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PREFACE

When I wrote the book Methods of Moments and Semiparametric Econo-
metrics for Limited Dependent Variable Models published from Springer in
1996, my motivation was clear: there was no book available to convey the
latest messages in micro-econometrics. The messages were that most econo-
metric estimators can be viewed as method-of-moment estimators and that
inferences for models with limited dependent variables (LDV) can be done
without going fully parametric.

Time has passed and there are now several books available for the same
purpose. These days, methods of moments are the mainstay in econometrics,
not just in micro-, but also in macro-econometrics. Many papers have been
published for semiparametric methods and LDV models. I, myself, learned
much over the years since 1996, so much so that my own view on what
should be taught, and how, has changed much. Particularly, my exposure to
the “sample selection” and “treatment effect” literature has changed the way
I look at econometrics now. When I set out to write the second edition of the
1996 book, these changes prompted me to re-title, reorganize, and re-focus
the book.

This book, or the second edition of the book from Springer in 1996,
differs greatly from the 1996 book in three aspects. First, I tried to write
the book more as a textbook than as a monograph, so that the book can
be used as a first year textbook in graduate econometrics courses. Second,
differently from the 1996 book, many empirical examples have been added
and estimators that work well in practice are given more coverage than the
others. Third, the literature have been updated, or at least, the relevant new
papers have been cited so that the reader can consult them if he/she desires
so. These changes resulted in more than doubling the book length.

One may classify econometrics into two: micro-econometrics dealing with
individual data, and macro-econometrics dealing with (aggregate) time-series
data. Micro-econometrics may be further classified into “cross-section micro-
econometrics” and “panel-data micro- econometrics”; an analogous classi-
fication can be done for macro-econometrics. In 2002, I published a book
entitled Panel Data Econometrics: Methods of Moments and Limited De-
pendent Variables from Academic Press; for me, this leaves “cross-section
micro-econometrics” to cover in micro-econometrics, which is what this book
is mainly about, although panel data models are also examined occasionally.

One of the “buzz word” in micro-econometrics these days is “treatment
effect.” This topic has been studied extensively in epidemiology and medical
science as well as in some social science disciplines. Treatment effect frame-
work is, in fact, nothing but “switching regression” in micro-econometrics
that was popular some time ago: the effect of a binary treatment is of interest,
and if there is any treatment effect, we get to see two different (i.e., switch-
ing) regimes depending on the treatment. In 2005, I published a book entitled
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Micro-Econometrics for Policy, Program, and Treatment Effects from Oxford
University Press. Hence, despite its prominence, treatment effect will be dis-
cussed at minimum, if at all, in this book.

Closely related to treatment effect is “sample selection” where the sample
at hand comes from only one regime while our interest is on both or on the
“averaged” regime. I am planning to write a book on sample selection in
the near future, and thus the coverage of sample selection in this book will
not be extensive. Sample selection is a fairly well-confined topic in micro-
econometrics, and the non-extensive coverage in this book would not distort
the overall picture of micro-econometrics.

The book consists of three parts in the main text, with each part hav-
ing a number of chapters, and three appendices. The first part (Chapters
1 and 2) in the main text is for methods of moments for linear models, the
second part (Chapter 3–6) is for nonlinear models and parametric methods
for LDV models, and the third part (Chapter 7–9) is for semiparametric and
nonparametric methods. Appendix I contains one section on mathematical
and statistical backgrounds, and eight more sections of appendices for Chap-
ters 2–9. Appendix II has further supporting materials. Both appendices are
technical, digressive or tentative, and Appendix II is more so than Appendix
I in this regard. Most things the reader may feel missing while reading the
main text can be found in the appendices, although what is available in the
appendix is not specifically mentioned in the main text. Some interesting
topics are put in the appendices to avoid lengthening the main text too much
and thus discouraging the reader prematurely.

Appendix III provides some GAUSS programs. I tried to select only
simple and numerically stable (i.e., reliable) programs. All programs use sim-
ulated data. Although I wrote this book so that the readers can write their
own programs, STATA commands are occasionally referred to, in case the
reader may think that the procedure under consideration is difficult to im-
plement and not available in ready-made econometric packages.

As in my other books, small sample issues and matters of “second order
importance” will not be discussed much, because econometricians will be
making mistakes of large magnitude, if any. With this being the case, paying
attention to small sample improvement and low-order precision seems not so
meaningful. Of course, ideally, one should avoid mistakes of both large and
small magnitudes, but saying that would be ignoring econometricians’ budget
and time constraints; politicians might feel comfortable saying that, but not
most economists.

Some glaring omissions in this book’s coverage include weak instru-
ments, factor analysis, stochastic frontiers, measurement errors (or errors
in variables), semiparametric efficiency, auction-related econometrics, spatial
dependence, demand system analysis, sampling, and missing data and impu-
tation which are closely related to sample selection. Also it would be nicer
to have more detailed coverages of duration analysis, multinomial choices,
“bandwidth-dependent” semiparametric methods for LDV models, and so
on. All of these require much more time and efforts on my side, and cover-
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ing them would mean this book not seeing the daylight for another several
years—perhaps next time.

The target audience of this book are graduate students and researchers.
The entire book may be covered in two to four semesters—one semester
for each part plus the appendices—but covering essential topics selectively
while omitting the optional starred topics (and some others) may be done
in two semesters. Most estimators and tests have been tried with real or
simulated data except some in the appendices. The reader will find intuitions
for how estimators/tests work as well as various tips for hand-on experiences.
About empirical examples in this book, it would be ideal to choose the “best”
empirical examples for a given estimator/test. But, unfortunately, my time
constraints prevented me from doing that; rather, most examples were chosen
more or less “randomly”—i.e., I happened to run into, or just remember, the
example when the topic was written about.

In this book, theoretically oriented readers will find an overview on
micro-econometrics, and applied researchers will find helpful informations
on how to apply micro-econometric techniques; there will be something for
everybody—at least that is what I hope. The reader may also want to consult
other good books with micro-econometric focus such as Wooldridge (2002),
Cameron and Trivedi (2005, 2009), and Green (2007). Compared with these
books, the theoretical coverage of this book is relatively at a higher level with
a semi-(non) parametric bent.

I am grateful to the Springer Statistics Editor John Kimmel for his
patience while this project was dragging on for eight-plus years after the
initial talk. I am also grateful to the anonymous reviewers for their comments
which led to substantial improvements and re-organizations of the book. Juaõ
Santos-Silva provided valuable feedbacks on many occasions, and Jing-young
Choi helped me much by proof-reading most parts of the book. Also Sang-
hyeok Lee, Jong-hun Choi and Young-min Ju proof-read various chapters and
gave me comments. I should admit, however, that I could not incorporate all
the comments/feedbacks due to the book-length/time constraints, and also
due to the fact that making too many changes near the final stage is a rather
risky thing to do. Without implicating any reviewer or anybody for that
matter, I will be solely responsible for any errors in the book.



REMARKS ON EXPRESSIONS AND NOTATIONS

Many acronyms will be used in lower/upper case letters: “rv” for random
variable, “cdf” or “df” for (cumulative) distribution function, “rhs” for right-
hand side, “lhs” for left-hand side, “dof” for degree of freedom, “wrt” for
“with respect to”, “cov” for covariance, “cor” for correlation, and so on.

For matrix A, “p.d.” (n.d.) stands for “positive definite” (negative defi-
nite) and “p.s.d.” (n.s.d.) stands for “positive semidefinite” (negative semidef-
inite). tr(A) denotes its trace, and |A| (or det(A)) denotes its determinant;
||A|| will be then the absolute value of the determinant. But sometimes, |A|
or ||A|| may mean the matrix norm {tr(A′A)}1/2. For matrices a1, ..., aM ,
“diag(a1, ..., aM )” is the block diagonal matrix with a1, ..., aM along the di-
agonal.

The notation “→p” means “convergence in probability”, and “→ae” or
“→as” means “convergence almost surely (a.s.)” or “convergence almost ev-
erywhere (a.e.)”. The notation “�” denotes “convergence in distribution (or
in law)”, and “∼” denotes the distribution of a rv; e.g., “x ∼ N(0, 1)” means
that x follows the standard normal distribution. We will also use “x ∼ (μ, σ2)”
to mean that E(x) = μ and V (x) = σ2 without its distribution specified. Fre-
quently, φ and Φ will be used to denote the N(0, 1) density and distribution
function, respectively. Uniform distribution on [a, b] is denoted as U [a, b], ex-
ponential distribution with parameter θ is denoted as Expo(θ), and Poission
distribution with parameter λ is denoted as Poi(λ). Other distributions are
often denoted analogously; e.g., Weibull(α, θ).

In many textbooks, an uppercase letter and its lowercase letter are used
to denote, respectively, a rv and its realized value. In this case, for a rv
Y with distribution function F (y) ≡ P (Y ≤ y) and density f(y), we have
E{g(Y )} =

∫
g(y)f(y)dy for a function g(·). But this distinction between Y

and y will not be followed in most parts of this book, because upper case
letters are frequently used to denote matrices in this book. A downside of
not following the uppercase/lowercase convention can be seen in E{g(y)} =∫

g(y)f(y)dy where y in E{g(y)} is a rv but y in
∫

g(y)f(y)dy is just an
integration dummy—

∫
g(z)f(z)dz would mean just the same thing. In most

cases, it will be clear from the context whether y is a rv or not. But if
necessary, to avoid this kind of confusion, we may also write

∫
g(yo)f(yo)dyo.

Also from the given context, it will be clear whether F (y) means P (Y ≤ y)
with Y random and y fixed, or F (·) taken on a rv y; if the meaning is not
clear, we may write F (yo) for P (y ≤ yo) where y is a rv.

The conditional distribution function for P (y ≤ yo|x = xo) is denoted as
Fy|x(yo|xo), Fy|x=xo

(yo), or Fy|xo
(yo). But if not interested in any particular

values of yo and xo, we may just write Fy|x(y|x), Fy|x(y), or F (y|x). The
corresponding density function will be denoted as fy|x(y|x), fy|x(y), or f(y|x),
respectively. In these cases, y and x in parentheses are not rv’s, but stand
for some values that those rv’s can take (just to indicate that F and f are
for those rv’s). Ex(·) and Ey|x(·) denote that the expected value is taken

x



Remarks on Expressions and Notations xi

for x and y|x, respectively. Med(y|x) and Mode(y|x) denote the conditional
median and mode, respectively. Qα(y|x) (or qα(y|x)) denotes the conditional
αth quantile. The independence between two random vectors x and y is
denoted as x � y, and the conditional independence between x and y given
z is denoted as x � y|z. The ‘indicator function’ 1[·] is defined as 1[A] = 1
if A holds and 0 otherwise. The ‘sign function’ sgn(a) ≡ 2 × 1[a ≥ 0] − 1
denotes the sign of a: sgn(a) = 1 if a ≥ 0 and −1 if a < 0. Sometimes the
sign function may be defined such that it becomes 0 or −1 when a = 0.

When E(z) is used, it is implicitly assumed that E(z) < ∞; when E−1(z)
is used (a shorthand for {E(z)}−1), it is also assumed that E(z) is invert-
ible. Most vectors in this book are column vectors, and for a m × 1 vector
function g(b) where b has dimension k × 1, its first derivative matrix gb has
dimension k × m; in comparison, gb′ ≡ g′b is a m × k matrix. Rk denotes
the k-dimensional Euclidean space, and R = R1 denotes the real space; | · |
denotes the Euclidean norm in most cases. For a function g(·), “increasing”
means “non-decreasing,” and “strictly increasing” means increasing without
the equality; the analogous usages hold “decreasing” and “strictly decreas-
ing.” L(y|x) and LN (y|x) denote the linear projection E(yx′)E−1(xx′)x and
its estimator, respectively; in comparison to L(y|x), E(y|x) may be called the
(nonlinear) projection and EN (y|x) denotes an estimator for E(y|x).

Since this book is mainly for cross-section micro-econometrics, unless
otherwise noted, we will assume that data, say z1, z2, ..., zN from N subjects
(individuals), are (independent and identically distributed) from a common
distribution. The individuals will be indexed by i = 1, ..., N , and we will often
drop the subscript i to write zi just as z, if not interested in any particular
subject. Hence, when zi = (zi1, ..., zim)′ is an “m-vector” (i.e., m× 1 vector),
its mth component zim may be denoted as zm with i omitted.
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CHAPTER 1

METHODS OF MOMENTS FOR SINGLE

LINEAR EQUATION MODELS

Method-of-moment (MOM) estimator for single linear equation models
is introduced here, whereas MOM for multiple linear equations will be ex-
amined in the next chapter. Least squares estimator (LSE) is reviewed to
estimate the conditional mean (i.e., regression function) in a model with
exogenous regressors. Not just conditional mean, but conditional variance
also matters, and it is discussed under the headings “heteroskedasticity/
homoskedasticity” and generalized LSE (GLS). Instrumental variable esti-
mator (IVE) and generalized method-of-moment (GMM) estimator allow
endogenous regressors; IVE and GMM include LSE as a special case. En-
dogeneity matters greatly for policy variables, as the “ceteris paribus” effect
of a policy is of interest but endogenous regressors lead to biased effect esti-
mates. In addition to MOM estimation, testing linear hypotheses with “Wald
test” is studied.

1 Least Squares Estimator (LSE)

This section introduces standard linear models with exogenous regres-
sors, and then reviews least squares estimator (LSE) for regression functions,
which is a “bread-and-butter” estimator in econometrics. Differently from the
conventional approach, however, LSE will be viewed as a MOM. Also differ-
ently from the conventional approach, we will adopt a large sample framework
and invoke only a few assumptions.

1.1 LSE as a Method of Moment (MOM)

1.1.1 Linear Model

Consider a linear model

yi = x′iβ + ui, i = 1, ..., N

where xi is a k × 1 “regressor” vector with its first component being 1 (i.e.,
xi = (1, xi2, ..., xik)′), β ≡ (β1, ..., βk)′ is a k × 1 parameter vector reflecting
effects of xi on yi, and ui is an “error” term. In β, β1 is called the “inter-
cept” whereas β2, ..., βk are called the “slopes.” The left-hand side variable
yi is the “dependent” or “response” variable, whereas components of xi are

Myoung-jae Lee, Micro-Econometrics, DOI 10.1007/b60971 1, 1
c© Springer Science+Business Media, LLC 2010



2 Ch. 1 Methods of Moments for Single Linear Equation Models

“regressors,” “explanatory variables,” or “independent variables.” Think of
xi as a collection of the observed variables affecting yi through x′iβ, and ui

as a collection of the unobserved variables affecting yi. Finding β with data
(x′i, yi), i = 1, ..., N , is the main goal in regression analysis. Assume that
(x′i, yi), i = 1, ..., N , are independent and identically distributed (iid) unless
otherwise noted, which means that each (x′i, yi) is an independent draw from
a common probability distribution. We will often omit the subscript i index-
ing individuals.

The linear model is linear in β, but not necessarily linear in xi, and
it is more general than it looks. For instance, x3 may be x2

2, in which case
β2x2+β3x

2
2 depicts a quadratic relationship between x2 and y: the “effect” of

x2 on y is then β2 + 2β3x2—the first derivative of β2x2 + β3x
2
2 with respect

to (wrt) x2. For instance, with y monthly salary and x2 age, the effect of
age on monthly salary may be quadratic: going up to a certain age and then
declining after. Also x4 may be x2x3, in which case

β2x2 + β3x3 + β4x2x3 = (β2 + β4x3)x2 + β3x3 :

the effect of x2 on y is β2 +β4x3. For instance, x3 can be education level: the
effect of age on monthly salary is not the constant slope β2, but β2 + β4x3

which varies depending on education level. The display can be written also as
β2x2 + (β3 + β4x2)x3 to be interpreted analogously. The term x2x3 is called
the interaction term between x2 and x3, and its coefficient is the interaction
effect. By estimating β with data (x′i, yi), i = 1, ..., N , we can find these
effects.

1.1.2 LSE and Moment Conditions

The least squares estimator (LSE) for β is obtained by minimizing

1
N

∑
i

(yi − x′ib)
2

wrt b, where yi − x′ib can be viewed as a “prediction error” in predicting yi

with the linear function x′ib. LSE is also often called ordinary LSE (OLS),
relative to “generalized LSE” to appear later.

The first-order condition for the LSE blse is

1
N

∑
i

xi(yi − x′iblse) = 0 ⇐⇒ 1
N

∑
i

xiyi =
1
N

∑
i

xix
′
i · blse.

Assuming that N−1
∑

i xix
′
i is invertible, solve this for blse to get

blse =

(
1
N

∑
i

xix
′
i

)−1

· 1
N

∑
i

xiyi =

(∑
i

xix
′
i

)−1

·
∑

i

xiyi.

The residual ûi ≡ yi − x′iblse, which is an estimator for ui, has zero sample
mean and zero sample covariance with the regressors due to the first-order
condition:
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1
N

∑
i

xi (yi − x′iblse) =

(
1
N

∑
i

ûi,
1
N

∑
i

xi2ûi, ...,
1
N

∑
i

xikûi

)′
= 0.

Instead of minimizing N−1
∑

i(yi−x′ib)
2, LSE can be motivated directly

from a moment condition. Observe that the LSE first-order condition at b = β
is N−1

∑
i xiui = 0, and its population version is

E(xu) = 0 ⇐⇒

⎡⎢⎢⎢⎣
E(u)

E(x2u)
...

E(xku)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎦
⇐⇒ E(u) = 0, COV (xj , u) = 0 (or COR(xj , u) = 0), j = 2, ..., k

as COV (xj , u) = E(xju) − E(xj)E(u), where COV and COR stand for
covariance and correlation, respectively.

Replacing u with y − x′β yields

E{x(y − x′β)} = 0 ⇐⇒ E(xy) = E(xx′)β

which is a restriction on the joint distribution of (x′, y). Assuming that E(xx′)
is invertible, we get

β = {E(xx′)}−1 · E(xy).

LSE blse is just a sample analog of this expression of β, obtained by replacing
E(xx′) and E(xy) with their sample versions N−1

∑
i xix

′
i and N−1

∑
i xiyi.

Instead of identifying β by minimizing the prediction error, here β is identified
by the “information” (i.e., the assumption) that the observed x is “orthogo-
nal” to the unobserved u.

For any k × 1 constant vector γ,

γ′E(xx′)γ = E(γ′xx′γ) = E{(x′γ)′(x′γ)} = E{(x′γ)2} ≥ 0.

Hence E(xx′) is positive semidefinite (p.s.d.). Assume that

E(xx′) is of full rank.

As E(xx′) is p.s.d., this full rank condition is equivalent to E(xx′) being
positive definite (p.d.) and thus being invertible. Note that E(xx′) being p.d.
is equivalent to E−1(xx′) being p.d. where E−1(xx′) means {E(xx′)}−1.

1.1.3 Zero Moments and Independence

The assumption E(xu) = 0 is the weakest for the LSE to be a valid
estimator for β as can be seen in the next subsection. In econometrics, the
following two assumptions have been used as well for LSE:
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(i) E(u|x) = 0 { ⇐⇒ E(y|x) = x′β for the linear model}
(ii) u is independent of x and E(u) = 0.

Note that E(u|x) = 0 implies E(u) = E{E(u|x)} = 0. For the three assump-
tions, the following implications hold:

independence of u from x and E(u) = 0 =⇒ E(u|x) = 0 =⇒ E(xu) = 0;

the last implication holds because E(xu) = E{xE(u|x)} = 0.
We will use mainly E(u|x) = 0 from now on unless otherwise mentioned,

because E(xu) = 0 would not take us much farther than LSE while the
independence is too strong to be realistic. The regressor vector x is often
said to be exogenous if any one of the three conditions holds. The function
E(y|x) = x′β is called the (mean) regression function, which is nothing but
a location measure in the distribution of y|x. We can also think of other
location measures, say quantiles, in the distribution of y|x, which then yield
“quantile regression functions.”

In β, the intercept β1 shows the level of y, and each slope represents the
effect of its regressor on E(y|x) while controlling for (i.e., holding constant)
the other regressors. This may be understood in

∂E(y|x)
∂xj

= βj , j = 1, ..., k.

The condition of “holding the other regressors constant”—reflected here with
the partial differentiation symbol ∂—may be better understood when “partial
regression” is explained later. The formal causal interpretation of regarding
xj as a cause and βj as its effect on the response y requires a little deeper
reasoning (see, e.g., Lee, 2005, and the references therein). This is because
LSE is a MOM which depends only on the covariances of the variables in-
volved, and the covariances per se do not designate any variable as a cause
or the response.

1.2 Asymptotic Properties of LSE

As N → ∞, the sample will be “close” to the population, and we would
want blse to converge to β in some sense. This is necessary for blse to be
a “valid” estimator for β. Going further, to be a “good” estimator for β,
blse should converge fast to β. For instance, both N−1 and N−2 converge
to 0, and they are valid “estimators” for 0, but N−2 is better than N−1

because N−2 converges to 0 faster. This subsection discusses these issues
in the names “consistency” and “asymptotic distribution.” The first-time
readers may want to only browse this subsection instead of reading every
detail, to come back later when better motivated theoretically. The upshot of
this subsection is the display (*) showing the asymptotic distribution of blse

(with its variance estimator in (*”)) and its practical version (*’) showing
that blse will degenerate (i.e., converge) to β as N → ∞. The main steps will
also appear in the instrumental variable estimator (IVE) section.
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1.2.1 LLN and LSE Consistency

A law of large numbers (LLN), for an iid random variable (rv) sequence
z1, ..., zN with E(z) < ∞, holds that

1
N

∑
i

zi →p E(z) as N → ∞

where “→p” denotes convergence in probability:

P

(
| 1
N

∑
i

zi − E(z)| < ε

)
→ 1 as N → ∞ for any constant ε > 0;

(the estimator) z̄N ≡ N−1
∑

i zi is said to be “consistent” for (the parameter)
E(z).

If z̄N is a matrix, the LLN applies to each component. This element-wise
convergence in probability of z̄N to E(z) is equivalent to |z̄N − E(z)| →p 0
where |A| ≡ {tr(A′A)}1/2 for a matrix A—the usual matrix norm—in the
sense that the element-wise convergence implies the norm convergence and
vice versa. As “z̄N − E(z) →p 0” means that the difference between z̄N and
E(z) converges to 0 in probability, for two rv matrix sequences WN and MN ,
“WN − MN →p 0” (or WN →p MN ) means that the difference between the
two rv matrix sequences converges to zero in probability.

Substitute yi = x′iβ + ui into blse to get

blse = β +

(
1
N

∑
i

xix
′
i

)−1
1
N

∑
i

xiui.

Clearly, blse = β due to the second term on the right-hand side (rhs) which
shows that each xiui contributes to the deviation blse − β. Using the LLN,
we have

1
N

∑
i

xiui →p E(xu) = 0 and
1
N

∑
i

xix
′
i →p E(xx′).

Substituting these into the preceding display, we can get blse →p β, but
we need to deal with the inverse: for a square random matrix WN , when
WN →p W , will W−1

N converge to W−1 in probability?
It is known that, for a rv matrix WN and a constant matrix Wo,

f(WN ) →p f(Wo) if WN →p Wo and f(·) is continuous at Wo.

The inverse f(W ) = W−1 of W , when it exists, is the adjoint of W divided
by the determinant det(W ). Because det(W ) is a sum of products of elements
of W and the adjoint consists of determinants, both det(W ) and the adjoint
are continuous in W , which implies that W−1 is continuous in W (see, e.g.,
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Schott, 2005). Thus, W−1 is continuous at Wo so long as W−1
o exists, and

using the last display, we get A−1
N →p A−1 if AN →p A so long as A−1 exists;

note that A−1
N exists for a large enough N because det(AN ) = 0 for a large

enough N . Hence,(
1
N

∑
i

xix
′
i

)−1

→p E−1(xx′) < ∞ as N → ∞.

Therefore, blse is β plus a product of two terms, one consistent for a zero
vector and the other consistent for a bounded matrix; thus the product is
consistent for zero, and we have blse →p β: blse is consistent for β.

1.2.2 CLT and
√

N-Consistency

For the asymptotic distribution of the LSE, a central limit theorem (CLT)
is needed that, for an iid random vector sequence z1, ..., zN with finite second
moments,

1√
N

∑
i

{zi − E(z)}� N (0, E [{z − E(z)} {z − E(z)}′]) as N → ∞

where “�” denotes convergence in distribution; i.e., letting Ψ(·) denote the
df of N(0, E[{z − E(z)}{z − E(z)}′]),

lim
N→∞

P

{
1√
N

∑
i

{zi − E(z)} ≤ t

}
= Ψ(t) ∀ t.

When wN →p 0, it is also denoted as wN = op(1); “op(1)” is the proba-
bilistic analog for o(1) where o(1) is a sequence converging to 0. For z̄N , we
thus have z̄N − E(z) = op(1). In comparison to wN = op(1), “wN = Op(1)”
means that {wN} is bounded in probability (or stochastically bounded)—i.e.,
“not explosive as N → ∞” (even if it does not converge to anything) in the
probabilistic sense. Note that op(1) is also Op(1). Formally, wN = Op(1) is
that, for any constant ε > 0, there exists a constant δε such that

sup
N

P {|wN | > δε} < ε.

A single rv z always satisfies P{|z| > δε} < ε, because we can capture “all but
ε” probability mass by choosing δε large enough. The last display means that
we can capture all but ε probability mass with δε for any rv in the sequence
w1, w2, ... Any random sequence converging in distribution is Op(1), which
implies N−1/2

∑
i{zi − E(z)} = Op(1).

To understand Op better, consider N−1 and N−2, both of which con-
verge to 0. Observe N−1/N−1 = 1, but N−1/N−1+ε = 1/Nε → 0 whereas
N−1/N−1−ε = Nε → ∞ for any constant ε > 0. Thus the “(fastest) conver-
gence rate” is N−1 which, when divided into N−1, makes the resulting ratio
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bounded. Analogously, the convergence rate for N−2 is N−2. Now consider
zN ≡ z/

√
N where z is a rv. Then

√
NzN = z = Op(1) (or zN = Op(1/

√
N))

because we can choose δε for any constant ε > 0 such that

sup
N

P
(
|
√

NzN | > δε

)
= sup

N
P (|z| > δε) = P (|z| > δε) < ε.

For an estimator aN for a parameter α, in most cases, we have
√

N(aN −
α) = Op(1): aN is “

√
N -consistent.” This means that aN →p α, and that

the convergence rate is N−1/2 which, when divided into aN − α, makes the
resulting product bounded in probability. For most cases in our discussion,
it would be harmless to think of the

√
N -consistency of aN as

√
N(aN − α)

converging to a normal distribution as N → ∞.
Analogously to o(1)O(1) = o(1)—“a sequence converging to zero” times

“a bounded sequence” converges to zero—it holds that op(1)Op(1) = op(1).
Likewise, op(1) + Op(1) = Op(1). Slutsky Lemma shows more: if wN � w
(thus wN = Op(1)) and mN →p mo, then

(i) mNwN � mow

(ii) mN + wN � mo + w.

Slutsky Lemma (i) states that, not just the product mNwN is Op(1), its
asymptotic distribution is that of w times the constant mo. Slutsky Lemma
(ii) can be understood analogously.

1.2.3 LSE Asymptotic Distribution

Observe

√
N(blse − β) =

(
1
N

∑
i

xix
′
i

)−1

· 1√
N

∑
i

xiui.

From the CLT, we have

1√
N

∑
i

xiui � N{0, E(xx′u2)}.

Using Slutsky Lemma (i),

if BN � N(0, C) and AN →p A, then ANBN � N(0, ACA′).

Apply this to

BN =
1√
N

∑
i

xiui and AN =

(
1
N

∑
i

xix
′
i

)−1

→p E−1(xx′)

to get
√

N(blse − β)� N(0,Ω) where Ω ≡ E−1(xx′)E(xx′u2)E−1(xx′) : (*)
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√
N(blse − β) is asymptotically normal with mean 0 and variance Ω. Often

this convergence in distribution (or “in law”) of
√

N(blse − β) is informally
stated as

blse ∼ N

{
β,

1
N

E−1(xx′)E(xx′u2)E−1(xx′)
}

(*’)

The asymptotic variance Ω of
√

N(blse−β) can be estimated consistently
with (this point will be further discussed later)

ΩN ≡
(

1
N

∑
i

xix
′
i

)−1 (
1
N

∑
i

xix
′
iû

2
i

)(
1
N

∑
i

xix
′
i

)−1

. (*”)

Alternatively (and informally), the asymptotic variance of blse is estimated
consistently with

ΩN

N
=

(∑
i

xix
′
i

)−1 (∑
i

xix
′
iû

2
i

)(∑
i

xix
′
i

)−1

.

Equipped with ΩN and the asymptotic normality, we can test hypotheses
involving β as to be seen later.

1.3 Matrices and Linear Projection

It is sometimes convenient (for computation) to express blse using matri-
ces. Define Y ≡ (y1, ..., yN )′, U ≡ (u1, ..., uN )′, and X ≡ (x1, ..., xN )′ where
xi = (xi1, ..., xik)′ so that

X
N×k

≡

⎡⎢⎣ x′1
...

x′N

⎤⎥⎦ =

⎡⎢⎣ x11, x12, · · · , x1k

...
xN1, xN2, · · · , xNk

⎤⎥⎦ ;

the numbers below X denote its dimension. In this matrix notation, the N
linear equations yi = x′iβ + ui, i = 1, ..., N , become Y = Xβ + U , and

1
N

∑
i

(yi − x′iβ)2 =
1
N

∑
i

u2
i =

1
N

U ′U =
1
N

(Y − Xβ)′(Y − Xβ).

Differentiating this, the LSE first-order condition is N−1X ′(Y − Xblse) = 0,
which is also a moment condition for MOM. This yields

blse = (X ′X)−1X ′Y.

The parts X ′X and X ′Y are the same as
∑

i xix
′
i and

∑
i xiyi, respec-

tively. For example, with k = 2 and xi1 = 1 ∀i,

X ′X =
[

1 · · · 1
x12 · · · xN2

]⎡⎢⎣ 1 x12

...
...

1 xN2

⎤⎥⎦ =
[

N
∑

i xi2∑
i xi2

∑
i x2

i2

]
,

∑
i

xix
′
i =

∑
i

(
1

xi2

)
(1, xi2) =

∑
i

[
1 xi2

xi2 x2
i2

]
=

[
N

∑
i xi2∑

i xi2

∑
i x2

i2

]
.
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Define the N × N “(linear) projection matrix on X”

PX ≡ X(X ′X)−1X ′

to get

Ŷ ≡ Xblse = X(X ′X)−1X ′Y = PXY (“fitted value of Y”),
Û ≡ Y − Xblse = Y − PXY = QXY, where QX ≡ IN − PX ;

Û = (û1, ..., ûN )′ is the N ×1 residual vector. We may think of Y comprising
X and the other components. Then PX extracts the X part of Y , and QX

removes the X part of Y (or QX extracts the non-X part of Y ). The fitted
value Ŷ = Xblse is the part of Y explained by X, and the residual Û is the
part of Y unexplained by X as clear in the decomposition

Y = INY = PXY + (IN − PX)Y = PXY + QXY = Xblse + Û .

The LSE (X ′X)−1X ′Y is called the sample (linear) projection coefficients of
Y on X. The population versions of the linear projection and linear projec-
tion coefficient are, respectively,

x′β and β ≡ E−1(xx′)E(xy).

The matrices PX and QX are symmetric and idempotent:

P ′X = PX , PXPX = PX and Q′X = QX , QXQX = QX .

Also note
PXX = X and QXX = 0N :

extracting the X part of X gives X itself, and removing the X part of X
yields 0.

Suppose we use 1 as the only regressor. Defining 1N as the N × 1 vector
of 1’s and denoting Q1N

just as Q1,

Q1Y =
(
IN − 1N (1′N1N )−1 1′N

)
Y =

(
IN − 1N

1
N

1′N

)
Y

=
(

IN − 1
N

1N1′N

)
Y

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 · · · 0 1

⎤⎥⎥⎥⎦− 1
N

⎡⎢⎢⎢⎣
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 · · · 1 1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ·

⎡⎢⎢⎢⎣
y1

y2

...
yN

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
y1 − ȳ
y2 − ȳ

...
yN − ȳ

⎤⎥⎥⎥⎦ .
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The part (1′N1N )−11′NY = ȳ demonstrates that the LSE with 1 as the sole
regressor is just the sample mean ȳ. Q1 may be called the “mean-deviation”
or “mean-subtracting” matrix.

1.4 R2 and Two Examples

Before we present two examples of LSE, we introduce some terminologies
frequently used in practice. Recall the LSE asymptotic variance estimator
ΩN/N ≡ [ωN,hj ], h, j = 1, ..., k; i.e., the element of ΩN/N in row h and
column j is denoted as ωN,hj . The t-values (t-ratios, or z-values) are defined
as

blse,j√
ωN,jj

, j = 1, ..., k, where blse = (blse,1, ..., blse,k)′.

Since the diagonal of ΩN/N is the asymptotic variances of blse,j , j = 1, ..., k,
the jth t-value asymptotically follows N(0, 1) under the H0 : βj = 0, and
hence it is a test statistic for H0 : βj = 0. The off-diagonal terms of ΩN/N
are the asymptotic covariances for blse,j , j = 1, ..., k, and they are used for
hypotheses involving multiple parameters.

The “standard error (of model)” sN and “R-squared” R2 are defined as

sN ≡
(∑

i ûi
2

N − k

)1/2

→p SD(u),

R2 ≡ 1 − N−1
∑

i û2
i

N−1
∑

i(yi − ȳ)2
→p 1 − V (u)

V (y)
=

V (x′β)
V (y)

, as

V (y) = V (x′β + u) = V (x′β) + V (u) because COV (x′β, u) = 0.

R2 shows the proportion of V (y) that is explained by x′β, and R2 measures
the “model fitness.” In general, the higher the R2 is the better, because the
less is buried in the unobserved u. But this statement should be qualified,
because R2 keeps increasing by adding more regressors into the model. Using
fewer regressors to explain y is desirable, which is analogous to using fewer
shots to hit a target.

Recall Ŷ = Xblse, Y = Ŷ + Û , and the idempotent mean-subtracting
matrix Q1 to observe

Q1Û = Û (because the sample mean of Û is already
zero),

Y ′Q1Q1Y

{
=

∑
i

(yi − ȳ)2
}

= Y ′Q1Y

= (Ŷ + Û)′Q1(Ŷ + Û) = Ŷ ′Q1Ŷ + Û ′Û = Ŷ ′Q1Ŷ +
∑

i

û2
i

because Ŷ ′Q1Û = b′lseX
′Q1Û = b′lseX

′Û = b′lseX
′QXY = 0 for

X ′QX = (QXX)′ = 0.
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The last line also implies Ŷ ′Q1Y = Ŷ ′Q1(Ŷ + Û) = Ŷ ′Q1Ŷ . The key point
of this display is the well-known decomposition

(Y ′Q1Y = )
∑

i

(yi − ȳ)2

total variation in y

= Ŷ ′Q1Ŷ
explained (by x) variation

+
∑

i

û2
i

unexplained variation

.

R2 is defined as the ratio of the explained variation to the total variation:

R2 ≡ Ŷ ′Q1Ŷ

Y ′Q1Y
=

Ŷ ′Q1Y · Ŷ ′Q1Ŷ

Ŷ ′Q1Y · Y ′Q1Y
=

Ŷ ′Q1Y · Ŷ ′Q1Y

Ŷ ′Q1Ŷ · Y ′Q1Y

=

{∑
i(ŷi − ŷ)(yi − ȳ)

}2∑
i

(
ŷi − ŷ

)2 ·∑i(yi − ȳ)2
= (sample correlation of Y andŶ )2

R2 falls in [0, 1], being a squared correlation.

EXAMPLE: HOUSE SALE. A data set of size 467 was collected from the State
College District in Pennsylvania for year 1991. State College is a small college
town with the population of about 50,000. The houses sold during the year
were sampled, and the sale prices and the durations until sale since the first
listing in the market were recorded.

The dependent variable is the discount (DISC) percentage defined as 100
times the natural log of list price (LP) over sale price (SP) of a house:

100 · ln
(

LP

SP

)
= 100 · ln

(
1 +

LP − SP

SP

)
� 100

(
LP − SP

SP

)
= discount %.

LP and SP are measured in $1000. Since LP is the initial list price, given
LP, explaining DISC is equivalent to explaining SP. The following is the list
of regressors—the measurement units should be kept in mind: the number
of days on the market until sold (T), years built minus 1900 (YR), number
of rooms (ROOM), number of bathrooms (BATH), dummy for heating by
electricity (ELEC), property tax in $1,000 (TAX), dummy for spring listing
(L1), summer listing (L2), and fall listing (L3), sale-month interest rate in %
(RATE), dummy for sale by a big broker (BIGS), and number of houses on
the market divided by 100 in the month when the house is listed (SUPPLY).

In Table 1, examine only the first three columns for a while. ln(T ) ap-
pears before 1, because ln(T ) is different from the other regressors—it is
determined nearly simultaneously with DISC—and thus needs a special at-
tention. Judging from the t-values in “tv-het,” most regressors are statis-
tically significant at 5% level, for their absolute t-values are greater than
1.96; “tv-ho” will be used in the next subsection where the qualifiers “het”
and “ho” will be explained. A longer ln(T ) implies the bigger DISC: with
∂ lnT � ∂T/T , an increase of ∂ lnT = 1 (i.e., 100% increase in T ) means
4.6% increase in DISC, which in turn means 1% increase in T leading to
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Table 1: LSE for House-Sale Discount %

blse tv-het (tv-ho) blse (T) tv-het (tv-ho) (T)

ln(T) 4.60 7.76 (12.2) 0.027 8.13 (13.9)

1 −2.46 −0.23 (−0.24) 8.73 0.82 (0.86)

BATH 0.11 0.18 (0.17) 0.31 0.51 (0.51)

ELEC 1.77 2.46 (2.60) 1.84 2.67 (2.80)

ROOM −0.18 −0.67 (−0.71) −0.26 −0.95 (−1.04)

TAX −1.74 −1.28 (−1.65) −1.92 −1.49 (−1.88)

YR −0.15 −3.87 (−5.96) −0.15 −4.11 (−6.17)

ln(LP) 6.07 2.52 (3.73) 5.71 2.51 (3.63)

BIGS −2.15 −2.56 (−3.10) −1.82 −2.25 (−2.72)

RATE −2.99 −3.10 (−3.25) −2.12 −2.31 (−2.41)

SUPPLY 1.54 1.06 (1.02) 1.89 1.36 (1.30)

sN , R2 6.20, 0.34 5.99, 0.39

Variable Mean SD

DISC 7.16 7.64

L1 0.29 0.45

L2 0.31 0.46

L3 0.19 0.39

SP 115 57.7

T 188 150

BATH 2.02 0.67

ELEC 0.52 0.50

ROOM 7.09 1.70

TAX 1.38 0.65

YR 73.0 15.1

LP 124 64.9

BIGS 0.78 0.42

RATE 9.33 0.32

SUPPLY 0.62 0.19

0.046% increase in DISC. A newer house commands the less DISC: one year
newer causes 0.15% less DISC, and thus 10 year newer causes 1.5% less DISC.
A higher RATE means the lower DISC (1% increase in RATE causing 2.99%
DISC drop); this finding seems, however, counter-intuitive, because a higher
mortgage rate means the lower demand for houses. R2 = 0.34 shows that
34% of the DISC variance is explained by x′blse, and sN = 6.20 shows that
about 95% of ui’s fall in the range ±1.96 × 6.20 if ui’s follow N(0, V (u)).

As just noted, 1% increase in T causes 0.046% increase in DISC. Since
this may not be easy to grasp, T is used instead of ln(T ) for the LSE in
the last two columns of the table. The estimate for T is significant with the
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magnitude 0.027, meaning that 100 day increase in T leads to 2.7% DISC
increase, which seems reasonable. This kind of query—whether the popular
logged variable ln(T ), level T , or some other function of T should be used—
will be addressed later when we deal with “transformation of variables” in
nonlinear models.

EXAMPLE: INTEREST RATE. As another example of LSE, we use time-series
data on three month US treasury bill rates monthly from 01/1982 to 12/1999
(N = 216). To see what extent the past interest rates can explain the current
one, the LSE of yi on 1, yi−1 and yi−2 was done (since two lags are used, the
sample size becomes N = 214) with the following result:

yi
t-values:

= 0.216
(2.05)

+ 1.298
(10.29)

· yi−1 − 0.337
(−2.61)

· yi−2, sN = 0.304,

R2 = 0.980.

Both yi−1 and yi−2 are statistically significant; i.e., H0 : β2 = 0 and H0 :
β3 = 0 are rejected. The R2 indicates that the two past rates predict very
well the current rate. Since the unit of measurements are the same across the
regressors and dependent variable, there is no complication in interpreting
the estimates as in the house-sale example.

One curious point is that the estimate for yi−2 is significantly negative
and differs too much from the estimate for yi−1, casting some doubt over the
linear model. One reason could be the “truncation bias”: the other lagged
regressors (yi−3, yi−4, ...) were omitted from the regressors to become part
of ui, which means COR(yi−1, ui) = 0 and COR(yi−2, ui) = 0, violating
the basic tenet of LSE. One counter argument, however, is COR(ûi, ûi−1) =
0.104 which means that COR(ui, ui−1) would not be far from zero. If omitting
yi−3, yi−4, · · · really matters, then one would expect COR(ûi, ûi−1) to be
higher than 0.104. Having COR(ûi, ûi−1) = 0.104 is also comforting for the
iid assumption for ui’s. This data as well as the house sale data will be used
again.

1.5 Partial Regression

Suppose x consists of two sets of regressors of dimension kf × 1 and
kg × 1, respectively: x = (x′f , x′g)

′ and k = kf + kg. Partition X and blse

accordingly:

X = [Xf , Xg] and blse =
[

bf

bg

]
=⇒ Xblse = Xfbf + Xgbg.

Xf can be written as
Xf

N×kf

= X
N×k

· Sf
k×kf

where Sf is a “selection matrix” consisting only of 1’s and 0’s to select the
components of X for Xf ; analogously we can get Xg = X · Sg. For example,
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with N = 3, k = 3, and kf = 2, the preceding display is⎡⎣ x11 x12

x21 x22

x31 x32

⎤⎦ =

⎡⎣ x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤⎦×

⎡⎣ 1 0
0 1
0 0

⎤⎦ .

Observe

PXf
PX = PXf

and QXf
QX = QX because

PXf
PX = Xf (X ′

fXf )−1X ′
f · X(X ′X)−1X ′

= Xf (X ′
fXf )−1S′fX ′ · X(X ′X)−1X ′

= Xf (X ′
fXf )−1S′fX ′ = Xf (X ′

fXf )−1X ′
f = PXf

,

QXf
QX = (IN − PXf

)(IN − PX) = IN − PXf
− PX + PXf

= QX .

In words, for PXf
PX = PXf

, extracting first the X part (with PX) and then
its subset Xf part (with PXf

) is the same as extracting only the Xf part. As
for QXf

QX = QX , removing first the X part and then its subset Xf part is
the same as removing the whole X part.

Multiply Y = Xfbf + Xgbg + Û by QXf
to get

QXf
Y = QXf

Xfbf + QXf
Xgbg + QXf

Û = QXf
Xgbg + Û , because

QXf
Xf = O and QXf

Û = QXf
(QXY ) = QXY = Û .

Multiply both sides of QXf
Y = QXf

Xgbg + Û by X ′
gQXf

to get

X ′
gQXf

QXf
Y = X ′

gQXf
QXf

Xg · bg + X ′
gQXf

Û .

Because

X ′
gQXf

Û = X ′
gQXf

QXY = X ′
gQXY = S′gX

′QXY = 0 for

X ′QX = 0k×N ,

the residual term disappears. Solving for bg gives

bg = (X ′
gQXf

Xg)−1X ′
gQXf

Y.

This expression shows that the LSE bg for βg can be obtained in two
stages. First, do the LSE of Y on Xf to get the partial residual QXf

Y , and
then do the LSE of Xg on Xf to get the partial residual QXf

Xg. Second, do
the LSE of QXf

Y on QXf
Xg:

(X ′
gQXf

QXf
Xg)−1X ′

gQXf
QXf

Y = (X ′
gQXf

Xg)−1X ′
gQXf

Y.

This is the partial regression interpretation of bg. The name “partial residual”
is appropriate, for only the xf part of x is used in the first regression. By
using only the residuals in the second step, the presence of xf is nullified, and
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thus bg shows the effect of xg on y with xf controlled for. Put it differently,
bg shows the additional explanatory power of xg for y, over and above what
is already explained by xf . When xg is a scalar, it is informative to plot
QXf

Y (on the vertical axis) versus QXf
Xg (on the horizontal axis) to isolate

the effect of xg on y. The correlation between the two residuals is called the
partial correlation between y and xg.

As a special case, suppose xf = 1 and xg = (x2, ..., xk)′. Denoting QXf

simply as Q1, we already saw

Q1Y = (y1 − ȳ, ..., yN − ȳ)′ and Q1
N×N

Xg
N×(k−1)

= (x1g − x̄g, ..., xNg − x̄g)′.

Using the vector notations, the partial regression for the slopes bg is nothing
but the LSE with the mean-deviation variables: with xi = (1, x̃′i)

′ and x̃ ≡
N−1

∑
i x̃i,

bg =

{∑
i

(
x̃i − x̃

)(
x̃i − x̃

)′}−1 ∑
i

(
x̃i − x̃

)
(yi − ȳ) .

The role of “1” is to explain the level of (x̃ and) y.

1.6 Omitted Variable Bias

In the model y = x′fβf + x′gβg + u, what happens if xg is not used
in estimation? This is an important issue, as we may not have (or use) all
relevant regressors in the data. With xg not used, x′gβg + u ≡ v becomes the
new error term in the model, and the consequence of not using xg depends on
COR(xf , xg). To simplify the discussion, assume that the model is written in
mean-deviation form, i.e., E(y) = E(x′f )βf + E(x′g)βg + E(u) is subtracted
from the model to yield

y − E(y) = {xf − E(xf )}′βf + {xg − E(xg)}′βg + u − E(u)

and we redefine y as y−E(y), xf as xf −E(xf ) and so on. So long as we are
interested in slopes in βf , the mean deviation model is adequate.

If COR(xf , xg) = 0 (i.e., if E(xfxg) = 0), then βf can still be estimated
consistently by the LSE of y on xf . The only downside is that, in general,
SD(v) > SD(u) as v has more terms than u, and thus R2 will drop. If
COR(xf , xg) = 0, however, then COR(xf , v) = 0 makes xf an endogenous
regressor and the LSE becomes inconsistent. Specifically, the LSE of y on
xf is

bf =

(
1
N

∑
i

xifx′if

)−1
1
N

∑
i

xifyi

=

(
1
N

∑
i

xifx′if

)−1
1
N

∑
i

xif

(
x′ifβf + vi

)
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= βf +

(
1
N

∑
i

xifx′if

)−1
1
N

∑
i

xifvi

= βf +

(
1
N

∑
i

xifx′if

)−1
1
N

∑
i

xif

(
x′igβg + ui

)
= βf +

(
1
N

∑
i

xifx′if

)−1
1
N

∑
i

xifx′ig · βg

+

(
1
N

∑
i

xifx′if

)−1
1
N

∑
i

xifui

which is consistent for βf + E−1
(
xfx′f

)
E

(
xfx′g

)
· βg.

The term other than βf is called the omitted variable bias, which is 0 if
either βg = 0 (i.e., xg is not omitted at all) or if E−1(xfx′f )
E(xfx′g) = 0 which is the population linear projection coefficient of regress-
ing xg on xf . In simple words, if COR(xf , xg) = 0, then there is no omitted
variable bias. When LSE is run on some data and if resulting estimates do
not make sense intuitively, in most cases, the omitted variable bias formula
will provide a good guide on what might have gone wrong.

One question that might arise when COR(xf , xg) = 0 is what happens
if a subvector xf2 of xf is correlated to xg while the other subvector xf1 of
xf is not where xf = (x′f1, x

′
f2)

′. In this case, will xf1 still be subject to the
omitted variable bias? The answer depends on COR(xf1, xf2) as can be seen
in

E−1(xfx′f )E(xfx′g) =
[

E(xf1x
′
f1) E(xf1x

′
f2)

E(xf2x
′
f1) E(xf2x

′
f2)

]−1 [
0

E(xf2x
′
g)

]
as E(xf1x

′
g) = 0

=
[

0
E−1(xf2x

′
f2)E(xf2x

′
g)

]
if E(xf1x

′
f2) = 0.

Hence if E(xf1x
′
f2) = 0, then there is no omitted variable bias for xf1.

Otherwise, the bias due to E(xf2x
′
g) = 0 gets channeled to xf1 through

COR(xf1, xf2).
In the case COR(xf1, xf2) = 0, COR(xf1, xg) = 0 but COR(xf2,

xg) = 0, we can in fact use only xf1 as regressors—no omitted variable
bias in this case. Nevertheless, using xf2 as regressors makes the model error
term variance smaller, which leads to a higher R2 and higher t-values for xf1.
In this case, we just have to be aware that the estimator for xf2 is biased.

As an example for omitted variable bias, imagine a state considering
a mandatory seat belt law. Data is collected from N cities in the state,
with yi the yearly traffic fatality proportion per driver in city i, and xif the
proportion of drivers wearing seat belt in city i. LSE is run to find bf > 0,
which is counter-intuitive however. One possible scenario is that wearing the
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seat belt makes the driver go faster, which results in more accidents. That
is, driving speed xg in the error term is correlated with xf , and the omitted
variable bias dominates βf so that the following sum becomes positive:

βf
negative

+ E−1(xfx′f )E(xfx′g)
positive

· βg
positive

In this case, enacting the seat belt law will increase y, not because βf > 0
but rather because it will cause xg to increase.

What the state have in mind is the ceteris paribus (“direct”) effect βf

with all the other variables held constant, but what is estimated is the total
effect that is the sum of the direct effect βf and the indirect effect of xf on y
through xg. Both the direct and indirect effects can be estimated consistently
using the LSE of y on xf and xg, but enacting only the seat belt law will not
have the intended effect because the indirect effect will occur. A solution is
enacting both the seat belt law and a speed limit law to assure COR(xf , xg) =
0 after the laws are passed.

In the example, omitted variable bias helped explaining an apparently
nonsensical result. But it can also help negating an apparently plausible re-
sult. Suppose that there are two types of people, one cautious and the other
reckless, with xg denoting the proportion of the cautious people, and that the
cautious people tend to wear seat belts more (COR(xf , xg) > 0) and have
fewer traffic accidents. Also suppose βf = 0, i.e., no true effect of seat belt
wearing. In this case, the LSE of y on xf converges to a negative number

βf
0

+ E−1(xfx′f )E(xfx′g)
positive

· βg
negative

and, due to omitting xg, we may wrongly conclude that wearing seat belt
will lower y to enact the seat belt law. Here the endogeneity problem of xf

leads to an ineffective policy as the seat belt law will have no true effect on
y. Note that, differently from the xg = speed example, there is no indirect
effect of forcing seat belt wearing because seat belt wearing will not change
the people’s type.

2 Heteroskedasticity and Homoskedasticity

The assumption E(u|x) = 0 for LSE is a restriction on the conditional
first moment of u|x. We do not need restrictions on higher moments of u|x
to estimate β, but whether E(u2|x) varies or not as x changes matters in the
LSE asymptotic inference, which is the topic of this section. E(u2|x) will also
appear prominently later for generalized LSE (GLS).

Observe that E(u2|x) = V (u|x) because E(u|x) = 0, and also that
V (u|x) = V (y|x) because y|x is a x′β-shifted version of u|x. If V (u|x) is
a non-constant function of x, then u is “heteroskedastic” (or there is “het-
eroskedasticity”). If V (u|x) is a constant, say σ2, then u is “homoskedastic”
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(or there is “homoskedasticity”). Although we assume that (ui, x
′
i) are iid

across i, ui|xi are not iid across i under heteroskedasticity.

2.1 Heteroskedasticity Sources

2.1.1 Forms of Heteroskedasticity

A well-known source for heteroskedasticity is random coefficients. Sup-
pose the coefficient vector is βi that is random around a constant β:

yi = x′iβi + ui, βi = β + vi, E(v) = 0, E(vv′) ≡ Λ,
v is independent of x and u.

Substituting the βi equation yields a constant coefficient model:

yi = x′iβ + (x′ivi + ui), E(x′v + u|x) = 0, V (x′v + u|x) = x′Λx + E(u2|x).

Even if E(u2|x) = σ2, still the error term ε ≡ x′v+u is heteroskedastic. Here
the functional form of V (ε|x) = x′Λx + σ2 is known (up to Λ and σ2) due to
the random coefficients and the homoskedasticity of u.

Heteroskedasticity does not necessarily have to be motivated by random
coefficients. If x is income and y is consumption per month, we can simply
imagine the variation of y|x increasing as x increases. In this case, we may
postulate, say,

yi = x′iβ + ui, V (u|xi) = exp(x′iθ),
where θ is an unknown parameter vector;

again, this is heteroskedasticity of known form as in the random coefficient
model.

The linear model assumption E(y|x) = x′β is restrictive because E(y|x)
may not be a linear function. Assuming V (y|x) = exp(x′θ) additionally is
even more restrictive, in which we would have even less confidence than in
E(y|x) = x′β. If we just allow V (u|x) = V (y|x) to be an unknown function
of x instead of specifying the functional form of V (u|x), then we allow for
a heteroskedasticity of unknown form. The consistency and asymptotic dis-
tribution results of the LSE hold under heteroskedasticity of unknown form,
because we did not impose any assumption on V (y|x) in their derivations.

If V (u|x) = σ2, then because

E(xx′u2) = E{xx′E(u2|x)} = σ2E(xx′),

the asymptotic variance of
√

N(blse − β) is

E−1(xx′)E(xx′u2)E−1(xx′) = σ2 · E−1(xx′)

which appears often in introductory econometrics textbooks. The right-hand
side (rhs) is valid only under homoskedasticity; the left-hand side (lhs) is
called a “heteroskedasticity-robust (or -consistent) variance,” which is valid
with or without the homoskedasticity assumption.
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2.1.2 Heteroskedasticity due to Aggregation

When “averaging with different numbers of observations” takes place,
heteroskedasticity can arise without x getting involved. Suppose a model
holds at individual level, but we have only a city-level aggregate data:

yji
= x′ji

β + uji
, ji = 1, ..., ni where ji denotes individual

j in city i = 1, ..., N

=⇒ yi = x′iβ + ui where yi ≡
1
ni

∑
ji

yji
, xi ≡

1
ni

∑
ji

xji
,

ui ≡
1
ni

∑
ji

uji
.

That is, what is available is a random sample on cities with (ni, x
′
i, yi), i =

1, ..., N , where ni is the total number of people in city i and N is the number
of the sampled cities. Suppose that uji

is independent of xji
, and that uji

’s
are iid with zero mean and variance σ2 (i.e., uji

∼ (0, σ2)). Then u1, ..., uN

are independent, and ui|(xi, ni) ∼ (0, σ2/ni): the error terms in the city-level
model are heteroskedastic wrt ni, but not wrt xi. Note that all of ni, xi, and
yi are random as we do not know which city gets drawn.

This type of heteroskedasticity can be dealt with by minimizing
∑

i(yi−
x′ib)

2ni, which is equivalent to applying LSE to the transformed equation

y∗i = x∗′i β + u∗i , where y∗i ≡ yi
√

ni, x∗i ≡ xi
√

ni and u∗i ≡ ui
√

ni.

In the transformed equation, as (xi, ni) is “finer” than x∗i ,

E(u∗i |x∗i ) = E{ E(ui
√

ni|xi, ni) |x∗i } = 0 as E(ui
√

ni|xi, ni) = 0,
V (u∗i |x∗i ) = E{ V (ui

√
ni|xi, ni) |x∗i } = σ2 as V (ui

√
ni|xi, ni) = σ2.

Hence u∗1, ..., u
∗
N are iid (0, σ2). This LSE motivates “weighted LSE” to appear

later.
Two remarks on the city-level data example. First, there is no unity

in the transformed regressors because 1 is replaced with
√

ni. This requires
a different definition of R2 which was defined using Q1Û = Û . R2 for the
transformed model can be defined as {sample COR(y, ŷ)}2, not as {sample
COR(y∗, ŷ∗)}2, where ŷi = x′ib

∗
lse, ŷ∗i = x∗′i b∗lse, and b∗lse is the LSE for the

transformed model. This definition of R2 can also be used for “weighted LSE”
below. Second, we assumed above that sampling is done at city level and what
is available is the averaged variables yi and xi along with ni. If, instead, all
cities are included but ni individuals get sampled in city i where ni is a pre-
determined (i.e., fixed) constant ahead of sampling, then ni is not random
(but still may vary across i); in contrast, (x′i, yi) is still random because it
depends on the sampled individuals. In this case, ui’s are independent but
non-identically distributed (inid) due to V (ui) = σ2/ni where V (ui) is the
marginal variance of ui. Clearly, how sampling is done matters greatly.
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2.1.3 Variance Decomposition

Observe

V (u) = E(u2) − {E(u)}2 = E[E(u2|x)] − [E{E(u|x)}]2

= E[V (u|x) + {E(u|x)}2] − [E{E(u|x)}]2

= E[V (u|x)] + E[g(x)2]−[E{g(x)}]2 (defining g(x) ≡ E(u|x))
= E{V (u|x)} + V {g(x)} (in general)

{ = E{V (u|x)} as g(x) = E(u|x) = 0}.

Under homoskedasticity, V (u|x) = σ2 ∀x, and thus V (u) =E(σ2) = σ2.
For a rv y, this display gives the variance decomposition of V (y)

V (y) = E{V (y|x)} + V {E(y|x)}

which can help understand the sources of V (y). Suppose that x is a rv taking
on 1, 2, or 3. Decompose the population with x into 3 groups (i.e., subpopu-
lations):

Group P (x = 1) = 1/2 P (x = 2) = 1/4 P (x = 3) = 1/4
Group mean

(level)
E(y|x = 1) E(y|x = 2) E(y|x = 3)

(Within-)
Group
Variance

V (y|x = 1) V (y|x = 2) V (y|x = 3)

Each group has its conditional variance, and we may be tempted to think
that E{V (y|x)} which is the weighted average of V (y|x) with P (y|x) as the
weight yields the marginal variance V (y). But the variance decomposition
formula demonstrates V (y) = E{V (y|x)} unless E(y|x) = 0 ∀x, although
E(y) = E{E(y|x)} always. That is, the source of the variance is not just
the “within-group variance” V (y|x), but also the “between-group variance”
V {E(y|x)} of the group mean E(y|x).

If the variance decomposition is done with an observable variable x, then
we may dig deeper by estimating E(y|x) and V (y|x). But a decomposition
with an unobservable variable u can be also thought of, as we can choose
any variable we want in the variance decomposition: V (y) = E{V (y|u)} +
V {E(y|u)}. In this case, the decomposition can help us imagine the sources
depending on u. For instance, if y is income and u is ability (whereas x is
education), then the income variance is the weighted average of ability-group
variances plus the variance between the average group-incomes.

Two polar cases are of interest. Suppose that y is income and x is edu-
cation group: 1 for “below high school graduation,” 2 for “high school gradu-
ation” to “below college graduation,” and 3 for college graduation or above.
One extreme case is the same mean income for all education groups:

E(y|x) = E(y) ∀x =⇒ V {E(y|x)} = 0 =⇒ V (y) = E{V (y|x)}.
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The other extreme case is the same variance in each education group:

V (y|x) = σ2 ∀x =⇒ E{V (y|x)} = σ2 =⇒ V (y) = σ2 + V {E(y|x)};
if σ2 = 0, then V (y) = V {E(y|x)}: the variance comes solely from the differ-
ences of E(y|x) across the groups.

2.1.4 Analysis of Variance (ANOVA)*

The variance decomposition formula is the basis for Analysis of Vari-
ance (ANOVA), where x stands for treatment categories (with one category
being no treatment). In ANOVA, the interest is on the “mean treatment
effect,” i.e., whether E(y|x) changes across the treatment groups/categories
or not. The classical approach—one-way ANOVA—assumes normality for y
and homoskedasticity across the groups (V (y|x) = σ2 ∀x) so that V (y) =
σ2 + V {E(y|x)}. One-way ANOVA decomposes the sample variance into
sample versions of σ2 and V {E(y|x)} which are two independent χ2 rv’s.
“H0 : E(y|x) is a constant ∀x” is tested using the ratio of the two sample
versions, and the ratio follows a F -distribution.

Let x(j) denote the x-value for group j, and define the group-j mean
μj ≡ E(y|x = x(j)). In one-way ANOVA, y gets indexed as in yij , i =
1, ..., Nj , j = 1, ..., J where j denotes the jth group (category) and i denotes
the ith observation in the jth group; there are Nj observations in group j.
The model is

yij = μj + uij , uij ∼ iid N(0, σ2) across i and j.

Define the total sample size, group-j average and the “grand average” as,
respectively,

N ≡
J∑

j=1

Nj , ȳj ≡ 1
Nj

Nj∑
i=1

yij ȳ ≡ 1
N

J∑
j=1

Nj∑
i=1

yij .

Then the decomposition yij − ȳ = (yij − ȳj) + (ȳj − ȳ) is used in one-way
ANOVA where ȳj − ȳ is for V {E(y|x)}.

Specifically, take
∑J

j=1

∑Nj

i=1 on (yij − ȳ)2 = {(yij − ȳj) + (ȳj − ȳ)}2 to
see that the cross-product term is zero because

J∑
j=1

Nj∑
i=1

(yij − ȳj)(ȳj − ȳ) =
J∑

j=1

(ȳj − ȳ)
Nj∑
i=1

(yij − ȳj)

=
J∑

j=1

(ȳj − ȳ)(Nj ȳj − Nj ȳj) = 0.

Thus we get

J∑
j=1

Nj∑
i=1

(yij − ȳ)2

total variation

=
J∑

j=1

Nj∑
i=1

(yij − ȳj)2

unexplained variation

+
J∑

j=1

Nj(ȳj − ȳ)2

explained variation
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where the two terms on the rhs are for σ2 + V {E(y|x)} when divided by N.
The aforementioned test statistic for mean equality is

(J − 1)−1
∑J

j=1 Nj(ȳj − ȳ)2

(N − J)−1
∑J

j=1

∑Nj

i=1(yij − ȳj)2
∼ F (J − 1, N − J).

To understand the dof’s, note that there are J-many “observations” (ȳj ’s) in
the numerator, and 1 is subtracted in the dof because the grand mean gets
estimated by ȳ. In the denominator, there are N -many observations yij ’s,
and J is subtracted in the dof because the group means get estimated by
ȳj ’s. Under the H0, the test statistic is close to zero as the numerator is so
because of V {E(y|x)} = 0.

The model yij = μj + uij can be rewritten as a familiar linear model.
Define J − 1 dummy variables, say xi2, ..., xiJ , where xij = 1 if observation i
belongs to group j and xij = 0 otherwise. Then

yi = x′iβ + ui, where x
J×1

= (1, xi2, ..., xiJ )′ and

β = (μ1, μ2 − μ1, ..., μJ − μ1)
′.

Here the intercept is for μ1 and the slopes are for the deviations from μ1;
group 1 is typically the “control (i.e., no-treatment) group” whereas the other
groups are the “treatment groups.” For instance, if observation i belongs to
treatment group 2, then

x′iβ = (1, 1, 0, ..., 0)′β = μ1 + (μ2 − μ1) = μ2.

Instead of the above F -test, we can test for H0 : μ1 =, ...,= μJ with “Wald
test” to appear later without assuming normality; the Wald test checks out
whether all slopes are zero or not.

“Two-way ANOVA” generalizes one-way ANOVA. There are two “fac-
tors” now, and we get yijk where j and k index the group (j, k), j = 1, ..., J
and k = 1, ...,K; group (j, k) has Njk observations. The model is

yijk = αj + βk + γjk + uijk, uijk ∼ N(0, σ2) iid across all indices

where αj is the factor-1 effect, βk is the factor-2 effect, and γjk is the inter-
action effect between the two factors. The relevant decomposition is

yijk − ȳ = (yijk − ȳj. − ȳ.k + ȳ) + (ȳj. − ȳ) + (ȳ.k − ȳ)

where ȳ is the grand mean, ȳj. is the average of all observations with j

fixed (i.e., ȳj. ≡
∑K

k=1

∑Njk

i=1 yijk/
∑K

k=1 Njk), and ȳ.k is analogously defined.
Various F -test statistics can be devised by squaring and summing up this
display, but the two-way ANOVA model can be also written as a familiar
linear model, to which “Wald tests” can be applied.



Sec. 2 Heteroskedasticity and Homoskedasticity 23

2.2 Weighted LSE (WLS)

Suppose E(u2|x) = (= V (u|x))= m′θ where m consists of elements of x
and functions of those, and suppose that we know this functional form; e.g.,
with k = 4,

m′
iθ = θ1 + θ2xi2 + θ3xi3 + θ4x

2
i2 + θ5xi2xi3.

Then we can do “Weighted LSE (WLS)”:

• First, apply LSE to yi = x′iβ + ui to get the residuals ûi.

• Second, estimate θ by the LSE of û2
i on mi to get the LSE θ̂ for θ; this

is motivated by E(u2|x) = m′θ.

• Third, assuming m′
iθ̂ > 0 for all mi, estimate β again by minimizing

the weighted minimand N−1
∑

i(yi − x′ib)
2/(m′

iθ̂) wrt b.

In Chapter 3.3.3, it will be shown that replacing θ with θ̂ is innocuous, and
WLS is asymptotically equivalent to applying LSE to (with SD(u|xi) =
(m′

iθ)
1/2)

yi

SD(u|xi)
=

x′i
SD(u|xi)

β +
ui

SD(u|xi)
, where

V { u

SD(u|x)
|x} =

V (u|x)
SD(u|x)2

= 1.

As in the above averaged data case, we can define y∗i ≡ yi/SD(u|xi) and x∗i ≡
xi/SD(u|xi). The error term in the transformed equation is homoskedastic
with known variance 1. Inserting 1 and xi/SD(u|xi), respectively, into σ2

and x in σ2E−1(xx′), we get

√
N(bwls − β)� N(0, E−1{ xx′

V (u|x)
}).

The assumption m′
iθ̂ > 0 for all mi can be avoided if V (u|x) = exp(m′θ) and

if θ is estimated with “nonlinear LSE” that will appear later. The assumption
m′

iθ̂ > 0 for all mi is simply to illustrate WLS using LSE in the first step.
An easy practical alternative to guarantee positive estimated weights is

adopting a log-linear model lnu2
i = m′

iζ + vi with vi being an error term.
The log-linear model is equivalent to

u2
i = em′

iζevi = (em′
iζ/2νi)2 where νi ≡ evi/2

and em′
iζ/2 may be taken as the scale factor SD(u|xi) for νi (but em′

iζ/2νi > 0
and thus the error ui cannot be em′

iζ/2νi although u2
i = (em′

iζ/2νi)2). This
suggests using SD(u|xi) � em′

iζ̂/2 for WLS weighting where ζ̂ is the LSE for
ζ. Strictly speaking, this “suggestion” is not valid because, for SD(u|xi) =
em′

iζ/2 to hold, we need

lnE(u2|xi) = m′
iζ ⇐⇒ E(u2|xi) = exp(m′

iζ)
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but lnu2
i = m′

iζ+vi postulates instead E(lnu2|xi) = m′
iζ. Since lnE(u2|xi) =

E(lnu2|xi), lnu2
i = m′

iζ + vi is not compatible with SD(u|xi) = em′
iζ/2.

Despite this, however, defining û∗i ≡ y∗i −x∗′i bwls where bwls is the WLS with
weight exp(m′

iζ̂/2), so long as the LSE of û∗2i on mi returns insignificant
slopes, we can still say that the weight exp(m′

iζ̂/2) is adequate because the
heteroskedasticity has been removed by the weight, no matter how it was
obtained.

In short, each one of the following has different implications on how we
go about LSE.

• heteroskedasticity of unknown form: LSE to use E−1(xx′)
E(xx′u2)E−1(xx′)

• homoskedasticity: LSE to use σ2E−1(xx′)
• heteroskedasticity of known form: WLS to use

E−1{xx′/V (u|x)}.

Under homoskedasticity, all three variance matrices agree; otherwise, they
differ in general.

Later, we will see that, under the known form of heteroskedasticity, WLS
is more efficient than LSE; i.e.,

E−1 (xx′) E
(
xx′u2

)
E−1 (xx′) ≥ E−1

{
xx′

V (u|x)

}
in the matrix sense (for two matrices A and B, A ≥ B means that A − B is
p.s.d). For instance, if ui is specified as

ui = wi exp(x′iθ/2), where wi is independent of xi with V (w) = 1,

then V (u|x) = exp(x′θ), and we can do WLS with this. This is also con-
venient in viewing yi: yi is obtained by generating xi and wi first and then
summing up x′iβ and wi exp(x′iθ). But if the specified form of heteroskedastic-
ity exp(x′θ) is wrong, then the asymptotic variance of the WLS is no longer
E−1{xx′/V (u|x)}. So, it is safer to use LSE with heteroskedasticity-robust
variance. From now on, we will not invoke homoskedasticity assumption, un-
less it gives helpful insights for the problem at hand, which does happen from
time to time.

2.3 Heteroskedasticity Examples

EXAMPLE: HOUSE SALE (continued). In the preceding section, the t-values
under heteroskedasticity of unknown form (tv-het) were shown along with the
t-values under homoskedasticity (tv-ho). Comparing the two sets of t-values,
the differences are small other than for ln(T)/T and YR, and tv-ho tends to
be greater than tv-het. This indicates that the extent of heteroskedasticity
would be minor, if any. Three courses of action are conceivable from this
observation:
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• First, test for the H0 of homoskedasticity using a test, say, in White
(1980). This test does the LSE of û2

i on 1 and some polynomial functions
of regressors to see if the slopes are all zero or not; all zero slopes mean
homoskedasticity. N ·R2 � χ2

#slopes can be used as an asymptotic test
statistic where R2 is the R2 for the û2

i equation LSE. If the null is not
rejected, then tv-ho may be used.

• Second, if the null is rejected, then model the form of heteroskedasticity
using the aforementioned forms (or some others) to do WLS, where the
weighted error term u/SD(u|x) should have variance one regardless of
x (this can be checked out using the method in the first step).

• Third, instead of testing for the H0 or modelling heteroskedasticity,
simply use tv-het. This is the simplest and most robust procedure. Also,
the gain in the above two procedures tends to be small in micro-data;
see, e.g., Deaton (1995).

EXAMPLE: INTEREST RATE (continued). Recall the interest rate example:

yi
t−vlaues:

= 0.216
2.05 (3.42)

+ 1.298
10.29 (21.4)

· yi−1 − 0.337
−2.61 (−5.66)

· yi−2.

We list both tv-het and tv-ho; the latter is in (·) and was computed with
blse,j/

√
vN,jj , j = 1, ..., k, where VN ≡ [vN,hj ], h, j = 1, ..., k, is defined as

s2
N (

∑
i xix

′
i)
−1. The large differences between the two types of t-values indi-

cate that the homoskedasticity assumption would not be valid for this model.
In this time-series data, if the form of heteroskedasticity is correctly modeled,
the gain in significance (i.e., the gain in the precision of the estimators) would
be substantial. Indeed, such modeling is often done in financial time-series.

3 Testing Linear Hypotheses

3.1 Wald Test

Suppose we have an estimator bN with
√

N(bN − β)� N(0, C);

bN is said to be a “
√

N -consistent asymptotically normal estimator with
asymptotic variance C.” LSE and WLS are two examples of bN and more
examples will appear later. Given bN , often we want to test linear null hy-
potheses such as

H0 : R′β = c, where rank(R) = g,

R is a k × g (g ≤ k) known constant matrix and c is a g × 1 known constant
vector. Since bN →p β, we have R′bN →p R′β, because R′b is a continuous
function of b. If R′β = c is true, R′bN should be close to c. Hence testing for
R′β = c can be based on the difference

√
N(R′bN − c).
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As an example of R′β = c, suppose k = 4 and H0 : β2 = 0, β3 = 2. For
this, set

R′ =
[

0 1 0 0
0 0 1 0

]
, c =

[
0
2

]
to get R′β = c equivalent to β2 = 0 and β3 = 2. If we want to add another
hypothesis, say β1 − β4 = 0, then set

R′ =

⎡⎣ 0 1 0 0
0 0 1 0
1 0 0 -1

⎤⎦ , c =

⎡⎣ 0
2
0

⎤⎦ .

Typically, we test for some chosen elements of β being zero jointly. In that
case, R consists of the column vectors picking up the chosen elements of β
(each column consists of k − 1 zeros and 1) and c is a zero vector.

Given the above C and R, define H and Λ such that

R′CR = HΛH ′.

H is a matrix whose g columns are orthonormal eigenvectors of R′CR and Λ
is the diagonal matrix of the eigenvalues; HΛH ′ exists because R′CR is real
and symmetric. By construction, H ′H = Ig. Also, pre-multiplying H ′H = Ig

by H to get (HH ′)H = H, we obtain HH ′ = Ig because H is of full rank.
Observe now

S ≡ HΛ−0.5H ′ =⇒ S′S = (R′CR)−1 because
S′S = HΛ−0.5H ′HΛ−0.5H ′ = HΛ−1H ′ and

S′S · R′CR = HΛ−1H ′ · HΛH ′ = Ig.

Further observe
√

N · R′(bN − β) � N(0, R′CR){
from

√
N(bN − β) � N(0, C) “times R′”} ,

√
NSR′(bN − β) � N(0, Ig), since

S · R′CR · S′ = HΛ−0.5H ′ · HΛH ′ · HΛ−0.5H ′ = Ig,

N(R′bN − R′β)′S′S(R′bN − R′β)
= N(R′bN − R′β)′(R′CR)−1(R′b − R′β)� χ2

g,

because N(R′bN −R′β)′S′S(R′bN −R′β) is a sum of g-many squared, asymp-
totically uncorrelated N(0, 1) random variables (rv). Replacing R′β with c
under H0 : R′β = c, we get a Wald test statistic

N(R′bN − c)′(R′CNR)−1(R′bN − c)� χ2
g where CN →p C.

The matrix (R′CNR)−1 in the middle standardizes the vector
√

N(R′bN −c).
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3.2 Remarks

When bN is the LSE of y on x, we get

C ≡ E−1(xx′)E(xx′u2)E−1(xx′),

CN = (
1
N

∑
i

xix
′
i)
−1 · 1

N

∑
i

xix
′
iû

2
i · (

1
N

∑
i

xix
′
i)
−1

[ = N(X ′X)−1X ′DX(X ′X)−1, in matrices where
D ≡ diag(û2

1, ..., û
2
N )]

If homoskedasticity holds, then instead of C and CN , we can use Co and CoN

where

CoN ≡ s2
N

(
1
N

∑
i

xix
′
i

)−1

= s2
N

(
X ′X
N

)−1

→p Co ≡ σ2E−1(xx′).

To show CN →p C, since (N−1
∑

i xix
′
i)
−1 →p E−1(xx′) was noted

already, we have to show

1
N

∑
i

xix
′
iû

2
i − E(xx′u2) = op(1).

Here, we take the “working proposition” that, for the expected value E(h
(x, y, β)) where h(x, y, β) is a (matrix-valued) function of x, y, and β, it
holds in general that

1
N

∑
i

h(xi, yi, bN ) − E (h (x, y, β)) = op(1), if bN →p β.

Then, setting h(x, y, b) = xx′(y−x′b)2 establishes CN →p C. For the preced-
ing display to hold, h(·, ·, b) should not be too variable as a function of b so
that the LLN holds uniformly over b. In almost all cases we encounter, the
preceding display holds.

Instead of CN , MacKinnon and White (1985) suggested to use, for a
better small sample performance,

C̃N ≡ (N − 1) (X ′X)−1
(

X ′D̃X − X ′r̃r̃′X
N

)
(X ′X)−1

, where

D̃ ≡ diag
(
r̃2
1, ..., r̃

2
N

)
, r̃i ≡

yi − x′iblse

1 − dii
, r̃ ≡ (r̃1, ..., r̃N )′ , and

dii is the ith diagonal element of the matrix X(X ′X)−1X ′.

C̃N and CN are asymptotically equivalent as the term X ′r̃r̃′X/N in C̃N is
of smaller order than X ′D̃X.

Although the two variance estimators CN and CNo numerically differ
in finite samples, we have CN − CNo = op(1) under homoskedasticity. As
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already noted, too much difference between CN and CNo would indicate the
presence of heteroskedasticity, which is the basis for White (1980) test for
heteroskedasticity. We will not, however, test for heteroskedasticity; instead,
we will just allow it by using the heteroskedasticity-robust variance estimator
CN . There have been criticisms on the heteroskedasticity-robust variance
estimator. For instance, Kauermann and Carroll (2001) showed that, when
homoskedasticity holds, the heteroskedasticity-robust variance estimator has
the higher variance than the variance estimator under homoskedasticity, and
that confidence intervals based on the former have the coverage probability
lower than the nominal value.

Suppose
yi = x′iβ + diβd + diw

′
iβdw + ui

where di is a dummy variable of interest (e.g., a key policy variable on (d = 1)
or off (d = 0)), and wi consists of elements of xi interacting with di. Here, the
effect of di on yi is βd + w′iβdw which varies across i; i.e., we get N different
individual effects. A way to summarize the N -many effects is using βd +
E(w′)βdw (the effect evaluated at the “mean person”) or βd + Med(w′)βdw

(the effect evaluated at the “median person”). Observe

E(βd + w′iβdw) = βd + E(w′)βdw but
Med(βd + w′iβdw) = βd + Med(w′)βdw;

Med(z1 + z2) = Med(z1) + Med(z2) in general for two rv’s z1 and z2. The
former is that the mean effect is also the effect at the mean person, whereas
the latter is that the median effect is not the effect at the median person.

If we want to Wald-test “H0 : βd + E(w′)βdw = 0,” then replace E(w)
with w̄ to set c = 0 and R′ = (0′kx

, 1, w̄′) where 0kx
is the kx × 1 vector of

zero’s. In this test, we may worry about the difference w̄−E(w) in replacing
the unknown (0′kx

, 1, E(w′)) with its estimator (0′kx
, 1, w̄′). But w̄−E(w) can

be ignored, as we can just declare that we want to evaluate the effect at the
sample mean w̄. “H0 : βd +Med(w′)βdw = 0” can be tested in the analogous
way, replacing Med(w) with the sample median.

3.3 Empirical Examples

EXAMPLE: HOUSE SALE (continued). The two variables BATH and ROOM
looked insignificant. Since BATH and ROOM tend to be highly correlated,
using the two individual t-values for BATH and ROOM for the two separate
hypotheses H0 : βbath = 0 and H0 : βroom = 0 may be different from testing
the joint null hypothesis H0 : βbath = βroom = 0 with Wald test, because
the latter involves the asymptotic covariance between bN,bath and bN,room

that is not used for the two t-values. It does happen in practice that, when
two regressors are highly correlated (“multicollinearity”), the two separate
null hypotheses may not be rejected while the single joint null hypothesis
is rejected. This is because either one of them has explanatory power, but



Sec. 3 Testing Linear Hypotheses 29

adding the other to the model when one is already included does not add any
new explanatory power. With k = 11, g = 2, c = (0, 0)′, and

R′
2×11

=
[

0 0 1 0 0 0 , ..., 0
0 0 0 0 1 0 , ..., 0

]
β

11×1
= (βln(T ), β1, βbath, βelec, βroom, ..., βsupply)

′,

the Wald test statistic is 0.456 with the p-value 0.796 = P (χ2
2 > 0.456)

for the model with ln(T) and CN : the joint null hypothesis is not rejected.
When CoN is used instead of CN , the Wald test statistic is 0.501 with the p-
value 0.779—hardly any change. Although BATH and ROOM are important
variables for house prices, they do not explain the discount % DISC. The t-
values with CN and C̃N shown below for the 11 regressors are little different
(tv-CN was shown already) because N = 467 is not too small for the number
of regressors:

x: ln(T) 1 BATH ELEC RM TAX YR ln(LP) BIGS RATE SUPPLY

tv-CN : 7.76 −0.23 0.18 2.46 −0.67 −1.28 −3.87 2.52 −2.56 −3.10 1.06
tv-C̃N : 7.29 −0.22 0.17 2.38 −0.65 −1.22 −3.66 2.40 −2.45 −2.98 1.03

EXAMPLE: TRANSLOG PRODUCTION FUNCTION. Consider a “translog produc-
tion function”:

ln y = β0 +
m∑

p=1

βp lnxp +
m∑

p=1

m∑
q=1

βpq

1
2

lnxp lnxq + u where βpq = βqp.

This becomes a Cobb-Douglas production function if βpq = 0 ∀p, q. To see
why the restriction βpq = βqp appears, observe

βpq

1
2

lnxp lnxq + βqp

1
2

lnxq lnxp =
βpq + βqp

2
lnxp lnxq = βpq lnxp lnxq :

we can only identify the average of βpq and βqp, and βpq = βqp essentially
redefines the average as βpq.

If we take the translog function as a second-order approximation to an
underlying smooth function, say, y = exp{f(x)}, then βpq = βqp is a nat-
ural restriction from the symmetry of the second-order matrix. Specifically,
observe

ln y = f(x) =⇒ ln y = f{exp(ln x)} = f̃(ln x) where f̃(t) ≡ f{exp(t)}.

Now f̃(ln x) can be linearized around x = 1 (i.e., around lnx = 0) with its
second-order approximation where the β-parameters depend on the approx-
imation point x = 1.
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For a production function y = f(x)+u, it is “homogeneous of degree h”
if thy = f(tx) + u ∀t. To test for the h-homogeneity, apply thy = f(tx) + u
to the translog production function to get

h ln t + ln y = β0 +
m∑

p=1

βp(ln t + lnxp)

+
m∑

p=1

m∑
q=1

βpq

1
2
(ln t + lnxp)(ln t + lnxq) + u

=⇒ h ln t + ln y = β0 + ln t
m∑

p=1

βp+
m∑

p=1

βp lnxp +
(ln t)2

2

m∑
p=1

m∑
q=1

βpq

+
ln t

2

{
m∑

p=1

(ln xp

m∑
q=1

βpq)+
m∑

q=1

(lnxq

m∑
p=1

βpq)

}

+
m∑

p=1

m∑
q=1

βpq

1
2

lnxp lnxq + u.

For both sides to be equal for all t, it should hold that
m∑

p=1

βp = h and
m∑

q=1

βpq = 0 ∀p(
⇐⇒

m∑
q=1

βqp = 0 ∀p ⇐⇒
m∑

p=1

βpq = 0 ∀q

)
.

To be specific, for m = 2 and h = 1, there are six parameters (β0, β1, β2,
β11, β22, β12) to estimate in

ln y=β0 + β1 lnx1+β2 lnx2 + β11

(lnx1)2

2
+ β22

(lnx2)2

2
+ β12 lnx1 lnx2 + u.

Bear in mind β12 = β21, and we use only β12 with the first subscript smaller
than the second. The 1-homogeneity (i.e., constant returns to scale) restric-
tions are

H0 : β1 + β2 = 1, β11 + β12 = 0 and β12 + β22 = 0 (from β21 + β22 = 0).

Clearly, we can estimate the model with LSE to test for this linear H0.
If H0 is accepted, then one may want to impose the H0 on the model

using its equivalent form

β2 = 1 − β1, β11 = −β12, β22 = −β12.

That is, the H0-imposed model is

ln y − lnx2 = β0 + β1(lnx1 − lnx2) + β12

{
− (lnx1)2

2
− (ln x2)2

2

+ ln x1 lnx2

}
+ u.
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This can be estimated by the LSE of ln y − lnx2 on the rhs regressors.
If m = 3 and h = 1, then there will be 10 parameters (β0, β1, β2,

β3, β11, β22, β33, β12, β13, β23), and the 1-homogeneity restrictions are

β1 + β2 + β3 = 1, β11 + β12 + β13 = 0,
β12 + β22 + β23 = 0 (from β21 + β22 + β23 = 0) and
β13 + β23 + β33 = 0 (from β31 + β32 + β33 = 0).

4 Instrumental Variable Estimator (IVE)

When E(xu) = 0, LSE becomes inconsistent. A solution is dropping
(i.e., substituting out) the endogenous components of x from the model, but
the ensuing LSE does not deliver what is desired: the “other-things-being-
equal” effect. Another solution is to extract only the exogenous part of the
endogenous regressors, which is the topic of this and the following sections.

4.1 IVE Basics

4.1.1 IVE in Narrow Sense

For the linear model y = x′β + u, suppose we have a k × 1 moment
condition

E(zu) = E(z(y − x′β)) = 0,

instead of E(xu) = 0, where z is a k × 1 random vector such that E(zx′) is
invertible. Solve the equation for β to get

β = E−1(zx′) · E(zy).

The sample analog of this is the instrumental variable estimator (IVE)

bive =

(
1
N

∑
i

zix
′
i

)−1
1
N

∑
i

ziyi {= (Z ′X)−1
Z ′Y in matrices}.

While IVE in its broad sense includes any estimator using instruments, here
we define IVE in its narrow sense as the one taking this particular form. IVE
includes LSE as a special case when z = x (or Z = X in matrices).

Substitute yi = x′iβ + ui into the bive formula to get

bive =

(
1
N

∑
i

zix
′
i

)−1
1
N

∑
i

zi (x′iβ + ui) = β +

(
1
N

∑
i

zix
′
i

)−1

× 1
N

∑
i

ziui.
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The consistency of the IVE follows simply by applying the LLN to the terms
other than β in the last equation. As for the asymptotic distribution, observe

√
N (bive − β) =

(
1
N

∑
i

zix
′
i

)−1
1√
N

∑
i

ziui.

Applying the LLN to N−1
∑

i zix
′
i and the CLT to N−1/2

∑
i ziui, it holds

that √
N (bive − β)� N

{
0, E−1 (zx′) E

(
zz′u2

)
E−1 (xz′)

}
.

This is informally stated as

bive ∼ N

{
β,

1
N

E−1(zx′)E(zz′u2)E−1(xz′)
}

the variance of which can be estimated with (defining ri ≡ yi − x′ibive)(∑
i

zix
′
i

)−1 (∑
i

ziz
′
ir

2
i

)(∑
i

xiz
′
)−1

= (Z ′X)−1
Z ′DZ (X ′Z)−1

,

in matrices,

where D ≡ diag(r2
1, ..., r

2
N ) and ri = yi − x′ibive, not yi − z′ibive.

4.1.2 Instrumental Variable (IV) qualifications

IVE is useful when LSE is not applicable because some regressors are en-
dogenous in the sense E(xu) = 0. For instance, suppose xi = (1, xi2, xi3, xi4)′

(thus yi = β1 + β2xi2 + β3xi3 + β4xi4 + ui) and

E(u) = E(x2u) = E(x3u) = 0, but E(x4u) = 0;

x2 and x3 are exogenous regressors in the y-equation whereas x4 is an en-
dogenous regressor. If there is a rv w such that

(i) COR(w, u) = 0 ( ⇐⇒ E(wu) = 0)

(ii) 0 = COR(w, x4) (“inclusion restriction” )

(iii) w does not appear in the y equation (“exclusion restriction”)

then w is a valid instrumental variable (IV)—or just instrument—for x4,
and we can use zi = (1, xi2, xi3, wi)′. The reason why (ii) is called “inclusion
restriction” is that w should be in the x4 equation for (ii) to hold. Conditions
(ii) and (iii) together are simply called “inclusion/exclusion restrictions.”

As an example, suppose that y is blood pressure, x2 is age, x3 is gender,
x4 is exercise, u includes health concern, and w is a randomized education
dummy variable on health benefits of exercise (i.e., a coin is flipped to give
person i the education if head comes up). Those who are health-conscious
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may exercise more, which means COR(x4, u) = 0. Checking out (i−iii) for
w, first, w satisfies (i) because w is randomized. Second, those who received
the health education are likely to exercise more, thus implying (ii). Third,
receiving the education alone cannot affect blood pressure, and hence (iii)
holds. (iii) does not mean that w should not influence y at all: (iii) is that
w can affect y only indirectly through x4.

Condition (i) is natural in view of E(zu) = 0. Condition (ii) is necessary
as w is used as a “proxy” for x4; if COR(w, x4) = 0, then w cannot represent
x4—a rv from a coin toss is independent of x4 and fails (ii) despite satisfy-
ing (i) and (iii). Condition (iii) is necessary to make E(zx′) invertible; an
exogenous regressor x2 (or x3) already in the y-equation cannot be used as
an instrument for x4 despite it satisfies (i) and possibly (ii), because E(zx′)
is not invertible if z = (1, x2, x3, x2)′.

Recalling partial regression, only the part of x4 not explained by the
other regressors (1, x2, x3) in the y equation contributes to explaining y.
Among the part of x4, w picks only the part uncorrelated with u, because w is
uncorrelated with u by condition (i). The instrument w is said to extract the
“exogenous variation” in x4. In view of this, to be more precise, (ii) should
be replaced with

(ii)′ 0 = COR[w, {part of x4unexplained by the other
regressors(1, x2, x3)}]

⇐⇒ 0 = COR[w, {residual of the linear projection of
x4 on (1, x2, x3)}].

Condition (ii)′ can be (and should be) verified by the LSE of x4 on w and
the other regressors: the slope coefficient of w should be non-zero in this LSE
for w to be a valid instrument. But conditions (i) and (iii) cannot be checked
out; they can be only “argued for.”In short, an instrument should be excluded
from the response equation and included in the endogenous regressor equation
with zero correlation with the error term.

There are a number of sources for the endogeneity of x4:

• First, a simultaneous relation when x4 is affected by y (as well as af-
fecting y). For example, xi4 = q′iγ +αyi +vi where qi are regressors and
vi is an error term. This implies that u is correlated with x4 through y:
u → y → x4. If y is the work hours of a spouse and x4 is the work hours
of the other spouse in the same family, then the simultaneous relation
may occur.

• Second, a recursive relation with correlated errors. For example, xi4 =
q′iγ + vi and COR(v, u) = 0 holds (no simultaneity). Here x4 is corre-
lated with u through v: x4 ←− v −→ u. In the preceding family work
hour case, if x4 is for the “leader” (i.e., the dominant spouse), y is for
the “follower,” and local labor-market-condition variables influencing
both spouses are omitted, then these variables will lurk in u and v,
leading to COR(u, v) = 0.



34 Ch. 1 Methods of Moments for Single Linear Equation Models

• Third, errors-in-variables. Here, x4 is not observed, but its error-ridden
version xe

i4 = xi4 + ei is. In this case, we can rewrite the y equation as

yi = ...,+β4xi4 +ui = ...,+β4(x
e
i4−ei)+ui = ...,+β4x

e
i4 +(ui−β4ei)

and use xe
4 as a regressor. But the new error u− β4e is correlated with

xe
4 through e.

4.1.3 Further Remarks

What if there is no variable available for instruments? In this case, it is
tempting to use functions of exogenous regressors. Recall the above example:

yi = β1+β2xi2+β3xi3+β4xi4+ui, E(x2u) = E(x3u) = 0 but E(x4u) = 0.

Functions of x2 and x3 (such as x2
2 or x2x3) qualify as instruments for x4,

if we know a priori that those functions are excluded from the y equation.
But “smooth” functions such as x2

2 are typically not convincing instruments,
because x2

2 may very well be included in the y equation if x2 is so. Instead
of smooth functions, non-smooth functions of exogenous regressors may be
used as instruments if there are due justifications that they appear in the x4

equation, but not in the y equation. Such examples can be seen in relation to
“regression discontinuity design” in the treatment-effect literature; see Lee
(2005a) and the references there. Those discontinuous functions then serve
as “local instruments” around the discontinuity points.

In case of no instrument, the endogenous regressors may be
dropped and LSE may be applied. But this leads to an omitted variable bias
as examined already. For instance, suppose xi4 = γ1 + γ2xi3 + vi. Substitute
this into the yi equation to get

yi = β1 + β2xi2 + β3xi3 + β4(γ1 + γ2xi3 + vi) + ui

= (β1 + β4γ1) + β2xi2 + (β3 + β4γ2)xi3 + (ui + β4vi).

When this is estimated by LSE, the slope estimator for x3 is consistent for
β3 +β4γ2, where β4γ2 is nothing but the bias due to omitting x4 in the LSE.
The slope parameter β3 +β4γ2 of x3 consists of two parts: the “direct effect”
of x3 on y, and the “indirect part” of x3 on y through x4. If x3 affects x4

but not the other way around, then the indirect part can be interpreted as
the “indirect effect” of x3 on y through x4. So long as we are interested in
the total effect β3 + β4γ2, the LSE is all right. But usually in economics, the
desired effect is the “ceteris paribus” effect of changing x3 while holding all
the other variables (including x4) constant.

The IVE can also be cast into a minimization problem. The sample
analog of E(zu) is N−1

∑
i ziui. Since ui is unobservable, replace ui by yi−x′ib
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to get N−1
∑

i zi(yi − x′ib). We can get the IVE by minimizing the deviation
of N−1

∑
i zi(yi −x′ib) from 0. Since N−1

∑
i zi(yi −x′ib) is a k×1 vector, we

need to choose how to measure the distance from 0. Adopting the squared
Euclidean norm as usual and ignoring N−1, we get{∑

i

zi(yi − x′ib)

}′

·
∑

i

zi(yi − x′ib) = {Z ′(Y − X ′b)}′ · Z ′(Y − X ′b)

= (Y − Xb)′ZZ ′(Y − Xb) = Y ′ZZ ′Y − 2b′X ′ZZ ′Y + b′X ′ZZ ′Xb.

The first-order condition of minimization is

0 = −2X ′ZZ ′Y + 2X ′ZZ ′Xb =⇒ bive = (Z ′X)−1Z ′Y.

Although IVE can be cast into a minimization problem, it minimizes the
distance of N−1

∑
i zi(yi−x′ib) from 0. For LSE, we would be minimizing the

distance of N−1
∑

i xi(yi − x′ib) from 0, which is different from minimizing
the scalar N−1

∑
i(yi − x′ib)

2. This scalar minimand shows that LSE is a
“prediction-error minimizing estimator” where yi is the target and x′iblse is
the predictor for the target. In minimizing N−1

∑
i(yi − x′ib)

2, there is no
concern for endogeneity: regardless of E(xu) = 0 holding or not, we can
always minimize N−1

∑
i(yi − x′ib)

2. The resulting estimator is, however,
consistent for β in yi = x′iβ + ui only if E(xu) = 0. The usual model fitness
and R2 are irrelevant for IVE, because, if they were, we would be using LSE,
not IVE. Nevertheless, there is a pseudo R2 to appear later that may be used
for model selection with IVE, as the usual R2 is used for the same purpose
with LSE.

4.2 IVE Examples

Here we provide three empirical examples for IVE, using the same four
regressor model as above with x4 being endogenous. The reader will see
that some instruments are more convincing than others. Among the three
examples, the instruments in the first example will be the most convincing,
followed by those in the second which are in turn more plausible than those in
the third. More examples of instruments can be found in Angrist and Krueger
(2001) and the references therein. It is not clear, however, who invented IVE.
See Stock and Trebbi (2003) for some “detective work” on the origin of IVE.

EXAMPLE: FERTILITY EFFECT ON WORK. Understanding the relationship be-
tween fertility and female labor supply matters greatly in view of increasing
labor market participation of women and declining fertility rates in many
countries; the latter is also a long-term concern for pension systems. But
finding a causal effect for either direction has proven difficult, as females are
likely to decide on fertility and labor supply jointly, leading to a simultane-
ity problem. Angrist and Evans (1998) examined the effect of the number
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of children (x4) on labor market outcomes. Specifically, their x4 is a dummy
variable for more than two children.

One instrument for x4 is the dummy for the same sex children in a
household: having only girls or boys in the first two births may result in more
children than the couple planned otherwise. The random event (gender) for
the first two children gives an exogenous variation to x4, and the dummy
for the same sex children is to take advantage of this variation. Another
instrument is the dummy for twin second birth: having a twin second birth
means an exogenous increase to the third child. Part of Table 2 (using a 1990
data set in US for women aged 21–35 with two or more children) in Angrist
and Evans (1998) shows descriptive statistics (SD is in (·)):

Twin First

#Children More than First birth Same second birth

ever two boy sex birth age

All women 2.50

(0.76)

0.375

(0.48)

0.512

(0.50)

0.505

(0.50)

0.012

(0.108)

21.8

(3.5)

Wives 2.48

(0.74)

0.367

(0.48)

0.514

(0.50)

0.503

(0.50)

0.011

(0.105)

22.4

(3.5)

The table shows that there is not much difference across all women data
and wives only data, that the probability of boy is slightly higher than the
probability of girl, and that the probability of twin birth is about 1%.

Part of Table 8 for the all women data in Angrist and Evans (1998) is:

Hours per Labor
y Worked or not Weeks worked week income

LSE (SD) −0.155 (0.002) −8.71 (0.08) −6.80
(0.07)

−3984
(44.2)

IVE (SD) −0.092 (0.024) −5.66 (1.16) −4.08
(0.98)

−2100
(664.0)

For instance, having the third child decreases weeks worked by 6–9% and
hours worked by 4–7 hours per week. Overall, IVE magnitudes are about
50–100% smaller than the LSE magnitudes.

EXAMPLE: POLICE IMPACTS ON CRIME. Whether the number of policemen
(x4) lowers crime rates (y) has been an important question in criminology.
The main difficulty in assessing the effects has been the simultaneity problem
between y and x4. Suppose that x4 decreases y, and y increases x4 (a higher
crime rates leads to the more policemen):
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yi = β1 + β2xi2 + β3xi3 + β4xi4 + ui, xi4 = q′iγ + αyi + vi,

(with β4 < 0 and α > 0)
=⇒ yi = β1 + β2xi2 + β3xi3 + β4(q

′
iγ + αyi + vi) + ui,

(substituting the x4 equation)

=⇒ yi =
1

1 − β4α
(β1 + β2xi2 + β3xi3 + β4q

′
iγ + β4vi + ui)

which is the y “reduced form (RF).” Substituting the y RF into xi4 = q′iγ +
αyi + vi, we also get the x4 RF:

xi4 = q′iγ +
α

1 − β4α
(β1 + β2xi2 + β3xi3 + β4q

′
iγ + β4vi + ui) + vi.

Judging from the u’s slope α(1 − β4α)−1 > 0, we get COR(x4, u) > 0.
Suppose that LSE is run for the y equation ignoring the simultaneity. Then
with xi = (1, xi2, xi3, xi4)′, the LSE of y on x will be inconsistent by the
magnitude

E−1(xx′)E(xu) = E−1(xx′){0, 0, 0, E(x4u)}′ :
the LSE for β4 is upward biased and hence the LSE for β4 can even be
positive. Recalling the discussion on omitted variable bias, we can see that
the bias is not restricted to β4 if x4 is correlated with x2 or x3, because the
last column of E−1(xx′) can “spread” E(x4u) = 0 to all components of the
LSE.

One way to overcome the simultaneity problem is to use data for short
periods. For instance, if y is a monthly crime number for city i and x4 is the
number of policemen in the same month, then it is unlikely that y affects
x4 as it takes time to adjust x4, whereas x4 can affect y almost instantly.
Another way is to find an instrument. Levitt (1997) noted that the change
in x4 takes place almost always in election years, mayoral or gubernatorial.
Thus he sets up a “panel (or longitudinal) data” model where yit is a change
in crime numbers for city i and year t, xit,4 is a change in policemen, and
wit = 1 if year t is an election year at city i and 0 otherwise, because wit

is unlikely to be correlated with the error term in the crime number change
equation. Levitt (1997) concluded that the police force size reduces (violent)
crimes.

As McCrary (2002) noted, however, there was a small error in Levitt
(1997). Levitt (2002) thus proposed the number of firefighters per capita as
a new instrument for the number of policemen per capita. The panel data
model used is

Δ ln(yit) = βp ln(policei,t−1) + x′itβx + δi + λt + uit

where i indexes large US cities with N = 122, t indexes years 1975–1995,
policei,t−1 instead of policeit is used to mitigate the endogeneity problem, and
xit are the regressors other than police; δi is for the “city effect” (estimated
by city dummies) and λt is for the “year effect” (estimated year dummies).
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Part of Table 3 in Levitt (2002) for police effect is shown below with
SD in (·), where “LSE without city dummies” means the LSE without city
dummies but with year dummies. By not using city dummies, the parameters
are identified mainly with cross-city variation because cross-city variation is
much greater than over-time variation, and this LSE is thus similar to cross-
section LSE pooling all panel data.

Violent crimes Property crimes
y per capita per capita

LSE without city dummies 0.562 (0.056) 0.113 (0.038)
LSE with city/year dummies −0.076 (0.061) −0.218 (0.052)
IVE with city/year dummies −0.435 (0.231) −0.501 (0.235)

This table shows that the LSE’s are upward biased as analyzed above al-
though the bias is smaller when the city dummies are used, and that police
force expansion indeed reduces the number of crimes. The number of fire-
fighters is an attractive instrument, but somewhat less convincing than the
instruments in the fertility example.

EXAMPLE: ECONOMIC IMPACTS ON CRIME. In the preceding examples for IVE,
the justification of the instruments was strong. Here is an IVE example with
a weaker justification—this kind of cases are more common in practice.

Gould et al. (2002) analyzed the effect of local labor market conditions
on crime rates in the US for 1979–1997. They set up a panel data model

yit = x′itβ + δi + uit, i = 1, ..., N, t = 1, ..., T

where yit is the number of various offenses per 100,000 people in county i at
year t, xit includes the mean log weekly wage of non-college educated men
(wageit

), unemployment rate of non-college educated men (urit), and the
mean log household income (incit), and time dummies, δi is a time-constant
error and uit is a time-variant error. Our presentation in the following is a
rough simplification of their longer models.

Since δi represents each county’s unobserved long-standing culture and
practice such as how extensively crimes are reported and so on, δi is likely
to be correlated with xit. They take the difference between 1979 and 1989 to
remove δi and get (removing δi by differencing is a “standard” procedure in
panel data)

Δyi = Δx′iβ + Δui,

where Δyi ≡ yi,1989 − yi,1979, Δxi and Δui are analogously defined, and
N = 564. Their estimation results are as follows with SD in (·):

LSE : bwage = −1.13 (0.38), bur = 2.35 (0.62), binc = 0.71 (0.35)
R2 = 0.094,

IV E : bwage = −1.06 (0.59), bur = 2.71 (0.97), binc = 0.093 (0.55);
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the instruments will be explained below. All three estimates in LSE are signif-
icant and show that low wage, high unemployment rate, and high household
income increase the crime rate. The IVE is close to the LSE in wageit and
urit, but much smaller for incit and insignificant. See Freeman (1999) for a
survey on crime and economics.

It is possible that crime rates influence local labor market conditions, be-
cause firms may move out in response to high crime rates or firms may offer
higher wages to compensate for high crime rates. This means that a simul-
taneous relation problem may occur between crime rates and labor market
conditions. To avoid this problem, Gould et al. (2002) constructed a number
of instruments. One of the instruments is∑

j

(employment share of industry j in county i in 1979)

·(national growth rate of industry j for 1979–1989).

The two conditions to check are COR(Δu, z) = 0 and COR(Δx, z) = 0. For
COR(Δu, z) = 0, the primary reason to worry for endogeneity was the influ-
ence of the crime rate on the labor market conditions. But it is unlikely that a
county’s crime rates over 1979–1989 influenced the national industry growth
rates over 1979–1989. Also the employment shares had been taken in 1979 be-
fore the crime rates were measured. These points support COR(Δu, z) = 0.
For COR(Δx, z) = 0, consider a county in Michigan: if the national auto
industry shrank during 1979–1989 and if the share of auto industry was large
in the county in 1979, then the local labor market condition would have
deteriorated.

4.3 IVE with More than Enough Instruments

4.3.1 IVE in Wide Sense

If a random variable w is independent u, then we get not just COR
(w, u) = 0, but also COR(w2, u) = 0. This means that if w is an instrument
for an endogenous regressor x4, then we may use both w and w2 as instru-
ments for x4. In this case, zi = (1, xi2, xi3, wi, w

2
i )′, the dimension of which

is bigger than the dimension of xi: E(zx′) is not a square matrix as in the
preceding subsection, and hence not invertible. There arises the question of
selecting or combining more than enough instruments (i.e., more than enough
moment conditions) for only k-many parameters. While a complete answer
will be provided later, here we just provide one simple answer which also
turns out to be optimal under homoskedasticity.

Suppose E(zu) = 0, where z is p×1 with p ≥ k, the rank of E(xz′) = k,
and E−1(zz′) exists. Observe

E{z(y − x′β)} = 0 ⇐⇒ E(zy) = E(zx′)β
=⇒ E(xz′)E−1(zz′) · E(zy) = E(xz′)E−1(zz′) · E(zx′)β
=⇒ β = {E(xz′)E−1(zz′)E(zx′)}−1 · E(xz′)E−1(zz′)E(zy).
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For the product AB of two matrices A and B where B−1 exists, rank (AB) =
rank(A); i.e., multiplication by a non-singular matrix B does not alter the
rank of A. This fact implies that E(xz′)E−1(zz′) E(zx′) has rank k and
thus is invertible. If E(zx′) is invertible, then β in the last display becomes
E−1(zx′) · E(zy) and the resulting bive is the IVE when the number of in-
struments is the same as the number of parameters.

The sample analog for β is the following instrumental variable estimator

bive =

⎧⎨⎩∑
i

xiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

zix
′
i

⎫⎬⎭
−1

·
∑

i

xiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziyi

where many N−1’s are ignored that cancel one another out. The consistency
is obvious, and the asymptotic distribution of

√
N(bive − β) is

N(0, G · E(zz′u2) ·G′), where G ≡ {E(xz′)E−1(zz′)E(zx′)}−1E(xz′)E−1(zz′).

A consistent estimator for the asymptotic variance is

GN · 1
N

∑
i

ziz
′
ir

2
i · G′N ,

where ri ≡ yi − x′ibive, and

GN ≡
⎧⎨⎩ 1

N

∑
i

xiz
′
i

(
1

N

∑
i

ziz
′
i

)−1
1

N

∑
i

zix
′
i

⎫⎬⎭
−1

· 1

N

∑
i

xiz
′
i

(
1

N

∑
i

ziz
′
i

)−1

.

4.3.2 Various Interpretations of IVE

It is informative to see the IVE in matrices:

bive =
{
X ′Z(Z ′Z)−1Z ′X

}−1
X ′Z(Z ′Z)−1Z ′Y

=
[
{Z(Z ′Z)−1Z ′X}′X

]−1 {Z(Z ′Z)−1Z ′X}′Y
= (X̂ ′X)−1X̂ ′Y, where X̂ ≡ Z(Z ′Z)−1Z ′X;

X̂ that has dimension N × k is “x fitted by z,” or the part of x explained by
z; (Z ′Z)−1Z ′X is the LSE of z on x. X̂ combines more than k instruments
into just k many.

Using PZ ≡ Z(Z ′Z)−1Z ′, bive can also be written as (recall that PZ is
idempotent)

bive = {(PZX)′PZX}−1(PZX)′PZY = (X̂ ′X̂)−1X̂ ′Y

as if bive were the LSE for the equation Y = X̂β + error where the “error” is
Y − X̂β. This rewriting accords an interesting interpretation of bive. As X is
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endogenous, we can decompose X as X̂ +(X− X̂) where the first component
is exogenous, “sifted” from X using PZ , and the second component is the
remaining endogenous component. Then

Y = Xβ + U = {X̂ + (X − X̂)}β + U = X̂β + {(X − X̂)β + U}.

Hence, β can be estimated by the LSE of Y on X̂ so long as X̂ is “asymp-
totically uncorrelated” with the error term (X − X̂)β +U , which is shown in
the following.

Recall

“AN = op(1)” means AN →p 0 (and BN = CN + op(1) means BN − CN →p 0).

The error vector (X − X̂)β + U satisfies N−1X̂ ′{(X − X̂)β + U} = op(1)
because

1
N

X̂ ′{(X − X̂)β + U} =
1
N

(
X̂ ′Xβ − X̂ ′X̂β + X̂ ′U

)
=

1
N

X̂ ′U,

for X̂ ′X = X̂ ′X̂

=
1
N

{
Z(Z ′Z)−1Z ′X

}′
U

=
1
N

X ′Z ·
(

1
N

Z ′Z
)−1

· 1
N

ZU = op(1).

The expression (X̂ ′X̂)−1X̂ ′Y also demonstrates that the so-called “two-
stage LSE (2SLSE)” for simultaneous equations is nothing but IVE. For sim-
plification, consider two simultaneous equations with two endogenous vari-
ables y1 and y2:

y1 = α1y2 + x′1β1 + u1, y2 = α2y1 + x′2β2 + u2,
COR(xj , uj′) = 0, j, j′ = 0, 1 and x1 = x2.

Let z denote the system exogenous regressors (i.e., the collection of the el-
ements in x1 and x2). Denoting the regressors for the y1 equation as x ≡
(y2, x

′
1)
′, the first step of 2SLSE for (α1, β1) is the LSE of y2 on z to obtain

the fitted value ŷ2 of y2, and the second step is the LSE of y1 on (ŷ2, x1).
This 2SLSE is nothing but the IVE where the first step is PZX to obtain the
LSE fitted value of x on z—the LSE fitted value of x1 on z is simply x1—and
the second step is the LSE of y1 on PZX.

4.3.3 Further Remarks

We already mentioned that the usual R2 is irrelevant for IVE. Despite
this, sometimes

1 −
∑

i(yi − x′ibive)2∑
i(yi − ȳ)2
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is reported in practice as a measure of model fitness. Pesaran and Smith
(1994) showed, however, that this should not be used as a model selection
criterion. Instead, they propose the following pseudo R2 for IVE :

R2
ive = 1 −

∑
i(yi − x̂′ibive)2∑

i(yi − ȳ)2

where x̂i is the ith row of X̂. R2
ive satisfies 0 ≤ R2

ive ≤ 1 and takes 1 if
y = x̂′ibive and 0 if all slope components of bive are zero. The intuition for R2

ive

was given ahead already: Y = X̂β+error with the error term asymptotically
orthogonal to X̂.

Observe

E(u2|z) = σ2 (homoskedasticity) implies G · E(zz′u2) · G′

= σ2{E(xz′)E−1(zz′)E(zx′)}−1;

here, homoskedasticity is wrt z, not x. To compare this to the LSE asymptotic
variance σ2E−1(xx′) under homoskedasticity, observe

E(xx′) = E(xz′)E−1(zz′)E(zx′) + E{(x − γ′z)(x − γ′z)′} where
γ ≡ E−1(zz′)E(zx′).

This is a decomposition of E(xx′) into two parts, one explained by z and the
other unexplained by z; x − γ′z is the “residual” (compared with the linear
projection, E(x|z) is often called the projection of x on z).

From the decomposition, we get

E(xx′) ≥ E(xz′)E−1(zz′)E(zx′) ⇐⇒ E−1(xx′)
≤ {E(xz′)E−1(zz′)E(zx′)}−1;

the former is called generalized Cauchy-Schwarz inequality. This shows that
the “explained variation” E(xz′)E−1(zz′)E(zx′) is not greater than the “to-
tal variation” E(xx′). Hence, under homoskedasticity, LSE is more efficient
than IVE; under homoskedasticity, there is no reason to use IVE unless
E(xu) = 0. Under heteroskedasticity, however, the asymptotic variances of
LSE and IVE are difficult to compare, because the comparison depends on
the functional forms of V (u|x) and V (u|z).

5 Generalized Method-of-Moment Estimator (GMM)

In IVE, we saw an answer to the question of how to combine more than
enough moment conditions. There, the idea was to multiply the more than
enough p-many equations E(zy) = E(zx′)β from E(zu) = 0 with a k × p
matrix. But, there are many candidate k × p matrices, with E(xz′)E−1(zz′)
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for IVE being just one of them. If we use E(xz′)W−1 where W is a p×p p.d.
matrix, we will get

E(xz′)W−1E(zy) = E(xz′)W−1E(zx′)β
=⇒ β = {E(xz′)W−1E(zx′)}−1E(xz′)W−1E(zy).

As it turns out, W = E(zz′u2) is optimal for iid samples, which is the theme
of this section.

5.1 GMM Basics

Suppose there are p (≥ k) population moment conditions

Eψ(y, x, z, β) = 0

which may be nonlinear in β; we will often write ψ(y, x, z, β) simply as ψ(β).
The generalized method-of-moment (GMM) estimator is a class of estimators
indexed by W that is obtained by minimizing the following wrt b:

1√
N

∑
i

ψ(b)′ · W−1 · 1√
N

∑
i

ψ(b).

The question in GMM is which W to use. Hansen (1982) showed that the W
yielding the smallest variance for the class of GMM estimator is

V

{
1√
N

∑
i

ψ(β)

}
[= E{ψ(β)ψ(β)′} for iid samples];

this becomes E(zz′u2) when ψ(β) = z(y − x′β).
The intuition for W = V {N−1/2

∑
i ψ(β)} is that, in the minimization,

it is better to standardize N−1
∑

i ψ(b); otherwise one component with a high
variance can unduly dominate the minimand. The optimal GMM is simply
called (the) GMM. The GMM with W = Ip is sometimes called the “un-
weighted (or equally weighted) GMM”; the name “equally weighted GMM,”
however, can be misleading, for the optimal GMM has this interpretation.
It may seem that we may be able to do better than GMM by using a dis-
tance other than the quadratic distance. But Chamberlain (1987) showed
that the GMM is the efficient estimator under the given moment condition
Eψ(β) = 0. In statistics, ψ(y, x, z, β) = 0 is called “estimating functions”
(Godambe, 1960) and Eψ(y, x, z, β) = 0 “estimating equations”; see Owen
(2001) and the references therein.

While GMM with nonlinear models will be examined in another chapter
in detail, for the linear model, we have

Eψ(β) = E{z(y − x′β)} = E(zu) = 0.

In matrices, the GMM minimand with W is

{Z ′(Y − Xb)}′W−1{Z ′(Y − Xb)}
=

(
Y ′ZW−1 − b′X ′ZW−1

)
· (Z ′Y − Z ′Xb)

= Y ′ZW−1Z ′Y − 2b′X ′ZW−1Z ′Y + b′X ′ZW−1Z ′Xb.
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From the first-order condition of minimization, we get X ′ZW−1Z ′Y =
X ′ZW−1Z ′Xb. Solve this to obtain

bW = (X ′ZW−1Z ′X)−1 · (X ′ZW−1Z ′Y )

=

(∑
i

xiz
′
iW

−1
∑

i

zix
′
i

)−1

·
∑

i

xiz
′
iW

−1
∑

i

ziyi, in vectors.

Clearly bW is consistent for β, and its asymptotic distribution is
√

N(bW − β)� N(0, CW ), where
CW ≡ {E(xz′)W−1E(zx′)}−1E(xz′) W−1E(zz′u2)W−1 E(zx′)

{E(xz′)W−1E(zx′)}−1.

With W = E(zz′u2), this matrix becomes {E(xz′)E−1(zz′u2)E(zx′)}−1, and
we get the GMM with

√
N(bgmm − β)� N(0, {E(xz′)E−1(zz′u2)E(zx′)}−1).

Since W = E(zz′u2) can be estimated consistently with

1
N

∑
i

ziz
′
ir

2
i =

1
N

Z ′DZ,

where ri = yi − x′ibive and D = diag(r2
1, ..., r

2
N ), we get

bgmm =

⎧⎨⎩∑
i

xiz
′
i

(∑
i

ziz
′
ir

2
i

)−1 ∑
i

zix
′
i

⎫⎬⎭
−1

·

∑
i

xiz
′
i

(∑
i

ziz
′
ir

2
i

)−1 ∑
i

ziyi

= (X ′Z(Z ′DZ)−1
Z ′X)−1 (X ′Z (Z ′DZ)−1

Z ′Y ) in matrices.

Differently from IVE, Z(ZDZ ′)−1Z ′ is no longer the linear projection matrix
of Z. A consistent estimator for the GMM asymptotic variance {E(xz′)E−1

(zz′u2)E(zx′)}−1 is easily obtained: it is simply the first part (X ′Z(Z ′DZ)−1

Z ′X)−1 of bgmm times N .

5.2 GMM Remarks

A nice feature of GMM is that it also provides a specification test, called
“GMM over-identification test”: with uNi ≡ yi − x′ibgmm,

1√
N

∑
i

z′iuNi ·
(

1
N

∑
i

ziz
′
iu

2
Ni

)−1

· 1√
N

∑
i

ziuNi � χ2
p−k.
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Too big a value, greater than an upper quantile of χ2
p−k, indicates that some

moment conditions do not hold (or some other assumptions of the model
may be violated). The reader may wonder how we can test for the very mo-
ment conditions that were used to get the GMM. If there are only k moment
conditions, this concern is valid. But when there are more than k moment con-
ditions (p-many), essentially only k of them get to be used in obtaining the
GMM. The GMM over-identification test checks if the remaining p − k mo-
ment conditions are satisfied by the GMM, as can be seen in the degrees of
freedom (“dof”) of the test.

The test statistics may be viewed as

∑
i

⎡⎣ ⎧⎨⎩uNiz
′
i√

N

(∑
i

ziuNi√
N

z′iuNi√
N

)−1 ∑
i

ziuNi√
N

1

⎫⎬⎭
′

·

⎧⎨⎩uNiz
′
i√

N

(∑
i

ziuNi√
N

z′iuNi√
N

)−1 ∑
i

ziuNi√
N

1

⎫⎬⎭
⎤⎦ .

Defining the matrix version for ziuNi/
√

N as G—i.e., the ith row of G is
z′iuNi/

√
N—this display can be written as{
G(G′G)−1G′1N

}′ {
G(G′G)−1G′1N

}
= 1′NG (G′G)−1

G′1N

The inner-product form shows that the test statistic is non-negative at least.
Using the GMM over-identification test, a natural thing to do is to use

only those moment conditions that are not rejected by the test. This can be
done in practice by doing GMM on various subsets of the moment conditions,
which would be ad hoc, however. Andrews (1999) and Hall and Peixe (2003)
provided a formal discussion on this issue of selecting valid moment condi-
tions, although how popular these suggestions will be in practice remains to
be seen.

Under the homoskedasticity E(u2|z) = σ2, W = σ2E(zz′) = σ2Z ′Z/N +
op(1). But any multiplicative scalar in W is irrelevant for the minimization.
Hence setting W = Z ′Z is enough, and bgmm becomes bive under homoskedas-
ticity; the aforementioned optimality of bive comes from the GMM optimality
under homoskedasticity. Under homoskedasticity, we do not need an initial
estimator to get the residuals ri’s. But when we do not know whether ho-
moskedasticity holds or not, GMM is obtained in two stages: first apply IVE
to get the ri’s, then use

∑
i ziz

′
ir

2
i to get the GMM. For this reason, the GMM

is sometimes called a “two-stage IVE.”
We can summarize our analysis for the linear model under p×1 moment

condition E(zu) = 0 and heteroskedasticity of unknown form as follows.
First, the efficient estimator when p ≥ k is

bgmm = {X ′Z(Z ′DZ)−1Z ′X}−1X ′Z(Z ′DZ)−1Z ′Y.

If homoskedasticity prevails,

bive = {X ′Z(Z ′Z)−1Z ′X}−1X ′Z(Z ′Z)−1Z ′Y
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is the efficient estimator to which bgmm becomes asymptotically equivalent.
If p = k and (N−1

∑
i zix

′
i)
−1 exists, then

bgmm = {X ′Z(Z ′DZ)−1Z ′X}−1X ′Z(Z ′DZ)−1Z ′Y = (Z ′X)−1(Z ′Y );

i.e., bgmm = bive. Furthermore, if z = x, then bgmm = bive = blse. Since
GMM is efficient under E(zu) = 0, IVE is also efficient under homoskedas-
ticity; if (

∑
i zix

′
i)
−1 exists, IVE inherits the efficiency from GMM because

bgmm = bive, homoskedasticity or not; furthermore, LSE is efficient when
z = x, because bgmm = blse. This way of characterizing the LSE efficiency is
more relevant to economic data than using the conventional Gauss–Markov
theorem in many econometric textbooks that requires non-random regressors.

There have been some further developments in linear-model IVE/
GMM. The main issues there are weak instruments (i.e., small correlations
between instruments and endogenous variables), small sample performance
of IVE/GMM (e.g., small sample bias), small sample distribution (i.e., non-
normal contrary to the asymptotic normality), and estimation of the variance
(e.g., under-estimation of the variance). Just to name a few studies for readers
interested in these topics, Donald and Newey (2001) showed how to choose
the number of instruments by minimizing a mean-squared error criterion for
IVE and other estimators, Stock et al. (2002) provided a survey on the lit-
erature, and Windmeijer (2005) suggested a correction to avoid the variance
under-estimation problem. See also Hall (2005) for an extensive review on
GMM.

5.3 GMM Examples

As an example of GMM moment conditions, consider a “rational expec-
tation” model:

yt = ρ · E(yt+1|It) + x′tβ + εt, t = 1, ..., T,

E(εtxt−j) = E(εtyt−j) = 0 ∀j = 1, ..., t

where It is the information available up to period t including xt, yt−1, xt−1, ...
Here ρ captures the effect of the expectation of yt+1 on yt. One way to
estimate ρ and β is to replace E(yt+1|It) by yt+1:

yt = ρyt+1 + x′tβ + εt + ρ{E(yt+1|It) − yt+1}
≡ ρyt+1 + x′tβ + ut, t = 1, ..., T − 1, where ut

≡ εt + ρ{E(yt+1|It) − yt+1}.

Then yt−1, xt−1, yt−2, xt−2, ... are all valid instruments because the error
term E(yt+1|It)− yt+1 is uncorrelated with all available information up to t.
If E(xtεt) = 0, then xt is also a good instrument.

EXAMPLE: HOUSE SALE (continued). In estimating the DISC equation,
ln(T) is a possibly endogenous variable as already noted. The endogeneity
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can be dealt with IVE and GMM. We will use L1, L2, and L3 as instruments.
An argument for the instruments would be that, while the market conditions
and the characteristics of the house and realtor may influence DISC directly,
it is unlikely that DISC is affected directly by when to list the house in the
market. The reader may object to this argument, in which case the following
should be taken just as an illustration.

Although we cannot test for the exclusion restriction, we can at least
check whether the three variables have explanatory power for the potentially
endogenous regressor ln(T ). For this, the LSE of ln(T ) on the instruments
and the exogenous regressors was done to yield (heteroskedasticity-robust
variance used):

ln(Ti)
(t−value)

= − 1.352
(−0.73)

+, ...,− 0.294
(−2.77)

·L1 − 0.269
(−2.21)

·L2 − 0.169
(−1.22)

·L3, R2 = 0.098,

which shows that indeed L1, L2, and L3 have explanatory power for ln(T).
Table 2 shows the LSE, IVE, and GMM results (LSE is provided here again
for the sake of comparison). The pseudo R2 for the IVE is 0.144; compare this
to the R2 = 0.34 of the LSE. The GMM over-identification test statistic value
and its p-value are, respectively, 2.548 and 0.280, not rejecting the moment
conditions.

Table 2: LSE, IVE, and GMM for House Sale Discount %
LSE IVE GMM

blse tv-ho tv-het bive tv-ho tv-het bgmm tv

Ln(T) 4.60 12.23 7.76 10.57 2.66 2.84 10.35 2.78
1 −2.46 −0.24 −0.23 3.51 0.26 0.21 1.65 0.10

BATH 0.11 0.17 0.18 −0.15 −0.19 −0.19 −0.43 −0.54
ELEC 1.77 2.60 2.46 0.75 0.69 0.68 0.87 0.80
RM −0.18 −0.71 −0.67 0.08 0.22 0.20 0.14 0.36
TAX −1.74 −1.65 −1.28 −1.27 −0.94 −0.86 −1.05 −0.71
YR −0.15 −5.96 −3.87 −0.15 −4.93 −3.71 −0.15 −3.75

Ln(LP) 6.07 3.73 2.52 3.15 1.12 0.97 2.79 0.87
BIGS −2.15 −3.10 −2.56 −1.57 −1.66 −1.56 −1.47 −1.46
RATE −2.99 −3.25 −3.10 −5.52 −2.73 −2.51 −5.05 −2.39

SUPPLY 1.54 1.02 1.06 1.96 1.03 1.14 2.11 1.23

In the IVE, the tv–ho’s are little different from the tv–het’s other than
for YR. The difference between the tv for GMM and the tv–het for IVE is
also negligible. The LSE have far more significant variables than the IVE and
GMM which are close to each other. Ln(T )’s estimate is about 50% smaller
in LSE than in IVE and GMM. ELEC and ln(LP) lose its significance in the
IVE and GMM and the estimate sizes are also halved. YR has almost the
same estimates and t-values across the three estimators. BIGS have similar
estimates across the three estimators, but not significant in the IVE and
GMM. RATE is significant for all three estimators, and its value changes from
-3 in LSE to -5 in the IVE and GMM. Overall, the signs of the significant
estimates are the same across all estimators, and most earlier remarks made
for LSE apply to IVE and GMM.
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6 Generalized Least Squares Estimator (GLS)

In WLS, we assumed that u1, ..., uN are independent and that E(u2
i |xi) =

ω(xi, θ) is a parametric function of xi with some unknown parameter vector
θ. In this section, we generalize WLS further by allowing u1, ..., uN to be
correlated and uiuj to be heteroskedastic, which leads to “Generalized LSE
(GLS).” Although GLS is not essential for our main theme of using “simple”
moment conditions, understanding GLS is helpful in understanding GMM
and its efficiency issue. GLS will appear later in other contexts as well.

6.1 GLS Basics

Suppose

E(uiuj |x1, ..., xN ) = ω(x1, ..., xN , θ) ∀i, j

for some parametric function ω. The product uiuj may depend only on xi

and xj , but for more generality, we put all x1, ..., xN in the conditioning set.
For example, if the data come from a small town, then uiuj may depend on
all x1, ..., xN . If we set E(uiuj |x1, ..., xN ) = σ which is a non-zero constant
for all i = j, then we are allowing for dependence between ui and uj while
ruling out heteroskedasticity. Recall that the consistency of LSE requires
only E(xu) = 0; there is no restriction on the dependence among u1, ..., uN

nor on the form of heteroskedasticity. Hence, correlations among u1, ..., uN

or unknown forms of heteroskedasticity do not make LSE inconsistent; they
may make either the LSE asymptotic variance matrix formula invalid or the
LSE inefficient.

Writing the assumption succinctly using matrix notations, we have

E(UU ′|X) = Ω(X; θ);

denote Ω(X; θ) just as Ω to simply notation, and pretend that θ is known for
a while. As we transformed the original equation in WLS so that the result-
ing error term variance matrix becomes homoskedastic with unit variance,
multiply Y = Xβ + U by Ω−1/2 = HΛ−0.5H ′ where Ω = HΛH ′, Λ is the
diagonal matrix of the eigenvalue of Ω, and H is a matrix whose columns are
orthonormal eigenvectors) to get

Ω−1/2Y = Ω−1/2Xβ + U∗ where U∗ ≡ Ω−1/2U

=⇒ E(U∗U∗′|X) = E(Ω−1/2UU ′Ω−1/2|X) = Ω−1/2ΩΩ−1/2

= HΛ−0.5H ′HΛH ′HΛ−0.5H ′ = IN .

Define
X∗ ≡ Ω−1/2X and Y ∗ ≡ Ω−1/2Y,

and apply LSE to get the Generalized LSE (GLS)

bgls = (X∗′X∗)−1(X∗′Y ∗)

= (X ′Ω−1X)−1X ′Ω−1Y = β + (X ′Ω−1X)−1 · X ′Ω−1U.
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As in WLS, we need to replace θ with a first-stage
√

N -consistent esti-
mator, say θ̂; call the GLS with θ̂ the “feasible GLS” and the GLS with θ
the “infeasible GLS.” Whether the feasible GLS is consistent with the same
asymptotic distribution as the infeasible GLS follows depends on the form of
Ω(X; θ), but in all cases we will consider GLS for, this will be the case as to
be shown in a later chapter. In the transformed equation, the error terms are
iid and homoskedastic with unit variance. Thus we get

√
N(bGLS − β)� N(0, E−1(x∗x∗′)).

The variance matrix E(x∗x∗′) can be estimated consistently with

1
N

∑
i

x∗i x
∗′
i =

1
N

X∗′X∗ =
1
N

X ′Ω(X; θ̂)−1X.

6.2 GLS Remarks

If we define Z ≡ Ω−1X, then bgls = (Z ′X)−1Z ′Y , which is reminiscent of
IVE. But, differently from that IVE was motivated to avoid inconsistency of
LSE, the main motivation for GLS is a more efficient estimation than GMM.
In GMM, the functional form E(UU ′|X) is not specified; rather, GMM just
allows E(UU ′|X) to be an arbitrary unknown function of X. In contrast, GLS
specifies fully the functional form E(UU ′|X). Hence, GLS makes use of more
assumptions than GMM, and as a consequence, GLS is more efficient than
GMM—more on this later. But the obvious disadvantage of GLS is that the
functional form assumption on E(UU ′|X) can be wrong, which then nullifies
the advantage and makes the GLS asymptotic variance formula invalid.

Recall that, when Ω is diagonal, we have two ways to proceed: one is
doing LSE with an asymptotic variance estimator allowing for an unknown
form of heteroskedasticity, and the other is specifying the form of Ω to do
WLS; the latter is more efficient if the specified form is correct. When Ω is
not diagonal, an example of which is provided below, again we can think of
two ways to proceed, one of which is specifying the form of Ω to do GLS.
The other way would be doing LSE with an asymptotic variance estimator
allowing for an unknown form of Ω. When nonlinear GMM is discussed later,
we will see asymptotic variance matrix estimators allowing for an unknown
form of heteroskedasticity and correlations among u1, ..., uN .

To see an example of GLS with a specified non-diagonal Ω, consider the
following model with dependent error terms (the so-called “auto-regressive
errors of order one”):

yt = x′tβ + ut, ut = ρut−1 + vt, |ρ| < 1,

u0 = 0, t = 1, ..., T.

{vt} are iid with E(v) = 0 and E(v2) ≡ σ2
v < ∞, and independent

of x1, ..., xT .
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By substituting ut−1, ut−2, ... successively, we get

ut = ρut−1 + vt = ρ2ut−2 + vt + ρvt−1 = ρ3ut−3 + vt + ρvt−1 + ρ2vt−2 = ...,

from which E(u2
t ) → σ2

u ≡ σ2
v/(1 − ρ2) as t → ∞. Also observe

E(utut−1) = E{(ρut−1 + vt)ut−1} = ρE(u2
t−1) � ρσ2

u,

E(utut−2) = E{(ρ2ut−2 + vt + ρvt−1)ut−2} = ρ2E(u2
t−1) � ρ2σ2

u.

As {vt} are independent of x1, ..., xT and ut consists of {vt}, ut is independent
of x1, ..., xT . Hence, E(UU ′|X) = E(UU ′) and

Ω =

⎡⎢⎣ E(u1u1) · · · E(u1uN )
...

...
E(uNu1) · · · E(uNuN )

⎤⎥⎦

� σ2
u

⎡⎢⎢⎢⎣
1 ρ ρ2 ρ3 · · · ρN−1

ρ 1 ρ ρ2 · · · ρN−2

...
...

...
...

...
ρN−1 ρN−2 ρN−3 · · · ρ 1

⎤⎥⎥⎥⎦ .

To implement the GLS, first do the LSE of yt on xt to get the residual
ût. Second, replace ρ with the LSE estimator ρ̂ of ût on ût−1; σ2

u can be
replaced by 1 because any scale factor in Ω is canceled in the GLS formula.
Third, transform the equation with Ω̂−1/2 and carry out the final LSE on the
transformed equation.

6.3 Efficiency of LSE, GLS, and GMM

One may ask why we use LSE instead of some other estimators. For
instance, minimizing N−1

∑
i |yi − x′ib| may be more natural than LSE. The

usual answer found in many econometric textbooks is that LSE has the small-
est variance among the “unbiased linear estimators” where a linear estimator
aN should be written as A·Y for some N × N constant matrix A, and aN is
said to be unbiased for β if E(aN ) = β. However, this answer is not satis-
factory, for unbiasedness is hard to establish for nonlinear estimators. Also,
focusing on the linear estimators is too narrow. In the following, we provide
a modern answer which shows an optimality of LSE and efficiency compari-
son of LSE and GLS. The optimality of LSE is implied by the optimality of
GMM.

Chamberlain (1987) showed the smallest possible variance (or, the “ef-
ficiency bound”) under a general moment condition. His results are valid
for nonlinear as well as linear models. For the linear model under the iid
assumption on observations, suppose we have a moment condition

E(zu) = E{z(y − x′β)} = 0
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where y = x′β + u and z has at least k components; z may include x and
u may be a vector. Using the moment condition only, the smallest possible
variance for (“regular”) estimators for β is

{E(xz′) · E−1(zuuz′) · E(zx′)}−1.

This is the asymptotic variance of GMM, which means that GMM is efficient
under E(zu) = 0, y = x′β + u, and the iid assumption. When z = x and u is
a scalar, the efficiency bound becomes

E−1(xx′) · E(xx′u2) · E−1(xx′)

which is the asymptotic variance of LSE. Thus LSE is the most efficient under
the moment condition E(xu) = 0, the linear model, and the iid assumption.

Chamberlain (1987) also showed that if

E(u|z) = E(y − x′β|z) = 0

then the smallest possible variance (or the efficiency bound) is

E−1
z

{
E

(
∂ (y − x′β)

∂β
|z
)
·E−1(uu′|z) · E

(
∂ (y − x′β)

∂β′
|z
)}

.

If z includes x, then this becomes

E−1
z

{
−x · E−1(uu′|z) · (−x′)

}
.

If z = x and u is a scalar, then the bound becomes the asymptotic variance
of GLS

E−1

{
xx′

V (u|x)

}
.

Interestingly, if the error term is homoskedastic, then the two bounds under
E(xu) = 0 and E(u|x) = 0 agree:

σ2E−1(xx′).

This observation might be, however, misleading, because the homoskedas-
ticity condition is an extra information which could change the efficiency
bound.

Observe E{xx′/V (u|x)} = E[{x/SD(u|x)}{x′/SD(u|x)}] which is the
“variation” of x/SD(u|x). Also observe

E(xx′)E−1(xx′u2)E(xx′) = E(xx′)E−1
x

{
xx′Eu|x(u2)

}
E(xx′)

= E

{
x

SD(u|x)
x′SD(u|x)

}
E−1 [{x SD(u|x)} {

x′SD(u|x)
}]

E

{
xSD(u|x)

x′

SD(u|x)

}
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which is the variation of the projection of x/SD(u|x) on x·SD(u|x). This
shows that

E

{
xx′

V (u|x)

}
≥ E(xx′)E−1(xx′u2)E(xx′)

⇐⇒ E−1

{
xx′

V (u|x)

}
≤ E−1(xx′)E(xx′u2)E−1(xx′) :

GLS is more efficient than LSE.
The condition E(u|z) = 0 is stronger than E(zu) = 0, because E(u|z) =

0 implies E{g(z)u} = E{g(z)E(u|z)} = 0 for any square-integrable function
g(z) (i.e., E{g(z)2} < ∞). Under the stronger moment condition, the effi-
ciency bound becomes smaller, which is attained by GLS. But this comes at
the price that GLS should specify correctly the form of heteroskedasticity.
Also, the known parametric form of heteroskedasticity is an extra information
which may change the efficiency bound.



CHAPTER 2

METHODS OF MOMENTS FOR MULTIPLE

LINEAR EQUATION SYSTEMS

Going further from single linear equation models in the preceding chap-
ter, multiple linear equation systems are examined. As in single linear equa-
tion models, there are LSE, IVE, and GMM available for multiple linear equa-
tion systems. An extra issue that arises now is whether there is any benefit in
doing the system estimation relative to estimating each equation separately
one by one; the answer is a qualified yes. Simultaneous equations that impose
further structures on multiple linear equation systems are studied, which ex-
plore how variables can be related and how their “relation parameters” are
identified and then estimated. Multiple linear equation systems include panel
data models as special cases, and thus linear panel data models are briefly
studied as well.

1 System LSE, IVE, and GMM

1.1 System LSE

1.1.1 Multiple Linear Equations

Consider H-many linear equations:

yhi = x′hiβh + uhi (⇐⇒ yhi − x′hiβh = uhi), E(xhuh) = 0, h = 1, ...,H.

Let xi denote the collection of all components of x1i, ..., xHi; xhi has the
dimension kh×1 with E(xhx′h) having the full rank, and xi has the dimension
K × 1 with E(xx′) having the full rank. Define

γ ≡

⎡⎢⎢⎣
β1

...
βH

⎤⎥⎥⎦ and its row dimension k ≡ k1+, ...,+kH .

For instance, H = 3, k1 = 2, k2 = 3, k3 = 4 (=⇒ k = 9), K = 4, and

x1i = (1, qi2)′, x2i = (1, qi3, qi4)′,

x3i = (1, qi2, qi3, qi4)′, xi = (1, qi2, qi3, qi4)′.

When there is no endogenous regressor, the equation system is known as
“seemingly unrelated regressions (SUR),”as the equations look unrelated to
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one another other than through the overlapping elements in the regressors;
they can be, however, related through the error term relations.

In this subsection, we will apply LSE simultaneously to the system of
equations, which turns out to be the same as applying LSE to each equa-
tion separately one by one. Nevertheless, verifying this would be beneficial.
The gain of doing a “system estimation” (e.g., “system GMM ”) over “single
equation estimation” (e.g., “separate GMM ”) will be realized through the
error term correlations when GMM is applied. Also, system estimation is
convenient in testing for H0 involving coefficients across different equations.
For instance, there may be two periods (or regions) for h = 1, 2, and we
may desire to test for the equality of model parameters for the two periods
(or regions). For example, are the consumption patterns before and after a
financial crisis the same? If no, then there was a structural change/break.

Define

yi ≡

⎡⎢⎢⎣
y1i

...
yHi

⎤⎥⎥⎦ , ui ≡

⎡⎢⎢⎣
u1i

...
uHi

⎤⎥⎥⎦ , and wi = diag(x1i, , ..., xHi).

To simplify exposition, set H = 3 in the rest of this subsection; the general
case can be easily inferred from this special case. For H = 3, we have

w ≡

⎡⎢⎣ x1 0 0
0 x2 0
0 0 x3

⎤⎥⎦ =⇒ wu =

⎡⎢⎣ x1 0 0
0 x2 0
0 0 x3

⎤⎥⎦
⎡⎢⎣ u1

u2

u3

⎤⎥⎦=

⎡⎢⎣ x1u1

x2u2

x3u3

⎤⎥⎦ ,

and the three equations can be written as

yi = w′iγ + ui.

1.1.2 System LSE and Motivation

The moment conditions E(xhuh) = 0,h = 1, 2, 3, can be written as

E(wu) = 0 ⇐⇒ E{w(y − w′γ)} = 0
⇐⇒ E(wy) = E(ww′)γ =⇒ γ = E−1(ww′) · E(wy).

Hence, the system LSE glse for γ is

glse =

(
1
N

∑
i

wiw
′
i

)−1 (
1
N

∑
i

wiyi

)
=

(∑
i

wiw
′
i

)−1 (∑
i

wiyi

)
;

the consistency of glse for γ is easy to see.
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Observe

E(ww′) =

⎡⎢⎣ E(x1x
′
1) 0 0

0 E(x2x
′
2) 0

0 0 E(x3x
′
3)

⎤⎥⎦ and

E(wy) =

⎡⎢⎢⎣
E(x1y1)

E(x2y2)

E(x3y3)

⎤⎥⎥⎦ .

From this, we get

E−1(ww′)E(wy) =

⎡⎢⎢⎣
E−1(x1x

′
1)E(x1y1)

E−1(x2x
′
2)E(x2y2)

E−1(x3x
′
3)E(x3y3)

⎤⎥⎥⎦ .

This shows that glse is the stacked version of the three LSE’s applied to each
equation separately.

While the “separate LSE” is obtained by applying LSE three times sep-
arately to the three equations, the “system LSE” is obtained simultaneously.
The disadvantage of the system LSE is that it is cumbersome to construct
wi and yi, but the advantage is that the system LSE gives asymptotic co-
variances between gh,lse and gj,lse for h, j = 1, 2, 3 as shown in the following
where

glse =

⎡⎢⎣ g1,lse

g2,lse

g3,lse

⎤⎥⎦ .

For example, when k1 = k2 = k3 ≡ k′, H0 : β1 = β2 = β3 (all three equations
share the same parameters) can be tested with Wald test using

H0 : R′γ = 0 where R′ =

[
Ik′ −Ik′ 0
0 Ik′ −Ik′

]
.

This H0 is relevant for panel data models where h indexes time periods. If
H = 2, then R′ = (Ik′ ,−Ik′) for H0 : β1 = β2.

1.1.3 Asymptotic Variance

Substitute yi = w′iγ + ui to rewrite the system LSE as

glse = γ +

(∑
i

wiw
′
i

)−1 ∑
i

wiui

=⇒
√

N(glse − γ)� N{0, E−1(ww′)E(wuu′w′)E−1(ww′)}.
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The two outside matrices in the asymptotic variance are block-diagonal, and
for the middle matrix, observe

wuu′w′ =

⎡⎢⎣ x1u1

x2u2

x3u3

⎤⎥⎦ [
u1x

′
1 u2x

′
2 u3x

′
3

]

=⇒ E(wuu′w′) =

⎡⎢⎣ E(x1x
′
1u

2
1) E(x1x

′
2u1u2) E(x1x

′
3u1u3)

E(x2x
′
1u2u1) E(x2x

′
2u

2
2) E(x2x

′
3u2u3)

E(x3x
′
1u3u1) E(x3x

′
2u3u2) E(x3x

′
3u

2
3)

⎤⎥⎦ .

This sandwich form asymptotic variance has two types of entries. First, the
diagonal terms are the variance of bh,lse, h = 1, 2, 3:

E−1(xhx′h)E(xhx′hu2
h)E−1(xhx′h), h = 1, 2, 3.

Second, the off-diagonal matrices are the asymptotic covariance matrices,
which take the form

E−1(xhx′h)E(xhx′juhuj)E−1(xjx
′
j), ∀h, j;

these are needed, for instance, to test hypotheses involving both βh and βj .
If E(xhx′juhuj) = 0, then the asymptotic covariance between bh,lse and bj,lse

is zero. The condition holds, for instance, if E(uhuj |x) = 0.
Sometimes, when we have E(uhxh) = 0 ∀h, we may also have E(uhxj) =

0 ∀h = j. In this case, for equation h, E(uhxh) = 0 gets augmented to
yield

E(xuh) = 0.

One may think of applying IVE instead of LSE to equation h to take advan-
tage of the more-than-enough moment conditions. But as mentioned already,
IVE to equation h under E(xuh) = 0 is just the LSE under E(uhxh) = 0,
because x includes xh and thus projecting xh on x renders only xh. Taking
advantage of the augmented moment conditions makes sense only when some
elements of xh are endogenous and thus are not included in x. In this case,
we would consider the “system IVE” and “system GMM” in the following
subsections.

1.2 System IVE and Rank Condition

1.2.1 Moment Conditions

Consider H-many linear equations:

yhi = x′hiβh + uhi (⇐⇒ yhi − x′hiβh = uhi), E(xuh) = 0, h = 1, ...,H.
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Differently from the preceding subsection for LSE, x does not include all
components of x1, ..., xH ; i.e., some endogenous regressors in x1, ..., xH are
excluded from x. But we will still denote the dimension of x as K × 1 to
save notations. IVE (and GMM) can be applied to this equation system. To
simplify exposition, set again H = 3 in this subsection. This and the following
subsections draw on Lee (2008).

For a m × n matrix A = [aij ] and a p × q matrix B, the Kronecker
product A ⊗ B is

A ⊗ B
mp×nq

≡

⎡⎢⎣ a11B a12B · · · a1nB
...

...
...

...
am1B am2B · · · amnB

⎤⎥⎦ .

It can be verified that

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD) if AC and BD exist
(A ⊗ B)′ = (A′ ⊗ B′)

(A ⊗ B)−1 = (A−1 ⊗ B−1) if A−1 and B−1 exist
A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C).

Rewrite the moment conditions E(xuh) = 0,h = 1, 2, 3, compactly as
(recall u ≡ (u1, u2, u3)′)

E( u ⊗ x
(3K)×1

) =

⎡⎣ E(u1x)
E(u2x)
E(u3x)

⎤⎦ = 0.

Define

z ≡ I3 ⊗ x
(3K)×3

=⇒ zu = (I3 ⊗ x
(3K)×3

) · u
3×1

=

⎡⎣ x 0 0
0 x 0
0 0 x

⎤⎦⎡⎣ u1

u2

u3

⎤⎦ =

⎡⎣ xu1

xu2

xu3

⎤⎦ .

With this, we can see that the moment condition E(u ⊗ x) = 0 is equivalent
to

E(zu) [= E{(instruments) × error}] = 0

which will lead to “system IVE.”

1.2.2 System IVE and Separate IVE

Recall w = diag(x1, x2, x3) and observe

E(zu) = E{z · (y − w′γ)} = 0 ⇐⇒ E(zy) = E(zw′)γ =⇒
γ = {E(wz′)E−1(zz′)E(zw′)}−1 · E(wz′)E−1(zz′)E(zy);
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conditions are needed for the matrix inversion, which will be discussed shortly.
Hence, the system IVE give for γ is

give =

⎧⎨⎩∑
i

wiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziw
′
i

⎫⎬⎭
−1

·

∑
i

wiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziyi;

the consistency is easy to see.
Substitute yi = w′iγ + ui into give to rewrite give as

give = γ +

⎧⎨⎩∑
i

wiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziw
′
i

⎫⎬⎭
−1

·

∑
i

wiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziui.

From this, we get
√

N(give − γ) � N(0, A · E(zuu′z′) · A′) where
A ≡ {E(wz′)E−1(zz′)E(zw′)}−1 · E(wz′)E−1(zz′).

For the population moments in give, observe

E(zy) =

⎡⎣ E(xy1)
E(xy2)
E(xy3)

⎤⎦ and E(wz′)E−1(zz′)E(zy)

=

⎡⎣ E(x1x
′)E−1(xx′)E(xy1)

E(x2x
′)E−1(xx′)E(xy2)

E(x3x
′)E−1(xx′)E(xy3)

⎤⎦ .

Combining this with the block-diagonal E(wz′)E−1(zz′)E(zw′), we can see
that

give =

⎡⎢⎢⎣
{∑i x1ix

′
i(
∑

i xix
′
i)
−1 ∑

i xix
′
1i}−1 ·∑i x1ix

′
i(
∑

i xix
′
i)
−1 ∑

i xiy1i

{∑i x2ix
′
i(
∑

i xix
′
i)
−1 ∑

i xix
′
2i}−1 ·∑i x2ix

′
i(
∑

i xix
′
i)
−1 ∑

i xiy2i

{∑i x3ix
′
i(
∑

i xix
′
i)
−1 ∑

i xix
′
3i}−1 ·∑i x3ix

′
i(
∑

i xix
′
i)
−1 ∑

i xiy3i

⎤⎥⎥⎦ .

That is, the system IVE is nothing but the stacked version of the three
separate IVE’s

bh,ive =

⎧⎨⎩∑
i

xhix
′
i

(∑
i

xix
′
i

)−1 ∑
i

xix
′
hi

⎫⎬⎭
−1

·

∑
i

xhix
′
i

(∑
i

xix
′
i

)−1 ∑
i

xiyhi, h = 1, 2, 3.
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The system IVE differs from the separate IVE’s only in that the former
yields asymptotic covariances between bh,ive and bj,ive ∀h = j. This situa-
tion is analogous to the system LSE and the separate LSE in the preceding
subsection.

1.2.3 Identification Conditions

Observe

wiz
′
i =

⎡⎣ x1i 0 0
0 x2i 0
0 0 x3i

⎤⎦ ·

⎡⎣ x′i 0 0
0 x′i 0
0 0 x′i

⎤⎦ =

⎡⎣ x1ix
′
i 0 0

0 x2ix
′
i 0

0 0 x3ix
′
i

⎤⎦ ;

wiz
′
i is of dimension (k × 3) · (3 × 3K) = k × 3K, which is block-diagonal.

E(zz′) is also block diagonal. Thus E(wz′)E−1(zz′)E(zw′) is block-diagonal:

diag{E(x1x
′)E−1(xx′)E(xx′1), E(x2x

′)E−1(xx′)E(xx′2),
E(x3x

′)E−1(xx′)E(xx′3)}.

For this to be invertible, each diagonal matrix should be invertible, for which
it is necessary and sufficient to have

rank{E(xhx′)} = kh (requiring kh ≤ K) ∀h.

This is the “rank condition of identification,” whereas “kh ≤ K” is called the
“order condition of identification”; the order condition is only a necessary
condition.

If the rank condition does not hold for some h, the hth equation should
be dropped for give; alternatively, from a “model-building perspective,”more
IV’s may be added to the system so that the rank condition holds for the hth
equation. The following terminologies are often used:

kh < K : equation h is “over-identified” (more instruments than
necessary)

kh = K : equation h is “just-identified” (just enough instruments)

kh > K : equation h is “under-identified” (not enough instruments).

In solving E(zy) = E(zw′)γ for γ, we multiplied the equation by E(wz′)
E−1(zz′). In fact, we could have used another matrix of the same dimension,
say L, so long as L ·E(zw′) is invertible. It might look as if the above identifi-
cation result holds only for the particular choice L = E(wz′)E−1(zz′). That
this is not the case can be shown using the following fact for a system of
equations. Consider a system of HK equations with k unknowns:

A
(HK)×k

· γ
k×1

= c
HK×1

.



60 Ch. 2 Methods of Moments for Multiple Linear Equation Systems

For these equations to have any solution, c has to be in the column space
of A, as Aγ is a linear combination of the columns of A. Then the equa-
tion system is said to be “consistent”. Given that the equation system is
consistent, a necessary and sufficient condition for the solution to be unique
is rank(A) = k; see, e.g., Searle (1982, p. 233) or Schott (2005, p. 227).
For E(zw′)γ = E(zy) with A = E(zw′) and c = E(zy), rank(A) = k is
equivalent to rank{E(xhx′)} = kh ∀h.

Our framework includes linear simultaneous equation systems. For in-
stance, consider three simultaneous equations with three endogenous vari-
ables y1, y2, and y3:⎡⎢⎣ y1 − α12y2 − α13y3 − m′

1η1

y2 − α21y1 − α23y3 − m′
2η2

y3 − α31y1 − α32y2 − m′
3η3

⎤⎥⎦ =

⎡⎢⎣ u1

u2

u3

⎤⎥⎦ where E(mjuh) = 0 ∀j, h.

Define

x1 = (y2, y3,m
′
1)
′, x2 = (y1, y3,m

′
2)
′, x3 = (y1, y2,m

′
3)
′,

γ ≡ (α12, α13, η
′
1, α21, α23, η

′
2, α31, α32, η

′
3)
′,

and let x consist of the elements in m1, m2, and m3; x is the exogenous
regressor vector of the system. Under E(xuh) = 0 ∀h, γ can be estimated
by the system IVE. The order condition kh ≤ K for equation h is that the
number of the regressors in equation h should be smaller than or equal to the
number of the elements in x. The discussion of the preceding paragraph on
rank and order conditions for simultaneous equation identification is much
simpler than the typical econometric textbook discussion on rank and order
conditions that will be seen later.

Notice that

kh : (# exo. regressors in eq. h) + (# endo. regressors in eq. h)

K : (# exo. regressors in eq. h) + (# exo. regressors in all eq.’s but h).

Removing the common first term in kh and K, the order condition kh ≤ K
can be written as

(# endo. regressors in eq. h) ≤ (# exo. regressors in all eq.’s but h).

Since the right-hand side variables are instruments for the left-hand side
variables, this explains why the over-, just-, and under-identified cases are
described above with the number of instruments.

1.3 System GMM and Link to Panel Data

1.3.1 System GMM

The “system GMM” corresponding to the system IVE is obtained by
taking one step from give. Define the residuals ûi ≡ yi − w′igive to get
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ggmm =

⎧⎨⎩∑
i

wiz
′
i

(∑
i

ziûiû
′
iz
′
i

)−1 ∑
i

ziw
′
i

⎫⎬⎭
−1

·

∑
i

wiz
′
i

(∑
i

ziûiû
′
iz
′
i

)−1 ∑
i

ziyi;

√
N(ggmm − γ)� N(0, {E(wz′)E−1(zuu′z′)E(zw′)}−1);

1√
N

∑
i

ũ′iz
′
i ·

(
1
N

∑
i

ziũiũi
′z′i

)−1

· 1√
N

∑
i

ziũi � χ2
3K−k,

ũi ≡ yi − w′iggmm.

The inverse of the asymptotic variance matrix is⎡⎢⎣ E(x1x
′) 0 0

0 E(x2x
′) 0

0 0 E(x3x
′)

⎤⎥⎦ ·

⎡⎢⎣ E(xx′u2
1) E(xx′u1u2) E(xx′u1u3)

E(xx′u1u2) E(xx′u2
2) E(xx′u2u3)

E(xx′u1u3) E(xx′u2u3) E(xx′u2
3)

⎤⎥⎦
−1

·

⎡⎢⎣ E(xx′1) 0 0
0 E(xx′2) 0
0 0 E(xx′3)

⎤⎥⎦ .

If

E(xx′uhuj) = 0 ∀h = j,

then, all off-diagonal terms in E(zuu′z′) are zero, and the system GMM
asymptotic variance becomes diagonal with the diagonal terms

{E(xhx′)E−1(xx′u2
h)E(xx′h)}−1, h = 1, ...,H.

This is the same as the asymptotic variance of the “separate GMM” (i.e., the
GMM applied to each equation separately). If the off-diagonal terms are not
zero, then differently from the system LSE and IVE, the system GMM’s
diagonal terms are not in general equal to the separate GMM’s asymp-
totic variance. Having

∑
i ziûiû

′
iz
′
i in the system GMM that is not block-

diagonal, instead of the block-diagonal
∑

i ziz
′
i in the system IVE, makes the

difference.
Lee (2004a) showed that, for the efficiency gain for equation h of the

system GMM over the separate GMM, it is necessary to have
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(i) the rank condition holds for each equation,

(ii) E(xx′uhuj) = 0 for some j = h,

(iii) There is at least one equation j (= h) that is over-identified

In a two-equation system with one equation just identified, (iii) implies that
the other equation will get no efficiency gain with the system GMM.

EXAMPLE: HOUSE SALE (continued). Recall the house sale example in the
previous chapter. After a model specification search using “RESET test”
with ŷ2 as an “artificial regressor” (i.e., second-order terms are added into the
model until ŷ2 becomes insignificant; RESET test will appear later), BATH2,
TAX2, and BIGSYR (= BIGS × YR) were added as can be seen in Table 1.
The endogenous variables are DISC and lnT , and all the other variables are
regarded as exogenous. Two equations are constructed with exclusion restric-
tions obtained following the approach in Lee and Chang (2007), which will be
explained later in a separate section under the heading “avoiding arbitrary
exclusion restrictions.” The first two columns show the system GMM result
in Lee and Chang (2007), and the last two columns show the separate GMM
result. Although some t-values are lower in the system GMM, overall more
variables have higher t-values in the system GMM. The efficiency gain for
the system GMM is high in BATH and BATH2, but otherwise seems low
or non-existent in this empirical example. The system IVE and the separate
IVE are not presented in the table as they are exactly the same, although
they were used to get the GMM’s.

1.3.2 System GMM and Panel Data

So far we considered multiple equations for cross-section data where the
same x can be used as instruments for all equations. If we have panel data with
H “waves” (i.e., each subject is observed for H-many periods), then there
will be H equations—one for each period. In this case, typically, different
instruments are used for different equations to result in moment conditions

E(uhzh) = 0 h = 1, ...,H.

This case can be dealt with simply by redefining z as

z =

⎡⎣ z1 0 0
0 z2 0
0 0 z3

⎤⎦ =⇒ E(zu) =

⎡⎣ E(z1u1)
E(z2u2)
E(z3u3)

⎤⎦ .

With this redefined z, the rest of IVE and GMM is the same as those for
z = I3 ⊗ x. Clearly, the new z in the display includes the old z = I3 ⊗ x as a
special case when z1 = z2 = z3 = x.

For example, suppose we have a panel data model

yit = x′itβt + uit, i = 1, ..., N, t = 1, 2, 3,
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where yit is work-hourit, xit = (1, wageit)′, and the index t = 1, ..., T is used
now instead of h = 1, ...,H to make it clear that different equations refer to
different time periods. Note a minor point that the subscript positions have
been switched from “hi” to “it” for panel data, because of the perception
that each equation h forms a separate “block” in “hi” whereas a block is
each individual i in panel data.

In a given period, wage may be simultaneously determined with work
hour, which implies COR(xit, uit) = 0. But we may have
COR(xis, uit) = 0 ∀s < t but = 0 ∀s ≥ t, which happens, e.g., if xis is
adjusted after observing the current or past uit’s. Then we get the following
moment conditions: omitting E(ut · 1) = 0 and the corresponding 1 in zt ∀t,

E(u2x1) = 0, E(u3x1) = 0, E(u3x2) = 0
=⇒ z1 is empty, z2 = wage1, z3 = (wage1, wage2)′;

only the second and third period equations are jointly estimable. Since the
second period is just identified, the efficiency gain of the joint estimation is
restricted only to the second equation. If COR(xis, uit) = 0 ∀s = t that are
stronger than COR(xis, uit) ∀s < t, then the moment conditions are

E(u1x2) = 0, E(u1x3) = 0, E(u2x1) = 0, E(u2x3) = 0,
E(u3x1) = 0, E(u3x2) = 0

=⇒ z1 = (wage2, wage3)′, z2 = (wage1, wage3)′,
z3 = (wage1, wage2)′.

Now all three equations are jointly estimable, with efficiency gain possible
for all equations.

The panel data model yit = x′itβt + uit is in fact more general than the
restricted panel models with βt = β ∀t. As already noted in the section for
system LSE, this restriction can be tested with Wald test. If not rejected,
imposing the restriction can be done using, not wi = diag(xi1, xi2, xi3), but
wi = (xi1, xi2, xi3) so that⎡⎣ yi1

yi2

yi3

⎤⎦ =

⎡⎣ x′i1
x′i2
x′i3

⎤⎦β +

⎡⎣ ui1

ui2

ui3

⎤⎦ ⇐⇒ yi = w′iβ + ui.

The GMM bgmm to this is the same as the above ggmm except that wi is not
a block-diagonal matrix.

A panel data model popular in practice is neither yit = x′itβt + uit nor
yit = x′itβ + uit, but the one that allows only the intercept to change over
time. This falls in between the two models, and can be accommodated with

w′i =

⎡⎣ 1 0 0 x̃′i1
0 1 0 x̃′i2
0 0 1 x̃′i3

⎤⎦ and β =

⎡⎢⎢⎣
τ1

τ2

τ3

β̃

⎤⎥⎥⎦
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where x̃it is the regressors other than 1, β̃ is the coefficient for x̃it, and
τ1, τ2, τ3 are the time-varying intercepts.

A panel data model perhaps even more popular than yit = x′itβ + uit is

yit = x′itβ + δi + uit

where δi is a time-constant error possibly correlated with compo-
nents of xit; δi is also called “unit-specific effect” or “individual-specific ef-
fect.” To get rid of the possible endogeneity, often the model is transformed
into

Δyit = Δx′itβ + Δuit where Δyit ≡ yit − yi,t−1

renaming the time periods as 0, 1, ..., T − 1. Note that the time-constant
elements of xit get removed in Δxit, and in this case, β here is not necessarily
the same as β for xit. Applying GMM to this panel data model is essentially
the same as the above GMM: find a vector of instruments for each differenced
equation and apply system GMM.

For instance, with T = 3, we get only two equations after first-differencing:[
Δyi1

Δyi2

]
=

[
Δx′i1
Δx′i2

]
β +

[
Δui1

Δui2

]
.

Let zit be the instrument vector of dimension sj × 1 for the Δyit equation,
and let β be k × 1. We have

bive =

⎧⎨⎩∑
i

wiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziw
′
i

⎫⎬⎭
−1

·

∑
i

wiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziζi,

where wi
k×2

≡ [Δxi1,Δxi2], zi
(s1+s2)×2

=
[

zi1 0
0 zi2

]
, ζi

2×1
≡

[
Δyi1

Δyi2

]
.

With vi ≡ ζi − w′iβ and v̂i ≡ ζi − w′ibive, we obtain

bgmm =

⎧⎨⎩∑
i

wiz
′
i

(∑
i

ziv̂iv̂
′
iz
′
i

)−1 ∑
i

ziw
′
i

⎫⎬⎭
−1

·
∑

i

wiz
′
i

(∑
i

ziv̂iv̂
′
iz
′
i

)−1 ∑
i

ziζi,

√
N(bgmm − β) � N(0, {E(wz′)E−1(zvv′z′)E(zw′)}−1).

Although straightforward conceptually, panel IVE and GMM have some spe-
cial features and “pitfalls” that deserve a closer look. We will do this later in
a separate section.
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2 Simultaneous Equations and Identification

This section studies simultaneous equations in detail which appeared
sporadically up to this point. Rank and order conditions are presented in a
manner that is coherent with the usual textbook presentation, yet easier to
understand and more readily applicable to simultaneous equations in limited
dependent variables to appear in a later chapter.

2.1 Relationship Between Endogenous Variables

Suppose we have two response variables y1 and y2 which may be related
in a couple of different ways. One is SUR: with x being the collection of the
elements in x1 and x2,

yh = x′hβh + uh, h = 1, 2, E(uhx) = 0;

the two equations are related through COR(u1, u2) = 0. To be precise, what
matters is not COR(u1, u2), but COR(u1, u2|x) as can be seen in the system
GMM asymptotic variance where terms like E(xx′u1u2) = E{xx′E(u1u

′
2|x)}

appeared. We will, however, use just COR(u1, u2) in this subsection as this
does not hinder conveying the main idea; also, equations systems have been
traditionally discussed with errors independent of x, in which case
COR(u1, u2) = COR(u1, u2|x). Both β1 and β2 in SUR can be consistently
estimated with LSE. Note that, differently from our notations in some of
the preceding subsections where x included both endogenous and exogenous
regressors, here we are denoting endogenous regressors with y and exogenous
regressors with x.

A relation between y1 and y2 “closer” than in SUR is seen in the following
recursive system

y1 = x′1β1 + u1, y2 = α21y1 + x′2β2 + u2, α21 = 0, E(uhx) = 0, h = 1, 2,

where y1 influences y2 but y2 does not influence y1. Differently from SUR,
β2 cannot be consistently estimated by LSE if COR(u1, u2) = 0, because y1

and u2 are related (through u1) in the y2 equation. Certainly, α21 and β2

can be estimated by IVE if x1 provides an instrument for y1. The equivalent
2SLSE view is that β1 is estimated by the LSE of y1 on x1, and α21 and β2

are estimated by the LSE of y2 on x′1β̃1 and x2 where β̃1 is the first LSE for
the y1 equation. If the y1 equation is not specified, then the first stage of the
2SLSE is the LSE of y1 on x.

An “even closer” relation than the recursive relation is a simultaneous
relation where

y1 = α12y2 + x′1β1 + u1, y2 = α21y1 + x′2β2 + u2,

α12, α21 = 0, E(uhx) = 0, h = 1, 2.

In the y1 equation, COR(y2, u1) = 0 regardless of COR(u1, u2), because u1

affects y1 which in turn affect y2; i.e., u1 and y2 are related through y1. Thus,
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the LSE for the y1 equation is inconsistent, and analogously, the LSE for the
second equation is inconsistent as well. This equation system as well as the
preceding one can be estimated with IVE and GMM.

An example of simultaneous system analogous to the police/crime nexus
is doctors/disease-incidence. Suppose y1 is disease incidence and y2 is the
number of doctors. It is possible that the more doctors the lesser the disease
incidence (α12 < 0). However, it is also possible that the higher disease
incidence results in the more doctors (α21 > 0). The relationship between
disease incidence and doctors can be simultaneous, or recursive if only one
of α12 and α21 is zero; if both are zero, we get SUR. For policy purpose, the
hypothesis of interest would be α12 = 0: no deterring effect of doctors on
disease incidence.

Yet another relation “weaker” than simultaneous relation can be seen in
an “expectation-based relation” as in

y1 = α12y2 + x′1β1 + u1, y2 = α21E(y1|x) + x′2β2 + u2,

α12, α21 = 0, E(uhx) = 0, h = 1, 2

where the expected value of y1, not y1 per se, affects y2. In the doctor/disease
example, more doctors may be deployed in advance if a higher disease inci-
dence is expected. The model can be transformed into simultaneous relation
by rewriting the second equation as

y2 = α21y1 + x′2β2 + u2 − α21(y1 − E(y1|x))

where the error term is u2−α21(y1−E(y1|x)). This can be estimated by IVE
with x as instruments for y1 because E[x{u2 − α21(y1 − E(y1|x))}] = 0. If
desired, we can certainly entertain the possibility that E(y2|x) instead of y2

appears in the y1 equation. Since simultaneous relation is the most general,
we will examine simultaneous relation in detail in the the next subsection.

A long-winded, but more informative way to look at E(y1|x) is invoking
“rational expectation.” To find E(y1|x), substitute the y2 “structural form”
(SF) into the y1 SF to get

y1 = α12{α21E(y1|x) + x′2β2 + u2} + x′1β1 + u1

= α12α21E(y1|x) + x′1β1 + x′2β2α12 + (u1 + α12u2);

The “original” y1 and y2 equations are called SF’s, relative to their RF’s; the
y2 RF is derived below. Take E(·|x) to obtain, assuming α12α21 = 1,

E(y1|x) = α12α21E(y1|x) + x′1β1 + x′2β2α12

=⇒ E(y1|x) =
x′1β1 + x′2β2α12

1 − α12α21
.

The fact that we used both SF’s to obtain E(y1|x) means that we appealed
to the rational expectation principle: the economic agent knows the entire
economic system in forming their expectations.
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Substitute E(y1|x) back into the y2 SF to obtain

y2 =
α21

1 − α12α21
(x′1β1 + x′2β2α12) + x′2β2 + u2

= x′1β1

α21

1 − α12α21
+ x′2β2(1 +

α12α21

1 − α12α21
) + u2

= x′1β1

α21

1 − α12α21
+ x′2β2

1
1 − α12α21

+ u2.

This is the y2 RF, as neither y1 nor E(y1|x) appears on the rhs. In the y2

RF, the RF parameters are functions of the SF parameters, and x1 appears
which is not in the y2 SF.

2.2 Conventional Approach to Rank Condition

We already saw two and three simultaneous equations. More generally,
suppose we have H-many SF equations:

Γ
H×H

yi
H×1

− B
H×K

xi
K×1

= ui
H×1

,

where E(u⊗x) = 0, Γ is invertible, E(xx′) is of full rank, yi is the “endogenous
variables,” xi is the “exogenous variables,” Γ and B are the “SF parameters,”
and ui is the SF error possibly correlated to one another. Sometimes, we call Γ
the “endogenous SF parameters”, and B the “exogenous SF parameters.” In
simultaneous equations, the aim is to learn about the SF parameters. Solving
the SF equations for yi, we get the RF equations

yi = Γ−1Bxi + Γ−1ui = Πxi + vi,

where Π ≡ Γ−1B, vi ≡ Γ−1ui, Π is the RF parameters, and vi is the RF
errors. Even if the components of ui are uncorrelated to one another, those
of vi are correlated in general.

For example, consider two simultaneous equations:

y1 = α12y2 + β11 + β12x2 + β13x3 + β14x4 + u1,

y2 = α21y1 + β21 + β22x2 + β25x5 + u2,

β13 = 0, β14 = 0, and β25 = 0,

where

y1 = wife work hours, y2 = husband work hours,
x2 = household wealth, x3 = number of preschool kids,
x4 = number of primary school kids,
x5 = husband schooling years.

Presumably, y1 and y2 are chosen jointly by the couple, maximizing the house-
hold utility; the y1 equation (y2 equation) may be thought of as a linear
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approximation to the first-order condition wrt y1 (y2) for the maximization
problem.

Getting the RF equation for y1 with γ ≡ (1 − α12α21)−1, we get

y1 = α12 · (α21y1 + β21 + β22x2 + β25x5 + u2) + β11 + β12x2

+ β13x3 + β14x4 + u1

= γ · {(α12β21 + β11) + (α12β22 + β12)x2 + β13x3 + β14x4

+ α12β25x5 + u1 + α12u2}.

Doing analogously, we can get the RF for y2. Since both RF’s are linear
functions of x ≡ (1, x2, x3, x4, x5)′ and (u1, u2)′, they can be written as

y1 = π11 + π12x2 + π13x3 + π14x4 + π15x5 + v1,

y2 = π21 + π22x2 + π23x3 + π24x4 + π25x5 + v2.

The RF parameters and error terms depend on the SF parameters and errors.
For example, comparing π11 and v1 to the intercept and the error in the y1

SF with γ in, we have

π11 = γα12β21 + γβ11 and v1 = γu1 + γα12u2.

If our only goal is predicting the (equilibrium) value of y1 and y2, the
RF’s would be enough, which cannot, however, answer causal questions such
as how the number of policeman affects the crime rate. The RF’s are enough
for the query “which values of y1 and y2 are to be attained in the system,”but
for the query on the effects of y2-intervention on y1, we need the SF’s.

In MOM, we estimate the SF parameters directly in a single step, either
with a system IVE/GMM or with their separate versions for each equation.
But, they can be estimated also in two steps using the relation between the
SF and RF parameters embodied in

Π ≡ Γ−1B.

Specifically, first estimate Π with, say, the LSE Π̃; then a two-stage SF esti-
mator (Γ̃, B̃) can be obtained if Π̃ ≡ Γ̃−1B̃ can be solved for Γ̃ and B̃. Thus,
whether Π ≡ Γ−1B can be solved for the SF parameters Γ and B is called
the identification (ID) issue in simultaneous equations. The key conditions
for the ID are the order and rank conditions, which have been shown already
to some extent. In the following, we take a different approach drawing on
Lee and Kimhi (2005). This will turn out to be helpful later for simultaneous
systems with limited dependent variables.

2.3 Simpler Approach to Rank Condition

SF equation h can be written such that xi appears in the regression
function; let xi be a K×1 vector. Define the K×kh selection matrix Sh such
that

x′hi
1×kh

= x′i
1×K

· Sh
K×kh

;
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Sh is a known matrix consisting of ones and zeros. With both xi and xhi

having 1 as their first element, the first row of Sh is (1, 0, ..., 0) ∀h. For
example, if K = 3, xi = (1, pi, qi)′, kh = 2 and xhi = (1, qi)′, then

Sh =

⎡⎣ 1 0
0 0
0 1

⎤⎦ and x′hi = x′iSh is [1, qi] = [1, pi, qi]

⎡⎣ 1 0
0 0
0 1

⎤⎦ .

Using Sh, SF h can be written as

yhi =
H∑

m=1,m �=h

αhmymi + x′iShβh + uhi,

whereas RF h can be written as

yhi = x′iηh + vhi.

Now insert all RF’s into SF h to get

x′iηh + vhi =
H∑

m=1,m �=h

αhm(x′iηm + vmi) + x′iShβh + uhi

= x′i

⎛⎝ H∑
m=1,m �=h

αhmηm + Shβh

⎞⎠ +

⎛⎝ H∑
m=1,m �=h

αhmvmi + uhi

⎞⎠ .

Pre-multiply both sides by xi and take expectation to get rid of the error
terms. Since E(xix

′
i) is of full rank, the resulting equation is equivalent to

ηh =
H∑

m=1,m �=h

αhmηm + Shβh, h = 1, ...,H.

This equation links the RF parameters ηh’s to the SF parameters αhm’s and
βh’s.

Since the RF parameters are easily identified and Sh is a known matrix,
imagine the LSE of

ηh on Dh ≡ (η1, ..., ηh−1, ηh+1, ..., ηH , Sh)

to estimate αh1, ..., αh,h−1, αh,h+1, ..., αhH and βh. Since the dimension of Dh

is K × (H − 1 + kh), we need D′hDh to be of full column rank for this LSE.
That is, the rank condition should hold:

rank(Dh) = H − 1 + kh.

The order condition, which is a necessary condition for the rank condition,
is that the column dimension of Dh should be equal to or smaller than the
row dimension:

H − 1 + kh ≤ K.
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To better appreciate the order condition, rewrite it as

H − 1 ≤ K − kh.

H−1 is the number of the included endogenous variables in SF h, and K−kh

is the number of the excluded exogenous variables from SF h. The order con-
dition requires that the former be less than or equal to the latter. Essentially,
the latter are used as instruments for the former, and the order condition is
nothing but the requirement that there be enough instruments.

The rank condition is not easy to check: even if rank(Dh) < H − 1−kh,
rank(D̂h) = H − 1 − kh is possible for a consistent estimator D̂h for Dh

as D̂h is not exactly equal to Dh. But the order condition is easy to check
and should be checked out for each SF equation. For instance, consider SF
j (= H) with αjH = 0 to have only H − 2 included endogenous variables.
Then the order condition for SF j is H − 2 ≤ K − kj .

2.4 Avoiding Arbitrary Exclusion Restrictions*

In simultaneous equations, exclusion restrictions are crucial, as obvious
from the preceding subsections. Typically, the researcher imposes them on
an intuitive ground and tries to convince the reader why the assumptions are
plausible. Is there any way to derive exclusion restrictions from the data at
hand? The answer is a qualified yes, and here we explain how it can be done,
drawing on Lee and Chang (2007) who present an empirical illustration using
the house sale data.

2.4.1 Grouping and Assigning

Consider two SF equations:

SF1: y1 = α1y2 + x′1β1 + x′cγ1 + u1, α1 = 0
SF2: y2 = α2y1 + x′2β2 + x′cγ2 + u2, α2 = 0

where xj is a kj × 1 exogenous regressor vector, j = 1, 2, such that x1 and x2

share no common elements, xc is a kc×1 exogenous regressor vector common
to the two SF’s. If α1α2 = 1, then the system is singular; otherwise the
system can be solved for the RF’s. There are two types of decisions involved
in the exclusion restrictions (hence, two types of arbitrariness):

1. Grouping : which variables to remove jointly (two groups of
variables are needed);

2. Assigning : which group to remove from which equation.

The main idea to avoid arbitrary exclusion restrictions is examining the
ratios of the two RF estimates. For this, we will say that two exogenous
regressors belong to the same group if their RF ratios are the same, and call
an exogenous regressor a “loner” if it does not belong to any group. As will
be shown below, the RF ratios satisfy the following:
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• First, if both SF’s are over-identified, then there are two groups and a
loner/loners in the RF ratios.

• Second, if one SF is over-identified and the other SF is just-identified,
then there are only one group and a loner/loners.

• Third, if both SF’s are just-identified, then there are only loners.

Hence, examining the RF ratios provide valuable information for the grouping
part of the exclusion restrictions. As for the assigning part, there is yet no
clear-cut rule to apply. But the empirical example in Lee and Chang (2007)
showed that some practical answers, if not the solutions, are available.

Define
θ ≡ 1 − α1α2.

Assuming α1α2 = 1, solve the SF’s to get their RF’s:

y1 =
1
θ
{x′1β1 + x′c(γ1 + α1γ2) + x′2α1β2 + u1 + α1u2}

y2 =
1
θ
{x′2β2 + x′c(γ2 + α2γ1) + x′1α2β1 + u2 + α2u1}

=⇒ RF1: y1 = w′η1 + v1 and RF2: y2 = w′η2 + v2

defining w, η1, η2, v1, and v2 appropriately such that w is the system exoge-
nous regressors, η1 and η2 are the RF parameters, and vj ’s are the RF error
terms.

From the RF’s involving θ, we can see that the ratios of the coefficients
of RF1 and RF2 for x1 is α−1

2 because the x1 coefficient in RF1 is β1/θ and
the x1 coefficient in RF2 is α2β1/θ; analogously, the ratios for x2 is α1—the
ratios can be anything for xc. Hence we get the following structure on the
RF ratios:

x1 : α−1
2 , x2 : α1, xc : possibly all different.

Thus, examining the ratios of RF1 and RF2 is informative for learning about
the SF exclusion restrictions. In the following, we examine various possi-
bilities of the RF ratio structures, assuming that there are six exogenous
regressors w1, ..., w6.

2.4.2 Patterns in Reduced-Form Ratios

Two Groups and Some Loners

Suppose that the ratios of the RF coefficients for w1, ..., w6 are

0.5, 0.5, 3, 3, 10, 20;
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these ratios are “pure” numbers as they are unit-free. The first group (w1, w2)
must be in one SF, the second group (w3, w4) in the other SF, and the
loners w5 and w6 in both SF’s. Turning to assigning, if we have a prior
knowledge that (w1, w2) should be excluded from SF1, then the following
SF’s are obtained from two linear combinations of the RF’s:

y1 − 0.5y2 = ... no (w1, w2) and y1 − 3y2 = ... no (w3, w4)

=⇒ y1 = 0.5y2+, ... no (w1, w2) and y2 =
1
3
y1+, ... no (w3, w4).

Hence, α1 = 0.5 and α2 = 1/3 in the SF’s. This display shows that it is wrong
to start with a SF excluding, for instance, w1 and w3 together. Excluding
(w1, w2) from SF1 is equivalent to solving the y1 − 0.5y2 equation for y1,
not for y2; if we exclude (w1, w2) from SF2, we would solve the y1 − 0.5y2

equation for y2.

One Group and Some Loners

Suppose we have the following RF ratios:

0.5, 0.5, 3, 10, 20, 30.

In this case, (w1, w2) should be removed together from a SF that is over-
identified, and one variable out of (w3, ..., w6) should be removed from the
other SF that is just-identified. Differently from the two-groups-and-some-
loner case, however, now it is not clear at all which one to choose among
w3, ..., w6 to exclude from the just-identified SF. In this sense, just-identified
SF’s are more arbitrary than over-identified SF’s, although the former may
look less restrictive excluding only a single variable than the latter. Depending
on the arbitrary choice of a single variable to exclude, the just-identified SF
parameter will be different. Suppose we exclude (w1, w2) from SF1 and w6

from SF2. Then we get the following SF’s:

y1 − 0.5y2 = ... no (w1, w2) and y1 − 30y2 = ... no w6

=⇒ y1 = 0.5y2+, ... no (w1, w2) and y2 =
1
30

y1+, ... no w6.

All Loners

Now suppose we have no group structure whatsoever in the RF ratios;
for instance,

0.5, 1, 3, 10, 20, 30.

In this case, we can obtain two just-identified SF’s by removing any two
variables. Depending on which ones are removed, the SF coefficients will be
different. Suppose we remove w1 and w2 to get

y1 − 0.5y2 = ... no w1 and y1 − y2 = ... no w2

=⇒ y1 = 0.5y2+, ... no w1 and y1 = 1 · y2+, ... no w2.
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Imagine that w1 is a policy variable which can be controlled to attain some
target level of y1 or y2. The y1 −0.5y2 equation simply shows that we cannot
hit the two targets (y1 and y2) freely with one “tool” w1: no matter how we
choose w1, still y1 and y2 will maintain the relationship y1 − 0.5y2 because
w1 is absent in the y1−0.5y2 equation. This seems rather trivial. It would be
more interesting to see the relationship y1 − 0.5y2 between y1 and y2 being
undisturbed even if we control multiple tools, which will be the case if the
tools are removable together. That is, viewed from the RF’s, over-identified
SF’s are meaningful while just-identified SF’s are not. Put it differently, re-
moving one regressor can be always done with a linear combination of the y1

and y2 RF as in

y1 + λy2 = w′(η1 + λη2) + v1 + λv2,

which is thus trivial, whereas removing multiple regressors with a single lin-
ear combination requires a group structure in the RF ratios, which is thus
nontrivial.

One Group Without any Loner

Suppose we have

0.5, 0.5, 0.5, 0.5, 0.5, 0.5 :

only one group without any loners. In this case, the only possible linear
combination of y1 and y2 is y1−0.5y2 to yield “no exogenous-variable relation”

y1 − 0.5y2 = v1 − 0.5v2.

If we try to get two SF’s out of this, the only way is solving this single
equation twice for y1 and y2 respectively, which then yields the following
singular system with α1α2 = 1:

y1 = 0.5y2 + v1 − 0.5v2 and y2 = 2y1 + (v2 − 2v1).

Note that the correlation coefficient between the two SF error terms is −1.
This singular system is interesting in that no matter how we control all
exogenous variables, still we cannot change the structural relationship y1 −
0.5y2 in the singular system. Equation y1 − 0.5y2 = v1 − 0.5v2 can be viewed
as an “equilibrium (or stable)” relationship between y1 and y2: regardless of
the controllable variables, y1 and y2 will maintain the relation y1 − 0.5y2 =
v1 − 0.5v2.

2.4.3 Meaning of Singular Systems

The concept of singular relationship can be applied also to the above one-
group-and-some-loner case. Suppose we are not sure of the assigning decisions
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in that case. Then the only sensible thing to do is to remove w1 and w2 and
present the result as

y1 − 0.5y2 = ... no (w1, w2), ... + v1 − 0.5v2

without trying to solve this for y1 nor for y2. This display depicts a “condi-
tionally (on w3, ..., w6) stable relationship” between y1 and y2, showing that,
even if we control the two exogenous variables w1 and w2, we cannot hit the
two targets y1 and y2 freely. This is because the two control variables affect
y1 and y2 in the (proportionally) same way. If we solve this display twice first
for y1 and then for y2, we will get two singular SF’s. Here the point is that
singular SF’s are not useless; we just have to take “one half” of them and
interpret a singular system as a stable relation between the response variables
that is invariant to certain regressor changes. This statement may answer the
query of how to interpret a singular simultaneous equation system.

Although formally extending above RF-ratio-based approach to three or
more SF’s is not available yet, it is still possible to use the above approach
when there are more than two SF’s. Suppose y1 has y2, y3, ..., yJ as the en-
dogenous regressors with coefficients α12, α13, ..., α1J . Then (y3, ..., yJ ) can be
substituted out with their RF’s to leave only y2 (and y1), with which α12 can
be estimated by our method. Analogously, (y2, y4, ..., yJ ) can be substituted
out to leave only y3 (and y1), with which α13 can be estimated, and so forth.
This is somewhat long-winded, but it shows that the approach is viable for
more than two SF’s as well.

In short, there are two ways to get SF’s. One is building and estimating
SF’s first, say with IVE for each equation, and then obtaining their RF’s—
call this “top down.” The other is building and estimating the RF’s first and
then deriving the SF’s—call this “bottom-up.” Since we would have more
confidence in the bottom-up RF’s, if these RF’s contradict the top-down
RF’s, then we would conclude an error in the top-down SF’s. The proce-
dure in this subsection in essence suggests to go “bottom-up” in getting
SF’s rather than “top-down” as usually done. There will be then no risk
of spending much time on building SF’s first, only to see them negated by
a disagreement between their derived top-down RF’s and the directly built
bottom-up RF’s.

3 Methods of Moments for Panel Data

Panel data models such as

yit = x′itβ + δi + uit, i = 1, ..., N , t = 1, ..., T ,

δi is a time-constant error have appeared already. Typically, if δi is assumed
to be uncorrelated with xit, the model is called a “random effect model”;
otherwise, it is called a “fixed effect model .” But these names are misnomers,



76 Ch. 2 Methods of Moments for Multiple Linear Equation Systems

as they do not mean what they are supposed to mean. “Unrelated effect
models” and “related effect models” are better names. In the former, the main
issue is how to estimate the model more efficiently to take advantage of the
error term structure δi +uit. In the latter, the main issue is how to overcome
the endogeneity problem. As the latter seems far more important than the
former, we will discuss mostly the latter in this section while touching upon
the former on a couple of occasions.

Other than having more observations than in a cross-section, the main
attraction of panel data is its ability to handle endogenous regressors. Suppose
that the only source of endogeneity is some components, say mit, of xit being
related to δi. Then the first-differenced model

Δyit = Δx′itβ + Δuit

can be estimated with LSE. A problem with this model-differencing (or
“error-differencing”) approach, however, is that all time-constant regressors
are removed along with δi and consequently their effect cannot be assessed.
Also the temporal variations of xit and yit tend to be small relative to the
interpersonal variation and, consequently, none of the estimation results in
the differenced model may come out significant.

If mit = gi(δi) + λit for a function gi(·) where COR(λit, δi) = 0, then
there is another approach available to deal with COR(mit, δi) = 0: use
Δmit = mit−mi,t−1 = λit−λi,t−1 as an instrument for the original model in
levels, not for the differenced model. This “regressor-differencing” approach
can estimate the effects of time-constant regressors. Of course, there are other
sources for endogeneity—relations between some of xi1, ..., xiT to some of
ui1, ..., uiT —but the two approaches to deal with δi provide a convenient
forum to discuss panel data estimation on, which is the topic of this section.

In panel data, each period cross-section data is called a “wave,” and to
simplify exposition, we will often set T = 3 (“three-wave panel”). Assume
that {(x′it, yit)′, t = 1, ..., T} are iid across i while allowing for arbitrary
dependence and heteroskedasticity across t within a given i. Assume that
T is small but N is large so that the asymptotics is applied as N → ∞.
We will first set up our panel data model and then introduce panel IVE and
GMM which are “regressor-differencing.” This will then be followed by “error-
differencing” approaches as above. After these approaches are examined, we
will turn to “random effect” models. This section draws partly on Lee (2002).

3.1 Panel Linear Model

3.1.1 Typical Panel Data Layout

Although the model yit = x′itβ + δi + uit is convenient for exposition,
the actual implementation of panel data estimation requires a more detailed
modeling. For this, suppose

yit = τ t
1×1

+ c̃′i
1×kc̃

α̃ + x′it
1×kx

β + δi + uit
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where τ t, α̃, and β are the parameters to estimate, c̃i is a time-constant
regressor vector, xit is a time-variant regressor vector, δi is a time-constant
error, and uit is a time-varying error. The error term decomposition δi + uit

does not necessarily mean COR(δi, uit) = 0. For example, if uit = δiεit for
some time varying εit, then COR(δi, uit) = 0 in general. An example for the
linear model is

yit : hourly ln(wage) of men aged 40–60 at t = 1

τ t : effect of the economy on yit common to all i

c̃i : race, schooling years

xit : work hours, local unemployment rate, self-employment dummy

δi : genes and innate ability/IQ

uit : unobserved time variants such as detailed residential location informa-
tion

Define further

k̃ ≡ kc̃ + kx, γ̃ ≡
[

α̃
β

]
, w̃it ≡

[
c̃i

xit

]
, vit ≡ δi + uit,

to compactly rewrite the model as

yit = τ t + w̃′it
1×k̃

γ̃ + vit.

Stack the equations for unit i across t = 1, ..., T :⎡⎢⎣ yi1

...
yiT

⎤⎥⎦ = IT

⎡⎢⎣ τ1

...
τT

⎤⎥⎦ +

⎡⎢⎣ c̃′i
...
c̃′i

⎤⎥⎦ α̃ +

⎡⎢⎣ x′i1
...

x′iT

⎤⎥⎦β +

⎡⎢⎣ δi

...
δi

⎤⎥⎦ +

⎡⎢⎣ ui1

...
uiT

⎤⎥⎦
where IT is the time dummy variables to estimate τ t’s which may be called
“period-specific intercepts.” In view of the stacked variables, define

yi
T×1

≡

⎡⎢⎣ yi1

...
yiT

⎤⎥⎦ , x′i
T×kx

≡

⎡⎢⎣ x′i1
...

x′iT

⎤⎥⎦ , and ui
T×1

≡

⎡⎢⎣ ui1

...
uiT

⎤⎥⎦ .

A typical panel data set is made up of yi, c̃i and x′i along with time
dummies. For the wage example, the first six lines of a three-wave panel data
for individual 1 and 2 look like Table 2. In the table, the wage column is for
yi; “td2” and “td3” are the time dummies for period 2 and 3, respectively;
“unity” is the usual unity regressor in cross-section regression; race and edu-
cation columns are for c̃i; work-hr (work hour), ur (local unemployment rate),
and self (self-employment or not) are for x′i. Having td2, td3 and unity are
equivalent to having td1 (time dummy for period 1), td2, and td3 as will be
shown shortly.
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Table 2: An Example of Three-Wave Panel Data

i
wage
($/hr) td2 td3 unity race

education
(yr)

work-hr/
week ur (%) self

1 8.8 0 0 1 1 14 42 5.4 1
1 8.2 1 0 1 1 14 45 4.6 0
1 3.2 0 1 1 1 14 27 4.5 1
2 17.4 0 0 1 0 13 32 7.8 0
2 15.7 1 0 1 0 13 33 7.2 0
2 17.7 0 1 1 0 13 34 6.7 0

3.1.2 Panel Model with a Cross-Section Look

Our desire is to express the panel data model in such a way that it looks
like the usual cross-section data model, as we have done in preceding sections.
This requires more notations as follows.

Define

τ
T×1

≡

⎡⎢⎣ τ1

...
τT

⎤⎥⎦ , Δτ
(T−1)×1

≡

⎡⎢⎣ τ2 − τ1

...
τT − τ1

⎤⎥⎦ ,

τ∗
T×1

≡
[

Δτ
τ1

]
=

⎡⎢⎢⎢⎣
τ2 − τ1

...
τT − τ1

τ1

⎤⎥⎥⎥⎦
mT

T×(T−1)
≡ the second to the last columns of IT .

Observe the following equivalent parameterization for τ when T = 3:⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦⎡⎣ τ1

τ2

τ3

⎤⎦ = I3τ =

⎡⎣ 0 0 1
1 0 1
0 1 1

⎤⎦⎡⎣ τ2 − τ1

τ3 − τ1

τ1

⎤⎦
= (m3, 13)τ∗;

for a generic T , IT τ = (mT , 1T )τ∗. We can estimate τ using IT as the regres-
sors, or equivalently, estimate τ∗ using (mT , 1T ) as the regressors.

Define

wit ≡
[

1
w̃it

]
=

⎡⎣ 1
c̃i

xit

⎤⎦ =
[

ci

xit

]
, ci

kc×1
=

[
1
c̃it

]
, and k ≡ kc + kx

With the kc × T matrix

1′T ⊗ ci = [ci, ..., ci],
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the model can be further written as

yi
T×1

= mT
T×(T−1)

· Δτ
(T−1)×1

+ (1′T ⊗ ci
T×kc

)′α + x′i
T×kx

β + 1T δi + ui
T×1

,

where α
kc×1

≡
[

τ1

α̃

]

= mT Δτ + w′i
T×k

γ + vi, where w′i ≡ ((1′T ⊗ ci)′, x′i),

γ
k×1

≡
[

α

β

]
, vi

T×1
≡ 1T δi + ui.

= q′i
T×(k+T−1)

η + vi, where q′i ≡ (mT , w′i), η
(k+T−1)×1

≡
[

Δτ

γ

]
.

In this final form, (yi, q
′
i) corresponds to the above table entries. If T = 1, then

Δτ = 0 and (1′1⊗ci)′ = c′i: we get the usual cross-section model yi = w′iγ+vi.

3.1.3 Remarks*

The above panel model allows endogenous regressors including lagged
response variables yi,t−1, yi,t−2, ... But using these as regressors requires a
justification; models with lagged response variables in the regressors are said
to be “dynamic.” Sometimes, yit may truly depend on yi,t−1. One example
is that the current wage yit may be determined by the previous wage yi,t−1

plus some adjustment term. Another example is that the current consumption
amount of a good depends on the previous consumption amount. Other than
for these true “state dependence” cases, yi,t−1 are sometimes used to control
for unobserved variables (both time-constant or time-variant) when wit is not
adequate to explain yit. Dynamic models need “care” as can be seen in the
following.

As a regressor, yi,t−1 is necessarily endogenous regardless of any assump-
tion on δi. For instance, consider a simple dynamic model

yit = αyi,t−1 + δi + uit, where |α| < 1

{ = α(αyi,t−2 + δi + ui,t−1) + δi + uit

= δi + αδi + uit + αui,t−1 + α2yi,t−2}.

By repeatedly substituting away the lagged responses, yit can be written
as a sum of all past errors and δi. Because yi,t−1 = αyi,t−2 + δi + ui,t−1

includes δi which is also in δi + uit, yi,t−1 is an endogenous regressor in
the dynamic model. Here a regressor-differencing approach is applicable:
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Δyi,t−1 ≡ yi,t−1 − yi,t−2 = ui,t−1 − ui,t−2 can be used as an instrument for
yi,t−1. But the validity of Δyi,t−1 as an instrument depends on the assumption
for the relations among δi, ui1, ..., uiT . If ui1, ..., uiT are iid and independent of
δi, then Δyi,t−1 = ui,t−1−ui,t−2 is independent of δi+uit and thus Δyi,t−1 is a
valid instrument. If COR(uit, ui,t−1) = 0 but COR(uit, ui,t−s) = 0 for ∀s ≥ 2
while ui1, ..., uiT are still independent of δi, then Δyi,t−2 = ui,t−2 − ui,t−3 is
a valid instrument whereas Δyi,t−1 is not.

One may wonder if using all time dummies instead of using only unity as
in cross-section data is indeed necessary. To answer this query, assume that
Et(uit) ≡

∫
cft(c)dc may be a function of t where ft is the density of ut at

time t. Rewrite the model yit = τ t + c̃′iα̃ + x′itβ + δi + uit as

yit = {τ t + E (δi) + Et(uit)} + c̃′iα̃ + x′itβ + {δi + uit − E (δi) − Et(uit)}

where the period-specific intercept is now τ t + E (δi) + Et(uit) and the new
error term has mean zero by construction. With 1 used as an instrument for
vit = δi + uit ∀t, which is equivalent to using the time dummy matrix IT as
a regressor for the yi equation, we get to estimate τ t + E (δi) + Et(uit), not
τ t (if all time dummies are not used, then it may happen that Et(vit) = 0
for some t). Redefining δi as δi − E (δi), uit as uit − Et(uit), and τ t as
τ t +E (δi)+Et(uit), we get back to the model yit = τ t + c̃′iα̃+x′itβ + δi +uit

where the error term has zero mean for all periods. We will stick to this model
with all time dummies and all zero-mean errors.

It is helpful to think of how a panel data set gets generated for two period
case. Denote the density/probability of λ|(μ = μo) as “L(λ|μo)” for a while.
In the first period, (c̃i, δi) gets drawn from L(c̃, δ) to be fixed throughout
all periods; then (xi1, ui1) gets drawn from L(x1, u1|c̃i, δi); and adding τ1

to c̃′iα̃ + x′i1β + δi + ui1 yields yi1. It goes without saying that if (x1, u1) �
(c̃, δ), then (xi1, ui1) gets drawn from L(x1, u1). Also note that τ1 may be
drawn from a distribution, but this is inconsequential, as τ1 will be estimated.
Drawing from L(x1, u1|c̃i, δi) can be further decomposed into drawing first
from L(x1|c̃i, δi) and then from L(u1|xi1, c̃i, δi).

In the second period, (xi2, ui2) gets drawn from L(x2, u2|c̃i, δi) which
may differ from L(x1, u1|c̃i, δi), and adding τ2 to c̃′iα̃ + x′i2β + δi + ui2 yields
yi2. More generally, (xi2, ui2) may get drawn from L(x2, u2|xi1, ui1, c̃i, δi). In
this case, L(x2, u2|xi1, ui1, c̃i, δi) differs from L(x1, u1|c̃i, δi) in general. Hence
the joint density/probability for each person is

L(x2, u2, x1, u1, c̃, δ) = L(x2, u2|x1, u1, c̃, δ) · L(x1, u1|c̃, δ) · L(c̃, δ).

From this, L(u2) and L(u1) can be found, with which E2(u2) and E1(u1) can
be obtained. Also from this display, we get the joint density/probability for
the observed variables L(y2, x2, y1, x1, c̃); the observations are iid draws from
this.
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3.2 Panel GMM and Constructing Instruments

3.2.1 Panel IVE and GMM

With some moments conditions, we can estimate η in yi = q′iη +vi. Sup-
pose we have E(ztvt) = 0, t = 1, ..., T , where zt is the period-t instruments.
The reader should specify (and justify) each zt essentially in the same way
an instrument vector is specified in the usual cross-section IVE. This could
be the most difficult step, but suppose this has been done—we will discuss
finding zt shortly. Let

zi
K×T

≡

⎡⎢⎣ zi1 0 0

0
. . . 0

0 0 ziT

⎤⎥⎦ =⇒ E(zv) =

⎡⎢⎣ E(z1v1)
...

E(zT vT )

⎤⎥⎦ = 0.

Assume K ≥ k + T − 1: there are at least as many moment conditions as the
number of parameters.

With the moment conditions, the panel IVE and GMM for yi = q′iη + vi

is

hive =

⎧⎨⎩∑
i

qiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziq
′
i

⎫⎬⎭
−1

·

∑
i

qiz
′
i

(∑
i

ziz
′
i

)−1 ∑
i

ziyi

hgmm =

(∑
i

qiz
′
iC
−1
N

∑
i

ziq
′
i

)−1 ∑
i

qiz
′
iC
−1
N

∑
i

ziyi

where CN ≡ 1
N

∑
i

ziv̂iv̂
′
iz
′
i and v̂i ≡ yi − q′ihive;

√
N(hgmm − η) � N(0, Cgmm) where(

1
N

∑
i

qiz
′
i · C−1

N · 1
N

∑
i

qiz
′
i

)−1

→p Cgmm.

With ṽi ≡ yi − q′ihgmm, the GMM over-id test statistic for H0 : E(zivi) = 0
is (

1√
N

∑
i

ziṽi

)′(
1
N

∑
i

ziṽiṽ
′
iz
′
i

)−1
1√
N

∑
i

ziṽi � χ2
K−(k+T−1)

Note that N−1
∑

i v̂iv̂
′
i shows the auto-correlation pattern of vi1, ..., viT . Due

to δi present in all of vi1, ..., viT , vi1, ..., viT are auto-correlated even if ui1, ...,
uiT are not.
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3.2.2 Instrument Construction

Turning to the specifics of constructing z, suppose xt has strictly exo-
geneity (EXO) wrt vt in the sense that xt is uncorrelated with vt at all leads
and lags. Then all of (x′1, x

′
2, x

′
3) get included in all of z1, z2, and z3. For

instance, for T = 3 and c having EXO wrt vt as well, set

z = diag{(x′1, x′2, x′3, c′)′, (x′1, x′2, x′3, c′)′, (x′1, x′2, x′3, c′)′}
= I3 ⊗ (x′1, x

′
2, x

′
3, c

′)′
{3·(kx·3+kc)}×3

.

But the dimension of z can be too high if T is large, which means too long
a time to implement IVE and GMM. Also EXO assumption might be too
strong.

An often-used assumption weaker than EXO is predeterminedness (PRE):
COR(xs, vt) = 0 ∀s ≤ t. This allows the economic agents to modify its fu-
ture regressors after observing the current or past error terms. For instance,
observing soil quality vt, farmers may adjust their future fertilizer levels xt to
affect the output yt. In rational expectation models, E(vt|x1, ..., xt) = 0 is as-
sumed, which allows PRE; compare this to E(vt|x1, ......, xT ) = 0 which rules
out PRE as COR(vt, xT ) = 0 is not allowed. To illustrate moment conditions
under PRE, suppose c is EXO. Then set

z = diag{w1, (x′1, w
′
2)
′, (x′1, x

′
2, w

′
3)
′};

compare this to the above z for the EXO case.
A further modification may be needed in practice. For instance, if si-

multaneity is a concern, then further weakening PRE, we may adopt only
COR(xs, vt) = 0 ∀s < t, which allows a contemporaneous relation between
xt and vt. An often-encountered problem in practice of panel IVE and GMM
is near singularity due to some time variants having little variation over time.
For example, if the time span for the panel is short, marriaget may change
very little over time. When T = 3, using all of marriage1, marriage2, and
marriage3 as three separate instruments may result in N−1

∑
i ziz

′
i near sin-

gular. If this problem occurs, then treat marriaget as time invariant when
used as instruments; i.e., use only marriage1 as an instrument in c. Another
variable that requires care is age which varies across i and t, but only in
a deterministic way for t; treating age as time variant can cause a trouble
as will be shown later. In the following, we provide a more specific example
using the wage case with T = 3, where the subscript i will not be omitted to
prevent confusion.

3.2.3 Specific Examples of Instruments

Suppose δi is ability, IQ, or productivity, and yit is hourly wage to be
explained by time-constant ci and time variants xit where
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ci : 1, RC (race), ED (education in years),

xit : WH (working hours), UR (local unemployment rate), SF (1 if self-
employed and 0 otherwise),

uit : Residential location.

In this example, δi may be observable to the employer of individual i but not
to econometricians. Comparing vit = δi + uit with ci and xit, suppose the
following holds:

(a) RCi is not correlated with vit.

(b) EDi is correlated with vit only through δi.

(c) URit is not correlated with vit.

(d) SFit is correlated with vit only through δi.

(e) WHit is correlated with vit only through uit.

The best way to understand these would be pointing out when these assump-
tion might not hold. In (a), COR(RCi, δi) = 0 and COR(RCi, uit) = 0, but
the former will not hold if certain race is innately less (or more) productive,
and the latter will not hold if residential location is informative for race.
In (c), COR(URit, vit) = 0 will not hold if residential location is correlated
with URit. In (d), COR(SFit, δi) = 0 is allowed (self-employed people may be
more able because they can survive on their own, or less able if nobody wants
to hire them), but (d) would not hold if residential location is informative for
SFit. In (e), COR(WHit, δi) = 0, but this may not hold if able or productive
people tend to work more (or less).

Suppose we take a simple-minded approach of not using any variable
correlated with vit in any fashion. Then only 1, RCi and URit can be used as
instruments. Because URit is time-variant, we can impose various moment
conditions on URit. Suppose we use PRE type conditions:

E(vit) = 0 ∀t, E(RCivit) = 0 ∀t, E(URisvit) = 0 ∀s ≤ t.

Then,

z′i =

⎡⎣ (1,RCi,URi1) 0
0 (1,RCi,URi1,URi2) 0
0 0 (1,RCi,URi1,URi2,URi3)

⎤⎦
which is block-diagonal with each block as each period instruments. For EXO
type conditions,

E(vit) = 0 ∀t, E(RCivit) = 0 ∀t, E(URisvit) = 0 ∀s, t

=⇒ z′i = I3 ⊗ (1,RCi,URi1, URi2,URi3).
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So far, we might have been too conservative using only 1, RCi, and URit

as instruments that are not related with vit at all. Under some assumptions,
however, we may use WHit and SFit as well, for they are correlated only with
a part of vit. For WHit, assume

E(WHisvit) = 0 ∀s < t

which is PRE without the contemporaneous orthogonality. As for SFit,
suppose

SFit = gi(δi) + λit where COR(λit, δi) = 0.

Any transformation of SFit that removes gi(δi) can be used as instruments:
e.g.,

SFit − SFi,t−1 = λit − λi,t−1 and SFit −
1
T

∑
t

SFit = λit −
1
T

∑
t

λit.

One caution is that, although these differences can be valid instruments in
theory, in practice, the temporal variation of SFit may be too small, or just
a pure “error” independent of endogenous regressors in the model. That is,
what is left in SFit after removing the δi-related part of SFit may not be
much.

Define ΔSFit ≡ SFit − SFi,t−1. Under the PRE type conditions

vi1 is orthogonal to zi1 = (1,RCi, URi1)′

vi2 is orthogonal to zi2 = (1,RCi, URi1,URi2, WHi1, ΔSFi2)′

vi3 is orthogonal to zi3 = (1,RCi, URi1,URi2,URi3, WHi1,WHi2,
ΔSFi2,ΔSFi3)′.

Then z′i = diag(z′i1, z
′
i2, z

′
i3). If we use EXO type conditions for URit, then

zi1 = (1,RCi, URi1,URi2,URi3)′

zi2 = (1,RCi, URi1,URi2,URi3, WHi1, ΔSFi2)′

zi3 = (1,RCi, URi1,URi2,URi3, WHi1,WHi2, ΔSFi2,ΔSFi2)′.

3.3 Within-Group and Between-Group Estimators

3.3.1 Within Group Estimator (WIT)

Define an idempotent and symmetric mean-differencing matrix

QT
T×T

≡ IT − 1
T

1T 1′T .

QT is a mean-subtracting matrix because

QT yi =

⎡⎢⎣ yi1 − ȳi.

...
yiT − ȳi.

⎤⎥⎦ , where ȳi. ≡
1
T

∑
t

yit.
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Multiply yi = mT Δτ + (1′T ⊗ ci)′α + x′iβ + 1T δi + ui by QT :

QT yi = QT mT · Δτ + QT (1′T ⊗ ci)′α + QT x′iβ + QT 1T δi + QT ui.

The mean differencing eliminates the second and fourth terms on the right-
hand side (i.e., all time-constants are removed, observed or not) to leave

QT yi = QT mT · Δτ + QT x′iβ + QT ui = QT w∗′i γ∗ + QT ui,

where
w∗′i

T×(T−1+kx)

≡ (mT , x′i), γ∗ ≡ (Δτ ′, β′)′.

Apply LSE to this model under E(w∗i QT ui) = 0 to get “within-group esti-
mator (WIT)”—a “group” refers to each individual:

gwit =

(∑
i

w∗i QT w∗′i

)−1

·
∑

i

w∗i QT yi,

√
N(gwit − γ∗)� N(0, Cwit),

where Ψ−1
N · 1

N

∑
i

(w∗i QT ûiû
′
iQT w∗′i ) · Ψ−1

N →p Cwit,

ΨN ≡ 1
N

∑
i

w∗i QT w∗′i and QT ûi = QT yi − QT w∗′i gwit.

In WIT, the coefficients of time-constants are not identified, which is the
main weakness of WIT: typically, in practice, there are more time-constant
regressors than time-variant ones. But the advantage of WIT, in addition
to removing δi, can be seen in the following example. In finding the effect
of age on salary with cross-section data, essentially we compare people with
different ages to infer how one person’s salary would change when his/her
own age increases. WIT avoids this type of “less-than-ideal” interpersonal
“level” comparisons.

In WIT, the regressors and the error become, respectively, xit − x̄i. and
uit − ūi., where x̄i. ≡ T−1

∑
t xit and ūi. ≡ T−1

∑
t uit. For these to be

orthogonal, we need EXO. Hence, although panel IVE can be applied to the
model QT yi = QT w∗′i γ∗+QT ui, it is not easy to think of instruments for the
mean-differenced model. Instead, consider the first-differenced model

Δyit = Δx′itβ + Δuit.

For this, PRE E(xisuit) = 0 ∀s ≤ t implies E(ΔxisΔuit) = 0 ∀s ≤ t−1. That
is, if removing δi is not enough to remove all endogeneity problems, then it is
better to first-difference the model and then apply panel IVE/GMM to the
differenced model.

Removing δi requires care in practice, because some time-variants such
as ageit vary over time in a deterministic way: when demeaning or first-
differencing is applied to such variables, demeaned or first-differenced versions
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become linearly dependent on demeaned or first-differenced mT , respectively.
To see this, let T = 3 and compare m3 and ageit before and after mean
differencing:⎡⎢⎣ 0 0 agei1

1 0 agei2

0 1 agei3

⎤⎥⎦ ⇒

⎡⎣ −1/3 −1/3 −1
2/3 −1/3 0

−1/3 2/3 1

⎤⎦ ⇒
[

2/3 −1/3 0
−1/3 2/3 1

]

where the second arrow follows from losing one row in mean differencing
(this is essentially the same as losing one wave in first-differencing). In the
last 2 × 3 matrix, one column is linearly dependent on the other two, and
any one column should be removed to prevent the singularity of the inverted
matrix in gwit. This also holds more generally for T > 3: remove either one
column in mT or ageit from xit.

3.3.2 Between Group Estimator (BET) and Panel LSE and GLS

If we take temporal average of all variables for each individual, then
the time dimension is gone. The LSE to this cross-section data is called
“between-group estimator (BET)” as only between-group variations are used
for estimation. Formally, with q̄i. ≡ T−1

∑
t qit and v̄i. ≡ T−1

∑
t vit, BET is

the LSE applied to

ȳi. = q̄′i.η + v̄i., i = 1, ..., N.

For unbalanced panels—not everybody observed for all periods—BET may
be the easiest estimator to use.

In practice, BET is little different from panel LSE

hlse ≡
(∑

i

qiq
′
i

)−1

·
∑

i

qiyi; with v̂i ≡ yi − q′ihlse,

√
N(hlse − η)� N(0, Clse),(

1
N

∑
i

qiq
′
i

)−1 (
1
N

∑
i

qiv̂iv̂
′
iq
′
i

)(
1
N

∑
i

qiq
′
i

)−1

→p Clse.

BET does averaging across time and then across individuals. In Panel LSE,
qiq

′
i includes summing across time, and there is summing across individuals

as well in
∑

i qiq
′
i. In this regard, both BET and panel LSE use the pooled

panel data, i.e., the data treating each individual’s time-series observations
as if they come from different independent individuals.

Although BET and panel LSE do not take advantage of panel data
structure—they do not deal with δi, not to mention removing δi—they re-
move measurement errors due to the temporal averaging. In practice, one
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may want to weigh the biases due to COR(δi, wit) = 0 and measurement
error in wit. If the latter problem is severe, then BET and panel LSE may be
preferred to WIT and IVE.

Sometimes, under the homoskedasticity assumption

E(viv
′
i|wi1, ..., wiT ) = Ω, a constant matrix,

panel GLS is done using
ΩN ≡ 1

N

∑
i

v̂iv̂
′
i.

The panel GLS is

hgls =

{∑
i

qiΩ−1
N q′i

}−1

·
∑

i

qiΩ−1
N yi;

√
N(hgls − η)� N(0, Clse) where

(
1
N

∑
i

qiΩ−1
N q′i

)−1

→p Cgls.

3.3.3 WIT as Fixed-Effect Estimator*

In the literature, WIT is also called “fixed-effect estimator.” To see why,
suppose we construct the dummy variables for all individuals to estimate
δ1, ..., δN . Since all δi’s are treated as parameters in this approach, δi’s are
called fixed effects. Using the partial regression removing the presence of the
individual dummies from the other variables in the model, we will show that
the partial regression is nothing but WIT in the following. That is, as far as
estimating the WIT parameters γ∗ goes, estimating γ∗ along with δ1, ..., δN

using qi and the individual dummies is exactly the same as estimating γ∗

with WIT.
To show the partial regression claim, it helps to write the model for all

individuals together. For this, define

Y
NT×1

≡

⎡⎢⎣ y1

...
yN

⎤⎥⎦ , C̃
NT×kc̃

≡

⎡⎢⎣ (1T ⊗ c̃′1)
...

(1T ⊗ c̃′N )

⎤⎥⎦ , X
NT×kx

≡

⎡⎢⎣ x′1
...

x′N

⎤⎥⎦ ,

δ
N×1

≡

⎡⎢⎣ δ1

...
δN

⎤⎥⎦ , U
NT×1

≡

⎡⎢⎣ u1

...
uN

⎤⎥⎦ .

For the time effect Δτ , the regressor matrix is

1N ⊗ mT
NT×(T−1)

=

⎡⎢⎣ mT

...
mT

⎤⎥⎦ =⇒ (1N ⊗ mT
NT×(T−1)

) Δτ
(T−1)×1

=

⎡⎢⎣ mT Δτ
...

mT Δτ

⎤⎥⎦ .
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For individual effect δi, the regressor matrix is

D ≡ IN ⊗ 1T
NT×N

=

⎡⎢⎢⎢⎢⎣
1T 0 · · · 0

0 1T 0
...

... 0
. . . 0

0 · · · 0 1T

⎤⎥⎥⎥⎥⎦ =⇒ D

⎡⎢⎣ δ1

...
δN

⎤⎥⎦ =

⎡⎢⎣ 1T δ1

...
1T δN

⎤⎥⎦ .

Since the column sum of IN ⊗ 1T is 1NT , the unity regressor in ci should be
dropped and c̃i should be used instead. Hence the model with all individuals
together becomes

Y = (1N ⊗ mT )Δτ + C̃α̃ + Xβ + Dδ + U.

With

PD ≡ D(D′D)−1D′ and QD = INT − D(D′D)−1D′,

observe

PD = (IN ⊗ 1T ){(IN ⊗ 1T )′(IN ⊗ 1T )}−1(IN ⊗ 1T )′

= (IN ⊗ 1T )(IN ⊗ 1′T 1T )−1(IN ⊗ 1′T )
= (IN ⊗ 1T )(IN ⊗ T−1)(IN ⊗ 1′T ) = IN ⊗ T−11T 1′T

=

⎡⎢⎢⎢⎢⎣
T−11T 1′T 0 · · · 0

0 T−11T 1′T 0
...

... 0
. . . 0

0 · · · 0 T−11T 1′T

⎤⎥⎥⎥⎥⎦

where T−11T 1′T =
1
T

⎡⎢⎣ 1 · · · 1
...

. . .
...

1 · · · 1

⎤⎥⎦ .

Each diagonal block is to compute the temporal mean for each individual.
Multiply this by Y to get

PDY
NT×1

=

⎡⎢⎢⎢⎣
1T ⊗ ȳ1.

T×1

...
1T ⊗ ȳN.

T×1

⎤⎥⎥⎥⎦ =⇒ QDY
NT×1

=

⎡⎢⎣ y1 − 1T ⊗ ȳ1.

...
yN − 1T ⊗ ȳN.

⎤⎥⎦ :

QDY is Y with individual temporal mean subtracted from each element of
Y . A similar statement can be made for QDX. Hence the partial regression
eliminating D is nothing but WIT.



Sec. 3 Methods of Moments for Panel Data 89

As for the time dummy part, it is instructive to observe

PD(1N ⊗ mT ) = (IN ⊗ T−11T 1′T )(1N ⊗ mT )

= 1N ⊗ T−11T 1′T mT

= 1N ⊗ T−11T 1′T−1

(as 1′T mT = 1′T−1; the sum of each time dummy vector is 1)

=⇒ QD(1N ⊗ mT ) = (1N ⊗ mT ) − (1N ⊗ T−11T 1′T−1)

= 1N ⊗ (mT − T−11T 1′T−1).

For instance, when T = 3,

mT − T−11T 1′T−1 =

⎡⎣ 0 0
1 0
0 1

⎤⎦− 1
3

⎡⎣ 1 1
1 1
1 1

⎤⎦ =

⎡⎣ −1/3 −1/3
2/3 −1/3
−1/3 2/3

⎤⎦ .

This is mT minus its temporal mean which is 1/3 for each column of mT .



CHAPTER 3

M-ESTIMATOR AND MAXIMUM

LIKELIHOOD ESTIMATOR (MLE)

Least square estimator (LSE) minimizes an objective function, and the esti-
mator itself is obtained in a closed form. There are many other estimators
maximizing/minimizing some objective functions, but most of them are not
written in closed forms; those estimators, called “M-estimators”, are reviewed
here. Typically, the first-order conditions of M-estimators are moment con-
ditions, and this links M-estimator to MOM estimator/test. A well-known
example of M-estimator is maximum likelihood estimator (MLE), which is
studied in this chapter along with three tests associated with MLE. MOM
tests, some of which are derived from M-estimators, are also examined in this
chapter.

1 M-Estimator

LSE, IVE, and GMM are rare cases where the estimators are written in
closed forms. Often, an estimator is defined implicitly by

bN ≡ argmaxb∈BQN (b),

where B is a (compact) parameter space in Rk, “argmax” means the b max-
imizing Q(b), and

QN (b) ≡ 1
N

∑
i

q(xi, yi, b) =
1
N

∑
i

q(zi, b), where zi ≡ (x′i, yi)′;

This kind of estimators, defined implicitly as a maximand (or minimand) of
a function, is called a “M-estimator” (or “extremum estimator”). The prefix
“M” comes from “M” in MLE, meaning “MLE-like estimator.”

1.1 Four Issues and Main Points

M-estimators abound. For instance, q(z, b) = −(y − x′b)2 yields LSE. If
the regression function is nonlinear in β, say ρ(x, β), then q(z, b) = −{y −
ρ(x, b)}2, which leads to a nonlinear LSE. If q(z, b) = −|y − x′b| where the
function x′b used to predict y is linear but the “outside” function is not,
then we get a “least absolute deviation (LAD)” estimator, which seems more
natural than LSE but less popular due to its relative computational and

Myoung-jae Lee, Micro-Econometrics, DOI 10.1007/b60971 3, 91
c© Springer Science+Business Media, LLC 2010
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analytical difficulties compared with LSE. There are many more examples of
M-estimators yet to appear later, and for this, we will discuss M-estimators in
general terms. To simplify notations, sometimes zi will be omitted in q(zi, b),
or q(zi, b) may be denoted just as qi.

For an M-estimator bN , four questions arise:

1. Identification (ID): for which population parameter is bN designed?

2. Consistency: does bN converge to the parameter, say β?

3. Asymptotic distribution of
√

N(bN −β); if this is normal (as it almost
always is), what is the asymptotic variance?

4. Consistent estimation of the asymptotic variance which involves β
and other unknown components: how do we estimate the variance
then?

In a nutshell, the answers to these questions are as follows: defining
Q(b) = Eq(z, b),

1. ID: bN is designed for β ≡argmaxb∈BQ(b).

2. Consistency: bN →p β.

3. Asymptotic distribution is
√

N(bN − β)� N(0, E−1{qbb′(β)}E{qb(β)qb′(β)}E−1{qbb′(β)})

where E−1(·) = {E(·)}−1, qb′ = q′b, and qb and qbb′ are the first
and second derivative matrices, respectively. The asymptotic vari-
ance takes a “sandwich” form; i.e., E{qb(β)qb′(β)} is sandwiched by
E−1{qbb′(β)}.

4. For estimating the asymptotic variance consistently, one can use{
1
N

∑
i

qbb′(bN )

}−1 {
1
N

∑
i

qb(bN )qb′(bN )

}{
1
N

∑
i

qbb′(bN )

}−1

.

1.2 Remarks for Asymptotic Distribution

Here, three remarks are made for M-estimator asymptotic distribution.
First, assuming that q(z, b) is twice continuously differentiable (i.e., the first-
and second-order derivatives exist and are continuous) with respect to (wrt) b
on some open convex set Bβ including β as an interior point for all z, we show
the key equations for the asymptotic distribution of M-estimator. Second,
“δ-method” and “continuous mapping theorem” which are convenient in
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deriving the asymptotic distribution of functions of (M-) estimators are in-
troduced. Third, a theorem for the asymptotic distribution of M-estimator
using weak assumptions are presented.

First, the asymptotic distribution for
√

N(bN − β) is derived from the
first-order condition for bN :

1√
N

∑
i

qb(bN ) = 0, where qb(bN ) ≡ ∂q(b)
∂b

|b=bN
.

Apply the mean-value theorem to bN around β to get

0 =
1√
N

∑
i

qb(β) +
1
N

∑
i

qbb′(b∗N )
√

N(bN − β) where b∗N ∈ (bN , β)

Note that, as there are k components in qb(bN ), the mean-value theorem
requires a different b∗N for each element, say b∗Nj , j = 1, ..., k, although we
just use a single b∗N in the display. Invert the second-order matrix to solve
for

√
N(bN − β):

√
N(bN − β) =

{
− 1

N

∑
i

qbb′(b∗N )

}−1

· 1√
N

∑
i

qb(β).

For a function m(z, b), in almost all cases, it holds that

(i) :
1
N

∑
i

m(zi, bN ) − 1
N

∑
i

m(zi, β) = op(1) which implies

1
N

∑
i

m(zi, bN ) →p 0 because

1
N

∑
i

m(zi, β) →p E{m(z, β)} = 0, although

(ii) :
1√
N

∑
i

m(zi, bN ) − 1√
N

∑
i

m(zi, β) = op(1);

note the difference in the norming factors (N versus
√

N). Applying this to
the preceding equation for

√
N(bN −β), as b∗N →p β because b∗N falls between

bN and β, we get

√
N(bN − β) = −E−1{qbb′(β)} 1√

N

∑
i

qb(β) + op(1).

From this, the asymptotic normality and the sandwich form variance follow.
Display (i) also justifies the estimator for the asymptotic variance matrix.

Second, the so-called “δ-method” is convenient in deriving the asymp-
totic distribution of a function of an estimator whose asymptotic distribution
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is known already. Suppose we have a g× 1 nonlinear and continuously differ-
entiable function h(b) of b on some open convex set including β as an interior
point with rank(hb′(β)) = g, where hb′(β) ≡ ∂h(β)/∂b′ is the first derivative
matrix wrt b of dimension g × k evaluated at b = β. Also suppose that

√
N(bN − β)� N(0, V ) and VN →p V.

In this case, the asymptotic distribution of h(bN ) can be obtained from that
of bN . Taylor-expand

√
Nh(bN ) as

√
Nh(bN ) −

√
Nh(β) =

√
Nhb′(b∗N )(bN − β),

where b∗N ∈ (bN , β). Since bN →p β, we have b∗N →p β, and owing to the
continuity of hb′ , hb′(b∗N ) →p hb′(β). Adding and subtracting hb′(β)

√
N(bN−

β) gives
√

N {h(bN ) − h(β)} � hb′(β)
√

N(bN − β)� N {0, hb′(β) · V · hb(β)} .

As usual, the asymptotic variance can be consistently estimated by hb′(bN )
VNhb(bN ). Lehmann and Romano (2005, p. 436) showed that δ-method still
holds under the differentiability of h(b) at b = β instead of the continuous
differentiability.

As an example of δ-method, suppose k = 1, β = 0, and h(b) = b2. Then,
h′b(β) = 2β, and thus

√
N{b2

N − β2} = 2β
√

N(bN − β) + op(1)� N(0, 4β2V )
where 4b2

NVN −→p 4β2V.

This result can be in fact also obtained using Slutsky lemma:
√

N{b2
N − β2} =

√
N(bN − β)(bN + β)� N(0, V ) · 2β.

As another example of δ-method, suppose g = 2, k = 3, β1 = 0, and

h(b) =
[

b−1
2

b2 + b3

]
=⇒ hb′(β) =

[
0 −β−2

2 0
0 1 1

]
=⇒

[ √
N(b−1

2 − β−1
2 )√

N {b2 + b3 − (β2 + β3)}

]
� N {0, hb′(β) · V · hb(β)} .

In relation to δ method, we introduce continuous mapping theorem: for
a function f(w) of a random vector w that is continuous at each point of a
set A such that P (w ∈ A) = 1,

(i): f(wN )� f(w) if wN � w

(ii): f(wN ) →p f(w) if wN →p w.
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(ii) was in fact used in proving the LSE consistency where f(wN ) = w−1
N and

w is a constant matrix. As an example of (i), for the k = 1 case,

f
{√

N(bN − β)/
√

V
}
≡

{√
N(bN − β)/

√
V
}2

� {N(0, 1)}2 = χ2
1.

As another example with f(wN1, wN2) = wN1/wN2, suppose wN = (wN1,
wN2) � (w1, w2) that follows N(0, I2). Let A = {(a1, a2)} be the two-
dimensional real space except the points with a2 = 0. Then the function
a1/a2 is continuous on A, and

P{(w1, w2) ∈ A} = 1 because P{N(0, 1) = 0} = 0.

Hence

f(wN1, wN2)�
N(0, 1)
N(0, 1)

which follows the Cauchy distribution.

Third, there are many theorems available for M-estimators’ asymptotic
normality. Here we present one in Van der Vaart (1998, p. 53). We show the
assumptions of the theorem changing notations and simplifying the contents
a little. The assumptions weakens the twice continuous differentiability of
q(z, b) wrt b on Bβ for all z that was invoked above.

• q(z, b) is differentiable at b = β for all z with derivative qb(z, β), which
is weaker than qb(z, b) being continuously differentiable at b = β.

• For every b1 and b2 in a neighborhood of β, there exists a function q̃(z)
with Eq̃(z)2 < ∞ such that

|q(z, b1) − q(z, b2)| ≤ q̃(z)|b1 − b2|.

• Eq(z, b) admits a second-order Taylor expansion at b = β with a non-
singular second-order derivative matrix Eqbb′(z, β).

1.3 Computation

The reader may wonder how to compute the M-estimator bN in prac-
tice. Luckily, one of the equations we saw already shows how: recall

√
N(bN − β) � −

{
1
N

∑
i

qbb′(b∗N )

}−1

· 1√
N

∑
i

qb(β)

and replace bN with b(2), and b∗N and β with b(1) to get

b(2) = b(1) −
{∑

i

qbb′(b(1))

}−1 ∑
i

qb(b(1)).

A numerical algorithm using this goes as follows (we will examine numerical
maximization in detail later after MLE is discussed):
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• Step 1. Choose b(1), say 0k or the LSE of y on x.

• Step 2. Compute b(2) using the equation; numerical derivatives may be
used instead of analytic derivatives, where the numerical first derivative
consists of

qbj(b(1)) =
q(b(1) + εej) − q(b(1) − εej)

2ε
, j = 1, ..., k,

ej is the k × 1 vector with 1 in its jth row and 0 elsewhere, and ε
is a small positive constant, say 10−7. For instance, with k = 2 and
β = (β1, β2)′, the numerical first derivatives are

q
{
b(1) + ε

(
1
0

)}
− q

{
b(1) − ε

(
1
0

)}
2ε

and
q
{
b(1) + ε

(
0
1

)}
− q

{
b(1) − ε

(
0
1

)}
2ε

.

The Hessian matrix can also be obtained numerically doing analogously
to qbj(b(1)), but it is often replaced by −N−1

∑
i qb(b(1)) qb′(b(1)) which

is at least n.s.d.

• Step 3. If b(1) � b(2) or QN (b(1)) � QN (b(2)), then stop to take either
b(1) or b(2) as bN ; otherwise, replace b(1) with b(2) and go to Step 1.
Unless computing QN (b) is time-consuming, using the stopping crite-
rion QN (b(1)) � QN (b(2)) is preferred to using b(1) � b(2), because the
scales of components of b are different in general.

Showing more details on second-order derivatives including Hessian, con-
sider q(a, b) where both a and b are 2 × 1, and we want to obtain the 2 × 2
cross-derivative matrix ∂2q(b, a)/∂b∂a′ at β and α. The term at row 1 and
column 2 is the cross-derivative wrt b1 first and then wrt a2, which can be
computed with

1
2ε

[
qb1

{
β, α + ε

(
0
1

)}
− qb1

{
β, α − ε

(
0
1

)}]
=

1
2ε

[
q
{
β + ε

(
1
0

)
, α + ε

(
0
1

)}
− q

{
β − ε

(
1
0

)
, α + ε

(
0
1

)}
2ε

−q
{
β + ε

(
1
0

)
, α − ε

(
0
1

)}
− q

{
β − ε

(
1
0

)
, α − ε

(
0
1

)}
2ε

]
.

2 Maximum Likelihood Estimator (MLE)

Although MOM has gained popularity in recent years in econometrics
as researchers try to avoid imposing strong assumptions on the model at
hand, as an estimation principle, “maximum likelihood estimation (MLE)”
has been dominant for a long time. This section studies MLE, which is a
special case of M-estimator as already noted.
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2.1 MLE Basics

Let zi = (x′i, yi), i = 1, ..., N be an iid sample drawn from a known
form of distribution F (zi, β) up to β where β is a k × 1 vector of unknown
parameters. Let fy|x(y, β) denote the likelihood function of y|x, which is the
density function of y|x if y|x is continuously distributed or the probability of
y|x if y|x is discrete. Define fx(x) analogously, which is not a function of β.
The maximum likelihood estimator maximizes the likelihood of the sample at
hand:

P{(x1, y1), ..., (xN , yN )} =
N∏

i=1

P (xi, yi, b) =
N∏

i=1

fy|xi
(yi, b) · fx(xi)

wrt b.
Equivalently, taking ln, MLE maximizes the log-likelihood function∑

i

ln{fy|xi
(yi, b) · fx(xi)} =

∑
i

[ln{fy|xi
(yi, b)} + ln{fx(xi)}].

Dropping fx(x) that is not a function of b, MLE maximizes∑
i

ln{fy|xi
(yi, b)}

which still depends on xi as well as on yi and b.
If we observe only {yi}, then the conditional likelihood cannot be ob-

tained. But if the marginal likelihood fy(yi) of y is a function of β, β may be
estimable by maximizing

∑
i ln{fy(yi)}. This shows that there are different

likelihood functions: joint, conditional, and marginal; there are in fact more
(“partial likelihood”, “profile likelihood”, and so on). Which likelihood to use
in practice will depend on data availability and the parameter we want to
know. Unless otherwise mentioned, we will always refer to the joint likelihood
function for z = (x′, y)′, and with the marginal likelihood for x being free of
β, maximizing the joint likelihood is equivalent to maximizing the conditional
likelihood of y|x.

For MLE bmle maximizing the log-likelihood function
∑

i ln f(zi, b), it
will be shown shortly that bmle →p β and

√
N(bmle − β)� N [0, E−1{s(z, β)s(z, β)′}], where

s(z, β) ≡ ∂ ln f(z, b)
∂b

|b=β ;

s(z, β) is called the score function.
A simplest example of MLE for regression analysis is obtained when we

assume

yi = x′iβ + ui, ui ∼ N(0, σ2) independently of xi where σ is an
unknown parameter,
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which implies yi|xi ∼ N(x′iβ, σ2). The conditional likelihood to maximize for
(b′, s), which is for (β′, σ), is

max
b,s

N∏
i=1

1√
2πs2

exp

{
−1

2

(
yi − x′ib

s

)2
}

=⇒

max
b,s

∑
i

{
−1

2
ln(2πs2) − 1

2

(
yi − x′ib

s

)2
}

.

It is interesting to see that, regardless of s, maximizing this for b is the same
as LSE. Of course, this is only a simple example, and we can easily think of
more complicated ones as in the following.

If u has a known form of heteroskedasticity, say ui|xi ∼ N(0, e2x′
iγ) for

an unknown parameter vector γ, then we get

∑
i

{
−1

2
ln

(
2πe2x′

ig
)
− 1

2

(
yi − x′ib

ex′
ig

)2
}

,

which is to be maximized wrt b and g. This includes the homoskedastic
case when x = (1, x2, ..., xk)′ and γ = (ln σ, 0, ..., 0)′ because exp(2x′iγ)
= exp(2 ln(σ)) = σ2.

Yet another example of MLE is

ui follows “double exponential with scale parameter θ”
independently of xi

⇐⇒ f(yi|xi) =
1
2θ

exp
(
−|yi − x′iβ|

θ

)
,

then the MLE maximizes, wrt q and b,∑
i

{
− ln(2q) − |yi − x′ib|

q

}
.

Regardless of q, maximizing this for b is the same as minimizing
∑

i |yi −x′ib|
wrt b. Thus, in the double exponential distribution, which is also called the
“Laplace” distribution, MLE becomes the least absolute deviation (LAD)
estimator.

As LSE is consistent for β if E(y|x) = x′β even when u is not normal,
LAD estimator is consistent if the median of y|x is x′β even when u is not
double exponential. Also both LSE and LAD do not have to be motivated
by MLE, because they can be motivated as minimizing the prediction error
yi − x′ib using the squared and absolute value loss functions, respectively.
What this illustrates is that MLE sometimes yields interesting estimators
that are consistent even when the underlying distributional assumption fails.
When we maximize the MLE maximand in this case, we can derive its asymp-
totic distribution following the general steps for M-estimators while allowing
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for the underlying distribution to differ from the specified one. In this case,
the asymptotic variance would take the usual sandwich form instead of the
simpler E−1(ss′) shown above. The estimation procedure in this case is some-
times called “quasi-MLE” or “pseudo-MLE.”

The disadvantage of MLE is clear: we need to specify the distribution of
y|x; if heteroskedasticity is present, its form should be spelled out as shown
above, which was not required for MOM. The advantage of MLE is twofold:
one is its applicability to a variety of problems which are hard to approach
without taking advantage of the specified likelihood function, and the other is
its asymptotic efficiency—having the smallest asymptotic variance—among
a wide class of estimators. Due to these advantages, MLE is popular in ap-
plied works and MLE can serve as a benchmark when we compare different
estimators.

As shown already, MOM can be cast into an optimization framework
and MLE is an M-estimator. In fact, all estimating principles may be re-
garded as minimizing a distance between two entities, thus yielding a general
estimating principle “minimum distance.” Although only MLE is examined
in this section, interested readers may refer to Bera and Bilias (2002) for the
history of various estimation principles and the relevant references including
those for MLE.

2.2 MLE Identification

As already noted, MLE is an M-estimator and, as such, its asymptotic
properties can be derived from those of M-estimators. Among the four issues
of M-estimators, three of them, other than identification (ID), are easy to
see. In this subsection, we examine the ID for MLE.

Let F (z, b) denote the probability distribution of z when the parameter
is b ∈ B. If F (z, γ) = F (z, β) for all z, then we cannot distinguish β from γ,
since observations on z cannot tell beyond F (z, ·). In this case, γ and β are
said to be “observationally equivalent.” Thus β is identifiable if there are no
other observationally equivalent elements in B.

Suppose we specify the form of the distribution F (z, ·), or equivalently
the form of the likelihood function f(z, ·). For the true parameter β to be
identified, it is necessary to have

Pβ(z ∈ Zβ) ≡ Eβ(1[z ∈ Zβ ]) > 0
where Zβ ≡ {zo : f(zo, β) = f(zo, b), for any b = β and b ∈ B}

and Eβ(·) is the expected value when z follows F (z, β). The subscript β is
used here to avoid confusion; typically, the subscript is omitted.

Assume f(z, b) > 0 for all z and b ∈ B, and define the Kullback-Leibler
information criterion (KLIC)

H(β, b) ≡ Eβ

{
ln

f(z, β)
f(z, b)

}
.
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Observe H(β, β) = Eβ(ln 1) = 0, and for a continuously distributed z,

−H(β, b) = Eβ

{
ln

f(z, b)
f(z, β)

}
< lnEβ

{
f(z, b)
f(z, β)

}
= ln

∫
f(z, b)dz = 0, ∀b = β;

for the inequality, Pβ(z ∈ Zβ) > 0 is invoked, which means that Jensen’s
inequality holds with “<,” instead of “=.” For a discretely distributed z, the
expression ln

∫
f(z, b)dz = 0 should be replaced with ln

∑
f(z, b), which is

zero as the sum of the probabilities is one.
The above display means that the ID of β can be viewed as an maximiza-

tion problem of −H(β, b) wrt b ∈ B where −H(β, β) = 0 is the maximum
value. The sample version of −H(β, b) is

1
N

∑
i

ln f(z, b) − 1
N

∑
i

ln f(z, β).

Maximizing the first term wrt b renders MLE. Since H(β, b) = 0 iff b = β, β
is identified in MLE. This way of viewing ID in parametric models with the
Kullback-Leibler information criterion appears, e.g., in Bowden (1973).

2.3 Asymptotic Variance Relative to M-estimator

The asymptotic variance of MLE is straightforward to obtain as a spe-
cial case of M-estimator asymptotic variance, and there exists an interesting
interpretation of the asymptotic variance of M-estimator in relation to that
of MLE, which is presented here. To simplify exposition, suppose that z is
continuously distributed.

Consider differentiating the first-order condition E{qb(β)} = 0 of an M-
estimator maximizing the sample version of E{q(b)}. It holds that ∂E{qb(β)}/
β = 0, and bringing ∂(·)/∂ inside of E{qb(β)} =

∫
qb(z, β)f(z, β)dz, we get∫ [

∂{qb(z, β) f(z, β)}
∂β′

]
dz =

∫ {
∂qb(z, β)

∂β′
f(z, β)

}
dz

+
∫ {

qb(z, β)
∂f(z, β)

∂β′

}
dz

=
∫

qbb′(z, β)f(z, β)dz +
∫

qb(z, β)
∂f(z, β)/∂β′

f(z, β)
f(z, β)dz.

That is,

0 =
∂E{qb(β)}

∂β
= E(qbb′) + E(qbs

′) ⇐⇒ E(qbs
′) = −E(qbb′)

where s(z, β) ≡ fb(z, β)/f(z, β) is the score function. Note that we need a
regularity condition to interchange the order of ∂(·)/∂β and

∫
; e.g., for all b
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in a neighborhood of β,

|qbb′(z, b)f(z, b)| + |qb(z, b)
∂f(z, b)

∂b′
| ≤ g(z), where

∫
g(z)dz < ∞.

With q(z, β) = ln{f(z, β)} for MLE, E(qbs
′) = −E(qbb′) becomes

E(ss′) = −E

{
∂2 ln f(z, β)

∂b∂b′

}
.

Both terms are called the “information matrix,” and this equality is called the
“information equality” whereas the more general version E(qbs

′) = −E(qbb′)
is called the “generalized information equality.” With the information inequal-
ity, the asymptotic variance of MLE can be obtained from the M-estimator
asymptotic variance:

E−1

{
∂2 ln f(z, β)

∂b∂b′

}
· E(ss′) · E−1

{
∂2 ln f(z, β)

∂b∂b′

}
= E−1(ss′).

Using E(qbs
′) = −E(qbb′), the sandwich form asymptotic variance ma-

trix of M-estimator can be written as

E−1(sq′b) · E(qbq
′
b) · E−1(qbs

′)
= E−1[E(sq′b)E

−1(qbq
′
b)qb · q′bE−1(qbq

′
b)E(qbs

′)]

which is the inverse of the “square” of the projection of s on qb. Since

E(sq′b) · E−1(qbq
′
b) · E(qbs

′) ≤ E(ss′),

M-estimator asymptotic variance is greater than the MLE asymptotic vari-
ance, and thus M-estimator (or MOM) is less efficient than MLE. This fact
as well as the equation E(qbb′) = −E(qbs

′) appear in Godambe (1960).
In fact, it is known that MLE is the most efficient (i.e., MLE has the

smallest asymptotic variance) among the
√

N -consistent (“regular”) asymp-
totically normal estimators; see, e.g., Lehmann (1983, p. 406, Theorem 1.1)
and the references therein. But the obvious advantage of an M-estimator (or
MOM) is that there is no need to specify the likelihood function. An intu-
itive understanding for the MLE efficiency may be gained from the following
special case.

Suppose we have an
√

N -consistent estimator bN = bN (z1, ..., zN ) that
is also unbiased for β (namely, E(bN ) = β). Observe

Ik =
∂E(bN )

∂β′
=

∂
∫

bN ·∏i f(zi, β)dz1 · · · dzN

∂β′

=
∫

bN · ∂
∏

i f(zi, β)
∂β′

dz1 · · · dzN

=
∫

bN
∂ exp {∑i ln f(zi, β)}

∂β′
dz1 · · · dzN(

as
∏

i

f(zi, β) = exp

{∑
i

ln f(zi, β)

})
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=
∫

bN

∑
i

∂ ln f(zi, β)
∂β′

· exp

{∑
i

ln f(zi, β)

}
dz1 · · · dzN

=
∫ (

bN

∑
i

s′i

)
·
∏

i

f(zi, β)dz1 · · · dzN

= COV

(
bN ,

∑
i

s′i

)
≤ V (bN ) · N · E(ss′).

From the first and last expressions, we get Ik ≤ V (bN ) ·N ·E(ss′), and hence,

V (bN ) ≥ E−1(ss′)
N

⇐⇒ V (
√

N(bN − β)) ≥ E−1(ss′).

3 M-Estimator with Nuisance Parameters

3.1 Two-Stage M-Estimator Basics

One important generalization of M-estimator is a two stage M-estimator :

bN ≡ argmaxb∈BQN (b, aN ) =
1
N

∑
i

q(zi, b, aN )

where aN is a first-stage estimator for a nuisance parameter α which is not
of interest per se but should be estimated nonetheless before β. For instance,
the variance matrix of the error terms is not interesting per se in Generalized
LSE (GLS), but for GLS, we need to estimate the variance matrix first. If q is
a log-likelihood function, then we get a two-stage MLE. Strictly speaking, a
two-stage MLE is not a “real” MLE which would maximize QN (b, a) jointly
with (b, a) in one step. Nevertheless, two-stage MLE does appear in practice,
because the one-step MLE may be difficult to implement.

Omitting zi in q(zi, b, aN ), let the two-stage M-estimator bN be

bN = argmaxb∈B

1
N

∑
i

q(b, aN )

where aN is a first-stage
√

N -consistent estimator for α. As done just now,
often we will omit z in q(z, b, a) and in the derivatives qb(z, b, a), qbb′(z, b, a),
and qba′(z, b, a). Furthermore, we may also omit the arguments b and a in
q(b, a), particularly when b = β and a = α.

For the two-stage M-estimator, having aN in place of α does not affect
the consistency of bN for β, which can be established by doing analogously
to what was done for M-estimator, but the asymptotic distribution of two-
estimator M-estimator may be affected by the first-stage error aN−α. Finding
when the first stage affects the second stage, and if it does then in which way,
are interesting questions.
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The estimator bN satisfies the first-order condition

1√
N

∑
i

qb(bN , aN ) = 0.

Apply the mean value theorem to bN around β to get

1√
N

∑
i

qb(β, aN ) +
1
N

∑
i

qbb′(b∗N , aN ) ·
√

N(bN − β) = 0

=⇒
√

N(bN − β) =

{
− 1

N

∑
i

qbb′(b∗N , aN )

}−1

· 1√
N

∑
i

qb(β, aN ).

The asymptotic distribution of the M-estimator without the nuisance param-
eter α was derived already (using this display with aN replaced by α). Due
to aN , we should go one step further applying the mean value theorem to aN

as follows.
Expand N−1/2

∑
i qb(β, aN ) around α to get

1√
N

∑
i

qb(β, aN ) =
1√
N

∑
i

qb(β, α) +
1
N

∑
i

qba′(β, a∗N ) ·
√

N(aN − α).

Substitute this into the preceding display and replace N−1
∑

i qbb′(b∗N , aN )
and N−1

∑
i qba′(β, a∗N ), respectively, with E{qbb′(β, α)} and E{qba′ (β, α)}

(invoking the uniform LLN) to obtain

√
N(bN − β) = −E−1(qbb′) ·

{
1√
N

∑
i

qb + E(qba′)
√

N(aN − α)

}
+ op(1).

The asymptotic distribution of
√

N(bN − β) depends on the covariance of
the two terms on the rhs. We will take a detailed look at this in the next
subsection.

3.2 Influence Function and Correction Term

Suppose
√

N(aN − α) =
1√
N

∑
i

ηi + op(1), {ηi} are iid, E(η) = 0,

and E(ηη′) < ∞ is p.d.;

this implies
√

N(aN − α)� N(0, E(ηη′)). For instance, if aN is the LSE for
zi = w′iα + εi, then ηi is E−1(ww′) · wiεi so that the asymptotic variance
matrix becomes the LSE asymptotic variance:

E(ηη′) = E{E−1(ww′)wε · εw′E−1(ww′)}
= E−1(ww′)E(ww′ε2)E−1(ww′).
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The idea here is that if
√

N(aN − α) has an asymptotic variance Ω, then we
can think of a random vector η such that E(ηη′) = Ω and

√
N(aN − α) is a

sum of iid “error” ηi’s; ηi is called the “influence function.”
In the display with

√
N(bN−β), replace

√
N(aN−α) with N−1/2

∑
i ηi+

op(1) to get
√

N(bN − β) = −E−1(qbb′) ·
1√
N

∑
i

{qb(zi) + E(qba′)ηi} + op(1).

Hence
√

N(bN − β) � N{0, E−1(qbb′) Ca E−1(qbb′)} where

Ca ≡ E [ {qb(zi) + E(qba′)ηi} · {qb(zi) + E(qba′)ηi}′ ] .

Although Ca may look complicated, it can be consistently estimated
with N−1

∑
i δiδ

′
i, where

δi ≡ qb(bN , aN ) +

{
1
N

∑
i

qba′(bN , aN )

}
· ηi(aN )

and ηi(aN ) is a consistent estimator for ηi = ηi(α); δi is an influence function
for bN . For instance, if aN is the LSE for zi = w′iα + εi, then ηi(α) =
E−1(ww′) · wi(zi − w′iα), and thus

ηi(aN ) =

(
1
N

∑
i

wiw
′
i

)−1

· wi(zi − w′iaN ).

In E(qba′)ηi of Cα, ηi is the first-stage error, and E(qba′) may be called
the “link matrix” for the first and the second stage. The part E(qba′)ηi is
sometimes called the (first-stage) “correction term.” This shows that the first-
stage estimation error ηi is channeled through E(qba′) because α in qb(z, β, α)
gets estimated. Because E{qb(z, β, α)} = 0, we have

0 =
∂E{qb(z, β, α)}

∂α′
=

∂
∫

qb(z, β, α)f(z, β, α)dz

∂α′

=
∫

∂qb(z, β, α)
∂α′

f(z, β, α)dz +
∫

qb(z, β, α)
∂f(z, β, α)

∂α′
dz

=
∫

∂qb(z, β, α)
∂α′

f(z, β, α)dz +
∫

qb(z, β, α)
∂f(z, β, α)/∂α′

f(z, β, α)

f(z, β, α)dz

=⇒ E(qba′) = −E(qbs
(a)′) where s(a)(z, β, α) ≡ ∂f(z, β, α)/∂α

f(z, β, α)
.

That is, the correction term can be written as −E(qbs
(a)′)ηi: the first-stage

estimation error ηi is channeled through −E(qbs
(a)′) as if α in s(a)(z, β, α)

were estimated.
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3.3 Various Forms of Asymptotic Variances

Let
Cα ≡ E(qbqb′)

which is the middle outer-product matrix of the asymptotic variance E−1(qbb′)
E(qbqb′)E−1(qbb′) of the infeasible M-estimator with α known. In comparing
Ca (α estimated) to Cα (α known), three special cases are worth mention-
ing. First, if E(qba′) = 0, then Ca = Cα and there is no first-stage effect
on the second: the two-stage M-estimator is as good as the infeasible M-
estimator; some examples will be provided shortly for this case. Second, if
E(qbη

′) = 0, then Ca can be decomposed into two p.s.d. matrices E(qbq
′
b)

and E(qba′)E(ηη′)E(qab′), which makes Ca ≥ Cα. This case occurs if aN is
obtained by another sample not used for bN (e.g., the sample is split into
two, and the first is used for aN while the second is used for bN ), or aN is a
function of terms “orthogonal” to N−1/2

∑
i qb(zi). An example for this will

appear later in Chapter 5.5 when “sample selection” is discussed. Third, as
Ca consists of four terms:

Ca = E(qbqb′) + E(qbη)E(qab′) + E(qba′)E(ηqb′) + E(qba′)E(ηη′)E(qab′),

if
E(qba′)E(ηqb′) = −E(qba′)E(ηη′)E(qab′),

then
Ca = E(qbqb′) − E(qba′)E(ηη′)E(qab′) ≤ Cα.

The last display that the two-stage estimator estimating the unknown α
can be better than the infeasible estimator with α known is counter-intuitive,
but it has been known at least since Pierce (1982). See Hitomi et al. (2008)
and the references therein; they examine a more difficult case of a nonpara-
metric α. To illustrate when this can happen, let aN be the MLE. Then

ηi = E−1(s(a)s(a)′)s(a)
i which implies

E(qba′)E(ηqb′) = E(qba′)E−1(s(a)s(a)′)E(s(a)qb′)

= −E(qba′)E−1(s(a)s(a)′)E(qab′), as E(s(a)qb′) = −E(qab′)

= −E(qba′)E(ηη′)E(qab′), as E(ηη′) = E−1(s(a)s(a)′);

this is the above case Ca ≤ Cα. Also observe

1√
N

∑
i

{qb(zi) + E(qba′)ηi}

=
1√
N

∑
i

{
qb(zi) − E(qbs

(a)′)E−1(s(a)s(a)′)s(a)
i

}{
=

1√
N

∑
i

δi

}
.
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Since the summand δi is the residual of projecting qb(zi) on s
(a)
i , its asymp-

totic variance is smaller than E(qbqb′).
The last display shows the main point of Pierce (1982). If aN is an

efficient estimator for α, then the influence function δi for bN and the influence
function ηi for aN should be uncorrelated. Otherwise, the residual of the
linear projection of ηi on δi would yield a better estimator for α than aN is,
with its variance reduced due to COR(δ, η). Since this is a contradiction for
MLE, we should have COR(δ, η) = 0. In the last display, this holds because δ
is the residual of projecting qb on s(a) and η consists of s(a). This “efficiency-
orthogonality nexus” appears in various forms in econometrics and statistics.

3.4 Examples of Two-Stage M-Estimators

3.4.1 No First-Stage Effect

One example for Eqba′ = 0 is the weighted LSE (WLS) or the feasible
GLS for the linear model y = x′β + u minimizing

1
N

∑
i

(
yi − x′ib

si

)2

where E(u|x) = 0 and s2
i →p σ2

i ≡ E(u2
i |xi).

Suppose

σ2
i = (α1 + α2xik)2, s2

i = (a1 + a2xik)2, aN ≡ (a1, a2)′.

Differentiate N−1
∑

i{(yi − x′ib)/si}2 wrt b to get

1
N

∑
i

(−2) xi(yi − x′ib) s−2
i .

Differentiate this wrt aN to get

1
N

∑
i

4 xi(yi − x′ib) s−3
i

∂si

∂aN
.

Evaluating this at β and α, this “link matrix” becomes N−1
∑

i uig(xi) for
a function g(xi), because si and ∂si/∂aN are functions of xi. But

1
N

∑
i

uig(xi) →p E{ug(x)} = E{g(x) · E(u|x)} = 0;

i.e., E(qba′) = 0. This explains why the feasible generalized LSE has the same
asymptotic distribution as the (infeasible) generalized LSE.

As another example of E(qba′) = 0 (the reader may skip the rest of
this subsection, simply taking the point that replacing an instrument with a
consistent estimator is innocuous while replacing a regressor with a consistent
estimator alters the asymptotic variance), consider

y = x′1β1 + x′2β2 + u ≡ x′β + u and E(u|x2) = 0
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for two-stage LSE (2SLSE), where xj is a kj × 1 vector, j = 1, 2, and
E(x1u) = 0. This equation can be regarded as the first equation of a si-
multaneous equation system, and x1 is the endogenous regressors in the first
equation.

Let a s× 1 (s ≥ k1 + k2) vector z denote the exogenous variables in the
system (E(zu) = 0); z is an instrument for x1 (and x2). Then aN is the LSE
of x1 on z (since z is a s× 1 vector, aN is a s× k1 matrix, not a vector), and
α is E−1(zz′)E(zx′1)—the s×k1 matrix of the projection coefficient of x1 on
z. The moment condition for the 2SLSE is

1
N

∑
i

(yi − x′ibN ) · {(z′iaN ), x′i2}′ = 0.

The dimension of (z′iaN )′ is the same as that of x1 (k1×1), and the dimension
of ((z′iaN ), x′i2)

′ is (k1 + k2)× 1. In this display, the instrument z′iα for xi1 is
estimated by z′iaN .

Stack the s×k1 matrix α as a (s·k1)×1 vector α∗; see the next paragraph
for an example. Differentiate the preceding display wrt a∗N , the version of aN

stacked analogously to α∗. Then we get a (k1+k2)×(s·k1) matrix N−1
∑

i qba′

whose typical element is either 0 or

1
N

∑
i

(yi − x′ibN )zij = 0, j = 1, ..., s.

Since this is consistent for E{(y − x′β)zj} = E(uzj) = 0, j = 1, ..., s, E(qba′)
is zero in the 2SLSE, implying no first-stage estimation effect on the second
stage. This result illustrates that estimating instruments does not affect the
second stage in general.

To be specific about N−1
∑

i(yi − x′ibN )zij = 0, let s = 3 and k1 = 2.
Then α is a 3 × 2 matrix and α∗ can be set as

α∗ = (α11, α21, α31, α12, α22, α32)′.

Differentiating ((z′iaN ), x′i2)
′ wrt a∗N , ∂(z′iaN )/∂a∗N is nonzero, while ∂x2/

∂a∗N = 0. Observe that (omitting N in aN )

z′ia = (zi1a11 + zi2a21 + zi3a31, zi1a12 + zi2a22 + zi3a32).

Differentiate this wrt a∗ = (a11, a21, a31, a12, a22, a32)′ to get[
zi1 zi2 zi3 0 0 0
0 0 0 zi1 zi2 zi3

]
.

Attaching a k2 × 6 zero matrix at the bottom for ∂x2/∂a∗N = 0, we get the
desired (k1 + k2)× (s · k1) = (2 + k2)× 6 matrix. Taking N−1

∑
i(·) on “this

matrix times ui” yields a null link matrix.
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3.4.2 First-Stage Effect

As an example of E(qbη
′) = 0 and E(qba′) = 0, consider

y = x′β + u,

where the kth variable xk is not observable. Suppose xk = E(w|z) = z′α
where z is a g × 1 vector with E(zu) = 0 and E(xz′) = 0. Then xik can be
consistently estimated with

x̂ik ≡ z′iaN ,

where aN is the LSE of w on z. Let

x̂ ≡ (x1, ..., xk−1, x̂k)′.

The issue here is the effect of using the “generated regressor” x̂ instead of
x in the LSE bN of y on x̂ to estimate β. It is easy to prove bN →p β; the
first-stage error aN − α matters only for the asymptotic variance of bN .

The first-order condition of the LSE is

1
N

∑
i

x̂i(yi − x̂′ibN ) =
1
N

∑
i

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

x1

...
xk−1

z′iaN

⎞⎟⎟⎟⎠{yi − (x1, ..., xk−1, z
′
iaN )bN}

⎤⎥⎥⎥⎦
= 0.

Differentiate this wrt aN to get N−1
∑

i qba′ :

1
N

∑
i

qba′ =
[

0(k−1)×g

N−1
∑

i(yi − x̂′ibN )z
′
i

]
− bNk

1
N

∑
i

x̂iz
′
i

→ p − βkE(xz′) = 0.

Hence the first-stage error is felt in the second stage. This illustrates that
estimating explanatory variables affects the second-stage variance (while es-
timating instruments does not as in 2SLSE).

One caution is that estimating explanatory variables is not the same as
the so-called “errors-in-variable” problem where the parameters cannot even
be consistently estimated. In the errors-in-variable problem, xk is observed
as xk + ε where ε does not converges to 0, while x̂k above can be written as
xk + v with v = op(1). See Pagan and Ullah (1988) for the same point made
for the typical erroneous practice of using a risk term as a regressor in the
macro-finance literature.

4 Method-of-Moment Tests (MMT)

4.1 Basics

Suppose that we set up a model y = x′α+u with a suspicion that w may
be wrongly omitted in the model. One way to test for the possible omission
is to see if E{(y − x′α)w} = 0. If w is indeed omitted, y − x′α should be
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correlated with w because y includes w, resulting in E{(y − x′α)w} = 0.
More generally, for a rv z, suppose that a parameter α satisfies a moment
condition E{m(z, α)} = 0 which is implied by the model specification but not
used in getting an estimator aN for α. Then we can test the validity of the
model specification by checking if

1√
N

∑
i

m(zi, aN ) is centered at zero

because this will have E{m(z, α)} = 0 as its expected value. Testing model
specifications using moment conditions is called a method-of-moment test
(MMT) as in Newey (1985), Tauchen (1985), and Pagan and Vella (1989).

As method-of-moment estimators include many known estimators as spe-
cial cases, MMT includes many known tests as special cases. In this section,
we examine MMT where aN is a first-stage estimator for a nuisance parame-
ter α. In deriving the asymptotic distribution of MMT, since this is a simpler
special case of two-stage M-estimator, the technique of the previous section
can be applied with a minor modification. Let aN have an influence function
ηi:

√
N(aN − α) =

1√
N

∑
i

ηi + op(1) with E(η) = 0 and E(ηη′) < ∞,

Observe

1√
N

∑
i

m(zi, aN ) =
1√
N

∑
i

{m(zi, α) + E(ma′) ηi} + op(1)

� N(0, C), where ma′ ≡ ∂m(α)
∂a′

and

C = E[{m(zi, α) + E(ma′)ηi}{m(zi, α) + E(ma′)ηi}′].

The asymptotic variance C can be estimated consistently with

CN ≡ 1
N

∑
i

δNiδ
′
Ni, δNi ≡ m(zi, aN ) +

{
1
N

∑
i

ma′(zi, aN )

}
ηi(aN )

where ηi(aN ) is a consistent estimator for ηi(α) = ηi. In the rest of this
section, we may omit either argument z or a in m(z, a) and ma′(z, a).

4.2 Examples

Recall the MMT for H0 : w is not omitted in y = x′α + u. Let x be a
p × 1 vector and w be a k × 1 vector. Assume that aN is the LSE. A test
statistic is

1√
N

∑
i

wi(yi − x′iaN ) =
1√
N

∑
i

m(zi, aN ),
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where z ≡ (y, x′, w′)′. Then ma′ = −wx′ which is a k × p matrix. Since aN

is the LSE of y on x, we have
√

N(aN − α) =
1√
N

∑
i

E−1(xx′)xiui + op(1).

Thus
1√
N

∑
i

{m(zi, α) + E(ma′)ηi} =
1√
N

∑
i

{wiui − E(wx′) E−1(xx′)xiui}.

In estimating the variance matrix, ui can be replaced by yi − x′iaN under
the H0, and E(wx′) and E(xx′) can be replaced by their sample versions.
Dividing the test statistic by the SD, we get an asymptotic N(0, 1) test
statistic.

Although it is not a MMT, here we note another (easier) way for omitted
variable test. With H0 : y = x′α + u, suppose there is a reason to believe
that w may be a relevant variable for y. Then we may consider an alternative
y = x′α + w′γ + u. More generally, we may set up

H0 : y = x′α + η · g(w) + u,

which nests H0 with η = 0, where g(w) is a known function of w. Here, α
and η can be easily estimated and tested with the LSE of y on x and g(w).
By employing a sufficiently general g(w), we can detect departures from H0

into various directions. If η is significantly different from 0, then the model
y = x′α + u must be misspecified. As a matter of fact, we can try almost
anything in the place of g(w). In this sense, g(w) is an “artificial regressor”
and the model is an artificial regression: we do not necessarily think that the
model in Ha is true, but so long as g(w) can detect a misspecification, using
g(w) is justified.

As another example of MMT, consider the linear model y = x′α + u
where u has density function fu. Suppose that we assumed the symmetry of
fu but estimated α by LSE aN , which does not use the symmetry assumption.
A symmetry test can be done for H0 : E(u3) = 0, with

1√
N

∑
i

(yi − x′iaN )3 ≡ 1√
N

∑
i

r3
i , where ri ≡ yi − x′iaN

since the symmetry implies E(u3) = 0. Note that we cannot test E(u) = 0
that is also implied by the symmetry, because we used E(u) = 0 in getting
the LSE. Rejecting E(u3) = 0 negates symmetry, but accepting E(u3) = 0
does not necessarily imply symmetry. Observe

ma′(zi, aN ) = −3r2
i x′i ⇒ ma′(zi, α) = −3u2

i x
′
i.

Thus
1√
N

∑
i

{m(zi, α) + E(ma′)ηi} =
1√
N

∑
i

{u3
i − 3E(u2x′) E−1(xx′)xiui}.
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The asymptotic variance should not be estimated with N−1
∑

i r6
i , because

1
N

∑
i

r6
i =

1
N

∑
i

u6
i + op(1) →p E(u6)

which ignores the correction term 3E(u2x′) · E−1(xx′)xiui.

EXAMPLE: HOUSE SATE (continued). Recall the house sale data in the pre-
ceding chapter. Let discount % be y and let x consist of 1, BATH, ELEC,
RM, TAX, YR, L1, L2, L3, ln(LP), BIGS, RATE, and SUPPLY. Applying
LSE to get the residuals and defining

δNi ≡ r3
i − 3

∑
i

r2
i x′i

(∑
i

xix
′
i

)−1

xiri,

we obtained

1√
N

∑
i

r3
i = 15776,

(
1
N

∑
i

δ2
Ni

)1/2

= 6174

=⇒ Right Test Statistic 2.555,(
1
N

∑
i

r6
i

)1/2

= 7694 =⇒ Wrong Test Statistic 2.050.

Although the null hypothesis E(u3) = 0 is rejected with both test statis-
tics, using the right SD gives the more powerful test in this example. One may
wonder why the correct SD with α estimated is smaller than the wrong SD
with “α known.”This can be understood recalling that a two-stage estimator
may have a smaller variance than the infeasible one-stage estimator with α
known if aN is an efficient estimator for α. For instance, if the first-stage
linear model of y has a normal error, then the LSE is an efficient estimator
for α, which may be happening in the house sale example.

Besides the above omitted variable and symmetry tests, there are other
examples which can be easily thought of. For instance, if we suspect that
the error terms may be auto-correlated (in time series data), we may test if
E(uiui−1) = 0. The appropriate test statistic is N−1/2

∑N
i=2 riri−1, although

it is in fact simpler to use ri−1 as an artificial regressor in the original model
to see if the slope of ri−1 is significant or not. If we want heteroskedasticity
test, then we may examine if

E{x(u2 − σ2)} = E[ E{x(u2 − σ2)|x} ] = E[x{E(u2|x) − σ2}] = 0
if E(u2|x) = σ2.

A test statistic for this is N−1/2
∑

i xi(r2
i − s2

N ) where s2
N = N−1

∑
i r2

i .
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4.3 Conditional Moment Tests

More generally than E(vz) = 0, a conditional moment condition E(v|z) =
0 implies E{v·g(z)} = 0 for any square-integrable function g(z) (i.e., E{g(z)2}
< ∞). This can be tested with N−1/2

∑
i v̂ig(zi), where v̂i is an estimator for

vi. The test includes the aforementioned homoskedasticity test as a special
case with vi = u2

i − σ2 and g(zi) = xi. When the moment condition in a
MMT is derived from a conditional moment condition, the MMT may be
called a conditional moment test (Newey, 1985).

For a conditional moment test with E(v|z) = 0, one can use many differ-
ent functions for g(z) to test E{v ·g(z)} = 0. In principle, if we use sufficiently
many functions, say g1(z), ..., gm(z), for g(z) such that any function of z can
be well approximated by gj(z), j = 1, ...,m, then a test for E{v · gj(z)} = 0,
j = 1, ...,m, may be as good as the (infeasible) test for E(v|z) = 0. The test
statistic in this case is

G′NC−1
N GN�χ2

m where GN ≡
{

1√
N

∑
i

v̂ig1(xi), ...,
1√
N

∑
i

v̂igm(xi)

}′
and CN →p C that is the asymptotic variance for GN . In general, v̂ includes
a nuisance parameter, and its estimation will affect C, which should be thus
accounted for.

De Jong and Bierens (1994) showed that if the number m of functions
goes to infinity and if the sequence of functions spans the space of square-
integrable functions, then MMT using the infinite moment conditions can
detect any kind of violation of H0, that is, the test is “consistent.”The test
statistic they propose is

√
2m{G′NC−1

N GN − m}� N(0, 1), as m → ∞

which results from CLT applied to m-many χ2
1 random variables. In practice,

one can use low-order polynomial functions of x for gN . Unless m is very
large, however, it is likely that χ2

m provides a better approximation for the
asymptotic distribution of G′NC−1

N GN than this display does. In practice,
since we will be using only a finite m, there will be a set D for z such that
E(v|z) = 0 for z ∈ D which fails to be detected by tests with a finite m.
Better conditional moment tests will be seen later in Chapters 8 and 9.

5 Tests Comparing Two Estimators

We saw moment-based tests, which is an important idea of testing. An-
other idea, probably as important, is testing by comparing two estimators,
which is the topic of this section; Wald tests are in fact based on this idea
as shown below. Although the topic is not quite relevant to M-estimation,
it is discussed here for two reasons. One is to contrast the testing princi-
ple to MMT, and the other is that influence functions that appeared for
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M-estimators with nuisance parameters come handy for tests based on the
difference of two estimators.

5.1 Two Estimators for the Same Parameter

The Wald test for the linear hypothesis R′β = c looks at the difference
between the two estimators R′bN and c for the same parameter R′β. R′bN

is consistent for R′β under both H0 and Ha, whereas c is consistent for R′β
only under H0. Thus if H0 holds, R′bN − c →p 0; otherwise R′bN − c is not
consistent for 0. Extending this idea in the Wald test, we can test for the
model assumptions by comparing two estimators which are supposed to be
close if the assumptions are right.

Consider two estimators aN and bN for β, where bN is
√

N -consistent
under both H0 and Ha and aN is

√
N -consistent only under H0. Assume that

√
N(aN − β)� N(0, A) and

√
N(bN − β)� N(0, B).

Then, for a variance matrix C, we might get
√

N(aN − bN ) =
√

N(aN − β) −
√

N(bN − β)� N(0, C)

and with CN →p C,
√

N(aN − bN )′C−1
N

√
N(aN − bN )=N(aN − bN )′C−1

N (aN − bN )� χ2
rank(C).

Specifically, suppose aN and bN have influence functions:

√
N(aN − β) =

1√
N

∑
i

vi + op(1)� N(0, E(vv′)),

√
N(bN − β) =

1√
N

∑
i

wi + op(1)� N(0, E(ww′)).

Then
√

N(aN − bN ) =
√

N(aN − β) −
√

N(bN − β) =
1√
N

∑
i

(vi − wi) + op(1).

This shows that

C = E{(vi − wi)(vi − wi)′} and CN =
1
N

∑
i

(v̂i − ŵi)(v̂i − ŵi)′,

where v̂i →p vi and ŵi →p wi.

In addition to the assumptions on aN and bN , further assume that aN

is efficient under H0 while bN is not. Then, for the χ2 test statistic, CN can
be replaced with a consistent estimator, say BN − AN for B − A:

N · (aN − bN )′(BN − AN )−1(aN − bN )� χ2
rank(B−A),
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which is called a Hausman test (Hausman, 1978) in econometrics. In Hausman
test, H0 and Ha are not specific: H0 is the set of model assumptions which
make aN efficient and consistent and bN inefficient and consistent, while Ha is
the set of model assumptions which make aN inconsistent and bN consistent.
We will show why B − A is p.s.d. below. But before that, two examples of
Hausman tests are given next.

First, consider two moment conditions

E{ z1
p1×1

(y − x′β)} = 0 and E{ z2
p2×1

(y − x′β)} = 0

where p1, p2 ≥ k ( = dim(β)).

Suppose H0 : E{z2(y − x′β)} = 0. The GMM using both moment conditions
is consistent and efficient under H0 but inconsistent under Ha. The GMM
using only the first moment condition is consistent under both H0 and Ha,
but inefficient under H0.

Second, for a panel data model

yit = x′itβ + vit, vit = δi + uit, i = 1, ..., N, t = 1, ..., T,

suppose that δi ∼ N(0, σ2
δ), uit ∼ N(0, σ2

u) and that, with ui ≡ (ui1, ..., uiT )′,
(δi, u

′
i) is independent of one another and is independent of (xi1, ..., xiT ). This

implies that vi ≡ (vi1, ..., viT )′ = 1T ⊗ δi + ui is jointly normal with 0 mean
and variance

E(vv′) = E{(1T ⊗ δi + ui)(1T ⊗ δi + ui)′}
= E(1T 1′T ⊗ δ2

i ) + E(uiu
′
i) = 1T 1′T ⊗ σ2

δ + IT σ2
u.

With this, MLE can be done which is efficient under “H0: δi is independent of
(xi1, ..., xiT )” but inconsistent if H0 is violated. Since this MLE standardizes
all errors terms and then does LSE, the MLE is equivalent to panel GLS
using N−1

∑
i v̂iv̂

′
i as the weighing matrix. The within group estimator WIT

is consistent under both H0 and Ha but inefficient under H0.
In practice, the estimator BN − AN in the Hausman test statistic may

not be invertible, nor p.s.d. even if invertible. If the sample size is small, then
a poor estimate for the covariance matrix may be the reason for this problem.
However, if the sample size is large, the problem should be taken as rejecting
H0, since B − A being p.s.d. is valid only under H0. One way to avoid this
problem is to use the above CN instead of BN − AN .

Turning to the question on why the asymptotic variance of
√

N(bN −aN )
is the difference B − A of two individual variances in Hausman test, if aN is
the efficient estimator, then under certain regularity conditions, it holds that

√
N(bN − β) =

1√
N

∑
i

wi =
1√
N

∑
i

(vi + ηi)

where E(vη′) = 0. That is, an inefficient asymptotically normal
√

N -
consistent estimator is a sum of N−1/2

∑
i vi (from the efficient estimator)
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and N−1/2
∑

i ηi orthogonal to N−1/2
∑

i vi. This has been known since
1950s; see, e.g. Bickel et al. (1993). Intuitively, if E(vη′) = 0, then we can
get the following estimator more efficient than aN by linearly projecting v
on η:

1√
N

∑
i

{vi − E(vη′)E−1(ηη′)ηi}.

This contradicts the efficiency of aN , and so E(vη′) must be zero. Therefore
we have

√
N(bN − aN ) =

1√
N

∑
i

ηi � N(0, E(ηη′)), and AN − BN →p E(ηη′).

The idea of comparing two estimators is old, and C = B − A under the
efficiency of aN was known well before Hausman (1978). Also in practice,
frequently one has to use the influence-function-based CN , because BN −
AN is not p.s.d.. In view of these observations, the term “Hausman test”
is somewhat over-used in econometrics. Hausman test is an example of the
“efficiency-orthogonality nexus”, which was noted in relation to two-stage
M-estimator being more efficient than its infeasible version with the known
first-stage parameter.

5.2 Two Estimators for the Same Variance

Although somewhat different from Wald-type tests, it is possible to test
model specifications using variance-matrix estimators. Consider two estima-
tors ΩN1 and ΩN2 for Ω where

√
N(bN − β) � N(0,Ω). Suppose that both

ΩN1 and ΩN2 are consistent for Ω under H0, whereas only ΩN1 is consis-
tent for Ω under Ha. In the following, we introduce two tests based on this
idea.

White’s Heteroskedasticity Test (White, 1980) for the linear model y =
x′β + u uses a heteroskedasticity-robust variance estimator and a variance
estimator under homoskedasticity. The test looks at the difference

E−1(xx′) E(xx′u2) E−1(xx′) − σ2E−1(xx′).

Stacking some elements of the sample version of this, we get a vector which
follows a normal distribution with mean 0 when normed by

√
N ; the matrix

in the preceding display is symmetric and it has k(k + 1)/2 distinct elements
at maximum where x is a k × 1 vector. Then a Wald test statistic can be
formed. As such, however, the test is somewhat cumbersome to implement;
instead, one may use an artificial regression version of the White test: do LSE
of r2

i on 1, xi, and quadratic terms of elements of xi where ri ≡ yi − x′iblse.
If any slope coefficient is significant, then homoskedasticity is rejected.

Another specification test based on covariance matrix comparison is in-
formation matrix test in White (1982); the rest of this subsection requires
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some knowledge on MLE, and thus may be read after more on MLE is cov-
ered. In MLE with the likelihood function f , the second-order matrix times
minus one should equal the outer-product of the score function. That is, if the
MLE specification is correct, the following k by k matrix moment condition
holds:

E

(
∂ ln f

∂b

∂ ln f

∂b′
+

∂2 ln f

∂b∂b′

)
= 0.

To see how to implement the information matrix test, let

E

(
∂ ln f(z, β)

∂b

∂ ln f(z, β)
∂b′

)
= [gjl(z, β)] and

E

(
∂2 ln f(z, β)

∂b∂b′

)
= [hjl(z, β)].

Due to the symmetry of these matrices, we can compare only the upper- (or
lower) triangular components. Let τ(z, β) denote the stacked version of those
elements; τ has k′ ≡ k(k + 1)/2 elements. For instance, with k = 2, τ(z, β) is
a 3 × 1 vector such that τ = (g11 + h11, g12 + h12, g22 + h22)′. Observe now,
with τ b′(z, β) ≡ ∂τ(z, β)/∂b′ and s denoting the score vector,

1√
N

∑
i

τ(zi, bN )
k′×1

=
1√
N

∑
i

τ(zi, β)

+
1
N

∑
i

τ b′(zi, β)
k′×k

√
N(bN − β) + op(1)

=
1√
N

∑
i

η(zi, β) + op(1), where

η(zi, β) ≡ τ(zi, β) + E{τ b′(z, β)}E−1{s(z, β)s(z, β)′} s(zi, β).

From this, with the population means replaced by their sample versions, the
test statistic is{

1√
N

∑
i

τ(zi, bN )

}′ {
1
N

∑
i

η(zi, bN )η(zi, bN )′
}−1

{
1√
N

∑
i

τ(zi, bN )

}
� χ2

k′ .

The information matrix test (and the heteroskedasticity test) also suffers
from the same drawback as Hausman test: the rejection of H0 does not indi-
cate exactly which assumption in the null model is violated. Also deriving the
second derivatives (hjl) and the cross-derivatives (τ b′) of the log-likelihood is
difficult; in practice, it would be safer to use numerical derivatives for both.
One way to avoid τ b′ involving third-order derivatives comes from noting
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∂E{τ(z, β)}
∂β′

= 0 under H0 : E{τ(z, β)} = 0

=⇒ 0 =
∂
∫

τ(z, β)f(z, β)dz

∂β′
=

∫
∂τ(z, β)

∂β′
f(z, β)dz

+
∫

τ(z, β)
∂f(z, β)

∂β′
dz

=
∫

∂τ(z, β)
∂b′

f(z, β)dz +
∫

τ(z, β)s(z, β)′f(z, β)dz

where s(z, β) =
∂f(z, β)/∂β

f(z, β)
=⇒ E{τ b′(z, β)} = −E{τ(z, β)s(z, β)}.

Substituting the last display into η(z, β) yields

η(zi, β) = τ(z, β) − E{τ(z, β)s(z, β)}E−1{s(z, β)s(z, β)′} · s(z, β)

which is the linear projection residual of τ on s. This form of information ma-
trix test is called the “outer-product of gradient (OPG)” form and appeared
in Lancaster (1984). As once noted already, by plugging in the MLE bN for
β, the asymptotic variance of N−1/2

∑
i τ(zi, bN ) is smaller than that of its

infeasible version N−1/2
∑

i τ(zi, β).
The information matrix test and its modifications as the OPG form tend

to over-reject H0; see, e.g., Orme (1990), Davidson and MacKinnon (1992)
and the references therein. One possible reason for the problem is second-
order derivatives. When x′β is in the likelihood, the second-order derivatives
have x2

j , j = 1, ..., k, and the asymptotic variance estimator involves x4
j : a big

value (an “outlier”) in xj will be four-fold magnified in x4
j . This can make

the asymptotic variance estimator unstable. For real data, the over-rejection
problem can also occur because the first and second derivatives are “fine de-
tails” of f : even if f provides a good approximation to the true likelihood, say
g, f ′ and f ′′ may not be close to g′ and g′′. The over-rejection problem may
be avoided using “parametric bootstrap” as suggested by Horowitz (1994).
Overall, a caution is warranted in using information matrix test in practice.

6 Three Tests for MLE

So far we have seen only Wald and method-of-moment tests mostly for
linear hypotheses. In this section, more tests for MLE are examined. First, we
quickly review Wald test for linear hypotheses, and then examine nonlinear
hypotheses. Second, “likelihood ratio (LR) test” for MLE is presented. Third,
“LM test” or “score test” is studied. The three tests (Wald, LR, LM) together
are sometimes called the “trilogy” in MLE tests.
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6.1 Wald Test and Nonlinear Hypotheses

Suppose we want to test H0 : R′β = c, where R is a k× g known matrix
with rank g ≤ k, and c is a g × 1 known vector; both R and c do not involve
β. For an estimator bN for β such that

√
N(bN − β)� N(0, V ), a Wald test

statistic is

N(R′bN − c)′(R′VNR)−1(R′bN − c)� χ2
g where VN →p V.

Using δ-method, we can construct a Wald test for g×1 nonlinear hypotheses

H0 : h(β) = c where rank(hb(β)) = g and hb(β) ≡ ∂h(b)
∂b

|b=β ;

this includes R′β = c as a special case.
Observe

h(bN ) − c = h(bN ) − h(β) underH0

=⇒
√

N{h(bN ) − c}� N{0, hb′(β) V hb(β)}.

Assuming (see Andrews (1987b))

P{rank(hb(bN )) = rank(hb(β))} → 1 as N → ∞,

the Wald test statistic for the nonlinear hypothesis is

N{h(bN ) − c}′ {hb′(bN ) VN hb(bN )}−1{h(bN ) − c}� χ2
g,

where VN →p V.

As an example, suppose we have

H0 : β2β3 = 1 and
β4

β5

=
β6

β7

, where g = 2, k = 7.

Rewrite H0 as [
β2β3

β4β7 − β5β6

]
=

[
1
0

]
=⇒ hb′(β)

2×7
=

[
0 β3 β2 0 0 0 0
0 0 0 β7 −β6 −β5 β4

]
where c = (1, 0)′ and h(bN ) = (b2b3, b4b7 − b5b6)′ with bN = (b1, ..., bk)′.
Substitute c, hb(bN ), and h(bN ) into the Wald test statistic to implement the
test.

There is a problem in Wald tests with nonlinear hypotheses. For example,
in the H0 above, β4/β5 = β6/β7 can be reformulated in many algebraically
equivalent ways. Instead of β4β7−β5β6, if the original form β4β

−1
5 −β6β

−1
7 =

0 is used, then the second row of hb′(β) becomes

0, 0, 0, β−1
5 ,−β4β

−2
5 ,−β−1

7 , β6β
−2
7 .
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Using this renders a different value for the Wald test in general. A more
drastic example is testing H0:β2 = 1, which can be rewritten as nonlinear
hypotheses β2

2 = 1, β3
2 = 1, ..., β1000

2 = 1 (Lafontaine and White, 1986).
The following two points may help choosing a nonlinear hypothesis in

practice (Gregory and Veall (1985) and Phillips and Park (1988)). First, there
may be a hypothesis more natural than others; in the preceding example,
β2 = 1 is a more natural choice than β1000

2 = 1, because we do not actually
think that β2 is exactly one (β1000

2 will be either almost 0 or almost ∞
depending on whether |β2| < 1 or |β2| > 1). Second, a nonlinear hypothesis
in a multiplicative form seems better than that in a ratio form in the sense
that the linear approximation of the nonlinear function holds better, which
is why we used β4β7 − β5β6 = 0 rather than β4β

−1
5 − β6β

−1
7 = 0.

6.2 Likelihood Ratio (LR) Test

Consider a twice continuously differentiable likelihood function f(z, b)
wrt b for all z, which will be often denoted just as f(b). Suppose we have a
null hypothesis H0:R′β = c. The unrestricted MLE bN maximizes

∑
i ln f(b)

and thus satisfies
∑

i s(bN ) = 0 where s(b) is the score function for f(b),
whereas the restricted MLE bNr maximizes

∑
i ln f(b) subject to R′b = c.

Namely, bNr maximizes ∑
i

ln f(b) + Nλ′(R′b − c)

where λ is a g × 1 Lagrangian multiplier. Likelihood ratio test compares two
maximized log-likelihood functions at bN and bNr. But before we proceed
further, it helps to look at a linear model case first.

6.2.1 Restricted LSE

Suppose y = x′β + u and we want to have a restricted LSE bNr maxi-
mizing

−1
2

∑
i

(yi − x′ibNr)2 + Nλ′(R′b − c)

=⇒ first-order conditions for (b′Nr, λ
′
N )′ :∑

i

xi(yi − x′ibNr) + NRλN = 0 and R′bNr = c.

From the first equation,∑
i

xiyi −
∑

i

xix
′
i · bNr + NRλN = 0

=⇒ bNr = bN +

(
1
N

∑
i

xix
′
i

)−1

RλN as
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bN =

(
1
N

∑
i

xix
′
i

)−1
1
N

∑
i

xiyi.

Substitute this into R′bNr = c to get

R′bN + R′
(

1
N

∑
i

xix
′
i

)−1

RλN = c

=⇒ λN =

⎧⎨⎩R′
(

1
N

∑
i

xix
′
i

)−1

R

⎫⎬⎭
−1

(c − R′bN ).

Substitute this back into the bNr equation to get

bNr = bN +

(
1

N

∑
i

xix
′
i

)−1

·R
{

R′
(

1

N

∑
i

xix
′
i

)−1

R

}−1

(c−R′bN )

=

⎡⎣Ik −
(

1

N

∑
i

xix
′
i

)−1

R

{
R′

(
1

N

∑
i

xix
′
i

)−1

R

}−1

R′

⎤⎦ · bN

+

(
1

N

∑
i

xix
′
i

)−1

·R
{

R′
(

1

N

∑
i

xix
′
i

)−1

R

}−1

c.

Multiplying the first and last expressions in this display by R′, we can see
R′bNr = c holds.

Suppose c = 0. If we replace N−1
∑

i xix
′
i with Ik in bNr, then we get a

different (inefficient in general, but easier to interpret) restricted estimator

b∗Nr ≡ [Ik − R(R′R)−1R′] · bN (=⇒ R′b∗Nr = 0) :
b∗Nr is the projection “residual” of bN on R.

Suppose k > 3 and H0: the last 3 components of β are zeros. Then c = 0 and
R′ is 03×k with its last 3 × 3 matrix replaced by I3:

R′ =

⎡⎢⎣ 0 · · · 0 0 1 0 0
... · · ·

...
... 0 1 0

0 · · · 0 0 0 0 1

⎤⎥⎦ .

In this case, Ik − R(R′R)−1R′ is Ik with its lower right I3 matrix replaced
by 03×3; i.e., b∗Nr is bN with its last three elements replaced by zeros.

It is not difficult to see b∗Nr = bNr. For instance, denoting x = (x′f , x′g)
′

with xg for the last three elements of x, suppose COR(xf , xg) is very high.
Then this will make bN poor (multicollinearity problem), but b∗Nr just takes
over the poor estimates from bN while bNr takes this COR(xf , xg) into ac-
count by using N−1

∑
i xix

′
i in transforming bN to bNr. The interesting ques-

tion is then, will the LSE of y on xf be the same as bNr? This LSE also takes
advantage of COR(xf , xg) as xg is dropped to remove the multicollinearity
problem. The answer can be shown to be yes, as it is intuitively plausible.
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6.2.2 Restricted MLE and LR Test

Turning back to MLE, apply Taylor expansion of second order to
∑

i ln
f(bNr) around bN to get, for some b∗N ∈ (bNr, bN ),∑

i

ln f(bNr) =
∑

i

ln f(bN ) +
∑

i

s(bN )′(bNr − bN )

+
1
2
(bNr − bN )′

∑
i

sb′(b∗N )(bNr − bN )

where sb′ ≡ ∂s/∂b′ is a k×k matrix. Since
∑

i s(bN ) = 0 by the construction
of bN , under the H0, this display can be rewritten as

2

{∑
i

ln f(bN ) −
∑

i

ln f(bNr)

}

=
√

N(bNr − bN )′
{
− 1

N

∑
i

sb′(b∗N )

}
√

N(bNr − bN )

=
√

N(bNr − bN )′If

√
N(bNr − bN ) + op(1)

for bN →p β and bNr →p β, where If = −E{sb(β)} = E(s(β)s(β)′) is the
information matrix. We need to know the relation between bNr and bN to
deal with this equation, which is done in the following. The reader may skip
the derivation and go directly to “2{∑i ln f(bN )−∑

i ln f(bNr)}� χ2
g” near

the end of this subsection.
Expand the first-order condition

∑
i s(bNr) + NRλ = 0 for bNr around

bN : for some b∗Nr ∈ (bNr, bN ), because
∑

i s(bN ) = 0,

0 =
∑

i

{s(bN ) + sb′(b∗Nr)(bNr − bN )} + NRλ

=
∑

i

sb′(b∗Nr)(bNr − bN ) + NRλ

=⇒ 0 =
1
N

∑
i

sb′(b∗Nr)
√

N(bNr − bN ) +
√

NRλ

= −If

√
N(bNr − bN ) + R

√
Nλ + op(1).

Multiply both sides by R′I−1
f to get

0 = −R′
√

N(bNr − bN ) + R′I−1
f R ·

√
Nλ + op(1)

=⇒
√

Nλ = −(R′I−1
f R)−1

√
N(R′bN − c) + op(1), for R′bNr = c.

Substitute this back into 0 = −If

√
N(bNr − bN ) + R

√
Nλ +op(1) to get

0 = −If

√
N(bNr − bN ) − R(R′I−1

f R)−1
√

N(R′bN − c) + op(1)

=⇒
√

N(bN − bNr) = I−1
f R(R′I−1

f R)−1
√

N(R′bN − c).
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Substitute this into the above 2 {∑i ln f(bN ) −∑
i ln f(bNr)} equation

to get

2

{∑
i

ln f(bN ) −
∑

i

ln f(bNr)

}
= N(RbN − c)′(R′I−1

f R)−1(RbN − c)

+ op(1).

The right-hand side is the Wald test statistic (with If replaced with an
estimator), and we get

2

{∑
i

ln f(bN ) −
∑

i

ln f(bNr)

}
� χ2

g

which is called the likelihood ratio (LR) test in MLE.
The above equation bN − bNr = I−1

f R(R′I−1
f R)−1(R′bN − c) can be

solved for bNr to show that bNr can be obtained from bN :

bNr = {Ik − I−1
f R(R′I−1

f R)−1R′}bN + I−1
f R(R′I−1

f R)−1c

where If should be replaced with N−1
∑

i s(bN )s(bN )′. When c = 0, bNr is
reminiscent of the projection residual of bN on the columns of R. This formula
comes handy when imposing RbNr = c directly on the estimation procedure
is difficult. If this is easy—e.g., H0 specifies some coefficients to be zero—then
getting bNr directly is easier: just drop the corresponding regressors from the
model.

LR is also good for nonlinear hypotheses so long as bNr satisfies the hy-
pothesis. Compared with the Wald test, the LR test has the disadvantage of
requiring both bN and bNr, but the LR test has the advantage of good “in-
variance properties” such as invariance to re-parametrizations of the model.
See Dagenais and Dufour (1991) and the references therein for more on this;
an example for this point will appear in the chapter for limited dependent
variable models. LR test also appears in the celebrated “Neyman-Pearson
Lemma” for optimality in testing simple (and one-sided) hypotheses.

6.3 Score (LM) Test and Effective Score Test

When we discussed MMT, the idea was to test for (zero) moment con-
ditions implied by the model which were, however, not used in obtaining the
estimator. Applying the idea to MLE, we can devise score test or Lagrangian
multiplier test (LM). When we get bNr under H0, we do not use all the first-
order conditions used in getting bN . Thus if H0 is correct, then bNr should
satisfy the unused first-order conditions, which is the key idea.

Denote the score vector for bN evaluated at bNr as si(bNr) = ∂ ln{f(bNr)}/
∂b. Then the score test statistic is

∑
i

si(bNr)′
{∑

i

si(bNr)si(bNr)′
}−1 ∑

i

si(bNr)� χ2
g
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which requires only bNr (no need to compute bN ). LM test is the most useful
when getting bN is difficult while getting bNr is easy. As noted already, this is
the case if the H0 is linear stating that some components of β are zero. There
exist other forms of LM tests, and the above one is called the “outer-product
of gradient (OPG)” form. In the score test, the dimension of si(bNr) is k×1,
while the degree of freedom in χ2 is still g, which may be a little puzzling;
we show why in the following.

Recall that bNr satisfies
∑

i si(bNr) = −NRλ, and thus the score test
statistic can be written as

√
Nλ′ · R′

{
1
N

∑
i

si(bNr)si(bNr)′
}−1

R ·
√

Nλ

which gives justice to the name LM test. The middle matrix is consistent
for R′I−1

f R under the H0, which is the inverse of the asymptotic variance of√
Nλ, because, as we already saw in the preceding subsection,

√
Nλ = (R′I−1

f R)−1
√

N(R′bN − c) + op(1)

� N{0, (R′I−1
f R)−1R′IfR(R′I−1

f R)−1} = N(0, (R′I−1
f R)−1).

Hence, the LM test statistic is a quadratic form of an asymptotically normal
g × 1 vector inversely weighted by its asymptotic variance matrix, which
follows χ2

g.
As an example of LM test, consider H0: the first k1 components of β are

zero. Define
β ≡ (β′1, β

′
2)
′, si(b) ≡ (s1i(b)′, s2i(b)′)′

where the dimension of βj and sj is kj×1, j = 1, 2. Under the H0, the first k1

elements of x is not used. That is, only the condition N−1
∑

i s2i(bNr) = 0 is
used to get bNr, and the LM test examines if bNr satisfies N−1

∑
i s1i(bNr) =

0. Since estimating bNr is certainly easier than bN in this example, the LM
test has a practical advantage over the Wald and LR tests. This advantage,
however, may not hold for a complicated H0.

In the LM example, only a part s1i(b) of the score vector si(b) is effec-
tively used for the LM test. If we follow the idea of MMT, we should test,
not N−1

∑
i si(bNr) →p 0, but only N−1

∑
i s1i(bNr) →p 0. The asymptotic

distribution of the test statistic N−1/2
∑

i s1i(bNr) can be found by doing
analogously to deriving the asymptotic distribution of the MMT’s, but the
asymptotic distribution would be more complicated than that of the LM test,
because bNr becomes essentially a nuisance parameter in N−1/2

∑
i s1i(bNr),

and this fact influences the asymptotic distribution of the “second-stage”
test. By using N−1

∑
i si(bNr) in LM, this complication is avoided.

Suppose we want to test N−1
∑

i s1i(bNr) →p 0. As just mentioned, the
asymptotic variance of

√
N(bNr−β) will appear in the asymptotic distribution
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of N−1/2
∑

i s1i(bNr). However, there is a way to avoid this problem. In the
following paragraph, we will show that

1√
N

∑
i

[s1i(b2) − I12I
−1
22 s2i(b2)]� N(0, I11 − I12I

−1
22 I21)

where b2 is an any
√

N -consistent estimator for β2, I12 ≡ E{s1(β)s2 (β)′},
and I11, I22, and I21 are analogously defined. From this display, we then
obtain

∑
i

Si
′
(∑

i

SiSi
′
)−1 ∑

i

Si � χ2
g, where

Si ≡ s1i(b2) −
∑

i

s1i(b2)s2i(b2)′
{∑

i

s2i(b2)s2i(b2)′
}−1

s2i(b2).

This is convenient, for the asymptotic variance matrix does not depend on
the asymptotic variance of

√
N(b2 − β2). Instead of using s1, the test uses

the part of s1 not explained by s2. The test using the effective score (s1 not
explained by s2) is called the Neyman’s “C(α) test” or “effective score test.”
According to Bera and Premaratne (2001) who provided a brief survey on
hypothesis testing, the “C” in C(α) refers to Cramér (the author of a classical
statistics book) and α refers to the usual level of significance.

Apply Taylor expansion to s1i(b2) − I12I
−1
22 s2i(b2) around β2 to get

1√
N

∑
i

{s1i(β2) − I12I
−1
22 s2i(β2)}

+

[
1
N

∑
i

∂s1i(b∗2)
∂b′2

− I12I
−1
22

1
N

∑
i

∂s2i(b∗2)
∂b′2

]
√

N(b2 − β2).

Recall E(s(β)s(β)′) = −E(∂s/∂b′) and observe

1
N

∑
i

∂s1i(b∗2)
∂b′2

→p E

{
∂s1(β2)

∂b′2

}
= −I12,

1
N

∑
i

∂s2i(b∗2)
∂b′2

→p E

{
∂s2(β2)

∂b′2

}
= −I22.

Substituting these into [···] in the Taylor expansion makes the term in [· · · ] to
be op(1). Hence only the first term in the Taylor expansion remains, establish-
ing the desired asymptotic normality that is the same for any

√
N -consistent

b2.

6.4 Further Remarks and an Empirical Example

Wald, LR, and score tests are called the three classical tests. All three
follow χ2

g asymptotically under H0, but they differ in terms of computational
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ease, performance in small samples, and invariance properties. The three tests
are based on different kinds of distances which are small under H0 and large
otherwise (Engle, 1984):

Wald : the estimators |bN − bNr|

LR : the maximands |QN (bN ) − QN (bNr)|

Score (LM) : the slopes
∣∣∣∣∂QN (bNr)

∂b
− ∂QN (bN )

∂b

∣∣∣∣ =
∣∣∣∣∂QN (bNr)

∂b
− 0

∣∣∣∣ .
Asymptotically, the three tests are equivalent in having the same significance
level under H0 : Rβ = c and the same power against a local alternative Ha :
Rβ = c+δ/

√
N ; under this Ha, they follow the same non-central χ2 with the

non-centrality parameter (NCP) δ′(RI−1
f R′)−1δ. See Bera and Bilias (2001)

for historical perspectives and references.
To illustrate the three MLE tests, we use an US cross-section data for

males with N = 545 for 1987, which is in fact part of an eight-year panel data
set used in Lee (2002) who in turn drew the data from Vella and Verbeek
(1998). The response variable is whether the male is in a labor union (y = 1)
or not (the mean is 0.26), and the regressors are 1 and (in the following, the
numbers in (·) are mean and SD; for dummies, only the mean is shown)

edu: years of schooling (11.77, 1.75)

exr: job experience computed as age − 6 − edu (10.01, 1.65)

exredu: interaction between exr and edu (116.17, 16.71)

blc: race dummy for black (0.12)

hisp: race dummy for Hispanic (0.16)

mar: dummy for married (0.61)

rur: dummy for living in a rural area (0.06)

sou: dummy for living in south (0.36)

The other regressors used are industry dummies (mean in (·)): agr (agricul-
ture; 0.02), bus (business and repair service; 0.10), cst (construction; 0.08),
fin (finance; 0.04), man (manufacturing; 0.30), pro (professional; 0.07), pub
(public administration; 0.22), trad (trade; 0.20), and tran (transportation;
0.08).

Under yi = 1[x′iβ + ui > 0] and ui ∼ N(0, σ2) independently of xi,
we have the log-likelihood function to maximize for a (the details of this
MLE—probit—for binary response will appear in a separate chapter)∑

ι

{yi ln Φ(x′ia) + (1 − yi)(1 − Φ(x′ia))} where a is for

α ≡ β

σ
= (

β1

σ
, ...,

βk

σ
)′.
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The column “Unrestricted” in the probit table for joining labor union or
not shows the estimates and the t-values (Table 1). Since most of the nine
industry dummies look insignificant, we test the null hypothesis

H0 : β10 =, ...,= β18 = 0 (9 restrictions).

With this H0 imposed, we obtained the column “Restricted” in the table.
The three test statistics (p-value) are

Wald : 24.77 (0.003), LR : 27.33 (0.001), LM : 31.33 (0.000);

All three tests reject the H0.

7 Numerical Optimization and One-Step
Efficient Estimation

For LSE, estimators are written in closed forms. However, M-estimators
are defined implicitly by maximands which are functions of b. Hence, ob-
taining an M-estimator in practice requires some type of numerical searching
process, which has been shown already briefly. We substitute a number for
b in the sample maximand and evaluate the maximand. Then we decide
whether the number is the maximizer or other numbers for b could increase
the maximand. If the latter is the case, we choose another number for b and
repeat the process. Searching for an estimator in this trial and error fash-
ion is called numerical maximization, which is the topic of this section. First,
we introduce the popular Newton–Raphson algorithm. Second, some remarks
are made for Newton–Raphson algorithm and then other numerical optimiza-
tion methods are briefly mentioned. Third, we show that only one iteration
is enough asymptotically if we start from a

√
N -consistent estimator. The

reader may want to read this section when he/she actually has to obtain an
M-estimator, say, a MLE.

7.1 Newton–Raphson Algorithm

Intuitively, numerical searching is like being deserted in a foggy moun-
tainous area and trying to reach the highest point from a given spot. If the
sky were clear, it would be easier to visually locate the peak. But with the
foggy sky, the vision is impaired, and we have to decide on two things from
a given spot: which direction to move and how far to move in that chosen
direction. If we go too far in the wrong direction, then it will be difficult to
come back. But if we don’t go far enough, we will never know what lies in
the far area.

Let Q(b) be a (approximately) quadratic concave maximand where b
is a scalar. Then b attains the maximum if Q′(b) = 0. If Q′(b) is positive
(negative), we should increase (decrease) b, for we are to the left (right)
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of the peak. The direction to move is decided by the first derivative, and
the magnitude of the move depends on Q

′′
(b). In the following, we for-

malize this idea to obtain “Newton–Raphson algorithm.” See, for exam-
ple, Press et al. (1986) for the numerical maximization methods in this
section.

Let b0 and b1, respectively, denote the initial and the next estimates.
Choose b1 by maximizing the following wrt b:

Q(b) � Q(b0) + G(b0)′(b − b0) +
1
2
(b − b0)′ · H(b0) · (b − b0)

where G is the first-derivative vector (gradient) and H is the second-derivative
matrix (Hessian). Differentiating the right-hand side (rhs) wrt b gives

b1 = b0 − H(b0)−1G(b0).

Repeating this while updating b0 with b1 each time until certain stopping
criterion is met is the Newton–Raphson Algorithm. This iteration formula is
valid even if Q(b) is a minimand, because −Q(b) is then a maximand and the
minus sign gets canceled in H(b0)−1G(b0).

Two popular stopping criteria are: with b1 = (b11, ..., b1k)′, b0 = (b01, ...,
b0k)′, and ε = 10−7,

(i)
k∑

j=1

|b1j − b0j |
|b0j |

< ε and (ii) |Q(b1) − Q(b0)| < ε

where the choice of ε is arbitrary and division by |b0j | is to remove the scale
differences across different variables. The advantage of (i) over (ii) is that
using (i) provides an uniform stopping criterion to compare different numer-
ical algorithms (for possibly different maximands) for the same parameter β.
The advantage of (ii) is that it is free from different scale or parametrization
problems.

Although using analytical derivatives makes the iteration scheme run
faster, getting them is often difficult. Thus, using numerical derivatives is
recommended in most cases at the cost of slower iteration, unless one has
access to a software that can give analytical derivatives. When k = 2, the first
numerical derivatives for the maximand QN (b) at b = β where b = (b1, b2)′

and β = (β1, β2)′ are

∂QN (β)
∂b1

≡ QN

(
β + ε

(
1
0

))
− QN

(
β − ε

(
1
0

))
2ε

and

∂QN (β)
∂b2

≡ QN

(
β + ε

(
0
1

))
− QN

(
β − ε

(
0
1

))
2ε

.
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There are 4 = 2 × 2 second derivatives, with the detail shown only for (i):

(i) :
∂2QN (β)
∂b1∂b1

≡ 1
2ε

{
∂QN

(
β + ε

(
1
0

))
∂b1

− ∂QN

(
β − ε

(
1
0

))
∂b1

}

=
1
2ε

{
QN

(
β + ε

(
1
0

)
+ ε

(
1
0

))
− QN

(
β + ε

(
1
0

)
− ε

(
1
0

))
2ε

−QN

(
β − ε

(
1
0

)
+ ε

(
1
0

))
− QN

(
β − ε

(
1
0

)
− ε

(
1
0

))
2ε

}
,

=
1
4ε

{
QN

(
β + 2ε

(
1
0

))
− 2QN (β) + QN

(
β − 2ε

(
1
0

))}

(ii) :
∂2QN (b)
∂b1∂b2

{
=

∂2QN (β)
∂b2∂b1

}

≡ 1
2ε

{
∂QN

(
β + ε

(
0
1

))
∂b1

− ∂QN (β − ε
(
0
1

)
)

∂b1

}
,

(iii) :
∂2QN (b)
∂b2∂b2

≡ 1
2ε

{
∂QN

(
β + ε

(
0
1

))
∂b2

− ∂QN

(
β − ε

(
0
1

))
∂b2

}
.

7.2 Newton–Raphson Variants and Other Methods

For LSE, H(b0) = −N−1
∑

i xix
′
i, which is at least n.s.d. In general,

however, there is no guarantee that H(b0) is n.d.; if not n.d., the Newton–
Raphson method fails. One way to avoid this problem is to use (1−λ)H(b0)+
λM instead of H(b0), where M is a chosen n.d. matrix; the scalar weight λ
should be chosen too. Depending on λ and M , many variations of Newton–
Raphson are possible.

Sometimes H(b) does not give a good “magnitude of the movement” (or
step size) along the direction given by G(b). With the step size too small, it
will take a long time to reach the peak. With the step size too big, we may
overstep, going from one side of the peak to the other side resulting in an
oscillation around the peak. The latter is the more serious problem. One way
to avoid this is to modify the Newton–Raphson algorithm as

b1 = b0 − η · H(b0)−1G(b0)

where η is a positive constant. The smaller η is, the smaller is the step size.
The choice of η is arbitrary.

Often H(b) is complicated. One way to simplify H(b) is to use only the
terms in H(b) that do not disappear in E{H(β)}. This is called the method of
scoring. Owing to this approximation of H(b), the method of scoring may be
slower in areas far away from β. But near β, the ignored term is almost zero
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so that the method of scoring should perform comparably to the Newton-
Raphson. In MLE, −E{H(β)} is the same as the expected outer product of
the score function. So often we use

− 1
N

∑
i

{
∂ ln f(z; b)

∂b

∂ ln f(z; b)
∂b′

}
for H(b), which saves the burden of deriving H(b) analytically or numeri-
cally. One advantage of this outer-product is that it is always at least n.s.d.
If numerical derivatives are employed throughout, then there is no need to
bother even with deriving the analytic first derivative. Numerical derivatives,
however, increase the computation time.

Suppose that Q(b) is differentiable only once, or that Q
′′
(b) is too compli-

cated to obtain analytically (or too time-consuming to derive numerically). In
this case, we have only the gradient available. In this case Newton–Raphson
type iteration is infeasible. In the following, we present a simple algorithm
employing solely the gradient.

Let b0 denote the current estimate and b1 = b0 + ηδ denote the next
candidate with its vector direction δ and scalar step size η. Then

Q(b0 + ηδ) − Q(b0) � η · G(b0)′δ,

where G denotes the gradient. For the right-hand side to be positive, δ
should be chosen such that G(b0)′δ is always positive. One obvious choice
is δ = G(b0). Hence the direction of improvement is determined. Since η
is a positive scalar, it is not too difficult to find the optimal step size for
the direction δ. “Grid search” is a possibility. Better yet, “line search by
bracketing” (see, e.g., Press et al., 1986) provides a good way to find the
optimal η.

Newton–Raphson type algorithms are simpler to implement, but not
necessarily superior to algorithms combining the gradient and a line search
method. If Q(b) is not approximately quadratic, the Newton–Raphson can be
misleading. If Q(b) is shaped like a normal density, the Newton–Raphson may
continue to search forever without finding the optimal b because the normal
density is not concave in the tails. In this case, success or failure depends
on the starting point of the algorithm. Hence employing an algorithm using
only the gradient or no gradient at all such as “downhill simplex” could
be more robust. Downhill simplex is not to be confused with the simplex
method in linear programming. STATA provides an option technique(nm) in
its optimization algorithm choice to implement downhill simplex where “nm”
stands for Nelder and Mead who invented the algorithm.

Although we showed that β attains a unique global maximum in MLE,
there may be multiple global maxima or local maxima in M-estimators in
general. Since numerical search procedures may stop at any local maximum,
they may stop the iteration prematurely. The only way to avoid this pitfall
is to try a number of different starting values and obtain the local maximum
for each starting value. If the starting values are scattered enough to be
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“dense” in the entire parameter space, then one of the local maxima is likely
to be a global maximum. Thus by choosing the estimate that yields the
maximum among the local maxima, we will get a better chance of finding
a global maximizer. Except a few known cases, usually the maximands in
M-estimators are not globally concave and thus have multiple local maxima.

7.3 One-Step Efficient Estimation

Sometimes, in trying to implement MLE, we may be able to obtain an
initial

√
N -consistent (but inefficient) estimator easily, and start the iteration

from the estimator to get the MLE. In this case, surprisingly, doing the
iteration only once is asymptotically as good as doing it many times. We will
show this for a M-estimator maximizing N−1

∑
i q(zi, b) for more generality.

Let qb and qbb′ denote the first- and second-order matrices for q. Take
one step from a

√
N -consistent estimator b0:

bN = b0 −
{

1
N

∑
i

qbb′(b0)

}−1

· 1
N

∑
i

qb(b0)

=⇒
√

N(bN − β) =
√

N(b0 −β) −
{

1
N

∑
i

qbb′(b0)

}−1

· 1√
N

∑
i

qb(b0).

Apply the mean value theorem to qb(b0) around β to get, for some b∗ ∈ (b0, β),

√
N(bN − β) =

√
N(b0 − β) − E−1qbb′(β)

1√
N

∑
i

{qb(β)

+qbb′(b∗)(b0 − β)} + op(1)

= −E−1qbb′(β)
1√
N

∑
i

qb(β)

+

{
Ik − E−1qbb′(β)

1
N

∑
i

qbb′(b∗)

}
√

N(b0 − β) + op(1).

But the term in {·} is Ik − Ik + op(1) = op(1). Therefore, we get

√
N(bN − β) = −E−1qbb′(β)

1√
N

∑
i

qb(β) + op(1)

which follows the same asymptotic distribution as the desired M-estimator.
The iteration may be repeated, but there is no asymptotic gain in doing so.
This is “one-step efficient estimation.”

Suppose we have two estimators b1 and b2 for β, and

√
N(bj − β) =

1√
N

∑
i

λji +
1
N

∑
i

δji + op(1), j = 1, 2.
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Then the asymptotic variances of
√

N(b1 − β) and
√

N(b2 − β) depend
only on V (λ1) and V (λ2), respectively. If V (λ1) = V (λ2), then b1 and b2

have the same first-order efficiency. The terms δ1 and δ2 will determine
the second-order efficiency. More generally, if there are more terms with
N−3/2, N−2, ... attached, then we may consider higher-order efficiencies. The
above result that taking one step from a

√
N -consistent estimator is enough

for M-estimator is also based on the first-order efficiency. Repeating the itera-
tion many times may yield different higher-order efficiencies. Unless otherwise
noted, however, we will stick to the first-order efficiency in this book.



CHAPTER 4

NONLINEAR MODELS AND ESTIMATORS

Nonlinearity can be added to LSE at least in two ways. One is using
a nonlinear regression function, and the other is using a loss function other
than the squared one. Of particular interest is the absolute deviation loss
function, which leads to “least absolute deviation (LAD) estimator” and me-
dian regression. Its generalization then yields quantile regression. The first-
order conditions of these nonlinear minimization problems lead to IVE/GMM
for nonlinear moment conditions. There are estimation principles other than
MOM and M-estimation, and one of them—“minimum distance estimator”
(and its special case “minimum χ2 estimator”)—is examined as well.

1 Nonlinear Least Squares Estimator (NLS)

Consider a nonlinear regression model

yi = r(xi, β) + ui, E(u|x) = 0,

where β is a k×1 parameter vector and the functional form of r(·) is known up
to β; e.g. r(x, β) = exp(x′β). In contrast to the linear model, the dimension
of x is not necessarily the same as that of β. Depending on cases, we may
omit either x or β in r(x, β). Since y = r(x, β) + u includes the linear model
y = x′β + u as a special case when r(x, β) = x′β, we can estimate β by
minimizing

1
N

∑
i

{yi − r(xi, b)}2

with respect to (wrt) b. The estimator is nonlinear least squares estimator
(NLS), which is a topic of this section.

A model more general than y = r(x, β) + u is

ρ(y, x, β) = u, E(u|x) = 0

which includes the above model as a special case when ρ(y, x, β) = y −
r(x, β). The model ρ(y, x, β) = u allows the y part to depend on an unknown
parameter, say α, to have yα − r(x′β) = u for instance. But NLS is not
applicable to this kind of models. To see why, consider minimizing E{h(y, a)−
x′b}2 wrt a and b where h(y, a) = ya. The first-order condition at α and β is

2 · E
{

u
∂h(y, α)

∂a

}
= 0,−2 · E(ux) = 0 where

∂h(y, α)
∂a

≡ ∂h(y, a)
∂a

| a = α.
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Since ∂h(y, α)/∂a is a function of y and y includes u, the first equation
is unlikely to hold. But nonlinear IVE/GMM with x or functions of x as
instruments are still applicable.

1.1 Various Nonlinear Models

There are different ways to allow nonlinearity of r(x, β) while still re-
taining linearity to some extent. Well-known models are “index models,”
“transformation-of-variable models,” and “additive models”, which are re-
viewed in this section. Those models will reappear in Chapters 8 and 9 in
semiparametric (i.e., less parametric) contexts.

1.1.1 Index Models

In a (multiple) index model, x affects E(y|x) through J number of linear
indices x′(j)β(j), j = 1, ..., J :

y = r{x′(1)β(1), ..., x
′
(J)β(J)} + u

where x(j) is a subset of x (overlaps in x(j) and x(m) are allowed). Special
cases of this are

y =
J∑

j=1

rj{x′(j)β(j)} + u and y =
J∑

j=1

r{x′(j)β(j)} + u.

The simplest index model is single index model:

y = s(x′β) + u.

Here, the effect of xk on y is gauged by

∂s(x′β)
∂xk

= βk · s′(x′β), where s′(x′β) ≡ ds(x′β)
d(x′β)

.

Although βks′(x′β) depends on x′β, the relative effect

∂s(x′β)/∂xj

∂s(x′β)/∂xk
=

βj

βk

does not. Sometimes, models with only monotonic s(·) are called single index
models.

An example of single index model is s(x′β) = exp(x′β), which is often
used when y takes only non-negative values so that E(y|x) should be positive.
A more “elaborate” example occurs in a binary response model with a known
error term distribution. Let F be a known df (e.g., “logistic”: F (a) = ea/(1+
ea)), and

yi = 1[x′iβ + ui > 0], where
ui

σ
∼ F independently of xi

with σ > 0 unknown.
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Then

E(y|x) = P (y = 1|x) = P (u > −x′β|x)

= P (
u

σ
> −x′

β

σ
|x) = 1 − F (−x′

β

σ
);

here, s(x′β) = 1 − F (−x′β/σ). Define α ≡ β/σ = (β1/σ, ..., βk/σ)′ to get
E(y|x) = s̃(x′α) where s̃(x′α) = 1 − F (−x′α). Then the form of s̃(·) is fully
known and we can estimate α (but not β).

1.1.2 Transformation-of-Variable Models

A transformation-of-variable model is

g0(y) = g1(x1) · β1 + · · · + gk(xk) · βk + u

where gj(·) is a transformation, j = 0, 1, ..., k, which may be indexed by an
unknown parameter αj , j = 0, 1, ..., k. Often we restrict the transformation
to be (strictly) monotonic; e.g., g0(y) = y1/2 or ln y where y > 0. One ex-
ample is a “CES production function” yα =

∑k
j=1 βjx

α
j + u where “power

transformation” indexed by a single common parameter α is on y and xj ’s.
A well-known transformation is Box-Cox transformation (Box and Cox,

1964): for y > 0,

g0(y) =
yα − 1

α
if α = 0 and g0(y) = ln(y) if α = 0.

Using the L’Hospital’s rule, (yα − 1)/α → ln(y) as α → 0, because

d(yα − 1)/dα

dα/dα
=

yα ln y

1
→ ln y as α → 0;

i.e., the transformation is continuous at α = 0. This display holds in fact for
(yα − c)/α with any constant c, but c = 1 makes (yα − 1)/α = 0 = ln y when
y = 1 ∀α. If the transformation is applied to all variables y, x1, ..., xk with
the parameters α0, ..., αk, then all αj ’s as well as β have to be estimated.

Often (yα−1)/α = x′β+u is adopted with the assumption u ∼ N(0, σ2)
independently of x to apply MLE. But the normality assumption is not ten-
able unless α = 0. To see this, let β = 0 for simplification, under which
(yα − 1)/α should follow N(0, σ2). Suppose α > 0. Then

P

(
yα − 1

α
≤ t

)
= P (yα ≤ 1 + αt).

For this probability to be positive because P (N(0, σ2) ≤ t) > 0 ∀t, we need
1 + αt > 0 ⇐⇒ t > −1/α because yα > 0: (yα − 1)/α is bounded from below
by −1/α. Analogously, if α < 0, then

P

(
yα − 1

α
≥ t

)
= P (yα ≤ 1 + αt) =⇒ 1 + αt > 0 =⇒ t < − 1

α
:
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(yα − 1)/α is bounded from above by −1/α.
To relax the restriction y > 0, Bickel and Doksum (1981) suggested the

following transformation: for α > 0,

g0(y) =
|y|α · sign(y) − 1

α
.

Also available is “shifted power-transformation”:

g0(y) = (y − μ)α.

See Caroll and Ruppert (1988) for more on transformation, and Breiman and
Friedman (1985) and Tibshirani (1988) on “optimal transformations.” Also
see MacKinnon and Magee (1990) for another alternative to the Box-Cox
transformation.

1.1.3 Mean, Median, and More Nonlinear Models

One problem with transformed variables (and many nonlinear models)
is that it becomes complicated to assess the effect of x on y. To see this,
observe that (yα − 1)/α = x′β + u implies

y = (αx′β + αu + 1)1/α = (x′αβ + αu)1/α,
absorbing 1 into the intercept in x′(αβ).

Although the response variable no longer has the parameter α with it, this
model is not in the form y = r(x, α, β) + u, and hence NLS is still not
applicable. One may try to “force” the form y = r(x, α, β) + u by writing
y = E(y|x) + v with v ≡ y − E(y|x) so that E(v|x) = 0, but getting

E(y|x) =
∫
{x′(αβ) + αu}1/αfu|x(u)du(

=
∫
{x′(αβ) + αu}1/αfu(u)du if u � x

)
requires specifying fu|x and then doing the integration.

The condition u�x makes things a little easier though, because E(y|x =
xo) can be estimated easily with

1
N

∑
i

(x′oα̂β̂ + α̂ûi)1/α̂ where α̂, β̂, ûi are estimators for α, β, ui.

This estimator does not require specifying fu, and (α̂, β̂
′
, ûi) can be obtained

using nonlinear GMM and its residual; nonlinear GMM will be examined
later. From this display, we can get the “mean-effect” at xo

∂E(y|xo)
∂x

|x=xo
� 1

N

∑
i

1
α̂

(x′oα̂β̂ + α̂ûi)1/α̂ −1 · α̂β̂

= β̂ · 1
N

∑
i

(x′oα̂β̂ + α̂ûi)1/α̂ −1.
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See Abrevaya (2002), Ai and Norton (2008) and the references therein if
further interested in this literature.

Instead of focusing on mean, it is much simpler to use Med(y|x) where
Med(y|x) stands for the median of y|x, because of the well-known fact

Med{τ(·)} = τ{Med(·)} ∀ increasing transformation τ(·):
τ(m1) ≤ τ(m2) iff m1 ≤ m2.

It may be easier to understand this with sample median as follows. Suppose
that data on y is ordered such that y1 ≤, ...,≤ yN with an even N . Let
mN be the sample median: mN = yN/2. Now consider τ(y) = ln(y) for which
ln(y1) ≤, ... ≤ ln(yN ) holds. The sample median of the log-transformed data is
then ln(yN/2) = ln(mN ). That is, the sample median of τ(y) equals τ(sample
median) as in the last display which also holds for a “crude” transformation
such as τ(y) = 1[y ≥ 0].

The assumption Med(u|x) = 0 and α > 0 gives Med(y|x) and the
“median effect” at xo:

Med(y|x) = {x′αβ + Med(αu|x)}1/α = (x′αβ)1/α

=⇒ ∂Med(y|x)
∂x

|x=xo
= β(x′oαβ)1/α −1 � β̂ · (x′oα̂β̂)1/α̂ −1.

This is reminiscent of the above mean-effect estimator under u � x.
Both the mean-effect and median-effect estimators become the constant

β̂ regardless of xo when α̂ = 1 for the usual linear model. Differently from
the mean case, however, the median effect does not require u � x. Also we
can rewrite the model as y = (x′αβ)1/α + v with v ≡ y − Med(y|x) so
that Med(v|x) = 0, to which “nonlinear least absolute deviation estimation”
can be applied minimizing N−1

∑
i |yi − (x′iαβ)1/α|. More generally than

median, we may look at quantiles; this topic as well as the details of estimating
Med(y|x) will be studied later.

To overcome the problem with mean effect under Box-Cox transforma-
tion of y, Wooldridge (1992a) specified

E(y|x) = (1 + αx′β)1/α if α = 0 and E(y|x) = exp(x′β) if α = 0.

This may be taken as “the inverse Box-Cox transformation applied to x′β,”and
the transformation is continuous at α = 0, because

lim
α→0

(1 + αx′β)1/α = lim
α→0

(1 +
x′β
1/α

)1/a = exp(x′β).

Here α and β can be estimated by NLS as the model can be written in the
form y = E(y|x)+v with v ≡ y−E(y|x). Getting ∂E(y|x)/∂x now is only as
difficult as getting ∂Med(y|x)/∂x in the preceding paragraph. Also observe
the mean-effect at x:
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∂E(y|x)
∂x

= β
(1 + x′αβ)1/α

1 + x′αβ
if α = 0 and

∂E(y|x)
∂x

= β exp(x′β) if α = 0.

The two expressions coincide as α → 0, using the preceding display.
Since the set of all polynomial functions on [a1, a2] with rational coeffi-

cients can approximate any continuous function on [a1, a2] arbitrarily well, if
s(·) is unknown in a single index model, then we may consider a polynomial
in x′β or in g(x)′β where g(x) ≡ (g1(x1), ..., gk (xk))′: for some M ,

y =
M∑

m=1

γm(x′β)m + u or y =
M∑

m=1

γm{g(x)′β}m + u.

It is possible to further classify nonlinear models. For instance, r(x) =∑k
j=1 rj(xj) is an “additive model”; r(x) = r1(x1, ..., xj)+r2(xj+1, ..., xk) is a

“partially additive model.” Since it is cumbersome to treat these models one
by one, we will discuss only the general models y = r(x, β)+u or ρ(y, x, β) = u
in the remainder of this chapter unless otherwise necessary.

1.2 NLS and Its Asymptotic Properties

The first-order condition of NLS is

1
N

∑
i

−2{yi − r(xi, b)}rb(xi, b) = 0 where rb(x, b) ≡ ∂r(x, b)
∂b

.

With this, NLS may be viewed as a method-of-moment estimator (MOM)
with the population moment condition

E[{(y − r(x, β)}rb(x, β)] = E{u · rb(x, β)} = 0.

Differently from LSE, however, there could be many solutions to the moment
condition even when E{(y−r(x, b))2} has a unique minimizer ; viewing every-
thing as MOM has its peril. In practice, we may end up with many estimates
from MOM. In this case, the one minimizing E[{y − r(x, b)}2] should be
chosen. That is, the M-estimator framework provides a guidance on which
one to choose. For a pure MOM which is not the first-order condition of a
M-estimator, no such guidance is available.

Let Q(b) denote the population version E{y−r(x, b)}2 for N−1
∑

i {yi−
r(xi, b)}2. Assume that r is twice continuously differentiable wrt b. The first
two derivatives of Q(b) are

Qb(b) ≡ −2E[{y − r(b)}rb(b)];

Qbb′(b) ≡ 2E{rb(b) · rb′(b)} − 2E[{y − r(b)}rbb′(b)] where

rbb′(b) ≡
∂r(b)
∂b∂b′

.
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The following three conditions together are sufficient for the identification of
β in NLS: for a parameter space B,

Qb(β) = 0, Qbb′(β) is p.d. and Qbb′(b) is p.s.d. for any b ∈ B.

The first two conditions together make β a local minimum, and the last
condition assures that β is an unique global minimum.

Observe that

Qb(β) = −2E{u · rb(β)} = 0 and Qbb′(β)

= 2E{rb(β)rb′(β)} is p.s.d always.

Assuming that E{rb(β)rb(β)′} is of full rank analogously to the
assumption that E(xx′) is of full rank in LSE, Qbb′(β) is p.d. Hence the two
conditions, Qb(β) = 0 and Qbb′(β) being p.d, are easily satisfied, and β is a
local minimum. The third condition—Qbb′(b) being p.s.d. for any b ∈ B—is
impossible to check unless r(b) is specified.

The asymptotic distribution of NLS is straightforward using the asymp-
totics of M-estimator:

√
N(bnls − β)� N{0, E−1(rbr

′
b) E(rbr

′
bu

2) E−1(rbr
′
b)}

=⇒
√

N(bnls − β)� N(0, σ2E−1(rbr
′
b)) if E(u2|x) = σ2

(homoskedasticity).

With rb = x, the asymptotic variance of NLS becomes that of LSE.
Let Φ be the N(0, 1) df. In the binary response model

yi = 1[x′iβ + ui > 0], and
ui

σ
∼ N(0, 1) independently of xi where

σ > 0 is unknown,

it holds that E(y|x) = P (y = 1|x) = P (u/σ > x′β/σ) = Φ(x′α). Hence

y = Φ(x′α) + v, where α ≡ β

σ
and v ≡ y − Φ(x′α);

E(v|x) = 0 by construction. As for the variance of v|x,

V (v|x) = E[ {y − E(y|x)}2 |x} = E[ {y − Φ(x′α)}2 |x}
= E{y2 − 2yΦ(x′α) + Φ(x′α)2 |x}
= E(y|x) − 2E(y|x)Φ(x′α) + Φ(x′α)2

= Φ(x′α){1 − Φ(x′α)}, as y2 = y.

Thus v has heteroskedasticity of a known form.
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Suppose we apply NLS to y = Φ(x′α) + v and get the NLS estimator
aN0. Then we can estimate V (vi|xi) with w2

i ≡ Φ(x′iaN0){1 − Φ(x′iaN0)}.
Transform yi = Φ(x′iα) + vi into

yi

wi
=

Φ(x′iα)
wi

+
vi

wi
.

Applying NLS, we get a more efficient estimator. This two-stage procedure
is a weighted NLS (WNLS) where the first-stage estimation error aN0 − α
does not affect the second stage as in GLS. The asymptotic variance matrix
of this WNLS is

E−1

[
φ(x′α){y − Φ(xiα)}2x

Φ(x′iα){1 − Φ(x′iα)}

]
.

As can be seen later, this is the asymptotic variance of the corresponding MLE
for the binary response model, illustrating that WNLS can be as efficient as
MLE. Sometimes a simple weighing does “wonders.”

EXAMPLE: PERFORMANCE EFFECT ON PAY. Schaefer (1998) examined
pay-performance relation for CEOs. Using an “agency-model for optimal con-
tract”, Schaefer (1998) derived a nonlinear model linking CEO compensation
to the firm value: for a panel data with a small T ,

yit = αt +
Vit

1 + βSγ
i,t−1

+ uit, i = 1, ..., N , t = 1, ..., T

where yit is a compensation measure (salary plus bonus, or pay-related CEO
wealth), Sit is a size of the firm (market value or assets) and Vit is the value
of the firm (shareholder wealth), and αt, β, γ are parameters to estimate. The
data are for large American firms between 1991 and 1995; NT is about 3000
to 4000, depending on the variables in use.

Not just the nonlinear model, other models were used also in Schaefer
(1998) including the linear one yit = αt +βlVit where the slope βl of Vit does
not depend on the firm size Sit, whereas the slope of Vit does depends on
Sit inversely in the nonlinear model. In the Schaefer’s model, β is in fact a
product of three structural form parameters: the CEO’s coefficient of absolute
risk aversion, the second derivative of the CEO’s cost of effort function, and
the variance of the firm’s market value; also, γ is a difference of two structural
form parameters.

When the nonlinear model was estimated with industry dummies used as
well, the result in Table 1 with SD in (·) was obtained (in fact, Schaefer (1998)
took the first-difference and estimated the differenced model with NLS, but
this aspect is irrelevant for our discussion here).

Other than for Pay-Related Wealth with Market Value as Firm Size, both
β and γ are significantly different from 0 rejecting the linear model, and γ
seems to be about 0.4. R2 ≡ 1 −∑

i û2
i /

∑
i(yi − ȳ)2 where ûi ≡ yi − r(bN )

hovers around 0.1, which is rather low.
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Table 1: CEO Compensation to Firm Value
Market Value as Firm Size Assets as Firm Size

yit Salary+Bonus Pay-Related
Wealth

Salary+Bonus Pay-Related
Wealth

β 878 (432) 38.0 (41) 448 (200) 1.92 (0.58)
γ 0.382 (0.054) 0.0760 (0.124) 0.462 (0.054) 0.362 (0.032)
R2 0.108 0.083 0.115 0.120

1.3 Three Tests for NLS

Testing a linear hypothesis H0 : R′β = c where rank(R) = g ≤ k with
NLS is similar to that with MLE: there are three kinds of tests corresponding
to Wald, Lagrangian Multiplier (LM), and Likelihood Ratio (LR) tests. It
goes without saying that there are also three analogous tests available for
linear models, as linear models are special cases of nonlinear models.

Let bN be a NLS with
√

N(bN −β)� N(0, C). Defining ûi ≡ yi−r(bN ),
C can be estimated consistently with

CN ≡
{

1
N

∑
i

rb(bN )rb′(bN )

}−1

·
{

1
N

∑
i

û2
i rb(bN )rb′(bN )

}

·
{

1
N

∑
i

rb(bN )rb′(bN )

}−1

.

The Wald test statistic is

Waldnls ≡ N(R′bN − c)′(RCNR′)−1(R′bN − c)� χ2
g.

If E(u2|x) = σ2, then C becomes σ2E−1{rb(β)rb(β)′} and

CN =
1
N

∑
i

û2
i ·

{
1
N

∑
i

rb(bN )rb′(bN )

}−1

.

In the following, we present LM and LR type test statistics for this ho-
moskedastic case. The derivations are analogous to LM and LR test deriva-
tions for MLE.

The LR-type test statistic for NLS under homoskedasticity is

LRnls ≡
∑

i{yi − r(xi, bNr)}2 −∑
i{yi − r(xi, bN )}2

N−1
∑

i{yi − r(xi, bN )}2
� χ2

g where

bNr = {Ik − H−1R(R′H−1R)−1R′}bN + H−1R(R′H−1R)−1c and

H ≡ E{rb(β)rb(β)′};
recall that the bNr for MLE takes the same form with H replaced by I−1

f .
Also recall

LRmle ≡ 2{L(unrestricted MLE) − L(restricted MLE)} where

L is the log-likelihood.
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Compared with LRmle, LRnls does not have the number 2 but has the
denominator σ̂2 ≡ N−1

∑
i{yi − r(xi, bN )}2 which is not present in LRmle.

First, the reason why LRmle has the number 2 is that the second-order Tay-
lor’s expansion of L yields

{L(unrestricted MLE) − L(restricted MLE)} � 1
2
Waldmle;

multiplying both sides by 2 yields LRmle. But in LRnls, the exponent 2 in
NLS minimand cancels 1/2 in the second-order expansion, which is why there
is no number 2 in LRnls. Second, while the second-order expansion of L yields
the second-order matrix which is the inverse of the MLE asymptotic variance,
the second-order expansion of the NLS minimand gives E{rb(β)rb′(β)} which
becomes the inverse of the NLS asymptotic variance only when divided by
σ2 under homoskedasticity. The denominator in LRnls is for σ2.

In the linear model with u ∼ N(0, σ2) and x being non-random, there is
an exact (not asymptotic) F test:

1
g

∑
i{yi − r(xi, bNr)}2 −∑

i{yi − r(xi, bN )}2

(N − k)−1
∑

i{yi − r(xi, bN )}2
∼ F (g,N − k).

It is well known that g · F (g,∞) ∼ χ2
g; i.e., g times a rv following F (g,∞)

follows χ2
g. Hence, g · F (g,N − k) � χ2

g as N → ∞. Using this fact and
multiplying the F test statistic by g, we get also LRnls. That is, under ho-
moskedasticity, the exact F -test is asymptotically equivalent to LRnls; in
large samples, CLT replaces the normality assumption. LRnls appears in
many textbooks as, with “SS” standing for “sum of squares”

(restricted error SS) − (unrestricted error SS)
σ̂2 � χ2

g where σ̂2

≡ 1
N

∑
i

{yi − r(xi, bN )}2.

Turning to the LM-type test, we have

LMnls ≡
∑

i

ũirb′(bNr)

{∑
i

ũ2
i rb(bNr)rb′(bNr)

}−1 ∑
i

ũirb(bNr)� χ2
g

which is reminiscent of the LM test in MLE. For a linear model with y =
m′βm + w′βw + u and H0 : βw = 0, we get, defining x ≡ (m′, w′)′,

bN =

(
1
N

∑
i

xix
′
i

)−1 (
1
N

∑
i

xiyi

)−1

,

bNr =

(
1
N

∑
i

mim
′
i

)−1 (
1
N

∑
i

miyi

)−1

ũi = yi − m′
ibNr, rb(bNr) = xi, because rb(b) = xi for any b.
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1.4 Gauss–Newton Algorithm

One well-known way to implement NLS is the Gauss–Newton
algorithm. Taylor expand r(b) around b0, an initial estimator:

r(b) � r(b0) + rb′(b0)(b − b0).

Substitute this into r(b) and minimize the following wrt b:
1

2N

∑
i

{yi − r(b0) − rb′(b0)(b − b0)}2.

The first-order condition is

− 1
N

∑
i

rb(b0){yi − r(b0) − rb′(b0)(b − b0)} = 0.

Solve this for b and denote the solution by b1 to get an iteration
scheme:

b1 = b0 −
{

1
N

∑
i

rb(b0)rb′(b0)

}−1

· 1
N

∑
i

−rb(b0) {yi − r(b0)} .

Repeat this until a stopping criterion is met.
The Gauss–Newton method may be viewed somewhat differently. Re-

place b by β in r(b) � r(b0)+rb′(b0)(b−b0) to get r(β) � r(b0)+rb′(b0)(β−b0),
which is then substituted into y = r(β) + u to yield

y − r(b0) + rb′(b0)b0 = rb′(b0)β + u.

Treat the left-hand side as a new dependent variable and rb(b0) as the re-
gressor. Applying LSE to this model, we get

b1 =

{
1
N

∑
i

rb(b0)rb′(b0)

}−1

· 1
N

∑
i

rb(b0) {y − r(b0) + rb′(b0)b0}

= b0 +

{
1
N

∑
i

rb(b0)rb′(b0)

}−1

· 1
N

∑
i

rb(b0){y − r(b0)}

which is nothing but the Gauss–Newton algorithm. That is, the Gauss–
Newton algorithm is equivalent to applying LSE repeatedly to the linearized
version of the nonlinear model.

An analog of Gauss–Newton algorithm was also used in MLE. Recall the
Newton–Raphson algorithm with the second-order matrix approximated by
the outer-product of the score function times minus one:

new estimate = old estimate − ( − outerproduct)−1 · (gradient).

This version has essentially the same form as the above NLS iteration scheme
except in two aspects. One is that the second-order matrix is n.d. here,
whereas it is p.d. in the NLS iteration scheme. The other is that the inverted
matrix in Gauss–Newton is not exactly the outer-product of the first-order
derivative vector.
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1.5 NLS-LM Test for Linear Models*

In this subsection, a specification test for linear regression functions is
introduced. The test is motivated by the LM test for NLS with a single-
index model and transformed regressors, and generalizes the popular RE-
SET test of Ramsey (1969). Rejection of the specification test would sug-
gest using power transformations of regressors or adding high order terms of
regressors.

Define

xi(α)′β ≡ xi1(α1)β1 + xi2(α2)β2+, · · · ,+xik(αk)βk,

where xi1(α1) = 1 always,

xij(αj) ≡
x

αj

ij − 1
αj

if αj = 0 and ln(xij) if αj = 0, j = 2, ..., k;

if xij can be non-positive, set xij(αj) = xij . Consider a polynomial single-
index regression function: for some M ,

y =
M∑

m=1

γm{x(α)′β}m + u.

This general alternative will be used below when we test the null linear model
with the parameter values

α = (1, ..., 1)′, γ1 = 1, γ2 = 0, ..., γm = 0.

Imagine estimating α = (α2, ..., αk)′, β, and γ = (γ2, ..., γM )′ with NLS
by maximizing (a1 = 1 and g1 = 1 always)

QN ≡ − 1
2N

N∑
i=1

[
yi −

M∑
m=1

gm{xi(a)′b}m

]2

wrt a, b, and g. The first derivatives evaluated at the true values are (assume
that all regressors are transformed to simplify notations):

∂QN

∂gm
=

1
N

∑
i

ui{xi(α)′β}m, m = 2, ...,M

∂QN

∂aj
=

1
N

∑
i

[
uiβj

{
x

αj

ij ln(xij)
αj

−
x

αj

ij − 1
α2

j

}
M∑

m=1

γmm {xi(α)′β}m−1

]
,

j = 2, ..., k

∂QN

∂bj
=

1
N

∑
i

[
uixij(αj)

M∑
m=1

γmm(xi(α)′β)m−1

]
, j = 1, 2, ..., k.
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Substitute the null linear model parameter values into the gradient to
set the gradient equal to 0. This yields the moment conditions

(i) N−1
∑

i ui(x′iβ)m = 0, m = 2, ...,M

(ii) N−1
∑

i uiβj{xij ln(xij) − xij − 1} = 0, j = 2, ..., k

(iii) N−1
∑

i uixi = 0.

A LM-type linear regression function specification test is possible, because
LSE is obtained only with (iii). The test examines if the LSE also satisfies (i)
and (ii). Substituting (iii) into (ii), (ii) becomes N−1

∑
i uiβjxij ln(xij) = 0.

Here βj is irrelevant because using xij ln(xij) as an extra regressor is the same
as using βj{xij ln(xij)}—the “scale change” βj does not alter the t-value for
xij ln(xij).

Specifically, the LM-type test procedure is the following.

• Step 1: Estimate the linear model with LSE.

• Step 2: Set up the following artificial regression model

y = x′β +
M∑

m=2

δm(x′bN )m +
k∑

j=2

θj{xj ln(xj)} + ε,

to estimate β, δm’s, and θj ’s with LSE.

• Step 3: Test “H0 : δm = 0 for m = 2, ...,M , and θj = 0 for j = 2, ..., k”
in the artificial model using the heteroskedasticity-robust covariance
matrix for

E−1(zz′) · E(ε2zz′) · E−1(zz′)

where z denotes the regressors in Step 2.

Typically M = 2 or 3 with a number of xj ln(xj) will be enough. Without
the terms in

∑k
j=2(·), the test becomes the RESET test of Ramsey (1969).

2 Quantile and Mode Regression

In the preceding section, nonlinearity came from the regression function.
But, as we have seen already in M-estimator, nonlinearity can come also from
the “external” part of the optimand even when the “internal” regression func-
tion itself is linear. This section examines such nonlinear estimators; they are
also M-estimators just as most estimators are. We start with “median re-
gression” which is “one-degree less smooth” than the usual mean regression.
Median regression is generalized to quantile regression. Then “mode regres-
sion” which is “one-degree less smooth” than median regression is introduced.
We will also touch on “treatment effect” and “sample selection” issues in this
section.
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2.1 Median Regression

Consider predicting y with a function r(x) of x. Under the quadratic loss
function of mis-prediction, we seek to find r(x) minimizing

E{y − r(x)}2 = ExEy|x{y − r(x)}2.

Differentiate Ey|x{y − r(x)}2 wrt r(x) and set the derivative to zero to get

−2 · Ey|x{y − r(x)} = 0 ⇐⇒ E(y|x) = r(x).

Since this holds for any x, E{y − r(x)}2 is minimized when r(x) = E(y|x).
Since the second derivative is positive (i.e., 2), the minimizer is unique.

In the quadratic loss function, a misprediction is penalized by the squared
distance. More generally, we can think of minimizing E|y − q(x)|p, p > 0,
where the predictor is denoted as q(x) now. There is no a priori reason to
set p = 2 except for analytic convenience. Perhaps it is more intuitive to set
p = 1 and minimize

E|y − q(x)| = ExEy|x|y − q(x)|

= Ex

[∫ q(x)

−∞
{q(x) − y}f(y|x)dy +

∫ ∞

q(x)

{y − q(x)}f(y|x)dy

]

where y|x is assumed to be continuously distributed and f(y|x) is the density.
Note the Leibniz’s rule:

d
∫ b(t)

a(t)
g(x, t)dx

dt
=

∫ b(t)

a(t)

∂g(x, t)
∂t

dx +
db(t)
dt

g{b(t), t} − da(t)
dt

g{a(t), t}.

Differentiate E|y − q(x)| wrt q(x) using Leibniz’s rule to get the first-order
condition

E

{∫ q(x)

−∞
f(y|x)dy −

∫ ∞

q(x)

f(y|x)dy

}
= 0.

This first-order condition is satisfied by q(x) = Med(y|x), where Med stands
for median. The second derivative is 2 · E{f(q(x)|x)}. Thus assuming that
E{f(q(x)|x)} > 0, the minimizer is unique.

With q(x) = x′β, the estimator obtained by minimizing the sample
analog of E|y − q(x)|

1
N

∑
i

|yi − x′ib|

is the least absolute deviation estimator (LAD) as appeared once already.
LAD has as long a history as LSE has. In LAD, we get to estimate the
conditional median regression function. In this regard, we use the word “re-
gression” for any location measure in the conditional distribution of y|x, not
just for E(y|x). As in NLS, we may use a nonlinear function of b, instead
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of x′b, for LAD. The LAD minimand is piecewise linear and continuous as
a function of x′ib, which is “one-degree less smooth” than the minimand of
LSE that is quadratic.

If the distribution of y|x is asymmetric as in income distribution, then
the mean and median can differ much. In this case, estimating the median
would be as much of interest as estimating the mean. In fact, compared
with mean, median has the well-known advantage of being robust to out-
liers. To see this, imagine observations (yi’s) on a horizontal axis, 50% to
the left of the median m and the other 50% to the right. Suppose we take
some observations on the lhs to −∞ and some on the rhs to ∞. This, how-
ever, does not affect the median m, and median can resist almost up to 50%
data contamination. This fact for the marginal distribution of y applies to
the median regression: median regression is robust to outliers in y (but not
in x).

For regression analysis, certainly robustness matters a great deal. But the
real attraction of median regression comes from its generalization to “quantile
regression” in the following subsection. Namely, we can estimate not just
the center (median) of the y|x distribution, but also the lower and upper
quantiles. It is possible that some components of x affect only a tail area,
but not necessarily the center. Viewed differently, suppose that the effect of
a regressor xk depends on the level of y—e.g., the effect is greater for low
y. Dependence of xk-effect on, say, xk−1 can be easily taken into account
by adding the interaction term xk−1xk into x′β. But the dependence on y
cannot. One may think of quantile regression as a way to take the dependence
on y-level into account since using xky as a regressor would not make sense:
the effect for low (high) y level can be seen by low (high) quantiles in the y|x
distribution. More on this will be seen in the following.

2.2 Quantile Regression

2.2.1 Asymmetric Absolute Loss and Quantile Function

Generalizing median regression, suppose we use an asymmetric absolute
loss function which penalizes positive and negative prediction errors differ-
ently. With the predictor denoted as qα(y|x) for some α with 0 < α < 1, the
loss function is

α|y − qα(y|x)| if y − qα(y|x) > 0 and (1−α)|y − qα(y|x)| if y − qα(y|x) < 0.

This includes the symmetric absolute loss function for median regression as
a special case when α = 0.5. The expected loss becomes

E{α(y − qα(y|x)) 1[y > qα(y|x)] + (1− α)(qα(y|x)− y)1[y < qα(y|x)]}

= E

[
α

∫ ∞

qα(y|x)

{y − qα(y|x)}f(y|x)dy + (1− α)

∫ qα(y|x)

−∞
{qα(y|x)− y}f(y|x)dy

]
.
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Before we show that the αth quantile of y|x minimizes this, we define quantile
function formally.

For a df F (t) ≡ P (y ≤ t) of a rv y, define its quantile function F−1(·) as

F−1(α) ≡ min{t : F (t) ≥ α}, 0 < α < 1.

The domain of F−1(α) is (0, 1); otherwise the minimum does not exist (i.e.,
min{t : F (t) ≥ 0} is not bounded from below). It follows that

F−1(α) ≤ to ⇐⇒ α ≤ F (to);

in words, if we know tα ≡ F−1(α) ≤ to, then F (to) must be at least as
large as α because tα is the smallest value to accumulate the probability
mass α, and if we know α ≤ F (to) for some to, to must be at least as large
as tα. This holds for any df including discontinuous ones. It can be shown
that F{F−1(α)} = α for 0 < α < 1 iff F is continuous, and F−1{F (t)} = t
∀t ∈ R iff F is strictly increasing; hence, F−1 is the usual (one-to-one and
onto) inverse of F iff F is continuous and strictly increasing (see, e.g., Van
der Vaart 1998).

The last display implies that, for any u ∼ U(0, 1),

P{F−1(u) ≤ t} = P{u ≤ F (t)} = F (t) :

the quantile transformation F−1(u) is a rv with df F . Now assume that F is
continuous. Then F (y) follows U [0, 1] because

F (t) ≡ P (y ≤ t) = P{F (y) ≤ F (t)}.

Although the second equality does not require F to be continuous, if F is
not continuous with a jump at yo, then F (y) is not continuously distributed.
Rather, F (y) has a probability mass at F (yo) and thus F (y) cannot be U [0, 1].
F (y) is called a probability integral transform.

Turning back to the expected loss function, differentiate it wrt qα(y|x)
to get the first-order condition

E[−α

∫ ∞

qα(y|x)

f(y|x)dy + (1 − α)
∫ qα(y|x)

−∞
f(y|x)dy] = 0.

Suppose that y|x is continuously distributed. If qα(y|x) = F−1
y|x(α) where

F−1
y|x(α) denotes the quantile function of y|x, then

∫ qα(y|x)

−∞ f(y|x) dy = α and
the first-order condition is satisfied because −α(1 − α) + (1 − α)α = 0. The
second derivative is Ex{f(qα(y|x)|x)}: the minimizer is unique, assuming
Ex{f(qα(y|x)|x)} > 0. Therefore, under the asymmetric loss function, the
αth quantile minimizes the expected loss. Newey and Powell (1987) explored
asymmetric quadratic loss functions, calling the minimizing location measure
“expectile”; see also Efron (1991).

In view of the notation qα(y|x), q(x) for median regression could have
been denoted q0.5(y|x). Bear in mind that qα(y|x) is not a function of y,
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although it is a function of α and x. As mentioned above, if Fy|x(t) is con-
tinuous and strictly increasing in t, then the αth quantile can be defined
simply as qα(y|x) = F−1

y|x(α) where F−1
y|x(·) is the usual inverse of Fy|x(·). If

Fy|x is continuous but not strictly increasing, then Fy|x has a flat portion
which makes Fy|x many-to-one, not one-to-one; if Fy|x is discontinuous, then
Fy|x is not “onto.” In these cases, we need the above “generalized inverse”
min{t : Fy|x(t) ≥ α}. Since the continuous and strictly increasing case is eas-
ier to understand, unless otherwise mentioned, we will assume from now on
that the df under consideration is continuous and strictly increasing whenever
quantiles are examined.

For the linear model y = x′β + u, we get

qα(y|x) = x′β + qα(u|x) = β1 + x̃′β̃ + qα(u|x) where x = (1, x̃′)′;

i.e., β1 is the intercept and β̃ is the slope vector. If qα(u|x) = 0, then qα(y|x) =
x′β; otherwise, qα(y|x) consists of x′β and qα(u|x). If u is independent of x,
then

qα(y|x) = β1 + x̃′β̃ + qα(u) = {β1 + qα(u)} + x̃′β̃ :

the quantiles are parallel to one another, being intercept-shifted versions of
x̃′β̃ as α varies.

If u is dependent on x, however, then the quantiles are no longer parallel.
For instance, suppose u = (x′θ) · v where v is an error term independent of
x—a heteroskedasticity model with SD(u|x) = |x′θ|. Then

qα(y|x) = x′β + qα(u|x) = x′β + x′θ · qα(v) = x′βα, where

βα ≡ β + θ · qα(v), i.e., βαj = βj + θjqα(v), j = 1, ..., k.

If q0.5(v) = 0, then β0.5 = β. If E(v) = 0 instead of q0.5(v) = 0, then
E(y|x) = x′β as E(u|x) = (x′θ)E(v) = 0. Note that, as y|x is x′β-shifted
version of u|x, fu|x(0) = fy|x(x′β), and more generally, fu|x{qα(u|x)} =
fy|x{x′β + qα(u|x)}.

We mentioned earlier that quantile regression may be viewed as a way
of allowing the effect of x to depend on y-level, i.e., x interacting with y.
The last display shows better what it means: the effect of x depends on the
quantile level of u and x interacts with itself in the scale parameter. Suppose
q0.5(v) = 0 and θj > 0. This implies

βαj = βj + θjqα(v) < βj ∀α < 0.5 because θj > 0 and qα(v) < 0;

βαj = βj + θjqα(v) > βj ∀α > 0.5 because θj > 0 and qα(v) > 0.

Hence, it is certainly possible that the median effect is zero because βj = 0
while the other quantile effects are negative or positive. When u is indepen-
dent of x, with 1 included in x, all θj ’s are zero except θ1; this is the above
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case of parallel quantiles. Note that, if we assume just qαo(u|x) = 0 for some
αo, not the more structured u = (x′β)v and v � x, then we can state only

qα(y|x) = x′β + qα(u|x) {� x′(β + δα) if qα(u|x) � x′δα}.

2.2.2 Quantile Regression Estimator

For a given α, to simplify notation, denote βα just as β:

y = x′β + u where qα(u|x) = 0 and u|x has density fu|x.

Then the sample version to minimize for the αth quantile regression is

1
N

∑
i

{α(yi − x′ib) 1[yi > x′ib] + (1 − α)(x′ib − yi) 1[yi < x′ib]}

=
1
N

∑
i

(yi − x′ib) · (α − 1[yi − x′ib < 0]).

The function t·(α−1[t < 0]) is called a “check function.” Differently from LSE,
this cannot be solved for b. But the minimand is convex in x′b, and thus a
Gauss–Newton-type optimization with numerical (two-sided) gradients works
fairly well in practice. See Koenker and Bassett (1978), Koenker and Hallock
(2001), and Koenker (2005) for more on quantile regression, which is getting
popular these days.

As it turns out, the quantile regression estimator satisfies the “asymp-
totic first-order condition” obtained by differentiating the minimand while
treating 1[yi − x′ib < 0] as a constant:

1√
N

∑
i

−(α − 1[yi − x′ib < 0])xi � 0

=⇒ 1√
N

∑
i

−1
2
sgn(yi − x′ib)xi � 0 when α = 0.5.

As intuitively explained in the following paragraph, the asymptotic
variance is

E−1{fu|x(0) xx′} · α(1 − α)E(xx′) · E−1{fu|x(0) xx′}

=
α(1 − α)
fu(0)2

· E−1(xx′) (under the independence of u from x)

=
1

4fu(0)2
· E−1(xx′) (further under α = 0.5).

The presence of fu|x(0) in the second-order matrix can be understood in
view of E{fy|x(qα(y|x))} (= E{fy|x(x′β)} when qα(y|x) = x′β) that ap-
peared in the second-order condition for the population minimand of quantile
regression.
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Another way of understanding the presence of fu|x(0) is “differentiating”
the asymptotic first-order condition for the case α = 0.5. Although sgn(u)
is not differentiable in −N−1/2

∑
i 0.5sgn(yi − x′ib)xi, it changes by 2 (from

−1 to 1) at u = 0. Hence, take 2δ0(u) as the derivative of sgn(u) where
δ0(u) = 1 if u = 0 and 0 otherwise. The population version of the second-
order derivative matrix is then

−E{−1
2
2δ0(u) · xx′} = E{δ0(u) · xx′} � E{fu|x(0) · xx′}.

As for α(1−α), it comes from the outer-product in the asymptotic first-order
condition at b = β: since P (u < 0|x) = α in y = x′β + u with qα(y|x) = x′β,

1
N

∑
i

(α − 1[yi − x′iβ < 0])2xix
′
i →p E{(α − 1[u < 0])2xx′}

= E{ E(α2 − 2α1[u < 0] + 1[u < 0]|x) · xx′ }
= E{(α2 − 2α2 + α)xx′} = α(1 − α)E(xx′).

Getting the residual ri ≡ yi − xibN where bN is the αth quantile linear
regression estimator, an estimator for E{fu|x(0)xx′} is

1
N

∑
i

1[−h < ri < h]
2h

xix
′
i where h → 0 as N → ∞.

The part 1[·]/(2h) is to estimate fu|x(0), and the role of h is that of the
grouping interval in a histogram construction. In practice, h should be a
small positive number, e.g. SD(r) · N−1/5, such that there be a non-trivial
proportion of residuals with −h < ri < h.

A smooth alternative to the last display is

1
N

∑
i

1
h

φ(
ri

h
) · xix

′
i

where φ is the N(0, 1) density. In practice, using this for

h = 0.5 · SD(r) · N−1/5, h = SD(r) · N−1/5 and h = 2 · SD(r) · N−1/5

and reporting all three results may be adequate as the choice of h is more
or less arbitrary. As a way to avoid choosing h, a “nonparametric bootstrap”
resampling from the original sample can be applied to construct confidence
intervals. Due to fu|x, the asymptotic variance and estimation of quantile
regression will be further discussed after nonparametrics is covered.

2.2.3 Empirical Examples

EXAMPLE: SMOKING EFFECT ON BIRTH WEIGHT. Abrevaya (2001) applied
quantile regression to find the effects of maternal characteristics on birth
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weight measured in grams. Using the Natality Data Set from the National
Center for Health Statistics for 1992 June births, he compiled a data set of
N = 199, 108 with singleton births in the US for white or black women aged
18–45. A part of his Table 2 is Table 2 (SD in (·)).

Table 2: Effects on Birth Weight (in grams)
10% 50% 90% LSE

black −253 (8.1) −199 (4.2) −182 (5.5) −220 (3.9)
no smoke 171 (13) 159 (6.5) 147 (9.2) 161 (5.7)
college 82.9 (8.6) 37.5 (5.2) −3.2 (7.9) 37.2 (4.6)

no prenatal visit −389 (55) −145 (14) −102 (21) −194 (16)

In the table, the effect of college is relative to less-than-highschool ed-
ucation, and no-prenatal-visit is relative to visit in the first trimester. The
different quantile effects across the tails (10% and 90%) and the center (50%)
are clearly visible. In no-smoke and college, LSE is almost the same as the
median regression, but in black and no prenatal visit, LSE differs nontrivially
from the median regression. Black and no-prenatal-visit have large negative
effects while no-smoke has a large positive effect. College has a large effect
only at 10% and a nearly zero effect at 90%. Of course, the effects of black
and college are unlikely to be genuine; rather, they reflect the care/behavior
that the mothers give to the unborns. Whether or not the effect of no-smoke
is real is also debatable, as it can also reflect the mother’s care/behavior. If it
is real, quitting smoking will have effects as in the table; otherwise, quitting
smoking will have no effect unless the mother changes her care/behavior.

The smoking variable demonstrates why economists pay attention to en-
dogeneity problems. The key point is that ignoring endogeneity and applying
LSE (or median regression) leads to estimating

βno−smoke + βgood−care

COV (no-smoke, good-care)
V (no-smoke)

using the well-known LSE omitted variable bias formula. The above positive
effect of no smoking might have been obtained because

βno−smoke = 0, βgood−care > 0 and COR(no-smoke, good-care) > 0.

That is, there may be no genuine effect of no smoking. Taking no-smoking as
a policy variable, if one only quits smoking, then there will be no effect on
birth weight; it is only when the mother changes her “good-care” that the
birth weight increases. Taking care of the endogeneity problem will lead to
estimating βno−smoke correctly, and if the policy maker sees βno−smoke = 0,
then the no smoking policy will not be adopted.

Koenker and Geling (2001) applied quantile regression to duration data
on medflies with N > 1, 000, 000. They found that the mortality rate declines
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at advanced ages. They also found that males have lower motality rates than
females up to the 95-percentile age, and then have higher mortality after that.
Compared with human mortality, these findings are quite surprising. Koenker
and Geling also examined the effects of other variables such as the initial
density in medfly cages and proportion of males and so on. Overall, they
presented findings that would not have been seen, had quantile regression
not been employed and had N not been so large to permit investigation
into the extreme right tail area. Chernozhukov (2005) examined “extremal
quantile regression” where α → 0 and αN either diverge or converge to a
constant.

In the above birth-weight study, some regressors are possibly endoge-
nous. There exist two-stage versions of quantile regression estimator that can
handle endogenous regressors. See Kim and Muller (2004) and the references
therein. An application can be seen in Kan and Tsai (2004). Since the mo-
ment condition from the first-order condition cannot be solved for the error
term, IVE versions are infeasible, and this problem holds also for M-estimator
in general. Finally, Angrist et al. (2006, p. 542) accorded an weighted-LSE-
approximation to linear quantile regression functions, and presented (in p.
547) an omitted-variable bias formula for quantile regression.

2.3 Mode Regression

Suppose that the loss function is 1[|y − m(x)| > δ] where δ is a known
positive constant and the predictor is denoted now as m(x). That is, if the
prediction falls within ±δ of y, then there is no loss; otherwise, the loss is
one. The expected loss is

E{1[|y − m(x)| > δ]} = 1 − E{1[|y − m(x)| ≤ δ]}
= 1 − Ex[Fy|x{m(x) + δ} − Fy|x{m(x) − δ}].

This is minimized by choosing m(x) such that the interval [m(x)−δ,m(x)+δ]
captures the most probability mass under fy|x. Manski (1991) calls it “δ-
mode.” If fy|x is unimodal and δ is small, then m(x) is approximately equal
to the mode of fy|x.

Lee’s (1989) mode regression estimator maximizes the following sample
analog:

1
N

∑
i

1 [|yi − x′ib| ≤ δ] .

Following Kim and Pollard (1990), it can be shown that this estimator is
N1/3-consistent with no practical asymptotic distribution. Compared with
the optimands of LSE and LAD, the optimand here (as a function of x′ib)
consists of flat lines and is discontinuous, thus “one-degree less smooth” than
the piecewise linear and continuous optimand of LAD. Since each observation
is given only the weight 0 or 1, the influence of any outlier can be no more
than its share 1/N . Mode regression estimator is robust to outliers in x as
well as in y, differently from LAD or LSE.
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If the reader thinks that distinction between various measures of cen-
tral tendency in a distribution is trivial, consider the following litigation in
Freedman (1985). In early 1980s, a number of lawsuits were filed by railroad
companies against several states’ taxing authorities in USA. The companies
argued that their property tax rate should be equalized to the median of
the rates for the other property tax rates, while the state authorities argued
that the mean is more appropriate. The problem was that the probability
distribution of the property tax rate has a long right tail. As a result, the
median was smaller than the mean, and the difference had an implication of
millions of dollars. Eventually, the states won the case, not because mean is
a better measure than median, but because the Courts concluded that the
word “average” in the law (so-called “4-R Act”) meant mean, not median.

2.4 Treatment Effects

Having seen many different regressions such as mean, quantile, and mode
regressions, here we digress a little to discuss “treatment effects,” as there
are various treatment effects such as mean and quantile effects. Detailed
discussion on treatment effects can be found in Lee (2005a).

Often we want to know the effect(s) of a “treatment” or “cause” di on
a response (or outcome) variable of interest yi; the effects are called “treat-
ment effects” or “causal effects.” The following is examples of treatments and
responses:

Treatment: job training college education drug exercise
Response: wage lifetime earnings cholesterol blood pressure

Let yj
i , j = 0, 1, denote the “potential outcome” when individual i re-

ceives treatment j exogenously (i.e., when treatment j is forced in (j = 1)
or out (j = 0), in comparison to treatment j self-selected by the individual).
For the drug/cholesterol example,

y1
i : cholesterol level with drug “forced in”;

y0
i : cholesterol level with drug “forced out”.

A person may choose to take the drug (self-selection), but we can imagine
the drug getting injected regardless of the person’s will (intervention). The
interest is on the effect of a treatment intervened, not self-selected.

Among the two potential outcomes corresponding to the two potential
treatments, only one outcome is observed while the other (called “counter-
factual”) is not. For example, in the effect of college education on life time
earnings, only one outcome (earnings with college education or earnings with-
out) is available per person. One may argue that for some other cases, say
drug on cholesterol, both y1

i and y0
i can be observed sequentially. But strictly

speaking, if two treatments are administered one by one sequentially, we
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cannot say that we observe both y1
i and y0

i , for the subject changes over
time, however little the change may be. The observed response yi is

yi = (1 − di) · y0
i + di · y1

i .

Imagine that person i is endowed with (y0
i , y1

i ) but shows either y0
i and y1

i

depending on di = 0 or 1. In a given data set, the group with di = 1 revealing
y1

i is the treatment group, whereas the group with di = 0 revealing y0
i is the

control group.
Define

the treatment effect for individual i : y1
i − y0

i

which is, however, not identified, because only one of y1
i and y0

i can be ob-
served, never both together. Causal relation is different from associative re-
lation such as correlation or covariance: we need (di, y

0
i , y1

i ) in the former to
get y1

i −y0
i , while we need only (di, yi) in the latter. Of course, an associative

relation suggests a causal relation.
Although the individual treatment effect is not identified, its mean ver-

sion E(y1
i − y0

i ) is identified under one assumption. Suppose that y0 and
y1 are mean-independent of d: E(yj |d) = E(yj), j = 0, 1. Under the mean-
independence, the mean treatment effect is identified with the group-mean
difference:

E(y|d = 1) − E(y|d = 0) = E(y1|d = 1) − E(y0|d = 0)

= E(y1) − E(y0) = E(y1 − y0).

Randomized experiments are often used in clinical trials (e.g., cancer pa-
tients are randomly assigned to treatment and control groups to see whether
or not a drug is effective for the cancer), and the mean-independence condi-
tion holds for such randomized experiments where d is assigned with “coin
flips.”Other than for randomized experiments, the condition may hold if d is
forced on people by a law or regulation for reasons unrelated to y0 and y1

(“quasi experiment”) or by nature such as weather and geography (“natural
experiments”).

Not just mean effect, we can also think of other effects, such as median
effect Med(y1 − y0) or more generally quantile effect qα(y1 − y0). Sometimes
different effects agree. For instance, suppose

y0
i = β1 + ui and y1

i = β1 + βd + ui

{ =⇒ yi = (1 − di) · y0
i + dy1

i = β1 + βddi + ui}.

In this case, the treatment effect for individual i is y1
i − y0

i = βd, which is a
constant and thus the same for all i. Hence all mean, median, and mode effects
agree, as the distribution of y1

i −y0
i is degenerate at βd. Even if y1

i −y0
i = βdi

that varies across i, if βdi
is symmetric around βd, then at least the mean

and median agree.
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Suppose the last display holds and we have

M(y|d = 0) = β1 + M(u|d = 0) and M(y|d = 1) = β1 + βd + M(u|d = 1)

where M(y|d) can be any of mean, median (or αth quantile), or mode. From
this, the identified “M treatment effect” is

M(y|d = 1) − M(y|d = 0) = βd + M(u|d = 0) − M(u|d = 1)

whereas the true effect is βd. Suppose M(y|d) = qα(y|d) and the df for y|d = 0
and y|d = 1 are denoted, respectively, as F0 and F1. Then we get

M(y|d = 1) − M(y|d = 0) = F−1
1 (α) − F−1

0 (α)

which is a vertical difference between F−1
1 and F−1

0 ; see Lee (2000) if further
interested in quantile treatment effect.

The identified effect M(y|d = 1) − M(y|d = 0) equals the true effect βd

only when
M(u|d = 0) − M(u|d = 1) = 0

which holds if u is independent of d. M(u|d = 0) = M(u|d = 1) is an
endogeneity problem because u differs systematically across the control and
treatment groups; i.e., u is related to d in y = β1 + βdd + u. This kind
of endogeneity problem due to the relation between u and a binary group
indicator d is often called a “sample selection problem” (or “selected-sample
problem”) as will be discussed further in a later chapter.

When d is self-selected, not intervened, often this problem occurs because
people different in u (genes or abilities) make different choices. If the two
groups differ only in some observed variables x, then this observed difference
may be controlled by using y = β1 +βdd+βxx+u; in contrast, the difference
in the unobserved u is hard to handle. When u is related to d, there is
a scope that certain location measures may be less affected (i.e., biased)
than others by this dependence. For instance, it may happen that E(u|d =
0) = E(u|d = 1), but qα(u|d = 0) = qα(u|d = 1) for some α. This sort
of perspective prompted various semiparametric methods exploiting different
location measures as will be seen in a later chapter.

3 GMM for Nonlinear Models

GMM has appeared already many times. In this section, GMM for non-
linear moment conditions will be studied. As IVE appeared for GMM with
linear models, nonlinear IVE will appear in this section as well. The first-order
conditions for M-estimator and NLS may be taken as moment conditions, to
which nonlinear GMM may apply. But it may not be possible to go the other
way around. For instance, a nonlinear moment condition for GMM may not
be convertible to NLS if the moment condition is not solvable for y.
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3.1 GMM for Single Nonlinear Equation

Let
E ψ

s×1
(z; β

k×1
) = 0

be a s× 1 moment condition where β is a k × 1 vector. For instance, in NLS
for y = r(x, β) + u,

Eψ(z, β) = 0 ⇐⇒ E[rb(x, β){y − r(x, β)}] = 0, where rb ≡
∂r

∂b
.

The sample version is

1
N

∑
i

ψ(zi, β) = 0 ⇐⇒ 1
N

∑
i

rb(xi, β){yi − r(xi, β)} = 0.

Regardless of ψ(β) being linear or not, if {zi} is iid, then the most
efficient way to combine s moment restrictions Eψ(z, β) = 0 is to minimize
the quadratic form

QN (b) ≡ 1
N

∑
i

ψ(b)′
{

1
N

∑
i

ψ(b0)ψ(b0)′
}−1

1
N

∑
i

ψ(b)

wrt b, where b0 is an initial consistent estimator such that

WN ≡ 1
N

∑
i

ψ(b0)ψ(b0)′ →p W ≡ V

[
1√
N

∑
i

ψ(β)

]
.

Intuitively, whatever metric we may use on Rs, only its quadratic approx-
imation matters for the asymptotic variance. Hence GMM indexed by the
weighting matrix WN is a large enough class for the moment condition. For
b0, NLS or some IVE may be used; the first-stage estimation error b0 − β
does not affect the second-stage GMM, because the error appears only in the
weighting.

Earlier we deferred dealing with a general nonlinear model ρ(y, x, β) = u.
Suppose β is estimated by minimizing N−1

∑
i ρ(yi, xi, b)2 as in NLS. The

first-order condition is

1
N

∑
i

{
ρ(yi, xi, b)

∂ρ(yi, xi, b)
∂b

}
= 0.

Setting ψ(y, x, b) = ρ(y, x, b) · ∂ρ(y, x, b)/∂b leads to GMM. But one cau-
tion should be noted before we proceed further: even when the minimizer of
N−1

∑
i ρ(yi, xi, b)2 is unique, there may be multiple solutions to the first-

order condition. Thus, although GMM provides a convenient unifying frame-
work, if there are multiple solutions, then we may have to revert back to the
original M-estimator setup.



158 Ch. 4 Nonlinear Models and Estimators

Turning to the asymptotic distribution of GMM, it cannot be derived
as a special case of the M-estimator asymptotic distribution, because the
minimand is not of the form N−1

∑
i q(zi, b). Still, Taylor expansion of the

first-order condition yields the asymptotic distribution. For a general weight-
ing matrix WN , not just the optimal one, the first-order condition is

1
N

∑
i

ψb(bN )W−1
N

1√
N

∑
i

ψ(bN ) = 0, where ψb ≡
∂ψ

∂b
.

Taylor-expand N−1/2
∑

i ψ(bN ) around β to get, for some b∗N ∈ (bN , β),

1√
N

∑
i

ψ(β) +
1
N

∑
i

ψb′(b
∗
N )

√
N(bN − β).

Substitute this into the first-order condition to get

0 =
1
N

∑
i

ψb(bN )W−1
N

{
1√
N

∑
i

ψ(β) +
1
N

∑
i

ψb′(b
∗
N )

√
N(bN − β)

}

= Eψb(β) · W−1 1√
N

∑
i

ψ(β) + Eψb(β) · W−1Eψb′(β)

·
√

N(bN − β) + op(1).

Hence,

√
N(bN − β) = −(EψbW

−1Eψb′)
−1EψbW

−1 · 1√
N

∑
i

ψ(β) + op(1)

� N{0, (EψbW
−1Eψb′)

−1 · EψbW
−1Eψψ′W−1Eψb′

·(EψbW
−1Eψb′)

−1}.

Choosing W = Eψψ′ simplifies the asymptotic variance matrix, yielding the
most efficient one for the GMM class:

√
N(bgmm − β)� N(0, {Eψb · E−1(ψψ′) · Eψb′}−1).

If Eψb is invertible with rank(Eψb) = s = k, then the GMM asymptotic
variance takes the “sandwich form” E−1(ψb)E(ψψ′)E−1 (ψb′) regardless of
W ; the asymptotic distribution is the same as the one that would be obtained
by applying the mean value theorem to N−1/2

∑
i ψ(bgmm) = 0. Hence, in

this case, we can just use the “unweighting” W = Is. This result is analogous
to that GMM becomes LSE when s = k in the linear model; i.e., if s = k,
then there is nothing to gain by weighting the moment conditions. For the
nonlinear model y = r(β)+u with the k×1 moment condition E{rb(β)u} = 0,
NLS becomes GMM, and the asymptotic variance of

√
N(bnls − β) can be

obtained by substituting ψ = rb(β){y − r(β)} and Eψb = E{rb(β)rb′(β)}
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into EψbE
−1(ψψ′)Eψb′ . Hence, the relationship between GMM and LSE in

the linear model holds between GMM and NLS in the nonlinear model.
When s > k, if the moment conditions are correct, then GMM should

not just minimize QN (b) but also make QN (bgmm) →p 0. Hansen (1982)
suggested a GMM over-identification (“over-id”) test examining whether the
moment conditions more than k can be satisfied by only k many parameters.
The test statistic is

1√
N

∑
i

ψ(bgmm)′
{

1
N

∑
i

ψ(b0)ψ(b0)′
}−1

1√
N

∑
i

ψ(bgmm)� χ2
s−k.

Any consistent estimator can be used for the middle inverted matrix, and
using b0 means that the over-id test statistic can be obtained simply from
the GMM minimand. In practice, however, to assure that the test statistic is
p.s.d., it is better to use

JN ≡ 1√
N

∑
i

ψ(bgmm)′
{

1
N

∑
i

ψ(bgmm)ψ(bgmm)′
}−1

1√
N

∑
i

ψ(bgmm)� χ2
s−k.

The dof of the over-id test can be intuitively understood as follows. First,
observe

1√
N

∑
i

ψ(β)′
{

1
N

∑
i

ψ(b0)ψ(b0)′
}−1

1√
N

∑
i

ψ(β)� χ2
s.

Second, minimizing QN (b) wrt b to get bgmm, k-many moment conditions
are used up (in the first-order condition). Third, plugging bgmm back into its
minimand leaves only s − k dof.

GMM (more broadly IVE) is not valid for errors-in-variable models that
are nonlinear in x, whereas IVE is applicable to errors-in-variable models
linear both in x and in β. To see this, consider yi = r(x∗i , β) + ui where
r(x∗, β) is nonlinear in x∗, xi = x∗i + vi, and (x′, y) is observed. Then, for
some xo∗

i ∈ (x∗i , xi), denoting the gradient of r(x∗, β) wrt x∗ as rx(x∗, β),

yi = r(xi, β) + rx(xo∗
i )(x∗i − xi) + ui = r(xi, β) + {ui − rx(xo∗

i )vi}.

Even if there is an instrument zi that is correlated with xi and uncorrelated
with ui and vi, the new error term ui−rx(xo∗

i )vi is correlated with zi through
rx(xo∗

i ) as xo∗
i is correlated with xi.

3.2 Implementation and Examples

GMM can be implemented by taking one step from an initial
√

N -
consistent estimator; one may also iterate further if desired. The one-step
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formula comes from the above expression for
√

N(bN −β): replace β with b0,
put b0 on the right-hand side and use an optimal weighting to get

bN = b0 −

⎡⎣∑
i

ψb(b0)

{∑
i

ψ(b0)ψ(b0)′
}−1 ∑

i

ψb′(b0)

⎤⎦−1

·
∑

i

ψb(b0)

{∑
i

ψ(b0)ψ(b0)

}−1 ∑
i

ψ(b0).

If there is no such initial consistent estimator, then GMM estimation can
be implemented iteratively by starting with an arbitrary b0 and updating b0

until convergence.
It is also possible to minimize

1
N

∑
i

ψ(b)′
{

1
N

∑
i

ψ(b)ψ(b)′
}−1

1
N

∑
i

ψ(b)

wrt b as in Hansen et al. (1996); note that b appears also in the weighting
matrix. This procedure, called “continuously updated GMM,” is computa-
tionally more difficult, although it seems to have a better small-sample per-
formance in connection with (generalized) “empirical likelihood method”; we
will not further examine the continuously updated GMM. In the following,
we present specific nonlinear moment condition examples, and then an em-
pirical example that is a shortened version of the nonlinear GMM example
in Lee (2002).

Suppose y ≥ 0 always, and thus we posit E(y|x) = exp(x′β) to assure
E(y|x) > 0. In this case, we may use

Eψ(x, y, b) = E[x{y exp(−x′b) − 1}] = 0, because

= E[ x · E{y exp(−x′b) − 1|x} ]

= E[ x{exp(x′β − x′b) − 1} ] = 0 if β = b;

i.e., β satisfies the moment condition. Here, y exp(−x′b) − 1 plays the role
of an error term orthogonal to x. In applying GMM, we will need ψb(β) =
−xx′y exp(−x′β). Instead of the moment condition in the last display, we
may also use

E[x{y − exp(x′b)}] = 0

where y − exp(x′b) = y − E(y|x) is an error term; this will appear later for
count responses. The preceding moment condition is a weighted version of
this moment condition because

x{y exp(−x′b) − 1} = x
y − exp(x′b)

exp(x′b)
.



Sec. 3 GMM for Nonlinear Models 161

This demonstrates that there are different moment conditions for the same
parameters. Also note that, instead of “x times an error,” “functions of x”
times an error can be used for the moment conditions.

Another example of GMM moment conditions comes from the Box-Cox
transformation model (yα − 1)/α = x′β + u. As noted already, MLE under
u ∼ N(0, σ2) is not tenable for this model. But GMM can be applied to
estimate α and β jointly. Under E(u|x) = 0, we can use

E(uxj) = 0 = E(ux2
j )

⇐⇒ E

{
(
yα − 1

α
− x′β)xj

}
= 0 = E

{
(
yα − 1

α
− x′β)x2

j

}
∀j.

This GMM may not converge well due to estimating α. One simple solution is
to fix α to get β̂(α) in the resulting linear model with GMM. Repeating this
for all possible values of α and then comparing the GMM minimand values,
we can find α̂ and β̂(α̂). Whenever possible, it is advantageous to turn a
nonlinear problem into a linear one.

EXAMPLE: INTEREST RATE (continued). Consider a “stochastic differential
equation” for an interest rate y(t):

dy(t) = {β1 − β2y(t)} · dt + σy(t)η · dw(t)

where β1, β2, σ, and η are positive parameters, and w(t) for 0 ≤ t ≤ T
is a “Brownian motion” or “Wiener process”: w(t) has continuous sample
path that starts from 0 (i.e., w(0) = 0) and for any finite number of points
t1, ..., tm,

{w(t1), ..., w(tm)} is Gaussian (i.e., jointly normal) with
0-mean and E{w(tj)w(tk)} = min(tj , tk).

Setting tj = tk = t, this display implies w(t) ∼ N(0, t) because V {w(t)}
= E{w(t)2} = t. From this display, it follows that

w(t) − w(s) ∼ N(0, t − s), ∀ s < t because

E{w(t) − w(s)}2 = E{w(t)2} − 2E{w(t)w(s)} + E{w(s)2}

= t − 2s + s = t − s.

Also w(t) has independent increments:

w(t4) − w(t3) is independent of w(t2) − w(t1), ∀ t1 < t2 ≤ t3 < t4

because E[{w(t4) − w(t3)}{w(t2) − w(t1)}] = t2 − t2 − t1 + t1 = 0.

Approximate the differential equation in discrete time with

yt � yt−1 + (β1 − β2yt−1)Δt + σyη
t−1(Δt)1/2εt, [{εt} iid N(0, 1)]

= yt−1 + β2(β1/β2 − yt−1)Δt + σyη
t−1(Δt)1/2εt.
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The stationary level for yt (with εt = 0) is β1/β2. The second term on the
right-hand side makes yt revert to β1/β2, and β2 is the “speed of adjustment.”
With Δt = 1, the discrete version becomes

yt = yt−1 + β1 − β2yt−1 + σyη
t−1εt.

We will estimate the four parameters β1, β2, σ, and η with GMM.
Define

ut ≡ σyη
t−1εt = yt − yt−1 − (β1 − β2yt−1), vt ≡ u2

t − σ2y2η
t−1

=⇒ E(ut|y1, ..., yt−1) = 0 and E(vt|y1, ..., yt−1) = 0.

This gives many moment conditions; we will use only the following six un-
conditional moment conditions for illustration:

E(ut) = 0, E(utyt−1) = 0, E(utyt−2) = 0,

E(vt) = 0, E(vtyt−1) = 0, E(vtyt−2) = 0.

The main source of difficulty in this GMM is η, the identification of which
becomes almost impossible when σ is close to zero.

Using the US 3-month treasury bill rate (in percentages) data monthly
from January 1982 to December 1999 (N = 216), the nonlinear GMM esti-
mation result (with t-values in (·)) is

β1 β2 σ η
0.162 (2.13) 0.029 (2.18) 0.024 (2.58) 1.24 (6.47)

The over-id test statistic and p-value from χ2
6−4 = χ2

2 are, respectively, 5.858
and 0.053, indicating a possible misspecification. The steady state rate is
0.162/0.029 = 5.33%, which looks reasonable. As noted already, the esti-
mation is sensitive to η—a contentious parameter in the literature. Although
GMM provides a nice unifying theme for econometrics, nonlinear GMM often
does not behave well computationally.

Recall that, in a preceding chapter, we estimated the linear model of the
form yt = β0+β1yt−1+β2yt−2+vt with the same data and noted the potential
problem of heteroskedasticity. Because η is significant, the heteroskedasticity
factor σyη

t−1 indeed matters. This indicates that the conditional variance
given yt−1 is large if yt−1 is so, which seems plausible, because some people
expect yt to drop toward the steady-state level while some other people expect
yt to go up even higher. Specification and estimation of short-term interest-
rate stochastic differential equations is a contentious issue in finance; see,
e.g., Lee and Li (2005) and the references therein. Jagannathan et al. (2002)
provided a survey on GMM applications to finance.
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3.3 Three Tests in GMM

There are GMM analogs for Wald, LR, and LM tests. Consider moment
conditions and a null hypothesis

E{ ψ
s×1

(z, β
k×1

)} = 0, H0 : h
g×1

(β) = 0 with rank

(
∂h(β)
∂b′

)
= g.

If H0: h(β) = c, redefine h(β) as h(β) − c to get H0 : h(β) = 0. Clearly h(β)
includes the linear version R′β as a special case. Define the efficient GMM
as bN , and its restricted version as bNr minimizing

QN (b) ≡ 0.5 · 1
N

∑
i

ψ(b)′ W−1
N

1
N

∑
i

ψ(b) + λ′h(b)

where λ is a Lagrangean vector.
Define a k×k matrix estimator for the inverse of the asymptotic variance

of
√

N(bN − β):

ΩN (bN ) ≡ 1
N

∑
i

ψb(bN ) W−1
N

1
N

∑
i

ψb′(bN )

→ p H ≡ Eψb(β) W−1 Eψb′(β).

By doing analogously to what was done for the restricted estimators in MLE
and NLS, it holds that

bNr =

[
Ik − Ω−1

N

∂h(bN )
∂b

{
∂h(bN )

∂b′
Ω−1

N (bN )
∂h(bN )

∂b

}−1
∂h(bN )

∂b′

]
· bN .

The following χ2
g test statistics hold for GMM (see Newey and McFadden

(1994) for more related test statistics):

Waldgmm = N · h(bN )′
{

∂h(bN )
∂b′

Ω−1
N (bN )

∂h(bN )
∂b

}−1

h(bN ),

LRgmm = N

{
1
N

∑
i

ψ(bNr)′W−1
N

1
N

∑
i

ψ(bNr)

− 1
N

∑
i

ψ(bN )′W−1
N

1
N

∑
i

ψ(bN )

}
,

LMgmm =

{
1
N

∑
i

ψb(bNr)W−1
N

1√
N

∑
i

ψ(bNr)

}′
ΩN (bNr)−1

{
1√
N

∑
i

ψb(bNr)W−1
N

1
N

∑
i

ψ(bNr)

}
The steps to derive LRgmm and LMgmm are analogous to those for LRnls

and LMnls. In practice, it is advisable to use the same estimator WN for the
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two terms in LRgmm; otherwise LRgmm may take a negative number. The
observations made for Wald, LR, and LM tests in relation to MLE and NLS
also hold for the GMM tests.

3.4 Efficiency of GMM

Earlier we showed that, for an M-estimator bN maximizing N−1
∑

i

q(zi, b), the asymptotic variance of bN can be written as

[E(sqb′) E−1(qbqb′) E(qbs
′)]−1

where s is the score function for β and qb ≡ ∂q/∂b. Doing analogously, the
GMM asymptotic variance can be rewritten as

[E(sψ′) E−1(ψψ′) E(ψs′)]−1.

This is the inverse of the square of the part of E(ss′) explained by ψ. Since
E(ss′) is larger than the part explained by ψ, GMM is less efficient than
MLE. If ψ is s, then the GMM is MLE; the closer ψ is to s, the more efficient
GMM becomes.

Let z = (x′, y)′. If the moment condition is E{ψ(y, x)|x} = 0, not
Eψ(y, x) = 0, then the GMM under Eψ(y, x) = 0 is not efficient. The reason
is that E{ψ(y, x)|x} is much stronger than Eψ(y, x) = 0: E{ψ(y, x)|x} = 0
implies E{g(x) ·ψ(y, x)} = 0 for any square-integrable function g(x), render-
ing infinitely many unconditional moment conditions. The asymptotic vari-
ance of the efficient estimator (or the “efficiency bound”) under E{ψ(y, x)|x}
= 0 is (Chamberlain, 1987)

E−1
x {E(ψb|x) E−1(ψψ′|x) E(ψb′ |x)}.

If g(x) is continuous, it can be well approximated by polynomial func-
tions of x. Then E(g · ψ) = 0 for an arbitrary g(x) is equivalent to E(ζj(x) ·
ψ) = 0, j = 1, ..., J , where ζj(x) are polynomial functions of x. The GMM
with these unconditional moment conditions attains the preceding bound
as J → ∞ (Chamberlain, 1987). Donald et al. (2003) provided a related
“empirical-likelihood” approach for the efficient estimation. Kitamura et al.
(2004) showed that the efficient estimation can also be done using a “lo-
calized version of empirical likelihood” approach, which is a combination of
empirical-likelihood and “nonparametric smoothing.” All these approaches
require choosing a “smoothing parameter” or J typical in nonparametric
methods, which is a disadvantage. This theme of turning a conditional mo-
ment to unconditional moments will be picked up later.

As an example of the efficiency bound under E{ψ(y, x)|x} = 0, suppose
y = x′β + u with E(ψ|x) = 0 where ψ(z, β) = y − x′β = u. Then the bound
becomes

E−1
x {x E−1(u2|x) x′} = E−1

{
xx′

V (u|x)

}
which is the asymptotic variance of the GLS. If E(u2|x) = σ2, then the
efficiency bound is σ2E−1(xx′); we already know that LSE is efficient under
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E(ux) = 0. Therefore, for linear model,

(i) if E(u|x) = 0 and E(u2|x) = σ2, then LSE is efficient;

(ii) if E(u|x) = 0 and E(u2|x) = h(x) whose form is known, then GLS
attains the efficiency bound;

(iii) if E(u|x) = 0, whether homoskedasticity holds or not, there exists a
GMM which is efficient attaining the efficiency bound.

One relevant question for (ii) is: with ψ = (y − x′β, (y − x′β)2 − h(x)),
can we get an estimator more efficient than the GLS? The answer is yes if
E(u3|x) = 0 or β enters the h(x); see Newey (1993, p. 427).

3.5 Weighting Matrices for Dependent Data

Although we deal mostly with cross-section data, here we digress to
consider dependent data, which will demonstrate the “versatility” of GMM. If
we have dependent data, then the optimal weighting matrix in GMM requires
some adjustment, although estimation of Eψb(z, β) can be done in the same
way as with iid data by N−1

∑
i ψb(zi, bN ). Recall that the optimal weighting

matrix is the inverse of W = V {N−1/2
∑

i ψ(zi, β)}, which is

W = E

⎡⎣ 1
N

∑
i

∑
j

ψ(zi, β)ψ(zj , β)′

⎤⎦ =
1
N

∑
i

∑
j

E{ψ(zi, β)ψ(zj , β)′}.

If {zi} are iid, then all cross products disappear and W can be estimated
consistently with N−1

∑
i ψ(zi, bN )ψ(zi, bN )′.

It is important to realize that W cannot be estimated consistently with
(the “wrong estimator”)

1
N

∑
i

∑
j

ψ(zi, bN )ψ(zj , bN )′ =
1√
N

∑
i

ψ(zi, bN ) · 1√
N

∑
j

ψ(zj , bN )
′

because N−1/2
∑

i ψ(zi, bN ) = 0 by the first-order condition. White and Do-
mowitz (1984) suggested an estimator for W : omitting bN ,

ŴN ≡ 1
N

N∑
j=1

ψ(zj)ψ(zj)′ +
1
N

m∑
i=1

N∑
j=i+1

{ψ(zj)ψ(zj−i)′ + ψ(zj−i)ψ(zj)′},

where m < N − 1. The two terms in {·} guarantee the symmetry of the
estimator; e.g., with ψ(zj) = (wj , wj−1)′,

ψ(zj)ψ(zj−i)′ =
[

wj

wj−1

] [
wj−i wj−i−1

]
=

[
wjwj−i wjwj−i−1

wj−1wj−i wj−1wj−i−1

]
.

Clearly, this matrix is not symmetric, and a symmetrization is done in {·}.
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If m = N − 1, then ŴN is the same as the wrong estimator. Hence
by removing some terms in the wrong estimator, we get a valid estimator
ŴN . Essentially ŴN makes the wrong estimator non-zero by limiting the
dependence over time:

E{ψ(zj)ψ(zj−i)′ + ψ(zj−i)ψ(zj)′} = 0 for all i > m.

There is, however, no good practical guideline on how to select the truncation
number m. See White and Domowitz (1984, pp.153–154) for more.

Newey and West (1987) proposed another estimator which is guaranteed
to be p.s.d. for a given N . Their estimator is

W̃N =
1
N

∑
j

ψ(zj)ψ(zj)′ +
1
N

m∑
i=1

(
1 − i

m + 1

)
N∑

j=i+1

{ψ(zj)ψ(zj−i)′ + ψ(zj−i)ψ(zj)′} .

For instance, with m = 2,

W̃N =
3
3
· 1
N

N∑
j=1

ψ(zj)ψ(zj)′+
2
3
· 1
N

N∑
j=2

{ψ(zj)ψ(zj−1)′+ψ(zj−1)ψ(zj)′}

+
1
3
· 1
N

N∑
j=3

{ψ(zj)ψ(zj−2)′ + ψ(zj−2)ψ(zj)′} ;

smaller weights are given to the terms with more lags. If m = 1, use the first
two of the preceding display with the weights being 2/2 and 1/2, respectively.

More estimators for the weighting matrix have appeared under the name
“heteroskedasticity- and autocorrelation-consistent (HAC) variance”; see,
e.g., Andrews and Monahan (1992), Newey and West (1994), West (1997),
Smith (2005), and the references therein. Hall (2000) suggested using the cen-
tered version ψ(zi) − N−1

∑
ψ (zi) instead of ψ (zi) in the weighting matrix

to raise the power of the over-id test.

3.6 GMM for Multiple Nonlinear Equations*

Suppose we have a nonlinear equation system

ρ
s×1

( y
s×1

, x
K×1

, γ
k×1

) = u
s×1

where y is the endogenous variable and x is the exogenous variable of the
system. Assume

E( x ⊗ u
(sK)×1

) = 0 ⇐⇒ E

{
(Is ⊗ x
(sK)×s

) · u
s×1

}
= 0,
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which is the s×K moment conditions of the system where the error term in
each equation has zero covariance with x. We thus get

E(z · u) = 0 ⇐⇒ E{z · ρ(y, x, γ)} = 0 where zi
sK×s

≡ Is ⊗ xi.

This type of moment conditions appeared when linear equation systems were
discussed.

Consider a nonlinear IVE (NIV) minimizing{
1√
N

∑
i

ziρ(yi, xi, g)

}′ (
1
N

∑
i

ziz
′
i

)−1 {
1√
N

∑
i

ziρ(yi, xi, g)

}

wrt g. This was first suggested by Amemiya (1974) under a different name.
The form of NIV is similar to IVE in the linear model. Since ρ is nonlinear,
NIV is obtained with an iterative method. Observe that

ρ(g1) � ρ(g0) + ρg′(g0)(g1 − g0), ρg′
s×k

≡ ∂ρ

∂g′
.

Substitute this into the minimand and solve the first-order condition wrt g1

to obtain the following iterative scheme for NIV:

g1 = g0 −

⎧⎨⎩∑
i

ρg(g0)z′i

(∑
i

ziz
′
i

)−1 ∑
i

ziρg′(g0)

⎫⎬⎭
−1 ∑

i

ρg(g0)z′i

(∑
i

ziz
′
i

)−1 ∑
i

ziρ(g0).

Once NIV is obtained, the corresponding GMM is obtained minimizing

1
N

∑
i

{ziρ(yi, xi, g)}
′

W−1
N

1
N

∑
i

ziρ(yi, xi, g)

where WN is a consistent estimator for the sK × sK variance matrix of
N−1/2

∑
i ziui:

W = E(zuu′z′) = E{(Is ⊗ x)uu′(Is ⊗ x′)}.

With ûi ≡ ρ(yi, xi, gniv), GMM is obtained as, with g0 = gniv,

ggmm = g0 −

⎧⎨⎩∑
i

ρg(g0)z′i

(∑
i

ziûiû
′
iz
′
i

)−1 ∑
i

ziρg′(g0)

⎫⎬⎭
−1

∑
i

ρg(g0)z′i

(∑
i

ziûiû
′
iz
′
i

)−1 ∑
i

ziρ(g0).



168 Ch. 4 Nonlinear Models and Estimators

The asymptotic variance matrix for the GMM is

[E(ρgz
′)

k×(sK)

E−1(zuu′z′) E(zρg′)]−1.

Replacing ρg with an instrument matrix, this includes the GMM for multiple
linear equations as a special case.

Suppose we have the conditional moment condition E(u|x) = 0, not just
E(x ⊗ u) = 0. Then the preceding GMM is not efficient, but we can get an
efficient estimator by augmenting the moment conditions as shown already
when conditional moment conditions were discussed. Newey (1988, 1993) sug-
gested another way to get an efficient estimator for the model ρ(y, x, γ) = u.
Consider a r × s (r ≥ k) known instrument matrix A(x) and the moment
condition

E{A(x)ρ(y, x, γ)} = 0.

Applying GMM to this, the asymptotic variance is

[E{ρgA(x)′} E−1{A(x)uu′A(x)′} E{A(x)ρg′}]−1.

If we set r = k and

A(x) = E(ρg|x) · E−1(uu′|x),

then the preceding asymptotic variance becomes

E−1
x {E(ρg|x) E−1(uu′|x) E(ρg′ |x)}

which is nothing but the efficiency bound E−1
x {E(ψb|x)E−1(ψψ′|x) E(ψb′ |x)};

i.e., if we can get A(x), we can attain the efficiency bound with GMM.
To get A(x), we need E(ρg|x) and E(uu′|x). If homoskedasticity is as-

sumed, then E(uu′|x) is a constant and thus can be estimated easily with
the residuals from an initial estimator. Getting E(ρg|x) is more problematic,
because we need the conditional density fy|x and the integration

∫
ρg(y, x, γ)

fy|x(y)dy to get E(ρg|x). But using “nonparametric techniques” to appear,
it is possible to obtain A(x) without specifying the conditional density; see
Robinson (1991), Newey (1993), and Newey (1990b) who treated the ho-
moskedastic case only.

4 Minimum Distance Estimation (MDE)

Consider a parameter β, and a function ψ(β) which is consistently es-
timable with an estimator θN without knowing β. Minimum distance estima-
tion (MDE), in a wide sense, estimates β by minimizing a distance between
θN and ψ(β). That is, for a parameter space B,

bmde = argminb∈B ‖θN − ψ(b)‖
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where ‖·‖ is a norm. For instance, ‖·‖ can be the Euclidean norm or the
absolute deviation norm. In a narrow sense, MDE uses a quadratic norm and
minimizes, for instance, {θN −ψ(b)}′W−1

N {θN −ψ(b)} for a weighting matrix
WN . In this case, MDE is also called “minimum χ2 estimation.” We will use
the term MDE in the narrow sense unless otherwise noted.

If θN is a sample moment, say θN = N−1
∑

i μ(zi) for a known function
μ(·), then

θN − ψ(b) =
1
N

∑
i

{μ(zi) − ψ(b)}.

This is a moment condition, and with this MDE becomes MOM; indeed the
reader will see much similarity between MDE and GMM. Thus, MDE is
more interesting when θN is not sample moments, and such MDE is useful in
estimating simultaneous equations [see Lee (1995) and Lee and Kimhi (2005),
and the references therein] and panel data models [see Chamberlain (1982)
and Lee (2002)]. MDE has in fact a long history; see Malinvaud (1970) and
Chamberlain (1982) among many others, and the references therein.

MDE is a way of “indirect inference” as β gets estimated indirectly
through θN , but the expression “indirect inference” is typically used for the
special case of MDE combined with simulated data; see, e.g., Gourieroux
et al. (1993). This approach tends to be fully parametric involving likeli-
hoods, which presents different ways to measure the difference between θ and
ψ(β): Wald-based, LR-based, and score-based differences. The Wald-based
difference is a special case of the above quadratic difference.

In the following, we will start with a motivational subsection first for
MDE, generalize it further, and present an empirical example that is a short-
ened version of an example in Lee (2002).

4.1 MDE Basics

Suppose there is a panel data set with two waves (T = 2) for a model
yit = x′itβ + vit. Also suppose that we can consistently estimate β with
each wave. If we estimate β with wave 1 and wave 2 separately, we will get
two estimators, say b1 and b2, for the same parameter β. Then the question
arises: how can we combine the two estimators to come up with a single
estimator for β? This question in fact came up because we assumed the
same parameter for both waves to begin with, and it would be more general
to posit yit = x′itβt + vit and then test for Ho : β1 = β2; if this Ho is
accepted, then we would proceed to combining b1 and b2. As it turns out, the
answer to the question of combining b1 and b2 also provides a test statistic
for Ho : β1 = β2.

The first-step in MDE is expressing the constraint on the parameters
into equations. In the panel data example, the constraint is β1 = β2 (≡ β).
With β being of dimension k × 1, the constraint can be written as[

β1

β2

]
=

[
Ik

Ik

]
· β =⇒

[
b1

b2

]
�

[
Ik

Ik

]
· β.
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In the second equation, the left-hand side (b′1, b
′
2)
′ is θN , and the right-hand

side is ψ(β) = ψβ where ψ ≡ [Ik, Ik]′. Our goal is to estimate β using the
equation, and there is an easy way of doing that: regard θN ≡ (b′1, b

′
2)
′ as a

response variable and ψ as a regressor to do the LSE of θN on ψ. Because
ψ′ψ = Ik + Ik = 2Ik, and ψ′θN = b1 + b2, the LSE is nothing but the simple
average of b1 and b2:

(ψ′ψ)−1ψ′θN =
b1 + b2

2
.

If we recall GLS, an weighted average will be better than this simple
average, which leads to the aforementioned MDE using the quadratic norm
with the weighting matrix WN . With the basic idea of MDE fixed now, we
turn to a more general setup.

The main question that MDE answers is how to optimally impose overi-
dentifying restrictions. Consider a k × 1 parameter vector β and K (K ≥ k)
restrictions θ = ψ(β) where ψ(β) has the K × k continuous first derivative
matrix ψb′ . Suppose θ can be estimated with an estimator θN . Then θ = ψ(β)
can be written as

θN − θ = θN − ψ(β).

Now choose an estimator bN for β such that θN−ψ(bN ) is as small as possible.
Since θN −ψ(bN ) is a K ×1 vector, we turn it into a scalar using a quadratic
norm. Often, we call θ a “reduced form (or “shallow”) parameter” and β a
“structural form (or “deep”) parameter.”

An (inefficient) MDE for β is obtained by minimizing

N{θN − ψ(b)}′ · W−1 · {θN − ψ(b)}

wrt b, where W is a K × K symmetric p.d. matrix (for instance, W = IK).
The efficient MDE is obtained by setting

W = VN →p V where
√

N(θN − θ)� N(0, V ).

Often the efficient MDE is simply called (the) MDE.
Denoting the MDE as bN , it will be shown shortly that

√
N(bN − β)� N [0, {ψb(β)V −1ψb′(β)}−1]

N{θN − ψ(bN )}′V −1
N {θN − ψ(bN )}� χ2

K−k where VN →p V.

The latter is the MDE over-id test for the restriction θ = ψ(β), analogous
to the GMM over-id test. Simply minimizing the quadratic form does not
necessarily mean that the restriction θ = ψ(β) holds; if it does, then we should
have θN � ψ(bN ), which is verified with the over-id test. In the following, we
derive the asymptotic distribution result.

To see the minimization process, rewrite the minimand (with b and W
replaced by bN and WN , respectively) as N times

θ′NW−1
N θN + ψ(bN )′W−1

N ψ(bN ) − 2ψ(bN )′W−1
N θN .
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Differentiate this wrt bN to get the first-order condition

2 · ψb(bN )W−1
N ψ(bN ) − 2 · ψb(bN )W−1

N θN = 2ψb(bN )W−1
N

·{ψ(bN ) − θN} = 0

⇐⇒ ψb(bN )W−1
N {ψ(β) + ψb′(b

∗
N )(bN − β) − θN} = 0

where b∗N ∈ (bN , β). Solve this for bN to get

bN = β + {ψb(bN )W−1
N ψb′(b

∗
N )}−1ψb(bN )W−1

N {θN − ψ(β)}

=⇒
√

N(bN − β) = {ψb(β)W−1ψb′(β)}−1ψb(β)W−1
√

N(θN − θ) + op(1).

This yields the asymptotic distribution for MDE with the weighting matrix
W , and W = V renders the efficient MDE with the asymptotic variance
{ψb(β)V −1ψb′(β)}−1.

The preceding display with bN = β + ... also yields an iterative compu-
tational algorithm: replace bN and β with b1 and b0, respectively, to get

b1 = b0 + {ψb(b0)W−1
N ψb′(b0)}−1 · ψb(b0)W−1

N {θN − ψ(b0)};

update b0 and repeat this until convergence.
There is an interesting point to be noted for MDE and MLE. If θN is a

MLE and θ = ψ(β) where the dimension of θ is at least as large as β, then
there are two ways to estimate β. The first is MDE: obtain θN by maximizing
N−1

∑
i ln f(θ) and then use MDE to find β. The second is the direct MLE

maximizing N−1
∑

i ln f{ψ(b)} wrt b. Now we will show that the two methods
are equivalent. Denote the score vector for θ as sθ and define Iθ ≡ E(sθs

′
θ).

The MDE bN has
√

N(bN − β)� N [0, {ψb(β)Iθψb′(β)}−1].

If we maximize N−1
∑

i ln f{ψ(b)} directly wrt b, then the score function for b
is (by the chain rule) ψb(β)sθ. Thus the information matrix is E{ψb(β)sθs

′
θψb

(β)} = ψb(β)Iθψb′(β): the direct MLE has the same asymptotic variance as
the MDE has. In short, if θN is a MLE, then MDE is the efficient way to
impose over-identified parameter restrictions.

4.2 Various MDE Cases

The simplest MDE occurs when the restriction θ = ψ(β) is a known
linear function. Suppose

θ = Ψβ, Ψ is a known K × k matrix, K ≥ k, rank(Ψ) = k.

First consider K = k. Then β = Ψ−1θ, and the natural estimator for β is

bN = Ψ−1θN .
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Since θN →p θ, we get bN →p Ψ−1θ = β. Also the asymptotic distribution of√
N(bN − β) is straightforward to obtain: recalling

√
N(θN − θ)� N(0, V ),

√
N(bN − β)� N(0, Ψ−1V Ψ−1′).

Now consider K > k. For a K × K p.d. matrix W , Ψβ = θ implies

Ψ′W−1Ψ · β = Ψ′W−1 · θ.

Solve this for β and replace θ with θN to get

bN = (Ψ′W−1Ψ)−1Ψ′W−1 · θN .

This bN also minimizes N(θN −Ψb)′W−1(θN −Ψb) and the asymptotic dis-
tribution is

√
N(bN − β)� N{0, (Ψ′W−1Ψ)−1Ψ′W−1V W−1Ψ(Ψ′W−1Ψ)};

with W = IK , the MDE is the “unweighted MDE.” The covariance matrix
attains its minimum when W = V . Thus, the efficient MDE is

bN = (Ψ′V −1
N Ψ)−1Ψ′V −1

N · θN =⇒
√

N(bN − β)� N{0, (Ψ′V −1Ψ)−1}.

Returning to the case K = k, we can use W as in the case K > k. But
since there is only one bN satisfying ΨbN = θN , bN is the same regardless
of W when K = k. The variance matrix (Ψ′V −1Ψ)−1 when K > k becomes
Ψ−1V Ψ′−1 when K = k, for Ψ is invertible under K = k.

Consider a more complicated situation where the linear restriction Ψ is
a function of θ:

θ = Ψ(θ)β, Ψ(θ) is K × k, K ≥ k, rank{Ψ(θ)} = k;

the above nonlinear case does not include this as a special case, because if
we linearize θ = ψ(b) around b = 0, we would get θ = ψb′(b∗)b that has no θ
on the right-hand side. Rewrite Ψ(θ)β − θ = 0 as

θN = Ψ(θN )β + [θN − θ − {Ψ(θN ) − Ψ(θ)}β].

Define an K × 1 error vector ε as

ε ≡ θN − θ − {Ψ(θN ) − Ψ(θ)}β = A · (θN − θ) + op(1) where

Ψ
K×k

=

⎡⎢⎢⎢⎣
Ψ1
1×k

...
ΨK
1×k

⎤⎥⎥⎥⎦ and A ≡

⎛⎜⎜⎜⎝IK −

⎡⎢⎢⎢⎣
β′ · ∂Ψ1/∂θ′

k×K

...
β′ · ∂ΨK/∂θ′

k×K

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

and denote Ψ(θN ) as ΨN to rewrite the preceding display as

θN = ΨNβ + ε.



Sec. 4 Minimum Distance Estimation (MDE) 173

This equation looks like the usual linear model with θN as the response
variable and ΨN as the regressors. We can estimate β

√
N -consistently with

the LSE bc:
bc = (Ψ′NΨN )−1Ψ′NθN .

Since the asymptotic variance of
√

Nε is, in general, not diagonal, we
can do better with generalized LSE (GLS). Note that

√
Nε� N(0, AV A′)

Since A depends on β and θ, let AN be the version with bc and θN plugged
into β and θ, respectively, in A. Then the GLS is

bN = {Ψ′N (ANVNA′N )−1ΨN}−1Ψ′N (ANVNA′N )−1θN

√
N(bN − β)� N [0, {Ψ(θ)′(AV A′)−1Ψ(θ)}−1].

The reader may wonder how we can apply LSE or GLS with only K many
“observations.” The answer is that the error term ε is not the usual error
term; ε has a degenerate distribution converging to 0, because it is propor-
tional to θN − θ. Thus θN = ΨNβ + ε behaves like K linear deterministic
equations. Examples for θ = Ψ(θ)β arise when MDE is applied to simultane-
ous equations with LDV’s; see Lee (1995) and Lee and Kimhi (2005).

Further generalizing MDE, consider (L.F. Lee, 1992)

f
q×1

( θ
K×1

, β
k×1

) = 0

where f is twice continuously differentiable,
√

N(θN − θ) � N(0, V ), and
k ≤ q ≤ K. By δ-method, Taylor-expanding f(θN , β) around θN = θ, we get

√
N{f(θN , β) − f(θ, β)}� N(0,Ω) where Ω ≡ ∂f(θ, β)

∂θ′
V

∂f(θ, β)
∂θ

.

Consider a (generalized) MDE bN for β by minimizing wrt b

f(θN , b)′ · Ω−1
N · f(θN , b) where ΩN →p Ω.

Then

√
N(bN − β)� N

(
0,

{
∂f(θ, β)

∂β
Ω−1 ∂f(θ, β)

∂β′

}−1
)

and

N · f(θN , bN )′Ω−1
N f(θN , bN )� χ2

q−k;

the latter is the MDE over-id test for f(θ, β) = 0. Equating f(θ, β) to
θ − ψ(β), θ − Ψβ, or θ − Ψ(θ)β, this result includes all the preceding cases
with q = K.
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Estimating Ω with ΩN requires a
√

N -consistent estimator for β, say
bN0, so that

ΩN ≡ ∂f(θN , bN0)
∂θ′

VN
∂f(θN , bN0)

∂θ
→p Ω.

Such an estimator can be obtained by minimizing f(θN , b)′f(θN , b), and it
is in general less efficient than bN . In practice, a quadratic approximation
to f(θN , b)′Ω−1

N f(θN , b) at b = bN0 may be used to obtain bN . This would
yield an iterative formula. Theoretically, however, taking one step from bN0

is enough to get bN .

4.3 An Empirical Example from Panel Data

Consider a panel data with three waves (T = 3) and a panel model

yit = τ t + x̃′itμt + vit where xit = (1, x̃′it)
′ and βt ≡ (τ t, μ

′
t)
′.

Suppose we want to impose the restriction that the slope coefficients μt in
βt, t = 1, 2, 3, are the same, whereas the intercepts τ t’s may be different. De-
noting the (k−1)×1 common slope parameter vector as μ, these restrictions
(i.e., the θ = ψ(β) equation) are⎡⎢⎢⎢⎢⎢⎢⎣

τ1

μ1

τ2

μ2

τ3

μ3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 0 Ik−1

0 1 0 0
0 0 0 Ik−1

0 0 1 0
0 0 0 Ik−1

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎣
τ1

τ2

τ3

μ

⎤⎥⎥⎦ .

Denote the middle matrix with zeros and Ik−1 as ψ; some of the zeros in ψ
are zero vectors defined conformably for the identity matrices. Let bt be the
estimator for βt in wave t. Also define

bN ≡ (b′1, b
′
2, b

′
3)
′, β ≡ (β′1, β

′
2, β

′
3)
′, βo ≡ (τ1, τ2, τ3, μ

′)′.

For the MDE, the main difficulty in practice is in getting WN : because b1,
b2, and b3 are obtained separately in the first stage, their covariance matrices
are not readily available in the first stage.

To get the asymptotic variance matrix estimator VN →p V where
√

N
(bN − β) � N(0, V ), let the influence function for bt be ηit and denote its
estimator as η̂it. Define

η̂i ≡ (η̂′i1, η̂
′
i2, η̂

′
i3)
′ and VN = N−1

∑
i

η̂iη̂
′
i.

Then the MDE is

bmde = (ψ′V −1
N ψ)−1 · ψ′V −1

N bN√
N(bmde − βo)� N(0, (ψ′V −1ψ)−1)

N · (bN − ψ · bmde)′V −1
N (bN − ψ · bmde)� χ2

2(k−1)
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which is a test statistic for the over-identifying restriction. The dimension of
the leftmost vector in θ = ψ(β) is 3k, whereas that of the rightmost vector
is (k − 1) + 3, which yields the dof 3k − {(k − 1) + 3} = 2(k − 1). If the
restriction is rejected, then this would mean that some slope coefficients are
time-variant.

For yit = ln(hourly-wageit) of married men of age 40–60, the following
regressors are used: 1, age, age2, edu (schooling years), kids (# children),
ln(yearly work hours), mar (1 if married), sal (1 if salaried worker), self (1 if
self-employed), and ur (local unemployment %). The data size N is 334, and
the data were drawn from the Panel Study of Income Dynamics (PSID). In
the regressors, only sal, self, and ur are time-varying (age is time-varying but
only in the deterministic fashion). For each wave, there are 10 parameters
(the intercept plus nine slopes as shown in Table 3), and the following 12
instruments were used: with i omitted in the subscripts,

1, age1, age2
1, sal1, sal2, sal3, self1, self2, self3, ur1, ur2, ur3.

Table 3 shows the GMM for each wave and MDE with the above time-
constant slope restriction.

Maybe due to weak instruments, all but one (sal for wave 3) estimates are
insignificant for waves 1–3. When they are combined with MDE, however, sal
and self become significant, and age and age2 gain much in significance. This
is natural as MDE uses all three waves in two stages while each GMM uses a
single wave. In comparison to MDE, a panel data estimator would use all three
waves in a single stage. MDE is mostly an average of the three corresponding
estimates in waves 1–3. Somewhat surprisingly, the GMM over-id test for
wave 2 is rejecting, whereas those for waves 1 and 3 are not. The MDE over-
id test also rejects the restriction (constancy of the slope parameters) with
ease.



CHAPTER 5

PARAMETRIC METHODS FOR SINGLE

EQUATION LDV MODELS

Single equation models with limited dependent variables (LDV) are re-
viewed here whereas multiple equations with LDV will be reviewed in the
next chapter. LDV models include discrete responses: binary responses tak-
ing 0 or 1, ordered discrete responses taking R-many ordered categories 0,
1,...,R − 1, and count responses taking integers 0, 1, 2,... Also discussed are
non-discrete response LDV models such as censored or truncated responses.
Many economic empirical examples are provided throughout this chapter.

1 Binary Response

1.1 Basics

Binary response is the starting point for LDV. As already shown, the
“threshold-crossing” binary response model is

y∗i = x′iβ + ui is a “latent” continuous response

xi = (1, xi2, ..., xik)′, β = (β1, ..., βk)′

yi = 1[y∗i ≥ 0] = 1[x′iβ + ui ≥ 0]

ui � xi and u has df G with E(u) = 0 and V (u) = σ2 (σ unknown)

(x′i, yi), i = 1, ..., N, are iid and observed.

Further assume that G is continuous and that the distribution is symmetric
about 0 to get

E(y|x) = 0 · P (y = 0|x) + 1 · P (y = 1|x) = P (y = 1|x)

= P (u ≥ −x′β|x) = 1 − G(−x′β) = G(x′β).

If u depends on x, then we would have G(x′β|x) instead of G(x′β), in which
case x affects E(y|x) through two separate routes—a complicating scenario.

Since yi is discrete, we cannot just assume the linear model y = x′β +u
(unless u is defined as y − x′β—more on this below) because both x and u
can be continuous. Instead, E(y|x) that is a fractional number is modeled as

Myoung-jae Lee, Micro-Econometrics, DOI 10.1007/b60971 5, 177
c© Springer Science+Business Media, LLC 2010
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a nonlinear function of x. While u in y∗ may be called the “structural form”
error, we can define the “reduced form” error v as

v ≡ y − E(y|x) = y − G(x′β).

Then v satisfies E(v|x) = 0 and we have a nonlinear regression model y =
G(x′β) + v.

The following is examples of the binary response model:

(i) Loan approval: y = 1 if a loan application is approved (and 0 otherwise),
and x is a list of the characteristics of the applicant and the loan. Here
y∗ is “loan-worthiness.”

(ii) Accepting an offer: y = 1 if an offer is accepted, and x is a list of the
characteristics of the offer and the decision maker.

(iii) Surviving a situation: y = 1 if survival, and x is a list of the charac-
teristics of the subject and the situation. Here y∗ may be construed as
the difference between the hardship of the situation and the durability
of the subject (measured in the same unit).

As in the usual linear model, almost always E(u) is a non-zero constant,
and E(u) = 0 is forced on the model by rewriting

x′iβ + ui = {β1 + E(u)} + β2xi2+, ...,+βkxik + {ui − E(u)};

redefine β1 as β1 + E(u) and ui as ui − E(u). Furthermore, if the threshold
is a non-zero constant γ1 as in yi = 1[x′iβ + ui > γ1], then we can absorb the
constant γ1 into the intercept β1 to have yi = 1[β1−γ1+β2xi2+, ...,+βkxik+
ui > 0] where β1 − γ1 is the intercept. This shows that, as in the linear
model, interpreting the intercept is difficult in binary response models. For
the above loan approval example, the bankers may have a formula giving a
weight to each regressor to make a “loan-worthiness score’ x′β. For example,
if x′β > 50 points, then the application may be approved. In the binary
response model, we cannot identify the threshold 50, as this gets absorbed into
the intercept.

If the threshold varies across i and is not observed as in yi = 1[x′iβ +
ui > γ1i], then γ1i should be absorbed into ui to render yi = 1[x′iβ + u∗i >
0] where u∗i ≡ ui − γ1i. In this case, the independence of u from x may
not hold if γ1i is related to xi. For instance, in the above example (iii),
suppose x′iβ + ui is the hardship, γ1i is the subject’s durability, and both
xi and γ1i are related to some (physical) training. If subjects with more
training tend to put themselves in more severe hardship, then xi and u∗i get
related.

To apply MLE to the binary response model, we should specify G. Al-
though E(u) = 0 and V (u) = σ2 are assumed, σ is still unknown. Divide
x′β + u by σ to get x′(β/σ) + (u/σ) and V (u/σ) = 1. If G is indexed
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by the mean and variance (as in normal distributions), then u/σ has the
standardized distribution function Φ of G. Thus we have

P (y = 1|x) = P

(
u

σ
≥ −x′

β

σ
|x
)

= Φ
(

x′
β

σ

)
= Φ(x′α) ,

α ≡ β

σ
=

(
β1

σ
, ...,

βk

σ

)′
.

With this, we can specify the likelihood to do MLE, but what is estimated
by the MLE is α not β. Still the sign of βj can be obtained from the sign of
αj as σ > 0. Also ratios βj/βh can be obtained from the ratios αj/αh as σ
gets canceled: αj/αh = (βj/σ)/(βh/σ) = βj/βh.

If u is heteroskedastic, say V (u|x) = σ(x)2 where σ(x) is a function of
x, then we need to divide x′β + u by σ(x) to get {x′β/σ(x)}+ {u/σ(x)} and
the (x-conditionally) standardized error term u/σ(x). Suppose x′β/σ(x) �
x′δ for some parameter δ. If we ignore heteroskedasticity, then we will be
estimating δ, not β, with the MLE. The parameter δ is a mixture of the
mean and variance function parameters, and it will be impossible to find β
from the estimates for δ unless σ(x) is known. For instance, u = ν exp(x′γ)
where ν ∼ N(0, 1) independently of x. Here σ(x) = exp(x′γ), and

P (y = 1|x) = P

{
u

σ(x)
≥ − x′β

σ(x)

}
� P (ν ≥ −x′δ) = Φ(x′δ)

and we will be estimating δ, not α.
Although y is binary, sometimes in practice, linear model is

adopted. Consider the linear probability model :

y = x′β + ε, where ε ≡ y − x′β (ε is binary given x, taking on
− x′β and 1 − x′β)

E(ε|x) = (0 − x′β){1 − G(x′β)} + (1 − x′β)G(x′β) = −x′β + G(x′β),

V (ε|x) = V (y|x) = P (y = 1|x)P (y = 0|x) = G(x′β){1 − G(x′β)},

for y is binary.

In this model, E(ε|x) = 0 and the error term has a heteroskedasticity of
a known form. Hence, as long as x′β = G(x′β)—x′β can go out of [0, 1]
while G(x′β) falls in [0, 1]—LSE is not valid. Despite this, however, the LSE
with heteroskedasticity-robust variance or WLS are sometimes used for bi-
nary responses, and their results tend to be similar to those of the following
MLE’s.

1.2 Logit and Probit

One choice of the df G(·) of u is the logistic df:

G(u, δ) =
eu/δ

1 + eu/δ
=

1
1 + e−u/δ
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which has mean 0 and variance δ2π2/3, and G is symmetric about 0. Choosing
δ =

√
3/π renders the standardized logistic distribution. But usually δ = 1 is

used (i.e., V (u) = π2/3 and SD(u) � 1.8), and for this logistic distribution,
the MLE is called logit. Another well-known choice for G is N(0, σ2). In this
case, the standardized error-term distribution function Φ is for N(0, 1), and
the MLE is called probit. Since logit is similar to probit, from now on we
focus on probit. Denote the N(0, 1) density function as φ. Typically, since
the form of the logit density is not much different from that of φ, the signs
of logit estimates are almost the same as those of the probit estimates. The
logit estimates, however, tend to be bigger than the probit estimates by about
80%, because logit has SD(u) = 1.8. An intuitive way to see this point is
multiplying y∗/σ = x′α+u/σ by 1.8 to get x′(1.8α)+(u/σ)1.8: the new error
term has SD 1.8 and the new regression function parameters are 1.8 times
the old parameters.

The probit likelihood function is

L(a) =
N∏

i=1

Φ(x′ia)yi{1 − Φ(x′ia)}1−yi

{= Φ(x′ia) if yi = 1 and 1 − Φ(x′ia) if yi = 0}
=⇒ log-likelihood function is

QN (a) =
∑

i

{yi ln Φ(x′ia) + (1 − yi) ln(1 − Φ(x′ia))}.

Denote Φ(x′ia) and φ(x′ia) as Φi and φi, respectively, to get

∂QN (a)
∂a

=
∑

i

si(a), where

si(a) ≡ (yi − Φi)φixi

Φi(1 − Φi)
is the score function.

We have
√

N(amle − α)� N(0, I−1
f ), where

If ≡ E{s(α)s(α)′} = E

[
φ(x′α)2 · xx′{y − Φ(x′α)}2

{Φ(x′α)(1 − Φ(x′α))}2

]
= E

[
φ(x′α)2 · xx′

Φ(x′α){1 − Φ(x′α)}

]
because E[{y − Φ(x′α)}2|x]

= Φ(x′α)(1 − Φ(x′α)).

The equation N−1∂QN (a)/∂a can be viewed as a moment condition N−1∑
i viwi = 0, where vi = yi − Φi and wi ≡ xiφi/{Φi(1 − Φi)} is an instru-

ment. Alternatively, regard xiφi/{Φi(1 − Φi)}1/2 as the instrument and vi/
{Φi(1−Φi)}1/2 as the weighted or standardized residual, because V (v|xi) =
Φi(1 − Φi).



Sec. 1 Binary Response 181

Once a binary response model is estimated, one would like to have a
goodness-of-fit measure as R2 for linear models. There are a number of pseudo
R2’s, but

a′mleN
−1

∑
i(xi − x̄)(xi − x̄)′amle

a′mleN
−1

∑
i(xi − x̄)(xi − x̄)′amle + 1

,

suggested by Mckelvey and Zavoina (1975) seems to be the best for the fol-
lowing reason.

Define ãmle as the slope components of amle, xis ≡ (xi2, ..., xik)′, and
x̄s ≡ N−1

∑
i xis. Since the element of xi − x̄ corresponding to xi1 = 1 is

zero, the pseudo R2 can be written as

R2
S ≡ ã′mleN

−1
∑

i(xis − x̄s)(xis − x̄s)′ãmle

ã′mleN
−1

∑
i(xis − x̄s)(xis − x̄s)′ãmle + 1

=
b̃′mleN

−1
∑

i(xis − x̄s)(xis − x̄s)′b̃mle

b̃′mleN
−1

∑
i(xis − x̄s)(xis − x̄s)′b̃mle + σ2

where the second term is obtained by multiplying all terms by σ2 and b̃mle

is defined as ãmleσ. In the last expression, the numerator is the explained
variation and the denominator is the total variation in the usual linear-model
R2. This is the reason why R2

S is recommended. For logit, an analogous pseudo
R2 is R2

S with the number 1 in the denominator replaced by the logit error
term variance π2/3. See Laitila (1993) and Veall and Zimmermann (1996) for
more on pseudo R2’s for LDV models.

Recall the probit example for union membership that appeared already
in Chapter 3.3.3 for three MLE tests. Table 1 shows probit and logit results (t-
values are in (·)). As noted already, logit is greater in magnitude than probit
by a proportion somewhere around 80%; for two variables bus (business) and
sou (living in South), however, the proportion is much greater. The signs
of probit and logit are exactly the same and the t-values are almost the
same except for the two variables bus and sou. This is understandable if
we regard logit as 1.8 times probit; such multiplication does not change the
t-value.

From the table, for instance, sgn(αedu) {= sgn(βedu)} is negative, show-
ing the less educated tend to join labor union more. Other than signs, we can
also learn about

αblc

αrur

(
=

βblc

βrur

)
=

0.763
1.294

= 0.59 :

the blc’s (black) influence on y∗ is only 59% of the rur’s (living in rural
area) influence. Other than signs and ratios of β, we can also interpret αj =
βj/σ directly as the “magnitude of βj relative to σ.” For instance, αj = 2
means βj = 2σ, which is a very large number: if xj changes from 0 to 1,
then αjxj increases by 2, which can push almost any negative y∗/σ to the
positive side (i.e., y changes from 0 to 1) because the probability of y∗/σ
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Table 1: Binary Response: Joining Union or Not
Regressor probit (tv) logit (tv) logit/probit

one 6.438 ( 2.42) 11.550 (2.38) 1.796
edu −0.724 (−3.12) −1.283 (−3.03) 1.773
exr −0.721 (−3.09) −1.296 (−2.98) 1.799

exredu 0.068 ( 3.23) 0.122 (3.12) 1.795
blc 0.763 ( 4.02) 1.287 (4.05) 1.686
hisp 0.175 ( 0.96) 0.327 (1.07) 1.869
agr 1.090 ( 1.91) 1.862 (1.91) 1.709
bus −0.148 (−0.32) −0.362 (−0.41) 2.430
cst 0.614 (1.41) 1.046 (1.35) 1.706
fin −0.256 (−0.45) −0.469 (−0.45) 1.830

man 0.575 ( 1.42) 0.975 (1.33) 1.699
pro 0.815 ( 1.80) 1.402 (1.75) 1.721
pub −0.083 (−0.51) −0.146 (−0.53) 1.769
trad 0.226 ( 0.55) 0.382 (0.51) 1.691
tran 0.934 ( 2.14) 1.556 (2.00) 1.667
mar 0.131 ( 0.94) 0.231 (0.98) 1.769
rur 1.294 ( 2.91) 2.159 (2.74) 1.669
sou −0.019 (−0.14) −0.055 (−0.23) 2.902

log-like −275.649 −275.705

smaller than −2 is less than 2.5% “on the N(0, 1) scale.” Indeed, in the above
union membership example, all slope estimates are smaller than 2 in absolute
magnitude.

Earlier we mentioned the possibility of u being heteroskedastic with
V (u|x) = σ(x)2. Generalizing this slightly, suppose that u depends on w,
and with m consisting of all elements in x and w,

u = ew′ζv = eζ1+w2ζ2+,...,+wνζν v where v ∼ N(0, 1)

independently of m =⇒ u

ew′ζ = v.

We may have w = x, but here we allow the possibility that different vari-
ables are used for the regression parameter for y∗ and its variance function:
E(y∗|m) = x′β and V (y∗|m) = exp(2w′ζ). For this model, we get

P (y = 1|m) = Φ
(

x′β
ew′ζ

)
= Φ

(
β1 + β2x2+, ...,+βkxk

eζ1+w2ζ2+,...,+wνζν

)
.

“Heteroskedastic probit” can be done with this in the probit likelihood func-
tion, subject to the following modification to deal with the unknown scale
problem.
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By dividing the numerator and denominator by θ ≡ eζ1 , rewrite the last
Φ(·) expression as

Φ
{

β1/θ + (β2/θ)x2+, ..., +(βk/θ)xk

ew2ζ2+,...,+wνζν

}
.

The heteroskedastic probit estimates

α ≡
(

β1

θ
,
β2

θ
, ...,

βk

θ
, ζ2, ..., ζν

)′
=

(
β′

θ
, ζ2, ..., ζν

)′
.

If H0 : ζ2 =, ...,= ζν = 0 is accepted, then α = β/θ, which is nothing but
the usual probit under θ = σ and the independence of u from x.

In micro data, heteroskedasticity is often present, and this way of al-
lowing for heteroskedasticity may be adopted also for other LDV models.
For LDV models to appear later where y∗ is observed at least for part of
the data, the scale of y∗ is observed, and thus the scale normalization as in
(heteroskedastic) probit is not necessary and β is fully identified.

1.3 Marginal Effects

In the linear model yi = x′iβ + ui, βk is taken as the effect of xik on
E(y|xi) ∀i because βk = ∂E(y|xi)/∂xik ∀ i. But in probit, we have

∂E(y|xi)
∂xik

=
∂Φ(x′iα)

∂xik
= φ(x′iα) · αk.

Since this varies across i, we have N -many individual effects φ(x′iamle)amle,k.
Thus we may get a summary measure out of the N effects. For instance, we
can think of a number of “marginal effects”:

(i) N−1
∑

i φ(x′iamle)amle,k,

(ii) φ(x̄′amle)amle,k,

(iii) Sample median of φ(x′iamle)amle,k, i = 1, ..., N.

The word “marginal” is used relative to “conditional” when
φ(x′iα)αk is viewed as the effect of xk on E(y|x) with the value of x set
at xi (or “conditional on x = xi”). Marginal effect (i) is the sample aver-
age of conditional effects, whereas (ii) is the conditional effect evaluated at
the “average person”—but the average person may be fictitious (think of
xi being a gender dummy). Since any of (i) to (iii) being zero is equivalent
to amle,k = 0, testing for a zero marginal effect is equivalent to testing for
αk = 0.

The preceding marginal effect is appropriate when xk is continuously
distributed. Suppose now that xk is a dummy variable. For the linear function
E(y|x) = x′β, we get

∂E(y|x)
∂xk

= βk = E(y|x1, ..., xk = 1) − E(y|x1, ..., xk = 0) :
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the derivative with an infinitesimal change in xk agrees with the difference
when Δxk = 1. But, for nonlinear models in general, this equality does not
hold and the derivative is only a linear approximation for the change in E(y|x)
when xk changes from 0 to 1. Thus,

effect of xk changing from 0 to 1 :
E(y|x1, ..., xk = 1) − E(y|x1, ..., xk = 0)
= A(x, α) ≡ Φ(α1 + α2x2+, ...,+αk−1xk−1 + αk)
− Φ(α1 + α2x2+, ...,+αk−1xk−1)

is preferred to ∂E(y|x)/∂xk. As in (i) to (iii) above, we can think of the
following “average” versions for A(xi, α), i = 1, ..., N :

(iv) N−1
∑

i A(xi, amle),

(v) A(x̄, amle),

(vi) Sample median of A(xi, α), i = 1, ..., N .

Turning back to non-dummy xk, if x2
k or interaction terms with xk appear

in the regression function, then the above marginal effects need modifications.
Suppose that αk−1,kxk−1xk+αk2x

2
k is added to the regression function. Then,

for instance, the above (i) should be replaced by

1
N

∑
i

φ(x′iα)(αk + αk−1,kxi,k−1 + 2αk2xik)

as
∂Φ(x′iα)

∂xk
= φ(x′α)(αk + αk−1,kxk−1 + 2αk2xk)

where α is used instead of amle to simplify presentation.
Getting the marginal effects using the same labor union data, the marginal

effect of rur (dummy variable for living in a rural area) is

0.369 for (i), 0.393 for (ii), 0.405 for (iii);
0.430 for (iv), 0.476 for (v), 0.455 (vi).

Depending on which marginal effect is looked at, the effect ranges from 0.369
to 0.476. For confidence intervals (CI) of marginal effects, one may use the
following “(nonparametric) bootstrap”: (1) sample N times with replacement
from the original sample to construct a “pseudo-sample” of size N , (2) apply
probit to the pseudo sample to get a pseudo estimate a

(b)
N , and (3) repeat steps

(1) and (2), say B = 200 times, to get a
(1)
N , ..., a

(B)
N . Then use the empirical

distribution of a
(1)
N , ..., a

(B)
N for a CI. For instance, the lower 2.5 percentile

and the upper 2.5 percentile in a
(1)
Nj , ..., a

(B)
Nj yields an asymptotic 95% CI for

αj , j = 1, ..., k.
The standard errors can also be obtained using the two-stage M-estimator

framework—the reader may skip the following. For more generality, instead
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of (i) above, consider its k × 1 vector version centered at E{φ(x′α)α} and
normalized by

√
N . Expand it around amle = α to get

1√
N

∑
i

[φ(x′iamle)amle − E{φ(x′α)α}] =
1√
N

∑
i

[φ(x′iα)α − E{φ(x′α)α}]

+
1
N

∑
i

[
φ(x′iα) Ik

k×k
+ φ′(x′iα)αx′i

k×k

]
·
√

N(amle − α) + op(1)

=
1√
N

∑
i

ξi, where ξi ≡ [φ(x′iα)α − E{φ(x′α)α}
]

+ L · E−1(ss′) · si,

L ≡ E[φ(x′α)Ik + φ′(x′α)αx′] and si is the score function for amle; note
φ′(t) = −tφ(t). Hence

1√
N

∑
i

[φ(x′iamle)amle − E{φ(x′α)α}]� N(0, C) and CN →p C

where

CN ≡ 1
N

∑
i

ξ̂iξ̂
′
i and ξ̂i is ξi with α replaced by amle and E(·)

by its sample version.

The t-value for the rur average-effect (i) using this is 2.722.

1.4 Willingness to Pay and Treatment Effect

1.4.1 Willingness to Pay (WTP)

Sometimes we are interested in something other than marginal effects.
We examine one interesting case in this subsection: “willingness to pay
(WTP).”This case will also demonstrate the importance of regression-

functional form assumption, transformation-of-variable issue, and error-
distributional assumption. We will draw on Haab and McConnell (2002, pp.
36–39 and p. 97), which the reader can refer to for extensive LDV model
applications to environmental economics in general.

Suppose there is a project to improve water quality. A survey is con-
ducted where each respondent is shown an amount ti that he/she should pay
for the project in terms of higher monthly water bills. Then the respondent
is asked whether he/she would vote for the project (y = 1) or not (y = 0).
The data consist of (yi, ti, x

′
i,mi) where xi is individual characteristics and

mi is income.
Let the “indirect utility functions” with and without the project done

be
x′iβ1 + δ1 ln(mi − ti) + u1i and x′iβ0 + δ0 lnmi + u0i.
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The marginal utility of income takes the form δj/m, which is decreasing in
m. We get

yi = 1 iff x′iβ + δ1 ln(mi − ti) − δ0 lnmi + ui > 0 where
β ≡ β1 − β0, ui ≡ u1i − u0i.

Under u ∼ N(0, σ2), we can estimate (β′/σ, δ1/σ, δ0/σ) with probit where
(x′, ln(m − t),− ln m) is the regressor vector.

To see WTP—i.e., to what extent people can be pushed to pay—replace
ti with wi and set the utility difference to zero to solve it for wi:

x′iβ + δ1 ln(mi − wi) − δ0 lnmi + ui = 0

=⇒ ln(mi − wi) =
δ0 lnmi − x′iβ − ui

δ1

=⇒ mi − wi = exp
(

δ0 lnmi − x′iβ − ui

δ1

)
=⇒ wi = mi − exp

(
δ0

δ1
lnmi − x′i

β

δ1
− ui

δ1

)
=⇒ wi = mi − exp

(
δ0/σ

δ1/σ
lnmi − x′i

β/σ

δ1/σ
− ui/σ

δ1/σ

)
.

If β1 = β0, then β = 0 and x will drop out from this display. If δ1 = δ0 (but
not necessarily β1 = β0), then

w = m − m exp
(
−x′

β/σ

δ1/σ
− u/σ

δ1/σ

)
.

Both β1 = β0 and δ1 = δ0 are regression-functional form issues (i.e., whether
the regression function changes or not as the “regime”changes).

To remove u in WTP, suppose we get E(w|x,m): using E[exp
{N(μ, c2)}] = exp(μ + c2/2),

E(w|x,m) = m − exp
(

δ0/σ

δ1/σ
lnm − x′

β/σ

δ1/σ

)
· E

{
exp

(
− u/σ

δ1/σ

)}
= m − exp

{
δ0/σ

δ1/σ
lnm − x′

β/σ

δ1/σ
+

1
2

(
σ

δ1

)2
}

as

− u/σ

δ1/σ
∼ N

{
0,

(
σ

δ1

)2
}

.

If u is not normal, then E(w|x,m) would differ, which is an error-term dis-
tributional issue.

As an alternative to E(w|x,m), because median is equivariant to increas-
ing transformations, consider
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Med(w|x,m) = m − exp
(

δ0/σ

δ1/σ
lnm − x′

β/σ

δ1/σ

)
· Med

{
exp

(
−u/σ

δ/σ

)}
= m − exp

(
δ0/σ

δ1/σ
lnm − x′

β/σ

δ1/σ

)
.

This median WTP would be the same for any median-zero u including logistic
error. This means that Med(w|x,m) is robust to error term distribution
assumption violations (so long as the error term median is zero).

Instead of taking E(w|x,m) (or Med(w|x,m)) on w, yet another way of
getting rid of u is taking E(·|x,m) on the utility difference first. This then
would yield yet another WTP estimator. There appears to be no single best
answer to the question of which WTP estimator to use by removing u at
which stage and how. The above WTP estimators are affected by the probit
error for (β′/σ, δ1/σ, δ0/σ), which can be dealt with the two-stage procedure
techniques in Chapter 3. Alternatively, nonparametric bootstrap can be used
to construct a CI.

1.4.2 Remarks for WTP Estimation

Suppose m, not lnm, appears, which is a transformation-of-variable issue.
Then (compare to the above equation with “y = 1 iff...”):

yi = 1 iff x′iβ + (δ1 − δ0)mi − δ1ti + ui > 0

⇐⇒− ui

σ
< x′i

β

σ
+

δ1 − δ0

σ
mi +

δ1

σ
(−ti).

Applying probit with (x′i,mi,−ti) as the regressors,(
β′

σ
,
δ1 − δ0

σ
,
δ1

σ

)
that is equivalent to

(
β′

σ
,
δ1

σ
,
δ0

σ

)
can be estimated.

To get WTP, rewrite δ1mi − δ0mi as δ1(m − w) − δ0m and set the utility
difference to 0 to solve it for w:

x′β + δ1(m − w) − δ0m + u = 0 =⇒ w = x′
β

δ1
+ (1 − δ0

δ1
)m +

u

δ1

E(w|x,m) = x′
β/σ

δ1/σ
+

(
1 − δ0/σ

δ1/σ

)
m for any u with E(u|x,m) = 0

which differs much from the preceding E(w|x,m) expression involving exp.
In terms of the identified probit parameters,

E(w|x,m) = x′
slope x

slope − t
+ {1 − (slope − t) − (slope m)

slope − t
}m

= x′
slope x

slope − t
+

slope m

slope − t
m.
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Because wi makes the utility difference zero, we get

ti < wi ⇐⇒ utility difference is positive ⇐⇒ yi = 1.

Suppose we model wi directly as wi = x′iβw + δwmi + vi with vi ∼ N(0, σ2
v).

Then

P (y = 1|x,m, t) = P (w > t|x,m, t) = P (v > t − x′βw − δwm|x,m, t)

= Φ
{

x′
βw

σv
+

δw

σv
m +

1
σv

(−t)
}

where (β′w/σv, δw/σv, 1/σv) is estimated by probit; the monetary scale, not
utility scale, factor σv is identified. We get, just as above,

E(w|x,m) = x′βw + δwm = x
βw/σv

1/σv
+

δw/σv

1/σv
m

= x′
slope x

slope − t
+

slope m

slope − t
m.

WTP w should fall in [0,m], i.e., 0 ≤ m/w ≤ 1 should hold. In the above
model with lnm, the upper bound holds because w = m − exp(·), but not
necessarily the lower bound. In the model with m not with lnm, however,
neither bound holds, which may result in negative numbers. Hence, to impose
the bounds, suppose we model w/m as a fraction: w/m = F (x′β + u) where
0 ≤ F (·) ≤ 1. Specifically, suppose F (x′β + u) = [1 + exp{−(x′β + u)}]−1 to
get

w =
m

1 + exp{−(x′β + u)} > t ⇐⇒ u > −x′β − ln
m − t

t
.

Because y = 1 ⇐⇒ w > t, this leads to

P (y = 1|x,m) = Φ
(

x
β

σ
+

1
σ

ln
m − t

t

)
and

Med(w|x,m) =
m

1 + exp(−x′β)
.

Because β is identified as the slope of x divided by the slope of ln{(m− t)/t}
in the probit, this median WTP is also identified. Clearly, this median WTP
respects the bound [0,m]. One shortcoming in this approach is, however, that
w/m = F (x′β+u) with a smooth F rules out w/m taking the boundary values
0, 1. There are better ways to model proportions or “fractional responses”
such as w/m, and they will be seen later in the section for censored responses.

1.4.3 Comparison to Treatment Effect

It is instructive to view WTP from the treatment effect framework that
appeared in the preceding chapter. Let the water quality improvement project
be the treatment d = 0, 1. If there is a data on (di, zi, x

′
i,mi) where z is a



Sec. 2 Ordered Discrete Response 189

response variable measuring the benefit of the project to person i, say blood
pressure, then E(z1−z0) is the mean effect of the treatment on the response z.
But the consequences of the treatment can be felt on many other things, not
just on blood pressure: tooth decay level, cholesterol, bottled water expense
etc. How do we combine them all? The answer is the ubiquitous “utility” (or
satisfaction) as done above with the indirect utility function.

Using utility as the “summary response” in the treatment effect frame-
work, however, poses a couple of problems. First of all, utility is not ob-
served: we cannot get, for instance, the group mean difference E(utility|d =
1) − E(utility|d = 0). Second, the treatment might never have been im-
plemented, which means no available data. The above framework of asking
people whether they would vote for the treatment or not is a way of over-
coming these two problems. By including income and the treatment cost in
the indirect utility function and then getting WTP, we can see the monetary
benefit WTP that essentially combines all consequences, good or bad, of the
treatment.

Finding the indirect utility function parameters by asking directly
whether the respondent would vote for the treatment or not requires some
caution: the respondents should be well informed of all possible consequences
of the treatment including the direct cost ti. Otherwise, their welfare can
be quite different when they get better informed (or realize unexpected con-
sequences) later. Even when the treatment has been implemented and thus
people’s preference have been observed, some caution is still needed for ap-
plying the above method to non-market goods. For instance, suppose that the
treatment is a national park access, and that we have data on (yi, ti, x

′
i,mi)

where yi = 1 means visiting a national park, which is the realized version of
“voting yes for the national park” if the park had not been available. In this
case, the cost ti should include not just the park entrance fee, but also the
travel cost to the park including gas, lodging, and time opportunity cost.

Relatively speaking, the treatment effect framework is a reduced form
(RF) approach whereas the above way of finding WTP is a structural form
(SF) approach. For the former, we can imagine a “black box” which a treat-
ment goes into and an outcome comes out of; what is going on inside the box
is left unexplained. In the latter SF approach, we try to find parameters gov-
erning our behavior, and WTP gets obtained with those parameters. When
the treatment has never been tried and consequently no outcome data is avail-
able, doing the SF approach which calls for more assumptions is unavoidable;
more structures and assumptions are substitutes for data.

2 Ordered Discrete Response

2.1 Basics

Suppose that y∗i (= x′iβ+ui) is continuously distributed with SD(u) = σ,
but the observed response yi is an ordered discrete response (ODR) taking
0, 1, ..., R − 1 (R ordered categories) determined by fixed thresholds γr’s:
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yi = r if γr ≤ y∗i < γr+1, r = 0, ..., R − 1, γ0 = −∞, γR = ∞

=⇒ yi =
R−1∑
r=1

1[y∗i ≥ γr] =
R−1∑
r=1

1[ui ≥ γr − x′iβ];

see Figure 1. That is, omitting the subscript i,

y = 0 if x′β + u < γ1,
= 1 if γ1 ≤ x′β + u < γ2,
...

...
= R − 1 if γR−1 ≤ x′β + u.

Figure 1: Observed Response (y) and Latent Response (y*)

ODR includes binary response as a special case when R = 2: y = 1[x′β+
u ≥ γ1] and γ1 gets absorbed into the intercept in x′β as shown in the binary
response section. More specifically, our ODR model is

xi = (1, xi2, ..., xik)′, β = (β1, ..., βk)′, yi =
R−1∑
r=1

1 [y∗i ≥ γr] ,

y∗i = x′iβ + ui

ui � xi and u has df G with E(u) = 0 and V (u) = σ2 (σ unknown)
(x′i, yi), i = 1, ..., N, are iid and observed

One example of ODR is income data in which individual income is not
recorded, but the bracket to which the income belongs is known. Another
example is the number of durable goods purchased (car or TV). Yet another
example is the answer to a question such as “Are you satisfied with life?”;
the answer can be very negative (0), negative (1), neutral (2), positive (3),
or very positive (4). Depending on restrictions placed on the γr’s, various
specifications are possible: γr’s may be known, or unknown but limited in
its range, or completely unknown except for their ordering γ1 < γ2 <, ..., <
γR−1.



Sec. 2 Ordered Discrete Response 191

Suppose the γr’s are unknown. As in binary response, parameters are
not fully identified; specifically, γ1 is absorbed into the intercept β1 and β
has to be divided by a scale factor such as SD(u). To see this, subtract γ1

from γr ≤ x′β + u < γr+1 and divide the inequalities by σ to get

γr − γ1

σ
≤ x′β − γ1

σ
+

u

σ
<

γr+1 − γ1

σ
, r = 0, ..., R − 1.

Here γ1 is absorbed into β1, and what is identified is

α ≡
(

β1 − γ1

σ
,

β2

σ
, ...,

βk

σ

)′
, τ r ≡ γr − γ1

σ
, r = 2, ..., R − 1.

For instance, with three categories (R = 3), α and one normalized threshold
difference τ2 = (γ2 − γ1)/σ are identified; compare this to binary response
where no threshold parameter is identified. With four categories, α and two
normalized threshold differences τ2 = (γ2 − γ1)/σ and τ3 = (γ3 − γ1)/σ
are identified. Each additional category adds one more identified threshold
parameter.

Although γr’s are not identified, τ r’s are still useful in finding whether
the threshold differences are the same or not. For instance,

τ r+2 − τ r+1 =
γr+2 − γr+1

σ
and τ r+1 − τ r =

γr+1 − γr

σ
:

τ r+2 − τ r+1 = τ r+1 − τ r is equivalent to γr+2 − γr+1 = γr+1 − γr.

2.2 Digression on Re-parametrization in MLE

Pinning down the identified parameters in ODR as done above is not the
only possibility. An alternative is to subtract the intercept β1, not γ1, from
γr ≤ x′β + u < γr+1 and then divide through by σ to get

γr − β1

σ
≤ x′β − β1

σ
+

u

σ
<

γr+1 − β1

σ
, r = 0, ..., R − 1.

Here the intercept is zero, and what is identified is

α̃ ≡
(

β2

σ
, ...,

βk

σ

)′
, τ̃ r ≡ γr − β1

σ
, r = 1, ..., R − 1.

But this re-parametrization is equivalent to the initial parametrization
in the sense that α and τ r’s are one-to-one to α̃ and τ̃ r’s and vice versa. For
instance, with k = 2 and R = 4, the re-parametrization can be written as an
one-to-one transformation of the initial parametrization and vice versa (set
σ = 1 for simplification that would otherwise appear in all terms):⎡⎢⎢⎣

β2

γ1 − β1

γ2 − β1

γ3 − β1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0 0
−1 0 0 0
−1 0 1 0
−1 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

β1 − γ1

β2

γ2 − γ1

γ3 − γ1

⎤⎥⎥⎦ .
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Defining the 4 × 4 matrix as T , rank(T ) = 4: this transformation and its
inverse are one-to-one. Of course, if desired, we can do the “location normal-
ization” with something other than γ1 and β1 (say, with γ2). The reason we
used γ1 is that it is coherent with binary response models with threshold 0.

More generally, consider MLE with the likelihood function L(θ) with
its parameter θ. Let θN be the MLE which uniquely maximizes L(θ). Now
consider a reparametrization θ̃ ≡ Tθ (as in the last display) with T−1 existing.
Then we maximize L(θ) = L(T−1Tθ) = L(T−1θ̃) ≡ L∗(θ̃) wrt θ̃ to get θ̃N .
Suppose θ̃N = TθN + c for some c. Then

L∗(θ̃N ) = L{T−1(TθN + c)} = L(θN + T−1c)

which is smaller than L(θN ) unless T−1c = 0 ⇐⇒ c = 0 as θN is the unique
maximizer of L(θ). Thus it should be that c = 0 and θ̃N = TθN : the MLE
for Tθ is just the T -transformation of the initial MLE.

Consider a linear hypothesis

H0 : Rθ = r ⇐⇒ RT−1Tθ = r ⇐⇒ RT−1θ̃ = r

⇐⇒ R̃θ̃ = r where R̃ ≡ RT−1.

If we conduct a likelihood-ratio (LR) test, then the re-parametrization does
not affect the test result, because the maximized likelihood does not change.
This is the main attraction of LR test, despite its disadvantage of requiring
two estimators, with and without the H0 restriction. Although we used a
linear transformation Tθ, our discussion involving (L,L∗) and T also holds
for nonlinear one-to-one and onto transformations T (θ).

2.3 Ordered Probit

Suppose u follows N(0, σ2) independently of x as in probit for binary
response. Denote the N(0, 1) distribution function and density as Φ and φ,
respectively. Observe

y = r ⇐⇒ γr − x′β ≤ u < γr+1 − x′β

⇐⇒ γr − γ1

σ
+

γ1 − x′β
σ

≤ u

σ
<

γr+1 − γ1

σ
+

γ1 − x′β
σ

⇐⇒ τ r − x′α ≤ u

σ
< τ r+1 − x′α.

Hence, we get

P (y = r|x) = P (τ r − x′α ≤ u

σ
< τ r+1 − x′α|x)

= Φ(τ r+1 − x′α) − Φ(τ r − x′α).

Define, for all i,

yir = 1 if yi = r, and yir = 0 otherwise, for r = 0, ..., R − 1.
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Assuming that the γr’s are unknown, ordered probit maximizes

QN (a, t) ≡
N∑

i=1

R−1∑
r=0

yir ln{Φ(tr+1 − x′ia) − Φ(tr − x′ia)}

wrt a and tr’s. The first derivatives are (r = 2, ..., R − 1 for tr)

∂QN

∂a
=

N∑
i=1

R−1∑
r=0

yir
φ(tr+1 − x′ia) − φ(tr − x′ia)
Φ(tr+1 − x′ia) − Φ(tr − x′ia)

(−xi);

∂QN

∂tr
=

N∑
i=1

φ(tr − x′ia)
{

yi,r−1

Φ(tr − x′ia) − Φ(tr−1 − x′ia)

− yir

Φ(tr+1 − x′ia) − Φ(tr − x′ia)

}
.

With these, ordered probit can be easily implemented. The Newton–Raphson
algorithm converges straightforwardly for ordered probit as the maximand is
concave; see Pratt (1981). The same pseudo R2 as in binary response can be
used. If we use the logistic distribution for u, then we would get ordered logit.

Applying ODR models with unknown thresholds, one often confronts
the question of threshold constancy: given that the regression function de-
pends on x, would it not be likely that the thresholds are functions of x
as well? Terza (1985) used a bond-rating ODR variable: the bond rating
companies may not be applying the same standard (the thresholds) to all
companies, and indeed this was found to be the case. As another exam-
ple, suppose that y∗ is promotability and y is the observed rank. If thresh-
olds depend on race (or sex), then this is an evidence for discrimination in
promotion. Winter-Ebmer and Zweimuller (1997) and Pudney and Shields
(2000) applied an ODR model with varying thresholds to promotion pro-
cesses. When the thresholds depend on x, there is an identification issue to
deal with, because the first threshold is subtracted from the regression func-
tion and the other thresholds. Lee and Kimhi (2005) dealt with the issue in
detail, although we do not pursue regressor-dependent thresholds any further
here.

Lee and Kimhi (2005) also proposed a test for threshold constancy us-
ing the difference between probit and ordered probit under constant thresh-
olds (“COPRO”)—note that ODR can be collapsed into binary responses
in R − 1 ways. The test works because probit does not require threshold
constancy other than for the normalizing threshold. If the thresholds are
constant, then both probit and COPRO regression function estimators are
consistent; otherwise, while probit is still consistent, COPRO is not. Hence
a Wald test based on the difference between probit and COPRO can be
devised.
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Marginal effects of x on each choice probabilities analogous to those for
probit can be derived:

P (y = r|x) = Φ(τ r+1 − x′α) − Φ(τ r − x′α)

=⇒ ∂P (y = r|x)
∂x

= {φ(τ r+1 − x′α) − φ(τ r − x′α)}(−α).

A consistent estimator for the marginal effect E{∂P (y = r|x)/∂x} is

ArNaN , where ArN ≡ 1
N

N∑
i=1

{φ(tNr − x′aN ) − φ(tN,r+1 − x′aN )} .

In interpreting these effects, a caution is warranted because

R∑
r=0

P (y = r|x) = 1 =⇒
R∑

r=0

∂P (y = r|x)
∂x

= 0 :

an increase in some choice probability necessarily entails a decrease in some
other choice probabilities.

If the categories are not just ordinal but cardinal, then we may use
E{∂E(y|x)/∂x} as a marginal effect where

∂E(y|x)
∂x

=
R−1∑
r=1

r{φ(τ r+1 − x′α) − φ(τ r − x′α)}(−α).

A consistent estimator for this[
1
N

N∑
i=1

R−1∑
r=1

r{φ(tNr − x′aN ) − φ(tN,r+1 − x′aN )}
]

aN .

This is convenient because we do not have to look at ∂P (y = r|x)/∂x ∀r.
Even if the categories are not cardinal, sometimes E(y|x) is used in practice
(particularly if the category number is high). For instance, letter grades are
ordinal, but often numbers are assigned to them and grade point average
(GPA) is computed.

2.4 An Empirical Example: Contingent Valuation

Contingent valuation methods (CVM) are frequently used in environmen-
tal and tourism economics to value non-market goods. In the early versions
of CVM, the respondents were asked how much they are willing to pay to
improve a public good (e.g., national park or air quality) or to avoid dete-
rioration. Since this often led to implausible numbers, the later versions of
CVM became somewhat conservative and ask whether the respondents are
willing to pay a specified amount. The answer is recorded as 0/1, and this
way of finding WTP has been examined in the preceding section already.
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Going one step further from binary response, if the answer to the first
question is yes, the amount is increased and the question is asked again; if
the answer to the first question is no, the amount is lowered and the ques-
tion is asked again. In this case, we get four ordered categories with known
thresholds:

no/no: y = 0, no/yes: y = 1, yes/no: y = 2, yes/yes: y = 3.

The asked amounts are typically drawn from several preset values, and one
randomly selected value among them is presented to each individual; i.e., the
thresholds are known and typically vary across i.

In ordered probit, y∗|x is symmetric with its support (−∞,∞). For
WTP in CVM, the range of y∗|x should be [0,∞) and it may be more likely
for y∗ to take small values with high probabilities and large values with low
probabilities. One distribution for these features is “Weibull distribution”:
using the notation T instead of y∗ for a while, if Tα follows the exponential
distribution with parameter θ > 0; i.e., if

P (Tα ≤ t) = 1 − exp(−θt)

then T follows Weibull distribution with parameters θ and α (θ, α > 0).
Weibull includes exponential as a special case with α = 1. The Weibull df is
1 − exp(−θtα) and its density is f(t) = θαtα−1 exp(−θtα). When α is small,
the distribution puts most probability mass around 0, and as α increases, the
Weibull density takes an up-and-down shape and becomes more symmetric
about its mode. Weibull will reappear later for duration analysis, and f(t)
will be understood better there. See Figure 2.

In using Weibull distribution, usually regressors are introduced in non-
linear fashion with θ = exp(−x′β). Here, exp(·) is used to assure θ > 0 for all
x, and the minus sign is attached because the mean of Weibull distribution
is inversely related to θ: with the minus sign, a higher x′β would mean the
higher WTP. The θ parametrization yields

F (t;α, x′β) ≡ P (T ≤ t|x) = P (Tα ≤ tα|x) = 1 − exp(−e−x′βtα);

notations α and β are different from those of ordered probit. Denoting the ob-
served thresholds as γi1, γi2, γi3 for person i, the Weibull ODR log-likelihood
to maximize for α and β is

N∑
i=1

[ yi0 lnF (γi1;α, x′iβ) + yi1 ln{F (γi2;α, x′iβ) − F (γi1;α, x′iβ)}

+ yi2 ln{F (γi3;α, x′iβ) − F (γi2;α, x′iβ)} + yi3 ln{1 − F (γi3;α, x′iβ)} ] .

Whereas the distribution of the error term is parametrized in ordered probit,
here the distribution of T (i.e., y∗) is parametrized. Since T carries a known
monetary unit, there is no unknown scale parameter σ in this Weibull ODR,
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Figure 2: Weibull Densities

as this was the case in the binary response model in the previous section
where WTP amount was directly modeled.

Werner (1999) applied this model to see how much people are willing to
pay to preserve Kakadu Conservation Zone in Australia from mining in 1990.
With N = 1827, the Table 2 shows some estimates in Table 3 of Werner
(1999). The findings are self-explanatory: people with more environmental
concern, younger age, and higher income are more willing to pay for the
preservation. With the parameter estimates, Werner (1999) computed the
household median WTP tm by solving

0.5 =
1
N

∑
i

F (tm; aN , x′ibN )

Table 2: Contingent Valuation
Regressor Estimate (SD)

jobs are important −0.377 (0.0657)
financial benefits are important −0.291 (0.0679)

mining hurts the value of the park 0.251 (0.0652)
there should be more parks 0.157 (0.0668)
environmentally conscious 0.341 (0.147)

age −0.019 (0.0045)
income in $1000 0.0223 (0.0058)

α 0.714 (0.0431)
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Table 3: Inequality Effect on Crime
Regressor Violent: bN (SD) Property: bN (SD)

Population density per mile 2 0.0582 (0.0168) 0.0362 (0.0122)
Income Gini coefficient 1.33 (0.151) −0.154 (0.117)
% female-head family 1.58 (0.0942) 0.792 (0.0709)

% nonwhite 0.0568 (0.0391) −0.0305 (0.0251)
% unemployed male −0.0489 (0.0775) 0.0158 (0.0599)
% below poverty line −0.216 (0.0666) 0.345 (0.0483)

% lived elsewhere 5 years ago 1.604 (0.123) 1.338 (0.0879)
% age 16–24 −0.906 (0.102) −1.036 (0.0786)

% college-educated −0.297 (0.0659) 0.184 (0.0475)
Police expenditure per capita

1987
−0.0209 (0.0387) −0.105 (0.0341)

which turns out to be $85.71; for individual i, solving 0.5 = F (tm; aN ,
x′ibN ) would yield the median WTP. When tm is multiplied by the number of
the Australian households in 1990, this gives the final desired willingness-to-
pay estimate of the Australian households in 1990. Compared with the WTP
analysis with binary response, here we have more information by bounding
WTP with ODR.

Werner (1999) in fact examined more general models than the Weibull
ODR to allow for people who is not willing to pay any positive amount. Such
models are worth considering, because there is a worry that numbers derived
from CVM for WTP might be overblown. Clinch and Murphy (2001) went
one step further allowing for negative WTP. This can happen, because some
public goods are costs to some people. For instance, environmentalists may
like to re-introduce wolves into an area, which can, however, be a cost to the
local farmers. A more interesting example of CVM involving the infamous
1989 Exxon Valdez oil spill along the Alaskan coast can be found in Carson
et al. (2003). The State of Alaska and the US government settled the case
with Exxon for $1 billion. Additionally, Exxon spent more than $2 billion for
restoration.

One curious feature in the above four-category ODR is that the respon-
dent tends to behave differently on the follow-up (i.e., second) question. For
instance, the proportion of the yes responses to $50 price tag differs depend-
ing on whether it was asked in the first question or in the second—this can
be verified in a given data set. In general, regardless of the price tag, those
respondents who said yes to the first question are more likely to say no to
the second question. This would lead to a lower WTP estimate in the four-
category ODR than otherwise. One solution would be to merge the top two
categories (yes/no and yes/yes) into one and do three-category ODR. If the
opposite problem appears for no/no and no/yes—i.e., more likely to say “yes”
following an initial “no”—then the bottom two categories may be merged into
one. See Carson and Hanemann (2005) and the references therein if further
interested in CVM.
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3 Count Response

3.1 Basics and Poisson MLE

Suppose y takes integers 0, 1, 2..., which are cardinal, not just ordinal.
Then y is a count response. For example, y can be a number of accidents,
crimes, visits to certain places, successes, etc. over some time period. The
preceding ODR methods are applicable to count responses, but there are
other approaches that make use of the fact that count responses are cardinal;
that is, the differences in category numbers such as 3 − 2 and 1 − 0 are
comparable. This section reviews “Poisson-like” MLE and NLS for count
responses.

In Poisson MLE, we assume that y|x follows Poisson distribution with
parameter λ(x) > 0, denoted as Poi{λ(x)}:

P (y = r|x) =
λ(x)r

r!
e−λ(x), r = 0, 1, 2, ...

For Poi{λ(x)}, it holds that E(y|x) = V (y|x) = λ(x). Focus on the first term
λ(x)r/r!. Since r! increases much faster than λ(x)r as r → ∞, the probability
of y taking a large integer decreases rapidly. The second term e−λ(x) is a
normalizing factor for the sum of the first term over r:

∑∞
r=0 λ(x)r/r! = eλ(x).

To assure λ(x) > 0 while keeping the linear model, the usual specification
for λ(x) is

λ(x) = exp(x′β).

This yields the log-likelihood function

QN (b) =
∑

i

{yi(x′ib) − exp(x′ib) − ln(yi!)} =⇒

score function si = {yi − exp(x′ib)}xi.

Formally, the Poisson MLE model is

xi = (1, xi2, ..., xik)′, β = (β1, ..., βk)′

P (yi = r|xi) =
{exp(x′iβ)}r

r!
e− exp(x′

iβ), r = 0, 1, 2, ...

(x′i, yi), i = 1, ..., N, are iid and observed.

The main objective in ordered discrete response was to link a discrete y
to possibly continuous x′β. In ordered probit, x′β affects y through Φ(·),
whereas x′β affects y through λ(·) in Poisson MLE. Both Φ(·) and λ(·) can
take continuous values.

Differentiate the log-likelihood function wrt b to get

∂QN (b)
∂b

=
∑

i

{yi − exp(x′ib)}xi,
∂2QN (b)

∂b∂b′
=

∑
i

{− exp(x′ib)}xix
′
i
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which is n.d. for all b if
∑

i xix
′
i is p.d. Hence, for Poisson MLE, a Newton–

Raphson-type algorithm converges straightforwardly. Defining vi ≡ y−exp(x′iβ),
v is heteroskedastic by construction because V (v|x) = V (y|x) = exp(x′β).

A pseudo R2 for Poisson MLE is 1− (lur/lr), where lur is the maximized
log-likelihood at bmle and lr is the maximized log-likelihood using only 1 as
the regressor—both lr and lur exclude the constant

∑
i ln(yi!). For instance,

if lur = −203 and lr = −286, then 1 − (lur/lr) = 1 − (203/286) = 0.29. This
pseudo R2, which is applicable to other MLE’s as well, is motivated by the
fact that the usual linear model R2 is 1 −∑

i r2
i /

∑
i(yi − ȳ)2 where

∑
i r2

i is
the residual when LSE is used and

∑
i(yi − ȳ)2 is the residual when only 1 is

used as the regressor. If the pseudo R2 does not work well perhaps because
the MLE assumption is false, then one may use {COR(y, exp(x′bN )}2 that
is a prediction-based pseudo R2; this may be preferred to 1 − (lur/lr).

If one follows the Poisson model “faithfully,”defining zi ≡ 1[yi > 0], the
model for the binary response zi becomes

P (zi = 1|xi) = 1 − P (zi = 0|xi) = 1 − e− exp(x′
iβ).

A MLE for binary response, which is called “gompit,”can be done with this.
Certainly, this differs from probit and logit.

As for marginal effects, observe

∂E(y|x)
∂x

= β exp(x′β) =⇒ E

{
∂E(y|x)

∂x

}
= βE {exp(x′β)}

which can be estimated consistently with bmle · N−1
∑

i exp(x′ibmle). But a
better marginal effect might be

∂E(y|x)/∂x

E(y|x)
=

∂E(y|x)/E(y|x)
∂x

= β;

that is, β shows the proportional change in E(y|x) as x changes by one unit,
and this marginal effect is the same for all x.

If lnxk is used as a regressor instead of xk when xk > 0, then βk can be
interpreted as an elasticity. To see this, observe

E(y|x) = exp(β1x1+, ...,+βk lnxk) =⇒ lnE(y|x)
= β1x1+, ...,+βk lnxk

=⇒ ∂E(y|x)/∂xk

E(y|x)
=

1
xk

βk =⇒ ∂E(y|x)/E(y|x)
∂xk/xk

= βk.

This elasticity, however, differs from the elasticity in the usual “double-log
linear model” ln y = β1x1+, ...,+βk lnxk + u where

∂y/∂xk

y
=

1
xk

βk =⇒ ∂y/y

∂xk/xk
= βk.
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3.2 Poisson Over-dispersion Problem and Other
Estimators

One problem of Poisson MLE is the restriction E(y|x) = V (y|x), which
is unlikely to be satisfied in practice; usually we have V (y|x) > E(y|x), an
“over-dispersion problem” which invalidates Poisson MLE. To see why this
occurs, consider an omitted variable ε independent of x, and suppose that
y|(x, ε), not y|x, follows Poi{exp(x′β + ε)}:

E(y|x, ε) = ex′β+ε = ex′βeε = ex′βE(eε)
eε

E(eε)
= ex′β+ln E(eε)w,

where w ≡ eε

E(eε)
;

note that E(w) = 1. With x′β = β1 + β2x2+, · · · ,+βkxk, redefine β1 as
β1 + lnE(eε) to rewrite ex′β+ln E(eε)w as E(y|x,w) = ex′βw. From this,

E(y|x) = ex′βE(w) = ex′β .

Although the presence of ε does not alter E(y|x) in essence, ε does alter
V (y|x) as follows—that is, y|x does not follow Poisson anymore. Keep in
mind that y|(x,w) follows Poi(ex′βw).

Observe

E(y2|x) = Ew|x{E(y2|x,w)} = Ew{E(y2|x,w)}
(because w is independent of x)

= Ew{V (y|x,w) + E2(y|x,w)} = Ew(ex′βw + e2x′βw2)

= ex′β + e2x′βE(w2).

With E2(y|x) = e2x′β ,

V (y|x) = E(y2|x) − E2(y|x) = ex′β + e2x′βE(w2) − e2x′β

= ex′β + e2x′β{E(w2) − 1}
= ex′β + e2x′β{E(w2) − E2(w)} > ex′β = E(y|x).

Over-dispersion due to omitted variables is analogous to the following fact
in the usual linear model: if y = x′1β1 + x′2β2 + u holds where x1 and x2 are
independent, then ignoring x2 does not cause inconsistency in estimating β1

with x1 alone, but the error term variance increases since x′2β2 + u becomes
the error term. In the Poisson MLE, ε plays the role of x′2β2. But differently
from the linear model, omitting ε causes the Poisson MLE to be inconsistent
despite that ε is independent of x2, because E(y|x) = V (y|x).

3.2.1 Negative Binomial (NB) MLE

Cameron and Trivedi (1998) and Winkelmann (2003) showed various
parametric approaches generalizing Poisson MLE while relaxing the
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restriction E(y|x) = V (y|x). One well-known parametric method allowing
for over-dispersion is “negative binomial MLE.”Define

λi ≡ exp(x′iβ) and ψi ≡ α−1λκ
i

where β, α (> 0) and κ are parameters. The negative binomial (NB) proba-
bility for yi|xi is (with Γ(s) ≡

∫∞
0

zs−1e−zdz for s > 0)

P (yi|xi) =
Γ(yi + ψi)

Γ(ψi)Γ(yi + 1)
·
(

ψi

λi + ψi

)ψi
(

λi

λi + ψi

)yi

.

In NB, it is known that

E(y|xi) = λi and V (y|xi) = λi + αλ2−κ
i > λi

allowing for over-dispersion. Poisson is the limiting case when α → 0+. Γ(s),
s > 0, is called the “gamma function”; gamma function satisfies Γ(s + 1) =
sΓ(s), and hence Γ(s) = (s − 1)! for a positive integer s.

Although all parameters β, α, κ can be estimated, often κ is set at 0 to
yield ψi ≡ α−1 and V (yi|xi) = λi +αλ2

i , which is quadratic in λi. One reason
for κ = 0 is to avoid a possible identification problem: κ is not identified well
if α � 0. Also, when κ = 0, the information matrix of the NB MLE becomes
block-diagonal for β and α, meaning that the estimation of β would not be
affected by the estimation of α.

A rv z following Gamma distribution with two parameters λ, s > 0 has
density

f(zo) =
λ

Γ(s)
(λzo)s−1e−λzo , zo ∈ (0,∞) with E(z) =

s

λ

and V (z) =
s

λ2 ;

Γ(s) is the normalizing constant for
∫∞
0

f(zo)dzo = 1. The sum of s-many iid
rv’s from Expo(λ) follows Gamma(λ, s), which thus gives the interpretation
of the waiting time until the sth occurrence of the Poisson event as the waiting
time between two Poisson events follows Expo(λ). The above κ = 0 case
in the preceding paragraph is also obtained when the omitted “unobserved
heterogeneity” eε in E(y|x, ε) = ex′βeε follows Gamma distribution with
parameter (α−1, α−1). The restriction λ = s = α−1 yields E(eε) = 1 and
V (eε) = α. For this Gamma-distributed eε case, we get E(y|x) = ex′β as
E(eε) = 1, and

V (y|x) = E[V (y|x, ε)|x] + V [E(y|x, ε)|x] = E(ex′βeε|x) + V [ex′βeε|x]

= ex′β + αe2x′β

verifying the above display V (y|x) = λ + αλ2−κ with λ = ex′β and κ = 0.
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3.2.2 Zero-Inflated Count Responses

Another way to deal with the over-dispersion problem is “zero-inflated”
count response. Here, we introduce the idea only briefly, with the details
deferred to the sample-selection part in the next chapter because the idea is
based on a multivariate LDV model.

Imagine y∗ being the number of fish caught by angling, where y∗ > 0
only for those who “participate” in angling. The observed count response is

y = 1[x′α + v > 0] · y∗where 1[x′α + v > 0] denotes participation, v � y∗|x

and v has a symmetric df F (·). Call y∗ “performance” (following the partic-
ipation). Observe (keeping in mind y = y∗), as v � y∗|x,

E(y|x) = E(1[x′α + v > 0]|x) E(y∗|x) = F (x′α)E(y∗|x) and

E(y2|x) = E(1[x′α + v > 0]|x) E(y∗2|x) = F (x′α)E(y∗2|x)

=⇒ V (y|x) = F (x′α)E(y∗2|x) − F (x′α)2E2(y∗|x).

If V (y∗|x) = E(y∗|x) as in Poisson, then E(y∗2|x)−E2(y∗|x) = E(y∗|x),
from which E(y∗2|x) = E2(y∗|x) + E(y∗|x). Substitute this into the last
display for V (y|x) to get

V (y|x) = F (x′α){E2(y∗|x) + E(y∗|x)} − F (x′α)2E2(y∗|x)

= {F (x′α) − F (x′α)2}E2(y∗|x) + F (x′α)E(y∗|x)
> F (x′α)E(y∗|x) = E(y|x) :

over-dispersion in y occurs despite V (y∗|x) = E(y∗|x). MLE can be imple-
mented with logistic F (·) and Poisson y∗|x as done in Lambert (1992), which
is a “Zero-Inflated Poisson (ZIP).”Clearly, zero-inflated NB can be used as
well. See Lam et al. (2006) for more development and references.

3.2.3 Methods of Moments

Yet another, less parametric, way to avoid the over-dispersion problem is
to view E(y|x) = ex′β just as a nonlinear regression function without V (y|x)
specified. Then we get the NLS minimand N−1

∑
i{yi − exp(x′ib)}2, which

yields the first-order condition

1
N

∑
i

{yi − exp(x′ib)}xi exp(x′ib) = 0.

This differs from the Poisson MLE first-order condition by the factor exp(x′ib)
next to xi. Following the distribution theory of M-estimator, the asymptotic
variance is

E−1{xx′ exp(2x′β)} · E[{y − exp(x′β)}2 exp(2x′iβ)xx′] ·
E−1{xx′ exp(2x′β)}.
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In Poisson MLE, the first-order condition can be taken as a moment
condition N−1

∑
i vixi = 0 where vi ≡ yi − exp(x′ib). Since E(v|x) = 0

implies E{v·g(x)} = 0 for any (square integrable) function of x, Poisson MLE
specification can be tested by a method-of-moment test. Another advantage of
viewing the first-order condition as a moment condition is that we can forget
the Poisson MLE origin and derive the asymptotic distribution of the moment
estimator. In this case, the resulting estimator—“quasi Poisson MLE”—is
asymptotically normal with variance

E−1{xx′ exp(x′β)} · E[{y − exp(x′β)}2xx′] · E−1{xx′ exp(x′β)}.

Deriving this formula is essentially the same as deriving the preceding nonlin-
ear LSE asymptotic variance, except that the multiplicative factor exp(x′β)
in the nonlinear LSE first-order condition does not appear in N−1

∑
i vixi

and hence neither in the asymptotic variance. This display can be used as a
“overdispersion-robust variance” for Poisson MLE, which otherwise tends to
return too big t-values.

The above MOM approach for count responses seems to be a good
method to use in practice. Recalling the Poisson MLE gradient and Hessian,
the last display can be also viewed as

(Poisson Hessian)−1 × (Poisson gradient outer-product)

× (Poisson Hessian)−1.

Imposing the information equality reduces this sandwich form into just a
single matrix E−1[{y − exp(x′β)}2xx′] that is the Poisson MLE asymptotic
variance. A good way to understand the two asymptotic variances is recalling
the LSE moment condition E(ux) = 0. The LSE asymptotic variance takes
the usual sandwich form. But if we assume u ∼ N(0, σ2) independently of x,
then we would be doing MLE whose first-order condition is also E(ux) = 0
but its asymptotic variance is just a single matrix, the inverse of the infor-
mation matrix.

3.3 An Empirical Example: Inequality Effect on Crime

As an example of Poisson MLE, Kelly (2000) analyzed effects of inequal-
ity on the number of property and violent crimes. The crime data are from
the 1991 FBI Uniform Crime Reports for year 1990, and the unit of obser-
vations is a US metropolitan county (N = 829). The response variables are
the number of violent crimes and property crimes. Other than crime numbers
examined here, count responses are also popular in insurance where the num-
ber of accidents/claims is of keen interest; see Gourieroux and Jasiak (2007)
for applications of count responses (and other LDV models in general) for
insurance, banking, and finance.

Part of Table 3 in Kelly (2000) omitting the intercept and population
size is shown in the Table 3; the SD’s there were obtained using a “quasi-
likelihood” approach, which allows an over-dispersion parameter. See Kelly
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(2000) for the detailed description of the regressors which are all in logarithm
(taking ln on % variables is unwarranted, however, in view of our discussion
on marginal effects).

High population density increases crime probably by increasing the num-
ber of potential victims and reducing the chance of getting caught. Income
inequality measured by Gini coefficient increases violent crime but is insignif-
icant for property crime. The percentages of female-head family and those
who moved show breakdowns of family structure and instability of the com-
munity, which increase both types of crimes. One caution is that the per-
centages of female-head family may be an outcome variable from inequality
just as crimes are, in which case using it as a regressor would be inappro-
priate. Percentage non-white and unemployed male are insignificant. Poverty
increases property crime but decreases violent crime. Surprisingly, educated
population increases property crime. Finally, police activity is insignificant
for violent crime but reduces property crime; note that using 1987 variable
is to avoid the simultaneity problem.

3.4 IVE for Count or Positive Responses

Suppose the error term u in the linear model y = x′β +u consists of two
error terms ε and v. In this case, we can rewrite the model in two equivalent
ways: y = (x′β + ε) + v = x′β + (ε + v). But the equivalence no longer holds
for nonlinear models: for a nonlinear model y = exp(x′β) + u,

y = exp(x′β + ε) + v = exp(x′β) + ε + v.

Suppose y = exp(x′β + ε) + v is true, and some components of x are en-
dogenous only because of their relationship with ε. One example is errors-in-
variables: y = exp(x̃′β)+v where x = x̃+ ε̃ and x (not x̃) is observed. In this
case we get y = exp(x′β + ε) + v with ε = −ε̃′β; x is clearly related to ε. In
the following, we show an innovative IVE for this kind of model, drawing on
Mullahy (1997). In the literature, a term like ε is often called “unobserved
heterogeneity.”

Suppose
E(y|x, ε) = exp(x′β + ε) = exp(x′β) · eε

where some components of x are related to ε.
Recall that an instrument w for an endogenous regressor xk is a regressor for
the xk-equation (inclusion restriction), but the instrument does not appear as
a regressor for the y-equation (exclusion restriction). Let z be an instrument
vector for x; if xk is the only endogenous regressor with the instrument w,
then z = (x1, ..., xk−1, w)′. The exclusion restriction of w from the y equation
can be expressed as

E(y|x, z, ε) = E(y|x, ε)

because x is in the conditioning set: so long as x (i.e., xk) is fixed, z (i.e.,
w) cannot influence y due to the exclusion restriction. Further suppose,
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analogously to E(ε|z) = 0,

E(eε|z) = τ , an unknown constant.

Define

v ≡ y − E(y|x, z, ε) = y − E(y|x, ε) = y − exp(x′β) · eε

=⇒ y = exp(x′β) · eε + v and E(v|x, z, ε) = 0

=⇒ y = exp(x′β) · eε

τ
+ v, redefining β1 as β1 + ln τ .

Multiply y = exp(x′β)eε/τ + v by exp(−x′β) and subtract 1 to get

y exp(−x′β) − 1 =
eε

τ
− 1 + v exp(−x′β)

=⇒ E{y exp(−x′β) − 1|z} = E

(
eε

τ
− 1|z

)
+ E{v exp(−x′β)|z}.

The first term on the right-hand side is zero, and the second term E[E{v
exp(−x′β)|x, z, ε}|z] is also zero because E(v|x, z, ε) = 0. Therefore, we get
a conditional moment condition

E{y exp(−x′β) − 1|z} = 0,

expressed in observed variables and the parameter β. With this moment
condition, GMM can be done for β. Compare this moment condition to
E[x{y exp(−x′β) − 1}] = 0 that appeared for GMM examples.

The IVE here takes advantage of the exponential regression function,
and cannot be easily extended to other LDV’s, which is why we have not
discussed endogenous regressors up to now for LDV’s in general. This will be
done later when multiple equations with LDV’s are examined.

Instead of the multiplicative endogeneity, Windmeijer and Santos-Silva
(1997) considered an additive endogeneity model

y = exp(x′β) + u, where E(u|x) = 0 but E(u|z) = 0.

Under this, the moment condition to use is

E[z{y − exp(x′β)}] = 0.

Cameron and Trivedi (2009, p. 596) showed in detail how to implement this
with STATA.

If the additive model holds, the above conditional moment condition
becomes

E{y exp(−x′β) − 1|z} = E[{exp(x′β) + u} exp(−x′β) − 1|z]
= E{u exp(−x′β)|z} :
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this cannot be 0 when E(u|z) = 0. Hence the multiplicative and additive
models are incompatible, and which model holds in a given problem is an
empirical matter. In their empirical application, Windmeijer and Santos-
Silva (1997) found the additive model more plausible for their chosen in-
strument. More applications of the above IVE’s, which are easy to apply
using some GMM software, can be seen in the literature, e.g., in Schellhorn
(2001).

4 Censored Response and Related LDV
Models

4.1 Censored Models

So far, we have been dealing with discrete responses where the latent
continuous variable is either not considered or not observed at all even if
considered. There are cases where the latent continuous response is observed
only when y∗i is less (or greater) than a “censoring point” ci; the model is
called a “censored response (regression) model.”

Suppose

y∗i = x′iβ + ui, di = 1[y∗i ≤ ci], yi = min(y∗i , ci)
ci and y∗i are independent given xi,

(x′i, di, yi), i = 1, ..., N, are iid and observed.

That is, whereas xi is observed always, yi = y∗i only when y∗i ≤ ci; otherwise
yi = ci. A well-known example is that y∗i is a duration, xi is individual
characteristics, and ci is determined by when person i enters the data and
when the data collection (or follow-up) ends; see the table below where the
duration is in months.

If the actual duration is shorter than the censoring point, then the actual
duration is observed; otherwise, the censoring point is observed along with
whether the actual duration is shorter than the censoring point or not; i.e.,
only yi = min(y∗i , ci) and di are observed along with xi. The duration of a
state continues until the state changes, and the change is the event of interest
in a given duration problem. For example, the duration of unemployed state
continues until the person gets employed, and the event of interest is finding
a job.

Data-entering
(y∗-starting) Date Study-Ending Date y∗ c y d

person 1 01/01/2006 31/12/2006 6 12 6 1
person 2 01/03/2006 31/12/2006 12 10 10 0
person 3 01/09/2006 31/12/2006 5 4 4 0
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There are a number of distinctions to be made for ci when yi is a
duration.

1. If all subjects are followed up for, say, 1 year then ci = 365 days for all
i; ci is not random and the same for all i.

2. If the follow-up ends on a given date, say 31/12/2006, then c = 365 for
a person who entered the data on 1/1/2006 and c = 183 for a person
who entered the data on 1/6/2006. In this case, ci is random (so long as
the data-entering date is so) and observed for everybody. For instance,
suppose a person enters the data on 1/6/2006 with the duration ending
on 30/6/2006, which means yi = y∗i = 30 and ci = 183; ci is observed
although y∗i < ci.

3. If the data collection ends because some event occurs that is not the
event of interest (e.g., accidental death or moving overseas while the
interest is on a diseased death), then ci is random and min(y∗i , ci) is
observed. When y∗i < ci, the subject is no longer followed and ci is not
observed.

Cases 1 and 2 are similar in that ci is observed ∀i. What is observed in these
cases is then (x′i, ci, yi); compare this to (x′i, di, yi) above. Cases 2 and 3 are
similar in that ci is random.

In the literature, somewhat confusing terminologies have been used as
follows. Case 1 is called “type I censoring”; Case 2 is called either type I
censoring or “generalized type I censoring”; Case 3 is “competing risks cen-
soring” or “random censoring.” We will call Cases 1 and 2 type-I censoring
and Case 3 random censoring although ci can be random in Case 2 as well.
The above model and table are for random censoring, which is the weak-
est in terms of the data requirement as ci does not have to be observed ∀i.
Note, however, that if variation in c is required in estimation, then random
censoring assumption is not necessarily weaker than Type-I censoring with
a constant c. When c is random, c is assumed to be either independent of
(x′, y∗) (i.e., of (x′, u)), or more weakly, independent of y∗ given x. In the
latter, c may be related to y∗ but only through x. In type-II censoring, which
is rarely used in econometrics, the follow-up continues until N0 units’ dura-
tions of interest end where N0 is predetermined, i.e., until the smallest N0

durations among y∗1 , ..., y∗N are observed.
In type I censoring, upper censoring can be turned into lower censoring.

To see this,

yi = min(y∗i , ci) = min(x′iβ + ui, ci) = −max(−x′iβ − ui,−ci).

Multiply yi = −max(−x′iβ − ui,−ci) with −1 and add ci to get

ci − yi = max(−x′iβ + ci − ui, 0).
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Redefine yi as ci − yi and absorb ci into x′iβ: if ci is constant, then it is
absorbed into the intercept in x′iβ; otherwise, ci becomes a regressor with
known coefficient 1 (not to be estimated). Thus we get, redefining −xi as xi,

yi = max(x′iβ + ui, 0).

The fixed “lower censoring” model, called “tobit” owing to Tobin (1958),
has been used for female labor supply, expenditure on durable goods, etc.
where a nontrivial portion of y is 0. It is not clear, however, whether these
are appropriate uses of the censored model. In the duration example, there is
y∗i actually occurring although not observed when y∗i > ci; y is an observed
version of y∗ that exists. In the labor supply and durable expenditure exam-
ples, in contrast, there is no negative labor supply nor negative expenditure
when y∗i < 0. Negative something would be a “ghost” observation and it
is difficult to think of y as an observed version of y∗ that may not exist.
These cases are called “corner solution” cases. A better approach might be
a bivariate model as in ZIP with two equations: one equation for “partic-
ipation” d and the other for “performance” y∗ that is observed only when
d = 1. Tobit is a special case of this bivariate “sample-selection model” with
d = 1[y∗ > 0].

4.2 Censored-Model MLE

Recall the random upper-censoring linear model with c � y∗|x (i.e., c �
u|x). Assume further that u ∼ N(0, σ2) and u � x. Then the log-likelihood
function to maximize wrt b (for β) and s (for σ) is

QN (b, s) =
∑

i

[
(1 − di) ln

{
1 − Φ

(
yi − x′ib

s

)}
+ di ln

{
1
s
φ

(
yi − x′ib

s

)}]
.

To understand this log-likelihood function, observe that the likelihood
function is

{fy∗(y|x)Sc(y|x)fx(x)}d{fc(y|x)Sy∗(y|x)fx(x)}1−d

where fy∗(·|x) is the y∗|x density, Sc(·|x) is the c|x survival function, fx is the
x density, fc(·|x) is the c|x density, and Sy∗(·|x) is the y∗|x survival function.
In the d = 1 part, the observed y = min(y∗, c) is y∗, which is why fy∗(y|x)
appears; Sc(y|x) is there for P (c > y∗|x) when d = 1. The d = 0 part can be
understood analogously. Taking ln on the likelihood yields

d ln{fy∗(y|x)Sc(y|x)fx(x)} + (1 − d) ln{fc(y|x)Sy∗(y|x)fx(x)}
=⇒ d ln fy∗(y|x) + (1 − d) ln Sy∗(y|x)

because ln Sc(y|x), ln fc(y|x), and ln fx(x) do not depend on (β′, σ) and thus
they drop out. Under normality, fy∗(y|x) and Sy∗(y|x) take the forms with
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φ and Φ in the above log-likelihood function. Note that c � y∗|x is neces-
sary; otherwise we would not get the product expressions fy∗(y|x)Sc(y|x)
and fc(y|x)Sy∗(y|x).

If yi = max(x′iβ + ui, 0)—“left-censoring at 0”—then

di = 0 ⇐⇒ x′iβ + ui < 0 ⇐⇒ ui

σ
<

−x′iβ
σ

.

Since the censoring point is not random, but a constant, the likelihood func-
tion is the same as the above one with Sc and fc replaced by one. Hence the
log-likelihood function becomes∑

i

[
(1 − di) ln Φ

(−x′ib
s

)
+ di ln

{
1
s
φ(

yi − x′ib
s

)
}]

.

As for pseudo R2 for censored (and truncated) response models, we can
use

b̃′NN−1
∑

i(xis − x̄s)(xis − x̄s)′b̃N

b̃′NN−1
∑

i(xis − x̄s)(xis − x̄s)′b̃N + s2
N

where b̃N is the slope estimators and xs are the regressors other than unity.
Since β is identified, bmle can be taken as a measure of x-effect on y∗.

Define the score functions sbi, ssi, and si ≡ (s′bi, s
′
si)
′ such that

∂QN

∂b
=

∑
i

sbi and
∂QN

∂s
=

∑
i

ssi, where

sbi =
[
di

(yi − x′ib)
s2

− (1 − di)
φ(x′ib/s)

s{1 − Φ(x′ib/s)}

]
· xi

ssi = di

{
(yi − x′ib)

2

s3
− 1

s

}
+ (1 − di)

φ(x′ib/s) · x′ib
s2{1 − Φ(x′ib/s)} .

One might think that the asymptotic variance of
√

N(bN − β) is E−1(sbs
′
b),

which is, however, false as can be seen in the following.
Define γ ≡ (β′, σ′)′ and gN = (b′N , s′N )′ to observe

asymptotic variance of
√

N(gN − γ) = I−1
f =

[
E(sbs

′
b) E(sbs

′
s)

E(sss
′
b) E(sss

′
s)

]−1

.

Using the formula for the inverse of a partitioned matrix, the upper left k×k
submatrix of I−1

f is

[E(sbs
′
b) − E(sbs

′
s) · E−1(sss

′
s) · E(sss

′
b)]
−1

= E−1{(sb − μ′ss)(sb − μ′ss)′} ≡ E−1(s∗bs
∗′
b )

where μ ≡ E−1(sss
′
s) · E(sss

′
b), and s∗b is called the effective score function

for β. Hence, √
N(bN − β)� N{0, E−1(s∗bs

∗′
b )};
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the variance becomes E−1(sbs
′
b) only when E(sbs

′
s) = 0. If E(sbs

′
s) = 0, then

β is said to be “adaptively estimable” despite the nuisance parameter σ.
The parameter μ is the population regression coefficient of sb on ss, and

s∗b is the “residual,” or the part of sb not explained by ss. Since μ = 0 makes
E−1(s∗bs

∗′
b ) larger than for the case μ = 0, the estimation of β is hampered

by the correlation between sb and ss. For a future reference, note that

√
N(gN − γ) =

1√
N

∑
i

E−1(ss′) · si

(
=

1√
N

∑
i

I−1
f si

)
+ op(1),

√
N(bN − β) =

1√
N

∑
i

E−1(s∗bs
∗′
b ) · s∗bi + op(1),

√
N(sN − σ) =

1√
N

∑
i

E−1(s∗ss
∗′
s ) · s∗si + op(1),

where s∗s is defined analogously to s∗b .

4.3 Truncated Regression and Fractional Response

For the censored response model, xi is observed always regardless of di.
That is, (x′i, di, diy

∗
i ) is observed. If xi is observed also only when di = 1,

that is, if we observe only
dix

′
i, diy

∗
i

then the model is called a truncated response (or truncated regression) model.
For instance, with y being income and x being individual characteristics, we
may have data only for the people with income greater than $1,000 per month;
xi and yi are not observed at all for those with y∗i ≤ 1, 000.

In duration analysis, if the duration origin precedes the study origin,
then the truncation occurs, because the durations which had ended before the
study began are not observed all. Since the truncation is from the “left” side—
short durations are not observed—this is an example of “left-truncation”
whereas the above censoring min(y∗i , ci) is from the “right” side, and thus
called right-censoring. The combination of these two, called “LTRC,”occurs
sometimes. For instance, in the income example, the income may be top-coded
at $20, 000; i.e., any income higher than $20, 000 per month is recorded just
as $20, 000. In censored response models, x can be used to gauge what y∗

would be when y∗ is not observed, which is, however, impossible for truncated
response models because x is not available when d = 0. With less information,
estimating β is more difficult in truncated response models than in censored
response models.

Specifically, in the tobit model y = max(y∗, 0), if the observations with
y = 0 are removed from the data set, we get a truncated response model with
left-truncation at 0:

y∗i = x′iβ + ui, di = 1[y∗i > 0],
(x′i, y

∗
i ), i = 1, ..., N, are iid and observed only when y∗i > 0.
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For this model, under normality, Hausman and Wise (1977) proposed to
maximize wrt b and s∑

i

[
ln

{
1
s
φ(

yi − x′ib
s

)
}
− ln Φ

(
x′ib
s

)]
where the second term is the normalizing factor for the truncation of u/σ
from below at −x′β/σ. Truncation is, in fact, a special case of “endogenous
sampling” where sampling is not random but involves the response variable.

Generalizing one-sided censoring, both lower (or left) and upper (or
right) censoring may occur together. For example, the share of riskless assets
in financial wealth in Hochguertel (2003) is bounded by [0, 1]. This is some-
times called a “fractional response.” If y does not take the extreme values,
then the usual linear model may be used for y; alternatively, one may posit
E[ln{y/(1− y)}|x] = x′β. If P (y = 0) > 0 and P (y = 1) > 0, it may be more
appropriate to use an interval-censored model

y = max{0, min(x′β + u, 1)}.

A log-likelihood function for this is analogous to that for tobit.
For fractional responses, Papke and Wooldridge (1996) assumed E(y|x) =

G(x′β) for a known df G, e.g. G(t) = exp(t)/{1+exp(t)}, to do a quasi MLE
maximizing wrt b∑

i

[yi lnG(x′ib) + (1 − yi) ln {1 − G(x′ib)}]

which looks like a log-likelihood for binary y. This works due to the fact
that s ln t+(1− s) ln(1− t) is maximized when s = t. Papke and Wooldridge
(1996) applied this estimator to data on employee participation proportion in
401(k) pension plans. The asymptotic variance can be found using the usual
M-estimator sandwich-form asymptotic variance formula.

4.4 Marginal Effects for Censored/Selection Models

So far we introduced a number of marginal effects for various LDV
models. In tobit which consists of probit and the truncated model, there are
different versions of marginal effects if we treat the probit part as
“participation-or-not decision” and the truncation model as “performance
following participation” as in sample-selection models. Those marginal effects
are examined here. Although tobit is used below, the following discussion can
be done under any distributional assumption. The two-part view with par-
ticipation and performance appeared already for zero-inflated Poisson (ZIP).
As already noted, a critical difference between ZIP and tobit is that there is
only one equation in tobit with zero occurring as a “corner solution,” whereas
two equations appear in ZIP with “non-participation zero” being structurally
different from “participation zero.”
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Observe

E(y|x) = E(y|x, d = 1)P (d = 1|x) + E(0|x, d = 0)P (d = 0|x)
= E(y|x, d = 1)P (d = 1|x)

E(y|x, d = 1) = x′β + E

(
u|x,

u

σ
> −x′

β

σ

)
= x′β + σE

(
u

σ
|x,

u

σ
> −x′

β

σ

)
= x′β + σ

φ(x′β/σ)
Φ(x′β/σ)

;

the last expression will be derived in the next chapter when sample selection is
discussed. Regard d = 1 as a “participation,”and y|d = 1 as a “performance”
given participation; y∗ is then the latent performance. For example, y∗ is the
latent demand for a product, d = 1 is participating in the buying activity, and
y|d = 1 is the number of units to buy given participation. Another example
is that y∗ is the latent market work hours, d = 1 is working in the labor
market, and y|d = 1 is the market work hours given d = 1. These concepts
provide interesting interpretations as follows.

Noting y = dy = dy∗ and φ′(t) = −tφ(t), various (mean) effects can be
thought of:

E(y∗|x) = x′β =⇒ ∂E(y∗|x)
∂x

= β (effect on the latent y∗);

E(y|x, d = 1) = x′β + σ
φ(x′β/σ)
Φ(x′β/σ)

=⇒ ∂E(y|x, d = 1)
∂x

= β +
φ′(x′β/σ)
Φ(x′β/σ)

β − φ(x′β/σ)2

Φ(x′β/σ)2
β

(effect on “y|participation”)

= β − φ(x′β/σ)x′β/σ

Φ(x′β/σ)
β − φ(x′β/σ)2

Φ(x′β/σ)2
β

= β

{
Ik − φ(x′β/σ)

Φ(x′β/σ)
x′

β

σ
− φ(x′β/σ)2

Φ(x′β/σ)2

}
;

E(dy|x) = E(y|x, d = 1)P (d = 1|x) = x′β · Φ
(

x′
β

σ

)
+ σφ

(
x′

β

σ

)
=⇒ ∂E(dy|x)

∂x
=

∂E(y|x, d = 1)
∂x

P (d = 1|x)

+ E(y|x, d = 1)
∂P (d = 1|x)

∂x
(effect on observed y)

= βΦ
(

x′
β

σ

)
+ x′βφ

(
x′

β

σ

)
β

σ
+ φ′

(
x′

β

σ

)
β

= β

{
Φ
(

x′
β

σ

)
+ φ

(
x′

β

σ

)
x′

β

σ
− φ

(
x′

β

σ

)
x′

β

σ

}
= βΦ

(
x′

β

σ

)
.
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When x changes, (i) β is its “potential effect” (β can increase the desire to
work although some people do not work), (ii) ∂E(y|x, d = 1)/∂x is the “par-
ticipant effect” showing the effect on the d = 1 group, and (iii) ∂E(dy|x)/∂x
is the “observed effect” consisting of ∂E(y|x, d = 1)/∂x and the effect due to
new entries/exits reflected in ∂P (d = 1|x)/∂x.

It should be kept in mind that the above specific results such as ∂E(dy|x)/
∂x = βΦ(x′β/σ) are based on the normality assumption in tobit and the as-
sumption that the participation and performance are both governed by a
single equation. When these assumptions are relaxed, the effect formulas will
change much. Interestingly though, Greene (1999) showed that when the error
term is independent of x,

∂E(dy|x)/∂x = β · P (y∗ > 0|x)

regardless of the u distribution in the model y = max(y∗, 0). That is, the
observed effect is the latent effect β times the participation proportion P (y∗ >
0|x). If x is a policy variable, an intriguing question is which one between
β and β · P (y∗ > 0|x) should be taken as the policy effect. Note that the
participant effect may not be a good effect measure, because x can change
the participation status.

4.5 Empirical Examples

EXAMPLE: JOB-TRAINING EFFECT ON UNEMPLOYMENT DURATION FOR RIGHT
CENSORING. As an example of type 1 right-censored response yi = min(y∗i , ci)
with ci varying across i, Lee and Lee (2005) analyzed job-training effects
on Korean women using a data set, where N1 = 5031 unemployed women
received a job training (“treatment group”) and N0 = 47060 unemployed
women did not receive any job training (“control group”)—the control group
received unemployment insurance benefit instead—during January
1999–March 2000. In the data, the right-censoring was done on the same
calendar date for everybody, but since the subjects entered the study on
different dates, their censoring time ci varies across i. Table 4 shows the
summary statistics for some variables.

Table 4: Descriptive Statistics for Job Training Data
Treatment Group Control Group

Mean SD Mean SD
dummy for being censored 0.71 0.002 0.72 0.006

age (years) 27.79 5.57 34.92 10.82
education (years) 13.07 1.76 12.13 2.50

unemp. duration (days) before
enrollment

65.1 53.2 33.6 32.5

The table shows that the treatment group is younger, more-educated, and
searched longer before enrolling in the job training program.
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Applying the censored response MLE with ln(unemployment
duration) as the response variable—the training duration is included in the
unemployment duration—Table 5 shows part of the results; dummy variables
for ex-job’s industry, ex-job’s type, job-training type, reason for leaving the
previous job, and interactions between these dummies and the job-training
dummy (d) were used but not shown in the table. Relative to high school
graduation which is the base education case, finishing only primary school
increases the duration whereas junior college or higher education decreases
the duration. The previous unemployment duration increases the duration.
Unfortunately, the job-training dummy d increases the unemployment dura-
tion. Lee and Lee (2005) attributed this failure of job-training to that the
job-training takes about 4 months while it reduces the subsequent unemploy-
ment duration by about 2 months on average. The effect of d looks too big,
but this is because the interaction terms between d and many regressors are
omitted, almost all of which carry negative estimates. That is, taking the
interaction terms into account, d still increases the unemployment duration
but by a much smaller magnitude than shown in the table—in some groups, d
does decrease the duration. In fact, an analogous caveat applies to the other
regressors as well due to their interaction terms.

Table 5: Censored Regression for Job Training Data
Estimate SD t-Value

primary school 0.457 0.187 2.44
middle school 0.036 0.089 0.41
junior college −0.396 0.041 −9.74

college −0.419 0.073 −5.71
graduate school −0.645 0.169 −3.81

previous unemployment duration 0.004 0.0003 13.15
d 1.829 0.438 4.17

EXAMPLE: WTP FOR BEACH VISITS FOR LEFT CENSORING. As an empirical
example for y = max(0, x′β + u), Haab and McConnell (2002, pp. 157–163)
examined a model where y is the number of yearly visits to a beach to find
out the “access value” to the beach. In their data with N = 499, x includes
the travel cost to the beach (say, xk) and the travel cost to the nearest
alternative beach. Applying tobit, they found bk = −5.48 (SD = 1.25).
Rewriting x′iβ + ui as β0i + βkxik where β0i is the part other than βkxik in
x′iβ+ui, the person-i “choke price” xic for zero demand (i.e., y = 0)—imagine
charging an entrance fee until person i stops using the beach—is obtained
from

0 = β0i + βkxic =⇒ xic ≡ −β0i

βk

.

The WTP (in addition to the travel cost paid already) can be approximated
with the consumer surplus, which is obtained by integrating the beach-visit
demand equation wrt xk over [xik, xic]. Note that the estimated equation is
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a demand equation because the “supply” is virtually unlimited unless over-
crowding occurs in the beach. As in the WTP analysis in binary response,
we are trying to find the maximum amount that can be “squeezed out” of
the beach-goers, which is the travel cost plus the consumer surplus.

The integral is the person-i consumer surplus∫ xic

xik

(β0i + βkm)dm = β0i(xic − xik) +
βk

2
(x2

ic − x2
ik)

= β0i

(
−β0i

βk

− yi − β0i

βk

)
+

βk

2

{
β2

0i

β2
k

−
(

yi − β0i

βk

)2
}

(substituting xic ≡ −β0i

βk

and xik =
yi − β0i

βk

)

= β0i

−yi

βk

+
1
2

(−y2
i + 2β0iyi

βk

)
=

y2
i

−2βk

=
y2

i

2|βk|
as βk < 0.

Hence the estimated mean consumer surplus is

1
N

∑
i

y2
i

2(5.48)
= $10.77.

We can also think of the median consumer surplus: because y2/(2|βk|)
is increasing with y ≥ 0,

Med

(
y2

2|βk|

)
=

{Med(y)}2

2|βk|
.

Haab and McConnell (2002) do not show the sample median. As the sample
median is likely to be smaller than the sample mean (some regular beach-
goers would have rather high values for y, making ȳ too big), using ȳ = 3.84
as an upper bound for the median, we get

Med

(
y2

2|βk|

)
≤ ȳ2

2(5.48)
= $1.35.

Charging the median consumer surplus for the beach use, about 50% of
the beach users will be willing to pay the amount. More generally, charging
the αth quantile consumer surplus, about (1 − α)100% of the beach users
will be willing to pay the amount as their WTP is higher than the amount.
Charging the mean consumer surplus, probably only the regular users will
be willing to pay the amount, because the difference between the mean and
median consumer surpluses is large as shown above.

The number of visits to a beach is a count response, and thus it would
be better to apply a count response estimator than tobit. In this case, the
demand equation will be no more linear, but exponential. Other than this, the
remaining steps are analogous: find the person-i choke price xic, integrate the
demand equation over [xik, xic], and then come up with a sample “average”
estimator of one kind or another.
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5 Parametric Estimators for Duration

5.1 Basics

Suppose we want to explain duration y of a certain state with explana-
tory variables x. The state can be being unemployed or being alive (with
some disease). In the former, the duration (or survival) is bad, whereas it
is good in the later. Typically a duration gets right-censored as we cannot
observe the subjects forever; i.e., we get to observe only the minimum of the
actual duration and the censoring time. The actual duration comes from the
event of interest (e.g., getting employed or dying of the disease), whereas
the censoring duration comes from other events (e.g., lost in the follow-up
or dying of an accident). Assuming that xi is not time-varying, we can use
cross-section data (x′i, yi), i = 1, ..., N , to explain the duration. Duration was
briefly examined for censored regression, and here we take a detailed look.

Duration is by nature a continuous variable over [0,∞). If the duration
is observed in ordinal grouped intervals (e.g., survival up to 1 month, 2–3
months, or 4–12 months), then we have an ODR. In the Weibull distribution
application of the contingent valuation example for ODR, we in fact showed
how to deal with grouped durations. In this section, we will assume that
y is continuously distributed. Discrete durations or grouped durations will
reappear in the chapter for semiparametrics.

In the preceding section, we saw a linear model for ln(duration) in cen-
sored regression. There is another more “classical” approach for duration
analysis, where the duration is assumed to follow some distribution (expo-
nential, Weibull,...) and x enters the distribution. This classical approach is
the focus of this section. Duration analysis is also called “survival analysis,”
“failure-time analysis” or “reliability analysis.” See Lancaster (1992) and
Van den Berg (2001) for the econometric literature, and Hougaard (2000),
Therneau and Grambsch (2000), Klein and Moeschberger (2003), and the
references therein for the statistical literature. We will use unemployment
duration as the main example throughout.

5.1.1 Survival and Hazard Functions

Ignore x for a while, and let F (·) denote the df of y:

F (t) = P (y ≤ t); F has density f .

Bear in mind that F (t) is a function describing where y accumulates its
probability, and F (t) itself is not a rv. Define the “survival function” S(t) ≡
1 − F (t) = P (y > t). A key concept for duration models is hazard function,
or hazard rate λ(t), which is defined by

λ(t) ≡ f(t)
S(t−)

, where S(t−) = P (y ≥ t);
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S(t) = S(t−) because S(t) is continuous, but here we use S(t−) just to be
coherent with our future study on discrete durations. The relation between
λ(t) and S(t) is a “two-way street”: we can specify S(t) which determines
λ(t), or we can specify λ(t) which then determine S(t). Certain functional
forms are more easily handled in one of λ(t) and S(t) than in the other.

If f(t) stays the same over a small interval [t, t + dt), then f(t)dt can be
interpreted as P (t ≤ y < t + dt). Analogously,

λ(t)dt � f(t)dt

S(t)
=

P (t ≤ y < t + dt)
P (y ≥ t)

=
P (t ≤ y < t + dt, y ≥ t)

P (y ≥ t)
= P (t ≤ y < t + dt|y ≥ t) = P (leaving the state in [t, t + dt)|

survived up to t).

Observe, due to the division by S(t) in λ(t),

λ(t)dt � P (t ≤ y ≤ t + dt|y ≥ t) > P (t ≤ y ≤ t + dt) � f(t)dt.

For instance, let t = 100 and dt = 1. The probability of dying between age
100 and 101 for a person who survived up to age 100 is much greater than
the probability of a person dying between age 100 and 101, because most
people die before age 100. If we plot S(t) and λ(t), S(t) will be near zero for
t ≥ 90, but λ(t) will be well above 0 for t ≥ 90 and increasing as t further
goes up. For a patient diagnosed with a cancer, S(t) shows the probability of
survival beyond t and λ(t) shows the death probability over [t, t+1) if he/she
survives somehow up to t; both are interesting.

Owing to λ(t) = f(t)/S(t) and S(0) = 1, we get

λ(t) =
−d ln S(t)

dt

{
⇐⇒

∫ t

0

λ(v)dv = − lnS(t) + lnS(0) = − ln S(t)
}

⇐⇒ S(t) = exp{−Λ(t)}, where Λ(t) ≡
∫ t

0

λ(v)dv;

Λ(t) is the “integrated (or cumulative) hazard.”For instance, if λ(t) = λo,
a constant, then Λ(t) = λot. Splitting the interval [0, t] into n-many small
intervals of length t/n,

S(t) = exp(−λot) = lim
n→∞

(
1 − λot

n

)n

�
n∏

i=1

P (surviving interval i)

as 1 − (λot/n) is the probability of surviving each small interval of length
t/n. This accords a “product-limit” view of the survival function: survival up
to t is the limit of the product of survivals over infinitesimal intervals. If the
hazard rate changes over time, then S(t) takes the general form exp{−Λ(t)}
instead of exp(−λot).
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5.1.2 Log-Likelihood Functions

Suppose we have randomly censored duration data (di, yi, x
′
i), i = 1, ...,

N—some yi’s are the upper-censoring points and di is the non-censoring
indicator. Assume, as before, that c is independent of the true duration y∗

given x. Let f(·|x; θ) denote density for the true duration that is parametrized
by θ. Then the log-likelihood function to maximize for θ is∑

i

[di ln f(yi|xi; θ) + (1 − di) ln S(yi|xi; θ)]

where di = 1 if observation i is uncensored and 0 otherwise. Using f = λ · S
and lnS = −Λ, this can be rewritten in terms of λ and Λ:∑

i

[di ln{λ(yi|xi; θ) · S(yi|xi; θ)} + (1 − di) ln S(yi|xi; θ)]

=
∑

i

[di lnλ(yi|xi; θ) + lnS(yi|xi; θ)] =
∑

i

[di lnλ(yi|xi; θ) − Λ(yi|xi; θ)].

When left-truncation occurs as well at a point, say ti (i.e., yi > ti ∀i in
the data although yi ≤ ti can occur in the population) so that we have LTRC
(left-truncation and right-censoring), then the above log-likelihood with f and
S can be modified to∑

i

[
di ln

f(yi|xi; θ)
S(ti|xi, θ)

+ (1 − di) ln
S(yi|xi; θ)
S(ti|xi, θ)

]
where S(ti|xi, θ) = P (y∗i > ti|xi, θ) is the normalizing factor for the trunca-
tion so that the truncated density still integrates to one. The log-likelihood
can be rewritten with (cumulated) hazards only:∑

i

[
di ln

f(yi|xi; θ)
S(yi|xi; θ)

S(yi|xi; θ)
S(ti|xi, θ)

+ (1 − di) ln
S(yi|xi; θ)
S(ti|xi, θ)

]
=

∑
i

[
di lnλ(yi|xi, θ) + ln

S(yi|xi; θ)
S(ti|xi, θ)

]
=

∑
i

[di lnλ(yi|xi, θ) − Λ(yi|xi, θ) + Λ(ti|xi, θ)] .

To see how ti’s are obtained in reality, assume no right-censoring for a
while. Suppose that the population of interest is those who are unemployed
at any time during the calendar time period [0, τ ] but sampling is done only
over [τ − ε, τ ] for some constant 0 < ε < τ . This results in missing those who
become unemployed in [0, τ − ε) to end the duration before τ − ε—assume
that the probability of multiple unemployment spells is zero for the period.
Suppose that (x′, y, q) is observed where q is the calendar time of getting
unemployed and that (x, y)�q. If qi ∈ [τ−ε, τ ], then yi is observed always; if
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qi ∈ [0, τ−ε), then yi is observed only when qi+yi ≥ τ−ε ⇐⇒ yi ≥ τ−ε−qi.
Thus the conditional likelihood for yi|(xi, qi) is

f(yi|xi; θ)
S(ti|xi; θ)

where ti = 0 if qi ∈ [τ − ε, τ ] and ti ≡ τ − ε − qi if qi ∈ [0, τ − ε).

Sometimes we may be interested in mean residual life function:

μ(t) ≡ E(y − t|y > t) =
E{(y − t)1[y > t]}

S(t)
=

∫∞
t

(τ − t)f(τ)dτ

S(t)

=

∫∞
t

S(τ)dτ

S(t)

as
∫ ∞

t

(τ − t)f(τ)dτ = −(τ − t)S(τ)|∞t +
∫ ∞

t

S(τ)dτ =∫ ∞

t

S(τ)dτ .

This shows how long more a subject will survive on average, given that the
subject has survived up to t. Setting t = 0, this display also shows E(y) =∫∞
0

S(τ)dτ , which holds for all nonnegative rv’s with E(y) < ∞.
If y is discrete taking 0, 1, 2, 3, ... with the probabilities p0, p1, p2, ..., then

E(y) =
∑

j jpj can be written as, because each pj appears j times in
∑

j jpj ,

(p1 + p2 + p3, ...) + (p2 + p3+, ...) + (p3+, ...)+, ...

This is a discrete analog for
∫∞
0

S(τ)dτ . More succinctly, write y as

∞∑
t=0

1[y > t] = 1[y > 0] + 1[y > 1] + 1[y > 2],+, ...

to get E(y) =
∑∞

t=0 E(1[y > t]) =
∑∞

t=0 S(t), which is analogous to
∫∞
0

S(τ)dτ .

5.2 Exponential Distribution for Duration

Although normal distribution is a basic building block for MLE, it is not
good for duration analysis, as duration should be positive; also duration is
often asymmetric with a long right tail. The basic distribution in duration
analysis is exponential distribution indexed by one parameter θ > 0. With y
following Expo(θ), we get the following facts:

(i) f(t) = θ · exp(−θt);

(ii) S(t) = exp(−θt), F (t) = 1 − exp(−θt);

(iii) λ(t) = θ, Λ(t) = θt;

(iv) E(y) = 1/θ, V (y) = 1/θ2;

(v) E{ln(y)} � − ln θ − 0.577, V {ln(y)} � 1.645.
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E(y) = θ−1 follows from

E(y) =
∫ ∞

0

t · θe−θtdt = −te−θt

∣∣∣∣∞
0

+
∫ ∞

0

e−θtdt = 0 − 1
θ
e−θt

∣∣∣∣∞
0

=
1
θ
.

The most notable about Expo(θ) is the constant hazard θ that is not a
function of t. This implies implausible “memoryless property” of exponential
distribution:

P (y > T + t|y > t) =
P (y > T + t, y > t)

P (y > t)
=

P (y > T + t)
P (y > t)

=
exp{−θ(T + t)}

exp(−θt)
= exp(−θT ) = P (y > T );

the probability of surviving T more given the survival up to t is just the same
as the probability of survival up to T from the initial time point as if there
is no “wear and tear.”Also notable is that Λ(t) = θt is a linear function of t.

To account for x, usually we specify

θ(x) = exp(x′β)

as in Poisson regression (exp(·) guarantees θ(x) > 0) to assume that y|x is
Expo{θ(x)}. Then, using (v), we may assume

E(ln y|x) � − ln θ(x) − 0.577, V (ln y|x) � 1.645
=⇒ ln y = (−x)′β + u, where u ≡ ln y + x′β, E(u|x) � −0.577,

V (u|x) � 1.645.

This linear model can be estimated with LSE (barring censoring problems).
The major problem with the LSE is, however, that V (ln y|x) should be

the known constant 1.645; the non-zero E(u|x) can be absorbed into the
intercept in −x′β to make E(u|x) = 0. If we estimate β with the LSE of ln y
on −x to estimate the error term variance with N−1

∑
i û2

i where û is the
residual, then it is unlikely to get N−1

∑
i û2

i � 1.645. Another problem is
that the hazard function exp(x′β) is not a function of time, not allowing the
hazard rate to change across time. For instance, as unemployment duration
goes up, the unemployed may be more willing to accept a job offer. Then the
hazard rate will go up as time goes. Weibull distribution to appear shortly
overcomes these problems in exponential distribution.

If one is to do MLE with exponential duration allowing for right-censoring,
then the log-likelihood function to maximize for b is (recall Λ(t) = tθ)∑

i

[di lnλ(yi|xi; θ) − Λ(yi|xi; θ)] =
∑

i

{dix
′
ib − yi exp(x′ib)}.

This log-likelihood function is reminiscent of the Poisson MLE log-likelihood
function

∑
i{yix

′
ib − exp(x′ib)} where yi is a count.
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5.3 Weibull Distribution for Duration

Weibull distribution with two parameters θ > 0 and α > 0 is

(i) f(t) = θαtα−1 exp(−θtα);
(ii) S(t) = exp(−θtα), F (t) = 1 − exp(−θtα);
(iii) λ(t) = θαtα−1, Λ(t) = θtα;
(iv) E(yr) = θ−r/αΓ(1 + rα−1), where Γ(w) =

∫∞
0

zw−1e−zdz

for w > 0 ⇒ E(y) = θ−1/αΓ(1 + α−1) and
V (y) = θ−2/α{Γ(1 + 2α−1) − Γ2(1 + α−1)};

(v) E ln(y) � α−1(− ln θ − 0.577) and V {ln(y)} � α−21.645.

For Weibull distribution, λ(t) is increasing in t if α > 1 and decreasing
if α < 1; see Figure 3. “dλ(t)/dt < 0” is called negative duration dependence
(dλ(t)/dt > 0 is positive duration dependence): as time progresses, the du-
ration becomes less likely to end. Weibull distribution includes exponential
distribution as a special case when α = 1. Viewed differently, as clear in S(t),
Weibull distribution becomes exponential distribution by redefining tα as t.
If α > 1, then time accelerates, which is equivalent to λ(t) increasing over
time. Also, a notable feature is that ln Λ(t) = ln θ + α ln t is a linear function
of ln t. This feature can be used to check out the plausibility of the Weibull
distribution assumption when Λ(t) is estimated nonparametrically as will be
seen later in the nonparametrics chapter.

Figure 3: Weibull Hazards

Owing to S(∞) = 0, eventually everybody will leave unemployment.
This, however, may be too restrictive, because there can be “super-survivors”
surviving forever. In this case, there are two sub-populations—“split
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population”—one group subject to failure and the other never. This case
can be accommodated with

S(t) = pS∗(t) + (1 − p)

where 1 − p > 0 is the proportion for the super-survivors and S∗(t) is a la-
tent survival function of those destined to fail; observe S(∞) = 1 − p > 0.
Regressors can be introduced into p and S∗(t) to result in p(z) and S∗(t|x)
with z and x possibly overlapping, and p(z) may be specified as logit and
S∗(t|x) as Weibull. See, e.g., Zhang and Peng (2007) and the references
therein.

Suppose now that y|x follows Weibull with parameters θ(x) = exp(x′β)
and α. Then

ln y = (−x)′
(

β

α

)
+ u, E(u|x) =

−0.577
α

, V (u|x) =
1.645
α2

.

Unlike exponential distribution, there is an unknown constant α in V (u|x).
Doing the LSE of ln(y) on −x, we can estimate γ ≡ β/α consistently with
gN , and

s2
N ≡ 1

N

∑
i

{ln(yi) + x′igN}2 →p 1.645
α2

.

From this, an estimator aN for α is (1.645)0.5/sN . An estimate bN for β
is then obtained by bN = gNaN . The intercept is still off the target due
to E(u|x) = −0.577/α, but this is not of the main concern. If censoring is
present, this LSE is inconsistent. Instead, we can do MLE in the following.

Using the Weibull hazard specification with θ = exp(x′β), the Weibull
log-likelihood function and the gradient allowing for right-censoring become

Q(a, b) =
∑

i

[di{ln(a) + (a − 1) ln(yi) + x′ib} − ya
i exp(x′ib)];

∂Q(a, b)
∂a

=
∑

i

[
di

a
+ {di − ya

i exp(x′ib)} ln(yi)
]

,

∂Q(a, b)
∂b

=
∑

i

{di − ya
i exp(x′ib)}xi.

With this, the MLE can be implemented; Q(a, b) includes the exponential
duration log-likelihood function as a special case when a = 1.

The Weibull hazard with θ = exp(x′β) is

αtα−1 · exp(x′β)

where the part αtα−1 is called the “baseline hazard”—“baseline” as it does
not depend on the individual characteristics x. The part tα reflects the com-
monalities behind the durations (e.g., a common pattern of recovery from a
disease). If all individuals’ durations start at the same calendar time, then tα
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may reflect the macro (weather, economy, wide spread diseases, etc.) effects
common to everybody. This kind of hazard with a baseline hazard λo(t) and
a function g(x) of x multiplied together (λo(t) · g(x)) as in the last display is
called a “proportional hazard.”

The above log-linear model, now written as ln y = −x′γ + u, may still
hold without the Weibull assumption, in which case the LSE is still valid
and there will be no need to bother with α. But the interpretation with α is
buried in γ (= β/α) if indeed Weibull holds: if α > 1, then γ gets smaller in
magnitude—time “accelerates.” In the log-linear model, the predicted dura-
tion of an individual with xi can be easily done with ŷi = exp(x′iγ̂), whereas
such a prediction is cumbersome if EN (y|x) ≡

∫∞
0

Ŝ(t|x)dt is used after the
Weibull MLE where Ŝ(t|x) ≡ exp(− exp(x′β̂) · tα̂).

5.4 Unobserved Heterogeneity and Other Parametric
Hazards

In the usual linear regression model, one way to view the error term is
that it is a combination of omitted variables uncorrelated with the regressors.
Suppose we include an unobserved term vi in the Weibull parameter θ to take
into account omitted variables uncorrelated with xi as already done once for
count responses:

θ(xi, vi) = exp(x′iβ + vi) =⇒ ln(yi) = (−x)′i
β

α
− vi

α
+ ui

where −vi/α+ui is the error term of this linear model. This can be estimated
with LSE if there is no censoring. The unobserved term v is often called an
“unobserved heterogeneity,” whereas u is called just an error term.

If we want to apply MLE either for the efficiency or to handle a censoring
problem, the presence of v poses a difficulty. Since v is not observed—we only
observe (x′, y)—we need to specify a distribution for v to integrate it out of
the likelihood function. If we allow v to depend on x, the precise form of
the dependence should be spelled out (i.e., how x enters the distribution
function of v|x). Consequently the estimation of α and β depends critically
on the assumed distribution of v|x, which is not needed in the above LSE. Not
allowing for v in the MLE will cause a downward bias in duration dependence
estimation as will be shown shortly. Thus, if the censoring percentage is low,
using LSE for the linear model rather than MLE may be a good idea.

Ignore x and imagine λ(v) = vθ; that is, the hazard rate depends only
on v and a constant θ. Assume v takes 1 and 2 with the equal probability.
Then one half of the population have hazard θ (Group 1) and the other half
has hazard 2θ (Group 2). Initially there are the equal proportions of Group
1 and Group 2 subjects in the population, for P (v = 1) = P (v = 2) = 0.5.
As time progresses, however, subjects in Group 2 with the higher hazard
rate will leave the state, and the remaining population will have more and
more Group-1 subjects. This scenario is indistinguishable from the situation
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λ′(t) < 0. Thus even when we have λ′(t) = 0 for all t for each subject, if we
estimate λ(t) ignoring v, we will end up with λ′(t) < 0, which is a downward
bias.

Unlike Exponential or Weibull, some distributions exhibit an “up-and-
down” or “down-and up” duration dependence. For example,

Log-logistic integrated hazard : Λ(t) = ln(1 + θtα), α, θ > 0

=⇒ λ(t) =
θαtα−1

1 + θtα
and S(t) =

1
1 + θtα

.

The numerator of λ(t) is the same as the Weibull hazard. When α ≤ 1, the
hazard declines monotonically; otherwise, it goes up and down. See Figure 4.
In contrast, Exponential power hazard with α < 1 shows an U-shaped (down-
and-up) hazard with two parameters θ and α: with θ, α > 0,

λ(t) = θαtα−1 exp(θtα) and S(t) = exp{1 − exp(θtα)}.

Figure 4: Log-Logistic Hazards

Klein and Moeschberger (2003, pp. 38 and 44) listed many other para-
metric hazard functions, and one fairly comprehensive distribution is gener-
alized gamma with three parameters:

λ(t) =
θβαtαβ−1 exp(−θtα)∫∞

θtα zβ−1e−zdz
=

θβαtαβ−1 exp(−θtα)/Γ(β)∫∞
θtα zβ−1e−zdz/Γ(β)

(
=

f(t)
S(t)

)
;

the name comes from gamma distribution when α = 1. Generalized gamma
includes Weibull when β = 1 and Exponential when α = β = 1; it also
includes log-normal hazard as a limiting case when β → ∞ which can also
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have an up-and-down hazard similar to log-logistic hazard. But generalized
gamma hazard does not allow for U-shaped hazard.

Saha and Hilton (1997) generalized the above exponential power hazard
to a three-parameter family:

λ(t) = γαtα−1 exp(θtα) and S(t) = exp
[γ

θ
{1 − exp(θtα)}

]
, where

α, γ > 0.

This includes the above exponential power hazard as a special case when γ =
θ, and Weibull hazard as a limiting case as θ → 0. With γ = exp(x′β) (or θ =
exp(x′β)), x can be introduced into the model. This hazard is quite flexible,
allowing for constant, increasing/decreasing, U-shaped, and inverse U-shaped
hazards; for (inverse) U-shaped hazard, the turning point is {(1−α)/αθ}1/α.
In the empirical comparison study of Seetharaman and Chintagunta (2003),
this “generalized exponential power hazard” performed better than other
parametric hazards. Of course, it is possible that the true hazard (e.g., double
humps) is not covered by a specified parametric hazard in use. This motivates
“semiparametric estimators” which do not require specifying the distribution
of y|x fully.

5.5 Invariances and Extreme Value Distributions*

With Λ(t) strictly increasing in t,

exp(−Λ(t)) = S(t) = P (y > t) = P{Λ(y) > Λ(t)}.
From the first and last terms, defining a ≡ Λ(t) > 0,

P (Λ(y) > a) = exp(−a)

which is the survival function for Expo(1). That is,

Λ(y) follows Expo(1)

regardless of the distribution of y. This invariance is analogous to F (y) ∼
U [0, 1] where F (·) is the df of a continuously distributed rv y.

Observe

1 − exp(−a) = P (Λ(y) ≤ a) = P (− ln Λ(y) ≥ − ln(a)).

Define w = − ln Λ(y) and b = − ln(a) (⇐⇒ a = e−b) to get

1 − exp(−e−b) = P (w ≥ b).

The left-hand side is the survival function for “type-I extreme value distri-
bution” with location parameter 0 and scale parameter 1, which is explained
further below. That is,

− ln Λ(y) follows the “standard” type-I extreme value distribution

regardless of the distribution of y.
When a rv z follows Type I extreme value distribution (or Gumbel dis-

tribution) with parameter μ for location and ψ for scale, it holds that
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(a): P (z ≤ zo) = F (zo) = exp(−e−(zo−μ)/ψ), −∞ < z < ∞,
−∞ < μ < ∞, ψ > 0

(b): E(z) = μ + ψ · γ where γ is the “Euler’s constant” � 0.577

(c): V (z) = ψ2π2/6.

Figure 5 shows three densities with μ = 0 and ψ = 0.5, 1.0, 1.5.
When μ = 0 and ψ = 1 (the “standard” case), differentiate the type I

extreme value distribution function exp(−e−t) wrt t to get the density

exp(−e−t) · exp(−t) = exp(−e−t − t)

which is asymmetric around 0 and unimodal at 0; this can be seen by differ-
entiating the density, as well as by looking at Figure 5.

From the invariant distribution of − ln Λ(y), when y follows Expo(1),
− ln Λ(y) = − ln y follows the “standard” type-1 extreme value distribution.
More generally, when y follows Expo(θ), − ln Λ(y) = − ln(θy) = − ln y − ln θ
follows the “standard” type-I extreme value distribution; equivalently, − ln y
follows type-I extreme distribution with μ = ln θ and ψ = 1. Hence, using
(b) and (c) above, we get

E(− ln y) � ln θ + 0.577 (=⇒ E(ln y) � − ln θ − 0.577),

V {− ln(y)} � π2/6 � 1.645

which is one of the properties mentioned for exponential distribution.

Figure 5: Type-I Extreme Value Distribution Densities
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Other than Type-1 extreme value distributions, there are two more types
of extreme value distributions (Johnson et al., 1995): for some parameters μ,
ψ, and α such that ψ, α > 0,

Type 2 : P (z ≤ zo) = 0 when zo < μ,

= exp{−(
zo − μ

ψ
)−α} when zo ≥ μ

Type 3 : P (z ≤ zo) = exp{−(
μ − zo

ψ
)α} when zo ≤ μ

= 1 when zo > μ.

In each type, sometimes the distribution of −z is also called an extreme value
distribution.

In Type 3, replace z with −z, zo with −t, and μ with 0 to get, when
t ≥ 0,

P (−z ≤ −t) = P (z ≥ t) = exp{−(
t

ψ
)α} = exp(−θtα) where θ ≡ ψ−α.

This is nothing but the Weibull distribution with parameters θ and α; Type
3 is sometimes called Weibull. Whereas type 1 has an exponential function
of t in exp(·), type 3 has a polynomial function of t in exp(·). The reason for
the qualifier “extreme” is that all three types of distributions are obtained as
the limiting distributions of the maximum among N iid rv’s.



CHAPTER 6

PARAMETRIC METHODS FOR MULTIPLE

EQUATION LDV MODELS

Going further from single equation models with limited dependent vari-
ables (LDV) in the preceding chapter, multiple equations with LDV’s are
examined. Multiple equations with LDV include multinomial (or multiple)
choice, sample-selection (or selected-sample) models, LDV models with en-
dogenous regressors, simultaneous equations with LDV’s, and panel data
binary-response models. Also, duration analysis for competing risks is in-
troduced.

1 Multinomial Choice Models

This section deals with multinomial choice which is a multiple-equation
LDV model. With many equations in LDV’s, the limited observability in each
equation becomes “aggravated or compounded” and the estimation is more
difficult than for single equation LDV models or linear multiple equations.
While ordered response models extend the binary response model “horizon-
tally” by allowing more ordered categories, multinomial (or multiple) choice
models extend the binary response model “vertically” by considering multiple
response equations jointly.

Suppose we have N individuals with each one having J many alterna-
tives to choose from. Each person will choose one alternative that yields the
highest utility or satisfaction, depending on his/her attributes and the char-
acteristics of the alternatives. One example is a transportation mode choice
problem where the alternatives are bus, car, and train. Let i index the indi-
viduals and j index the alternatives. Here, the explanatory variables are of
three types: the first type varies across i and j (cost and time for each mode),
the second type varies only across i (attributes of people such as income, sex,
and race), and the third type varies only across j (some characteristics of
mode common to all i such as whether the transportation mode has a dining
facility). Another example is industry choice for job where the alternatives
are manufacturing, service, government, and so on. Recent reviews on multi-
nomial choice econometrics can be found in McFadden (2001), Train (2003),
and Hensher et al. (2005). Part of this section draws on Lee and Kim (2007).

Myoung-jae Lee, Micro-Econometrics, DOI 10.1007/b60971 6, 229
c© Springer Science+Business Media, LLC 2010
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1.1 Basics

Person i gets “utility” or “satisfaction” sij from alternative j. In linking
satisfaction to observed and unobserved variables, consider two models

(i) : sij = x′ijδ + uij , (ii) : sij = z′iηj + uij

where xij and zi are kx × 1 and kz × 1 regressor vectors, respectively, and
uij is an error term. Let the first component of zi be 1 for all i so that the
first component of ηj is the “alternative-specific intercept,” which includes
alternative-specific characteristics common to all i. A model combining (i)
and (ii) is

(iii) : sij = x′ijδ + z′iηj + uij .

The term z′iηj in (ii) and (iii) needs some justification before it is used.
Suppose we have z′iη in (iii) instead of z′iηj . Then the effect of zi on all sij ,
j = 1, ...J , is the same. This means that z′iη plays no role in the choice and
zi drops out of the picture. If we use z′iηj to include zi in our choice analysis,
we need to justify why zi has different coefficients for the alternatives. For
instance, if zi is income, then we should question why an unit increase in
income changes the utilities of different transportation modes in different
ways. When we use z′iηj , we can also think of using xijδj instead of xijδ,
which leads to a model more general than (iii):

(iv) : sij = x′ijδj + z′iηj + uij .

In (iv), xij and zi are treated equally in the sense that both are allowed to
have alternative-variant slopes. Model (iii) is a special case of (iv) with the
restriction δ1 = δ2 =, ...,= δJ . We will use (iv) from now on.

Clearly, zi is the “individual-variant but alternative-constant” regressors
and xij is the “individual- and alternative-variant” regressors. But xij may
also include interaction terms such as zimj where mj is an alternative-variant
variable; e.g., zi is income and mj = 1 if transportaion mode j has a first-
class section and 0 otherwise. Here, the effect of mj on the utility depends on
person i’s income level. It is also possible to have more “elaborate” interaction
terms in xij such as the original xij times zi or mj although they may be
rarely used in practice; e.g., xij is the cost of alternative j for person i and
zi is income.

Among the J-many alternatives, alternative j will be chosen if it gives
the maximum satisfaction, that is, if (ignoring ties)

sij > sim ∀m = j ⇐⇒ sij − si1 > sim − si1 ∀m = j;

this is a “location normalization” using the first alternative as the base. From
this, we use not sij = x′ijδj + z′iηj + uij , but

sij − si1 = x′ijδj − x′i1δ1 + z′i(ηj − η1) + uij − ui1

with parameters
δ1, ..., δJ , η2 − η1, ..., ηJ − η1.
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Although (iv) is more general than (i) and (ii), in practice, we transform
our model into one that looks like (i). Suppose J = 3 and consider the
following differences of the regression functions:

2 and 1: x′i2δ2 + z′iη2 − (x′i1δ1 + z′iη1) = x′i2δ2 − xi1
′δ1 + z′i(η2 − η1);

3 and 1: x′i3δ3 + z′iη3 − (x′i1δ1 + z′iη1) = x′i3δ3 − xi1
′δ1 + z′i(η3 − η1).

Define wi2, wi3, and β as

wi2 ≡ (−x′i1, x
′
i2, 0

′
kx

, z′i, 0
′
kz

)′, wi3 ≡ (−x′i1, 0
′
kx

, x′i3, 0′kz
, z′i)

′,

β ≡ (δ′1, δ
′
2, δ

′
3, η′2 − η′1, η

′
3 − η′1)

′,

where 0k is the k × 1 zero vector. Then the above regression function differ-
ences can be written simply as w′i2β and w′i3β, respectively, which yields the
same form as (i).

If (iii) is adopted under δ1 = δ2 = δ3 ≡ δ, then

2 and 1: x′i2δ + z′iη2 − (x′i1δ + z′iη1) = (x′i2 − xi1)′δ + z′i(η2 − η1);

3 and 1: x′i3δ + z′iη3 − (x′i1δ + z′iη1) = (x′i3 − xi1)′δ + z′i(η3 − η1).

In this case, to get the same form as (i), wi2, wi3, and β should be defined as

wi2 ≡ (x′i2 − x′i1, z′i, 0
′
kz

)′, wi3 ≡ (x′i3 − x′i1, 0′kZ
, z′i)

′ and

β ≡ (δ′, η′2 − η′1, η
′
3 − η′1)

′.

Define wi as the collection of all components of wij ’s, j = 1, ..., J . Also
define

yij = 1 if person i chooses j, and 0 otherwise.

Then we get

J∑
j=1

yij = 1, and
J∑

j=1

P (yij = 1|wi) = 1 for all i.

These identities will come handy later.

1.2 Multinomial Probit (MNP)

1.2.1 Choice Probabilities and Identified Parameters

Setting J = 3 and omitting i for simplicity, we get

P (y1 = 1|w) = P (s1 > s2, s1 > s3 |w)
= P (s2 − s1 < 0, s3 − s1 < 0 |w)

= P (w′2β + u2 − u1 < 0, w′3β + u3 − u1 < 0|w)

= P{u2 − u1 < −w′2β, u3 − u1 < −w′3β|w}
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P (y2 = 1|w) = P (s1 < s2, s2 > s3 |w)
= P (s2 − s1 > 0, s2 − s1 − (s3 − s1) > 0 |w)

= P{u2 − u1 > −w′2β, (u2 − u1) − (u3 − u1) >

−(w2 − w3)′β |w}

P (y3 = 1|w) = P (s3 > s1, s3 > s2 |w)
= P (s3 − s1 > 0, s3 − s1 − (s2 − s1) > 0 |w)

= P{u3 − u1 > −w′3β, (u3 − u1) − (u2 − u1) >

−(w3 − w2)′β |w}.

Here all choice probabilities are written in terms of “the difference from the
first alternative.”

Define
v2 ≡ u2 − u1, v3 ≡ u3 − u1, σ2 ≡ V (v2)

and rewrite P (yj = 1|w), j = 1, 2, 3, as

P (y1 = 1|w) = P{v2 < −w′2β, v3 < −w′3β |w}

= P

{
v2

σ
< −w′2

β

σ
,

v3

σ
< −w′3

β

σ
|w

}
,

P (y2 = 1|w) = P{v2 > −w′2β, v2 − v3 > −(w2 − w3)′β |w}

= P

{
v2

σ
> −w′2

β

σ
,

v2 − v3

σ
> −(w2 − w3)′

β

σ
|w

}
,

P (y3 = 1|w) = P{v3 > −w′3β, v3 − v2 > −(w3 − w2)′β |w}

= P

{
v3

σ
> −w′3

β

σ
,

v3 − v2

σ
> −(w3 − w2)′

β

σ
|w

}
.

In view of this, the case with J can be written as

P (y1 = 1|w) = P

{
v2

σ
< −w′2

β

σ
, ...,

vJ

σ
< −w′J

β

σ
|w

}
,

P (y2 = 1|w) = P

{
v2

σ
> −w′2

β

σ
,

v2 − v3

σ
> −(w2 − w3)′

β

σ
, ...,

v2 − vJ

σ
> −(w2 − wJ)′

β

σ
|w

}
,

...

P (yJ = 1|w) = P

{
vJ

σ
> −w′J

β

σ
,
vJ − v2

σ
> −(wJ − w2)′

β

σ
, ...,

vJ − vJ−1

σ
> −(wJ − wJ−1)′

β

σ
|w

}
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where vj and wj for j ≥ 4 are defined analogously to v3 and w3. The choice
probabilities depend on the joint distribution of (v2/σ, ..., vJ/σ). The param-
eters to estimate are β/σ and the variance matrix of (v2/σ, ..., vJ/σ).

To see better what is identified in the variance matrix, consider the case
J = 3. In the variance matrix of (v2/σ, v3/σ), only

σ23 ≡ COV
(v2

σ
,
v3

σ

)
and σ2

3 ≡ V
(v3

σ

)
are unknown (V (v2/σ) = 1 by construction). Overall, the parameters to
estimate when J = 3 is

γ ≡
(

β′

σ
, σ23, σ2

3

)′
⇐⇒

(
β′

σ
, ρ23, σ

2
3

)′
where ρ23 ≡ COR

(v2

σ
,
v3

σ

)
=

σ23

σ3

where β is identified only up to the scale σ as in the binary model. If J = 4,
then γ becomes

γ ≡
(

β′

σ
, ρ23, ρ24, σ2

3, ρ34, σ2
4

)′
.

In the general case with J ,

γ =
(

β′

σ
, ρ23, ..., ρ2J , σ2

3, ρ34, ..., ρ3J , σ2
4, ..., ..., ..., σ2

J−1, ρJ−1,J , σ2
J

)′
.

1.2.2 Log-Likelihood Function and MOM

Defining Pij(γ) as

Pij(γ) = P (i chooses j|wi),

the log-likelihood function to be maximized wrt g is

N∑
i=1

J∑
j=1

yij lnPij(g) =⇒ the first derivatives are
N∑

i=1

J∑
j=1

yij
∂ lnPij(g)

∂g
.

The score function is
∑J

j=1 yij∂ lnPij(g)/∂g, and
√

N(gN − γ) follows
N(0, I−1

f ) where If can be estimated consistently with the outer-product
of the score function as usual:

1
N

N∑
i=1

⎧⎨⎩
J∑

j=1

yij
∂ lnPij(gN )

∂g

⎫⎬⎭
⎧⎨⎩∑

j

yij
∂ lnPij(gN )

∂g′

⎫⎬⎭ →p If .

Differentiate the identity
∑J

j=1 P (yij = 1|wi) = 1, which holds for any
given g, to get

J∑
j=1

Pij(g)
∂Pij(g)/∂g

Pij(g)
=

J∑
j=1

Pij(g)
∂ lnPij(g)

∂g
= 0.
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Subtract this from the first-order condition of the MLE to get

N∑
i=1

J∑
j=1

{yij − Pij(g)}∂ lnPij(g)
∂g

= 0.

This can be viewed as a moment condition where yij − Pij(g) is the error
term and ∂ lnPij(g)/∂g is the instrument.

If we assume that u1 to uJ are jointly normally distributed, then v2 to vJ

are also jointly normally distributed. In this case, we get multinomial probit
(MNP)where Pij(g) is obtained by integrating a J − 1 dimensional normal
density function; see Hausman and Wise (1978) who also considered random
coefficients. Numerical integration in high dimensions (say, greater than 4)
is computationally burdensome and not reliable. Although “method of simu-
lated moments” to be examined later can solve this integration problem, the
real problem with MNP is the difficulty in estimating the variance matrix
parameters. Even with J = 3, often it is difficult to estimate both σ23 and
σ3. Put it differently, the log-likelihood function often hardly changes as σ23

or σ3 changes. STATA has the command mprobit to implement MNP.
The identification of parameters in MNP is “fragile” when there are no

exclusion restrictions that some explanatory variables in sij are excluded
from sim for all m = j (i.e., the variables have zero coefficients in sim), as
noted by Keane (1992). Keane (1992, p. 194) also cited a working paper by
Bunch and Kitamura stating that nearly half the existing applications of
MNP have used non-identified models. Train (2003) remarked also on non-
identified MNP models in the literature. Some specific examples for using
non-identified MNP models in political science can be found in Lee and Kang
(2009).

1.2.3 Implementation

Suppose there is a program to implement MNP and the program provides
a routine to compute

Ψ(c1, c2, ρ) ≡
∫ c1

−∞

∫ c2

−∞
ψ(ε1, ε2, ρ)dε1dε2

where ψ is the joint density for two N(0, 1) rv’s with correlation ρ:

ψ(ε1, ε2, ρ) =
1

2π
√

1 − ρ2
exp

{
−ε2

1 − 2ρε1ε2 + ε2
2

2(1 − ρ2)

}
.

To make use of this when J = 3, we need to express the choice probabilities
in terms of two error terms; the obvious choice is v2 and v3. Setting σ = 1 to
simplify notations, define COR(v2, v3) = ρ. Then,
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P (choose 1|w) = P (v2 < −w′2β,
v3

σ3
< −w′3

β

σ3
|w)

= Ψ(−w′2β,−w′3
β

σ3
, ρ),

P (choose 2|w) = P (v2 > −w′2β, v3 − v2 < −w′3β + w′2β |w)

= P (−v2 < w′2β, v3 − v2 < −w′3β + w′2β |w),

which needs to be rewritten to make use of Ψ as follows; once this is done,
P (choose 3|w) is 1 − P (choose 1|w) − P (choose 2|w). Observe

V (v3 − v2) = σ2
3 + 1 − 2ρσ3 = (σ3 − ρ)2 + 1 − ρ2 > 0

=⇒ σ∗ ≡ SD(v3 − v2) = (σ2
3 + 1 − 2ρσ3)1/2,

COR(−v2, v3 − v2) =
E(v2(v2 − v3))

σ∗
=

1 − ρσ3

σ∗
.

Hence P (choose 2|w) is

Ψ
{

w′2β,
w′2β − w′3β

(σ2
3 + 1 − 2ρσ3)1/2

,
1 − ρσ3

(σ2
3 + 1 − 2ρσ3)1/2

}
,

showing that (β′, ρ, σ3)′ is to be estimated.
With the choice probabilities expressed in terms of the identified pa-

rameters, the rest of MNP iteration can be done with numerical deriva-
tives. Because v2 = u2 − u1 and v3 = u3 − u1, if u1, u2, u3 are iid, then
COR(v2, v3) = 0.5 and σ3 = 1. That is, ρ = 0.5 and σ3 = 1 may serve as a
good starting value for the numerical maximization.

1.3 Multinomial Logit (MNL)

1.3.1 Choice Probabilities and Implications

A rv u following (the standard) type-1 extreme value distribution has
the df exp(−e−u) and density exp(−u− e−u). If ui1, .., uiJ are iid with type I
extreme value distribution, then we get the following multinomial logit (MNL)
specification as McFadden (1974) showed:

Pij(β) =
exp(x′ijδj + z′iηj)∑J

j=1 exp(x′ijδj + z′iηj)
.

Although the scale factor is not explicit in β, β should be viewed as divided
by an unknown positive scale factor as this was the case for binary logit.
The assumption on ui1, ..., uiJ is restrictive, because the error terms should
have the same variance and be independent of one another. This essentially
amounts to throwing away the covariance matrix estimation problem in MNP.
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It is convenient to define qij and αj as follows:

qij ≡ (x′ij , z
′
i)
′ and αj ≡ (δ′j , η

′
j)
′

=⇒ sij = x′ijδj + z′iηj + uij = q′ijαj + uij .

The MNL specification is then Pij(β) = exp(q′ijαj)/
∑

j exp(q′ijαj), and thus

exp(q′ijαj)∑
j �=m exp(q′ijαj)

=
exp(q′ijαj)∑J

j=1 exp(q′ijαj)

∑J
j=1 exp(q′ijαj)∑
j �=m exp(q′ijαj)

= Pij(β) ·
∑J

j=1 exp(q′ijαj)∑
j �=m exp(q′ijαj)

:

if alternative m is dropped from the choice set, then the new choice probability
in the remaining alternatives is the old choice probability Pij(β) times a factor
common to all alternatives.

Also observe that the ratio of the probabilities Pij and Pil, j = l, is

Pij(β)
Pil(β)

= exp(x′ijδj + z′iηj − x′ilδl − z′iηl) = exp{(wij − wil)′β} :

the availability of the other alternatives does not play any role in this ratio
because the attributes of the other alternatives are not in wij − wil. This
feature, known as independence of irrelevant alternatives (IIA), is unlikely
to hold in real life when some other alternatives are similar to either j or
l in their attributes. A well-known example against IIA is three commuting
alternatives, a blue bus, a red bus, and a car, where the probability ratio of
red bus to car should depend on the blue bus availability because blue bus
will take away one half of the red bus commuters.

Consider MNL with J alternatives and “J-but-m” alternatives. In both
cases, the ratio of the choice probabilities Pij(β)/Pil(β) where j, l = m is
the same. Thus one way to test for IIA is applying MNL twice (first with J
alternatives, and then with J minus alternative m) to see if choice-probability
ratios change or not. Another way is to do “nested logit” explained later which
relaxes IIA and includes MNL as a special case. See McFadden (1987) and
Fry and Harris (1996) for more on specification tests for MNL.

Divide both the numerator and denominator of Pij(β) with exp
(x′i1δ1 + z′iη1) to get the normalized choice probabilities

Pi1 =
1{

1 +
∑J

j=2 exp(w′ijβ)
} , Pij =

exp(w′ijβ){
1 +

∑J
j=2 exp(w′ijβ)

} ,

j = 2, ..., J ;

recall β = (δ′1, ..., δ
′
J , η′2−η′1, ..., η

′
J−η′1)

′. Once this is substituted into the log-
likelihood

∑N
i=1

∑J
j=1 yij lnPij(β), MNL can be implemented. The likelihood

function is well behaving and multinomial logit is computationally attractive
despite its rigid specification; it may be called the “LSE” of multinomial
choice.
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1.3.2 Further Remarks

MNL renders a simple moment condition of the form E
{∑J

j=2 wij

(yij − E(yij |wi))
}

= 0. To see this, observe

∂ lnPi1(b)
∂b

= −
J∑

j=2

wijPij ,
∂ lnPij(b)

∂b
= wij −

J∑
j=2

wijPij , j = 2, ..., J.

Substitute this into the first-order condition
∑N

i=1

∑J
j=1 yij∂ lnPij(b)/

∂b = 0 to get

N∑
i=1

⎧⎨⎩−yi1

J∑
j=2

wijPij +
J∑

j=2

yijwij −
J∑

j=2

yij

J∑
j=2

wijPij

⎫⎬⎭ .

Substitute
∑J

j=2 yij = 1 − yi1 to obtain

=
N∑

i=1

⎧⎨⎩
J∑

j=2

yijwij −
J∑

j=2

wijPij

⎫⎬⎭ =
N∑

i=1

J∑
j=2

wij(yij − Pij) = 0.

McFadden and Train’s (2000) “mixed logit” generalizes MNL by allowing
for random coefficients in MNL. In mixed logit, β in w′ijβ of MNL follows,
say, a joint normal distribution with density ϕ(·|βo,Γo) where βo is the mean
and Γo is the variance matrix; conditional on the realized β, we get MNL
and ϕ(·|βo,Γo) is a “mixing density.” Let the dimension of wij be τ × 1. The
mixed logit log-likelihood function to maximize for bo and Go is

N∑
i=1

J∑
j=1

yij ln

{∫ exp(w′ijb)∑J
j=1 exp(w′ijb)

ϕ(b|bo, Go)db

}

=
N∑

i=1

J∑
j=1

yij ln

{∫ exp(w′ijb)∑J
j=1 exp(w′ijb)

ϕ(b|bo, Go)
ϕ(b|0τ , Iτ )

ϕ(b|0τ , Iτ )db

}

�
N∑

i=1

J∑
j=1

yij ln

{
1
S

S∑
s=1

exp(w′ijbs)∑J
j=1 exp(w′ijbs)

ϕ(bs|bo, Go)
ϕ(bs|0τ , Iτ )

}
.

where bs is drawn from the τ -variate iid N(0, 1) and S is the random draw
number; the last step is a “simulated MLE” to be explained further later.
One caution for the last equality is that, although ϕ(bs|0τ , Iτ ) is used there
because zero-mean normal random numbers are readily available, if bo dif-
fers much from 0, then ϕ(bs|bo, Go)/ ϕ(bs|0τ , Iτ ) may become almost in-
finity for all s. For instance, when bo = 100 and bs = 120, we might get
ϕ(120|100, Go)/ϕ(120|0τ , Iτ ) � ∞ as ϕ(120|0τ , Iτ ) � 0.
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Another formulation of mixed logit is an “error component model,” say
uij = ũij + ε̃ij , where ũi1, ..., ũiJ are iid with type I extreme-value distri-
bution (for MNL feature) and ε̃i1, ..., ε̃iJ are allowed to be related to one
another and follow a specified distribution up to some unknown parameters;
ε̃i1, ..., ε̃iJ then give flexible substitution patterns among the alternatives.
Implementing mixed logit, however, seems to require much care despite its
attractive theoretical properties as can be seen in Hensher and Greene (2003).
For instance, without no restriction on Γo, mixed logit would run into the
same kind of problem as MNP has. A simplification is using a diagonal Γo

or allowing random coefficients only for some regressors. Deciding on these
matters, specifying the distribution for ε̃ij and interpreting the estimation
results (such as finding marginal effects) would be challenging, to say the
least. An empirical example of mixed logit for mobile phone choice can be
found in Ida and Kuroda (2009).

1.3.3 Marginal Effects

As in binary response and ODR, it is interesting to see marginal ef-
fects of the regressors. As in ODR, we use the marginal effects defined as
E(∂Pij/∂xim) and E(∂Pij/∂zi). Even if a variable appears only in wij , it
influences all choice probabilities, because wij appears in the denominator
1 +

∑J
j=2 exp(w′ijβ). The following marginal effects apply only when there

are no functionally dependent regressors. For example, if xi,j+1 = x2
i,j , then

the marginal effect wrt xij involves the derivatives wrt xij and xi,j+1, and
this will require some modifications.

Define

Si ≡ 1 +
J∑

m=2

exp(w′imβ)

and observe

∂Pij

∂xi1
= S−2

i

{
Si exp(w′ijβ)(−δ1) − exp(w′ijβ)

J∑
m=2

exp(w′imβ)(−δ1)

}

= (−δ1)Pij − Pij

J∑
m=2

(−δ1)Pim

= (−δ1)Pij − (−δ1)Pij(1 − Pi1) = −δ1PijPi1 ∀j = 1;

∂Pij

∂xij
= S−2

i [Si exp(w′ijβ)δj − exp(w′ijβ) exp(w′ijβ)δj ]

= Pijδj − P 2
ijδj = δjPij(1 − Pij) ∀j;

∂Pij

∂xim
= S−2

i [− exp(w′ijβ) exp(w′imβ) · δm] = −δmPijPim ∀m = 1, j;
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∂Pi1 is omitted, because a derivative for Pi1 can be found from those for
Pi2, ...., Pi3 using the restriction

∑
j Pij = 1 =⇒ ∑

j ∂Pij = 0.
Combining the three cases in the preceding display, we get

E

(
∂Pij

∂xi1

)
= −δ1E(PijPi1);E

(
∂Pij

∂xij

)
=δjE{Pij(1 − Pij)} for j =1;

E

(
∂Pij

∂xim

)
= −δm E(PijPim) ∀m = 1, j, j = 2, ..., J.

If δ1, ..., δJ > 0, then the effect on its own probability is always positive,
whereas the effects on the other probabilities are always negative. Also,

E

{
∂Pij/Pij

∂xim/xim

}
= E

{
∂Pij

∂xim

xim

Pij

}
= −δmE(ximPim) ∀j = m :

the cross-elasticities of Pj wrt xm are the same across j, which is highly
restrictive.

As for the effect of zi, define

η̄j ≡ ηj − η1, j = 2, ..., J

and observe, for j = 1,

∂Pij

∂zi
= S−2

i

{
Si exp(w′ijβ)η̄j − exp(w′ijβ)

J∑
m=2

exp(w′imβ)η̄m

}

= Pij η̄j − Pij

J∑
m=2

Pimη̄m = Pij(1 − Pij)η̄j − Pij

∑
m �=1,j

Pimη̄m

=⇒ E

(
∂Pij

∂zi

)
= E{Pij(1 − Pij)}η̄j − E

⎧⎨⎩Pij

∑
m �=1,j

Pimη̄m

⎫⎬⎭ .

Finally, if desired, then 1 − (lur/lr) may be used as a pseudo R2 where lur

is the maximized log-likelihood and lr is the maximized log-likelihood using
only 1 as the regressor for each alternative.

1.3.4 An Empirical Example: Presidential Election

Turning to an empirical example, we show part of the results in Lee and
Kang (2009) who analyzed the 1992 US presidential election with three major
candidates (Clinton, Bush, Perot); Perot is the normalizing alternative.

Among the regressors used, only age and age2/100 are cardinal, whereas
all the others are either dummy or ordinal variables. Two dummy variables
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appear in the table below (more dummies were used in Lee and Kang (2009)),
with “R” denoting the respondent:

fin.-better: 1 if R feels his/her personal finance is better;
female: 1 if R is female.

Also, the following ordinal variables appear in the table below (again, more
ordinal variables were used in Lee and Kang (2009)):

ideology-P: 1 to 7 on R’s placement of Perot ideology for liberal to
conservative;

ideology-C: 1 to 7 on R’s placement of Clinton ideology for liberal
to conservative;

ideology-B: 1 to 7 on R’s placement of Bush ideology for liberal to
conservative;

ideology-R: 1 to 3 for R being liberal to conservative;
education: 1 to 7 for grade 8 or less to graduate study;
income: 1 to 24 for below $3,000 to above $105,000 per year;
party: 1 to 3 for Democrat to Republican;
abortion: 1 to 3 for anti-abortion to pro-abortion;
health: 1 to 7 on health insurance opinion for private insurance

to government insurance;
welfare: 1 to 7 on welfare program opinion for removal to in-

crease.

These ordinal variables pose a problem: unless they are cardinal, differences
do not make sense. For instance, the difference 2 − 1 does not necessarily
mean the same magnitude as the difference 7− 6 in the variables taking 1 to
7. In principle, those 7-category ordinal variables should be used to generate
6 dummy variables. But, given the data size (N = 894) and the number
of the ordinal variables, this would lead to excessively many parameters to
estimate. Hence, the ordinal variables were regarded as cardinal. Among the
regressors, only ideology-P, -C, -B are alternative-variant.

In Table 1 where the numbers in (·) are t-values, one category increment
(out of seven) in Clinton ideology increases the Clinton choice probability
by 0.052 and decreases the Bush choice probability by 0.027; “moving to the
center” of Clinton seems to have worked. The two intercepts are significantly
negative with substantial magnitude. If most regressors have little explana-
tory power for Perot, then the Perot’s intercept being much larger than both
Clinton’s and Bush’s might be attributed to “voters angry with politics as
usual.” In the following, we will interpret the column ηclinton − ηbush that is
the difference of the two columns on its left:

ηclinton − ηbush = ηclinton − ηperot − (ηbush − ηperot)
which is free of non-identified ηperot.
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Along with this, the two marginal effect columns will be examined, as these
are easier to interpret.

The age function slopes upward for Clinton (relative to Bush) and then
downward against Clinton, showing that Clinton is more popular than Bush
among relatively younger voters. The age “turning point” may be seen by
solving 0.153 − 0.163(2 · age/100) = 0 where the two fractional numbers are
from the ηclinton−ηbush column, and 2·age/100 is the derivative of age2/100.
The solution is about 47.

Education works strongly for Bush (relative to Clinton); one category
increment out of seven increases the Bush choice probability by 0.045. If one
feels financially better off, then that increases the Bush choice probability by
0.108. The respondent ideology also has strong effects, −0.118 and 0.104, for
Clinton and Bush, respectively; almost all of Bush’s gain is Clinton’s loss. Low
income group prefer Clinton; the rather small effect magnitude on Clinton
−0.006 for income is because income has 24 categories. Party affiliation has
a substantial effect of 0.169 on the Bush choice probability, and the pattern
is similar to that of ideology-R.

Females prefer Bush relative to Clinton with the effect on Bush being
0.056, which may be a surprise given the perception that Bush is unpopular
among women while Clinton is. Abortion has a big negative impact (−0.092)
on Bush—Bush’s abortion stance may be the actual reason why Bush looked
unpopular among women. One category increase out of seven in health in-
surance opinion lowers the Bush choice probability by 0.023, whereas one
category increase out of seven in welfare opinion raises the Clinton choice
probability by 0.065.

1.4 Nested Logit (NES)

Sometimes, alternatives are grouped or nested. For example, a town is
chosen first, and then a house in the chosen town. In this case, we can imagine
a “choice tree with branches,” and the alternatives within a given branch are
“nested.” Nested logit (NES) is suitable for this kind of nested alternatives,
and relaxes the IIA assumption of MNL as the nested alternatives are more
related to one another than to “out-of-branch” alternatives. In economet-
rics, NES is attributed often to McFadden (1978, 1981), but Ortúzar (2001)
pointed out that the credit should go to Ben-Akiva (1974), Williams (1977),
and Daly and Zachary (1978) as well as McFadden (1978). See Carrasco and
Ortúzar (2002) for the history of NES and partial review on various issues
involving NES.

As type I extreme distribution leads to MNL, “generalized extreme-value
distribution” leads to NES: the df of u1, ..., uJ is

exp{−h(e−u1 , e−u2 , ..., e−uJ )}, for some known function h(·)

which becomes the df for J-many iid type I extreme distribution rv’s if
h(a1, a2, ..., aJ ) = ΣJ

j=1aj . NES for J = 3 with alternatives 2 and 3 nested
postulates
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h(a1, a2, a3) = a1 + (a1/σ
2 + a

1/σ
3 )σ, for an unknown constant 0 < σ ≤ 1.

(a1/σ
2 + a

1/σ
3 )σ can be taken as “averaging” a2 and a3, to be compared with

a1. More generally, with J = 6, if we want to nest alternatives 2 to 3 and 4
to 6 because 2 and 3 are similar and 4 to 6 are similar, then set

h(a1, ..., a6) = a1 + (a1/σ1
2 + a

1/σ1
3 )σ1 + (a1/σ2

4 + a
1/σ2
5 + a

1/σ2
6 )σ2 .

When σ1 = σ2 = 1, this yields the df of 6-many iid type-I extreme distribution
rv’s. For “nest j”, 1 − σj may be thought of as a degree of the positive
relationship among the nested alternatives.

For three alternative case, denoting the regression function part of the
utility from alternative j as λj , the choice probability can be shown to be

P (choose 1|w) =
exp(λ1)

exp(λ1) + {exp(λ2/σ) + exp(λ3/σ)}σ

=
exp(λ1)

exp(λ1) + exp[σ ln{exp(λ2/σ) + exp(λ3/σ)}] ,

P (choose 2|w) = P (choose 2|w, not choosing 1) · P (not choosing 1|w)

=
exp(λ2/σ)

exp(λ2/σ) + exp(λ3/σ)
{1 − P (choose 1|w)},

P (choose 3|w) = P (choose 3|w, not choosing 1) · P (not choosing 1|w)

=
exp(λ3/σ)

exp(λ2/σ) + exp(λ3/σ)
{1 − P (choose 1|w)}

.

With this, the MLE for NES can be implemented using MNL and σ = 1 as the
initial values, but the actual implementation is somewhat complicated due to
location normalization for each “nest.” Alternatively, two-stage procedures
are available as well where the first stage is a “within-nest” estimation and
the second stage is a “between-nest” estimation. See, e.g., Brownstone and
Small (1989) for more on the computational aspects of NES. STATA has the
command nlogit to implement NES.

A couple of remarks are in order. First, if σ = 1, then the choice proba-
bilities become those for MNL. Second, ln(exp(λ2/σ) + exp(λ3/σ)) is called
the “inclusive value” for the nested alternatives 2 and 3. In the two-stage im-
plementation of NES, λj/σ is estimated for each nest in the first stage, and
then in the second stage, a normalized version of inclusive value can be used
as a regressor to estimate σ, with which we can test for MNL: H0 : σ = 1.
Third, the ratio P (choose 1|w) to P (choose 2|w) depends on the regression
function of alternative 3 when σ = 1; IIA in MNL is thus relaxed. A dis-
advantage with NES is that nesting may not be obvious. For instance, in
the presidential election example, Perot may be nested with Clinton or with
Bush. If J is large, there are so many different ways to form the sequential
choice tree.
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As an empirical example of NES, Hoffman and Duncan (1988) analyzed
marrying and welfare-use decisions of divorced or separated women. There are
three choices: marry, remain unmarried without welfare receipt, and remain
unmarried with welfare receipt; the latter two are nested. The data is drawn
from the Panel Study of Income Dynamics (PSID) for 1983 with 460 white
women and 307 black women. Part of Table 2 in Hoffman and Duncan (1988)
is shown in Table 2 (SD in (·)).

Table 2: Nested Logit for Marriage and Welfare
White Women Black Women

marry or not welfare or not marry or not welfare or not

spouse income −0.010 (0.021) 0.051 (0.032)

welfare income 0.329 (0.092) 0.288 (0.068)

norm.inc.value 0.114 (0.129) 0.079 (0.203)

Spouse income is insignificant for whites women while nearly significant for
black women. Welfare income is significant for welfare decision. The normal-
ized inclusive value (norm.inc.value) coefficients are σ whose estimates are
close to zero. H0 : σ = 1 (not H0 : σ = 0) is easily rejected, meaning that
MNL would be the wrong model.

2 Methods of Simulated Moments (MSM)

In this section, we introduce method of simulated moments which solves
multidimensional integration problems as in multinomial probit. Although we
introduce method of simulated moments (MSM) here for multinomial probit
(MNP) as in McFadden (1989), it is certainly applicable whenever a high di-
mensional integration is required. MSM recasts MNP in a method-of-moment
framework and estimates the choice probabilities using simulated rv’s drawn
from the same distribution as that of uij ’s.

2.1 Basic Idea with Frequency Simulator

Recall the simple linear utility (or satisfaction) model for multinomial
choice:

(i) sij = x′ijβ + uij , i = 1, ..., N, j = 1, ..., J.

A slightly different specification, a random coefficient model, is

(v) sij = x′ijαi = x′ijβ + x′ijΓei, where αi ≡ β + Γei,

ei is a J×1 error vector from a known distribution and Γ is an unknown con-
stant matrix defined conformably. Defining x′ijΓei as uij , the random coeffi-
cient model becomes sij = x′ijβ+uij except that now uij has a known form of
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heteroskedasticity: e.g., with ei ∼ N(0, IJ ), we get uij |xij ∼ N(0, x′ijΓΓ′xij).
More generally, we may consider, for some error term ζij ,

(vi) sij = x′ijαi + ζij = x′ijβ + (x′ijΓei + ζij)

which includes both (i) and (v); McFadden (1989) used (v) for MNP. We will
accommodate both models. For (i), β and the error-term variance matrix are
to be estimated; for (v), β and Γ.

Denote the identified parameters in MNP as a k× 1 vector γ. Recall the
method-of-moments interpretation of MNP:

1
N

N∑
i=1

J∑
j=1

∂ lnPij(g)
∂g

{yij − Pij(g)} = 0.

Regard the true parameter as the one satisfying the population version of
this moment condition; there may be multiple such parameters, which is an
inherent problem whenever we turn a M-estimator into a MOM. Define the
instrument vector

zij
k×1

≡ ∂ lnPij(g)
∂g

=
∂Pij(g)/∂g

Pij(g)

which depends on the unknown parameters, differently from the usual case
of instruments being observed variables.

Further define yi, Pi, and zi as (the dimension is shown under each
variable)

yi
J×1

≡

⎡⎢⎣ yi1

...
yiJ

⎤⎥⎦ , Pi
J×1

≡

⎡⎢⎣ Pi1

...
PiJ

⎤⎥⎦ , ui
J×1

≡

⎡⎢⎣ ui1

...
uiJ

⎤⎥⎦ , zi
k×J

≡ [zi1, ..., ziJ ]

to rewrite the sample moment as N−1
∑

i(score functioni) which is

1
N

N∑
i=1

zi
k×J

(yi − Pi)
J×1

= 0.

The key step in the MSM is simulating Pi(g). Let n be the simulated
(or generated) sample size. Then the MSM can be done as follows. Denoting
the dimension of xij as kx × 1,

1. Generate J × 1 vectors {εi(t)}n
t=1 for each i = 1, ..., N such that εi(t),

t = 1, ..., n, are iid following N(0, IJ ). {εi(t)}n
t=1 is independent of

{εi′(t)}n
t=1 for all i′ = i. Overall, N · J · n rv’s are generated.

2. For the random coefficient model (v), fix a matrix Γ to obtain ηij(Γ, t)—
a “pseudo uij”—with

ηij(Γ, t)
1×1

≡ x′ij
1×kx

Γ
kx×J

εi(t)
J×1

, j = 1, ..., J and t = 1, ..., n.
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For (i), let Ω ≡ V (ui) and fix C such that CC ′ = Ω—choose C to be
lower-triangular (“Cholesky decomposition” of Ω). Then

{ηi1(C, t), ..., ηiJ (C, t)}′ ≡ C
J×J

εi(t)
J×1

, for t = 1, ..., n.

3. Fix b and generate

for (v) : sij(Γ, b, t) ≡ x′ijb + ηij(Γ, t) for t = 1, ..., n;
for (i) : sij(C, b, t) ≡ x′ijb + ηij(C, t) for t = 1, ..., n.

4. Find the relative frequency that person i chooses alternative j: for (i),

fij(g) ≡ 1
n

n∑
t=1

1[sij(C, b, t) > sim(C, b, t), m = j]

which is a “simulated estimator” for Pij(g); recall that g consists of b
and C. Stack fij(g)’s to get the J × 1 simulated estimator vector fi(g),
which is for Pi(g). The steps for (v) are analogous.

5. To get fi(g) for different values of g, repeat Step 2 through Step 4 with
the same εi(t)’s obtained in Step 1.

6. With fi(g) replacing Pi(g), iterate until convergence using

g1 = g0 +

{∑
i

zi(g0){yi − Pi(g0)}{yi − Pi(g0)}′zi(g0)′
}−1

∑
i

zi(g0){yi − Pi(g0)}.

which follows the usual iteration scheme for MLE with the
inverted matrix of the outer-product of the score function zi(yi − Pi).

The iteration formula follows from rewriting Pi(g1) as Pi(g0)+{∂Pi(g0)/
∂g′}(g1 − g0) and solving the moment condition for g1 (and then using the
information equality). Differently from the other cases, the instrument zi(g)
also depends on g. But if g0 � γ, this dependence can be ignored; i.e., there
is no need to update zi(g) at every iteration. Recall our discussion in relation
to two-stage M-estimators: estimated instruments are as good as the “true”
instruments.

In order to get zij , we need ∂Pij/∂g, which can be obtained analytically
as in McFadden (1989) and Hajivassilious and Ruud (1994). But the deriva-
tive is somewhat complicated. Instead, we may use a numerical derivative

∂Pij(g)
∂gm

� Pij(g + hem) − Pij(g − hem)
2h

, m = 1, ..., k,
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where em is the k × 1 basis vector with 1 in its mth row and 0’s elsewhere,
and h is a small positive scalar close to 0. Since zi should be orthogonal to
yi − Pi, the generated εit’s used for yi − Pi are not good for simulating zi.
Instead, generate new error vectors and use them to simulate zi through a
procedure analogous to the above steps 1 to 5. Since the frequency simulator
fij(g) has indicator functions, the numerical derivatives would be difficult to
get; better simulators replacing the indicator function with a smooth function
will be shown later.

As for the asymptotic distribution of the MSM, it can be shown that

√
N(gmsm − γ) � N

{
0,

(
1 +

1
n

)
I−1
f

}
,

where If = E[z(γ){y − P (γ)}{y − P (γ)}′z(γ)′].

which is the information matrix of MNP; as usual, it holds that

1
N

∑
i

[zi(gmsm){yi − Pi(gmsm)}{yi − Pi(gmsm)}′zi(gmsm)′] →p If .

The simulation error increases the asymptotic variance by I−1
f /n, which can

be ignored if n is large.

2.2 GHK Smooth Simulator

The frequency simulator fij(g) has a number of disadvantages. First,
fij(g) is not a smooth function of g due to the indicator function. Second,
fij can take 0—a trouble for lnPij due to ln(0). Third, it may take too many
draws (too large a n) to estimate a small Pij . Replacing the indicator func-
tion with a smooth function taking a value in (0, 1) can solve these problems.
This subsection introduces “GHK (Geweke, Hajivassiliou, Kean)” simulator
for the model sij = x′ijβ + uij . See Hajivassiliou et al. (1996) and the ref-
erences therein for more on various simulators; Hajivassiliou et al. (1996)
recommended GHK simulator.

Observe that the events sij > sim, ∀m = j, can be written as

aij
(J−1)×1

< Aj
(J−1)×(J−1)

vi

σ
, j = 2, ..., J

for a matrix Aj , a vector aij ≡ (aij1, ..., aij(J−1))′, and vi ≡ (vi2, ..., viJ )′;
recall the definition of vij ≡ uij − ui1 for j ≥ 2 and σ ≡ SD(vi2). For
instance, when J = 3, for si2 > sim ∀m = 2, ai2 < A2vi/σ becomes

ai2 =
[

−w′i2β/σ
−(wi2 − wi3)′β/σ

]
, A2 =

[
1 0
1 −1

]
, vi =

[
vi2/σ
vi3/σ

]
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=⇒
[

0 < w′i2β/σ + vi2/σ
wi3

′β/σ + vi3/σ < wi2
′β/σ + vi2/σ

]
.

For si3 > sim ∀m = 2, ai3 < A3vi/σ becomes

ai3 =
[

−w′i3β/σ
−(wi3 − wi2)′β/σ

]
, A3 =

[
0 1
−1 1

]
, vi =

[
vi2/σ
vi3/σ

]

=⇒
[

0 < w′i3β/σ + vi3/σ
wi2

′β/σ + vi2/σ < wi3
′β/σ + vi3/σ

]
.

Let Σ ≡ V (vi/σ); when J = 3,

Σ =
[

1 σ23

σ23 σ2
3

]
=

[
1 ρσ3

ρσ3 σ2
3

]
.

Recall that we estimate β/σ and Σ. Then

V

⎛⎝ Aj
vi

σ
(J−1)×1

⎞⎠ = AjΣA′j
(J−1)×(J−1)

, j = 2, ..., J.

To simplify explaining GHK simulator, suppose J = 3. Set

HjH
′
j = AjΣA′j , j = 2, 3

where Hj is the lower-triangular Cholesky decomposition (or “square-root”)
of AjΣA′j . Then

Aj
vi

σ
follows the same distribution as

[
hj11 0
hj21 hj22

] [
e1

e2

]
does

where hjll′ , l, l′ = 1, 2, denotes an element in Hj , and e1, e2 are iid N(0, 1)
With aij = (aij1, aij2)′,

Pij ≡ P (i chooses j) = P
(
aij < Aj

vi

σ

)
= P (aij1 < hj11e1, aij2 < hj21e1 + hj22e2)

= P

(
aij1

hj11
< e1,

aij2 − hj21e1

hj22
< e2

)

= P

(
aij1

hj11
< e1

)
· P

(
aij2 − hj21e1

hj22
< e2

∣∣∣∣ aij1

hj11
< e1

)

�
{

1 − Φ
(

aij1

hj11

)}
· 1
n

n∑
t=1

{
1 − Φ

(
aij2 − hj21e

∗
1t

hj22

)}
where {e∗1t}n

t=1 are iid, drawn from the N(0, 1) truncated from below at
aij1/hj11. This simulator is unbiased for the desired choice probability, and
is differentiable wrt the parameters.
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If the truncation threshold aij1/hj11 is not too big (say, smaller than
3), then e∗1t can be generated from N(0, 1) by keeping only those greater
than aij1/hj11. Otherwise, e∗1t should be drawn directly from the N(0, 1)
truncated at aij1/hj11, using, e.g., “acceptance/rejection method” as fol-
lows. On the two-dimensional plane, draw the truncated density φ̃(·) ≡
φ(·)/{1−Φ(aij1/hj11)} over (aij1/hj11,∞), and then generate two indepen-
dent uniform numbers (υ1, υ2) to place (υ1, υ2) on the plane where, for some
big constant M � ∞,

υ1 ∼ U [aij1/hj11,M ] and υ2 ∼ U [0, φ̃(0)].

If (υ1, υ2) falls within the density (i.e., if υ2 < φ̃(υ1)), then take υ1 as a
desired random number; otherwise, reject (i.e., throw away) (υ1, υ2) and draw
two uniform numbers anew. This procedure preserves the “relative frequency”
of φ̃. For instance, if φ̃(τ2) = 2φ̃(τ1), then τ2 is twice more likely to get
realized (i.e., retained) than τ1.

If J = 4, then only one more term is needed in Pij : with Hj = [hjll′ ],
l, l′ = 1, 2, 3,

Pij = P
(
aij < Aj

vi

σ

)
= P (aij1 < hj11e1, aij2 < hj21e1 + hj22e2, aij3 < hj31e1

+hj32e2 + hj33e3)

= P

(
aij1

hj11
< e1,

aij2 − hj21e1

hj22
< e2,

aij3 − hj31e1 − hj32e2

hj33
< e3

)

= P

(
aij1

hj11
< e1

)
· P

(
aij2 − hj21e1

hj22
< e2

∣∣∣∣ aij1

hj11
< e1

)

·P
(

aij3 − hj31e1 − hj32e2

hj33
< e3

∣∣∣∣ aij1

hj11
< e1,

aij2 − hj21e1

hj22
< e2

)

�
{

1 − Φ
(

aij1

hj11

)}
· 1
n

n∑
t=1

{
1 − Φ

(
aij2 − hj21e

∗
1t

hj22

)}

·
{

1 − Φ
(

aij3 − hj31e
∗
1t − hj32e

∗
2t

hj33

)}

where e∗1t is drawn from N(0, 1) truncated from below at aij1/hj11 as in
the J = 3 case, and e∗2t is drawn from the N(0, 1) truncated from below at
(aij2 −hj21e

∗
1t)/hj22—generate e∗1t first and then many N(0, 1) rv’s to retain

them only if they are greater than (aij2 − hj21e
∗
1t)/hj22.
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2.3 Methods of Simulated Likelihood (MSL)

To introduce methods of simulated likelihood (MSL), consider a dura-
tion problem where {(yi, xi)}N

i=1 are observed and yi is the duration. Suppose
yi|(xi, εi) follows a Weibull distribution, where ε is an unobserved heterogene-
ity term following N(0, σ2). As in the usual linear model, εi can be regarded
as a collection of unobserved variables affecting yi. The density and survival
functions for y|(x, ε) are

f(y, x, ε;α) = αyα−1θ(x, ε) · exp{−yαθ(x, ε)} and

S(y, x, ε;α) = exp{−yαθ(x, ε)} where θ(x, ε) = exp(x′β + ε).

Since ε is not observed, we need to obtain the density and survival functions
for y|x with ε integrated out.

Denoting N(0, 1) density as φ and defining v ≡ ε/σ, the density for y|x
with ε integrated out is

f(y, x;α, β, σ) =
∫

αyα−1 exp
(
x′β + σ

ε

σ

)
· exp

{
−yα exp

(
x′β + σ

ε

σ

)}
φ
( ε

σ

)
d
( ε

σ

)
=
∫

αyα−1 exp(x′β+σv) · exp{−yα exp(x′β+σv)}φ(v)dv

=⇒ S(y, x;α, β, σ) =
∫

exp{−yα exp(x′β + σv)}φ(v)dv.

Then the log-likelihood function for the MLE is (di = 1 if uncensored and 0
otherwise) ∑

i

di ln f(yi, xi; a, b, s) +
∑

i

(1 − di) ln S(yi, xi; a, b, s)

to be maximized for a, b, and s. Note that, since the hazard and the cumula-
tive hazard are not likelihoods, it is erroneous to specify them with ε in and
then integrate ε out. If we do that, we will be using, with Eε(·) denoting the
integral wrt ε,

Eελ(y, x, ε) = Eε
f(y, x, ε)
S(y, x, ε)

= Eεf(y, x, ε)
EεS(y, x, ε)

whereas the last term is the right hazard to use.
The integration can be done numerically. But we can use a simulator as

well: generate n-many N(0, 1) rv’s {εi(t)} for each (yi, x
′
i) and (a, b′, s) to get
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fn(yi, xi; a, b, s) ≡ 1
n

n∑
t=1

aya−1
i exp{x′ib + sεi(t)}·

exp[−ya
i exp{x′ib + sεi(t)}]

Sn(yi, xi; a, b, s) ≡ 1
n

n∑
t=1

exp[−ya
i exp{x′ib + sεi(t)}].

Then we can maximize the log-likelihood with f and S replaced by the sim-
ulators fn and Sn, respectively, which are smooth in the parameters.

More generally, consider a log-likelihood function
∑N

i=1 ln f(zi, b) for
{zi}N

i=1 where zi = (x′i, yi)′. The estimation can be done iteratively with
(omit z in f for a while)

b1 = b0 +

{∑
i

∇f(b0)
f(b0)

∇f(b0)′

f(b0)

}−1 ∑ ∇f(b0)
f(b0)

,

where ∇f(b0) ≡
∂f(b)

∂b
|b=b0 .

Suppose ln f(b) is an integrated entity as in the above duration example, and
we want to apply MSL. Then we need to simulate ∇f(b) as well as f(b).
In MSM, we showed that the asymptotic variance is (1 + n−1)If

−1; i.e., the
simulation error resulted in one additional term I−1

f /n. In MSL, however, it
is difficult to get the variance with a finite n as shown in the following.

The MSL estimator bmsl should satisfy

√
N(bmsl − β) =

{
1
N

∑
i

∇fn(β)
fn(β)

∇fn(β)′

fn(β)

}−1
1√
N

∑
i

∇fn(β)
fn(β)

+ op(1)

where fn denotes a simulator for f as seen above. It can be shown that the
inverted matrix converges to the information matrix I−1

f . If the simulator
satisfies

Eε

{∇fn(β)
fn(β)

}
=

∇f(β)
f(β)

where Eε(·) is the expected value wrt the simulated ε, then

1√
N

∑
i

∇fn(β)
fn(β)

=
1√
N

∑
i

∇f(β)
f(β)

+
1√
N

∑
i

[∇fn(β)
fn(β)

− Eε

{∇fn(β)
fn(β)

}]
.

The first term on the rhs yields the asymptotic variance of the MLE, while
a CLT can be applied to the second term which reflects the pure simulation
error. Thus if the condition E{∇fn(β)/fn(β)} = ∇f(β)/f(β) holds, then the
asymptotic variance of

√
N(bmsl −β) will be a sum of two terms analogously

to the asymptotic variance for MSM. However, the condition does not hold
in general because ∇fn(β)/fn(β) is a ratio of two rv’s: for two rv’s λ1 and
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λ2, E(λ1/λ2) = E(λ1)/E(λ2). It can be shown that, if n/
√

N → ∞, then
the second term in the preceding display is negligible (i.e., MSL becomes as
efficient as the MLE) under certain conditions; e.g., see Proposition 4 and 5 in
Hajivassiliou and Ruud (1994). In short, although we can simulate unbiased
estimates for f and ∇f separately, it is not clear how to simulate an unbiased
estimate for the score function.

The problem E(λ1/λ2) = E(λ1)/E(λ2) due to simulating ∇f(z, b) and
f(z, b) separately in MSL may look avoidable, if we simulate ln f(z, b) in-
stead of f(z, b); differentiating this simulator wrt b would yield an unbi-
ased simulator for the score function. But this idea does not work. To see
this, recall the above duration example: we need ln f(z, b) = lnEεf(z, ε, b),
but we will get only Eε ln f(z, ε, b) if we try to simulate ln f(z, ε, b). Due to
Eε ln(·) < lnEε(·), we get Eε ln f(z, b) < lnEεf(z, ε, b). By using the moment
condition (i.e., the first-order condition), MSM avoids this problem associ-
ated with MSL; MSM integrates out ε in the first-order moment condition,
rather than ε in the likelihood function. In MSM, the simulation error ap-
pears linearly (recall yi − Pi)—simulating the “instrument” ∂ lnPij(γ)/∂g
for the moment condition is innocuous there—rather than log-linearly as in
MSL.

Nonetheless, one should not take MSM as a panacea; as mentioned al-
ready, due to the potential multiple solutions in the moment condition for
MSM, it is not clear how to establish identification in MSM, which is auto-
matic in MSL under the MLE principle. In practice, surprisingly, MSL seems
to work well even with a very small n, say 10. Readers with further interest
in simulation-based methods can refer to Gourieroux and Monfort (1996),
Hajivassiliou et al. (1996), Stern (1997), Hajivassiliou and McFadden (1998),
and the references therein.

3 Sample-Selection Models

In surveys, the respondent may choose not to answer certain questions.
For example, in income surveys, the respondent may not answer if his or her
income is too big (or too small). If the respondent does not answer only some
questions in the survey, then this is called item nonresponse; if the respondent
does not answer at all, then this is called unit nonresponse. Obviously, the
former poses less of a problem, for we may use the respondent’s answered
items to fill in the nonresponses.

An easy solution to the nonresponse problem is to use only the respon-
dents with complete answers, but this can cause a bias. For example, if we are
interested in the population mean income, the sample mean without the high
income group will be biased downward. Sampling from a special subpopula-
tion and consequently incurring a bias in estimating a population parameter
is known as a “sample-selection problem.” (Sample) selection problem is spe-
cific to the parameter of interest. In the income example, the sample is biased
for the population mean if the sample-selection problem is ignored, but it may
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not be biased for the population mode. In the real world, the sample-selection
problem seems to be the rule rather than the exception. The very fact that
the subject ever entered the data voluntarily may be a source for selection
bias. L.F. Lee (2001) provided a survey on sample selection issues.

Sample selection is a big issue deserving an extensive treatment in a
separate book. This section will examine some often-used sample-selection
models. We will start with a basic model where y is continuously distributed
but observed only when d = 1; this model will be given an extensive coverage.
Then we will examine cases where y is an LDV. Also multivariate general-
izations of selection models called “hurdle models” will be introduced.

3.1 Various Selection Models

The best-known basic (sample-) selection model is, with i=1, ..., N,

d∗i = w′iα + εi, di = 1[d∗i > 0]
yi = x′iβ + ui, wi = (x′i, c

′
i)
′, ε and u are zero-mean errors

αc, the coefficient of ci in w′iα, is not a zero vector
(di, w

′
i, diyi) is observed

where wi is a regressor vector with its first component 1, εi and ui are error
terms, and α and β are conformable parameter vectors. The d-equation is the
“selection equation” determining the selection (decision), and the y-equation
is the “outcome equation” observed only when di = 1. The model includes
an inclusion/exclusion restriction that c is included in the selection equation
while excluded from the outcome equation.

An example is: y is wage, d = 1 if working and 0 otherwise, x is a
vector of explanatory variables relevant for wage and work decision, and c is
an explanatory variable relevant for the work decision but not for the wage
(e.g., c is the parents’ education levels); wage is observed only for those who
choose to work. Another example is that y is export volume, d = 1 if deciding
to export, x is a vector of regressors for the export decision and volume, and
c is an explanatory variable relevant for the export decision but not for the
export volume (e.g., an export barrier not related to export volume).

The above main selection model includes the “fixed-threshold censored
model” yi = max(y∗i , 0) = 1[y∗i > 0]y∗i as a special case when d∗i = yi. This
may be a good way to view the censored model in judging whether the cen-
sored model is appropriate or not. For instance, in the export example, if the
decision to export is driven by the export volume equation, then the censored
model is appropriate. Ideally, instead of imposing the prior restriction α = β
(setting ci = 0), one should estimate the selection model and test for α = β,
whose acceptance leads to the simpler censored model. But as will be shown
later, dealing with the selection model is not always straightforward; e.g., the
selection model includes an exclusion restriction which is often not easy to
justify.
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In the sample-selection model, w is fully observed regardless of d; i.e.,
w, not dw, is observed. If we have

(di, diw
′
i, diyi) is observed, i = 1, ..., N,

then the model would be called a “truncated selection model,” which is harder
to deal with than the main model above, because the observability is more
restricted here. In the non-response problem, the main model corresponds
to item (y) nonresponse because only y has missings, whereas the truncated
selection model corresponds to unit nonresponse because all variables (w and
y) have missings. This truncated selection model includes the “fixed-threshold
truncated response model” as a special case when d∗i = yi. While the MLE
for truncated regression model is fairly well-behaving computationally, the
truncated selection model does not seem to be so.

If we have
(d∗i di, w

′
i, diyi) observed

then the model would be called a “censored selection model” or “tobit-type
selection model,” which is easier to deal with than the main model, because
the observability is less restricted as d∗i di = max(d∗i , 0) is a censored variable,
not just binary. One example for tobit-type selection is: d∗i is the latent work
hours and yi is wage; both d∗i and yi are observed only when di = 1. Tobit-
type selection is much rarer compared with the main selection model. See
Lee and Vella (2006) and the references therein.

In treatment effect framework with a binary treatment d = 0, 1, we
assumed two potential responses y0 and y1, depending on d = 0 or d = 1,
respectively. Suppose

yj
i = x′iβj + uj

i , COR(uj , ε) = 0, j = 0, 1, and

(di, w
′
i, diy

1
i + (1 − di)y0

i ) is observed.

Note

yi = diy
1
i + (1 − di)y0

i = di(x′iβ1 + u1
i ) + (1 − di)(x′iβ0 + u0

i )
= dixiβ1 + (1 − di)xiβ0 + ui, where ui ≡ diu

1
i + (1 − di)u0

i .

This is a “multi-regime” generalization of the selection model where only one
regime for d = 1 is observed. In the above selection models, we omitted the
superscript/subscript j because there is no other observed regime.

Th treatment effect model is also called “switching regression model”
with endogenous switching because d is related to (u0, u1). If d�(u0, u1), then
the model is called “switching regression with exogenous switching,” which is,
however, not a sample-selection model as there is no selection problem. In the
time-series econometric literature, switching regression with an unobserved
regime indicator (d) has been also considered. It is certainly possible to have
a partially observed d, or d observed with error.
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3.2 Selection Addition, Bias, and Correction Terms

Turning back to the “best-known” selection model, the LSE of dy on dx
is inconsistent for β in general. To see this, observe the moment condition

E(dxu) = E{E(dxu|w)} = E{xE(du|w)}
= E{xE(u|w, d = 1)P (d = 1|w)}
= E{xE(u|w, ε > −w′α)P (d = 1|w)} = 0

for E(u|w, ε > −w′α) = 0 in general.

Put it differently, suppose we select the observations with d = 1 and do LSE
of y on x. Then

E(y|w, d = 1) = x′β + E(u|w, d = 1) = x′β + E(u|w, ε > −w′α) = x′β.

E(u|w, ε > −w′α) is the troublesome term, which is zero if ε and u are
independent given w:

E(u|w, ε > −w′α) = E(u|w) = 0.

Because the LSE ignores E(u|w, ε > −w′α), this term which is often
called “selection bias” becomes part of the error term and causes an omitted
variable bias

E−1(xx′) · E{x E(u|w, ε > −w′α)}
for the LSE, because E(u|w, ε > −w′α), a function of w, is correlated with
x in general. This shows also that the selection bias can be easily mistaken
for a regression function misspecification (or the other way around). It seems
more appropriate to call the LSE omitted variable bias in estimating β, not
E(u|w, ε > −w′α) per se, the selection bias. It is better to call E(u|w, ε >
−w′α) the selection addition term as it is added due to the selection equation.
We will follow these terminologies in the following.

To see the form of the selection addition term better, observe as a pre-
requisite that, when v ∼ N(0, 1),

dφ(s)
ds

=
d(2π)−1/2 exp(−0.5s2)

ds
= −s(2π)−1/2 exp(−0.5s2)

= −sφ(s);

E(v|v > −t) =

∫∞
−t

sφ(s)ds∫∞
−t

φ(s)ds
=

−
∫∞
−t

φ′(s)ds

Φ(t)
=

−φ(∞) + φ(−t)
Φ(t)

=
φ(t)
Φ(t)

.

Denote the joint density for (ε = a, u = b)|w as f(a, b|w) = fε,u|w(a, b) and
the marginal density for (ε = a)|w as f(a|w) = fε|w(a). Assume that ε|w has
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unbounded support for almost every (a.e.) w. Then the selection addition
term is

E(u|w, ε > −w′α) =

∫∞
−∞

∫∞
−w′α u · f(ε, u|w)dεdu∫∞

−∞
∫∞
−w′α f(ε, u|w)dεdu

=

∫∞
−∞

∫∞
−w′α u · f(u|ε, w) · f(ε|w)dεdu∫∞

−w′α f(ε|w)dε

=

∫∞
−w′α

∫∞
−∞ u · f(u|ε, w)du · f(ε|w)dε∫∞

−w′α f(ε|w)dε

=

∫∞
−w′α E(u|ε, w) · f(ε|w)dε∫∞

−w′α f(ε|w)dε
.

Furthermore, with σεu ≡ COV (ε, u), σ2
ε ≡ V (ε), σ2

u ≡ V (u), and ρ ≡
COR(ε, u), if

E(u|ε, w) =
σεu

σ2
ε

ε,

then the selection addition term becomes

σεu

σ2
ε

∫∞
−w′α εf(ε|w)dε∫∞
−w′α f(ε|w)dε

=
σεu

σ2
ε

E(ε|w, ε > −w′α)

=
σεu

σε
E

(
ε

σε

∣∣∣∣w,
ε

σε
> −w′

α

σε

)

= ρσu · E
(

ε

σε

∣∣∣∣w,
ε

σε
> −w′

α

σε

)
as ρσu =

σεu

σε
.

In addition, if ε ∼ N(0, σ2
ε) independently of w, then ε/σε ∼ N(0, 1)

and the selection addition term becomes

ρσu · φ(w′α/σε)
Φ(w′α/σε)

.

If ρ = 0 (⇐⇒ σεu = 0), then the selection addition term is zero. The selection
addition term was obtained only under

E(u|ε, w) =
σεu

σ2
ε

ε, the marginal normality of ε, and ε � x.

That is, the joint normality of (ε, u) is not necessary. As will be shown shortly,
φ(w′α/σε)/Φ(w′α/σε) can be used as an extra regressor, in which case we
will call it the “selection correction term,” as it is used to correct for the
selection problem.
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3.3 MLE

Suppose that (ε, u) is bivariate normal and independent of w. The log-
likelihood function for the basic selection model MLE for (α′/σε, β

′, σu, ρ)′

is

lnL

(
α

σε
, β, σu, ρ

)
=

N∑
i=1

[
(1 − di) · ln Φ

(
−w′i

α

σε

)
+ di ·

[
ln Φ

{(
w′i

α

σε
+ ρ

yi − x′iβ
σu

)
(1−ρ2)−1/2

}
− lnσu + lnφ

(
yi − x′iβ

σu

)] ]
.

For di = 0, the contribution of observation i to the log-likelihood is only
Φ(−w′iα/σε) = P (d = 0|wi). For di = 1, there are two terms in the log-
likelihood function which may be thought of as

ln{P (d = 1|u,w) · P (u|w)} = lnP (d = 1|u,w) + lnP (u|w).

The first term with Φ{(w′i...} can be understood in the light of standardizing
ε|u :

E(ε|u) =
σεu

σ2
u

u =
ρσε

σu
u, V (ε|u) = σ2

ε −
σ2

εu

σ2
u

= σ2
ε(1 − ρ2)

=⇒ P (d = 1|u,w) = P (ε > −w′α|u,w)

= P

[(
ε − ρσε

σu
u

)
/{σε(1 − ρ2)1/2}

>

(
−w′α − ρσε

σu
u

)
/{σε(1 − ρ2)1/2} |u,w]

= Φ
{(

w′
α

σε
+ ρ

u

σu

)
· (1 − ρ2)−1/2

}
.

The second term, − ln(σu) + lnφ{(yi − x′iβ)/σu}, comes from the logged
density for u|w. Note that only α/σε = (α1/σε, ..., αkw

/σε)′, not α per se, is
identified as in probit because di is binary with no scale information for d∗i
available.

If ρ = 0, then the log-likelihood becomes

N∑
i=1

[
(1 − di) ln Φ

(
−w′i

α

σε

)
+ di ln Φ

(
w′i

α

σε

)
+di

{
− ln (σu) + lnφ(

yi − x′iβ
σu

)
} ]

.

This has two parts: the first part (the first two terms) is the probit log-
likelihood function with α/σε being the only parameter, and the second (the
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last term) is the log-likelihood function involving only σu and β; maximizing
this wrt β is then equivalent to doing LSE using only the d = 1 observations.
That is, if ρ = 0, then the LSE for β with the subsample d = 1 is the MLE.

Estimating ρ poses the main difficulty in practice due to the bound
(−1, 1); the estimate for ρ may go out of the bound ±1. It is thus recom-
mended to estimate first

ζ(ρ) ≡
(

α′

σε
, β′, σu

)′
for each fixed grid point of ρ on (−1, 1) (Nawata and Nagase, 1996), and then
choose ρ maximizing the log-likelihood function. Let mi(ζo, ρo) denote the
score function for ζ for the i-th observation evaluated at ζo and ρo. Then one
can use a Newton-Raphson type iteration scheme

ζ1(ρ) = ζo(ρ) +

{
1
N

∑
i

mi (ζo, ρ) · mi(ζo, ρ)′
}−1

· 1
N

∑
i

mi(ζo, ρ)

until convergence; the MLE for ζ under ρ = 0 can be used as the initial value.
When ζ(ρ) is plugged into the likelihood function, we get the “profile

likelihood” function for ρ which has only ρ as its parameter. The optimal ρ
(and thus the optimal ζ(ρ)) can be chosen with the profile likelihood. One
caveat on profile likelihood is that usually the name is used in the context
where ρ is the parameter of interest while the other parameter ζ is a “nuisance
parameter.” In the example with ζ and ρ, these roles are reversed.

3.4 Two-Stage Estimator

For Heckman two-stage estimator (TSE) in Heckman (1979), assume

(a) ε � w, and ε ∼ N(0, σ2
ε);

(b) linear regression of u on ε: E(u|w, ε) = (σεu/σ2
ε)ε.

The selection addition term ρσuφ(w′α/σε)/Φ(w′α/σε) holds under these as-
sumptions; the joint normality of (ε, u) is not necessary. Heckman TSE, which
accounts for the selection addition term explicitly, proceeds as follows.

The first step is applying probit to the selection equation to estimate
α/σε and replacing the selection correction term

λ(w′i
α

σε
) ≡ φ(w′iα/σε)

Φ(w′iα/σε)

with its feasible version λNi ≡ λ(w′iaN ) where aN is the probit for α/σε.
Defining

zNi ≡ (x′i, λNi)′ and zi ≡
(

x′i, λ

(
w′i

α

σε

))′
,

the second step is getting the LSE gN of diyi on dizNi for the parameter

γ ≡ (β′, ρσu)′;
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for this LSE, certainly E−1(dzz′) should exist, much as the outer-product
of the score functions should exist for the preceding MLE. Despite the se-
lection problem, β is estimated consistently due to the presence of λNi in
the second stage LSE. STATA has the command heckman to implement this
estimator.

For the asymptotic distribution of Heckman TSE, define the probit score
function evaluated at the true value as Si = Si(α) and its “influence function”
as ηi so that

√
N

(
aN − α

σε

)
=

1√
N

∑
i

ηi + op(1),

where φi ≡ φ

(
w′i

α

σε

)
, Φi ≡ Φ

(
w′i

α

σε

)
,

ηi ≡ E−1(SS′)Si = E−1(SS′)
wiφi(di − Φi)
Φi(1 − Φi)

;

ηi’s are iid with E(η) = 0 and E(ηη′) < ∞.

Further define a “link matrix”

L ≡ ρσu · E{d · λ′(w′ α

σε
) · zw′}, where λ′(a) ≡ ∂λ(a)

∂a
= −aλ(a) − λ(a)2

and the “reduced form” error and its residual as, respectively,

vi ≡ yi − z′iγ and vNi ≡ yi − z′NigN .
Then,
√

N(gN − γ)� N(0, E−1(dzz′) · E{(dvz − Lη)(dvz − Lη)′} · E−1(dzz′)).

The asymptotic variance of
√

N(gN − γ) can be estimated consistently
by replacing E(·) with N−1

∑
i(·) and the other unknowns by consistent

estimates: specifically,(
1
N

∑
i

dizNiz
′
Ni

)−1
1
N

∑
i

(divNizNi−LNηNi)(divNizNi−LNηNi)
′

(
1
N

∑
i

dizNiz
′
Ni

)−1

,

where

ηNi ≡
{

1
N

∑
i

Si(aN )Si(aN )′
}−1

Si(aN ) and

LN ≡ gρσu

∑
i

diλ
′(w′iaN )zNiw

′
i,

and gρσu
is the last component of gN—the estimator for ρσu.
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The part Lη in the asymptotic variance is the first-stage correction term:
the error aN − α/σε affects the second-stage asymptotic variance. The term
aN appears in many places in the second-stage LSE, but the estimation error
matters only when it appears in the residual vNi. Specifically,

√
N(gN − γ)

can be shown to be op(1)-equal to

E−1(dzz′)
1√
N

∑
i

dizi{yi − x′iβ − ρσuλ(w′iaN )}

= E−1(dzz′)
1√
N

∑
i

dizi

[
yi − x′iβ − ρσu

{
λ

(
w′i

α

σε

)
+λ′

(
w′i

α

σε

)
w′i

(
aN − α

σε

)}]
+ op(1)

= E−1(dzz′)
1√
N

∑
i

[
dizivi − ρσudiλ

′
(

w′i
α

σε

)
ziw

′
i

(
aN − α

σε

)]
+op(1)

= E−1(dzz′) ·
[

1√
N

∑
i

dizivi − ρσu
1
N

∑
i

diλ
′
(

w′i
α

σε

)
ziw

′
i

·
√

N

(
aN − α

σε

)]
+ op(1)

= E−1(dzz′) ·
[

1√
N

∑
i

dizivi − L · 1√
N

∑
i

ηi

]
+ op(1)

= E−1(dzz′) · 1√
N

∑
i

(dizivi − Lηi) + op(1)

where the mean-value theorem is invoked for the first equality in probability.
In the last equation, the second term explains the first-stage correction term.

The selection bias can be tested with H0 : ρσu = 0 in the second-stage
LSE. Under the H0, one may set Lη = 0 in the asymptotic variance because
L = 0 if ρ = 0, which means that there is no need to bother with the first-
stage correction as far as testing the H0 goes. If ρ = 0, as mentioned ahead,
the MLE is numerically equal to the LSE of dy on dx. Thus, if ρ = 0, the
only difference between the MLE and the TSE is that the selection correction
term is added as another regressor in the LSE stage of the TSE.

In principle, Heckman TSE does not need an exclusion restriction. If the
regression function is misspecified, however, then one may easily reach a false
conclusion, because λ(·) may pick up the misspecified regression function;
e.g., x2

j may be omitted in the outcome equation regression function where
xj is the j-th component of x, and λ may come out significant picking up x2

j

due to the nonlinearity of λ despite ρ = 0. More generally, because λ can be
approximated arbitrarily well by a polynomial function of x′α/σε, one cannot
tell the true selection bias term from the regression function including the
polynomial function. Exclusion restrictions avoid this problem.
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Even when we are sure of the outcome equation regression functional
form, still Heckman TSE has a major practical problem if an exclusion re-
striction is not used (i.e., if w = x), because λ(·) is almost linear: λ(t) de-
creases monotonically toward zero and is almost linear for, say, t ≤ −1, and
then approaches zero becoming slightly nonlinear; λ(t) is almost zero, say, for
t ≥ 3. Thus λ tends to be highly collinear with x, and quite often the stan-
dard error of the estimate for ρσu is too large, leading to a failure to reject no
selection problem. It is advisable to check the range of w′aN : if there are not
many w′iaN ’s in [−1, 3], Heckman TSE may work poorly. In this regard, the
MLE may be preferable to Heckman TSE, which Nawata and Nagase (1996)
also pointed out. The multicollinearity problem of λ and x can be checked
with the R2 in the LSE of λ(w′iaN ) on xi.

Although an exclusion restriction helps alleviate the identification and
multicollinearity problems in the two preceding paragraphs, there always is
a chance that the exclusion restriction is false. Lee (2003) analyzed the bias
resulting from a false exclusion restriction in the sample selection; the form
of bias differs across different estimators. Interestingly, Lee (2003) further
showed that the outcome equation parameters for regressors with zero coef-
ficients in the selection equation are immune to exclusion bias if only one
regressor is excluded.

One way to make Heckman TSE less sensitive to its assumptions is as
follows. Assume that ε�w still holds with ε following N(0, σ2

ε). But, instead
of E(u|w, ε) = (σεu/σ2

ε)ε, assume, for some parameters γ1 and γ2,

E(y|w, d = 1) = x′β + E(u|w′α + ε > 0)=x′β + γ1

(
w′

α

σε

)
+ γ2

(
w′

α

σε

)
2.

Here E(u |w, w′α + ε > 0) depends on w only through the linear index
w′α/σε, and that E(u|w′α + ε > 0) can be approximated by a quadratic
function of w′α/σε; extension to higher-order polynomials is straightforward.
To show the asymptotic variance of this robustified version of Heckman TSE,
define

zi ≡
(

x′i,
(

w′i
α

σε

)
,

(
w′i

α

σε

)2
)′

, zNi ≡ (x′i, (w
′
iaN ), (w′iaN )2)′,

θ ≡ (β′, γ1, γ2)
′, θN ≡ (b′N , gN1, gN2)′,

εi ≡ yi − x′iβ − γ1

(
w′i

α

σε

)
− γ2

(
w′i

α

σε

)2

.

Then it can be shown that θ is estimated consistently by the second-stage
LSE θN with

√
N(θN − θ)� N(0,Ωq),

Ωq ≡ E−1(dzz′) · E{(dεz − Aqη)(dεz − Aqη)′} · E−1(dzz′),

Aq ≡ E[d{γ1 + 2γ2(w
′ α

σε
)}zw′].
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3.5 Selection Models for Some LDV’s

So far we dealt with selection models for continuously distributed y.
This section considers cases where y is a LDV. First, binary y is studied,
and then count response y will be examined. ODR y can be also examined
in this section, but to save space, we will leave this task out. An ODR can
be collapsed into binary responses in multiple ways, and each binary re-
sponse model can be estimated; the binary response estimation results can
be then combined using minimum distance estimation (MDE). Censored y
will be studied in the following subsection when “double hurdle” models are
introduced. Certainly more involving cases are possible; e.g., Lee (2004b)
considered ODR d and count response y, which included binary d and count
response y in Terza (1998) as a special case; Terza’s (1998) approach will
be examined below. A review on sample-selection estimators when the selec-
tion equation is multinomial (not binary) can be found in Bourguignon et al.
(2007).

3.5.1 Binary-Response Selection MLE

Our “binary-response selection model” is the same as the basic selection
model with the only difference being that yi = 1[y∗i > 0] is observed where
y∗i is a latent continuous response:

di = 1[d∗i > 0] where d∗i = w′iα + εi and yi = 1[y∗i > 0]
where y∗i = x′iβ + ui(di, w

′
i, diyi)′ is observed.

Since no scale information is available for both d∗i and y∗i , neither σε nor σu

are identified; set σε = 1 = σu to simplify notations. Although the exclusion
restriction is not explicit here, it will be hard to estimate the model with-
out it—this in fact holds for all selection models including the ones to be
introduced in the remainder of this section.

The binary-response selection case is different from “bivariate binary
response models” where both d and y are observed separately. In the latter,
there are four “cells” from 2× 2 possibilities, whereas there are three “cells”
d = 0, (d = 1, y = 0), and (d = 1, y = 1) in the former. See Lee (1999) and
the references therein for more on bivariate binary response models. Another
distinction to be made is between binary-response selection and the case of
only (w′, dy) being observed where the observability is further restricted to
only two cells dy = 0 and dy = 1; see Meng and Schmidt (1985) and the
references therein. This difficult case occurs if the observed binary response
(dy) is one when two conditions d = 1 and y = 1 are met; e.g., two political
parties should agree for a bill to pass. Here one would like to know what
determines each condition d and y, but only the product dy is observed. It
would be very difficult, if not impossible, to identify separately the parameters
for the d-equation and the y-equation.
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Adding the joint normality of (ε, u) and its independence from w, the
parameters α, β, ρ can be estimated by MLE. For the MLE, define ψ(u1, u2; ρ)
as the standard joint normal density function with correlation ρ, and

Ψ(e1, e2, ρ) ≡
∫ e2

−∞

∫ e1

−∞
ψ(u1, u2; ρ)du1du2.

The log-likelihood function for α, β, ρ consists of three terms corresponding
to three cases d = 0, (d = 1, y = 1), and (d = 1, y = 0):

N∑
i=1

[ (1 − di) · ln Φ(−w′iα) + diyi · lnP (εi > −w′iα, ui > −x′iβ)

+ di(1 − yi) · lnP (εi > −w′iα, ui < −x′iβ) ]

where

P (εi >−w′iα, ui >−x′iβ) = 1 − P (εi < −w′iα) − P (ui < −x′iβ)
+ P (εi < −w′iα, ui < −x′iβ)

= 1−Φ(−w′iα) − Φ(−x′iβ)+Ψ(−w′iα,−x′iβ, ρ),
P (εi >−w′iα, ui <−x′iβ) = 1 − Ψ(−w′iα,−x′iβ, ρ) − Φ(x′iβ).

These can be understood by drawing the region εi > −w′iα and ui > −x′iβ
on a two-dimensional plane with εi and ui as the two axes. As in other
multivariate MLE’s, estimating ρ is troublesome and it is recommended to do
grid-search over ρ while doing a Newton–Raphson type iteration for α and β.

Dubin and Rivers (1989) provided an empirical example where d = 1
if votes and y = 1 if votes for Reagan using the 1984 US National Election
Study data with N = 2237 but only 1347 people voting. Part of their Table
1 and 2 is reproduced in Table 3 with SD in parentheses, where all variables
are dummies, “new resident” means living at the current address for less than
a year, college is 1 if ever attended a college, and TV/news is 1 if watches
TV news or reads a newspaper on a daily basis.

Several remarks are in order. First, there is a significant selection prob-
lem: ρ is −0.41 with the absolute t-value higher than 3; this means that
non-voters are likely to prefer Reagan, and the Democratic loss in 1984 is
not due to low turnout. Second, the selection equation is virtually identical
across PRO and MLE despite ρ being −0.41, which is the source of efficiency
of the MLE over PRO. Third, comparing the outcome equations, the biggest
difference is in “under 30,”which is however insignificant; despite the signifi-
cant selection problem, the resulting bias for α and β seems little. Fourth, in
the variables excluded from the outcome equation, college is not a plausible
variable for it can easily influence y; Dubin and Rivers (1989) in fact exclude
marriage dummy as well, which is also problematic. Fifth, the signs of the
estimates make sense mostly other than for “under 30” and “over 55” in the
outcome equation.
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3.5.2 Count-Response Zero-Inflated MLE

Turning to count responses, we will consider two cases separately: y∗

takes 0, 1, 2... and y∗ takes 1, 2, ... An example for the former is angling
(d = 1): one may try but catch no fish in a given time interval unless the fish
“cooperate,”which means P (y∗ = 0) > 0. An example for the latter is dona-
tion (d = 1) and its frequency where y∗ = 0 is unthinkable given d = 1. In this
case, we may use a “zero-truncated density” for y∗; e.g., the zero-truncated
Poisson distribution with the support points 1, 2, ...

For the former case P (y∗ = 0) > 0, suppose (i) P (d = 1|x) is logistic,
(ii) y∗|w follows Poisson, and (iii) ε�y∗|w. This gives a zero-inflated Poisson
(ZIP) model where P (d = 1|x) can be modeled as probit if desired:

yi = diy
∗
i , y∗|w ∼ Poi{exp(x′β)}, (di, w

′
i, yi) observed

P (y = 0|w) = P (d = 0|w) + P (d = 1, y∗ = 0|w)
= P (d = 0|w) + P (d = 1|w)P (y∗ = 0|w)

=
1

1 + exp(w′α)
+

exp(w′α)
1 + exp(w′α)

exp(−ex′β),

P (y = j|w) = P (d = 1, y∗ = j|w)

=
exp(w′α)

1 + exp(w′α)
{exp(x′β)}j

j!
exp(−ex′β), ∀j = 1, 2, ...

Certainly, other distributions such as negative binomial (NB) can be
used for y∗|x to result in “ZINB.”STATA provides the commands ZIP and
ZINB to implement ZIP and the zero-inflated NB. The assumption ε � y∗|w
in ZIP, which is equivalent to d � y∗|w, rules out selection problem as the
selection and outcome equations are independent given w. That is, ZIP is
not a sample-selection model. Nevertheless, ZIP is examined here, for ZIP
is a multivariate LDV model motivating a count-response selection MOM to
appear shortly.

For the latter case P (y∗ = 0) = 0 with the zero-truncated Poisson,

P (y = 0|w) = P (d = 0|w) =
1

1 + exp(w′α)
P (y = j|w) = P (d = 1, y∗ = j|x) = P (d = 1|w)P (y∗ = j|x)

=
exp(w′α)

1 + exp(w′α)
· 1
1 − exp(−ex′β)

{exp(x′β)}j

j!
exp(−ex′β),

j = 1, 2, ...

The term {1− exp(−ex′β)}−1 is the normalizing factor {1−P (y∗ = 0|w)}−1

for the truncation at zero. The individual likelihood function is{
1

1 + exp(w′α)

}1−d

·
{

exp(w′α)
1 + exp(w′α)

}d

·[
1

1 − exp(−ex′β)
{exp(x′β)}j

j!
exp(−ex′β)

]d

.
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When ln is taken on this, this gets split into the logit log-likelihood and
the truncated-Poisson log-likelihood. Hence, the MLE α̂ and β̂ is nothing
but, respectively, the logit of d on w and the truncated Poisson MLE with
the subsample di = 1. Such a split does not occur in the preceding case
P (y∗ = 0) > 0, because P (y = 0|w) is a sum of two terms involving zero
Poisson probability.

Suppose that ZIP has been implemented for a case with P (y∗ = 0) > 0,
but its α̂ differs much from logit. Because logit tends to be similar to probit
except that logit estimates are about 1.8 times greater than the probit esti-
mates, and because not much can be done other than logit/probit for binary
responses, we should retain the logit specification to question the other two
aspects of ZIP. That is, we might doubt the Poisson specification or question
the assumption ε � y∗|w. For the former, we may try zero-inflated NB, for
instance. But the latter is hard to address, because the joint distribution for
(ε, y∗) is not easy to specify—y∗ is discrete while ε is not. This awkward
situation motivates the next method-of-moment approach based partly on
normality.

3.5.3 Count-Response Selection MOM

Terza (1998) assumed, in essence,

E(y∗|w, ε)= exp(x′βx + βεε) and ε in d= 1[w′α + ε> 0] follows N(0, 1).

Under this, E(y|w, d = 1) can be derived as a function of βx, βε, and α:

E(y|w, ε > −w′α) =
∫ ∞

−w′α
exp(x′βx + βεt)

1√
2π

exp
(
−1

2
t2
)

dt
1

Φ(w′α)

= exp(x′βx)
∫ ∞

−w′α

1√
2π

exp
(

βεt −
1
2
t2 +

1
2
β2

ε −
1
2
β2

ε

)
dt · 1

Φ(w′α)

= exp
(

x′βx +
1
2
β2

ε

)∫ ∞

−w′α

1√
2π

exp
{
−1

2
(t − βε)

2

}
dt · 1

Φ(w′α)

= exp
(

x′βx +
1
2
β2

ε

)∫ ∞

−w′α−βε

1√
2π

exp
(
−1

2
τ2

)
dτ

1
Φ(w′α)

= exp(x′βx +
1
2
β2

ε)
Φ(w′α + βε)

Φ(w′α)
.

With the subsample d = 1, we can do a two-stage MOM estimation using

E(y|w, d = 1) = exp(x′βx +
1
2
β2

ε)
Φ(w′α + βε)

Φ(w′α)
.

The first-stage is probit for α, and the second stage is GMM for βx and βε

with α replaced by the probit α̂. Test for H0 : βε = 0 is a test for the selection
problem.
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Instead of entering ε directly into the y∗ equation, we may specify

E(y∗|w, v) = exp(x′βx + βvv) where (v, ε) is jointly normal with
COR(v, ε) = 0.

But this makes no real difference from the above approach. To see this, de-
compose v as γεε + γee with ε � e and assume

E(y∗|w, ε, e) = exp(x′βx + βvγεε + βvγee)

=⇒ E(y|w, d = 1) =
∫ ∫

−w′α
exp(x′βx + βvγεt + βvγeτ)

1√
2π

· exp
(
−1

2
t2
)

dt
φ(τ/σe)

σe
dτ

=
∫

exp(βvγeτ)
φ(τ/σe)

σe
dτ ·

∫
−w′α

exp(x′βx + βvγεt)
1√
2π

exp(−1
2
t2)dt.

The first term is a constant to be absorbed into the intercept in x′βx, and in
the second term, only βvγε is identified which can be taken as βε above.

The two-stage MOM is a selection correction method where the selec-
tion addition term takes the particular multiplicative form exp(0.5β2

ε)Φ(w′α+
βε)/Φ(w′α). The generalization of Lee (2004b) for ordered d and a sensitivity
analysis there send a warning that this specification may be too tight. Com-
bined with the “explosive” nature of the exponential function, the two-stage
MOM might be sensitive to violations of the model assumptions. One way
to robustify the procedure is, as done for the Heckman two-stage estimator
in the linear selection model, to replace the selection addition term with an
exponential function with polynomials of w′α in; e.g.

exp{1 + γ1(w
′α) + γ2(w

′α)2}.

“H0 : γ1 = 0 and γ2 = 0” means no selection problem.

3.6 Double and Multiple Hurdle Models

Suppose that y is a response variable censored from below at 0. Com-
bining the censoring problem with a selection problem, consider a model:

d∗i = w′iα + εi, di = 1[d∗i > 0]
y∗i = x′iβ + ui, yi = y∗i 1[y∗i > 0] = max(y∗i , 0)

(di, w
′
i, diyi) = (di, w

′
i, diy

∗
i 1[y∗i > 0]) is observed

Here, both d∗i and y∗i are latent variables, and y∗i is observed when two con-
ditions (or hurdles), di = 1 and y∗i > 0, are met. This is an example of a
double hurdle model originally due to Cragg (1971).
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There are variations on this kind of double hurdle models, depending on
the reason why y∗i is not observed. Suppose y∗i is expenditure on tobacco. For
y∗i to be positive, a couple of conditions may be needed. First, consumption
decision should be made by the consumer (fi = 1); nonsmokers will have
y∗i = 0. Second, during the period, purchase should be made at least once
(gi = 1); some people purchase a large amount only occasionally, while some
others may purchase small amounts frequently. Third, the consumer should
overcome the social hurdle of anti-smoking sentiment (hi = 1). Putting these
three conditions together, we get figihiy

∗
i , which may be dubbed a “multiple

hurdle model,” special cases of which are

giy
∗
i : a necessary good (fi = hi = 1 for all i),

fihiy
∗
i : a perishable good, bought frequently (gi = 1 for all i),

figiy
∗
i : a “no stigma” good (hi = 1 for all i).

The above model can be viewed also as a special case where the two conditions
di = 1 and 1[y∗i > 0] are two of fi = 1, gi = 1, and hi = 1.

In the multiple hurdle case, we have to consider one equation for each
hurdle, which means multiple correlated error terms. Doing MLE for this is
troublesome because several correlation coefficients and σu has to be esti-
mated, which typically results in non-convergence in the MLE. In practice,
often zero correlation assumptions are imposed. For instance, the error term
in the purchase frequency equation is assumed to be independent of the other
error terms. But this may be false, because, for instance, lazy people may
purchase less frequently and being lazy may also influence y.

For the above double hurdle model, if ε is independent of u, then the
log-likelihood function becomes

N∑
i=1

[
(1 − di) ln

{
1 − Φ(w′iα)Φ

(
x′i

β

σu

)}
+ di ln

{
Φ(w′iα) · 1

σu
φ

(
yi − x′iβ

σu

)}]
where 1−Φ(w′iα)Φ(x′iβ/σu) = 1−P (di = 1, y∗i > 0|wi) and Φ(w′iα) ·φ{(yi −
x′iβ)/σu}/σu comes from

P (di = 1|wi) · P (y∗i > 0|wi)
σ−1

u φ{(yi − x′iβ)/σu}
P (y∗i > 0|wi)

.

Certainly the likelihood function for the general case COR(ε, u) = 0 can be
derived, but it often fails to work as mentioned already. See Smith (2002) for
the literature on double hurdle models.
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4 LDV’s with Endogenous Regressors

When we consider multivariate equations with LDV’s, we can think of
three types of systems. First, “RF-like” multivariate equations where no LDV
or its latent version appears on the right-hand side; no endogeneity issue
comes up here. Second, recursive equations where some LDV’s or their la-
tent versions appear recursively on the right-hand side. Third, simultaneous
equations where all LDV’s or their latent versions appear on the right-hand
side non-recursively.

For instance, consider

y1 = f1(α1y2 + x′1β1 + u1) and y2 = f2(α2y1 + x′2β2 + u2),
u1 and u2 are related to each other, and (u1, u2)
are independent of (x1, x2)

where f1 and f2 are known functions such as f1(·) = 1[· > 0] for binary
responses and f2(·) = max(·, 0) for responses censored from below at 0. If
α1 = α2 = 0, then the system is of RF-type; if only one of α1 and α2 is
zero, then the system is recursive; if α1 = 0 and α2 = 0, then the system
is simultaneous. For recursive or simultaneous systems, we can also think of
the versions with the latent continuous variables y∗1 and y∗2 , instead of the
observed LDV’s y1 and y2, appearing on the right-hand side.

Since simultaneous systems include recursive systems as special cases,
which in turn include RF-like systems as special cases, we will devote most
space to simultaneous systems, whereas recursive or RF-like systems will be
discussed briefly. See Heckman (1978), Maddala (1983), Amemiya (1985),
Blundell and Smith (1993), L.F. Lee (1993), and the references therein for
more details and the literature on multivariate systems with LDV’s.

When endogenous regressors appear in a LDV model, there are a number
of ways to deal with them:

1. IVE with an orthogonality moment condition.

2. Replacing the regressors x with E(x|z) where z is an instrument; for the
overlapping (i.e., exogenous) components of x and z, the replacement
is the same as using the original variable.

3. Decompose the error term u to explicitly account for (or remove) the
part of u related to x.

4. Specify the equations determining the endogenous regressors and then
deal with the multiple equations simultaneously.

5. Add the instrument z as an artificial regressor with its slope ψ; fixing
the endogenous parameter α initially, estimate ψ(α) and β(α) with
ψ̂(α) and β̂(α); and get α̂ such that ψ̂(α̂) = 0, and then obtain β̂(α̂).
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In the following subsections, first, we discuss these five approaches draw-
ing on Lee (2008, semiparametric estimates for limited dependent variable
(LDV) models with endogenous regressors, unpublished paper). Second, we
examine recursive systems, which are relatively easy to deal with. Third, we
study simultaneous equations in LDV’s, not in their latent versions, to dis-
cuss the “coherecy conditions” and show the problems in this type of models.
Fourth, simultaneous equations in the latent variables are examined in detail
for the fourth approach above. Throughout this section, bivariate binary re-
sponses will be used frequently for illustration. Kang and Lee (2009) applied
the above approaches 2-5 to censored models to recommend 2-4 for practi-
tioners; Kang and Lee (2009) also showed how to estimate the asymptotic
variances using numerical derivatives.

4.1 Five Ways to Deal with Endogenous LDV’s

First, if LDV’s appear as endogenous regressors for a continuous response
variable, then the endogeneity can be dealt easily with IVE if instruments are
available. If LDV’s appear as endogenous regressors in a LDV model, however,
IVE is difficult to do. To appreciate the difficulty, consider a linear model
y = x′β + u with an instrument vector z for x such that E(zu) = 0. To take
advantage of this moment (orthogonality) condition, we solve the equation for
u to obtain E{z(y−x′β)} that is expressed in terms of observed variables and
the parameter β. For LDV models, to do an IVE for endogenous regressors,
we need the same thing: an orthogonality condition in terms of observed
variables and an error term. For a binary response model y = 1[x′β + u > 0]
with z as instrument for x, however, it is impossible to solve the equation for
u, differently from the linear model.

Earlier, we saw an IVE for count response models where a new error term
was devised instead of the original error u to come up with an orthogonality
moment condition; this shows that IVE is not impossible—IVE’s for LDV
models requiring nonparametric methods will be examined in the last chapter.
Nonetheless, the IVE for count response takes advantage of the exponential
regression function in a special way—i.e., exp(a + b) = exp(a) exp(b)—and
cannot be easily generalized for other LDV models. An ill-advised idea is
applying IVE with the RF error v = y − Φ(x′β/σ) under u ∼ N(0, σ2)
because the RF has a smooth regression function; this fails, however, even if
E(uz) = 0 because E(vz) = 0 in general.

Second, consider y1 = f(αy2 +x′β +u) where f is a known function and
u is related to y2 but not to x. For instance f(·) = 1[· > 0] for binary y1 and
f(·) = max(·, 0) for y1 censored from below at 0. With an instrument vector
z for y2 with E(u|z) = 0, rewrite the model as

y1 = f{αE(y2|x, z) + x′β + α(y2 − E(y2|x, z)) + u}
= f{αE(y2|x, z) + x′β + v}
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where v ≡ α(y2 − E(y2|x, z)) + u is the new error term satisfying at least
E(v|x, z) = 0 by construction. Replacing E(y2|x, z) with an estimator EN

(y2|x, z), one may estimate α and β. For instance, if y2 is binary, then probit is
run for y2 on (x′, z′)′ in the first stage, and the fitted value, say Φ{(x′, z′)gN},
is used for EN (y2|x, z). In this approach, the SF parameters α and β are esti-
mated directly—relative to another approach below where the SF parameters
are estimated indirectly through the RF estimators.

But within the parametric framework, strictly speaking, this approach
is not tenable despite that it is sometimes used in practice, because the dis-
tribution of v|(x, z) is not known even if the distribution of u|(x, z) is so; the
idea would be, however, subject to lesser criticisms if one uses semiparametric
estimation methods to appear in a later chapter. Replacing endogenous re-
gressors with their projections is an analog of 2SLSE for linear models where
the linear projection of y2 on (x, z) is used instead of E(y2|x, z). Despite the
theoretical shortcoming, however, this method as well as the following two
methods seem to work fairly well in practice.

Third, suppose y1 is censored from below at 0, y2 is continuous, and

y1 = max(0, αy2 + x′1β1 + u1), y2 = x′2β2 + u2,

(u1, u2) ∼ N(0,Ω) independently of (x1, x2).

Here, the endogeneity of y2 is due to COR(u1, u2) ≡ ρ = 0. Decompose u1

as

u1 =
COV (u1, u2)

V (u2)
u2 + ε =

ρσ1

σ2
u2 + ε,

where ε ∼ N(0, σ2
ε) independently of u2;

this can be done always thanks to the joint normality of u1 and u2. Then

y1 = max
(

0, αy2 + x′1β1 +
ρσ1

σ2
u2 + ε

)
.

Replacing u2 with the residual û2 from the LSE of y2 on x2, this equation
can be estimated with tobit where y2, x1, and û2 are the regressors.

Although using û2 instead of u2 affects the asymptotic distribution of the
tobit, the test for no endogeneity H0 : ρ = 0 can be done with the t-value for
û2 ignoring the correction term; this situation is similar to that in Heckman
two-stage for sample selection models. This way of explicitly accounting for
the part of the error term causing endogeneity is called “control function
approach”; û2 is a control function for the endogeneity of y2. Heckman two-
stage method for sample selection is also a control function approach.

Control function approach is advantageous when functions of an endoge-
nous regressor appear as regressors. For instance, suppose m is an endogenous
regressor and m, m2, and m3 are used together as regressors. Taking care of
this problem with IVE might need three instruments. But a single control



272 Ch. 6 Parametric Methods for Multiple Equation LDV Models

function for m removes the endogeneity of all three terms. A disadvantage of
control function approach is that the form of the control function could be
difficult to find. As in the preceding approach, the SF parameters α and β1

are estimated directly in the control function approach, rather than indirectly
through the RF parameter estimators.

Fourth, other than the preceding two-stage estimation methods, we can
also think of MLE for simultaneous systems. Consider a simultaneous system

y1 = f1(y∗1) = f1(α1y
∗
2 + x′1β1 + u1) where y∗1 = α1y

∗
2 + x′1β1 + u1,

y2 = f2(y∗2) = f2(α2y
∗
1 + x′2β2 + u2) where y∗2 = α2y

∗
1 + x′2β2 + u2,

where f1 and f2 are known functions linking the latent variables to the ob-
served LDV’s. The key feature of this system is that a linear system holds
in terms of y∗1 and y∗2 . Then the linear system can be solved for their RF’s,
say,

y∗1 = x′γ1 + v1, y∗2 = x′γ2 + v2

=⇒ y1 = f1(x′γ1 + v1), y2 = f2(x′γ2 + v2)

where x consists of the elements in x1 and x2.
In this approach, the SF parameters are estimated through their rela-

tionship to the RF parameters using minimum distance estimation (MDE).
Differently from the two preceding approaches, here the SF parameters are
estimated indirectly through the RF parameter estimators. There are in fact
two varieties in this approach: MLE is applied to each RF equation sepa-
rately or to the two equations jointly. The former is simpler because there
is no need to estimate the variance matrix of the RF errors, which entails,
however, efficiency loss. The latter is complicated due to estimating the vari-
ance matrix of the RF errors, but efficient—as efficient as estimating the SF
parameters directly using MLE.

Fifth, to fix the idea, consider the censored model for y1 with an instru-
ment z augmented artificially:

y1 = max(0, α1y2 + x′1β1 + ψz + u1)
⇐⇒ y1i − α1y2i = max(−α1y2i, x′1iβ1 + ψzi + u1i).

Take this as a censored model with the response variable y1i −α1y2i and the
known censoring point −α1y2i that varies across i. Let the tobit estimator
for β and ψ with α1 fixed be β̂1(α1) and ψ̂(α1). Repeat this for all possible
values of α1. Then, because we know ψ = 0, choose α̂1 as the one that
makes ψ̂(α̂1) = 0 as closely as possible, which also gives β̂1(α̂1). A reasonable
range for α1 may be obtained by initially ignoring the endogeneity of y2.
This approach was adopted by Chernozhukov and Hansen (2006, 2008); also



Sec. 4 LDV’s with Endogenous Regressors 273

see Sakata (2007). The idea seems to work well in practice, although it is
computationally quite burdensome as the maximization has to be repeated
for each possible value of α1. Chernozhukov and Hansen (2006, 2008) listed
several applied studies using the approach.

4.2 A Recursive System

Before we get to recursive system, in passing, we briefly discuss RF-like
multivariate equations with LDV’s, which has in fact appeared already. For
instance, consider

y1 = f1(x′1β1 + u1), y2 = f2(x′2β2 + u2),
(u1, u2) is jointly normal and is independent of (x1, x2),

where f1 and f2 are known functions such as f1(·) = 1[· > 0] for binary
responses and f2(·) = max(·, 0) for responses censored from below at 0. Each
equation can be estimated consistently on its own using univariate estima-
tion methods, but accounting for the relationship between u1 and u2 will
enhance the efficiency of the estimators. For instance, if y1 and y2 are bi-
nary (see Lee (1999) and the references therein) with COR(u1, u2) = ρ, then
(β′1/σ1, β

′
2/σ2, ρ) can be estimated simultaneously using the standard bivari-

ate normal distribution function with correlation ρ where σ1 = SD(u1) and
σ2 = SD(u2); the exact likelihood is a special case of that for a recursive case
to be shown below. Suppose u1 and u2 share a common “dominant” compo-
nent, say c. Then ρ > 0 (ρ < 0) suggests that c affects y1 and y2 in the same
(opposite) direction. Other than this interpretation, the system estimation is
simply to estimate β1/σ1 and β2/σ2 more efficiently. In multivariate models
with LDV’s, estimating the covariance matrix of the error terms could be
troublesome.

Turning to recursive systems in LDV’s, differently from linear recursive
systems, there are many varieties depending on the form of the LDV’s. We
will show MLE only for a bivariate binary response model with a binary
response appearing as an endogenous regressor. A simpler recursive system
than this is

y1 = x′β1 + u1 and y2 = 1[α2y1 + x′β2 + u2 > 0]
(u1, u2) ∼ N(0,Ω) independently of x

where y1 is a continuously distributed, (possibly) endogenous regressor in
the y2 equation. STATA provides the command ivprobit to estimate the y2

equation.
Consider a recursive system with both endogenous variables being

binary:

y1 = 1[x′β1 + u1 > 0] and y2 = 1[α2y1 + x′β2 + u2 > 0]
(u1, u2) ∼ N(0,Ω) independently of x.
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The same x is used for both equations to simplify notations; there is no loss of
generality, because x′1β1 can be written always in the form x′β1 by including
0’s in β1. For the likelihood, we need the following four probabilities, which
sum to one:

P (y1 = 1, y2 = 1|x) = P (u1 > −x′β1, u2 > −α2 − x′β2 |x),

P (y1 = 1, y2 = 0|x) = P (u1 > −x′β1, u2 < −α2 − x′β2 |x),

P (y1 = 0, y2 = 1|x) = P (u1 < −x′β1, u2 > −x′β2 |x),

P (y1 = 0, y2 = 0|x) = P (u1 < −x′β1, u2 < −x′β2|x).

One example for this is y1 = 1 for attending a Catholic high school and
y2 = 1 for high school graduation (or college entrance) as in Evans and
Schwab (1995). When COR(u1, u2) = 0, y1 is an endogenous regressor in the
y2 equation.

Examine the first probability, which is

P

(
−u1

σ1
< x′

β1

σ1
, −u2

σ2
<

α2

σ2
+ x′

β2

σ2
|x

)
= Ψ

(
x′

β1

σ1
,

α2

σ2
+ x′

β2

σ2
; ρ

)
where we use COR(−u1,−u2) = COR(u1, u2) and Ψ(v1, v2, ρ) is the integral
of the standard bivariate normal density with correlation ρ over (−∞, v1)
and (−∞, v2). Analogously, the second and third probabilities are,
respectively,

P

(
−u1

σ1
< x′

β1

σ1
,

u2

σ2
< −α2

σ2
− x′

β2

σ2
|x

)
= Ψ

(
x′

β1

σ1
, −α2

σ2
− x′

β2

σ2
;−ρ

)
,

P

(
u1

σ1
< −x′

β1

σ1
, −u2

σ2
< x′

β2

σ2
|x
)

= Ψ
(
−x′

β1

σ1
, x′

β2

σ2
;−ρ

)
,

because COR(−u1, u2) = −COR(u1, u2). Proceeding this way, the four prob-
abilities are obtained as functions of β1/σ1, α2/σ2, β2/σ2, ρ, and the ensuing
MLE can be done straightforwardly by maximizing

∑
i

[
y1iy2ilnΨ

(
x′

β1

σ1
,
α2

σ2
+ x′

β2

σ2
; ρ

)
+ y1i(1 − y2i)lnΨ

(
x′

β1

σ1
,−α2

σ2
− x′

β2

σ2
;−ρ

)

+ (1 − y1i)y2ilnΨ

(
−x′

β1

σ1
, x′

β2

σ2
;−ρ

)
+ (1 − y1i)(1 − y2i)lnΨ

(
−x′

β1

σ1
, −x′

β2

σ2
; ρ

)]
.

If we set α2 = 0, then the likelihood is for the bivariate binary-response
RF-like system.
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4.3 Simultaneous Systems in LDV’s and Coherency
Conditions

4.3.1 Incoherent System in Binary Responses

Suppose y1 and y2 are both binary and we have a simultaneous system
with LDV’s, not the latent continuous variables, on the rhs:

y1 = 1[α1y2 + x′β1 + u1 > 0] and y2 = 1[α2y1 + x′β2 + u2 > 0].

Consider the four probabilities:

P (y1 = 1, y2 = 1|x) = P (u1 > −α1 − x′β1, u2 > −α2 − x′β2 |x),
P (y1 = 1, y2 = 0|x) = P (u1 > −x′β1, u2 < −α2 − x′β2 |x),
P (y1 = 0, y2 = 1|x) = P (u1 < −α1 − x′β1 u2 > −x′β2 |x),
P (y1 = 0, y2 = 0|x) = P (u1 < −x′β1, u2 < −x′β2|x).

The sum of these four probabilities becomes one only if

α1α2 = 0 ⇐⇒ either one of α1 and α2 is 0.

That is, the simultaneous system is not allowed, although a recursive system
is.

The condition α1α2 = 0 is called a “coherency condition.” Despite their
obvious mathematical necessity, this coherency condition is hard to take.
For instance, if y1 and y2 are binary work-or-not decisions of a couple in a
household, it is not clear why the influence should be unidirectional. Tamer
(2003) defined “coherency” as the solvability of a SF equation system for
the RF’s, and “completeness” as the solution being unique. Lewbel (2007)
derived necessary and sufficient conditions for two-equation SF systems with
a binary y1 to be coherent and complete. The main finding of Lewbel (2007)
is that the system should be triangular (i.e., no simultaneity allowed), but
the direction of causality can vary across individuals. For example, y1 SF has
diy2i on the right-hand side and y2 SF has (1−di)y1i on the right-hand side.
Then, depending on di, the direction of the causality changes. Alternatively,
Lewbel (2007) suggests to “nest” the two SF’s in one larger behavior model
that determines both; e.g., if both y1 and y2 are binary, then nest them in
one multinomial choice as can be seen in Lewbel (2007, 1388–1389).

4.3.2 Coherent System in Censored Responses

Consider a simultaneous system in censored responses:

y∗1 = α1y2 + x′β1 + u1, y∗2 = α2y1 + x′β2 + u2,

y1 = max(y∗1 , 0), y2 = max(y∗2 , 0), (x′, y1, y2) is observed.

To construct the likelihood function, we need to express (u1, u2) as an one-
to-one function of (y1, y2). In the linear model with y1 = y∗1 and y2 = y∗2 , we
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would have

Γ ·
[

y1

y2

]
−

[
β′1
β′2

]
x =

[
u1

u2

]
and this is solvable for (y1, y2) if Γ−1 exists.

In the simultaneous system in censored responses, the equation like this
holds, but the form of Γ depends on the values of (y1, y2):

y1 > 0, y2 > 0 : Γ++ ≡
[

1 −α1

−α2 1

]
,

y1 > 0, y2 = 0 : Γ+− ≡
[

1 0
−α2 1

]
,

y1 = 0, y2 > 0 : Γ−+ ≡
[

1 −α1

0 1

]
,

y1 = 0, y2 = 0 : Γ−− ≡
[

1 0
0 1

]
.

Thus we get

{Γ++1[y1 > 0, y2 > 0] + Γ+−1[y1 > 0, y2 = 0] + Γ−+1[y1 = 0,

y2 > 0] + Γ−−1[y1 = 0, y2 = 0]} ·
[

y1

y2

]
−

[
β′1
β′2

]
x =

[
u1

u2

]
.

Gourieroux et al. (1980) showed that, for the invertibility of the term
{·}, it is necessary and sufficient (under some conditions) to have the same
sign for all determinants |Γ++| = 1 − α1α2, |Γ+−| = 1, |Γ−+| = 1, and
|Γ−−| = 1. That is, the coherency condition for the simultaneous system in
censored responses is

1 − α1α2 > 0.

This allows for simultaneous systems, differently from the bivariate binary
SF’s above. It is not clear, however, how to interpret the condition. One may
hope MLE ignoring the coherency condition to be all right. But Van Soest
et al. (1993) showed a counter example where MLE is inconsistent when the
coherency condition is ignored. Nevertheless, if the resulting MLE meets the
coherency condition, then ignoring it in the first place seems harmless.

Sometimes a coherency condition is satisfied with ease. For instance,
consider (we omit exogenous regressors to simplify the presentation)

ci = uci, where ci is crop in period i,

pi = γddi + upi, inverse demand function with pi being price, γd < 0,

hi = βcci + βppi + uhi, where hiis the desired harvest in period i, βp > 0,

si = min(ci, hi) actual harvest (supply).

With pi establishing the equilibrium di = si, we get

ci = uci, hi = βcci + βppi + uhi, pi = γd min(ci, hi) + upi,
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with three endogenous variable ci, hi, pi. There are two regimes (compared
with four in the simultaneous system with censored variables): ci < hi and
ci ≥ hi. We thus get⎛⎝⎡⎣ 1 0 0

−βc 1 −βp

−γd 0 1

⎤⎦ 1[ci < hi] +

⎡⎣ 1 0 0
−βc 1 −βp

0 −γd 1

⎤⎦ 1[ci ≥ hi]

⎞⎠
×

⎡⎣ ci

hi

pi

⎤⎦ =

⎡⎣ uci

uhi

upi

⎤⎦ .

The determinants of the first and second matrices are 1 and 1−βpγd, respec-
tively. Hence, 1 − βpγd > 0 is the coherency condition for the model, which
is satisfied because βp > 0 and γd < 0.

4.3.3 Control Function Approach with a Censored Response

Whereas estimating simultaneous equations in latent continuous vari-
ables is fairly straightforward as will be shown shortly, estimating simulta-
neous equations in LDV’s is not; we already noted the difficulty associated
with coherency conditions. In the following, we review a control function ap-
proach in Blundell and Smith (1993) for a relatively simple model with two
variables y1 and y2 where y1 is censored from below at 0, y2 is continuously
distributed, and they are related in the following way:

SF1 : y1 = max(0, α1y2 + x′1β1 + u1), SF2 : y2 = α2y1 + x′2β2 + u2.

The main difficulty is that y1, not y∗1 , appears in SF2: substitute SF2
into SF1 to get

y1 = max(0, α1(α2y1 + x′2β2 + u2) + x′1β1 + u1)

which cannot be solved for y1 to get RF1. The coherency condition can be
shown to be (again) 1 − α1α2 > 0. Had we had y2 = α2y

∗
1 + x′2β2 + u2 as

SF2, then we would have

y∗1 = α1(α2y
∗
1 + x′2β2 + u2) + x′1β1 + u1,

which could be easily solved for y∗1 so long as α1α2 = 1 (⇐= 1 − α1α2 > 0);
this would in turn yield RF1 for y1 = max(0, y∗1).

Suppose (u1, u2)′ follows N(0,Ω) independently of (x1, x2). The main
idea of the control function approach is in observing that, defining y3 ≡
y2 − α2y1 ⇔ y2 = y3 + α2y1,

y1 = max(0, α1y3 + α1α2y1 + x′1β1 + u1), y3 = x′2β2 + u2,

and u1 = λu2 + ε, where ε is independent of u2 and
λ is an unknown constant;
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the latter can be arranged always thanks to the joint normality. Pretend that
α2 and u2 are observed for a while. We then get

y1 > 0 =⇒ y1 =
1

1 − α1α2
(α1y3 + x′1β1 + ρu2 + ε),

y1 = 0 =⇒ 1
1 − α1α2

(α1y3 + x′1β1 + ρu2 + ε) < 0,

where the coherency condition 1 − α1α2 > 0 is used. This can be written
succinctly as

y1 = max(0, α∗1y3 + x′1β
∗
1 + ρ∗u2 + ε∗), where

α∗1 ≡ α1

1 − α1α2
, β∗1 ≡ β1

1 − α1α2
, ρ∗ ≡ ρ

1 − α1α2
, ε∗ ≡ ε

1 − α1α2
.

With u2 as a regressor, y3 is independent of ε, and the censored model with
regressors y3, x1 and u2 can be estimated for α∗1, β∗1, and ρ∗ using tobit.

Turning to the question of getting α2 and u2, note that SF2 y2 = α2y1 +
x′2β2 + u2 is a linear model, which can be estimated with IVE. Denoting the
IVE for α2 and β2 as aN2 and bN2, respectively, use

y2 − aN2y1 for y3 and û2 ≡ y2 − aN2y1 − x′2bN2 for u2.

Assessing the effect of the estimation errors aN2−α2 and û2−u2 on the second
stage can be done following the approach for M-estimators with nuisance
parameters where the M-estimator is the tobit. Alternatively, bootstrap may
be used.

Blundell and Smith (1993) presented an empirical illustration (N =
2539) for married women in UK in 1981 where y1 is work hours and y2

is the household income other than the woman’s. The main results are (SD
in (·))

(i) α1 = −0.093 (0.022), α2 = −0.466 (0.180);
(ii) α1 = −0.121 (0.011) when tobit is applied ignoring the

y2 endogeneity;
(iii) α1 = −0.048 (0.029) when y∗1 appears in SF2.

First, (i) shows that the coherency condition is easily satisfied. Second, (i)
and (ii) show that ignoring endogeneity does not make much difference in
this example. Third, (i) and (iii) show that it matters substantially whether
the latent continuous variable or the observed LDV appears in the SF.

4.4 Simultaneous Systems in Latent Continuous
Variables

4.4.1 Motivations and Justifications

Differently from the preceding methods, if the simultaneous system in
LDV’s are in terms of the latent continuous variables, then the estima-
tion methods for linear simultaneous equations can be combined with single
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equation LDV-model estimation methods. The idea goes as follows. First, the
SF’s in latent variables y∗’s are solved for RF’s. Second, each RF is a LDV
model and thus the RF parameters can be estimated with ease. Third, the
SF parameters are estimated using the restrictions involving the RF and SF
parameters in the framework of minimum distance estimation (MDE).

The procedure has advantage that what is identified in the SF’s can be
presented lucidly. The procedure also has two disadvantages. One is ineffi-
ciency resulting from the fact that the covariance matrix of the RF errors
is not estimated; this disadvantage, however, disappears if the multivariate
RF-like equations are estimated jointly. This disadvantage is not really a dis-
advantage, because covariance matrices are not well estimated in practice.
The other disadvantage is that we should be able to justify why the simulta-
neous relations hold in the latent, not the actual observed limited, variables.
This latent/actual variable issue depends on whether the LDV at hand was
the actual choice variable the economic agents faced or only a limitation in
observability to econometricians.

For instance, suppose y∗1 and y∗2 are the incomes of two spouses in a
household, which can be simultaneously related. If y∗1 and y∗2 are observed
as ordered categories (y1 and y2) for confidentiality, then the simultaneous
system in y∗1 and y∗2 is the right model, because the choice variables for the
economic agents are y∗1 and y∗2 , not y1 and y2 that are restrictions on the
observability of y∗1 and y∗2 to econometricians. In this case, the effect of y∗2
on y∗1 is not fully identified; i.e., α1 in y∗1 = α1y

∗
2 + x′β1 + u1 is not fully

identified, because only the ODR’s y1 and y2 are observed.
Now, suppose y∗1 and y∗2 are “propensity” to work, but the labor law

allows only one of no work, 50% part-time, or full-time work. In this case, we
can think of three-category ODR’s y1 and y2, and a simultaneous system in y1

and y2 would be more appropriate. But, as simultaneous relation between two
binary responses is not allowed due to the coherency condition, simultaneous
relations between ODR variables are not allowed either. Hence, despite that
simultaneous relations in the actual LDV’s are better suited in this case, still
the simultaneous system in latent continuous variables is often used.

A little different from the above multi-step procedure using MDE is the
following MLE. Recall the two equation recursive system

y1 = x′β1 + u1 and y2 = 1[α2y1 + x′β2 + u2 > 0]
(u1, u2) ∼ N(0,Ω) independently of x.

One can proceed at least in two different ways for this model. One is the above
procedure with MDE where the estimator uses the RF errors (v1, v2) marginal
densities (not efficient) or joint density (efficient), and the other is the MLE
where the likelihood funtion uses the conditional density of u2|u1 along with
the marginal density of u1. For the conditional density of u2|(x, u1), i.e. u2|u1,
y1’s endogeneity does not matter any more as (x, u1) gets fixed. STATA has
the command ivprobit for the second approach; when y2 is of tobit type,
ivtobit can be used.
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In the following, we examine a simultaneous system with three response
variables (censored, binary, and ODR with R-categories):

max(y∗1i, 0), 1[y∗2i > 0],
R−1∑
r=1

1[y∗3i ≥ γr],

drawing on Lee (1995) and Kimhi and Lee (1996). Although we do not have
any particular real example in mind for this case, dealing with this will illus-
trate well how to handle simultaneous systems in latent continuous variables.
For more generality, we will proceed with general H-many equations and
resort to the case H = 3 when the specific details should be shown.

4.4.2 Individual RF-Based Approach with MDE

Consider simultaneous equations in y∗j ’s:

y∗hi =
H∑

m=1,m �=h

αhmy∗mi + x′hiβh + uhi, h = 1, ...,H,

(u1i, ..., uHi)′ ∼ N(0,Ω) independently of xi,

where xh has dimension kh × 1 and xi of dimension K × 1 consists of all
elements in xhi’s. Let the K ×kh selection matrix be Sh consisting of 0’s and
1’s such that x′hi = x′iSh. Using Sh, rewrite the SF’s as

y∗hi =
H∑

m=1,m �=h

αhmy∗mi + x′iShβh + uhi ∀h.

Denoting the hth RF as y∗hi = x′iηh + vhi, h = 1, ...,H, insert them into
the hth SF to get

x′iηh + vhi = x′i

⎛⎝ H∑
m=1,m �=h

αhmηm + Shβh

⎞⎠ +

⎛⎝ H∑
m=1,m �=h

αhmvmi + uhi

⎞⎠ ∀h.

Pre-multiply both sides by xi and take expectation to get rid of the error
terms. Assuming that E(xix

′
i) is of full rank, the resulting equation is equiv-

alent to

ηh =
H∑

m=1,m �=h

αhmηm + Shβh, ∀h.

This equation links the RF parameter ηh’s to the SF parameter αhm’s and
βh’s.

Recall the H = 3 case with y1, y2, y3 being censored, binary, and ODR,
respectively. Whereas η1 is fully identified, as for η2 and η3, only η2/σ2 and
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η3/σ3 are identified where σ2 ≡ SD(v2) and σ3 ≡ SD (v3). Rewrite the
preceding display for η1, η2/σ2 and η3/σ3:

η1 = α12σ2
η2

σ2
+ α13σ3

η3

σ3
+ S1β1,

η2

σ2
=

α21

σ2
η1 + α23

σ3

σ2

η3

σ3
+ S2

β2

σ2
,

η3

σ3
=

α31

σ3
η1 + α32

σ2

σ3

η2

σ2
+ S3

β3

σ3
.

Define

δ1 ≡ η1, δ2 ≡ η2

σ2
, δ3 ≡ η3

σ3
(identified RF parameters)

μ12 ≡ α12σ2, μ13 ≡ α13σ3 (identified endogenous SF parameters
for SF 1)

μ21 ≡ α21

σ2
, μ23 ≡ α23

σ3

σ2
, (identified endogenous SF parameters

for SF 2)

μ31 ≡ α31

σ3
, μ32 ≡ α32

σ2

σ3
, (identified endogenous SF parameters

for SF 3)

β̄1 ≡ β1, β̄2 ≡ β2

σ2
, β̄3 ≡ β3

σ3
, (identified exogenous SF parameters)

to get

δh =
H∑

m=1,m �=h

μhmδm + Shβ̄h, ∀h.

One thing we ignored is that the first threshold is absorbed into the
intercept in binary response and ODR; consequently, the intercepts in β1,
β2, and β3 are not identified in the second and third equations. This usually
does not matter, because intercepts are not of interest per se. But there are
cases it matters, including cases of regressor-dependent thresholds; see Lee
and Kimhi (2005) for more on this.

Consider the LSE of

δh
K×1

on Dh ≡
(

δ1
K×1

, ..., δh−1, δh+1, ..., δH , Sh
K×kh

)
to estimate μh1, ..., μh,h−1, μh,h+1, ..., μhH and β̄h. For the LSE, D′hDh should
be of full rank, and since the dimension of Dh is K × (H − 1 + kh), the rank
condition is

rank(Dh) = H − 1 + kh.

The order condition, which is a necessary condition for the rank condition,
is that the column dimension of Dh should be equal to or smaller than the
row dimension:
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H − 1 + kh ≤ K ⇐⇒ H − 1 ≤ K − kh

⇐⇒ # included endogenous variables
≤ # excluded exogenous variables.

This settles the identification issue.
With the identification issue settled, we turn to estimation with MDE.

Let dh denote an estimator for δh; for the example above, d1 is tobit, d2

is probit, and d3 is ordered probit. Then δh =
∑H

m=1,m �=h μhmδm + Shβ̄h,
h = 1, 2, 3, can be written as

d1 = (d2, d3, S1)(μ12, μ13, β̄
′
1)
′ + w1 = D1γ1 + w1,

d2 = (d1, d3, S2)(μ21, μ23, β̄
′
2)
′ + w2 = D2γ2 + w2,

d3 = (d1, d2, S3)(μ31, μ32, β̄
′
3)
′ + w3 = D3γ3 + w3,

where

w1 ≡ (d1 − δ1) − μ12(d2 − δ2) − μ13(d3 − δ3), γ1 ≡ (μ12, μ13, β̄
′
1)
′,

w2 ≡ (d2 − δ2) − μ21(d1 − δ1) − μ23(d3 − δ3), γ2 ≡ (μ21, μ23, β̄
′
2)
′,

w3 ≡ (d3 − δ3) − μ31(d1 − δ1) − μ32(d2 − δ2), γ3 ≡ (μ31, μ32, β̄
′
3)
′.

Stack these equations to get

d = Dγ + w where

d ≡

⎡⎣ d1

d2

d3

⎤⎦ , D ≡

⎡⎣ D1 0 0
0 D2 0
0 0 D3

⎤⎦ , γ ≡

⎡⎣ γ1

γ2

γ3

⎤⎦ ,

w ≡

⎡⎣ w1

w2

w3

⎤⎦ .

If the asymptotic variance for w is C with a consistent estimator CN , then
the MDE for γ is

gN ≡ (D′C−1
N D)−1D′C−1

N d and
√

N(gN − γ)� N(0, (D′C−1D)−1);

the MDE is reminiscent of GLS. In the following, we show how to get CN .
A simpler alternative to (D′C−1

N D)−1D′C−1
N d is its LSE variety (D′D)−1

D′d, which is the same as the stacked version of each equation estimators. The
asymptotic variance of (D′D)−1D′d is more complicated than (D′C−1D)−1,
but one may use nonparametric bootstrap for asymptotic inferences involving
(D′D)−1D′d.

To do the “GLS,”first do LSE for each dh = Dhγh+wh separately, which
gives a

√
N -consistent estimator, say ĝh. From ĝh’s, pull out the estimators

μ̂hm for μhm. Let q̂hi be a consistent estimator for the influence function qhi of
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√
N(dh−δh). For

√
N(d2−δ2), we have q2i = E−1(s2is

′
2i)s2i, where s2i is the

probit score function. But for
√

N(d1−δ1), since there is a nuisance parameter
σ1 while δ1 is the regression coefficients of RF1, we need an effective influence
function for δ1. Let the tobit score function be (s′δi, s

′
σi)
′ where sδi is for the

regression coefficients and sσi is for σ1. Then the effective score function and
the desired influence function for

√
N(d1 − δ1) are, respectively,

s1i = sδi − E(sδis
′
σi)E

−1(sσis
′
σi)sσi and q1i = E−1(s1is

′
1i)s1i.

Doing analogously, let the ordered probit score function be soi = (s′ζi, s
′
τi)
′

where sζi is for the regression coefficients and sτi is for the thresholds. Then
the effective score function and the desired influence function for

√
N(d3−δ3)

are, respectively,

s3i = sζi − E(sζis
′
τi)E

−1(sτis
′
τi)sτi and q3i = E−1(s3is

′
3i)s3i.

Now, we have

√
Nw1 =

1√
N

∑
i

Q1i + op(1), where Q1i ≡ q1i − μ̂12q2i − μ̂13q3i,

√
Nw2 =

1√
N

∑
i

Q2i + op(1), where Q2i ≡ q2i − μ̂21q1i − μ̂23q3i,

√
Nw3 =

1√
N

∑
i

Q3i + op(1), where Q3i ≡ q3i − μ̂31q1i − μ̂32q2i.

Finally, we get

CN =
1
N

∑
i

QiQ
′
i where Qi ≡ (Q′1i, Q

′
2i, Q

′
3i)
′.

4.4.3 An Empirical Example

As an empirical example, Lee and Kimhi (2005) analyzed 1995 farm
household data from Israel (N = 1337). The data pertains to the joint time
allocation decisions of farm couples, including four endogenous ODR’s in four
categories. To simplify the presentation however, we show the simultaneous
system in four binary responses (work or not) instead of ODR’s:

y1: male
farm work

y2: male
market work

y3:

female farm
y4:

female market
yj = 1: 83% 48% 48% 58%

The regressors are as follows (Lee and Kimhi (2005) in fact used more
regressors than listed here): with sample average in (·),
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age: husband age divided by 10 (5.08)

age2: square of husband age divided by 10 (27.03)

cap: ln(farm capital stock+1) (4.43)

catt: dummy for raising cattle or other livestock (0.08)

ed1h: dummy for male’s high school completion (0.61)

ed1c: dummy for male’s education more than high school (0.13)

ed2h: dummy for female’s high school completion (0.60)

ed2c: dummy for female’s education more than high school (0.14)

land: ln(landholdings+1) [in dunams (0.23 acre)] (3.26)

nkid: number of children (age under 15) in the household (1.55)

nadu: number of adults (age above 21) in the household (3.17)

is1: dummy for male born in Israel (0.52)

is2: dummy for female born in Israel (0.56)

In estimating the SF’s with MDE, the order condition requires at least
three excluded exogenous variables from each SF. There are two justifications
for variable exclusions. First, farm variables (cap, catt, and land) are unlikely
to affect the market variables y2 and y4 directly. Second, education and eth-
nicity are unlikely to be directly relevant for the spouse’s labor supply. These
considerations suggest the following list of excluded variables:

y1 : ed2h, ed2c, is2 y2 : ed2h, ed2c, is2, cap, catt, land
y3 : ed1h, ed1c, is1 y4 : ed1h, ed1c, is1, cap, catt, land

This shows that the order conditions for y1 and y3 are just enough, while
those for y2 and y4 are relatively plentiful. Table 4 shows the result for the
y2 and y4 (market work) SF’s.

Examining the endogenous SF coefficients, there is a significant negative
effect of male’s farm work on the male’s market work. Note that −0.494 is
for μ21 = α21(σ1/σ2), and as such it is hard to interpret. But if σ1 = σ2,
then −0.494 = α21. Also, somewhat surprisingly, the female’s market work
increases the male’s market work, and the effect is almost significant with the
magnitude 0.647 which is for α24(σ4/σ2). As for the female, there is significant
negative effect of the female’s farm work on the female’s market work with the
magnitude −1.681 that is for μ43 = α43(σ3/σ4). If both σ1 = σ2 and σ3 = σ4

hold, then μ21 and μ43 are comparable, and the magnitude is about three
times greater for the females. Using ODR instead of binary responses, Lee and
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Table 4: Simultaneous System for Binary Responses
y2 SF

est.(male mart.) t-value
y4 SF

est.(female mart.) t-value
y1 −0.494 −3.417 −0.004 −0.007
y2 −0.402 −0.391
y3 0.135 0.242 −1.681 −2.033
y4 0.647 1.811
1 1.004 0.768 −3.639 −1.988
age −0.113 −0.213 1.600 1.786
age2 0.002 0.042 −0.163 −1.699
ed1h 0.035 0.365
ed1c 0.267 1.522
ed2h 0.125 0.412
ed2c 0.200 0.509
nkid 0.001 0.024 0.020 0.425
nadu 0.021 0.511 −0.083 −1.354
is1 −0.171 −1.525
is2 0.234 1.545

Kimhi (2005) showed ways to identify αjk’s from the threshold information
in the ODR’s.

Turning to the exogenous SF coefficients, recall that what is identified
in the y2-SF (y4-SF) is β2/σ2 (β4/σ4). Differently from the endogenous SF
parameters μjm’s, there is no possibility to get rid of the unknown scale fac-
tors for the exogenous SF coefficients. Age matters much for female market
work, whereas it hardly does for males. College education seems to be ad-
vantageous only for the male market work, and the number of adults seems
to decrease the female market work. Being born in Israel may work in the
opposite directions for the male and female.

5 Panel-Data Binary-Response Models

Many panel data models have LDV’s. With each individual having T
many periods (i.e., equations), they are also multivariate LDV models. Draw-
ing on Lee (2002), this section introduces some binary-response panel data
models, as binary response is basic for LDV’s. For more on panel data LDV
models, see Lee (2002), Hsiao (2003), Baltagi (2005), and the references
therein.

5.1 Panel Conditional Logit

Recall the linear panel data model with a time-constant regressor vector
c̃i, a time-variant regressor vector xit, a time-constant error δi, a time-varying
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error uit, and the continuous response denoted now as y∗it:

y∗it = τ t + c̃′iα̃ + x′itβ + δi + uit (τ t is time-varying intercept)

= τ t + w̃′itγ̃ + vit, where w̃it = (c̃′i, x
′
it)
′, γ̃ = (α̃′, β′)′,

vit = δi + uit.

Also recall

ci ≡
[

1
c̃i

]
, wit ≡

⎡⎣ 1
c̃i

xit

⎤⎦ , α ≡
[

τ1

α̃

]
, and γ ≡

[
α
β

]
.

What is identified in the linear model is

τ1, τ2 − τ1, ..., τT − τ1, γ ⇐⇒ τ1, ..., τT , γ.

Here, only the intercept is allowed to vary over time whereas the slopes are
fixed. In panel binary responses, instead of y∗it, we observe yit = 1[y∗it > 0]
and assume

{(yit, w̃
′
it)
′}T

t=1, i = 1, ..., N, are iid across i.

5.1.1 Two Periods with Time-Varying Intercept

To simplify exposition, set T = 2 for a while. Assume

uit/σ is logistic independently of (δi, c̃i, xi1, xi2), iid across i and t

=⇒ P (yit = 1|δi, c̃i, xi1, xi2)

= P (uit > −τ t − c̃′iα̃ − x′itβ − δi|δi, c̃i, xi1, xi2)

=
exp(τ t/σ + c̃′iα̃/σ + x′itβ/σ + δi/σ)

1 + exp(τ t/σ + c̃′iα̃/σ + x′itβ/σ + δi/σ)

for an unknown positive constant σ that is not a function of t. With this
understood, set σ = 1 from now on to simplify notations.

Observe, omitting i and “|δi, c̃i, xi1, xi2,”

P (y1 = 0, y2 = 1|y1 + y2 = 1)

= P{y1 = 0, y2 = 1 | (y1 = 0, y2 = 1) or (y1 = 1, y2 = 0)}

=
P (y1 = 0)P (y2 = 1)

P (y1 = 0)P (y2 = 1) + P (y1 = 1)P (y2 = 0)

=
exp(τ2 + c̃′α̃ + x′2β + δ)

exp(τ2 + c̃′α̃ + x′2β + δ) + exp(τ1 + c̃′α̃ + x′1β + δ)
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because all three products of probabilities share the same denominator

{1 + exp(τ1 + c̃′iα̃ + x′i1β + δi)} · {1 + exp(τ2 + c̃′iα̃ + x′i2β + δi)}.

Divide through by exp(τ1 + c̃′α̃ + x′1β + δ) to obtain

P (y1 = 0, y2 = 1|y1 + y2 = 1) =
exp(Δτ + Δx′β)

1 + exp(Δτ + Δx′β)
where

Δτ ≡ τ2 − τ1 and Δxi ≡ xi2 − xi1.

Subtract this from 1 to get also

P (y1 = 1, y2 = 0|y1 + y2 = 1) =
1

1 + exp(Δτ + Δx′β)
.

The iid assumption across t is essential for this derivation. Because c̃i is
removed along with δi, redefine δi as c̃′iα̃ + δi to ignore c̃′iα̃ from now on
unless otherwise necessary.

The probabilities conditional on y1 + y2 = 1 are free of δi, and we can
estimate Δτ and β by maximizing the likelihood function conditional on
y1 + y2 = 1. Define

di = 1 if yi1 + yi2 = 1, and 0 otherwise.

The panel conditional-logit log-likelihood function to maximize wrt Δτ and
β corresponding to the regressors 1 and Δx, respectively, is∑

i

di

[
yi1 ln

{
1

1 + exp(Δτ + Δx′iβ)

}
+ yi2 ln

{
exp(Δτ + Δx′iβ)

1 + exp(Δτ + Δx′iβ)

}]
.

The log-likelihood function is almost the same as that for the cross-section
logit.

With Δyi ≡ yi2 − yi1,

diyi1 = 1 ⇐⇒ yi1 = 1 and yi2 = 0 ⇐⇒ Δyi = −1
diyi2 = 1 ⇐⇒ yi1 = 0 and yi2 = 1 ⇐⇒ Δyi = 1.

This shows that the log-likelihood function depends on (xi1, xi2, yi1, yi2) only
through the first-differences Δxi and Δyi; conditional logit is an “error-
differencing” (or “model-differencing”) type estimator, analogous to the first-
differencing estimator for linear panel data models. The idea is that

∑
t yit is a

“sufficient statistic” for δi: given xi1 and xi2, the likelihood of (yi1, yi2) does
not depend on δi when conditioned on

∑
t yit—more on sufficient statistic

later. This idea of conditioning on a sufficient statistic appears in Anderson
(1970) and Chamberlain (1980). The log-likelihood can be maximized and
the estimator’s asymptotic variance can be estimated in the usual MLE way,
although no efficiency claim can be made for the MLE.
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5.1.2 Three or More Periods

Suppose T = 3. Assume τ t = τ for all t to simplify exposition—it will
be shown below how to relax this restriction. Define

di1 = 1 if
∑

t

yit = 1, and 0 otherwise,

di2 = 1 if
∑

t

yit = 2, and 0 otherwise,

xi ≡ (xi1, xi2, xi3) =⇒ x′iβ
3×1

= (x′i1β, x′i2β, x′i3β)′.

Given di1 = 1, there are three possibilities for y′i ≡ (yi1, yi2, yi3):

(1, 0, 0), (0, 1, 0), (0, 0, 1).

Doing analogously to the derivation of P (y1 = 0, y2 = 1|y1 + y2 = 1),
the probability of observing a particular yi given xi, δi, and di1 = 1 is

exp(y′i · x′iβ)
exp{(1, 0, 0)x′iβ} + exp{(0, 1, 0)x′iβ} + exp{(0, 0, 1)x′iβ}

=
exp(y′i · x′iβ)

exp(x′i1β) + exp(x′i2β) + exp(x′i3β)
.

Doing analogously, the conditional probability of observing a particular yi

given xi, δi, and di2 = 1 is

exp(y′i · x′iβ)
exp{(1, 1, 0) · x′iβ} + exp{(1, 0, 1) · x′iβ} + exp{(0, 1, 1) · x′iβ}

=
exp(y′i · x′iβ)

exp((xi1 + xi2)′β) + exp((xi1 + xi3)′β) + exp((xi2 + xi3)′β)
.

Hence, the three-period conditional-logit log-likelihood function to maximize
for β is∑

i

[
di1 ln

{
exp(y′i · x′iβ)

exp(x′i1β) + exp(x′i2β) + exp(x′i3β)

}

+di2 ln
{

exp(y′i · x′iβ)
exp((xi1 + xi2)′β) + exp((xi1 + xi3)′β) + exp((xi2 + xi3)′β)

}]
.

For a general T ≥ 3, the panel conditional-logit log-likelihood function
is ∑

i

ln

{
exp(y′i · x′iβ)∑

λ∈Gi
exp(λ′ · x′iβ)

}
where

Gi ≡
{

λ ≡ (λ1, ..., λT )′|λt = 0, 1 and
∑

t

λt =
∑

t

yit

}
.
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Here each i is classified depending on
∑

t yit. For example, if
∑

t yit = 1,
then we can think of all possible sequences of {λt} such that

∑
t λt = 1. The

denominator
∑

λ∈Gi
exp(λ′ · x′iβ) is nothing but the sum of the possibilities

corresponding to all such {λt} sequences. In STATA, this estimator can be
implemented by the command xtlogit with the option fe.

Conditional logit has the main advantage of allowing δi to be related to
xit in an arbitrary fashion because δi is removed. But the dynamics allowed
by conditional logit is restricted in a couple of ways. First, ui1, ..., uiT are iid,
and thus vit = δi +uit, t = 1, ..., T , are allowed to be related only through δi;
the serial correlation of vit does not change at all over time. Second, uit is in-
dependent of (δi, xi1, ......, xiT ), not just of (δi, xit), nor just of (δi, xi1, ..., xit);
this rules out economic agents who adjust the future xit in view of the past
uis, s < t. Third, the lagged response yi,t−1 is not allowed in xit: if yi,t−1 is
in xit, then uit cannot be independent of xi1, ..., xiT , because yit including
uit appears in xi,t+1.

Regarding time-varying parameters, compare three cases of the T × 1
vector x′iβ: with τ and β̃ denoting the intercept and slope, respectively,⎡⎢⎢⎣

x′i1β
...

x′iT β

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x′i1(τ , β̃

′
)

...

x′iT (τ , β̃
′
)

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x′i1β1

...
x′iT βT

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x′i1(τ1, β̃

′
)

...

x′iT (τT , β̃
′
)

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
x′i1β1

...
x′iT βT

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x′i1(τ1, β̃

′
1)

...

x′iT (τT , β̃
′
T )

⎤⎥⎥⎦ .

These correspond to, respectively, (i) time-constant β, (ii) time-varying
intercept τ t with time-constant slope β̃, and (iii) fully time-varying βt. Let
xit = (1, x̃′it)

′ to rewrite x′itβt − x′i1β1 for the three cases as,
respectively,

(x̃it − x̃i1)′β̃, τ t − τ1 + (x̃it − x̃i1)′β̃, and τ t − τ1 + x̃′itβt − x̃′i1β1.

Hence, only β̃ is identified in (i); τ t − τ1 ∀t = 2, ..., T and β̃ are identified in
(ii); and τ t − τ1 ∀t = 2, ..., T and β̃t ∀t = 1, ..., T are identified in (iii).

5.1.3 Digression on Sufficiency

Given an iid data z1, ..., zN from a density f(z; θ), a statistic (or a vector
of statistics) τN ≡ τ(z1, ..., zN ) is said to be a sufficient statistic for θ if the
distribution of (z1, ..., zN )|τN does not depend on θ. In panel conditional logit,
recall that the likelihood of (yi1, yi2) does not depend on δi when conditioned
on

∑
t yit; i.e.,

∑
t yit is a sufficient statistic for δi.



290 Ch. 6 Parametric Methods for Multiple Equation LDV Models

The condition that (z1, ..., zN )|τN does not depend on θ is known to
be equivalent to “factorization theorem”: for some non-negative functions g
and h ∏

i

f(zi; θ) = g{τ(z1, ..., zN ), θ} · h(z1, ..., zN )

where g depends on (z1, ..., zN ) only through τN and h does not depend on
θ. For instance, if zi ∼ N(θ, 1), then

∏
i

f(zi; θ) =
(

1√
2π

)N

exp

{
−1

2

∑
i

(zi − θ)2
}

=
(

1√
2π

)N

exp

{
−1

2

∑
i

(
z2

i − 2ziθ + θ2
)}

= exp

(
θ
∑

i

zi −
N

2
θ2

)
·
(

1√
2π

)N

exp

(
−1

2

∑
i

z2
i

)
:

the first term depends on (z1, ..., zN ) only through
∑

i zi, and thus
∑

i zi (i.e.,
z̄ = N−1

∑
i zi) is sufficient for θ.

The factorization theorem shows that, as far as θ goes, the information
provided by (z1, ..., zN ) is fully contained in τN . That is, once we know the
value of τN , nothing more can be learned about θ using the data (z1, ..., zN ).
Put it differently, we can “summarize” the data into τN for θ without losing
anything. Certainly then, we would desire a minimal set of sufficient statistics
to summarize the data: τN is minimal sufficient, if τN can be written as a
function of ζ(z1, ..., zN ) for any other sufficient statistic ζ(z1, ..., zN ). Since
the function can be many-to-one, τN is “coarser” than ζ(z1, ..., zN ), and τN

is minimal in this sense; τN is equivalent to ζ(z1, ..., zN ) if the function is
one-to-one and onto.

Suppose that τN is minimal-sufficient for θ and that τN is also a good
estimator for θ. Consider a function α(θ) of θ (e.g., α (θ) = θ2), and our
interest is on α(θ), not necessarily on θ. One immediate way to proceed is
getting the “plug-in” estimator α(τN ). But is this a good (or an optimal)
estimator for α(θ)? In the following, we show that the plug-in estimator is
not necessarily “optimal,”although it is still likely to be a function of τN

because τN contains all the information about θ.
The “Rao-Blackwell theorem” states that, given an estimator aN for a

function α = α(θ) and a sufficient statistic τN for θ,

a∗N ≡ E(aN |τN )

is better than aN in the sense E(a∗N − α)2 ≤ E(aN − α)2. This follows from

E(aN − α)2 = E(aN − a∗N + a∗N − α)2

= E{(aN − a∗N )2 + 2(aN − a∗N )(a∗N − α) + (a∗N − α)2}
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= E(aN − a∗N )2 + E(a∗N − α)2

for E{(aN − a∗N )(a∗N − α)} = 0 as shown below.

Furthermore, if aN is unbiased for α (i.e., E(aN ) = α), then a∗N is also
unbiased for α, because E(a∗N ) = E{E(aN |τN )} = E(aN ) = α.

To show that the cross-product term is 0, observe

E{(aN − a∗N )(a∗N − α)} = E[ E{(aN − a∗N )(a∗N − α)|τN} ]
= E{(a∗N − α) · E(aN − a∗N |τN )} (for a∗N − α is a function of τN )
= 0 (for E(aN − a∗N |τN ) = E(aN |τN ) − a∗N = 0).

The theorem suggests finding a crude (unbiased) estimator aN first, and
then “optimizing” it by conditioning aN on a minimal-sufficient statistic.
This theme will reappear later when U-statistic is discussed.

5.2 Unrelated-Effect Panel Probit

Although conditional logit allows the unobserved time-constant hetero-
geneity term δi to be related to be xit, it cannot estimate the coefficients
of time-constant regressors. In this and the following subsections, we explore
“random-effect” approaches to avoid the problem. Following the terminology
in Lee (2002), we call the model “unrelated-effect” panel probit. To ease ex-
position, this subsection explores a “static” model where no lagged response
appears as a regressor; the next section will examine a dynamic model.

Suppose that xit includes both time-varying and time-constant regres-
sors; for unrelated-effect estimators, it is unlikely that this causes confusion.
Assume

δi ∼ N(0, σ2
δ) independently of (xi1, ..., xiT , ui1, ..., uiT )

ui1, ..., uiT are iid N(0, σ2
u) and independent of (xi1, ..., xiT ).

Then, for the model

yit = 1[τ t + x′itβ + δi + uit > 0],

the unrelated-effect panel probit likelihood function for individual i is

P (yi1, ..., yiT , xi1, ..., xiT , δi)
= P (yi1, ..., yiT |xi1, ..., xiT , δi)f(xi1, ..., xiT , δi)

= f(xi1, ..., xiT , δi)
∏

t

P (yit|xi1, ..., xiT , δi)

(for yit’s are independent given xi1, ..., xiT , δi)

= f(xi1, ..., xiT , δi)
∏

t

P (yit|xit, δi) (for yit depends only on xit, δi)

= f(xi1, ..., xiT )f(δi)
∏

t

P (yit = 1|xit, δi)yitP (yit = 0|xit, δi)1−yit



292 Ch. 6 Parametric Methods for Multiple Equation LDV Models

(as (xi1, ..., xiT ) � δi)

= f(xi1, ..., xiT )
∏

t

Φ
(

τ t

σu
+ x′it

β

σu
+

δ

σu

)yit

{
1 − Φ

(
τ t

σu
+ x′it

β

σu
+

δ

σu

)}1−yit

f(δi).

Integrating out δ in the last display and dropping f(xi1, ..., xiT ) that is
not a function of the model parameters of interest, we get∫ ∏

t

Φ
(

τ t

σu
+ x′it

β

σu
+

δ

σu

)yit

{
1 − Φ

(
τ t

σu
+ x′it

β

σu
+

δ

σu

)}1−yit

φ

(
δ

σδ

)
1
σδ

dδ

=
∫ ∏

t

Φ
(

τ t

σu
+ x′it

β

σu
+

σδ

σu

δ

σδ

)yit

{
1 − Φ

(
τ t

σu
+ x′it

β

σu
+

σδ

σu

δ

σδ

)}1−yit

φ

(
δ

σδ

)
1
σδ

dδ

=
∫ ∏

t

Φ
(

τ t

σu
+ x′it

β

σu
+

σδ

σu
ζ

)yit

{
1 − Φ

(
τ t

σu
+ x′it

β

σu
+

σδ

σu
ζ

)}1−yit

φ(ζ)dζ.

The sample log-likelihood function to maximize wrt

τ1

σu
, ...

τT

σu
,

β

σu
,

σδ

σu

can be written simply as∑
i

ln
∫ ∏

t

Φ
{(

τ t

σu
+ x′it

β

σu
+

σδ

σu
ζ

)
· (2yit − 1)

}
φ(ζ)dζ.

The integration can be done with Monte Carlo simulation. STATA has the
command xtprobit with the option RE to implement this estimator. If de-
sired, the unrelated-effect panel logit can be done with xtlogit and the
option RE.

If δi is related to xit, then we may as well assume that

δi = x′i1ξ1+, ...,+x′iT ξT + δ̃i where δ̃i � (xi1, ..., xiT )

and ξ1, ..., ξT are unknown parameters. The logic is that if δi is related to
xit, then δi is likely to be related to all of xi1, ..., xiT because δi is time-
constant. In this case, merging x′i1ξ1+, ...,+x′iT ξT into the regression
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function, the model time-constant error term becomes δ̃ that is independent
of (xi1, ..., xiT ). This approach is based on Chamberlain (1982), and may be
called “Chamberlain’s all-period approach.”

The “all-period approach,” however, will make the model too long. Also,
if xi1, ..., xiT are included in period-t equation, then

x′itβ + x′i1ξ1+, ...,+x′iT ξT = x′i1ξ1+, ...,+x′it(ξt + β)+, ...,+x′iT ξT :

the coefficient of xit becomes ξt + β, complicating the identification of β
somewhat. A reasonable practical alternative might be including the temporal
average xi. ≡ T−1

∑
t xit or some lagged regressors xi,t−1, xi,t−2 in xit instead

of including all xi1, ..., xiT .

5.3 Dynamic Panel Probit

In panel data, typically there is a “momentum” (i.e., persistence) in
the data. There are (at least) three ways to capture the momentum. The
first is using δi that appears in all period equations. The second is serial
correlations in the error terms ui1, ..., uiT . The third is using lagged responses
yi,t−1, yi,t−2, ... as regressors. Using lagged regressors is similar to this, but can
be accommodated by redefining xit as xit and its lagged versions. Conditional
logit and unrelated-effect panel probit capture the data persistence using only
δi. This subsection allows for yi,t−1 to get “dynamic panel probit,” drawing
on Lee and Tae (2005). Of course, if desired, one may consider all sources
of persistence simultaneously, but this will be cumbersome; see Keane and
Sauer (2009) and the reference therein.

Suppose

y∗it = βyyi,t−1 + x′itβ + vit, vit = δi + uit.

Differently from the “static” model, this dynamic model brings up the issue
of how to model the first period response yi1 equation. For this, we list three
approaches: for some parameters α1, ..., αT and αδ,

(i) yi1 is not random to treat yi1 only as a fixed regressor in the yi2 equation

(ii) yi1 = 1[x′i1α1+, ...,+x′iT αT + vi1 > 0], COR(vi1, vit) ≡ ρv ∀t = 2, ..., T

(iii) yi1 = 1[x′i1α1+, ...,+x′iT αT + αδδi + ui1 > 0], COR(ui1, uit) = 0 ∀t =
2, ..., T

The first is the simplest but unrealistic. The second is general, but difficult
to implement, requiring a high-dimensional integration. The third falls in
between (i) and (ii) in terms of its strength of assumptions, which we will
adopt; V (ui1) ≡ σ2

1 in (iii) is allowed to differ from V (uit) ≡ σ2
u ∀t = 2, ..., T .

In (ii) and (iii), α1, ..., αT may get further restricted in practice; e.g., αt =
0 ∀t = 1; we will also adopt this.
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Assume

δi is independent of ui1, ..., uiT , and (δ, ui1, ..., uiT ) is independent of (xi1, ...,
xiT );

ui2, ..., uiT are iid N(0, σ2
u) and independent of ui1 that follows N(0, σ2

1);

δi follows N(0, σ2
δ).

Define
σv ≡ SD(vit) = SD(δi + uit) ∀t = 2, ..., T.

Dividing the period-1 latent equation by σ1 and the period-t equation
by σu, we get the log-likelihood function∑

i

ln
[ ∫

Φ
{(

x′i1
α

σ1
+

δαδ

σ1

)
(2yi1 − 1)

}
T∏

t=2

Φ
{(

yi,t−1

βy

σu
+ x′it

β

σu
+

δ

σu

)
(2yit − 1)

}
φ

(
δ

σδ

)
1
σδ

dδ

]

where only x1 is used in the yi1 equation as noted above. Further rewrite this
as ∑

i

ln
[ ∫

Φ
{(

x′i1
α

σ1
+

δ

σδ

αδσδ

σ1

)
(2yi1 − 1)

}

·
T∏

t=2

Φ
{(

yi,t−1

βy

σu
+ x′it

β

σu
+

δ

σδ

σδ

σu

)
(2yit − 1)

}
φ

(
δ

σδ

)
1
σδ

dδ

]

=
∑

i

ln
[ ∫

Φ
{(

x′i1
α

σ1
+ ζ

αδσδ

σ1

)
(2yi1 − 1)

}

·
T∏

t=2

Φ
{(

yi,t−1

βy

σu
+ x′it

β

σu
+ ζ

σδ

σu

)
(2yit − 1)

}
φ(ζ)dζ

]
.

The identified parameters here are

α

σ1
,

αδσδ

σ1
,

βy

σu
,

β

σu
,

σδ

σu
.

The last term σδ/σu shows how important δi is relative to uit. If we treat
yi1 as fixed, then we just have to drop the first period likelihood component.
But as shown in Lee and Tae’s (2005) empirical example, treating yi1 as fixed
does not look sensible.

Going further, to allow for relationship between δi and xit, we may
assume

δi = x′i1μ1+, ...,+x′iT μT + ηi, or a simpler version δi = x̄′iμ + ηi,
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x̄i ≡ T−1
T∑

t=1

xit.

Since the former is computationally too demanding, suppose we adopt the
simpler version that includes the restriction μ1 =, ...,= μT ≡ μ0:

δi =

(∑
t

x′it

)
μ0 + ηi = x̄′i(μ0T ) + ηi = x̄′iμ + ηi, where μ ≡ μ0T.

Writing xit as xit − x̄i + x̄i, the effect of xit can be decomposed into two: the
temporary (or transitory) effect from xit − x̄i and the permanent effect from
x̄i. But only the permanent effect remains in∑

t

xit =
∑

t

(xit − x̄i + x̄i) =
∑

t

(xit − x̄i) +
∑

t

x̄i = x̄iT.

Equation μ = μ0T states that the permanent effect is the sum of “one-shot
time-invariant” effects over T periods. The permanent effect is a level change,
for which expressions such as “tendency” or “propensity” are often used.

Substitute δi = x̄′iμ + ηi into the above likelihood function before δ/σδ

gets replaced by ζ to obtain∑
i

ln
[ ∫

Φ
{(

x′i1
α

σ1
+ (x̄′iμ + ηi)

αδ

σ1

)
(2yi1 − 1)

}
·

T∏
t=2

Φ
{(

yi,t−1

βy

σu
+ x′it

β

σu
+ (x̄′iμ + ηi)

1
σu

)
(2yit − 1)

}
φ

(
η

ση

)
1
ση

dη

]
.

With ζ = η/ση, this can be rewritten as

∑
i

ln
[ ∫

Φ
{(

x′i1
α

σ1
+ x̄′i

μαδ

σ1
+ ζ

αδση

σ1

)
(2yi1 − 1)

}

·
T∏

t=2

Φ
{(

yi,t−1

βy

σu
+ x′it

β

σu
+ x̄′i

μ

σu
+ ζ

ση

σu

)
(2yit − 1)

}
φ(ζ)dζ

]
.

Now, the identified parameters are

α

σ1
,

μαδ

σ1
,

αδση

σ1
,

βy

σu
,

β

σu
,

μ

σu
,

ση

σu
;

the two underlined terms did not appear previously and the two boxed terms
appeared with ση replaced by σδ. Although xit includes both time-constant
and time-variant variables, in practice, x̄i should consist only of time-variants.
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Otherwise the time-constant variables get to be used twice as regressors in
xit and x̄i for the same equation.

6 Competing Risks*

Suppose there are different reasons for a duration to end; e.g., differ-
ent causes for one’s life to end. Let y∗j denote the latent cause-j duration,
j = 1, ..., J . The person-i duration y∗i without censoring and the observed
duration yi with censoring are, respectively,

y∗i = min(y∗i1, ..., y
∗
iJ ) and yi = min(y∗i , ci).

The observed data is (x′i, yi, ri, di) where ri = j means that the duration
ended with reason j and di is the non-censoring indicator. The reasons/causes
“compete to get” individual i, and this explains the name “competing risks.”
We examine this topic in this section drawing heavily on Crowder (2001);
often we will set J = 2 for illustrations.

6.1 Observed Causes and Durations

Define the cause-j “sub-distribution function” F (j, t), cause-j “sub-
survival function” S(j, t), and cause-j “sub-density function” f(j, t):

F (j, t) ≡ P (r = j, y∗ ≤ t), S(j, t) ≡ P (r = j, y∗ > t), f(j, t) ≡ −dS(j, t)
dt

=⇒ F (j, t) + S(j, t) = P (r = j) ≡ pj = F (j,∞) = S(j, 0) < 1.

Both F (j, t) and S(j, t) are bounded from above by pj , not by 1, and thus
they are not proper distribution/survival function. The conditional version
P (r = j|x) of pj can be used to predict the eventual cause for ending the
duration for a person with trait x.

With the superscript “m” standing for “minimum,” the (minimum) sur-
vival function Sm(t) and the (minimum) density fm(t) are, respectively,

Sm(t) ≡ P (y∗ > t) =
J∑

j=1

P (r = j, y∗ > t) =
J∑

j=1

S(j, t)

fm(t) ≡ −dSm(t)
dt

= −
d
{∑J

j=1 S(j, t)
}

dt
= −

J∑
j=1

dS(j, t)
dt

=
J∑

j=1

f(j, t).
Observe (and think about the meaning of)

S(j, t)
pj

= P (y∗ > t|r = j) and
S(j, t)
Sm(t)

= P (r = j|y∗ > t).

Define the cause-j “sub-hazard function” λ(j, t) and compare λ(j, t) to
λm(t):

λ(j, t) ≡ f(j, t)
Sm(t)

: failing with cause j at t given survival up to t
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λm(t) ≡ fm(t)
Sm(t)

=

∑J
j=1 f(j, t)
Sm(t)

=
∑

j

λ(j, t) :

failing at t for any cause given survival up to t.

Pay attention to that the denominator has Sm(t), not S(j, t), as one has to
overcome all competing causes to survive up to t. As in the single duration
case,

λm(t) = −d lnSm(t)
dt

⇐⇒ Sm(t) = exp
{
−

∫ t

0

λm(s)ds

}
.

For instance, suppose that a Weibull sub-hazard holds for each λ(j, t):

λ(j, t) = θjαjt
αj−1 =⇒ λm(t) =

∑
j

θjαjt
αj−1

=⇒ Λm(t) ≡
∫ t

0

λm(s)ds =
∑

j

θjt
αj

Sm(t) = exp{−Λm(t)} = exp

⎛⎝−
∑

j

θjt
αj

⎞⎠ ⎧⎨⎩=
∏
j

exp(−θjt
αj )

⎫⎬⎭
f(j, t) = λ(j, t)Sm(t) = θjαjt

αj−1 · exp

⎛⎝−
∑

j

θjt
αj

⎞⎠ .

With θj = θj(x, βj) = exp(x′βj) as usual, defining

δij ≡ 1[ri = j] and γj ≡ (αj , β
′
j)
′

the log-likelihood function for γ1, ..., γJ is∑
i

{di ln f(ri, yi) + (1 − di) ln Sm(yi)}

=
∑

i

[di ln {λ(ri, yi)Sm(yi)} + (1 − di) ln Sm(yi)]

=
∑

i

[di lnλ(ri, yi) + lnSm(yi)] =
∑

i

[di lnλ(ri, yi) − Λm(yi)]

=
∑

i

⎡⎣ di

∑
j

δij ln{θj(xi, βj)αjy
αj−1
i } −

∑
j

θj(xi, βj)y
αj

i

⎤⎦

=
∑

i

⎡⎣ di

∑
j

δij{x′iβj + lnαj + (αj − 1) ln yi} −
∑

j

exp(x′iβj)y
αj

i

⎤⎦ .
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6.2 Latent Causes and Durations

The above MLE is close to estimating a reduced form (RF) rather than
a structural form (SF) equation, because we would be more interested in the
parameters governing the latent durations. That is, not just the parameters
for a given cause and duration as in λ(j, t) = exp(x′βj) · αjt

αj−1, we would
like to know the parameters for the joint distribution of latent durations. We
will examine joint latent durations in this subsection. It will be useful if we
can see, for instance, whether increasing one latent duration increases (or
decreases) some other latent durations.

Consider a joint survival function S1···J (t1, ..., tJ ):

S1···J(t1, ..., tJ ) ≡ P (y∗1 > t1, ..., y
∗
J > tJ)

{= Sm(t) when t1 =, ...,= tJ = t}.

The marginal survival function S1(t1) for y∗1 is obtained by setting all the
other durations at zero:

S1(t1) ≡ P (y∗1 > t1) = S1···J(t1, 0, ..., 0);

Sj(tj) are defined analogously. Each marginal Sj(tj) defines its own f j(tj)
and hazard λj(t). It is important to be aware of the differences between
S1···J(t1, ..., tJ ), Sm(t), and Sj(tj) as in the following.

For instance, with J = 2, a “joint exponential survival function” is

S12(t1, t2) = exp(−θ1t1 − θ2t2 − νt1t2) where θ1, θ2, ν > 0

=⇒ S1(t1) = S12(t1, 0) = exp(−θ1t1) and

Sm(t) = exp{−(θ1 + θ2)t − νt2}.

Although each Sj(tj) is Expo(θj), S12(t1, t2) and Sm(t) are not. If ν = 0,
i.e., if the interaction term t1t2 drops out, then

S12(t1, t2) = exp(−θ1t1 − θ2t2) = exp(−θ1t1) · exp(−θ2t1)

= S1(t1) · S2(t2) :

y∗1 and y∗2 are independent when ν = 0.

Observe

f(1, t) = lim
q→0

P (y∗j > y∗1 ∀j = 1 and t < y∗1 ≤ t + q)
q

.

In the event t < y∗1 ≤ t + q, y∗1 is bounded by (t, t + q]. This implies, as
y∗j > t + q =⇒ y∗j > y∗1 =⇒ y∗j > t in this case,

lim
q→0

P (y∗j > t + q ∀j = 1, t < y∗1 ≤ t + q)
q

≤ f(1, t)
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≤ lim
q→0

P (y∗j > t ∀j = 1, t < y∗1 ≤ t + q)
q

.

The lower and the upper bounds are, respectively,

lim
q→0

S1···J(t, t + q, ..., t + q) − S1···J(t + q, t + q, ..., t + q)
q

=
−∂S1···J(t1, ..., tJ )

∂t1
|t1=···=tJ=t

lim
q→0

S1···J(t, t, ..., t) − S1···J (t + q, t, ..., t)
q

=
−∂S1···J(t1, ..., tJ )

∂t1
|t1=···=tJ=t .

Therefore, we get an equation relating S1···J(t1, ..., tJ ) for the latent durations
to f(1, t) for the observed duration and its cause (the above derivation is due
to Tsiatis 1975):

f(1, t) =
−∂S1···J(t1, ..., tJ )

∂t1
|t1=···=tJ=t

=⇒ λ(1, t) =
f(1, t)
Sm(t)

=
−∂ lnS1···J (t1, ..., tJ )

∂t1
|t1=···=tJ=t;

f(j, t) and λ(j, t), j = 2, ..., J , satisfy analogous equations.
Using the last display,

S12(t1, t2) = exp(−θ1t1 − θ2t2 − νt1t2)
=⇒ λ(1, t) = θ1 + νt, λ(2, t) = θ2 + νt.

Compare these to the earlier finding

S1(t1) = exp(−θ1t1), S2(t2) = exp(−θ2t2) =⇒ λ1(t) = θ1, λ2(t) = θ2.

Clearly, λ(j, t) = λj(t) unless ν = 0 so that y∗1 and y∗2 are independent.
It is instructive to further compare the cause-1 marginal hazard λ1(t1)

and the cause-1 sub-hazard λ(1, t). S1(t1) was obtained by setting t2 = 0
in S12(t1, t2) to eliminate y∗2 from consideration. Thus λ1(t1) is the cause-1
hazard when cause 2 is not operating ; it is a SF ceteris paribus hazard for
cause 1 while holding the other cause constant. The interest on λ1(t1) stems
from the usual policy intervention scenario. For instance, if we can inter-
vene on a treatment for an illness (i.e., cause 1) without affecting the other
cause, then λ1(t1) would be the right parameter of interest where the treat-
ment appears as a regressor. In contrast, λ(1, t) is more of a RF parameter;
it is the hazard while the other cause is still in operation so that the two
causes can interact. The two causes may exchange influences, and λ(1, t) re-
flects the final outcome when the exchanges get settled; in the above example
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λ(1, t) = θ1 +νt, the interaction parameter ν appears in λ(1, t). Although we
desire to know λ1(t1), it is hard to find this—more on this below.

The “dependence ratio” is defined as

S12(t1, t2)
S1(t1)S2(t2)

=
P (y∗1 > t1, y

∗
2 > t2)

P (y∗1 > t1) · P (y∗2 > t2)
.

Suppose that this is less than one, and multiply the inequality by P (y∗2 > t2)
to get

P (y∗1 > t1, y
∗
2 > t2)

P (y∗1 > t1)
< P (y∗2 > t2)

⇐⇒ P (y∗2 > t2|y∗1 > t1) < P (y∗2 > t2) : “negative dependence”
between y∗1 and y∗2 .

That is, given that one latent duration gets longer (y∗1 > t1), the other latent
duration tends to get shorter. In the above exponential case, the dependence
ratio is exp(−νt1t2) < 1, and a negative dependence holds.

6.3 Dependent Latent Durations and Identification

Recall the joint exponential survival function with ν > 0 (i.e., the latent
durations are not independent) and the ensuing derivations:

Sm(t) = exp{−(θ1 + θ2)t − νt2}, Λm(t) = (θ1 + θ2)t + νt2,

λm(t) = θ1 + θ2 + 2νt

λ(j, t) = θj + νt, λj(t) = θj .

But, surprisingly, Sm(t) can be written as the product of two marginal sur-
vival functions as if the latent durations are independent. Specifically, con-
sider

Sm(t) = exp
(
−θ1t −

νt2

2

)
· exp

(
−θ2t −

νt2

2

)
≡ S̃1(t)S̃2(t),

S̃j(tj) ≡ exp

(
−θjtj −

νt2j
2

)
{

=⇒ λ̃
j
(tj) =

−∂ ln S̃j(tj)
∂tj

= θj + νtj

}
.

Define further

S̃12(t1, t2) ≡ S̃1(t1)S̃2(t2) = exp
{
−θ1t1 − θ2t2 −

ν

2
(
t21 + t22

)}
= S12(t1, t2) = exp(−θ1t1 − θ2t2 − νt1t2).
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Observe

λ̃(j, t) ≡ −∂ ln S̃12(t1, t2)
∂tj

|t1=t2=t= θj + νt = λ(j, t) :

although the joint survival functions differ (i.e., S̃12(t1, t2) = S12(t1, t2)), the
independence case yields exactly the same sub-hazards as the dependent case
does. Hence, because λ(j, s) determines Sm(t) = exp{−∑

j

∫ t

0
λ(j, s)ds}, we

get ⎡⎣ exp

⎧⎨⎩−
∑

j

∫ t

0

λ̃(j, s)ds

⎫⎬⎭ =

⎤⎦ S̃m(t) = Sm(t).

Since only λ(j, t) and Sm(t) appear in the likelihood function, the indepen-
dence model is not distinguishable from the dependence model with the given
data on (x′i, yi, ri, di). Note that λ̃

j
(t) = λ̃(j, t) in the independence model

whereas λj(t) = λ(j, t) in the dependent model.
In short, for each dependent latent durations with given sub-hazards

λ(j, t) (and the survival function Sm(t)), there exist independent latent du-
rations with the same sub-hazards (and thus the same survival function),
although λj(t) in the dependent model differs from λ̃

j
(t) = λ̃(j, t) in the in-

dependent model. That is, there is no problem identifying λ(j, t), but λj(t)
in the dependent model cannot be identified. This is the identification prob-
lem in competing risks shown by Tsiatis (1975). Despite this “grim” picture,
however, still there are positive findings for identifications as in Heckman
and Honoré (1989), Abbring and Van den Berg (2003), and S.B. Lee (2006)
when regressors are added into the model. Fermanian (2003) implemented a
“kernel nonparametric estimation” of the Heckman and Honoré idea. Honoré
and Lleras-Muney (2006) proposed a “set-identification” (or “bounding”) ap-
proach.

Finally in this section, we make a few remarks for competing risks and
univariate duration models. First, if we look at the survival for all causes per-
haps to avoid the dependence/identification issue, i.e., if we take y∗ as a single
duration, then the usual univariate duration analyses apply to y = min(y∗, c).
This, however, needs some care; e.g., even if each of y∗1 and y∗2 follows Weibull,
min(y∗1 , y∗2) does not. Second, if we focus on one cause only, say cause 1,
to take any other causes as censoring variables, then univariate duration
analyses apply to the observed duration min(y∗1 , c) where c is redefined as
min(y∗2 , ..., y∗J ,“old c”). This would, however, require the independent latent
duration assumption; otherwise, the new censoring variable becomes depen-
dent on y∗1 given x. Third, suppose that λ(1, t) is decreasing while λ(2, t) is
increasing. As λm(t) =

∑
j λ(j, t), λm(t) may exhibit an up-down or down-

up shape. That is, a highly variable univariate hazard may be the outcome
of competing risks. For instance, an apparently down-up hazard of a single
disease may be in fact a sum of two monotonic hazards with different effect
signs from two separate causes related to the single disease.



CHAPTER 7

KERNEL NONPARAMETRIC ESTIMATION

Some regression models are fully parametric in that both the regression
function and the error term distribution are parametrically specified, whereas
some are semiparametric in the sense that only the regression function is para-
metrically specified—LSE is semiparametric in this sense. Going further, it
is possible to go nonparametric in that the regression function E(y|x) gets
estimated with neither its functional form nor the error term distribution
specified. Since E(y|x) =

∫
yf(y|x)dy =

∫
y{f(y, x)/f(x)}dy, if the densi-

ties f(y, x) and f(x) can be estimated nonparametrically, then E(y|x) can
be as well. Kernel nonparametric estimation for density f(x) is introduced
first, and then for E(y|x). Also, nonparametric hazard function estimation
is studied.

1 Kernel Density Estimator

Assume that x of dimension k×1 has a continuous density function f(x).
In this section, first, “kernel density estimators” are introduced; to simplify
exposition, we start out with the k = 1 case and then allow an arbitrary
k later. Second, kernel estimators for density derivatives (and integrals) are
examined. Third, further remarks are provided. If x is discretely distributed,
then we can estimate P (x = xo) either by the sample average of observa-
tions with xi = xo (i.e., N−1

∑
i 1[xi = xo]) or by nonparametric methods

explained in this section. There are many nonparametric estimators available
other than kernel estimators, but they are not reviewed here. See Prakasa
Rao (1983), Silverman (1986), Bierens (1987), Müller (1988), Härdle (1990),
Izenman (1991), Rosenblatt (1991), Scott (1992), Härdle and Linton (1994),
Wand and Jones (1995), and Wasserman (2006) among many others.

1.1 Density Estimators

Suppose xi is a scalar (k = 1) and x1, ..., xN are observed. If our interest
is in P (x ≤ xo) ≡ F (xo), then P (x ≤ xo) can be estimated by the empirical
distribution function

FN (xo) ≡
1
N

N∑
i=1

1[xi ≤ xo].

Myoung-jae Lee, Micro-Econometrics, DOI 10.1007/b60971 7, 303
c© Springer Science+Business Media, LLC 2010
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Although this converges to F (xo) in various senses, FN (xo) is not differen-
tiable while F (xo) is so. Hence we cannot estimate f(xo) by differentiating
the empirical distribution function. It is conceivable, however, to estimate
f(xo) by approximating dF (xo) and dx in view of f(xo) = dF (xo)/dx. Bear
in mind that, whereas xi, i = 1, ..., N , are observations, xo denotes a fixed
“evaluation point” of interest; xo may or may not be equal to any of x1, ..., xN .

Let h be a small positive number. Set dx � h and observe

dF (xo) � P (xo < x < xo + h)

� 1
N

N∑
i=1

1[xo < xi < xo + h] � 1
N

∑
i

1[xo − h < xi < xo + h]
2

.

Hence, a nonparametric density function estimator approximating dF (xo)/
dx is

1
Nh

∑
i

1[xo − h < xi < xo + h]
2

=
1

Nh

∑
i

1[−h < xi − xo < h]
2

.

For this approximation to work, h should be small. If h is too small, however,
there may be no observation satisfying −h < xi − xo < h. Thus, we can let
h → 0+ only as N → ∞.

Viewing the role of the indicator function as a weighting function giving
the weight 1 if xi is within h-distance from xo and 0 otherwise, we can gener-
alize the above estimator with a smooth weighting function K (Rosenblatt,
1956):

fN (xo) ≡
1

Nh

∑
i

K

(
xi − xo

h

)
where K is called a kernel and fN (xo) is a (nonparametric) kernel density
estimator. This kernel estimator includes the preceding one as a special case
when K(z) = 1[−1 < z < 1]/2 because

1
[
−1 <

xi − xo

h
< 1

]
/2 =

1[−h < xi − xo < h]
2

.

For instance, with the N(0, 1) density φ as K, we get

fN (xo) =
1

Nh

∑
i

1√
2π

exp

{
−1

2

(
xi − xo

h

)2
}

.

Getting fN (xo) over xo = −1.5, −1.4, ..., 0, ..., 1.4, 1.5 and then connecting
them, we can see the shape of f(x) over [−1.5, 1.5]. As xo varies over a chosen
range, fN (xo) traces a curve. In this case, we may as well write fN (x) instead
of f(xo), for our interest is in the entire range, not in any particular evaluation
point such as xo.
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Figure 1: Two Marginal Density Estimates

Figure 1 presents two kernel density estimates using some Korean female
data with N = 9312. The Korean women became unemployed in 1999 to
receive unemployment insurance benefit. The kernel is the N(0, 1) density φ,
and h = SD(x) · N−1/5. The first figure for age shows that the global mode
of age is about 27 with another possible (local) mode around 42. The second
figure is for the work duration in the previous workplace where bimodality
is more visible with a local mode at around 1 year and the global mode at
around 3.7. The first mode may be due to one year probationary employment
period, and the second may be due to many young women quitting after
marriage.

Now suppose xi = (xi1, ..., xik)′ is a k×1 vector and let xo = (xo1, ..., xok)′

accordingly. Then dx � hk and dF (xo) takes the same form as the dF (xo)
above to yield an estimator

1
Nhk

∑
i

1[−h < xi − xo < h]
2

=
1

Nhk

∑
i

1[−h < xi1 − xo1 < h] · · · 1[−h < xik − xok < h]
2

.

With K having k arguments now, the kernel estimator becomes

fN (xo) =
1

Nhk

∑
i

K

(
xi − xo

h

)
=

1
Nhk

∑
i

K

(
xi1 − xo1

h
, ...,

xik − xok

h

)
.

One example of K with k = 2 is a product of φ: K(z1, z2) = φ(z1)φ(z2).
Another example is the standard bivariate normal density with a specified
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correlation, say ρ = 0.5:

K(z1, z2) =
1

2π
√

1 − ρ2
exp

{
−z2

1 − 2ρz1z2 + z2
2

2(1 − ρ2)

}
.

More generally, for k ≥ 2, the product K(z) = φ(z1) · · · φ (zk) may be used
where z = (z1, ..., zk)′. Also a multivariate zero-mean normal density with a
specified variance matrix Ω can be used as well:

K(z) =
1

(2π)k/2{det(Ω)}1/2
· exp

(
−z′Ω−1z

2

)
.

The form of kernel will be discussed further later.
Instead of using the same h for all components of x, we may use different

bandwidths for different components: hj for xj , j = 1, ..., k, to get

fN (xo) =
1

N · h1 · · · hk

∑
i

K

(
xi1 − xo1

h1
, ...,

xik − xok

hk

)
.

But choosing k-many bandwidths is troublesome. Instead, set

hj = SD(xj) · ho

where ho is a “base” bandwidth and choose only the “base bandwidth” ho.
In this case,

fN (xo) =
1

N · hk
o · SD(x1) · · · SD(xk)

∑
i

K

(
xi1 − xo1

SD(x1)ho
, ...,

xik − xok

SD(xk)ho

)
.

Typically ho � c · N−1/(k+4) where c ranges over, say [0.5, 2.5]; recall that
ho = N−1/5 was used for the univariate density figures. This display with
K(z1, ..., zk) = Πjφ(zj) and ho = N−1/(k+4) would be a “practical first esti-
mator” that one can easily try. Because using different bandwidths for dif-
ferent variables is notationally cumbersome, we will use h for all variables
unless otherwise necessary.

Figure 2 presents a kernel estimate for age and (ex-firm work) duration
using the same data as in the preceding figure. The kernel is K(z1, z2) =
φ(z1)φ(z2) and the bandwidth is the same as in the marginal densities:
SD(age) ·N−1/5 for age and SD(duration) ·N−1/5 for duration, although we
might use N−1/6 as well instead of N−1/5. The age bimodality, or possible
trimodality, can be seen for duration around 4 years, whereas the age density
seems nearly unimodal at around 30 for durations lower than 3. The duration
bimodality is highly visible for women of age 20–40, but the size of the peaks
is much lower for higher ages. Bivariate density reveals features that could
not be seen with the two marginal density estimates.
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Figure 2: Bivariate Density Estimate

1.2 Density-Derivative Estimators

Suppose we are interested in the first derivative f ′(xo). Again, we start
out with the k = 1 case and then allow an arbitrary k later. Suppose K is
differentiable; all kernels in use from now and onward will be assumed to be
differentiable.

Let k = 1. One simple way to estimate f ′(xo) is using a numerical
derivative: for a small constant ε, say ε = 10−5,

f̃ ′N (xo) ≡
fN (xo + ε) − fN (xo − ε)

2ε

=
1

Nh2ε

∑
i

{
K

(
xi − xo − ε

h

)
− K

(
xi − xo + ε

h

)}
which is an approximation to the analytic derivative

f ′N (xo) = − 1
Nh2

∑
i

K ′
(

xi − xo

h

)
.

For example, with K(z) = φ(z), since

φ′(z) = −z
1√
2π

exp(−1
2
z2) = −zφ(z),

f ′N (xo) =
1

Nh2

∑
i

(
xi − xo

h

)
1√
2π

exp

{
−1

2

(
xi − xo

h

)2
}

.
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Figure 3: Density and First Derivative

Since f ′ shows a “finer” aspect of f , f ′ is more difficult to estimate
than f . That is, f ′ requires more data than f ; in a given data set, this
translates into a larger bandwidth, which gives more data locally around
xo. Figure 3 shows the duration density estimate (solid line) and its first
derivative (dashed line) for the same ex-firm work-duration data used ahead.
The numerical derivative was employed with ε = 10−5. The left figure uses
the same bandwidth for both density and derivative, whereas the right figure
uses twice greater bandwidth for the derivative. The derivative in the left
figure looks under-smoothed compared with that in the right.

It is important to pay attention to the scales of figures. For example, the
earlier univariate fN (x) figure looks more bimodal than the current figure
despite that both figures are exactly the same. It is only that the scales are
different: the vertical axis of the current diagram is longer running from −1.5
to 1.5, and this makes the current figure “weaker.”At the extreme, if the
vertical axis gets blown off to, say −150 to 150, then fN (x) will look like a
flat line with fN (x) � 0 ∀x. At the other extreme, if the scale gets too small,
fN (x) will look varying too much. As elementary as this caution may sound,
mistakes of this sort are frequently made in practice.
Doing analogously to the first derivative, we can also estimate the second
derivative f ′′N (xo) if necessary. A numerical second derivative is

1
2ε

{
f̃ ′N (xo + ε) − f̃ ′N (xo − ε)

}
=

1
2ε

{
fN (xo + ε + ε) − fN (xo + ε − ε)

2ε
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−fN (xo − ε + ε) − fN (xo − ε − ε)
2ε

}
=

fN (xo + 2ε) + fN (xo − 2ε) − 2fN (xo)
4ε2

.

As in the first derivative, the second derivative can be estimated so long as
f can be estimated. The analytic second derivative is

f
′′
N (xo) =

1
Nh3

∑
i

K
′′
(

xi − xo

h

)
.

As f ′N needs a bandwidth larger than that for f , f ′′N needs a bandwidth ever
larger than that for f ′N .

Not just derivatives, if necessary, a functional G(f) of f such as the
integral

∫
f(x)2dx of f2 can be estimated with G(fN ) =

∫
fN (x)2dx. This is

a plug-in estimator, for fN is plugged into G(·). Later,
∫

f ′′(x)2dx will appear
when the choice of h is discussed. It goes without saying that

∫
f ′′(x)2dx can

be estimated by
∫

f ′′N (x)2dx.
Suppose now that x is a k×1 vector and we want to estimate ∂f(xo)/∂xj

where xj is the jth component in x. As above, we can use a numerical deriva-
tive: defining Sj as the k × 1 null vector with its jth zero replaced by 1, a
numerical derivative for ∂f(xo)/∂xj is

fN (xo + Sjε) − fN (xo − Sjε)
2ε

=
1

Nhk · 2ε

∑
i

{
K

(
xi − xo − Sjε

h

)
− K

(
xi − xo + Sjε

h

)}
.

Analytically, we can differentiate fN (xo) with respect to (wrt) xoj :

∂fN (xo)
∂xoj

≡ − 1
Nhk+1

∑
i

∂K

(
xi − xo

h

)
/∂xoj .

Again, either a numerical derivative or the analytic one can be used. Do-
ing analogously, we can also estimate the second derivative ∂2fN (xo)/∂x2

j if
desired. In practice, to avoid differentiation mistakes, it will be safer to use
numerical derivatives, although they tend to take more time than the analytic
ones.

1.3 Further Remarks

Choosing a kernel is up to the researcher, but usually functions with the
following properties are used:
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(i) K(z) is symmetric around zero and continuous.

(ii)
∫

K(z)dz = 1,
∫

K(z)zdz = 0k, and
∫
|K(z)|dz < ∞.

(iii) (a) K(z) = 0 if |z| > zo for some zo or (b) |zK(z)| → 0 as |z| → ∞.

(iv) K(z) =
∏k

j=1 L(zj), where L satisfies (i) to (iii) for k = 1.

Obviously, the condition (iii)(a) implies (iii)(b). In addition to these condi-
tions, often we require K(z) ≥ 0; this condition combined with

∫
K(z)dz = 1

in (ii) makes various density functions good candidates for K. But so-called
“high order kernels” to be seen later take on negative as well as positive val-
ues. We may impose further restrictions on K, but so long as we can find a
kernel satisfying the restrictions, imposing them should not matter. Almost
all kernels used in practice satisfy (i)–(iii).

Examples of K satisfying the preceding conditions for k = 1 are

(i) 1[|z| < 1]/2: uniform kernel

(ii) N(0, 1) density φ(z); “normal” or “Gaussian” kernel

(iii) (3/4) · (1 − z2) · 1[|z| < 1]: “(trimmed) quadratic” kernel

(iv) (15/16) · (1 − z2)2 · 1[|z| < 1]: “quartic” or “biweight” kernel.

The uniform kernel is not smooth and so rarely used (it renders a histogram),
while the other three are frequently used. The normal kernel has the un-
bounded support and is continuously differentiable up to any order. The
trimmed quadratic kernel has a bounded support and continuously differen-
tiable up to the second order over (−1, 1) with non-zero derivatives; it is not
smooth at ±1. The quartic kernel has a bounded support and continuously
differentiable once; it is continuously differentiable up to the fourth order
over (−1, 1) with non-zero derivatives.

It seems widely agreed that the choice of kernel makes little difference.
For instance, hardly any difference will be noticeable using (ii), (iii) or (iv)
in practice. Also, when k > 1, despite some arguments favoring multivariate
kernels, it appears that product kernels are simpler to use and do just as
well; see, e.g., Kondo and Lee (2003). One point worth mentioning though
is bounded versus unbounded supports for K. For example, the trimmed
quadratic kernel has a bounded support, whereas φ has the unbounded sup-
port. A kernel estimator at xo does a “local weighted averaging” around xo.
A bounded-support kernel gives zero weight to observations far away from
xo, whereas φ gives non-zero positive weights to all observations. For the
sake of robustness, this aspect favors bounded-support kernels, for they con-
straint influence from outlying observations (but if one believes that the tail
areas of f are informative, then unbounded-support kernels might be better).
When xo is near a boundary point of the x-support, all observations for the
local estimation at xo come only from one side of xo, which is not desirable.
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This point also tends to favor bounded-support kernels, because their weight-
ing is more local than unbounded-support kernels. The boundary problem,
however, can be avoided simply by restricting xo to a subset of the support
of x.

Differently from choice of kernel, choice of h is crucial. Later we will
examine how to choose h in detail; h is called a bandwidth, smoothing param-
eter, or window size. From the above kernel estimators, one can see that, if h
is small, then only a few observations are used in calculating fN (xo), making
fN (xo) too jagged as xo varies. If h is too large, then fN (xo) hardly changes
as xo does; at the extreme, fN (xo) may become a constant, not changing at
all as xo changes. Thus, a “good” h should be found between these two ex-
tremes. Figure 4 illustrates three density estimates: one under-smoothed (the
jagged line) with too small a h, one just about right-smoothed (the thick
solid line), and one over-smoothed (the relatively flat line) with too big a
h. The over-smoothed line dampens the curvature and under-estimates the
peak of the density. Since it is easier to smooth with eyes than “un-smooth,”if
anything, it is recommended to present an estimate slightly under-smoothed
rather than over-smoothed.

As will be shown in the following section, the asymptotic distribution
of fN (xo) is relatively complicated, compared with that of the empirical df
FN (xo) = N−1

∑N
i=1 1[xi ≤ xo]. Subtracting F (xo) and then multiplying by√

N , we get

√
N{FN (xo) − F (xo)} =

1√
N

∑
i

{1[xi ≤ xo] − F (xo)}

� N [0, F (xo){1 − F (xo)}];

the asymptotic variance follows from

E{1[xi ≤ xo] − F (xo)}2 = E{1[xi ≤ xo] − 2 · 1[xi ≤ xo]F (xo) + F (xo)2}
= F (xo) − 2F (xo)2 + F (xo)2 = F (xo){1 − F (xo)}.

x

Figure 4: Three Density Estimates (under-, right-, over-smoothed)
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√
N{FN (xo)−F (xo)} is nothing but the centered and scale-normalized ver-

sion of the binomial rv
∑

i 1[xi ≤ xo]. Note that FN (xo) is
√

N -consistent
(while fN (xo) is not, as will be seen shortly).

1.4 Adaptive Kernel Estimator

One weakness of kernel estimator is that the same h (i.e., the same
size neighborhood) is used for all evaluation points. This means that only a
few observations get used when xo falls near the boundary of the x-support.
“Adaptive kernel estimator” can overcome the weakness as follows; set k = 1
to simplify exposition.

Adaptive kernel estimation is a two step procedure. First, get an initial
estimate fN (xo) as xo varies. Second, define a local smoothing parameter λi

for each xi such that

λi =
{

g

fN (xi)

}α

where 0 ≤ α ≤ 1 (e.g., α = 0.5) and

g ≡
∏

i

fN (xi)1/N ⇐⇒ ln(g) =
1
N

∑
i

ln fN (xi);

g is the geometric average of fN (xi)’s. Then an adaptive kernel estimator is

1
N

∑
i

1
hλi

K

(
xi − xo

hλi

)
.

The bandwidth hλi is stretched when f is small, i.e., when only a few obser-
vations are available near xo. Setting α = 0 gives the usual kernel estimator.
As α goes up, the bandwidth becomes more flexible (large if fN (xo) is small,
and small if fN (xo) is large). Note that λi requires getting fN at each xi,
i = 1, ..., N ; i.e., each observation becomes an evaluation point.

Figure 5: Ordinary and Adaptive Kernel Estimates
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Recall the Korean women data. Estimating the age density, Figure 5
presents the usual kernel estimate on the left panel and an adaptive kernel
estimate with α = 0.5 on the right panel, where the N(0, 1) kernel was
used with h = 0.5 · SD(x) · N−1/5. The usual kernel estimate looks a little
under-smoothed on the right tail with this bandwidth, and this problem
gets attenuated in the adaptive kernel estimate. But increasing h twice to
SD(x) · N−1/5 also solves this problem for the usual kernel estimator as
can be seen in the earlier age density figure. Thus, although adaptive kernel
estimator may be better, its two-stage feature adds more arbitrariness and
complications; adaptive kernel estimator will not be further discussed.

2 Consistency and Bandwidth Choice

2.1 Bias and Order of Kernel

Before we examine the bias of fN , we need the following “change of
variables.”For an integral

∫ ∫
A

Q(w1, w2)dw1dw2 over a set A for (w1, w2),
suppose

zj = gj(w1, w2), j = 1, 2 with the inverses wj = mj(z1, z2), j = 1, 2

where {g1(w1, w2), g2(w1, w2)} is one-to-one, and mj , j = 1, 2, are assumed
to be continuously differentiable. With the “Jacobian |J | of transformation”
being the determinant of the matrix J ≡ [∂mj/∂z′j′ , j, j′ = 1, 2], it holds that∫ ∫

A

Q(w1, w2)dw1dw2 =
∫ ∫

B

Q{m1(z1, z2),m2(z1, z2)}|J | · dz1dz2

where B is the set of {g1(w1, w2), g2(w1, w2)} as (w1, w2) ranges over A
and |J | is assumed to be non-zero on B. The formula for more than two
variables can be easily inferred from this display. This display also shows
that, if Q(w1, w2) is the density of (w1, w2), then the density of (z1, z2)
is Q{m1(z1, z2),m2(z1, z2)}|J |. The condition of (g1, g2) being one-to-one is
critical. If not, split the domain of (g1, g2) such that it becomes one-to-one
on each segment; then the display is good on each segment.

Turning back to the bias of fN , for a continuously distributed x, there
is no observation that exactly equals the evaluation point xo unless xo is
chosen such that it is equal to some xi. One thus has to “borrow” neighboring
observations to estimate f(xo), and this entails the bias EfN (xo) − f(xo).
Since fN (xo) is a sample average of h−kK((xi − xo)/h), i = 1, ..., N , we get

EfN (xo) =
∫ ∞

−∞

1
hk

K

(
x − xo

h

)
f(x)dx

=
∫ ∞

−∞
K(z)f(xo + hz)dz setting z

k×1
=

x − xo

h
;
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h−k disappears due to the Jacobian of the transformation:

x = (xo1 + hz1, ..., xok + hzk)′ =⇒ ∂x

∂z
k×k

= diag(h, ..., h)

=⇒ det
(

∂x

∂z

)
= hk.

Assuming that f has a k × 1 bounded continuous first derivative vector ∇f ,
for some x∗ ∈ (xo, xo + hz), we get

EfN (xo) =
∫

K(z){f(xo) + hz′∇f(x∗)}dz

=
∫

K(z)f(xo)dz +
∫

hK(z)z′∇f(x∗)dz

= f(xo) + h ·
∫

K(z)z′∇f(x∗)dz.

Hence the bias is O(h).
If f has a k×k bounded continuous second derivative matrix ∇2f , then

with
∫

K(z)zdz = 0,

EfN (xo) =
∫

K(z)
{

f(xo) + hz′∇f(xo) +
h2

2
z′∇2f(x∗)z

}
dz

= f(xo) + O(h2).

If we further assume that f has continuous partial derivatives up to an order
m ≥ 3, then we get (

∑J
j=1(·) = 0 when J < j)

EfN (xo) = f(xo) +
h2

2

∫
z′∇2f(xo)zK(z)dz

+
m−1∑
q=3

hq

q!

∫ k∑
i1=1

· · ·
k∑

iq=1

⎧⎨⎩ ∂qf(xo)
∂xi1 · · · ∂xiq

q∏
j=1

zij

⎫⎬⎭K(z)dz

+
hm

m!

∫ k∑
i1=1

· · ·
k∑

im=1

⎧⎨⎩ ∂mf(x∗)
∂xi1 · · · ∂xim

m∏
j=1

zij

⎫⎬⎭K(z)dz.

In general, the second-order term does not disappear and thus the bias is still
O(h2). To better understand the second term, observe that, when m = 4 and
k = 2, it becomes h3/3! times∫ 2∑

i1=1

2∑
i2=1

2∑
i3=1

∂3f(xo)
∂xi1 · · · ∂xi3

zi1zi2zi3K(z)dz =
∫ {

∂3f(xo)
∂x3

1

z1z1z1

+
∂3f(xo)
∂x2

1∂x2
z1z1z2 +

∂3f(xo)
∂x2

1∂x2
z1z2z1 +

∂3f(xo)
∂x1∂x2

2

z1z2z2
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+, ...,+
∂3f(xo)

∂x3
2

z2z2z2

}
· K(z)dz.

From now on, unless otherwise noted, we will always assume that ∇2f is
continuous and bounded over the range of x on which f is estimated.

If we choose K(z) such that the terms of higher order than the first
disappear, then we can make the bias smaller than O(h2). Such a kernel is
called a high order kernel, which, however, has the following problem. For a
scalar x, the second-order term becomes (h2/2)f ′′(xo)

∫
K(z)z2dz. To have∫

K(z)z2dz = 0, K(z) should be negative for some values of z, which backs
away from the notion of weighting by K(z). For instance, with φ being the
N(0, 1) density, consider

K(z) = a0φ(z) + a1z
2φ(z)

where a0 and a1 are chosen such that∫
K(z)dz = 1 =⇒ a0 + a1 = 1(

note :
∫

zK(z)dz = 0 for any a0 and a1

)
,∫

z2K(z)dz = 0 =⇒ a0 + a1

∫
z4φ(z)dz = 0

=⇒ a0 + a13 = 0 because
∫

z4φ(z)dz = 3.

Solving these two equations, we get a0 = 3/2 and a1 = −1/2: the φ-based
kernel with

∫
z2K(z)dz = 0 is

3
2
φ(z) − 1

2
z2φ(z).

In general, if K(·) satisfies
∫

zjK(z)dz = 0 ∀j = 1, ..., κ−1, then K(·) is said
to be an order-κ (or κth order) kernel.

Going further, if desired, the φ-based kernel with
∫

z2K(z)dz = 0 and∫
z4K(z)dz = 0 is

3
2
φ(z) − 1

2
z2φ(z) +

1
35

z4φ(z).

Because
∫

z5K(z)dz = 0, this is an order-6 kernel, which yields an O(h6) or
smaller bias. See Bierens (1987, p. 112) for multivariate versions of these. A
polynomial kernel with

∫
z2K(z)dz = 0 is

15
32

(3 − 10z2 + 7z4) · 1[|z| < 1]

which is an extension of the quadratic kernel. As
∫

z3K(z)dz = 0, this is an
order-4 kernel. A polynomial kernel with

∫
z4K(z)dz = 0 is

315
2048

(15 − 140z2 + 378z4 − 396z6 + 143z8)1[|z| < 1].
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As
∫

z5K(z)dz = 0, this is an order-6 kernel. A table in Müller (1988, p.
68) lists univariate polynomial kernels indexed by three parameters ν, k, and
μ; set ν = 0 in the table and choose k and μ which stand for, respectively,∫

zjK(z)dz = 0 for 0 ≤ j < k and μ − 1 times continuous differentiability of
K(z) on the real line R.

A k-variate kernel K(z) is an order-m kernel if∫
zj1
1 · · · zjk

k K(z)dz = 0 for all 0 < j1 + · · · + jk ≤ m − 1.

Using an order-m kernel makes the bias at most O(hm) in view of the above
Taylor’s expansion of order m. In a small sample, high-order kernels may
make fN (xo) negative. Unless otherwise noted, we will always use kernels
with K(z) ≥ 0.

2.2 Variance and Consistency

The O(h2) bias term disappears if h → 0 as N → ∞. If
V {fN (xo)} → 0 as well, then we get fN (xo) →p f(xo). In this subsection, we
show this first and then prove V fN (xo) → 0.

Invoking the triangle inequality,

|fN (xo) − f(xo)| ≤ |fN (xo) − EfN (xo)| + |EfN (xo) − f(xo)|.

The event |fN (xo) − f(xo)| > 2ε for a constant ε > 0 implies that the right-
hand side (rhs) is greater than 2ε. This implication yields

P (|fN (xo) − f(xo)| ≥ 2ε)
≤ P (|fN (xo) − EfN (xo)| + |EfN (xo) − f(xo)| ≥ 2ε)

because “A implying B” means A ⊆ B ⇐⇒ P (A) ≤ P (B).
Since limN→∞EfN (xo) = f(xo) in the last term, there exists No =

No(ε) such that |EfN (xo) − f(xo)| ≤ ε ∀N ≥ No, which implies that the
neighboring term |fN (xo) − EfN (xo)| should be greater than or equal to
ε ∀N ≥ No; otherwise the sum is less than 2ε. Hence for all N ≥ No,
the rhs should be less than P (|fN (xo) − EfN (xo)| ≥ ε). By Chebyshev’s
inequality,

P (|fN (xo) − EfN (xo)| ≥ ε) ≤ V fN (xo)
ε2

.

Therefore, because V fN (xo) → 0 as N → ∞, P (|fN (xo)−EfN (xo)| ≥ ε) →
0, and we get

P (|fN (xo) − f(xo)| ≥ 2ε) → 0 ⇐⇒ fN (xo) →p f(xo).
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To show V fN (xo) → 0, observe

V fN (xo) =
each term’s variance

N

=
1
N

(
E

{
1
hk

K

(
x − xo

h

)}2

−
[
E

{
1
hk

K

(
x − xo

h

)}]2
)

=
1
N

(
1

h2k

∫
K

(
x − xo

h

)2

f(x)dx − {f(xo) + O(h2)}2

)

=
1
N

(
1
hk

∫
K(z)2f(xo + hz)dz + O(1)

)
=

1
Nhk

f(xo)
∫

K(z)2dz + o

(
1

Nhk

)
.

Therefore, if Nhk → ∞, then we get V fN (xo) → 0 as N → ∞. Adding the
condition h → 0 as N → ∞ for the bias, we get the desired result:

fN (xo) →p f(xo) if h → 0 and Nhk → ∞ as N → ∞.

The bandwidth h should be small for the bias, but not too small for the vari-
ance. If h is too small, the small number of data points around xo will result
in a high variance for fN (xo). If h is too large, the large number of data far
away from xo will result in a high bias for fN (xo). This way of selecting h by
balancing the bias and variance will be formalized later.

Although it is good to have fN (xo) →p f(xo) at a given point xo (point-
wise consistency), it would be better to have uniform consistency

sup
x∈X

|fN (x) − f(x)| = op(1)

where X is a chosen range of x. Uniform consistency means that the maximum
deviation of fN (xo) from f(xo) converges to zero in probability. In pointwise
consistency, for any small constants ε, ε′ > 0, there exists N(ε, ε′, xo) such
that

P (|fN (xo) − f(xo)| > ε} < ε′ for all N ≥ N(ε, ε′, xo).

In uniform consistency, there exists N(ε, ε′) not depending on xo such that

P (|fN (xo) − f(xo)| > ε} < ε′ for all N ≥ N(ε, ε′).

The latter assures that fN (xo) is arbitrarily close to f(xo) regardless of xo

so long as N is greater than some threshold, whereas no such assurance is
available in the former because the threshold varies across xo.

Put it differently, what we desire is the “graph” f(x), x ∈ X. But what
limN→∞ fN (x), x ∈ X, offers is only the “graph of pointwise limits”—imagine
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connecting fN (x(1)), ..., fN (x(M)). Under pointwise consistency, there is no
guarantee that the graph of pointwise limits is close to f(x), x ∈ X. Uniform
consistency assures that the graph of pointwise limits is close to the “limit of
graphs,” because the maximum difference between the estimated graph and
the true graph goes to zero in probability. In most cases, whenever pointwise
consistency holds, the uniform consistency holds as well under some extra
regularity conditions, the most notable of which is

h → 0 and
Nhk

ln(N)
→ ∞ as N → ∞.

The h in Nhk/ ln(N) → ∞ should be greater than the h in Nhk → ∞.
Further information (e.g., uniform convergence rate) can be found in Giné et
al. (2004), Einmahl and Mason (2005), and the references therein.

2.3 Choosing Bandwidth with MSE

In this and the following subsections, we discuss how to choose the band-
width h. First, in this subsection, we explore choosing h by minimizing the
mean squared error E{fN (xo) − f(xo)}2 or its integrated version. Then in
the following subsection, a “cross-validation” method is introduced, which is
a data-driven automatic method of choosing h.

As well known, mean squared error (MSE) is Variance + Bias2. For
fN (xo),

MSE{fN (xo), f(xo)} = E{fN (xo) − f(xo)}2

� 1
Nhk

f(xo)
∫

K(z)2dz +
h4

4

{∫
z′∇2f(xo)zK(z)dz

}2

.

To simplify exposition, consider a product kernel K(z) =
∏k

j=1 L(zj) to get∫
zz′K(z)dz = κIk where κ ≡

∫
z2

j L(zj)dzj ;

e.g., if L = φ, then κ = 1 and
∫

zz′K(z)dz is the covariance matrix of k-many
independent N(0, 1) rv’s. With the product kernel, the term inside {·} in the
preceding display is∫

trace{z′∇2f(xo)z}K(z)dz =
∫

trace{zz′∇2f(xo)}K(z)dz

= κ
k∑

j=1

∂2f(xo)
∂x2

oj

.

Therefore

MSE{fN (xo), f(xo)} � 1
Nhk

f(xo)
∫

K(z)2dz +
h4

4
{κ

k∑
j=1

∂2f(xo)
∂x2

oj

}2.
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MSE measures the “local error” of estimation around xo. The “global
error” can be measured by the integrated mean squared error, which removes
xo by integration:

IMSE{fN (xo), f(xo)} ≡
∫

E{fN (xo) − f(xo)}2dxo

� 1
Nhk

∫
K(z)2dz +

h4

4
κ2

∫
{

k∑
j=1

∂2f(xo)
∂x2

oj

}2dxo

≡ 1
Nhk

A +
h4

4
B,

⎛⎜⎝A ≡
∫

K(z)2dz, B ≡ κ2

∫ ⎧⎨⎩
k∑

j=1

∂2f(xo)
∂x2

oj

⎫⎬⎭
2

dxo

⎞⎟⎠
=

A

N
h−k +

B

4
h4.

This can be controlled by the choice of h and K. Choice of K is much more
difficult to address than that of h, for K is a function. But it is known in
the literature that the choice of K is not crucial, with fN (xo) varying not
much as K varies. Hence we first choose h by minimizing this display. Then
we discuss how to choose K in the simple case k = 1. Interchanging

∫
and

E, integrated mean squared error is usually called mean integrated squared
error (MISE), and we will use this terminology from now on.

Differentiating MISE wrt h, the optimal h, say h0, is

h0 =
(

kA

B

)1/(k+4)

· N−1/(k+4) and N · hk
0 =

(
kA

B

)k/(k+4)

· N4/(k+4).

The result is more illuminating for k = 1:

MISE{fN (xo), f(xo)} =
1

Nh

∫
K(z)2dz +

h4

4
κ2

∫
f ′′(xo)2dxo,

h0 =
( ∫

K(z)2dz

κ2
∫

f ′′(xo)2dxo

)1/5

N−1/5.

Here
∫

f ′′(xo)2dxo measures a variation in f . Hence, if f(x) is highly vari-
able, then h0 is small. If K = φ and f is also a normal density, then
h0 � N−1/5SD(x) as can be seen in Silverman (1986, p. 45). This simple
h0 often works well in practice, even if K and f are not normal. Extending
the rule of thumb to k > 1 yields (see Scott (1992, p. 152))

hj = N−1/(k+4)SD(xj), j = 1, ..., k.

This rule-of-thumb bandwidth can be used as an initial bandwidth in practice,
and it works well.

With h = O(N−1/(k+4)), we get

bias2 = O(h4) = O(N−4/(k+4)) and
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variance = O{(Nhk)−1} = O(N−4/(k+4)).

That is, both variance and bias2 in MISE converge to zero at the same rate
if h = h0. Decreasing one faster than the other increases MISE. Recall that
for a sample mean x̄N = N−1

∑
i xi where V (x) = σ2, its MSE goes to zero

at O(N−1), for MSE(x̄N ) = V (x̄N ) = σ2/N . In kernel density estimation,
MISE with h0 converges to zero at O(N−4/(k+4))—a bit slower than O(N−1).
MISE converges to zero more slowly as k increases.

Suppose we want to assure a constant MISE as we change k. This requires
increasing N accordingly. To see how much higher N is needed, take ln on
MISE = N−4/(k+4) (times a constant) to get ln(MISE) = −{4/(k+4)} ln N
(plus a constant). To make ln(MISE) constant, as k increases linearly, N
should increase exponentially. Viewed differently, as k goes up, the “volume”
of a local neighborhood increases exponentially, and N should increase ac-
cordingly to fill the volume proportionally. This problem in nonparametric
local averaging is called “the curse of dimensionality,” and it in fact applies
to all nonparametric methods one way or another.

Although h0 shows what is involved in choosing h, h0 is not useful as
such, because h0 depends on the unknown f ′′. Plugging an estimator f ′′N for
f ′′ into f ′′, we can estimate h0, which is a “plug-in” estimator. But estimating
f ′′ to estimate f is unattractive, for f ′′ is more difficult to find than f [see,
e.g., Scott (1992, pp. 131–132)]. We need an easier bandwidth choice method
that is automatic once a data set is given, which is explored in the following.

2.4 Choosing Bandwidth with Cross-Validation

There are many automatic data-driven methods to select h. One popular
method is the least squares cross validation minimizing an estimator for the
integrated squared error (ISE):∫

{fN (xo) − f(xo)}2dxo =
∫

fN (xo)2dxo − 2
∫

fN (xo)f(xo)dxo

+
∫

f(xo)2dxo

wrt h. Drop the last term that is independent of h. To minimize ISE in a
data-driven way, we should rewrite the first and second terms into a function
of h and the data. It is shown in the following two paragraphs that the first
two terms of the ISE can be approximated with

1
N2hk

∑
i

∑
j

K(2)

(
xi − xj

h

)
− 2

N(N − 1)hk

∑
i

∑
j,i�=j

K

(
xi − xj

h

)
where

K(2)(a) ≡
∫

K(a − z)K(z)dz.
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Minimizing this wrt h yields an optimal bandwidth, which works fairly well
in practice.

The first term
∫

fN (xo)2dxo in the ISE is∫
1

N2h2k

∑
i

∑
j

K

(
xi − x

h

)
K

(
xj − x

h

)
dx

=
1

N2h2k

∑
i

∑
j

∫
K

(
xi − x

h

)
K

(
xj − x

h

)
dx.

Let −z = (xj − x)/h ⇐⇒ x/h = xj/h + z to get∫
K

(xi

h
− x

h

)
K

(
xj − x

h

)
dx = hk

∫
K

(xi

h
− xj

h
− z

)
K(z)dz

= hk

∫
K

(
xi − xj

h
− z

)
K(z)dz = hkK(2)

(
xi − xj

h

)
.

Hence ∫
fN (xo)2dxo =

1
N2hk

∑
i

∑
j

K(2)

(
xi − xj

h

)
.

As for the second term −2
∫

fN (xo)f(xo)dxo in the ISE, observe∫
fN (x)f(x)dx � 1

N

N∑
j=1

fN (xj) (replacing E(·) with
1
N

∑
j

(·))

� 1
N

∑
j

fN−1(xj)
(

with fN−1(xj) ≡
1

(N − 1)hk

∑
i,i �=j

K

(
xi − xj

h

)⎞⎠
=

1
N(N − 1)hk

∑
i

∑
j,i�=j

K

(
xi − xj

h

)
.

Replacing fN (xj) with fN−1(xj) means that xj is not used in estimating
f(xj). This “leave-one-out” scheme yields the name “cross-validation.” The
qualifier “least squares” comes from the squared loss function in ISE.

Least squares cross-validation has been initiated by Rudemo (1982) and
Bowman (1984), and there are slight variations in approximating ISE; e.g.,
using N−1

∑
j

∫
fN−1(x)2dx for the first term of ISE, and using N2 instead

of N(N − 1) for the second term. There are other cross-validation schemes,
e.g., “likelihood cross-validation” maximizing ΠjfN−1(xj), which is, however,
known to be susceptible to tails of f . The likelihood cross-validation shows
the motivation to leave-one-out: if we maximize ΠjfN (xj) wrt h without
leave-one-out, then we will get h � 0 because h � 0 yields (for a given N)

1
Nhk

K

(
xj − xj

h

)
� ∞ as K(.) is bounded.
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Consider two iid rv’s z1 and z2 drawn from density K. Then

P (z1 + z2 ≤ a) =
∫

P (z2 ≤ a − z1|z1)K(z1)dz1

=
∫

P (z2 ≤ a − z1)K(z1)dz1 due to the independence of z1 and z2.

Differentiating this wrt a, we get
∫

K(a − z1)K(z1)dz1, the z1 + z2-density
evaluated at a. This shows that K(2)(a) is the density (evaluated at a) of
the sum of two iid rv’s from K. For instance, if K(z) = φ(z), then K(2)(z) is
simply (1/

√
2)φ(z/

√
2), the density of N(0, 2), because z1+z2 follows N(0, 2)

when z1 and z2 are iid N(0, 1). More generally, if z1 is from density K, z2 is
from density M , and z1 and z2 are independent, then the density (at a) of
the sum is

∫
M(a − z1)K(z1)dz1, which is called the convolution of K and

M ; K(2) is thus the “convolution” of K with itself. When K is not φ, K(2)(a)
can be obtained with “Monte Carlo Integration” as will be seen shortly.

One drawback of the least-squares cross-validation idea is that the min-
imand tends to have several local minima particularly in h-small areas (Mar-
ron, 1988, p. 196); i.e., there is a good chance for under-smoothing. Also
since the minimand is ISE, not MISE, the optimal choice is only good for
the particular data set, not for any sample of the same size; another data
set from the same population may require a rather different h. Nevertheless,
Hall (1983) and Stone (1984) proved that the least squares cross validation
choice hcv minimizing the above ISE is optimal in the sense that, as N → ∞,
the ISE minimand evaluated at hcv converges a.s. to

min
h

∫
{fN (x, h) − f(x)}2dx −

∫
f(x)2dx

where we write fN (x, h) instead of fN (x) to make the dependence on h ex-
plicit. See Marron (1988) and Park and Marron (1990) for more on choosing
h and data-driven methods. Despite some new developments in bandwidth
choice methods as in Jones et al. (1996), cross validation (CV) bandwidth
seems to be a reliable method in practice as Loader (1999b) also advocates.
But if k is small, say 1 or 2, then nothing beats choosing bandwidth by
drawing fN (x) over a range of x—called “eye-balling” or “trial and error”
method.

3 Asymptotic Distribution

Since

V fN (xo) =
1

Nhk
f(xo)

∫
K(z)2dz + o

(
1

Nhk

)
multiplying fN (xo)− f(xo) by

√
Nhk will give a non-degenerate asymptotic

variance with the asymptotic distribution being normal. That is, the main
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result to be established in this subsection is

√
Nhk{fN (xo) − f(xo)}� N

(
0, f(xo)

∫
K(z)2dz

)
.

First, we introduce the Lindeberg CLT. Second, this asymptotic distribution
is proved using the CLT, and confidence intervals for f(xo) are constructed.
Third, instead of the single point xo, we may be interested in multiple eval-
uation points x(1), ..., x(m), for which “confidence bands” are introduced.

3.1 Lindeberg CLT

Observe that

√
NhkfN (xo) =

1√
Nhk

∑
i

K

(
xi − xo

h

)
=

∑
i

1√
Nhk

K

(
xi − xo

h

)
.

We will be applying the Lindeberg CLT for “triangular arrays” or “double ar-
rays,” because the summands in the sum are changing with N . In an ordinary
CLT, we deal with independent arrays: for N = 10, we draw 10 observations,
and for N = 11, we throw away those 10 and redraw 11 new observations to
have each array (the observations with a given N) independent of the other
arrays. In the above sum, hN (now we use hN to make the dependence of
h on N explicit) gets smaller as N → ∞; for instance, h11 < h10. Thus an
“observation” K((xi − xo)/h11) with N = 11 tends to be smaller than an
observation K((xi − xo)/h10) with N = 10. Hence an array with a given N
is not independent of another array with a different N . A CLT good for a
triangular array allows dependence across arrays. The expression “triangu-
lar” is due to that putting each array horizontally and stacking the arrays
vertically yields a triangular shape; with N being the row number, each row
has one more term than the preceding row. The following is the Lindeberg
CLT for triangular arrays.

Lindeberg CLT for Triangular Arrays: For triangular arrays {zNi} with in-
dependence holding within each array, let

SN ≡
N∑

i=1

zNi, EzNi = 0, σ2
N ≡

N∑
i=1

Ez2
Ni.

Then

SN

σN
� N(0, 1) if

N∑
i=1

E

{(
zNi

σN

)2

· 1
[∣∣∣∣zNi

σN

∣∣∣∣ ≥ ε

]}
→ 0 as N → 0

for any constant ε > 0; this condition is called the “Lindeberg
condition.”
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An example of the Lindeberg CLT can be seen in SN = (1/
√

N)∑
i wi =

∑
i(1/

√
N)wi where wi’s are iid with E(wi) = 0 and V (wi) = 1.

Set zNi = (1/
√

N)wi. Then σ2
N = 1 and the Lindeberg condition is

∑
i

E

{
w2

i

N
· 1

[∣∣∣∣ wi√
N

∣∣∣∣ ≥ ε

]}
=

1
N

∑
i

E(w2
i 1

[
|wi| ≥ ε

√
N
]
)

= E
(
w21

[
|w| ≥ ε

√
N
])

.

The term E(w21[·]) is dominated by E(w2) = 1. Since 1[|w| ≥ ε
√

N ] →p 0,
E(w21[|w| ≥ ε

√
N ]) → 0 due to the “dominated convergence theorem.”

3.2 Confidence Intervals

In applying the Lindeberg CLT, instead of (Nhk)−1/2
∑

i K((xi−xo)/h),
consider its centered version to have EzNi = 0:

√
Nhk {fN (xo) − EfN (x)} =

∑
i

1√
Nhk

{
K

(
xi − xo

h

)
− EK

(
xi − xo

h

)}
.

Let zNi = (Nhk)−0.5{K((xi − xo)/h) − EK((xi − xo)/h)} and note

σ2
N = V [

√
Nhk{fN (xo) − EfN (x)}] = Nhk · V fN (xo)

= f(xo)
∫

K(z)2dz + o(1).

The Lindeberg condition holds by doing analogously to what was done for
the example SN = (1/

√
N)

∑
i wi above. Therefore we have

√
Nhk{fN (xo) − EfN (xo)}� N

(
0, f(xo)

∫
K(z)2dz

)
.

Observe now
√

Nhk{fN (xo) − f(xo)} =
√

Nhk{fN (xo) − EfN (xo)}
+
√

Nhk{EfN (xo) − f(xo)}.

To get the asymptotic distribution for
√

Nhk{fN (xo) − f(xo)}, we need the
second (bias) term to disappear:

√
Nhk{EfN (xo) − f(xo)} = o(1).

Since we know EfN (xo) − f(xo) = O(h2), this display holds if

O{(Nhk)0.5 · h2} = O{(Nhk+4)0.5} = o(1).
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Hence, by choosing h such that Nhk+4 → 0 (while Nhk → ∞ for the asymp-
totic variance to converge to zero), we get the desired asymptotic distribution
result: as N → ∞,

√
Nhk{fN (xo) − f(xo)}� N

(
0, f(xo)

∫
K(z)2dz

)
, if

Nhk+4 → 0 and Nhk → ∞.

Here, fN (xo) is “
√

Nhk-consistent” for f(xo). From this display, an asymp-
totic 95% “point-wise” confidence interval (CI) for f(xo) is

fN (xo) ± 1.96
{

fN (xo)
∫

K(z)2dz

Nhk

}0.5

.

In the CI,
∫

K(t)2dt can be evaluated analytically, but it can also be
done numerically as follows. Observe, with φ being the N(0, 1) density,∫

K(t)2dt =
∫

K(t)2

φ(t)
φ(t)dt = E

{
K(z)2

φ(z)

}
(where z ∼ N(0, 1))

� 1
T

T∑
j=1

K(zj)2

φ(zj)
where z1, ..., zT are iid N(0, 1).

That is,
∫

K(t)2dt can be numerically obtained by generating T -many N(0, 1)
variables z1, ..., zT and then taking the sample average of K(zj)2/φ(zj), j =
1, ..., T . This way of approximating an integral with a pseudo sample is called
Monte Carlo integration—the idea already employed in methods of simulated
moments. One caution is that, if the support of K deviates too much from,
say, [−3.3, 3.3] (the “99.9% support” of φ), then the Monte Carlo integration
may not work well in practice. In this case, a density with its support close
to that of K should be used. As an extreme example, if K’s support is [−5, 5]
with large masses near ±5, then use the density of U [−5, 5] instead of φ
because z = ±5 from N(0, 1) may never be realized unless T � ∞.

One problem with the above rate Nhk+4 → 0 is that the optimal h,
h0, in the preceding subsection does not satisfy Nhk+4

0 → 0: h0 is such
that Nhk+4

0 converges to a non-zero constant, because h0 is proportional to
N−1/(k+4) which implies Nhk+4

0 = NN−1 = 1. Hence,
√

Nhk
0{EfN (xo) −

f(xo)} converges to a non-zero constant, which is called the asymptotic bias.
The optimal bandwidth decreases both variance and bias2 in MISE at the
same rate. For the above asymptotic distribution, the bias gets reduced faster
than the variance with Nhk+4 → 0, which is a deliberate “under-smoothing.”

If desired, one can estimate and remove the asymptotic bias instead of
doing under-smoothing. Recall that, when K(z) =

∏k
j=1 L(zj) is used with

κ ≡
∫

z2
j L(zj)dzj , we get

√
Nhk{EfN (xo) − f(xo)} �

√
Nhk

h2

2

∫
z′∇2f(xo)zK(z)dz
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= (Nhk+4)0.5 κ

2

k∑
j=1

∂2f(xo)
∂x2

oj

≡ BN

=⇒
√

Nhk{fN (xo) − f(xo)}� N

(
BN , f(xo)

∫
K(z)2dz

)
.

Consistently estimating BN with B̂N , which requires in turn estimating the
second derivatives, we would get

95% CI for f(xo) : fN (xo) −
B̂N√
Nhk

± 1.96
{fN (xo)

∫
K(z)2dz}0.5

√
Nhk

.

Although this may be theoretically pleasing, this is not necessarily a good
idea, because estimating BN is harder than estimating f(xo).

3.3 Confidence Bands

It can be shown that the asymptotic covariance between (Nhk)1/2

{fN (xa) − f(xa)} and (Nhk)1/2{fN (xb) − f(xb)} for xa = xb is zero, so
that the multivariate normal asymptotic distribution holds straightforwardly
with a diagonal covariance matrix. In essence, this is because the averaging
at xa and xb is local, and as N → ∞, the number of observations used for
both fN (xa) and fN (xb) becomes negligible. But (1−α)100% pointwise CI’s
at x(1), ..., x(m) does not give a (1−α)100% joint CI’s, for the coverage prob-
ability of the former becomes (1 − α)m. That is, if we desire a (1 − α)100%
joint CI’s for m evaluation points, then under the asymptotic independence,
we should set

(1 − α)m = 0.95 ⇐⇒ m ln(1 − α) = ln 0.95 ⇐⇒ α = 1 − exp
(

ln 0.95
m

)
.

Viewed more simply using ln(1 + z) � z when z � 0, the middle equation in
the display becomes

m · α = 0.05 ⇐⇒ α =
0.05
m

.

For instance, with m = 20, we get α = 0.05/20 = 0.0025: it takes 99.75%
pointwise CI’s to get a 95% joint CI’s across 20 evaluation points. With
m = 50, α = 0.05/50 = 0.001, it takes 99.9% pointwise CI’s (the critical
values ±3.3) to get a 95% joint CI’s across 50 evaluation points.

The above procedure can be too conservative, which can be seen from
the Bonferroni’s inequality: for possibly dependent events A1, ..., Am,

P (∩m
j=1Aj) ≥

m∑
j=1

P (Aj) − (m − 1).

Suppose P (Aj) = 1 − α/m ∀j. Then

P (∩m
j=1Aj) ≥ (1 − α

m
)m − (m − 1) = m − α − (m − 1) = 1 − α :
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having a pointwise confidence level 1 −α/m, the joint CI’s over m evaluation
points has the coverage probability at least 1−α. As m gets larger and thus as
xa gets closer to xb, there would be dependence between fN (xa) and fN (xb)
in a finite sample, which might yield a higher coverage probability than that
under the asymptotic independence.

Suppose now we connect the m-many joint CI’s to get an “artificial
confidence band.” Looking at the artificial confidence band instead of looking
at the m-many joint CI’s, we may get an overly optimistic picture, because
the correct band should be based on infinite number of evaluation points
while only a finite m is used in the artificial confidence band. As m increases,
the critical value at each pointwise CI increases as well. The “limit” of this
may be taken as an ‘uniform confidence band’.

Instead of the artificial confidence band connecting joint CI’s, Bickel
and Rosenblatt (1973) presented an (uniform) confidence band when k = 1
and the range of x is [0, 1]. For an unbounded-support kernel, their uniform
confidence band is the expression in {·} in the following:

lim
N→∞

P

[
f(x) ∈

{
fN (x) ± {fN (x)

∫
K(t)2dt}0.5

√
Nh

(
dN +

λ√
2δ lnN

)}
∀x

]
= exp(−2e−λ)

where dN ≡
√

2δ lnN +
ln{(K̂/2)1/2π−1}√

2δ lnN
,

h = N−δ,
1
5

< δ <
1
2
, K̂ ≡

∫
{K ′(t)}2dt

2
∫

K(t)2dt
;

K̂ can be obtained numerically,
√

2δ lnN =
√

2 ln h−1 for h = N−δ, and λ
should be chosen such that exp(−2e−λ) equals the desired coverage proba-
bility. For instance, with exp(−2e−λ) = 0.95, we get

−2e−λ = ln 0.95 =⇒ e−λ =
− ln 0.95

2
� 0.05

2
=⇒ λ = − ln 0.025 = 3.69.

In the uniform band, since 1/5 < δ, under-smoothing is done to avoid the
asymptotic bias. The range restriction [0, 1] for x is not really a restriction,
because x can be re-centered and re-scaled so that its range falls in [0, 1].
In the Bonferroni-type band (i.e., joint CI’s), the multiplicative factor dN +
λ/

√
2δ lnN gets replaced by the fixed critical value for the pointwise 1−α/m

confidence level.

3.4 An Empirical Example of Confidence Bands

Now we illustrate the preceding confidence intervals/bands with a Dutch
data set that was used in Lee and Melenberg (1998), where N = 1815 and x
is the logarithm of 1981 Dutch family total expenditure in “Guilders”— the
Dutch monetary unit at that time. We will show a points-connecting band
and an uniform band.
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To get 0 ≤ xi ≤ 1 ∀i, we transformed the data with

xi − minj xj

maxj xj − minj xj
.

Then f(x) was estimated at 40 equally spaced points over [0.1, 0.9]. We set
α = 0.05 so that the coverage probability is 0.95. The N(0, 1) kernel was
used.

In getting the points-connecting band, at each point, the confidence
level should be 0.05/40 = 0.00125. The critical value is then 3.227 because
Φ(3.227) = 0.00125/2. As for the bandwidth, h = 0.5 × SD(x)N−1/5 was
chosen with “eyeballing.”Also,

∫
φ(t)2dt was found by simulation:∫

φ(t)2dt =
∫

φ(t) · φ(t)dt � 1
T

T∑
j=1

φ(zj) � 0.283,

where z1, ..., zT are iid N(0, 1).

The estimate fN (x) is the middle curve on the left panel in Figure 6, and the
two lines around fN (x) form the artificial confidence band. There is a hint of
bimodality, but one could easily fit an unimodal asymmetric density within
the artificial confidence band.

In getting the uniform band, we found δ in h = N−δ by equating N−δ =
0.5N−1/5:

δ =
1
5
− ln 0.5

lnN
= 0.292;

this step is not really necessary unless one desires to know the rate for h,
because we can just use

√
2 ln h−1 instead of

√
2δ lnN in constructing the

Figure 6: Points-Connecting Band and Uniform Band
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uniform band. Also for
∫
{K ′(t)}2dt, since φ′(t) = −tφ(t), we get

∫
{φ′(t)}2dt =

∫
t2φ(t)2dt � 1

T

T∑
j=1

z2
j φ(zj) � 0.141.

This gave K̂ = 0.141/(2×0.283). The uniform band on the right panel is much
wider than the points-connecting band. One could easily fit an unimodal
symmetric density within the confidence band.

4 Finding Modes*

One of the interesting features in a density is multi-modality, as multi-
modality reflects multiple groups in the population. Many tests for modality
have appeared in the literature, and as an application of kernel density esti-
mation, we present a modality test in Silverman (1981) and its application
in this section. The test has been applied to world income distribution data
in Bianchi (1997) and Kang and Lee (2005), and to US income data in Zhu
(2005); the exposition here draws on Kang and Lee (2005).

4.1 Graphical Detection

Before conducting a formal test as in Silverman (1981), it is sensible to
estimate the density first and try to see the number of modes graphically;
around each (local) mode, the density estimate goes up and down. Figure 7
shows four boxes of kernel density estimates with the N(0, 1) (= φ) kernel
for the year 1970 and 1989 world income distributions. The left two are for
GDP and the right two are for LGDP ≡ lnGDP .

In the top two boxes, the bandwidth is a rule of thumb bandwidth ho =
0.9 · SD ·N−1/5 for the given year. In the bottom two boxes, the bandwidth
is the least squares CV bandwidth hcv. For GDP, the two density estimates
for 1970 look unimodal with “shoulders” (the flat portion near the upper
tail; formally yo is a shoulder point for the density f if f ′(yo) = f ′′(yo) = 0
but f ′′′(yo) = 0), while the two density estimates for 1989 look “relatively”
bimodal. The two bandwidths ho and hcv are close to each other for GDP,
and thus both yield similar results. For LGDP, however, ho turned out to
be much smaller than hcv, and consequently ho renders single mode for 1970
and double modes for 1989 whereas hcv renders only single mode for both
years.

As the figure demonstrates, bandwidth choice is critical in finding the
number of modes: too small a bandwidth can easily yield multiple modes
particularly in the tail areas, whereas too big a bandwidth can render an
unimodal density even when the true density has multiple modes. Jones
et al. (1996) compared several bandwidth choice methods in univariate ker-
nel density estimation to recommend the one in Sheather and Jones (1991).
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Figure 7: Bandwidth and Modality

Jones et al. (1996) referred to Park and Turlach (1992) for implementa-
tion of the bandwidth choice methods examined in their study. One thing
particular about Park and Turlach (1992) is that they compare bandwidth
choices not only in the traditional criterion of mean integrated squared (or
absolute) error but also in detecting the number of modes and their loca-
tions. Overall, Park and Turlach (1992) recommended the least squares CV
method.

4.2 A Multimodality Test

Turning to the Silverman’s (1981) multimodality test, consider a sample
y1, ..., yN from a density f . In testing for

Ho : k modes versus Ha : more than k modes

define the “k-critical bandwidth”

hcrit ≡ min{h : f̂(yo, h) has at most k modes},

where f̂(yo, h) ≡ 1
Nh

∑
i

φ

(
yi − yo

h

)
.
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As Silverman (1981) proved, using φ implies that

f̂(yo, h) has more than k modes iff h < hcrit.

The main idea is that if hcrit is “large,”then the Ho is rejected, because it
takes a “deliberate” over-smoothing with the large hcrit to get only k modes.

The p-value for this test can be obtained by a “smooth bootstrap”:
resample w∗1 , ..., w∗N from y1, ..., yN and get

y∗i = w̄∗ +
w∗i − w̄∗ + hcritεi

{1 + (hcrit/sy)2}1/2
, where εi’s iid N(0, 1) and s2

y

=
1

N − 1

∑
i

(yi − ȳ)2

to see whether

f̂∗(yo, hcrit) ≡
1

N · hcrit

∑
i

φ

(
y∗i − yo

hcrit

)
has more than k modes or not. Repeating this, say B times, the bootstrap
approximation to the p-value is B−1

∑B
j=1 1[h∗crit,j > hcrit] where h∗crit,j is

the k-critical bandwidth for the jth pseudo sample. Equivalently, the p-value
is

1
B

B∑
j=1

1[f̂∗(yo, hcrit) has more than k modes in the jth pseudo sample].

In the above figures, the mode was found from the whole density function
estimate, which necessarily leads to the sensitivity problem due to bandwidth
choice. The above modality test with hcrit is not the same as this less sophisti-
cated procedure, but an analogous problem exists in the modality test. Efron
and Tibshirani (1993, p. 233) showed an example where the modality test
accepts 2 modes and then 7 modes again. This problem has been avoided in
the literature by proceeding sequentially: start with k versus more than k
modes, k = 1, 2, ..., to proceed to k + 1 only if k modes are rejected; other-
wise stop to conclude k modes. This sequential procedure is adopted in the
empirical example below.

Whereas one may call the bandwidth-sensitivity problem a “practical”
problem, the Silverman’s modality test has a theoretical problem as well, as
the “bootstrap consistency” was not proved in Silverman (1981). Hall and
York (2001) showed that Silverman’s test systematically under-rejects and
suggest two ways to minor-modify the test. Between the two, the simpler is
replacing B−1

∑B
j=1 1[h∗crit,j > hcrit] with B−1

∑B
j=1 1[h∗crit,j > hcrit1.13] for

nominal level 5% test, which makes the p-value smaller (and thus the test
rejects more easily). The number 1.13 comes from Equation (4.1) of Hall and
York (2001); this modification is used in the following example.
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4.3 An Empirical Example: World Income Distribution

Convergence of world income distribution is an issue that has been hotly
debated in the economic growth literature. If equity is a virtue, then one
would like to see the income distribution converge over time. But “conver-
gence” can be defined in different ways: (i) “β-convergence” is that a low
initial income level causes a high growth rate; (ii) “σ-convergence” is that
the standard deviation of the income distribution declines over time; (iii)
“modal convergence” is that the number of modes declines over time; (iv)
“Q-convergence” is that the interquartile range declines over time. See Kang
and Lee (2005) for a brief review and the references on income convergence.
Here we show the modal convergence part in Kang and Lee (2005).

The reason why modal convergence was analyzed in the literature is that
each mode reflects an income class. Thus unimodality is construed as a single
income class—no division of the rich and the poor. But, just as the other con-
vergence concepts, modal convergence also has its weaknesses. For instance,
unimodality does not necessarily mean “no rich and no poor,”as one can al-
ways take the upper and lower tails as the rich and poor, respectively. Also
dealing with modes is more difficult than dealing with SD or interquartiles.
With these caveat in mind, now we present the empirical results.

Table 1: Modal Convergence Test
k = 1 k = 2 k = 3

hcrit p(1) p(1.13) hcrit p(1) p(1.13) hcrit p(1) p(1.13)
GDP

1970 3358 0.33 0.13 2060 0.32 0.15 1250 0.70 0.45
1980 3929 0.42 0.27 2112 0.57 0.40 1848 0.35 0.18
1989 4808 0.12 0.03 1891 0.78 0.55 1426 0.86 0.68

LGDP
1970 0.3404 0.48 0.29 0.3282 0.10 0.02 0.1625 0.82 0.62
1980 0.3754 0.53 0.33 0.2901 0.20 0.09 0.2351 0.14 0.03
1989 0.5115 0.20 0.08 0.3620 0.11 0.03 0.1406 0.92 0.78

Table 1 reports the critical bandwidth hcrit and the p-values using the
world income distribution in years 1970, 1980, and 1989; p(1) is the p-value
with the original Silverman’s test and p(1.13) is the p-value for the modifi-
cation of Hall and York (2001). Our interpretation will be based on p(1.13).
With GDP, unimodality is not rejected in 1970 and 1980 but rejected in 1989
in favor of bimodality, which means two groups (i.e., “income divergence”
in 1989 or sometime before). With LGDP, unimodality is not rejected in all
three years. Although we are using 5% significance level, LGDP for 1989 has
8%—too close to 5%—and if we proceed further raising the significance level
above 8%, then we would accept three modes for LGDP 1989.
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Not just the bandwidth choice issue, this example also raises the is-
sue of which transformation of variable to use, although using GDP seems
more natural than using LGDP. See Zhu (2005) for an “adaptive kernel”-
method version of the Silverman’s test and more references on modality
tests.

5 Survival and Hazard Under Random Right-Censoring*

Suppose y1, ..., yN are durations until an event of interest with df F and
density f . If the durations are observed fully, then the survival function S(t)
and hazard function λ(t) can be easily estimated with

SN (t) ≡ 1
N

∑
i

1[yi > t] and λN (t) ≡ fN (t)
SN (t)

where fN (t) is a kernel estimator for f(t). But in duration data, typically
there is a right-censoring problem and these estimators need modifications.
This section examines nonparametric survival and hazard function estima-
tion under random right-censoring. Section 5.1 introduces a nonparametric
estimator for cumulative hazard. Section 5.2 reviews two nonparametric esti-
mators for survival function. Section 5.3 presents nonparametric estimators
for density and hazard.

5.1 Nelson–Aalen Cumulative-Hazard Estimator

Suppose (y1, d1), ..., (yN , dN ) are observed with yi = min(y∗i , ci) where
y∗i is an event duration of interest, ci is a censoring duration with y∗ � c, yi

is the observed (or “recorded”) duration, and di is a non-censoring indicator;
i.e., di = 1 means that yi is the event duration, and di = 0 means that yi is
the censoring duration.

Define

Ri(t) ≡ 1[yi ≥ t] and Ni(t) ≡ 1[yi ≤ t, di = 1], t ∈ (0, T ];

Ri(t) is the indicator function for whether subject i is in the risk set or not at
time t (i.e., whether subject i is available for the event or not). As t increases
from 0, Ri(t) changes from 1 to 0 only once at t = yi, and Ni(t) changes from
0 to 1 only once at t = yi if subject i is not censored. Also define

R(t) ≡
N∑

i=1

Ri(t) and N(t) ≡
N∑

i=1

Ni(t), t ∈ (0, T ] :

R(t) is the size of the risk set at t, and N(t) counts the number of event
durations up to t.
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The Nelson–Aalen (nonparametric) estimator for cumulative hazard is

ΛN (t) =
∑

i:yi≤t

ΔN(yi)
R(yi)

for t with R(t) > 0

(i.e., at least one subject remaining).

For instance, suppose N = 5 and (y1, d1),...,(y5, d5) are

(2, 1), (3, 0), (5, 1), (5, 0), (8, 1) = {2, 3+, 5, 5+, 8}

where “+” indicates the censored observations, meaning that their event
duration is greater than the number next to “+.” Thus it makes sense to put
5 before 5+ in ranking yi’s, because the censored observation’s event duration
should be greater than 5. In this data, the event durations are 2, 5, 8. ΛN (t)
is increasing and step-shaped with

ΛN (t) = 0 for 0 ≤ t < 2

=
1
5

= 0.200 for 2 ≤ t < 5

=
1
5

+
1
3

= 0.533 for 5 ≤ t < 8

=
1
5

+
1
3

+ 1 = 1.533 for 8 = t

ΛN (t) jumps only at the event times 2, 5, and 8 (no jump at the censoring
time 3), and the jump magnitude is the hazard rate at the point. For the
jump magnitude, the censored observations do not count; e.g., 5+ is ignored
at t = 5.

Some remarks are in order. First, there is no basis to estimate Λ(t) be-
yond the last observed event time. Second, ΛN (t) jumps at the event times
while Λ(t) accumulates the smooth hazard λ(t) over time continuously; imag-
ine a geyser (ΛN (t)) which sends up hot water and steam occasionally while
the pressure (Λ(t)) builds up continuously underneath with the underlying
“intensity to jump” over dt being dΛ(t) = λ(t)dt. Third, in continuous time,
no two subjects can experience the event at the same time; i.e., only one
subject from a given risk set can end the duration at a given time. But in
real life, often t is discrete (grouped duration), and multiple subjects may
experience the event together. We will deal with grouped durations in a later
chapter.

The asymptotic distribution of
√

N{ΛN (t) − Λ(t)} with continuous t is
not easy to derive, as it requires understanding “counting processes” and
“stochastic integrals.” In the following, we provides some intuition and es-
timators for the asymptotic variance, after recalling the following defining
characteristics of Poisson distribution. For Poi(λ), there is a small interval
of length dt such that

P (no occurrence) � 1 − λdt and P (one occurrence) � λdt
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which implies P (more than one occurrence) is almost zero on the interval.
Poi (λm) is obtained by connecting m-many such intervals; the occurrences
in non-overlapping intervals of the same size are iid.

On a small interval of [t + dt), suppose ΔNi(t) = 1 with “intensity”
Ri(t)λ(t)dt (= 0 if Ri(t) = 0, and λ(t)dt otherwise): ΔNi(t) ∼ Poi{Ri(t)λ(t)}.
Then its sum ΔN(t) across i follows Poi{R(t)λ(t)} because a sum of inde-
pendent Poi(μi) rv’s follow Poi(

∑
i μi). Given that one event occurred over

[t+dt), the “probability” that the event occurred to subject i with Ri(t) = 1
is

intensity of i

the sum of intensities
=

Ri(t)λ(t)
R(t)λ(t)

=
1

R(t)
.

ΛN (t) is a weighted sum of the Poisson rv’s with the weight being this “prob-
ability” R(t)−1.

The increments of ΔN(t) at different times are uncorrelated with one
another, and hence the asymptotic variance of ΛN (t)−Λ(t) is the sum of the
variances at the event times. The asymptotic variance can be estimated with∑

i:yi≤t

ΔN(yi)
R(yi)2

because the expected value of ΔN(yi) is the intensity which is also the vari-
ance as ΔN(t) ∼ Poi{Ri(t)λ(t)}, and R(yi)2 is the multiplicative factor get-
ting squared for the variance. Another estimator for the asymptotic variance,
called “Greenwood formula,” is∑

i:yi≤t

ΔN(yi)
R(yi){R(yi) − ΔN(yi)}

.

Ignoring the fact that N is small, we apply the two variance estimators
to the above numerical example to get (the Greenwood formula is in (·))

V {ΛN (t)} � 1
52

= 0.04 (
1

5 · (5 − 1)
= 0.05) for 2 ≤ t < 5

� 1
52

+
1
32

= 0.151 (
1

5 · (5 − 1)
+

1
3 · 2 = 0.217) for 5 ≤ t < 8

=
1
52

+
1
32

+
1
12

= 1.151 (not defined) for 8 = t.

The two variance estimators may look much different, but this is only because
of the extremely small N or the evaluation points close to the end point.
Typically, the two estimators differ little.

With ΛN (t), one can check out some parametric assumptions, because
they imply functional form restrictions on Λ(t). For instance,

Weibull(θ, α) : ln Λ(t) = ln θ + α ln t =⇒ plot ln Λ(t) vs. ln t

Log − Logistic(θ, α) : ln[exp{Λ(t)} − 1] = ln θ + α ln t
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Figure 8: Check on Weibull and Log-Logistic Assumptions

=⇒ plot ln[exp{Λ(t)} − 1] vs. ln t.

In both plots, a linear function of ln t should be seen if the assumed distri-
bution is correct. For Weibull, if the slope α is one, then we get Expo(θ).
Although we are looking at the marginal, not conditional, distribution of y,
still the parametric fit for the y-distribution might be suggestive of which
distribution to use for y|x.

Using the Korean women data that appeared in the density estimation
section, Figure 8 shows two curves from plotting ln Λ(t) for Weibull (solid
line) and ln[exp{Λ(t)} − 1] for Log-logistic (dashed line). The curves reveal
that both distributions are inappropriate, as the lines are nonlinear.

5.2 Survival-Function Estimators

There are two easy-to-use, well-known estimators for S(t). One is using
ΛN (t) and the equation S(t) = exp{−Λ(t)}, and the other is the so-called
“Kaplan-Meier product limit estimator.” We examine the former first, an
approximation of which then leads to the latter.

5.2.1 Cumulative-Hazard-Based Estimator

Once ΛN (t) is obtained, S(t) can be estimated with

SNA(t) ≡ exp{−ΛN (t)}
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where the subscript “NA” stands for Nelson–Aalen. For the above numerical
example, SNA(t) is decreasing and step-shaped with

SNA(t) = exp(0) = 1 for 0 ≤ t < 2
= exp(−0.200) = 0.819 for 2 ≤ t < 5
= exp(−0.533) = 0.587 for 5 ≤ t < 8
= exp(−1.533) = 0.216 for 8 = t

As Λ(t) cannot be estimated beyond the last event time, S(t) cannot be
estimated beyond the last event time either. Having SNA(t) reaching short of
0 as in this example is not pleasing, and this shortcoming may be overcome
by the second estimator below.

As for estimating the asymptotic variance of SNA(t), which is denoted
simply as V {SNA(t)}, we can use δ-method to get

V {SNA(t)} � [exp{−ΛN (t)}]2 · V {ΛN (t)} = SNA(t)2 · V {ΛN (t)}
=⇒ SD{SNA(t)} � SNA(t) · SD{ΛN (t)}.

For CI’s, we list a couple of different ways among many others in the next
paragraph. Let c1−α/2 denote the (1 − α/2)th quantile of the N(0, 1) distri-
bution.

For an asymptotic 100(1−α)% CI, first, we can use SNA(t)± c1−α/2SD
{SNA(t)} which is

(i) : [SNA(t)− c1−α/2SNA(t) · SD{ΛN (t)}, SNA(t) + c1−α/2SNA(t) · SD{ΛN (t)}].

But (i) may yield a CI going out of the bound [0, 1] for S(t). Second, “going
inside” of exp (−ΛN (t)) and using the CI for Λ(t), we get

(ii) : [exp{−ΛN (t)−c1−α/2SD(ΛN (t))}, exp{−ΛN (t)+c1−α/2SD(ΛN (t))}]

which at least respects the lower bound 0. Third, as the upper bound of (ii)
can easily go over 1 due to the exp function, we may use an asymmetric CI
combining the upper bound of (i) and the lower bound of (ii):

(iii) : [exp{−ΛN (t)− c1−α/2SD(ΛN (t))}, SNA(t) + c1−α/2SNA(t) · SD{ΛN (t)}].

For the above numerical example with V {ΛN (t)} estimated by∑
i:yi≤t R(yi)−2ΔN(yi), the 95% CI’s based on (iii) are, pretending again

that N is large,

t = 2 : {exp(−0.200 − 1.96 × 0.200) = 0.553, 0.819 + 1.96 × 0.819
× 0.200 = 1.139}

t = 5 : {exp(−0.533 − 1.96×
0.389) = 0.274, 0.587 + 1.96 × 0.587 × 0.389 = 1.035}

t = 8 : {exp(−1.533 − 1.96
× 1.073) = 0.026, 0.216 + 1.96 × 0.216 × 1.073 = 0.670}.
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Figure 9: Survival Function and Cumulative Hazard Function

Figure 9 presents SNA(t) (upper curve) and ΛN (t) (lower curve) using
the Korean women data. The 95% point-wise CI for SNA(t) is very tight be-
cause N is large. In the figure, one curve can be almost obtained by “flipping
over” the other curve. Since the censoring % is high, SNA(t) ends at about
0.65. Judging from SNA(t), it may never hit the horizontal axis: there may
be “super-surviviors” who never find a job.

5.2.2 Kaplan–Meier Product Limit Estimator

Using the approximation e−a � 1 − a when a is small, observe

SNA(t) = exp{−
∑

i:yi≤t

ΔN(yi)
R(yi)

} =
∏

i:yi≤t

exp(−ΔN(yi)
R(yi)

)

�
∏

i:yi≤t

{1 − ΔN(yi)
R(yi)

} ≡ SKM (t)

where KM in SKM (t) stands for “Kaplan–Meier” (Kaplan and Meier, 1958);
SKM (t) is the Kaplan–Meier product limit estimator. The fact that the sur-
vival function can be written as a product of one minus small-interval hazards
provides a direct motivation for SKM (t): being alive today means having sur-
vived each small interval in the past. The asymptotic distribution of SKM (t)
is the same as that of SNA(t), as evident from the display. Note that, since
e−a ≥ 1 − a always, it holds that SNA(t) ≥ SKM (t), although the difference
between the two is typically negligible.
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For the above numerical example {2, 3+, 5, 5+, 8}, we get

SKM (t) = 1 for 0 ≤ t < 2

= 1(1 − 1
5
) =

4
5

for 2 ≤ t < 5

=
4
5
(1 − 1

3
) =

8
15

for 5 ≤ t < 8

=
4
5
(1 − 1

3
)(1 − 1) = 0 for 8 ≤ t

Unlike SNA(t), SKM (t) reaches 0, which is why we have “8 ≤ t”, not “8 = t”
in the last line. This happens only when there is no censored duration at the
last duration.

For SKM (t) (and SNA(t)), it is curious why using the censored obser-
vations only for the risk sets delivers consistent estimators. Recall the nu-
merical example again: 2, 3+, 5, 5+, 8. Suppose each censored observation
redistributes its probability mass equally to all remaining observations as in
Table 2. The redistribution makes sense, because we do not know when the
censored durations actually ended.

Table 2: Censored-Data Mass Redistribution
t Initial First Adjustment Second Adjustment Final

Mass Mass
2 1/5 1/5 1/5 1/5
3+ 1/5 0 0 0
5 1/5 1/5 +(1/3)(1/5) 1/5 +(1/3)(1/5) 4/15
5+ 1/5 1/5 +(1/3)(1/5) 0 0
8 1/5 1/5 +(1/3)(1/5) 1/5 +(1/3)(1/5) +1/5 +(1/3)(1/5) 8/15

In the table, the initial probability mass is 1/5 for all observations. In column
“First Adjustment”, the mass 1/5 for 3+ gets equally redistributed to the
three remaining observations including the censored one. In column “Second
Adjustment”, the mass 1/5 +(1/3)(1/5) for 5+ gets equally redistributed to
the remaining observations (only one left though). In column “Final Mass,”
the probability masses for event times are tallied up.

Estimating S(t) with the final column of the table, we get SKM (t) again,
but in a different way:

SKM (t) = 1 for 0 ≤ t < 2

= 1 − 1
5

=
4
5

for 2 ≤ t < 5
(

1 from above,
1
5

from the table
)

=
4
5
− 4

15

(
=

4
5
− 4

5
1
3

)
=

8
15

for 5 ≤ t < 8
(

4
5

from above,
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4
15

from the table
)

=
8
15

− 8
15

(
=

8
15

− 8
15

1
1

)
= 0 for 8 ≤ t

(
8
15

from above,

8
15

from the table
)

.

Pay attention to the row for 5 ≤ t < 8 where two subjects remain:
4
5
− 4

5
1
3

=
4
5

(
1 − 1

3

)
= (prob. mass just before t = 5)

× (share of the remaining subjects);

from 4/5, one subject’s share is subtracted and the remaining two subjects’
share get carried over to the future.

5.3 Density and Hazard Estimators

5.3.1 Kernel Density Estimator

Recall the usual kernel density estimator

fN (t) ≡ 1
N

∑
i

1
h

K

(
yi − t

h

)
=

∫
1
h

K

(
y − t

h

)
∂FN (y),

where FN (y) ≡ 1
N

∑
i 1[yi ≤ y]. Since FN is step-shaped and jumps at

y1, ..., yN with the jump magnitude N−1, the integral should be understood
as attaching N−1 to h−1K((y− t)/h) at y = yi and summing across i, which
is exactly what the definition of fN (t) states. Although this definition fails
under-right censoring because FN (t) is not consistent for F (t), the expression
with ∂FN (y) still works once ∂FN is replaced by ∂(1−SKM ); see Mielniczuk
(1986) and the references therein. The estimator 1−SKM is step-shaped but
its jump magnitude is not N−1 due to the mass-redistribution of the censored
observations seen above.

Since we have to stick to continuous time in discussing density/
hazard in this subsection, assume no ties in the observations and modify
the data {2, 3+, 5, 5+, 8} to {2, 3+, 5, 6+, 8} to rule out tied observations
at t = 5. For the new data, SKM (t) is still the same as before:

SKM (t) = 1 for 0 ≤ t < 2

= 1 − 1
5

=
4
5

for 2 ≤ t < 5 (1 from above,
1
5

from the table)

=
4
5
− 4

15

(
=

4
5
− 4

5
1
3

)
=

8
15

for 5 ≤ t < 8

(
4
5

from above,
4
15

from the table)
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=
8
15

− 8
15

(
=

8
15

− 8
15

1
1

)
= 0 for 8 ≤ t

(
8
15

from above,
8
15

from the table).

Recalling yi = min(y∗i , ci), as we can estimate S(t) with SKM (t), we
can also estimate the survival function ḠKM (t) of c by reversing the role of
the event and censoring durations—the reason for the notation ḠKM (t) will
become clear soon. That is, suppose we have {2+, 3, 5+,6, 8+} and obtain
its KM estimator:

ḠKM (t) = 1 for 0 ≤ t < 3

= 1
(

1 − 1
4

)
=

3
4

for 3 ≤ t < 6

=
3
4

(
1 − 1

2

)
=

3
8

for 6 ≤ t ≤ 8;

t = 8 is included in 6 ≤ t ≤ 8 because the last observation at t = 8 is
censored. What is interesting is that {NḠKM (t)}−1 is the drop magnitude
of SKM (t) at the event times:

at t = 2 :
1

NḠKM (t)
=

1
5 · 1 =

1
5

{
= SKM (2−) − SKM (2) = 1 − 4

5

}
at t = 5 :

1
NḠKM (t)

=
1

5 · (3/4)
=

4
15{

= SKM (5−) − SKM (5) =
4
5
− 8

15

}
at t = 8 :

1
NḠKM (t)

=
1

5 · (3/8)
=

8
15{

= SKM (8−) − SKM (8) =
8
15

− 0
}

.

Denote the distribution function of c as G and the distribution function
of y as H; also define Ḡ(t) ≡ 1 − G(t). Then, as y∗ � c,

P (y > t) = H(t) = P (y∗ > t)P (c > t) = S(t)Ḡ(t).

As Susarla et al. (1984) stated (and as illustrated just above), the jump
magnitude of 1−SKM (t) is di{NḠKM (t)}−1; di is attached because the jumps
take place at the event times only. Define now a kernel density estimator
under random right-censoring

fKM (t) ≡
∫

1
h

K

(
y − t

h

)
∂{1 − SKM (y)}
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=
1
N

∑
i

1
h

K

(
yi − t

h

)
di

ḠKM (yi)
.

The sum in fKM (t) converges at a rate slower than N−1/2, but ḠKM

converges to Ḡ at N−1/2, which implies that the asymptotic properties of this
estimator is the same as the following one with ḠKM replaced by Ḡ (e.g.,
Marron and Padgett, 1987):

f̃KM (t) ≡ 1
N

∑
i

1
h

K

(
yi − t

h

)
di

Ḡ(yi)
.

Compared with fN (t), the only difference is that the N−1 weighting in fN (t)
is replaced with di/{NḠ(yi)}; since di = 0 for the censored observations, the
mass N−1 is blown up by Ḡ(yi) for the non-censored observations.

Examine a typical sum in Ef̃KM (t) where E(·) is taken wrt y and c with
di replaced by 1[yi < ci]: using P (y < c|y) = Ḡ(y),∫

1
h

K

(
yi − t

h

)
1[yi < ci]

Ḡ(yi)
∂G(ci)∂F (yi) =

∫
1
h

K

(
yi − t

h

)
Ḡ(yi)
Ḡ(yi)

∂F (yi)

=
∫

1
h

K

(
yi − t

h

)
∂F (yi) =

∫
K(z)f(t + zh)dz

� f(t) +
h2

2
f ′′(t)

∫
z2K(z)dz.

Hence the asymptotic bias takes the usual form. As for the variance, examine
the second moment:∫

1
h2

K

(
yi − t

h

)2 1[yi < ci]
Ḡ(yi)2

∂G(ci)∂F (yi) =
∫

1
h2

K

(
yi − t

h

)2 1
Ḡ(yi)

∂F (yi)

=
∫

1
h

K(z)2
f(t + zh)
Ḡ(t + zh)

dz � 1
h

f(t)
Ḡ(t)

∫
K(z)2dz.

Therefore, analogously to the usual kernel density-estimator asymptotic-
distribution, we get

√
Nh{fKM (t) − f(t) − h2

2
f ′′(t)

∫
z2K(z)dz}� N{0,

f(t)
Ḡ(t)

∫
K(z)2dz}.

This is essentially shown in Mielniczuk (1986, p. 772) and Marron and Pad-
gett (1987, pp. 1524–1525). The bias term may be ignored in practice, as-
suming under-smoothing.

5.3.2 Kernel Hazard Estimator

Having seen fKM (t), a natural estimator for hazard is

λKM (t) =
fKM (t)
SKM (t)

.
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Since the denominator is
√

N -consistent while the numerator is only
√

Nh-
consistent, the asymptotic distribution of

√
Nh{λKM (t) − λ(t)} is the same

as that of
√

Nh{λ̃KM (t) − λ(t)} where

λ̃KM (t) =
f̃KM (t)

S(t)
.

It then follows, ignoring the bias term with under-smoothing,

√
Nh{λKM (t) − λ(t)}� N{0,

f(t)
S(t)

1
S(t)Ḡ(t)

∫
K(z)2dz}

= N{0,
λ(t)
H(t)

∫
K(z)2dz}

because S(t)Ḡ(t) = H(t); recall that H(t) is the survival function of y and
can be estimated with N−1

∑
i 1[yi > t].

In the literature, other estimators for λ(t) have appeared; see Hess et
al. (1999) for the references. One of them, which is examined by Tanner and
Wong (1983) and Ramlau-Hansen (1983), “smears out” the hazards at event
times. Let Ri denote the rank of yi (e.g., if N = 5 and y3 < y4 < y1 < y2,
then R1 = 3, R2 = 4, R3 = 1, R4 = 2). The estimator is

λNA(t) ≡
∫

1
h

K

(
y − t

h

)
∂ΛN (y) =

∑
i

1
h

K

(
yi − t

h

)
di

N − Ri + 1(
=

∑
i

1
h

K

(
yi − t

h

)
di

N − i + 1
, if y1 <, ..., < yN

)

where N−Ri+1 is the size of the risk set for duration i. Compared with fN (t),
λNA(t) replaces N−1 in fN (t) with di/(N − Ri + 1).

√
Nh{λNA(t) − λ(t)}

follows the same asymptotic distribution as
√

Nh{λKM (t)−λ(t)} follows. In
the following, we apply λNA(t) to the Korean women data, which is easier to
compute than λKM (t).

In practice, more often than not, duration is discrete even if it takes
many different values. One way to go about this problem is doing grouped
duration analysis as examined in the next chapter. Another way is making
ad hoc adjustments in the above derivations for continuous time. Recall the
Korean women data. With N = 9312 and the maximum duration about 450,
there are many tied observations. First we sorted the durations and then used
the formula in the last display, which is a kernel density estimator with N−1

replaced by di/(N − i + 1). This weighting means that the tied observations
are given different weights, depending on the order they are listed in the
data; a better alternative than this ad hoc modification of λNA(t) could be
using the same weight based on the average rank. Figure 10 is the result
with 95% pointwise CI’s, for which we used HN ≡ N−1

∑
i 1[yi > t] (using

N−1
∑

i 1[yi ≥ t] made no visible difference). The hazard increases in the
early period up to about day 50, and then declines. After about 1 year, the
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hazard declines faster. These features in the scale of 0.0001 could not be seen
in the earlier integrated hazard figure in the scale of 0.1, as integration blurs
fine details in the derivative.

Figure 10: Kernel Hazard Estimate

6 Kernel Nonparametric Regression

6.1 Overview

In this section, we introduce kernel nonparametric estimation of the re-
gression function E(y|x = xo) = E(y|xo) ≡ r(xo) where x is a k×1 regressor
vector, y = r(x) + u, and E(u|x) = 0. More generally, we may consider func-
tions of the conditional distribution, such as ∂r(x)/∂x and V (y|x). But, as
will be seen in detail later, estimation methods for such functions can be
inferred from those for E(y|x).

If many yi’s are available for a given xo, we can estimate E(y|xo) by
the sample mean of those observations. In a non-experimental setting with a
continuous rv x, however, this is impossible, for we get all different xi’s by
random sampling. Assuming that E(y|x) = r(x) is continuous in x, yi’s with
its xi close to xo may be treated as (yi, xo). This gives (pseudo) multiple
observations for a given xo so that E(y|xo) can be estimated by the sample
mean. More generally, E(y|xo) can be estimated by a local weighted average∑

i wiyi subject to
∑

i wi = 1, where wi is large if xi is close to xo and small
otherwise.
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Typically, popular choices of wi’s in estimating E(y|xo) are various den-
sities (or “kernels”). With K denoting a kernel, one potential estimator for
r(xo) is

∑
i K((xi − xo)/h)yi, where the role of the bandwidth h is the same

as the group interval length in a histogram. To ensure for the weights to add
up to one, normalize

∑
i K((xi − xo)/h)yi to get a “kernel (nonparametric)

regression estimator”

rN (xo) ≡
∑

i K((xi − xo)/h)yi∑
i K((xi − xo)/h)

=
∑

i

K((xi − xo)/h)∑
i K((xi − xo)/h)

yi

=
∑

i

woiyi where woi ≡
K((xi − xo)/h)∑
i K((xi − xo)/h)

;

woi is the weight given to the ith observation for the local averaging around
xo. The estimator can be written also as

rN (xo) =
(Nhk)−1

∑
i K((xi − xo)/h)yi

(Nhk)−1
∑

i K((xi − xo)/h)
=

gN (xo)
fN (xo)

, where

gN (xo) ≡
1

Nhk

∑
i

K

(
xi − xo

h

)
yi and

fN (xo) ≡
1

Nhk

∑
i

K

(
xi − xo

h

)
.

This estimator was suggested by Nadaraya (1964) and Watson (1964), and
is called a “Nadaraya–Watson kernel estimator.” There are also other kernel
estimators suitable for experimental data with nonrandom x.

Since fN (xo) →p f(xo), for rN (xo) →p r(xo) to hold, we should have

gN (xo) →p g(xo) ≡ r(xo) · f(xo).

This may be better understood in the following discrete case. Suppose x is
discrete. Then we can estimate E(y|xo) by the sample average of yi’s with
xi = xo:∑

i 1[xi = xo]yi∑
i 1[xi = xo]

=
N−1

∑
i 1[xi = xo]yi

N−1
∑

i 1[xi = xo]
→p E(1[x = xo] · y)

P (x = xo)

= E(y|x = xo).

Thus it must be that
1
N

∑
i

1[xi = xo]yi →p E(y|x = xo)P (x = xo) = r(xo)P (x = xo)

which is a discrete analog for r(xo)f(xo).
Since the norming factor in gN and fN is Nhk, not N , the asymptotic

distribution of rN (xo) is obtained multiplying rN (xo)− r(xo) by
√

Nhk, not
by

√
N . Since rN (xo) is a ratio of two nonparametric estimators gN (xo) and

fN (xo), each term’s asymptotic variance and the two terms’ asymptotic co-
variance contribute to the asymptotic variance of (Nhk)0.5{rN (xo)−r(xo)},
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which will be shown to be asymptotically normal with variance

V (y|xo)
f(xo)

∫
K(z)2dz.

This is different from the asymptotic variance f(xo)
∫

K(z)2dz of
√

Nhk

{fN (xo) − f(xo)}.
While the asymptotic variance of rN (xo) is inversely related to f(xo),

that of fN (xo) is positively related to f(xo). This somewhat strange result
may be understood as follows. For rN (xo), a high f(xo) means more ob-
servations locally around xo, which thus reduces the asymptotic variance.
For fN (xo), f(xo) itself is the target of the estimation. For instance, if
f(xo) = 0, then K((xi − xo)/h) � 0 as all xi’s are away from xo; here,
having no observation around xo is better in estimating f(xo). Essentially,
f(xo) works as a “scale factor” for fN (xo); the higher the scale, the higher the
variance.

The kernel nonparametric method can be used for other functional esti-
mations. For instance, suppose we want to estimate V (y|x). Since V (y|x) =
E(y2|x) − E2(y|x), having already estimated E(y|x), we only need to esti-
mate E(y2|x) in addition. This is done by replacing y by y2 in rN (xo). Also
∂E(y|xo)/∂x = ∂r(xo)/∂x can be estimated by numerically differentiating
rN (xo) wrt xo. If r(xo) = x′oβ, then ∂r(xo)/∂x = β. Hence a nonparametric
estimator for ∂r(xo)/∂x or E{∂r(xo)/∂x} reflects the marginal effect of x on
r(·) at x = xo.

One problem in the kernel regression estimator rN (x) (in fact, in most
nonparametric methods based on “local weighted averaging” idea) is that
rN (x) has a large bias near the boundary of the range of x. Suppose k = 1
and that r(x) is increasing. If we estimate r(x) at the right end of the
boundary (i.e., at max1≤i≤N xi), then rN has a downward bias, because
r(x) is increasing but the data come locally only from the left-hand side
of max1≤i≤N xi. The opposite upward bias occurs near min1≤i≤N xi. There
are ways to correct for the bias, but so long as r(x) at the boundary is not
of interest, we just have to restrict the evaluation points xo well within the
boundary or exercise caution in interpreting the estimation results near the
boundaries.

As an illustration, recall the interest rate (US treasury rate) data used
in Chapter 1. There we saw that yi−1 (and yi−2) is highly influential on yi

and that there seems to be a good deal of heteroskedasticity. Applying kernel
nonparametric regression with the φ kernel, we get Figure 11 which shows
E(yi|yi−1) and 95% pointwise CI’s; also shown at the bottom is SD(yi|yi−1).
The bandwidth was chosen by a cross-validation method to be explained later.
The figure reveals an interesting feature: there seems a trough at yi−1 = 12%
and SD(yi|yi−1) is also the highest around 12%. One interpretation is that,
as yi−1 approaches 12% that is quite high, some people expect yi to fall as
the rate might have reached its ceiling, while some other people expect yi to
go up further. This may lead to speculative activities in the economy. With
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Figure 11: Nonparametric Regression for Interest Rate

LSE, this interesting feature was never detected, and the high level of linear
model fitness—R2 = 0.98—was “satisfying” enough to discourage further
probing.

6.2 Consistency

Since we already know fN (xo) →p f(xo), if we show gN (xo) →p g(xo),
then rN (xo) →p r(xo) follows. The only difference between fN (xo) and
gN (xo) is the presence of the multiplicative yi in gN (xo). Other than this
point, the steps to prove gN (xo) →p g(xo) are almost the same as those to
prove fN (xo) →p f(xo). We will show EgN (xo) → g(xo) and V gN (xo) → 0
as N → ∞, which are enough for gN (xo) →p g(xo).

Examine

EgN (xo) = E

{
1
hk

K

(
x − xo

h

)
y

}
= E

{
1
hk

K

(
x − xo

h

)
E(y|x)

}
=

∫
1
hk

K

(
x − xo

h

)
E(y|x)f(x)dx =

∫
K(z)E(y|xo + hz)f(xo + hz)dz

= E(y|xo)f(xo) + O(h2) applying Taylor’s expansion of order 2

assuming that r(x) is twice continuously differentiable with bounded deriva-
tives. Hence the bias is of order O(h2), and EgN (xo) → g(xo) under h → 0
as N → ∞.
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Turning to the variance of gN (xo), analogously to the density-estimation
variance case,

V gN (xo) =
each term’s variance

N
=

each term’s 2nd moment
N

+ o

(
1

Nhk

)
=

1
N

E

{
1

h2k
K

(
x − xo

h

)2

y2

}
+ o(

1
Nhk

)

=
1

Nh2k

∫
K

(
x − xo

h

)2

E(y2|x)f(x)dx + o

(
1

Nhk

)
=

1
Nhk

E(y2|xo)f(xo)
∫

K2(z)dz + o

(
1

Nhk

)
.

Hence, if Nhk → ∞, then we get V gN (xo) → 0 as N → ∞. Adding the
condition h → 0 as N → ∞ for the bias of gN (xN ) to disappear, we get
gN (xo) →p g(xo). Therefore, we have the desired result:

rN (xo) →p r(xo) if h → 0 and Nhk → ∞ as N → ∞.

We just showed the pointwise consistency of rN (xo) for r(xo). The remarks
made for the uniform consistency of fN (x) hold as well for the uniform con-
sistency supx |rN (x)−r(x)| = op(1) under the convergence rate Nhk/ ln N →
∞. The h in Nhk/ ln(N) → ∞ should be greater than the h in Nhk → ∞.

As in kernel density estimation, the bias is O(h2) and the variance is
O{(Nhk)−1}. The optimal MSE-minimizing h is then O(N−1/(k+4)) and the
resulting optimal MSE is O(N−4/(k+4)). More generally, Stone (1982) showed
that the “optimal” convergence rate for MISE-type criteria in nonparametric
estimation of the νth derivative of r(x) is N−2(p−ν)/(2p+k) when r(x) has its
pth derivative that is bounded. Setting ν = 0 and p = 2, the optimal rate
is N−4/(4+k), which is the same as the MSE rate of rN (x). In the rest of
this chapter, whenever kernel method asymptotic distribution is discussed,
we will do away with the bias term, assuming under-smoothing.

6.3 Asymptotic Distribution

Observe
√

Nhk{rN (xo) − r(xo)}

=
√

Nhk
gN (xo)
fN (xo)

−
√

Nhk
gN (xo)
f(xo)

+
√

Nhk
gN (xo)
f(xo)

−
√

Nhk
g(xo)
f(xo)

=
√

NhkgN (xo)
{

1
fN (xo)

− 1
f(xo)

}
+

1
f(xo)

√
Nhk{gN (xo) − g(xo)}

=
−gN (xo)

fN (xo)f(xo)

√
Nhk{fN (xo) − f(xo)} +

1
f(xo)

√
Nhk{gN (xo) − g(xo)}.
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It can be shown that

• The first term’s asymptotic variance is r(xo)2f(xo)−1
∫

K(z)2dz.

• The second term’s asymptotic variance is E(y2|xo)f(xo)−1∫
K(z)2dz.

• The asymptotic covariance between the two is −r(xo)2f(xo)−1∫
K(z)2dz.

Putting together the three expressions gives the desired asymptotic variance

r(xo)2 + E(y2|x) − 2r(xo)2

f(xo)

∫
K(z)2dz =

V (y|xo)
f(xo)

∫
K(z)2dz

=
σ2

f(xo)

∫
K(z)2dz if homoskedasticity (V (y|x) = σ2 ∀x) holds.

If f(xo) is higher, then the variance becomes lower, for the more observations
are available for rN (xo).

As for bivariate asymptotic normality for two different evaluation points
xa and xb,

√
Nhk{rN (xa) − r(xa)} and

√
Nhk{rN (xb) − r(xb)}

are asymptotically bivariate normal with the diagonal variance matrix, be-
cause the two estimators have zero asymptotic covariance. This is because
each estimator uses only the observations local to each evaluation point. That
is, there is no observation used for two different evaluation points under h → 0
as N → ∞. This bivariate result can be generalized to a multivariate asymp-
totic normality with a diagonal covariance matrix.

If we want a (pointwise) CI, we need an estimator for V (y|xo) (or for
σ2 in the homoskedasticity case). Estimating σ2 is easy: take the squared
residuals û2

i ≡ {yi−rN (xi)}2, i = 1, ..., N , and get their sample average. Note
that, to see the shape of the function rN (x) over x, we can pick the evaluation
points of x, say x(1), ..., x(m), and then connect rN (x(1)), ..., rN (x(m)); that is,
we need only m-many estimates. But getting ûi requires N -many estimates
rN (xi), i = 1, ..., N . Under heteroskedasticity, estimating V (y|xo) requires
another kernel estimator:

EN (u2|xo) ≡
∑

i K((xi − xo)/hu) · û2
i∑

i K((xi − xo)/hu)

where the bandwidth hu should be chosen. A simpler estimator for V (y|xo)
would be

VN (y|xo) ≡ EN (y2|xo) − rN (xo)2 where

EN (y2|xo) ≡
∑

i K((xi − xo)/h) · y2
i∑

i K((xi − xo)/h)
.
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As mentioned in the kernel density estimation, collecting pointwise 95%
CI’s over x(1), ..., x(m) does not render joint 95% CI’s. If we want joint 95%
coverage probability at all m points, then we can use pointwise CI’s with
1 − α/m coverage probability to get 1 − α coverage probability for all
points jointly; here we are using the Bonferroni’s inequality. For instance,
m = 20 (40) gives α/m = 0.0025 (0.00125), and the (0.0025/2)-quantile
(0.00125/2-quantile) from N(0, 1) is −3.023 (−3.227).

Going further, we may get an “artificial” confidence band connecting the
m-many CI’s, which may paint too optimistic a picture, for m has to be ∞ in
principle for the confidence band while only a finite m is used in reality. As
noted in the density estimation section, one may use an uniform confidence
band as a “limit” of m → ∞. Härdle and Linton (1994, p. 2317) present an
uniform confidence band when k = 1:

lim
N→∞

P [r(x) ∈ {rN (x)±

{VN (y|x)fN (x)−1
∫

K2(t)dt}0.5

√
Nh

(
dN +

λ√
2 ln h−1

)}
∀x]

= exp(−2e−λ), where dN ≡
√

2 ln h−1 +
ln{(K̂/2)1/2π−1}√

2 ln h−1
,

K̂ ≡
∫
{K ′(t)}2dt

2
∫

K2(t)dt
.

This is the same as the density uniform band except that the multiplicative
factor VN (y|x)fN (x)−1 in the formula replaces fN (x) in the density uniform
band in Bickel and Rosenblatt (1973). Härdle and Linton (1994, p. 2317) do
not provide the proof for the display; instead they just refer to Härdle (1990)
who only deals with density uniform confidence band. An alternative to uni-
form confidence band is using a bootstrap “simultaneous confidence bars” on
many chosen points as in Härdle and Marron (1991), but this requires choos-
ing two bandwidths—a substantial disadvantage. See Neumann and Polzehl
(1998) for more on confidence bands for nonparametric regression.

6.4 Choosing Smoothing Parameter and Kernel

For kernel density estimation, we discussed choosing h by minimizing
MISE or by the least squares cross validation. For rN (x), however, MSE is
difficult to obtain. If k = 1 or 2, then the usual “eyeballing” (i.e., the graphical
trial and error method) seems the best; if k > 2, then data-driven automatic
CV-based methods shown below are recommended.

Define the “leave-one-out” kernel estimator for r(xj):

rNj(xj) ≡
∑

i�=j K((xi − xj)/h)yi∑
i�=j K((xi − xj)/h)

.

We can choose h minimizing the CV criterion

1
N

N∑
j=1

{yj − rNj(xj)}2 · w(xj)



Sec. 6 Kernel Nonparametric Regression 351

where w(xj) is a weighting function to downgrade the “prediction
errors” when xj falls near the boundary of its range. Choice of w(xj) is
up to the researcher; obviously the simplest is w(xj) = 1 for all j. The fol-
lowing shows that the CV minimand can be derived from ISE as in density
estimation.

Introduce distances between rN and r: with SE standing for “Squared
Error,”

Average SE: dA(rN , r) ≡ N−1
∑

j{rN (xj) − r(xj)}2w(xj),
Integrated SE: dI(rN , r) ≡

∫
{rN (x) − r(x)}2w(x)f(x)dx,

Conditional Mean SE: dC(rN , r) ≡ E{dI(rN , r)|x1, ..., xN}.

For notational simplicity, let w(x) = 1 from now on. Consider dI(rN , r) which
is analogous to ISE in density estimation:

dI(rN , r) =
∫

rN (x)2f(x)dx − 2
∫

rN (x)r(x)f(x)dx +
∫

r(x)2f(x)dx.

Ignore the last term not depending on h. Approximate the first term with
N−1

∑
j rNj(xj)2. As for the middle term, observe, using E(u|x) = 0,

∫
rNj(x)r(x)f(x)dx = E{rNj(x)r(x)} � E{rN (x)y} � 1

N

∑
j

rNj(xj)yj .

Hence, dI(rN , r) can be approximated by N−1
∑

j rNj(xj)2 − (2/N)∑
j rNj(xj)yj . Adding N−1

∑
j y2

j to this yields the CV minimand.
Regard a bandwidth selection rule ĥ as a function from {(xi, yi)}N

i=1 to
HN (say, HN = [N−a, N−b]). Then ĥ is said to be “optimal wrt distance d,”
if

lim
N→∞

d{rN (x; ĥ), r(x)}
infh∈HN

d{rN (x;h), r(x)} →p 1.

Härdle and Marron (1985) showed that the CV-minimizing ĥ is optimal wrt
dA, dI , and dC under some conditions.

Consider a general nonparametric estimator mN (x;h) with x1, ..., xN as
the evaluation points:⎡⎢⎣ mN (x1;h)

...
mN (xN ;h)

⎤⎥⎦ =

⎡⎢⎣
∑N

i=1 wN1(x1, ..., xN ;h)yi

...∑N
i=1 wNN (x1, ..., xN ;h)yi

⎤⎥⎦ ≡ WN (h) · Y

where Y ≡ (y1, ..., yN )′ and WN (h) is a N × N matrix. For (rN (x1), ...,
rN (xN ))′, WN (h) is⎡⎢⎢⎣

K((x1 − x1)/h)/
∑

i
K((xi − x1)/h), . . . , K((xN − x1)/h)/

∑
i
K((xi − x1)/h)

.

.

.
.
.
.

K((x1 − xN )/h)/
∑

i
K((xi − xN )/h), . . . , K((xN − xN )/h)/

∑
i
K((xi − xN )/h)

⎤⎥⎥⎦ .
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The generalized cross validation is another well-known bandwidth selection
rule minimizing

1
N

N∑
j=1

{yj − mN (xj ;h)}2 · [1 − tr{WN (h)}
N

]−2

=
1
N

N∑
j=1

{yj − rN (xj ;h)}2[1 − K(0)
N

∑
j

1∑
i K((xi − xj)/h)

]−2 for rN .

Compared with CV, generalized CV is slightly more convenient due to no
need for leave-one-out. See, however, Andrews (1991) who showed that CV
is better under heteroskedasticity; see also Härdle et al. (1988)

So far we used only one h even when k > 1. In practice, one may use
k different bandwidths, say h1, ..., hk, because the regressors have different
scales. Then we would have

∏k
j=1 hj instead of hk. Although using different

bandwidths should be more advantageous in principle, this can make choosing
bandwidths too involved. A recommendable alternative is to standardize all
regressors and use one bandwidth h0. That is, use hj = h0SD(xj), j = 1, ..., k,
for non-standardized data; as in density estimation, one rule of thumb for h0

is N−1/(k+4).
Choosing h may sound too difficult, but this is not necessarily the case as

there exists a reasonable bound on h. Suppose that the kernel has the support
[−1, 1], x is a rv approximately normally distributed, and h = 4·SD(x). Then
K{(xi − xo)/(4 · SD(x))} = 0 even when xi is almost “4-SD(x)” away from
xo. For a normally distributed x, the distance 4 · SD(x) is from one extreme
end to the other extreme end; imagine −2 to 2 in N(0, 1). This shows that h
had better be kept below, say 1 · SD(x), which is an upper bound on h; i.e.,
|xi−xo| > SD(x) means that xi is “too big” to be regarded as a neighboring
point of xo. This implies that cN−1/(k+4) in h = cN−1/(k+4) SD(x) should
be less than 1. In cN−1/(k+4), since 100−1/5 � 0.4 and 1000−1/5 � 0.25 for
k = 1, and 100−1/6 � 0.46 and 1000−1/6 � 0.32 for k = 2, the multiplicative
constant c should be less than about 4.

As x gets standardized in kernel estimation, one may wonder how the
original regression function is related to the regression function using the
standardized regressors. For this, let w = Sx ⇐⇒ x = S−1w for a k × k
invertible matrix S. This includes

S = diag

{
1

SD(x1)
, ...,

1
SD(xk)

}
to standardize x. It should be noted that E(y|x = xo) = E(y|w = wo) where
wo = Sxo. Intuitively, this holds as the amount of “information” is the same
in “|x” and “|w”. Formally, considering the transformations Sx of x and
(y, Sx) of (y, x), the densities g(w) and g(y, w) are, respectively

g(w) = f(S−1w)|S−1|, g(y, w) = f(y, S−1w)|J | where
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|J | ≡ det
[

1 0
0 S−1

]
= |S−1|

where f(x) and f(y, x) are the densities for x and (y, x). Hence

r(xo) ≡ E(y|x = xo) =
∫

y
f(y, xo)
f(xo)

dy

=
∫

y
f(y, S−1wo)|S−1|
f(S−1wo)|S−1| dy =

∫
y
g(y, wo)
g(wo)

dy

= E(y|w = wo) ≡ q(wo).

From the first and last expressions, we get r(xo) = q(wo) = q(Sxo). This,
however, should not be construed as r(xo) = q(xo). For instance, if r(x) =
β′x, then

r(x) = β′x = β′S−1Sx = β′S−1w = q(w).

Choosing a kernel in nonparametric regression is similar to that in den-
sity estimation; namely, one can set up an optimum criterion and choose an
optimal kernel (see, e.g., Müller, 1988). There, however, seems to be a con-
sensus that choosing a kernel does not matter much, being of a secondary
importance compared with choosing a bandwidth. Usually in practice, there
is little difference in using different kernels when a CV method is employed
to choose h. Sometimes kernels satisfying certain properties are specifically
needed—the issue of kernel choice among the kernels satisfying those prop-
erties still arises—and two such cases will be seen in the following section.

7 Topics in Kernel Nonparametric Regression

In this section, we discuss some topics related to kernel nonparametric
regression. First, nonparametrics with “mixed” (discrete and continuous) re-
gressors is examined, which has a practical importance as almost always there
are discrete regressors in data; along with this topic, “structural breaks” in
r(x) will be briefly discussed. Second, estimating derivatives of r(x), which
has been mentioned once before, will be given a closer look. Third, combining
MLE-based models with nonparametrics is studied, which is relevant when
the regression functional form is unknown whereas the error term distribu-
tional form is. Fourth, kernel local linear regression is introduced, which is
often used in practice as an improved version of kernel estimator.

7.1 Mixed Regressors and Structural Breaks

So far we dealt only with continuously distributed x with density f(x).
Suppose we have mixed regressors: x = (x′c, x

′
d)
′, xc is a kc × 1 continuously

distributed regressor vector, and xd is a kd×1 discretely distributed regressor
vector. We can form cells based on the values that xd can take. For instance,
if xd = (d1, d2)′ where d1 takes 0, 1, 2, 3 and d2 takes 1, ..., J , then there will
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be 4 × J cells. Within a given cell, we can apply the kernel estimator in the
preceding subsections. The only change needed is to replace k by kc and f(x)
by f(xc|xd).

As an example, suppose kc = 3 and xd = (d1, d2)′. Let d1 = 0 and d2 = 1
for the first cell. Within the cell (i.e., conditioned on d1 = 0 and d2 = 1), we
can estimate

r(xo, 0, 1) = E(y|xc = xo, d1 = 0, d2 = 1)

with

rN (xo, 0, 1) ≡
∑

i K((xci − xo)/h) 1[di1 = 0, di2 = 1] · yi∑
i K((xci − xo)/h) 1[di1 = 0, di2 = 1]

where K(·) is a three (= kc) dimensional kernel. The kernel estimator
rN (xo, 0, 1) is consistent for r(xo, 0, 1). As for the asymptotic distribution,
ignoring the asymptotic bias,√

N01h3{rN (xo, 0, 1) − r(xo, 0, 1)}� N{0,
V (y|xo, 0, 1)

∫
K(z)2dz

f(xo|d1 = 0, d2 = 1)
}

where N01 is the number of observations with d0 = 0 and d1 = 1. Everything
is the same as before, except that we are operating on the subpopulation
d1 = 0 and d2 = 1.

The convergence in law can be written also as
√

Nh3 {rN (xo, 0, 1) − r(xo, 0, 1)}

� N

{
0,

V (y|xo, 0, 1)
∫

K(z)2dz

f(xo|d1 = 0, d2 = 1)P (d1 = 0, d2 = 1)
}

because

√
N01h3 =

√
Nh3

(
N01

N

)1/2

�
√

Nh3 · P (d1 = 0, d2 = 1)1/2.

It might be helpful to regard f(xo|d1 = 0, d2 = 1)P (d1 = 0, d2 = 1) as
f(x0, 0, 1) as if all of x, d0, and d1 are continuously distributed. Then the
preceding display with

√
Nh3 would look more in line with those in the

previous subsections.
In the above asymptotic variance of

√
N01h3{rN (xo, 0, 1) −

r(xo, 0, 1)}, V (y|xo, 0, 1) and f(xo|d1 = 0, d2 = 1) can be estimated, re-
spectively, by

EN (u2|xo, 0, 1) ≡
∑

i K((xci − xo)/hu) 1[di1 = 0, di2 = 1] · û2
i∑

i K((xci − xo)/hu) 1[di1 = 0, di2 = 1]
,

fN (xo|d1 = 0, d2 = 1) ≡ (Nh3)−1
∑

i K((xci − xo)/h) 1[di1 = 0, di2 = 1]
N−1

∑
i 1[di1 = 0, di2 = 1]
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where hu is a bandwidth and ûi is the residual yi−rN (xo, 0, 1). The numerator
in fN (xo|d1 = 0, d2 = 1) estimates

f(xo|d1 = 0, d2 = 1) · P (d1 = 0, d2 = 1)

and we need to divide the numerator by the estimator for P (d1 = 0, d2 = 1)
in the denominator to get the conditional density.

The above method of applying nonparametrics on each cell can be cum-
bersome if there are too many cells. When all regressors are discrete, Bierens
(1987, pp. 115–117) showed that applying the kernel method yields rN (xo) →p

r(xo), and
√

N{rN (xo) − r(xo)}� N(0,
V (y|xo)
P (xo)

);

the convergence rate is
√

N and no kernel shows up in the asymptotic dis-
tribution. If we take the sample average of the observations with x = xo,
then we get the same asymptotic distribution result. Based on this, Bierens
(1987, pp. 117–118) stated that, when the regressors are mixed (continuous
and discrete), if we apply the kernel method as if all regressors are continu-
ously distributed, then we still get consistent estimators and, for the above
example,

√
Nh3{rN (xo, 0, 1) − r(xo, 0, 1)}

� N

{
0,

V (y|xo, 0, 1)
∫

K(z1, 0)2dz1

f(xo|d1 = 0, d2 = 1)P (d1 = 0, d2 = 1)

}
where K(z1, z2) is a kernel such that

∫
K(z1, 0)dz1 = 1 with z1 and z2 corre-

sponding to continuous and discrete regressors, respectively.
For instance, if we use a product kernel with its marginal kernel being

the bi-weight kernel (15/16)(1 − t2)21[|t| ≤ 1], then for the above case with
kc = 3 and kd = 2,

∫
K(z1, 0)dz1 = 1 does not hold, because

∫
K(z1, 0)dz1

equals (with z1 = (z11, z12, z13)′)∫ ∫ ∫ {
15
16

(1 − z2
11)

21[|z11| ≤ 1]
15
16

(1 − z2
12)

21[|z12| ≤ 1]

·15
16

(1 − z2
13)

21[|z13| ≤ 1]
15
16

15
16

}2

dz11dz12dz13 =
(

15
16

)2

.

Instead, if we use 0.88−2(0.88 − t2)21[|t| ≤ 0.88] for the marginal kernel,
then

∫
K(z1, 0)dz1 = 1 holds, because the marginal kernel takes one when

its argument is zero. Note that 0.88 is the normalizing constant, because∫
(0.88− t2)21[|t| ≤ 0.88]dt � 0.88. If a φ-based product kernel is to be used,

then since φ(0) = 0.400, φ(·/0.4)/0.4 can be used instead of φ to satisfy∫
K(z1, 0)dz1 = 1.

In short, whether the regressors are continuous or discrete, we can apply
the kernel method indiscriminately. The only thing we should be careful about
is the convergence rate and the asymptotic distribution. Still yet, we may
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learn more by forming cells and doing nonparametric estimation on each
cell in mixed cases unless there are too many cells. Racine and Li (2004)
suggested a different way of smoothing: use a function taking on 1 and λ
(→ 0+ as N → ∞) for discrete regressors. This is one of many different
ways of “smearing” discrete probability masses, and there are many studies
on nonparametric estimation and test with mixed regressors; see, e.g., Li and
Racine (2007) and the references therein.

In mixed regressor cases, the kernel K(z1, z2) should satisfy∫
K(z1, 0)dz1 = 1. This is an example where a specific property is required

for a kernel. Another such example can be seen when r(x) may jump at some
points—“structural break.”Suppose that x is a rv and r(x) consists of a
smooth component rc(x) and a “jumping” component with jump magnitude
mj at jump point γj , j = 1, ..., J :

r(x) = rc(x) +
J∑

j=1

mj · 1[x ≥ γj ].

One way to detect jumps is to use “one-sided” kernels to estimate r(xo) from
the lhs and rhs and then look at the difference. If there is no jump at xo, the
difference from the two-sides becomes 0. Otherwise, the difference estimates
mj .

Specifically, the difference estimator is∑
i K((xi − xo)/h)1[xi ≥ xo]yi∑
i K((xi − xo)/h)1[xi ≥ xo]

−
∑

i K((xi − xo)/h)1[xi < xo]yi∑
i K((xi − xo)/h)1[xi < xo]

.

Noting K((xi − xo)/h)1[xi ≥ xo] = K((xi − xo)/h)1[(xi − xo)/h ≥ 0], the
kernel K(·)1[· ≥ 0] gives positive weights only to the right-neighboring ob-
servations of xo, whereas K(·)1[· < 0] gives positive weights only to the
left-neighboring observations of xo. Once γj and mj are estimated with γ̂j

and m̂j , respectively, rc(x) can be estimated by the usual kernel regression
with its yi replaced by yj −

∑J
j=1 m̂j · 1[x ≥ γ̂j ]. See Qiu (2005) for more.

7.2 Estimating Derivatives

Define the gradient of r(x) at xo:

∇r(xo) ≡
∂r(xo)

∂x
≡

(
∂r(xo)
∂x1

, ...,
∂r(xo)
∂xk

)′
.

The gradient is often of interest. For instance, if x is the factor of a production
function, then the gradient reflects the marginal contributions of x to the
average output E(y|xo) = r(xo). Naturally, ∇r(xo) can be estimated by the
gradient of the kernel estimator rN (xo):
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∇rN (xo) = ∇gN (xo)
fN (xo)

=
1

fN (xo)2
{fN (xo)∇gN (xo) − gN (xo)∇fN (xo)}

=
∇gN (xo)
fN (xo)

− rN (xo)
∇fN (xo)
fN (xo)

where, with ∇K(t) ≡ ∂K(t)/∂t,

∇gN (xo) =
−1

Nhk+1

N∑
i=1

∇K

(
xi − xo

h

)
yi and

∇fN (xo) =
−1

Nhk+1

N∑
i=1

∇K

(
xi − xo

h

)
.

Call ∇rN (xo) “kernel regression-derivative estimator.” Second-order deriva-
tives are estimated by differentiating ∇rN (xo) again, but the number of terms
goes up by twice due to the denominator of rN (xo). The problem gets worse
for higher-order derivatives.

Following essentially the same line of proof for rN (xo) →p r(xo), it can
be proven (see, e.g., Vinod and Ullah, 1988) that ∇rN (xo) →p ∇r(xo), and
denoting the jth component of ∇rN (xo) as ∇r

(j)
N (xo) and the jth component

of ∇r(xo) as ∇r(j)(xo), it holds that

√
Nhk+2{∇r

(j)
N (xo) −∇r(j)(x)}� N

(
0,

V (y|xo)
f(xo)

∫ {
∂K(z)
∂zj

}2

dz

)
.

Compared to the asymptotic variance of
√

Nhk{rN (xo)−r(x)}, there are two
differences. One is the convergence rate that is slower by the factor

√
h2 = h,

and the other is
∫
{∂K(z)/∂zj}2dz instead of

∫
K(z)2dz; ∂K(z)/∂zj is due

to the differentiation. If one uses hj for xj , j = 1, ..., k, Nhk+2 should be
replaced by N · h2

j

∏k
j=1 hj . When k = 1 and K = φ,

∫
{∂K(z)/∂zj}2dz =

∫
{−zφ(z)}2dz =

∫
z2φ (z)2 dz

= E{z2φ(z)} for z ∼ N(0, 1).

CV bandwidth-choice methods use the prediction error yi−rN (xi) as its
logical basis. But there is no analogous expression in choosing h for ∇rN (xo),
because there is no “target” for ∇rN (xi) (in contrast, yi is the target for
rN (xi)). Although Müller (1988) made some suggestions on how to choose
h for ∇rN (xo), there seems to be no particularly good way to choose h if
k > 2; when k ≤ 2, the trial and error method (i.e., “eyeballing”) seems the
best. An optimal h for rN (xo) is not optimal for ∇rN (xo): the bandwidth for
∇rN (xo) should be larger than the bandwidth for rN (xo), because ∇rN (xo)
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Figure 12: Regression and First-Derivative Estimates

will be a poor estimator of ∇r(xo) if rN (xo) is too wiggly as shown in the
following.

The left panel of Figure 12 shows a kernel estimate (the middle solid line)
for E(y|x) where y is vacation budget share % and x is ln(total expenditure).
The bandwidth h is 0.1× SD(x)×N−1/5. This is 10 times smaller than the
rule-of-thumb bandwidth SD(x) × N−1/5 which, however, gives almost the
same (straight) line without local “wiggles.”Also shown is a point-connecting
confidence band (the dotted lines) from 40 evaluation points with the joint
coverage probability 0.95. The expenditure data was already used once to
present confidence intervals/bands in kernel density estimation. The vacation
budget share falls around 10% and rises steadily as ln(total expenditure)
increases. The left panel shows ∇r(x) � 1 for most x.

The right panel presents three estimates for ∇r(x). The solid line is for
the same bandwidth 0.1 × SD(x)×N−1/5, whereas the two dotted lines are
for the bandwidths twice and four times greater, respectively. When the same
bandwidth as for rN (x) is used for ∇r(x) estimation, clearly the estimate is
unstable. It is only when the four-times greater bandwidth is used that a
reasonable estimate for ∇r(x) is obtained.

Mistakes are easily made in practice when the above analytic derivative
of ∇rN (x) is used to estimate ∇r(xo). It is hence preferable to use numerical
gradients, rather than the analytic ones. That is, for ∇rN (xo), it is safer to
use the numerical derivative

rN (xo + ε) − rN (xo − ε)
2ε

where ε is a small constant

rather than the analytic derivative fN (xo)−1{∇gN (xo) − rN (xo)∇
fN (xo)} provided above. The figure was also obtained with the numerical
derivative.
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7.3 Nonparameric MLE and Quantile Regression

The kernel estimator rN (xo) can be obtained by minimizing∑
i

K

(
xi − xo

h

)
{yi − rN (xo)}2

wrt rN (xo) because the first-order condition∑
i

K

(
xi − xo

h

)
{yi − rN (xo)} = 0

⇐⇒
∑

i

K

(
xi − xo

h

)
yi = rN (xo)

∑
i

K

(
xi − xo

h

)
yields rN (xo). As well known, if we minimize

∑
i(yi−μ)2 wrt μ, we get μ = ȳ.

In view of this, rN (xo) may be called a “local mean (averaging) estimator”—
local around xo. Using this idea of the minimizer representation of rN (xo),
it is possible to combine nonparametric regression with MLE specifying the
error term distribution.

For instance, consider an Exponential duration model:

f(y|x) = θ exp(−θy) and θ = eμ(x)

where f(y|x) is the density of a duration y given x, and μ(x) is an unknown
function. The parameter to estimate is μ(x), which is infinite-dimensional.
Rewriting f(y|x) as f(y|x, μ(x)) to make it explicit that μ(x) is a parameter
for the conditional distribution, we can maximize∑

i

K

(
xi − xo

h

)
· ln f{yi|xo, μ(xo)}

wrt μ(xo) to get a “kernel nonparametric MLE.” Repeating this for all xo

will reveal the function μ(x).
Denoting the estimator for μ(xo) as μN (xo), Staniswalis (1989) showed

μN (xo) →p μ(xo) and

√
Nhk{μN (xo) − μ(xo)}� N(0,

∫
K(z)2dz

E[ {∂ ln f(y|xo, μ(xo))/∂μ(xo)}2 |xo]
).

Compare this to the usual parametric MLE with a scalar parameter μo ≡
μ(xo) maximizing

∑
i : xi=xo

ln f{yi|xo, μ(xo)} when multiple observations
are available with x = xo. The parametric MLE is

√
N -consistent with the

asymptotic variance E−1[{∂ ln f(y|xo, μo)/∂μo}2]—no conditioning on x =
xo and nor

∫
K(z)2dz.

A further generalization of the above “nonparametric MLE” can be done.
For instance, instead of going fully nonparametric, one may adopt a model

f(y|x) = θ exp(−θy) and θ = exp{x′1β1 + μ(x2)}



360 Ch. 7 Kernel Nonparametric Estimation

where μ(x) is replaced by a “semi-linear model” x′1β1 + μ(x2); this type
of models will be examined in the chapter for semi-nonparametrics in detail.
There are two parameters: finite-dimensional β1 and infinite-dimensional μ(·).
Severini and Staniswalis (1994) showed how to estimate iteratively both pa-
rameters in this kind of models using “profile likelihood,” a more general and
theoretical treatment of which appeared in Severini and Wong (1992). Note
that a likelihood function L{β1, μ(·)} can be maximized wrt μ(·) for each fixed
β1; denote the maximizer as μ̂β1

(·). Then L{β1, μ̂β1
(·)} is called the profile

likelihood for β1 (with μ1 “concentrated out”), which can be maximized for
β1.

Estimating a mean locally or doing MLE locally using the local weighting
function K((xi − xo)/h) is widely applicable. For instance, minimizing∑

i

K

(
xi − xo

h

)
{yi − qN (xo)}{α − 1[yi − qN (xo) < 0]}

wrt qN (xo), we can estimate the αth quantile of y|x = xo nonparametrically;
i.e., we get nonparametric quantile regression. An empirical example can be
seen in Nahm (2001).

Another way to estimate the αth quantile nonparametrically can be seen
by noting

P (y ≤ yo|xo) = E(1[y ≤ yo]|x) ≡ F (yo|xo).

This leads to inverting a kernel nonparametric estimator of the conditional
df F (yo|xo) for its quantiles:

FN (yo|xo) ≡
∑

i K{(xi − xo)/h}1[yi ≤ yo]∑
i K{(xi − xo)/h} .

See Dette and Volgushev (2008) and the references therein for nonparametric
quantile regression in general. The following subsection shows another esti-
mator based on this line of local regression approach; see Loader (1999a) for
more.

7.4 Local Linear Regression

Generalizing the local mean estimation, one can think of using, not just
the “intercept,” but also a slope (centered at xo). Local linear regression
(LLR) minimizes ∑

i

{yi − a − b′(xi − xo)}2 · K
(

xi − xo

h

)
wrt a and b. The estimator aN (xo) for a is the LLR estimator for r(xo),
whereas the estimator for b is the LLR estimator for ∇r(xo). Compared with
LLR, the kernel estimator rN (xo) can be called a “local constant regression,”
because rN (xo) fits a flat line (i.e., an intercept) locally around xo while LLR
fits an intercept and a slope.
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The LLR estimator for r(xo) is

aN (xo) = (1, 0, ..., 0) · {X(xo)′W (xo)X(xo)}−1 · {X(xo)′W (xo)Y }

where Y ≡ (y1, ..., yN )′, W (xo) ≡ diag{K((x1 −xo)/h), ...,K((xN −xo)/h)},
and

X(xo)
N×(1+k)

≡

⎡⎢⎣ 1, (x1 − xo)′
...

1, (xN − xo)′

⎤⎥⎦ .

The vector (1, 0, ..., 0) is to pick up the first element; the remaining compo-
nents are estimators for ∇r(xo).

The details of aN (xo) may be seen better by setting k = 1 and observing

X(xo)
′
W (xo)

=

[
1 · · · 1

(x1 − xo) · · · (xN − xo)

] ⎡⎢⎢⎣
K((x1 − xo)/h) 0 0

0
. . . 0

0 0 K((xN − xo)/h)

⎤⎥⎥⎦
=

[
K((x1 − xo)/h) K((x2 − xo)/h) · · · K((xN − xo)/h)

K((x1 − xo)/h)(x1 − xo) K((x2 − xo)/h)(x2 − xo) · · · K((xN − xo)/h)(xN − xo)

]

X(xo)
′
W (xo)X(xo)

=

[ ∑
i K((xi − xo)/h)

∑
i K((xi − xo)/h)(xi − xo)∑

i
K((xi − xo)/h)(xi − xo)

∑
i
K((xi − xo)/h)(xi − xo)2

]
,

X(xo)
′
W (xo)Y =

[ ∑
i
K((xi − xo)/h)yi∑

i K((xi − xo)/h)(xi − xo)yi

]
.

Recall that, when a product kernel K(t) = Πk
j=1L(tj) is used,

Bias{fN (xo)} � h2κ
1
2

k∑
j=1

∂2f(xo)
∂x2

oj

where κ ≡
∫

z2L(z)dz

V {fN (xo)} � f(xo)
Nhk

∫
K(t)2dt.

Differently from fN (xo), however, deriving the biases and variances of rN (xo)
and aN (xo) for E(y|xo) = r(xo) is not easy due to the random denomina-
tor fN (x) in aN (xo) and rN (xo). Nevertheless, Ruppert and Wand (1994)
showed, for an interior point xo in the support of x,

Bias{aN (xo)|x1, ..., xN} � h2κ
1
2

k∑
j=1

∂2r(xo)
∂x2

oj
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V {aN (xo)|x1, ..., xN} � V (y|xo)
Nhkf(xo)

∫
K(t)2dt.

The difference between this and the preceding display is that r(xo) replaces
f(xo) in bias and V (y|xo)/f (xo) replaces f(xo) in variance. In contrast to
these, for the univariate case k = 1, Fan (1992) showed that

Bias{rN (xo)|x1, ..., xN} � h2κ

{
1
2
r′′(xo) +

r′(xo)f ′(xo)
f(xo)

}
.

Compared with Bias{aN (xo)|x1, ..., xN} with k = 1, there is one extra term
r′(xo)f ′(xo)/f(xo): even if r(x) is linear such that r(x) = β1+βxx, still there
will be a bias in rN (xo) due to the extra term with r′(xo).

LLR has some advantages over the kernel method. First, as just shown,
whereas the kernel method has a bias even when r(x) = x′β, LLR has no
bias in this case. Second, as a by-product, LLR provides an estimator for
∇r(xo) as well. Third, LLR works better at the boundaries due to the local
linear fitting. To appreciate this point better, suppose x has support [0, 1] and
r(x) is increasing around x = 1 with r(1) = 3. In this case, rN (x) is biased
because the local weighted averaging is done with observations all less than 3
on the left-hand side of x = 1—r(1) gets under-estimated. In contrast, LLR
extrapolates to the right-hand side using a linear function; using only the
left-hand side observations poses no problem, because the fitted up-sloping
line at x = 1 continues to the right-hand side of x = 1.

LLR can be generalized to local quadratic (and higher polynomial) re-
gression, although hardly ever one goes over local quadratic regression in
practice; local quadratic regression is examined in detail by Rupper and
Wand (1994). Local polynomial regression and its uniform convergence rates
are examined in Masry (1996). When k > 1, local polynomial regression can
be much simplified if we do the polynomial regression only for a selected
regressor (“direction”) of interest. For instance, suppose that the interest is
only on the first regressor x1. Then we may set

X(xo)
N×4

≡

⎡⎢⎣ 1, (x11 − xo1), (x11 − xo1)2, (x11 − xo1)3
...

1, (xN1 − xo1), (xN1 − xo1)2, (xN1 − xo1)3

⎤⎥⎦ .

This means a local cubic regression for x1 and local constant regressions for
the other regressors. This idea can be seen in Fan et al. (1998) and Severance-
Lossin and Sperlich (1999).

For more on LLR and local regression, see Fan (1992), Hastie and Loader
(1993), Ruppert and Wand (1994), Fan and Gijbels (1996), and Loader
(1999a). Also there are some other (and earlier) versions of LLR using differ-
ent weighting schemes; see Cleveland et al. (1988).



CHAPTER 8

BANDWIDTH-FREE SEMIPARAMETRIC

METHODS

In parametric regression, the regression function and the error term con-
ditional distribution Fu|x of u|x are specified. In nonparametrics, neither is
specified. Thus, semantically speaking, anything between the two extremes
can be called “semiparametric” or “semi-nonparametric.” Under this classi-
fication, LSE and many method-of-moment estimators are semiparametric.
Since these estimators have been studied already, semiparametric methods
for LDV models are examined in this and the following chapters. This chap-
ter examines semiparametric estimators that do not require any bandwidth
although their asymptotic variance estimators may do. Typically such esti-
mators specify the regression function, but not Fu|x. Those estimators make
use of various semiparametric assumptions such as symmetry, unimodality,
independence etc. The following chapter studies semiparametric estimators
that do require a bandwidth. See Powell (1994), Horowitz (1998), Pagan and
Ullah (1999), Ruppert et al. (2003), Yatchew (2003), Härdle et al. (2004), and
Li and Racine (2007) for reviews on the semiparametric and nonparametric
literature.

1 Quantile Regression for LDV models

Quantile regression takes a prominent position in semiparametric econo-
metrics. This is because LDV models result from various transformations of
the latent continuous responses, and quantile is “equivariant” to increasing
(i.e., non-decreasing) transformations. This point is shown in the next para-
graph, and the rest of this section introduces quantile-based semiparametric
methods for binary, multinomial, ODR, count, and censored responses. An-
other prominent impetus—symmetry—for semiparametric econometrics will
be reviewed in the next section.

Suppose a latent variable y∗ is continuously distributed, and

y = τ(y∗), where τ(·) is increasing: τ(m1) ≤ τ(m2) iff m1 ≤ m2.

For instance, in the binary response y = 1[y∗ ≥ 0], τ(·) = 1[· ≥ 0]. Recall the
quantile function F−1(·) of a df F :

αth quantile of F ≡ min{μ : F (μ) ≥ α} where 0 < α < 1.

Myoung-jae Lee, Micro-Econometrics, DOI 10.1007/b60971 8, 363
c© Springer Science+Business Media, LLC 2010
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Denote the αth quantile of a rv z as Qα(z); i.e., Qα(z) = F−1
z (α) where Fz

denotes the df of z.
An important fact is the “quantile equivariance” to increasing transfor-

mations:
Qα(z) = m =⇒ Qα{τ(z)} = τ(m).

For instance, with τ(·) = ln(·) and α = 0.5, the last equality becomes
Med{ln(z)} = ln{Med(z)} where “Med” stands for median. To understand
this point which appeared in relation to nonlinear regression already, observe
that, because m is the minimum for

P (z ≤ m) = P{τ(z) ≤ τ(m)} ≥ α,

if we replace m with any m′ < m in this display, then the display does
not hold. The probability accumulated up to τ(m) is at least α whereas the
probability accumulated up to any point strictly smaller than τ(m) is strictly
smaller than α.

1.1 Binary and Multinomial Responses

Suppose y∗ = x′β + u but only its binary transformation y = 1[y∗ ≥ 0]
is observed along with x. To put it more formally,

y = τ(y∗) where τ(·) ≡ 1[· ≥ 0].

Binary response model has appeared already, and probit and logit were re-
viewed there. The main problem with parametric estimators is that the distri-
bution of u|x should be specified fully, and thus any misspecification can cause
inconsistency of the estimators. For instance, suppose u is heteroskedastic in
probit, say, u = σ(x′δ) · v where σ(x′δ) is a function of x′δ, δ is an unknown
parameter vector, and v ∼ N(0, 1) independently of x. In this case, ignoring
σ(x′δ) means that the regression function becomes x′β/σ(x′δ), and probit
will estimate a linear approximation to this nonlinear function. Of course,
one can do probit with Φ{x′β/σ(x′δ)} estimating both β and δ. But this
requires both Φ(·) and σ(·) to be the correct df and heteroskedasticity factor,
respectively. This subsection introduces an estimator that does not require
specifying either of them.

Applying the quantile equivariance to τ(y∗) = 1[y∗ ≥ 0] and α = 0.5
yields

Med(y∗|x) = x′β =⇒ Med(y|x) = 1[x′β ≥ 0].

Since the least absolute deviation loss function is minimized at the median,
Manski’s (1975, 1985) maximum score estimator (MSC) bmsc is obtained by
minimizing

1
N

∑
i

|yi − 1[x′ib ≥ 0]|

wrt b. This minimand may be viewed as a nonlinear regression.
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Although the estimator is consistent, since the derivative of 1[x′b ≥ 0]
wrt b is zero (except at x′b = 0 where the derivative does not exist), the usual
method of deriving asymptotic distributions is not applicable. One critical
assumption for MSC to overcome the lack of smoothness in the minimand
is that there is a regressor, say xk, with a non-zero coefficient such that
xk|(x1, ..., xk−1) has a non-zero density on all of R1 for all (x1, ..., xk−1). Also
the support of the distribution of u|x should be the entire real line R for all
x.

As other binary-response estimators, MSC cannot identify β fully, be-
cause if bmsc minimizes the minimand, λbmsc with λ > 0 also minimizes the
same minimand. Also, if the threshold for y∗ is not zero but unknown, say γ,
it will be absorbed into the intercept estimate. Denote the regressors other
than unity as x̃ so that x = (1, x̃′)′; denote β accordingly as β = (β1, β̃

′
)′.

Then

β1 + x̃′β̃ + u ≥ γ ⇐⇒ β1 − γ + x̃′β̃ + u ≥ 0

⇐⇒ β∗1 + x̃′β̃ + u ≥ 0 where β∗1 ≡ β1 − γ

⇐⇒ λ(β∗1 + x̃′β̃ + u) ≥ 0 for any λ > 0 :

MSC can identify (β∗1, β̃
′
) only up to a positive scale constant. That is, in

the binary model, only the ratios of the estimates make sense and the ratios
involving the intercept cannot be interpreted—a fact applying to all binary
response estimators, not just to MSC.

In probit, we set λ = 1/SD(u) to use N(0, 1), but λ = 1/|βk| is better
for MSC where xk is the continuous regressor with unbounded support. Then
MSC estimates, as βk/|βk| equals the sign of βk,

β1 − γ

|βk|
,

β2

|βk|
, ..., sgn(βk) where sgn(A) = 1 if A ≥ 0, and − 1 if A < 0.

To implement this normalization in practice, first set sgn(βk) = 1 and esti-
mate the other parameters. Then set sgn(βk) = −1 and again estimate the
other parameters. Comparing the two minimands, choose one set of estimates
between the two. If we have a prior information βk > 0, then the step with
sgn(βk) = −1 is unnecessary.

More remarks are in order in comparing MSC with MLE such as probit.
First, algorithm-wise, MSC needs one that uses no gradient. Second, whereas
MLE does not produce a direct predictor for y, MSC gives the natural predic-
tor 1[x′bmsc ≥ 0]. Third, whereas MLE does not allow heteroskedasticity of
an unknown form, MSC does. Fourth, the main drawback of MSC is that its
asymptotic distribution is not practical with N1/3-consistency (Kim and Pol-
lard, 1990). Finally, suppose E(y|x) = G(x′β) but MLE misspecifies G(x′β)
as F (x′β). Then the performance of the MLE depends on the difference be-
tween G(x′β) and F (x′β). If there is only one regressor x (other than 1) and
if x is a dummy variable, then MLE requires G to agree with F only at two
points; if x takes more values, it will become harder to have G(x′β) = F (x′β).
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On the contrary, MSC requires at least one continuous regressor as mentioned
ahead. Hence the continuity of x works for MSC but against MLE when the
likelihood function is misspecified. Since continuity is “realized” when N is
large, the MLE may perform better in small samples where G(x′β) = F (x′β)
has better chance to hold, while MSC may work better in large samples.

Since |yi − 1[x′ib ≥ 0]| is either 0 or 1, square it to get

yi − 2yi · 1[x′ib ≥ 0] + 1[x′ib ≥ 0] = yi − (2yi − 1) · 1[x′ib ≥ 0].

Dropping yi, the minimization problem is equivalent to maximizing

1
N

∑
i

(2yi − 1) · 1 [x′ib ≥ 0] .

Further observing sgn(x′ib) = 2 · 1[x′ib ≥ 0]− 1, the maximization problem is
equivalent to maximizing N−1

∑
i(2yi − 1) · sgn(x′ib).

Horowitz (1992) improved on MSC by replacing the indicator function in
MSC with a smooth function J(·) taking a value between 0 and 1. Specifically,
Horowitz (1992) maximized

1
N

∑
i

(2yi − 1) · J
(

x′ib
h

)
wrt b where h is a smoothing parameter, J(−∞) = 0 and J(∞) = 1. A df or
the integral of a kernel can be used for J(·). Thus as h → 0, J takes either
0 or 1 because x′ib/h goes to ±∞ depending on sgn(x′ib). The estimator is
called “smoothed maximum score estimator,” which has a faster convergence
rate that still falls short of the usual

√
N -rate. See also Horowitz (1993, p. 66)

for a quick overview. Horowitz (2002) suggested a bootstrap-based inference.
Mayer and Dorsey (1998) applied MSC to a disequilibrium model, and

Moon (2004) extended MSC to non-stationary time-series data. Kordas (2006)
extended the smoothed maximum score estimator to quantiles, and Lee and
Seo (2007) considered a threshold-crossing “regime change” model. Abrevaya
and Huang (2005) showed that bootstrap does not work for MSC, despite that
some studies used bootstrap. Failure of bootstrap for N1/3-consistent estima-
tors is also examined in Léger and MacGibbon (2006). Although MSC kindled
the semiparametric econometric literature for LDV models, the practicality
of MSC and its smoothed version remains elusive despite some theoretical
advances and applied studies, some of which seem ill-advised.

For a multinomial choice model y∗ij = x′ijβ + uij where j indexes the
choice set {1, ..., J}, and yij = 1 if i chooses j and 0 otherwise, MSC for
multinomial choice in Manski (1975) maximizes

1
N

N∑
i=1

J∑
j=1

yij1
[
x′ijb ≥ x′i1b, ..., x

′
ijb ≥ x′iJb

]
.
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This works because
∑J

j=1 yij1[·] = 1 if the prediction is right and 0 otherwise.
The population version is

E

⎧⎨⎩
J∑

j=1

yj1
[
x′jb ≥ x′1b, ..., x

′
jb ≥ x′Jb

]⎫⎬⎭
= Ex

⎧⎨⎩
J∑

j=1

P (yj = 1|x) · 1
[
x′jb ≥ x′1b, ..., x

′
jb ≥ x′Jb

]⎫⎬⎭
which is maximized by matching 1[·] with the highest choice probability. Sup-
pose P (y1 = 1|x) is the highest. Then, in order to identify β, it is necessary
to have

P (y1 = 1|x) ≥ P (y2 = 1|x), ..., P (y1 = 1|x) ≥ P (yJ = 1|x)
iff x′1β ≥ x′2β, ..., x′1β ≥ x′Jβ.

Manski (1975) imposed two assumptions for this: all regressors are continu-
ous, and ui1, ..., uiJ are independent of one another. But these assumptions
make the estimator too restrictive, and no applied study of multinomial MSC
seems to exist.

1.2 Ordered Discrete Responses

Generalizing MSC “horizontally” (MSC with a multinomial choice model
may be called a “vertical” generalization of MSC), suppose

y∗i = x′iβ + ui, yi =
R−1∑
r=1

1[y∗i ≥ γr], Med(y∗|x) = x′β;

i.e., omitting i,

y = r − 1 if γr−1 ≤ y∗ < γr, γ0 = −∞, γR = ∞, r = 1, ..., R.

One example is income surveys: instead of the actual income y∗, a group
representative value y = r is reported if y∗ belongs to the interval [γr, γr+1).
Here, y takes an integer between 0 and R − 1. Another example is y∗ being
a continuous demand for a durable good. Since only positive integers can be
realized, the observed y is an (integer) transformation of y∗.

Because of Med(y∗|x) = x′β and the increasing transformation τ(·) =∑R−1
r=1 1[· ≥ γr], it holds that

Med(y|x) =
R−1∑
r=1

1[x′β ≥ γr] :

the median of y|x is the representative value of the group where x′β belongs.
Based on this idea, Lee (1992a) suggested minimizing the following wrt b and
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c ≡ (c1, ..., cR−1)
′
:

1
N

∑
i

∣∣∣∣∣yi −
R−1∑
r=1

1[x′ib ≥ cr]

∣∣∣∣∣ .
This is an ordered discrete response (ODR) version of MSC, and the moti-
vations of this estimator are the same as those for MSC.

More generally, as was seen already when quantile regression was intro-
duced, if the αth quantile Qα(y∗|x) of y∗|x is x′β, then one should minimize

1
N

∑
i

{
yi −

R−1∑
r=1

1[x′ib ≥ cr]

}
·
{

α − 1

[
yi −

R−1∑
r=1

1[x′ib ≥ cr] < 0

]}

to estimate the αth quantile parameter β, where the “predictor”
∑R−1

r=1 1
[x′ib ≥ cr] is plugged into q in the “quantile loss function” (y − q)(α − 1
[y − q < 0]).

The several remarks made for MSC in comparison to MLE also apply
to the ODR version of MSC. A computation algorithm has been suggested
in Pinkse (1993, appendix). Melenberg and Van Soest (1996b) smoothed the
maximand following the idea of Horowitz (1992), and estimated household
“equivalence scales” using ordered data. As noted for MSC, this ODR version
of MSC is not quite practical. But if R is high (i.e., the number of categories
is large) or if γr’s are known, then the ODR version of MSC is likely to work
much better.

As in MSC, β is identified up to a positive scale factor λ. But differ-
ently from MSC, there is a scope of finding an informative bound on λ,
depending on assumptions on the thresholds. In the income survey example,
γ ≡ (γ1, ..., γR−1)′ is known, whereas only some bounds on γ may be known
in the durable good demand example. Also there exist cases where γ is com-
pletely unknown, in which case it seems difficult to bound λ. Suppose that
y∗ is a continuous demand for cars and

y = r − 1 if γr−1 ≤ y∗ < γr

where r − 1 < γr ≤ r, r0 = −∞, γR = ∞, r = 1, ..., R;

i.e., if the realized demand y is 2, then y∗ must be between 1 and 3. Using
the bounds on γr’s, Lee (1992a) derived the following bounds on λ:

R − 3
R − 1

< λ ≤ R − 2
R − 3

for R > 3.

For instance, 1/2 < λ ≤ 3/2 with R = 5. As R → ∞, λ gets pinned down to
one. Lee and Kimhi (2005) showed that bounds on thresholds helps identifi-
cation in simultaneous equations with ODR’s.

The above ODR version of MSC is also applicable to count responses, but
a further simplification is possible when the following condition is imposed:

γr − γr−1 = 1, r = 2, ..., R − 1.
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Add −γ1 + 1 to γr−1 ≤ y∗ < γr, r = 1, ..., R, to get

y = r − 1 if γr−1 − γ1 + 1 ≤ y∗ − γ1 + 1 < γr − γ1 + 1, r = 1, ..., R.

Absorb −γ1 + 1 into the intercept β1 in x′β (i.e., redefine y∗ as y∗− γ1 + 1))
and substitute γr−1 − γ1 = r − 2 and γr − γ1 = r − 1 when r = 2, ..., R − 1
to get an ODR with rather simple thresholds:

y = 0 if y∗ < 1
= r − 1 if r − 1 ≤ y∗ < r, r = 2, ..., R − 1
= R − 1 if R − 1 ≤ y∗.

Rewrite the display succinctly as

y = max{0,min(R − 1, �y∗�)} where �y∗� is the integer part of y∗.

Then the ODR minimand becomes

1
N

∑
i

|yi − max{0,min(R − 1, �x′ib�)}|.

Furthermore, if min(R−1, �x′ib�) = �x′ib�, then this further becomes N−1
∑

i |
yi − max(0, �x′ib�)|. An analogous minimand will appear in the censored re-
sponse subsection shortly.

1.3 Count Responses

Although the preceding ordered response estimator is applicable to count
responses, the quantile regression assumption was imposed on the latent re-
sponse y∗. Is there any way to conduct quantile regression directly on the
observed count y? The main obstacle to this is that Qα(y|x) is an integer
and one cannot simply posit Qα(y|x) = x′β as x may be continuously dis-
tributed. Machado and Santos-Silva (2005, MSS in this section), however,
found a way of “smoothing” Qα(y|x) so that it can be linked to x′β, which is
the topic of this subsection. Other than the empirical illustration on health
care demand in MSS, applications of MSS can be seen in Winkelmann (2006)
and Miranda (2008). STATA has the command qcount to implement the
MSS estimator.

1.3.1 Main Idea

The key idea is using a smoothed (or “randomized”) version of yi:

zi = yi + ui where ui ∼ U [0, 1) :

zi is generated by adding an independent, artificial uniform random number
to yi. Since Qα(·) is not linear,

Qα(z|x) = Qα(y|x) + α {= Qα(y|x) + Qα(u|x)}.
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But Qα(z|x) should be greater than α as z is a non-negative y plus u: i.e.,

Qα(z|x) > α so long as P (y = 0|x) < 1.

This intuitive fact can be shown in the following way, which can be skipped.
Suppose Qα(z|x) = α ⇐⇒ α ≤ P (z ≤ α|x). Then

α ≤ P (z ≤ α|x) = P (y + u ≤ α|x) =
∫

P (u ≤ α − y |y, x)f(y|x)dy

=
∫

(α − y)1[0 < α − y < 1]f(y|x)dy

as P (u ≤ α − y) = α − y when 0 < α − y < 1

=
∫

(α − y)1[y < α < y + 1]f(y|x)dy =
∫

(α − y)1[y = 0]f(y|x)dy

= α2P (y = 0|x) < α

which is a contradiction. Thus it must be that Qα(z|x) > α under P (y =
0|x) < 1.

For a given α, define a transformation of zi: for a chosen constant ζ with
0 < ζ < mini |zi − α|,

tαi ≡ tα(zi) = ln{(zi − α)1[zi > α] + ζ1[zi ≤ α]}.
Then tα(z) is increasing in z because, if zj ≥ zi, then tα(zj) ≥ tα(zi):

(i) : zj , zi > α =⇒ tα(zj) = ln(zj − α) ≥ ln(zi − α) = tα(zi)

(ii) : zj > α > zi =⇒ tα(zj) = ln(zj − α) > ln ζ = tα(zi)

(iii) : α > zj , zi =⇒ tα(zj) = ln ζ = tα(zi).

Quantile equivariance for increasing transformations yields

Qα{tα(z)|x} = ln[ {Qα(z|x) − α}1[Qα(z|x) > α] + ζ1[Qα(z|x) ≤ α] ]

= ln{Qα(z|x) − α} as Qα(z|x) > α under P (y = 0|x) < 1.

Since ln{Qα(z|x) − α} can take any value in (−∞,∞), we may specify
now

Qα(tα|x) = x′βα

⇐⇒ Qα(z|x) = α + exp(x′βα) from the preceding display.

This would hold if Qα(z|x) = Qα(y + u|x) were linear and Qα(y|x) =
exp(x′βα) so that Qα(z|x) = Qα(y|x) + Qα(u|x) = exp(x′βa) + α. That
is, despite that quantile is not a linear functional and Qα(y|x) = exp(x′βα)
is not plausible because Qα(y|x) is an integer, we still obtained the equation
Qα(z|x) = α + exp(x′βα). Note that “smoothing” can be done in different
ways, and it is done to y by adding a random number to the integer y.
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1.3.2 Quantile Regression of a Transformed Variable

Using Qα(tα|x) = x′βα, the αth quantile parameter βα for z (not for y)
in Qα(z|x) = α + exp(x′βα) can be obtained by minimizing

1
N

∑
i

(tαi − x′ibα) · (α − 1[tαi − x′ibα < 0])

wrt bα, and it holds that

√
N(bαN − βα)� N(0, D−1AD−1) where
D ≡ E{ftα|x(x′βα) · xx′}, A ≡ α(1 − α)E(xx′)

and ftα|x is the density of tα|x. MSS propose a complicated estimator for D,
but the following simple estimator should work just as well: for a kernel K
and a bandwidth h,

DN ≡ 1
N

∑
i

1
h

K

(
tαi − x′ibαN

h

)
xix

′
i.

Clearly, the kernel part is for ftα|x(x′βα).
Theorem 2 in MSS shows

Qα(y|x) = �Qα(z|x) − 1� (= �α + exp(x′βα) − 1�)
where �c� is the “ceiling function”

giving the least upper integer bound for c. When c is not an integer, �c−1� is
the integer part of c: �c−1� = �c�. When c is an integer, however, �c−1� = �c�
as can be seen in �3−1� = 2 = 3 = �3�. But, since the probability of Qα(z|x)
being an integer is zero, we can safely state

Qα(y|x) = �Qα(z|x)� = �α + exp(x′βα)� :

Qα(y|x) is the integer part of Qα(z|x) despite Qα(z|x) = Qα(y|x) + α.
The last display also shows that a zero component of βα implies zero

influence of the corresponding regressor on Qα(y|x). But does a non-zero
component of βα imply necessarily non-zero influence of the corresponding
regressor on Qα(y|x)? This question is relevant because Qα(z|x) may not take
any integer value—recall that Qα(y|x) is only the integer part of Qα(z|x). The
answer is positive when there is at least one continuously distributed regressor
and Qα(z|x) takes on an integer value for some value of the regressor, which
MSS assume.
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1.3.3 Further Remarks

The above estimator depends on the simulated ui’s used for smoothing
(or “jittering”). To avoid the dependence, one may obtain estimates for many
different sets of ui’s. Suppose this is done J-many times to yield b

(1)
αN , ..., b

(J)
αN .

Then the averaged estimator is

b̄αN ≡ 1
J

J∑
j=1

b
(j)
αN .

MSS show that b̄αN is more efficient than the above estimator, and analo-
gously to the asymptotics seen for method of simulated moment,

√
N(b̄αN − βα)� N

{
0,

1
J

D−1AD−1 +
(

1 − 1
J

)
D−1BD−1

}
where B ≡ E[{α(1 − α) − η(x)} · xx′],

η(x) ≡ fy|x{Qα(y|x)} · {α + exp(x′βα) − Qα(y|x)} · {Qα(y|x) + 1 − α

− exp(x′βα)}.

With the simulation number J large enough, the asymptotic variance becomes
D−1BD−1.

As for estimating B, MSS use in their simulation study

BN ≡ 1
N

∑
i

[
α2 + (1 − 2α)1 [yi ≤ α + exp(x′ibαN ) − 1]

+ {α + exp(x′ibαN ) − yi} · 1[α + exp(x′ibαN ) − 1 < yi ≤ α + exp(x′ibαN )]
· {α + exp(x′ibαN ) − yi − 2α} ] xix

′
i.

Rewriting B as E{α(1 − α)xx′} − E{η(x)xx′}, the following estimator may
be used for E{η(x)xx′}:

1
N

∑
i

1[yi = Qα(y|xi)]{α + exp(x′ibαN ) − Qα(y|xi)}

{Qα(y|xi) + 1 − α − exp(x′ibαN )}xix
′
i

where Qα(y|xi) is to be replaced with �α + exp(x′bαN )�. Using α(1 − α) ·
N−1

∑
i xix

′
i minus this display would be simpler than using BN .

The count-response quantile estimator by MSS is a novel idea, but it
has a problem. Suppose E(y|x) = exp(x′β) as in Poisson or NB distributions
with the mean parameter λ(x) = exp(x′β). Then we have

E(y|x) = exp(x′β) and E(z|x) = α + exp(x′β).

But what should hold for MSS is

Qα(y|x) = �α + exp(x′β)� and Qα(z|x) = α + exp(x′β).
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This would not hold for the Poisson or NB-distributed count response with
λ(x) = exp(x′β). That is, these key equations would not be compatible with
the popular parametric models for count responses. The source of this trouble
is using z, not y, as the “latent” variable. If one is to do a Monte Carlo
study, it is not clear how to generate y (with x and β given) subject to
Qα(y|x) = �α + exp(x′β)�.

1.4 Censored Responses

1.4.1 Censored Quantile Estimators

Suppose that y∗ is observed as censored from below at a constant c and
that the median regression assumption holds:

yi = max(y∗i , c) = max(x′iβ + ui, c) and Med(y∗|x) = x′β.

Since the transformation τ(·) = max(·, c) is increasing, we get

Med(y|x) = max(x′β, c).

Based on this idea, Powell (1984) proposed the censored least absolute devi-
ation (CLAD) estimator minimizing

1
N

∑
i

|yi − max(x′ib, c)|.

STATA has the command clad to implement CLAD.
Recall that the asymptotic distribution of an M-estimator bN minimizing

N−1
∑

i q(b) is

√
N(bN − β)� N

{
0, E−1

(
∂2q

∂b∂b′

)
· E

(
∂q

∂b

∂q

∂b′

)
· E−1

(
∂2q

∂b∂b′

)}
.

Although the CLAD minimand is not differentiable, as was seen for LAD
before, still the asymptotic distribution of CLAD can be obtained analogously
to yield

√
N(bclad − β)� N

(
0,H−1 1

4
E{xx′ 1[x′β > c]}H−1

)
,

where H ≡ E{fu|x(0) xx′1[x′β > c]}

= N

(
0,

1
4fu(0)2

E−1{xx′1[x′β > c]}
)

under u � x.

For a bandwidth h, H can be estimated with

1
N

∑
i

1[|yi − x′ibclad| < h]
2h

xix
′
i1[x′ibclad > c],
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h � N−1/5SD(y − x′bclad|x′bclad > c).

The kernel part (2h)−11[|yi − x′ibclad| < h] can be replaced with a smooth
version h−1K{(yi − x′ibclad)/h}.

Due to the max function, censoring takes place on the left part of the
marginal distribution of y. Even if 50% of y are censored, Q0.25(y∗|x) in the
conditional distribution of y|x may be still identified, because y∗|x may be
hardly censored depending on the value of x. For instance, let y∗ = β1 +
β2x + u where x is a scalar and β2 > 0. If x = xo is large enough so that the
corresponding y∗ is always greater than c, then y∗|(x = xo) is not censored at
all. This fact notwithstanding, in general, if the lower censoring percentage
is high, then an αth quantile with α > 0.5 may be a better location measure
to estimate than the median.

In view of this consideration, to generalize CLAD for quantiles, suppose

Qα(y∗|x) = x′β =⇒ Qα(y|x) = max(x′β, c);

although it is better to index β with α (i.e., βα instead of β), we omit the
index for brevity. Under this, the “Censored Quantile Regression (CQR) Es-
timator” (Powell, 1986b) minimizes

1
N

∑
i

{yi − max(x′ib, c)} · {α − 1[yi − max(x′ib, c) < 0]}.

The asymptotic variance matrix is, with y∗ = x′β + u and Qα(u|x) = 0,

E−1{fu|x(0) xx′1[x′β > c]} α(1 − α)E{xx′1[x′β > c]}

E−1{fu|x(0) xx′1[x′β > c]}

= α(1 − α) {fu(0)}−2 E−1{xx′1[x′β > c]} under u � x.

Clearly, CQR includes CLAD as a special case when α = 0.5.
In duration data, almost always censoring is from above: yi = min(y∗i , c).

In this case, Q(y|x) = min(x′β, c), and the CQR minimand should be

1
N

∑
i

{yi − min(x′ib, c)} · {α − 1[yi − min(x′ib, c) < 0]}.

Its asymptotic variance is

E−1{fu|x(0)xx′1[x′β < c]} · α(1 − α)E{xx′1[x′β < c]} ·

E−1{fu|x(0)xx′1[x′β < c]}.

CQR (and thus CLAD) is applicable to type I censoring with the censoring
point c varying across the subjects so long as c is observed for all i. CQR
is not applicable to random censoring, but there is a scope to overcome this
problem as will be shown later.
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It is possible to have both lower (left) and upper (right) censorings to-
gether as in fractional responses; e.g., a proportion variable y∗ ∈ [0, 1] with
P (y∗ = 0) > 0 and P (y∗ = 1) > 0. This may be modeled as

y = max{0, min(1, y∗)} =⇒ Qα(y|x) = max{0, min(1, x′β)}.

Plugging this into the quantile minimand, we can estimate β, and its asymp-
totic variance would be the same as the preceding display with x′β < c
replaced with 0 < x′β < 1; alternatively, bootstrap may be applied as will be
explained below.

With censoring, one main advantage of using a quantile relative to the
mean or other location measures is in prediction. For instance, a predictor
is Qα(y|xo) = max{0,min(1, x′oβ̂)} in the proportion case, which can have
many 0’s and 1’s depending on α and xo. If we use mean prediction, however,
E(y|xo) will fall always in (0, 1) and never exactly equal 0 or 1, despite that
there always will be some i with yi = 0 or 1.

A more efficient two stage version of CLAD was proposed by Newey
and Powell (1990). Hall and Horowitz (1990) discussed how to choose h in
CLAD and other related estimators. Yin et al. (2008) examined CQR for
Box-Cox transformed responses. CLAD has been applied by Horowitz and
Neumann (1987,1989) to duration data, by Lee (1995) to female labor sup-
ply data, and by Melenberg and Van Soest (1996a) to vacation expenditure
data, just to name a few. More applications of CQR can be found in the spe-
cial edited volume of Empirical Economics (2001) and Hochguertel (2003).
Fitzenberger (1997) and Buchinsky (1998) reviewed CQR. See Honoré et al.
(2002) and Chernozhukov and Hong (2002) for further references regarding
CQR and the statistical literature for censored regression models including
Yang (1999) who estimated β by solving a weighted Kaplan-Meier estimator
for the medians.

Typically in the statistical literature, u�x is assumed (no heteroskedas-
ticity of unknown form is allowed), and variation of c is required (a constant
c will not do); the usual assumption is random right censoring by c (i.e.,
yi = min(y∗i , ci)) with c � y∗|x. The estimator of Honoré et al. (2002) is rare
in econometrics in that it allows random censoring, but it requires c � (u, x)
which is rather restrictive, although the estimator does not require u � x.
Under c� (u, x), the df of c is estimated nonparametrically (e.g., the Kaplan-
Meier product limit estimator), and then c is integrated out when it is not
observed (i.e., when y∗ < c).

1.4.2 Two-Stage Procedures and Unobserved Censoring
Point

CQR has two shortcomings: one is the non-convex minimand due to the
max (or min) function, and the other is the requirement of the censoring
points to be observed—c may vary across i but should be observed. This
subsection reviews two-stage procedures to overcome these two shortcom-
ings. The two-stage procedures allow ci to be unobserved so long as ci fully
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determined by xi, i.e., so long as ci gets fixed once xi is conditioned on.
This generalization, however, does not allow ci to be determined by some
unobserved variables (and xi).

Lee et al. (1996) proposed a number of two-stage procedures for semi-
parametric estimators for LDV models. Among them, the ones for the trun-
cated response and binary response appear in Lee and Kim (1998, pp. 216–
217) and Lee (2002, pp. 107–108), respectively. The procedure for censored
models is similar to the truncated model procedure and is presented in the
following, drawing on Lee et al. (2007). Closely related ideas appeared in the
literature as will be seen shortly. The main idea is that the observations with
Qα(y|xi) > c are selected nonparametrically in the first stage, and then CQR
is obtained only with those observations in the second stage.

For the first stage, observe

P (y > c|x) = P (d = 1|x) > 1 − α

[ ⇐⇒ {P (y > c|x) − (1 − α)}f(x) > 0 under f(x) > 0]
⇐⇒ P (y ≤ c|x) < α (multiplying by − 1 and adding 1)
⇐⇒ Qα(y|x) > c

where f(x) is density/probability for x. Let k denote the dimension of x̃ that
is the regressor vector other than unity (i.e., x = (1, x̃′)′), and define

PN (y > c|xi) ≡
{(N − 1)hk}−1

∑
j,j �=i K((x̃j − x̃i)/h) 1[yj > c]

{(N − 1)hk}−1
∑

j,j �=i K((x̃j − x̃i)/h)
.

Subtract 1− α and multiply by {(N − 1)hk}−1
∑

j,j �=i K((x̃j − x̃i)/h) to get
a kernel estimator for {P (y > c|xi) − (1 − α)}f(xi):

gN (xi) ≡
1

(N − 1)hk

∑
j,j �=i

K

(
x̃j − x̃i

h

)
{1[yj > c] − (1 − α)}.

Getting this (and selecting the observations with positive gN (xi)) is the first
stage. In the second stage, minimize wrt b

1
N

∑
i

(yi − x′ib) {α − 1[yi − x′ib < 0]} 1[gN (xi) > ε]

which is a convex minimization problem; a constant ε > 0 is used instead
of 0 “to be on the safe side” and thus to possibly improve the finite-sample
performance.

In practice, gN (xi) requires selecting the bandwidth h. This may be
done by minimizing the cross-validation (CV) criterion. Defining wj ≡ 1[yj >
c] − (1 − α), the CV criterion is

∑
i

{wi − r−i(x̃i, h)}2 where r−i(x̃i, h) ≡
∑

j,j �=i K((x̃j − x̃i)/h)wj∑
j,j �=i K((x̃j − x̃i)/h)

.
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That is, for a range of chosen values of h, this minimand is computed, and the
bandwidth yielding the smallest value of the minimand is selected. Another
thing to choose is the small constant ε > 0. As we do not have a good idea on
the scale of gN (xi), it may be in fact better to use 1[PN (y > c|xi)−(1−α) > ε]
because PN (y > c|xi) is a probability whose scale is known. While choosing
h is necessary, using ε is not because the improvement with ε > 0 over ε = 0
seems small in our experience.

Another computational issue for CQR is its asymptotic variance esti-
mator, because the second-order matrix H includes the density component
fu|x(0). Denoting the residuals as ri = yi − x′ibcqr, an estimator for H is

1
N

∑
i

1[−h < ri < h]
2h

xix
′
i1[x′ibcqr > c];

fu|x(0) is estimated nonparametrically with (2h)−11[−h < ri < h]. Note
that 1[x′ibcqr > c] can be replaced with 1[gN (xi) > 0]. The bandwidth h
should be chosen, which is a disadvantage of using the CQR asymptotic vari-
ance. Instead, nonparametric bootstrap can be applied. The bootstrap con-
sistency follows from the general bootstrap consistency result in Arcone and
Giné’s (1992) for M-estimators, which was made explicit for CQR in Hahn
(1995).

One problem with bootstrap is that the repeated computation of CQR
is computationally burdensome. This can be avoided as in Bilias et al. (2000)
by minimizing

1
N

∑
i

(ŷi − x̂′ib) {α − 1[ŷi − x̂′ib < 0]} 1[x′ibcqr > c]

wrt b, where bcqr is the original CQR estimator and (ŷi, x̂
′
i)
′, i = 1, ..., N , are

pseudo bootstrap data. This idea is close to the above two-stage procedure
of avoiding the max function. In x′ibcqr > c, to allow for the estimation error
in bcqr, one may add a small positive constant ε to use x′ibcqr > c+ ε as done
in gN (xi) > ε.

A number of remarks are in order for the above two-stage procedure.
First, in gN (xi), 1[yj > c] can be replaced with dj which is free of c. This
means that c does not have to be observed, and may change across i. Second,
despite this generalization, in order to maintain “P (y > c|xi) > 1 − α iff
Qα(y|xi) > c”, c should be fixed once x is so. That is, c is allowed to be
unobserved to the extent c is an unobserved function of only x; if ci varies
across i but observed, rewrite the model such that ci becomes a regressor with
its known slope 1. Honoré et al. (2002) proposed a version of CQR allowing
for random censoring where c should be independent of x and y∗; they use
the Kaplan–Meier estimator for c’s survival function. Third, Lee et al. (1996)
originally suggested the two-stage idea as a computational device to overcome
the non-convexity of the minimand. Fourth, once the estimate is obtained
through the two-stage method, one can find CQR using the estimate as an
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initial value, but our experience has been that searching further for CQR does
not lead to any improvement. Fifth, if one takes the two-stage estimator as
another estimator, then in order to take the first-stage estimation error into
account, the indicator function may be replaced with a smooth function, say
K̃(t), such that K̃(t) → 0 (1) as t → −∞ (∞). This replacement, however,
makes hardly any difference in practice. Sixth, for the right-censoring model
y = min(x′β + u, c), observe

Qα(y∗|x) ≤ c ⇐⇒ α ≤ P (y∗ ≤ c|x) = P (d = 1|x).

In this case, the first-stage of the above two-stage procedure selects the ob-
servations with Qα(y∗|x) ≤ c, which can be done by

1
(N − 1)hk

∑
j,j �=i

K

(
x̃j − x̃i

h

)
(dj − α) ε.

Buchinsky and Hahn (1998) presented an idea similar to the above two-
stage method. Observe that P (y∗ ≤ x′β|x) = α before censoring at c. When
x′β > c for lower censoring, they looked at

P (c < y∗ ≤ x′β |y∗ > c, x) =

∫ x′β
c

f(y∗|x)dx

P (y∗ > c|x)
=

α − P (y∗ ≤ c|x)
P (d = 1|x)

=
α − P (d = 0|x)

P (d = 1|x)
=

P (d = 1|x) − (1 − α)
P (d = 1|x)

≡ π(x).

Hence, x′β is the π(x)th quantile of the truncated distribution of y∗|(y∗ >
c, x) (i.e., y∗|(d = 1, x)). Let πN (xi) denote the estimator for π(xi), obtained
by replacing P (d = 1|x) with PN (d = 1|x). This idea leads to minimizing

1
N

∑
i

(yi − x′ib){πN (xi) − 1[yi − x′ib < 0]} · di1[πN (xi) > 0].

Instead of πN (xi) > 0, πN (xi) > ε may be used.
The first nonparametric stage in the two-stage method may not work

well if the dimension of x is large. A practical alternative might be using
probit (or logit) of di on zi to select the observations with P (d = 1|z) =
Φ(z′ibN ) > 1 − α in the first stage where the notation z is used to allow
different regressors in the probit. This is essentially what Chernozhukov and
Hong (2002) proposed——in fact using Φ(z′ibN ) > 1−α+ ε for a small ε > 0
as above. They showed conditions that can justify this practice. Khan and
Powell (2001) examined using MSC, P (d = 1|x), or nonparametric quantile
regression for the first-stage to show that the first-stage estimation error does
not influence the second-stage. Using nonparametric quantile regression for
the first-stage was also considered by Lee et al. (1996), but P (d = 1|x) was
used there because it is computationally easier to obtain.
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1.4.3 An Empirical Example

Different hospitals treat their patients differently and the survival rate of
patients vary across hospitals. For a given disease, it is important to identify
the best treatment protocol. In Finland, the occurrence rate of heart-related
problems is high and hospitals use different treatments. In the following em-
pirical example taken from Lee et al. (2007), we look at the survival duration
at hospital after an acute myocardial infarction (AMI). It is desired to find the
best treatment protocol for the survival duration by comparing 21 hospital
districts in Finland (each district consists of multiple hospitals).

A large data set of size 5972 on males for 1996 is available that is,
however, limited on covariates: only age and the distance (DIS) to the hospital
are available. Let

zi be the survival duration in days for person i at hospital

and y∗i ≡ ln zi.

The duration is subject to the usual right censoring problem that, for some
patients, the recorded value of zi is not the actual survival duration, but only
the censoring time, because the follow-up ended before death. In our data,
the censoring time is fixed at one year for all i and only 27% are not right-
censored. The particularly high censoring percentage (73%) in the marginal
distribution of y∗ (i.e., z) poses difficulties to estimators for the center(s)
of a distribution (e.g., estimators under the assumption that the conditional
mean of the error term given x is zero), because they are more or less for
hard-to-identify “middle quantiles” of the y∗|x distribution. Under a heavy
right censoring, it makes sense to look at low quantiles.

Table 1 shows the mean and SD of the duration in days (z), DIS, and age.
The table also lists the proportions for 12 age groups and 21 hospital districts.
The mean duration is 282 days, but among the non-censored observations,
the mean duration is only 56 days.

Table 2 provides three sets of CQR estimates for y: 10%, 17.5%, and
25% quantiles. In the marginal distribution of z, these quantiles correspond
to 5, 24, and 253 days, respectively. The three sets of CQR estimates show
how x affects the “short-term (days),” “mid-term (weeks),” and “long-term
(months)” survivals differently. For CQR(25), CV was used for bandwidth
choice, and the “selected number” of observations (i.e., the observations
selected in the first nonparametric stage) was 2961. For CQR(17.5) and
CQR(10), the same bandwidth was used and the selected number of ob-
servations was progressively higher than 2961 as the censoring is from above,
not below. The base case d1 (Helsinki) is omitted.

Looking at the CQR columns, DIS is significantly negative in CQR(10)
and the significance level drops in CQR (17.5) and CQR(25). This suggests
that DIS affects at least the short-term survival: the farther away from the
hospital is the residence, the less likely to survive at hospital. In terms
of signs, there is no significant reversal of district effects across the three
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Table 1: Mean (SD) of Variables
duration in days 282 (146) non-censored duration 56.0 (91.0)

DIS in
age 69.5 (12.4) 100km 0.29 (0.30)

age 0 (−40) 0.013
age 1 (40+ − 45) 0.022 d1 0.075 d11 0.020
age 2 (45+ − 50) 0.044 d2 0.114 d12 0.046
age 3 (50+ − 55) 0.061 d3 0.082 d13 0.065
age 4 (55+ − 60) 0.088 d4 0.048 d14 0.053
age 5 (60+ − 65) 0.108 d5 0.035 d15 0.043
age 6 (65+ − 70) 0.156 d6 0.080 d16 0.028
age 7 (70+ − 75) 0.160 d7 0.042 d17 0.020
age 8 (75+ − 80) 0.143 d8 0.045 d18 0.071
age 9 (80+ − 85) 0.115 d9 0.035 d19 0.022
age 10 (85+ − 90) 0.068 d10 0.032 d20 0.015

age 11 (90+−) 0.023 d21 0.024

Table 2: CQR for ln(duration)
x CQR(10) (tv) CQR(17.5) (tv) CQR(25) (tv)
1 −5.040 (−12.8) −6.158 (−10.2) −6.212 (−7.85)

age 0.168 (13.2) 0.187 (9.69) 0.183 (7.29)
age2/10 −0.015 (−14.5) −0.016 (−10.2) −0.015 (−7.66)

DIS (100km) −0.163 (−2.63) −0.135 (−1.67) −0.181 (−1.78)
d2 −0.113 (−1.69) −0.151 (−1.77) −0.224 (−2.26)
d3 −0.057 (−0.76) −0.088 (−0.91) −0.163 (−1.45)
d4 0.053 (0.65) 0.029 (0.28) −0.014 (−0.11)
d5 0.158 (1.86) 0.075 (0.69) 0.057 (0.45)
d6 0.022 (0.29) −0.032 (−0.34) −0.053 (−0.48)
d7 0.204 (2.40) 0.214 (1.99) 0.114 (0.92)
d8 −0.055 (−0.63) −0.112 (−1.01) −0.211 (−1.63)
d9 −0.088 (−0.87) −0.109 (−0.85) −0.119 (−0.78)
d10 0.157 (1.73) 0.164 (1.42) 0.210 (1.58)
d11 0.130 (1.30) 0.217 (1.69) 0.573 (3.89)
d12 0.210 (2.52) 0.228 (2.16) 0.124 (1.01)
d13 0.365 (4.69) 0.286 (3.16) 0.492 (4.73)
d14 0.094 (1.14) 0.037 (0.35) −0.043 (−0.35)
d15 −0.215 (−2.39) −0.244 (−2.12) −0.287 (−2.07)
d16 0.046 (0.45) −0.013 (−0.10) −0.027 (−0.17)
d17 0.020 (0.19) −0.050 (−0.37) −0.084 (−0.53)
d18 0.066 (0.86) 0.024 (0.25) 0.083 (0.73)
d19 −0.119 (−1.07) −0.149 (−1.03) −0.083 (−0.50)
d20 0.160 (1.38) 0.071 (0.49) −0.014 (−0.08)
d21 −0.167 (−1.31) −0.213 (−1.30) −0.204 (−1.06)
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quantiles. That is, there is no district doing better in the short run than
d1, but then worse for the longer terms. Comparing the district coefficients,
the best performing district is d13 followed by d12 and d7, and the worst
performing district is d15, followed by d2 or d21. Therefore, the treatment
protocol to disseminate is that of d13.

1.4.4 Median Rational Expectation*

Rational expectation has played an important role in economics. For a
variable yt, often its expected future value at time t−1 is taken as E(yt|It−1)
where It−1 is the information available at t−1. Given the linearity of E(·), it
is understandable why the conditional mean has been used always to describe
how people form their expectations. When a lower or upper ceiling (i.e., a
censoring point) is present for yt, however, using the conditional median
Med(yt|It−1) is more convenient than E(yt|It−1) for the reason that should
be obvious by now. Lee (1997) introduced “median rational expectation,”
which is reviewed in the following. Which one of E(yt|It−1) and Med(yt|It−1)
is really used by economic agents—i.e., whether the squared or absolute loss
in misprediction is used—would be an interesting empirical question.

Consider an agricultural product with the supply and demand equations

st = α1p
e
t + x′1tβ1 + u1t, α1 > 0 and dt = α2pt + x′2tβ2 + u2t, α2 < 0

where st is supply, dt is demand, pt is price, pe
t is the expected price formed

with It−1, x1t is a vector of “demand shifters”, x2t is a vector of “supply
shifters”, and u1t and u2t are error terms. Assume that x1t and x2t are
generated by “reduced forms”

x1t = w′1tγ1 + v1t and x2t = w′2tγ2 + v2t

where w1t and w2t are matrices of rv’s (but fixed given It−1; e.g., lagged x1t

and x2t), and v1t and v2t are error vectors conformably defined.
Suppose the government sets a lower bound pdt (“d” from “down”) for

pt. That is, if the equilibrium price is higher than pdt, then the equilibrium
price will prevail; otherwise, the government will intervene to buy the product
at pdt, which is a “price support.” This means that the underlying market
price gets censored from below at pdt. The government policy works not just
directly through the bound, but also indirectly through the policy announce-
ment effect on price expectation formation. Assume that

pdt, max(pt, pdt), x1t, x2t, w1t, w2t, t = 1, ..., T , are observed.

It may be possible to extend the following analysis with a lower bound to
lower and upper bounds, which are relevant to foreign exchange rate deter-
mination when there is an announced target zone for the exchange rate. The
“target-zone exchange-rate analysis” was initiated by Krugman (1991); if fur-
ther interested, see Iannizzotto and Taylor (1999), Kempa and Nelles (1999),
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and the references therein for the theoretical development and empirical ev-
idences. Pesaran and Ruge-Murcia (1999) presented a LDV approach to the
target zone model and showed more econometric references.

To see the difficulty in mean rational expectation, suppose

pe
t = E(pt|It−1).

To find the equilibrium price, solve the supply and demand equation for pt

using st = dt and substitute the x1t and x2t equations:

pt =
α1

α2
pe

t +
1
α2

(x′1tβ1 − x′2tβ2 + u1t − u2t) = αpe
t + ct + εt where

α ≡ α1

α2
, ct ≡

1
α2

{(w′1tγ1)
′β1 − (w′2tγ2)

′β2}

and εt ≡
1
α2

(v′1tβ1 − v′2tβ2 + u1t − u2t).

Without the price support, pe
t can be found by taking E(·|It−1) on this pt

equation under E(εt|It−1) = 0:

pe
t = αpe

t + ct =⇒ pe
t =

ct

1 − α
≡ pmt.

With the price support, the pt equation should be modified as

pt = max(pdt, αpe
t + ct + εt).

We can take E(·|It−1) on this equation and then try to solve for pe
t . But a

closed-form solution for pe
t is hard to obtain due to the max function even if

the distribution of εt|It−1 is specified.
Contrary to this difficulty, suppose now “median rational expectation”

holds:
pe

t = Med(pt|It−1) and Med(εt|It−1) = 0.

With the price support, take Med(·|It−1) on pt = max(pdt, αpe
t + ct + εt) to

get
pe

t = max(pdt, αpe
t + ct).

In y = τ(y∗) with τ(.) increasing, we have Med(y|x) = τ{Med(y∗|x)} =
τ(x′β), and we just plugged τ(x′β) into the LAD minimand to estimate
β in Med(y∗|x). Here, pe

t appears on both sides, and we need to find pe
t =

Med(pt|It−1) first before we think about estimating the parameters
in Med(pt|It−1).

The right-hand side of the last display is a Lipschitz-continuous function
of pe

t with the Lipschitz constant |α|. If |α| < 1, then the mapping is a
contraction, and there is a unique fixed point. In the next paragraph, this
fixed point of pe

t will be shown to be

max(pdt, pmt).



Sec. 2 Methods Based on Modality and Symmetry 383

Hence, under median rational expectation and |α1/α2| < 1, the expected price
under price support takes a simple closed form: the maximum of the supported
price and the expected price without the price support. This result does not
require specifying the distribution of εt|It−1. Observe

pmt =
ct

1 − α1/α2
=

α2

α2 − α1
ct =

1
α2 − α1

{(w′1tγ1)
′β1 − (w′2tγ2)

′β2}.

With γ̂1 and γ̂2 denoting the LSE for γ1 and γ2, δ1 ≡ β1/(α2 − α1) and
δ2 ≡ −β2/(α2 − α1) can be estimated by minimizing

1
T

∑
t

[pt − max{pdt, (w′1tγ̂1)
′δ1 + (w′2tγ̂2)

′δ2}].

To prove that max(pdt, pmt) is the fixed point, it is sufficient to show
(recall α ≡ α1/α2 < 0)

max(pdt, pmt) = max{pdt, α max(pdt, pmt) + ct}.
Suppose

pdt > pmt ⇐⇒ pdt >
ct

1 − α
⇐⇒ (1 − α)pdt > ct ⇐⇒ pdt > αpdt + ct.

Then the lhs of the equation becomes pdt, and the rhs becomes
max(pdt, αpdt + ct) = pdt as well: the equation holds. Now suppose the oppo-
site pdt ≤ pmt. Then the lhs of the equation is pmt, and the rhs becomes

max(pdt, αpmt + ct) = max(pdt, α
ct

1 − α
+ ct) = max(pdt,

ct

1 − α
)

= max(pdt, pmt) = pmt;

the equation holds.

2 Methods Based on Modality and Symmetry

As demonstrated amply so far, quantile-based ideas have been fruitful to
semiparametric econometrics for LDV models. Another strain of semipara-
metric approaches based on modality and symmetry have been developed in
parallel with the quantile-based ones. This section reviews such estimators
for censored/truncated models and “censored-selection models.”

Section 2.1 introduces “mode regression” under Mode(y|x) = x′β; the
resulting estimator is robust to outliers and applicable to truncated regression
models. Section 2.2 examines estimators based on the symmetry of y|x distri-
bution around x′β, and the estimators are applicable to censored/truncated
models. Section 2.3 reviews partial-symmetry-based estimators, which look
like combinations of the estimators in the first two sections. Finally, Sec-
tion 2.4 studies a bivariate-symmetry-based estimator for censored-selection
models. Although censored/truncated models may not look so prominent
in economics, they are essential in (bio-) statistics where duration/survival
models take the central position. As duration/survival models are getting
more popular these days in econometrics, it seems fitting to discuss cen-
sored/truncated models extensively.
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2.1 Mode Regression for Truncated Model
and Robustness

Mean and median are not the only measures of location. Another well-
known location measure is mode. Suppose we have a truncated model

y∗i = x′iβ + ui, (x′i, y
∗
i )′ is observed only when y∗i = x′iβ + ui > c,

i = 1, ..., N.

This is in contrast to the censored model yi = max(y∗i , c) where x is observed
always. Denoting the truncated response by y, E(y|x) = x′β in general when
E(y∗|x) = x′β. As y|x follows the truncated distribution—the distribution
of y∗|x divided by the conditional truncation probability—it is proper to use
the different notation y, instead of y∗.

Consider maximizing

E{1[|y∗ − q(x)| < w]} = Ex[F{q(x) + w|x} − F{q(x) − w|x}]

wrt q(x), where w > 0 is a “tuning constant” to be chosen by the researcher
and F (y∗|x) is the df of y∗|x. The optimal choice q∗(x) is the location
measure of y∗|x such that the interval [q∗(x) − w, q∗(x) + w] captures the
most probability mass under the density f(y∗|x). Assuming that f is strictly
unimodal and symmetric around the mode up to ±w, the mode maximizes
E{1[|y∗ − q(x)| < w]}. That is, the optimal predictor q∗(x) is Mode(y∗|x).

Suppose Mode(y∗|x) = x′β holds. The maximizer q̂(x) of E{1[|y −
q(x)| < w]} is not necessarily x′β because y, not y∗, is in the objective
function now. Consider Figure 1. The truncation at c is done in the inter-
val (−∞, x′β − w), i.e. c < x′β − w ⇔ x′β > c + w, and we still capture
the most probability mass under f(y|x) with the interval x′β ± w; q̂(x) is

x’βx’β–wc

Figure 1: Modal Interval for Maximum Probability
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x’βcx’β–w

Figure 2: Boundary Interval for Maximum Probability

x′β = Mode(y|x) = Mode(y∗|x). In contrast, in Figure 2, the truncation
takes place somewhere in (x′β − w,∞), i.e. c > x′β − w ⇔ x′β < c + w, and
thus q̂(x) = c + w; the most probability mass under f(y|x) is captured with
the interval [c, c + 2w]—the interval width is still 2w. Combining the two
cases, the optimal predictor q̂(x) in the truncated case is

max{Mode(y∗|x), c + w} = max(x′β, c + w).

Based on the above fact, Lee (1989) proposed the mode regression esti-
mator for the truncated regression model by maximizing

1
N

∑
i

[|yi − max(x′ib, c + w)| < w].

Letting c → −∞, we get no truncation where N−1
∑

i 1[|yi−x′ib| < w] is max-
imized. The mode is arguably the most attractive location parameter when
the distribution is asymmetric. This estimator does not require specifying
the distribution of u|x; the only essential requirement for u|x is the strict
unimodality (i.e., unimodal with an unique mode instead of a “plateau”) as
in the figure.

Several remarks are in order:

1. Owing to the nondifferentiability of the indicator function, following
the approach in Kim and Pollard (1990), the asymptotic distribution
of the mode estimator can be shown to be N1/3-consistent with a non-
practical asymptotic distribution. Also the computation requires an al-
gorithm not using gradients such as “downhill simplex” (as explained,
e.g., in Himmelblau, 1972); see also Pinkse (1993, appendix).

2. For a random variable z, the optimal predictor maximizing E{1
[|z − q| < w}} is not exactly the same as Mode(z), which is clear if
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we let fz to be asymmetric. The optimal predictor is the middle value
of the optimal interval of size 2w which captures the most probability
under fz.

3. Although we assumed the symmetry up to ±w, it is not necessary under
independence of u from x: without the symmetry, the slope coefficients
are still identified in this case, which is essentially the same as the
parallel shift assumption in quantiles.

4. In N−1
∑

i 1[|yi − x′ib| < w], each datum is given the equal weight of 1
or 0, no matter how large the error y − x′b may be. Hence an outlier
cannot influence the estimator by more than its share 1/N . Therefore,
mode regression estimator is robust to outliers in x as well as in y,
resisting almost up to 50% data contamination—the best one can hope
for.

5. Analogously to kernel density estimation with the uniform kernel, a
small w may reduce the bias of the estimator and a large w may make
the estimator more efficient. Although how to choose w is an open
question, w may be chosen according to the researcher’s tolerance level
for misprediction—more on this in the next subsection.

6. A related problem is estimating the mode of a nonlinear regression
function r(x) = E(y|x) as examined in Shoung and Zhang (2001), who
also lists the statistical literature on estimating the mode of a density.

2.2 Symmetrized LSE for Truncated and Censored
Models

2.2.1 Symmetrically Trimmed LSE

In the linear model y∗ = x′β + u, LSE satisfies the orthogonality condi-
tion E(ux) = 0, which is implied by E(u|x) = 0. Consider a truncation in u|x,
which ruins the orthogonality condition. Assuming that fu|x is symmetric,
Powell (1986a) suggested one way to restore the orthogonality condition by
“trimming” the error density. Suppose x′iβ > c and y∗i |xi is truncated from
below at c, which is equivalent to ui|xi truncated from below at −x′iβ + c.
Let y denote the truncated response versions of y∗. If we artificially trim u|x
from above at x′β − c, then u · 1[|u| < x′β − c] will be symmetric (it would
be easier to understand this point with c = 0). Therefore

Ex{x Eu|x(u 1[|u| < x′β − c])} = E{xu · 1[|u| < x′β − c]} = 0;

note that |u| < x′β − c includes the condition x′β > c. Trimming u|x at
±(x′β − c) is equivalent to trimming y|x at c and 2x′β − c because y is just
x′β-shifted version of u given x.
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One minimand yielding an unique minimizer satisfying the moment con-
dition as the asymptotic first-order condition is

1
N

∑
i

{yi − max(0.5yi + 0.5c, x′ib)}2.

The summand becomes the LSE summand (yi − xib)2 if 0.5yi + 0.5c < x′ib
∀i. Powell (1986b) named this estimator symmetrically trimmed least squares
estimator (STLS). The main assumption for STLS is the symmetry and strict
unimodality of u|x (no need to specify the distribution of u|x). The reason
for strict unimodality will be seen in the asymptotic variance.

The asymptotic distribution of STLS is
√

N(bstls − β)� N{0, (W − V )−1Z(W − V )−1} where

W = E{1[|u| < x′β − c] xx′}, Z = E{1[|u| < x′β − c] u2xx′}

V = E

[
1[x′β > c] 2(x′β − c)

fu|x(x′β − c)
Fu|x(x′β − c)

xx′
]

.

Examination of W − V reveals that W − V is

E
[
1[x′β > c] xx′ {area under fu|x between ± (x′β − c) above

fu|x(x′β − c)}
]

where {· · · } is the crossed area in Figure 3; Fu|x(x′β − c) is the normalizing
constant for the truncation. Estimating V requires a nonparametric technique
due to fu|x. The figure shows that strict unimodality is necessary to assure the

x’β – c–x’β + c

f(x’β  –  c|x)f(–x’β + c|x)

f(u|x)

0

Figure 3: Second-Order Condition for STLS
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p.d. of W −V . For the non-truncated case, let c = −∞. Then the asymptotic
variance becomes that of LSE.

Up to this point, we used the constant c as the censoring or truncation
point, but c can be in fact set to zero without loss of generality so long as c is
an unknown constant or an observed constant ci that possibly varies across
i, because we can transform the data such that y = max(x′β + u, 0) holds.
For instance, when yi = max(x′iβ + ui, ci), subtract ci from both sides to get

yi − ci = max(x′iβ − ci + ui, 0).

Transform yi into yi − ci, and absorb −ci into the intercept of x′iβ if ci =
c ∀i, or if ci varies across i, redefine xi as (x′i, ci)′ and β as (β′,−1)′ to get
yi = max(x′iβ + ui, 0).

As another example, suppose that y∗ is censored from above at γ: y =
min(x′β + u, γ). Then subtract γ from both sides and multiply by −1 to get

γ − y = −min(x′β + u − γ, 0) = max(−x′β − u + γ, 0).

Absorb γ into x′β and define v ≡ −u to get

γ − y = max{(−x)′β + v, 0}.

Transforming y into γ − y ≡ ỹ and x into −x ≡ x̃, ỹ = max(x̃′β + v, 0) holds.
The case of γ varying across i can be handled doing analogously to what was
done in the preceding paragraph. Hence, from now onward, set c = 0.

2.2.2 Symmetrically Censored LSE

Following STLS, Powell (1986a) proposed another estimator for y∗ cen-
sored from below at 0. With x′β > 0, censoring fu|x at −x′β in the lower tail
results in a probability mass piling at −x′β, while truncation simply cuts off
(and normalize) fu|x at −x′β. The idea is to censor the upper tail of fu|x at
x′β to restore the symmetry. Then under the symmetry of u|x about 0, the
following orthogonality condition holds:

Ex[ x · 1[x′β > 0]Eu|x{u 1[|u| < x′β]

+ x′β(1[u > x′β] − 1[u < −x′β])} ] = 0,

where u in E(xu) is replaced by x′β · sgn(u) if |u| > x′β, which is absent in
STLS. The symmetry of fu|x is sufficient for this moment condition.

One minimand yielding an unique minimum with the last display as its
asymptotic first order condition is

1
N

∑
i

[ {yi − max(0.5yi, x
′
ib)}2 + 1[yi > 2xib] · {(0.5yi)2 − (max(0, x′ib))

2} ].

Minimizing this gives the symmetrically censored least squares estimator
(SCLS). Observe that the first term is the minimand for STLS with c = 0.
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For the censored response case, there is more information than the truncated
case, and the second term makes use of the extra information.

The asymptotic distribution of SCLS does not involve any density com-
ponent as STLS and CLAD do:

√
N(bscls − β)� N(0, H−1 E{1[x′β > 0]min(u2, (x′β)2) xx′} H−1)

where H ≡ E{1[|u| < x′β] · xx′}.

The middle term in the variance indicates that u2 is replaced by (x′β)2 when-
ever |u| > x′β. Differently from STLS, SCLS does not require the strict
unimodality of u|x.

Earlier we discussed a duration model under Weibull specification where
the duration y follows the Weibull distribution: P (y ≤ t) = F (t) = 1 −
exp(−θtα). When (x′, y)′ is fully observed, assuming θ = exp(x′β), we showed
ln y = −x′β/α+u to which LSE is applicable. When y is censored from above,
the LSE is not valid but the Weibull MLE is. But the log-linear model does
not necessarily have to be motivated by Weibull, as it can be motivated as
a way to achieve symmetry because typically a duration has a density with
a long right tail. If ln y given x is symmetric, then we can use SCLS for the
log-linear model under censoring.

Powell (1986a) suggested an iterative scheme to get bscls. Start with an
initial estimate b0, say LSE, and then iterate the following until convergence:

b1 =

(∑
i

1[x′ib0 > 0] · xix
′
i

)−1 ∑
i

{1[x′ib0 > 0] · min(yi, 2x′ib0) · xi}.

This does not guarantee global convergence. Also the matrix to be inverted
may not be invertible. If this problem occurs, then removing 1[x′ib0 > 0] in
the inverted matrix may help. From our experience, however, this algorithm
seems to work fairly well.

Honoré (1992) extended STLS and SCLS to panel data with truncated
or censored dependent variables, and an application of the panel censored
model estimator can be seen in Kang and Lee (2003). Newey (1991) proposed
semiparametrically efficient versions of STLS and SCLS by taking the full
advantage of the symmetry assumption. Lee (1995) applied SCLS to female
labor supply data. Santos-Silva (2001a) proposed an improved algorithm and
shows further related studies.

2.3 Partial-Symmetry-Based Estimators

2.3.1 Quadratic Mode Regression Estimator (QME)

Generalizing the mode regression further, Lee (1993) suggested to smooth
the maximand of the mode regression estimator to obtain a

√
N -consistent

estimator good for y∗ = x′β + u truncated from below at 0. Assume

(x′, y∗) is observed only when y∗ = x′β + u > 0, Mode(y∗|x) = x′β,
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ln fu|x is strictly concave, and fu|x is symmetric over ± w;

the concavity of ln fu|x is called the “strong unimodality” of fu|x (see Dhar-
madhikari and Joag-dev, 1988, and the references therein). As in the other
estimators in this chapter, the distribution of u|x is not specified.

Denoting the truncated response versions of y∗ as y, the estimator named
quadratic mode regression estimator (QME) maximizes

1
N

∑
i

[w2 − {yi − max(x′ib, w)}2] · 1[|yi − max(x′ib, w)| < w]

=
1
N

∑
i

max[w2 − {yi − max(x′ib, w)}2, 0]

where w > 0 is to be chosen by the researcher. The idea of QME is similar
to that of STLS: QME trims fu|x at ±w when x′β > w, whereas STLS
trims fu|x at ±x′β when x′β > 0. This QME trimming is possible, because
y∗ > 0 ⇐⇒ u > −x′β, which implies u > −w if x′β > w. The trimming
points ±w in QME are constants, whereas the trimming points ±x′β in STLS
vary as x varies.

Recall that, if the truncation point is c = 0, then −c gets absorbed into
x′β. In this case letting c = −∞ for no truncation, max(x′β,w) becomes x′β
and the QME maximand becomes

1
N

∑
i

{w2 − (yi − x′ib)
2} · 1[|yi − x′ib| < w].

This demonstrates that QME is similar to the mode regression but it imposes
the quadratic weight w2− (yi −x′ib)

2 on the data with |yi −x′ib| < w. Instead
of capturing the most probability mass under fu|x with the uniform interval
x′b ± w, the inverted U-shaped weighting interval is used. When the center
of the interval matches the mode (0) of fu|x, the maximand is maximized.

It is interesting to see that the maximizing problem is equivalent to
minimizing

1
N

∑
i

{ (yi − x′ib)
21[|yi − x′ib| < w] + w21[|yi − x′ib| ≥ w] }.

This minimizer is the regression version of Huber’s “trimmed (or
skipped) mean” (Huber, 1981), which was suggested to robustify LSE, limit-
ing the effect of outliers by trimming the residuals at ±w: any absolute error
greater than w is replaced by w. Hence, QME is robust to outliers.

The asymptotic distribution of QME is analogous to that of STLS:
√

N(bqme − β)� N{0, (W − V )−1Z(W − V )−1}, where

Z = E{1[x′β > w, |u| < w] xx′u2}, W = E{1[x′β > w, |u| < w] xx′}

V = E

{
1[x′β > w] ·

(
2w

fu|x(w)
1 − Fu|x(−x′β)

)
· xx′

}
.



Sec. 2 Methods Based on Modality and Symmetry 391

W −V is analogous to the STLS second-order matrix (recall Figure 3). Con-
sistent estimators for Z, W , and V are, with ûi ≡ yi−x′ibqme and a bandwidth
h → 0,

ZN ≡ 1
N

∑
i

1[x′ibqme > w, |ûi| < w]xix
′
iû

2
i

WN ≡ 1
N

∑
i

1[x′ibqme > w, |ûi| < w]xix
′
i

VN ≡ 1
N

∑
i

1[x′ibqme > w]2w

· 1[−w < ûi < −w + h] + 1[w < ûi < w + h]
2h

xix
′
i;

the ratio with h in VN is to estimate the truncated density component in V .
Whereas STLS becomes LSE with no truncation, QME becomes trimmed

LSE with no truncation. Hence QME has two advantages over STLS. One
is the weaker symmetry assumption on fu|x and the other is the robustness
inherited from the trimmed LSE. On the other hand, STLS has two advan-
tages over QME. One is no need to choose w as in QME, and the other is
that STLS seems to work better computationally, possibly due to the ran-
dom trimming points ±x′β where the randomness tends to smooth out the
“edges” in the trimming operation.

Newey (2001) reviewed conditional moment restrictions in censored and
truncated regression models, and derived the semiparametric efficiency bounds.
Laitilla (2001) showed that QME still works for the slope coefficients even
if u is asymmetric about 0 so long as u is independent of x; this point is
also noted in Newey (2001). Karlsson (2004) conducted a Monte Carlo study
to show that QME performs better than other estimators under asymmetric
distributions, and applies bootstrap to avoid density estimation for the QME
asymptotic variance.

2.3.2 Remarks for QME

One issue in QME (and mode regression) is how to choose w. Clearly,
choosing w is not the same as choosing a bandwidth in nonparametric smooth-
ing where the bandwidth should converge to zero. Our discussion so far points
out a number of factors that can play roles in choosing w. The first fac-
tor is partial symmetry assumption: a smaller w is the less restrictive. The
second is misprediction tolerance: a smaller w means the lower tolerance.
The third is robustness concern: a smaller w mean the higher robustness to
outliers.

Instead of choosing w, as a way of smoothing the trimming operation
in QME, we may randomize (or use multiple fixed values of) w to obtain
a “smoothed” QME. This can be done in three steps. First, choose a range
for w, say (0, w̄). As w is related to the error term scale, w̄ may be chosen
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as follows: an arbitrary positive number w̄o is used initially for w to get
bqme and the residual ûi ≡ yi − max(x′ibqme, wo); then set w̄ = SD(û), or
2 ·SD(û) (alternatively, set w̄ = SD(̊u|x′bqme > wo) where ůi ≡ yi−x′ibqme).
If one wants to minimize the partial symmetry restriction, a small w̄ should
be chosen; otherwise if the full symmetry is to be imposed, a large value
such as 2 · SD(û) may be used. Second, draw multiple random numbers on
U(0, w̄) (or choose a number of fixed grid points), say wj , j = 1, ..., J . Third,
maximize the QME maximand QN (0, w̄) that is a (weighted) sum across the
individual QME maximands with the wj ’s. The asymptotic inference may be
done with the sandwich form asymptotic variance estimated with the first-
and second-order numerical derivatives of QN (0, w̄).

The fact that QME can be consistent for different values of w can be
exploited further. For instance, if u|x is symmetric, then we can use any w,
and this implies that different w’s can be used to test for the symmetry and
heteroskedasticity of u|x as shown in Lee (1996a). Also, instead of maximizing
the smoothed QME maximand QN (0, w̄) as above, we may obtain individual
QME’s separately to combine them later with MDE. This should be more
efficient, but more involved as well. These statements regarding QME and w
also apply more or less to another estimator “WME” to appear shortly.

Lee and Kim (1998) proposed a two-stage algorithm to avoid the max
function in the QME maximand. In the first stage, minimize

1
N

N∑
j=1

K

(
xj − xi

h

){
(yj − qi)21[|yj − qi| < w] + w21[|yj − qi| ≥ w]

}
wrt qi where K is a kernel and h is a bandwidth that may be selected by
cross-validation with kernel regression of y on x. This is a one-dimensional
minimization, and a grid search over qi may be employed. Although this
minimand is not convex in qi, it has an U-shape trimmed at w2, which is not
ill-behaving in practice. Denoting the minimizer as q̂i, we do not in fact need
to know the exact value of q̂i, because the second step is minimizing

1
N

∑
i

{ (yi − x′ib)
21[|yi − x′ib| < w] + w21[|yi − x′ib| ≥ w] } · 1[q̂i > w]

wrt b where it is sufficient to know only whether q̂i > w or not in the first
stage.

Lee and Kim (1998) reviewed econometric estimators for the truncated
model. Other than the review, they also propose an improved estimator for
the truncated response model, which removes the density component in the
asymptotic variance of QME by replacing the inverted U-shaped weighting
interval with one that approaches the horizontal axis smoothly. One such
estimator is cosine estimator maximizing
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1
N

∑
i

[
1 + cos

{
yi − max(x′ib, wπ)

w

}]
· 1

[ |yi − max(x′ib, wπ)|
w

< π

]
.

Since the argument of the function 1+cos(·) lies between ±π, 1+cos(·) stays
above zero while smoothly approaching zero (the horizontal axis), differently
from the quadratic weights in QME and STLS. The asymptotic distribution
is

√
N(bcos − β)� N(0, G−1LG−1) where

G ≡ E

{
1[x′β > wπ] xx′

1[|u| < wπ]
w2

cos
( u

w

)}
,

L ≡ E

{
1[x′β > wπ]xx′

1[|u| < wπ]
w2

(
sin(

u

w
)
)2

}
.

The sample analogs for G and L are easy to see.
Instead of the cosine “kernel,” one may use the biweight kernel (15/16)(1−

t2)21[|t| < 1] which also approaches zero smoothly, where t is to be replaced
with {y−max(x′b, w)}/w. Baldauf and Santos-Silva (2008, on the use of iter-
atively reweighted least squares M-estimators in econometrics, unpublished
paper, University of essex.) show that a version of this estimator with “tri-
weight” kernel (35/32)(1−t2)31[|t| < 1] is implemented in STATA as a robust
regression with command rreg. It is not clear in STATA which location mea-
sure in y|x gets estimated, but our discussion reveals that it is Mode(y|x) if
the “tuning constant” w is small and the partial symmetry up to ±w holds.

QME may be implemented with the Newton–Raphson-type iteration:

b1 = b0 +

{∑
i

1[x′ib0 > w] · 1[|yi − x′ib0| < w]xix
′
i

}−1

∑
i

1[x′ibqme > w] · 1[|yi − x′ib0| < w]xi(yi − x′ib0).

If the inverted matrix is not p.d., then one of the indicator functions there may
be dropped. The inverted matrix uses only W , not W −V , in the asymptotic
variance. Unless there occurs the problem of non p.d., using W − V would
be better in the iteration.

The Newton–Raphson-type iteration can be applied also to the cosine
estimator. But QME is likely to converge better than the cosine estimator,
because the QME’s second-order derivatives are non-negative whereas those
of the cosine estimator can take either sign. This happens because the cosine
function has to change its second derivative signs to touch the horizontal axis
smoothly.

2.3.3 Winsorized Mean Estimator (WME)

In trimmed mean, we saw a way of robustifying LSE. One trade-off of do-
ing it is the loss of efficiency by not using the quantitative information in the
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data with |y − x′b| ≥ w. Another robust estimator “winsorized mean” is ob-
tained by combining the mean and median regressions. Consider minimizing

1
N

∑
i

{
1
2
(yi − x′ib)

2 · 1[|yi − x′ib| < w]

+
(
w|yi − x′ib| −

w

2

)
· 1[|yi − x′ib| ≥ w]

}
.

The information in |y − x′b| ≥ w is not thrown away; instead its impact is
downgraded by taking the absolute value, not the squared value. As it turns
out, this version is applicable to censored models as follows.

For the censored model y = max(x′β + u, 0) where fu|x is symmetric
around 0 up to ±w, Lee (1992b) suggested to minimize

1
N

∑
i

[
1
2
{yi − max(x′ib, w)}2 · 1[|yi − max(x′ib, w)| < w]

+{w|yi − max(x′ib, w)| − w

2
} · 1[|yi − max(x′ib, w)| ≥ w]

]
;

the first term was seen in QME. This estimator is called the winsorized mean
estimator (WME). WME does not need the strict unimodality of u|x as QME
does.

Other than for the max function, the minimand is convex. A two-stage
algorithm analogous to the one for QME goes as follows. In the first-stage,
minimize wrt qi

1
N

N∑
j=1

K

(
xj − xi

h

){
1
2

(yj − qi)
2 · 1 [|yj − qi| < w]

+
(
w|yj − qi| −

w

2

)
· 1 [|yj − qi| ≥ w]

}
.

As in the QME two-stage procedure, the exact value of the minimizer q̂i is
not required: we only have to find out whether q̂i > w or not. In the second
stage, minimize wrt b

1
N

∑
i

{
1
2
(yi − x′ib)

21 [|yi − x′ib| < w]

+
(
w|yi − x′ib| −

w

2

)
1[|yi − x′ib| ≥ w]

}
· 1[q̂i > w].

The asymptotic first-order condition for WME is

Ex[ 1[x′β > w] x Eu|x{1[|u| < w]u + (1[u > w] − 1[u < −w])w} ] = 0;

given x′β > w, we replace u by −w if u < −w and by w if u > w. This is
analogous to SCLS where u is replaced by −x′β if u < −x′β and by x′β if
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u > x′β when x′β > 0. While SCLS needs the symmetry of fu|x up to ±x′β
(±∞ if x′β has unbounded support), WME needs it only up to ±w. WME
is consistent for β and

√
N(bwme − β)� N [0, C−1 · E

{
1[x′β > w] min(u2, w2) xx′

}
· C−1]

where C ≡ E {1[x′β > w, |u| < w] xx′} .

Lee (1995a) applied WME to female labor supply data.
Recall that the αth quantile is obtained when the asymmetric loss func-

tion (y − q)(α− 1[y − q < 0]) is used where q is the predictor. As Newey and
Powell (1987) examined an analogous asymmetric squared loss function to
come up with “expectiles,”it is possible to use asymmetric loss function for
QME and WME—“modile” might be the right name here. Karlsson (2006)
indeed explored this generalization, although the generalization did not go far
enough to find any interesting characterization of the “modiles.”Karlsson and
Laitila (2008) combined QME and WME to deal with LTRC (left-truncated
and right-censored) data.

The motivation for trimmed mean and winsorized mean in the statistics
literature is their robustness to outliers (while not losing much in efficiency).
Both truncation and censoring can be viewed as ways of data contamination,
and thus it is only natural that QME and WME are applicable to truncated
and censored models.

Initially, trimmed mean and winsorized mean were proposed for one
sample problem (i.e., finding a location measure for y without x), and it
has been less than straightforward to generalize the location trimmed or
winsorized mean to linear regression models—no censoring/truncation here.
Koenker and Bassett (1978) proposed a quantile-based “trimmed regression
estimator” for the linear model y = x′β + u: do the LSE after removing the
observations whose residual from the αth regression quantile is negative or
whose residual from the (1−α)th regression quantile is positive, where α is a
small positive number, say 0.05. The following trimmed regression estimator
in Welsh (1987) is similar to this and may be preferred on some ground (see
e.g., Chen et al., 2001).

Given a preliminary estimator for β and the residuals û1, ..., ûN , let ξα

be the αth quantile in the residuals. The Welsh (1987) estimator is(∑
i

xix
′
i1[ξα < ûi < ξ1−α]

)−1 ∑
i

xiỹi, where

ỹi ≡ ξα(1[ûi < ξα] − α) + yi1[ξα < ûi < ξ1−α]

+ ξ1−α

(
1
[
ξ1−α < ûi

]
− α

)
.

The form of ỹ is reminiscent of winsorized mean, and surprisingly, the prelimi-
nary estimator does not affect this estimator’s asymptotic variance. Although
this kind of trimmed estimators are robust to outliers in y, they are not robust
to outliers in x.



396 Ch. 8 Bandwidth-Free Semiparametric Methods

2.4 Estimators for Censored-Selection Models

Consider a censored-selection model:

δ∗i = x′iα + εi > 0, yi = x′iβ + ui

(1[δ∗i > 0]δ∗i , 1[δ∗i > 0]yi, x
′
i), i = 1, ..., N , are observed.

In this model, δ∗ as well as y are observed when δ∗ > 0. If only (1[δ∗ >
0], 1[δ∗ > 0]y, x′) is observed, then we get the usual binary-selection model.
For instance, y is weakly wage and δ∗ is work hours: when δ∗ > 0, both wage
and work hours are observed. This model contains much more information
than the corresponding binary-selection model, and exclusion restrictions are
not required for this model. Since we have

δi ≡ 1[δ∗i > 0]δ∗i = max(δ∗i , 0) = max(x′iα + εi, 0)

which is a familiar censored model, α can be estimated with any of the
censored model estimators reviewed earlier. In the following, we introduce
two LSE-based estimators for β in Honoré et al. (1997).

For the first estimator of Honoré et al. (1997), suppose (ε, u) is “centrally
symmetric”: (ε, u)|x follows the same distribution as (−ε,−u)|x. This implies
that the marginal distributions of ε|x and u|x are symmetric about zero:

f(u|x) =
∫

f(ε, u|x)dε =
∫

f(−ε,−u|x)dε

=
∫

f(v,−u|x)dv = f(−u|x).

When δ = 0 ⇐⇒ −x′α < ε, the central symmetry breaks down, and u|(x,−x′

α < ε) is not symmetric about zero. The idea is to artificially trim ε to restore
the marginal symmetry:

u|(x,−x′α < ε < x′α) = u|(x, 0 < δ∗ < 2x′α) is symmetric about zero.

This can be seen by looking at the density of u|(x,−x′α < ε < x′α):∫ x′α
−x′α f(ε, u|x)dε∫ ∫ x′α
−x′α f(ε, u|x)dεdu

=

∫ x′α
−x′α f(−ε,−u|x)dε∫ ∫ x′α
−x′α f(−ε,−u|x)dεdu

=

∫ x′α
−x′α f(v,−u|x)dv∫ ∫ x′α
−x′α f(v,−u|x)dvdu

;

i.e., the density with u replaced by −u remains the same.
Denoting a

√
N -consistent estimator for α as aN , a

√
N -consistent esti-

mator for β can be obtained by minimizing wrt b

1
N

∑
i

1[0 < δ∗i < 2x′iaN ] · (yi − x′ib)
2
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because u|x is symmetric given 0 < δ∗ < 2x′α. Let γ ≡ (α′, β′)′ and gN ≡
(a′N , b′N )′. Honoré et al. (1997) presented the asymptotic distribution and
consistent estimators for the asymptotic variance, which were, however, fairly
complicated. Instead, they suggested to use bootstrap.

The second estimator of Honoré et al. (1997) requires (ε, u) to be in-
dependent of x and uses the pairwise differencing estimator in Honoré and
Powell (1994) for aN—this pairwise differencing idea will be examined in
detail in the following section. The idea is that, given

εi > max(−x′iα,−x′jα), εj > max(−x′jα,−x′iα) ⇐⇒
δi > max{0, (xi − xj)′α}, δj > max{0, (xj − xi)′α}

(adding x′iα and x′jα, respectively)

ui − uj is symmetric about zero because εi an εj are trimmed by the same
threshold. The second estimator is obtained by minimizing∑

i<j

1[δi > max{0, (xi − xj)′aN}, δj > max{0, (xj − xi)′aN}] ·

{yi − yj − (xi − xj)′b}2

wrt b. The asymptotic inference may be done with bootstrap.
Differently from the parametric approaches, it seems difficult to deal with

binary-selection models in a semiparametric bandwidth-free fashion, which
is why no semiparametric estimator has been introduced for binary-selection
in this chapter. The next chapter will present some bandwidth-dependent
semiparametric estimators for binary-selection models; for censored-selection
models, see Lee and Vella (2006) and the references therein. An alternative is
giving up on estimating β, but instead “bounding” the parameters of inter-
est such as Qα(y|x) or E(y|x). See Lee and Melenberg (1998) for bounding
quantiles and Lee (2005b) for bounding mean in binary-selection models.

3 Rank-Based Methods

In addition to quantiles, mode and symmetry-based ideas, rank and dif-
ferencing have been adopted to deal with LDV models within semiparametric
framework, which are reviewed in this and the following sections. Differently
from the preceding section, however, rank and difference-based estimators
are applicable not just to LDV models, but also to “single index models,”
transformation-of-variable models, and partially linear models. Section 3.1
introduces single index models along with one conceptually straightforward
estimator; multiple index models are briefly discussed as well. Sections 3.2–
3.4 review rank-based estimators: Section 3.2 uses pairs in a given data,
Section 3.3 uses triples, and Section 3.4 uses quadruples. Section 3.5 intro-
duces an estimator for Λ(·) where Λ(y) = x′β + u and Λ(·) is an unknown
increasing transformation.
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3.1 Single Index Models (SIM)

3.1.1 Single Index and Transformation of Variables

In a wide sense, a “single-index model” (SIM) is a model where x affects
y only through x′β. For example, some regression function in the conditional
distribution of y|x may depend on x, but only through x′β. In a narrow sense,
the definition is restricted to models with E(y|x) = G(x′β) for a function G
whose form may be unknown. This may be called “mean index sufficiency”
because knowing the scalar x′β is as good as knowing the vector x, as far
as the mean is concerned. We will adopt the narrow definition E(y|x) =
G(x′β) unless otherwise necessary as we did earlier for nonlinear regression
models. In this definition, there is no restriction on V (y|x); “variance index
sufficiency” or variance independence (i.e., homoskedasticity) may not hold.
Note that, even under the wide definition, β may still be estimable using
E(y|x) = G(x′β). If desired, one may further restrict the definition of SIM
to models with a (strictly) monotonic G(·), or even to a (strictly) increasing
G(·) if the relation between y and x is known to be positive.

Consider a transformation-of-variable model :

Λ(yi) = x′iβ + ui where Λ(·) is an unknown, continuous,
and strictly increasing function.

Add a constant βo and multiply both sides by a positive constant γ to get

{Λ(yi) + βo}γ = (x′iβ + βo)γ + γui

which can be rewritten as Λ∗(yi) = x′iβ
∗ + u∗i for the appropriately defined

Λ∗, β∗, and u∗i —βo is absorbed into the intercept in x′iβ; as Λ, β, and ui are
unknown, they can be rewritten “freely.”

The last display illustrates that β is identified only up to a positive scale
(and an additive constant). By inverting Λ, we get yi = Λ−1(x′iβ + ui) and
E(y|x) =

∫
Λ−1(x′β + u)fu|x(u)du that is not necessarily a SIM as x can

appear in fu|x as well as in x′β. But if u � x, then we get a SIM

E(y|x) =
∫

Λ−1(x′β + uo)fu(uo)duo

that is a strictly increasing function of x′β.

If Λ(·) is not known to be increasing but only monotone, then the above scale
factor γ can take on a negative as well as positive value, and consequently
β is identified only up a scale (and an additive constant). If u depends on x
only through x′β—i.e., if fu|x′β appears—then the last display is still a single
index model but it is no longer clear whether E(y|x) is monotone or not as
a function of x′β.

To motivate the transformation-of-variable model, note “accelerated fail-
ure time” model:

ln y = −x′β + u, u � x, eu has integrated hazard function Λ(·)
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=⇒ P (y> t|x) = P (e−x′βeu > t|x) = P (eu > tex′β |x) = exp{−Λ(tex′β)}

where the role of ex′β in Λ(tex′β) is to “accelerate (or decelerate)” the time t.
Here, we are assuming that log transformation yields the linear model, which
may be, however, too restrictive. A generalization is Γ(y, θ) = −x′β + u
with θ being a parameter as in the Box-Cox transformation that appeared
already for nonlinear regression. A further generalization of this is to allow
an unknown transformation Λ(y) as above.

3.1.2 Simple Single-Index Model Estimator

Consider a semiparametric single index model

y = G(x′β) + u, E(u|x) = 0,
G(·) is an unknown continuously differentiable function.

Several examples for this appeared already in this and preceding chapters.
Since any re-scaling of β can be absorbed into the unknown G, we can identify
β only up to a scale. For an analogous reason, intercept is not identified
either. If G is known to be increasing or decreasing, then β is identified up
to a positive scale (i.e., up to a scale whose sign is identified).

Suppose that x has a density f(x) with continuous gradient ∇f(x),
and f(x) is zero on the boundary ∂Ω of the support Ω of x. Then under
E{∂G(x′β)/∂x} < ∞, using integration by parts,

E

{
∂G(x′β)

∂x

}
=

∫
Ω

∂G(x′β)
∂x

f(x)dx

= G(x′β)f(x) |∂Ω −
∫

Ω

G(x′β)∇f(x)dx.

As partial differentiation is involved, view G(x′β)f(x) |∂Ω also as “par-
tially.”For example, with k = 2 and Ω = [−1, 1] × [−2, 2], G(x′β)f(x) |∂Ω

for ∂x1 is G(x′β)f(x) |x1=1 −G(x′β)f(x) |x1=−1.
The first term on the right-hand side disappears, and we get

E

{
∂G(x′β)

∂x

}
= −

∫
Ω

G(x′β)∇f(x)dx = −
∫

G(x′β)∇f(x)1[f(x)>0]dx

= −
∫
{G(x′β) + u}∇f(x)

f(x)
1[f(x) > 0]f(x)dx (for E(u|x) = 0)

= −
∫

y
∇f(x)
f(x)

1[f(x) > 0]f(x)dx = E

{
y
−∂ ln f(x)

∂x
1[f(x) > 0]

}
.

Since

E

{
∂G(x′β)

∂x

}
= E

{
dG(x′β)
d(x′β)

}
· β ≡ γβ where
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γ ≡ E

{
dG(x′β)
d(x′β)

}
is a scalar

we get the key equation

γβ = γ(β1, ..., βk)′ = −E

{
y
∂ ln f(x)

∂x
1[f(x) > 0]

}
.

If f(x) is known, then γβ can be estimated by (Stoker, 1986)

γ̂β ≡ − 1
N

∑
i

yi
∂ ln f(xi)

∂x
1[f(xi) > 0].

This equation links β to the marginal distribution of x, which may look some-
what strange at the first sight. In terms of the restrictiveness of assumptions,
this estimator is not any better than estimators specifying G, because f has
to be specified. The estimator, however, opened the way to other semipara-
metric methods for SIM. The obvious thing to do is replacing −∂ ln f(xi)/∂x
with a nonparametric estimator. This idea and others for SIM will be exam-
ined in the next chapter.

3.1.3 Double or Multiple Indices

SIM provide a sensible compromise between parametric and purely non-
parametric models. The SIM E(y|x) = G(x′β) limits nonlinearity into the
indexing function G(·), while preserving the linearity in x′β. Consequently it
is more manageable than the purely nonparametric model. As noted already,
however, one major drawback is the up-to-scale identification which more or
less limits its application to cases where the scale of the response variable is
not observed. Another major drawback is, as its name indicates, the effect
of x on y can be only through the sole index. In the following, we explore
double or multiple index models to relax the latter.

Generalizing SIM is double index model where the conditional mean of
interest depends on x and z through two indices, say x′β and z′γ; x = z is
allowed in principle. For instance, recall the sample selection model where
y∗ = x′β + u is observed only when z′γ + v > 0. Denoting the joint density
of u and v as f(u, v) where (u, v) � (x, z), it holds that

E(y∗|x, z, v > −z′γ) = x′β + E(u|x, z, v > −z′γ)

= x′β +

∫∞
−∞

∫∞
−z′γ uf(u, v)dvdu∫∞

−∞
∫∞
−z′γ f(u, v)dvdu

the right-hand side of which depends on x and z only through x′β and z′γ. As
well known, if f(u, v) = f(u)f(v) and E(u) = 0, then E(y|x, z, v > −z′γ) =
x′β: a SIM holds despite the selection process.
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Another example of double index model is the transformation-of-variable
model Λ(y) = x′β + u ⇐⇒ y = Λ−1(x′β + u) where u may depend on
regressors but only through a linear index z′γ:

E(y|x, z)=
∫

Λ−1(x′β + uo)fu|(x,z)(uo)duo =
∫

Λ−1(x′β + uo)fu|z′γ(uo)duo.

Yet another example is a bivariate-binary model:

yj = 1[x′βj + uj > 0], j = 1, 2, (u1, u2) � x,

=⇒ E(y1y2|x) = P (u1 > −x′β1, u2 > −x′β2|x) = H(x′β1, x
′β2)

where H(·, ·) is the “joint survival” function of (u1, u2): H(w1, w2) ≡ P (u1 >
w1, u2 > w2). This example with two indices sharing the same regressor x,
however, poses a problem as in the following.

A difficulty with double- or multiple-index models is that, unless some
restrictions are imposed, the parameters are identified only under exclusion
restrictions. To see this point, suppose E(y|x) = H(x′β, x′γ), which is a
special case of H(x′β, z′γ) with x = z. Then

∂E(y|x)
∂x

= H1(x)β + H2(x)γ where Hj(x) ≡ ∂H(w1, w2)
∂wj

, j = 1, 2,

=⇒ E

{
∂E(y|x)

∂x

}
= E{H1(x)}β + E{H2(x)}γ;

here β and γ are not separated, i.e., not identified. If the (k − 1)th and
kth elements of x are in x′β but not in z′γ (exclusion restrictions), then
E{∂E(y|x)/∂xj} = E{H1(x)}βj , j = k − 1, k. In this case, βk/βk−1 is iden-
tified (under βk−1 = 0) because

βk

βk−1

=
E{∂E(y|x)/∂xk}

E{∂E(y|x)/∂xk−1}
.

Triple or higher index models can be easily thought of. We already saw
that multiple choice models can have this structure where the linear indices
come from the systematic parts of the alternative utilities. Another example
is a sample selection model with multiple selection criteria: y∗ = x′β + u is
observed only when z′jγj + vj > 0, j = 1, ..., J . Yet another example is a
multivariate-binary model yj = 1[x′βj + uj > 0], j = 1, ..., J .

3.2 Kendall Rank Correlation Estimator (KRE)

So far we introduced two consistent semiparametric estimators for the
binary response model y = 1[x′β + u ≥ 0]: maximum score estimator (MSC)
and the single index estimator in the preceding subsection. In this subsection,
we examine a

√
N -consistent estimator that is more practical than the two

estimators. More estimators will be seen later.
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3.2.1 Estimator and Identification

Han (1987a) proposed “Kendall Rank Correlation Estimator (KRE)” max-
imizing

QN (b) ≡ 1
N(N − 1)

∑
i�=j

1[x′ib > x′jb, yi > yj ]

=
1

N(N − 1)

∑
i<j

{
1[x′ib > x′jb, yi > yj ] + 1[x′jb > x′ib, yj > yi]

}
=

2
N(N − 1)

∑
i<j

1
2
{
1[x′ib > x′jb, yi > yj ] + 1[x′jb > x′ib, yj > yi]

}
.

The motivation comes from the fact that maximizing QN (b) is equivalent to
maximizing Kendall’s rank correlation between y and x′b:

4QN (b) − 1 =
2

N(N − 1)

∑
i<j

2{1[x′ib > x′jb, yi > yj ]

+ 1[x′jb > x′ib, yj > yi]} − 1.

Since multiplying x′b by a positive constant does not change the ordering
x′ib > x′jb, the parameters for KRE are identified only up to a positive scale.
For this reason, we will discuss KRE only for binary responses, although
KRE is also applicable to other LDV’s. Note that x should not include unity,
because only the difference xi−xj matters for KRE in x′ib−x′jb = (xi−xj)′b
where the intercept disappears. In probit and MSC, x includes unity although
the intercept in β is not identified—the intercept plus something is estimated
with unity. In difference-based methods as KRE, x should not include unity
and the intercept is not identified.

The main assumptions for KRE are x�u and the existence of at least one
continuous regressor, say xk, with unbounded support (conditional on all the
other regressors). The latter also appeared for MSC, which makes excluding
the ties x′ib = x′jb in QN (b) harmless. Assume that u has a continuous and
strictly increasing distribution function Fu(·) and Su(·) ≡ 1−Fu(·). The idea
of KRE is similar to MSC: if x′iβ > x′jβ, then yi > yj is more likely than
yi < yj . That is,

P (yi > yj |xi, xj) > P (yi < yj |xi, xj) whenever x′iβ > x′jβ.

Hence we can estimate β by maximizing the “pairwise prediction score”
QN (b).

To understand the idea of KRE better, observe that the population ver-
sion of the summand in QN (b) (with

∑
i<j) conditional on xi and xj is (the

pairs with yi = yj drop out)
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P (yi = 1, yj = 0|xi, xj) 1[x′ib > x′jb]

+ P (yj = 1, yi = 0|xi, xj) 1[x′jb > x′ib]

= P (yi = 1|xi)P (yj = 0|xj) 1[x′ib > x′jb]

+ P (yi = 0|xi)P (yj = 1|xj)1[x′jb > x′ib]

= P (ui ≥ −x′β|xi)P (uj < −x′jβ|xj)1[x′ib > x′jb]

+ P (ui < −x′iβ|xi)P (uj ≥ −x′jβ|xj)1[x′jb > x′ib]

= Su(−x′iβ)Fu(−x′jβ) 1[x′ib > x′jb] + Fu(−x′iβ) Su(−x′jβ) 1[x′jb > x′ib].

Suppose x′iβ > x′jβ. Since Fu(−t) is strictly decreasing in t and Su(−t) is
strictly increasing in t,

Su(−x′iβ) · Fu(−x′jβ) > Su(−x′jβ) · Fu(−x′iβ).

It is at this step that “u�x” is invoked; otherwise, x′iβ > x′jβ does not neces-
sarily imply this display. Thus, when x′iβ > x′jβ, the conditional maximand
is maximized by choosing 1[x′ib > x′jb], not 1[x′ib < x′jb]; the opposite holds
when x′iβ < x′jβ. In essence, maximizing QN (b) is the same as matching the
sign of x′ib − x′jb with that of x′iβ − x′jβ whereas LSE matches x′b with x′β
as can be seen in

E(y − x′b)2 = E{(x′β − x′b) + u}2 = E(x′β − x′b)2 + E(u2).

KRE is better than probit and logit, as KRE does not specify the
error-term distribution. KRE is better than MSC because KRE is

√
N -

consistent with an useful asymptotic distribution, but worse because x � u
is assumed. KRE is a SIM estimator, because the dependence of y on x
takes place only through the index x′β thanks to x � u. KRE is better
than the SIM estimators to appear in the next chapter, because KRE is
bandwidth-free while those SIM estimators are not—this is why KRE is re-
viewed in this chapter. Also KRE is better than the other SIM estimators
in general because KRE estimates the parameters up to a positive scale, but
worse because KRE assumes x� u. But the following example demonstrates
that the difference between KRE and the other SIM estimators is actually
small.

Consider a binary response model with heteroskedasticity:

y∗i = x′iβ + ui, ui = σ(x′iβ)vi, v � x, and yi = 1[y∗i ≥ 0]

=⇒ E(y|x) = 1 − Fv

{ −x′β
σ(x′β)

}
= G(x′β) where Fv is the df of v
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and Fv(·) and σ(·) are unknown functions. This is a SIM with a restricted
form of heteroskedasticity: the heteroskedasticity factor is a function of the
same index. KRE still works if we assume x′β/σ(x′β) is increasing in x′β; x�u
is not necessary, and thus the aforementioned advantage of SIM over KRE
disappears. But in this case, the advantage of KRE also disappears because
G(·) is increasing and the sign of the unknown scale factor is identified in the
other SIM estimators. Therefore, KRE and the other SIM estimators become
close. Justifying that x′β/σ(x′β) is increasing is not easy because σ(x′β) may
depend on x′β only through |x′β|, which is why x� u was assumed in KRE.

3.2.2 Asymptotic Distribution

Let zi ≡ (x′i, yi)′. With Q(b) ≡ E{1[yi > yj , x
′
ib > x′jb]}, Sherman (1993)

rewrote QN (b) with
∑

i�=j as

QN (b) = Q(b) +
1
N

∑
i

[E{1[yi > yj , x
′
ib > x′jb]|zi} − Q(b)]

+
1
N

∑
j

[E{1[yi > yj , x
′
ib > x′jb]|zj} − Q(b)] +

1
N(N − 1)

∑
i�=j

λ(zi, zj , b)

where

λ(zi, zj , b) ≡ 1[yi > yj , x
′
ib > x′jb] − [E{1[yi > yj , x

′
ib > x′jb]|zi} − Q(b)]

− [E{1[yi > yj , x
′
ib > x′jb]|zj} − Q(b)] − Q(b).

The first term Q(b) yields the second-order matrix in the usual M-estimator,
the middle two terms yield the asymptotic distribution for KRE, and that
the last term with λ(·) is a negligible op(N−1) term. This procedure of rewrit-
ing a double sum—a “U-statistic” (or “U-process” indexed by b; see Nolan
and Pollard (1987, 1988) and Sherman (1994))—into single sums is called
the projection of U-statistic; see, e.g., Serfling (1980) and Lehman (1999) for
more on U -statistics. QN (b) has an indicator function which is not differ-
entiable. But QN (b) has double sums, and one sum smooths the indicator
function to yield

√
NQN (b) = N−1/2

∑
i q(b) + op(1), and the other provides

a CLT to N−1/2
∑

i q(b). This is the key point for the
√

N -consistency and
the asymptotic distribution of KRE.

Set βk = 1 without loss of generality, and define

xkc ≡ (x1, ..., xk−1)′, βkc ≡ (β1, ..., βk−1)
′.

Note that sgn(βk) can be treated as known, because any consistent estima-
tor τN for sgn(βk) should satisfy P{τN = sgn(βk)} → 1, which implies
P{Nν |τN − sgn(βk)| ≤ ε} → 1 for any constant ν, ε > 0. Hence, the es-
timation error τN − sgn(βk) does not affect the asymptotic distribution of√

N(bkc − βkc). Sherman (1993) proved
√

N(bkc − βkc)� N(0, V −1
1 Δ1V

−1
1 ) where
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V1 ≡ E[ {xkc − E(xkc|x′β)}{xkc − E(xkc|x′β)}′ ψ(x′β) fu(−x′β) ]

Δ1 ≡ E[ {xkc − E(xkc|x′β)}{xkc − E(xkc|x′β)}′ ψ(x′β)2 Fu(−x′β)

{1 − Fu(−x′β)} ]

ψ(x′β) is the density of x′β and fu = F ′u.
Let bN ≡ (b′kc, sgn(βk))′. In estimating the asymptotic variance, the

main difficulty is in getting fu(−x′β), for u is not identified. But in binary
response models, owing to E(y|x′iβ) = 1 − F (−x′iβ), we can estimate 1 −
F (−x′iβ) with

1 − FN (−x′ibN ) ≡
∑

j,j �=i K((x′jbN − x′ibN )/s) · yj∑
j,j �=i K((x′jbN − x′ibN )/s)

where s is a smoothing parameter. Differentiating this wrt x′ibN , fu(−x′β)
can be estimated by

fN (−x′ibN ) = −1
s

∑
j,j �=i K ′((x′jbN − x′ibN )/s)yj∑

j,j �=i K((x′ibN − x′ibN )/s)

+
1 − FN (−x′ibN )

s

∑
j,j �=i K ′((x′jbN − x′ibN )/s)∑
j,j �=i K((x′jbN − x′ibN )/s)

where K ′(t) ≡ dK(t)/dt. Alternatively, it may be simpler to use a numerical
derivative: for a small positive constant ε,

f̂N (−x′ibN ) =
FN (−x′ibN + ε) − FN (−x′ibN − ε)

2ε
.

The bandwidth for fN (−x′ibN ) and f̂N (−x′ibN ) should be greater than the
bandwidth for 1 − FN (−x′ibN ). In summary, V1 may be estimated by (esti-
mating Δ1 is easier and so omitted)

1
N

∑
i

{xikc − EN (xkc|x′ibN )}{xikc − EN (xkc|x′ibN )}′ ψN (x′ibN )

f̂N (−x′ibN ) where

EN (xkc|x′ibN ) ≡
∑

j,j �=i Kjixjkc∑
j,j �=i Kji

, ψN (x′ibN ) ≡ 1
(N − 1)h

∑
j �=i

Kji,

Kji ≡ K

(
x′jbN − x′ibN

h

)
.

Computationally, KRE needs an algorithm that does not require gra-
dients (e.g., “downhill simplex”). If we want to use a derivative-based al-
gorithm, we may smooth the maximand by replacing 1[x′ib > x′jb] with a
smooth J((x′ib − x′jb)/h) with J(−∞) = 0 and J(∞) = 1 and h → 0; e.g.,
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J(·) = Φ(·). This idea of smoothing already appeared in the “smoothed”
MSC. Without smoothing, the KRE’s maximand will return zero gradients
as it consists of indicator functions. With J((x′ib − x′jb)/h) used, the gra-
dient is useful, but not the Hessian as it can be non n.d. That is, an al-
gorithm using only gradients may work fine, but not the Newton–Raphson
algorithm.

Although KRE is bandwidth-free, its asymptotic variance depends on
the density functions of u and x′β, which require nonparametric estima-
tion methods. In fact, if we use the above smoothing idea, a bandwidth will
creep in even for the estimator itself. If an algorithm that does not require
gradients is used and then followed by bootstrap inference, the bandwidth
choice issue will be completely disposed of. Although not proven, this might
be the best way to proceed because the above asymptotic variance estima-
tor tends to over-estimate the variance in practice; the source of this prob-
lem seems to be fN (−x′ibN ) in V1 being too small relative to FN (−x′ibN )
in Δ1.

Although we focused on binary response models for KRE, KRE can
be useful also for transformation-of-variable models where the scale is not
identified; this will be shown next. In general, KRE works whenever the
“sign-matching” idea works as evident in QN (b).

3.2.3 Randomly Censored Duration with Unknown
Transformation

Khan and Tamer (2007) proposed “partial rank estimator (PRE)” for
randomly right-censored duration with an unknown transformation of the
duration being linear in x and u. Specifically, for an unknown strictly in-
creasing transformation T (·), suppose

T (y∗i ) = x′iβ + ui, T (c∗i ) = ci, yi ≡ min(y∗i , c∗i )

=⇒ di ≡ 1[y∗i ≤ c∗i ] = 1[T (y∗i ) ≤ T (c∗i )] = 1[x′iβ + u ≤ ci],

T (yi) = T{min(y∗i , c∗i )} = min{T (y∗i ), T (c∗i )} = min(x′iβ + ui, ci)

where u is independent of x but its distribution unknown, and y∗ � c∗|x.
In terms of the “non-starred” variables, we have just

T (yi) = min(x′iβ + ui, ci) and di = 1[x′iβ + ui ≤ ci].

This model could have come from

y∗i = x′iβ + ui, c∗i = ci, T (yi) = min(y∗i , c∗i ) and di ≡ 1[y∗i ≤ c∗i ].

But thinking in this way would not make sense, because T (yi) = min(y∗i , c∗i )
is non-sensical: there is no reason to transform yi which records merely the
short end of y∗i and ci.
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PRE is obtained by maximizing

1
N(N − 1)

∑
i�=j

di1[yi < yj ]1[x′ib < x′jb].

The adjective “partial” is used in PRE because censored observations are
used “partially” as in Cox (1972) partial MLE. The appearance of di (but
not dj) can be understood from “yi < yj iff y∗i < y∗j ” under di = 1—right-
censoring for y∗j is irrelevant when yi < yj . This is the idea in Gehan (1965)
that uses censored observations as much as possible, and this idea has been
also adopted in Lee (2009).

An inefficient estimator that discards all censored observations can be
thought of when didj replaces di in the maximand. Abrevaya (1999) pro-
posed an estimator reminiscent of this inefficient estimator for a truncated
regression model: for unknown strictly increasing transformations T (·) and
G(·),

T (yi) = G(x′iβ) + ui, ui � xi, (x′i, yi, ti)′ observed only when yi > ti.

The estimator maximizes

1
N(N − 1)

∑
i�=j

δij1[yi < yj ]1[x′ib < x′jb] where

δij = 1[yi > tj , yj > ti] = 1[yi > max(ti, tj), yj > max(ti, tj)].

Abrevaya (1999) proposed another version using the estimator in Cavanagh
and Sherman (1998) which is explained in the following subsection.

Khan and Tamer (2007) also extended the estimator to interval censor-
ing. Consider two random censoring durations c∗1i and c∗2i with c∗1i < c∗2i such
that the observed duration is max{c∗1i,min(y∗i , c∗2i)}. Define

di = 1[c∗1i ≤ y∗i ] + 1[c∗2i ≤ y∗i ]
= 0 · 1[y∗i < c∗1i] + 1 · 1[c∗1i ≤ y∗i < c∗2i] + 2 · 1[c∗2i ≤ y∗i ].

That is, di takes 0, 1, 2 depending on which interval y∗i falls on the real line
marked by c∗1i and c∗2i. The question is when “yi < yj” implies “y∗i < y∗j ,”
which is examined in the following.

Consider (“yes” means yi < yj =⇒ y∗i < y∗j )

di = 0, dj = 1 : yes as y∗i < (c∗1i =) yi < yj = y∗j
di = 0, dj = 2 : yes as y∗i < (c∗1i =) yi < yj (= c∗2j) ≤ y∗j
di = 1, dj = 2 : yes as y∗i = yi < yj (= c∗2j) ≤ y∗j
di = dj : yes only when di = dj = 1 as y∗i = yi < yj = y∗j
di = 2, dj = 0 : no as y∗i > yi (= c∗2i) < (c∗1j =) yj > y∗j
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di = 2, dj = 1 : no as y∗i > yi (= c∗2i) < yj = y∗j
di = 1, dj = 0 : no as y∗i = yi < yj (= c∗1j) > y∗j .

That is, only the cases with di = 0, 1 and dj = 1, 2 are useful, and this yields
the maximand

1
N(N − 1)

∑
i�=j

{1 − 1[di = 2]}{1 − 1[dj = 0]} · 1[yi < yj ]1[x′ib < x′jb].

3.3 Spearman Rank Correlation Estimator (SRE)

Cavanagh and Sherman (1998) proposed a generalized version of KRE.
Let M(·) be a known increasing function and define

RN (ai) ≡
N∑

j=1

1[aj ≤ ai]

which is the rank of ai in {a1, ..., aN} under no ties. Cavanagh and Sherman
(1998) maximized∑

i

M(yi)RN (x′ib) =
∑

i

∑
j

M(yi)1[x′jb ≤ x′ib].

Call this “Spearman Rank Correlation Estimator (SRE)” for a reason to be
seen below. As in KRE, β is identified up to a positive constant and the
intercept is not identified; x does not include 1.

The main condition for the consistency of this estimator is the single
index condition plus positive monotonicity :

E{M(y)|x} = G(x′β) which is a non-constant, increasing
function of x′β;

i.e., SRE works whenever there exists M(·) satisfying this display. In addition,
as in MSC and KRE, there should be at least one regressor with unbounded
support conditional on the other regressors. Because of this, “≤” in the max-
imand can be replaced with “<.” If desired, the increasing monotonicity of
the single index can be verified with a nonparametric regression of M(y) on
x′b̂ where b̂ is the SRE.

Consider y = C{A(x′β, u)} where C is increasing and A(·, ·) is strictly
increasing in each of its arguments. The independence between x and u is
sufficient (but not necessary) for the single-index positive-monotonicity con-
dition for E(y|x) as can be seen in E(y|x) =

∫
C{A(x′β, u)}fu(u)du. For

instance, the single-index positive monotonicity condition holds under

yi = x′iβ + ui, ui = σ(xi)vi, and vi � xi
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where σ(x) is a heteroskedasticity factor and v’s df is Fv. Although this
linear model example makes SRE look non-restrictive, if we consider the
binary version of this (y∗ = x′β +u and y = 1[y∗ ≥ 0]), then we get E(y|x) =
1−Fv{−x′β/σ(xi)}. This is not a single index model. Even if we replace σ(x)
with σ(x′β) to get a single index model with G(x′β) = 1−Fv{−x′β/σ(x′iβ)},
as mentioned in the preceding subsection, it is hard to justify why this should
be increasing in x′β. Thus x � u will be maintained in the following.

To see the main idea of SRE, examine the population maximand

E[ E{M(yi)1[x′jb ≤ x′ib] |xj} ] = E[ E{G(x′iβ)1[x′jb ≤ x′ib] |xj} ].

In the inner expected value conditional on xj , the threshold x′jb is fixed
(for any b). Call x′ib “large” if greater than x′jb and “small” otherwise. Since
G(x′iβ) increases as x′iβ increases, one can maximize the maximand by equat-
ing b = β so that 1[· ≤ x′iβ] = 1 if x′iβ is large and 0 otherwise. For any b = β,
this matching of 1[· ≤ x′ib] to a large G(x′iβ) will fail for some x, making the
maximand smaller.

Many choices are possible for M(yi). One choice is M(yi) = yi, and
another is M(yi) = RN (yi) =

∑
m 1[ym ≤ yi] if yi’s are continuously dis-

tributed, under which the maximand becomes∑
i

RN (yi)RN (x′ib).

This maximand is reminiscent of the Spearman rank correlation between y
and x′b, which is just the correlation coefficient between two variables” ranks.
The main motivation for M(yi) = RN (yi) is to robustify the estimator to
outliers in y. Robustification can be also done with a “winsorized version” of
y: for some chosen constants w1 < w2,

M(y) = w11[y < w1] + y1[w1 ≤ y ≤ w2] + w21[y > w2].

When M(yi) = RN (yi), the maximand of SRE involves “triples” because∑
i

RN (yi)RN (x′ib) =
∑

i

∑
j

∑
m

1[ym ≤ yi]1[x′jb ≤ x′ib].

The appearance of triples can be motivated also by

x′iβ > x′jβ ⇐⇒ P (yi > ym|xi, xj , xm) > P (yj > ym|xi, xj , xm).

Compare this to the condition involving only a pair for KRE:

x′iβ > x′jβ ⇐⇒ P (yi > yj |xi, xj) > P (yj > yi|xi, xj).

When M(yi) is either a deterministic function (such as the identity
function) or M(yi) = RN (yi), the asymptotic distribution for bkc in
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b̂ = (b′kc, sgn(bk))′ is
√

N(bkc − βkc)� N(0, V −1
2 Δ2V

−1
2 ) where

V2 ≡ E

[
{xkc − E(xkc|x′β)}{xkc − E(xkc|x′β)}′ ψ(x′β)

∂E(M(y)|x′β)
∂(x′β)

]
Δ2 ≡ E[ {xkc − E(xkc|x′β)}{xkc − E(xkc|x′β)}′ ψ(x′β)2

{M(y) − E(M(y)|x′β)}2 ]

and ψ(x′β) is the density of x′β. An application of SRE and KRE as well as
CLAD and SCLS to black–white earnings inequality appeared in Chay and
Honoré (1998).

Cavanagh and Sherman (1998) showed that SRE becomes KRE for the
binary response model with M(y) = y. Set M(y) = y and E(y|x′β) = 1 −
Fu(−x′β) for binary response to get

∂E(M(y)|x′β)
∂(x′β)

=
∂{1 − Fu(−x′β)}

∂(x′β)
= fu(−x′β) and

{M(y) − E(M(y)|x′β)}2 = {y − E(y|x′β)}2

=⇒ E[{y − E(y|x′β)}2|x] = Fu(−x′β){1 − Fu(−x′β)}.

With these plugged in, the asymptotic variance becomes that of KRE.

3.4 Pairwise-Difference Rank for Response
Transformations

Recall that KRE is based on pairwise comparisons. We noted that the
pairwise comparison was extended to a comparison with triples by SRE.
Motivated by this, Abrevaya (2003) considered quadruple comparisons based
on index differences, which is the topic of this subsection.

3.4.1 Main Idea and Estimator

For the transformation-of-variable model Λ(yi) = x′iβ + ui with an un-
known strictly increasing Λ(·), it holds that

Λ(yi) − Λ(yj) = (xi − xj)′β + ui − uj .

Assuming that u1, ..., uN are iid with a continuous and strictly increasing df
and x � u, we get, since Λ is strictly increasing,

yi > yj |(xi, xj) = ui − uj > −(xi − xj)′β|(xi, xj)
=⇒P (yi > yj |xi, xj) = T{(xi − xj)′β} where T (t) ≡ P (ui − uj ≤ t);

T is symmetric about 0.
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From the last display,

(xi − xj)′β > (xm − xn)′β
⇐⇒ P (yi > yj |xi, xj , xm, xn) > P (ym > yn|xi, xj , xm, xn).

Using this idea, Abrevaya’s (2003) pairwise-difference rank estimator (PDE)
maximizes

1

N(N − 1)(N − 2)(N − 3)

∑
i�=j �=m �=n

1[(xi − xj)
′b > (xm − xn)′b]

·(1[yi > yj ]− 1[ym > yn]) ≡ QPDE

where
∑

i�=j �=m �=n means the sum over the distinct ordered quadruples. As in
KRE and SRE, x does not include 1.

As for the asymptotic variance of PDE, let

zi ≡ (x′i, yi)′, qi ≡ xi + xj − xm, ψ(·) be the density for q′β
S(ν, y) ≡ Ezi,zj ,zm

{sgn(y − yi) − sgn(yj − ym)|q′β = ν},

S1(ν, y) ≡ ∂S(ν, y)
∂ν

.

With xkc and qkc denoting the elements of x and q other than xk and qk,
respectively,

√
N(bkc − βkc)� N(0, V −1

3 Δ3V
−1
3 ) where

V3 ≡ E[ E{(xkc − qkc)(xkc − qkc)′|q′β = x′β} ψ(x′β) S1(x′β, y) ],
Δ3 ≡ E[ {xkc − E(qkc|q′β = x′β)}{xkc − E(qkc|q′β = x′β)}′

ψ(x′β)2 S(x′β, y)2 ].

In the outer-expected values of V3 and Δ3, the integrals are wrt (x′β, y) and
(x′kc, x

′β, y), respectively. Instead of the complicated asymptotic variance,
bootstrap may be used, but bootstrap would be too costly in computation
time since four sums are involved.

3.4.2 Remarks

In comparison to PDE, Abrevaya (2003) noted that SRE’s maximand
with M(y) = RN (y) can be written as

1
N(N − 1)(N − 2)

∑
i�=j �=m

1[x′ib > x′jb] (1[yi > ym] − 1[yj > ym]) ≡ QSRE .
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Comparing QKRE , QSRE , and QPDE , one can see how the pairwise compari-
son “evolved.” KRE, SRE, and PDE are all applicable to the transformation-
of-variable model and these estimators are likely to perform similarly, although
going from pairs to triples and then to quadruples may improve efficiency be-
cause the data get used more intensively at the cost of increasing computation
time.

Abrevaya (2003), in fact, also considered a triple-comparing estimator
of his own, that maximizes

1
N(N − 1)(N − 2)

∑
i�=j �=m

1[(xi − xj)′b > (xj − xm)′b]

(1[yi > yj ] − 1[yj > ym]) ≡ QPDE3.

But differently from QSRE where i and j are compared symmetrically relative
to m, there is an “asymmetry” in QPDE3. This asymmetry seems to translate
to a rather complicated asymptotic variance, although the estimator is

√
N -

consistent and asymptotically normal as PDE is.
In introducing PDE, we motivated PDE with a transformation model.

A question that might arise is if PDE is applicable to binary responses. The
answer seems no. In QPDE for binary responses, it holds that

1[yi > yj ] − 1[ym > yn] = 1 ⇐⇒ yi = 1, yj = 0, ym = 0, yn = 0.

This would be compatible with x′iβ > max(x′jβ, x′mβ, x′nβ) which does not
imply (xi − xj)′β > (xm − xn)′β in QPDE . In contrast, in QSRE for binary
responses, it holds that

1[yi > ym] − 1[yj > ym] = 1 ⇐⇒ yi = 1, yj = 0, ym = 0

which is compatible with x′iβ > x′jβ.

3.4.3 An Empirical Example

Abrevaya (2003) applied KRE, SRE, and PDE to baseball player dura-
tion data (N = 702) where y is the number of total games played (i.e., the
duration of career) and x consists of SLG (slugging proportion), OBP (on-
base proportion), AGE (age at which career began), MIDINF (one if middle
infielder), and CATCH (one if catcher). The last two dummy variables should
have a positive impact on y because middle infielders and catchers are valued
for their defensive as well as offensive skills. The descriptive statistics are in
Table 3

Part of his Table 6 is presented in Table 4 where the LSE is for ln y.
The effect of SLG should be positive and its coefficient was normalized to
one, which is why no estimate for SLG appears in the table. Although not
presented here, LSE has its intercept estimate 3.56 and SLG estimate 8.19.
But for the sake of comparison, all LSE slope estimates were divided by 8.19
for the table.
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Table 3: Baseball Data Mean and SD
y SLG OBP AGE MIDINF CATCH

Mean 769 0.349 0.308 23.1 0.228 0.147
SD 678 0.061 0.036 2.0 0.420 0.354

Table 4: Baseball Data Estimates (SD in (·))
Variables KRE PDE LSE

OBP 1.04 (0.25) 1.06 (0.21) 1.08 (0.21)
AGE −0.0144 (0.0029) −0.0162 (0.0023) −0.0168 (0.0025)

MIDNIF 0.0737 (0.012) 0.0732 (0.0097) 0.0742 (0.0094)
CATCH 0.0322 (0.013) 0.0343 (0.011) 0.0412 (0.011)

A few remarks are in order. First, the effects of SLG and OBP are
almost the same. Second, AGE has a negative impact, and MIDINF and
CATCH have positive impacts; these findings match intuition. Third, PDE
using quadruples is slightly more efficient than KRE, and PDE is as efficient
as LSE. This observation matters much, as it dissipates the impression that
semiparametric estimators tend to be inefficient compared with parametric
ones and LSE.

3.5 Rank-Based Estimation of Transformation Function

Consider a “transformation of (response) variable” model:

Λ(yi) = x′iβ + ui, where Λ(·) is an increasing transformation
Λ(yc) = 0 for some yc (location normalization),

ui has a continuous and strictly increasing df Fu and ui � xi.

Given a
√

N -consistent estimator bN for β as those in the previous sections,
Chen (2002) proposed a

√
N -consistent estimator for Λ(·) that does not re-

quire any bandwidth. The estimator is easier to implement than other es-
timators in the literature (e.g., Horowitz, 1996), and it allows Λ(·) to be
nondifferentiable and y to be discrete. Chen (2002) extended the estimator
to censored responses where c is the censoring variable, but this extension
requires c � (x, y) which is too restrictive, rather than the usual c � y|x. In
this subsection, we review the Chen’s estimator under no censoring.

Observe

1[yi ≥ yo] = 1[Λ(yi) ≥ Λ(yo)] = 1[x′iβ + ui ≥ Λ(yo)]
=⇒ E{1[yi ≥ yo]|xi} = E{1[ui ≥ Λ(yo) − x′iβ]|xi}

= 1 − Fu{Λ(yo) − x′iβ}.
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From this, we get

E{1[yi ≥ yo] − 1[yj ≥ yc]|xi, xj} ≥ 0 iff Λ(yc) − x′jβ ≥ Λ(yo) − x′iβ
⇐⇒ x′iβ − x′jβ ≥ Λ(yo).

Hence an estimator ΛN (yo) for Λ(yo) is obtained by maximizing wrt Λ

1
N(N − 1)

∑
i�=j

(1[yi ≥ yo] − 1[yj ≥ yc]) · 1[x′ibN − x′jbN ≥ Λ]

where one choice for yc is Med(y) as done in Chen (2002).
To better understand the normalization “Λ(yc) = 0 for some yc,” suppose

that bN = (b′−k, 1)′ is KRE; i.e., βk > 0 is used for the scale normalization of
KRE. Start with Λ∗(yi) = x′iβ

∗ + u∗i where xi includes 1 as its first element
to observe

Λ∗(yi)
β∗k

= x′i
β∗

β∗k
+

u∗i
β∗k

=⇒ Λ∗(yi)
β∗k

− Λ∗(yc)
β∗k

= x′i
β∗

β∗k
− Λ∗(yc)

β∗k
+

u∗i
β∗k

=⇒ Λ(yi) = x′iβ + ui, where Λ(t) ≡ Λ∗(yi)
β∗k

− Λ∗(yc)
β∗k

,

β ≡ β∗

β∗k
and ui ≡

u∗i
β∗k

.

Hence Λ(yc) = 0. The intercept shifts by −Λ∗(yc)/β∗k, but the intercept does
not matter as it drops out of x′ibN − x′jbN in the above maximand. The
identified transformation Λ(·) changes as βk does.

With z ≡ (x′, y)′, define

H(zi, zj , yo,Λ, b) ≡ (1[yi ≥ yo] − 1[yj ≥ yc]) · 1[x′ib − x′jb ≥ Λ]

τ(z, yo,Λ, b) ≡ Ezj
{H(z, zj , yo,Λ, b)} + Ezi

{H(zi, z, yo,Λ, b)}

S(yo) ≡
1
2
Ez

{
∂2τ(z, yo,Λ(yo), β)

∂Λ2

}
where Ez{·} indicates that the expectation is taken only wrt z. Then,

√
N{ΛN (yo) − Λ(yo)}� N

(
0,

Ez[{∂τ(z, yo,Λ(yo), β)/∂Λ}2]
S(yo)2

)
.

The first-stage estimator bN has no effect on this asymptotic distribution.
Instead of estimating a nonparametric Λ(·) at chosen points, a more

parametric approach is specifying Λ(y) ≡ Γ(y, θ) for some parametric func-
tion Γ with a parameter θ as in the Box-Cox transformation. This has been
in fact explored by Han (1987b) maximizing wrt θ

1
N(N − 1)(N − 2)(N − 3)

∑
i�=j �=m �=n

1[(xi − xj)′bKRE > (xm − xn)′bKRE ]
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· 1[Γ(yi, θ) − Γ(yj , θ) > Γ(ym, θ) − Γ(yn, θ)].

The asymptotic distribution for this estimator was later derived by As-
parouhova et al. (2002), who also suggested a different estimator: maximize
wrt θ ∑

i�=j

RN{Γ(yi, θ) − Γ(yj , θ)} · M{(xi − xj)′bN}

where M(·) is an increasing function, bN is SRE, and RN (aij) ≡
∑

s �=t 1[ast ≤
aij ].

4 Differencing-Based Estimators

This section reviews two differencing estimators. Although the rank-
based estimators in the preceding section can be viewed also as (pairwise)
differencing estimators, the characteristics of the estimators in this section
differ from those in the preceding section. Section 4.1 examines a pairwise
differencing estimator for censored/truncated models where the symmetry
resulting from differencing plays the key role. Section 4.2 introduces a differ-
encing estimator for a partially linear model y = ρ(z) + x′β + u where ρ(·)
is unknown and z is a rv. The estimator orders the observations using z and
first-difference the model (as in time-series) to get rid of ρ and then estimate
β. Partially linear models will be discussed further in the next chapter.

4.1 Pairwise-Difference for Censored and Truncated
Models

4.1.1 Differencing Idea

Recall the regression model censored at zero from below:

y∗i = x′iβ + ui, yi = max(y∗i , 0), (x′i, yi), i = 1, ..., N, observed.

Note that

y − x′β = max(x′β + u, 0) − x′β = max(u,−x′β).

Whereas the “structural form” error is u (= y∗ − x′β), the “reduced-form”
error is y − x′β = max(u,−x′β), the use of which forms the basis for the
following pairwise differencing idea.

Suppose that u1, ..., uN are iid as usual, and u�x. Although ui and uj are
iid given xi and xj thanks to u�x, the conditional RF errors max(ui,−x′iβ)
and max(uj ,−x′jβ) are not, because their trimming points −x′iβ and −x′jβ
differ. Consider instead their artificially trimmed versions

eij(β) ≡ max(ui,−x′iβ,−x′jβ) and eji(β) ≡ max(uj ,−x′jβ,−x′iβ)
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which are iid given xi and xj . Then, because eij(β) and eji(β) are iid,
{eij(β) − eji(β)}|(xi, xj) is symmetric about 0 as can be seen in (omitting
“|xi, xj”)

P{eij(β) − eji(β) ≤ −a} = P{eji(β) − eij(β) ≤ −a}
(as eij(β) and eji(β) are iid)

= P{eij(β) − eji(β) ≥ a} (multiplying both sides by − 1).

Consider an odd function ζ(·) (i.e., −ζ(−a) = ζ(a)) and observe (omit-
ting “|xi, xj” again)

P [ζ{eij(β) − eji(β)} ≤ −a] = P [ζ{eji(β) − eij(β)} ≤ −a]

(as eij(β), eji(β) are iid)

= P [−ζ{eij(β) − eji(β)} ≤ −a]

= P [ζ{eij(β) − eji(β)} ≥ a] (multiplying both sides by − 1) :

ζ{eij(β) − eji(β)}|(xi, xj) is symmetric about 0 as well. Hence we get a mo-
ment condition

E[ ζ{eij(β) − eji(β)}|xi, xj ] = 0.

If u were dependent on x, e.g., u = σ(x′β)ε where ε� x, then the artificially
trimmed errors would not be iid, which shows why u � x is needed. Honoré
and Powell (1994) used this moment condition as a basis to design estimators
for censored and truncated regression models as follows. The assumption u�x
is stronger than those for CLAD and WME (and QME) with a small tuning
constant, but neither stronger nor weaker than the full symmetry for SCLS
and STLS.

4.1.2 Censored Regression

For the censored regression model, one minimand that has the above
moment condition as its asymptotic first-order condition is

SN (b) ≡ 2
N(N − 1)

∑
i<j

s{yi, yj , (xi − xj)′b} where

s{yi, yj , (xi − xj)′b} = y2
i − {yj + (xi − xj)′b}2yi if (xi − xj)′b ≤ −yj

= {yi−yj−(xi − xj)′b}2 if −yj < (xi − xj)′b < yi

= (−yj)2+{(xi − xj)′b − yi}2yj if yi ≤ (xi − xj)′b.

Examine the term for −yj < (xi − xj)′b < yi ⇐⇒ yj − x′jb > −x′ib and
−x′jb < yi − x′ib under b = β:

{yi − yj − (xi − xj)′β}2 = {eij(β) − eji(β)}2.

From this, the derivative would yield E{eij(β) − eji(β)|xi, xj} = 0 as in-
tended. To understand the first term (“left-tail) for (xi − xj)′β ≤ −yj ,
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substitute the “boundary equality” (xi − xj)′β = −yj of this inequality into
{yi − yj − (xi − xj)′β}2 to get y2

i which is the first part of y2
i − {yj + (xi −

xj)′β}2yi; the second part is a linear function β so that the quadratic func-
tion in the middle portion branches out to the left-tail smoothly. If we recall
QME and WME, the analogy is that QME uses only a constant for the left-
tail whereas WME uses the constant plus a linear function of b. The analogy
with QME and WME is more fitting than it looks, because using only the
part y2

i in the left-tail works for the truncated regression model examined
below. The third term in SN (b) can be understood analogously. Since this
estimator is a differencing estimator, x should not include 1.

As for the asymptotic distribution, Theorem 3.2 in Honoré and Powell
(1994) shows that

√
N(bN − β)� N(0,H−1V H−1)

where H and V can be consistently estimated with, respectively,

VN ≡ 4
N

∑
i

r̂ir̂
′
i, where

r̂i ≡
2

(N − 1)

N∑
j=1,j �=i

{eij(bN ) − eji(bN )}(xi − xj)

HN ≡ 2
N(N − 1)

∑
i<j

2(xi − xj)(xi − xj)′.

The “pesky” constants 4 and 2’s all disappear in H−1
N VNH−1

N as an analogous
cancelation happens in LSE. In fact, this sort of cancelation happened to the
other estimators based on multiple sums. The above estimator is the LSE
version with ζ(a) = 2a, which is the derivative of a2 for the squared loss
function in LSE. Honoré and Powell (1994) also explore the LAD version
using |a| instead of a2.

4.1.3 Truncated Regression

For the truncated regression model where (y∗i , x′i)
′ is observed only when

y∗i > 0 ⇐⇒ ui > −x′iβ, a modified version of SN (b) is

TN (b) ≡ 2
N(N − 1)

∑
i<j

t{yi, yj , (xi − xj)′b} where

t{yi, yj , (xi − xj)′b} = y2
i if (xi − xj)′b ≤ −yj

= {yi − yj − (xi − xj)′b}2 if − yj <(xi − xj)′b < yi

= (−yj)2 if yi ≤ (xi − xj)′b.

This estimator requires the ln fu to be strictly concave. As noted above,
the tail portions of t{yi, yj , (xi − xj)′b} are y2

i or y2
j ; no linear function of b

appears there.



418 Ch. 8 Bandwidth-Free Semiparametric Methods

As for the asymptotic distribution, it is asymptotically normal with the
variance taking the same form H̄−1V̄ H̄−1 as in the censored regression esti-
mator. To estimate V̄ and H̄, use V̄N ≡ 4N−1

∑
i r̂ir̂

′
i for V where

r̂i ≡
2

(N − 1)

N∑
j=1,j �=i

−1[−yj < (xi − xj)′bN < yi]

{eij(bN ) − eji(bN )} (xi − xj).

Regarding H̄, numerical derivatives can be used. For instance, the ath column
of the estimate for H̄ is

2
N(N − 1)

1
2h

∑
i<j

{−1[−yj < (xi − xj)′(bN + hλa) < yi]

· 2(eij(bN + hλa) − eji(bN + hλa))(xi − xj)
+ 1[−yj < (xi − xj)′(bN − hλa) < yi]
·2(eij(bN − hλa) − eji(bN − hλa))(xi − xj)}

where λa is the basis vector with 1 in its ath position and 0’s elsewhere.
The assumption x � u and the relatively complicated asymptotic vari-

ance puts the pairwise-differencing estimators at disadvantage compared with
the other semiparametric estimators for censored/ truncated models. But
the idea of pairwise-differencing and symmetric trimming has been fruitfully
applied to censored-selection models as shown already, and also to “fixed-
effect” panel-data censored/truncated models as can be seen in Hóno2re and
Kyriazidou (2000).

4.2 Differencing Estimator for Semi-linear Models

The “extreme” way to relax the usual linear model assumption is not
specifying E(y|x) at all to go fully nonparametric. A less extreme way is using
a semi-linear (or partially linear) model, e.g., yi = ρ(zi)+x′iβ+ui where ρ(z)
is an unknown function of a regressor (vector) z. In a model like this, the
goal is then estimating β with ρ(·) and the error term distribution unspeci-
fied. While semi-linear models will be examined more closely in the following
chapter, if z is a continuously distributed rv, then there is a bandwidth-free
estimator for β, which is introduced in this subsection.

Suppose

yi = ρ(zi) + x′iβ + ui, xi = μ(zi) + vi, E(u|x, z) = 0, E(v|z) = 0,
where ρ(·) and μ(z) are unknown smooth functions (μ(z) is a vector),
and zi is a continuously distributed rv, ordered such
that z1 ≤, ...,≤ zN .
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There is no restriction in the model x = μ(z) + v with E(v|x) = 0, because
x can be always written this way:

x = E(x|z) + x − E(x|z) = μ(z) + v, where E(x|z) ≡ μ(z) and
v ≡ x − E(x|z).

Note that 0 = E(u|x, z) = E(u|z, v), which implies COR(u, v) = 0.
Cross-section data have no natural ordering but z provides one. Using

the ordering, difference the y equation:

yi − yi−1 = ρ(zi) − ρ(zi−1) + (xi − xi−1)′β + ui − ui−1, i = 2, ..., N.

The LSE of xi − xi−1 on yi − yi−1 provides a
√

N -consistent estimator for β
despite ρ(zi)−ρ(zi−1); see Yatchew (1997, 2003) and the references therein for
more on this type of difference-based semiparametric methods; an empirical
application can be seen in Yatchew and No (2001). The LSE works because
ρ(zi) � ρ(zi−1) as zi � zi−1 due to the ordering when N → ∞, whereas
xi = xi−1 as xi’s are not ordered.

Let Δyi ≡ yi − yi−1 and define Δxi, Δui, and Δvi analogously. Without
loss of generality, suppose z ∼ U [0, 1]; if not, rewrite ρ(z) = ρ{F−1

z (Fz(z))} ≡
ρ̃(Fz(z)) and examine Fz(z) instead of z where Fz is the df of z. Since z is
not used explicitly in estimation, not knowing Fz does not pose any problem.
The LSE is

bN ≡
(

1
N − 1

∑
i

ΔxiΔx′i

)−1
1

N − 1

∑
i

ΔxiΔyi

=

(
1

N − 1

∑
i

ΔxiΔx′i

)−1

· 1
N − 1

∑
i

Δxi{ρ(zi) − ρ(zi−1) + Δx′iβ + Δui}

= β +

(
1

N − 1

∑
i

ΔxiΔx′i

)−1

· 1
N − 1

∑
i

[Δxi{ρ(zi) − ρ(zi−1)} + ΔxiΔui].

The term involving Δui converges to zero in probability. Examine thus only

1
N − 1

∑
i

Δxi{ρ(zi) − ρ(zi−1)}

=
1

N − 1

∑
i

{μ(zi) − μ(zi−1)}{ρ(zi) − ρ(zi−1)} + op(1)
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because COR(v, z) = 0. If the probability limit of this term is zero, then
bN →p β.

With μ (z) = (μ1(z), ..., μk(z))′, the kth row of the last display is smaller
than

1
N − 1

∑
i

max
2≤i≤N

|{μk(zi) − μk(zi−1)}{ρ(zi) − ρ(zi−1)}|

= max
2≤i≤N

|{μk(zi) − μk(zi−1)}{ρ(zi) − ρ(zi−1)}|

≤ LkLρ max
2≤i≤N

|zi − zi−1|2

assuming that both μk(z) and ρ(z) are Lipschitz-continuous for some con-
stants Lk and Lρ:

|μk(za) − μk(zb)| ≤ Lk|za − zb| and |ρ(za) − ρ(zb)| ≤ Lρ|za − zb| ∀za, zb.

Although there is no restriction in x = μ(z) + v, now a restriction is put on
μ(z) due to the Lipschitz continuity.

When z1, ..., zN fall on the unit interval, splitting [0, 1] into intervals of
size ε to get about ε−1-many such intervals, we get

max
2≤i≤N

|zi − zi−1| > 2ε implies there is at least one interval of size

ε with no datum.
=⇒ P ( max

2≤i≤N
|zi − zi−1| > 2ε) ≤ P (there is at least one interval of size

ε with no datum)
≤ P (1st ε interval with no datum)

+ P (2nd ε interval with no datum)+, ... = (1 − ε)N 1
ε
→ 0 as N → ∞.

Thus

P

(
1

N − 1

∑
i

max
2≤i≤N

|{μk(zi) − μk(zi−1)}{ρ(zi) − ρ(zi−1)}| > 2ε

)
→ 0,

proving bN →p β.
Turning to the asymptotic distribution, observe

√
N(bN − β) =

(
1

N − 1

∑
i

ΔxiΔx′i

)−1

1√
N

∑
i

[Δxi{ρ(zi) − ρ(zi−1)} + ΔxiΔui] + op(1).

Substituting Δxi = Δμ(zi) + Δvi, any term involving Δμ(z) or Δρ(z) is
negligible, for P (max2≤i≤N |zi − zi−1| > ε) → 0 exponentially fast as shown
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above. This leaves only

√
N(bN − β) = E−1(ΔvΔv′)

1√
N

∑
i

(ΔviΔui) + op(1).

Using COR(u, v) = 0, we get E(ΔvΔu) = 0. But across i, Δv2, ...,ΔvN

are dependent (e.g., v2 − v1 and v3 − v2 are dependent), and the same holds
for Δui. CLT’s are known to hold for this type of “weak dependence” that
applies only to adjacent terms. Hence,

√
N(bN − β)� N [0, E−1(ΔvΔv′) · V · E−1(ΔvΔv′)] where

V ≡ E{ΔviΔv′i(Δui)2} + E{ΔviΔv′i+1ΔuiΔui+1}
+ E{Δvi+1Δv′iΔui+1Δui}.

A consistent estimator for the inverted Hessian is {(N − 1)−1
∑N

i=2 Δxi

Δx′i}−1 and a consistent estimator for V is

1
N − 1

N∑
i=2

ΔxiΔx′i(Δyi − Δx′ibN )2

+
1

N − 2

N∑
i=3

ΔxiΔx′i+1(Δyi − Δx′ibN )(Δyi+1 − Δx′i+1bN )

+
1

N − 2

N∑
i=3

Δxi+1Δx′i(Δyi+1 − Δx′i+1bN )(Δyi − Δx′ibN ).

5 Estimators for Duration Models

Some parametric estimators have been introduced for durations. The
most controversial issue there has been the baseline hazard specification.
This section introduces two relatively simple semiparametric estimators. One
estimator specifies the baseline hazard as a discrete step-shaped function
but otherwise unknown. The other leaves the baseline hazard completely
arbitrary. Although the former can be applied to continuous time, it fits
better discrete time. For this, we review discrete-time duration framework
first.

5.1 Discrete Durations

Discrete duration can occur for two reasons. First, duration ends indeed
at discrete times only, say, t1, ..., tJ ; e.g., job contracts may be on yearly basis
such that employees may quit (or get fired) only at the end of each year.
Second, duration occurs continuously but observed only at discrete times; for
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instance, machines can fail any time, but they are checked only periodically.
Unless otherwise mentioned, we will assume the latter, as it relates better to
the earlier LDV models.

Imagine a latent continuously distributed duration y∗ with its survival
function S∗(t) ≡ P (y∗ > t). Suppose that the observed duration y is discrete,
taking on 0 ≡ t0 = t1 <, ..., < tJ and accumulating the y∗ density over each
interval such that

pj ≡ P (y = tj) = P (tj ≤ y∗ < tj+1), j = 1, ..., J, and p0 ≡ 0.

Further define

S(t−j ) ≡ P (y ≥ tj) = pj+, ...,+pJ = P (y > tj−1) = S(tj−1),

j = 2, ..., J ;S(t−0 ) ≡ 1, S(t0) ≡ 1.

As will become clear shortly, having t0 and p0 = 0 is notationally convenient,
and for this, we deliberately set 0 = t0 = t1 and S(t−0 ) = 1 = S(t0). If t1, ..., tJ
are equally spaced, then instead of t1, ..., tJ , we can simply use 1, ..., J for the
values that y takes on. In this case, “latent discrete” duration is t1, ..., tJ
whereas the “observed discrete” cardinal duration is 1, ..., J . Even if t1, ..., tJ
are not equally spaced, we can still denote the observed duration as 1, ..., J ,
which is then a (grouped) ordinal duration.

Note pj = S(tj−1) − S(tj), and let, for j = 1, ..., J ,

λj ≡ P (y = tj |y ≥ tj) =
P (y = tj , y ≥ tj)

P (y ≥ tj)
=

P (y = tj)
P (y ≥ tj)

=
pj

S(tj−1)

⇐⇒ pj = λjS(tj−1);

S(tj−1) =
S(tj−1)
S(t0)

=
S(tj−1)
S(tj−2)

S(tj−2)
S(tt−3)

...
S(t1)
S(t0)

=
j−1∏
a=1

S(ta)
S(ta−1)

=
j−1∏
a=1

S(ta−1) − pa

S(ta−1)
=

j−1∏
a=1

{1 − pa

S(ta−1)
} =

j−1∏
a=1

(1 − λa)

which is the discrete analog for S(t) = exp{−Λ(t)} in continuous time case.
Parametrizing pj with pj = pj(xi, θ), xi can be taken into account and the
parameter θ can be estimated. Alternatively, we can parametrize λj with λj =
λj(xi, θ). As seen in the parametric duration analysis, it is more convenient
to parametrize λj , because the likelihood function can be written in terms of
λj ’s only.

Suppose (xi, yi, di) is observed, i = 1, ..., N , and yi is an event duration
when di = 1 and an censoring duration when di = 0. Defining yij = 1 if
yi = tj and 0 otherwise (as in ODR), the log-likelihood function is

N∑
i=1

⎧⎨⎩di

J∑
j=1

yij ln pj(xi, θ) + (1 − di)
J∑

j=1

yij lnS(tj−1, xi, θ)

⎫⎬⎭ .
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This log-likelihood function is similar to that of ODR, with one visible dif-
ference being y taking 1, ..., J instead of 0, 1, ...J − 1 as p0 = P (y = 0) = 0.
Substituting pj = λjS(tj−1), the log-likelihood function becomes

LN (θ) ≡
N∑

i=1

⎧⎨⎩di

J∑
j=1

yij lnλj(xi, θ) +
J∑

j=1

yij lnS(tj−1, xi, θ)

⎫⎬⎭
=

N∑
i=1

⎛⎝di

J∑
j=1

yij lnλj(xi, θ) +
J∑

j=1

yij

j−1∑
a=1

ln{1 − λa(xi, θ)}

⎞⎠ .

As already noted when parametric durations were studied, sometime left-
truncation occurs as well: only durations greater than a certain threshold are
observed. Differently from right-censoring, however, there is no information
on x for those left-truncated; recall the distinction between truncation and
censoring. For instance, suppose we observe the lifespan of old persons in
a nursing home where an entry requirement to the nursing home is age ≥
60. In this case, those who died before 60 will not be in the data set. The
two problems combined is often called “LTRC” (left-truncated and right-
censored). Under left-truncation, all probabilities should be conditioned on
the truncation event, say y ≥ tc, where tc (≥ t1) is the truncation point.

As in the no-truncation case, we still have

λj ≡ P (y = tj |y ≥ tj) =
P (y = tj , y ≥ tj)

P (y ≥ tj)
=

pj

S(tj−1)
.

Define

πj ≡ P (y = tj |y ≥ tc), j = c, ..., J

=⇒ S(tj−1|y ≥ tc) = P (y ≥ tj |y ≥ tc) =
P (y ≥ tj , y ≥ tc)

P (y ≥ tc)

=
S(tj−1)
S(tc−1)

=
∏j−1

a=1(1 − λa)∏c−1
a=1(1 − λa)

=
j−1∏
a=c

(1 − λa).

By the construction of πj , for j = c, ..., J ,

πjS(tc−1) = P (y = tj |y ≥ tc)S(tc−1) = P (y = tj , y ≥ tc) = P (y = tj) = pj

=⇒ πj =
pj

S(tc−1)
=

λjS(tj−1)
S(tc−1)

.

The log-likelihood function is

N∑
i=1

⎧⎨⎩di

J∑
j=c

yij lnπj + (1 − di)
J∑

j=c

yij lnS(tj−1|y ≥ tc)

⎫⎬⎭
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=
N∑

i=1

⎧⎨⎩di

J∑
j=c

yij ln
λjS(tj−1)
S(tc−1)

+ (1 − di)
J∑

j=c

yij ln
S(tj−1)
S(tc−1)

⎫⎬⎭
=

N∑
i=1

⎧⎨⎩di

J∑
j=c

yij lnλj +
J∑

j=c

yij ln
S(tj−1)
S(tc−1)

⎫⎬⎭
=

N∑
i=1

⎡⎣di

J∑
j=c

yij lnλj(xi, θ) +
J∑

j=c

yij

j−1∑
a=c

ln{1 − λa(xi, θ)}

⎤⎦ .

The hazard-based log-likelihood function is the same as that without trunca-
tion; the only change needed is starting from j = c, not j = 1. The truncation
point can be allowed to vary across i = 1, ..., N so long as it is observed: re-
place c with ci in the log-likelihood.

5.2 Piecewise Constant Hazard

5.2.1 Discrete-Time-Varying Regressors

Let y∗ denote the latent duration with a continuous survival function S∗

and y the observed discrete duration taking on t1, ..., tJ . With λ∗(t) denoting
the hazard rate for y∗, recall

S∗(t) = exp
{
−

∫ t

0

λ∗(v)dv

}
= exp{−Λ∗(t)}.

Since y∗ is continuous, S∗(t) = S∗(t−). The jth discrete (piecewise constant)
hazard, i.e., the failure probability over [tj , tj+1) given survival up to tj is,
for j = 1, ..., J − 1,

λj =
P (y = tj)
P (y∗ ≥ tj)

=
P (tj ≤ y∗ < tj+1)

P (y∗ ≥ tj)
=

P (y∗ ≥ tj) − P (y∗ ≥ tj+1)
P (y∗ ≥ tj)

=
S∗(t−j ) − S∗(t−j+1)

S∗(t−j )

= 1 −
S∗(t−j+1)

S∗(t−j )
= 1 − exp

{
−

∫ t−j+1

0

λ∗(v)dv +
∫ t−j

0

λ∗(v)dv

}

= 1 − exp

{
−

∫ t−j+1

tj

λ∗(v)dv

}
;

λJ = 1 − exp
{
−

∫ ∞

tJ

λ∗(v)dv

}
with tJ+1 ≡ ∞.

Suppose that x is time-constant, or at most, changes only at discrete
times t2, t3, ... Also assume a proportional hazard for λ∗:

λ∗{t, x(t)} = λ∗o(t) · ex(t)′β .
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Then, for j = 1, ..., J ,

λj = 1 − exp

{
−

∫ t−j+1

tj

λ∗o(v)ex(v)′βdv

}

= 1 − exp

{
−ex(tj)

′β ·
∫ t−j+1

tj

λ∗o(v)dv

}
= 1 − exp

{
−ex(tj)

′β+αj

}
, where

αj ≡ ln
∫ t−j+1

tj

λ∗o(v)dv = ln
∫ tj+1

tj

λ∗o(v)dv.

Recalling LN (θ) in the preceding subsection, the log-likelihood function with
β and α1, ..., αJ is

N∑
i=1

⎛⎝di

J∑
j=1

yij ln[1 − exp{−exi(tj)
′β+αj}] −

J∑
j=1

yij

j−1∑
τ=1

exi(tτ )′β+ατ

⎞⎠ .

Analogous to the threshold identification problem in ODR is that one
of αj ’s is not identified, which requires modifying the log-likelihood function.
To see this, observe

xi(tj)′β + αj = β1 + x̃i(tj)′β̃ + αj

= (β1 + α1) + x̃i(tj)′β̃ + (αj − α1),
j = 1, ..., J

where x(t) = {1, x̃(t)′}′; i.e., β1 is the intercept and β̃ is the slope. In this
display, α1 is absorbed into β1 and only αj − α1, j = 2, ..., J , are identified.
Redefining αj − α1 as αj and β1 + α1 as β1, the log-likelihood is maximized
wrt β and α2, ..., αJ (with α1 = 0). This approach is semiparametric because
it specifies exp(x′β) in the hazard, but not the baseline hazard.

5.2.2 Ordered Discrete Response Model for Time-Constant
Regressors

While the above approach is valid for time-constant regressors or regres-
sors that vary only at discrete times, when xi is time-constant, it is possible
to rewrite the log-likelihood such that the discrete duration model becomes
an ODR model as done in Han and Hausman (1990). Suppose

y = 1 when (0 =) t1 ≤ y∗ < t2

...
y = J − 1 when tJ−1 ≤ y∗ < tJ

= J when tJ ≤ y∗.
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That is,

y = j when tj ≤ y∗ < tj+1, j = 1, ..., J with t1 ≡ 0 and tJ+1 ≡ ∞.

Recall the “invariance” fact that, for any continuous duration y∗, − ln Λ∗

(y∗) follows the type-I extreme distribution where Λ∗ denotes the cumulative
hazard of y∗: if u′ follows this distribution, then P (u′ ≤ a) = exp(−e−a).
Letting u = ln Λ∗(y∗),

P (u > a) = P (−u < −a) = P (u′ < −a) = exp(−ea)
and P (u ≤ a) = 1 − exp(−ea).

Applying ln Λ∗(·) to tj ≤ y∗ < tj+1, we get

y = j if ln Λ∗(tj) ≤ ln Λ(y∗) < ln Λ∗(tj+1), j = 1, ..., J,

ln Λ∗(t1) ≡ −∞, ln Λ∗(tJ+1) = ∞.

Assume the proportional hazard with exponential function:

λ∗(t) = λ∗o(t) exp(−x′β) =⇒ Λ∗(t) = exp(−x′β)
∫ t

0

λ∗o(s)

=⇒ ln Λ∗(t) = −x′β + ln
∫ t

0

λ∗o(s)ds.

We use −x′β instead of x′β to make our derivation more analogous to the
derivation for ODR. Substitute this display and u = ln Λ∗(y∗) into the pre-
ceding display to get

y = j when − x′β + τ j−1 ≤ u < −x′β + τ j , j = 1, ..., J

where τ j is the logged cumulative hazard up to tj+1:

τ j ≡ ln
∫ tj+1

0

λ∗o(s)ds, j = 1, ..., J (τ0 ≡ −∞, τJ ≡ ∞).

Note that τ j , which plays the role of ODR thresholds as can be seen in
τ j−1 ≤ x′β + u < τ j , is defined for the interval [0, tj+1) to be coherent with
the definition of λj for [tj , tj+1). Rewrite x′β + τ j as (β1 + τ1) + x̃′β̃ + τ j −
τ1 to see that only τ j − τ1 are identified, j = 2, ..., J . Compared with the
ODR derivation, there are two visible differences: one is y taking on 1, ..., J ,
instead of 0, ..., J − 1, and the other is that y takes the value of the upper
threshold subscript, not the lower threshold subscript. These two differences
will disappear once we rename 1, ..., J as 0, ..., J − 1; we will, however, stick
to the differences and maintain P (y = 0) = 0.

Defining τ2 − τ1, ..., τJ−1 − τ1 as τ̃2, ..., τ̃J−1, respectively, we get (τ̃0 =
−∞, τ̃1 = 0, τ̃J = ∞)

y = j when − x′β + τ̃ j−1 ≤ u < −x′β + τ̃ j , j = 1, ..., J.
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Recall F (a) = 1− exp(−ea) and S(a) = exp(−ea) where F denotes the df of
u and S = 1 − F . The log-likelihood contribution of individual i is

J∑
j=1

yij [di ln{F (τ̃ j − x′iβ) − F (τ̃ j−1 − x′iβ)}

+ (1 − di) ln{1 − F (τ̃ j−1 − x′β)}]

=
J∑

j=1

yij [di ln{S(τ̃ j−1 − x′iβ) − S(τ̃ j − x′iβ)}

+ (1 − di) ln{S(τ̃ j−1 − x′β)}]

with which β and τ̃2, ..., τ̃J−1 can be estimated. Specifically, the summand
is

for yi = 1 : di lnF (−x′iβ) [= di{1 − exp(−e−x′
iβ)}] as τ̃1 = 0;

for yi = 2 : di ln{S(−x′iβ) − S(τ̃2 − x′iβ)} + (1 − di) ln S(−x′iβ);
...

for yi = J : lnS(τ̃J−1 − x′iβ) [= exp(−eτ̃J−1−x′
iβ)].

Although x is assumed to be time-constant, it is possible to allow time-
variants to some extent. Suppose xk is a time-varying wage. A simple option
is to use the temporally averaged wage, which is a time-constant variable
for the given data. But wages for different intervals can be used as sepa-
rate regressors as well; e.g., month-1 wage, month-2 wage, etc. may be used
separately. Compared with using the average wage, the coefficients of these
variables will show the time-varying effects of wage.

Once τ̃2, ..., τ̃J−1 are estimated, if t1, ..., tJ−1 are equally spaced with
small intervals, then we can identify the discrete hazard ratios λo2/λo1, ...,
λo,J−1/λo1 where λoj ≡ (tj+1 − tj)λ∗o(tj). To see this, observe

exp(τ̃2) = exp(τ2 − τ1) =
Λ∗o(t3)
Λ∗o(t2)

=

∫ t3
0

λ∗o(s)ds∫ t2
0

λ∗o(s)ds
=

∫ t3
t1

λ∗o(s)ds∫ t2
t1

λ∗o(s)ds

� λo1 + λo2

λo1

exp(τ̃3) = exp(τ3 − τ1) =
Λ∗o(t4)
Λ∗o(t2)

� λo1 + λo2 + λo3

λo1
, ...

exp(τ̃J−1) = exp(τJ−1 − τ1) =
Λ∗o(tJ )
Λ∗o(t2)

� λo1 + λo2+, ...,+λo,J−1

λo1
.

Hence

exp(τ̃2) − 1 � λo2

λo1
, exp(τ̃3) − exp(τ̃2) �

λo3

λo1
, ...,
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exp(τ̃J−1) − exp(τ̃J−2) �
λo,J−1

λo1
.

Therefore, taking exp (·) and then first-differencing the threshold estimates,
we can estimate the baseline discrete hazards up to the multiplicative factor
λo1. Plotting those versus the time 2, 3, ..., J − 1 will show the form of the
baseline hazard up to the scale λo1.

5.2.3 An Empirical Example

Recall the Korean women data with N = 9312 whose two variables (age
and ex-firm employment years) were used for density estimation. Here we
use a few more variables to illustrate piecewise constant hazard estimation
and compare it to Weibull MLE. The dependent variable is unemployment
duration in days that is right-censored and

x = (1, age, age2/100, ex-firm employment years, education)′.

Education takes five completion levels 1,2,3,4,5 for primary, middle, high,
college, and graduate school, respectively. But we will use it as a single car-
dinal variable to simplify illustration. The mean and SD of the variables are
provided in the following table.

Mean SD
d (non-censoring dummy) 0.29
y (unemployment days) 236 105
age in years 34.0 10.8
ex-firm employment years 2.39 1.53
education level (1 to 5) 3.19 1.03

For Weibull, y was used as such, but for piecewise hazard, y was grouped
with 15 day intervals starting from 30:

t1 = 0, t2 = 30, t3 = 45, t4 = 60, ..., t27 = 420;

there are some observations with y greater than 420. The reason for starting
from 30 not from 15 is that the number of observations over [0, 15) is too
small. This is inconsequential, because only the hazards at t2 and onward

Table 5: Weibull MLE and Piecewise Hazard
Weibull MLE (tv) Piecewise (tv)

1 −3.62(−12.6) −0.316(−1.16)
age −0.175(−11.6) −0.172(−11.2)

age2/100 0.189 (9.27) 0.186 (8.96)
ex-firm −0.095(−6.23) −0.092(−5.94)

education 0.124 (5.55) 0.122 (5.40)
α 1.027 (43.5)
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Figure 4: Piecewise Hazards

will be compared. Table 5 shows the estimation results. The estimates are
almost the same except the intercept. Since Weibull includes exponential as
a special case when α = 1, it is interesting to test for H0 : α = 1: the
test statistic value is 1.125 = 1.027/0.024, failing to reject the H0. That
is, Weibull MLE concludes that the baseline hazard is a constant. Despite
this, Figure 4 plotting λo2/λo1,...,λo,J−1/λo1 shows either a monotonically
declining or possibly quadratic (U-shaped) baseline hazard. Narendranathan
and Stewart (1993) recorded a similar finding that Weibull MLE estimates
β in exp(x′β) for the proportional hazard well, although its implied baseline
hazard is rejected.

5.3 Partial Likelihood Estimator (PLE)

This subsection introduces the Partial Likelihood Estimator (PLE) in
Cox (1972) which allows an arbitrary baseline hazard and time-varying re-
gressors. In principle, PLE is for continuous time; we will thus drop the
superscript * in notations. When PLE is applied to discrete time, there are
ties—i.e., multiple failures at t. There are different ways to modify PLE to
allow for ties, two of which will be examined below.

Distinguishing “event times” of interest from “censoring times,” define

(j) as the “label” for the subject with the j-th event time, and
R(t(j)) as the “risk set” at the j-th event time.
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The risk set R(t) includes subjects who either experienced the event of in-
terest or censored at or after t. For a data set {2.7, 3.4+, 5.6, 5.8+, 8.9}, as
there are three event times that occur to subjects 1, 3, and 5,

(1) = 1, (2) = 3, and (3) = 5; also accordingly,
R(t(1)) = R(2.7) = {1, 2, 3, 4, 5}, R(t(2)) = R(5.6) = {3, 4, 5}, R(t(3))

= R(8.9) = {5}.

Recall the proportional hazard with exponential function: λ(t, xi(t))
= λo(t) exp(xi(t)′β), where xi is allowed to depend on t. The main idea
of PLE is that the “likelihood” of subject i experiencing the event at t given
the risk set R(t) is

λo(t) exp(xi(t)′β)∑
j∈R(t){λo(t) exp(xj(t)′β)} =

exp(xi(t)′β)∑
j∈R(t) exp(xj(t)′β)

which is free of λo(t). One may regard this likelihood as a multinomial choice
with a multinomial logit-form probability.

Let J be the number of the event times (the censoring times not counted).
Since event occurs only at t(j), the “partial-likelihood” function to maximize
for b is

J∏
j=1

exp{x(j)(t(j))′b}∑
m∈R(t(j))

exp{xm(t(j))′b)}
.

The partial likelihood may be taken as a “regular” likelihood in the sense that
the estimator is

√
N -consistent with the asymptotic variance being −1 times

the inverse of the second-order matrix (Andersen and Gill, 1982). Recalling
the M-estimator asymptotic distribution theory, this can happen only if the
second-order matrix equals the outer-product of the gradient times −1. That
is, the asymptotic variance can be estimated in the usual “MLE-way.”

Although λo(t) drops out in PLE, if desired, λo(t) can be estimated with

λoN (t(j)) ≡
1∑

m∈R(t(j))
exp{xm(t(j))′bN} .

A rationale for λoN (t) can be seen with “profile likelihood”: specify the full
likelihood function and maximize it wrt λo(t) treating β as known. Then
the solution is λoN (t); see Klein and Moeschberger (2003, p. 258 and pp.
283–284). Summing up λoN (t) yields a cumulative baseline hazard estimator
ΛoN (t). Then

SN{t, x(t)} = exp[−ΛoN (t) · exp{x(t)′bN}]
= {SoN (t)}exp{x(t)′bN}, where SoN (t) ≡ exp{−ΛoN (t)}.

With this, the survival probability of a subject with a covariate path x(t) can
be predicted.
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When there are ties in discrete event times, a modification in PLE is
called for. For instance, suppose that subjects 7, 8, 9 experience the event at
time t. Breslow’s (1974) modification is to use

exp{x7(t)′b} · exp{x8(t)′b} · exp{x9(t)′b}
[
∑

m∈R(t) exp{xm(t)′b}]3

=
exp[{x7(t) + x8(t) + x9(t)}′b]

[
∑

m∈R(t) exp{xm(t)′b}]3

for the time-t partial likelihood. For a small number of ties, this modification
seems adequate. But for many ties, this procedure may make the denominator
too big, as the hazards of subjects 7, 8, 9 appear three times additively.

If the latent duration of subject 7 is the smallest followed by those of
subjects 8 and 9, then the hazard of subjects 7, 8, 9 will appear, respectively,
only once, twice, and three times in the partial likelihood denominators. On
this account, Efron’s (1977) modification seems better when there are many
ties:

exp{x7(t)′b}∑
m∈R(t) exp{xm(t)′b} − (0/3) exp[{x7(t) + x8(t) + x9(t)}′b]

· exp{x8(t)′b}∑
m∈R(t) exp{xm(t)′b} − (1/3) exp[{x7(t) + x8(t) + x9(t)}′b]

· exp{x9(t)′b}∑
m∈R(t) exp{xm(t)′b} − (2/3) exp[{x7(t) + x8(t) + x9(t)}′b]

.

Compared with the Breslow modification, the numerator is the same, but the
denominator is smaller. It does not matter which subject gets listed first in the
numerator. As for the baseline hazard estimator λoN (t), the only adjustment
needed is replacing the numerator 1 with 3.

6 Integrated-Moment Specification Tests*

When method-of-moment tests (MMT) were discussed, it was seen that
a conditional moment E(u|x) = 0 yields infinitely many unconditional mo-
ments such as E{u · g(x)} = 0. The unsettled question of which uncondi-
tional moments to use is answered fairly satisfactorily in this section. First,
find a family of functions {gt(x), t ∈ T}—each function gt(x) is indexed
by t ranging over some set T—such that E{ugt(x)} = 0 ∀t is equivalent
to E(u|x) = 0. Plotting E{ugt(x)} versus t will indicate in which direction
E(u|x) is violated—gt(x) serves as a “direction” or “axis” particularly when
gt(x)’s do not “overlap” (e.g., gt(x)’s are “orthonormal”). Second, use, for
some weighting function μ(t),

Kolmogorov–Smirnov type test : sup
t

|E{ugt(x)}|

Cramér-von-Mises type test :
∫

E2{ugt(x)}dμ(t).
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χ2 goodness-of-fit tests can be thought of as special cases of the latter test
where u is the difference between an observed variable and its expected value.
With the tests in the display, E{ugt(x)} = 0 for any t can be detected, and
the asymptotic inference can be done with bootstrap. These (and more) are
discussed in this section.

6.1 Integrated Moment Tests (IMT)

Bierens (1990) noted that, when x ∈ Rk is bounded and E(u|x) = 0 for
some x, then E{u · exp(t′x)} = 0 for almost every t in Rk; the reverse also
holds easily because E{u·exp(t′x)} = 0 for a.e. t in Rk cannot imply E(u|x) =
0 a.e. x. Intuitively, E{exp(t′x)} is the moment generating function (mgf) of
x which exists when x is bounded, and as well known, if the mgf’s of two rv’s
are the same ∀t on a neighborhood of 0, then their distributions are the same.
This suggests that the class of functions {exp(t′x), t ∈ Rk} is large enough
and fits the role of the above {gt(x), t ∈ T} turning a conditional moment
into infinite unconditional moments. Indeed, as can be seen in Bierens and
Ploberger (1997), E(u|x) = 0 for some x iff

∫
E2{u · exp(t′x)}dμ(t) > 0 for

any weighting function μ(t) (subject to some regularity conditions). If x is
not bounded, then replace x in exp(t′x) with an one-to-one bounded function
of x, e.g., tan−1(x).

Formally, let u(β) ≡ y − m(x, β), β ∈ Θ, and consider

Ho : P [E{u(β)|x} = 0] = 1 for some β ∈ Θ where
Ha : P [E{u(b)|x} = 0] < 1 for any b ∈ Θ.

A test statistic for a given t is
√

NMN (t) ≡ 1√
N

∑
i

{ui(bN ) exp(t′xi)}� N{0, s(t)2}

where s(t) and estimators for s(t) are in Bierens (1990, (13) to (16)). An
application of this test to an Engel curve estimation can be found in the
appendix of Bierens and Pott-Buter (1990); see also Bierens and Carvalho
(2007).

With a consistent estimator sN (t) for s(t) available, the test with
√

NMN

(t)/sN (t) may be implemented with a chosen t, or this test statistic may be
plotted against t to show at which t Ho gets violated. Better yet, we may use
the Cramér-von-Mises-type test statistic

∫
{
√

NMN (t)/sN (t)}2dμ(t) or its
non-standardized version

∫
{
√

NMN (t)}2dμ(t). Bierens and Ploberger (1997)
derived the asymptotic distribution of

∫
{
√

NMN (t)}2dμ(t) under local alter-
natives (i.e., the alternative model converging to the null model as N → ∞)
as well as under Ho. We may also use the Kolmogorov–Smirnov type test
supt |

√
NMN (t)/sN (t)| or its non-standardized version supt |

√
NMN (t)|. The

standardized versions are likely to perform better because they downweight
regions of t with high variances. All of these tests can be called “integrated mo-
ment tests (IMT).” We will, however, consider mainly

∫
{
√

NMN (t)}2dμ(t)



Sec. 6 Integrated-Moment Specification Tests* 433

or its standardized version in the remainder of this section for the following
two reasons.

One reason is that integrating out t is likely to be more powerful than
using the maximum deviation in the Kolmogorov–Smirnov test when there
are small violations of Ho over many directions. The other is that Cramér-von-
Mises-type tests with quadratic functions can often be expressed as an infinite
sum of orthogonal components, called “principal component decomposition.”
This is helpful in finding the asymptotic distribution and in exploring how
the null model is violated—i.e., in which direction it goes wrong—although
we will not discuss this aspect any further in the following.

Not just exp(t′x), there are functions w(t, x) of t and x that appeared
in the literature for IMT, e.g., w(t, x) = exp(it′x) where i2 = −1 in Bierens
(1982) and 1[x ≤ t] in Stute (1997); the vector inequality x ≤ t holds if all
element-by-element inequalities hold. The former corresponds to the charac-
teristic function, while the latter corresponds to the distribution function.
Also, observing that

E(u|x) = 0 a.s. ⇐⇒ E{u(β)|α′x) = 0 a.s. ∀α with |α| = 1

Escanciano (2006) proposed to use 1[α′x ≤ t], which reduces the dimension
of x into the scalar α′x (an advantage), but both α and t should be integrated
out (a disadvantage).

In implementing these tests, the weighting function μ(t) should be cho-
sen. Although the choice is up to the researcher, typically the empirical dis-
tribution FxN (t) ≡ N−1

∑
i 1[xi ≤ t] of x is used. For instance, in the case

of w(t, xi) = 1[x ≤ t] in Stute (1997), the “evaluation point” t is set at the
observed values of x, which leads to 1[xi ≤ xj ] and the integral

∫
(·)dμ(t)

becomes N−1
∑

j(·) as can be seen in

∫ {
1√
N

∑
i

ui(bN )1[xi ≤ t]

}2

dμ(t)

=
1
N

N∑
j=1

{
1√
N

∑
i

ui(bN )1[xi ≤ xj ]

}2

.

With w(t, x) = exp(it′x) and a normal-density weighting, a version of Bierens
(1982) test in Escanciano (2006) is

1
N

N∑
i=1

N∑
j=1

ui(bN )uj(bN ) exp
(
−1

2
|xi − xj |2

)
which looks particularly easy to implement. Other versions of Bierens test
and more discussions can be found in Fan and Li (2000).

A common drawback of these IMT’s is that their asymptotic
distributions are difficult to characterize and they depend on the null model.
Hence, no table of critical values for general use is available. One solution to
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overcome this problem is following the Khmaladze (1981) approach to trans-
form the test statistic such that its limiting distribution is known and free of
the null-model (“asymptotically distribution free”); the limiting distribution
becomes the distribution of a functional of Brownian motion. This approach
reviewed in Koul (2006)—see also Khmaladze and Koul (2004) and the refer-
ences therein—is, however, quite involved. Instead, bootstrap can be applied
to IMT’s which is shown in the next section where we will examine the Stute
(1997) test in detail.

6.2 Integrated Regression Function Specification Test

6.2.1 Main Idea

Consider testing whether a parametric regression model E(y|x) = m(x, β),
β ∈ Θ, is correct or not. The null and alternative hypotheses are, respectively,

Ho : P{E(y|x) = m(x, β)} = 1 for some β ∈ Θ
Ha : P{E(y|x) = m(x, b)} < 1 for any b ∈ Θ.

As Ha does not fix the alternative model—Ha just states that the null model
is false—tests for Ha are usually called “goodness-of-fit (GOF) tests.” The
well-known parametric GOF χ2 tests compare the sample proportions and the
probabilities under Ho in some specified cells, where the probabilities are the
expected proportions computed using the parametric null model. The main
weakness of those χ2 tests is that choosing the cells is arbitrary, and the tests
have no power if the true model has the same probability as the null model
does on the cells, yet differs from the null model when finer cells are used.
For instance, on a cell (2, 3), both models may have the same probability 0.5,
but different probabilities on finer cells (2, 2.7) and (2.7, 3).

One way to do the test nonparametrically is using a distance between
EN (y|x) and m(x, bN ) where EN (y|x) is a nonparametric estimator for E(y|x)
and bN is a

√
N -consistent estimator for β. Once the difference for a given xo

is obtained, we can then use, e.g.,
∫
{EN (y|xo)−m(xo, bN )}2dxo or supxo

|EN

(y|xo) − m(xo, bN )| to “get rid of” xo. While this procedure is relatively
straightforward, a drawback is the dependence on the bandwidth in EN (y|x).

Another way to test the Ho while avoiding bandwidth dependence is
comparing “integrated versions” of EN (y|x) and m(x, bN ). Intuitively speak-
ing, the bandwidth-dependent approach is analogous to comparing nonpara-
metric and parametric density estimates, whereas the integrating approach
is analogous to comparing nonparametric and parametric distribution func-
tion estimates. As a df can be estimated by the empirical df which does not
require any bandwidth, the integrating approach is bandwidth-free.

Stute (1997) used the integrated regression function∫ xo

−∞
E(y|t)dFx(t) = E{1[x ≤ xo]E(y|x)} = E{1[x ≤ xo]y}
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where Fx(t) ≡ P (x ≤ t) is the df of x. The difference between the last two
expressions is

E[1[x ≤ xo] · {y − E(y|x)}] = 0
=⇒ E[1[x ≤ xo] · {y − m(x, β)}] = 0 under the Ho.

A “marked empirical process” RN (xo)—marked by the residual—based on
the sample analog for this difference (times

√
N) is

RN (xo) ≡
1√
N

∑
i

1[xi ≤ xo]{yi − m(xi, bN )}.

Integrating R2
N (xo) over xo using FxN as the weighting function, we obtain

a Cramér-von-Mises-type test statistic.
FxN (xo) ≡ N−1

∑N
j=1 1[xj ≤ xo] goes up by N−1 only at xo = xj ,

j = 1, ..., N , and FxN (xo) does not change at the other points. We can thus
write

FxN (xo) =
∫ xo

−∞
dFxN (t) =

∫ ∞

−∞
1[t ≤ xo]dFxN (t)(

sum of
1[xj ≤ xo]

N
at xj , j = 1, ..., N

)
.

That is, instead of assigning the weight N−1 to all x1, ..., xN , N−1 or 0 is
assigned depending on xj ≤ xo or not. Replacing 1[t ≤ xo] in

∫∞
−∞ 1[t ≤

xo]dFxN (t) with RN (t)2, we get the Cramér-von-Mises-type test statistic in
Stute (1997):

WN ≡
∫

RN (t)2dFxN (t)
(

sum of
RN (xj)2

N
at xj , j = 1, ..., N

)

=
1
N

∑
j

RN (xj)2 =
1
N

∑
j

[
1√
N

∑
i

1[xi ≤ xj ]{yi − m(xi, bN )}
]2

.

If desired, we may also use the Kolmogorov–Smirnov-type test statistic
sup1≤j≤N |RN (xj)|.

6.2.2 Bootstrap Inference

RN (xo) converges in law to a “centered Gaussian process” under the Ho.
But using the asymptotic distribution of WN resulting from this convergence-
in-law makes the statistical inference depend on the Ho model. That is, the
test is not asymptotically distribution-free and its limiting distribution should
be characterized for each Ho. This is in contrast to the typical case, say,

√
N(bN − β)� N(0, C) ⇐⇒

√
NC−1/2(bN − β)� N(0, Ik)
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where the limit distribution N(0, Ik) is known and tabulated. Hence, instead
of deriving and using the asymptotic distribution of WN , Stute, et al. (1998)
proved that the asymptotic distribution of WN can be approximated by the
following “wild bootstrap.”

First, obtain the residual ûi ≡ yi − m(xi, bN ) and then WN . Second,
draw a random sample v∗i , i = 1, . . . , N , from the two point distribution

P

(
v∗ =

1 −
√

5
2

)
=

5 +
√

5
10

and P

(
v∗ =

1 +
√

5
2

)
=

5 −
√

5
10

.

Third, construct a pseudo-sample (y∗i , xi), i = 1, . . . , N where y∗i = m(xi, bN )
+ v∗i ûi. Fourth, obtain W ∗

N using the pseudo-sample where b∗N is based on
(x′i, y

∗
i ). Fifth, denoting the number of bootstrap replications as B, construct

the empirical distribution using the B-many W ∗
N ’s. Finally, see whether WN

falls in the upper tail of the empirical distribution to reject the Ho if yes. This
bootstrap works also for the tests in Bierens (1982, 1990) and Escanciano
(2006). Instead of simulating v∗ as above, it is simpler to generate v∗ such
that v∗ takes on ±1 with probability 0.5.

A minor drawback of this bootstrap is that its power property for alter-
native models is difficult to analyze. By adopting the approach in Khmaladze
(1981), the test can be transformed into an asymptotically distribution-free
form, and then the transformed test statistic can be expressed as an infi-
nite sum of orthogonal components, which is more informative for its power
property analysis. This approach was pursued in Stute et al. (1998). Koul
and Sakhanenko (2005) reported that finite sample behavior of Khmaladze-
transformed test is better than that of bootstrap inference. This is a surprise,
as bootstrap is often “sold” on its good finite sample behaviors. While the
above Stute test uses the empirical x-process marked by the residuals, Stute
et al. (2008) presented a related test using the empirical residual process
marked by g(x1), ..., g (xN ) for a function g. This test was motivated by a
better nonparametric “principal component” analysis, but the test raises the
issue of choosing g.

Whang (2001) generalized the Stute test by considering E{ρ(y, x;β)
|x} = 0 which includes the Stute regression function specification test as
a special case when ρ(y, x;β) = y − x′β. The proposed test can thus be
implemented almost the same way as the Stute test was implemented. One
difference, however, is how bootstrap is done. Since ρ(y, x;β) is not necessar-
ily solvable for y, the wild bootstrap cannot be used to generate y∗. Whang
(2001) does nonparametric bootstrap (i.e., drawing randomly with replace-
ment from (xi, yi), i = 1, ..., N). To make sure that the bootstrap sample
satisfies the conditional moment condition, Whang (2001) recentered ρ as
Hall and Horowitz (1996) did for GMM tests. He and Zhu (2003) proposed a
GOF test for quantile regression, which uses the k × 1 asymptotic first-order
condition for quantile regression in place of y − m(x, β) in the Stute test.



Sec. 6 Integrated-Moment Specification Tests* 437

6.2.3 Further Remarks

Kondo and Lee (2003) applied the Stute test to a “hedonic price index”
estimation problem. For a repeated cross-section data over 1985–1991 with
the total sample size N = 1808, the response variable is ln(monthly Tokyo
office rent per m2) and the regressors are the time dummies x and the of-
fice characteristics z. Kondo and Lee set up a quadratic model (linear in x
however, as x is dummy variables):

ln pi = x′iβ +
∑

j

αjzj +
∑
j,j′

αjj′zjzj′ + ui.

Three transformations of zj” were tried: zj , z
1/2
j , and ln zj , and the Stute test

was applied with B = 2000. The resulting p-values were 0.005, 0.037, and
0.038, respectively. Thus, despite as many as 44 parameters in each model,
the quadratic models were all rejected.

Kondo and Lee then set up a semi-linear model yi = x′iβ + ρ(zi) + εi

where ρ(·) is an unknown function of z, and went on to estimate only β using
a kernel-based technique for ρ(z) that will be shown in the next chapter.
Taking the quadratic terms as a series approximation to ρ(z), this empirical
example illustrates that series approximation may require too many terms.
Compared with this, kernel estimator seems more “parsimonious.”

Often a test statistic can be “rigged” to produce estimators. For instance,
suppose TN (θ̂) is a test statistic that depends on an estimator θ̂ obtained
without Ho imposed, and we accept Ho if TN (θ̂) � 0. In this case, if we believe
Ho, then we can estimate θ by minimizing {TN (θ)}2 wrt θ. For instance, a
MMT is based on N−1/2

∑
i m(zi, θ̂) = 0 where θ̂ is an estimator derived from

a moment condition other than E{m(z, θ)} = 0 but θ satisfies E{m(z, θ)} = 0
under Ho. Instead of testing E{m(z, θ)} = 0, if we believe the Ho, then we
can estimate θ by imposing the Ho: do GMM for θ under E{m(z, θ)} = 0.

In this regard, related to the Stute’s (1997) test is the GMM by
Dominguez and Lobato (2004) for a moment condition

E{ψ(z, β)|x} = 0 ⇐⇒ E{1[x ≤ xo]ψ(z, β)} = 0 ∀xo

⇐⇒
∫

E2{1[x ≤ xo]ψ(z, β)}dFx(xo) = 0.

They propose to estimate β by minimizing a sample analog for the last ex-
pression that is analogous to the above WN :

1
N

N∑
j=1

{
1√
N

N∑
i=1

1[xi ≤ xj ]ψ(zi, b)

}2

.

6.3 Conditional Kolmogorov Test

Let zi = (x′i, y
′
i)
′ where x is kx × 1 and y is ky × 1; y is allowed to

be multi-dimensional. Let F (yo|x) and Fx(x) denote the df of y|x and x,
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respectively:

F (yo|x) = P (y ≤ yo|x) and Fx(xo) ≡ P (x ≤ xo).

The null hypothesis is

H0 : F (·|x) = F0(·|x, θ) ∀x

which is a parametric df indexed by an unknown θ while Fx is unrestricted.
Andrews (1997) proposed “conditional Kolmogorov (CK) test” which is dis-
cussed in this subsection.

With zo = (x′o, y
′
o)
′ being a fixed value, let

FN (zo) ≡
1
N

∑
i

1[zi ≤ zo] and FxN (xo) ≡
1
N

∑
i

1[xi ≤ xo].

and let θ̂ be a
√

N -consistent estimator for θ. Noting 1[zi ≤ zo] = 1[yi ≤
yo] · 1[xi ≤ xo], take E(·|x1, ..., xN ) on FN (zo) to get

E{FN (zo)|x1, ...xN} =
1
N

∑
i

E(1[zi ≤ zo]|xi)

=
1
N

∑
i

E{1[yi ≤ yo] 1[xi ≤ xo]|xi}

=
1
N

∑
i

E{1[yi ≤ yo]|xi}1[xi ≤ xo] =
1
N

∑
i

F0(yo|xi, θ) 1[xi ≤ xo].

As the Stute (1997) test is based on the empirical process with 1[xi ≤ xo]
marked by yi − E(y|xi), CK test is based on the empirical process with
1[xi ≤ xo] marked by 1[yi ≤ yo] − F0(yo|xi, θ):

1√
N

∑
i

{1[yi ≤ yo] − F0(yo|xi, θ)} 1[xi ≤ xo].

In the empirical process, replacing θ with θ̂ and then using the observed
points z1, ..., zN for the evaluation point zo as in the Stute test, we get the
CK test statistic:

CKN ≡ max
1≤j≤N

| 1√
N

∑
i

{1[yi ≤ yj ] − F0(yj |xi, θ̂)}1[xi ≤ xj ]|.

The difference between the Stute test and CK test is only in the “marks”:
the former uses yi − m(xi, β) while the latter uses 1[yi ≤ yj ] − F0(yj |xi, θ).
As Andrews (1997) noted, instead of this Kolmogorov–Smirnov version, the
Cramér-von-Mises version can be used as well:

CCN ≡ 1
N

N∑
j=1

{
1√
N

∑
i

{1 [yi ≤ yj ] − F0(yj |xi, θ̂)}1[xi ≤ xj ]

}2

.
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For asymptotic inference, Andrews (1997) recommended “fixed-x para-
metric bootstrap.” First, draw y∗i from the parametric distribution F0(·|xi, θ̂),
i = 1, ..., N—more on this below. Second, set z∗i = (xi, y

∗′
i )′, i = 1, ..., N ,

which is one pseudo-sample, with which we can get a pseudo CKN value, say
CK

(b)
N where θ̂

∗
is based on z∗i , i = 1, ..., N ,. Third, repeat these steps, say B

times, to get CK
(b)
N , b = 1, ..., B. Then an asymptotic size-α test is rejecting

the H0 if
1
B

B∑
b=1

1
[
CKN ≥ CK

(b
N )

]
< 0.05.

Regarding the first step above, we can draw y∗i |xi from F0(·|xi, θ̂) with
“acceptance/rejection” method. For instance, if F0(·|xi, θ̂) is N(x′ibN , s2

N ),
then keep drawing two uniform numbers (v1, v2) until they satisfy the condi-
tion

v2 ≤ 1
sN

√
2π

exp
{
−1

2
(
v1 − x′ibN

sN
)2
}

;

then y∗i = v2. Put it differently, imagine drawing the normal density on the
two-dimensional plane. If the point (v1, v2) falls under the density, then we
take v2 as y∗i ; otherwise (v1, v2) gets discarded.



CHAPTER 9

BANDWIDTH-DEPENDENT

SEMIPARAMETRIC METHODS

Semiparametric estimators/tests that require nonparametric smoothing
in getting the estimators/tests may be called “semi-nonparametric,” while
those that require smoothing at most for the asymptotic variance estimation
may be called “semiparametric”; “semiparametrics” in its wide sense en-
compasses both. There are at least two big themes in semi-nonparametrics:
infinite-dimensional nuisance parameters and dimension reduction. The for-
mer requires nonparametric estimators in the first stage, and as the con-
sequence, the second-stage estimator becomes semi-nonparameric; the main
difficulty is to find out how the first-stage nonparametric estimation error
affects the second stage estimator/test. The latter appears in efforts to avoid
the well-known dimension problem in pure nonparametric methods. The ef-
forts took various forms: single- (or multiple-) index models, additive models,
semi-linear models, transformation of response variables, etc. The economet-
ric and statistical literature for semi-nonparametric estimation is immense.
To keep our discussion at a reasonable length, only

√
N -consistent or easy-to-

use estimators/tests will be studied, although there will be a few exceptions.
Also semi-nonparametric methods for LDV models will be examined so long
as they are relevant for the two themes, because most practitioners would
prefer bandwidth-free methods.

1 Two-Stage Estimator with Nonparametric First-Stage

In the chapter for M-estimator, we examined estimators for a finite-
dimensional parameter β with a finite-dimensional nuisance parameter α.
There, we saw how to account for the effect of the first-stage estimation
error aN − α on the second-stage. This chapter deals with a more difficult
case: infinite-dimensional nuisance parameters, and thus nonparametric first-
stage estimators and their effects on the second-stage. Much of this section
constitutes background materials for the other sections in this chapter for
“dimension reduction,” and the reader may refer back to this section when
necessary, reading other sections first.

Before we proceed, it is helpful to classify four cases in two-stage estima-
tors (TSE), depending on the dimension of the first-stage parameter α and
the second-stage parameter β. Assuming that finite-dimensional parameters
are estimable

√
N -consistently whereas infinite-dimensional parameters are

Myoung-jae Lee, Micro-Econometrics, DOI 10.1007/b60971 9, 441
c© Springer Science+Business Media, LLC 2010
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estimable at slower rates, the asymptotic distribution of the TSE for β can
be categorized as follows:

Finite α Infinite α
Finite β covered in M-estimator

chapter
covered in this section

Infinite β α is as good as known depends on convergence
speeds

In the table, “α is as good as known” means that aN − α has no effect,
and thus replacing α with aN is as good as knowing α. Also “depends on
convergence speeds” has sub-cases. If the convergence speeds are the same
in the two-stages, then we have a case similar to both α and β being

√
N -

consistent; otherwise, the estimation error for the slower convergence would
dominate. This case of both-stage estimators being nonparametric is hard to
deal with and would not be practical, as at least two bandwidths are required.
This section does not apply to this “both-nonparametric” case.

1.1 Density or Conditional Mean for First Stage

Recall our discussion on a two-stage estimator bN with a finite dimen-
sional nuisance parameter α with aN →p α. If bN satisfies

1√
N

∑
i

m(zi, bN , aN ) = op(1)

then applying Taylor’s expansion around bN = β and aN = α, we get

op(1) =
1√
N

∑
i

m(zi, β, α) +
1
N

∑
i

mb′(zi, β, α)
√

N(bN − β)

+ 1
N

∑
i ma′(zi, β, α)

√
N(aN − α) where mb′ ≡ ∂m(z,β,α)

∂b′

and ma′ ≡ ∂m(z,β,α)
∂a′ .

Solve this for
√

N(bN − β) and replace N−1
∑

i mb′(zi, β, α) and N−1∑
i ma′(zi, β, α) with E{mb′(zi, β, α)} and E{ma′(zi, β, α)} to get

√
N(bN − β) = −E−1(mb)

{
1√
N

∑
i

m(zi, β, α)

+E(ma′)
√

N(aN − α)

}
+ op(1)

= −E−1(mb)
1√
N

∑
i

{m(zi, β, α)
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+E(ma′)ηi(α)} + op(1), where
E(mb) = E{mb(zi, β, α)}, E(ma′) = E{ma′(zi, β, α)} and

√
N(aN − α) =

1√
N

∑
i

ηi(α) + op(1).

The term η with E(ηη′) < ∞ is an influence function for αN , and E(ma) is
a “link matrix”—linking the first-stage estimation error to the second stage.
In the following, we present an analogous correction term when α is not
finite-dimensional—i.e., nonparametric.

For a k×1 random vector q with density f(q), suppose that the nuisance
parameter and its estimator are, respectively,

αi = E(w|qi)f(qi) and ai =
1

Nhk

∑
j,j �=i

K

(
qj − qi

h

)
wj

where K is a kernel, h is a bandwidth, and ai is a leave-one-out estima-
tor. There are in fact N -many nuisance parameters α1, ..., αN , and bN now
satisfies

1√
N

∑
i

m(zi, bN , ai) = op(1).

Denoting m(zi, β, αi) as mi, it is known to hold that

√
N(bN − β) = −E−1(mb)

1√
N

∑
i

[mi + E(ma′ |qi)f(qi)wi

−E{E(ma′ |q)f(q)w}] + op(1) (CTfE)

where the correction term is E(ma′ |qi)f(qi)wi − E{E(ma′ |q)f(q)w}; CT
stands for “Correction Term”, and fE “density f times conditional mean
E.” The second term E{E(ma′ |q)f(q)w} is to make the correction part to
have mean zero. Here the link matrix is E(ma′ |qi).

As a special case, set w = 1 to get

αi = f(qi) and ai =
1

Nhk

∑
j,j �=i

K

(
qj − qi

h

)
.

Then
√

N(bN − β) = −E−1(mb)
1√
N

∑
i

[mi + E(ma′ |qi)f(qi)

−E{E(ma′ |q)f(q)}] + op(1). (CTf )

Suppose now that the nuisance parameter and its estimator are

αi = E(w|qi) and ai =
(Nhk)−1

∑
j,j �=i K((qj − qi)/h)wj

(Nhk)−1
∑

j,j �=i K((qj − qi)/h)
.
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It will be shown shortly that, with w being of dimension p × 1,

√
N(bN − β) = −E−1(mb)

1√
N

∑
i

[
mi + E (ma′ |qi)

1×p
·

{
wi
p×1

− E(w|qi)
}]

+ op(1) (CTE)

This shows that, when w is not a scalar, the correction term is just a sum of
the individual correction terms. The link matrix is still E(ma′ |qi). CTf and
CTE will be our “building blocks” for many parts in this chapter.

To get CTE from CTfE and CTf , observe E(w|qi) = {E(w|qi) f(qi)}
f(qi)−1. This means that product differentiation type of rules can be applied.
That is, the correction term will be a sum of two terms: “the correction term
for E(w|qi)f(qi) with ma′ multiplied by f(q)−1” and “the correction term
for f(qi)−1 with ma′ multiplied by E(w|q)f(q),” because the effect of one
term’s estimation error gets channeled to m through the other term times
ma′ . Specifically, the correction term is

E

(
ma′

f(q)
|qi

)
f(qi)wi − E

{
E

(
ma′

f(q)
|q
)

f(q)w
}

− E

(
ma′

f(q)2
E(w|q)f(q)|qi

)
f(qi)+E

{
E

(
ma′

f(q)2
E(w|q)f(q)|q

)
f(q)

}
= E(ma′ |qi)wi − E{E(ma′ |q)w} − E(ma′E(w|q)|qi)+E{ma′E(w|q)}.

The second and fourth terms cancel each other because

E{E(ma′ |q)w} = E[E{E(ma′ |q)w|q}] = E[E(ma′ |q)E(w|q)]
E{ma′E(w|q)} = E[E{ma′E(w|q)|q}] = E[E(ma′ |q)E(w|q)].

The first and third terms are thus

E(ma′ |qi)wi − E(ma′ |qi)E(w|qi) = E(ma′ |qi){wi − E(w|qi)}.

The above results hold when a high-order kernel is used in the first stage,
and the bandwidth h is smaller than the optimal bandwidth minimizing the
asymptotic mean squared error; such a small h reduces asymptotic bias faster
than the optimal bandwidth. Robinson (1988) seems to be the first to use
high-order kernels to facilitate similar derivations. Newey (1994) derived the
above results using series-approximations for αj . This along with the fact the
correction terms do not depend on the kernel suggest that the choice of the
nonparametric method in the first-stage would not matter.

1.2 Other Nonparametric Nuisance Parameters*

A slightly different case from all of the above occurs when αi = f(wi|qi) =
f(wi, qi)/f(qi). The correction term can be found using again the product
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differentiation rule. First, the correction term for f(wi, qi) with ma′ multi-
plied by f(qi)−1 is

E

(
ma′

f(q)
|wi, qi) f(wi, qi) − E

{
E

(
ma′

f(q)
|w, q

)
f(w, q)

}
= E(ma′ |wi, qi)f(wi|qi) − E{E(ma′ |w, q)f(w|q)}.

Second, the correction term for f(qi)−1 with ma′ multiplied by f(wi, qi) is

E

(−f(w, q)ma′

f(q)2
|qi

)
f(qi) − E

{
E

(−f(w, q)ma′

f(q)2
|qi

)
f(qi)

}
= E {−f(w|q)ma′ |qi} − E{E(−f(w|q)ma′ |q)}.

There are overall four terms, and putting them together, only two of them
remain:

E(ma′ |wi, qi)f(wi|qi) − E{E(ma′ |w, q)f(w|q)|qi} (CTfc)

because the other two terms cancel each other, which can be seen by rewriting
the fourth term as

E{E(f(w|q)ma′ |q)} = E[ E{E(f(w|q)ma′ |w, q)|q} ]
= E{f(w|q)E(ma′ |w, q)}.

If αi = ∇f(qi) = ∂f(qi)/∂q, then the correction term is known to be

−∇q{E(ma′ |qi)f(qi)} + E[∇q{E(ma′ |q)f(q)}] (CT∇f
)

where ∇q{E(ma′ |qi)f(qi)} = ∇qE(ma′ |qi) · f(qi) + E(ma′ |qi)·∇f(qi).

If αi = ∇qE(w|qi) = ∂E(w|qi)/∂q, then the correction term is

−1
f(qi)

∇q{E(ma|qi)f(qi)}{wi − E(w|qi)}

= −
{
∇qE(ma|qi) + E(ma|qi)

∇qf(qi)
f(qi)

}
{wi − E(w|qi)}.

For the score function αi = f(qi)−1∇f(qi), using the product differenti-
ation rule again, the correction term is

−∇q

{
E

(
ma′

f(q)
|qi

)
f(qi)

}
+ E

[
∇q

{
E

(
ma′

f(q)
|q
)

f(q)
}]

−E

(
ma′

∇f(q)
f(q)

|qi

)
+ E

{
E

(
ma′

∇f(q)
f(q)

|q
)}

= −∇qE(ma′ |qi) + E[∇qE(ma′ |q)] − E(ma′ |qi)
∇f(qi)
f(qi)

+E

{
E(ma′ |q)∇f(q)

f(q)

}
=

−1
f(qi)

∇q{E(ma′ |qi)f(qi)}+E

[
1

f(q)
∇q{E(ma′ |q)f(q)}

]
. (CTs)

This correction term is the ∇f(qi)-correction term divided by f(qi).
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1.3 Examples

1.3.1 Moments with Nonparametric Nuisance Parameters

Suppose that there is no bN in m(z, bN , ai). Then the above derivations
yield op(1)-equivalent expressions for N−1/2

∑
i m(zi, ai) which are useful for

method-of-moment type tests. As an example, consider

1√
N

∑
i

m(zi, ai) =
1√
N

∑
i

g(xi){yi − EN (y|xi)}

where αi ≡ E(y|xi), m(zi, αi) = g(xi){yi − E(y|xi)} and ai = EN (y|xi).
Observe

E(ma|x) = E

[
∂[g(x){y − EN (y|x)}

∂EN (y|x)|x]

]
= −g(x).

Hence CTE yields

1√
N

∑
i

g(xi){yi − EN (y|xi)}

=
1√
N

∑
i

[g(xi){yi − E(y|xi)}−g(xi){yi − E(y|xi)}] + op(1)=op(1).

A similar but different example is

1√
N

∑
i

g(xi){EN (y|xi) − E(y|x)}

=⇒ E(ma|x) = E

[
∂[g(x){EN (y|xi) − E(y|x)}]

∂EN (y|x)
|x
]

= g(x).

Thus

1√
N

∑
i

g(xi){EN (y|xi) − E(y|x)}

= 0 +
1√
N

∑
i

g(xi){yi − E(y|x)} = op(1) (CT2S)

where the first term (0) on the right-hand side is obtained because mi =
E(y|xi) − E(y|xi) = 0 and the second term comes by applying CTE . It will
become clear later why this equation is dubbed “CT2S .”

1.3.2 Nonparametric WLS

We have seen that the variance matrix of an efficient estimator under a
s × 1 conditional moment condition E(ψ(β)|x) = 0 for a k × 1 vector β is

E−1
x {E(ψb(β)|x) E−1(ψ(β)ψ(β)′|x) E(ψb′(β)|x)} where ψb

k×s

≡ ∂ψ

∂b
.
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Using this, with a given condition E(u|x) = 0 in the linear model y = x′β +u
(here ψ(β) = y − x′β), the efficiency bound for β is

E−1
x {x · (V (u|x))−1 · x′} = E−1

x

{
xx′

V (u|x)

}
.

Specifying a parametric form of heteroskedasticity, weighted LSE (WLS) at-
tains this bound, when the specified form is correct. But it is possible to
attain this bound without specifying the form of heteroskedasticity.

Robinson (1987) showed how to implement efficient estimation using
a nonparametric estimator for V (u|x) with LSE residuals: estimate V (u|x)
nonparametrically with the LSE residuals and then apply WLS. Robinson
suggests a nearest-neighbor method for estimating V (u|x). But we use a
kernel estimator with ûj ≡ yj − x′jblse:

VN (u|xi) = EN (u2|xi) =

∑
j,j �=i K((xj − xi)/h)û2

j∑
j,j �=i K((xj − xi)/h)

.

Another, perhaps better, estimator for V (u|x) = V (y|x) that Robinson (1987)
suggested was

VN (y|xi) = EN (y2|xi) − {EN (y|xi)}2

=

∑
j,j �=i K((xj − xi)/h)y2

j∑
j,j �=i K((xj − xi)/h)

− {EN (y|xi)}2

which does not depend on the LSE and the linearity assumption E(y|x) =
x′β.

To see the effect of the nonparametric estimation on WLS, note that the
moment condition for WLS bwls is E{(y−x′b)/V (y|x)} = 0 and bwls satisfies

1√
N

∑
i

yi − x′ibwls

VN (y|xi)
= 0.

Here, m(zi, b, ai) = (yi − x′ib)/VN (y|xi), αi = V (y|xi) and

ma(zi, β, αi) = − ui

{V (y|xi)}2
=⇒ E(ma|xi) = 0.

The link matrix is zero, and there is no effect of estimating V (u|x) on WLS.
That is, we can do as well as if the functional form of V (y|x) were known.

1.3.3 Nonparametric Heteroskedasticity Test

In linear models, heteroskedasticity can be tested by the LSE of the
residual squared on some functions of regressors. Consider a linear model
with heteroskedasticity:

yi = x′iβ + ui and u2
i = z′iγ + εi
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where x is a k × 1 vector, z is a kz × 1 vector consisting of functions of x,
E(u2|x) = z′γ, and ε ≡ u2 − z′γ. Here we assume z′iγ > 0 for all i, although
it may be better to use a nonnegative function of z and γ such as exp(z′γ).
With the first component of z being 1, we can test for homoskedasticity with
H0 : γ2 = · · · = γkz

= 0 by the LSE of (yi−x′iblse)2 on zi. But this test can be
misleading when E(y|x) = x′β. B.J. Lee (1992) suggested a nonparametric
heteroskedasticity test regressing û2

i where ûi = yi −EN (y|xi) on zi without
specifying the regression function. B.J. Lee (1992) in fact suggested the LSE
of û2

i fN (xi) on zifN (xi) to remove the nonparametric denominator fN (xi).
Specifically, suppose

yi = E(y|xi) + ui with E(u|x) = 0 and u2
i = z′iγ + εi with E(ε|x) = 0.

The LSE of û2
i fN (xi) on zifN (xi) is

gN =

{
1
N

∑
i

fN (xi)2ziz
′
i

}−1
1
N

∑
i

fN (xi)2ziû
2
i .

Observe

û2 = {y − EN (y|x)}2 = {u + E(y|x) − EN (y|x)}2

= z′γ + ε + 2u{E(y|x) − EN (y|x)} + {E(y|x) − EN (y|x)}2

as u2
i = z′iγ + εi.

Substitute this into gN and solve for
√

N(gN − γ) to get

√
N(gN − γ) =

{
1
N

∑
i

fN (xi)2ziz
′
i

}−1
1√
N

∑
i

fN (xi)2zi

·
[
εi + 2ui{E(y|xi) − EN (y|xi)} + {E(y|xi) − EN (y|xi)}2

]
.

To find the correction term for the two nuisance parameters αi = (f(xi),
E(y|xi))′, denote the summand in N−1/2

∑
i(·) as m to differentiate m wrt

a and then replace a with α:

∂m

∂fN (x)
= 2f(x)zε =⇒ E

{
∂m

∂fN (x)
|x
}

= 0

∂m

∂EN (y|x)
= f(x)2z(−2u) =⇒ E

{
∂m

∂EN (y|x)
|x
}

= 0.

Hence the link function is zero and there is no first-stage estimation error
effect. We thus have

√
N(gN − γ) =

{
1
N

∑
i

f(xi)2ziz
′
i

}−1
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1√
N

∑
i

f(xi)2ziεi + op(1)� N(0, C)

where C ≡ E−1{f(x)2zz′} · E{f(x)4zz′ε2} · E−1{f(x)2zz′}.

Clearly, εi = u2
i −z′iγ can be estimated with û2

i −z′igN and we have H0 : γ2 =
· · · = γkz

= 0 under homoskedasticity. Under this H0, εi can be estimated
simply by û2

i − g1 where g1 is the first element of gN .

2 Nonparametric TSE for Endogenous
Regressors

In the preceding section, we examined two-stage estimators (TSE) with
the first-stage nonparametric and the second-stage finite- dimensional, and
then introduced some examples. One prominent case fitting this mold is re-
placing an endogenous regressor, say y2, with E(y2|x), which is a nonpara-
metric generalization of two-stage LSE (2SLSE) which replaces y2 with its
linear projection L(y2|x). Calling the approach “nonparametric substitution
(SUB)” method, this section studies the approach in detail where the regres-
sion function can be linear/nonlinear or smooth/non-smooth. Other than
nonparametric SUB, the so-called “control function (CF)” approach which
adds a term—“control function”—into the model to account for the endo-
geneity of y2 will be examined in the following section. Except in the last op-
tional subsection, the second-stage parameter of interest is finite-dimensional
in this section.

2.1 Linear Model and Nonparametric 2SLSE

Consider a linear model:

y1 = αy2 + x′1β + u, E(u|x) = 0

which is the first equation of a system consisting of two equations, where y2

is the endogenous regressor and x is the exogenous variables of the system
that includes at least one variable not in x1. Suppose E(y2|x) is known for
a while. Then we can estimate α and β applying IVE with (E(y2|x), x′1)

′ as
the instrument. Defining

z ≡ {E(y2|x), x′1}′, w ≡ (y2, x
′
1)
′, γ ≡ (α, β)′, gN ≡ (aN , b′N )′

it holds that

√
N(gN − γ)� N{0, E−1(wz′) E(u2zz′) E−1(zw′)}.

Since E(wz′) = Ex[E(w|x) · z′] = E(zz′), the asymptotic variance becomes

E−1(zz′) E(u2zz′) E−1(zz′) {= E(u2) · E−1(zz′)
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under homoskedasticity}.

In reality, however, we do not know the form of E(y2|x), which means
that the above IVE is infeasible. If we know that the other part of the si-
multaneous system (i.e., the y2 equation) is linear, then E(y2|x) is a linear
function of x. But even if E(y2|x) is not linear, or even if the y2 equation
is not specified, still we can have a feasible version replacing E(y2|x) with
a nonparametric estimator EN (y2|x). Let zNi ≡ (EN (y2|xi), x′i)

′. Then the
feasible IVE with a nonparametric instrument, still denoted as gN , satisfies

1√
N

∑
i

(y1i − w′igN )zNi = 0.

With m(yi, wi, g, zi) = (yi − w′ig)zi and ai = EN (y2|xi) that is the first
component of zi, we get

E{ma(yi, wi, γ, zi)|x} = E(u|x) = 0 :

there is no effect of using an estimated instrument. Hence the feasible IVE
has the same asymptotic distribution as the infeasible IVE.

It is interesting to note that the feasible IVE is equivalent to the non-
parametric 2SLSE for y1 = αy2 +x′1β +u; in the nonparametric 2SLSE, first
EN (y2|x) is obtained, and then the LSE of y1 on EN (y2|x) and x1 is done.
Recall that this kind of equivalence also holds with the usual 2SLSE where y2

is replaced by the linear projection L(y2|x). To see the equivalence, rewrite
y1 = αy2 + x′1β + u as

y1 = αE(y2|x) + x′1β + u + α{y2 − E(y2|x)}
= αEN (y2|x) + x′1β + u + α{y2 − E(y2|x)} − α{EN (y2|x)

−E(y2|x)}

where the error term has three components. When LSE is applied in the
second stage, the last two error terms cancel each other due to CT2S , and
only u is left as the error term. The asymptotic variance of the 2SLSE is then
driven by, using CTE ,

1√
N

∑
i

uiEN (y2|xi) =
1√
N

∑
i

uiE(y2|xi) + op(1)

(EN (y2|xi) is a nonparametric IV)

Hence the asymptotic variance becomes E−1(wz′)E(u2zz′)E−1(zw′) as ap-
peared above.

Deriving the efficient variance matrix under the moment condition E{(y−
α1y2 − x′1β)|x} = E(u|x) = 0, we get

E−1
x {E(w|x) · E(w′|x) · (V (u|x))−1} = E−1

x

{
zz′

V (u|x)

}
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= E(u2) E−1(zz′) under homoskedasticity.

This efficiency bound agrees with the asymptotic variance of the IVE/
2SLSE under homoskedasticity. Thus the IVE/2SLSE, feasible or infeasible,
is efficient under homoskedasticity. In this sense, E(y2|x) is the best instru-
ment for y2.

2.2 Smooth Nonlinear Models and Nonparametric SUB

Suppose we have a nonlinear model ρ(m, γ) = u where ρ is a s×1 vector
of functions known up to a k × 1 parameter vector γ with

E{ρ(m, γ)|x} = E(u|x) = 0

and m includes a response variable y1, an endogenous regressor y2 and ex-
ogenous regressors x. Assume homoskedasticity:

E{ρ(m, γ) · ρ(m, γ)′|x} ≡ Ω (a constant matrix).

For instance, let γ = (α, β′)′, mi ≡ (y1i, y2i, x
′
i)
′ and

ρ(mi, γ) = y1i − αy2i − r(x1i, β) = ui

where r(x1, β) is a nonlinear function of x1 known up to β.
Recall the efficiency bound under E{ρ(m, γ)|x} = 0:

E−1
x [E{ρg(m, γ)|x} E−1{ρ(m, γ)ρ(m, γ)′|x} E{ρg(m, γ)′|x}]

where ρg(m, γ) ≡ ∂ρ

∂g

= E−1
x [E{ρg(m, γ)|x} Ω−1 E{ρg(m, γ)′|x}]
under the homoskedasticity.

With an initial consistent estimator γ̂ for γ, ΩN ≡ N−1
∑

i

ρ(mi, γ̂)ρ(mi, γ̂)′ →p Ω. The problem is in getting E(ρg(m, γ)|x). In the
example ρ(m, γ) = y1 − αy2 − r(x1, β),

E{ρg(m, γ)|x} = E{−(y2, rb′(x1, β))′|x} = {−E(y2|x), rb′(x1, β)}′

where rb ≡
∂r

∂b
.

E(y2|xi) can be replaced with a kernel estimator

EN (y2|xi) ≡
∑N

j,j �=i K((xj − xi)/h)y2j∑N
j �=i K((xj − xi)/h)

.

If both y2 and x1 reside in r(·) such that y2 is not additively separable from
x1 as in ρ(m, γ) = y1 − r(y2, x1, β), then E(ρg(m, γ)|x) can be estimated
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with −EN{∂r(y2, x1, g0)/∂g|x} where g0 is a
√

N -consistent estimator for
γ. Using this kind of E{ρg(m, γ)|x} does not lead to an efficient estimator
in general. But it does attain the efficiency bound under homoskedasticity
(Newey, 1990b) as illustrated in the preceding subsection.

Specifically, the following is a procedure for the efficient IVE of nonlinear
(simultaneous) equations under homoskedasticity:

1. Use inefficient instruments to estimate γ by γ̂
√

N -consistently; e.g., γ̂
may be the GMM under the moment conditions E{ρ(m, γ)
gj(x)} = 0, j = 1, ..., k, where g1(x), ..., gk(x) are some chosen func-
tions of x.

2. Estimate Ω with ΩN , and estimate E{ρg(m, γ)|xi} using a nonparamet-
ric estimator such as EN (y2|x) if necessary. Denote the k× s estimator
for E{ρg(m, γ)|xi} as Di ≡ Di(xi, γ̂).

3. Take one step from γ̂ to get the efficient estimator gN :

gN = γ̂ −
(∑

i

DiΩ−1
N D′i

)−1

·
∑

i

DiΩ−1
N ρ(mi, γ̂).

2.3 Non-smooth Models and Nonparametric SUB*

So far in this section, either linear or linearized versions of nonlinear
models with an endogenous regressor have been examined. Here we study
nonlinear but non-differentiable models with an endogenous regressor. Under
non-differentiability, IVE is no longer applicable, but there are still various
methods to handle endogeneity as reviewed in Lee (2008, semiparametric
estimates for limited dependent variable (LDV) models with endogenous re-
gressors, unpublished paper). One of them is the nonparametric 2SLSE as in
Lee (1995b), which is reviewed in the following.

Consider a censored SF equation

y1 = max(αy2 + x′1β + ε, 0)

where y2 = τ2(y∗2) is a transformation of the latent continuous variable y∗2
with y∗2 related to ε, and x1 is a k1 × 1 vector of exogenous variables. As an
example, y1 may be female labor supply, while y2 is a dummy variable for a
labor union membership (then τ2 is an indicator function). More generally,
we may consider

y1 = τ1(y∗1) = τ1{ατ2(y∗2) + x′1β + ε} = τ1(αy2 + x′1β + ε)

where τ1 is a function whose form is known; e.g., τ1(·) = max(·, 0). The
regressor y2 may have its own SF with the regressors y1 and x2, although
this is not explicit here. Define a k × 1 exogenous regressor vector x as the
collection of the variables in x1 and x2.
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Rewrite the censored endogenous-regressor model as

y1 = max[αE(y2|x) + x′1β + ε + α{y2 − E(y2|x)}, 0]
= max[α · EN (y2|x) + x′1β + ε + αv + α{E(y2|x) − EN (y2|x)}, 0],

v ≡ y2 − E(y2|x).

The parameters α and β can be estimated in two stages. The first step is
estimating E(y2|x) with a kernel nonparametric estimator EN (y2|x). The
second step is estimating the last equation with a semiparametric method
which requires weak assumptions on ε + αv. This strategy is applicable not
only to the censored model, but also to y = τ1(αy2 +x′1β +ε) more generally.
The first nonparametric step is uniform regardless of the form of τ2 in y2 =
τ2(y∗2), for we need only EN (y2|x). The second step, however, is τ1-specific. If
τ1(·) = max(·, 0), the second step needs a censored model estimator, and if τ1

is an indicator function, the second step needs a binary model estimator. For
the censored model, we will use Powell’s (1986a) SCLS in the second stage as
an illustration, although almost all

√
N -consistent semiparametric censored

model estimators can be used. Lee (1996b) also showed a simpler version
under the assumption E(y2|x) = x′η, as well as extensions to the general
model y = τ1(αy2 + x′1β + ε) and to cases with more than one endogenous
regressors.

Turning to the details of the two-stage procedure for the censored model
with SCLS as the second stage, define

γ ≡ (α, β′)′, u ≡ ε + αv,

z ≡ (E(y2|x), x′1)
′ and zN ≡ (EN (y2|x), x′1)

′

where x and z are, respectively, k × 1 and (k1 + 1)× 1 vectors. The censored
model can be written as

y1 = max(z′γ + u, 0).

Minimize the SCLS minimand wrt g:

QN (g) ≡ 1
N

∑
i

[ {
y1i − max

(y1i

2
, z′Nig

)}2

+ 1[y1i > 2z′Nig]
{(y1i

2

)2

−(max(z′Nig, 0))2
} ]

to get the nonparametric two-stage SCLS gN . Then

√
N(gN − γ)� N(0, E−1{1[|u| < z′γ] zz′} D E−1{1[|u| < z′γ] zz′})

where D ≡ E[1[z′γ > 0]min{u2, (z′γ)2}zz′]

+α2E[1[z′γ > 0]v2{Fu|x(z′γ) − Fu|x(−z′γ)}2zz′]
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−2αE[{1[|u| < z′γ]u + (1[u > z′γ] − 1[u < −z′γ])z′γ}
·1[z′γ > 0]v{Fu|x(z′γ) − Fu|x(−z′γ)}zz′]

where fu|x is the density of u|x and Fu|x is the df.
As for estimating D, the second and third terms can be estimated by

a2
N

1
N

∑
i

1[z′NigN > 0]ṽ2
i {FN (z′NigN )}2zNiz

′
Ni

−2aN
1
N

∑
i

{1[|ũi| < z′NigN ]ũi + (1[ũi > z′NigN ]

−1[ũi < −z′NigN ])z′NigN}

·1[z′NigN > 0]ṽiFN (z′NigN )zNiz
′
Ni where

ṽi ≡ y2i − EN (y2|xi), ũi ≡ y1i − z̃′igN ,

FN (z′NigN ) ≡
∑

j,j �=i K{(xj − xi)/s}1[|ũj | < z′NigN ]∑
j,j �=i K{(xj − xi)/s}

and s is a smoothing parameter. Under the independence between x and u,
FN (z′NigN ) gets simplified to (N − 1)−1

∑
j,j �=i 1[|ũj | < z′NigN ]. If there is

no censoring, then the indicator functions and Fu|x in the asymptotic vari-
ance drop out to make the nonparametric SCLS equal to the nonparametric
2SLSE that appeared already with the asymptotic variance E−1(zz′)E(ε2zz′)
E−1(zz′).

2.4 Nonparametric Second-Stage and Integral Equation*

Newey and Powell (2003) considered

y1 = ρ(y2, x1) + u, E(u|x) = 0

where y2 is endogenous although no equation for y2 appears explicitly. Taking
E(·|x) on y1 = ρ(y2, x1) + u yields

π(x) ≡ E(y1|x) =
∫

ρ(y2, x1)dF (y2|x)

where F (y2|x) is the df of y2|x. This equation may be regarded as a mapping
from a space for ρ(y2, x1) to a space for π(x), say,

π = GF (ρ).

Since π(x) and F (y2|x) are identified, at least in principle, we can replace
those with estimates πN (x) and FN (y2|x) to get

πN (x) =
∫

ρN (y2, x1)dFN (y2|x)
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which defines implicitly the estimator ρN of ρ as a solution to this “Fredholm
integral equation of the first kind”—“the second kind” would have ρN (times
a constant) subtracted from the right-hand side. From this equation, we may
get the inverse function ρ = G−1

F (π) and then replace F and π with FN and
πN , which would then give an estimator G−1

FN
(πN ) for ρ.

Although the direction sounds right, the inverse G−1
F (π) may not exist

for all possible πN (i.e., GF may not be “onto”); and even if it does under
certain conditions, it may not be unique (i.e., GF may not be “one-to-one”);
even if it is unique, it may not be continuous in π(x) (and F (y2|x)). This
means that the convergence of πN (x) (and FN (y2|x)) to the true function
does not necessarily imply the convergence of ρN to ρ. Newey and Powell
(2003) imposed assumptions such that GF is bijective (one-to-one and onto)
and ρ belongs to a compact set. These, combined with the continuity of
GF (ρ) in ρ (GF (ρ) is linear in ρ and thus continuous), implies that G−1

F (π)
is continuous in π.

Applying a series-approximation
∑∞

j=1 βjpj(y2, x1) to ρ(y2, x1) where
p1(y2, x1), p2(y2, x1), ... are known basis functions, we get (with the infinite
series trimmed at J)

π(x) = E{ρ(y2, x1)|x} � E

⎧⎨⎩
J∑

j=1

βjpj(y2, x1)|x

⎫⎬⎭ =
J∑

j=1

βjE{pj(y2, x1)|x}.

The first-stage is replacing π(x) and E{pj(y2, x1)|x} with nonparametric es-
timators πN (x) and EN{pj(y2, x1)|x}, and the second-stage is the LSE of
πN (x) on EN{pj(y2, x1)|x}, which is in principle nonparametric when J →
∞. This TSE is a SUB approach, because the endogenous part ρ(y2, x1) is
replaced by its projection on x. The actual implementation is, however, more
complicated than this because of the aforementioned difficulties with G−1

F .
Another notable point for the implementation is that y1 can be used instead
of πN (x), because E{g(x)y1} = E{g(x) ·E(y1|x)}; i.e., we may do away with
πN (x).

Hall and Horowitz (2005) proposed kernel-based estimators for the same
model y1 = ρ(y2, x1) + u and E(u|x) = 0 and Horowitz (2007) derived its
asymptotic distribution. Horowitz and Lee (2007) dealt with nonparameric
quantile regression with endogenous regressors and instruments. These esti-
mators, however, do not look any simpler than the above series-based idea.
See also Florens (2003) and the references therein for more estimators. For
the estimators on a nonparametric regression function with endogenous re-
gressors, there is a lingering doubt on how feasible/workable those estimators
could be. Indeed, Severini and Tripathi (2006) showed that the identification
is “fragile,” and various conditions used in the studies are either unverifiable
or little better than restating the definition of identification. Severini and
Tripathi illustrated that, even in a very special case where the endogenous
regressor and an instrument are known to be jointly normal, still the problem
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is “ill-posed.” They did show, however, that some linear functionals of the
regression function can be identified even when the regression function itself
is not—a positive message despite the grim picture painted on the problem
in general.

3 Control-Function (CF) Approaches

“Control-function (CF) approach” turns an endogenous regressor into
an exogenous one by adding an extra control function which is in essence the
part of the error term related to the endogenous regressor. Viewed differently,
the control function is (a function of) the RF error of the endogenous regres-
sor. As noted in relation to parametric LDV estimators and as can be seen
in Lee (2008, semiparametric estimates for limited dependent variable (LDV)
models with endogenous regressors, unpublished paper), there are more ways
to handle endogenous regressors other than SUB and CF (and IVE): model
projection, system reduced form, and artificial instrumental regressor. But
it seems that SUB and CF are the most popular ways of dealing with en-
dogenous regressors. With SUB studied in the previous section, this section
examines CF closely in linear and nonlinear models. In the last subsection,
we also consider the case of an infinite-dimensional parameter of interest
(i.e., nonparametric second stage) when there are nonparametric nuisance
parameters.

3.1 Linear Models

Consider a linear SF for y1 and a nonparametric RF for an endogenous
regressor y2:

y1 = αy2 + x′1β + u with E(u) = 0 and y2 = E(y2|x) + v2

with E(v2|x) = 0.

Assume
(i) E(u|x, v2)=E(u|v2) : mean-independence of u from x given v2

(ii) E(u|v2) = ζv2 : linear projection where ζ ≡ E(v2u)/E(v2
2).

As well known, the linear projection holds if (u, v2) ∼ N(0,Ω) for some Ω.
CF for this model is based on

E(y1|x, v2) = αy2 + x′1β + E(u|x, v2) = αy2 + x′1β + E(u|v2)
= αy2 + x′1β + ζv2

where the first equality holds because y2 is determined by x and v2—this
aspect is critical. In the second equality, if (i) does not hold, then a function
of x coming from E(u|x, v2) will hamper the identification of β. Rewrite the
y1 SF as

y1 = αy2 + x′1β + ζv2 + (u − ζv2).
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The error term u − ζv2 satisfies

E(u − ζv2|x, v2) = E(u|x, v2) − ζv2 = E(u|v2) − ζv2 = 0

which then implies E(u − ζv2|x, y2) = 0.
The CF-based nonparametric TSE proceeds as follows. In the first stage,

E(y2|x) is estimated nonparametrically by EN (y2|x), and in the second stage,
(α, β′, ζ)′ is estimated by the LSE of y1 on (y2, x

′
1, v̂2) where v̂2 ≡ y2 −

EN (y|x). The linear projection assumption can be relaxed, say E(u|v2) =
μ(v2) where μ(·) is an unknown function. In this case, we get

y1 = αy2 + x′1β + μ(v2) + {u − μ(v2)}

which is a semi-linear model to be studied in a later section.
Estimating the extra parameter ζ with v̂2 is a distinguishing character-

istics of CF approach. By controlling the endogeneity source v2 of u, the
endogeneity problem gets avoided, whereas the endogenous regressor is re-
placed with its “predicted version” in SUB. One advantage of CF over SUB is
that the endogeneity can be tested with H0 : ζ = 0. Another advantage of CF
is the ability to remove the endogeneity of multiple endogenous regressors:
e.g., y2 and y2

2 may appear together in the y1 equation, and both variables are
turned exogenous by controlling the single variable v2. Two disadvantages of
CF can be seen in the above assumptions (i) and (ii): (i) is close to assuming
u � x although somewhat weaker, and (ii) is a linearity assumption. Later
it will be seen that (ii) may be avoided with “pairwise differencing,” but
assumptions like (i) are indispensable for CF.

For the LSE of y1 on (y2, x
′
1, v̂2), define ε ≡ u − ζv2 and rewrite y1 =

αy2 + x′1β + ζv + (u − ζv2) as

y1 = αy2 + x′1β + ζv̂2 + ε − ζ(v̂2 − v2).

Define
q̂ ≡ (y′2, x

′
1, v̂2)′, q ≡ (y2, x

′
1, v2) and δ ≡ (α, β′, ζ)′

to get y1 = q̂′δ + ε − ζ(v̂2 − v2) and

√
N(δ̂ − δ) =

(
1
N

∑
i

q̂iq̂
′
i

)−1
1√
N

∑
i

q̂i{εi − ζ(v̂2i − v2i)}

= E−1(qq′)
1√
N

∑
i

q̂i[εi − ζ{E(y2|xi) − EN (y2|xi)}] + op(1).

The nuisance parameter is E(y2|xi) in v2i = y2i − E(y2|xi), and the
estimator EN (y|xi) appears in the last component of q̂i as well as in εi −
ζ{E(y2|xi) − EN (y2|xi)}. Use CTE and the product-differentiation rule to
get

1√
N

∑
i

q̂i[εi − ζ{E(y2|xi) − EN (y2|xi)}]
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=
1√
N

∑
i

[qiεi + E{(0, 01×k1 ,−1)′εi + qi(εi + ζ)|xi}

·{y2i − E(y2|xi)}] + op(1)

=
1√
N

∑
i

[qiεi + ζE(q|xi){y2i − E(y2|xi)}] + op(1)

where E(q|xi) = {E(y2|xi), x′1, 0}′.

Therefore, defining ξi ≡ qiεi + ζE(q|xi){y2i − E(y2|xi)}, it holds that
√

N(δ̂ − δ)� N{0, E−1(qq′)E(ξξ′)E−1(qq′)}.

As usual, the expected values can be estimated by their sample analogs
with q and E(y2|x) replaced by q̂ and EN (y2|x). Under “H0: no endogeneity
⇐⇒ ζ = 0,” the correction term disappears and the usual LSE asymptotic
variance works: as far as endogeneity testing goes, the correction term can
be ignored.

3.2 Nonlinear Models

Defining w ≡ (y2, x
′
1)
′ and γ ≡ (α, β′)′, suppose

y1 = T (w′γ + u) and y2 = E(y2|x) + v2 where u = λv2 + ε, v2 � ε

T (·) is a known increasing nonlinear function and x includes x1. For example
T (·) may be smooth and one-to-one as exp(·), or non-smooth and many-to-
one as max(·, 0). Substitute u = λv2 + ε into the y1 equation to get

y1 = T (w′γ + λv2 + ε) = T{w′γ + λv̂2 + ε − λ(v̂2 − v2)}.

Imposing some semiparametric assumptions on ε, (γ′, λ) can be estimated
using (w′, v̂2) as the regressors.

For instance, suppose that the αth conditional quantile Qα(ε|x, v2) =
Qα(ε|x) is zero. Then the quantile equivariance renders

Qα(y1|x, v2) = T{w′γ + λv2 + Qα(ε|x, v2)} = T (w′γ + λv2)

and we can estimate Qα(y1|x, v2) by minimizing wrt (γ′, λ)

1
N

∑
i

{y1i − T (w′iγ + λv̂2i)}{α − 1[y1i − T (w′iγ + λv̂2i) < 0]}.

Note that the assumptions u = λv2 + ε, v2 � ε and Qα(ε|x) = 0 replace
the assumptions E(u|x, v2) = E(u|v2) and E(u|v2) = ζv2 in the preceding
subsection for linear models that would give only

u = ζv2 + ω and E(ω|x, v2) = E(ω|υ2) = 0.
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Now suppose that y2 = τ(x′2β2 + u2) is a many-to-one mapping. Note
that y2 = τ(x′2β2 + u2) is a SF whereas y2 = E(y2|x) + v2 is a RF. The
SF2 error u2 is either not identified at all as in binary response models or
identified only partly as in censored response models. Specifically, if y2 is
binary with y∗2 = x′2β2 + u2 and u2 ∼ N(0, σ2) independently of x, then the
identified RF2 error is only ω2 ≡ y2 − Φ(x′2β2/σ) where Φ is the N(0, 1) df.
In this case, if T (·) = max(·, 0), then we may assume

u = λω2 + ε and Qα(ε|x, ω2) = Qα(ε|ω2) = 0

and use ω2 as a control variable in SF1 to remove the endogeneity of y2. If
y2 = max(x′2β2 + u2, 0), then the identified RF2 error is ω2 ≡ y2 − x′2β2 =
max(u2,−x′2β2). That is, y2 − x′2β̂2 may be used as a control variable in
the y1 equation. This kind of CF approach, however, could be controversial
because of the assumption that u depends on the identified RF2 error ω2,
not on the SF2 error u2—more on this in the next subsection.

Sometimes we get a mixture of SUB and CF approaches. To see this,
consider

y1 = max{0, αy2 + x′1β + u}
= max{0, αE(y2|x) + x′1β + α(y2 − E(y2|x)) + u}

=⇒ y1 = max{0, αE(y2|x) + x′1β + αv2 + u}
= max{0, αEN (y2|x) + x′1β + αv2 + u + α{E(y2|x)

−EN (y2|x)} for SUB

Now suppose u = λv2 + ε. This gives two more equations

(a) : y1 = max{0, αy2 + x′1β + λv2 + ε}

= max{0, αy2 + x′1β + λv̂2 + ε + λ(v2 − v̂2)}

as y2 = E(y2|x) + v2 for CF;

(b) : y1 = max[0, α{EN (y2|x) + v̂2} + x′1β + λv̂2 + ε

+λ(v2 − v̂2)] as y2 = EN (y2|x) + v̂2

= max[0, αEN (y2|x) + x′1β + (α + λ)v̂2

+ε + λ(v2 − v̂2)}] for SUB/CF.

It is helpful to put together the three cases:
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Parameters Regressors Error Term
SUB α, β EN (y2|x), x1 αv2 +u+α{E(y2|x)−

EN (y2|x)}
CF α, β, λ y2, x1, v̂2 ε + λ(v2 − v̂2)

SUB/CF α, β, α + λ EN (y2|x), x1, v̂2 ε + λ(v2 − v̂2)

SUB/CF has the SUB “flavor” because EN (y2|x) replaces y2 as a regressor,
and also has the CF flavor because v̂2 is controlled. But this mixed case is
equivalent to CF, because (b) is just a reparametrized version of (a).

3.3 Average Structural Function (ASF)

With w = (y2, x
′
1)
′, consider a nonlinear model

y1 = T1(w, u) {= T1(y2, x1, u)}

which is a generalization of y1 = αy2 +x′1β +u. Also, T1 generalizes T in the
preceding subsection because T1 allows w and u to enter separately whereas
w and u get combined linearly and enter T as a single entity. Suppose there
exists a variable v2 such that

(i) w = (y2, x
′
1)
′ is a function of (x, v2)

(ii) u � x|v2.

The former holds if y2 = E(y2|x)+v2, as this implies that (y2, x1) is a function
of (x, v2).

Taking E(·|x, v2) on y1 = T1(w, u) yields

E(y1|x, v2) = E{T1(w, u)|x, v2} =
∫

T1(w, u)f(u|x, v2)du

=
∫

T1(w, u)f(u|v2)du.

Integrate v2 out from the first and last terms to get∫
E(y1|x, v2)f(v2)dv2 =

∫ ∫
T1(w, u)f(u|v2)duf(v2)dv2

=
∫

T1(w, u)f(u)du ≡ A(w).

This is the average structural function (ASF) in Blundell and Powell (2003).
The unobserved u in y1 = T1(w, u) is integrated out using its marginal density
f(u).

The finding
∫

E(y1|x, v2)f(v2)dv2 = A(w) shows how to estimate A(w).
As the last two displays hold with ‘|w, υ2’ instead of ‘|x, υ2’, using “marginal
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integration” or “partial mean” as in Newey (1994b), ASF can be estimated
with

1
N

∑
i

EN (y1|w, v̂2i) →p

∫
E(y1|w, v2)f(v2)dv2 = A(w).

Note that only v̂2 is summed up while w is fixed. This sort of “marginal
integration estimator” will be examined in detail later.

Strictly speaking, estimating ASF this way is applicable only to con-
tinuous endogenous regressors with unbounded support. To see this, observe
that v2 in the first stage should be estimable over the entire support of v2

to integrate out v2 using its marginal distribution in the second stage. But
in the first stage, since v2 is estimated using y2, this may not be possible if
y2 = τ(x, v2) is a LDV with v2 residing inside the range-restricted τ(·); e.g.,
τ(x, v2) = max(x′η2 + v2, 0).

It may be helpful to make clear that there can be in fact three types
of error terms. For the censored median example, the three types of errors
are: the SF error u2 in y2 = max(x′2β2 + u2, 0), the RF error v2 in y2 =
max(x′η2 + v2, 0) where y∗2 = x′η2 + υ2, and the “truly” RF error

ω2 ≡ y2 − max(x′η2, 0) = max(x′η2 + v2, 0) − max(x′η2, 0).

We already mentioned the potential controversy in using ω2, not v2, in some
CF approaches. The problem noted in the preceding paragraph occurs even
if v2 is used, as v2 is not fully identified in the censored case. To avoid this
criticism, one may suggest using ω2 in the above assumptions (i) and (ii).
Although (i) holds by construction y2 = max(x′η2, 0)+ω2, (ii) is unlikely to
hold with ω2, because ω2 depends on both x and v2 while we need u� x|ω2.
For instance, ω2 = 0 ⇐⇒ (x′η2 > −υ2, x

′η2 > 0) or (x′η2 < −υ2, x
′η2 < 0),

which means that x′η2 and v2 both tend to be big or small together; with
COR(u, v2) = 0, this implies COR(x, u) = 0 |(ω2 = 0). Hence ASF is feasible
only for continuous endogenous regressors.

Instead of A(w), Altonji and Matzkin (2005) examined∫
∂T1(wo, u)

∂w
f(u|wo)du

which is the effect of w averaged across u given w = wo. Estimating this is,
however, far more involved than estimating A(wo). In identifying this and
ASF, the endogeneity source is “blocked” by conditioning on v2 as well as on
x (but x drops out due to u � x|v2), which is why this effect estimator and
ASF are examined in relation to CF approach.

3.4 Pairwise Differencing for Nonparametric CF

As mentioned once, if we allow E(u|v2) to be a nonparametric function
of υ2, then CF will end up with a regression function that is semi-linear.
Semi-linear models will be examined in detail later, but in the following we
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provide an illustration of how to handle semi-linear models resulting from
CF using the idea of pairwise differencing.

Assume quantile independence: for an unknown function λα(·),

Qα(u|x, v2) = Qα(u|v2) ≡ λα(v2).

For a censored model with y1 = max(w′γ + u, 0) where w ≡ (y2, x
′
1)
′ and

γ ≡ (α, β′)′, this assumption yields

Qα(y1|x, v2) = max{w′γ + Qα(u|x, v2), 0} = max{w′γ + λα(v2), 0}.

Define
qαi ≡ Qα(y1|xi, v2i).

For an observation pair i and j with qαi, qαj > 0 (so that the max function
drops out) and v2i = v2j , we get qai = w′iγ + λα(v2i) and thus

qαi − qαj = (wi − wj)′γ.

Based on this pairwise differencing idea, Blundell and Powell (2007) proposed
a
√

N -consistent estimator for γ:⎧⎨⎩∑
i<j

K

(
v̂2i − v̂2j

h

)
(wi − wj)(wi − wj)′

⎫⎬⎭
−1

·
∑
i<j

K

(
v̂2i − v̂2j

h

)
(wi − wj)(q̂αi − q̂αj).

In practice, however, it seems adequate to use a polynomial function of v2

as a control function, say λ1v2 + λ2v
2
2 + λ3v

3
2 , and estimate (λ1, λ2, λ3) along

with γ.

3.5 Nonparametric Second-Stage*

Newey et al. (1999) considered

y1 = ρ(y2, x1) + u

y2 = E(y2|x) + v2, v2 ≡ y2 − E(y2|x) which might be related to u

where ρ(·) is an unknown function. While the y1-equation is a SF, the y2-
equation is of RF type because y1 does not appear in the y2-equation—thus a
“triangular” system. The endogeneity of y2 comes from the relation between
u and v2. Of course, we may imagine a y2-SF without y1 as a regressor, in
which case the above displayed y2-equation is a SF. Estimating ρ(y2, x1) non-
parametrically despite the endogeneity of y2 is the main goal, which is much
more difficult than when the form of ρ is specified up to some parameters.
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Newey et al. (1999) imposed the mean independence of u from x given
v2:

E(u|x, v2) = E(u|v2) ≡ λ(v2) (= 0);

if E(u|v2) = 0, then there would be no endogeneity of y2 in the y1-SF. Take
E(·|x, v2) on the y1-SF to get

E(y1|x, v2) = ρ(y2, x1) + E(u|x, v2) = ρ(y2, x1) + E(u|v2)

= ρ(y2, x1) + λ(v2) ≡ R(y2, x1, v2).

From this, a TSE can be thought of. First, estimate the y2-RF to get the
residual v̂2. Then do a nonparametric regression of y1 on y2, x1, v̂2 to estimate
R(y2, x1, v2).

Since the goal is estimating ρ(·), ρ(·) has to be separated from R(·).
An easy way to do this is using a series approximation for ρ and λ sep-
arately. That is, no interaction term between (y2, x1) and v2 is included,
which means imposing the separability of ρ from λ in R(·) on the esti-
mation procedure. This convenience in imposing separability is an advan-
tage of series-approximation. Newey et al. (1999) indeed used two types of
series-approximations and then derived the asymptotic normal distributions
of functionals of ρ—e.g, an weighted average of ρ(y2, x1) or ρ at a chosen
value of the arguments. Although they do not derive the convergence rates
for the functionals in general, they show when the functional estimators
are

√
N -consistent. Differently from the model y1 = ρ(y2, x1) + u and the

methods as in Newey and Powell (2003) and Hall and Horowitz (2005), the
procedure in Newey et al. (1999) makes use of more assumptions such as
E(u|x, v2) = E(u|v2) and is likely to work better in practice.

If we use a kernel estimator for the second stage instead, then it is difficult
to impose the separability. In this case, one way to get ρ is integration wrt a
weighting function ω(v2) where

∫
ω(v2)dv2 = 1:∫

R(y2, x1, v2)ω(v2)dv2 = ρ(y2, x1) +
∫

λ(v2)ω(v2)dv2

= ρ(y2, x1) + (a constant).

This idea of separating a component of a nonparametric regression func-
tion using “marginal integration” appears in Newey (1994b) and Linton and
Nielsen (1995) and will be examined closely in a later section. Although
the difficulty of imposing separability is a disadvantage of kernel estima-
tor, an advantage is that it is relatively easy to find convergence rates in
kernel estimation. For instance, Ahn (1995) dealt with a two-stage esti-
mator with both stages being nonparametric kernel estimation. He proves
that the convergence rate is the minimum of the first-stage rate and the
‘second-stage rate with the first-stage parameter known’, which is intuitively
plausible.
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4 Single Index Models

This section introduces a number of semiparametric estimators for single-
index models. The first is the “density-weighted” average derivative estimator
of Powell et al. (1989), which is analogous to the earlier single index model
estimator of Stoker (1986); unweighted versions will be examined as well. The
second is Ichimura’s (1993) single index estimator, which is a nonparametric
generalization of nonlinear LSE. The third is the Klein and Spady’s (1993)
estimator that is, however, good only for binary response models. In essence,
the nonparametric dimension gets reduced to the number of indices in single
and multiple index models.

4.1 Density-Weighted Average Derivative (WADE)

Consider a single-index model

y = r(x) + u with E(y|x) = r(x) = G(x′β), G(·) unknown.

From this, we get

∇r(x)
(

=
∂r(x)
∂x

)
=

dG(x′β)
d(x′β)

· β

=⇒ Ex{ω(x)∇r(x)} = Ex

{
ω(x)

dG(x′β)
d(x′β)

}
β ≡ γωβ

for a weighting function ω(x)

which is proportional to β provided γω = 0; i.e., β is identified up to the
unknown scale factor γω.

Setting ω(x) = f(x), the density of x, we get the density weighted average
derivative δ:

δ ≡ E{f(x)∇r(x)} = E

{
f(x)

dG(x′β)
d(x′β)

}
· β ≡ γfβ.

Suppose x has a continuous density function f(x) which is zero at the bound-
ary “∂X” of its support. With r(x) bounded, integration by parts yields

δ = γfβ = E{f(x)∇r(x)} =
∫

∇r(x) · f(x)2dx = r(x)f(x)2|∂X

− 2
∫

{r(x)∇f(x) · f(x)}dx

= −2 · E[{r(x) + u} · ∇f(x)] = −2 · E{y∇f(x)};

note that x in E{f(x)∇r(x)} is a rv whereas x in
∫
∇r(x)f(x)2dx is just an

integration dummy.
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The elements of x that are functionally dependent are not identified be-
cause γωβ is identified through partial differentiation of ∇r(x). For example,
suppose there are two regressors w and z, and r(w, z) = G(βww + βw2w

2 +
βzz). Then

∇r(w, z)=
[

∂r(x)/∂w
∂r(x)/∂z

]
=

dG(βww + βw2w
2 + βzz)

d(βww + βw2w
2 + βzz)

[
βw + βw22w

βz

]
:

βw and βw2 are not identified although βz is so. To simplify notations, we
will assume no functionally dependent elements in x from now on, unless
otherwise noted.

We can estimate δ by plugging a kernel estimator into ∇f(x) and us-
ing a sample moment for E{y∇f(x)} as will be shown shortly. The reason
why we use f(x) as the weight is to prevent fN (x) from appearing in the
denominator of the kernel estimator, because having fN (x)−1 is troublesome
when fN (x) � 0. Although this problem may be overcome by “trimming”
(using observations with fN (xi) > ε for some ε > 0), trimming introduces
yet another “tuning constant” ε to choose.

An estimator for ∇f(xi) is

∇fN (xi) =
1

(N − 1)hk+1

∑
j,j �=i

∇K

(
xi − xj

h

)
where

fN (xi) ≡ 1
(N − 1)hk

∑
j,j �=i

K

(
xj − xi

h

)
.

as −∇K(z) = ∇K(−z) from the symmetry of K. Then the aforementioned
density-weighted average derivative estimator (WADE) for δ is

δN ≡ − 2
N

∑
i

yi∇fN (xi)=
2

N(N − 1)

∑
i

∑
j,j �=i

1
hk+1

∇K

(
xj − xi

h

)
yi

=
2

N(N − 1)

∑
i<j

1
hk+1

∇K

(
xj − xi

h

)
(yi − yj)

again using −∇K(z) = ∇K(−z).
For an “U-statistic” UN and its parameter θ, it is known that

UN ≡ 2
N(N − 1)

∑
i<j

g(zi, zj) and θ ≡ E{g(zi, zj)}

=⇒
√

N(UN − θ) =
2√
N

∑
i

[E{g(zi, zj |zi)} − θ] + op(1)

� N(0, 4 · E[E{g(zi, zj |zi)} − θ]2) unless
E[E{g(zi, zj |zi)} − θ]2 = 0.

Apply this to δN to obtain
√

N(δN − δ)� N(0, 4Ω) and it holds that
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ΩN =
1
N

∑
i

[EN{g(zi, zj)|zi}][EN{g(zi, zj)|zi}]′ − δNδ′N →p Ω

EN{g(zi, zj)|zi} ≡ 1
N − 1

∑
j,j �=i

1
hk+1

∇K

(
xj − xi

h

)
(yi − yj) .

When
√

N(bN − β) = N−1/2
∑

i ψi + op(1), ψi is an influence function
and bN is said to be asymptotically linear. The influence function shows the
contribution of each observation to the total estimation error

√
N(bN − β).

For the U -statistic UN , the influence function is 2 · [E{g(zi, zj |zi)} − θ]. But
this does not show well the sources of the estimation error. To see this better,
observe √

N(δN − δ) =
−2√
N

∑
i

[yi∇fN (xi) − E{y∇f(x)}].

Invoking CT∇f with m = y∇f(x) and ma = y, we get

√
N(δN − δ) =

−2√
N

∑
i

[yi∇f(xi) −∇{E(y|xi)f(xi)}

+E(∇{E(y|x)f(x)}) − E{y∇f(x)}]

=
−2√
N

∑
i

[yi∇f(xi) − r(xi)∇f(xi) − f(xi)∇r(xi)

+E{r(x)∇f(x) + f(x)∇r(x)} − E{y∇f(x)}]

=
−2√
N

∑
i

[ui∇f(xi) − f(xi)∇r(xi) + E{r(x)∇f(x)

+f(x)∇r(x)} − E{r(x)∇f(x)}]

=
−2√
N

∑
i

[ ui∇f(xi) − (f(xi)∇r(xi) − E{f(x)∇r(x)}) ].

This breaks down the influence function of WADE into two sources of error:
u and ∇r(x). Since the covariance between the two terms is zero due to
E(u|x) = 0, the asymptotic variance is the sum of the two variances.

In the usual linear model with G(x′β) = x′β, the density-weighted aver-
age derivative δ becomes Ef(x) · β for dG(x′β)/d(x

′
β) = 1. This motivates

estimating δ∗ ≡ δ/Ef(x) instead of δ, and Powell et al. (1989) suggested an
estimator for δ∗:

δ∗N ≡
{∑

i

∇fN (xi) · x′i

}−1

·
∑

i

∇fN (xi)yi.

The reason why this is a legitimate estimator for δ∗ can be seen in the next
subsection; δ∗N has the form of an IVE with ∇fN (x) as an instrument in the
regression of y on x. In the next subsection, we will examine more of this kind
of estimators. In the Monte Carlo study of Powell et al. (1989), δ∗N performed
better than δN . Härdle and Tsybakov (1993) and Powell and Stoker (1996)
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discussed how to choose a smoothing parameter for WADE. Nishiyama and
Robinson (2000) provide an ‘Edgeworth expansion’ for WADE.

4.2 Average Derivative Estimators (ADE)

4.2.1 Motivations

In the preceding subsection, we examined the density-weighted average
derivative estimator (WADE) for single-index models (SIM). Consider the
“unweighted” average derivative estimator (ADE) for E{∇r(x)} instead:

E{∇r(x)} = E

{
dG(x′β)
d(x′β)

}
· β;

E{∇r(x)} = β if G(x′β) = x′β. ADE becomes β if the model is indeed linear.
In this sense, ADE is more natural than WADE.

Recall the following in the preceding chapter:

E

{
∂G(x′β)

∂x

}
= E

{
dG(x′β)
d(x′β)

}
· β ≡ γβ where

γ ≡ E

{
dG(x′β)
d(x′β)

}
is a scalar;

E

{
∂G(x′β)

∂x

}
= E{yλ(x)}, where

λ(x) ≡ −∇f(x)
f(x)

1[f(x) > 0] = −∇ ln f(x) · 1[f(x) > 0].

Observe Eλ(x) = 0 because

Eλ(x) = E

{−∇f(x)
f(x)

1[f(x) > 0]
}

= E

{−∇f(x)
f(x)

1[f(x) > 0] + 1[f(x) = 0]
}

=
∫

∇f(x)dx = f(x)|∂X = 0.

Thus,
γβ = E{∇r(x)} = E{yλ(x)} = COV {λ(x), y}.

Going further, observe

Ik = E

(
∂x

∂x

)
=

∫
∂x

∂x
f(x)dx = xf(x)|∂X −

∫
x∇f(x)dx

=
∫
{λ(x)x}f(x)dx = COV {λ(x), x}.
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Combining this with the preceding display renders the key equations

γβE{∇r(x)} = COV {λ(x), y} = [COV {λ(x), x)}]−1 · COV {λ(x), y}.

The presence of 1[f(x) > 0] entails a cumbersome “trimming” issue because
1[fN (x) > εN ] should be used in principle for some chosen value of εN > 0.
In the following, however, we will ignore 1[f(x) > 0] and the trimming issue
as if mini fN (xi) > εN . This is because throwing away a few observations
with near zero (or negative) fN (x) would not bias the estimator much, and
thus trimming does not seem to matter much in practice.

4.2.2 Estimators

Let λN (xi) ≡ −∇fN (xi)/fN (xi). Also let ∇rN (xi) be given by

∇rN (xi) =
1
h

∑
j,j �=i

∇K((xi − xj)/h)yj

fN (xi)
− rN (xi)

∇fN (xi)
fN (xi)

,

which is the derivative of the leave-one-out kernel estimator rN (xi) with
K ((xj − xi)/h. The key equations yield the following sample analogs (i.e.,
estimators) for γβ:

ADE :
1
N

∑
i

∇rN (xi)

COV-ADE :
1
N

∑
i

λN (xi)(yi − ȳ)

IVE-ADE :

{
1
N

∑
i

λN (xi)(xi − x̄)′
}−1

· 1
N

∑
i

λN (xi)(yi − ȳ).

where x̄ and ȳ may be omitted because Eλ(x) = 0. IVE-ADE is similar to
δ∗N in the previous subsection; δ∗N has ∇fN (xi) in place of λN (xi) due to the
weighting by f(xi). All three estimators are asymptotically equivalent and√

N -consistent (Stoker, 1991). In small samples, however, IVE-ADE seems
to behave better than ADE and COV-ADE.

Denoting the COV-ADE as mN , Härdle and Stoker (1989) showed that√
N(mN − μ) is asymptotically normal with the asymptotic variance

V [uλ(x) + {∇r(x) − E∇r(x)}];

compare this to the asymptotic variance of WADE which differs only by the
multiplicative factor f(x). To understand this display, consider instead ADE
and invoke CTΔE with m(xi, ai) = ai = ∇rN (xi) and ui = yi − r(xi) to get,
as ma = 1

1√
N

∑
i

∇rN (xi) =
1√
N

∑
i

{
∇r(xi) −

∇f(xi)
f(xi)

ui

}
+ op(1)
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=⇒ 1√
N

∑
i

{∇rN (xi) − E∇r(x)}

=
1√
N

∑
i

{
∇r(xi) − E∇r(x) − ∇f(xi)

f(xi)
ui

}
+ op(1)

which gives the above variance.
The asymptotic variance can be consistently estimated with

1
N

∑
i

ζNiζ
′
Ni −

(
1
N

∑
i

ζNi

)(
1
N

∑
i

ζNi

)′
where

ζNi ≡ {yi − rN (xi)}λN (xi) + ∇rN (xi) −
1
N

∑
i

∇rN (xi).

A tempting but invalid estimator for the asymptotic variance is the sample
analog

1
N

∑
i

∇rN (xi){∇rN (xi)}′ −
{

1
N

∇rN (xi)
}{

1
N

∇rN (xi)
}′

which misses uλ(x). Obviously, the first-stage error of estimating ∇r(x) with
∇rN (x) operates through uλ(x). But this display may be useful in gauging
the nonlinearity in r(x) as x varies, because it becomes zero if either r(x) = 0
or r(x) = x′β.

4.2.3 Remarks

Newey and Stoker (1993, (3.6)) showed that the semiparametric effi-
ciency bound for WADE E{ω(x)∇r(x)} is the expected value of the outer-
product of

u

{
−∇ω(x) − ω(x)

∇f(x)
f(x)

}
+ {ω(x)∇r(x) − E(ω(x)∇r(x))}.

That is, the expected value of the outer-product of this display is the smallest
possible variance under the given semiparametric assumptions. With ω(x) =
1, we get the influence function for mN , which means that mN is an efficient
estimator for E{∇r(x)}.

ADE has been applied to a demand analysis by Härdle et al. (1991). If
desired, G(·) can be estimated nonparametrically by regressing yi on x′ibN , as
Härdle and Stoker (1989) did. ADE N−1

∑
i ∇rN (xi), which is also examined

in Rilstone (1991), is interesting even if the model is not a SIM. In a non-
parametric model y = r(x) + u, ∇r(xo) measures the marginal effect of x on
y at x = xo; ∇r(x) = β for all x if r(x) = x′β. But since we have N different
marginal effects ∇r(xi), i = 1, ..., N , we may want to use N−1

∑
i ∇rN (xi) to

represent the N -many marginal effects; this is analogous to using a location
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measure to represent N observations. Both ADE and WADE have the advan-
tage of no numerical maximization, but the disadvantage is that estimating
f or ∇f brings back the very dimension problem in nonparametrics that SIM
tries to avoid.

Banerjee (2007) divided the support of x into many cells to apply LSE
in each cell, the size of which should go to 0 as N → ∞. An ADE is obtained
as a weighted average of the slopes across the cells. This estimator, which is
reminiscent of local linear regression,works with bounded-support x and is
likely to work better than other ADE’s when f(x) has discontinuities. But
dividing the support is practical only when the dimension of x is low. Under
x � u, Banerjee’s (2007) ADE is asymptotically normal with variance

E[{∇r(x) − E∇r(x)}{∇r(x) − E∇r(x)}′]+σ2
u{E(xx′) − E(x)E(x′)}−1

≤ E[{∇r(x) − E∇r(x)}{∇r(x) − E∇r(x)}′] + σ2
uE{λ(x)λ(x)′}.

The inequality follows from squaring the first and last terms in

Ik = COV {x, λ(x)} = E[{x − E(x)}λ(x)′]
≤ {E(xx′) − E(x)E(x′)}1/2 · E1/2{λ(x)λ(x)′}.

Curiously, the asymptotic variance of the Banerjee’s estimator is smaller than
the above semiparametric efficiency bound. This might be due to different
requisite conditions; e.g., WADE requires a smooth f(x) that is zero on the
x-support boundaries, while the Banerjee’s estimator does not. But, given
the “folklore” that regularity conditions do not alter efficiency bounds, this
aspect may deserve a further look.

Gørgens (2004) proposed a single-index competing risk model related to
ADE. Recall “cause-j sub-distribution function” F (j, t), “cause-j sub-density
function” f(j, t), and cause-j sub-hazard function’ λ(j, t) in competing risks:
for a continuous latent duration y∗ with causes j = 1, ..., J ,

F (j, t) ≡ P (r = j, y∗ ≤ t), f(j, t) ≡ dF (j, t)
dt

and λ(j, t) ≡ f(j, t)
Sm(t)

where Sm(t) ≡ P (y∗ ≥ t). Suppose that SIM given x holds for cause-j sub-
hazard:

λ(j, t|x) = λ(j, t|x′β).

This includes both proportional hazard λ(j, t) = λj(t) exp(x′β) and ‘acceler-
ated failure-time hazard’ λj{t exp(x′β)} exp(x′β) as special cases where λj(·)
is the “cause-j basic hazard.” The “x-conditional cause-j cumulative hazard
function” is then

Λ(j, t|x) =
∫ t

0

λ(j, s|x)ds =
∫ t

0

f(j, s|x)
Sm(s|x)

ds =
∫ t

0

f(j, s|x′β)
Sm(s|x′β)

ds.

The main idea of Gørgens (2004) comes in observing that
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(i) ∂λ(j,t|x)
∂x = ∂λ(j,t|x′β)

∂x = ∂λ(j,t|x′β)
∂(x′β) · β

(ii) ∂λ(j,t|x)
∂x = ∂{f(j,t)/Sm(t)}

∂x = ∂f(j,t|x)/∂x
Sm(t|x) − f(j,t|x)·∂Sm(t|x)/∂x

Sm(t|x)2

Equating the last expressions of (i) and (ii), we can see that replacing the
right-hand side of (ii) with nonparametric estimators yields an estimator for
β up to the scale factor ∂λ(j, t|x′β)/∂(x′β). To speed up the convergence rate,
instead of (i), Gørgens (2004) used its integrated (i.e., averaged) version

∂Λ(j, t|x)
∂x

=
∫ t

0

∂λ(j, s|x)
∂x

ds =
∫ t

0

∂λ(j, s|t′β)
∂(x′β)

ds · β.

The final estimator consists of double sums and it is
√

N -consistent.

4.3 Nonparametric LSE

One shortcoming of ADE is requiring x to have a continuous density
and its components to be functionally independent of one another. Relaxing
these, Ichimura (1993) proposed a semiparametric (nonlinear) LSE (SLS) for
SIM under u � x by minimizing

QN (b) ≡ 1
N

∑
i

{yi − EN (y|x′ib)}2

wrt b where b is normalized to satisfy ||b|| = 1 (|| · || is the Euclidean norm)
and

EN (y|x′ib) ≡
∑

j,j �=i K((x′jb − x′ib)/h)yj∑
j,j �=i K((x′jb − x′ib)/h)

.

In QN (b), EN (y|x′ib) is a nonparametric estimator for E(y|x′β = x′ib):
the expected value of y given that x′β takes on the value x′ib. As β is not
known, we cannot estimate E(y|x′β = t) for an arbitrary t. But the crucial
point is that we can estimate E(y|x′β = x′ib) with EN (y|x′ib). This way,
the unknown functional form of G(t) = E(y|x′β = t) has been “concentrated
out” in QN (b). The SLS bSLS is not a two-stage estimator because EN (y|x′ib)
depends on b, but the fact that E(y|x′β = x′ib) is estimated makes SLS a two-
stage estimator in a sense. The normalization ||b|| = 1 indicates that E(y|x′β)
is not known to be increasing or decreasing in x′β, because we should be able
to identify the sign of β if the direction of change were known.

SLS rests on the fundamental fact that the squared loss function E{y −
q(x)}2 is minimized when q(x) = E(y|x). As in the other SIM estimators
that have appeared so far, SLS requires at least one continuously distributed
regressor with non-zero coefficient, and β is identified only up to a location
and a scale. This identification feature also shows up in EN (y|x′ib): the inter-
cept is lost in x′jb − x′jb, and the scale factor is not identified with the scale
normalization ||b|| = 1.
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In implementing SLS, imposing ||b|| = 1 is cumbersome. Instead, as-
sume that G(t) is monotonic. Denoting the continuous regressor as xk, divide
β = (β1, ..., βk)′ by |βk| to identify {β1/|βk|, · · · , βk−1/|βk|, sgn(βk)}′. In es-
timation, both +1 and −1 should be tried for sgn(βk), but for the asymptotic
distribution, sgn(βk) can be treated as known since it is estimated at a rate
infinitely faster than

√
N . This was the case for a number of semiparametric

estimators in the preceding chapter. Let x = (x′−k, xk)′ and b = (b′−k, bk)′

where x−k ≡ (x1, ..., xk−1)′ and b−k ≡ (b1, ..., bk−1)′. SLS for β−k can be
implemented with a Gauss–Newton type iteration: with an initial estimate
b(0) = (b(0)

−k, 1) for some b
(0)
−k,

b
(1)
−k = b

(0)
−k +

{∑
i

∇EN (y|x′ib(0))∇EN (y|x′ib(0))′
}−1

∑
i

{yi − EN (y|x′ib(0))}∇EN (y|x′ib(0))

where ∇EN (y|x′ib(0)) =
∂EN (y|x′ib)

∂b−k
|b=b(0)

(obtained with numerical derivatives).

Iterate this until convergence to denote the final estimate as b̂(1) =
{b̂′−k(1), 1}′. Also try b(0) = (b(0)

−k,−1) for some b
(0)
−k and iterate until con-

vergence to denote the final estimate as b̂(−1) = {b̂′−k(−1),−1}′. Finally,
compare the minimand at b̂(1) and b̂(−1) to choose one of the two; denote
the final choice as bSLS .

SLS for β−k is
√

N -consistent and asymptotically normal with the vari-
ance

E−1{∇E(y|x′β)∇E(y|x′β)′} E{V (u|x) ∇E(y|x′β)∇E(y|x′β)′}
E−1{∇E(y|x′β)∇E(y|x′β)′}

where ∇E(y|x′β) =
∂E(y|x′b)

∂b−k
|b=β .

The middle matrix can be consistently estimated with

1
N

∑
i

[ {yi − EN (y|x′ibSLS)}2 ∇EN (y|x′ibSLS) ∇EN (y|x′ibSLS)′ ].

In practice, it appears that the SD’s tend to be under-estimated; i.e., the
t-values tend to be too high. Also SLS does not seem to work well with
functionally dependent regressors.

It can be shown that

∇E(y|x′β) = {x−k − E(x−k|x′β)}dG(x′β)
d(x′β)

.
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If the form of G(·) were known, we could do NLS whose Hessian matrix would
contain x ·dG(x′β)/d(x′β). Hence the difference in the asymptotic variance of
SLS and that of the NLS is only in the regressor part: x−k−E(x−k|x′β) vs. x.
Technically, this is due to the b in the kernel for EN (y|x′b): when EN (y|x′b)
is differentiated wrt b, xj − x comes out and xj yields E(x|x′β). Other than
this, the fact that G(·) is estimated by a nonparametric method does not
show up in the asymptotic variance. Newey (1994a, (3.11) and (3.12)) stated
that this was essentially because G(·) has been concentrated out as noted
above. Concentrating out happens also in ‘profile likelihood’ approaches.

Härdle et al. (1993) proposed to minimize the objective function jointly
wrt b and h, and they showed that the bandwidth obtained this way is opti-
mal. Denoting the minimand now as QN (b, h), they also showed that

QN (b, h) � 1
N

∑
i

{yi − E(y|x′ib)}2 +
1
N

∑
i

{E(y|x′iβ) − EN (y|x′iβ)}2

= (Minimand for b) + (Minimand for h).

That is, although minimizing QN (b, h) jointly wrt b and h looks difficult,
this is equivalent to two separate minimizations: one for b with the infinite-
dimensional single-index functional form known, and the other for h with
the finite-dimensional β known. Although SIM estimators are not much used
in practice, its theoretical development appears to proceed fast. See, e.g.,
Delecroix et al. (2006) for a further generalization of SLS and references on
SIM.

4.4 Quasi-MLE for Binary Response

Consider a binary-response SIM

y = 1[y∗ ≥ 0] = 1[x′β + u ≥ 0] = 1[u ≥ −x′β] where
f(u|x) = f(u|x′β) and E(u|x) = 0

=⇒ E(u|x′β) = 0 and V (u|x) = V (u|x′β).

This allows heteroskedastic u. For instance, if u|x′β ∼N{0, exp(2x′β)}, then

P (y = 1|xi) = P (y = 1|x′iβ) =
1

exp(x′iβ)
Φ
{

x′iβ
exp(x′iβ)

}
.

Note that, thinking of a function H(u, x) ≡ f(u|x), “f(u|x) = f(u|x′β)”
should not be construed as H(u, x′β); rather, “f(u|x) = f(u|x′β)” just means
that conditionning on x yields the same information as conditioning on only
x′β.

As in SLS in the preceding subsection, define

FN (x′ib) ≡
∑

j,j �=i K((x′jb − x′ib)/h)yj∑
j,j �=i K((x′jb − x′ib)/h)

→p P (y = 1|x′β = x′ib);
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G(t) = E(y|x′β = t) gets “concentrated out.” Klein and Spady (1993) pro-
posed a quasi-MLE (QMLE) maximizing

QN (b) ≡ 1
N

N∑
i=1

{yi lnFN (x′ib) + (1 − yi) ln{1 − FN (x′ib)}

wrt b. QMLE is a two-stage estimator of a sort as SLS is. Klein and Spady
(1993) allowed also nonlinear indices.

Define F (x′β):

P (y = 1|x) = P (y = 1|x′β) = P (u ≥ −x′β|x′β) ≡ F (x′β)

=⇒ P (y = 1|x′β = x′b) = F (x′b).

Then the population version of QN (b) can be written as

Ex[F (x′β) ln F (x′b) + {1 − F (x′β)} ln{1 − F (x′b)}].

Q(s) ≡ t ln s + (1 − t) ln(1 − s) is maximized at s = t, which can be verified
by differentiating Q(s) wrt s twice. Using this fact, the population version
of QN (b) is maximized at β = b. This is the basis for identifying β in the
Klein–Spady estimator, analogously to that SLS is based on the fact that the
squared loss function is minimized at E(y|x).

Assume that xk is continuous with βk = 0 as in SLS. Divide β =
(β1, ..., βk)′ by |βk| to identify {β1/|βk|, · · · , βk−1/|βk|, sgn(βk)}′. The rest of
the QMLE identification aspect is analogous to that for SLS with a monotonic
G(·). With an initial estimate b(0) = (b(0)

−k,±1) for some b
(0)
−k, the iteration

scheme is

b
(1)
−k = b

(0)
−k +

{∑
i

SN (y|x′ib(0))SN (y|x′ib(0))′
}−1 ∑

i

SN (y|x′ib(0))

where SN (y|x′ib(0)) ≡ ∂{yi lnFN (x′ib) + (1 − yi) ln{1 − FN (x′ib)}
∂b−k

|b=b(0) .

Defining the population version of SN as S, QMLE for β−k is
√

N -
consistent and asymptotically normal with the variance

E−1

[
S(y|x′β)S(y|x′β)′

1
F (x′β){1 − F (x′β)}

]
.

It can be shown that S(y|x′β) = {x−k −E(x−k|x′β)}f(x′β) where f(x′β) ≡
dF (x′β)/d(x′β), with which the variance can be written as

E−1

[
{x−k − E(x−k|x′β)}{x−k − E(x−k|x′β)}′ f(x′β)2

F (x′β){1 − F (x′β)}

]
.

This is reminiscent of the probit variance except that the regressor part is
x−k − E(x−k|x′β) not x.
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Cosslett (1987) and Chamberlain (1986) showed that QMLE attains the
semiparametric efficiency bound under u � x that is stronger than the SIM
assumption. This may make QMLE “the” semiparametric estimator to use
for binary responses. But in practice, the SD’s tend to be under-estimated.
Also QMLE does not seem to work with functionally dependent regressors.

4.5 Discrete Regressors*

A shortcoming of the ADE-type semiparametric estimators for SIM is
that they allow only continuously distributed regressors whereas a disad-
vantage of the nonparmetric LSE and the quasi-MLE for binary responses
is that the estimators require iterations. Horowitz and Härdle (1996) intro-
duced a direct estimator to overcome this shortcomings, which is examined
in this subsection; they still require, however, at least one continuously dis-
tributed regressor. Although the estimator is not quite practical, the main
idea—pulling out the index from a nonlinear function—led to other interest-
ing semiparametric estimators in Lewbel (1998, 2000), Honoré and Lewbel
(2002), and Khan and Lewbel (2007). Also Gørgens (2006) applied the idea
to single-index hazard estimation where a hazard function depends on the
regressors only through a single index.

Let a kw × 1 random vector w and a kx × 1 random vector x denote
discrete and continuous regressors, respectively, with coefficient vectors α
and β:

E(y|w, x) = G(w′α + x′β).

Suppose β is estimated
√

N -consistently by bN fixing w, say at wo, and using
one of the SIM estimators that have appeared already. The main remaining
issue is then estimating α. Let x′β = v and suppose that, for some finite
constants G0 < G1 and v0 < v1,

G(max
w

w′α + v0) < G0 < G1 < G(min
w

w′α + v1) where

w′α + v0 ≤ t0,max (≡ max
w

w′α + v0) < t1,min (≡ min
w

w′α + v1)

≤ w′α + v1.

That is, v0 should be chosen small enough so that adding the maximum w′α
to v0 still keeps the sum small enough such that G(t0,max) < G0 for some G0.
Analogously, v1 should be chosen large enough so that adding the minimum
w′α to v1 still keeps the sum large enough such that G1 < G(t1,min) for some
G1 > G0.

Let x′β = v and define the integral of a “winsorzied” G(w′α + v):

J(w) ≡
∫ v1

v0

{G01[G(w′α + v) < G0]

+ G(w′α + v)1[G0 ≤ G(w′α + v) ≤ G1]
+ G11[G(w′α + v) > G1]}dv
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to get, setting t = w′α + v,

J(w) = G0

∫ t0,max

w′α+v0

1[G(t) < G0]dt + G0

∫ t1,min

t0,max

1[G(t) < G0]dt

+
∫ t1,min

t0,max

G(t)1[G0 ≤ G(t) ≤ G1]dt

+ G1

∫ t1,min

t0,max

1[G(t) > G1]dt + G1

∫ w′α+v1

t1,min

1[G(t) > G1]dt.

Carry out the first and last integrals to get, for some t̃ and t̄,

J(w) = G0(t̃ − w′α − v0) + G0

∫ t1,min

t0,max

1[G(t) < G0]dt

+
∫ t1,min

t0,max

G(t)1[G0 ≤ G(t) ≤ G1]dt

+ G1

∫ t1,min

t0,max

1[G(t) > G1]dt + G1(w′α + v1 − t̄)

= (G1 − G0)w′α + (terms not depending on w).

Suppose w takes M -many different values w(1), ..., w(m). Then,

J{w(m)} − J{w(1)} = (G1 − G0){w(m) − w(1)}′α, m = 2, ...,M.

Define

ΔJ
(M−1)×1

≡

⎡⎣ J{w(2)} − J{w(1)}
· · ·

J{w(M)} − J{w(1)}

⎤⎦ and W
(M−1)×kw

≡

⎡⎣ w(2)′ − w(1)′

· · ·
w(M)′ − w(1)′

⎤⎦
to get

α =
1

G1 − G0
(W ′W )−1W ′ΔJ.

This is the key identifying equation for α.
To implement this equation, the four numbers in G0 < G1 and v0 < v1

should be chosen, which can be done by estimating G(·) nonparametrically.
Then J(·) can be found by using v0, v1, G0, and G1 and plugging in the
nonparametric estimator for G(·). Horowitz and Härdle (1996) showed that
the resulting estimator is

√
N -consistent.

4.6 Extensions to Multiple Index Models*

Single-index models can be extended to double- or multiple-index mod-
els. As an example of triple-index model, consider a switching regression
model with “unknown sample separation”:

y = x′0β0 + u0 if d = 0 ⇐⇒ z′γ + v < 0
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= x′1β1 + u1 if d = 1 ⇐⇒ z′γ + v ≥ 0;

y is a mixture of two populations depending on d = 1[z′γ + v ≥ 0]. Denoting
the joint density of (u0, u1, v) as f(u0, u1, v) that is independent of x,

E(y|x, z) = E(y|x, z, d = 0)P (d = 0|x, z)
+ E(y|x, z, d = 1)P (d = 1|x, z)

= E(y|x, z, v < −z′γ) · P (v < −z′γ|z)
+ E(y|x, z, v ≥ −z′γ) · P (v ≥ −z′γ|z)

=
∫ ∫ ∫ −z′γ

(x′0β0 + u0)f(u0, u1, v)dvdu0du1

+
∫ ∫ ∫

−z′γ
(x′1β1 + u1)f(u0, u1, v)dvdu0du1 = x′0β0

· P (v < −z′γ|z) + x′1β1 · P (v ≥ −z′γ|z)

+
∫ ∫ ∫ −z′γ

u0f(u0, u1, v)dvdu0du1

+
∫ ∫ ∫

−z′γ
u1f(u0, u1, v)dvdu0du1

where ∞ and −∞ are omitted in
∫

. This is a triple index model:

E(y|x, z) = G(x′0β0, x
′
1β1, z

′γ).

If f(u0, u1, v) = f(u0)f(u1)f(v) and Eu0 = Eu1 = 0, then the integrals
involving u0 and u1 disappear. Another example of multiple-index model can
be seen in multinomial choice models where the regression functions in the
choice utility equations become the indices.

A multiple-index model can also arise as a simplification of nonpara-
metric models. One such method is “projection pursuit regression (PPR)” in
Friedman and Stuetzle (1981) with

E(y|x) =
p∑

j=1

Gj(x′βj)

where p is a integer to be chosen by the researcher, βj is a k × 1 parameter
vector, and Gj(·) is an unknown univariate function. PPR is implemented
sequentially. First, find b1 and Gj(·) minimizing N−1

∑
i{yi − GN1(x′ib1)}2.

Then find b2 and GN2(·) minimizing N−1
∑

i{yi −GN1(x′ib1)−GN2(x′ib2)}2.
This continues until the reduction in the sum of squared errors becomes
small, which then determines p. The main idea of PPR is replacing one
high-dimensional nonparametric problem with many one-dimensional non-
parametric subproblems. In practice, one can try various combinations for
βj and estimate Gj(·) with a kernel method for a given x′βj at the jth step.
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Alternatively, we may approximate Gj(s) with a polynomial function, say
αj1s + αj2s

2 + αj3s
3, and estimate αj1, αj2, αj3, and βj jointly. Either way,

estimating βj and Gj(·) is a difficult computational problem due to the high
nonlinearity; almost countless local minima may be found.

A special case of PPR (at least from our econometric view point) is an
artificial neural network model of “a single hidden layer with p neurons” (see,
e.g., Kuan and White, 1994) in which

E(y|x) = α0 +
p∑

j=1

αjG(x′βj),

where G(·) is a known nonlinear function, for instance, G(s) = es/(1 + es).
Here α0, αj , βj , j = 1, ..., p, are the parameters to be estimated. But, com-
putationally this seems as hard as PPR due to too many local minima. As in
PPR, p should go to ∞ as N → ∞; in fact, βj ’s is not identified in this case
(Bierens, 1994, p. 94), which explains the computational problem.

Xi et al. (2002) considered a multiple index model

E(y|x) = G(x′β1, ..., x
′βp) for some p < k

=⇒ E(y|x) � α0 + α1(x − xo)′β1+, ...,+αp(x − xo)′βp

where β′pβq = 1[p = q].

The idea is reducing the k-dimensional nonparametric problem to a
p-dimensional nonparametric problem such that x′βp stands for a direction of
interest and the condition β′pβq = 1[p = q] is to make each direction orthog-
onal to the other directions. Replacing the evaluation point with observation
points, the parameters α and β can be estimated by minimizing

1
N

∑
j

∑
i

{yi − α0 − α1(xi − xj)′β1−, ...,−αp(xi − xj)′βp}2wij

where wij is a kernel weighting function; e.g. wij = K{(xi − xj)/h}/∑
i K{(xi − xj)/h}. The idea is reminiscent of local linear regression.

Using wij , however, seems to defeat the very motivation of dimension
reduction. One way to avoid this problem is starting with an initial value for
β’s, say β(0), to use

ŵij ≡ K{β(0)′(xi − xj)/h}∑
i K{β(0)′(xi − xj)/h}

where β(0)′x = (β(0)′
1 x, ..., β(0)′

p x)′. With this weight plugged in, we can esti-
mate the α and β parameters by minimizing the above minimand, and ŵij

is to get updated with the new β estimates to repeat the whole process until
convergence.
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Carroll et al. (1997) examined a model where

E(y|x, z) = G{η(x′β) + z′γ} where G(·) is known and η(·) is unknown.

This is a double-index model and includes single index as a special case when
either index drops out. One example of this model is logistic binary response
with

P (y = 1|x, z) =
exp{η(x′β) + z′γ}

1 + exp{η(x′β) + z′γ} .

Ichimura and Lee (1991) extended Ichimura (1993) to multiple-index
models, and L.F. Lee (1995) extended Klein and Spady (1993) to multino-
mial choice models. Picone and Butler (2000) proposed also a semiparametric
estimator for multiple index models. All of these studies rely on Ichimura and
Lee (1991) for the identification proof of the multiple index parameters. But
the proof seems inadeguate, amounting more or less to a re-statement of the
definition of identification. Lee and Kim (2007) proposed a two-stage multiple
index estimator for multinomial choice models using ADE in the first-stage.
The estimator does not involve iterations, and thus there is no identification
problem that the other estimators faced.

While all of these approaches assume a known number of indices, Donkers
and Schafgans (2008) proposed to test for the number of indices. For G(x) ≡
E(y|x) = G(x′β1, ..., x

′βp) with ∇G(x) ≡ ∑p
j=1{∂G/∂(x′βj)}βj , they esti-

mated E{∇G(x)∇G(x)′}, the average outer-product matrix of the gradient
to test for the number of indices using the rank of the matrix. With p deter-
mined this way, they went on to estimate parameters of interest with GMM
using average derivative functionals.

5 Semi-linear Models

Single index model E(y|x) = G(x′β) with G unknown is one way of
reducing the nonparametric dimension problem. Another popular way is
semi-linear or partially linear model E(y|x, z) = x′β + θ(z) with θ(·) un-
known. When the single index model is generalized to a multiple-index model
E(y|x) = G(x′β, z′γ) and when the semi-linear model is generalized for an
“unknown link function” G so that E(y|x, z) = G{x′β + θ(z)}, we can see
how the two themes may overlap. Nevertheless, semi-linear model in its basic
form provides a distinctive way of relaxing the linear model assumption while
keeping the nonparametric dimension low, which is the topic of this subsec-
tion. Härdle et al. (2000) provided a review on semi-linear model estimation.

5.1 Two-Stage Procedure

Consider a semi-linear (or partially linear) model :

y = x′β + θ(z) + u, E(u|x, z) = 0
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where θ is an unknown function of z, x is a kx × 1 vector, and z is a kz × 1
vector; x and z do not overlap. This is a mixture of a parametric component
x′β and a nonparametric one θ(z). Typically β is a parameter of interest
whereas θ(·) is an infinite-dimensional nuisance parameter. There are various
approaches to estimate β (and θ(·)); here we review the kernel-based one in
Robinson (1988). The intercept in β is not identified as it can be absorbed
into θ(z); i.e., x does not include 1 in semi-linear models.

Take E(·|z) on the y-equation to get

E(y|z) = E(x|z)′β + θ(z).

Subtract this from the y-equation to remove θ(z):

y − E(y|z) = {x − E(x|z)}′β + u ⇐⇒ y = E(y|z) + {x − E(x|z)}′β + u.

The systematic part of y is decomposed into two: one is E(y|z)—the effect
of z on y, and the other is {x − E(x|z)}′β—the effect on y of x net of z.

In order to estimate β, first use kernel estimators

EN (y|zi) ≡
∑N

j,j �=i K((zj − zi)/h)yj∑N
j,j �=i K((zj − zi)/h)

and

EN (x|zi) ≡
∑N

j,j �=i K((zj − zi)/h)xj∑N
j,j �=i K((zj − zi)/h)

for E(y|z) and E(x|z), respectively. Replace E(y|z) and E(x|z) in the y −
E(y|z) equation with these estimators to get a new model y − EN (y|z) �
{x − EN (x|z)}′β + u and its LSE

bN =

[∑
i

{xi − EN (x|zi)}{xi − EN (x|zi)}′
]−1

∑
i

{xi − EN (x|zi)}{yi − EN (y|zi)}.

The non-identifiability of the intercept is obvious as the LSE intercept term
gets removed by the mean subtraction. Also if we allow variables to appear
in both x and z, their coefficients in β are not identified for a similar reason.

The LSE bN has the following asymptotic distribution:
√

N(bN − β)� N(0, A−1BA−1),

AN ≡ 1
N

∑
i

{xi − EN (x|zi)}{xi − EN (x|zi)}′ →p A,

BN ≡ 1
N

∑
i

{xi − EN (x|zi)}{xi − EN (x|zi)}′û2
i →p B,

ûi ≡ {yi − EN (y|zi)} − {xi − EN (x|zi)}′bN .
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Despite the nonparametric first stage, the estimation errors do not affect the
asymptotic distribution of bN . This can be shown using CTE . Chamberlain
(1992) showed that this asymptotic variance is the semiparametric efficiency
bound.

If the bandwidth is large enough so that EN (y|z) = ȳ (sample mean of
yi’s) and EN (x|z) = x̄, then y − EN (y|z) � {x − EN (x|z)}′β + u becomes

y − ȳ � (x − x̄)′β + u ⇐⇒ y � ȳ − x̄′β + x′β + u

which is the linear model with θ(z) being the intercept term ȳ − x̄′β. In this
regard, the usual linear model y = x′β + u (with ȳ − x̄′β absorbed into the
intercept) is a special case of the semi-linear model, and it is a misspecified
one if θ(z) indeed varies with z. If one wants to estimate θ(z), then this
can be done by a nonparametric regression of y − x′bN on z, because of
E(y − x′β|z) = θ(z).

The semi-linear model is applicable to labor supply models with z being
age, because the labor supply profile of age is likely to be nonlinear (increasing
and then leveling off after a certain age). The usual practice of including age
and age2 to capture this pattern may not be adequate, for it means declining
labor supply after a peak age. Another case for semi-linear model is sample
selection models. For instance, consider the selection equation d = 1[w′α+ε >
0] and outcome equation y = x′β+u where w = (x′, c′)′ and (ε, u)�w. Then,
for the sub-population d = 1,

E(y|d = 1, w) = x′β + E(u|d = 1, w) = x′β + E(u|ε > −w′α,w)
= x′β + λ(w′α) where λ(·) is unknown

because, due to (ε, u) � w, w can influence E(u|ε > −w′α,w) only through
w′α. This is a semi-linear model with w′α = z (as well as being a double
index model). As mentioned already, the exclusion restriction is necessary;
otherwise if w = x, then

{x − E(x|x′α)}′α = x′α − x′α = 0: the columns of x

−E(x|x′α) are linearly dependent
=⇒ E[{x − E(x|x′α)}{x − E(x|x′α)}′] is singular.

If there are endogenous regressors in x, then the TSE can be modified as
follows. Let w denote an instrument vector for x. Multiplying the conditional-
mean-subtracted equation by w and then taking E(·), we get

E[w{y − E(y|z)}] = E[w{x − E(x|z)}′]β.

This can be solved for β in “just-identified” cases (dim(w) = dim(x)); other-
wise (dim(w) > dim(x)), we can proceed as in over-identified IVE cases.

Consider a nonlinear semi-linear model E(y|x, z) = g{x′β + θ(z)} where
g(·) is a known function. For instance, y = 1[x′β + θ(z) + u ≥ 0] with u ∼
Logistic, which implies

E(y|x, z) =
exp{x′β + θ(z)}

1 + exp{x′β + θ(z)} .
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Instead of specifying the distribution of u fully, Severini and Staniswalis
(1994) set up a pseudo likelihood function which depends on E(y|x, z) and
V (y|x, z) where V (y|x, z) is posited to be determined solely by E(y|x, z).
Then a kernel K((z − zo)/h) is attached to the pseudo score function to do
nonparametric pseudo MLE for θ(zo; b) given β = b. Once θ(·; b) is traced
out by varying zo, θ(·; b) is plugged into the pseudo likelihood function (no
kernel weighting at this stage), which is then maximized wrt b. This “profile
likelihood approach” yields bN and θ(·; bN ). Note the difficulty in the second
stage: θ(·; b) changes as b changes.

Instead of the nonparametric (pseudo) MLE, Ai and McFadden (1997)
solved the last display for x′β + θ(z):

ln
{

E(y|x, z)
1 − E(y|x, z)

}
= x′β + θ(z).

Replacing E(y|x, z) with EN (y|x, z), Robinson’s (1988) procedure is ap-

plied to estimate β and θ(·). But using EN (y|x, z) would ruin the very mo-
tivation to consider semi-linear models: reduce the nonparametric dimension
problem.

Cai et al. (2007) examined semi-linear hazard model for multivariate
hazards; e.g., survival durations of members in the same family. Although
the multivariate durations are related to one another, they set up a pseudo-
partial likelihood function simply adding up each member’s partial likelihood
function ignoring the relationship. Then they do nonparametric MLE for
θ(zo; b) given β = b by doing analogously to what was done in Severini and
Staniswalis (1994)—in fact Cai et al. (2007) do local polynomial estimation,
not local constant as in Severini and Staniswalis (1994). Plugging θ(zo; b) into
the pseudo-partial likelihood to obtain the profile pseudo-partial likelihood,
they estimate β.

The above approaches specify more or less the distribution of the error
term u. If the distribution of u is unknown, semi-linear regression functions
in LDV models are difficult to handle in general. Later, however, we will
introduce pairwise differencing approach for this case.

Many applications of semi-linear models have appeared in the litera-
ture. For instance, Hausman and Newey (1995) estimated a demand function
where the own price and income are the two main variables of interest. In
their semi-linear model, the nonparametric component is a function of the
two variables while the other variables enter the model linearly. Using the
demand function, they estimated an “equivalent variation” (� consumer sur-
plus) and deadweight loss from a price change. Anglin and Gencay (1996)
used a semi-linear model for a “hedonic price function” where y is ln(house
price), x is binary regressors, and z is continuous or discrete non-binary re-
gressors; hedonic price functional forms are controversial in the literature.
In the following, an empirical example in Kondo and Lee (2003) is pro-
vided, which shows some details on how to implement the above two-stage
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estimator. The example also demonstrates that there is a good reason to
check out the independence between x and z in semi-linear models.

5.2 Empirical Application: Hedonic Price Indices

Hedonic price indices (HPI) show price changes controlling for quality
changes, and are typically estimated by the LSE of ln(price) on time dummies
and quality-characteristics. This natural divide of the regressors into two sets
(time dummies and quality characteristics) motivates semi-linear models: the
linear part with time dummies and the other nonparametric part with quality-
characteristics. Kondo and Lee (2003) applied the semi-linear HPI model and
the above two-stage procedure to repeated cross-section data for rental offices
in Tokyo during 1985–1991 (T = 7 years); assume that each office can be
sampled at most only once during the 7-year period, as the number of offices
is far greater than the sample size. Anglin and Gençay (1996) also used a
semi-linear HPI model.

Consider

yi = (x∗i )
′β∗ + h(zi) + ui, i = 1, . . . , N,

(yi, x
′
i, z

′
i) is observed, iid across i,

where yi = ln(pi), pi is the monthly rent for office i in the sampled year,
x∗i = (1, x′i)

′ is the T × 1 vector of year-dummies indicating from which year
office i is sampled, zi is a q × 1 vector of office characteristics (among the q
components, the first q1 are continuous, and the other q2 are discrete with
q1+q2 = q), h(zi) is an unknown function of zi, β∗ = (β1, β

′)′ = (β1, . . . , βT )′

is a vector of unknown parameters, and ui is an error term with E(u|x, z) = 0.
For instance, with T = 4, x∗i is⎡⎢⎢⎣

1
0
0
0

⎤⎥⎥⎦ for year 1,

⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦ for year 2,

⎡⎢⎢⎣
1
0
1
0

⎤⎥⎥⎦ for year 3, and

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ for year 4.

Since the intercept is not identified in the semi-linear model, set β1 = 0
(i.e., the year 1 time dummy is not used) so that (x∗i )

′β∗ = x′iβ. Let P1, ..., PT

be the price level for year t. In view of the last display, the remaining time
dummies’ coefficients are, respectively,

β2 = P2 − P1, β3 = P3 − P1, ..., βT = PT − P1.

Hence the annual price increase rate Pt,t+1 from year t to year t + 1 is

Pt,t+1 = Pt+1 − Pt = βt+1 − βt, t = 2, . . . , T − 1.
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Since xi consists of 0’s and 1’s, the linearity assumption for x′iβ is not
restrictive. The only restriction for the semi-linear model is that xi and zi are
separable with no interaction; i.e., the functional form of h(·) does not change
across the years, while the fully nonparametric HPI model would allow such
changes. Lack of interaction terms between x and z is required, not just for
this HPI example, but also for all semi-linear models in general.

In choosing the bandwidth h in the semi-linear model, the following
cross-validation criterion has been the most popular (Stock, 1991; Anglin
and Gençay, 1996; Hausman and Newey, 1995): with EN (·|zi) denoting a
leave-one-out kernel estimator for E(·|zi),

1
N

∑
i

(ỹi − x̃′iβ̂)2 where ỹi ≡ yi − EN (y|zi), x̃i ≡ xi − EN (x|zi)

and β̂ is the resulting two-stage estimator that consequently also depends on
h. This was also used in Kondo and Lee (2003).

As for the kernel choice, although theoretically necessary for the TSE,
high-order kernels are cumbersome if the regressor dimension is high. Robin-
son (1988) and Hausman and Newey (1995) used a high-order kernel, while
Anglin and Gençay (1996) used a second-order kernel. Stock (1991) com-
pared the performance of second-and high-order kernels, but his main results
were based on second-order kernels. Kondo and Lee (2003, p. 39) found that
a product kernel made up of second-order bounded-support kernels worked
well in terms of the stability of the cross-validation criterion and the tolerance
to changing bandwidth values.

For our data, x turns out to be (almost) mean-independent of z:

E(x|z) = E(x) =⇒ y − E(y|z) = {x − E(x)}′β + u

and E(x) can be replaced by x̄ in the second stage. Under the mean-
independence, models misspecifying θ(z) still yield consistent LSE for β: the
misspecified θ(z) makes a function of z enter the error term to become an
omitted variable, but the LSE omitted variable bias for β is zero because the
omitted variable is mean-independent of the included variable x. In this case,
the differences among estimators misspecifying θ(z) are in efficiency.

To see this efficiency issue, recall that the asymptotic variance with
E(x|z) = E(x) is

E−1(dd′) E[dd′u2] E−1(dd′) where d =x − E(x|z)=x − E(x).

Define w∗ ≡ (1, w′)′ where w is a vector consisting of known functions of
elements of z, and also define the linear projection and its orthogonal com-
plement:

L(x|w∗) ≡ E{x(w∗)′}E−1{w∗(w∗)′}w∗ and L⊥(x|w∗) ≡ x − L(x|w∗).
Suppose that θ(z) is misspecified as (w∗)′α∗. That is, the model for LSE is

yi = x′iβ + (w∗i )′α∗ + vi where vi ≡ ui + θ(zi) − (w∗i )′α∗ is the error term;
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a constant should be subtracted from vi to assure E(v) = 0, but this is
ignored to simplify presentation. The asymptotic variance becomes the above
asymptotic variance with u replaced by

v − L(v|w∗) = u + θ(z) − (w∗)′α∗ − L{u + θ(z) − (w∗)′α∗|w∗}
= u + θ(z) − L{θ(z)|w∗} = u + L⊥{θ(z)|w∗}.

This follows from the partial-regression LSE asymptotic variance: the equa-
tion is linearly projected on w∗i , and then yi − L(y|w∗i ) is regressed on xi −
L(x|w∗i ) where the error term is vi − L(v|w∗i ) = ui + L⊥{θ(z)|w∗i }.

The efficiency of the LSE misspecifying θ(z) as linear depends on the
extent θ(z) is explained by w∗i : any part of θ(z) not accounted for becomes
part of the error term, which makes the error variance greater because

V [u + L⊥{θ(z)|w∗}] = V (u) + V [L⊥{θ(z)|w∗}] as E(u|x, z) = 0.

Therefore, when E(x|z) = E(x), the two-stage procedure is as efficient as any
LSE specifying θ(z) as linear, regardless of whether the linear specification is
right or not.

Kondo and Lee employed linear models and their second-order linear
models. That is, the latter uses all first- and second-order terms of the for-
mer; the second-order linear model had as many as 44 parameters. Despite
this, both linear models were all rejected by the specification test in Stute
(1997) and Stute et al. (1998), and they did worse than the above simple
TSE using a kernel estimator. Table 1 presents four sets of HPI’s and their
SD’s: the time-dummy-only model with no θ(z) (“DUM index”), the linear
model with z (“LIN index”), the linear model with the first- and second-
order terms of z (“QUAD index”), and the semi-linear model (“SLR index”)
using the biweight-kernel-based product kernel. The estimates indicate that
the rent has increased at a rate higher than 9% during 1985–1991. From
1986 to 1987, the increase was particularly high, being at least 18%. The LIN
indices are more variable across the years than the SLR indices, while the
QUAD indices are less variable and greater than the SLR indices. With large
standard errors, the DUM indices should not be used, for it does not take
much to get at least the LIN indices. The SLR indices are not difficult to
get either, and have parsimony as can be seen in the R2’s for the SLR model
(around 0.72) and the QUAD indices model (around 0.76) with as many as
44 parameters.

5.3 Pair-wise Differencing for Semi-linear LDV Models

Honoré and Powell (2005) applied the pairwise differencing idea in Honoré
(1992) to LDV models with semi-linear regression functions. Recall the semi-
linear model

yi = x′iβ + θ(zi) + ui, E(u|x, z) = 0, θ(·) is an unknown function
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Table 1: HIP (SD) for Tokyo Offices
DUM LIN QUAD SLR

85-86 13.39(3.66) 10.62(2.32) 10.30(2.03) 9.37(2.18)
86-87 22.12(4.27) 20.43(2.59) 19.00(2.27) 18.11(2.46)
87-88 9.65(4.70) 9.07(2.80) 11.17(2.43) 9.56(2.65)
88-89 11.21(4.55) 15.60(2.81) 13.40(2.39) 11.20(2.62)
89-90 11.55(4.59) 9.30(2.99) 12.33(2.66) 9.61(2.78)
90-91 9.71(4.54) 13.33(2.91) 12.03(2.69) 10.83(2.91)

=⇒ yi − yj = (xi − xj)′β + ui − uj if zi = zj .

Imposing zi = zj with a kernel function K((zi − zj)/h), estimate β by mini-
mizing

2
N(N − 1)

∑
i<j

K

(
zi − zj

h

)
{yi − yj − (xi − xj)′β}2.

The resulting estimator is an alternative to the Robinson’s (1988) TSE:

bN ≡

⎧⎨⎩∑
i<j

K

(
zi − zj

h

)
(xi − xj)(xi − xj)′

⎫⎬⎭
−1

∑
i<j

K

(
zi − zj

h

)
(xi − xj)(yi − yj).

To see a slight variation on the theme, consider a sample selection model:
with w strictly including x,

d = 1[w′α + ε > 0], y = x′β + u and y

observed only when d = 1
=⇒ E(y|w, d = 1) = x′β + E(u|w, d = 1) = x′β

+E(u|w, ε > −w′α)
=⇒ y = x′β + θ(w′α) + v, where v ≡ y − E(y|w, d = 1)

under (ε, u) � w.

By construction, E(v|w, d = 1) = 0, and this is a semi-linear model where
w′α is a rv (while z can be a random vector) but w′α has an unknown
parameter α that needs to be replaced with an estimator aN . That is, given
a
√

N -consistent estimator aN for α, we can consistently estimate β with⎧⎨⎩∑
i<j

K

(
w′iaN − w′jaN

h

)
(xi − xj)(xi − xj)′

⎫⎬⎭
−1

∑
i<j

K

(
w′iaN − w′jaN

h

)
(xi − xj)(yi − yj).
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The idea of removing the nonparametric component θ(z) or θ(w′α) with
pairwise differencing with K((zi − zj)/h) or K((w′iaN − w′jaN )/h) is appli-
cable to many LDV models with θ(·), and a couple of such LDV models will
be examined shortly. Aradillas-Lopez and et al. (2007) further extended the
idea when the argument in θ(·) is a nonparametric estimator of a conditional
mean. The asymptotic distribution of the TSE is model-specific and depends
on whether the argument of θ(·) is observed (as in θ (z)) or unknown up to
a finite-dimensional nuisance parameter (θ(w′α)) or an infinite-dimensional
nuisance parameter (e.g., θ(E(d|w)). In practice, using CI’s based on non-
parametric bootstrap or using the variance matrix of “jackknifed” pseudo
estimates will be simpler, where jackknifed pseudo estimates are obtained
by repeating the estimation procedure deleting one observation (or multiple
observations) at a time. See Shao and Tu (1995) for bootstrap and jackknife
in general.

Consider a fixed-effect panel logit model

yit = 1[x′itβ + δi + uit > 0], uit, i = 1, ..., N, t = 1, 2 are iid logistic.

The well-known “conditional logit” maximizes, with τ i ≡ 1[yi1 = yi2] =
1[yi1 + yi2 = 1],∑

i

τ i

[
yi1 ln

{
1

1 + exp((xi2 − xi1)′b)

}
+ yi2 ln

{
exp((xi2 − xi1)′b)

1 + exp((xi2 − xi1)′b)

}]
.

Analogously to this, consider a cross-section semi-linear logit model

yi = 1[[x′iβ + θ(zi) + ui > 0], ui’s are iid logistic, and u � x.

Then β can be estimated by maximizing (τ ij ≡ 1[yi = yj ])∑
i<j

τ ijK

(
zi − zj

h

)[
yi ln

{
1

1 + exp((xj − xi)′b)

}

+yj ln
{

exp((xj − xi)′b)
1 + exp((xj − xi)′b)

}]
.

Consider a semi-linear censored model

y = max(0, x′β + θ(z) + u).

Recalling the discussion on the Honoré’s (1992) pairwise differencing estima-
tor for censored models, β can be estimated by minimizing the same mini-
mand with a kernel function attached:

2
N(N − 1)

∑
i<j

K

(
zi − zj

h

)
s{yi, yj , (xi − xj)′b}

where
s{yi, yj , (xi − xj)′b} = y2

i − {yj + (xi − xj)′b}2yi if (xi − xj)′b ≤ −yj

= {yi − yj − (xi − xj)′b}2 if − yj < (xi − xj)′b < yi

= (−yj)2 + {(xi − xj)′b − yi}2yj if yi ≤ (xi − xj)′b.
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6 Additive Models

For a nonparametric regression model y = m(x) + u with a k × 1 vector
x and E(u|x) = 0, Stone (1982) showed that the “best attainable conver-
gence rate” of nonparametric estimation is N−s/(2s+k) where s is a degree of
smoothness of m(x). The rate is slower than the usual parametric rate N−1/2

although it approaches N−1/2 as s → ∞. Stone (1985) also showed that, for
nonparametric additive models of the form m(x) =

∑k
j=1 mj(xj), the best

attainable convergence rate is N−s/(2s+1) as if there is only one regressor
regardless of k. This section reviews nonparametric estimation for additive
(or additively separable) models, which is yet another way of reducing non-
parametric dimension. For ease of exposition, often we will use the special
cases k = 2 or 3, as the general case can be inferred from these.

6.1 Backfitting

Buja et al. (1989) proposed “(classical) backfitting” method. For simpli-
fication, set k = 3. Take E(·|xj), j = 1, 2, 3, on the additive model

y = m0 +
3∑

j=1

mj(xj) + u, E{mj(xj)} = 0, E(u|x) = 0

to get

E(y|x1) = m0 + m1(x1) + E{m2(x2)|x1} + E{m3(x3)|x1},
E(y|x2) = m0 + E{m1(x1)|x2} + m2(x2) + E{m3(x3)|x2},
E(y|x3) = m0 + E{m1(x1)|x3} + E{m2(x2)|x3} + m3(x3).

The condition E{mj(xj)} = 0 is a normalization, because
∑3

j=1

E{mj(xj)} can be absorbed into the intercept m0 which can be estimated
with ȳ because E(y) = m0.

Rewrite the last display as

m1(x1) = E(y|x1) − m0 − E{m2(x2)|x1} − E{m3(x3)|x1},
m2(x2) = E(y|x2) − m0 − E{m1(x1)|x2} − E{m3(x3)|x2},
m3(x3) = E(y|x3) − m0 − E{m1(x1)|x3} − E{m2(x2)|x3}.

Imagine solving these equations for the three unknown functions mj(xj),
j = 1, 2, 3. As E(·|xj) can be estimated by a kernel estimator EN (·|xj) and
m0 by ȳ, we get an iteration formula:

m̂
(1)
1 (x1) = EN (y|x1) − ȳ − EN{m̂(0)

2 (x2)|x1} − E{m̂(0)
3 (x3)|x1},

m̂
(1)
2 (x2) = EN (y|x2) − ȳ − EN{m̂(1)

1 (x1)|x2} − E{m̂(0)
3 (x3)|x2},

m̂
(1)
3 (x3) = EN (y|x3) − ȳ − EN{m̂(1)

1 (x1)|x3} − E{m̂(1)
2 (x2)|x3}
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where, for a kernel L and bandwidth h,

EN{m̂(0)
j (xj)|xk} =

∑
i L((xik − xk)/h) · m̂(0)

j (xij)∑
i L((xik − xk)/h)

,

EN{m̂(1)
j (xj)|xk} is analogously defined, and the superscript (0) denotes an

early stage estimator whereas (1) denotes an updated estimator.
The rhs of the m̂

(1)
1 (x1) equation becomes∑

i L((xi1 − x1)/h) · {yi − ȳ − m̂
(0)
2 (xi2) − m̂

(0)
3 (xi3)}∑

i L((xi1 − x1)/h)

where the “residual” yi−ȳ−m̂
(0)
2 (xi2)−m̂

(0)
3 (xi3) is used to estimate m̂

(1)
1 (x1),

which gives the name “backfitting.” An alternative to the above iteration for-
mula is using only the superscript (0) versions on the rhs. Then the m̂

(1)
2 (x2)

line becomes∑
i L((xi2 − x2)/h) · {yi − ȳ − m̂

(0)
1 (xi1) − m̂

(0)
3 (xi3)}∑

i L((xi2 − x2)/h)
.

In contrast to this “Jacobi algorithm,” using the updated estimates as much
as possible on the rhs as in the above iteration formula is called “Gauss–
Seidel algorithm.” In the algorithms, EN (y|xj) and ȳ need to be computed
only once.

We can start with an initial guess, say m
(0)
j (xj) = xj , j = 2, 3, and iterate

until convergence, i.e., until changes in mj(xj)’s become small. For instance,
with ε being a small positive constant, use a criterion function such as

supxj
|m̂(1)

j (xj) − m̂
(0)
j (xj)|

supxj
|m̂(0)

j (xj)| + ε
< ε or

N−1
∑

i{m̂
(1)
j (xij) − m̂

(0)
j (xij)}2

N−1
∑

i{m̂
(0)
j (xij)}2 + ε

< ε ∀j

and then sum up these across j = 1, ..., k to get a single stopping criterion. We
can do the iteration at some chosen fixed evaluation points for (x1, x2, x3).
But programming-wise, it is simpler (but more time-consuming) to do the
iteration at the observation points unless N is prohibitively large. Also at the
end of the iteration, it would be a good idea to re-center each m̂j(xj) so that
it has mean zero.

6.2 Smoothed Backfitting

One disadvantage of backfitting is that its asymptotic distribution is
unknown. Mammen, et al. (1999) proposed “smoothed backfitting” and then



490 Ch. 9 Bandwidth-Dependent Semiparametric Methods

derived its asymptotic distribution. But the paper is complicated, and here
we introduce smoothed backfitting algorithm as explained in Nielsen and
Sperlich (2005). We will use, as has been done most times, a product kernel
K(t) = Πk

l=1L(tk) with t = (t1, ..., tk)′.
Defining x−j as x with its jth element xj removed, observe∫

m̂k(xk)
fN (xj , xk)

fN (xj)
dxk →p

∫
mk(xk)

f(xj , xk)
f(xj)

dxk

=
∫

mk(xk)f(xk|xj)dxk = E{mk(xk)|xj}.

Then a “Gauss–Seidel-type” iteration algorithm for smoothed backfitting is

m̂
(1)
1 (x1) = EN (y|x1) − ȳ −

∫
m̂

(0)
2 (x2)

fN (x1, x2)
fN (x1)

dx2

−
∫

m̂
(0)
3 (x3)

fN (x1, x3)
fN (x1)

dx3

m̂
(1)
2 (x2) = EN (y|x2) − ȳ −

∫
m̂

(1)
1 (x1)

fN (x2, x1)
fN (x2)

dx1

−
∫

m̂
(0)
3 (x3)

fN (x2, x3)
fN (x2)

dx3

m̂
(1)
3 (x3) = EN (y|x3) − ȳ −

∫
m̂

(1)
1 (x1)

fN (x3, x1)
fN (x3)

dx1

−
∫

m̂
(1)
2 (x2)

fN (x3, x2)
fN (x3)

dx2.

Compared with backfitting, the difference falls in how expressions such
as EN{m̂(0)

j (xj)|xk} gets computed: in backfitting and smoothed backfitting,
respectively,

EN{m̂(0)
j (xj)|xk} =

(Nh)−1
∑

i L((xik − xk)/h)m̂
(0)
j (xij)

(Nh)−1
∑

i L((xik − xk)/h)
,

∫
m̂

(0)
j (xj)

fN (xk, xj)

fN (xk)
dxj =

∫
m̂

(0)
j (xj)(Nh2)−1

∑
i L((xik − xk)/h)L((xij − xj)/h)dxj

(Nh)−1
∑

i L((xik − xk)/h)

=
(Nh2)−1

∑
i L((xik − xk)/h)

∫
m̂

(0)
j (xj)L((xij − xj)/h)dxj

(Nh)−1
∑

i L((xik − xk)/h)

=
(Nh)−1

∑
i L((xik − xk)/h)

∫
m̂

(0)
j (xij − ht)L(t)dt

(Nh)−1
∑

i L((xik − xk)/h)
.

Hence the difference between the two procedures is whether m̂
(0)
j (xij) or its

smoothed version
∫

m̂
(0)
j (xij − ht)L(t)dt is used.

In implementing the algorithm, EN (y|xj), fN (xj) and fN (xj , xk) need to
be computed only once. Although m̂j(xj) may be estimated at some chosen
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fixed evaluation points of xj , it is simpler (but more time-consuming) to use
the observation points for xj in programming the algorithm. In this case, a
further simplification may be achieved by using∫

m̂
(·)
j (xj)

fN (xk, xj)
fN (xk)

dxj =
∫

m̂
(·)
j (xj)

fN (xk, xj)
fN (xk)fN (xj)

fN (xj)dxj

� 1
N

∑
i

m̂
(·)
j (xij)

fN (xik, xij)
fN (xik)fN (xij)

.

That is, the analytical integrations get replaced by averages.
Denoting the final smoothed-backfitting estimators for mj(xj) as m̂j(xj),

the asymptotic distribution is, ignoring the bias terms with under-smoothing,⎡⎣
√

Nh{m̂1(x1) − m1(x1)}√
Nh{m̂2(x2) − m2(x2)}√
Nh{m̂3(x3) − m3(x3)}

⎤⎦� N(0, C)

where C ≡ diag

{
V (u|x1)
f(x1)

∫
L(t)2dt,

V (u|x2)
f(x2)

∫
L(t)2dt,

V (u|x3)
f(x3)

∈ L(t)2dt

}
.

Despite the nonparametric model, each mj(x) is estimated
√

Nh-consistently
with its variance being the usual kernel estimator asymptotic variance. Sum-
ming the component estimators yields then

√
Nh{m̂(x) − m(x)}� N

⎧⎨⎩0,

∫
L(t)2dt

3∑
j=1

V (u|xj)
f(xj)

⎫⎬⎭
where m̂(x) ≡

∑
j

m̂j(xj).

As for choosing h, Nielsen and Sperlich (2005) recommended a CV-type
procedure:

min
h

N∑
i=1

{yi − m̂−i(xi)}2

where m̂−i(xi) is m̂(xi) with the ith observation not used. Intuition suggests
that this CV bandwidth is likely to be optimal for m(x), but not necessarily
optimal for the individual component mj(xj).

6.3 Marginal Integration

Consider the simplest additive model with two regressors:

m(x1, x2) = m0 + m1(x1) + m2(x2) where E{mj(xj)} = 0,
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j = 1, 2
=⇒ E{m(x1, x2)|xj} = m0 + mj(xj), j = 1, 2.

That is, by integrating out one regressor, we can estimate the nonparametric
component for the other regressor. Let m̂(x1, x2) be a kernel estimator for
m(x1, x2) with a product kernel K(t) = L(t1)L(t2) as usual. Linton and
Nielsen (1995) proposed a marginal integration estimator for m1(x1): for a
weighting function q(x2),

m̂1(x1) =
∫

m̂(x1, x2)q(x2)dx2

→ pm0 + m1(x1) +
∫

m2(x2)q(x2)dx2 = m1(x1) + constant.

Clearly, an analogous estimator can be thought of for m2(x2). Newey (1994b)
also considered marginal integration, calling it “partial mean.”

Under the homoskedasticity assumption E(u|x1, x2) = σ2, Linton and
Nielsen (1995) stated

√
Nh{m̂1(x1) − E(m̂1(x1))}

� N{0, σ2

∫
q(x2)2

f(x1, x2)
dx2

∫
L(z)2dz} where

E(m̂1(x1)) = m1(x1) +
h2

1

2

∫
z2L(z)dz · m′′

1(x1)

+
h2

2

2

∫
z2L(z)dz ·

∫
m′′

2(x2)q(x2)dx2

where h1 and h2 are the bandwidths for x1 and x2, respectively; as before,
we may use hj = SD(xj)h0 for a common h0. As has been done so far, we
will not bother with the asymptotic bias. The convergence rate is

√
Nh as in

one-dimensional nonparametric estimation despite k = 2. For heteroskedastic
cases, the asymptotic variance becomes∫

σ(x1, x2)2
q(x2)2

f(x1, x2)
dx2 ·

∫
L(z)2dz.

For m̂(x1, x2) = m̂1(x1) + m̂2(x2), its asymptotic variance (and bias) is just
the sum of the individuals variances (and biases).

If we use the x2-density f2(x2) for q(x2), then the asymptotic variance
becomes ∫

σ(x1, x2)2
f2(x2)

f1|2(x1|x2)
dx2 ·

∫
L(z)2dz

where f1|2 denotes the density for x1|x2. We will show this in the follow-
ing for the case where the empirical distribution is used for q(x2)dx2 as in
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Linton (1997) (this is equivalent to using f(x2)dx2), and thus the marginal
integration estimator becomes

m̂1(x1) =
1

N

∑
i

m̂(x1, xi2) =
1

N

∑
i

∑
j �=i L{(xj1 − x1)/h)L{(xj2 − xi2)/h)yj∑
j �=i L{(xj1 − x1)/h)L{(xj2 − xi2)/h)

.

For the estimator in the last display, it can be shown that
√

Nh{m̂1(x1) − m1(x1)}

− 1√
N

∑
i

[
1√
h

L

(
xi1 − x1

h

)
1

f1|2(x1|xi2)
{yi − m(x1, xi2)}

]
= op(1).

The asymptotic variance can be seen from the second moment of the
summand:

E

[
1
h

L

(
xi1 − x1

h

)2 1
f1|2(x1|xi2)2

{yi − m(x1, xi2)}2

]

=
∫

1
h

L

(
xi1 − x1

h

)2 1
f1|2(x1|xi2)2

σ2(x1, xi2)f2|1(xi2|xi1)

f1(xi1)dxi2dxi1

→
∫

σ2(x1, x2)
f2|1(x2|x1)f1(x1)

f1|2(x1|x2)2
dx2

∫
L2(t)dt

=
∫

σ2(x1, x2)
f1|2(x1|x2)f2(x2)

f1|2(x1|x2)2
dx2

∫
L2(t)dt

=
∫

σ2(x1, x2)
f2(x2)

f1|2(x1|x2)
dx2

∫
L2(t)dt

This is the same as the above asymptotic variance when f2(x2) is used for
q(x2).

The two-regressor case with the empirical distribution for q(x2)dx2 can
be generalized to k-dimensional case as in

m̂1(x1) =
1
N

∑
i

m̂(x1, xi,−1) where x−1 ≡ (x2, ..., xk)′.

The only change that this generalization results in is that
∫
{f2(x2)/

f1|2(x1|x2)}dx2 in the asymptotic variance gets replaced by
∫
{f−1(x−1)/

f1|−1(x1|x−1)dx−1.
Linton (1997) provided a better estimator which is “oracle-efficient” in

the sense that the estimator’s asymptotic variance is the same as that when
the other component m2(x2) is known. The idea is to add one backfitting
step to the marginal integration. Suppose m2(x2) were known. In this case,
defining the residual vi ≡ yi −m0 −m2(xi2), we would estimate m1(x1) by a
kernel regression of v on x1 whose asymptotic distribution follows easily from
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that of the usual kernel estimator asymptotics. Linton (1997) showed that the
above marginal integration estimator is inefficient than the infeasible “oracle”
estimator under homoskedasticity. But if one does the backfitting—i.e., the
nonparametric regression of v̂i ≡ yi − m0 − m̂2(xi2) on xi1 where m̂2(xi2)
is the marginal integration estimator—then the resulting estimator is oracle-
efficient. One caveat is that, for the two-stage idea to work, the first-stage
marginal integration estimator should be under-smoothed.

Fan et al. (1998) propose another way to attain the oracle efficiency.
Instead of adding the backfitting step as Linton (1997) did, they apply local
linear regression only to the direction of x1 in the first step while a local
constant regression is maintained for x−1; recall that this idea appeared in
the nonparametrics chapter in relation to local linear regression. Then the
second step is a marginal integration. One notable feature in this procedure
is that, since x−1 is integrated out, this allows any functional form for the
x−1 part, not necessarily the additive m2(x2)+, ...,+mk(xk).

Sperlich et al. (1999) compared finite sample properties of marginal in-
tegration and backfitting. They conclude that backfitting works better at
boundary points and when there are high correlations among regressors,
whereas the marginal integration works better in most other cases. But
Martins-Filho and Yang (2007) compared marginal integration, backfitting,
smoothed backfitting and an estimator in Kim et al. (1999), and recommend
backfitting. In general, as integration tends to smooth out things, we would
recommend marginal integration which is also simpler to implement without
any iteration.Applications of marginal integration can be found in Rodriguez-
Póo et al.(2005), Vollebergh et al. (2009) and Kan and Lee (2009).

6.4 Further Generalizations*

Linton and Härdle (1996) examined a ‘generalized additive model: with
m(x) = E(y|x),

G{m(x)} = m0 +
k∑

j=1

mj(xj) ⇐⇒ m(x) = G−1{m0 +
k∑

j=1

mj(xj)}

where G(·) is a known link function, to propose a marginal integration-based
estimator. The idea can be seen in∫

G{m(x)}f−1(x−1)dx−1 =
∫ ⎧⎨⎩m0 +

k∑
j=1

mj(xj)

⎫⎬⎭ f−1(x−1)dx−1

= m1(x1) + constant

and m(x) and f−1(x−1) can be replaced with kernel estimators where x−1 is
the elements of x other than x1. Horowitz (2001b) dealt with a considerably
more difficult model with an unknown G function.
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Horowitz and Mammen (2004) proposed a two-stage oracle-efficient es-
timator for the additive model with a known link function G with H ≡ G−1.
The first-stage is a series approximation of m(x) by series-approximating
each mj(xj), and the second-stage estimator for m1(xo1) is obtained by tak-
ing one Newton–Raphson minimization step from (a = m̃1(xo1), b = 0) with
the first-stage estimators m̃j(xij), j = 1, and m̃0 plugged in; i.e., minimize
wrt a and b

1
N

∑
i

[yi − H{m̃0 + a + b(xi1 − xo1) + m̃2(xi2)+, ...,+m̃k(xik)}]2

K

(
xi1 − xo1

h

)
.

Their estimator requires mj(xj) to be continuously differentiable only twice
whereas the estimator of Linton and Härdle (1996) requires mj to get smoother
as k goes up. Horowitz and Lee (2005) extended this idea to estimate additive
quantile regression models.

Linton et al. (1997) considered a parametric transformation of y:

θ(y;λ) = m0 +
k∑

j=1

mj(xj) where θ(·;λ) is parametrized by an

unknown λ.

In the first step, the additive model is estimated for a given value of λ. In the
second step, λ is estimated, e.g., using nonlinear IVE with z as an instrument
and a moment condition such as

1
N

∑
i

⎧⎨⎩θ(yi;λ) − m0 +
k∑

j=1

m̂j(xj ;λ)

⎫⎬⎭ zi = 0

where m̂j(xj ;λ) is the first-stage estimator using the given value of λ. Also,
Linton et al. (2008) proposed a number of estimators for θ(y, λ) = G{m1

(x1), ...,mk(xk)} where G is known and mj unknown.
Manzan and Zerom (2005) considered an additive semi-linear model

y = m(x, z) + u = x′β + m1(z1)+, ...,+mq(zq) + u where E{mj(zj)} = 0.

Denote the densities for z, z1, and z−1 as fz, f1, and f−1, respectively. Observe

E

{
y
f1(z1)f−1(z−1)

fz(z1, z−1)
|z1

}
= E

[
E

{
y
f1(z1)f−1(z−1)

fz(z1, z−1)
|z
}
|z1

]
= E

{
E(y|z)

f1(z1)f−1(z−1)
fz(z1, z−1)

|z1

}
=

∫
{β′E(x|z) + m1(z1)+, ...,+mq(zq)}
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·f1(z1)f−1(z−1)
fz(z1, z−1)

fz(z1, z−1)
f1(z1)

dz−1

=
∫
{β′E(x|z) + m1(z1)+, ...,+mq(zq)}f−1(z−1)dz−1

= β′
∫

E(x|z1, z−1)f−1(z−1)dz−1+m1(z1)

and

E

{
x

f1(z1)f−1(z−1)
fz(z1, z−1)

|z1

}
= E

{
E(x|z)

f1(z1)f−1(z−1)
fz(z1, z−1)

|z1

}
=

∫
E(x|z)

f1(z1)f−1(z−1)
fz(z1, z−1)

fz(z1, z−1)
f1(z1)

dz−1

=
∫

E(x|z1, z−1)f−1(z−1)dz−1.

Hence,

E

{
y
f1(z1)f−1(z−1)

fz(z1, z−1)
|z1

}
= β′E

{
x

f1(z1)f−1(z−1)
fz(z1, z−1)

|z1

}
+ m1(z1).

Repeat this for each zj and then sum up across j to get

q∑
j=1

E

{
y
fj(zj)f−j(z−j)

fz(zj , z−j)
|zj

}

=
q∑

j=1

β′E
{

x
fj(zj)f−j(z−j)

fz(zj , z−j)
|zj

}
+ m1(z1)+, ...,+mq(zq).

Subtract this from y = x′β + m1(z1)+, ...,+mq(zq) + u to get

y −
q∑

j=1

E

{
y
fj(zj)f−j(z−j)

fz(zj , z−j)
|zj

}

=

⎡⎣x −
q∑

j=1

E

{
x

fj(zj)f−j(z−j)
fz(zj , z−j)

|zj

}⎤⎦′ β + u.

Replacing the densities and conditional means with kernel estimators, we get
a linear equation for β to which LSE can be applied. The resulting estima-
tor for β is

√
N -consistent and asymptotically normal with its asymptotic

variance analogous to that of the Robinson’s (1988) two-stage estimator for
semi-linear model. The idea of using the factor fj(zj)f−j(z−j)/fz(zj , z−j) is
owed to Kim et al. (1999).
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7 Transformation of Response Variables

For LDV’s, the regression functions are nonlinear even if the latent re-
sponse regression functions are linear. It would be nice if the linearity can
be restored somehow, as this would enable trying familiar linear-model tech-
niques. For some LDV models, transformed response models sometimes do
admit linear models, which is the topic of this section. The form of the trans-
formations may be unknown or known (up to some parameters, finite- or
infinite-dimensional).

7.1 Density-Weighted Response Approach

Lewbel (2000) presented innovative two-stage estimators that allow an
unknown error term distribution (including an unknown form of heteroskedas-
ticity) for binary response models. The estimators require one special con-
tinuous regressor w that is independent of the error term conditional on the
other regressors; the support of w should be large as well. The estimators
improve on similar, but less practical, estimators in Lewbel (1998). Although
the main motivation for the estimators is allowing for endogenous regres-
sors as will be seen in the next subsection (the estimators take familiar IVE
forms in this case), we examine binary response models with only exogenous
regressors in this subsection as a preparation for the endogeneity case.

7.1.1 Main Idea

Consider a binary response model with a “special” regressors w and the
other regressors x:

yi = 1[βwwi + x′iβ
o + uo

i > 0].

Suppose that the sign of βw is known to be positive—the sign can be easily
estimated as will be shown below. Normalizing the scale by dividing through
with βw yields

yi = 1[wi + x′iβ + ui > 0] where β ≡ βo

βw

and uo
i ≡ ui

βw

.

Denoting the conditional density and df of w|x as fw|x(w) and Fw|x(w),
respectively, assume

(i) E(xu) = 0 and u � w|x (i.e., Fu|w,x(u) = Fu|x(u))

(ii) the support of fw|x(w) is [Wl,Wh] that includes the support of −x′β−u
where −∞ ≤ Wl < 0 < Wh ≤ ∞;

to assure Wl < 0 < Wh, we may “de-mean” w so that E(w) = 0. Define

ỹ ≡ y − 1[w > 0]
fw|x(w)

and s(x, u) ≡ −x′β − u.
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In the following , we prove E(ỹ|x) = x′β: ỹ has a linear regression function,
although y does not. A remark on notations is needed before we proceed:
x in notations such as x′β and E(xx′) includes unity (i.e., the intercept is
estimated), but x in notations such as w|x does not.

Observe

E(ỹ|x) = E[ E{y − 1[w > 0]
fw|x(w)

|w, x} |x]

=
∫ Wh

Wl

E{y − 1[w > 0]|w, x}
fw|x(w)

fw|x(w)dw

=
∫ Wh

Wl

E{1[w + x′β + u > 0] − 1[w > 0]|w, x}dw, canceling fw|x(w)

=
∫ Wh

Wl

∫
(1[w + x′β + u > 0] − 1[w > 0])dFu|xdw,

under Fu|w,x(u) = Fu|x(u)

=
∫ ∫ Wh

Wl

(1[w > s(x, u)] − 1[w > 0])dw · dFu|x.

The inner integrand depends on s(x, u): it is zero when s(x, u) = 0, and it is
also zero when s(x, u) = 0 except

1. if s(x, u) < 0, then the inner integrand is 1 when s(x, u) < w < 0

2. if s(x, u) > 0, then the inner integrand is −1 when 0 < w < s(x, u).

Thus

E(ỹ|x)

=
∫ {

1[s(x, u) < 0]
∫ 0

s(x,u)

1dw − 1[s(x, u) > 0]
∫ s(x,u)

0

dw

}
dFu|x

= −
∫

s(x, u)dFu|x = −
∫

(−x′β − u)dFu|x = x′β + E(u|x).

Hence, using integral, the regression function is pulled out of the indicator
function. This idea has its predecessor in Horowitz and Härdle (1996).

Multiply E(ỹ|x) = x′β + E(u|x) by x and take E(·) to get

E{E(xỹ|x)} = E(xx′)β + E{E(xu|x)}
=⇒ E(xỹ) = E(xx′)′β because E{E(xu|x)} = E(xu) = 0

=⇒ β = E−1(xx′) · E
{

x
y − 1[w > 0]

fw|x(w)

}
.

An estimator for β is its sample analog

bN =

(
1
N

∑
i

xix
′
i

)−1

· 1
N

∑
i

xi
yi − 1[wi > 0]

f̂w|xi
(wi)
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where f̂w|xi
(wi) =

f̂w,x(wi, xi)

f̂x(xi)

and f̂w,x(wi, xi) and f̂x(xi) are kernel estimators.
As for sgn(βw), recall yi = 1[βwwi + x′iβ

o + uo
i > 0]. For this model, we

get

E(y|w, x) = 1 − Fuo|x(−βww − x′βo)

=⇒ ∂E(y|w, x)
∂w

= βwfuo|x(−βww − x′βo).

Estimate ∂E(y|w, x)/∂w to find sgn(βw); better yet, estimate
E{∂E(y|w, x)/∂w} with an average derivative estimator. The sign of the
estimator is consistent for sgn(βw). The convergence rate should be faster
than

√
N because any consistent estimator τN for sgn(βw) should satisfy

P{τN = sgn(βw)} → 1, which implies P{Nν |τN − sgn(βw)| ≤ ε} → 1 for
any constant ν, ε > 0. Hence, sgn(βw) is as good as known as in some other
semiparametric estimators for binary responses.

7.1.2 Asymptotic Distribution

To find the asymptotic distribution of
√

N(bN −β), define ỹNi as ỹi with
its fw|x replaced by f̂w|x, and observe

bN =

(
1
N

∑
i

xix
′
i

)−1
1
N

∑
i

xi{ỹNi − (x′iβ − x′iβ)}

= β +

(
1
N

∑
i

xix
′
i

)−1
1
N

∑
i

xi(ỹNi − x′iβ).

Hence

√
N(bN − β) =

(
1
N

∑
i

xix
′
i

)−1
1√
N

∑
i

xi(ỹNi − x′iβ).

We just have to account for the first-stage estimation error f̂w|x − fw|x in
ỹNi.

Recall the CTfc correction term modified for this case:

E(ma′ |wi, xi)fw|xi
(wi) − E{E(ma′ |w, x)fw|x(w)|xi}

where m{f̂w|xi
(wi)} = xi(ỹNi − x′iβ).

Use this to get

1√
N

∑
i

xi(ỹNi − x′iβ) =
1√
N

∑
i

[
xi(ỹ − x′iβ)
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− xiE

{
y − 1[w > 0]

fw|x(w)2
|wi, xi

}
· fw|xi

(wi)

+ xiE

(
E

{
y − 1[w > 0]

fw|x(w)2
|w, x

}
fw|x(w) |xi

) ]
=

1√
N

∑
i

[
xi(ỹ − x′iβ) − xiE

{
y − 1[w > 0]

fw|x(w)
|wi, xi

}
+ xiE

{
y − 1[w > 0]

fw|x(w)
|xi

} ]
=

1√
N

∑
i

xi[(ỹ − x′iβ) − {E(ỹ|wi, xi) − E(ỹ|xi)}] ≡
1√
N

∑
i

ηi.

In η, the first term ỹ − x′iβ is for fw|x known. The correction term due to
f̂w|x is E(ỹ|wi, xi) − E(ỹ|xi) that appears with a negative sign because f̂w|x
appears in the denominator of ỹ. Hence

√
N(bN −β) is asymptotically normal

with the variance

E−1(xx′) · E(ηη′) · E−1(xx′)
where η = x[(ỹ − x′β) − {E(ỹ|w, x) − E(ỹ|x)}].

Recalling E(ỹ|x) = x′β + E(u|x), since E(u|x) eventually drops out
when x is multiplied to u (or we may simply adopt the stronger condition
E(u|x) = 0 instead of E(xu) = 0), we can take E(ỹ|x) = x′β, and this x′β
gets canceled by x′β in ỹ − x′β. That is, we can take η as x{ỹ − E(ỹ|w, x)}.
A nonparametric estimator is called for E(y|w, x), because

E(ỹ|w, x) =
E(y|w, x) − 1[w > 0]

fw|x(w)
.

7.1.3 Further Remarks

Suppose

wi = z′iγ + εi, where ε is a continuous rv with bounded support
and ε � z.

Regard z as x; here we use a more general “instrument” notation z so that this
remark can be applied to the endogenous x case in the next subsection. Let
ε̂ be the LSE residual. Also let ε̂+

i denote the smallest element of {ε̂1, ...ε̂N}
that is greater than ε̂i, and let ε̂−i denote the largest element of {ε̂1, ...ε̂N}
that is smaller than ε̂i. Define

ỹ∗i ≡ (yi − 1[wi > 0])
2/{(ε̂+

i − ε̂−i )N}
, where

2
(ε̂+

i − ε̂−i )N
is for fε(εi) � fw|zi

(wi).
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Lewbel (2000, p. 158) stated that

bN =

(
1
N

∑
i

xix
′
i

)−1
1
N

∑
i

ziỹ
∗
i

is consistent for β, without providing the asymptotic distribution of this
simpler alternative under the extra linear model assumption for w.

Maurin (2002) applied the Lewbel’s estimator to find the effect of parental
income on repeating the same grade in elementary school. Maurin used the
date of birth as the special regressor w. Khan and Lewbel (2007) extended
the binary response estimator to truncated or censored models, but the es-
timators are rather complicated. Also, the truncated estimator requires a
non-truncated auxiliary sample for (w, x) to estimate fw|x despite the trun-
cation.

The above binary-response estimator can be extended also to ordered
discrete response (ODR) models, as will be reviewed in the next subsection.
Anton et al. (2001) applied an inefficient ODR extension to a grouped un-
employment duration data where w is age. According to Stewart (2005) who
compared a couple of semiparametric estimators for ODR through a simu-
lation study (and two empirical analyses), the Lewbel’s estimator did not
perform well. The most obvious reason for this is f̂w|x in the denominator,
which can be close to zero to make ỹ too large.

7.2 Extensions of Density-Weighted Response Approach

The preceding subsection introduced Lewbel’s (2000) estimator for bi-
nary responses with exogenous regressors. As there are many other better-
performing semiparametric estimators, it is unlikely that the estimator gets
used for ordinary binary response models. In fact, the real motivation for the
estimator was dealing with endogenous regressors, which is examined in this
subsection. Also, extensions for ODR and panel binary-response models will
be studied in this subsection which draws partly on Lee, Huang and Kim
(2008).

7.2.1 Endogenous Regressors

For endogenous regressors with an instrument z, conditions (i) and (ii)
above should be replaced by

(i)′ E(zu) = 0 and (u, x) � w|z (i.e., Fu,x|w,z = Fu,x|z)

(ii)′ the support of fw|z(w) is [Wl,Wh]that includes the support of −x′β−
u where −∞ ≤ Wl < 0 < Wh ≤ ∞.

The same notations Wl and Wh as used in (ii) of the preceding subsection
are used here to avoid too many notations, although they refer to different
things. The condition x � w|z in (i)′ is a restrictive feature, which was not
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present in the preceding no endogeneity case. Magnac and Maurin (2007)
find that the support condition for w|z requires P (y = 1|w, x, z) to attain
both 0 and 1 as w varies for a.e. (x, z); they show that the restrictive support
condition can be weakened at the cost of a tail symmetry-type assumption
that is more plausible. A remark on notations is that z in E(zz′) and E(xz′)
includes unity while z in notations such as w|z does not.

Let

ẙi ≡
yi − 1[wi > 0]

fw|zi
(wi)

and ẙNi ≡
yi − 1[wi > 0]

f̂w|zi
(wi)

and observe

E(ẙ|z) = E

[
E

{
y − 1[w > 0]

fw|z(w)
|w, z

}
|z
]

=
∫ Wh

Wl

E{y − 1[w > 0]|w, z}
fw|z(w)

fw|z(w)dw

=
∫ Wh

Wl

E{1[w + x′β + u > 0] − 1[w > 0]|w, z}dw, canceling fw|z(w)

=
∫ Wh

Wl

∫
(1[w + x′β + u > 0] − 1[w > 0])dFu,x|zdw,

under u,x|w,z = Fu,x|z

=
∫ ∫ Wh

Wl

(1[w > −x′β − u] − 1[w > 0])dw · dFu,x|z

= −
∫

(−x′β − u)dFu,x|z = E(x′|z)β + E(u|z).

Multiply E(ẙ|z) = E(x′|z)β + E(u|z) by E(xz′)E−1(zz′)z and take E(·) to
get

E(xz′)E−1(zz′)E(zẙ) = E(xz′)E−1(zz′)E(zx′)β

=⇒ β = M · E
{

z
y − 1[w > 0]

fw|z(w)

}
where

M ≡ {E(xz′)E−1(zz′)E(zx′)}−1E(xz′)E−1(zz′).

Instead of E(xz′)E−1(zz′)z, the GMM version would use E(xz′)E−1

{zz′(ẙ − x′β)2}z.
Let bive denote the sample version. The main term for the asymptotic

variance is
1√
N

∑
i

zi(ẙNi − x′iβ).

Recall the CTfc correction term modified for this case:

E(ma′ |wi, zi)fw|zi
(wi) − E{E(ma′ |w, z)fw|z(w)|zi}
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where m{f̂w|zi
(wi)} = zi(ẙNi − x′iβ).

Use this to get

1√
N

∑
i

zi(ẙNi − x′iβ) =
1√
N

∑
i

[
zi(ẙ − x′iβ)

−ziE

{
y − 1[w > 0]

fw|z(w)2
|wi, zi

}
fw|zi

(wi)

+ziE

(
E

{
y − 1[w > 0]

fw|z(w)2
|w, z

}
fw|z(w) |zi

) ]

=
1√
N

∑
i

[
zi(ẙ − x′iβ) − ziE

{
y − 1[w > 0]

fw|z(w)
|wi, zi

}

+ziE

{
y − 1[w > 0]

fw|z(w)
|zi

} ]

=
1√
N

∑
i

zi[(ẙ − x′iβ) − {E(ẙ|wi, zi) − E(ẙ|zi)}] ≡
1√
N

∑
i

ζi.

Differently from no endogeneity case, ẙ − {E(ẙ|wi, zi) cannot be taken as ζ
because E(ẙ|z) = x′β.

With ζ derived,
√

N(bive − β) is asymptotically normal with variance

M · E(ζζ ′) · M , where ζ = z[(ẙ − x′β) − {E(ẙ|w, z) − E(ẙ|z)}]
and E(ζ) = 0.

Observe

E(ẙ|w, z) =
E(y|w, z) − 1[w > 0]

fw|z(w)
and E(ẙ|z) = E(x′|z)β + E(u|z).

Hence, estimating E(ẙ|w, x) needs a nonparametric estimator
for E(y|w, z), and estimating E(ẙ|z) needs a nonparametric estimator for
E(x|z)—here x includes unity.

The two-stage IVE-type estimator for binary response with endogenous
regressors includes the two-stage LSE type estimator as a special case when
z = x. Lewbel (2000, p. 156) defined, in essence, q = zẙ + zE(ẙ|z) −
zE(ẙ|w, z). Then Lewbel (2000, p. 157) introduced q−zx′β which is the same
as ζ. Our derivation shows better that −E(ẙ|w, z) + E(ẙ|z) is the correction
term, whereas ẙ − x′β is the error term with the nuisance parameter fw|z
known.

As mentioned above, (u, x) � w|z is restrictive because this requires w
to be independent of x, whereas the no-endogeneity case condition u � w|x
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has no such restriction. There is a way to avoid (u, x) � w|z at the cost of
“aggravating” the dimension problem: assume instead

u � w|(x, z)

which is a more natural extension of u � w|x. As both x and z are in the
conditioning set, the dimension problem gets worsened.

Define

y̌ ≡ y − 1[w > 0]
fw|x,z(w)

and observe

E(y̌|x, z) = E

[
E

{
y − 1[w > 0]

fw|x,z(w)
|w, x, z

}
|x, z

]

=
∫ Wh

Wl

E{y − 1[w > 0]|w, x, z}
fw|x,z(w)

fw|x,z(w)dw

=
∫ Wh

Wl

E{1[w + x′β + u > 0] − 1[w > 0]|w, x, z}dw,

canceling fw|x,z(w)

=
∫ Wh

Wl

∫
(1[w + x′β + u > 0] − 1[w > 0])dFu|x,zdw,

as Fu|w,x,z = Fu|x,z

=
∫ ∫ Wh

Wl

(1[w > −x′β − u] − 1[w > 0])dw · dFu|x,z

= −
∫

(−x′β − u)dFu|x,z = x′β + E(u|x, z).

Multiply E(y̌|x, z) = x′β + E(u|x, z) by E(xz′)E−1(zz′)z and take E(·) to
get

E(xz′)E−1(zz′)E(zy̌) = E(xz′)E−1(zz′)E(zx′)β

=⇒ β = M · E
{

z
y − 1[w > 0]

fw|x,z(w)

}
.

Again, the GMM version may be used instead.

7.2.2 Ordered Discrete Response

Consider an ODR model

yi =
R−1∑
r=1

1[wi + x′iβ + ui ≥ γr].
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Let xi = (1, x̃′i)
′ and β = (β1, β̃

′
)′, and rewrite the ODR as a sum of binary

response models:

yi =
R−1∑
r=1

yri = 1[yi ≥ 1] + 1[yi ≥ 2]+, ...,+1[yi ≥ R − 1] where

yri ≡ 1[yi ≥ r] = 1[wi + x′iβ + ui ≥ γr]
= 1[β1 − γr + wi + x̃′iβ̃ + ui ≥ 0].

Recall M ≡ {E(xz′)E−1(zz′)E(zx′)}−1E(xz′)E−1(zz′) in the preceding
subsection. With M = (M ′

1, M̃
′)′ where M1 is the first row of M and M̃ is

the remaining rows, it holds under (i)′ and (ii)′ that, for each binary yr,

β1 − γr = M1E

(
z
yr − 1[w > 0]

fw|z

)
, r = 1, ..., R − 1,

β̃ = M̃ · E
(

z
yr − 1[w > 0]

fw|z

)
, r = 1, ..., R − 1.

Since the same β̃ satisfies the second condition for all r, Lewbel (2000, p.
161) suggested to use the unweighted average across r:

β̃ = M̃ · E
(

z
(R − 1)−1

∑R−1
r=1 yr − 1[w > 0]
fw|z

)

for ODR. But, not just (R− 1)−1
∑R−1

r=1 yr, but any combination
∑R−1

r=1 ωryr

with
∑R−1

r=1 ωr = 1 can be used. The efficient combination can be found using
the minimum distance estimator (MDE) as follows.

For instance, with R = 3 for three-category ODR and k̃ = dim(β̃), Lee
(2002, p. 94) showed (with modified notations)⎡⎢⎢⎣

ψ11

ψ1s

ψ21

ψ2s

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0
0 0 Ik̃

0 1 0
0 0 Ik̃

⎤⎥⎥⎦
⎡⎣ β1 − γ1

β1 − γ2

β̃

⎤⎦
where the left-hand side is the “RF” parameters: ψ1 ≡ (ψ11, ψ

′
1s)
′ for y1i and

ψ2 ≡ (ψ21, ψ
′
2s)
′ for y2i such that ψ11 and ψ21 are the intercepts and ψ1s and

ψ2s are the slopes. Defining the middle matrix as C, the efficient MDE for
the right-hand side “SF” parameter Γ ≡ (β1 −γ1, β1 −γ2, β̃

′
)′ is obtained by

minimizing
{(ψ̂′1, ψ̂

′
2)
′ − CΓ}′Ω−1

N {(ψ̂′1, ψ̂
′
2)
′ − CΓ}

wrt Γ where ψ̂1 and ψ̂2 are the RF estimates and ΩN is their asymptotic
variance estimator. The resulting efficient MDE is

Γ̂ = (C ′Ω−1
N C)−1C ′Ω−1

N (ψ̂
′
1, ψ̂

′
2)
′ with
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√
N(Γ̂ − Γ) � N{0, (CΩ−1C)−1}, where ΩN →p Ω.

To obtain ΩN , we need influence functions for (ψ̂
′
1, ψ̂

′
2)
′. Define ẙji as

the transformed response for yji, j = 1, 2, and define

ζji = zi [̊yji − x′iβ − {E(ẙj |wi, zi) − E(ẙj |zi)}], j = 1, 2.

Let ζ̂ji be an estimator for ζji. Then an estimator of the influence function
for ψ̂j is

ξ̂ji = MN ζ̂, j = 1, 2 where MN is a sample analog for M so that

ψ̂j =
1√
N

∑
i

ξ̂ji.

Then ΩN = N−1
∑

i(ξ
′
1i, ξ

′
2i)
′(ξ′1i, ξ

′
2i). The Lewbel’s unweighted average

amounts to replacing ΩN in the MDE with IN , which yields an inefficient
MDE using the SF-RF restrictions

β1 − γ1 = ψ11, β1 − γ2 = ψ21, and β̃ =
ψ1s + ψ2s

2
.

The last equation is the unweighted simple average of ψ1s and ψ2s.

7.2.3 Panel Binary Response*

Honoré and Lewbel (2002) extended the binary response estimator to
panel binary response models:

yit = 1[wit + x′itβ + vit > 0], vit = δi + uit, t = 0, 1

where δi is a time-constant error that may be related to xit. Let zi be an
instrument vector; zi would consist of “predetermined” regressor up to pe-
riod 0, where a “predetermined” regressor ζis is orthogonal to vit ∀s ≤ t.
Assume

(i)′′ E(uitzi) = 0, t = 0, 1and vit � wit|(xit, zi) (i.e., Fvit|wit,xit,zi
=

Fvit|xit,zi
)

(ii)′′ the support of fwit|xit,zi
(w)is [Wlt,Wht] that includes the support

of−x′itβ − vit where −∞ ≤ Wlt < 0 < Wht ≤ ∞;

These assumptions do not require xit to be “strictly exogenous” where a
“strictly exogenous” regressor ζis is orthogonal to vit ∀s, t. Although we
use time-constant zi, time-variant zit can be accommodated as can be seen
shortly. The assumption vit � wit|(xit, zi) is of “dimension-aggravating but
more intuitive” type; instead of this, (vit, xit) � wit|zi may be adopted as
in the cross-section case, which is easier on the dimension problem but less
plausible.
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Define

ỹit ≡
yit − 1[wit > 0]
fwit|xit,zi

(wit)
and ỹNit ≡

yit − 1[wit > 0]

f̂wit|xit,zi
(wit)

.

Doing analogously to what was done for the cross-section case, it can be
shown that

E(ỹit|xit, zi) = x′itβ + E(δi + uit|xit, zi).

Multiply this by zi and take E(·) to get

E{E(ziỹit|xit, zi)} = E(zix
′
it)β + E{E(ziδi + ziuit|xit, zi)}

=⇒ E(ziỹit) = E(zix
′
it)β + E(ziδi), for E(ziuit) = 0.

Define Δỹi ≡ ỹi1 − ỹi0 and Δxi ≡ xi1 − xi0. Take the first-difference to
get

E(ziΔỹi) = E(ziΔx′i)β.

Multiply this by E(Δx′izi)E−1(ziz
′
i) to obtain

β ≡ [E(Δx′izi)E−1(ziz
′
i)E(ziΔx′i)]

−1 · E(Δx′izi)E−1(ziz
′
i)E(ziΔỹi).

Since E(ziδi) is removed in the first differencing, this reveals that E(ziuit)
does not have to be zero: what is needed is only a moment stationarity type
assumption

E(ziui1) = E(ziui0).

Components of endogenous regressors can be used so long as they meet this
condition.

As for the asymptotic variance, it again takes the form QE(νν′)Q where
Q is the matrix before E(ziΔỹi) in the above β-equation and ν is the sum-
mand of the last expression in the following display:

1√
N

∑
i

(ziΔỹNi − ziΔx′iβ) =
1√
N

∑
i

[
zi

(
yi1 − 1[wi1 > 0]
fwi1|xi1,zi

(wi1)

− yi0 − 1[wi0 > 0]
fwi0|xi0,zi

(wi0)
− Δx′iβ

)
− ziE

{
yi1 − 1[wi1 > 0]
fwi1|xi1,zi

(wi1)
|wi1, xi1,zi

}
+ ziE

(
E

{
yi1 − 1[wi1 > 0]
fwi1|xi1,zi

(wi1)

|wi1, xi1,zi

}
|xi1, zi

)
+ ziE

{
yi0 − 1[wi0 > 0]
fwi0|xi0,zi

(wi0)
|wi0, xi0,zi

}
+ ziE

(
E

{
yi0 − 1[wi0 > 0]
fwi0|xi0,zi

(wi0)

|wi0, xi0,zi

}
|xi0, zi)

]
=

1√
N

∑
i

zi[(Δỹi − Δx′iβ) − {E(ỹi1|wi1, xi1, zi) − E(ỹi1|xi1, zi)}

+ {E(ỹi0|wi0, xi0, zi) − E(ỹi0|xi0, zi)}].
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Suppose z is time-variant. This generalization is helpful as many instru-
ments in panel data are time-specific; i.e., we have zit instead of zi. Then we
would get

ỹit ≡
yit − 1[wit > 0]
fwit|xit,zit

(wit)
and E(zitỹit) = E(zitx

′
it)β + E(zitδi + zituit).

First-differencing yields

E{Δ(ziỹi)} = E{Δ(zix
′
i)}β under E(δiΔzi) = 0 and E{Δ(ziui)} = 0.

The first equation can be inverted after being multiplied by a conformable
matrix. What is interesting is the sufficient moment-stationarity-type condi-
tions

E(δizi1) = E(δizi0) and E(ui1zi1) = E(ui0zi0).

Essentially, the first equation is the extra condition needed by allowing for
time-variant instruments.

7.3 Unknown Transformation of Response*

Horowitz (1996) considered an unknown transformation-of-response
model:

Λ(y) = x′β + u, Λ(t) is unknown, strictly increasing with its
inverse Λ−1

Λ(y0) = 0 for some y0, u � x, u ∼ F , y|x′β ∼ G(·|x′β)

where F and G are df’s with densities f and g, xk|x−k has a density function
for all x−k ≡ (x1, ..., xk−1)′, and βk is either −1 or 1, and there is no intercept
in x′β as the intercept is not separately identified from the unknown Λ. Let
λ(t) ≡ dΛ(t)/dt.

To understand these and the condition Λ(y0) = 0, suppose that the
initial model is

Λo(y) = β0 + x′−kβ−k + xkβk + u

=⇒ Λo(y) − β0 = x′−kβ−k + xkβk + u

=⇒ Λ1(y) = x′−kβ−k + xkβk + u

defining Λ1(y) ≡ Λo(y) − β0 (Λ1(y0) = 0 with y0 ≡ Λo−1(β0))

=⇒ Λ1(y)
|βk|

= x′−k

β−k

|βk|
+ xksgn(βk) +

u

|βk|
dividing by |βk| assumed to be non-zero;

let Λ(y) ≡ Λ1(y)/|βk|. The step of removing β0 is a location normalization
and the step dividing by |βk| is a scale normalization. Since sgn(βk) can be
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estimated at a rate faster than
√

N , we can assume that sgn(βk) is known
as far as the asymptotic distribution of β−k is concerned.

For any yo and zo,

G(yo|zo) = P (y ≤ yo|x′β = zo) = P{Λ(y) ≤ Λ(yo)|x′β = zo}
= P{u ≤ Λ(yo) − zo|x′β = zo} = F{Λ(yo) − zo}.

Differentiate the first and last expressions wrt yo and zo to get, respectively,

g(yo|zo) = λ(yo) · f{Λ(yo) − zo}
∂G(yo|zo)

∂zo
= −f{Λ(yo) − zo}

=⇒ λ(yo) = − g(yo|zo)
∂G(yo|zo)/∂zo

=⇒ Λ(t) = −
∫ t

y0

{
g(yo|zo)

∂G(yo|zo)/∂zo

}
dyo

(integrating both sides over [y0, t])

for any (yo, zo) with ∂G(yo|zo)/∂zo = 0. To simplify exposition, assume that
∂G(yo|zo)/∂zo = 0 holds ∀(zo, yo).

Given a
√

N -consistent estimator bN for (β′−k, sgn(βk))′—e.g., Han’s
(1987a) estimator—and a weighting function w(zo) such that

∫
w(zo)dzo = 1,

a nonparametric estimator for Λ(t) is

ΛN (t) ≡ −
∫ t

y0

∫
w(zo)

{
gN (yo|zo)

∂GN (yo|zo)/∂zo

}
dzodyo, where

gN (yo|zo) ≡ (N ·hyhz)−1
∑

i Kz{(x′ibN − zo)/hz}Ky{(yi − yo)/hy)}
(N ·hz)−1

∑
i Kz{(x′ibN − zo)/hz}

,

GN (yo|zo) ≡ (Nhz)−1
∑

i Kz{(x′ibN − zo)/hz}1[yi ≤ yo]
(Nhz)−1

∑
i Kz{(x′ibN − zo)/hz}

,

∂GN (yo|zo)/∂zo is obtained by a numerical derivative of GN (yo|zo) wrt zo,
Kz and Ky are univariate kernels, and hy and hz are bandwidths. Clearly,
gN (yo|zo) estimates g(yo|zo) by estimating the joint density with the nu-
merator and the marginal density with the denominator—a product ker-
nel is used for the numerator. Also GN (yo|zo) is a kernel estimator for
E(1[y ≤ yo]|x′β = zo).

Although the nonparametric estimators’ convergence rates are slower
than

√
N , the averaging across zo makes ΛN (t)

√
N -consistent. But Λ(t) may

not be bounded as y → ∞ and the denominator in ΛN (t) should be kept
away from zero, which makes the estimation possible only over a compact
proper subset, say [y, ȳ], of the support of y. It is also possible to estimate F√

N -consistently using the residual ûi ≡ ΛN (yi) − x′ibN . But this statement
should be also qualified, because Λ(t) is estimable only over [y, ȳ], which
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then restricts the estimability of F . See Horowitz (1996) for the asymptotic
distributions of

√
N{ΛN (t)−Λ(t)} and

√
N{FN (t)−F (t)} and more. Gørgens

and Horowitz (1999) extended Horowitz (1996) to censored models.

8 Nonparametric Specification and Significance Tests

Consider nonparametric regression equation y = E(y|x) + u with
E(u|x) = 0. For a parametric function r(x, β), β ∈ B with B being a param-
eter space, it is desired to test

H0 : P{E(y|x) = r(x, β)} = 1 for some β ∈ B

H1 : P{E(y|x) = r(x, b)} = 1 for any b = β, b ∈ B.

There are many tests for H0, all of which use at least r(x, bN ) where bN is a√
N -consistent estimator for β. Some bandwidth-free tests have been already

reviewed in the previous chapter, and here bandwidth-dependent tests are
reviewed. Test statistics in this section typically have nonparametric nuisance
parameters replaced by nonparametric estimators.

8.1 Omitted-Variable-Based LM-Type Tests

One simple way to test for H0 is examining COR{y − r(x, β),
E(y|x)}, because y − r(x, β) = u + E(y|x) − r(x′β) includes E(y|x) if H1

holds. That is, E(y|x) is an omitted variable under H1. Replacing ui and
E(y|xi), respectively, with ûi ≡ yi − r(xi, bN ) and EN (y|xi), a LM-type test
statistic with two nuisance parameters β and E(y|x) is

1√
N

∑
i

ûiEN (y|xi) =
1√
N

∑
i

{yi − r(xi, bN )}EN (y|xi)

=
1√
N

∑
i

uiEN (y|xi) +
1√
N

∑
i

EN (y|xi){E(y|xi) − r(xi, bN )}

as yi = E(y|xi) + ui.

Applying the mean value theorem to bN in r(xi, bN ), this becomes

1√
N

∑
i

uiEN (y|xi) +
1√
N

∑
i

EN (y|xi){E(y|xi) − r(xi, β)

−rb′(xi, b
∗
N )(bN − β)}

=
1√
N

∑
i

uiE(y|xi) +
1√
N

∑
i

EN (y|xi){E(y|xi) − r(xi, β)}

− 1
N

∑
i

E(y|xi)rb′(xi, β)
√

N(bN − β) + op(1),
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where b∗N ∈ (bN , β), rb ≡ ∂r/∂b and

1√
N

∑
i

uiEN (y|xi) =
1√
N

∑
i

uiE(y|xi) + op(1)

using CTE .
Let λi be an influence function for

√
N(bN − β):

√
N(bN − β) = N−1/2∑

i λi + op(1). Hence N−12
∑

i ûiEN (y|xi) is op(1) equal to

1√
N

∑
i

[uiE(y|xi) − E{E(y|x)rb′(x, β)}λi]

+
1√
N

∑
i

EN (y|xi){E(y|xi) − r(xi, β)}.

Under H0, the second term is zero, and thus the test can be easily imple-
mented as the first term has mean zero and is asymptotically normal with
the variance

C1 ≡ E2[uE(y|x) − E{E(y|x)rb′(x, β)}λ].

Denoting the sample version for this as C1N , a valid test statistic is

C
−1/2
1N

1√
N

∑
i

ûiEN (y|xi)� N(0, 1).

Under H1, the power of this test comes from N−1/2
∑

i EN (y|xi)
{E(y|xi) − r(xi, β)}. There is, however, no guarantee that this term is non-
zero despite E(y|x) − r(x, β) = 0 for some x. Shortly we will introduce a
number of ways to avoid this problem.

A test statistic analogous to N−1/2
∑

i ûiEN (y|xi) was in fact proposed
by Wooldridge (1992b, (3.4)) although its asymptotic distribution was derived
under homoskedasticity. Wooldridge (1992b, (2.8)) also looked at (recall ûi ≡
yi − r(xi, bN ))

√
Nm̂N =

1√
N

∑
i

ûi{EN (y|xi) − r(xi, bN )}.

It will be seen later that most nonparametric specification tests are based on
the differences

yi − r(xi, bN ) or EN (y|xi) − r(xi, bN ).

Using EN (y|xi)−r(xi, bN ) instead of EN (y|xi) looks like a fairly minor mod-
ification, but it will be shown that this is one of the ways to make the test
to have power in all directions.
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Hong and White (1995) also proposed a test using a version of m̂N . Let
m̈N be m̂N where series approximations is used for EN (y|x) with νN -many
basis functions. Then

σ̂−2
N N · m̈N − νN√

2νN
� N(0, 1) where σ̂2

N ≡ 1
N

∑
i

û2
i .

Another test (of LR-type) taking a similar form will appear later.
As for the asymptotic distribution of

√
Nm̂N , substitute

ûi ≡ yi − r(xi, bN ) = E(y|xi) + ui − r(xi, bN )

to rewrite
√

Nm̂N as

1√
N

∑
i

{ui + E(y|xi) − r(xi, bN )}{EN (y|xi) − r(xi, bN )}

=
1√
N

∑
i

ui{EN (y|xi) − r(xi, bN )} +
1√
N

∑
i

EN (y|xi){E(y|xi)

−r(xi, bN )}.

Apply the mean value theorem to bN in r(xi, bN ) to get

√
Nm̂N =

1√
N

∑
i

ui{EN (y|xi) − r(xi, β) − rb′(xi, b
∗
N )(bN − β)}

+
1√
N

∑
i

EN (y|xi){E(y|xi) − r(xi, β) − rb′(xi, b
∗
N )(bN − β)} + op(1).

The second term appeared in the preceding test, and it yields

1√
N

∑
i

EN (y|xi){E(y|xi) − r(xi, β)}

− 1
N

∑
i

E(y|xi)rb′(xi, β)
√

N(bN − β) + op(1).

As for the first term, it can be written as

1√
N

∑
i

ui{EN (y|xi) − r(xi, β)} − 1
N

∑
i

uirb′(xi, b
∗
N ) ·

√
N(bN − β)

in which the latter term is op(1) whereas the former term is (CTE is invoked)

1√
N

∑
i

ui{EN (y|xi) − r(xi, β)}=
1√
N

∑
i

ui{E(y|xi) − r(xi, β)} + op(1).

Hence
√

Nm̂N =
1√
N

∑
i

[ui{E(y|xi) − r(xi, β)} − E{E(y|x)rb′(x, β)}λi]
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+
1√
N

∑
i

EN (y|xi){E(y|xi) − r(xi, β)} + op(1).

The second term is zero under Ho, and the first term is asymptotically
normal with variance

C2 ≡ E2[u{E(y|x) − r(x, β)} − E{E(y|x)rb′ (x, β)}λ]

and a sample version C2N of this can be used to implement the test with

C
−1/2
2N

1√
N

∑
i

ûi{EN (y|xi) − rN (xi, bN )}� N(0, 1).

We may also drop the part E(y|x) − r(x, β) in C2 that is 0 under H0, but
this may make the test over-rejecting.

8.2 Wald-Type Tests with Parametric
and Nonparametric Fits

Gozalo (1993) proposed a Wald-type test comparing the parametric re-
gression function with a nonparametric one at a number of selected points of
x. Let E(y|x) = ρ(x), ρN (x) = EN (y|x), and

σN (x)2 ≡ AV [
√

Nhk{ρN (x) − ρ(x)}]

where “AV ” stands for asymptotic variance. Choose a number of points in
the range of x, say (x(1), ..., x(J)) to define

TN ≡ (T (1)
N , ..., T

(J)
N )′ where T

(j)
N ≡

√
Nhk{ρN (x(j)) − r(x(j), bN )}

σN (x(j))
.

Since r(x(j), bN ) →p r(x(j), β) under H0 at the rate
√

N while ρN (x(j))
→p ρ(x(j)) at the rate

√
Nhk, estimating β with bN is innocuous. Hence,

under H0,

T
(j)
N =

√
Nhk{ρN (x(j)) − r(x(j), β)}

σN (x(j))
+ op(1)� N(0, 1).

Using the asymptotic independence among ρN (x(j)), j = 1, ..., J , we get
under H0

J∑
j=1

{T (j)
N }2 � χ2

J .

This test is also applicable to omitted variable tests. Suppose that z may
be omitted in a null model y = E(y|x) + u. Then EN (y|x, z) − EN (y|x) can
be used to test the possible omission. The convergence rate of EN (y|x) →p

E(y|x) is faster than that of EN (y|x, z) →p E(y|x, z), because the latter has
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more regressors. That is, for the test, E(y|z) is as good as known. In this and
above tests, a disadvantage is selecting the J evaluation points. Since the dof
is J , selecting points where H0 holds decreases the power of the test. While
this may be overcome one way or another, the better way is integrating
over the entire range of x as below. Of course, rather than selecting some
evaluation points, one can always plot the test statistic vs. evaluation points
to visually detect the set of x on which H0 is violated.

Instead of selecting evaluation points, Härdle and Mammen (1993) pro-
posed to use a weighted integrated quadratic difference between the para-
metric and nonparametric regression functions:

HN ≡ Nhk/2

∫
[ρN (x) − τ{r(x, bN )}]2ω(x)dx

where ω(x) is a weighting function and

τ{g(x)} ≡
∑

i K((xi − x)/h)g(xi)∑
i K((xi − x)/h)

.

The purpose of τ(·) is to center ρN (x) properly under H0; this also appears
in Staniswalis and Severini (1991).

Härdle and Mammen (1993) showed

Nhk/2

∫
[ρN (x) − τ{r(x, bN )}]2ω(x)dx

− K(2)(0)
hk/2

∫
σ(x)2ω(x)

f(x)
dx

� N{0, 2K(4)(0)
∫

σ(x)4ω(x)2

f(x)2
dx} under H0.

where K(j) denotes the j-time convolution product of K and σ2(x) = V (u|x).
Härdle and Mammen (1993), however, do not recommend using this asymp-
totic distribution which depends on a stochastic expansion with Op(N−1/10)
error terms; rather, they recommend wild bootstrap. Horowitz and Spokoiny
(2001) applied this test with multiple bandwidths, and then proposed to use
the maximum of the resulting test statistics. The critical value for this test
is to be found with a bootstrap as well.

The wild bootstrap for Härdle and Mammen (1993) is done essentially
in the same way as the wild bootstrap described in the preceding chapter
for Stute test. Consider HN using the observation points as the evaluation
points:

HN ≡ Nhk/2 1
N

∑
i

[ρN (xi) − τ{r(xi, bN )}]2.

First, obtain the residual ûi ≡ yi − r(xi, bN ) and then HN . Second, draw
a random sample v∗i , i = 1, . . . , N , such that v∗ takes ±1 with proba-
bility 0.5. Third, construct a pseudo-sample (y∗i , xi), i = 1, . . . , N where
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y∗i = r(xi, bN ) + v∗i ûi. Fourth, obtain H∗
N using the pseudo-sample and b∗N

that is based on (x′i, y
∗
i ), i = 1, . . . , N . Fifth, denoting the number of boot-

strap replications as B, construct the empirical distribution using the B-many
H∗

N ’s. Finally, see whether HN falls in the upper tail of the empirical distri-
bution to reject the H0 if yes. Clearly, the multiplicative factor Nhk/2 can
be omitted for this bootstrap

Recall ûi = yi − r(xi, bN ). Zheng (1996) proposed a test with

TN ≡ 1
N(N − 1)

N∑
i=1

∑
j �=i

1
hk

K

(
xj − xi

h

)
ûiûj

=
1
N

N∑
i=1

ûi

⎧⎨⎩ 1
N − 1

∑
j �=i

1
hk

K

(
xj − xi

h

)
ûj

⎫⎬⎭ .

Defining u ≡ y − r(x, β), TN may be taken as a sample analog for the first
term in

E{uE(u|x)} = E[ E{uE(u|x)|x} ] = E{E2(u|x)}
because the average with

∑
j �=i is for E(u|xi), and the outer average with

∑
i

is for the outer expected value for uE(u|x).
Another way to look at the test comes from E{E2(u|x)} in the last dis-

play. Smoothing (i.e., taking EN (·|xi) on) ûi = yi−r(xi, bN ) gives EN (y|xi)−
EN{r(x, bN )|xi}. Squaring this renders the above test of Härdle and Mam-
men (1993) where the integral wrt ω(x)dx gets replaced by the integral wrt
the empirical x-distribution. This is why the Zheng (1996) test is presented
here although it is not exactly a Wald-type test. Zheng (1998) proposed an
analogous test for quantile function specification.

It holds that

Nhk/2TN � N(0, V ), V ≡ 2
∫

K(t)2dt

∫
σ4(x)f(x)2dx,

2
N(N − 1)

N∑
i=1

∑
j �=i

1
hk

K

(
xi − xj

h

)2

û2
i û

2
j ≡ VN →p V.

Hence, dividing Nhk/2TN by V
1/2
N , we get

Nhk/2TN

V
1/2
N

� N(0, 1).

Li and Wang (1998) proposed to use wild bootstrap for Zheng (1996) test
instead of the asymptotic distribution. First, let u∗i = viûi, i = 1, ..., N , where
vi’s are iid with E(v) = 0 and SD(v) = 1 independently of (x, y). Second,
obtain y∗i ≡ r(xi, bN ) + u∗i and the bootstrap residual û∗i ≡ y∗i − r(xi, b

∗
N )

where b∗N is based on the bootstrap sample (xi, y
∗
i ), i = 1, ..., N . Third,
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compute T
(m)
N which is TN with ûi replaced with û∗i . Repeat these steps M

times to get T
(1)
N , ..., T

(M)
N and their empirical distribution. Finally, locate

where TN stands in the distribution of T
(1)
N , ..., T

(M)
N ; i.e., find M−1{#|T (m)

N |
greater than |TN |} which is the p-value of TN to reject H0 if the p-value is
smaller than, say, 5%. In our experience, this bootstrap test is much more
powerful than the above test using the asymptotic distribution. Miles and
Mora (2003) did a comparison study of various nonparametric specification
tests, and found that a modified version of the Zheng’s (1996) test in Ellison
and Ellison (2000) performed well.

8.3 LR-Type Tests

Yatchew (1992) proposed to use

m̃N ≡ 1
N

∑
i

{yi − r(xi, bN )}2 − 1
N

∑
i

{yi − EN (y|xi)}2

which is a LR-type test in that the objective function difference is involved.
Yatchew (1992) required sample splitting to derive the asymptotic variance.
Instead of looking at the difference EN (y|x) − r(x, bN ), this test measures
the difference between the two regression function estimators using the ob-
jective functions, which is the idea behind LR test. Similar LR-type tests
also appeared in Whang and Andrews (1993). Dette (1999) does away with
sample splitting, but assumes fixed regressors. One may think that m̃N may
never take a negative value because EN (y|xi) would be a better predictor
than r(xi, bN ) for all yi. But under H0, r(xi, bN ) with H0 built in is a better
predictor, which means that m̃N can be negative as well as positive under
H0.

Hong and White (1995) also used a LR-type test. Under homoskedastic-
ity with no sample splitting, they showed that, with νN being the number of
basis functions in their series approximation for E(y|x),

σ̂−2
N N · m̃N − νN√

2νN
� N(0, 1) where σ̂2

N ≡ 1
N

∑
i

û2
i .

This is reminiscent of the LM-type test of Hong and White (1995) that ap-
peared already.

Azzalini et al. (1989) proposed LR-type test statistics. Suppose that H0

specifies a parametric regression function r(x, β), and there may be some
other parameters θ in the model. Let β̂ and θ̂ be estimators for β and θ, and
let EN (y|x) be a nonparametric estimator for E(y|x). Then one can construct
a “generalized” LR-type test statistic∑

i

ln f{EN (y|xi); θ̂} −
∑

i

ln f{r(xi, β̂); θ̂}.

A natural question is if the asymptotic distribution is χ2, and if yes, what
would be its dof. This is a difficult question because a nonparametric E(y|x)
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has infinite dimension. Azzalini et al. (1989) could not answer this question,
but suggested to do parametric bootstrap from f{r(xi, β̂); θ̂}. Staniswalis and
Severini (1991) also proposed two tests comparing the likelihood functions
with the regression function parametrically estimated under H0 and non-
parametrically estimated under H1 using the method in Staniswalis (1989).
The comparisons were made at fixed m-many points. They also considered
letting m → ∞ as N → ∞.

In parametric cases, the asymptotic distribution of LR test statistics are
not affected by the fact that the parameters are replaced by estimators. Fan et
al. (2001) called this “Wilks phenomenon” and looked at the generalized LR
dof question. In a number of models they examined, it was found that, using
local linear regression, the asymptotic null distribution of the generalized
LR-type test statistic is nearly χ2 with a large dof in the sense that

rLR� χ2
cN

where r � 2 and cN → ∞; i.e.,
rLR − cN√

2cN
� N(0, 1).

See Fan and Jiang (2007) for a review on generalized LR tests. Note the
similarity of this display to the above test of Hong and White (1995).

As shown in Zheng (1996), Yatchew’s (1992) test is closely linked to a
test in Wooldridge (1992b). Yatchew’s (1992) test is based on the difference

1
N

∑
i

[{yi − r(xi, bN )}2 − {yi − EN (y|xi)}2]

=
1
N

∑
i

[r(xi, bN )2 − EN (y|xi)2 − 2yi{r(xi, bN ) − EN (y|xi)}]

=
1
N

∑
i

{r(xi, bN ) − EN (y|xi)}{r(xi, bN ) + EN (y|xi) − 2yi}

=
1
N

∑
i

{r(xi, bN ) − EN (y|xi)}{r(xi, bN ) − yi + EN (y|xi) − yi}

=
1
N

∑
i

{EN (y|xi) − r(xi, bN )}{yi − r(xi, bN )}

+
1
N

∑
i

{EN (y|xi) − r(xi, bN )}{yi − EN (y|xi)}.

Intuitively, the second term in the last expression is op(1) under both H0

and H1, and the first term is proportional to the test statistic N−1/2
∑

i ûi

{EN (y|xi) − r(xi, bN )} in Wooldridge (1992b) as shown already. It is likely
that other LR-type tests have equivalent LM-type versions. This display
shows that the Wooldridge test would have power in all directions because the
Yatchew test statistic is asymptotically non-negative under Ha as EN (y|xi)
does better than r(xi, bN ) in predicting yi.

When x is a rv (i.e., k = 1), to test the equality of two regression func-
tions in two samples, Yatchew (1999) proposed to use the difference estimator
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in Yatchew (1997) explained in the preceding chapter. The idea is similar to
the ANOVA approach where the error term variance is estimated separately
using the difference estimator in Yatchew (1997) for each sample and then for
the pooled sample. The former gives an unrestricted estimator whereas the
latter gives a restricted estimator. Define (the following exposition is drawn
from Yatchew et al. (2003))

s2
ur ≡ N0

N
s2
0 +

N1

N
s2
1, where s2

j ≡ 1
2Nj

Nj∑
i=2

(yj
i − yj

i−1)
2, j = 0, 1

and yj
i denote the ith observation in sample j; the observations within each

sample are ordered in terms of x. Define s2
r analogously to s2

j for the pooled
(and thus reordered) sample. Then, as stated in Yatchew et al. (2003),

√
N(s2

r−
s2

ur)/s2
ur � N(0, 1).

8.4 Model-Selection-Based Tests*

In lack-of-fit or goodness-of-fit (GOF) tests—the former typically used
for regression function and the latter for distribution—there is a null model,
and we try to see if the null model is not rejected by the data at hand.
This is done sometimes with an alternative in mind and sometimes without.
Either way, the null model is given a favor, as the test procedure is designed
such that rejecting the null model is difficult. In “model selection,” there is no
favored model. Instead, all models under considerations are evaluated using a
model selection criterion and the model with the best score in the criterion is
selected. Also, differently from hypothesis testing, no probability of rejecting
the right/wrong model is provided.

Two best known model selection criteria are

1. AIC (Akaike Information Criterion): 2LN (θ) − 2 · dim(θ)

2. BIC (Bayesian Information Criterion): 2LN (θ) − ln(N) · dim(θ)

where LN (θ) is a log-likelihood function for the sample and θ is the model
parameters. So long as ln(N) > 2, BIC penalizes “over-fitting” more severely
than AIC does. Although model selection differs from goodness-of-fit tests
as just noted, Aerts et al. (1999) proposed a goodness-of-fit test using AIC.
This is explained in the following, drawing on Claeskens and Hjort (2008)
who review the related literature and model selection.

Let x be a rv and mβ(x) a parametric function of x indexed by a k × 1
vector β. Consider a sequence of nested regression function models:

m(x;J) = mβ(x) +
J∑

j=1

γjψj(x), J = 1, 2, ...

where ψj(x), j = 1, 2, ..., J , are (orthonormal) functions that exclude mβ(x).
In m(x;J), there are k + J parameters, and define

AIC(J) ≡ 2LN (β̂, γ̂1, ..., γ̂J) − 2(k + J)
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A(J) ≡ AIC(J) − AIC(0)

= 2{LN (β̂, γ̂1, ..., γ̂J ) − LN (β̂, 0, ..., 0)} − 2J.

Observe A(0) = 0. A(J) is a centered version of AIC(J) and includes the LR
test statistic for H0 : γ1 =, ... = γJ = 0. Using this fact yields a specification
test for the null model as shown next.

The model order J is selected by maximizing AIC(J) wrt J , equivalently,
maximizing A(J) wrt J . The null model is rejected when

max
J≥1

A(J) > 0 ⇐⇒ max
J≥1

[2{LN (β̂, γ̂1, ..., γ̂J ) − LN (β̂, 0, ..., 0)}

−2J ] > 0

⇐⇒ MN > 2 where MN ≡ max
J≥1

LN (β̂, γ̂1, ..., γ̂J) − LN (β̂, 0, ..., 0)
J

.

As one may conjecture, because the LR test follows χ2
J asymptotically, it

holds that

MN �M ≡ max
J≥1

∑J
j=1 z2

j

J
, where z2

j ’s are iid χ2
1.

The distribution of M can be simulated, but it holds that, with χ2
j

following Chi-Square distribution with dof j,

P (M ≤ m) ≡ exp

⎧⎨⎩−
∞∑

j=1

P (χ2
j > jm)
j

⎫⎬⎭ ;

this is a remarkable finding because MN has its parameters replaced by esti-
mators. Using this, if we follow the above test of rejecting H0 when MN > 2,
we will get

P (MN > 2) → P (M > 2) = 0.288 under H0.

As this is unacceptably large, if 5% level is desired, change the critical value
to 4.179 to get P (MN > 4.179) → P (M > 4.179) = 0.05.

One drawback of this kind of tests is that, when x is multi-dimensional,
nesting the alternative sequence is rather restrictive. For instance, consider
mβ(β) = β0 + β1x1 + β2x2 and more general models

(i) β0 + β1x1 + β2x2 + β3x
2
1, and (i)′β0 + β1x1 + β2x2 + β4x

2
2

(ii) β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2.

The nesting restriction holds either with {mβ(β), (i), (ii)} or
{mβ(β), (i)′, (ii)}, but both (i) and (ii) cannot be accommodated together.

The original idea of adding an extra term such as
∑

j γjψj(x) to the null
model to test for GOF goes back to Neyman’s smooth test ; see e.g., Bera and
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Ghosh (2001) for the original reference and the ensuing literature. For an iid
rv’s z1, ..., zN with its specified df F , the test checks if v1 ≡ F (z1), ..., vN ≡
F (zN ) are iid U [0, 1]. The test uses a generalized density on [0, 1]:

exp
{∑J

j=1 γjφj(v)
}

C(γ1, ..., γJ)
where φj ’s are orthornormal on [0, 1]

with
∫ 1

0

φj(t)dt = 0

and C(γ1, ..., γJ) is the normalizing constant.
∫ 1

0
φj(t)dt = 0 implies that φj

is orthogonal to the U [0, 1] density. Observe

C(γ1, ..., γJ) =
∫ 1

0

exp

⎧⎨⎩
J∑

j=1

γjφj(t)

⎫⎬⎭ dt (= 1 under H0)

=⇒ ∂C(0)
∂γj

=
∫ 1

0

φj(t)dt = 0.

The log-likelihood is
∑

i{
∑J

j=1 γjφj(vi)− ln C(γ1, ..., γJ)} and the score
function for γj under H0 is

∑
i φj(vi). Observe

E{φj(v)φj′(v)} =
∫ 1

0

φj(t)φj′(t)dt = 1 if j = j′ and 0 otherwise.

Using this, the score test statistic is

J∑
j=1

{
1√
N

N∑
i=1

φj(vi)

}2

� χ2
J .

The above model selection criterion-based test estimates γj ’s and uses the
LR test idea. Instead of LR, score-test versions exist that do not require
estimating γj ’s; see Aerts et al. (1999, 2000).

8.5 Single-Index Model Fitness Tests

Stute and Zhu (2005) proposed a GOF test for single-index models
(SIM). Suppose

y = G(x′β) + u with E(u|x) = E(u|x′β) = 0, β and G(·)
unknown, x′β has a continuous and strictly increasing df F .

Let F−1 denote the inverse, which is also the quantile function of F : F−1(α) ≡
min{t : F (t) ≥ α}. As F is continuous, vi ≡ F (x′iβ) ∼ U(0, 1). Define
ψ(·) ≡ G{F−1(·)} so that

y = G[F−1{F (x′β)}] + u = ψ(v) + u
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=⇒ E(y|x′β = vo) = ψ(vo) = E(y|v = vo).

An “infeasible” kernel estimator for ψ(vo) is

1
N

∑
j

1
h

K

(
vj − vo

h

)
yi, 0 < vo < 1.

There is no denominator because v’s density is 1 over 0 < vo < 1.
For some

√
N -consistent estimator bN for β, define

v̂j ≡ FN (x′jbN ) =
1
N

N∑
j′=1

1[x′j′bN ≤ x′jbN ].

A “feasible” kernel estimator for ψ(v̂i) is then

ψN (v̂i) ≡
1
N

∑
j �=i

1
h

K

(
v̂j − v̂i

h

)
yi.

For a weighting function wγ(xi) indexed by γ, consider a test statistic

TN (γ) ≡ 1√
N

∑
i

ûiwγ(xi) where ûi ≡ yi − ψN (v̂i).

As was seen in relation to the single-index “nonparametric LSE” of Ichimura
(1993), there is no effect of estimating ψ because ψ has been “concentrated
out.” There, the only consequence of estimating β in x′β was that the regres-
sor x−k = (x1, ..., xk−1)′ gets replaced by x−k−E(x−k|x′β) in the asymptotic
variance. Analogously, since wγ(xi) plays the role of x−k in TN (γ), we get

TN (γ) =
1√
N

∑
i

ui{wγ(xi) − E(wγ(xi)|vi)} + op(1) under H0

� N(0, E[u2{wγ(x) − E(wγ(x)|v)}2]).

The asymptotic variance can be estimated with

σ2
N ≡ 1

N

∑
i

û2
i {wγ(xi) − EN (wγ(xi)|v̂i)}2 where

EN (wγ(xi)|v̂i) ≡
1
N

∑
j �=i

1
h

K

(
v̂j − v̂i

h

)
wγ(xi).

A “directional” test with TN (γ) for the direction γ can be implemented with
this asymptotic distribution.

The index γ can be chosen for a high power if we know the direction to
which the H0 of SIM may be violated. But knowing such a direction a priori
is unlikely. In this case, we “cover” all directions to get an “omnibus test.”
Stute and Zhu (2005) used

wγ(xi) = exp(iγ′xi) = cos(γ′xi) + i sin(γ′xi)



522 Ch. 9 Bandwidth-Dependent Semiparametric Methods

=⇒ TN (γ) ≡ 1√
N

∑
i

ûi cos(γ′xi) + i
1√
N

∑
i

ûi sin(γ′xi).

Recall |t| ≡ (a2 + b2)1/2 for a complex number t = a + ib. From TN (γ), the
Kolmogorov-Smirnov (KS)-type test statistic is

TN ≡ sup
γ

|TN (γ)| = sup
γ

⎡⎣{ 1√
N

∑
i

ûi cos(γ′xi)

}2

+

{
1√
N

∑
i

ûi sin(γ′xi)

}2
⎤⎦1/2

.

Since the asymptotic distribution of TN is difficult to use, Stute and Zhu
(2005) recommended the following “simulation-based” procedure. Generate
iid ei’s with E(e) = 0 and SD(e) = 1 and compute

T
(r)
N ≡ sup

γ

∣∣∣∣∣ 1√
N

∑
i

eiûi{exp(iγ′xi) − EN (exp(iγ′xi)|v̂i)}
∣∣∣∣∣ .

Repeat this for r = 1, ..., R, and the upper 0.05th percentile can be used as
a critical value for TN .

In practice, because finding the supremum over γ can be cumbersome,
instead of the KS version, one may use the following Cramér-von-Mises-type
test with γ replaced by xj :

TN ≡ 1
N

∑
j

TN (xj)2 =
1
N

∑
j

⎡⎢⎣
⎧⎨⎩ 1√

N

∑
i�=j

ûi cos(x′jxi)

⎫⎬⎭
2

+

{
1√
N

∑
i

ûi sin(x′jxi)

}2
⎤⎦ .

For the simulation-based procedure, replace ûi with eiûi and do centering
with EN (exp(iγ′xi)|v̂i) as above.

In dealing with complex numbers, use exp(iγ′xi) = cos(γ′xi)+i sin(γ′xi)
and compute the real and imaginary parts separately; at the end, i disappears
in the absolute value. Specifically,

EN (exp(iγ′xi)|v̂i) =
1
N

∑
j �=i

1
h

K

(
v̂j − v̂i

h

)
cos(γ′xj)

+i
1
N

∑
j �=i

1
h

K

(
v̂j − v̂i

h

)
sin(γ′xj).

Thus

exp(iγ′xi) − EN (exp(iγ′xi)|v̂i) =
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⎧⎨⎩cos(γ′xi) −
1
N

∑
j �=i

1
h

K

(
v̂j − v̂i

h

)
cos(γ′xj)

⎫⎬⎭
+ i

⎧⎨⎩sin(γ′xi) −
1
N

∑
j �=i

1
h

K

(
v̂j − v̂i

h

)
sin(γ′xj)

⎫⎬⎭
and ∣∣∣∣∣ 1√

N

∑
i

eiûi{exp(iγ′xi) − EN (exp(iγ′xi)|v̂i)}
∣∣∣∣∣

=

⎛⎜⎝
⎡⎣ 1√

N

∑
i

eiûi{cos(γ′xi) −
1
N

∑
j �=i

1
h

K(
v̂j − v̂i

h
) cos(γ′xj)}

⎤⎦2

+

⎡⎣ 1√
N

∑
i

eiûi

⎧⎨⎩sin(γ′xi) −
1
N

∑
j �=i

1
h

K

(
v̂j − v̂i

h

)
sin(γ′xj)

⎫⎬⎭
⎤⎦2

⎞⎟⎠
1/2

.

Xia et al. (2004) also extended the Stute (1997) test to SIM using the
moment condition

E{(y − G(x′β))1[x ≤ γ]} = 0 ∀γ.

The resulting test statistic takes the almost the same form as T̂N except that
the residual is computed with yi − Ĝ(x′ibN ) where Ĝ is a kernel estimator of
y on x′bN . Not using the transformation ψ(t) ≡ G{F−1(t)}, however, leads
to a bias problem that cannot be easily dealt with, and the resulting test is
far more complicated than the above Stute and Zhu (2005) test.

While SIM is the null model in the above test, Horowitz and Härdle
(1994) considered SIM as an alternative model while G0(x′β) with a known
G0(·) is the null model. Their proposal is to compare G0(x′β̂) and Ĝ(x′β̂)
where β̂ is a

√
N -consistent estimator under H0 and Ĝ(x′β̂) is a kernel esti-

mator for the unknown G(·). The test statistic is

1√
N

∑
i

{yi − G0(x′iβ̂)}{Ĝ−i(x′iβ̂) − G0(x′iβ̂)}

where Ĝ−i(x′iβ̂) is the kernel estimator for x′iβ̂ leaving out the ith observation.
To see the idea, observe

E[{y − G0(x′β)}{G(x′β) − G0(x′β)}] = E( E[{y − G0(x′β)}

{G(x′β) − G0(x′β)}|x] )

= E( {G(x′β) − G0(x′β)} E[{y − G0(x′β)}|x] ) = 0 under
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H0 : E(y|x) = G0(x′β).

Other functions of x and y may be used instead of y − G0(x′β) so long as
the test statistic is centered at 0. But using y−G0(x′β) gives the test power,
because under H1 : P{x : E(y|x) = G0(x′β)} > 0

E[{y − G0(x′β)}{G(x′β) − G0(x′β)}] = E[{G(x′β) − G0(x′β)}2] > 0.

8.6 Nonparametric Significance Tests

So far we have discussed how to test a null model using nonparametric
techniques—nonparametric “GOF tests.” Another group of nonparametric
tests have appeared for regressor selection, i.e., to see whether some variables
are relevant or not among candidate regressors. In linear models, the test can
be done easily, but this may be misleading if the linear model is misspecified.
Tests examined in this subsection avoid this pitfall.

8.6.1 Two-bandwidth Tests

Fan and Li (1996) proposed a nonparametric test for

H0 : E(y|w, z) = E(y|w);

i.e., z is irrelevant under H0. The testing idea is similar to the one in Zheng’s
(1996) test. Let x ≡ (w′, z′) be a k × 1 vector (k = kw + kz), and let the
“null” error term be

ε ≡ y − E(y|w).

Then

E{εE(ε|x)} = E[ E{εE(ε|x)|x} ] = E{E2(ε|x)} = 0 iff H0 holds

because E(ε|x) = E(y|w, z)−E(y|w) = 0 for some x when H0 does not hold
. To avoid random denominators, Fan and Li (1996) used a density-weighted
moment condition

E[εfw(w) · E{εfw(w)|x} · fx(x)] = 0 iff H0 holds.

A sample version for the last display that is analogous to the Zheng’s
(1996) test is, defining ε̂i ≡ yi − EN (y|wi),

LN ≡ 1
N

N∑
i=1

⎧⎨⎩ε̂if̂w(wi)
1

(N − 1)hk

∑
j �=i

K

(
xj − xi

h

)
ε̂j f̂w(wj)

⎫⎬⎭ .

The part other than N−1
∑N

i=1 ε̂if̂w(wi) is for E{εfw(w)|x} · fx(x). With
σ2(x) ≡ V (y|x),

Nhk/2LN � N(0, 2σ2) where σ2 ≡ E{fx(x)σ4(x)fw(w)4}·
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∫
K2(t)dt;

σ2
N ≡ 1

N

N∑
i=1

{
ε̂2

i f̂w(wi)2
1

(N − 1)hk

∑
j �=i

K

(
xj − xi

h

)
ε̂2

j f̂w(wj)2
}

→p σ2.

In σ2
N , the part {(N−1)hk}−1

∑
j K((xi−xj)/h)ε̂2

j f̂w(wj)2 is for E{ε2fw(w)2|
x}fx(x).

Fan and Li (1996) also proposed a test when E(y|x) is semi-linear, say
E(y|x) = z′γ +θ(w), and when E(y|x) is of single index. All tests in Fan and
Li (1996) need at least two bandwidths, which may make the tests “unstable”
in practice; see, e.g., Kondo and Lee (2003). Recall that, in Zheng’s test
(1996), the null model is parametric, and thus only one bandwidth is needed.

Lavergne and Vuong (2000) proposed another test based on the same
moment condition as used in Fan and Li (1996). Their test statistic requires
quadruple sums, and thus the test is computationally very demanding:

(N − 4)!
N !

∑
4−distinct

1
hkw

w

L

(
wi − wi′

hw

)
1

hkw
w

L

(
wj − wj′

hw

)
1
hk

x

K

(
xi − xj

hx

)
(yi − yi′)(yj − yj′)

where the sum is over all four ordered distinct arrangements in {1, ..., N}.
Lavergne and Vuong (2000, p. 578) provided a decomposition of their test
statistic that shows how their test is related to Fan and Li’s (1996). The de-
composition also shows that their test statistic can be computed with triple
sums, instead of quadruple sums. The asymptotic distribution under the null
is the same as that of Fan and Li’s (1996) test. This means that the asymp-
totic variance can be computed as in Fan and Li (1996), but they propose
different estimators for the asymptotic variance, one of which is

2
N(N − 1)hk

N∑
i=1

∑
j �=i

K2

(
xi − xj

h

)
· ε̂2

i f̂w(wi)2 · ε̂2
j f̂w(wj)2.

This estimator is likely to behave better than the above σ2
N .

Ait-Sahalia et al. (2001) examined integrated (i.e. averaged) versions of
{EN (y|w, z) − EN (y|w)}2, which are analogous to Härdle and Mammen’s
(1993) test. As in most other papers, instead of using the “raw” difference
EN (y|w, z)−EN (y|w), they weighted the difference with an weighting func-
tion ω(w, z), and the empirical measure is used for the integration. That is,
the test statistic takes a form of

1
N

∑
i

{EN (y|wi, zi) − EN (y|wi)}2ω(wi, zi).



526 Ch. 9 Bandwidth-Dependent Semiparametric Methods

8.6.2 One-Bandwidth Test

One main disadvantage of the above tests is requiring two bandwidths,
which could be one too many. Delgado and Manteiga (2001) proposed a
test that needs only one bandwidth. The idea is very close to that in the
Stute (1997) test: in comparing a parametric regression function with a non-
parametric regression, use y − r(x, bN ) instead of rN (x) − r(x, bN ) where
rN (x) = EN (y|x) because essentially y in y − r(x, bN ) becomes E(y|x)
when y − r(x, bN ) is conditioned on x. Applying this idea to the above
H0 : E(y|w, z) = E(y|w), we can use y − rN (w) instead of rN (w, z)− rN (w),
and only one smoothing for the lower-dimensional w is required. Based on
this idea, Delgado and Manteiga (2001) proposed the following tests, which
are analogous to the Stute (1997) test.

With x = (w′, z′)′, consider a moment condition,

E{f(w) (y − r(w)) 1[x ≤ xo]} = 0 which is 0 under H0.

Define its sample analog

TN (xo) ≡ 1
N

∑
i

f̂w(wi){yi − rN (wi)}1[xi ≤ xo]

=
1
N

∑
i

⎧⎨⎩∑
j �=i

1
hkw

K

(
wj − wi

h

)
yi

−
∑
j �=i

1
hkw

K

(
wj − wi

h

)
yj

⎫⎬⎭ 1[xi ≤ xo]

=
1

Nhkw

∑
i

∑
j �=i

K

(
wj − wi

h

)
(yi − yj)1[xi ≤ xo]

which leads to Cramér-von-Mises-type (CM) and Kolmogorov-Smirnov-type
(KS) test statistics:

CMN ≡ 1
N

N∑
q=1

{√
NTN (xq)

}2

=
∑

q

TN (xq)2 and

KSN ≡ sup
xo

∣∣∣√NTN (xo)
∣∣∣ .

TN (xo) is, however, not asymptotically distribution-free. Delgado and
Manteiga (2001) proposed a simulation-based test statistic, which is

T
(a)
N (xo) ≡

1
N

∑
i

v
(a)
i f̂w(wi){yi − rN (wi)}

{
1[xi ≤ xo]

−
∑

j K((wj − wi)/h)1[xj ≤ xo]∑
j K((wj − wi)/h)

}
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where v
(a)
i are iid rv’s independent of (yi, xi) such that E(v(a)) = 0 and

SD(v(a)) = 1. Note the smoothed centering of 1[xi ≤ xo] in T
(a)
N (xo). With

T
(a)
N (xo), the corresponding versions CM

(a)
N and KS

(a)
N of CMN and KSN

can be obtained, and tests can be done with the p-value of CMN and KSN

obtained from the empirical distribution of CM
(a)
N , a = 1, ..., A, and KS

(a)
N ,

a = 1, ..., A, respectively.

8.6.3 Cross-Validation Approach for Mixed Regressors

Hall et al. (2007) considered how to select relevant regressors when the
regressors are mixed (i.e., discrete and continuous). Let xc

i and xd
i denote

the continuous and discrete regressors in xi; i.e., xi = (xc′
i , xd′

i )′. For each
continuous component xc

is in xc
i , use a bandwidth hs. For each component

xd
is in xd

i , apply smoothing of the form

L(xd
is − xd

js) = 1 if xd
is = xd

js

= λs if xd
is = xd

js where 0 ≤ λs ≤ 1;

call λs a bandwidth. Then using a product kernel for xi, a leave-one-out
kernel estimator rN,−i(xi) for r(xi) can be obtained.

The key idea is selecting hs’s and λs’s by minimizing the CV criterion∑
i

{yi − rN,−i(xi)}2

wrt all bandwidths λs’s and hs’s. For irrelevant discrete regressors, their λs

should be one as N → ∞; for irrelevant continuous regressors, their hs should
diverge to ∞. In a given data set, λs � 1 may be easy to see, but how big is
big for hs may not be so clear-cut. Also, minimizing the CV minimand wrt
multiple bandwidths might be difficult.

8.7 Non-nested Model Tests and Multi-sample Tests*

8.7.1 LM-Type Tests for Non-nested Models

Delgado and Stengos (1994) considered, with x and z possibly overlap-
ping,

H0 : E(y|x, z) = r(x, β) vs. Ha : E(y|x, z) = E(y|z)

where the two hypotheses are non-nested and the null model is parametric.
Following Davidson and MacKinnon (1981), they set up an artificial regres-
sion model

y = (1 − δ) · r(x, β) + δ · E(y|z) + u

and proposed to test the H0 by extending the “J test” of Davidson and
MacKinnon: replace E(y|z) with EN (y|z), and estimate δ and β jointly (J
is from the word “jointly”) treating x and EN (y|z) as regressors. The H0 is
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then equivalent to δ = 0. This J test is of LM-type, because using an extra
regressor to see its significance is analogous to omitted variable tests.

If estimating β with bN is simple as in LSE, then instead of the J test, one
can adopt a LR-type test using both bN and EN (y|z). To simplify exposition,
suppose r(x′β) = x′β and bN is LSE. Observe

yi � (1− δ)x′ibN + δEN (y|zi) + ui =⇒ yi − x′ibN � δ{EN (y|zi)− x′ibN ) + ui.

The simplest test would go as follows. Set up an artificial model where
the LSE residual is the response variable and the regressors are unity and
EN (y|xi) − x′ibN . Do the LSE for the artificial model and test whether the
slope is zero or not using the usual LSE asymptotic variance formula. This
simple test seems to work well in practice.

Li and Stengos (2007) further generalized the above non-nested test by
considering nonparametric models under both H0 and Ha:

H0 : E(y|x, z) = E(y|x) vs. Ha : E(y|x, z) = E(y|z).

The artificial regression model for this is

y = (1 − δ)E(y|x) + δE(y|z) + u

= θ(x) + δEN (y|z) + v, where θ(x) ≡ (1 − δ)E(y|x)

and v ≡ u + δ{E(y|z) − EN (y|z)}. Taking EN (y|x) as a regressor, this is a
semi-linear model with δEN (y|z) being the linear part and θ(x) being the
unknown part. Applying the Robinson’s (1988) TSE, θ(x) can removed and
H0 : δ = 0 can be tested. Li and Stengos (2007) used a density-weighted
version of the following numerator in the second step for δ:

TN ≡ 1
N

∑
i

[EN (y|zi) − EN{EN (y|zi)|xi}] · [yi − EN (y|xi)].

8.7.2 LR-Type Test for Non-nested Models

Lavergne and Vuong (1996) proposed a nonparametric regressor-selection
test for non-nested models. Consider models 1 and 2 with regression functions
r1(x) and r2(x), and

H0 : E{y − r1(x1)}2 − E{y − r2(x2)}2 = 0 : model 1 and 2
are equally good

H1 : E{y − r1(x1)}2 − E{y − r2(x2)}2 < 0 : model 1 is better
H2 : E{y − r1(x1)}2 − E{y − r2(x2)}2 > 0 : model 2 is better.

The test uses the sample analog for the mean squared error difference in the
two competing models:

TN ≡ 1√
N

∑
i

[{yi − r1N (x1i)}2 − {yi − r2N (x2i)}2].
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This is asymptotically normal with variance σ2 unless r1(x1) = r2(x2); if
r1(x1) = r2(x2), then σ2 = 0—the degenerate case.

Define the “fourth moment” minus “squared second moment”:

σ2
N ≡ 1

N

∑
i

[{yi − r1N (x1i)}2 − {yi − r2N (x2i)}2]2

−
(

1
N

∑
i

[{yi − r1N (x1i)}2 − {yi − r2N (x2i)}2]

)2

.

Then

TN

σN
� N(0, 1) under H0;

TN

σN
→p −∞ under H1;

TN

σN
→p ∞ under H2.

This test is a nonparametric analog for the parametric test in Vuong (1989).
One example for “model 1 and 2 are equally good” is y = x1 + x2 + u where
x1 and x2 follow the same distribution and share the same relation with u.

8.7.3 Multi-sample Tests for Multiple Treatments

Although our focus has been on one-sample nonparametric regression-
function specification tests, there is a substantial literature on “multi-sample
nonparametric regression-function equality tests,” which is relevant to the
topic of multiple treatment effect analysis, where each sample comes from
each treatment regime. The tests in the literature differ largely in terms of
(i) stochastic or fixed x, (ii) the error term independent of x or not (depen-
dence meaning heteroskedasticity), and (iii) the sample sizes equal or not. For
instance, when x is fixed, the error term is homoskedastic and the samples
sizes are equal, Hall and Hart (1990) removed the same regression function
under the null with

di ≡ y1i − y2i where yj is from sample j = 1, 2

and proposed a test statistic based on sums of di
2.

Delgado (1993) proposed a test adopting the idea in Hall and Hart
(1990). Allowing for stochastic x in the setting of Hall and Hart (1990), let
x be a continuously distributed rv. With w(t) denoting a standard Brownian
motion, the test statistic is

TN ≡ supt |
∑N

i=1 di1[xi ≤ t]|
{0.5

∑N−1
i=1 (di+1 − di)2}1/2

� T ≡ sup
0≤t≤1

|w(t)| as N → ∞.

The quantiles of T can be seen in Shorack and Wellner (1986). For instance,
the upper quantiles for 0.1, 0.05, and 0.01 are 1.96, 2.24, and 2.81, respec-
tively. Note a similarity between TN and the marked empirical process test
of Stute (1997).
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For econometric applications where x is stochastic, Lavergne (2001)
adapted the test in Lavergne and Vuong (2000) because multiple treatments
can be taken as extra (discrete) regressors, and Gørgens (2002) proposed to
estimate each sample regression function separately with local linear regres-
sion to construct a Wald test for “H0 : rj(x) are the same ∀j = 1, ..., J”
when there are J sub-populations (treatments). Sun (2006) proposed a non-
parametric test for the equality of quantile functions across J-many sub-
populations.

Munk et al. (2007) proposed a nonparametric analysis of variance com-
paring the overall error term variance estimator with all samples pooled under
the H0 (thus all yj ’s are equally centered) and not pooled (thus each yj is
differently centered). Their test requires fixed x, but allows heteroskedastic
errors and different sample sizes. See Munk et al. (2007) and the references
therein for more on the literature of nonparametric regression-function equal-
ity tests.



APPENDIX I: MATHEMATICAL

BACKGROUNDS AND CHAPTER

APPENDICES

This appendix collects supporting materials for the main text chapters,
except the first section that reviews mathematical and statistical backgrounds.
Some of them are put here for their technicality, some for additional or histor-
ical interest, and some for being digressive or tentative. Appendix II contains
further supporting materials on various topics that are not specific to any
particular chapter.

1 Mathematical and Statistical Backgrounds

This section provides a more or less self-contained review on the mathe-
matical and statistical backgrounds for the main text; matrix algebra is not
covered because it is readily available in many other sources. This section
is not meant to be a systematic account of the topics covered below; rather
it should be taken as an informal review. There are more discussions in the
following than what is necessary to read the main text; the reader may refer
to this section should the need arises, rather than trying to read everything in
this section. If interested in further details, then there are many well known
books to refer to for real analysis, probability theory, and asymptotic statis-
tics. This section draws on Bartle (1976), Royden (1988), Luenberger (1969),
Billingsley (1995), Dudley (1989), Van der Vaart (1998), and Pollard (1984,
2002) among others.

1.1 Bounds, Limits, and Functions

For a subset H of the Euclidean space R, the least upper bound of H is
called the supremum of H; i.e.,

s = supH ⇐⇒ h ≤ s ∀h ∈ H, and if h ≤ s′ ∀h ∈ H, then s ≤ s′.

The infimum of H is the greatest lower bound; i.e.

q = inf H ⇐⇒ h ≥ q ∀h ∈ H, and if h ≥ q′ ∀h ∈ H, then q ≥ q′.

Supremum and infimum are unique if they exist. For instance, H = [0, 1) has
no maximum, but its supremum is 1; whereas a maximum should be in H if
it exists, the supremum does not have to be. Each non-empty set bounded
above (below) has a supremum (infimum). The extended real line [−∞,∞],
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denoted usually as R, is convenient, because every non-empty set in R has a
supremum and an infimum, as every non-empty set is bounded by ±∞.

A sequence in Rk is a function mapping the set N of natural numbers
to Rk. For a sequence {zn, n ∈ N}, z is the limit of the sequence, if for any
ε > 0 there exists n(ε) such that

|zn − z| < ε ∀n ≥ n(ε).

When a limit exists, {zn} is said to be convergent. For a function f(n) map-
ping N to N and a sequence {zn}, {zf(n)} is a subsequence of
{zn} if

n ≤ f(n), and f(n) < f(n′) for n < n′.

For instance, f(n) = n2 and thus f(1) = 1, f(2) = 4, f(3) = 9, ...; the
subsequence is {z1, z4, z9, ...}. A sequence is bounded if there exists a constant
C such that |zn| < C ∀n. A convergent sequence is bounded, and a bounded
sequence has a convergent subsequence.

An open ball of radius ε around x ∈ Rk is the set {|x − y| < ε,
y ∈ Rk} where | · | is the Euclidean norm on Rk; |x − y| ≤ ε yields a
“closed ball.” A set A in Rk is an open set, if for each a ∈ A, there is an open
ball around a contained in A; a set B is closed if Bc is open. For x ∈ Rk, any
set that contains an open set containing x is a neighborhood of x; a neigh-
borhood can be a closed set. A point z′ is a cluster point of a set Z if every
neighborhood of z′ contains at least one point in Z that is not z′. If z′ is a
cluster point of {zn}, then there is a subsequence of {zn} convergent to z′;
a cluster point of {zn} is not necessarily the limit point, because {zn} can
move in and out of a proximity of the cluster point. A set A is compact if
every open cover has a finite subcover; i.e., if A ⊂ ∪jBj for open sets Bj ’s,
then there are finitely many Bj ’s, say B1, ..., BH , that still collectively cover
A (i.e., A ⊂ (B1 ∪B2 ∪ ... ∪BH)). A set in Rk is compact iff it is closed and
bounded.

A sequence {yn} is a Cauchy sequence if, for any ε > 0, there exists n(ε)
such that

|xn − xn′ | < ε ∀n, n′ ≥ n(ε).

A sequence in Rk is convergent iff it is a Cauchy sequence. Since the limit of a
sequence and its subsequences should be the same, if a subsequence converges
to a limit, then the sequence must converge to the same limit if the sequence
is convergent at all.

A function f with domain X and range Y assigns a unique value in Y
for each element x ∈ X; equivalently, f can be viewed as a set of ordered
pairs in X × Y . This definition does not require Y to be “exhausted”; i.e.,
some values of Y may not be “reached” by f . If there exists at least some
x such that f(x) = y for each y ∈ Y , f maps onto Y ; f(x) is one to one if
f(x) = f(x′) implies x = x′. If f is one-to-one and onto, then f has an inverse
f−1 whose domain (range) is the range (domain) of f . If f is one-to-one but
not onto, then f−1 exists whose domain is the proper subset of the range
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of f that makes f onto. Even if inverse does not exist, inverse image does:
{x : f(x) ∈ A} is the inverse image of A ⊂ Y . A function f(x) is bounded
if there is a constant C such that |f(x)| < C ∀x ∈ X, which implies that
supx∈X f(x) and infx∈X f(x) exist.

The view regarding f as an ordered pair is convenient in understanding
compositions of functions, say, F (f) where F has domain Y and range Z: a
composition F (f) of F and f is an ordered pair (x, z) such that there exists
some y with (x, y) ∈ f and (y, z) ∈ F ; the domain of F (f) consists of the ele-
ments x in the domain of f such that f(x) falls in the domain of F . A function
g with domain Xg ⊂ X is a restriction of f to Xg if g(x) = f(x) ∀x ∈ Xg. A
function h with domain Xh ⊃ X is an extension of f to Xh if h(x) = f(x)
∀x ∈ X.

Combining sequences and functions, consider a sequence of functions
{fn(x)}; fn(x) should be viewed as a function of two arguments n and x.
With n fixed, fn(x) is just a function of x, whereas f1(x), f2(x), ... is just a
sequence on R with x fixed. Depending on the value of x, {fn(x)} may be
convergent or not; when convergent, denote the limit as f(x) and denote the
set of x for which {fn(x)} is convergent as Xc. Then we write

f(x) = lim
n→∞ fn(x) for each x ∈ Xc.

For instance, let fn(x) = xn for x on [0,∞). Then fn(x) is convergent on
Xc = [0, 1] with f(x) = 0 for 0 ≤ x < 1 and f(x) = 1 for x = 1. Interestingly,
f(x) is not continuous at 1 while fn(x) is.

Formally, {fn} on a domain X converges to f on Xc ⊂ X, if, for any
ε > 0 and x ∈ Xc, there is n(ε, x) such that

|fn(x) − f(x)| < ε, ∀n ≥ n(ε, x).

If there is n(ε) not depending on x ∈ Xc such that

|fn(x) − f(x)| < ε, ∀n ≥ n(ε),

then {fn} converges uniformly to f(x) on Xc, which is denoted also as

||fn − f ||Xc
≡ sup

x∈Xc

|fn(x) − f(x)| → 0 as n → ∞;

||fn||Xc
is called the uniform norm or supremum norm (on Xc).

If {zn} is a bounded sequence, then its limit superior is

lim sup
n→∞

zn ≡ lim
n→∞(sup

q≥n
zq);

since {yn} ≡ supq≥n zq = sup{zn, zn+1, ...} is a bounded and monotoni-
cally decreasing sequence, it has a limit. Every bounded sequence has a lim-
sup while it may not have a limit; e.g. (−1)n does not have any limit, but
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lim sup(−1)n = 1 because supq≥n(−1)q = 1. Analogously to limsup, limit
inferior is

lim inf
n→∞ zn ≡ lim

n→∞( inf
q≥n

zq);

since {yn} ≡ infq≥n zq = inf{zn, zn+1, ...} is a bounded and monotonically
increasing sequence, it has a limit. Observe lim inf(−1)n = −1 because
infq≥n(−1)q = −1. In extended real space R̄, we can drop the qualifier
“bounded sequence” for limsup and liminf, because unbounded sequences in
R are bounded by ±∞ in R̄; in R̄, limsup can be ∞ and liminf can be −∞.

A double sequence {ymn} in Rk is a function mapping N ×N to Rk. If
there is a point y such that

|ymn − y| < ε ∀m,n ≥ n(ε),

then y is the limit of {ymn}. A double sequence is convergent iff it is a Cauchy
sequence: that is, iff

|ymn − xpq| < ε, ∀m,n, p, q ≥ n(ε).

Define two iterated limits as, if they exists,

lim
m

lim
n

ymn = lim
m

Ym, where Ym ≡ lim
n

ymn,

lim
n

lim
m

ymn = lim
n

Zn, where Zn ≡ lim
m

ymn.

For instance, consider (−1)m(m−1+n−1). Because m−1+n−1 → 0 as m,n →
∞, the double limit is 0, Ym = (−1)mm−1, and limm Ym = 0, but Zn does
not exist because Zn oscillates around ±n−1 for each n. If the limit y for a
double sequence exists and if Ym exists for each m, then y = limm limn ymn.
Analogously, if y exists and if Zn exists for each n, then y = limn limm ymn.

1.2 Continuity and Differentiability of Functions

A function f(x) is bounded on A if there is a constant C such that
|f(x)| ≤ C ∀x ∈ A; a set F of functions f is uniformly bounded on A if there
is a constant C such that |f(x)| < C ∀x ∈ A and ∀f ∈ F . A function f(x)
is continuous at xo in its domain if, for any ε > 0, there exists δ(ε, xo) such
that

|f(x) − f(xo)| < ε ∀x in the domain of f(x) with |x − xo| < δ(ε, xo)
⇐⇒ f(xn) → f(xo) ∀xn → xo where {xn} is in the domain of f .

If there is no x with |x − xo| < δ(ε, xo) (or no sequence xn → xo) other
than xo itself in the domain of f , then f is continuous at xo by definition
as xn in any “xn → xo” should be xo—but continuity in this case is not
really useful. If f(x) is continuous at each point of its domain, then f(x)
is said to be continuous. One may think that the continuity at xo implies
continuity at points nearby, but this does not hold necessarily. There is a
function that is continuous at all irrational points (points not of the form
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±m/n, for m,n ∈ N ) while discontinuous at all rational points, despite that
every neighborhood of an irrational point has a rational point.

If f(x) is continuous on a subset Xu of its domain and if δ(ε, xo) can
be chosen independently of xo on Xu, then f(x) is uniformly continuous on
Xu. For instance, f(x) = 4x is uniformly continuous, because |f(x)−f(z)| =
4|x− z|: if we set |x− z| < ε/4 = δ(ε), then |f(x)− f(z)| < ε; here δ(ε) does
not depend on x. On the other hand, for f(x) = ex,

|f(x) − f(z)| = |ex − ez| = ex|1 − ez−x|.
Although we can make |1 − ez−x| < ε with |z − x| < δ(ε) regardless of
x, since ex is attached, δ(ε) cannot be chosen independently of x to make
|f(x) − f(z)| < ε; ex is not uniformly continuous. In ex, the neighborhood
should be chosen smaller as x gets greater to ensure |ex − ez| < ε, while this
is not the case for 4x. But any continuous function on a compact interval is
also uniformly continuous on the interval; a bounded open interval will not
do, as can be seen in f(x) = 1/x on (0, 1].

If a function s(x) takes a finite number of values, then s(x) is a simple
function. If g(x) is a continuous function on a compact set C, then there is a
simple function s(x) that is uniformly close to g(x) on C in the sense that

sup
x∈C

|g(x) − s(x)| < ε, for any ε > 0.

Polynomials in x or piecewise linear functions can be also used for this kind
of uniform approximation of g(x).

Let f(x) be a function with domain A ⊂ Rp and range Rq, which is
often denoted simply as f : A → Rq. The directional differential vector fa(τ)
at a given interior point a ∈ A wrt a direction τ ∈ Rp exists, if

fa(τ) = lim
t→0

f(a + tτ) − f(a)
t

⇐⇒ |f(a + tτ) − f(a)
t

− fa(τ)| < ε

if |t| < δ(ε, a, τ) for any ε > 0.

If τ = (1, 0, ..., 0)′, then fa(τ) = ∂f(a)/∂x1, and if τ = (0, 0, ..., 1)′, then
fa(τ) = ∂f(a)/∂xp; these are partial derivatives. When fa(τ) is viewed as a
function of τ mapping Rp to Rq, the function fa is the directional derivative
vector, which is also called Gateau derivative.

A function f(x) with an open domain A ⊂ Rp and range Rq is differen-
tiable at a if there exists a linear (and thus continuous) function f ′a(·) from
Rp to Rq such that

lim
|τ |→0

|f(a + τ) − f(a) − f ′aτ |
|τ | = 0, or equivalently (Bickel et al.,

1993, p. 454),

|f(a + tτ) − f(a)
t

− f ′aτ | < ε if |t| < δ(ε, a) for any ε > 0

and τ in any bounded subset of Rp.

The linear function f ′a is called the (Fréchet) derivative and f ′aτ is the dif-
ferential at a with increment τ ; if q = 1, then f ′a is also called the gradient
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and denoted as ∇fa. The requirement for derivative is more stringent than
that for directional derivative for two reasons. First, f ′aτ should be linear in
τ while the Gateau derivative fa(τ) does not have to. Second, the deriva-
tive remainder term {f(a + tτ) − f(a)}/t − f ′aτ should converge uniformly
over τ , whereas such uniformity is not required for the directional derivative
remainder term.

Since any q-dimensional linear function on Rp can be expressed as a q×p
matrix, if f ′a exists, it can be viewed as a q × p matrix (depending on the
evaluation point a), whereas f ′aτ is the matrix times the vector τ . If f ′a exists,
then the directional derivative fa(τ) for any τ exists, and f ′aτ = fa(τ); as
fa(τ) for any τ exists as just noted, ∂f(a)/∂xj ∀j exists and

f ′aτ =
∂f(a)
∂x1

τ1+, ...,+
∂f(a)
∂xp

τp where τ = (τ1, ..., τp)′.

Since finding a partial derivative vector (∂f(a)/∂x1, ..., ∂f(a)/∂xp) is easier
than finding the derivative f ′a, the following is helpful to see whether f(x) is
differentiable or not: if ∂f(a)/∂xj, j = 1, ..., p, exist in a neighborhood of a
and are continuous at a, then the derivative f ′a exists.

Suppose that f(x) is a real-valued function on Ω ⊂ Rp with continuous
partial derivatives of order m in a neighborhood of every point on a line
segment S joining two points a and a + u in Ω. Then there exists a point c
in S such that (Bartle, 1976, p. 371)

f(a + u) = f(a) + f ′au +
f

(2)
a (u)2

2!
+

f
(3)
a (u)3

3!
, ...,+

f
(m−1)
a (u)m−1

(m − 1)!

+
f

(m)
c (u)m

m!
where

f (2)
a (u)2 ≡

∑
j,k

∂2f(a)
∂xj∂xk

ujuk, f (3)
a (u)3 ≡

∑
j,k,l

∂3f(a)
∂xj∂xk∂xl

ujukul,

u = (u1, ..., up)′

and f
(m)
a (u)m, m = 4, ..., are defined analogously. This is a mean value the-

orem or a “Taylor expansion”.

1.3 Probability Space and Random Variables

Imagine a statistical experiment. A sample space Ω is the collection of
all possible outcomes of the experiment. A point ω ∈ Ω is a sample point,
and a subset A ⊂ Ω is an event. A collection (or “class”) A of events is a
σ-algebra or σ-field if

(i) Ω ∈ A,

(ii) A ∈ A implies Ac ∈ A,
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(iii) A1, A2, ... ∈ A implies ∪i Ai ∈ A;
(iii) is equivalentto“ ∩i Ai ∈ A′′due to(ii).

A set function μ : A �−→ [0,∞] is a measure if μ(∅) = 0 and

μ(∪iBi) =
∑

ι

μ(Bi), ∀ disjoint sequence B1, B2, ... ∈ A;

this property is called countable additivity. A measure P is a probability (mea-
sure) if P (Ω) = 1. Countable additivity implies the “continuity of P in set
sequences” (see, e.g., Billingsley, 1995, p. 25): if An ↑ A (i.e., A1 ⊂ A2 ⊂ · · ·
and A = ∪nAn) or An ↓ A (i.e., A1 ⊃ A2 ⊃ · · · and A = ∩nAn) where
An,A ∈ A, then P (An) ↑ P (A) or P (An) ↓ P (A), respectively.

The pair (Ω,A) is a “measurable space”; the triplet (Ω,A,μ) is a “mea-
sure space”; (Ω,A,P ) is a probability space. The simplest probability space
is A = {Ω, ∅}, P (Ω) = 1, and P (∅) = 0. The next simplest is A =
{Ω, ∅, A,Ac} where A is an event, P (Ω) = 1, P (∅) = 0, and P (A) is a
fraction. If P (A) = 1 for some A ∈ A, then A is a support of the probability
measure P ; the smallest closed set B ∈ Ω such that P (B) = 1 is called “the”
support.

The σ-field B “generated” by the open sets in Rk is the Borel σ-field, a
member of which is a “Borel set”; “being generated” means that the Borel
σ-field is the smallest collection of events containing all open sets in Rk while
satisfying the three conditions for σ-field. That is, if Fj is a σ-field containing
all open sets in Rk and j indexes all such σ-fields, then the Borel σ-field is
∩jFj . The Borel σ-field exists, because there is at least one σ-field including
all open sets in Rk (e.g., the collection of all subsets of Rk). On R, Lebesque
measure μ(B) is the total length of B ∈ B; Lebesque measure μ on Rk assigns
the k-fold product of the one-dimensional lengths. If v (A) is the number of
points (“cardinality”) in A, then v is counting measure; if A has infinitely
many elements, then v(A) = ∞.

Given a probability space (Ω,A,P ), a random variable (rv) x is a “mea-
surable” function x : Ω �−→ R; here “measurable” means

x−1(B) ≡ {ω : x(ω) ∈ B} ∈ A for any Borel set B ∈ B.

A rv induces a probability measure Px on B:

Px(B) ≡ P (x−1(B)), ∀B ∈ B;

Px for (R,B, Px) is on R while P is on Ω. If we want to make it clear which
σ-field is being used, we say that x is A-measurable or A/B-measurable. A
random vector is a vector consisting of rv’s.

The distribution function (df) Fx(t) of x is defined as Fx(t) ≡ P (x ≤ t)
which is P (x−1(B)) with B = (−∞, t]. When tn ↓ t, we get P (x ≤ tn) ↓
P (x ≤ t), because (−∞, tn] ↓ (−∞, t]; i.e., Fx(t) is right-continuous in t.
Note that P (x < tn) = P (x < t) when P (x = t) > 0, because P (x < tn)
includes P (x = t) while P (x < t) does not. Whereas Px is the probabil-
ity measure (probability distribution or probability law) of x, Fx is just a
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function mapping R to [0, 1]. For a random vector z ≡ (z1, ..., zk)′, its joint
distribution function Fz(t) is defined as Fz(t) ≡ P (z1 ≤ t1, ..., zk ≤ tk) where
t = (t1, ..., tk)′.

The df Fx of x is discrete if P (x = xj) = pj > 0 for all j and
∑

j pj = 1,
where xj is a support point of x; Fx is continuous if P (x = r) = 0 for any
point r ∈ Rk; Fx is absolutely continuous if

Fx(t) =
∫ t

−∞
fx(s)ds

for a measurable function fx. There exist rv’s with both discrete and contin-
uous components; e.g., Fx(t) = λF1(t) + (1 − λ)F2(t) where 0 < λ < 1, F1 is
discrete and F2 is continuous. In this case, Fx(t) is continuous and increasing
(i.e., non-decreasing) other than for occasional jumps at the support points
of F1.

1.4 Integrals

For a measure space (Ω,A,μ), a simple function f on Ω is defined as

f(ω) =
J∑

j=1

aj1Aj
(ω) where aj ’s are constants, Aj ∈ A ∀j, and

1Aj
(ω) = 1 if ω ∈ Aj and 0 otherwise.

When J = 2 with two overlapping sets A1 and A2, define B1 ≡ A1\A2

(≡ {ω : ω ∈ A1, ω /∈ A2}), B2 ≡ A1 ∩ A2, and B3 ≡ A2\A1 to get three
disjoint sets and

f(ω) =
∑

j

bj1Bj
(ω), b1 ≡ a1, b2 ≡ a1 + a2, b3 ≡ a2.

This shows that a simple function can be always rewritten as a linear com-
bination of indicator functions for disjoint sets; thus we will use only simple
functions with disjoint sets.

For any non-negative simple function f(ω) =
∑

j bj1Bj
(ω) on a measure

space (Ω,A,μ), its (Lebesque) integral
∫

C
f(ω)dμ(ω) =

∫
C

fdμ over a set
C ∈ A is defined as∫

f1Cdμ =
∑

j

bjμ(Bj ∩ C) (as f(ω)1C(ω) =
∑

j

bj1Bj∩C(ω))

=⇒
∫

fdμ =
∑

j

bjμ(Bj) when C = Ω.

If there is 0 · ∞ in the sum (e.g., bj = 0 and μ(Bj) = ∞ for some j), then
define 0 · ∞ as 0.
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The integration dummy ω in
∫

C
f(ω)dμ(ω) serves the role of showing on

which space the integration takes place; if this is clear, then ω is omitted as
in

∫
C

fdμ. Instead of dμ(ω), μ(dω) is also used as in
∫

C
f(ω)μ(dω). If which

measure (μ) is used is clear, then
∫

fdμ is denoted simply as E(f). In fact,
it is simpler and more informative to write μ(f) instead of E(f) (P (f) if
μ = P ), because μ(f) shows better that integral

∫
fdμ is a mapping from

the space of non-negative simple functions to R by the measure μ—but there
may be a risk that μ(f) may be confused with μ(ω). In the following, it is
shown that the domain of the integral μ(·) can be extended from the set of
simple functions.

For any non-negative measurable function f (i.e., a non-negative rv f),
there exists a sequence of non-negative simple functions fn (ω) ↑ f(ω) ∀ω as
n → ∞, which means that fn(ω) ≤ f (ω) and fn(ω) → f(ω) for each ω ∈ Ω;
e.g., from Pollard (2002),

fn(ω) =
1
2n

4n∑
j=1

1
[
f(ω) ≥ j

2n

]
=

1
2n

{
1
[
f(ω) ≥ 1

2n

]

+ 1
[
f(ω) ≥ 2

2n

]
+, ...,+1

[
f(ω) ≥ 4n

2n

]}
.

To see that this function satisfies the requirement, observe that

fn(ω) = 0 if f (ω) <
1
2n

, fn(ω) = 2n if f(ω) ≥ 4n

2n
= 2n

fn(ω) =
j

2n
if

j

2n
≤ f (ω) <

j + 1
2n

, j = 1, 2, ..., 4n − 1;

fn(ω) ≤ f(ω) clearly holds. To see fn(ω) → f(ω) as n → ∞ for each ω,
first, observe that f(ω) is approximated by 0 when f(ω) ≤ 2−n and thus
|fn (ω) − f(ω)| ≤ 2−n. Second, f(ω) is approximated by j2−n when j2−n ≤
f(ω) < (j + 1)2−n; |fn (ω) − f(ω)| ≤ 2−n holds here as well. Third, the
approximation is not good when f(ω) ≥ 2n, but ω such that f(ω) ≥ 2n

disappears as n → ∞; i.e., for any ω, f(ω) eventually falls in [j2−n, (j+1)2−n)
for some j. Hence fn(ω) ↑ f(ω) as n → ∞ for each ω.

Not just for the particular sequence in the last display, but for any se-
quence such that fn (ω) ↑ f(ω) for each ω ∈ Ω, it holds that

∫
fndμ ↑

∫
fdμ.

That is, for any non-negative measurable function f , its (Lebesque) integral
can be defined as the limit of the integral sequence of any approximating (from
below) simple function sequence.

If f takes both positive and negative values, then define two non-negative
functions

f+ ≡ max(f, 0), f− = −min(f, 0) =⇒ f = f+ − f−.

In this case, the integral is defined as∫
fdμ ≡

∫
f+dμ −

∫
f−dμ;



540 Appendix I: Mathematical Backgrounds and Chapter Appendices

if both terms are infinite, the integral is not defined; if
∫

f+dμ is infinite
and

∫
f−dμ is finite, then the integral does not exist but is defined as ∞;

if
∫

f+dμ is finite and
∫

f−dμ is infinite, then the integral does not exist
but is defined as −∞. When

∫
fdμ is finite, which is equivalent to

∫
|f |dμ ≡∫

f+dμ +
∫

f−dμ being finite, f is said to be integrable. The domain of the
integral μ(·) is now all measurable functions, which has been extended from
the set of simple functions.

Lebesque integral which uses a “horizontal approximation” as above is
more general than Rieman integral which uses a “vertical approximation” to
f(ω): whenever a Rieman integral exists, the Lebesque integral exists as well
and the two are equal, but there are cases where Rieman integral does not
exist while the Lebesque integral does. A well-known example is the function
that takes 1 for rational numbers and 0 for irrational numbers.

Consider the original measure space (Ω,A,μ) and (R,B) for a rv f :
Ω → R, which induces a measure on R : v ≡ μ(f−1). For a B/B-measurable
function g: R → R, g(f) is also a rv mapping Ω → R. The integral of
g over B ∈ B can be obtained in two equivalent ways. One is using g and
v(B) ≡ μ(f−1(B)), and the other is using g(f(ω)) and the original measure μ:{∫

B

gdv =
} ∫

B

g(r)dμf−1(r)

=
∫

f−1(B)

g(f)dμ

{
=

∫
f−1(B)

g(f(ω))dμ(ω)

}
.

This is a change of variables from f to the original ω.
A measure μ on (Ω,A) is finite if μ(Ω) < ∞, infinite if μ(Ω) = ∞, and

σ − finite if

Ω = ∪iAi for some sequence of sets Ai’s with μ(Ai) < ∞ ∀i.

Let (X,X , μ) and (Y,Y, v) be σ-finite measure spaces. On the Cartesian
product X×Y , A×B with A ∈ X and B ∈ Y is a measurable rectangle. There
exists the smallest σ-field (the product σ-field) generated by the measurable
rectangles, i.e., the smallest collection of the measurable rectangles while
satisfying the three requirements for σ-field.

On the product σ-field, there exists product measure π such that
(Billingsley 1995)

π(A × B) = μ(A) · v(B) ∀A ∈ X , B ∈ Y.

An integral wrt the product measure
∫

X×Y
f(x, y)dπ(x, y), if it exists, can

be calculated using the iterated integrals∫
X

{∫
Y

f(x, y)dv(y)
}

dμ(x) or
∫

Y

{∫
X

f(x, y)dμ(x)
}

dv(y).

To see whether the double integral exists or not, an iterated integral is com-
puted with |f | in place of f ; if this is finite, then the double integral exists
(Billingsley 1995, p. 234).
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For a measure space (Ω,A,μ), the set of integrable functions are usually
denoted as L1(Ω,A,μ); if it is obvious which measure space is being involved,
then this is abbreviated as L1. More generally, if fp is integrable where 0 <
p < ∞, then this is denoted as f ∈ Lp(Ω,A,μ). Among Lp, L2 is probably
the most often used; sometimes L2(x) is used to denote the set of square
integrable functions of a rv (or a random vector) x. If 1 ≤ p < ∞, then

||f ||p ≡
(∫

|f |pdμ

)1/p

is the Lp norm of f . Markov inequality for a Lp integrable function f is

P (|f | > ε) ≤ E|f |p
εp

for any positive constant ε.

Hölder inequality is: for f ∈ Lp and g ∈ Lq where 1 < p, q < ∞, p−1 +
q−1 = 1,

|
∫

fgdμ| ≤ ||f ||p||g||q (=⇒ fg ∈ L1).

Minkowski inequality is: for f, g ∈ Lp where 1 ≤ p ≤ ∞,

||f + g||p ≤ ||f ||p + ||g||p

where ||f ||∞ ≡ inf{B : |f | ≤ B a.e.} and “a.e.” stands for “almost every-
where” as will be explained later.

1.5 Density and Conditional Mean

For a measure space (Ω,A,μ), let f be a nonnegative measurable function
on Ω. Then a new measure v can defined on (Ω,A) using (μ and) f as a new
“weight”:

v(A) ≡
∫

A

f(ω)dμ(ω), ∀A ∈ A;

v has density f wrt μ. Clearly, if μ (A) = 0, then v(A) = 0; v is said to
be dominated by μ or absolutely continuous wrt μ. For instance, if Ω = R,
A = (−∞, t], f is the N(0, 1) density, and μ is Lebesque measure on R,
then v(A) is the N(0, 1) density integrated up to t. As another example,
if Ω = {1, 2, 3, 4, 5, 6}, A = {1, 2}, f(j) = pj > 0, and μ is the counting
measure, then f(ω) =

∑6
j=1 pj1j(ω), and

v({1, 2}) =
∫
{1,2}

f(ω)dμ(ω) =
∑

j

pjμ(j ∩ {1, 2}) = p1 + p2.

When v has density f wrt μ, an integral wrt v can be found using μ and f
instead: ∫

C

gdv =
∫

C

gfdμ.
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Radon–Nikodym theorem yields a converse to v being dominated by μ
when v is defined by v(A) ≡

∫
A

fdμ: if μ and v are σ-finite measures on (Ω,A)
and if v is dominated by μ, then there exists a nonnegative A-measurable
function f on Ω such that

v(A) =
∫

A

fdμ ∀A ∈ A.

The density f is “μ-a.e.” unique: if there is another density, say g, then
μ({ω : f(ω) = g(ω)}) = 0. The density is the Radon–Nikodym derivative
of v wrt μ, denoted “dv/dμ.” But this derivative-like expression may cause
a confusion, for which the following paragraph drawn from Van der Vaart
(1998, pp. 86–87) helps.

For a measure space (Ω,A,μ), suppose F and G are probability measures
with densities f and g wrt a dominating measure μ. The indicator function
1[f > 0] is also denoted as {f > 0} in the following. Define

GF (A) ≡ G(A ∩ {f > 0}) and GF c(A) ≡ G(A ∩ {f = 0}), A ∈ A
=⇒ G(A) = GF (A) + GF c(A) : “Lebesque decomposition” of G wrt F.

Observe

G(A) =
∫

A

gdμ =
∫

A

g({f > 0} + {f = 0})dμ

≥
∫

A

g{f > 0}dμ =
∫

A

g

f
{f > 0}fdμ =

∫
A

g

f
{f > 0}dF

=
∫

A

g

f
dF (because F ({f = 0}) = 0).

From the second and last expressions, we can see
∫

A
gdμ ≥

∫
A
(g/f)

dF , and it is wrong to state
∫

A
gdμ =

∫
A

g(dμ/dF )dF =
∫

A
(g/f)dF . Note

that the last expression equals GF (A).

Let B be a sub σ-field of A: B is a σ-field and B ⊂ A. For a non-negative
integrable x, define a measure v on B with

v(B) =
∫

B

xdP ∀B ∈ B.

Since P and v are finite, they are σ-finite as well. Consider the restriction
PB of P to B: PB(B) = P (B)∀B ∈ B. Because v is dominated by P , v is
dominated by PB on B. Thus, there exists a Radon–Nikodym derivative, say
E(x|B), satisfying υ(B) =

∫
B

E(x|B)PB and hence∫
B

E(x|B)dPB =
∫

B

xdPB

{
=

∫
x(ω)1B(ω)dPB(ω)

}
∀B ∈ B.

E(x|B) is the conditional mean of x given B; E(x|B) is B-measurable and
integrable on Ω; E(x|B) is unique a.e. PB, which means that, if there is
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another rv g(ω) satisfying the equation, then PB{E(x|B) = g} = 1. For x
taking both positive and negative values, the Radon–Nikodym theorem can
be applied to x+ and x− separately. In

∫
B

E(x|B)dPB =
∫

B
xdPB, B in dPB

may be dropped so long as it is understood that the equation is only for
B ∈ B, because

∫
B

E(x|B)dP =
∫

B
xdP ∀B ∈ B. Certainly, if B = A, then

E(x|B) = x.
For example, if B = {∅,Ω}, then E(x|B) = E(x), because E(x) satisfies

the last display. Suppose B = {∅,Ω, B,Bc} with 0 < P (B) < 1. In this case,
the B-measurable E(x|B) should take the form

E(x|B)(ω) = qB1B(ω) + qBc1Bc(ω) for some constants qB , qBc > 0

as this form allows four different values for the four sets in B. Recalling the
definition of integral for simple functions,(∫

B

E(x|B)dPB =
)

qBP (B) =
∫

B

xdPB

=⇒ qB =

∫
B

xdPB
P (B)

≡ E(x|B);

qBc =

∫
Bc xdPB
P (Bc)

≡ E(x|Bc), doing analogously.

Thus
E(x|B)(ω) = E(x|B)1B(ω) + E(x|Bc)1Bc(ω).

The expression E(x|z1, ..., zn) refers to E{x|σ(z1, ..., zn)}, where σ(z1, ..., zn)
is the smallest σ-field that makes z1, ..., zn measurable. Dudley (1989, p. 340)
showed that E(x|z1, ..., zn) is indeed a (measurable) function of z1, ..., zn.

Conditional probability P (A|B) for A ∈ A is a special case of E(x|B)
when x(ω) = 1A(ω). In this case, the requirement for P (x|B) becomes∫

B

P (x|B)dP = P (A ∩ B) =
(∫

B

1AdP

)
, ∀B ∈ B.

For example, when B = {∅,Ω, B,Bc} with 0 < P (B) < 1,

P (A|B) = pB1B(ω) + pBc1Bc(ω) for some pB , pBc > 0

=⇒
(∫

B

P (A|B)dPB =
)

pBP (B) = P (A ∩ B)

=⇒ pB =
P (A ∩ B)

P (B)
≡ P (A|B);

pBc =
P (A ∩ Bc)

P (Bc)
≡ P (A|Bc).

Hence P (A|B)(ω) = P (A|B)1B(ω) + P (A|B)1Bc(ω).
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1.6 Dominated and Monotone Convergences

Consider (Ω,A,μ) and measurable functions (i.e., rv’s) defined on Ω. For
a sequence of measurable functions fn, there are three well-known conver-
gence theorems useful for finding

∫
fndμ as n → ∞ when we have some idea

on fn.
First, dominated convergence theorem is

If fn, g ∈ L1, |fn(ω)| ≤ g(ω), and fn (ω) → f(ω) ∀ω, then∫
fndμ →

∫
fdμ < ∞.

Although we write “∀ω,” the conditions |fn(ω)| ≤ g(ω) and fn (ω) → f(ω)
need to hold only for ω in a set A such that μ(A) = μ (Ω).

Second, monotone convergence theorem is

If fn(ω) ↑ f(ω) ∀ω and fn ≥ 0, then∫
fndμ ↑

∫
fdμ (which can be ∞);

we already saw an example of this “below-approximating” sequence fn(ω)
when integral was defined.

Third, Fatou’s Lemma is (fn → f is not assumed here)

If fn ≥ 0, then∫
(lim inf fn)dμ ≤ lim inf

∫
fndμ (which can be ∞).

The following corollary of Fatou’s Lemma is useful in showing
∫

fdμ < ∞
when

∫
fndμ < ∞∀n but there is no dominating function as g(ω) to invoke

the dominated convergence theorem:

If fn ≥ 0 and fn (ω) → f (ω) ∀ω, then∫
fdμ ≤ sup

n

∫
fndμ (which can be ∞).

One useful application of the dominated convergence is in establishing
continuity and differentiability of integrals of a function f (ω, b). Suppose, for
ω ∈ A where μ(A) = μ(Ω),

(i) f(ω, b) is continuous at b = β ∈ R ∀ω and

(ii) sup
b∈Nβ

|f(ω, b)| ≤ g (ω) in a neighborhood Nβ of β

with
∫

g(ω)dμ (ω) < ∞.

Then, for any sequence f(ω, bn) with bn → β, we get f(ω, bn) → f(ω, β) due
to (i), and |f(ω, bn)| ≤ g(ω) holds due to (ii)—bn ∈ Nβ eventually as Nβ is
not a function of n. Due to

∫
g(ω)dμ (ω) < ∞, we get

∫
f(ω, bn)dμ (ω) →∫

f(ω, β)dμ(ω) as n → ∞, establishing the continuity of
∫

f(ω, b)dμ at b = β
when f(ω, b) is continuous at b = β.
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Going further, suppose

(iii) f(ω, b) has a derivative f ′(ω, b) wrt b on a neighborhood Nβ ∀ω
and

(iv) supb∈Nβ
|f ′(ω, b)| ≤ G (ω) and

∫
G(ω)dμ (ω) < ∞.

Then, for any sequence hn → 0,

rn(ω, β) ≡ f(ω, β + hn) − f(ω, β)
hn

= f ′(ω, b∗n)

for some b∗n on the line joining β and β + hn

=⇒ |f(ω, β + hn) − f(ω, β)
hn

| = |f ′(ω, b∗n)| ≤ G(ω).

Since rn(ω, β) → f ′(ω, β) due to (iii) and |rn(ω, β)| ≤ G(ω) due to (iv), we
get ∫

f(ω, β + hn)dμ(ω) −
∫

f(ω, β)dμ(ω)
hn

=
∫

rn(ω, β)dμ(ω) →∫
f ′(ω, β)dμ(ω)

which justifies interchanging differentiation (at β) and integration, drawing
on Pollard (2002, p.33).

1.7 Convergence of Random Variables and Laws

Consider (Ω,A,P ) and rv’s on Ω. A sequence of rv’s {xn} converge in
probability to x if

lim
n→∞P (|xn − x| < ε) = 1 for any constant ε > 0

which is denoted as xn →p x or xn−x = op(1); xn is said to be consistent for
x. Notation xn = op(an) for a sequence an (= 0 ∀n) is used for xn/an →p 0.

A sequence of rv’s xn converge almost surely (a.s.), almost everywhere
(a.e.) or with probability 1 if there is a set A ∈ A with P (A) = 1 such that

xn(ω) → x(ω) for each ω ∈ A

which is denoted as xn →as x or xn →ae x. Almost sure convergence implies
convergence in probability; the former states that the probability of xn dif-
fering from x is 0 when n is large enough, whereas the latter states that the
differing probability tends to 0. This may be understood better by writing
xn →as x as (Serfling, 1980)

lim
n→∞P (|xn′ − x| < ε ∀n′ ≥ n) = 1 for any constant ε > 0;

compare this to the above display for convergence in probability.
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Convergence in the rth mean is defined as

E|xn − x|r → 0 as n → ∞.

This is not the same as E|xn|r → E|x|r, nor as Exr
n → Exr, which are the

“convergence of the rth absolute moment” and the “convergence of the rth
moment,” respectively.

Using Markov inequality, convergence in the rth mean implies conver-
gence in probability. Convergence in the rth mean is neither stronger nor
weaker than a.s. convergence, but if

∑
n E|xn − x|r → 0, then xn →as x. For

a sort of the reverse implication, we need the following: a sequence {xn} is
uniformly integrable if

sup
n

E|xn| < ∞ and sup
n

E(|xn| · 1[|xn| > λ]) → 0 as λ → ∞.

If xn →p x and {xn} is uniformly integrable, then E|xn−x| → 0. A sufficient
condition for the uniform integrability of {xn} is dominance: |xn| ≤ y with
E(y) < ∞. Another sufficient condition is E|xn|1+δ < ∞ for some δ > 0.
The rv sequence xn(ω) = n1[0,1/n](ω) has E|xn| = 1 ∀n for Lebesque mea-
sure, but is not uniformly integrable because limλ→∞ supn E(|xn| · 1[|xn| >
λ]) = 1.

If
sup

n
P (|xn| > λ) → 0asλ → ∞,

then {xn} is uniformly tight (or bounded in probability), denoted xn = Op(1).
Notation xn = Op(an) for a sequence an (= 0 ∀n) is used for

sup
n

P (|xn

an
| > λ) → 0 as λ → ∞.

A rv sequence {xn} converge in distribution to x if

lim
n→∞P (xn ≤ t) = P (x ≤ t) for all t such that P (x = t) = 0.

Since the probabilities on both sides are obtained separately, x does not
have to be on the same probability space as xn is on. The convergence in
distribution is equivalent to convergence in law :

Ef(xn) → Ef(x) for any bounded continuous function f as n → ∞.

The convergence in law of {xn} to x does not imply Exn → Ex, because the
identity mapping f(x) = x is not bounded on R although continuous.

A relation T on a set A is partially ordered if T is transitive (a1Ta2

and a2Ta3 implies a1Ta3 ∀a1, a2, a3 ∈ A) and antisymmetric (a1Ta2 and
a2Ta1 implies a1 = a2 ∀a1, a2 ∈ A). One example of T is “≤” on R. For a
“random element” not necessarily on R, convergence in law is more general
than convergence in distribution, because the latter is not useful when “x ≤ t”
does not make sense, i.e., when the range of x is not totally (or linearly)
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ordered, which means partially ordered and “total” (a1Ta2 or a2Ta1 ∀a1, a2 ∈
A). Convergence in law (or in distribution) is denoted xn →L x, xn →d x, or
xn � x. If xn � x, then {xn} is Op(1). For every Op(1) sequence, there is a
subsequence converging in law to some x (Prohorov theorem).

With the original probability space being (Ω,A,P ), denote the probabil-
ity on R induced by xn as Pn (i.e., Pn(B) = P (x−1

n (B)) for any Borel set B ∈
B on R) and the probability induced by x as Po (i.e., Po(B) = P (x−1(B))),
where B is the Borel σ-algebra. That is, we consider (R,B, Pn) for each n.
The convergence in law is equivalently expressed as: Pn is said to converge
weakly to Po (Pn � Po) if for any bounded continuous function f on R,

{Ef(xn) =}
∫

fdPn →
∫

fdPo {= Ef(x)} as n → ∞.

The notation Pn � Po may be preferred to xn � x, because there is a lesser
danger of thinking of xn and x being “related” on the same space. Note
that a relation between two rv’s on the same space depends on their joint
distribution, whereas xn � x depends only on their marginal distributions
Pn and Po. In Pn � Po, the underlying xn and x lose their presence, because
Pn could have been induced by another rv sequence yn living on another
probability space (Ω′,A′,P ′).

Let f be a function from Rp to Rq, continuous on Xc where P (x ∈ Xc) =
1 for some rv x inducing Po on (R,B). If xn →as x, xn →p x, or xn � x,
then f(xn) →as f(x), f(xn) →p f(x), or f(xn) � f(x), respectively. This
is known as the continuous mapping theorem, which is implied by a stronger
version that f is continuous on all of Rp.

If a real-valued function f is continuous on C and xn � x where x takes
its values in C, then Ef(xn) → Ef(x) iff {f(xn)} is uniformly integrable
(see, e.g., Van der Vaart, 1998, p.17). This implies that, when f(x) = xk,
convergence in law along with the uniform integrability of the kth moment
implies the convergence in the kth moment.

If xn →p x, then xn � x; the converse holds if x is a constant. If xn →p x,
and yn � c that is a constant, then (xn, yn) � (x, c). This, combined with
the continuous mapping theorem, implies the following Slutsky Lemma:

xn + yn � x + c, xnyn � xc and xn/yn � x/c so long as c = 0.

1.8 LLN and CLT

Let {xi} be a sequence of iid rv. Then a necessary and sufficient condition
that x̄N ≡ N−1

∑
i xi converges to E(x) a.e. is that E(x) exists. If {xi} is

inid (independent but non-identically distributed), then

∞∑
i=1

E|xi − E(xi)|pi

ipi
< ∞ for 1 ≤ pi ≤ 2
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is sufficient for N−1
∑

i(xi−Exi) to converge to 0 a.e. “N−1
∑

i(xi−Exi) →p

0 (or →as 0)” is called a law of large numbers (LLN). The first LLN for iid
sequences is the Kolmogorov LLN, and the second for inid sequences is from
Chow and Teicher (1988, p.124). An a.e. LLN is called a “strong LLN,”
whereas a LLN in probability is called a “weak LLN.”

An inid sequence can occur when yi|xi is heteroskedastic and exogenous
sampling is done (i.e., xi is fixed first and then yi gets drawn from the distri-
bution of y|xi); because V (y|xi) varies across i, an inid sequence is obtained.
If (x′i, yi) is drawn together from the joint distribution of (x′, y), which may
be called a random sampling, then heteroskedasticity does not imply inid.
To better understand the above display for the inid LLN, suppose pi = 2
∀i to have

∑∞
i=1 V (xi)/i2 < ∞. Now imagine V (xi) = i, growing with i.

Then the condition becomes
∑∞

i=1 i−1 which is divergent. However, since∑∞
i=1 i−(1+ε) < ∞ for any ε > 0,

∑∞
i=1 V (xi)/i2 < ∞ so long as V (xi) in-

creases at rate i1−ε. Hence we can allow different (and growing) V (xi) across
i. For iid cases, the condition is trivially satisfied.

Let {xN,nN
} be a “triangular array” of zero mean rv’s. The word “tri-

angular” may be understood from the following display “shape”:

N = 2 and n2 = 1 : x2,1;
N = 3 and n3 = 2 : x3,1, x3,2;
N = 4 and n4 = 4 : x4,1, x4,2, x4,3, x4,4;

note that we could have n3 = 3 and x3,1, x3,2, x3,3. The elements in each row
should be independent of one another, but elements across different rows may
be dependent.

Define s2
N ≡ ∑nN

i=1 σ2
Ni where σ2

Ni ≡ V (xNi) = E(x2
Ni) < ∞ under

E(xNi) = 0. If

1
s2

N

nN∑
i=1

E
(
x2

Ni1 [|xNi| > εsN ]
)

=
nN∑
i=1

E

(
x2

Ni

s2
N

1
[
x2

Ni

s2
N

> ε2

])
→ 0

∀ constant ε > 0 as N −→ ∞

then
1

sN

nN∑
i=1

xNi � N(0, 1).

This is the Lindeberg central limit theorem (CLT), and the condition is the
“Lindeberg condition.” If E(xNi) = 0, redefine xNi as xNi − E(xNi) for the
CLT.

For a sum
∑N

i=1 xi of an iid zero-mean rv sequence x1, ..., xN , we get
s2

N = Nσ2 where σ2 ≡ V (x). The Lindeberg condition easily holds, because

1
Nσ2

N∑
i=1

E
(
x2

i 1
[
xi > εσ

√
N
])

=
E

(
x21

[
|x| > εσ

√
N
])

E(x2)
→ 0 as N → ∞
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due to the dominated convergence theorem as x is square-integrable. The
Lindeberg CLT is then

1√
N

N∑
i=1

xi

σ
� N(0, 1) :

the standardized sum of N -many rv’s divided by
√

N converges to N(0, 1) in
law.

For an iid random vector sequence z1, ..., zN with finite second moments,
the CLT is stated in the following simple form:

1√
N

N∑
i=1

{zi − E(z)}�N
(
0, E

[
{z − E(z)} {z − E(z)}′

])
as N→∞.

2 Appendix for Chapter 2

2.1 Seemingly Unrelated Regression (SUR)

2.1.1 Two-Equation SUR

In the main text, we allowed for heteroskedasticity of unknown form
with occasional drift to homoskedasticity. In this subsection, we assume ho-
moskedasticity E(uu′|x)=E(uu′) and review seemingly unrelated regression
(SUR), which looks somewhat “old” from the modern GMM perspective.
Nevertheless, under homoskedasticity, the roles of regressors and error terms
get separated, and the analysis can be done more neatly to provide helpful
insights. Because endogenous regressors are not considered in this subsection,
notations here are somewhat different from those in the main text. A survey
on SUR can be found in Fiebig (2001).

Consider two equations under homoskedasticity:

y1 = x′1β1 + u1, y2 = x′2β2 + u2, E(xjuj′) = 0 ∀j, j′ = 1, 2

E(u1u2|x1, x2) = σ12, E(u2
1|x1, x2) = σ2

1, E(u2
2|x1, x2) = σ2

2,

where x1 and x2 are respectively k1 × 1 and k2 × 1 vectors, and σ2
1, σ2

2, and
σ12 are constants. We observe (y1i, y2i, x

′
1i, x

′
2i)
′, i = 1, · · · , N , which are iid.

We can apply LSE to each equation separately. Combining the two equations,
however, it is possible to obtain a more efficient estimator than the LSE.

Although the two equations look unrelated, they can be still related
through COR(u1, u2). Define

y ≡ (y1, y2)′, β ≡ (β′1, β
′
2)
′, u ≡ (u1, u2)′

to rewrite the two equations as

y = x′β + u, E{(I2 ⊗ w) · u} = 0, E(uu′) = C, where
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x′ ≡
[

x′1 0
0 x′2

]
β ≡

[
β1

β2

]
w ≡

[
x1

x2

]
C ≡

[
σ2

1 σ12

σ12 σ2
2

]
.

In matrix notations, y = x′β + u and E(uu′) = C are

Y = Xβ + U,

E(UU ′) =
[

E(U1U
′
1) E(U1U

′
2)

E(U2U
′
1) E(U2U

′
2)

]
=

[
σ2

1IN σ12IN

σ12IN σ2
2IN

]
= C ⊗ IN

2N×2N
,

where Y
2N×1

=
[

Y1

Y2

]
X

2N×(k1+k2)
=

[
X1 0
0 X2

]
U

2N×1
=

[
U1

U2

]
.

Since the variance matrix of U is not diagonal, we can think of applying
GLS to Y = Xβ + U , where the (m,n)th component of C can be estimated
consistently with

1
N

∑
i

(ymi − x′mib̂m)(yni − x′nib̂n), m, n = 1, 2

and b̂m is the LSE for the mth equation. The GLS is the SUR estimator:
denoting the estimator for C as CN ,

bsur =
{
X ′(CN ⊗ IN )−1X

}−1 {X ′(CN ⊗ IN )−1Y }
=

{
X ′(C−1

N ⊗ IN )X
}−1 {X ′(C−1

N ⊗ IN )Y }.

The consistency of bsur is easy to show.
Although we dealt with only two equations, it is straightforward to ex-

tend the above derivation to more than two equations; all we have to do is
stacking the equations. For instance, if we have three equations, we will need

Y =

⎡⎣ Y1

Y2

Y3

⎤⎦ X =

⎡⎣ X1 0 0
0 X2 0
0 0 X3

⎤⎦ U =

⎡⎣ U1

U2

U3

⎤⎦ .

2.1.2 Asymptotic Distribution

As for the asymptotic distribution, suppose that xi is a fixed constant,
not a rv; also replace CN with C as this replacement does not alter the
asymptotic distribution. Substitute Y = Xβ +U into the bsur formula to get

bsur = β +
{
X ′(C−1 ⊗ IN )X

}−1 {X ′(C−1 ⊗ IN )U}
=⇒ E{(bsur − β)(bsur − β)′}
=

{
X ′(C−1 ⊗ IN )X

}−1 {
X ′(C−1 ⊗ IN )(C ⊗ IN )(C−1 ⊗ IN )X

}
{X ′(C−1 ⊗ IN )X}−1 = {X ′(C−1 ⊗ IN )X}−1.



2 Appendix for Chapter 2 551

This suggests that {X ′(C−1 ⊗ IN )X}−1 might be a consistent estimator for
the asymptotic variance of bsur − β even when x is random. Indeed this is
the case as shown next.

To get the asymptotic distribution when x is random, observe

√
2N(bsur − β) =

{
1

2N
X ′(C−1 ⊗ IN )X

}−1

·
{

1√
2N

X ′(C−1 ⊗ IN )U
}

.

Define

X∗ ≡ (C−1/2 ⊗ IN )
2N×2N

X
2N×2k

where C−1 = C−1/2C−1/2.

Also define x∗′i as the ith row of X∗ and u∗i as the ith row of (C−1/2 ⊗ IN )U ,
i = 1, · · · , 2N , to get

√
2N(bsur − β) =

(
1

2N
X∗′X∗

)−1

·
{

1√
2N

X∗′(C−1/2 ⊗ IN )U
}

=

(
1

2N

∑
i

x∗i x
∗′
i

)−1

· 1√
2N

∑
i

x∗i u
∗
i .

The error terms u∗i in (C−1/2 ⊗ IN )U are iid with variance 1, because

E[(C−1/2 ⊗ IN )UU ′(C−1/2 ⊗ IN )]
= E[(C−1/2 ⊗ IN )(C ⊗ IN )(C−1/2 ⊗ IN )] = E(I2 ⊗ IN ) = I2N .

Hence, we get √
2N(bsur − β)� N{0, E−1(x∗x∗′)}.

The asymptotic variance can be consistently estimated with {X∗′X∗/
(2N)}−1. Since we use the asymptotic variance for bsur, not for (2N)1/2

(bsur − β) in practice, the confusing normalizing factor 2N disappears in the
often used practical statement

bsur ∼ N{β, (X∗′X∗)−1} = N [β, {X ′(C−1 ⊗ IN )X}−1].

2.1.3 Efficiency Gain

As a version of GLS, SUR is more efficient than the separate LSE. How-
ever, there are two cases where SUR is equivalent to the separate LSE. One
is σ12 = 0 and the other is x1 = x2. If σ12 = 0, then the two equations are
truly—not just seemingly—unrelated, and there is nothing to be gained by
pooling the equations. If x1 = x2, define XC ≡ X1 = X2. Then X = I2⊗XC .
Substitute this into bsur to get

bsur =
{
(I2 ⊗ X ′

C)(C−1 ⊗ IN )(I2 ⊗ XC)
}−1 {

(I2 ⊗ X ′
C)(C−1 ⊗ IN )Y

}
= (C−1 ⊗ X ′

CXC)−1 · (C−1 ⊗ X ′
C)Y = {C ⊗ (X ′

CXC)−1}·
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(C−1 ⊗ X ′
C)Y = (I2 ⊗ (X ′

CXC)−1X ′
C)Y = (X ′X)−1X ′Y,

owing to X = I2 ⊗ XC .

Since X is block-diagonal, this is the same as applying LSE to each equation
separately. Thus SUR = LSE when X1 = X2.

To see better the efficiency gain of SUR over the separate LSE, define
ρ ≡ COR(u1, u2) and observe that the inverse of C is

C−1 =
1
|C|

[
σ2

2 −σ12

−σ21 σ2
1

]
≡

[
σ11 σ12

σ21 σ22

]
where

|C| = σ2
1σ

2
2 − σ2

12 = σ2
1σ

2
2 · (1 − ρ2).

With bsur ≡ (b′1, b
′
2)
′, the asymptotic variance of b1 is the upper left submatrix

of {X ′(C−1 ⊗ IN )X}−1, i.e.([
X ′

1 0
0 X ′

2

] [
σ11IN σ12IN

σ21IN σ22IN

] [
X1 0
0 X2

])−1

=

[
σ11X ′

1X1 σ12X ′
1X2

σ21X ′
2X1 σ22X ′

2X2

]−1

.

Using the formula for the inverse of a partitioned matrix, the upper left
submatrix is[

σ11X ′
1X1 −

(
σ12σ21

σ22

)
X ′

1X2(X ′
2X2)−1X ′

2X1

]−1

=
[

σ2
2

|C|X
′
1X1 −

σ2
12

|C| σ2
1

X ′
1X2 (X ′

2X2)
−1

X ′
2X1

]−1

for σ11 =
σ2

2

|C| ,
σ12σ21

σ22
=

σ2
12

|C| σ2
1

)
=

[
σ2

2

|C|X
′
1X1 −

σ2
2

|C|
σ2

12

σ2
1σ

2
2

X ′
1X2 (X ′

2X2)
−1

X ′
2X1

]−1

=
(

σ2
2

|C|

)−1 [
X ′

1X1 −
(

σ2
12

σ2
1σ

2
2

)
X ′

1X2 (X ′
2X2)

−1
X ′

2X1

]−1

= σ2
1

(
1 − ρ2

)
·
[
X ′

1X1 − ρ2X ′
1X2 (X ′

2X2)
−1

X ′
2X1

]−1

for |C| = σ2
1σ

2
2 · (1 − ρ2).

This shows that the efficiency gain depends on two factors. One is ρ = 0, and
the other is the relation between X1 and X2—further below on this. Observe

σ2
1

(
1 − ρ2

)
= σ2

1 −
σ2

12

σ2
2

= σ2
1 − 2

σ2
12

σ2
2

+
σ2

12

σ2
2

= V

(
u1 −

σ12

σ2
2

u2

)
which is the variance of the part of u1 not explained by u2.
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To see the efficiency gain better, bring 1−ρ2 into [·]−1 and further rewrite
the asymptotic variance as (Binkley and Nelson, 1988)

σ2
1

{
1

1 − ρ2
X ′

1X1 −
ρ2

1 − ρ2
X ′

1X2(X ′
2X2)−1X ′

2X1

}−1

= σ2
1

{
1

1 − ρ2
X ′

1X1 −
ρ2

1 − ρ2
X ′

1X1 +
ρ2

1 − ρ2
X ′

1X1

− ρ2

1 − ρ2
X ′

1X2(X ′
2X2)−1X ′

2X1

}−1

= σ2
1

{
X ′

1X1 +
ρ2

1 − ρ2
X ′

1QX2X1

}−1

as QX2 = IN − X2(X ′
2X2)−1X ′

2.

X ′
1QX2X1 is the variation of X1 unexplained by X2 (X ′

1QX2X1 is p.s.d.) and
ρ2/(1 − ρ2) is non-negative. Thus SUR is more efficient than the separate
LSE. This clearly shows that the source of the efficiency gain is ρ = 0 and
QX2X1 = 0. If ρ = 0 or X1 ⊂ X2, then there is no efficiency gain. This raises
an interesting possibility: if the LSE for a single equation yi = x′iβ + ui has
a large asymptotic variance, then we can do better with SUR by looking for
an equation with its error term highly correlated with u1 and the regressors
low correlated with x1.

2.2 On System GMM Efficiency Gain

Recall the subsection in Chapter 2 for multiple equation GMM. Suppose
H = 2 and the second equation has one endogenous regressor, for which only
one instrument is available; i.e., the second equation is just identified. In this
case, the system GMM asymptotic variance is

[[
E(x1x

′) 0

0 E(x2x
′)

] [
E(xx′u2

1) E(xx′u1u2)

E(xx′u1u2) E(xx′u2
2)

]−1 [
E(xx′1) 0

0 E(xx′2)

]]−1

=

[
E(x1x

′)D1E(xx′1) E(x1x
′)CE(xx′2)

E(x2x
′)C′E(xx′1) E(x2x

′)D2E(xx′2)

]−1

, where

[
D1 C
C′ D2

]
≡

[
E(xx′u2

1) E(xx′u1u2)

E(xx′u1u2) E(xx′u2
2)

]−1

⇐⇒
[

D1 C

C′ D2

]−1

≡
[

E(xx′u2
1) E(xx′u1u2)

E(xx′u1u2) E(xx′u2
2)

]
.
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Using the formula for the inverse of a partitioned matrix that

the upper-left submatrix of
[

A B
C D

]−1

is (A − BD−1C)−1

when D−1 exists,

the upper left submatrix of the system GMM asymptotic variance for
√

N(b1−
β1) is[

E (x1x
′) D1E (xx′1) − E (x1x

′) CE (xx′2) {E (x2x
′) D2E (xx′2)}

−1

E (x2x
′) C ′E (xx′1)]

−1

= [E(x1x
′)D1E(xx′1) − E(x1x

′)CE(xx′2)E
−1(xx′2)D

−1
2 E−1(x2x

′)

E(x2x
′)C ′E(xx′1)]

−1

= {E(x1x
′)D1E(xx′1) − E(x1x

′)CD−1
2 C ′E(xx′1)}−1 = {E(x1x

′)

(D1 − CD−1
2 C ′)E(xx′1)}−1

= {E(x1x
′)E−1(xx′u2

1)E(xx′1)}−1 because the upper-left submatrix of[
D1 C
C ′ D2

]−1

is (D1 − CD−1
2 C ′)−1 which is also E(xx′u2

1)

as shown above.

Hence in a two-equation system, if one equation is just identified, then the
other equation has no efficiency gain with the system GMM.

2.3 Classical Simultaneous Equation Estimators

In the main text, we examined simultaneous equation estimation from
the modern MOM framework. Here we present some “classical” estimators
for simultaneous equations which the reader may encounter from time to
time.

2.3.1 Full-Information MLE (FIML)

Consider H-many simultaneous equations

Γ
H×H

yi
H×1

− B
H×K

xi
K×1

= ui
H×1

, ui ∼ N(0, Cu), ui � xi

fu(u) =
1

(2π)H/2|Cu|1/2
exp

(
−u′C−1

u u

2

)
=⇒ y-density given x is ||Γ||fu(Γy − Bx)
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where |Cu| and |Γ| denote the determinants and ||Γ|| is the absolute value of
|Γ|. Thus the joint density function LN of y1, ..., yN given x1, ..., xN is

LN (Γ, B,Cu) =
||Γ||N

(2π)HN/2|Cu|N/2

·
N∏

i=1

exp
{
− (Γyi − Bxi)′C−1

u (Γyi − Bxi)
2

}
.

From this,

lnLN (Γ, B,Cu) = N ln ||Γ|| − HN

2
ln(2π) − N

2
ln |Cu|

− 1
2

∑
i

(Γyi − Bxi)′C−1
u (Γyi − Bxi)

= N ln ||Γ|| − HN

2
ln(2π) − N

2
ln |Cu|

− 1
2

∑
i

tr
{
C−1

u (Γyi − Bxi)(Γyi − Bxi)′
}

= N ln ||Γ|| − HN

2
ln(2π) − N

2
ln |Cu|

− 1
2
tr

{
C−1

u

∑
i

(Γyi − Bxi)(Γyi − Bxi)′
}

.

The “full information MLE (FIML)” for the parameters Γ, B,Cu is obtained
maximizing this log-likelihood.

Note the following matrix differentiation rules:

∂ ln |A|
∂A

= (A−1)′ and
∂tr(AB)

∂A
= B′ where A is p.d. and Bis square.

For example, suppose

A =
[

a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
=⇒ ln |A| = ln(a11a22 − a12a21) and tr(AB) = a11b11

+ a12b21 + a21b12 + a22b22

=⇒ ∂ ln |A|
∂A

=
1

(a11a22 − a12a21)

[
a22 −a21

−a12 a11

]
and

∂tr(AB)
∂A

=
[

b11 b21

b12 b22

]
.
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Instead of Cu, it is easier to maximize the log-likelihood function wrt
Ωu ≡ C−1

u using |Cu| = |Ωu|−1. Maximize

N ln ||Γ|| − HN

2
ln(2π) +

N

2
ln |Ωu|

− 1
2
tr

{
Ωu

∑
i

(Γyi − Bxi)(Γyi − Bxi)′
}

wrt Ωu to get the first-order condition:

0 =
N

2
Cu − 1

2

∑
i

(Γyi − Bxi) (Γyi − Bxi)
′

⇐⇒ Cu =
1
N

∑
i

(
Γ

H×H
yi

H×1
− B

H×K
xi

K×1

)
(Γyi − Bxi)

′

{
=

1
N

(
Y

N×H
Γ

H×H

′ − X
N×K

B′
K×H

)′
(Y Γ′ − XB′) in matrices

}
where Y is the N × H endogenous variable matrix and X is the N × K
exogenous variable matrix.

Substitute the Cu into the log-likelihood function to get the “concen-
trated log-likelihood function” for Γ and B:

N ln ||Γ|| − HN

2
ln(2π) − N

2
ln | 1

N

∑
i

(Γyi − Bxi) (Γyi − Bxi)
′ | − H

2

= N ln ||Γ|| − HN

2
ln(2π)

− N

2
ln |Γ

{
1
N

∑
i

(
yi − Γ−1Bxi

)
(yi − Γ−1Bxi)′

}
Γ′| − H

2

=⇒ −N

2
ln | 1

N

∑
i

(
yi − Γ−1Bxi

) (
yi − Γ−1Bxi

)′ |,
dropping − HN

2
ln(2π) − H

2

and using |ABA′| = |A| · |B| · |A′| = |B| · |A|2 when A and B are square (here
A = Γ). Although this resembles the simple LSE minimand, N−1

∑
i(yi −

Γ−1Bxi)(yi−Γ−1Bxi)′ is a H×H matrix, and one has to minimize its deter-
minant wrt Γ and B. The consistency of FIML and its asymptotic distribution
follow from those of MLE.

Although FIML may be difficult to implement, as far as estimating
the RF parameters Π ≡ Γ−1B goes, LSE to each equation is the same as
the MLE for Π. To see this, define the columns of Y as Y1, ...YH and denote
the RF error matrix as V to get

Y
N×H

= ( Y1
N×1

, ..., YH
N×1

) = X
N×K

· Π
K×H

+ V
N×H

.
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Consider the LSE Π̂h of Yh on X ∀h; Π̂h is K × 1 as all system regressors
are included in each RF. The residual vector is V̂h ≡ Yh − XΠ̂h with the
first-order condition V̂ ′hX = 01×K . Defining

Π̂
K×H

≡ (Π̂1, ..., Π̂H) and V̂
N×H

≡ (V̂1, ..., V̂H)

we get Y = XΠ̂ + V̂ ; V̂ is consistent for V = Γ−1U . The above MLE mini-
mand can be written as

|(Y − XΠ)′(Y − XΠ)|
=|(Y − XΠ̂ + XΠ̂ − XΠ)′(Y − XΠ̂ + XΠ̂ − XΠ)|
=|{V̂ + (XΠ̂ − XΠ)}′{V̂ + (XΠ̂ − XΠ)}|
=|(V̂ ′V̂ + (XΠ̂ − XΠ)′(XΠ̂ − XΠ)|, as V̂

H×N

′ · X
N×K

= 0H×K

=|(V̂ ′V̂ + (Π̂ − Π)′X ′X(Π̂ − Π)| ≥ |V̂ ′V̂ | as V̂ ′V̂ and X ′X are p.d.

Therefore, the LSE to each equation is the MLE for Π.

2.3.2 Limited-Information MLE (LIML)

Suppose now that we aim to estimate only one SF, say the first SF, that
has a 2 × 1 endogenous regressor vector wi:

yi
1×1

= α′
1×2

wi
2×1

+ β′
1×k1

x1i
k1×1

+ ui
1×1

and wi
2×1

= η′1
2×k1

x1i
k1×1

+ η′2
2×k2

x2i
k2×1

+ εi
2×1

where x1 is a vector of exogenous regressors in SF1, x2 is not the exogenous
regressors in SF2 but the other exogenous regressors in the system so that
xi = (x′1i, x

′
2i)
′ is a K × 1 vector, the equations for w are RF’s, and the error

term vector (u, ε′)′ follows N(0,Ω) independently of x. In this case, the MLE
is called the “limited information MLE (LIML)”—“limited” in the sense that
only the first SF for yi appears. Note that the number “2” for the endogenous
variables is just to simplify the exposition.

Rewrite the three equations (one for yi and two for wi) as[
1 −α′

02×1 I2

] [
yi

wi

]
−

[
β′ 01×k2

η′1 η′2

] [
x1i

x2i

]
=

[
ui

εi

]
.

This may be seen as a special case of Γyi − Bxi = ui where Γ and B are
block-diagonal. Since the w-equations are RF’s, there is no restriction on η1

and η2. In contrast, the SF has a critical restriction that x2 is excluded.
Let the matrix versions for y, w, x1, x2, x be Y,W,X1, X2, X, respectively.

The exclusion restriction means that removing only the X1-component from
Y − Wα = X1β + U is the same as removing the X-component. Hence, one
can think of estimating α with the exclusion restriction by minimizing, with
QX ≡ IN − X(X ′X)−1X ′,

κ(α) ≡ (Y − Wα)′QX1(Y − Wα)
(Y − Wα)′QX(Y − Wα)

;
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note κ(α) ≥ 1, because the variation of Y −Wα devoid of the X1-component
is as large as that devoid of the X-component. Maximizing the log-likelihood
function, the LIML α-estimator is the same as the one minimizing κ(α) as
can be seen in, e.g., Davidson and MacKinnon (1993) (the original references
for LIML are Anderson and Rubin, 1949 and 1950). Defining

M
N×(2+k1)

≡ (W,X1) and δ = (α′, β′)′

the LIML δ̂ for y1-SF SF1 turns out to be

δ̂ = {M ′(IN − κ̂QX)M}−1 · M ′(IN − κ̂QX)Y.

The LIML is a special case of the “k-class estimators” where “k” refers
to κ̂. If κ̂ = 0, then LSE is obtained. If κ̂ = 1, the k-class estimator becomes

(M ′PXM)−1 · M ′PXY where PX ≡ X(X ′X)−1X ′

which is the IVE for SF1 with X as the instruments for M . This IVE is also
the two-stage LSE (2SLSE). It is known that

√
N(κ̂ − 1) = op(1), and thus

the asymptotic distribution of the LIML is the same as that of the IVE. The
difference is, however, that the IVE does not require homoskedasticity nor
the independence of the error terms from x whereas the LIML does.

2.3.3 Three-Stage LSE (3SLSE)

There is a simultaneous system estimator that falls in between FIML and
2SLSE in terms of its strength of the requisite assumptions. The estimator
requires homoskedasticity and it improves on 2SLSE in terms of efficiency by
incorporating the information in the other SF’s. The estimator is called the
three stage LSE (3SLSE), which is a full information variety, for it uses all
SF’s. The remainder of this subsection reviews 3SLSE.

Rewrite SF h as

yh = m′
hδh + uh, h = 1, ...,H

where mh is a kh × 1 regressor vector, and uh is homoskedastic; mh includes
endogenous as well as exogenous regressors. Denote the corresponding matrix
for yh, mh, and uh as Yh, Mh, and Uh respectively. Stack the equations to
get

Y = diag(M1, · · · ,MH) · δ + U ≡ M · δ + U
HN×1

,

where Y ≡ (Y ′1 , · · · , Y ′H)′, δ ≡ (δ′1, · · · , δ′H)′, U ≡ (U ′1, · · · , U ′H)′ and M =
diag(M1, · · · ,MH); note that the definition of Y (of dimension NH×1) here
differs from the Y (of dimension N ×H) that appeared for FIML and LIML.

Denoting the system exogenous variable vector as x (of dimension K×1)
and its matrix version as X, the instrument matrix for each SF is X, and
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thus for the system, it is IH ⊗ X of dimension HN × K. Also, the system
error term U does not have a diagonal covariance matrix; rather,

E(UU ′) ≡ Ω = C ⊗ IN , where C
H×H

=

⎡⎢⎣ E(u1u1) · · · E(u1uH)
...

...
E(uHu1) · · · E(uHuH)

⎤⎥⎦ .

Hence, combining the ideas of GLS and IVE, we can think of multiplying
Y = Mδ + U with Ω−1/2 = C−1/2 ⊗ IN , and then applying IVE. This is
essentially the 3SLSE. As in GLS, replacing C with a consistent estimator,
say Ĉ, does not affect the asymptotic distribution; the (h, j)th component of
Ĉ can be consistently estimated with

1
N

∑
i

(yhi − mhidh,2SLSE)(yji − mjidj,2SLSE), h, j = 1, ...,H

where dh,2SLSE is the 2SLSE for SF h.
Firstly, multiply Y = Mδ + U with C−1/2 ⊗ IN to get (we use C in-

stead of Ĉ to ease notations as this makes no difference for the asymptotic
distribution)(

C−1/2 ⊗ IN

)
· Y =

(
C−1/2 ⊗ IN

)
M · δ +

(
C−1/2 ⊗ IN

)
· U.

Secondly, in applying IVE to this equation that has the standardized error
terms, recall the IVE with more than enough instruments: we need to (lin-
early) project (C−1/2 ⊗ IN )M on IH ⊗ X to get the effective instrument
matrix:

(IH ⊗ X) ·
{
(IH ⊗ X)′ (IH ⊗ X)

}−1 · (IH ⊗ X)′ ·
(
C−1/2 ⊗ IN

)
M

= (IH ⊗ X) ·
{

IH ⊗ (X ′X)−1
}
· (IH ⊗ X)′ ·

(
C−1/2 ⊗ IN

)
M

=
{

C−1/2 ⊗ X (X ′X)−1
X ′

}
· M.

Thirdly, the IVE with this instrument matrix is the 3SLSE:

d3SLSE =
([{

C−1/2 ⊗ X(X ′X)−1X ′
}

M
]′
·
(
C−1/2 ⊗ IN

)
M

)−1

·
[{

C−1/2 ⊗ X(X ′X)−1X ′
}

M
]′
·
(
C−1/2 ⊗ IN

)
Y

=
[
M ′ {C−1 ⊗ X(X ′X)−1X ′}M

]−1

· M ′
{

C−1 ⊗ X (X ′X)−1
X ′

}
Y.

Denoting the element of C−1 as σij , M ′ {C−1 ⊗ X(X ′X)−1X ′} equals

diag(M ′
1, ...,M

′
H) ·

⎡⎢⎣ σ11X(X ′X)−1X ′ · · · σ1HX(X ′X)−1X ′
...

...
σH1X(X ′X)−1X ′ · · · σHHX(X ′X)−1X ′

⎤⎥⎦
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=

⎡⎢⎣ σ11M ′
1X(X ′X)−1X ′ · · · σ1HM ′

HX(X ′X)−1X ′
...

...
σH1M ′

1X(X ′X)−1X ′ · · · σHHM ′
HX(X ′X)−1X ′

⎤⎥⎦
= diag

{
X(X ′X)−1X ′M1, ..., X(X ′X)−1X ′MH

}′ · (C−1 ⊗ IN ).

Each block in the diagonal matrix is the LSE fitted value of Mh on X. Hence
defining

M̂h ≡ X(X ′X)−1X ′Mh and M̂ ≡ diag(M̂1, ..., M̂H),

3SLSE can be written as its usual textbook form

d3slse =
[
M̂ ′ {C−1 ⊗ IN

}
M

]−1

· M̂ ′ {C−1 ⊗ IN

}
Y

which is reminiscent of bsur =
{
X ′(C−1

N ⊗ IN )X
}−1 {

X ′(C−1
N ⊗ IN )Y

}
.

As for the asymptotic distribution, substitute Y = Mδ + U into the
δ3slse formula to get

√
NH(d3slse − δ) =

{
M ′ {C−1 ⊗ X(X ′X)−1X ′} · M

}−1 · M ′{
C−1 ⊗ X(X ′X)−1X ′}U.

Applying CLT and using E(UU ′) = C ⊗ IN , we can obtain the asymptotic
variance, the steps for which are similar to those for SUR. The asymptotic
distributional result to be used in practice is

d3slse ∼ N
[
δ,

{
M ′(C−1 ⊗ X(X ′X)−1X ′)M

}−1
]

which is reminiscent of bsur ∼ N
[
β,

{
X ′(C−1 ⊗ IN )X

}−1
]
.

3 Appendix for Chapter 3

3.1 Details on Four Issues for M-Estimator

First, regarding identification, the M-estimator bN is for the parameter
β defined by

β ≡ argmaxb∈BQ(b) = argmaxb∈BEq(z, b).

If such β is unique, then β is said to be “identified”; the uniqueness is es-
tablished by restricting q, z, or the parameter space B. There is no way
to establish identification (ID) in a general term; it should be done case by
case. For instance, in LSE with Eq(z, b) = −E

{
(y − x′b)2

}
and E(xu) = 0,

assuming a regularity condition

sup
b∈B

|x(y − x′b)| ≤ g(z), where Eg(z) < ∞,
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the order of differentiation and integration can be interchanged to give

− ∂E
{
(y − x′b)2

}
∂b

= −E

[
∂
{
(y − x′b)2

}
∂b

]
= 2E {x(y − x′b)} ,

which is 0 at b = β.

The second derivative matrix is −2E(xx′). Since this is n.d., the maximizer
β is unique. More examples will appear later.

Second, with ID holding, the following three conditions together imply
bN →p β: the compactness of B, the continuity of Eq(b) in b, and the uniform
LLN

sup
b∈B

∣∣∣∣∣ 1
N

∑
i

q(zi, b) − Eq(z, b)

∣∣∣∣∣ →p 0.

To see bN →p β under the three conditions, observe

1
N

∑
i

q(bN ) ≥ 1
N

∑
i

q(β) by the construction of bN

=⇒ 1
N

∑
i

q(bN ) − Eq(bN ) ≥ 1
N

∑
i

q(β) − Eq(bN ),

subtracting Eq(bN )

=⇒ 1
N

∑
i

q(bN ) − Eq(bN ) ≥ 1
N

∑
i

q(β) − Eq(β) + Eq(β) − Eq(bN ).

The left-hand side is less than or equal to supb∈B |N−1
∑

i q(b)− Eq(b)| which
is op(1) by the uniform LLN, and on the right-hand side, N−1

∑
i q(β) −

Eq(β) = op(1) as N → ∞. Hence,

op(1) ≥ Eq(β) − Eq(bN ) =⇒ Eq(bN ) ≥ Eq(β) + op(1) as N → ∞.

Combine this with Eq(β) ≥ Eq(bN ) (by the construction of β) to get

Eq(β) − Eq(bN ) = op(1) as N → ∞.

For any open neighborhood Uβ of β, Eq(b) attains a maximum on U c
β at

a point β∗ due to the continuity of Eq(b) and the compactness of U c
β . But

since ID implies Eq(β∗) < Eq(β), bN cannot stay out of Uβ as N → ∞ while
satisfying Eq(bN ) − Eq(β) = op(1) however small Uβ may be. This implies
bN = β + op(1).

An usual (pointwise) LLN under iid is not sufficient for N−1
∑

i q(bN )−
Eq(bN ) = op(1), because q(zi, bN ), i = 1...N , are dependent on one another
through bN . But when a pointwise LLN holds, the uniform LLN holds as well
in most cases; see, e.g., Andrews (1987a) and Pötcher and Prucha (1989).
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Among the aforementioned three conditions, the compactness of B is usually
assumed, and the continuity of Eq(b) holds in most cases. With these, an
uniform a.e. LLN implies bN →as β.

Third, the asymptotic distribution
√

N(bN −β) is almost always N(0, C)
for some p.d. symmetric matrix C. This is derived from the first-order con-
dition for bN :

1√
N

∑
i

qb(bN ) = 0, where qb(bN ) ≡ ∂q(b)
∂b

|b=bN
.

Apply the mean-value theorem to bN around β to get

0 =
1√
N

∑
i

qb(β) +
1
N

∑
i

qbb′(b∗N )
√

N(bN − β)

where qbb′ = ∂2q/∂b∂b′ and b∗N ∈ (bN , β). The mean value theorem applies
to each component of qb separately, which means that each component of qb

may need a different b∗N although this is not explicit in the display. Invert
the second-order matrix to solve for

√
N(bN − β):

√
N(bN − β) = {− 1

N

∑
i

qbb′(b∗N )}−1 · 1√
N

∑
i

qb(β).

Applying the uniform LLN again, we get

1
N

∑
i

qbb′(b∗N ) − Eqbb′(b∗N ) = op(1).

Let |A| = {tr(A′A)}1/2 for a matrix A. Assuming a regularity condition
|qbb′(z, b)| ≤ g(z) for all b in a neighborhood of β with Eg(z) < ∞, the
dominated convergence theorem yields

Eqbb′(b∗N ) = Eqbb′(β).

Since qbb′{z(ω), b∗N (ω)}−qbb′{z(ω), β} →as 0 and since |qbb′ | is dominated by
the integrable g, the integral

∫
qbb′{z(ω), b∗N (ω)}dμ(ω) converges to∫

qbb′{z(ω), β}dμ(ω).
Hence

√
N(bN − β) = −

[
E−1 {qbb′(β)} + op(1)

] 1√
N

∑
i

qb(β)

= − E−1 {qbb′(β)} 1√
N

∑
i

qb(β) + op(1).

Due to the CLT, the first term on the rhs is asymptotically normal under the
assumption E{qb(β)qb′(β)} < ∞, and

√
N(bN − β)� N

[
0, E−1 {qbb′(β)} · E {qb(β)qb′(β)} · E−1 {qbb′(β)}

]
.
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It is straightforward to derive the asymptotic distribution of blse as a special
case with q(y − x′b) = −(y − x′b)2.

Fourth, the variance matrix can be consistently estimated with{
1
N

∑
i

qbb′(bN )

}−1

· 1
N

∑
i

qb(bN )qb′(bN ) ·
{

1
N

∑
i

qbb′(bN )

}−1

;

the proof goes analogously to the proof for N−1
∑

i qbb(b∗N ) = E(qbb(β)) +
op(1). Indeed, in almost all cases we will encounter, we will have

1
N

∑
i

m(zi, bN ) =
1
N

∑
i

m(zi, β) + op(1) = E{m(z, β)} + op(1).

3.2 MLE with LSE First-Stage and Control Function

Often in practice, we have MLE with nuisance parameters that can be
estimated by an estimator other than MLE, say LSE. This leads to a two-stage
M-estimator. Here we examine this case and give a specific example (MLE
with endogenous regressors) for two reasons. One is to provide a detailed
illustration of M-estimator with nuisance parameters, and the other is to show
how endogenous regressors can be dealt with in MLE easily using “control
function (CF)” approach.

Let α be a first stage LSE parameter of dimension k1 × 1 and aN be the
LSE. Let β be a likelihood function parameter of dimension k2 × 1 for the
second stage, and bN be the MLE. Denote the second stage score function as
s(zi, α, β); omit zi for simplification. Define

∇α′s(α, β)
k2×k1

≡ ∂s(α, β)
∂a′

and ∇β′s(α, β)
k2×k2

≡ ∂s(α, β)
∂b′

.

By the construction of bN , it holds that, using Taylor’s expansion,

0 =
1√
N

∑
i

s(aN , bN ) =⇒

0 =
1√
N

∑
i

s(aN , β) +

{
1
N

∑
i

∇β′s(α, β)

}
√

N(bN − β) + op(1)

=⇒
√

N(bN − β)

= −
{

1
N

∑
i

∇β′s(α, β)

}−1
1√
N

∑
i

s(aN , β) + op(1)

=⇒
√

N(bN − β)

=

{
1
N

∑
i

s(α, β)s(α, β)′
}−1

1√
N

∑
i

s(aN , β) + op(1).
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To account for the first-stage estimation error aN − α, define

HN ≡ 1
N

∑
i

s(α, β)s(α, β)′ and

LN ≡ 1
N

∑
i

∇α′s(α, β).

Apply Taylor’s expansion to s(aN , β) in the above expression to get

√
N(bN − β) = H−1

N ·
{

1√
N

∑
i

s(α, β) + LN

√
N(aN − α)

}
+ op(1).

With ri denoting the first-stage LSE residual with Zi as the regressor vector,
up to op(1),

√
N(aN − α) =

1√
N

∑
i

(
1
N

∑
i

ZiZ
′
i

)−1

Ziri ≡
1√
N

∑
i

ηi,

ηi ≡
(

1
N

∑
i

ZiZ
′
i

)−1

Ziri.

Hence

√
N(bN − β) = H−1

N

{
1√
N

∑
i

s(α, β) + LN
1√
N

∑
i

ηi

}
+ op(1)

= H−1
N

1√
N

∑
i

qi + op(1) (where qi ≡ s(α, β) + LNηi)

� N(0,H−1E(qq′)H−1) where H ≡ E{s(α, β)s(α, β)′}.

Consistent estimators for H and E(qq′) are

ĤN ≡ 1
N

∑
i

s(aN , bN )s(aN , bN )′,

QN ≡ 1
N

∑
i

{
s(aN , bN ) + L̂Nηi

}{
s(aN , bN ) + L̂Nηi

}′
where

L̂N ≡ 1
N

∑
i

∇α′s(aN , bN ).

In practice, s can be obtained by numerical derivatives, and ∇α′s can be
obtained using numerical derivatives once more.

If the first-stage LSE involves two equations, each with regressor
Zji, residual rji, influence function ηji, and the parameter αj , j = 1, 2,
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then set
α ≡ (α′1, α

′
2)
′, aN ≡ (a′1N , a′2N )′, ηi ≡ (η′1i, η

′
2i)
′

and proceed as above.
The two-stage approach can be particularly useful when the first-stage

LSE residuals are plugged into an equation of interest to deal with endogene-
ity of some regressors. For instance, suppose

y1i = 1
[
βyy2i + x′1iβx + ui > 0

]
and

y2i = x′iα + vi = x′1iα1 + x′2iα2 + vi where
xi = (x′1i, x

′
2i)
′, ui = ρvi + εi, (v, x) � ε;

v can be heteroskedastic whereas ε cannot. The y1 equation is a SF and the
y2 equation is a RF; y2 is an endogenous regressor in the y1 SF because u is
related to v. This is a “triangular system.”

One way to deal with the endogeneity of y2 is to plug u = ρv + ε =
ρ(y2 − x′α) + ε into the y1 SF:

y1i = 1
[
βyy2i + x′1iβx + ρ(y2i − x′iα) + εi > 0

]
where α is the nuisance parameter to be estimated with LSE. Suppose ε ∼
N(0, σ2

ε). Then we can do MLE (probit) for y1 using y2, x1 and v̂ ≡ y2−x′alse

as the regressors, which is a special case of the above TSE. This way of
handling an endogenous regressor is “control function” (CF) approach, as the
endogeneity source v is controlled; LDV models with endogenous regressors
and CF and other approaches are examined in detail in Chapter 6. Kang and
Lee (2009) presented the details on how to estimate the asymptotic variance
in various TSE’s (including CF) to handle endogenous regressors. The model
they dealt with is not a binary response model, but the procedures described
there can be easily adapted to binary responses.

The essence of CF approach is that y2 is related to u only through v so
that the endogeneity of y2 is removed once v is controlled. The assumption
u = ρv + ε can be relaxed to, e.g.,

u = ρ0 + ρ1v + ρ2v
2 + ρ3v

3 + ε;

ε ∼ N(0, σ2
ε) is not essential as other distributions can be used instead.

Nevertheless, it is often assumed in practice that

(u, v) ∼ N(0,Ω) independently of x, which is sufficient for

u = ρv + ε and ε ∼ N(0, σ2
ε).

This assumption unnecessarily rules out heteroskedastic v, and the joint nor-
mality is also not necessary.
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4 Appendix for Chapter 4

4.1 LR and LM tests in NLS

Recall H0: R′β = c where R is k×g with k ≥ g. The restricted estimator
bNr is obtained maximizing wrt b

1
2

∑
i

{yi − r(xi, b)}2 + Nλ′(R′b − c)

where λ is a g × 1 Lagrangian multiplier and bNr satisfies the first-order
condition

0 =
∑

i

−{yi − r(xi, bNr)} rb(bNr) + NRλ.

Expand this display for bNr around bN : for some b∗Nr ∈ (bNr, bN ), be-
cause

∑
i −{yi − r(xi, bN )} rb(bN ) = 0 (the first-order condition for bN ),

0 =
∑

i

[rb (b∗N ) rb′ (b∗N ) − {yi − r (xi, b
∗
N )} rbb′ (b∗N )]

· (bNr − bN ) + NRλ =⇒

0 =
1
N

∑
i

[rb (b∗N ) rb′ (b∗N ) − {yi − r (xi, b
∗
N )} rbb′ (b∗N )]

·
√

N (bNr − bN ) +
√

NRλ.

Observe

1
N

∑
i

rb(b∗N )rb′(b∗N ) =
1
N

∑
i

rb(β)rb′(β) + op(1) and

1
N

∑
i

{yi − r(xi, b
∗
N )} rbb′(b∗N ) = E {u · rbb(β)} + op(1) = op(1).

Plugging this into the preceding display gives

0 = H
√

N(bNr − bN ) + R
√

Nλ + op(1), where H ≡ E {rb(β)rb′(β)} .

Multiply both sides by R′H−1 to get

0 = R′
√

N(bNr − bN ) + R′H−1R ·
√

Nλ + op(1)

=⇒
√

Nλ = (R′H−1R)−1
√

N(R′bN − c) + op(1), for R′bNr = c.

Substitute this back into 0 = H
√

N(bNr − bN ) + R
√

Nλ + op(1) to obtain

0 = H
√

N(bNr − bN ) + R(R′H−1R)−1
√

N(R′bN − c) + op(1)

=⇒
√

N(bN − bNr) = H−1R(R′H−1R)−1
√

N(R′bN − c)

=⇒ bNr = bN − H−1R(R′H−1R)−1(R′bN − c)
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which shows that bNr can be obtained from bN instead of maximizing the
above constrained maximand.

Apply Taylor expansion of second order to
∑

i{yi − r(xi, bNr)}2 around
bN to get, for some b∗N ∈ (bNr, bN ),∑

i

{yi − r(xi, bNr)}2 −
∑

i

{yi − r(xi, bN )}2

=
√

N(bNr − bN )′H
√

N(bNr − bN ) + op(1)

=N(R′bN − c)′(R′H−1R)−1(R′bN − c) + op(1)

as
√

N(bN−bNr) = H−1R(R′H−1R)−1
√

N(R′bN−c). Note that
√

N(R′

bN−c) =
√

N{R′(bN−β)} under H0 and σ2H−1 is the asymptotic variance of√
N(bN−β) under homoskedasticity. Hence, under H0 and homoskedasticity,

the LR-type test statistic for NLS is

LRnls =
∑

i{yi − r(xi, bNr)}2 −∑
i{yi − r(xi, bN )}2

N−1
∑

i û2
i

� χ2
g.

Turning to the LM-type test, we saw
√

Nλ = (R′H−1R)−1
√

N
(R′bN − c) + op(1) for the Lagrangian multiplier, and we can turn this to
a χ2 test statistic:

√
NRλ = R(R′H−1R)−1

√
N(R′bN − c) + op(1) =⇒

Nλ′R′H−1Rλ =
√

N(R′bN − c)′(R′H−1R)−1
√

N(R′bN − c) + op(1)

=⇒ N
λ′R′H−1Rλ

σ2

=
√

N(R′bN − c)′(R′σ2H−1R)−1
√

N(R′bN − c) + op(1)� χ2
g

under homoskedasticity.
Define ũi ≡ y − r(bNr) and observe

Rλ =
1
N

∑
i

ũirb(bNr) from the above bNr first-order condition;

1
N

∑
i

ũ2
i rb(bNr)rb′(bNr) →p E

{
u2rb(β)rb′(β)

}
= σ2H under homoskedasticity.

Hence, Nλ′R′H−1Rλ/σ2 can be written as op(1) plus

N · 1
N

∑
i

ũirb′(bNr) ·
{

1
N

∑
i

ũ2
i rb(bNr)rb′(bNr)

}−1
1
N

∑
i

ũirb(bNr)

=
∑

i

ũirb′(bNr)

{∑
i

ũ2
i rb(bNr)rb′(bNr)

}−1 ∑
i

ũirb(bNr) = LMnls.

Only bNr is needed for LMnls.
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4.2 Topics for GMM

4.2.1 LR and LM tests

Recall the GMM for Eψ(β) = 0 and H0 : h(β) = 0 where h(β) is a
Rg-valued function and

Waldgmm = N · h(bN )′
{

∂h(bN )
∂b′

Ω−1
N (bN )

∂h(bN )
∂b

}−1

h(bN ),

LRgmm = N

{
1
N

∑
i

ψ(bNr)W−1
N

1
N

∑
i

ψ(bNr) −
1
N

∑
i

ψ(bN )

W−1
N

1
N

∑
i

ψ(bN )

}
,

LMgmm =

{
1
N

∑
i

ψb(bNr)W−1
N

1√
N

∑
i

ψ(bNr)

}′
ΩN (bNr)−1

·
{

1√
N

∑
i

ψb(bNr)W−1
N

1
N

∑
i

ψ(bNr)

}
.

The restricted estimator bNr is obtained by minimizing wrt b

QN (b) + λ′h(b), where QN (b) ≡ 0.5
1
N

∑
i

ψ(b)′W−1
N

1
N

∑
i

ψ(b)

and λ is a g × 1 Lagrangian multiplier. Hence bNr satisfies the first-order
condition

1
N

∑
i

ψb(bNr)W−1
N

1√
N

∑
i

ψ(bNr) +
∂h(bNr)

∂b

√
Nλ = 0.

Expand this display for bNr around bN . Using bN ’s first-order condition,
the expansion yields, for some b∗Nr ∈ (bNr, bN ) and up to op(1),

0 =
1
N

∑
i

ψb(b
∗
Nr)W

−1
N

1
N

∑
i

ψb′(b
∗
Nr)

√
N(bNr − bN ) +

∂h(bN )
∂b

√
Nλ;

the term that would have the derivatives of ψb wrt b is negligible because it
includes

1
N

∑
i

ψ (b∗Nr)
√

N(bNr − bN ) = op(1) as
1
N

∑
i

ψ (b∗Nr) →p Eψ(β) = 0.

Also the term that would have the second derivatives of h(·) is negligible
as it includes (bNrj

− bNj)
√

Nλ which is of smaller order than the other
terms. Hence, since N−1

∑
i ψb(b∗Nr) →p Eψb(β) and ∂h(bN )/ ∂b →p ∂h(β)/

∂b ≡ R,

op(1) = H
√

N(bNr − bN ) + R
√

Nλ where H ≡ Eψb(β)W−1Eψb′(β);
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H is the probability limit of ΩN (bN ) (and ΩN (bNr) under the H0).
Multiply both sides by R′H−1 to get

op(1) = R′
√

N(bNr − bN ) + R′H−1R
√

Nλ =⇒
√

Nλ = (R′H−1R)−1R′
√

N(bN − bNr)

= (R′H−1R)−1R′
√

N{bN − β − (bNr − β)}

= (R′H−1R)−1R′
√

N(bN − β), as R′
√

N(bNr − β) = op(1)

under H0

which follows from

√
Nh(bNr) = 0 =⇒

√
Nh(β) +

∂h(b∗Nr)
∂b′

√
N(bNr − β) = 0

=⇒ {R′ + op(1)}
√

N(bNr − β) = 0 as h (β) = 0 under H0.

Substitute the
√

Nλ equation into op(1) = H
√

N(bNr − bN ) + R
√

Nλ
to get

op(1) = H
√

N(bNr − bN ) + R(R′H−1R)−1R′
√

N(bN − β)

=⇒
√

N(bNr − bN ) = −H−1R(R′H−1R)−1R′
√

N(bN − β).

The LR-type test statistic for GMM is obtained by applying Taylor expansion
of second order to 2QN (bNr) around bN : for some b∗N ∈ (bNr, bN ),

LRgmm = 2N{QN (bNr) − QN (bN )}
=

√
N(bNr − bN )′H

√
N(bNr − bN ) + op(1)

= N{R′(bN − β)}′(R′H−1R)−1{R′(bN − β)}

+ op(1)� χ2
g.

Turning to the LM-type test, use
√

Nλ = (R′H−1R)−1
√

NR′ (bN −β)+
op(1) under H0 to get

√
NRλ = R(R′H−1R)−1

√
NR′(bN − β) + op(1)

=⇒ Nλ′R′H−1Rλ

=
√

N{R′(bN − β)}′(R′H−1R)−1
√

NR′(bN − β) + op(1)� χ2
g.

From the bNr first-order condition, we get

√
NRλ = − 1

N

∑
i

ψb(bNr)W−1
N

1√
N

∑
i

ψ(bNr).

Substitute this into Nλ′R′H−1Rλ to obtain LMgmm.
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4.2.2 Optimal Weighting Matrix

Define A and C such that W−1 = AA′ and E(ψψ′) = CC ′ with C−1

existing. Also define D

D ≡ (EψbAA′Eψb′)
−1EψbAA′C − (EψbE

−1(ψψ′)Eψb′)
−1EψbC

−1′
.

Observe

D · C−1Eψb′ =
{

(EψbAA′Eψb′)
−1EψbAA′C − (EψbE

−1(ψψ′)Eψb′)
−1

EψbC
−1′} · C−1Eψb′ = 0

and

DD′ =
{

(EψbAA′Eψb′)
−1EψbAA′C − (EψbE

−1(ψψ′)Eψb′)
−1EψbC

−1′}
·
{

(EψbAA′Eψb′)
−1EψbAA′C − (EψbE

−1(ψψ′)Eψb′)
−1EψbC

−1′}′
= (EψbAA′Eψb′)

−1
EψbAA′CC ′AA′Eψb′(EψbAA′Eψb′)

−1

− (EψbAA′Eψb′)
−1EψbAA′CC−1Eψb′(EψbE

−1(ψψ′)Eψb′)
−1

− (EψbE
−1(ψψ′)Eψb′)

−1EψbC
−1′

C ′AA′Eψb′(EψbAA′Eψb′)
−1

+ (EψbE
−1(ψψ′)Eψb′)

−1EψbC
−1′

C−1Eψb′(EψbE
−1(ψψ′)Eψb′)

−1.

Among the four terms, the first term is the GMM variance indexed by W ,
and each of the second and third terms is −(EψbE

−1(ψψ′)Eψb′)−1, which
cancels the fourth term. Hence{

EψbW
−1Eψb′

}−1
EψbW

−1Eψψ′W−1Eψb′
{
EψbW

−1Eψb′
}−1

= DD′ +
{
EψbE

−1(ψψ′)Eψb′
}−1

.

This is therefore minimized when D = 0 with the minimum {EψbE
−1

(ψψ′)Eψb′}−1.

4.2.3 Over-Identification Test

To see why the GMM over-id test statistic follows χ2
s−k, observe first

1√
N

∑
i

ψ (β)′W−1
N

1√
N

∑
i

ψ (β)� χ2
s.

Taylor-expand N−1/2
∑

i ψ(β) around β = bN (= bgmm)

1√
N

∑
i

ψ (β) =
1√
N

∑
i

ψ (bN ) − 1
N

∑
i

ψb′ (b∗N )
√

N (bN − β) .
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Substitute this into the preceding display to get op(1) plus{
1√
N

∑
i

ψ (bN ) − 1
N

∑
i

ψb′ (β)
√

N (bN − β)

}′
W−1

N

·
{

1√
N

∑
i

ψ (bN ) − 1
N

∑
i

ψb′ (β)
√

N (bN − β)

}
.

Because N−1
∑

i ψb(bN )W−1
N N−1/2

∑
i ψ(bN ) = 0 (the first-order condition

for bN ), the cross-products disappear to leave

1√
N

∑
i

ψ (bN )′W−1
N

1√
N

∑
i

ψ (bN )

+
√

N (bN − β)′
1
N

∑
i

ψb (β) W−1
N

1
N

∑
i

ψb′ (β)
√

N (bN − β) .

The whole term is χ2
s whereas the second term is χ2

k because N−1
∑

i ψb

(β)W−1
N N−1

∑
i ψb′(β) is the inverse of the asymptotic variance of

√
N(bN −

β). Also the two terms in the display are asymptotically independent, which
is shown in the following. Hence, the first term which is the GMM over-id
test statistic follows χ2

s−k.
Observe

√
N(bN − β) = − C

1√
N

∑
i

ψ(β) + op(1) where

C ≡ {EψbE
−1(ψψ′)Eψb′}−1EψbE

−1(ψψ′).

1√
N

∑
i

ψ(bN ) =
1√
N

∑
i

ψ(β) +
1
N

∑
i

ψb′(β)
√

N(bN − β) + op(1)

(Taylor expansion)

= (Is − Eψb′C)
1√
N

∑
i

ψ(β) + op(1) (using
√

N(bN − β)

= −C
1√
N

∑
i

ψ(β) + op(1)).

From these[ √
N(bN − β)

N−1/2
∑

i ψ(bN )

]
=

[
−C

Is − Eψb′C

]
1√
N

∑
i

ψ(β) + op(1)

which is asymptotically normal with its variance[
−C

Is − Eψb′C

]
· E(ψψ′) · [−C ′, Is − C ′Eψb].
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The off-diagonal term (i.e., the asymptotic covariance) is

− C E
(
ψψ′

)
(Is − C ′Eψb)

= −
{
EψbE

−1
(
ψψ′

)
Eψb′

}−1
EψbE

−1
(
ψψ′

)
· E

(
ψψ′

)
(Is − C ′Eψb)

= −
{
EψbE

−1
(
ψψ′

)
Eψb′

}−1
Eψb (Is − C ′Eψb)

= −
{
EψbE

−1
(
ψψ′

)
Eψb′

}−1
Eψb +

{
EψbE

−1
(
ψψ′

)
Eψb′

}−1
Eψb

· E−1
(
ψψ′

)
Eψb′

{
EψbE

−1
(
ψψ′

)
Eψb′

}−1 · Eψb = 0.

5 Appendix for Chapter 5

5.1 Proportional Hazard and Accelerated Failure Time

5.1.1 Proportional Hazard

Proportional hazard includes Weibull hazard λ(t, x) = αtα−1 · ex′β and
exponential power hazard λ(t, x) = αtα−1 exp(θtα) · ex′β . The latter hazard,
however, is not a proportional hazard if θ depends on x. Of course, the more
general form of hazard is the ones not separable in t and x; one example is
the log-logistic hazard with θ(x) = exp(x′β).

To see the motivation to adopt proportional hazard, observe that, when
person i ends duration at yi without being censored, everybody who survived
up to yi was at risk of ending the duration along with person i. The likelihood
of person i to be “chosen” out of all those people at risk is, with λ(t, x) =
λ0(t)φ(xi, β) and φ(xi, β) = exp(x′iβ),

λ0(yi) · φ(xi, β)∑
j∈{those surviving at yi} λ0(yi) · φ(xj , β)

=
exp(x′iβ)∑

j∈{those surviving at yi} exp(x′jβ)
.

Constructing the likelihood function that is the product of these ratios across
the time points at which the “event duration” (not censored duration) is
observed, we can estimate β as shown by Cox (1972)—this is further examined
in the semiparametrics chapters.

One advantage of this method relative to the other estimation methods
that appeared in the main text is that λ0(t) does not have to be specified
as it drops out of the likelihood function. Another advantage is allowing for
time-varying regressors x(t):

exp{xi(yi)′β}∑
j∈{those surviving at yi} exp{xj(yi)′β}

;

xj(yi) is the value of the person-j regressors when person-i duration ends.
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Lancaster (1979) introduced a positive error term (i.e., unobserved het-
erogeneity) v with its df Fv independent of x in the proportional hazard
model:

λ(t, x; v) = λ0(t)φ(x, β) · v

=⇒ Λ(t, x; v) = Λ0(t)φ(x, β)v where Λ0(t) ≡
∫ t

0

λ0(s)ds.

Λ(t, x; v) is the cumulative hazard conditional on x and v. This model is called
“mixed proportional hazard (MPH).” The survival function conditional on x
and v is exp{−Λ0(t)φ(x, β)v}. Integrating out v and subtracting the outcome
from 1 yields the duration df free of v:

1 −
∫ ∞

0

exp{−Λ0(t)φ(x, β)v}dFv(v).

By specifying parametric functional forms of Λ0(t), φ(x, β) and Fv, MLE
can be applied to estimate β as done in Lancaster (1979). But Elbers and
Ridder (1982) showed that, if there is at least one non-constant regressor and
E(v) < ∞, then all three functions are nonparametrically identified. Heckman
and Singer (1984) further examined this nonparametric identification issue
and provided other identification conditions trading off assumptions from
those in Elbers and Ridder (1982).

5.1.2 Accelerated Failure Time (AFT)

Suppose

ln y = (−x)′β + u (⇐⇒ y = e−x′βeu), u � x

eu has the survival and integrated hazard functions Se(·) and Λe(·),
respectively.

Then

S(t|x) = P (y > t|x) = P (eu > tex′β |x) = Se(tex′β) = exp{−Λe(tex′β)}.

The role of x is only to multiply t in Se(tex′β)—i.e., accelerating or decel-
erating t. This model is called accelerated failure-time (AFT) model. From
−∂ lnS(t|x)/∂t = λ(t|x), taking ln on the last display and differentiating it,
we get

λ(t|x) = λe(tex′β)ex′β .

Although AFT accords a nice interpretation for the role of regressors,
there should be no good reason to be “obsessed” with AFT and insist on
u � x. We may just take the log linear model allowing for, for instance, an
unknown form of heteroskedasticity to use econometric techniques available
for log-linear models. In this case, what is lost is the AFT interpretation
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that x affects y only through the accelerating/decelerating route, because x
can affect y through more than one channel if u|x is a non-constant function
of x.

Rewrite the AFT equation as eu = yex′β = y/e−x′β . This can be viewed
as discounting y with its systematic component e−x′β to get an error term
eu. Alternatively, eu may be viewed as the duration when x = 0; then x = 0
can accelerate or deccelerate the “baseline duration” eu.

If x is time-varying, then the discounting factor should be replaced by
an integral of the time-varying discounting factor, which motivates (Cox and
Oakes, 1984)

eu =
∫ y

0

exp{x(τ)′β}dτ {= yex′β if x is time-constant}.

Then

S(t|x) = P (y > t|x) = P

(
eu >

∫ t

0

exp{x(τ)′β}dτ |x
)

= Se

[∫ t

0

exp{x(τ)′β}dτ

]
=⇒ Λ(t|x) = − ln S(t|x) = − ln Se

[∫ t

0

exp{x(τ)′β}dτ

]
= Λe

[∫ t

0

exp{x(τ)′β}dτ

]
=⇒ λ(t|x) = Λe

[∫ t

0

exp{x(τ)′β}dτ

]
· exp{x(t)′β}.

Specifying Λe (i.e., Se), MLE for AFT can be applied allowing for time-
varying regressors. Robins and Tsiatis (1992) proposed a semiparametric es-
timator using the relation eu =

∫ y

0
exp{x(τ)′β}dτ without specifying Se. See

Zeng and Lin (2007) and the references therein for more.

5.1.3 Further Remarks

In Weibull distribution, both proportional hazard and AFT hold. To
see that AFT holds for Weibull, first recall the “invariance” property that,
regardless of the distribution of y,

Λ(y) ∼ Expo(1) and − ln Λ(y) ∼ “standard” type-1 extreme value
distribution.

Now recalling Λ(t) = θtα for Weibull, when y|x follows Weibull with θ(x) =
exp(x′β) and α, we get − ln Λ(y) = −α ln y − ln θ(x). Hence

−α ln y − x′β follows the “standard” type-I extreme value distribution.
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That is, with ε ≡ −α ln y − ln θ(x) following the standard type-I extreme
value distribution, we get ln y = −x′β/α + (−ε/α) as in the AFT model
where −ε/α is independent of x and its distributional form is known up to α.

In practice, Weibull MLE is widely used for censored durations. Also the
ln y model (ln y = x′β + u) assuming u ∼ N(0, σ2) to deal with censoring is
often used. Note that when u ∼ N(μ, σ2) with μ = 0, the error term eu in
the AFT model y = e−x′βeu follows lognormal distribution with

E(eu) = exp
(

μ +
σ2

2

)
and V (eu) = exp(2μ + 2σ2) − exp(2μ + σ2).

An advantage of log-linear models is that they are easier to interpret than
hazard-based models; e.g., βk in βk lnxk is the elasticity of the duration wrt
xk. Also we can apply many familiar estimators/tests to log-linear models.
A disadvantage is, however, that log-linear models are inconvenient if there
are time-varying regressors, although they may be accommodated as follows.
Suppose that xk is time-varying at some time points t1, ..., tJ , and its values
at those times x

(t1)
k , ..., x

(tJ )
k are either observed or predicted easily. Then

x
(t1)
k , ..., x

(tJ )
k can be used as separate regressors in log-linear models.

A generalization of AFT is a transformation-of-variable model

T (y;α) = (−x)′β + u

where T (y;α) is a function parametrized by α that should be estimated along
with β. For instance, T (y;α) can be the Box-Cox transformation of y. In the
Weibull case, recall that we had α ln y = (−x)′β + u; i.e., T (y;α) = α ln y.

Estimating α jointly with β can be troublesome as both α and β have
to do with a single “entity”—the effect of x on y. In the semiparametrics
chapters, it will be seen that β can be estimated first without estimating α,
and then if desired, α can be estimated with β replaced by β̂. Ridder (1990)
called the model with a nonparametric transformation T (y) “Generalized
AFT (GAFT),” and showed that T (y), β and the error term distribution
that is assumed to be independent of x are nonparametrically identified up
to a normalization.

6 Appendix for Chapter 6

6.1 Type-I Extreme Errors to Multinomial Logit

Here we will show that, for each i, if ui1, ..., uiJ are iid with type-I ex-
treme value distribution where alternative-j utility is

sij = q′ijαj + uij ≡ Rij + uij , where Rij ≡ q′ijαj ,

then the choice probabilities take the multinomial logit form

P (yij = 1|qi) =
exp(Rij)∑J

j=1 exp(Rij)
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where qi consists of the elements in qi1, ..., qiJ . In the following, we will omit
the subscript i. We will also often omit “|qi,” under which Rij is a constant.

Recall the df exp(−e−u) and density f(u) = exp(−u − e−u). Observe
now

P (yj = 1|q) = P (Rj + uj > Rj′ + uj′ , ∀j′ = j)
= P (uj′ < uj + Rj − Rj′ , ∀j′ = j)

=
∫ ∏

j′ �=j

P (uj′ < uj + Rj − Rj′ , ∀j′ = j |uj)f(uj)duj

as uj′ ’s are independent

=
∫ ∏

j′ �=j

exp(−e−uj−Rj+Rj′ ) · exp(−uj − e−uj )duj .

It is helpful to rewrite the
∏

j′ �=j exp(·) part as

∏
j′ �=j

exp(−e−uj−Rj+Rj′ ) = exp

⎡⎣ln

⎧⎨⎩∏
j′ �=j

exp(−e−uj−Rj+Rj′ )

⎫⎬⎭
⎤⎦ .

Now observe that the logarithm part is

ln

⎧⎨⎩∏
j′ �=j

exp
(
−e−uj−Rj+Rj′

)⎫⎬⎭ =
∑
j′ �=j

−e−uj−Rj+Rj′

=
∑
j′ �=j

−e−uj−Rj · eRj′ = −e−uj · e−Rj

∑
j �=j

eRj′

= −e−uj · e−Rj

⎛⎝∑
j′

eRj′ − eRj

⎞⎠ = −e−uj

⎛⎝∑
j′

eRj′

eRj
− 1

⎞⎠
= −e−uj

∑
j′

(
eRj /eRj′

)
+ e−uj .

Thus the
∏

j′ �=j exp(·) part is exp{−e−uj
∑

j′(eRj /eRj′ ) + e−uj}, and hence

P (yj = 1|q) =
∫

exp

⎧⎨⎩−e−uj

∑
j′

(eRj /eRj′ ) + e−uj

⎫⎬⎭
· exp(−uj − e−uj )duj

=
∫

exp

⎧⎨⎩−e−uj

∑
j′

(
eRj /eRj′

)⎫⎬⎭ · exp(−uj)duj

=
∫

exp(−uj) · exp
{
−e−uj eln(

∑
j′ e

R
j′ /eRj )

}
duj
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=
∫

exp(−uj) · exp
[
−e−{uj−ln(

∑
j′ e

R
j′ /eRj )}

]
duj .

Multiply and then divide by exp{− ln(
∑

j′ eRj′ /eRj )} to get

exp

⎧⎨⎩− ln

⎛⎝∑
j′

eRj′ /eRj

⎞⎠⎫⎬⎭
∫

exp

⎧⎨⎩−

⎛⎝uj − ln

⎛⎝∑
j′

eRj′ /eRj

⎞⎠⎞⎠⎫⎬⎭
exp

[
−e
−
{

uj−ln
(∑

j′ e
R

j′ /eRj
)}]

duj

= exp

⎧⎨⎩− ln

⎛⎝∑
j′

eRj′ /eRj

⎞⎠⎫⎬⎭
∫

exp
(
−u∗j

)
exp

(
−e−u∗

j

)
du∗j

(with u∗j ≡ uj − ln

⎛⎝∑
j′

eRj′ /eRj

⎞⎠)

= exp

⎧⎨⎩− ln

⎛⎝∑
j′

eRj′ /eRj

⎞⎠⎫⎬⎭ (as the integral is
∫

f(u)du = 1)

=
eRj∑
j′ eRj′

.

6.2 Two-Level Nested Logit

6.2.1 Lower-Level MNL

For alternative j in the total J-many alternatives, define

wij ≡ (−x′i1, 0′kx
, . . . , 0′kx

, x′ij , 0′kx
, . . . , 0′kx

, 0′kz
, . . . , 0′kz

, z′i, 0′kz
, . . . , 0′kz

)′

so that

−xi1δ1 + xijδj + z′i(ηj − η1) + uij − ui1 = w′ijβ + uij − ui1;

this generalizes wi2 and wi3 in three alternative cases. Recall that wij have
many zero vectors whereas qij is the zero-stripped version of wij and that
the regression function for alternative j is w′ijβ = q′ijαj ; αj = (−δ′1, δ

′
j , η

′
j −

η
′
1)
′ is the alternative-j-specific parameters. We will use wij or qij at our

convenience.
Let

Pi,jk
= P (i chooses house j in town k| wi)

k = 1, ...,K, jk = 1, ..., Jk (J = ΣK
k=1Jk).

For example, there are four houses and two towns, each with two houses.
Then, K = 2 (number of towns), J1 = 2 (number of houses in town 1),
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J2 = 2 (number of houses in town 2), J = 4 (the total number of houses in
all towns), with the correspondence

house 1 : 11 (first house in town 1), house2 : 21 (second house in town1),
house 3 : 12 (first house in town 2), house4 : 22 (second house in town2).

Let
Pi,jk|k denote P (i chooses jk| town k is chosen).

For the first (lower) stage of nested logit (NES), we have, for a given k (town)

Pi,jk|k =
exp(q′ijk

αjk
/σk)

ΣJk
jk=1 exp(q′ijk

αjk
/σk)

, jk = 1, ..., Jk

which is 1 if Jk = 1; q′ijk
αjk

/σk is the regression function before location
normalization within town (or “nest”) k. When Jk ≥ 2 (at least two houses),
normalize with the first house within town k to get

Pi,1k|k =
1

1 + ΣJk
jk=2 exp(w′ijk

βk/σk)
,

Pi,jk|k =
exp(w′ijk

βk/σk)

1 + ΣJk
jk=2 exp(w′ijk

βk/σk)
, jk = 2, ..., Jk

where wijk
and βk are defined relative to the first house 1k in town k analo-

gously to wij and β:

βk ≡ (δ′1k
, ..., δ′Jk

, (η2k
− η1k

)′, ..., (ηJk
− η1k

)′)′,
wijk

≡ (−x′i1k
, 0′kx

, . . . , 0′kx
, x′ijk

, 0′kx
, . . . , 0′kx

, 0′kz
, . . . , 0′kz

, z′i,

0′kz
, . . . , 0′kz

)′, jk = 2, ..., Jk.

MNL is applied to each town to estimate βk/σk if Jk ≥ 3; binary logit is
sufficient if Jk = 2; no estimation is necessary if Jk = 1. In βk, δj ’s for the
houses only in the same town are included, and each ηjk

is centered at η1k
,

the first houses in town k, not at the very first house among the total J
houses. Note that wi1k

is not defined yet.
For the 2 × 2 town example, J1 = J2 = 2, and thus binary logit can be

applied to each town with

wi2k
≡ (−x′i1k

, x′i2k
, z′i)

′ and βk ≡ (−δ′1k
, δ′2k

, (η2k
− η1k

)′)′.

Consequently, what is identified in the first (lower) stage of NES for k = 1
and k = 2 is

δ11

σ1

(
=

δ1

σ1

)
,

δ21

σ1

(
=

δ2

σ1

)
,

δ12

σ2

(
=

δ3

σ2

)
,

δ22

σ2

(
=

δ4

σ2

)
,

η21
− η11

σ1

(
=

η2 − η1

σ1

)
,

η22
− η12

σ2

(
=

η4 − η3

σ2

)
.

Note that there should be three “η-vectors” for the total 4 (= J) alternatives,
although there are only two here. This is because two alternatives (one house
from each town) are left out for normalization.
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6.2.2 Upper-Level MNL

For the second (higher) stage of NES, define the “inclusive value” mik:

mik ≡ ln{ΣJk
jk=1 exp(q′ijk

αjk
/σk)} to get

Pik ≡ P (i chooses town k | wi) =
exp(σkmik)∑K

k=1 exp(σkmik)
;

if Jk = 1, let σk = 1.
But mik is not identified; define thus the “normalized inclusive value”

vik that is identified from the first-stage:

vik ≡ ln{1 + ΣJk
jk=2 exp(w′ijk

βk/σk)};
let vik = 0 for k with Jk = 1. Multiplying and dividing exp(mik) by (q′i1k

α1k
/

σk), we can see that

mik = ln[exp(q′i1k
α1k

/σk) · {1+ΣJk
j=2 exp(w′ijk

βk/σk)}] = (q′i1k
α1k

/σk)+ vik;

for those k with Jk = 1, we get mik = q′i1k
α1k

, because σk = 1 and vik = 0.
Hence,

Pik =
exp(q′i1k

α1k
+ σkvik)∑K

k=1 exp(q′i1k
α1k

+ σkvik)
.

Normalizing with the first town,

Pi1 =
1

1 +
∑K

k=2 exp(q′i1k
α1k

− q′i11
α11 + σkvik − σ1vi1)

,

Pik =
exp(q′i1k

α1k
− q′i11

α11 + σkvik − σ1vi1)

1 +
∑K

k=2 exp(q′i1k
α1k

− q′i11
α11 + σkvik − σ1vi1)

for k = 1.

Observe

q′i1k
α1k

− q′i11
α11 = −x′i11

δ11 + x′i1k
δ1k

+ z′i(η1k
− η11

) = w′i1k
β0 where

wi1k
≡ (−x′i11

, 0′kx
, . . . , 0′kx

, x′i1k
, 0′kx

, . . . , 0′kx
,

0′kz
, . . . , 0′kz

, z′i, 0′kz
, . . . , 0′kz

)′,

β0 ≡ (δ′11
, ..., δ′1K

, (η1k
− η11

)′, ..., (η1K
− η11

)′)′;

β0 consists of the parameters for the first houses in all towns. Hence

Pi1 =
1

1 +
∑K

k=2 exp(w′i1k
β0 + σkvik − σ1vi1)

,

Pik =
exp{w′i1k

β0 + σkvik − σ1vi1}
1 +

∑K
k=2 exp(w′i1k

β0 + σkvik − σ1vi1)
.

Using these, we can estimate

β0 and σ1, . . . , σK

with MNL (or binary logit if K = 2).
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6.2.3 Final-Stage MLE and Remarks

After the second stage, multiply the identified first-stage parameters
(βk/σk) by σk to identify βk for each town k. This identifies all δj parameters.
As for “η-parameters,”

ηj1 − η11
, ηj2 − η12

, ..., ηjK
− η1K

were identified in the first stage where each ηjk
in town k was centered around

η1k
, the first house within the town. If we want ηjk

centered around the very
first town among all the houses, we can do that after the second stage with

(ηjk
− η1k

) + (η1k
− η11

) = ηjk
− η11

where the first term is from the first-stage and the second term is from the
second-stage; note η11

= η1.
We may stop after the second-stage, but to enhance efficiency and to

get standard errors, we can do MLE using the two-stage estimator as initial
values; alternatively, MNL with σk = 1 may be used as initial values. Asymp-
totically, taking just one Newton–Raphson step from the two-stage estimator
is equivalent to the fully iterated version. For either version, MLE requires
setting up the likelihood function for which we need

Pijk
= P (i chooses jk|wi) = Pi,jk|k · Pik.

Using the normalized probabilities (recall αj = (−δ′1, δ
′
j , η

′
j − η

′
1)
′)

Pi11 =
1

1 + ΣJ1
jk=2 exp(w′ij1β

1/σ1)

· 1
1 + ΣK

k=2 exp(q′i1k
α1k

− q′i11
α11 + σkvik − σ1vi1)

,

Pij1 =
exp(w′ij1β

1/σ1)

1 + ΣJ1
jk=2 exp(w′ij1β

1/σ1)

· 1
1 + ΣK

k=2 exp(q′i1k
α1k

− q′i11
α11 + σkvik − σ1vi1)

,

Pi1k
=

1
1 + ΣJk

jk=2 exp(w′ijk
βk/σk)

· exp(q′i1k
α1k

− q′i11
α11 + σkvik − σ1vi1)

1 + ΣK
k=2 exp(q′i1k

α1k
− q′i11

α11 + σkvik − σ1vi1)
,

Pijk
=

exp(w′ijk
βk/σk)

1 + ΣJk
jk=2 exp(w′ijk

βk/σk)

· exp(q′i1k
α1k

− q′i11
α11 + σkvik − σ1vi1)

1 + ΣK
k=2 exp(q′i1k

α1k
− q′i11

α11 + σkvik − σ1vi1)
.



6 Appendix for Chapter 6 581

In summary, NES proceeds as follows:

1. Do (multinomial) logit across houses for each town to estimate βk/σk.

2. Obtain the normalized inclusive value vik, and do (multinomial) logit
across towns to estimate β0 (for wi1k

) and σ1 (for −vi1), . . . ,
σK (for viK).

3. Find δjk
by multiplying the estimates at step 1 by σk estimated at step

2; find ηjk
− η11

by adding ηjk
− η1k

from step 1 to η1k
− η11

from
step 2.

4. To do the MLE instead of the two-stage estimation for NES, obtain
L(β, σ1, ..., σK) = ΣiΣK

k=1Σ
Jk
jk=1yijk

lnPijk
, where Pijk

’s are functions
of β, σ1, ..., σK , yijk

is the choice dummy that takes 1 if i chooses jk

and 0 otherwise, and β = (δ′1, ..., δ
′
J , η′2 − η′1, .., η

′
J − η′1)

′.

To see that NES includes MNL as a special case when σk = 1 ∀k, write
Pijk

using the non-normalized probabilities:

Pijk
=

exp(q′ijk
αjk

/σk)

ΣJk
jk=1 exp(q′ijk

αjk
/σk)

· exp(σkmik)
ΣK

k=1 exp(σkmik)
.

As mik ≡ ln{ΣJk
jk=1 exp(q′ijk

αjk
/σk)}, we get

exp(σkmik) = ΣJk
jk=1 exp(q′ijk

αjk
/σk) and

ΣK
k=1 exp(σkmik) = ΣK

k=1Σ
Jk
j=1 exp(q′ijk

αjk
/σk).

Hence Pijk
= exp(q′ijk

αjk
/σk)/ΣK

k=1Σ
Jk
j=1 exp(q′ijk

αjk
/σk). With σk = 1 ∀k,

this is nothing but the MNL probability when all J houses are taken together.

NES relaxes the IIA assumption of MNL. Suppose J = 3 and K = 2
with car (j = 1 with J1 = 1), red bus (j = 2), and blue bus (j = 3) with
J2 = 2; the two buses are nested. Observe, with vi1 = 0 due to J1 = 1,

Pi11 =
1

1 + exp(q′i12
α12 − q′i11

α11 + σ2vi2)
,

Pi12 =
1

1 + exp(w′i22
β2/σ2)

· exp(q′i12
α12 − q′i11

α11 + σ2vi2)
1 + exp(q′i12

α12 − q′i11
α11 + σ2vi2)

.

The ratio of the choice probabilities for car and red bus is, as exp(vi2) =
{1 + exp(w′ij2β

2/σ2)},
Pi11

Pi12

=
1

1 + exp
(
w′i22

β2/σ2

) exp
(
q′i12α12 − q′i11α11

) · {1 + exp
(
w′i22β2/σ2

)}σ2
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=
{

1 + exp
(
w′i22β2/σ2

)}σ2−1
· exp

(
q′i12α12 − q′i11α11

)
=

{
1 + exp

(
x′i3

δ3

σ2
− x′i2

δ2

σ2
+ z′i

η3 − η2

σ2

)}σ2−1

· exp
(
x′i2δ2 + z′iη

′
2

−x′i1δ1 − z′iη1

)
.

Unless σ2 = 1 or δ3 = 0, xi3 matters for this ratio.

6.3 Asymptotic Distribution of MSM estimators

Recall the Multinomial probit(MNP) first-order condition

N∑
i=1

J∑
j=1

{yij − Pij(g)}zij(g) = 0, zij(g) ≡ ∂ lnPij(g)
∂g

=⇒

N∑
i=1

zi
k×J

(g){yi − Pi(g)} = 0
J×1

where Pi(g) and zi(g) are the stacked versions of Pij(g) and zij(g) across
j = 1, ..., J , respectively. Viewed as MOM, the MOM estimator satisfying
this condition is MNP with

√
N(gmom − γ) � N(0, I−1

f ). In the following,
the MSM gmsm that simulates Pi(g) and zij(g) will be shown to have an
asymptotic variance slightly larger than I−1

f due to the simulation error.
As is the case usually, the error in estimating the instrument zi(g) does

not affect the asymptotic variance of gmsm, so we will denote zi(g) just as
zi as if it does not depend on g. Denoting the simulated estimator for Pi(g)
as fi(g), the asymptotic distribution of gmsm, denoted also as gN , will be
derived using the decomposition

1√
N

∑
i

zi{yi − fi(gN )}

=
1√
N

∑
i

zi[{yi − fi(γ)} − {Pi(gN ) − Pi(γ)} + {fi(γ) − Pi(γ)}

− {fi(gN ) − Pi(gN )}] = 0.

Denote all regressors determining the choice probabilities as wi; both
zi and Pi(g) depend on wi, whereas fi(g) depends on wi and the simulated
error vector εi. Note Eε{fi(g)|wi} = Pi(g) where Eε{·|wi} is taken wrt the
simulated error; this unbiasedness of fi(g) for Pi(g) holds due to a LLN and
the fact that fi(g) is an average of the simulated samples. Using “stochastic
equicontinuity,”it holds that

1√
N

∑
i

zi[{fi(γ) − Pi(γ)} − {fi(gN ) − Pi(gN )}] = op(1).
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This display substituted into the preceding one yields

1√
N

∑
i

zi{yi − fi(γ)} − 1√
N

∑
i

zi{Pi(gN ) − Pi(γ)} = op(1).

Apply the mean value theorem to Pi(gN ) around γ to get, for some g∗N ∈
(gN , γ),

Pi(gN ) − Pi(γ) =
∂Pi(g∗N )

∂g′
(gN − γ).

Substitute this into the preceding display to obtain

1√
N

∑
i

zi{yi − fi(γ)} − 1
N

∑
i

zi
∂Pi(g∗N )

∂g′
·
√

N(gN − γ) = op(1)

=⇒
√

N(gN − γ) = E−1

{
zi

∂Pi(γ)
∂g′

}
· 1√

N

∑
i

zi{yi − fi(γ)} + op(1).

From E[zi{yi − Pi(γ)}] = 0, which is the MLE population first-order
condition written as a moment condition, we get the information equality in
the form

(If =) E[zi{yi − Pi(γ)}{yi − Pi(γ)}′zi] = −E

{
zi

∂Pi(γ)
∂g

}
.

This leads to

√
N(gN − γ) = −I−1

f · 1√
N

∑
i

zi{yi − fi(γ)}+ op(1)

= −I−1
f

[
1√
N

∑
i

zi(yi − Pi) +
1√
N

∑
i

zi{Pi − fi(γ)}
]

+ op(1).

The first term −I−1
f N−1/2

∑
i zi(yi − Pi) yields the MNP asymptotic distri-

bution. As can be conjectured from the next paragraph, the first and second
terms are uncorrelated. Thus we just have to obtain the second term variance.

Observe

E[zi{Pi − fi(γ)}] = E[ziEε{Pi − fi(γ)|wi}] = 0 as Eε{Pi − fi(γ)|wi} = 0.

For the variance, denote fi as n−1
∑n

t=1 g(wi, εt) where g(wi, εt) is an indi-
cator function that differs from yi only in that yi is generated with wi and
the true errors while g(wi, εt) is generated with wi and the simulated errors
following the same distribution as the true errors do. Then

E{(Pi − fi)(Pi − fi)′|wi} = E

[{
1
n

n∑
t=1

(g(wi, εt) − Pi)

}
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{
(
1
n

n∑
t=1

(g(wi, εt) − Pi)

}′
|wi

]

=
1
n

E [{g(wi, εt) − Pi} {g(wi, εt) − Pi}′|wi]

=
1
n

E{g(wi, εt)g(wi, εt)′ − Pig(wi, εt)′ − g(wi, εt)P ′i + PiP
′
i |wi}

=
1
n

E{g(wi, εt)g(wi, εt)′ − PiP
′
i |wi} {as E{Pig(wi, εt)′|wi}

= PiE{g(wi, εt)′|wi} = PiP
′
i}

=
1
n

E{yiy
′
i − PiP

′
i |wi} =

1
n

E{(yi − Pi)(yi − Pi)′|wi} =
1
n

If .

Hence we get

√
N(gN − γ)� N

{
0, I−1

f

(
If +

If

n

)
I−1
f

}
= N

{
0,

(
1 +

1
n

)
I−1
f

}
.

7 Appendix for Chapter 7

7.1 Other Density Estimation Ideas

In the following, we introduce three more nonparametric density esti-
mation ideas with k = 1. More nonparametric methods will appear later for
nonparametric regression.

7.1.1 Nearest-Neighbor Method

On average, N ·2hf(xo) observations in a data set will fall in the interval
[xo − h, xo + h], because 2hf(xo) � P (xo − h ≤ xi ≤ xo + h). Rearrange the
data in an increasing order of distance from xo and denote the distance of
the ith nearest datum by di(xo). Then in the interval of [xo − ds(xo), xo +
ds(xo)], there are s observations. Thus, s should be approximately equal to
N · 2ds(xo)fN (xo), and solving this for fN (xo) gives

fN (xo) =
s

N2ds(xo)

which is called the sth nearest-neighbor estimator. Here, s is the smoothing
parameter as h is in the kernel method, and s should be chosen such that
s/N → 0 as N → ∞; e.g., s =

√
N .

The advantage of nearest neighbor (NN) method over kernel method
is that the same number of observations are used for estimating f(xa) as
well as f(xb). This is achieved by letting the size of neighborhood flexible
depending on the availability of neighboring observations. In kernel method,
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the size of neighborhood is fixed by h and the number of observations used
for f(xa) and f(xb) differ. The disadvantage of nearest neighbor method is
that the curve estimate is not smooth and it is not a density in general—i.e.,∫

fN (xo)dxo = 1.

7.1.2 Maximum Penalized Likelihood Estimator

Extending the idea of MLE, we may consider maximizing the likelihood
function over the space of all possible probability density functions of x.
There is a major difference between this idea and the usual MLE: in the
latter we have only a finite number of parameters, while in the former we
have an infinite number of parameters. One modification to make this idea
operational is penalizing the “overfit.” The maximum penalized likelihood
estimator is defined by

max
g∈G

∑
i

{
ln g(xi) − α

∫
g′′(x)2dx

}
where G is a set of probability densities satisfying certain properties.

In maximum penalized likelihood estimator, α determines the degree of
smoothing. With α = 0, the resulting estimate will be too jagged, because
g can be chosen to have a peak (mode) at each xi = 1, ..., N subject to the
unit integral constraint. With a high α, the total variation in g is highly
penalized, and the density with a peak at each xi will be no longer opti-
mal. Note that we use g′′, not g′, to measure the variation of g; a straight
line with a slope has g′ = 0 but it is just a transposition of a flat line.
This idea is related to “spline smoothing” to be seen later in nonparametric
regression.

7.1.3 Series Approximation

Suppose we suspect that f(x) is a normal density, but not quite sure of
this. In this case, we may specify the density as

f(x;μ, σ, β) =
1
σ

φ

(
x − μ

σ

)
+ β · ψ(x)

where φ(·) is the N(0, 1) density, (μ, σ, β) are unknown parameters, and∫
ψ(x)dx = 0 so that

∫
f(x;μ, σ, β)dx = 1. An estimate of β will shed light

on the validity of the normality assumption. One problem is, however, that
f(x;μ, σ, β) may not be a density because ψ(x) can take negative values.
Ideas to avoid this problem will appear shortly.

Generalizing the idea of writing f as a sum of terms, suppose that f(x)
admits the following series expansion:

f(x) =
∞∑

j=1

βjψj(x) in the sense lim
J→∞

∫ ⎧⎨⎩f(x) −
J∑

j=1

βjψj(x)

⎫⎬⎭
2

dx = 0
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where {ψj(x)} are the “basis” of the series expansion; when this kind of ex-
pansion is valid will be discussed below when series expansion appears again
for nonparametric regression. Usually {ψj(x)} are chosen to be “orthonor-
mal”:

∫
ψj(x)ψm(x)dx = δjm (Kronecker delta). Then∫

f(x)ψj(x)dx = βj : βj shows the contribution

of the (“directional”) component ψj(x).

Orthogonality makes estimating βj ’s “less wasteful,” but the overall explana-
tory power of the series remains the same, orthogonal or not. In practice, only
a finite number of terms, say s, can be used, and s becomes a smoothing pa-
rameter (a small s means over-smoothing).

As a variant of
∑s

j=1 βjψj(x), Gallant and Nychka (1987) proposed
to use

H(x) =
1

C(β)

⎛⎝ s∑
|α|=0

βαxα

⎞⎠2

· φ(x)

where α ≡ (α1, ..., αk)′, αj ’s are nonnegative integers, and

|α| ≡
k∑

j=1

αj , xα ≡
k∏

j=1

x
αj

j , C(β) ≡
∫ ⎧⎨⎩

s∑
|α|=0

βαxα

⎫⎬⎭
2

· φ(x)dx;

C(β) is a normalizing constant. Estimating the β parameters, we get to es-
timate the density nonparametrically. For instance, for k = 3 (trivariate
density), we get |α| = 1 when α = (1, 0, 0), (0, 1, 0), or (0, 0, 1) which yield
xα = x1, x2, or x3, respectively. Also |α| = 2 when

α : (1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2),
xα : x1x2, x1x3, x2x3, x2

1, x2
2, x2

3,

More specifically for k-variate density, if s = 2, then

H(x) =
1

C(β)

⎛⎝β0 +
k∑

j=1

βjxj +
k∑

j=1

k∑
�=1

βj�xjx�

⎞⎠2

· φ(x).

This becomes φ(x) when all βj ’s and βjm’s but β0 are zero. If s = 3, H(x)
becomes

1
C(β)

⎛⎝β0 +
k∑

j=1

βjxj +
k∑

j=1

k∑
�=1

βj�xjx� +
k∑

j=1

k∑
�=1

k∑
m=1

βj�mxjx�xm

⎞⎠2

· φ(x).
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The idea of embedding a parametric density function in a general para-
metric family of densities in a smooth fashion is called the “Neyman’s smooth
test for goodness of fit.” The original reference for the test going back to 1937
is hard to find; see, e.g., Rayner and Best (1990) for the reference and the
literature after that. The Neyman’s smooth test will be examined when non-
parametric goodness-of-fit tests are studied later.

7.2 Asymptotic Distribution for Kernel Regression
Estimator

Recall the expression in the main text
√

Nhk{rN (xo) − r(xo)} =
−gN (xo)

fN (xo)f(xo)

√
Nhk{fN (xo) − f(xo)}

+
1

f(xo)

√
Nhk{gN (xo) − g(xo)}

=
[
−r(xo)f(xo)−1 f(xo)−1

] [ √
Nhk{fN (xo) − f(xo)}√
Nhk{gN (xo) − g(xo)}

]
+ op(1)

as
−gN (xo)

fN (xo)f(xo)
→p −r(xo)

f(xo)
.

We will show, for any constants a1 and a2,

a1

√
Nhk{fN (xo) − f(xo)} + a2

√
Nhk{gN (xo) − g(xo)}

� N{0, (a1, a2)Ω(a1, a2)′} for some Ω

as this is equivalent to[ √
Nhk{fN (xo) − f(xo)}√
Nhk{gN (xo) − g(xo)}

]
� N(0,Ω).

From this, the asymptotic normality of
√

Nhk{rN (xo)−r(xo)} easily follows.
Observe

a1

√
Nhk{fN (xo) − f(xo)} + a2

√
Nhk{gN (xo) − g(xo)}

=
1
N

∑
i

√
Nhk

[
a1

{
1
hk

K

(
xi − xo

h

)
− f(xo)

}
+a2

{
1
hk

K

(
xi − xo

h

)
yi − g(xo)

}]
.

The expected value of this average is the individual expected value

√
NhkE

[
a1

{
1
hk

K

(
xi − xo

h

)
− f(xo)

}
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+a2

{
1
hk

K

(
xi − xo

h

)
yi − g(xo)

}]
=

√
NhkO(h2)

= O(
√

Nhk+4) = o(1) with under-smoothing Nhk+4 → 0.

As for the variance, it is the individual variance divided by N , which is
smaller than the individual second moment divided by N :

hkE

[
a1

{
1
hk

K

(
xi − xo

h

)
− f (xo)

}
+ a2

{
1
hk

K

(
xi − xo

h

)
yi − g (xo)

}]2

= hka2
1E

{
1

hk
K

(xi − xo

h

)
− f (xo)

}2

+ hka2
2E

{
1

hk
K

(xi − xo

h

)
yi − g (xo)

}2

+ hk2a1a2E

[ {
1

hk
K

(xi − xo

h

)
− f (xo)

}{
1

hk
K

(xi − xo

h

)
yi − g (xo)

} ]
.

The dominant terms are those with 1/hk, and putting together only those
terms, we get

hka2
1E

{
1

h2k
K

(
xi − xo

h

)2
}

+ hka2
2E

{
1

h2k
K

(
xi − xo

h

)2

y2
i

}
a2

+ hk2a1E

{
1

h2k
K

(
xi − xo

h

)2

yi

}
.

With the change of variables, this is o(1) equal to

a2
1f (xo)

∫
K (z)2 dz + a2

2E
(
y2|xo

)
f (xo)

∫
K (z)2 dz

+ 2a1a2r (xo) f (xo)
∫

K (z)2 dz.

Hence, with the Lindeberg condition holding easily, we get

Ω =
[

1 r(xo)
r(xo) E(y2|xo)

]
f(xo)

∫
K(z)2dz.

Finally, observe[−r(xo)
f(xo)

,
1

f(xo)

] [
1 r(xo)

r(xo) E(y2|xo)

]
f(xo)

∫
K(z)2dz

[
−r(xo)f(xo)−1

f(xo)−1

]
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= [−r(xo), 1]
[

1 r(xo)
r(xo) E(y2|xo)

] ∫
K(z)2dz

[
−r(xo)f(xo)−1

f(xo)−1

]

=
∫

K(z)2dz · [ 0 −r(xo)2 + E(y2|xo) ]
[

−r(xo)f(xo)−1

f(xo)−1

]

=
∫

K(z)2dz · [ 0 V (y|xo) ]
[

−r(xo)f(xo)−1

f(xo)−1

]
=

∫
K(z)2dz · V (y|xo)

f(xo)
.

7.3 Other Nonparametric Regression Methods

7.3.1 Nearest-Neighbor Estimator

Generalizing the nearest-neighbor method for density estimation, we can
estimate r(xo) with an (weighted) average of yi’s whose xi’s fall within the
sth nearest neighbor (NN) of xo. One such NN estimator is

r̂N (xo) ≡
1
s

∑
i

1[xi ∈ sth NN of xo] · yi

=
∑

i

wi(xo, s) · yi, where wi(xo, s) ≡
1[xi ∈ sth NN of xo]

s
.

Note that
∑

i wi(xo, s) = 1 for all xo and s, so long as we include xo in the sth
NN observations when xo = xi for some i. One advantage of NN over kernel
methods is that the same number of observations are used for each r̂N (xo)
as xo varies, which makes estimates in data-scarce areas more reliable. One
disadvantage is the non-smoothness in r̂N (xo), which makes the asymptotic
analysis somewhat difficult; it is possible to make the weighting function
smooth (still subject to

∑
i wi(xo, s) = 1), which then yields a smoother

estimator.
For the case k = 1, with s/N → 0 as N → ∞, Härdle (1990, p. 43)

shows

E{r̂N (xo)} − r(xo) �
1

24f(xo)2
{r′′(xo) +

2r′(xo)f ′(xo)
f(xo)

}( s

N
)2 and

V {r̂N (xo)} � V (y|xo)
s

.

Regarding s/N as h in the kernel method, the bias is of order h2 while the
variance is of order (Nh)−1, which is the same as in the kernel method.
Minimizing the MSE, we get s = O(N4/5), which makes the MSE converge
to 0 at O(N−4/5)—the same rate as in the kernel method. The variance does
not have f(xo)−1 which the kernel method has; i.e., even if f(xo) is small,
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the variance is not affected. In this case, however, the bias gets larger than
that of the kernel method due the leading factor f(xo)−2.

When k = 1, Stute (1984) showed a “hybrid” between the kernel esti-
mator and NN estimator:

r̃N (xo) ≡
1

Nh

∑
i

K(
FN (xo) − FN (xi)

h
)yi

where FN (xo) =
1
N

N∑
j=1

1[xj ≤ xo] is the empirical df.

Here the distance between xo and xi is gauged using FN (·). Alternatively,
Stute (1984) proposed the normalized version r̃N (xo)/[(Nh)−1

∑
i

K{(FN (xo) − FN (xi))/h}]. Both are consistent for E(y|xo) and follow the
same asymptotic normal distribution

√
Nh{r̃N (xo) − r(xo)}� N(0, V (y|xo)

∫
K(z)2dz).

No f(x) appears in the asymptotic variance.

7.3.2 Spline Smoothing

Suppose that x is a rv taking values in [0, 1], and r(xo) and the derivatives
r′(xo), ..., r(m)(xo) are continuous on [0, 1]. Imagine (xi, yi) scattered over the
x–y plane and we want to fit a line that has a good fit as well as smoothness.
These two contradicting goals can be achieved by minimizing the following
wrt q for a λ > 0 over a function space to which r(xo) belongs:

QN (q) ≡ 1
N

∑
i

{yi − q(xi)}2 + λ

∫ 1

0

{q(m)(x)}2dx.

Here λ penalizes overfit, and thus it is a smoothing parameter. The solution to
this minimization problem is a piecewise polynomial. Choosing the optimal
q(x) this way is a spline smoothing (Wahba, 1990). If we replace the first
term by −N−1

∑
i ln f(yi, xi) and the second term by a measure of likelihood

variation, then we get “likelihood spline smoothing.” The smoothing spline
is attractive not so much for its practicality (at least when k > 1) but rather
for its relation to prior information on r(xo). We will show this point below,
drawing on Eubank (1999).

Apply the Taylor expansion with integral remainder to r(x) around
x = 0:

r(x) =
m−1∑
j=0

βjx
j +

1
(m − 1)!

∫ 1

0

r(m)(z) · (1 − z)m−1dz.
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If we want to approximate r(x) with a polynomial in x with m − 1 degree,
the result depends on the extent that the remainder term is negligible. Using
the Cauchy–Schwartz inequality,

[∫ 1

0

r(m)(z) · (1 − z)m−1dz

]2

≤
[∫ 1

0

{r(m)(z)}2dz

]
·
∫ 1

0

(1 − z)2m−2dz

=
[∫ 1

0

{r(m)(z)}2dz

]
1

1 − 2m
(1 − z)2m−1|10 =

[∫ 1

0

{r(m)(z)}2dz

]
1

2m − 1
.

With this, we get for the remainder term∣∣∣∣∫ 1

0

r(m)(z)(1 − z)m−1dz

∣∣∣∣ ≤ 1
(2m − 1)0.5

[∫ 1

0

{r(m)(z)}2dz

]0.5

≡ 1
(2m − 1)0.5

Jm(r)0.5.

An assumption such as Jm(r) ≤ ρ reflects our prior belief on how much
the model deviates from the polynomial regression. It is known that, if we
minimize N−1

∑
i{yi − q(xi)}2 over q subject to the condition that q has

(m − 1) continuous derivatives and Jm(q) ≤ ρ, then there exists a λ > 0
such that the same q minimizes QN (q). Choosing λ = 0 implies a polynomial
regression where y is regressed on 1, x, x2, ..., xm−1. Hence smoothing spline
is an extension of polynomial regressions guarding against departures from
the assumption that the regression function is polynomial.

Implementing smoothing spline in practice is far more involved than im-
plementing kernel methods. Instead we mention a result in Silverman (1984):
for a smoothing spline, there exists an equivalent adaptive kernel estimator
with its local bandwidth proportional to f(x)−1/4. Therefore, we will not
lose much by using adaptive kernel-type methods. Also Jennen-Steinmetz
and Gasser (1988) presented a further generalization where various nonpara-
metric methods are shown to be equivalent to a kernel method with the local
bandwidth proportional to f−α, 0 ≤ α ≤ 1. They also suggest selecting α
adaptively instead of fixing it (at 1/4) in advance. These findings suggest
that we will not miss much in practice by focusing on kernel estimator or its
variations.

7.3.3 Series Approximation

If x is in Rk, then we can write x as x =
∑k

j=1 xjej where ej ’s are the
orthonormal basis vectors for Rk; e′jej′ = δjj′ (Kronecker delta). A regression
function r(x) at m different x points, r(x(1)), ..., r(x(m)), may be viewed as a
point in Rm. More generally, r(x) with x ∈ X where X has infinite elements
can be regarded as a “point” in an infinite-dimensional space. Suppose r(x)
admits the following series expansion:

r(x) =
∞∑

j=−∞
βjψj(x) ∀x ∈ X in the sense that
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lim
J→∞

∫
X

|r(x) −
J∑

j=−J

βjψj(x)|2dx = 0

where
∫

X
ψj(x)ψj′(x)dx = δjj′ . Here r(x) is decomposed into orthogonal

components, and ψj(x) may be regarded as an “axis” or “direction”;
∑∞

j=−∞
βjψj(x) is an “orthogonal series.”

The best-known example of orthogonal series expansion is the following
Fourier series expansion. For a scalar x with X = [−π, π], suppose that
r(x) is square-integrable on [−π, π]:

∫ π

−π
r(x)2dx < ∞; i.e., r(x) belongs to

L2([−π, π]). Because (2π)−1/2 exp(ijx), j = 0,±1, ±2, ..., is a “complete
orthonormal basis” of L2([−π, π]) where i2 = −1 (see the next paragraph),
any element in L2([−π, π]) can be written as an infinite linear combination
of the basis; an orthonormal basis is complete if any element orthogonal to
the orthonormal basis is 0. Thus, for some βj ’s, we get

r(x) =
∞∑

j=−∞
βj

1√
2π

exp(ijx) =
∞∑

j=−∞
βj

1√
2π

{cos(jx) + i sin(jx)}

=
β0√
2π

+
∞∑

j=1

{
βj + β−j√

2π
cos(jx) + i

βj − β−j√
2π

sin(jx)
}

using cos(jx) = cos(−jx) and sin(−jx) = − sin(jx).
The orthonormality of the basis can be seen in the inner product between

(2π)−1/2 exp(ijx) and (2π)−1/2 exp(ij′x):∫ π

−π

1√
2π

exp(ijx)
1√
2π

exp(−ij′x)dx (
1√
2π

exp(−ij′x)

is the complex conjugate)

=
1
2π

∫ π

−π

{cos(jx) + i sin(jx)}{cos(−j′x) + i sin(−j′x)}dx

=
1
2π

∫ π

−π

{cos(jx) + i sin(jx)}{cos(j′x) − i sin(j′x)}dx

=
1
2π

∫ π

−π

[{cos(jx) cos(j′x) + sin(jx) sin(j′x)} + i{cos(j′x) sin(jx)

− cos(jx) sin(j′x)}]dx

=
1
2π

(πδjj′ + πδjj′) = δjj′ using the fact∫ π

−π

cos(jx) cos(j′x)dx = πδjj′ ,
∫ π

−π

sin(jx) sin(j′x)dx = πδjj′ ,
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∫ π

−π

cos(jx) sin(j′x)dx = 0.

Suppose now that, with X being the support of x,

yi = r(xi) + ui =
∞∑

j=0

βjψj(xi) + ui.

With a given data set, we can only estimate a finite number of βj ’s. So we
need to trim the series at a number, say h, to get

yi = rh(xi) +

⎧⎨⎩ui −
∞∑

j=h+1

βjψj(xi)

⎫⎬⎭ , where rh(xi) ≡
h∑

j=0

βjψj(xi).

Here, h plays the role of a reversed smoothing parameter—the higher h the
less smoothing. This equation can be estimated with LSE where {·} is the er-
ror term. Although

∫
X

ψj(xo)ψj′(xo)dxo = 0 if j = j′,
∫

X
ψj(xo)ψj′(xo)f(xo)

dxo = E{ψj(x)ψj′(x)1[x ∈ X]} = 0 in general. Thus, we will incur an omitted
variable bias—

∑∞
j=h+1 βjψj(xi) is omitted and related to ψ1(x), ..., ψh(x).

This is natural, as other nonparametric estimators have biases. If f(x) is
known as in experimental data, then we may choose ψj(x) such that

∫
X

ψj(x)
ψj′(x)f(x)dx = 0, in which case the bias would be zero. But f(x) is not
known in observational data; also

∫
X

ψj(xo)ψj′(xo)dxo = δjj′ will not hold
in general anymore if

∫
X

ψj(xo)ψj′(xo)f(xo)dxo = 0.
While the Fourier series expansion does not require r(x) to be con-

tinuous, it has trigonometric functions which are not often used in econo-
metrics. It is known that the set of continuous functions on [a0, a1] where
−∞ < a0 < a1 < ∞ is “dense” for L2[a0, a1] in the sense, for any r(x) with∫ a1

a0
r(x)2dx < ∞, there exists a continuous function c(x) on [a0, a1] such that

{
∫ a1

a0
|r(x)− c(x)|2dx}1/2 < ε for any constant ε > 0. Furthermore, according

to the Weierstrass approximation theorem, any continuous function r(x) on
[a0, a1] can be uniformly approximated by some polynomial function p(x):

sup
x∈[a0,a1]

|r(x) − p(x)| < ε, for any ε > 0.

This motivates using orthonormal polynomial functions for {ψj}.
There are many sets of orthonormal functions for {ψj}. One example

when X = [−1, 1] is the Legendre polynomials, which are obtained by applying
the so-called “Gram-Schmidt procedure” to 1, x, x2, x3, ... The orthonormal
Legendre polynomials for L2([−1, 1]) are

(
2n + 1

2

)1/2

· 1
2nn!

· ∂n
{
(x2 − 1)n

}
∂xn

, n = 0, 1, 2, ...;
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without the first term {(2n + 1)/2}1/2, we get the Legendre polynomials
which are orthogonal, but not orthonormal. Specifically, substituting n =
0, 1, 2, 3, ..., we get

1√
2
,

x

(2/3)0.5
,

0.5
(
3x2 − 1

)
(2/5)0.5

,
0.5

(
5x3 − 3x

)
(2/7)0.5

, ...

While a kernel method uses a local approximation idea, a series esti-
mator r̄N (xo) for r(xo) uses a global approximation, because the same basis
functions are used for all x and all observations contribute to r̄N (xo). Com-
pared with local approximation estimators, series estimators have a couple of
advantages. First, they can be computationally convenient; e.g., using poly-
nomial series for r̄N (x), the series estimator is nothing but a LSE. Second,
they are convenient for imposing certain restrictions such as additive sep-
arability. For example, with k = 3, if E(y|x1, x2, x3) = ρ(x1, x2) + αx3—a
semi-linear model—where ρ(·) is an unknown function, then we may use

r(x) = β0 + β1x1 + β2x2 + β11x
2
1 + β12x1x2 + β22x

2
2 + αx3

where no interaction term between (x1, x2) and x3 appears. This lack of
interaction terms is an easy way of imposing the additive separability, which
is, however, difficult in kernel estimators. The regression function can be then
estimated easily with LSE. Imposing an extra restriction such as additive
separability on nonparametric estimation should enhance the efficiency.

Series estimators also have disadvantages. First, a high degree of local
nonlinearity at a single point may force many terms in series expansion. For
instance, when r(x) is linear around most points but quadratic around a
single point, series approximation needs quadratic terms to account for the
nonlinearity around the single point, which is due to the global nature of
series approximation. Second, although the degree of polynomials serves as a
(reversed) smoothing parameter, ambiguity arises when there is a “fine” room
for choice between degrees, say, 2 and 3; e.g., when a polynomial of degree 3 is
used with two regressors x1 and x2, we may use all of x3

1, x3
2, x1x

2
2, x2

1x1, or
only some of them. Third, convergence rates and asymptotic normal distribu-
tion are not easily characterized. Newey (1997) presented, however, an asymp-
totic normality result. The result is something of an “anticlimax,”because
applying nonparametric power-series estimation turns out to be the same as
doing LSE with polynomial regressors for all practical purposes.

7.4 Asymptotic Normality of Series Estimators

In this subsection, we show the asymptotic normality of power series
estimators for regression function, drawing on Newey (1997) who dealt also
with series estimators using series other than power series. For more gener-
ality, let the parameter of interest be a function a{r(xo)}. We will show the
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asymptotic normality for an estimator of a{r(xo)}, and then specialize the
result for r(xo).

With K denoting the degree of series approximation, consider a K-vector
pK(x) of approximation functions, and its matrix version P :

pK(x)
K×1

=

⎡⎢⎣ p1K(x)
...

pKK(x)

⎤⎥⎦ and P
N×K

=

⎡⎢⎣ pK(x1)′
...

pK(xN )′

⎤⎥⎦

=

⎡⎢⎣ p1K(x1) · · · pKK(x1)
...

...
p1K(xN ) · · · pKK(xN )

⎤⎥⎦ .

For instance, with k = 2 and K = 6,

p1K(xi) = 1, p2K(xi) = xi1, p3K(xi) = xi2, p4K(xi) = x2
i1,

p5K(xi) = x2
i2, p6K(xi) = xi1xi2;

P is nothing but the regressor matrix in LSE using the polynomial regressors.
A series estimator for r(xo) = E(y|x = xo) is

r̂(xo) ≡ pK(xo)′bN , where bN
K×1

= (P ′P )−1P ′Y

For a{r(xo)}, define

Â
K×1

≡ ∂a{pK(xo)′bN}
∂bN

, Q̂
K×K

≡ P ′P
N

,

Ω̂
K×K

≡ 1
N

∑
i

pK(xi)pK(xi)′{yi − r̂(xi)}2 and V̂
1×1

≡ Â′Q̂−1Ω̂Q̂−1Â.

In the last matrix, Q̂−1Ω̂Q̂−1 is nothing but the LSE variance estimator in
estimating r(xo), and Â is the Jacobian (i.e., the derivative of the function
a{r̂(xo)} = a{pK(xo)′bN} wrt bN ). For a matrix B, let ‖B‖ ≡
{trace(B

′
B)}1/2, and let X be the support of x that is compact.

Assume, for a sequence of constants ζo(K) (note that K is an increasing
function of N),

sup
x∈X

‖pK(x)‖ ≤ ζo(K) and
ζo(K)2K

N
→ 0 as N → ∞;

r(x) is continuously differentiable up to order s on X;
√

N

Ks/k
→ 0; either

K6

N
→ 0, or a(·) is linear and

K3

N
→ 0,

Then

a {r̂ (xo)} = a {r (xo)} + Op

(
K√
N

) (
=⇒ convergence rate is

K√
N

)
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√
NV̂ −1/2 [a{r̂(xo)} − a{r(xo)}]� N(0, 1).

When a(·) is the identity function, we get Â = pK(xo), and hence

√
N ·

{
pK(xo)′Q̂−1Ω̂Q̂−1pK(xo)

}−1/2

· {r̂(xo) − r(xo)}� N(0, 1).

Here the asymptotic variance estimator for r̂(xo) is

pK(xo)′ · (P ′P )−1
∑

i

pK(xi)pK(xi)′ {yi − r̂(xi)}2 (P ′P )−1 · pK(xo)

which is nothing but the usual LSE asymptotic variance estimator. That is,
if one applies nonparametric power-series estimation to r(x), the estimates
and their t-values will be the same as those in doing LSE with polynomial
regressors. The only theoretical caveat is that the convergence rate is slower
than

√
N , which is, however, not noticeable in practice.

If a(·) depends on the entire function r(x), not just on a single point
r(xo), and if some type of averaging takes place in a(·), then the convergence
rate can be N−1/2, which is faster than K/

√
N . Newey (1997) showed when

this rate of convergence takes place.

8 Appendix for Chapter 8

8.1 U-Statistics

8.1.1 Motivations

Consider an iid sample xi, i = 1, ..., N , with E(x) = μ and V (x) = σ2.
In estimating “dispersion” in the population distribution, we can use s2

x ≡
(N − 1)−1

∑
i(xi − x̄)2 for σ2 where the “deviation” (xi − x̄)2 of xi is rel-

ative to x̄. Another way to estimate deviation of xi is (xi − xj)2 where the
deviation of xi is relative to xj . Doing this with all pairs leads to the average
of (xi − xj)2 across all pairs—this in fact equals sx, as will be shown below.
Going further, we may pick a triple (xi, xj , xk) and use xi − (xj + xk)/2 as
a deviation of xi where (xj + xk)/2 plays the role of x̄. But this is asym-
metric in xi, xj , xk. “Symmetrizing” this gives the average across all possible
triples of

1
3

{(
xi −

xj + xk

2

)
+

(
xj −

xi + xk

2

)
+ (xk − xi + xj

2
)
}

which may be consistent for some dispersion measure other than σ2. Going for
the extreme, we can think of the average of {xi − (N − 1)−1∑

j �=i xj}2 across i. Using singletons, pairs, triples, etc. gives “U-statistics”
of order 1, 2, 3 . . ., which is examined in this subsection.

Suppose there is a parameter of interest θ such that, for some function
h(x1, ..., xm) with 1 ≤ m < N ,

E{h(x1, ..., xm)} = θ.
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Then h(x1, ..., xm) per se is an unbiased estimator for θ. But we can also use
all possible subsets of the data with m ordered elements (there are N !/(N −
m)!-many of them) by averaging them:

TN ≡ (N − m)!
N !

∑
m−ordered

h(xi1 , ..., xim
)

where
∑

ranges over all N !/(N − m)! permutations with (i1, ..., im) being a
subset of (1, ..., N). TN is called an U-statistic of order m.

Intuition suggests V (TN ) ≤ V {h(x1, ..., xm)} because averaging would
reduce the variance. The inequality indeed holds, which is nothing but Rao–
Blackwell theorem because the order statistics x(1), ..., x(N) such that x(1) ≤
, ...,≤ x(N) are sufficient statistics for x1, ..., xN , and TN is the mean of h(·)
conditional on the order statistics.

The simplest U-statistic is U-statistic of order 1, and the best-known
example is sample mean. Because E(xi) = μ ∀i, each xi is an unbiased
estimator for μ, and its U-statistic version is nothing but N−1

∑
i xi. Also

sample moments are U-statistics of order 1 as can be seen in E(N−1
∑

i xk
i ) =

E(xk). It will be shown shortly that sample variance is an U-statistic of order
2. In U-statistic, h(·) is called the kernel, which is not to be confused with
“kernel” in kernel nonparametric estimator. To ease exposition, we will review
mainly U-statistics of order 2 in the following, while pointing out how the
findings there can be generalized for m > 2. See, e.g., Serfling (1980) and
Lehman (1999) for more on U-statistics.

8.1.2 Symmetrization

U-statistic of order m can be further rewritten so that the kernel becomes
symmetric in its arguments:

(N − m)!m!
N !

1
m!

∑
m−ordered

h(xi1 , ..., xim
)

=
1(
N
m

) ∑
m−unordered

g(xi1 , ..., xim
) where

g(xi1 , ..., xim
) ≡ 1

m!

∑
h(xi1 , ..., xim

);

g(xi1 , ..., xim
) is the symmetrized version of h(xi1 , ..., xim

) by averaging across
all possible rearrangements of the index (i1, ..., im).

For instance, with m = 2 and N = 3, we get (3 − 2)!/3! = 1/6 and

1
6
{h(x1, x2) + h(x2, x1) + h(x1, x3) + h(x3, x1) + h(x2, x3) + h(x3, x2)}

=
1
3

[
1
2
{h(x1, x2) + h(x2, x1)} +

1
2
{h(x1, x3) + h(x3, x1)}
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+
1
2
{h(x2, x3) + h(x3, x2)}

]
=

1
3

[g(x1, x2) + g(x1, x3) + g(x2, x3)] .

Here g(x1, x2) is “(permutation-) symmetric” because

g(x1, x2) =
1
2
{h(x1, x2) + h(x2, x1)} =

1
2
{h(x2, x1) + h(x1, x2)}

= g(x2, x1);

g(x1, x2) is the average over all possible rearrangements of the index 1 and
2. With m = 2 but a general N , for E{h(x1, x2)} = θ, its U-statistic of
order 2 is

UN ≡ 1
N(N − 1)

∑
i�=j

h(xi, xj) =
2

N(N − 1)

∑
i<j

g(xi, xj),

g(xi, xj) ≡
h(xi, xj) + h(xj , xi)

2
.

From now on, we will assume that the kernel is symmetric without loss of
generality.

Observe

V (UN ) = E
{
(UN − θ)2

}
=

4
N2(N − 1)2

∑
i<j

∑
i′<j′

E [{g(xi, xj) − θ} {g(xi′ , xj′) − θ}] .

All terms with i = i′ and j = j′ which are of order N4 are zero. The remaining
terms are of order N3 at most. Thus V (UN ) → 0 as N → ∞, from which
UN →p θ follows.

For the asymptotic distribution, the well-known U-statistic projection
result holds:

√
N(UN − θ) =

2√
N

∑
i

[E{h(xi, xj)|xi} − θ] + op(1)

� N
(
0, 4E

[
{E(h(xi, xj)|xi) − θ}2

] )
where the number 2 is due to the kernel order. The conditional mean
E{h(xi, xj)|xi} is called the projection of h(xi, xj) on xi. More generally
for U-statistic of order m, if E{h(x1, x2, ..., xm)2} < ∞, then

√
N(UN − θ)� N(0, m2E[{E(h(x1, x2, ..., xm)|xi) − θ}2]).
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8.1.3 Examples

As an example, consider estimating E2(x) ≡ μ2. One estimator for μ2 is
x̄2, and with δ-method,

√
N(x̄2 − μ2)� N{0, (2μ)2σ2}.

Another estimator for μ2 is the U-statistic

ZN ≡ 2
N(N − 1)

∑
i<j

xixj ;

the kernel xixj is symmetric. Since E(ZN ) = E(xi)E(xj) = μ2, ZN is unbi-
ased for μ2. Because V (ZN ) → 0 as N → ∞ as shown in the next paragraph,
ZN is consistent for its expected value μ2. For the asymptotic distribution,
observe that

E(xixj |xi) = xiE(xj) = xiμ

=⇒ E[{E(xixj |xi) − μ2}2] = E{(xiμ − μ2)2} = μ2σ2

=⇒
√

N(ZN − μ2)� N(0, 4μ2σ2)

which is the same as the asymptotic distribution of
√

N(x̄2 − μ2), although
the small sample behaviors of x̄2 and ZN should differ. This example also
raises the possibility of “degenerate” U-statistic when μ = 0, although we do
not discuss this case any further.

To see V (ZN ) → 0 as N → ∞ in the above example, observe

ZN − E(ZN) ≡ 2
N(N − 1)

∑
i<j

(xixj − μ2),

E{ZN − E(ZN)}2 ≡ 4
N 2(N − 1)2

∑
i<j

∑
i′<j′

E
{
(xixj − μ2)(xi′xj′ − μ2)

}
.

Firstly, if i = i′ and j = j′, then E{(xixj − μ2)(xi′xj′ − μ2)} = 0. Second, if
i = i′ and j = j′, then

E{(xixj − μ2)(xixj′ − μ2)} = E(x2
i xjxj′ − μ2xixj′ − μ2xixj + μ4)

= E(x2
i )E(xj)E(xj′) − μ2E(xi)E(xj′) − μ2E(xi)E(xj) + μ4

= E(x2)μ2 − μ4.

The number of the terms with i = i′ and j = j′ is less than N(N −1)(N −2),
which is negligible as it is of smaller order than N2(N−1)2 in the denominator
of the variance. Third, there are terms with i = i′ and j = j′, but these terms
are also of order smaller than N2(N −1)2. Therefore V (ZN ) → 0 as N → ∞.

As another example of U-statistic of order 2, because σ2 = E(x2)−E2(x),
an unbiased estimator for σ2 is x2

i −xixj : E(x2
i −xixj) = σ2. But x2

i −xixj is
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asymmetric. Its U-statistic version is the pair average after symmetrization:

1(
N
m

) ∑
i<j

(xi − xj)2

2
as

(xi − xj)2

2
=

1
2
{
(x2

i − xixj) + (x2
j − xjxi)

}
.

To see that this is in fact the sample variance s2
N−1, observe

∑
i

(xi − x̄)2 =
∑

i

x2
i − Nx̄2 =

∑
i

x2
i −

1
N

(∑
i

xi

)2

=
∑

i

x2
i −

1
N

⎛⎝∑
i

x2
i +

∑
i�=j

xixj

⎞⎠ =
N − 1

N

∑
i

x2
i −

1
N

∑
i�=j

xixj .

Divide the first and last expressions by N − 1 to get

(s2
N−1 =)

1
N − 1

∑
i

(xi − x̄)2 =
1
N

∑
i

x2
i −

1
N(N − 1)

∑
i�=j

xixj

=
1

N(N − 1)

∑
i�=j

(x2
i − xixj)

because
∑

i�=j x2
i =

∑
i

∑
j,j �=i x2

i = (N − 1)
∑

i x2
i .

We can also find the asymptotic distribution of s2
N−1 using its U-statistic

representation. Observe

E

{
(xi − xj)2

2
|xi

}
=

E
(
x2

i − 2xixj + x2
j |xi

)
2

=
x2

i − 2xiE(xj) + E(x2
j )

2

=
x2

i − 2xiμ + σ2 + μ2

2

=⇒ E

( [
E{ (xi − xj)2

2
|xi} − σ2

]2
)

= E

[(
x2

i − 2xiμ + μ2 − σ2

2

)2
]

=
1
4
E

[
{(x − μ)2 − σ2}2

]
=

1
4
[
E{(x − μ)4} − σ4

]
.

Hence, with 1/4 canceled by m2 = 4 in the asymptotic variance, we obtain
√

N(s2
N−1 − σ2)� N

(
0, E{(x − μ)4} − σ4

)
.

8.2 GMM with Integrated Squared Moments

Given a conditional moment condition E{ψ(z, β)|x} = 0, it holds that

E {ψ(z, β)|x} = 0 =⇒ E {ψ(z, β)1[x ≤ a]} = 0 ∀a

=⇒
∫

[E{ψ(z, β)1[x ≤ a]}]2 dFx(a) = 0
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Dominguez and Lobato (2004) proposed to estimate β by minimizing a sample
analog for the last expression:

1√
N

N∑
j=1

{
1
N

N∑
i=1

ψ(zi, b)1[xi ≤ xj ]

}2

.

Although the estimator is not efficient under E{ψ(z, β)|x} = 0, integration
tends to “smooth rough edges,”and thus the minimand of the estimator may
behave better than other nonlinear GMM minimands, leading to fewer con-
vergence problems in practice.

Define

∇Ψ(a) ≡ E {ψb(β)1[x ≤ a]} , H ≡
∫

∇Ψ(a)∇Ψ(a)′dFx(a) and

Γ(a1, a2) ≡ E
{
ψ(β)21 [x ≤ min(a1, a2)]

}
,

Ω ≡
∫ ∫

∇Ψ(a1)∇Ψ(a2)′Γ(a1, a2)dFx(a1)dFx(a2).

The asymptotic distribution is
√

N(bN − β)� N(0, H−1ΩH−1).

H and Ω can be estimated consistently with

HN ≡ 1
N

N∑
j=1

[ {
1
N

N∑
i=1

ψb(β)1[xi ≤ xj ]

} {
1
N

N∑
i=1

ψb′(β)1[xi ≤ xj ]

} ]

ΩN ≡ 1
N2

N∑
j=1

N∑
,j′=1

[ {
1
N

N∑
i=1

ψb(β)1[xi ≤ xj ]

} {
1
N

N∑
i=1

ψb′(β)1[xi ≤ xj′ ]

}

·
{

1
N

N∑
i=1

ψ(zi, bN )21 [xi ≤ min(xj , xj′)]

} ]
.

To understand the asymptotic distribution, examine the first-order con-
dition (divided by 2):

1
N

N∑
j=1

{
1
N

N∑
i=1

ψb(zi, bN )1[xi ≤ xj ]

}{
1√
N

N∑
i=1

ψ(zi, bN )1[xi ≤ xj ]

}
= 0.

Apply Taylor’s expansion around bN = β to get (the term with ψbb′ is
negligible because the term includes N−1

∑N
i=1 ψ(zi, β)1[xi ≤ xj ] = op(1))

1
N

N∑
j=1

{
1
N

N∑
i=1

ψb(zi, β)1[xi ≤ xj ]

}{
1√
N

N∑
i=1

ψ(zi, β)1[xi ≤ xj ]

}
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+ HN

√
N(bN − β) = op(1)

=⇒
√

N(bN − β) = −H−1
N

1
N

N∑
j=1

{
1
N

N∑
i=1

ψb(zi, β)1[xi ≤ xj ]

}
{

1√
N

N∑
i=1

ψ(zi, β)1[xi ≤ xj ]

}
+ op(1).

The term next to H−1
N determines the asymptotic distribution as

follows.
First, the last term N−1/2

∑N
i=1 ψ(zi, β)1[xi ≤ xj ] converges in law to a

Gaussian process indexed by xj . Second, the term N−1
∑N

i=1 ψb

(zi, β)1[xi ≤ xj ] converges to a constant matrix indexed by xj . Third, the
outer sum N−1

∑
j yields the convergence in law to a weighted integral of the

Gaussian process—integral due to xj . Fourth, it is known that a weighted
integral of a Gaussian process is also Gaussian (i.e., normal). This means
that

√
N(bN − β) is asymptotically normal. The expected value of the term

next to H−1
N goes to 0 as N → ∞, because it is

E

[{
1
N

N∑
i=1

ψb(zi, β)1 [xi ≤ xj ]

} {
1√
N

N∑
i′=1

ψ (zi′ , β) 1 [xi′ ≤ xj ]

}]

=
1

N3/2
E{ψb(zi, β)ψ(zi, β)1[xi ≤ xj ]) (the terms with i = i′

have mean zero).

In the following, we derive the asymptotic variance which will then explain
the form of ΩN .

As for the variance, replace N−1
∑N

i=1 ψb(zi, β)1[xi ≤ xj ]} with E{ψb

(z, β)1[x ≤ xj ]|xj} to examine instead

1
N

N∑
j=1

[
E {ψb(z, β)1[x ≤ xj ]|xj}

{
1√
N

N∑
i=1

ψ(zi, β)1[xi ≤ xj ]

}]
.

The variance of this display is its second moment since the mean term is
negligible:

1
N3

N∑
j=1

N∑
j′=1

N∑
i=1

N∑
i′=1

E[ E{ψb(z, β)1[x ≤ xj ]|xj}

E{ψb(z, β)1[x ≤ xj′ ]|xj′} · ψ(zi, β)1[xi ≤ xj ] ψ(zi′ , β)1[xi′ ≤ xj′ ] ].

All terms with i = i′ disappear, and thus this becomes

1
N3

N∑
j=1

N∑
j′=1

N∑
i=1

E [ E{ψb(z, β)1[x ≤ xj ]|xj} E{ψb(z, β)1[x ≤ xj′ ]|xj′}
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·ψ(zi, β)21[xi ≤ min(xj , xj′)]
]

=
1

N2

N∑
j=1

N∑
j′=1

E[ E{ψb(z, β)1[x ≤ xj ]|xj} E{ψb(z, β)1[x ≤ xj′ ]|xj′}

· 1
N

N∑
i=1

ψ(zi, β)21[xi ≤ min(xj , xj′)] ].

ΩN is a sample analog for this, i.e., a version without the outermost expected
value.

In practice, the estimator may be implemented by the usual Gauss–
Newton type algorithm. That is, first, take the minimand as N−1

∑
j qj

(b) where qj(b) ≡ {N−1
∑N

i=1 ψ(zi, b)1[xi ≤ xj ]}2. Second, obtain the numer-
ical derivative ∇qj(b) of qj(b) wrt b. Third, iterate until convergence using

b1 = b0 −

⎧⎨⎩∑
j

∇qj(b0)∇qj(b0)′

⎫⎬⎭
−1 ∑

j

∇qj(b0).

The asymptotic variance may be estimated in the usual “sandwich form”—
the outer-product of the gradient flanked by the Hessians. The Hessian can
also be estimated with numerical derivatives. Some simulation studies sug-
gest, however, that neither the sandwich form nor the above estimator for the
asymptotic variance works reliably; bootstrap may be a better alternative for
the asymptotic variance.

8.3 Goodness-of-Fit Tests for Distribution Functions

8.3.1 Brownian Motion and Brownian Bridge

Suppose we have iid data y1, ..., yN from a df F and desire to test

H0 : F = F0 for some specified continuous df F0.

With the empirical df FN (t) ≡ N−1
∑

i 1[yi ≤ t], the Kolmogorov–Smirnov
test statistic is

KSN ≡ sup
t

√
N |FN (t) − F0(t)| = sup

t
| 1√

N

∑
i

{1[yi ≤ t] − F0(t)}|

= sup
t

| 1√
N

∑
i

{1[F0(yi) ≤ F0(t)] − F0(t)}|

= sup
τ∈[0,1]

|UN (τ)|, where UN (τ) ≡ 1√
N

∑
i

{1[F0(yi) ≤ τ ] − τ}

with τ = F0(t).

Under H0, UN (τ) is an empirical df of the uniform rv’s F0(yi) ∼ U [0, 1],
i = 1, ..., N .

√
N{FN (t)−F0(t)} is called an empirical process, and UN (τ) is
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an uniform empirical process. A natural question to arise is how to find the
asymptotic distribution of KSN , for which “Brownian bridge” is needed.

“Brownian motion” or “Wiener process” W (t), 0 ≤ t ≤ T , has continu-
ous sample path that starts from 0 (i.e., W (0) = 0) and, for any finite number
of points t1, ..., tm,

{W (t1), ...,W (tm)} is Gaussian with 0-mean and
E{W (tj)W (tk)} = min(tj , tk).

This implies E{W (t)2} = t when tj = tk = t and

W (t) − W (s) ∼ N(0, t − s) ∀s < t ( =⇒ W (t) ∼ N(0, t)) because

E{W (t) − W (s)}2 = E{W (t)2} − 2E{W (t)W (s)} + E{W (s)2}
= t − 2s + s = t − s.

Also W (t) has independent increments:

W (t4) − W (t3) is independent of W (t2) − W (t1), ∀ t1 < t2 ≤ t3 < t4

because E[{W (t4) − W (t3)}{W (t2) − W (t1)}] = t2 − t2 − t1 + t1 = 0.

As well known as Brownian motion is a Brownian bridge B(τ) with
0 ≤ τ ≤ 1: B(0) = B(1) = 0 with continuous sample path, and for any finite
number of points τ1, ..., τm,

B(τ1), ..., B(τm) is Gaussian with 0-mean, and
E{B(τ j)B(τk)} = min(τ j , τk) − τ jτk

=⇒ V {B(τ)} = τ − τ2 = τ(1 − τ).

Note the difference between the covariance functions of W (t) and B(τ). While
W (t) has independent increments, B(τ) does not because B(τ) has to satisfy
B(1) = 0. Because of this, B(τ) is also called “tied-down” Brownian motion—
down to 0 at t = 0, 1.

Going back to UN (τ), observe, for any two points τ1, τ2 ∈ [0, 1],

E [UN (τ1)UN (τ2)] = E

[ {
1√
N

∑
i

(1[ui ≤ τ1] − τ1)

}
·

1√
N

∑
j

(1[uj ≤ τ2] − τ2)}

⎤⎦
= E{1[u ≤ τ1] 1[u ≤ τ2]} − E1[u ≤ τ1] E1[u ≤ τ2]
= min(τ1, τ2) − τ1τ2

which implies, setting τ1 = τ2 = τ ,

V {UN (τ)} = τ(1 − τ) =⇒
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V
[√

N{FN (t) − F0(t)}
]

= F0(t){1 − F0(t)}, recalling τ = F0(t).

The covariance of UN (τ) at any finite number of points is the same as that of
B(τ). This suggests that the distribution of UN (τ) may be found from that
of B(τ), and this convergence in law indeed holds:

UN (τ)� B(τ) as N → ∞, i.e.,∫
f{UN (ω, τ)}dP (ω) →

∫
f{B(ω′, τ)}dP (ω′)

for each bounded and continuous function f(·). In essence, this gives the
distribution not just over a finite number of points, but over the entire range
[0, 1] of τ , which enables invoking “continuous mapping theorem” as follows.

8.3.2 Kolmogorov–Smirnov (KS) test

Since supτ∈[0,1] | · | is a continuous function, applying the continuous
mapping theorem to UN (τ)� B(τ) yields

KSN = sup
τ∈[0,1]

|UN (τ)|� sup
τ∈[0,1]

B(τ).

We thus obtain, for any constant ε > 0,

P (KSN ≤ ε) → P

{
sup

τ∈[0,1]

|B(τ)| ≤ ε

}
= 1 + 2

∞∑
j=1

(−1)j exp(−2j2ε2);

this equality is well known, as can be seen in Serfling (1980).
As a specific example, suppose {y1, ..., yN} is from N(0, 1). Using the

observation points as discrete evaluation points, we get

KSN � sup
i=1,...,N

√
N |FN (yi) − Φ(yi)|.

Suppose this yields KSN = 0.65. Then the p-value is

P (KSN > 0.65) = −2
∞∑

j=1

(−1)j exp(−2j20.652)

�− 2
500∑
j=1

(−1)j exp(−2j20.652).

This test is asymptotically distribution-free, as this display does not depend
on any aspect of F0 = Φ. If we do not want to compute this sum, then we
can just use the 90, 95, and 99% quantiles of KSN which are, respectively,
1.23, 1.36, and 1.63; see e.g., Shorack and Wellner (1986).
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In contrast to UN (τ) � B(τ), when we have vi’s which are iid (0, σ2
v),

with [Nτ ] denoting the integer part of Nτ and 0 ≤ τ ≤ 1, another well-known
convergence in law for a “partial sum process” is

SN (τ) ≡ 1√
N

[Nτ ]∑
i=1

vi

σv
�W (τ), 0 ≤ τ ≤ 1.

To see this at a finite number of points, observe E{SN (τ)} = 0, and with
τ1 ≤ τ2,

E {SN (τ1)SN (τ2)} = E

⎧⎨⎩ 1
σv

√
N

[Nτ1]∑
i=1

vi ·
1

σv

√
N

[Nτ2]∑
j=1

vj

⎫⎬⎭
=

1
σ2

vN

[Nτ1]∑
i=1

E(v2
i ) =

[Nτ1]
N

= τ1;

[Nτ ]
N

= τ
[Nτ ]
Nτ

= τ

(
1 − Nτ − [Nτ ]

Nτ

)
→ τ as N → ∞

because
Nτ − [Nτ ]

Nτ
→ 0.

Hence, for any finite number of points, the covariance of SN (τ) is the same
as that of W (τ). This suggests SN (τ)�W (τ), which indeed holds.

8.3.3 Cramer–von-Mises (CM) and Anderson–Darling
(AD) tests

Another test statistic for H0 : F = F0 is the Cramer–von-Mises test
(CM) statistic:

CMN ≡
∫ ∞

−∞
[
√

N{FN (t) − F0(t)}]2dF0(t).

While KSN is determined by the largest deviation, all deviations (small or
large) contribute to CMN . That is, if F0 is violated by small magnitudes over
many points, then CMN is likely to be more powerful than KSN . Using the
convergence in law again, we get, setting τ = F0(t) =⇒ dτ = dF0(t),

CMN =

∫ 1

0
UN (τ)2dτ �

∫ 1

0
B(τ)2dτ ∼

∞∑
j=1

z2
j

j2π2
where zj ’s are iid N(0, 1).

The last expression that the “quadratic” test statistic CMN (and “ADN”
below) follows the same distribution as an infinite “weighted” sum of inde-
pendent χ2

1 rv’s can be shown using “principal component decomposition”
(Shorack and Wellner, 1986, Chapter 5).

The 90, 95, and 99% quantiles of CMN are, respectively, 0.347, 0.461,
and 0.743 (see Shorack and Wellner, 1986); e.g., P

(∑∞
j=1 z2

j /(j2π2) ≤ 0.347
)
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= 0.9. As a specific example, suppose {y1, ..., yN} is from N(0, 1). Choosing
grid points t1, ..., tJ over [−5.5] in increment of 0.01 (i.e., t1 = −5, t2 =
−5 + 0.01, t3 = −5 + 0.02, ...), we can compute

CMN �
J∑

j=1

[√
N{FN (tj) − Φ(tj)}

]2

φ(tj) · 0.01.

Various weighted versions of KSN and CMN are available as well. One
well-known version of CMN is “Anderson–Darling test statistic” (AD):

ADN ≡
∫ ∞

−∞

[√
N{FN (t) − F0(t)}

]2

F0(t){1 − F0(t)}
dF0(t)

where the weighting is done by the asymptotic variance at each t. Analogously
to the above convergence in law, it holds that

ADN �
∫ 1

0

B(τ)2

τ(1 − τ)
dτ ∼

∞∑
j=1

z2
j

j(j + 1)
.

The 90, 95, and 99% quantiles of ADN are, respectively, 1.93, 2.49, and 3.85.
See Del Barrio (2007) for a review on goodness-of-fit (GOF) tests.

8.4 Joint Test for All Quantiles

For a linear model y = x′βα+u with Qα(u|x) = 0, recall the αth quantile
minimand:

VN (α) ≡ 1√
N

∑
i

(yi − x′ibα) · (α − 1[yi − x′ibα < 0])

and the “asymptotic first-order condition”

1√
N

∑
i

− (α − 1 [yi − x′ibα < 0])xi = op(1).

Also recall the asymptotic variance for
√

N(b̂α − βα):

E−1{fu|x(0)xx′} · α(1 − α)E(xx′) · E−1{fu|x(0)xx′}

and a kernel estimator for E{fu|x(0)xx′}:

1
N

∑
i

1
h

K
(ri

h

)
xix

′
i where h → 0 as N → ∞ and ri ≡ yi − x′ib̂α.

With these, one can conduct tests for βα.



608 Appendix I: Mathematical Backgrounds and Chapter Appendices

Differently from the mean regression, however, there are many quantiles
as βα is indexed by α. Thus, if we want to know whether a regressor xk has
any influence at all on any quantile, then

Ho : βα = 0 ∀α

should be tested. We explore this topic in this subsection, drawing on Koenker
and Machado (1999). This topic could have been discussed in the chapter for
nonlinear models, but given its difficulty, the discussion has been postponed
and done here now as quantiles are heavily used in semiparametrics.

Assume that u has a continuous df F with density f and u � x, al-
though the independence assumption is weakened somewhat in Koenker and
Machado (1999). Denote the αth quantile of u as F−1(α) that is zero for
some α where F−1(α) ≡ min{a : F−1(a) ≥ α}. Under this and u � x, the
above asymptotic variance becomes

α(1 − α)
[f{F−1(α)}]2 E−1(xx′) =

(
[f{F−1(α)}]2

α(1 − α)
E(xx′)

)−1

.

With x being a k × 1 random vector, consider

Ho : the last q components of βα are zero ∀α ∈ (0, 1).

Denoting the first k − q components of x and βα as z and γα, respectively,
imposing this Ho means minimizing

V r
N (α) ≡

∑
i

(yi − z′igα) · (α − 1[yi − z′igα < 0]).

A LR-type test statistic at a fixed α is

LN (α) ≡ f{F−1(α)}
α(1 − α)

2{V r
N (α) − VN (α)}� Qq(α)2

≡ B1(α)2+, ...,+Bq(α)2

α(1 − α)

where Bj(α), j = 1, ..., q, are independent Brownian bridges. The process
Qq(α), the square-root of Qq(α)2, is called a “standardized” Bessel pro-
cess of order q. We have Qq(α)2 ∼ χ2

q ∀α because of the standardization
Bj(α)/

√
α(1 − α) ∼ N(0, 1), j = 1, ..., q, and because Qq(α)2 is a sum of q-

many squared independent N(0, 1) variables. The intuition for LN (α)� χ2
q

is provided in the following.
Denote the unrestricted and restricted estimators as bN (α) and gN (α),

respectively; the last q components of gN (α) are zero. Although V r
N (α) is

not differentiable everywhere, a second-order asymptotic expansion around
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bN (α) holds that is analogous to the second-order expansion of log-likelihood
functions for LR tests. That is,

V r
N (α) = VN (α) +

1
2

√
N {gN (α) − bN (α)}′ f

{
F−1(α)

}
E(xx′)

√
N{gN (α) − bN (α)} + op(1)

where the first-order term disappears because it is the asymptotic first-order
condition for bN . Hence

f{F−1(α)}
α(1 − α)

2{V r
N (α) − VN (α)} {= LN (α)}

=
√

N{gN (α) − bN (α)}′ · [f{F−1(α)}]2
α(1 − α)

E(xx′) ·
√

N{gN (α) − bN (α)}

+ op(1)� χ2
q

because the middle matrix is the inverse of the asymptotic variance of the
adjacent vector.

The appearance of Brownian bridges can be understood in view of the
asymptotic first order condition: with 0 in 1[u < 0] replaced by F−1 (α),

op(1) =
1√
N

∑
i

−(α − 1[u < F−1(α)])xi

=
1√
N

∑
i

−(α − 1[F (u) < α])xi and

E{(α − 1[F (u) < α]) · (α′ − 1[F (u) < α′])}
= min(α, α′) − αα′, as F (u) ∼ U [0, 1].

The above convergence in law is for a given α. For the Ho, owing to
the continuous mapping theorem, we can use the KS-type test statistic that
jointly takes all α ∈ (0, 1) into account:

sup
α

LN (α)� sup
α

Qq(a)2.

Since the critical values for the upper tail probabilities 1, 5, and 10% of
Qq(t)2 are tabulated in Andrews (1993), we can conduct the test comparing
supα LN (α) to a critical value. Koenker and Machado (1999) also explored
LM and Wald-type tests.

Koenker and Xiao (2002) examined more general tests allowing nuisance
parameters in the null hypothesis. Specifically, Koenker and Xiao (2002)
looked at the null hypothesis that x influences only the location or scale in the
y|x distribution versus the more general alternative that x can influence the
conditional distributional shape as well. Since the location and scale have
to be estimated under the null, this causes a nuisance-parameter problem
that the nuisance-parameter estimator affects the asymptotic distribution of
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the ensuing test statistic that is no longer asymptotically distribution-free
(ADF). Koenker and Xiao (2002) overcame this problem by transforming
the test statistic so that it becomes ADF (see also Koenker, 2005); we will
call such a tranformtion “ADF transformation.” ADF transformation is also
called the “Khamaladze” transformation,” following the name of the inven-
tor in Khamaladze (1981, 1993). Bai (2003) provided a relatively easier-to-
understand account of ADF transformation; see also Koul (2006) for a review.
ADF transformation will be examined later.

9 Appendix for Chapter 9

9.1 Asymptotic Variance of Marginal Integration

In the main text, we used the following representation of the marginal
integration estimator m̂1(x1) to derive the asymptotic variance of

√
Nh{m̂1

(x1) − m1(x1)}:

√
Nh{m̂1(x1) − m1(x1)} −

1√
N

∑
i

[
1√
h

L

(
xi1 − x1

h

)
1

f1|2 (x1|xi2)

{yi − m(x1, xi2)}
]

= op(1).

In this subsection, we sketch the main steps to obtain this display.
Recall the marginal integration estimator m̂1(x1) = N−1

∑
i

m̂(x1, xi2). For its asymptotic distribution, define ĝ and f̂ such that

m̂(x1, xi2) =
ĝ(x1, xi2)

f̂(x1, xi2)
=

(Nh2)−1
∑

j �=i L((xj1 − x1)/h))L((xj2 − xi2)/h)yj

(Nh2)−1
∑

j �=i L((xj1 − x1)/h))L((xj2 − xi2)/h)

to see that
√

Nh2{m̂(x1, xi2) − m(x1, xi2)}

=
−g(x1, xi2)
f(x1, xi2)2

√
Nh2

{
f̂(x1, xi2) − f(x1, xi2)

}
+

1
f(x1, xi2)

√
Nh2 {ĝ(x1, xi2 − g(x1, xi2)} + op(1).

Observe

√
Nh{m̂1(x1) − m1(x1)} =

√
Nh

{
1
N

∑
i

{m̂(x1, xi2) − m(x1, xi2)} + op(1)

=
1

N
√

h

∑
i

√
Nh2

{
m̂(x1, xi2) − m(x1, xi2)

}
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and substitute
√

Nh2{m̂(x1, xi2) − m(x1, xi2)} to get
√

Nh{m̂1(x1) − m1(x1)}

=
1

N
√

h

∑
i

−g(x1, xi2)
f(x1, xi2)2

√
Nh2{f̂(x1, xi2) − f(x1, xi2)}

+
1

N
√

h

∑
i

1
f(x1, xi2)

√
Nh2{ĝ(x1, xi2) − g(x1, xi2)} + op(1).

The two terms are examined in detail in the following one by one.
Note

f̂(x1, xi2) − f(x1, xi2)

=
1

N − 1

∑
j �=i

{
1
h2

L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
− f (x1, xi2)

}
and examine the first term of

√
Nh{m̂1(x1) − m1(x1)}:

1
N(N − 1)

∑
i

∑
j �=i

√
Nh2

√
h

−g(x1, xi2)
f(x1, xi2)2

·
{

1
h2

L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
− f (x1, xi2)

}
=

1√
N(N − 1)

∑
i

∑
j �=i

−g(x1, xi2)
f(x1, xi2)2

·
{

1
h3/2

L(
xj1 − x1

h
)L(

xj2 − xi2

h
) −

√
hf(x1, xi2)

}
.

Rewrite the summand to get

UN ≡ 1√
N(N − 1)

∑
i

∑
j>i

[
− g(x1, xi2)

f(x1, xi2)2

·
{

1
h3/2

L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
−
√

hf(x1, xi2)
}

− g (x1, xj2)
f (x1, xj2)

2

{
1

h3/2
L

(
xi1 − x1

h

)
L

(
xi2 − xj2

h

)
−
√

hf (x1, xj2)
} ]

.

Denote the summand as S(zi, zj) and use the U-statistic projection theorem
to get

UN =
1√
N

∑
i

E {S(zi, zj)|zi} + op(1)

where

E{S(zi, zj)|zi} = − g(x1, xi2)
f(x1, xi2)2

{
1

h3/2
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·
∫

L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
f(xj1, xj2)dxj1dxj2 −

√
hf(x1, xi2)

}

−
{

1
h3/2

L

(
xi1 − x1

h

)∫
g(x1, xj2)
f(x1, xj2)2

L

(
xi2 − xj2

h

)
f(xj2)dxj2

−
√

h

∫
g(x1, xj2)
f(x1, xj2)

f(xj2)dxj2

}

= − 1√
h

L

(
xi1 − x1

h

)
m(x1, xi2)
f(x1|xi2)

+ op(1)

because the first term in E{S(zi, zj)|zi} is negligible and the second term
uses

g(x1, xi2)
f(x1, xi2)2

f(xi2) =
g(x1, xi2)
f(x1, xi2)

f(xi2)
f(x1, xi2)

=
m(x1, xi2)
f(x1|xi2)

.

As for the second term of
√

Nh{m̂1(x1) − m1(x1)}, use

ĝ(x1, xi2) − g(x1, xi2)

=
1

N − 1

∑
j �=i

{
1
h2

L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
yj − g(x1, xi2)

}
to rewrite it as

1√
N(N − 1)

∑
i

∑
j �=i

1
f(x1, xi2)

·
{

1
h3/2

L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
yj −

√
hg(x1, xi2)

}
.

Rewrite this further as

VN ≡ 1√
N(N − 1)

∑
i

∑
j>i

[
1

f(x1, xi2)

·
{

1
h3/2

L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
yj −

√
hg(x1, xi2)

}
+

1
f(x1, xj2)

{
1

h3/2
L

(
xi1 − x1

h

)
L

(
xi2 − xj2

h

)
yi −

√
hg(x1, xj2)

} ]

to get

UN =
1√
N

∑
i

E{T (zi, zj)|zi} + op(1)

where

E{T (zi, zj)|zi}
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=
1

f(x1, xi2)

{
1

h3/2

∫
L

(
xj1 − x1

h

)
L

(
xj2 − xi2

h

)
E(y|xj1, xj2)

f(xj1, xj2)dxj1dxj2 −
√

hg(x1, xi2)
}

+
{

1
h3/2

L

(
xi1 − x1

h

)
yi

∫
1

f(x1, xj2)
L

(
xi2 − xj2

h

)
f(xj2)dxj2

−
√

h

∫
g(x1, xj2)
f(x1, xj2)

f(xj2)dxj2

}
=

1√
h

L

(
xi1 − x1

h

)
yi

f(x1|xi2)
+ op(1).

Put the two terms together to obtain the desired expression:
√

Nh{m̂1(x1) − m1(x1)}

=
1√
N

∑
i

[
1√
h

L

(
xi1 − x1

h

)
1

f(x1|xi2)
{yi − m(x1, xi2)}

]
+ op(1).

9.2 CLT for Degenerate U-Statistics

Since degenerate U -statistics are used to derive the asymptotic distribu-
tions for some test statistics in the main text, here we present a CLT in De
Jong (1987).

Consider a degenerate U-statistic

WN ≡
∑
i<j

wijN (zi, zj) where

wijN (zi, zj) = wjiN (zj , zi), E{wijN (zi, zj)|zi} = 0

zi’s are independent, and wijN is square-integrable. Defining

σ2
N ≡ V (WN ) and σ2

ij ≡ V (wijN ),

Theorem 2.1 of De Jong (1987) is that

WN

σN
� N(0, 1) if

1
σ2

N

max
1≤i≤N

N∑
j=1

σ2
ij → 0 and

E(W 4
N )

σ4
N

→ 3 as N → ∞.

De Jong (1987) presented another CLT (Theorem 5.3) without the fourth
moment condition. The theorem is more general than a CLT in Hall (1984)
for degenerate U-statistics.

Let μiN , i = 1...N , be the eigenvalues of a symmetric matrix [aijN ], and
let

WN ≡
∑
i<j

aijN · wN (zi, zj) where



614 Appendix I: Mathematical Backgrounds and Chapter Appendices

wN (zi, zj) = wN (zj , zi), E{wN (zi, zj)|zi} = 0

zi’s are iid and wN (zi, zj) is square-integrable with

E{wN (zi, zj)}2 = 1 and σ2
N ≡ V (WN ).

Then WN/σN � N(0, 1), if there exists a sequence of real numbers {AN}
such that the following (i) and (ii) hold:

(i) :
A2

N

σ2
N

max
1≤i≤N

N∑
j=1

a2
ij → 0, E{w2

N (zi, zj) · 1[|wN (zi, zj)| > AN ]} → 0

(ii) :
1

σ2
N

max
1≤i≤N

μ2
iN → 0 or

E{wN (z1, z2)wN (z1, z3)wN (z4, z2) wN (z4, z3)} → 0.



APPENDIX II: SUPPLEMENTARY TOPICS

1 Appendix for Hypothesis Test

This section collects a number of topics on hypothesis test: comparison
of tests and local alternatives, non-nested hypotheses, and χ2 goodness-of-
fit tests. As hypothesis testing is a huge topic, the review here is brief and
relatively informal. Textbook discussion of the topics can be found in math-
ematical statistics books such as Shao (2003) and Hogg et al. (2005), and a
detailed review is provided by Lehmann and Romano (2005).

1.1 Basics

Consider a parameter of interest β ∈ B, and two hypotheses

H0 : β ∈ B0 versus H1 : β ∈ B1 where B0 ∩ B1 = ∅.

If a hypothesis contains only a single point (e.g., B0 = β0) then the hypothesis
is simple; otherwise, composite. Consider a test statistic TN ≡ T (x1, ..., xN )
(e.g. x̄ = N−1

∑
i xi), a critical region C, and a test such that

H0 is rejected, if TN ∈ C.

Then 1[TN ∈ C] is called the test function, and the power function mapping
β to [0, 1] is defined as

πN(β) ≡ Eβ{1[T (x1, ..., xN) ∈ C]} = P (H0 rejected | β is true), β ∈ B.

A test is said to be of (significance) level α if the supremum (i.e., the
least upper bound) of the Type I error probability is α or smaller:

αN (B0) ≡ sup
β∈B0

πN (β) ≤ α;

the supremum αN (B0) is called the size. If a test is of level α, it is also of level
α′ whenever α < α′. Thus, using only the smallest possible level (i.e., size)
makes sense, and often level and size are used interchangeably. For β ∈ B1,
πN (β) is power, and 1 − πN (β) is the Type II error probability.

We desire a test that minimizes πN (β) when β ∈ B0 and maximizes
πN (β) when β ∈ B1. But no sensible test can achieve this feat, because the
deterministic test that rejects always has power 1 and the deterministic test

615



616 Appendix II: Supplementary Topics

that accepts always has size 0. Instead, we look for a test with the maximum
power among a set of tests sharing the same size. Such a test is hard to
find, but when both H0 and H1 are simple, the LR test is optimal achieving
this goal. This is known as the Neyman–Pearson Theorem (or Lemma), from
which it follows that LR test is optimal also for one-sided alternative (H0:
β = β0 and H1: β > β0) for a scalar parameter β because LR test has the
largest power (optimal) for each point in B1.

The test is unbiased if its power is at least as large as its size: πN (β) ≥
αN (B0) for all β ∈ B1. Unbiasedness is a minimum requirement for any
sensible test. For example, consider an “irrelevant” test of flipping a biased
coin with P (heads) = α and rejecting the H0 if heads come up. As this test
does not depend on the data x1, ..., xN , its size and power are P (heads) = α
always. An optimal test with size α should have a power greater than α, the
power of the irrelevant test.

Given a test, if πN (β) and αN (B0) are difficult to assess with a finite N ,
then we let N → ∞ and see what happens to πN (β) and αN (B0). A sequence
of tests T1, T2, ... is said to be of “asymptotically level α if

lim sup
N→∞

αN (B0) ≤ α;

lim supN→∞ αN (B0) is the limiting size of the test sequence. A sequence of
tests is “consistent” if πN (β) → 1 as N → ∞ for all β ∈ B1.

As a digression, concepts analogous to level and size in tests are used for
confidence intervals (CI): if

inf
β∈B

P (TN1 ≤ β ≤ TN2) ≥ 1 − α

then (TN1, TN2) is a CI of (confidence) level 1 − α where TN1 and TN2 are
some statistics with TN1 ≤ TN2. The infimum (i.e., the largest lower bound)
is called the confidence coefficient. Typically P (TN1 ≤ β ≤ TN2) does not
depend on β, and in this case, the confidence level equals the confidence
coefficient. If a CI is a level 1−α CI, then it is also a level 1−α′ CI whenever
α < α′. Thus, using only the largest possible level makes sense, and often
confidence level and confidence coefficient are used interchangeably. In the
CI, if TN1 → −∞, we get an one-sided confidence bound (−∞, TN2), and
if TN2 → ∞, we get an one-sided confidence bound (TN2,∞). More general
than CI’s is a confidence set RN where RN is a set depending on x1, ..., xN ;
RN may take a shape other than an interval.

For instance, from a sample x1, ..., xN with E(x) = β with SD(x) = σ,
we obtain its sample mean x̄N and sample SD sN . The usual test statistic
for H0: β ≤ 0 (i.e., B0 = (−∞, 0] and B1 = (0,∞)) is the t-value TN =√

Nx̄N/sN , and suppose that the critical region is C = (1.645,∞). In this
case,

πN (β) = P

{√
Nx̄N

sN
∈ (1.645,∞) under β

}
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= P

{√
N(x̄N − β)

sN
∈

(
1.645 −

√
Nβ

sN
, ∞

)
underβ

}

αN{(−∞, 0]}

= sup
β∈(−∞,0]

P

{√
N(x̄N − β)

sN
∈

(
1.645 −

√
Nβ

sN
, ∞

)
underβ

}
.

In finite samples, these are difficult to assess. In large samples, letting N → ∞
in 1.645 −

√
Nβ/sN (note sN →p σ), πN (β) converges to

0 = P (N(0, 1) ∈ (∞,∞) under β < 0 )
0.05 = P (N(0, 1) ∈ (1.645,∞) under β = 0 )

1 = P (N(0, 1) ∈ (−∞,∞) under β > 0 ).

The last line with probability 1 shows that the test is consistent. As for
αN{(−∞, 0]}, observe

sup
β∈(−∞,0]

P

{√
N(x̄N − β)

sN
∈

(
1.645 −

√
Nβ

sN
,∞

)
underβ

}
= P{N(0, 1) ∈ (1.645,∞) under β = 0 } = 0.05,

for the sup is attained at β = 0.

The test sequence (or simply the test) is of asymptotically level (size) 0.05.

1.2 Comparison of Tests and Local Alternatives

Almost all tests are consistent if the alternative model is at a fixed dis-
tance from the null model. Thus if we are to compare a group of tests, the
alternative model should converge to the null model. Such an alternative
model is called a “local alternative” or a Pitman drift. As most estimators
are

√
N -consistent, interesting comparison can be made when the local alter-

native converges to the null model at rate N−1/2.

1.2.1 Efficacy and Relative Efficiency

Consider two simple hypotheses

H0 : β = β0 and H1 : β = β0 +
δ√
N

≡ βN where δ > 0.

Consider a test TN that rejects H0 with a large value (because δ > 0) and
satisfies, for some smooth functions μ(·) and a constant σ,

√
N{TN − μ(β)}� N(0, σ2) as N → ∞ where β is the true
parameter value;
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note that the limiting distribution N(0, σ2) is free of δ. The asymptotic dis-
tribution of TN under H0 is a special case of this with β = β0, and the test
statistic for H0 is

√
N{TN − μ(β0)}/σ. Thus the power function is

P (test statistic > critical value) = P

{√
N{TN − μ(β0)}

σ
> z1−α

}
.

To assess the power, we need to derive the asymptotic distribution of the
test statistic under H1. Let ∇μ denote the gradient of μ. Rewrite the power
function as

P

[√
N{TN − μ(βN )}

σ
+

√
N{μ(βN ) − μ(β0)}

σ
> z1−α

]

= P

[√
N{TN − μ(βN )}

σ
> z1−α −

√
N{μ(βN ) − μ(β0)}

σ

]

= P

[√
N{TN − μ(βN )}

σ
> z1−α −

√
N{δ′∇μ(β0)/

√
N + O(N−1)}

σ

]

= P

[√
N{TN − μ(βN )}

σ
> z1−α − δ′

∇μ(β0)
σ

+ O(N−1/2)

}

→ Φ
{

δ′
∇μ(β0)

σ
− z1−α

}
as N → ∞.

The term ∇μ(β0)/σ next to δ′ is called efficacy. The greater ∇μ(β0)/σ is,
the greater the power. That is, given multiple tests of the form

√
N{TN −

μ(β0)} � N(0, σ2) that have the same asymptotic size, the one with the
highest efficacy should be used, as it is the most powerful.

For example, suppose x1, ..., xN are iid (β, σ2) and TN = x̄. It holds that√
N{TN − μ(β)} � N(0, σ2) where μ(β) = β with ∇μ(β) = 1. Observe, as

E(x) = β0 + δ/
√

N under the alternative,

√
N{TN − μ(βN )} =

1√
N

∑
i

(
xi − β0 −

δ√
N

)
� N(0, σ2);

the limiting distribution is free of δ. The efficacy is ∇μ(β)/σ = 1/σ.

Recall the above display with Φ{δ′∇μ(β0)/σ − z1−α} and consider an-
other test statistic WN such that

P

[√
N{WN − μW (βN )}

σW
> z1−α − δ′

∇μW (β0)
σW

+ 0(N−1/2)

}
→

Φ
{

δ′
μW (β0)

σW
− z1−α

}
.



1 Appendix for Hypothesis Test 619

If H1: β = β0 + δ while H0: β = β0, then the powers of TN with NT and WN

with NW are determined by, respectively
√

NT∇μ(β0)/σ and
√

NW∇μW (β0)/
σw (

√
NT and

√
NW appear next to efficacy now because δ/

√
N in H1 is re-

placed with δ).
Suppose that β is a scalar and equate these two terms to get

NT

NW
=

(∇μW (β0)/σW

∇μ(β0)/σ

)2

.

This ratio is called the “(Pitman) asymptotic relative efficiency” of WN rel-
ative to TN , which shows in essence how many more observations WN needs
to reach the same power as TN attains with the observation number NT .

Suppose the x-distribution df F is differentiable at the αth quantile βα

with f(βα) > 0. Denoting the sample αth quantile as QαN , it holds that

√
N(QαN − βα) =

1
f(βα)

−1√
N

∑
i

(1[xi ≤ βα] − α) + op(1)

� N

{
0,

α(1 − α)
f(βα)2

}
.

Suppose x1, ..., xN are iid (β, σ2) and the distribution is symmetric about β.
Due to the symmetry, β can be estimated with the sample median WN ≡
Q0.5N as well as with the sample mean TN . It holds that

√
N

(
WN − β0.5 −

δ√
N

)
� N

[
0,

{
0.5

f(β0.5)

}2
]

under H1

=⇒ P

{√
N(WN − β0.5)
0.5/f(β0.5)

> z1−α

}
= P

{√
N(WN − β0.5 − δ/

√
N)

0.5/f(β0.5)

> z1−α − δ

0.5/f(β0.5)

}
= Φ

(
δ
f(β0.5)

0.5
− z1−α

)
.

The efficacy of this median test is f(β0.5)/0.5.
Further suppose that x ∼ N(β, σ2). Then

f(β0.5)
0.5

=
σ−1φ(0)

0.5
� 0.4

σ0.5
=

0.8
σ

.

Recalling that the efficacy of the mean test is σ−1, for the sample mean and
median tests under normality, the asymptotic relative efficiency is {(0.8/σ)/
σ−1}2 = 0.64: the median test is only 64% efficient compared with the mean
test. Namely, the mean test attains the same power as the median test does
using only 64% of the sample.
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Pitman asymptotic relative efficiency is not the only way to compare
tests. In practice, often “p-values” are presented as an evidence against H0

in a given sample. Suppose that TN follows a distribution under β with its
df G(·;β). Then the p-value for TN is

PV (TN ) ≡ sup
β∈B0

1 − G(TN ;β).

For any consistent test, PV (TN ) approaches 0 as N → ∞ under H1 because
TN generated from H1 goes to ∞. Typically, the zero-approaching rate is
exponential, and the rate is called the “Bahadur slope.” For two such tests,
the test with the higher rate is preferred, and the ratio, say R1/R0, is the
Bahadur asymptotic relative efficiency of test 1 relative to test 0. See Serfling
(1980, Chapter 10) and Nikitin (1995) for more on asymptotic comparisons
of tests.

1.2.2 Finding Distribution Under Alternatives

A difficulty in finding asymptotic relative efficiency is in verifying the
condition

√
N{TN − μ(βN )} � N(0, σ2). Typically, we know the (asymp-

totic) distribution of a test statistic under H0, but not under H1. In finding
the distribution under H1, a convenient tool is the so-called Le Cam’s third
lemma: defining the log-likelihood ratio lnLN ≡ ∑

i ln{g(xi;βN )/g(xi;β0)}
where g(x, β) is the likelihood for x under β, if for some statistic ZN[

ZN

lnLN

]
� N

([
μ

−0.5Ωll

]
,

[
Ωzz Ωzl

Ω′zl Ωll

])
under H0

then
ZN � N(μ + Ωzl, Ωzz) under H1.

For example, suppose that x is a rv, the x-density is g(x−β), H0: β = 0
and H1: β = δ/

√
N ≡ βN . We get

lnLN =
∑

i

ln g(xi − δ/
√

N) −
∑

i

ln g(xi).

Taylor-expand around δ = 0 and denote the score function and its derivative
at β = β0 = 0 as s(x;β0) and s′(x;β0) to get

lnLN =
δ√
N

∑
i

s(xi;β0) +
δ2

2
1
N

∑
i

s′(xi;β0) + op(N−1)

� N{−0.5δ2If , δ2If} where If ≡ E{s(x;β0)
2} and E{s′(x;β0)} = −If

under H0;

note that the expansion yields

g′(xi)
g(xi)

−δ√
N

= s(xi)
δ√
N

because s(xi) =
d ln g(xi − β)

dβ
|β=0 =

−g′(xi)
g(xi)

.
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The mean is −0.5 times the asymptotic variance as necessary for Le Cam’s
third lemma.

Further suppose
√

N{TN − μ(β0)} =
1√
N

∑
i

η(xi) + op(1), E{η(x)} = 0 under H0.

Then we can apply Le Cam’s third lemma with ZN =
√

N{TN − μ(β0)},
because[

N−0.5
∑

i η(xi)
δN−0.5

∑
i s(xi;β0) + 0.5δ2N−1

∑
i s′(xi;β0)

]

� N

([
0

−0.5δ2If

]
,

[
Ωzz Ωzl

Ω′zl δ2If

])
under H0 where Ωzz = E0{η(x)2} and Ωzl = δE0{η(x)s(x;β0)}

and E0(·) denotes the expected value under H0. Hence
√

N{TN − μ(β0)}� N [δE0{η(x)s(x;β0)}, Ωzz] under H1 :

the asymptotic distribution of
√

N{TN − μ(β0)} under H1 differs from that
under H0 only in the mean shift by δE0{η(x)s(x;β0)}.

For a specific but simple example, suppose x ∼ N(β, 1) and thus

g(x − β) =
1√
2π

exp
{
−1

2
(x − β)2

}
.

Estimating the mean, set TN = x̄ and μ(β) = β. Observe s(x;β0) = x under
H0: β = 0, and the test statistic for H0 is

√
N{TN − μ(β0)} =

1√
N

∑
i

xi � N(0, 1) as β0 = 0 under H0.

What is desired is the asymptotic distribution of this test statistic under H1.
It is obvious in this simple case that

1√
N

∑
i

xi � N(δ, 1) ⇐⇒

1√
N

∑
i

(
xi −

δ√
N

)
� N(0, 1) under H1 : β =

δ√
N

but this result can be obtained also from Le Cam’s third lemma as follows,
which comes handy when TN takes a complicated form.

Because η(x) = x for x̄ and s(x;β0) = x, we get

E0{η(x)s(x;β0)} = E0(x2) = 1.
Hence under H1,√

N{TN − μ(β0)}� N [δE0{η(x)s(x;β0)}, 1] = N(δ, 1).
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1.2.3 Wald Test Under Local Alternatives to Linear
Hypotheses

When H0 is g-dimensional, we get multiple test statistics (one for each
restriction in H0). In this case, the issue of which test statistic vector to use
appears. Suppose this issue has been settled and we have g-many asymptot-
ically normally distributed test statistics. Typically then we convert those
to a quadratic form and do a χ2 test, although this is not the only way of
converting the chosen test statistic vector into a scalar test statistic. In the
following, we examine the power of Wald test under a local alternative for lin-
ear hypotheses, and then compare two tests that share the same μ(·) but are
different in their asymptotic variances so that the relative efficiency depends
only on the asymptotic variance ratio (or difference).

Consider

H0 : R′β = c and H1 : R′β = c +
δ√
N

where R is a known k × g matrix with rank(R) = g and δ is a g × 1 vec-
tor. Suppose

√
N(bN − β) � N(0, V ) and we have a matrix S such that

S(R′V R)S′ = Ig and S′S = (R′V R)−1. Substitute H1: R′β = c+ δ/
√

N into√
NS(R′bN − R′β)� N(0, Ig) to get

√
NS(R′bN − c)� N(Sδ, Ig).

Hence, under the H1, the Wald test statistic

N(R′bN − c)′(R′V R)−1(R′bN − c) =
{√

NS(R′bN − c)
}′ {√

NS(R′bN − c)
}

asymptotically follows a noncentral χ2
g with the noncentrality parameter

(NCP) δ′S′Sδ = δ′(R′V R)−1δ, which is positive because (R′V R)−1 is p.d.
The larger the NCP, the higher the power is, for it becomes easier to tell H0

from H1; imagine H0 and H1 “centered” at 0 and the NCP, respectively.
In Wald test, we turn the vector R′bN − c into a scalar using a quadratic

form. This guarantees that each non-zero element of R′bN − c contributes to
the test statistic as it gets “squared.”But the disadvantage is the resulting
higher dof, which means that the critical value of the test becomes the higher.
For instance, suppose R′β − c = (5, 0, ..., 0)′: only one part of H0 is false.
Because only the first component of R′bN − c contributes to the test statistic
while the other components just increase the dof (and thus the critical value)
of the Wald test, the test may fail to reject H0 despite it is false. Put it
differently, while the dimension of R′β − c goes up by adding more true
hypotheses, the increase in NCP is small relative to the dof increase, which
lowers the power of the Wald test.

Consider two asymptotically normal estimators with the same probabil-
ity limit but different asymptotic variance matrices V0 and V1, respectively,
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where V0 ≤ V1 in the matrix sense (i.e., V1 − V0 is p.s.d). The Wald tests
with the two estimators V̂0 and V̂1, respectively, have the same asymptotic
size, for both follows χ2

g under H0: R′β = c. But they have different pow-
ers under the local alternative. To see this, observe R′V1R ≥ R′V0R ⇐⇒
(R′V0R)−1 ≥ (R′V1R)−1. Hence,

δ′{(R′V0R)−1 − (R′V1R)−1}δ ≥ 0 ∀δ.

So, although intuitively obvious, the more efficient estimator which is the one
with V0 has the higher power for the local alternative.

1.3 Non-nested Hypothesis Testing

In the main text, we dealt mostly with “nested hypotheses” where the
set of parameters {β : R′β = c} under the H0 is a subset of the parameter
space B and β can be estimated without the restriction. There are, however,
“non-nested hypotheses” as well. To get an idea, consider two alternative
linear models

Hβ : y = x′β + u and Hγ : y = z′γ + v

where x is a kx × 1 vector and z is a kz × 1 vector. As far as the LSE goes,
the three models are

• nested if x ⊂ z or z ⊂ x

• non-nested and overlapping if x ∩ z = ∅, x � z, z � x

• non-nested and non-overlapping (or strictly non-nested) if
x ∩ z = ∅.

In the nested case, if x ⊂ z, then some zero restrictions on γ yield z′γ = x′β,
whereas no restriction on β and γ can give x′β = z′γ in the other two cases.

In the following, we examine non-nested hypothesis test. Firstly, we in-
troduce some terminologies. Secondly, Vuong’s (1989) approach and a related
one are examined. Thirdly, the other approaches are studied. Surveys on non-
nested hypotheses testing can be found in Gourieroux and Monfort (1994)
and Pesaran and Weeks (2001).

1.3.1 Terminologies

Consider two alternative hypotheses (or models) for the likelihood func-
tion of a single observation z in an iid sample:

Hf : f(z, α) for some α ∈ A and Hg : g(z, β) for some β ∈ B

where A and B are parameter spaces. Let aN and bN be the MLE for the
two models:

aN = argmaxa∈A

N∑
i=1

ln f(zi, a) and bN = argmaxb∈B

N∑
i=1

ln g(zi, b).



624 Appendix II: Supplementary Topics

Define α∗ and β∗ as

α∗ = argmaxa∈AE ln f(z, a) and β∗ = argmaxb∈BE ln g(z, b)
=⇒ aN →p α∗ and bN →p β∗.

If Hf holds, then α∗ = α, but β∗ depends on α because E ln g(z, b) =∫
ln g(z, b)f(z, α)dz; denote the β∗ as β∗(α) and call the β∗(α) a “pseudo

true value.” If Hg holds, then β∗ = β and α∗(β) is the pseudo true value. If
neither holds while the true model is h(z, γ), then both α∗(γ) and β∗(γ) are
the pseudo true values.

For instance, consider probit and logit for binary response with z =
(x′, y)′:

Hf : P (y = 1|x) = Φ(x′α) and Hg : P (y = 1|x) =
exp(x′β)

1 + exp(x′β)

=⇒ aN = argmaxa∈A

N∑
i=1

[yi ln Φ(x′ia) + (1 − yi) ln{1 − Φ(x′ia)}] ,

bN =argmaxb∈B

N∑
i=1

[
yi ln

{
exp(x′b)

1 + exp(x′b)

}
+ (1 − yi) ln

{
1

1 + exp(x′b)

}]
.

If neither model holds and the true model is P (y = 1|x) = H(x′γ), then

α∗(γ) = argmaxa∈AE[y ln Φ(x′a) + (1 − y) ln{1 − Φ(x′a)}]
= argmaxa∈AE[H(x′γ) ln Φ(x′a) + {1 − H(x′γ)} ln{1 − Φ(x′a)}].

Here, α∗(γ) is not the true value as the data were not drawn from f(z, α∗(γ));
α∗(γ) is simply defined by this display.

Recall the Kullback–Leibler information criterion (KLIC) with f(z, a)
where α is the true value:∫ {

ln
f(z, α)
f(z, a)

}
f(z, α)dz.

Using the inequality lnw ≤ 2(w1/2 − 1), KLIC times −1 is∫ {
ln

f(z, a)
f(z, α)

}
f(z, α)dz ≤ 2

∫ (
f(z, a)
f(z, α)

)1/2

f(z, α)dz − 2

= 2
∫

f(z, a)1/2f(z, α)1/2dz −
∫

f(z, α)dz −
∫

f(z, a)dz

= −
∫ {

f(z, a)1/2 − f(z, α)1/2
}2

dz ≤ 0.
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That is, KLIC is non-negative always and positive iff f(z, α) = f(z, a) (Van
der Vaart, 1998). This fact can be used to define “proximity” between two
models—KLIC is not a distance as it is not symmetric. Let

Kfg(α) ≡
∫ {

ln
f(z, α)

g(z, β∗(α))

}
f(z, α)dz and

Kgf (β) ≡
∫ {

ln
g(z, β)

f{z, α∗(β))

}
g(z, β)dz.

Kfg(α) shows how far Hg is away from the true model Hf , and Kgf (β) shows
how far Hf is away from the true model Hg. We will often omit z to simplify
notations in the following.

Drawing on Pesaran and Weeks (2001), first, if

(i) Kfg(a) = 0 ∀a ∈ A and Kgf (b) = 0 ∀b ∈ B,

then Hf and Hg are observationally equivalent ; the data simply cannot tell
one model from the other. Second, if

(ii) Kfg(a) = 0 ∀a ∈ A but Kgf (b) = 0 for some b ∈ B,

then g(b) can “mimic” f(a) regardless of a in the sense g{z, β∗(α)} = f(z, α)
for any true value α, whereas f(a) cannot “mimic” g(b) for some b; in this
case, Hf is nested in Hg. Analogously, we can define the case Hg being nested
in Hf . Third, if

(iii) Kfg(a) = 0 for some a ∈ A and Kgf (b) = 0 for some ∈ B,

then Hf and Hg are non-nested (but maybe overlapping). Fourth, if

(iv) Kfg(a) = 0 ∀a ∈ A and Kgf (b) = 0 ∀b ∈ B,

then Hf and Hg are strictly non-nested. The above example with probit and
logit is a strictly non-nested case.

1.3.2 LR Test for Strictly Non-nested Hypotheses

In reality, strictly speaking, any specified model would be false and we
should choose the one that is less wrong. Suppose we consider two strictly
non-nested models f(a) and g(b) and wonder what the maximized log-likelihood
difference reflects:

τN ≡
∑

i

ln f(z, aN ) −
∑

i

ln g(z, bN )

where aN is the MLE for f(z, a) and bN is the MLE for g(z, bN ). Suppose
the true model is h(γ). Then the population version of this difference is

E ln f{z, α∗(γ)} − E ln g{z, β∗(γ)}
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= E lnh(z, γ) − E ln g{z, β∗(γ)} − [E lnh(z, γ) − E ln f{z, α∗(γ)}]
= Khg(γ) − Khf (γ).

Thus the maximized log-likelihood difference τN shows which one between f
and g is further away from the truth h. If positive, g is further away (i.e., f
is closer to the truth); if negative, f is further away; if zero, both f and g are
equally away. Vuong (1989, Theorem 5.1) provided the following LR test to
tell which is the case.

Define

TN ≡ 1
ωN

√
N

∑
i

ln
f(zi, aN )
g(zi, bN )

,

ω2
N ≡ 1

N

∑
i

{
ln

f(zi, aN )
g(zi, bN )

}2

−
{

1
N

∑
i

ln
f(zi, aN )
g(zi, bN )

}2

.

Then
(i) f, g are equally away : TN � N(0, 1),

(ii) g is further away : TN → ∞,

(iii) f is further away : TN → −∞.

For example, if |TN | < 1.96, then the null hypothesis (i) is not rejected at
5% level. If TN > 1.96, then we conclude (ii) that f is closer to the truth. If
TN < −1.96, then we conclude (iii). To account for the possible dimension
difference between α and β, Vuong (1989) suggested two modifications of TN

whose asymptotic distributions are still the same as TN :

T ′N ≡ 1
ωN

√
N

[∑
i

ln
f(zi, aN )
g(zi, bN )

− {dim(α) − dim(β)}
]

,

T ′′N ≡ 1
ωN

√
N

[∑
i

ln
f(zi, aN )
g(zi, bN )

−
{

dim(α)
2

lnN − dim(β)
2

lnN

}]
.

While TN looks at the nullity of the mean of the LR, Clarke (2007) pro-
posed a median version: under (i), the median of the individual LR difference
would be zero. Specifically, the test statistic is

N∑
i=1

1[[f(zi, aN ) > g(zi, bN )] ∼ B(N, 0.5) or∑
i 1 [f(zi, aN ) > g(zi, bN )] − 0.5N√

0.25N
∼ N(0, 1).

Clarke (2007) also suggested a modification for the dimension difference as
in T ′′N . Since aN and bN depend on all observations, strictly speaking, the
terms in the sum are not independent, invalidating the distributional result.
Furthermore, it is not clear how the nuisance parameter problem (i.e., how
the estimation errors aN − α and bN − β affect the asymptotic distribution)
is handled for the test. But some simulation studies suggest that the test
behaves fairly well, possibly better than the Vuong’s test.
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1.3.3 Centered LR Test and Encompassing

Instead of saying which model is further away or both are equally away,
we may desire to say that one of them is true. But in non-nested tests, this
runs into a difficulty. Recall that, for the nested H0: R′β = c, the LR test
asymptotics was driven by a quadratic form of bN −bNr = bN −β− (bNr −β)
where bN is the unrestricted MLE and bNr is the restricted one. Under the
H0, both bN and bNr are consistent for β, and the LR test is thus centered
at zero. For two non-nested hypotheses, however, the LR test statistic τN is
not centered at zero.

Cox (1962) proposed to subtract the centering constant and use the
“centered LR” test : when Hf is taken as the truth, the test statistic is∑

i

ln f(zi, aN ) −
∑

i

ln g(zi, bN ) − Eα

{∑
i

ln f(zi, aN ) −
∑

i

ln g(zi, bN )

}
where Eα(·) is the expected value wrt f(z, α)dz. The Cox centered-LR test
should be done twice: first with Hf as the truth, and then Hg as the truth
in reverse. Depending on the outcomes of the two tests, there are four com-
binations of Hf accepted/rejected and Hg accepted/rejected.

The main difficulty in the Cox LR test is finding the form of the centering
constant, and “parametric bootstrap” may provide an easy answer to this
problem. Suppose that Hf is taken as the true model. First, obtain aN ,
bN , and τN . Second, draw a pseudo sample of size N from the distribution
f(z, aN ) to get a pseudo estimate τ

(j)
N ; repeat this for J-many times to get

τ
(j)
N , j = 1, ..., J . Third, obtain the bootstrap p-value J−1

∑J
j=1 1[τ (j)

N ≤ τN ]
as the null model gets rejected when the test statistic is too small. But the
validity of this bootstrap has been questioned by Godfrey and Santos-Silva
(2004) and Godfrey (2007).

Other than this centered-LR test idea, the encompassing idea (Mizon
and Richard, 1986) looks at the difference between

√
N{aN − α∗(bN )} or

√
N{bN − β∗(aN )}.

If the former is almost zero, then α∗(bN ) can “match” aN closely; i.e., Hg is
more general, encompassing (or “explaining”) Hf . Analogously, if the latter
is almost zero, Hf encompasses Hg. If Hf encompasses Hg while Hg cannot
encompasses Hf , then Hf is a better model. The encompassing approach,
however, seems difficult to implement in general, not least because the func-
tions α∗(·) and β∗(·) should be found.

1.3.4 J-Test and Score Test Under Artificial Nesting

One may try artificial nesting of Hf and Hg in a comprehensive model.
For example, Cox (1962, p. 407) considered, but did not elaborate on, a
multiplicative form

f(z, α)λg(z, β)1−λ∫
f(z, α)λg(z, β)1−λdz

, 0 ≤ λ ≤ 1
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as an artificial nesting model. Here, testing for λ = 0 or 1 will tell which
model holds. If λ is not 0 nor 1 but takes a value in-between, say 0.3, then
the truth may be the mixture of 30% f(z, α) and 70% g(z, β). As good as this
may sound, a straightforward application of this idea runs into difficulties:
λ = 0, 1 are the boundary values for λ on which the usual asymptotics does
not hold, and α (β) is not identified if λ = 0 (λ = 1). The latter problem can
be better seen in the following linear model regressor selection example.

Suppose

Hf : y = x′α + u and Hg : y = z′β + v

=⇒ y = λx′α + (1 − λ)z′β + ε (additive form of artificial nesting).

In this comprehensive model, λ is not identified. Davidson and MacKinnon’s
(1981) J-test for Hf as the null model estimates α and μ in

y = x′α + μ · z′bN + ε, where bN = (Z ′Z)−1Z ′Y

and tests for μ = 0. If μ = 0 is rejected, then Hf is rejected to the direction
of Hg. Analogously, the J-test for Hg as the null model can be done as well.
J-test is an artificial regressor test.

Santos-Silva (2001b) examined yet another form of artificial nesting:

R(ζ, λ) ≡ {(1 − ζ)f(z, α)λ + ζg(z, β)λ}1/λ∫
{(1 − ζ)f(z, α)λ + ζg(z, β)λ}1/λdz

, 0 ≤ ζ ≤ 1, 0 < λ ≤ 1.

The multiplicative and additive forms can be obtained from this:

lim
λ→0+

R(ζ, λ) =
f(z, α)λg(z, β)1−λ∫
f(z, α)λg(z, β)1−λdz

applying the L’Hospital’s rule to lnR(ζ, λ)
R(ζ, 1) = (1 − ζ)f(z, α) + ζg(z, β).

That is, the multiplicative form is a limiting case when λ ↓ 0, and the additive
form is a special case when λ = 1.

Suppose f(z, α) is the null model and thus we want to test for H0: ζ = 0
against the alternative model R(ζ, λ). Since ζ = 0 is a boundary value for ζ,
plugging in an estimator for ζ is troublesome. Instead, use the score test: the
score function for ζ is obtained by differentiating R(ζ, λ) wrt ζ and then set
ζ = 0 in the resulting score. This score test still needs α and β to be replaced
by some value. Santos-Silva (2001b) replaced α and β with the MLE’s α̂ and
β̂ using f(z, a) and g(z, β) as the true likelihood, respectively.

1.4 Pearson Chi-Square Goodness-of-Fit Test

Suppose we have data y1, ..., yN from a discrete distribution with J dif-
ferent support points (or “J cells”) v1, ..., vJ and the corresponding proba-
bilities p1, ..., pJ . Let Nj denote the number of observations falling in cell j.
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One well-known test for the distributional assumption is the “Pearson χ2

goodness of fit (GOF)” test :

MN ≡
J∑

j=1

(Nj − Npj)2

Npj
=

J∑
j=1

{(Nj − Npj)/
√

N}2

pj

=
J∑

j=1

{√
N(Nj/N − pj)

}2

pj
� χ2

J−1

which is proven below. The qualifier “GOF” refers to the fact that there is
no specific alternative distributional hypothesis under consideration: the test
is simply to assess how well the assumed distribution fits the data at hand.
There are a number of interesting features in this test.

First, the dof in χ2 is J − 1, not J , despite that there are J many terms
in the sum. This is because one probability (i.e., one cell) is redundant owing
to the restriction

∑
j pj = 1. Recall that, in a score test, the dof is k (the

number of unrestricted parameters) minus the number of restrictions, despite
that the dimension of the score function is k. If we are to drop one cell, then
we will have to decide which cell to drop. But the test statistic shows that
dropping any cell is unnecessary: just use all cells with dof J − 1.

Second, since Nj =
∑

i 1[yi = vj ] and pj = E(1[y = vj ]), the numerator
of the summand in MN is

√
N

(
Nj

N
− pj

)
=

1√
N

∑
i

{1[yi = vj ] − E(1[y = vj ])}

� N {0, pj(1 − pj)}

which compares the sample moment with the population moment, reminis-
cent of MOM. MN is a sum of J-many squared asymptotically normal terms,
which are related with one another because being in one cell means not being
in any other cell. In MN , weighting is going on, but somewhat strangely, the
weight is pj—the denominator of the summand in MN—not the inverse of
the asymptotic variance pj(1−pj). Again, this has to do with one redundant
cell.

Third, without changing the asymptotic distribution, the denominator
Npj in MN can be replaced with Nj to yield

MN ≡
J∑

j=1

(Nj − Npj)2

Nj
=

J∑
j=1

{
√

N(N−1Nj − pj)}2

Nj/N
� χ2

J−1.

This is called “Neyman modified χ2.” Clearly, the parameter pj is replaced by
the estimator Nj/N . This may look like a bad idea, because we are replacing
a sure number pj with an estimator Nj/N , but it comes handy as can be
seen in the following.
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Fourth, suppose that pj is a parametric function of a SF parameter β
whose dimension is smaller than J − 1: pj = pj(β). Then we can estimate β
by minimizing wrt b

J∑
j=1

{Nj − Npj (b)}2

Npj (b)
=

J∑
j=1

N{N−1Nj − pj(b)}2

pj(b)
.

As usual, having something to estimate in the denominator can be involved.
Hence, it is convenient to use the Neyman’s modified χ2

J∑
j=1

{Nj − Npj (b)}2

Nj
=

J∑
j=1

N{N−1Nj − pj(b)}2

Nj/N
.

Here we can see a connection to MDE, because Nj/N is an estimator for
the RF parameter pj and we want to estimate the SF parameter β using
the relation pj = pj(β) between the two parameters. Interestingly, mini-
mizing either minimand in the two preceding displays renders an estimator
asymptotically equivalent to the MLE maximizing the likelihood function
(N !/

∏
j Nj !)

∏
j pj(b)Nj ; see, e.g., Sen and Singer (1993, Chapter 6).

Fifth, not just the MDE interpretation, a MOM interpretation is possible
as well. Observe

√
N

{
Nj

N
− pj(β)

}
=

1√
N

∑
i

{1[yi = vj ] − pj(β)} .

Setting ζj(yi, β) = 1[yi = vj ]−pj(β), we get J many (or J −1 many, because
one is redundant) moment conditions E{ζj(yi, β)} = 0, and MN is a way
to combine the moments. The rest of this subsection derives the asymptotic
distribution of MN .

To derive the asymptotic distribution of MN , recall the first display of
this subsection

MN = N

J∑
j=1

{(Nj/N − pj)}2

pj

and define

mj ≡ Nj/N − pj√
pj

, m ≡

⎡⎢⎣ m1

...
mJ

⎤⎥⎦ , p ≡

⎡⎢⎣ p1

...
pJ

⎤⎥⎦ , p1/2 ≡

⎡⎢⎢⎣
p
1/2
1
...

p
1/2
J

⎤⎥⎥⎦
=⇒ MN = N · m′m and

m′p1/2 =
∑

j

(
Nj

N
− pj

)
=

∑
j Nj

N
−

∑
j

pj = 1 − 1 = 0
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which shows that mj ’s are linear dependent. Using m′p1/2 = 0, further rewrite
MN as

MN = N · m′IJm − N · m′p1/2(p′1/2m) = N · m′(IJ − p1/2p
′
1/2)m.

The middle matrix IJ − p1/2p
′
1/2 is idempotent (and symmetric):

(IJ − p1/2p
′
1/2)(IJ − p1/2p

′
1/2) = IJ − 2p1/2p

′
1/2 + p1/2p

′
1/2p1/2p

′
1/2

= IJ − 2p1/2p
′
1/2 + p1/2(1)p′1/2 = IJ − p1/2p

′
1/2.

Also rank(IJ − p1/2p
′
1/2) = J − 1, because the rank of an idempotent matrix

is its trace: tr(IJ − p1/2p
′
1/2) = J − 1. We will show in the following that

IJ − p1/2p
′
1/2 is the asymptotic variance of

√
Nm.

Rewrite the jth component
√

Nmj of
√

Nm as

√
Nmj =

√
N

(
Nj

N
− pj

)
/
√

pj

=
1√
N

∑
i

{1 [yi = vj ] −E (1 [y = vj ])} /
√

pj � N{0, (1 − pj)}.

For the cross terms of
√

Nmj and
√

Nmq with j = q, it holds that

E{(1[y = vj ] − pj)(1[y = vq] − pq)}√
pj
√

pq
=

−2pjpq + pjpq√
pjpq

= −√
pjpq.

Hence,

√
Nm � N

⎛⎜⎜⎝0J ,

⎡⎢⎢⎣
1 − p1 −√

p1p2 ... −√
p1pJ

−√
p2p1 1 − p2 ... ...
... ... ... −√

pJ−1pJ

−√
pJp1 ... −√

pJpJ−1 1 − pJ

⎤⎥⎥⎦
⎞⎟⎟⎠

= N
(
0, IJ − p1/2p

′
1/2

)
.

For a k×1 random vector z ∼ N(0, V ), as well known, V can be written
as

V = HΛH ′ where H ′H = Ik and Λ is the diagonal
matrix of the eigenvalues of V .

For the quadratic form z′V z,

z′V z = z′HΛH ′z = w′Λw where w ≡ H ′z ∼ N(0,Λ) because
H ′V H = H ′HΛH ′H = Λ.
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Observe that, with w = (w1, ..., wk)′,

w′Λw = [w1, ..., wk]

⎡⎢⎣ λ1 0 0

0
. . . 0

0 0 λk

⎤⎥⎦
⎡⎢⎣ w1

...
wk

⎤⎥⎦ =
k∑

j=1

λjw
2
j .

But the eigenvalues of an idempotent matrix is either 0 or 1 and the number
of one’s equals the rank of the matrix. Thus, when V is idempotent, w′Λw
is a sum of “rank(V )-many” independent N(0, 1) rv’s, and hence follows
χ2

rank(V ). Using this fact, since rank(IJ − p1/2p
′
1/2) = J − 1, we get the

desired result

MN =
√

Nm′
(
IJ − p1/2p

′
1/2

)√
Nm� χ2

J−1.

Usually when we look at quadratic forms such as z′V −1z where z ∼
N(0, V ), the role of V −1 is “weighting (i.e., standardizing)” z. But in MN ,
weighting has been partly built into m by the denominator √

pj and the
middle matrix is the adjacent vector’s asymptotic variance, not its inverse.
In

√
Nm′(IJ − p1/2p

′
1/2)

√
Nm, the role of the middle matrix is thus not so

much weighting as it is to pick up J − 1 terms in the adjacent J × 1 vector√
Nm.

Many economic data have a continuously distributed y along with re-
gressors, and the Pearson χ2 test needs to be modified for those data. For
example, y has to be grouped and the number of groups and grouping in-
tervals have to be chosen. This seems to be an impediment to the Pearson
χ2 test. Also there exist χ2 GOF tests for regression function specification
as reviewed in Lee (1996). But the tests are subject to the same grouping
problems, and they are “dominated” (in terms of power and ease in use) by
other specification tests examined in the semiparametrics chapters. See Lee
(1996, pp. 63–67) and the references therein if interested.

2 Stratified Sampling and Weighted
M-Estimator

Suppose we have a study population of interest with a parameter β; as
usual, let β be a parameter governing the relationship between a response
variable y and regressors x. We want to find β using a sample of size N drawn
from the population. The question is how exactly N -many observations are
to be sampled. In the main text, we assumed that the observations (xi, yi)
are iid across i = 1, ..., N , i.e., the data is obtained by random sampling from
the population. We can then identify the joint density/probability of (x, y)—
omit the part “/probability” from now on. Random sampling is the yardstick
again which other sampling schemes are compared.

Random sampling can be taken as synonymous as having an iid sample
from an “infinite population” because drawing a finite number of observa-
tions hardly alters the population. But in a finite population with M -many
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units, random sampling does not yield an iid sample; rather (simple) random
sampling of m units is a sampling such that each set with m units is equally
likely to be selected. This then implies that each unit has the equal proba-
bility m/M to be selected: as there are

(
M
m

)
-many combinations choosing m

out of M -many units,

P (1st unit included in the selected m units)

=
#combinations choosing m − 1 units out of (M − 1)-many

#combinations choosing m units out of M -many

=

(
M−1
m−1

)(
M
m

) =
(M − 1)!/{(m − 1)!(M − m)!}

M !/{m!(M − m)!} =
m

M

where the reason for the numerator in the first equality is that we have to
choose m − 1 out of N − 1 excluding the first unit because the first unit
has been already chosen. As our framework of analysis is asymptotic, unless
otherwise noted, we will assume a population to be large enough so that
random sampling yields an (almost) iid sample.

But random sampling is not necessarily easy (and might be too costly) to
implement. Whereas a general discussion on sampling can be found in text-
books such as Lohr (1999) and Thompson (2002), “stratified sampling” which
is popular in practice is examined in this section. Under stratified sampling,
estimators need modifications, and we will focus on M-estimator; in econo-
metrics, Wooldridge (1999, 2001) has dealt with M-estimator in stratified
sampling.

2.1 Three Stratified Sampling Methods

Suppose we have a S-many mutually exclusive and exhaustive cells (i.e.,
strata) drawn in the population using the values of (x, y), say C1, ..., CS ;
S is a fixed number. Following the terminologies adopted as in Imbens and
Lancaster (1996), stratified sampling can be further classified into three cate-
gories: standard stratified sampling, variable probability sampling, and multi-
nomial sampling. All three sampling methods can yield the cell proportions
different from the corresponding population proportions, but the way to ar-
rive at those proportions differs across the three methods. For instance, we
may want to have 2/3 of the observations in the data from the poor people,
and 1/3 from the rest, and this can be done in different ways.

2.1.1 Standard Stratified Sampling (SSS)

In standard stratified sampling (SSS), Ns observations are drawn ran-
domly from Cs, s = 1, ..., S, where Ns is fixed and N =

∑S
s=1 Ns; N1, ..., NS

as well as N are all fixed. The observations from SSS are independent but
non-identically distributed, although the observations belonging to the same
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cell are iid: defining the cell variable ci taking s = 1, ..., S,

(yi, xi)|(ci = s) are iid P (y, x|c = s), where P (y, x|c = s)
may vary across s.

The sampling proportion Ns/N for cell Cs may differ from the population
cell proportion ps, as Ns/N is chosen by the researcher—to be more precise,
N would be chosen by the data collection budget constraint first and then Ns

by the researcher. SSS is useful when it is easy to see who belongs to which
cell before data collection—e.g., geographical stratification. For the poor-
oversampling example, however, this requires knowing who is poor before
data collection—not necessarily an easy requirement.

2.1.2 Variable Probability Sampling (VPS)

In variable probability sampling (VPS), an observation is drawn ran-
domly from the population and gets retained with probability rs (“r” from
“retained”) when it falls in cell s. In VPS, N1, ..., NS are random as well as
their sum N . VPS is useful when it is difficult to see who belongs to which cell
before data collection. For instance, in the poor-oversampling example, as it
is typically difficult to know in advance who is poor or not, an observation
is drawn randomly first and then if the person is poor, he/she is retained
with probability 2/3; if not, with probability 1/3. As some observations get
discarded, VPS makes an economic sense when screening people for their
cell membership is cheap but the ensuing information collection on (x, y) is
expensive.

For an observation in the data to be in Cs, it has to be drawn first with
probability ps and then retained with probability rs subject to

∑S
s=1 rs = 1.

Differently from SSS, VPS gives iid data:

(yi, xi, ci) are iid P (y, x|c)P (c), where P (c = s) =
psrs∑
s psrs

.

Note that P (c = s) denotes the cell probability in the sample whereas the
population probability is denoted as P ∗(c = s) = ps. Use these and analogous
notations E(·) and E∗(·) from now on. In stratified sampling,

P (y, x|c) = P ∗(y, x|c) whereas P (c) = P ∗(c) in general.

Let N̄ be the fixed number of total observations initially drawn including
the discarded ones. Define

djs = 1 if the jth draw falls in cell s and 0 otherwise;
P ∗(djs = 1) = ps ∀j.

kj = 1 if the jth draw is kept (“k” from “kept”) and 0 otherwise

where

P ∗(kj = 1) =
S∑

s=1

P (kj = 1|djs = 1)P ∗(djs = 1) =
S∑

s=1

rsps.
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Observe that Ns follows B(N̄ , rsps), and

Ns =
N̄∑

j=1

δjskj =⇒

E∗(Ns) = N̄ · E∗(δjskj) = N̄ · E(kj |δjs = 1)E∗(δjs) = N̄rsps;

N =
S∑

s=1

Ns =⇒

E∗(N) =
∑

s

E∗(Ns) =
∑

s

N̄rsps = N̄
∑

s

rsps

= N̄ · P (observation kept).

This shows that VPS is somewhat complicated due to the extra randomness
coming from the retain/discard feature. The real complication comes because
Ns and N might have information on β through ps = ps(β) which appears
in E∗(Ns) and E∗(N). Weighted M-estimator for VPS is studied in detail in
Wooldridge (1999).

2.1.3 Multinomial Sampling (MNS)

In multinomial sampling (MNS), a stratum is chosen randomly with
probabilities r1, ..., rS subject to

∑
s rs = 1, and then an observation is drawn

randomly from the chosen cell; N1, ..., NS are random but N is fixed as no
draw gets discarded. A theoretically nice feature of multinomial sampling is
that the observations in the data are iid

(yi, xi, ci) are iid P (y, x|c)P (c), where P (c = s) = rs.

The most often used stratified sampling in practice is SSS as the name
suggests, followed by VPS; MNS is rarely used. Nevertheless, MNS is easier to
deal with in asymptotic theory because of its “iidness” as will be seen below
for “weighted M-estimator,” and because MNS is essentially the same as
standard stratified sampling once the cell selection probability rs is replaced
with the cell proportion Ns/N in the data. Also VPS has an equivalent form
of MNS through a certain reparametrization as Imbens and Lancaster (1996)
showed.

2.2 Infeasible MLE

In SSS, the sampling density of (x, y)|s—the density of (x, y) given that
(x, y) is in cell s—is

P (y|x, β)P ∗(x)1[(x, y) ∈ Cs]
ps(β)

where

ps(β) ≡ P{(x, y) ∈ Cs} =
∫

(x,y)∈Cs

P (y|x, β)P ∗(x)dydx.
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In the sampling density, the numerator is for the joint density and the de-
nominator is for the marginal density for cell s so that the ratio becomes the
conditional density. For those (x, y) /∈ Cs, the conditional density is zero.

Define the person i cell indicator

δis = 1[(xi, yi) ∈ Cs].

The likelihood function for an observation (x, y) in SSS can be written as

S∏
s=1

g(x, y|s)δs , where g(x, y|s) ≡ P (y|x, β)P ∗(x)
ps(β)

;

g(x, y|s) has no indicator function 1[(x, y) ∈ Cs] attached as δs appears as
the exponent.

The sample log-likelihood function for β is

∑
i

S∑
s=1

δis ln g(xi, yi|s) =⇒
∑

i

∑
s

δis ln
P (yi|xi, β)

ps(β)

(dropping
∑

i

∑
s

δis lnP ∗(xi))

=
∑

i

∑
s

δis lnP (yi|xi, β) −
∑

i

∑
s

δis ln ps(β)

=
∑

i

∑
s

δis lnP (yi|xi, β) −
∑

s

{∑
i

δis · ln ps(β)

}
=

∑
i

∑
s

δis lnP (yi|xi, β) −
∑

s

Ns ln ps(β).

Note that ps(β) is not indexed by i. Random sampling is a special case of SSS
with a single cell where p1(β) = 1, p2(β) = 0, ..., pS(β) = 0, in which case
the log-likelihood function becomes the usual one

∑
i lnP (yi|xi, β). It is im-

possible to get MLE for
∑

i

∑
s δis ln g(xi, yi|s) unless P ∗(x) is either known

or parametrized as P ∗(x) appears in ps(β). But neither option is appealing
because x typically has different types of components (continuous, binary, or-
dered discrete, etc.) and knowing or parametrizing the x-distribution would
be far-fetching. The MLE as such is infeasible.

Suppose that ps(β) is known from an auxiliary information source. But
plugging in the known value of ps(β) into the above log-likelihood function
does not yield a consistent estimator because the known value part is no
longer a function of β, thus dropping out of the log-likelihood function in
the maximization—this is equivalent to ignoring

∑
s Ns ln ps(β) in the log-

likelihood function. Although the plugging-in fails, using the known ps(β)
value for weighting leads to a consistent estimator as will be shown later.
Before we proceed to this weighting idea, however, we will examine two in-
formative polar cases of SSS, exogenous sampling and endogenous sampling.
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If we fix x first and then sample y (“x-stratified” sampling), then this is
exogenous sampling. For instance, fix x (gender) at male and sample males to
find out their yi, i = 1, ..., Nm; fix x at female and sample females to find their
yi, i = 1, ..., Nf ; pool the two samples to get a single sample where P ∗(y|x) is
identified because P (y|x) = P ∗(y|x), but not P ∗(x), because the proportion
Nm/Nf of males to females in the data is chosen arbitrarily. In this case, only
y is random while x is fixed. The log-likelihood function is

∑N
i=1 P (yi|xi, β),

which is the same as that in random sampling. This suggests that the MLE
for this is as efficient as the MLE for random sampling, and indeed this is
the case as shown in the following.

The population version of
∑N

i=1 P (yi|xi, β) divided by N is, under ex-
ogenous sampling with fixed xi’s,

1
N

∑
i

Ei{P (y|x, β)} where Ei{P (y|x, β)} ≡
∫

P (y|xi, β)dP (y|xi).

The MLE bN satisfies the usual M-estimator expansion

√
N(bN − β) = −

{
1
N

N∑
i=1

∂s(yi|xi, β)
∂b

}−1

1√
N

N∑
i=1

s(yi|xi, β) + op(1).

The observations (xi, yi), i = 1, ..., N , are independent, but not iid. LLN and
CLT for independent but non-identically distributed sequences are needed,
and there are many versions of them available in the literature. Using them
and the fact that the information equality holds for each Ei{P (y|x, β)} leads
to the fact that the MLE under exogenous sampling is asymptotically equiv-
alent to the MLE under random sampling. A formalization of this intuitive
arguments can be seen in Wooldridge (2001).

If we fix y first and then sample x (“y-stratified sampling”), then this is
an endogenous sampling, biased sampling, or response-based sampling where
P ∗(x|y) is identified because P ∗(x|y) = P (x|y), but not P ∗(y); this is the
opposite to exogenous sampling. Since (x, y)-stratified sampling also leads
to endogeneity problems causing biases in general, we will call y-stratified
sampling “response-based sampling,” which is also called “choice-based sam-
pling” although y is not always “chosen” by the subject. Differently from
exogenous sampling, however, dealing with response-based sampling is not
any easier than dealing with general SSS. Hence we will simply note that
response-based sampling is a special case of SSS and will not further mention
response-based sampling unless otherwise necessary.

2.3 Weighted M-Estimator

Although MLE is difficult to implement for endogenous samples, if the
population strata probabilities ps ≡ ps(β) are known from an extra source,
then weighted MLE can be easily done. In the following, for more general-
ity, we will examine weighted M-estimator that includes weighted MLE as a
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special case. Suppose we have MNS with the cell sampling probabilities rs

and
zi ≡ (x′i, yi)′ and rs =

Ns

N
for all s and N.

As already mentioned, the assumption rs = Ns/N ∀s,N makes MNS es-
sentially equivalent to SSS, and makes deriving the asymptotic distribution
much easier than otherwise.

2.3.1 Consistency

Recall the cell indicator δis for person i. Consider a weighted M-estimator
maximizing

QN (b) ≡ 1
N

∑
i

∑
s

ps

rs
δisq(zi, b) =

∑
s

ps

rs

1
N

∑
i

δisq(zi, b)

→p
∑

s

ps

rs
E{δsq(z, b)} as N → ∞

=
∑

s

ps

rs
E{q(z, b)|z ∈ Cs}rs as “joint” E{δsq(z, b)}

is “conditional” times “marginal”

=
∑

s

ps

rs
E∗{q(z, b)|z ∈ Cs}rs =

∑
s

E∗{q(z, b)|z ∈ Cs}ps

= E∗{q(z, b)}.

Recall that E∗(·) denotes an expected value using the population density,
not the sampling density, whereas E(·) is the expected value using the sam-
pling density. E{q(z, b)|z ∈ Cs} equals E∗{q(z, b)|z ∈ Cs} because random
sampling is done within a given stratum although ps = rs.

The display shows that the sample maximand under MNS converges in
probability to the population maximand (for random sampling), and thus the
weighted M-estimator is consistent for β that maximizes E∗{q(z, b)}. Typ-
ically in M-estimator, β is the maximizer of E∗{q(z, b)|x} for any given x,
and thus β becomes also the maximizer of E∗{q(z, b)}. In the last display,
however, the decomposition of E∗{q(z, b)} is not wrt x, but wrt the stratum
index s. Unless s is determined solely by x, E∗{q(z, b)|z ∈ Cs} is not maxi-
mized by β which maximizes E∗{q(z, b)}. Setting q(z, b) = ln f(y|x, b) yields
a weighted MLE as in Manski and Lerman (1977).

2.3.2 Asymptotic Distribution

Apply the Taylor expansion to the first-order condition to get

√
N(bN − β) =E−1

{∑
s

ps

rs
δsqbb′(z, β)

}
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· −1√
N

∑
i

∑
s

ps

rs
δisqb(zi, β) + op(1)

where qbb′(z, β) and qb(z, β) denote, respectively, the gradient and Hessian
wrt b evaluated at β. From this,

√
N(bN − β)� N(0, H−1CH−1) where

H ≡
∑

s

ps

rs
E{δsqbb′(z, β)}

[
=

∑
s

ps

rs
E∗{qbb′(z, β)|δs = 1}rs

= E∗{qbb′(z, β)}
]

C ≡
∑

s

(
ps

rs

)2

E{δsqb(z, β)qb′(z, β)}
[
= E∗{qb(z, β)qb′(z, β)}

due to 2 in
(

ps

rs

)2
]

.

Consistent estimators for H and C are, respectively,

HN ≡
∑

s

ps

rs

1
N

∑
i

δisqbb′(zi, bN ) and

CN ≡
∑

s

(
ps

rs

)2 1
N

∑
i

δisqb(zi, bN )qb′(zi, bN ).

As a special case, for MLE with q(z, b) = ln f(y|x, b), we get

1
N

∑
i

wiw
′
i = CN ( = −HN ) where wi ≡

∑
s

ps

rs
δisqb(zi, bN )

is the weighted score function,

1
N

∑
i

w̃iw̃
′
i = −HN where w̃i ≡

∑
s

(
ps

rs

)1/2

δisqb(zi, bN ).

The usual way of estimating the asymptotic variance of MLE needs this
modification. That is, the sandwich form H−1

N CNH−1
N should be used, neither

−H−1
N nor C−1

N .
The asymptotic variance can be written in a more informative way: a

sum of stratum variances. Use the population first-order condition

E

{∑
s

ps

rs
δsqb(zi, β)

}
=

∑
s

ps

rs
E{δsqb(zi, β)} = 0

to get

1√
N

∑
i

∑
s

ps

rs
δisqb(zi, β) =

1√
N

∑
i

∑
s

ps

rs
{δisqb(zi, β) − E(δsqb(zi, β))}
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=
∑

s

ps

rs

1√
N

∑
i

{δisqb(zi, β) − E(δsqb(zi, β))}.

This is asymptotically normal with the variance

∑
s

(
ps

rs

)2

Vsrs =
∑

s

p2
s

rs
Vs, where Vs is the stratum-s variance:

Vs ≡ E [ {qb(z, β) − E(qb(z, β)|z ∈ Cs)} {qb(z, β)
− E(qb(z, β)|z ∈ Cs)}′ |z ∈ Cs ] .

Vs is nothing but the variance of the vector qb(z, β) in Cs. Be aware that, al-
though the above population first-order condition with

∑
s holds, E(qb(z, β)|

z ∈ Cs) for a given s is not necessarily 0—this is what endogenous sampling
would do: only the sum of these over all strata is zero. Thus if we are to
estimate Vs, then E(qb(z, β)|z ∈ Cs) should be estimated with the stratum-s
sample average of qb(zi, bN )’s.

There is a special case where weighting is not necessary although the
sampling is endogenous: in logit (binary as well as multinomial logit), the in-
consistency resulting from response-based sampling is known to be restricted
to the intercept estimator; this will be shown shortly in the next subsection.
Hence, unless the intercept is of interest, logit can be applied to endogenous
samples without any modification. This is an advantage of logit compared
with probit, whereas the advantage of probit is that a probit equation can
be part of a multivariate model where joint normality is used fruitfully—
multivariate logistic distribution exists only in a limited form.

2.3.3 An Example: Weighted M-Estimator for Mean

As a simple example of weighted M-estimator, ignore x and suppose we
use q(z, b) = −0.5(y − b)2. Define the stratum-s average

ȳs ≡ 1
Ns

N∑
i=1

δisyi =
1∑N

i=1 δis

N∑
i=1

δisyi.

The weighted M-estimator first-order condition is

1
N

∑
i

∑
s

ps

rs
δis(yi − bN ) = 0 ⇐⇒

∑
s

ps

rs

1
N

∑
i

δis(yi − bN ) = 0

⇐⇒
∑

s

ps

rs

1
N

∑
i

δisyi =
∑

s

ps

rs

1
N

∑
i

δis · bN .

The term in front of bN is one because, recalling rs = Ns/N and Ns =
∑

i δis,∑
s

ps

rs

1
N

∑
i

δis =
∑

s

ps

rs

Ns

N

1
Ns

∑
i

δis =
∑

s

ps = 1.



2 Stratified Sampling and Weighted M-Estimator 641

Hence bN is an weighted average of ȳs’s:

bN =
∑

s

ps

rs

1
N

∑
i

δisyi =
∑

s

ps

rs

Ns

N

1
Ns

∑
i

δisyi =
∑

s

psȳs.

It follows that bN →p β ≡ ∑
s psβs as ȳs →p βs ≡ E(y|y ∈ Cs) ∀s. The

estimator bN includes the usual estimator ȳ as a special case when ps =
rs (= Ns/N):

bN =
∑

s

Ps

rs

1
N

∑
i

δisyi =
1
N

∑
i

yi

∑
s

δis = ȳ because
∑

s

δis = 1.

In the asymptotic variance of
√

N(bN − β), with q(z, b) = −0.5
(y − b)2 and thus qbb′ = −1, we get H = −∑

s psr
−1
s E(δs) = −1 because

E(δs) = rs. Also,

C =
∑

s

(
ps

rs

)2

E{δs(y − β)2} =
∑

s

(
ps

rs

)2

E∗{(y − β)2|δs = 1}rs =
∑

s

p2
s

rs
Vs(

= σ2 if Vs = σ2 ∀s and ps = rs

)
.

Hence
√

N(bN − β)� N

(
0,

∑
s

p2
s

rs
Vs

)
.

Consistent estimators for the asymptotic variance are∑
s

p2
s

r2
s

1
N

∑
i

δis(yi − bN )2 or

∑
s

p2
s

rs
VNs where VNs ≡ 1

Ns

∑
i∈Cs

{
yi − bN − 1

Ns

∑
i∈Cs

(yi − bN )

}2

→p Vs.

The first estimator is a sample analog for
∑

s(ps/rs)2E
{
δs(y − β)2

}
in the

above display involving C.
It is possible to minimize the asymptotic variance using rs. For instance,

suppose S = 2, p1 = p and r1 = r, and thus the asymptotic variance is

p2

r
V1 +

(1 − p)2

1 − r
V2.

The first-and the second-order conditions for r are, respectively,

−p2

r2
V1 +

(1 − p)2

(1 − r)2
V2 = 0 and

2p2

r3
V1 +

2(1 − p)2

(1 − r)3
V2 > 0.

From the first-order condition,

p2

r2
V1 =

(1 − p)2

(1 − r)2
V2 ⇐⇒ (1 − p)2

p2

V2

V1
=

(1 − r)2

r2



642 Appendix II: Supplementary Topics

=⇒ 1
r
− 1 =

1 − p

p

(
V2

V1

)1/2

=⇒ r =

{
1 +

1 − p

p

(
V2

V1

)1/2
}−1

.

The optimal r is decreasing in V2/V1; r = p if V2 = V1. Therefore, when
the variance changes across the cells, do stratified sampling such that the cell
with the larger (smaller) variance gets over-sampled (under-sampled). Substi-
tuting the optimal r into the asymptotic variance gives (in fact, substituting
(p2/r2)V1(1 − r) = {(1 − p)2/(1 − r)}V2), with p2 = 1 − p,

p2V1 + (1 − p)V2 + 2p(1 − p)V 1/2
1 V

1/2
2 =

(
p1V

1/2
1 + p2V

1/2
2

)2

which can be taken as an “average” of V1 and V2.
As was just seen, the optimal r is not necessarily p. This means that

stratified sampling is better than random sampling. The improvement will be
greater if the “within stratum variances” (Vs’s) are small (and the “between
stratum variances” are large), which is achieved if the sampling units are ho-
mogenous within the same stratum (and heterogenous across different strata).
This is because only the stratum variances appear in the asymptotic variance.
Recalling ANOVA V (y) = E{V (y|c)}+V {E(y|c)}, since V (y) is fixed, we can
reduce the within stratum variances V (y|c)’s (and thus E{V (y|c)}) only at
the cost of increasing the second term V {E(y|c)}. Designing strata such that
the strata averages E(y|c)’s differ much across the cells can deliver this fea-
ture. A natural question is then “why not always use stratified sampling?”
This is because stratified sampling is complicated compared with random
sampling, and the strata should be designed before data collection. It is not
necessarily easy to see who are similar to whom ahead of data collection.

2.4 Logit Slope Consistency in Response-Based
Samples

For more generality, we will deal with multinomial, instead of binary,
logit. Suppose there are j = 1, ..., J alternatives to choose from, with the
choice probabilities (omitting “|wi”)

P (i chooses 1) =
1

1 +
∑J

j=2 exp
(
w′ijβ

) ,

P (i chooses j) =
exp

(
w′ijβ

)
1 +

∑J
j=2 exp

(
w′ijβ

) , j = 1.

This includes binary logit as a special case when J = 2. Define w̃ij as the
elements of wij other than unity and β̃ as the corresponding parameters
for w̃ij—wij includes the “alternative-constant” regressors zi and the first
element of zi is unity. Denoting the alternative-j intercept as τ j , we get

P (i chooses 1) =
1

1 +
∑J

j=2 exp
(
τ j + w̃′ij β̃

) ,
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P (i chooses j) =
exp(τ j + w̃′ij β̃)

1 +
∑J

j=2 exp
(
τ j + w̃′ij β̃

) , j = 1.

In the following, we will show that the slope parameters are identified in
response-based samples; part of the proof is borrowed from Prentice and Pyke
(1979). That is, MNL inconsistency for response-based samples is restricted to
the intercepts only. We will use f for the population density/probability and g
for the sampling density/probability. The key step in the proof is that “odds
ratios,” which are identified with response-based samples, are exponential
functions of the w′ijβ differences.

Dropping the index i, let w be the collection of the elements in wj ,
j = 1, ..., J and w̃ be the part of w other than unity. Let f(j|w̃) denote
P (j chosen|w̃), and f(j|0) denote P (j chosen|w̃ = 0). The above MNL prob-
abilities imply

f(j|w̃)/f(1|w̃)
f(j|0)/f(1|0)

=
exp

(
τ j + w̃′j β̃

)
exp(τ j)

= exp
(
w̃′j β̃

)
, j = 1.

The reverse also holds: if this display is true, then the above MNL probability
follows. To see this, take ln on the first and last expressions on this display
to get

ln
f(j|w̃)
f(1|w)

− w̃′j β̃ = ln
f(j|0)
f(1|0)

≡ τ j =⇒ f(j|w̃)
f(1|w̃)

= exp
(
τ j + w̃′j β̃

)
=⇒ f(j|w̃) = exp(w′jβ) · f(1|w̃), with w′jβ ≡ τ j + w̃′j β̃

=⇒ 1 − f(1|w̃) =
J∑

j=2

f(j|w̃) = f(1|w̃)
J∑

j=2

exp
(
w′jβ

)
.

From the first and last terms, we get f(1|w̃) =
{

1 +
∑J

j=2 exp(w′jβ)
}−1

,
substitution of which into f(j|w) = exp(w′jβ) · f(1|w) yields the desired
MNL probabilities.

Using f (j|w̃) = f(w̃|j)f(j)/f(w̃), it holds that

f(j|w̃)/f(1|w̃)
f(j|0)/f(1|0)

(
=

{f(w̃|j)f(j)/f(w̃)} / {f(w̃|1)f(1)/f(w̃)}
{f(0|j)f(j)/f(0)} / {f(0|1)f(1)/f(0)}

)
=

f(w̃|j)/f(0|j)
f(w̃|1)/f(0|1)

.

This equation also holds for any probability/density including the sampling
density g as well:

g(j|w̃)/g(1|w̃)
g(j|0)/g(1|0)

=
g(w̃|j)/g(0|j)
g(w̃|1)/g(0|1)

=
f(w̃|j)/f(0|j)
f(w̃|1)/f(0|1)
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where the last equality holds because g(w̃|j) = f(w̃|j) ∀j in response-based
samples. Combining the last equality with {f(j|w̃)/f(1|w̃)} / {f(j|0)/f(1|0)}
= exp

(
w̃′j β̃

)
∀j = 1 yields

g(j|w̃)/g(1|w̃)
g(j|0)/g(1|0)

= exp
(
w̃′j β̃

)
, ∀j = 1

=⇒ ln
g(j|w̃)
g(1|w)

− w̃′j β̃ = ln
g(j|0)
g(1|0)

≡ ξj , taking ln .

Hence, when MNL holds but the sampling is response-based, only the inter-
cepts differ:

P (i chooses 1) =
1

1 +
∑J

j=2 exp
(
ξj + w̃′ij β̃

) ,

P (i chooses j) =
exp

(
ξj + w̃′ij β̃

)
1 +

∑J
j=2 exp

(
ξj + w̃′ij β̃

) , j = 1.

The true intercept is ln {f(j|0)/f(1|0)} while the identified intercept is
ln {g(j|0)/g(1|0)}.

2.5 Truncated Samples with Zero Cell Probability

The weighted M-estimator examined above applies to cells with non-
zero sampling probabilities. What if there is a cell with rs = 0? For this case,
we turn back to the infeasible MLE. Earlier we mentioned the difficulty of
knowing or specifying the x distribution in maximizing∑

i

∑
s

δis lnP (yi|xi, β) −
∑

s

Ns ln ps(β) where

ps(β) ≡
∫

Cs

P (y|x, β)P ∗(x)dydx.

Suppose we regard the sample as an exogenous sample: instead of sampling
(x, y) jointly from a given cell, suppose x is fixed arbitrarily first in the cell
and then y is sampled. In this case, x is a fixed constant and ps(β) gets
replaced by

ps(xi;β) ≡
∫

(xi,y)∈Cs

P (y|xi, β)dy

and there is no need to bother with the x-density.
For instance, consider the “zero-truncated model” under normality:

y = x′β + u, u ∼ N(0, σ2) independently of x

(x, y) observed only when y > 0 ⇐⇒ u > −x′β.
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There are two cells (y ≤ 0 and y > 0) and the cell y ≤ 0 has zero cell selection
probability. The log-likelihood function for the sample becomes∑

i

ln
1
σ

φ

(
yi − x′ib

σ

)
− ln

∫ ∫ ∞

−x′b

1
σ

φ
(u

σ

)
P ∗(x)dudx.

But if we regard x fixed, then this becomes∑
i

ln
1
σ

φ

(
yi − x′ib

σ

)
− ln Φ

(
x′ib
σ

)
which is the MLE proposed by Hausman and Wise (1977).

The MLE for the last-display avoids the problem of specifying P ∗(x), but
it should be borne in mind that the MLE incurs information loss by treating
“the sample with random x and zero cell probability for the cell y ≤ 0” as a
“sample with fixed x and zero cell probability for the cell y ≤ 0.”

2.6 Truncated Count Response Under On-Site Sampling

One well-known method to evaluate non-market (e.g. public) good de-
mand is contingent valuation methods (CVM) as shown in the main text. But
a problem of CVM is that CVM is based on intentions (e.g., willingness to
pay), not on the actual behaviors. For public goods such as mountain trails,
their demand depends on the cost involved in traveling to the trails (and the
entrance fee, if there is any); the cost includes transportations, lodgings, etc.
forth. Using the actual travel cost data avoids the “intention” criticism. But
random sampling to find out the demand for mountain trails would not yield
enough observations with y > 0 as most people have y = 0. One way to avoid
this problem is “on-site sampling”: sample (say, for one month) those who
come to the trails; y is the number of visits per month, and x consists of
trail and individual characteristics including travel cost, age, gender, income
etc. This is a response-based sampling because only those with y > 0 are
sampled.

With P (j|x) ≡ P (y = j|x), the truncated probability is

P (y = j|x)
P (y = 0|x)

=
P (j|x)

1 − P (0|x)
.

For instance, using the Poisson model,

P (y = j|x)

P (y 	= 0|x)
=

e−λ(x)λ(x)j/j!

1− e−λ(x)
where λ(x) = exp(x′β) is the Poisson parameter.

In this case, we can use the log-likelihood function∑
i

[− exp(x′ib) + x′ib · yi − ln{1 − exp(−ex′
ib)}].
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Unfortunately, on-site sampling typically has an additional problem:
those with a large y is more likely to be picked up than those with a small
y. This problem is called “size-biased sampling” or “length-biased sampling,”
and should be dealt with as well. The conditional probability of visit in this
case becomes (e.g., Shaw, 1988)

yP (y|x)∑∞
a=0 aP (a|x)

=
yP (y|x)
E(y|x)

{
=

y

λ(x)
e−λ(x)λ(x)y

y!
=

e−λ(x)λ(x)y−1

(y − 1)!

for Poisson model
}

.

The reason for the appearance of y in yP (y|x) is that those with y ≥ 1
is y-times more likely to be picked up compared to those with y = 1;∑∞

a=1 aP (a|x) is the normalizing constant. For the on-site sampling Pois-
son MLE, the only change required from the usual Poisson MLE is using
ỹ ≡ y − 1 that can take 0 now. Then λ(x) ≡ E(ỹ|x) = E(y − 1|x), from
which we get E(y|x) = λ(x) + 1 while λ(x) = V (ỹ|x) = V (y|x). Note that
the size-biased sampling density yf(y|x)/E(y|x) also holds even if y were
continuously distributed.

Still a less-than-satisfactory feature of the Poisson MLE is that it cannot
handle the over-dispersion problem, for which negative binomial distribution
(NB) can be used, as suggested by Englin and Shonkwiler (1995). Using
{yi/E(y)}P (yi|xi), we get (define λi ≡ λ(xi) and recall ψi = λκ

i /α) the
probability of (y = yi)|(x = xi):

yi

λi
· Γ(yi + ψi)
Γ(ψi)Γ(yi + 1)

·
(

ψi

λi + ψi

)ψi
(

λi

λi + ψi

)yi

and Englin and Shonkwiler (1995) show

E(y|xi) = 1 + λi +
λi

ψi

and V (y|xi) = λi

(
1 +

1
ψi

+
λi

ψi

+
λi

ψ2
i

)
.

As in our earlier NB parametrization for count responses, we may further set
ψi = α−1 (with κ = 0), which differs from the parametrization in Englin and
Shonkwiler (1995) who used instead ψi = λi/α (with κ = 1).

Yet another alternative to the on-site-sampling Poisson is the GMM
using the moment condition E[{y−1− exp(x′β)}x] = 0, which is likely to be
much simpler than the on-site-sampling NB. Also, going beyond visits to a
single site, Moeltner and Shonkwiler (2005) examined joint visits to multiple
sites under on-site sampling in a parametric context.

3 Empirical Likelihood Estimator

Although GMM is a useful framework to unify many apparently dif-
ferent estimation ideas, it is sometimes criticized for its poor small sample
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performance. Here we examine “empirical likelihood estimation” and related
methods which are touted to be better than GMM in small sample perfor-
mance. Since small sample performance is not of our main interest, we will
just show that empirical likelihood-based methods are equivalent to GMM in
their asymptotic distributions. See, e.g., Kitamura (2007) and the references
therein. Despite much “fanfare,” however, it is not clear whether empirical
likelihood estimators are worth the extra efforts in implementing them.

3.1 Empirical Likelihood (EL) Method

Suppose we have a s × 1 moment condition Eψ (zi, β) = 0 and want to
find the “empirical likelihood (EL)” πi, i = 1, ..., N , satisfying the moment
condition. In EL-based ideas (see Owen (2001) and the references therein),
the probabilities πi, i = 1, ..., N , are estimated along with β by maximizing

max
b,p1,...,pN

N∑
i=1

ln pi subject to pi ≥ 0,
∑

i

pi = 1,
∑

i

piψ(zi, b) = 0.

The last restriction is that the moment condition holds exactly in the “re-
stricted empirical world”—restricted by the moment condition—with P (z =
zi) = pi, whereas P (z = zi) = N−1 in the unrestricted empirical world be-
cause the likelihood of observing z = zi in a given sample z1, ..., zN is N−1.
Surprisingly, the estimator for β obtained this way avoids the issue of the
weighting matrix in GMM and yet follows the same asymptotic distribution.
We show this in the following, drawing on Qin and Lawless (1994).

EL method sets up the maximand

QN (b, t) ≡
∑

i

ln pi + λ

(
1 −

∑
i

pi

)
− Nt′

∑
i

piψ(zi, b)

where λ and t are the Lagrangian multipliers; we suppress p1, ..., pN and λ in
the arguments of QN . The first-order condition for pNi and bN is

∂QN (bN , tN )
∂pi

=
1

pNi
− λ − Nt′Nψ(zi, bN ) = 0

=⇒ pNi =
1

λ + Nt′Nψ(zi, bN )
;

∂QN (bN , tN )
∂b′

=
∑

i

pNi t
′
N

1×s
· ψb′

s×k

(zi, bN ) = 0.

From ∂QN/∂pi = 0, using
∑

i pNiψ(zi, bN ) = 0,

0 =
∑

i

pNi
∂QN

∂pi
=

∑
i

pNi

{
1

pNi
− λ − Nψ(zi, bN )′tN

}
= N − λ

=⇒ λ = N and pNi =
1
N

· 1
1 + t′Nψ(zi, bN )

.
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The term next to N−1 is the adjusting factor for the unrestricted empirical
likelihood.

From ∂QN (bN , tN )/∂t = 0 and ∂QN (bN , tN )/∂b′ = 0, it holds that∑
i

pNiψ(zi, bN ) = E∗ψ(zi, bN ) = 0,∑
i

pNi ψb
k×s

(zi, bN ) tN
s×1

= E∗ψb(zi, bN ) · tN = 0

where E∗(·) is the expectation using {pN1, ..., pNN}. Substituting the above
pNi into these two gives

QN1
s×1

(bN , tN ) ≡ 1
N

∑
i

ψ(zi, bN )
1 + t′Nψ(zi, bN )

= 0,

QN2
k×1

(bN , tN ) ≡ 1
N

∑
i

ψb(zi, bN )
1 + t′Nψ(zi, bN )

tN = 0 ( =⇒ QN2(bN , 0) = 0).

These two equations determine the asymptotic distribution of (
√

N
(bN − β)′,

√
NtN

′)′.
We have (note that t = 0 eliminates many terms in the following):

∂QN1(bN , 0)
∂b′
s×k

=
1
N

∑
i

ψb′(zi, bN ) and

∂QN1(bN , 0)
∂t′
s×s

= − 1
N

∑
i

ψ(zi, bN )ψ(zi, bN )′,

∂QN2(bN , 0)
∂b′
k×k

= 0 and
∂QN2(bN , 0)

∂t′
k×s

=
1
N

∑
i

ψb(zi, bN ).

Using this, expand 0 = {QN2(bN , tN )′, QN1(bN , tN )′}′ around (β′, 0′s)
′ to get,

for some b∗N ∈ (bN , β),

0 =
[

0
(1/

√
N)

∑
i ψ(zi, β)

]
+

[
0 (1/N)

∑
i ψb(zi, b

∗
N )

(1/N)
∑

i ψb′(zi, b
∗
N ) −(1/N)

∑
i ψ(zi, b

∗
N )ψ(zi, b

∗
N )′

]
[ √

N(bN − β)√
NtN

]
.

Solve this for the last vector to get an op(1) term plus[ √
N(bN − β)√

NtN

]
=

[
0 Eψb(z, β)

Eψb′(z, β) −Eψ(zi, β)ψ(zi, β)′

]−1

[
0

−(1/
√

N)
∑

i ψ(zi, β)

]
.
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The rhs is asymptotically normal with the variance (omit (z, β) in ψ(z, β))[
0 Eψb

Eψb′ −Eψψ′

]−1 [ 0 0
0 Eψψ′

] [
0 Eψb

Eψb′ −Eψψ′

]−1

.

Define matrices A,C,D such that[
A C
C ′ D

]
=

[
0 Eψb

Eψb′ −Eψψ′

]−1

.

Then the variance matrix is[
A C
C ′ D

] [
0 0
0 Eψψ′

] [
A′ C
C ′ D′

]
=

[
0 C · Eψψ′

0 D · Eψψ′

] [
A′ C
C ′ D′

]
=

[
CEψψ′C ′ CEψψ′D′

DEψψ′C ′ DEψψ′D′

]
.

Use the formula for the inverse of a partitioned matrix to get

A = {EψbE
−1(ψψ′)Eψb′}−1, C = {EψbE

−1(ψψ′)Eψb′}−1EψbE
−1(ψψ′),

D = −E−1(ψψ′) + E−1(ψψ′)Eψb′{EψbE
−1(ψψ′)Eψb′}−1EψbE

−1(ψψ′).

Hence, the asymptotic variance of
√

N(bN − β) is CEψψ′C ′ =
{EψbE

−1(ψψ′)Eψb′}−1, which is the same as that of GMM.

Several remarks are in order. First, the asymptotic variance of
√

N(bN −
β) can be estimated with⎡⎣∑

i

pNiψb(zi, bN )

{∑
i

pNiψ(zi, bN )ψ(zi, bN )′
}−1 ∑

i

pNiψb′(zi, bN )

⎤⎦−1

;

if we replace pNi with N−1, then we get the GMM asymptotic variance
estimator. Second,

√
NtN is asymptotically normal with variance DEψψ′D′.

This yields a LM over-id test statistic

Nt′N (DEψψ′D′)+tN � χ2
s−k

where (DEψψ′D′)+ is the “Moore–Penrose generalized inverse”: the Moore–
Penrose generalized inverse “A+” of a matrix A which may be singular or
even non-square satisfies uniquely

AA+A = A, A+AA+ = A+, (AA+)′ = AA+, (A+A)′ = A+A.

To understand the dof s−k, note that, for a s×k matrix W with rank(W ) =
k, W (W ′W )−1W ′ has its rank k and Is − W (W ′W )−1W ′ has rank s − k.
Defining A such that −E−1(ψψ′) = A′A and a s × k matrix W ≡ A · Eψb′ ,
D can be written as

A′(Is−W (W ′W )−1W ′)A =⇒ rank(D) = rank(Is−W (W ′W )−1W ′) = s−k.
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Third, there is an LR over-id test comparing pNi and N−1:

2

(∑
i

ln
1
N

− ln pNi

)
= 2

∑
i

ln{1 + t′Nψ(zi, bN )}� χ2
s−k.

This test may be over-rejecting, and 2
∑

i t′Nψ(zi, bN ) � χ2
s−k may work

better in practice using ln(1 + a) � a when a � 0.
To see how EL may be implemented, expand QN1(bN , tN ) = 0 wrt tN =

t0 and then replace tN with t1 to get an iteration formula:

0 � 1
N

∑
i

ψ(zi, bN )
1 + t′0ψ(zi, bN )

− 1
N

∑
i

ψ(zi, bN )ψ(zi, bN )′

{1 + t′0ψ(zi, bN )}2
(t1 − t0)

=⇒ t1 = t0 +

{∑
i

ψ(zi, bN )ψ(zi, bN )′

{1 + t′0ψ(zi, bN )}2

}−1 ∑
i

ψ(zi, bN )
1 + t′0ψ(zi, bN )

.

Once bN is found, getting tN that satisfies QN1(bN , tN ) = 0 can be done using
this formula; then, for a given bN and tN , pNi is N−1{1+t′Nψ(zi, bN )}−1. The
only question left is how to get bN . One may use the unweighted GMM as an
initial bN , obtain t1 with t0 = 0 in the last display, and then get pNi; then a
new bN may be found using

∑
i pNiψ(zi, bN ) = 0 or

∑
i pNiψb(zi, bN )tN = 0

to go for a new round of iteration. Shortly, we will show an estimator related
to EL but easier to obtain computationally.

3.2 Exponential Tilting Estimator

Imbens et al. (1998) proposed “exponential tilting (ET)” estimator:

min
b,p1,...,pN

∑
i

pi ln pi subject to pi ≥ 0,
∑

i

pi = 1,
∑

i

piψ(zi, b) = 0.

Set up the minimand

QN (b, t) =
∑

i

pi ln pi + λ(1 −
∑

i

pi) − t′
∑

i

piψ(zi, b);

following Imbens et al. (1998), we use just t instead of Nt, which results in
tN , not

√
NtN , following an asymptotic normal distribution.

Minimizing this is in fact the same as minimizing the Kullback–Leibler
information criterion (KLIC) between two distributions {p1, ..., pN}
and {N−1, ..., N−1}; this equivalence will become clearer when “power-
divergence statistic” is discussed later. Kitamura and Stutzer (1997) also sug-
gested ET independently of Imbens et al. (1998), minimizing the KLIC. ET
estimation is also called the maximum entropy estimation where the entropy
for a distribution {p1, ..., pN} is∑

i

pi(− ln pi).
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The entity − ln pi is the “information contents” of the event with probability
pi in the following sense.

The less likely an event is, the more informative it is. For instance,
“the president attended an official meeting” is highly likely and consequently
not informative, whereas “the president danced tango” is unlikely and conse-
quently highly informative. Thus, the information contents of an event should
be a decreasing function of the probability, and − ln pi is such a function. If
two events are independent, then the information contents of the two events
should be the sum over each information contents: this is also satisfied by
− ln pi because − ln pipj = − ln pi − ln pj for two independent events with
probabilities pi and pj , respectively. Adding requirements like this leads to
{− ln p1, ...,− ln pN} reflecting the information contents of the distribution
{p1, ..., pN}, and

∑
i pi(− ln pi) is a weighted sum of {− ln p1, ...,− ln pN}.

Turning back to ET, the first-order condition for pNi and bN is

∂QN (pNi, bN )
∂pi

= 1 + ln pNi − λ − t′Nψ(zi, bN ) = 0

=⇒ pNi = exp{λ − 1 + t′Nψ(zi, bN )}
∂QN (pNi, bN )

∂b
=

∑
i

pNi ψb
k×s

(zi, bN ) · tN
s×1

= 0.

Substituting pNi into
∑

i pNi = 1 and solving it for exp (λ), we get

exp(λ) =
1∑

i exp{−1 + t′Nψ(zi, bN )} =⇒ pNi =
exp{t′Nψ(zi, bN )}∑
i exp{t′Nψ(zi, bN )} .

Substitute this pNi into
∑

i pNiψ(zi, bN ) = 0 and
∑

i pNiψb(zi, bN )tN = 0
and multiply by 1/

√
N to get

QN1
s×1

(bN , tN ) ≡ 1√
N

∑
i

ψ(zi, bN ) exp{t′Nψ(zi, bN )} = 0,

QN2
k×1

(bN , tN ) ≡ 1√
N

∑
i

ψb(zi, bN )tN exp{t′Nψ(zi, bN )} = 0.

The rest of the steps are analogous to the EL method; the first-order asymp-
totics for (

√
N(b′N − β′), t′N )′ is the same as that of the EL method.

Newey and Smith (2004) proposed a generalized empirical likelihood
(GEL) estimation where β is estimated in a “saddle point” problem:

max
b

min
t

∑
i

ρ{t′ψ(zi, b)}

where ρ(v) is concave in v which ranges over a domain including 0. Newey
and Smith (2004) showed that GEL includes EL as a special case when ρ(v) =
ln(1−v) and ET when ρ(v) = −ev. Furthermore, if ρ (v) = −(1+v)2/2, then



652 Appendix II: Supplementary Topics

GEL becomes the “continuously updating GMM” in Hansen et al. (1996). In
GEL, once bN and tN are obtained, the associated probabilities become

pNi =
ρ′{t′Nψ(zi, bN )}∑
i ρ′{t′Nψ(zi, bN )} .

Newey and Smith (2004) showed that EL is least biased and go on to propose
bias-corrected versions of GMM and GEL.

The joint maximization wrt b and minimization wrt t may not work well
in practice. Some iteration ideas were shown above to implement EL. But the
GEL with ρ (v) = −(1 + v)2/2 may be modified into a two-stage estimator
to ease the computation. First, obtain a GMM estimator bN to be plugged
into the GEL:

min
t

∑
i

1
2
{1 + t′ψ(zi, bN )}2.

Second, minimizing this wrt t yields

0 =
∑

i

ψ(zi, bN ){1 + t′Nψ(zi, bN )}

=⇒ tN = −
{∑

i

ψ(zi, bN )ψ(zi, bN )′
}−1 ∑

i

ψ(zi, bN )

and pNi =
1 + t′Nψ(zi, bN )∑
i{1 + t′Nψ(zi, bN )} ;

i.e., tN and pNi can be obtained in closed forms, not requiring iteration.
Third, obtain∑

i

pNiψ (zi, bN ) ψ (zi, bN )′ and
∑

i

pNiψb (zi, bN )

to do GMM with these matrices. The three steps may be iterated until con-
vergence.

3.3 Minimum Discrepancy Estimator

Consider two probability distributions A ≡ {a1, ..., aN} and P ≡ {p1, ...,
pN} for the same support points. For a given constant λ, a “power-divergence
statistic” for the two distributions is (Cressie and Read, 1984)

Dλ(A,P ) =
2

λ(1 + λ)

∑
i

ai

{(
ai

pi

)λ

− 1

}
.

Cressie and Read (1984) in fact suggested this as a test statistic for the
difference between two multinomial distributions where the sum is over the
number of categories in the distributions.
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The family Dλ(A,P ) indexed by λ includes several well-known test
statistics, and Cressie and Read (1984) recommended using λ = 2/3. Since we
are interested in connecting Dλ(A,P ) to GMM and EL-related methods, we
will let A = {N−1, ..., N−1} and the sum in Dλ(A,P ) will be over N distinct
data points. When P depends on an unknown parameter vector θ, θ can be
estimated consistently by minimizing Dλ(A,P (θ)). But since Dλ(A,P (θ)) is
not a distance as Dλ(A,P (θ)) is not symmetric in A and P (θ), Cressie and
Read (1984) called the idea “minimum discrepancy estimation,” not mini-
mum distance estimation.

To get the probabilities satisfying
∑

i piψ(zi, β) = 0 while being close to
the unrestricted empirical likelihood N−1 for each observation, we can think
of minimizing

min
b,p1,...,pN

∑
i

Dλ({N−1, ..., N−1}, P ) subject to pi ≥ 0,
∑

i

pi = 1,∑
i

piψ(zi, b) = 0.

For any λ, the estimator bN obtained this way has the same first-order asymp-
totic distribution as the GMM. But λ should matter for small sample perfor-
mance. There are a number of well-known special cases of minimum discrep-
ancy estimation as examined in the following.

First, letting λ → 0, we get EL, because (recall the Box-Cox transfor-
mation and set ai = N−1){(

ai

pi

)λ

− 1

}
/λ → ln

ai

pi
= − ln(Npi) = − lnN − ln pi as λ → 0;

− lnN is irrelevant for maximizing
∑

i pi. Furthermore, as λ → 0,

2
1 + λ

∑
i

ai

{(
ai

pi

)λ

− 1

}
/λ

→− 2
∑

i

1
N

ln(Npi) = 2
∑

i

1
N

{ln
(

1
N

)
− ln pi}.

This is a kind of LR test statistic for the restricted likelihood
∏

i pi and the
unrestricted likelihood

∏
i N−1: the difference ln(N−1)− ln pi is weighted by

the unrestricted empirical likelihood N−1.
Second, as λ → −1 (recall d ln gλ/dλ = gλ ln g),{(

ai

pi

)λ

− 1

}
/(1 + λ) →

(
ai

pi

)−1

ln
ai

pi
due to L’Hospital’s rule.

Hence Dλ(A,P ) includes ET as a special case when λ → −1. Furthermore,
as λ → −1, again with ai = N−1,

2
λ

∑
i

ai

{(
ai

pi

)λ

− 1

}
/(1 + λ)
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→ −2
∑

i

pi ln
(

ai

pi

)
= −2

∑
i

pi(ln
1
N

− ln pi),

which is reminiscent of the LR test statistic: the difference ln(N−1)− ln pi is
weighted by the restricted pi.

Third, with λ = 1, we get (using
∑

i ai =
∑

i pi = 1)∑
i

ai

(
ai

pi
− 1

)
=

∑
i

a2
i

pi
− 1 =

∑
i

a2
i

pi
− 2 + 1 =

∑
i

a2
i

pi
− 2

∑
i

piai

pi

+
∑

i

p2
i

pi
=

∑
i

a2
i − 2piai + p2

i

pi
=

∑
i

(ai − pi)2

pi

which is the Pearson χ2 goodness-of-fit test statistic. Cressie and Read (1984)
showed that Dλ(A,P ) = D1(A,P ) + op(1), using Taylor expansion; i.e., the
asymptotic distribution of the power-divergence test statistics is the same as
that of the Pearson χ2 test statistic. Recall that Cressie and Read (1984)
recommended λ = 2/3, i.e., using something between EL and the Pearson
minimum χ2 if one intends to estimate θ in pi(θ).

4 Stochastic-Process Convergence
and Applications

4.1 Motivations

Recall the Kolmogorov-Smirnov (KS) goodness-of-fit (GOF) test: for
iid data y1, ..., yN from a continuous df F , we test H0: F = F0. With the
empirical df FN (t) ≡ N−1

∑
i 1[yi ≤ t], the test statistic is

KSN ≡ sup
t

√
N |FN (t) − F0(t)| = sup

t
| 1√

N

∑
i

{1[yi ≤ t] − F0(t)}|

= sup
τ∈[0,1]

|UN (τ)|
{

where UN (τ) ≡ 1√
N

∑
i

{1[F0(yi) ≤ τ ] − τ}

with τ = F0(t)
}

� sup
τ∈[0,1]

|B(τ)| under H0 where B (τ) is a Brownian bridge.

The last expression follows from the continuous mapping theorem applied to
the convergence in law “UN (τ) � B(τ) on τ ∈ [0, 1]”—more on this below.
This test is ADF as its limit distribution can be found from the distribution
of supτ∈[0,1] |B(τ)| that does not depend on F .

In many other GOF tests, however, the null df depends on a k × 1
parameter θ which should be replaced by an estimator θ̂N to make the test
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operational. Although the test with θ known might be ADF as KSN is, the
test with θ̂N is no longer so in general. Consider

H0 : F (t) = Φ(t; θ)

where Φ denotes the specified distribution in H0 up to the unknown param-
eter θ. The natural question is then how to find the asymptotic distribution
of the resulting test statistic; for KSN , the test statistic is supt

√
N |FN (t)−

Φ(t; θ̂N )|.
There are three approaches to this question. The first is finding the

asymptotic distribution with a “correction term” due to θ̂N − θ, which is
analogous to dealing with the usual TSE. The second is ADF-transformation
by transforming the test statistic such that it becomes orthogonal to θ̂N −
θ; this is also called “Khamaladze transformation.” The third is bootstrap.
Bootstrap in general will be reviewed in the next section, and this section
examines the first two approaches. This task requires studying stochastic
processes and convergence in law (or “weak convergence”) as prerequisites. As
“spin-offs,” studying the prerequisites renders extra benefits such as showing
consistency for asymptotic variance estimators and handling M-estimators in
non-differentiable cases such as LAD.

Recall what the main use of convergence in law was in the case of usual
multivariate CLT’s. When

√
N(bN − β)� N(0, V ), we use this to get

P{
√

N(bN − β) ≤ a} → P{N(0, V ) ≤ a} for any a.

This is in fact using the continuous mapping theorem as follows. Set h{
√

N
(bN − β)} = 1[

√
N(bN − β) ≤ a], and observe that h(·) is continuous a.e.

N(0, V ) because h(·) is continuous except at point a but P{N(0, V ) = a} = 0.
Hence

h{
√

N(bN − β)}� h{N(0, V )} = P{1[N(0, V ) ≤ a]}.
This example differs from UN (τ) � B(τ) on τ ∈ [0, 1] in that

√
N(bN − β)

is a k-dimensional vector and the convergence in law holds easily with a
multivariate CLT, whereas there are uncountably many points in [0, 1] for
UN (τ)� B(τ).

A “direct” way a sequence of k × 1 random vector zN “converges” to a
random vector z is that the difference zN−z converges to 0 in some sense. This
needs a distance concept and both zN and z should be defined on the same
space so that we can look at |zN − z| and check, e.g., P (|z − zN | > ε) → 0 as
N → ∞ for any constant ε > 0. But for convergence in law, we are interested
only in the marginal distributions of zN and z. So long as the marginal
distribution of zN converges to that of z, the convergence in law holds; zN

and z do not have to be defined on the same probability space because zN −z
is not needed. An “indirect” way of convergence is checking how close a′zN

is to a′z for any fixed k × 1 vector a; here the difference between zN and z
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is indirectly looked at through a. But this idea does not yield anything new,
because any a can be written as a linear combination of the basis vectors in
Rk; i.e., as well known

zN � z ⇐⇒ a′zN � a′z for all fixed vector a.

For UN (τ)� B(τ), “k-variate distributional convergence” is not enough
because UN (τ) and B(τ) should be compared at uncountably many points; we
need a “functional CLT” relative to the usual multivariate CLT’s. Despite this
difference, however, convergence in law such as UN (τ)� B(τ) can be defined
“indirectly” by transformations analogous to a′zN : a “bounded continuous
function” of UN (τ) and B(τ) will be used as an analog for a′zN and a′z.
Compared with “strong convergence” concepts requiring |z−zN | or “|UN (τ)−
B(τ)|,” the indirect convergences are “weak convergences”. Also, whereas
both zN and z take their values in Rk, the appropriate space for UN (τ) and
B(τ) should be defined because UN (τ) is not a continuous function of τ while
B(τ) is.

4.2 Stochastic Process and Weak Convergence

4.2.1 Stochastic Process

A metric space M is a set with a metric m:

m(a, b) = m(b, a) (symmetry),
m(a, c) ≤ m(a, b) + m(b, c) (triangle inequality),
m(a, b) ≥ 0 (nonnegativity), and 0 iff a = b.

If a = b is allowed when m(a, b) = 0, then m is a semi-metric. Since the basic
concepts such as what is “open/closed,” “close/distant” etc. in metric spaces
are analogous to those for Euclidean spaces, in the following, we list only a
few not mentioned in relation to Euclidean spaces but needed later.

The closure of a subset A of M is the smallest closed set that contains A.
A subset of M is dense if its closure is M . M is separable if there is a countable
dense subset. M is totally bounded (or precompact) if finitely many balls of
radius ε can cover M for any ε > 0. A set A in M is compact if every open
cover has a finite subcover. Although compactness is equivalent to A being
closed and bounded when M = Rk, this does not hold in general; instead, a
set A in M is compact iff it is closed and totally bounded (⇐⇒ closed and
there is a convergent subsequence for any sequence in M). For example, the
extended real line R̄ = [−∞,∞] is compact because it is closed and any
sequence in [−∞,∞] is bounded and thus has a convergent subsequence.
Because of the theoretical convenience/necessity accorded by compactness,
compact sets such as [a, b] and R̄ will appear below, but one may as well
think of (a, b) and R in most cases, as typically functions/processes defined
on (a, b) and R can be extended to [a, b] and R̄.
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Define two spaces of functions on an interval [a, b] ⊂ [−∞,∞]:

D[a, b] : the set of “cadlag” functions on [a, b]
(right-continuous with left limit existing),

C[a, b] : the set of continuous functions on [a, b].

It holds that C[a, b] ⊂ D[a, b]. Since each element of D[a, b] is bounded, we
can equip both spaces with

uniform norm sup
x∈[a,b]

|f(x)| ∀f ∈ D[a, b].

With this norm, C[a, b] is known to be separable but D[a, b] is not.
With a probability space (Ω,F , P ), a collection of rv’s {v(ω, t), a ≤ t ≤

b} is a stochastic process “on [a, b]” or “indexed by t ∈ [a, b].” For each given
t, v(ω, t) is a rv; for each given ω, v(ω, t) is a sample path. Depending on
the context, we may write v(ω, t) as v(ω), v(t) or just v. The (coordinate)
projection of v on the coordinate t is the rv v(ω, t) with t fixed, and the
projection is a functional of v denoted

πt(v) ≡ v(t).

A stochastic process is also called a random function (or random element),
because it is a function of t as well as ω. A well-known stochastic process is a
Brownian motion or a Wiener process W (t), 0 ≤ t ≤ T , which has continuous
sample path with W (0) = 0; W (t) ∈ C[0, T ].

A sequence of random functions vn in D[a, b] “converge in law” to a
random function vo ∈ D[a, b] (denoted vn � vo) if

Ef(vn) → Ef(vo) ∀ bounded continuous function f : D[a, b] �→ R.

One example for f(·) is the projection πt(·); πt(·) is bounded as each element
of D[a, b] is so, and πt(·) is continuous because vn → v in the uniform metric
implies vn → v at t. When f(·) = πt(·),

Ef(vn) = Eπt(vn) = E{υn(t)} =
∫

υn(ω, t)dP (ω).

Although vn can be any stochastic process, our main interest will be on
empirical processes.

When f(·) is not as simple as πt(·), Ef(vn) can be understood using the
approximating function sequence fν ↑ f that appeared in Lebesque integral
construction:

fν(·) = 0 if f (·) <
1
2ν

, fν(·) = 2ν if f(·) ≥ 2ν ,

fν(·) =
j

2ν
if

j

2ν
≤ f (·) <

j + 1
2ν

, j = 1, 2, ..., 4ν − 1.
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For the events f(·) ≥ 2ν and 2−νj ≤ f(·) < 2−ν+1j, consider, respectively,

P{ω : f(vn(ω)) ≥ 2ν} and P{ω : 2−νj ≤ f(vn(ω)) < 2−ν+1j}.

Efν(vn) is the sum of many terms: 2ν times the first probability, and 2−νj
times the second probability, j = 1, 2, ..., 4ν − 1; then Ef(vn) is the limit of
Efν(vn) as ν → ∞.

Consider a sigma-field G on D[a, b] and the probability measures Pn and
Po on (D[a, b],G) induced by vn and vo, respectively:

Pn(G) ≡ P (v−1
n (G)) and Po ≡ P (v−1(G)) ∀G ∈ G.

Then convergence in law can be stated equivalently as: Pn is said to converge
weakly to Po (Pn � Po) when

{Ef(vn) =}
∫

fdPn →
∫

fdPo {= Ef(vo)}.

For FN (t) = N−1
∑N

i=1 1[yi ≤ t], we get FN (t) →as F (t) for each t owing
to the LLN; i.e., there is No = No(t, ε) such that |FN (t) − F (t)| < ε for all
N ≥ No and any ε > 0. Not just this pointwise convergence, an uniform
convergence holds in that the entire function FN (t), t ∈ R̄, converges in the
uniform metric:

Glivenko Cantelli Theorem: sup
t∈R̄

|FN (t) − F (t)| →as 0.

That is, there is No = No(ε) not depending on t such that |FN (t)−F (t)| < ε
for all N ≥ No. F1(t), F2(t), ... is in fact a sequence of rv’s, and this can be
made explicit with F1(ω, t), F2(ω, t), ... where FN (ω, t) = N−1

∑
i 1[yi(ω) ≤ t]

and each yi is a rv mapping Ω to R. FN (ω, t) is a stochastic process, and
FN (ω, ·) is cadlag.

Owing to CLT’s, we have, for each given t ∈ R,

GN (t) ≡
√

N{FN (t) − F (t)} =
1√
N

∑
i

{1[yi ≤ t] − F (t)}

� N{0, F (t)(1 − F (t))}.

The presence of F (t)(1−F (t)) is natural because N ·FN (t) is binomial with
N -many trials with “success” probability F (t). GN (t) is an empirical process
indexed by t ∈ R. As all indicator functions can take on 0 or 1, GN (t) is
bounded by −

√
NF (t) or

√
N(1−F (t)) for a given N . Define GN (−∞) ≡ 0

and GN (∞) ≡ 0 when t ∈ R̄; this gives a natural extension of GN (t), t ∈ R,
to GN (t), t ∈ R̄.

Recalling that F is continuous, replace 1[yi ≤ t] with 1[F (yi) ≤ F (t)]
where F (yi) ∼ U [0, 1]. Then GN (t) can be written as an uniform empirical
process: with ui ≡ F (yi) and τ = F (t),

UN (τ) ≡ 1√
N

∑
i

{1[ui ≤ τ ] − τ}, τ ∈ [0, 1];
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UN (0) ≡ 0 and UN (1) ≡ 1.
There are empirical processes more general than the above GN (t), e.g.,

GN{t(y)} ≡ 1√
N

∑
i

[t(yi) − E{t(y)}]

which is an empirical process indexed by a function t(y) ∈ T for a class T of
functions. This includes the preceding GN (t) as a special case when t(y) =
1[y ≤ t]. This generalization is needed when functions such as m(x, y, θ)
appear in the sum where m(x, y, θ) is a parametric function of (x, y) indexed
by a parameter θ ∈ Θ.

4.2.2 Weak Convergence

To discuss weak convergence of empirical processes in the space of cadlag
functions D(R) (or D(R̄)), we need to have a σ-algebra on D(R). Recall that,
for a rv sequence {xN}, we considered (Ω,F , P ) to (R,B, PN ) where B is
the Borel σ-algebra on R and the induced probability measure is PN (B) ≡
P (x−1

N (B)) for B ∈ B on R. For an empirical process GN (ω, t), we need to
consider (Ω,F , P ) to (D(R),G, PN ) for a σ-algebra G on D(R) where

PN (C) ≡ P{G−1
N (C)} = P (ω : GN (ω, ·) ∈ C} for each C ∈ G;

e.g., C = {c(t) : supt∈R |c(t)| < ε, for a constant ε > 0}. But using the Borel
σ-algebra under the uniform metric on D(R) is known to cause a measure-
theoretic difficulty, as D(R) is not separable under the uniform metric.

Instead, set G as the smallest σ-algebra containing all open balls in D(R)
generated by the uniform metric. For example, an ε-open ball in D(R) around
c(t) under the uniform metric is {g ∈ D(R) : supt |g(t) − c(t)| < ε}. This σ-
algebra, which is smaller than the Borel σ-algebra containing all open sets
in D(R), is the same as the σ-algebra that makes all coordinate projections
{πt(·), t ∈ R} continuous. That is, considering (D(R),G, PN ) to (R,B), it
holds that

π−1
t (B) ∈ G for each Borel set B ∈ B for any t ∈ R;

here we are using the “topological” definition of continuity that the inverse
image of an open set is open, as σ-algebras’s are topologies and a set in a
σ-algebra is open. For instance, with B = (b1, b2), π−1

t (B) is the elements in
D(R) with their values at t falling in (b1, b2). This choice of G makes πt(·) a
continuous function from D(R) to R; as each element of D(R) is bounded,
πt(·) is also bounded. Hence G assures at least that each marginal distribution
at t of vn converge to the marginal distribution at t of v for vn � v to hold.
So long as the limit process, say G(t) in GN (t) � G(t), belongs to C(R̄),
the measure-theoretic difficulty with the uniform metric does not matter for
GN (t)� G(t); see, e.g., Pollard (1984, p. 92).
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Recall

GN (t) =
√

N{FN (t) − F (t)} =
1√
N

∑
i

{1[yi ≤ t] − F (t)}.

Although the weak convergence of GN with its induced measure PN to Go

with its induced measure Po is defined in terms of
∫

fdPN →
∫

fdPo for
each bounded and continuous function f , we do not evaluate the integrals
for each continuous and bounded function f to verify the weak convergence.
Instead, the weak convergence of GN (t) to a tight limit process Go(t) can be
established in the following two steps, where Go(t) is tight if, for each ε > 0,
there is a compact set Ḡ such that P (Go(t) ∈ Ḡ) > 1 − ε.

First, GN (t) at any finite number of points is shown to converge weakly
to a tight process Go(t) evaluated at those points—this typically follows from
a multivariate CLT as the finite point distribution of Go(t) is jointly normal
in most cases. Second, GN (t) is shown to be “stochastically equicontinuous.”
These two facts are equivalent to GN (t)� Go(t) that is tight. In essence, the
role of stochastic equicontinuity is to make sure that GN (t) is not too variable
as a function of t so that the finite-dimensional weak convergence leads to
the convergence across all t. This way of establishing PN � Po applies also
when PN is induced by the function-indexed empirical process GN{t(y)} with
t(y) ∈ T .

Recall a Brownian bridge B(τ) on [0, 1]: B(0) = B(1) = 0 with continu-
ous sample path, and for any given τ1, ..., τm,

B(τ1), ..., B(τm) is Gaussian with 0-mean and
E{B(τ j)B(τk)} = min(τ j , τk) − τ jτk.

A generalized version with an increasing F (·) is F -Brownian bridge BF (t),
t ∈ [−∞,∞]: BF (−∞) = BF (∞) = 0 with continuous sample path,

BF (t1), ..., BF (tm) is Gaussian with 0-mean and
E{BF (tj)BF (tk)} = F{min(tj , tk)} − F (tj)F (tk)
= min{F (tj), F (tk)} − F (tj)F (tk).

This covariance function shows that BF (t) is the “F -transformed version”
B{F (t)} of t.

Now we will identify BF (t) as the limit process of GN (t) in comparison
to the fact that Brownian bridge is the limit process of uniform empirical
processes. That is, the finite dimensional distribution from GN (t) should
equal the last display and GN (t) should be stochastically equicontinuous.
Observe, for any two points tj , tk ∈ R,

E[GN (tj)GN (tk)] = E[
1√
N

∑
i

{1[yi ≤ tj ] − F (tj)}

· 1√
N

∑
i

{1[yi ≤ tk] − F (tk)} ] = E{1[y ≤ tj ] · 1[y ≤ tk]}

− E1[y ≤ tj ] · E1[x ≤ tk] = F{min(τ j , τk)} − F (τ j)F (τk).

That is, modulo stochastic equicontinuity, the limit process of GN (t) is BF (t).
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An empirical process GN (t) indexed by a class {t(y)εT } of functions that
is totally bounded with a semi-metric ρ on T is stochastically equicontinuous
if, for any ε1, ε2 > 0, there exists δ = δ(ε1, ε2) such that

lim sup
N→∞

P ( sup
ρ(t1,t2)<δ

|GN (t1) − GN (t2)| > ε1) < ε2.

We will examine when this holds in the following subsection. As GN{t(y)},
t ∈ T , includes both GN{t(y)} with t(y) = 1[y ≤ t] and UN{τ(u)} with
τ(u) = 1[u ≤ τ ] as special cases, stochastic equicontinuity along with the
above finite dimensional convergence in law implies GN (t) � BF (t) for t ∈
[−∞,∞] and UN (τ)� B(τ) for τ ∈ [0, 1].

Weak convergence to (F -) Brownian bridge is called the Donsker Theo-
rem. Donsker (1952) proved the weak convergence of the uniform empirical
process to B(τ) and the continuous mapping theorem thereafter. See Pol-
lard (1984), Van der Vaart and Wellner (1996), Van der Vaart (1998), and
Billingsley (1999) for further details on this and the next subsections.

4.2.3 Stochastically Equicontinuous Empirical Processes

Consider an induced probability space (X,X , Px), an iid sample x1, ..., xN

from Px, and a measurable real-valued function f in a class F of functions
mapping X to R. Define the empirical measure

PN ≡ 1
N

∑
i

δxi

that assigns weight N−1 to each xi; let δxi
(f) ≡ f(xi). This leads to

PNf ≡
∫

f(x)dPN (x) =
1
N

∑
i

f(xi), whereas Pf ≡
∫

f(x)dP (x).

For instance, when f is the identity mapping I, it holds that δxi
(I) = xi and∫

xdPN = N−1
∑

i xi whereas
∫

xdP = E(x). In the notation PNf , PN can
be viewed as a stochastic process indexed by F ∈ F ; for a given index f , PNf
is a rv (the sample average of f(xi)’s); for a given ω (i.e., given x1, ..., xN ),
PNf is a sample path indexed by f as f varies over F .

Analogously to the Glivenko-Cantelli Theorem, uniform consistency
holds for a certain F that

sup
f∈F

|PNf − Pf | →as 0;

then F is Glivenko-Cantelli (or “F is a Glivenko-Cantelli class”). Also, analo-
gously to the Donsker Theorem, for a certain F with Pf2 < ∞, the empirical
process indexed by f

GN (f) ≡
√

N(PNf − Pf)
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is stochastically equicontinuous and GN (f) � GP (f) that is tight. For
finite dimensional distributions, observe that EGP (f1) = 0 = EGP (f2) for
f1, f2 ∈ F , and

E{GP (f1)GP (f2)} = P{(f1−P (f1))·(f2−P (f2))} = P (f1f2)−P (f1)·P (f2).

When the weak convergence holds, F is Donsker (“F is a Donsker class”).
The question is then what classes are Glivenko-Cantelli or Donsker. In the
following, we will show Donsker classes of functions drawing on Van der Vaart
(1998, pp. 270–277) and Pollard (1984). If F is Donsker, it is also Glivenko-
Cantelli.

Consider a class F of functions f(x) with an envelope function F (x):
|f(x)| ≤ F (x) for every x and f . For an ε > 0, an ε-bracket is a pair of
functions g and h in L2(P ) such that g ≤ h and {

∫
|g−h|pdP}1/p ≤ ε; g and

h may not be in F . The bracketing number N(ε,F , Lp(P )) is the minimum
number of ε-brackets to “cover” F , where “cover” means gj ≤ f ≤ hj for
some bracket [gj , hj ] ∀f ∈ F . N(ε,F , Lp(P )) is increasing as ε → 0. Define
the bracketing integral as

J(δ,F , L2(P )) ≡
∫ δ

0

{ln N(ε,F , L2(P ))}1/2dε.

If this is finite for some δ > 0, then F is Donsker.
Showing directly J(δ,F , L2(P )) < ∞ for a given F is not easy. Fortu-

nately, it is known that most classes of functions we encounter have finite
bracketing integrals. One example is functions of bounded variation: these
functions can be written as a difference of two increasing (i.e., non-decreasing)
functions. Another example is F = {f(x, θ), θ ∈ Θ} with a bounded index-
ing set Θ where there exists a function m(x) ∈ L2(P ) satisfying a Lipschitz
continuity:

|f(x, θ1) − f(x, θ2)| ≤ m(x)|θ1 − θ2|, ∀θ1, θ2 ∈ Θ.

To see more ways to check if F is Donsker, let a collection C of sets “pick
out” a subset A ⊂ W = {ω1, ..., ωm} if A = W ∩ C for some C ∈ C. The
collection C “shatters” W if C can pick out any of the 2m subsets in W . If
C cannot shatter W for any given m, then C is a VC (Vapnik–Cervonenkis)
class of sets or a class of polynomial discrimination. For instance, consider
G consisting of intervals (−∞, x] for x ∈ R and W = {x1, x2} with x1 < x2.
The subset {x1} of W can be written as W ∩ (−∞, x1], and {x1, x2} can be
written as W ∩ (−∞, x2]. But {x2} cannot be written as W ∩ (−∞, x] for
any x: G cannot shatter any set with 2 elements, and thus G is a VC class
of sets.

For a f ∈ F , define the subgraph of f(x) as

{(x, z) : f(x) < z}.
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If the collection of the subgraphs over f ∈ F is a VC class of sets in the (x, z)
space, then call F a “VC class” (of functions). If F is a VC class and if∫

F 2dP < ∞, then F is Donsker. For example, the subgraph of 1[x ≤ t] is
{(x, z) : 1[x ≤ t] < z}, and the collection of subgraphs indexed by t is

{(x, z) : (x ≤ t, 1 < z) or (x > t, 0 < z)}.

This collection on R2 is easily a VC class of sets with the constant envelope
one; F = {1[x ≤ t], t ∈ R} is a VC class. Hence the empirical process GN (t)
is stochastically equicontinuous.

Another VC class of functions is a finite-dimensional vector space of real
functions, e.g., a three-dimensional vector space G of functions

g(x) = ζ1f1(x) + ζ2f2(x) + ζ3f3(x) indexed by (ζ1, ζ2, ζ3) ∈ R3.

With the envelope condition holding, G becomes Donsker. The class G̃ of
functions consisting of 1[g(x) > 0] is also a VC class, and is Donsker as well.

Given two Donsker classes F and G with envelope function F and G,
respectively, the class of functions f ± g, max(f, g) and min(f, g) are also
Donsker. For example, with (x, y) playing the role of x now,

|y − x′b| = max(y − x′b, 0) + max(x′b − y, 0)

is Donsker. Also {sign(y − x′b), b ∈ B} = {1[y ≥ x′b] − 1[y < x′b], b ∈ B} is
Donsker.

4.2.4 Applications

As an application of uniform consistency (i.e., Glivenko-Cantelli), we can
prove the consistency of a LSE variance estimator. Recall

√
N(blse − β)� N{0, E−1(xx′)E(xx′u2)E−1(xx′)}

where the “natural” estimator for E(xx′u2) is N−1
∑

i xixir
2
i with ri ≡ yi −

x′iblse. Observe

| 1
N

∑
i

xix
′
ir

2
i − E(xx′u2)| ≤ | 1

N

∑
i

xix
′
ir

2
i − E(xx′r2)|

+ |E(xx′r2) − E(xx′u2)|.

For the first term on the rhs, consider Fjk = {xjxk(y − x′b)2, b ∈ B} where
|b| < C ∀b ∈ B for some constant C, and xj and xk are the jth and kth
components of x. Under some moment conditions, Fjk is Lipschitz-continuous
and thus Glivenko-Cantelli. Then the uniform consistency over Fjk implies

| 1
N

∑
i

xix
′
i(yi − x′iblse)2 − E{xx′(y − x′blse)2}| = op(1).



664 Appendix II: Supplementary Topics

As for the second term, since xx′(y−x′blse) →ae xx′(y−x′β), the dominated
convergence yields E(xx′r2) → E(xx′u2) as N → ∞.

Consider an empirical process indexed by a function f ∈ F
parametrized by a parameter θ. Suppose that θ is replaced by θ̂N →p θo.
If F is Donsker, then stochastic equicontinuity implies

1√
N

∑
i

{f(xi, θ̂N ) − Ef(x, θN )} − 1√
N

∑
i

{f(xi, θo) − Ef(x, θo)} = op(1).

It is remarkable that, although θ̂N −θo may be of order Op(N−1/2) or slower,
the error θ̂N −θo does not affect the behavior of the empirical process around
θo in the sense of this display.

In the last display, the centering by Ef(x, θ) is critical, without which the
display does not hold in general. But if ∂Ef(x, θo)/∂θ = 0, then the display
holds without Ef(x, θ). To see how, observe that the lhs can be written as,
for some θ∗N ∈ (θN , θo),

1√
N

∑
i

f(xi, θ̂N ) − 1√
N

∑
i

f(xi, θo) −
√

N{Ef(x, θN ) − Ef(x, θo)}

=
1√
N

∑
i

f(xi, θ̂N ) − 1√
N

∑
i

f(xi, θo)

−
√

N
∂Ef(x, θo)

∂θ′
(θN − θ) +

1
2
N1/4(θN − θ)′

∂2Ef(x, θ∗N )
∂θ∂θ′

N1/4(θN − θ).

If the Hessian matrix is bounded and if

∂Ef(x, θo)
∂θ′

= 0 and θN − θ = op

(
N−1/4

)
then the Taylor-expansion terms are op(1), and we get

1√
N

∑
i

f(xi, θ̂N ) − 1√
N

∑
i

f(xi, θo) = op(1).

As another application of Donsker class, for an M-estimator bN maxi-
mizing N−1

∑
i q(zi, b) over b ∈ B where the true value β is an interior point

of a compact set B, let V be the second derivative matrix of Eq(z, b) at β;
assume that V is non-singular. Also define r(z, b) such that

r(z, b) =
q(z, b) − q(z, β) − (b − β)′Δ(z, β)

|b − β| for b = β,

= 0 when b = β

for some Δ(z, β) with E{Δ(z, β)Δ(z, β)′} < ∞. If N−1/2
∑

i r(zi, b) is stochas-
tically equicontinuous, then Theorem 5 in Pollard (1984, p. 141) yields the
asymptotic distribution for bN :

√
N(bN − β)� N [0, V −1E{Δ(z, β)Δ(z, β)′}V −1].
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In applying this to the LAD estimator maximizing N−1
∑

i −|yi − x′ib|
where ui = yi − x′iβ is continuously distributed with density fu|x and
Med(u|x) = 0, let zi = (x′i, yi)′ and

q(z, b) = −|y − x′b| and Δ(z, β) = {1[y ≥ x′b] − 1[y < x′b]}xi;

Δ(z, β) is an “asymptotic first derivative” of q(z, b) at b = β. Since V =
E(2fu|x(0)xx′) (assume that V −1 exists) and E{Δ(z, β)Δ(z, β)′} = E(xx′),
the asymptotic variance is

E−1{2fu|x(0)xx′} · E(xx′) · E−1{2fu|x(0)xx′}.

What is left to be shown is the stochastic equicontinuity of N−1/2
∑

i

r(zi, b), for which it is sufficient to prove that {r(z, b), b ∈ B} is Donsker
where

r(z, b) =
|y − x′b| − |y − x′β| − (b − β)′(1[y ≥ x′b] − 1[y < x′b])x

|b − β| .

If we show that {r(z, b), b ∈ B} has a square-integrable envelope, and
that {r(z, b), b ∈ B} is a VC class, then {r(z, b), b ∈ B} is Donsker. Showing
the VC class part can be done by doing analogously to the proof for “spa-
tial median” in Pollard (1984, p. 153). Here, we will show only the square-
integrable envelope part. Observe the well-known inequality:

|a+ b| ≤ |a|+ |b| =⇒ |a+ b|− |a| ≤ |b| =⇒ |c|− |a| ≤ |c−a| with b = c−a.

For |r(z, b)|, we have

|y − x′b| − |y − x′β|
|b − β| ≤ |x′β − x′b|

|b − β| =
|x′(β − b)|
|b − β| ≤ |x|;

|(b − β)′(1[y ≥ x′b] − 1[y < x′b])x|
|b − β| ≤ |x|.

Hence |r(z, b)| ≤ 2|x| and 2|x| is a square-integrable envelope under
E|x|2 < ∞.

4.3 Goodness-of-Fit Tests with Nuisance Parameters

4.3.1 Some Stochastic Integrals

As a preliminary to GOF tests with nuisance parameters replaced by
estimators, we need to examine stochastic integrals, which is done in the
following.

In a stochastic integral, say
∫

g(ω, t)F (ω, dt), where both the integrand
and integrator may be random and the integration is done wrt t, we can think
of a number of cases: (i) only the integrand is random; (ii) only the integrator
is random; (iii) both are random. We may try to think of the integral as an
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usual integral that is just a function of ω. But we will have a Brownian
bridge (B(t)) integrator, and B(t) is known to have “unbounded variation.”
Because the usual definition of integrals does not apply to an integrator with
unbounded variation, a stochastic integral with B(t) as an integrator has
to be defined. In the following, we examine the case (i) first and explain
“unbounded variation.” Then (ii) will be examined informally, drawing on
Del Barrio (2007). A formal treatment of stochastic integrals can be found,
e.g., in Steele (2001) and Protter (2005). For our purpose, (ii) is enough, to
which (i) serves as a “preparation.” Whereas the usual integral is based on
“the first-order variation”, stochastic integral with an unbounded-variation
integrator is based on “the second order (quadratic) variation”, although this
point may not be obvious in the following presentation.

In an integral such as
∫ 1

0
X(ω, t)f(t)dt where E{X(t)} = 0, the inte-

grand X(t) is random. Taking the integral as “conditional on ω,” the inte-
gral is a rv, but its distribution is far from obvious. Consider a finite ap-
proximation to the integral using a partition 0 = t0, t1, ..., tJ = 1 of [0, 1]:∑J

j=1 X(ω, tj−1){f(tj)−f(tj−1)}. Note that X(ω, ·) is evaluated at tj−1, not
at tj , nor somewhere in-between. The variance of this finite approximation is

E[
J∑

j=1

X(ω, tj−1){f(tj) − f(tj−1)} ·
J∑

s=1

X(ω, ts−1){f(ts) − f(ts−1)} ]

=
∑
j,s

E{X(tj−1)X(ts−1)} · {f(tj) − f(tj−1)}{f(ts) − f(ts−1)}

=
∑
j,s

C(tj−1, ts−1){f(tj) − f(tj−1)}{f(ts) − f(ts−1)} (C(tj−1, ts−1)

≡ E{X(tj−1)X(ts−1)})

�
∫ 1

0

∫ 1

0

C(s, t)f(s)f(t)dsdt.

Formally, Shorack and Wellner (1986, p. 42) showed that, if H(t) =
H1(t) − H2(t) with H1 and H2 increasing and right-(or left-) continuous,∫ 1

0

X(ω, t)dH(t) ∼ N(0, σ2) if σ2 ≡
∫ 1

0

∫ 1

0

C(s, t)dH(s)dH(t) exits.

The condition on H(t) is equivalent to H(t) having “bounded variation,”
which is required for the integral (conditional on ω) to exist; H(t), t ∈ [0, 1],
is of bounded variation if for each partition 0 = t0, t1, ..., tJ = 1 of [0, 1],∑J

j=1 |H(tj) − H(tj−1)| < ∞. The supremum over all possible partitions is
the total variation. H(t) is thus of bounded variation when its total variation
is bounded. If H is increasing, then the total variation is simply H(1)−H(0).

Now consider a stochastic integral
∫ 1

0
g(t)dB(ω, t) with

∫ 1

0
g(t)2dt <

∞ where the integrator is a Brownian bridge. Suppose g(t) is a simple
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left-continuous function, say

g(t) =
J∑

j=1

βj1[ t ∈ (tj−1, tj ] ].

Then the stochastic integral is defined as∫ 1

0

g(t)dB(t) ≡
J∑

j=1

βj{B(tj) − B(tj−1)} =
J∑

j=1

βjΔBj where

ΔBj ≡ B(tj) − B(tj−1).

Clearly this is Gaussian with mean zero as EΔBj = 0; we just need to find
its covariance function.

Recall E{B(s)B(t)} = s − st where s < t. Defining Δtj ≡ tj − tj−1

⇐⇒ tj = Δtj + tj−1, it holds that

E{(ΔBj)
2} = E{B(tj)

2 + B(tj−1)
2 − 2B(tj)B(tj−1)}

= (tj − t2j ) + (tj−1 − t2j−1)− 2(tj−1 − tjtj−1)

= {Δtj + tj−1 − (Δtj + tj−1)
2} + (tj−1 − t2j−1) − 2tj−1 + 2(Δtj + tj−1)tj−1

= Δtj + tj−1 − (Δtj)
2 − 2(Δtj)tj−1 − t2j−1 + tj−1 − t2j−1 − 2tj−1

+ 2(Δtj)tj−1 + 2t2j−1

= Δtj − (Δtj)
2 = Δtj(1−Δtj).

Also, for j < k,

E{ΔBjΔBk} = E[{B(tj)−B(tj−1)}{B(tk)−B(tk−1)}]
= E{B(tj)B(tk)} − E{B(tj)B(tk−1)} − E{B(tj−1)B(tk)}+ E{B(tj−1)B(tk−1)}
= (tj − tjtk)− (tj − tjtk−1)− (tj−1 − tj−1tk) + (tj−1 − tj−1tk−1)

= −tjtk + tjtk−1 + tj−1tk − tj−1tk−1 = −tjΔtk + tj−1Δtk = −Δtj ·Δtk.

Hence
∫ 1

0
g(t)dB(t) is a zero-mean Gaussian process with variance

E{(
J∑

j=1

βjΔBj)2} =
J∑

j=1

J∑
k=1

βjβkΔBjΔBk =
∑

j

β2
jΔtj(1 − Δtj)

−
∑
j �=k

βjβkΔtjΔtk

=
∑

j

β2
jΔtj −

J∑
j=1

J∑
k=1

βjβkΔtjΔtk =
∑

j

β2
jΔtj − (

∑
j

βjΔtj)2

=
∫ 1

0

g(τ)2dτ − {
∫ 1

0

g(τ)dτ}2.
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Doing analogously, we can find the covariance between two stochastic
integrals

∫ 1

0
g(τ)dB(τ) and

∫ 1

0
f(τ)dB(τ) :

E{
∫ 1

0

g(τ)dB(τ) ·
∫ 1

0

f(τ)dB(τ)} =
∫ 1

0

g(τ)f(τ)dτ −
∫ 1

0

g(τ)dτ

∫ 1

0

f(τ)dτ.

As a special case of this product expression, consider

B(τ) =
∫ τ

0

dB(t) =
∫ 1

0

1[t ≤ τ ]dB(t)

and observe

E{B(τ) ·
∫ 1

0

f(t)dB(t)} =
∫ 1

0

1[t ≤ τ ]f(t)dt −
∫ 1

0

1[t ≤ τ ]dt

∫ 1

0

f(t)dt

=
∫ τ

0

f(t)dt − τ

∫ 1

0

f(t)dt.

Although we assumed a simple function for g(t), the variance and covari-
ances hold more generally for smooth functions as well, so long as

∫ 1

0
g(τ)2dτ <

∞ and
∫ 1

0
f(τ)2dτ < ∞. Stochastic integral with a smooth function is de-

fined as the limit of stochastic integrals of approximating simple-function
sequences in the L2 space. Replacing the upper integration number ‘1’ with
t, stochastic integral becomes a stochastic process.

4.3.2 Weak Limit of GOF tests with Nuisance Parameters

For y1, ..., yN which are iid with a continuous df F , recall the empirical
processes

UN (τ) =
1√
N

∑
i

{1[ui ≤ τ ]− τ} where u ∼ U [0, 1];

GN (t) =
1√
N

∑
i

{1[yi ≤ t]− E(1[yi ≤ t])} =
1√
N

∑
i

{1[F (yi) ≤ F (t)]− F (t)}

=
1√
N

∑
i

{1[ui ≤ F (t)]− F (t)} = UN{F (t)} (with ui ≡ F (yi) ∼ U [0, 1]).

=⇒ GN (t) = UN{F (t)}.

Consider H0: F (t) = Φ(t; θ) where Φ denotes the specified df in H0

that depends on a parameter θ and is continuous and strictly increasing in t.
Assume that Φ(t; θ) has a continuous first derivative vector ∇θ′Φ(t, θ) wrt θ

and
√

N(θ̂N − θ) has an influence function η(y). Observe

√
N{FN (t) − Φ(t; θ̂N )} =

1√
N

∑
i

{1[yi ≤ t] − Φ(t; θ̂N )}
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=
1√
N

∑
i

{1[yi ≤ t] − Φ(t, θ) −∇θ′Φ(t; θ∗N )(θ̂N − θ)} (for some θ∗N )

=
1√
N

∑
i

{1[yi ≤ t] − Φ(t, θ)} − 1
N

∑
i

∇θ′Φ(t; θ∗N )
√

N(θ̂N − θ)

=
1√
N

∑
i

{1[F (yi) ≤ F (t)] − Φ(t, θ)} − ∇θ′Φ(t; θ)
1√
N

∑
i

η(yi) + op(1).

We get, up to an op(1) term, as F (t) = Φ(t, θ) under H0,

√
N{FN (t) − Φ(t; θ̂N )} = GN (t) −∇θ′Φ(t; θ)

1√
N

∑
i

η(yi)

= GN (t) −∇θ′Φ(t; θ)
∫ ∞

−∞
η(t)GN (dt)

= UN{F (t)} − ∇θ′Φ(t; θ)
∫ ∞

−∞
η(t)UN{F (dt)} using GN (t) = UN{F (t)}

where GN (dt) gives the “charge” N−1/2η(yi) at t = yi, i = 1, ..., N , so that∫∞
−∞ η(t)GN (dt) = N−1/2

∑
i η(yi). Let F−1 be the quantile function (i.e.,

the generalized inverse) of F .
Setting τ = F (t), the last display can be written as (the next paragraph

discusses this point further)

UN (τ) −∇θ′Φ{F−1(τ); θ}
∫ 1

0

η{F−1(τ)}UN (dτ);

UN (dτ) gives the “charge” N−1/2η{F−1(ui)} = N−1/2η(yi) at τ = ui, i =
1, ..., N , so that both

∫∞
−∞ η(t)GN (dt) and

∫ 1

0
η{F−1(τ)}UN (dτ) are the sum

of N−1/2η(yi)’s.
For F , we assumed only that F (t) is continuous, not necessarily strictly

increasing; i.e., τ = F (t) does not necessarily imply t = F−1(τ) because
the usual inverse exists iff F is continuous and strictly increasing. Recall the
properties of the quantile function:

F−1(τ) ≤ t ⇐⇒ τ ≤ F (t)

F{F−1(τ)} = τ ∀ 0 < τ < 1 iff F is continuous

F−1{F (t)} = t ∀t ∈ R iff F is strictly increasing.

For Φ(t) = Φ{F−1(τ); θ} in the preceding display, observe that, under H0,

Φ(t) = P (y ≤ t) = P{F (y) ≤ F (t)} = P (u ≤ τ) = τ

Φ{F−1(τ)} = P{y ≤ F−1(τ)} = P{F (y) ≤ F (F−1(τ))} = P (u ≤ τ) = τ .

As for η{F−1(ui)} = η(yi) for the integral, we do not necessarily have yi =
F−1(ui) when ui ≡ F (yi), because there may be flat portions in continuous
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F (t). But for an observation yi, the probability that it equals a boundary
value (e.g., one end of a flat portion) is zero; i.e., F must be strictly increasing
at yi, which yields yi = F−1(ui).

Under H0, we get

sup
t

√
N |FN (t) − Φ(t; θ̂N )| = sup

τ∈[0,1]

|B̂(τ)| + op(1)

where B̂(τ) ≡ UN (τ) −∇θ′Φ{F−1(τ); θ}
∫ 1

0

η{F−1(τ)}dUN (τ).

Using UN (τ)� B(τ) and continuous mapping theorem, it further holds that

B̂(τ)�
∫ τ

0

dB(t) −∇θ′Φ{F−1(τ); θ}
∫ 1

0

η{F−1(t)}dB(t)

Although we drew on Del Barrio (2007) for this, the original reference goes
back to Durbin (1973).

The weak limit of B̂(τ) is a sum of two stochastic integrals
∫ τ

0
dB(t) and∫ 1

0
η{F−1(t)}dB(t), which have zero expected values. Hence the weak limit

of B̂(τ) is a centered Gaussian process with its covariance, for 0 ≤ s, t ≤ 1,

C(s, t) = min(s, t) − st

−∇θ′Φ{F−1(s); θ}
∫ t

0

η{F−1(τ)}dτ −∇θ′Φ{F−1(t); θ}
∫ s

0

η{F−1(τ)}dτ

+ ∇θ′Φ{F−1(s); θ} ·
∫ 1

0

η{F−1(τ)}η{F−1(τ)}′dτ · ∇θΦ{F−1(t); θ}.

As this depends on F , the GOF test with
√

N |FN (t)−Φ(t; θ̂N )| is no more
ADF.

As an example, consider H0: y ∼ N(μ, 1), i.e., θ = μ with known variance
1 and we test for normality. In this case, θ̂ = ȳ is the MLE. Suppose F has
density f . Then H0: F (t) = Φ(t − θ) where Φ is the N(0,1) df and

∇θΦ(t; θ) =
∂Φ(t − θ)

∂θ
= −φ(t − θ) (= −f(t) = −∂F (t)

∂t
).

With If denoting the information matrix, the fact that the influence function
η(y) is I−1

f times −f ′(y)/f(y) implies∫ 1

0

η{F−1(τ)}η{F−1(τ)}′dτ =
∫ ∞

−∞
η(s)η(s)′f(s)ds = I−1

f .

Also, with τ = F (s) =⇒ F−1(τ) = s and dτ = f(s)ds,∫ t

0

η{F−1(τ)}dτ = −I−1
f

∫ t

0

f ′{F−1(τ)}
f{F−1(τ)} dτ = −I−1

f
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∫ F−1(t)

−∞
f ′(s)ds = −I−1

f f{F−1(t)}.

Substituting this and ∇θΦ(t, θ) = −f(t) into the above C(s, t) renders a
much simpler expression

C(s, t) = min(s, t) − st − f{F−1(s)} · I−1
f · f{F−1(t)}

= min(s, t) − st − ζ(s)′ζ(t), where ζ(t) ≡ I
−1/2
f f{F−1(t)}.

4.3.3 Asymptotically Distribution-Free (ADF)
Transformation

Here we show ADF transformation drawing on Koul (2006); the original
idea is due to Khamaladze (1981, 1993). Then we revert to the GOF test
with nuisance parameters.

For a function g(·) with its domain [0, 1], let w(·) = (1, g(·))′ and define

A(s)
2×2

≡
∫ 1

0

w(t)w(t)′1[s ≤ t]dt =
∫ 1

s

w(t)w(t)′dt, 0 ≤ s ≤ 1

= Eu{w(u)w(u)′1[s ≤ u]} for u ∼ U [0, 1].

Assume that A(s) is p.d. ∀ 0 ≤ s < 1; A(s) is indexed by s, the lower bound
in s ≤ t.

The function g in w is the “source” for the correction term. When the
nuisance parameter gets replaced by the MLE, g is the score function. This is
understandable because ADF transformation restores the ADF property by
transforming the original test statistic such that it becomes orthogonal to the
nuisance parameter estimator; an example will be seen below. The constant
1 in w is to make the ADF transformation have mean zero.

Consider “explaining” a function ψ(·) with w(·), i.e.,

Qψ(τ)
2×1

≡
∫ 1

0

ψ(s)A−1(s)w(s)1[s ≤ τ ]ds =
∫ τ

0

ψ(s)A−1(s)w(s)ds

= Ev{ψ(v)A−1(v)w(v)1[v ≤ τ ]} for v ∼ U [0, 1];
Tψ(τ) ≡ ψ(τ) − Qψ(τ)′w(τ), 0 ≤ τ < 1.

Qψ(τ) is reminiscent of the linear projection coefficient, and Tψ(τ) the
residual.

Define
H ≡ {ψ ∈ L2[0, 1] :

∫ 1

0

ψ(τ)w(τ)dτ = 0}.

ψ ∈ L2[0, 1] can be regarded as ψ(u), u ∼ U [0, 1], for a probability space
([0, 1],B,P ) with the Lebesque measure P ; the norm is {Eψ(u)2}1/2 = {

∫ 1

0

ψ(τ)2dτ}1/2. Both L2[0, 1] and H are Hilbert spaces with the same inner
product

∫ 1

0
ψ1(τ)ψ2(τ)dτ , and H is a subspace of L2[0, 1] orthogonal to w(·)—

“Hilbert space” is a “complete” inner-product space with its norm defined as
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the square root of the “self inner product” where ‘complete’ means that each
‘Cauchy sequence’ has its limit in the same space, and a ‘Cauchy sequence’
{ψn} satisfies that, for any ε > 0, there exists N(ε) with |ψn − ψm| <
ε ∀n,m ≥ N(ε).

Tψ maps L2[0, 1] to H, for which we need to verify
∫ 1

0
Tψ(τ)w(τ)′

dτ = 0. Observe∫ 1

0

Qψ(τ)′w(τ)w(τ)′dτ =
∫ 1

0

{∫
s≤τ

ψ(s)w(s)′A−1(s)
}

ds w(τ)w(τ)′dτ

=
∫ 1

0

ψ(s)w(s)′A−1(s)
{∫

s≤τ

w(τ)w(τ)′dτ

}
ds =

∫ 1

0

ψ(s)w(s)′ds

which cancels the ψ(τ) part of Tψ(τ). Hence
∫ 1

0
Tψ(τ)w(τ)dτ = 0. As w(τ)

includes 1, this also gives
∫ 1

0
Tψ(τ)dτ = E{Tψ(u)} = 0: Tψ(u) with u ∼

U [0, 1] has zero mean.
Also Tψ is norm-preserving :∫ 1

0

Tψ1
(τ)Tψ2

(τ)′dτ =
∫ 1

0

ψ1(τ)ψ2(τ)′dτ .

To see the norm preservation, observe∫ 1

0

Tψ1
(τ)Tψ2

(τ)′dτ =
∫ 1

0

{ψ1(τ) − Qψ1
(τ)′w(τ)}{ψ2(τ)′

− w(τ)′Qψ2
(τ)}dτ =

∫ 1

0

ψ1(τ)ψ2(τ)′dτ

−
∫ 1

0

ψ1(τ)w(τ)′Qψ2
(τ)dτ −

∫ 1

0

Qψ1
(τ)′w(τ)ψ2(τ)′dτ

+
∫ 1

0

Qψ1
(τ)′w(τ)w(τ)′Qψ2

(τ)′dτ.

We need to verify that the last three terms on the rhs cancel one another.
Rewrite the second and third terms as∫
ψ1(τ)w(τ)′Qψ2

(τ)dτ =
∫

ψ1(τ)w(τ)′
{∫

s≤τ

ψ2(s)A
−1(s)w(s)ds

}
dτ

=
∫ ∫

s≤τ

ψ1(τ)ψ2(s)w(τ)′A−1(s)w(s) dsdτ .

∫
Qψ1

(τ)′w(τ)ψ2(τ)dτ =
∫ {∫

s≤τ

ψ1(s)w(s)′A−1(s)ds

}
w(τ)ψ2(τ)dτ

=
∫ ∫

s≤τ

ψ1(s)ψ2(τ)w(s)′A−1(s)w(τ) dsdτ .
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Also rewrite the fourth term as∫ {∫
s≤τ

ψ1(s)w(s)′A−1(s)ds · w(τ)w(τ)′ ·
∫

q≤τ

ψ2(q)A
−1(q)w(q)dq

}
dτ

=
∫ ∫

ψ1(s)ψ2(q)w(s)′A−1(s)A(max(s, q))A−1(q)w(q) dsdq

=
∫ ∫

s≤q

ψ1(s)ψ2(q)w(s)′A−1(s)w(q) dsdq

+
∫ ∫

q≤s

ψ1(s)ψ2(q)w(s)′A−1(q)w(q) dsdq.

Hence the fourth term cancels the second and third terms.

Recall that a Wiener process W (τ), τ ∈ [0, 1] satisfies, for any finite
number of points τ1, ..., τm,

{W (τ1), ...,W (τm)} is Gaussian with 0-mean and

E{W (τ j)W (τk)} = min(τ j , τk).

Viewing each τ as a function 1[u ≤ τ ] where u ∼ U [0, 1], we can regard the
Wiener process as indexed by 1[u ≤ τ ] ∈ L2[0, 1] such that

{W (1[u ≤ τ1]), ...,W (1[u ≤ τm])} is Gaussian with 0-mean and

E{W (1[u ≤ τ j ])W (1[u ≤ τk])} = min(τ j , τk) {=
∫ 1

0

1[s ≤ τ j ]1[s ≤ τk]ds}.

Then W (1[u ≤ τ ]) maps the subspace of L2[0, 1] consisting of {1[u ≤ τ ],
τ ∈ [0, 1]} into a Hilbert space with the same inner product. With τ j < τk,

{
∫

|1[s ≤ τ j ] − 1[s ≤ τk]|2ds}1/2 = {
∫

1[τ j ≤ s ≤ τk]ds}1/2 = |τk − τ j |1/2.

Hence, as τ j → τk, we get W (1[u ≤ τ j ]) → W (1[u ≤ τk]) as the norms are
the same in the two spaces: W (1[u ≤ τ ]) has continuous sample path.

Recalling Tψ(·), consider now the empirical process GN (τ) = N−1/2∑
i Tτ (ui) for iid ui ∼ U [0, 1], i = 1, ..., N , and τ(u) = 1[u ≤ τ ]; note

Tτ (ui) = τ(ui) − Qτ (ui)′w(ui)

= 1[ui ≤ τ ] −
∫ 1

0

w(s)′A−1(s)1[s ≤ τ ]1[s ≤ ui]ds · w(ui).

Recall E{Tτ (u)} = 0. Any finite dimensional distribution of this process
equals that of W (τ) as can be seen in

E{GN (τ1)GN (τ2)} = E{Tτ1(u)Tτ1(u)} =
∫ 1

0

Tτ1(v)Tτ2(v)′dτ
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=
∫ 1

0

τ1(v)τ2(v)′dv = min(τ1, τ2).

Therefore, under stochastic equicontinuity, we get GN (τ)�W (τ).

Recall the GOF test with the nuisance parameter being the mean and
H0: F (t) = Φ(t; θ) where Φ(t; θ) = Φ(t − θ). It was shown that

√
N |FN (t) − Φ(t; θ̂N )| = |B̂(τ)|, where

B̂(τ) ≡ UN (τ) −∇θ′Φ{F−1(τ), θ}
∫ 1

0

η{F−1(τ)}dUN (τ);

B̂(τ)�
∫ τ

0

dB(t) −∇θ′Φ{F−1(τ), θ}
∫ 1

0

η{F−1(t)}dB(t)

C(s, t) = min(s, t) − st − I−1
f f{F−1(s)}f{F−1(t)}

where C(s, t) is the covariance kernel for the weak limit. Note that the covari-
ance kernel in a stochastic processe is informative as it yields the eigen-values
and eigen-functions, with which often the stochastic process can be expressed
as a sum of terms where each term depends on an eigen-function and the cor-
responding eigen-value (and some others).

Assume now that F is strictly increasing; with F being continuous, this
means that the usual inverse exists for F . Let q(t) ≡ F−1(t) ⇐⇒ F{q(t)} = t.
Observe

1 =
dF{q(t)}

dt
= f{q(t)}dq(t)

dt
=⇒ dq(t)

dt
=

1
f{q(t)}

⇐⇒ dF−1(t)
dt

=
1

f{F−1(t)} ;

m(t) ≡ f{F−1(t)} =⇒ m′(t) =
f ′{F−1(t)}
f{F−1(t)}

(score function at the tth quantile);∫ 1

0

m′(t)2dt = If because
∫ 1

0

(
f ′{F−1(t)}
f{F−1(t)}

)2

dt =
∫ {

f ′(s)
f(s)

}2

f(s)ds = If .

Hence C(s, t) can be written as

C(s, t) = min(s, t) − st − m(s)m(t)∫ 1

0
m′(a)2da

, 0 ≤ s, t ≤ 1.

Now set g(τ) = m′(τ) in w(τ); i.e., w(τ) = (1,m′(τ))′. With τ(u) =
1[u ≤ τ ],

Qτ (u) =
∫

s≤u

τ(s)A−1(s)w(s)ds =
∫

s≤u

1[s ≤ τ ]A−1(s)w(s)ds
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=
∫ min(τ,u)

0

A−1(s)w(s)ds;

Tτ (u) was presented already. As shown above, GN (τ) = N−1/2
∑

i

Tτ (ui) � W (τ). It further holds that replacing u with ûi ≡ Φ(yi − ȳ) is
innocuous, and thus

1√
N

∑
i

Tτ (ûi)�W (τ), τ ∈ [0, 1].

The intuition for “ûi being as good as ui” seems to be that any error term can
be subjected to the linear projection whether it is estimated or not such that
the resulting residual becomes a “martingale difference,” which then yields
the limit Wiener process.

5 Bootstrap

This section reviews bootstrap. For more details, refer to Hall (1992),
Efron and Tibshirani (1993), Shao and Tu (1995), Davison and Hinkley
(1997), Horowitz (2001a), Efron (2003) and the references therein. Other
than these bootstrap-dedicated studies, Van der Vaart (1998), Lehmann and
Romano (2005) and DasGupta (2008) also have substantial coverages of boot-
strap, and further references can be found there.

5.1 Review on Asymptotic Statistical Inference

Before we introduce bootstrap, it is helpful to look back at how we
typically conduct statistical inferences with large samples, as this contrasts
the conventional large sample inferences with bootstrap.

Statistical inference (i.e., learning about β using a sample) is typically
done in two ways: confidence intervals (CI) and hypothesis test (HT) with
test statistics (TS). For a k×1 parameter β and an estimator bN →p β, both
CI and HT are done using the asymptotic distribution of a transformation of
bN . Usually, the transformation is a location- and scale-normalized version of
bN so that the transformation follows a known distribution; in most cases,

√
N(bN − β)� N(0, V ) =⇒

√
NV −1/2(bN − β)� N(0, Ik).

Here
√

NV −1/2(bN − β) asymptotically follows a known distribution free of
any (nuisance) parameters, and the TS

√
NV −1/2(bN − β) is then said to be

asymptotically pivotal. In practice, the unknown V should be replaced with an
estimator VN →p V , and due to the Slutsky Lemma, using

√
NV

−1/2
N (bN −β)

is asymptotically as good as using
√

NV −1/2(bN − β).
For a fixed k × 1 known vector t, we have

√
N(t′bN − t′β)� N(0, t′V t) =⇒

√
N(t′bN − t′β)√

t′VN t
� N(0, 1).
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As N → ∞, with ζα denoting the αth quantile of N(0, 1),

P

{
−ζ1 −α/2 <

√
N(t′bN − t′β)√

t′VN t
< ζ1 −α/2

}
→p P{−ζ1 −α/2 < N(0, 1) < ζ1 −α/2) = 1 − α

=⇒ P

{
t′bN − ζ1−α/2

√
t′VN t√

N
< t′β < t′bN + ζ1−α/2

√
t′VN t√

N

)
→ 1 − α;

the lhs is a CI for t′β. For instance, t = (0, ..., 0, 1)′ and α = 0.05 yields a
symmetric asymptotic 95% CI for βk. For a hypothesis H0: t′β = c for a
specified value of c (typically c = 0), we reject the H0 if c is not captured by
the CI. Here the false rejection probability (i.e., the type I error) is α. This
is doing a test using a CI.

Alternatively to using CI, we can use an asymptotically pivotal TS to
conduct a HT. If the realized value of the TS is “extreme” (i.e., an “unlikely”
value) for the known asymptotic distribution under H0, then the H0 gets
rejected. For instance, under H0: t′β = c, we can use

√
N(t′bN − c)√

t′VN t
� N(0, 1) where the unknown t′β is replaced by c in H0.

For two-sided tests, we choose the critical region (−∞,−ζ1−α/2) and
(ζ1−α/2,∞), and H0 is rejected if the realized value of the TS falls in the
critical region with the false rejection probability α. A better way of doing
inference might be looking at the p-value

2 × P

{
N(0, 1) > |realized value of

√
N(t′bN − c)√

t′VN t
|
}

showing how extreme the realized value of the TS is; TS being extreme leads
to rejecting the H0. For one-sided tests, this scenario requires minor modifi-
cations.

For multiple parameters, say (t′1β, ..., t′gβ), CI gets replaced by confidence
regions. Stacking t′1β, ..., t′gβ to get R′β (a g × 1 vector) and

√
N(R′bN − R′β)� N(0, R′V R) =⇒ N(R′bN − R′β)′(R′VNR)−1

(R′bN − R′β)� χ2
g

=⇒ P{N(R′bN − R′β)′(R′VNR)−1(R′bN − R′β) ≤ ψg,1−α) → 1 − α

where ψg,1−α denotes the (1−α)th quantile of χ2
g. We can get an asymptotic

confidence region (or volume) for (t′1β, ..., t′gβ). For example, with g = 2, this
display leads to a circle or ellipse on the two-dimensional space for (t′1β, t′2β).
For HT with H0: (t′1β, ..., t′gβ) = c, we can check if c falls in the confidence
region, or equivalently, reject the H0

if N(R′bN − c)′(R′VNR)−1(R′bN − c) > ψg,1−α, or
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if the p-value P
{
χ2

g > realized value of N(R′bN − c)′(R′VNR)−1

(R′bN − c)} < α.

Although using χ2 distribution to turn the vector
√

N(R′bN −R′β) into
a scalar is a widespread practice, this is not the only way. For instance,
we may look at max{V −1/2

N

√
N(R′bN − R′β)} or |V −1/2

N

√
N(R′bN − R′β)|,

although their asymptotic distributions are not as easy to obtain as in the
above quadratic form. Other than for this aspect, CI and HT would proceed
in the same manner. For instance, since max(·) is a continuous function, its
asymptotic distribution is that of the maximum of g independent N(0, 1)
rv’s, and thus an asymptotic 95% confidence region for Rβ is

{τ : max{V −1/2
N

√
N(R′bN − τ)} ≤ ξ1−α}

where ξ1−α is the (1 − α)th quantile of max{g independent N(0, 1) rv’s},
which can be tabulated by simulation. HT can be done by checking if the
realized value of max{V −1/2

N

√
N(R′bN −R′β)} falls in the confidence region

or not. Alternatively, the TS or its p-value can be used for HT.
Although CI and HT are equivalent to (i.e., “dual” to) each other in the

case of using
√

N(bN − β) � N(0, V ), there are many HT’s whose corre-
sponding CI’s are hard to think of; e.g., H0: the df of y is symmetric about
0, or H0: E(y4) = 3E(y2).

5.2 Bootstrap for Distribution Functions

5.2.1 Main Idea

Define the exact df for a statistic TN (F ):

GN (c;F ) ≡ P [TN (F ) ≤ c] where

TN (F ) ≡ VN (F )−1/2
√

N{bN (F ) − β(F )}

where F denotes the distribution for the original sample and VN is a “scaling
constant (matrix).” Regard β as a scalar for simplification. We want to find
out GN (c;F ): how TN (F ) behaves with a given sample of size N when the
sample was drawn from the true distribution F . This display makes it ex-
plicit that the exact, not asymptotic, distribution of TN (F ) depends on the
underlying distribution F . Large sample inference uses the approximation
(the “asymptotic df” of TN (F )) for GN (c, F ):

G∞(c;F ) ≡ lim
N→∞

GN (c, F ).

Often TN (F ) is asymptotically pivotal : G∞(c;F ) does not depend on F ;
e.g., G∞(c, F ) = P{N(0, Ik) ≤ c}. We may then write just G∞(c) instead of
G∞(c;F ). In this case, the large sample approximation G∞(c;F ) to GN (c;F )
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is done only through one route (“through the subscript”). “Two-route” ap-
proximation is shown next.

Suppose TN (F ) is not asymptotically pivotal; e.g., G∞(c, F ) = Φ{c/σ
(F )} where the parameter of interest is the mean and σ is the SD. In this
non-pivotal case, the nuisance parameter σ(F ) gets replaced by an estimator,
say, sN ≡ σ(FN ). In general, when TN (F ) is not asymptotically pivotal,
G∞(c, FN ) is used as a large sample approximation for GN (c;F ): two routes
of approximation are done between GN (c;F ) and G∞(c, FN ), through the
subscript ∞ and FN . It should be kept in mind that, large sample inference
uses G∞(c) or G∞(c, FN ) as an approximation to GN (c;F ), not the other
way around.

Suppose that GN (c, F ) is smooth in F in the sense

GN (c;FN ) − GN (c;F ) →p 0 as N → ∞
where FN is the empirical distribution for F ;

recall that FN gives probability N−1 to each zi, i = 1, ..., N . Bootstrap uses
GN (c;FN ) as an approximation to GN (c;F ) where the approximation is done
only through FN . This is in contrast to the two-route large sample approxi-
mation G∞(c, FN ) to GN (c, F ). As Beran and Ducharme (1991) noted, this
fact suggests that bootstrap may work better than the large sample approx-
imation unless TN (F ) is asymptotically pivotal.

Whether the last display holds or not depends on the smoothness of
GN (c;F ) as a functional of F . This also shows that consistent estimators
for F other than FN (e.g., a smoothed version of FN ) may be used in place
of FN . This is the basic bootstrap idea: replace F with FN and do the same
thing as done with F . Since the smoothness of GN (c, F ) is the key ingredient
for bootstrap, if the “source” TN (F ) is not smooth in F , bootstrap either
will not work as well (e.g., quantile regression is “one-degree”less smoother
than LSE, and bootstrap works for quantile regression in a weaker sense than
for LSE), or work not at all (in some M-estimators with b residing inside an
indicator function). Bear in mind the different versions of G that appeared
so far:

Non-Operational Operational
Finite-Sample GN (c;F ) for GN (c;FN ) in bootstrap
Asymptotic target G∞(c;F ) G∞(c) (pivotal); G∞(c;FN )

(non-pivotal)

Using GN (c;FN ) means treating the original sample (z1, ..., zN ) as the
population—i.e., the population distribution is multinomial with P (z = zi) =
N−1. Specifically, with F replaced by FN , we have

GN (c;FN ) = P [TN (FN ) ≤ c] = P [VN (FN )−1/2
√

N{bN (FN ) − β(FN )} ≤ c]
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and β(FN ) is the parameter for the empirical distribution, i.e., β(FN ) =
bN . In M-estimator, β maximizes E{q(z, b)} =

∫
q(zo, b)dF (zo) whereas bN

maximizes the empirical counterpart N−1
∑

i q(zi, b) =
∫

q(zo, b)dFN (zo),
which shows that β(FN ) = bN : bN plays the role of the parameter when FN

is taken as the population.
For instance, suppose that β(F ) is the mean: β(F ) =

∫
zodF (zo). Then

considering a pseudo sample z∗1 , ..., z∗N drawn from FN with replacement—
some observations in the original sample get drawn multiple times while some
get never drawn—we have

β(FN ) =
∫

zodFN (zo) = z̄ = bN as FN assigns weight
1
N

to each

support point zi in FN

bN (FN ) = z̄∗ ≡ 1
N

∑
i

z∗i , pseudo sample mean estimator for the

parameter β(FN ) in FN

V (FN ) =
1
N

∑
i

z2
i − z̄2 =

1
N

∑
i

(zi − z̄)2, which is also the sample

variance “VN (F )”

VN (FN ) =
1
N

∑
i

z∗2i − z̄∗2 =
1
N

∑
i

(z∗i − z̄∗)2, pseudo sample variance

to estimateV (FN ).

This example illustrates that bootstrap approximates the distribution of
(scaled) z̄ − E(z) with that of (scaled) z̄∗ − z̄. That is, the relationship of z̄
to E(z) is inferred from that of z̄∗ to z̄.

GN (c;FN ) may look hard to get, but it can be estimated as precisely as
desired because FN is known. One pseudo sample of size N gives one real-
ization of TN (FN ). Repeating this NB times yields NB-many pseudo realiza-
tions, b

∗(1)
N , ...b

∗(NB)
N . Then, thanks to the LLN applied with the “population

distribution FN for the pseudo sample,”

1
NB

NB∑
j=1

1
[
V
∗(j)−1/2
N

√
N(b∗(j)N − bN ) ≤ c

]
→ GN (c;FN ) as NB → ∞

where ∗ means using a pseudo sample and the superscript j refers to the jth
pseudo sample. This convergence is “in probability” or “a.e.” conditional on
the original sample z1, ..., zN . Hence there are two phases of approximation
in bootstrap: the first is as NB → ∞ for a given N (as in the last display),
and the second is as N → ∞ for GN (c;FN ) − GN (c;F ) →p 0. Since we can
increase NB as much as we want (so long as the computing power allows),
the first phase of approximation can be ignored, and our focus will be on the
second phase.
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5.2.2 Percentile-t, Centered-Percentile, and Percentile

Suppose that TN is asymptotically pivotal. Under GN (c;FN ) − GN (c;
F ) →p 0 as N → ∞ (this is a “bootstrap consistency,” to be examined later),
we can use the bootstrap quantiles ξN,α/2 and ξN,1−α/2 found from the last
display. A (1 − α)100% bootstrap CI for β is obtained from

ξN,α/2 < V
−1/2
N

√
N(bN − β) < ξN,1−α/2

=⇒
(

bN − ξN,1−α/2

V
1/2
N√
N

, bN − ξN,α/2

V
1/2
N√
N

)
for β.

This way of constructing a CI with an asymptotically pivotal TN is called
percentile-t method—“percentile” because percentiles (i.e., quantiles) are used
and “t” because TN takes the form of the usual t-value that is asymptotically
pivotal.

Suppose we use the non-scaled version
√

N(bN − β), in which case we
would want to know the exact df of

√
N{bN (F ) − β(F )}:

HN (c;F ) ≡ P
[√

N {bN (F ) − β(F )} ≤ c
]
.

We will call bootstrap with this kind of a nonpivotal TS “centered-percentile
method” for the lack of a better expression. The multiplicative factor

√
N

means that centered-percentile method in fact has a scale adjustment as
well, although the scale adjustment is not “complete” so that the result-
ing TS is not asymptotically pivotal. Under HN (c;FN ) − HN (c;F ) →p 0
as N → ∞ (bootstrap consistency), the bootstrap estimator for HN (c, F )
is N−1

B

∑
j 1

[√
N(b∗(j)N − bN ) ≤ c

]
. With ψN,α/2 and ψN,1−α/2 denoting the

quantiles, a (1 − α)100% CI for β can be obtained from

ψN,α/2 <
√

N(bN − β) < ψN,1−α/2

=⇒
(

bN − ψN,1−α/2

1√
N

, bN − ψN,α/2

1√
N

)
for β.

This method is easier to apply than bootstrap-t method because VN is not
needed. But the method is inferior to percentile-t method in finite sample
performances as will be shown later.

There is another bootstrap method using bN instead of
√

N(bN − β),
which is called percentile method. Define the exact df for bN as

JN (c;F ) ≡ P [bN (F ) ≤ c].

Under JN (c;FN ) − JN (c;F ) →p 0 as N → ∞ (bootstrap consistency), the
bootstrap estimator for JN (c, F ) is N−1

B

∑NB

j=1 1
[
b
∗(j)
N ≤ c

]
. Denoting the em-

pirical df of b
∗(1)
N , ..., b

∗(NB)
N as K∗

N , a (1 − α)100% CI for β is[
K∗−1

N

(α

2

)
, K∗−1

N (1 − α

2
)
]
.
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One disadvantage with this CI is that bN may fall outside this CI (or
near one end of the CI). To avoid this problem, sometimes a “bias-corrected
CI” gets used as in the following paragraph. An advantage is, however, that
a percentile method CI is invariant to monotonic transformations as will
be shown shortly. Percentile method is closely related to centered-percentile
method, because

√
N(b∗N −bN ) is a linear transformation of b∗N , which implies

that
√

N{K∗−1
N (α) − bN} is the αth quantile in the bootstrap distribution

in the centered-percentile method. In contrast, quantiles of asymptotically
pivotal V

∗−1/2
N

√
N(b∗N −bN ) cannot be obtained from those of

√
N(b∗N −bN ),

nor from those of b∗N , because of the random multiplicative factor V
∗−1/2
N .

A two-sided (1 − α)100% bias-corrected CI when the asymptotic distri-
bution is normal is, with Φ being the df of N(0, 1)(see, e.g., DiCiccio and
Efron, 1996), (

K∗−1
N

[
Φ{ ζα/2 + 2Φ−1(K∗

N (bN )) }
]
,

K∗−1
N [Φ{ ζ1−α/2 + 2Φ−1(K∗

N (bN )) }]
)

.

This is a special case of “bias-corrected and accelerated CI” when the “accel-
eration factor” is set to zero. If bN is the exact median among the pseudo es-
timates so that K∗

N (bN ) = 0.5, then Φ−1(K∗
N (bN )) = 0: the bias-corrected CI

reduces to {K∗−1
N (α/2), K∗−1

N (1−α/2)} that appeared above. If bN is smaller
than the median, however, then K∗

N (bN ) < 0.5, and Φ−1(K∗
N (bN )) < 0: the

bias-corrected CI shifts to the left so that bN moves to the center of the
interval.

A natural question at this stage is why bootstrap inference might be pre-
ferred. First, in terms of convenience, so long as the computing power allows,
bootstrap is easier to use as it just repeats the same estimation procedure
NB times, which makes bootstrap a “no-brain” method. Second, estimat-
ing the asymptotic variance may be difficult; e.g. the asymptotic variance
for the LAD estimator has fu|x(0) or E(fu|x(0)xx′), whose estimation re-
quires a bandwidth. Here bootstrap avoids choosing a bandwidth. Third, the
bootstrap approximation error may be of smaller order than the asymptotic
approximation error; e.g.,

G∞(c;FN ) − GN (c;F ) = Op(N−1/2) whereas

GN (c;FN ) − GN (c;F ) = Op(N−1).

Proving this requires “higher-order expansions” beyond the usual first term
of order Op(N−1/2).

In bootstrap, there are many different versions—we saw already a boot-
strap with an asymptotically pivotal statistic (V −1/2

N

√
N(bN −β)) and boot-

straps with non-pivotal statistics (
√

N(bN − β) and bN ). Showing why using
a pivotal statistic is better requires again high-order expansions. In general,
high-order improvements of bootstrap over asymptotic inference hold only
when asymptotically pivotal statistics are used for the bootstrap.
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5.2.3 Transformation and Percentile Method Invariance

Generalizing the transformation TN = V
−1/2
N

√
N(bN −β) of bN , suppose

that there is a continuous and increasing transformation τN (bN ) such that,
as N → ∞,

P{τN (bN ) − τN (β) ≤ c} → Ψ(c)
that is continuous, strictly increasing, and symmetric about 0;

τN (bN )− τN (β) is asymptotically pivotal, and Ψ is its known asymptotic df.
With Ψ(ξα) ≡ α and τ−1

N (a) ≡ min{t : τN (t) ≥ a} as in quantile functions,
observe

P
[
τ−1

N {τN (bN ) + ξα} ≤ β
]

= P [τN (bN ) + ξα ≤ τN (β)]

= P [τN (bN ) − τN (β) ≤ −ξα] → Ψ(−ξα) = 1 − Ψ(ξα) = 1 − α :

τ−1
N {τN (bN ) + ξα} is an asymptotic lower confidence bound for β with con-

fidence coefficient 1 − α.
Intuitively, a first attempt to construct a lower confidence bound for

τN (β) might be just τN (bN ) (then the CI would be {τN (bN ),∞}). To allow
for the sampling error, we want to lower the lower bound τN (bN ), which is
done by adding a negative number ξα. After this, τ−1

N {τN (bN ) + ξα} trans-
forms the lower bound τN (bN ) + ξα for τN (β) to that for β.

Recall the percentile method and the empirical df K∗
N of b

∗(1)
N , ...,

b
∗(NB)
N . Suppose that the bootstrap consistency hold as well. Then we get

P ∗{τN (b∗N ) − τN (bN ) ≤ c} →p Ψ(c)

because the lhs is op(1)-equal to P{τN (bN )−τN (β) ≤ c}. Substitute τN (K∗−1
N

(α)) − τN (bN ) into c in the display to get

Ψ{τN (K∗−1
N (α)) − τN (bN )} + op(1)

= P ∗{τN (b∗N ) − τN (bN ) ≤ τN (K∗−1
N (α)) − τN (bN )}

= P ∗{τN (b∗N ) ≤ τN (K∗−1
N (α))} = P ∗{b∗N ≤ K∗−1

N (α)} = α.

Comparing the first and the last terms, we get, up to op(1) terms

τN (K∗−1
N (α)) − τN (bN ) = ξα ⇐⇒ K∗−1

N (α) = τ−1
N {τN (bN ) + ξα};

recall that τ−1
N {τN (bN ) + ξα} is the asymptotic lower confidence bound for

β when the transformation τN (·) is used to induce Ψ in the first display of
this subsection. This shows that bootstrap percentile method is invariant to
continuous and increasing transformations. That is, no matter which trans-
formation of that type is used to induce the distribution Ψ (= Φ in most
cases) asymptotically, percentile method can be used blindly.
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As for two-sided intervals, observe, for some α′ > α,

P
[
τ−1

N {τN (bN ) + ξα} ≤ β ≤ τ−1
N {τN (bN ) + ξα′}

]
= P [τN (bN ) + ξα ≤ τN (β) ≤ τN (bN ) + ξα′ ]

= P [ξα ≤ τN (β) − τN (bN ) ≤ ξα′ ] = P [−ξα ≥ τN (bN ) − τN (β) ≥ −ξα′ ]

→ Ψ(−ξα) − Ψ(−ξα′) = 1 − Ψ(ξα) − {1 − Ψ(ξα′)} = α′ − α.

Setting e.g., α′ = 1− α̃/2 and α = α̃/2 yields a (1− α̃)100% asymptotic CI
for β:

[τ−1
N {τN (bN ) + ξα}, τ−1

N {τN (bN ) + ξα′}].
The percentile method CI is still just [K∗−1

N (α), K∗−1
N (α′)].

5.3 Bootstrap Consistency and Confidence Intervals

5.3.1 Defining Bootstrap Consistency

Let
CN =

√
N(bN − β) and C∗N =

√
N(b∗N − bN ).

To show that the bootstrap distribution is consistent, it should be proven
that

P (CN ≤ t) − P ∗(C∗N ≤ t|z1, ..., zN ) →p 0

where P ∗ is for FN which takes z1, ..., zN as given whereas P is for F . The
convergence in probability comes from the fact that P ∗ is conditional on
the original sample z1, ..., zN . Here we state bootstrap consistency, using the
centered version CN , not the (asymptotically pivotal) TN = V

−1/2
N

√
N(bN −

β), because dealing with CN is easier than TN . As for bN , the bootstrap
consistency of bN follows that of CN ; this will be also examined later.

Formally, for any constant ε > 0,

P [ |P (CN ≤ t) − P ∗(C∗N ≤ t|z1, ..., zN )| ≤ ε ] → 1 as N → ∞

which is weak bootstrap consistency. That is, for any constants ε, ε′ > 0, there
is No(ε, ε′, t) such that, for all N ≥ No(ε, ε′, t),

P [ |P (CN ≤ t) − P ∗(C∗N ≤ t|z1, ..., zN )| ≤ ε ] > 1 − ε′.

Replacing the convergence in probability with a.s. convergence yields “strong
bootstrap consistency.”

Instead of the consistency above, as we are estimating a function, we
would desire the uniform consistency

sup
t

|P (CN ≤ t) − P ∗(C∗N ≤ t|z1, ..., zN )| →p 0.

That is, for any positive constants ε, ε′ > 0, there is No(ε, ε′) not depending
on t such that, for all N ≥ No(ε, ε′),

P [ |P (CN ≤ t) − P ∗(C∗N ≤ t|z1, ..., zN )| ≤ ε ] > 1 − ε′.
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The uniform consistency is needed when t is replaced by a random sequence
τN , because the uniformity implies

P (CN ≤ τN ) − P ∗(C∗N ≤ τN |z1, ..., zN ) →p 0.

Subtracting and adding the limit df Ψ(t;F ), the uniform consistency holds if

(a) : sup
t

|P (CN ≤ t} − Ψ(t;F )| → 0 and

(b) : sup
t

|P ∗(C∗N ≤ t|z1, ..., zN ) − Ψ(t;F )| →p 0.

Recall convergence in distribution: a sequence of df’s {JN (t)} converges
to a df J(t) at each continuity point t of J(t). Polya’s theorem is that, if J(t)
is continuous in t, then the convergence is uniform:

lim
N→∞

sup
t

|JN (t) − J(t)| = 0.

With Φ being the N(0, 1) df, in almost all cases we encounter, Ψ = Φ or at
least Ψ is continuous, so that it is enough to establish pointwise convergence.
Since the pointwise version of (a) holds by assumption (typically CN �
N(0, V )), we just have to show the pointwise version of (b):

P ∗{
√

N(b∗N − bN ) ≤ t|z1, ..., zN} →p Ψ(t;F ) (= Φ(t) typically).

In short, we do not have to bother with the uniformity, as it will follow from
the pointwise convergence.

5.3.2 Bootstrap Consistency with Empirical Processes

With bootstrap consistency defined, we want to know when it holds.
For this query, empirical process approach gives answers, using empirical
processes GN (f), f ∈ F , in l∞(F) where l∞(F) denotes the space of bounded
functions on F (i.e., l∞(F) consists of functions G mapping F → R such that
supf∈F |G(f)| < ∞). The empirical process approach is shown here drawing
on Van der Vaart (1998), Giné and Zinn (1990) and Arcone and Giné (1992).

Define the bootstrap empirical measure P ∗N and bootstrap empirical pro-
cess G∗N as

P ∗N ≡ 1

N

∑
i

δz∗
i

=
1

N

∑
i

mniδzi , and G∗N ≡
√

N(P ∗N − PN ) =
1√
N

∑
i

(mni − 1)δzi

where mni is the number of times zi appears in the pseudo sample. Then for
a function f(z),

P ∗Nf =
1
N

∑
i

f(z∗i ) =
1
N

∑
i

mnif(zi) and G∗Nf =
1√
N

∑
i

(mni−1)f(zi).

Consider a Donsker class F of functions on z with F (z) ≡ supf∈F |f(z)|
being finite for each z ∈ Z. Then G∗N converges weakly to GP in l∞(F)
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in probability where Gp is the weak convergence limit for the corresponding
empirical process

√
N(PN −P ) using the original data. That is, the pointwise

version of (b) above holds:

P (Gpf ≤ t) − P ∗(G∗Nf ≤ t|z1, ..., zN ) →p 0

If PF 2 < ∞, then the weak convergence holds a.e., not just in probability.
For instance, if f(z) = z, this display combined with (a) above gives

P

(
1√
N

∑
i

(zi − E(z)) ≤ t

)
− P ∗

(
1√
N

∑
i

(z∗i − z̄) ≤ t|z1, ..., zN

)
→p 0

justifying bootstrap for non-standardized sample means.
For parameters other than mean, the last two displays are not of di-

rect help and one needs findings more involved than those. For this, The-
orem 3.2 in Arcone and Giné (1992) proves a.e. bootstrap consistency for√

N(bN − β) under some conditions where bN is a M-estimator. Remark 3.3
and Example 4.10 in Arcone and Giné (1992) provide conditions for “in-
probability” bootstrap consistency. The conditions, which are weaker than
those for the a.s. consistency, are satisfied for almost all M-estimators (in-
cluding the LAD estimator). In essence, if Theorem 2 of Pollard (1985) or
Theorem 5 of Pollard (1984, p. 141) holds for the M-estimator maximizing
Eq(z, b), then nonparametric bootstrap (resampling from the original sample
with replacement, repeating the same estimation procedure to get pseudo
estimates along with their empirical df, and then using the quantiles thereof)
is consistent. The stochastic equicontinuity of the “remainder process” r(z, b)
in the M-estimator plays the key role for the bootstrap consistency.

5.3.3 Confidence Intervals with Bootstrap Quantiles

Recall the quantile function F−1(α) ≡ min{t : F (t) ≥ α}, 0 < α < 1.
A sequence {F−1

N } is said to converge weakly to F−1 if F−1
N (α) → F−1(α)

for every continuity point α of F−1 as N → ∞. As shown in Van der Vaart
(1998, p. 305),

FN � F ⇐⇒ F−1
N � F−1.

From bootstrap consistency and this display, the αth quantile of the boot-
strap empirical distribution of C∗N =

√
N(b∗N − bN ) is consistent for the αth

quantile of Ψ, assuming that Ψ(t) is continuous and strictly increasing in t.
Observe

√
N(bN − β) ≤ Ψ−1(α;F ) ⇐⇒ bN − Ψ−1(α;F )√

N
≤ β

=⇒ P

{
β ∈ [bN − Ψ−1(α;F )√

N
,∞

}
= P

{√
N(bN − β) ≤ Ψ−1(α;F )

}
→ Ψ{Ψ−1(α;F );F} = α as Ψ is continuous.
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To make the confidence bound to be operational, Ψ−1(α;F ) can be replaced
with the bootstrap quantile Ψ−1(α;FN ), and we would be using

P

{
β ∈ [bN − Ψ−1(α;FN )√

N
,∞)

}
= P

{√
N(bN − β) ≤ Ψ−1(α;FN )

}
.

We show that this centered-quantile-based confidence interval yields the
asymptotic coverage probability α.

Because Ψ{Ψ−1(α;F );F} = α,

P
{√

N(bN − β) ≤ Ψ−1(α;FN )
}
− α

= P
{√

N(bN − β) ≤ Ψ−1(α;FN )
}
− Ψ{Ψ−1(α;FN );F}

+ Ψ{Ψ−1(α;FN );F} − Ψ{Ψ−1(α;F );F}.

Due to the uniform convergence of P{
√

N(bN −β) ≤ t}� Ψ(t;F ) over t, the
first difference with t = Ψ−1(α;FN ) is op(1). As for the second difference, it is
also op(1) because Ψ(t;F ) is continuous in t and Ψ−1(t;FN ) −→p Ψ−1(t;F )
as mentioned above. For instance, if Ψ(t;F ) = Φ{t/σ(F )}, then

Ψ(t;FN ) = Φ{t/σ(FN )} = Φ(t/sN ) →p= Φ{t/σ(F )} = Ψ(t;F )

because sN →p σ and Φ is continuous; note

Ψ−1(·;FN ) = sNΦ−1(·) →p σΦ−1(·) = Ψ−1(·;F ).

Although we discussed bootstrap consistency only for
√

N(bN −β), sup-
pose that bootstrap consistency holds for the asymptotically pivotal case
TN = V

−1/2
N

√
N(bN − β) as well. Observe

V
−1/2
N

√
N(bN − β) ≤ Ψ−1(α) ⇐⇒ bN − β ≤ Ψ−1(α)

V
1/2
N√
N

⇐⇒ bN − Ψ−1(α)
V

1/2
N√
N

≤ β.

The coverage error is, as Ψ is continuous,

P

{
β ∈ [bN − Ψ−1(α)

V
1/2
N√
N

,∞
}

= P
{

V
−1/2
N

√
N(bN − β) ≤ Ψ−1(α)

}
→ Ψ{Ψ−1(α)} = α

as desired. The bootstrap consistency of V
−1/2
N

√
N(bN −β) holds at least for

the standardized sample averages: recall the example Ψ(t;F ) = Φ{t/σ(F )}
and Ψ−1(·;FN ) = sNΦ−1(·) and thus

P
{√

N(bN − β) ≤ Ψ−1(α;FN )
}

= P

{√
N(bN − β)

sN
≤ Φ−1(α)

}
→ α.
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For percentile method, under the assumption that the limit distribution
of the centered percentile method is symmetric about 0, we can obtain boot-
strap consistency using the fact that the αth quantile of centered-percentile
method is

√
N{K∗−1

N (α) − bN}. Observe

P
{
K∗−1

N (α) ≤ β
}

= P
[√

N
{
K∗−1

N (α) − bN

}
≤

√
N(β − bN )

]
= P

[√
N(bN − β) ≤

√
N

{
bN − K∗−1

N (α)
}]

= Ψ
{√

N(bN − K∗−1
N (α));F

}
+ op(1)

= 1 − Ψ
{√

N(K∗−1
N (α) − bN );F

}
+ op(1) (using the symmetry of Ψ)

= 1 − α + op(1).

Hence, we get the desired expression

P{K∗−1
N (α) ≤ β} →p 1 − α :

the lower confidence bound with level 1 − α is K∗−1
N (α).

5.4 High-Order Improvement for Asymptotic Normality

In most cases we encounter in econometrics, a consistent estimator is
asymptotically normal, converging to the parameter at the rate N−1/2, and
the estimator can be written as a sum of terms with order N−ν/2, ν =
1, 2, 3, ... Under some regularity conditions, this also holds for the distribution
function of V

−1/2
N

√
N(bN − β):

P
{

V
−1/2
N

√
N(bN − β) ≤ c

}
= Φ(c) +

q1(c;F )
N1/2

+
q2(c;F )

N
+, ...

for some functions q1(c;F ), q2(c;F ),.... This display shows that the asymp-
totic approximation error using only Φ(c) for TN ≡ V

−1/2
N

√
N(bN − β) is

O(N−1/2).
As will be seen in “Edgeworth expansion,” suppose that q1(c;F ) is an

even function and q2(c;F ) is an odd function:

q1(c;F ) = q1(−c;F ) and q2(c;F ) = −q2(−c;F ).

Denoting the N(0, 1) αth quantile as ζα, we get

P{V −1/2
N

√
N(bN − β) ≤ ζ1−α/2} = Φ(ζ1−α/2) +

q1(ζ1−α/2; F )

N1/2
+

q2(ζ1−α/2; F )

N
+, ...

P{V −1/2
N

√
N(bN − β) ≤ ζα/2} = Φ(ζα/2) +

q1(ζα/2; F )

N1/2
+

q2(ζα/2; F )

N
+, ...
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Subtract the latter from the former to get,

P{ζα/2 ≤ V
−1/2
N

√
N(bN − β) ≤ ζ1−α/2} = 1− α +

2q2(ζ1−α/2; F )

N
+ O(

1

N3/2
)

as q1(ζα/2;F ) = q1(−ζ1−α/2;F ) = q1(ζ1−α/2;F ) and −q2(ζα/2;F ) =
q2(−ζα/2;F ) = q2(ζ1−α/2;F ).

Consider now |TN | = |V −1/2
N

√
N(bN − β)| with its exact df

P (|TN | ≤ c) = GN (c;F ) − GN (−c;F ).

Setting c = ζ1−α/2 (= −ζα/2), this becomes, using the preceding display,

P (|TN | ≤ ζα/2) = P
{

ζα/2 ≤ V
−1/2
N

√
N(bN − β) ≤ ζ1−α/2

}
= 1− α

+
2q2(ζ1−α/2; F )

N
+ O

(
1

N3/2

)
.

The asymptotic approximation error for the df of |V −1/2
N

√
N(bN − β)|

is O(N−1), which is said to be “second-order accurate.”
Typically, in expansions including higher-order terms with functions

q1(c;F ), q2(c;F ), q3(c;F ), q4(c;F ),..., every other functions from q1(c;F )
and on are all even functions, and every other functions from q2(c;F ) and on
are all odd functions. This means that, when q1 gets canceled, q3, q5, ... get
all canceled as well. Hence,

P
{
ζα/2 ≤ V

−1/2
N

√
N(bN − β) ≤ ζ1−α/2

}
= 1 − α +

2q2(ζ1−α/2;F )
N

+
2q4(ζ1−α/2;F )

N2
+ O

(
1

N3

)
.

Suppose that, not just bootstrap consistency, but the approximation for
P

{
V
−1/2
N

√
N(bN − β) ≤ c

}
holds with F in all terms replaced by FN :

P
{

V
∗−1/2
N

√
N(b∗N − bN ) ≤ c

}
= Φ(c) +

q1(c;FN )
N1/2

+
q2(c;FN )

N
+, ...

Under this, we get

P
{

V
−1/2
N

√
N(bN − β) ≤ c

}
− P

{
V
∗−1/2
N

√
N(b∗N − bN ) ≤ c

}
=

q1(c;F ) − q1(c;FN )
N1/2

+, ...

Typically, q1(c;F ) is “smooth” in F , to result in

q1(c;F ) − q1(c;FN )
N1/2

� Op(N−1/2)
N1/2

= Op

(
1
N

)
:
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the bootstrap approximation error for the df of TN is of order Op

(N−1)—second-order accurate.
As for symmetric CI’s, observe

P{ζα/2 ≤ V
∗−1/2

N

√
N(b∗N − bN ) ≤ ζ1−α/2} = 1−α +

2q2(ζ1−α/2; FN )

N
+ O

(
1

N2

)
.

Subtract this from the above expansion for P{ζα/2 ≤ V
−1/2
N

√
N(bN − β) ≤

ζ1−α/2} to get

2q2(ζ1−α/2;F ) − 2q2(ζ1−α/2;FN )
N

+ O

(
1

N2

)
=

Op(N−1/2)
N

+ O

(
1

N2

)

= Op

(
1

N3/2

)
.

The bootstrap approximation error for the df of |TN | is of order
Op(N−3/2).

Now consider the nonpivotal versions and their expansions:

P{
√

N(bN − β) ≤ c} = Φ
(

c√
V

)
+

r1(c;F )
N1/2

+
r2(c;F )

N
+, ...

P{
√

N(b∗N − bN ) ≤ c} = Φ
(

c√
VN

)
+

r1(c;FN )
N1/2

+
r2(c;FN )

N
+, ...

for some functions r1(c;F ) and r2(c;F ). Subtract the latter from the former
to get

P
{√

N(bN − β) ≤ c
}
− P

{√
N(b∗N − bN ) ≤ c

}
= Φ

(
c√
V

)

− Φ
(

c√
VN

)
+

r1(c;F ) − r1(c;FN )
N1/2

+, ...

= Op

(
1

N1/2

)
as V − VN = Op

(
1

N1/2

)
.

This shows that non-pivotal bootstrap has the approximation error of order
Op(N−1/2), which is the same as the asymptotic approximation error; high-
order improvement is possible only for pivotal statistics.

For |
√

N(bN − β)|, observe for c2 > 0 and c1 = −c2,

P{
√

N(bN − β) ≤ c2} = Φ
(

c2√
V

)
+

r1(c2;F )
N1/2

+
r2(c2;F )

N
+, ...

P{
√

N(bN − β) ≤ c1} = Φ
(

c1√
V

)
+

r1(c1;F )
N1/2

+
r2(c1;F )

N
+, ...
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With r1(c;F ) being an even function of c, subtracting the latter from the
former yields, because of r1(c1;F ) = r1(c2;F ),

P{c1 ≤
√

N(bN − β) ≤ c2} = Φ

(
c2√
V

)
− Φ

(
c1√
V

)
+

r2(c2; F )− r1(c1; F )

N

+ O

(
1

N3/2

)
= Φ

(
c2√
V

)
− Φ

(
c1√
V

)
+ O

(
1

N

)
:

asymptotic approximation error for the df of |
√

N(bN − β)| is of order
O(N−1) which is the same as the one using a pivotal statistic. Thus the
asymptotic approximation error order is the same regardless of pivotal or
non-pivotal statistics.

Subtracting the bootstrap version of this display from this, we get

P{c1 ≤
√

N(bN − β) ≤ c2} − P{c1 ≤
√

N(b∗N − bN ) ≤ c2}

=
r2(c2;F ) − r2(c1;F )

N
− r2(c2;FN ) − r2(c1;FN )

N
+ O

(
1

N3/2

)
= Op

(
1

N3/2

)
.

nonpivotal bootstrap has the approximation error of order Op(N−3/2) for
symmetric CI’s, which is the same as pivotal bootstrap approximation error
order.

In summary, the approximation orders of df’s are as follows:

Order of Approximation Error

Asymptotic Pivotal bootstrap Non-pivotal bootstrap

Asymmetric CI N−1/2 N−1 N−1/2

Symmetric CI N−1 N−3/2 N−3/2

These approximation orders get carried over to coverage probabilities in CI’s
and false rejection probabilities (i.e., type I error) in HT. But Horowitz
(2001a) showed that, in some cases, the bootstrap approximation orders N−1

and N−3/2 get even smaller to become, respectively, N−3/2 and N−2.

5.5 Edgeworth Expansion

Formally showing the expansions in the preceding subsection is hard, but
the intuition can be gained from Edgeworth expansion, which is explained in
this subsection.

5.5.1 Cumulant Generating Function

Let z is a rv with distribution F . On a neighborhood of t = 0, moment
generating function (mgf ) is defined as E exp(tz) if this exists. If the mgf
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is finite in a neighborhood of t = 0, then all moments of z are finite. The
characteristic function is

E exp(itz) =
∫

exp(itzo)dF (zo) = E cos(tz) + iE sin(tz).

The last expression shows clearly that characteristic function does not require
any moment of z, as it needs only E cos(tz) and E sin(tz) which are certainly
finite. For instance, N(μ, σ2) has mgf exp(μt + σ2t2/2) and characteristic
function exp(μt − σ2t2/2); −1 in front of σ2 comes from i2 = −1.

The “cumulant generating function (cgf)” is the logarithm of the char-
acteristic function:

κ(t) ≡ ln{E exp(itz)}.

For the sum
∑N

i=1 zi of independent {zi}, observe

ln

[
E

{
exp(it

N∑
i=1

zi)

}]
= ln

[
E

{
N∏

i=1

exp(itzi)

}]

= ln

[
N∏

i=1

E exp(itzi)

]
=

∑
i

ln{E exp(itzi)} :

the cgf of
∑N

i=1 zi is the sum of the individual cgf ’s.
Suppose all moments of z exist and E(z) = 0 (or redefine z as z−E(z)).

Then Taylor expansion gives

E exp(itz) − 1 =
i2t2E(z2)

2
+

i3t3E(z3)

3!
+

i4t4E(z4)

4!
+, ... as the first term

itE(z)

1
is 0

Use the expansion

ln(1 + x) = x − x2

2!
+

x3

3!
− x4

4!
+, ...

to get

κ(t) = ln[1 + {E exp(itz) − 1}] =
{

i2t2E(z2)
2

+
i3t3E(z3)

3!
+

i4t4E(z4)
4!

+, ...

}
− 1

2

{
i2t2E(z2)

2
+, ...

}2

+
1
3!

{
i2t2E(z2)

2
+, ...

}3

+, ...

= E(z2)
i2t2

2
+ E(z3)

i3t3

3!
+ {E(z4) − 3E2(z2)} i4t4

4!
+, ...

≡
∞∑

j=1

κj
(it)j

j!
, where κ1 = 0 (= E(z)), κ2 = V (z),

κ3 = E(z3), κ4 = E4(z) − 3E2(z2), ...;

the jth cumulant is κj
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Consider now the standardized sum of iid zi’s with E(z) = 0 and
V (z) = σ2:

1√
N

N∑
i

zi

σ
=

1
σ
√

N

N∑
i

zi =⇒ t

σ
√

N

N∑
i

zi = t′
N∑
i

zi, t′ ≡ t

σ
√

N

=⇒ the cgf is Nκ

(
t

σ
√

N

)
= N

∞∑
j=2

κj
(it)j

(σ
√

N)j · j!
=

∞∑
j=2

κ′j
(it)j

j!
1

N (j−2)/2
,

where κ′j ≡ κj

σj
;

κ
′
2 =

V (z)
σ2

= 1, κ′3 =
E(z3)

σ3
(skewness),

κ
′
4 =

E(z4) − 3E2(z2)
σ4

=
E(z4)

σ4
− 3 (kurtosis).

5.5.2 Density of Normalized Sums

As N(μ, σ2) has cgf μt − σ2t2/2, when zi’s are iid N(0, σ2), the cgf
of N−1/2

∑
i zi/σ = (σ

√
N)−1

∑
i zi is N times the individual cgf with t

replaced by t/(σ
√

N):

N ·
{
−σ2

2

(
t

σ
√

N

)2
}

= − t2

2
.

In comparison, when zi’s are iid (0, σ2)—not necessarily normal—the cgf of
N−1/2

∑N
i zi/σ is, as just derived,

κ(t) = − t2

2
+ κ′3

(it)3

3!
1√
N

+ κ′4
(it)4

4!
1
N

+, ... :

the cgf of a standardized iid rv’s sum is the cgf of N(0, 1) plus O(N−1/2).
The characteristic function of N−1/2

∑N
i zi/σ is then

ψ(t) ≡ exp κ(t) = exp
{
− t2

2
+ κ′3

(it)3

3!
1√
N

+ κ′4
(it)4

4!
1
N

+, ...

}
= e−t2/2 exp

{
κ′3

(it)3

3!
1√
N

+ κ′4
(it)4

4!
1
N

+, ...

}
.

Using

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ ...

ψ(t) can be written as

ψ(t) = e−t2/2

[
1 +

{
κ′3

(it)3

3!
1√
N

+ κ′4
(it)4

4!
1
N

+, ...

}
+

1
2!

{
κ′3

(it)3

3!
1√
N
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+κ′4
(it)4

4!
1
N

+, ...

}2

+, ...

]

= e−t2/2

[
1 + κ′3

(it)3

3!
1√
N

+
{

κ′4
(it)4

4!
+ κ′23

(it)6

72

}
1
N

+, ...

]
If a rv x has a characteristic function ξ(t) that is integrable (i.e.,

∫∞
−∞ |ξ(t)|

dt < ∞), then x has an uniformly continuous density fx obtained by (e.g.,
Shorack, 2000, p. 347)

fx(xo) =
1
2π

∫ ∞

−∞
e−itxoξ(t)dt.

Apply this to ψ(t) to get the density gN (w) of N−1/2
∑N

i zi/σ:

gN (w) =
1

2π

∫ ∞

−∞
e−itwe−t2/2

[
1 + κ′3

(it)3

3!

1√
N

+

{
κ′4

(it)4

4!
+ κ′23

(it)6

72

}
1

N
+, ...

]
dt

=
1

2π

∫ ∞

−∞
e−itwe−t2/2dt +

1

2π

∫ ∞

−∞
e−itwe−t2/2(it)3dt · κ′3

3!

1√
N

+
1

2π

∫ ∞

−∞
e−itwe−t2/2

{
κ′4
4!

(it)4 +
κ′23
72

(it)6
}

dt
1

N
+, ...

Observe, for p = 0, 1, 2, ...,

1

2π

∫ ∞

−∞
e−itwe−t2/2(it)pdt = (−1)p 1

2π

∫ ∞

−∞
dp(e−itw)

dwp
e−t2/2dt

= (−1)p dp

dwp

{
1

2π

∫ ∞

−∞
e−itwe−t2/2dt

}
= (−1)p 1√

2π

dp

dwp

{∫ ∞

−∞
e−itw 1√

2π
e−t2/2dt

}
= (−1)p 1√

2π

dp

dwp
{characteristic function of t ∼ N(0, 1) with w fixed}

= (−1)p dp

dwp

{
1√
2π

e−w2/2

}
= (−1)p dp

dwp
φ(w) where φ(·) is the N(0, 1) density.

Carrying out the differentiation, we can see that

φ′(w) = −wφ(w)

φ′′(w) = −φ(w) − wφ′(w) = −φ(w) − w{−wφ(w)} = φ(w)(w2 − 1)

φ′′
′
(w) = φ(w)(−w3 + 3w) doing analogously.

The w-polynomials Hp(w) next to φ(w) such that

(−1)pφ(p)(w) = φ(w) · Hp(w)

are called Hermite polynomials:

H0(w) = 1, H1(w) = w, H2(w) = w2 − 1, H3(w) = w3 − 3w;



694 Appendix II: Supplementary Topics

for p ≥ 2, they can be found from the recursive formula

Hp(w) = wHp−1(w) − (p − 1)Hp−2(w); for example

H3(w) = w(w2 − 1) − 2w = w3 − 3w,

H4(w) = w(w3 − 3w) − 3(w2 − 1) = w4 − 6w2 + 3,

H5(w) = w(w4 − 6w2 + 3) − 4(w3 − 3w) = w5 − 10w3 + 15w.

Hp(w) is an even (odd) function if p is even (odd).
Substitute the just derived finding

1
2π

∫ ∞

−∞
e−itwe−t2/2(it)pdt = (−1)p dp

dwp
φ(w) = φ(w) · Hp(w)

into gN (w) to get

gN (w) = φ(w)
[
1 + H3(w)

κ′3
3!

1√
N

+
{

H4(w)
κ′4
4!

+ H6(w)
κ′23
72

}
1
N

+, ...

]
which is the Edgeworth approximation of the density gN (w).

5.5.3 Distribution Function of Normalized Sums

Integrating gN (w) wrt w, we get the Edgeworth approximation of the df
GN (w). But we need to integrate Hp(w)φ(w). Observe now (keeping in mind
that p in φ(p) denotes the pth order differentiation, not power)∫ w

−∞
Hp(wo)φ(wo)dwo =

∫ w

−∞
(−1)pφ(p)(wo)dwo = (−1)pφ(p−1)(wo)|w−∞

= −(−1)p−1φ(p−1)(wo)|w−∞ = −φ(wo)Hp−1(wo)|w−∞ = −φ(w)Hp−1(w)

because φ(−∞)Hp−1(−∞) = 0—φ decreases to 0 exponentially fast whereas
Hp−1 has only polynomial functions. Using this, we get

GN (w) = Φ(w) − φ(w)H2(w)
κ′3
3!

1√
N

+

{
−φ(w)H3(w)

κ′4
4!

− φ(w)H5(w)
κ′23
72

}
1

N
+, ...]

= Φ(w) − φ(w)

[
H2(w)

κ′3
3!

1√
N

+

{
H3(w)

κ′4
4!

+ H5(w)
κ′23
72

}
1

N
+, ...

]
= Φ(w) − φ(w)(w2 − 1)

κ′3
3!

1√
N

+, ... recalling H2(w) = w2 − 1.

As σ is unknown typically, we would be using sN for σ to get N−1/2
∑N

i

zi/sN . For this, Hall (1992) showed an analogous but different expansion:

Φ(w) + φ(w)(2w2 + 1)
κ′3
3!

1√
N

+, ...

In this Edgeworth expansion of df, the term with N−1/2 has an even
function whereas the term with N−1 has an odd function. More generally,
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for a term with N−(j−1)/2, j = 2, ..., the polynomial function in w is an even
function if j is even and an odd function if j is odd. This explains why even
and odd functions were used for O(N−1/2) and O(N−1) terms in explaining
high-order improvements in bootstrap. One caution in Hall (1992) is that
Edgeworth expansion hardly ever converges as an infinite series; rather, it
should be understood as an “asymptotic series” in the sense that if the series
is stopped after some term, the remainder is of smaller order than the last
included term. This suggests that “Edgeworth approximation” seems to be
a better name than “Edgeworth expansion.”

5.5.4 Moments

Consider tN ≡
√

N(bN − β)/σ; note that σ is not estimated in tN . The
Edgeworth approximation for the df of tN leads to an approximation for the
moment E(bN − β)p through the formula

E(wp) =
∫ ∞

0

wp
odP (w ≤ wo) −

∫ ∞

0

(−wo)pdP (w ≤ −wo).

Observe, drawing on Hall (1992, p. 50),

E(bN − β)p =
σp

Np/2
E(tpN ) =

σp

Np/2

∫ ∞

0

wp
odP (tN ≤ wo)

−
∫ ∞

0

(−wo)pdP (tN ≤ −wo)

=
σp

Np/2

{∫ ∞

0

wp
odQN (wo) − (−1)p

∫ ∞

0

wp
odQN (−wo)

}
where QN (wo) ≡ P (tN ≤ wo).

Define the survival function SN (wo) ≡ 1 − QN (wo), which goes to 0
exponentially fast with the asymptotic normality holding for tN . Then

0 = wp
oSN (wo)|∞0 = −

∫ ∞

0

wp
odQN (wo) + p

∫ ∞

0

wp−1
o SN (wo)dwo

=⇒
∫ ∞

0

wp
odQN (wo) = p

∫ ∞

0

wp−1
o SN (wo)dwo;

0 = wp
oQN (−wo)|∞0 =

∫ ∞

0

wp
odQN (−wo) + p

∫ ∞

0

wp−1
o QN (−wo)dwo

=⇒
∫ ∞

0

wp
odQN (−wo) = −p

∫ ∞

0

wp−1
o QN (−wo)dwo.

Use these to obtain

E(bN − β)p =
σp

Np/2

{
p

∫ ∞

0
wp−1

o SN (wo)dwo + (−1)pp

∫ ∞

0
wp−1

o QN (−wo)dwo

}
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=
σp

Np/2
p

∫ ∞

0
wp−1

o {SN (wo) + (−1)pQN (−wo)}dwo.

Applying the Edgeworth approximation,

P (tN ≤ wo) = Φ(wo) − φ(wo)
[
H2(wo)

κ′3
3!

1√
N

+
{

H3(wo)
κ′4
4!

+H5(wo)
κ′23
72

}
1
N

+, ...

]
,

1 − P (tN ≤ wo) = Φ(−wo) + φ(wo)
[
H2(wo)

κ′3
3!

1√
N

+
{

H3(wo)
κ′4
4!

+H5(wo)
κ′23
72

}
1
N

+, ...

]
;

P (tN ≤ −wo) = Φ(−wo) − φ(−wo)
[
H2(−wo)

κ′3
3!

1√
N

+
{

H3(−wo)
κ′4
4!

+ H5(−wo)
κ′23
72

}
1
N

+, ...

]
= Φ(−wo) − φ(wo)

[
H2(wo)

κ′3
3!

1√
N

−
{

H3(wo)
κ′4
4!

+H5(wo)
κ′23
72

}
1
N

+, ...

]
When p is even,

SN (wo) + (−1)pQN (−wo) = SN (wo) + QN (−wo)
= 1 − P (tN ≤ wo) + P (tN ≤ −wo)

= 2Φ(−wo) + 2φ(wo)
{

H3(wo)
κ′4
4!

+ H5(wo)
κ′23
72

}
1
N

+ O

(
1

N2

)
using the above display.

When p is odd,

SN (wo) − QN (−wo) = 1 − P (tN ≤ wo) − P (tN ≤ −wo)

= 2φ(wo)H2(wo)
κ′3
3!

1√
N

+ O

(
1

N3/2

)
Therefore, with p = 1,

E(bN − β) =
σ

N1/2

∫ ∞

0

2φ(wo)H2(wo)
κ′3
3!

1√
N

dwo + O

(
1

N2

)

=
2σ

N

κ′3
3!

∫ ∞

0

φ(wo)H2(wo)dwo + O

(
1

N2

)
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=
2σ

N

κ′3
3!

∫ ∞

0

φ(wo)(w2
o − 1)dwo + O

(
1

N2

)

=
2σ

N

κ′3
3!

(0.5 − 0.5) + O

(
1

N2

)
= O

(
1

N2

)
.

Also, with p = 2,

E(bN − β)2 =
σ2

N
2
∫ ∞

0

wo

[
2Φ(−wo)

+2φ(wo)
{

H3(wo)
κ′4
4!

+ H5(wo)
κ′23
72

}]
dwo

1
N

+ O

(
1

N3

)

=
4σ2

N2

∫ ∞

0

wo

[
Φ(−wo)

+φ(wo)
{

H3(wo)
κ′4
4!

+ H5(wo)
κ′23
72

}]
dwo + O

(
1

N3

)
.

5.6 Other Bootstrap Topics

5.6.1 Bootstrap Test

As noted once, hypothesis test (HT) can be done with bootstrap CI’s
(or confidence regions), but there are cases where confidence intervals are
irrelevant concepts—e.g., various model GOF tests. In such cases, the issue
of bootstrap test appears. The key issue in bootstrap test is how to impose the
null hypothesis in generating pseudo samples. Although we only mentioned
sampling from the original sample with replacement so far—this is called
“nonparametric bootstrap” or “empirical bootstrap”—bootstrap test brings
about a host of other ways to generate pseudo samples as will be seen later,
depending on how the null hypothesis is imposed on the pseudo samples.

To appreciate the importance of imposing H0 on pseudo samples, sup-
pose “H0: F is N(0, 1).” Under the H0, nonparametric bootstrap would yield
a pseudo sample consisting of “nearly” N(0, 1) rv’s, and the test with non-
parametric bootstrap would work because the realized TS for the original
sample will be “similar” to the pseudo sample TS’s. Now suppose that H0

is false because the true model is N(5, 1). In this case, we want to have the
realized TS to be much different from the pseudo TS’s so that the bootstrap
test becomes powerful. If we do not impose the H0 in generating the pseudo
samples, then both the original data and pseudo samples will be similar be-
cause they all follow more or less N(5, 1), leading to a low power. But if we
impose the H0 on the pseudo samples, then the realized TS for the original
sample observations (centered around 5) will differ much from the TS’s from
the pseudo sample observations (centered around 0), leading to a high power.

Suppose H0: f = fo(θ); i.e., the null model is parametric with an un-
known parameter θ. In this case, θ may be estimated by the MLE θ̂, and the
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pseudo data can be generated from fo(θ̂). This is called parametric bootstrap
where imposing the H0 on pseudo data is straightforward. But often we have
the null model that is not fully parametric, which makes imposing the null on
pseudo data less than straightforward. For instance, the null model may be
just a linear model yi = x′iβ +ui without the distribution of (x′i, yi) specified.
In this case, one way of imposing the null goes as follows. Step 1: sample
x∗i from the empirical distribution of x1, ..., xN . Step 2: sample a residual r∗i
from the empirical distribution of the residuals ri ≡ yi − x′ibN , i = 1, ..., N .
Step 3: generate y∗i ≡ x∗i bN +r∗i . Repeat this N times to get a pseudo-sample
of size N .

In the bootstrap scheme for the linear model, ri is drawn independently
of xi, which is fine if ui is independent of xi. But if we want to allow for
heteroskedasticity, then the above bootstrap does not work because r∗i is gen-
erated independently of xi; instead wild bootstrap is suitable: when x∗i = xi,
generate y∗i = x∗′i bN +v∗i ri where v∗i is drawn from the two point distribution:

P

(
v∗ =

1 −
√

5
2

)
=

5 +
√

5
10

and P

(
v∗ =

1 +
√

5
2

)
=

5 −
√

5
10

.

This distribution has mean 0 and variance 1, which implies that

E (v∗i ri|xi) = E (v∗i |xi) E(ri|xi) = 0 and

E(v∗2i r2
i |xi) = E(v∗2i |xi)E(r2

i |xi) � E(u2
i |xi)

preserving the heteroskedasticity in the pseudo-sample. As noted in the main
text, v∗i that takes ±1 with probability 0.5 works just as well.

It is often reported that GMM small sample distribution differs much
from the asymptotic distribution. To avoid this problem, one may do boot-
strap. Hall and Horowitz (1996) showed how to do GMM bootstrap properly
for t-tests and the over-id test. Let βk be the kth element of β and let bNk

denote the GMM estimator. We want to test for H0: βk = βko with the
usual t-ratio tNk = (bNk − βko)/ASD(bNk) where the asymptotic standard
deviation ASD(bNk) is from the usual GMM asymptotic variance estimator.
The main idea of the GMM bootstrap is on “centering” the moments, which
appears in essence in Lahiri (1992). Brown and Newey (2002) showed how to
do “empirical-likelihood” bootstrap, where pseudo samples are drawn from
the empirical distribution constrained by the moment condition.

Hall and Horowitz (1996) GMM bootstrap goes as follows:

1. For an integer j, draw the jth pseudo sample z
(j)
1 , z

(j)
2 , ..., z

(j)
N of size N

from the original sample with replacement.

2. From the pseudo sample, calculate the pseudo estimator b
(j)
Nk for βk,

the pseudo t-value t
(j)
Nk ≡ (b(j)

Nk − bNk)/ASD(b(j)
Nk), and the pseudo
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over-id test statistic τ
(j)
N using the GMM with the “centered moment”

N−1
∑N

i=1{ψ(z∗i , b) − N−1
∑N

i=1 ψ(z∗i , bN )}.

3. Repeat Steps 1 and 2 for j = 1, ..., J to get t
(1)
Nk, ..., t

(J)
Nk and over-id test

statistics τ
(1)
N , ..., τ

(J)
N .

4. Reject H0: βk = βko if the bootstrap p-value J−1
∑

j 1[|t(j)Nk| ≥ |tNk|]
is smaller than, say, 5%.

5. As for the over-id test, reject the over-identifying moment condition if
the bootstrap p-value J−1

∑
j 1[τ (j)

N ≥ τN ] is smaller than, say, 5%.

5.6.2 Bootstrap Bias-Correction

Let θ(F ) denote the parameter of interest. An estimator for θ(F ) is
θ(FN ), which may be biased where

bias ≡ E{θ(FN )} − θ(F ).

For instance,

θ(F ) =
∫ {

zo −
∫

zodF (zo)
}2

dF (zo) = σ2

θ(FN ) =
∫ {

zo −
∫

zodFN (zo)
}2

dFN (zo) =
1
N

∑
i

(zi − z̄)2 ≡ s2
N .

As well known, θ(FN ) = s2
N is a biased estimator for σ2 whereas (N −

1)−1
∑

i(zi − z̄)2 is unbiased.
The bootstrap idea of correcting for bias is approximating the bias with

E∗{θ(F ∗N )} − θ(FN ) = E∗
{

1
N

∑
i

(z∗i − z̄∗)2
}

− 1
N

∑
i

(zi − z̄)2

� 1
NB

NB∑
j=1

s2∗j
N − s2

N , where s2∗j
N is the sample variance for the jth

pseudo sample

and E∗(·) is the expected value obtained using the original sample’s empir-
ical distribution (this is the population distribution for a pseudo sample).
Subtracting this bootstrap bias estimator from s2

N yields a bias-corrected
estimator for θ(F ):

s2
N −

⎛⎝ 1
NB

∑
j

s2∗j
N − s2

N

⎞⎠ = 2s2
N − 1

NB

∑
j

s2∗j
N .
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Why this works can be seen intuitively as follows, drawing partly on Horowitz
(2001a).

Suppose bN is an unbiased estimator for β, but we are interested in a
nonlinear function g(β). A natural estimator for g(β) is g(bN ), but it is biased
in general, as Eg(bN ) = g{E(bN )} = g(β). Consider the second-order Taylor
expansion of g(bN ) around bN = β:

g(bN )−g(β) = ∇g(β)′(bN−β)+
1

2
(bN−β)′ ·∇2g(β) ·(bN−β)+

λ(F )

N3/2
+Op

(
1

N2

)
.

Because E{∇g(β)′(bN−β)} = ∇g(β)′E{(bN−β)} = 0, the quadratic term of
order Op(N−1) is the leading bias term. Now consider the bootstrap version
of the Taylor expansion:

g(b∗N ) − g(bN ) = ∇g(β)′(b∗N − bN ) +
1
2
(b∗N − bN )′ · ∇2g(bN ) · (b∗N − bN )

+
λ(FN )
N3/2

+ Op

(
1

N2

)
=⇒ 1

NB

NB∑
j=1

g(b∗jN ) − g(bN ) � 1
NB

NB∑
j=1

{
1
2
(b∗jN − bN )′∇2g(bN )(b∗jN − bN )

}

+
λ(FN )
N3/2

+ Op

(
1

N2

)
where the averaging removes the first-order term on the rhs.

Suppose now

1
2
(bN − β)′ · ∇2g(β) · (bN − β) =

μ1

N
+

μ2(F )
N3/2

+ Op

(
1

N2

)
1

NB

NB∑
j=1

1
2
(b∗jN − bN )′∇2g(bN )(b∗jN − bN ) � μ1

N
+

μ2(FN )
N3/2

+ Op

(
1

N2

)

where μ1 is presumed to be the same for both the original quadratic form
and its bootstrap version; this is analogous to the bootstrap consistency that
the original statistic and its bootstrap version have the same first-order term.

Hence the bias-corrected estimator for g(β) is

g(bN ) −

⎧⎨⎩ 1
NB

NB∑
j=1

g(b∗jN ) − g(bN )

⎫⎬⎭
and we have

g(bN ) −

⎧⎨⎩ 1
NB

NB∑
j=1

g(b∗jN ) − g(bN )

⎫⎬⎭− g(β)
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={g(bN ) − g(β)} −

⎧⎨⎩ 1
NB

NB∑
j=1

g(b∗jN ) − g(bN )

⎫⎬⎭
=∇g(β)′(bN − β) +

μ2(F ) − μ2(FN )
N3/2

+
λ(F ) − λ(FN )

N3/2
+ Op

(
1

N2

)
using the above approximation. Taking E(·) on the rhs yields a bias term of
Op(N−2), because typically

μ2(F ) − μ2(FN ) = Op(N−1/2) and λ(F ) − λ(FN ) = Op(N−1/2).

As an illustration, take variance θ(F ) = σ2. For the sample variance
s2

N = θ(FN ), we can in fact compute E∗{N−1
∑

i(z
∗
i −z̄∗)2} as follows instead

of invoking the Monte Carlo estimator. Observe

E∗
{

1
N

∑
i

(z∗i − z̄∗)2
}

= E∗(z∗2) − E∗(z̄∗2).

The first term E∗(z∗2) is just N−1
∑

i z2
i as z∗ takes zi with P (z∗ = zi) =

N−1. As for the second term, it is

E∗
⎧⎨⎩
(

1

N

∑
i

z∗i

)2
⎫⎬⎭ =

1

N2

∑
i,j

E∗(z∗i z∗j ) =
1

N
E∗(z∗2) +

N(N − 1)

N2
{E∗(z∗)}2

=
1

N2

∑
i

z2
i +

(
1− 1

N

)
z̄2 = z̄2 +

1

N

{
1

N

∑
i

z2
i − z̄2

}
.

Therefore,

E∗
{

1

N

∑
i

(z∗i − z̄∗)2
}

=
1

N

∑
i

z2
i − z̄2 − 1

N

{
1

N

∑
i

z2
i − z̄2

}
= s2

N − 1

N
s2
N ,

Bias : E∗
{

1

N

∑
i

(z∗i − z̄∗)2
}
− s2

N = − 1

N
s2
N = Op

(
1

N

)
,

Bias-Corrected Estimator : sN +
1

N
s2
N =

N + 1

N
s2
N .

Comparing this to the unbiased estimator

1
N − 1

∑
i

(zi − z̄)2 =
N

N − 1
s2

N

which blows up s2
N by the factor N/(N − 1), the bias-corrected estimator

blows up s2
N by the factor (N +1)/N . The difference between the two factors

is
N + 1

N
− N

N − 1
=

(N + 1)(N − 1) − N2

N(N − 1)
=

1
N(N − 1)

.
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That is, the bootstrap bias-adjusted estimator reduces the bias of order
Op(N−1) to a bias of order Op(N−2).

5.6.3 Estimating Asymptotic Variance with Bootstrap
Quantiles

In asymptotic inference, G∞(t;FN ) is used for GN (t;F ). Although the
asymptotic distribution of V

−1/2
N

√
N(bN − β) is the same as that of V −1/2

√
N(bN − β), sometimes estimating V is difficult; e.g., V includes a density

component or VN is nearly singular. In this case, one may wonder whether

VNB ≡ 1
NB

NB∑
j=1

(
b
∗(j)
N − bN

)(
b
∗(j)
N − bN

)′
can be used instead of VN . This will be particularly handy for various two-
stage estimators with complicated asymptotic variances.

Note that, justifying VNB for V does not simply follow from the boot-
strap consistency GN (t;FN ) − GN (t;F ) →p 0 as N → ∞, which is good
only for finding quantiles using bootstrap approximation. For instance, if the
asymptotic distribution does not have the second moment, then although
we can still compute VNB , VNB would be a nonsensical entity. Despite that
VNB is often used for V in practice, justifying this practice is not easy other
than for simple cases such as averages (see Bickel and Freedman, 1981). In the
following, we present a simple way of estimating V using bootstrap quantiles.

An estimator for the asymptotic variance can be obtained with bootstrap
quantiles (Shao, 2003, p. 382). Suppose

√
N(bN − β) � N(0, V ). Let ζNα

denote the nonparametric bootstrap αth quantile. Then we get

P
{√

N(b∗N − bN ) ≤ t|FN

}
− Φ

(
t√
V

)
→p 0

=⇒ P
{√

N(b∗N − bN ) ≤ ζα

√
V |FN

}
− Φ(ζα) →p 0

(
setting ζα =

t√
V

)
=⇒ ζNα →p ζα

√
V and ζN(1−α) →p ζ1−α

√
V .

Hence {
ζN(1−α) − ζNα

ζ(1−α) − ζα

}2

→p V.

This raises the question “which α to use or whether we can do better by
using ζα and ζα′ where α′ is not necessarily 1−α.” Although no best answer
is available yet, some answers can be found in Machado and Parente (2005).

5.6.4 Bootstrap Iteration and Pre-pivoting

Bootstrap may be iterated for further improvement. To see how boot-
strap test can be iterated, consider a test with its H0-rejecting interval on
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the lower tail. Bootstrap test with
√

N(bN − β) rejects H0 if the bootstrap
p-value is less than α:

H∗
N

{√
N(bN − β)

}
≤ α where H∗

N is the empirical df of
√

N(b∗N − bN ).

This is analogous to rejecting H0 in an asymptotic test when Ψ{
√

N
(bN − β)} ≤ α where Ψ is the asymptotic df of

√
N(bN − β). Recall that the

justification for this asymptotic test comes from Ψ(W ;F ) ∼ U [0, 1] where W
is a rv following the weak limit of

√
N(bN −β). But H∗

N{
√

N(bN −β)} is not
exactly U [0, 1]. Consider the df H∗ of H∗

N{
√

N(bN − β)}. Then pre-pivoting
(Beran 1988) the bootstrap test statistic H∗

N{
√

N(bN − β)} is inserting this
into H∗ to use the resulting transformation as a TS:

reject H0 if H∗
[
H∗

N

{√
N(bN − β)

}]
≤ α;

this new test statistic would be closer to U [0, 1] than H∗
N{

√
N(bN − β)} is.

A problem in implementing this idea is that H∗ would be difficult to
obtain analytically. Instead, we can apply bootstrap again to estimate H∗.
Recall

H∗
N

{√
N(bN − β)

}
=

1
NB

NB∑
j=1

1
[√

N
(
b
∗(j)
N − bN

)
≤

√
N(bN − β)

]
.

• Step 1. Draw a pseudo sample F ∗N from FN to obtain b∗N .

• Step 2. Draw a second-stage pseudo sample F ∗∗N from F ∗N to obtain b∗∗N .
Repeat this N ′

B-many times to obtain second-stage pseudo estimates
b
∗∗(j)
N , j = 1, ..., N ′

B . This yields

H∗∗N

{√
N(b∗N − bN )

}
≡ 1

NB′

N ′′
B∑

j=1

1
[√

N
(
b
∗∗(j)
N − b∗N

)
≤
√

N(b∗N − bN )
]

which is a bootstrap estimator for H∗
N

{√
N(bN − β)

}
.

• Step 3. Repeat steps 1 and 2 NB-times to obtain NB-many estimates for
H∗

N

{√
N(bN − β)

}
. Then a double-bootstrap (i.e., iterated bootstrap,

or nested bootstrap) estimator of H∗ [H∗
N

{√
N(bN − β)

}]
is

1
NB

NB∑
k=1

1
[
H
∗∗(j)
N

{√
N(b∗N − bN )

}
≤ H∗

N

{√
N(bN − β)

}]
.



APPENDIX III: SELECT GAUSS

PROGRAMS

This appendix provides some GAUSS programs to illustrate that apply-
ing many estimators and tests in the main text is not difficult at all. Most
estimators and tests take about one page of programming to implement. More
GAUSS programs can be found in Lee (1995, 1996a and 2002) to supplement
the programs below. All programs are numerically stable and reliable; i.e.,
they converge well.

Most programs in this appendix are a little longer than necessary for
pedagogical reasons, namely to explain how things work and to introduce
different programming techniques gradually over many programs. Hence, if
desired, they can be much shortened. Although the programs are simple using
simulated data only, they can be applied to large data with some minor
modifications. These programs are given for the reader’s benefit; no further
support on how to tailor the programs to meet the reader’s need will be
provided.

1 LSE, IVE, GMM and Wald Test

new; format /m1 /rd 6,2;
n=100; one=ones(n,1);
x2=rndu(n,1); x3=rndn(n,1); w1=rndu(n,1); w2=rndn(n,1);

u=rndn(n,1); x4=w2+u; x4=x4/stdc(x4); /* x4 is endogenous */
y=1+x2+x3+x4+u; x=one~x2~x3~x4; k=cols(x);
z=one~x2~x3~w1~w2; /* z is the IV vector */

proc tv(b,cov); /* tv procedure */
retp(b./sqrt(diag(cov))); endp;

proc (6) = ols(x,y);
local n,k,invx,est,res,res2,s,rsq,covhe,covho;
n=rows(x); k=cols(x); invx=invpd(x’*x); est=invx*(x’*y);
res=y-x*est; res2=res^2; s=sqrt(sumc(res2)/(n-k));
rsq=1-sumc(res2)/sumc((y-meanc(y))^2);
covhe=invx*(x’*(x.*res2))*invx; covho=(s^2)*invx;
retp(est,covhe,covho,s,rsq,res); endp;

{est1,covhe1,covho1,s1,rsq1,res1}=ols(x,y); /* LSE */
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tvlsehe=tv(est1,covhe1); tvlseho=tv(est1,covho1);
"LSE, tvhe, tvho: " est1~tvlsehe~tvlseho; "s,rsq: " s1~rsq1;

invz=invpd(z’z); invzxz=invpd(x’z*invz*z’x); /* IVE */
ive=invzxz*(x’z)*invz*(z’y); uive=y-x*ive; s2=sumc(uive^2)/

(n-k);
covive=s2*invzxz; tvive=tv(ive,covive); /* covive under

homo. */

zdz=z’*(z.*(uive^2)); izdz=invpd(zdz); covgmm=invpd
(x’z*izdz*z’x);

gmm=covgmm*(x’z)*izdz*(z’y); tvgmm=tv(gmm,covgmm); /* GMM */
?; "ive~tvive~gmm~tvgmm: " ive~tvive~gmm~tvgmm;

ugmm=y-x*gmm; ugmm2=ugmm^2;
idts=(z’*ugmm)’*invpd(z’*(z.*ugmm2))*(z’*ugmm); pvidts=

cdfchic(idts,1);
"over-id test: "; idts~pvidts; /* over-id test */

/* Wald test for beta(2)=beta(4)=0 */
eyek=eye(k); g=eyek[.,2]~eyek[.,4]; wald=(g’*gmm)’*invpd

(g’*covgmm*g)*(g’*gmm);
pvwald=cdfchic(wald,2); ?; "beta2=beta4=0; "; wald~pvwald;
end;
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2 System LSE

new; format /m1 /rd 6,2;
n=500; one=ones(n,1);

q1=rndn(n,1); q2=rndn(n,1); u1=rndn(n,1); u2=rndn(n,1);
x1=one~q1; x2=one~q2; k1=cols(x1); k2=cols(x2); k=k1+k2;
y1=1+q1+u1; y2=1+q2+u2; /* two equations */

ww=zeros(k,k); wy=zeros(k,1); i=1;
do until i>n;
wi=(x1[i,.]’~zeros(k1,1))|

(zeros(k2,1)~x2[i,.]’); /* wi: regressor matrix */
yi=y1[i,1]|y2[i,1]; ww=ww+wi*wi’; wy=wy+wi*yi;
i=i+1; endo;

iww=invpd(ww); g=iww*wy; wuuw=zeros(k,k); i=1; /* g is
system LSE */

do until i>n;
wi=(x1[i,.]’~zeros(k1,1))|

(zeros(k2,1)~x2[i,.]’);
yi=y1[i,1]|y2[i,1]; ui=yi-wi’*g;
wuuwi=wi*ui*ui’*wi’; wuuw=wuuw+wuuwi;
i=i+1; endo;

cov=iww*wuuw*iww; sd=sqrt(diag(cov)); tv=g./sd;
r=eye(2)|(-eye(2)); wald=(r’*g)’*invpd(r’cov*r)*(r’*g);
?; "Wald,pv(equal para.):" wald~cdfchic(wald,2);

/* To get a nicer output with variable names */
let varlist[4,1] = int1 slope1 int2 slope2;
let mask[1,4] = 0 1 1 1; /* 0 for alphabet; # for 1 in

4 columns */
let fmt[4,3] = "-*.*s" 7 7 "*.*lf," 7 2 "*.*lf" 6 3 "

*.*lf" 7 2;
/* display formats for 4 columns */

?; printfm(varlist~g~sd~tv,mask,fmt);
end;
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3 Method-of-Moment Test for Symmetry

new; format /m1 /rd 7,3;
n=200; one=ones(n,1);

x2=rndn(n,1);
u=rndn(n,1)^2+rndn(n,1)^2; u=(u-meanc(u))/stdc(u);
y=1+x2+u; x=one~x2; /* u is asymmetric with chi-2 */

proc tv(b,cov);
retp(b./sqrt(diag(cov))); endp;

proc (6) = ols(x,y);
local k,invx,est,res,res2,s,rsq,covhe,covho;
k=cols(x); invx=invpd(x’*x); est=invx*(x’*y); res=y-x*est;
res2=res^2; s=sqrt(sumc(res2)/(n-k));
rsq=1-sumc(res2)/sumc((y-meanc(y))^2);
covhe=invx*(x’*(x.*res2))*invx; covho=(s^2)*invx;

retp(est,covhe,covho,s,rsq,res); endp;

/*
#include h:\procedures\ProcTvLse;
/* This command pastes the file "ProcTvLse" in

h:\procedures\ right here;
ProcTvLse is nothing but the above tv and ols
procedures;

This obviates repeating often used procedures in each
program. */

*/

{lse,covlsehe,covlseho,slse,rsqlse,reslse}=ols(x,y);
r=reslse; del=(r^3)-3*(x.*r)*invpd(x’x)*(x’*(r^2));
tvgood=sumc(r^3)/sqrt(sumc(del^2)); tvbad=sumc(r^3)/sqrt

(sumc(r^6));
/* tvbad ignores 1st stage error */

"correct and wrong tv’s: " tvgood~tvbad;
end;
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4 Quantile Regression

new; format /m1 /rd 7,3; cr=0.00001; /* cr is stopping
criterion */

n=400; one=ones(n,1); iterlim=100; /* iteration limit */

alp=0.5; beta=1|1|1; /* alp for alp-quantile */
x2=rndn(n,1); x3=rndu(n,1); u=rndn(n,1);
x=one~x2~x3; k=cols(x); y=x*beta+u;

proc obj(g);
retp( -(y-x*g).*(alp-(y.<x*g)) ); endp; /* output is N

by 1 */

b0=0.5*invpd(x’x)*(x’y); /* initial value */
niter=1; /* niter is iteration counter */
bestobj=sumc(obj(b0)); bestb=b0;

JOB:
gradi=gradp(&obj,b0); /* numerical derivative */
b1=b0+invpd(gradi’gradi)*sumc(gradi); newobj=sumc
(obj(b1));

if abs(newobj-bestobj)<cr; goto DONE; endif;
if newobj>bestobj; bestobj=newobj; bestb=b1; endif;
if niter>iterlim; goto DONE; endif;
b0=b1; niter=niter+1; goto JOB;

DONE:
b=bestb; r=y-x*b; h=stdc(r)*(n^(-1/5)); /* h is bandwidth */
ker=pdfn(r/h)/h; hessi=x’*(x.*ker);
cov=alp*(1-alp)*invpd(hessi)*(x’x)*invpd(hessi);

tv=b./sqrt(diag(cov)); b~tv;
end;
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5 Univariate Parametric LDV Models

5.1 Probit

new; format /m1 /rd 7,3;
n=300; one=ones(n,1);

x2=rndn(n,1).>0; x3=rndn(n,1); x=one~x2~x3; k=cols(x);
beta=1|1|1; u=rndn(n,1);
/* u=rndn(n,1)^2+rndn(n,1)^2; u=(u-meanc(u))/stdc(u); */
ys=x*beta+u; y=ys.>0;

proc like(a); local c; c=cdfn(x*a);
retp( -sumc(y.*ln(c)+(1-y).*ln(1-c)) ); endp; /* output

is scalar */

proc first(a); local xa,d,c;
xa=x*a; d=pdfn(xa); c=cdfn(xa);
retp( x.*( ((y-c).*d)./(c.*(1-c)) ) ); endp;

a0=invpd(x’x)*(x’y); {pro,obj,grad,ret}=qnewton(&like,a0);
/* GAUSS-provided minimization procedure qnewton is used;
pro is the minimizer and obj is the minimum; */

hessi=hessp(&like,pro); covhes=invpd(hessi);
gradi=first(pro); covgra=invpd(gradi’gradi);
covrob=covhes*(gradi’gradi)*covhes; /* robust cov */

tvgra=pro./sqrt(diag(covgra));
tvhes=pro./sqrt(diag(covhes));
tvrob=pro./sqrt(diag(covrob)); /* 3 ways of getting tv */

pro~tvgra~tvhes~tvrob; "log-like: " -obj;
end;
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5.2 Ordered Probit

new; format /m1 /rd 7,3; /* 4 category ODR */
n=500; one=ones(n,1); iterlim=100; cr=0.00001;
beta1=1; beta2=1; g1=-0.5; g2=0.5; g3=1; /* thresholds */

x2=rndn(n,1); u=rndn(n,1);
ys=beta1+beta2*x2+u; y=(ys.>g1)+(ys.>g2)+(ys.>g3);
y0=(y.==0); y1=(y.==1); y2=(y.==2); y3=(y.==3);
x=one~x2; k=cols(x)+2; /* k is # parameters */

proc like(b); local a,xa,tau1,tau2,p0,p1,p2,p3;
a=b[1:k-2,1]; tau1=b[k-1,1]; tau2=b[k,1]; xa=x*a;
p0=cdfn(-xa); p1=cdfn(tau1-xa)-cdfn(-xa);
p2=cdfn(tau2-xa)-cdfn(tau1-xa); p3=1-cdfn(tau2-xa);
retp( y0.*ln(p0)+y1.*ln(p1)+y2.*ln(p2)+y3.*ln(p3) ); endp;

b0=inv(x’x)*(x’y)|0.5|1; bestobj=sumc(like(b0)); bestb=b0;
niter=1;

JOB:
gradi=gradp(&like,b0); b1=b0+invpd(gradi’gradi)*sumc
gradi);

newobj=sumc(like(b1)); niter=niter+1;

if abs(newobj-bestobj)<cr; goto DONE; endif;
if niter>iterlim; goto DONE; endif;
if newobj>bestobj; bestobj=newobj; bestb=b1; endif;
b1’~newobj~bestobj~niter; b0=b1; goto JOB;

DONE:
opro=bestb; loglike=sumc(like(opro)); gradi=gradp(&like,

opro);
cov=invpd(gradi’gradi); tv=opro./sqrt(diag(cov)); opro~tv;
end;
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5.3 Tobit

new; format /m1 /rd 7,3; n=400; one=ones(n,1); eps=0.00001;
x2=rndn(n,1); u=2*rndn(n,1);

beta1=1; beta2=1; ys=beta1+beta2*x2+u; y=maxc(ys’|
zeros(1,n));

d=ys.>0; /* d is non-censoring indicator */
x=one~x2; kx=cols(x); k=kx+1; /* k is # parameters */

proc likesum(g); local b,s,xb,r,l1,l2;
b=g[1:kx,1]; s=g[k,1]; xb=x*b; r=y-xb;
l1=d.*ln(pdfn(r/s)/s); l2=(1-d).*ln(cdfn(-xb/s));

retp(-sumc(l1+l2)); endp; /* output is a scalar */

proc like(g); local b,s,xb,r,l1,l2;
b=g[1:kx,1]; s=g[k,1]; xb=x*b; r=y-xb;
l1=d.*ln(pdfn(r/s)/s); l2=(1-d).*ln(cdfn(-xb/s));

retp(l1+l2); endp; /* output is N*1 */

proc first(g); local j,bas,fder,ghi,glo;
j=1; bas=eye(rows(g)); fder=zeros(n,k);
do until j>k;
ghi=g+eps*bas[.,j]; glo=g-eps*bas[.,j];

fder[.,j]=(like(ghi)-like(glo))/(2*eps);
j=j+1; endo;
retp(fder); endp;

/* "first" is a numerical derivative procedure; gradp can
be used instead; but understanding this should be helpful when
second order (cross) derivatives are needed */

b0=invpd(x’x)*(x’y); res=y-x*b0; s0=sqrt(meanc(res^2));
g0=b0|s0; {g,obj,grad,ret}=qnewton(&likesum,g0);
gradi=first(g); cov=invpd(gradi’gradi);
tv=g./sqrt(diag(cov)); "g,tv:" g~tv; "loglike: " -obj;
end;
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5.4 Weibull MLE under Random Censoring

new; format/m1/rd 7,2; n=500; one=ones(n,1); cr=0.00001;
iterlim=50;

x2=rndn(n,1); x=one~x2; kx=cols(x); k=kx+1; /* k is # para. */

beta=1|1; alpha=1;
u=rndu(n,1); ys=( -exp(-x*beta).*ln(u) )^(1/alpha);

/* Weibull ys simulation using S(y) follows U[0,1];
logic: (S(ys)=) exp(-theta*ys^alp)=u; ln(u)=-theta*ys^alp;
ys=(-ln(u)/theta)^(1/alp); let theta=exp(x*beta) */

c=rndn(n,1)^2; /* random censoring point */
y=minc(ys’|c’); d=ys.<=c; /* d is non-censoring indicator */

proc like(g); local a,b,xb;
b=g[1:kx,1]; a=g[k,1]; xb=x*b;
retp( d.*(ln(a)+(a-1)*ln(y)+xb) - (y^a).*exp(xb) ); endp;

lny=ln(y); lse=-invpd(x’x)*(x’lny); res2=(lny+x*lse)^2;
s2=meanc(res2); a0=sqrt(1.645/s2); b0=lse*a0; g0=b0|a0;
bestobj=-100000; bestg=g0; niter=1;
/* no guarantee for global max; try different values

for g0*/

JOB:
gradi=gradp(&like,g0); g1=g0+invpd(gradi’gradi)*sumc(gradi);
newobj=sumc(like(g1)); niter=niter+1;

if abs(newobj-bestobj)<cr; goto DONE; endif;
if niter>iterlim; goto DONE; endif;
if newobj>bestobj; bestobj=newobj; bestg=g1; endif;
newobj~bestobj~niter; g0=g1; goto JOB;

DONE:
g=bestg; gradi=gradp(&like,g); covwei=invpd(gradi’gradi);
tvwei=g./sqrt(diag(covwei)); g~tvwei; "Non-censoring %:"

meanc(d);
end;
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6 Multivariate Parametric LDV Models

6.1 Multinomial Logit (MNL)

new; format/m1/rd 6,3; /* 3 alternatives */
n=1000; one=ones(n,1); cr=0.00001; iterlim=100;
x11=rndn(n,1); x21=rndn(n,1); x31=rndn(n,1);
x12=rndn(n,1); x22=rndn(n,1); x32=rndn(n,1);

/* x1,x2 are two alternative-variants */
x1=x11~x12; x2=x21~x22; x3=x31~x32; kx=cols(x1);
z=one~rndn(n,1); kz=cols(z); /* z is an alternative-

constant */

d11=1; d12=1; d21=1; d22=1; d31=1; d32=1;
eta1=0|0; eta2=1|1; eta3=1|1; eta21=eta2-eta1;

eta31=eta3-eta1;
d1=d11|d12; d2=d21|d22; d3=d31|d32;
true=d1|d2|d3|eta21|eta31; /* identified parameters */

w2=(-x1)~x2~zeros(n,kx)~z~zeros(n,kz); w2b=w2*true;
w3=(-x1)~zeros(n,kx)~x3~zeros(n,kz)~z; w3b=w3*true;

k=cols(w2);

/* survival function for type-1 extreme is exp(-exp(-t)) */
u1=-ln(ln(1./rndu(n,1))); u2=-ln(ln(1./rndu(n,1)));
u3=-ln(ln(1./rndu(n,1)));
s1=x1*d1+z*eta1+u1; s2=x2*d2+z*eta2+u2; s3=x3*d3+z*eta3+u3;
y1=(s1.>s2).*(s1.>s3); y2=(s2.>s1).*(s2.>s3); y3=1-y1-y2;

proc mnllike(b); local e2,e3,norm,p1,p2,p3;
e2=exp(w2*b); e3=exp(w3*b); norm=1+e2+e3;
p1=1./norm; p2=e2./norm; p3=e3./norm;

retp( -sumc(y1.*ln(p1) +y2.*ln(p2) +y3.*ln(p3)) ); endp;

b0=0.5*ones(k,1); {b,obj,grad,ret}=qnewton(&mnllike,b0);
/* If qnewton does not work well, try Newton-Raphson with

grap */
loglike=-obj; hessi=hessp(&mnllike,b); covmnl=invpd(hessi);
tv=b./sqrt(diag(covmnl)); true~b~tv; "log-like: "; loglike;
end;
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6.2 Two-Stage Estimator for Sample Selection

new; format/m1/rd 7,3; n=300; one=ones(n,1);
x2=rndn(n,1); x3=rndn(n,1); e=rndn(n,1);

ds=1+x2+x3+e; d=ds.>0; w=one~x2~x3; kw=cols(w);
u=rndn(n,1)+e; u=u/stdc(u); /* x3 excluded from y eq. */
y=1+x2+u; yd=y.*d; x=one~x2; kx=cols(x);

proc prolike(a); local prob; prob=cdfn(w*a);
retp(-d’*ln(prob)-(1-d)’*ln(1-prob)); endp;

proc profir(a); local wa,den, prob,e,denom;
wa=w*a; den=pdfn(wa); prob=cdfn(wa);
denom=prob.*(1-prob); e=(d-prob).*den./denom;

retp(w.*e); endp;

a0=invpd(w’w)*(w’d); {pro,obj,grad,ret}=qnewton
(&prolike,a0);

gradi=profir(pro); info=gradi’*gradi; covpro=invpd(info);
wa=w*pro; pd=pdfn(wa); cd=cdfn(wa); lam=pd./cd; lam2=lam^2;

zd=(x~lam).*d; b=invpd(zd’zd)*zd’yd; pyd=zd*b; vd=yd-pyd;
rhosig=b[cols(zd),1]; qbb=zd’zd; iqbb=invpd(qbb);
capa=rhosig*( zd’*( w.*(-wa.*lam-lam2) ) ); /* Link matrix */

qb=zd.*vd - gradi*covpro*capa’; /* gradi*covpro*n is eta */
qbqb=qb’*qb; cov=iqbb*qbqb*iqbb’;
qb0=zd.*vd; qb0qb0=qb0’*qb0; cov0=iqbb*qb0qb0*iqbb’;
"b,tvgood,tvbad:" b~(b./sqrt(diag(cov)))~(b./sqrt(diag

(cov0)));

c=invpd(x’x)*(x’lam); v=lam-x*c; sse=sumc(v^2);
"R-sq for lambda:" 1-sse/sumc((lam-meanc(lam))^2);
/* this checks the multicollinearity problem of pd./cd */

end;
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7 Nonparametric Regression and Hazard

7.1 Univariate Density

new; format/m1/rd 7,3; library pgraph;
n=500; x=rndn(n,1)^2+rndn(n,1)^2;
h0=n^(-1/5); /* h0 is the "base" bandwidth for univariate

density */

evalo=meanc(x)-2*stdc(x); /* minimum evaluation point */
evahi=meanc(x)+2*stdc(x); /* maximum evaluation point */
neva=100; /* # total evaluation points */
inc=(evahi-evalo)/neva;
eva=seqa(evalo,inc,neva); /* eva is the actual evaluation

points*/

proc dens(z,mf,zo); /* z is n*1, mf is bandwidth multi.
factor */

local sd,ker,c; /* zo is a scalar evaluation point */
sd=stdc(z); c=(z-zo)/(sd*mf*h0);
ker=pdfn(c); /* N(0,1) kerel used */
/* ker=(15/16)*((1-c^2)^2).*(abs(c).<1); /* biweigt
kernel */ */

retp(meanc(ker)/(sd*mf*h0)); endp;

mf=1; j=1; est=zeros(neva,1);
do until j>neva;
est[j,1]=dens(x,mf,eva[j,1]);
j=j+1; endo;

xlabel("Regressor"); title("Kernel Density Estimate");
xy(eva,est);
end;
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7.2 Bivariate Regression Function

new; format /m1 /rd 7,3; library pgraph; n=400;
x1=rndn(n,1); x2=3*rndu(n,1); sd1=stdc(x1); sd2=stdc(x2);

u=rndn(n,1); y=x1+sin(x2)+0.5*x1.*x2+u; k=2;
h0=n^(-1/(k+4)); /* h0 is base bandwidth */

eva1lo=meanc(x1)-2*sd1; eva1hi=meanc(x1)+2*sd1;
neva1=50; inc1=(eva1hi-eva1lo)/neva1; eva1=seqa(eva1lo,

inc1,neva1);
/* evaluation point for x1 */

eva2lo=meanc(x2)-2*sd2; eva2hi=meanc(x2)+2*sd2;
neva2=50; inc2=(eva2hi-eva2lo)/neva2; eva2=seqa(eva2lo,

inc2,neva2);
/* evaluation point for x2 */

proc bireg(x,y,p,eva); /* x is n*2, y is n*1, p is mul.
factor, eva is 1*2 */

local c1,c2,k1,k2,ker;
c1=(x[.,1]-eva[1,1])/(p*sd1*h0); k1=pdfn(c1);
c2=(x[.,2]-eva[1,2])/(p*sd2*h0); k2=pdfn(c2); ker=k1.*k2;
retp(meanc(ker.*y)/meanc(ker)); endp;

p=1.5; j1=1; reg=zeros(neva2,neva1);
do until j1>neva1; j2=1;
do until j2>neva2;
reg[j2,j1]=bireg(x1~x2,y,p,eva1[j1,1]~eva2[j2,1]);
j2=j2+1; endo;

j1=j1+1; endo;

xlabel("x1"); ylabel("x2"); title("Regression Function");
ztics(-3,5,2,5); /* min, max, major tick interval, # minor
subdivisions */

surface(eva1’,eva2,reg); /* 3 dimensional graph */
end;
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7.3 Regression Derivative and Confidence Interval

new; format /m1 /rd 7,4; library pgraph; eps=0.00001;
intkerd2=0.14; /* Integral of (kernel derivative)^2;

computed by
Monte Carlo integration: v=rndn(5000,1); meanc(pdfn(v).
*(v^2)); */

n=300; x=rndn(n,1); u=x.*rndn(n,1); u=u/stdc(u); /* u is
heteroskedastic */

y=x^2+u; h0=n^(-1/5); /* base bandwidth for univariate npr
regression */

evalo=meanc(x)-2*stdc(x); evahi=meanc(x)+2*stdc(x); /*
evaluation points */

neva=100; inc=(evahi-evalo)/neva; eva=seqa(evalo,inc,neva);

proc (3) = regdeva(x,y,hm,eva);
local hsd,neva,regd,den,reg1,reg2,j,c,clo,chi,ker,kerlo,

kerhi,var,lb,ub;
hsd=hm*h0*stdc(x); neva=rows(eva); regd=zeros(neva,1);

den=zeros(neva,1);
reg1=zeros(neva,1); reg2=zeros(neva,1); j=1;
do until j>neva;
c=(x-eva[j,1])/hsd; ker=pdfn(c); den[j,1]=sumc(ker)/
(n*hsd); /* density */

clo=(x-eva[j,1]+eps)/hsd; kerlo=pdfn(clo);
chi=(x-eva[j,1]-eps)/hsd; kerhi=pdfn(chi); /* for

regression derivative */
regd[j,1]=(sumc(kerhi.*y)/sumc(kerhi)-sumc(kerlo.*y)/
sumc(kerlo))/(2*eps);

reg1[j,1]=sumc(ker.*y)/sumc(ker);
reg2[j,1]=sumc(ker.*(y^2))/sumc(ker);

j=j+1; endo;

var=reg2-reg1^2; /* conditional variance function */
lb=regd-1.96*sqrt((intkerd2/(n*(hsd^3)))*var./den); /*

CI lower bound */
ub=regd+1.96*sqrt((intkerd2/(n*(hsd^3)))*var./den); /*

CI upper bound */
retp(lb,regd,ub); endp;

hm=2; {cilb,regd,ciub}=regdeva(x,y,hm,eva); title("dr/dx &
95% pointwise CI");

xtics(-2,2,1,5); ytics(-4,4,2,5); xlabel("x"); ylabel("y");

pgrid={3,2}; /* 3 for sold grid (0 for no); 2 for ticks at
subdivisions */
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pltype = {3,6,3}; /* 1 dahsed, 2 dotted, 3 short dashes, 6
solid */

xy(eva,cilb~regd~ciub); /* xy is for two dimensional graph */
end;
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8 Bandwidth-Free Semiparametric Methods

8.1 Winsorized Mean Estimator (WME) for Censored Model

new; format/m1/rd 7,3; cr=0.00001; n=200; one=ones(n,1);
iterlim=50;

x1=rndn(n,1); x2=rndn(n,1); x=x1~x2; sdx=stdc(x);
k=cols(x); xx=one~x;

u=rndn(n,1); beta=1|1|1; ys=xx*beta+u; y=maxc(ys’|
zeros(1,n));

lse=invpd(xx’xx)*(xx’y); w=stdc(y-xx*lse); /* 0.25w,
0.5w,... can be used */

h0=n^(-1/(k+4)); /* base bandwidth */
qlo=minc(y); qhi=maxc(y); nq=101; /* larger nq gives

better 1st stage est. */
qinc=(qhi-qlo)/nq; q=seqa(qlo,qinc,nq); /* q is 1st stage

est. to be tried */

proc obj1(q,eva,m); /* eva is 1*k; m is bandwidth multi.
factor */

local c,ker,aymq; aymq=abs(y-q); /* produt normal kernel
used */
c=(x-one.*.eva)./(one.*.(h0*m*sdx’)); ker=exp(sumc
(ln(pdfn(c))’));

retp(meanc(ker.*(0.5*(aymq^2).*(aymq.<w)+(w*aymq-0.5*w).
*(aymq.>=w)))); endp;

m=1; pass=zeros(n,1); i=1; /* 0.5m,2m,3m,... can be used
as well */

do until i>n;
comp=zeros(nq,2); j=1;
do until j>nq;
comp[j,.]=obj1(q[j,1],x[i,.],m)~q[j,1];
j=j+1; endo; pass[i,1]=comp[minindc(comp[.,1]),2]>w;

i=i+1; endo; /* For pass, try also a # greater than w,
e.g., 1.5w */

proc obj2(b); local ar;
ar=abs(y-xx*b); /* only those with pass=1 are used in 2nd
stage */

retp(pass.*(0.5*(ar^2).*(ar.<w)+(w*ar-0.5*w).*(ar.>=w) ));
endp;

b0=invpd(xx’xx)*(xx’y); niter=1; bestobj=-100000; bestb=b0;

JOB:
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gradi=gradp(&obj2,b0); xxb0=xx*b0; ar0=abs(y-xxb0);
invh=invpd(xx’( xx.*(pass.*(xxb0.>w).*(ar0.<w)) ));
/* if invh is not p.d., remove either (xxb0.>w) or (ar0.<w) */

b1=b0-invh*sumc(gradi); newobj=sumc(obj2(b1)); niter=
niter+1;

if abs(newobj-bestobj)<cr; goto DONE; endif;
if niter>iterlim; goto DONE; endif;
if newobj>bestobj; bestobj=newobj; bestb=b1; endif;
b0=b1; goto JOB;

DONE:
b=bestb; xxb=xx*b; ar=abs(y-xx*b); r2=ar^2;
invh=invpd(xx’(xx.*((xxb.>w).*(ar.<w))));

cov=invh*(xx’(xx.*(xxb.>w).*minc(r2’|(w*one’))))*invh;
tv=b./sqrt(diag(cov)); lse~b~tv; "non-censoring %:

" meanc(y.>0);
end;
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8.2 Differencing for Semi-Linear Model

new; format/m1/rd 7,3; n=200;
x1=rndn(n,1); x2=x1^2; x3=rndu(n,1).>0.3; z=rndn(n,1);
x=x1~x2~x3; k=cols(x);

beta=2|1|0; u=rndn(n,1); y=1+sin(z)+x*beta+u;
xyz=sortc(x~y~z,k+2); /* sorting on z */
x=xyz[.,1:k]; y=xyz[.,k+1]; z=xyz[.,k+2];

dx=x[2:n,.]-x[1:n-1,.]; dy=y[2:n,1]-y[1:n-1,1];
b=invpd(dx’dx)*(dx’dy); du=dy-dx*b; du2=du^2;

dx1=dx[2:rows(dx),.]; dx0=dx[1:rows(dx)-1,.];
du1=du[2:rows(du),1]; du0=du[1:rows(du)-1,1];
v1=dx’(dx.*du2)/(n-1); v2=dx0’(dx1.*du0.*du1)/(n-2);

hessi=dx’dx/(n-1);
cov=invpd(hessi)*(v1+v2+v2’)*invpd(hessi)/n;
b~(b./sqrt(diag(cov)));
end;
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9 Bandwidth-Dependent Semiparametric
Methods

9.1 Two-Stage Estimator for Semi-Linear Model

new; format /m1 /rd 7,3; n=200;
hlo=1; hhi=4; hinc=0.1; hrep=int((hhi-hlo)/hinc)+1; /* for
CV search */

x1=2*rndu(n,1); x2=rndn(n,1).>0; x=x1~x2; k=cols(x);
z1=rndn(n,1); z2=rndn(n,1); sd1=stdc(z1); sd2=stdc(z2);
u=rndn(n,1); y=1+x1+x2+((z1+z2+z1.*z2)/2)+u; /* npr part
consists of z1,z2 */

h0=n^(-1/6); /* h0 is base bandwidth with 2-dimensional
smoothing */

proc npr(y,z1,z2,m);
local reg,i,z1i,z2i,yi,c1i,c2i,k1,k2,k1ij,k2ij; reg=zeros
(n,1); i=1;
do until i>n;
if i==1; z1i=z1[2:n,1]; z2i=z2[2:n,1]; yi=y[2:n,1];
elseif i==n; z1i=z1[1:n-1,1]; z2i=z2[1:n-1,1]; yi=y
[1:n-1,1];

else;z1i=z1[1:i-1,1]|z1[i+1:n,1];z2i=z2[1:i-1,1]|z2[i+1:n,1];
yi=y[1:i-1,1]|y[i+1:n,1]; endif;
c1i=(z1[i,1]-z1i)/(m*h0*sd1); c2i=(z2[i,1]-z2i)/
(m*h0*sd2);

k1=pdfn(c1i); k1ij=1.5*k1-0.5*k1.*(c1i^2);
k2=pdfn(c2i); k2ij=1.5*k2-0.5*k2.*(c2i^2); /* 3rd-order
kernel */

reg[i,1]=sumc((k1ij.*k2ij).*yi)/sumc(k1ij.*k2ij); i=i+1;
endo;

retp(reg); endp;

j=1; comp=zeros(hrep,2); h=hlo; /* CV step to find the
optimal h for y */

do until j>hrep; comp[j,1]=meanc((y-npr(y,z1,z2,h))^2);
comp[j,2]=h;

j=j+1; h=h+hinc; endo; h=comp[minindc(comp[.,1]),2];
my=npr(y,z1,z2,h);

j=1; mx=zeros(n,k);
do until j>k; mx[.,j]=npr(x[.,j],z1,z2,h); /* same h used
to save time */
j=j+1; endo;
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mdx=x-mx; mdy=y-my; invmdx=invpd(mdx’mdx); lse=invmdx*
(mdx’mdy);

res=mdy-mdx*lse; res2=res^2; cov=invmdx*(mdx’*(mdx.*res2))
*invmdx;

tvlse=lse./sqrt(diag(cov)); "b,tv:" lse~tvlse; "multi.
factor :" h; end;
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9.2 Quasi-MLE for Single-Index Binary Response

new; format/m1/rd 7,3; cr=0.00001; iterlim=50; n=300;
one=ones(n,1);

x1=rndn(n,1); x2=rndn(n,1); xk=rndn(n,1); u=rndn(n,1);
x=x1~x2; k=cols(x); xx=x~xk; beta=1|1|1; ys=1+xx*beta+u;

y=ys.>0;

h0=n^(-1/5); /* h0 is the base bandwidth; try h0*(a multi.
factor) */

bk=1; /* try bk=-1 also unless the sign of beta-k is known */

proc reg(b); local xxb,hxxb,rg,i,yi,xxbi,ci,ker;
xxb=x*b+bk*xk; hxxb=h0*stdc(xxb); rg=zeros(n,1); i=1;
do until i>n;
if i==1; yi=y[2:n,1]; xxbi=xxb[2:n,1];
elseif i==n; yi=y[1:n-1,1]; xxbi=xxb[1:n-1,1];
else; yi=y[1:i-1,1]|y[i+1:n,1]; xxbi=xxb[1:i-1,1]|

xxb[i+1:n,1]; endif;
ci=(xxbi-xxb[i,1])/hxxb; ker=pdfn(ci); rg[i,1]=

sumc(ker.*yi)/sumc(ker);
i=i+1; endo; /* in theory, a high order kernel
should be used */

retp(rg); endp; /* but, high order kernel can
cause ln(0) */

proc obj(b); local p; p=reg(b);
retp(y.*ln(p)+(1-y).*ln(1-p)); endp;

a0=invpd(xx’xx)*(xx’y); b0=a0[1:k,1]/a0[k+1,1];
niter=1; bestobj=-100000; bestb=b0;

JOB:
gradi=gradp(&obj,b0); b1=b0+invpd(gradi’gradi)*sumc(gradi);
newobj=sumc(obj(b1)); niter=niter+1;
if abs(newobj-bestobj)<cr; goto DONE; endif;
if niter>iterlim; goto DONE; endif;
if newobj>bestobj; bestobj=newobj; bestb=b1; endif;
b1’~newobj~bestobj~niter; b0=b1; goto JOB;

DONE: /* tv tends to be over-estimated */
b=bestb; p=reg(b); pd=gradp(&obj,b); cov=invpd(pd’*(pd./

(p.*(1-p))));
tv=b./sqrt(diag(cov)); b~tv; sumc(obj(b)); end;
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Honoré, B. and A. Lewbel, 2002, Semiparametric binary choice panel
data models without strictly exogenous regressors, ECA 70, 2053–2063.
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Horowitz, J.L. and W. Härdle, 1996, Direct semiparametric estimation
of a single index model with discrete covariates, JASA 91, 1632–1640.

Horowitz, J.L. and S. Lee, 2005, Nonparametric estimation of an additive
quantile regression model, JASA 100, 1238–1249.

Horowitz, J.L. and S. Lee, 2007, Nonparametric instrumental variables
estimation of a quantile regression model, ECA 75, 1191–1208.

Horowitz, J.L. and C.F. Manski, 2000, Nonparametric analysis of ran-
domized experiments with missing covariate and outcome data, JASA 95,
77–84.

Horowitz, J.L. and E. Mammen, 2004, Nonparametric estimation of an
additive model with a link function, AS 32, 2412–2443.

Horowitz, J.L. and G.R. Neumann, 1987, Semiparametric estimation of
employment duration models, ER 6, 5–40.

Horowitz, J.L. and G.R. Neumann, 1989, Specification testing in cen-
sored models: Parametric and semiparametric methods, JAE 4, S61–S86.

Horowitz, J.L. and V.G. Spokoiny, 2001, An adaptive, rate-optimal test
of a parametric mean-regression model against a nonparametric alternative,
ECA 69, 599–631.

Hougaard, P., 2000, Analysis of multivariate survival data, Springer
Hsiao, C., 2003, Analysis of panel data, 2nd ed., Cambridge University

Press.
Huber, P.J., 1981, Robust Statistics, Wiley.
Iannizzotto, M. and M.P. Taylor, 1999, The target zone model, non-

linearity and mean reversion: is the honeymoon really over?, Economic Jour-
nal 109, C96–C110.

Ichimura, H., 1993, Semiparametric least squares (SLS) and weighted
SLS estimation of single index models, JOE 58, 71–120.



References 741

Ichimura, H. and L.F. Lee, 1991, Semiparametric least squares estima-
tion of multiple index models, in Nonparametric and Semiparametric Meth-
ods in Econometrics and Statistics, edited by W.A. Barnett, J. Powell, and
G. Tauchen, Cambridge University Press.

Ida, T. and T. Kuroda, 2009, Discrete choice model analysis of mobile
telephone service demand in Japan, Empirical Econ 36, 65–80.

Imbens, G.W., and T. Lancaster, 1996, Efficient estimation and stratified
sampling, JOE 74, 289–318.

Imbens, G.W., R.H. Spady, and P. Johnson, 1998, Information theoretic
approaches to inference in moment condition models, ECA 66, 333–357.

Izenman, A.J., 1991, Recent developments in nonparametric density es-
timation, JASA 86, 205–224.

Jagannathan, R., G. Skoulakis, and Z. Wang, 2002, Generalized method
of moments: applications in finance, JBES 20, 470–481.

Jennen-Steinmetz, C. and T. Gasser, 1988, A unifying approach to non-
parametric regression estimation, JASA 83, 1084–1089.

Johnson, N.L., S. Kotz and N. Balakrishnan, 1995, Continuous univari-
ate distributions Volume 2, 2nd ed., Wiley.

Jones, M.C., J.S. Marron, and S.J. Sheather, 1996, A brief survey of
bandwidth selection for density estimation, JASA 91, 401–407.

Kan, K. and M.J. Lee, 2009, Lose weight for money only if over-weight:
marginal integration for semi-linear panel models, unpublished paper.

Kan, K. and W.D. Tsai, 2004, Obesity and risk knowledge, Journal of
Health Economics 23, 907–934.

Kang, S.J. and M.J. Lee, 2003, Analysis of private transfers with panel
fixed effect censored model estimator, Economics Letters 80, 233–237.

Kang, S.J. and M.J. Lee, 2005, Q-Convergence with interquartile ranges,
Journal of Economic Dynamics and Control 29, 1785–1806

Kang, C.H. and M.J. Lee, 2009, Performance of various estimators for
censored response models with endogenous regressors, Pacific Economic Re-
view, forthcoming.

Kaplan, E.L. and P. Meier, 1958, Nonparametric estimation from incom-
plete observations, JASA 53, 457–481.

Karlsson, M., 2004, Finite sample properties of the QME.
Communications in Statistics (Simulation and Computation) 33,
567–583.

Karlsson, M., 2006, Estimators of regression parameters for truncated
and censored data, Metrika 63, 329–341.

Karlsson, M. and T. Laitila, 2008, A semiparametric regression estimator
under left truncation and right censoring, Statistics and Probability Letters
78, 2567–2571.

Kauermann G. and R.J. Carroll, 2001, A note on the efficiency of sand-
wich covariance matrix estimation, JASA 96, 1387–1396.

Keane, M.P., 1992, A note on identification in the multinomial probit
model, JBES 10, 193–200.



742 References

Keane, M.P. and R. Sauer, 2009, Classification error in dynamic discrete
choice models: implications for female labor supply behavior, ECA 77, 975–
991.

Kelly, M., 2000, Inequality and crime, REStat 82, 530–539.
Kempa, B. and M. Nelles, 1999, The theory of exchange rate target

zones, Journal of Economic Surveys 13, 173–210.
Khan, S. and A. Lewbel, 2007, Weighted and two stage least squares

estimation of semiparametric truncated regression models, ET 23, 309–347.
Khan, S. and J.L. Powell, 2001, Two-step estimation of semiparametic

censored regression models, JOE 103, 73–110.
Khan, S. and E. Tamer, 2007, Partial rank estimation of duration models

with general forms of censoring, JOE 136, 251–280.
Khmaladze, E.V., 1981, Martingale approach in the theory of goodness-

of-fit test, Theory of Probability and Its Applications 26, 240–257.
Khmaladze, E.V., 1993, Goodness of fit problem and scanning innovation

martingales, AS 21, 798–829.
Khmaladze, E.V. and H. Koul, 2004, Martingale transforms goodness-

of-fit tests in regression models, AS 32, 995–1034.
Kim, J.K. and D. Pollard, 1990, Cube-root asymptotics, AS 18, 191–219.
Kim, T.H. and C. Muller, 2004, Two-stage quantile regression when the

first stage is based on quantile regression, ECMJ 7, 218–231.
Kim, W., O. Linton, N.W. Hengartner, 1999, A computationally effi-

cient oracle estimator for additive nonparametric regression with bootstrap
confidence intervals, Journal of Computational and Graphical Statistics 8,
278–297.

Kimhi, Ayal and M.J. Lee, 1996, Joint farm and off-farm work decisions
of farm couples: estimating structural simultaneous equations with ordered
categorical dependent variables, American Journal of Agricultural Economics
78, 687–698.

Kitamura, Y., 2007, Empirical likelihood methods in economet-
rics: theory and practice, in Advances in Economics and Economet-
rics: Theory and Applications, 9th World Congress, vol. 3, edited by
R. Blundell, W.K. Newey, and T. Persson, Cambridge University Press.

Kitamura, Y. and M. Stutzer, 1997, An information-theoretic
alternative to generalized method of moment estimation, ECA 65,
861–874.

Kitamura, Y., G. Tripathi and H.T. Ahn, 2004, Empirical likelihood-
based inference in conditional moment restriction models, ECA 72, 1667–
1714.

Klein, J.P. and M.L. Moeschberger, 2003, Survival analysis, 2nd ed.,
Springer.

Klein, R.W. and R.H. Spady, 1993, An efficient semiparametric estimator
for binary response models, ECA 61, 387–421.

Koenker, R., 2005, Quantile regression, Cambridge University Press.



References 743

Koenker, R. and G. Bassett, 1978, Regression quantiles, ECA 46, 33–50.
Koenker, R. and O. Geling, 2001, Reappraising medfly longevity: a quan-

tile regression survival analysis, JASA 96, 458–468.
Koenker, R. and K.F. Hallock, 2001, Quantile regression, Journal of

Economic Perspectives 15 (4), 143–156.
Koenker, R. and J.A.F. Machado, 1999, Goodness of fit and

related inference processes for quantile regression, JASA 94, 1296–
1310.

Koenker, R. and Z. Xiao, 2002, Inference on the quantile regression
process, ECA 70, 1583–1612.

Kondo, Y. and M.J. Lee, 2003, Hedonic price index estimation under
mean independence of time dummies from quality-characteristics, ECMJ 6,
28–45.

Kordas, G., 2006, Smoothed binary regression quantiles, JAE 21, 387–
407.

Koul, H.L., 2006, Model diagnostics via martingale transforms: a briew
review, in Frontiers in Statistics, pp. 183–206, edited by J. Fan and H.L.
Koul, Imperial College Press.

Koul, H.L. and L. Sakhanenko, 2005, Goodness-of-fit testing in
regression: a finite sample comparison of bootstrap methodology
and Khmaladze tranformation, Statistics and Probability Letters 74,
290–302.

Krugman, P.R., 1991, Target zones and exchange rate dynamics, Quar-
terly Journal of Economics 106, 669–682.

Kuan, C.M. and H. White, 1994, Artificial neural networks: An econo-
metric perspective, ER 13, 1–91.

Lafontaine, F. and K.J. White, 1986, Obtaining any Wald statistic you
want, Economics Letters 21, 35–40.

Lahiri, S.N., 1992, Bootstrapping M-estimators of a multiple linear re-
gression parameter, AS 20, 1548–1570.

Laitila, T., 1993, A pseudo-R2 measure for limited and qualitative de-
pendent variable models, JOE 56, 341–356.

Laitila, T., 2001, Properties of the QME under asymmetri-
cally distributed disturbances, Statistics and Probability Letters 52,
347–352.

Lam, K.F., H. Xue, Y.B. Cheung, 2006, Semiparametric analysis of zero-
inflated count data, Biometrics 62, 996–1003.

Lambert, D., 1992, Zero-inflated Poisson regression, with an application
to defects in manufacturing. Technometrics 34, 1–14.

Lancaster, T., 1979, Econometric methods for the duration of unemploy-
ment, ECA 47, 939–956.

Lancaster, T., 1984, The covariance matrix of the information matrix
test, ECA 52, 1051–1053.

Lancaster, T., 1992, The Econometric Analysis of Transition data, Cam-
bridge University Press.



744 References

Lavergne, P., 2001, An equality test across nonparametric regressions,
JOE 103, 307–344.

Lavergne, P. and Q. Vuong, 1996, Nonparametric selection of regressors:
the nonnested case, ECA 64, 207–219.

Lavergne, P. and Q. Vuong, 2000, Nonparametric significance testing,
ET 16, 576–601.

Lee, B.J., 1992, A heteroskedasticity test robust to conditional mean
specification, ECA 60, 159–171.

Lee, L.F., 1992, Amemiya’s generalized least squares and tests of overi-
dentification in simultaneous equation models with qualitative or limited de-
pendent variables, ER 11, 319–328.

Lee, L.F., 1993, Multivariate tobit models in econometrics, in Handbook
of Statistics 11, edited by G.S. Maddala, C.R. Rao and H.D. Vinod, North-
Holland.

Lee, L.F., 1995, Semiparametric maximum likelihood estimation of poly-
chotomous and sequential choice models, JOE 65, 381–428.

Lee, L.F., 2001, Self-selection, in A Companion to Theoretical Econo-
metrics, edited by B.H. Baltagi, Blackwell.

Lee, M.J., 1989, Mode regression, JOE 42, 337–349.
Lee, M.J., 1992a, Median regression for ordered discrete response, JOE

51, 59–77.
Lee, M.J., 1992b, Winsorized mean estimator for censored regression

model, ET 8, 368–382.
Lee, M.J., 1993, Quadratic mode regression, JOE 57, 1–19.
Lee, M.J., 1995, A semiparametric estimation of simultaneous equations

with limited dependent variables: A case study of female labor supply, JAE
10, 187–200.

Lee, M.J., 1996a, Methods-of-moments and semiparametric economet-
rics for limited dependent variable models, Springer-Verlag.

Lee, M.J., 1996b, Nonparametric two stage estimation of simultaneous
equations with limited endogenous regressors, ET 12, 305–330.

Lee, M.J., 1997, A Limited dependent variable model under median
rationality, Economics Letters 54, 221–225.

Lee, M.J., 1999, Nonparametric estimation and test for quadrant corre-
lations in multivariate binary response models, ER 18, 387–415.

Lee, M.J., 2000, Median treatment effect in randomized trials, JRSS-B
62, 595–604.

Lee, M.J., 2002, Panel data econometrics: methods-of-moments and lim-
ited dependent variables, Academic Press.

Lee, M.J., 2003, Exclusion bias in sample-selection model estimators,
Japanese Economic Review 54, 229–236.

Lee, M.J., 2004a, Efficiency Gain of System GMM and MDE
over Individual Equation Estimation, Japanese Economic Review 55,
451–459.



References 745

Lee, M.J., 2004b, Selection correction and sensitivity analysis for ordered
treatment effect on count response, JAE 19, 323–337.

Lee, M.J., 2005a, Micro-Econometrics for Policy, Program, and Treat-
ment Effects, Advanced Text Series in Econometrics, Oxford University
Press.

Lee, M.J., 2005b, Monotonicity conditions and inequality imputation for
sample-selection and non-response problems, ER 24, 175–194.

Lee, M.J., 2008, Method-of-moment view of linear simultaneous equation
systems, Statistica Neerlandica 62, 230–238.

Lee, M.J., 2009, Nonparametric tests for distributional treatment effects
for censored responses, JRSS-B 71, 1–22.

Lee, M.J., and P.L. Chang, 2007, Avoiding arbitrary exclusion restric-
tions using ratios of reduced-form estimates, Empirical Economics 33, 339–
357.

Lee, M.J., B. Donkers, and H.J. Kim, 1996, Nonparametric two-stage
algorithms for some semiparametric estimators in censored and discrete re-
sponse models, Presented at 1997 North American Winter Meeting of the
Econometric Society (New Orleans, Louisiana).
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Index

2SLSE, see two-stage LSE, 66, 107,
271, 449, 558

efficiency, 451
nonparametric, 450, 452

3SLSE, see three-stage LSE

a.e., see convergence almost everywhere
a.s., see convergence almost sure
absolutely continuous, 541
accelerated failure time, 398, 573
accelerated failure time hazard, 470
acceptance/rejection method, 249, 439
AD, see Anderson-Darling test
adaptive kernel estimator, 312, 591
adaptively estimable, 210
additive model, 138, 488
additive separability, 594
ADE, see average derivative estimator
ADF, see asymptotically distribution-

free, see asymptotically
distribution-free, 670

ADF transformation, 610, 671
AFT, see accelerated failure time
AIC, 518
analysis of variance, 21
analysis-of-variance

nonparametric, 530
Anderson-Darling test, 607
ANOVA, see analysis of variance, 642
antisymmetric, 546
approximation order

distribution function, 690
argmax, 91
artificial nesting, 627
artificial regression, 527, 528
artificial regressor, 110, 111, 628
ASF, see average structural function
associative relation, 155
asympotic relative efficiency

Bahadur, 620
asymptotic level of a test sequence, 616
asymptotic relative efficiency

Pitman, 619
asymptotically distribution-free, 435,

610
asymptotically pivotal, 677
asymptoticaly linear, 466
auto-correlation test, 111

auto-regression, 49
average derivative estimator, 467
average structural function, 460

backfitting, 488
Bahadur slope, 620
bandwidth, 311

rule-of-thumb, 319
baseline hazard, 222
Bessel process, 608
BET, see between-group estimator
between-group estimator, 86
between-group variance, 20
bias, 313
BIC, 518
bijective, 455
binary response, 497

endogenous regressors, 503
panel data, 506

binary response model, 134, 177
binary-response model, 139
bivariate binary response, 262, 274
biweight kernel, 393
Bonferroni’s inequality, 326
boostrap

double, 703
bootstrap, 377

asymptotic variance estimation,
702

for bias correction, 699
for GMM, 698
iterated, 703
main idea, 678
nonparametric, 685
parametric, 698
pre-pivoting, 703
wild, 698

bootstrap CI
bias-corrected, 681
centered percentile, 680
percentile, 680
percentile-t, 680

bootstrap consistency, 683
bootstrap test, 697
Borel set, 537
Borel sigma-field, 537
bounded function, 533, 534
bounded in probability, 6, 546
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bounded sequence, 532
bounded variation, 666
Bownian motion, 529
Box-Cox transformation, 135
bracketing integral, 662
bracketing number, 662
Brownian bridge, 604, 654

generalized, 660
Brownian motion, 161, 604

cadlag, 657
Cauchy sequence, 532
Cauchy-Schwarz inequality, 42
causal effect, 154
ceiling function, 371
censored LAD, 373
censored model, 253
censored quantile regression, 374
censored regression, 416, 453
censored response, 206, 389
censored-selection model, 396, 397
censoring

competing risks, 207
generalized type-one, 207
interval, 211
random, 207
type two, 207
type-one, 207

censoring
lower, 207

Central limit theorem
Lindeberg, 548

central limit theorem, 6
central symmetry, 396
CES production function, 135
CF, 456
cgf, see cumulant generating function
Chamberlain’s all-period approach, 293
change of variables, 313, 540
characteristic function, 691
Chebyshev inequality, 316
check function, 150
Chi-square approximation to F-test,

142
choice-based sampling, see response-

based sampling
choke price, 214
Cholesky decomposition, 246, 248
CI, see confidence interval

CK test, see conditional Kolmogorov
test

CLAD, see censored LAD
closed, 532
closure, 656
CLT, see central limit theorem, see

central limit theorem
degenerate U-statistic, 613
Lindeberg, 323

cluster point, 532
CM, see Craḿer-von-Mises (type) test,

606
coherency condition, 275–277
compact, 532, 656

in Euclidean spaces, 532
competing risks, 296, 470
complete orthonormal basis, 592
composition, 533
concentrated likelihood function, 556
conditional Kolmogorov test, 438
conditional mean, 542
conditional moment test, 112
conditional probability, 543
confidence band, 327
confidence bound, 616
confidence coefficient, 616
confidence interval, 616
confidence level, 616
confidence region, 676
confidence set, 616
consisten equation system, 60
consistency, 545
consistency of a test sequence, 616
consistent, 5
consumer surplus, 215
contingent valuation method, 194
continuity of integral of a continuous

function, 544
continuous, 534

uniformly, 535
continuous mapping theorem, 94, 547,

605
control function, 563
control function approach, 271, 277,

456
control group, 22, 155
converence

weak, 656
convergence

almost everwhere, 545
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almost sure, 545
in distribution, 546
in law, 546
in moment, 546
in probability, 545
in the rth mean, 546
of a sequence, 532
of a sequence of functions, 533
strong, 656
weak, 547, 658

convergence in distribution, 6
convergence in law

empirical process, 606
stochastic processes, 657
uniform empirical process, 605

convergence in probability, 5
convergence of income, 332
convolution, 322
corner solution, 208
correction term, 104
cosine estimator, 392
count response, 198, 369
countable additivity, 537
counter-factual, 154
counting measure, 537
covariance kernel, 674
CQR, see censored quantile regression
Cramér-von-Mises-type test, 431, 526
Cramer-von-Mises test, 435
Cramer-von-Mises-type test, 522
cross-validation, 320

generalized, 352
semi-linear model, 484

CT, see correction term
cumulant, 691
cumulant generating function, 691
cumulative hazard, see integrated

hazard
curse of dimensionality, 320
CV, see cross-validation, 350, 376, 491,

527
CVM, see contingent valuation method,

645

delta method, 93
dense, 656
density-weighted average derivative

estimator, 465
derivative, 535

of inverse function, 674

of the logarithm of trace, 555
of the trace of a matrix product,

555
df, x
differentiable, 535
differential, 535
direct effect, 17
directional derivative, 535
directional differential, 535
discrete duration, 421
distribution function, 537

absolutely continuous, 538
continuous, 538
discrete, 538

dof, x
domain, 532
dominated convergence theorem, 324,

544, 562
dominated measure, 541
Donsker class, 662, 684
Donsker Theorem, 661
double array, see triangular array
double exponential, 98
double hurdle model, 267
double sequence, 534
doulbe index model, 400
downhill simplex, 130, 405
duration analysis, 216
duration dependence, 221
dynamic model, 79
dynamic panel probit, 293

Edgeworth approximation
density of a standardized sum, 694
distribution function of a

standardized sum, 694
effective score function, 209, 283
effective score test, 124
efficacy, 618
efficiency bound, 164

conditional moments in linear
models, 51

unconditional moments in linear
models, 51

efficiency gain of SUR, 552
EL, see empirical likelihood, 653
empirical bootstrap, see nonparametric

bootstrap
empirical distribution function, 303
empirical likelihood, 647
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empirical measure, 661
empirical process, 603, 658, 668, 684

indexed by functions, 659
uniform, 604, 658

encompassing, 627
endogenous sampling, 211, 637
endogenous SF parameter, 68
endogenous variable, 68
entropy, 650
envelope function, 662
error-component model, 238
errors in variables, 34, 204
errors-in-variables, 159
estimating equation, 43
ET, see exponential tilting, 653
event, 536
exclusion restricition, 401
exclusion restriction, 32, 71, 204, 253,

260, 481
EXO, see strictly exogenous
exogenous, 4
exogenous sampling, 548, 637
exogenous SF parameter, 68
exogenous variable, 68
expectile, 148
explained variation, 11, 42
exponential distribution, 219
exponential tilting, 650
extended real line, 531
extension of a function, 533
Extremum estimator, see M-estimator

F-test, 142
failure-time analysis, see duration

analysis
Fatou’s Lemma, 544
FIML, see full information MLE
fixed effect, 75
fixed-effect estimator, 87
fractional response, 211
Fredholm integral equation, 455
full information MLE, 555
functions of bounded variation, 662

GAFT, see generalized AFT
Gamma distribution, 201
gamma function, 201
Gateau derivative, see directional

derivative
Gauss-Newton algorithm, 143

Gauss-Seidel algorithm, 489

GEL, see generalized empirical
likelihood

generalized AFT, 575

generalized empirical likelihood, 651

generalized extreme value distribution,
242

generalized information equality, 101

generalized LSE, 48

generalized method-of-moment, 43

over-identification test, 44

generated regressor, 108

Glivenko-Cantelli class, 661

Glivenko-Cantelli theorem, 658, 661

GLS, see generalized LSE, 173

GMM, see generalized method-of-
moment, 157, 176, 205

GMM over-identification test, 81, 159

GOF, see goodness-of-fit, see goodness
of fit, 524, see goodness-of-fit,
629, 665

gompit, 199

goodness-of-fit, 607

goodness-of-fit test, 434

Pearson chi-square, 654

gradient, 535

Greenwood formula, 335

Gumbel distribution, see type-1
extreme value distribution

HAC, see heteroskedasticity and
autocorrelation-consistent

Hausman test, 114

hazard function, 216, 333

exponential power, 224

generalized exponential power, 225

generalized gamma, 225

Log-logistic, 224

Heckman two-stage estimator, 258

hedonic price index, 483

Hermite polynomial, 693

heteroskedastic probit, 182

heteroskedasticity, 17, 98, 149, 179

of known form, 18

of unknown form, 18

heteroskedasticity and autocorreation-
consistent variance, 166

heteroskedasticity test, 25, 28, 111, 115
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heteroskedasticity-consistent variance,
see heteroskedasticity-robust
variance

heteroskedasticity-robust variance, 18,
115

high order kernel, 315
Hilbert space, 671
Holder inequality, 541
homoskedasticity, 18
HPI, see hedonic price index
HT, see hypothesis test

ID, see identification
identification, 560
identification problem in competing

risks, 301
IIA, see independence of irrelevant

alternatives, 243, 581
iid, xi
IMT, see integrated moment test
inclusion restriction, 32
inclusive value, 243, 579
independence of irrelevant alternatives,

236
index model, 134
indicator function, 542
indirect effect, 17
indirect inference, 169
individual-specific effect, 65
infimum, 531
influence function, 104, 174, 259, 282
information equality, 101
information matrix, 101
information matrix test, 115
inid, 19
instrument

best, 451
nonparametric, 450

instrumental variable, 32
instrumental variable estimator, 31, 40
integrable, 540
integral, 538
integrated hazard, 217
integrated mean squared error, 319
integrated moment test, 432
integrated squared error, 320
integration by parts, 464
intensity, 335
interaction, 2
interaction effect, 22

interchanging differentiation and
integration, 545

interval censoring, 407
intervention, 154
inverse, 532
inverse image, 533
inverse of a 2*2 matrix, 552
inverse of a partitioned matrix, 209,

554
irrational point, 534
ISE, see integratd squared error
item nonresponse, 252, 254
iterated integrals, 540
iterated limit, 534
IV, see instrumental variable
IVE, see instrumental variable

estimator

J test, 527
J-test, 628
jackknife, 487
Jacobian of transformation, 313
just-identified, 59, 72

k-class estimator, 558
Kaplan-Meier product limit estimator,

338
Kendal’s Rank Correlation Estimator,

402
Kendall’s rank correlation, 402
kernel, 304, 309

biweight, 310
in U-statistic, 597
quadratic, 310
quartic, 310

kernel density estimator, 304
kernel density estmator

under random right censoring, 341
kernel nonparametric MLE, 359
kernel order, 315
kernel regression derivative estimator,

357
kernel regression estimator, 345
Khamaladze transformation, see

ADF-transformation, see
ADF-transformation

KLIC, see Kullback-Leibler information
criterion, 624, 650

Kolmogorov-Smirnov test, 431, 603
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Kolmogorov-Smirnov-type test, 435,
522, 526

KRE, see Kendall’s rank correlation
estimator

Kronecker product, 57
KS, see Kolmogorov-Smirnov (type)

test, 609, 654
Kullback-Leibler information criterion,

99

L’Hospital’s rule, 135
LAD, see least absolute deviation, 98,

146, 665
Lagrangian multiplier test, 122
Law of large numbers

Kolmogorov, 548
law of large numbers, 5
Le Cam’s third lemma, 620
least absolute deviation, 91
least squares estimator, 2
leave one out, 321, 350
leave-one-out, 443
Lebesque decomposition, 542
Lebesque measure, 537
left-truncation, 210
Legendre polynomials, 593
Leibniz’s rule, 146
length-biased sampling, 646
level of a test, 615
lhs, x
likelihood function, 97
likelihood ratio test, 122
limit

of a double sequence, 534
of sequence, 532

limit inferior, 534
limit superior, 533
limited information MLE, 557
limiting size of a test sequence, 616
LIML, see limited information MLE
Lindeber condition, 323
Lindeberg condition, 548
linear probability model, 179
linear projection, xi
linearly ordered, see totally ordered
link matrix, 104, 259, 443
Lipschitz continuity, 662
Lipschitz-continuity, 420
LLN, see law of large numbers, see law

of large numbers

LLR, see local linear regression
LM test, 122, 125
LM-type test, 142, 163, 510, 528, 569
local linear regression, 360, 470, 478
location normalization, 192, 230, 243
Log-logistic, 336
logistic distribution, 179
logit, 180, 287
lognormal distribution, 575
lower confidence bound, 682
LR, see likelihood ratio
LR test, 125, 192, 616

centered, 627
for non-nested models, 626

LR-type test, 141, 163, 516, 528, 567,
569, 608

generalized, 516
LSE, see least squares estimator, 98
LTRC, 210, 218, 395, 423

M-estimator, 91, 560
two-stage M-estimator, 102
weighted for stratified sampling,

637
marginal effect, 183, 194, 199, 211, 469
marginal integration, 461, 463, 492
marked empirical process, 435
Markov inequality, 541
matrix norm, 5
maximum likelihood estimator, 97
maximum penalized likelihood

estimator, 585
maximum score estimator, 364

MSC, 366
MDE, see minimum distance estima-

tion, 170, 272, 279, 282, 392,
505, 630

MDE over-identification test, 170
mean independence, 155, 484
mean index sufficiency, 398
mean integrated squared error, 319
mean residual life function, 219
mean squared error, 318
mean treatment effect, 155
mean value theorem, 536
mean-subtracting matrix, 10, 84
measurable, 537
measurable rectangle, 540
measurable space, 537
measure, 537
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finite, 540

inifite, 540

sigma-finite, 540

measure space, 537

measurement error, 86

median, 137, 186, 215

median effect, 137, 155

median regression, 146

method of scoring, 129

method of simulated likelihood, 250

method of simulated moment, 244

method-of-moment test, 203, 446

metric, 656

metric space, 656

mgf, see moment generating function,
see moment generating
function

minimal sufficient, 290

minimum chi-square estimation, 169

minimum discrepancy estimation, 653

minimum distance estimation, 168

Minkowski inequality, 541

MISE, see mean integrated squared
error

mixed logit, 237

mixed proportional hazard, 573

mixed regressors, 353

mixing density, 237

MLE, see maximum likelihood
estimator, 171, 192

weighted, 638

MMT, 122, 431

MNL, see multinomial logit

MNP, see multinomial probit, 244, 582

MNS, see multinomial sampling, 638

mode regression, 153, 385

quadratic, 390

model selection criteria, 518

MOM, see method of moment, 138,
169, 203, 266, 630

moment generating function, 432, 690

monotone convergence theorem, 544

Monte Carlo integration, 325

Moore-Penrose generalized inverse, 649

MPH, see mixed proportional hazard

MSC, see maximum score estimator

MSE, see mean squared error

MSL, see method of simulated
likelihood

MSM, see method of simulated
moment, 252

multi-modality, 329
multimodality test, 330
multinomial choice, 229, 366, 479
multinomial logit, 235, 575

response-based sampling, 642
multinomial probit, 234
multinomial sampling, 635
multiple choice

multinomial choice, 229
multiple hurdle model, 268
multiple-index model, 477
multivariate equations with LDV’s, 273
multivariate normal density, 306

natural experiment, 155
NB, see negative binomial

on-site sampling, 646
NCP, see non-centrality parameter, see

noncentrality parameter
nearest neighbor estimator, 589
nearest neighborhood estimator, 584
negative binomial MLE, 201
negative dependence, 300
neighorhood, 532
Nelson-Aalen estimator, 334
NES, see nested logit
nested, 623, 625
nested logit, 242, 578
Newton-Raphson Algorithm, 128
Neyman’s smooth test, 519
Neyman-Pearson Theorem, 616
NIV, see nonlinear IVE
NLS, see nonlinear least squares

estimator, 202
NN, see nearest neighbor, 589
non-centrality parameter, 125
non-nested, 527, 528, 625
noncentrality parameter, 622
nonlinear IVE, 167
nonlinear least absolute deviation, 137
nonlinear least squres estimator, 133
nonparametric bootstrap, 151, 184, 282
nonparametric MLE, 482
nonparametric regressor-selection test,

524
norm preservation, 672
nuisance parameter, 102
numerical derivative, 96, 128, 307, 309
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numerical maximization, 128
numerical second derivative, 308

observationally equivalent, 625
observed effect, 213
odd function, 416
odds ratio, 643
ODR, see ordered discrete response,

216, 368, 422, 425
endogenous regressors, 504

OLS, see ordinary LSE
omitted variabl test, 513
omitted variable bias, 16, 153
omitted variable test, 110
omitted variables, 510
on-site sampling, 645
one to one, 532
one-step efficient estimation, 131
onto, 532
open, 532
open ball, 532
OPG, 123

outer-product of gradient, 117
optimal convergence rate, 348
optimal weighting matrix, 165
oracle-efficient, 493, 495
order condition, 60, 70, 281
order condition of identification, 59
order statistics, 597
ordered discrete response, 189
ordered logit, 193
ordered pair, 532, 533
ordered probit, 193
ordinary LSE, see least squares

estimator
orthonormal, 586
outcome equation, 253
outer-product of gradient, 117
over-dispersion problem, 200
over-id test

LM-type, 649
LR type, 650

over-identified, 59, 72
overdispersion-robust variance, 203

p-value, 620, 676
pairwise differencing, 462, 485
pairwise-difference rank estimator, 411
panel conditional logit, 287, 288
panel data, 75, 169, 174

panel data model, 62, 64, 65

panel GLS, 87, 114

panel GMM, 81

panel IVE, 81

panel logit, 487

panel LSE, 86

parametric bootstrap, 117, 439

partial correlation, 15

partial derivatives, 535

partial likelihood, 360

partial likelihood estimator, 429

partial mean, 461, 492

partial rank estimator, 406

partial regression, 14, 87

partial residual, 14

partial sum process, 606

partially ordered, 546

partially-linear hazard, 482

participant effect, 213

PDE, see pairwise-difference rank
estimator

permutation-symmetric, 598

piecewise constant hazard, 424

Pitman drift, 617

PLE, see partial likelihood estimator

plug-in estimator, 290, 309, 320

Poisson, 645

Poisson distribution, 334

Poisson MLE, 198

quasi-Poisson MLE, 203

Polya’s theorem, 684

polynomial discrimination class, 662

pooled panel data, 86

potential effect, 213

potential outcome, 154

power function, 615

power of a test, 615

power-divergence statistic, 652

PRE, see pre-determined, see partial
rank estimator

pre-determined, 82

precompact, 656

predetermined, 506

price support, 381

principal component decomposition,
433

probability (measure), 537

probability distribution, 537

probability integral transform, 148
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probability law, see probability
distribution

probability space, 537
probit, 125, 180
product measure, 540
product sigma-field, 540
profile likelihood, 258, 482
Prohorov theorem, 547
projection, xi, 42, 117

coordinate, 657, 659
U-statistic, 598

projection coefficient, 9
projection matrix, 9
projection pursuit regression, 477
proportional hazard, 223, 424, 426, 430,

470
pseudo likelihood, 482
pseudo R-squared

censored model, 209
logit, 181
multinomial logit, 239
Poisson MLE, 199
probit, 181

pseudo r-squared
ive, 42

pseudo true value, 624
pseudo-MLE, 99

QME, see quadratic mode regression
QMLE, see quasi-MLE
quantile effect, 155
quantile equivariance, 364, 458
quantile function, 148, 363, 669, 685
quantile independence, 462
quantile loss function, 368
quantile regression, 150

nonparametric, 360
quantile transformation, 148
quasi experiment, 155
quasi MLE, 211
quasi-MLE, 99, 474

r-squared, 10
Radon-Nikodym derivative, 542
Radon-Nikodym theorem, 542
random coefficient, 244
random coefficients, 18
random effect, 75
random element, see stochastic process
random function, see stochastic process

random right-censoring, 333, 406
random sampling, 632
random variable, 537
random vector, 537
random-effect

unrelated-effect, 291
range, 532
rank, 408
rank condition, 69, 70, 281
rank condition of identification, 59
Rao-Blackwell theorem, 290, 597
rational expectation, 46, 67

median, 381
recursive relation, 33
recursive system in LDV’s, 273
reduced form, 37
regression function, 4
regression-function equality test, 529
relation

expectation based, 67
recursive, 66
simultaneous, 66

RESET test, 62, 144
residual, 2
response-based sampling, 637, 645
restriction of a function, 533
RF, see reduced form, 68, 70
rhs, x
right censoring, 210
risk set, 333, 430
robust, 386, 395
root-N consistent, 7
rv, x

sample path, 657
sample selection, 208, 211, 481, 486
sample selection model, 400
sample space, 536
sample-selection problem, 156, 252
sampling density, 635
sandwich form variance, 92
scale normalization, 183
SCLS, see symmetrically censored least

squares estimator, 394, 453
score function, 97, 445
score test, 122

non-nested models, 628
second-order accurate, 688
seemingly unrelated regression, 53, 549
selection addition term, 255, 267
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selection bias, 255
selection correction term, 256
selection equation, 253
selection matrix, 13, 69
selection model

basic, 253
binary response, 262
censored, 254
tobit-type, 254
truncated, 254

selection model MLE, 257
self-selection, 154
semi-linear, 457, 462, 479, 525, 528, 594

additive, 495
censored model, 487
known transformation, 481
logit, 487

semi-linear model, 360, 418, 437
semi-metric, 656, 661
semi-nonparametric, 441
semiparametric efficiency bound, 469,

475, 481
semiparametric LSE, 471
separable, 656, 657
separate GMM, 61
separate IVE, 58
separate LSE, 55
sequence, 532
sequence of functions, 533
series approximation, 455
series expansion, 591

Fourier, 592
SF, 67, see structural form, 70
SF error, 68
SF parameter, 68
shoulder point, 329
sigma-algebra, see sigma-field
sigma-field, 536

generated, 537
SIM, see single index model, 520
simple function, 535, 538
simple hypothesis, 615
simulated MLE, 237
simulator

frequency, 247
GHK, 247

simultaneous equations, 41, 60, 68
simultaneous relation, 33
single index model, 134, 398
singular system, 75

size of a test, 615
size-based sampling, 646
SLS, see semiparametric LSE
Slutsky Lemma, 7, 547
smooth bootstrap, 331
smoothed backfitting, 489
smoothing, 370
smoothing parameter, see bandwidth
Spearman rank correlation, 409
Spearman Rank Correlation Estimator,

408
spline smoothing, 590
SRE, see Spearman rank correlation

estimator
SSS, see standard stratified sampling
standard bivariate normal density, 305
standard error, 10
standard stratified sampling, 633
state dependence, 79
step size, 129
STLS, see symmetrically trimmed least

squares estimator, 390
stochastic equicontinuity, 582, 664, 685
stochastic integral, 665
stochastic process, 657
stochastically equicontinuous, 661–663
stratified sampling, 633
stricltly non-nested, 623
striclty exogenous, 82
strictly non-nested, 625
structural break, 356
structural form, 67
SUB, see substitution, 455
sub sigma-field, 542
sub-density function, 296
sub-distribution function, 296
sub-hazard function, 296
sub-survival function, 296
subgraph, 662
subsequence, 532
sufficient statistic, 287, 289
support, 537
supremum, 531
supremum norm, see uniform norm
SUR, see seemingly unrelated re-

gression, 66, see seemingly
unrelated regression

survival analysis, see duration analysis
survival function, 216

joint, 298
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marginal, 298
switching regression

endogenous switching, 254
exogenous switching, 254

symmetrically censored least squares
estimator, 388

symmetrically trimmed least squares
estimator, 387

symmetrization, 597
symmetry test, 110
system GMM, 60, 553
system IVE, 58
system LSE, 54

t-ratio, see t-value
t-value, 10
Taylor expansion, 536

with integral remainder, 590
test function, 615
three-stage LSE, 558
tight, 660
tobit, 208
total effect, 17, 34
total variation, 11, 42

of function, 666
totally bounded, 656, 661
totally ordered, 547
transformation of response, 508
transformation of variable, 410, 413,

575
transformation-of-variable model, 135,

398
transitive, 546
translog production function, 29
treatment effect, 21, 154, 188

multiple treatments, 529
treatment group, 22, 155
triangular array, 323
triangular system, 462, 565
trimmed mean, 390
triweight kernel, 393
truncated Poisson MLE, 266
truncated regression, 417
truncated regression model, 407
truncated response, 254, 384, 386, 390,

392
truncated response model, 210, 644
TS, see test statistic
TSE, see two-stage estimator, 441
two-stage LSE, 41

type-1 extreme value distribution, 225,
235, 575

U-statistic, 465, 597
degenerate, 599

unbalanced panel, 86
unbiased, 291
unbiasedness of a test, 616
under-identified, 59
under-smoothing, 325
uniform approximation, 535
uniform consistency, 317, 661, 663, 683
uniform convergence

of a sequence of functions, 533
uniform LLN, 561
uniform norm, 533
uniformly integrable, 546
uniformly tight, 546
unimodality

strict, 385, 387
strong, 390

unit nonresponse, 252, 254
unit-specific effect, 65
unobserved heterogeneity, 204, 223,

250, 573
unrelated-effect, 291
unrelated-effect panel probit, 291
upper censoring, see right censoring

variable proability sampling, 634
variance decomposition, 20
VC class of functions, 663
VC class of sets, 662
VPS, see variable probability sampling

WADE, see density-weighted average
derivative estimator

waiting time, 201
Wald test, 26, 113, 118, 125, 141, 163,

193
Wald-type test, 513
wave, 76
weak convergence

quantile function, 685
Weibull, 250, 336, 574
Weibull distribution, 195, 221
Weibull MLE, 429
Weierstrass approximation theorem,

593
weighted LSE, 23
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weighted NLS, 140
weighting matrix, 169
Wiener process, see Brownian motion,

see Brownian motion
wild bootstrap, 436, 514, 515
willingness to pay, 185
window size, see bandwidth
winsorized mean, 394
winsorized mean estimator, 394
WIT, see within-group estimator, 114
within-group estimator, 85

within-group variance, 20
WLS, see weighted LSE, 106, 447
WME, see winsorized mean estimator
WNLS, see weighted NLS
wrt, x
WTP, see willingness to pay, 214

z-value, see t-value
zero-inflated count response, 202
zero-inflated Poisson, 202
ZIP, see zero-inflated Poisson, 211, 265


