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Preface

Game theory is the formal studies of decision-making among multiple autonomous
players who have common or conflicting interests and whose interactions influence
the outcomes obtained by each participant. It has found its applications in the areas
of telecommunication engineering since the early 1990s, for solving problems such
as flow control and routing. In recent years, game-theoretical approach to radio
resource allocation is one of the most extensively investigated research topics in
wireless communications. A significant number of scientific papers and books,
as well as special journal issues (e.g., the IEEE Journal on Selected Areas in
Communications and the IEEE Journal on Selected Topics in Signal Processing)
have been dedicated to this topic.

In some interactive scenarios involving selfish decentralized individuals, game
theory helps us formulate analytical models so that we can examine the possible final
outcomes and study the stability conditions of these outcomes. This is important in
devising good strategies, which we ultimately hope will lead the system to these
stable, efficient states at which the overall performance is improved and sustainable
compared to a randomized, uncontrolled operating state. To this end, it is essential
to emphasize the need to establish the existence of Nash equilibria in wireless
communication games, one of which will be chosen as the final stable operating
point of the system. The system exhibits a preferable and desirable property, if
only one unique Nash equilibrium exists and any initially adopted strategy profile
of players is able to converge to this Nash equilibrium by applying some iterative
dynamics.

Existence and convergence of Nash equilibrium do not always apply to any
arbitrary utility functions and strategy sets. However, there are special types of
games, including potential games, where at least a pure-strategy Nash equilibrium
is guaranteed to exist and can be reached with certain classes of learning dynamics
such as the best responses. In a potential game formulation, one can identify a
special function called the potential function, which changes values whenever there
is a change in the utility of any single player due to his/her own strategy deviation,
according to some predefined relationships. As such, the game’s equilibria can often
be associated with the optimum points of this potential function. Potential games
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are first studied by Monderer and Shapley [11]. Due to their desirable properties,
they have been adopted to model radio resource allocation problems. Despite the
promising number of applications in several wireless communications problems, it
seems that the means to formulate a problem as a potential game is still vastly done
through the process of trials and errors, with most applications being limited to a
few known utility functions. In fact, there lacks a unifying framework in order for
us to gain an in-depth insight in order to better exploit this very useful technique.
For example, the overarching question of whether or not there is a systematic
method to identify and to define the potential function of a game is still unanswered.
Alternatively, how one can generalize and establish new potential game models for
existing practical problems is another complicated and challenging problem. To the
best of the authors’ knowledge, there are dozens of textbooks that present excellent
accounts of the use of game theory for wireless communications. Nevertheless,
potential games often only receive a one-chapter treatment at best. No books or
monographs are available to address the aforementioned concerns.

In this monograph, we attempt at a complete treatment of potential game theory
and its applications in radio resource management for wireless communications
systems and networking. We hope to pave the way to more extensive and rigorous
research findings on a topic whose capacity for practical applications is potentially
huge but yet not fully exploited. First and foremost, a generalized and rigorous
mathematical framework on potential games will be presented. Consequently, we
will discuss new as well as existing findings on the formulation of potential games
and their applications in solving a variety of wireless communications problems.

The monograph is comprised of five chapters and is divided into two parts:

* In Part I—Theory, the purpose is to introduce the necessary background, as well
as the notations and concepts used in game theory. In particular, we document our
studies of a class of games known as potential games, which have found useful
applications in the context of radio resource allocation. The materials covered in
Part T will lay the fundamentals for the actual applications presented in Part II.
Part I consists of two chapters:

— Chapter 1 serves as a concise introductory text to game theory. It reviews
the most elemental concepts and building blocks in game theory. We put an
emphasis on the use of iterative decision dynamics in myopic computation of
Nash equilibria, which is a process often employed in practical applications.
The discussion is facilitated with a series of toy examples in order to have a
better understanding of the abstract concepts.

— Chapter 2 is the focal point of the monograph where theoretical treatments
on potential games and our contributions to the literature on this topic are
presented. Besides theoretical definition and characterization, we also give
a very detailed and rigorous discussion on the questions of how to identify
whether a game is a potential game, how to find the corresponding potential
function, and how to formulate the utility function so that the resulting game
is a potential game. The chapter is a cornerstone of the monograph, which
serves as a basis for all subsequent discussions.
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e Part II—Applications looks into a variety of practical problems in wireless
resource allocation which can be formulated as potential games. In this part, we
present our own results as well as summarize existing related works. It includes
three chapters:

— Chapter 3 uses game-theoretical approaches to achieve fair and efficient
spectrum access schemes for the distributed OFDMA network consisting of
transmit-receive pairs which exploits spatial frequency reuse. We discuss how
a potential game can be formulated, the behaviors of strategy domination, and
how it can be overcome, as well as an analysis of the price of anarchy. The
system performance when best-response algorithm is used will be evaluated.

— Chapter 4 looks at the subcarrier allocation problem for a downlink multicell
multiuser OFDMA network where a potential game is also formulated. We
propose our iterative algorithm for obtaining the Nash equilibria and address
several performance issues such as fairness for edge-users as well as when the
system is overloaded. Numerical results show the improvement in efficiency
and fairness of this approach over existing schemes.

— Chapter 5 gives a summary of existing approaches that apply potential games
in solving wireless communications and networking problems, focusing on
the formulations using exact potential games and pseudo-potential games. A
non-exhaustive list of selected applications discussed in this chapter includes
Menon et al. [9], Buzzi et al. [2], Neel et al. [12], Babadi et al. [1], Scutari et al.
[14], Perlaza et al. [13], Mertikopoulos et al. [10], Xu et al. [16], Heikkinen
[3], and Xiao et al. [15], to name a few.

This monograph is helpful for engineering students at the graduate and advanced
undergraduate levels to learn and understand the fundamentals of potential game
theory. It is also intended to introduce researchers and practitioners on how this
theory can be used to solve the practical radio resource allocation problems.
Researchers, scientists, and engineers in the fields of telecommunication, wireless
communications, computer sciences, and others will certainly benefit from the
contents of the book.

Chapters 3 and 4 of this monograph make use of materials that have been
published in the authors’ earlier papers [5—8], as well as the first author’s Ph.D.
thesis [4].

Singapore, Singapore Quang Duy La

2015 Yong Huat Chew
Boon-Hee Soong
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Chapter 1
An Introduction to Game Theory

Abstract This chapter presents introductory materials on game theory. It is written
mainly for readers who have some basic mathematical background on algebra,
probability and set theory but may or may not have any prior exposure to
game theory. It summarizes the important concepts and definitions for readers to
understand the content in the next few chapters, which are the main theme of
this book—potential games. Unlike what most game-theoretic texts often do, we
limit our theoretical exposition to only elemental concepts which are sufficient
to comprehend the materials in this monograph. We focus on the discussion of
strategic-form non-cooperative games and Nash equilibrium which are central
to game theory. In addition, as a means of bridging between game theory and
their applications in wireless communications, we also spend part of the chapter
discussing the issue of computing Nash equilibria via iterative gameplay. The
use of myopic decision dynamics, which fall under such iterative processes, has
been often adopted when applying game-theoretical approaches to solving wireless
communications problems. The approach will be explained here through a series of
simple exercises, with the convergence issue demonstrated and discussed.

1.1 Overview

What did game theory evolve from? Researchers often trace the history of game
theory back to von Neumann’s 1928 paper, Zur Theorie der Gesellschaftspiele
(On the Theory of Parlor Games) [15] which laid the first solid mathematical
formulation of a game. His groundbreaking work focused on zero-sum two-player
games and proved the existence of mixed strategy equilibria via the application of
fixed-point theorems. Even though this theory was initially applied on parlor games
such as chess and poker, the deep connection between game theory and economics
was eventually forged after the revolutionary book Theory of Games and Economic
Behavior [16], co-authored by von Neumann and Morgenstern, was published in
1944. Nowadays, this book is still regarded as “the book upon which modern game
theory is based”.! What makes the book revolutionary is the introduction of the

! According to description from Princeton University Press at http://press.princeton.edu/titles/7802.
html
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expected utility theory, which proposed that a rational individual whose preferences
satisfy some axioms, will always take actions to maximize his/her expected utility
function. This result was immediately adopted by economists and mathematicians
in studying decision making under uncertainties. Shortly after, John F. Nash in
1950 proved the existence of mixed-strategy equilibria in non-zero-sum games
[8, 9], thereby known as the Nash equilibrium, thus providing the missing piece
to the puzzle and subsequently allowing full-fledged development and evolution of
the theory into what is known today. Nash’s work earned him a Nobel Prize in
Economics in 1994, with him being one of the first among eleven game theorists
who were awarded the prize, as of 2015. At presence, game theory is a well-
recognized and well-discussed subject which finds its applications in a wide range
of fields and disciplines, including not only economics but also political sciences,
philosophy, biology, computer sciences and engineering.

What is game theory about? In every situation which can be modeled by a
game, one will always find multiple decision makers—those who are assumed to
be rational in the von Neumann sense as aforementioned—interact in the presence
of conflict of interest. Game theory assists in the decision making process, by for-
mulating mathematical model to predict how those participants, i.e., players, should
behave. Thus, the question that game theory tries to answer is so intuitive—how
are rational individuals going to act under a certain circumstance?—that it easily
appeals to scientists studying human behaviors. However, the players in games are
not only limited to human beings but are also extended to animals or computerized
machines. There has been countless literature extensively developing and detailing
this theory. For example, [3, 4, 6, 7, 13, 14] are among the recommended textbooks
on game theory suitable for students of various disciplines and degrees, ranging
from undergraduate to graduate levels.

Owing to these enormous and readily available materials, the authors do not
wish to fully cover every single detail about game theory in this monograph. We
will only provide a quick and self-contained introduction which is sufficient for
readers to understand the contents presented in the next few chapters. The most
fundamental concepts, which serve as building blocks for the subsequent discussion,
will be introduced in this chapter. In Sect. 1.2, we mainly focus our discussions
on non-cooperative games and the concept of Nash equilibrium, of which any
beginners exposed to game theory would probably first encounter. In Sect. 1.3, we
discuss iterative gameplay and myopic decision dynamics, which are mechanisms to
compute Nash equilibrium for any practical application employing game theoretic
approaches.

1.2 Fundamentals of Non-cooperative Game Theory

Non-cooperative game theory is one of the most elemental branches of game theory,
and arguably the most important one. Non-cooperative games are also often encoun-
tered in wireless resource allocation problems. They will be frequently referred
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to simply as games throughout this monograph for brevity. Such a game arises
whenever multiple players get engaged in an interactive decision making situation
in which individuals have to act independently. Its name often implies a competitive
nature where no forced cooperation among players are allowed, as opposed to
cooperative games wherein there are external mechanisms (such as contracts or
coalitions) enforcing cooperation among players. In this short exposition, we aim
to introduce non-cooperative games including their strategic form’s representation
and associated notions, such as strategies, the Nash equilibrium, Pareto optimality,
as well as some toy examples in order to understand the concepts.

1.2.1 Strategic Non-cooperative Games

The most basic form to denote a non-cooperative game is the strategic-form
representation. Strategic form is used whenever the game does not require the
notion of time, i.e., outcomes of the game can be analyzed as if players make
decision simultaneously. In the case of sequential actions, i.e., in a dynamic context,
extensive-form games can be used. This is one of several other classes of games that
deal with the dynamic settings and often introduced as an alternative to strategic-
form games. For introductory materials on extensive-form games, readers can refer
to [3, 13].

Formally, a game can always be established if the three fundamental elements
are clearly defined:

e The set of players.

o The strategies associated with the players, i.e., all the actions that a player can
possibly select from.

o The utilities (payoffs) for the players, i.e., a function/rule that governs the payoff
that a player will be awarded for taking a certain strategy given the other players’
strategies.

A game refers to the scenario where every participating player interacts by
choosing strategies to influence the final outcome of the game. An important,
implicit assumption in game theory is the rationality assumption: Players are always
rational. A player is rational if he or she makes decisions which are consistent to the
purpose of maximizing his/her own utility function. Consequently, a rational player
always favors strategy A over strategy B if A gives him/her a better payoff than B.

Mathematically, let us denote by .4~ = {1,2,...,N} the set of N participating
players. For every ith player in .47, his/her collection of all possible actions or
strategies forms a strategy set, which can be informally expressed as

S; = {Si| S; is a valid strategy for the ith player}. (1.1)

The strategy set of player i, S;, can be either a continuum set such as subsets of
a finite-dimension Euclidean space, or a finite set consisting of a finite number of
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discrete elements. Both types—discrete or continuous strategy sets—arise naturally
in communications scenarios. For example, in a distributed multi-user multi-
channel system, a mobile user’s strategy can contain discrete actions such as
choosing the operating frequency among a set of wireless frequencies, or contain
continuous actions such as determining the player’s transmission power level within
a continuous feasible range.

Given all players’ strategy sets, the strategy space of a game can be defined as
follows.

Definition 1.1. The strategy space S is defined as the Cartesian products of all
individual strategy sets, i.e.,

S=8; x...xSy. (1.2)

Each element S = (51, S2,...,S,) € Sis said to be a strategy profile.

Often, if one is referring to a single player (e.g., the ith player), then § can be
rewritten as S = (S;, S—;) where S_; refers to the joint strategy adopted by player i’s
opponents. The domain of S_; is denoted by S_,.

Definition 1.2. For each player i, his/her utility function U; is a function that maps
each strategy profile S to a real number, that is, U;(S) : S — R, where R is the set
of real number.

The notations U;(S) and U;(S;, S—;) are both frequently used in standard texts on
game theory.

Definition 1.3. The game ¢ that consists of the player set .4, the strategy space S
and the utility functions U;, Vi € .4 will be denoted as

9 = [‘/V»S’ {Ui}iE/V] . (13)

1.2.2 Pure and Mixed Strategies

In game theory, there is often a need to classify a player’s strategy into pure
strategies and mixed strategies. A pure strategy requires a player to play a certain
action with certainty, i.e., with probability 1. Meanwhile, a mixed strategy is defined
as a collection of pure strategies with a predetermined probability distribution
assigned to each pure strategy. Given player i’s strategy set, we define pure and
mixed strategies as follows.

Definition 1.4. A pure strategy for player i is simply an element S; of the set S; in
the set-theoretic sense.
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Definition 1.5. Given S;, a mixed strategy p; is a probability distribution over S;.

For example, if S; = {a;1,a;2,...,a;k} is the set of K pure strategies for player
i, then p; can be expressed as a probability distribution (p; 1, pi2,...,pik). Here,
pix = Pr(a;;) represents the probability that player i should choose strategy k,
where p;; € [0, 1], Vk and Z,’lep,-,k = 1, Vi. We often use the notation p;; =
pi(a;x) to indicate that p; assigns strategy a;; probability p; ;. A pure strategy a; is
therefore considered a special case where p;, = 1 and p;,, = 0, Vm # k.

We can denote the mixed strategy profile by p = (p1, p2, ..., py). Hence, we can
think of the inclusion of mixed strategies as a mixed-strategy extension to a game,
as defined in Definition 1.3.

Definition 1.6. A game ¢ has a mixed-strategy extension [.4", A, {U}ie.s |- Here,
A = A|xAsx...xAy where each A, refers to the set of all probability distributions
over S;, with p; € A;. The (extended) utility function U; : A +— R now maps
each mixed strategy profile p to the expected value computed from the portfolio of
selected pure strategies.

In the above definition, the expected payoff for player i due to a mixed strategy
profile p is calculated as

N
Uitp) = Y [ [Toi8) | Ui(s)- (14)

ses \j=1

1.2.3 Dominant and Dominated Strategies

In some games, there are situations in which a certain strategy always gives a player
better utility than another strategy, no matter what actions his/her opponents take.
Such a strategy is called a dominant strategy. On the other hand, a strategy that
always yields a worse utility compared to another dominant strategy regardless of
what opponents may do is known as a dominated strategy.

Definition 1.7. For player i, S; € S; is strictly dominant if and only if
VT, €S, T; #S; . Ui(Si,S=) > Ui(Ti, S—-)) VS—ieS_. (1.5)
If one replaces the “>” sign in the above with the “>”, “<” and “<” signs,

the definitions refer to weakly dominant, strictly dominated and weakly dominated
strategies, respectively.
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1.2.4 The Concept of Nash Equilibrium

Nash equilibrium is a crucial concept in predicting a game’s outcome. By definition,
a Nash equilibrium is a strategy profile such that if the opponents’ strategies remain
unaltered, no player would be tempted to move away from his/her current strategy.
The definitions of Nash equilibrium in pure strategies and in mixed strategies are
given separately.

Definition 1.8. The (pure) strategy profile $* € S is a pure-strategy Nash equilib-
rium if and only if
Ui(ST,S*) > U(S.,S*) VS.eS;, Vie /. (1.6)

Definition 1.9. The mixed strategy profile p* € A is a mixed-strategy Nash
equilibrium if and only if

Ui(p}. pZ) = Ui(p}, pZ))  Vp; € Aj, Yie N, (1.7)

Nash equilibrium is perhaps the most important concept in game theory. At a
Nash equilibrium, no player is able to gain by deviating from the current point. Thus,
it can be seen as a “stable operating point” from the system perspective. Obtaining a
Nash equilibrium state is often the ultimate objective in a resource allocation game.
The proofs of Nash equilibrium existence for certain classes of games are important
landmarks in game theory. These results are established in the works by Nash [8],
Debreu [1], Fan [2] and Glicksberg [5]; and are stated in the following theorems.

Theorem 1.1 (Nash). Every finite strategy game has a Nash equilibrium in mixed
strategies.

Proof. Refer to Fudenberg et al. [3], p. 29-30. O

Theorem 1.2 (Debreu-Fan-Glicksberg). A game has a pure-strategy Nash equi-
librium if for alli € N, the strategy set S; is a nonempty, convex and compact subset

of a Euclidean space, and the utility function U; is continuous and quasi-concave in
each S;.

Proof. Refer to Fudenberg et al. [3], p. 34. O

Theorem 1.3 (Glicksberg). A game has a mixed-strategy Nash equilibrium if for
alli € W, the strategy set S; is a nonempty compact subset of a metric space and
the utility function U; is continuous.

Proof. Refer to Fudenberg et al. [3], p. 36. O
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1.2.5 Best-Response Correspondence

In game theory, the best-response correspondence of a player given his opponents’
strategies [3] is what he/she should play in order to maximize his/her utility.

Definition 1.10. Consider a game ¢ as in (1.3). For each player i, the best-response
correspondence for him/her is a set-valued mapping %;(S—;) : S—; = S; such that

Bi(S_i) = {S7 | ST € argmax U;(S;, S—)}. (1.8)

S;€S;

It is straightforward to see that in a Nash equilibrium, every player plays a best
response to the other players’ strategies.

Theorem 1.4. A (pure or mixed) strategy profile S* is a Nash equilibrium if and
only if

St e Bi(S*,), VieN. (1.9)

Proof. Clearly, (1.9) is equivalent to (1.6) (or to (1.7) for mixed strategies). ad

1.2.6 Pareto Optimal Strategies

Another significant concept encountered in game theory is Pareto optimality.
A strategy profile is said to be Pareto optimal if improving the utilities of some
players would lead to a decrease in utilities for some other players. No strategy
deviation from this point can mutually improve the payoffs of all players.

Definition 1.11. The strategy profile o € S is Pareto optimal if and only if
ASeS: Vies, U(S) = Uo) (1.10)

with strict inequality for at least one i.

Remark 1.1. Both the Nash equilibrium and Pareto optimal strategy profiles rep-
resent desirable outcomes in certain senses, depending on the context. However, in
most of the games, it is often inconclusive as to whether a Nash equilibrium is Pareto
optimal and whether a Pareto optimal strategy profile is a Nash equilibrium. In the
next section, we will encounter examples where these two are distinctly separated,
like the prisoner’s dilemma (Example 1.1); and where they coincide, such as in the
BoS game (Example 1.2).
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1.2.7 Examples

We give a few examples of strategic games to illustrate the concepts presented
before.

Example 1.1 (The Prisoner’s Dilemma). The game of prisoner’s dilemma is very
often used as an introductory example to illustrate the basic concepts in game theory.
The story associated with it was due to Tucker [17]. The description of the game is
as follows.

Suppose that two suspects are arrested for a crime, and questioned separately.
If they both keep quiet (i.e., strategy C, which stands for cooperating with each
other), they will both go to prison for a year. If one suspect supplies evidence (i.e.,
D which means defecting) then he will be freed, and the other one who plays C will
be imprisoned for six years. If both defect then they will both be imprisoned for four
years.

Figure 1.1 depicts a payoff matrix for the outcomes of this game in its non-
cooperative strategic-form version. The game elements are as follows:

* Players: .4 = {1,2},

o Strategy sets: S; = S, = {C, D},

 Strategy space: S = {(C, C), (C,D), (D, C), (D, D)},
 Utility functions:

Ui :S> {—1,-6,0,—4} (1.11)
Us:S > {—1,0,—6,—4}. (1.12)

Note that the name “prisoner’s dilemma” can also be generalized to any 2-player
games where the set of four distinct payoff values {—6,—4,—1,0} used in the
example are replaced by any set of real numbers {a, b, ¢, d} provided thata < b <
c<d.

Lemma 1.1. In the prisoner’s dilemma above, the following statements hold:

e D is the strictly dominant strategy for both players,

o C is the strictly dominated strategy for both players,

e (D,D) is the only Nash equilibrium, representing the case where both non-
cooperatively defect,

e However, (D, D) is not Pareto optimal. Meanwhile, (C, C), (C, D) and (D, C) are
all Pareto optimal.

Fig. 1.1 Payoff matrix for Player 2
prisoners’ dilemma C D
Cl—1,-1/-6, 0
P] 1 ) 2
Y p0,—6[—4,-4
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Proof. The proof directly follows from the definitions. In short,

e For player 1, D is strictly dominant as U,(D,C) > U,(C,C) and U,(D, D) >
U,(C, D), i.e., player 1 prefers D over C regardless of what player 2 chooses. For
player 2, the same argument applies.

e (D, D) is a Nash equilibrium, as at this profile, both players cannot achieve a
better utility by deviating. For instance, player 1 is worse off if he/she switches
to C; and so is player 2. It is the unique Nash equilibrium as no other strategy
profile satisfies this property.

¢ However, (D, D) is not Pareto optimal, as there exists another profile, namely
(C, C), at which players have mutually better payoffs. At (C,C), no further
mutual improvement is possible. Although player 1 can gain from switching to
D , it will result in a loss for player 2, and vice versa. A Pareto optimal strategy is
thus one that does not permit mutual improvement in the payoffs of all players.
By the same reasoning, both (C, D) and (D, C) are Pareto optimal as well.

a

The prisoner’s dilemma is an example of games with a unique pure-strategy Nash
equilibrium. Our next example is a game with multiple pure-strategy as well as
mixed-strategy Nash equilibria.

Example 1.2 (BoS). The game BoS describes a scenario where two players find
it better to align their interests rather than not to. Its most common version and
associated story is known as the Battles of the Sexes, which was given by Luce
and Raiffa [6]. Other authors, such as Osborne [13], used an alternative name
Bach or Stravinsky. Here, we refer to the game simply by the abbreviation BoS.
Its description is as follows.

Two people wish to go to a concert together. There are two concerts available,
one featuring music by Bach (B) and the other by Stravinsky (S). Each person prefers
a different concert, but would rather attend the same concert together than go alone.
They do not communicate and do not know which concert the other decides to go.

Its payoff matrix is given in Fig. 1.2.

Lemma 1.2. In the BoS game above, the following statements hold:

e There are two pure-strategy Nash equilibria: (B, B) and (S, S), both of which are
Pareto optimal.

» There is one mixed-strategy Nash equilibrium p* = (p}, p5) where pi = (%, %
and p5 = (%, % .

Proof. To verify the two pure-strategy equilibria and their optimality is straightfor-

ward. The readers are invited to try it out, using the definitions in (1.6) and (1.10).

Fig. 1.2 Payoff matrix for Player 2
BoS B S
B| 3,2 0,0
Player lS 0.0 23
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To compute the mixed-strategy Nash equilibrium, suppose that player 1 assigns
probability p to B and 1 — p to S, while for player 2 it is (¢, 1 — g).
For player 1, his/her expected payoff for choosing B is

Ui(B.p2) = (9)(3) + (1 = ¢)(0) = 3q.

His/her expected payoff for choosing S is

Ui (S, p2) = (@)(0) + (1 — ¢)(2) = 2(1 — g).

For player 2, his/her expected payoft for choosing B is

Uz(p1.B) = (p)(2) + (1 =p)(0) = 2p.

His/her expected payoff for choosing S is

Ui(S, p2) = (p)(0) + (1 =p)(3) = 3(1 = p).

Now, for (p], p5) to be a valid equilibrium, player 1 must not have an incentive
to deviate (to a pure strategy) when player 2 plays p3. Player 2 must also not have
an incentive to deviate when player 1 plays py. In other words, in the mixed-strategy
Nash equilibrium, for each player, none of the expected payoffs for choosing a pure
strategy dominates another and hence, players are indifferent among them. Thus,
the following indifference equations hold: U,(B, p5) = U, (S, p5) and Uz (p},B) =
Us(p}. S). This leads to

3¢ =2(1-9) (1.13)
2p=3(1-p)

which is solved by p = 2 and g = 2. O

Exercise 1.1. Find the best responses for players in the BoS game. Check if in the
Nash equilibria, both players mutually play best responses.

Solution 1.1. The best responses in pure strategies are highlighted by (*) for player
1 and () for player 2 in Fig. 1.3. Clearly, at the two pure-strategy Nash equilibria
(B, B) and (S, S), both play best responses mutually.

In mixed-strategies, the best-response correspondences can be computed by
determining which expected utility is dominant for a given p or q.

Fig. 1.3 BoS with best Player 2
responses for pure strategies B S
in (*) and (1) B| 3*2f 0,0
Pl 1 2
DS 00 [ 253
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For player 1, U;(B, p,) is dominant to U; (S, p,) when 3g > 2(1 —g), or ¢ > 2

g.
Else, U, (S, p,) is dominant when ¢ < %; and when ¢ = £, player 1 is indifferent
as shown before. That is, any p € [0, 1] is equally acceptable. Thus, his/her best-

response correspondence is

{0y g<3
pe (g =[0,1] g=32 (1.14)
{1} ¢g> %
Similarly, player 2’s best-response correspondence is
{0y p<i
g€ %p)=1[0.1 p=32 (1.15)
{1y p>1

Both players’ best-response correspondences can then be plotted together, as
shown in Fig 1.4. Their intersections correspond to Nash equilibria. There are three
intersections, equal to the total number of equilibria aforementioned.

1 r - e o = = L ]
! 1
0.9+ 1 .
1
[
0.8+ 1
' !
o 07} 18.(p) :
2 : '
= 1
5 0.6 . 1
3 1
[<] 1
a 05} 1 ]
S B(o) . -
1
5 0'4i ———————————————————— [ RN R
> !
g | '
O 03¢F 1
! 1
0.2 1
[ 1
0.1 !
5 1
[
0@ = = = = o o o e oo
0 0.2 0.4 0.6 0.8 1
Player 1‘s probability p
Fig. 1.4 Best-response correspondences in the BoS game: p = 1 (or ¢ = 1) corresponds to

pure-strategy B; and p = 0 (or ¢ = 0) to S for player 1 (or player 2)
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Fig. 1.5 Payoff matrix for Player 2
matching pennies H T

H| 1,—-1]-1, 1
PlayerlT_L 11

Exercise 1.2. Is the mixed-strategy Nash equilibrium above Pareto optimal?

A game can also have no pure-strategy Nash equilibrium but has equilibrium in
mixed strategies, as shown in the next example.

Example 1.3 (Matching Pennies). The game of matching pennies is a game where
two players have totally opposing interest. It is also a zero-sum game and was first
considered by von Neumann in [15]. Here is its description.

Two players simultaneously flip a coin and reveal to one another. If the coins
match, i.e., they both show heads (H) or tails (T), player 2 pays player 1 one dollar.
If the coins do not match, i.e., one is head and one is tail, player 1 pays player 2 one
dollar.

The payoff matrix is given in Fig. 1.5.

Readers can try the following exercise.

Exercise 1.3. Find any dominant strategies and Pareto optimal strategy profiles for
Matching pennies. Hence, deduce that there is no Nash equilibrium in pure strategy.
Find a mixed-strategy Nash equilibrium by (1) the indifference equations and (2)
plotting the best-response correspondences.

In general, games may have multiple, unique or no pure-strategy Nash equilibria
as the examples have shown. Theorem 1.1 guarantees that in finite games, at least
one Nash equilibrium (which can be in mixed strategy) exists.

In the following section, some game-theoretical mechanisms related to Nash
equilibrium computation in practical applications are discussed.

1.3 Computation of Nash Equilibrium via Iterative
Gameplay

1.3.1 [Iterative Gameplay vs. Repeated Games

From previous examples, we have had a glimpse at the method to compute Nash
equilibria for simple games, both in pure strategies and mixed strategies. This
section looks into the mechanisms through which Nash equilibrium can often be
computed in games of larger dimensions where the previous method is deemed
too complicated or difficult. We may limit our attention to only pure-strategy Nash
equilibria, as most practical applications would like their systems to operate at one
single stable point rather than oscillating among various states.
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The procedures discussed in the previous section also make use of an implicit
assumption—we must know the complete payoff matrix of a game in order
to identify players’ best responses and/or assign probabilities and to solve the
indifference equations. However, in reality, distributed non-cooperative players
often have no means of communications and are likely to have no knowledge
of the opponents’ payoff information. In fact, their strategic decisions are often
made myopically, i.e., the decision is based only on one’s own information and
current observation of the outcome of the game, not on past knowledge or future
speculation. The challenge is, for a strategic game with incomplete information,
Nash equilibrium may not be reached in just one play. The game may need to
be iterated so that players update their strategies based on their observations of
opponents’ actions until a (pure-strategy) Nash equilibrium is reached. This process
is referred to as iterative gameplay.

It is worth mentioning that iterative gameplay is not a formal concept in
game theory, but instead a technique frequently adopted in most game-theoretical
algorithms in engineering problems. Its main objective is to help in achieving a Nash
equilibrium outcome, under the assumption of incomplete information and myopic
behaviors. During an iterative gameplay, based on the current game outcome,
players may gradually improve their utilities towards a more stable and optimal
solution by employing a certain procedure to adapt their strategies. The procedures
for strategy adaptation are called decision dynamics or decision rules. Our focus in
this book will be on decision rules that are myopic.

The underlying principles of iterative play are somehow different from another
branch in game theory known as repeated games. In repeated games, an original
one-shot game is also played across several stages and the strategies adopted over
time can also be learned from history. However, rigorous mathematical treatment
of repeated games often introduces a discount factor 0 < o < 1 into the original
utility function in such a way that at a later tth stage, the expected payoff for player i
corresponding to a strategy profile S becomes U, ,(S) = «'U;(S) where U;(S) is the
payoff that player i would get in the one-shot version. Therefore, the accumulated
payoff if the game is played from stage O to stage 7 is U; = ZIT=O U, ,. In repeated
games, one can define subgame perfect Nash equilibrium and invoke Folk theorem
[3] to find the solutions.

As a matter of fact, most wireless resource allocation problems in the literature
do have the game iterated through multiple stages. However, as myopic behaviors
are considered, the lack of past memories and future speculation will render the
complex multi-stage strategies in the studies of repeated games inapplicable. Folk
theorem does not hold for these myopic games [11]; and the discount factor and the
accumulated utilities will not be used. As such, we make a point in distinguishing
the concept of iterative gameplay in wireless resource allocation context against the
repeated games traditionally known in game theory.

Next, we shall look at a few important decision rules often encountered in
practice.
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1.3.2 Decision Rules, Best-Response and Better-Response
Dynamics

In the context of iterative gameplay, decision rules govern the way players update
their strategies. The decision rules can be classified according to the timing of
decisions, as well as the manner in which new strategies are updated.

In terms of timing, Neel [10] defined the following decision rules according to
their timing: synchronous, asynchronous, sequential (or round-robin) and random
timing. We assume that strategy adaptation decisions are made in a series of
time instances, indexed by + = 0, 1,2, .... Then, the various timing notions are
informally described as follows.

Definition 1.12. In terms of decision timing, a decision rule is said to be

* Synchronous: if decisions by all players occur at the same time instance ¢, Vz.
That is, players update their strategies simultaneously.

* Asynchronous: if at a time instance ¢, there are a random number of players
making decisions, V¢. For example, players can choose to update to a new
strategy at a probability p and stay inactive with probability 1 — p, which leads to
a random number of them updating at a time.

* Sequential: if there is only one player making decision at a time instance #, Vt.
That is, players take turn to act in sequence via a predefined order.

* Random-timing: if there is only one random player i = rand(.#") making
decision at a time instance #, V¢. Gameplay is still sequential but the order is
random.

Here, we write rand({.}) or rand(A) in order to denote a randomized selection
among elements of a set A = {.}.

In terms of how to determine the new strategy to be adopted by a player, the
best-response dynamics and better-response dynamics are the two most important
and commonly used decision rules. The best-response dynamics, as the name
suggests, are based on the requirement that players adapt their strategies from their
best responses given the opponents’ actions. Best-response dynamics are defined
formally through the following rule [10]:

Definition 1.13. In the best-response dynamics, every player i will select a new
strategy S; such that

S; € Bi(S_), Vie N, (1.16)

Best-response dynamics require player i to do an exhaustive search over the
strategy set S; for the best option, which may incur a high order of computational
complexity in games with large strategy sets. Alternatively, another mechanism
which requires less searching effort, known as the better-response dynamic [10],
is also frequently adopted.
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Definition 1.14. In the better-response dynamics, player i will choose a new strat-
egy T; over the current strategy S; if and only if 7; is any randomly selected strategy
that improves his/her payoff, given the opponents’ strategy S—;. We formally write
it as

T, = rand({S” Sz/ IS TS U,'(S;,S_,') > U,'(S,',S_,')}), Vie V. (1.17)

The combination of these classifications can give rise to more specific decision
dynamics, such as synchronous best-response dynamics, sequential better-response
dynamics, random-timing better-response dynamics, and so on. In this monograph,
we will not deal exhaustively with all types of decision dynamics listed above.
Instead, a great deal of our discussion will focus on the sequential decision rules,
which have been prominently adopted in wireless communications problems.

All decision rules above only require players to use their current information
from the game, i.e., the observed strategies of their opponents, and thus are myopic.
The ultimate purpose of using such myopic decisions is to drive the game towards a
Nash equilibrium only based on locally available information. We allow each player
to individually improve his/her utility and hope that the process will eventually
converge to a point when such improvements are stabilized. If it happens, at this
point, all players are virtually playing their mutual best responses which is by
definition a Nash equilibrium. The Nash equilibrium obtained via this process thus
represents a stable operating point for the distributed system.

1.3.3 Using Best-Response Dynamics to Find
Nash Equilibrium

In this section, we give some examples of using iterative best responses to search
for a Nash equilibrium.

Example 1.4. We consider a dynamic spectrum access game. Suppose that there
are two available frequency bands A and B. Two players 1 and 2, which are mobile
users, compete for the spectrum bandwidth to transmit their data. Each player has
three strategies: transmitting in band A, transmitting in band B and transmitting in
both bands A and B. The three strategies are denoted by A, B and AB, respectively.
The payoff matrix is assumed to be computed from some performance metrics and
tabulated as in Fig. 1.6. Note that although our example is given with only two
players and simplified payoff values in order to illustrate the concepts, in actual
applications, we must deal with a much larger number of players and the payoff
information may contain time-varying channel parameters instead of static values
as shown.

The best responses (in pure strategies) are again highlighted by (*) for player 1
and () for player 2. We see that there is a unique Nash equilibrium in which player 1
transmits on both bands and player 2 transmits only on band B. If both players have
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Fig. 1.6 Payoff matrix for Player 2
the example spectrum access A B AB
game Al 3.3 5,97 3,8
Player1 B| 9*5 | 22 | 2,6'
AB| 6,3 [67.6" | 5.5

Fig. 1.7 Sequential Player 2
best-response dynamics, A B AB
att =0 Al 3,3 [59 ] 38

Player 1 B| 955/ | 2,2 | 2,6'
AB| 6,3 | 6*,6" | 5%,5

Fig. 1.8 Sequential Player 2
best-response dynamics, A B AB
atr=1 Al 3,3 [ 597 ] 3,8 |

Player 1 B| 9*,5 | 2,2 |/2,6
AB| 6,3 | 6,67 [ 55

Fig. 1.9 Sequential Player 2
best-response dynamics, A B AB
atr =2 A| 3.3 5,97 3,8

Player 1 B| 9%,5 | 2,2 | 2,6
AB| 6,3 | 6*,67 | 5,5

Fig. 1.10 Sequential Player 2
best-response dynamics, A B AB
att =3 Al 33 |59 | 38

Player 1 B| 9,5 | 2,2 | 2.6
AB| 6,3 |6%6f| 5,5

complete information, both can easily figure out that (AB, B) is a Nash equilibrium
and enact this strategy profile.

However, if players only have their own payoff information and can only observe
the action of the opponent, then myopic dynamics, such as sequential best-response
dynamic can be used for strategy adaptation. At the beginning (¢t = 0), assume that
players randomly select their strategies, which results in the strategy profile (B, A).
This is shown in Fig. 1.7.

Player 2 is first to make a decision. Its best response for the current situation is
to switch to AB which gives the highest reward of 6. Thus, at # = 1, the game is at
strategy profile (B, AB) as shown in Fig. 1.8.

Player 1 is next to move. Similarly, it decides to switch to its best response AB
as it gets the highest payoff of 5. Thus, at + = 2, the game is at strategy profile
(AB, AB) as shown in Fig. 1.9.

Now, player 2 finds its new best response to be B and updates accordingly. The
game is now in the state shown in Fig. 1.10.
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Fig. 1.11 Modified payoff Player 2
matrix for the spectrum A B AB
access game in Example 1.5 Al 3.3 5. 9% 3.8
Player 1 B| 95 | 2.2 |5%,9f
AB| 6,3 | 65,6' | 45

Fig. 1.12 Modified payoff Player 2
matrix for the spectrum A B AB
access game in Example 1.6 Al 3.3 3, of 3.8
Player 1 B| 9,5 | 2,2 | 2,6
AB| 6,7 | 6*.6 | 5.5

Finally, both players are happy to stay at (AB, B) which is the Nash equilibrium.
Thus, in this example, the sequential best-response dynamic is able to converge to a
stable state.

Exercise 1.4. Apply the dynamic, assuming various different starting strategy
profiles, for the above example and verify that the dynamic still converges.

Example 1.5. Suppose that we modify the payoff matrix in Example 1.4 to that
shown in Fig. 1.11.

By identifying best responses, this game is shown to have multiple pure-
strategy Nash equilibria at (AB, B) and (B, AB). With complete information, some
coordination is also needed so that both players select the same equilibrium.

Exercise 1.5. Apply the sequential best-response dynamic, assuming various dif-
ferent starting strategy profiles, for Example 1.5. Verify that the dynamic converges
to either one of the two pure-strategy Nash equilibria.

The previous two examples show games that are stable under the sequential best-
response dynamic and Nash equilibrium convergence can be obtained. However,
there are cases where convergence is not guaranteed, as the next examples show.

Example 1.6. Suppose that we modify the payoff matrix in Example 1.4 to that
shown in Fig. 1.12. This game does not possess any pure-strategy Nash equilibrium,
as none of the profiles shows mutual best-responses. If one is to apply the myopic
dynamics, one will find that it will fail to converge and the game is not stable.

Exercise 1.6. Apply the sequential best-response dynamic, assuming various dif-
ferent starting strategy profiles, for Example 1.6. Verify that the dynamic will end
up with an infinite loop among (B, A), (B, AB), (AB, AB), (AB, A) and back to (B, A).

This example shows that convergence is not possible where no pure-strategy
Nash equilibrium exists. However, equilibrium existence does not guarantee con-
vergence either, as the next example shows.

Example 1.7. Suppose that we modify the payoff matrix in Example 1.4 to that
shown in Fig. 1.13. The game has a single pure-strategy Nash equilibrium (A, B),
due to the mutual best-responses. However, the dynamic may still fall into a loop.
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Fig. 1.13 Modified payoff Player 2
matrix for the spectrum A B AB
access game in Example 1.7 Al 3,3 [8%,97] 3.8

Player 1 B| 9*,5 | 2,2 | 2,6
AB| 6,7 6,6 | 5.5

Exercise 1.7. Apply the sequential best-response dynamic, assuming various dif-
ferent starting strategy profiles, for Example 1.6. Verify that the dynamic will end
up with an infinite loop among (B, A), (B, AB), (AB, AB), (AB, A) and back to (B, A),
if one begins the game from any of these four strategy profiles at ¢ = 0.

In conclusion, in a formulated strategic game, convergence to Nash equilibrium
using myopic dynamics is always desired as the system can finally achieve stability.
However, as illustrated above, there is no guarantee that the method will converge,
even if a Nash equilibrium exists. Fortunately, convergence can be ensured for
games with special properties, among which is the class of potential games.
Potential games are the main topic of this book and will be examined in depth in
Chap. 2.

1.3.4 Price of Anarchy

Price of anarchy (PoA) is a concept in algorithmic game theory, which literally
means the amount of damage suffered by the members of a system (i.e., the players)
due to the absence of a central authority. Specifically, it measures the discrepancy
in efficiency of the game behaviors between the socially Pareto optimal point in the
presence of a centralized controller and the one due to distributed selfish behaviors
among players (which can be the Nash equilibrium, or any other allocation point
obtained by a distributed method) [12]. Often, the ratio between the performance
measures of the two points is computed. In that sense, PoA is seen as a metric
to evaluate how efficient an implemented allocation is, such as one obtained via
myopic dynamics, compared to the social optimum.

The performance measure is also referred to in the literature as the welfare
function. Assuming that to each strategy profile S = (S;,5—;) € S, one can
assign a real number ®(S) as a measure of efficiency, then the welfare function is
mathematically a mapping ® : S — R. A common choice for the welfare function
i8 the utilitarian welfare, defined as follows.

Definition 1.15. Given S € S, the utilitarian welfare function ® : S — R is simply
the sum of the utility (or cost) functions of all players, i.e.,

N
OS) £ > Uxs). (1.18)
i=1
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Profile S is preferred to T if ®(S) > ©O(T) for a utility maximization game, or
O(S) < O(T) for a cost minimization game.
Now, let S € S be the socially optimal point with respect to the welfare function

0, i.e., § = argmax©(S) for maximization, or § = arg min®(S) for minimization.
ses ses
Also, let $* € S be a particular outcome of the game, e.g., a Nash equilibrium. By

convention, the PoA can be defined separately for these two scenarios as follows.

Definition 1.16. Let PoA . (S*) and PoA i, (S*) be the PoAs of strategy profile $*
for utility-maximization and cost-minimization games, respectively. Then,

PoAmax (S) = 5 ((Si)) . (1.19a)
PoAmin(S) = % (1.19b)

Example 1.8. As a simple example of computing PoA, let us look at the prisoner’s
dilemma (Example 1.1) whose payoff matrix is given in Fig. 1.1.
The utilitarian welfare function ® can be computed for each profile. For example,

O(D.D) = —4—4 = -8,

Similarly, we obtain ®(D,C) = ©O(C,D) = —6 and O(C,C) = —2. Here,
(D, D) is the unique Nash equilibrium which can be reached via best-response
dynamics, while (C, C) is the socially optimal point that maximizes ©.

As this is a utility-maximization game, the PoA of the Nash equilibrium (D, D)
is given by

ec,c) -8

4, (1.20)

which is relatively far from its optimal value of 1.
We can arrive at the well-known conclusion that in the prisoner’s dilemma, the
Nash equilibrium is fairly inefficient.
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Chapter 2
Potential Games

Abstract This chapter deals with theories related to the class of games known
as potential games. What make potential games attractive are their useful properties
concerning the existence and attainability of their Nash equilibria. These properties
have direct consequences: the straightforward applications of equilibrium-seeking
dynamics to the gameplay of potential games can lead to a Nash equilibrium
solution. However, before being able to successfully apply such rewarding results
to practical problems, one needs to answer the important question of how to identify
if a game is a potential game. To put the question in another way is how to
formulate a problem so that the resulting game is a potential game. We hope that
this chapter can successfully address these questions and generalize techniques in
identifying and formulating a potential game. Through a systematic examination
over existing work, we are able to account for the methodologies involved, and
provide readers with useful and unified insights. In the identification problems, we
examine the structures of the game’s strategy space and utility functions, and their
properties upon which the conditions of potential games are satisfied. Meanwhile
in the formulation problem, we suggest two distinct approaches. For the forward
approach, we examine the methods to design utility functions with certain properties
so that a potential function can be derived, and hence a potential game is formulated.
In the reverse approach, we begin by defining a potential function whereby the utility
functions of players can later be obtained. We will also discuss practical examples
in the context of wireless communications and networking in order to illustrate the
ideas.

2.1 Definition

The seminal paper by Monderer and Shapley in 1996 [31] coined the term “potential
games”. It presented the first systematic investigation and fundamental results for
a certain type of games for which potential functions exist. However, the first
concept of potential games can actually be traced back to the work by Rosenthal in
1973 [40], about games having pure-strategy Nash equilibria known as “congestion
games”. Today, the theory of potential games has been further developed by many
authors. They have also grown out of their pure mathematical realm and found
successful applications in solving engineering problems.

© Springer International Publishing Switzerland 2016 23
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Mathematically, there can be various types of potential games. In all these types
of games, however, the common thread is the existence of an associated function—
the potential function—that maps the game’s strategy space S to the space of real
number R. Their classifications depend on the specific relationship between the
potential function and the utility functions of players. The potential function is
therefore the most important element in the studies of potential games. The origin
of the term “potential” was drawn from analogies to the similarly-named concept
of potential in vector field analysis, whose leading examples include gravitational
potential and electric potential in physics.

Monderer and Shapley [31] listed four types of potential games: ordinal potential
games, weighted potential games, exact potential games, and generalized ordinal
potential games. Other extensions also exist in the literature. Of interest in this
monograph are best-response potential games proposed by Voorneveld [49], and
pseudo-potential games proposed by Dubey et al. [13]. For completeness, we will
present here the definitions for all these types of potential games.

2.1.1 Exact Potential Games

Definition 2.1 (Exact Potential Game). The game ¢ ! is an exact potential game
if and only if a potential function F(S) : S + R exists such that, Vi € .4":

Ui(T;, S—i) — Ui(Si, S—i) = F(T;,5-) — F(S;,5-),
VS, T; € S;;VS_;, € S_;. (21)

In exact potential games, the change in a single player’s utility due to his/her
own strategy deviation results in exactly the same amount of change in the potential
function.

Assuming that each strategy set S; is a continuous interval of R and each utility
function U; is everywhere continuous and differentiable, we say ¢ is a continuous
game. For such a game to be an exact potential game, an equivalent definition
to (2.1) states that, Vi € A4":

BU,-(S,-,S_,-) . 8F(Sl, S—i)

s VS, S,';VS_,' S_,‘. 2.2
s, 3s; © © 2

Among the various types of potential games, exact potential games are those
whose definition requires the strictest condition of exact equality. Other types of
potential games are defined by loosening this condition. Exact potential games are
however the most important and have received the highest level of interest in both
theoretical research and practical applications.

'In this chapter, a game ¢ will be understood as ¢ = [.4, S, {U;}ic_v], unless otherwise stated.
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Fig. 2.1 Prisoners’ dilemma a

with payoff matrix in (a) and C D cC D

a potential function in (b) Cl=1,—-1]—6, 0 Ccl 1 2
D| 0,—-6/—4,—4 Dl 2 ] 4

Example 2.1. The prisoner’s dilemma in Sect. 1.2.7 is an exact potential game. The
payoff table is reproduced in Fig.2.1a and a corresponding potential function is
given alongside in Fig.2.1b. It is not difficult to verify this by simply stepping
through all possible unilateral strategy changes. For instance, for the switch from
(C,C) to (D,C) due to player 1, Uy(C,C) — U;(D,C) = (-1) — 0 = —1.
Correspondingly, F(C,C)—F(D, C) = 1 —2 = —1. The other strategy changes can
be verified similarly.

Please note that the potential function is not unique. How to obtain such a
function is one of the objectives of this chapter and will become clearer after more
contents are introduced. The actual procedures will be discussed in Sect. 2.3.2.

2.1.2 Weighted Potential Games

Definition 2.2 (Weighted Potential Game). The game ¥ is a weighted potential
game if and only if a potential function F(S) : S — R exists such that, Vi € A4":

U,'(T,‘, Sfi) — U,'(S,‘, Sfi) = W; (F(T,, Sf,‘) — F(S,', Sfl')) s
VS;, T; € S;;VS_; € S_; (23)

where (w;);e 4 constitutes a vector of positive numbers, known as the weights.

In weighted potential games, a player’s change in payoff due to his/her unilateral
strategy deviation is equal to the change in the potential function (also known as
w-potential function in [31]) but scaled by a weight factor. Clearly, all exact potential
games are weighted potential games with all players having identical weights of 1.

Similarly, (2.3) is equivalent to the following condition for continuous games.
That is, Vi € A:

oU;(S;, S—) OF (S;, S—i)
=w;

VS, €S;:VS_; €S_,. 2.4
3s, IR S;€Si;VS_; €8 (2.4)

Although defined separately, weighted potential games and exact potential games
can be made equivalent by scaling the utility functions appropriately.
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Fig. 2.2 A weighted a b

potential game with payoff C D cC D
matrix in (a) and a potential C|=2,— 3|-12, 0O Ccl 1 2
function in (b) D| 0,—18|—8,—12 D| 2 4

Lemma 2.1. ¢ = [A,S,{U;}icv] is a weighted potential game with potential
Sfunction F(S) and weights (W;)iev if and only if 4’ = |:</V S, {V; = %U,'},-e,/y] is

an exact potential game with potential function F(S).

Proof. Clearly, the following conditions
Ui(T;, S—i) — Ui(Si, S—i) = wi (F(T;, S—) — F(S;. S-))
and
Vi(Ti, S—i) — Vi(Si, S—i) = F(T;, S—) — F(Si, S—)

are equivalence. Thus, necessity and sufficiency are apparent. O

Due to their equivalence, in our subsequent discussion, we will focus our
discussion on exact potential games. However, equivalent results should be equally
available for weighted potential games as well.

Example 2.2. The prisoner’s dilemma in Example 2.1 with scaled utility functions,
(w1, wp) = (2, 3), is a weighted potential game (Fig. 2.2). Note that these two games
can have the same potential function. The validation for the potential function is also
very straightforward.

2.1.3 Ordinal Potential Games

Definition 2.3 (Ordinal Potential Game). The game ¢ is an ordinal potential
game if and only if a potential function F(S) : S — R exists such that, Vi € A4":

Ui(T;, S-i) — Ui(Si, S—i) > 0 & F(T;, S—;) — F(Si,5-) > 0,
VS, T; € S;;VS_; € S_;. (25)

Note that (2.5) can be equivalently rewritten as follows. Vi € .4":

sgn[Ui(T;, S—;) — Ui(Si, S—)] = sgn[F(T;, S—;) — F(Si, S-)],
VSi, Tl (S Sl‘; VS_l‘ € S_i (26)

where sgn() is the signum function.
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Fig. 2.3 An ordinal potential a b

game with payoff matrix in C D cC D
(a) and a potential function Cc|-1,-2[-9, 0 0 1
in (b) D| 0,-8—4,-5 D| 1 2

Unlike in exact potential games, ordinal potential games only require that the
change in the potential function due to a unilateral strategy deviation only needs to
be of the same sign as the change in the player’s utility function. In other words,
if player i gains a better (worse) utility from switching his/her strategy, this should
lead to an increase (decline) in the potential function F, and vice versa.

For continuous games, Vi € ./:

U;(S;, S—) IF(Si, S—)

— | = —— |, VS, eS; VS, e S_.. 2.7
an | o[ e
Example 2.3. The following ordinal potential game (Fig.2.3) is a variant of the
prisoner’s dilemma (see Example 2.1) with modified payoffs. The procedures for
obtaining the associated potential function will be discussed in Sect. 2.3.1.

2.1.4 Generalized Ordinal Potential Games

Generalized ordinal potential games are an extension from ordinal potential games,
as defined in [31]. We include their definition for completeness.

Definition 2.4 (Generalized Ordinal Potential Game). The game ¥ is a general-
ized ordinal potential game if and only if a potential function F(S) : S — R exists
such that, Vi € ./:

Ui(T;, S—i) — Ui(Si, S—i) > 0 = F(T;, S—;) — F(Si,S-) > 0,
VS, T; € Si; VS_; € S_,‘. (2.8)

Basically, an increase (decrease) in a player’s utility due to his/her unilateral
strategy deviation implies an increase (decrease) in the potential function. But the
reverse is not true, unlike in ordinal potential games.

Example 2.4. The game presented in Fig.2.4 is a generalized ordinal potential
game. Note that F(1A,24) — F(1A,2B) > 0 does not imply U,(14,2A) —
U,(1A,2B) > 0. Hence, the game is not an ordinal potential game and the example
indicates that ordinal potential games are a subset of generalized ordinal potential
games.
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Fig. 2.4 A generalized a b

ordinal potential game with 24 2B 24 2B
payoff matrix in (a) and a 14| 4,3 3.3 14| 3 0
potential function in (b) 1B| 3.4 4,3 1B| 2 1

2.1.5 Best-Response Potential Games

Best-response potential games were introduced by Voorneveld [49]. We include
their definition for completeness.

Definition 2.5 (Best-Response Potential Game). The game ¥ is a best-response
potential game if and only if a potential function F(S) : S +— R exists such that,
Vie N

%’i(S_i) = arg max F(Si,S_i), VS_; € S—i 2.9)
S;€S;

where %;(S_;) is player i’s best-response correspondence which is defined in (1.8).

Note that the equality in (2.9) should be interpreted as the two sets are equal. The
notion of best-response potential games deviates considerably from the previous
notions in Sects. 2.1.1-2.1.4. It requires that all strategies that maximize player i’s
utility must also maximize the potential function, and vice versa.

The next lemma discusses the relationship between best-response potential
games and ordinal potential games.

Lemma 2.2. Every ordinal potential game is also a best-response potential game.

Proof. We shall prove by contradiction. Let us consider an ordinal potential game
¢ with potential function F. Then, for an arbitrary player i, we consider some of
his/her best responses S; € PB;(S—;). Now, assuming ¢ is not a best-response
potential game, then there exists at least one S; which does not maximize F (S‘,-, S_i).
Consequently, it implies that there exists S; such that F(S},S_;) > F (§,-, S_;) which
results in U(S;}, S—;) > U (§,-, S_;) from the definition given in (2.5). This contradicts
the fact that S; is a best-response strategy. Hence, the set of maximizers for every
player’s utility function should also be identical to the set of maximizers for the
potential function and the lemma holds. O

On the other hand, a best-response potential game may not necessarily be an
ordinal or generalized ordinal potential game as the following example shows.

Example 2.5. The following game by Voorneveld [49] shown in Fig.2.5 is a
best-response potential game. However, since F(14,2B) — F(1A,2C) > 0 while
U,(1A,2B) — U,(1A,2C) < 0, the game cannot be an ordinal or generalized ordinal
potential game.
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Fig. 2.5 A best-response a b

potential game with payoff 24 2B 2C 24 2B 2C
matrix in (a) and a potential 14| 2,2 1,0 0,1 14| 4 3 0
function in (b) 1B| 0,0 0,1 1,0 1B| 0 2 1

2.1.6 Pseudo-Potential Games

The concept of pseudo-potential games was introduced by Dubey et al. [13].

Definition 2.6 (Pseudo-Potential Game). The game ¢ is a pseudo-potential game
if and only if a continuous function F : S > R exists such that, Vi € 4"

%’i(S_i) D arg max F(S,',S_,‘), VS_;eS_;. (2.10)
S;€S;

The above implies that the set of maximizers of the function F with respect to
the strategy of player i, while keeping opponents’ strategies constant, is included in
player i’s best-response correspondence. It suffices to say that in order for player
i to obtain one of his/her best responses, he/she might do so by maximizing the
pseudo-potential function F.

Example 2.6. Consider again the game in Example 2.4 (see Fig. 2.4a). The game is
also a pseudo-potential game. Its potential function is also given by Fig.2.4b. We

note that it is not a best-response potential game as arg max F(14, S,) = 2A while
$2

argmax U, (14, Sy) = {2A,2B}.
S

Pseudo-potential games are included because they have applications in dis-
tributed power control for wireless networks. Specifically, two special classes of
pseudo-potential games known as games of weak strategic substitutes and/or weak
strategic complements with aggregation (WSC-A/WSS-A) are applied to analyze
power control problems. We will return to these applications in Sect. 5.2.

2.1.7 Relations Among Classes of Potential Games

Several classes of potential games have been defined. The following theorem sums
up their inter-relationships.

Theorem 2.1. Let E, W, O, G, B and P denote the classes of finite exact,
weighted, ordinal, generalized ordinal, best-response, and pseudo- potential games,
respectively. Then

(i) ECWcOcCcGcP
(i) ECWcOcCBcP
(i) GNB #0, G\B #0, andB\ G # 0.
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Proof. The results were concluded due to several works such as [13, 31, 43, 49].

From their definitions and the results presented in (2.1), (2.3), (2.5), and (2.8),
it is obvious that E C W C O C G. To see that G C P, Schipper [43] argued
that if 4 € G, then ¢ has no strict improvement cycle which means it also has
no strict best-response cycle; and hence, we also have 4 € P. However, 4 € P
does not imply ¥ € G, which means P ¢ G. Hence, (i) is proven. The concept
of improvement cycles and strict best-response cycles will be defined in details in
Sect.2.3.1.

In Sect.2.1.5, Lemma 2.2 shows that O C B, while Example 2.5 shows that
B ¢ O Also by definition, B C P. Meanwhile, Example 2.6 shows that P ¢ B.
Hence, (ii) is proven.

To establish (iii), [49] gave examples of games that are both in G and B, in G but
not in B, and in B but not in G. O

2.2 Fundamental Properties of Potential Games

In this section, we discuss the properties possessed by potential games. These
include two results of paramount importance, which are the existence of pure-
strategy Nash equilibria and the convergence to these equilibria in potential games.
In the literature, Monderer and Shapley [31] established the key existence and
convergence results for ordinal potential games. According to Theorem 2.1, these
results should also apply to exact and weighted potential games. Later works [13,43]
extended these existence and convergence properties to pseudo-potential games;
however, the results are more restrictive than those of ordinal potential games.
Again, from Theorem 2.1, results for pseudo-potential games directly apply to
generalized ordinal and best-response potential games, both of which are subsets of
pseudo-potential games. Thus, we will present our discussion according to two main
types of games, i.e., ordinal potential games and pseudo-potential games, separately.

2.2.1 Nash Equilibrium Existence

The key idea to show that a Nash equilibrium exists in potential games is the
observation that the set of equilibria in such a game is tied to that of an identical-
interest game, where every player maximizes the common potential function. We
begin our discussion with the case of ordinal potential games.

Theorem 2.2 (Monderer and Shapley). If F is a potential function for the ordinal
potential game G = [N, S,{U;}ic x|, then the set of Nash equilibria of 4 coincides
with the set of Nash equilibria for the identical interest game 9" = [N, S, {F}ic.r].
That is,

NESet(¥) = NESet(¥") (2.11)
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where NESet denotes the set of Nash equilibria of a game.

Proof. First, assume that S* is a Nash equilibrium for ¢. Then, Vi:
Ui(SF.S*) — Ui(S:.S*) =0 VS €8, (2.12)
Also by the definition of ordinal potential game (2.5), this leads to, Vi:
F(S.8*) —F(Si.5*) >0 VS €S, (2.13)
Hence, S* is also a Nash equilibrium for ¢. Thus, NESet(¥) € NESet(¥47).

Similarly, we can show that NESet(¢") € NESet(¥). Thus, NESet(¥4")
NESet(¥).

m

Corollary 2.1. If F has a maximum point in S then & has a pure-strategy Nash
equilibrium.

Clearly, every maximum point S* for F has to satisfy (2.13) and thus coincides
with a (pure-strategy) Nash equilibrium for ¢. Note also that $* can either be a
local or a global optimum. The set of global maximizers for F therefore is a subset of
NESet(¥). However, one may only consider these global maxima more “desirable”
in terms of social optimality if the potential function itself represents a meaningful
measure of such optimality, such as the utilitarian welfare function (1.18). In
Chaps. 3 and 4, we will discuss applications where the potential function in fact
coincides with the utilitarian welfare function.

The next two theorems characterize Nash equilibrium existence for ordinal and
pseudo-potential games, according to the properties of their strategy spaces and
potential functions.

Theorem 2.3. The following statements are true.

* Every finite (ordinal) potential game admits at least one pure-strategy Nash
equilibrium.

e Every continuous (ordinal) potential game whose strategy space S is compact
(i.e., closed and bounded) and potential function F is continuous admits at least
one pure-strategy Nash equilibrium. Moreover, if F is strictly concave, the Nash
equilibrium is unique.

Proof. For finite games, S is bounded and a maximum of F(S) always exists. Hence,
a Nash equilibrium exists.

For continuous games with compact S and continuous F, the same argument
holds. If F is also strictly concave, it has a unique, global maximum.

Note that all the results apply to all exact potential games equally well. Several
engineering applications of potential games only need to invoke those results for
exact potential games. O

For pseudo-potential games, similar, albeit weaker, results are also obtained.
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Theorem 2.4 (Dubey and Schipper). Consider the pseudo-potential game 4 =
[A,S, {U;}icy'] with potential function F, and 97 = [N, S,{F}ies). If F has a
maximum, then 4 has a pure-strategy Nash equilibrium; and

NESet(¥%") € NESet(¥). (2.14)

Proof. Every §* € argmax F(S) is, by definition, a Nash equilibrium of 4. From
the definition of pseudo-potential games in (2.10), we derive that S* € NESet(¥).
Therefore, NESet(¥") € NESet(¥) and ¢ has at least one (pure-strategy) Nash
equilibrium as long as F has a maximum. O

As a direct consequence, we have:

Corollary 2.2. Any pseudo-potential game which is either finite, or has a compact
strategy space and a continuous potential function, possesses a pure-strategy Nash
equilibrium.

2.2.2 Nash Equilibrium Convergence

Previously, we have established the existence of at least one pure-strategy Nash
equilibrium. This section looks at how the players can achieve a Nash equilibrium
in potential games. The main idea is via sequential decision dynamics in which
players take turn to act in sequence or in a round-robin manner. Each player in turn
selects a new strategy based on a certain decision rule, thus creating a unilateral
strategy deviation and inducing a corresponding change in the potential function.
If the change represents an improvement in the value of the function, one expects a
series of improvement that drives the game toward one of its equilibria.

We can formalize the aforementioned idea by introducing the concept of
improvement path.

Definition 2.7. A sequence of strategy profile p = (5°,5',8%,...) such that for
every index k > 0, S**! is obtained from S* by allowing a player i(k) (the single
deviator in step k) to change his/her strategy, is called a path. A path p is an
improvement path if in each step k, the deviator i(k) experiences a gain in his/her
utility, i.e., Uig) (S1) > Uiy (S¥). Moreover, p is called a cycle if p is of finite
length and its terminal element S coincides with its initial element S°.

An improvement path p is allowed to terminate if no further possible improve-
ment can be obtained. Some paths might not terminate (i.e., are infinite or become
a cycle). We are interested in finite improvement paths.

Theorem 2.5. For any strategic game 9, if a finite improvement path exists, its end
point corresponds to a Nash equilibrium.

Proof. We prove by contradiction. Let p be a finite improvement path whose end
point is SX. If we assume that SX is not a Nash equilibrium, then there exists a player
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i(K) who can deviate from his/her current strategy S§K) to a new strategy Tk, in
order to improve his/her utility. We could now add S**' = (T), S¥,)) to p to

extend this path. This contradicts the initial assumption that p must terminate at S.
a

The above result implies that any decision dynamic that can generate a finite
improvement path will eventually end up at a Nash equilibrium. It has an immense
consequence—most practical applications of game theoretic formulations in gen-
eral, and potential games in particular, apply this principle in finding a Nash
equilibrium. This result does not require a game to be a potential game; but a
potential game will guarantee this, which we will show shortly.

One might now ask, what kinds of decision dynamics, among those we intro-
duced in Sect. 1.3.2, will generate finite improvement paths for potential games?

Clearly, myopic best-response and better-response (random or deterministic)
dynamics create improvement paths, by their definitions in (1.16) and (1.17). Thus,
they are prime candidates for further investigation.

We will discuss the answer for different types of potential games subsequently.

2.2.2.1 Finite Ordinal Potential Games

We look at an important theorem by Monderer and Shapley [31].

Theorem 2.6 (Monderer and Shapley). For finite ordinal potential games, every
improvement path is finite. This is known as the finite improvement path property.

Proof. Tt is obvious that every improvement path must terminate as the increment
of the potential function is finite and bounded. O

Corollary 2.3. For finite ordinal potential games, every sequence of better and best
responses converges to a Nash equilibrium, regardless of its starting point.

2.2.2.2 Continuous Ordinal Potential Games

In continuous context, absolute convergence may or may not be realized in a finite
number of steps. A classic example is the convergent sequence {1 — zln}n:],z““
which ultimately converges but goes on infinitely. This is due to the sequence’s
infinitesimal stepsizes as n — oo.

One however can control the stepsize by defining the concept of e-improvement
path.

Definition 2.8. A path p = (5°,5',5%,...) is an e-improvement path if in each
step k, the deviating player i(k) experiences Ui (S*T!) > Uy (S) + €, for some
€ € R+.
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This also facilitates the concept of e-equilibrium, which is a strategy profile that
is approximately close to an actual Nash equilibrium.

Definition 2.9. The strategy profile S € S is an e-equilibrium if and only if
de € Ry such that, Vi e A4":

Ui(Si,S-1) > Ui(S;,5—) —€, VS, €S, (2.15)

The e-equilibrium is a refinement of the original Nash equilibrium and is
sometimes preferred as a solution concept especially in situations which require
less computational complexity.

Theorem 2.7 (Monderer and Shapley). For continuous ordinal potential games
with bounded utility functions, every e-improvement path is finite. This is known as
the approximate finite improvement path property.

Proof. For ordinal potential games whose utility functions are bounded, their
potential functions must also be bounded. That is, 3L € R,L < oo such that
L = supgeg F(S).

Now suppose that p = (5°,5',...,8% ...) is an e-improvement path which is
also infinite. By definition, U;g—1)(S*) — Uju—1)(S*™") > €, Vk. As the game is an
ordinal potential game, there exists a sufficiently small constant €’ such that F(S*) —
F(S*1) > €', Vk. This implies F(S¥) — F(S°) > ke’ or

F(SY) > F(S°) + ke, Vk. (2.16)

Clearly, lim_, oo F(S¥) = oo which is a contradiction. O

Thus, any e-improvement path p must terminate after a certain K steps, at which
point F(S¥) < L < F(S*) + € or F(S¥) > L —¢’. This suggests that the end point of
such a path is an e-equilibrium, which we state in the following corollary.

Corollary 2.4. For continuous ordinal potential games, every better-response
sequence that is compatible with e-improvement converges to an €-equilibrium in
a finite number of steps.

Note that although traditional best-response and better-response dynamics still
advance towards a Nash equilibrium in continuous games, whether they will
terminate in a finite number of steps is not guaranteed. However, in case this
happens, e-improvement path can be used to approximate the solution.

2.2.2.3 Pseudo-Potential Games

For pseudo-potential games, the following results hold.

Theorem 2.8 (Dubey and Schipper). For finite pseudo-potential games, sequen-
tial best-response dynamics converges to a Nash equilibrium in a finite number of
steps.
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Proof. Convergence in finite games is established from Proposition 2 of [43]. We
omit the details. o

In summary, convergence to a Nash equilibrium is guaranteed in all finite
ordinal potential games by using best-response and better-response dynamics. For
continuous ordinal potential games, these dynamics are able to converge to an
€-Nash equilibrium. On the other hand, convergence results in pseudo-potential
games are only guaranteed for best-response dynamics, as the definition of pseudo-
potential games is strongly tied to best responses.

2.3 Identification of Potential Games

In this section and Sect.2.4 that follows, we present our studies to address the
challenges when applying potential games to practical problems. We have seen that
being able to know if a game is a potential game is important as it guarantees that at
least one equilibrium solution exists. This section specifically provides an answer to
this crucial question of how fo identify that a game is a potential game. We hope to
develop a set of rules which allow us to achieve this purpose. Specifically, we look
into characterizing the necessary and sufficient conditions in the strategy space and
utility functions of players, for a game to be a potential game. We will first present
the results for ordinal and pseudo-potential games in Sect.2.3.1. Exact potential
games, both continuous and finite, will be tackled in Sect. 2.3.2.

2.3.1 Ordinal and Pseudo- Potential Game Ildentification
2.3.1.1 Ordinal Potential Game Identification

For ordinal potential games, Voorneveld et al. [50] derived two necessary and
sufficient conditions which will be stated in Theorem 2.9 (Theorem 3.1 of [50]).
Before introducing the theorem, a few concepts need to be defined. Recall the
definitions of paths and cycles previously (Definition 2.7).

Definition 2.10. A path p = (5%, S!, 5%, ..., 8K) is non-deteriorating if U (S) <
Uiy (S+1), Yk where i(k) is the deviating player in step k. For two arbitrary strategy
profiles S and 7', we write S — T if there exists a non-deteriorating path from Sto 7.

Definition 2.11. The cycle p = (8°,8',8%,...,8 = 5% is called a weak
improvement cycle if it is non-deteriorating; and Uy (SX) < Uy (S11!) at some k.

We now define a binary relation &~ on S based on the — relation, such that for
S, T €S,S~ Tifboth S — T and T — S hold. Then, this binary relation ~ can
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easily be verified to be an equivalence relation.” The equivalent class of an element
S € S is now defined as the set [S] where [S] = {T € S |S ~ T}. Subsequently, one
can define the set of equivalence classes on S induced by =, denoted by

S~ = {[S], VS € S}. 2.17)

On S, we then define another preference relation < such that [S] < [T] if [S]
[T] and S — T. Moreover, < can be shown to be irreflexive and transitive.
Finally, we define the proper order as follows.

Definition 2.12. The tuple (S~, <) is said to be properly ordered if there exists a
function F : Sx. + Rsuch that VS, T € S, [S] < [T] = F([S]) < F([T))-

For a better understanding of various concepts here, we refer the readers to some
textbooks in abstract algebra, such as [14].

The following theorem provides characterization of ordinal potential games. We
omit the proof due to its technicalities which are out of the scope of our book.

Theorem 2.9 (Voorneveld). The game G = [N, S, {U;}ics] is an ordinal poten-
tial game if and only if the two following conditions hold:

(1) S has no weak improvement cycle.
(2) (Sx, <) is properly ordered.

Corollary 2.5 (Voorneveld). If S is finite (or countably infinite), condition (2) in
Theorem 2.9 can be omitted.

Remark 2.1. For finite/countable games, a crude method of identifying ordinal
potential games is to exhaustively check for lack of weak improvement cycles.

The following example involves verifying whether a finite game is an ordinal
potential game using this method.

Example 2.7. Consider the 3-player game in Fig. 2.6.
In this game, strategy space is finite and can be represented by a graph. Vertices
of the graph correspond to S1, 52, ..., S58. An edge connects two vertices if a single

24 2B 24 2B
1A[SDLOI[(S)LLT] 14[(55)6.,6,6 [ (56)6,4.6
1B[(54)6,6,4 | (53)4.4,6 | 1B[(58)4,6,6 | (57)4,4.4

34 3B

Fig. 2.6 A 3-player strategic game. Strategy profiles are labeled S1-S8

2In mathematics, a binary relation between two members of a set is an equivalence relation if and
only if it is reflexive, symmetric and transitive [14].
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Fig. 2.7 Graphical S5 « S6
. _—
representation of the game 2
in Fig. 2.6 / A A
S1 S2
>
S8 i | o
< s7
Y / Y /
840 S3
<

player’s deviation causes a switch between the two corresponding profiles. The full
graph is depicted in Fig. 2.7.

Moreover, we use an arrow superimposed on an edge to indicate that a non-
deteriorating path exists from one vertex to another. Any resulting directed cycle is
a weak improvement cycle. Clearly, by searching within this graph, we find no such
cycle. Therefore, this is an ordinal potential game according to Corollary 2.5.

2.3.1.2 Pseudo-Potential Game Identification

For pseudo-potential games, similar results were provided by Schipper [43]. Note
that concurrently, [49] also presented the characterization for best-response potential
games but these results are not repeated here.

Analogous to ordinal potential games, the conditions involve a lack of strict best-
response cycles, and proper order on (Sx, <). Note that the requirement of path
improvement is now restricted to best-response moves only.

Definition 2.13. A path p = (S, S', %, ..., SX) is strict best-response compatible
(SBRO)if Vk =0,...,K:

k e ok k
gl — ‘?i(k) if Siy) € Bito (SZipy) (2.18)
Sitky € Bigo (S© i) otherwise,

where i(k) is the deviating player in step k. That is, the deviator either deviates to
his/her best-response strategy, or stays at the current strategy if it is already a best
response. For two arbitrary profiles S and T, we write S > T if there exists a SBRC
path from Sto 7.
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Definition 2.14. The cycle p = (5°,5',5%,...,8% = 89) is called a strict best-
response cycle if it is SBRC; and U (S*) < Uiy (S¥*1) for at some k.

Similarly, the binary equivalence relation S ~ T is then defined on S if S > T
and T > S. The corresponding set of equivalence classes is denoted by S~ and the
preference relation < is similarly defined on Sx..

Main results are stated in the next theorem and corollary (Theorems 1-4
from [43]). Once again we omit the proofs.

Theorem 2.10 (Schipper). Consider a game 4 = [N ,S,{U}icy]| and the
following two conditions:

(1) S has no strict best-response cycle,
(2) (Sx, <) is properly ordered.

Then,

* Sufficiency: 9 is a pseudo-potential game if (1) and (2) hold.
* Necessity: If 4 is a pseudo-potential game with potential function F, then (1)
and (2) hold for the game 97 = [N, S, {F}ic.x].

Corollary 2.6 (Schipper). If either S is countable or each S; C R, Theorem 2.10
is valid without considering condition (2).

Finally, a method of knowing if a finite game is not a pseudo-potential game is by
exhaustively checking for existence of strict best-response cycles. This is a weaker
result than the case of ordinal potential games.

The following example shows a game which is not a pseudo-potential game.

Example 2.8. Consider the 2-player game in Fig. 2.8.
It is easy to see that (S1, 52,55, 54, S1) is a strict best-response cycle. Thus, this
is not a pseudo-potential game (as well as ordinal potential game).

2.3.1.3 Construction of Potential Functions

For finite ordinal and pseudo-potential games, we observe that there is a simple
method to construct the ordinal and pseudo-potential functions. The method was
first proposed by Schipper [43] for finite pseudo-potential games. We find that it can
be extended to finite ordinal potential games. The following discussion for ordinal
potential games may be an unreported result as the authors are not aware of any
existing relevant articles in the literature.

Fig. 2.8 A 2-player 3 x 3 Player 2
strategic game 24 2B 2C
14| (S1)3.6 | (S2)0,10 | (S3)1,7
Player 11B| (S4) 1,4 | (85)2,0 | (S6)5,2
1C| (S7)2,2 (S8)1,5 (89)3.3
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The idea is to define a potential function by assigning a strength ranking to each
strategy profile S in S. This rank is measured by counting the number of other
strategy profiles S’ # S such that from S’ there exists a path leading to S. We require
this path to be a non-deteriorating path for ordinal potential games.

Recall the notation § — S when there is a non-deteriorating path from S’ to S.
We denote r : S — N the rank function of a strategy profile S € S (where N is the
set of natural numbers). The rank function is thereby defined as follows

r(S) =Y 18 - ) (2.19)

NESS)

where 1(S" — S) is the indicator function for the relation —, i.e.,

1 ifS — S,
1 -s=1 "7 (2.20)
0 otherwise.

Theorem 2.11. If the game ¥ is a finite ordinal potential game, then the rank
function r(S) defines a potential function for 9.

Proof. We prove by contradiction.

Assume that ¢ is an ordinal potential game. Along any S" — S path, the stepwise
change in the utility function of any deviating player must be non-negative. Hence,
if F() is a potential function it must satisfy F(S') < F(S). Now supposing that r(S)
is not a potential function, then there exists a § — S path such that (") > r(S).
By definition of (), S’ has more strategy profiles that can be led to it via a non-
deteriorating path than S does. This means,

3" €S: 8§ — 5, butS” 4 S. 2.21)

However, since — is transitive, §” — S and ' — S imply S” — S. This
contradicts (2.21) which requires S” 4 S. Hence, r(S) must be a potential function.
O

An intuitive interpretation of the above theorem is that, given any finite ordinal
potential game, the number of strategy profiles that have a non-deteriorating path
leading to S can be set as the potential value of S. We further observe that if S —
and §’ — §, or S and §’ belong to the same equivalence class [S], i.e., [S] = [$], then
r(S) = r(8’). In addition, if [S] < [$'] then #(S) < r(S’). Thus, the function r() ranks
all equivalence classes of ¢ in accordance with the relation <. This is essentially an
implication of the proper order on (S, <) as stated in Theorem 2.9.

Our next theorem shows that there can be infinitely many ways of constructing
potential functions, as long as all the strategy profiles are assigned with numbers
which preserve the order as that given by r().

Theorem 2.12. Let & be a finite ordinal potential game and assume that the
rank function r() assigns values {0,1,...,M} to its strategy profiles. Also, let
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(x0, X1, . ..,xy) be an arbitrary (M + 1)-tuple of real numbers such that xy < x| <
... < xy. Then 4 admits any function F as its potential function where

FS)=x if r(S)=i Yi=0,1,....M. (2.22)

Proof. The proof is left as an exercise. O

Example 2.9. Consider the ordinal potential game in Example 2.7. For this game,
the possible non-deteriorating paths can be deduced from Fig.2.7. A potential
function therefore can be computed from the rank function as follows.

Profile | Non-deteriorating paths from | Rank r(S)

S1 None 0
S2 S1 1
S3 S1,82,87 3
S4 S1,82,83,87 4
S5 S1,52,853, 54,55, 56,57 7
S6 S1,82,87 3
S7 None 0
S8 S1,82,83,54,57 5

One can verify that this function satisfy the ordinal potential function definition.

Exercise 2.1. Use the rank function to compute a potential function for the ordinal
potential game in Example 2.3.

For pseudo-potential games, by replacing the requirement of non-deteriorating
paths by strict best-response compatible (SBRC) paths, we can have similar results.
Recall the notation S’ > S if there is a SBRC path from S’ to S. The indicator function
1(S’' > S) is also defined similarly.

Theorem 2.13 (Schipper). Let ¢ be a finite pseudo-potential game. Then, &
admits the following rank function r : S — N as its potential function:

r(S) =Y 1(S'>9). (2.23)
S'esS
Proof. Similar to the proof of Theorem 2.11. O

Analogous to ordinal potential games, more generalized constructions can be
realized.

Corollary 2.7. Let 4 be a finite pseudo-potential game and the rank function r()
assigns values {0, 1, ..., M} to its strategy profiles. Also, let (xo,x1,...,xy) be an
arbitrary (M + 1)-tuple of real numbers such that xo < x; < ... < xy. Then 4
admits any function F as its potential function where
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FS)=x; if r(S)=i, Vi=0,1,...,M. (2.24)

Exercise 2.2. Use the rank function in (2.24) to compute a potential function for
the pseudo-potential game in Example 2.6.

2.3.2 Exact Potential Game ldentification
2.3.2.1 Continuous Exact Potential Game Identification

This section looks into the issue of identifying continuous exact potential games. In
our discussion, we will assume that each strategy set of the game ¢ is a continuous
interval of real numbers, i.e., S; € R; and that the utility function U; : S; — R
is continuous and differentiable everywhere on S;. In accordance with previous
notations, we denote F' : S — R the possible potential function.

The condition for continuous potential games is relatively straightforward.

Theorem 2.14 (Monderer and Shapley). The game ¥ is a continuous exact
potential game with potential function F if and only if

*U; *U;
= , Vije . 2.25
a0, asas; Y (229)
Proof. Equation (2.25) follows directly from our alternative definition (2.2). O

A benefit of the condition (2.25) is that it allows us to identify a continuous exact
potential game without knowing its potential function.

The next question is how to find the potential function, assuming that the game is
known to be a potential game. Fortunately, Monderer and Shapley [31] also provided
us with a useful formula. Their result is restated as follows.

Theorem 2.15 (Monderer and Shapley). If & is a continuous exact potential
game then its potential function F satisfies

1 a :
ro-rm =Y [ (y’(z)a—?(y(z))) &z (2.26)

ieN

where y(z) : [0, 1] = S is a continuously differentiable path in S that connects two
strategy profiles S and T; such that y(0) = T and y(1) = S.

Proof. The proof comes directly from the gradient theorem in vector calculus [51].
For any smooth curve C from 7 to Sin S € R"I and any function F whose gradient
vector VF is continuous on S, the gradient theorem allows us to evaluate the line
integral along y(z) as
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F(S) — F(T) = /C o VF(s) - ds, 2.27)

where s is a vector variable representing points along C.
After introducing s = y(z) such thats = T when z = 0 and s = S when z = 1,
by chain rule, ds = y’(z)dz and therefore

1
F(S) — F(T) = /0 (/') - VG (@) dz

|A]

1 8 :
=3 [ (neggue)e (228)
i=1 !

Then, since F is a potential function, % = % and (2.26) follows. O

In conclusion, for a given continuous game, we can theoretically verify its exact
potential property and evaluate its potential function. However, (2.26) is often
too general and tedious to evaluate. In most practical applications of potential
games, derivation of potential functions may be obtained through much simpler
procedures. For example, Sect. 2.4 discusses potential games with utility functions
having certain properties where the potential functions can be automatically derived.

We give an example of finding the potential function using (2.26). This example
is introduced in [31].

Example 2.10 (A Cournot Competition). In a Cournot competition, players are the
N firms, which compete in the market for a certain product.

Player i’s strategy is to produce g; products. The strategy space is S = RY.
If player i produces g; products, it bears a cost ¢;(g;). We can assume the function ¢;
is differentiable and ¢;(0) = 0.

All generated products are sold at a common price p, determined by the total
supplies Q = Y .. , ¢; via an inverse demand function p = f(Q). We assume a
linear inverse demand p = f(Q) = a — bQ, where a, b > 0.

Each player’s utility function equals its profit given by

N
Ui =pqi —ci(g) = |a—b Z qj | gi — ci(qi). (2.29)

J=1

We can check the utility function against (2.25). Our game is a continuous exact
potential game as

U, PU
dqidq;  0q;0q;

—b. (2.30)
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To find the potential function using (2.26), we select S = (¢q1,¢2,...,qy) and
T = 0, the origin. Take the path y to be the straight line from 7 to S.

Then, at point y(z) along the path, its projection on the ith-axis is zg;; and its
gradient is (q1, 42, ..., 4qN)-

We assume further that F(0) = 0. Then (2.26) becomes

N 1
0Ui(zqi, 29—
F& =Y. (/ q,-—(zg = )dz). 2.31)
i=1 0 i
Here,
aU;
S =a—b) 4 —2bg—c{(g) (2.32)
qi y
Nial
SO
Y Ui(zqi, 29— !
/(; Qi%dl = Cli/O a—>b quj — 2bzq; — ci(zq;) | dz

i

1 1
=gqi|a— Eb E q; — bgi — ;(Ci(%‘) —¢i(0))
i !

1
= aqi — Eb Z qiqj — ba; — ci(q). (2.33)
J#i

Finally, from (2.31) and (2.33),

N 1 N N N
F)=a) qi=5bD Y qig—b) ai =Y cila). (2.34)
i=1 i=1 i=1

i=1 ji
This is the potential function we obtain, which is identical to the one given
in [31].

From the example above, one sees that the potential function depends on the
assigned value of F(T). The next result addresses its uniqueness.

Theorem 2.16 (Monderer and Shapley). If F| and F, are two possible potential
functions of an exact potential game & (both continuous or finite) then they differ
only by a constant c, i.e.,

Fi(S)—F>(S) =c VSeS. (2.35)
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Proof. See [31] (Lemma 2.7). O

Thus, unlike ordinal and pseudo-potential games, the potential functions in exact
potential games are unique up to addition of a constant.

2.3.2.2 Finite Exact Potential Game Identification

Previously, conditions for continuous games are established due to the smoothness
property of the strategy space. Similarly, for finite games, we will also examine their
strategy spaces. However, the property we look at now involves cycles, i.e., paths
that start and end at the same point. Recall that identifying finite ordinal and pseudo-
potential games involves checking for lack of cycles having weak improvement or
strict best-response properties, respectively. For exact potential games, interestingly,
it happens that the total change in the utility functions along every cycle is O.

Theorem 2.17 (Monderer and Shapley). Let p = (S°,5',5%,...,55 = 5°) be an
arbitrary finite cycle in a finite game 4. Denote i(k) the deviating player from S
to S*T1. Then, 9 is an exact potential game if and only if

K—1
> Ui (8 = Uiy (89] = 0. (2.36)
k=0

Proof. See Appendix A of [31]. O

Naturally, the above necessary and sufficient condition leads to the method of
exhaustively checking all finite cycles to verify if a given game is also an exact
potential game. The next corollary makes the task less tedious by restricting our
search to all cycles of length 4 only.

Corollary 2.8 (Monderer and Shapley). Suppose that p is a cycle of length 4 in a
game 9% as described below:

A<«—D

p=1 1 (2.37)
B— C

where A = (Si,Sj,S_{iJ}), B = (T,',Sj,S_{iJ}), C = (T,‘, ]},S_{ij}), and D =
(Si, Tj, S_gijy) are the 4 strategy profiles forming the cycle, due to two deviating
players i and j.

Then, ¢ is an exact potential game if and only if, Vi,j € N :

[Ui(B) — Ui(A)] + [U;(C) — U;(B)] + [Ui(D) — Ui(O)] + [Uj(A) — Ui(D)] = 0,

ifromAtoB jfromBto C ifrom D to C jfrom D to A

VS, T; € S;; VSj, Tj € SJ‘VS_{[J}. (2.38)

3 Although this section deals with finite games, this corollary is valid also for continuous games.
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Although this result has reduced the amount of computation significantly, the
verification process is still very time consuming. For example, if ¢ has N players
and each player has |S;| = M strategies, then the number of times (2.38) needs to

be checked is
2 2
N M _N(N—l) MM —1)
OO -5 ew

The complexity for this checking method is thus O(N>M*). Recently, there have
been efforts to simplify the procedure and reduce this computation complexity.

Remark 2.2. Hino [17] observed that instead of checking all 2 x 2 combinations of
strategy profiles, we only need to check for those cycles consisting of adjacent rows
and columns when the game is represented in payoff matrix. If there are N players
and each has M strategies, then the number of equations to be checked is reduced to

2
(Nl_ 1) [(Ml_ 1)] =(N—-1)M-1)>% (2.40)

This proposed method will reduce the checking time complexity from O(N>M*)
to O(NM?).

Remark 2.3. In a recent paper, Cheng [10] used the technique of semi-tensor
product of matrices to verify a potential game by obtaining the potential equation.
The game ¥ is an exact potential game if and only if the potential equation has a
solution. The potential function can be constructed from the solution of potential
equation. Refer to [10] for more details.

We conclude this discussion with the construction of potential function for finite
exact potential games. Two previous results come in handy. First, Theorem 2.17
shows that from one point S, any path that comes back to S gives zero change in
the sum of utilities as well as potential function. In other words, any two possible
paths from S to T yield exactly the same sum. Our second result is Theorem 2.16
allowing us to obtain a unique potential function up to addition of a constant. Thus,
we present an algorithm which calculates the potential function for every strategy
profile of a finite exact potential game ¥, given a starting strategy profile S and
an arbitrary initial potential value o assigned to S. The idea is to walk through all
strategy profiles in ¢ starting from S; and at each point we accumulate to o the sum
of utility changes and assign this value to the potential function at the current point.
Algorithm 2.1 gives the procedures.

In Algorithm 2.1, walking through all points in strategy space S starting from S
is performed using the procedure traverse(¥,S). Meanwhile, traverse(¥,S) itself
returns a Boolean value, which is true if there are unvisited nodes, and false
otherwise. Assuming S can be represented by a graph structure with vertices
corresponding to strategy profiles and edges corresponding to possible strategy
deviation by a single player, traverse(¥,S) might make use of classic graph traversal
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Algorithm 2.1 Exact potential function computation for finite games.

Require: Finite exact potential game ¥, initial profile S, constant «
D F(S) <«
while traverse(¥¢,S) do > Visiting all profiles in ¢ starting from S
i < deviating player
A < previous strategy profile
B <— new strategy profile
F(B) < F(A) + U;(B) — U;(4)
end while
return F

A ol e

Fig. 2.9 A generalized Player 2
prisoner’s dilemma game
wherea > b > c > d

C
(M)b (N)d,a

C b
PlayerlD (0 a.d Pe.c

algorithms such as the breadth-first search or depth-first search algorithms [19]
to exhaustively visit all nodes in an optimal manner. At each unvisited node,
say B, it will identify its predecessor A and the deviating player i in the current
move. Subsequently, it calculates the potential function for the new node by
adding the utility change of that player to the predecessor’s potential value. When
traverse(¥¢,S) ends, all nodes have been visited and the final potential function F is
returned.

We shall go through a simple example where Algorithm 2.1 is used to compute
the potential function for the Prisoner’s dilemma.

Example 2.11. Consider the Prisoners’ dilemma with a generalized payoff matrix in
Fig.2.9. Its graphical representation has a simple structure of 4 vertices (M, N, P, Q)
and 4 edges (MN, NP, PQ, OM).

We assume that our algorithm starts at N and an initial value @ = 1 is used. We
assume the particular graph traversal order N — M — Q — P (note that the order
is not important). The computation is as follows.

Profile | Path Deviating player | Potential

N None None 1

M N—->M |2 1+b—a

(0] M—>Q |1 l1+b—a+ta—>b=1
P Q—P |2 14+c—d

Exercise 2.3. Use Algorithm 2.1 to compute a potential function for Example 2.1.
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2.4 Formulation of Exact Potential Games

In the previous section, we have tackled the question of how to identify whether
a game is a potential game. We specified the conditions for a given game to be
a certain type of potential games and how to compute the potential function. The
reversed question, which is the second objective of this chapter, is how to construct
potential games. This is of equal importance, because if one knows the techniques to
formulate potential games, including how to define the utility functions of players
and the potential functions, we believe that potential games can become a more
effective problem-solving tool and can find a much wider range of applications.

For a given engineering problem, especially in the field of wireless communica-
tions, it may sometimes be more desirable to formulate this problem as a potential
game in order to have solutions which are stable and achievable. However, how to
formulate such a game is still a great challenge. In most existing problems, potential
games are often established by introducing their associated potential functions
and verifying them with the definition. Moreover, generally known models are
limited to a few known forms of potential functions as well as players’ utility
functions. The unanswered questions are, is there an effective method to design
utility functions and potential functions so that one is able to construct potential
games? Are there any special properties or structures in these functions that can
help us identify potential games? Some formulation principles may already exist
or have implicitly been used in the literature, but there is still a lack of systematic
studies to formalize the underlying rules. Thus, our studies aim to uncover them and
hopefully inspire researchers to fully exploit the “potential” in using the potential
game technique. In this section, our focus will therefore shift towards the design
aspect—the generalized method which are useful in constructing new potential
games. Our discussion focuses especially on exact potential games which have
gained the most attention and practical applications.

We start our investigation by firstly identifying useful properties of the utility
functions of players based on which the resulting games are potential games.
A number of such properties are presented in Sect. 2.4.1. Subsequently, we propose
two formal approaches of formulating potential games in Sect.2.4.2 which are
the forward and the backward methods. The forward method defines the utility
functions of players such that they satisfy aforementioned properties, and how a
potential function can be obtained from these utility functions efficiently. In the
backward method, the potential function for the game is first defined and we will
use it to derive the utility functions of players.

2.4.1 Utility Function Considerations

A few properties are identified to be useful in constructing the utility functions of
games which turn out to be a potential game. They are separability, symmetry of
observations as well as linear combinations among utility functions. Additionally,
we discuss the impact of imposing constraints on a given potential game.
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2.4.1.1 Linear Combination of Utility Functions

Our first observation is that we can derive new exact potential games from existing
ones by using a new utility function which is a linear combination of existing utility
functions. This property stems from a much more powerful result which states that
the set of all potential games with the same player set and strategy space forms a
linear space. Fachini et al. [15] mentioned this property and a proof was available
in [32]. The following result holds.

Theorem 2.18. Let 4 = [N, S,{U;}icv] and % = [N, S, {V;}icr] be two exact
potential games. Then 45 = [N, S,{aU; + BV;}ices] is also an exact potential
game, Va, B € R,

Proof. Suppose that F(S) and G(S) are potential functions of ¢4, and %, respec-
tively. It is straightforward to show that « F(S) + SG(S) is a potential function for ¥;.
O

This property is useful when we would like to jointly maximize two objectives
via a weighted sum of the two. Knowing that using each objective separately as
the utility function results in an exact potential game, we are guaranteed that the
combined objective also leads to another exact potential game.

Remark 2.4. Only exact potential games and weighted potential games have the
linear combination property [15]. For ordinal potential games, counter-examples
were given in [32].

2.4.1.2 Separability

Next, we observe that if every player’s utility function is separable into multiple
terms with certain structures, the game can be shown to be an exact potential game.

Strategic Separability

The first notion of separability is what we term strategic separability, meaning that
one’s utility function can be decomposed into the summation of a term contributed
solely by one’s own strategy, and another term contributed solely by the opponents’
joint strategy.

Definition 2.15. The game ¥ is strategically separable if Vi, 3P; : S; +— R and
3Q0; : S_; — R such that

Ui(Si, S—i) = Pi(Si) + Qi(S—). (2.41)
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Theorem 2.19. If & is strategically separable, then it is also an exact potential
game with the following potential function

F(S) = Y Pi(S)). (2.42)

eV

Proof. For any unilateral strategy deviation of an arbitrary player i from S; to 7;, we
have

Ui(Ti, S—i) — Ui(Si, S—i) = Pi(T;) + Qi(S—i) — Pi(S;) — Qi(S—)
= Pi(T) — Pi(S)). (2.43)

At the same time,

Fi(T;, =) — Fi(Si.S—) = Pi(Ty) + Y Pi(S) — Pi(S) — Y _ Pi(S))
J#i J#i
= Pi(T;) — Pi(S)). (2.44)

Hence, F(S) is a potential function for ¢. O

The following example from wireless communications shows a formulation
which, by making some approximations, exhibits strategic separability and thus is a
potential game.

Example 2.12 (Potentialized Game for CDMA Power Control). In code-division
multiple access (CDMA) networks, all mobile stations (MSs) share the wireless
medium and the transmission power of any MS can cause interference to the
other MSs. The CDMA power control game studies the power adaptation for
distributed, selfish MSs under such conflict of interest.

The players are N MSs, each of which transmits to a pre-assigned base station
(BS). Note that some BSs can be shared by multiple players. Player i’s strategy is its
power level p; which is bounded in a certain range, e.g., [0, P ]. We use (p;, p—i)
to refer to strategies in this game.

The signal-to-noise-and-interference ratio (SINR) y; of player i is calculated as

Vipis p—i) = - Pi8ii (2.45)
> =1 i Pigji + 07

where g;; is the channel gain between player j’s transmitter and player i’s BS; and
o2 is the noise power.
The achievable rate for player i is given by

Ri(pi, p—i) = log, (1 + Gy:) (2.46)

where G is the spreading gain of the CDMA system [7].
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A feasible optimization objective often incorporates rate R; as the reward
obtained by player i, as well as a cost for spending power. Linear pricing is often
used for CDMA systems [42] where the cost is expressed as ¢;p; for player i. The
positive constant ¢; indicates the price per unit power used. Thus, the following
utility function can be considered:

U,'(pi,p_,') = Ri(piap—i) — Cipi, Vie V. (247)

The resulting game is & = [, [0, Pmax]V, {Ui}ic.r |. Candogan et al. [7] pro-
posed the following approximation to the utility function, so that a “potentialized”
game is obtained.

The approximated utility function at high SINR is proposed to be

0:(pi, p—i) = log, (G DS 2) —cpiVie N (2.48)
D=1 Pigii + 0

where the term 1 has been dropped within rate calculation.
We can see that this function is strategically separable. In fact,

N
Ui(pi. p—i) = log, (Gpigi) — cipi —log, | D pigii +07 |, (2.49)
j=1i#i

where the first two terms only depend on player i’s strategy and the last term only

depends on the opponents’ strategies. According to Theorem 2.19, the game & "=
[4,[0, Pmax]" . {Ui}ie.r ] is an exact potential game.

Note that strategic separability is a sufficient condition for exact potential games.
However, not all potential games are separable in this manner.

Coordination-Dummy Separability

The second notion of separability is known as coordination-dummy separability. It
was first discussed by Slade [45], and was later linked to potential games by Fachini
et al. [15] and Ui [46].

Definition 2.16. The game ¥ is coordination-dummy separable if 3P : S +— R and
30; : S_; — R, Vi such that
Ui(Si, S-i) = P(S) + Qi(S—)). (2.50)

Basically, one’s utility function is a linear combination of two terms: P(S)
which is common and identical to all players, and Q;(S—;) which only depends
on joint actions of one’s opponents. With P(S) alone, one effectively plays an
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identical-interest game, also known as a perfect coordination game. On the other
hand, Q;(S—;) is said to be a dummy function because it solely depends on other
players’ strategies. Altogether, such a utility function U; = P(S) + Q:(S—;) is
called coordination-dummy separable. The term coordination-dummy was sug-
gested in [15].

Theorem 2.20 (Slade, Fachini, Ui). ¥ is coordination-dummy separable if and
only if it is an exact potential game with potential function P(S).

Proof. To prove the sufficiency, suppose ¢ is coordination-dummy separable.
Then (2.50) holds. By checking the definition (2.1) on P(S), clearly it is a potential
function and ¢ is an exact potential game.

To prove the necessity, we see that if ¢ is an exact potential game with some
potential function P(S), then for each i we can let Q;(S) = U;(S) — P(S). Then for
any S;, T; € S;, since P(S) is a potential function, by definition,

Ui(Si, S—i) — P(S:, S—i) = Ui(Ti, S—) — P(Ti, S—), (2.51)
which implies
0i(Si, S—) = Qi(T;,S—), VS, T; € S;. (2.52)

Thus, Q; depends only on S_;. Thus, ¢ is coordination-dummy separable. O

Coordination-dummy separability provides both necessary and sufficient condi-
tions for exact potential games. In constructing potential games, this notion and the
previous strategic separability serve as useful rules—as long as we can design utility
functions that are separable, our games will be exact potential games.

Remark 2.5. Separability notions give rise to special types of exact potential games.
For example,

1. Identical-interest games: We encounter these games before (e.g., Theorem 2.2). It
is a special case of coordination-dummy separability where all the dummy terms
vanish.

2. No-Conflict Games: Here, U; = U;(S;), Vi. As such, a player’s utility function
only depends on his/her own actions and is not affected by other players’ actions.

3. Dummy Games: On the contrary, when the coordination term vanishes we have
a dummy game.

We shall look at an example from wireless communications where an identical-
interest game is considered.

Example 2.13 (Cooperative Players of Identical Interest in Wireless Mesh Net-
works). A wireless mesh network [1] is a self-configured wireless ad-hoc commu-
nications network where mobile nodes are organized in a mesh topology. There are
two types of nodes: mesh routers (MR) and mesh clients (MC). The MRs form the
backbone infrastructure of the network and are equipped with functionality to carry
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out the tasks of resource allocation. In [12], Duarte et al. investigated the problem
of decentralized channel assignment among players which are MRs in a wireless
mesh network. Because the backbone networks of MRs are partially connected, [12]
assumed that the MRs can play cooperatively; hence, all the MRs share an identical
objective function.

In a wireless mesh network of arbitrary topology, there are N MRs which form
the set of players .4 in the game, whose decisions are to assign channels to their
associated MCs. There are K available channels. Let A € {0, 1}V*X be the channel
assignment matrix whose element a; equals 1 when channel £ is assigned to one of
player i’s MCs, and 0 otherwise. Hence, player i’s strategy is expressed by S; = a,
the 1 x K i row vector of A. The game’s strategy space is therefore S = {0, 1}V*X,
As usual, we denote a strategy profile by S.

The following metric is defined in [12] which characterizes the performance of a
player in the game:

o K R
Mi== ap—, Vie N (2.53)
Bii=

where

* ; is a connectivity coefficient. If MR i can reach the network gateway, o; = 1.
Otherwise, o; = 0.

¢ B; is the hop count from MR i to the gateway.

* R is the link data rate, which is determined by the modulation and coding
schemes.

[y counts the number of interfering links sharing channel k with player i.

As the players are cooperative, a common network objective is defined which are
jointly maximized among all players as follows.

N
Ui(S) =F(S) =Y M, Vie.N. (2.54)

i=1

The resulting strategic game is Y = [, S, {U,}ic.v]- As ¥ is a game of identical
interest, it is also an exact potential game with potential function F(S).

An implication of this identical-interest game formulation is that cooperative
players can play in a distributed manner via well-known methods such as best-
response and better-response dynamics, at the same time ensuring convergence to a
Nash equilibrium.
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2.4.1.3 Symmetry of Observations

We next examine the situations where the utility functions of players exhibit
symmetries across the variables (strategies). Potential games can arise in these
circumstances.

Bilateral Symmetric Interaction

One straightforward notion of symmetric observations is that due to bilateral or
pairwise strategic interactions. To be precise, for player i, the utility function U;
contains a term w;;(S;, ;) which takes place solely due to the pairwise interaction
between him/her and another player j, and does not depend on the actions of the rest
of the players. We interpret w;;(S;, S;) as the observation seen by i due to the strategy
of j. Symmetry of observations occurs when, for all S; and S;, we have w;;(S;, S;) =
w;i(S;, S;). That is, the observations are said to be symmetric across the pair i and j.

Games where observations are symmetric across all pairs of players were termed
bilateral symmetric interaction (BSI) games in Ui [46]. That is, Vi,j € A, i # ],
there exist functions wy; : S; x S; = R such that w;(S;,S;) = w;(S;, S;) for all
S; € S;and §; € S;. Moreover, the utility function of player i is assumed to be of the
form

Ui(Si.S—) = Y _wi(Si.5)). Vie N (2.55)
j#i

The next theorem from [46] shows that BSI games are exact potential games.

Theorem 2.21 (Ui). Assume ¥ is a BSI game. Then it is also an exact potential
game with the following potential function

FS) =" > wyS.s). (2.56)

€N jeN j<i

Proof. For S;, T; € S;, it is straightforward to see that

UAT;, S-) = Ui(SiS-) = Y wylTn$)— Y wy(Si,S), 2.57)

JEN jHi jeN jsi
and at the same time,
F(T,',S_i) — F(S,',S_i) = Z Wij(Tth) — Z W,](S,,Sj) (258)
JEN ji JEN i
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Remark 2.6. Coupled with the linear combination property, we can combine BSI
games with no-conflict games. The resulting exact potential game has utility
functions of the form U;(S) = Zﬁéi wi(Si, Sj) + Pi(S;). This is the original utility
function proposed in [46].

We shall look at an example from network engineering where one can enjoy a
potential game formulation owing to BSI property.

Example 2.14 (Routing Game). In computer and telecommunications networks, the
routing problem is where multiple players need to decide how to split their traffic
loads from their sources to their destinations through various links in the network.
The players, for example, can be various service providers sending data to their
subscribers. Altman et al. [3] proposed a game-theoretic approach to this problem.

In the model, there are N players and a network of several nodes, connected by
directed links. There are a total of L links. Each player can allocate a certain amount
of their traffic loads to each link, i.e., Aﬁ is the load allocated to link / by player i.

We denote the total traffic loads on alink / as g; = vazl Al Ttis assumed that for
each link, a usage cost is present. The cost per unit traffic f; is linearly proportional
to the link usage and is given by

filq) = aiqi +bi,  a, by <0 (2.59)

where a;, b; < 0 are assumed so that players will maximize the negative sum of
costs, equivalent to minimizing their actual costs.

Thus, the cost incurred by player i for link / is )Lﬁf,(q,). Its utility function is thus
given by

L

L
Ui(Si,S—) = Y Mlagi + b) &Y ul(S;, S-). (2.60)

=1 =1

Thus, we have a load allocation routing game. In [3], the authors first introduced
a potential function and established the exact potential property through it. However,
we can naturally deduce this property without knowing the existence of this
function. We can verify using (2.25) but it can be tedious differentiating U; with
respect to a vector variable. Instead, we will check for BSI.

For an arbitrary link / and player i, we see that

(S, S=) = ar(M)? + Al +a; Y AL (2.61)
J#i

Thus, ;A;A} is a symmetric observation across player i and j on link /, for any j.
Subsequently, one can appropriately express the overall utility into the form U; =

Zj;éi W,‘j(Si, Sj) + P,‘(Si) where
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L
Wij(Si» Sj) = Z al)tf)tjl (2.62)
=1
and
L
Pi(S) =) (@A)’ + biA)). (2.63)

=1

The game is an exact potential game as it is a linear combination of a BSI
objective and a no-conflict term. Furthermore, by Theorems 2.21 and 2.18, a
potential function can be automatically found, given by

N

N
F(S) =YY wy(SuS) + Y PiS)
i

i=1 j<i i=

N N
=D ad Y A+ (@A) +biAl) | (2.64)

=1 i=1 j<i i=1

One can easily verify that this function coincides with the one introduced in [3].

General Symmetric Observations

Previously, we see that in practical scenarios with BSI structures, we can formulate
a potential game. Next, we propose and investigate a more general notion of
symmetric observations.

Definition 2.17. Consider a game ¢. If for any pair of players i # j € ./, there
exist functions g;;: S = R, g;;: S R, Q;: S_j = R and Q;;: S_; = R such that
gj,'(S) = g,:,'(S), VS and

Ui(S) = g;i(S) + Q;(S—)),
Ui(S) = gi(S) + Q5i(S-), (2.65)

then & is said to have general symmetric observations (GSO) across all players.*

Thus, in GSO games, any pair of players i and j share a common observation
gii(S) due to their strategic interactions. The utility function can be decomposed
into g;;(S) and a second term Q;;(S—;) which represents the contribution to player i’s
utility function due to all players except j.

“To the best of our knowledge, this GSO investigation has not been reported in the literature.
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Games with BSI structures can be seen as a special case of GSO. In fact, for any
J # i, one can rewrite the utility function of a BSI game (2.55) into

Ui(Si, S—i) = wii(Si, ) + Z wir (S, Sk) - (2.66)
ki

Qij(S—j)

Meanwhile, unlike in BSI games, the symmetric observation in GSO games
needs not involve only two players i and j. That is, in (2.65), g; can in fact be
expressed as g;;(S;, Sj, S_g;;3)- In addition, we do not require U; to be the summation
of all pairs of observations. A game is a GSO game as long as we can decompose
the utility functions for any pair of players i and j according to our definition.

Our main result is as follows.

Theorem 2.22. GSO games are exact potential games.

Proof. We will make use of Corollary 2.8 and prove that (2.38) holds for any
arbitrary cycle of length 4, say p = (A, B, C,D,A) as in (2.37). Here, i and j are
two active players. Moreover, A = (S;,S;,R), B = (T}, S;,R), C = (Ti,T;,R), and
D = (S;,T;,R) where R = S_g; .

In fact, using (2.65),

Ui(B) — Ui(A) = g;(B) — gij(A) + Qy(Ti, R) — Qy(Si, R) (2.67)
Similarly,

Ui(C) — U;(B) = g;(C) — g(B) + Q;i(T}.R) — Q;i(S;. R). (2.68)

U,(D) - U,(C) = gU(D) - g,j(C) + Qij(Si,R) - Qij(Ti,R), (269)

Uj(A) — U;(D) = g;(A) — g;(D) + Q;i(S;, R) — Qi(T}, R). (2.70)

By summing up (2.67)—(2.70), we obtain
[Ui(B)=Ui(A]+[U(O)=Ui(B)+[Ui(D)-U( O +[U(A)-U;(D)] = 0. (2.71)

Thus, Corollary 2.8 guarantees that the defined GSO game is an exact potential
game. O

A well-known class of games in the literature, the congestion games proposed by
Rosenthal [40], turn out to exhibit the GSO property.

Example 2.15 (Congestion Game). In a congestion game, there are N players. In
addition, there are K resources which are indexed by k € .# = {1,2,...,K}. Each
player is supposed to select a subset of the K available resources and their choices
can be overlapped.



2.4 Formulation of Exact Potential Games 57

In practical scenarios, constraints may be imposed so that certain combinations of
resources are infeasible or invalid for a particular player. For example, the resources
can be a collection of roads where players need to take to get to a destination.
Some road segments are physically separated and cannot be validly combined. Such
constraints limit the strategy space of player i to only a subset of the complete
strategy space 2, the power set of .#". Thus, we denote the strategy set of player
ias S; € 2%, Vi. Each strategy S; € S; corresponds to a feasible set of selected
resources.’

It is assumed that shared resources incur costs, which depend on the number of
users occupying that resource. For resource k, denote this cost by ¢ (x;) (assuming
cr(xx) < 0), where x; is the number of players choosing k. The same cost ¢ (xy) is
incurred on every sharing player. The utility function of player i is the total costs
over all individual resources he/she selects, given by

Ui(S) = D ex(u(S)), (2.72)

k€ES;

where the notion x(S) indicates that the number of players choosing resource k can
be determined from the joint strategies of all players.

In a congestion game, congestion occurs as multiple players simultaneously
choose a resource. Thus, players try to minimize their total costs (or maximize the
negative total costs). Congestion games are well-known to be potential games [31].
We will alternatively show that congestion games are indeed GSO games.

Between players i and j, let o;; = §; N S; which represents the set of common
resources shared between i and j, and define

D ke k(X (S)) 0y # 0
0 Uij =0.

8ij = &ji = 2.73)

Then, Vi and Vj # i

UiS) = gi( + Y, clx(S-))). (2.74)

keSi\oj;

where Q;;(S—;) £ Zkes,-\a,-j ck(xx(S—;)) represents the remaining costs from player
i’s resources that are not selected by player j. By Theorem 2.22, congestion games
are exact potential games.

Due to their practical considerations, congestion games have found applications
in several networking problems. One example is the network formation game
introduced in Chap. 19 of Nisan et al. [39], in which players try to build a network

3The use of set-valued strategies here is originally considered in Rosenthal [40].
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by forming edges across network nodes to connect their sources to destinations.
The cost for an edge is evenly shared by players using it and thus is a function of
the number of sharing players.

The readers are invited to work out the potential function for the above
congestion game.

Exercise 2.4. Find a potential function for the congestion game.

Solution 2.4. The potential function for this game will be derived in the Appendix
of this chapter.

In conclusion, symmetric observation across players’ utility functions is another
criterion to establish exact potential games.

2.4.1.4 External Constraints and Utility Functions

In the congestion games presented in Example 2.15, we see that imposing con-
straints can make some actions infeasible to some players and the question is
how that affects the feasible strategy space. This happens commonly for practical
systems. For example, in downlink cellular systems, two users within a cell might
not be allocated the same frequency bands; and there may be a constraint for total
transmitted power level. On the other hand, the system quality-of-service (QoS)
requirements may specify some performance metrics such as minimum throughput
or maximum delay, which similarly restricts the set of feasible actions. As such,
these constraints reduce the feasible strategy space as compared to the game without
any constraint.

The question we investigate here is how the constraints affect the formulation
of potential games. In doing so, we look at our game-theoretic problem from the
viewpoint of mathematical optimization. Suppose that the original game ¢ =
[, S, {U;}icr] is formulated before incorporating the constraints. This can be
expressed as a collection of N optimization problems,

(g) : Vie N max U,‘(Si, S_i), (275)

Si€S;

where the set of all strategy profiles feasible for (2.75) is the strategy space S of ¢.

Now, let us assume that there are a number of constraints to be imposed on the
game. Adopting the standard notations of a mathematical optimization problem [5],
the new game with the imposed constraints can be written as

(') - Vie A max UgS;,S_)),

S;€S;

8k(Si,S-) <0, k=12,... K
hn(Si,8-) =0, m=1,2,....M.
(2.76)

subject to (s.t.)
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Here, we assume that there are K inequality constraints in the form g;(S) < 0, as
well as M equality constraints in the form 4,,(S) = 0, where the strategy profile S
is treated as a decision variable. The constraints commonly encountered in wireless
communications problems can easily be expressed into one of the two forms above.
For examples,

* In a wireless power control application, the players (wireless radios)’ strategies
are assumed to be power levels p;, i = 1,2,...,N. Itis required that 0 < p; <
Px, Vi € A . Equivalently, we can express these constraints into 2N inequality
constraints of the form g;(p) <0,k =1,2,...,2N, where

—Dk> k=1,2,...,N
a(p) &7 2.77)
pk—N_Pmax» k=N+1,N+2,,2N

* In a wireless channel assignment problem, there are N players and M channels
for data transmission. Here we define a;,, € {0, 1} as the channel assignment
indicator between player i and channel m. Player i’s strategy is represented by
the 1 x M vector S; = [a;; aip ... ay]. Each of the M channels can be assigned
to exactly one player. These constraints can then be expressed as

N
ha() 2> @ —1=0. m=12,....M. (2.78)
i=1

We introduce some notations as follows. For each of the constraints, we can
define the set of feasible strategy profiles that satisfy the particular constraint as
follows.

Gr=1{S| g(S) <0}, Vk=1,2,....K (2.79)
H, = {S| hn(S) =0}, Vm=1,2,..., M. (2.80)

Thus, all feasible strategy profiles comprising the strategy space S’ for the
constrained game ¢ in (2.76) belong to the intersection of all the sets defined above.
That is,

K M
s 4 <ﬂ Gk) N (ﬂ H,,,) ns. (2.81)
k=1 m=1

The set S’ is assumed, for non-triviality, that S’ # @. This leads to a new game
G =[N A Ubier]. (2.82)

We claim the following result.
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Theorem 2.23. If¥ is an exact potential game then so is 9'.

PVOOf. The equality U,'(T,', S_,') — U,'(S,', S_,') = F(Ti, S_,') — F(Si, S_,') holds for any
S;, T; such that (S;, S—;), (T;,S—;) € S, if 4 is an exact potential game. Thus, they
remain valid if we restrict (S;, S—;) and (7}, S—;) to the new strategy space S’, which
is a subset of S. O

This theorem is also a useful property for deriving new potential games from
existing ones. Suppose that practical considerations require additional constraints. If
we are certain that such constraints only modify the strategy space, we can guarantee
that the new game is still an exact potential game. In subsequent chapters (Chaps. 3
and 4), we will introduce applications where addition of constraints is encountered.

Remark 2.7. This result is based on the fact that the condition (2.1) for exact
potential games holds universally across the strategy space. Then, it automatically
holds within any of its subset. We note that sometimes this equality may even hold
for a superset of the original strategy space. For example, in the Cournot competition
(Example 2.10), we can hypothetically enlarge the strategy space by allowing it to
take negative quantities (i.e., removing the constraints g; > 0, Vi) and still retain
the equality relationship of the potential function, even if such a relaxation may
not have practical meanings in this case. However, extreme care needs to be taken
when considering an enlarged strategy space. It is always advisable to examine if
the condition (2.1) still holds for supersets of the strategy space.

Remark 2.8. Note that there are other types of constraints that not only modify our
strategy space but also require us to make more significant alterations, e.g., redefine
our objective function or reformulate the problem. In such scenarios, this theorem
may not apply.

To conclude this section, we look at an example from wireless communications.

Example 2.16 (Power Control with Coupled Constraints). Let us revisit the uplink
of a CDMA wireless network similar to Example 2.12. A power control game for
the N MSs, with power level p; as the strategy, is considered. The SINR of player i
is again given by y;(p;, p—;) = vi(p) in (2.45). Scutari et al. [44] proposed a power
minimization game where the objective is for each player to minimize its transmit
power p;, subject to a coupled constraint f; on the SINR, given by

fivip) = ¢i, Vi (2.83)

where f;(.) is a continuous function on R, whose choice depends on the respective
QoS requirements; and ¢; are real constants.
Here, we start with the following game

G =[AN.S,{Ui = —log(p) }ic.r] (2.84)

whose feasible strategy space is

S ={plpi > 0.fi(yi(p)) = ¢:, Vi} (2.85)
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where p denotes the network power vector which also is a strategy profile. Note that
0 is not a feasible strategy for any player as the log() function is undefined at 0. It is
straightforward to see that ¢ is a game of no conflict; as such, it is an exact potential
game and admits the following potential function F(p) = — ), , log(p:).

Now, let us consider a new game ¢’ derived from ¢ by imposing a maximum
power constraint p; < Py, Vi. Its strategy space is therefore

S" = {p| p € (0, Puax]" . fi(vi(P)) > &1, Vi}. (2.86)

Clearly, we have S’ C S. Thus, according to Theorem 2.23, ¢’ is also an exact
potential game with the same potential function F(p).

In [44], it was also assumed that ' # @ and S’ is convex and compact. As a
result, F(p) has a unique maximum on S’ and ¢’ admits a unique Nash equilibrium.

The above is a simple example to illustrate the use of Theorem 2.23. In Chaps. 3
and 4, we will again encounter more non-trivial examples which demonstrate the
usefulness of this result.

2.4.2 Game Formulation Principles

Having introduced several properties that can serve as useful guidelines in designing
potential games, we now consolidate them into design principles. From our survey,
we have observed that most of the formulations of exact potential games applied to
wireless communications and networking can be classified under either one of two
design principles: the forward method and the backward method.

Note that the described methods are primarily concerned with the design of
utility functions and/or potential functions. Prior to formulating a game-theoretic
problem for a practical scenario, one still needs to identify the players, their
means of interactions and possible strategies, as well as the constraints, objectives
and assumptions. There is no clear-cut process; and in this book we focus on
generalizing methods for potential game and utility function design while assuming
the parameters are already in place.

2.4.2.1 Forward Method

In the forward method, the utility functions are purposely designed to have one of
the desired properties: separability, symmetric observations, or linear combination
of utilities, which are known to lead to potential games. The potential function can
then be associated with one of the known forms specified by these properties.

To be precise, we denote Z as the set of utility functions having one or more of
the above desirable properties. The forward method is as follows.
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Algorithm 2.2 Forward method
1: Vi: Ui(S) < 2
2: F(S) < associated potential function according to the structure of U;(S)

Several authors have proposed potential game models with utility functions
adhering to one of these properties.

* In[35, 36], Neel et al. discussed game models for cognitive radio networks. One
of their models has the utility function of the form U;(S) = f;1(p;)—fi2(I;), where
fi1(p;) is a function of the player i’s received signal strength which depends on
its power level p;. f; »(I;) is another function of the player i’s received interference
which only depends on the opponents’ transmit power p—;. This design is based
on the strategic separability.

e In [33, 34, 37], Neel et al. designed games that adheres to bilateral symmetric
interference assumption. This approach leads to BSI games. Babidi [4], Wu [52]
and a few others further extended this approach.

* The formulation by Nie et al. [38] on interference minimization for distributed
radios as well as our works on OFDMA systems [20-23] used an interference
sum minimization objective. Symmetric observations are present for all pairs of
players.

In subsequent chapters, we will review some of the applications listed above
in details. For now, let us look at one particular formulation to demonstrate this
principle.

Example 2.17 (Cognitive Radio Interference Minimization Game). Cognitive
radios [29] are smart radio devices that can learn their environment and optimize
their performance by adjusting their transmission parameters. In the distributed
spectrum access problem among multiple radios, their interactions can be modeled
as a game. Nie et al. [38] studied a channel allocation game among N cognitive
radio pairs of transmitter and receiver. The N pairs of nodes constitute the set of
players .#". There are K frequency bands (K < N) which represent the available
resources; and each player must select one frequency to transmit its data. Thus, for
player i, its strategy is the channel it selects, i.e., S; = k € {1,2,...,K}.

As the spectrum band is spatially reused by the distributed radios, co-channel
interference is present which degrades the performance of the radios. We let p; be
the transmission power of pair i, and g;; the channel gain between the transmitter of
pair i and the receiver of pair j. We further define a variable §;;, which assumes a
value 1 if players i and j are on the same channel, i.e., §; = §;; and O otherwise. As
such, the possible co-channel interference that player i may experience from player
J is given by &ip;g;i.

In this game, an interference minimization objective is adopted. The following
utility function was firstly considered, i.e.,

N
Ui(Si, S—) = — Z 8ipigji (2.87)
=i
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in order for each player to minimize its received co-channel interference.

Naturally, the quantity §;;p;g;; perfectly represents the observation on player i’s
utility function due to the action of player j. On the other hand, player j’s observation
due to player i’s action is given by §;p;g;;. In general, p; # p; and g; # gj;. Thus,
the observation is not bilateral symmetric for this formulation.

However, between players i and j, the observations become symmetric if the total
8;ipjgji + 8;jpigij is considered instead. This quantity represents the total interference
that a player generates to another player and also experiences from the same player.
This leads to a second proposed utility function

N N
Vi(Si, S—i) = — Z 8jip;gji — Z 8ypigi- (2.88)
J=1g#i J=1g#i

We can see that the second utility function satisfies the BSI property. For any two
players i and j, we have

wii(Si, S;) = w;i(S;, Si) = —(8ipjgji + Sipigij)- (2.89)

Thus, according to Theorem 2.21, the game [4/, S, {V;}ie_+] is an exact potential
game. Its potential function is given by

N N
FS) ==Y (i + Sypigi) - (2.90)

i=1 j=1,<i
This can be alternatively written in the form

N

N N
F(S) =Y —% > 5,'1‘17_,'5’_,‘;‘—% > Sipigi (2.91)

=1 =1 =1
as seen in [38].

In summary, this example demonstrates the forward method which works by
identifying a utility function in accordance with certain desirable properties.

2.4.2.2 Backward Method

The forward method works by defining utility functions that ensure potential game
properties first before obtaining the potential function. On the other hand, the
backward method first defines a network objective as the potential function and
works backward to obtain individual utility functions. The steps are as follows.

In the backward method, one may first define a network function F as a global
objective to maximize, which will also serve as the potential function. Next, in order
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Algorithm 2.3 Backward method

1: Define F(S)
2: Decompose F(S), Vi:

F(8) = Pi(Si, S—) + Qi(S—) (2.92)
3: Assign, Vi:

Ui(Si, S—i) < Pi(Si,S—) (2.93)

to define each player’s utility function, a decomposition is applied to this global
network function such that F(S) = P;(S;, S—;) + Q;(S—;) where Q;(S—;) is a non-
contributing term from the perspective of player i. Then, we can set U; = P;(S;, S—;).

Theorem 2.24. Algorithm 2.3 results in an exact potential game.

Proof. From (2.92),
Ui(Si,S—) = F(Si,5—) — Qi(S—), Vi (2.94)

By Definition 2.16, U; is coordination-dummy separable. Therefore, the resulting
game is an exact potential game. Its potential function is by default F(S). O

Remark 2.9. Note that such a decomposition does not always give non-trivial utility
functions. It is possible that Q;(S—;) = 0 for all players and the process results in an
identical-interest game.

In the literature, examples of the backward method are:

e Menon et al. [27, 28] as well as Buzzi et al. [6] which defined a sum of inverse
SINRs as the potential function and subsequently defined players’ utility through
a similar decomposition.

e Xu et al. [53] also defined two network objectives which are total network
throughput and total network collisions. They serve as the potential functions
for the potential games that follow.

These approaches will be discussed in more details in Chap. 5.

2.5 Further Readings

This chapter has covered the theory of potential games, including fundamental
results with accompanied mathematical analysis. We make an attempt to generalize
and present a collective summary on the results available from the literature. Some
of the mathematical proofs are omitted in the text. However, interested readers may
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refer to the cited works. The authors are also aware that in the literature, more
specialized topics are available for potential games. In what follows, we present
a non-exhaustive list of related topics intended for further readings.

Although introduced, certain types of games such as generalized ordinal potential
games and best-response potential games were not discussed in depth due to their
rare appearances in communications applications. Readers who wish to explore their
mathematical properties can refer to Monderer and Shapley [31] and Vorneveld [50].

There exist other notions of potential games in the literature. For example, in
his paper [43], Schipper extended the class of pseudo-potential games to a broader
class called quasi-potential games. However, the author did not elaborate further on
the concept and their applications are not known. A few more generalizations from
pseudo-potential games exist, such as g-potential games [30] and nested potential
games [47]. One related concept to potential games is near potential games as
proposed by Candogan et al. [8, 9]. The authors defined a notion of distance between
games and those with a close distance to a potential game are called near-potential.

Extending potential properties of games outside the current static and complete
information settings is a different line of literature. Bayesian potential games
were studied by Facchini et al. [15] in which the games are set under incomplete
information assumptions. Sandholm [41] presented an extension into potential
games among continuous populations. On the other hand, Marden [24] defined
state-based potential games in dynamic settings where there exists an underlying
state space governing the system. Gonzalez-Sanchez et al. [16] coupled potential
games with dynamic stochastic control problems and characterized the conditions
for the potential function in dynamic stochastic potential games. Another approach
in the dynamic settings is to extend the potential game framework to continuous-
time optimal control models, in which the concept of Hamiltonian potential and
its use in characterization of open-loop equilibrium of differential games were
proposed in Dragone et al. [11]. These recent interesting topics may attract further
development.

There were also studies that linked potential games to the concept of Shapley
value for coalitional games. Some fundamental results were presented by Monderer
and Shapley [31], Ui [46], etc.

Our presented results on convergence of best/better-response dynamics give an
elementary view of limiting behaviors of adaptive update rules for games. There is
an extensive literature on this topic. Fictitious play and variants were discussed in
Monderer and Shapley [31], Hofbauer and Sandholm [18], Marden et al. [26], and so
on. Neel [32] defined some practical decision rules and demonstrated convergence
properties. Logit-response dynamics are a different class considered in Al6s-Ferrer
et al. [2], Marden et al. [25], etc.

Regarding the identification of finite exact potential games, Cheng [10] gives
some interesting results using the technique of semi-tensor product of matrices. His
result may be of practical values, which due to the scope of this monograph we have
omitted.
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Appendix
Potential Function of Congestion Game

Example 2.15 introduces the congestion game. We have shown that it is a GSO game
and thus is also an exact potential game. We now present and verify its potential
function.

Rosenthal [40] introduced the following so-called Rosenthal’s potential:

K %(S)

F§) =3 al) (2.95)

k=1 j=1

and verified that it satisfies the definition of potential games.

Here, we present an alternative interpretation due to Vocking [48]. The interpre-
tation assumes that each strategy profile (joint selections of resources) is a result
of individual selection taking place in sequence. At each individual selection, the
corresponding player bears a “virtual” cost which depends on his/her choice and
the selections of previous players. The sum of all virtual costs is the Rosenthal’s
potential.

To visualize this virtual cost calculation, look at an example for 4 players and
3 resources (R1, R2, R3) in Fig. 2.10. Imagine that the resources are represented by
separate stacks. Each stack is comprised of several cells. Players are inserted into
these cells one after another, according to their resource selections. In cell j of stack
k, there is an associated cost which is equal to ¢ (j) if this cell is filled.

Without loss of generality, we can assume the order of players in making
selection is (1,2, ..., N). Figure 2.10a shows the state of each resource after player
1’s selection. At player 1’s selection, all resources are unoccupied and his/her virtual
costis ¢ (1) + c2(1).

a b c d
Rl | R2| R3 Rl | R2| R3 Rl | R2| R3 Rl | R2| R3

c1(3)]c2(3)
2(2)
ae) ca(D]ea(M]es@)] [c1(1)|e2(D)]es(D)] [c1(1)]ea(1)]es(D)

Fig. 2.10 Virtual costs in a 4-player 3-resource congestion game after the selections of (a) player
1, (b) player 2, (¢) player 3 and (d) player 4, where each color indicates a different player. The
Rosenthal’s potential is equal to the sum of all values that fill up the cells
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Figure 2.10b shows the state of each resource after player 2’s selection. At player
2’s selection, R3 is unoccupied while R2 already has one player. Hence, player 2’s
virtual cost is computed as ¢,(2) + c3(1). The computation is similar for the next
selecting players.

In general, at player i’s selection, resources have been occupied by the previous
i — 1 players. For each of his/her selected resource k € S;, determining the current
cost depends on the total number of users o (i) which includes him/herself and how
many players have selected k previously. This number is estimated by

(i) = |{jlk € 8. < i} (2.96)

Player i’s virtual cost is therefore given by

yi(S) = Y crl(ou(i)). (2.97)

keS;
The accumulated virtual costs for all players in this manner are given by

N

N
F'($) = 7)) =)D exlowli)). (2.98)
i=1

i=1 keS;

This function is equal to the sum of values of cells that are filled in all the stacks
(e.g., the sum of all values in Fig.2.10d). By exchanging the order of summation,
we can rewrite this into

K x(S)

F($) =) al) (2.99)

k=1 j=1

which is exactly the Rosenthal’s potential (2.95). That is, F(S) = F'(S).

Now, for player N who is last to select resources, his/her virtual cost is exactly
his/her real cost. That is, yy(S) = Un(S). We suppose that player N now wants to
deviate to a new strategy unilaterally. By noting that

N—1
F(S) = yi(S) + Un(S) (2.100)

i=1

where the first summation is unaffected by player N’s strategy, it is apparent that
F(S) will be changed by exactly the same amount as Uy (S).

This property should hold for every permutation of selection orders, and any
player can be equivalently considered to be the last selector. In short, F(S) is a
potential function.
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Chapter 3
Frequency Assignment in Distributed
OFDMA -Based Systems Using Potential Games

Abstract Wireless orthogonal frequency division multiple access (OFDMA)
networks, where distributed users can access the spectrum dynamically, offer great
flexibility and potentials for efficient utilization of the scarce spectrum resources.
However, managing such large-scale networks while maintaining fair and efficient
spectrum usage poses a great challenge, mainly due to co-channel interferences
from the spatially reusable sub-carrier. This chapter considers the problem of
interference minimization in such a scenario, from a game-theoretical viewpoint.
A general framework that defines the distributed OFDMA-based spectrum access
problem is presented. Next, our game-theoretical analysis shows that the proposed
interference-minimizing utility function exhibits the properties of a potential game.
Given a deterministic number of sub-carriers by each player, there exists a pure-
strategy Nash equilibrium solution, and therefore convergence can be guaranteed
via sequential best-response dynamics. Our simulation results verify the analysis,
and at the same time the fairness and optimality of the solutions obtained through
the proposed game are examined.

3.1 Overview

Orthogonal frequency division multiplexing (OFDM) [22] is a digital multi-carrier
modulation technique, in which a large number of closely-spaced orthogonal
subcarriers are used to transmit signals simultaneously, as depicted by Fig.3.1. In
OFDM systems, high-rate data which might otherwise suffer from severe frequency-
selective fading, is first converted into a number of parallel orthogonal data streams
occupying less than the coherence bandwidth before transmitting. The advantage
of OFDM lies mainly in its robustness to multipath fadings and inter-symbol
interferences due to the prolonged symbol duration on each subcarrier and the use
of a cyclic prefix. Furthermore, its transceiver design and implementation can be
simplified by the use of fast Fourier transform (FFT) and inverse FFT blocks, as
shown in Fig. 3.2.

OFDMA [21] is the multiple-access version of OFDM. It has been adopted
in various existing standards like IEEE 802.16e worldwide interoperability for
microwave access (WiMAX), Third-Generation Partnership Project (3GPP)’s Long
Term Evolution (LTE) standards and will also be a crucial part of future wireless
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Fig. 3.2 Block diagram of a general OFDM transmitter

networks, such as 4G systems and the ongoing IEEE 802.22 standards. Multiple
access in OFDMA can be achieved by partitioning separate subsets of subcarriers
to users. OFDMA not only inherits all the advantages of OFDM but also provides
multi-user diversity gain, because if a subcarrier is unfavorable to a user, it may still
be favorable to another user and thus can be reassigned appropriately. Moreover,
different number of subcarriers can be allocated for users with different QoS classes,
which offers another degree of flexibility for radio resource management (RRM) in
OFDMA systems.

In multi-user OFDMA networks, a key RRM issue is how to dynamically
allocating the subcarriers and power to users in order to combat co-channel
interference (CCI). Several subproblems exist for OFDMA resource allocation, such
as downlink [9] vs. uplink [17], single-cell [6] vs. multi-cell [7], or distributed [11]
vs. centralized [10] approaches. Pioneering works on RRM for centralized OFDMA
systems were done by Yong et al. [23], who was among the first few to treat OFDMA
resource allocation as mathematical optimization problems. Since then, enormous
research efforts have been contributed, providing a wide variety of approaches and
solutions to the problem. At the same time, early game-theoretical approaches for
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OFDMA were proposed by [3, 6, 7, 11] and references therein. A good survey to
these works can be found in [13]. These early works often focused on the traditional
cellular systems involving uplink/downlink communications between the BS and
several MSs. A common drawback of these approaches, as pointed out in [13], is
that they do not always guarantee a stable solution, especially if no pure-strategy
Nash equilibrium exists.

On the other hand, for the distributed, ad-hoc OFDMA system, Bazerque et al.
[1] was one of the important works, where the authors relied on heavy information
exchange in a fully connected network in order to obtain the decentralized algo-
rithm. However, at the time of this research, there were still very few works directed
towards the distributed OFDMA scenario. Nevertheless, it can be noticed that in the
special case where each player only competes for a single frequency channel, the
situation bears resemblance to the well-known distributed ad-hoc spectrum sharing
games [4, 12, 15, 19], as well as cognitive radio spectrum access games [2, 18, 20].
Notably, Neel et al. [18] suggested the use of potential games for cognitive radio
networks; and Nie et al. [19] formulated a potential game for the distributed, ad-
hoc scenario. For such games, the existence of deterministic pure-strategy Nash
equilibria is always guaranteed when assignment of a single channel is considered,
which suggests the possibility of extending the same analytical platform to a multi-
channel scenario. In summary, the lack of works in the literature on distributed,
ad-hoc OFDMA systems and the stability issues of traditional OFDMA game-
theoretical approaches provide the motivations to exploit the use of potential games
to realize desirable solutions to resource allocation for OFDMA.

This chapter extends its investigation into the distributed, ad-hoc networks of
multiple transmit-receive pairs. The system has an OFDMA interface with the
bandwidth being divided into different orthogonal subcarriers, which has been a
more practical approach for wireless networks recently. Each player has an OFDM
front-end and can measure the channels in order to select a subset of the available
subcarriers to transmit. As such, more complicated spatial reuse of spectrum occurs
over the cell’s area; and one will have to pay closer attention to the issue of CCI
mitigation. By adopting the interference-sum minimization objective in the players’
utility function, a potential game can be formulated similar to [19]. When this
game is played, due to domination in the strategy, it is best for the players to be
allocated with a given number of subcarriers in advance. The number of subcarriers
for each player can be determined prior to the gameplay via a simple proposed
method. This situation notwithstanding, the universal properties of potential games
are not lost. Hence, Nash equilibrium convergence can always be obtained through
sequential dynamics. Besides, the optimality of the Nash equilibria obtained through
this method can also be characterized with the price of anarchy (PoA). Furthermore,
extensive simulations are carried out to evaluate the proposed scheme as well as
to compare the system and individual performance in terms of energy efficiency,
fairness and optimality.
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3.2 System Model

This section defines the mathematical model for the system and describes a
framework for interference mitigation.

3.2.1 System Parameters

Our model considers a circular cell of radius r, where there are N players, each being
a transmit-receive pair randomly distributed within the area. Once again, the terms
players and pairs can be used interchangeably. Each pair individually competes
with others for different combinations of OFDMA subcarriers among the shared K
subcarriers available. It is assumed that N > K so as to avoid trivial solutions,
as well as the nodes’ locations and channel conditions being static or changing
slowly during the game. Moreover, the assumption of short-range distance between
the transmitter and receiver of a pair still holds. Recall that the distance matrix is
D € RY*V whose element dj; is the distance between the ith transmitter and the jth
receiver. Then, in general, it is assumed that dj; < dj; for j # i.

The other parameters can be defined as follows. Let A denote the subcarrier
assignment matrix, where A € {0, 1}*K, Each of the elements in A, a; € {0, 1},
implies whether player i occupies subcarrier k for transmission; and a; = 1 if this
is true and O otherwise. Hence, the choice of subcarriers for player i is reflected by
a’, the 1 x K ith row vector of A. As the no-transmission strategy is not considered
in this case, it can be understood that the all-zero vector 0 is not a valid choice.

Next, let us define the channel gain matrix G € RY*V*K where gf;. gives the
channel gain between transmitter i and receiver j through subcarrier k. Note that, in
general, gffj %+ gfl Similarly, the transmission power matrix is denoted by P € RV*X|
whose element py is the transmitted power of player i over subcarrier k. The 1 x K
ith row vector of P, denoted by piT, must be element-wise non-negative and the sum
of all elements should be less than P,,,,. That is,

p/(A) =0, p/1=Pry. Vi 3.1)
where 1 is the K x 1 all-one column vector.

Then, for player i with subcarrier k, its signal-to-interference-and-noise ratio
(SINR) is expressed as

k
AikPik8 i

N k42
D=1 i kP T O

Vik = (3.2)

where o is the power of the receiver additive white Gaussian noise (AWGN) and is
assumed to be identical between any two players.
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Furthermore, the achievable rate for player i with subcarrier k is given by
Ry = Blog, (1 + %) (3.3)

where B is the bandwidth per subcarrier, I' = —In(5P,)/1.5 is a function of the
required BER P,, often known as the SINR gap [5].

The objective of any player i is to optimize its performance individually, which
is reflected by a utility function U;. Mathematically, the distributed optimization
problem is stated as

max U;, Vi

¢
a;

r 1K
a; € {0,137\ 105, 3.4)
p/(A) =0, p1= Py,

where the utility function U;(S) will be defined in Sect. 3.3.

3.2.2 An Interference Mitigation Framework

In this section, a framework for mitigation of CCI and the relevant parameters
are discussed. Since the subcarriers are shared among the players, it is best that
a subcarrier should not be reused by players which are within a certain vicinity of
another player which is currently using it for transmission. As such, it is proposed
that an area surrounding a player i with radius »; be defined as the circle of
interference, within which any device transmitting on the same subcarrier will cause
significant CCI to the ith player. r; is called the radius of interference. A similar
concept was briefly mentioned in [20]. However, it is developed differently here due
to the fact that the CCI affects mainly the receiver, so it makes sense to center the
circle of interference at the receiver.

Using the previously defined distance matrix D, two rules governing the reuse of
subcarriers are generalized:

1. Rule 1: For player i to successfully transmit using subcarrier &, it is required that
(Vj # i,d; < ry): ag = 0, i.e., all transmitters within the radius of interference
should not use the same subcarrier as player i.

2. Rule 2: Two players i and j can reuse any subcarrier k if d;j > rj and d;; > r;,
i.e., the transmitter of one player falls outside the radius of interference of the
other, and vice versa. A conflict is said to occur between players i and j if rule 2
is violated.

The definition of conflict allows us to construct the so-called conflict matrix C €
{0, 1}¥*N which maps the occurrence of conflicts in the entire network. Specifically,
its elements are
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Fig. 3.3 Four
transmit-receive pairs and
their interference radii

V: Transmtter
* : Receiver

JZ

Interference Circles

0 i =], orno conflict between i and j,
C, = _ (3.5)
1 otherwise.

A simple example with N = 4 pairs of nodes is shown in Fig. 3.3. It is observed
that player 2 does not have a conflict with any other player. On the other hand,
player 4’s transmitter is within both players 1 and 3’s interference radii so it cannot
use the subcarriers occupied by players 1 and 3. However, player 1 will not clash
with player 3. Thus, the conflict matrix is given by

0001
0000
C=|0001l" (3.6)

1010

The symmetric conflict matrix is useful from a centralized point of view. In
practice, an entry “1” in a row represents a one-hop neighbor of a particular player,
and some available distributed MAC protocols can be used to obtain these one-hop
neighbors. Hence, in the distributed context, it is reasonable to assume that each
player knows only its corresponding row of the matrix. As will be seen in later
parts of this chapter, this information can be useful for the players to autonomously
compete for resources.

It has not been mentioned how the radius of interference is determined. This
is a complex problem, as the value of r; should depend on player i’s as well as its
neighbors’ transmitted power and locations, its own SINR requirement, and channel
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gains. To be more accurate, for different subcarriers, player i may have different
radii as a result of frequency-selective fading. However, a simple way to estimate r;
with only the path loss taken into consideration will be proposed, so that 7; will be
identical for all subcarriers.

Assuming that for pair i, its neighbor j who is using the same subcarrier k is the
most significant interferer, and the effects from the remaining pairs are negligible.
Furthermore, let us assume that they use roughly the same power pi ~ pj = p, and
consider only the effect of path loss.

Proposition 3.1. Under the above assumptions, to maintain its SINR above a target
level v, player i might set

= dy(y)'* (3.7)

where A is the path loss exponent.

Proof. Following the assumptions, the received power levels at receiver i from
the ith and jth transmitters are proportional to p/d% and p/dj?l‘., respectively. By
neglecting the background noise, the SINR perceived by the ith pair is roughly
(dj,-/dii)’\. If we want this to be no less than y*, then d;; > dii(yi*)l/’\. Thus, r;
can be estimated by d;;(y;*) 1/% according to rule 2 previously. O

In practice, if more than one interferers need to be accounted for, a safeguard
margin (i.e., a multiplier greater than 1) might be introduced to this computed value.
In the next section, the utility function is introduced in order to analyze the resulting
game.

3.3 Analysis of Potential Game

3.3.1 Preliminaries

As investigated in Chap. 2, potential game formulations are desirable due to their
attractive properties of pure-strategy Nash equilibrium existence and convergence.
Recall that a game ¥ is an exact potential game if and only if a potential function
F(S) : S — R exists, such that

Ui(T;, S=) — Ui(S;, S—) = F(T;, S—) — F(S;, S=)). (3.8)
For the distributed system of transmit-receive radio pairs where each player
selects only a single frequency channel, Nie et al. [19] formulated a potential game

by adopting the following interference-minimizing utility function:

U; = —(Total CCI generated and experienced by i). (3.9
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We discussed the corresponding potential game analysis of this approach earlier
in Example 2.17 of this book. From here on, we will label this game %). Next, a
generalization of ¢ will be formulated which applies to the distributed OFDMA
system under investigation.

3.3.2 Potential Game Formulation

Let us denote the distributed OFDMA subcarrier allocation game %, where
4 = [N, S, {Ui}ier]. (3.10)

The set of players is given by .4~ = {1,2, ..., N}. For any player i, its strategies
S; are the subcarriers. Thus, effectively S; = al € S;, where S; = {0, 1}¥ \ {0}
is the strategy set of player i. For each S;, S_; is the joint strategy by opponents of
player i. Hence, S = (S;, S—;) is the joint strategy of all players, also known as a
strategy profile. All strategy profiles belong to the strategy space, here defined by
Slex...xSN.

Every utility function U;(S) is then a mapping from S to R, which is defined as
a negative interference sum (3.9) over all the utilized subcarriers of player i, i.e.,
U, = Z{klaik=l} U;y. As the assignment of subcarriers {k|a; = 1} is yet to be
determined, another set of variables 85 needs to be introduced, such that

sk — 1 Players i, j (i # j) both transmit via subcarrier k, 3.11)
Y 0 otherwise. .

Thus, Sl’f can be viewed as an indicator of whether two players i and j interfere each

other through a common subcarrier k; and 85 = 0 because a player does not interfere
with itself. It is not difficult to verify that 8§ = & = aga; (i # j). With all these
notations introduced, the utility function for player i can be expressed as

K N N
UiS) ==Y | D 8kpush + Y 8ipagh | - (3.12)
j=1

k=1 \j=1

Theorem 3.1. Equation (3.8) will hold if the following exact potential function is
considered:

N
F(S) = %ZUi. (3.13)
i=1
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Proof. To simplify, let us define wj; = —8}pig};. Then, U; in (3.12) can be written as

K
U,'(S,',S_i) = Z Za) + Zw = Z Ui,k(Si, S—i) (314)
k=1

k=1 \ j=1

where U, +(S;, S—;) = Z Z] la)
The potential functlon (3 13) can be 51mphﬁed to

N N

N K
k k
s |2 | i+ e
i = j=1

i=1 \ k=1 \ j=1

—_

F(Si, S—)

[\

I
™
4
kS
A

k=1 \ i=1 j=1
K

=D FilSi.S-) (3.15)
k=1

where Fi (S, S_) 2 YV | YL ok,
Suppose that player i switches its strategy from S; = a] = [aj an ... ai]

T T
to I} = a; = |d, a, ... dg| Its power vector changes to p/; =

[Pl Py ... Plg]- By comparing (3.14) and (3.15), it is seen that (3.8) holds if
the following K separate identities hold simultaneously:

Uin(Ti, S—i) — Uin(Si, S—i) = Fi(T;, S—) — Fi(Si, S—-i),  Vk. (3.16)
Noting that w{i = 0, F(S) can be rewritten into

N N N N
Fi(Si,8-) = Zwﬁ + Zwﬁ + Z Z )
=1 =1

=1 =1 I
= Uix(Si, S—i) + O(S—) (3.17)

where Qi (S—;) = Z/ i P i @) is a constant value and independent of S,
i.e., when player i changes its strategy to 7;, Oy (S—;) remains unchanged. Therefore,

Fi(T:, S- 1)—2‘0:1 +ijl + Z Z

j=1j#il=1,1#i
= Uik(Ti, S=i) + Ou(S—). (3.18)

Subtracting (3.17) from (3.18) implies (3.16), and hence, (3.8) follows. O



82 3 Frequency Assignment in Distributed OFDMA-Based Systems Using Potential. ..

As the proof made no assumption of the strategy space S, Eq.(3.8) must be
valid for any (S;,8—;) and (T;,S—;) € §' C S. At the same time, the constraint
in power plays no part in the proof and should not affect the analysis. The following
corollaries are direct consequences.

Corollary 3.1. The game %, and every similar game whose strategy space is a
subset of S, including 4, are exact potential games.

Corollary 3.2. For such games, pure-strategy Nash equilibrium exists and can be
obtained through sequential best/better-response dynamics.

Remark 3.1. The previous analysis, as was presented in our original work [14], was
based on a traditional technique of establishing potential games by first introducing
a potential function and verifying it with the definition. On the other hand, one can
alternatively make use of our framework in Chap. 2 to cross-examine such proofs.

To establish that the game %, is an exact potential game, we note that its utility
functions in (3.12) satisfy the bilateral symmetric information (BSI) property (2.55).
The pairwise interactions between any two players i and j are represented by

K
wii(Si. §j) = wii(S}. 5) = = > _(f + of (3.19)
k=1

which are symmetric between players i and j. Thus, Theorem 2.21 ensures that &,
is an exact potential game with the associated potential function

N N
FS)==>">" wyS:.5). (3.20)

i=1 j=1j<i

One can also easily verify that (3.20) is equivalent to (3.13).

Remark 3.2. In the formulation of %, we have also followed the forward method
documented in Sect.2.4.2, similar to the formulation of ¢;. The utility functions
were designed in a manner that exhibited symmetry of observations when formulat-
ing a potential game.

3.3.3 Domination in the Strategy Set

A careful examination reveals that the proposed game also exhibits dominated
strategies, i.e., a strategy that always yields smaller utility than another for a player
regardless of what its opponents’ strategies are. This leads to the following theorem.

Theorem 3.2. Given a strategy S; of player i. Derive a new strategy T; by replacing
an element with value 1 in S; by 0 (assuming T; is valid). Provided that all other
parameters remain the same, S; is always (at least weakly) dominated by T; for
every player i, i.e.,
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Ui(T;,S—) = Ui(S;,S—), Yie N (3.21)

/

Proof. Assume that a;, = 1 is replaced by 4,

= 0. Clearly, U; can be rewritten

into
N N K N N
us = Lo+ Top|+ T (Sek+ Tof
=1 j=1 k=1k#m \j=1 J=1
=Uim(Si,S—) + W (3.22)

where W = Zf:]_#m (Zjvzl a);j- + Z;.VZI a)l’;) is a constant and U; ,,,(S;, S—;) < 0.
With ;,, = 0, 0" = ;" = 0 for all i and j. Thus, Ui(T;, S—;) = W. Clearly,

U;(S;,S—;) < Ui(T;, S—;) and the theorem is proven. O

The weakly dominated case corresponds to when player i is the only one using
the subcarrier. Under this circumstance, when it stops using the subcarrier, it will
not affect the rest of the players and their utility functions remain unaltered.

However, for most of the time, the domination will be strict. Basically, it means
that players will favor a strategy which yields less CCI to obtain a less negative
utility value. That is, on subcarrier k, there are other co-channel players besides
player i and by not transmitting, player i receives and generates less CCI. Following
the same argument, players thus have a tendency to remove subcarriers. They will
keep on doing so until each of them uses only one subcarrier, at which point the
game % is reduced to 4. In that case, the following corollary is a direct implication.

Corollary 3.3. In the strategy set of player i, the subset ®; = {al|all = 1}
consists of dominant strategies. That is, transmitting on a single subcarrier is a
dominant strategy.

In defining the subset of dominant strategies above, it is understood that
corresponding to each strategy S; in ®; are a group of strategies dominated by S;
in the complement S; \ ®;, but not all of them. For example, if S; = [1 0 0 0], then
[1010],[110 1] and so on are dominated by S;, but [0 1 1 0] is not dominated by
S; in the sense of Theorem 3.2. The domination in strategies is against the original
objective for each player to have a sufficient number of subcarriers to transmit, so as
to improve the overall spectrum usage. Hence, it is proposed that the domination in
strategy for the game should be removed by allowing a player to request in advance
how many subcarriers it is going to compete. The exact number of subcarriers
for each player will be determined via a proposed method in Sect. 3.4. Under this
condition, the original game can be modified accordingly.
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3.3.4 The Modified Game

In the modified game, the previous parameters remain the same except that each
player requests for a fixed number of subcarriers K;, where 1 < K; < K. For player
i, an eligible strategy is S;, drawn from S, = {a’|al1 = K}, which is a subset of
{0, 13X\ {0}. The overall strategy space is thus S’ = S} x ... x S},. The modified
game is denoted as

Gy =[S {Ulier |- (3.23)
Mathematically, the previous optimization problem can also be restated as

max U;, Vie N
T
a;

al € {0, 13K\ {0}, a’l =K,

3.24

We see that in ¢, strategy domination in the sense of Theorem 3.2 does not exist.
Also, we have an immediate result.

Theorem 3.3. The game ¥, is an exact potential game.
Proof. This is a direct consequence of Corollary 3.1 since S’ C S. O

Remark 3.3. The above result is also directly available from Theorem 2.23 in the
previous chapter, where we established that imposing constraints on the strategy
space of an exact potential game results in another exact potential game.

3.4 Allocation of the Number of Subcarriers

From the previous analysis, an important implication is that every player i will
compete with a fixed number of subcarriers K; to avoid the unnecessary strategy
elimination. This fact gives rise to the need for a method to decide the number of
subcarriers for the players before the actual gameplay. Thus, a distributed scheme
is proposed where a player can use both its own QoS requirement, in terms of an
expected data rate, and the locally available information about its neighbors in the
network to autonomously decide the number of subcarriers. The method is referred
to as the “Autonomous Number of Subcarrier Selection” (ANSS) scheme, which is
described by Algorithm 3.1.

The ANSS scheme essentially defines a network etiquette by which at the
beginning, players entering the network should go through some interactions prior
to the actual gameplay. This allows them to locally explore the network, acquire and
exchange information, thus enforcing certain degrees of “self-awareness” among
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Algorithm 3.1 The ANSS scheme

1: I. ASSUMPTION:

2: Player i determines its interference radius r; according to (3.7).

3: Player i’s requested number of subcarriers is |—R,-_,eq / R_wb‘|.

4: II. SELECTION STEP:

5: for playeri = 1 — N do

6: Upon entering the network, broadcast a signal of identical power on the control channel.
7

8

9

0

The receiver listens and detects the number of transmitters within its radius of interference.
Identify the number of conflicting neighbors t; = Z,]'V=1 Cj.
: Thus, determine the number of subcarriers according to (3.25).
1

: end for

the players. This approach can also be easily utilized to monitor new players who
are entering the networks. If the listening process lasts for an ample period of
time, a player will gather sufficient information to determine how many conflicting
neighbors within its radius of interference, which for player i is given by the sum of
elements of the ith row in the conflict matrix C, i.e., 7; = Z;V=1 Cjj.

The assumptions of ANSS and the selection rule given by Eq. (3.25) below are
further explained as follows. It is assumed that every player i may request a certain
data rate R;,., bps. Although failing to satisfy this requested rate is undesirable,
the type of data service does not require the players to strictly fulfill the rate
requirement. Depending on the OFDM system design parameters, one can assume
that each subcarrier can support a rate of R,,;, bps. Hence, it is natural that player i
should request a total of |_R,;,eq / Rmb-| subcarriers. Hence, it is proposed that a player
i can determine its number of subcarriers as follows:

(] R ])]
K; = max | 1, min | — . (3.25)
1 + Ti Rsub

Equation (3.25) considers the subcarrier allocation problem from both the player
and the network perspective. On the one hand, based on the environment informa-
tion obtained, it is likely that player i should be sharing the K available subcarriers
with 7; other conflicting neighbors. Apparently, among these 7; neighbors there
may exist non-conflicting pairs of players. However, due to incomplete information
(player i not aware of the complete conflict matrix except its own row), and taking
into account the fairness issue, the best action of that player is to take an equal
proportion of the spectrum resource, i.e., |[K/(1 + 7;)]. This way, to some extent,
it also helps minimizing its own CCI imposed on other players by not making
excessive demand for subcarriers. On the one hand, it gives a player at least one
subcarrier in case the pair is in a very crowded neighborhood, thus maintaining
fairness. Furthermore, if the pair is in a very favorable situation with no significant
co-channel interferers, it gives the player only a sufficient number of subcarriers
rather than all the available subcarriers (i.e., when ; = 0, although |K/(1 + ;)| =
K, only (R,-,,eq /Rsub] subcarriers will be allocated). This provides some flexibility
for the player to select the good subcarriers and discard those with bad channel
conditions, and hence achieve better energy efficiency while keeping the spectrum
utilization high.
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3.5 Game Algorithm

In this section, the algorithm for allocating transmission power and achieving a Nash
equilibrium is described.

3.5.1 Power Mechanism

In OFDMA systems, waterfilling and its variations [7, 11] are often used for power
allocation in order to optimize transmission capacity. However, when capacity-
based power allocation is not the main concern and the key issue is CCI mitigation
[12, 19], the common practice is to achieve a target transmission quality (e.g., target
SINR) at minimal power. Similarly, in the proposed game where CCI minimization
is the primary objective, a simpler power mechanism similar to Scheme 1 of the
previous chapter can be employed which emphasizes more on fairness.

Consider player i and assume that the channel gain between its transmitter and
receiver (gk) is known. During the pre-gameplay period (ANSS), the receiver has
learned about its environment, measured the average amount of CCI from the
surrounding players, and fed the information back to its transmitter. Player i who
is aware of the expected amount of CCI previously would then set an interference
margin p; to counter-measure this. The purpose of u; is to account for CCI. For
player i to achieve a target SINR y;* in an AWGN channel, it needs to transmit
at a higher power to combat CCI in order to maintain the receiver performance.
Real-time monitoring of CCI can be challenging and increases the implementation
complexity. Therefore, the interference margin p; is used to account for the expected
amount of CCI present at the receiver, the value of which can be estimated by the
average amount of CCI seen at the receiver during the gameplay. The shortcoming
of this is that the target SINR will not be strictly guaranteed after the gameplay, but
it will be shown later via simulations that adequate SINR performance can still be
obtained.

As such, if player i has a target SINR y;* on each subcarrier, based on the channel
gains (gffi), the noise floor 0 and the margin p; it will be able to estimate the power
level p; required to achieve this target. Furthermore, if the player uses multiple
subcarriers, the same power budget will be distributed among K; subcarriers and we
can set maximum power per subcarrier at Pp,,/K;. The power level estimated in
this way will be used during the gameplay. Such scheme reduces the complexity at
the expense of slight derivation in SINR from the desired threshold. Specifically,
assume player i uses subcarrier & then its transmitted power is estimated by

Pik@Bm) = min { 00p + Vi) + Mias) — &) (Pmax/Ki)aBm)} - (3.26)
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Remark 3.4. Equation (3.26) ensures that there is a one-to-one correspondence
from each subcarrier assignment matrix to a power matrix, i.e., P = P(A). As such,
subcarrier and power are two equivalent game strategies in this study.

3.5.2 Sequential Best-Response Play

As stated in Corollary 3.2, Nash equilibrium convergence for a potential game is
ensured and can be obtained through a sequential best-response dynamic among
the players. Let 7; be the new strategy of player i obtained via the best-response
dynamic, defined by Eq.(1.16), which is restated here for the current game as
follows

T; = argmax U(S;,S-)). (3.27)
S;E{airlaiT1=Ki}

Algorithm 3.2 summarizes the details of the sequential iterative best-response
scheme. The game is initialized with a random subcarrier assignment for each
player. This is likely to be a nonequilibrium state and the first player will take action
to try to improve its utility value by looking for its best-response strategy after
observing the opponents’ actions. After one active player has made the decision,
the power matrix and assignment matrix are updated. The next player will become
active and repeat the process to obtain its best response. The iteration continues until

Algorithm 3.2 Best-response algorithm for the distributed OFDMA game

1: L INITIALIZATION STEP:
2: for playeri = 1 — N do

3: Assign a random strategy S; € {al|all = K;}.
4: if a;; = 1 then set p; according to (3.26)
5: else pjy < 0
6: end if
7: end for
8: II. ITERATION STEP:
9: while Nash equilibrium has not been reached do
10: for player i in a predetermined sequence do
11: for subcarrier k = 1 — K do
12: The receiver measures the noise and CCI, then feeds those values back to the
transmitter.
13: end for
14: for subcarrier combination S; € {al|a1 = K;} do
15: Use the power mechanism (3.26) to estimate the utility function (3.12).
16: end for
17: Decide the best-response strategy 7; according to (3.27).
18: Update the new subcarrier and power vectors a! and p; .
19: end for

20: end while
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a Nash equilibrium is reached. The sequential order by which players take turn can
be determined by the order of network entry, during the ANSS stage.

The total search space for player i has a total of WLK,)' possibilities. The algo-
rithm complexity is therefore O(INL) where N is the number of players, I is the
expected number of rounds until convergence (one round ends when all players have

acted), and L = % Zflzl (ﬁlm,) is the mean number of strategy combinations

over all players.

3.6 Optimality Studies via Price of Anarchy

In this OFDMA potential game, a pure-strategy Nash equilibrium can always
be obtained via best response, which is computationally tractable. However, a
typical characteristic of games with large, discrete strategy spaces is that multiple
Nash equilibria can exist and there can be vast differences between two different
Nash equilibria in terms of performance. At the same time, it is often that the Nash
equilibrium is inefficient, compared to the social Pareto optimum point. This social
optimum point can always be found using a centralized, exhaustive search method.
However, it is known that such an approach is NP-hard. Therefore, it is important
to assess the degree of optimality of the Nash equilibrium allocation point obtained
via the best-response method with respect to the social optimum. The technique of
PoA can provide us a tool to study this issue.

The concept of PoA is formally introduced in Sect. 1.3.4. Briefly, a performance
measure (i.e., a real number) is assigned to each outcome of the game, including the
Nash equilibria as well as the social optimum. A common measure is the utilitarian
welfare function ®(S), which is defined to be the sum of all individual utility
functions in (1.18). Denote S the social optimum point. Then, the PoA of strategy S
is defined in (1.19) to be the ratio between ©(S) and @(ﬁ) or vice versa, depending
on whether the game maximizes or minimizes players’ utility functions.

Based on the definition and convention for PoA, when applied to the proposed
game, it is noticed that each player maximizes the negative interference sum in the
utility functions, which is equivalent to minimization of a positive interference sum.
Thus, mathematically, the PoA for strategy S will be given by

o(s)

PoA(S) = od"

(3.28)

Moreover, since the exact potential function F(S) in (3.13) is exactly half the
sum of all utility functions, it can be used equivalently as a scaled version of the
utilitarian welfare function of the game. As such, one can now formally define
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N
O(S) = F(S) = ZU,-(S). (3.29)
i=1

As O(S) refers to a negative interference sum, @(S’) will have the least absolute
value, so PoA(S) > 1, VS. A quantity of interest is the worst-case PoA correspond-
ing to the worst Nash equilibrium S,,. = arg ming.; ®(S). Here, E C S denotes the
set of Nash equilibria. S,,. gives the performance lower bound for %. In the next
lemma, the performance upper bound is discussed.

Lemma 3.1. The social optimum point of ®(§) for the proposed potential game
coincides with the best Nash equilibrium, i.e., S = arg maxgey O(S). Thus, it is the
upper bound for the achievable performance of the best-response algorithm.

Proof. In a potential game, any Nash equilibrium corresponds exactly to a (local)
maximum of the exact potential function F(S) [16]. Therefore, the social optimum
given by S = arg maxgeg ©(S), which is the global optimum of ©(S) and F(S),
must be one Nash equilibrium (the best equilibrium) of 43, i.e., S € E. As such, §
is reachable via the best-response dynamics and is the upper performance bound of
this algorithm. O

3.7 Simulation Results

Extensive computer simulation was carried out to study the system and the proposed
approach using MATLAB. Firstly, the convergence property of the potential game
will be verified. Secondly, in order to investigate the details of OFDMA resource
allocation, the results of a particular one-shot are documented, as well as statistical
results from long-run simulation in comparison with a few other schemes, which
give more insights into the performance of the system. Numerical evaluation of
PoA will also be carried out to estimate the optimality degree of the proposed
algorithm. Furthermore, the effect of the number of allocated subcarrier K; on the
game’s performance is also studied.

In the entire simulation, the parameters were set according to Table 3.1. In
particular, the target SINR per subcarrier was y* = 13dB for every player,
which is necessary for 16-Quadrature amplitude modulation (QAM) to meet the
BER requirement of 107>, In addition, all the links were assumed to undergo
independently and identically distributed Rayleigh fading, as well as path loss.
The OFDM subcarrier was designed to support a rate of 10 kSymbols/s; thus, with
16-QAM, the bit rate supported is Ry, = 40 kbps. Moreover, the players’ requested
rates R;,, were assumed to be within 30 and 150kbps, following a truncated
exponential distribution with mean at 60 kbps.
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Table 3.1 Simulation

) T System parameters Values
settings for the distributed Number of players, N 20
OFDMA system >

Number of subcarriers, K 5

Cell radius, r 1km

Path loss exponent, A 3

Noise power level, o2 1078w
Bandwidth per subcarrier, B 10kHz
Maximum power per user, Pp,x 20 mW
Modulation scheme 16-QAM
Supported OFDM symbol rate 10 kSymbols/s
BER requirement, P, 102

Target SINRs per subcarrier, y;*, Vi | 13dB
Interference margins, w;, Vi 3dB

3.7.1 Nash Equilibrium Convergence

To verify the convergence to a Nash equilibrium of the best-response algorithm, a
special case when all players occupied two subcarriers is demonstrated in Fig. 3.4.
The following example is meant only for the purpose of graphical illustration. In
an actual game, due to the ANSS scheme, the number of subcarriers varied from
player to player, but Nash equilibria would be obtained similarly and convergence
properties would be maintained.

It is observed that the game quickly settled down to a Nash equilibrium solution.
With K; = 2, there were L = 10 possible valid strategies for each player to select
from, each of which is labeled with a binary sequence on the vertical axis. At the
same time, Fig. 3.5 shows the evolution of the exact potential function during the
course of the example game. Each step on the horizontal axis refers to a decision
made by a single player. Thus, N (= 20) steps constitutes one round. As expected,
a monotonically increasing behavior until saturation can be noticed. Furthermore,
in Fig. 3.4, it is seen that the number of rounds / was 4. It was observed that most
of the actual simulations also quickly converged, where the expected value of the
number of rounds / was only 4 or 5. Essentially, this illustrates three important facts:
(1) existence of a pure-strategy Nash equilibrium; (2) convergence of the sequential
best-response dynamics; and (3) finite improvement paths with no improvement
cycles. All of these exhibit the properties of a potential game.

3.7.2 Performance of a One-Shot Game

The performance of the system will be evaluated to assess the efficiency and fairness
of the proposed game. The criteria for evaluation include power, SINR and capacity.
Firstly, a one-shot is demonstrated. In the example, the nodes’ distribution in the
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V: Transmitter
* : Receiver

Fig. 3.6 Locations of the transmit-receive pairs for the one-shot

Table 3.2 Allocation of
subcarriers at equilibrium for
the one-shot

Subcarrier | Player(s)

1 1,3,9,12,15,20

2 1,2,3,5,6,12,13,14,17

3 2,5,7,10,11,12, 16,20

4 2,3,5,8,10,13,14,19

5 1,4,5,11,12,13,15,16, 18

cell is depicted in Fig. 3.6. For viewing purpose, the players’ indices are all labeled.
Moreover, their radii of interferences which were determined according to (3.7) are
also drawn. The players then followed the ANSS scheme and the best-response
play to successfully reach a Nash equilibrium. Table 3.2 shows which players
were occupying a certain subcarrier at Nash equilibrium.

Closer investigation shows that the algorithm yielded reasonable and desirable
results. In Fig.3.6, conflicts were observed among pairs 6, 7, 8, 9 and 11.
They would likely cause heavy CCI if they transmitted on the same subcarrier.
Nevertheless, the ANSS and iterative sequential play have allowed those players to
intelligently avoid CCI by selecting non-overlapping subcarriers. This fact is evident
in Table 3.2, which shows that none of the subcarriers was shared by more than one
in the cluster. Notice that players 7 and 11 were an exception as they did not have
conflict and could share subcarrier 3. For other conflicting clusters, heavy CCI was
also avoided.

Next, in Figs. 3.7 and 3.8, both initial and final SINR values are displayed. The
SINR values in dB are grouped according to the subcarrier, and plotted against the
indices of the players occupying that subcarrier. It is clear that the final allocation
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Subc. 1 initial SINR (dB) Subec. 2 initial SINR (dB) Subc. 3 initial SINR (dB)
Average = 12.542 Average = 13.6632 Average = 15.0162
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Subc. 4 initial SINR (dB) Subc. 5 initial SINR (dB)
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Fig. 3.7 Initial SINR seen from each subcarrier for the one-shot

point showed improvement in both spectrum efficiency and fairness. Spectrum
efficiency was enhanced as most players achieved better SINR in all the subcarriers.
Most significantly, in subcarrier 5, the average SINR was increased from 11.88 dB
(see Fig.3.7) to 15.50dB (see Fig. 3.8). Furthermore, at the Nash equilibrium, the
variation in SINR of different players in the same subcarriers as well as the deviation
from the SINR target of 13 dB had been decreased. Besides, no players had to suffer
from severely low SINR (see Fig. 3.8).

The power and capacity performance obtained in Figs. 3.9 and 3.10 give more
insights into the system performance. Compared to the initial power levels which
were relatively high, the power consumption at the Nash equilibrium was reduced
considerably for several players and the whole system (see Fig. 3.9). Besides, no
players had to use up their entire power budget P.x. Hence, the higher efficiency
in SINR performance could be achieved with lower power consumption, which
reaffirms the efficiency of the algorithm. For the capacity performance shown in
Fig.3.10, the achievable capacities were compared with the desired (requested)
capacities. For every player i, its achievable capacity is estimated by é ZkK=1 airRix
with Ry given in (3.3), while its requested capacity is R; ,.,/B. It is observed that
commonly the achievable capacity would satisfy the requested rate or was only
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Subc. 1 final SINR (dB) Subc. 2 final SINR (dB) Subc. 3 final SINR (dB)
Average = 14.4911 Average = 15.9482 Average = 16.6268
20 20
15 15
10 10
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0 0
1 3 9 12 15 20 1235 612131417 2 5 71011121620
Subc. 4 final SINR (dB) Subc. 5 final SINR (dB)
Average = 15.5095 Average = 15.5059
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2 35810131419 14 5111213151618

Fig. 3.8 Final SINR seen from each subcarrier for the one-shot

below by a small margin. Exceptions occurred when the players suffered from
excessive conflicts with other neighbors and could only use a smaller number of
subcarriers than the requested one, as obtained by (3.25). Examples of these are
players 8, 9, 19 and 20 which were in crowded neighborhoods (see Fig.3.6) and
thus had to give up their required rates. As CCI reduction is the primary objective,
some players may need to sacrifice for the welfare of the entire network.

3.7.3 Effects of the Number of Subcarriers

In this part of the simulation, the effects of K; on the achievable capacity of the
network were studied. To make the comparison compatible, it was assumed that
every player had an identical number of subcarrier, i.e. K; = Kj, Vi,j and the ANSS
scheme was not in effect. For the same players’ locations and channel conditions,
the average achievable capacities per player of the game ¢, at the Nash equilibrium
were compared for the different number of subcarriers used by each player K;. Note
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Fig. 3.11 Average power and capacity per user vs. number of subcarriers K;

thatif K; = 1, the game ¢, reduces to ¢, . For fair comparison, the power mechanism
was regulated so that for each Kj, all players consumed nearly the same amount of
power. If one takes the single-subcarrier case as reference, then for K; subcarriers,
the expected SINR target per subcarrier should be reduced by K; times. Specifically,
y(zg;") = V(tus) — 10log(K;). All other parameters were the same as in Table 3.1.
K; took values from 1 to 5. Although only a small number of subcarriers is used in
the graphical illustration, the algorithm is scalable to the size of network nodes and
number of subcarriers.

Figure3.11 plots the power usage as well as capacity per player at Nash
equilibrium against K;. First, it should be pointed out that with the previous
regulation in transmission power, the variation in average power per player for
different values of K; was not significant. Despite that, the average capacity for per
player in the system became better for higher K;, implying that better efficiency can
be achieved with more sharing of spectrum. The capacity curve became saturated
since the higher K;, the higher number of players occupying the same subcarrier
and as a result, more CCI was introduced. This is also reflected in the change in
the equilibrium values of the exact potential function. Figure 3.12 illustrates that
the potential function F became more negative when K; increased, since more
interference terms were added to F. This is in accordance with Theorem 3.2, which
predicts a lower potential value for more channel sharing. Nevertheless, in the
proposed algorithm, the increase in CCI to a certain extent is still acceptable as
long as improvement in average players’ capacity can still be achieved.
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Fig. 3.12 Value of F(S) at Nash equilibrium vs. number of subcarriers K;

Table 3.3 Comparison of

o Schemes Convergence | Fairness index
distributed OFDMA schemes -
Random allocation | N.A. 0.693
Proposed game 100 % 0.840
SM/PP 94.06 % 0.768
OFDMA/WF 0% N.A.

3.7.4 Performance Evaluation in the Long Run

In addition to looking at one particular instance of the game, the system perfor-
mance was also statistically evaluated over a long time horizon. This test case
considered 5000 replications of the one-shot game, during which most of the global
parameter settings were the same as before, except that the players’ locations and
channel conditions were randomly and independently generated for each replication.
Furthermore, to benchmark the performance of the proposed algorithm, it was
compared with a few existing RRM schemes, as shown in Table 3.3, including
the SINR Maximization with Power Pricing (SM/PP) scheme [12], the OFDMA
Iterative Waterfilling (OFDMA/WF) scheme (a commonly used method in OFDMA
networks, partially adopted in [7, 11]); as well as the Random Allocation scheme. In
SM/PP [12], the utility function consists of a SINR reward and a power pricing term
but does not possess the property of a potential game. In OFDMA/WE, the players
also select subcarriers in a best-response manner and allocate power through the



98 3 Frequency Assignment in Distributed OFDMA-Based Systems Using Potential. ..

waterfilling algorithm to maximize their rates. Random allocation is an intuitive
method where player i was randomly preassigned with K; subcarriers to transmit
regardless of the other players’ actions.

The most important consideration for an allocation scheme is its ability to
converge to a stable solution. From Table 3.3, the convergence probabilities for the
schemes in comparison over the 5000 one-shot games can be seen. As expected, the
proposed scheme converged for every one-shot game, as predicted by the property
of potential games. The SM/PP scheme, despite not having 100 % convergence,
seemed to perform reasonably well as 94 % of the one-shots converged. However,
the OFDMA/WF scheme, which was employed in cellular OFDMA networks (e.g.,
[7, 11]), did not stabilize in this distributed system. For the random allocation, test-
ing for convergence is not necessary as the subcarrier assignment was preassigned.

Next, for the stable schemes (the proposed game, SM/PP and random allocation),
the degree of fairness of the final spectrum allocation was compared. In order to
obtain a measure of fairness, the test used the fairness index proposed by R. Jain
et al. [8]. Considering an N-user system for which user i achieves a quantity of x;
under a particular resource allocation strategy, the fairness index for this allocation
is defined as

(3.30)

In the proposed game, this quantity is chosen to be the normalized rate/capacity
achieved by the players. Normalized values are necessary as each player has a
different requested rate R;,,. At the final Nash equilibrium, the achievable rate
of player i is given by R; = Zle Rix, and hence, the normalized rate is taken as
X; = Ri/R; rq. Thus, for any one-shot game simulated, various fairness indices could
be computed for different schemes. The mean values of the fairness indices over the
5000 replications are displayed in Table 3.3. It can now be seen that the proposed
game obtained the highest degree of fairness over random allocation and SM/PP,
with an index of 0.840. In practice, this implies that statistically, the proposed
scheme let the players meet their requested rates better than the competing schemes.
As the quantity x; used in computing the Jain’s index is a player’s achievable rate
normalized by its requested rate, if the index is closer to 1, then all players receive
more even proportions of the resources and hence the values of x; are closer to each
other and to 1. Thus, players transmitting at higher than their requested rates can
give up part of their capacities so that those transmitting at lower than their requested
rates can improve their capacities. The reason for the proposed game’s fairly high
index despite a decentralized scheme can be attributed to the utility function which
allows for less selfish behaviors and more cooperation among competing players.
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Fig. 3.13 Empirical CDFs of SINR for multiple distributed OFDMA schemes

The empirical cumulative distribution functions (CDF) for the resulting players’
SINR and capacities are also presented in Figs.3.13 and 3.14 for the proposed,
SM/PP and random allocation schemes. For SINR, the samples are the SINRs
yi for any player i over its used subcarrier k; and for capacity, the samples
are the individual total capacities C; = Zle Cit. The results show that the
proposed game consistently maintained an advantage over the SM/PP scheme
and outperformed the random allocation scheme in achieving both better SINR
and capacities. From the CDF for SINR of the proposed game, it is noticed that
Prob[yy < 13dB] =~ 0.3. In other words, about 70 % of the time, the achieved
SINR for the players can satisfy the target SINR y;* of 13 dB. In addition, based on
this numerical studies, 70-75 % of the time, the requested rate can be adequately
met by the achievable rate.

An interesting phenomenon could be noticed, which is the piecewise continuous
shapes of the CDFs for capacity. This is likely due to the differences in the number of
subcarriers that the players were allocated, which is a discrete random variable. That
is, if a player gets one subcarrier (i.e., its capacity consists of a single term Cj, only),
then it is likely that its achievable capacity may fall into a certain region distinct
from that of another player who gets two subcarriers (i.e., its capacity includes two
terms Cj, + Cj,). In this sense, the first “segment” of the CDF curve corresponds
to the capacities of those with one subcarrier, the second “segment” to those with
two subcarriers, and so on. Therefore, the aggregate CDF might be seen as the sum
of these individual curves.
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Empirical CDFs of Capacities
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Fig. 3.14 Empirical CDFs of capacities for multiple distributed OFDMA schemes

3.7.5 PoA Evaluation

In order to examine the optimality degree of the proposed method, the PoA of the
game was numerically computed during the simulations, which were done over
100 different randomized one-shot games using the global settings in Table 3.1.
For each one-shot game, the test searched for the set of Nash equilibria E. The
Nash equilibrium which gives the social optimum was then identified. On the other
hand, an independent run of the proposed best-response sequential algorithm was
performed, and the algorithm would converge to one of the Nash equilibria. For
comparison purpose, a random allocation (as described in the previous section)
of each one-shot game in question was also considered. Hence, for any one-shot
game, different POA metrics could be computed, including the PoAg,,, for the
proposed game, PoA,;,y for random allocation, and the PoA,,. which represents
the price of anarchy for the worst-case Nash equilibrium. PoA,,. is an important
performance metric which specifies a lower bound for the efficiency of a game-
theoretical method.

In Fig.3.15, the different PoAs and the social optimum PoA bound, which is
always 1, are plotted for various one-shot games, sorted in an increasing order of
PoA,, to clearly indicate the performance bounds. As predicted by Lemma 3.1, the
PoA ge graph is maximum bounded by the PoA,,. graph, and minimum bounded by
1. Moreover, it can also be observed that the optimality degree of the proposed game
was fairly acceptable as it was consistently close to the optimum bound, within the
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Fig. 3.15 Comparison of PoA for the distributed OFDMA game

10°-10" range, whereas the random allocation was generally worse, occasionally
resulting in PoA of order 10%. In fact, numerical results showed that the mean value
of PoAgam. wWas about 1.65, and that of the worst case scenario was only 3.92, while
on average the random allocation method had a mean PoA of around 10°. The results
imply that the proposed game could reduce the interference power generated to the
network by 10-20 dB over the random allocation and was only 2—4 dB behind the
optimal solution in the worst case.

3.8 Concluding Remarks

This chapter studies the problem of designing game-theoretical approaches to RRM
algorithms to achieve fair and efficient spectrum access for the distributed, ad-
hoc OFDMA network of transmit-receive pairs with spatial frequency reuse. The
main contributions of this chapter include introducing a framework for distributed
OFDMA spectrum sharing and CCI mitigation, formulating the problem into
a potential game and analyzing its properties, implementing the iterative best-
response algorithm to obtain Nash equilibrium solutions, and evaluating the system
performance with extensive simulations. It is worth noting that the game exhibits
strategy domination, which motivates the use of the ANSS scheme to deal with
the allocation of number of subcarriers to players prior to the gameplay. Numerical
results suggest that the scheme not only provides a stable solution to the OFDMA
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spectrum sharing system, but also improves the spectrum efficiency, and at the same
time maintaining a reasonable degree of fairness and optimality.

Although the game-theoretical solution proposed in this chapter is valid for a
distributed OFDMA system, its methodology is general enough to be applied to
several other systems, one of which is the infrastructure-based OFDMA networks,
i.e., ones with existing infrastructures like BSs and access points. It is not difficult to
visualize that if one BS serves only one MS, then this link is identical to a transmit-
receive pair and the two problems are equivalent. However, for a BS serving multiple
MSs, reformulation of the model in order to maintain the potential game properties
is a nontrivial problem. In the next chapter, the RRM issues for the multi-cell
OFDMA system will be addressed.
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Chapter 4
Potential Game Approach to Downlink

Multi-Cell OFDMA Networks

Abstract This chapter investigates the subcarrier allocation problem for a downlink
multi-cell multiuser OFDMA network using potential game theory. Each player
is considered to be a central base station together with all the mobiles distributed
within its coverage area. In such a system, co-channel interferences (CCI), if
left uncontrolled, could hinder the transmissions and limit the throughputs of the
users, especially those near the cell-edge area. Certain remedies, including power
control with pricing, did not seem to solve the problem completely. We specifically
address this issue from an interference-minimizing approach, where the utility
function adopted is meant to minimize the total CCI among players. Under such a
formulation, we show that the formulated game can be mathematically described by
a potential game. Hence, a Nash equilibrium will be guaranteed for the proposed
game and stable solutions can be achieved via myopic gameplays such as the
best/better responses. We propose our iterative algorithm for obtaining the Nash
equilibria and address several performance issues such as fairness for edge-users
and the price of anarchy. Numerical results show the improvement in efficiency and
fairness using this approach.

4.1 Overview

Unlike wireless ad-hoc networks, in an infrastructure-based wireless network, there
exist infrastructures such as BSs, access points, switches, routers, etc. that provide
wireless connectivities and spectrum access to mobile users. Over the past decades,
cellular networks have emerged as a prominent type of infrastructure-based wireless
network topologies where a large service area is divided into several smaller regions.
Each region is called a cell, with a BS serving the MSs within the cell. OFDMA is
one of the leading modulation and multiple access strategies for current and future
cellular networks. The same set of frequency channels can be spatially reused by
two cells if the resulting CCI levels are tolerable. In order to efficiently utilize
the spectrum resources, the frequency channels and transmission power should be
dynamically and adaptively allocated in such a way that minimizes CCI and fulfills
the QoS performance of users in a single cell or in the entire system. A centralized
RRM scheme for cellular OFDMA (e.g., [3, 9, 10, 28]) must take into account the
parameters of the entire system, where decisions are made at a central network
controller, which is connected to each BS by wired, backhaul transmission. On the
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other hand, in distributed RRM schemes (e.g., [2, 7, 12, 19, 20, 23]), resources
can be allocated on a per-BS basis, based on the performance of a particular cell.
Distributed schemes might be less optimal compared to centralized schemes, but
are less computationally complex. Centralized and distributed schemes can be also
used together in multi-layered approaches [18, 21], where the network controller
mitigates inter-cell interferences at a longer “super-frame” level while the BSs assist
in decision-making by distributively assigning channels to MSs on a frame-by-
frame basis. RRM schemes for cellular OFDMA networks have been studied to
a considerable extent and comprise a rich body of works in the literature. Papers
[9,24,27,29] were among the seminal works on OFDMA in the late 1990s and early
2000s, which formulated mathematical optimization problems in order to maximize
the total rates or minimize the total power of the OFDMA system. Thereafter, a large
number of research works have been proposed, employing analytical tools from
various fields of sciences, including auction [28], graph-theoretical techniques [3],
evolutionary algorithms [1], machine learning [2] and especially game-theoretical
methods (e.g., [13, 15-17] and references therein). Comprehensive surveys of
OFDMA RRM techniques for the interested readers can be found in [22] for earlier
schemes, and [25] for more recent approaches.

Since the last decade, various approaches to cellular OFDMA resource allocation
based on game theory have also been proposed by several authors. Some of the
important works prior to 2010, which were extensively surveyed by the author in
[14], can be loosely divided into cooperative games and non-cooperative games.
For cooperative games, a notable work is [6], where the optimal rate allocation
for multiple users was associated with the Nash bargaining solution; however,
the drawback of the algorithm, which involves the Hungarian assignment method
[11], was its high complexity degree. In Chee et al. [4], the Kalai-Smorodinsky
bargaining solution was considered and an algorithm of reduced complexity order
was suggested. Ibing et al. [8] later made a comparison for four different fairness and
bargaining schemes, i.e., the utilitarian, egalitarian, Nash and Kalai-Smorodinsky
solutions. On the other hand, other authors also proposed non-cooperative game-
theoretical approaches. For example, Han et al. [7] devised a power-minimization
game in which power was allocated via a dual waterfilling method, with further rate
adaptation via a virtual referee game. Kwon et al. [12] considered rate maximization
objectives with linear power pricing in their game, with a utility function comprised
of weighted total throughputs and negative total power consumption. The same
concept of power pricing was adopted by a few others, for example, by Wang et al.
[26] for multi-cell OFDMA with a sigmoid-shaped reward function, or by Yu et al.
[30] for the OFDMA-relay network. Capacity maximization was also studied by
Liang et al. [19], where the authors introduced another dimension of integer bit-
loading to the strategy set of the players.

One common strategy that the previous game-theoretical approaches for cellular
OFDMA systems relied upon is the use of iterative, myopic gameplay in order to
obtain convergence to a Nash equilibrium. As previously mentioned, such gameplay
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Table 4.1 Descriptions of ¢, % and %;

Game
Player

Strategy

%
Transmit-receive pairs
(ad hoc)

Each pair selects a
single frequency
channel

Interference sum (3.9)

%
Transmit-receive pairs
(ad hoc)

Each pair selects a
combination of
subcarriers

Generalization of (3.9)
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4
Multiple BSs in

downlink cellular
OFDMA network

Each BS allocates to
each of its MSs one
subcarrier

Generalization of (3.9),

Utility function

for all used subcarriers | to be formulated

Potential game | Yes Yes To be determined

can often result in unstable, oscillatory behaviors [14], which is, at first glance,
because of the non-existence of pure-strategy Nash equilibria. The underlying
cause is due to the prevalence of CCI, which affects not only the stability, but
also the fairness of the allocation, where the edge-users are likely to suffer more
than the center-users. Meanwhile, in Chap. 3, a potential game formulation for
the distributed, ad-hoc OFDMA scenario has been studied, which guarantees that
stable Nash equilibrium solutions can be achieved via the use of best-response
iterative dynamics. At the same time, the CCI minimization objectives exhibit a
reasonable fairness index, implying the feasibility of such a direct approach.

Following up on the previous chapter, the current chapter further develops the
potential game formulation for the multi-cell OFDMA systems, based on the earlier
generalized interference-sum minimization objective (3.9). The resulting game will
be labeled %;. Table 4.1 provides a description and comparison of the key potential
game candidates ¢, % and 4. It will be proven in this chapter that ¢; is indeed a
potential game. The key contributions of this chapter are as follows.

* Potential game formulation for the downlink multi-cell OFDMA system. The
mathematical analysis and proof of the potential game are provided.

* Optimality analysis. The performance bounds are again investigated using PoA.

* Distributed algorithm to solve for Nash equilibria. Various aspects of the
algorithm design are discussed, such as the classification of edge-users and
center-users, the best-response and better-response dynamics, power mechanism
and signaling issues.

* Numerical results. Simulations show that the proposed method could be a
good alternative for cellular OFDMA systems due to its stability and fairness
advantages.

In the following section, a system model for the multi-cell OFDMA networks
under investigation will be described.
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4.2 System Model

Consider the downlink of a multi-cell OFDMA network with N cells. Each cell has
a BS at the center and several MSs randomly distributed around the cell area. For
cell i, define €2; as the set of MSs belonging to this cell. The total number of MSs in
the entire system is given by M = Zf’zl |2;], where |€2;| is the number of MSs
of the set €2;. There are K available orthogonal subcarriers and each subcarrier has
the same bandwidth, which is assumed smaller than the coherent bandwidth so that
the links are subject to only flat fading. Interferences from adjacent subcarriers or
adjacent symbols are assumed to be negligible. The channel conditions and locations
of the MSs are further assumed to be static throughout the duration of a gameplay.
Figure 4.1 is an example of such an OFDMA network with N = 3, M = 6 and
K =3.

In the OFDMA downlink, each BS makes use of a subset of the available
subcarrier pool and assigns one subcarrier to each of its MSs in a distributed manner.
The cellular network has a reuse factor of 1. A subcarrier can be used by more than
one BSs, if the resulting CCI is tolerable. Let us denote A the subcarrier assignment
matrix, where A € {0, 1}V*™*K whose element a¥, takes a value of 1 if BS i
transmits to MS m (m € ;) via subcarrier k, and 0 otherwise. Consequently, the
following constraints apply to any BS i

Subcarrier 1

Subcarrier 2

Fig. 4.1 Example of a downlink cellular OFDMA network
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D od, <1 Vk (4.1a)
meg2;
K
1 Q.
Sak, =] e (4.1b)
k=1 0. m ¢ Qi.

Equation (4.1a) suggests that no subcarrier can be assigned to two MSs in the
same cell, while (4.1b) means that each BS gives one subcarrier to a MS in its
cell. From (4.1b), the overload of MSs in a cell occurs if 3i : |©2;| > K. In well-
designed practical systems, this MS overload can be avoided by admission control
mechanisms which limit the number of ongoing MSs in each cell. In this study,
this specific scenario will be taken into account in Sect. 4.3.3. Otherwise, normally
it is understood that |Q2;| < K, Vi. As such, the system will always admit feasible
solutions.

Next, let us denote the channel gain matrix G € , where gf is the
channel gain between BS i and MS m through subcarrier k. If m ¢ Q;, g& is in
fact the channel gain of the interference path from external BS i to MS m. On the
other hand, the transmission power matrix is defined by P € RV*X_ Each element p;;
represents the transmitted power of BS i on subcarrier k. If a subcarrier is unused,
the BS simply transmits 0. The 1 x K ith row vector p! of P belongs entirely to BS
i and has to satisfy the non-negative and the maximum constraints, given by

RNXMXK

p/(A) =0, P/1=Puy, Vi 4.2)

where 1 is the all-one K x 1 column vector.
For the link between BS i and MS m on subcarrier k, its SINR is expressed as

k k

7/k _ aimp ik8 im
im N ko ok 2
2 j=1 i GimPik8jm + O

4.3)

where o is the power of the receiver AWGN and is assumed to be identical for all
links. Consequently, the achievable capacity for this link in bps/Hz is given by

¢t = log, 1+ 2 44
im — g2 +F : (‘)

Again, ' = —In(5P,)/1.5 is a function of the required BER P,, often known as
the SINR gap [5].
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4.3 Potential Game Formulation and Analysis

4.3.1 Game Formulation

In the multi-cell OFDMA system, each of the N BSs will independently distribute
subcarriers to its MSs in order to optimize the performance of the individual cell,
which can be viewed as an N-player strategic-form game. One can denote the set
of players .4 = {1,2,...,N}, which represents the N BSs. For BS i, its available
strategy S; is a feasible assignment of subcarriers to its MSs. The action of choosing
subcarrier k can be symbolized by its index k, | < k < K. Then, an eligible strategy
S; of BS i may be represented by a 1 x |€2;| vector

Si=[kiks .. kigy] 4.5)

in which BS i has assigned subcarrier &, to the mth MS of cell i (not the mth MS
of the system). Referring to Fig. 4.1, the strategies taken by B1, B2 and B3 are
S1 =1[12],8, = [32]and S3 = [1 3], respectively. Let the strategy set S; denote the
set of all possible combinations that S; can take. Moreover, a strategy profile S can
be understood as the joint strategy of all players, i.e., S = (S;, S—;). The domain of
S is called the strategy space, defined by S = S| x ... x Sy.

Now, every player’s objective in the game is to maximize its own utility function
Ui(S): S — R. The original interference-sum utility function (3.9) for player i can
now be redefined, which incorporates the total CCI which BS i imposes on other
MSs m ¢ Q;, as well as those which all MSs m € ; suffer as a result of external
BSs. This sum can be written as

N
UiS) == | Y Mlioml+ Y > 1fjm] (4.6)

meQ; meQ; j=1,j#i

where I[i, m] is the CCI caused by BS i on MS m. If the CCI is present, it will
equal pic(n) g;gm) , where k (m) is the subcarrier assigned to MS m. Since the assigned
subcarrier is yet to be determined, the indicator variable Si"m is introduced such that

s — 1 If BS i interferes with MS m (m ¢ €2;) via subcarrier &, @7)
o 0 Otherwise. '

Basically, Sikm indicates whether there is an interference path between BS i and
MS m via subcarrier k. In particular, note that Sfjn = 0if m € ; because the BS
does not interfere its own MSs. The utility function can now be expressed as
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K N
UiS) ==> | Y b pugh + > > 8kpush, |- (4.8)

k=1 | m¢Q; me; j=1
The formulated game will therefore be denoted by
G = [N, S, {Uilier]. 4.9)

Mathematically, the multi-cell OFDMA game can be described by the following
distributed optimization problem applied to any player i, i.e.,

max U; s.t. (4.1a), (4.1b) and (4.2). (4.10)

In the next section, the proof that the multi-cell OFDMA game %; given above is
an exact potential game will be derived.

4.3.2 Existence of the Exact Potential Function

To verify the potential game property of %, the exact potential function F(S) must
be established such that the defining Eq. (3.8) for exact potential games is satisfied.
In order to derive this function, a novel approach is employed where a fictional
game ¢, which is a dual to &; is built, whose utility function will be defined so that
it becomes a potential game. First, the concept of a “pseudo-player” is introduced
as follows.

Definition 4.1. In the multi-cell OFDMA system, a pseudo-player refers to any
pairing of a BS with one of its MSs.

In fact, a pseudo-player is a transmit-receive pair where the BS is the transmitter
and the MS is the receiver. The number of pseudo-players is exactly M, the number
of MSs. Hence, in Fig. 4.1, six pseudo-players are identified: B1-M1, B1-M2, B2-
M3, B2-M4, B3-MS5 and B3-M6.

The fictional game ¥, is the one played by the M pseudo-players, i.e., the
subcarrier allocation game among multiple transmit-receiver pairs. The set of
players will be .#Z = {1,2,...,M}. Note that even though a transmitter can be
common to a few pseudo-players, they will be treated as different entities in this
fictional game. The grouping of the MSs into N cells corresponds exactly to a
disjoint partition of the player set .Z = Uf;l 2;. For each pseudo-player m, an
eligible strategy is S,, = a!, which is a binary 1 x K row vector serving as the
subcarrier assignment indicator (when subcarrier k is used, its kth element is 1). The
strategy set of a pseudo-player is given by S, = {0, 1}X\ {0}; and the strategy space
is ' = S8} x ... xS},. The counterpart of the subcarrier assignment matrix in % is
given by A’ = [a; a, ... ay]’. The alternative channel gain matrix H € RM*MxK
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and power matrix Q € RM*K can be defined in the same manner as G and P of %;.

Furthermore, the cross-interference indicators ei"m for pseudo-players are defined in
the same manner as (4.7).

The utility function V,, of the pseudo-player m is modeled after the game %, of
Chap. 3, i.e.,

K M M
V==Y | D €biqmbly + " ek qult, | - (4.11)
k=1 | j=1 j=1

Finally, the game ¥, is fully defined as follows.
Gy = [M,S' A Vilmen] (4.12)

Regarding the non-overlapping assignment of a single subcarrier to the MSs in
the same cell, a joint strategy such that those two MSs get the same subcarriers,
which is valid in ¥ but not in ¥, should be deemed infeasible for ¥4,. Hence, the
feasible strategy space S is defined as

S={s | Vi:Vm,je Q aﬁ and ajT have a single 1 at different locations }.
(4.13)
Thus, ¢, may be considered over the feasible strategy space S.

Lemma 4.1. ¥, is an exact potential game with the exact potential function F(S) =
3 Zom=t Vi

Proof. ¢, is the OFDMA game among transmit-receive pairs similar to % (See
Table 4.1). Its strategy space, either S’ or S,isa nonempty subset of that of ¥, so it
is an exact potential game and admits the exact potential function F(S), according
to Corollary 3.1 from the previous chapter. O

The next lemma features an important result which connects the two games ¥;
and ¥,.

Lemma 4.2. Within S, the same subcarrier and power allocation profile for both
%3 and Yy yields Y, cq. Vi = U..

Proof. The two expressions will be equal as they refer to the same physical quantity,
i.e., the total CCI. Mathematically, it can indeed be shown that they are equivalent.
In (4.8), let U; = — Y r_ (Xx + Y;) where X; = Yoi¢a; 8ffjpikg§ (index m has
been changed to j without affecting the formula) and ¥, = 3", cq YL, 85 pigh,.
For the term X, under the conditions stated in the lemma, for all k and j, it
follows that gg = hfjlj and pi = g, Ym € Q;. Moreover, due to the restriction of
non-overlapping subcarrier assignment in the same cell, the relationships between

the §-parameters and the e-parameters are established as follows.
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o If 81’.; = 1, there exists only one m € €2; that efnj =1.
o If 8{; = 0, then e,’;j =0,Vme Q,.

For any of the two cases above, the following identity holds

,jptkgu E :Equmkhmj

meY;

Thus,

X = Z Z é,l;qukh’,;j-

JEQ me;

113

(4.14)

(4.15)

Besides, if both m, j € Q;, then e,’;j = 0, Vk. It allows us to add the dummy term

ZjEQi D omeq Efnqukh],;j = 0 to X, which yields

— § § k k
- ij qmk hmj

meQ; jeQU(A\RQ;))

Z Z 6m/q”‘kh

me; j=1

For the second term Y}, similar to (4.14), it can be derived that

]mp]kg]m Z 6Imqlkhlm

1€Q;
Hence,
N
— k k k k
Y = z : z :2 :elmq”(hlm - z : 2 6Imqlkhlm
meQ; j=1 l€Q; me; IEU |9
= z : z :Elmqlkhlm
me; =1

Z Z mqjkh (index j is used to replace /).

me; j=1

(4.16)

4.17)

(4.18)

From (4.11), (4.16) and (4.18), itis clear that U; = Yt (Xa+ Y1) = Y cq, Vin-

We are ready to prove the main result in the next theorem.

ad
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Theorem 4.1. & is an exact potential game with the exact potential function
FS)=1YY, U.
Proof. First, due to Lemma 4.2,

1Y 1 1 ¢
Egle EEI EQVmZEEIVm:F(S)
= i=1 meQ; m=

which is the same potential function given in Lemma 4.1. Now, suppose that
an arbitrary BS i changes its strategy from S; = [k k» ... kgl to T; =
LA IQ ] where both (S;, S—;) and (T}, S—;) are in S. One can now prove

that (3.8) is true by introducing a strategy sequence {Sf") } as follows.

Sl(l) = [ /1 k2 . k|Ql|] )

) : 4.19)
e LA -3 S E T B
Sl(lﬂil) =T,

An intermediate strategy Sf") may correspond to an infeasible allocation in %;
where BS i assigns a subcarrier to more than one MSs (e.g., in multi-casting), as a
new subcarrier index k may overlap with an existing subcarrier index k;. These are
allowed as transitional strategles in the context of the proof but are not treated as the
feasible actions in the game.

Nevertheless, (Sf"), S_;) corresponds to a valid strategy profile of the fictional
game ¥ in the general strategy space S'. Each step from Sf") to S;"H) corresponds
to a change in strategy due to a single pseudo-player m,, € Q;, e.g., from (S, , S—m,)
to (T, S—m,)- As ¥, is a potential game with potential function F, it follows that

F(S™V, 5_)) = F(S"™ . S_;) = F(Tyn,. S—m,) — F(Suy» S—my)
=V, —Vn, (4.20)

where V;, is the utility function of pseudo-player m, because of the strategy change.
As a result,

F(Ti,S—) — F(S;, S—) = (F(Ti, S—) — F(S"™'™V S_)) + ...+ (F(S?,5_)
—F(S",52)) + (F(S™,S_;) — F(Si,5-1))
= (v,’,m_| ~ Vg )+t (Vo = Vi) + (Vo = Vi)

Z m Z Vm = Ui(Tia S—i) - U,‘(S,’, S—i)'

me2; me2;

421
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The final equality of (4.21) is a consequence of Lemma 4.2 and it requires only
S; and T; to be feasible strategies. O

4.3.3 A Special Case: Overload of MSs

The singular scenario where there can be more MSs than the total number of
available subcarriers in one cell is addressed. Suppose for cell i, |2;] > K. It is
then proposed that BS i continues to allocate one subcarrier to K MSs. For the
other |2;| — K, the BS employs the “no-transmission” strategy on them, leaving
them unoccupied temporarily until the resource is released by other MSs. The
no-transmission strategy allows the users to cease or delay transmissions if the
conditions are unfavorable.

If no-transmission is represented by the index 0, then in (4.5), each k;, 1 < j <
|©2;], can take values from O to K. This results in a new strategy space T and a
modified game

G =[N T AUier]. 4.22)

Theorem 4.2. ¥, is also an exact potential game with the potential function F(S).

Proof. Tt is observed that the only difference introduced by the addition of no-
transmission is that the all-zero vector al = 0 is now valid in the strategy set of
a pseudo-player m in ¢;. However, such an inclusion does not affect the proof of
Theorem 3.1 that % (and ¥,) are potential games, as the addition of terms of zero
values does not affect the exact potential function. O

4.4 Price of Anarchy Analysis

In this section, the PoA of the proposed game %5 is studied. Similar to the previous
chapter, due to the interference minimization of the game and the definition of the
exact potential function, the PoA for a particular strategy profile PoA(S) can be
defined according to (3.28), with the same utilitarian welfare function ®(S) given
by (3.29). The fact that the utilitarian welfare can be represented equivalently by the
exact potential function F(S) illustrates a convenient property of potential games,
where each strategy profile has a latent “potential” equal to the value of the exact
potential function taken at this profile, indicative of its relative strength.

Analogous to the previous chapter, similar performance bounds can be made
regarding the PoA of the game %;.

Lemma 4.3. The performance of the game 45 under sequential dynamics such as
best/ better responses are upper bounded by the social optimum point of O(S) which
is also the best Nash equilibrium, i.e., S = argmaxgep O(S); and lower bounded
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by the worst Nash equilibrium S,, = argming.g O(S), where E is the set of all
pure-strategy Nash equilibria of 4.

Proof. The proof is obtained by using the same argument as in Lemma 3.1. O

The best/better-response dynamics can always converge to a Nash equilibrium
for potential games, which is another convenient property of this class of games. In
the next section, details of these Nash equilibrium convergence dynamics will be
discussed, together with other design issues.

4.5 Distributed Algorithm for Nash Equilibrium

4.5.1 Edge-Users Versus Center-Users

For cellular systems, the BS requires higher power to communicate with MSs at the
cell edge than to those nearer to the center. Since all BSs tend to do so, CCI increases
significantly and the throughputs of edge-MSs hardly improve, sometimes even
worsen. A simple greedy throughput maximization approach will end up assigning
all resources to the center-MSs, leaving very little to the edge-MSs, consequently
resulting in a poor system fairness index. To overcome this issue, besides adopting
interference avoidance, it is proposed that all the MSs be separated into two groups
and subsequently allocated power based on such grouping, which has not been
considered in some previous approaches in the literature (e.g., [6, 7, 12, 20]).
Specifically, different weighing factors w,, are given to MSs belonging to different
groups. Denote r and d;, the cell radius and the distance from MS m to its BS i,
respectively. Then, a threshold distance r;, < r can be defined, such that MS m is a
center-user if d;,, < ry;, and an edge-user if r;, < d;, < R.

4.5.2 Power Mechanism

In Chap. 3, when the main objective of the system is CCI mitigation, the previously
used power mechanism which aims at achieving a target SINR at a minimal power
consumption level and maintaining fairness has shown its feasibility without any
significant loss in users’ performance. Therefore, it will again be adapted in this
current game with necessary adjustments to account for the weighing factors.

Consider the link between BS i and its own MS m. The BS computes the receiver
sensitivity at the mth MS based on a target SINR y,, an interference margin [,
and the weighing factors w,,, as follows

min

Pintinm = Ousm) + Hm(dB) T Voas) + Wi(ap)- (4.23)
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Then, the estimated power that BS i should use on subcarrier k assigned to MS
m is the function of the MS index m, i.e.,

Pik(m) @apm) = max {P%}Bm) - gfm(dg), Prvax/ |2l (asmy § (4.24)

where P, /|€2;| is present to ensure the power constraint. Note that in (4.24), in the
special case when |2;| > K for some i, Pp.x/|2;| is replaced by Py.x/K. Finally,
Eq. (4.24) ensures that there is a one-to-one correspondence from each strategy
profile to a power matrix, i.e., P = P(S). As such, subcarrier and power are two
equivalent game strategies in this study.

4.5.3 Signaling Issues

It is worth mentioning that the feasibility of the utility function (4.8) requires
complete channel state information. Therefore, the number of channel gains to be
estimated, the amount of signaling traffic and information exchange are expected to
be very high. It is also necessary to modify the existing protocol to support these
estimation and information exchange.

There is a need for each BS to know the amount of CCI it imposes on all the
MSs in neighboring cells. For BS i and neighboring MS m € £2;, the MS needs to
estimate the gains g¥ . Assuming that channel conditions do not change significantly
over the period of gameplay, the following method is suggested. That is, an out-of-
band common pilot channel is employed using sufficiently high power to form a
fully connected network to perform channel estimations and information exchange.
Thus, a network protocol can be enforced such that, prior to the actual gameplay,
BS i can send probing messages to external MSs in order for them to estimate their
channel gains g& to BS i. Each MS then takes turn to broadcast its estimate to
BS i. Once BS i completes, it signals another BS and the process is repeated for all
other BSs.

4.5.4 Iterative Convergence Dynamics

This section covers the iterative schemes that are used to obtain Nash equilibria.
For potential games, there exists an improvement path of the potential function to
reach a pure-strategy Nash equilibrium. In order to establish such a path, the game
can be played sequentially, where each player employs actions such as best/better
responses.

The best response is already employed for the games proposed in the previous
chapters. For the current game %, player i is to select its best-response strategy 7;
if and only if
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Algorithm 4.1 Tterative gameplay for the multi-cell OFDMA game
1: L INITIALIZATION STEP:
2: for playeri = 1 — N do
3: Select a random strategy S; that satisfies (4.1a) and (4.1b).
4 if af.‘m = 1 then p; <— pi(m) according to (4.24).
5:
6:

elseif ) _,cq ab, = 0 then py < 0.
end if
7: end for
8: IL. ITERATION STEP:
9: while Nash equilibrium has not been reached do

10: for player i in a predetermined sequence do

11: forMSm =1 — |Q;| do

12: for subcarrier k = 1 — K do

13: Measure the noise and CCI, then feed those values back to the BS.
14: end for

15: end for

16: for subcarrier combination S; € S; do

17: Use the power mechanism (4.24) to estimate the utility function (4.8).
18: end for

19: Decide the new strategy 7; according to (4.25) or (4.26).

20: Update the new subcarrier and power matrices A and P.

21: end for

22: end while

T; = argmax U(S;, S—;). (4.25)
S;€S;

The best-response dynamic requires an exhaustive search over the strategy set
S; for the best option. Since BS i serves |Q2;| MSs, where each MS is allocated
with one out of K subcarriers, the total number of possible strategies that belong
to player i amounts to gP|g, = (1<+s'2,|)' options, which limits the scalability of
the system. Thus, in this game, the algorithm also considers a method that required
less searching, i.e., the better-response dynamic (1.17), whereby player i’s better-
response strategy 7; is any random strategy such that

U(T;, S—i) > Ui(S;, S-). (4.26)

Algorithm 4.1 shows the detailed steps. The multiple BSs should act in a
sequential order, which can easily be determined at the system level during the
network planning stage. This is different and easier to handle than in the ad-hoc
context where players need to self-organize before each gameplay.
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4.6 Simulation Results

Simulations were done to study the performance of the proposed solutions. The
system parameters were specified in Table 4.2. The network consisted of N = 7
hexagonal cells with omnidirectional BSs and the layout is similar to Fig. 4.2. There
were M = 21 MSs randomly distributed around the area competing for K = 5
subcarriers. On average, there were 3 MSs per cell. The threshold distance to classify
MS in the cell edge and cell center was given by r,;, = 2r/3. There was a 50 %
probability that a MS fell within the edge area. This study assigned the edge-MSs

Table 4.2 Simulation

8 ; System parameters Values

settings for the multi-cell

OFDMA system Number of BSs, N 7
Total number of MSs, M 21
Number of subcarriers, K 5
Cell radius, r 100 m
Threshold radius, ry, 2r/3
Path loss exponent, A 3
Noise power level, o2 1078w
Maximum power, P, 40 mW
BER requirement, P, 10—°
Target SINRs per user per subcarrier, y,-, Ym | 13dB
Interference margins, ji,,, Ym 3dB
Weighing factor for edge-users, w, 1
Weighing factor for center-users, w, 2

Probability of a MS being an edge-user, P.gg. | 0.5

Fig. 4.2 The OFDMA
cellular network in the
one-shot
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a smaller weight w, = 1 than the center-MSs’ w, = 2 with the aim to limit CCI.
Moreover, in the simulation, the system was not overloaded. The channels were
subject to identically and independently distributed Rayleigh fading as well as path
loss. The path loss exponent was 3.

4.6.1 Convergence of the Game

The convergence of the proposed algorithm was demonstrated via a one-shot
simulation in Fig.4.2. The indices of the BSs and MSs are indicated, with the
edge-MSs depicted by stars and the center-MSs by circles. The better-response
dynamic (4.26) was employed in the iterative algorithm. The game was played until
a Nash equilibrium was found as the convergent point of the dynamics. In each step
which represents a player’s decision, the values of the potential function as well as
the values of the N = 7 utility functions were plotted in Fig.4.3. As expected, the
potential function increased monotonically and converged to a Nash equilibrium.
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Fig. 4.3 Convergence of the game % in (a) The potential function, and (b) Separate utility
functions
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Note that one’s utility function improved within its turn by the same amount as the
potential function according to the game’s property (e.g., in Fig.4.3b, player 7 in
steps 1, 8, and so on). It is also seen that for each player, only 5 rounds (i.e., 35
steps) were needed before convergence occurred.

4.6.2 Performance Evaluation of the One-Shot Game

The achieved SINR, power and capacity allocation for this particular one-shot were
examined in this section. In Fig. 4.4, initial SINRs and final SINRs at the Nash
equilibrium in dB were displayed for the edge-MSs and center-MSs separately. Note
that an improvement in SINR could be seen within both groups. In fact, the average
SINR increased from 8.84 to 13.63 dB for the edge-MSs, and from 10.78 to 16.06 dB
for the center-MSs. Furthermore, it is observed that at the Nash equilibrium, all the
center-MSs and almost all the edge-MSs achieved SINR near their target SINR of
13 dB, except for example, MS 15 which was in a more crowded cell. The overall
Jain fairness index of the system, as given by (3.30), with the quantity x; represented
by the individual SINR was estimated to be 0.937, which suggests a high degree of
fairness in this approach.
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Fig. 4.4 Comparison of SINR for (a) Edge-MSs, and (b) Center-MSs
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Fig. 4.5 Comparison of (a) BS’s total power, and (b) BS’ total capacity

In Fig. 4.5, the achievable power and capacity were compared from the BSs’
perspective. Both showed a significant improvement at the Nash equilibrium over
the initial point. Due to the interference minimization nature of the game, players
showed the tendency to avoid overlapping subcarriers and preferred subcarriers that
cost less power. Consequently, the total power and CCI were reduced, which led
to improved throughputs. Statistically, the average power consumption of a BS was
reduced from 22.9 mW initially to 14.0 mW at the Nash equilibrium. Moreover, the
average capacity per BS (i.e., ]%, Zf’zl Ciwhere C; =}, o Cinim)) increased from
4.49 to 7.61 bps/Hz.

4.6.3 Performance Evaluation in the Long Run

In this section, the performance of the proposed game with the previous settings
was studied over 500 independent one-shots, each with different MS locations and
channel conditions. Four RRM methods were compared, namely, Fixed Allocation
(FA), Potential Game with better response (PG-better), Potential Game with best
response (PG-best), and Waterfilling with Power Pricing game [12] (WF/PP). In
the FA scheme, subcarriers and power were randomly assigned to the MSs at the
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Table 4.3 Comparison of multi-cell OFDMA schemes

Schemes | Convergence (%) | Iterations | Fairness | Energy efficiency

FA N.A. N.A. 0.7030 | 260.27
PG-better | 100 7.892 0.9072 |583.63
PG-best 100 3.604 0.9032 |561.39
WE/PP 87.20 27.89 0.2808 | 644.42

beginning without further adaptation. The power allocation given in (4.24) was also
used for fair comparison. WF/PP was subject to the same power constraint as the
PG schemes, and the subcarriers were assigned greedily to the MSs with highest
throughputs and reallocated iteratively until convergence. Its utility function consists
of the total transmission rate and a negative cost related to the power consumed [12].
The key performance indicators for comparison were shown in Table 4.3.

The convergence probability is a critical measure for any game theoretic
approaches. Both PG schemes could guarantee pure-strategy Nash equilibrium
convergence with a 100 % convergence rate. WF/PP achieved a reasonably high
convergence rate of 87.2 %. However, the number of iterations (rounds) required for
WE/PP before convergence was considerably higher than for PG. PG-best needed
less rounds than PG-better; however, within a round, the searching required for PG-
better was less due to the non-optimal selection of new strategy. Convergence and
iteration counts did not apply to FA.

The other two indicators are the Jain fairness index (3.30), and the energy
efficiency defined as the achieved capacity per unit power, i.e.,

N
Ao
2= G (bps/Hz/W). (4.27)

)’) =
Z§V=1 PiTl

In terms of fairness, PG-better and PG-best were both superior in the ranking,
with fairness indices around 0.9. WF/PP returned a low fairness score, perhaps due
to the greedy allocation which allowed some favorable MSs to hog the resources.
Nevertheless, WE/PP obtained the best energy efficiency (644.42 bps/Hz/W), due
to its throughput maximization nature. PG-better gave roughly the same energy
efficiency as PG-best (583.63 vs. 561.39bps/Hz/W); and both of them were
significantly superior to FA (260.27 bps/Hz/W).

For this simulation studies, the empirical CDFs of the achievable capacity of BSs
for the four schemes were also obtained. Figure 4.6 shows that FA was consistently
worst than the rest. WF/PP, however, obtained occasionally high capacity (over
15 bps/Hz, for about 6 % of the time) for some BSs hogging the resources, while
the rest of the BSs had much lower throughputs (50 % having capacity less than
5bps/Hz) compared to PGs (only 15 %). This partially explains its low fairness
score. There was no significant performance difference in the long run between
PG-best and PG-better.
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Fig. 4.6 Empirical CDFs of BS’s achievable capacity

4.6.4 Price of Anarchy Evaluation

In order to study the degree of optimality of the game, the PoA was numerically
evaluated. In each of the 50 simulated one-shots, the set of Nash equilibria E was
obtained. Independent runs of PG-best and PG-better will converge to one of the
Nash equilibria. Hence, PoAs can be computed for the Nash equilibria achieved
by both dynamics, i.e., POAp.s; and PoApeyer, for the worst-case Nash equilibrium,
PoA,,, and for the initial allocation point, PoA;,;. The various PoAs (sorted in
increasing order of PoA,.) are plotted in Fig.4.7. The social optimum bound
(which is always 1) is also included. As explained before, PoAp.;, and PoApeyer
are bounded between PoA,,. and the optimum bound. Both PG-best and PG-better
were able to reach the best Nash equilibrium once or twice, and none of them
was consistently better than the other. The mean values of PoAp.s, POApeyer and
PoA,,. were 1.385, 1.344 and 2.611, respectively. PoA;,; was far behind at 30.898
on average. A relatively low PoA value suggests the proposed game has a fair degree
of optimality.

4.6.5 Impacts of Weighing Factors

In this section, the effects of assigning different weights to the edge-MSs (w,)
and center-MSs (w.) were examined. Three scenarios were considered: (a) Equal
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Fig. 4.7 Comparison of PoA for the multi-cell OFDMA game

weights (w.,w.) = (1, 1), (b) Center-MSs had higher weights (w,,w.) = (1,2)
and (c) Center-MSs had lower weights (w,, w.) = (1,0.5). Note that more power
is consumed by the group with a larger weight. The performance was compared
in terms of players’ capacity and system fairness over 500 independent one-shots
with the previous settings. In Fig. 4.8, the CDFs of BS achievable capacity for the
three cases are shown. The obtained fairness indices for case (a), (b) and (c) were
0.9250, 0.9043 and 0.9531, respectively. As expected, there was a trade-off between
fairness and throughput for the two opposite weighing schemes (b) and (c). The
higher weight assigned to the center-MSs, the better the player’s throughput, as
shown by the gain in the CDF of case (b) over the other two. Case (c) resulted in
the highest fairness index, although the differences were relatively small. Hence,
different weight combinations can be flexibly assigned depending on whether the
concerned objective is fairness or throughput.

4.6.6 System Performance with Increasing Loads

The impact of the number of MSs on the system performance was investigated for
N = 7 cells and K = 16 subcarriers. A maximum power Pp,x = 0.1 W was
imposed on each BS, while the other parameters in Table 4.2 was maintained.
For the PG scheme, best-response dynamic was used and the performance was
compared with FA and WF/PP, in terms of the fairness index (Fig.4.9a) and the



126 4 Potential Game Approach to Downlink Multi-Cell OFDMA Networks

Value of CDF F(x)

0 5 10 15
Capacity in bits/sec/Hz

Fig. 4.8 Comparison of various weighing factor combinations

a b
1 40 """""" R oo .
0.9 =
<
0.8 &
(2]
£ 1 2
2 07 X} 1
> = |
5 :
2 06 g ;
= « :
o [$) :
x 05 2 :
E 04 g . . . *
g O R e
e 5 IS S
5 03 @ 1 : 3 3
- o 10— T AR :
0.2 / g : :
Qo —6— PG
> Bbeooo
0.1 < ° % FA ;
: : : : - A - WF/PP
0 i i i i O i H H i
40 50 60 70 80 40 50 60 70 80
Total number of MSs Total number of MSs

Fig. 4.9 Impacts of the number of MSs on (a) Fairness and (b) Capacity



4.7 Concluding Remarks 127

average BS achievable capacity (Fig. 4.9b), for different loads. It was seen that the
higher the system load was, the overall system fairness deteriorated for all schemes,
probably due to the increasing CCI and MS density which further widened the
performance gaps among different users. For PG, however, the decrease in fairness
had a smaller impact as its score was consistently in the range of 0.9. WF/PP
was still worst in terms of fairness due to reasons previously discussed, i.e., the
performance gap between the few users hogging the subcarriers and the rest in
WEF/PP was emphasized and reduced its fairness index. However, because of the
users with very high throughputs, WF/PP showed a gain in average BS achievable
capacity over PG. The trade-off between fairness and throughput was expected
of PG, whose throughput was still significantly better than FA.

4.7 Concluding Remarks

In this chapter, an OFDMA subcarrier assignment method is proposed using game
theory. The derivation of the potential game is achieved via the concept of a fictional
game involving the pseudo-players. This property also holds for an overloaded
system if the no-transmission strategy is included for those MSs who are not able to
get a free subcarrier. The system always admits a stable Nash equilibrium solution
and can be played using best/better responses, both of which were studied and
whose performances were compared. Simulation results indicate the validity of
the interference minimization approach in combating CCI, achieving a convergent
solution for the RRM problem and enhancing fairness among users, especially
when the system load becomes high. Although throughput maximization is not the
main objective, the proposed game is still able to maintain a fair degree of energy
efficiency and optimality.

Due to the generality of the potential game formulation, although the proposed
method is considered for a traditional cellular network, the results discussed in
this chapter can also be valid for a much broader range of systems and for other
different contexts. One of the important examples is the new femtocell network,
which are small-range low-power BSs serving clusters of users. Nowadays, due to
the growing wireless traffics, there can be increasingly many wireless hotspots in
public areas like shopping centers, airports and train stations, within which there are
many densely-placed femtocell configurations. Similarly, in the unlicensed bands,
there are also situations where multiple clusters of users try to access the shared
spectrum through their own network gateways; and the level of CCI needs to be
controlled among these clusters. Each of the coexisting systems can be thought of
as an independent player and the protocols described in the chapter can be used as
a spectrum access mechanism.
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Chapter 5
Other Applications of Potential Games
in Communications and Networking

Abstract This chapter provides summaries of other notable potential game
formulations in the area of communications and networking. To align with the
theme of this monograph, the selected materials are divided according to the types
of potential games involved. Readers can find applications of exact potential games
in Sect. 5.1, and applications of pseudo-potential games in Sect. 5.2.

5.1 Applications of Exact Potential Games

Exact potential games can be used to solve a wide range of wireless communications
problems, especially in the distributed allocation of radio resources. In earlier
chapters of this book, some of these applications have been introduced, e.g., in
Examples 2.12-2.14, 2.16, 2.17, as well as in Chaps.3 and 4. In this section,
we discuss a few more notable problem formulations using the potential game
framework established in Chap. 2.

5.1.1 Potential Games with Sum of Inverse SINRs
as the Potential Functions

Firstly, we examine a number of studies in the literature which define the sum
of inverse SINRs as the network objective function and subsequently derive the
utility functions in order to define potential games. It is notable that this method
of formulating potential games follow the backward method which we have
generalized in Sect.2.4.2. This section covers two applications: the waveform
adaptation game (Sect. 5.1.1.1) and the subcarrier assignment game for uplink multi-
cell OFDMA systems (Sect. 5.1.1.2).

5.1.1.1 Waveform Adaptation Game in Distributed Networks
Menon et al. [13] proposed a waveform adaptation framework for networks
consisting of co-located receivers at a base station (e.g., uplink of cellular networks)

which enabled the implementation of distributed, convergent algorithms such as
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best-response dynamics. In [12], the authors expanded the framework to generic
networks of distributed receivers with spatial frequency reuse, whose topology is
akin to the distributed networks of transmit-receive pairs introduced in Chap. 3 of
the book.

Waveform Adaptation Problem

In the waveform adaptation problem, a player which is a transmit-receive pair
must adjust their transmitted waveforms, which are often characterized by a signal-
space representation [20]. That is, the transmitted waveform of a player is assumed
to be represented using a set of M orthonormal basis functions. By projecting
this waveform onto those orthonormal dimensions, one obtains an M-dimensional
column vector which is the signature sequence associated with this player. Assume
that there are N players and for player i, its signature sequence is denoted by
s; € RM In [12], it is further assumed that signature sequences have unit Euclidean
norm, i.e., ||s;||> = 1, Vs;.

We denote p; the transmit power level of player i which is predetermined, and
gij the known channel gain between transmitter of player i and receiver of player
j which remains constant over all signal dimensions and waveform adaptation
duration. Using the signal-space representation, the SINR experienced by the
receiver of player i is derived in [12] as

Pi&ii
N
si! (Zj=1J¢iPi8iiSij1 + Rzz) Si

Vi = (5.1)

where again s; refers to the transmitted signature sequence for waveform of player
i; and R, = E[zz"] is the noise covariance matrix for the zero-mean additive
Gaussian noise vector z € RV,

Potential Game Formulation

The distributed waveform adaptation problem above was formulated as an exact
potential game in [12]. Here, the N transmit-receive pairs form the player set ./".
The strategy set of each player is defined as the set of available waveforms, or
signature sequences, which can be used by the player for transmission. That is,

S: = {si|si e RM ||s;|]|> =1}, Vie.t. (5.2)

The strategy space is S = S; x ... x Sy.
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First, [12] defined a network objective function which is chosen to be the sum of
inverse SINRs, given by

N

1
Z Yi(si,s—i)

i=1

D(si,s—) =

( j=1,#i Pi8jiSiS; +RZZ)
Pi&ii

(5.3)

-y

i=1

where we use s_; to denote the joint strategy of player i’s opponents.

This function @ can also be interpreted as a weighted sum of interferences and
noise, where the weight for player i is its inverse received power level. Since the
sum of inverse SINRs decreases as individual SINRs increase, minimizing this sum
d(s;, s—;) is a feasible network objective as the network is expected to perform better
with all players operate at higher SINRs.

Thus, a candidate potential function for the game is F(s) = —®(s), where s
denotes the joint strategy profile. Next, F(s) can be decomposed as follows:

N N
sl Y pigisis’ + Re: | s s/ > pigisisi’ + Re: | s
i 5_;) = —
ne Pi&ii = Pj8ji
J=1y#i
s Z PigjiS;S; A 1R, | s
j=1,j7i plglj H H
Pi&ii Pi8&jj S
=1 o
N

H a.cH .
S; Z P18I1SIS| + R, Sj

Z I=1,1%ij

=l

(5.4)

Pj8jj

Non-contributing term Q;(s—;)

Since the candidate potential function can be decomposed into the form
in (5.4), the utility function of player i can subsequently be defined in accordance

with (2.92) as

Ui(si,s—i) = —

s X;s;, (5.5)
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where X; is a symmetric M-by-M matrix and can be written as

N
Z pigisis; + R
i o
X; = =17 + Y PG (5.6)
Digii Py Dj8jj

The resulting game is therefore defined as 4 = [, S, {U;}icv].

Theorem 5.1. The aforementioned game 4 is an exact potential game with poten-
tial function F(s).

Proof. This result is obvious due to the application of backward method, as
established in Sect. 2.4.2. O
Nash Equilibrium Characterization

As ¢ is an exact potential game, a Nash equilibrium can be obtained using best-
response dynamics. Furthermore, the Nash equilibria of this game can be further

characterized [12]. Recall our original assumption that |[s;|[*> = sf's; = 1.
As such, (5.5) can be rewritten as
SHXiS,'
Ui(si,s—i) = ——5—. (5.7)
S-°S;

1

where the expression on the right-hand side is the negative Rayleigh quotient
of matrix X; [9]. Thus, from matrix theory, U;(s;,s—;) can be maximized by the
eigenvector s; corresponding to the minimum eigenvalue Ay min of X;. Note that X;
is real and symmetric so A; min is real. That is, the Nash equilibrium (s, s* ) satisfies

)(,‘S;k = )Li’minS;k, Yie V. (58)

5.1.1.2 Subcarrier Assignment Game in Uplink Multi-Cell
OFDMA Systems

The cellular OFDMA system can be modeled as a potential game via the interfer-
ence minimization approach, as shown in Chap. 4. Alternatively, the sum of inverse
SINRs can also be used as a potential function in formulating a potential game. This
approach was investigated by Buzzi et al. [3], as well as Cai et al. [4].
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Problem Formulation

The uplink of a multi-cell OFDMA network with M cells is considered. Each cell
has a BS and several associated MSs. There are K available orthogonal subcarriers to
be allocated. For cell m, €2,, is the set of MSs assigned to this cell. The total number
of MSs in the cellular network is N = Z%Zl |2,,], where |€2,,| is the number of
MSs of the set €2,,,.

For the distributed uplink scenario, the N MSs instead of the BSs act as players.
Here, we can denote A € {0,1}¥*X the subcarrier assignment matrix, whose
element a;; takes a value of 1 if MS i selects subcarrier & to transmit, and O otherwise.
Hence, the subcarrier assignment vector for MS i is given by a!, the 1 x K ith row
vector extracted from A.

The channel gain matrix is G € RV™*K where g¥ is the channel gain from
MS i to BS m via subcarrier k. The transmit power matrix is P € RM*X Each
element py : 0 < pir < Pmax represents the transmit power of MS i on subcarrier k.
It is assumed that power allocation is decoupled from the subcarrier assignment
process, i.e., pi is assumed to be known, or is set to O if MS i does not transmit on
subcarrier k.

The SINR of the link from MS i to its associated BS m; on subcarrier & is given by

k
Pik8i m;
Vit = =y 5 (5.9)
2 =1 i GRPEm, + O

Potential Game Analysis

A strategic form game can be formulated for the uplink multi-cell OFDMA
subcarrier assignment problem above. The set of players .4 consists of the N MSs.
The strategy for player i can be expressed by S; = a/, similar to Chap. 3. It was
further assumed in [3] that each MS may select L subcarriers out of the K available
subcarriers to transmit, where L is a fixed, predetermined number. Therefore, the
strategy sets are given by

={a!|al € {0, 1}k al1 =1L}, Vie 1. (5.10)

Similar to Sect.5.1.1.1, an exact potential game can be formulated via the
backward method by adopting the (negative) sum of inverse SINRs as the candidate
potential function. This function can be expressed as

F(S) = Z Z y,k(S,, S—)

-y

- (5.11)
k=1 i=

N alk( j=1j#i jkpjkg,m, +o )
1 pikgi,m,-
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where y;(S;, S—;) indicates the dependency of y; on the game’s strategy profile.
Subsequently, the decomposition is done as follows:

N
D=1 i ajkl’jkgjl'(,m,» to 2)

F(S;,S_) =— XK: ik ( _ XK: XN: ajkaikpikgf,mj

. ok ok
k=1 plkngi k=1 ]=1J7él p]kgj,mj

N k 2
K N .
Ak (Zz=1,1;éiJ UKD k8 ,m; +o )

-> — (5.12)
k=1 j=1,j%#i p]kgj,mj
Non-contributing term Q;(S—;)
Thus, the utility functions are defined as
K K N k
a; Ak AikDik8; m:

U(SiS-) =~y =3 3 " vie s, (5.13)

k=1 Yk =2 PikSim

The following result is apparent from application of backward method:

Theorem 5.2. The corresponding game ¥ = [N, S, {U;}ic.r] is an exact potential
game with potential function F(S).

Remark 5.1. The utility function U;(S;, S—;) in (5.13) consists of the negative sum of

player i’s own inverse SINRs, minus the sum of “signal-to-individual-interference”
. ajkaikpikgi'(_m . .

ratios Wm-l over all subcarriers, as seen at each of player i’s opponents.

Note that in t]his formulation, to calculate U;(S;, S—;), a large amount of channel

information exchange is required.

5.1.2 Potential Games Under Synthetic Symmetric Interference

We next look at games where the constructions of utility functions can be grouped
under the technique of synthetic symmetric interference. Synthetic symmetry of
interference refers to man-made adjustment of observations (in this case, the
observed signal interferences) in order to create bilateral symmetric interactions
(i.e., the BSI property which was introduced in Sect.2.4.1). Consequently, associ-
ated games enjoy the BSI property and are exact potential games.

5.1.2.1 Preliminary: Synthetic Symmetric Interference

Motivated by the convergence properties associated with BSI potential games, Neel
et al. [15-17] discussed certain conditions and adjustments that could result in
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pairwise symmetric interference in cognitive radio networks. First, assume that each
player’s objective is to adapt its waveform w; (which is represented by a signature
sequence as discussed in Sect.5.1.1.1) in order to avoid interferences from other
radios. A player can be either a single radio user, a link, or a cluster of radios
depending on the context. Then, in [15], the unaltered observation (i.e., interference)
seen by player i due to player j is given by

i = p;gjip(wj, ;) (5.14)

where p; is the transmit power of player j, g;; is the channel gain from j to i and
p(w;, w;) is the correlation between the basis functions of w; and w;. Recall that the
BSI condition holds if I; = Ij;, Vi,j.

The simplest case of BSI [15] is in a scenario of two cognitive radio users, each
functioning as a transceiver (with co-located transmitting and receiving antennae).
They transmit at the same time with identical power level p; = p; = p, using a set
of orthogonal waveforms which satisfy p(w;, w;) = 1 if w; = w; and 0 otherwise.
Moreover, channel reciprocity is assumed, i.e., g; = gj;. Under these conditions,
I;; = I;j can be readily obtained.

For more general case, BSI does not hold. However, [15] showed that alterations
or approximations can be introduced to design synthetic symmetric interference.
One notable alteration is the procedure of scaling the observations by the player’s
transmit power. The assumption p; = p; is usually infeasible as autonomous radios
often use adaptive power control. Nevertheless, multiplying the observation by the
player’s own transmit power (i.e., ijl. 2 pilj;) can overcome this issue, by recognizing
that p;p; = p;p;. Assuming orthogonal waveforms and that channel reciprocity g;; =
gji still holds, we can easily see that for the altered observations,

[; = pip;gip(w), ;) = pipigiip(wi, ) = I, Vi, (5.15)

We also see that multiplication by one’s own power is a cost-effective procedure
because players are assumed to know their own power and no additional information
is required [15].

5.1.2.2 Interference Avoidance Game in Canonical Networks

The aforementioned synthetic symmetric interference approach was adopted in
order to study performance of greedy asynchronous distributed interference avoid-
ance (also known as GADIA) algorithms by Babadi et al. [2]. Their formulation was
subsequently extended in [24, 26, 29, 31].
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Problem Formulation

Canonical networks are general network structures proposed in [2]. The network
is comprised of multiple spatially distributed, autonomous nodes. Each node is
not a single communications device, but instead a collection of multiple entities.
These entities are closely located and there are intra-node communications among
them. There is also one representative entity in each node. A good example of such
networks is wireless body-area networks where each person (e.g., medical patients
or soldiers) wearing body sensors can be considered a node, within which there is a
coordinator acting as the cluster head.

The problem considered in [2] is of channel selection in canonical networks.
Each node as an autonomous decision maker is equivalent to a player. As usual, we
denote the set of nodes by 4 = {1,2,...,N}. The spectrum consists of K non-
overlapping bands. It is also assumed that each node uses one channel (i.e., channel
¢i,i = 1,...,K) for intra-node communications and spatial reuse of spectrum is
allowed amongst nodes. As such there exists inter-node interference. The strategy
of node i is thus ¢; and its opponents’ strategies is c—;. The interference indicator is
defined [2, 24, 26] by a Kronecker delta function

1 ¢ =g,

5.16
0 Ci 75 Cj. ( )

d(circp) =

We see that this is equivalent to the waveform correlation function p(w;, @;) in (5.14)
in the one-dimension case of orthogonal channel selection.
The total experienced interference for node i is given [2, 24, 26] by

L= pwib(cj, c) (5.17)
#i

where wj; is the mutual interference coefficient between node j and node i.
Subsequently, the utility function of player i is defined as the negative weighted
interference sum as

Ui(ci,c—i) = —pi; = —Zpipiwj,-c?(cj, ci) (5.18)
J#i
For BSI, we need pairwise symmetric interference, i.e., w; = wy;. In Babadi

et al. [2], the authors simply assumed that interference between any two nodes is
reciprocal and symmetric. In Wang et al. [24], it was argued that as entities of a node
are closely located such that the distance between two nodes is significantly greater
than intra-node distances, channel gains between two nodes are approximated by
path loss as follows:
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o
1
- d," <D s
Wi = wii A (dij) = (5.19)
0 dij > Dy

where d; is the distance between nodes i and j, and Dy is an interference range. The
strategic game associated with the above formulation is denoted by ¢.

Alternatively, Wu et al. [26] considered block fading channels, where identi-
cally and independently distributed (i.i.d.) random fadings are experienced across
different channels, but are constant during each decision window. Moreover, the
interference coefficients among two nodes i and j are taken to be their expected
values, i.e.,

wh = (dy) " “Ele; (5.20)

where ef‘j is an instantaneous fading component for the link between i and j across

channel k. From i to j and from j to i, the expected values of these random variables
are assumed to be the same for channel %, i.e., ]E[el’;] = E[e]kl] Vi,j. Thus, v_vf‘] =
wh, Vi, j and V.

The alternative utility function is then given by

Ui(civc—) = —pil; = — ZPinV_V;i5(Cj, ci). (5.21)
Viall

The resulting associated game is denoted by ¥.

Potential Game Analysis
Due to the symmetric interference considerations, the above formulated games are
expected to exhibit the BSI property.

Theorem 5.3. The aforementioned games 4 and & are BSI games. Thus, they are
exact potential games with potential functions

N N
1
F(cic—) = _EZ > pipwibd(cy. ). (5.22)
=1 j=1j#i
and
1 N N
Flene)==353 D pois(e.c. (5.23)
i=1 j=1j#i

respectively.
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Proof. 1t is straightforward to see that in ¢, the pairwise symmetric observation
between players i and j is pipjw;ié(cj, ¢;), Vi,j € 4. Similarly, in &, this term is
equal to pip;w;8(cj, ¢;), Vi, j € N .

Thus, both games are BSI games according to Theorem 2.21; and their corre-
sponding potential functions are given by (5.22) and (5.23), respectively. O

Remark 5.2. An alternative proof of the game ¢ being an exact potential game by
verifying its potential function with the definition can be found in Wu et al. [25].

Remark 5.3. The GADIA algorithm in [2] is equivalent to the best-response
dynamics. Thus, it inherits the Nash equilibrium convergence property as the
associated game is an exact potential game.

Remark 5.4. A stochastic, dynamic formulation of games with synthetic symmetric
interference for canonical networks was studied in Zheng et al. [31], in which the
dynamic variation of the set of active nodes was modeled by a state space. Potential
games cast in dynamic stochastic settings are not in the scope of this book. Interested
readers can refer to [31].

Finally, we comment on the issue of power allocation in this game-theoretic
framework. Suppose that power can be allocated via a joint channel and power
allocation scheme using the aforementioned formulation. As these games are exact
potential games, the network can achieve equilibria by maximizing the potential
functions, i.e.,

N N
1
max | =53 > pipwid(ej.ci) (5.24)
’ i=1 j=1j#i

where ¢ and p are the channel and power allocation vectors, respectively. However, it
is easily seen that the all-zero power vector p = 0 maximizes this network objective.
This observation was made by Neel et al. [15], where they argued that power
allocation should not be used jointly with channel/waveform selection. Similarly,
[2] also decoupled power allocation from the channel allocation process.

5.1.3 Potential Games with Channel Capacity-Based
Utility Functions

For some wireless communications problems, optimizing the Shannon capacity,
which is given by log,(1 + SINR), is a natural choice for the utility functions.
Often, games with this utility function are not potential games. However, there are
special scenarios where such an approach does lead to a potential game formulation.
A particular example is the uplink power control problem in single-cell single-
frequency networks considered by Fattahi et al. [6] and Scutari et al. [22]. This
scenario can be generalized to the case of multiple receivers, each of which operates
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on one of the orthogonal channels. Examples include the BS selection problem by
Perlaza et al. [18], or the channel selection problem in Mertikopoulos et al. [14] and
Perlaza et al. [19].

Problem Formulation

The system model is based on [14, 18, 19]. The players in the model belong to the set
A ={1,2,...,N} of N single-antenna transmitters. Each player wishes to transmit
their data to one or several of the K single-antenna receivers. Each receiver occupies
one of the K non-overlapping (i.e., orthogonal) channels. Denote the receiver set
or equivalently, channel set, as # = {1,2,...,K}. Index k can represent both a
receiver or its corresponding channel. We remark that this model can describe either
the receiver (i.e., BS) selection problem of Perlaza et al. [ 18] or the channel selection
problem of Mertikopoulos et al. [14], Perlaza et al. [19].

The channel/receiver assignment matrix is A € {0, 1}V*K_ Its element a; = 1 if
player i selects channel/receiver k, and O otherwise. Again, the selection of player i
is represented by a!, the 1 x K ith row vector of A. Since players are allowed to use
more than one channel, multiple entries of al can be 1 simultaneously.

The channel gain matrix is G € RM*X where gj is the channel gain from
transmitter i to receiver k. The power matrix is denoted by P € R¥*X, whose
element pj is the power used by transmitter i on channel k. The row vector piT,
extracted from the i-th vector of P, refers to the power allocation vector of player i.
Note that p;z = 0 whenever a; = 0. In [14], a maximum power constraint Py, 1S
imposed on every player, i.e., Zszl aipir < Pmax, Vi. The feasible power allocation
vectors of player i thus belong to the following set

K

A ={p]|p] € R . py = 0VA. Y aupixc < Pmax}- (5.25)
k=1

Let P = x¥  A; ¢ RVK be the set of all feasible power matrix P. In this
game, we consider a player’s strategy to be a joint channel and power allocation
S; = (al, p), thus the strategy space is written as the following Cartesian product

S = {0, 1}k x P. (5.26)

The total achievable rate of player i is chosen to be its utility function, given by

K
UiSiS=) = Y Bilog, (1 + o kPiSik ) (5.27)
k=1 D=1 4 AiDikgjk + 07

where By is the bandwidth of channel k and o2 is the noise power. The resulting
strategic game is denoted by ¢ = [ A, S, {U;}ier].
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Potential Game Analysis

Using the framework presented in Chap.2, ¢ can be identified to be an exact
potential game due to the separability property.

Theorem 5.4. The game 4 is coordination-dummy separable.

Proof. For an arbitrary player i and channel k, we have

log (1 n aiPigik o (aikpikgik + Zszl i WDk + 0
2 = log,
;'Vzl‘/';éj apikgj + 0 Z;V:I#,- aupigj + 0
N N
=log, | 0% + Zajkpjkgjk —log, | 0% + Z appik8ix | Yie N ke X .
=1 J=1i#
(5.28)
Thus, Vi :

k=1 Jj=1 k=1 j=1jFi

K N K N
Ui(Si, S—i) = ZBk log, (02 + Zajkpjkgjk) - ZBk log, (02 + Z ajkpjkgjk) .

coordination term dummy term

(5.29)

Clearly, the first term is common among all players while the second term
does not involve any decision variables from player i. Hence, according to Defi-
nition 2.16, this form of U;(S;, S—;) satisfies coordination-dummy separability. O

The next corollary is a direct result of Theorem 2.20.

Corollary 5.1. The game 9 is an exact potential game with the potential function

K N
F($) = Y Bylog, (02 +> aikpikg,-k> : (5.30)
k=1 i=1

Remark 5.5. In [14, 18, 19], the authors did not explain how the potential function
F(S) in (5.30) was derived. However, by applying our generalized framework, the
derivation of F(S) can be intuitively understood. Unlike the approach in Sect.5.1.1,
this game is formulated via the forward method. In practice, the function F(S) of
this example does not seem to represent a meaningful network objective, but is
nevertheless the potential function.

Remark 5.6 (Power Allocation Problem). The uplink power allocation problem in
single-cell single-frequency networks considered in [6, 22] were claimed to be
potential games. In fact, we remark that this problem is a special case of the currently
investigated game with a single channel/receiver, i.e., K = 1 and ax = 1, Vi.
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Without the dimension of channel selection, the actions of players are reduced to
solely adaptation of power. As such, the strategy space of the power allocation game
is a subset of the current strategy space S. Theorem 2.23 guarantees that the power
allocation game is also an exact potential game.

Remark 5.7 (Inclusion of Power Pricing). In (5.27), we can modify U; so as to
include power pricing as follows

K

AikPik8i

Ui, S=) = 3 Bylog, (1 + PRk 2) —a@l) (531
k=1 D=1 j+i kP& + O

where ¢; : A; — R is a generic pricing function, usually assumed to be
convex, non-decreasing and continuously differentiable in p!, Vi € .4 [22]. Since
the introduction of pricing terms is equivalent to linearly combining the original
potential game with a no-conflict game, Theorem 2.18 assures us that the resulting
game is also an exact potential game.

Discussion

A word of caution is that capacity maximization games are potential games only
if for every channel, a common receiver is assumed (where this receiver can be
randomly located). In a more general scenario where multiple randomly located,
distributed receivers are allowed to reuse the same channels, such as the case
considered in Chap. 3, a similar formulation unfortunately does not automatically
lead to an exact potential game.

A simple mathematical counterargument is given as follows. Using the settings
and notations in Chap.3 for the problem of transmit-receive pairs, the total
achievable rate (per unit bandwidth) for player i is given by

K k
AikPik8i
C = X:log2 (1 + =& WPik R )

D 2
k=1 Zj:l,j;éi AjkPjk8ji +o

=

X:log2 o +Zajkpjkgﬂ leog2 o’ + Z ajkpjkgﬂ . (5.32)
j=1

k=1 j=1j#i

While the same decomposition method yields a dummy second term to all
players, the first term in (5.32) is not identical among all players [compared
to the first term in (5.29)] and cannot function as the coordination term and
hence the potential function. This is because the summation Z —1 ajkp]kgﬂ, which
refers to the total power received by player i for channel %, dlffers across two
different referenced players i; and i, since gfil # gj’.‘iz. Thus, this formulation
for distributed transmit-receiver pairs does not guarantee an exact potential game.
In fact, simulation studies [10, 11] revealed that the Nash equilibrium convergence
rate for such a formulation is not 100 %.
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5.1.4 Potential Games for Players with Local Interactions
in Cognitive Radio Networks

In opportunistic spectrum access, cognitive radios (i.e., secondary users) are allowed
to transmit on spectrum bands unoccupied by the licensed (i.e., primary) users at
certain times and locations [1]. How the distributed cognitive radio users select the
best available channels opportunistically for transmission is often formulated as a
game.

Xu et al. [28] proposed potential game formulations under the assumption that
the communication ranges of cognitive radio users are such that each user will only
interfere a few of its local neighboring users. The authors of [28] referred to this
context as local interaction games.

Problem Formulation

In the system, it is assumed that there are N pairs of transmitters and receivers acting
as the N players of the game. They compete for M licensed channels where M < N.
Channels are only available to a player if no primary user occupies them. The set
of players is denoted by .#” and the set of channels by .# . Channel availability is
characterized by the matrix C € {0, 1}N XM whose element c,,, = 1 if channel m
is available to player n, and O otherwise. Then, assuming each player can select a
single channel to transmit, the set of available channels for player i constitutes its
strategy set, i.e.,

Si={m|m€///,cim=l}§///. (533)

It is possible that no channel is available for player i; in this case, S; = @.

Next, the local interaction settings can be characterized by an interference graph.
Let I" = (A4, &) be the corresponding graph where its set of nodes coincides with
the set of players .4 and the set of edges & is such that two neighboring nodes
are connected by an edge. Players i and j are neighbors if they are separated by a
physical distance less than a predefined value D; and can interfere each other during
transmission. We denote J; = {j | j € A4, (i,j) € &} the set of neighbors for
player i. As the system is distributed, each player i only knows its locally available
information, such as its own neighbors in J; and its own available channels (i.e.,
row i of C). Thus, the local interaction problem can be represented by < 4,I" >
where ¢ is any strategic game that is formulated for players within an underlying
interference graph I'.

The authors further assumed a slotted ALOHA transmission protocol for the
system. In each timeslot, all players may transmit on an available channel with
probability p and stay silent with probability 1 — p. When two players transmit
simultaneously on the same channel (i.e., S; = §;), collision will occur. We define
the collision indicator variables §;; as follows.
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1 ifS;, =85,
5i=1 J (5.34)
0 otherwise.
Then, the individual throughput of player i is expressed as
£8:8) =p[Ja-p)% (5.35)

keJ;

when S; # @. Incase S; = @, f; = 0.

In our notations, f;(S;, S;,) suggests that it depends only on the strategies (S;, Sj,)
selected by player i as well as its neighbors in J;. This is the difference between
local interaction games and traditional strategic games.

Next, two utility functions, namely the local altruistic function and the local
collision function, were considered in [28].

Potential Games for Local Altruistic Objectives

Under the local altruistic consideration, cooperative behaviors among neighboring
players are encouraged. As such, [28] defined the following utility function

Ui(Si.S5,) = fi(Si.S1) + Y _£(8;.85). Vie N (5.36)
JEJi

which maximizes not only the individual throughput of player i but also the
aggregate throughput of its neighbors. A player that maximizes this objective
exhibits altruistic behaviors. This results in a local interaction problem < ¥ T >
where

GV =[N, S, {Uier]. (5.37)

withS = S x ... x Sy.
We establish the following result.
Theorem 5.5. The game ¥V is cooperation-dummy separable.
Proof. We define the network throughput as the sum of individual throughputs, i.e.,
F(S) =Y £i(Si.S5). (5.38)
e
which can be rewritten with respect to player i as

F(SiS=) = filSiuSs) + D_fi(SiSp) + Y F(S:55) (5.39)

J€l; JEN\UL)
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To player i, Q;(S—;) = ZjeL/V\(JfU{i})fj(Sj’ Sy;) is a dummy term since it involves
the throughputs of players which are not player i’s neighbors and is independent
from player i’s strategy.

Thus, from (5.36) and (5.39), one can write

Ui(Si,S5) = F(Si,85—) — Qi(S—-), Vi (5.40)

which shows that 40 is cooperation-dummy separable, according to Defini-
tion 2.16. O

The following result is directly from Theorem 2.20.

Corollary 5.2. The game 9V is an exact potential game with potential function
F(S) in (5.38).

Remark 5.8. Although we present the formulation of %Y in the forward method,
i.e., defining utility functions satisfying the separability property, it is possible that
U; in (5.36) might have been conceptualized via the backward method. Here,
the network objective which is the sum of individual throughputs F(S) is first set.
Subsequently, by discounting from F(S) the non-contributing terms for player i, the
remaining terms are player i’s utility, which represents an altruistic objective.

Potential Games for Local Collision Objectives

Previously, V) is formulated as an exact potential game in which ultimately, the
potential function to be maximized corresponds to the network objective of total
throughput maximization. Alternatively, [28] proposed a second network objective,
which is the network collision level ®(S), defined as

() = % N (5.41)

€N jed;

which represents the total number of collision occurrences in the networks. The
local collision objective is to minimize the overall number of collisions.

We will see how the backward method can help us obtain an exact potential game.
In doing so, we will take our network function as —®(S) where the minus sign is to
convert the minimization problem to maximization. Subsequently,

—O(S1,5_;) = —% DTG Gty Y 8y (5.42)

Jjeli Jii€d; ki jel\i}

Then, —1 Dkt 2jes\iiy O is a non-contributing term. According to the back-

ward method, the utility function V; of player i can be set to —%(Zje 585 +
2_jiies; 8ji)- Because §j; = 8, this equals to
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Vi($i.85) = = > 8. (5.43)

JEJi

which corresponds to the total number of neighbors selecting the same channel as
player i. We have ended up with exactly the utility function proposed in [28].
This results in the local interaction problem < ¢ M T > where

GV =[N, S {Vitier]. (5.44)

Theorem 5.6. The game 9 is an exact potential game with potential function
—®(S) in (5.41).

Proof. This theorem follows directly from application of backward method. O

5.2 Applications of Pseudo-Potential Games

In this section, we touch on the applications of pseudo-potential games, or specif-
ically, subclasses of pseudo-potential games known as games of weak strategic
complements with aggregation (WSC-A) and games of weak strategic substitutes
with aggregation (WSS-A). These games were investigated in the work of Dubey
et al. [5]. Subsequently, Heikkinen [8] applied these results to study the convergence
of distributed power control algorithms in wireless networks. We will present a brief
theoretical introduction to these concepts in Sect.5.2.1, followed by a couple of
applications in Sects. 5.2.2 and 5.2.3.

5.2.1 Strategic Complements and Substitutes

The notions of strategic complements/substitutes [5] rest on the assumption that
the strategy space can be “ordered”, i.e., a strategy is “preferred” over another via
the relation >. In this discussion, the standard strategic form notation of games
4 = [N,S,{U;}ic ] is used, unless otherwise stated.

Definition 5.1 (Strategic Complements and Substitutes). Consider arbitrary
strategies S;,7; € S; where S; > T;. We denote Ag, r,U;(S—;)) = Ui(Si,S-i) —
U;(T;, S—;). Then, strategic complement refers to the condition that

Vx,y (S S_iZ xX>y= ASi,TiUi(x) > AS,-.T,'Ui(y)7 Vi. (545)
That is, player i’s and opponents’ strategies are complements to each other.

On the other hand, if x > y = Ag, ,Ui(x) < Ag,1,Ui(y), we have strategic
substitutes.



148 5 Other Applications of Potential Games in Communications and Networking

Weak strategic complements/substitutes are relaxations of previous notions to
some best response of player i, similar to how best-response potential games are
generalized from ordinal potential games.

Definition 5.2 (Weak Strategic Complements and Substitutes). For player i, let
bi(x) be some best-response function selected out of its best-response correspon-
dence %;(x). If,

Vi,Vx,y e S_;: x>y = bi(x) > bi(y), (5.46)

then the game is of weak strategic complements.
If in the above, we replace the > sign with the < sign, we have weak strategic
substitutes.

Furthermore, the preference order among the opponents’ strategies can
be restricted to only a class of additive aggregation [5]. That is, we associate
the opponents’ joint strategies S—; with their additive aggregate, Zje iy S5 and
the previous notation x = S_; > y = T_; is now equivalent to Zje( NS >
Zje( iy Ij- We see that additive aggregation can be frequently seen in practice,
where the accumulation of other players’ actions affects one player’s utility. For
example, signal interferences are in the form of summation of received signals from
interfering channels.

We are ready to formally define games of WSC-A and WSS-A as follows.

Definition 5.3. A game ¥ is of weak strategic complements with aggregation
(WSC-A) if for any player i, there exists a particular best-response function b; :
S_; — S; such that b;(x) € %B;(x) Yx € S_;, b; is continuous on S_; and

bi(x) > b;(y) whenever x >y, Vx,y € S_,. (5.47)

Note that the condition that b; is continuous on S_; does not need to hold for
finite games [5]. In (5.47) above, one could also define WSS-A games by replacing
the > sign with the < sign.

A key result for WSC-A and WSS-A games is as follows.

Theorem 5.7 (Dubey). WSC-A and WSS-A games are pseudo-potential games.
As such, they have pure-strategy Nash equilibria, reachable via sequential best-
response dynamics. Furthermore, for WSC-A and WSS-A games with convex
strategy sets and single-valued best responses, simultaneous best-response dynam-
ics also converge to a Nash equilibrium.’

"Here, it is not specified whether the convergence can be obtained in finite steps. However, in
Chap. 2, our survey of the finite and approximate finite improvement path properties suggested
that in finite games, convergence can be finitely achieved. Meanwhile for continuous games, such
dynamics ultimately approach a Nash equilibrium but may not necessarily be finite.
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Proof. The proof that WSC-A and WSS-A games are pseudo-potential games is
given in Theorem 1 of [5], which we omit here.

As a result, both have pure-strategy Nash equilibria which are obtainable from
sequential best-response dynamics.

Convergence of simultaneous best-response dynamics in WSC-A and WSS-
A games with convex strategy sets and single-valued best responses is shown in
Remark 2 of [5].2 O

Also in [5], the results for additive aggregation can still hold if we consider
broader classes of aggregation, among which includes the weighted linear aggre-
gator @ : S_; — R, defined by

OC(S_,‘) = Zaij (5.49)
J#i

where a;, j # i are real scalars, such that o(S_;) > 0, Vi, VS_;.

Proposition 5.1 (Dubey). The results of Theorem 5.7 still hold if in the definitions
of WSC-A and WSS-A games, we replace the additive aggregation Zje{ iy Si by
the weighted aggregator a(S—;) above.

Proof. A proof can be obtained from [5]. O

It can be seen that in power control problems, a player’s total experienced
interferences, which is a summation of the other nodes’ transmit power levels,
scaled by the channel gains, can be treated directly as the weighted aggregation of
opponents’ strategies. In the next sections, we see how these results can be applied
in some relevant practical problems.

5.2.2 Convergence of Some Power Control Games
with Interference Aggregation

Power Control Game
We revisit the problem of uplink power control in wireless networks. Some

power control games have been previously introduced in Examples 2.12 and 2.16.
Distributed power control problems are widely studied in the literature [8, 21, 27];

2In addition, a generic potential function for such games is given in [5] as
F ==Y 8= > 585+ > P(S) (5.48)
€N €N j<i €N
max(Z—;)+1

where P;(S;) = J_; min (7;(x), S;)dx. Here, 7;(.) is the linearly extended function of best
response b;(.) to the convex hull ¥_; of the set S_,.
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and convergence of iterative algorithms for distributed power control is well-
understood via the theory of standard function [30]. However, not all algorithms
can be verified under this technique. Meanwhile, in some cases, one can make use
of strategic complements to identify the convergence conditions.

The players are N mobile nodes, each of which transmits to a common
destination, e.g., a base station, access point or cluster head. Player i’s strategy is
to transmit at power level p; which is bounded in a certain range, e.g., [0, Pyax]-
Subsequently, we use p = (p;, p—;) to refer to strategy profiles in this game.

The SINR y; of player i is calculated as

y= — Pigi (5.50)
D=1 j#iDig +0?

where g; is the channel gain between player i and the destination node; and o is the
noise power.
We can formulate a power control game (with general utility function U;) as

G = [A,S,{Uilier] (5.51)
whose strategy space is
S ={plp € [0. Pna]"}. (5.52)

Often, utility function U;(p;, p—;) is directly related to player i’s SINR, i.e.,
U; = U(yi(pi,p—i)). Its SINR y; is in turn a function of player i’s accumulated
interference. Thus, the theory of WSC-A and WSS-A games can be applied to this
scenario.

For player i, we denote its interference aggregator by

=Y pg (5.53)
j#i

which is the total interference power experienced by player i. Clearly, |_; belongs to
the class of weighted aggregators in (5.49).
We will focus on the following class of utility functions:

Uipi.p-i) = fi(y)) — cipi, Vi (5.54)

where ¢;p; is a linear power pricing term and f;(.) is a continuous, differentiable
function of y;.
In general, if utility function U, is continuous, differentiable and concave, a best
raesponse for player i can be derived based on the first-order derivative condition
Ui

= 0 which gives
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9y, (1 2
Hge —e =0, orfiy) = S (5.55)
Di i
Hence,
. Digi net ((cill—i + o)
P = = (f; _ 5.56
N ) ( " (5.56)

where (f/)7!(.) is defined in the region where f;(.) is concave. Consequently, the
best-response function for player i can be written as

. 2 (] 2
= billoy = St () (5.5

Then, from (5.47), the condition for WSC-A/WSS-A (under weighted aggre-
gation) in our game ¥ is that the best response b;(1—;) in (5.57) is an increas-
ing/decreasing function in |_;.

We will next check this condition for some commonly adopted function f;(.).

Shannon Capacity Utility
Firstly, we consider f;(.) to be the Shannon capacity function, i.e.,

filyi) = logy(1 4+ y). Vi (5.58)

whose first derivative is

VAVOES (5.59)

— Vv
(I+pm2 "

We observe the following result.
Proposition 5.2. In ¢, best-response b;(1_;) is decreasing in 1_;.

Proof. We notice that f;(y;) above is concave for all y; > 0. Thus, (f/)7!(.) is well-
defined and is given by

()~ w) = ~1 (5.60)
uln2
As such, from (5.57), we have the best-response function
1 I_; 2
bi(l_y) = =t 5.61)

¢iln2 gi
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Clearly, b;(1—;) is linearly proportional to —I_;. This proves our proposition. O

As such, games with the Shannon capacity as the utilities are of weak strategic
substitutes and best-response dynamics can converge to a Nash equilibrium.

Remark 5.9. Existence of a Nash equilibrium is also established by an alternative
argument as we notice that S = [0, Py ]V is a nonempty, convex and compact
subset of Euclidean space, and the utility function U; is continuous and quasi-
concave in each p;. This is a direct result from Theorem 1.2.

Sigmoid Utility

The second function f;(.) we consider is the sigmoid function, which has been used
in wireless power control by several authors [7, 21, 27].

A sigmoid function f;(y;) is meant to reflect the level of satisfaction of player
i with respect to its obtained SINR level y;. In general, such a function yields the
following desirable properties

* fi(0) =0,
o lim,— o fi(x) = 1, i.e., satisfaction level saturates to 1 at infinity.
e f/(x) > 0forx > 0,i.e., fi(x) increases with respect to x.

A good candidate for f;(y;) is the logistic sigmoid function

fily) & 5; (5.62)

where «;, B; are constant. Figure 5.1 shows the sigmoid function and its shapes with
respect to various «; and f;. Furthermore, §; = 1/(1 4 %) is present to offset it
to 0. Often this value is negligibly small, so we can set §; & 0. This function appears
in mathematical studies of population growth [23] and has a wide application in
sciences and engineering.

We should note that the sigmoid function f;(y;) is concave only where y; > f;,
i.e., to the right of its inflexion point (B;,0.5). Thus, the inverse function of its
derivative, (f/)~'(.), should be defined over [;, 00).

Figure 5.2 depicts the derivative f/(.) and also presents us a good interpretation
of finding the best response for player i (which was originally suggested by Xiao
et al. [27]). From (5.57), b;(1_;) is a product of two factors. The first factor

(fi’)_1 (@) is in fact the abscissa of the second intersection between f/(.) and

|_i+02

the horizontal line y = C’“%“z) The second factor —==—- is equal to the height
of the previous line, scaled by 1/c¢;. Thus, b;(1—;) is directly proportional to the area
of the rectangle indicated in Fig. 5.2. We denote this area by .27
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Fig. 5.1
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In closed form, b;(l—;) can be computed as

b(l_,)—"‘i Bi— L ! “1l]. 563

8i i 1 1 ¢l +0?)

2 4 (07541

In [27], a necessary condition for convergence of iterative best-response dynam-
ics was stated as follows.

Proposition 5.3. In the power control game with sigmoid utility functions, iterative
best-response dynamics converge if </ increases with its height.

4 .
Proof. Clearly, that </ increases with its height M means b;(l_;) is an
y g 8i

increasing function of |_;, which in turn means the game is of weak strategic
complements. Convergence follows due to WSC-A games being pseudo-potential
games. |

Regarding the validity of the condition on .7 in Proposition 5.3, [27] also stated
that this holds for “almost all practical situations” due to the large value of «; and §;
in practice. However, neither did the authors of [27] give an analysis nor elaborate
further on this statement. Here, we formally validate this claim as follows.

Proposition 5.4. Suppose that player i chooses suitable values of «;, B; and c;, such
that the following condition is satisfied:

1

a;B; > In( Ni=rse

— )+ (5.64)

2
1+ J1-4X

where X; = C’(Ia’:“ ) is the height of <7 (scaled by ) then b;(1-;) is an increasing
function of X; (and hence, in l_;).

9bi(l—i)
0X;

Proof. This condition is directly derived from the requirement that > 0 for

bi(1—;) to be increasing in X;. Equation (5.63) can be written as

Xi 2
alo =g [“iﬂf - (l—l—— N l)} ’

whose derivative can be shown to be
db; Bi— ( 2 1) 1 :|
o;B; _ — —————
BI_, C,' 1+ A/ 1-— 4X, A/ 1— 4X,

Clearly, (5.64) follows. Intuitively, we see that this requires «;; to be sufficiently
large, which to some extent explains the claim in [27] for large ¢; and §;. O

(5.65)
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We further remark that firstly, in order for the best response b;(l—;) to exist, the
range of |_; should be in the region such that 0 < X; < 0.25. We next illustrate how
condition (5.64) could be satisfied across almost this entire feasible region, given
a large value of o;f;. In fact, (5.64) reduces to X; < X; for given «; and f;; and
X; approaches 0.25 quickly as «; and f8; become larger. For instance, o;; = 1 and
Bi; = 10 (as chosen in [27]), then (5.64) becomes X; < 5(1~ ~ 0.2476. With o; = 1
and B; = 20, X; ~ 0.2493; and with o; = 1 and B; = 50, X; &~ 0.2499.

5.2.3 A Pseudo-Potential Game Analysis for the Power
Minimization Problem

A power minimization game with coupled constraints was introduced in Exam-
ple 2.16, where we showed that it is an exact potential game. In this section, we
provide an alternative analysis using pseudo-potential games, which was proposed
by Heikkinen [8].

We will keep the same notations of Sect.5.2.2, in particular, the interference
aggregator |_; in (5.53). Now, let us investigate a power minimization game with
the following utility functions

U & —p,Vie V, (5.66)
and the minimum SINR constraints

Yi= v Vi€ N, (5.67)

where y; > 0 is a target SINR for player i, specified by the player’s QoS
requirements.

The power minimization game, which we call ¢, is therefore the following
distributed optimization problem

Vi: max (—p;)
pi
s.t.pi € [0, Pmax],  ¥i > Vi- (5.68)
Proposition 5.5. The game & is a WSC-A game, considering the weighted aggre-

gator 1_;.

Proof. First, we need to find the best response for player i. From the SINR
constraint, we have

DPi8i

- 27 (5.69)
Zj;éipjgj +0?
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which leads to

vi (1 2
s L) (-i+0%) (5.70)
8i

yi(1—i 2 .. . . . .
Clearly, b;(1_;) = M This is an increasing function in terms of I_;.
Hence, ¢ has weak strategic complements. a

Thus, ¢ is a pseudo-potential game, which is not surprising since by the
argument of Example 2.16, it must also be an exact potential game. In [8], a potential
function associated with the pseudo-potential game was also provided.

Proposition 5.6. The following function serves as a (pseudo) potential function

for94:

N 2
F(p) & (02 + Zgipi) —Z iy’( gipi)’. (5.71)

i=1 i=1 !

Proof. To validate F(p), we verify it against (2.10).

Firstly, for any player i, its best-response correspondence is single-valued, i.e.,
HBi(S-i) = {bi(l-)}.

Next, we find p; that maximizes F(p;, p—;), which can be found via the first-order
derivative condition, i.e.,

oF

1+
8171 =2|o +Zgjpj 81_7(2 Di)

j=1

i

8iPi
= 2gi ((U2 + 1) + gpi — gipi — 7)

=28 ((0 + 1) — %) =0 (5.72)

i

This equation is solved by p; = , which is exactly b;(I—;). It remains
to verify that p; is indeed a maximum by checking the Hessian matrix of F(p). We
omit the details.

In summary, b;(I—;) = argmax F(p}, p—;) which guarantees that F(p) is indeed a

P
potential function for the game . O

7i(l—i+o?)
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5.3 Concluding Remarks

In this chapter, we have looked at a number of potential game formulations in
wireless communications and networking. Among various types of potential games,
exact potential games have been the most popular; and the major formulations using
this approach include games with the sum of inverse SINRs as the potential function,
games under synthetic symmetric interference, games with Shannon capacity-
based utility functions, as well as games of local interactions among players in a
graphical network. In addition, we also examine the use of pseudo-potential games
in understanding the convergence of various power control games. In summarizing
these major existing works, we present the results according to the framework
laid out in Chap. 2. The list of problems described above is non-exhaustive, and
represents, at the time of writing, a collection of potential game-related applications
that are gaining popularity in the literature. Finally, the authors wish you a fruitful
journey for this topic of research for your future work.
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