoder using the modified block coding technique. (a) Even parity block. (b) 
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	 l = c f/ meter 	

c = velocity of light = 3 × 108 m/s
f = Frequency of the sinusoidal wave, also known as “carrier frequency”
Therefore, a carrier frequency much higher than the input signal is required to 

keep the size of the antenna at an acceptable limit. For these reasons, a high fre-
quency carrier signal is used in the modulation process. In this process, the low 
frequency input signal changes the characteristics of the high frequency sinusoidal 
waveform in a certain manner, depending on the modulation technique. For digital 
signals, there are several modulation techniques available. The three main digital 
modulation techniques are:

•	 Amplitude shift keying (ASK)
•	 Frequency shift keying (FSK)
•	 Phase shift keying (PSK)

3.6.1  �Amplitude Shift Keying (ASK) Modulation

Amplitude shift keying (ASK), also known as on-off keying (OOK),is a method of 
digital modulation that utilizes amplitude shifting of the relative amplitude of the 
career frequency [16, 17]. The signal to be modulated and transmitted is binary; this 
is referred to as ASK, where the amplitude of the carrier changes in discrete levels, 
in accordance to the input signal.

Figure 3.6 shows a functional diagram of a typical ASK modulator for different 
input bit sequences, where

•	 Input digital signal is the information we want to transmit.
•	 Carrier is the radio frequency without modulation.
•	 Output is the ASK modulated carrier, which has two amplitudes corresponding 

to the binary input signal. For binary signal 1, the carrier is ON. For the binary 
signal 0, the carrier is OFF; however, a small residual signal may remain due to 
noise, interference etc.

As shown in Fig. 3.6, the amplitude of the carrier changes in discrete levels, in 
accordance to the input signal, where,

•	 Input data or: m t( )=0 1

•	 Carrier frequency ACos:C t t( )= ( )w
•	 Modulated carrier C ACos:S t m t t m t t( )= ( ) ( )= ( ) ( )w

Therefore,
For m(t) = 1: S(t) = A Cos(ωt), i.e. the carrier is ON
For m(t) = 0: S(t) = 0, i.e. the carrier is OFF
Where A is the amplitude and ω is the frequency of the carrier.
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3.6.2  �Amplitude Shift Keying (ASK) Demodulation

Once the modulated binary data has been transmitted, it needs to be received and 
demodulated. This is often accomplished with the use of a bandpass filter. In the 
case of ASK, the receiver needs to utilize one bandpass filter that is tuned to the 
appropriate carrier frequency. As the signal enters the receiver, it passes through the 
filter and a decision as to the value of each bit is made to recover the encoded data 
block, along with horizontal and vertical parities. Next, the receiver appends hori-
zontal and vertical parities PH* and PV* to check parity failures and recovers the data 
block. This is shown in Fig. 3.7 having no errors. If there is an error, there will be a 
parity failure in PH* and PV* to pin point the error.

3.6.3  �Frequency Shift Keying (FSK) Modulation

Frequency shift keying (FSK) is a method of digital modulation that utilizes fre-
quency shifting of the relative frequency content of the signal [16, 17]. The signal 
to be modulated and transmitted is binary; this is referred to as binary FSK (BFSK), 
where the carrier frequency changes in discrete levels, in accordance with the input 
signal.
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Fig. 3.6  Amplitude shift keying (ASK), also known as on-off keying (OOK). The input encoded 
data block is transmitted row by row. The amplitude of the carrier frequency changes in accordance 
to the input digital signal
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Figure 3.8 shows a functional diagram of a typical FSK modulator for different 
input bit sequences, where

•	 Input digital signal is the information we want to transmit.
•	 Carrier is the radio frequency without modulation.
•	 Output is the FSK modulated carrier, which has two frequencies ω1 and ω2, cor-

responding to the binary input signal.
•	 These frequencies correspond to the messages binary 0 and 1, respectively.

As shown in Fig. 3.8, the frequency of the carrier changes in discrete levels, in 
accordance to the input signals. We have:

•	 Input data or: m t( )=0 1

•	 Carrier frequency ACos:C t t( )= ( )w
•	 Modulated carrier ACos For

ACos

: ,S t t m t

S t

( )= -( ) ( )=
( )= +( )

w Dw
w Dw

1

tt m t,For ( )=0Where

•	 A = Amplitude of the carrier
•	 ω = Nominal frequency of the carrier frequency
•	 Δω = Frequency deviation

3.6.4  �Frequency Shift Keying (FSK) Demodulation

Once the modulated binary data has been transmitted, it needs to be received and 
demodulated. This is often accomplished with the use of bandpass filters. In the case 
of binary FSK, the receiver needs to utilize two bandpass filters that are tuned to the 
appropriate frequencies. Since the nominal carrier frequency and the frequency 
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deviation are known, this is relatively straightforward. One bandpass filter will be 
centred at the frequency ω1, and the other at ω2. As the signal enters the receiver, it 
passes through the filters and a decision as to the value of each bit is made. This is 
shown in Fig. 3.9. In order to assure that the bits are decoded correctly, the fre-
quency deviation needs to be chosen with the limitations of the filters in mind to 
eliminate cross-over.

3.6.5  �Phase Shift Keying (PSK) Modulation

Phase shift keying (PSK) is a method of digital modulation that utilizes phase of the 
carrier to represent digital signal [16, 17]. The signal to be modulated and transmit-
ted is binary; this is referred to as binary PSK (BPSK), where the phase of the car-
rier changes in discrete levels, in accordance with the input signal as shown below:

•	 Binary 0 (Bit 0): Phase1 = 0°
•	 Binary 1 (Bit 1): Phase2 = 180°
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Fig. 3.8  Binary frequency shift keying (BFSK) modulation. The input encoded data block is 
transmitted row by row. The frequency of the carrier changes in accordance to the input digital 
signal
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Figure 3.10 shows a functional diagram of a typical binary phase shift keying 
(BPSK) modulator for different input bit sequences, where

•	 Input digital signal is the information we want to transmit.
•	 Carrier is the radio frequency without modulation.
•	 Output is the BPSK modulated carrier, which has two phases φ1 and φ2 corre-

sponding to the two information bits.

As shown in Fig.  3.10, the phase of the carrier changes in discrete levels, in 
accordance to the input signal. We have:

•	 Input data or: m t( )=0 1
•	 Carrier frequency ACos:C t t( )= ( )w
•	 Modulated carrier ACos:S t t( )= +( )w j

Where

•	 φ) = 0°, m(t) 0
•	 φ) = 180°, m(t) 1
•	 A = Amplitude of the carrier
•	 ω = Frequency of the carrier frequency

3.6.6  �Phase Shift Keying (PSK) Demodulation

Once the modulated binary data has been transmitted, it needs to be received and 
demodulated. This is often accomplished with the use of a phase detector, typically 
known as phase locked loop (PLL). As the signal enters the receiver, it passes 
through the PLL. The PLL locks to the incoming carrier frequency and tracks the 
variations in frequency and phase. This is known as coherent detection technique, 
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where the knowledge of the carrier frequency and phase must be known to the 
receiver. Figure  3.11 shows a simplified diagram of a BPSK demodulator along 
with the data recovery process. In order to assure that the bits are decoded correctly, 
the phase deviation needs to be chosen with the limitations of the PLL in mind to 
eliminate cross-over.

3.7  �Estimation of Transmission Bandwidth

In wireless communications, the scarcity of RF spectrum is well known. For this 
reason we have to be vigilant about using transmission bandwidth in error control 
coding and modulation. The transmission bandwidth depends on:

•	 Spectral response of the encoded data
•	 Spectral response of the carrier frequency
•	 Modulation type (ASK, FSK, PSK) etc.

3.7.1  �Spectral Response of the Encoded Data

In digital communications, data is generally referred to as a non-periodic digital 
signal. It has two values:
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Fig. 3.10  Binary phase shift keying (BPSK) modulation. The input encoded data block is transmit-
ted row by row. The phase of the carrier frequency changes in accordance to the input digital signal
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•	 Binary-1 = High, Period = T
•	 Binary-0 = Low, Period = T

Also, data can be represented in two ways:

•	 Time domain representation
•	 Frequency domain representation

The time domain representation (Fig.  3.12a), known as non-return-to-zero 
(NRZ), is given by:

	

V t V t T( ) = < < <
=

0

0 elsewhere 	
(3.5)

The frequency domain representation is given by “Fourier transform”:
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Here, P(ω) is the power spectral density. This is plotted in Fig. 3.12b. The main lobe 
corresponds to the fundamental frequency and side lobes correspond to harmonic 
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components. The bandwidth of the power spectrum is proportional to the frequency. 
In practice, the side lobes are filtered out since they are relatively insignificant with 
respect to the main lobe. Therefore, the one-sided bandwidth is given by the ratio f/
fb = 1. In other words, the one-sided bandwidth = f = fb, where fb = Rb = 1/T, T being the 
bit duration.

The general equation for two-sided response is given by:

	

V V t e dtj tw w( ) = ( )
-µ

µ
-ò .

	

In this case, V(ω) is called two-sided spectrum of V(t). This is due to both positive 
and negative frequencies used in the integral. The function can be a voltage or a 
current Fig.  3.12c shows the two-sided response, where the bandwidth is deter-
mined by the main lobe as shown below:

	
Twosided bandwidth BW R Bit rate before codingb( ) = =( )2 Rb 	 (3.8)

V (t)
P

P

BW

-ff/c f/fc-1 0

0 0 1 f/fct

1

a

c

b

T

Fig. 3.12  (a) Discrete time digital signal, (b) its one-sided power spectral density and (c) two-
sided power spectral density. The bandwidth associated with the non-return to zero (NRz) data is 
2Rb, where Rb is the bit rate
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Important Notes
	1.	 If Rb is the bit rate before coding, and if the data is NRZ, then the bandwidth 

associated with the raw data will be 2Rb. For example, if the bit rate before cod-
ing is 10  kb/s, then the bandwidth associated with the raw data will be 
2 × 10 kb/s = 20 kHz.

	2.	 If Rb is the bit rate before coding, code rate is r, and if the data is NRZ, then the 
bitrate after coding will be Rb(coded) = Rb(uncoded)r. The corresponding band-
width associated with the coded data will be 2Rb (coded) = 2Rb (uncoded)/r. For 
example, if the bit rate before coding is 10 kb/s and the code rate r = 1/2, the 
coded bit rate will be Rb (coded) = Rb (uncoded)/r = 10/0.5 = 20 kb/s. The corre-
sponding bandwidth associated with the coded data will be 2 × 20 = 40 kHz.

3.7.2  �Spectral Response of the Carrier Frequency 
Before Modulation

A carrier frequency is essentially a sinusoidal waveform, which is periodic and 
continuous with respect to time. It has one frequency component. For example the 
sine wave is described by the following time domain equation:

	
V t V tp c( )= ( )Sin w

	 (3.9)

Where,

•	 Vp = Peak voltage
•	 ωc = 2πfc

•	 fc = Carrier frequency in Hz

Figure 3.13 shows the characteristics of a sine wave and its spectral response. 
Since the frequency is constant, its spectral response is located in the horizontal axis 
and the peak voltage is shown in the vertical axis. The corresponding bandwidth is 
zero.

3.7.3  �ASK Bandwidth at a Glance

In ASK, the amplitude of the carriers changes in discrete levels, in accordance with 
the input signal, where,

•	 Input data or: m t( )=0 1
•	 Carrier frequency AcCos c:C t t( )= ( )w
•	 Modulated carrier A Cosc c:S t m t C t m t t( )= ( ) ( )= ( ) ( )w
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Since m(t) is the input digital signal and it contains an infinite number of har-
monically related sinusoidal waveforms and that we keep the fundamental and filter 
out the higher order components, we write:

	
m t tm m( )= ( )A Sin w

	

The ASK modulated signal then becomes:

	

S t m t S t A A t

A A
m c

m c

( )= ( ) ( )= ( ) ( )
= ±( )

Sin Cos

Cos
m c

c m

w w
w w

	

The spectral response is depicted in Fig. 3.14. Notice that the spectral response 
after ASK modulation is the shifted version of the NRZ data. Bandwidth is given 
by:

BW = 2Rb (coded), where Rb is the coded bit rate.

3.7.4  �FSK Bandwidth at a Glance

In FSK, the frequency of the carrier changes in two discrete levels, in accordance to 
the input signals. We have:

•	 Input data or: m t( )=0 1
•	 Carrier frequency ACos:C t t( )= ( )w
•	 Modulated carrier ACos For

ACos

: ,S t t m t

S t

( )= -( ) ( )=
( )= +( )

w Dw
w Dw

1

tt m t,For ( )=0Where

•	 S(t) = The modulated carrier
•	 A = Amplitude of the carrier
•	 ω = Nominal frequency of the carrier frequency
•	 Δω = Frequency deviation
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Fig. 3.13  A sine wave and its frequency response
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The spectral response is depicted in Fig. 3.15. Notice that the carrier frequency 
after FSK modulation varies back and forth from the nominal frequency fc by ± Δfc, 
where Δfc is the frequency deviation. The FSK bandwidth is given by,

BW f f fb b b= +( )= +( )= +( )2 2 1 2 1f f fb c cD D b/ ,where β = Δf/fb is known as the 
modulation index and fb is the coded bit frequency (bit rate Rb).

3.7.5  �BPSK Bandwidth at a Glance

In BPSK, the phase of the carrier changes in two discrete levels, in accordance to 
the input signal. Here we have:

•	 Input data or: m t( )=0 1
•	 Carrier frequency ACos:C t t( )= ( )w
•	 Modulated carrier ACos:S t t( )= +( )w j

Where,

Fig. 3.14  ASK bandwidth at a glance. (a) Spectral response of NRZ data before modulation. (b) 
Spectral response of the carrier before modulation. (c) Spectral response of the carrier after modu-
lation. The transmission bandwidth is 2fb, where fb is the bit rate and T = 1/fb is the bit duration for 
NRZ data
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•	 A = Amplitude of the carrier frequency
•	 ω = Angular frequency of the carrier
•	 φ) = Phase of the carrier frequency

Table below shows the number of phases and the corresponding bits per phase 
for MPSK modulation schemes for M = 2, 4, 8, 16, 32, 64 etc. It will be shown that 
higher order MPSK modulation schemes (M > 2) are spectrally efficient. See 
Problem 3.7.

Modulation
Number of phases 
φ Number of bits per phase

BPSK 2 1

QPSK 4 2

8PSK 8 3

16 16 4

32 32 5

64 64 6

: : :

Fig. 3.15  FSK bandwidth at a glance. (a) Spectral response of NRZ data before modulation. (b) 
Spectral response of the carrier before modulation. (c) Spectral response of the carrier after modu-
lation. The transmission bandwidth is 2(fb + Δfc). fb is the bit rate and Δfc is the frequency devia-
tion = 1/fb is the bit duration for NRZ data
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Figure 3.16 shows the spectral response of the BPSK modulator. Since there are 
two phases, the carrier frequency changes in two discrete levels, one bit per phase, 
as follows:

	 jj)=0 for° bit 0 	

 j)=180 1° for bit 	

Notice that the spectral response after BPSK modulation is the shifted version of the 
NRZ data, centred on the carrier frequency fc. The transmission bandwidth is given by:

	 BW BPSK R Bit per Phase R Rb b b( )= = =2 2 1 2/ / 	

Where,

•	 Rb is the coded bit rate (bit frequency).
•	 For BPSK, φ = 2, one bit per phase

Also, notice that the BPSK bandwidth is the same as the one in ASK modulation. 
This is due to the fact that the phase of the carrier changes in two discrete levels, 
while the frequency remains the same.

Fig. 3.16  BPSK bandwidth at a glance. (a) Spectral response of NRZ data before modulation. (b) 
Spectral response of the carrier before modulation. (c) Spectral response of the carrier after 
modulation
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Problem 3.4: This Problem Relates to ASK
Given:

•	 Uncoded input bit Rate: Rb (uncoded) = 10 kb/s
•	 Block coding: M = 4, N = 4
•	 Carrier frequency fc = 1 MHz
•	 Modulation: ASK

Find:

	(a)	 Code rate r
	(b)	 Coded bit rate Rb(coded)
	(c)	 Transmission bandwidth BW

Solution:

	(a)	 r MN M N= +( ) +( )= ´( ) ´( )=/ / /1 1 4 4 5 5 16 25
	(b)	 Coded bit rate Rb (coded) = Rb/r = 10 kb/s(25/16) = 15.625 kb/s
	(c)	 Transmission bandwidth:

	 BW R coded kb s kb sb= ( )= ´ =2 2 15 625 31 25. / . / 	

Problem 3.5: This Problem Relates to FSK

Given:

•	 Uncoded input bit rate: Rb (uncoded) = 10 kb/s
•	 Block coding: M = 4, N = 4
•	 Carrier frequency fc = 1 MHz
•	 Modulation: FSK
•	 Modulation index β = 1

Find:

	(a)	 Code rate r
	(b)	 Coded bit rate Rb (coded)
	(c)	 Transmission bandwidth BW

Solution:

	(a)	 r MN M N= +( ) +( )= ´( ) ´( )=/ / /1 1 4 4 5 5 16 25
	(b)	 Coded bit rate Rb(coded) = Rb/r = 10 kb/s(25/16) = 15.625 kb/s
	(c)	 Transmission bandwidth:

	
BW = +( )= ´ +( )=2 1 2 15 625 1 1 62 5R kb s kb sb b . / . /

	

Note: FSK needs more bandwidth
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Problem 3.6: This Problem Relates to BPSK
Given:

•	 Uncoded input bit rate: Rb(uncoded) = 10 kb/s
•	 Block coding: M = 4, N = 4
•	 Carrier frequency fc = 1 MHz
•	 Modulation: BPSK (2 phases). 1 bit per phase

Find:

	(a)	 Code rate r
	(b)	 Coded bit rate Rb(coded)
	(c)	 Transmission bandwidth BW

Solution:

	(a)	 r MN M N= +( ) +( )= ´( ) ´( )=/ / /1 1 4 4 5 5 16 25
	(b)	 Coded bit rate Rb(coded) = Rb/r = 10 kb/s(25/16) = 15.625 kb/s
	(c)	 Transmission bandwidth BW:

•	 Modulation is BPSK. Therefore, there are two phases, 1 bit per phase = 1
•	 BPSKBW R coded kb s kb sb= ( ) = ´ =2 2 15 625 1 31 25/ . / / . /j

Note: BPSK bandwidth is the same as in ASK.

Problem 3.7: This Problem Relates to QPSK (Q = 4)
Given:

•	 Uncoded input bit rate: Ri(uncoded) = 10 kb/s
•	 Block coding: M = 4, N = 4
•	 Carrier frequency fc = 1 MHz
•	 Modulation: QPSK (4 phases), 2 bits per phase

Find:

	(a)	 Code rate r
	(b)	 Coded bit rate Rb(coded)
	(c)	 Transmission bandwidth BW

Solution:

	(a)	 r MN M N= +( ) +( )= ´( ) ´( )=/ / /1 1 4 4 5 5 16 25
	(b)	 Coded bit rate Rb = Rb/r = 10 kb/(25/16) = 15.625 kb/s
	(c)	 Transmission bandwidth:

	
BW = ( ) = ´ ( ) =2 2 15 625 2 15 625R coded BitsPer Phase kb s kHzb / . / / .

	

Note:

•	 BPSk has 2 phases, 1 bit per phase: BW = 2Rb/1 = 2Rb kHz
•	 QPSk has 4 phases, 2 bit per phase: BW = 2Rb/2 = Rb kHz
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•	 8PSk has 8 phases, 3 bit per phase: BW = 2Rb/3 kHz
•	 16PSk has 16 phases, 4 bit per phase: BW = 2Rb/4 = Rb/2 kHz
•	 And so on

Clearly, higher order PSK modulation is bandwidth efficient.

Drill Exercise
Given:

•	 Uncoded input bit rate: Rb(uncoded) = 10 kb/s
•	 Block coding: M = 6, N = 6
•	 Carrier frequency fc = 1 MHz
•	 Modulation: 64PSK

Find:

	(a)	 Code rate r
	(b)	 Coded bit rate Rb (coded)
	(c)	 Transmission bandwidth BW

3.8  �Conclusions

•	 The concept of block coding is presented in lucid language.
•	 Block code building blocks are presented to bring students up-to-date on key 

concepts and underlying principles in error control coding.
•	 Typical rectangular block coding is then presented with illustrations.
•	 Code rate and bandwidth are discussed with examples.
•	 A modified rectangular block coding is presented to improve error control 

capabilities.
•	 Modulation schemes are briefly presented to estimate the transmission 

bandwidth.
•	 Problems and exercises are inserted as needed.
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Chapter 4
Convolutional Coding

Abstract  In convolutional coding, a sequence of data signals enters into the 
encoder, one bit at a time. The encoder generates n parity bits out of k information 
bits. The n parity bits, also known as coded information bits, are modulated and 
transmitted through a channel. At the receiver, the decoder recovers the data by 
means of code correlation. The ratio k/n is defined as the code rate r, where r = k/n ≤ 1. 
The code rate is an indication of the amount of redundancy that protects the data. A 
low value for the code rate relates to more error-correcting ability, but at the cost of 
increased bandwidth.

Topics
•	 Introduction to Convolutional Coding
•	 Convolutional Code Building Blocks
•	 Construction of Convolutional Encoder
•	 Constraint Length, Code Rate and Bandwidth
•	 Construction of Convolutional Decoder
•	 Conclusions

4.1  �Introduction

In convolutional coding, a sequence of data signals enters into the encoder, one bit 
at a time. The encoder generates n parity bits out of k information bits. The n parity 
bits, also known as coded information bits, are modulated and transmitted through 
a channel. At the receiver, the decoder recovers the data by means of code correla-
tion. The ratio k/n is defined as the code rate r, where r = k/n ≤ 1. The code rate is an 
indication of the amount of redundancy that protects the data. A low value for the 
code rate relates to more error-correcting ability, but at the cost of increased 
bandwidth.

This type of error control is also classified as channel coding because these meth-
ods are often used to correct errors that are caused by channel noise. A typical rate 
½ (r = 1/2) convolutional encoder is constructed as shown in Fig. 4.1, where,
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•	 The information bits enters into the 3-bit shift register sequentially, one bit at a 
time.

•	 The convolutional encoder generates two parity bits for each entry of an informa-
tion bit as encoded bits (n > k), where r = k/n = 1/2.

•	 The coded information bits are modulated and transmitted through a channel.

Decoding is a process of code correlation as presented in Table 4.1. In this pro-
cess, the receiver compares the received data with the expected data set to decode 
the actual data.

•	 A lookup table at the receiver contains the uncoded and the corresponding 
encoded data.

•	 Upon receiving an encoded data pattern, the receiver validates the received data 
pattern by means of code correlation.

Fig. 4.1  Illustration of a typical convolutional encoder. The information data serially enters into 
the 3-bit shift register, one bit at a time. The encoder generates two parity bits for each entry of an 
information bit. The code rate is defined as r = k/n = 1/2. The decoder recovers the data by means of 
code correlation

1 1    0 1    1 0   0 1   1 1

1 1    0 1    0 1   1 1   0 0

1 1    1 0    0 0   1 0   1 1

1 1    1 0    1 1     0 0   0 0

0 0    1 1    0 1    0 1   1 1

0 0    1 1    1 0    1 1   0 0

0 0 0 0 0 0 0 0 0 0

Output (U)Input (m)

1 1 0 1 1 0 0 1 1 1

1 1 0 1 0 1 1 1 0 0

1 1 1 0 0 0 1 0 1 1

1 1 1 0 1 1 0 0 0 0

1 1 0 1 0 1 1 1

0 0 1 1 1 0 1 1 0 0

0 0 0 0 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0

7. 1 1 1

6. 1 1 0

5. 1 0 1

4. 1 0 0

3. 0 1 1

2. 0 1 0

1. 0 0 1

0. 0 0 0

Table 4.1  Correlation receiver. Received data: 00 11 01 01 00

4  Convolutional Coding
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This forms the basis of our presentation of FECC, based on convolutional coding 
[1–6]. In this chapter we will present the key concepts, underlying principles, and 
practical application of convolutional coding schemes currently used in the tele-
communication systems. Practical design and construction of convolutional coding 
schemes will be presented with illustrations. In particular, the following topics are 
presented in this chapter:

•	 Convolutional coding building blocks
•	 Typical convolutional coding
•	 Code rate and bandwidth
•	 Convolutional decoding

4.2  �Convolutional Encoder Building Blocks

A convolutional encoder in its most basic construction consist of three building 
blocks as listed below:

•	 Shift register
•	 Exclusive OR gates
•	 Multiplexer

A brief description of each of these building blocks are presented below.

4.2.1  �Shift Register (SR)

A shift register (SR) is a device that converts serial data into parallel formats or vice 
versa. In the case of serial to parallel SR, data enters into the SR serially, one bit at 
a time. Once the data has been clocked in, the content of the SR can be read off at 
each output simultaneously for further processing. Figure 4.2 illustrates the opera-
tion of a 3-bit serial to parallel shift register, which will be used to construct a con-
volutional encoder.

Let’s assume that the input bit sequence m = 1 0 1, where the first entry is 1, sec-
ond entry is 0 and the third entry is 1: Also, we assume that the initial content of the 
SR is 0 0 0.

At t = 0 (Fig. 4.2a):

•	 Initial content of the SR is 0 0 0.
•	 Parallel output is 0 0 0.

At t = 1 (Fig. 4.2b):

•	 The first bit entry into SR = 1.
•	 Content of SR: 1 0 0.
•	 Parallel output is 1 0 0.

4.2  Convolutional Encoder Building Blocks
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At t = 2 (Fig. 4.2c):

•	 The second bit entry into SR = 0.
•	 The first bit moves forward by one bit and occupies the next location of the SR.
•	 The content of SR: 0 1 0.
•	 Parallel output is 0 1 0.

At t = 3 (Fig. 4.2d):

•	 The third bit entry into SR = 1.
•	 The previous two bits move forward by one bit.
•	 Content of SR is 1 0 1.
•	 Parallel output is 1 0 1.

4.2.2  �Exclusive OR Gates as Parity Generators

A parity generator is an array of exclusive OR (EXOR) gates that generate parity 
bits known as odd parity or even parity. These parity generators are used to con-
struct the convolutional encoder in conjunction with a shift register. Our objective 
now is to examine exclusive OR gates and observe how parity bits can be generated 
by inspection. This is governed by the following logic:

•	 INPUT EVEN s OUTPUT= ® =1 0’
•	 INPUT ODD s OUTPUT= ® =1 1’

This analogy is used to derive parity values by inspection as shown in Fig. 4.3.

Fig. 4.3  Generation of parity bits by inspection

4.2  Convolutional Encoder Building Blocks



72

4.2.3  �Symbolic Representation of Exclusive OR Gates

Figures 4.4 and 4.5 show symbolic representation and examples of exclusive OR 
gates, where the parity estimations are based on inspection. Once again, this is gov-
erned by the following logic:

•	 INPUT EVEN s OUTPUT= ® =1 0’
•	 INPUT ODD s OUTPUT= ® =1 1’

4.2.4  �Modulo-2 Addition (MOD-2 ADD)

Parity is an arithmetic operation, also known as Modulo2 or MOD2 addition. This 
is governed by the following analogy:

•	 When the number of 1’s is even, the parity value is 0.
•	 When the number 1’s is odd, the parity value is 1.

Therefore, by counting the number of 1’s, the parity value of a given word can be 
determined simply by inspection. Figure 4.6 shows a set of examples to illustrate 
this, which is obtained by counting the number of 1’s vertically.

4.2.5  �Multiplexers

Multiplexing, also commonly referred to as MUX, is a method of transmitting and 
receiving multiple independent signals over a single transmission channel serially in 
a preassigned time slot. MUX at the transmit side assigns multiple channels in pre-
assigned time slots. MUX at the receive side, known as the de-multiplexer 
(DEMUX), separates the incoming composite signal into parallel streams. Both 
multiplexer and de-multiplexer are synchronized by a common clock to receive data 
in accordance with the transmit sequence.

Figure 4.7 shows a symbolic representation of a 2:1 multiplexer, which will be 
used in the construction of a convolutional encoder. Here, 2:1 represents two input 
bit streams converted into a single bit stream.

P

P

P b1

b1

b2

b1

b1

b2

b2

b3

b2
b3

P

Fig. 4.4  Symbolic 
representation of exclusive 
OR gates

4  Convolutional Coding
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Problem 4.1
Given:

Two bit sequences b1 and b2 as follows:
b1 101=
b2 111=

	(a)	 Find the output bit sequences as b1, b2,…
	(b)	 If the input bit rate is 10 kb/s, calculate output bit rate.

Solution:
b b1 101 2 111= =,

b1: 1  0  1

B2: 1  1  1

11 1 1 10

 

Therefore, the output bit sequence is: (a) 11 01 11.
(b) Output bit rate = Input rate × 2 = 10 × 2 = 20 kb/s.

Fig. 4.5  Examples of 
parity estimates by 
inspection

Fig. 4.6  Examples of MOD2 operation. This is obtained by counting the number of 1’s 
vertically

4.2  Convolutional Encoder Building Blocks
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4.2.6  �Polynomial Representation of Data

In convolutional coding, we often represent data by means of polynomials and their 
products [7]. Here is a simple example. A sequence of bits m = 1 0 1 can be expressed 
as polynomial m(x) as follows:

	

m X X X

X

( ) = + +
= +
1 0 1

1

2

2

. .

	

Similarly, another sequence of bits g = 1 1 1 can be expressed as polynomial g(x) as 
follows:

	

g X X X

X X

( ) = + +
= + +
1 1 1

1

2

2

. .

	

Then the product of the above two polynomials can be written as:

	

m X g X X X X

X X X X X

X X

X

X

( ) ( ) = +( ) + +( )
= + + + + +
= + + +
= +

 

  

1 1

1

1

1 1

2 2

2 2 3 4

3 4

. ++ + +
=

1 2 1 3 1 4

11111

. . .X X X

	

Where X2 + X2 = 0 (MOD-2 Addition).
This forms the basis of representing data by means of polynomials and the prod-

uct of two polynomials. In this chapter, we will further examine this method and 
show how convolutional encoders can be designed, constructed and verified by 
means of inspection.

Problem 4.2
This problem illustrates how to represent data by means of polynomials and their 
products.

Given:
m = 110
g = 1 0 0

b1

b2

b2, b1

Fig. 4.7  Symbolic 
representation of a 2:1 
multiplexer

4  Convolutional Coding
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Find:

	(a)	 m(x)
	(b)	 g(x)
	(c)	 m(x)g(x)

Solution:

	(a)	 m = 110: m(x) = 1 + 0.X + 0.X2 = 1 + X2
	(b)	 g = 1 0 0: g(x) = 1 + 0.X + 0.X2 = 1
	(c)	 m(x)g(x) = (1 + X2).1 = 1 + x2 = 1 + 0.X + 1.X2 = 1 0 1

4.3  �Construction and Operation of Convolutional Encoder

A convolutional encoder, in its most basic construction, is shown in Fig. 4.8. It con-
tains a shift register (SR), an exclusive OR gate known as the upper generator (g1), 
a second exclusive OR gate known as lower generator (g2) and a 2:1 multiplexer. 
Here, a sequence of data bits enters into the 3-bit SR one bit at a time and a corre-
sponding 3-bit parallel data is used to generate two parity bits through a pair of 
parity generators g1 and g2. The encoded output data is then taken serially by means 
of a 2:1 multiplexer as u1and u2.

Briefly, the operation of the encoder is as follows:

•	 The initial content of the 3-bit shift register (SR) = 0 0 0.
•	 The input bit enters into the SR serially, one bit at a time.
•	 For each single bit entry into the SR, the content of the SR is updated.
•	 The upper generator g1 generates a parity bit u1 and the lower generator g2 gen-

erates a parity bit u2.
•	 The output is 2:1 time division multiplexed to obtain: u1 and u2.

Output Data:
u1 u2

2:1
Multiplexer

Parity u1

Parity u2

Serial Input
(m)

Upper
Generator (g1)

Lower
Generator (g2)

0 0 0

Fig. 4.8  A convolutional encoder containing a shift register (SR), an exclusive OR gate known as 
the upper generator (g1), a second exclusive OR gate known as lower generator (g2) and a 2:1 
multiplexer

4.3  Construction and Operation of Convolutional Encoder
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•	 Next, a new bit enters into the SR and a new pair of u1u2 is generated at the 
output.

•	 The process continues. Consequently, for every single bit entry into the SR, there 
are two output parity bits, resulting in a rate 1/2 (r = 1/2) convolutional encoder.

4.3.1  �Polynomial Method of Analysis

Let’s consider Fig. 4.8 again and assume that the input bit sequence is 1 0 1, where 
the first entry is 1, the second entry is 0 and the third entry is 1. Also, we assume that 
the initial content of the SR is 0 0 0. The encoder is described to have:

•	 Input data: m = 1 0 1
•	 Upper generator g1 = 1 1 1 (according to the input connectivity)
•	 Lower generator g2 = 1 0 1 (according to the input connectivity)

The input sequence m = 1 0 1 is described by the following polynomial:

	

m X X X

X

( ) = + +
= +
1 0 1

1

2

2

	

The upper generator is described by the following polynomial:

	
g X X X1 1 2( )= + +

	

The lower generator is described by the following polynomial:

	
g X X2 1 2( )= +

	

Then the product of polynomials can be described as:

	

m X g X X X X

X X X

( ) ( )= +( ) + +( )
= + + +

1 1 1

1

2 2

3 4

	



m X g X X X

X

( ) ( )= +( ) +( )
= +

2 1 1

1

2 2

4

	

With X X2 2 0+ = , the output bit sequence can be found as U X m X g X( )= ( ) ( )1  
multiplexed with m(X)g2(X), where m(X) is the input bit sequence [7]. We write the 
above two equations as follows:

4  Convolutional Coding
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m X g X X X X X

m X g X X X X X

U X

( ) ( )= + + + +

( ) ( )= + + + +

( )=

1 1 1 0 1 1

2 1 0 0 0 1

1

2 3 4

2 3 4

,, , , , ,1 1 0 0 0 10 11( )+ ( )+ ( )+ ( ) + ( )
	

Taking only the coefficients, we obtain the desired multiplexed output bit 
sequence as follows:

	 U = 1 1 1 0 0 0 1 0 1 1 	

4.3.2  �Verification by Inspection

Let’s consider Fig. 4.9 and observe what happens when a single bit enters into the 
SR and moves through the SR, one bit at a time. Let’s also assume that the input bit 
sequence is 1 0 1, where the first entry is 1, the second entry is 0 and the third entry 
is 1. Also, we assume that the initial content of the SR is 0 0 0. Here, we have:

•	 Input data: m = 1 0 1
•	 Generator g1 = 1 1 1
•	 Generator g2 = 1 0 1

Now, observe the output as the data enters into the encoder, one bit at a time.
At t = 0:

•	 Initial content of the SR is 0 0 0
•	 m(x) = 0
•	 g(x) = 0
•	 The output is: u1 u2 = 0 0

Fig. 4.9  Step by step operation of convolutional encoder. For each entry of a bit, the output gener-
ates two parity bits

4.3  Construction and Operation of Convolutional Encoder
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At t = 1:

•	 The first bit entry into SR = 1
•	 Content of SR: 1 0 0
•	 m(x) = 1
•	 g(x) = 1
•	 U1u2 = 1 1

At t = 2:

•	 The second bit entry into SR = 0
•	 The first bit moves forward by one bit and occupies the next location of the SR
•	 The content of SR: 0 1 0
•	 m(x) = 1
•	 g(x) = 0
•	 U1u2 = 1 0

At t = 3:

•	 The third bit entry into SR = 1
•	 The previous two bits move forward by one bit
•	 The content of SR: 1 0 1
•	 m(x) = 0
•	 g(x) = 0
•	 U1u2 = 0 0

At t = 4:

•	 The fourth bit entry into SR = 0
•	 The previous two bits move forward by one bit
•	 The content of SR: 0 1 0
•	 m(x) = 1
•	 g(x) = 0
•	 U1u2 = 1 0

At t = 5:

•	 The fifth bit entry into SR = 0
•	 The previous two bits move forward by one bit
•	 The content of SR: 0 0 1
•	 m(x) = 1
•	 g(x) = 1
•	 U1u2 = 1 1

At t = 6:

•	 The sixth bit entry into SR = 0
•	 The previous two bits move forward by one bit
•	 The SR is now cleared (three bits are out)
•	 The content of SR: 0 0 0 (SR is initialized)

4  Convolutional Coding
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•	 m(x) = 0
•	 g(x) =0
•	 U1u2 = 0 0 (back to initial condition, therefore ignore this pair of data)

The operation is now complete. The encoded output bit sequence is:

	 U = 1 1 1 0 0 0 1 0 1 1 00 	

Note that the last two bits are 0 0, which is the initial condition of the SR. Therefore, 
these two bits are not considered and neglected. Also notice that the outcome is the 
same as those obtained earlier by means of the polynomial method.

4.3.3  �Constraint Length, Code Rate and Bandwidth

The encoder we have just described is said to have the following parameters:

•	 Constraint length k = 3 (This is the length of the SR)
•	 Code rate r = 1/2

Typical parameters:

•	 k = 7 and 9
•	 r = 1/2, 1/3, 2/3, ¾ etc.

The code rate (r) is defined as:

•	 r = k/n (r < 1)
•	 k = Number of information bits
•	 n = Number of encoded information bits

The bandwidth is defined as:

•	 BW - = Rb/r

Where

•	 Rb = Uncoded bit rate b/s
•	 R = Code rate

Problem 4.3
This problem shows how to analyze a given convolutional encoder by polynomial 
method and verify by means of inspection.

Given:

•	 The input bit sequence: m = 0 0 1
•	 Constraint length k = 3
•	 Upper generator g1 = 1 1 1
•	 Lower generator g2 = 1 0 1
•	 Constraint length k = 3

4.3  Construction and Operation of Convolutional Encoder
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Find:

	(a)	 The output bit sequence U.
	(b)	 What is the code rate?
	(c)	 If the input bit rate is 10 kb/s, what is the encoded output bit rate?

Solution:

	

m X X

g X X X

( ) =
( ) = + +

2

21 1
	

The product of these polynomials is given by:

	

m X g X X X X

X X X

( ) ( ) = ( ) + +( )
= + +

1 12 2

2 3 4

	

Similarly, we obtain the product of two polynomials as:

	

m X g X X X

X X

( ) ( ) = ( ) +( )
= +

2 12 2

2 4    	

The above two product of polynomials can be written as follows:

	

m X g X X X X X

m X g X X X X X

U X

( ) ( )= + + + +

( ) ( )= + + + +

( )=

1 0 0 1 1 1

2 0 0 1 0 1

0

2 3 4

2 3 4

,, , , , ,0 0 0 11 10 11( )+ ( )+ ( )+ ( ) + ( )
	

The encoded output bit sequence is then obtained by taking the coefficients:

	 U = 0 0 0 0 11 1 0 1 1 	

Verification by inspection [8]:

•	
m=

( )( )( )
0 0 1

1 2 3t t t

•	 1st entry = 0 (at t1)
•	 2nd entry = 0 (at t2)
•	 3rd entry = 1 (at t3)
•	 Remaining entries are all zeros

The encoded output bit sequence U can be obtained simply by inspection as 
given below:

4  Convolutional Coding
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It may be noted that, the last two bits are 0 0, which is the initial condition of the 
SR. Therefore, these two bits are not considered and neglected. That the outcome is 
the same as those obtained earlier by means of polynomial method.

Problem 4.4
This problem relates to code rate and bandwidth.

Given:

•	 A rate ½ convolutional encoder
•	 Input bit rate Rb = 10 kb/s
•	 Non-return to zero (NRZ) data

Find:

	(a)	 The encoded bit rate
	(b)	 Bandwidth (BW) associated with the encoded data

Solution:

	(a)	 Encoded bit Rate = Rb/r = 2Rb = 2 × 10 kb/s = 20 kb/s
	(b)	 BW = 2×Encoded Bit Rate = 2 × 20 kb/s = 40 kHz

4.4  �Summary of Convolutional Encoder

A rate = 1/2, constraint length k = 3 convolutional encoder is described by the struc-
ture as shown in Fig. 4.10. It contains a 3-bit shift register, an upper parity generator 
g1, a lower parity generator g2 and a 2:1 multiplexer. The operation is as follows:

4.4  Summary of Convolutional Encoder
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•	 A 3-bit input bit sequence enters into the shift register (SR), one bit at a time.
•	 For each 3-bit input bit pattern, there is a unique 10-bit encoded output bit 

pattern.
•	 Since there are 23 = 8 combinations of input data pattern, there are 8 unique 10-bit 

encoded bit patterns available at the output.
•	 These output encoded bit patterns can be determined by:

–– Polynomial method or
–– By inspection

Fig. 4.10  Generation of encoded output bit pattern U for an input bit pattern m = 0 0 0

Fig. 4.11  Generation of encoded output bit pattern U for an input bit pattern m = 0 0 1

4  Convolutional Coding
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Fig. 4.12  Generation of encoded output bit pattern U for an input bit pattern m = 0 1 0

Fig. 4.13  Generation of encoded output bit pattern U for an input bit pattern m = 0 1 1

In the following, the inspection method is used to determine these encoded bit 
patterns.
Input (m): 0 0 0
Input (m): 0 0 1
Input (m): 0 1 0
Input (m): 0 1 1
Input (m): 1 0 0
Input (m): 1 0 1
Input (m): 1 1 0
Input (m): 1 1 1

4.4  Summary of Convolutional Encoder
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From the above illustrations, we see that:

•	 3-bit data has 23 = 8 combinations.
•	 Each input combination generates a unique encoded bit pattern.
•	 These encoded bits are modulated and transmitted through a channel.

Figure 4.18 shows the encoder input/output mapping for k = 3, r = 1/2.

Fig. 4.15  Generation of encoded output bit pattern U for an input bit pattern m = 1 0 1

Fig. 4.14  Generation of encoded output bit pattern U for an input bit pattern m = 1 0 0

4  Convolutional Coding
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Fig. 4.16  Generation of encoded output bit pattern U for an input bit pattern m = 1 1 0

Fig. 4.17  Generation of encoded output bit pattern U for an input bit pattern m = 1 1 1

4.5  �Convolutional Decoder

4.5.1  �Generation of a Lookup Table

Decoding is a process of code correlation. In this process, the receiver compares the 
received data with the expected data set to recover the actual data. The expected data 
is stored into a lookup table (Table 4.2) [8]:

4.5  Convolutional Decoder
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Fig. 4.18  Input/output mapping for k = 3 and r- = 1/2 convolutional encoder

1 1    0 1    1 0   0 1   1 17.    1  1  1

1 1    0 1    0 1   1 1   0 06.    1  1  0

1 1    1 0    0 0   1 0   1 15.    1  0  1

1 1    1 0    1 1     0 0   0 04.    1  0  0

0 0    1 1    0 1    0 1   1 13.    0  1  1

0 0    1 1    1 0    1 1   0 02.    0  1  0

0 0    0 0    1 1    1 0    1 11.    0  0  1

0 0    0 0    0 0    0 0    0 00.    0  0  0

Output (U)Input (m)

1 1    1 0    1 1     0 0   0 0
3.    0  1  1

Table 4.2  Lookup table

•	 The lookup table at the receiver contains the input/output bit sequences.
•	 For m = 3, there are eight possible output combinations of 3-bit data.
•	 For each combination of 3-bit data, there is a unique encoded 10-bit data (see 

Table).
•	 The receiver receives one of eight output sequences.
•	 Upon receiving an encoded data pattern, the receiver validates the received data 

pattern by means of code correlation.

The correlation process and validation of the received data is presented in the 
following section.

4.5.2  �Code Correlation Process

Let’s examine the correlation process using the following example:

•	 The input bit pattern m=011

4  Convolutional Coding
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•	 Encoded transmit data: U =0011010111
•	 Received data with errors U *=00110101 00

Notice that the last two bits are in error, identified in bold. Now, let’s determine 
how the receiver recovers the correct data, where the actual input data is m = 0 1 1. 
This is a correlation process, requiring several tests to validate the actual data. The 
correlation process is described below.

Test-0
This test compares the received data with the 1st row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:

• Received Data: 00  11  01  01  00 
• 1st row of data in the Lookup Table: 00  00  00  00  00
• Mod-2 Add:    00 11  01  01  00 
• Correlation Value = 4 (count the number of 1’s in MOD2 Add)
• Verdict: No match, Continue search.

Test-0: Look Up Table

Received Data

00 0011 01 0140.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

Test-1

This test compares the received data with the 2nd row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:

4.5  Convolutional Decoder
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• Received Data: 0 0  11  01  01  00
• 2nd row of data in the lookup table:     0 0  00  11  10  11
• Mod-2 Add:    0 0  1 1  10  111 11
• Correlation Value = 7 
• Verdict: No match, Continue search

Test 1: Look Up Table

Received Data

00 0011 01 017

0.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

Test-2

This test compares the received data with the 3rd row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:
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• Received Data: 00  11  01  01  00 
• 3rd row of data in the lookup table: 00  11  10  11  00
• Mod-2 Add:    00  00  11  10  00 
• Correlation Value = 3 
• VERDICT: No match, Continue search

Test 2: Look Up Table

Received Data

00 0011 01 013

0.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

Test-3

This test compares the received data with the 4th row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:
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• Received Data: 0 0  11  01  01  00 
• 4th row in the lookup table: 0 0 11  01  01  11
• Mod-2 Add:   0 0  0 0  00  00  11 
• Correlation Value: 2   
• Verdict: Possible Candidate

Test 3: Look Up Table

Received Data

00 0011 01 012

0.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

Test-4

This test compares the received data with the 5th row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:
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• Received Data: 00  11  01  01  00 
• 5th row in the lookup table: 11  10  11  00  00
• Mod-2 Add:   11  01 10   01  00
• Correlation Value = 5   
• Verdict:  No match, Continue Search

Test 4: Look Up Table

Received Data

00 0011 01 015

0.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

Test-5

This test compares the received data with the 6th row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:
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• Received Data:          00  11  01  01  00 
• 6th row in the lookup table:  11  10  00  10  11
• Mod-2 Add:    11  01  01  11  11
• Correlation Value = 8  
• Verdict:  No match, Continue Search

Test 5: Look Up Table

Received Data

00 0011 01 018

0.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

Test-6

This test compares the received data with the 7th row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:
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• Received Data: 00  11  01  01  00 
• 7th row in the lookup table: 11  01  01  11  00
• Mod-2 Add:     11  10  00  10  00
• Count the no, of 1’s = 4
• VERDICT: No match. Continue search

Test 6: Look Up Table

Received Data

00 0011 01 014

0.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

Test-7

This test compares the received data with the 8th row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:
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• Received Data:      00  11  01  01  00 
• 7th row in the lookup table: 11  01  10  01  11
• Mod-2 Add:     11  10  11  00  11
• Correlation Value = 7 
• Verdict:  No Match.  
• Test is complete

Test 7: Look Up Table

Received Data

00 0011 01 017

0.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

 

The Final Verdict

Collect the correlation values and validate the data that indicates the lowest correla-
tion value. This is presented in the following lookup table.

Final Verdict: Look Up Table

7

4

8

5

2

3

Accept

7

40.

1.

2.

3.

4.

5.

6.

7. 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0 00 00

00

00

00 11

11

00

00

00

00

00

11

11

11

11

11 11

11

11

11

11

11

1110

10

10

10 10

10

01

01

01 01

01

01

00 00

00

00

Input (m) Output (U) Correlation
Value

Accept
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In examining the above table, we find that:

•	 The lowest correlation value is 2.
•	 The corresponding data is m = 0 1 1.
•	 This is the data which has been transmitted to the receiver.

4.5.3  �A Further Note on Code Rate

•	 Each 3-bit input data is preceded by three zero bits, for a total of 6 input bits.
•	 The total number of encoded bits is 12, where the last two encoded bits are 0 0, 

which have been neglected.
•	 Therefore, the code rate is: r = 6/12 = 1/2.

Viewed from another angle, we observe that for each entry of an input bit, the 
encoder generates two parity bits at the output, indicating that the code rate is also 
½.

4.6  �Conclusions

In this chapter we have presented the key concepts, underlying principles and prac-
tical application of convolutional coding schemes currently used in the telecommu-
nication systems. Practical design and construction of convolutional coding along 
with decoding schemes are presented with illustrations. In particular, the following 
topics are presented in this chapter:

•	 Convolutional coding building blocks
•	 Typical convolutional coding
•	 Convolutional decoding
•	 Code rate and bandwidth
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Chapter 5
Waveform Coding

Abstract  Waveform coding is a form of channel coding where a set of waveforms 
is transformed into a set of orthogonal waveforms, so that the detection process has 
fewer errors. This chapter presents a method of waveform coding, based on orthog-
onal codes. In the proposed method, the high-speed data stream is inverse multi-
plexed into several parallel streams. These parallel streams, now reduced in speed, 
are grouped into a number of subsets and mapped into a predetermined group of 
biorthogonal codes and modulated by a bank of modulators using the same carrier 
frequency. This methodology substantially reduces the required number of wave-
forms and enhances transmission efficiency. It is also shown that there is a built-in 
error control mechanism in this scheme. The proposed method is cost-effective and 
bandwidth efficient.

Topics
•	 Introduction to Waveform Coding
•	 Conceptual Development
•	 Orthogonal and Antipodal Codes
•	 Error Control Coding Based on Orthogonal Codes
•	 Waveform Coding and Decoding
•	 Waveform Capacity
•	 Conclusions

5.1  �Introduction

Waveform coding is a form of channel coding where a set of waveforms is trans-
formed into a set of orthogonal waveforms, so that the detection process has fewer 
errors [1]. There are two classes of waveform coding: (a) M-ary signalling and (b) 
orthogonal coding.

In M-ary signalling, a k-bit data set is used to address M k= 2  modulated 
waveforms (e.g. MFSK). This process provides improved error performance at the 
expense of bandwidth. Figure  5.1 illustrates a typical M-ary signalling scheme, 
requiring M = 16 waveforms, to transmit k = 4 bit data. It is bandwidth inefficient.
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Similarly, in bi-orthogonal coding, a k-bit data set is directly mapped into 2n bi-
orthogonal codes, where n is the code length. This is shown in Fig. 5.2, where a 
block of 4-bit data is mapped into a block of 16-bit bi-orthogonal data set. This 
approach is also bandwidth inefficient, since the k-bit data set is directly mapped 
into 2 × 2k bi-orthogonal codes.

In this chapter, we present an alternate method of waveform coding based 
on  orthogonal codes, which does not consume additional bandwidth and offers 
protection against errors [2–4]. In the proposed method, conceptually shown in 
Fig.  5.3, a high-speed data stream is inverse multiplexed into several parallel 
streams. These parallel streams, now reduced in speed, are grouped into a number 
of subsets and mapped into a predetermined group of bi-orthogonal codes and 
then modulated by a bank of modulators using the same carrier frequency. This 
methodology substantially reduces the required number of waveforms and enhances 
transmission efficiency.

Our objective is to show that orthogonal codes are essentially (n, k) block codes 
where a k-bit information is represented by a unique n-bit orthogonal code ( k n< ). 
We examine this by noting that an n-bit orthogonal code has n/2 1s and n/2 0s; i.e. 
there are n/2 positions where 1s and 0s differ. Therefore, the distance between two 
orthogonal codes is also n/2. This distance property can be exploited to achieve 
bandwidth efficient forward error control coding (FECC). We show that an n-bit 

Data

Modulator

Carrier Frequency

1 1 1 1
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0 0 0 0

0 0 0 0
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0 0

0

0 0 0

0
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1
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0 0 0

1
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0
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1 1
0

0
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1 1 1 1

1

1

01

1

1 1

1

1

0

Fig. 5.1  Typical M-ary signalling, requiring 16 waveforms to transmit 4 bit data. It is bandwidth 
inefficient
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orthogonal code can correct t errors where t n=( ) -/ 4 1 , where n is the code length. 
A measure of coding gain is then obtained by comparing the word error with coding 
to the word error without coding.

The bandwidth efficiency is achieved by inverse multiplexing the base band 
binary data into several parallel streams. These parallel streams, now reduced in 
speed, are partitioned into a number of data blocks. Each subset of data is then used 
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1
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1 1 1 1 1 1 1

1 1
1 1

1 1 1
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0 0 0 0 0 0 0
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0
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0
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1
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1

1

Fig. 5.2  Typical bi-orthogonal coding, requiring longer code to represent a 4-bit data, which is 
also bandwidth inefficient
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Fig. 5.3  Proposed waveform coding, which is bandwidth efficient

5.1  Introduction
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to address a pre-determined subset of bi-orthogonal codes, stored in a ROM 
(read only memory). A bank of identical modulators subsequently modulates the 
corresponding code, combines and transmits through a given channel. This method-
ology achieves a code rate r = k/n, where n is the code length and k is the data set. It 
follows that code rates such as rate 1/2, rate 3/4, rate 1, etc. are indeed available 
out of orthogonal codes with bandwidth efficiency. Construction of rate ½, rate ¾ 
and rate 1 orthogonal coded modulation schemes, using 8-bit and 16-bit bi-orthog-
onal code, are presented to illustrate the concept.

5.2  �Conceptual Development

Figure  5.4 briefly illustrates the concept. In Fig.  5.4a we have the conventional 
method of waveform coding where a 4-bit data set is represented by 24 = 16 wave-
forms. This scheme is commonly viewed as being bandwidth inefficient, since we 
need 16 waveforms to transmit a 4-bit data.

On the other hand, in the proposed method, as shown in Fig. 5.4b, when the same 
4-bit data set is partitioned into two subsets, the number of waveforms falls to 8. 
Similarly, in the conventional method, an 8-bit data set would require 28 = 256 wave-
forms, while the proposed method requires only 2 × 8 = 16 waveforms. This is a 
substantial reduction of bandwidth indeed [5].

Table 5.1 below shows a comparison between the conventional M-ary signalling 
and the proposed M-ary signalling for several data lengths. In the conventional method 
(Col-2, Table 5.1) a k-bit data set requires 2k waveforms where k = 1, 2, … Thus the 
number of waveforms increases rapidly as the length of the data set increases. For 
these reasons, the conventional method of waveform coding is bandwidth inefficient.

In the proposed method, a k-bit data set requires only 2  k waveforms where  
k = 1, 2, … (Col-3, Table  5.1). Clearly, the proposed method of waveform coding 
is bandwidth efficient. Now, our objective is to show that the proposed method of wave-
form coding applies to bi-orthogonal signalling. We also intend to show that there is a 
built-in error control mechanism in this scheme. Forward error control coding (FECC) 
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a b

Fig. 5.4  Illustration of waveform coding. (a) Conventional method: a 4-bit data set requires 16 
waveforms. (b) Proposed method: a 4-bit data set partitioned into two data blocks requires only 8 
waveforms
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schemes normally used in digital communication systems are not needed in the pro-
posed method. Therefore the proposed method is also cost-effective.

5.3  �Orthogonal Codes and Antipodal Codes

Orthogonal codes, also known as Walsh codes, were originally developed by J.  L. 
Walsh in 1923 [5]. Walsh codes are well known for their orthogonal properties. They 
have been successfully implemented in CDMA for spreading and user ID [6–9]. The 
use of orthogonal codes for forward error control coding (FECC) has also been inves-
tigated by a limited number of authors and has been concluded that orthogonal codes 
do not offer bandwidth efficiency [1]. In this chapter, our goal is to show that orthogo-
nal codes offer error control coding with bandwidth efficiency. We accomplish this by 
noting that orthogonal codes are binary values and that they have equal number of 1’s 
and 0’s. The distance between each orthogonal code is n/2, where n is the code length. 
Since the distance properties are fundamental in error control coding, we show that an 
n-bit orthogonal code can correct multiple errors with bandwidth efficiency.

5.3.1  �Construction of Orthogonal and Antipodal Codes

Orthogonal codes are binary valued and can be generated by means of an N × N 
Hadamard matrix as follows [10].

Table 5.1  Comparison of bandwidth requirements

Conventional method Proposed method Bandwidth reduction

# Bits (x) # Waveforms (2^x) # Waveforms (2x) Factor (2^x/2x)

1 2 2 1

2 4 4 1

3 8 6 1.333333333

4 16 8 2

5 32 10 3.2

6 64 12 5.333333333

7 128 14 9.142857143

8 256 16 16

9 512 18 28.44444444

10 1024 20 51.2

11 2048 22 93.09090909

12 4096 24 170.6666667

13 8192 26 315.0769231

14 16,384 28 585.1428571

15 32,768 30 1092.266667

16 65,536 32 2048

5.3  Orthogonal Codes and Antipodal Codes
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•	 Construct an N × N matrix as 4 quadrants:

1st Quadrant   2nd Quadrant

3 rd Quadrant   4th Quadrant

N x N Matrix

 

•	 Keep the 1st, 2nd and 3rd quadrants identical and invert the 4th as follows:

b b

b b
 

Where b is a binary bit which can be either 0 or 1. This process governs the 
generation of an N × N Hadamard matrix for N-orthogonal codes with b = 0 and an 
N × N Hadamard matrix for an N-bit antipodal code with b = 1.

For example, a 2 × 2 Hadamard matrix generates 2 orthogonal codes and 2 
antipodal codes, for a total of 4 bi-orthogonal codes as follows:

 

Where, a 2 × 2 Hadamard matrix generates two orthogonal codes, having two bits 
each as shown below:

2-bit orthogonal code block 2-bit antipodal code block

0 0 1 1

0 1 1 0

Similarly, a 4 × 4 Hadamard matrix generates 4 orthogonal codes and 4 antipodal 
codes, for a total of 8 bi-orthogonal codes as follows:

5  Waveform Coding
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Here, we see that a 4 × 4 Hadamard matrix generates 4 orthogonal and 4 antipodal 
codes, for a total of 8 bi-orthogonal codes as tabulated below:

4-bit orthogonal code block 4-bit antipodal code block

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1

This principle can be extended to generate n orthogonal codes and n antipodal 
codes, for a total of 2n bi-orthogonal codes. Table below provides a few orthogonal 
and antipodal codes for n = 2, 4, 8, 16, 32, 64.

Code length (n) Orthogonal codes (n) Antipodal codes (n) Bi-orthogonal codes (2n)

2 2 2 4

4 4 4 8

8 8 8 16

16 16 16 32

32 32 32 64

64 64 64 128

: : : :

5.3.2  �Bi-orthogonal Codes

In the above, we have established that orthogonal codes are binary valued and 
have equal numbers of 1s and 0s. Antipodal codes, on the other hand, are just the 
inverse of orthogonal codes. Antipodal codes are also orthogonal among them. 
Therefore, an n-bit orthogonal code has n orthogonal codes and n antipodal codes, 

5.3  Orthogonal Codes and Antipodal Codes
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for a total of 2n bi-orthogonal codes. For example an 8-bit orthogonal code has 
8 orthogonal codes and 8 antipodal codes, for a total of 16 bi-orthogonal codes as 
shown in Fig. 5.5 [11].

Similarly, a 16-bit orthogonal code has 16 orthogonal code and 16 antipodal 
code for a total of 32 bi-orthogonal codes, as shown in Fig. 5.6. We will take this 
bi-orthogonal code block as an example and examine the error control properties.
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Fig. 5.5  Bi-orthogonal code set for n = 8. An 8-bit orthogonal code has 8 orthogonal code and 
8 antipodal code for a total of 16 bi-orthogonal codes
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Fig. 5.6  Bi-orthogonal code set for n = 16. A 16-bit orthogonal code has 16 orthogonal code and 
16 antipodal code for a total of 32 bi-orthogonal codes
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5.3.3  �Distance Properties of Orthogonal Codes

An n-bit orthogonal code has n/2 1s and n/2 0s; i.e., there are n/2 positions where 
1’s and 0’s differ. Similarly, an n-bit antipodal code has n/2 1s and n/2 0s; i.e., there 
are n/2 positions where 1’s and 0’s differ. On the other hand, the distance between 
an orthogonal code and an antipodal code is n, where n is the code length. For n = 8, 
these properties can be directly verified from Figs. 5.7 and 5.8 where the distance 
between any orthogonal code is 8/2 = 4 while the distance between an orthogonal 
code and an antipodal code is 8. This distance property can be used as a method 
of error control, as presented in the following section [11].
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Fig. 5.7  Distance properties of orthogonal codes. For n = 8, the distance between any orthogonal 
coded is 8/2 = 4. There are n/2 = 8/2 = 4 positions where 1’s and 0’s differ
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5.4  �Error Control Coding Based on Orthogonal Codes

5.4.1  �Error Control Capabilities of Orthogonal Codes

Orthogonal codes are used in CDMA for spreading and user ID.  The use of 
orthogonal codes for forward error control coding (FECC) has also been investi-
gated by a limited number of authors. They have concluded that orthogonal codes 
do not utilize bandwidth efficiently [1]. Our objective in this chapter is to investigate 
the distance properties of orthogonal codes and develop a bandwidth efficient coded 
modulation scheme. In the proposed method, orthogonal codes are treated as (n, k) 
block codes where a k-bit information is represented by a unique n-bit orthogonal 
code ( k n< ). We examine this by noting that an n-bit orthogonal code has n/2 1s 
and n/2 0s; i.e., there are n/2 positions where 1s and 0s differ. Therefore, the dis-
tance between two orthogonal codes is also n/2, where each orthogonal code gener-
ates a zero parity bit. These properties are exploited to detect and correct errors with 
bandwidth efficiency. We show that an n-bit orthogonal code can correct t errors 
where t n= -/ 4 1 , n being the code length. A measure of coding gain is then 
obtained  by comparing the word error with coding to the word error without 
coding. Construction of rate 1 orthogonal coded modulation schemes, using an 
8-bit orthogonal code, is presented to illustrate the concept [2–4, 9, 11].

In order to examine the error control properties of orthogonal codes, we note that 
an n-bit orthogonal code has n/2 1s and n/2 0s; i.e., there are n/2 positions where 1s 
and 0s differ. Therefore, the distance between two orthogonal codes is d = n/2. This 
distance property can be used to detect an impaired received code by setting a 
threshold midway between two orthogonal codes as shown in Fig. 5.9, where the 
received coded is shown as a dotted line. This is given by the following equation:

	
d

n
th =

4 	
(5.1)

Where n is the code length and dth is the threshold, which is midway between two 
orthogonal codes. Therefore, for the 8-bit orthogonal code (Fig.  5.3), we have 
dth = =8 4 2/ . This mechanism offers a decision process, where the incoming 
impaired orthogonal code is examined for correlation with the neighbouring codes 
for a possible match.

Orthogonal Code-1

Orthogonal Code-2

Received Code dth = n/4
d = n/2

Fig. 5.9  Decoding 
principle. The received 
code is compared to a 
lookup table for a possible 
match
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The acceptance criterion for a valid code is that an n-bit comparison must yield 
a good auto-correlation value; otherwise, a false detection will occur. The following 
correlation process governs this where an impaired orthogonal code is compared 
with a pair of n-bit orthogonal codes to yield,

	
R x x y n d

i

n

i i th,y( ) = ³ -( ) +
=
å

1

1
	

(5.2)

Where R(x, y) is the auto-correlation function, n is the code length, dth is the thresh-
old, as defined earlier. Since the threshold (dth) is in the midway between two valid 
codes, an additional 1-bit offset is added to Eq. 5.4 for reliable detection. The num-
ber of errors that can be corrected by means of this process can be estimated by 
combining Eqs. 5.3 and 5.4, yielding

	
t n R x y

n
= - ( ) = -,

4
1

	
(5.3)

In the above equation, t is the number of errors that can be corrected by means of an 
n-bit orthogonal code. For example, a single error-correcting orthogonal code can 
be constructed by means of an 8-bit orthogonal code (n = 8). Similarly, a three-error-
correcting orthogonal code can be constructed by means of a 16-bit orthogonal code 
(n = 16), and so on. Table 5.2 shows a few orthogonal codes and the corresponding 
error-correcting capabilities.

5.4.2  �Error Performance and Coding Gain

In the previous section, we have established that an n-bit orthogonal code can 
correct t errors, where t n=( ) -/ 4 1 , n being the code length. A measure of coding 
gain is then obtained by comparing the word error without coding WER(U) to 
the word error with coding WER(C). We examine this by means of the following 
analytical means [12].

Let a k-bit data set be represented by an n-bit orthogonal code, where n k> .  
Then the code rate will be k/n and the coded bit rate will be R n k Rc b=( )/ , where 
Rb is the uncoded bit rate. Since n k> ,  the coded bit rate Rc will be greater than the 
uncoded bit rate R R Rb c b>( ) . Consequently, the coded bit energy Ec will be less 
than the uncoded bit energy E E Eb c b<( ) . If S is the transmit carrier power, then the 
uncoded bit energy (Eb) and the coded bit energy (Ec) will be,

Table 5.2  Orthogonal codes 
and the corresponding error 
correction capabilities

Code length n Number of errors corrected t

8   1

16   3

32   7

64 15
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With orthogonal on-off keying modulation and non-coherent detection, the uncoded 
bit error probability Peu and the coded bit error probability Pec over additive white 
Gaussian noise (AWGN) channel without fading are given by,
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Where Eb/No is the energy per bit to noise spectral density. Eb/N0 is related to signal 
to noise (S/N) ratio, also known as “SNR” as follows:
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S/N is the ratio of average signal power to average noise power, where N N Wo= ,  
W = signal bandwidth. Eb/N0 is the normalized measure of the energy per 
symbol  to noise power spectral density. The parameter Eb/N0 is generally used 
to estimate the bit error rate (BER) performance of different digital modulation 
schemes.

Since n k> ,  the coded bit error will be more than the uncoded bit error. 
However, it still remains to be seen whether there is a net gain in word error rate 
due to coding. This can be achieved by comparing the uncoded word error rate 
WER(U) with the coded word error rate WER(C). These word error rates over 
AWGN channel without fading are given by,

	
WER U( )= - -( )1 1 Peu
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Where Peu is the uncoded bit error rate, Pec is the coded bit error rate and t is the 
maximum errors corrected by the code. For rate ½ orthogonal codes, the word error 
rate (WER) for orthogonal on-off keying (O3K) modulation were calculated for 
various code lengths and plotted in the graph as shown in Fig.  5.10 [13]. The 
uncoded BER is also plotted for comparison.
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Coding gain is the difference in Eb/N0 between the uncoded and the coded word 
errors. Notice that at least 3–7  dB coding gains are available in this example. 
We also note that coding gain increases for longer codes. From these results, we 
conclude that orthogonal codes offer coding gain.

5.5  �Waveform Coding Based on Orthogonal Codes

Orthogonal codes are essentially (n, k) block codes, where a k-bit data set is repre-
sented by a unique n-bit orthogonal code (k < n). We illustrate this by means of an 
8-bit orthogonal code, having 8 orthogonal and 8 antipodal codes for a total of 16 
bi-orthogonal codes. We assume that an n-bit orthogonal code can be treated as an 
(n, k) block code. We now show that code rates such as rate ½, rate ¾ and rate 1 are 
indeed available out of orthogonal codes. The principle is presented below:

5.5.1  �Construction of Rate 1/2 Waveform Coding

�Encoder

A rate 1/2 orthogonal coded modulation with an 8-bit orthogonal code, having 16 
bi-orthogonal codes (m = 16, n = 8), can be constructed by inverse multiplexing the 
incoming traffic, Rb(b/s), into 4 parallel streams (k = 4) as shown in Fig. 5.11. These 
bit streams, now reduced in speed to Rb/4  (b/s), are used to address sixteen 8-bit 
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Fig. 5.10  Word error performance due to a single orthogonal code of different code lengths
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bi-orthogonal codes, stored in a 16 × 8 ROM. The output of the ROM is a unique 8-bit 
orthogonal code, which is modulated and transmitted through a channel. The modulated 
waveform is in orthogonal space. The code rate is given by r = 4/8 = 1/2. Since there is 
only one 8-bit orthogonal waveform, only one error can be corrected in this scheme.

�Decoder

Decoding is a process of code correlation. In this process, the receiver compares the 
incoming impaired data with the actual data stored in the lookup table for a possible 
match. Figure 5.12 shows the lookup table at the receiver. Notice that for each 4-bit 
data, there is unique orthogonal (antipodal) code. According to the transmission 
protocol, the transmitter sends a unique orthogonal (antipodal) code to the receiver. 
Upon receiving an orthogonal (antipodal) code, the receiver validates the received 
data pattern by means of code correlation and appends a correlation value for the 
received data. The process continues for each entry to generate the corresponding 
correlation value.

The acceptance criterion for a valid code is that an n-bit comparison must yield 
a good auto-correlation value; otherwise, a false detection will occur. This is 
governed by the following correlation value:

	
t n£ ( )/ 4 -1
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Fig. 5.11  Rate 1/2 orthogonal coded modulation with n = 8
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Where n is the code length and t is the number of errors that can be corrected by an 
n-bit orthogonal code.

Let’s examine the correlation process using the following example:

•	 The input bit pattern k = 0 0 1 1
•	 Encoded transmit code: n = 0 1 1 0 0 1 1 0
•	 Received impaired code: n* = 0 1 1 0 0 1 1 1 (the last bit is in error)

Notice that the last bit is in error, identified in bold. Now, let’s determine how the 
receiver recovers the correct data by means of code correlation. The correlation 
process is described below.

Test 1
This test compares the received data with the 1st row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished 
by MOD2 operation (EXOR operation). The result is presented below:

• Received impaired code:                   0 1 1 0 0 1 1 1
• 1st row of code in the lookup table:   0 0 0 0 0 0 0 0 
• Mod-2 Add:                                      0 1 1 0 0 1 1 1 
• Correlation Value = 5 (count the number of 1’s in MOD2 Add)
• Verdict: No match, Continue search.  
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Fig. 5.12  Correlation receiver for rate ½ bi-orthogonal coding. Upon receiving an impaired code, 
the receiver compares it with each entry in the code block and appends a correlation value for each 
comparison. A valid code is declared when the closest approximation is achieved. For rate ½, n = 8, 
this value is 1 and the corresponding data is 0011
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Test 2

This test compares the received data with the 2nd row of data stored in the lookup 
table and counts the number of positions it does not match. This is accomplished by 
MOD2 operation (EXOR operation). The result is presented below:

• Received impaired code: 0 11 0 0 1 1 1
• 2nd row of code in the lookup table:    0 1 0 1 0 1 0 1
• Mod-2 Add:                                       0 01 1 0 01 0 
• Correlation Value = 3
• Verdict: No match, Continue search  

In a similar manner we can determine the remaining correlation values as depicted 
in Fig. 5.12. Notice that the lowest correlation value is 1, which is the valid code. 
Therefore, the corresponding 4-bit data is 0 0 1 1, which has been transmitted.

5.5.2  �Construction of Rate 3/4 Waveform Coding

�Encoder

A rate ¾ orthogonal coded modulation with an 8-bit orthogonal code, having 16 bi-
orthogonal codes (m = 16, n = 8), can be constructed by inverse multiplexing the incom-
ing traffic, Rb(b/s), into 6-parallel streams (k = 6) as shown in Fig. 5.13. These bit streams, 
now reduced in speed to Rb/6 (b/s), are partitioned into two 8 × 3 data blocks. The first 
8 × 3 data block maps the 8 × 8 orthogonal code block and the next 8 × 3 data block maps 
the8 × 8 antipodal code block. These code blocks are stored in two 8 × 8 ROMs. The 
output of each ROM is a unique 8-bit orthogonal/antipodal code, which are modulated 
by means of the respective modulator using the same carrier frequency.

The code rate is given by r = 6/8 = 3/4. Since there are two orthogonal waveforms 
(one orthogonal and one antipodal), the number of errors that can be corrected is 
given by 2. Moreover, the bandwidth is also reduced.

�Decoder

Decoding is a correlation process similar to the one presented earlier. Let’s examine 
the correlation process using the following example.

For Data Block 1  Input bit pattern k1 = 0 1 1
•	 Encoded transmit code: n1 = 0 1 1 0 0 1 1 0
•	 Received impaired code: n1* = 0 1 1 0 0 1 1 1 (the last bit is in error)

Notice that the last bit is in error, identified in bold.
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For Data Block 2
•	 Input bit pattern k2 = 1 0 0
•	 Encoded transmit code: n2 = 1 1 1 1 0 0 0 0
•	 Received impaired code: n1* = 0 1 1 1 0 0 0 0 1 (the first bit is in error)

Notice that the first bit is in error, identified in bold.

Figure 5.14 shows the correlation receiver for rate 3/4 bi-orthogonal coding. Upon 
receiving an impaired code, the receiver compares it with each entry in the code block 
and appends a correlation value for each comparison. A valid code is declared when 
the closest approximation is achieved. For rate 3/4 coding with n = 8, there are two 
code blocks, the minimum correlation value is 1 for an orthogonal code and 1 for an 
antipodal code. The corresponding data is 011 and 100, respectively.

The correlation process for rate r = ¾ with code length n = 8 is described below:

•	 Upon receiving an impaired code, the receiver compares it with each entry in the 
code block and appends a correlation value for each comparison.

•	 A valid code is declared when the closest approximation is achieved.
•	 For rate 3/4 coding with n = 8, there are two code blocks, the minimum correlation 

value is 1 for an orthogonal code and 1 for an antipodal code.
•	 The corresponding data is 011 and 100, respectively.
•	 Number of errors corrected is 2.
•	 Code rate is given by r = ¾.
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Fig. 5.13  Rate 3/4 orthogonal coded modulation with n = 8
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5.5.3  �Construction of Rate 1 Waveform Coding

�Encoder

A rate 1 orthogonal coded modulation with an 8-bit orthogonal code, having 16 
bi-orthogonal codes (m = 16, n = 8), can be constructed by inverse multiplexing 
the incoming traffic, Rb(b/s), into 8 parallel streams (k = 8) as shown in Fig. 5.15.

The bit streams, now reduced in speed to Rb/8 (b/s), are partitioned into four data 
blocks. Each data block is mapped into a 4 × 8 code block. These code blocks are 
stored in four 4 × 8 ROMs as depicted in the figure. The output of each ROM is a 
unique 8-bit orthogonal/antipodal code, which is modulated by the respective 
modulator using the same carrier frequency. The modulated waveforms are in 
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Fig. 5.14  Correlation receiver for rate 3/4 bi-orthogonal coding
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orthogonal space and have fewer errors. The code rate is given by r = 8/8 = 1. This is 
achieved without bandwidth expansion. Since there are four orthogonal waveforms, 
the number of errors that can be corrected is 4.

�Decoder

Figure 5.16 displays the correlation receiver for rate 1 bi-orthogonal coding with 
n = 8 orthogonal codes. Once again, the decoding process is similar to the one pre-
sented earlier. Notice that the entire bi-orthogonal code block is partitioned into four 
code blocks. Each code block represents a data block as shown in the figure.

•	 Upon receiving an impaired code, the receiver compares it with each entry in the 
code block and appends a correlation value for each comparison.

•	 A valid code is declared when the closest approximation is achieved.
•	 As can be seen, the minimum correlation value in each block is 1 as depicted in 

the figure.
•	 The corresponding data is 1 1, 1 0, 1 1, 1 0 respectively.

Since there are four orthogonal waveforms (two orthogonal and two antipodal), 
the number of errors that can be corrected is given by 4 × 1 = 4. Moreover, the band-
width is further reduced. The result is summarized below:
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•	 Code rate: r = 8/8 = 1
•	 Number of errors corrected: 4 4 4 1 4 8 4 1 4t n= ( ) -éë ùû = ( ) - =/ / ]

5.6  �Higher Order Orthogonal Waveform Coding  
Using 16-Bit Orthogonal Code

A 16-bit orthogonal code has 16 orthogonal codes and 16 antipodal codes, for a total 
of 32 bi-orthogonal codes as shown in Fig. 5.17. Notice that the distance between 
any orthogonal codes is n/2 = 16/2 = 8. Since the distance properties are fundamental 
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in error control coding, the n = 16 bit code can correct more errors. The number of 
errors that can be corrected by each of these codes is given by,

	
t n= ( ) - = ( ) - =/ /4 1 16 4 1 3

	 (5.11)

Where n = 16 is the code length. These bi-orthogonal codes can be used to realize a 
variety of waveform coding with bandwidth efficiency. The construction of these 
code blocks are briefly presented in the following sections.

5.6.1  �Rate 5/16 Orthogonal Waveform Coding Based  
on n = 16 Orthogonal Code

A rate 5/16 orthogonal coded modulation with a 16-bit orthogonal code, having 32 
bi-orthogonal codes (m = 32, n = 16), can be constructed by inverse multiplexing the 
incoming traffic, Rb (b/s), into 5 parallel streams (k = 5) as shown in Fig. 5.18. These 
bit streams, now reduced in speed by a factor of 5, are used to address 32-, 16-bit 
bi-orthogonal codes, stored in a 32 × 16 ROM. The output of the ROM is a unique 
16-bit orthogonal (antipodal) code, which is modulated and transmitted through a 
channel. The modulated waveform is in orthogonal space.

Figure 5.18 also illustrates the correlation receiver for rate 5/16 bi-orthogonal 
coding based on n = 16 orthogonal codes. Notice that the entire 32 × 5 data block is 
mapped into the entire 32 × 16 bi-orthogonal code block. Each 16 bit orthogonal/
antipodal code represents a 5-bit data pattern as shown in the figure.
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The correlation process is as follows:

•	 Upon receiving an impaired code, the receiver compares it with each entry in 
the code block and appends a correlation value for each comparison.

•	 A valid code is declared when the closest approximation is achieved.
•	 As can be seen, the minimum correlation value in the entire block is 3, 

which  identifies the valid code and the corresponding data as shown in the 
figure.

The code rate (r) and the number of errors (t) that can be corrected are as 
follows:

•	 Code rate: r = 5/16
•	 Number of errors corrected: t n= ( ) - = ( ) - =/ /4 1 16 4 1 3

Since the code rate is 5/16, this scheme is bandwidth inefficient.
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5.6.2  �Rate ½ Orthogonal Waveform Coding Based  
on n =16 Orthogonal Code

A rate ½ orthogonal coded modulation with a 16-bit orthogonal code, having 32 
bi-orthogonal codes (m = 32, n = 16), can be constructed by inverse multiplexing the 
incoming traffic, Rb (b/s), into 8 parallel streams (k = 8), as shown in Fig.  5.19. 
These bit streams, now reduced in speed by a factor of 8, are partitioned into two 
data blocks, 4 bits per subset. Each 4-bit subset is used to address eight 16-bit 
orthogonal codes. These codes are stored in two 16 × 16 ROMs. The output of each 
ROM is a unique 16-bit orthogonal code, which is modulated by the respective 
modulator and transmitted through a channel. The modulated waveforms are in 
orthogonal space.
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Fig. 5.19  Correlation receiver for rate ½ orthogonal waveform coding based on n = 16 orthogonal 
codes
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Figure 5.19 also displays the correlation receiver for rate ½ bi-orthogonal coding 
based on n = 16 orthogonal codes. In this scheme, both the data and the bi-orthogonal 
code blocks are partitioned into two blocks as shown in the figure. Each block 
corrects 3 errors for a total of 6 errors.

The correlation process is as follows:

•	 Upon receiving an impaired code, the receiver compares it with each entry in the 
orthogonal code block and appends a correlation value for each comparison.

•	 The process is similar for the antipodal code block.
•	 In each block, a valid code is declared when the closest approximation is 

achieved.
•	 As can be seen, the minimum correlation value in each block is 3, which identi-

fies the valid code and the corresponding data as shown in the figure.
•	 The total number of errors that can be corrected by this scheme is given by 6.

Since there are two orthogonal waveforms (one orthogonal and one antipodal), 
the number of errors that can be corrected is given by 2 × 3 = 6. Moreover, the band-
width is also reduced. The result is summarized below:

•	 Code rate: r = 8/16 = 1/2
•	 Number of errors corrected: 2 2 4 1 2 16 4 1 6t n= ( ) -éë ùû = ( ) - =/ / ]

5.6.3  �Rate ¾ Orthogonal Waveform Coding Using n = 16 
Orthogonal Code

A rate ¾ orthogonal coded modulation with a 16-bit orthogonal code, having 32 
bi-orthogonal codes (m = 32, n = 16), can be constructed by inverse multiplexing the 
incoming traffic into 12 parallel streams (k = 12) as shown in Fig. 5.20. These bit 
streams, now reduced in speed by a factor of 12, are partitioned into four data 
blocks, 3 bits per subset. Each 3-bit subset is used to address eight 16-bit orthogonal 
codes. These codes are stored in four 8 × 16 ROMs. The output of each ROM is a 
unique 16-bit orthogonal (antipodal) code, which is modulated by the respective 
modulator and transmitted through a channel. The modulated waveforms are in 
orthogonal space.

Figure 5.20 also displays the correlation receiver for rate 3/4 bi-orthogonal cod-
ing based on n = 16 orthogonal codes. In this scheme, both the data and the bi-
orthogonal code blocks are partitioned into four blocks as shown in the figure. Each 
block corrects 3 errors for a total of 12 errors.

The correlation process is as follows:

•	 Upon receiving an impaired code, the receiver compares it with each entry in the 
orthogonal code block and appends a correlation value for each comparison.

•	 The process is similar for the remaining code blocks.
•	 In each block, a valid code is declared when the closest approximation is 

achieved.
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•	 As can be seen, the minimum correlation value in each block is 3, which identi-
fies the valid code and the corresponding data as shown in the figure.

Since there are four orthogonal waveforms (two orthogonal and two antipodal), 
the number of errors that can be corrected is given by 4 × 3 = 12. Moreover, the band-
width is further reduced. The result is summarized below:

•	 Code rate: r = 12/16 = 3/4
•	 Number of errors corrected: 4 4 4 1 4 16 4 1 12t n= ( ) -éë ùû = ( ) - =/ / ]
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5.6.4  �Rate 1 Orthogonal Waveform Coding Based  
on n = 16 Orthogonal Code

A rate 1 orthogonal coded modulation with a 16-bit orthogonal code, having 
32 bi-orthogonal codes (m = 32, n = 16), can be constructed by inverse multiplexing 
the incoming traffic, Rb (b/s), into 16 parallel streams (k = 16) as shown in Fig. 5.21. 
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Fig. 5.21  Correlation receiver for rate 1 orthogonal waveform coding based on n = 16 orthogonal 
codes
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These bit streams, now reduced in speed by a factor of 16, are partitioned into 8 
data blocks, 2 bits per subset. Each 2-bit subset is used to address four 16-bit 
orthogonal codes. These codes are stored in eight 4 × 16 ROMs. The output of 
each ROM is a unique 16-bit orthogonal (antipodal) code, which is modulated by 
the respective modulator and transmitted through a channel.

Figure 5.21 also displays the correlation receiver for rate 1 bi-orthogonal coding 
based on n = 16 orthogonal codes. In this scheme, both the data and the bi-orthogonal 
code blocks are partitioned into eight blocks as shown in the figure. Each block cor-
rects 3 errors for a total of 24 errors.

The correlation process is as follows:

•	 Upon receiving an impaired code, the receiver compares it with each entry in the 
orthogonal/antipodal code block and appends a correlation value for each 
comparison.

•	 The process is carried out for each block for a total of eight blocks.
•	 In each block, a valid code is declared when the closest approximation is 

achieved.
•	 As can be seen, the minimum correlation value in each block is 3, which identi-

fies the valid code and the corresponding data as shown in the figure.
•	 Since there are eight blocks, the total number of errors that can be corrected by 

this scheme is given by 3 × 8 = 24.

Since there are eight orthogonal waveforms (four orthogonal and four antipodal), 
the number of errors that can be corrected is given by 8 × 3 = 24. Moreover, the band-
width is further reduced.

The result is summarized below:

•	 Code rate: r = 16/16 = 1
•	 Number of errors corrected: 8 8 4 1 8 16 4 1 24t n= ( ) -éë ùû = ( ) - =/ / ]
•	 This is achieved without bandwidth expansion.

5.7  �Waveform Capacity

Waveform coding is a technique where multiple parallel data streams from a single 
user are used to modulate the same carrier frequency. In this scheme, the modulated 
carrier frequencies are in orthogonal space and have a unique noise signature. 
Therefore, waveform capacity can be defined as the number of modulated wave-
forms that can be combined without interfering each other. This is conceptually 
shown in Fig. 5.22, where N waveforms share the same transmission bandwidth 
W. Each waveform contributes noise before data recovery.

Our objective is to determine the number N that can be supported in a given 
bandwidth. This is similar to CDMA capacity [6] as presented below.

From the circuit theory we know that the power delivered into a load is the rate 
of change of energy, which is given by,

5.7  Waveform Capacity
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P

dE

dt
=

	
(5.12)

Where,

•	 P = Power
•	 E = Energy

On the other hand, in digital communication we define power and energy as 
follows:

	
C

E

T
E Rb

b b= =
	

(5.13)

Where,

•	 C = Carrier power, where
•	 EB = Energy per bit
•	 T- = Bit duration
•	 Rb = Bit rate (b/s)

Now, let’s define:

•	 W = Bandwidth
•	 I = Total interference (noise) due to multiple users

Then the noise density No can be written as:

	

N
W

or

I N W

o

o

=

= ´

1

	

(5.14)

Bandwidth W

Power

Waveform N

Waveform N -1

Waveform 2

Waveform 1

Fig. 5.22  Illustration of N 
waveforms sharing the 
same transmission 
bandwidth W. Each 
waveform represents a 
noise source before data 
recovery
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From the above equations, we can express the carrier to interference ratio as follows:

	

C

I

R E

N W
b b

o

=
´
´

	
(5.15)

Where,

•	 EB = Energy per bit
•	 Rb = Bit rate
•	 No = Noise density (also called “noise spectral density”)
•	 W = Transmission bandwidth

In a correlation receiver, the interference is due to all users except the one which 
is being recovered by means of code correlation as depicted in Fig. 5.23. Therefore, 
we can write:

	

I C N

C

I N

= -( )

=
-

1

1

1 	

(5.16)

From Eqs. (5.15) and (5.16), we get:
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(5.17)

Solving for the capacity N, we obtain:
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E Nb
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(5.18)
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Fig. 5.23  Correlation 
receiver outcome. One out 
of N signals is correlated 
and its signal strength is 
the highest
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In the above equation, N is the waveform capacity. This is the number of wave-
forms that can be combined for a given code length, Eb/No is the energy per bit to 
noise ratio and W/Rb is the data spreading factor. For n = 8, this value is 8 and for 
n = 16, this value is 16. Figure 5.24 shows the waveform capacity as a function 
Eb/No.

5.8  �Conclusions

•	 This chapter presents a method of waveform coding, based on orthogonal codes.
•	 In the proposed method, the high-speed data stream is inverse multiplexed into 

several parallel streams.
•	 These parallel streams, now reduced in speed, are partitioned into several blocks 

and mapped into blocks of bi-orthogonal codes.
•	 A bank of identical modulators are used to modulate the coded bit streams using 

the same carrier frequency.
•	 Construction of rate ½, rate ¾ and rate 1 waveform coding schemes are presented 

to illustrate the concept.
•	 It is also shown that there is a built-in error control mechanism in this scheme.
•	 The proposed method is bandwidth efficient.
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