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Preface
This is the third edition of this text on logistic regression
methods, originally published in 1994, with its second edi-
tion published in 2002.

As in the first two editions, each chapter contains a presen-
tation of its topic in “lecture‐book” format together with
objectives, an outline, key formulae, practice exercises,
and a test. The “lecture book” has a sequence of illustra-
tions, formulae, or summary statements in the left column
of each page and a script (i.e., text) in the right column.
This format allows you to read the script in conjunction
with the illustrations and formulae that highlight the main
points, formulae, or examples being presented.

This third edition has expanded the second edition by
adding three new chapters and a modified computer
appendix. We have also expanded our overview of model-
ing strategy guidelines in Chap. 6 to consider causal dia-
grams. The three new chapters are as follows:

Chapter 8: Additional Modeling Strategy Issues
Chapter 9: Assessing Goodness of Fit for Logistic

Regression
Chapter 10: Assessing Discriminatory Performance of a

Binary Logistic Model: ROC Curves

In adding these three chapters, we have moved Chaps. 8
through 13 from the second edition to follow the new
chapters, so that these previous chapters have been renum-
bered as Chaps. 11–16 in this third edition. To clarify this
further, we list below the previous chapter titles and their
corresponding numbers in the second and third editions:

Chapter Title Chapter #
2nd Edition

Chapter #
3rd Edition

Analysis of Matched Data
Using Logistic Regression

8 11

Polytomous Logistic
Regression

9 12

Ordinal Logistic Regression 10 13
Logistic Regression for

Correlated Data: GEE
11 14

GEE Examples 12 15
Other Approaches for Analysis

of Correlated Data
13 16

xiii



New Chap. 8 addresses five issues onmodeling strategy not
covered in the previous two chapters (6 and 7) on this
topic:

Issue 1: Modeling Strategy When There Are Two or
More Exposure Variables

Issue 2: Screening Variables When Modeling
Issue 3: Collinearity Diagnostics
Issue 4: Multiple Testing
Issue 5: Influential Observations

New Chap. 9 addresses methods for assessing the extent to
which a binary logistic model estimated from a dataset
predicts the observed outcomes in the dataset, with partic-
ular focus on the deviance statistic and the Hosmer‐Leme-
show statistic.

New Chap. 10 addresses methods for assessing the extent
that a fitted binary logistic model can be used to distin-
guish the observed cases from the observed noncases, with
particular focus on ROC curves.

The modified appendix, Computer Programs for Logistic
Regression, updates the corresponding appendix from the
second edition. This appendix provides computer code and
examples of computer programs for the different types of
logistic models described in this third edition. The appen-
dix is intended to describe the similarities and differences
among some of the most widely used computer packages.
The software packages considered are SAS version 9.2,
SPSS version 16.0, and Stata version 10.0

Suggestions for
Use

This text was originally intended for self‐study, but in the 16
years since the first edition was published, it has also been
effectively used as a text in a standard lecture‐type classroom
format. Alternatively, the text may be used to supplement
material covered in a course or to review previously learned
material in a self‐instructional or distance‐learning format.
Amore individualized learning programmay be particularly
suitable to a working professional who does not have the
time to participate in a regularly scheduled course.

The order of the chapters represents what the authors
consider to be the logical order for learning about logistic
regression. However, persons with some knowledge of the
subject can choose whichever chapter appears appropriate
to their learning needs in whatever sequence desired.

The last three chapters (now 14–16) on methods for ana-
lyzing correlated data are somewhat more mathematically
challenging than the earlier chapters, but have beenwritten

xiv Preface



to logically follow the preceding material and to highlight
the principal features of the methods described rather than
to give a detailed mathematical formulation.

In working with any chapter, the user is encouraged first to
read the abbreviated outline and the objectives, and then
work through the presentation. After finishing the presen-
tation, the user is encouraged to read the detailed outline
for a summary of the presentation, review key formulae
and other important information, work through the prac-
tice exercises, and, finally, complete the test to check what
has been learned.

Recommended
Preparation

The ideal preparation for this text is a course on quantitative
methods in epidemiology and a course in applied multiple
regression. The following are recommended references on
these subjects with suggested chapter readings:

Kleinbaum, D.G., Kupper, L.L., and Morgenstern, H., Epi-
demiologic Research: Principles and Quantitative Methods,
Wiley, New York, 1982, Chaps. 1–19.

Kleinbaum, D.G., Kupper, L.L., Nizam, A., and Muller,
K.A., Applied Regression Analysis and Other Multivariable
Methods, Fourth Edition, Duxbury Press/Cengage Learning,
Pacific Grove, 2008, Chaps. 1–16.

Kleinbaum, D.G., ActivEpi‐ A CD‐Rom Text, Springer, New
York, 2003, Chaps. 3–15.

A first course on the principles of epidemiologic research
would be helpful since this text is written from the perspec-
tive of epidemiologic research. In particular, the learner
should be familiar with basic characteristics of epidemio-
logic study designs and should have some understanding
of the frequently encountered problem of controlling/
adjusting for variables.

As for mathematics prerequisites, the learner should be
familiar with natural logarithms and their relationship to
exponentials (powers of e) and, more generally, should be
able to read mathematical notation and formulae.

Atlanta, GA David G. Kleinbaum
Mitchel Klein
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Introduction This introduction to logistic regression describes the rea-
sons for the popularity of the logistic model, the model
form, how the model may be applied, and several of its
key features, particularly how an odds ratio can be derived
and computed for this model.

As preparation for this chapter, the reader should have some
familiarity with the concept of a mathematical model, par-
ticularly a multiple-regression-type model involving inde-
pendent variables and a dependent variable. Although
knowledge of basic concepts of statistical inference is not
required, the learner should be familiar with the distinction
between population and sample, and the concept of a
parameter and its estimate.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. The multivariable problem (pages 4–5)

II. Why is logistic regression popular? (pages 5–7)

III. The logistic model (pages 7–8)

IV. Applying the logisticmodel formula (pages 9–11)

V. Study design issues (pages 11–15)

VI. Risk ratios vs. odds ratios (pages 15–16)

VII. Logit transformation (pages 16–22)

VIII. Derivation of OR formula (pages 22–25)

IX. Example of OR computation (pages 25–26)

X. Special case for (0, 1) variables (pages 27–28)

2 1. Introduction to Logistic Regression



Objectives Upon completing this chapter, the learner should be able to:

1. Recognize the multivariable problem addressed by
logistic regression in terms of the types of variables
considered.

2. Identify properties of the logistic function that explain
its popularity.

3. State the general formula for the logistic model and
apply it to specific study situations.

4. Compute the estimated risk of disease development
for a specified set of independent variables from a
fitted logistic model.

5. Compute and interpret a risk ratio or odds ratio
estimate from a fitted logistic model.

6. Identify the extent to which the logistic model is
applicable to followup, case-control, and/or cross-
sectional studies.

7. Identify the conditions required for estimating a risk
ratio using a logistic model.

8. Identify the formula for the logit function and apply
this formula to specific study situations.

9. Describe how the logit function is interpretable in
terms of an “odds.”

10. Interpret the parameters of the logistic model in terms
of log odds.

11. Recognize that to obtain an odds ratio from a logistic
model, you must specify X for two groups being
compared.

12. Identify two formulae for the odds ratio obtained
from a logistic model.

13. State the formula for the odds ratio in the special case
of (0, 1) variables in a logistic model.

14. Describe how the odds ratio for (0, 1) variables is an
“adjusted” odds ratio.

15. Compute the odds ratio, given an example involving a
logistic model with (0, 1) variables and estimated
parameters.

16. State a limitation regarding the types of variables in
the model for use of the odds ratio formula for (0, 1)
variables.

Objectives 3



Presentation

FOCUS

Form
Characteristics
Applicability

I. The Multivariable
Problem

E D?

E, C1, C2, C3 D?

independent dependent

This presentation focuses on the basic features
of logistic regression, a popular mathematical
modeling procedure used in the analysis of
epidemiologic data. We describe the form and
key characteristics of the model. Also, we dem-
onstrate the applicability of logisticmodeling in
epidemiologic research.

We begin by describing the multivariable prob-
lem frequently encountered in epidemiologic
research. A typical question of researchers is:
What is the relationship of one or more expo-
sure (or study) variables (E) to a disease or
illness outcome (D)?

To illustrate, we will consider a dichotomous
disease outcome with 0 representing not dis-
eased and 1 representing diseased. The dichot-
omous disease outcome might be, for example,
coronary heart disease (CHD) status, with sub-
jects being classified as either 0 (“without
CHD”) or 1 (“with CHD”).

Suppose, further, that we are interested in a
single dichotomous exposure variable, for
instance, smoking status, classified as “yes” or
“no”. The research question for this example is,
therefore, to evaluate the extent to which
smoking is associated with CHD status.

To evaluate the extent to which an exposure,
like smoking, is associated with a disease, like
CHD, we must often account or “control for”
additional variables, such as age, race, and/or
sex, which are not of primary interest. We have
labeled these three control variables as C1, C2,
and C3.

In this example, the variable E (the exposure
variable), together with C1, C2, and C3 (the con-
trol variables), represents a collection of inde-
pendent variables that we wish to use to
describe or predict the dependent variable D.

EXAMPLE

D(0, 1) ¼ CHD

E(0, 1) ¼ SMK

SMK CHD

“control for”

C1 ¼ AGE

C2 ¼ RACE

C3 ¼ SEX

4 1. Introduction to Logistic Regression



Independent variables:
X1, X2, . . . , Xk

Xs may be Es, Cs, or combinations

The Multivariable Problem

X1, X2, . . . , Xk D

The analysis:
mathematical model

Logistic model:
dichotomous D

Logistic is most popular

II. Why Is Logistic
Regression Popular?

1
Logistic
function:

0– ∞ + ∞

1/2
f (z )  =

1 + e–z
1

z

More generally, the independent variables can
be denoted as X1, X2, and so on up to Xk, where
k is the number of variables being considered.

We have a flexible choice for the Xs, which can
represent any collection of exposure variables,
control variables, or even combinations of such
variables of interest.

For example, we may have the following:

X1 equal to an exposure variable E

X2 and X3 equal to control variables C1 and C2,
respectively

X4 equal to the product E � C1

X5 equal to the product C1 � C2

X6 equal to E2

Whenever we wish to relate a set of Xs to a
dependent variable, like D, we are considering
amultivariable problem. In the analysis of such
a problem, some kind ofmathematical model is
typically used to deal with the complex inter-
relationships among many variables.

Logistic regression is a mathematical modeling
approach that can be used to describe the rela-
tionship of several Xs to a dichotomous depen-
dent variable, such as D.

Other modeling approaches are possible also,
but logistic regression is by far the most popu-
lar modeling procedure used to analyze epide-
miologic data when the illness measure is
dichotomous. We will show why this is true.

To explain the popularity of logistic regression,
we show here the logistic function, which
describes the mathematical form on which
the logistic model is based. This function, called
f(z), is given by 1 over 1 plus e to the minus z.
We have plotted the values of this function as z
varies from �1 to +1.

EXAMPLE

X1 ¼ E X4 ¼ E� C1

X2 ¼ C1 X5 ¼ C1 � C2

X2 ¼ C2 X6 ¼ E2

Presentation: II. Why Is Logistic Regression Popular? 5



1

f(z)

0– ∞ + ∞

1/2

z

f(–∞) = 
1 + e–(– ∞)

1

= 
1 + e∞

1

= 0

f(+∞) = 
1 + e–(+∞)

1

= 
1 + e–∞

1

= 1

Range: 0 � f(z) � 1

0� probability� 1 (individual risk)

Shape:

1

S-shape

0– ∞ + ∞

f(z
) in

creasing

f (z) ≈ 0

f (z) ≈ 1

z

Notice, in the balloon on the left side of the
graph, that when z is �1, the logistic function
f(z) equals 0.

On the right side, when z is +1, then f(z) equals 1.

Thus, as the graph describes, the range of f(z) is
between 0 and 1, regardless of the value of z.

The fact that the logistic function f(z) ranges
between 0 and 1 is the primary reason the logis-
tic model is so popular. The model is designed
to describe a probability, which is always some
number between 0 and 1. In epidemiologic
terms, such a probability gives the risk of an
individual getting a disease.

The logistic model, therefore, is set up to ensure
that whatever estimate of risk we get, it will
always be some number between 0 and 1.
Thus, for the logistic model, we can never get
a risk estimate either above 1 or below 0. This is
not always true for other possible models,
which is why the logistic model is often the
first choice when a probability is to be esti-
mated.

Another reason why the logistic model is pop-
ular derives from the shape of the logistic func-
tion. As shown in the graph, it we start at
z ¼ �1 and move to the right, then as z
increases, the value of f(z) hovers close to zero
for a while, then starts to increase dramatically
toward 1, and finally levels off around 1 as z
increases toward +1. The result is an elon-
gated, S-shaped picture.

6 1. Introduction to Logistic Regression



z ¼ index of combined risk factors

1

threshold

0– ∞ + ∞

1/2
S-shape

z

III. The Logistic Model

z ¼ aþ b1X1 þ b2X2 þ . . .þ bkXk

z = a + b1X1 + b2X2 + ... + bkXk

f  z = 
1 + e–z

1

=
1 + e–(a+

1
biXi)

The S-shape of the logistic function appeals to
epidemiologists if the variable z is viewed as
representing an index that combines contribu-
tions of several risk factors, and f(z) represents
the risk for a given value of z.

Then, the S-shape of f(z) indicates that the effect
of z on an individual’s risk is minimal for low zs
until some threshold is reached. The risk then
rises rapidly over a certain range of intermedi-
ate z values and then remains extremely high
around 1 once z gets large enough.

This threshold idea is thought by epidemiolo-
gists to apply to a variety of disease conditions.
In other words, an S-shaped model is consid-
ered to be widely applicable for considering the
multivariable nature of an epidemiologic research
question.

Now, let us go from the logistic function to the
model, which is our primary focus.

To obtain the logistic model from the logistic
function, we write z as the linear sum a plus b1
times X1 plus b2 times X2, and so on to bk times
Xk, where the Xs are independent variables of
interest and a and the bi are constant terms
representing unknown parameters.

In essence, then, z is an index that combines the Xs.

We now substitute the linear sum expression
for z in the right-hand side of the formula for
f(z) to get the expression f(z) equals 1 over 1
plus e to minus the quantity a plus the sum of
biXi for i ranging from 1 to k. Actually, to view
this expression as a mathematical model, we
must place it in an epidemiologic context.

SUMMARY So, the logistic model is popular because the
logistic function, on which themodel is based,
provides the following:

� Estimates that must lie in the range
between zero and one

� An appealing S-shaped description of the
combined effect of several risk factors on
the risk for a disease.

Presentation: III. The Logistic Model 7



Epidemiologic framework

X1, X2, . . . , Xk measured at T0

T1Time: T0

D(0,1)X1, X2, . . . , Xk

P(D ¼ 1|X1, X2, . . . , Xk)

DEFINITION
Logistic model:

P D ¼ 1jX1;X2; . . . ;Xkð Þ

¼ 1

1þ e� aþ~biXið Þ
" "

unknown parameters

NOTATION
P(D ¼ 1|X1, X2, . . . , Xk)

¼ P(X)

Model formula:

P
�
X
� ¼ 1

1þ e�ðaþ~biXiÞ

The logistic model considers the following gen-
eral epidemiologic study framework: We have
observed independent variables X1, X2, and so
on up to Xk on a group of subjects, for whomwe
have also determined disease status, as either 1
if “with disease” or 0 if “without disease”.

We wish to use this information to describe the
probability that the disease will develop during
a defined study period, say T0 to T1, in a disease-
free individual with independent variable values
X1, X2, up to Xk, which are measured at T0.

The probability being modeled can be denoted
by the conditional probability statement
P(D¼1 | X1, X2, . . . , Xk).

The model is defined as logistic if the expres-
sion for the probability of developing the dis-
ease, given the Xs, is 1 over 1 plus e to minus
the quantity a plus the sum from i equals 1 to k
of bi times Xi.

The terms a and bi in this model represent
unknown parameters that we need to estimate
based on data obtained on the Xs and on D
(disease outcome) for a group of subjects.

Thus, if we knew the parameters a and the bi
and we had determined the values of X1

through Xk for a particular disease-free individ-
ual, we could use this formula to plug in these
values and obtain the probability that this indi-
vidual would develop the disease over some
defined follow-up time interval.

For notational convenience, we will denote the
probability statement P(D¼1 |X1, X2, . . . , Xk) as
simply P(X) where the bold X is a shortcut
notation for the collection of variables X1

through Xk.

Thus, the logistic model may be written as P(X)
equals 1 over 1 plus e to minus the quantity a
plus the sum biXi.

8 1. Introduction to Logistic Regression



IV. Applying the Logistic
Model Formula

DEFINITION
fit: use data to estimate

a, b1, b2, b3

NOTATION
hat ¼ ˆ

parameter() estimator

a b1 b2 â b̂1 b̂2

Method of estimation:
maximum likelihood (ML) – see
Chaps. 4 and 5

To illustrate the use of the logistic model, sup-
pose the disease of interest is D equals CHD.
Here CHD is coded 1 if a person has the disease
and 0 if not.

We have three independent variables of inter-
est: X1 ¼ CAT, X2 ¼ AGE, and X3 ¼ ECG. CAT
stands for catecholamine level and is coded 1 if
high and 0 if low, AGE is continuous, and ECG
denotes electrocardiogram status and is coded
1 if abnormal and 0 if normal.

We have a data set of 609 white males on which
we measured CAT, AGE, and ECG at the start
of study. These people were then followed for 9
years to determine CHD status.

Suppose that in the analysis of this data set, we
consider a logistic model given by the expres-
sion shown here.

We would like to “fit” this model; that is, we
wish to use the data set to estimate the
unknown parameters a, b1, b2, and b3.

Using common statistical notation, we distin-
guish the parameters from their estimators by
putting a hat symbol on top of a parameter to
denote its estimator. Thus, the estimators of
interest here are a “hat,” b1 “hat,” b2 “hat,”
and b3 “hat”.

The method used to obtain these estimates is
called maximum likelihood (ML). In two later
chapters (Chaps. 4 and 5), we describe how the
ML method works and how to test hypotheses
and derive confidence intervals about model
parameters.

Suppose the results of our model fitting yield
the estimated parameters shown on the left.

EXAMPLE

D ¼ CHD(0, 1)

X1 ¼ CAT(0, 1)

X2 ¼ AGEcontinuous

X3 ¼ ECG(0, 1)

n ¼ 609 white males

9-year follow-up

P
�
X
� ¼ 1

1þ e� aþb1CATþb2AGEþb3ECGð Þ

EXAMPLE

â ¼ �3:911
b̂1 ¼ 0:652

b̂2 ¼ 0:029

b̂3 ¼ 0:342

Presentation: IV. Applying the Logistic Model Formula 9



Our fitted model thus becomes P̂ Xð Þ equals 1
over 1 plus e to minus the linear sum �3.911
plus 0.652 times CAT plus 0.029 times AGE
plus 0.342 times ECG. We have replaced P by

P̂ Xð Þ on the left-hand side of the formula
because our estimated model will give us an
estimated probability, not the exact probability.

Suppose we want to use our fitted model, to
obtain the predicted risk for a certain individual.

To do so, we would need to specify the values
of the independent variables (CAT, AGE,
ECG) for this individual and then plug these
values into the formula for the fitted model to
compute the estimated probability, P̂ Xð Þ for
this individual. This estimate is often called a
“predicted risk”, or simply “risk”.

To illustrate the calculation of a predicted risk,
suppose we consider an individual with CAT
¼ 1, AGE ¼ 40, and ECG ¼ 0.

Plugging these values into the fitted model
gives us 1 over 1 plus e to minus the quantity
�3.911 plus 0.652 times 1 plus 0.029 times 40
plus 0.342 times 0. This expression simplifies
to 1 over 1 plus e to minus the quantity �2.101,
which further reduces to 1 over 1 plus 8.173,
which yields the value 0.1090.

Thus, for a person with CAT ¼ 1, AGE ¼ 40,
and ECG ¼ 0, the predicted risk obtained from
the fitted model is 0.1090. That is, this person’s
estimated risk is about 11%.

Here, for the same fitted model, we compare
the predicted risk of a person with CAT ¼ 1,
AGE ¼ 40, and ECG ¼ 0 with that of a person
with CAT ¼ 0, AGE ¼ 40, and ECG ¼ 0.

We previously computed the risk value of
0.1090 for the first person. The second proba-
bility is computed the same way, but this time
we must replace CAT ¼ 1 with CAT ¼ 0. The
predicted risk for this person turns out to be
0.0600. Thus, using the fitted model, the per-
son with a high catecholamine level has an 11%
risk for CHD, whereas the person with a low
catecholamine level has a 6% risk for CHD over
the period of follow-up of the study.

EXAMPLE (continued)

P̂
�
X
�

¼ 1

1þ e�½�3:911þ0:652 CATð Þþ0:029 AGEð Þþ0:342 ECGð Þ�

P̂ Xð Þ ¼ ?

CAT = ?

ECG = ?

AGE = ? P̂
�
X
�

predicted

risk

CAT = 1

AGE = 40

ECG = 0

P̂ Xð Þ

¼ 1

1þ e�
�
�3:911þ0:652

�
1
�
þ0:029

�
40
�
þ0:342

�
0
��

¼ 1

1þ e�
�
�2:101

�
¼ 1

1þ 8:173

¼ 0:1090; i:e:; risk ’ 11%

CAT = 1

AGE = 40

ECG = 0

CAT = 0

AGE = 40

ECG = 0

P̂1 Xð Þ
P̂0 Xð Þ ¼

0:1090

0:0600

11% risk /6% risk

10 1. Introduction to Logistic Regression



� RR (direct method)

Conditions for RR (direct method):

ü Follow-up study

ü Specify all Xs

� RR (indirect method):

ü OR

ü Assumptions

� OR: direct estimate from:

ü Follow-up

ü Case-control

ü Cross-sectional

V. Study Design Issues

$ Follow-up study orientation

X1, X2, . . . , Xk D(0,1)

Note that, in this example, if we divide the
predicted risk of the person with high catechol-
amine by that of the person with low catechol-
amine, we get a risk ratio estimate, denoted bydRR, of 1.82. Thus, using the fitted model, we
find that the person with high CAT has almost
twice the risk of the person with low CAT,
assuming both persons are of AGE 40 and
have no previous ECG abnormality.

We have just seen that it is possible to use a
logistic model to obtain a risk ratio estimate
that compares two types of individuals. We will
refer to the approach we have illustrated above
as the direct method for estimating RR.

Two conditions must be satisfied to estimate
RR directly. First, we must have a follow-up
study so that we can legitimately estimate indi-
vidual risk. Second, for the two individuals
being compared, we must specify values for all
the independent variables in our fitted model to
compute risk estimates for each individual.

If either of the above conditions is not satisfied,
then we cannot estimate RR directly. That is, if
our study design is not a follow-up study or if
some of the Xs are not specified, we cannot
estimate RR directly. Nevertheless, it may be
possible to estimate RR indirectly. To do this,
we must first compute an odds ratio, usually
denoted as OR, and we must make some
assumptions that we will describe shortly.

In fact, the odds ratio (OR), not the risk ratio
(RR), is the only measure of association directly
estimated from a logistic model (without requir-
ing special assumptions), regardless of whether
the study design is follow-up, case- control, or
cross-sectional. To see how we can use the logis-
tic model to get an odds ratio, we need to look
more closely at some of the features of themodel.

An important feature of the logistic model is that
it is defined with a follow-up study orientation.
That is, as defined, this model describes the
probability of developing a disease of interest
expressed as a function of independent variables
presumed to have beenmeasured at the start of a
fixed follow-up period. For this reason, it is nat-
ural towonderwhether themodel can be applied
to case-control or cross-sectional studies.

EXAMPLE

P̂1 Xð Þ
P̂0 Xð Þ ¼

0:109

0:060
¼ 1:82 risk ratio ðdRRÞ

Presentation: V. Study Design Issues 11



ü Case-control
ü Cross-sectional

Breslow and Day (1981)
Prentice and Pike (1979)

Robust conditions
Case-control studies

Robust conditions
Cross-sectional studies

E

E

D

D

Case control:

Follow-up:

Treat case control like follow-up

LIMITATION

case-control and
cross-sectional studies:

individual risk

ü OR

The answer is yes: logistic regression can be
applied to study designs other than follow-up.

Two papers, one by Breslow and Day in 1981
and the other by Prentice and Pike in 1979 have
identified certain “robust” conditions under
which the logistic model can be used with
case-control data. “Robust” means that the
conditions required, which are quite complex
mathematically and equally as complex to ver-
ify empirically, apply to a large number of data
situations that actually occur.

The reasoning provided in these papers carries
over to cross-sectional studies also, though this
has not been explicitly demonstrated in the
literature.

In terms of case-control studies, it has been
shown that even though cases and controls
are selected first, after which previous expo-
sure status is determined, the analysis may
proceed as if the selection process were the
other way around, as in a follow-up study.

In other words, evenwith a case-control design,
one can pretend, when doing the analysis, that
the dependent variable is disease outcome and
the independent variables are exposure status
plus any covariates of interest. When using a
logistic model with a case-control design, you
can treat the data as if it came from a follow-up
study and still get a valid answer.

Although logisticmodeling is applicable to case-
control and cross-sectional studies, there is one
important limitation in the analysis of such
studies. Whereas in follow-up studies, as we
demonstrated earlier, a fitted logistic model
can be used to predict the risk for an individual
with specified independent variables, thismodel
cannot be used to predict individual risk for
case-control or cross-sectional studies. In fact,
only estimates of odds ratios can be obtained for
case-control and cross-sectional studies.

12 1. Introduction to Logistic Regression



Simple Analysis

E ¼ 1 E ¼ 0

D ¼ 1 a b

D ¼ 0 c d

Risk: only in follow-up
OR: case-control or cross-sectional

cOR ¼ ad=bc

Case-control and cross-sectional
studies:

¼
P̂ E ¼ 1jD ¼ 1ð Þ.̂

P E ¼ 0jD ¼ 1ð Þ
P̂ E ¼ 1jD ¼ 0ð Þ.̂

P E ¼ 0jD ¼ 0ð Þ

P(E | D) (general form)
P(E = 1 | D = 1)

P(E = 1 | D = 0)

ˆ

ˆ

Risk : P D jEð Þ

cRR ¼ P̂ D ¼ 1jE ¼ 1ð Þ
P̂ D ¼ 1jE ¼ 0ð Þ

The fact that only odds ratios, not individual
risks, can be estimated from logistic modeling
in case-control or cross-sectional studies is not
surprising. This phenomenon is a carryover of
a principle applied to simpler data analysis
situations, in particular, to the simple analysis
of a 2 � 2 table, as shown here.

For a 2� 2 table, risk estimates can be used only
if the data derive from a follow-up study,
whereas only odds ratios are appropriate if
the data derive from a casecontrol or cross-
sectional study.

To explain this further, recall that for 2� 2
tables, the odds ratio is calculated as cOR equals
a times d over b times c, where a, b, c, and d are
the cell frequencies inside the table.

In case-control and cross-sectional studies, this
OR formula can alternatively be written, as
shown here, as a ratio involving probabilities
for exposure status conditional on disease status.

In this formula, for example, the term

P̂ðE ¼ 1jD ¼ 1Þ is the estimated probability of
being exposed, given that you are diseased. Sim-
ilarly, the expression P̂ðE ¼ 1jD ¼ 0Þ is the esti-
mated probability of being exposed given that
you are not diseased. All the probabilities in this
expression are of the general form P(E | D).

In contrast, in follow-up studies, formulae for
risk estimates are of the form P(D | E), in which
the exposure and disease variables have been
switched to the opposite side of the “given” sign.

For example, the risk ratio formula for follow-
up studies is shown here. Both the numerator
and denominator in this expression are of the
form P(D | E).
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Case-control or cross-sectional
studies:

P(D E)

ü P(E | D) 6¼ risk

P(X) =ˆ

1+e

1

estimates

–(a +   b iXi)ˆ ˆ

Case control:

a ⇒ P (X)ˆ ˆ

Follow-up:

â) P̂ðXÞ
Case-control and cross-sectional:

üb̂i; cOR

Thus, in case-control or cross-sectional stud-
ies, risk estimates cannot be estimated because
such estimates require conditional probabil-
ities of the form P(D | E), whereas only esti-
mates of the form P(E | D) are possible. This
classic feature of a simple analysis also carries
over to a logistic analysis.

There is a simple mathematical explanation for
why predicted risks cannot be estimated using
logistic regression for case-control studies. To
see this, we consider the parameters a and the
bs in the logistic model. To get a predicted risk

P̂ðXÞ from fitting this model, we must obtain
valid estimates of a and the bs, these estimates
being denoted by “hats” over the parameters in
the mathematical formula for the model.

When using logistic regression for case-control
data, the parameter a cannot be validly esti-
mated without knowing the sampling fraction
of the population. Without having a “good”
estimate of a, we cannot obtain a good estimate
of the predicted risk P̂ðXÞ because â is required
for the computation.

In contrast, in follow-up studies, a can be esti-
mated validly, and, thus, P(X) can also be esti-
mated.

Now, although a cannot be estimated from a
case-control or cross-sectional study, the
bs can be estimated from such studies. As we
shall see shortly, the bs provide information
about odds ratios of interest. Thus, even
though we cannot estimate a in such studies,
and therefore cannot obtain predicted risks, we
can, nevertheless, obtain estimated measures
of association in terms of odds ratios.

Note that if a logisticmodel is fit to case-control
data, most computer packages carrying out
this task will provide numbers corresponding
to all parameters involved in the model, includ-
ing a. This is illustrated here with some ficti-
tious numbers involving three variables, X1, X2,
and X3. These numbers include a value
corresponding to a, namely, �4.5, which corre-
sponds to the constant on the list.

EXAMPLE

Case-control Printout

Variable Coefficient

Constant � 4:50 ¼ â

X1 0:70 ¼ b̂1

X2 0:05 ¼ b̂2
X3 0:42 ¼ b̂3

14 1. Introduction to Logistic Regression



VI. Risk Ratios vs. Odds
Ratios

OR

vs. ? follow-up study

RR

However, according to mathematical theory,
the value provided for the constant does not
really estimate a. In fact, this value estimates
some other parameter of no real interest. There-
fore, an investigator should be forewarned that,
even though the computer will print out a num-
ber corresponding to the constant a, the num-
ber will not be an appropriate estimate of a in
case-control or cross-sectional studies.

The use of an odds ratio estimatemay still be of
some concern, particularly when the study is a
follow-up study. In follow-up studies, it is com-
monly preferred to estimate a risk ratio rather
than an odds ratio.

We previously illustrated that a risk ratio can
be estimated for follow-up data provided all the
independent variables in the fitted model are
specified. In the example, we showed that we
could estimate the risk ratio for CHD by com-
paring high catecholamine persons (that is,
those with CAT ¼ 1) to low catecholamine per-
sons (those with CAT ¼ 0), given that both per-
sons were 40 years old and had no previous
ECG abnormality. Here, we have specified
values for all the independent variables in our
model, namely, CAT, AGE, and ECG, for the
two types of persons we are comparing.

EXAMPLE (repeated)

Case-control Printout

Variable Coefficient

Constant � 4:50 ¼ â

X1 0:70 ¼ b̂1
X2 0:05 ¼ b̂2
X3 0:42 ¼ b̂3

â not a valid estimate of a

SUMMARY

Logistic
Model P̂ðXÞ OR

Follow-up ü ü ü

Case-control ü X ü

Cross-sectional ü X ü

We have described that the logistic model can
be applied to case-control and cross-sectional
data, even though it is intended for a follow-
up design. When using case-control or cross-
sectional data, however, a key limitation is
that you cannot estimate risks like P̂ðXÞ, even
though you can still obtain odds ratios. This
limitation is not extremely severe if the goal of
the study is to obtain a valid estimate of an
exposure–disease association in terms of an
odds ratio.

EXAMPLE

cRR¼ P̂ðCHD¼ 1jCAT ¼ 1; AGE ¼ 40; ECG¼ 0Þ
P̂ðCHD¼ 1jCAT ¼ 0; AGE ¼ 40; ECG¼ 0Þ

Model:

PðXÞ ¼ 1

1þ e�ðaþb1 CATþb2 AGEþb3ECGÞ
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Control variables unspecified:

cOR directly

cRR indirectly
provided cOR � cRR

Rare disease OR RR (or PR)
Yes

p p

No
p

Other

Other
p

Log-binomial model
Poisson model
COPY method

VII. Logit Transformation

OR: Derive and Compute

Nevertheless, it is more common to obtain an
estimate of RR or OR without explicitly speci-
fying the control variables. In our example, we
want to compare high CAT with low CAT per-
sons keeping the control variables like AGE
and ECG fixed but unspecified. In other
words, the question is typically asked: What is
the effect of the CAT variable controlling for
AGE and ECG, considering persons who have
the same AGE and ECG, regardless of the
values of these two variables?

When the control variables are generally consid-
ered to be fixed, but unspecified, as in the last
example, we can use logistic regression to obtain
an estimate of the OR directly, but we cannot
estimate the RR. We can, however, obtain a RR
indirectly if we can justify using the rare disease
assumption, which assumes that the disease is
sufficiently “rare” to allow the OR to provide a
close approximation to the RR.

If we cannot invoke the rare disease assump-
tion, several alternativemethods for estimating
an adjusted RR (or prevalence ratio, PR) from
logistic modeling have been proposed in the
recent literature. These include “standardiza-
tion” (Wilcosky and Chambless, 1985 and
Flanders and Rhodes, 1987); a “case-cohort
model” (Schouten et al., 1993); a “log-binomial
model (Wacholder, 1986 and Skov et al., 1998);
a “Poisson regression model” (McNutt et al.,
2003 and Barros and Hirakata, 2003); and a
“COPYmethod” (Deddens and Petersen, 2008).

The latter paper reviews all previous
approaches. They conclude that a log-binomial
model should be preferred when estimating RR
or PR in a study with a common outcome.
However, if the log-binomial model does not
converge, they recommend using either the
COPY method or the robust Poisson method.
For further details, see the above references.

Having described why the odds ratio is the
primary parameter estimated when fitting a
logistic regression model, we now explain
how an odds ratio is derived and computed
from the logistic model.

EXAMPLE (continued)

cRR ¼ P̂ðCHD ¼ 1jCAT ¼ 1; AGE ¼ 40; ECG ¼ 0Þ
P̂ðCHD ¼ 1jCAT ¼ 0;AGE ¼ 40; ECG ¼ 0Þ

AGE uspecified but fixed

ECG unspecified but fixed
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Logit

logit PðXÞ ¼ lne
P Xð Þ

1� PðXÞ
� �

;

where

PðXÞ ¼ 1

1þ e�ðaþ~biXiÞ

(1) P(X)

(2) 1 � P(X)

(3)
PðXÞ

1� PðXÞ
(4) lne

PðXÞ
1� PðXÞ

� �

logit P(X) = lne

P(X)

P(X) =

1 – P(X)
= ?

1

1 + e–(a+   biXi)

To begin the description of the odds ratio in
logistic regression, we present an alternative
way to write the logistic model, called the logit
form of the model. To get the logit from the
logistic model, we make a transformation of
the model.

The logit transformation, denoted as logit P(X),
is given by the natural log (i.e., to the base e) of
the quantity P(X) divided by one minus P(X),
where P(X) denotes the logistic model as previ-
ously defined.

This transformation allows us to compute a
number, called logit P(X), for an individual
with independent variables given by X. We do
so by:

(1) computing P(X) and

(2) 1 minus P(X) separately, then

(3) dividing one by the other, and finally

(4) taking the natural log of the ratio.

For example, if P(X) is 0.110, then

1 minus P(X) is 0.890,

the ratio of the two quantities is 0.123,

and the log of the ratio is �2.096.

That is, the logit of 0.110 is �2.096.

Now we might ask, what general formula do we
get when we plug the logistic model form into the
logit function? What kind of interpretation can
we give to this formula? How does this relate to
an odds ratio?

Let us consider the formula for the logit func-
tion. We start with P(X), which is 1 over 1 plus
e to minus the quantity a plus the sum of the
biXi.

EXAMPLE

(1) P(X) ¼ 0.110

(2) 1 � P(X) ¼ 0.890

(3)
PðXÞ

1� PðXÞ ¼
0:110

0:890
¼ 0:123

(4) lne
PðXÞ

1�PðXÞ
h i

¼ lnð0:123Þ ¼ �2:096

i.e., logit (0.110) ¼ �2.096
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1� PðXÞ ¼ 1� 1

1þ e� aþ~biXið Þ

¼ e� aþ~biXið Þ
1þ e� aþ~biXið Þ

P(X)

1 – P(X)

1

1+e–(a+   biXi)

1+e–(a+   biXi)

e–(a+   biXi)
=

¼ e

�
aþ~biXi

�

lne
PðXÞ

1� PðXÞ
� �

¼ lne e aþ~biXið Þh i
¼ aþ~biXi

� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
linear sum

Logit form: logit PðXÞ ¼ aþ~biXi;

where

PðXÞ ¼ 1

1þ e� aþ~biXið Þ

logit P(X) OR?

PðXÞ
1� PðXÞ ¼ odds for individualX

odds ¼ P

1� P

Also, using some algebra, we can write 1� P(X)
as:

e to minus the quantity a plus the sum of biXi

divided by one over 1 plus e to minus a plus the
sum of the biXi.

If we divide P(X) by 1� P(X), then the denomi-
nators cancel out,

and we obtain e to the quantity a plus the sum
of the biXi.

We then compute the natural log of the for-
mula just derived to obtain:

the linear sum a plus the sum of biXi.

Thus, the logit of P(X) simplifies to the linear
sum found in the denominator of the formula
for P(X).

For the sake of convenience, many authors
describe the logistic model in its logit form
rather than in its original form as P(X). Thus,
when someone describes a model as logit P(X)
equal to a linear sum, we should recognize that
a logistic model is being used.

Now, having defined and expressed the for-
mula for the logit form of the logistic model,
we ask, where does the odds ratio come in? As a
preliminary step to answering this question,
we first look more closely at the definition of
the logit function. In particular, the quantity
P(X) divided by 1� P(X), whose log value gives
the logit, describes the odds for developing the
disease for a person with independent vari-
ables specified by X.

In its simplest form, an odds is the ratio of the
probability that some event will occur over the
probability that the same event will not occur.
The formula for an odds is, therefore, of the
form P divided by 1�P, where P denotes the
probability of the event of interest.

18 1. Introduction to Logistic Regression



odds : 
P(X) P

1 – P1 – P(X)
vs.

describes risk in
logistic model for
individual X

logit PðXÞ¼ lne
PðXÞ

1�PðXÞ
� �

¼ log odds for individualX

¼ aþ~biXi

For example, if P equals 0.25, then 1 � P, the
probability of the opposite event, is 0.75 and
the odds is 0.25 over 0.75, or one-third.

An odds of one-third can be interpreted to
mean that the probability of the event occur-
ring is one-third the probability of the event not
occurring. Alternatively, we can state that the
odds are 3 to 1 that the event will not happen.

The expression P(X) divided by 1 � P(X) has
essentially the same interpretation as P over
1 � P, which ignores X.

The main difference between the two formulae
is that the expression with the X is more spe-
cific. That is, the formula with X assumes that
the probabilities describe the risk for develop-
ing a disease, that this risk is determined by a
logistic model involving independent variables
summarized byX, and that we are interested in
the odds associated with a particular specifica-
tion of X.

Thus, the logit form of the logistic model,
shown again here, gives an expression for the
log odds of developing the disease for an indi-
vidual with a specific set of Xs.

And, mathematically, this expression equals a
plus the sum of the bi Xi.

As a simple example, consider what the logit
becomes when all the Xs are 0. To compute
this, we need to work with the mathematical
formula, which involves the unknown para-
meters and the Xs.

If we plug in 0 for all the Xs in the formula, we
find that the logit of P(X) reduces simply to a.

Because we have already seen that any logit
can be described in terms of an odds, we can
interpret this result to give some meaning to
the parameter a.

One interpretation is that a gives the log odds
for a person with zero values for all Xs.

EXAMPLE

P = 0.25

odds ¼ P

1� P
¼ 0:25

0:75
¼ 1

3

1

3

 event occurs

 event does not occur

3 to 1 event will not happen

EXAMPLE

all Xi = 0: logit P(X) = ?

logit P(X) = a +   biXi

logit P(X) ⇒ a

0

INTERPRETATION

(1) a ¼ log odds for individual with
all Xi ¼ 0
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a ü
bi?

X1;X2
fixed

; . . . ; Xi;
varies

. . . ; Xk
fixed

A second interpretation is that a gives the log of
the background, or baseline, odds.

The first interpretation for a, which considers
it as the log odds for a person with 0 values for
all Xs, has a serious limitation: There may not
be any person in the population of interest with
zero values on all the Xs.

For example, no subject could have zero values
for naturally occurring variables, like age or
weight. Thus, it would not make sense to talk
of a person with zero values for all Xs.

The second interpretation for a is more appeal-
ing: to describe it as the log of the background,
or baseline, odds.

By background odds, we mean the odds that
would result for a logistic model without any
Xs at all.

The form of such a model is 1 over 1 plus e to
minus a. We might be interested in this model
to obtain a baseline risk or odds estimate that
ignores all possible predictor variables. Such
an estimate can serve as a starting point for
comparing other estimates of risk or odds
when one or more Xs are considered.

Because we have given an interpretation to a,
can we also give an interpretation to bi? Yes, we
can, in terms of either odds or odds ratios. We
will turn to odds ratios shortly.

With regard to the odds, we need to consider
what happens to the logit when only one of the
Xs varies while keeping the others fixed.

For example, if our Xs are CAT, AGE, and ECG,
we might ask what happens to the logit when
CAT changes from 0 to 1, given an AGE of 40
and an ECG of 0.

To answer this question, we write the model in
logit form as a þ b1CAT þ b2AGE þ b3ECG.

EXAMPLE

CAT changes from 0 to 1;

AGE ¼ 40;ECG ¼ 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fixed

logit PðXÞ ¼ aþ b1CATþ b2AGE

þb3ECG

EXAMPLE (continued)

(2) a ¼ log of background odds

LIMITATION OF (1)
All Xi ¼ 0 for any individual?

AGE 6¼ 0
WEIGHT 6¼ 0

DEFINITION OF (2)
background odds: ignores all Xs

model : P Xð Þ ¼ 1

1þ e�a
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logit P(X) ¼ a þ ~biXi

i ¼ L:

bL ¼ ¶ ln (odds)

when ¶ XL ¼ 1, other Xs fixed

The first expression below this model shows
that when CAT ¼ 1, AGE ¼ 40, and ECG ¼ 0,
this logit reduces to a þ b1 þ 40b2.

The second expression shows that when
CAT ¼ 0, but AGE and ECG remain fixed at
40 and 0, respectively, the logit reduces to
a þ 40 b2.

If we subtract the logit for CAT ¼ 0 from the
logit for CAT ¼ 1, after a little arithmetic, we
find that the difference is b1, the coefficient of
the variable CAT.

Thus, letting the symbol ¶ denote change, we
see that b1 represents the change in the logit
that would result from a unit change in CAT,
when the other variables are fixed.

An equivalent explanation is that b1 represents
the change in the log odds that would result from
a one unit change in the variable CAT when the
other variables are fixed. These two statements
are equivalent because, by definition, a logit is
a log odds, so that the difference between two
logits is the same as the difference between two
log odds.

More generally, using the logit expression, if
we focus on any coefficient, say bL, for i ¼ L,
we can provide the following interpretation:

bL represents the change in the log odds that
would result from a one unit change in the
variable XL, when all other Xs are fixed.

EXAMPLE (continued)

(1) CAT ¼ 1, AGE ¼ 40, ECG ¼ 0

logit P(X) ¼ a þ b11 þ b240
þ b30

a+b1+40b2=

(2) CAT ¼ 0, AGE ¼ 40, ECG ¼ 0

logit P(X) ¼ a þ b10 þ b240
þ b30

a + 40b2=

logit P1(X) � logit P0(X)
¼ (a þ b1 þ 40b2)
� (a þ 40b2)

¼ b1

NOTATION

= change

=    log odds

when  CAT = 1
AGE and ECG fixed

b1 =    logit

SUMMARY

a = background
      log odds

bi = change in
       log odds

logit P(X)

In summary, by looking closely at the expres-
sion for the logit function, we provide some
interpretation for the parameters a and bi in
terms of odds, actually log odds.
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logit OR?

VIII. Derivation of OR Formula

OR ¼ odds1

odds0

X ¼ (X1, X2, . . . , Xk)

(1) X1 ¼ (X11, X12, . . . , X1k)

(0) X0 ¼ (X01, X02, . . . , X0k)

NOTATION

ORX1; X0
¼ odds for X1

odds for X0

Now, how can we use this information about
logits to obtain an odds ratio, rather than an
odds? After all, we are typically interested in
measures of association, like odds ratios, when
we carry out epidemiologic research.

Any odds ratio, by definition, is a ratio of two
odds, written here as odds1 divided by odds0, in
which the subscripts indicate two individuals
or two groups of individuals being compared.

Now we give an example of an odds ratio in
which we compare two groups, called group 1
and group 0. Using our CHD example involving
independent variables CAT, AGE, and ECG,
group 1 might denote persons with CAT ¼ 1,
AGE ¼ 40, and ECG ¼ 0, whereas group
0 might denote persons with CAT ¼ 0, AGE
¼ 40, and ECG ¼ 0.

More generally, when we describe an odds
ratio, the two groups being compared can be
defined in terms of the bold X symbol, which
denotes a general collection of X variables,
from 1 to k.

Let X1 denote the collection of Xs that specify
group 1 and let X0 denote the collection of Xs
that specify group 0.

In our example, then, k, the number of vari-
ables, equals 3, and

X is the collection of variables CAT, AGE, and
ECG,

X1 corresponds to CAT ¼ 1, AGE ¼ 40, and
ECG ¼ 0, whereas

X0 corresponds to CAT ¼ 0, AGE ¼ 40, and
ECG ¼ 0.

Notationally, to distinguish the two groups X1

and X0 in an odds ratio, we can write ORX
1
, X0

equals the odds for X1 divided by the odds
for X0.

We will now apply the logistic model to this
expression to obtain a general odds ratio for-
mula involving the logistic model parameters.

EXAMPLE

X ¼ (CAT, AGE, ECG)

(1)X1¼ (CAT¼1,AGE¼ 40,ECG¼ 0)

(0)X0¼ (CAT¼0,AGE¼ 40,ECG¼ 0)

EXAMPLE

(1) CAT ¼ 1, AGE = 40, ECG = 0

(0) CAT ¼ 0, AGE = 40, ECG = 0
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Algebraic theory :
ea

= ea–b

eb

a = a +   biX1i, b = a +   biX0i

Given a logistic model of the general form P(X),

we can write the odds for group 1 as P(X1)
divided by 1 � P(X1)

and the odds for group 0 as P(X0) divided by
1 � P(X0).

To get an odds ratio, we then divide the first
odds by the second odds. The result is an
expression for the odds ratio written in terms
of the two risks P(X1) and P(X0), that is, P(X1)
over 1 � P(X1) divided by P(X0) over 1 � P(X0).

We denote this ratio as ROR, for risk odds ratio,
as the probabilities in the odds ratio are all
defined as risks. However, we still do not have
a convenient formula.

Now, to obtain a convenient computational
formula, we can substitute the mathematical
expression 1 over 1 plus e tominus the quantity
(a þ ~biXi) for P(X) into the risk odds ratio
formula above.

For group 1, the odds P(X1) over 1 � P(X1)
reduces algebraically to e to the linear sum a
plus the sum of bi times X1i, where X1i denotes
the value of the variable Xi for group 1.

Similarly, the odds for group 0 reduces to e to the
linear sum a plus the sum of bi times X0i, where
X0i denotes the value of variable Xi for group 0.

To obtain the ROR, we now substitute in the
numerator and denominator the exponential
quantities just derived to obtain e to the
group 1 linear sum divided by e to the group
0 linear sum.

The above expression is of the form e to the a
divided by e to the b, where a and b are linear
sums for groups 1 and 0, respectively. From
algebraic theory, it then follows that this ratio
of two exponentials is equivalent to e to the
difference in exponents, or e to the a minus b.
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ROR ¼ eðaþ~biX1iÞ�ðaþ~biX0iÞ

¼ e a�aþ~biðX1i�X0iÞ½ �

¼ e~biðX1i�X0iÞ

� RORX1; X0
¼ e

~
k

i¼1
bi X1i�X0ið Þ

ea+b = ea × eb

e
~
k

i¼1
zi ¼ ez1 � ez2 � � � � ezk

NOTATION

zi
 = bi(X1i–X0i)

ezi

i=1

=
k

Õ

� RORX1; X0
¼
Qk
i¼1

ebi X1i�X0ið Þ

Yk
i¼1

ebi X1i�X0ið Þ

¼ eb1 X11�X01ð Þeb2 X12�X02ð Þ...ebk X1k�X0kð Þ

We then find that the ROR equals e to the
difference between the two linear sums.

In computing this difference, the as cancel out
and the bis can be factored for the ith variable.

Thus, the expression for ROR simplifies to the
quantity e to the sum bi times the difference
between X1i and X0i.

We thus have a general exponential formula for
the risk odds ratio from a logistic model com-
paring any two groups of individuals, as speci-
fied in terms of X1 and X0. Note that the
formula involves the bis but not a.

We can give an equivalent alternative to our
ROR formula by using the algebraic rule that
says that the exponential of a sum is the same
as the product of the exponentials of each term
in the sum. That is, e to the a plus b equals e to
the a times e to the b.

More generally, e to the sum of zi equals the
product of e to the zi over all i, where the zi’s
denote any set of values.

We can alternatively write this expression
using the product symbol P, where P is a
mathematical notation which denotes the
product of a collection of terms.

Thus, using algebraic theory and letting zi cor-
respond to the term bi times (X1i � X0i),

we obtain the alternative formula for ROR as
the product from i ¼ 1 to k of e to the bi times
the difference (X1i � X0i).

That is, P of e to the bi times (X1i � X0i) equals
e to the b1 times (X11 � X01) multiplied by e to
the b2 times (X12 � X02) multiplied by addi-
tional terms, the final term

being e to the bk times (X1k � X0k).
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OR formula
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IX. Example of OR
Computation

RORX1; X0
¼ e

~
k

i¼1
bi X1i�X0ið Þ

The product formula for the ROR, shown again
here, gives us an interpretation about how each
variable in a logistic model contributes to the
odds ratio.

In particular, we can see that each of the vari-
ables Xi contributes jointly to the odds ratio in
a multiplicative way.

For example, if

e to the bi times (X1i � X0i) is

3 for variable 2 and

4 for variable 5,

then the joint contribution of these two vari-
ables to the odds ratio is 3 � 4, or 12.

Thus, the product or P formula for ROR tells
us that, when the logistic model is used, the
contribution of the variables to the odds ratio
is multiplicative.

A model different from the logistic model,
depending on its form, might imply a different
(e.g., an additive) contribution of variables to
the odds ratio. An investigator not willing to
allow a multiplicative relationship may, there-
fore, wish to consider other models or other
OR formulae. Other such choices are beyond
the scope of this presentation.

Given the choice of a logistic model, the ver-
sion of the formula for the ROR, shown here as
the exponential of a sum, is the most useful for
computational purposes.

For example, suppose the Xs are CAT, AGE,
and ECG, as in our earlier examples.

Also suppose, as before, that we wish to obtain
an expression for the odds ratio that compares
the following two groups: group 1 with CAT
¼ 1, AGE ¼ 40, and ECG ¼ 0, and group 0
with CAT ¼ 0, AGE ¼ 40, and ECG ¼ 0.

For this situation, we let X1 be specified by
CAT ¼ 1, AGE ¼ 40, and ECG ¼ 0,

EXAMPLE

X = (CAT, AGE, ECG)
(1) CAT = 1, AGE = 40, ECG = 0
(0) CAT = 0, AGE = 40, ECG = 0

X1 = (CAT = 1, AGE = 40, ECG = 0)

EXAMPLE

eb2ðX12�X02Þ ¼ 3

eb5ðX15�X05Þ ¼ 4

3� 4 ¼ 12
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eb1 : population ROR

eb̂1 : estimated ROR

and let X0 be specified by CAT ¼ 0, AGE ¼ 40,
and ECG ¼ 0.

Starting with the general formula for the ROR,
we then substitute the values for the X1 and X0

variables in the formula.

We then obtain ROR equals e to the b1 times
(1 � 0) plus b2 times (40 � 40) plus b3 times
(0 � 0).

The last two terms reduce to 0,

so that our final expression for the odds ratio is
e to the b1, where b1 is the coefficient of the
variable CAT.

Thus, for our example, even though the model
involves the three variables CAT, ECG, and
AGE, the odds ratio expression comparing the
two groups involves only the parameter involv-
ing the variable CAT. Notice that of the three
variables in the model, the variable CAT is the
only variable whose value is different in groups
1 and 0. In both groups, the value for AGE is 40
and the value for ECG is 0.

The formula e to the b1 may be interpreted, in
the context of this example, as an adjusted odds
ratio. This is because we have derived this
expression from a logistic model containing
two other variables, namely, AGE and ECG,
in addition to the variable CAT. Furthermore,
we have fixed the values of these other two
variables to be the same for each group. Thus,
e to b1 gives an odds ratio for the effect of the
CAT variable adjusted for AGE and ECG, where
the latter two variables are being treated as
control variables.

The expression e to the b1 denotes a population
odds ratio parameter because the term b1 is
itself an unknown population parameter.

An estimate of this population odds ratio
would be denoted by e to the b̂1. This term, b̂1,
denotes an estimate of b1 obtained by using
some computer package to fit the logistic
model to a set of data.

EXAMPLE (continued)

X0 ¼ ðCAT ¼ 0;AGE ¼ 40;ECG ¼ 0Þ

RORX1 ; X0
¼ e

~
k

i¼1
bi X1i�X0ið Þ

¼ eb1ð1�0Þþb2ð40�40Þþb3ð0�0Þ

¼ eb1þ0þ0

¼ eb1 �coefficient of CAT in

logit PðXÞ¼ aþb1CATþb2AGEþb3ECG

RORX1 ; X0
¼ eb1

(1)  CAT = 1, AGE = 40, ECG = 0
(0)  CAT = 0, AGE = 40, ECG = 0

RORX1 ; X0
¼ eb1

¼ an‘‘adjusted’’ OR

AGE and ECG:

� Fixed

� Same

� Control variables
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X. Special Case for (0, 1)
Variables

Adjusted OR = eb

whereb ¼ coefficientof (0, 1) variable

Xi(0, 1): adj. ROR ¼ ebi

controlling for other Xs

Our example illustrates an important special
case of the general odds ratio formula for logis-
tic regression that applies to (0, 1) variables.
That is, an adjusted odds ratio can be obtained
by exponentiating the coefficient of a (0, 1)
variable in the model.

In our example, that variable is CAT, and the
other two variables, AGE and ECG, are the
ones for which we adjusted.

More generally, if the variable of interest is Xi,
a (0, 1) variable, then e to the bi, where bi is the
coefficient of Xi, gives an adjusted odds ratio
involving the effect of Xi adjusted or controlling
for the remaining X variables in the model.

Suppose, for example, our focus had been on
ECG, also a (0, 1) variable, instead of on CAT in
a logistic model involving the same variables
CAT, AGE, and ECG.

Then e to the b3, where b3 is the coefficient of
ECG, would give the adjusted odds ratio for the
effect of ECG, controlling for CAT and AGE.

Note, however, that the example we have con-
sidered involves only main effect variables, like
CAT, AGE and ECG, and that the model does
not contain product terms like CAT � AGE or
AGE � ECG.

EXAMPLE

logit P(X) = a + b1 CAT + b2AGE + b3ECG

adjusted

EXAMPLE

logit P(X) = a + b1CAT + b2AGE + b3

adjusted

ECG

ECG (0, 1): adj. ROR ¼ eb3

controlling for CAT and AGE

SUMMARY
Xi is ð0; 1Þ : ROR ¼ ebi

General OR formula:

ROR ¼ e
~
k

i¼1
bi X1i�X0ið Þ

Thus, we can obtain an adjusted odds ratio
for each (0, 1) variable in the logistic model by
exponentiating the coefficient corresponding
to that variable. This formula is much simpler
than the general formula for ROR described
earlier.

EXAMPLE

logit P(X) = a + b1CAT + b2AGE + b3ECG

main effect variables
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CAT × AGE, AGE × ECG

AGE

product terms
or

non-(0, 1) variables

general OR
formula

e  bi(X1i–X0i)

Chapters

3 1. Introduction

2. Important Special Cases

When the model contains product terms, like
CAT� AGE, or variables that are not (0, 1), like
the continuous variable AGE, the simple for-
mula will not work if the focus is on any of
these variables. In such instances, we must
use the general formula instead.

This presentation is now complete. We suggest
that you review the material covered here by
reading the summary section. You may also
want to do the practice exercises and the test
which follows. Then continue to the next chap-
ter entitled, “Important Special Cases of the
Logistic Model”.
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Detailed
Outline

I. The multivariable problem (pages 4–5)

A. Example of a multivariate problem in
epidemiologic research, including the issue of
controlling for certain variables in the
assessment of an exposure–disease
relationship.

B. The general multivariate problem: assessment
of the relationship of several independent
variables, denoted as Xs, to a dependent
variable, denoted as D.

C. Flexibility in the types of independent variables
allowed in most regression situations: A variety
of variables are allowed.

D. Key restriction of model characteristics for the
logistic model: The dependent variable is
dichotomous.

II. Why is logistic regression popular? (pages 5–7)

A. Description of the logistic function.

B. Two key properties of the logistic function:
Range is between 0 and 1 (good for describing
probabilities) and the graph of function is
S-shaped (good for describing combined risk
factor effect on disease development).

III. The logistic model (pages 7–8)

A. Epidemiologic framework

B. Model formula:

PðD¼ 1jX1; . . . ;XkÞ ¼PðXÞ
¼1=f1þ exp½�ðaþ~biXiÞ�g:

IV. Applying the logistic model formula (pages 9–11)

A. The situation: independent variables CAT
(0, 1), AGE (constant), ECG (0, 1); dependent
variable CHD(0, 1); fit logistic model to data
on 609 people.

B. Results for fitted model: estimated model
parameters are

â ¼ �3:911; b̂1ðCATÞ ¼ 0:65; b̂2ðAGEÞ ¼ 0:029,
and b̂3ðECGÞ ¼ 0:342.

C. Predicted risk computations:

P̂ðXÞ for CAT ¼ 1;AGE ¼ 40;ECG ¼ 0 : 0:1090;
P̂ðXÞ for CAT ¼ 0;AGE ¼ 40;ECG ¼ 0 : 0:0600:

D. Estimated risk ratio calculation and
interpretation: 0.1090/0.0600 ¼ 1.82.

E. Risk ratio (RR) vs. odds ratio (OR): RR
computation requires specifying all Xs; OR is
more natural measure for logistic model.
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V. Study design issues (pages 11–15)

A. Follow-up orientation.

B. Applicability to case-control and cross-
sectional studies? Yes.

C. Limitation in case-control and cross-sectional
studies: cannot estimate risks, but can estimate
odds ratios.

D. The limitation in mathematical terms: for case-
control and cross-sectional studies, cannot get
a good estimate of the constant.

VI. Risk ratios vs. odds ratios (pages 15–16)

A. Follow-up studies:

i. When all the variables in both groups
compared are specified. [Example using
CAT, AGE, and ECG comparing group
1 (CAT ¼ 1, AGE ¼ 40, ECG ¼ 0) with
group 0 (CAT ¼ 0, AGE ¼ 40, ECG ¼ 0).]

ii. When control variables are unspecified,
but assumed fixed and rare disease
assumption is satisfied.

B. Case-control and cross-sectional studies: when
rare disease assumption is satisfied.

C. What if rare disease assumption is not
satisfied? Other approaches in the literature:
Log-Binomial, Poisson, Copy method.

VII. Logit transformation (pages 16–22)

A. Definition of the logit transformation: logit
P(X) ¼ lne[P(X) / (1 � P(X))].

B. The formula for the logit function in terms
of the parameters of the logistic model: logit
P(X) ¼ a þ ~biXi.

C. Interpretation of the logit function in terms
of odds:

i. P(X) / [1 � P(X)] is the odds of getting the
disease for an individual or group
of individuals identified by X.

ii. The logit function describes the “log odds”
for a person or group specified by X.

D. Interpretation of logistic model parameters in
terms of log odds:

i. a is the log odds for a person or group when
all Xs are zero – can be critiqued on grounds
that there is no such person.

ii. A more appealing interpretation is that
a gives the “background or baseline”
log odds, where “baseline” refers to
a model that ignores all possible Xs.
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iii. The coefficient bi represents the change
in the log odds that would result from
a one unit change in the variable Xi when
all the other Xs are fixed.

iv. Example given for model involving CAT,
AGE, and ECG: b1 is the change in log
odds corresponding to one unit change
in CAT, when AGE and ECG are fixed.

VIII. Derivation of OR formula (pages 22–25)

A. Specifying two groups to be compared by an
odds ratio: X1 and X0 denote the collection
of Xs for groups 1 and 0.

B. Example involving CAT, AGE, and ECG
variables: X1 ¼ (CAT ¼ 1, AGE ¼ 40,
ECG ¼ 0), X0 ¼ (CAT ¼ 0, AGE ¼ 40,
ECG ¼ 0).

C. Expressing the risk odds ratio (ROR) in terms
of P(X):

ROR ¼ odds forX1ð Þ
odds forX0ð Þ

¼ PðX1Þ=1� PðX1Þ
PðX0Þ=1� P X0ð Þ :

D. Substitution of the model form for P(X) in the
above ROR formula to obtain general ROR
formula:

ROR ¼ exp½~biðX1i � X0iÞ� ¼ Pfexp½biðX1i � X0iÞ�g
E. Interpretation from the product (P) formula:

The contribution of each Xi variable to the odds
ratio is multiplicative.

IX. Example of OR computation (pages 25–26)

A. Example of ROR formula for CAT, AGE, and
ECG example using X1 and X0 specified in VIII
B above: ROR ¼ exp(b1), where b1 is the
coefficient of CAT.

B. Interpretation of exp(b1): an adjusted ROR for
effect of CAT, controlling for AGE and ECG.

X. Special case for (0, 1) variables (pages 27–28)

A. General rule for (0, 1) variables: If variable is
Xi, then ROR for effect of Xi controlling for
other Xs in model is given by the formula
ROR ¼ exp(bi), where bi is the coefficient of Xi.

B. Example of formula in A for ECG, controlling
for CAT and AGE.

C. Limitation of formula in A: Model can contain
only main effect variables for Xs, and variable
of focus must be (0, 1).
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KEY FORMULAE

[exp(a) ¼ ea for any number a]

LOGISTIC FUNCTION: f(z) ¼ 1 / [1 þ exp(�z)]
LOGISTICMODEL: P(X)¼ 1 / {1 þ exp[�(a þ ~biXi)]}

LOGIT TRANSFORMATION: logit P(X) ¼ a þ ~biXi

RISK ODDS RATIO (general formula):

RORX1; X0
: ¼ exp½~biðX1i � X0iÞ� ¼ Pfexp½biðX1i � X0iÞ�g

RISK ODDS RATIO [(0, 1) variables]: ROR ¼ exp(bi)
for the effect of the variable Xi adjusted for the other Xs

Practice
Exercises

Suppose you are interested in describing whether social
status, as measured by a (0, 1) variable called SOC, is
associated with cardiovascular disease mortality, as
defined by a (0, 1) variable called CVD. Suppose further
that you have carried out a 12-year follow-up study of 200
men who are 60 years old or older. In assessing the rela-
tionship between SOC and CVD, you decide that you want
to control for smoking status [SMK, a (0, 1) variable] and
systolic blood pressure (SBP, a continuous variable).

In analyzing your data, you decide to fit two logistic mod-
els, each involving the dependent variable CVD, but with
different sets of independent variables. The variables
involved in each model and their estimated coefficients
are listed below:

Model 1 Model 2

VARIABLE COEFFICIENT VARIABLE COEFFICIENT

CONSTANT �1.1800 CONSTANT �1.1900
SOC �0.5200 SOC �0.5000
SBP 0.0400 SBP 0.0100

SMK �0.5600 SMK �0.4200
SOC � SBP �0.0330
SOC � SMK 0.1750

1. For each of themodels fitted above, state the form of the
logistic model that was used (i.e., state the model in
terms of the unknown population parameters and the
independent variables being considered).
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Model 1:

Model 2:

2. For each of the above models, state the form of the
estimated model in logit terms.

Model 1: logit P(X) ¼

Model 2: logit P(X) ¼

3. Using Model 1, compute the estimated risk for CVD
death (i.e., CVD ¼ 1) for a high social class (SOC ¼ 1)
smoker (SMK ¼ 1) with SBP ¼ 150. (You will need a
calculator to answer this. If you do not have one, just
state the computational formula that is required, with
appropriate variable values plugged in.)

4. Using Model 2, compute the estimated risk for CVD
death for the following two persons:

Person 1: SOC ¼ 1, SMK ¼ 1, SBP ¼ 150.
Person 2: SOC ¼ 0, SMK ¼ 1, SBP ¼ 150.

(As with the previous question, if you do not have a
calculator, you may just state the computations that are
required.)

Person 1:

Person 2:

5. Compare the estimated risk obtained in Exercise 3 with
that for person 1 in Exercise 4. Why are not the two
risks exactly the same?

6. Using Model 2 results, compute the risk ratio that
compares person 1 with person 2. Interpret your
answer.

7. If the study design had been either case-control or
cross-sectional, could you have legitimately computed
risk estimates as you did in the previous exercises?
Explain.
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8. If the study design had been case-control, what kind of
measure of association could you have legitimately
computed from the above models?

9. For Model 2, compute and interpret the estimated odds
ratio for the effect of SOC, controlling for SMK and
SBP? (Again, if you do not have a calculator, just state
the computations that are required.)

10. Which of the following general formulae is not
appropriate for computing the effect of SOC
controlling for SMK and SBP in Model 1? (Circle one
choice.) Explain your answer.

a. exp(bS), where bS is the coefficient of SOC inmodel 1.

b. exp[~bi(X1i � X0i)].

c. P{exp[bi(X1i � X0i)]}.

Test True or False (Circle T or F)

T F 1. We can use the logistic model provided all the
independent variables in the model are
continuous.

T F 2. Suppose the dependent variable for a certain
multivariable analysis is systolic blood
pressure, treated continuously. Then, a
logistic model should be used to carry out the
analysis.

T F 3. One reason for the popularity of the logistic
model is that the range of the logistic
function, from which the model is derived, lies
between 0 and 1.

T F 4. Another reason for the popularity of the logistic
model is that the shape of the logistic function
is linear.

T F 5. The logistic model describes the probability of
disease development, i.e., risk for the disease,
for a given set of independent variables.

T F 6. The study design framework within which the
logistic model is defined is a follow-up study.

T F 7. Given a fitted logistic model from case-control
data, we can estimate the disease risk for a
specific individual.

T F 8. In follow-up studies, we can use a fitted logistic
model to estimate a risk ratio comparing two
groups whenever all the independent variables
in the model are specified for both groups.
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T F 9. Given a fitted logistic model from a follow-up
study, it is not possible to estimate individual
risk as the constant term cannot be estimated.

T F 10. Given a fitted logistic model from a case-
control study, an odds ratio can be estimated.

T F 11. Given a fitted logistic model from a case-
control study, we can estimate a risk ratio if
the rare disease assumption is appropriate.

T F 12. The logit transformation for the logistic model
gives the log odds ratio for the comparison of
two groups.

T F 13. The constant term, a, in the logistic model can
be interpreted as a baseline log odds for getting
the disease.

T F 14. The coefficient bi in the logistic model can be
interpreted as the change in log odds cor-
responding to a one unit change in the variable
Xi that ignores the contribution of other variables.

T F 15. We can compute an odds ratio for a fitted
logistic model by identifying two groups to be
compared in terms of the independent
variables in the fitted model.

T F 16. The product formula for the odds ratio tells us
that the joint contribution of different
independent variables to the odds ratio is
additive.

T F 17. Given a (0, 1) independent variable and amodel
containing only main effect terms, the odds
ratio that describes the effect of that variable
controlling for the others in the model is given
by e to the a, where a is the constant parameter
in the model.

T F 18. Given independent variables AGE, SMK
[smoking status (0, 1)], and RACE (0, 1), in a
logistic model, an adjusted odds ratio for the
effect of SMK is given by the natural log of the
coefficient for the SMK variable.

T F 19. Given independent variables AGE, SMK, and
RACE, as before, plus the product terms SMK
� RACE and SMK � AGE, an adjusted odds
ratio for the effect of SMK is obtained by
exponentiating the coefficient of the SMK
variable.

T F 20. Given the independent variables AGE, SMK,
and RACE as in Question 18, but with SMK
coded as (1, �1) instead of (0, 1), then e to the
coefficient of the SMK variable gives the
adjusted odds ratio for the effect of SMK.
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21. Which of the following is not a property of the logistic
model? (Circle one choice.)

a. The model form can be written as
P(X)=1/{1 þ exp[�(a þ ~biXi)]}, where “exp{�}”
denotes the quantity e raised to the power of the
expression inside the brackets.

b. logit P(X) ¼ a þ ~biXi is an alternative way to
state the model.

c. ROR ¼ exp[~bi(X1i�X0i)] is a general expression
for the odds ratio that compares two groups of
X variables.

d. ROR ¼ P{exp[bi(X1i�X0i)]} is a general expression
for the odds ratio that compares two groups of
X variables.

e. For any variable Xi, ROR ¼ exp[bi], where bi is the
coefficient of Xi, gives an adjusted odds ratio for
the effect of Xi.

Suppose a logistic model involving the variables D ¼ HPT
[hypertension status (0, 1)], X1 ¼ AGE(continuous), X2 ¼
SMK(0, 1), X3 ¼ SEX(0, 1), X4 ¼ CHOL (cholesterol level,
continuous), and X5 ¼ OCC[occupation (0, 1)] is fit to a set
of data. Suppose further that the estimated coefficients of
each of the variables in the model are given by the
following table:

VARIABLE COEFFICIENT

CONSTANT �4.3200
AGE 0.0274
SMK 0.5859
SEX 1.1523
CHOL 0.0087
OCC �0.5309

22. State the form of the logistic model that was fit to
these data (i.e., state the model in terms of the
unknown population parameters and the
independent variables being considered).

23. State the form of the estimated logistic model obtained
from fitting the model to the data set.

24. State the estimated logistic model in logit form.

25. Assuming the study design used was a follow-up
design, compute the estimated risk for a 40-year-old
male (SEX ¼ 1) smoker (SMK ¼ 1) with CHOL ¼ 200
and OCC ¼ 1. (You need a calculator to answer this
question.)
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26. Again assuming a follow-up study, compute the
estimated risk for a 40-year-old male nonsmoker
with CHOL ¼ 200 and OCC ¼ 1. (You need a
calculator to answer this question.)

27. Compute and interpret the estimated risk ratio that
compares the risk of a 40-year-old male smoker to a
40-year-old male nonsmoker, both of whom have
CHOL ¼ 200 and OCC ¼ 1.

28. Would the risk ratio computation of Question 27 have
been appropriate if the study design had been either
cross-sectional or case-control? Explain.

29. Compute and interpret the estimated odds ratio for
the effect of SMK controlling for AGE, SEX, CHOL,
and OCC. (If you do not have a calculator, just state
the computational formula required.)

30. What assumption will allow you to conclude that the
estimate obtained in Question 29 is approximately a
risk ratio estimate?

31. If you could not conclude that the odds ratio
computed in Question 29 is approximately a risk
ratio, what measure of association is appropriate?
Explain briefly.

32. Compute and interpret the estimated odds ratio for
the effect of OCC controlling for AGE, SMK, SEX, and
CHOL. (If you do not have a calculator, just state the
computational formula required.)

33. State two characteristics of the variables being
considered in this example that allow you to use the
exp(bi) formula for estimating the effect of OCC
controlling for AGE, SMK, SEX, and CHOL.

34. Why can you not use the formula exp(bi) formula to
obtain an adjusted odds ratio for the effect of AGE,
controlling for the other four variables?

Answers to
Practice
Exercises

1. Model 1 : P̂ðXÞ ¼ 1=ð1þ expf�½aþ b1ðSOCÞ þ b2ðSBPÞ
þ b3ðSMKÞ þ b4ðSOC � SBPÞ
þ b5ðSOC� SMKÞ�gÞ:

Model 2 : P̂ðXÞ ¼ 1=ð1þ expf�½aþ b1ðSOCÞ
þ b2ðSBPÞ þ b3ðSMKÞ�gÞ:

2. Model 1 : logit P̂ðXÞ ¼ � 1:18� 0:52ðSOCÞ þ 0:04ðSBPÞ
� 0:56ðSMKÞ � 0:033ðSOC � SBPÞ
þ 0:175ðSOC � SMKÞ:

Model 2 : logit P̂ðXÞ ¼ � 1:19� 0:50ðSOCÞ þ 0:01ðSBPÞ
� 0:42ðSMKÞ:
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3. For SOC ¼ 1, SBP ¼ 150, and SMK ¼ 1, X ¼ (SOC,
SBP, SMK, SOC�SBP, SOC�SMK) ¼ (1, 150, 1, 150, 1)
and

Model 1; P̂ðXÞ ¼ 1=ð1þ expf�½�1:18� 0:52ð1Þ
þ 0:04ð150Þ � 0:56ð1Þ
� 0:033ð1� 150Þ � 0:175ð1� 1Þ�gÞ:

¼ 1=f1þ exp½�ð�1:035Þ�g
¼ 1=ð1þ 2:815Þ
¼ 0:262

4. ForModel 2, person 1 (SOC ¼ 1, SMK ¼ 1, SBP ¼ 150):

P̂ðXÞ ¼ 1=ð1þ expf�½�1:19� 0:50ð1Þ
þ 0:01ð150Þ � 0:42ð1Þ�gÞ

¼ 1=f1þ exp½�ð�0:61Þ�g
¼ 1=ð1þ 1:84Þ
¼ 0:352

ForModel 2, person2 (SOC ¼ 0, SMK ¼ 1, SBP ¼ 150):

P̂ðXÞ ¼ 1=ð1þ expf�½�1:19� 0:50ð0Þ
þ 0:01ð150Þ � 0:42ð1Þ�gÞ

¼ 1=f1þ exp½�ð�0:11Þ�g
¼ 1=ð1þ 1:116Þ
¼ 0:473

5. The risk computed for Model 1 is 0.262, whereas the
risk computed forModel 2, person 1 is 0.352. Note that
both risks are computed for the same person (i.e.,
SOC ¼ 1, SMK ¼ 1, SBP ¼ 150), yet they yield
different values because the models are different. In
particular, Model 1 contains two product terms that
are not contained in Model 2, and consequently,
computed risks for a given person can be expected to
be somewhat different for different models.

6. Using Model 2 results,

RRð1 vs: 2Þ ¼ PðSOC ¼ 0; SMK ¼ 1; SBP ¼ 150Þ
PðSOC ¼ 1; SMK ¼ 1; SBP ¼ 150Þ

¼ 0:352=0:473 ¼ 1=1:34 ¼ 0:744

This estimated risk ratio is less than 1 because the risk
for high social class persons (SOC ¼ 1) is less than the
risk for low social class persons (SOC ¼ 0) in this data
set. More specifically, the risk for low social class
persons is 1.34 times as large as the risk for high social
class persons.
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7. No. If the study design had been either case-control or
cross-sectional, risk estimates could not be computed
because the constant term (a) in the model could not
be estimated. In other words, even if the computer
printed out values of �1.18 or �1.19 for the constant
terms, these numbers would not be legitimate
estimates of a.

8. For case-control studies, only odds ratios, not risks or
risk ratios, can be computed directly from the fitted
model.

9. cOR(SOC ¼ 1 vs. SOC ¼ 0 controlling for SMKand SBP)

¼ eb̂, where b̂ ¼ �0:50 is the estimated coefficient of SOC

in the fitted model

¼ exp(�0.50)
¼ 0.6065 ¼ 1/1.65.

The estimated odds ratio is less than 1, indicating that,
for this data set, the risk of CVD death for high social
class persons is less than the risk for low social class
persons. In particular, the risk for low social class
persons is estimated as 1.65 times as large as the risk
for high social class persons.

10. Choice (a) is not appropriate for the effect of SOC
using model 1. Model 1 contains interaction terms,
whereas choice (a) is appropriate only if all the
variables in the model are main effect terms. Choices
(b) and (c) are two equivalent ways of stating the
general formula for calculating the odds ratio for any
kind of logistic model, regardless of the types of
variables in the model.
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Introduction In this chapter, several important special cases of the logis-
tic model involving a single (0, 1) exposure variable are
considered with their corresponding odds ratio expres-
sions. In particular, focus is on defining the independent
variables that go into the model and on computing the
odds ratio for each special case. Models that account for
the potential confounding effects and potential interaction
effects of covariates are emphasized.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 45)

II. Special case – Simple analysis (pages 46–49)

III. Assessing multiplicative interaction (pages 49–55)

IV. The E, V, Wmodel – A general model containing a
(0, 1) exposure and potential confounders and
effect modifiers (pages 55–64)
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Objectives Upon completion of this chapter, the learner should be
able to:

1. State or recognize the logistic model for a simple
analysis.

2. Given a model for simple analysis:

a. state an expression for the odds ratio describing the
exposure–disease relationship

b. state or recognize the null hypothesis of no
exposure–disease relationship in terms of
parameter(s) of the model

c. compute or recognize an expression for the risk for
exposed or unexposed persons separately

d. compute or recognize an expression for the odds of
getting the disease for exposed or unexposed
persons separately

3. Given two (0, 1) independent variables:

a. state or recognize a logistic model that allows for
the assessment of interaction on a multiplicative
scale

b. state or recognize the expression for no interaction
on a multiplicative scale in terms of odds ratios for
different combinations of the levels of two (0, 1)
independent variables

c. state or recognize the null hypothesis for no
interaction on a multiplicative scale in terms of one
or more parameters in an appropriate logistic
model

4. Given a study situation involving a (0, 1) exposure
variable and several control variables:

a. state or recognize a logistic model that allows
for the assessment of the exposure-disease
relationship, controlling for the potential
confounding and potential interaction effects
of functions of the control variables

b. compute or recognize the expression for the odds
ratio for the effect of exposure on disease status
adjusting for the potential confounding and
interaction effects of the control variables in the
model

c. state or recognize an expression for the null
hypothesis of no interaction effect involving one
or more of the effect modifiers in the model

d. assuming no interaction, state or recognize an
expression for the odds ratio for the effect of
exposure on disease status adjusted for
confounders
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e. assuming no interaction, state or recognize the null
hypothesis for testing the significance of this odds
ratio in terms of a parameter in the model

5. Given a logistic model involving interaction terms,
state or recognize that the expression for the odds ratio
will give different values for the odds ratio depending
on the values specified for the effect modifiers in the
model.
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Presentation

I. Overview

Special Cases:

� Simple
analysis ( )a b

dc

� Multiplicative interaction

� Controlling several
confounders and effect
modifiers

General logistic model formula:

PðXÞ ¼ 1

1 þ e� aþ~ biXið Þ
X ¼ (X1, X2, . . . , Xk)

a,bi ¼ unknown parameters

D ¼ dichotomous outcome

logit PðXÞ ¼ aþ~biXi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
linear sum

ROR ¼ e
~
k

i¼1

bi X1i�X0ið Þ

¼
Yk
i¼1

ebi X1i�X0ið Þ

X1 specification of X
for subject 1

X0 specification of X
for subject 0

This presentation describes important special
cases of the general logistic model when there
is a single (0, 1) exposure variable. Special case
models include simple analysis of a fourfold
table, assessment of multiplicative interaction
between two dichotomous variables, and con-
trolling for several confounders and interaction
terms. In each case, we consider the definitions
of variables in themodel and the formula for the
odds ratio describing the exposure-disease rela-
tionship.

Recall that the general logistic model for k
independent variables may be written as P(X)
equals 1 over 1 plus e to minus the quantity
a plus the sum of biXi, where P(X) denotes the
probability of developing a disease of interest
given values of a collection of independent
variables X1, X2, through Xk, that are collec-
tively denoted by the bold X. The terms a and
bi in the model represent unknown parameters
that we need to estimate from data obtained
for a group of subjects on the Xs and on D, a
dichotomous disease outcome variable.

An alternative way of writing the logistic model
is called the logit form of the model. The
expression for the logit form is given here.

The general odds ratio formula for the logistic
model is given by either of two formulae. The
first formula is of the form e to a sum of linear
terms. The second is of the form of the product
of several exponentials; that is, each term in the
product is of the form e to some power. Either
formula requires two specifications,X1 andX0,
of the collection of k independent variables X1,
X2, . . . , Xk.

We now consider a number of important spe-
cial cases of the logistic model and their
corresponding odds ratio formulae.
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II. Special Case – Simple
Analysis

X1 ¼ E ¼ exposure (0, 1)

D ¼ disease (0, 1)

E ¼ 1 E ¼ 0

D ¼ 1 a b

D ¼ 0 c d

PðXÞ ¼ 1

1 þ e� aþb1Eð Þ ,

where E ¼ (0, 1) variable.

Note: Other coding schemes
(1, �1), (1, 2), (2, 1)

logit P(X) ¼ a þ b1E

P(X) ¼ Pr(D ¼ 1|E)

E ¼ 1: R1 ¼ Pr(D ¼ 1|E ¼ 1)

E ¼ 0: R0 ¼ Pr(D ¼ 1|E ¼ 0)

We begin with the simple situation involving
one dichotomous independent variable, which
we will refer to as an exposure variable and will
denote it asX1 =E. Because the disease variable,
D, considered by a logistic model is dichoto-
mous, we can use a two-way table with four
cells to characterize this analysis situation,
which is often referred to as a simple analysis.

For convenience, we define the exposure vari-
able as a (0, 1) variable and place its values in
the two columns of the table. We also define the
disease variable as a (0, 1) variable and place its
values in the rows of the table. The cell frequen-
cies within the fourfold table are denoted as a, b,
c, and d, as is typically presented for such a table.

A logistic model for this simple analysis situa-
tion can be defined by the expression P(X)
equals 1 over 1 plus e to minus the quantity a
plus b1 times E, where E takes on the value 1
for exposed persons and 0 for unexposed per-
sons. Note that other coding schemes for E are
also possible, such as (1, �1), (1, 2), or even
(2, 1). However, we defer discussing such alter-
natives until Chap. 3.

The logit form of the logistic model we have
just defined is of the form logit P(X) equals the
simple linear sum a plus b1 times E. As stated
earlier in our review, this logit form is an alter-
native way to write the statement of the model
we are using.

The term P(X) for the simple analysis model
denotes the probability that the disease vari-
able D takes on the value 1, given whatever the
value is for the exposure variableE. In epidemi-
ologic terms, this probability denotes the risk
for developing the disease, given exposure sta-
tus. When the value of the exposure variable
equals 1, we call this risk R1, which is the con-
ditional probability thatD equals 1 given that E
equals 1. When E equals 0, we denote the risk
by R0, which is the conditional probability that
D equals 1 given that E equals 0.
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RORE¼1 vs:E¼ 0 ¼
R1

1�R1

R0

1�R0

Substitute P Xð Þ ¼ 1

1 þ e� aþ~biXið Þ
into ROR formula:

E ¼ 1 : R1 ¼ 1

1þ e� aþ½b1�1�ð Þ

¼ 1

1þ e� aþb1ð Þ

E ¼ 0 : R0 ¼ 1

1þ e� aþ½b1�0�ð Þ

¼ 1

1þ e�a

ROR ¼
R1

1�R1

R0

1�R0

¼
1

1þ e� aþb1ð Þ
1

1þ e�a

algebra

eb1=

General ROR formula used for
other special cases

We would like to use the above model for sim-
ple analysis to obtain an expression for the
odds ratio that compares exposed persons
with unexposed persons. Using the terms R1

and R0, we can write this odds ratio as R1

divided by 1 minus R1 over R0 divided by 1
minus R0.

To compute the odds ratio in terms of the para-
meters of the logistic model, we substitute the
logistic model expression into the odds ratio
formula.

For E equal to 1, we can write R1 by substitut-
ing the value E equals 1 into the model formula
for P(X). We then obtain 1 over 1 plus e to
minus the quantity a plus b1 times 1, or simply
1 over 1 plus e to minus a plus b1.

For E equal to zero, we writeR0 by substituting
E equal to 0 into the model formula, and we
obtain 1 over 1 plus e to minus a.

To obtain ROR then, we replace R1 with 1 over
1 plus e to minus a plus b1, and we replace R0

with 1 over 1 plus e to minus a. The ROR
formula then simplifies algebraically to e to
the b1, where b1 is the coefficient of the expo-
sure variable.

We could have obtained this expression for the
odds ratio using the general formula for the
ROR that we gave during our review. We will
use the general formula now. Also, for other
special cases of the logistic model, we will use
the general formula rather than derive an odds
ratio expression separately for each case.
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General:

RORX1, X0
¼ e

~
k

bi X1i�X0ið Þ
i¼1

Simple analysis:

k ¼ 1, X ¼ (X1), bi ¼ b1

group 1: X1 ¼ E ¼ 1

group 0: X0 ¼ E ¼ 0

X1 ¼ (X11) ¼ (1)

X0 ¼ (X01) ¼ (0)

RORX1, X0
¼ eb1 X11�X01ð Þ

¼ eb1 1�0ð Þ

¼ eb1

dRORX1, X0
¼ eb̂1

The general formula computes ROR as e to the
sum of each bi times the difference between X1i

and X0i, where X1i denotes the value of the ith X
variable for group 1 persons and X0i denotes
the value of the ith X variable for group 0 per-
sons. In a simple analysis, we have only one X
and one b; in other words, k, the number of
variables in the model, equals 1.

For a simple analysis model, group 1 corre-
sponds to exposed persons, for whom the
variable X1, in this case E, equals 1. Group
0 corresponds to unexposed persons, for
whom the variable X1 or E equals 0. Stated
another way, for group 1, the collection of Xs
denoted by the bold X can be written as X1 and
equals the collection of one value X11, which
equals 1. For group 0, the collection of Xs
denoted by the bold X is written as X0 and
equals the collection of one value X01, which
equals 0.

Substituting the particular values of the one X
variable into the general odds ratio formula
then gives e to the b1 times the quantity X11

minus X01, which becomes e to the b1 times
1 minus 0, which reduces to e to the b1.

We can estimate this odds ratio by fitting the
simple analysis model to a set of data. The
estimate of the parameter b1 is typically
denoted as b̂1. The odds ratio estimate then
becomes e to the b̂1.

SIMPLE ANALYSIS
SUMMARY

P Xð Þ ¼ 1

1þ e� aþb1Eð Þ

ROR ¼ eb1

In summary, for the simple analysis model
involving a (0, 1) exposure variable, the logis-
tic model P(X) equals 1 over 1 plus e to minus
the quantity a plus b1 times E, and the odds
ratio that describes the effect of the exposure
variable is given by e to the b1, where b1 is the
coefficient of the exposure variable.
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E ¼ 1 E ¼ 0

D ¼ 1 a b

D ¼ 0 c d

dROR ¼ eb̂ ¼ ad=bc

Simple analysis: does not need
computer

Other special cases: require computer

III. Assessing
Multiplicative
Interaction

X1 ¼ A ¼ (0, 1) variable

X2 ¼ B ¼ (0, 1) variable

Interaction: equation involving
RORs for combinations of A and B

RAB ¼ risk given A, B
¼ PrðD ¼ 1 jA, BÞ

B ¼ 1 B ¼ 0

A ¼ 1 R11 R10

A ¼ 0 R01 R00

The reader should not be surprised to find out
that an alternative formula for the estimated
odds ratio for the simple analysis model is the
familiar a times d over b times c, where a, b, c,
and d are the cell frequencies in the fourfold
table for simple analysis. That is, e to the b̂1
obtained from fitting a logistic model for sim-
ple analysis can alternatively be computed as
ad divided by bc from the cell frequencies of the
fourfold table.

Thus, in the simple analysis case, we need
not go to the trouble of fitting a logistic model
to get an odds ratio estimate as the typical
formula can be computed without a computer
program. We have presented the logistic model
version of simple analysis to show that the
logistic model incorporates simple analysis as
a special case. More complicated special cases,
involving more than one independent variable,
require a computer program to compute the
odds ratio.

We will now consider how the logistic model
allows the assessment of interaction between
two independent variables.

Consider, for example, two (0, 1) X variables,
X1 and X2, which for convenience we rename as
A andB, respectively. We first describe what we
mean conceptually by interaction between
these two variables. This involves an equation
involving risk odds ratios corresponding to dif-
ferent combinations of A and B. The odds
ratios are defined in terms of risks, which we
now describe.

Let RAB denote the risk for developing the dis-
ease, given specified values for A and B; in
other words, RAB equals the conditional proba-
bility that D equals 1, given A and B.

Because A and B are dichotomous, there are
four possible values for RAB, which are shown
in the cells of a two-way table. When A equals 1
and B equals 1, the risk RAB becomes R11. Sim-
ilarly, when A equals 1 and B equals 0, the risk
becomes R10. When A equals 0 and B equals 1,
the risk is R01, and finally, when A equals 0 and
B equals 0, the risk is R00.
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Note: above table not for simple
analysis.

B ¼ 1 B ¼ 0

A ¼ 1 R11 R10

A ¼ 0 R01 R00

B= 1

A= 1

A= 0 referent cell

B= 0

OR11 ¼ odds(1, 1)/odds(0, 0)

OR10 ¼ odds(1, 0)/odds(0, 0)

OR01 ¼ odds(0, 1)/odds(0, 0)

odds (A,B) ¼ RAB/(1 � RAB)

OR11¼ R11= 1� R11ð Þ
R00= 1� R00ð Þ ¼

R11 1� R00ð Þ
R00 1� R11ð Þ

OR10¼ R10= 1� R10ð Þ
R00= 1� R00ð Þ ¼

R10 1� R00ð Þ
R00 1� R10ð Þ

OR01¼ R01= 1� R01ð Þ
R00= 1� R00ð Þ ¼

R01 1� R00ð Þ
R00 1� R01ð Þ

ORAB ¼ RAB 1� R00ð Þ
R00 1� RABð Þ

A ¼ 0, 1; B ¼ 0, 1

Note that the two-way table presented here
does not describe a simple analysis because
the row and column headings of the table
denote two independent variables rather than
one independent variable and one disease vari-
able. Moreover, the information provided
within the table is a collection of four risks
corresponding to different combinations of
both independent variables, rather than four
cell frequencies corresponding to different
exposure-disease combinations.

Within this framework, odds ratios can be
defined to compare the odds for any one cell
in the two-way table of risks with the odds for
any other cell. In particular, three odds ratios
of typical interest compare each of three of the
cells to a referent cell. The referent cell is usually
selected to be the combination A equals 0 and B
equals 0. The three odds ratios are then defined
as OR11, OR10, and OR01, where OR11 equals
the odds for cell 11 divided by the odds for cell
00, OR10 equals the odds for cell 10 divided by
the odds for cell 00, and OR01 equals the odds
for cell 01 divided by the odds for cell 00.

As the odds for any cell A,B is defined in terms
of risks as RAB divided by 1 minus RAB, we can
obtain the following expressions for the three
odds ratios: OR11 equals the product of R11

times 1 minus R00 divided by the product of
R00 times 1 minus R11. The corresponding
expressions for OR10 and OR01 are similar,
where the subscript 11 in the numerator and
denominator of the 11 formula is replaced by
10 and 01, respectively.

In general, without specifying the value of A
and B, we can write the odds ratio formulae
as ORAB equals the product of RAB and 1 minus
R00 divided by the product of R00 and 1 � RAB,
where A takes on the values 0 and 1 and B takes
on the values 0 and 1.
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DEFINITION

OR11 = OR10 × OR01

no interaction
on a
multiplicative
scale

multiplication

No interaction:

effect of
A and B
acting

together

0
BB@

1
CCA ¼

combined
effect of
A and B
acting

separately

0
BBBB@

1
CCCCA

" "
OR11 OR10 �OR01

multiplicative
scale

no interaction formula:

OR11 ¼ OR10 � OR01

Now that we have defined appropriate odds
ratios for the two independent variables situa-
tion, we are ready to provide an equation for
assessing interaction. The equation is stated as
OR11 equals the product of OR10 and OR01. If
this expression is satisfied for a given study
situation, we say that there is “no interaction
on a multiplicative scale.” In contrast, if this
expression is not satisfied, we say that there is
evidence of interaction on a multiplicative
scale.

Note that the right-hand side of the “no inter-
action” expression requires multiplication of
two odds ratios, one corresponding to the com-
bination 10 and the other to the combination
01. Thus, the scale used for assessment of inter-
action is called multiplicative.

When the no interaction equation is satisfied,
we can interpret the effect of both variables A
and B acting together as being the same as
the combined effect of each variable acting
separately.

The effect of both variables acting together is
given by the odds ratio OR11 obtained when A
and B are both present, that is, when A equals 1
and B equals 1.

The effect of A acting separately is given by the
odds ratio for A equals 1 and B equals 0, and
the effect of B acting separately is given by the
odds ratio for A equals 0 and B equals 1. The
combined separate effects of A and B are then
given by the product OR10 times OR01.

Thus, when there is no interaction on a multi-
plicative scale, OR11 equals the product of
OR10 and OR01.

Presentation: III. Assessing Multiplicative Interaction 51



As an example of no interaction on a multipli-
cative scale, suppose the risks RAB in the four-
fold table are given by R11 equal to 0.0350, R10

equal to 0.0175, R01 equal to 0.0050, and R00

equal to 0.0025. Then the corresponding three
odds ratios are obtained as follows: OR11

equals 0.0350 times 1 minus 0.0025 divided by
the product of 0.0025 and 1 minus 0.0350,
which becomes 14.4; OR10 equals 0.0175
times 1 minus 0.0025 divided by the product
of 0.0025 and 1 minus 0.0175, which becomes
7.2; and OR01 equals 0.0050 times 1 minus
0.0025 divided by the product of 0.0025 and
1 minus 0.0050, which becomes 2.0.

To see if the no interaction equation is satis-
fied, we check whether OR11 equals the prod-
uct of OR10 and OR01. Here we find that OR11

equals 14.4 and the product of OR10 and OR01

is 7.2 times 2, which is also 14.4. Thus, the no
interaction equation is satisfied.

In contrast, using a different example, if the
risk for the 11 cell is 0.0700, whereas the
other three risks remained at 0.0175, 0.0050,
and 0.0025, then the corresponding three odds
ratios become OR11 equals 30.0, OR10 equals
7.2, and OR01 equals 2.0. In this case, the no
interaction equation is not satisfied because
the left-hand side equals 30 and the product
of the two odds ratios on the right-hand side
equals 14. Here, then, we would conclude that
there is interaction because the effect of both
variables acting together is more than twice
the combined effect of the variables acting
separately.

EXAMPLE

B ¼ 1 B ¼ 0

A ¼ 1 R11 ¼ 0.0350 R10 ¼ 0.0175

A ¼ 0 R01 ¼ 0.0050 R00 ¼ 0.0025

OR11 ¼ 0:0350ð1� 0:0025Þ
0:0025ð1� 0:0350Þ ¼ 14:4

OR10 ¼ 0:0175ð1� 0:0025Þ
0:0025ð1� 0:0175Þ ¼ 7:2

OR01 ¼ 0:0050ð1� 0:0025Þ
0:0025ð1� 0:0050Þ ¼ 2:0

OR11 ¼? OR10 �OR01

14.4 = 7.2 × 2.0?

Yes
14.4

B ¼ 1 B ¼ 0

R11 ¼ 0.0700 R10 ¼ 0.0175

R01 ¼ 0.0050 R00 ¼ 0.0025

OR11 ¼ 30.0

OR10 ¼ 7.2

OR01 ¼ 2.0

OR11 ¼? OR10 �OR01

30.0 = 7.2 × 2.0
?

No
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REFERENCE
multiplicative interaction vs.
additive interaction
Epidemiologic Research, Chap. 19

Logistic model variables:

X1 ¼ Að0,1Þ
X2 ¼ Bð0,1Þ

)
main effects

X3 ¼ A� B interaction effect
variable

logit P(X)¼ a þ b1A þ b2B
þ b3A�B,

where

PðXÞ ¼ risk given A and B

¼ RAB

b3 ¼ lne
OR11

OR10 �OR01

� �

Note that in determining whether or not the no
interaction equation is satisfied, the left- and
right-hand sides of the equation do not have to
be exactly equal. If the left-hand side is approx-
imately equal to the right-hand side, we can
conclude that there is no interaction. For
instance, if the left-hand side is 14.5 and the
right-hand side is 14, this would typically be
close enough to conclude that there is no inter-
action on a multiplicative scale.

A more complete discussion of interaction,
including the distinction between multipli-
cative interaction and additive interaction, is
given in Chap. 19 of Epidemiologic Research
by Kleinbaum, Kupper, and Morgenstern
(1982).

We now define a logistic model that allows
the assessment of multiplicative interaction
involving two (0, 1) indicator variables A and
B. This model contains three independent vari-
ables, namely, X1 equal to A, X2 equal to B, and
X3 equal to the product term A times B. The
variables A and B are called main effect vari-
ables and the product term is called an interac-
tion effect variable.

The logit form of the model is given by the
expression logit of P(X) equals a plus b1 times
A plus b2 times B plus b3 times A times B. P(X)
denotes the risk for developing the disease
given values of A and B, so that we can alterna-
tively write P(X) as RAB.

For this model, it can be shown mathemati-
cally that the coefficient b3 of the product
term can be written in terms of the three odds
ratios we have previously defined. The formula
is b3 equals the natural log of the quantity OR11

divided by the product of OR10 and OR01. We
can make use of this formula to test the null
hypothesis of no interaction on amultiplicative
scale.

EXAMPLE (continued)

Note: “¼” means approximately equal
(�)
e.g., 14.5 � 14.0 ) no interaction
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H0 no interaction on a multiplica-
tive scale

, H0 : OR11 ¼ OR10 �OR01

, H0 :
OR11

OR10 �OR01
¼ 1

, H0 : lne
OR11

OR10 �OR01

� �
¼ lne1

, H0 : b3 ¼ 0

logit P(X) ¼ a þ b1A þ b2B þ b3 AB

H0: no interaction , b3 ¼ 0

Test result Model

not significant ) aþ b1A þ b2B

significant ) aþ b1A þ b2B
þ b3AB

MAIN POINT:
Interaction test ) test for product
terms

One way to state this null hypothesis, as
described earlier in terms of odds ratios, is
OR11 equals the product of OR10 and OR01.
Now it follows algebraically that this odds
ratio expression is equivalent to saying that
the quantity OR11 divided by OR10 times OR01

equals 1, or equivalently, that the natural log of
this expression equals the natural log of 1, or,
equivalently, that b3 equals 0. Thus, the null
hypothesis of no interaction on amultiplicative
scale can be equivalently stated as b3 equals 0.

In other words, a test for the no interaction
hypotheses can be obtained by testing for the
significance of the coefficient of the product
term in the model. If the test is not significant,
we would conclude that there is no interaction
on a multiplicative scale and we would reduce
the model to a simpler one involving only main
effects. In other words, the reduced model
would be of the form logit P(X) equals a plus
b1 times A plus b2 times B. If, on the other
hand, the test is significant, the model would
retain the b3 term and we would conclude that
there is significant interaction on a multiplica-
tive scale.

A description of methods for testing hypoth-
eses for logistic regression models is beyond
the scope of this presentation (see Chap. 5).
The main point here is that we can test for
interaction in a logistic model by testing for
significance of product terms that reflect inter-
action effects in the model.

As an example of a test for interaction, we
consider a study that looks at the combined
relationship of asbestos exposure and smoking
to the development of bladder cancer. Suppose
we have collected case-control data on several
persons with the same occupation. We let ASB
denote a (0,1) variable indicating asbestos
exposure status, SMK denote a (0, 1) variable
indicating smoking status, and D denote a
(0, 1) variable for bladder cancer status.

EXAMPLE

Case-control study

ASB ¼ (0, 1) variable for asbestos
exposure

SMK ¼ (0, 1) variable for smoking
status

D ¼ (0, 1) variable for bladder
cancer status
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IV. The E, V, W Model – A
General Model
Containing a (0, 1)
Exposure and
Potential Confounders
and Effect Modifiers

The variables:
E ¼ (0, 1) exposure
C1, C2, . . . , Cp continuous or
categorical

To assess the extent to which there is a multi-
plicative interaction between asbestos expo-
sure and smoking, we consider a logistic
model with ASB and SMK as main effect vari-
ables and the product term ASB times SMK as
an interaction effect variable. The model is
given by the expression logit P(X) equals a
plus b1 times ASB plus b2 times SMK plus b3
times ASB times SMK. With this model, a test
for no interaction on a multiplicative scale is
equivalent to testing the null hypothesis that
b3, the coefficient of the product term, equals 0.

If this test is not significant, then we would
conclude that the effect of asbestos and smok-
ing acting together is equal, on a multiplicative
scale, to the combined effect of asbestos and
smoking acting separately. If this test is signif-
icant and b̂3 is greater than 0, we would con-
clude that the joint effect of asbestos and
smoking is greater than a multiplicative com-
bination of separate effects. Or, if the test is
significant and b̂3 is less than zero, we would
conclude that the joint effect of asbestos and
smoking is less than a multiplicative combina-
tion of separate effects.

We are now ready to discuss a logistic model
that considers the effects of several indepen-
dent variables and, in particular, allows for
the control of confounding and the assessment
of interaction. We call this model the E, V, W
model. We consider a single dichotomous (0, 1)
exposure variable, denoted by E, and p extra-
neous variables C1, C2, and so on, up through
Cp. The variables C1 through Cp may be either
continuous or categorical.

As an example of this special case, suppose the
disease variable is coronary heart disease sta-
tus (CHD), the exposure variable E is catechol-
amine level (CAT), where 1 equals high and
0 equals low, and the control variables are
AGE, cholesterol level (CHL), smoking status
(SMK), electrocardiogram abnormality status
(ECG), and hypertension status (HPT).

EXAMPLE (continued)

logit (X) ¼ a þ b1ASB þ b2SMK
þ b3ASB � SMK

H0 : no interaction (multiplicative)
, H0 : b3 ¼ 0

Test Result Conclusion

Not Significant No interaction on
multiplicative scale

Significant
(b̂3 > 0)

Joint effect >
combined effect

Significant
(b̂3 < 0)

Joint effect <
combined effect

EXAMPLE

D ¼ CHDð0,1Þ
E ¼ CATð0,1Þ

Control

variables

C1 ¼ AGEcontinous

C2 ¼ CHLcontinous

C3 ¼ SMKð0,1Þ
C4 ¼ ECGð0, 1Þ
C5 ¼ HPTð0, 1Þ

8>>>>>><
>>>>>>:
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The general E, V, W Model

single exposure, controlling for C1,
C2, . . . , Cp

We will assume here that both AGE and CHL
are treated as continuous variables, that SMK
is a (0, 1) variable, where 1 equals ever smoked
and 0 equals never smoked, that ECG is a (0, 1)
variable, where 1 equals abnormality present
and 0 equals abnormality absent, and that HPT
is a (0, 1) variable, where 1 equals high blood
pressure and 0 equals normal blood pressure.
There are, thus, five C variables in addition to
the exposure variable CAT.

We now consider a model with eight indepen-
dent variables. In addition to the exposure var-
iable CAT, the model contains the five C
variables as potential confounders plus two
product terms involving two of the Cs, namely,
CHL and HPT, which are each multiplied by
the exposure variable CAT.

The model is written as logit P(X) equals a plus
b times CAT plus the sum of five main effect
terms g1 times AGE plus g2 times CHL and so
on up through g5 times HPT plus the sum of d1
times CAT times CHL plus d2 times CAT times
HPT. Here the five main effect terms account
for the potential confounding effect of the vari-
ables AGE through HPT and the two product
terms account for the potential interaction
effects of CHL and HPT.

Note that the parameters in this model are
denoted as a, b, gs, and ds, whereas previously
we denoted all parameters other than the con-
stant a as bis. We use b, gs, and ds here to
distinguish different types of variables in the
model. The parameter b indicates the coeffi-
cient of the exposure variable, the gs indicate
the coefficients of the potential confounders in
the model, and the ds indicate the coefficients
of the potential interaction variables in the
model. This notation for the parameters will
be used throughout the remainder of this
presentation.

Analogous to the above example, we now
describe the general form of a logistic model,
called the E, V, W model, that considers the
effect of a single exposure controlling for the
potential confounding and interaction effects
of control variables C1, C2, up through Cp.

EXAMPLE (continued)

1 E : CAT
5 Cs : AGE, CHL, SMK, ECG, HPT

Model with eight independent
variables:

2 E � Cs : CAT � CHL
CAT � HPT

logit P(X) ¼ a þ bCAT

þg1AGEþg2CHLþg3SMKþg4ECGþg5HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
main effects

þ d1CAT� CHL þ d2CAT�HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interaction effects

Parameters:
a, b, gs, and ds instead of a and bs,

where
b: exposure variable
gs: potential confounders
ds: potential interaction variables
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E, V, W Model

k ¼ p1 þ p2 þ 1 ¼ no. of variables
in model

p1 ¼ no. of potential confounders
p2 ¼ no. of potential interactions
1 ¼ exposure variable

� V1, . . . , Vp1 are potential
confounders

� Vs are functions of Cs

e.g.,V1 ¼ C1,V2 ¼ (C2)
2,V3 ¼ C1�C3

� W1, . . . , Wp2
are potential effect

modifiers

� Ws are functions of Cs

e.g., W1 ¼ C1, W2 ¼ C1 � C3

The general E, V, W model contains p1 plus p2
plus 1 variables, where p1 is the number of
potential confounders in the model, p2 is the
number of potential interaction terms in the
model, and 1 denotes the exposure variable.

In the CHD study example above, there are p1
equals to five potential confounders, namely,
the five control variables, and there are p2
equal to two interaction variables, the first of
which is CAT � CHL and the second is CAT �
HPT. The total number of variables in the
example is, therefore, p1 plus p2 plus 1 equals
5 plus 2 plus 1, which equals 8. This corre-
sponds to the model presented earlier, which
contained eight variables.

In addition to the exposure variable E, the gen-
eral model contains p1 variables denoted as V1,
V2 through Vp1

. The set of Vs are functions of
the Cs that are thought to account for con-
founding in the data. We call the set of these
Vs potential confounders.

For instance, we may have V1 equal to C1, V2

equal to (C2)
2, and V3 equal to C1 � C3.

The CHD example above has five Vs that are
the same as the Cs.

Following the Vs, we define p2 variables that
are product terms of the form E times W1, E
times W2, and so on up through E times Wp2

,
where W1, W2, through Wp2

, denote a set of
functions of the Cs that are potential effect
modifiers with E.

For instance, we may have W1 equal to C1 and
W2 equal to C1 times C3.

The CHD example above has two Ws, namely,
CHL and HPT, that go into the model as prod-
uct terms of the form CAT � CHL and CAT �
HPT.

CHD EXAMPLE

p1 ¼ 5: AGE, CHL, SMK, ECG, HPT

p2 ¼ 2: CAT � CHL, CAT � HPT

p1 þ p2 þ 1 ¼ 5 þ 2 þ 1 ¼ 8

CHD EXAMPLE

V1 ¼ AGE, V2 ¼ CHL, V3 ¼ SMK,

V4 ¼ ECG, V5 ¼ HPT

CHD EXAMPLE

W1 ¼ CHL, W2 ¼ HPT
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REFERENCES FOR CHOICE OF Vs
AND Ws FROM Cs

� Chap. 6: Modeling Strategy
Guidelines

� Epidemiologic Research,
Chap. 21

Assume: Vs andWs are Cs or subset
of Cs

NOTE
Ws ARE SUBSET OF Vs

logitPðXÞ ¼ aþbEþ g1V1þ g2V2

þ � � �þ gp1 Vp1 þ d1EW1

þ d2EW2þ �� �þ dp2 EWp2 ,

where
b ¼ coefficient of E
gs ¼ coefficient of Vs
ds ¼ coefficient of Ws

logit P(X) ¼ a þ bE

þ ~
p1

i¼1

giVi þ E ~
p2

j¼1

djWj

It is beyond the scope of this chapter to discuss
the subtleties involved in the particular choice
of the Vs andWs from the Cs for a given model.
More depth is provided in a separate chapter
(Chap. 6) on modeling strategies and in Chap.
21 of Epidemiologic Research by Kleinbaum,
Kupper, and Morgenstern.

In most applications, the Vs will be the Cs
themselves or some subset of the Cs and the
Ws will also be the Cs themselves or some sub-
set thereof. For example, if the Cs are AGE,
RACE, and SEX, then the Vs may be AGE,
RACE, and SEX, and the Ws may be AGE and
SEX, the latter two variables being a subset of
the Cs. Here the number of V variables, p1,
equals 3, and the number of W variables, p2,
equals 2, so that k, which gives the total num-
ber of variables in themodel, is p1 plus p2 plus 1
equals 6.

Note, as we describe further in Chap. 6, that
you cannot have a W in the model that is not
also contained in the model as a V; that is, Ws
have to be a subset of the Vs. For instance, we
cannot allow a model whose Vs are AGE and
RACE and whose Ws are AGE and SEX
because the SEX variable is not contained in
the model as a V term.

A logistic model incorporating this special case
containing the E, V, and W variables defined
above can be written in logit form as shown
here.

Note that b is the coefficient of the single expo-
sure variable E, the gs are coefficients of poten-
tial confounding variables denoted by the Vs,
and the ds are coefficients of potential interac-
tion effects involving E separately with each of
the Ws.

We can factor out the E from each of the inter-
action terms, so that the model may be more
simply written as shown here. This is the form
of the model that we will use henceforth in this
presentation.

EXAMPLE

C1 ¼ AGE, C2 ¼ RACE, C3 ¼ SEX

V1 ¼ AGE, V2 ¼ RACE, V3 ¼ SEX

W1 ¼ AGE, W2 ¼ SEX

p1 ¼ 3, p2 ¼ 2, k ¼ p1 þ p2 þ 1 ¼ 6

EXAMPLE

V1 = AGE, V2 = RACE

W1 = AGE, W2 = SEX
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Adjusted odds ratio for E ¼ 1 vs.
E ¼ 0 given C1, C2, . . . , Cp fixed

ROR ¼ exp bþ ~
p2

j¼1

djWj

 !

� gi terms not in formula

� Formula assumes E is (0, 1)

� Formula is modified if E has
other coding, e.g., (1, �1),
(2, 1), ordinal, or interval
(see Chap. 3 on coding)

Interaction:

ROR = exp(b + Σ djWj )
� dj 6¼ 0 ) OR depends on Wj

� Interaction) effect of E differs
at different levels of Ws

We now provide for this model an expression
for an adjusted odds ratio that describes the
effect of the exposure variable on disease status
adjusted for the potential confounding and
interaction effects of the control variables C1

through Cp. That is, we give a formula for the
risk odds ratio comparing the odds of disease
development for exposed vs. unexposed per-
sons, with both groups having the same values
for the extraneous factors C1 through Cp. This
formula is derived as a special case of the odds
ratio formula for a general logistic model given
earlier in our review.

For our special case, the odds ratio formula
takes the form ROR equals e to the quantity
b plus the sum from 1 through p2 of the dj
times Wj.

Note that b is the coefficient of the exposure
variable E, that the dj are the coefficients of the
interaction terms of the form E times Wj, and
that the coefficients gi of the main effect vari-
ables Vi do not appear in the odds ratio
formula.

Note also that this formula assumes that the
dichotomous variable E is coded as a (0, 1)
variable with E equal to 1 for exposed persons
and E equal to 0 for unexposed persons. If the
coding scheme is different, for example,
(1, �1) or (2, 1), or if E is an ordinal or interval
variable, then the odds ratio formula needs to
be modified. The effect of different coding
schemes on the odds ratio formula will be
described in Chap. 3.

This odds ratio formula tells us that if our
model contains interaction terms, then the
odds ratio will involve coefficients of these
interaction terms and that, moreover, the
value of the odds ratio will be different depend-
ing on the values of the W variables involved in
the interaction terms as products with E. This
property of the OR formula should make sense
in that the concept of interaction implies that
the effect of one variable, in this case E, is
different at different levels of another variable,
such as any of the Ws.
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� Vs not in OR formula but Vs in
model, so OR formula controls
confounding:

logit P(X) = a + bE + Σ  gi  Vi

+ E Σ  d j  Wj

No interaction:

all dj ¼ 0 ) ROR ¼ exp (b)
"

constant

logit P(X) ¼ a þ bE þ ~ giVi

"
confounding

effects adjusted

Although the coefficients of the V terms do not
appear in the odds ratio formula, these terms
are still part of the fitted model. Thus, the odds
ratio formula not only reflects the interaction
effects in the model but also controls for the
confounding variables in the model.

In contrast, if the model contains no interac-
tion terms, then, equivalently, all the dj coeffi-
cients are 0; the odds ratio formula thus
reduces to ROR equals to e to b, where b is
the coefficient of the exposure variable E.
Here, the odds ratio is a fixed constant, so that
its value does not change with different values
of the independent variables. The model in this
case reduces to logit P(X) equals a plus b times
E plus the sum of the main effect terms involv-
ing the Vs and contains no product terms. For
this model, we can say that e to b represents an
odds ratio that adjusts for the potential con-
founding effects of the control variables C1

through Cp defined in terms of the Vs.

As an example of the use of the odds ratio
formula for the E, V, W model, we return to
the CHD study example we described earlier.
The CHD study model contained eight inde-
pendent variables. The model is restated here
as logit P(X) equals a plus b times CAT plus the
sum of five main effect terms plus the sum of
two interaction terms.

The five main effect terms in this model
account for the potential confounding effects
of the variables AGE through HPT. The two
product terms account for the potential inter-
action effects of CHL and HPT with CAT.

For this example, the odds ratio formula
reduces to the expression ROR equals e to the
quantity b plus the sum d1 times CHL plus
d2 times HPT.

EXAMPLE

The model:
logit P (X) ¼ a þ bCAT

þ g1AGE þ g2CHLþ g3SMKþ g4ECG þ g5HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
main effects

þ CAT d1CHL þ d2HPTð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interaction effects

logit PðXÞ ¼ aþ bCAT
þ g1AGE þ g2CHLþ g3SMKþ g4ECG þ g5HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

main effects: confounding

þ CAT d1CHL þ d2HPTð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
product terms: interaction

ROR ¼ exp bþ d1CHLþ d2HPTð Þ
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In using this formula, note that to obtain a
numerical value for this odds ratio, not only
do we need estimates of the coefficients b and
the two ds, but we also need to specify values
for the variables CHL and HPT. In other words,
once we have fitted the model to obtain esti-
mates of the coefficients, we will get different
values for the odds ratio depending on the
values that we specify for the interaction vari-
ables in our model. Note, also, that although
the variables AGE, SMK, and ECG are not
contained in the odds ratio expression for this
model, the confounding effects of these three
variables plus CHL andHPT are being adjusted
because the model being fit contains all five
control variables as main effect V terms.

To provide numerical values for the above odds
ratio, we will consider a data set of 609 white
males from Evans County, Georgia, who were
followed for 9 years to determine CHD status.
The above model involving CAT, the five V vari-
ables, and the two W variables was fit to this
data, and the fitted model is given by the list of
coefficients corresponding to the variables
listed here.

Based on the above fitted model, the estimated
odds ratio for the CAT, CHD association
adjusted for the five control variables is given
by the expression shown here. Note that this
expression involves only the coefficients of the
exposure variable CAT and the interaction vari-
ables CAT times CHL and CAT times HPT, the
latter two coefficients being denoted by ds in
the model.

EXAMPLE (continued)

ROR ¼ exp
�
b̂þ d̂1CHLþ d̂2HPT

�
� varies with values of CHL and HPT

AGE, SMK, and ECG are adjusted for
confounding

n ¼ 609 white males from Evans
County, GA 9-year follow up

Fitted model:

Variable Coefficient

Intercept â ¼ �4.0497

CAT b̂ ¼ �12.6894

AGE ĝ1 ¼ 0.0350

CHL ĝ2 ¼ �0.0055

SMK ĝ3 ¼ 0.7732

ECG ĝ4 ¼ 0.3671

HPT ĝ5 ¼ 1.0466

CAT � CHL d̂1 ¼ 0.0692

CAT � HPT d̂2 ¼ �2.3318

ROR = exp (– 12.6894 + 0.0692CHL – 2.3318 HPT)

exposure coefficient interaction coefficient
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Choice of W values depends on
investigator

This expression for the odds ratio tells us thatwe
obtain a different value for the estimated odds
ratio depending on the values specified for CHL
and HPT. As previously mentioned, this should
make sense conceptually because CHLandHPT
are the only two effect modifiers in the model,
and the value of the odds ratio changes as the
values of the effect modifiers change.

To get a numerical value for the odds ratio, we
consider, for example, the specific values CHL
equal to 220 andHPT equal to 1. Plugging these
into the odds ratio formula, we obtain e to the
0.2028, which equals 1.22.

As a second example, we consider CHL equal to
200 and HPT equal to 0. Here, the odds ratio
becomes e to 1.1506, which equals 3.16.

Thus, we see that depending on the values of
the effect modifiers we will get different values
for the estimated odds ratios. Note that each
estimated odds ratio obtained adjusts for the
confounding effects of all five control variables
because these five variables are contained in
the fitted model as V variables.

In general, when faced with an odds ratio
expression involving effect modifiers (W), the
choice of values for the W variables depends
primarily on the interest of the investigator.
Typically, the investigator will choose a range
of values for each interaction variable in
the odds ratio formula; this choice will lead to
a table of estimated odds ratios, such as the
one presented here, for a range of CHL values
and the two values of HPT. From such a table,
togetherwith a table of confidence intervals, the
investigator can interpret the exposure–disease
relationship.

As a second example, we consider a model con-
taining no interaction terms from the same
Evans County data set of 609 white males.
The variables in the model are the exposure
variable CAT, and five V variables, namely,
AGE, CHL, SMK, ECG, and HPT. This model
is written in logit form as shown here.

EXAMPLE (continued)

ROR varies with values of CHL and HPT

effect modifiers

� CHL ¼ 220, HPT ¼ 1dROR ¼ exp½�12:6894þ 0:0692 220ð Þ
� 2:3318 1ð Þ�

¼ exp 0:2028ð Þ ¼ 1:22

� CHL ¼ 200, HPT ¼ 0dROR ¼ exp½�12:6894þ 0:0692 200ð Þ
� 2:3318 0ð Þ�

¼ exp 1:1506ð Þ ¼ 3:16

CHL ¼ 220, HPT ¼ 1 ) dROR ¼ 1.22
CHL ¼ 200, HPT ¼ 0 ) dROR ¼ 3.16

controls for the confounding effects of
AGE, CHL, SMK, ECG, and HPT

EXAMPLE

TABLE OF POINT ESTIMATES dROR

HPT ¼ 0 HPT ¼ 1

CHL ¼ 180 0.79 0.08

CHL ¼ 200 3.16 0.31

CHL ¼ 220 12.61 1.22

CHL ¼ 240 50.33 4.89

EXAMPLE

No interaction model for Evans
County data (n ¼ 609)

logit P(X) ¼ a þ bCAT
þ g1AGE þ g2CHL
þ g3SMK þ g4ECG
þ g5HPT
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Because this model contains no interaction
terms, the odds ratio expression for the CAT,
CHD association is given by e to the b̂, where b̂
is the estimated coefficient of the exposure
variable CAT.

When fitting this no interaction model to the
data, we obtain estimates of the model coeffi-
cients that are listed here.

For this fitted model, then, the odds ratio is
given by e to the power 0.5978, which equals
1.82. Note that this odds ratio is a fixed num-
ber, which should be expected, as there are no
interaction terms in the model.

In comparing the results for the no interaction
model just described with those for the model
containing interaction terms, we see that the
estimated coefficient for any variable contained
in both models is different in each model. For
instance, the coefficient of CAT in the no inter-
action model is 0.5978, whereas the coefficient
of CAT in the interaction model is �12.6894.
Similarly, the coefficient of AGE in the no inter-
action model is 0.0322, whereas the coefficient
of AGE in the interaction model is 0.0350.

EXAMPLE (continued)

dROR ¼ exp b̂
	 


Fitted model:

Variable Coefficient

Intercept â ¼ �6.7747

CAT b̂ ¼ 0.5978

AGE ĝ1 ¼ 0.0322

CHL ĝ2 ¼ 0.0088

SMK ĝ3 ¼ 0.8348

ECG ĝ4 ¼ 0.3695

HPT ĝ5 ¼ 0.4392

dROR ¼ exp 0:5978ð Þ ¼ 1:82

EXAMPLE COMPARISON

Interaction
model

No interaction
model

Intercept �4.0497 �6.7747

CAT �12.6894 0.5978

AGE 0.0350 0.0322

CHL �0.0055 0.0088

SMK 0.7732 0.8348

ECG 0.3671 0.3695

HPT 1.0466 0.4392

CAT � CHL 0.0692 –

CAT � HPT �2.3318 –
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Which model? Requires strategy

3. Computing the Odds Ratio

It should not be surprising to see different
values for corresponding coefficients as the
two models give a different description of the
underlying relationship among the variables.
To decide which of these models, or maybe
what other model, is more appropriate for
this data, we need to use a strategy for model
selection that includes carrying out tests of
significance. A discussion of such a strategy is
beyond the scope of this presentation but is
described elsewhere (see Chaps. 6 and 7).

This presentation is now complete. We have
described important special cases of the logis-
tic model, namely, models for

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows. Then do the practice exercises and
test.

All of the special cases in this presentation
involved a (0, 1) exposure variable. In the next
chapter, we consider how the odds ratio for-
mula is modified for other codings of single
exposures and also examine several exposure
variables in the same model, controlling for
potential confounders and effect modifiers.

SUMMARY

1. Introduction

3 2. Important Special Cases

� simple analysis

� interaction assessment involving two
variables

� assessment of potential confounding and
interaction effects of several covariates
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Detailed
Outline

I. Overview (page 45)

A. Focus:

� Simple analysis

� Multiplicative interaction

� Controlling several confounders and effect
modifiers

B. Logistic model formula when X ¼ (X1, X2, . . . , Xk):

P Xð Þ ¼ 1

1þ e
�
�
aþ~

k

i¼1

biXi

� :
C. Logit form of logistic model:

logit P Xð Þ ¼ aþ ~
k

i¼1

biXi:

D. General odds ratio formula:

RORX1, X0
¼ e

~
k

i¼1

bi X1i�X0ið Þ ¼
Yk
i¼1

ebi X1i�X0ið Þ:

II. Special case – Simple analysis (pages 46–49)

A. The model:

P Xð Þ ¼ 1

1þ e� aþb1Eð Þ

B. Logit form of the model:

logit P(X) ¼ a þ b1E

C. Odds ratio for the model: ROR ¼ exp(b1)
D. Null hypothesis of no E, D effect: H0: b1 ¼ 0.

E. The estimated odds ratio exp(b̂) is computationally
equal to ad/bc where a, b, c, and d are the cell
frequencies within the four-fold table for simple
analysis.

III. Assessing multiplicative interaction (pages 49–55)

A. Definition of no interaction on a multiplicative
scale: OR11 ¼ OR10 � OR01,
where ORAB denotes the odds ratio that compares
a person in category A of one factor and category B
of a second factor with a person in referent
categories 0 of both factors, where A takes on the
values 0 or 1 and B takes on the values 0 or 1.

B. Conceptual interpretation of no interaction
formula: The effect of both variables A and B acting
together is the same as the combined effect of each
variable acting separately.

Detailed Outline 65



C. Examples of no interaction and interaction on a
multiplicative scale.

D. A logistic model that allows for the assessment of
multiplicative interaction:

logit P(X) ¼ a þ b1A þ b2B þ b3A � B

E. The relationship of b3 to the odds ratios in the no
interaction formula above:

b3 ¼ ln
OR11

OR10 �OR01

� �

F. The null hypothesis of no interaction in the above
two factor model: H0: b3 ¼ 0.

IV. The E, V, W model – A general model containing a
(0, 1) exposure and potential confounders and
effect modifiers (pages 55–64)

A. Specification of variables in the model: start with
E, C1, C2, . . . , Cp; then specify potential
confounders V1, V2, . . . , Vp1

, which are functions
of the Cs, and potential interaction variables (i.e.,
effect modifiers) W1, W2, . . . , Wp2

, which are also
functions of the Cs and go into the model as
product terms with E, i.e., E � Wj.

B. The E, V, W model:

logit P Xð Þ ¼ aþ bEþ ~
p1

i¼1

giVi þ E ~
p2

j¼1

djWj

C. Odds ratio formula for the E, V, Wmodel, where E
is a (0, 1) variable:

RORE ¼ 1 vs:E ¼ 0 ¼ exp bþ ~
p2

j¼1

djWj

 !

D. Odds ratio formula for E, V, W model if no
interaction: ROR ¼ exp(b).

E. Examples of the E, V, W model: with interaction
and without interaction
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Practice
Exercises

True or False (Circle T or F)

T F 1. A logistic model for a simple analysis involving
a (0, 1) exposure variable is given by logit
P(X) ¼ a þ bE, where E denotes the (0, 1) expo-
sure variable.

T F 2. The odds ratio for the exposure–disease rela-
tionship in a logistic model for a simple analysis
involving a (0, 1) exposure variable is given by b,
where b is the coefficient of the exposure
variable.

T F 3. The null hypothesis of no exposure–disease
effect in a logistic model for a simple analysis
is given by H0: b ¼ 1, where b is the coefficient
of the exposure variable.

T F 4. The log of the estimated coefficient of a (0, 1)
exposure variable in a logistic model for simple
analysis is equal to ad/bc, where a, b, c, and d
are the cell frequencies in the corresponding
fourfold table for simple analysis.

T F 5. Given the model logit P(X) ¼ a þ bE, where E
denotes a (0, 1) exposure variable, the risk for
exposed persons (E ¼ 1) is expressible as eb.

T F 6. Given the model logit P(X) ¼ a þ bE, as in
Exercise 5, the odds of getting the disease for
exposed persons (E ¼ 1) is given by eaþb.

T F 7. A logistic model that incorporates a multiplica-
tive interaction effect involving two (0, 1) inde-
pendent variables X1 and X2 is given by logit
P(X) ¼ a þ b1X1 þ b2X2 þ b3X1X2.

T F 8. An equation that describes “no interaction
on a multiplicative scale” is given by
OR11 ¼ OR10/OR01.

T F 9. Given the model logit P(X) ¼ a þ bE þ gSMK
þ dE � SMK, where E is a (0, 1) exposure vari-
able and SMK is a (0, 1) variable for smoking
status, the null hypothesis for a test of no inter-
action on a multiplicative scale is given by H0:
d ¼ 0.

T F 10. For the model in Exercise 9, the odds ratio that
describes the exposure disease effect controlling
for smoking is given by exp(b þ d).

T F 11. Given an exposure variable E and control vari-
ables AGE, SBP, and CHL, suppose it is of inter-
est to fit a model that adjusts for the potential
confounding effects of all three control vari-
ables considered as main effect terms and for
the potential interaction effects with E of all
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three control variables. Then the logit form
of a model that describes this situation is
given by logit P(X) ¼ a þ bE þ g1AGE þ g2SBP
þ g3CHL þ d1AGE � SBP þ d2AGE � CHL
þ d3SBP � CHL.

T F 12. Given a logistic model of the form logit P(X) ¼
a þ bE þ g1AGE þ g2SBP þ g3CHL, where E is
a (0, 1) exposure variable, the odds ratio for the
effect ofE adjusted for the confounding of AGE,
CHL, and SBP is given by exp(b).

T F 13. If a logistic model contains interaction terms
expressible as products of the form EWj where
Wj are potential effect modifiers, then the value
of the odds ratio for the E, D relationship will be
different, depending on the values specified for
the Wj variables.

T F 14. Given the model logit P(X) ¼ a þ bE þ g1SMK
þ g2SBP, where E and SMK are (0, 1) variables,
and SBP is continuous, then the odds ratio for
estimating the effect of SMK on the disease,
controlling for E and SBP is given by exp(g1).

T F 15. Given E, C1, and C2, and letting V1 ¼ C1 ¼ W1

and V2 ¼ C2 ¼ W2, then the corresponding
logistic model is given by logit P(X) ¼ a þ bE
þ g1C1 þ g2C2 þ E(d1C1 þ d2C2).

T F 16. For the model in Exercise 15, if C1 ¼ 20 and
C2 ¼ 5, then the odds ratio for the E, D relation-
ship has the form exp(b þ 20d1 þ 5d2).
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Test True or False (Circle T or F)

T F 1. Given the simple analysis model, logit P(X) ¼ f
þ cQ, where f and c are unknown parameters
and Q is a (0, 1) exposure variable, the odds ratio
for describing the exposure–disease relationship
is given by exp(f).

T F 2. Given the model logit P(X) ¼ a þ bE, where E
denotes a (0, 1) exposure variable, the risk for
unexposed persons (E ¼ 0) is expressible as
1/exp(�a).

T F 3. Given the model in Question 2, the odds of get-
ting the disease for unexposed persons (E ¼ 0) is
given by exp(a).

T F 4. Given the model logit P(X) ¼ f þ cHPT
þ rECG þ pHPT � ECG, where HPT is a (0, 1)
exposure variable denoting hypertension status
and ECG is a (0, 1) variable for electrocardio-
gram status, the null hypothesis for a test of no
interaction on a multiplicative scale is given by
H0: exp(p) ¼ 1.

T F 5. For the model in Question 4, the odds ratio that
describes the effect of HPT on disease status,
controlling for ECG, is given by exp(c þ pECG).

T F 6. Given the model logit P(X) ¼ a þ bE þ fHPT
þ cECG, where E, HPT, and ECG are (0, 1) vari-
ables, then the odds ratio for estimating the
effect of ECG on the disease, controlling for E
and HPT, is given by exp(c).

T F 7. Given E, C1, and C2, and letting V1 ¼ C1 ¼ W1,
V2 ¼ (C1)

2, and V3 ¼ C2, then the corresponding
logistic model is given by logit P(X) ¼ a þ bE
þ g1C1 þ g2C1

2 þ g3C2 þ dEC1.

T F 8. For the model in Question 7, if C1 ¼ 5 and
C2 ¼ 20, then the odds ratio for the E, D relation-
ship has the form exp(b þ 20d).

Test 69



Consider a 1-year follow-up study of bisexual males to
assess the relationship of behavioral risk factors to the
acquisition of HIV infection. Study subjects were all in
the 20–30 age range and were enrolled if they tested HIV
negative and had claimed not to have engaged in “high-
risk” sexual activity for at least 3 months. The outcome
variable is HIV status at 1 year, a (0, 1) variable, where a
subject gets the value 1 if HIV positive and 0 if HIV negative
at 1 year after start of follow-up. Four risk factors were
considered: consistent and correct condom use (CON),
a (0, 1) variable; having one or more sex partners in high-
risk groups (PAR), also a (0, 1) variable; the number of
sexual partners (NP); and the average number of sexual
contacts per month (ASCM). The primary purpose of this
study was to determine the effectiveness of consistent and
correct condom use in preventing the acquisition of HIV
infection, controlling for the other variables. Thus, the
variable CON is considered the exposure variable, and the
variables PAR, NP, and ASCM are potential confounders
and potential effect modifiers.

9. Within the above study framework, state the logit
form of a logistic model for assessing the effect of
CON on HIV acquisition, controlling for each of the
other three risk factors as both potential confounders
and potential effect modifiers. (Note: In defining your
model, only use interaction terms that are two-way
products of the form E � W, where E is the exposure
variable and W is an effect modifier.)

10. Using the model in Question 9, give an expression for
the odds ratio that compares an exposed person
(CON ¼ 1) with an unexposed person (CON ¼ 0)
who has the same values for PAR, NP, and ASCM.
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Answers to
Practice
Exercises

1. T

2. F: OR ¼ eb

3. F: H0: b ¼ 0

4. F: eb ¼ ad/bc

5. F: risk for E ¼ 1 is 1/[1 þ e�(aþb)]

6. T

7. T

8. F: OR11 ¼ OR10 � OR01

9. T

10. F: OR ¼ exp(b þ dSMK)

11. F: interaction terms should be E� AGE, E� SBP, and
E � CHL

12. T

13. T

14. T

15. T

16. T

Answers to Practice Exercises 71
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Introduction In this chapter, the E, V, W model is extended to consider
other coding schemes for a single exposure variable,
including ordinal and interval exposures. The model is
further extended to allow for several exposure variables.
The formula for the odds ratio is provided for each exten-
sion, and examples are used to illustrate the formula.

Abbreviated
Outline

The outline below gives the user a preview of the material
covered by the presentation. Together with the objectives,
this outline offers the user an overview of the content of
this module. A detailed outline for review purposes follows
the presentation.

I. Overview (pages 76–77)

II. Odds ratio for other codings of a dichotomous E
(pages 77–79)

III. Odds ratio for arbitrary coding of E (pages 79–82)

IV. The model and odds ratio for a nominal exposure
variable (no interaction case) (pages 82–84)

V. The model and odds ratio for several exposure
variables (no interaction case) (pages 85–87)

VI. The model and odds ratio for several exposure
variables with confounders and interaction
(pages 87–91)
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Objectives Upon completing this chapter, the learner should be able to:

1. Given a logistic model for a study situation involving a
single exposure variable and several control variables,
compute or recognize the expression for the odds ratio
for the effect of exposure on disease status that adjusts
for the confounding and interaction effects of functions
of control variables:

a. When the exposure variable is dichotomous and
coded (a, b) for any two numbers a and b

b. When the exposure variable is ordinal and two
exposure values are specified

c. When the exposure variable is continuous and two
exposure values are specified

2. Given a study situation involving a single nominal
exposure variable with more than two (i.e.,
polytomous) categories, state or recognize a logistic
model that allows for the assessment of the
exposure–disease relationship controlling for potential
confounding and assuming no interaction.

3. Given a study situation involving a single nominal
exposure variable with more than two categories,
compute or recognize the expression for the odds ratio
that compares two categories of exposure status,
controlling for the confounding effects of control
variables and assuming no interaction.

4. Given a study situation involving several distinct
exposure variables, state or recognize a logistic model
that allows for the assessment of the joint effects of the
exposure variables on disease controlling for the
confounding effects of control variables and assuming
no interaction.

5. Given a study situation involving several distinct
exposure variables, state or recognize a logistic model
that allows for the assessment of the joint effects of
the exposure variables on disease controlling for the
confounding and interaction effects of control
variables.

Objectives 75



Presentation

I. Overview

FOCUS

Computing OR for
E, D relationship
adjusting for
control variables

� Dichotomous E – arbitrary
coding

� Ordinal or interval E

� Polytomous E

� Several Es

Chapter 2 – E, V, W model:

� (0, 1) exposure

� Confounders

� Effect modifiers

The variables in the E, V, W model:

E: (0, 1) exposure

Cs: control variables

Vs: potential confounders

Ws: potential effect modifiers
(i.e., go into model as E � W)

The E, V, W model:

logit P Xð Þ ¼ aþ bEþ ~
p1

i¼1

giVi

þ E ~
p2

j¼1

djWj

This presentation describes how to compute
the odds ratio for special cases of the general
logistic model involving one or more exposure
variables. We focus on models that allow for
the assessment of an exposure–disease rela-
tionship that adjusts for the potential con-
founding and/or effect modifying effects of
control variables.

In particular, we consider dichotomous expo-
sure variables with arbitrary coding, that is, the
coding of exposure may be other than (0, 1).
We also consider single exposures that are ordi-
nal or interval scaled variables. And, finally, we
consider models involving several exposures, a
special case of which involves a single polyto-
mous exposure.

In the previous chapter we described the logit
form and odds ratio expression for the E, V, W
logistic model, where we considered a single
(0, 1) exposure variable and we allowed the
model to control several potential confounders
and effect modifiers.

Recall that in defining the E, V, W model, we
start with a single dichotomous (0, 1) exposure
variable, E, and p control variables C1, C2,
and so on, up through Cp. We then define a
set of potential confounder variables, which
are denoted as Vs. These Vs are functions of
the Cs that are thought to account for con-
founding in the data. We then define a set of
potential effect modifiers, which are denoted
as Ws. Each of the Ws goes into the model as
product term with E.

The logit form of the E, V, W model is shown
here. Note that b is the coefficient of the single
exposure variable E, the gammas (gs) are coef-
ficients of potential confounding variables
denoted by the Vs, and the deltas (ds) are coef-
ficients of potential interaction effects involv-
ing E separately with each of the Ws.
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Adjusted odds ratio for effect of E
adjusted for Cs:

RORE¼1 vs: E¼0 ¼ exp bþ ~
p2

j¼1

djWj

 !

(gi terms not in formula)

II. Odds Ratio for Other
Codings of a
Dichotomous E

Need to modify OR formula if cod-
ing of E is not (0, 1)

Focus: ü dichotomous
ordinal
interval

E ¼ a if exposed

b if unexposed

(

RORE¼a vs: E¼b

¼ exp a� bð Þbþ a� bð Þ ~
p2

j¼1

djWj

" #

For this model, the formula for the adjusted
odds ratio for the effect of the exposure variable
on disease status adjusted for the potential
confounding and interaction effects of the Cs
is shown here. This formula takes the form
e to the quantity b plus the sum of terms of
the form dj times Wj. Note that the coefficients
gi of the main effect variables Vi do not appear
in the odds ratio formula.

Note that this odds ratio formula assumes that
the dichotomous variable E is coded as a (0, 1)
variable with E equal to 1 when exposed and E
equal to 0when unexposed. If the coding scheme
is different – for example, (�1, 1) or (2, 1), or if
E is an ordinal or interval variable – then the
odds ratio formula needs to be modified.

We now consider other coding schemes for
dichotomous variables. Later, we also con-
sider coding schemes for ordinal and interval
variables.

Suppose E is coded to take on the value a if
exposed and b if unexposed. Then, it follows
from the general odds ratio formula that ROR
equals e to the quantity (a � b) times b plus
(a � b) times the sum of the dj times the Wj.

For example, if a equals 1 and b equals 0,
then we are using the (0, 1) coding scheme
described earlier. It follows that a minus b
equals 1 minus 0, or 1, so that the ROR expres-
sion is e to the b plus the sum of the dj times the
Wj. We have previously given this expression
for (0, 1) coding.

In contrast, if a equals 1 and b equals �1, then
aminus b equals 1 minus �1, which is 2, so the
odds ratio expression changes to e to the quan-
tity 2 times b plus 2 times the sum of the dj
times the Wj.

As a third example, suppose a equals 100 and
b equals 0, then a minus b equals 100, so the
odds ratio expression changes to e to the quan-
tity 100 times b plus 100 times the sum of
the dj times the Wj.

EXAMPLES

(A)   a = 1, b = 0 ⇒ (a – b) = (1 – 0) = 1

ROR = exp(1b + 1Σ dj Wj)

(B)   a = 1, b = – 1 ⇒ (a – b) = (1 – [–1]) = 2

ROR = exp(2b + 2 Σ djWj)

(C)   a = 100, b = 0 ⇒ (a–b) = (100–0) = 100

ROR = exp(100b + 100Σ djWj)
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Coding dROR

Að Þ a¼ 1;b¼ 0 dRORA ¼ exp
�
b̂A þ ~

p2

j¼1

d̂jAWj

�
Bð Þ a¼ 1;b¼�1 dRORB ¼ exp

�
2b̂B þ ~

p2

j¼1

2d̂jBWj

�

(C) RORC = expa = 100, b = 0 100bC + Σ 100 dj CW j
j=1

p2

same value
although
different
codings

different values
for different

codings

RORA = RORB = RORC

bA ≠ bB ≠ bC

djA ≠ djB ≠ djC

Thus, depending on the coding scheme for E,
the odds ratio will be calculated differently.
Nevertheless, even though b̂ and the d̂j will be
different for different coding schemes, the final
odds ratio value will be the same as long as the
correct formula is used for the corresponding
coding scheme.

As shown here for the three examples above,
which are labeled A, B, and C, the three com-
puted odds ratios will be the same, even
though the estimates b̂ and d̂j used to compute
these odds ratios will be different for different
codings.

As a numerical example, we consider a model
that contains no interaction terms from a data
set of 609 white males from Evans County,
Georgia. The study is a follow-up study to
determine the development of coronary heart
disease (CHD) over 9 years of follow-up. The
variables in the model are CAT, a dichotomous
exposure variable, and five V variables, namely,
AGE, CHL, SMK, ECG, and HPT.

This model is written in logit form as logit P(X)
equals a plus b times CAT plus the sum of five
main effect terms g1 times AGE plus g2 times
CHL, and so on up through g5 times HPT.

We first describe the results from fitting this
model when CAT is coded as a (0, 1) variable.
Then, we contrast these results with other cod-
ings of CAT.

Because this model contains no interaction
terms and CAT is coded as (0, 1), the odds ratio
expression for the CAT, CHD association is
given by e to b̂, where b̂ is the estimated coeffi-
cient of the exposure variable CAT.

EXAMPLE: No Interaction Model

Evans County follow-up study:

n ¼ 609 white males

D ¼ CHD status

E ¼ CAT, dichotomous

V1 ¼ AGE, V2 = CHL, V3 = SMK,

V4 ¼ ECG, V5 = HPT

logit PðXÞ ¼ aþ bCATþ g1AGE

þ g2CHLþ g3SMK

þ g4ECGþ g5HPT

CAT: (0, 1) vs. other codings

dROR ¼ exp b̂
� �
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III. Odds Ratio for
Arbitrary Coding of E

Model:

dichotomous, ordinal or interval

logit P Xð Þ ¼ aþ bEþ ~
p1

i¼1

giVi

þ E ~
p2

j¼1

djWj

Fitting this no interaction model to the data,
we obtain the estimates listed here.

For this fitted model, then, the odds ratio is
given by e to the power 0.5978, which equals
1.82. Notice that, as should be expected, this
odds ratio is a fixed number as there are no
interaction terms in the model.

Now, if we consider the same data set and the
same model, except that the coding of CAT is
(�1, 1) instead of (0, 1), the coefficient b̂ of CAT
becomes 0.2989, which is one-half of 0.5978.
Thus, for this coding scheme, the odds ratio
is computed as e to 2 times the corresponding
b̂ of 0.2989, which is the same as e to 0.5978,
or 1.82. We see that, regardless of the coding
scheme used, the final odds ratio result is the
same, as long as the correct odds ratio formula
is used. In contrast, it would be incorrect to use
the (�1, 1) coding scheme and then compute
the odds ratio as e to 0.2989.

We now consider the odds ratio formula for
any single exposure variable E, whether dicho-
tomous, ordinal, or interval, controlling for a
collection of C variables in the context of an
E, V, W model shown again here. That is, we
allow the variable E to be defined arbitrarily of
interest.

EXAMPLE (continued)

(0, 1) coding for CAT

Variable Coefficient

Intercept â ¼ �6:7747

CAT b̂ ¼ 0:5978

AGE ĝ1 ¼ 0:0322

CHL ĝ2 ¼ 0:0088

SMK ĝ3 ¼ 0:8348

ECG ĝ4 ¼ 0:3695

HPT ĝ5 ¼ 0:4392

dROR ¼ expð0:5978Þ ¼ 1:82

No interaction model: ROR fixed

�1; 1ð Þ coding for CAT:

b̂ ¼ 0:2989 ¼ 0:5978

2

� �
dROR ¼ exp 2b̂

� �
¼ exp 2� 0:2989ð Þ
¼ exp 0:5978ð Þ
¼ 1:82

same dROR as for (0, 1) coding

Note. dROR 6¼ expð0:2989Þ¼1:35
"
incorrect value
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E*(group 1) vs. E** (group 2)

RORE* vs:E** ¼ exp

�
ðE*�E**Þb

þ ðE*�E**Þ~
p2

j¼1

djWj

�
Same as

RORE¼a vs: E¼b ¼ exp

�
ða� bÞb

þ ða� bÞ ~
p2

j¼1

djWj

�

To obtain an odds ratio for such a generally
defined E, we need to specify two values of E
to be compared. We denote the two values of
interest as E* and E**. We need to specify two
values because an odds ratio requires the com-
parison of two groups – in this case two levels
of the exposure variable E – even when the
exposure variable can take on more than two
values, as when E is ordinal or interval.

The odds ratio formula for E* vs. E**, equals
e to the quantity (E* � E**) times b plus
(E* � E**) times the sum of the dj times Wj.
This is essentially the same formula as previ-
ously given for dichotomous E, except that
here, several different odds ratios can be com-
puted as the choice of E* and E** ranges over
the possible values of E.

We illustrate this formula with several exam-
ples. First, suppose E gives social support
status as denoted by SSU, which is an index
ranging from 0 to 5, where 0 denotes a person
without any social support and 5 denotes
a person with the maximum social support
possible.

To obtain an odds ratio involving social support
status (SSU), in the context of our E, V, W
model, we need to specify two values of E.
One such pair of values is SSU* equals 5 and
SSU** equals 0, which compares the odds for
persons who have the highest amount of social
support with the odds for persons who have
the lowest amount of social support. For this
choice, the odds ratio expression becomes e to
the quantity (5 – 0) times b plus (5 – 0) times
the sum of the dj times Wj, which simplifies to
e to 5b plus 5 times the sum of the dj times Wj.

Similarly, if SSU* equals 3 and SSU** equals 1,
then the odds ratio becomes e to the quantity
(3 – 1) times b plus (3 – 1) times the sum of
the dj times Wj, which simplifies to e to 2b plus
2 times the sum of the dj times Wj.

EXAMPLE

E ¼ SSU ¼ social support status (0–5)

(A) SSU* ¼ 5 vs. SSU** ¼ 0

ROR5;0 ¼ exp SSU* � SSU**
� 	


bþ SSU* � SSU**
� 	

SdjWj

�
¼ exp 5� 0ð Þbþ 5� 0ð ÞSdjWj


 �
¼ exp 5bþ 5SdjWj

� 	

(B) SSU* ¼ 3 vs. SSU** ¼ 1

ROR3;1 ¼exp 3� 1ð Þbþ 3� 1ð Þ~djWj


 �
¼exp 2bþ 2~djWj

� 	

80 3. Computing the Odds Ratio in Logistic Regression



No interaction:

RORE* vs. E** ¼ exp [(E* � E**)b]

If (E* � E**) ¼ 1, then ROR
¼ exp(b)

e.g., E* ¼ 1 vs. E** ¼ 0

or E* ¼ 2 vs. E** ¼ 1

Note that if SSU* equals 4 and SSU** equals 2,
then the odds ratio expression becomes 2b plus
2 times the sum of the dj times Wj, which is the
same expression as obtainedwhen SSU* equals 3
and SSU** equals 1. This occurs because the
odds ratio depends on the difference between
E* and E**, which in this case is 2, regardless of
the specific values of E* and E**.

As another illustration, suppose E is the inter-
val variable systolic blood pressure denoted
by SBP. Again, to obtain an odds ratio, we
must specify two values of E to compare.
For instance, if SBP* equals 160 and SBP**

equals 120, then the odds ratio expression
becomes ROR equals e to the quantity
(160 � 120) times b plus (160 � 120) times
the sum of the dj times Wj, which simplifies
to 40 times b plus 40 times the sum of the dj
times Wj.

Or if SBP* equals 200 and SBP** equals 120,
then the odds ratio expression becomes ROR
equals e to the 80 times b plus 80 times the sum
of the gj times Wj.

Note that in the no interaction case, the odds
ratio formula for a general exposure variable E
reduces to e to the quantity (E* � E**) times b.
This is not equal to e to the b unless the differ-
ence (E* � E**) equals 1, as, for example, if E*

equals 1 andE** equals 0, orE* equals 2 andE**

equals 1.

Thus, if E denotes SBP, then the quantity e to b
gives the odds ratio for comparing any two
groups that differ by one unit of SBP. A one
unit difference in SBP is not typically of inter-
est, however. Rather, a typical choice of SBP
values to be compared represent clinically
meaningful categories of blood pressure, as
previously illustrated, for example, by SBP*

equals 160 and SBP** equals 120.

One possible strategy for choosing values of
SBP* and SBP** is to categorize the distri-
bution of SBP values in our data into clinically
meaningful categories, say, quintiles. Then,
using the mean or median SBP in each quin-
tile, we can compute odds ratios comparing all
possible pairs of mean or median SBP values.

EXAMPLE

E ¼ SBP ¼ systolic blood pressure
(interval)
(A) SBP* ¼ 160 vs. SBP** ¼ 120

ROR160;120 ¼ exp
h
ðSBP* �SBP

**Þb
þ ðSBP* �SBP**Þ~djWj

i
¼ exp

h
ð160� 120Þb

þ ð160� 120Þ~djWj

i
¼ exp

�
40bþ 40~djWj

	
(B) SBP* ¼ 200 vs. SBP** = 120

ROR200;120 ¼ exp
h
ð200� 120Þbþð200� 120Þ~djWj

i
¼ exp

�
80bþ 80~djWj

	

EXAMPLE (continued)

(C) SSU* ¼ 4 vs. SSU** ¼ 2

ROR4;2 ¼ exp 4�2ð Þbþ 4�2ð Þ~djWj


 �
¼ exp 2bþ2~djWj

� 	
Note. ROR depends on the difference
(E* � E**), e.g., (3 � 1) = (4 � 2) = 2

EXAMPLE

E ¼ SBP
ROR ¼ exp(b) ) (SBP* � SBP**) ¼ 1

not interesting "

Choice of SBP:
Clinically meaningful categories,
e.g., SBP* ¼ 160, SBP* ¼ 120

Strategy: Use quintiles of SBP

Quintile # 1 2 3 4 5

Mean or
median

120 140 160 180 200



IV. The Model and Odds
Ratio for a Nominal
Exposure Variable
(No Interaction Case)

Several exposures: E1, E2, . . . , Eq

� Model

� Odds ratio

Nominal variable: > 2 categories

e.g., ü occupational status in
four groups

SSU (0 – 5) ordinal

k categories ) k � 1 dummy
variables
E1, E2, . . . , Ek�1

For instance, suppose the medians of each
quintile are 120, 140, 160, 180, and 200. Then
odds ratios can be computed comparing SBP*

equal to 200 with SBP** equal to 120, followed
by comparing SBP* equal to 200 with SBP**

equal to 140, and so on until all possible pairs
of odds ratios are computed. We would then
have a table of odds ratios to consider for asses-
sing the relationship of SBP to the disease out-
come variable. The check marks in the table
shown here indicate pairs of odds ratios that
compare values of SBP* and SBP**.

The final special case of the logistic model that
we will consider expands the E, V, W model to
allow for several exposure variables. That is,
instead of having a single E in the model, we
will allow several Es, which we denote by E1,
E2, and so on up through Eq. In describing
such a model, we consider some examples
and then give a general model formula and a
general expression for the odds ratio.

First, suppose we have a single nominal ex-
posure variable of interest; that is, instead of
being dichotomous, the exposure contains
more than two categories that are not order-
able. An example is a variable such as occupa-
tional status, which is denoted in general as
OCC, but divided into four groupings or occu-
pational types. In contrast, a variable like
social support, which we previously denoted
as SSU and takes on discrete values ordered
from 0 to 5, is an ordinal variable.

When considering nominal variables in a logis-
tic model, we use dummy variables to distin-
guish the different categories of the variable. If
the model contains an intercept term a, then
we use k � 1 dummy variables E1, E2, and
so on up to Ek�1 to distinguish among k
categories.

EXAMPLE (continued)

SBP* SBP** OR

200 120 ü
200 140 ü
200 160 ü
200 180 ü
180 120 ü
180 140 ü
180 160 ü
160 140 ü
160 120 ü
140 120 ü
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No interaction model:

logit P Xð Þ ¼ aþ b1E1 þ b2E2 þ . . .

þ bk�1Ek�1 þ ~
p1

i¼1

giVi

logit P Xð Þ ¼ aþ b1OCC1 þ b2OCC2

þ b3OCC3 þ ~
p1

i¼1

giVi

Specify E* and E** in terms of k� 1
dummy variables where

E ¼ (E1, E2, . . . , Ek�1)

Generally, define E* and E** as

E* ¼ (E1
*, E2

*, . . . , Ek�1
* )

and

E* ¼ (E1
**, E2

**, . . . , Ek�1
** )

So, for example, with occupational status, we
define three dummy variables OCC1, OCC2,
and OCC3 to reflect four occupational cate-
gories, where OCCi is defined to take on the
value 1 for a person in the ith occupational
category and 0 otherwise, for i ranging from
1 to 3. Note that for this choice of dummy
variables, the referent group is the fourth occu-
pational category, for which OCC1 ¼ OCC2 ¼
OCC3 ¼ 0.

A no interaction model for a nominal exposure
variable with k categories then takes the
form logit P(X) equals a plus b1 times E1 plus
b2 times E2 and so on up to bk�1 timesEk�1 plus
the usual set of V terms, where the Ei are the
dummy variables described above.

The corresponding model for four occupational
status categories then becomes logit P(X)
equals a plus b1 times OCC1 plus b2 times
OCC2 plus b3 times OCC3 plus the V terms.

To obtain an odds ratio from the above model,
we need to specify two categories E* and E**

of the nominal exposure variable to be com-
pared, and we need to define these categories
in terms of the k � 1 dummy variables. Note
that we have used bold letters to identify the
two categories of E; this has been done because
the E variable is a collection of dummy vari-
ables rather than a single variable.

For the occupational status example, suppose
we want an odds ratio comparing occupational
category 3 with occupational category 1. Here,
E* represents category 3 and E** represents cat-
egory 1. In terms of the three dummy variables
for occupational status, then, E* is defined by
OCC1

* ¼ 0, OCC2
* ¼ 0, and OCC3

* ¼ 1, whereas
E** is defined by OCC1

** ¼ 1, OCC2
** ¼ 0, and

OCC3
** ¼ 0.

More generally, category E* is defined by the
dummy variable values E1

*, E2
*, and so on up to

Ek�1
* , which are 0s or 1s. Similarly, category E1

**

is defined by the values E1
**,E2

**, and so on up to
Ek�1
** , which is a different specification of 0s

or 1s.

EXAMPLE

E ¼ OCC with k ¼ 4 ) k � 1 ¼ 3
OCC1, OCC2,
OCC3

where OCCi ¼
�
1 if category i

0 if otherwise

for i ¼ 1, 2, 3 (referent: category 4)

EXAMPLE

E = occupational status (four
categories)

E* ¼ category 3 vs. E** ¼ category 1

E* ¼ (OCC1
* ¼ 0, OCC2

* ¼ 0, OCC3
* ¼ 1)

E** ¼ (OCC1
** ¼ 1, OCC2

** ¼ 0,
OCC3

** ¼ 0)
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No interaction model

RORE* vs:E**

¼ exp½ðE*
1�E**

1 Þb1þðE*
2�E**

2 Þb2
þ . . .þðE*

k�1�E**
k�1Þbk�1�

The general odds ratio formula for comparing
two categories, E* vs. E** of a general nominal
exposure variable in a no interaction logistic
model, is given by the formula ROR equals
e to the quantity (E1

* � E1
**) times b1 plus

(E2
* � E2

**) times b2, and so on up to (Ek�1
* �

Ek�1
** ) times bk�1. When applied to a specific

situation, this formula will usually involve
more than one bi in the exponent.

For example, when comparing occupational
status category 3 with category 1, the odds
ratio formula is computed as e to the quantity
(OCC1

* � OCC1
**) times b1 plus (OCC2

* �
OCC2

**) times b2 plus (OCC3
* � OCC3

**) times b3.

When we plug in the values for OCC* and
OCC**, this expression equals e to the quantity
(0 � 1) times b1 plus (0 � 0) times b2 plus
(1 � 0) times b3, which equals e to �1 times b1
plus 0 times b2 plus 1 times b3, which reduces to
e to the quantity (�b1) plus b3.

We can obtain a single value for the estimate of
this odds ratio by fitting the model and repla-
cing b1 and b3 with their corresponding esti-
mates b̂1 and b̂3. Thus, dROR for this example is
given by e to the quantity (� b̂1) plus b̂3.

In contrast, if category 3 is compared to
category 2, then E* takes on the values 0, 0,
and 1 as before, whereas E** is now defined
by OCC1

** ¼ 0, OCC2
** ¼ 1, and OCC3

** ¼ 0.

The odds ratio is then computed as e to the
(0 � 0) times b1 plus (0 � 1) times b2 plus
(1 – 0) times b3, which equals e to the 0 times
b1 plus �1 times b2 plus 1 times b3, which
reduces to e to the quantity (�b2) plus b3.

This odds ratio expression involves b2 and
b3, whereas the previous odds ratio expression
that compared category 3 with category 1
involved b1 and b3.

EXAMPLE (OCC)

ROR3 vs: 1 ¼ exp
h
ðOCC

0

1*�OCC
1

1**Þb1

þ
�
OCC

0

2*�OCC
0

2**
�
b2

þ
�
OCC

1

3*�OCC
0

3**
�
b3
i

¼ exp½ð0� 1Þb1 þ ð0� 0Þb2 þ ð1� 0Þb3�
¼ exp½ð�1Þb1 þ ð0Þb2 þ ð1Þb3�
¼ expð�b1 þ b3Þ

dROR ¼ exp �b̂1 þ b̂3
� �

E* ¼ category 3 vs. E** ¼ category 2:

E* ¼ (OCC1
* ¼ 0, OCC2

* ¼ 0, OCC3
* ¼ 1)

E**¼ (OCC1
**¼ 0,OCC2

**¼ 1,OCC3
**¼ 0)

ROR3 vs: 2 ¼ exp½ð0� 0Þb1 þ ð0� 1Þb2
þ ð1� 0Þb3�

¼ exp½ð0Þb1 þ ð�1Þb2 þ ð1Þb3�
¼ expð�b2 þ b3Þ

Note. ROR3 vs. 1 ¼ exp (� b1 + b3)
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V. The Model and Odds
Ratio for Several
Exposure Variables
(No Interaction Case)

q variables: E1, E2, . . . , Eq

(dichotomous, ordinal, or interval)

No interaction model:

logit P Xð Þ ¼ aþ b1E1 þ b2E2

þ . . .þ bqEq þ ~
p1

i¼1

giVi

� q 6¼ k � 1 in general

E* vs. E**

E* ¼ (E1
*, E2

*, . . . , Eq
*)

E** ¼ (E1
**, E2

**, . . . , Eq
**)

General formula: E1, E2, . . . , E8

(no interaction)

RORE* vs: E** ¼ exp
h
E*
1 � E**

1

� 	
b1

þ E*
2 � E**

2

� 	
b2 þ � � �

þ E*
q � E**

q

� �
bq
i

We now consider the odds ratio formula when
there are several different exposure variables in
the model, rather than a single exposure vari-
able with several categories. The formula for
this situation is actually no different than for a
single nominal variable. The different exposure
variables may be denoted by E1, E2, and so on
up through Eq. However, rather than being
dummy variables, these Es can be any kind of
variable – dichotomous, ordinal, or interval.

For example, E1 may be a (0, 1) variable for
smoking (SMK), E2 may be an ordinal variable
for physical activity level (PAL), and E3 may be
the interval variable systolic blood pressure
(SBP).

A no interaction model with several exposure
variables then takes the form logit P(X) equals a
plus b1 times E1 plus b2 times E2, and so on up
to bq timesEq plus the usual set of V terms. This
model form is the same as that for a single
nominal exposure variable, although this time
there are q Es of any type, whereas previously
we had k � 1 dummy variables to indicate k
exposure categories. The corresponding model
involving the three exposure variables SMK,
PAL, and SBP is shown here.

As before, the general odds ratio formula for
several variables requires specifying the values
of the exposure variables for two different per-
sons or groups to be compared – denoted by the
bold E* and E**. Category E* is specified by the
variable values E1

*, E2
*, and so on up to Eq

*, and
category E** is specified by a different collec-
tion of values E1

**, E2
**, and so on up to Eq

**.

The general odds ratio formula for comparing
E* vs. E** is given by the formula ROR
equals e to the quantity (E1

* � E1
*) times

b1 plus (E* � E**) times b2, and so on up to
(Eq

* � Eq
**) times bq.

EXAMPLE

logit P Xð Þ ¼ aþ b1SMK þ b2PAL

þ b3SBPþ ~
p1

i¼1

giVi

EXAMPLE

E1 ¼ SMK (0,1)

E2 ¼ PAL (ordinal)

E3 ¼ SBP (interval)
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In general

� q variables 6¼ k � 1 dummy
variables

This formula is the same as that for a single
exposure variable with several categories,
except that here we have q variables, whereas
previously we had k � 1 dummy variables.

As an example consider the three exposure
variables defined above – SMK, PAL, and
SBP. The control variables are AGE and SEX,
which are defined in the model as V terms.

Suppose we wish to compare a nonsmoker
who has a PAL score of 25 and systolic blood
pressure of 160 to a smoker who has a PAL
score of 10 and systolic blood pressure of
120, controlling for AGE and SEX. Then,
here, E* is defined by SMK* ¼ 0, PAL* ¼ 25,
and SBP* ¼ 160, whereas E** is defined by
SMK** ¼ 1, PAL** ¼ 10, and SBP** ¼ 120.

The control variables AGE and SEX are con-
sidered fixed but do not need to be specified to
obtain an odds ratio because the model con-
tains no interaction terms.

The odds ratio is then computed as e to
the quantity (SMK* � SMK**) times b1 plus
(PAL* � PAL**) times b2 plus (SBP* � SBP**)
times b3,

which equals e to (0 � 1) times b1 plus
(25 � 10) times b2 plus (160 � 120) times b3,

which equals e to the quantity � 1 times b1
plus 15 times b2 plus 40 times b3,

which reduces to e to the quantity � b1 plus
15b2 plus 40b3.

An estimate of this odds ratio can then be
obtained by fitting the model and replacing
b1, b2, and b3 by their corresponding estimates

b̂1; b̂2, and b̂3. Thus, dROR equals e to the quan-
tity� b̂1 plus 15b̂2 plus 40b̂3.

EXAMPLE

logit PðXÞ ¼ aþ b1SMK þ b2PAL

þ b3SBP

þ g1AGEþ g2SEX

Nonsmoker, PAL ¼ 25, SBP ¼ 160
vs.

Smoker, PAL ¼ 10, SBP ¼ 120

E* ¼ (SMK* ¼ 0, PAL* ¼ 25, SBP* ¼ 160)

E** ¼ (SMK** ¼ 1, PAL** ¼ 10,
SBP** ¼ 120)

AGE and SEX fixed, but unspecified

RORE* vs: E** ¼ exp ðSMK* �SMK**Þb1



þ ðPAL* �PAL**Þb2
þ ðSBP* �SBP**Þb3

�

¼ exp½ð0� 1Þb1 þ ð25� 10Þb2
þ ð160� 120Þb3�

¼ exp½ð�1Þb1 þ ð15Þb2
þ ð40Þb3�

¼ expð�b1 þ 15b2 þ 40b3Þ

dROR ¼ exp
��b̂1 þ 15b̂2 þ 40b̂3
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VI. The Model and Odds
Ratio for Several
Exposure Variables
with Confounders
and Interaction

As a second example, suppose we compare a
smoker who has a PAL score of 25 and a sys-
tolic blood pressure of 160 to a smoker who has
a PAL score of 5 and a systolic blood pressure
of 200, again controlling for AGE and SEX.

The ROR is then computed as e to the quantity
(1 � 1) times b1 plus (25 � 5) times b2 plus
(160 � 200) times b3, which equals e to 0 times
b1 plus 20 times b2 plus �40 times b3, which
reduces to e to the quantity 20b2 minus 40b3.

We now consider a final situation involving
several exposure variables, confounders (i.e.,
Vs), and interaction variables (i.e., Ws), where
theWs go into the model as product terms with
one of the Es.

As an example, we again consider the three
exposures SMK, PAL, and SBP and the two
control variables AGE and SEX. We add to
this list product terms involving each exposure
with each control variable. These product
terms are shown here.

The corresponding model is given by logit P(X)
equals a plus b1 times SMK plus b2 times PAL
plus b3 times SBP plus the sum of V terms
involving AGE and SEX plus SMK times the
sum of d timesW terms, where theWs are AGE
and SEX, plus PAL times the sum of additional
d times W terms, plus SBP times the sum of
additional d times W terms. Here the ds are
coefficients of interaction terms involving one
of the three exposure variables – either SMK,
PAL, or SEX – and one of the two control
variables – either AGE or SEX.

To obtain an odds ratio expression for this
model, we againmust identify two specifications
of the collection of exposure variables to be com-
pared. We have referred to these specifications
generally by the bold terms E* and E**. In the
above example,E* is defined by SMK* ¼ 0, PAL*

¼ 25, and SBP* ¼ 160, whereas E** is defined
by SMK** ¼ 1, PAL** ¼ 10, and SBP** ¼ 120.

ANOTHER EXAMPLE

E* ¼ (SMK* ¼ 1, PAL* ¼ 25,
SBP* ¼ 160)

E** ¼ (SMK** ¼ 1, PAL** ¼ 5,
SBP** ¼ 200)

controlling for AGE and SEX

RORE* vs:E** ¼ exp½ð1�1Þb1þð25�5Þb2
þð160�200Þb3�

¼ exp½ð0Þb1þð20Þb2
þð�40Þb3�

¼ expð20b2�40b3Þ

EXAMPLE: The Variables

E1 ¼ SMK, E2 ¼ PAL, E3 ¼ SBP

V1 ¼ AGE ¼ W1, V2 ¼ SEX ¼ W2

E1W1¼ SMK�AGE, E1W2¼ SMK�SEX

E2W1 ¼ PAL � AGE, E2W2 ¼ PAL � SEX

E3W1 ¼ SBP � AGE, E3W2 ¼ SBP � SEX

EXAMPLE: The Model

logit P Xð Þ ¼ aþ b1SMKþ b2PAL

þ b3SBPþ g1AGEþ g2SEX

þSMK d11AGEþ d12SEXð Þ
þPAL d21AGEþ d22SEXð Þ
þSBP d31AGEþ d32SEXð Þ

EXAMPLE: The Odds Ratio

E* vs. E**

E* ¼ (SMK* ¼ 0, PAL* ¼ 25,
SBP* ¼ 160)

E**¼ (SMK** ¼ 1, PAL** ¼ 10, SBP**¼
120)
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ROR (no interaction): bs only

ROR (interaction): bs and ds

The previous odds ratio formula that we
gave for several exposures but no interaction
involved only b coefficients for the exposure
variables. Because the model we are now
considering contains interaction terms, the
corresponding odds ratio will involve not only
the b coefficients, but also d coefficients for
all interaction terms involving one or more
exposure variables.

The odds ratio formula for our example then
becomes e to the quantity (SMK* � SMK**)
times b1 plus (PAL* � PAL**) times b2 plus
(SBP* � SBP**) times b3 plus the sum of
terms involving a d coefficient times the differ-
ence between E* and E** values of one of the
exposures times a W variable.

For example, the first of the interaction terms
is d11 times the difference (SMK* � SMK**)
times AGE, and the second of these terms is
d12 times the difference (SMK* � SMK**)
times SEX.

When we substitute into the odds ratio formula
the values for E* and E**, we obtain the expres-
sion e to the quantity (0 � 1) times b1 plus
(25 � 10) times b2 plus (160 � 120) times b3
plus several terms involving interaction coeffi-
cients denoted as ds.

The first set of these terms involves inter-
actions of AGE and SEX with SMK. These
terms are d11 times the difference (0 � 1)
times AGE plus d12 times the difference
(0 � 1) times SEX. The next set of d terms
involves interactions of AGE and SEX with
PAL. The last set of d terms involves interactions
of AGE and SEX with SBP.

After subtraction, this expression reduces to
the expression shown here at the left.

We can simplify this expression further by fac-
toring out AGE and SEX to obtain e to the
quantity minus b1 plus 15 times b2 plus 40
times b3 plus AGE times the quantity minus
d11 plus 15 times d21 plus 40 times d31 plus
SEX times the quantity minus d12 plus 15
times d22 plus 40 times d32.

EXAMPLE (continued)

RORE* vs: E** ¼ exp½ SMK*�SMK**
� 	

b1
þ PAL* �PAL**
� 	

b2
þ SBP* �SBP**
� 	

b3
þd11 SMK*�SMK**

� 	
AGE

þd12 SMK*�SMK**
� 	

SEX

þd21 PAL* �PAL**
� 	

AGE

þd22 PAL* �PAL**
� 	

SEX

þd31 SBP* �SBP**
� 	

AGE

þd32 SBP* �SBP**
� 	

SEX

ROR ¼ exp½ 0� 1ð Þb1 þ 25� 10ð Þb2
þ 160� 120ð Þb3

interaction with SMK

interaction with PAL

interaction with SBP

+ d11 (0 – 1) AGE + d12 (0 – 1) SEX

+ d21 (25 – 10) AGE + d22 (25 – 10) SEX

+ d31 (160 – 120) AGE + d32 (160 – 120) SEX

¼ expð�b1 þ 15b2 þ 40b3
� d11AGE� d12SEX

þ 15d21AGEþ 15d22SEX

þ 40d31AGEþ 40d32SEXÞ

¼ expð�b1 þ 15b2 þ 40b3
þ AGE �d11 þ 15d21 þ 40d31ð Þ
þ SEX �d12 þ 15d22 þ 40d32ð Þ�
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General model
Several exposures
Confounders
Effect modifiers

logit P Xð Þ ¼ aþ b1E1 þ b2E2 þ . . .

þ bqEq þ ~
p1

i¼1

giVi

þ E1 ~
p2

j¼1

d1jWi

þ E2 ~
p2

j¼1

d2jWj þ . . .

þ Eq ~
p2

j¼1

dqjWj

Note that this expression tells us that once
we have fitted the model to the data to obtain
estimates of the b and d coefficients, we must
specify values for the effect modifiers AGE and
SEX before we can get a numerical value for
the odds ratio. In other words, the odds ratio
will give a different numerical value depending
on which values we specify for the effect modi-
fiers AGE and SEX.

For instance, if we choose AGE equals 35 and
SEX equals 1 say, for females, then the esti-
mated odds ratio becomes the expression
shown here.

This odds ratio expression can alternatively
be written as e to the quantity minus b̂1 plus
15 times b̂2 plus 40 times b̂3 minus 35 times

d̂11 plus 525 times d̂21 plus 1,400 times d̂31
minus d̂12 plus 15 times d̂22 plus 40 times d̂32.
This expression will give us a single numerical
value for 35-year-old females once the model is
fitted and estimated coefficients are obtained.

We have just worked through a specific exam-
ple of the odds ratio formula for amodel involv-
ing several exposure variables and controlling
for both confounders and effect modifiers. To
obtain a general odds ratio formula for this
situation, we first need to write the model in
general form.

This expression is given by the logit of P(X)
equals a plus b1 times E1 plus b2 times E2, and
so on up to bq times Eq plus the usual set of V
terms of the form giVi plus the sum of addi-
tional terms, each having the form of an expo-
sure variable times the sum of d timesW terms.
The first of these interaction expressions is
given by E1 times the sum of d1j times Wj,
where E1 is the first exposure variable, d1j is
an unknown coefficient, andWj is the jth effect
modifying variable. The last of these terms is
Eq times the sum of dqj times Wj, where Eq is
the last exposure variable, dqj is an unknown
coefficient, and Wj is the jth effect modifying
variable.

EXAMPLE (continued)

Note. Specify AGE and SEX to get a
numerical value.

e.g., AGE ¼ 35, SEX ¼ 1:

ROR = exp[–b1 + 15b2 + 40b3

+ 35(–d11 + 15d21 + 40d31)

+ 1(–d12 + 15d22 + 40d32)]

AGE

SEX

dROR ¼ exp
�� b̂1 þ 15b̂2 þ 40b̂3

� 35d̂11 þ 525d̂21 þ 1400d̂31

� d̂12 þ 15d̂22 þ 40d̂32
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We assume the same Wj for each
exposure variable

e.g., AGE and SEX are Ws for
each E.

Odds ratio for several Es:

E* ¼ E*
1;E

*
2; . . . ;E

*
q

� �
E** ¼ E**

1 ;E**
2 ; . . . ;E**

q

� �

General Odds Ratio Formula:

RORE* vs:E** ¼ exp

�
E*
1�E**

1

� 	
b1

þ E*
2�E**

2

� 	
b2

þ���þ E*
q�E**

q

� �
bq

þ E*
1�E**

1

� 	
~
p2

j¼1

d1jWj

þ E*
2�E**

2

� 	
~
p2

j¼1

d2jWj

þ���

þ E*
q�E**

q

� �
�~

p2

j¼1

dq jWj

#

Note that this model assumes that the same
effect modifying variables are being consid-
ered for each exposure variable in the model,
as illustrated in our preceding example above
with AGE and SEX.

Amore generalmodel can be written that allows
for different effect modifiers corresponding
to different exposure variables, but for conve-
nience, we limit our discussion to a model with
the same modifiers for each exposure variable.

To obtain an odds ratio expression for the
above model involving several exposures, con-
founders, and interaction terms, we again
must identify two specifications of the expo-
sure variables to be compared. We have
referred to these specifications generally by
the bold terms E* and E**. Group E* is speci-
fied by the variable values E1

*, E2
*, and so on up

to Eq
*; group E** is specified by a different col-

lection of values E1
**, E2

**, and so on up to Eq
**.

The general odds ratio formula for comparing
two such specifications, E* vs. E**, is given
by the formula ROR equals e to the quantity
(E1

* � E1
**) times b1 plus (E2

* � E2
**) times b2,

and so on up to (Eq
* � Eq

**) times bq plus the
sum of terms of the form (E* � E**) times the
sum of d times W, where each of these latter
terms correspond to interactions involving a
different exposure variable.
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� AGE and SEX controlled as Vs
as well as Ws

� RORs depend on values of Ws
(AGE and SEX)

4. Maximum Likelihood (ML)
Techniques: An Overview

5. Statistical Inferences Using
ML Techniques

In our previous example using this formula,
there are q equals three exposure variables
(namely, SMK, PAL, and SBP), two confoun-
ders (namely, AGE and SEX), which are in the
model as V variables, and two effect modifiers
(also AGE and SEX), which are in the model
as W variables. The odds ratio expression for
this example is shown here again.

This odds ratio expression does not contain
coefficients for the confounding effects of
AGE and SEX. Nevertheless, these effects are
being controlled because AGE and SEX are
contained in the model as V variables in addi-
tion to being W variables.

Note that for this example, as for any model
containing interaction terms, the odds ratio
expression will yield different values for the
odds ratio depending on the values of the effect
modifiers – in this case, AGE and SEX – that
are specified.

In the next chapter (Chap. 4), we consider how
the method of maximum likelihood is used to
estimate the parameters of the logistic model.
And in Chap. 5, we describe statistical infer-
ences using ML techniques.

SUMMARY
Chapters up to this point:

1. Introduction

2. Important Special Cases

3 3. Computing the Odds Ratio

This presentation is now complete. We have
described how to compute the odds ratio for
an arbitrarily coded single exposure variable
that may be dichotomous, ordinal, or interval.
We have also described the odds ratio formula
when the exposure variable is a polytomous
nominal variable like occupational status.
And, finally, we have described the odds ratio
formula when there are several exposure vari-
ables, controlling for confounders without
interaction terms and controlling for confoun-
ders together with interaction terms.

EXAMPLE: q ¼ 3

RORE*vs:E**¼ exp SMK*�SMK**
� 	

b1



þ PAL*�PAL**
� 	

b2

þ SBP*�SBP**
� 	

b3

þd11 SMK*�SMK**
� 	

AGE

þd12 SMK*�SMK**
� 	

SEX

þd21 PAL*�PAL**
� 	

AGE

þd22 PAL*�PAL**
� 	

SEX

þd31 SBP*�SBP**
� 	

AGE

þd32 SBP*�SBP**
� 	

SEX
�
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Detailed
Outline

I. Overview (pages 76–77)

A. Focus: computing OR for E, D relationship
adjusting for confounding and effect
modification.

B. Review of the special case – the E, V, W model:

i. The model:

logit P Xð Þ ¼ aþ bEþ ~
p1

i¼1

giVi þ E ~
p2

j¼1

djWj.

ii. Odds ratio formula for the E, V, W model,
where E is a (0, 1) variable:

RORE¼1 vs: E¼0 ¼ exp bþ ~
p2

j¼1

djWj

 !
:

II. Odds ratio for other codings of a dichotomous
E (pages 77–79)

A. For the E, V, W model with E coded as E ¼ a if
exposed and as E ¼ b if unexposed, the odds ratio
formula becomes

RORE¼1 vs: E¼0 ¼ exp a� bð Þbþ a� bð Þ ~
p2

j¼1

djWj

" #

B. Examples: a ¼ 1, b ¼ 0: ROR ¼ exp(b)
a ¼ 1, b ¼ �1: ROR ¼ exp(2b)
a ¼ 100, b ¼ 0: ROR ¼ exp(100b)

C. Final computed odds ratio has the same value
provided the correct formula is used for the
corresponding coding scheme, even though the
coefficients change as the coding changes.

D. Numerical example from Evans County study.

III. Odds ratio for arbitrary coding of E (pages 79–82)

A. For the E, V, W model where E* and E** are any
two values of E to be compared, the odds ratio
formula becomes

RORE* vs: E** ¼ exp E*�E**
� 	

bþ E*�E**
� 	

~
p2

j¼1

djWj

" #

B. Examples: E ¼ SSU ¼ social support status (0–5)
E ¼ SBP ¼ systolic blood pressure (interval).

C. No interaction odds ratio formula:

RORE* vs: E** ¼ exp E* � E**
� 	

b

 �

:

D. Interval variables, e.g., SBP: Choose values for
comparison that represent clinically meaningful
categories, e.g., quintiles.
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IV. The model and odds ratio for a nominal exposure
variable (no interaction case) (pages 82–84)

A. No interaction model involving a nominal
exposure variable with k categories:

logit P Xð Þ ¼ aþ b1E1 þ b2E2 þ � � � þ bk�1Ek�1

þ ~
p1

i¼1

giVi;

where E1, E2, . . . , Ek�1 denote k � 1 dummy
variables that distinguish the k categories of the
nominal exposure variable denoted as E, i.e.,

Ei ¼ 1 if category i or 0 if otherwise.

B. Example of model involving k ¼ 4 categories of
occupational status:

logit P Xð Þ ¼ aþ b1OCC1 þ b2OCC2 þ b3OCC3

þ ~
p1

i¼1

giVi;

where OCC1, OCC2, and OCC3 denote k � 1 ¼ 3
dummy variables that distinguish the four
categories of occupation.

C. Odds ratio formula for no interaction model
involving a nominal exposure variable:

RORE* vs: E** ¼ exp
E*
1 � E**

1

� 	
b1 þ E*

2 � E**
2

� 	
b2

þ � � � þ E*
k�1 � E**

k�1

� 	
bk�1

" #
;

where E* ¼ (E1
*, E2

*, . . . , Ek�1
* ) and E** ¼

(E1
**, E2

**, . . . , Ek� 1
** ) are two specifications of the

set of dummy variables for E to be compared.

D. Example of odds ratio involving k ¼ 4 categories
of occupational status:

ROROCC* vs: OCC**

¼ exp
OCC*

1 �OCC**
1

� 	
b1 þ OCC*

2 �OCC**
2

� 	
b2

þ OCC*
3 �OCC**

3

� 	
b3

" #
:

V. The model and odds ratio for several exposure
variables (no interaction case) (pages 85–87)

A. The model:

logit P Xð Þ ¼ aþ b1E1 þ b2E2 þ � � � þ bqEq

þ ~
p1

i¼1

giVi;

where E1, E2, . . . , Eq denote q exposure variables
of interest.
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B. Example of model involving three exposure
variables:

logit P Xð Þ ¼ aþ b1SMK þ b2PALþ b3SBP

þ ~
p1

i¼1

giVi:

C. The odds ratio formula for the general no
interaction model:

RORE* vs: E** ¼ exp½ðE*
1 � E**

1 Þb1 þ ðE*
2 � E**

2 Þb2
þ � � � þ ðE*

q � E**
q Þbq�;

where E* ¼ (E1
*, E2

*, . . . , Eq
*) and E** ¼

(E1
*, E2

**, . . . , Eq
**) are two specifications of the

collection of exposure variables to be compared.

D. Example of odds ratio involving three exposure
variables:

RORE* vs: E** ¼ exp½ðSMK* � SMK**Þb1
þ ðPAL* � PAL**Þb2
þ ðSBP* � SBP**Þb3�:

VI. The model and odds ratio for several exposure
variables with confounders and interaction
(pages 87–91)

A. An example of a model with three exposure
variables:

logit P Xð Þ ¼ aþb1SMKþb2PALþb3SBPþ g1AGE

þ g2SEXþSMK d11AGEþ d12SEXð Þ
þPAL d21AGEþ d22SEXð Þ
þSBP d31AGEþ d32SEXð Þ:

B. The odds ratio formula for the above model:

RORE* vs:E**¼exp½ðSMK*�SMK**Þb1
þðPAL*�PAL**Þb2þðSBP*�SBP**Þb3
þd11ðSMK*�SMK**ÞAGE

þd12ðSMK*�SMK**ÞSEX
þd21ðPAL*�PAL**ÞAGE

þd22ðPAL*�PAL**ÞSEX
þd31ðSBP*�SBP**ÞAGE

þd32ðSBP*�SBP**ÞSEX�
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C. The general model:

logit P Xð Þ ¼ aþ b1E1 þ b2E2 þ � � � þ bqEq

þ ~
p1

i¼1

giVi þ E1 ~
p2

j¼1

d1jWj

þ E2 ~
p2

j¼1

d2jWj þ � � � þ Eq ~
p2

j¼1

dqjWj

D. The general odds ratio formula:

RORE* vs: E** ¼ exp

�
ðE*

1 � E**
1 Þb1 þ ðE*

2 � E**
2 Þb2

þ � � � þ ðE*
q � E**

q Þbq
þ ðE*

1 � E**
1 Þ ~

p2

j¼1

d1jWj

þ ðE*
2 � E**

2 Þ ~
p2

j¼1

d2jWj

þ � � � þ ðE*
q � E**

q Þ ~
p2

j¼1

dqjWj

�
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Practice
Exercises

Given the model

logit PðXÞ ¼ aþ bEþ g1ðSMKÞ þ g2ðHPTÞ þ d1ðE� SMKÞ
þ d2ðEþHPTÞ;

where SMK (smoking status) and HPT (hypertension sta-
tus) are dichotomous variables.

Answer the following true or false questions (circle
T or F):

T F 1. If E is coded as (0 ¼ unexposed, 1 ¼ exposed),
then the odds ratio for the E, D relationship that
controls for SMK and HPT is given by

exp[b þ d1(E � SMK) þ d2(E � HPT)].

T F 2. If E is coded as (�1, 1), then the odds ratio for
the E, D relationship that controls for SMK and
HPT is given by

exp[2b þ 2d1(SMK) þ 2d2(HPT)].

T F 3. If there is no interaction in the above model
and E is coded as (�1, 1), then the odds ratio
for the E, D relationship that controls for SMK
and HPT is given by exp(b).

T F 4. If the correct odds ratio formula for a given cod-
ing scheme for E is used, then the estimated odds
ratio will be the same regardless of the coding
scheme used.

Given the model

logit PðXÞ ¼ aþ bðCHLÞ þ gðAGEÞ þ dðAGE� CHLÞ;

where CHL and AGE are continuous variables,

Answer the following true or false questions (circle
T or F):

T F 5. The odds ratio that compares a person with
CHL ¼ 200 to a person with CHL ¼ 140
controlling for AGE is given by exp(60b).

T F 6. If we assume no interaction in the above model,
the expression exp(b) gives the odds ratio for
describing the effect of one unit change in CHL
value, controlling for AGE.

Suppose a study is undertaken to compare the lung cancer
risks for samples from three regions (urban, suburban, and
rural) in a certain state, controlling for the potential con-
founding and effect-modifying effects of AGE, smoking
status (SMK), RACE, and SEX.
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7. State the logit form of a logistic model that treats
region as a polytomous exposure variable and controls
for the confounding effects of AGE, SMK, RACE, and
SEX. (Assume no interaction involving any covariates
with exposure.)

8. For the model of Exercise 7, give an expression for the
odds ratio for the E, D relationship that compares
urban with rural persons, controlling for the four
covariates.

9. Revise your model of Exercise 7 to allow effect modi-
fication of each covariate with the exposure variable.
State the logit form of this revised model.

10. For the model of Exercise 9, give an expression for the
odds ratio for the E, D relationship that compares
urban with rural persons, controlling for the con-
founding and effect-modifying effects of the four
covariates.

11. Given the model

logit P Xð Þ ¼ aþ b1 SMKð Þ þ b1 ASBð Þ þ g1 AGEð Þ
þ d1 SMK � AGEð Þ þ d2 ASB� AGEð Þ;

where SMK is a (0, 1) variable for smoking status, ASB is a
(0, 1) variable for asbestos exposure status, and AGE is
treated continuously,

Circle the (one) correct choice among the following
statements:

a. The odds ratio that compares a smoker exposed to
asbestos to a nonsmoker not exposed to asbestos,
controlling for age, is given by exp(b1 þ b2 þ d1 þ d2).

b. The odds ratio that compares a nonsmoker exposed to
asbestos to a nonsmoker unexposed to asbestos,
controlling for age, is given by exp[b2 þ d2(AGE)].

c. The odds ratio that compares a smoker exposed to
asbestos to a smoker unexposed to asbestos, controlling
for age, is given by exp[b1 þ d1(AGE)].

d. The odds ratio that compares a smoker exposed to
asbestos to a nonsmoker exposed to asbestos,
controlling for age, is given by exp[b1 þ d1(AGE) þ
d2(AGE)].

e. None of the above statements is correct.
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Test 1. Given the following logistic model

logit P(X) ¼ a þ bCAT þ g1AGE þ g2CHL,
where CAT is a dichotomous exposure variable and
AGE and CHL are continuous, answer the following
questions concerning the odds ratio that compares
exposed to unexposed persons controlling for the effects
of AGE and CHL:

a. Give an expression for the odds ratio for the E, D
relationship, assuming that CAT is coded as
(0 ¼ low CAT, 1 ¼ high CAT).

b. Give an expression for the odds ratio, assuming
CAT is coded as (0, 5).

c. Give an expression for the odds ratio, assuming that
CAT is coded as (�1, 1).

d. Assuming that the same dataset is used for com-
puting odds ratios described in parts a–c above,
what is the relationship among odds ratios com-
puted by using the three different coding schemes
of parts a–c?

e. Assuming the same data set as in part d above, what
is the relationship between the bs that are computed
from the three different coding schemes?

2. Suppose the model in Question 1 is revised as follows:
logit P(X) ¼ a þ bCAT þ g1AGE þ g2CHL þ CAT(d1AGE

þ d2CHL).

For this revised model, answer the same questions as
given in parts a–e of Question 1.

a.

b.

c.

d.

e.

3. Given the model

logit P(X) ¼ a þ bSSU þ g1AGE þ g2SEX
þ SSU(d1AGE þ d2SEX),

where SSU denotes “social support score” and is an
ordinal variable ranging from 0 to 5, answer the
following questions about the above model:
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a. Give an expression for the odds ratio that compares
a person who has SSU ¼ 5 to a person who has
SSU ¼ 0, controlling for AGE and SEX.

b. Give an expression for the odds ratio that compares
a person who has SSU ¼ 1 to a person who has
SSU ¼ 0, controlling for AGE and SEX.

c. Give an expression for the odds ratio that compares
a person who has SSU ¼ 2 to a person who has
SSU ¼ 1, controlling for AGE and SEX.

d. Assuming that the same data set is used for parts b
and c, what is the relationship between the odds
ratios computed in parts b and c?

4. Suppose the variable SSU in Question 3 is partitioned
into three categories denoted as low, medium, and high.

a. Revise the model of Question 3 to give the logit
form of a logistic model that treats SSU as a nomi-
nal variable with three categories (assume
no interaction).

b. Using your model of part a, give an expression for
the odds ratio that compares high to low SSU per-
sons, controlling for AGE and SEX.

c. Revise your model of part a to allow for effect
modification of SSU with AGE and with SEX.

d. Revise your odds ratio of part b to correspond to
your model of part c.

5. Given the following model

logit P(X) ¼ a þ b1NS þ b2OC þ b3AFS þ g1AGE þ
g2RACE,

where NS denotes number of sex partners in one’s
lifetime, OC denotes oral contraceptive use (yes/no),
and AFS denotes age at first sexual intercourse
experience, answer the following questions about the
above model:

a. Give an expression for the odds ratio that compares
a person who has NS ¼ 5, OC ¼ 1, and AFS ¼ 26 to
a person who has NS ¼ 5, OC ¼ 1, and AFS ¼ 16,
controlling for AGE and RACE.

b. Give an expression for the odds ratio that compares
a person who has NS ¼ 200, OC ¼ 1, and AFS ¼ 26
to a person who has NS ¼ 5, OC ¼ 1, and
AFS ¼ 16, controlling for AGE and RACE.
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6. Suppose the model in Question 5 is revised to contain
interaction terms:

logit PðXÞ¼ aþb1NSþb2OCþb3AFSþ g1AGEþ g2RACE

þd11ðNS�AGEÞþd12ðNS�RACEÞ
þd21ðOC�AGEÞþd22ðOC�RACEÞ
þd31ðAFS�AGEÞþd32ðAFS�RACEÞ:

For this revised model, answer the same questions as
given in parts a and b of Question 5.

a.

b.
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Answers to
Practice
Exercises

1. F: the correct odds ratio expression is exp[b þ
d1(SMK) þ d2(HPT)]

2. T

3. F: the correct odds ratio expression is exp(2b)
4. T

5. F: the correct odds ratio expression is exp[60b
þ 60d(AGE)]

6. T

7. logit P(X) ¼ a þ b1R1 þ b2R2 þ g1AGE þ g2SMK
þ g3RACE þ g4SEX,

where R1 and R2 are dummy variables indicating
region, e.g., R1 ¼ (1 if urban, 0 if other) and R2 ¼ (1 if
suburban, 0 if other).

8. When the above coding for the two dummy variables
is used, the odds ratio that compares urban with rural
persons is given by exp(b1).

9: logit PðXÞ ¼ aþ b1R1 þ b2R2 þ g1AGEþ g2SMK

þ g3RACEþ g4SEXþ R1ðd11AGEþ d12SMK

þ d13RACEþ d14SEXÞ þ R2ðd21AGE

þ d22SMK þ d23RACEþ d24SEXÞ:
10. Using the coding of the answer to Question 7, the

revised odds ratio expression that compares urban
with rural persons is exp(b1 þ d11AGE þ d12SMK
þ d13RACE þ d14SEX).

11. The correct answer is b.
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Introduction In this chapter, we describe the general maximum like-
lihood (ML) procedure, including a discussion of like-
lihood functions and how they are maximized. We also
distinguish between two alternative ML methods, the
unconditional and the conditional approaches, and we
give guidelines regarding how the applied user can
choose between these methods. Finally, we provide a
brief overview of how to make statistical inferences using
ML estimates.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. Together with the objec-
tives, this outline offers the user an overview of the content
of this module. A detailed outline for review purposes
follows the presentation.

I. Overview (page 106)

II. Background about maximum likelihood
procedure (pages 106–107)

III. Unconditional vs. conditional methods (pages
107–111)

IV. The likelihood function and its use in the ML
procedure (pages 111–117)

V. Overview on statistical inferences for logistic
regression (pages 117–121)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize when to use unconditional vs.
conditional ML methods.

2. State or recognize what is a likelihood function.

3. State or recognize that the likelihood functions for
unconditional vs. conditional ML methods are
different.

4. State or recognize that unconditional vs. conditional
ML methods require different computer programs.

5. State or recognize how an ML procedure works to
obtain ML estimates of unknown parameters in a
logistic model.

6. Given a logistic model, state or describe two alternative
procedures for testing hypotheses about parameters in
the model. In particular, describe each procedure in
terms of the information used (log likelihood statistic
or Z statistic) and the distribution of the test statistic
under the null hypothesis (chi square or Z).

7. State, recognize, or describe three types of information
required for carrying out statistical inferences
involving the logistic model: the value of themaximized
likelihood, the variance–covariance matrix, and a
listing of the estimated coefficients and their standard
errors.

8. Given a logistic model, state or recognize how interval
estimates are obtained for parameters of interest; in
particular, state that interval estimates are large
sample formulae that make use of variance and
covariances in the variance–covariance matrix.

9. Given a printout of ML estimates for a logistic model,
use the printout information to describe characteristics
of the fitted model. In particular, given such a printout,
compute an estimated odds ratio for an exposure–
disease relationship of interest.
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Presentation

I. Overview

FOCUS

How ML methods
work
Two alternative ML
approaches

Guidelines for choice
of ML approach

Overview of
inferences

II. Background About
Maximum Likelihood
Procedure

Maximum likelihood (ML)
estimation

Least squares (LS) estimation: used
in classical linear regression

� ML ¼ LS when normality is
assumed

ML estimation:

� Computer programs available

� General applicability

� Used for nonlinear models, e.g.,
the logistic model

This presentation gives an overview of maxi-
mum likelihood (ML) methods as used in logis-
tic regression analysis. We focus on how ML
methods work, we distinguish between two
alternative ML approaches, and we give guide-
lines regarding which approach to choose. We
also give a brief overview on making statistical
inferences using ML techniques.

Maximum likelihood (ML) estimation is one
of several alternative approaches that statisti-
cians have developed for estimating the para-
meters in a mathematical model. Another
well-known and popular approach is least
squares (LS) estimation which is described
in most introductory statistics courses as a
method for estimating the parameters in a
classical straight line or multiple linear regres-
sion model. ML estimation and least squares
estimation are different approaches that hap-
pen to give the same results for classical linear
regression analyses when the dependent vari-
able is assumed to be normally distributed.

For many years, ML estimation was not widely
used because no computer software programs
were available to carry out the complex calcu-
lations required. However, ML programs have
been widely available in recent years. More-
over, when compared with least squares, the
ML method can be applied in the estimation
of complex nonlinear as well as linear models.
In particular, because the logistic model is a
nonlinearmodel,ML estimation is the preferred
estimation method for logistic regression.
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Discriminant function analysis:

� Previously used for logistic
model

� Restrictive normality
assumptions

� Gives biased results – odds
ratio too high

ML estimation:

� No restrictions on independent
variables

� Preferred to discriminant
analysis

III. Unconditional vs.
Conditional Methods

Two alternative ML approaches:

1. Unconditional method

2. Conditional method

� Require different computer
algorithms

� User must choose appropriate
algorithm

Computer Programs

SAS
SPSS
Stata

Until the availability of computer software for
ML estimation, the method used to estimate
the parameters of a logistic model was discrim-
inant function analysis. This method has been
shown by statisticians to be essentially a
least squares approach. Restrictive normality
assumptions on the independent variables in
the model are required to make statistical
inferences about the model parameters. In par-
ticular, if any of the independent variables are
dichotomous or categorical in nature, then the
discriminant function method tends to give
biased results, usually giving estimated odds
ratios that are too high.

ML estimation, on the other hand, requires no
restrictions of any kind on the characteristics
of the independent variables. Thus, when using
ML estimation, the independent variables can
be nominal, ordinal, and/or interval. Conse-
quently, ML estimation is to be preferred over
discriminant function analysis for fitting the
logistic model.

There are actually two alternative ML
approaches that can be used to estimate the
parameters in a logistic model. These are called
the unconditional method and the conditional
method. These two methods require different
computer algorithms. Thus, researchers using
logistic regression modeling must decide
which of these two algorithms is appropriate
for their data. (See Computer Appendix.)

Three of the most widely available computer
packages for unconditional ML estimation of
the logistic model are SAS, SPSS, and Stata.
Programs for conditional ML estimation are
available in all three packages, but some are
restricted to special cases. (See Computer
Appendix.)
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The Choice:

Unconditional – preferred if the
number of parameters is small
relative to the number of subjects

Conditional – preferred if the
number of parameters is large
relative to the number of subjects

Small vs. large? debatable

Guidelines provided here

In making the choice between unconditional
and conditional ML approaches, the researcher
needs to consider the number of parameters
in the model relative to the total number of
subjects under study. In general, unconditional
ML estimation is preferred if the number of
parameters in the model is small relative to
the number of subjects. In contrast, conditional
ML estimation is preferred if the number of
parameters in the model is large relative to
the number of subjects.

Exactly what is small vs. what is large is debat-
able and has not yet nor may ever be precisely
determined by statisticians. Nevertheless, we
can provide some guidelines for choosing the
estimation method.

An example of a situation suitable for an
unconditional ML program is a large cohort
study that does not involve matching, for
instance, a study of 700 subjects who are fol-
lowed for 10 years to determine coronary heart
disease status, denoted here as CHD. Suppose,
for the analysis of data from such a study, a
logistic model is considered involving an expo-
sure variable E, five covariables C1 through C5

treated as confounders in the model, and five
interaction terms of the form E � Ci, where Ci

is the ith covariable.

This model contains a total of 12 parameters,
one for each of the variables plus one for the
intercept term. Because the number of para-
meters here is 12 and the number of subjects
is 700, this is a situation suitable for using
unconditional ML estimation; that is, the num-
ber of parameters is small relative to the num-
ber of subjects.

EXAMPLE: Unconditional Preferred

Cohort study: 10 year follow-up
n ¼ 700
D ¼ CHD outcome
E ¼ exposure variable

C1, C2, C3, C4, C5 ¼ covariables

E � C1, E � C2, E � C3, E � C4, E � C5

¼ interaction terms

Number of parameters ¼ 12
(including intercept)

small relative to n ¼ 700
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REFERENCE
Chapter 11: Analysis of Matched
Data Using Logistic Regression

In contrast, consider a case-control study
involving 100 matched pairs. Suppose that the
outcome variable is lung cancer and that con-
trols arematched to cases on age, race, sex, and
location. Suppose also that smoking status, a
potential confounder denoted as SMK, is not
matched but is nevertheless determined for
both cases and controls, and that the primary
exposure variable of interest, labeled as E, is
some dietary characteristic, such as whether or
not a subject has a high-fiber diet.

Because the study design involves matching, a
logistic model to analyze this data must control
for the matching by using dummy variables
to reflect the different matching strata, each
of which involves a different matched pair.
Assuming the model has an intercept, the
model will need 99 dummy variables to incor-
porate the 100 matched pairs. Besides these
variables, the model contains the exposure var-
iable E, the covariable SMK, and perhaps even
an interaction term of the form E � SMK.

To obtain the number of parameters in the
model, we must count the one intercept,
the coefficients of the 99 dummy variables,
the coefficient of E, the coefficient of SMK,
and the coefficient of the product term E �
SMK. The total number of parameters is 103.
Because there are 100 matched pairs in the
study, the total number of subjects is, there-
fore, 200. This situation requires conditional
ML estimation because the number of para-
meters, 103, is quite large relative to the num-
ber of subjects, 200.

A detailed discussion of logistic regression for
matched data is provided in Chap. 11.

EXAMPLE: Conditional Preferred

Case-control study
100 matched pairs
D ¼ lung cancer

Matching variables:
age, race, sex, location

Other variables:
SMK (a confounder)
E (dietary characteristic)

Logistic model for matching:

� uses dummy variables for
matching strata

� 99 dummy variables for 100
strata

� E, SMK, and E � SMK also in
model

Number of parameters ¼
1 þ 99 þ 3 ¼ 103
" " "

intercept dummy E, SMK, E� SMK
variables

large relative to 100 matched

pairs ) n = 200

Presentation: III. Unconditional vs. Conditional Methods 109



Guidelines:

� Use conditional if matching

� Use unconditional if no
matching and number of
variables not too large

Safe rule:
Use conditional when in doubt.

� Gives unbiased results always.

� Unconditional may be biased
(may overestimate odds ratios).

The above examples indicate the following
guidelines regarding the choice between
unconditional and conditional ML methods or
programs:

� Use conditional ML estimation whenever
matching has been done; this is because the
model will invariably be large due to the
number of dummy variables required to
reflect the matching strata.

� Use unconditional ML estimation if
matching has not been done, provided the
total number of variables in the model is
not unduly large relative to the number
of subjects.

Loosely speaking, this means that if the total
number of confounders and the total number
of interaction terms in the model are large, say
10–15 confounders and 10–15 product terms,
the number of parameters may be getting too
large for the unconditional approach to give
accurate answers.

A safe rule is to use conditional ML estimation
whenever in doubt about which method to
use, because, theoretically, the conditional
approach has been shown by statisticians to
give unbiased results always. In contrast, the
unconditional approach, when unsuitable, can
give biased results and, in particular, can over-
estimate odds ratios of interest.

As a simple example of the need to use condi-
tional ML estimation for matched data, con-
sider again a pair-matched case-control study
such as described above. For such a study
design, the measure of effect of interest is
an odds ratio for the exposure-disease rela-
tionship that adjusts for the variables being
controlled.

EXAMPLE

Unconditional questionable if

� 10–15 confounders

� 10–15 product terms

EXAMPLE: Conditional Required

Pair-matched case control study
measure of effect; OR
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R-to-1 matching

+
unconditional is overestimate of
(correct) conditional estimate

IV. The Likelihood
Function and Its Use in
the ML Procedure

L ¼ L(u) ¼ likelihood function

u ¼ (y1, y2, . . . , yq)

E, V, W model:

logit PðXÞ ¼ aþ bEþ ~
p1

i¼ 1

giVi

þ E ~
p2

j¼ 1

djWj

u ¼ ða; b; g1; g2; . . . ; d1; d2; . . .Þ

If the only variables being controlled are those
involved in the matching, then the estimate of
the odds ratio obtained by using unconditional
ML estimation, which we denote by dORU, is the
square of the estimate obtained by using con-
ditional ML estimation, which we denote bydORC. Statisticians have shown that the correct
estimate of this OR is given by the conditional
method, whereas a biased estimate is given by
the unconditional method.

Thus, for example, if the conditional ML esti-
mate yields an estimated odds ratio of 3, then
the unconditional ML method will yield a very
large overestimate of 3 squared, or 9.

More generally, whenever matching is used,
even R-to-1 matching, where R is greater than 1,
the unconditional estimate of the odds ratio
that adjusts for covariables will give an overes-
timate, though not necessarily the square, of
the conditional estimate.

Having now distinguished between the two
alternative ML procedures, we are ready to
describe the ML procedure in more detail and
to give a brief overview of how statistical infer-
ences are made using ML techniques.

To describe theML procedure, we introduce the
likelihood function, L. This is a function of the
unknown parameters in one’s model and, thus,
can alternatively be denoted as L(u), where u
denotes the collection of unknown parameters
being estimated in the model. In matrix termi-
nology, the collection u is referred to as a vector;
its components are the individual parameters
being estimated in the model, denoted here as
y1, y2, up through yq, where q is the number of
individual components.

For example, using the E, V, W logistic model
previously described and shown here again,
the unknown parameters are a, b, the gis, and
the djs. Thus, the vector of parameters u has a,
b, the gis, and the djs as its components.

EXAMPLE: (continued)

Assume only variables controlled are
matched

Then dORU ¼ ðdORCÞ2
" "

biased correct

e.g., dORC ¼ 3 ) dORU ¼ ð3Þ2 ¼ 9
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L ¼ L (u)
¼ joint probability of observing

the data

ML method maximizes the like-
lihood function L(u)

û ¼ ðŷ1; ŷ2; . . . ; ŷqÞ ¼ ML estimator

The likelihood function L or L(u) represents the
joint probability or likelihood of observing the
data that have been collected. The term “joint
probability” means a probability that com-
bines the contributions of all the subjects in
the study.

As a simple example, in a study involving 100
trials of a new drug, suppose the parameter of
interest is the probability of a successful trial,
which is denoted by p. Suppose also that, out of
the n equal to 100 trials studied, there are x
equal to 75 successful trials and n � x equal
to 25 failures. The probability of observing 75
successes out of 100 trials is a joint probability
and can be described by the binomial distribu-
tion. That is, the model is a binomial-based
model, which is different from and much less
complex than the logistic model.

The binomial probability expression is shown
here. This is stated as the probability that X, the
number of successes, equals 75 given that there
are n equal to 100 trials and that the probability
of success on a single trial is p. Note that the
vertical line within the probability expression
means “given”.

This probability is numerically equal to a con-
stant c times p to the 75th power times 1 � p to
the 100 �75 or 25th power. This expression is
the likelihood function for this example. It
gives the probability of observing the results
of the study as a function of the unknown para-
meters, in this case the single parameter p.

Once the likelihood function has been deter-
mined for a given set of study data, the method
of maximum likelihood chooses that estimator
of the set of unknown parameters u which max-
imizes the likelihood function L(u). The esti-
mator is denoted as û and its components are
ŷ1; ŷ2, and so on up through ŷq.

In the binomial example described above, the
maximum likelihood solution gives that value
of the parameter p which maximizes the like-
lihood expression c times p to the 75th power
times 1 � p to the 25th power. The estimated
parameter here is denoted as p̂.

EXAMPLE

n ¼ 100 trials
p ¼ probability of success
x ¼ 75 successes
n � x ¼ 25 failures

Pr (75 successes out of 100 trials)
has binomial distribution

Pr (X ¼ 75 | n ¼ 100, p)
"

given

Pr (X ¼ 75 | n ¼ 100, p)

¼ c � p75 � (1 � p)100 � 75

¼ L( p)

EXAMPLE (Binomial)

ML solution.
p̂ maximizes
L( p) ¼ c � p75 � (1 � p)25
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Maximizing L(u) is equivalent to
maximizing ln L(u)

Solve:
@ ln LðuÞ

@yj
¼ 0, j ¼ 1, 2, . . . , q

q equations in q unknowns require
iterative solution by computer

The standard approach for maximizing an
expression like the likelihood function for the
binomial example here is to use calculus by
setting the derivative dL/dp equal to 0 and solv-
ing for the unknown parameter or parameters.

For the binomial example, when the derivative
dL/dp is set equal to 0, theML solution obtained
is p̂ equal to 0.75. Thus, the value 0.75 is the
“most likely” value for p in the sense that it
maximizes the likelihood function L.

If we substitute into the expression for L a
value for p exceeding 0.75, this will yield a
smaller value for L than obtained when substi-
tuting p equal to 0.75. This is why 0.75 is called
theMLestimator.Forexample,whenp equals1,
the value for L using the binomial formula is 0,
which is as small as L can get and is, therefore,
less than the value of L when p equals the ML
value of 0.75.

Note that for the binomial example, the ML
value p̂ equal to 0.75 is simply the sample pro-
portion of the 100 trials that are successful. In
other words, for a binomial model, the sample
proportion always turns out to be the ML esti-
mator of the parameter p. So for thismodel, it is
not necessary to work through the calculus to
derive this estimate. However, for models more
complicated than the binomial, for example, the
logistic model, calculus computations involving
derivatives are required and are quite complex.

In general, maximizing the likelihood function
L(u) is equivalent to maximizing the natural
log of L(u), which is computationally easier.
The components of u are then found as solu-
tions of equations of partial derivatives as
shown here. Each equation is stated as the
partial derivative of the log of the likelihood
function with respect to yj equals 0, where yj
is the jth individual parameter.

If there are q parameters in total, then the
above set of equations is a set of q equations
in q unknowns. These equations must then be
solved iteratively, which is no problemwith the
right computer program.

EXAMPLE (continued)

Maximum value obtained by solving
dL

dp
¼ 0

for p:

p̂ ¼ 0.75 “most likely”

maximum
#

p > p̂ ¼ 0.75 ) L( p) < L( p ¼ 0.75)

e.g.,
binomial formula

p ¼ 1 ) L(1) ¼ c � 175 � (1 � 1)25

¼ 0 < L(0.75)

p̂ ¼ 0:75 ¼ 75

100
, a sample proportion

Binomial model

) p̂ ¼ X

n
is ML estimator

More complicated models ) complex
calculations
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Two alternatives:

Unconditional algorithm (LU)
vs.

Conditional algorithm (LC)

likelihoods

Formula for L is built into
computer algorithms

User inputs data and
computer does calculations

L formulae are different for
unconditional and conditional
methods

The unconditional formula:
(a joint probability)

cases noncases

# #

LU ¼
Ym1

l¼ 1

PðXlÞ
Yn

l¼ m1þ1

½1� PðXlÞ�

PðXÞ ¼ logistic model

¼ 1

1þ e�ðaþSbiXiÞ

LU ¼

Qn
l¼ 1

exp aþ ~
k

i¼ 1

biXil

� �
Qn
l¼ 1

1þ exp aþ ~
k

i¼ 1

biXil

� �� �

As described earlier, if the model is logistic,
there are two alternative types of computer
algorithms to choose from, an unconditional
vs. a conditional algorithm. These algorithms
use different likelihood functions, namely, LU

for the unconditional method and LC for the
conditional method.

The formulae for the likelihood functions for
both the unconditional and conditional ML
approaches are quite complex mathematically.
The applied user of logistic regression, however,
never has to see the formulae for L in practice
because they are built into their respective com-
puter algorithms. All the user has to do is learn
how to input the data and to state the form of
the logistic model being fit. Then the computer
does the heavy calculations of forming the like-
lihood function internally and maximizing this
function to obtain the ML solutions.

Although we do not want to emphasize the
particular likelihood formulae for the uncondi-
tional vs. conditional methods, we do want
to describe how these formulae are different.
Thus, we briefly show these formulae for this
purpose.

The unconditional formula is given first and
directly describes the joint probability of the
study data as the product of the joint probability
for the cases (diseased persons) and the joint
probability for the noncases (nondiseased per-
sons). These two products are indicated by the
large P signs in the formula. We can use these
products here by assuming that we have inde-
pendent observations on all subjects. The prob-
ability of obtaining the data for the lth case is
given by P(Xl), where P(X) is the logistic model
formula for individualX. The probability of the
data for the lth noncase is given by 1 – P(Xl).

When the logistic model formula involving the
parameters is substituted into the likelihood
expression above, the formula shown here is
obtained after a certain amount of algebra is
done. Note that this expression for the likeli-
hood function L is a function of the unknown
parameters a and the bi.
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The conditional formula:

LC ¼ Pr ðobserved dataÞ
Pr ðall possible configurationsÞ

m1 cases: (X1, X2, . . . , Xm1
)

n�m1 noncases:
(Xm1+1

, Xm1+2
, . . . , Xn)

LC ¼ Pr(first m1 Xs are cases | all
possible configurations of Xs)

Possible configurations
¼ combinations of n things

taken m1 at a time
¼ Cm1

n

LC ¼

Qm1

l¼1

PðXlÞ
Qn

l¼m1þ1

½1�PðXlÞ�

~
u

Qm1

l¼1

PðXulÞ
Qn

l¼m1þ1

½1�PðXulÞ�
( )

vs:

LU ¼
Ym1

l¼1

PðXlÞ
Yn

l¼m1þ1

½1�PðXlÞ�

The conditional likelihood formula (LC) reflects
the probability of the observed data configura-
tion relative to the probability of all possible
configurations of the given data. To understand
this, we describe the observed data configura-
tion as a collection of m1 cases and n � m1

noncases. We denote the cases by the X vectors
X1, X2, and so on through Xm1

and the non-
cases by Xm1+1

, Xm1+2
, through Xn.

The above configuration assumes that we have
rearranged the observed data so that the m1

cases are listed first and are then followed
in listing by the n � m1 noncases. Using this
configuration, the conditional likelihood func-
tion gives the probability that the first m1 of
the observations actually go with the cases,
given all possible configurations of the above
n observations into a set of m1 cases and a set
of n � m1 noncases.

The term configuration here refers to one of the
possible ways that the observed set ofX vectors
can be partitioned into m1 cases and n � m1

noncases. In example 1 here, for instance, the
last m1 X vectors are the cases and the remain-
ing Xs are noncases. In example 2, however,
the m1 cases are in the middle of the listing of
all X vectors.

The number of possible configurations is given
by the number of combinations of n things
taken m1 at a time, which is denoted mathe-
matically by the expression shown here, where
the C in the expression denotes combinations.

The formula for the conditional likelihood is
then given by the expression shown here. The
numerator is exactly the same as the likelihood
for the unconditional method. The denomina-
tor is what makes the conditional likelihood
different from the unconditional likelihood.
Basically, the denominator sums the joint pro-
babilities for all possible configurations of the
m observations into m1 cases and n�m1 non-
cases. Each configuration is indicated by the u
in the LC formula.

EXAMPLE: Configurations

(1) Last m1 Xs are cases
(X1, X2, . . . , Xn)

—— cases
(2) Cases of Xs are in middle of listing

(X1, X2, . . . , Xn)
—— cases
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LC ¼

Qm1

l¼1

exp ~
k

i¼1

biXli

� �

~
u

Qm1

l¼1

exp ~
k

i¼1

biXlui

� �� �

Note: a drops out of LC

Conditional algorithm:
� Estimates bs
� Does not estimate a (nuisance

parameter)

Note: OR involves only bs

Case-control study:
cannot estimate a

direct joint
probability

LU ≠ LC

does not require
estimating nuisance
parameters

many nuisance parameters

Stratified data, e.g., matching,

100 nuisance parameters

⇓

are not estimated
using LC 

unnecessarily
estimated using LU

When the logistic model formula involving the
parameters is substituted into the conditional
likelihood expression above, the resulting for-
mula shown here is obtained. This formula
is not the same as the unconditional for-
mula shown earlier. Moreover, in the condi-
tional formula, the intercept parameter a has
dropped out of the likelihood.

The removal of the intercept a from the condi-
tional likelihood is important because it means
that when a conditional ML algorithm is used,
estimates are obtained only for the bi coeffi-
cients in the model and not for a. Because the
usual focus of a logistic regression analysis is
to estimate an odds ratio, which involves the
bs and not a, we usually do not care about
estimating a and, therefore, consider a to be a
nuisance parameter.

In particular, if the data come from a case-
control study, we cannot estimate a because
we cannot estimate risk, and the conditional
likelihood function does not allow us to obtain
any such estimate.

Regarding likelihood functions, then, we have
shown that the unconditional and conditional
likelihood functions involve different formu-
lae. The unconditional formula has the theoret-
ical advantage in that it is developed directly
as a joint probability of the observed data.
The conditional formula has the advantage
that it does not require estimating nuisance
parameters like a.

If the data are stratified, as, for example, by
matching, it can be shown that there are as
many nuisance parameters as there are
matched strata. Thus, for example, if there
are 100matched pairs, then 100 nuisance para-
meters do not have to be estimated when
using conditional estimation, whereas these
100 parameters would be unnecessarily esti-
mated when using unconditional estimation.
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Matching:

Unconditional ) biased estimates
of bs
Conditional ) unbiased estimates
of bs

V. Overview on Statistical
Inferences for Logistic
Regression

Chap. 5: Statistical Inferences
Using Maximum Likelihood Tech-
niques

Statistical inferences involve the
following:
� Testing hypotheses

� Obtaining confidence intervals

Quantities required from computer
output:

1. Maximized likelihood value LðûÞ
2. Estimated variance–covariance

matrix

covariances off
the diagonal

variances on
diagonal

V (q) =

Note: dcovð ŷ1; ŷ2Þ ¼ r12s1s2

If we consider the other parameters in the
model for matched data, that is, the bs,
the unconditional likelihood approach gives
biased estimates of the bs, whereas the condi-
tional approach gives unbiased estimates of
the bs.

We have completed our description of the
ML method in general, distinguished between
unconditional and conditional approaches, and
distinguished between their corresponding like-
lihood functions. We now provide a brief over-
view of how statistical inferences are carried
out for the logistic model. A detailed discussion
of statistical inferences is given in the next
chapter.

Once theML estimates have been obtained, the
next step is to use these estimates to make
statistical inferences concerning the exposure–
disease relationships under study. This step
includes testing hypotheses and obtaining con-
fidence intervals for parameters in the model.

Inference-making can be accomplished through
the use of two quantities that are part of the
output provided by standard ML estimation
programs.

The first of these quantities is the maximized
likelihood value, which is simply the numerical
value of the likelihood function L when
the ML estimates (û) are substituted for their
corresponding parameter values (y). This value
is called L(û) in our earlier notation.

The second quantity is the estimated variance–
covariance matrix. This matrix, V̂ of û, has as its
diagonal the estimated variances of each of the
ML estimates. The values off the diagonal are
the covariances of pairs of ML estimates. The
reader may recall that the covariance between
two estimates is the correlation times the stan-
dard error of each estimate.
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Importance of V̂ðûÞ:

inferences require accounting
for variability and covariability

(3) Variable listing
Variable ML Coefficient S. E.

Intercept â sâ
X1 b̂1 sb̂1
� � �
� � �
� � �
Xk b̂k sb̂k

The variance–covariance matrix is important
because the information contained in it is
used in the computations required for hypoth-
esis testing and confidence interval estimation.

In addition to the maximized likelihood value
and the variance–covariance matrix, other
information is also provided as part of the out-
put. This information typically includes, as
shown here, a listing of each variable followed
by its ML estimate and standard error. This
information provides another way to carry
out hypothesis testing and interval estimation.
Moreover, this listing gives the primary infor-
mation used for calculating odds ratio esti-
mates and predicted risks. The latter can only
be done, however, if the study has a follow-up
design.

An example of ML computer output giving the
above information is provided here. This out-
put considers study data on a cohort of 609
white males in Evans County, Georgia, who
were followed for 9 years to determine coro-
nary heart disease (CHD) status. The output
considers a logistic model involving eight vari-
ables, which are denoted as CAT (catechol-
amine level), AGE, CHL (cholesterol level),
ECG (electrocardiogram abnormality status),
SMK (smoking status), HPT (hypertension sta-
tus), CC, and CH. The latter two variables are
product terms of the form CC ¼ CAT � CHL
and CH ¼ CAT � HPT.

The exposure variable of interest here is the
variable CAT, and the five covariables of inter-
est, that is, the Cs are AGE, CHL, ECG, SMK,
and HPT. Using our E, V, W model framework
introduced in Chapter 2, we have E equals CAT,
the five covariables equal to the Vs, and two W
variables, namely, CHL and HPT.

The output information includes �2 times the
natural log of the maximized likelihood value,
which is 347.23, and a listing of each variable
followed by its ML estimate and standard
error. We will show the variance–covariance
matrix shortly.

EXAMPLE

Cohort study – Evans Country, GA

n ¼ 609 white males
9-year follow-up
D ¼ CHD status

Output: �2 ln L̂ ¼ 347.23

Variable
ML

Coefficient S. E.

Intercept �4.0497 �1.2550

CAT �12.6894 3.1047

AGE 0.0350 0.0161

CHL 0.0055 0.0042

Vs ECG 0.3671 0.3278

SMK 0.7732 0.3273

8>>>>>>>><
>>>>>>>>:
HPT 1.0466 0.3316

CC 0.0692 0.3316

CH 2.3318 0.7427

CC = CAT × CHL and CH = CAT × HPT

Ws
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We now consider how to use the information
provided to obtain an estimated odds ratio
for the fitted model. Because this model con-
tains the product terms CC equal to CAT �
CHL, and CH equal to CAT � HPT, the esti-
mated odds ratio for the effect of CAT must
consider the coefficients of these terms as
well as the coefficient of CAT.

The formula for this estimated odds ratio is
given by the exponential of the quantity b̂ plus
d̂1 times CHL plus d̂2 times HPT, where b̂ equals
�12.6894 is the coefficient of CAT, d̂1 equals
0.0692 is the coefficient of the interaction term
CC, and d̂2 equals �2.3318 is the coefficient of
the interaction term CH.

Plugging the estimated coefficients into the
odds ratio formula yields the expression: e to
the quantity �12.6894 plus 0.0692 times CHL
plus �2.3318 times HPT.

To obtain a numerical value from this expres-
sion, it is necessary to specify a value for CHL
and a value for HPT. Different values for CHL
and HPT will, therefore, yield different odds
ratio values, as should be expected because
the model contains interaction terms.

The table shown here illustrates different odds
ratio estimates that can result from specifying
different values of the effect modifiers. In this
table, the values of CHL are 200, 220, and 240;
the values of HPT are 0 and 1, where 1 denotes
a person who has hypertension. The cells
within the table give the estimated odds ratios
computed from the above expression for the
odds ratio for different combinations of CHL
and HPT.

For example, when CHL equals 200 and HPT
equals 0, the estimated odds ratio is given by
3.16; when CHL equals 220 and HPT equals 1,
the estimated odds ratio is 1.22. Note that
each of the estimated odds ratios in this table
describes the association between CAT and
CHD adjusted for the five covariables AGE,
CHL, ECG, SMK, and HPT because each of
the covariables is contained in the model as V
variables.

EXAMPLE (continued)

dOR considers coefficients of CAT, CC,
and CH

dOR ¼ expðb̂ þ d̂1CHL þ d̂2HPTÞ
where

b̂ ¼ �12:6894

d̂1 ¼ 0:0692

d̂2 ¼ �2:3318

dOR ¼ exp½�12:6894þ 0:0692 CHL

þð�2:3318ÞHPT�

Must specify:

CHL and HPT

effect modifiers

Note. dOR different for different values
specified for CHL and HPT

HPT

0 1

200 3.16 0.31

CHL 220 12.61 1.22

240 50.33 4.89

CHL ¼ 200,HPT ¼ 0: dOR ¼ 3.16

CHL ¼ 220,HPT ¼ 1: dOR ¼ 1.22

dOR adjusts for AGE, CHL, ECG,
SMK, and HPT (the V variables)
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dORs ¼ point estimators

Variability of dOR considered for
statistical inferences

Two types of inferences:
(1) Testing hypotheses

(2) Interval estimation

Two testing procedures:

(1) Likelihood ratio test: a chi-
square statistic using �2 ln L̂.

(2) Wald test: a Z test using
standard errors listed with
each variable.

Note: Since Z2 is w21df, the Wald test
can equivalently be considered a
chi-square test.

The estimated model coefficients and the cor-
responding odds ratio estimates that we have
just described are point estimates of unknown
population parameters. Such point estimates
have a certain amount of variability associated
with them, as illustrated, for example, by the
standard errors of each estimated coefficient
provided in the output listing. We consider
the variability of our estimates when we
make statistical inferences about parameters
of interest.

We can use two kinds of inference-making pro-
cedures. One is testing hypotheses about cer-
tain parameters; the other is deriving interval
estimates of certain parameters.

As an example of a test, we may wish to test the
null hypothesis that an odds ratio is equal to
the null value.

Or, as another example, we may wish to test
for evidence of significant interaction, for
instance, whether one or more of the coeffi-
cients of the product terms in the model are
significantly nonzero.

As an example of an interval estimate, we may
wish to obtain a 95% confidence interval for
the adjusted odds ratio for the effect of CAT on
CHD, controlling for the five V variables and
the two W variables. Because this model con-
tains interaction terms, we need to specify the
values of theWs to obtain numerical values for
the confidence limits. For instance, we may
want the 95% confidence interval when CHL
equals 220 and HPT equals 1.

When using ML estimation, we can carry out
hypothesis testing by using one of two proce-
dures, the likelihood ratio test and theWald test.
The likelihood ratio test is a chi-square test that
makes use of maximized likelihood values such
as those shown in the output. TheWald test is a
Z test; that is, the test statistic is approximately
standard normal. The Wald test makes use of
the standard errors shown in the listing of vari-
ables and associated output information. Each
of these procedures is described in detail in the
next chapter.

EXAMPLES

(1) Test for H0: OR ¼ 1

(2) Test for significant interaction,
e.g., d1 6¼ 0?

(3) Interval estimate: 95% confidence
interval for ORCAT, CHD

controlling for 5 Vs and 2 Ws

Interaction: must specify Ws
e.g., 95% confidence interval when
CAT ¼ 220 and HPT ¼ 1
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Large samples: both procedures give
approximately the same results

Small ormoderate samples: different
results possible; likelihood ratio test
preferred

Confidence intervals
� use large sample formulae

� use variance–covariance matrix

No interaction: variance only

Interaction: variances and covar-
iances

5. Statistical Inferences Using
ML Techniques

Both testing procedures should give appro-
ximately the same answer in large samples
but may give different results in small or
moderate samples. In the latter case, statisti-
cians prefer the likelihood ratio test to the
Wald test.

Confidence intervals are carried out by using
large sample formulae that make use of the
information in the variance–covariance matrix,
which includes the variances of estimated coef-
ficients together with the covariances of pairs of
estimated coefficients.

An example of the estimated variance–covari-
ance matrix is given here. Note, for example,
that the variance of the coefficient of the CAT
variable is 9.6389, the variance for the CC vari-
able is 0.0002, and the covariance of the coeffi-
cients of CAT and CC is �0.0437.

If the model being fit contains no interaction
terms and if the exposure variable is a (0, 1)
variable, then only a variance estimate is
required for computing a confidence interval.
If the model contains interaction terms, then
both variance and covariance estimates are
required; in this latter case, the computations
required are much more complex than when
there is no interaction.

We suggest that the reader review the material
covered here by reading the summary outline
that follows. Then you may work the practice
exercises and test.

In the next chapter, we give a detailed descrip-
tion of how to carry out both testing hypoth-
eses and confidence interval estimation for the
logistic model.

EXAMPLE V̂ ðûÞ
Intercept

1.5750 –0.6629 –0.0136 0.0034

0.0003 0.0000 –0.0010

–0.0049–0.0021

–0.0016

0.5516

0.0002

9.6389

0.0548Intercept

CAT

CAT

AGE

AGE

CC

CC

CH

CH

–0.0437

SUMMARY
Chapters up to this point:

1. Introduction

2. Important Special Cases

3. Computing the Odds Ratio

3 4. ML Techniques: An Overview

This presentation is now complete. In sum-
mary, we have described how ML estimation
works, have distinguished between uncondi-
tional and conditional methods and their
corresponding likelihood functions, and
have given an overview of how to make statis-
tical inferences using ML estimates.
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Detailed
Outline

I. Overview (page 106)

Focus:

� How ML methods work

� Two alternative ML approaches

� Guidelines for choice of ML approach

� Overview of statistical inferences

II. Background aboutmaximum likelihood procedure
(pages 106–107)

A. Alternative approaches to estimation: least
squares (LS), maximum likelihood (ML), and
discriminant function analysis.

B. ML is now the preferred method – computer
programs now available; general applicability of
ML method to many different types of models.

III. Unconditional vs. conditional methods (pages
107–111)

A. Require different computer programs; user must
choose appropriate program.

B. Unconditional preferred if number of parameters
small relative to number of subjects, whereas
conditional preferred if number of parameters
large relative to number of subjects.

C. Guidelines: use conditional if matching; use
unconditional if no matching and number of
variables not too large; when in doubt, use
conditional – always unbiased.

IV. The likelihood function and its use in the ML
procedure (pages 111–117)

A. L ¼ L(u) ¼ likelihood function; gives joint prob-
ability of observing the data as a function of the set
of unknown parameters given by u ¼ (y1, y2, . . . ,
yq).

B. ML method maximizes the likelihood function
L(u).

C. ML solutions solve a system of q equations in q
unknowns; this system requires an iterative
solution by computer.

D. Two alternative likelihood functions for logistic
regression: unconditional (LU) and conditional
(LC); formulae are built into unconditional and
conditional computer algorithms.

E. User inputs data and computer does calculations.

F. Conditional likelihood reflects the probability of
observed data configuration relative to the prob-
ability of all possible configurations of the data.
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G. Conditional algorithm estimates bs but not a
(nuisance parameter).

H. Matched data: unconditional gives biased
estimates, whereas conditional gives unbiased
estimates.

V. Overview on statistical inferences for logistic
regression (pages 117–121)

A. Two types of inferences: testing hypotheses and
confidence interval estimation.

B. Three items obtained from computer output for
inferences:

i. Maximized likelihood value L(û)

ii. Estimated variance–covariance matrix V̂ðûÞ:
variances on diagonal and covariances on the
off-diagonal;

iii. Variable listing with ML estimates and
standard errors.

C. Two testing procedures:

i. Likelihood ratio test: a chi-square statistic
using � 2 ln L̂.

ii. Wald test: a Z test (or equivalent w2 test) using
standard errors listed with each variable.

D. Both testing procedures give approximately same
results with large samples; with small samples,
different results are possible; likelihood ratio test is
preferred.

E. Confidence intervals: use large sample formulae
that involve variances and covariances from
variance–covariance matrix.
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Practice
Exercises

True or False (Circle T or F)

T F 1. When estimating the parameters of the logistic
model, least squares estimation is the preferred
method of estimation.

T F 2. Two alternativemaximum likelihood approaches
are called unconditional and conditional meth-
ods of estimation.

T F 3. The conditional approach is preferred if the
number of parameters in one’s model is small
relative to the number of subjects in one’s data
set.

T F 4. Conditional ML estimation should be used to
estimate logistic model parameters if matching
has been carried out in one’s study.

T F 5. Unconditional ML estimation gives unbiased
results always.

T F 6. The likelihood function L(u) represents the
joint probability of observing the data that has
been collected for analysis.

T F 7. The maximum likelihood method maximizes
the function ln L(u).

T F 8. The likelihood function formulae for both the
unconditional and conditional approaches are
the same.

T F 9. The maximized likelihood value LðûÞ is used for
confidence interval estimation of parameters in
the logistic model.

T F 10. The likelihood ratio test is the preferredmethod
for testing hypotheses about parameters in the
logistic model.

Test True or False (Circle T or F)

T F 1. Maximum likelihood estimation is preferred to
least squares estimation for estimating the
parameters of the logistic and other nonlinear
models.

T F 2. If discriminant function analysis is used to esti-
mate logistic model parameters, biased esti-
mates can be obtained that result in estimated
odds ratios that are too high.

T F 3. In a case-control study involving 1,200 subjects,
a logistic model involving 1 exposure variable,
3 potential confounders, and 3 potential effect
modifiers is to be estimated. Assuming no
matching has been done, the preferred method
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of estimation for this model is conditional ML
estimation.

T F 4. Until recently, the most widely available com-
puter packages for fitting the logistic model
have used unconditional procedures.

T F 5. In a matched case-control study involving
50 cases and 2-to-1 matching, a logistic model
used to analyze the data will contain a small
number of parameters relative to the total num-
ber of subjects studied.

T F 6. If a likelihood function for a logistic model con-
tains ten parameters, then the ML solution
solves a systemof ten equations in ten unknowns
by using an iterative procedure.

T F 7. The conditional likelihood function reflects the
probability of the observed data configuration
relative to the probability of all possible config-
urations of the data.

T F 8. The nuisance parameter a is not estimated
using an unconditional ML program.

T F 9. The likelihood ratio test is a chi-square test that
uses the maximized likelihood value L̂ in its
computation.

T F 10. TheWald test and the likelihood ratio test of the
same hypothesis give approximately the same
results in large samples.

T F 11. The variance–covariance matrix printed out for
a fitted logistic model gives the variances of
each variable in the model and the covariances
of each pair of variables in the model.

T F 12. Confidence intervals for odds ratio estimates
obtained from the fit of a logistic model use
large sample formulae that involve variances
and possibly covariances from the variance–
covariance matrix.
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The printout given below comes from a matched case-
control study of 313 women in Sydney, Australia (Brock
et al., 1988), to assess the etiologic role of sexual behaviors
and dietary factors on the development of cervical cancer.
Matching was done on age and socioeconomic status.
The outcome variable is cervical cancer status (yes/no),
and the independent variables considered here (all coded
as 1, 0) are vitamin C intake (VITC, high/low), the number
of lifetimesexual partners (NSEX, high/low), age at first
intercourse (SEXAGE, old/young), oral contraceptive pill
use (PILLM ever/never), and smoking status (CSMOK,
ever/never).

Variable Coefficient S.E. eCoeff P 95%Conf. Int. for eCoeff

VITC �0.24411 0.14254 0.7834 .086 0.5924 1.0359
NSEX 0.71902 0.16848 2.0524 .000 1.4752 2.8555
SEXAGE �0.19914 0.25203 0.8194 .426 0.5017 1.3383
PILLM 0.39447 0.19004 1.4836 .037 1.0222 2.1532
CSMOK 1.59663 0.36180 4.9364 .000 2.4290 10.0318

MAX LOG LIKELIHOOD ¼ �73.5088

Using the above printout, answer the following questions:

13. What method of estimation should have been used to
fit the logistic model for this data set? Explain.

14. Why don’t the variables age and socioeconomic status
appear in the printout?

15. Describe how to compute the odds ratio for the effect
of pill use in terms of an estimated regression coeffi-
cient in the model. Interpret the meaning of this odds
ratio.

16. What odds ratio is described by the value
e to �0.24411? Interpret this odds ratio.

17. State two alternative ways to describe the null hypoth-
esis appropriate for testing whether the odds ratio
described in Question 16 is significant.

18. What is the 95% confidence interval for the odds ratio
described in Question 16, andwhat parameter is being
estimated by this interval?

19. The P-values given in the table correspond to Wald
test statistics for each variable adjusted for the others
in the model. The appropriate Z statistic is computed
by dividing the estimated coefficient by its standard
error. What is the Z statistic corresponding to the
P-value of .086 for the variable VITC?

20. For what purpose is the quantity denoted as MAX
LOG LIKELIHOOD used?
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Answers to
Practice
Exercises

1. F: ML estimation is preferred

2. T

3. F: conditional is preferred if number of parameters
is large

4. T

5. F: conditional gives unbiased results

6. T

7. T

8. F: LU and LC are different

9. F: The variance–covariance matrix is used for confi-
dence interval estimation

10. T
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Introduction We begin our discussion of statistical inference by describ-
ing the computer information required for making infer-
ences about the logistic model. We then introduce
examples of three logistic models that we use to describe
hypothesis testing and confidence interval estimation pro-
cedures. We consider models with no interaction terms
first, and then we consider how to modify procedures
when there is interaction. Two types of testing procedures
are given, namely, the likelihood ratio test and the Wald
test. Confidence interval formulae are provided that are
based on large sample normality assumptions. A final
review of all inference procedures is described by way of
a numerical example.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 132)

II. Information for making statistical inferences
(pages 132–133)

III. Models for inference-making (pages 133–134)

IV. The likelihood ratio test (pages 134–138)

V. The Wald test (pages 138–140)

VI. Interval estimation: one coefficient
(pages 140–142)

VII. Interval estimation: interaction (pages 142–146)

VIII. Numerical example (pages 146–153)
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Objectives Upon completion of this chapter, the learner should be
able to:

1. State the null hypothesis for testing the significance of a
collection of one or more variables in terms of
regression coefficients of a given logistic model.

2. Describe how to carry out a likelihood ratio test for the
significance of one or more variables in a given logistic
model.

3. Use computer information for a fitted logistic model to
carry out a likelihood ratio test for the significance of
one or more variables in the model.

4. Describe how to carry out a Wald test for the
significance of a single variable in a given logistic
model.

5. Use computer information for a fitted logistic model to
carry out a Wald test for the significance of a single
variable in the model.

6. Describe how to compute a 95% confidence interval for
an odds ratio parameter that can be estimated from a
given logistic model when

a. The model contains no interaction terms
b. The model contains interaction terms

7. Use computer information for a fitted logistic model to
compute a 95% confidence interval for an odds ratio
expression estimated from the model when

a. The model contains no interaction terms
b. The model contains interaction terms
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Presentation

I. Overview

Previous chapter:

� How ML methods work

� Unconditional vs. conditional
approaches

FOCUS

Testing
hypotheses

Computing
confidence
intervals

II. Information for Making
Statistical Inferences

Quantities required from output:

(1) Maximized likelihood value:
LðûÞ

(2) Estimated variance–covariance
matrix: V̂ðûÞ

V (q) =

Variances on
diagonal

Covariances off
the diagonal

In the previous chapter, we described how ML
methods work in general and we distinguished
between two alternative approaches to estima-
tion – the unconditional and the conditional
approach.

In this chapter, we describe how statistical
inferences are made using ML techniques in
logistic regression analyses. We focus on pro-
cedures for testing hypotheses and computing
confidence intervals about logistic model para-
meters and odds ratios derived from such
parameters.

Once ML estimates have been obtained, these
estimates can be used to make statistical infer-
ences concerning the exposure–disease rela-
tionships under study. Three quantities are
required from the output provided by standard
ML estimation programs.

The first of these quantities is the maximized
likelihood value, which is the numerical value
of the likelihood function L when the ML esti-
mates are substituted for their corresponding
parameter values; this value is called L of û in
our earlier notation.

The second quantity is the estimated variance–
covariance matrix, which we denote as V̂ of û.

The estimated variance–covariance matrix has
on its diagonal the estimated variances of
each of the ML estimates. The values off the
diagonal are the covariances of paris of ML
estimates.
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dcovðŷ1; ŷ2Þ ¼ r12s1s2

Importance of V̂ðûÞ:

Inferences require variances and
covariances

(3) Variable listing:

Variable ML Coefficient S.E.

Intercept â sâ
X1 b̂1 sb̂1� � �
� � �
� � �
Xk b̂k sb̂K

III. Models for Inference-
Making

Model 1: logitP1ðXÞ¼aþb1X1þb2X2

Model 2: logitP2ðXÞ¼aþb1X1þb2X2

þb3X3

Model 3: logitP3ðXÞ¼aþb1X1þb2X2

þb3X3þb4X1X3

þb5X2X3

L̂1, L̂2, L̂3 are L̂s for models 1–3

L̂1 � L̂2 � L̂3

The reader may recall that the covariance
between two estimates is the correlation times
the standard errors of each estimate.

The variance–covariance matrix is important
because hypothesis testing and confidence inter-
val estimation require variances and sometimes
covariances for computation.

In addition to the maximized likelihood value
and the variance–covariance matrix, other
information is also provided as part of the out-
put. This typically includes, as shown here, a
listing of each variable followed by its ML esti-
mate and standard error. This information pro-
vides another way of carrying out hypothesis
testing and confidence interval estimation, as
we will describe shortly. Moreover, this listing
gives the primary information used for calcu-
lating odds ratio estimates and predicted risks.
The latter can only be done, however, provided
the study has a follow-up type of design.

To illustrate how statistical inferences are
made using the above information, we con-
sider the following three models, each written
in logit form. Model 1 involves two variables X1

and X2. Model 2 contains these same two vari-
ables and a third variable X3. Model 3 contains
the same three X’s as in model 2 plus two addi-
tional variables, which are the product terms
X1X3 and X2X3.

Let L̂1, L̂2, and L̂3 denote the maximized likeli-
hood values based on fitting Models 1, 2, and 3,
respectively. Note that the fitting may be done
either by unconditional or conditional meth-
ods, depending on which method is more
appropriate for the model and data set being
considered.

Because the more parameters a model has, the
better it fits the data, it follows that L̂1 must be
less than or equal to L̂2, which, in turn, must be
less than or equal to L̂3.
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L̂ similar to R2

ln L̂1 � ln L̂2 � ln L̂3

�2 ln L̂3 � �2 ln L̂2 � �2 ln L̂1

�2 ln L̂ ¼ log likelihood statistic
used in likelihood ratio (LR) test

IV. The Likelihood Ratio
Test

�2 ln L1 � (�2 ln L2) ¼ LR
is approximate chi square

df ¼ difference in number of para-
meters (degrees of freedom)

Model 1: logit P1(X) ¼ a þ b1X1 þ b2X2

Model 2: logit P2(X) ¼ a þ b1X1

þ b2X2 þ b3X3

Note. special case ¼ subset

Model 1 special case of Model 2
Model 2 special case of Model 3

This relationship among the L̂s is similar to the
property in classical multiple linear regression
analyses that the more parameters a model
has, the higher is the R-square statistic for the
model. In other words, the maximized likeli-
hood value L̂ is similar to R-square, in that the
higher the L̂, the better the fit.

It follows from algebra that if L̂1 is less than or
equal to L̂2, which is less than L̂3, then the same
inequality relationship holds for the natural
logarithms of these L̂s.

However, if we multiply each log of L̂ by �2,
then the inequalities switch around so that
�2 ln L̂3 is less than or equal to �2 ln L̂2,
which is less than �2 ln L̂1.

The statistic �2 ln L̂1 is called the log likelihood
statistic for Model 1, and similarly, the other
two statistics are the log likelihood statistics
for their respective models. These statistics
are important because they can be used to
test hypotheses about parameters in the
model using what is called a likelihood ratio
test, which we now describe.

Statisticians have shown that the difference
between log likelihood statistics for two mod-
els, one of which is a special case of the other,
has an approximate chisquare distribution in
large samples. Such a test statistic is called a
likelihood ratio or LR statistic. The degrees of
freedom (df) for this chi-square test are equal
to the difference between the number of para-
meters in the two models.

Note that one model is considered a special
case of another if one model contains a subset
of the parameters in the other model. For
example, Model 1 above is a special case of
Model 2; also, Model 2 is a special case of
Model 3.

134 5. Statistical Inferences Using Maximum Likelihood Techniques



LR statistic (like F statistic) com-
pares two models:

Full model ¼ larger model

Reduced model ¼ smaller model

H0: parameters in full model equal
to zero

df ¼ number of parameters set
equal to zero

In general, the likelihood ratio statistic, like an
F statistic in classical multiple linear regres-
sion, requires the identification of two models
to be compared, one of which is a special case
of the other. The larger model is sometimes
called the full model and the smaller model is
sometimes called the reduced model; that is, the
reduced model is obtained by setting certain
parameters in the full model equal to zero.

The set of parameters in the full model that is
set equal to zero specify the null hypothesis
being tested. Correspondingly, the degrees of
freedom for the likelihood ratio test are equal
to the number of parameters in the larger
model that must be set equal to zero to obtain
the smaller model.

As an example of a likelihood ratio test, let us
now compare Model 1 with Model 2. Because
Model 2 is the larger model, we can refer to
Model 2 as the full model and to Model 1 as
the reduced model. The additional parameter
in the full model that is not part of the reduced
model is b3, the coefficient of the variable X3.
Thus, the null hypothesis that compares Mod-
els 1 and 2 is stated as b3 equal to 0. This is
similar to the null hypothesis for a partial F test
in classical multiple linear regression analysis.

Now consider Model 2, and suppose that the
variable X3 is a (0, 1) exposure variable E and
that the variables X1 and X2 are confounders.
Then the odds ratio for the exposure–disease
relationship that adjusts for the confounders is
given by e to b3.

Thus, in this case, testing the null hypothesis
that b3 equals 0 is equivalent to testing the null
hypothesis that the adjusted odds ratio for the
effect of exposure is equal to e to 0 or 1.

To test this null hypothesis, the corresponding
likelihood ratio statistic is given by the differ-
ence �2 ln L̂1 minus �2 ln L̂2.

EXAMPLE

Model 1 vs. Model 2

Model 2 (full model):

logit P2(X) ¼ a þ b1X1 þ b2X2 þ b3X3

Model 1 (reduced model):

logit P1(X) ¼ a þ b1X1 þ b2X2

H0: b3 ¼ 0 (similar to partial F)

Model 2:

logit P2(X) ¼ a þ b1X1 þ b2X2 þ b3X3

Suppose X3 ¼ E(0, 1) and X1, X2 are
confounders.

Then OR ¼ eb3

H0: b3 ¼ 0 , H0: OR ¼ e0 ¼ 1

LR ¼ �2 ln L̂1 � (�2 ln L̂2)
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How the LR test works:

If X3 makes a large contribution,
then L̂2 much greater than L̂1

If L̂2 much larger than L̂1, then

L̂1

L̂2
� 0

[Note. lne (fraction) ¼ negative]

) ln
L̂1

L̂2

� �
� lnð0Þ ¼ �1

) LR ¼� 2 ln
L̂1

L̂2

� �
� 1

Thus, X3 highly significant ) LR
large and positive.

Algebraically, this difference can also be writ-
ten as �2 times the natural log of the ratio of L̂1
divided by L̂2, shown on the right-hand side of
the equation here. This latter version of the test
statistic is a ratio of maximized likelihood
values; this explains why the test is called the
likelihood ratio test.

The likelihood ratio statistic for this example
has approximately a chi-square distribution if
the study size is large. The degrees of freedom
for the test is one because, when comparing
Models 1 and 2, only one parameter, namely,
b3, is being set equal to zero under the null
hypothesis.

We now describe how the likelihood ratio test
works and why the test statistic is approxi-
mately chi square. We consider what the
value of the test statistic would be if the addi-
tional variable X3 makes an extremely large
contribution to the risk of disease over that
already contributed by X1 and X2. Then, it fol-
lows that the maximized likelihood value L̂2 is
much larger than the maximized likelihood
value L̂1.

If L̂2 is much larger than L̂1, then the ratio L̂1
divided by L̂2 becomes a very small fraction;
that is, this ratio approaches 0.

Now the natural log of any fraction between
0 and 1 is a negative number. As this fraction
approaches 0, the log of the fraction, which is
negative, approaches the log of 0, which is �1.

If we multiply the log likelihood ratio by �2,
we then get a number that approaches þ1.
Thus, the likelihood ratio statistic for a highly
significant X3 variable is large and positive and
approaches þ1. This is exactly the type of
result expected for a chi-square statistic.

EXAMPLE (continued)

Ratio of likelihoods

–2 ln L1 – (–2 ln L2) = –2 ln
L1

L2

LR approximate w2 variable with df¼ 1
if n large
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If X3 makes no contribution, then

L̂2 � L̂1

) L̂1

L̂2
� 1

) LR � �2 ln(1) ¼ �2 � 0 ¼ 0

Thus,X3 nonsignificant ) LR � 0

0 � LR � 1
" "
N:S: S:
Similar to chi square (w2)

LR approximate w2 if n large

How large? No precise answer.

In contrast, consider the value of the test sta-
tistic if the additional variable makes no con-
tribution whatsoever to the risk of disease over
and above that contributed by X1 and X2. This
would mean that the maximized likelihood
value L̂2 is essentially equal to the maximized
likelihood value L̂1.

Correspondingly, the ratio L̂1 divided by L̂2 is
approximately equal to 1. Therefore, the likeli-
hood ratio statistic is approximately equal
to �2 times the natural log of 1, which is 0,
because the log of 1 is 0. Thus, the likelihood
ratio statistic for a highly nonsignificant X3

variable is approximately 0. This, again, is
what one would expect from a chi-square
statistic.

In summary, the likelihood ratio statistic,
regardless of which two models are being com-
pared, yields a value that lies between 0, when
there is extreme nonsignificance, and þ1,
when there is extreme significance. This is the
way a chi-square statistic works.

Statisticians have shown that the likelihood
ratio statistic can be considered approximately
chi square, provided that the number of sub-
jects in the study is large. How large is large,
however, has never been precisely documen-
ted, so the applied researcher has to have as
large a study as possible and/or hope that the
number of study subjects is large enough.

As another example of a likelihood ratio test,
we consider a comparison of Model 2 with
Model 3. Because Model 3 is larger than
Model 2, we now refer to Model 3 as the full
model and to Model 2 as the reduced model.

EXAMPLE

Model 2: logit P2(X)¼ a þ b1X1 þ b2X2

þ b3X3(reduced model)

Model 3: logit P3(X)¼ a þ b1X1 þ b2X2

þ b3X3 þ b4X1X3

þ b5X2X3

(full model)
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�2 ln L̂2, �2 ln L̂3
" "

Computer prints these
separately

V. The Wald Test

Focus on 1 parameter

e.g., H0 : b3 ¼ 0

There are two additional parameters in the full
model that are not part of the reduced model;
these are b4 and b5, the coefficients of the prod-
uct variables X1X3 and X2X3, respectively. Thus,
the null hypothesis that compares Models
2 and 3 is stated as b4 equals b5 equals 0. This
is similar to the null hypothesis for a multiple-
partial F test in classical multiple linear
regression analysis. The alternative hypothesis
here is that b4 and/or b5 are not 0.

If the variable X3 is the exposure variable E in
one’s study and the variables X1 and X2 are
confounders, then the product terms X1X3 and
X2X3 are interaction terms for the interaction
of Ewith X1 and X2, respectively. Thus, the null
hypothesis that b4 equals b5 equals 0, is equiva-
lent to testing no joint interaction of X1 and X2

with E.

The likelihood ratio statistic for comparing
Models 2 and 3 is then given by �2 ln L̂2 minus
�2 ln L̂3, which also can be written as �2 times
the natural log of the ratio of L̂2 divided by L̂3.
This statistic has an approximate chi-square
distribution in large samples. The degrees of
freedom here equals 2 because there are two
parameters being set equal to 0 under the null
hypothesis.

When using a standard computer package to
carry out this test, we must get the computer to
fit the full and reduced models separately. The
computer output for eachmodel will include the
log likelihood statistics of the form �2 ln L̂. The
user then simply finds the two log likelihood
statistics from the output for each model being
compared and subtracts one from the other to
get the likelihood ratio statistic of interest.

There is another way to carry out hypothesis
testing in logistic regression without using a
likelihood ratio test. This second method is
sometimes called the Wald test. This test is usu-
ally done when there is only one parameter
being tested, as, for example, when comparing
Models 1 and 2 above.

EXAMPLE (continued)

H0 : b4 ¼ b5 ¼ 0
(similar to multiple–partial F test)

HA : b4 and/or b5 are not zero

X3 ¼ E

X1, X2 confounders

X1X3, X2X3 interaction terms

H0 : b4 ¼ b5 ¼ 0 , H0 : no
interaction with E

LR ¼ �2 ln L̂2 � �2 ln L̂3
� � ¼ �2 ln

L̂2

L̂3

� �

which is approximately w2 with 2 df
under
H0 : b4 ¼ b5 ¼ 0
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Wald statistic (for large n):

Z ¼ b̂
sb̂

is approximately N(0, 1)

or

Z2 is approximately w2 with 1 df

Variable
ML

Coefficient S.E.
Chi
sq P

X1 b̂1 sb̂1 w2 P
� � � � �
� � � � �
� � � � �
Xj b̂j sb̂j w2 P
� � � � �
� � � � �
� � � � �
Xk b̂k sb̂k w2 P

LR � Z2
Wald in large samples

LR 6¼ Z2
Wald in small to moderate

samples

LR preferred (statistical)

Wald convenient – fit only one
model

The Wald test statistic is computed by dividing
the estimated coefficient of interest by its stan-
dard error. This test statistic has approxi-
mately a normal (0, 1), or Z, distribution in
large samples. The square of this Z statistic is
approximately a chi-square statistic with one
degree of freedom.

In carrying out the Wald test, the information
required is usually provided in the output,
which lists each variable in the model followed
by its ML coefficient and its standard error.
Several packages also compute the chisquare
statistic and a P-value.

When using the listed output, the user must
find the row corresponding to the variable of
interest and either compute the ratio of the
estimated coefficient divided by its standard
error or read off the chi-square statistic and
its corresponding P-value from the output.

The likelihood ratio statistic and its corre-
sponding squared Wald statistic give approxi-
mately the same value in very large samples; so
if one’s study is large enough, it will not matter
which statistic is used.

Nevertheless, in small to moderate samples,
the two statistics may give very different
results. Statisticians have shown that the likeli-
hood ratio statistic is better than the Wald sta-
tistic in such situations. So, when in doubt, it is
recommended that the likelihood ratio statistic
be used. However, the Wald statistic is some-
what convenient to use because only one
model, the full model, needs to be fit.

As an example of a Wald test, consider again
the comparison of Models 1 and 2 described
above. The Wald test for testing the null
hypothesis that b3 equals 0 is given by the Z
statistic equal to b̂3 divided by the standard
error of b̂3. The computed Z can be compared
with percentage points from a standard normal
table.

EXAMPLE

Model1: logitP1(X) ¼ aþb1X1 þ b2X2

Model2: logitP2(X) ¼ aþb1X1 þ b2X2

þ b3X3

H0 : b3 ¼ 0

Z ¼ b̂3
sb̂3

is approximately N(0, 1)
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Wald test for more than one
parameter: requires matrices
(See Epidemiol. Res., Chap. 20,
p. 431 for mathematical formula.
Also, see Chapters 14 and 15 here
for how used with correlated data.)

Third testing method:

Score statistic
(See Kleinbaum et al., Commun.
Stat., 1982 and Chapters 14 and 15
here.)

VI. Interval Estimation:
One Coefficient

Large sample confidence interval:

Estimate � (percentage point of
Z� estimated standard
error)

Or, alternatively, the Z can be squared and then
compared with percentage points from a chi-
square distributionwith one degree of freedom.

The Wald test we have just described considers
a null hypothesis involving only one model
parameter. There is also a generalized Wald
test that considers null hypotheses involving
more than one parameter, such as when com-
paring Models 2 and 3 above. However, the
formula for this test requires knowledge of
matrix theory and is beyond the scope of this
presentation. The reader is referred to the
text by Kleinbaum, Kupper, and Morgenstern
(Epidemiol. Res., Chap. 20, p. 431) for a
description of this test. We refer to this test
again in Chapters 14 and 15 when considering
correlated data.

Yet another method for testing these hypoth-
eses involves the use of a score statistic (see
Kleinbaum et al., Commun. Stat., 1982).
Because this statistic is not routinely calculated
by standard ML programs, and because its use
gives about the same numerical chi-square
values as the two techniques just presented,
we will not discuss it further in this chaper.

We have completed our discussion of hypothe-
sis testing and are now ready to describe confi-
dence interval estimation. We first consider
interval estimation when there is only one
regression coefficient of interest. The proce-
dure typically used is to obtain a large sample
confidence interval for the parameter by com-
puting the estimate of the parameter plus or
minus a percentage point of the normal distribu-
tion times the estimated standard error.

EXAMPLE (continued)

or
Z2 is approximately w2 with 1 df
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CI for coefficient
vs.
3 CI for odds ratio

As an example, if we focus on the b3 parameter
in Model 2, the 100 times (1 � a)% confidence
interval formula is given by b̂3 plus or minus
the corresponding (1 � a/2)th percentage point
of Z times the estimated standard error of b̂3.

In this formula, the values for b̂3 and its stan-
dard error are found from the printout. The Z
percentage point is obtained from tables of the
standard normal distribution. For example, if
we want a 95% confidence interval, then a is
0.05, 1 � a/2 is 1 �0.025 or 0.975, and Z0.975 is
equal to 1.96.

Most epidemiologists are not interested in get-
ting a confidence interval for the coefficient of
a variable in a logistic model, but rather want a
confidence interval for an odds ratio involving
that parameter and possibly other parameters.

When only one exposure variable, is being con-
sidered, such as X3 in Model 2, and this vari-
able is a (0, 1) variable, then the odds ratio of
interest, which adjusts for the other variables
in the model, is e to that parameter, for exam-
ple e to b3. In this case, the corresponding con-
fidence interval for the odds ratio is obtained by
exponentiating the confidence limits obtained
for the parameter.

Thus, if we consider Model 2, and if X3 denotes
a (0, 1) exposure variable of interest and X1 and
X2 are confounders, then a 95% confidence
interval for the adjusted odds ratio e to b3 is
given by the exponential of the confidence
interval for b3, as shown here.

This formula is correct, provided that the vari-
able X3 is a (0, 1) variable. If this variable is
coded differently, such as (�1, 1), or if this
variable is an ordinal or interval variable, then
the confidence interval formula given here
must be modified to reflect the coding.

EXAMPLE

logit P2(X) ¼ a þ b1X1 þ b2X2 þ b3X3

X3 ¼ (0, 1) variable

) OR ¼ eb3

CI for OR: exp(CI for b3)

Model 2: X3 ¼ (0, 1) exposure

X1 and X2 confounders

95% CI for OR:

exp b̂3 � 1:96sb̂3

� �

Above formula assumes X3 is coded as
(0, 1)

EXAMPLE

Model 2: logit P2(X) ¼ a þ b1X1

þ b2X2þ b3X3

100(1 � a)% CI for b3: b̂3 � Z
1� a

2
� sb̂3

b̂3 and sb̂3 : from printout

Z from N(0, 1) tables,

e:g:; 95% ) a ¼ 0:05

) 1� a
2
¼ 1� 0:025

¼ 0:975

Z0:975 ¼ 1:96
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Chapter 3: Computing OR for dif-
ferent codings

VII. Interval Estimation:
Interaction

No interaction: simple formula

Interaction: complex formula

A detailed discussion of the effect of different
codings of the exposure variable on the compu-
tation of the odds ratio is described in Chap. 3
of this text. It is beyond the scope of this
presentation to describe in detail the effect of
different codings on the corresponding confi-
dence interval for the odds ratio. We do, how-
ever, provide a simple example to illustrate this
situation.

Suppose X3 is coded as (�1, 1) instead of (0, 1),
so that � 1 denotes unexposed persons and 1
denotes exposed persons. Then, the odds ratio
expression for the effect of X3 is given by e to 1
minus �1 times b3, which is e to 2 times b3. The
corresponding 95% confidence interval for
the odds ratio is then given by exponentiating
the confidence limits for the parameter 2b3, as
shown here; that is, the previous confidence
interval formula is modified by multiplying b̂3
and its standard error by the number 2.

The above confidence interval formulae involv-
ing a single parameter assume that there are no
interaction effects in the model. When there is
interaction, the confidence interval formula
must be modified from what we have given so
far. Because the general confidence interval
formula is quite complex when there is interac-
tion, our discussion of the modifications
required will proceed by example.

Suppose we focus on Model 3, which is again
shown here, and we assume that the variable
X3 is a (0, 1) exposure variable of interest. Then
the formula for the estimated odds ratio for the
effect of X3 controlling for the variables X1 and
X2 is given by the exponential of the quantity b̂3
plus b̂4 times X1 plus b̂5 times X2, where b̂4 and
b̂5 are the estimated coefficients of the interac-
tion terms X1X3 and X2X3 in the model.

EXAMPLE

X3 coded as
�1 unexposed

1 exposed

�

OR ¼ exp 1� ð�1Þb3½ � ¼ e2b3

95% CI : exp 2b̂3 � 1:96� 2sb̂3

� �

EXAMPLE

Model 3: X3 ¼ (0, 1) exposure

logit P3(X) ¼ a þ b1X1 þ b2X2 þ b3X3

þ b4X1X3 þ b5X2X3dOR ¼ exp b̂3 þ b̂4X1 þ b̂5X2

� �
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General CI formula:

exp l̂� Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffidvarðl̂ Þq
 �
Example: l ¼ b3 þ b4X1 þ b5X2

General expression for l:

RORX1; X0
¼ e

~
k

l¼1

bi X1i�X0ið Þ

OR ¼ el where

l ¼ ~
k

i¼1

bi X1i � X0ið Þ

We can alternatively write this estimated odds
ratio formula as e to the l̂, where l is the linear
function b3 plus b4 times X1 plus b5 times X2,
and l̂ is the estimate of this linear function
using the ML estimates.

To obtain a 100 times (1 � a)% confidence
interval for the odds ratio e to l, we must use
the linear function l the same way that we used
the single parameter b3 to get a confidence
interval for b3. The corresponding confidence
interval is thus given by exponentiating the
confidence interval for l.

The formula is therefore the exponential of the
quantity l̂ plus or minus a percentage point of
the Z distribution times the square root of the
estimated variance of l̂. Note that the square
root of the estimated variance is the standard
error.

This confidence interval formula, thoughmoti-
vated by our example using Model 3, is actually
the general formula for the confidence interval
for any odds ratio of interest from a logistic
model. In our example, the linear function l
took a specific form, but, in general, the linear
function may take any form of interest.

A general expression for this linear function
makes use of the general odds ratio formula
described in our review. That is, the odds
ratio comparing two groups identified by the
vectors X1 and X0 is given by the formula e to
the sum of terms of the form bi times the dif-
ference between X1i and X0i, where the latter
denotes the values of the ith variable in each
group. We can equivalently write this as e to
the l, where l is the linear function given by the
sum of the bi times the difference between X1i

and X0i. This latter formula is the general
expression for l.

EXAMPLE

i.e., dOR ¼ el̂,
where
l ¼ b3 þ b4X1 þ b5X2

100 (1 � a)% CI for el

similar to CI formula for eb3

exp l̂� Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffidvarðl̂ Þq
 �

similar to exp b̂3 � Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarðb̂3Þq
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarð�Þq

¼ standard error
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Interaction: variance calculation
difficult

No interaction: variance directly
from printout

var l̂
� � ¼ var ~b̂i X1i � X0ið Þ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

linear sum

b̂i are correlated for different i

Must use var b̂i
� �

and cov b̂i; b̂j
� �

The difficult part in computing the confidence
interval for an odds ratio involving interaction
effects is the calculation for the estimated vari-
ance or corresponding square root, the stan-
dard error. When there is no interaction, so
that the parameter of interest is a single regres-
sion coefficient, this variance is obtained
directly from the variance–covariance output
or from the listing of estimated coefficients
and corresponding standard errors.

However, when the odds ratio involves interac-
tion effects, the estimated variance considers a
linear sum of estimated regression coefficients.
The difficulty here is that, because the coeffi-
cients in the linear sum are estimated from the
same data set, these coefficients are correlated
with one another. Consequently, the calcula-
tion of the estimated variance must consider
both the variances and the covariances of the
estimated coefficients, which makes computa-
tions somewhat cumbersome.

Returning to the interaction example, recall
that the confidence interval formula is given
by exponentiating the quantity l̂ plus or minus
a Z percentage point times the square root of
the estimated variance of l̂, where l̂ is given by
b̂3 plus b̂4 times X1 plus b̂5 times X2.

It can be shown that the estimated variance of
this linear function is given by the formula
shown here.

The estimated variances and covariances in
this formula are obtained from the estimated
variance–covariance matrix provided by the
computer output. However, the calculation of
both l̂ and the estimated variance of l̂ requires
additional specification of values for the effect
modifiers in the model, which in this case are
X1 and X2.

EXAMPLE (model 3)

exp l̂� Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar l̂
� �q
 �

;

where l̂ ¼ b̂3 þ b̂4X1 þ b̂5X2

dvar l̂
� � ¼ dvar b̂3

� �
þ X1ð Þ2 dvar b̂4

� �
þ X2ð Þ2 dvar b̂5

� �
þ 2X1 dcov b̂3; b̂4

� �
þ 2X2 dcov b̂3; b̂5

� �
þ 2X1X2 dcov b̂4; b̂5

� �

var(bi) and cov b̂i; b̂j
� �

obtained from
printout BUT must specify X1 and X2
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Some computer packages compute

dvar l̂
� �

General CI formula for E, V, W
model:

dOR ¼ el̂;

where

l ¼ bþ ~
p2

j¼1

djWj

exp l̂� Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar l̂
� �q
 �

;

where

dvar l̂
� � ¼ dvar b̂

� �
þ ~

p2

j¼1

W2
j dvar d̂j

� �

þ 2 ~
p2

j¼1

Wj dcov b̂; d̂j
� �

þ 2~
j

~
k

WjWk dcov d̂j; d̂k
� �

Obtain dvars and dcovs from printout
but must specify Ws.

For example, if X1 denotes AGE and X2 denotes
smoking status (SMK), then one specification
of these variables is X1 ¼ 30, X2 ¼ 1, and a
second specification is X1 ¼ 40, X2 ¼ 0. Differ-
ent specifications of these variables will yield
different confidence intervals. This should be no
surprise because a model containing interaction
terms implies that both the estimated odds ratios
and their corresponding confidence intervals
vary as the values of the effect modifiers vary.

A recommended practice is to use “typical” or
“representative” values of X1 and X2, such as
their mean values in the data, or the means of
subgroups, for example, quintiles, of the data
for each variable.

Some computer packages for logistic regres-
sion do compute the estimated variance of lin-
ear functions like l̂ as part of the program
options. See the Computer Appendix for details
on the use of the “contrast” option in SAS and
the “lincom” option in STATA.

For the interested reader, we provide here the
general formula for the estimated variance of
the linear function obtained from the E, V, W
model. Recall that the estimated odds ratio for
this model can be written as e to l̂, where l is the
linear function given by the sum of b plus the
sum of terms of the form dj times Wj.

The corresponding confidence interval for-
mula is obtained by exponentiating the confi-
dence interval for l̂, where the variance of l̂ is
given by the general formula shown here.

In applying this formula, the user obtains the
estimated variances and covariances from the
variance–covariance output. However, as in
the example above, the user must specify
values of interest for the effect modifiers
defined by the Ws in the model.

EXAMPLE (continued)

e.g., X1 ¼ AGE, X2 ¼ SMK:

Specification 1: X1 ¼ 30, X2 ¼ 1
versus

Specification 2: X1 ¼ 40, X2 ¼ 0

Different specifications yield different
confidence intervals

Recommendation. Use “typical” or
“representative” values of X1 and X2

e.g., �X1 and �X2 in quintiles
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VIII. Numerical Example

EVANS COUNTY, GA
n ¼ 609

Note that the example described earlier involv-
ing Model 3 is a special case of the formula for
the E, V, W model, with X3 equal to E, X1 equal
to both V1 and W1, and X2 equal to both V2 and
W2. The linear function l for Model 3 is shown
here, both in its original form and in the E, V,
W format.

To obtain the confidence interval for the Model
3 example from the general formula, the fol-
lowing substitutions would bemade in the gen-
eral variance formula: b ¼ b3, p2 ¼ 2,W1 ¼ X1,
W2 ¼ X2, d1 ¼ b4, and d2 ¼ b5.

Before concluding this presentation, we illus-
trate the ML techniques described above by
way of a numerical example. We consider the
printout results provided below and on the fol-
lowing page. These results summarize the
computer output for two models based on fol-
low-up study data on a cohort of 609 white
males from Evans County, Georgia.

The outcome variable is coronary heart disease
status, denoted as CHD, which is 1 if a person
develops the disease and 0 if not. There are six
independent variables of primary interest. The
exposure variable is catecholamine level (CAT),
which is 1 if high and 0 if low. The other inde-
pendent variables are the control variables.
These are denoted as AGE, CHL, ECG, SMK,
and HPT.

The variable AGE is treated continuously. The
variable CHL, which denotes cholesterol level,
is also treated continuously. The other three
variables are (0, 1) variables. ECG denotes elec-
trocardiogram abnormality status, SMKdenotes
smoking status, and HPT denotes hypertension
status.

EXAMPLE

E, V, W model (Model 3):

X3 ¼ E,

X1 ¼ V1 ¼ W1

X2 ¼ V2 ¼ W2

l̂ ¼ b̂3 þ b̂4X1 þ b̂5X2

¼ b̂þ d̂1W1 þ d̂2W2

b ¼ b3,

p2 ¼ 2, W1 ¼ X1, W2 ¼ X2,
d1 ¼ b4, and d2 ¼ b5

EXAMPLE

D ¼ CHD (0, 1)

E ¼ CAT

Cs¼ AGE, CHL, ECG, SMK, HPT
(conts) (conts) (0, 1) (0, 1) (0, 1)

Model A Output:
�2 ln L̂ ¼ 400.39

Variable Coefficient S.E. Chi sq P

Intercept �6.7747 1.1402 35.30 0.0000

CAT 0.5978 0.3520 2.88 0.0894

AGE 0.0322 0.0152 4.51 0.0337

Vs

8>>>>><
>>>>>:
CHL 0.0088 0.0033 7.19 0.0073

ECG 0.3695 0.2936 1.58 0.2082

SMK 0.8348 0.3052 7.48 0.0062

HPT 0.4392 0.2908 2.28 0.1310

Unconditional ML estimation
n ¼ 609, # parameters ¼ 7
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The first set of results described by the printout
information considers a model – called
Model A – with no interaction terms. Thus,
Model A contains the exposure variable CAT
and the five covariables AGE, CHL, ECG,
SMK, and HPT. Using the E, V, W formulation,
this model contains five V variables, namely,
the covariables, and no W variables.

The second set of results considers Model B,
which contains two interaction terms in addi-
tion to the variables contained in the first
model. The two interaction terms are called
CH and CC, where CH equals the product CAT
� HPT and CC equals the product CAT � CHL.
Thus, this model contains five V variables and
twoW variables, the latter being HPT and CHL.

Both sets of results have been obtained using
unconditional ML estimation. Note that no
matching has been done and that the number
of parameters in each model is 7 and 9, respec-
tively, which is quite small compared with the
number of subjects in the data set, which is 609.

We focus for now on the set of results involving
the no interaction Model A. The information
provided consists of the log likelihood statistic �2
ln L̂ at the top followed by a listing of each vari-
able and its corresponding estimated coefficient,
standard error, chi-square statistic, and P-value.

For this model, because CAT is the exposure
variable and there are no interaction terms, the
estimated odds ratio is given by e to the esti-
mated coefficient of CAT,which is e to the quan-
tity 0.5978, which is 1.82. Because Model A
contains five V variables, we can interpret this
odds ratio as an adjusted odds ratio for the effect
of theCAT variable, which controls for the poten-
tial confounding effects of the five V variables.

We can use this information to carry out a
hypothesis test for the significance of the esti-
mated odds ratio from this model. Of the two
test procedures described, namely, the likelihood
ratio test and the Wald test, the information
provided only allows us to carry out theWald test.

EXAMPLE (continued)

Model A results are at bottom of
previous page

Model B Output:
�2 ln L̂ ¼ 347.23

Variable Coefficient S.E.

Chi

sq P

Intercept �4.0497 1.2550 10.41 0.0013

CAT �12.6894 3.1047 16.71 0.00008>>>>>>><
>>>>>>>:

AGE 0.0350 0.0161 4.69 0.0303

CHL �0.0055 0.0042 1.70 0.1923

Vs ECG 0.3671 0.3278 1.25 0.2627

SMK 0.7732 0.3273 5.58 0.0181

HPT 1.0466 0.3316 9.96 0.0016

CH �2.3318 0.7427 9.86 0.0017
�

CC 0.0692 0.3316 23.20 0.0000

interaction

Ws

CH = CAT × HPT and CC = CAT × CHL

unconditional ML estimation

n ¼ 609, # parameters ¼ 9

Model A: no interaction
�2 ln L̂ ¼ 400.39

Variable Coefficient S.E. Chi sq P
Intercept –6.7747 1.1402 35.30 0.0000

0.0894

0.1310

CAT 0.5978 0.3520 2.88

HPT 0.4392 0.2908 2.28

OR = exp(0.5978) = 1.82

Test statistic Info. available?

LR No
Wald Yes
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To carry out the likelihood ratio test, we would
need to compare two models. The full model is
Model A as described by the first set of results
discussed here. The reduced model is a differ-
ent model that contains the five covariables
without the CAT variable.

The null hypothesis here is that the coefficient
of the CAT variable is zero in the full model.
Under this null hypothesis, the model will
reduce to a model without the CAT variable in
it. Because we have provided neither a printout
for this reduced model nor the corresponding
log likelihood statistic, we cannot carry out the
likelihood ratio test here.

To carry out the Wald test for the significance
of the CAT variable, we must use the informa-
tion in the row of results provided for the CAT
variable. The Wald statistic is given by the esti-
mated coefficient divided by its standard error;
from the results, the estimated coefficient is
0.5978 and the standard error is 0.3520.

Dividing the first by the second gives us the
value of the Wald statistic, which is a Z, equal
to 1.70. Squaring this statistic, we get the chi-
square statistic equal to 2.88, as shown in the
table of results.

The P-value of 0.0894 provided next to this chi
square is somewhat misleading. This P-value
considers a two-tailed alternative hypothesis,
whereas most epidemiologists are interested
in one-tailed hypotheses when testing for the
significance of an exposure variable. That is,
the usual question of interest is whether the
odds ratio describing the effect of CAT
controlling for the other variables is signifi-
cantly higher than the null value of 1.

To obtain a one-tailed P-value from a two-
tailed P-value, we simply take half of the two-
tailed P-value. Thus, for our example, the
one-tailed P-value is given by 0.0894 divided
by 2, which is 0.0447. Because this P-value is
less than 0.05, we can conclude, assuming this
model is appropriate, that there is a significant
effect of the CAT variable at the 5% level of
significance.

EXAMPLE (continued)

LR test:

Full model Reduced model

Model A Model A w=o CAT

H0: b ¼ 0

where b ¼ coefficient of CAT inmodel A

Reduced model (w/o CAT) printout
not provided here

WALD TEST:

Variable Coefficient S.E. Chi sq P
Intercept –6.7747 1.1402 35.30 0.0000

0.0894CAT 0.5978 0.3520 2.88
0.0337AGE 0.0322 0.0152 4.51
0.0073CHL 0.0088 0.0033 7.19
0.2082ECG 0.3695 0.2936 1.58
0.0062SMK 0.8348 0.3052 7.48
0.1310HPT 0.4392 0.2908 2.28

Z ¼ 0:5978

0:3520
¼ 1:70

Z2 = CHISQ = 2.88

P ¼ 0.0896 misleading
(Assumes two-tailed test)
usual question: OR > 1? (one-tailed)

One-tailedP ¼ Two-tailedP

2

=  0.0447=
0.0894

2

P < 0.05 ) significant at 5% level
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The Wald test we have just described tests the
null hypothesis that the coefficient of the CAT
variable is 0 in the model containing CAT and
five covariables. An equivalent way to state this
null hypothesis is that the odds ratio for the
effect of CAT on CHD adjusted for the five
covariables is equal to the null value of 1.

The other chi-square statistics listed in the
table provide Wald tests for other variables in
the model. For example, the chi-square value
for the variable CHL is the squared Wald sta-
tistic that tests whether there is a significant
effect of CHL on CHD controlling for the other
five variables listed, including CAT. However,
the Wald test for CHL, or for any of the other
five covariables, is not of interest in this study
because the only exposure variable is CAT and
because the other five variables are in the
model for control purposes.

A 95% confidence interval for the odds ratio for
the adjusted effect of the CAT variable can be
computed from the set of results for the no
interaction model as follows: We first obtain a
confidence interval for b, the coefficient of the
CAT variable, by using the formula b̂ plus or
minus 1.96 times the standard error of b̂. This
is computed as 0.5978 plus or minus 1.96 times
0.3520. The resulting confidence limits for b̂
are �0.09 for the lower limit and 1.29 for the
upper limit.

Exponentiating the lower and upper limits
gives the confidence interval for the adjusted
odds ratio, which is 0.91 for the lower limit and
3.63 for the upper limit.

Note that this confidence interval contains the
value 1, which indicates that a two-tailed test is
not significant at the 5% level statistical signif-
icance from the Wald test. This does not con-
tradict the earlier Wald test results, which were
significant at the 5% level because using the CI,
our alternative hypothesis is two-tailed instead
of one-tailed.

EXAMPLE (continued)

H0: b ¼ 0
equivalent to
H0: adjusted OR ¼ 1

Variable Coefficient S.E. Chi sq P

Intercept

CAT

AGE

CHL
..
.

HPT

0.0088 0.0033 7.18

Not of interest

0.0074

95% CI for adjusted OR:
First, 95% CI for b:

b̂� 1:96� sb̂

0.5978 � 1.96 � 0.3520

CI limits for b: (�0.09, 1.29)

exp(CI limits for b) ¼ e�0:09; e1:29ð Þ

= (0.91, 3.63)

CI contains 1,
so

do not reject H0

at
5% level (two-tailed)
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Note that the no interaction model we have
been focusing onmay, in fact, be inappropriate
whenwe compare it to othermodels of interest.
In particular, we now compare the no interac-
tion model to the model described by the sec-
ond set of printout results we have provided.

We will see that this second model, B, which
involves interaction terms, is a better model.
Consequently, the results and interpretations
made about the effect of the CAT variable from
the no interaction Model A may be misleading.

To compare the no interaction model with the
interaction model, we need to carry out a like-
lihood ratio test for the significance of the inter-
action terms. The null hypothesis here is that
the coefficients d1 and d2 of the two interaction
terms are both equal to 0.

For this test, the full model is the interaction
Model B and the reduced model is the no inter-
action Model A. The likelihood ratio test statis-
tic is then computed by taking the difference
between log likelihood statistics for the two
models.

From the printout information given on pages
146–147, this difference is given by 400.39
minus 347.23, which equals 53.16. The degrees
of freedom for this test is 2 because there are
two parameters being set equal to 0. The chi-
square statistic of 53.16 is found to be signifi-
cant at the: 01 level. Thus, the likelihood ratio
test indicates that the interaction model is bet-
ter than the no interaction model.

We now consider what the odds ratio is for the
interaction model. As this model contains
product terms CC and CH, where CC is CAT �
CHL and CH is CAT�HPT, the estimated odds
ratio for the effect of CAT must consider the
coefficients of these terms as well as the coeffi-
cient of CAT. The formula for this estimated
odds ratio is given by the exponential of the
quantity b̂ plus d1 times CHL plus d̂2 times
HPT, where b̂ (�12.6894) is the coefficient of
CAT, d̂1(0.0692) is the coefficient of the inter-
action term CC, and d̂2 (�2.3318) is the coeffi-
cient of the interaction term CH.

EXAMPLE (continued)

No interaction model
vs.

other models?

Model B vs. Model A

LR test for interaction:
H0 : d1 ¼ d2 ¼ 0

where ds are coefficients of interaction
terms CC and CH in model B

Full Model Reduced Model

Model B Model A
(interaction) (no interaction)

LR ¼ �2 ln L̂model A � (�2 ln L̂model B)
¼ 400.39 � 347.23
¼ 53.16

df ¼ 2
significant at .01 level

dOR for interaction model (B):

dOR ¼ exp b̂þ d̂1CHLþ d̂2HPT
� �

b̂ ¼ �12.6894 for CAT

d̂1 ¼ 0.0692 for CC

d̂2 ¼ �2.3318 for CH
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Confidence intervals:

exp l̂� Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffidvarðl̂ Þq
 �
where

l̂ ¼ b̂þ ~
p2

j¼1

d̂jWj

Plugging the estimated coefficients into the
odds ratio formula yields the expression: e to
the quantity �12.6894 plus 0.0692 times CHL
plus �2.3318 times HPT.

To obtain a numerical value from this expres-
sion, it is necessary to specify a value for CHL
and a value for HPT. Different values for CHL
and HPT will, therefore, yield different odds
ratio values. This should be expected because
the model with interaction terms should give
different odds ratio estimates depending on the
values of the effect modifiers, which in this
case are CHL and HPT.

The table shown here illustrates different odds
ratio estimates that can result from specifying
different values of the effect modifiers. In this
table, the values of CHL used are 200, 220, and
240; the values of HPT are 0 and 1. The cells
within the table give the estimated odds ratios
computed from the above expression for the
odds ratio for different combinations of CHL
and HPT.

For example, when CHL equals 200 and HPT
equals 0, the estimated odds ratio is given by
3.16; when CHL equals 220 and HPT equals 1,
the estimated odds ratio is 1.22. Each of the
estimated odds ratios in this table describes the
association between CAT and CHD adjusted
for the five covariables AGE, CHL, ECG,
SMK, and HPT because each of the covariables
is contained in the model as V variables.

To account for the variability associated with
each of the odds ratios presented in the above
tables, we can compute confidence intervals by
using the methods we have described. The gen-
eral confidence interval formula is given by e to
the quantity l̂ plus or minus a percentage point
of the Z distribution times the square root of
the estimated variance of l̂, where l is the linear
function shown here.

EXAMPLE (continued)

dOR ¼ exp bþ d1CHLþ d2 HPT½ �
¼ exp½�12:6894þ 0:0692 CHL

þ �2:3318ð ÞHPT�

Must specify

CHL and HPT
" "

Effect modifiers

Adjusted dOR:
HPT

0 1

200 3.16 0.31

CHL 220 12.61 1.22

240 50.33 4.89

CHL ¼ 200, HPT ¼ 0 ) dOR ¼ 3.16

CHL ¼ 220, HPT ¼ 1 ) dOR ¼ 1.22

dOR adjusts for AGE, CHL, ECG, SMK,
and HPT (V variables)
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For the specific interaction model (B) we have
been considering, the variance of l̂ is given by
the formula shown here.

In computing this variance, there is an issue
concerning round-off error. Computer packages
typically maintain 16 decimal places for calcu-
lations, with final answers rounded to a set
number of decimals (e.g., 4) on the printout.
The variance results we show here were
obtained with such a program (see Computer
Appendix) rather than using the rounded values
from the variance–covariance matrix presented
at left.

For this model, W1 is CHL and W2 is HPT.

As an example of a confidence interval calcula-
tion, we consider the values CHL equal to 220
and HPT equal to 1. Substituting b̂; d̂1, and d̂2
into the formula for l̂, we obtain the estimate l̂
equals 0.1960.

The corresponding estimated variance is
obtained by substituting into the above vari-
ance formula the estimated variances and co-
variances from the variance–covariance matrixbV. The resulting estimate of the variance of l̂ is
equal to 0.2279. The numerical values used in
this calculation are shown at left.

We can combine the estimates of l̂ and its vari-
ance to obtain the 95% confidence interval.
This is given by exponentiating the quantity
0.1960 plus or minus 1.96 times the square
root of 0.2279. The resulting confidence limits
are 0.48 for the lower limit and 3.10 for the
upper limit.

The 95% confidence intervals obtained for
other combinations of CHL and HPT are
shown here. For example, when CHL equals
200 and HPT equals 1, the confidence limits
are 0.10 and 0.91. When CHL equals 240 and
HPT equals 1, the limits are 1.62 and 14.52.

EXAMPLE

dvar l̂
� �
¼ dvar b̂

� �
þ W1ð Þ2 dvar d̂1

� �
þ W2ð Þ2 dvar d̂2

� �
þ 2W1

dCov b̂; d̂1
� �

þ 2W2
dCov b̂; d̂2

� �
þ 2W1W2

dCov d̂1; d̂2
� �

W1 ¼ CHL, W2 ¼ HPT

CHL ¼ 220, HPT ¼ 1:

l̂ ¼ b̂þ d̂1 220ð Þ þ d̂2 1ð Þ
¼ 0:1960

dvar l̂
� �¼ 0:2279

bV ¼
dvarb̂dcov b̂; d̂1

� � dvard̂1
dcov b̂; d̂2

� � dcov d̂1; d̂2
� � dvard̂2

2
664

3
775

¼
9:6389

�0:0437 0:0002
�0:0049 �0:0016 0:5516

2
4

3
5

95% CI for adjusted OR:

CI limits: (0.48, 3.10)

exp[0.1960±1.96 0.2279]

HPT ¼ 0 HPT ¼ 1

CHL ¼ 200
dOR : 3.16

CI : (0.89, 11.03)

dOR : 0.31

CI : (0.10, 0.91)

CHL ¼ 220
dOR : 12.61

CI : (3.65, 42.94)

dOR : 1.22

CI : (0.48, 3.10)

CHL ¼ 240
dOR : 50.33

CI : (11.79, 212.23)

dOR : 4.89

CI : (1.62, 14.52)
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Chapter 6: Modeling Strategy
Guidelines

All confidence intervals are quite wide, indicat-
ing that their corresponding point estimates
have large variances. Moreover, if we focus on
the three confidence intervals corresponding
to HPT equal to 1, we find that the interval
corresponding to the estimated odds ratio of
0.31 lies completely below the null value of 1.
In contrast, the interval corresponding to the
estimated odds ratio of 1.22 surrounds the null
value of 1, and the interval corresponding to
4.89 lies completely above 1.

From a hypothesis testing standpoint, these
results therefore indicate that the estimate of
1.22 is not statistically significant at the 5%
level, whereas the other two estimates are sta-
tistically significant at the 5% level.

We suggest that the reader review the material
covered here by reading the summary outline
that follows. Then you may work the practice
exercises and test.

In the next chapter, “Modeling Strategy Guide-
lines”, we provide guidelines for determining a
best model for an exposure–disease relation-
ship that adjusts for the potential confounding
and effect-modifying effects of covariables.

EXAMPLE

Wide CIs ) estimates have large
variances

HPT ¼ 1:

dOR ¼ 0.31, CI: (0.10, .91) below 1

dOR ¼ 1.22, CI: (0.48, 3.10) includes 1

dOR ¼ 4.89, CI: (1.62, 14.52) above 1

dOR
(Two-tailed)
significant?

CHL ¼ 200: 0.31 Yes

220: 1.22 No

240: 4.89 Yes

SUMMARY

Chapter 5: Statistical Inferences
Using ML Techniques

This presentation is now complete. In sum-
mary, we have described two test procedures,
the likelihood ratio test and the Wald test. We
have also shown how to obtain interval esti-
mates for odds ratios obtained from a logistic
regression. In particular, we have described
confidence interval formula for models with
and without interaction terms.
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Detailed
Outline

I. Overview (page 132)

Focus:

� Testing hypotheses

� Computing confidence intervals

II. Information for making statistical inferences
(pages 132–133)

A. Maximized likelihood value: LðûÞ.
B. Estimated variance–covariance matrix: V̂ðûÞ

contains variances of estimated coefficients on
the diagonal and covariances between
coefficients off the diagonal.

C. Variable listing: contains each variable followed
by ML estimate, standard error, and other
information.

III. Models for inference-making (pages 133–134)

A. Model 1: logit P(X) ¼ a þ b1X1 þ b2X2;

Model 2: logit P(X) ¼ a þ b1X1 þ b2X2 þ b3X3;

Model 3: logit P(X) ¼ a þ b1X1 þ b2X2 þ b3X3

þ b4X1X3 þ b5X2X3.

B. L̂1, L̂2, L̂3 aremaximized likelihoods (L̂) formodels
1–3, respectively.

C. L̂ is similar to R square: L̂1 � L̂2 � L̂3.

D. �2 ln L̂3 � �2 ln L̂2 � �2 ln L̂1,
where �2 ln L̂ is called the log likelihood statistic.

IV. The likelihood ratio (LR) test (pages 134–138)

A. LR statistic compares two models: full (larger)
model vs. reduced (smaller) model.

B. H0: some parameters in full model are equal to 0.

C. df ¼ number of parameters in full model set
equal to 0 to obtain reduced model.

D. Model 1 vs. Model 2: LR ¼ �2 ln L̂1 � (�2 ln L̂2),
where H0: b3 ¼ 0. This LR has approximately a
chi-square distribution with one df under the null
hypothesis.

E. � 2 ln L̂1 � �2 ln L̂2
� � ¼ �2 ln L̂1=L̂2

� �
;

where L̂1=L̂2 is a ratio of likelihoods.

F. How the LR test works: LRworks like a chi-square
statistic. For highly significant variables, LR is
large and positive; for nonsignificant variables,
LR is close to 0.

G. Model 2 vs. Model 3: LR ¼ �2 ln L̂2 � (�2 ln L̂3),
where H0: b4 ¼ b5 ¼ 0. This LR has
approximately a chi-square distribution with 2 df
under the null hypothesis.

H. Computer prints �2 ln L̂ separately for each
model, so LR test requires only subtraction.
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V. The Wald test (pages 138–140)

A. Requires one parameter only to be tested, e.g.,
H0: b3 ¼ 0.

B. Test statistic: Z ¼ b̂=sb̂ which is approximately
N(0, 1) under H0.

C. Alternatively, Z2 is approximately chi square with
one df under H0.

D. LR and Z are approximately equal in large
samples, but may differ in small samples.

E. LR is preferred for statistical reasons, although Z
is more convenient to compute.

F. Example ofWald statistic forH0: b3¼ 0 inModel 2:
Z ¼ b̂3=sb̂3 .

VI. Interval estimation: one coefficient
(pages 140–142)

A. Large sample confidence interval:
estimate � percentage point of Z � estimated
standard error.

B. 95% CI for b3 in Model 2: b̂3 � 1:96sb̂3 :

C. If X3 is a (0, 1) exposure variable in Model 2, then
the 95% CI for the odds ratio of the effect of
exposure adjusted for X1 and X2 is given by
exp b̂3 � 1:96sb̂3

� �
D. If X3 has coding other than (0, 1), the CI formula

must be modified.

VII. Interval estimation: interaction (pages 142–146)

A. Model 3 example: dOR¼ el̂;where l̂¼ b̂3 þ b̂4X1 þ b̂5X2

100(1 �a)% CI formula for OR: exp l̂�Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffidvar l̂
� Þ

q
 �
;

where

dvar l̂
� Þ ¼ dvar b̂3

� �
þ X1ð Þ2 dvar b̂4

� �
þ X2ð Þ2 dvar b̂5

� �
þ 2X1 dcov bb3; b̂4� �

þ 2X2 dcov b̂3; b̂5
� �

þ 2X1X2 dcov b̂4; b̂5
� �

:

B. General 100(1 � a)% CI formula for OR:

exp l̂� Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar l̂
� Þ

q
 �
wheredOR¼el̂;

l̂¼ ~
k

i¼1

b̂i X1i�X0ið Þandvar l̂
� Þ¼var Sb̂i X1i�X0ið Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

linearsum

0
B@

1
CA:
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C. 100(1 � a)% CI formula for OR using E, V, W
model:

exp l̂� Z1�a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar l̂
� Þ

q
 �
;

where dOR ¼ el̂; l̂ ¼ b̂þ ~
p2

j¼1

d̂jWj

and dvar l̂
� Þ ¼ dvar b̂

� �
þ ~

p2

j¼1

W2
j dvar d̂j

� �

þ 2 ~
p2

j¼1

Wj dcov b̂; d̂j
� �

þ 2~
j

~
k

WjWk dcov d̂j; d̂k
� �

:

D. Model 3 example of E, V, W model: X3 ¼ E,
X1 ¼ V1, X2 ¼ V2, and for interaction terms,
p2 ¼ 2, X1 ¼ W1, X2 ¼ W2.

VIII. Numerical example (pages 146–153)

A. Printout provided for two models (A and B) from
Evans County, Georgia data.

B. Model A: no interaction terms; Model B:
interaction terms.

C. Description of LR and Wald tests for Model A.

D. LR test for no interaction effect in Model B:
compares model B (full model) with Model A
(reduced model). Result: significant interaction.

E. 95% CI for OR from Model B; requires use of CI
formula for interaction, where p2 ¼ 2,
W1 ¼ CHL, and W2 ¼ HPT.

Practice
Exercises

A prevalence study of predictors of surgical wound infec-
tion in 265 hospitals throughout Australia collected data
on 12,742 surgical patients (McLaws et al., 1988). For each
patient, the following independent variables were deter-
mined: type of hospital (public or private), size of hospital
(large or small), degree of contamination of surgical site
(clean or contaminated), and age and sex of the patient. A
logistic model was fit to this data to predict whether or not
the patient developed a surgical wound infection during
hospitalization. The largest model fit included all of the
above variables and all possible two-way interaction terms.
The abbreviated variable names and the manner in which
the variables were coded in the model are described as
follows:
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Variable Abbreviation Coding

Type of hospital HT 1 ¼ public, 0 ¼ private
Size of hospital HS 1 ¼ large, 0 ¼ small
Degree of

contamination
CT 1 ¼ contaminated,

0 ¼ clean
Age AGE continuous
Sex SEX 1 ¼ female, 0 ¼ male

1. State the logit form of a no interaction model that
includes all of the above predictor variables.

2. State the logit form of a model that extends the model
of Exercise 1 by adding all possible pairwise products
of different variables.

3. Suppose you want to carry out a (global) test for
whether any of the two-way product terms (considered
collectively) in your interaction model of Exercise 2 are
significant. State the null hypothesis, the form of the
appropriate (likelihood ratio) test statistic, and the dis-
tribution and degrees of freedom of the test statistic
under the null hypothesis of no interaction effects in
your model of Exercise 2.

Suppose the test for interaction in Exercise 3 is nonsignif-
icant, so that you felt justified to drop all pairwise products
from your model. The remaining model will, therefore,
contain only those variables given in the above listing.

4. Consider a test for the effect of hospital type (HT)
adjusted for the other variables in the no interaction
model. Describe the likelihood ratio test for this effect
by stating the following: the null hypothesis, the for-
mula for the test statistic, and the distribution and
degrees of freedom of the test statistic under the null
hypothesis.

5. For the same question as described in Exercise 4, that
is, concerning the effect of HT controlling for the other
variables in the model, describe the Wald test for this
effect by providing the null hypothesis, the formula for
the test statistic, and the distribution of the test statistic
under the null hypothesis.

6. Based on the study description preceding Exercise 1,
do you think that the likelihood ratio and Wald test
results will be approximately the same? Explain.

7. Give a formula for a 95% confidence interval for the
odds ratio describing the effect of HT controlling for
the other variables in the no interaction model.
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(Note. In answering all of the above questions, make sure to
state your answers in terms of the coefficients and vari-
ables that you specified in your answers to Exercises 1
and 2).

Consider the following printout results that summarize the
computer output for two models based on follow-up study
data on 609 white males from Evans County, Georgia:

Model I OUTPUT:
�2 ln L̂ ¼ 400.39

Variable Coefficient S.E. Chi sq P

Intercept �6.7747 1.1402 35.30 0.0000
CAT 0.5978 0.3520 2.88 0.0894
AGE 0.0322 0.0152 4.51 0.0337
CHL 0.0088 0.0033 7.19 0.0073
ECG 0.3695 0.2936 1.58 0.2082
SMK 0.8348 0.3052 7.48 0.0062
HPT 0.4392 0.2908 2.28 0.1310

Model II OUTPUT:
�2 ln L̂ ¼ 357.05

Variable Coefficient S.E. Chi sq P

Intercept �3.9346 1.2503 9.90 0.0016
CAT �14.0809 3.1227 20.33 0.0000
AGE 0.0323 0.0162 3.96 0.0466
CHL �0.0045 0.00413 1.16 0.2821
ECG 0.3577 0.3263 1.20 0.2729
SMK 0.8069 0.3265 6.11 0.0134
HPT 0.6069 0.3025 4.03 0.0448

CC ¼ CAT � CHL 0.0683 0.0143 22.75 0.0000

In the above models, the variables are coded as follows:
CAT(1 ¼ high, 0 ¼ low), AGE(continuous), CHL(continu-
ous), ECG(1 ¼ abnormal, 0 ¼ normal), SMK(1 ¼ ever,
0 ¼ never), HPT(1 ¼ hypertensive, 0 ¼ normal). The out-
come variable is CHD status(1 ¼ CHD, 0 ¼ no CHD).

8. For Model I, test the hypothesis for the effect of CAT
on the development of CHD. State the null hypothesis
in terms of an odds ratio parameter, give the formula
for the test statistic, state the distribution of the test
statistic under the null hypothesis, and, finally, carry
out the test for a one-sided alternative hypothesis using
the above printout for Model I. Is the test significant?
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9. Using the printout for Model I, compute the point
estimate and a 95% confidence interval for the odds
ratio for the effect of CAT on CHD controlling for the
other variables in the model.

10. Now consider Model II: Carry out the likelihood ratio
test for the effect of the product term CC on the out-
come, controlling for the other variables in the model.
Make sure to state the null hypothesis in terms of a
model coefficient, give the formula for the test statis-
tic and its distribution and degrees of freedom under
the null hypothesis, and report the P-value. Is the test
result significant?

11. Carry out the Wald test for the effect of CC on out-
come, controlling for the other variables in Model II.
In carrying out this test, provide the same information
as requested in Exercise 10. Is the test result signifi-
cant? How does it compare to your results in Exercise
10? Based on your results, which model is more
appropriate, Model I or II?

12. Using the output for Model II, give a formula for the
point estimate of the odds ratio for the effect of CAT
on CHD, which adjusts for the confounding effects of
AGE, CHL, ECG, SMK, and HPT and allows for the
interaction of CAT with CHL.

13. Use the formula for the adjusted odds ratio in Exercise
12 to compute numerical values for the estimated odds
ratio for the following cholesterol values: CHL ¼ 220
and CHL ¼ 240.

14. Give a formula for the 95% confidence interval for the
adjusted odds ratio described in Exercise 12 when
CHL ¼ 220. In stating this formula, make sure to
give an expression for the estimated variance portion
of the formula in terms of variances and covariances
obtained from the variance–covariance matrix.

Test The following printout provides information for the fitting
of two logistic models based on data obtained from a
matched case-control study of cervical cancer in 313
women from Sydney, Australia (Brock et al., 1988). The
outcome variable is cervical cancer status (1 ¼ present,
0 ¼ absent). The matching variables are age and socio-
economic status. Additional independent variables not
matched on are smoking status, number of lifetime
sexual partners, and age at first sexual intercourse. The
independent variables not involved in the matching are
listed below, together with their computer abbreviation
and coding scheme.
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Variable Abbreviation Coding

Smoking status SMK 1 ¼ ever, 0 ¼ never
Number of sexual

partners
NS 1 ¼ 4þ, 0 ¼ 0–3

Age at first intercourse AS 1 ¼ 20þ, 0 ¼ � 19

PRINTOUT:

Model I

�2 ln L̂ ¼ 174.97

Variable b S.E. Chi sq P

SMK 1.4361 0.3167 20.56 0.0000
NS 0.9598 0.3057 9.86 0.0017
AS �0.6064 0.3341 3.29 0.0695

Model II

�2 ln L̂ ¼ 171.46

Variable b S.E. Chi sq P

SMK 1.9381 0.4312 20.20 0.0000
NS 1.4963 0.4372 11.71 0.0006
AS �0.6811 0.3473 3.85 0.0499
SMK�NS �1.1128 0.5997 3.44 0.0635

Variance–Covariance Matrix (Model II)

SMK NS AS SMK � NS

SMK 0.1859
NS 0.1008 0.1911
AS �0.0026 �0.0069 0.1206
SMK � NS �0.1746 �0.1857 0.0287 0.3596

1. What method of estimation was used to obtain esti-
mates of parameters for both models, conditional or
unconditional ML estimation? Explain.

2. Why are the variables, age and socioeconomic status,
missing from the printout, even though these were
variables matched on in the study design?

3. For Model I, test the hypothesis for the effect of SMK
on cervical cancer status. State the null hypothesis in
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terms of an odds ratio parameter, give the formula for
the test statistic, state the distribution of the test sta-
tistic under the null hypothesis, and, finally, carry out
the test using the above printout for Model I. Is the
test significant?

4. Using the printout for Model I, compute the point
estimate and 95% confidence interval for the odds
ratio for the effect of SMK controlling for the other
variables in the model.

5. Now consider Model II: Carry out the likelihood ratio
test for the effect of the product term SMK � NS on
the outcome, controlling for the other variables in the
model. Make sure to state the null hypothesis in terms
of a model coefficient, give the formula for the test
statistic and its distribution and degrees of freedom
under the null hypothesis, and report the P-value. Is
the test significant?

6. Carry out the Wald test for the effect of SMK � NS,
controlling for the other variables in Model II. In
carrying out this test, provide the same information
as requested in Question 3. Is the test significant?
How does it compare to your results in Question 5?

7. Using the output for Model II, give a formula for the
point estimate of the odds ratio for the effect of SMK
on cervical cancer status, which adjusts for the con-
founding effects of NS and AS and allows for the
interaction of NS with SMK.

8. Use the formula for the adjusted odds ratio in Ques-
tion 7 to compute numerical values for the estimated
odds ratios when NS ¼ 1 and when NS ¼ 0.

9. Give a formula for the 95% confidence interval for the
adjusted odds ratio described in Question 8 (when
NS ¼ 1). In stating this formula, make sure to give an
expression for the estimated variance portion of the
formula in terms of variances and covariances
obtained from the variance–covariance matrix.

10. Use your answer to Question 9 and the estimated
variance–covariance matrix to carry out the computa-
tion of the 95% confidence interval described in Ques-
tion 7.

11. Based on your answers to the above questions, which
model, point estimate, and confidence interval for the
effect of SMK on cervical cancer status are more
appropriate, those computed for Model I or those
computed for Model II? Explain.
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Answers to
Practice
Exercises

1. logit P(X) ¼ a þ b1HT þ b2HS þ b3CT þ b4AGE
þ b5SEX.

2. logit P(X) ¼ a þ b1HT þ b2HS þ b3CT þ b4AGE
þ b5SEX þ b6HT � HS þ b7HT � CT
þ b8HT � AGE þ b9HT � SEX
þ b10HS � CT þ b11HS � AGE
þ b12HS � SEX þ b13CT � AGE
þ b14CT � SEX þ b15AGE � SEX.

3. H0: b6 ¼ b7 ¼ . . . ¼ b15 ¼ 0, i.e., the coefficients of all
product terms are zero.
Likelihood ratio statistic: LR ¼ �2 ln L̂1 � (�2 ln L̂2),
where L̂1 is the maximized likelihood for the reduced
model (i.e., Exercise 1 model) and L̂2 is the maximized
likelihood for the full model (i.e., Exercise 2 model).

Distribution of LR statistic: chi square with 10 degrees
of freedom.

4. H0: b1 ¼ 0, where b1 is the coefficient of HT in the no
interaction model; alternatively, this null hypothesis
can be stated as H0: OR ¼ 1, where OR denotes the
odds ratio for the effect of HT adjusted for the other
four variables in the no interaction model.

Likelihood ratio statistic: LR ¼ �2 ln L̂0 � (�2 ln L̂1),
where L̂0 is the maximized likelihood for the reduced
model (i.e., Exercise 1 model less the HT term and its
corresponding coefficient) and L̂1 is the maximized
likelihood for the full model (i.e., Exercise 1 model).

Distribution of LR statistic: approximately chi square
with one degree of freedom.

5. The null hypothesis for the Wald test is the same as
that given for the likelihood ratio test in Exercise 4.H0:
b1 ¼ 0 or, equivalently,H0: OR ¼ 1, where OR denotes
the odds ratio for the effect of HT adjusted for the
other four variables in the no interaction model.

Wald test statistic: Z=b̂1=sb̂1 , where b1 is the coefficient

of HT in the no interaction model.

Distribution of Wald statistic: approximately normal
(0, 1) under H0; alternatively, the square of the Wald
statistic, i.e., Z2, is approximately chi square with one
degree of freedom.

6. The sample size for this study is 12,742, which is very
large; consequently, the Wald and LR test statistics
should be approximately the same.

7. The odds ratio of interest is given by eb1, where b1 is
the coefficient of HT in the no interaction model; a
95% confidence interval for this odds ratio is given by
the following formula:

exp b̂1 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar b̂1
� �r
 �

;
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where dvarðb̂1Þ is obtained from the variance–covar-
iance matrix or, alternatively, by squaring the value
of the standard error for b̂1 provided by the computer
in the listing of variables and their estimated coeffi-
cients and standard errors.

8. H0: bCAT ¼ 0 in the no interaction model (Model I), or
alternatively, H0: OR ¼ 1, where OR denotes the odds
ratio for the effect of CAT on CHD status, adjusted for
the five other variables in Model I.

Test statistic: Wald statistic Z ¼ b̂CAT=sb̂CAT , which is

approximately normal (0, 1) under H0, or alterna-
tively, Z2 is approximately chi square with one degree
of freedom under H0.

Test computation: Z ¼ 0:5978=0:3520 ¼ 1:70; alterna-
tively, Z2 ¼ 2.88; the one-tailed P-value is 0.0894/
2 ¼ 0.0447, which is significant at the 5% level.

9. The point estimate of the odds ratio for the effect
of CAT on CHD adjusted for the other variables in
Model I is given by e0.5978 ¼ 1.82. The 95% interval
estimate for the above odds ratio is given by

exp b̂CAT � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar b̂CAT
� �r
 �

¼ 0:5978� 1:96� 0:3520ð Þ

¼ exp 0:5978� 0:6899ð Þ
¼ e�0:0921; e1:2876

� �
¼ 0:91; 3:62ð Þ:

10. The null hypothesis for the likelihood ratio test for the
effect of CC:H0: bCC ¼ 0 where bCC is the coefficient of
CC in model II.

Likelihood ratio statistic: LR = �2 ln L̂I � (�2 ln L̂II)
where L̂I and L̂II are the maximized likelihood func-
tions for Models I and II, respectively. This statistic
has approximately a chi-square distribution with one
degree of freedom under the null hypothesis.

Test computation: LR ¼ 400.4 � 357.0 ¼ 43.4. The
P-value is 0.0000 to four decimal places. Because P is
very small, the null hypothesis is rejected and it is con-
cluded that there is a significant effect of the CC variable,
i.e., there is significant interaction of CHL with CAT.

11. The null hypothesis for the Wald test for the effect of
CC is the same as that for the likelihood ratio test: H0:
bCC ¼ 0, where bCC is the coefficient of CC in model II.

Wald statistic: Z ¼ b̂CC=sb̂CC , which is approximately
normal (0, 1) under H0, or alternatively, Z

2 is approxi-
mately chi squarewith one degree of freedomunderH0.
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Test computation: Z = 0:0683=0:0143 ¼ 4:77; alterna-
tively, Z2 ¼ 22.75; the two-tailed P-value is 0.0000,
which is very significant.

The LR statistic is 43.4, which is almost twice as large
as the square of the Wald statistic; however, both
statistics are very significant, resulting in the same
conclusion of rejecting the null hypothesis.

Model II is more appropriate thanModel I because the
test for interaction is significant.

12. The formula for the estimated odds ratio is given by

dORadj ¼ exp b̂CAT þ d̂CC CHL
� �

¼ exp �14:089þ 0:0683CHLð Þ;

where the coefficients come from Model II and the
confounding effects of AGE, CHL, ECG, SMK, and
HPT are adjusted.

13. Using the adjusted odds ratio formula given in Exer-
cise 12, the estimated odds ratio values for CHL equal
to 220 and 240 are:

CHL ¼ 220: exp[�14.0809 þ 0.0683(220)]
¼ exp(0.9451) ¼ 2.57

CHL ¼ 240: exp[�14.0809 þ 0.0683(240)]
¼ exp(2.3111) ¼ 10.09

14. Formula for the 95% confidence interval for the
adjusted odds ratio when CHL ¼ 220:

exp l̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffidvarðl̂ Þq
 �
; where l̂ ¼ b̂CAT þ d̂CCð220Þ

and dvarðl̂ Þ ¼ dvarðb̂CATÞ þ ð220Þ2 dvarðd̂CCÞ
þ 2ð220Þ dcovðb̂CAT; d̂CCÞ;

where dvarðb̂CATÞ;dvarðd̂CCÞ; and dcovðb̂CAT; d̂CCÞ are ob-
tained from the printout of the variance– covariance
matrix.
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Introduction We begin this chapter by giving the rationale for having a
strategy to determine a “best” model. Focus is on a logistic
model containing a single dichotomous exposure variable
that adjusts for potential confounding and potential inter-
action effects of covariates considered for control. A strat-
egy is recommended, which has three stages: (1) variable
specification, (2) interaction assessment, and (3) con-
founding assessment followed by consideration of preci-
sion. Causal diagrams are introduced as a component of
the variable specification stage. The initial model must be
“hierarchically well-formulated”, a term to be defined and
illustrated. Given an initial model, we recommend a strat-
egy involving a “hierarchical backward elimination proce-
dure” for removing variables. In carrying out this strategy,
statistical testing is allowed for assessing interaction terms
but is not allowed for assessing confounding. Further
description of interaction and confounding assessment is
given in the next chapter (Chap. 7).

Abbreviated
Outline

The outline below gives the user a preview of the material
in this chapter. A detailed outline for review purposes
follows the presentation.

I. Overview (page 168)

II. Rationale for a modeling strategy (pages
168–169)

III. Overview of recommended strategy (pages
169–173)

IV. Variable specification stage (pages 173–175)

V. Causal diagrams (pages 175–179)

VI. Other considerations for variable specification
(pages 180–181)

VII. Hierarchically well-formulated models (pages
181–184)

VIII. The hierarchical backward elimination
approach (page 184–185)

IX. The hierarchy principle for retaining variables
(pages 185–187)

X. An example (pages 188–192)

XI. Summary (pages 192–193)
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Objectives Upon completion of this chapter, the learner should be
able to:

1. State and recognize the three stages of the
recommended modeling strategy.

2. Describe and/or illustrate a causal diagram that
indicates confounding.

3. Define and recognize a hierarchically well-formulated
logistic model.

4. State, recognize, and apply the recommended strategy
for choosing potential confounders in one’s model.

5. State, recognize, and apply the recommended strategy
for choosing potential effect modifiers in one’s model.

6. State and recognize the rationale for a hierarchically
well-formulated model.

7. State and apply the hierarchical backward elimination
strategy.

8. State and apply the hierarchy principle for retaining
variables.

9. State whether or not significance testing is allowed for
the assessment of interaction and/or confounding.
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Presentation

I. Overview

FOCUS

Guidelines for “best”
models

Three-stage strategy

Valid estimate of E–D
relationship (con-
founding and effect
modification)

II. Rationale for a
Modeling Strategy

Minimum information in most
study reports,

e.g., little explanation about
strategy

Information often not provided:

� How variables are chosen

� How variables are selected

� How effect modifiers are
assessed

� How confounders are assessed

Guidelines are needed for the fol-
lowing:

� To assess validity of results

� To help researchers know what
information to provide

� To encourage consistency in
strategy

� For a variety of modeling
procedures

This presentation gives guidelines for deter-
mining the “best” model when carrying out
mathematical modeling using logistic regres-
sion. We focus on a strategy involving three
stages. The goal of this strategy is to obtain a
valid estimate of an exposure–disease relation-
ship that accounts for confounding and effect
modification.

We begin by explaining the rationale for a
modeling strategy.

Most epidemiologic research studies in the lit-
erature, regardless of the exposure–disease
question of interest, provide a minimum of
information about modeling methods used in
the data analysis. Typically, only the final
results from modeling are reported, with little
accompanying explanation about the strategy
used in obtaining such results.

For example, information is often not provided
as to how variables are chosen for the initial
model, how variables are selected for the final
model, and how effect modifiers and confoun-
ders are assessed for their role in the final
model.

Without meaningful information about the
modeling strategy used, it is difficult to assess
the validity of the results provided. Thus, there
is a need for guidelines regarding modeling
strategy to help researchers know what infor-
mation to provide.

In practice, most modeling strategies are ad hoc;
in otherwords, researchers oftenmake up a strat-
egy as they go along in their analysis. The general
guidelines that we recommend here encourage
more consistency in the strategy used by different
researchers.

168 6. Modeling Strategy Guidelines



Guidelines applicable to:

Logistic regression

Multiple linear regression

Cox PH regression

Two modeling goals:

(1) To obtain a valid E–D estimate

(2) To obtain a good predictive
model

(different strategies for different
goals)

Prediction goal:

Use computer algorithms

Validity goal:

� Our focus

� For etiologic research

� Standard computer algorithms
not appropriate

III. Overview of
Recommended Strategy

Three stages:

(1) Variable specification
(2) Interaction assessment
(3) Confounding assessment

followed by precision
Variable specification:

� Restricts attention to clinically
or biologically meaningful
variables

� Provides largest possible initial
model

Modeling strategy guidelines are also important
for modeling procedures other than logistic
regression. In particular, classical multiple lin-
ear regression and Cox proportional hazards
regression, although having differing model
forms, all have in common with logistic regres-
sion the goal of describing exposure–disease
relationships when used in epidemiologic
research. The strategy offered here, although
described in the context of logistic regression,
is applicable to a variety ofmodeling procedures.

There are typically two goals of mathematical
modeling: One is to obtain a valid estimate of
an exposure–disease relationship and the other
is to obtain a good predictive model. Depend-
ing on which of these is the primary goal of the
researcher, different strategies for obtaining
the “best” model are required.

When the goal is “prediction”, it may be more
appropriate to use computer algorithms, such as
backward elimination or all possible regressions,
which are built into computer packages for dif-
ferent models. [See Kleinbaum et al. (2008)]

Our focus in this presentation is on the goal of
obtaining a valid measure of effect. This goal is
characteristic of most etiologic research in epi-
demiology. For this goal, standard computer
algorithms do not apply because the roles that
variables – such as confounders and effect
modifiers – play in the model must be given
special attention.

The modeling strategy we recommend involves
three stages: (1) variable specification, (2) inter-
action assessment, and (3) confounding assess-
ment followed by consideration of precision. We
have listed these stages in the order that they
should be addressed.

Variable specification is addressed first because
this step allows the investigator to use the
research literature to restrict attention to clini-
cally or biologically meaningful independent
variables of interest. These variables can then be
defined in the model to provide the largest possi-
ble meaningful model to be initially considered.
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Interaction prior to confounding:

� If strong interaction, then
confounding irrelevant

Assess interactionbefore confounding

Interaction may not be of interest:

� Skip interaction stage

� Proceed directly to
confounding

Interaction assessment is carried out next,
prior to the assessment of confounding. The
reason for this ordering is that if there is strong
evidence of interaction involving certain vari-
ables, then the assessment of confounding
involving these variables becomes irrelevant.

For example, suppose we are assessing the effect
of an exposure variableE on some diseaseD, and
we find strong evidence that gender is an effect
modifier of the E–D relationship. In particular,
suppose that the odds ratio for the effect of E on
D is 5.4 for males but only 1.2 for females. In
other words, the data indicate that the E–D rela-
tionship is different for males than for females,
that is, there is interaction due to gender.

For this situation, it would not be appropriate
to combine the two odds ratio estimates for
males and females into a single overall adjusted
estimate, say 3.5, that represents an “average”
of the male and female odds ratios. Such an
overall “average” is used to control for the con-
founding effect of gender in the absence of
interaction; however, if interaction is present,
the use of a single adjusted estimate is a mis-
leading statistic because it masks the finding of
a separate effect for males and females.

Thus, we recommend that if onewishes to assess
interaction and also consider confounding, then
the assessment of interaction comes first.

However, the circumstances of the study may
indicate that the assessment of interaction is
not of interest or is biologically unimportant.
In such situations, the interaction stage of the
strategy can then be skipped, and one proceeds
directly to the assessment of confounding.

For example, the goal of a study may be to
obtain a single overall estimate of the effect of
an exposure adjusted for several factors,
regardless of whether or not there is interaction
involving these factors. In such a case, then,
interaction assessment is not appropriate.

EXAMPLE

Suppose gender is effect modifier for
E–D relationship:

OR males = 5.4, OR females = 1.2

interaction

Overall average ¼ 3:5

not appropriate

Misleading because of separate effects
for males and females

EXAMPLE

Study goal: single overall estimate.
Then interaction not appropriate
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If interaction present:

� Do not assess confounding for
effect modifiers

� Assessing confounding for
other variables difficult and
subjective

Confounding followed by precision:

( ) ( )

Valid
imprecise

biased
precise

VALIDITY BEFORE PRECISION

# #
right answer precise answer

On the other hand, if interaction assessment is
considered worthwhile, and, moreover, if signif-
icant interaction is found, then this precludes
assessing confounding for those variables iden-
tified as effectmodifiers. Also, aswewill describe
in more detail later, assessing confounding for
variables other than effectmodifiers can be quite
difficult and, in particular, extremely subjective,
when interaction is present.

The final stage of our strategy calls for the
assessment of confounding followed by consid-
eration of precision. This means that it is more
important to get a valid point estimate of the
E–D relationship that controls for confounding
than to get a narrow confidence interval
around a biased estimate that does not control
for confounding.

For example, suppose controlling for AGE,
RACE, and SEX simultaneously gave an
adjusted odds ratio estimate of 2.4 with a 95%
confidence interval ranging between 1.2 and
3.7, whereas controlling for AGE alone gave an
odds ratio of 6.2 with a 95% confidence interval
ranging between 5.9 and 6.4.

Then, assuming that AGE, RACE, and SEX are
considered important risk factors for the disease
of interest, we would prefer to use the odds
ratio of 2.4 over the odds ratio of 6.2. This is
because the 2.4 value results from controlling
for all the relevant variables and, thus, gives us
a more valid answer than the value of 6.2,
which controls for only one of the variables.

Thus, even though there is a much narrower
confidence interval around the 6.2 estimate
than around the 2.4, the gain in precision from
using 6.2 does not offset the bias in this estimate
when compared to the more valid 2.4 value.

In essence, then, validity takes precedence over
precision, so that it is more important to get the
right answer than a precise answer. Thus, in the
third stage of our strategy, we seek an estimate
that controls for confounding and is, over and
above this, as precise as possible.

EXAMPLE

Control
Variables aOR

AGE, RACE, SEX

AGE

2.4 (1.2, 3.7)

6.2 (5.9, 6.4)

VALID

BIASED narrow

wide

95% CI

6.2
6.45.93.7

2.4
1.2

0

( () )
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Confounding : no statistical testing

#
Validity ------ systematic error

(Statistical testing — random error)

Confounding in logistic
regression — a validity issue

Computer algorithms no good
(involve statistical testing)

Statistical issues beyond the scope
of this presentation:

� Multicollinearity

� Multiple testing

� Influential observations

Multicollinearity:

� Independent variables
approximately determined by
other independent variables

� Regression coefficients
unreliable

Multiple testing:

� The more tests, the more likely
significant findings, even if no
real effects

� Variable selection procedures
may yield an incorrect model
because of multiple testing

When later describing this last stage in more
detail we will emphasize that the assessment of
confounding is carried out without using statis-
tical testing. This follows from general epidemi-
ologic principles in that confounding is a
validity issue that addresses systematic rather
than random error. Statistical testing is appro-
priate for considering random error rather
than systematic error.

Our suggestions for assessing confounding
using logistic regression are consistent with
the principle that confounding is a validity
issue. Standard computer algorithms for vari-
able selection, such as forward inclusion or
backward elimination procedures, are not
appropriate for assessing confounding because
they involve statistical testing.

Before concluding this overview section, we
point out a few statistical issues needing atten-
tion but which are beyond the scope of this
presentation. These issues aremulticollinearity,
multiple testing, and influential observations.

Multicollinearity occurs when one or more of
the independent variables in the model can be
approximately determined by some of the
other independent variables. When there is
multicollinearity, the estimated regression
coefficients of the fitted model can be highly
unreliable. Consequently, any modeling strat-
egymust check for possible multicollinearity at
various steps in the variable selection process.

Multiple testing occurs from the many tests of
significance that are typically carried out when
selecting or eliminating variables in one’s
model. The problem with doing several tests
on the same data set is that the more tests one
does, themore likely one can obtain statistically
significant results even if there are no real asso-
ciations in the data. Thus, the process of vari-
able selection may yield an incorrect model
because of the number of tests carried out.
Unfortunately, there is no foolproof method
for adjusting for multiple testing, even though
there are a few rough approaches available.
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Influential observations:

� Individual data may influence
regression coefficients, e.g.,
outlier

� Coefficients may change if
outlier is dropped from analysis

IV. Variable Specification
Stage

� Define clinically or biologically
meaningful independent
variables

� Provide initial model

Specify D, E, C1, C2, . . ., Cp based
on:

� Study goals

� Literature review

� Theory

Specify Vs based on:

� Prior research or theory

� Possible statistical problems

Influential observations refer to data on indivi-
duals that may have a large influence on the
estimated regression coefficients. For example,
an outlier in one or more of the independent
variables may greatly affect one’s results. If a
person with an outlier is dropped from the
data, the estimated regression coefficients
may greatly change from the coefficients
obtained when that person is retained in the
data. Methods for assessing the possibility of
influential observations should be considered
when determining a best model.

At the variable specification stage, clinically or
biologically meaningful independent variables
are defined in the model to provide the largest
model to be initially considered.

We begin by specifying theD and E variables of
interest together with the set of risk factors C1

through Cp to be considered for control. These
variables are defined and measured by the
investigator based on the goals of one’s study
and a review of the literature and/or biological
theory relating to the study.

Next, we must specify the Vs, which are func-
tions of theCs that go into themodel as potential
confounders. Generally, we recommend that the
choice of Vs be based primarily on prior
research or theory, with some consideration of
possible statistical problems like multicollinear-
ity that might result from certain choices.

For example, if the Cs are AGE, RACE, and
SEX, one choice for the Vs is the Cs themselves.
Another choice includes AGE, RACE, and SEX
plusmore complicated functions such as AGE2,
AGE � RACE, RACE � SEX, and AGE � SEX.

We would recommend any of the latter four
variables only if prior research or theory sup-
ported their inclusion in the model. Moreover,
even if biologically relevant, such variables
may be omitted from consideration to avoid a
possible collinearity problem.

EXAMPLE

Cs: AGE, RACE, SEX
Vs:
Choice 1: AGE, RACE, SEX

Choice 2: AGE, RACE, SEX, AGE2,
AGE�RACE, RACE� SEX,
AGE � SEX
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ü Simplest choice for Vs:

The Cs themselves (or a subset
ofCs)

Specify Ws: (in model as E � W):

Restrict Ws to be Vs themselves
or products of two Vs

(i.e., in model as E � V and
E � Vi � Vj)

Most situations:

Specify Vs and Ws as Cs or
subset of Cs

Rationale for Ws (common sense):

Product terms more compli-
cated than EViVj are as follows:

� Difficult to interpret

� Typically cause collinearity

ü Simplest choice: use EVi terms
only

The simplest choice for the Vs is the Cs them-
selves. If the number of Cs is very large, it may
even be appropriate to consider a smaller sub-
set of the Cs considered to bemost relevant and
interpretable based on prior knowledge.

Once the Vs are chosen, the next step is to
determine the Ws. These are the effect modi-
fiers that go into the model as product terms
with E, that is, these variables are of the form
E times W.

We recommend that the choice of Ws be
restricted either to the Vs themselves or to
product terms involving two Vs. Correspond-
ingly, the product terms in the model are
recommended to be of the form E times V and
E times Vi times Vj, where Vi and Vj are two
distinct Vs.

For most situations, we recommend that both
the Vs and theWs be the Cs themselves, or even
a subset of the Cs.

As an example, if the Cs are AGE, RACE, and
SEX, then a simple choice would have the Vs
be AGE, RACE, and SEX and the Ws be a sub-
set of AGE, RACE, and SEX thought to be
biologically meaningful as effect modifiers.

The rationale for our recommendation about
theWs is based on the following commonsense
considerations:

� Product terms more complicated than
EViVj are usually difficult to interpret even if
found significant; in fact, even terms of the
form EViVj are often uninterpretable.

� Product terms more complicated than
EViVj typically will cause collinearity
problems; this is also likely for EViVj terms,
so the simplest way to reduce the potential
for multicollinearity is to use EVi terms
only.

EXAMPLE

C1, C2, C3, ¼ AGE, RACE, SEX

V1, V2, V3, ¼ AGE, RACE, SEX

Ws ¼ subset of AGE, RACE, SEX
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Variable Specification Summary
Flow Diagram

Choose D, E, C1, . . . , Cp

Choose Vs from Cs

Choose Ws 
from Cs as
Vi or ViVj, i.e.,
interactions
of from EVi
or EViVj

V. Causal Diagrams

Approach for variable selection:

� Not just quantitative

� Consider causal structure

� Depends on the goal

Including covariate in model could
lead to bias:

� If caused by exposure

� If caused by outcome

Lung cancer causes an abnormal
X-ray, i.e.,

Lung cancer ðDÞ Chest X-ray ðCÞ

We claim:

E,D association controlling for C is
biased

Model:

logit PðD ¼ 1jXÞ ¼ b0 þ b1SMOKE

þ b2XRY

Where D coded 1 for lung cancer
0 for no lung cancer

SMOKE coded 1 for smokers,
0 for nonsmokers

XRY coded 1 for abnormal X-ray
0 for normal X-ray

expðb1Þ¼ORðSMOKE¼1 vs: 0Þ
holdingX-ray status

constant

In summary, at the variable specification stage,
the investigator defines the largest possible
model initially to be considered. The flow dia-
gram at the left shows first the choice of D, E,
and the Cs, then the choice of the Vs from the
Cs and, finally, the choice of theWs in terms of
the Cs.

The decision of specifying which variables are
potential confounders should not just be based
on quantitative methods; we must also con-
sider the possible causal relationships between
the exposure, outcome, potential confounders,
and other relevant variables. Moreover, we
must be clear about the goal of our analysis.

Including a variable in the model that is asso-
ciated with the outcome could lead to bias of
the exposure–disease relationship if the level of
that variable was caused by the exposure and/
or by the outcome.

Finding an abnormal X-ray could be a conse-
quence of lung cancer (we have indicated this
graphically by the one-sided arrow on the left – a
simple example of a causal diagram). If we were
interested in estimating the causal association
between cigarette smoking and lung cancer (as
opposed to developing our best predictive model
of lung cancer), it would bias our results to
include chest X-ray status as a covariate.

More specifically, consider a logistic model
with lung cancer as the outcome and smoking
status and chest X-ray status as covariates
(model stated on the left).

Now consider the interpretation of the odds
ratio for SMOKE derived from this model,
exp(b1); i.e., the odds of lung cancer among the
smokers divided by the odds of lung cancer
among the nonsmokers, holding X-ray status
constant (i.e., adjusting for X-ray status).
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Lung cancer

Above causal diagram

Bias if we condition on X-ray status

Smoking

Abnormal
chest X-ray

⇐

Explanation:
Among smokers with abnormal
chest X-ray

� High odds of lung cancer
Among nonsmokers with abnormal
X-ray

� High odds of lung cancer

Among those with abnormal chest
X-ray

� Odds ratio (smoking vs. non-
smoking) closer to null than in
general population (a bias)

Depending on the underlying causal
structure, adjustment may:

� Remove bias

� Lead to bias

� Neither of the above

Causal diagrams may help under-
standing of:

� Causation

� Association

� Bias

The causal diagram at the left describes the
likely causal pathway that involves the three
variables smoking, lung cancer, and abnormal
chest X-ray.

We can use this diagram to explain why any
association between smoking and lung cancer
is weakened (and therefore biased) if we con-
trol for X-ray status. In particular, a conse-
quence of the causal effect of smoking on
lung cancer is to increase the likelihood of an
abnormal X-ray.

Explaining the reason for this bias, we would
expect a large proportion of smokers who have
an abnormal chest X-ray to have lung cancer
simply because an abnormal X-ray is a strong
indicator of lung cancer. However, we would
also expect a large proportion of nonsmokers
who have an abnormal chest X-ray to have lung
cancer. So among those who have an abnormal
chest X-ray, the odds of lung cancer would not
substantially differ comparing smokers to non-
smokers, even though the odds would differ
greatly in the general population.

The point of the above example is that even
though the adjusted odds ratio may be much
different than the unadjusted odds ratio, adjust-
ment may cause bias rather than remove bias.
Whether adjustment causes bias or removes
bias (or neither), depends on the underlying
causal structure of the variables of interest.

Causal diagrams provide a graphical perspec-
tive for understanding epidemiologic concepts
involving causation, association, and bias. In
this section, we highlight the key concepts.
A more detailed description of causal diagrams
can be found elsewhere (Rothman et al., 2008).
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Causal Diagram for Confounding

C is a common cause of E and D

C

E

D

Noncausal E–D association
C confounds the E–D relationship

The path E–C–D is a backdoor path
from E to D

C2

C1

C3

D

E

E–C1–C2–C3–D is a backdoor path

Can control for either C1 or C2 or C3

Lung cancer a common effect

Smoking

Lung Cancer

Genetic factor (GF)

In general population:
No association between GF and

smoke
Among lung cancer patients:

� Smokers may get lung
cancer because they smoke

� Smoking is not a reason that
a nonsmoker gets lung
cancer (omitting secondhand
smoke as a reason)

� So nonsmokers more likely to
have genetic factor than
smokers (smoking associated
with GF among lung cancer
patients)

Confounding of the exposure–disease associa-
tion is rooted in a common cause (C) of the
exposure (E) and disease (D), leading to a spu-
rious E–D association.

The diagram on the left illustrates that E does
not cause D, yet there is a noncausal pathway
between E and D through C. Such a noncausal
pathway between two variables of interest is
called a “backdoor path”. The noncausal path
from E to D goes through C and is denoted as
E–C–D.

The next diagram (on the left) is somewhat
more complicated. C2 is a common cause of E
(through C1) and D (through C3). A noncausal
backdoor path E–C1–C2–C3–D will lead to a
spurious association between E and D if not
adjusted. Although C2 is the common cause,
you can control for (condition on) either C1 or
C2 or C3. A confounder need not be the com-
mon cause; it just needs to be on the path to or
from the common cause.

The next type of causal structure we examine is
one that contains a common effect from two or
more causes. Consider two independent risk
factors for lung cancer: smoking and some
genetic factor (GF). As shown on the left, lung
cancer is a common effect of these risk factors.

Suppose there is no association between
smoking and the genetic factor in the general
population. Nevertheless, among lung cancer
patients, there likely is an association between
smoking and the genetic factor. Nonsmokers
who get lung cancer get lung cancer for some
reason. Since smoking is not the reason they
got lung cancer, nonsmokers may be more
likely to have the genetic factor as the reason
compared to smokers who get lung cancer.
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F is a common effect of E and D:

E

D
F

Conditioning on F creates a spur-
ious association between E and D

E

D

F

E

D
F

Backdoor pathE–F–D is blocked by
common effect. No spurious asso-
ciation unless we condition on F.

Berkson’s bias:

Selecting only hospital patients
could lead to bias of A–B
association.

A

B

Hospital

Selecting volunteers could lead to
bias of X–Y association.

X

Y

Volunteers

Conditioning on a commoncause can

� Remove bias

Conditioning ona commoneffect can

� Induce bias

This spurious association produced by condi-
tioning on a common effect can be expressed
with causal diagrams. Let F be a common
effect of the exposure (E) and disease (D) with
exposure unrelated to disease.

The second causal diagram, with the box
around F (the common effect), indicates con-
ditioning, or adjusting, on F. The dotted lines
between E and D without a causal arrow indi-
cate that a spurious association between E and
Dwas produced because of the conditioning on
F (i.e., within strata of F).

If we do not condition on a common effect
we may still wonder if there is a spurious asso-
ciation between E and D because of the back-
door path E–F–D. However, a backdoor path
through a common effect will not create a spu-
rious association, unless we condition on that
common effect.

Joseph Berkson illustrated this bias in studies
in which selected subjects were hospitalized
patients (Berkson, 1946). If condition A and
condition B can lead to hospitalization, then
selecting only hospitalized patients can yield a
biased estimated association between A and B.

Similarly, if factors X and Y influenced volun-
teerism, then restricting the study population
to volunteers could lead to a selection bias of
the X–Y association.

We have seen that conditioning on a common
cause (a confounder) can remove bias and con-
ditioning on a common effect can induce bias.
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U1 and U2 are unmeasured
Should we control for C?

E

U1

C

U2

D

E

U1 U2

C D

By controlling for C we create an
unblocked path from E to D:
E–U1–U2–D

Do not control for C

Is it too much to expect that we
correctly and completely specify
the underlying causal structure?

Answer : Yes

Do we run the risk of inducing bias
if we do not consider the causal
structure at all?

Answer : Yes

Analytic goal:
� Estimate E–D relationship

) Concern about causal
structure confounding,
interaction

� Predict the outcome

) Causal structure of less
concern

For a more complicated example, consider the
causal diagram on the left. Suppose U1 and U2

are unmeasured factors, with U1 being a com-
mon cause of E and C, and with U2 being a
common cause of D and C. If we are interested
in estimating an unbiased measure of effect
between E and D, should we control for C?

U1 is a cause of E, and U2 is a cause of D but
there is no common cause of E and D, thus
there is no confounding. However, if we condi-
tion on C, a common effect of U1 and U2, then
we create a link between U1 and U2 (i.e., a
spurious association) and an unblocked back-
door path from E to D leading to a spurious
association between E and D. The backdoor
path is E–U1–U2–D. Since U1 and U2 are
unmeasured we cannot adjust for either of
these variables and block that backdoor path.
Therefore, we should not control for C.

Correctly specifying the causal structure of all
the relevant variables for assessing the E–D
relationship is close to impossible. However,
this does not mean that we should not think
about the underlying causal structure.

We should certainly be aware that decisions to
include or not include covariates in the model
may induce or remove bias depending on the
causal relationships. In particular, we should
be aware that conditioning on a common effect
can induce bias.

Central to this discussion and to all our dis-
cussion on model strategy is that our goal is
to obtain a valid estimate of an exposure–
disease relationship. If our goal was to obtain
the best predictive model, we would not be
so concerned about the causal structure, con-
founding, or interaction.
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VI. Other Considerations
for Variable
Specification

Data quality:

Measurement error, misclassifica-
tion?

Correct or remove missing data?

(Qualitative) Collinearity:

Are covariates supplying qualita-
tively redundant info?

Example:

Including both employment status
and personal income in
model.

Controlling for same underlying
factor?

(leads to model instability)

Controlling for meaningfully dif-
ferent factors?

(needed for proper control)

Sample size?
If large ) can “tease out” effects

of similar covariates

Philosohical issue: complexity vs.
simplicity

� Complexity: If in doubt,
include the variable. Better
safe than sorry.

� Simplicity – If in doubt, keep it
out. It is a virtue to be simple.

There are other issues that need to be consid-
ered at the variable specification stage. We
briefly discuss them in this section.

First, we should consider the quality of the data:
Does the variable contain the information we
want? Is there an unacceptable level of mea-
surement error or misclassification? What is
the number of missing observations? If an
observation is missing for any covariate in a
model, typically computer programs “throw
out” that observation when running thatmodel.

We should also consider whether there is collin-
earity between covariates. In this context, we
are not considering collinearity as amodel diag-
nostic as we describe quantitatively in Chap. 8.
Rather, here we are considering whether two
covariates are qualitatively redundant.

For example, suppose we include two variables
in a model to control for both employment
status and personal income. If these two vari-
ables control the same underlying factor, then
including them both in the same model could
lead to model instability. On the other hand, if
you believe that employment status and per-
sonal income are meaningfully different, then
including them both may be important for
proper control.

A consideration of whether a model can
include similar, but not identical covariates, is
the sample size of the data. A large dataset can
better support the “teasing out” of subtle
effects compared with a dataset with a rela-
tively small number of observations.

Another consideration is philosophical. Some
prefer simplicity – if in doubt, leave the vari-
able out. Others say – if in doubt, include the
variable as it is better to be safe than sorry.
Albert Einstein is attributed to have said
“keep everything as simple as possible, but
not simpler.”
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Get to know your data!

Perform thorough descriptive ana-
lyses before modeling.

� Useful for finding data errors

� Gain insight about your data

Descriptive analyses include the
following:

� Frequency tables

� Summary statistics

� Correlations

� Scatter plots

� Histograms

VII. Hierarchically Well-
Formulated Models

Initial model structure: HWF

Model contains all lower-order
components

It is important to do thorough descriptive ana-
lyses before modeling. Get to know your data!
It is possible to run manymodels and not know
that you have only two smokers in your dataset.
Also descriptive analyses are useful for finding
errors. An individual’s age may be incorrectly
recorded at 699 rather than 69 and you may
never know that from reading model output.

Descriptive analyses include obtaining fre-
quency tables for categorical variables, uni-
variate summary statistics (means, variance,
quartiles, max, min, etc.) for continuous vari-
able, bivariate cross tables, bivariate correla-
tions, scatter plots, and histograms. Descriptive
analyses can be performed both before and after
the variable specification stage. Often more
insight is gained from a descriptive analysis
than frommodeling.

When choosing the V and W variables to be
included in the initial model, the investigator
must ensure that the model has a certain struc-
ture to avoid possibly misleading results. This
structure is called a hierarchically well-formulated
model, abbreviated as HWF, which we define
and illustrate in this section.

A hierarchically well-formulated model is a
model satisfying the following characteristic:
Given any variable in the model, all lower-
order components of the variable must also
be contained in the model.

To understand this definition, let us look at an
example of a model that is not hierarchically
well formulated. Consider the model given in
logit form as logit P(X) equals a plus bE plus
g1V1 plus g2V2 plus the product terms d1EV1

plus d2EV2 plus d3EV1V2.

For this model, let us focus on the three-factor
product term EV1V2. This term has the follow-
ing lower-order components: E, V1, V2, EV1,
EV2, and V1V2. Note that the last component
V1V2 is not contained in the model. Thus, the
model is not hierarchically well formulated.

EXAMPLE

Not HWF model:

logit P
�
X
�
¼ aþ bEþ g1V1 þ g2V2

þ d1EV1 þ d2EV2 þ d3EV1V2

Components of EV1V2:
E, V1, V2, EV1, EV2, V1V2

" not in model
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In contrast, the model given by logit P(X)
equals a plus bE plus g1V1 plus g2V2 plus the
product terms d1EV1 plus d2EV2 is hierarchi-
cally well formulated because the lower-order
components of each variable in the model are
also in the model. For example, the compo-
nents of EV1 are E and V1, both of which are
contained in the model.

For illustrative purposes, let us consider one
other model given by logit P(X) equals a plus
bE plus g1V

2
1 plus g2V2 plus the product

term d1EV2
1 . Is this model hierarchically well

formulated?

The answer here can be either yes or no
depending on how the investigator wishes
to treat the variable V2

1 in the model. If V2
1 is

biologically meaningful in its own right with-
out considering its component V1, then the
corresponding model is hierarchically well
formulated because the variable EV2

1 can be
viewed as having only two components,
namely, E and V2

1 , both of which are contained
in the model. Also, if the variable V2

1 is consid-
ered meaningful by itself, it can be viewed as
having no lower order components. Conse-
quently, all lower order components of each
variable are contained in the model.

On the other hand, if the variable V2
1 is not

considered meaningful separately from its fun-
damental component V1, then the model is not
hierarchically well formulated. This is because,
as given, the model does not contain V1, which
is a lower order component of V2

1 and EV2
1 , and

also does not contain the variable EV1, which is
a lower order component of EV2

1 .

Now that we have defined and illustrated an
HWF model, we discuss why such a model
structure is required. The reason is that if the
model is not HWF, then tests about variables in
the model – in particular, the highest-order
terms – may give varying results depending on
the coding of variables in the model. Such tests
should be independent of the coding of the vari-
ables in the model, and they are if the model is
hierarchically well formulated.

EXAMPLE

HWF model:

logit P
�
X
�
¼ aþ bEþ g1V1 þ g2V2

þ d1EV1 þ d2EV2

Components of EV1:
E, V1 both in model

EXAMPLE

logit P
�
X
�
¼ aþ bEþ g1V

2
1

þ g2V2 þ d1EV2
1

HWF model?
Yes, if V2

1 is biologically meaningful
components of EV2

1 E and V2
1

components of V2
1 : none

No, if V2
1 is not meaningful separately

from V1:
The model does not contain
� V1, component of V2

1

� EV1, component of EV2
1

Why require HWF model?

Answer:

HWF?
Tests for highest-order
variables?

No dependent on coding
Yes independent of coding
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To illustrate this point, we return to the first
example considered above, where the model is
given by logit P(X) equals a plus bE plus g1V1

plus g2V2 plus the product terms d1EV1 plus
d2EV2 plus d3EV1V2. This model is not hier-
archically well formulated because it is missing
the term V1V2. The highest-order term in this
model is the three-factor product term EV1V2.

Suppose that the exposure variable E in
this model is a dichotomous variable. Then,
because the model is not HWF, a test of
hypothesis for the significance of the highest-
order term, EV1V2, may give different results
depending on whether E is coded as (0, 1) or
(�1, 1) or any other coding scheme.

In particular, it is possible that a test for EV1V2

may be highly significant if E is coded as (0, 1),
but be nonsignificant if E is coded as (�1, 1).
Such a possibility should be avoided because
the coding of a variable is simply a way to
indicate categories of the variable and, there-
fore, should not have an effect on the results of
data analysis.

In contrast, suppose we consider the HWF
model obtained by adding the V1V2 term to
the previous model. For this model, a test for
EV1V2 will give exactly the same result whether
E is coded using (0, 1), (�1, 1), or any other
coding. In other words, such a test is indepen-
dent of the coding used.

We will shortly see that even if the model is
hierarchically well formulated, then tests about
lower order terms in the model may still depend
on the coding.

EXAMPLE

logit P
�
X
�
¼ aþ bEþ g1V1 þ g2V2

þ d1EV1 þ d2EV2 þ d3EV1V2

Not HWF model:
V1V2 missing

EXAMPLE (continued)

E dichotomous:

Then if not HWF model,
testing for EV1V2 may depend on
whether E is coded as

E ¼ (0, 1), e.g., significant

or

E ¼ (�1, 1), e.g., not significant

or

other coding

EXAMPLE

HWF model:

logit P
�
X
�
¼ aþ bEþ g1V1 þ g2V2 þ g3V1V2

þ d1EV1 þ d2EV2 þ d3EV1V2

Testing for EV1V2 is independent of
coding of E: (0, 1), (�1, 1), or other.

HWF model. Tests for lower order
terms depend on coding
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For example, even though, in the HWF model
being considered here, a test for EV1V2 is
not dependent on the coding, a test for EV1 or
EV2 – which are lower order terms – may still
be dependent on the coding.

What this means is that in addition to requir-
ing that the model be HWF, we also require
that no tests be allowed for lower order com-
ponents of terms like EV1V2 already found to
be significant. We will return to this point later
when we describe the “hierarchy principle” for
retaining variables in the model.

We have now completed our recommendations
for variable specification as well as our require-
ment that the model be hierarchically well for-
mulated. When we complete this stage, we
have identified the largest possible model to
be considered. This model is the initial or start-
ing model from which we attempt to eliminate
unnecessary variables.

The recommended process by which the ini-
tial model is reduced to a final model is called
a hierarchical backward elimination (HWBE)
approach. This approach is described by the
flow diagram shown here.

In the flow diagram, we begin with the initial
model determined from the variable specifica-
tion stage.

If the initial model contains three-factor prod-
uct terms of the form EViVj, then we attempt to
eliminate these terms first.

Following the three-factor product terms, we
then eliminate unnecessary two-factor product
terms of the form EVi.

The last part of the strategy eliminates unnec-
essary Vi and ViVj terms.

EXAMPLE

HWF model:

logit PðXÞ ¼ aþ bEþ g1V1 þ g2V2 þ g3V1V2

þ d1EV1 þ d2EV2 þ d3EV1V2

EV1V2: not dependent on coding

EV1 or EV2: dependent on coding

Require

� HWF model
� No test for lower order

components of significant
higher order terms

VIII. The Hierarchical
Backward Elimination
Approach

ü Variable specification
ü HWF model

Largest model considered ¼ initial
(starting) model

Initial model

Initial model

Eliminate EViEj terms

Eliminate EVi terms

Eliminate Vi and ViVj terms

Final model

hierarchical
backward
elimination (HWBE)

184 6. Modeling Strategy Guidelines



As described in later sections, the EViVj and
EVi product terms can be eliminated using
appropriate statistical testing methods.

However, decisions about the Vi and ViVj terms,
which are potential confounders, should not
involve statistical testing.

The strategy described by this flow diagram is
called hierarchical backward because we are
working backward from our largest starting
model to a smaller final and we are treating
variables of different orders at different steps.
That is, there is a hierarchy of variable types,
with three-factor interaction terms considered
first, followed by two-factor interaction terms,
followed by two-factor, and then one-factor
confounding terms.

As we go through the hierarchical backward
elimination process, some terms are retained
and some terms are dropped at each stage. For
those terms that are retained at a given stage,
there is a rule for identifying lower order com-
ponents that must also be retained in any fur-
ther models.

This rule is called the hierarchy principle. An
analogous principle of the same name has
been described by Bishop, Fienberg, and Hol-
land (1975).

To illustrate the hierarchy principle, suppose
the initial model contains three-factor products
of the form EViVj. Suppose, further, that the
term EV2V5 is found to be significant during
the stage that considers the elimination of
unimportant EViVj terms. Then, the hierarchy
principle requires that all lower order compo-
nents of the EV2V5 term must be retained in all
further models considered in the analysis.

EVi and EViVj (interactions):
use statistical testing

Vi and ViVj (confounders): do not
use statistical testing

Hierarchical

3 factors: EViVj

2 factors: EVi

2 factors: ViVj

1 factors: Vi

Backward

Large starting
model

Smaller final
model

IX. The Hierarchy
Principle for Retaining
Variables

Hierarchical Backward Elimination

Retain terms Drop terms

Hierarchy principle

(Bishop, Fienberg, and Holland,
1975)

EXAMPLE

Initial model: EVi Vj terms

Suppose: EV2V5 significant

Hiearchy principle. all lower order
components of EV2V5 retained

i.e., E, V2, V5, EV2, EV5, and V2V5

cannot be eliminated

Note. Initial model must contain V2V5

to be HWF
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The lower order components of EV2V5 are the
variables E, V2, V5, EV2, EV5, and V2V5. Because
of the hierarchy principle, if the term EV2V5 is
retained, then each of the above component
terms cannot be eliminated from all further
models considered in the backward elimination
process. Note the initial model has to contain
each of these terms, including V2V5, to ensure
that themodel is hierarchically well formulated.

In general, the hierarchy principle states that if
a product variable is retained in the model,
then all lower order components of that vari-
able must be retained in the model.

As another example, if the variables EV2 and
EV4 are to be retained in the model, then the
following lower order components must also
be retained in all further models considered:
E, V2, and V4. Thus, we are not allowed to
consider dropping V2 and V4 as possible non-
confounders because these variables must stay
in the model regardless.

The rationale for the hierarchy principle is simi-
lar to the rationale for requiring that the model
be HWF. That is, tests about lower order com-
ponents of variables retained in the model can
give different conclusions depending on the
coding of the variables tested. Such tests
should be independent of the coding to be
valid. Therefore, no such tests are appropriate
for lower order components.

For example, if the term EV2V5 is significant,
then a test for the significance of EV2 may give
different results depending on whether E is
coded as (0, 1) or (�1, 1).

EXAMPLE

EV2 and EV4 retained:
Then

E, V2 and V4 also retained

cannot be considered as nonconfounders

Hierarchy Principle

If product variable retained, then
all lower order components must
be retained

Hiearchy principle rationale:

� Tests for lower order
components depend on coding

� Tests should be independent of
coding

� Therefore, no tests allowed for
lower order components

EXAMPLE

Suppose EV2V5 significant: then the
test for EV2 depends on coding of E,
e.g., (0, 1) or (�1, 1)
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Note that if a model is HWF, then tests for the
highest-order terms in the model are always
independent of the coding of the variables in
the model. However, tests for lower order com-
ponents of higher order terms are still depen-
dent on coding.

For example, if the highest-order terms in an
HWFmodel are of the formEViVj, then tests for
all such terms are not dependent on the coding
of any of the variables in the model. However,
tests for terms of the form EVi or Vi are depen-
dent on the coding and, therefore, should not
be carried out as long as the corresponding
higher order terms remain in the model.

If the highest-order terms of a HWF model are
of the form EVi, then tests for EVi terms are
independent of coding, but tests for Vi terms
are dependent on coding of the Vs and should
not be carried out. Note that because the Vs
are potential confounders, tests for Vs are not
allowed anyhow.

Note also, regarding the hierarchy principle,
that any lower order component of a significant
higher order termmust remain in the model or
else the model will no longer be HWF. Thus, to
ensure that our model is HWF as we proceed
through our strategy, we cannot eliminate
lower order components unless we have elimi-
nated corresponding higher order terms.

EXAMPLE

HWF: EViVj highest-order terms
Then tests for
EViVj independent of coding but
tests for
EVi or Vj dependent on coding

EXAMPLE

HWF: EVi highest-order terms
Then tests for
EVi independent of coding but tests
for
Vi dependent on coding

HWF model:

Tests for highest-order terms
independent of coding

but

tests for lower order terms
dependent on coding

� Ensures that the model is HWF
e.g., EViVj is significant

) retain lower order compo-
nents or else model is not
HWF
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X. An Example We review the guidelines recommended to this
point through an example. We consider a car-
diovascular disease study involving the 9-year
follow-up of persons fromEvans County, Geor-
gia. We focus on data involving 609 white
males on which we have measured six vari-
ables at the start of the study. These are cate-
cholamine level (CAT), AGE, cholesterol level
(CHL), smoking status (SMK), electrocardio-
gram abnormality status (ECG), and hyperten-
sion status (HPT). The outcome variable is
coronary heart disease status (CHD).

In this study, the exposure variable is CAT,
which is 1 if high and 0 if low. The other five
variables are control variables, so that these
may be considered as confounders and/or
effect modifiers. AGE and CHL are treated con-
tinuously, whereas SMK, ECG, and HPT, are
(0, 1) variables.

The question of interest is to describe the
relationship between E (CAT) and D (CHD),
controlling for the possible confounding and
effect-modifying effects of AGE, CHL, SMK,
ECG, and HPT. These latter five variables are
the Cs that we have specified at the start of our
modeling strategy.

To follow our strategy for dealing with this
data set, we now carry out variable specifica-
tion in order to define the initial model to be
considered. We begin by specifying the V vari-
ables, which represent the potential confoun-
ders in the initial model.

In choosing the Vs, we follow our earlier re-
commendation to let the Vs be the same as
the Cs. Thus, we will let V1 ¼ AGE, V2 ¼ CHL,
V3 ¼ SMK, V4 ¼ ECG, and V5 ¼ HPT.

We could have chosen otherVs in addition to the
five Cs. For example, we could have considered
Vs that are products of two Cs, such as V6 equals
AGE� CHL or V7 equals AGE� SMK.We could
also have considered Vs that are squared Cs,
such as V8 equals AGE2 or V9 equals CHL2.

EXAMPLE

Cardiovascular Disease Study
9-year follow-up Evans County, GA
n ¼ 609 white males

The variables:

CAT;AGE;CHL;SMK;ECG;HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
at start

CHD ¼ outcome

CAT: (0, 1) exposure

AGE;CHL : continuous

SMK;ECG;HPT : ð0; 1Þ

)
control

variables

E ¼ CAT ? D ¼ CHD

controlling for

AGE;CHL;SMK;ECG;HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cs

Variable specification stage:
Vs: potential confounders in initial
model

Here, Vs ¼ Cs:

V1 ¼ AGE;V2 ¼ CHL;V3 ¼ SMK;

V4 ¼ ECG;V5 ¼ HPT

Other possible Vs:
V6 ¼ AGE � CHL
V7 ¼ AGE � SMK
V8 ¼ AGE2

V9 ¼ CHL2
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However, we have restricted the Vs to the Cs
themselves primarily because there are a mod-
erately large number of Cs being considered,
and any further addition of Vs is likely to
make the model difficult to interpret as well
as difficult to fit because of likely collinearity
problems.

We next choose theWs, which are the variables
that go into the initial model as product terms
with E(CAT). These Ws are the potential effect
modifiers to be considered. The Ws that we
choose are the Cs themselves, which are also
the Vs. That is, W1 through W5 equals AGE,
CHL, SMK, ECG, and HPT, respectively.

We could have considered other choices for the
Ws. For instance, we could have added two-
way products of the form W6 equals AGE �
CHL. However, if we added such a term, we
would have to add a corresponding two-way
product term as a V variable, that is, V6 equals
AGE � CHL, to make our model hierarchically
well formulated. This is because AGE � CHL is
a lower order component of CAT � AGE �
CHL, which is EW6.

We could also have considered for our set ofWs
some subset of the five Cs, rather than all five
Cs. For instance, we might have chosen the Ws
to be AGE and ECG, so that the corresponding
product terms in themodel are CAT� AGE and
CAT � ECG only.

Nevertheless, we have chosen the Ws to be all
five Cs so as to consider the possibility of inter-
action from any of the five Cs, yet to keep the
model relatively small to minimize potential
collinearity problems.

Thus, at the end of the variable specification
stage, we have chosen as our initial model, the
E, V, W model shown here. This model is writ-
ten in logit form as logit P(X) equals a constant
term plus terms involving the main effects of
the five control variables plus terms involving
the interaction of each control variable with
the exposure variable CAT.

EXAMPLE (continued)

Restriction of Vs to Cs because:

� Large number of Cs

� Additional Vs difficult to interpret

� Additional Vs may lead to
collinearity

Choice of Ws:
(go into model as EW)
Ws ¼ Cs:

W1 ¼ AGE;W2 ¼ CHL;W3 ¼ SMK;

W4 ¼ ECG;W5 ¼ HPT

Other possible Ws:

W6 ¼ AGE� CHL

(If W6 is in model, then
V6 ¼ AGE� CHL also in HWFmodel.)

Alternative choice of Ws:
Subset of Cs, e.g.,

AGE ) CAT� AGE in model

ECG ) CAT� ECG in model

Rationale for Ws ¼ Cs:

� Allow possible interaction

� Minimize collinearity

Initial E, V, W model

logit PðXÞ ¼ aþ bCATþ ~
5

i¼1

giVi

þ CAT ~
5

j¼1

djWj;

where Vis ¼ Cs ¼ Wjs
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According to our strategy, it is necessary that
our initial model, or any subsequently deter-
mined reduced model, be hierarchically well
formulated. To check this, we assess whether
all lower order components of any variable in
the model are also in the model.

For example, the lower order components of a
product variable like CAT � AGE are CAT and
AGE, and both these terms are in the model as
main effects. If we identify the lower order
components of any other variable, we can see
that the model we are considering is truly hier-
archically well formulated.

Note that if we add to the above model the
three-way product term CAT � ECG � SMK,
the resulting model is not hierarchically well
formulated. This is because the term ECG �
SMK has not been specified as one of the V
variables in the model.

At this point in ourmodel strategy, we are ready
to consider simplifying our model by eliminat-
ing unnecessary interaction and/or confound-
ing terms. We do this using a hierarchical
backward elimination procedure, which consid-
ers eliminating the highest-order terms first,
then the next highest-order terms, and so on.

Because the highest-order terms in our initial
model are two-way products of the formEW, we
first consider eliminating some of these interac-
tion terms. We then consider eliminating the V
terms, which are the potential confounders.

Here, we summarize the results of the interac-
tion assessment and confounding assessment
stages and then return to provide more details
of this example in Chap. 7.

The results of the interaction stage allow us to
eliminate three interaction terms, leaving in
the model the two product terms CAT � CHL
and CAT � HPT.

Thus, at the end of interaction assessment, our
remaining model contains our exposure vari-
able CAT, the five Vs namely, AGE, CHL, SMK,
ECG, and HPT plus two product terms CAT �
CHL and CAT � HPT.

EXAMPLE (continued)

HWF model?

i.e., given variable, are lower order
components in model?

e:g:;CAT� AGE

+
CAT and AGE both in model as main
effects

HWF model? YES

If CAT � ECG � SMK in model, then
not HWF model

because
ECG � SMK not in model

Next
Hierarchical backward elimination
procedure

First, eliminate EW terms
Then, eliminate V terms

Interaction assessment
and

confounding assessments (details in
Chap. 7)

Results of Interaction Stage:
CAT � CHL and CAT � HPT
are the only two interaction terms to
remain in the model

Model contains

CAT;AGE;CHL;SMK;ECG;HPT;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vs

CAT� CHL and CAT�HPT
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The reason why the model contains all five Vs
at this point is because we have not yet done
any analysis to evaluate which of the Vs can be
eliminated from the model.

However, because we have found two signifi-
cant interaction terms, we need to use the hier-
archy principle to identify certain Vs that
cannot be eliminated from any further models
considered.

The hierarchy principle says that all lower order
components of significant product terms must
remain in all further models.

In our example, the lower order components of
CAT � CHL are CAT and CHL, and the lower
order components of CAT � HPT are CAT and
HPT. Now the CAT variable is our exposure
variable, so we will leave CAT in all further
models regardless of the hierarchy principle.
In addition, we see that CHL and HPT must
remain in all further models considered.

This leaves the V variables AGE, SMK, and
ECG as still being eligible for elimination at
the confounding stage of the strategy.

Aswe show inChap. 7, wewill not find sufficient
reason to remove any of the above three vari-
ables as nonconfounders. In particular, we will
show that decisions about confounding for this
example are too subjective to allow us to drop
any of the three V terms eligible for elimination.

Thus, as a result of our modeling strategy, the
final model obtained contains the variables
CAT, AGE, CHL, SMK, ECG, and HPT as
main effect variables, and it contains the two
product terms CAT � CHL and CAT � HPT.

EXAMPLE (continued)

All five Vs in model so far

Hierarchy principle

identify Vs that cannot be
eliminated

EVi significant

+
E and Vi must remain

CAT� CHL ) CAT and CHL remain

CAT�HPT ) CAT and HPT remain

Thus,
CAT (exposure) remains

plus
CHL and HPT remain

AGE, SMK, ECG
eligible for elimination

Results (details in Chap. 7):

Cannot remove AGE, SMK, ECG
(decisions too subjective)

Final model variables:
CAT, AGE, CHL, SMK, ECG, HPT,
CAT � CHL, and CAT � HPT

Presentation: X. An Example 191



The computer results for this final model are
shown here. This includes the estimated regres-
sion coefficients, corresponding standard
errors, and Wald test information. The vari-
ables CAT � HPT and CAT � CHL are denoted
in the printout as CH and CC, respectively.

Also provided here is the formula for the esti-
mated adjusted odds ratio for the CAT, CHD
relationship. Using this formula, one can com-
pute point estimates of the odds ratio for differ-
ent specifications of the effectmodifiers CHL and
HPT. Further details of these results, including
confidence intervals, will be provided in Chap. 7.

SUMMARY
Three stages:
(1) Variable specification
(2) Interaction
(3) Confounding/precision

Initial model: HWF model

Hierarchical backward elimination
procedure
(test for interaction, but do not test
for confounding)

Hierarchy principle

significant product term

+
retain lower order components

As a summary of this presentation, we have
recommended a modeling strategy with three
stages: (1) variable specification, (2) interac-
tion assessment, and (3) confounding assess-
ment followed by consideration of precision.

The initial model has to be hierarchically well
formulated (HWF). This means that themodel
must contain all lower order components of
any term in the model.

Given an initial model, the recommended
strategy involves a hierarchical backward
elimination procedure for removing variables.
In carrying out this strategy, statistical testing
is allowed for interaction terms, but not for
confounding terms.

When assessing interaction terms, the hierar-
chy principle needs to be applied for any prod-
uct term found significant. This principle
requires all lower order components of signif-
icant product terms to remain in all further
models considered.

EXAMPLE (continued)

Printout

Variable Coefficient S.E. Chi sq P

Intercept �4.0497 1.2550 10.41 0.0013
CAT �12.6894 3.1047 16.71 0.0000
AGE 0.0350 0.0161 4.69 0.0303
CHL �0.00545 0.0042 1.70 0.1923
ECG 0.3671 0.3278 1.25 0.2627
SMK 0.7732 0.3273 5.58 0.0181
HPT 1.0466 0.3316 9.96 0.0016
CH �2.3318 0.7427 9.86 0.0017
CC 0.0692 0.3316 23.20 0.0000

interaction

CH ¼ CAT�HPT and

CC ¼ CAT� CHLdROR ¼ expð�12:6894

þ 0:0692CHL� 2:3881HPTÞ

Details in Chap. 7.

Vs
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Chapters up to this point

1. Introduction
2. Special Cases

�
�
�

3 6. Modeling Strategy Guidelines

7. Strategy for Assessing Inter-
action and Confounding

This presentation is now complete. We suggest
that the reader review the presentation
through the detailed outline on the following
pages. Then, work through the practice exer-
cises and then the test.

The next chapter is entitled: “Modeling Strat-
egy for Assessing Interaction and Confound-
ing”. This continues the strategy described
here by providing a detailed description of the
interaction and confounding assessment
stages of our strategy.
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Detailed
Outline

I. Overview (page 168)
Focus:
� Guidelines for “best” model

� 3-stage strategy

� Valid estimate of E–D relationship

II. Rationale for a modeling strategy (pages
168–169)
A. Insufficient explanation provided about

strategy in published research; typically only
final results are provided.

B. Toomany ad hoc strategies in practice; need for
some guidelines.

C. Need to consider a general strategy that applies
to different kinds of modeling procedures.

D. Goal of strategy in etiologic research is to get a
valid estimate of E–D relationship; this
contrasts with goal of obtaining good
prediction, which is built into computer
packages for different kinds of models.

III. Overview of recommended strategy (pages
169–173)
A. Three stages: variable specification, interaction

assessment, and confounding assessment
followed by considerations of precision.

B. Reason why interaction stage precedes
confounding stage: confounding is irrelevant in
the presence of strong interaction.

C. Reason why confounding stage considers
precision after confounding is assessed: validity
takes precedence over precision.

D. Statistical concerns needing attention but
beyond scope of this presentation: collinearity,
controlling the significance level, and
influential observations.

E. The model must be hierarchically well
formulated.

F. The strategy is a hierarchical backward
elimination strategy that considers the roles
that different variables play in the model and
cannot be directly carried out using standard
computer algorithms.

G. Confounding is not assessed by statistical
testing.

H. If interaction is present, confounding
assessment is difficult in practice.

IV. Variable specification stage (pages 173–175)
A. Start with D, E, and C1, C2, . . ., Cp.
B. Choose Vs from Cs based on prior research or

theory and considering potential statistical
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problems, e.g., collinearity; simplest choice is to
let Vs be Cs themselves.

C. ChooseWs from Cs to be either Vs or product of
two Vs; usually recommend Ws to be Cs
themselves or some subset of Cs.

V. Causal diagrams (pages 175–179)
A. The approach for variable selection should

consider causal structure.
B. Example of causal diagram: Smoking ! Lung

Cancer ! Abnormal Chest X-ray.
C. Controlling for X-ray status in above diagram

leads to bias
D. Depending on the underlying causal structure,

adjustment may either remove bias, lead to
bias, or be appropriate.

E. Causal diagram for confounding: C is a
common cause of E and D

C

D

E C is a common cause of E and D;
The path E–C–D is a (noncausal)

backdoor path from E to D

F. Other types of causal diagrams:
i. F is a common effect of E and D;

conditioning on F creates bias; Berkson’s
bias example.

ii. Example involving unmeasured factors.
G. Conditioning on a common cause can remove

bias, whereas conditioning on a common effect
can cause bias.

VI. Other considerations for variable specification
(pages 180–181)
A. Quality of the data: measurement error or

misclassification?
B. Qualitative collinearity, e.g., redundant

covariates.
C. Sample size
D. Complexity vs. simplicity
E. Know your data! Perform descriptive analyses.

VII. Hierarchically well-formulated models (pages
181–184)
A. Definition: given any variable in the model, all

lower order components must also be in the
model.

B. Examples of models that are and are not
hierarchically well-formulated.

C. Rationale: If the model is not hierarchically
well-formulated, then tests for significance of
the highest-order variables in the model may
change with the coding of the variables tested;
such tests should be independent of coding.
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VIII. The hierarchical backward elimination
approach (pages 184–185)
A. Flow diagram representation.
B. Flow description: evaluate EViVj terms first,

then EVi terms, then Vi terms last.
C. Use statistical testing for interaction terms, but

decisions about Vi terms should not involve
testing.

IX. The hierarchy principle for retaining variables
(pages 185–187)
A. Definition: If a variable is to be retained in the

model, then all lower order components of that
variable are to be retained in the model forever;
examples.

C. Rationale: Tests about lower order components
can give different conclusions depending on the
coding of variables tested; such tests should be
independent of coding to be valid; therefore, no
such tests are appropriate; example.

X. An example (pages 188–192)
A. Evans County CHD data description.
B. Variable specification stage.
C. Final results.

XI. Summary (pages 192–193)
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Practice
Exercises

A prevalence study of predictors of surgical wound infec-
tion in 265 hospitals throughout Australia collected data
on 12,742 surgical patients (McLaws et al., 1988). For each
patient, the following independent variables were deter-
mined: type of hospital (public or private), size of hospital
(large or small), degree of contamination of surgical site
(clean or contaminated), and age and sex of the patient.
A logistic model was fitted to these data to predict whether
or not the patient developed a surgical wound infection
during hospitalization. The abbreviated variable names
and the manner in which the variables were coded in the
model are described as follows:

Variable Abbreviation Coding

Type of hospital HT 1 ¼ public, 0 ¼ private
Size of hospital HS 1 ¼ large, 0 ¼ small
Degree of

contamination
CT 1 ¼ contaminated,

0 ¼ clean
Age AGE Continuous
Sex SEX 1 ¼ female, 0 ¼ male

In the questions that follow, we assume that type of hospi-
tal (HT) is considered the exposure variable, and the other
four variables are risk factors for surgical wound infection
to be considered for control.

1. In defining anE, V,Wmodel to describe the effect ofHT
on the development of surgical wound infection,
describe how you would determine the V variables
to go into the model. (In answering this question, you
need to specify the criteria for choosing the V variables,
rather than the specific variables themselves.)

2. In defining an E, V, W model to describe the effect of
HT on the development of surgical wound infection,
describe how you would determine the W variables to
go into the model. (In answering this question, you
need to specify the criteria for choosing the W
variables, rather than specifying the actual variables.)

3. State the logit form of a hierarchically well-formulated
E, V, W model for the above situation in which the Vs
and the Ws are the Cs themselves. Why is this model
hierarchically well formulated?

4. Suppose the product term HT � AGE � SEX is added
to themodel described in Exercise 3. Is this newmodel
still hierarchically well formulated? If so, state why; if
not, state why not.

5. Suppose for the model described in Exercise 4 that a
Wald test is carried out for the significance of the
three-factor product term HT � AGE � SEX. Explain
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what is meant by the statement that the test result
depends on the coding of the variable HT. Should
such a test be carried out? Explain briefly.

6. Suppose for the model described in Exercise 3 that a
Wald test is carried out for the significance of the two-
factor product term HT � AGE. Is this test dependent
on coding? Explain briefly.

7. Suppose for the model described in Exercise 3 that a
Wald test is carried out for the significance of themain
effect term AGE. Why is this test inappropriate here?

8. Using the model of Exercise 3, describe briefly the
hierarchical backward elimination procedure for
determining the best model.

9. Suppose the interaction assessment stage for the
model of Example 3 finds the following two-factor
product terms to be significant: HT � CT and HT �
SEX; the other two-factor product terms are not
significant and are removed from the model. Using
the hierarchy principle, what variables must be
retained in all further models considered. Can these
(latter) variables be tested for significance? Explain
briefly.

10. Based on the results in Exercise 9, state the (reduced)
model that is left at the end of the interaction
assessment stage.

Test True or False? (Circle T or F)

T F 1. The three stages of the modeling strategy
described in this chapter are interaction assess-
ment, confounding assessment, and precision
assessment.

T F 2. The assessment of interaction should precede
the assessment of confounding.

T F 3. The assessment of interaction may involve
statistical testing.

T F 4. The assessment of confounding may involve
statistical testing.

T F 5. Getting a precise estimate takes precedence
over getting an unbiased answer.

T F 6. During variable specification, the potential
confounders should be chosen based on
analysis of the data under study.

T F 7. During variable specification, the potential
effect modifiers should be chosen by consider-
ing prior research or theory about the risk
factors measured in the study.

T F 8. During variable specification, the potential
effect modifiers should be chosen by
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considering possible statistical problems that
may result from the analysis.

T F 9. A model containing the variables E, A, B, C, A2,
A � B, E � A, E � A2, E � A � B, and E � C is
hierarchically well formulated.

T F 10. If the variables E � A2 and E � A � B are found
to be significant during interaction assessment,
then a complete list of all components of these
variables that must remain in any further
models considered consists of E, A, B, E � A,
E � B, and A2.

The following questions consider the use of logistic
regression on data obtained from a matched case-control
study of cervical cancer in 313 women from Sydney,
Australia (Brock et al., 1988). The outcome variable is
cervical cancer status (1 ¼ present, 0 ¼ absent). The
matching variables are age and socioeconomic status.
Additional independent variables not matched on are
smoking status, number of lifetime sexual partners, and
age at first sexual intercourse. The independent variables
are listed below together with their computer abbreviation
and coding scheme.

Variable Abbreviation Coding

Smoking status SMK 1 ¼ ever,
0 ¼ never

Number of sexual
partners

NS 1 ¼ 4þ, 0 ¼ 0–3

Age at first intercourse AS 1 ¼ 20þ,
0 ¼ <19

Age of subject AGE Category matched
Socioeconomic status SES Category matched
11. Consider the following E, V, W model that considers

the effect of smoking, as the exposure variable, on
cervical cancer status, controlling for the effects of
the other four independent variables listed:

logit PðXÞ ¼ aþ bSMK þ~g*i V
*
i þ g1NSþ g2AS

þ g3NS� ASþ d1SMK �NS

þ d2SMK � ASþ d3SMK �NS� AS;

where the Vi
* are dummy variables indicating

matching strata and the gi* are the coefficients of
the Vi

* variables. Is this model hierarchically well
formulated? If so, explain why; if not, explain why not.

12. For the model in Question 11, is a test for the
significance of the three-factor product term SMK �
NS � AS dependent on the coding of SMK? If so,
explain why; if not explain, why not.
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13. For the model in Question 11, is a test for the
significance of the two-factor product term SMK �
NS dependent on the coding of SMK? If so, explain
why; if not, explain why not.

14. For the model in Question 11, briefly describe a
hierarchical backward elimination procedure for
obtaining a best model.

15. Suppose that the three-factor product term SMK � NS
� AS is found significant during the interaction
assessment stage of the analysis. Then, using the
hierarchy principle, what other interaction terms
must remain in any further model considered? Also,
using the hierarchy principle, what potential
confounders must remain in any further models
considered?

16. Assuming the scenario described in Question 15 (i.e.,
SMK � NS � AS is significant), what (reduced) model
remains after the interaction assessment stage of the
model? Are there any potential confounders that are
still eligible to be dropped from the model? If so,
which ones? If not, why not?
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Answers to
Practice
Exercises

1. The V variables should include the C variables HS, CT,
AGE, and SEX and any functions of these variables
that have some justification based on previous
research or theory about risk factors for surgical
wound infection. The simplest choice is to choose the
Vs to be the Cs themselves, so that at least every
variable already identified as a risk factor is controlled
in the simplest way possible.

2. The W variables should include some subset of the Vs,
or possibly all the Vs, plus those functions of the Vs
that have some support from prior research or theory
about effect modifiers in studies of surgical wound
infection. Also, consideration should be given, when
choosing the Ws, of possible statistical problems, e.g.,
collinearity, that may arise if the size of the model
becomes quite large and the variables chosen are
higher order product terms. Such statistical problems
may be avoided if the Ws chosen do not involve very
high-order product terms and if the number of Ws
chosen is small. A safe choice is to choose theWs to be
the Vs themselves or a subset of the Vs.

3. logit P(X) ¼ a þ bHT þ g1HS þ g2CT þ g3AGE
þ g4 SEX þ d1HT � HS þ d2HT � CT
þ d3HT � AGE þ d4HT � SEX.
This model is HWF because given any interaction
term in the model, both of its components are also in
the model (as main effects).

4. If HT � AGE � SEX is added to the model, the new
model will not be hierarchically well formulated
because the lower order component AGE� SEX is not
contained in the original nor new model.

5. A test for HT � AGE � SEX in the above model is
dependent on coding in the sense that different test
results (e.g., rejection vs. nonrejection of the null
hypothesis) may be obtained depending on whether
HT is coded as (0, 1) or (�1, 1) or some other coding.
Such a test should not be carried out because any test
of interest should be independent of coding, reflecting
whatever the real effect of the variable is.

6. A test for HT � AGE in the model of Exercise 3 is
independent of coding because the model is
hierarchically well formulated and the HT � AGE
term is a variable of highest order in the model. (Tests
for lower order terms like HT or HS are dependent on
the coding even though the model in Exercise 3 is
hierarchically well formulated.)

7. A test for the variable AGE is inappropriate because
there is a higher order term, HT � AGE, in the model,
so that a test for AGE is dependent on the coding of the
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HT variable. Such a test is also inappropriate because
AGE is a potential confounder, and confounding
should not be assessed by statistical testing.

8. A hierarchical backward elimination procedure for
the model in Exercise 3 would involve first assessing
interaction involving the four interaction terms and
then considering confounding involving the four
potential confounders. The interaction assessment
could be done using statistical testing, whereas the
confounding assessment should not use statistical
testing. When considering confounding, any
V variable that is a lower order component of a
significant interaction term must remain in all further
models and is not eligible for deletion as a
nonconfounder. A test for any of these latter Vs is
inappropriate because such a test would be dependent
on the coding of any variable in the model.

9. If HT � CT and HT � SEX are found significant, then
the V variables CT and SEX cannot be removed from
the model and must, therefore, be retained in all
further models considered. The HT variable remains
in all further models considered because it is the
exposure variable of interest. CT and SEX are lower
order components of higher order interaction terms.
Therefore, it is not apropriate to test for their
inclusion in the model.

10. At the end of the interaction assessment stage, the
remaining model is given by

logit PðXÞ ¼ aþ bHTþ g1HSþ g2CTþ g3AGEþ g4SEX

þ d2HT� CTþ d4HT� SEX:

202 6. Modeling Strategy Guidelines



7 Modeling

Strategy for

Assessing

Interaction

and

Confounding

n Contents Introduction 204

Abbreviated Outline 204

Objectives 205

Presentation 206

Detailed Outline 233

Practice Exercises 234

Test 236

Answers to Practice Exercises 237

D.G. Kleinbaum and M. Klein, Logistic Regression, Statistics for Biology and Health,
DOI 10.1007/978-1-4419-1742-3_7, # Springer ScienceþBusiness Media, LLC 2010

203



Introduction This chapter continues the previous chapter (Chap. 6) that
gives general guidelines for a strategy for determining a
best model using a logistic regression procedure. The focus
of this chapter is the interaction and confounding assess-
ment stages of the model building strategy.

We begin by reviewing the previously recommended
(Chap. 6) three-stage strategy. The initial model is required
to be hierarchically well formulated. In carrying out this
strategy, statistical testing is allowed for assessing interac-
tion terms but is not allowed for assessing confounding.

For any interaction term found significant, a hierarchy
principle is required to identify lower order variables that
must remain in all further models considered. A flow dia-
gram is provided to describe the steps involved in interac-
tion assessment. Methods for significance testing for
interaction terms are provided.

Confounding assessment is then described, first when
there is no interaction, and then when there is interaction –
the latter often being difficult to accomplish in practice.

Finally, an application of the use of the entire recom-
mended strategy is described, and a summary of the strat-
egy is given.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered in this chapter. A detailed outline for review
purposes follows the presentation.

I. Overview (pages 206–207)

II. Interaction assessment stage (pages 207–210)

III. Confounding and precision assessment when no
interaction (pages 211–215)

IV. Confounding assessment with interaction (pages
215–223)

V. The Evans County example continued (pages
223–230)

VI. Summary (pages 231–232)
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Objectives Upon completing this chapter, the learner should be able to:

1. Describe and apply the interaction assessment stage in
a particular logistic modeling situation.

2. Describe and apply the confounding assessment stage
in a particular logistic modeling situation

a. when there is no interaction and

b. when there is interaction.
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Presentation

I. Overview

FOCUS

Assessing
confounding
and interaction

Valid estimate
of E–D
relationship

Three stages:

(1) Variable specification

(2) Interaction

(3) Confounding/precision

Initial model: HWF

EViVj

in initial

model

!
EVi;EVj;

Vi;Vj;ViVj

also in model

Hierarchical backward elimination:

� Can test for interaction, but not
confounding

� Can eliminate lower order term
if corresponding higher order
term is not significant

This presentation describes a strategy for
assessing interaction and confounding when
carrying out mathematical modeling using
logistic regression. The goal of the strategy is
to obtain a valid estimate of an exposure–
disease relationship that accounts for con-
founding and effect modification.

In the previous presentation onmodeling strat-
egy guidelines, we recommended a modeling
strategy with three stages: (1) variable specifi-
cation, (2) interaction assessment, and (3) con-
founding assessment followed by consideration
of precision.

The initial model is required to be hierarchi-
cally well formulated, which we denote as
HWF. This means that the initial model must
contain all lower order components of any
term in the model.

Thus, for example, if the model contains an
interaction term of the form EViVj, this will
require the lower order terms EVi, EVj, Vi, Vj,
and ViVj also to be in the initial model.

Given an initial model that is HWF, the recom-
mended strategy then involves a hierarchical
backward elimination procedure for removing
variables. In carrying out this strategy, statisti-
cal testing is allowed for interaction terms but
not for confounding terms. Note that although
any lower order component of a higher order
term must belong to the initial HWF model,
such a component might be dropped from the
model eventually if its corresponding higher
order term is found to be nonsignificant during
the backward elimination process.
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Hierarchy Principle:

Significant

product term
! All lower order

components remain

II. Interaction
Assessment Stage

Start with HWF model

Use hierarchical backward elimi-
nation:

EViVj before EVi

Interaction stage flow:

Initial model: E, Vi, EVi, EViVj
Eliminate nonsignificant EViVj terms

Use hierarchy principle to specify
for all further models EVi components
of significant EViVj terms

Other EVi terms:
Eliminate nonsignificant EVi
terms from models, retaining previous:

significant EViVj terms

EVi components

Vi (or ViVj) terms

Statistical testing
Chunk test for entire collection of
interaction terms

If, however, when assessing interaction, a
product term is found significant, the Hierar-
chy Principle must be applied for lower order
components. This principle requires all lower
order components of significant product terms
to remain in all further models considered.

According to our strategy, we consider interac-
tion after we have specified our initial model,
which must be hierarchically well formulated
(HWF). To address interaction, we use a hier-
archical backward elimination procedure,
treating higher order terms of the form EViVj

prior to considering lower order terms of the
form EVi.

A flow diagram for the interaction stage is pre-
sented here. If our initial model contains terms
up to the orderEViVj, elimination of these latter
terms is considered first. This can be achieved
by statistical testing in a number ofways, which
we discuss shortly.

When we have completed our assessment of
EViVj terms, the next step is to use the hierar-
chy principle to specify any EVi terms that are
components of significant EViVj terms. Such
EVi terms are to be retained in all further mod-
els considered.

The next step is to evaluate the significance of
EVi terms other than those identified by the hier-
archy principle. ThoseEVi terms that are nonsig-
nificant are eliminated from the model. For this
assessment, previously significant EViVj terms,
their EVi components, and all Vi terms are
retained in any model considered. Note that
some of the Vi terms will be of the form ViVj if
the initial model contains EViVj terms.

In carrying out statistical testing of interaction
terms,we recommend that a single “chunk” test
for the entire collection (or “chunk”) of interac-
tion terms of a given order be considered first.
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Chunk test

Not significant

Eliminate all
terms in chunk

or

Use BWE to eliminate terms
from chunk

Retain some
terms in chunk

Significant

Even if chunk test n.s.:

� Perform BWE

� May find highly signif. product
term(s)

� If so, retain such terms

For example, if there are a total of three EViVj

terms in the initial model, namely, EV1V2,
EV1V3, and EV2V3, then the null hypothesis
for this chunk test is that the coefficients of
these variables, say d1, d2, and d3 are all equal
to zero. The test procedure is a likelihood ratio
(LR) test involving a chi-square statistic with
three degrees of freedom, which compares the
full model containing all Vi, ViVj,EVi, and EViVj

terms with a reducedmodel containing only Vi,
ViVj, and EVi terms, with E in both models.

If the chunk test is not significant, then the
investigator may decide to eliminate from the
model all terms tested in the chunk, for exam-
ple, all EViVj terms. If the chunk test is signifi-
cant, then this means that some, but not
necessarily all terms in the chunk, are signifi-
cant and must be retained in the model.

To determine which terms are to be retained,
the investigator may carry out a backward
elimination (BWE) algorithm to eliminate
insignificant variables from the model one at
a time. Depending on the preferencen of the
investigator, such a BWE procedure may be
carried out without even doing the chunk test
or regardless of the results of the chunk test.

Alternatively, BWE may still be considered
even if the chunk test is nonsignificant. It is
possible that one or more product terms are
highly significant during BWE, and, if so,
should be retained.

As an example of such a backward algorithm,
suppose we again consider a hierarchically
well-formulated model that contains the two
EViVj terms EV1V2 and EV1V3 in addition to
the lower order components V1, V2, V3, V1V2,
V1V3, and EV1, EV2, EV3.

EXAMPLE

EV1V2, EV1V3, EV2V3 in model

chunk test for H0 : d1 ¼ d2 ¼ d3 ¼ 0

use LR statistic � w23 comparing

full model: all Vi, ViVj, EVj, EViVj, E
with reduced model: Vi, ViVj, EVj, E

EXAMPLE

HWF model:

EV1V2, EV1V3,

V1, V2, V3, V1V2, V1V3,
EV1, EV2, EV3
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Using the BWE approach, the least significant
EVi Vj term, say EV1V3, is eliminated from the
model first, provided it is nonsignificant, as
shown on the left-hand side of the flow. If it is
significant, as shown on the right-hand side of
the flow, then both EV1V3 and EV1V2 must
remain in the model, as do all lower order
components, and the modeling process is
complete.

Suppose that the EV1V3 term is not significant.
Then, this term is dropped from the model. A
reduced model containing the remaining
EV1V2 term and all lower order components
from the initial model are then fitted. The
EV1V2 term is then dropped if nonsignificant
but is retained if significant.

Suppose the EV1V2 term is found significant,
so that as a result of backward elimination, it is
the only three-factor product term retained.
Then the above reduced model is our current
model, from which we now work to consider
eliminating EV terms.

Because our reduced model contains the sig-
nificant term EV1V2, we must require (using
the hierarchy principle) that the lower order
components E, V1, V2, EV1, EV2, and V1V2 are
retained in all further models considered.

The next step is to assess the remaining EVi

terms. In this example, there is only one EVi

term eligible to be removed, namely EV3,
because EV1 and EV2 are retained from the
hierarchy principle.

EXAMPLE (continued)

BWE approach:

Suppose EV1V3 least significant

and
nonsignificant

eliminate EV1V3

from model

retain EV1V3 and
EV1V2 in model

and
significant

Suppose EV1V3 not significant:
then drop EV1V3 from model.
Reduced model:
EV1V2

V1, V2, V3, V1V2, V1V3

EV1, EV2, EV3

EV1V2 dropped if non-signif.

Suppose EV1V2 significant:
then EV1V2 retained and above
reduced model is current model

Next: eliminate EV terms

From hierarchy principle:
E, V1, V2, EV1, EV2, and V1V2

retained in all further models

Assess other EVi terms:
only EV3 eligible for removal
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Most situations
use only EVi

product terms
+

interaction assessment
less complicated

+
do not need ViVj terms

for HWF model:

To evaluate whether EV3 is significant, we can
perform a likelihood ratio (LR) chi-square test
with one degree of freedom. For this test, the
two models being compared are the full model
consisting of EV1V2, all three EVi terms and all
Vi terms, including those of the form ViVj, and
the reduced model that omits the EV3 term
being tested. Alternatively, a Wald test can be
performed using the Z statistic equal to the
coefficient of the EV3 term divided by its stan-
dard error.

Suppose that both the above likelihood ratio
and Wald tests are nonsignificant. Then we
can drop the variable EV3 from the model.

Thus, at the end of the interaction assessment
stage for this example, the following terms
remain in the model: EV1V2, EV1, EV2, V1, V2,
V3, V1V2, and V1V3.

All of the V terms, including V1V2 and V1V3,
in the initial model are still in the model at
this point. This is because we have been asses-
sing interaction only, whereas the V1V2 and
V1V3 terms concern confounding. Note that
although the ViVj terms are products, they are
potential confounders in this model because
they do not involve the exposure variable E.

Before discussing confounding, we point out
that for most situations, the highest-order
interaction terms to be considered are two-fac-
tor product terms of the form EVi. In this case,
interaction assessment begins with such two-
factor terms and is often much less compli-
cated to assess than when there are terms of
the form EViVj.

In particular, when only two-factor interaction
terms are allowed in the model, then it is not
necessary to have two-factor confounding
terms of the form ViVj in order for the model
to be hierarchically well formulated. This
makes the assessment of confounding a less
complicated task than when three-factor inter-
actions are allowed.

EXAMPLE (continued)

LR statistic � w21

Full model: EV1V2, EV1, EV2, EV3,
V1, V2, V3, V1V2, V1V3

Reduced model: EV1V2, EV1, EV2,
V1, V2, V3, V1V2, V1V3

Wald test : Z ¼ d̂EV3

Sd̂EV3

Suppose both LR and Wald tests are
nonsignificant:
then drop EV3 from model

Interaction stage results:

EV1V2;EV1;EV2

V1;V2;V3

V1V2;V1V3

)
confounders

All Vi (and ViVj) remain in model after
interaction assessment
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III. Confounding and
Precision Assessment
When No Interaction

Confounding:

No statistical testing
(validity issue)

Confounding before precision
# #

Gives correct Gives narrow
answer confidence

interval

No interaction model:

logit PðXÞ ¼ aþ bEþ~ giVi

(no terms of form EW)

Interaction
present?

Confounding
assessment?

No Straightforward
Yes Difficult

The final stage of our strategy concerns the
assessment of confounding followed by consid-
eration of precision. We have previously
pointed out that this stage, in contrast to the
interaction assessment stage, is carried out
without the use of statistical testing. This is
because confounding is a validity issue and,
consequently, does not concern random error
issues that characterize statistical testing.

We have also pointed out that controlling for
confounding takes precedence over achieving
precision because the primary goal of the anal-
ysis is to obtain the correct estimate rather
than a narrow confidence interval around the
wrong estimate.

In this section, we focus on the assessment of
confounding when the model contains no
interaction terms. The model in this case con-
tains only E and V terms but does not contain
product terms of the form E times W.

The assessment of confounding is relatively
straight-forward when no interaction terms
are present in one’s model. In contrast, as we
shall describe in the next section, it becomes
difficult to assess confounding when interac-
tion is present.

In considering the no interaction situation, we
first consider an example involving a logistic
model with a dichotomous E variable and five
V variables, namely, V1 through V5.

For this model, the estimated odds ratio that
describes the exposure–disease relationship is
given by the expression e to the b̂, where b̂ is the
estimated coefficient of theE variable. Because
the model contains no interaction terms, this
odds ratio estimate is a single number that
represents an adjusted estimate that controls
for all five V variables.

EXAMPLE

Initial model

logit PðXÞ ¼ aþ bEþ g1V1 þ � � � þ g5V5

dOR ¼ eb̂

(a single number)
adjusts for V1, . . . , V5
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We refer to this estimate as the gold standard
estimate of effect because we consider it the
best estimate we can obtain, which controls
for all the potential confounders, namely, the
five Vs, in our model.

We can nevertheless obtain other estimated
odds ratios by dropping some of the Vs from
the model. For example, we can drop V3, V4,
and V5 from the model and then fit a model
containing E, V1, and V2. The estimated odds
ratio for this “reduced” model is also given by
the expression e to the b̂, where b̂ is the coeffi-
cient of E in the reduced model. This estimate
controls for only V1 and V2 rather than all five
Vs.

Because the reduced model is different from
the gold standard model, the estimated odds
ratio obtained for the reduced model may be
meaningfully different from the gold standard.
If so, then we say that the reduced model does
not control for confounding because it does not
give us the correct answer (i.e., gold standard).

For example, suppose that the gold standard
odds ratio controlling for all five Vs is 2.5,
whereas the odds ratio obtained when
controlling for only V1 and V2 is 5.2. Then,
because these are meaningfully different odds
ratios,wecannotuse thereducedmodelcontain-
ing V1 and V2 because the reduced model does
not properly control for confounding.

Now although use of only V1 and V2 may not
control for confounding, it is possible that
some other subset of the Vs may control for
confounding by giving essentially the same
estimated odds ratio as the gold standard.

For example, perhaps when controlling for V3

alone, the estimated odds ratio is 2.7 and when
controlling for V4 and V5, the estimated odds
ratio is 2.3. The use of either of these subsets
controls for confounding because they give
essentially the same answer as the 2.5 obtained
for the gold standard.

EXAMPLE (continued)

Gold standard estimate:
Controls for all potential
confounders (i.e., all five Vs)

Other OR estimates:
Drop some Vs
e.g., drop V3, V4, V5

Reduced model:

logit PðXÞ ¼ aþ bEþ g1V1 þ g2V2dOR ¼ eb̂

controls for V1 and V2 only

Reduced model 6¼ gold standard
model

correct answer

dOR ðreducedÞ ¼? dOR ðgold standardÞ

If different, then reduced model does
not control for confounding

Suppose:

Gold standard (all five Vs)

meaningfully
different

does not control
for confounding

reduced model (V1 and V2)
OR = 2.5

OR = 5.2

dOR
some other

subset of Vs

 !
¼? dOR

gold

standard

 !

If equal, then subset controls
confounding

dOR ðV3 aloneÞ ¼ 2:7dOR ðV4 and V5Þ ¼ 2:3dOR ðgold standardÞ ¼ 2:5

All three estimates are “essentially”
the same as the gold standard
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In general, when no interaction,
assess confounding by:

� Monitoring changes in effect
measure for subsets of Vs, i.e.,
monitor changes in

dOR ¼ eb̂

� Identify subsets of Vs giving
approximately same dOR as
gold standard

If dOR (subset of Vs) ¼ dOR (gold
standard), then
� which subset to use?

� why not use gold standard?

Answer: precision

less precise more precise

more narrowless narrow

CIs: ( () )

CI for GSmay be either less precise
or more precise than CI for subset

In general, regardless of the number of Vs in
one’s model, the method for assessing con-
founding when there is no interaction is to
monitor changes in the effect measure cor-
responding to different subsets of potential
confounders in the model. That is, we must
see to what extent the estimated odds ratio
given by e to the b̂ for a given subset is different
from the gold standard odds ratio.

More specifically, to assess confounding, we
need to identify subsets of the Vs that give
approximately the same odds ratio as the gold
standard. Each of these subsets controls for
confounding.

If we find one or more subsets of the Vs, which
give us the same point estimate as the gold
standard, how then do we decide which subset
to use? Moreover, why do not we just use the
gold standard?

The answer to both these questions involves
consideration of precision. By precision, we
refer to how narrow a confidence interval
around the point estimate is. The narrower
the confidence interval, the more precise the
point estimate.

For example, suppose the 95% confidence
interval around the gold standard dOR of 2.5
that controls for all five Vs has limits of 1.4
and 3.5, whereas the 95% confidence interval
around the dOR of 2.7 that controls for V3 only
has limits of 1.1 and 4.2.

Then the gold standard OR estimate is more
precise than the OR estimate that controls for
V3 only because the gold standard has the nar-
rower confidence interval. Specifically, the
narrower width is 3.5 minus 1.4, or 2.1,
whereas the wider width is 4.2 minus 1.1, or
3.1.

Note that it is possible that the gold standard
estimate actually may be less precise than an
estimate resulting from control of a subset of
Vs. This will depend on the particular data set
being analyzed.

EXAMPLE

95% confidence interval (CI)

dOR ¼ 2:5 dOR ¼ 2:7
Gold standard

all five Vs
Reduced model

V3 only

3.5 – 1.4 = 2.1 4.2 – 1.1 = 3.1

( ) ( )

1.4 3.5narrower

more precise

1.1 4.2wider

less precise
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Why do not we use gold standard?

Answer. Might find subset of Vs
that will

� gain precision (narrower CI)

� without sacrificing validity
(same point estimate)

Which subset to control?

Answer. subset with most meaning-
ful gain in precision

Eligible subset. same point estimate
as gold standard

Recommended procedure:

(1) Identify eligible subsets of Vs

(2) Control for that subset with
largest gain in precision

However, if no subset gives better
precision, use gold standard

Scientific: Gold standard uses all
relevant variables for control

The answer to the question why do not we just
use the gold standard is that we might gain a
meaningful amount of precision controlling
for a subset of Vs without sacrificing validity.
That is, we might find a subset of Vs to give
essentially the same estimate as the gold stan-
dard but which also has a much narrower con-
fidence interval.

For instance, controlling for V4 and V5 may
obtain the same point estimate as the gold
standard but a narrower confidence interval,
as illustrated here. If so, we would prefer the
estimate that uses V4 and V5 in our model to
the gold standard estimate.

We also asked the question, “How do we decide
which subset to use for control?” The answer to
this is to choose that subset which gives the
most meaningful gain in precision among all
eligible subsets, including the gold standard.

By eligible subset, we mean any collection of Vs
that gives essentially the same point estimate
as the gold standard.

Thus, we recommend the following general
procedure for the confounding and precision
assessment stage of our strategy:

(1) Identify eligible subsets of Vs giving
approximately the same odds ratio as the
gold standard.

(2) Control for that subset which gives the
largest gain in precision. However, if no
subset gives meaningfully better precision
than the gold standard, it is scientifically
better to control for all Vs using the gold
standard.

The gold standard is scientifically better
because persons who critically appraise the
results of the study can see that when using
the gold standard, all the relevant variables
have been controlled for in the analysis.

EXAMPLE

Model dOR CI

3 V4 and V5 same
(2.3)

narrower
(1.9, 3.1)

Gold
standard

same
(2.5)

wider
(1.4, 3.5)
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IV. Confounding
Assessment with
Interaction

Interaction
stage completed –

Begin confounding

Start with model containing
E, all Vi, all ViVj

and
remaining EVi and EViVj

Gold standard model

Returning to our example involving five V vari-
ables, suppose that the point estimates and
confidence intervals for various subsets of Vs
are given as shown here. Then there are only
two eligible subsets other than the gold stan-
dard – namely V3 alone, and V4 and V5 together
because these two subsets give the same odds
ratio as the gold standard.

Considering precision, we then conclude that
we should control for all five Vs, that is, the
gold standard, because no meaningful gain in
precision is obtained from controlling for
either of the two eligible subsets of Vs. Note
that when V3 alone is controlled, the CI is
wider than that for the gold standard. When
V4 and V5 are controlled together, the CI is the
same as the gold standard.

We now consider how to assess confounding
when the model contains interaction terms.
A flow diagram that describes our recom-
mended strategy for this situation is shown
here. This diagram starts from the point in the
strategy where interaction has already been
assessed. Thus, we assume that decisions have
been made about which interaction terms are
significant and are to be retained in all further
models considered.

In the first step of the flow diagram, we start
with a model containing E and all potential
confounders initially specified as Vi and ViVj

terms plus remaining interaction terms deter-
mined from interaction assessment. This
includes those EVi and EViVj terms found to
be significant plus those EVi terms that are
components of significant EViVj terms. Such
EVi terms must remain in all further models
considered because of the hierarchy principle.

This model is the gold standard model to which
all further models considered must be com-
pared. By gold standard, we mean that the
odds ratio for this model controls for all poten-
tial confounders in our initial model, that is, all
the Vis and ViVjs.

EXAMPLE

logit PðXÞ ¼ aþ bEþ g1V1 þ � � � þ g5V5

Vs in model

*e b  meaningfully different from 2.5  

95% CI

V1, V2, V3, V4, V5
V3 only
V4, V5 only
other subsets

2.5
2.7
2.3
*

(1.4, 3.5)
(1.1, 4.2)
(1.3, 3.4)
—

same
width

wider

e b
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Apply hierarchy principle to identify
Vi, and ViVj terms

to remain in all further models

Focus on Vi, and ViVj terms
not identified above:

Candidates for elimination

Assess confounding/precision for
these variables

Interaction terms in model
+

Final ðconfoundingÞ step
difficult� subjective

Safest approach:
Keep all potential confounders in

model: controls confounding
but may lose precision

Confounding – general procedure:

dOR change?

Gold
standard
model

vs. Model without
one or more
Vi and ViVj

(1)  Identify subsets so that

(2)  Control for largest gain
       in precision.

Difficult when there is interaction

OR GS ≈ OR subset.

In the second step of the flow diagram, we
apply the hierarchy principle to identify those
Vi and ViVj terms that are lower order compo-
nents of those interaction terms found signifi-
cant. Such lower order components must
remain in all further models considered.

In the final step of the flow diagram, we focus
on only those Vi and ViVj terms not identified
by the hierarchy principle. These terms are
candidates to be dropped from the model as
nonconfounders. For those variables identified
as candidates for elimination, we then assess
confounding followed by consideration of
precision.

If the model contains interaction terms, the
final (confounding) step is difficult to carry
out and requires subjectivity in deciding
which variables can be eliminated as noncon-
founders. We will illustrate such difficulties by
the example below.

To avoid making subjective decisions, the saf-
est approach is to keep all potential confoun-
ders in the model, whether or not they are
eligible to be dropped. This will ensure the
proper control of confounding but has the
potential drawback of not giving as precise an
odds ratio estimate as possible from some
smaller subset of confounders.

In assessing confounding when there are inter-
action terms, the general procedure is analo-
gous to when there is no interaction. We assess
whether the estimated odds ratio changes from
the gold standard model when compared to a
model without one or more of the eligible Vis
and ViVjs.

More specifically, we carry out the following
two steps:

(1) Identify those subsets of Vis and ViVjs
giving approximately the same odds ratio
estimate as the gold standard (GS).

(2) Control for that subset which gives the
largest gain in precision.
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Interaction: dOR ¼ exp
�
b̂þ~d̂jWj

�
b̂ and d̂j nonzero

no interaction: dOR ¼ expðb̂Þ

Coefficients change when potential
confounders dropped:

� Meaningful change?

� Subjective?

If the model contains interaction terms, the
first step is difficult in practice. The odds
ratio expression, as shown here, involves two
or more coefficients, including one or more
nonzero d̂. In contrast, when there is no inter-
action, the odds ratio involves the single co-
efficient b̂.

It is likely that at least one or more of the b̂ and
d̂ coefficients will change somewhat when
potential confounders are dropped from the
model. To evaluate how much of a change is a
meaningful change when considering the col-
lection of coefficients in the odds ratio formula
is quite subjective. This will be illustrated by the
example.

As an example, suppose our initial model con-
tains E, four Vs, namely, V1, V2, V3, and
V4 ¼ V1V2, and four EVs, namely, EV1, EV2,
EV3, and EV4. Note that EV4 alternatively can
be considered as a three-factor product term as
it is of the form EV1V2.

Suppose also that because EV4 is a three-factor
product term, it is tested first, after all the other
variables are forced into the model. Further,
suppose that this test is significant, so that
the term EV4 is to be retained in all further
models considered.

Because of the hierarchy principle, then, we
must retain EV1 and EV2 in all further models
as these two terms are components of EV1V2.
This leaves EV3 as the only remaining two-fac-
tor interaction candidate to be dropped if not
significant.

To test for EV3, we can do either a likelihood
ratio test or a Wald test for the addition of EV3

to a model after E, V1, V2, V3, V4 ¼ V1V2, EV1,
EV2, and EV4 are forced into the model.

Note that all four potential confounders – V1

through V4 – are forced into the model here
because we are at the interaction stage so far,
and we have not yet addressed confounding in
this example.

EXAMPLE

Variables in initial model:

E;V1;V2;V3;V4 ¼ V1V2

EV1;EV2;EV3;EV4 ¼ EV1V2

Suppose EV4 (¼ EV1 V2)
significant

Hierarchy principle:

EV1 and EV2 retained in all further
models

EV3 candidate to be dropped

Test for EV3 (LR or Wald test)

V1, V2, V3, V4 (all potential
confounders) forced into model
during interaction stage
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The likelihood ratio test for the significance of
EV3 compares a “full” model containing E, the
four Vs, EV1, EV2, EV3, and EV4 with a reduced
model that eliminates EV3 from the full model.

The LR statistic is given by the difference in the
log likelihood statistics for the full and reduced
models. This statistic has a chi-square distribu-
tion with one degree of freedom under the null
hypothesis that the coefficient of the EV3 term
is 0 in our full model at this stage.

Suppose that when we carry out the LR test for
this example, we find that the EV3 term is not
significant. Thus, at the end of the interaction
assessment stage, we are left with a model that
contains E, the four Vs, EV1, EV2, and EV4. We
are now ready to assess confounding for this
example.

Our initial model contained four potential con-
founders, namely, V1 through V4, where V4 is
the product term V1 times V2. Because of the
hierarchy principle, some of these terms are
not eligible to be dropped from the model,
namely, the lower order components of higher
order product terms remaining in the model.

In particular, because EV1V2 has been found
significant, we must retain in all further mod-
els the lower order components V1, V2, and
V1V2, which equals V4. This leaves V3 as the
only remaining potential confounder that is
eligible to be dropped from the model as a
possible nonconfounder.

To evaluate whether V3 can be dropped from
the model as a nonconfounder, we consider
whether the odds ratio for the model that con-
trols for all four potential confounders, includ-
ing V3, plus previously retained interaction
terms, is meaningfully different from the odds
ratio that controls for previously retained vari-
ables but excludes V3.

EXAMPLE (continued)

LR test for EV3: Compare full model
containing

E;V1;V2;V3;V4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Vs

; EV1;EV2;EV3;EV4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EVs

with reduced model containing

E;V1;V2;V3;V4; EV1;EV2;EV4|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
without EV3

LR ¼ ð�2 ln L̂reducedÞ � ð�2 ln L̂fullÞ

is w2
1df under H0: dEV3

¼ 0 in full model

Suppose EV3 not significant
+

model after interaction assessment:

E, V1, V2, V3, V4  , EV1, EV2, EV4

where V4 = V1V2 potential
confounders

Hierarchy principle:
identify Vs not eligible to be
dropped – lower order components

EV1V2 significant
+ Hierarchy principle
Retain V1, V2, and V4 ¼ V1V2

Only V3 eligible to be dropped

dORV1 ;V2 ;V3 ;V4
6¼
? dORV1 ;V2 ;V4

"
excludes V3
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The odds ratio that controls for all four poten-
tial confounders plus retained interaction
terms is given by the expression shown here.
This expression gives a formula for calculating
numerical values for the odds ratio. This for-
mula contains the coefficients b̂; d̂1; d̂2, and d̂4,
but also requires specification of three effect
modifiers – namely, V1, V2, and V4, which are in
the model as product terms with E.

The numerical value computed for the odds
ratio will differ depending on the values speci-
fied for the effect modifiers V1, V2, and V4. This
should not be surprising because the presence
of interaction terms in the model means that
the value of the odds ratio differs for different
values of the effect modifiers.

The above odds ratio is the gold standard odds
ratio expression for our example. This odds
ratio controls for all potential confounders
being considered, and it provides baseline
odds ratio values to which all other odds ratio
computations obtained from dropping candi-
date confounders can be compared.

The odds ratio that controls for previously
retained variables but excludes the control of
V3 is given by the expression shown here. Note
that this expression is essentially of the same
form as the gold standard odds ratio. In partic-
ular, both expressions involve the coefficient of
the exposure variable and the same set of effect
modifiers.

However, the estimated coefficients for this
odds ratio are denoted with an asterisk (*) to
indicate that these estimates may differ from
the corresponding estimates for the gold stan-
dard. This is because the model that excludes
V3 contains a different set of variables and,
consequently, may result in different estimated
coefficients for those variables in common to
both models.

In other words, because the gold standard
model contains V3, whereas the model for the
asterisked odds ratio does not contain V3, it is
possible that b̂will differ from b̂*, and that the d̂
will differ from the d̂*.

EXAMPLE (continued)

dORV1 ;V2 ;V3 ;V4
¼ exp

�
b̂þ d̂1V1 þ d̂2V2 þ d̂4V4

�
;

where d̂1; d̂2, and d̂4 are coefficients of

EV1, EV2, and EV4 ¼ EV1V2

dOR differs for different specifications
of V1, V2, V4

Gold standard dOR:

� Controls for all potential
confounders

� Gives baseline dOR

dOR* ¼ expðb̂* þ d̂*1V1 þ d̂*2V2 þ d̂*4V4Þ;

where b̂*; d̂*1; d̂
*
2; d̂

*
4 are coefficients in

model without V3

Model without V3:

E;V1;V2;V4;EV1;EV2;EV4

Model with V3:

E, V1, V2, V3, V4, EV1, EV2, EV4

Possible that

b̂ 6¼ b̂*; d̂1 6¼ d̂*1; d̂2 6¼ d̂*2; d̂4 6¼ d̂*4
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To assess (data-based) confounding here, we
must determine whether there is a meaningful
difference between the gold standard and
asterisked odds ratio expressions. There are
two alternative ways to do this. (The assess-
ment of confounding involves criteria beyond
what may exist in the data.)

One way is to compare corresponding esti-
mated coefficients in the odds ratio expression,
and then to make a decision whether there is a
meaningful difference in one or more of these
coefficients.

If we decide yes, that there is a difference, we
then conclude that there is confounding due to
V3, so that we cannot eliminate V3 from the
model. If, on the other hand, we decide no,
that corresponding coefficients are not differ-
ent, we then conclude that we do not need to
control for the confounding effects of V3. In
this case, we may consider dropping V3 from
the model if we can gain precision by doing so.

Unfortunately, this approach for assessing
confounding is difficult in practice. In particu-
lar, in this example, the odds ratio expression
involves four coefficients, and it is likely that at
least one or more of these will change some-
what when one or more potential confounders
are dropped from the model.

To evaluate whether there is a meaningful
change in the odds ratio therefore requires an
overall decision as to whether the collection of
four coefficients, b̂ and three d̂, in the odds
ratio expression meaningfully change. This is
a more subjective decision than for the no
interaction situation when b̂ is the only coeffi-
cient to be monitored.

EXAMPLE (continued)

Meaningful difference?

Gold standard model:

dOR ¼ exp b̂þ d̂1V1 þ d̂2V2 þ d̂4V4

� �
Model without V3:dOR*¼ exp b̂*þ d̂*1V1þ d̂*2V2þ d̂*4V4

� �

vs.b, d1, d2, d4 b, d1, d2, d4
∗ ∗ ∗ ∗

Difference?

Yes ) V3 confounder;
cannot eliminate V3

No ) V3 not confounder;
drop V3 if precision gain

Difficult approach:

� Four coefficients to compare

� Coefficients likely to change

Overall decision required about
change in

b̂; d̂1; d̂2; d̂4

More subjective than when no
interaction (only b̂)
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Moreover, because the odds ratio expression
involves the exponential of a linear function
of the four coefficients, these coefficients are
on a log odds ratio scale rather than an odds
ratio scale. Using a log scale to judge the mean-
ingfulness of a change is not as clinically rele-
vant as using the odds ratio scale.

For example, a change in b̂ from �12.69
to �12.72 and a change in d̂1 from 0.0692 to
0.0696 are not easy to interpret as clinically
meaningful because these values are on a log
odds ratio scale.

A more interpretable approach, therefore, is to
view such changes on the odds ratio scale. This
involves calculating numerical values for the
odds ratio by substituting into the odds ratio
expression different choices of the values for
the effect modifiers Wj.

Thus, to calculate an odds ratio value from the
gold standard formula shown here, which con-
trols for all four potential confounders, we
would need to specify values for the effect
modifiers V1, V2, and V4, where V4 equals
V1V2. For different choices of V1 and V2, we
would then obtain different odds ratio values.
This information can be summarized in a table
or graph of odds ratios, which consider the
different specifications of the effect modifiers.
A sample table is shown here.

To assess confounding on an odds ratio scale,
we would then compute a similar table or
graph, which would consider odds ratio values
for a model that drops one or more eligible V
variables. In our example, because the only
eligible variable is V3, we, therefore, need to
obtain an odds ratio table or graph for the
model that does not contain V3. A sample
table of OR* values is shown here.

Thus, to assess whether we need to control for
confounding from V3, we need to compare two
tables of odds ratios, one for the gold standard
and the other for the model that does not con-
tain V3.

EXAMPLE (continued)

dOR ¼ exp ðb̂þ d̂1V1 þ d̂2V2 þ d̂4V4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
linear function

b̂; d̂1; d̂2; d̂4 on log odds ratio scale, but
odds ratio scale is clinically relevant

Log odds ratio scale:

b̂ ¼ �12:69 vs: b̂* ¼ �12:72

d̂1 ¼ 0:0692 vs: d̂
*

1 ¼ 0:0696

Odds ratio scale:

Calculate dOR ¼ exp
�
b̂þ~d̂jWj

�
for different choices of Wj

Gold standard OR:dOR ¼ expðb̂þ d̂1V1 þ d̂2V2 þ d̂4V4Þ;
where V4 ¼ V1V2.

Specify V1 and V2 to get OR:

V1 ¼ 20 V1 ¼ 30 V1 ¼ 40

V2 ¼ 100 dOR dOR dOR

V2 ¼ 200 dOR dOR dOR

Model without V3:dOR* ¼ expðb̂* þ d̂*1V1 þ d̂*2V2 þ d̂*4V4Þ

V1 ¼ 20 V1 ¼ 30 V1 ¼ 40

V2 ¼ 100 dOR* dOR* dOR*

V2 ¼ 200 dOR* dOR* dOR*

Compare tables ofdORs vs: dOR*s
gold standard model without V3
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If, looking at these two tables collectively, we
find that yes, there is one or more meaningful
difference in corresponding odds ratios, we
would conclude that the variable V3 needs to
be controlled for confounding. In contrast, if
we decide that no, the two tables are not mean-
ingfully different, we can conclude that vari-
able V3 does not need to be controlled for
confounding.

If the decision is made that V3 does not need to
be controlled for confounding reasons, we still
may wish to control for V3 because of precision
reasons. That is, we can compare confidence
intervals for corresponding odds ratios from
each table to determine whether we gain or
lose precision depending on whether or not V3

is in the model.

In other words, to assess whether there is a
gain in precision from dropping V3 from the
model, we need to make an overall comparison
of two tables of confidence intervals for odds
ratio estimates obtained when V3 is in and out
of the model.

EXAMPLE (continued)

OR OR OR

OROROR

corresponding odds ratios

Gain in precision?

Gold standard CI CI* (excludes V3)

OR tables
meaningfully

different?

Control V3
for con-
founding

Do not need to control 
V3 for confounding

Consider precision with and without
V3 by comparing confidence intervals

yes

no

CI CI CI

CI CI CI CI* CI* CI*

CI* CI* CI*

Gold standard OR

OR* OR* OR*

OR*OR*OR*

OR* (excludes V3)
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Confounding assessment when
interaction present (summary):

� Compare tables of ORs and CIs

� Subjective – debatable

� Safest decision – control for all
potential counfounders

V. The Evans County
Example Continued

If, overall, we decide that yes, the asterisked
confidence intervals, which exclude V3, are
narrower than those for the gold standard
table, we would conclude that precision is
gained from excluding V3 from the model. Oth-
erwise, if we decide no, then we conclude that
no meaningful precision is gained from
dropping V3, and so we retain this variable in
our final model.

Thus, we see that when there is interaction and
we want to assess both confounding and preci-
sion, we must compare tables of odds ratio
point estimates followed by tables of odds
ratio confidence intervals. Such comparisons
are quite subjective and, therefore, debatable
in practice. That is why the safest decision is to
control for all potential confounders even if
some Vs are candidates to be dropped.

We now review the interaction and confound-
ing assessment recommendations by returning
to the Evans County Heart Disease Study data
that we have considered in the previous chap-
ters.

Recall that the study data involves 609 white
males followed for 9 years to determine CHD
status. The exposure variable is catecholamine
level (CAT), and the C variables considered for
control are AGE, cholesterol (CHL), smoking
status (SMK), electrocardiogram abnormality
status (ECG), and hypertension status (HPT).
The variables AGE and CHL are treated contin-
uously, whereas SMK, ECG, and HPT are (0, 1)
variables.

EXAMPLE

Evans County Heart Disease Study

n ¼ 609 white males
9-year follow-up

D ¼ CHD(0, 1)

E ¼ CAT(0, 1)

Cs : AGE;CHL|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
continuous

SMK;ECG;HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð0; 1Þ

EXAMPLE (continued)

CI*
narrower
than CI?

Precision
gained from
excluding V3

No precision gained
from excluding V3

Yes

No

Retain V3

Exclude V3
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In the variable specification stage of our strat-
egy, we choose an initial E, V, Wmodel, shown
here, containing the exposure variable CAT,
five Vs which are the Cs themselves, and five
Ws which are also the Cs themselves and which
go into the model as product terms with the
exposure CAT.

This initial model is HWF because the lower
order components of any EVi term, namely, E
and Vi, are contained in the model.

Note also that the highest-order terms in this
model are two-factor product terms of the form
EVi. Thus, we are not considering more com-
plicated three-factor product terms of the form
EViVj nor Vi terms that are of the form ViVj.

The next step in our modeling strategy is to
consider eliminating unnecessary interaction
terms. To do this, we use a backward elimina-
tion (BWE) procedure to remove variables. For
interaction terms, we proceed by eliminating
(BWE) product terms one at a time.

The flow for our backward procedure begins
with the initial model and then identifies the
least significant product term. We then ask, “Is
this term significant?” If our answer is no, we
eliminate this term from the model. The model
is then refitted using the remaining terms. The
least significant of these remaining terms is
then considered for elimination.

This process continues until our answer to the
significance question in the flow diagram is
yes. If so, the least significant term is signifi-
cant in some refitted model. Then, no further
terms can be eliminated, and our process must
stop.

For our initial Evans County model, the BWE
allows us to eliminate the product terms of
CAT � AGE, CAT � SMK, and CAT � ECG.
The remaining interaction terms are CAT �
CHL and CAT � HPT.

EXAMPLE (continued)

Initial E, V, W model:

logit PðXÞ ¼ aþ bCATþ ~
5

i¼1

giVi

þ E ~
5

j¼1

djWj;

where Vs ¼ Cs ¼ Ws
HWF model because

EVi in model

+
E and Vi in model

Highest order in model: EVi

no EViVj or ViVj terms

Next step:
Interaction assessment using
backward elimination (BWE)

(Note: Chunk test for
H0: d1 ¼ d2 ¼ d3 ¼ d4 ¼ d5 ¼ 0
is highly significant)

Backward elimination (BWE):

Initial model
Find least significant

product term

Do not drop terms
from model

Drop term
from model

Refit
 model

significant?

STOP

Yes No

Interaction results:
Eliminated Remaining

CAT � AGE CAT � CHL
CAT � SMK CAT � HPT
CAT � ECG
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A summary of the printout for the model
remaining after interaction assessment is
shown here. In this model, the two interaction
terms are CH equals CAT�HPT and CC equals
CAT � CHL. The least significant of these two
terms is CH because the Wald statistic for this
term is given by the chi-square value of 9.86,
which is less significant than the chi-square
value of 23.20 for the CC term.

The P-value for the CH term is 0.0017, so that
this term is significant at well below the 1%
level. Consequently, we cannot drop CH from
the model, so that all further models must con-
tain the two product terms CH and CC.

We are now ready to consider the confounding
assessment stage of the modeling strategy. The
first step in this stage is to identify all variables
remaining in the model after the interaction
stage. These are CAT, all five V variables, and
the two product terms CAT � CHL and CAT �
HPT.

The reasonwhy themodel contains all fiveVs at
this point is that we have only completed inter-
action assessment and have not yet begun to
address confounding to evaluate which of the
Vs can be eliminated from the model.

The next step is to apply the hierarchy principle
to determine which V variables cannot be
eliminated from further models considered.

The hierarchy principle requires all lower order
components of significant product terms to
remain in all further models.

The two significant product terms in ourmodel
are CAT � CHL and CAT � HPT. The lower
order components of CAT � CHL are CAT and
CHL. The lower order components of CAT �
HPT are CAT and HPT.

EXAMPLE (continued)

Printout:

Variable Coefficient S.E.

Chi

sq P

Intercept �4.0497 1.2550 10.41 0.0013

CAT �12.6894 3.1047 16.71 0.0000

AGE 0.0350 0.0161 4.69 0.0303

CHL �0.00545 0.0042 1.70 0.1923

Vs ECG 0.3671 0.3278 1.25 0.2627

SMK 0.7732 0.3273 5.58 0.0181

8>>>>><
>>>>>:
HPT 1.0466 0.3316 9.96 0.0016

CH �2.3318 0.7427 9.86 0.0017

CC 0.0692 0.3316 23.20 0.0000

CH = CAT × HPT and CC = CAT × CHL
remain in all further models

Ws

Confounding assessment:
Step 1. Variables in model:

CAT;AGE;CHL;SMK;ECG;HPT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vs

CAT� CHL;CAT�HPT;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EVs

All five Vs still in model after
interaction

Hierarchy principle:

� Determine Vs that cannot be
eliminated

� All lower order components of
significant product terms remain

CAT� CHL significant ) CAT and CHL

components

CAT�HPT significant )CAT and HPT

components
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Because CAT is the exposure variable, we must
leave CAT in all further models regardless of
the hierarchy principle. In addition, CHL and
HPT are the two Vs that must remain in all
further models.

This leaves the V variables AGE, SMK, and
ECG as still being candidates for elimination
as possible nonconfounders.

As described earlier, one approach to assessing
whether AGE, SMK, and ECG are nonconfoun-
ders is to determine whether the coefficients in
the odds ratio expression for the CAT, CHD
relationship change meaningfully as we drop
one or more of the candidate terms AGE, SMK,
and ECG.

The odds ratio expression for the CAT, CHD
relationship is shown here. This expression
contains b̂, the coefficient of the CAT variable,
plus two terms of the form d̂ timesW, where the
Ws are the effect modifiers CHL and HPT that
remain as a result of interaction assessment.

The gold standard odds ratio expression is
derived from the model remaining after inter-
action assessment. This model controls for all
potential confounders, that is, the Vs, in the
initial model. For the Evans County data, the
coefficients in this odds ratio, which are
obtained from the printout above, are b̂ equals
�12.6894, d̂1 equals 0.0692, and d̂2 equals
�2.3318.

The table shown here provides the odds ratio
coefficients b̂; d̂1, and d̂2 for different subsets of
AGE, SMK, and ECG in the model. The first
row of coefficients is for the gold standard
model, which contains all five Vs. The next
row shows the coefficients obtained when
SMK is dropped from the model, and so on
down to the last row which shows the coeffi-
cients obtained when AGE, SMK, and ECG are
simultaneously removed from the model so
that only CHL and HPT are controlled.

EXAMPLE (continued)

Thus, retain CAT, CHL, and HPT in all
further models

Candidates for elimination:
AGE, SMK, ECG

Assessing confounding:

Do coefficients in dOR expression
change?

dOR ¼ expðb̂þ d̂1CHLþ d̂2HPTÞ;
where

b̂ ¼ coefficient of CAT

d̂1 ¼ coefficient of CC ¼ CAT � CHL
d̂2 ¼ coefficient of CH ¼ CAT �HPT

Gold standard dOR (all Vs):dOR ¼ expðb̂þ d̂1CHLþ d̂2HPTÞ;

where

b̂¼�12:6894; d̂1 ¼ 0:0692; d̂2
¼�2:3318

Vi in model b̂ d̂1 d̂2

All five V

variables

�12.6894 0.0692 �2.3318

CHL, HPT,

AGE, ECG

�12.7285 0.0697 �2.3836

CHL, HPT,

AGE, SMK

�12.8447 0.0707 �2.3334

CHL, HPT,

ECG, SMK

�12.5684 0.0697 �2.2081

CHL, HPT, AGE �12.7879 0.0707 �2.3796

CHL, HPT, ECG �12.6850 0.0703 �2.2590

CHL, HPT, SMK �12.7198 0.0712 �2.2210

CHL, HPT �12.7411 0.0713 �2.2613
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In scanning the above table, it is seen for each
coefficient separately (that is, by looking at the
values in a given column) that the estimated
values change somewhat as different subsets of
AGE, SMK, and ECG are dropped. However,
there does not appear to be a radical change in
any coefficient.

Nevertheless, it is not clear whether there is
sufficient change in any coefficient to indicate
meaningful differences in odds ratio values.
Assessing the effect of a change in coefficients
on odds ratio values is difficult because the
coefficients are on the log odds ratio scale. It
is more appropriate to make our assessment of
confounding using odds ratio values rather
than log odds ratio values.

To obtain numerical values for the odds ratio for
a given model, we must specify values of the
effectmodifiers in the odds ratio expression.Dif-
ferent specifications will lead to different odds
ratios.Thus, for a givenmodel,wemust consider
a summary table or graph that describes the
different odds ratio values that are calculated.

To compare the odds ratios for two different
models, say the gold standard model with the
model that deletes one or more eligible V vari-
ables, we must compare corresponding odds
ratio tables or graphs.

As an illustration using the Evans County data,
we compare odds ratio values computed from
the gold standard model with values computed
from the model that deletes the three eligible
variables AGE, SMK, and ECG.

The table shown here gives odds ratio values
for the gold standardmodel, which contains all
five V variables, the exposure variable CAT, and
the two interaction terms CAT � CHL and CAT
� HPT. In this table, we have specified three
different row values for CHL, namely, 200, 220,
and 240, and two column values for HPT,
namely, 0 and 1. For each combination of
CHL and HPT values, we thus get a different
odds ratio.

EXAMPLE (continued)

Coefficients change somewhat. No
radical change

Meaningful differences in dOR?

� Coefficients on log odds ratio scale

� More appropriate: odds ratio scale

OR = exp(b + d1CHL + d2HPT)

Specify values of effect modifiers
Obtain summary table of ORs

Compare
gold standard vs. other models

using (without Vs)
odds ratio tables or graphs

Evans County example:
Gold standard

vs.
Model without AGE, SMK, and ECG

Gold standard dOR:dOR ¼ expð�12:6894þ 0:0692CHL
� 2:3318HPTÞ

HTP = 0

CHL = 200

CHL = 220

CHL = 240

CHL = 200, HPT = 0 ⇒ OR =  3.16

HTP = 1

OR = 3.16 OR = 0.31

OR = 1.22

OR = 4.89

OR = 12.61

OR = 50.33

CHL = 220, HPT = 1 ⇒ OR =  1.22
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For example, if CHL equals 200 and HPT
equals 0, the computed odds ratio is 3.16,
whereas if CHL equals 220 and HPT equals 1,
the computed odds ratio is 1.22.

The table shown here gives odds ratio values,
indicated by “asterisked” dOR, for a model that
deletes the three eligible V variables, AGE,
SMK, and ECG. As with the gold standard
model, the odds ratio expression involves the
same two effect modifiers CHL and HPT, and
the table shown here considers the same com-
bination of CHL and HPT values.

If we compare corresponding odds ratios in the
two tables, we can see sufficient discrepancies.

For example, when CHL equals 200 and HPT
equals 0, the odds ratio is 3.16 in the gold
standard model, but is 4.57 when AGE, SMK,
and ECG are deleted. Also, when CHL equals
220 and HPT equals 1, the corresponding odds
ratios are 1.22 and 1.98.

Thus, because the two tables of odds ratios
differ appreciably, we cannot simultaneously
drop AGE, SMK, and ECG from the model.

Similar comparisons can be made by compar-
ing the gold standard odds ratio with odds
ratios obtained by deleting other subsets, for
example, AGE and SMK together, or AGE and
ECG together, and so on. All such comparisons
show sufficient discrepancies in corresponding
odds ratios. Thus, we cannot drop any of the
three eligible variables from the model.

We conclude that all five V variables need to be
controlled, so that the final model contains the
exposure variable CAT, the five V variables, and
the interaction variables involving CHL and
HPT.

EXAMPLE (continued)

CHL¼ 200;HPT¼ 0 ¼)dOR¼ 3:16

CHL¼ 220;HPT¼ 1 ¼)dOR¼ 1:22

dOR with AGE, SMK, ECG deleted:dOR* ¼ expð�12:7411þ 0:0713CHL
� 2:2613HPTÞ

HPT ¼ 0 HPT ¼ 1

CHL ¼ 200 dOR* ¼ 4:57 dOR* ¼ 0:48

CHL ¼ 220 dOR* ¼ 19:01 dOR* ¼ 1:98

CHL ¼ 240 dOR* ¼ 79:11 dOR* ¼ 8:34

Gold standard dOR :dOR*
w/o AGE, SMK, ECG

HPT= 0 HPT= 1 HPT= 0 HPT= 1

CHL = 200

CHL = 220

CHL = 240

3.16 4.57

19.01

79.11

0.48

1.98

8.34

12.61

50.33

0.31

1.22

4.89

Cannot simultaneously drop AGE,
SMK, and ECG from model

gold standard other models

vs.

Other models: delete AGE and SMK or
delete AGE and ECG, etc.

Result: cannot drop AGE, SMK, or
ECG

Final model:

E: CAT
Five Vs: CHL, HPT, AGE, SMK, ECG
Two interactions: CAT � CHL,
CAT � HPT
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Note that because we cannot drop either of the
variables AGE, SMK, or ECG as nonconfoun-
ders, we do not need to consider possible gain
in precision from deleting nonconfounders. If
precision were considered, we would compare
tables of confidence intervals for different
models. As with confounding assessment,
such comparisons are largely subjective.

This example illustrates why we will find it
difficult to assess confounding and precision
if our model contains interaction terms. In
such a case, any decision to delete possible
nonconfounders is largely subjective. There-
fore, we urge caution when deleting variables
from our model in order to avoid sacrificing
validity in exchange for what is typically only
a minor gain in precision.

To conclude this example, we point out that,
using the final model, a summary of the results
of the analysis can be made in terms of the
table of odds ratios and the corresponding
table of confidence intervals.

Both tables are shown here. The investigator
must use this information to draw meaningful
conclusions about the relationship under
study. In particular, the nature of the interac-
tion can be described in terms of the point
estimates and confidence intervals.

For example, as CHL increases, the odds ratio
for the effect of CAT on CHD increases. Also,
for fixed CHL, this odds ratio is higher when
HPT is 0 than when HPT equals 1. Unfortu-
nately, all confidence intervals are quite wide,
indicating that the point estimates obtained
are quite unstable.

EXAMPLE (continued)

No need to consider precision in this
example:
Compare tables of CIs – subjective

Confounding and precision difficult if
interaction (subjective)

Caution. Do not sacrifice validity for
minor gain in precision

Summary result for final model:

Table of OR

Table of 95% CIs

HPT = 0 HPT = 1

HPT = 0 HPT = 1

CHL
200 3.16 0.31

(0.89, 11.03)

(3.65, 42.94)

(11.79, 212.23)

(0.10, 0.91)

(0.48, 3.10)

(1.62, 14.52)

1.2212.61

50.33 4.89

220

240

CHL
200

220

240

Use to draw meaningful conclusions

CHL

CHL fixed: ORCAT, CHD > ORCAT, CHD

⇒ ORCAT, CHD

HPT= 0 HPT= 1

All CIs are wide
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Tests based on CIs are two-tailed
In EPID, most tests of E–D

relationship are one-tailed

One-tailed tests:
Use large sample

Z ¼ estimate

standard error

Furthermore, tests of significance can be car-
ried out using the confidence intervals. To do
this, one must determine whether or not the
null value of the odds ratio, namely, 1, is
contained within the confidence limits. If so,
we do not reject, for a given CHL, HPT combi-
nation, the null hypothesis of no effect of CAT
on CHD. If the value 1 lies outside the confi-
dence limits, we would reject the null hypothe-
sis of no effect.

For example, when CHL equals 200 and HPT
equals 0, the value of 1 is contained within the
limits 0.89 and 11.03 of the 95% confidence
interval. However, when CHL equals 220 and
HPT equals 0, the value of 1 is not contained
within the limits 3.65 and 42.94.

Thus, when CHL equals 200 and HPT equals 0,
there is no significant CAT, CHD effect,
whereas when CHL equals 220 and HPT equals
0, the CAT, CHD effect is significant at the 5%
level.

Note that tests based on confidence intervals
are two-tailed tests. One-tailed tests are more
common in epidemiology for testing the effect
of an exposure on disease.

When there is interaction, one-tailed tests can
be obtained by using the point estimates and
their standard errors that go into the computa-
tion of the confidence interval. The point esti-
mate divided by its standard error gives a large
sample Z statistic, which can be used to carry
out a one-tailed test.

EXAMPLE (continued)

Tests of significance:

Is
null value

(OR = 1) contained
within CI?

Do not
reject H0:
no CAT,

CHD
effect

Reject H0: no effect of
CAT on CHD

Yes

No

95% CI:

CHL = 200, HPT = 0:

CHL = 220, HPT = 0:

(0.89 11.03)

(3.65 42.94)

0

1

1

Test results at 5% level:

CHL¼ 200;HPT¼ 0 : no significant

CAT; CHD effect

CHL¼ 220;HPT¼ 0 : significant

CAT; CHD effect
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VI. SUMMARY
Chap. 6

� Overall guidelines for three
stages

� Focus: variable specification
� HWF model

Chap. 7
Focus: interaction and confound-

ing assessment
Interaction: use hierarchical back-

ward elimination

Use hierarchy principle to identify
lower order components that
cannot be deleted (EVs, Vis, and
ViVjs)

Confounding: no statistical testing:
Compare whether dOR meaning-
fully changes when Vs are deleted

Drop nonconfounders if precision
is gained by examining CIs

No interaction: assess confounding
by monitoring changes in b̂, the
coefficient of E

A brief summary of this presentation is now
given. This has been the second of two chap-
ters on modeling strategy when there is a sin-
gle E. In Chap. 6, we gave overall guidelines
for three stages, namely, variable specifica-
tion, interaction assessment, and confo-
unding assessment, with consideration of
precision. Our primary focus was the variable
specification stage, and an important require-
ment was that the initial model be hierarchi-
cally well formulated (HWF).

In this chapter, we have focused on the inter-
action and confounding assessment stages of
our modeling strategy. We have described
how interaction assessment follows a hierar-
chical backward elimination procedure, start-
ing with assessing higher order interaction
terms followed by assessing lower order inter-
action terms using statistical testingmethods.

If certain interaction terms are significant,
we use the hierarchy principle to identify all
lower order components of such terms,which
cannot be deleted from any further model
considered. This applies to lower order inter-
action terms (i.e., terms of the form EV) and
to lower order terms involving potential con-
founders of the form Vi or ViVj.

Confounding is assessed without the use of
statistical testing. The procedure involves
determining whether the estimated odds
ratio meaningfully changes when eligible V
variables are deleted from the model.

If some variables can be identified as noncon-
founders, they may be dropped from the
model provided their deletion leads to a gain
in precision from examining confidence
intervals.

If there is no interaction, the assessment of
confounding is carried out by monitoring
changes in the estimated coefficient of the
exposure variable.
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Chapters

1. Introduction
2. Special Cases

�
�

3 7. Interaction and
Confounding Assessment

8. Additional Modeling
Strategy Issues

This presentation is now complete. The reader
may wish to review the detailed summary and
to try the practice exercises and test that
follow.

The next chapter considers additional issues
about modeling strategy, including how to
address more than one exposure variable,
screening variables, collinearity, multiple test-
ing, and influential observations.

SUMMARY (continued)

Interaction present: compare tables
of odds ratios and confidence
intervals (subjective)

Interaction: Safe (for validity) to
keep all Vs in model

However, if there is interaction, the assess-
ment of confounding is muchmore subjective
because it typically requires the comparison
of tables of odds ratio values. Similarly, asses-
sing precision requires comparison of tables
of confidence intervals.

Consequently, if there is interaction, it is typi-
cally safe for ensuring validity to keep all
potential confounders in the model, even
those that are candidates to be deleted as
possible nonconfounders.
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Detailed
Outline

I. Overview (pages 206–207)

Focus:
� Assessing confounding and interaction

� Obtaining a valid estimate of the E–D relationship

A. Three stages: variable specification, interaction
assessment, and confounding assessment
followed by consideration of precision.

B. Variable specification stage

i. Start with D, E, and C1, C2, . . . , Cp.

ii. Choose Vs from Cs based on prior research or
theory and considering potential statistical
problems, e.g., collinearity; simplest choice is
to let Vs be Cs themselves.

iii. ChooseWs from Cs to be either Vs or product
of two Vs; usually recommend Ws to be Cs
themselves or some subset of Cs.

C. The model must be hierarchically well formulated
(HWF): given any variable in the model, all lower
order components must also be in the model.

D. The strategy is a hierarchical backward
elimination strategy: evaluate EViVj terms first,
then Vi terms, then Vi terms last.

E. The hierarchy principle needs to be applied for any
variable kept in the model: If a variable is to be
retained in the model, then all lower order
components of that variable are to be retained in
all further models considered.

II. Interaction assessment stage (pages 207–210)

A. Flow diagram representation.

B. Description of flow diagram: test higher order
interactions first, then apply hierarchy principle,
then test lower order interactions.

C. How to carry out tests: chunk tests first, followed
by backward elimination whether or not chunk
test is significant; testing procedure involves
likelihood ratio statistic.

D. Example.

III. Confounding and precision assessment when no
interaction (pages 211–215)

A. Monitor changes in the effect measure (the odds
ratio) corresponding to dropping subsets of
potential confounders from the model.

B. Gold standard odds ratio obtained from model
containing all Vs specified initially.

C. Identify subsets of Vs giving approximately the
same odds ratio as gold standard.
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D. Control for the subset that gives largest gain in
precision, i.e., tighter confidence interval around
odds ratio.

E. Example.

IV. Confounding assessment with interaction (pages
215–223)

A. Flow diagram representation.

B. Use hierarchy principle to identify all Vs that
cannot be eliminated from the model; the
remaining Vs are eligible to be dropped.

C. Eligible Vs can be dropped as nonconfounders if
odds ratio does not change when dropped; then
control for subset of remaining Vs that gives
largest gain in precision.

D. Alternative ways to determine whether odds ratio
changes when different subsets of Vs are
dropped.

E. In practice, it is difficult to evaluate changes in
odds ratio when eligible Vs are dropped;
consequently, safest strategy is to control for allVs.

F. Example.

V. Evans County example continued (pages 223–230)

A. Evans County CHD data descriptions.

B. Variable specification stage.

C. Confounding assessment stage.

D. Final model results.

Practice
Exercises

A prevalence study of predictors of surgical wound infec-
tion in 265 hospitals throughout Australia collected data
on 12,742 surgical patients (McLaws et al., 1988). For each
patient, the following independent variables were deter-
mined: type of hospital (public or private), size of hospital
(large or small), degree of contamination of surgical site
(clean or contaminated), and age and sex of the patient. A
logistic model was fit to this data to predict whether or not
the patient developed a surgical wound infection during
hospitalization. The abbreviated variable names and the
manner in which the variables were coded in the model are
described as follows:

Variable Abbreviation Coding

Type of hospital HT 1 ¼ public, 0 ¼ private
Size of hospital HS 1 ¼ large, 0 ¼ small
Degree of
contamination

CT 1 ¼ contaminated,
0 ¼ clean

Age AGE Continuous
Sex SEX 1 ¼ female, 0 ¼ male
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1. Suppose the following initial model is specified for
assessing the effect of type of hospital (HT), consid-
ered as the exposure variable, on the prevalence of
surgical wound infection, controlling for the other
four variables on the above list:

logit PðXÞ ¼ aþ bHTþ g1HSþ g2CTþ g3AGEþ g4SEX

þ d1HT� AGEþ d2HT� SEX:

Describe how to test for the overall significance (a
“chunk” test) of the interaction terms. In answering
this, describe the null hypothesis, the full and reduced
models, the form of the test statistic, and its distribu-
tion under the null hypothesis.

2. Using the model given in Exercise 1, describe briefly
how to carry out a backward elimination procedure to
assess interaction.

3. Briefly describe how to carry out interaction assess-
ment for the model described in Exercise 1. (In
answering this, it is suggested you make use of the
tests described in Exercises 1 and 2.)

4. Suppose the interaction assessment stage for the
model in Example 1 finds no significant interaction
terms. What is the formula for the odds ratio for the
effect of HT on the prevalence of surgical wound infec-
tion at the end of the interaction assessment stage?
What V terms remain in the model at the end of inter-
action assessment? Describe how you would evaluate
which of these V terms should be controlled as con-
founders.

5. Considering the scenario described in Exercise 4 (i.e.,
no interaction terms found significant), suppose you
determine that the variables CT and AGE do not need
to be controlled for confounding. Describe how you
would consider whether dropping both variables will
improve precision.

6. Suppose the interaction assessment stage finds that
the interaction terms HT � AGE and HT � SEX are
both significant. Based on this result, what is the for-
mula for the odds ratio that describes the effect of HT
on the prevalence of surgical wound infection?

7. For the scenario described in Example 6, and making
use of the hierarchy principle, what V terms are eligi-
ble to be dropped as possible nonconfounders?

8. Describe briefly how you would assess confounding
for the model considered in Exercises 6 and 7.

9. Suppose that the variable CT is determined to be a
nonconfounder, whereas all other V variables in the
model (of Exercise 1) need to be controlled. Describe
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briefly how you would assess whether the variable CT
needs to be controlled for precision reasons.

10. What problems are associated with the assessment of
confounding and precision described in Exercises
8 and 9?

Test The following questions consider the use of logistic regres-
sion on data obtained from a matched case-control study
of cervical cancer in 313 women from Sydney, Australia
(Brock et al., 1988). The outcome variable is cervical can-
cer status (1 ¼ present, 0 ¼ absent). The matching vari-
ables are age and socioeconomic status. Additional
independent variables not matched on are smoking status,
number of lifetime sexual partners, and age at first sexual
intercourse. The independent variables are listed below
together with their computer abbreviation and coding
scheme.

Variable Abbreviation Coding

Smoking status SMK 1 ¼ ever, 0 ¼ never
Number of sexual
partners

NS 1 ¼ 4þ, 0 ¼ 0–3

Age at first intercourse AS 1 ¼ 20þ, 0 ¼ �19
Age of subject AGE Category matched
Socioeconomic status SES Category matched

Assume that at the end of the variable specification stage,
the following E, V, W model has been defined as the initial
model to be considered:

logit PðXÞ ¼ aþ bSMK þ~g*i V
*
i þ g1NSþ g2AS

þ g3NS� ASþ d1SMK �NSþ d2SMK � AS

þ d3SMK �NS� AS;

where the V*
i are dummy variables indicating matching

strata, the g*i are the coefficients of the V*
i variables,

SMK is the only exposure variable of interest, and the
variables NS, AS, AGE, and SES are being considered
for control.

1. For the above model, which variables are interaction
terms?

2. For the above model, list the steps you would take to
assess interaction using a hierarchically backward
elimination approach.

3. Assume that at the end of interaction assessment, the
only interaction term found significant is the product
term SMK�NS. What variables are left in the model at
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the end of the interaction stage? Which of the V vari-
ables in the model cannot be deleted from any further
models considered? Explain briefly your answer to the
latter question.

4. Based on the scenario described in Question 3 (i.e., the
only significant interaction term is SMK �NS), what is
the expression for the odds ratio that describes the
effect of SMK on cervical cancer status at the end of
the interaction assessment stage?

5. Based again on the scenario described in Question 3,
what is the expression for the odds ratio that describes
the effect of SMK on cervical cancer status if the vari-
able NS � AS is dropped from the model that remains
at the end of the interaction assessment stage?

6. Based again on the scenario described in Question 3,
how would you assess whether the variable NS � AS
should be retained in the model? (In answering this
question, consider both confounding and precision
issues.)

7. Suppose the variable NS � AS is dropped from the
model based on the scenario described in Question 3.
Describe how you would assess confounding and preci-
sion for any other V terms still eligible to be deleted
from the model after interaction assessment.

8. Suppose the final model obtained from the cervical
cancer study data is given by the following printout
results:

Variable b S.E. Chi sq P

SMK 1.9381 0.4312 20.20 0.0000
NS 1.4963 0.4372 11.71 0.0006
AS �0.6811 0.3473 3.85 0.0499
SMK � NS �1.1128 0.5997 3.44 0.0635

Describe briefly how you would use the above informa-
tion to summarize the results of your study. (In your
answer, you need only describe the information to be
used rather than actually calculate numerical results.)

Answers to
Practice
Exercises

1. A “chunk” test for overall significance of interaction
terms can be carried out using a likelihood ratio test
that compares the initial (full) model with a reduced
model under the null hypothesis of no interaction
terms. The likelihood ratio test will be a chi-square
test with two degrees of freedom (because two inter-
action terms are being tested simultaneously).
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2. Using a backward elimination procedure, one first
determines which of the two product terms HT �
AGE and HT � SEX is the least significant in a
model containing these terms and all main effect
terms. If this least significant term is significant,
then both interaction terms are retained in the
model. If the least significant term is nonsignificant,
it is then dropped from the model. The model is then
refitted with the remaining product term and all main
effects. In the refitted model, the remaining interac-
tion term is tested for significance. If significant, it is
retained; if not significant, it is dropped.

3. Interaction assessment would be carried out first
using a “chunk” test for overall interaction as
described in Exercise 1. If this test is not significant,
one could drop both interaction terms from the model
as being not significant overall. If the chunk test is
significant, then backward elimination, as described
in Exercise 2, can be carried out to decide if both
interaction terms need to be retained or whether one
of the terms can be dropped. Also, even if the chunk
test is not significant, backward elimination may be
carried out to determine whether a significant inter-
action term can still be found despite the chunk test
results.

4. The odds ratio formula is given by exp(b), where b is
the coefficient of the HT variable. All V variables
remain in the model at the end of the interaction
assessment stage. These are HS, CT, AGE, and SEX.
To evaluate which of these terms are confounders, one
has to consider whether the odds ratio given by exp(b)
changes as one or more of the V variables are dropped
from the model. If, for example, HS and CT are
dropped and exp(b) does not change from the (gold
standard) model containing all Vs, then HS and CT do
not need to be controlled as confounders. Ideally, one
should consider as candidates for control any subset
of the four V variables that will give the same odds
ratio as the gold standard.

5. If CT and AGE do not need to be controlled for con-
founding, then, to assess precision, we must look at
the confidence intervals around the odds ratio for a
model which contains neither CT nor AGE. If this
confidence interval is meaningfully narrower than
the corresponding confidence interval around the
gold standard odds ratio, then precision is gained by
dropping CT and AGE. Otherwise, even though these
variables need not be controlled for confounding, they
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should be retained in the model if precision is not
gained by dropping them.

6. The odds ratio formula is given by exp(b þ d1AGE þ
d2SEX).

7. Using the hierarchy principle, CT and HS are eligible
to be dropped as nonconfounders.

8. Drop CT, HS, or both CT and HS from the model and
determine whether the coefficients b, d1, and d2 in the
odds ratio expression change. Alternatively, deter-
mine whether the odds ratio itself changes by compar-
ing tables of odds ratios for specified values of the
effect modifiers AGE and SEX. If there is no change
in coefficients and/or in odds ratio tables, then the
variables dropped do not need to be controlled for
confounding.

9. Drop CT from the model and determine if the confi-
dence interval around the odds ratio is wider than the
corresponding confidence interval for the model that
contains CT. Because the odds ratio is defined by the
expression exp(b þ d1AGE þ d2SEX), a table of confi-
dence intervals for both the model without CT and
with CT will need to be obtained by specifying differ-
ent values for the effect modifiers AGE and SEX. To
assess whether CT needs to be controlled for precision
reasons, one must compare these tables of confidence
intervals. If the confidence intervals when CT is not in
the model are narrower in some overall sense than
when CT is in the model, precision is gained by
dropping CT. Otherwise, CT should be controlled as
precision is not gained when the CT variable is
removed.

10. Assessing confounding and precision in Exercises
8 and 9 requires subjective comparisons of either sev-
eral regression coefficients, several odds ratios, or
several confidence intervals. Such subjective compar-
isons are likely to lead to highly debatable conclu-
sions, so that a safe course of action is to control for
all V variables regardless of whether they are confoun-
ders or not.
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Introduction In this chapter, we consider five issues on modeling Strat-
egy, which were not covered in the previous two chapters
on this topic:

1. Modeling strategy when there are two or more
exposure variables

2. Screening variables when modeling

3. Collinearity diagnostics

4. Influential observations

5. Multiple testing

Each of these issues represent important features of any
regression analysis that typically require attention when
determining a “best” model, although our specific focus
concerns a binary logistic regression model.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 244)

II. Modeling strategy involving several exposure
variables (pages 244–262)

III. Screening variables (pages 263–270)

IV. Collinearity diagnostics (pages 270–275)

V. Influential observations (pages 275–279)

VI. Multiple testing (pages 280–282)

VII. Summary (pages 283–285)
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Objectives Upon completing this chapter, the learner should be able to:

1. Given a binary logistic model involving two or more
exposures, describe or illustrate how to carry out a
modeling strategy to determine a “best” model.

2. Given a fitted binary logistic model involving a large
number of exposure and/or covariates (potential
confounders or effect modifiers), describe or illustrate
how to conduct screening to reduce the number of
variables to be considered in your initial multivariate
model.

3. Explain by illustration when it is questionable to screen
covariates using statistical testing for a crude
association with the outcome variable.

4. Given a binary logistic model involving several
exposures and/or covariates, describe and/or illustrate
how to assess collinearity and how to proceed if a
collinearity problem is identified.

5. Given a binary logistic model involving several
exposure variables and/or covariates, describe and/or
illustrate how to determine whether there are any
influential observations and how to proceed with the
analysis if influential observations are found.

6. Given a binary logistic model involving several
exposure variables and/or covariates, describe and/or
illustrate how to consider (or possibly correct for)
multiple testing when carrying out a modeling strategy
to determine a “best” model.
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Presentation

I. Overview

Focus

Modeling issues not considered
in previous chapters

Goal: determine “best” model

Binary logistic model

Apply to any regression analysis

Issues:

1. Modeling strategy when there
are two or more exposure
variables

2. Screening variables when
modeling

3. Collinearity diagnostics

4. Influential observations

5. Multiple testing

II. Modeling Strategy for
Several Exposure
Variables

Extend modeling strategy

� Outome: D(0,1)

� Exposures: E1, E2, . . . , Eq

� Control variables: C1, C2, . . . , Cp

EXAMPLE

Example: Two Es

Cross-sectional study
Grady Hospital, Atlanta, GA
297 adult patients
Diagnosis: Staph. aureus infection

Concern: potential predictors of
MRSA

This presentation addresses several modeling
strategy issues not considered in the previous
two chapters (6 and 7). These issues represent
important features of any regression analysis
that typically require attention when going
about the process of determining a “best”
model, although our specific focus concerns a
binary logistic regression model.

We consider five issues, listed here at the left,
each of which will be described and illustrated
in the sections that follow.

In this section, we extend the modeling strat-
egy guidelines described in the previous two
chapters to consider two or more exposure
variables, controlling for covariates that are
potential confounders and/or effect modifiers.
We begin with an example involving exactly
two exposure variables.

A cross-sectional study carried out at Grady
Hospital in Atlanta, Georgia involved 297
adult patients seen in an emergency department
whose blood cultures taken within 24 hours of
admission were found to have Staphylococcus
aureus infection (Rezende et al., 2002). Infor-
mation was obtained on several variables that
were considered as potential predictors of
methicillin-resistance infection (MRSA).
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EXAMPLE (continued)

Outcome: D ¼ MRSA status
(0 ¼ no, 1 ¼ yes)
Predictors:

PREVHOSP (0 ¼ no, 1 ¼ yes)
PAMU (0 ¼ no, 1 ¼ yes)
AGE (continuous)
GENDER (0 ¼ F, 1 ¼ M)

Question:

PREVHOSP, PAMU

controlling for AGE, GENDER

MRSA

Two Es : E1 ¼ PREVHOSP

E2 ¼ PAMU

Two Cs : C1 ¼ AGE

C2 ¼ GENDER

Initial model:

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ
þ ðg1V1 þ g2V2Þ
þ ðd11E1W1 þ d12E1W2

þ d21E2W1 þ d22E2W2Þ
þ d*E1E2;

where V1 ¼ C1 ¼ W1 and
V2 ¼ C2 ¼ W2.

V1 and V2: potential confounders

W1 and W2: potential effect
modifiers

E1E2: interaction of exposures

Modeling Strategy with Several
Exposures

Step 1: Variable Specification
(Initial Model)

Considers the following:

� Study question
� Literature review
� Biological/medical

conceptualization

(previously recommended with
only one E)

The outcome variable is MRSA status (1 ¼ yes,
0 ¼ no), and covariates of interest included the
following variables: PREVHOSP (1 ¼ previous
hospitalization, 0 ¼ no previous hospitaliza-
tion), PAMU (1 ¼ antimicrobial drug use in
the previous 3 months, 0 ¼ no previous anti-
microbial drug use), AGE (continuous), and
GENDER (1 ¼ male, 0 ¼ female).

For these data, we consider the following ques-
tion: Are the variables PREVHOSP and PAMU
associated with MRSA outcome controlling for
AGE and GENDER?

For this question, our predictors include two
Es (PREVHOSP and PAMU) and two Cs (AGE
and GENDER).

We now consider an initial EVWmodel (shown
at the left) that includes both Es and both Cs as
main effects plus product terms involving each
E with each C and the product of the two Es.

This initial model considers the control vari-
ables AGE and GENDER as both potential con-
founders (i.e., V1 and V2) and as potential effect
modifiers (i.e., W1 and W2) of both E1 and E2.
The model also contains an interaction term
involving the two Es.

As recommended in the previous chapters
when only one exposure variable was being
considered, we continue to emphasize that
the first step in one’s modeling strategy, even
with two or more Es, is to specify the initial
model. This step requires consideration of the
literature about the study question and/or out-
come and/or variables needing to be controlled
based on one’s biological/medical conceptuali-
zation of the study question.
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EXAMPLE

Our example assumes:

� AGE and GENDER risk factors

� AGE and GENDER potential
effect modifiers of interest

� Interaction of PREVHOSP and
PAMU also of interest

No interaction model:

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ
þ ðg1V1 þ g2V2Þ

Distinction between one E and sev-
eral Es:

Single E: Only one type of
interaction, EWs

Several Es:

Two types of interaction, EiWjs
and EiEks

Potentially omit Es from final
model

General form: EVW model for
several Es

Logit PðXÞ ¼ aþ ~
q

i¼ 1

biEi þ ~
p1

j¼ 1

gjVj

þ ~
q

i¼ 1

~
p2

k¼ 1

dikEiWk

þ ~
q

i¼ 1

~
q

i0 ¼ 1
i 6¼ i0

d*ii0EiEi0

For our example, therefore, we have assumed
that AGE and GENDER are well-known risk
factors forMRSA, and that there is also interest
to assess whether each of these variables are
effect modifiers of either or both of the expo-
sure variables. We also assume that the inter-
action of the exposures with each other is of
interest.

If, on the other hand, we decided that interac-
tion of any kind was either not of interest or not
practically interpretable, our initial model
would omit such interaction terms. In such a
case, the initial model would still involve the
two Es, but it would be a no interaction model,
as shown at the left.

The primary distinction between the modeling
strategy for a single E variable vs. several Es is
that, in the latter situation, there are two types
of interactions to consider: interactions of Es
with Ws and interactions of Es with other Es.
Also, when there are several Es, we may con-
sider omitting some Es (as nonsignificant) in
the final (“best”) model.

Although we will return to this example
shortly, we show here at the left the general
form of the EVW model when there are several
exposures. This model is written rather suc-
cinctly using summation signs, including dou-
ble summation signs when considering
interactions. Notice that in this general form,
there are q exposure variables, p1 potential con-
founders, and p2 potential effect modifiers.
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Alternative form (w/o summation
signs):

Logit P(X) = a + b1E1 + b2E2 + ... +  bqEq

+ g1V1 + g2V2 + ... + gp
1
Vp

1

Es

Vs

+ d11E1W1 + d12E1W2 + ... + d1,p
2
E1Wp

2
+ d21E2W1 + d22E2W2 + ... + d2,p

2
E2Wp

2

+ dq1EqW1 + dq2EqW2 + ... + dq,p
2
EqWp

2

+ ...
EWs

EEs
i π i’

+ d12E1E2 + d13 E1E3 + ... + d1q E1Eq
∗ ∗ ∗

+ d23E2E3 + d24 E2E4 + ... + d2q E2Eq
∗ ∗ ∗

+ ... + dq–1,q Eq–1Eq
∗

EXAMPLE

MRSA example:

Logit P(X) = a + b1E1 + b2E2

+ d11E1W1 + d12E1W2 + d21E2W1

+ d ∗E1E2

q= 2

+ g1V1 + g2V2 p1= 2

4 EWs

1 EE

+ d22E2W2

Next step in modeling strategy?

Step 2: Assess interaction

Questions regarding EWs andEEs?

� Consider separately or
simultaneously?

� If separately, EWs or EEs first?

Answer: It depends!
Several reasonable options.

This same model is alternatively written with-
out summation signs here and is divided into
four groups of predictor variables:

The first group lists the E variables.

The second group lists the V variables.

The third group lists the EW variables, the first
line of which contains products of E1 with each
of theWjs, the second line contains products of
E2 with each of theWjs, and so on, with the last
line of the group containing products of Eq

with each of the Wjs.

Finally, the fourth group lists the EE variables,
with the first line containing products of E1

with all other Es, the second line containing
products of E2 with all other Es except E1,
and so on, with the last line containing the
single product term Eq�1 Eq.

Returning to our initial model for the MRSA
data, there are q ¼ 2 E variables,

p1 ¼ 2 V variables,

p2 ¼ 2W variables, which yields 4EW variables,
and a single EE variable.

So, how do we proceed once we have identified
our initial model? Following our previous
strategy for one E variable, we recommend
assessing interaction as the next step. But,
since there are two types of product terms,
EWs and EEs, should we consider these types
separately or simultaneously, and if separately,
do we first consider EWs or EEs?

The answer, not surprisingly, is it depends!
That is, there are several reasonable options.

Presentation: II. Modeling Strategy for Several Exposure Variables 247



Option A: Overall (chunk) LR test for
                 interaction; then “subchunk” LR tests
                 for EWs and EEs; then Vs; finally Es

EXAMPLE

MRSA example:

� Overall chunk test: LR � w25 df

under H0:
d11 ¼ d12 ¼ d21 ¼ d22 ¼ d* ¼ 0

� Subchunk tests:
LR � w24 df under H01:
d11 ¼ d12 ¼ d21 ¼ d22 ¼ 0

LR � w21 df under H02: d* ¼ 0

Option B: Assess EWs first, then EEs, prior
to Vs and Es                

Reasons:
Assess interaction (EWs and EEs)
prior to confounding and preci-
sion, and Assess EWs prior to EEs

Option C: Assess EWs first, then Vs, prior
to EEs and Es            

Reason:
Assess effect modification (Ws)
and confounding (Vs) before con-
sidering exposures (Es and EEs)

EXAMPLE

Initial Model Output:
22ln L ¼ 275.683

Analysis of maximum likelihood estimates

Es

EWs

EEs

Vs

Reduced Model A:

Logit P ðXÞ ¼ aþ ðb1E1 þ b2E2Þ
þ ðg1V1 þ g2V2Þ

One Option (A) begins with a “chunk” LR test
that simultaneously evaluates all product
terms. We then test separate “subchunks”
involving EWs and EEs, after which we assess
the Vs for confounding and precision. Finally,
we consider dropping nonsignificant Es.

For the initial MRSAmodel, since there are five
product terms, the overall chunk test would
involve a chi square statistic with 5 degrees of
freedom. The two “subchunks” would involve
the 4 EW terms and the single EE term, as we
illustrate on the left.

Alternatively, a second Option (B) differs from
Option A by simply skipping the overall chunk
test. Both Options A and B make sense if we
decide that assessing interaction should always
precede assessing confounding and precision,
and that EWs should always be assessed prior to
EEs.

As another Option (C), recall that when we
considered a model with only a single E, we
left this E in the model throughout the entire
process of evaluating interaction, confound-
ing, and then precision. An analogous
approach for several Es is to evaluate effect
modifiers (Ws) and potential confounders (Vs)
before considering any terms involving Es,
including product terms (EEs).

We will apply Options A through C to the
MRSA data. First, we present, at the left, edited
results from fitting the initial model.

We now show the results from using Option A
for the reduced model (A) that eliminates all
five interaction terms from the initial model.
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EXAMPLE

Model A Output:22ln L ¼ 279.317

Analysis of maximum likelihood estimates

Es

Vs

LR = –2 1n LR(A) – (–2 1n LF)

⇒
No–interaction model A
preferred to full
interaction model

= 279.317 – 275.683
= 3.634 5 df (P= 0.6032)

Possibility: some product terms significant

+
Carry out subchunk tests for

EWs and EEs

ðstart of Option BÞ

Reduced Model B (w/o EW terms):

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ
þ ðg1V1 þ g2V2Þ
þ d*E1E2

Model B Output: –2ln L= 277.667

Es

EE

Vs

LR = –2ln LR(B) – (–2ln LF) 

⇒
Reduced model B
preferred to full
interaction model

= 277.667 – 275.683
= 1.984 4 df (P=0.7387)

EE term: E1E2 (¼PRHPAM)
TestingH0: d* ¼ 0 in reduced model B

Wald statistic¼ 1.089df¼1 (P¼ 0.2122)

LR statistic ¼ 279.317 � 277.667 ¼
1.650df¼ 1 (P ¼ 0.1990)

No-interaction Model A:
Logit P(X) ¼ a þ (b1E1 þ b2E2)

þ (g1V1 þ g2V2)
preferred to interaction model

The LR statistic for the overall “chunk” test
that compares initial and reduced models
yields a chisquare statistic of 3.634 with 5 df,
which is highly nonsignificant. This suggests
that the no-interaction MRSA model A is prefer-
able to the initial model containing five inter-
action terms.

Nevertheless, to consider the possibility that
some of the product terms are significant
despite the nonsignificant overall chunk test
results, we now carry out a test for the
“subchunk” of EWs terms followed by another
test for the “subchunk” of EE terms (of which
there is only one: E1E2). We are now essentially
considering (the start of) Option B.

Testing for the EW terms first, we present, at
the left, the reduced model (B) obtained by
eliminating the four EW terms from the initial
model, thereby keeping the single EE term in
the model.

The resulting output for thismodel is shown here.

From the output, the LR statistic for the “sub-
chunk” test that compares the initial model with
reduced model B yields a chi-square statistic of
1.984 with 4 df, which is highly nonsignificant.
This suggests that the reduced model B (that
excludes all EW terms) is preferable to the initial
modeling containing five interaction terms.

Focusing on the single EE term (E1E2) in the
reduced model B, we can see from the output
for this model that the Wald test for H0: d* ¼ 0
is nonsignificant (P ¼ 0.2122). The correspon-
ding LR statistic (that compares model A with
model B) is also nonsignificant (P ¼ 0.1990).

The above interaction results using Options A
and B indicate that the no-interaction model A
shown at the left is preferable to a model
involving any EW or EE terms.
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EXAMPLE (continued)

Options A and B (continued)

Confounding:
Does ÔR meaningfully change
when AGE and/or GENDER are
dropped?

GS model: no-interaction model A
above

ORGSðAÞ ¼ exp½b1ðE1*� E1Þ
þ b2ðE2*� E2Þ�;

where X* ¼ (E1*, E2*) and X ¼ (E1,
E2) are two specifications of the two Es

Our choices for E1 and E2 on two
subjects:

X* ¼ ðE1* ¼ 1;
yes

E2* ¼ 1Þ
yes

vs:

X ¼ ðE1 ¼ 0;
no

E2 ¼ 0
no
Þ

ORGS(A)

¼ exp½b1ð1� 0Þ þ b2ð1� 0Þ�
¼ exp½b1 þ b2�

Table of ORs (check confounding)

Vs in model

OR ORI

AGE,GEN

ORII ORIII ORIV

AGE GEN Neither

Model #

I. Logit PI(X)¼ aþ b1E1

þ b2E2þ g1V1

þ g2V2

II. Logit PII(X)¼ aþb1E1

þb2E2þ g1V1

III. Logit PIII(X)¼ aþ b1E1

þb2E2þ g2V2

IV. Logit PIV(X)¼ aþ b1E1

þ b2E2

OR formula (E1* ¼ 1, E2* ¼ 1) vs.
(E1 ¼ 0, E2 ¼ 0) for all four models:

OR = exp [b1 + b2]

To assess confounding, we need to determine
whether the estimated OR meaningfully
changes (e.g., by more than 10%) when either
AGE or GENDER or both are dropped from the
model. Here, the gold standard (GS) model is
the no-interaction model A just shown.

The formula for the odds ratio for the GS
model is shown at the left, where (E1*, E2*)
and (E1, E2) denote two specifications of the
two exposures PREVHOSP (i.e.,E1) and PAMU
(i.e., E2).

There are several ways to specify X* and X for
PREVHOSP and PAMU. Here, for convenience
and simplicity, we will choose to compare a
subject X* who is positive (i.e., yes) for both
Es with a subjectXwho is negative (i.e., no) for
both Es.

Based on the above choices, the OR formula
for our GS reduced model A simplifies, as
shown here.

To assess confounding, we must now deter-
mine whether estimates of our simplified
ORGS(A) meaningfully change when we drop
AGE and/or GENDER. This requires us to con-
sider a table of ORs, as shown at the left.

To complete the above table, we need to fit the
four models shown at the left. The first model,
which we have already described, is the GS(A)
model containing PREVHOSP, PAMU, AGE,
and GENDER. The other three models exclude
GENDER, AGE, or both from the model.

Since all fourmodels involve the same twoE vari-
ables, the general formula for the OR that com-
pares a subject who is exposed on both Es
(E1* ¼ 1, E2* ¼ 1) vs. a subject who is not
exposed on both Es (E1 ¼ 0, E2 ¼ 0) has the
same algebraic form for each model, including
the GSmodel.
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EXAMPLE (continued)

Options A and B (continued)

However: b̂1 and b̂2 likely differ for
each model

Estimate Regression Coefficients
and ÔRs

OR

b1

b2

Vs in model

Model:

AGE,GEN

I (GS)

AGE

II

GEN

III

Neither

IV

Assessing confounding (Option B):
Which models have “same” dOR as GS
model?

Quick glance: OR for GS highest
+

Only GS model controls
confounding

Change of Estimate Results:
10% Rule

Vs in model AGE,GEN AGE GEN Neither

Model: I (GS) II III IV

OR

Only GS model controls confounding

Model A Output –2 1n L= 279.317

Note: ±10% of 26.2430: (23.6187, 28.8673)

Within 10%
of GS?

Model at this point contains

E1, E2, V1, and V2

can’t drop

haven’t yet
addressed

Param
Intercept
PREVHOSP
PAMU

AGE
GENDER

DF Estimate Std Err ChiSq Pr > ChiSq

Es

Vs

Wald for
E1 (PREVHOSP): P ¼ 0.0002
E2 (PAMU): P < 0.0001

However, since the models do not all have the
same predictors, the estimates of the regres-
sion coefficients are likely to differ somewhat.

At the left, we show for each model, the values
of these two estimated regression coefficients
together with their corresponding OR esti-
mates. From this information, we must decide
which one or more of the four models controls
for confounding. Certainly, the GS model con-
trols for confounding, but do any of the other
models do so also?

An equivalent question is: which of the other
three models yields the “same” dOR as obtained
for the GS model? A quick glance at the table
indicates that thedOR estimate for the GSmodel
is somewhat higher than the estimates for the
other three models, suggesting that only the GS
model controls for confounding.

Moreover, if we use a “change-of-estimate” rule
of 10%, we find that none of models II, III, or
IV have an dORwithin 10% of the dOR of 26.2430
for the GS model (I), although model III comes
very close.

This result indicates that the only model that
controls for confounding is the GSmodel. That
is, we cannot drop either AGE or GENDER from
the model.

We therefore have decided that both Vs need
to stay in the model, but we have not yet
addressed the Es in the model.

The only other variable that we might consider
dropping at this point is E1 or E2, provided we
decide that one of these is nonsignificant,
controlling for the other. However, on inspec-
tion of the output for this model, shown again
at the left, we find that the Wald statistic for E1

is significant (P ¼ 0.0002), as is the Wald sta-
tistic for E2 (P < 0.0001).
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EXAMPLE (continued)

Options A and B (continued)

Cannot drop PREVHOSP or
PAMU

Using Options A or B:

No-Interaction Model A is best model

Logit P(X) = a + b1E1 + b2E2 + g1V1 + g2V2

fl

X* ¼ ðE1* ¼ 1;
yes

E2*¼ 1Þ
yes

vs: X ¼ ðE1 ¼ 0;
no

E2 ¼ 0
no
Þ

ORmodel A ¼ exp½b1ð1� 0Þ
þ b2ð1� 0Þ�

¼ exp½b1 þ b2�
OR = exp[b1 + b2]

= exp[1.4855 + 1.7819] =  26.2415

95% CI: (11.5512, 59.6146)

Conclusion from Options A and B:
Very strong (but highly variable)
combined effect of PREVHOSP and
PAMU

ORE1 E2,V1,V2 = exp[b1] = exp[1.4855]

95% CIE1 E2,V1,V2 =  [2.2004, 9.734]

4.417 =

ORE2 E1,V1,V2 = exp[b2] = exp[1.7819]

95% CIE2 E1,V1,V2 = [2.873, 12.285]

5.941 =

Options A or B: Additional
conclusions

Both PREVHOSP and PAMU
have moderately strong and
significant individual effects.

Thus, based on theseWald statistics, we cannot
drop either variable from the model (and simi-
lar conclusions from LR tests).

Consequently, using Options A or B, our best
model is the (reduced) no-interaction model A,
which we have called the Gold Standard
model.

For this model, then, the OR that compares a
subject X*who is positive (i.e., yes) for both Es
with a subject X who is negative (i.e., no) for
both Es simplifies to the exponential formula
shown at the left.

Below this formula, at the left, we show the
estimated OR and a 95% confidence interval
around this odds ratio.

These results show that there is a very strong
and significant (but highly variable) effect
when comparingMRSAmodels withX* andX.

Alternatively, we might wish to compute the
odds ratios for the effects of each E variable,
separately, controlling for the other E and the
two V variables. The results are shown at the
left and can also be obtained using the output
for reduced model A shown earlier.

From these results, we can conclude from
using Options A or B that both PREVHOSP
and PAMU have moderately strong and signifi-
cant individual effects (ORs of 4.417 and 5.941,
respectively) when controlling for the other
three variables in the final model, i.e., no-inter-
action model A.
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EXAMPLE (continued)

Option A: Overall (chunk) interaction,
then, in order. EWs, EEs,
Vs, and Es

Option B: Assess EWs first, then, in
order EEs, Vs, and Es

Option C: Assess EWs first, then,
in order, Vs, EEs, and
Es

Reduced Model B (w/o EW terms):

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ
þ ðg1V1 þ g2V2Þ
þ d*E1E2

Note: Reduced model B preferred to
full interaction model

Model B Output: –21n L = 277.667

Param

Intercept
PREVHOSP
PAMU

AGE
GENDER

DF Estimate Std Err ChiSq Pr > ChiSq

Es

Vs

PRHPAMEE

Confounding:
Does dOR meaningfully change

when AGE and/or GENDER are
dropped?

GS model: reduced model B above

ORGSðBÞ ¼ exp½b1ðE1*� E1Þ
þ b2ðE2*� E2Þ
þ d*ðE1*E2*� E1E2Þ�;

whereX* ¼ (E1*,E2*) andX¼ (E1,E2)
are two specifications of the two Es

Recall that both Options A and B assessed
interaction of EWs and EEs before considering
confounding and precision, where Option A
used an overall (chunk) test for interaction
and Option B did not. We are now ready to
consider Option C, which assesses interactions
involving EWs first, then confounding and pre-
cision (i.e., the Vs), after which EEs and finally
Es are evaluated.

Since all three Options, including Option C,
assess EWs before EEs, Vs, and Es, we have
already determined the results for the EWs.
That is, we can drop all the EWs, which yields
reduced model B, as shown again at the left.

The corresponding (edited) output for model B
is shown again here. This model retains the EE
product term PRHPAM (¼ E1E2), which using
Option C, will not be considered for exclusion
until we address confounding for AGE and
GENDER (i.e., the Vs).

To assess confounding, we need to determine
whether the estimated ORmeaningfully changes
(e.g., by more than 10%) when either AGE or
GENDER or both are dropped from the model.
Here, the gold standard (GS) model is the
reducedmodelB, which contains theE1E2 term.

The formula for the odds ratio for the GS
model is shown at the left, where (E1*, E2*)
and (E1, E2) denote two specifications of the
two exposures PREVHOSP (i.e.,E1) and PAMU
(i.e., E2). This formula contains three para-
meters: b1, b2, and d*.
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EXAMPLE (continued)

Option C (continued)

Must specify X* and X:

X* ¼ ðE1*¼ 1;
yes

E2* ¼ 1
yes

Þ

vs: X ¼ ðE1 ¼ 0;
no

E2 ¼ 0
no
Þ

ORGSðBÞ ¼ exp½ b1ð1� 0Þ þ b2ð1� 0Þ
þ d̂*ð½1� 1� � ½0� 0�Þ�

¼ exp½b1 þ b2 þ d*�

Table of ORs (check confounding)

Vs in model

ORI*

AGE,GEN

ORII* ORIII* ORIV*

AGE GEN Neither

OR

Model choices:

I*. Logit PI* (X)¼ aþ b1E1þ b2E2

þ g1V1 þ g2V2

þ d*E1E2

II*. Logit PII* (X) ¼ a þ b1E1

þ b2E2

þ g1V1

þ d*E1E2

III*. Logit PIII* (X) ¼ a þ b1E1

þ b2E2

þ g2V2

þ d*E1E2

IV*. Logit PIV* (X)¼ aþ b1E1

þ b2E2

þ d*E1E2

OR formula (E1* ¼ 1, E2* ¼ 1) vs.
(E1 ¼ 0, E2 ¼ 0) for all four
models:

OR ¼ exp½b1 þ b2 þ d*�

However, b̂1; b̂2, and d̂* likely differ for
each model

As previously noted (for Option A), there are
several ways to specify X* and X. Here, again,
we will choose to compare a subject X* who is
positive (i.e., yes) for both Es with a subject X
who is negative (i.e., no) for both Es.

Based on the above choices, the OR formula
for our GS reduced model B simplifies, as
shown here.

To assess confounding, we must once again
(as with Option A) consider a table of dORs, as
shown at the left.

To complete the above table, we need to fit the
four models shown at the left. The first model
(I*), which we have already described, is the
Gold Standard (GS(B)) model containing
PREVHOSP, PAMU, AGE, GENDER, and
PRHPAM. The other three models exclude
GENDER, AGE, or both from the model.

Since all four models involve the same two E
variables, the general formula for the OR that
compares a subject who is exposed on both Es
(E1* ¼ 1, E2* ¼ 1) vs. a subject who is not
exposed on both Es (E1 ¼ 0, E2 ¼ 0) has the
same algebraic form for each model, including
the GS(B) model.

However, since, the models do not all have the
same predictors, the estimates of the regres-
sion coefficients are likely to differ somewhat.
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EXAMPLE (continued)

Option C (continued)

Estimated Regression Coefficients
and ORs
Model: I*(GS) II* III* IV*

Vs in

model

AGE,

GEN AGE GEN Neither

b̂1 1.0503 1.1224 1.2851 1.2981

b̂2 0.9772 1.0021 0.8002 0.8251

d̂* 1.0894 0.8557 0.9374 0.8398

dOR 22.5762 19.6918 20.5467 19.3560

Confounding (Option C):
Which models have “same” dOR as GS
model?

dOR for GS is highest

+
Only GS model controls confounding

Change of Estimate Results:
10% Rule
Model: I* (GS) II* III* IV*

Vs in

model

AGE,

GEN AGE GEN NeitherdOR 22.5762 19.6918 20.5467 19.3560

Within

10% of

GS?

– No Yes No

Note: �10% of 22.5762: (20.3186,
24.8338)

Two alternative conclusions:

(a) Only GS model controls
confounding

(b) GS model (I*) and model III*
both control confounding

At the left, we show for each model, the values
of these three estimated regression coefficients
together with their corresponding OR esti-
mates.

From this information, we must decide
whether any one or more of models II*, III*,
and IV* yields the “same” dOR as obtained for
the GS model (I*).

Notice, first, that the OR estimate for the GS
model (22.5762) is somewhat higher than the
estimates for the other three models, suggest-
ing that only the GS model controls for con-
founding.

However, using a “change-of-estimate” rule
of 10%, we find that the dOR (20.5467) for
model III*, which drops AGE but retains GEN-
DER, is within 10% of the dOR (22.5762) for the
GS model. This result suggests that there are
two candidate models (I* and III*) that control
for confounding.

From the above results, we must decide at this
point which of two conclusions to draw about
confounding: (a) the only model that controls
for confounding is the GS model; or (b) both
the GS model (I*) and model III* control for
confounding.
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EXAMPLE (continued)

Option C (continued)

⇓

Suppose decide only GS(B)
control confounding

Model at this point contains

E1, E2, V1, V2 and E1E2,

can’t drop

have not yet
addressed

Next step: test E1E2:

Wald w2 ðreduced model BÞ
¼ 1:5562;P ¼ 0:2122 ðn:s:Þ

LR ¼� 2 ln Lmodel A �2 ln Lmodel BÞ
¼ 279:317� 277:667 ¼ 1:650 � w21 df

ðP ¼ 0:1989Þ

No-interaction Model A:

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ þ ðg1V1

þ g2V2Þ;

where V1 ¼ C1 ¼ AGE,
V2 ¼ C2 ¼ GENDER
E1 ¼ PREVHOSP,
E2 ¼ PAMU

Recall : Options A and B )
Model A is best

Option C : only GS model controls

confounding

+
Model A is best

Alternative decision about
confounding for Option C

+
2 candidate models control
confounding:

Model I*: GS(B)
Model III*: (AGE dropped)

How to decide between models?
Answer: Precision

Suppose we decide that only the GS model
controls for confounding. Then, we cannot
drop either AGE or GENDER from the model.
We therefore have decided that both Vs need to
stay in the model, but we have not yet
addressed the Es in the model.

For the next step, we would test whether the
E1E2 product term is significant.

From our output for reduced model B given
previously, we find that the Wald test for the
PRHPAM term (i.e., E1E2) is not significant
(P ¼ 0.2122). The corresponding LR test is
obtained by comparing �2lnL statistics for
reduced models A and B, yielding a LR statistic
of 1.650, also nonsignificant.

We can now reduce our model further by
dropping the E1E2 term, which yields the no-
interaction model A, shown at the left.

Recall that Model A was chosen as the best
model using Options A and B. Consequently,
using Option C, if we decide that the only
model that controls confounding is the GS(B)
model (I* above), then our best model for
Option C is also Model A.

The above conclusion (i.e., Model A is best),
nevertheless, resulted from the decision that
only theGS(B)model controlled for confound-
ing. However, we alternatively allowed for two
candidate models, the GS(B) model (I*) and
model III*, which dropped AGE from the
model, to control for confounding.

If we decide to consider model III* in addition
to theGS(B)model, how do we decide between
these two models? The answer, according to
the modeling strategy described in Chap. 7, is
to consider precision.
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EXAMPLE (continued)

Option C (continued)

OR formula for Models I* and III*:

OR ¼ exp½b1ðE1*� E1Þ þ b2ðE2*� E2Þ
þ d*ðE1*E2*� E1E2Þ�;

where X* ¼ (E1*, E2*) and X ¼ (E1, E2)
are two specifications of the two Es

Precision ) computing CIs for the
OR for Models I*
and III*

CI depends on how we specify X*
and X:
Our focus again:

X* ¼ ð1; 1Þ vs: X ¼ ð0; 0Þ
+

OR ¼ exp½b1 þ b2 þ d*�

Table of ORs and CIs for Models I*
and III*

OR 95% CI for OR

Model I* (GS(B))

Model III* (w/o AGE)

CI width
Model

I*
50.8871 � 10.0175 ¼ 40.8696

Model
III*

44.8250 � 9.4174 ¼ 35.4076

Better model: Model III*

Logit PIII* ðXÞ ¼ aþ ðb1E1 þ b2E2Þ
þ g1V2 þ d*E1E2

(same OR but better precision than
GS)

Model III* at this point contains

E1, E2, V2, and E1E2,

haven’t yet
addressed

Since both Models I* and III* include the inter-
action term E1E2, the OR formula has the same
structure for both models (shown again at the
left).

To evaluate precision for each odds ratio, we
must therefore compute (say, 95%) confidence
intervals (CIs) for the OR for each model.

The CI limits for each OR will depend on how
we specify X* and X. As we did for confound-
ing, we again focus on comparing a subject X*
who is positive (i.e., yes) for both Es with a
subject X who is negative (i.e., no) for both
Es. The OR formula simplifies as shown at
the left.

To assess precision, therefore, we must now
consider a table that gives the (95%) CI for
the OR for each model, and then decide
whether or not precision is gained when AGE
is dropped from the GS model. The resulting
table is shown at the left.

From the above results, we can see that,
although both models give wide (i.e., impre-
cise) confidence intervals, Model III* has a
tighter confidence interval than Model I*.

Therefore, we suggest that Model III* be cho-
sen as the “better” model, since it gives the
“same” (within 10%) OR estimate and provides
more precision.

At this point, usingmodel III*, we have decided
to drop V1 ¼ AGE from our initial model. Nev-
ertheless, we have not yet addressed the Es in
the model.
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EXAMPLE (continued)

Option C (continued)

Model III* Output
Analysis of maximum likelihood estimates

Param DF Estimate

Std

Err ChiSq Pr > ChiSq

Intercept 1 �2.6264 0.4209 38.9414 <.0001

PREVHOSP 1 1.2851 0.5107 6.3313 0.0119

PAMU 1 0.8002 0.7317 1.1960 0.2741

GENDER 1 0.4633 0.3066 2.2835 0.1308

PRHPAM 1 0.9374 0.8432 1.2358

Model C :

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ þ g2V2

Can we drop E1 or E2 fromModel C?

Model C Output

Cannot drop either E1 or E2

Option C conclusion:

Model C is best model

X* ¼ ðE1* ¼ 1;E2* ¼ 1Þ vs:
X ¼ ðE1 ¼ 0;E2 ¼ 0Þ
ORModel C ¼ exp½b1 þ b2�

ORModel C = exp[b1+ b2]
= exp[1.6627+ 1.4973]

95% CI: (10.7737, 51.5684)

23.5708=

For the next step, we would test whether the
E1E2 product term is significant. Using the
output for Model III* (shown at the left), we
find that the Wald test for the PRHPAM term
(i.e., E1E2) is not significant (P ¼ 0.2663). The
corresponding LR test is also not significant.

We can now reduce our model further by
dropping the E1E2 term, which yields the
reduced Model C, shown at the left.

The only other variables that we might con-
sider dropping at this point are E1 or E2,
provided one of these is not significant,
controlling for the other.

However, on inspection of the output for
this model, shown at the left, we find that the
Wald statistic for E1 is highly significant
(P < 0.0001), as is the Wald statistic for E2

(P < 0.0001). Thus, based on theseWald statis-
tics, we cannot drop either E variable from the
model (and similar conclusions from LR tests).

Consequently, if we decide to useOption C, and
we allow Models I* and Models III* to be can-
didate models that control for confounding,
then our best model is given by Model C. To
make this choice, we considered precision as
well as significance of the E in the model.

For this model, then, the OR that compares a
subject X*who is positive (i.e., yes) for both Es
with a subject X who is negative (i.e., no) for
both Es simplifies to the exp formula shown at
the left.

Below this formula, we show the estimated OR
and a 95% confidence interval around this
odds ratio, which indicates a very strong and
significant (but highly variable) effect.
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EXAMPLE (continued)

Best Model Summary: Options A,
B, C
Options A and B (same result):
Model A: contains PREVHOSP,

PAMU, AGE,
and GENDER

Option C:
Model C: contains PREVHOSP,

PAMU, and
GENDER

Model A Output (Best: Options A
and B)

Analysis of maximum likelihood estimates

Param DF Estimate Std Err ChiSq Pr> ChiSq

Intercept 1 �5.0583 0.7643 43.8059 <.0001

PREVHOSP 1 1.4855 0.4032 13.5745 0.0002

PAMU 1 1.7819 0.3707 23.1113 <.0001

AGE 1 0.0353 0.0092 14.7004 0.0001

GENDER 1 0.9329 0.3418 7.4513 0.0063

Model C Output (Best: Option C)

Analysis of maximum likelihood estimates

Param DF Estimate Std Err ChiSq Pr> ChiSq

Intercept 1 �2.7924 0.4123 45.8793 <.0001

PREVHOSP 1 1.6627 0.3908 18.1010 <.0001

PAMU 1 1.4973 0.3462 18.7090 <.0001

GENDER 1 0.4335 0.3030 2.4066 0.1525

ORs
PREVHOSP

Model exp[b1] exp[b2] exp[b1 + b2] 

PAMU COMBINED

A 4.417 5.941 26.242

5.274 4.470 23.571C

MRSA example: Options A, B, and C
+

Similar, slightly different numerical
conclusions

In general: No guarantee for
same conclusions

General form of Initial Model

Logit PðXÞ ¼ aþ ~
q

i¼1

biEi þ ~
p1

j¼1

gjVj

þ ~
q

i¼1

~
p2

k¼1

dikEiWk þ ~
q

i¼1

~
q

i0¼1

i6¼i0

d*ii0EiEi0

Summarizing the results we have obtained
from the above analyses on the MRSA data,
we have found two different final choices for
the best model shown at the left depending on
three approaches to our modeling strategy,
Options A and B (same result) and Option C.

The outputs for the two “best” models are
shown here.

Both models are no-interaction models, and
they both contain the main effects of two highly
significant E variables, PREVHOSP and PAMU.

The estimated coefficients of PREVHOSP and
PAMU differ somewhat for each model. The
estimate for PREVHOSP is 1.4855 for Model A
whereas it is 1.6627 for Model C. The estimate
for PAMU is 1.7819 forModelA compared with
1.4973 for Model C.

OR estimates from each model are shown in
the table at the left. Both models show moder-
ately strong effects for each E variable and a
very strongeffectwhencomparingX* ¼ (E1 ¼ 1,
E2 ¼ 1) with X ¼ (E1 ¼ 0, E2 ¼ 0). How-
ever, the effect of PREVHOSP is 16% lower in
Model A than in Model C, whereas the effect of
PAMU 25% higher in Model A than in Model C.

We see, therefore, that for our MRSA example,
modeling strategy Options A, B, and C give
similar, but slightly different conclusions
involving two E variables.

In general, as shown by this example, there is
no guarantee that these three options will
always yield the same conclusions. Therefore,
the researcher may have to decide which
option he/she prefers and/or which conclusion
makes the most (biologic) sense.

In summary, we recommend that the initialmodel
has the general form shown at the left. This model
involves Es, Vs, EWs, and EEs, so there are two
types of interaction terms to consider.
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Modeling Strategy Summary: Several Es

Step 1: Define initial model (above formula)

Step 2: Assess interaction
Option A: Overall chunk test + Options B or C
Option B: Test EWs, then EEs
Option C: Test EWs, but assess Vs before EEs

Step 4: Test for nonsignificant Es if not

Step 3: Assess confounding and precision (Vs)
Option A and B (cont’d):
   Vs after EWs and EEs
Option (cont’d):
   Vs after EWs, but prior to EEs

components of significant EEs 

Special Cases: Several Es

(a) All Vs are controlled as main
effects,
i.e., confounding and

precision for Vs not
considered

Modeling Strategy: All Vs controlled

Step 1: Define initial model (above formula)

Step 2: Assess Interaction
Option A: Overall chunk test + Options B
Option B: Test EWs, then EEs

Step 4: Test for nonsignif Es if not components
of significant EEs 

EXAMPLE

MRSA Initial Model, Special case(a)

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ
þ ðg1V1 þ g2V2Þ
þ ðd11E1W1 þ d12E1W2

þ d21E2W1 þ d22E2W2Þ
þ d*E1E2

Model A: Final Model

Logit PðXÞ ¼ aþ ðb1E1 þ b2E2Þ þ ðg1V1

þ g2V2Þ

(b) The model contains only Es
and EEs, but no Cs
(i.e., no Vs or Ws)
“Hypothesis Generating”
Model

We then recommend assessing interaction, first
by deciding whether to do an overall chunk test,
then testing for the EWs, after which a choice
has to be made as to whether to test for the EE
terms prior to or subsequent to assessing con-
founding and precision (involving the Vs).

The resulting model can then be further
assessed to see whether any of the E terms in
the model can be dropped as nonsignificant.

There are two special cases that we now
address:

What if you decide to control for all Vs as
main effects (without assessing confounding
and/or precision)?

In this case (a), we only need to consider
Options A and B, so that Step 3 of our previ-
ously described strategy can be omitted.

For example, using the MRSA data, the initial
model, shown again at the left contains two Es,
two Vs, 4 EWs and one EE term.

When previously applying Options A and B to
this model, we dropped all interaction terms,
resulting in reduced model A shown at the left.
If we decide in advance to control for both Vs,
then this is our final model, since both Es were
significant in this model.

As a second special case, what if our model con-
tains only Es, so there are no Cs to control? This
case is often referred to as a “hypothesis gener-
ating” model, since we are essentially assuming
that we have limited knowledge on all possible
predictors and that no risk factors have been
established.

260 8. Additional Modeling Strategy Issues



General Model: Only Es and EEs

Logit PðXÞ ¼ aþ ~
q

i¼1

biEi þ ~
q

i¼1

~
i0¼1

i6¼i0

q

d*ii0EiEi0

Modeling Strategy: All Es, no Cs

Step 1: Define initial model (above formula)

Step 2: Assess interaction involving Es
Option A*: Overall chunk test for EEs,
followed by backward elimination of EEs

Step 4: Test for nonsignif Es if not components
of significant EEs 

EXAMPLE

MRSA example Initial Model, Special
case (b)

Logit PðXÞ ¼ aþ b1E1 þ b2E2 þ d*E1E2

Final model: All Es, no Cs:

Logit PðXÞ ¼ aþ b1E1 þ b2E2;
where E1 ¼ PREVHOSP and

E2 ¼ PAMU

One other issue: specifying the
initial model
(MRSA example)

EXAMPLE

Possible Causal Diagrams for MRSA
Study

Diagram 1

Diagram 2

V1

V1 V2

V2

E2

E2

D

D

E1

E1

D = MRSA (0,1)
V1 = AGE
V2 = GENDER
E1 = PREVHOSP
E2 = PAMU

Diagram 1 ) PAMU intervening
variable;
AGE and GENDER
confounders

In this case (b), our general model takes the
simplified form shown at the left.

For this model, we recommend a correspond-
ingly simplified strategy as shown at the left
that involves statistical testing only, first for
EE terms, and then for Es that are not compo-
nents of significant EEs. In terms of the
options we previously described, we only need
to consider a modified version of Option A, and
that Step 3, once again, can be omitted.

Applying this situation to our MRSA data, the
initial model (w/o the Cs) is shown at the left.

TestingH0: d* ¼ 0 in this model yields a nonsig-
nificant result (data not shown), and the final
model (since individual Es cannot be dropped)
is the no-interaction model shown here.

We now address one other issue, which con-
cerns how to specify the initial model. We
describe this issue in the context of the MRSA
example.

At the left, we consider two possible causal
diagrams for the MRSA data.

Diagram 1 indicates that PAMU (i.e., E2) is an
intervening variable in the causal pathway
between PREVHOSP (i.e., E1) and MRSA out-
come, and that AGE and GENDER (i.e., V1

and V2) are confounders of the relationship
between PREVHOSP and MRSA.
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EXAMPLE (continued)

Diagram 2 ) PREVHOSP and PAMU
independent risk factors;
AGE and GENDER
confounders

Diagram 2 appropriate ) initial
model containing both
E1 and E2 is justified

Diagram 1 appropriate ) initial
model should not
contain both
PREVHOSP and
PAMU

i.e., PAMU intervening variable

Logit PðXÞ ¼
+
aþ b1E1 þ g1V1 þ g2V2

þ d11E1V1 þ d12E1V2

The moral: Causal diagram can
influence choice of initial model

Diagram 2 indicates that PREVHOSP and
PAMU are independent risk factors for MRSA
outcome, and that AGE and GENDER are con-
founders of both PREVHOSP and PAMU.

The initial model that we considered in our
analysis of the MRSA data, containing both
PREVHOSP and PAMU in the model as E vari-
ables, can be justified if we decide that Dia-
gram 2 is a correct representation of the
causal pathways involved.

In contrast, if we decide that Diagram 1 ismore
appropriate than Diagram 2, we should not put
both PREVHOSP and PAMU in the same
model to assess their joint or separate effects.

In other words, if PAMU is an intervening vari-
able, we should consider a model involving
only one E variable, preferably PREVHOSP.
An example of such a model, which controls
for AGE and GENDER and allows for interac-
tion effects, is shown at the left.

Thus, as mentioned previously in Chap. 6, the
choice of the initial model can be influenced
by the causal diagram considered most appro-
priate for one’s data.
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III. Screening Variables

Scenario:
Logistic Model
E(0,1) vs. D(0,1)
C1, C2, . . . , Cp

“large” p

Desired initial model:

Logit PðXÞ ¼ aþ bEþ ~
p

j¼1

gjCj

þ ~
p

j¼1

djECj

Follow hierarchical BW elimina-
tion strategy (Chap. 7)

However, suppose:

� Computer programdoes not run

or

� Fitted model unreliable (“large”
p)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
What do you do?

OPTIONS (large-number-of-vari-
ables problem)

1. Screening:

� Exclude some Cj one-at-a-
time

� Begin again with reduced
model

2. Collinearity diagnostics on
initial model:

� Exclude some Cj and/or
E � Cj strongly related to
other variables in the model

3. Forward algorithm for
interactions:

� Start with E and all Cj,
j ¼ 1, . . . , p

� Sequentially add significant
E � Cj

In this section, we address the following sce-
nario: Suppose you wish to fit a binary logistic
model involving a binary exposure and out-
come variables E and D controlling for the
potential confounding and effect-modifying
effects of a “large” number of variables Cj,
j ¼ 1, 2, . . . , p that you have identified from
the literature.

You would like to begin with a model contain-
ing E, the main effects of each Cj, and all prod-
uct terms of the form E � Cj, and then follow
the hierarchical backward elimination strategy
described in Chap. 7 to obtain a “best” model.

However, when you run a computer program
(e.g., SAS’s Proc Logistic) to fit this model, you
find that the model does not run or you decide
that, even if the model runs, the resulting fitted
model is too unreliable because of the large
number of variables being considered. What
do you do in this situation?

There are several possible options:

1. Use some kind of “screening” technique to
exclude some of the Cj variables from the
model one-at-a-time, and then begin again
with a reduced-sized model that you hope is
reasonably reliable and/or at least will run.

2. Use “collinearity” diagnostic methods
starting with the initial model to exclude vari-
ables (typically product terms) that are
strongly related to other variables in themodel.

3. Use a forward regression algorithm that
starts with a model containing all main effect
Cj terms and proceed to sequentially add statis-
tically significant product terms.
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4. Backward for Cs, then
forward for E � Cj:

� Start with E and all Cj,
j ¼ 1, . . . , p

� Sequentially drop
nonsignif. Cj

� Sequentially add E�Cj for
remaining Cj

COMMENTS/CRITICISMS OF
OPTIONS:

Option 2: next section.

Option 3:

þ Starts with small-sized model

� Can still be unreliable if large
number of Cs

� Interactions not assessed
simultaneously

Option 4:

þ Frequently used in practice (??)

� Inappropriately uses statistical
testing to exclude potential
confounders

� Questionably excludes Cs before
assessing E � Cs

Screening:
Good ways and questionable ways

Purpose:

� Reduce number of predictors

� Obtain a reliable and
interpretable final model

4. Start with a model containing all Cj terms,
proceed backward to eliminate nonsignificant
Cj terms, and then sequentially add statistically
significant product terms among the remain-
ing Cj terms.

Option 2 above will be described in the next
section. It cannot be used, however, if initial
model does not run.

Option 3 has the advantage of starting with a
small-sized model, but has two disadvantages:
the model may still have reliability problems if
there are a “large” number of Cs, and the for-
ward approach to assess interaction does not
allow all interaction terms to be assessed
simultaneously as with a backward approach.

Option 4, which is frequently used in practice,
can be strongly criticized because it uses statis-
tical testing to determine whether potential
confounders Cj should stay in the model,
whereas statistical testing should not be used
to assess confounding. Furthermore, option 4
excludes potential confounders prior to asses-
sing interaction, whereas interaction should be
assessed before confounding.

We now return to describe Option 1: screening.
As we will describe below, there are good ways
and questionable ways to carry out screening.

The purpose of screening is to reduce the num-
ber of predictors being considered so that a
reliable and interpretable final model can be
obtained to help answer study questions of
interest.
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Drawbacks of screening:

1. No simultaneous assessment of
all Es and Cs.

2. No guarantee final model
contains all “relevant” variables

General screening situation:

n subjects, k predictors (Xi,
i ¼ 1, . . . , k)

k “large enough” to require screening

Method 0:

� Consider predictors one-at-a-
time

� Screen-out those Xi not
significantly associated with D

Questions about Method 0:

Q1. Any criticism?

Q2. Depends on types of Xs?

� Use if several Es and Cs?

� Use if one E and several
Cs?

� Use if only Es?

Q3. How large k compared to n?

� k ¼ 10, n ¼ 50: 20%?

� k ¼ 10, n ¼ 100: 10%?

� k ¼ 10, n ¼ 200: 5%?

Q4. Other ways than Method 0?

Q5. Collinearity and/or
screening?

The two primary drawbacks of screening are:

1. Does not accomplish simultaneous assess-
ment of all exposure and control variables
recommended from the literature or conceptu-
alization of one’s research question.
2. No guarantee that one’s final model con-
tains all the relevant variables of interest,
although there is no such guarantee for any
modeling strategy.

Consider the following general screening situa-
tion: Your dataset contains n subjects and k
predictors, and you decide k is large enough
to warrant some kind of screening procedure
to reduce the number of predictors in your
initial model.

A typical approach (let’s call it Method 0) is to
screen-out (i.e., remove from one’s initial
model) those variables that are not individually
significantly associated with the (binary) out-
come.

Q1. Is there anything that can be criticized
about Method 0?

Q2. Should the use of Method 0 depend on
types of predictors? E.g., whether your
predictors are a mixture of Es and Cs, involve
one E and several Cs, or only involve Es?

Q3. How large does k have to be relative to n in
order to justify screening?

Q4. Are there other ways (i.e., Methods A, B,
C, . . .) to carry out (one-at-a-time) screening
and when, if at all, should they be preferred to
the typical approach?

Q5. Where does collinearity assessment fit in
with this problem?
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Answers:

Q1. Yes:

� Statistical testing only
(questionable)

� Does not consider
confounding or
interaction

Assess confounding with D(0,1),
E(0,1), one C:

Logit PðXÞ ¼ aþ bE;

where P(X) ¼ Pr(D¼ 1|E)

Logit P*ðXÞ ¼ a*þ b*Eþ g*C;

where P*(X) ¼ Pr(D¼ 1|E,C)

*ˆ
|

ˆ
eORDE CeORDE

bb =¹=

meaningfully differentConfounding:

Assess interaction with D(0,1),
E(0,1), one C:

Logit PðXÞ ¼ aþ bEþ gCþ dE� C;

where P(X) ¼ Pr(D¼ 1|E,C,E� C)

H0: d ¼ 0

Wald ¼ d̂=sd̂
� �2

� w21 df under H0

LR ¼ �2 ln LR � (�2 lnLF) � w21 df

under H0

Q1. Is there anything that can be criticized
about Method 0?
Yes, Method 0 involves statistical testing only;
it does not consider confounding or effect
modification (interaction) when assessing
variables one-at-a-time.

To assess confounding involving binary dis-
ease D, binary exposure E, and a single poten-
tial confounder C, you need to fit two
regression models (shown at left), one of
which contains E and C, and the other of
which contains only E.

Confounding is present if we conclude that
corresponding odds ratio estimates are mean-
ingfully different for the two models.

To assess interaction involving binary disease
D, binary exposure E, and a single potential
confounder C, we need to fit the following
logistic regression model shown at the left
that contains the main effects of E and C and
the product term E � C.

Interaction is then assessed by testing the null
hypothesis that the coefficient (d) of the prod-
uct term is zero using either a Wald test or a
likelihood ratio test (preferred), where the test
statistic is chi square with 1 df under H0.
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Answers about Screening (con-
tinued)

Q2. Yes: It depends.

� Use Method 0 if several Es
and Cs? No

� Use Method 0 if one E and
several Cs? No

� Use Method 0 if only Es?
Yes

Questionable when model con-
siders Cs

Q3. No clear-cut rules for
“large k.”
However, need screening if
initial model does not run.

Q4. Other options for (1-at-a-
time) screening? Yes

� Variations to assess
confounding or
interaction, e.g., use
stratified analysis instead
of logistic regression

� Such options needed if
considering Cs

5. Collinearity?ffip
Prior to screening and/or
after screening

Initial model does not run

+
Cannot obtain collinearity diagnostics

+
Start with screening

Screening completed

+
Model may still be unreliable

+
Consider collinearity diagnostics

Q2. Should the use of Method 0 depend on
types of predictors?
Yes, Method 0 makes most sense when the
model only involves Es, i.e., no potential con-
founders (Cs) and no corresponding changes in
ORs are being considered. However, Method
0 is questionable whenever there are variables
being controlled (Cs).

Q3. How large does k have to be relative to n
in order to justify screening?

There are no clear-cut rules, but you will
become aware that screening should be consid-
ered if your initial model does not run (see next
section on collinearity).

Q4. Are there other ways to carry out (one-at-
a-time) screening and when, if at all, should
they be preferred to the typical approach?

There are several reasonable options for
screening, all of which are variations of ways
to assess possible confounding and/or effect
modification involving covariates. Such options
should be preferred whenever there is a mixture
of Es and Cs to be considered.

Q5. Where does collincarity assessment fit in
with this problem?

Collinearity may be considered prior to
screening or after screening is performed.

If your initial model does not run, typical col-
linearity diagnostics (e.g., condition indices, to
be described in the next section) cannot be
obtained, so screening must be considered
from the beginning.

Also, once screening has been performed, col-
linearity assessment may determine that
your reduced model (after screening) is still
unreliable.
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Question 2 (continued)
What if only Es (no Cs consid-
ered)?
Answer: Use Method 0.

Why? Confounding not an issue

Initial model with Es and Cs?
Screening procedure: it depends!
Option 1: Screen Cs only without

using Method 0
Option 2: Screen Cs without using

Method 0, and screen Es
using Method 0

Following up on a previous question (2), sup-
pose your starting model involves several Es
but no Vs or Ws, i.e., no Cs are considered.
How do you carry out (one-at-a-time) screen-
ing for this situation?

We recommend using Method 0 here, because
when there are no Cs to consider, confounding
is not an issue. Consequently, using statistical
testing for one-at-a-time screening of Es is
appropriate.

Suppose your initial model involves several Es
and Cs. How do you carry out screening for this
situation? The answer is, as is often the case, it
depends!
Option 1: You may decide to screen only Cs,
and then consider the Es during your modeling
strategy process.
Option 2: If you have large numbers of E and C
variables, you might screen both types of vari-
ables, making sure not to use Method 0 for the
Cs and using Method 0 for the Es.
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EXAMPLE

Examples of Screening: Single E, C1,
C2, . . . , C10.
Four Scenarios: Which of these is
“legitimate”?

i. Crude analyses relating D
to each Ci identify only
C1 and C4 to be significant
predictors of D. Starting
model then contains E, C1,
C4, EC1, and EC4. Best
model determined using
hierarchical backward
elimination approach
(HBWE) outlined in
Chap. 6

ii. Stratified analyses relating
D to E and each Ci identify
C1 and C4 to be individual
confounders, and C5 to be
an effect modifier of the
E, D effect. Starting model
then contains E, C1, C4, C5,
EC1, EC4, and EC5. Best
model determined using
HBWE.

iii. Crude analyses relating D
to each Ci identify only C1

and C4 to be significant
predictors of D. Starting
model then contains E, C1,
and C4. Backward
elimination on Cs
eliminates C4, but retains
C1 (andE). Add interaction
term EC1. Best model
determined using HBWE.

iv. Logistic regression models
relating D to E and each
Ci identify C1 and C4 to be
individual confounders,
and C5 to be an effect
modifier of the E, D effect.
Starting model then
contains E, C1, C4, C5, EC1,
EC4, and EC5. Best model
determined using HBWE.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

We now provide a few simple examples to illus-
trate screening.We will begin by assuming that
we have a single E variable and 10 C variables,
C1, C2, . . . , C10. At the left, we describe four
different screening scenarios for this situation.
Can you determine which of these scenarios
corresponds to carrying out Method 0, and
which represents what we have described
above as a “legitimate” method of screening?
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IV. Collinearity

Can some Xs be predicted by other
Xs?

If Xs are “strongly” related, then

b̂j unreliable

Vâr b̂j high

model may not run

9>>>>>>>=
>>>>>>>;

collinearity

problem

Collinearitymay involvemore than

twoXs

+
Simple approach : rXi;Xj not sufficient

EXAMPLE

If X3 � X1 � X2,
could not detect this from
rX3,X1, rX3,X2, or rX1,X2.

Collinearity concerns the extent to which one or
more of the predictor variables (the Xs) in one’s
model can be predicted from other Xs in the
model.

If there are very strong relationships among
some of the Xs, then the fitted model may
yield unreliable regression coefficients for
some predictors. In other words, coefficients
may have high estimated variances, or perhaps
the model may not even run. When this occurs,
we say that themodel has a collinearity problem.

Because collinearity problems may involve
relationships among more than two Xs, it is
not sufficient to diagnose collinearity by
simply looking at correlations among pairs of
variables.

For example, if X3 was approximately equal to
the difference between X1 and X2, this relation-
ship could not be detected simply by looking at
correlations between X3 and X1, X3 and X2, or
X1 and X2.

EXAMPLE (continued)

Answer:
Scenarios ii and iv “legitimate”
screening

Scenarios i and iii incorrectly use
significance tests to screen
individual Ci.

Scenario iii questionably uses BW
elimination on Cs before assessing
interaction

Summary about Method 0:

1. Does not assess confounding or
interaction for individual Ci.

2. Makes most sense if model only
involves Es.

The answer to the above question is that sce-
narios ii and iv represent “legitimate” methods
of screening because both scenarios do not
involve using a significance test of a crude
effect between Ci and D. Scenario iii differs
from i in that backward elimination is (ques-
tionably) performed on the Cs before interac-
tion is assessed.

Summarizing ourmain points aboutMethod 0:

1. Method 0 does not consider confounding
and/or interaction for predictors treated
one-at-a-time.

2. Method 0 makes most sense when the
model only involves Es, but is questionable
with both Es and Cs being considered.
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EXAMPLE (continued)

b0
b1

b2

b3

b4

b5

b6

b7

1. Largest CNI “large”
    (e.g., >30)

2. At least two VDPs “large”
    (e.g., ≥ 0.5)

diagnosing
collinearity

b0
b1

b2

b3

b4

b5

b6

b7

Diagnosing collinearity conceptually
Computer software for nonlinear
models

Collinearity objective:

� Determine if fitted model is
unreliable ,

� Determine whether Varðb̂jÞ is
“large enough”

Estimated Variance–Covariance Matrix

b3)
=

ˆ(Var

b2)ˆ(Var

b1)ˆ(Var

b3)ˆ(Var

V̂

= I–1 for nonlinear models

Covariances

Covariances 

One popular way to diagnose collinearity uses
a computer program or macro that produces a
table (example shown at left) containing two
kinds of information, condition indices (CNIs)
and variance decomposition proportions (VDPs).
(See Kleinbaum et al., Applied Regression and
Other Multivariable Methods, 4th Edition,
Chap. 14, 2008 for mathematical details about
CNIs and VDPs)

Using such a table, a collinearity problem is
diagnosed if the largest of the CNIs is consid-
ered large (e.g., >30) and at least two of the
VDPs are large (e.g., 	 0.5).

The diagnostic table we have illustrated indi-
cates that there is at least one collinearity prob-
lem that involves the variablesE,C3 andE�C3

because the largest CNI exceeds 30 and two of
the VDPs are as large as 0.5.

We now describe briefly how collinearity is
diagnosed conceptually, and how this relates
to available computer software for nonlinear
models such as the logistic regression model.

The objective of collinearity diagnostics is to
determine whether (linear) relationships
among the predictor variables result in a fitted
model that is “unreliable.” This essentially
translates to determining whether one or more
of the estimated variances (or corresponding
standard errors) of the b̂j become “large
enough” to indicate unreliability.

The estimated variances are (diagonal) compo-
nents of the estimated variance–covariance
matrix ðV̂Þ obtained for the fitted model. For non
linear models in which ML estimation is used,
the V̂ matrix is called the inverse of the informa-
tion matrix (I21), and is derived by taking the
second derivatives of the likelihood function (L).
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CNIs and VDPs derived from V̂

CNIs identify if collinearity exists

VDPs identify variables causing
collinearity

SAS; STATA; SPSS

do not compute CNIs and VDPs

for nonlinear models

But: SAS macro available

Application of macro later

Difficulties:

How large is large for CNIs and
VDPs?

How to proceed if collinearity is
found?

Collinearity cut-off recommenda-
tions

ðBKW; 1981Þ: CNI 	 30;VDP 	 0:5

+
Guidelines

for

linear regression models

Modifying guidelines for nonlinear
models:

� open question (lower CNI
cutpoint?)

� flexibility for how high is high

The CNIs and VDPs previously introduced are
in turn derived from the V̂ matrix. As illu-
strated earlier, the CNIs are used to identify
whether or not a collinearity problem exists,
and the VDPs are used to identify those vari-
ables that are the source of any collinearity
problem. (Again, see Kleinbaum et al., 2008,
Chapter 14, for a more mathematical descrip-
tion of CNIs, VDPs, and I21.)

Unfortunately, popular computer packages
such as SAS, STATA, and SPSS do not contain
programs (e.g., SASs LOGISTIC procedure)
that compute CNIs and VDPs for nonlinear
models. However, a SAS macro (Zack et al.),
developed at CDC and modified at Emory Uni-
versity’s School of Public Health, allows com-
putation of CNIs and VDPs for logistic and
other nonlinear models (see Bibliography).

We illustrate the use of this macro shortly.

Nevertheless, there are difficulties in diagnos-
ing collinearity. These include determining
how “large is large” for both the CNIs and the
VDPs, and how to proceed if a collinearity
problem is found.

The classic textbook on collinearity diagnostics
(Belsey, Kuh, and Welch, 1981) recommends a
cut-off of 30 for identifying a high CNI and a
cut-off of 0.5 for identifying a high VDP. Nev-
ertheless, these values were clearly described
as “guidelines” rather than firm cut-points, and
they were specified for linear models only.

To what extent the guidelines (particularly for
CNIs) should be modified (e.g., lowered) for
nonlinear models remains an open question.
Moreover, even for linear models, there is con-
siderable flexibility in deciding how high is high.
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We recommend (linear or logistic
models):

� Require CNI >> 30

� Focus on VDPs for largest CNI

� Address largest CNI before
other CNIs

Sequential approach

+
Drop variable, refit model, readdress

collinearity, continue until no collinearity

Option 1 – (most popular) Correct-
ing Collinearity:

EXAMPLE

Drop a variable from the model

Example:VDPs identify X1;X2;X1 � X2

+
Drop X1 � X2

Dropping a collinear variable:

� Does not mean variable is
nonsignificant

� Indicates dropped variable
cannot be assessed with other
collinear variables

Option 2 – Correction Collinearity:
Define a new (interpretable)
variable:

� Does not make sense for
product terms

� Can combine height and weight
into BMI ¼ height/weight2

For either linear or logistic models, we recom-
mend that the largest CNI be “considerably”
larger than 30 before deciding that one’s
model is unreliable, and then focusing on
VDPs corresponding to the largest CNI before
addressing any other CNI.

This viewpoint is essentially a sequential
approach in that it recommends addressing
themost likely collinearity problem before con-
sidering any additional collinearity problems.

Once a collinearity problem has been deter-
mined, the most popular option for correcting
the problem is to drop one of the variables
identified (by the VDPs) to be a source of the
problem. If, for example, the VDPs identify two
main effects and their product, the typical solu-
tion is to drop the product term from themodel.

Nevertheless, when such a term is dropped
from the model, this does not mean that this
term is nonsignificant, but rather that having
such a term with other variables in the model
makes the model unreliable. So, by dropping
an interaction term in such a case, we indicate
this interaction cannot be assessed, rather than
it is nonsignificant.

A second option for correcting collinearity is to
define a new variable from the variables caus-
ing the problem, provided this new variable is
(conceptually and/or clinically) interpretable.

Combining collinear variables will rarely make
sense if a product term is a source of the prob-
lem. However, if, for example, main effect vari-
ables such as height and weight were involved,
then the “derived” variable BMI (¼ height/
weight2) might be used to replace both height
and weight in the model.
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EXAMPLE

MRSA example – Initial Model:

Logit PðXÞ ¼ aþ b1E1 þ b2E2 þ g1V1

þ g2V2 þ d11E1W1

þ d12E1W2 þ d21E2W1

þ d22E2W2 þ d*E1E2;

where

D ¼ MRSA status ð0; 1Þ;
E1 ¼ PREVHOSP

E2 ¼ PAMU;V1 ¼ W1 ¼ AGE;

V2 ¼ W2 ¼ GENDER

At least one collinearity problem,
i.e., involves PREVHOSP and 
PREVHOSP × AGE Drop

Another possible collinearity problem
(CNI ¼ 34.3)
Two alternatives at this point:

� Stop further collinearity
assessment

� Drop PAMU � AGE and continue

We now illustrate the use of collinearity diag-
nostics for the MRSA dataset we have
described earlier. We consider the initial
model shown at the left, which contains two
Es, two Vs, 4 EWs, and a single EE.

Using the collinearity macro introduced above,
we obtain the (edited) collinearity diagnostic
output shown at the left. From this table, we
see that the highest CNI is 45.6, which is consid-
erably higher than 30, and there are two VDPs
greater than 0.5, corresponding to the variables
PREVHOSP (VDP ¼ 0.95) and the product term
PREVHOSP � AGE (VDP ¼ 0.85).

Based on these results, we decide that there is
at least one collinearity problem associated
with the highest CNI and that this problem
involves the two variables PREVHOSP and
PREVHOSP � AGE.

Proceeding sequentially, we would now drop
the product term from the model and reassess
collinearity for the resulting reduced model.
The results are shown at the left. From this
table, we see that the highest CNI is now 34.3,
which is slightly higher than 30, and there are
two VDPs greater than 0.5, corresponding to
the variables AGE (VDP ¼ 0.74) and the prod-
uct term PAMU � AGE (VDP ¼ 0.75).

Since the highest CNI here (34.3) is only
slightly above 30, we might decide that this
value is not high enough to proceed further to
assess collinearity. Alternatively, proceeding
conservatively, we could drop the product
PAMU � AGE and further assess collinearity.
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EXAMPLE (continued)

Reduced model after diagnosing
collinearity:

Logit PðXÞ ¼ aþ b1E1 þ b2E2 þ g2V2

þ d12E1W2 þ d22E2W2

þ d*E1E2

(Note: E1W1 and E2W1 removed from
initial model)

V. Influential
Observations

Are there any subjects in the data-
set that “influence” study results?

+
Does removal of subject from the
data result in “significant” change
in b̂j or ÔR?

Popular approach:
Measure extent of change in b̂j
when subject is dropped from the
data:

Delta-beta (Dbj)

The collinearity diagnostics resulting when
PAMU � AGE is dropped from the model are
shown at the left. The largest CNI in this table
is 21.5, which is much smaller than 30. Thus,
we conclude that after we drop both PRE-
VHOSP�AGE and PAMU�AGE, there are no
more collinearity problems.

So, after assessing collinearity in our MRSA
example, we have arrived at the reduced
model shown at the left. This model then
becomes a “revised” initial model from which
we determine a final (“best”) model using the
hierarchical backward elimination (HBWE)
strategy we have previously recommended.

Another diagnostic issue concerns influential
observations: those subjects (if any) in one’s
dataset that strongly “influence” the study
results.

Technically, a subject is an influential observa-
tion if removal from the dataset results in a
“significant” change in one or more of the esti-
mated bj (or ORs of interest in a logistic
model).

A popular approach for identifying influential
observations is to compute for each study sub-
ject, a measure of the change in one or more
estimated regression coefficients when the
subject is dropped from the data. For a given
variable in the model, this measure is called a
Delta-beta.
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EXAMPLE

4 predictors: E, AGE, RACE, SEX )
4 Db values for each subject (i)

n ¼ 100 ) Compute 400 Dbj values

DbE;i;DbAGE;i;DbRACE;i;DbSEX;i

i ðsubjectÞ ¼ 1; 2; . . . ; 100

DbE,i¼A is “large” or “significant”:
+

removing subject A from analysis
changes conclusions about effect of E

Summary measure for linear
regression:

Cook’s distance (CD)

combines Dbj,i information for
all Xj predictors for subject i,

e.g., a weighted average of the
form

CDi ¼ ~jwjDbj;i =~jwj;

i ¼ 1; 2; . . . ; n

Logistic regression:

� Cook’s distance-type index

� Uses approximation to change
in logit values

� Similar to combining Delta-
betas

Suggested alternative for logistic
regression:

CD*
i ¼ ~

j

wjDðexp½b�Þj;i = ~
j

wj

but not available in computer
packages.

For example, a model containing four predic-
tors, say E, AGE, RACE, and SEX, would pro-
duce four Delta-betas for each subject.

If the dataset contained 100 subjects, 400
Delta-betas would be computed, 4 for each
subject.

If subject A, say, has a “large” or “significant”
Delta-beta for the variable E, then one may
conclude that removal of this subject from the
analysis may change the conclusions drawn
about the effect of E.

Also, a summary measure that combines the
Delta-beta information from all variables is
typically computed. For linear regression, one
such measure is called Cook’s distance, which
is a form of weighted average of the Delta-betas
over all predictor variables Xj in one’s model.

For logistic regression, a similar measure
(Pregibon, 1981) is used and often referred to
as a Cook’s distance-type index. This measure is
derived using an approximation to the change
in logit values when a subject is dropped from
the data and, in essence, combines Delta-beta
values using a logistic model.

However, since the effect measure in logistic
regression is typically an odds ratio, which
exponentiates regression coefficients, a modi-
fied Cook’s distance-type index that computes
a weighted average of changes in exp[b], i.e.,
Dexp[b], might be preferable, but is not avail-
able in most computer packages.
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More on influential observations
including:

� How to use computer software?

� How to proceedwhen influential
observations are identified?

Computer Packages, e.g., SAS,
STATA, SPSS produce their
own version of influence diag-
nostics

SAS’s LOGISTIC: influence and
iplots options at end of model

statement

Large collection of regression
diagnostic information
produced, including

Db values for each variable
and

C measures over
all variables

SAS’s LOGISTIC: C and Cbar mea-
sures (similar but not identical)

EXAMPLE

MRSA no-interaction model
Logit P(X) = a + b

1
PREVHOSP + b

2
PAMU

+ g
1
AGE + g

2
GENDER 

Case 9

Case 16

C

Case 9

Case  16

1 0.00921

Valve
(1 unit = 0.01)

C
0 2 4 6 8  12  16

Case
Number

0.00857
0.00304

0.0217
.

.

.

.

0.00360
0.00340
0.00547

0.1311
0.00877
0.00945

0.0204
0.00496

0.0260
0.1010

0.00456
0.00456
0.00669
0.00733
0.00619
0.00694
0.00241

0.0153

0.0112
0.00266

0.0271
0.00760
0.00760

0.0464

0.1

0.0

0 5 10 15 20 25 30 35 40
Case Number

0.2
C

0.00607
0.00204
0.00261
0.0141

0.0661
0.0179

0.00314
0.00309

0.00646
0.00609

2
3
4
5
6
7
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*
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Influence option Iplots option

We now briefly illustrate using the MRSA
example how to use computer software to diag-
nose influential observations. We also discuss
how to proceed with the analysis when influen-
tial observations are identified.

Most computer software packages such as
SAS, STATA, and SPSS allow the user to obtain
influence diagnostics for logistic regression,
although they each have their own version of
the program code and the statistics produced.

For example, with SAS’s LOGISTIC procedure,
the user can specify two options: the “influ-
ence” option, and the “iplots” option after the
model statement.

Both these LOGISTIC options produce a large
collection of regression diagnostics informa-
tion for any fitted model. This includes Delta-
beta measures for each variable in the model
plus overall Cook’s distance-type measures.
Here, we focus on the latter, which we hence-
forth refer to as “C measures.”

Two slightly different Cmeasures are produced
by the influence and iplot options, a “C” and a
“Cbar” measure (Pregibon, 1981). These mea-
sures typically yield similar, though not always
identical, conclusions as to which subjects are
“influential”.

The influence option produces a figure that
vertically (on the Y-axis) lists each subject and
horizontally (on the X-axis) plots the value of
the influence measure (C or Cbar). The iplots
option, on the other hand, produces a figure
that lists the subjects horizontally and plots the
influence measure on the vertical axis.

The two figures on the left show the results for
the influence measure C for the first 42 sub-
jects in the MRSA data set for the no-interac-
tion model shown below the figures. In both
figures, subjects 9 and 16 appear to have C
scores that are much higher than the other
scores.
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EXAMPLE (continued)

Results suggest that regression
coefficients are “influenced” by
these two subjects, e.g., drop
subjects 9 and/or 16 from data

+
Estimates of a, b1, b2, g1, g2

meaningfully change

Possibly influential subjects other
than 9 and 16.

No Interaction Model w/o subjects 9
and 16
Param DF Estimate Std Err exp[coeff]

Intercept 1 �5.3830 0.8018 �
PREVHOSP 1 1.6518 0.4237 5.217

PAMU 1 1.8762 0.3809 6.528

AGE 1 0.0370 0.0095 1.038

GENDER 1 0.9214 0.3809 2.513

No Interaction Model full data
Param DF Estimate Std Err exp[coeff]

Intercept 1 �5.0583 0.7643 �
PREVHOSP 1 1.4855 0.4032 4.417

PAMU 1 1.7819 0.3707 5.941

AGE 1 0.0353 0.0092 1.036

GENDER 1 0.9329 0.3418 2.542

Should influential subjects be
dropped from the data?

Answer: It depends!

� Incorrect data
� Incorrect model
� Legitimate and important data

These results indicate that if either or both of
these subjects are dropped from the dataset,
the collection of estimated regression coeffi-
cients in the fitted model would meaningfully
change, which, in turn, could result in mean-
ingfully different estimated ORs (e.g., exp½b̂1�).

Since the above figures consider only 42 of a
total of 289 subjects, there may be other influ-
ential subjects.

Without looking for other influential subjects,
we show on the left the output obtained for the
no-interaction model when subjects 9 and 16
are dropped from the dataset. Below this, we
provide the output for the same model for the
full dataset.

These results indicate that, particularly for the
E variables PREVHOSP and PAMU, corres-
ponding b̂j and exp½b̂j� are somewhat different,
although both sets of results indicate strong
and statistically significant effects.

So, if we decide that some subjects (e.g., 9 and
16) are truly influential, what should we do?
Drop them from the dataset?

The answer, once again, is it depends! A large
influence statistic may be due to incorrect data
on one or more subjects, but it can also be the
result of an incorrect model, or even reflect the
legitimate importance of (correct) data on a
given subject.
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Erroneous data

+
Correct if possible

Drop if not correctable

Correct data

+
Decision to delete up to researcher

Report and interpret in “discussion”

Inappropriate model?

+
Difficult to decide if due to

influential observation

Summary:

Be careful about deleting.
Conservative approach:

drop subject only if
uncorrectable error

Certainly, if a subject’s data is erroneous, it
should be corrected if possible. If such an
error is not clearly correctable, then the subject
may be dropped from the analysis.

However, if the data on an influential subject is
not erroneous, the researcher has to decide
whether the subject should be dropped. For
example, if the subject is much older than most
subjects (i.e., an outlier), the researcher may
have to decide whether the age range initially
allowed needs to bemodified. Instead of deleting
such an individual, the researcher may wish to
report and interpret the presence of influential
subjects in the “discussion” of results.

It is typically difficult to determine whether a
large influence statistic results from an inappro-
priate model. Since the initial model is rarely
one’s final (i.e., best) model, a final decision as
to whether a given subject is influential should
wait until one’s final model is determined.

In summary, the researcher must be careful
when considering whether or not to delete an
observation. A very conservative approach is to
only delete an observation if it is obviously in
error and cannot be corrected.
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VI. Multiple Testing

Modeling strategy ) several

statistical tests

+
Potential for incorrect “overfitted”

model, i.e., “too many” significant

test results

“Too many”:

variable(s) found significant,
but H0 true.

The multiple-testing problem:

Should we adjust for number
of significance tests and, if
so, how to adjust?

Statistical principle:

number of significance tests increases

Note: a = test-wise error rate

ß

a* FWER

= Pr(reject H0i | H0)

=  Pr(Reject at least one H0i | all H0i true)
increases

Formula: a* ¼ 1� ð1� aÞT ;

where T ¼ number of independent
tests of H0i, i ¼ 1, . . . , T

EXAMPLE

T a*
a ¼ 0:05 ) 1 0.05

5 0.23

10 0.40

20 0.64

The modeling strategy guidelines we have
described when one’s model contains either a
single E (Chapters 6 and 7) or several Es (ear-
lier in this chapter) all involve carrying out
statistical significance testing for interaction
terms as well as for E terms. Nevertheless,
performing several such tests on the same data-
set may yield an incorrect “overfitted” final
model if “too many” test results are found to
be significant.

By “too many”, we mean that the null hypothe-
sis may actually be true for some significant
test results, so that some “significant” variables
(e.g., interaction terms) may remain in the
final model even though the corresponding
null hypotheses are true.

This raises the question as to whether or not we
should adjust our modeling strategy to account
for the number of statistical tests we perform
and, if so, how should we carry out such adjust-
ment?

A well-established statistical inference principle
is that the more statistical tests one performs,
themore likely at least one of themwill reject its
null hypothesis even if all null hypotheses
are true. The parameter a* shown at the left, is
often called the family-wise error rate (FWER),
whereas the significance level a for an individ-
ual test is called the test-wise error rate.

Mathematically, the above principle can be
expressed by the formula shown at the left.

For example, the table at the left shows that if
a ¼ 0.05, and T ranges from 1 to 5 to 10 to 20,
then a* increases from 0.05 at T ¼ 1 to 0.64 at
T ¼ 20.
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Bonferroni approach:
To achieve a* 
 a0, set a ¼ a0/T

EXAMPLE

e.g., a0 ¼ 0.05, T ¼ 10:
a ¼ 0.05/10 ¼ 0.005

+
a* ¼ 1� (1 � 0.005)10

¼ 0.49
 a0 ¼ 0.05

Problem with Bonferroni:

Over-adjusts: does not reject
enough- low power (model may
be underfitted)

Bonferroni-type alternatives avail-
able to:

� Increase power
� Allow for nonindependent tests

Another approach:

Replaces FWER with
False Discovery Rate (FDR) ¼ T0/T,
where

T0 ¼ no. of tests incorrectly
rejected, i.e., H0i true

T ¼ total no. of tests

Criticisms of multiple testing:

(1) Assuming universal H0: all
H0i true unrealistic

(2) Paying a “penalty for peeking”
reduces importance of specific
tests of interest

(3) Where do you stop correcting
for multiple-testing?

A popular (Bonferroni) approach for insuring
that a* never exceeds a desired FWER of, say,
a0 is to require the significance level (a) for
each test to be a0/T. To illustrate, if a0 ¼ 0.05
and T ¼ 10, then a ¼ 0.005, and a* calculates
to 0.049, close to 0.05.

A problem, however, with using the Bonferroni
approach is that it “over-adjusts” by making it
more difficult to reject any givenH0i; that is, its
“power” to reject true alternative hypotheses is
typically too low.

Alternative formulae for adjusting for multiple-
testing (e.g., Sidak, 1967;Holm,1979;Hochberg,
1988) have been offered to provide increased
power and to allow for nonindependent signifi-
cance tests.

Moreover, another adjustment approach
(Benjamini and Hochberg, 1995) replaces the
“overall” goal of adjustment from obtaining a
desired “family-wise error rate” (FWER) to
obtaining a desired “false discovery rate”
(FDR), which is defined as the proportion of
the number of significance tests that incor-
rectly reject the null (i.e., truly Type 1 errors).

Nevertheless, there remains some controversy
in the methodologic literature (Rothman,
1990) as to whether any attempt to correct for
multiple-testing is even warranted. Criticisms
of “adjustment” include (1) the assumption of a
“universal” null hypothesis that all H0i are non
significant is unrealistic (2) paying a “penalty
for peeking” (Light and Pillemer, 1984) reduces
the importance of specific contrasts of interest;
(3) where does the need for adjustment stop
when considering all the tests that an individ-
ual researcher performs?
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Multiple-testing literature:
researcher knows in advance
number of tests

Modeling strategy (“best model”)
problem: researcher does not
know in advance number of tests

Bonferroni-type adjustment not
possible when determining a
“best model”

(Cannot specify T in advance)

Ad hoc procedure:

Drop all variables in a
nonsignificant chunk, e.g., all
interaction terms

(Drawback: BW elimination may
find significant effects
overlooked by chunk test)

Summary about multiple testing:
No full-proof method avail-
able.

Finally, the literature on multiple-testing
focuses on the situation in which the
researcher knows in advance how many tests
are to be performed. This is not the situation
being addressed when carrying out a modeling
strategy to determine a “best” model, since the
number of tests, say for interaction terms, is
only determined during the process of obtain-
ing one’s final model.

Consequently, when determining a “best”
model, a Bonferroni-type adjustment is not
possible since the number of tests (T) to be
performed cannot be specified in advance.

One approach for reducing the number of
tests, nevertheless, is to use the results of non
significant chunk tests to drop all the variables
in the chunk, rather than continue with back-
ward elimination (using more tests). However,
note that the latter may detect significant
(interaction) effects that might be overlooked
when only using a chunk test.

Thus, in summary, there is no full-proof
method for adjusting for multiple-testing
when determining a best model. It is up to the
researcher to do anything, if at all.
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VII. SUMMARY

Five issues on model strategy
guidelines:

1. Modeling strategy when there
are two or more exposure
variables

2. Screening variables when
modeling

3. Collinearity diagnostics

4. Multiple testing

5. Influential observations

Issue 1: Several Es

Logit PðXÞ ¼ aþ ~
q

i¼1

biEi þ ~
p1

j¼1

gjVj

þ ~
q

i¼1

~
p2

k¼1

dikEiWk

þ ~
q

i¼1

~
q

i0¼1
i 6¼i0

d*ii0EiEi0

Modeling Strategy Summary:
Several Es

Step 1: Define initial model (above
formula)

Step 2: Assess interaction: overall
chunk test (?), then EWs
and then (?) EEs

Step 3: Assess confounding and
precision (Vs) (prior to
EEs?)

Step 4: Test for nonsignif Es if not
components of significant
EEs

Issue 2: Screening Variables
Method 0: Consider predictors

one-at-a-time
Screen-out those
Xi not significantly
associated with D

Does not consider confounding or
interaction.
Questionable if model contains
both Es and Cs

This presentation is now complete.

We have described the five issues (shown at
the left) on model strategy guidelines not cov-
ered in the previous two chapters on this topic.

Each of these issues represent important fea-
tures of any regression analysis that typically
require attention when determining a “best”
model.

Regarding issue 1, we recommend that the
initial model have the general form shown at
the left. This model involves Es, Vs, EWs, and
EEs, so there are two types of interaction
terms to consider.

We then recommend assessing interaction,
first by deciding whether to do an overall
chunk test, then testing for the EWs, after
which a choice has to be made as to whether
to test for the EE terms prior to or subsequent
to assessing confounding and precision. The
resulting model is then further assessed to see
whether any of theE terms are nonsignificant.

Regarding issue 2, we described an approach
(called Method 0) in which those variables that
are not individually significantly associated
with the (binary) outcome are screened-out
(i.e., removed from one’s initial model).

Method 0 does not consider confounding and/
or interaction for predictors treated one-at-a-
time. Thus, Method 0makes most sense when
themodel only involves Es but is questionable
with both Es and Cs being considered.

Presentation: VII. Summary 283



SUMMARY (continued)

Issue 3: Collinearity

Diagnose using CNIs and VDPs
Collinearity detected if:

Largest CNI is large (>30)
At least 2 VDPs are large (	 0.5)

Difficulties:
How large is large for CNIs and
VDPs?
How to proceed if collinearity
problem?

Issue 4: Influential Observations

Does removal of subject from the
data result in “significant”
change in b̂j or dOR?

Delta-beta (Dbj): measures chan-
ges in specific bj of interest

Cook’s distance-type (C):
combines Dbj over all predictors
(Xj)

Computer programs:
Provide plots of for each subject
Extreme plots indicate
influential subjects

Deleting influential observations:
Be careful!
Conservative approach: delete
only if data in error and cannot
be corrected

Issue 5: Multiple testing

The problem: should you adjust a
when performing
several tests?

For issue 3, we described how collinearity can
be diagnosed from two kinds of information,
condition indices (CNIs) and variance decom-
position proportions (VDPs). A collinearity
problem is indicated if the largest of the
CNIs is considered large (e.g., >30) and at
least two of the VDPs are large (e.g., 	 0.5).

Nevertheless, difficulties remaining when asses-
sing collinearity include how large is large for
CNIs and VDPs, and how to proceed (e.g.,
sequentially?) once a problem is identified.

Issue 4, concerning influential observations,
is typically addressed using measures that
determine the extent to which estimated
regression coefficients are modified when
one or more data points (i.e., subjects) are
dropped from one’s model. Measures that
focus on such changes in specific regression
coefficients of interest are called Delta-betas,
whereas measures that combine changes over
all regression coefficients in one’s model are
called Cook’s distance-type measures.

Computer programs for logistic regression
models provide graphs/figures that plot such
measures for each subject. Those subjects
that show extreme plots are typically identi-
fied as being “influential.”

The researcher must be careful when consid-
ering whether or not to delete an observation.
A conservative approach is to delete an obser-
vation only if it is obviously in error and can-
not be corrected.

Issue 5 (multiple testing) concerns whether
or not the researcher should adjust the signif-
icance level used for significance tests to con-
sider the number of such tests that are
performed.
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We suggest that you review the material cov-
ered in this chapter by reading the detailed
outline that follows. Then do the practice exer-
cises and test.

In the next two chapters, we address two other
regression diagnostic procedures: Goodness of
fit tests and ROC curves.

SUMMARY (continued)

Controversial issue:
Use Bonferroni-type adjustment

vs.
Do not do any adjustment

When determining best model:
No well-established solution
No. of tests not known in
advance

This is a controversial issue, in which various
Bonferroni-type corrections have been
recommended, but there are also conceptual
arguments that recommend against any such
adjustment.

Nevertheless, when carrying out the process
of finding a “best” model, there is no well-
established method for such adjustment,
since the number of tests actually performed
cannot be known in advance.
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Detailed
Outline

I. Overview (page 244)

Focus: Five issues not considered in Chaps. 6 and 7
� Apply to any regression analysis but focus on

binary logistic model

� Goal: determine “best” model

1. Modeling strategy when there are two or more
exposure variables

2. Screening variables when modeling

3. Collinearity diagnostics

4. Influential observations

5. Multiple testing

II. Modeling Strategy for Several Exposure Variables
(pages 244–262)

A. Extend modeling strategy for (0,1) outcome, k
exposures (Es), and p control variables (Cs)

B. Example with two Es: Cross-sectional study,
Grady Hospital, Atlanta, GA, 297 adult patients
Diagnosis: Staphylococcus aureus Infection

?PREVHOSP, PAMU

controlling for AGE, GENDER

MRSA,

Question:

C. Modeling strategy summary: Several Es and Cs

Model : Logit PðXÞ

¼ aþ ~
q

i¼1

biEi þ ~
p1

j¼1

gjVj þ ~
q

i¼1

~
p2

k¼1

dikEiWk

þ ~
q

i¼1

~
q

i0¼1
i 6¼i0

d*ii0EiEi0

Step 1: Define initial model (above formula)

Step 2: Assess interaction

Option A: Overall chunk test
þ Options B or C

Option B: Test EWs, then EEs

Option C: Test EWs, but assess Vs before
EEs

Step 3: Assess confounding and precision (Vs)

Options A and B (continued): Vs after
EWs and EEs

Options C (continued): Vs after EWs,
but prior to EEs

Step 4: Test for nonsignif Es if not components of
significant EEs
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D. Modeling strategy: All Es, no Cs

Model : Logit PðXÞ ¼ aþ ~
q

i¼1

biEi þ ~
q

i¼1

~
q

i0¼1
i 6¼i0

d*ii0EiEi0

Step 1: Define initial model (above)

Step 2: Assess interaction involving Es.

Option A*: Overall chunk test for EEs,
followed by backward elimination of
EEs

Option B*: Skip chunk test for EEs; start
with backward elimination of EEs

Skip previous Step 3

Step 4: Test for nonsignificant Es if not
components of significant EEs

E. How causal diagrams can influence choice of
initial model?

III. Screening Variables (pages 263–270)

A. Problem Focus: Model contains oneE, and a large
number of Cs and E�Cs, but computer program
does not run or fitted model unreliable (“large” p)

B. Screening: Exclude some Cj one-at-a-time; fit
reduced model

C. Method 0: Consider predictors one-at-a-time;
screen-out those Xi not significantly associated
with the outcome (D)

D. Questions and Brief Answers about Method 0:

1. Any criticism? Yes: does not consider
confounding or interaction involving Cs

2. Depends on types of Xs? Yes: use if only Es
and no Cs.

3. How large k compared to n? No good answer.

4. Other ways than Method 0? Yes: evaluate
confounding and/or interaction for Cs.

5. Collinearity and/or screening? Consider
collinearity prior to and following screening.

E. Assessing Confounding and Interaction when
Screening C variables.

Confounding: Compare Logit P(X) ¼ a þ bEwith
Logit P*(X) ¼ a* þ b*E þ g*C

Does dORDE ¼ eb̂ 6¼ dORDEjC ¼ eb̂
*

?

Interaction: Test H0: d ¼ 0 for the model Logit
P(X) ¼ a þ bE þ gC þ dEC

F. How to proceed if several Es and several Cs: It
depends!

G. How to proceed if several Es and no Cs: Use
method 0.
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IV. Collinearity (pages 270–275)

A. The Problem:

If predictors (Xs) are “strongly” related, then b̂j
unreliable, Vârb̂j high, or model may not run.

B. Diagnosing Collinearity.

Use condition indices (CNIs) and variance
decomposition proportions (VDPs).

Collinearity detected if: largest CNI is large
(>30?) and at least 2 VDPs are large (	0.5?)

C. Collinearity for Logistic Regression

Requires computer macro (program not
available in popular computer packages).
CNIs derived from inverse of Information Matrix
(I21)

D. Difficulties

How large is large for CNIs and VDPs? Guidelines
provided are “soft.”

How to proceed? We recommend sequential
procedure: fix one collinearity problem at a time.

How to fix problem? Usual approach: drop one of
the collinear variables; or, define new variable.

E. Example using MRSA data

V. Influential Observations (pages 275–279)

A. The Problem: Does removal of subject from the
data result in “significant” change in b̂j or dOR?

B. Measures: Delta-betas (Dbs) and Cook’s distance-
type measures (Cs).

C. Computer packages: provide plots of Dbs and Cs
for each subject.

D. What to do with influential observations:

Not easy to decide whether or not to drop subject
from the data.

Conservative approach: drop subjects only if their
data is incorrect and cannot be corrected.

VI. Multiple Testing (pages 280–282)

A. The Problem: should you adjust a when
performing several tests?

B. Bonferroni approach: Use a ¼ a0/T, where
a0 ¼ family-wise error rate (FWER) and
T ¼ number of tests.

C. Criticisms of Bonferroni approach: low power;
based on unrealistic “universal H0”; other.

D. Model building problem: number of tests (T) not
known in advance; therefore, no foolproof
approach.

VII. Summary (pages 283–285)
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Practice
Exercises

1. Consider the following logistic regression model in
which all predictors are (0,1) variables:

logit PðXÞ ¼ aþ b1E1 þ b2E2 þ b3E3 þ g1C1 þ g2C2 þ g3C3

þ g12C1C2 þ d11E1C1 þ d21E2C1 þ d12E1C2

þ d22E2C2 þ d33E3C3 þ de13E1E3 þ de23E2E3

þ d112E1C1C2 þ d212E2C1C2

For the above model, determine which of the following
statements are True or False.
(i.e., Circle T or F)

T F a. The above model is hierarchically well-formu-
lated.

T F b. Suppose the chunk test for the null hypothesis
H0: d112 ¼ d212 ¼ 0 is found to be significant and
backward elimination involving these two three-
factor product terms results in only E2C1C2

remaining in themodel. Then based on the “hier-
archy principle,” the final model must contain
the variables C1C2, C1, C2, E2C1C2, E2C1, E2C2,
E2E3, and E2.

T F c. Suppose the chunk test for the null hypothesis
H0: d112 ¼ d212 ¼ 0 is found to be significant and,
as in the previous question, backward elimina-
tion involving these two three-factor product
terms results in only E2C1C2 remaining in the
model. Then, based on the hierarchy principle
and the hierarchical backward elimination
approach, the only variables that remain as can-
didates for being dropped from the model at this
point are E1, E3, E1E3, E2E3, E1C1, E3C3, and C3.

T F d. Suppose that after the interaction assessment
stage, the only terms remaining in the model
are E2C1C2, E2C1, E2C2, E3C3, C1C2, C1, C2, C3,
E1, E2, and E3. Then, at this point, the odds ratio
formula for comparing a person for whom E1 ¼
E2 ¼ E3 ¼ 1 to a person for whom E1 ¼ E2 ¼ E3

¼ 0 is given by the expression

OR ¼ exp[b1 þ b2 þ b3 þ d21C1 þ d22C2 þ d33C3

þ d212C1C2] where the coefficients in the formula
are estimated from the reduced model obtained
after interaction assessment.

T F e. Suppose that neither E1C1C2 nor E2C1C2

remains in the model after interaction assess-
ment of these two three-factor products (but
prior to interaction assessment of two-factor
products). Suppose further that separate Wald
(and corresponding likelihood ratio) tests for
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H0: d11 ¼ 0, H0: d21 ¼ 0, and H0: d33 ¼ 0 are non-
significant in the reduced model (without E1C1C2

and E2C1C2). Then, as the next step in interaction
assessment, the model should be further reduced
to

logit PðXÞ ¼ aþ b1E1 þ b2E2 þ b3E3 þ g1C1 þ g2C2

þ g3C3 þ g12C1C2 þ d12E1C2

þ d22E2C2 þ de13E1E3 þ de23E2E3:

prior to the assessment of confounding.

2. Suppose that after interaction assessment involving
both EVi and Ei Ej terms in the initial model stated in
question 1, the following reduced model is obtained:

logit PðXÞ ¼ aþ b1E1 þ b2E2 þ b3E3 þ g1C1 þ g2C2

þ g3C3 þ g12C1C2 þ d11E1C1 þ d22E2C2

Suppose further that the assessment of confounding
will only consider changes in the odds ratio that com-
pares a person for whom E1 ¼ E2 ¼ E3 ¼ 1 to a per-
son for whom E1 ¼ E2 ¼ E3 ¼ 0.
Based on the recommended guidelines for the assess-
ment of confounding described in this chapter:

a. What is the formula for the estimated odds ratio in the
gold standard model that should be used to assess
confounding?

2 b. Assuming that you will need to consider tables of odds
ratios that consider different subsets of potential con-
founders, describe what a table of odds ratios would
look like for the gold standard model using the rectangle
shown below for the (outside) borders of the table. In
your answer, make sure to state the formulae for the
odds ratios that will go into the different boxes in the
table. Hint. You will need to draw horizontal and ver-
tical lines to subdivide the rectangle and label the
different row and column categories of the table,
recognizing that the odds ratios being represented
reflect the interaction effects that are present in the
gold standard model.
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c. Considering only those variables that are candidates for
being assessed as nonconfounders,

i. How many subsets of these variables need to be
considered to address confounding?

ii. List the variables that are contained in each of the
above subsets.

d. Suppose that the following results are obtained when
comparing tables of ORs for different subsets of V
variables in the previously stated (question 2) reduced
model obtained after interaction assessment:

Model
#

Variables dropped
from model

Table of ORs Within 10%
of Gold Standard Table?

1 C1 No
2 C2 Yes
3 C3 No
4a C1C2 Yes
4b C1 and C3 Yes
5 C1 and C1C2 No
6 C2 and C1C2 No
7 C3 and C1C2 Yes
8 C1 and C2 Yes
9 C1 and C3 Yes

10 C2 and C3 Yes
11 C1, C2 and C3 Yes
12 C1, C2 and C1C2 Yes
13 C1, C3 and C1C2 Yes
14 C2, C3 and C1C2 Yes
15 C1, C2, C3, and C1C2 No
16 None Yes (GS model)
Based on the above results, what models are eligible to
be considered as final models after confounding assess-
ment?

e. Based on your answer to part d, howwould you address
precision?

3. In addition to the variables E1, E2, E3, C1, C2, C3 consid-
ered in questions 1 and 2, there were 25 other variables
recorded on study subjects that were identified from
the literature review and conceptualization of the study
as potential control variables. These variables were
screened out by the investigators as not being neces-
sary to include in the multivariable modeling analyses
that were carried out.

Assume that screening was carried out by putting all 25
variables in a logistic regression model together with the
variables E1, E2, E3, C1, C2, and C3 and then using a back-
ward elimination to remove nonsignificant variables.
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State or describe at least three issues/problems that would
not have been addressed by the above screening approach.
4. Consider the following logistic regression model in

which all predictor variables are (0, 1) variables:

logit PðXÞ ¼ aþ bEþ g1C1 þ g2C2 þ g3C3 þ g12C1C2

þ d1EC1 þ d2EC2 þ d3EC3 þ d12EC1C2

Determine which of the following statements are True or
False (Circle T or F).

T F a. Suppose that using the collinearity macro
described in the text results in the three highest
condition indices (CNIs) being 77, 56, and 47.
Then, using a sequential approach for diagnos-
ing collinearity, there is at least 1 and possibly 3
collinearity problems associated with fitting this
model.

T F b. Suppose that using the collinearity macro
described in the text, the highest condition
index (CNI) is found to be 77 and the only
VDPs that are determined to be high for this
CNI are associated with the variables E and C3.
Then it is reasonable to drop C3 from the model,
and recompute collinearity diagnostics to fur-
ther reassess collinearity for the reduced model.

T F c. Suppose that using the collinearity macro
described in the text, the three highest condition
indices (CNIs) are 77, 56, and 47. For the highest
CNI of 77, suppose there are exactly four VDPs
other than the intercept that are larger than .5.
Suppose also that the variables associated with
these four VDPs are C1, C3, EC3, and EC1C2. Then
this collinearity problem can be addressed by
dropping either EC3 or EC1C2 from the model,
but not C1, C2 or C3, after which a reduced model
is fit to see if there are additional collinearity
problems.

T F d. Suppose that for the same situation as described
in part c above, the collinearity problem is
addressed by dropping EC3 from the model,
after which a reduced model without EC3 is fit.
Then the collinearity diagnostics obtained for
the reduced model will indicate another collin-
earity problem that involves the variable EC1C2.

5. Suppose for the data analyzed using themodel stated in
question 4, it was desired to evaluate whether or not
any subjects were influential observations.

a. Assuming that the study objective was to assess the
effect of E controlling for C1, C2, and C3, how can
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you criticize the use of a Cooks-distance-type mea-
sure to identify influential subjects?

b. Suppose you identified five influential subjects in
the dataset. How should you decide whether or not
to drop any of these subjects from the data?

c. How can you criticize using the model stated in
question 4 to identify influential subjects?

6. In attempting to determine a best model, starting with
the model stated in question 4, suppose you wanted to
use a Bonferroni-type adjustment to correct for multi-
ple testing of interaction terms. What problem will you
have in trying to determine the significance level for
individual tests in order to achieve a family-wise error
rate (FWER) not higher than 0.05?

Test THE SCENARIO. A firm mattress is often believed to be
beneficial for low back pain, although evidence supporting
this recommendation is lacking. A randomized, double-
blind, controlled, multicenter trial was carried out to deter-
mine the effect of mattress firmness on the clinical course
of patients with chronic, nonspecific low back pain.
A series of 313 adults with chronic, nonspecific low back
pain, without referred pain, who complained of backache
while lying in bed and upon rising were randomly assigned
to four types of mattresses:
3 ¼ firm, 2 ¼ medium firm, 1 ¼ medium soft, 0 ¼ soft.
Clinical assessments were carried out at baseline and at
90 days. The endpoint (i.e., the health outcome variable)
was improvement in pain while in bed and upon rising
from bed between 0 and 90 days. The data set included
the following variables:

D ¼ improvement score for pain in bed from baseline to 90
days

(0 ¼ no improvement or improvement in bed only,
1 ¼ improvement upon rising only or improvement
both in bed and upon rising)

F ¼ firmness of mattress (3 ¼ firm, 2 ¼ medium firm,
1 ¼ medium soft, 0 ¼ soft)

BASE ¼ type of base of bed (1 ¼ firm, 0 ¼ not firm)

POST ¼ posture while sleeping at baseline
(1 ¼ supine or fetal, 0 ¼ other)

PF ¼ subjective perception of firmness of mattress (3 ¼
firm, 2 ¼ medium firm, 1 ¼ medium soft, 0 ¼ soft)

OCC ¼ type of occupation (1 ¼ sedentary,
0 ¼ not sedentary)

AGE ¼ age in years of subject

GEN ¼ gender (0 ¼ male, 1 ¼ female)
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Questions about how to analyze these data now follow:

1. In addition to the variables listed above, there were 12
other variables also listed in the dataset and identified
from the literature review and conceptualization of the
study as potential control variables. These variables
were screened out by the investigators as not being
necessary to include in themultivariable modeling ana-
lyses that were carried out.

a. Assume that screening was carried out one variable
at a time using tests of significance for the relation-
ship between each potential control variable and
the outcome variable, so that those potential con-
trol variables not found significantly associated
with the outcome variable were not included in
any modeling analysis.

How can you criticize this approach to screening?

b. Why was some kind of screening likely necessary
for this analysis?

Suppose that the logistic regression treated the variables
mattress type (F) and perceived mattress type (PF) as ordi-
nal variables. Suppose also that the variable BASE is also
considered to be an exposure variable (even though it was
not involved in the randomization) in addition to the vari-
able mattress type (F).
Suppose further that this model allows for two-way inter-
actions (i.e., products of two variables) between mattress
type (F) and each of the other independent variables
(POST, BASE, PF, OCC, AGE, and GEN) and two-way
interactions between BASE and each of the control vari-
ables PF, POST, OCC, AGE, and GEN.

2. State the logit formula for the logistic regression model
just described. Make sure to consider both F andBASE
as exposure variables.

3. For each of the following product terms, state whether
the product term is an EE variable, an EV variable, or
neither:

F 3 POST

F 3 BASE

POST 3 BASE

PF 3 POST

BASE 3 PF

(To answer this part, simply write EE, EV, or neither
next to the variable regardless of whether the product
term given is contained in the revised model described
in question 2.)
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4. Suppose that in carrying out interaction assessment for
the model of question 2, a chunk test for all two-way
product terms is significant. Suppose also that upon
further interaction testing:

a chunk test for two-way product terms involving F
with POST, OCC, PF, AGE, and GEN has a P-value
of 0.25 and

a chunk test for two-way product terms involving
BASE with POST, OCC, PF, AGE, and GEN has a
P-value of 0.70.

Which of the following choices are “reasonable” as the next
step in the assessment of interaction? Circle as many
choices as you consider reasonable.

a. All product terms except F 3 BASE should be
dropped from the model.

b. The two-way product terms involving Fwith POST,
OCC, PF, AGE, and GEN should be dropped from
the model and backward elimination should be car-
ried out involving the two-way product terms
involving BASE with POST, OCC, PF, AGE, and
GEN.

c. The two-way product terms involving BASE with
POST, OCC, PF, AGE, andGEN should be dropped
from the model and backward elimination should
be carried out involving the two-way product terms
involving F with POST, OCC, PF, AGE, and GEN.

d. Carry out a backward elimination of all two-way
product terms.

Note: In answering the above question, the word “reason-
able” should be interpreted in the context of the hierarchi-
cal backward elimination strategy described in this text.
Also, recall that F and BASE are exposure variables.

5. Describe how you would test for the significance of the
two-way product terms involving F with POST, OCC,
PF, AGE, and GEN using the model in question 2. In
answering this question, make sure to state the null
hypothesis in terms of model parameters, describe the
formula for the test statistic, and give the distribution
and degrees of freedom of the test statistic under the
null hypothesis.

6. Suppose that at the end of the interaction assessment
stage, it was determined that the variables F 3 BASE,
F 3 POST, and BASE 3 OCC need to remain in the
model as significant interaction effects. Based on the
hierarchical backward elimination strategy described
in Chap. 7, what V variables are eligible to be dropped
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from the model as possible nonconfounders? Briefly
explain your answer.

7. Based on the interaction assessment results described
in question 6, is it appropriate to test the significance
for the main effect of POST and/or OCC? Explain
briefly.

8. a. State the logit formula for the reduced model
obtained from the interaction results described in
question 6.

b. Based on your answer to 8 a, give a formula for the
odds ratio that compares the odds for improvement
of pain both in bed and upon rising to no improve-
ment for a subject getting a firm mattress (F¼ 3)
and a firm base (BASE¼ 1) to the corresponding
odds for a subject getting a medium firm (F¼ 2)
mattress and an infirm base (BASE¼ 0),
controlling for POST, PF, OCC, AGE, and GEN.

9. Assume that the odds ratio formula obtained in ques-
tion 8 represents the gold standard odds ratio for
describing the relationship of mattress type (F) and
mattress base (BASE) to pain improvement controlling
for POST, OCC, PF, AGE, and GEN, i.e., your only
interest is the OR comparing (F¼ 3, BASE¼ 1) with
(F¼ 2, BASE¼ 0). One way to assess confounding
among the variables eligible to be dropped as noncon-
founders is to compare tables of odds ratios for each
subset of possible confounders to the gold standard
odds ratio.

a. How many subsets of possible confounders (other
than the set of possible confounders in the gold
standard odds ratio) need to be considered?

b. Describe what a table of odds ratios would look like
for any of the subsets of possible confounders, i.e.,
draw such a table and specify what quantities go
into the cells of the table.

c. How would you use the tables of odds ratios
described above to decide about confounding? In
your answer, describe any difficulties involved.

d. Suppose you decided that PF and GEN could be
dropped from the model as nonconfounders, i.e.,
your reduced model now contains F, BASE, POST,
OCC, AGE, F3BASE, F3POST, and BASE3
OCC: Describe how you would determine whether
precision was gained when dropping PF and GEN
from the model.

10. Suppose that after all of the above analyses described
in the previous questions, you realized that you
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neglected to check for the possibility of collinearity in
any of the models you considered so far.

a. Assuming that all the models you previously con-
sidered ran using the SAS’s LOGISTIC procedure
(i.e., they all produced output without any error or
warning messages), why should you still be
concerned about the possibility of collinearity?

Suppose, further, that you use SAS’s LOGISTIC procedure
to fit a model containing the independent variables F,
BASE, POST, OCC, PF, AGE, GEN, all two-way product
terms involving F with the control variables (POST, OCC,
PF, AGE, GEN), and all two-way product terms involving
BASE with these same control variables.

b. You now run the collinearity macro with the above
logistic model, and you find that there are three
condition indices with values 97, 75, and 62, with
all other condition indices less than 25. How would
you proceed “sequentially” to use this information
to assess collinearity?

c. Suppose the condition index of 97 has “high VDP
values” on the variables F, BASE, PF, and F 3
BASE. Does this result cause you difficulty in
accepting your previous assessment of interaction
in which you found that the variables F 3 BASE,
F 3 POST, and BASE 3 OCC needed to remain in
the model as significant interaction effects?
Explain.

d. Based on the collinearity results in part 10 b and c,
which of the following choices is an appropriate
next step? (Circle the “best” choice)

i. Drop the product term F 3 BASE from the
polytomous logistic regression model and redo
the hierarchical backward elimination strategy
without further consideration of collinearity.

ii. Determine whether the next highest condition
index of 75 corresponds to high VDP loadings
two or more predictors.

iii. Drop the product term F 3 BASE from the
logistic regressionmodel, and apply collinearity
diagnostics to the reduced model to determine
if there is an additional collinearity problem.

iv. Ignore the collinearity diagnostics results and
use the model obtained from the hierarchical
backward elimination strategy previously used.

11. a. Assuming that mattress type (F) and type of base
(BASE) are the only two exposures of interest, with
PF, GEN, POST, OCC, and AGE considered as
control variables, briefly outline how you would

Test 297



assess whether or not any subjects in the dataset
are influential observations. Make sure to indicate
whether you would prefer to use DeltaBeta mea-
sures or Cook’s distance-type measures, both types
of measures, or other measures.

b. Why would it be questionable to automatically
drop from your dataset any subjects that you find
to be influential observations?

12. Suppose in your analysis strategy for determining a
“best” model, you want to reduce the number of sta-
tistical tests that you perform. What approach(es) can
you use? Why are you not able to adequately carry out
a Bonferroni-type of adjustment procedure?

Answers to
Practice
Exercises

1. a. True
b. False: E2E3 not needed.

c. False: E1C2 also a candidate

d. True

e. False: Incorrect use of backward elimination.

2. a. dOR ¼ exp½b̂1 þ b̂2 þ b̂3 þ d̂11C1 þ d̂22C2�
b.

C2 ¼ 1 C2 ¼ 0

C1 ¼ 1 dOR11
dOR10

C1 ¼ 0 dOR01
dOR00

dORab ¼ exp½b̂1 þ b̂2 þ b̂3 þ d̂11ðC1Þ þ d̂22ðC2Þ�

c. i. 4

ii. {C3, C1C2} {C3} {C1C2} {Neither C3 nor C1C2}

d. Models 16, 7, 4a

e. Obtain tables of confidence intervals for the odds
ratios for each of the three models stated in part d.
Choose as the best model either:

i. the model with the narrowest confidence
interval

ii. the gold standard model (16) if all four models
have approximately the same width.

iii. the more parsimonious model

3. i. Confounding for individual Cs not addressed
by statistical testing.

ii. Interaction of individual Cs with each Ei not
addressed

iii. Interaction of Ei with Ej not addressed

iv. Screening of Cs were not distinguished from
screening of Es.
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4. a. False: Can’t tell until you check VDPs. Possible that
all VDPs are not high (i.e., much less than 0.5)

b. False: Model won’t be HWF if C3 is dropped.

c. True

d. False: May not be any remaining collinearity prob-
lem once EC3 is dropped.

5. a. A Cook’s distance-type measure combines the infor-
mation from all estimated regression coefficients in
one’s model, whereas it would be preferable to con-
sider either the Db or Dexp[b] for the E variable
alone, since the E variable is the primary variable
of interest.

b. You should not automatically drop a subject from
the dataset just because you have identified it as
influential. A conservative approach is to drop only
those subjects whose data are clearly in error and
cannot be corrected.

c. The model of question 4 may not be the best model,
so that different conclusions might result about
which subjects are influential if a different (“best”)
model were used instead.

6. The number of tests to be performed cannot be deter-
mined in advance of the modeling process, i.e., it is not
clear what T will be for the individual significance level
of 0.05/T.
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Introduction Regression diagnostics are techniques for the detection
and assessment of potential problems resulting from a
fitted regression model that might either support, compro-
mise, or negate the assumptions made about the regres-
sionmodel and/or the conclusions drawn from the analysis
of one’s data.

In this chapter, we focus on one important issue for evalu-
ating binary logistic regression results, namely, goodness
of fit (GOF) measurement. Although examination of data
for potential problems, such as GOF, has always been con-
sidered a requirement of the analysis, the availability of
computer software to efficiently perform the complex cal-
culations required has contributed greatly to fine-tuning
the diagnostic procedures and the conclusions drawn from
them.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (pages 304–305)

II. Saturated vs. Fully Parameterized Models (pages
305–312)

III. The Deviance Statistic (pages 312–317)

IV. The HL Statistic (pages 318–320)

V. Examples of the HL Statistic (pages 320–325)

VI. Summary (page 326)

VII. Appendix: Derivation of SS Deviance Formula
(pages 327–328)
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Objectives Upon completing this chapter, the learner should be able to:

1. Explain briefly what is meant by goodness of fit.

2. Define “perfect prediction.”

3. Distinguish between “events–trials” format and
“subject-specific” format for a dataset.

4. Define and illustrate the covariate patterns for a
specific logistic model.

5. State or recognize the distinction between a fully
parameterized and a saturated binary logistic model.

6. Given a specific binary logistic model, state or
recognize the deviance formula for the model.

7. Explain briefly why the deviance statistic is not used for
assessing goodness of fit when fitting a binary logistic
regression model.

8. Given a printout of the results of a binary logistic
regression:

a. State or recognize the Hosmer–Lemeshow statistic

b. Carry out a test of hypothesis for goodness of fit
using the Hosmer–Lemeshow statistic
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Presentation

I. Overview

Focus

Does estimated
logistic model predict

observed outcomes
in data?

� Considers a given model

� Does not consider comparing
models

Primary analysis goal:
Assess E–D relationship to derive
“best” model

GOF goal:
Determine how well final (“best”)
model fits the data

Assume: Y is binary (0,1)
Units of analysis: individual
subjects

GOF: Summary measure that com-
pares

Yi to Ŷi; where

Yi ¼ observed response for
subject i

Ŷi ¼ P̂ðXiÞ ¼ predicted response
for subject i

i ¼ 1, 2, . . . , n

Good fit: GOF measure “small” or “n.s.”

Lack of fit: Otherwise

Not sufficient evidence to conclude
a bad fit

This presentation describes methods for asses-
sing the extent to which a logistic model esti-
mated from a dataset predicts the observed
outcomes in the dataset. The classical term
for this topic is goodness of fit (GOF).

GOF is an issue that considers how well a given
model, considered by itself, fits the data, rather
than whether or not the model is more appro-
priate than another model.

In most epidemiologic analyses, the primary
goal is to assess an exposure–disease relation-
ship, so that we are usually more interested in
deriving the “best” model for the relationship
(which typically involves a strategy requiring
the comparison of various models) than in
using a GOF procedure. Nevertheless, once
we have obtained a final (i.e., best”) model,
we would also like this model to fit the data
well, thus justifying a GOF procedure.

Assuming that the outcome (Y) is binary, say
coded as 0 or 1, and the unit of analysis is an
individual subject, GOF typically requires a
summary measure over all subjects that com-
pares the observed outcome (Yi) for subject i to
the predicted outcome (Ŷi) for this subject
obtained from the fitted model, i.e., Ŷi ¼ P̂ðXiÞ.

If when determined collectively over all sub-
jects, the GOF measure is “small” or “nonsig-
nificant,” we say the model has good fit,
although, technically, we mean there is not
sufficient evidence to conclude a bad fit.
Otherwise, we say that the model has evidence
of lack of fit.
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A widely used GOF measure for many mathe-
matical models is called the deviance. However,
as we describe later, for a binary logistic
regression model, the use of the deviance for
assessing GOF is problematic.

A popular alternative is the Hosmer–Lemeshow
(HL) statistic. Both the deviance and the HL
statistic will be defined and illustrated in this
chapter.

Widely used GOF measure: devi-
ance

But: deviance problematic for
binary logistic regression

Popular alternative:
Hosmer–Lemeshow (HL)

statistic

II. Saturated vs. Fully
Parameterized Models

GOF: Overall comparison between
observed and predicted out-
comes

Perfect fit: Yi � Ŷi ¼ 0 for all i.

� Rarely happens

� Typically 0< Ŷi < 1 for most i

Perfect fit: Not practical goal
Conceptual ideal
Saturated model
(a reference point)

As stated briefly in the previous overview sec-
tion, a measure of goodness of fit (GOF) pro-
vides an overall comparison between observed
(Yi) and predicted values ðŶiÞ of the outcome
variable.

We say there is perfect fit if Yi � Ŷi ¼ 0 for all i.
Although the mathematical characteristics of
any logistic model require that the predicted
value for any subject must lie between or
including 0 or 1, it rarely happens that pre-
dicted values are either 0 or 1 for all subjects
in a given dataset. In fact, the predicted values
for most, if not all, subjects will lie above 0 and
below 1.

Thus, achieving “perfect fit” is typically not a
practical goal, but rather is a conceptual ideal
when fitting a model to one’s data. Neverthe-
less, since we typically want to use this “ideal”
model as a reference point for assessing the fit
of any specific model of interest, it is conve-
nient to identify such a model as a saturated
model.

A trivial example of a saturated regression
model is obtained if we have a dataset contain-
ing only n ¼ 2 subjects, as shown on the left.
Here, the outcome variable, SBP, is continu-
ous, as is the (nonsense) predictor variable foot
length (FOOT). A “perfect” straight line fits the
data.

EXAMPLE

n= 2

FOOT

SBP

9 11

•

•
115

170

Subject # SBP FOOT

1 115 9

2 170 11
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To illustrate GOF assessment when using
binary logistic regression, consider the follow-
ing observed data from a cohort study on
40 subjects. The outcome variable is called D,
there is one binary exposure variable (E), and
there is one binary covariate (V).

These data indicate that V is an effect modifier
of the E,D relationship, since the odds ratios of
2.250 and 0.184 are very different and are on
opposite sides of the null value of 1.

Three models that may be fit to these data are
shown at the left. In model 1, E is the only
predictor. In model 2, both E and V are predic-
tors. Model 3 includes the product term E � V
in addition to both E and V main effect terms.

Since the total sample size is 40, whereas each
of these models contains 2, 3, and 4 para-
meters, respectively, none of these three mod-
els are saturated because k þ 1 < n for each
model.

SaturatedModel (general):
k þ 1¼ n

where
k þ 1 ¼ # of parameters

(including intercept)

n ¼ sample size

The linear regression model here involves only
two parameters, b0 and b1, whose estimates
yield predicted values equal to the two
observed values of 115 and 170.

Thus, in this example, a saturated model is
obtained when the number of model para-
meters (k þ 1 ¼ 2) is equal to the number of
subjects in the dataset. (Note: k ¼ # of vari-
ables in the model, and the “1” refers to the
intercept parameter.)

More generally, the saturated model for a
given dataset is defined as any model that con-
tains as many parameters as the number of
“observations” in the dataset, i.e., the sample
size.

EXAMPLE

OR V=0 =  0.184OR V=1 =  2.250

Very different

⇓

V is effect modifier of ORE,D

D= 1

D= 0

D= 1

D= 0

E= 1 E= 0

6 4 10

4 6 10

3 7 10

7 3 10

V= 1
E= 1 E= 0

V= 0

>1 <1

Observed Cohort Data

Model 1: logit P(X) ¼ a þ bE

Model 2: logit P(X) ¼ a þ bE þ gV

Model 3: logit P(X) ¼ a þ bE þ gV
þ dEV

n ¼ 40 but k þ 1 ¼ 2, 3, or 4
i.e., k þ 1 < n in all 3 models
i.e., no model is saturated
(for predicting individual outcome)

EXAMPLE (continued)

SB̂P ¼ b̂0 þ b̂1ðFOOTÞ;
where b̂0 ¼ �132:5 and b̂1 ¼ 27:5

so SB̂P ¼ �132:5þ 27:5ð9Þ ¼ 115

and SB̂P ¼ �132:5þ 27:5ð11Þ ¼ 170

Linear model example:
k þ 1 (¼ n) ¼ 2,

where k þ 1 ¼ # of parameters
(including intercept)

and n ¼ # of subjects
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Note, however, that concluding that “none of the
models are saturated” is based on the following
assumption: the unit of analysis is the subject.

This assumption is equivalent to listing the
dataset using 40 lines of data, one for each
subject. For Model 2, therefore, each dataline
would contain for a given subject, the values of
the outcome (D) and the predictor variables
(E and V) in the model.

When each subject is the unit of analysis,
we can therefore claim that Model 2 is not
saturated because the number of parameters
(3) in the model is less than total units in the
dataset (n ¼ 40).

However, there is another way to view the
dataset we have been considering: the unit of
analysis is a group of subjects, all of whom have
the same covariate pattern within a group.

This assumption is equivalent to listing the
dataset using only four lines of data, one for
each covariate pattern. Each dataline would
contain for a given group of subjects, the num-
ber of cases (D ¼ 1) in each group (dg), the
number of subjects in each group (ng), and
the values of each predictor variable being
modeled, as shown at the left for our dataset.

This type of data layout is called an events–trials
format, where there are dg events and ng trials.

Using events–trials format, we can argue that
the number of observations (n) consists of the
total number of datalines (4 in our example),
rather than the number of subjects (40).

Here, the goal of model prediction no longer is
to predict an individual’s (0 or 1) outcome, but
rather to predict the observed proportion of
persons in a group (the unit of analysis) that
has the outcome, i.e., p̂g ¼ dg=ng.

Thus, using events–trials format, we can declare
amodel to be “group-saturated” if for each covar-
iate pattern listed in the dataset, the model per-
fectly predicts the observed proportion p̂g.

EXAMPLE (continued)

Key assumption:
Unit of analysis is the subject

Datalines listed by subject (e.g.,
Model 2)

Subject (i) D E V

1 1 1 1
2 1 1 1
..
. ..

. ..
. ..

.

39 0 0 0
40 0 0 0

If subjects are units of analysis,
then Model 2 is not saturated

(k þ 1 ¼ 3 < n ¼ 40)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Alternative assumption:
Unit of analysis is a group

(subjects with same covariate
pattern)

Datalines Listed by Group (e.g.,
Model 2)

Group (g) dg ng E V

1 6 10 1 1
2 4 10 0 1
3 3 10 1 0
4 7 10 0 0

Events–trials format
(dg) (ng)

n ¼ # of observations ¼ 4
(Model 2)

Goal of model prediction:

p̂g ¼ dg=ng

(group prediction rather than
individual prediction)

Events–trials format:
“Group-saturated” provided n¼ kþ 1

for n covariate patterns
(i.e., perfectly predicts p̂g)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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EXAMPLE (continued)

Model 3: logit P(X) ¼ a þ bE þ gV
þ dEV

Largest possible model containing
binary E and binary V

Note: E2 ¼ E and V2 ¼ V

Fully parameterized model:
Contains maximum # of
covariates defined from the
main-effect covariates,

No. of parameters (k þ 1) ¼ G
covariate patterns, where
G ¼ # of covariate patterns

Covariatepatterns(i.e., subgroups):
Distinct specifications of X

EXAMPLE

Model 3: logit P(X) =  α + βE + γV + δEV

4 covariate patterns

X1: E= 1, V= 1

X2: E= 0, V= 1

X3: E= 1, V= 0

X4: E= 0, V= 0

Model 1: logit P(X) =  α + βE

2 covariate patterns

X1: E= 1

X2: E= 0

Model 2: logit P(X) =  a + bE + g V

4 covariate patterns

(same as Model 3)

k + 1 = 4 = G
fully

parameterized

k + 1 = 2 = G
fully

parameterized

k + 1 = 3 ≠ G= 4
not fully

parameterized

Assessing GOF:

Saturated ðk þ 1 ¼ nÞ
vs:

fully parameterized ðk þ 1 ¼ GÞ?

Let us now focus on Model 3. This model is the
largest possible model that can be defined con-
taining the two “basic” variables, E and V.
Since E and V are both (0,1) variables, E2 ¼ E
and V2 ¼ V, so we cannot add to the model any
higher order polynomials in E or V or any
product terms other than E � V.

Model 3 is an example of a fully parameterized
model, which contains the maximum number
of covariates that can be defined from the
main-effect covariates in the model.

Equivalently, the number of parameters in such
a model must equal the number of covariate
patterns (G) that can be defined from the covari-
ates in the model.

In general, for a given model with covariates
X ¼ (X1, . . . , Xk), the covariate patterns are
defined by the distinct values of X.

For Model 3, which contains four parameters,
there are four distinct covariate patterns, i.e.,
subgroups, that can be defined from the covari-
ates in the model. These are shown at the left.

Model 1, which contains only binary E, is also
fully parameterized, providing E is the only
basic predictor of interest. No other variables
defined from E, e.g., E2 ¼ E, can be added to
model 1. Furthermore, Model 1 contains two
parameters, which correspond to the two
covariate patterns derived from E.

However, Model 2 is not fully parameterized,
since it contains three parameters and four
covariate patterns.

Thus, we see that a fully parameterized model
has a nice property (i.e., k þ 1 ¼ G): it is the
largest possible model we can fit using the vari-
ables we want to allow into the model. Such a
model might alternatively be used to assess
GOF rather than using the saturated model as
the (gold standard) referent point.
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Model A: X ¼ (X1, X2, X3) fully
parameterized but

Model B:X ¼ (X1, X2, X3, X4, X5, X6)
“better fit” than Model A

EXAMPLE

e.g.,

LR
test

����▸

Model 1 : logit PðXÞ
¼ aþ bE

vs:

Model 3 : logit PðXÞ
¼ aþ bEþ gV þ dEV

8>>>>>><
>>>>>>:

LR ¼ �2 ln L̂Model 1 � ð�2 ln L̂Model 3Þ
¼ 55:051 � 51:355 ¼ 3:696

� w2ð2 dfÞ under H0: g ¼ d ¼ 0

ðP > 0:10Þ n:s:

Fitted Model 3:

logit P̂ðXÞ ¼ âþ b̂Eþ ĝV þ d̂EV;
where â ¼ 0:8473; b̂ ¼ �1:6946;

ĝ ¼ �1:2528; d̂ ¼ 2:5055

Covariate
pattern

Obs.
risk

Pred.
risk

X1: E ¼ 1,
V ¼ 1

p̂1 ¼ 0:6 P̂ðX1Þ ¼ 0:6

X2: E ¼ 0,
V ¼ 1

p̂2 ¼ 0:4 P̂ðX2Þ ¼ 0:4

X3: E ¼ 1,
V ¼ 0

p̂3 ¼ 0:3 P̂ðX3Þ ¼ 0:3

X4: E ¼ 0,
V ¼ 0

p̂4 ¼ 0:7 P̂ðX4Þ ¼ 0:7

E= 1, V= 1: P(X1)

E= 0, V= 1: P(X2)

ˆ

ˆ

–  E= 1: some D= 1,

E= 0: some D= 1,

Model 3:

No perfect fit

= 0.6 ≠ 0 or 1

= 0.4 ≠ 0 or 1

 some D= 0

some D= 0

Note, however, even if a model A is fully para-
meterized, there may be a larger model B con-
taining covariates not originally considered in
model A that provides “better fit” thanmodel A.

For instance, although Model 1 is the largest
model that can be defined when only binary E
is considered, it is not the largest model that
can be defined when binary V is also consid-
ered. Nevertheless, we can choose between
Model 1 and Model 3 by performing a standard
likelihood ratio (LR) test that compares the
two models; the (nonsignificant) LR results
(P > 0.10) are shown at the left.

Focusing now on Model 3, we show the fitted
model at the left. Note that these same esti-
mated parameters would be obtained whether
we input the data by individual subjects (40
datalines) or by using an events–trials format
(4 datalines). However, using events–trials
format, we lose the ability to identify which
subjects become cases.

The predicted risks obtained from the fitted
model for each covariate pattern are also
shown at the left, together with their cor-
responding observed risks. Notice that these
predicted risks are equal to their corresponding
observed proportions computed from the
observed (stratified) data.

Nevertheless, none of these predicted risks are
either 0 or 1, so the fitted model does not per-
fectly predict each subject’s observed outcome,
which is either 0 or 1. This is not surprising,
since some exposed subjects develop the dis-
ease and some do not.
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Model 3.Fully parameterizedmodel

+
# of expected cases

¼ # of observed cases for

each covariate pattern

Covariate pattern Xg: ng subjects
Xg ¼ values of X in group g

dg ¼ observed cases in group g
(binomial)

P̂ðXgÞ: predicted risk in group g

d̂g ¼ ngP̂ðXgÞ: expected cases in
group g

EXAMPLE

X: EV Exp. Cases Obs. Cases

X1:11 d̂1 ¼ 10ð0:6Þ ¼ 6 d1 ¼ 6
X2:01 d̂2 ¼ 10ð0:4Þ ¼ 4 d2 ¼ 4
X3:10 d̂3 ¼ 10ð0:3Þ ¼ 3 d3 ¼ 3
X4:00 d̂4 ¼ 10ð0:7Þ ¼ 7 d4 ¼ 7

Model 3.
Perfect
Prediction?

Yi � Ŷi 6¼ 0 for
all i (not

Individuals: No

saturated)

dg � d̂g ¼ 0 for
all g (fully

Groups:
(Patterns)

Yes

parameterized)

Model 3 is “group-saturated”:
perfectly group outcomes

Two GOF approaches:
Compare fitted model to:
1. Saturated model: Provides

perfect individual prediction
2. Fully parameterized model:

Provides perfect group
prediction (based on
covariate patterns)

However, we will show below that because
Model 3 is a fully parameterized model, it per-
fectly predicts the number of cases actually
observed for each covariate pattern. That is,
the expected number of cases for each pattern,
based on the fitted model, equals the observed
number of cases for each pattern.

More specifically, suppose ng subjects have
covariate pattern Xg, and dg denotes the
observed number of cases in group g. Then,
since dg has the binomial distribution, the
expected number of cases in group g is
d̂g ¼ ngP̂ðXgÞ, where P̂ðXgÞ is the predicted risk
for any subject in that group.

Thus, for Model 3, we expect d̂1 ¼ 10ð0:6Þ ¼ 6

cases among subjects with E ¼ 1 and V ¼ 1,
d̂2 ¼ 10ð0:4Þ ¼ 4 cases among subjects with
E ¼ 0 and V ¼ 1, and so on for the other
two covariate patterns. The corresponding
observed number of subjects are also shown at
the left. Notice that the corresponding observed
and expected cases are equal for Model 3.

So, even thoughModel 3 does not provide “per-
fect prediction” in terms of individual out-
comes, it does provide “perfect prediction” in
terms of group outcomes.

In other words, although Yi � Ŷi 6¼ 0 for all sub-
jects, dg � d̂g ¼ 0 for all covariate patterns.

Another way of saying this is that Model 3 is
“group-saturated” in the sense that Model 3
perfectly predicts the group outcomes corres-
ponding to the distinct covariate patterns.

Thus, we see that an alternative gold standard
model for assessing GOF is a fully parameter-
ized (group-saturated) model containing the
covariates of interest rather than a (subject-
specific) saturated model that can rarely if
ever be achieved using these covariates.

310 9. Assessing Goodness of Fit for Logistic Regression



Classical GOF approach:
Saturated model gives perfect

fit for individual
subjects

Why?

Yi ¼ 0 or 1 only possible
outcomes for
subject i

However, problematic for logistic
regression

Saturated model: k þ 1 ¼ n

EXAMPLE

Previous example (n ¼ 40, 4 covariate
patterns):
Model 4 (SS saturated model)

logit PðXÞ ¼ o1Z1 þ o2Z2 þ o3Z3

þ � � � þ o40Z40

Zi ¼
1 if subject i; i ¼ 1; 2; . . . ; 40

0 otherwise

(

LSS ¼
Y40
i¼1

PðXiÞYi ð1� PðXiÞÞ1�Yi

where Xi denotes the values of X for
subject i

Subject i : Zi ¼ 1;other Zs ¼ 0

+
logit PðXiÞ ¼ oi and

PðXiÞ ¼ 1=½1þ expð�oiÞ�

Saturated model

+
Ŷi �def P̂ðXiÞ ¼ Yi; i ¼ 1; 2; . . . ; n

The traditional (i.e., “classical”) GOF approach
considers the saturated model as the ideal for
“perfect fit.” This makes sense when the units
of analysis are individual subjects, since their
actual observed outcomes are 0 or 1, rather
than some value in between. However, as we
will explain further (later below), use of the
saturated model to assess GOF for logistic
regression is problematic.

Recall that we originally defined the saturated
model as that model for which the number of
parameters (k þ 1) equals the sample size (n).
For our example involving four covariate pat-
terns for 40 subjects, the subject-specific (SS)
saturated model is shown at the left. This
model does not have an intercept term, but
does contain 40 parameters, as defined by the
oi. The Zi are dummy variables that distinguish
the 40 subjects.

The likelihood function for this (SS) saturated
model is shown at the left. In this formula, Yi

denotes the observed value (either 0 or 1) for
the ith individual in the dataset.

Note that for subject i, Zi ¼ 1 and Zk ¼ 0 for
k 6¼ i, so P(Xi) can be written in terms of the
regression coefficient oi that involves only that
one subject.

Furthermore, since the saturated model per-
fectly fits the data, it follows that the maximum
likelihood (ML) estimate Ŷi;which equals P̂ðXiÞ
by definition, must be equal to the observed Yi

for each subject i.
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L̂SSmax ¼
Y40
i¼ 1

Yi
Yið1� YiÞ1�Yi

For any binary logistic model:

Yi ¼ 1 : Yi
Yið1� YiÞ1�Yi ¼ 11ð1� 1Þ1�1 ¼ 1

Yi ¼ 0 : Yi
Yið1� YiÞ1�Yi ¼ 00ð1� 0Þ1�0 ¼ 1

L̂SSmax � 1 always

Important implications for GOF

III. The Deviance Statistic

Deviance:

Dev(ββ) = −2ln(Lc / Lmax)
ˆ ˆ ˆ

b̂ ¼ ðb̂0; b̂1; b̂2; . . . ; b̂pÞ
L̂c ¼ ML for current model

L̂max ¼ ML for saturated model

(Note: If subjects are the unit of
analysis,
L̂max � L̂SSmax)

L̂c closer to Lmax
ˆ

⇓

better fit  (smaller deviance)

L̂c = Lmax ⇒ –2 ln( Lc / Lmax)
ˆ ˆ ˆ

L̂c << Lmax ⇒ Lc / Lmax small fractionˆ ˆ ˆ

⇒ ln(Lc / Lmax)
ˆ ˆ

⇒ –2 ln(Lc / Lmax)
ˆ ˆ

perfect fit

poor fit

= –2 ln(1) = 0

large,negative 

large,positive

It follows that the formula for the ML value of
the SS saturated model (L̂SSmax) involves sub-
stituting Yi for P(Xi) in the above formula for
the likelihood, as shown at the left.

From simple algebra, it also follows that the
expression Yi

Yið1� YiÞ1�Yi will always be equal
to one when Yi is a (0,1) variable.

Consequently, the maximized likelihood will
always equal 1. This result has important
implications when attempting to assess GOF
using a saturated model as the gold standard
for comparison with one’s current model.

As mentioned at the beginning of this chapter,
a widely used measure of GOF is the deviance.
The general formula for the deviance (for any
regression model) is shown at the left. In this
formula, b̂ denotes the collection of estimated
regression coefficients in the current model
being evaluated, L̂c denotes the maximized
likelihood for the current model, and L̂max

denotes the maximized likelihood for the
saturated model.

Thus, the deviance contrasts the likelihood of
the current model with the likelihood of the
model that perfectly predicts the observed out-
comes. The closer are these two likelihoods, the
better the fit (and the smaller the deviance).

In particular, if L̂c ¼ L̂max, then the deviance is
0, its minimum value. In contrast, if L̂c is much
smaller than L̂max, then the ratio L̂c=L̂max is a
small fraction, so that the logarithm of the
ratio is a large negative number and �2 times
this large negative number will be a large posi-
tive number.
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Properties of deviance

similar to

properties of w2 statistic

Common to test for GOF

by comparing deviance

with w2n�k�1 value:

ðquestionably legitimateÞ

GOF H0: model fits
HA: model does not fit

Deviance “significant” ) poor fit

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ
¼ �2 ln L̂c � ð�2 ln L̂maxÞ

Recall

LR ¼ �2 ln L̂R � ð�2 ln L̂FÞ � w2

R ¼ reduced model

F ¼ full model

DevRðb̂Þ �DevFðb̂Þ
¼ ½�2 lnðL̂R=L̂maxÞ� � ½�2 lnðL̂F=L̂maxÞ�
= [–2 ln LR – (–2 ln Lmax)] – [–2 ln LF – (– 2 ln Lmax)]

ˆ ˆ ˆ ˆ

¼ �2 ln L̂R � ð�2 ln L̂FÞ � LR

Nevertheless for the logisticmodel:

w2 approximation of
deviance statistic is
questionable (see below)

These properties of the deviance, i.e., its values
range from zero to larger and larger positive
numbers, correspond to the properties of a chi-
square statistic as used in a likelihood ratio test.

In fact, when using the deviance to test for
GOF, it is common, though not strictly legiti-
mate, to compare the deviance to chi-square
values with n� k� 1 degrees of freedom when
the current model contains kþ 1 parameters.

The GOF null hypothesis is that the “model
fits,” and the alternative hypothesis is that the
“model does not fit.” Thus, if the deviance is
“significantly” large, the model is considered to
have poor fit.

Note that the deviance statistic is, by definition, a
likelihood ratio (LR) statistic for comparing one’s
current model to the saturated model. Thus, the
use of the chi-square distribution to test for the
significance of the deviance appears justified
because the LR statistic has an approximate
chi-square distribution underH0 when compar-
ing full vs. reduced (nonsaturated) models that
are fitted using ML estimation.

In particular, it can be shown from simple
algebra that the LR test for comparing two hier-
archical nonsaturated regression models is
equivalent to the difference in deviances
between the two models. This follows, as
shown at the left, because the maximized like-
lihood for the saturated model drops out of the
difference in deviance scores.

Nevertheless, as we shall soon explain, when
using the deviance statistic to assess GOF for
a single (nonsaturated) logistic model, the
chi-square approximation for the LR test is
questionable.
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Alternative (Events–Trials) Devi-
ance formula: for the logistic
model:

G covariate patterns

Xg¼ðXg1;Xg2; . . . ;XgpÞ; g¼1; 2; . . . ;G

d̂g¼ ngP̂ðXgÞ ¼ expected cases

dg¼observed cases

DevETðb̂Þ
¼ �2 ln L̂c;ET � ð�2 ln L̂max;ETÞ

¼ �2 ~
G

g¼1

dg ln
dg

d̂g

 !"

þ ðng � dgÞ ln ng � dg

ng � d̂g

 !#
;

where �2ln L̂c,ET and �2ln L̂max,ET

are defined using events–trials
(ET) format

First, we present an alternative formula for the
deviance ina logisticmodel that considers theco-
variate patterns defined by one’s current model.
We assume that this model contains G covariate
patternsXg ¼ (Xg1,Xg2, . . . ,Xgp),withng subjects
havingpattern g. As defined earlier, d̂g ¼ ngP̂ðXgÞ
denotes the expected cases, where P̂ðXgÞ is
the predicted risk for X ¼ Xg, and dg denotes
the observed number of cases in subgroup g.

The alternative deviance formula is shown here
at the left. This formula corresponds to the data-
set listed in events–trials format, where there
are G datalines, dg and ng denote the number
of events and number of trials, respectively, on
the gth dataline.

EXAMPLE

Model 3: logit P(X) ¼ a þ bE þ gV
þ dEV

X: EV ng

Exp.
Cases

Obs.
Cases

X1 : 11 10 d̂1 ¼ 6 d1 ¼ 6
X2 : 01 10 d̂2 ¼ 4 d2 ¼ 4
X3 : 10 10 d̂3 ¼ 3 d3 ¼ 3
X4 : 00 10 d̂4 ¼ 7 d4 ¼ 7

DevETðb̂Þ for Model 3:

¼ �2 6 ln
6

6

� �
þ 4 ln

4

4

� �� �

� 2 4 ln
4

4

� �
þ 6 ln

6

6

� �� �

� 2 3 ln
3

3

� �
þ 7 ln

7

7

� �� �

� 2 7 ln
7

7

� �
þ 3 ln

3

3

� �� �
¼ 0

Deviance formula DevETðb̂Þ uses
events–trials format

+
Units of analysis are groups

ðnot subjectsÞ

Recall that for the data set on n ¼ 40 subjects
described above, Model 3 has G ¼ 4 covariate
patterns. For each pattern, the corresponding
values for ng, d̂g, and dg are shown at the left.

Substituting the values in the table into the
alternative (events–trials) deviance formula,
we find that the resulting deviance equals zero.

How can we explain this result, since we know
that the fully parameterized Model 3 is not
saturated in terms of perfectly predicting the
0 or 1 outcome for each of the 40 subjects in the
dataset? The answer is that since the ET devi-
ance formula corresponds to an events–trials
format, the units of analysis being considered
by the formula are the four groups of covariate
patterns rather than the 40 subjects.
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EXAMPLE

“group-saturated”:

# of parameters = # of groups

sample size = 4

Model 3: logit P(X) ¼ a þ bE þ gV
þ dEV

vs.
Model 4 (perfectly predicts 0 or 1
outcome):

logit PðXÞ ¼ o1Z1 þ o2Z2 þ o3Z3 þ � � �
þ o40Z40

Subject-specific deviance formula:

DevSSðb̂Þ¼�2~
n

i¼1

�
Yi ln

Yi

Ŷi

� �

þð1�YiÞ ln 1�Yi

1� Ŷi

� ��
Yi ¼ observed (0, 1) response for

subject i
Ŷi ¼ predicted probability for the

subject i

DevSSðb̂Þ 6¼ DevETðb̂Þ unless G ¼ n

DevSSðb̂Þ > 0 since G << n

for Model 3

Equivalent formula for DevSS(b̂):
(from calculus and algebra)

DevSSðb̂Þ

¼ �2 ~
n

i¼1

P̂ðXiÞ ln P̂ðXiÞ
1� P̂ðXiÞ

 !"

þ lnð1� P̂ðXiÞÞ
#

Consequently, Model 3 is “group-saturated” in
that the number of parameters in this model is
equal to the total number of groups being con-
sidered. That is, since the units of analysis are
the four groups, the sample size corresponding
to the alternative deviance formula is 4, rather
than 40.

So, then, how can we compare Model 3 to the
saturated model we previously defined (Model
4) that perfectly predicts each subject’s 0 or 1
outcome?

This requires a second alternative formula for
the deviance, as shown at the left. Here,
the summation (i) covers all subjects, not all
groups, and Yi and Ŷi denote the observed and
predicted response for the ith subject rather
than the gth covariate pattern/group.

This alternative (subject-specific) formula is
not identical to the events–trials formula
given above unless G ¼ n. Moreover, since
G<< n for Model 3, the SS deviance will be
nonzero for this model.

We now show how to compute the subject-
specific (SS) deviance formula for Model 3.
However, we first provide an equivalent SS
deviance formula that can be derived from
both algebra and some calculus (see this
chapter’s appendix for a proof ).
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EXAMPLE

Covariate
pattern

Obs.
risk

Pred.
risk

X1: E ¼ 1,
V ¼ 1

p̂1 ¼ 0:6 P̂ðX1Þ ¼ 0:6

X2: E ¼ 0,
V ¼ 1

P̂2 ¼ 0:4 P̂ðX2Þ ¼ 0:4

X3: E ¼ 1,
V ¼ 0

p̂3 ¼ 0:3 P̂ðX3Þ ¼ 0:3

X4: E ¼ 0,
V ¼ 0

p̂4 ¼ 0:7 P̂ðX4Þ ¼ 0:7

DevSSðb̂Þ
¼ � 2ð10Þ 0:6 lnð0:6=0:4Þ þ lnð0:4Þ½
þ 0:4 lnð0:4=0:6Þ þ lnð0:6Þ
þ 0:3 lnð0:3=0:7Þ þ lnð0:7Þ
þ 0:7 lnð0:7=0:3Þ þ lnð0:3Þ�

¼ 51:3552

DevETðb̂Þ ¼ 0:0 6¼ DevSSðb̂Þ ¼ 51:3552

DevETðb̂Þ ¼ 0:0 because

� 2 ln L̂ET saturated ¼ �2 ln L̂Model 3

¼ �2 ln L̂C

so

DevETðb̂Þ ¼ � 2 ln L̂C

� ð�2 ln L̂ET saturatedÞ
¼ � 2 ln L̂Model 3

� ð�2 ln L̂Model 3Þ
¼ 0:0

DevSSðb̂Þ 6¼ 0:0 because

� 2 ln L̂SS saturated ¼ 0:0

so

DevSSðb̂Þ ¼ � 2 ln L̂C

� ð�2 ln L̂SS saturatedÞ
¼ � 2 ln L̂Model 3 � 0

¼ 51:3552

Note: � 2 ln L̂C;ET 6¼ �2 ln L̂C;SS

–2 ln LC,ET = –2 ln LC,SS −2K, whereˆ ˆ

ˆ

∑
G

g = 1 dg!(ng – dg)!

ng!
K = ln

Model 3: –2 ln LC,ET  = 10.8168

K does not involve β, so

β̂ is same for SS or ET

� 2 ln L̂C;SS ¼ 51:3552;K ¼ 20:2692

To compute this formula for Model 3, we need
to provide values of P̂ðXiÞ for each of the 40
subjects in the data set. Nevertheless, this cal-
culation can be simplified since there are only
four distinct values of P̂ðXiÞ over all 40 sub-
jects. These correspond to the four covariate
patterns of Model 3.

The calculation now shown at the left, where
we have substituted each of the four distinct
values of P̂ðXiÞ 10 times in the above formula.

We have thus seen that the events–trial and
subject-specific deviance values obtained for
Model 3 are numerically quite different.

The reason why DevETðb̂Þ is zero is because the
ET formula assumes that the (group-) saturated
model is the fully parameterized Model 3 and
the current model being considered is also
Model 3. So the values of their corresponding
log likelihood statistics (� 2 ln L̂) are equal and
their difference is zero.

In contrast, the reason why DevSSðb̂Þ is differ-
ent from zero is because the SS formula
assumes that the saturated model is the “clas-
sical” (SS) saturated model that perfectly pre-
dicts each subject’s 0 or 1 outcome. As
mentioned earlier, � 2 ln L̂ is always zero for
the SS saturated model. Thus, DevSSðb̂Þ simpli-
fies to � 2 ln L̂C for the current model (i.e.,
Model 3), whose value is 51.3552.

Mathematically, the formula for � 2 ln L̂C differs
with the (ET or SS) format being used to specify
the data. However, these formulae differ by a
constantK, as we show on the left and illustrate
for Model 3. The formula for K, however, does
not involve b. Thus, the ML estimate b̂ will
be the same for either format. Consequently,
some computer packages (e.g., SAS) present
the same value (i.e., � 2 ln L̂C;SS) regardless of
the data layout used.
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Deviance not always appropriate
for logistic regression GOF

Alternative approach:
Hosmer–Lemeshow

When G<<n, we can assume
DevETðb̂Þ is approximately w2n�k�1

under H0: good fit

EXAMPLE

Previous data: n ¼ 40

G ¼ 2; 4; 4 for Models 1; 2; 3;

respectively

+
w2 test for GOF is OK

However, when G 	 n, we cannot
assume

DevETðb̂Þ is approximately w2n�p�1

under H0: good fit

(Statistical theory: ng small 	 1 as
n ! 1)

Xi continuous, e.g.,Xi ¼ AGE)G	 n

Many situations where predictors
are continuous

+
Cannot use deviance to test forGOF

G ¼ n:
� Each covariate pattern:

1 subject,

� ng� 1 for all g, g ¼ 1, . . . , n

� DevSSðb̂Þ ¼ DevETðb̂Þ
but not w2 under H0:
GOF adequate

DevSSðb̂Þ ¼ �2 ~
n

i¼1

P̂ðXiÞ ln P̂ðXiÞ
1� P̂ðXiÞ

 !"

þ ln 1� P̂ðXiÞ
� �#

Provides P̂ðXiÞ but not observed Yi

We are now ready to discuss why the use of the
deviance formula is not always appropriate for
assessing GOF for a logistic regression model,
and we will describe an alternative approach,
using the Hosmer–Lemeshow statistic, which
is typically used instead of the deviance.

When the number of covariate patterns (G) is
considerably smaller than the number of obser-
vations (n), the ET deviance formula can be
assumed to have an approximate chi-square dis-
tribution with n � k � 1 degrees of freedom.

For the data we have illustrated above involv-
ing n ¼ 40 subjects, G ¼ 2 for Model 1, and
G ¼ 4 for Models 2 and 3. So a chi-square test
for GOF is appropriate using the ET deviance
formula.

However, when G is almost as large as n, in
particular, when G equals n, then the deviance
cannot be assumed to have a chi-square distri-
bution (Collett, 1991). This follows from large-
sample statistical theory, where the primary
problem is that in this situation, the number
of subjects, ng, for each covariate pattern
remains small, e.g., close to 1, as the sample
size increases.

Note that if at least one of the variables in the
model, e.g., AGE, is continuous, then G will
tend to be close to n whenever the age range
in the sample is reasonably wide. Since logistic
regression models typically allow continuous
variables, there are many situations in which
the chi-square distribution cannot be assumed
when using the deviance to test for GOF.

When G ¼ n, each covariate pattern involves
only one subject, and the SS deviance formula
is equivalent to the ET deviance formula,
which nevertheless cannot be assumed to
have a chi-square distribution under H0.

Moreover, the SS deviance formula, shown
again here contains only the predicted values
P̂ðXiÞ for each subject. Thus, this formula tells
nothing about the agreement between observed
(0,1) outcomes and their corresponding pre-
dicted probabilities.
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IV. The Hosmer–
Lemeshow (HL)
Statistic

� Alternative to questionable use
of deviance

� Available in most computer
packages

HL widely used regardless of
whether G<< n or G 	 n:

� Requires G > 3

� Rarely significant when G < 6

� Works best when G 	 n (e.g.,
some Xs are continuous)

� HL � 0 for fully parameterized
model

� “Saturated” model is fully
parameterized in ET format

Steps for computing HL statistic:

1. Compute P̂ðXiÞ for all n subjects

2. Order P̂ðXiÞ from largest to
smallest values

3. Divide ordered values into Q
percentile groupings (usually
Q ¼ 10 ) deciles of risk)

4. Form table of observed and
expected counts

5. Calculate HL statistic from table

6. Compare computed HL to
w2 with Q � 2 df

Step 1: Compute P̂ðXiÞ; i ¼ 1; 2; . . . ; n
n ¼ 200 ) 200 values for P̂ðXiÞ

although some values are identi-
cal ifXi � Xj for subjects i and j.

Step 2: Order values of P̂ðXiÞ:
e.g., n ¼ 200

Order # P̂ðXiÞ
1 0.934 (largest)
2 0.901

tie
3 0.901
..
. ..

.

199 0.123
200 0.045 (smallest)

Toavoid questionable use of the deviance to pro-
vide a significance test for assessing GOF, the
Hosmer–Lemeshow (HL) statistic has been deve-
loped and is available inmost computer packages.

The HL statistic is widely used regardless of
whether or not the number of covariate patterns
(G) is close to the number of observations. Nev-
ertheless, this statistic requires that the model
considers at least three covariate patterns, rarely
results in significance whenG is less than 6, and
works best whenG is close to n (the latter occurs
when some of the predictors are continuous).

Moreover, the HL statistic has the property
that it will always be zero for a fully parame-
terized model. In other words, the “saturated”
model for the HL statistic is essentially a fully
parameterized (group-saturated) model coded
in events–trials format.

The steps involved in computing the HL statis-
tic are summarized at the left. Each step will
then be described and illustrated below, fol-
lowing which we will show examples obtained
from different models with differing numbers
of covariate patterns.

At the first step, we compute the predicted risks
P̂ðXiÞ for all subjects in the dataset. If there are,
say, n ¼ 200 subjects, there will be 200 pre-
dicted risks, although some predicted risks
will be identical for those subjects with the
same covariate pattern.

At the second step, we order the predicted risks
from largest to smallest (or smallest to largest).

Again, there may be several ties when doing
this if some subjects have the same covariate
pattern.

o
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Step 3: Form Q percentile group-
ings.

Typically, Q ¼ 10, i.e., deciles of
risk e.g., n ¼ 200

Decile No. of subjects

1 	20
2 	20
..
. ..

.

9 	20
10 	20

Total 200

Ties ) # of subjects 6¼ exactly
20 (¼ n/Q) in all deciles

Must keep subjects with identical
values of P̂ðXiÞ in the same decile

Step 4: Form table of observed
and expected cases and
noncases

Deciles
of risk

1
2

3

10

Oc3

Oc2

Oc1

Onc3

Onc10

Onc2

Onc1

Ec3

Ec10

Ec2

Ec1

Enc3

Enc10

Enc2

Enc1

Oc10

Obs.
cases

Obs. non
cases

Exp. non
cases

Exp.
cases

Observed cases and noncases:

Ocq counts # of cases (Yi ¼ 1) in
qth decile
Oncq counts # of noncases
(Yi ¼ 1) in qth decile

Note: Oncq ¼ nq � Ocq

Expected cases and noncases:

Ecq¼ ~
nq

i¼1

P̂ðXiqÞ and Encq ¼ nq � Ecq,

where
Xiq ¼ covariate values for ith subj
in qth decile

At the third step, we divide the ordered pre-
dicted risks into Q percentile groupings. The
typical grouping procedure involves Q ¼ 10
deciles. Thus, if the sample size is 200, each
decile will contain approximately 20 subjects.
Henceforth, we will assume that Q ¼ 10.

Note, however, because some subjects may
have identical predicted risks (i.e., ties), the
number of subjects per decile may vary some-
what to keep subjects with identical predicted
risks in the same decile.

At the fourth step, we form (typically using
a convenient computer program) the table,
shown at the left, that contains observed and
expected cases and noncases within each dec-
ile. In this table, the values Ocq, Ecq, Oncq, and
Encq, q ¼ 1, 2, . . . , 10 are defined as follows:
Ocq ¼ # of observed cases in the qth decile

Ecq ¼ # of expected cases in the qth decile

Oncq ¼ # of observed noncases in the qth
decile

Encq ¼ # of expected noncases in the qth
decile

The observed cases (Ocq) and noncases (Oncq)
in each decile are obtained by simply counting
the numbers of subjects in that decile who are
cases (i.e., Yi ¼ 1) and noncases (i.e., Yi ¼ 0),
respectively. Note that once we count Ocq, we
can obtain Oncq by subtraction from nq, the
total number of subjects in the qth decile.

The expected cases (Ecq) in each decile are
obtained by summing the predicted risks
P̂ðXiÞ for all subjects in that decile. The
expected number of noncases (Encq) are
obtained by subtraction from nq.
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EXAMPLE

e.g., q ¼ 3, n3 ¼ 4, P̂ðXiÞ: 0.30, 0.35,
0.40, 0.45

Ec3 ¼ ~
n3

i¼1

P̂ðXi3Þ ¼ 0:30þ 0:35þ 0:40

þ 0:45 ¼ 1:50

and Enc3 ¼ n3 � Ec3 ¼ 4 � 1.50
¼ 2.50

Step 5:

HL ¼ ~
Q

q¼1

ðOcq �EcqÞ2
Ecq

þ ~
Q

q¼1

ðOncq �EncqÞ2
Encq

Q ¼ 10 ) 20 values in summation

Step 6:

HL ~  approx c2
Q–2 under H0: Good fit

i.e., not enough
evidence to

indicate lack of fit
Q = 10 ⇒ df = Q – 2 = 8

V. Examples of the HL
Statistic

EXAMPLE

Evans County Data (n ¼ 609)
(see previous chapters and
Computer Appendix)

Model EC1 (no interaction):
logit P(X) ¼ a þ bCAT þ g1AGEG

þ g2ECG

Model EC2 (fully parameterized):

logit PðXÞ ¼ aþ bCATþ g1AGEG

þ g2ECG

þ g1AGEG� ECG

þ d1CAT� AGE

þ d2CAT� ECG

þ d3CAT� AGE� ECG

For example, if the third decile contains four
subjects with predicted risks of 0.30, 0.35, 0.40,
and 0.45, then the expected number of cases
(Ec3) would be their sum 0.30 þ 0.35 þ 0.40 þ
0.45 ¼ 1.50 (regardless of whether or not a
subject is an observed case). The expected
noncases in the same decile (Enc3) would be
4 � 1.50 ¼ 2.50.

In step 5, the HL statistic is calculated using
the formula at the left. This formula involves
summing Q values of the general form (Oq �
Eq)

2/Eq for cases and another Q values for non-
cases. When Q ¼ 10, the HL statistic therefore
involves 20 values in the summation.

In step 6, the HL statistic is tested for signifi-
cance by comparing the computed HL value to
a percentage point of w2 with Q � 2 degrees of
freedom. When Q ¼ 10, therefore, the HL sta-
tistic is approximately w2 with 8 df.

We now illustrate the use of the HL statistic
with the Evans County data (n ¼ 609). This
dataset has been considered in previous chap-
ters, and is described in detail in the Computer
Appendix. SASs Logistic procedure was used
for the computations.

In our first illustration, we fit the two models
shown at the left. The outcome variable is CHD
status (1 ¼ case, 0 ¼ noncase), and there are
three basic (i.e., main effect) binary predictors,
CAT (1 ¼ high, 0 ¼ low), AGEG (1 ¼ age 
 55,
0 ¼ age > 55), and ECG (1 ¼ abnormal, 0 ¼
normal). Recall that the Evan County dataset
is described in the Computer Appendix.
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EXAMPLE (continued)

Datalines in events trials format
(n 5 609)

Group
(g) dg ng CAT AGEG ECG

1 17 274 0 0 0
2 15 122 0 1 0
3 7 59 0 0 1
4 5 32 0 1 1
5 1 8 1 0 0
6 9 39 1 1 0
7 3 17 1 0 1
8 14 58 1 1 1

proc logistic data ¼ evans2;
model cases/total ¼ cat ageg ecg/
scale ¼ none aggregate ¼ (cat
ageg ecg) lackfit;
output out ¼ pred p ¼ phat
predprob ¼ (individual); run;
proc print data ¼ pred; run;

The data layout used to fit both models in
events–trials format is now shown at the left.
Model EC1 is a no-interaction model involving
only the main effects CAT, AGEG, and ECG as
predictors. Model EC2 is a fully parameterized
model since there are eight model parameters
as well as eight covariate patterns, i.e., p þ 1 ¼
8 ¼ G.

Here, we provide the computer code using
SASs PROC LOGISTIC used to fit Model
EC1 and provide HL, deviance, and � 2 ln L̂C
statistics, as well as predicted risk values (i.e.,
“phat” in the code at the left) for each covariate
pattern.

EXAMPLE

Edited Output (Model EC1):
(Variables – CAT, AGE, ECG)

0.9474 4 0.9177

0.9544 4 0.9166
0.9793 4 0.9129

418.181– 2 Log L

1
2 0.11913 0.12295
3
4 0.16264 0.15625
5 0.11984 0.12500
6
7 0.16355 0.17647
8

No evidence
that Model EC1
has lack of fit

2741 255.3425718.6617
592 53.40525.607

1223 107.4710714.5315
574 48.06488.949
395 31.15307.859
586 42.594415.4114

0.06810 0.06204

0.118640.09497

0.230770.20128

0.241380.26574

Edited output for Model EC1 is shown here.

The table of observed and expected cases
and noncases has divided the data into Q ¼ 6
percentile groups rather than 10 deciles. The
number of covariate patterns is G ¼ 8, so the
number of percentile groups allowable is less
than 10. Also, from the phat values provided
(below left), two pairs {0.11913, 0.11984} and
{0.16264, 0.16355} are essentially identical and
should not be separated into different groups.

SinceQ ¼ 6, the df for the HL test isQ � 2¼ 4.
The HL test statistic (0.9474) is not significant.
Thus, there is not enough evidence to indicate
that Model EC1 has lack of fit.

The output here also gives the Deviance
(0.9544) and Pearson (0.9793) chi-square sta-
tistics as well as the log likelihood statistic
(418.181) for Model EC1.
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EXAMPLE

Edited Output (Model EC2):
(Variables – CAT, AGE, ECG, AGE × ECG, CAT × AGE,
AGE × ECG, and CAT × AGE × ECG)

0.0000 4 1.0000

0.0000 4
0.0000 4

417.226– 2 Log L

1
2         0.12295 0.12295
3
4         0.15625 0.15625
5         .012500 0.12500
6
7         0.17647 0.17647
8

2741 257.0025717.0017
592 52.00527.007

1223 107.0010715.0015
574 48.00489.009
395 30.00309.009
586 44.004414.0014

0.06205 0.06205

0.118640.11864

0.230790.23079

0.241380.24138

We now show edited ouput for the fully para-
meterized Model EC2.

As with Model EC1, Model EC2 has eight covar-
iate patterns, and only Q ¼ 6 percentile groups
are obtained in the table of observed and
expected cases and noncases. However, since
Model EC2 is fully parameterized (k þ 1 ¼ 8 ¼
G), corresponding observed and expected cases
and noncases are identical throughout the table.

Consequently, the HL test statistic is zero, as
are both the Deviance and Pearson statistics.

The log likelihood statistic of 417.226 is equiv-
alent to the SS deviance (i.e., DevSSðb̂Þ) for
Model EC2. Since this deviance value is differ-
ent from 0, we know that Model EC2 is not the
(SS) saturated model that perfectly predicts
the 0 or 1 outcome for each of the 609 subjects
in the dataset.

EXAMPLE (continued)

Since G ¼ 8 << n ¼ 609,
Pearson statistic and Dev statistic
approx w2 under H0

�2 ln L̂C;SS ¼ 418:181

¼DevSSðb̂Þ for Model EC1

418,181

417,226

DevET(β) = 0.9544ˆ

= –2 ln LEC1,SS ˆ

–(–2 ln LEC2,SS)ˆ

Table of Probabilities ðphat vs: pÞ
+

No perfect group prediction

e.g., group 3: phat ¼ 0.09497
p ¼ 0.11864

The Pearson statistic is another GOF statistic
that is similar to the Deviance in that it is not
recommended when the number of covariate
patterns is close to the sample size. However,
since the number of covariate patterns (G ¼ 8)
for Model EC1 is much less than the sample
size (n ¼ 609), both statistics can be assumed
to be approximately chi square under H0.
Notice also that the Pearson and Deviance
values are very close to the HL value (0.9474).

The �2 log L value (418.181) in the output is
the SS statistic � 2 ln L̂C;SS, where C is Model
EC1. This statistic is equivalent to DevSSðb̂Þ for
Model EC1, since L̂max;SS is always one.

The Deviance in the output (0.9544) is computed
using theDevETðb̂Þ formula based on theET data
layout. This formula is also equivalent to the
difference between SS log-likelihood statistics
for Model EC1 (418.181) and the (fully parame-
terized) Model EC2 (417.226, in output below).

Also, from the table of probabilities (above left),
the observed and predicted probabilities are dif-
ferent, so Model EC1 does not provide perfect
group (i.e., covariate pattern) prediction.
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Pred ¼ obs for each g

ðphat ¼ pÞ
+

d̂g ¼ dg cases

EXAMPLE

Fully parameterized model
(w/o conts. Xs):
� Above results support its use as

gold standard for assessing GOF

� HL statistic always 0 when
perfect group prediction

Second illustration
(Evans County data):
Model EC3 (no interaction):

logit PðXÞ ¼ aþ bCATþ g1AGE

þ g2ECGþ g3SMK

þ g4CHLþ g5HPT

Model EC4:

logit PðXÞ ¼ aþ bCATþ g1AGE

þ g2ECGþ g3SMK

þ g4CHLþ g5HPT

þ d1CAT� CHL

þ d2CAT�HPT

Yet, as the table of probabilities indicates,
Model EC2 perfectly predicts the observed
probabilities obtained for each covariate pat-
tern. Equivalently, then, this model perfectly
predicts the observed number of cases (dg)
corresponding to each covariate pattern.

When none of the predictors are continuous, as
with these data, these results support the use of
a fully parameterized model defined from all
covariate patterns as the gold standard model
for assessingGOF. In particular, theHL statistic
reflects this framework, since the value of HL
will always be zero whenever there is perfect
group, rather than subject-specific, prediction.

We now provide a second illustration of GOF
assessment using the Evans County data (see
Computer Appendix) with models that involve
continuous variables. In particular, we con-
sider two previously considered models (see
Chap. 7) shown on the left that involve the
predictors CAT, AGE, ECG, SMK, CHL, and
HPT. Here, AGE and CHL are continuous,
whereas CAT, ECG, SMK, and HPT are binary
variables.

EXAMPLE

AGE and CHL continuous

+
Few subjects with identical values for

both AGE and CHL

+
G 	 nð¼ 609Þ

SASs Proc Logistic automatically
outputs “Number of Unique
Profiles” (G)

Here, G ¼ 599

Since both models EC3 and EC4 contain con-
tinuous variables AGE and CHL, there are not
likely to be many of the 609 subjects with iden-
tically the same values for these two variables.
Consequently, the number of covariate pat-
terns (G) for each model should be close to
the sample size of 609.

In fact, SASs Logistic procedure automatically
outputs this number (identified in the output
as the “number of unique profiles”), which
turns out to be 599 (see output, below left),
i.e., G ¼ 599.
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EXAMPLE

G ¼ 599 	 n (¼ 609):
� Deviance nor Pearson not

approximately � w2

� HL statistic approximately � w2

(can use HL for GOF test)

Edited Output (Model EC3):
(Variables – CAT, AGE, ECG, SMK, CHL, and HPT)

5.1028 8 0.7465

400.3938 592 1.0000
589.6446 592 0.5196

400.394– 2 Log L

No evidence
Model EC3
has lack of fit

611 59.28611.720
612 58.35592.652
613 57.54563.465
614 56.78554.226
615 55.79545.217
616 54.90556.106
617 53.50567.505
618 51.81529.199
619 49.144911.8612
6010 40.924119.0819

�2 Log L ¼ DevSSðb̂Þ
¼ �2 lnðL̂SS;EC3=L̂SS;maxÞ

since Log L̂SS;max � 0

Since G 	 n in both models, we therefore can-
not assume that the Deviance or Pearson sta-
tistics are approximately chi square. However,
we can use the Hosmer–Lemeshow (HL) statis-
tic to carry out a test for GOF.

On the left, we now show edited output for
Model EC3, which provides the HL information
as well as Deviance, Pearson, and �2 log L
statistics.

From the output forModel EC3, we see that the
predicted risks have been divided into (Q ¼ 10)
deciles, with about 61 subjects in each decile.
Also, the observed and expected cases are
somewhat different within each decile, and
the observed and expected noncases are some-
what different.

TheHL statistic of 5.1028 hasQ � 2 ¼ 8 degrees
of freedom and is nonsignificant (P ¼ 0.7465).
Thus, there is no evidence from this test that the
no-interaction Model EC3 has lack of fit.

Both the Deviance (400.3938) and Pearson
(589.6446) statistics are very different from
each other as well as from the HL statistic
(5.1028). This is not surprising since the Devi-
ance and Pearson statistics are not appropriate
for GOF testing here.

Note that since the log likelihood for the (SS)
saturated model is always zero, the log likeli-
hood (�2 Log L) value of 400.394 is identical to
the Deviance value (i.e., DevSSðb̂ÞÞ for Model
EC3. We will use this value of �2 Log L in an
LR statistic (below) that compares the no-inter-
action Model E3 to the interaction Model EC4.
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EXAMPLE

Edited Output (Model EC4):
(Variables – CAT, AGE, ECG, SMK, CHL, HPT
CAT × CHL, and CAT ×  HPT)

7.9914 8 0.4343

347.2295 590 1.0000
799.0580 590 <.0001

347.230– 2 Log L

No evidence
Model EC4

has lack of fit

611 60.06590.942
612 59.04601.961
613 58.32592.682
614 57.63563.375
615 56.93574.074
616 56.22594.782
617 55.23575.774
618 53.34497.6612
619 49.955111.0510
6010 31.293128.7129

Deviance statistic (347.2295)
very different from

Pearson statistic (799.0580)

Both Models EC3 and EC4
do not have lack of fit:

Use LR test to compare Models EC3
vs. EC4

H0: d1 ¼ d2 ¼ 0 in Model EC4

LR ¼ �2 ln L̂EC3 � ð�2 ln L̂EC4Þ
� w22 df under H0

Model EC3 Model EC4
�2 Log L 400.394 347.230

LR ¼ 400.394 � 347.230 ¼ 53.165
(P < 0.001):
Model EC4 preferred over Model
EC3

Edited output for the interaction model EC4 is
now shown here at the left. This model con-
tains CAT, AGE, ECG, SMK, CHL, and HPT,
and the product terms CAT � CHL and CAT �
HPT in addition to the six main effects.

From this output, as with Model EC3, we see
that the predicted risks have been divided
into (Q ¼ 10) deciles, with about 61 subjects
in each decile. Also, the observed and expected
cases are somewhat different within each dec-
ile, and the observed and expected noncases
are somewhat different.

The HL statistic of 7.9914 has Q � 2 ¼ 8
degrees of freedom and is nonsignificant
(P ¼ 0.4343). Thus, there is not sufficient evi-
dence from this test to conclude that interac-
tionModel EC4 has lack of fit (as concluded for
Model EC3).

As with Model EC3, both the Deviance
(347.2295) and Pearson (799.0580) statistics
for Model EC4 are very different from each
other as well as from the HL statistic (7.9914).

Although we can conclude from the HL test
that both Models EC3 and EC4 do not indicate
lack of fit, we can decide between these two
models by performing an LR test that com-
pares corresponding log likelihood statistics
for the two models.

The null hypothesis is that the coefficients of
the two product terms in Model EC4 are both
zero. As previously seen in Chap. 7, the test
statistic is approximately chi square with
2 degrees of freedom under the null hypothesis.

The resulting LR value is 53.164, which is
highly significant (P < 0.0001).

Consequently, the interaction Model EC4 is
preferred to the no-interaction Model EC3.
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VI. SUMMARY

3 Chapter 9: Assessing Goodness
of Fit for Logistic
Regression

Saturated model:

� Contains as many parameters
(p þ 1) as the number of
subjects (n) in the dataset

� Provides perfect prediction of
the observed (0, 1) outcomes on
each subject

Fully parameterized model:

� Contains the maximum
number of covariates that can
be defined from the basic
predictors (X) being considered
for the model

� Provides perfect prediction of
the observed proportion of cases
within subgroups defined by
distinct covariate patterns of X

Subject-specific (SS) format:

� Datalines listed by subjects

� Used for GOF measure of
model fit for (0, 1) outcomes

Events–trials (ET) format:

� Datalines listed by subgroups
based on (G) covariate patterns

� Used for GOF measure of
model fit for subgroup
proportions

Deviance:

� Likelihood ratio (LR) statistic
for comparing one’s current
model to the saturated model

� Not recommended when G 	 n

Hosmer–Lemeshow (HL) statistic:

� GOF statistic appropriate when
G 	 n

� Computed using O and E cases
and noncases in percentile
subgroups

This presentation is now complete. We have
described how to assess the extent to which a
binary logistic model of interest predicts the
observed outcomes in one’s dataset.

We have identified two alternative models, a
saturated model and a fully parameterized
model, that can be used as possible gold stan-
dard referent points for evaluating the fit of a
given model.

We have also distinguished between two alter-
native data layouts that can be used – subject
specific (SS) vs. events–trials (ET) formats.

A widely used GOF measure for many mathe-
matical models is called the deviance. How-
ever, the deviance is not recommended for a
binary logistic regression model in which the
number of covariate patterns (G) is close to
the number of subjects (n).

In the latter situation, a popular alternative is
the Hosmer–Lemeshow (HL) statistic, which
is computed from a table of observed and
expected cases and noncases categorized by
percentile subgroups, e.g., deciles of pre-
dicted probabilities.
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Chapter 10: Assessing Discrimi-
natory Performance of a Binary
Logistic Model

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows. Then do the practice exercises and
test.

In the next chapter (Chap. 10), we describe
methods for assessing the discriminatory per-
formance is of a binary logistic model using
misclassification tables and ROC curves.

VII. Appendix: Derivation
of the Subject-
Specific (SS) Deviance
Formula

DevSSðb̂Þ ¼ �2 ~
n

k¼1

P̂ðXiÞ ln P̂ðXkÞ
1� P̂ðXkÞ

 !"

þ ln 1� P̂ðXkÞ
� �#

Proof. We first write the Deviance formula in a
convenient form as follows:

DevSSðb̂Þ ¼ �2 ln
L̂C

L̂MAX

� �
¼ �2 ln L̂C since ln L̂MAX � 0

�2 ln; L̂C ¼definition � 2 ~
n

k¼1

h
Yk ln P̂ðXkÞ:

þ ð1� YkÞ lnð1� P̂ðXkÞ
i

¼algebra � 2 ~
n

k¼1

�
Yk ln

P̂ðXkÞ
1� P̂ðXkÞ

 !

þ lnð1� P̂ðXkÞ
�
:

We now write the log of the logistic likelihood
function in a convenient form and take its
derivative:

LðbÞ ¼definitionY
k

P̂ðXkÞYkð1� P̂ðXkÞÞ1�Yk

so

ln LðbÞ ¼ ~
k

Yk ln P̂ðXkÞ þ ð1� YkÞ lnð1� P̂ðXkÞÞ:
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Taking derivatives, we obtain

@ ln LðbÞ
@bj

¼ ~
k

Yk

P̂ðXkÞ
� 1� Yk

1� P̂ðXkÞ

( )
P̂ðXkÞ

� ð1� P̂ðXkÞÞXjk;

which can be rewritten as

@ ln LðbÞ
@bj

¼~
k

Ykð1� P̂ðXkÞÞ� ð1�YkÞP̂ðXkÞ
n o

Xjk

and further simplied to

@ ln LðbÞ
@bj

¼ ~
k

ðYk � P̂ðXkÞÞXjk:

We can then write

~
j

bj
@ ln LðbÞ

@bj
¼ ~

k

Yk � P̂ðXkÞ
� �

~
j

bjXjk

¼ ~
k

Yk � P̂ðXkÞ
� �

ln
P̂ðXkÞ

1� P̂ðXkÞ

 !

¼ ~
k

Yk � P̂ðXkÞ
� �

logit P̂ðXkÞ:

Since @ ln Lðb̂Þ
@bj

¼ 0 for the ML estimate b̂, we

can write ~
k

ðYk � P̂ðXkÞÞ logit P̂ðXkÞ ¼ 0.

It then follows that ~
k

Yk logitðP̂ðXkÞÞ ¼
~
k

P̂ðXkÞ logitðP̂ðXkÞkÞ.

We then replace ~
k

Yk logitðP̂ðXkÞÞ by

~
k

P̂ðXkÞ logitðP̂ðXkÞÞ in the above simplified

formula for the deviance to obtain

DevSSðb̂Þ ¼ �2 ~
n

k¼1

�
P̂ðXkÞ logitðP̂ðXkÞÞ

þ lnð1� P̂ðXkÞÞ
	
:
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Detailed
Outline

I. Overview (pages 304–305)

A. Focus: Goodness of fit (GOF) – assessing the
extent to which a logistic model estimated
from a dataset predicts the observed
outcomes in the dataset.

B. Considers how well a given model, considered
by itself, fits the data.

C. Provides a summarymeasure over all subjects
that compares the observed outcome (Yi) for
subject i to the predicted outcome ðŶiÞ for this
subject obtained from the fitted model.

D. Widely used measure is the deviance;
however, for binary logistic regression, use of
deviance is problematic. Alternative measure:
Hosmer–Lemeshow (HL) statistic.

II. Saturated vs. Fully Parameterized Models
(pages 305–312)

A. Saturated model

i. Provides perfect prediction of the (0, 1)
outcome for each subject in the dataset

ii. Contains as many parameters as the
number of “subjects” in the dataset

iii. Uses data layout in subjects-specific (SS)
format

iv. Classical model used as gold standard for
assessing GOF

B. Fully parameterized model

i. Contains the maximum number of
covariates that can be defined from the
basic predictors (X) being considered for
the model.

ii. The number of parameters (k þ 1) equals
the number (G) of distinct covariate
patterns (or subgroups) that can be
defined from the basic predictors.

iii. Uses data layout in events–trials (ET)
format.

iv. Provides perfect prediction of the observed
proportion of cases within subgroups
defined by distinct covariate patterns ofX.

v. An alternative gold standard model for
determining GOF.

C. Example: n ¼ 40, 2 basic predictors: E (0, 1),
V(0, 1)

i. Fully parameterized model (G ¼ 4
covariate patterns, k ¼ 3 variables):

logit PðXÞ ¼ aþ bEþ gV þ dEV
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ii. Saturated model (n ¼ 40 parameters)

logit PðXÞ ¼ o1Z1 þ o2Z2 þ o3Z3

þ � � � þ o40Z40

Zi ¼
1 if subject i; i ¼ 1; 2 . . . ; 40

0 otherwise

( #
:

III. The Deviance Statistic (pages 312–317)

A. Formula: Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ, where

b̂ ¼ ðb̂0; b̂1; b̂2; . . . ; b̂kÞ
L̂c ¼ ML for current model

L̂max ¼ ML for saturated model

B. Contrasts the likelihood of the current model
with the likelihood of the model that perfectly
predicts the observed outcomes

C. The closer L̂c and L̂max are to one another, the
better the fit (and the smaller the deviance

D. Common to test for GOF by comparing
deviance with w2n�p�1 value, but questionably
legitimate

E. There are two alternative formulae for the
deviance:

i. Dev ETðb̂Þ
¼ �2 ~

G

g¼1

dg ln
dg

d̂g

� �
þ ðng � dgÞ ln ng�dg

ng�d̂g

� ���
uses events–trials format, where

d̂g ¼ ngP̂ðXgÞ ¼ # of expected cases,

dg ¼ # of observed cases,

G ¼ # of covariate patterns

ii. Dev SSðb̂Þ
¼ �2 ~

n

i¼1

Yi ln
Yi
Ŷi

� �
þ ð1� YiÞ ln 1�Yi

1�Ŷi

� �ih
uses subject-specific format, where

Yi ¼ observed (0, 1) response for
subject i

and Ŷi ¼ predicted probability for

subject i ¼ P̂ðXiÞ
iii. DevSSðb̂Þ 6¼ DevETðb̂Þ unless G ¼ n

iv. Fully parameterized model:

DevETðb̂Þ ¼ 0 always but

DevSSðb̂Þ is never 0
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F. Using DevETðb̂Þ to test for GOF:

i. When G << n, can assume DevETðb̂Þ is
approximately w2n�p�1 under H0: good fit

ii. However, when G 	 n, cannot assume
DevETðb̂Þ is approximately w2n�p�1 under
H0: good fit

iii. Xi continuous, e.g., Xi ¼ AGE ) G 	 n,
so cannot test for GOF

G. Why DevSSðb̂Þ cannot be used to test for GOF:

i. Alternative formula for

DevSSðb̂Þ : DevSSðb̂Þ

¼�2~
n

i¼1

P̂ðXiÞ ln P̂ðXiÞ
1�P̂ðXiÞ

� �
þ ln 1� P̂ðXiÞ

� �h i
ii. The above formula contains only the

predicted values P̂ðXiÞ for each subject;
tells nothing about the agreement
between observed (0, 1) outcomes and
their corresponding predicted
probabilities

IV. The HL Statistic (pages 318–320)

A. Used to provide a significance test for
assessing GOF:

i. Avoids questionable use of the deviance
when G 	 n

ii. Available in most computer procedures
for logistic regression

iii. Requires that the model considers at
least three covariate patterns, rarely
results in significance when G is less
than 6, and works best whenG is close to
n, e.g., with continuous predictors

B. Steps for computation:

1. Compute P̂ðXiÞ for all n subjects

2. Order P̂ðXiÞ from largest to smallest
values

3. Divide ordered values into Q percentile
groupings (usually Q ¼ 10, i.e., deciles)

4. Form table of observed and expected
counts

5. Calculate HL statistic from table

6. Compare computedHL tow2withQ � 2df
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C. Table of observed and expect counts (Step 4)

Deciles
of risk

1
2

3

10

Oc3

Oc2

Oc1

Onc3

Onc10

Onc2

Onc1

Ec3

Ec10

Ec2

Ec1

Enc3

Enc10

Enc2

Enc1

Oc10

Obs.
cases

Obs. non
cases

Exp. non
cases

Exp.
cases

D. HL Statistic formula (Step 5):

HL ¼ ~
Q

q¼1

ðOcq �EcqÞ2
Ecq

þ ~
Q

q¼1

ðOncq �EncqÞ2
Encq

V. Examples of the HL Statistic (pages 320–325)

A. Two examples, each using the Evans County
data (n ¼ 609).

B. Example 1 uses two models involving three
binary predictors with data layout in
events–trials format (G ¼ 8).

i. The models

Model EC1 (no interaction): logit PðXÞ ¼
aþ bCATþ g1AGEGþ g2ECG

Model EC2: logit PðXÞ ¼ aþ bCAT
þ g1AGEGþ g2ECG þ g3AGEG� ECG
þ d1CAT� AGEþ d2CAT� ECG
þ d3CAT� AGE� ECG

ii. Model EC2 is fully parameterized,
which, as expected, perfectly predicts the
observed number of cases (dg)
corresponding to each covariate pattern.

iii. The HL test statistic for Model EC2 is
zero.

C. Example 2 uses two models that involve
continuous variables.

i. The models:

Model EC3 (no interaction):
logit PðXÞ ¼ aþ bCATþ g1AGE
þ g2ECGþ g3SMK þ g4CHLþ g5HPT

Model EC4: logit PðXÞ ¼ aþ bCAT
þ g1AGE þ g2ECGþ g3SMK þ g4CHL
þ g5HPTþ d1CAT� CHL
þ d2CAT�HPT.

ii. The number of covariate patterns (G) for
each model is 599, which is quite close to
the sample size (n) of 609.
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iii. The HL statistics computed for both
models are not significant, i.e., there is
no evidence from this test that either
model has lack of fit.

iv. Can decide between Models EC3 and
EC4 by performing an LR test that
corresponding log likelihood statistics or
deviances for the two models.

VI. Summary (page 326)

VII. Appendix: Derivation of SS Deviance Formula
(pages 327–328)
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Practice
Exercises

The following questions and computer information con-
sider the Evans Country dataset on 609 white males that
has been previously discussed and illustrated in earlier
chapters of this text. Recall that the outcome variable is
CHD status (1 ¼ case, 0 ¼ noncase), the exposure variable
of interest is CAT status (1 ¼ high CAT, 0 ¼ low CAT). In
this example, we consider only two categorical control
variables AGEG (1 ¼ age > 55, 0 ¼ age 
 55) and ECG
(1 ¼ abnormal, 0 ¼ normal). The dataset involving the
above variables is given as follows:

Cases Total CAT AGE ECG
17 274 0 0 0
15 122 0 1 0
7 59 0 0 1
5 32 0 1 1
1 8 1 0 0
9 39 1 1 0
3 17 1 0 1

14 58 1 1 1

The SAS output provided below was obtained for the fol-
lowing logistic model:

Logit PðXÞ ¼ aþ b1CATþ g1AGEþ g2ECG

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 0.9544 4 0.2386 0.9166
Pearson 0.9793 4 0.2448 0.9129

Number of unique profiles: 8

Model Fit Statistics

Criterion Intercept Only Intercept and Covariates
�2 Log L 438.558 418.181

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Std

Error
Wald

Chi-Sq Pr > ChiSq
Intercept 1 �2.6163 0.2123 151.8266 <.0001
cat 1 0.6223 0.3193 3.7978 0.0513
age 1 0.6157 0.2838 4.7050 0.0301
ecg 1 0.3620 0.2904 1.5539 0.2126
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Partition for the Hosmer and Lemeshow Test
Event Nonevent

Group Total Observed Expected Observed Expected
1 274 17 18.66 257 255.34
2 59 7 5.60 52 53.40
3 122 15 14.53 107 107.47
4 57 9 8.94 48 48.06
5 39 9 7.85 30 31.15
6 58 14 15.41 44 42.59

Hosmer and Lemeshow Goodness-of-Fit Test
Chi-Square DF Pr > ChiSq
0.9474 4 0.9177

Questions about the above output begin on the follow-
ing page.

1. Is data listing described above in events trials (ET)
format or in subject-specific (SS) format? Explain
briefly.

2. How many covariate patterns are there for the model
being fitted? Describe them.

3. Is the model being fitted a fully parameterized model?
Explain briefly.

4. Is the model being fitted a saturated model? Explain
briefly.

5. a. Is the deviance value of 0.9544 shown in the above
output calculated using the deviance formula

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ;

where L̂c ¼ ML for current model and L̂max ¼ ML
for saturated model? Explain briefly.

b. State the logit form of two logistic models that can
be used to calculate the deviance value of 0.9544.
Hint: One of these models is the model being fitted.

c. How can the deviance value of 0.9544 be calculated
using the difference between two log likelihood
values obtained from the two models stated in part
b? What are the values of these two log likelihood
functions?

d. What is actually being tested using this deviance
statistic? Explain briefly.

e. How can you justify that this deviance statistic is
approximately chi-square under the null hypothesis
that the fitted model has adequate fit to the data?
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6. a. What can you conclude from the Hosmer–
Lemeshow statistic provided in the above output
about whether the model has lack of fit to the
data? Explain briefly.

b. Why does the output shown under “Partition for the
Hosmer and Lemeshow Test” involve only 6 groups
rather than 10 groups, and why is the degrees of
freedom for the test equal to 4? Explain briefly.

c. What two models are actually being compared by
the Hosmer–Lemeshow statistic of 0.9474? Explain
briefly.

d. How can you choose between the two models
described in part c?

e. Does either of the two models described in part c
perfectly fit the data? Explain briefly.

Additional questions using the same Evans County data
described at the beginning of these exercises consider
SAS output provided below for the following (interac-
tion) logistic model:

Logit PðXÞ ¼ aþ b1CATþ g1AGEþ g2ECGþ g3AGE� ECG

þ d1CAT� AGEþ d2CAT� ECG

þ d3CAT� AGE� ECG

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 0.0000 0 · ·
Pearson 0.0000 0 · ·

Number of unique profiles: 8

Model Fit Statistics

Criterion Intercept Only
Intercept and
Covariates

�2 Log L 438.558 417.226

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Std

Error
Wald

Chi-Sq Pr > ChiSq
Intercept 1 �2.7158 0.2504 117.6116 <.0001
cat 1 0.7699 1.0980 0.4917 0.4832
age 1 0.7510 0.3725 4.0660 0.0438
ecg 1 0.7105 0.4741 2.2455 0.1340
catage 1 �0.00901 1.1942 0.0001 0.9940
catecg 1 �0.3050 1.3313 0.0525 0.8188
ageecg 1 �0.4321 0.7334 0.3471 0.5557
cae 1 0.0855 1.5245 0.0031 0.9553

336 9. Assessing Goodness of Fit for Logistic Regression



Partition for the Hosmer and Lemeshow Test

Event Nonevent
Group Total Observed Expected Observed Expected
1 274 17 17.00 257 257.00
2 59 7 7.00 52 52.00
3 122 15 15.00 107 107.00
4 57 9 9.00 48 48.00
5 39 9 9.00 30 30.00
6 58 14 14.00 44 44.00

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq
0.0000 4 1.0000

7. Is the model being fitted a fully parameterized model?
Explain briefly.

8. Is the model being fitted a saturated model? Explain
briefly.

9. a. Is the deviance value of 0.0000 shown in the above
output calculated using the deviance formula

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ;

where L̂c ¼ ML for current model and L̂max ¼ ML
for saturated model? Explain briefly.

b. How can the deviance value of 0.0000 be calculated
using the difference between two log likelihood
functions?

c. What is actually being tested using this deviance
statistic? Explain briefly.

10. a. What can you conclude from the Hosmer–
Lemeshow statistic provided in the above output
about whether the interaction model has lack of fit
to the data? Explain briefly.

b. What two models are actually being compared by
the Hosmer–Lemeshow statistic of 0.0000? Explain
briefly.

c. Does the interaction model perfectly fit the data?
Explain briefly.
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Test The following questions and computer output consider a
data from a cross-sectional study carried out at Grady
Hospital in Atlanta, Georgia involving 289 adult patients
seen in an emergency department whose blood cultures
taken within 24 hours of admission were found to have
Staph aureus infection (Rezende et al., 2002). Information
was obtained on several variables, some of which were
considered risk factors for methicillin-resitance (MRSA).
The outcome variable is MRSA status (1 ¼ yes, 0 ¼ no),
and covariates of interest included the following variables:
PREVHOSP (1 ¼ previous hospitalization, 0 ¼ no previ-
ous hospitalization), AGE (continuous), GENDER (1 ¼
male, 0 ¼ female), and PAMU (1 ¼ antimicrobial drug
use in the previous 3 months, 0 ¼ no previous antimicro-
bial drug use).

The SAS output provided below was obtained for the fol-
lowing logistic model:

Logit PðXÞ ¼ aþ b1PREVHOSPþ b2AGEþ b3GENDER
þ b4PAMU

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 159.2017 181 0.8796 0.8769
Pearson 167.0810 181 0.9231 0.7630

Number of unique profiles: 186

Model Fit Statistics

Criterion Intercept Only
Intercept and
Covariates

�2 Log L 387.666 279.317

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Std Error
Wald

Chi-Sq Pr > ChiSq
Intercept 1 �5.0583 0.7643 43.8059 <.0001
PREVHOSP 1 1.4855 0.4032 13.5745 0.0002
AGE 1 0.0353 0.00920 14.7004 0.0001
gender 1 0.9329 0.3418 7.4513 0.0063
pamu 1 1.7819 0.3707 23.1113 <.0001
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Partition for the Hosmer and Lemeshow Test

mrsa ¼ 1 mrsa ¼ 0
Group Total Observed Expected Observed Expected
1 29 1 0.99 28 28.01
2 31 5 1.95 26 29.05
3 29 2 2.85 27 26.15
4 29 5 5.73 24 23.27
5 30 10 9.98 20 20.02
6 31 12 14.93 19 16.07
7 29 16 17.23 13 11.77
8 29 20 19.42 9 9.58
9 29 22 21.57 7 7.43
10 23 21 19.36 2 3.64

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq
7.7793 8 0.4553

Questions about the above output begin on the follow-
ing page.

1. Is data listing used for the above analysis in events
trials (ET) format or in subject-specific format?
Explain briefly.

2. How many covariate patterns are there for the model
being fitted? Why are there so many?

3. Is the model being fitted a fully parameterized model?
Explain briefly.

4. Is the model being fitted a saturated model? Explain
briefly.

5. a. Is the deviance value of 159.2017 shown in the
above output calculated using the deviance formula

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ;
where L̂c ¼ ML for current model and L̂max ¼ ML
for saturated model? Explain briefly.

b. The deviance value of 159.2017 is obtained by com-
paring log likelihood values from two logistic mod-
els, one of which is the (no-interaction) model being
fitted. Describe the other logistic model, called, say,
Model 2. (Hint: You should answer this question
without explicitly stating the independent variables
contained in Model 2.)

c. How can the deviance value of 159.2017 be calcu-
lated using the difference between two log likeli-
hood values obtained from the two models
described in part b? What are the values of these
two log likelihood functions?
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d. Why is the deviance value of 159.2017 not
distributed approximately as a chi-square variable
under the null hypothesis that the no-interaction
model provides adequate fit?

6. a. What can you conclude from the Hosmer–Leme-
show statistic provided in the above output about
whether the model has lack of fit to the data?
Explain briefly.

b. What two models are actually being compared by
the Hosmer–Lemeshow statistic of 7.7793? Explain
briefly.

c. How can you choose between the two models
described in part b?

d. Does either of the two models described in part c
perfectly fit the data? Explain briefly.

7. Consider the information shown in the ouput under the
heading “Partition for theHosmer andLemeshowTest.”

a. Briefly describe how the 10 groups shown in the
output under “Partition for the Hosmer and Leme-
show Test” are formed.

b. Why does not each of the 10 groups have the same
total number of subjects?

c. For group 5, describe how the expected number of
cases (i.e., mrsa ¼ 1) and expected number of non-
cases (i.e., mrsa ¼ 0) are computed.

d. For group 5, compute the two values that are
included as two of the terms in summation formula
for the Hosmer–Lemeshow statistic.

e. How many terms are involved in the summation
formula for the Hosmer–Lemeshow statistic?

Additional questions consider SAS output provided
below for the following logistic model:

Logit PðXÞ ¼ aþ b1PREVHOSPþ g1AGEþ g2GENDER

þ g3PAMUþ d1PRHAGEþ d2PRHGEN

þ d2PRHPAMU

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq
Deviance 157.1050 178 0.8826 0.8683
Pearson 159.8340 178 0.8979 0.8320

Model Fit Statistics

Criterion Intercept Only Intercept and Covariates
�2 Log L 387.666 277.221
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Partition for the Hosmer and Lemeshow Test

mrsa ¼ 1 mrsa ¼ 0
Group Total Observed Expected Observed Expected
1 29 1 1.50 28 27.50
2 30 2 2.44 28 27.56
3 29 4 3.01 25 25.99
4 29 5 4.76 24 24.24
5 29 10 7.87 19 21.13
6 29 11 12.96 18 16.04
7 31 17 18.27 14 12.73
8 32 22 21.93 10 10.07
9 31 24 23.85 7 7.15
10 20 18 17.40 2 2.60

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq
2.3442 8 0.9686

8. Is the model being fitted a fully parameterized model?
Explain briefly.

9. Is the model being fitted a saturated model? Explain
briefly.

10. a. Is the deviance value of 157.1050 shown in the
above output calculated using the deviance formula

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ;
where L̂c ¼ ML for current model and L̂max ¼ ML
for saturated model? Explain briefly.

b. Why cannot you use this deviance statistic to test
whether the interactionmodel provides adequate fit
to the data? Explain briefly.

11. a. What can you conclude from the Hosmer–
Lemeshow statistic provided in the above output
about whether the interaction model has lack of fit
to the data? Explain briefly.

b. Based on the Hosmer–Lemeshow test results for
both the no-interaction and interaction models,
can you determine which of these two models is
the better model? Explain briefly.

c. How can you use the deviance values from the out-
put for both the interaction and no-interaction
models to carry out an LR test that compares these
two models? In your answer, state the null hypothe-
sis being tested, the formula for the LR statistic
using deviances, carry out the computation of the
LR test and draw a conclusion of which model is
more appropriate.
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Answers to
Practice
Exercises

1. The data listing is in events trials (ET) format. There
are eight lines of data corresponding to the distinct
covariate patterns defined by the model; each line con-
tains the number of cases (i.e., events) and the number
of subjects (i.e., trials) for each covariate pattern.

2. There are eight covariate patterns:

Pattern 1: X ¼ (CAT ¼ 0, AGE ¼ 0, ECG ¼ 0)

Pattern 2: X ¼ (CAT ¼ 0, AGE ¼ 1, ECG ¼ 0)

Pattern 3: X ¼ (CAT ¼ 0, AGE ¼ 0, ECG ¼ 1)

Pattern 4: X ¼ (CAT ¼ 0, AGE ¼ 1, ECG ¼ 1)

Pattern 5: X ¼ (CAT ¼ 1, AGE ¼ 0, ECG ¼ 0)

Pattern 6: X ¼ (CAT ¼ 1, AGE ¼ 1, ECG ¼ 0)

Pattern 7: X ¼ (CAT ¼ 1, AGE ¼ 0, ECG ¼ 1)

Pattern 8: X ¼ (CAT ¼ 1, AGE ¼ 1, ECG ¼ 1)

3. No. The model contains four parameters, whereas
there are eight covariate patterns.

4. No. The model does not perfectly predict the case/
noncase status of each of the 609 subjects in the data.

5. a. No. The deviance value of 0.9544 is not calculated
using the deviance formula

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ:
In particular� 2 ln L̂c¼ 418:181 and� 2 ln L̂max ¼ 0,
so Devðb̂Þ ¼ 418:181.

b. Model 1 : Logit PðXÞ ¼ aþ bCATþ g1AGEþ g2ECG
Model 2 : Logit PðXÞ ¼ aþ bCATþ g1AGEþ g2ECG

þg3AGE�ECG
þd1CAT�AGE
þd2CAT� ECG
þ d3CAT�AGE�ECG

c. 0:9544 ¼ �2 ln L̂Model 1 � ð�2 ln L̂Model 2Þ,
where � 2 ln L̂Model 1 ¼ 418:1810 and
� 2 ln L̂Model 2 ¼ 418:1810� 0:9544 ¼ 417:2266:

d. H0: d1 ¼ d2 ¼ d3 ¼ 0, i.e., the deviance is used to
test for whether the coefficients of all the product
terms in Model 2 are collectively nonsignificant.

e. G ¼ no. of covariate patterns ¼ 8 << n ¼ 609.

6. a. The HL test has a P-value of 0.9177, which is highly
nonsignificant. Therefore, the HL test indicates
that the model does not have lack of fit.

b. The model contains only eight covariate patterns,
so it is not possible to obtain more than eight
distinct predicted risk values from the data. The
degrees of freedom is 4 because it is calculated as
the number of groups (i.e., 6) minus 2.

c. Models 1 and Models 2 as stated in the answer to
question 5b.
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d. The deviance of 0.9544 is equivalent to the LR test
that compares Model 1 with Model 2. Since this
test statistic (df ¼ 3) is highly nonsignificant, we
would choose Model 1 over Model 2.

e. Neither of the two models of part c perfectly fit the
data for each subject. However, since Model 2 is
fully parameterized, it perfectly predicts the group
proportions.

7. Yes, the interactionmodel is fully parameterized since
the model contains eight parameters and there are
eight distinct covariate patterns.

8. No, as with the no-interaction model, the interaction
model does not perfectly predict the case/noncase sta-
tus of each of the 609 subjects in the data.

9. a. No. The deviance value of 0.0000 is not calculated
using the deviance formula

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ:
In particular�2 ln L̂c ¼ 417:226 and�2 ln L̂max ¼ 0,
so Devðb̂Þ ¼ 417:226.

b. 0:0000 ¼ �2 ln L̂Model 2 � ð�2 ln L̂Model 2Þ. The two
log likelihood functions are identical since the
deviance statistic is comparing the current model
(i.e., Model 2) to the fully parameterized model
(i.e., Model 2).

c. What is actually being tested is whether or not
Model 2 is a fully parameterized model.

10. a. The HL statistic of 0.0000 indicates that the inter-
action model is a fully parameterized model and
therefore perfectly predicts the group proportion
for each covariate pattern.

b. The same two models are being compared by the
HL statistic of 0.0000, i.e., Model 2.

c. No and Yes. The interaction model does not per-
fectly predict each subject’s response but it does
perfectly predict the group proportion for each
covariate pattern.
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Introduction In this chapter, we describe and illustrate methods for
assessing the extent that a fitted binary logistic model can
be used to distinguish the observed cases (Y ¼ 1) from the
observed noncases (Y ¼ 0).

One approach for assessing such discriminatory perfor-
mance involves using the fitted model to predict which
study subjects will be cases and which will not be cases
and then determine the proportions of observed cases and
noncases that are correctly predicted. These proportions
are generally referred to as sensitivity and specificity
parameters.

Another approach involves plotting a receiver operating
curve (ROC) for the fitted model and computing the area
under the curve as a measure of discriminatory perfor-
mance. The use of ROCs has become popular in recent
years because of the availability of computer software to
conveniently produce such a curve as well as compute the
area under the curve.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (pages 348–350)

II. Assessing discriminatory performance using
sensitivity and specificity parameters (pages
350–354)

III. Receiver operating characteristic (ROC) curves
(pages 354–358)

IV. Computing the area under the ROC: AUC (pages
358–365)

V. Example from study on screening for knee
fracture (pages 365–370)

VI. Summary (page 371)
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Objectives Upon completing this chapter, the learner should be able to:

1. Given a fitted binary logistic model, describe or
illustrate how a cut-point can be used to classify
subjects as predicted cases (Y ¼ 1) and predicted
noncases (Y ¼ 0).

2. Given a fitted binary logistic model, describe or
illustrate how a cut-point can be used to form a
misclassification (or diagnostic table).

3. Define and illustrate what is meant by true positives,
false positives, true negatives, and false negatives.

4. Define and illustrate what is meant by sensitivity and
specificity.

5. Define and illustrate “perfect discrimination.”

6. Describe what happens to sensitivity and specificity
parameters when a cut-point used for discrimination
of a fitted logistic model decreases from 1 to 0.

7. Describe what happens to (1 � specificity) when a cut-
point used for discrimination decreases from 1 to 0.

8. State one or more uses of an ROC curve.

9. State and/or describe briefly how an ROC curve is
constructed.

10. State and/or describe briefly how the area under an
ROC curves is calculated.

11. Describe briefly how to interpret a calculated area
under an ROC curve in terms of the discriminatory
performance of a fitted logistic model.

12. Given a printout of a fitted binary logistic model,
evaluate how well the model discriminates cases from
noncases.
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Presentation

I. Overview

Assessing discriminatory
performance (DP) of a binary

logistic model
Focus

Good DP: model discriminates

cases ðY¼1Þ fromnoncases ðY¼0Þ

Example: Blunt knee trauma )
X-ray?
Predictor variables:

ability to flex knee
ability to put weight

on knee
patient’s age
injury to knee head
injury to patella

Outcome variable:
knee fracture status

Approach 1
Use fitted model to predict which

subjects will be cases or non-
cases e.g.,
If P̂ðXÞ> 0:2, predict subj X to be
case,
if P̂ðXÞ � 0:2, predict subj X to be
noncase, where cut-point ¼ 0.2

Note: Rare outcome ) 0:2, or
even 0.02, high

Classification/Diagnostic Table

True (Observed) Outcome

Y ¼ 1 Y ¼ 0

Predicted Y ¼ 1 nTP ¼ 70 20

Outcome Y ¼ 0 30 nTN ¼ 80

n1 ¼ 100 n0 ¼ 100

nTP ¼ # of trueþ ,

nTN ¼ # of true�,

This presentation describes how to assess dis-
criminatory performance (DP) of a binary logis-
tic model.

We say that a model provides good DP if the
covariates in the model help to predict (i.e.,
discriminate) which subjects will develop the
outcome (Y ¼ 1, or the cases) and which will
not develop the outcome (Y ¼ 0, or the non-
cases).

For example, we may wish to determine
whether or not a subject with blunt knee
trauma should be sent for an X ray based on a
physical exam that measures ability to flex
knee, ability to put weight on knee, injury to
knee head, injury to patella, and age. The out-
come here is whether or not the person has a
knee fracture.

One way to measure DP involves using the
fitted model to decide how to predict which
subjects will be cases and which will be non-
cases. For example, one may decide that if the
predicted probability for subject X (i.e., P̂ðXÞ)
is greater than 0.2, we will predict that subject
X will be a case, whereas otherwise, a noncase.
The value of 0.2 used here is called a cut-point.
Note that for a very rare health outcome, a
predicted probability of 0.2, or even 0.02,
could be considered a high “risk.”

The observed and predicted outcomes are com-
bined into a classification or diagnostic table, an
example of which is shown at the left, In this
table, we focus on two quantities: the number
of true cases (i.e., we are assuming that the
observed cases are the true cases) that are pre-
dicted to be cases (true positives or TP), and the
number of true noncases that are predicted to
be noncases (true negatives or TN).
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The proportion of true positives among all
cases is called sensitivity (Se), and the propor-
tion of true negatives among all noncases is
called the specificity (Sp). Ideally, perfect dis-
crimination would occur if both sensitivity and
specificity are equal to 1.

Thus, for a given cut-point, the closer both the
sensitivity and specificity are to 1, the better the
discriminatory performance (see example at left).

A drawback to measuring discrimination as
described above is that the sensitivity and spec-
ificity that results from a given cut-point may
vary with the cut-point chosen. An alternative
approach involves obtaining a summary mea-
sure based on a range of cut-points chosen for
a given model. Such a measure is available
from an ROC curve.

ROC stands for receiver operating characteris-
tic, which was originally developed in the con-
text of electronic signal detection. When
applied to a logistic model, an ROC is a plot
of sensitivity (Se) vs. 1 � specificity (1 2 Sp)
derived from several cut-points for the predicted
value.

Note that 1 2 Sp gives the proportion of
observed noncases that are (falsely) predicted
to be cases, i.e., 1 � Sp gives the proportion of
false positives (FPs). Since we want both Se
and Sp close to 1, we would like 1 2 Sp close
to zero, and moreover, we would expect Se to be
larger than 1 2 Sp, as in the above graph.

ROC curves for two different models based on
the same data are shown at the left. These
graphs may be compared according to the fol-
lowing criterion: The larger the area under the
curve, the better is the discrimination. In our
example, we see that the area in Example A is
larger than the area in Example B, indicating
that the model used in Example A discrimi-
nates better than the model in Example B.

Se ¼ nTP=n1 ¼ 70=100 ¼ 0:7

Sp ¼ nTN=n0 ¼ 80=100 ¼ 0:8

Perfect (ideal) discrimination:

Se ¼ Sp ¼ 1

Example: cut-point ¼ 0.2:
Model 1: Se ¼ 0.7 and Sp ¼ 0.8

better DP than
Model 2: Se ¼ 0.6 and Sp ¼ 0.5

Drawback: Sensitivity and specific-
ity varies by cut-point

ROC curve:
considers Se and Sp for a
range of cut-points.

1.00

1.001 –  specificity

x = cut-point

Example A

S
en

si
tiv

ity

´
´

´

´

´

1� Sp ¼ falsely predicted cases

observed noncases

¼ nFP
n0

Want:

1� Sp close to 0 and Se>1� Sp

1.00

1.00 1.00

1 – specificity 1 – specificity

Example A Example B

S
en

si
tiv

ity

S
en

si
tiv

ity

1.00

´

´

´

´

´
´

´

´

´

´
´

Key: The larger the area under the
curve, the better is the DP.
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Why does the area under the ROC measure
discriminatory performance (DP)? We discuss
this question and other characteristics of ROC
curves in Section III of this chapter.

In the previous section, we illustrated how a
cut-point could be used with a fitted logistic
model to assign a subject X based on the
predicted value P̂ðXÞ to be a “predicted” case
or noncase.

Denoting the general cut-point as cp, we typi-
cally predict a subject to be a case if P̂ðXÞ
exceeds cp vs. a noncase if P̂ðXÞ doesn not
exceed cp.

Given a cut-point cp, the observed and pre-
dicted outcomes can then be combined into a
classification (diagnostic) table, the general
form of which is shown here. The cell frequen-
cies within this table give the number of true
positives (nTP) and false negatives (nFN) out of
the number of true cases (n1), and the number
of false positives (nFP) and true negatives (nTN)
out of the number of true noncases (n0).

From the classification table, we can compute
the sensitivity (Se) and the specificity (Sp).

Ideally, perfect discrimination would occur if
both sensitivity and specificity are equal to 1,
which would occur if there were no false nega-
tives (nFN ¼ 0) and no false positives (nFP ¼ 0).

Why does area under ROCmeasure
DP? See Section III.

II. Assessing
Discriminatory
Performance Using
Sensitivity and
Specificity Parameters

Cut-point can be used with P̂ðXÞ to
predict whether subject is case or
noncase.

If P̂ðXÞ> cp, predict subj X to be
case.
If P̂ðXÞ � cp, predict subj X to be
noncase.

Table 10.1
General Classification/Diagnostic

Table

True (Observed) Outcome

cp Y ¼ 1
(case)

Y ¼ 0
(noncase)

Predicted Y ¼ 1 nTP nFP

Outcome Y ¼ 0 nFN nTN

n1 n0

Se ¼ Prðtrue positive j true caseÞ
¼ nTP=n1

Sp ¼ Prðtrue negative j true noncaseÞ
¼ nTN=n0

Perfect Discrimination (Se ¼ Sp ¼ 1)

True (Observed) Outcome

cp Y ¼ 1 Y ¼ 0

Predicted Y ¼ 1 nTP 0

Outcome Y ¼ 0 0 nTN

n1 n0

350 10. Assessing Discriminatory Performance of a Binary Logistic Model



In our overview, we pointed out that the sensitiv-
ity and specificity values that result from a given
cut-point may vary with the cut-point chosen.

As a simple illustration, suppose the following
two extreme cut-points are used: cp ¼ 1 and
cp ¼ 0. The corresponding classification tables
for each of these cut-points are shown below at
the left.

If the cut point is cp ¼ 1, then assuming that
P̂ðXÞ ¼ 1 is not attained for any subject, there
will be no predicted cases among either the n1

true cases or the n0 true noncases. For this
situation, then, the sensitivity is 0 and the
specificity is 1.

On the other hand, if the cut-point is cp ¼ 0,
then assuming that P̂ðXÞ ¼ 0 is not attained for
any subject, there will be no predicted noncases
among either the n1 true cases or the n0 true
noncases. For this situation, then, the sensitiv-
ity is 1 and the specificity is 0.

Let us now consider what would happen if cp
decreases from 1 to 0. As we will show by
example, as cp decreases from 1 to 0, the sensi-
tivity will increase from 0 to 1 whereas the
specifity will decrease from 1 to 0.

Sp and Se values vary with cp

Twodifferent cps: cp ¼ 1 and cp ¼ 0

cp 5 1: Se 5 0, Sp 5 1

OBS Y

Y ¼ 1 Y ¼ 0

PRED Y ¼ 1 0 0

Y Y ¼ 0 nFN nTN

n1 n0

cp 5 0: Se 5 1, Sp 5 0

OBS Y

Y ¼ 1 Y ¼ 0

PRED Y ¼ 1 nTP nFP

Y Y ¼ 0 0 0

n1 n0

Question: cp decreases from 1 to 0?

Answer: Se increases from 0 to 1
Sp decreases from 1 to 0
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EXAMPLE

Table 10.2
Classification Tables for Two

Models by Varying Classification
Cut-Point (cp)

MODEL 1

Se = 0.00,

Se = 0.10,

PRED
Y

Y = 1 Y = 0

Y = 0

0 0Y = 1

100 100

Y = 1

Y = 0

0Y = 1

100

Y = 0

0

100

Y = 1 Y = 0

Y = 0

10 0Y = 1

90 90

Y = 1 Y = 0

Y = 0

60 60Y = 1

40 40

Y = 1 Y = 0

Y = 0

80 80Y = 1

20 20

Y = 1 Y = 0

Y = 0

90 90Y = 1

10 10

Y = 1 Y = 0

Y = 0

60 0Y = 1

40 100

Y = 1 Y = 0

Y = 0

100 0Y = 1

0 100

Y = 1 Y = 0

Y = 0

100 60Y = 1

0 40

Y = 1 Y = 0

Y = 0

100 100Y = 1

0 0

Y = 1

Y = 0

100 100Y = 1

0

Y = 0

0

Y = 1 Y = 0

Y = 0

10 0Y = 1

90 100

PRED
Y

PRED
Y

PRED
Y

PRED
Y

PRED
Y

Se = 0.00,

Se = 0.10,

Sp = 1.00

Sp = 1.00

Sp = 1.00

Sp = 0.90

OBS Y

OBS Y

OBS Y

OBS Y

Se = 0.60, Se = 0.60,Sp = 1.00 Sp = 0.40
OBS Y OBS Y

Se = 1.00, Se = 0.80,Sp = 1.00 Sp = 0.20
OBS Y OBS Y

Se = 1.00, Se = 0.90,Sp = 0.40 Sp = 0.10
OBS Y OBS Y

Se = 1.00, Se = 1.00,Sp = 0.00 Sp = 0.00
OBS Y OBS Y

MODEL 2
cP = 1.00

cP = 0.75

cP = 0.50

cP = 0.25

cP = 0.10

cP = 0.00

Spmay change at a different rate than
Se

We illustrate on the left the classification tables
and corresponding sensitivity and specificity
values obtained from varying the cut-points
for two hypothetical logistic regressionmodels.

Based on this information, what can you con-
clude for each model separately as to how the
sensitivity changes as the cut-point cp decreases
from 1.00 to 0.75 to 0.50 to 0.25 to 0.10 to 0.00?
Similarly, what can you conclude for each
model as to how the specificity changes as the
cut-point decreases from 1.00 to 0.00?

The answers to the above two questions are
that for both models, as the cut-put cp decreases
from 1.00 to 0.00, the sensitivity increases from
0.00 to 1.00 and the specificity decreases from
1.00 to zero. Note that this result will always be
the case for any binary logistic model.

Next question: For each model separately, as
the cut-point decreases, does the sensitivity
increase at a faster rate than the specificity
decreases?

The answer to the latter question depends on
which model we consider. For Model 1, the
answer is yes, since the sensitivity starts to
change immediately as the cut-point changes,
whereas the specificity remains at 1 until the
cut-point changes to 0.10.

For Model 2, however, the answer is no,
because the sensitivity increases at the same
rate that the specificity decreases. In particu-
lar, the sensitivity increases by 0.10 (from 0.00
to 0.10) while the sensitivity decreases by 0.10
(from 1.00 to 0.90), followed by correspond-
ingly equal changes of 0.50, 0.20, 0.10 and
0.10 as the cut-point decreases to 0.

So, even though the sensitivity increases and
the specificity decreases as the cut-point
decreases, the specificity may change at a differ-
ent rate than the sensitivity depending on the
model being considered.
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EXAMPLE (continued)

Table 10.3
Summary of Classification

Information For Models 1 and 2
(incl. 1 � Specificity)

MODEL 1:

cp 1.00 0.75 0.50 0.25 0.10 0.00

Se 0.00 0.10 0.60 1.00 1.00 1.00

Sp 1.00 1.00 1.00 1.00 0.40 0.00

1 – Sp 0.00 0.00 0.00 0.00 0.60 1.00

MODEL 2:

cp 1.00 0.75 0.50 0.25 0.10 0.00

Se 0.00 0.10 0.60 0.80 0.90 1.00

Sp 1.00 0.90 0.40 0.20 0.10 0.00

1 – Sp 0.00 0.10 0.60 0.80 0.90 1.00

Model 1: Se increases at faster rate
than 1 � Sp

Model 2: Se and 1 � Sp increase at
same rate

1� Sp more appealing than Sp
because

Se and 1� Sp both focus on
predicted cases

Se ¼ Prop: True Positives ðTPÞ
¼ nTP=n1

where nTP ¼ correctly predicted

cases

12Sp ¼ Prop:FalsePositive ðFPÞ
¼ nFP=n0

where nFP ¼ falsely predicted
cases

Good discrimination

+ðexpectÞ
Se ¼ nTP=n1 > 1� Sp ¼ nFP=n0

Correctly predicted
cases

falsely predicted
noncases

An alternative way to evaluate the discrimina-
tion performance exhibited in a classification
table is to consider “1 � specificity” (1 – Sp)
instead of “specificity” in addition to the
sensitivity.

The tables at the left summarize the results of
the previous misclassification tables, and they
include 1 – Sp values as additional summary
information.

For Model 1, when we compare Se to 1 – Sp
values as the cut-point decreases, we see that
the Se values increase at a faster rate than the
values of 1 � Sp.

For Model 2, however, we find that both Se and
1 � Sp values increase at the exact same rate.

Using 1 � Sp instead of Sp is descriptively
appealing for the following reason: both Se
and 1 � Sp focus, respectively, on the proba-
bility of being either correctly or falsely pre-
dicted to be a case.

Among the observed (i.e., true) cases, Se con-
siders the proportion of subjects who are “true
positives” (TP), that is, correctly predicted as
cases. Among the observed (i.e., true) noncases,
1 � Sp considers the proportion of subjects
who are “false positives” (FP), that is, are falsely
predicted as cases.

One would expect for a model that has good
discrimination that the proportion of true
cases that are (correctly) predicted as cases
(i.e., Se) would be higher than the proportion
of true noncases that are (falsely) diagnosed as
cases (i.e., 1 � Sp). Thus, to evaluate discrimi-
nation performance, it makes sense to com-
pare Se (i.e., involving correctly diagnosed
cases) with 1 � Sp (i.e., involving falsely pre-
dicted noncases).
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Study Subjects

Randomly
select

Case Control

P(Xcase) > P(Xnoncase) ?

EXAMPLE

Table 10.3: Collectively compare
Sewith 1 � Sp

over all cut-points

MODEL 1:

cp 1.00 0.75 0.50 0.25 0.10 0.00

Se 0.00 0.10 0.60 1.00 1.00 1.00

>? No Yes Yes Yes Yes No

1 – Sp 0.00 0.00 0.00 0.00 0.60 1.00

Good discrimination: Se > 1 – Sp overall

MODEL 2:

cp 1.00 0.75 0.50 0.25 0.10 0.00

Se 0.00 0.10 0.60 0.80 0.90 1.00

>? No No No No No No

1 – Sp 0.00 0.10 0.60 0.80 0.90 1.00

Poor discrimination: Se never > 1 – Sp

(Here: Se ¼ 1 � Sp always)

Problem with using above info:
Se and 1 � Sp values are summary
statistics for several subjects based
on a specific cut-point

Better approach:
Compute and compare predicted
probabilities for specific pairs
of subjects

+
Obtained via ROC curves

ðnext sectionÞ

Returning to Table 10.3, suppose we pick a case
and a noncase at random from the subjects ana-
lyzed in each model. Is the case or the noncase
more likely to have a higher predicted probabil-
ity?

Using Table 10.3, we can address this question
by “collectively” comparing for eachmodel, the
proportion of true positives (Se) with the
corresponding proportion of false positives
(1 � Sp) over all cut-points considered.

For Model 1, we find that at each cut-point, the
proportion of true positives is larger than the
proportion of false positives at each cut-point
except when cp ¼ 1.00 or 0.00, at which both
proportions are equal. These results suggest
that Model 1 provides good discrimination
since, overall, Se values are greater than
1 � Sp values.

For Model 2, however, we find that at each cut-
point, the proportion of true positives is identi-
cal to the proportion of false positives at each
cut-point. These results suggest that Model
2 does not provide good discrimination, since
Se is never greater (although also never less)
than 1 � Sp.

Nevertheless, the use of information from
Table 10.3 is not the best way to compare pre-
dicted probabilities obtained from randomly
selecting a case and noncase from the data.
The reason: sensitivity and 1 � specificity
values are summary statistics for several sub-
jects based on a specific cut-point; what is
needed instead is to compute and compare pre-
dicted probabilities for specific pairs of subjects.
The use of ROC curves, which we describe in
the next section, provides an appropriate
way to quantify and compare such predicted
probabilities.
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III. Receiver Operating
Characteristic (ROC)
Curves

Denotes cut-point
for classification

ROC Example
1.0

1.0
1 –  Sp (= FPR)

Se (= TPR)

´

´

´

´
´

ROC history:

� Developed by engineers in WW
II to detect enemy objects
(signal detection),
i.e., P̂ðXÞ is a radar signal

� Now used in medicine,
radiology, psychology,
machine learning, data mining

ROC provides answer to:

If Xtrue case and Xtrue noncase are
covariate values for a randomly
chosen case/noncase pair,

will

P̂ðXtrue caseÞ> P̂ðXtrue noncaseÞ?

A Receiver Operating Curve (ROC) is a plot
of sensitivity (Se) by 1 – specificity (1 – Sp)
values derived from several classification
tables corresponding to different cut-points
used to classify subjects into one of two-
groups, e.g., predicted cases and noncases of
a disease.

Equivalently, the ROC is a plot of the true posi-
tive rate (TPR ¼ Se) by the false positive rate
(FPR ¼ 1 � Sp).

As described in Wikipedia (a free Web-based
encyclopedia), “the ROCwas first developed by
electrical engineers and radar engineers during
World War II for detecting enemy objects in
battle fields, also known as the signal detection
theory; in this situation, a signal represents the
predicted probability that a given object is an
enemy weapon.” ROC analysis is now widely
used in medicine, radiology, psychology and,
more recently in the areas of machine learning
and data mining.

When using an ROC derived from a logistic
model used to predict a binary outcome, the
ROC allows for an overall assessment of how
well the model predicts who will have the out-
come and who will not have the outcome.
Stated another way in the context of epidemio-
logic research, the ROC provides a measure of
how well the fitted model distinguishes true
cases (i.e., those observed to have the outcome)
from true noncases (i.e., those observed not to
have the outcome).

More specifically, an ROC provides an appro-
priate answer to the question we previously
asked when we compared classification tables
for two models: How often will a randomly
chosen (true) case have a higher probability
of being predicted to be a case than a randomly
chosen true noncase?
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Moreover, we will see that the answer to this
question can be quantified by obtaining the
area under an ROC curve (AUC): the larger
the area, the better the discrimination.

First, we provide the two ROCs derived from
hypothetical Models 1 and 2 that we consid-
ered in the previous section. Notice that the
ROC for each model is determined by connect-
ing the dots that plot pairs of Se and 1 � Sp
values obtained for several classification
cut-points.

For Model 1, the area under the ROC is 1.0.

In contrast, for Model 2, the area under the
ROC is 0.5.

Since the area under the ROC for Model 1 is
twice that for Model 2, we would conclude that
Model 1 has better discriminatory performance
than Model 2.

How can we explain this conceptually?
Our explanation:
The AUC measures discrimination, that is, the
ability of the model to correctly classify those
with and without the disease. We would expect
a model that provides good discrimination to
have the property that true cases have a higher
predicted probability (of being classified as a
case) than true noncases. In other words, we
would expect the true positive rate (TPR ¼ Se)
to be higher than the false positive rate (FPR
¼ 1 � Sp) for all cut-points.

Area under
ROC (AUC)

1 – Sp (= FPR)

Se (= TPR)

1.0

1.0
´

´

´

´
´

EXAMPLE

AUC = 1.0

Model 1

1 – Sp (= FPR)

Se (= TPR)

1.0

1.00.6

0.6

0.1

0.0

Cut-pt for prefect
prediction: Se= Sp= 1

AUC = 0.5

Model 2

1 – Sp (= FPR)

Se (= TPR)

0.6 0.90.1 1.0
0.0

0.1

0.6

0.8
0.9

1.0

So why is Model 1 a better dis-
criminator than Model 2?

Good discrimination
,

TPR > FPR
where

Se ¼ TPR, 1� Sp ¼ FPR
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Observing the above ROCs, we see that, for
Model 1, TPR (i.e., Se) is consistently higher
than its corresponding FPR (i.e., 1 � Sp); so,
this indicates that Model 1 does well in differ-
entiating the true cases from the true noncases.

In contrast, for Model 2 corresponding true
positive and false positive rates are always
equal, which indicates that Model 2 fails to
differentiate true cases from true noncases.

The two ROCs we have shown actually repre-
sent two extremes of what typically results for
such plots. Model 1 gives perfect discrimina-
tion whereas Model 2 gives no discrimination.

We show in the figure at the left several differ-
ent types of ROCs that may occur. Typically, as
shown by the two dashed curves, the ROC plot
will lie above the central diagonal (45�) line
that corresponds to Se ¼ 1 � Sp; for such
curves, the AUC is at least 0.5.

It is also possible that the ROC may lie
completely below the diagonal line, as shown
by the dotted curve near the bottom of the
figure, in which case the AUC is less than 0.5.
This situation indicates negative discrimina-
tion, i.e., the model predicts true noncases bet-
ter (i.e., higher predicted probability) than it
predicts true cases.

An AUC of exactly 0.5 indicates that the model
provides no discrimination, i.e., predicting the
case/noncase status of a randomly selected
subject is equivalent to flipping a fair coin.

A rough guide for grading the discriminatory
performance indicated by the AUC follows the
traditional academic point system, as shown
on the left.

Model 1: TPR � FPR always
+

Excellent discrimination

Model 2: TPR ¼ FPR always
+

No discrimination

Two extremes:

Model 1: perfect discrimination
Model 2: no discrimination

Extremes

Se (=TPR)

1

ROC Types

0 1 – Sp (= FPR)
Legend:

perfect discrimination
(Area = 1.0)
positive discrimination
(0.5 < Area ≤ 1.0)
negative discrimination
(0.0 ≤  Area < 0.5) 
no discrimination
(Area = 0.5)

1

Grading Guidelines for AUC
values:

0.90–1.0 ¼ excellent
discrimination (A)

0.80–0.90 ¼ good discrimination
(B)

0.70–0.80 ¼ fair discrimination (C)
0.60–0.70 ¼ poor discrimination

(D)
0.50–0.60 ¼ failed discrimination

(F)
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Note, however, that it is typically unusual to
obtain an AUC as high as 0.90, and if so, almost
all exposed subjects are cases and almost all
unexposed subjects are noncases (i.e., there is
nearly complete separation of data points).
When there is such “complete separation,” it
is impossible as well as unnecessary to fit a
logistic model to the data.

In this section, we return to the previously
asked question:

Suppose we pick a case and a noncase at random
from the subjects analyzed using a logistic regres-
sionmodel. Is the case or the noncasemore likely
to have a higher predicted probability?

To answer this question precisely, we must use
the fitted model to compute the proportion of
total case/noncase pairs for which the pre-
dicted value for cases is at least as large as the
predicted value for noncases.

If this proportion is larger than 0.5, then the
answer is that the randomly chosen case will
likely have a higher predicted probability than
the randomly chosen noncase. Note that this is
what we would expect to occur if the model
provides at least minimal predictive power to
discriminate cases from noncases.

Moreover, the actual value of this proportion,
tells us much more, namely this proportion
gives the “Area under the ROC” (i.e., AUC),
which, as discussed in the previous section,
provides an overall measure of the model’s
ability to discriminate cases from noncases.

To illustrate the calculation of this proportion,
suppose there are 300 (i.e., n) subjects in the
entire study, of which 100 (i.e., n1) are true
cases and 200 (i.e., n0) are true noncases.

However:

� Unusual to find AUC � 0.9
� If so, there is nearly complete

separation of data points
+

E Not E

D n1 0

Not D 0 n0
dOR undefined

n1 n0

IV. Computing the Area
Under the ROC (AUC)

Study Subjects

Randomly
select

Case Control

P(Xcase) > P(Xnoncase) ?

pd ¼ no: of pairs in which P̂ðXcaseÞ � P̂ðXnoncaseÞ
Total # case-control pairs

pd>0:5) P̂ðXcaseÞ> P̂ðXnoncaseÞ
for randomly chosen

case-control pair

ðexpect this result if model

discriminates cases from noncasesÞ

More important:

pd ¼ AUC

EXAMPLE

Example of AUC calculation:

n ¼ 300 subjects
n1 ¼ 100 true cases
n0 ¼ 200 true noncases

EXAMPLE
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We then fit a logistic model P(X) to this data
set, and we compute the predicted probability
of being a case, i.e., P̂ðXiÞ, for each of the 300
subjects.

For this dataset, the total number of possible
case/noncase pairs (i.e., np) is the product 100
� 200, or 20,000.

We now let w denote the number of these pairs
for which P̂ðXÞ for the case is larger than P̂ðXÞ
for the corresponding control. Suppose, for
example, that w ¼ 11,480, which means that
in 57.4% of the 20,000 pairs, the case had a
higher predicted probability than its noncase
pair.

Now let z denote the number of case/noncase
pairs in which both case and noncase had
exactly the same predicted probability. Con-
tinuing our example, we suppose z ¼ 5,420, so
that this result occurred for only 27.1% of the
20,000 pairs.

Then, for our example, the proportion of the
20,000 case-control pairs for which the case
has at least as large a predicted probability as
the control is (w þ z)/np, which is 16,900/
20,000, or 0.8450.

A modification of this formula (called “c”)
involves weighting by 0.5 any pair with equal
predicted probabilities; that is, the numerator is
modified to “w þ 0.5z”, so that c becomes 0.7095.

It is the latter modified formula that is equiva-
lent to the area under the ROC, i.e., AUC.

Based on the grading guidelines for AUC that
we provided in the previous section, the AUC of
0.7095 computed for this hypothetical example
would be considered to provide fair discrimi-
nation (i.e., grade C).

In our presentation of the above AUC formula,
we have not explicitly demonstrated why this
formula actually works to provide the area
under the ROC curve.

Example: (Continued)

Fit logistic model PðXÞ
and

compute P̂ðXiÞ for i ¼ 1, . . . , 300

np ¼ n1 � n0 ¼ 100� 200 ¼ 20,000

w = no. of case/noncase pairs for which

P̂(Xcase) > P̂(Xnoncase)

EXAMPLE

Example: Suppose w ¼ 11,480
(i.e., 57.4% of 20,000)

Z = no. of case/noncase pairs for which

P̂(Xcase) = P̂(Xnoncase)

EXAMPLE

Example: Suppose z ¼ 5,420.
(i.e., 27.1% of 20,000)

pd ¼ wþ z

np
¼ 11,480þ 5,420

20,000
¼ 0:8450

Modified formula:

20,000
14,190

=

=

=
20,000
+ 0.5(5,420)11,480

c = 0.7095

AUC=
n
0.5z+w

c
p

Interpretation from guidelines:

AUC¼ 0:7095)Fair discrimination

ðgrade CÞ

How does AUC formula provide
geometrical area under curve?

Ilustrative Example below.
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We now illustrate how this numerical formula
translates into the geometrical area under the
curve.

The method we illustrate is often referred to as
the trapezoid method; this is because the area
directly under the curve requires the computa-
tion and summation of several trapezoidal
sub-areas, as shown in the sketch at the left.

As in our previous example, we consider 100
cases and 200 noncases and the fitted logistic
regression model shown at the left involving
two binary predictors, in which both b̂1 and b̂2
are positive.

A classification table for these data shows four
covariate patterns of the predictors that define
exactly four cut points for classifying a subject
as positive or negative in the construction of an
ROC curve. A fifth cut point is included
(c0 ¼ 1) for which nobody tests positive since
P̂ðXÞ � 1 always. The ROC curve will be deter-
mined from a plot of these five points.

Note that the cut points are listed in decreasing
order.

Also, as the cut point lowers, both the sensitiv-
ity and 1 � specificity will increase.

More specifically, at cutpoint c1, 10 of 100
cases (10%) test positive and 2 out of 200 (1%)
noncases test positive. At cutpoint c2, 60% of
the cases and 25% of the noncases test positive.
At cutpoint c3, 80% of the cases and 50% of the
noncases test positive. At cutpoint c4, all 100
cases and 200 noncases test positive because
P̂ðXÞ is equal to the cut point even for subjects
without any risk factor (X1 ¼ 0 and X2 ¼ 0).

Se

100%

0%

T

PT

P

T

P

T

P

ROC curve

1 – Sp 100%

Tp = trapezoidal
      sub-area
   defined by 2
        cut-pts

EXAMPLE

P̂ðXÞ ¼ 1

1þ exp½�ðâþ b̂1X1 þ b̂2X2Þ�
b̂1 > 0, b̂2 > 0

Classification information for
different cut points (cp)

- - c0=1

c1

c2

c3

c4

0

0 0

0

0

0 0000

1

1

1

1

10

50

20

20

2

48

50

100

10

60

80

100

2

50

100

200

10

60

80

100

1

25

50

100

X1 X2 P(X) C NC C+ NC+ Se% 1 – Sp%

Covariate
patterns 

c
0
=1 ⇒ 0 cases (C) and

0 non-cases (NC)
test +

c1 ¼ P̂ðXc1 Þ>c2 ¼ P̂ðXc2 Þ> 	 	 	 >c4 ¼ P̂ðXc4 Þ

cp # ) Se and 1�Sp "

Se 1 – Sp

c1

c2

c3

10% cases test +

60% cases test +

80% cases test +

c4 100% cases test + 100% noncases test +

50% noncases test +

1% noncases test +

25% noncases test +
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The resulting ROC curve is shown at the
left. The AUC for this curve is 0.7095. We now
show the calculation of this area using the AUC
formula given earlier and using the trapezoid
approach.

We first apply the above AUC formula. In our
example, there are 100 cases and 200 noncases
yielding 100 � 200 ¼ 20,000 total pairs.

The ten cases with X1 ¼ 1 and X2 ¼ 1 have the
same predicted probability (tied) as the two
noncases who also have X1 ¼ 1 and X2 ¼ 1.

But those same ten cases have a higher pre-
dicted probability (concordant) than the other
48 þ 50 þ 100 noncases.

Similarly, the 50 cases with X1 ¼ 1 and
X2 ¼ 0 are

discordant with the 2 noncases that have a
higher predicted probability,

tied with 48 noncases, and

concordant with 50 þ 100 ¼ 150 noncases.

The 20 cases with X1 ¼ 0 and X2 ¼ 1 are

discordant with 2 þ 48 ¼ 50 noncases,

tied with 50 noncases, and

concordant with 100 noncases.

EXAMPLE (continued)

100%

80%

60%

10%

0% 1% 25% 50% 100%
1 – Sp

Se

ROC curve (AUC = 0.7095)

np ¼ 100 cases� 200 noncases

¼ 20,000 case=noncase pairs

When X1 ¼ 1 and X2 ¼ 1:

10 cases and 2 noncases have same P̂ðXÞ,
i:e:, 10� 2 ¼ 20 tied pairs

10 cases have higher P̂ðXÞ than
48þ 50þ 100 ¼ 198 noncases

i:e:, 10� 198 ¼ 1,980 concordant pairs

8>>>>>>>>><
>>>>>>>>>:

When X1 ¼ 1 and X2 ¼ 0:

50 cases have lower P̂ðXÞ than 2 noncases

i:e:, 50� 2 ¼ 100 discordant pairs

50 cases and 48 noncases have same P̂ðXÞ,
i:e:, 50� 48 ¼ 2,400 tied pairs

50 cases have higher P̂ðXÞ than
50þ 100 ¼ 150 noncases

i:e:, 50� 150 ¼ 7,500 concordant pairs

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

When X1 ¼ 0 and X2 ¼ 1:

20 cases have lower P̂ðXÞ than
2þ 48 ¼ 50 noncases

i:e:, 20� 50 ¼ 1,000 discordant pairs

20 cases and 50 noncases have same P̂ðXÞ,
i:e:, 20� 50 ¼ 1,000 tied pairs

20 cases have higher P̂ðXÞ than 100 noncases

i:e:, 20� 100 ¼ 2,000 concordant pairs

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
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Finally, the 20 cases that did not have either
risk factor X1 ¼ 0 and X2 ¼ 0 are

discordant with 2 þ 48 þ 50 ¼ 100 noncases
and

tied with 100 noncases.

We now sum up all the above concordant and
tied pairs, respectively, to obtain

w ¼ 11,480 total concordant pairs and

z ¼ 5,420 total tied pairs.

We then use w, z, and np to calculate the area
under the ROC curve using the AUC formula,
as shown on the left.

To describe how to obtain this result geometri-
cally, we first point out that with 100 cases
and 200 noncases, the total number of case/
noncase pairs (i.e., 100 � 200) can be geomet-
rically represented by the rectangular area with
height 100 and width 200 shown at the left.

A scaled-up version of the ROC curve is super-
imposed within this area. Also, the values listed
on the Y-axis (i.e., for cases) correspond to the
number of cases testing positive at the cut-
points used to plot the ROC curve. Similarly,
the values listed on the X-axis (i.e., for non-
cases) correspond to the number of noncases
testing positive at these same cut-points.

EXAMPLE (continued)

When X1 ¼ 0 and X2 ¼ 0:

20 cases have lower P̂ðXÞ than
2þ 48þ 50 ¼ 100 noncases

i:e:, 20� 100 ¼ 2,000 discordant pairs

20 cases and 100 noncases have same

P̂ðXÞ, i:e:, 20� 100 ¼ 2,000 tied pairs

8>>>>>>>>><
>>>>>>>>>:

total no. of concordant pairs:

w ¼ 1,980þ 7,500þ 2,000 ¼ 11,480

total no. of tied pairs:

z ¼ 20þ 2,400þ 1,000þ 2,000 ¼ 5,420

AUC ¼ wþ 0:5z

np

¼ 11,480þ 0:5ð5,420Þ
20,000

¼ 14,190

20,000

¼ 0:7095

Geometrical Approach for
Calculating AUC

100

80

60

10

Cases

Discordant + ½ ties

Concordant + ½ ties

0 2 50 100 200

Noncases

ROC curve: scaled-up
(from 100% � 100% axes to 100 �
200 axes)
Y-axis: no. of cases testing þ
X-axis: no. of noncases testing þ
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Within the above rectangle, the concordant
pairs are represented by the area under the
ROC curve while the discordant pairs are repre-
sented by the area over the ROC curve. The tied
pairs and are split equally over and under the
ROC curve (using the trapezoid rule).

To compute the actual area within the rectan-
gle under the ROC curve, we can partition this
area using sub-areas of rectangles and trian-
gles as shown at the left. The areas denoted by
C represent concordant pairs. The triangular
areas denoted by T represent ½ of tied pairs.

Using the grids provided for the Y- and X-axes,
the actual areas can be calculated as shown at
the left. Note that an area labeled as T is calcu-
lated as ½ the corresponding rectangular area
above and below the hypotenuse of a triangle
that connects two consecutive cut points.

The sum of all the subareas under the curve is
14,190, whereas the total area in the rectangle
of width 200 and height 100 is 200�100, or
20,000 (np). Therefore, the proportion of the
total area taken up by the area under the ROC
curve is 14,190 divided by 20,000 or 0.7095,
which is the value calculated using the AUC
formula.

EXAMPLE (continued)

Concordant pairs: within area under
ROC

Discordant pairs: within area over
ROC

Tied pairs, split equally over and under
ROC

2

100

80

60

10
0 50 100 200

Cases

Noncases

C C C

T

T

T

C C

C

T

2

100

80

60

10

0 50 100 200

Cases

Noncases

1000

2000500

2500 5000

1200

48010 500 1000

Sum of subareas under ROC

¼ 10þ 480þ 500þ 1,000þ 1,200

þ 	 	 	 þ 1,000

¼ 14,190

Proportion of total rectangular area
under ROC

¼ 14,190=20,000 ¼ 0:7095 ð¼ AUCÞ
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EXAMPLE (continued)

Alternative calculation of sub-area:
Rewrite

np ¼ 100� 200

as

(10 + 50 + 20 + 20)    (2 + 48 + 50 + 100)

Classification information for different cutpoints (cp)

- - c0=1

c1

c2
c3
c4

0

0 0

0

0

0

1

1

1

1

10

50

20
20

2

48

50
100

X1 X2 P(X) Cases Noncases

ð10þ 50þ 20þ 20Þ � ð2þ 48þ 50þ 100Þ
¼ 20t þ 480c þ 500c þ 1,000c

þ 100d þ 2,400t þ 2,500c þ 5,000c

þ 40d þ 960d þ 1,000t þ 2,000c

þ 40d þ 960d þ 1,000d þ 2,000t

Same values as in geometrical diagram

Twice each  triangular area

20t + 2,400t + 1,000t + 2,000t

480c + 500c + 1,000c + 2,500c + 5,000c + 2,000c

= 11,480 concordant pairs (=w)

= 5,420 ties (= z)

100dþ40dþ960dþ40dþ960dþ1,000d

¼ 3,100discordantpairs

Rescaled Area

100%

80%

60%

10%

0% 1% 25% 50% 100%

Se

1 – Sp

600

1250 2500

1000

500

250

2405 250 500

An alternative way to obtain the sub-area values
without having to geometrically calculate the
each subarea can be obtained by rewriting the
product formula for the total case/noncase pairs
as shown at the left.

Each term in the sum on the left side of this
product gives the number of cases with the
same predicted risk (i.e., P̂ðXÞ) at one of the cut-
points used to form theROC.Similarly each term
in the sum on the right side gives the number of
noncases with the same P̂ðXÞ at each cut-point.

We then multiply the two partitioned terms in
the product formula to obtain 16 different
terms, as shown at the left. Those terms identi-
fied with the subscript “t” denote tied pairs,
those terms with the subscript “c” denote con-
cordant pairs, and those terms with the sub-
script “d” denote discordant pairs.

The six values with the subscript “c” are exactly
the same as the six concordant areas shown
in the geometrical diagram given earlier. The
sum of these six values, therefore, gives the
total area under the ROC curve for concordant
pairs (i.e., w).

The four values with the subscript “t” are
exactly twice the four triangular areas under
the ROC curve. Their sum therefore gives twice
the total tied pairs (i.e., z) under the ROC curve.

The remaining six terms identify portions of
the area above the ROC curve corresponding
to discordant pairs. These are not used to com-
pute AUC.

Note that we can rescale the height and width
of the rectangle to 100% � 100%, which will
portray the dimensions of the rectangular area
in (Se � 1 � Sp) percent mode. To do this, the
value in each subarea under the curve needs to
be halved, as shown at the left.
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The combined area under the rescaled ROC
curve is then 7,095, which represents a propor-
tion of 0.7095 of the total rectangular area of
10,000.

A logistic regression model was used in the
analysis of a dataset containing information
from 348 patients who entered an emergency
room (ER) complaining of blunt knee trauma,
and who subsequently were X-rayed for possi-
ble knee fracture (Tigges et al., 1999).

The purpose of the analysis was to assess
whether a patient’s pattern of covariates could
be used as a screening test before performing
the X-ray.

Since 1.3 million people visit North American
ER departments annually complaining of
blunt knee trauma, the total cost associated
with even a relatively inexpensive test such as
a knee X-ray (about $200 for each X-ray) may
be substantial.

The variables considered in this analysis are
listed at the left. The outcome variable is called
FRACTURE, which represents a binary vari-
able for knee fracture status.

The five predictor variables are FLEX,
WEIGHT, AGECAT, HEAD, and PATELLAR,
and are defined at the left.

EXAMPLE (continued)

Combined area under rescaled ROC

¼ 5þ 240þ 250þ 500þ 600þ 	 	 	
þ 500

¼ 7,095

Proportion of total area under
rescaled ROC

¼ 7,095=10,000¼0:7095 ð¼AUCÞ

V. Example from Study
on Screening for Knee
Fracture

EXAMPLE

� Logistic model
� n ¼ 348 ER patients
� Complaint: blunt knee trauma
� X-rayed for knee fracture

� Study purpose: use covariates to
screen for decision to perform
X-ray

� 1.3 million people per year visit
ER with blunt knee trauma

� Substantial total cost for X-rays

Outcome variable:
FRACTURE ¼ knee fracture status

(1 ¼ yes, 0 ¼ no)
Predictor variables:
FLEX ¼ ability to flex knee

(0 ¼ yes, 1 ¼ no)
WEIGHT ¼ ability to put weight

on knee (0 ¼ yes,
1 ¼ no)

AGECAT ¼ patient’s age
(0 ¼ age < 55,
1 ¼ age � 55)

HEAD ¼ injury to knee head
(0 ¼ no, 1 ¼ yes)

PATELLAR ¼ injury to patella
(0 ¼ no, 1 ¼ yes)
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The logistic model used in the analysis is
shown at the left, and includes all five predictor
variables. Although some of these predictors
could have been evaluated for significance, we
report here only on the ability of the 5-variable
model to discriminate cases (fracture ¼ 1)
from noncases (fracture ¼ 0).

We summarize the results of this analysis
based on using SAS’s LOGISTIC procedure,
although the analysis could alternatively have
been carried out using either STATA or SPSS
(see Computer Appendix for computer code
and output).

The output showing the fitted model is now
shown at the left.

Notice that three of the variables (FLEX, AGE-
CAT, and HEAD) in the model have nonsignifi-
cantWald tests, indicating backward elimination
would result in removal of one or more of these
variables, e.g., HEAD would be eliminated first,
since it has the highest Wald P-value (0.5617).
Nevertheless, we will focus on the full model for
now, assuming that we wish to use all five pre-
dictors to carry out the screening.

We now show the classification table that uses
the patients’ predicted outcome probabilities
obtained from the fitted logistic model to
screen each patient. The probability levels
(first column) are prespecified cut points (in
increments of 0.05) requested in the model
statement.

For example, in the third row, the cut-point is
0.100. If this cut-point is used for screening,
then any patient whose predicted probability
is greater than 0.100 will test positive for knee
fracture on the screening test and therefore
will receive an X-ray.

EXAMPLE (continued)

Logistic Model:

logit PðXÞ¼ b0þb1FLEX

þb2WEIGHT

þb3AGECAT

þb4HEAD

þb5PATELLAR

Results shown below based on
SAS’s

LOGISTIC procedure
(but can also use STATA or
SPSS)

Fitted Logistic Regression Model:

Parameter DF Estimate

Std

Err

Wald

ChiSq

Pr >

ChiSq

Intercept 1 �3.4657 0.4118 70.8372 <.0001

FLEX 1 0.5277 0.3743 1.9877 0.1586

WEIGHT 1 1.5056 0.4093 13.5320 0.0002

AGECAT 1 0.5560 0.3994 1.9376 0.1639

HEAD 1 0.2183 0.3761 0.3367 0.5617

PATELLAR 1 0.6268 0.3518 3.1746 0.0748

� FLEX, WEIGHT, and HEAD have
nonsignif Wald statistics.

� BW elimination would simplify
model

� Focus for now on full model

Classification Table

Prob
Level

Correct
Non-

Event Event

Incorrect
Non-

Event Event
Percentages

Correct Se Sp 1 – Sp †

0.000 45 0 303 0 12.9 100.0 0.0 100.0
0.050 39 93 210 6 37.9 86.7 30.7 69.3
0.100 36 184 119 9 63.2 80.0 60.7 39.3
0.150 31 200 103 14 66.4 68.9 66.0 34.0
0.200 32 235 68 23 73.9 48.9 77.6 22.4
0.250 16 266 37 29 81.0 35.6 87.8 12.2
0.300 6 271 32 39 79.6 13.3 89.4 10.6
0.350 3 297 6 42 86.2 6.7 98.0 2.0
0.400 3 301 2 42 87.4 6.7 99.3 0.7
0.450 2 301 2 43 87.1

87.1
87.1
87.1
87.1
87.1
87.1
87.1
87.1
87.1
87.1
87.1

4.4 99.3 0.7
0.500 0 303 0

0
0
0
0
0
0
0
0
0
0

45 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.550 0 303 45
45
45
45
45
45
45
45
45
45

0.600 0 303
0.650 0 303

303
030
030
303
303
303
303

0.700 0
0.750 0

0
0
0
0
0

0.800
0.850
0.900
0.950
1.000
† 1 – Sp is not automatically output in SAS; s LOGISTIC
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Notice that at cut-point 0.100, 36 of 45 true
events were correctly classified as events, and
9 of 45 were incorrectly classified as nonevents;
also 184 of 303 true nonevents were correctly
classified as nonevents, and 119 of 303 were
incorrectly classified as events. The sensitivity
(Se) for this row is 36/45, or 80%, the specificity
(Sp) is 184/303, or 60.7%, so that 1 � Sp is
39.3%. Thus, in this row (cut-pt 0.100), the Se
is larger than 1�Sp, which indicates good dis-
crimination (for this cut point).

We can also see from this table that Se is at
least as large as 1 � Sp for all cut-pts. Notice,
further, that once the cut-pt reaches 0.5 (and
higher), none of the 45 true cases are correctly
classified as cases (Se ¼ 0) whereas all 303 true
noncases are correctly classified as noncases
(Sp ¼ 1 and 1 � Sp ¼ 0).

Additional output obtained from SAS’s Logis-
tic procedure is shown at the left. This output
contains information and statistical measures
related to the ROC curve for the fitted model.

The “c” statistic of 0.745 in this output gives the
area under the ROC curve, i.e., AUC, that we
described earlier. The Somers’ D, Gamma, and
Tau-a are other measures of discrimination
computed for the fitted model.

Each of these measures involves different ways
to compute a correlation between ranked (i.e.,
ordered) observed outcomes (Yi ¼ 0 or 1) and
ranked predicted probabilities ðP̂ðXiÞÞ. A high
correlation indicates that higher predicted
probabilities obtained from fitting the model
correspond to true cases (Yi ¼ 1) whereas
lower predicted probabilities correspond to
true noncases (Yi ¼ 0), hence good discrimina-
tion.

The formulae for each measure are derived
from the information provided on the left side
of the above output. The definitions of each of
the latter items are shown at the left. Note that
w, z, and np were defined in the previous sec-
tion for the formula for the AUC (i.e., c).

EXAMPLE (continued)

cp ¼ 0.100:

Se ¼ 36=45 ¼ 0:80

Sp ¼ 184=303 ¼ 0:607

1� Sp ¼ 0:393

Se ¼ 0:80> 1� Sp ¼ 0:393

ðgood discriminationÞ

Se � 1� Sp for all cut-points,

where
Se ¼ 1� Sp ¼ 0 for cp � 0:500

Edited Output (SAS ProcLogistic)-
Association of Predicted Probabil-

ities and Observed Responses

Percent Concordant 71.8 Somers’ D 0.489

Percent Discordant 22.9 Gamma 0.517

Percent Tied 5.3 Tau-a 0.111

Pairs 13635 c 0.745

c ¼ AUC
Somer’s D, Gamma, and Tau-a:
other measures of discrimination

c, Somer’s D, Gamma, and Tau-a:

(ranked) correlations between
observed outcomes (Yi ¼ 0 or 1)

and
predicted probabilities ðP̂ðXiÞÞ

Percent Concordant: 100 w/np

Percent Discordant: 100 d/np

Percent Tied: 100 z/np

Pairs: np ¼ n1 � n0,
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Using the notation just described, the formulae
for these discrimination measures are shown
at the left, with the first of these formulae (for
the AUC) provided in the previous section.

The calculation of the AUC for the fitted model
is shown at the left. The value for w in this
formula is 13,635(.718), or 9,789.91 and the
value for z is (13,635)(.053), or 722.655.

Based on the AUC result of 0.745 for these data,
there is evidence of fair (Grade C) discrimina-
tion using the fitted model.

A plot of the ROC curve for these data can also
be obtained and is shown here. Notice that the
points on the plot that represent the coordi-
nates of Se by 1 � Sp at different cut-pts have
not been connected by the program. Neverthe-
less, it is possible to fit a cubic regression to the
plotted points of sensitivity by 1 � specificity
(not shown, but see Computer Appendix).

where
w ¼ no. of case/noncase pairs for

which

P̂ðXcaseÞ> P̂ðXnoncaseÞ
d ¼ no. of case/noncase pairs for

which

P̂ðXnoncaseÞ> P̂ðXcaseÞ
z ¼ no. of case/noncase pairs for

which

P̂ðXcaseÞ ¼ P̂ðXnoncaseÞ

Formulae for discrimination measures:

c = w + 0.5z = AUC
np

Somer’s D = w – d
np

Gamma = w – d

w + d

Tau-a = w – d

0.5ΣYi(ΣYi – 1)
ii

EXAMPLE

c ¼ wþ 0:5z

np

¼ 13,635ð:718Þ þ 0:5ð13,635Þð:053Þ
13,635

¼ 0:745

AUC ¼ 0:745 ) Fair discrimination

ðgrade CÞ

1.0

ROC plot

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5
1 – Specificity

Sensitivity

AUC = 0.745

0.6 0.7 0.8 0.9 1.0
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Recall that the previously shown output gave
Wald statistics for HEAD, AGECAT, and FLEX
that were nonsignificant. A backward elimina-
tion approach that begins by dropping the least
significant of these variables (i.e., HEAD), refit-
ting the model, and dropping additional non-
significant variables results in a model that
contains only two predictor variables, WEIGHT
and PATELLAR. (Note that we are treating all
predictor variables as exposure variables.)

The fitted logistic model that involves only
WEIGHT and PATELLAR is shown at the left.

We also show the discrimination measures
that result for this model, including the c
(¼ AUC) statistic. The c statistic here is 0.731,
which is slightly smaller than the c statistic of
0.745 obtained for the full model. The reduced
model has slightly less discriminatory power
than the full model. (See Hanley (1983) for a
statistical test of significance between two or
more AUCs.)

The ROC plot for the reduced model is shown
here.

Notice that there are fewer cut-pts plotted on
this graph than on the ROC plot for the full
model (previous page). The reason is that the
number of possible cut-pts for a given model is
always equal to or less than the number of
covariate patterns (i.e., distinct combinations
of predictors) defined by the model.

The reduced model (with only two binary pre-
dictors) contains four (¼22) covariate patterns
whereas the full model (with 5 binary predic-
tors) contains 32 (¼25) covariate patterns.

Moreover, because the reducedmodel is nested
within the full model, the AUC for the reduced
model will always be smaller than the AUC for
the full model, i.e., similar to the characteris-
tics of R2 in linear regression. That’s the case
here, since the AUC is 0.731 for the reduced
model compared to 0.745 for the full model.

EXAMPLE (continued)

Backward elimination:
Step 1: Drop HEAD

(highest P-value 0.5617)
Step 2: Drop AGECAT

(highest P-value 0.2219)
Step 3: Drop FLEX

(highest P-value 0.1207)
Step 4: Keep WEIGHT or
PATELLAR
(highest P-value 0.0563)

Reduced Model After BW
Elimination

Parameter DF Estimate Std

Err

Wald

ChiSq

Pr >

ChiSq

Intercept 1 �3.1790 0.3553 80.0692 <.0001

WEIGHT 1 1.7743 0.3781 22.0214 <.0001

PATELLAR 1 0.6504 0.3407 3.6437 0.0563

Association of Predicted Probabil-
ities and Observed Responses

Percent Concordant 61.4 Somers’ D 0.463

Percent Discordant 15.2 Gamma 0.604

Percent Tied 23.4 Tau-a 0.105

Pairs 14,214 c 0.731

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1 0.2 0.3 0.4 0.5 0.6
1 – specificity

Sensitivity

AUC = 0.731

0.7 0.8 0.9 0.10

ROC Plot for the Reduced Model

Reduced model (2 Xs) Full model (5 Xs)

22 ¼ 4 covariate

patterns

25 ¼ 32 covariate

patterns

4 cut-pts � 28 cut-pts

AUCReduced ¼ 0.731 � AUCFull ¼ 0.745

In general:

Model 1 is nested within Model 2

+
AUCModel 1 � AUCModel 2
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Note, however, if two models that are not
nested are compared, there is no guarantee
which model will have a larger AUC. For exam-
ple, the model that contains only the three vari-
ables that were dropped, namely HEAD,
AGECAT, and FLEX has an AUC of 0.660,
which is smaller than the AUC of 0.731
obtained for the two variable (reduced) model
involving WEIGHT and PATELLAR.

EXAMPLE (continued)

Model 3: HEAD, AGECAT, and
FLEX

AUCModel 3 ¼ 0:660

Reduced Model: WEIGHT and
PATELLAR

AUCModel 2 ¼ 0:731

Thus, Model 2 (fewer variables)
discriminates better than
Model 3 (more variables)
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VI. SUMMARY
DP ¼ discriminatory performance of a

binary logistic model

Good DP: model discriminates

cases ðY ¼ 1Þ from
noncases ðY ¼ 0Þ

One approach:

Classification/Diagnostic Table

True (Observed) Outcome

cp Y ¼ 1 Y ¼ 0

Predicted Y ¼ 1 nTP nFP

Outcome Y ¼ 0 nFN nTN

n1 n0

cp ¼ cut-point for classifying cases
vs. noncases

Se ¼ Pr(trueþ | true C) ¼ nTP/n1

Sp ¼ Pr(true� | true NC) ¼ nTN/n0

Another approach:
Plot and/or summary mea-
sure based on a range of cut-
points

1.0

1.0

cut-points for
classification

Se (=TPR)

1 – Sp (= FPR)

ROC curve

´

´

´

´
´

AUC ¼ area under ROC curve

AUC¼1:0 )perfectDP

ðSe ¼ 1�SpÞ
AUC¼0:5 ) noDP

This presentation is now complete. We have
described how to assess discriminatory perfor-
mance (DP) of a binary logistic model.

A model provides good DP if the covariates in
the model help to predict (i.e., discriminate)
which subjects will develop the outcome
(Y ¼ 1, or the cases) and which will not
develop the outcome (Y ¼ 0, or the noncases).

One way to measure DP is to consider the
sensitivity (Se) and specificity (Sp) from a clas-
sification table that combines observed and
predicted outcomes over all subjects. The
closer both the sensitivity and specificity are
to 1, the better is the discrimination.

An alternative way to measure DP involves a
plot and/or summary measure based on a
range of cut-points chosen for a given model.

A widely used plot is the ROC curve, which
graphs the sensitivity by 1 minus the specific-
ity for a range of cut-points. Equivalently, the
ROC is a plot of the true positive rate (TPR ¼
Se) by the false positive rate (FPR ¼ 1 � Sp).

A popular summary measure based on the
ROC plot is the area under the ROC curve,
or AUC. The larger the AUC, the better is the
DP. An AUC of 1 indicates perfect DP and an
AUC of 0.5 indicates no DP.
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We suggest that you review the material cov-
ered in this chapter by reading the detailed
outline that follows. Then do the practice exer-
cises and test.

Up to this point, we have considered binary
outcomes only. In the next two chapters, the
standard logistic model is extended to handle
outcomes with three or more categories.
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Detailed
Outline

I. Overview (pages 348–350)

A. Focus: how to assess discriminatory performance
(DP) of a binary logistic model.

B. Considers how well the covariates in a given model
help to predict (i.e., discriminate) which subjects
will develop the outcome (Y ¼ 1, or the cases) and
which will not develop the outcome (Y ¼ 0, or the
noncases).

C. One way to measure DP: consider the sensitivity
(Se) and specificity (Sp) from a classification table
that combines true and predicted outcomes over
all subjects.

D. An alternative way to measure DP: involves a plot
(i.e., ROC curve) and/or summary measure (AUC)
based on a range of cut-points chosen for a given
model.

II. Assessing Discriminatory Performance using
Sensitivity and Specificity Parameters (pages
350–354)

A. Classification Table

i. One way to assess DP.

ii. Combines true and predicted outcomes over
all subjects.

iii. Cut-point (cp) can be used with P̂ðXÞ to predict
whether subject is case or noncase:

� If P̂ðXÞ> cp, then predict subj X to be case;
otherwise, predict subj X to be noncase.

B. Sensitivity (Se) and specificity (Sp)

i. Computed from classification table for fixed
cut point.

ii. Se ¼ proportion of truly diagnosed cases
¼ Pr(true positive | true case) ¼ nTP/n1

iii. Sp ¼ proportion of falsely diagnosed
¼ Pr(true negative | true noncase) ¼ nTN/n0

iv. The closer both Se and Sp are to 1, the better is
the discrimination.

v. Sp and Se values vary with cp:

� cp decreases from 1 to 0 ) Se increases
from 0 to 1, and Sp decreases from 1 to 0.

� Sp may change at a different rate than the
Se depending on the model considered.

vi. 1 � Sp more appealing than Sp:
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� Se and 1 � Sp both focus on predicted
cases

� If good discrimination, would expect
Se > 1 � Sp for all cp

C. Pick a case and a noncase at random: what is
probability that P̂ðXcaseÞ> P̂ðXnoncaseÞ?
i. One approach: “collectively” determine

whether Se exceeds 1 � Sp over several cut-
points ranging between 0 and 1.

ii. Drawback: Se and Sp values are “summary
statistics” over several subjects.

iii. Instead: use proportion of case, noncase pairs
for which P̂ðXcaseÞ � P̂ðXnoncaseÞ.

III. Receiver Operating Characteristic (ROC) Curves
(pages 354–358)

A. ROC plots sensitivity (Se) by 1 2 specifity
(1 – Sp) values over all cut points.

i. Equivalently, ROC plots true positive rate (TPR)
for cases by the false positive rate (FPR) for
noncases.

B. ROC measures how well model predicts who will
or will not have the outcome.

C. ROC provides numerical answer to question: for
randomly case/noncase pair, what is probability
that P̂ðXcaseÞ � P̂ðXnoncaseÞ?
i. The answer: AUC ¼ area under the ROC.

ii. The larger the area, the better is the
discrimination.

iii. Two extremes:

AUC ¼ 1 ) perfect discrimination

AUC ¼ 0:5 ) no discrimination

D. Grading guidelines for AUC values:

0.90 � 1.0 ¼ excellent discrimination (A);
rarely observed

0.80 � 0.90 ¼ good discrimination (B)

0.70 � 0.80 ¼ fair discrimination (C)

0.60 � 0.70 ¼ poor discrimination (D)

0.50 � 0.60 ¼ failed discrimination (F)

E. Complete separation of points (CSP)

i. Occurs if all exposed subjects are cases and
almost all unexposed subjects are noncases.

ii. CSP often found when AUC � 0.90.

iii. CSP) impossible as well as unnecessary to fit
a logistic model to the data.
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IV. Computing the Area Under the ROC (pages
358–365)

A. General formula:

AUC¼no: of case=noncase pairs in which P̂ðXcaseÞ� P̂ðXnoncaseÞ
total# case�control pairs

B. Calculation formula:

cð¼ AUCÞ ¼ wþ 0:5z

np
,

where

w ¼ no. of case/noncase pairs for which
P̂ðXcaseÞ> P̂ðXnoncaseÞ

z ¼ no. of case/noncase pairs for which
P̂ðXcaseÞ ¼ P̂ðXnoncaseÞ

np ¼ total no. of case/noncase pairs

C. Example of AUC calculation:

i. n ¼ 300 subjects, n1 ¼ 100 true cases,
n0 ¼ 200 true noncases

ii. Fit logistic model P(X) and compute P̂ðXiÞ for
i ¼ 1, . . . , 300

iii. np ¼ n1 � n0 ¼ 100 � 200 ¼ 20,000

iv. Suppose w ¼ 11,480 (i.e., 57.4% of 20,000)
and z ¼ 5,420 (i.e., 27.1% of 20,000)

v. c ð¼ AUCÞ ¼ wþ 0:5z

np
¼ 11,480þ 0:5ð5,420Þ

20,000
¼ 0:7095,

grade C (fair) discrimination

V. Examples from Study on Screening for Knee
Fracture (pages 365–370)

A. Scenario: n ¼ 348 ER patients; complaint: blunt
knee trauma; X-rayed for knee fracture.

B. Study purpose: use covariates to screen for
decision to perform X-ray.

C. Outcome variable: FRACTURE ¼ knee fracture
status (1 ¼ yes, 0 ¼ no)

Predictor variables:
FLEX ¼ ability to flex knee (0 ¼ yes, 1 ¼ no)

WEIGHT ¼ ability to put weight on knee (0 ¼ yes,
1 ¼ no)

AGECAT¼ patients age (0¼ age< 55, 1¼ age� 55)

HEAD ¼ injury to knee head (0 ¼ no, 1 ¼ yes)

PATELLAR ¼ injury to patella (0 ¼ no, 1 ¼ yes)
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D. Logistic Model:

logit PðXÞ ¼ b0 þ b1FLEXþ b2WEIGHT

þ b3AGECATþ b4HEAD

þ b5PATELLAR

E. Results based on SAS’s LOGISTIC procedure (but
can also use STATA or SPSS).

F. ROC plot
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0.0
0.0 0.1 0.2 0.3 0.4 0.5

1 – specificity

Sensitivity

0.6 0.7 0.8 0.9 1.0

G. AUC ¼ 0.745 ) Fair discrimination (Grade C)

H. Reduced Model

i. Why? Some nonsignificant regression
coefficients in the full model

ii. Use backward elimination to obtain following
reduced model:

logit PðXÞ ¼ b0 þ b2WEIGHTþ b5PATELLAR

iii. AUC (Reduced model) ¼ 0.731 � AUC (Full
model) ¼ 0.745

iv. In general, for nested models, AUC(smaller
model) � AUC (larger model),

v. However, if models not nested, it is possible
that AUC(model with fewer variables) > AUC
(model with more variables).

VI. Summary (page 371)
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Practice
Exercises

The following questions and computer information con-
sider the Evans Country dataset on 609 white males that
has been previously discussed and illustrated in earlier
chapters of this text. Recall that the outcome variable is
CHD status (1 ¼ case, 0 ¼ noncase), the exposure variable
of interest is CAT status (1 ¼ high CAT, 0 ¼ low CAT), and
the five control variables considered are AGE (continuous),
CHL (continuous), ECG (0,1), SMK (0,1), and HPT (0,1).

The SAS output provided below was obtained for the fol-
lowing logistic model:

Logit PðXÞ ¼ aþ b1CATþ g1AGEþ g2CHLþ g3ECG
þ g4SMK þ g5HPTþ d1CCþ d2CH,

where CC ¼ CAT � CHL and CH ¼ CAT � HPT

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-

Square
Pr >
ChiSq

Intercept 1 �4.0497 1.2550 10.4125 0.0013
cat 1 �12.6894 3.1047 16.7055 <.0001
age 1 0.0350 0.0161 4.6936 0.0303
chl 1 �0.00545 0.00418 1.7000 0.1923
ecg 1 0.3671 0.3278 1.2543 0.2627
smk 1 0.7732 0.3273 5.5821 0.0181
hpt 1 1.0466 0.3316 9.9605 0.0016
cc 1 0.0692 0.0144 23.2020 <.0001
ch 1 �2.3318 0.7427 9.8579 0.0017

Association of Predicted Probabilities and Observed Responses

Percent Concordant 78.6 Somers' D 0.578
Percent Discordant 20.9 Gamma 0.580
Percent Tied 0.5 Tau-a 0.119
Pairs 38,198 c 0.789

Classification Table
Correct Incorrect Percentages

Prob
Level Event

Non-
event Event

Non-
event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.000 71 0 538 0 11.7 100.0 0.0 88.3 .
0.020 68 35 503 3 16.9 95.8 6.5 88.1 7.9
0.040 67 127 411 4 31.9 94.4 23.6 86.0 3.1
0.060 60 226 312 11 47.0 84.5 42.0 83.9 4.6
0.080 54 326 212 17 62.4 76.1 60.6 79.7 5.0
0.100 50 393 145 21 72.7 70.4 73.0 74.4 5.1
0.120 41 425 113 30 76.5 57.7 79.0 73.4 6.6
0.140 37 445 93 34 79.1 52.1 82.7 71.5 7.1
0.160 34 463 75 37 81.6 47.9 86.1 68.8 7.4
0.180 34 477 61 37 83.9 47.9 88.7 64.2 7.2
0.200 31 495 43 40 86.4 43.7 92.0 58.1 7.5
0.220 29 504 34 42 87.5 40.8 93.7 54.0 7.7
0.240 28 509 29 43 88.2 39.4 94.6 50.9 7.8
0.260 27 514 24 44 88.8 38.0 95.5 47.1 7.9
0.280 25 519 19 46 89.3 35.2 96.5 43.2 8.1
0.300 23 525 13 48 90.0 32.4 97.6 36.1 8.4
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Classification Table (continued)
Correct Incorrect Percentages

Prob
Level Event

Non-
event Event

Non-
event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.320 23 526 12 48 90.1 32.4 97.8 34.3 8.4
0.340 22 528 10 49 90.3 31.0 98.1 31.3 8.5
0.360 21 529 9 50 90.3 29.6 98.3 30.0 8.6
0.380 21 529 9 50 90.3 29.6 98.3 30.0 8.6
0.400 18 529 9 53 89.8 25.4 98.3 33.3 9.1
0.420 18 531 7 53 90.1 25.4 98.7 28.0 9.1
0.440 18 531 7 53 90.1 25.4 98.7 28.0 9.1
0.460 18 531 7 53 90.1 25.4 98.7 28.0 9.1
0.480 18 531 7 53 90.1 25.4 98.7 28.0 9.1
0.500 18 532 6 53 90.3 25.4 98.9 25.0 9.1
0.520 18 532 6 53 90.3 25.4 98.9 25.0 9.1
0.540 16 532 6 55 90.0 22.5 98.9 27.3 9.4
0.560 16 532 6 55 90.0 22.5 98.9 27.3 9.4
0.580 15 532 6 56 89.8 21.1 98.9 28.6 9.5
0.600 13 533 5 58 89.7 18.3 99.1 27.8 9.8
0.620 11 534 4 60 89.5 15.5 99.3 26.7 10.1
0.640 10 535 3 61 89.5 14.1 99.4 23.1 10.2
0.660 10 535 3 61 89.5 14.1 99.4 23.1 10.2
0.680 10 535 3 61 89.5 14.1 99.4 23.1 10.2
0.700 10 536 2 61 89.7 14.1 99.6 16.7 10.2
0.720 9 536 2 62 89.5 12.7 99.6 18.2 10.4
0.740 8 536 2 63 89.3 11.3 99.6 20.0 10.5
0.760 8 536 2 63 89.3 11.3 99.6 20.0 10.5
0.780 8 536 2 63 89.3 11.3 99.6 20.0 10.5
0.800 8 536 2 63 89.3 11.3 99.6 20.0 10.5
0.820 6 536 2 65 89.0 8.5 99.6 25.0 10.8
0.840 6 537 1 65 89.2 8.5 99.8 14.3 10.8
0.860 5 537 1 66 89.0 7.0 99.8 16.7 10.9
0.880 5 537 1 66 89.0 7.0 99.8 16.7 10.9
0.900 5 537 1 66 89.0 7.0 99.8 16.7 10.9
0.920 5 537 1 66 89.0 7.0 99.8 16.7 10.9
0.940 4 538 0 67 89.0 5.6 100.0 0.0 11.1
0.960 3 538 0 68 88.8 4.2 100.0 0.0 11.2
0.980 3 538 0 68 88.8 4.2 100.0 0.0 11.2
1.000 0 538 0 71 88.3 0.0 100.0 · 11.7

1. Using the above output:

a. Give a formula for calculating the estimated proba-
bility P̂ðX*Þ of being a case (i.e., CHD ¼ 1) for
a subject (X*) with the following covariate values:
CAT ¼ 1, AGE ¼ 50, CHL ¼ 200,ECG ¼ 0, SMK ¼ 0,
HPT ¼ 0?

[Hint: P̂ðX*Þ ¼ 1=f1þ exp½�logit P̂ðX*Þ�g where
logit P̂ðX*Þ is calculated using the estimated
regression coefficients for the fitted model.]

b. Compute the value of P̂ðX*Þ using your answer to
question 1a.

c. If a discrimination cut-point of 0.200 is used to
classify a subject as either a case or a noncase,
how would you classify subject X* based on your
answer to question 1b.

d. With a cut-point of 0.000, the sensitivity of the
screening test is 1.0 (or 100% – see first row). Why
does the sensitivity of a test have to be 100% if the
cut point is 0? (assume there is at least one true
event)
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e. Notice for this data, as the cut-point gets larger the
specificity also gets larger (or stays the same). For
example, a cut-point of 0.200 yields a specificity of
92.0% while a cut-point of 0.300 yields a specificity
of 97.6%. Is it possible (using different data) that an
increase of a cut-point could actually decrease the
specificity? Explain.

f. In the classification table provided above, a cut-
point of 0.200 yields a false positive percentage of
58.1% whereas 1 minus the specificity at this cut
point is 8.0%. Since 1 minus specificity percentage
is defined as 100 times the proportion of true non-
cases that are falsely classified as cases, i.e., the
numerator in this proportion is the number of
false-positive noncases, why is not the false positive
percentage (58.1%) shown in the output equal to
1 minus specificity (8.0%)? Is the computer pro-
gram in error?

2. Based on the output,

a. What is the area under the ROC curve? How would
you grade this area in terms of the discriminatory
power of the model being fitted?

b. In the output provided under the heading “Associa-
tion of Predicted Probabilities and Observed
Responses,” the number of pairs is 38,198. How is
this number computed?

c. In the output provided under the same heading in
question 2b, how are the Percent Concordant and
the Percent Tied computed?

d. Using the information given by the number of
pairs, the Percent Concordant and the Percent
Tied described in parts (b) and (c), compute the
area under the ROC curve (AUC) and verify that it
is equal to your answer to part 2a.

e. The ROC curves for the interactionmodel described
above and the no interaction model that does not
contain the CC or CH (interaction) variables are
shown below. The area under the ROC curve for
the no-interaction model is 0.705. Why is the latter
AUC less than the AUC for the interaction model?
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Test The following questions and computer output consider a
data from a cross-sectional study carried out at Grady
Hospital in Atlanta, Georgia involving 289 adult patients
seen in an emergency department whose blood cultures
taken within 24 hours of admission were found to have
Staph aureus infection (Rezende et al., 2002). Information
was obtained on several variables, some of which were
considered risk factors for methicillin resistance (MRSA).
The outcome variable is MRSA status (1 ¼ yes, 0 ¼ no),
and covariates of interest included the following vari-
ables: PREVHOSP (1 ¼ previous hospitalization, 0 ¼ no
previous hospitalization), AGE (continuous), GENDER
(1 ¼ male, 0 ¼ female), and PAMU (1 ¼ antimicrobial
drug use in the previous 3 months, 0 ¼ no previous anti-
microbial drug use).

The SAS output provided below was obtained for the fol-
lowing logistic model:

Logit PðXÞ ¼ aþ b1PREVHOSPþ b2AGEþ b3GENDER
þ b4PAMU

Analysis of maximum likelihood estimates

Wald

Parameter DF Estimate
Standard
Error

Chi-
Square Pr > ChiSq

Intercept 1 �5.0583 0.7643 43.8059 <.0001
PREVHOSP 1 1.4855 0.4032 13.5745 0.0002
AGE 1 0.0353 0.00920 14.7004 0.0001
gender 1 0.9329 0.3418 7.4513 0.0063
pamu 1 1.7819 0.3707 23.1113 <.0001

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

PREVHOSP 4.417 2.004 9.734
AGE 1.036 1.017 1.055
gender 2.542 1.301 4.967
pamu 5.941 2.873 12.285

Association of Predicted Probabilities and Ob-
served Responses

Percent Concordant 83.8 Somers' D 0.681
Percent Discordant 15.8 Gamma 0.684
Percent Tied 0.4 Tau-a 0.326
Pairs 19950 c 0.840
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Classification Table
Correct Incorrect Percentages

Prob
Level Event

Non-
event Event

Non-
event Correct

Sensi-
tivity

Speci-
ficity

False
POS

False
NEG

0.000 114 0 175 0 39.4 100.0 0.0 60.6 .
0.020 114 2 173 0 40.1 100.0 1.1 60.3 0.0
0.040 113 19 156 1 45.7 99.1 10.9 58.0 5.0
0.060 110 38 137 4 51.2 96.5 21.7 55.5 9.5
0.080 108 58 117 6 57.4 94.7 33.1 52.0 9.4
0.100 107 73 102 7 62.3 93.9 41.7 48.8 8.8
0.120 107 75 100 7 63.0 93.9 42.9 48.3 8.5
0.140 106 81 94 8 64.7 93.0 46.3 47.0 9.0
0.160 106 89 86 8 67.5 93.0 50.9 44.8 8.2
0.180 106 91 84 8 68.2 93.0 52.0 44.2 8.1
0.200 106 93 82 8 68.9 93.0 53.1 43.6 7.9
0.220 102 99 76 12 69.6 89.5 56.6 42.7 10.8
0.240 101 100 75 13 69.6 88.6 57.1 42.6 11.5
0.260 99 105 70 15 70.6 86.8 60.0 41.4 12.5
0.280 98 106 69 16 70.6 86.0 60.6 41.3 13.1
0.300 98 107 68 16 70.9 86.0 61.1 41.0 13.0
0.320 96 115 60 18 73.0 84.2 65.7 38.5 13.5
0.340 96 117 58 18 73.7 84.2 66.9 37.7 13.3
0.360 95 119 56 19 74.0 83.3 68.0 37.1 13.8
0.380 92 120 55 22 73.4 80.7 68.6 37.4 15.5
0.400 91 121 54 23 73.4 79.8 69.1 37.2 16.0
0.420 91 125 50 23 74.7 79.8 71.4 35.5 15.5
0.440 91 127 48 23 75.4 79.8 72.6 34.5 15.3
0.460 89 129 46 25 75.4 78.1 73.7 34.1 16.2
0.480 85 134 41 29 75.8 74.6 76.6 32.5 17.8
0.500 82 138 37 32 76.1 71.9 78.9 31.1 18.8
0.520 81 140 35 33 76.5 71.1 80.0 30.2 19.1
0.540 79 141 34 35 76.1 69.3 80.6 30.1 19.9
0.560 75 145 30 39 76.1 65.8 82.9 28.6 21.2
0.580 73 147 28 41 76.1 64.0 84.0 27.7 21.8
0.600 70 151 24 44 76.5 61.4 86.3 25.5 22.6
0.620 66 153 22 48 75.8 57.9 87.4 25.0 23.9
0.640 61 156 19 53 75.1 53.5 89.1 23.8 25.4
0.660 55 160 15 59 74.4 48.2 91.4 21.4 26.9
0.680 48 163 12 66 73.0 42.1 93.1 20.0 28.8
0.700 42 165 10 72 71.6 36.8 94.3 19.2 30.4
0.720 34 167 8 80 69.6 29.8 95.4 19.0 32.4
0.740 32 171 4 82 70.2 28.1 97.7 11.1 32.4
0.760 29 171 4 85 69.2 25.4 97.7 12.1 33.2
0.780 25 171 4 89 67.8 21.9 97.7 13.8 34.2
0.800 17 172 3 97 65.4 14.9 98.3 15.0 36.1
0.820 12 173 2 102 64.0 10.5 98.9 14.3 37.1
0.840 11 174 1 103 64.0 9.6 99.4 8.3 37.2
0.860 6 174 1 108 62.3 5.3 99.4 14.3 38.3
0.880 5 174 1 109 61.9 4.4 99.4 16.7 38.5
0.900 0 175 0 114 60.6 0.0 100.0 . 39.4
0.920 0 175 0 114 60.6 0.0 100.0 . 39.4
0.940 0 175 0 114 60.6 0.0 100.0 . 39.4
0.960 0 175 0 114 60.6 0.0 100.0 . 39.4
0.980 0 175 0 114 60.6 0.0 100.0 . 39.4
1.000 0 175 0 114 60.6 0.0 100.0 . 39.4

Questions based on the above information begin on the
next page.
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1. For a discrimination cut-point of 0.300 in the Classifi-
cation Table provided above,

a. fill in the table below to show the cell frequencies
for the number of true positives (nTP), false posi-
tives (nFP), true negatives (nTN), and false negatives
(nFN):

True (Observed) Outcome

cp ¼ 0.30 Y ¼ 1 Y ¼ 0

Predicted Y ¼ 1 nTP ¼ nFP ¼
Outcome Y ¼ 0 nFN ¼ nTN ¼

n1 ¼ 114 n0 ¼ 175

b. Using the cell frequencies in the table of part 1a,
compute in percentages the sensitivity, specificity,
1 � specificity, false positive, and false negative
values, and verify that these results are identical
to the results shown in the Classification Table for
cut-point 0.300:

Sensitivity % ¼
Specificity % ¼
1 � specificity % ¼
False positive % ¼
False negative % ¼

c. Why are the 1 � specificity and false positive per-
centages not identical even though they both use
the (same) number of false positive subjects in
their calculation?

d. How is the value of 70.9 in the column labeled
“Correct” computed and how can this value be
interpreted?

e. How do you interpret values for sensitivity and
specificity obtained for the cut-point of 0.300 in
terms of how well the model discriminates cases
from noncases?

f. What is the drawback to (exclusively) using the
results for the cut-point of 0.300 to determine how
well the model discriminates cases from noncases?

2. Using the following graph, plot the points on the graph
that would give the portion of the ROC curve that
corresponds to the following cut-points: 0.000, 0.200,
0.400, 0.600, 0.800, and 1.000
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Sensitivity 1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1 – specificity

3. The ROC curve obtained for the model fitted to these
data is shown below.

a. Verify that the plots you produced to answer question
2 correspond to the appropriate points on the ROC
curve shown here.

b. Based on the output provided, what is the area
under the ROC curve? How would you grade this
area in terms of the discriminatory power of the
model being fitted?

c. In the output provided under the heading “Associa-
tion of Predicted Probabilities and Observed
Responses,” the number of pairs is 19,950. How is
this number computed?

d. Using the information given by the number of pairs,
the Percent Concordant, and the Percent Tied in the
output under the heading “Association of Predicted
Probabilities and Observed Responses,” compute
the area under the ROC curve (AUC), and verify
that it is equal to your answer to part 3b.

4. Consider the following figure that superimposes the
ROC curve within the rectangular area whose height
is equal to the number of MRSA cases (114) and whose
width is equal to the number of MRSA noncases (175).
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a. What is the area within the entire rectangle and
what does it have in common with the formula for
the area under the ROC curve?

b. Using the AUC calculation formula, what is the
area under the ROC curve superimposed on the
above graph? How do you interpret this area?

5. Below is additional output providing goodness of fit
information and the Hosmer-Lemeshow test for the
model fitted to the MRSA dataset. The column labeled
as “Group” lists the deciles of risk, ordered from smal-
lest to largest, e.g., decile 10 contains 23 patients who
had had the highest 10% of predicted probabilities.

mrsa ¼ 1 mrsa ¼ 0
Group Total Observed Expected Observed Expected

1 29 1 0.99 28 28.01
2 31 5 1.95 26 29.05
3 29 2 2.85 27 26.15
4 29 5 5.73 24 23.27
5 30 10 9.98 20 20.02
6 31 12 14.93 19 16.07
7 29 16 17.23 13 11.77
8 29 20 19.42 9 9.58
9 29 22 21.57 7 7.43

10 23 21 19.36 2 3.64

Hosmer and Lemeshow Goodness-of-
Fit Test

Chi-Square DF Pr > ChiSq
7.7793 8 0.4553

a. Based on the above output, does the model fit the
data? Explain briefly.

b. What does the distribution of the number of
observed cases and observed noncases over the 10
deciles indicate about how well the model discri-
minates cases from noncases? Does your answer
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coincide with your answer to question 3b in terms
of the discriminatory power of the fitted model?

c. Suppose the distribution of observed and expected
cases and noncases was given by the following table:

Partition for the Hosmer and Lemeshow Test

mrsa ¼ 1 mrsa ¼ 0
Group Total Observed Expected Observed Expected

1 29 10 0.99 19 28.01
2 31 11 1.95 20 29.05
3 29 11 2.85 18 26.15
4 29 11 5.73 18 23.27
5 30 12 9.98 18 20.02
6 31 12 14.93 19 16.07
7 29 12 17.23 17 11.77
8 29 13 19.42 16 9.58
9 29 13 21.57 16 7.43

10 23 9 19.36 14 3.64

What does this information indicate about how well the
model discriminates cases from noncases and how well the
model fits the data? Explain briefly.

d. Suppose the distribution of observed and expected
cases and noncases was given by the following
table:

Partition for the Hosmer and Lemeshow Test

mrsa ¼ 1 mrsa ¼ 0
Group Total Observed Expected Observed Expected

1 29 10 10.99 19 18.01
2 31 11 10.95 20 20.05
3 29 11 10.85 18 18.15
4 29 11 11.73 18 17.27
5 30 12 11.98 18 18.02
6 31 12 11.93 19 19.07
7 29 12 11.23 17 17.77
8 29 13 11.42 16 17.58
9 29 13 11.57 16 17.43

10 23 9 11.36 14 11.64

What does this information indicate about how well the
model discriminates cases from noncases and how well the
model fits the data? Explain briefly.

e. Do you think it is possible that a model might
provide good discrimination between cases and
noncases, yet poorly fit the data? Explain briefly,
perhaps with a numerical example (e.g., using
hypothetical data) or generally describing a situa-
tion, where this might happen.
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Answers to
Practice
Exercises

1. a. X* ¼ (CAT ¼ 1, AGE ¼ 50, CHL ¼ 200, ECG ¼ 0,
SMK ¼ 0, HPT ¼ 0)

P̂ðX*Þ ¼ 1=f1þ exp½�logit P̂ðX*Þ�g,

where

logit P̂ðX*Þ ¼�4:0497þð�12:6894Þð1Þþ 0:0350ð50Þ
þ ð�0:00545Þð200Þþ :3671ð0Þþ 0:7732ð0Þ
þ 1:0466ð0Þþ 0:0692ð1Þð200Þ
þ ð�2:3318Þð1Þð0Þ

b. logit P̂ðX*Þ ¼ �2:2391

P̂ðX*Þ ¼ 1=f1þ exp½�logit P̂ðX*Þ�g
¼ 1=f1þ exp½2:2391�g ¼ 0:096

c. Cut-point ¼ 0.200

Since P̂ðX*Þ ¼ 0:096< 0:200, we would predict sub-
ject X* to be a noncase.

d. If the cut-point is 0 and there is at least one true
case, than every case in the dataset will have
P̂ðX*Þ> 0, i.e., all 71 true cases will exceed the
cut-point and therefore be predicted to be cases.
Thus, the sensitivity percent is 100(71/71) ¼ 100.

e. It is not possible that an increase in the cut-point
could result in a decrease in the specificity.

f. The denominator for computing 1 minus the speci-
ficity is the number of true noncases (538), whereas
the denominator for the false positive percentage in
the SAS output is the number of persons classified
as positive (74). Thus, we obtain different results as
follows:

Percentage specificity ¼ (100)(1 � Sp) ¼ (100)43/
538 ¼ 8%, whereas

Percentage false positive ¼ (100)43/74 ¼ 58.1%.

2. a. AUC ¼ c ¼ 0.789. Grade C, i.e., fair discrimination.

b. 38,198 ¼ 71 � 538, where 71 is the number of true
cases and 538 is the number of true noncases.
Thus, 38,198 is the number of distinct case/non-
case pairs in the dataset.

c. Percent Concordant ¼ 100w/np, where w is the
number of case/noncase pairs for which the case
has a higher predicted probability than the noncase
and np is the total number of case/noncase pairs
(38,198).

Percent Tied ¼ 100z/np, where z is the number of
case/noncase pairs for which the case has the same
predicted probability as the noncase.
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d. AUC ¼ c ¼ wþ 0:5z

np

¼ 38,198ð:786Þ þ 0:5ð38,198Þð0:005Þ
38,198

¼ 0:789

e. The AUC for the no interaction model is smaller
than the AUC for the interaction model because the
former model is nested within the latter model.
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Introduction Our discussion of matching begins with a general descrip-
tion of the matching procedure and the basic features of
matching. We then discuss how to use stratification to
carry out a matched analysis. Our primary focus is on
case-control studies. We then introduce the logistic model
for matched data and describe the corresponding odds
ratio formula. We illustrate the use of logistic regression
with an application that involves matching as well as con-
trol variables not involved in matching.

We also discuss how to assess interaction involving the
matching variables and whether or not matching strata
should be pooled prior to analysis. Finally, we describe
the logistic model for analyzing matched follow-up data.

Abbreviated
Outline

The outline below gives the user a preview of this chapter.
A detailed outline for review purposes follows the presen-
tation.

I. Overview (page 392)

II. Basic features of matching (pages 392–394)

III. Matched analyses using stratification (pages
394–397)

IV. The logistic model for matched data
(pages 397–400)

V. An application (pages 400–403)

VI. Assessing interaction involving matching
variables (pages 404–406)

VII. Pooling matching strata (pages 407–409)

VIII. Analysis of matched follow-up data (pages
409–413)

IX. Summary (page 414)
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Objectives Upon completion of this chapter, the learner should be
able to:

1. State or recognize the procedure used when carrying
out matching in a given study.

2. State or recognize at least one advantage and one
disadvantage of matching.

3. State or recognize when to match or not to match in a
given study situation.

4. State or recognize why attaining validity is not a
justification for matching.

5. State or recognize two equivalent ways to analyze
matched data using stratification.

6. State or recognize the McNemar approach for
analyzing pair-matched data.

7. State or recognize the general form of the logistic
model for analyzing matched data as an E, V, W-type
model.

8. State or recognize an appropriate logistic model for
the analysis of a specified study situation involving
matched data.

9. State how dummy or indicator variables are defined
and used in the logistic model for matched data.

10. Outline a recommended strategy for the analysis of
matched data using logistic regression.

11. Apply the recommended strategy as part of the
analysis of matched data using logistic regression.

12. Describe and/or illustrate two options for assessing
interaction of the exposure variable with thematching
variables in an E, V, W-type model.

13. Describe and/or illustrate when it would be
appropriate to pool “exchangeable” matched sets.

14. State and/or illustrate the E, V, W model for matched
follow-up data.

Objectives 391



Presentation

I. Overview

FOCUS

Basics of matching

Model for matched
data
Control for con-
founding and inter-
action
Examples from
case-control studies

II. Basic Features of
Matching

Study design procedure:

� Select referent group

� Comparable to index group on
one or more “matching factors”

Case-control study:

"
Our focus

Referent ¼ controls

Index ¼ cases

Follow-up study:

Referent ¼ unexposed

Index ¼ exposed

This presentation describes how logistic
regression may be used to analyze matched
data. We describe the basic features of match-
ing and then focus on a general form of the
logistic model for matched data that controls
for confounding and interaction. We also pro-
vide examples of this model involving matched
case-control data.

Matching is a procedure carried out at the
design stage of a study which compares two
or more groups. To match, we select a referent
group for our study that is to be compared with
the group of primary interest, called the index
group. Matching is accomplished by constrain-
ing the referent group to be comparable to the
index group on one or more risk factors, called
“matching factors.”

For example, if the matching factor is age, then
matching on age would constrain the referent
group to have essentially the same age struc-
ture as the index group.

In a case-control study, the referent group con-
sists of the controls, which is compared with an
index group of cases.

In a follow-up study, the referent group con-
sists of unexposed subjects, which is compared
with the index group of exposed subjects.

Henceforth in this presentation, we focus on
case-control studies, but the model and meth-
ods described apply to follow-up studies also.

EXAMPLE

Matching factor ¼ AGE

Referent group constrained to have
same age structure as index group
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Category matching:
Combined
set of cate-
gories for
case and its
matched
control

Factor A:

Factor B:

Factor Q:

AGE: 20–29 30–39 40–49 50–59 60–69

SEX:

Race:

Control has same age–race–sex
combination as case

WHITE

MALE FEMALE

NONWHITE

EXAMPLE

Case
No. of
controls Type

1 1 1–1 or pair
matching

1 R
e.g., R ¼ 4

R-to-1
�! 4-to-1

R may vary from case to case

e:g:;

R ¼ 3 for some cases

R ¼ 2 for other cases

R ¼ 1 for other cases

8><
>:

Not always possible to find exactly
R controls for each case

To match or not to match

Advantage:

Matching can be statistically
efficient, i.e., may gain precision
using confidence interval

The most popular method for matching is
called category matching. This involves first
categorizing each of the matching factors and
then finding, for each case, one or more con-
trols from the same combined set of matching
categories.

For example, if we are matching on age, race,
and sex, we first categorize each of these three
variables separately. For each case, we then
determine his or her age–race–sex combination.
For instance, the casemay be 52 years old, white,
and female. We then find one or more controls
with the same age–race–sex combination.

If our study involves matching, we must decide
on the number of controls to be chosen for
each case. If we decide to use only one control
for each case, we call this one-to-one or pair-
matching. If we choose R controls for each
case, for example, R equals 4, then we call this
R-to-1 matching.

It is also possible to match so that there are differ-
ent numbers of controls for different cases; that is,
R may vary from case to case. For example, for
some cases, there may be three controls, whereas
for other cases perhaps only two or one control.
This frequently happens when it is intended to do
R-to-1 matching, but it is not always possible to
find a full complement of R controls in the same
matching category for some cases.

As for whether tomatch or not in a given study,
there are both advantages and disadvantages
to consider.

The primary advantage for matching over ran-
dom sampling without matching is that match-
ing can often lead to a more statistically
efficient analysis. In particular, matching may
lead to a tighter confidence interval, that is, more
precision, around the odds or risk ratio being
estimated than would be achieved without
matching.
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Disadvantage:

Matching is costly:

� To find matches

� Information loss due to
discarding controls

Safest strategy:

Matching

Match on strong risk factors expected
to be confounders

MATCHED
(STRATIFIED)
ANALYSIS

STANDARD
STRATIFIED
ANALYSIS

SEE SECTION III

Correct estimate?
YES

Apropriate analysis?
YES

No matching

YES

YES

30–39 40–49

combine

50–59

OR1 OR2 OR3

Validity is not an important reason
for matching (validity: getting the
right answer)

Match to gain efficiency or preci-
sion

III. Matched Analyses
Using Stratification

Strata ¼ matched sets

The major disadvantage to matching is that it
can be costly, both in terms of the time and
labor required to find appropriate matches
and in terms of information loss due to dis-
carding of available controls not able to satisfy
matching criteria. In fact, if too much informa-
tion is lost frommatching, it may be possible to
lose statistical efficiency by matching.

In deciding whether to match or not on a given
factor, the safest strategy is to match only on
strong risk factors expected to cause confound-
ing in the data.

Note that whether one matches or not, it is pos-
sible to obtain an unbiased estimate of the effect,
namely the correct odds ratio estimate. The cor-
rect estimate can be obtained provided an appro-
priate analysis of the data is carried out.

If, for example, wematch on age, the appropriate
analysis is a matched analysis, which is a special
kind of stratified analysis to be described shortly.

If, on the other hand, we do not match on age,
an appropriate analysis involves dividing the
data into age strata and doing a standard stra-
tified analysis, which combines the results from
different age strata.

Because a correct estimate can be obtained
whether or not one matches at the design
stage, it follows that validity is not an important
reason for matching. Validity concerns getting
the right answer, which can be obtained by
doing the appropriate stratified analysis.

As mentioned above, the most important sta-
tistical reason formatching is to gain efficiency
or precision in estimating the odds or risk ratio
of interest; that is, matching becomes worth-
while if it leads to a tighter confidence interval
than would be obtained by not matching.

The analysis of matched data can be carried
out using a stratified analysis in which the
strata consist of the collection of matched sets.

394 11. Analysis of Matched Data Using Logistic Regression



Special case:

Case-control study

100 matched pairs

n ¼ 200

100 strata ¼ 100 matched pairs

2 observations per stratum

1st
pair

2nd
pair

100th
pair

E E E E E E

D 1 D 1 D 1

D 1 D 1 D 1

Four possible forms:

E E

D 1 0 1 W pairs

D 1 0 1

E E

D 1 0 1 X pairs

D 0 1 1

E E

D 0 1 1 Y pairs

D 1 0 1

E E

D 0 1 1 Z pairs

D 0 1 1

W þ X þ Y þ Z ¼ total number of
pairs

Analysis: Two equivalent ways

As a special case, consider a pair-matched
case-control study involving 100 matched
pairs. The total number of observations, n,
then equals 200, and the data consists of 100
strata, each of which contains the two observa-
tions in a given matched pair.

If the only variables being controlled in the
analysis are those involved in the matching,
then the complete data set for this matched
pairs study can be represented by 100 2 � 2
tables, one for each matched pair. Each table is
labeled by exposure status on one axis and
disease status on the other axis. The number
of observations in each table is two, one being
diseased and the other (representing the con-
trol) being nondiseased.

Depending on the exposure status results for
these data, there are four possible forms that a
given stratum can take. These are shown here.

The first of these contains a matched pair for
which both the case and the control are exposed.

The second of these contains a matched pair
for which the case is exposed and the control is
unexposed.

In the third table, the case is unexposed and the
control is exposed.

And in the fourth table, both the case and the
control are unexposed.

If we let W, X, Y, and Z denote the number of
pairs in each of the above four types of table,
respectively, then the sumW plus X plus Y plus
Z equals 100, the total number of matched
pairs in the study.

For example, we may have W equals 30, X
equals 30, Y equals 10, and Z equals 30, which
sums to 100.

The analysis of amatched pair dataset can then
proceed in either of two equivalent ways,
which we now briefly describe.

EXAMPLE

W ¼ 30;X ¼ 30;Y ¼ 10;Z ¼ 30

WþXþ Yþ Z ¼ 30þ 30þ 10þ 30¼ 100

� � �
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Stratum 1

Compute Mantel–Haenszel c 2 and MOR

Stratum 2 Stratum 100

D
E E

D
E W Y

E X Z

E E E E E E E E

D 1 0 1 D 1 0 1 D 0 1 1 D 0 1 1

D 1 0 1 D 0 1 1 D 1 0 1 D 0 1 1

W X Y Z

w2MH ¼ ðX � YÞ2
X þ Y

; df ¼ 1

McNemar’s test

McNemar’s test ¼ MH test for
pair-matchingdMOR ¼ X=Y, 95% CI:dMOR exp

�
� 196

ffiffiffiffiffiffiffiffiffiffi
1
X þ 1

Y

q �

One way is to carry out a Mantel–Haenszel chi-
square test for association based on the 100
strata and to compute a Mantel–Haenszel odds
ratio, usually denoted as MOR, as a summary
odds ratio that adjusts for the matched vari-
ables. This can be carried out using any stan-
dard computer program for stratified analysis
e.g., PROC FREQUENCY, in SAS.

The other method of analysis, which is equiva-
lent to the above stratified analysis approach,
is to summarize the data in a single table, as
shown here. In this table, matched pairs are
counted once, so that the total number of
matched pairs is 100.

As described earlier, the quantity W represents
the number of matched pairs in which both the
case and the control are exposed. Similarly, X,
Y, and Z are defined as previously.

Using the above table, the test for an overall
effect of exposure, controlling for the matching
variables, can be carried out using a chi-square
statistic equal to the square of the difference
X – Y divided by the sum of X and Y. This chi-
square statistic has one degree of freedom in
large samples and is called McNemar’s test.

It can be shown that McNemar’s test statistic is
exactly equal to the Mantel–Haenszel (MH)
chi-square statistic obtained by looking at the
data in 100 strata. Moreover, the MOR esti-
mate can be calculated as X/Y, and a 95% con-
fidence interval for the MOR can also be
computed (shown on the left).

As an example of McNemar’s test, suppose W
equals 30, X equals 30, Y equals 10, and Z
equals 30, as shown in the table here.

Then based on these data, the McNemar test
statistic is computed as the square of 30 minus
10 divided by 30 plus 10, which equals 400 over
40, which equals 10.

EXAMPLE

D
E E

D
E W ¼ 30 Y ¼ 10

E X ¼ 30 Z ¼ 30

D
E E

D
E 30 10

E 30 30

w2MH ¼ð30� 10Þ2
30þ 10

¼ 400

40
¼ 10:0
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Analysis for R-to-1 and mixed
matching use stratified analysis

R-to-1 or mixed matching

use w2MH and dMOR
for stratified data

IV. The Logistic Model for
Matched Data

1. Stratified analysis
2. McNemar analysis

ü3. Logistic modeling

Advantage of modeling
can control for variables other
than matched variables

This statistic has approximately a chi-square
distribution with one degree of freedom
under the null hypothesis that the odds ratio
relating exposure to disease equals 1.

Fromchi-square tables, we find this statistic to be
highly significant with a P-value well below 0.01.

The estimated odds ratio, which adjusts for the
matching variables, can be computed from the
above table using the MOR formula X over Y
which in this case turns out to be 3. The computed
95% confidence interval is also shown at the left.

We have thus described how to do a matched
pair analysis using stratified analysis or an
equivalentMcNemar’s procedure. If thematch-
ing is R-to-1 or even involves mixed matching
ratios, the analysis can also be done using a
stratified analysis.

For example, if R equals 4, then each stratum
contains five subjects, consisting of the one
case and its four controls. These numbers can
be seen on themargins of the table shown here.
The numbers inside the table describe the
numbers exposed and unexposed within each
disease category. Here, we illustrate that the
case is exposed and that three of the four con-
trols are unexposed. The breakdown within the
table may differ with different matched sets.

Nevertheless, the analysis for R-to-1 or mixed
matched data can proceed as with pair-match-
ing by computing a Mantel–Haenszel chi-
square statistic and a Mantel–Haenszel odds
ratio estimate based on the stratified data.

A third approach to carrying out the analysis of
matched data involves logistic regression mod-
eling.

The main advantage of using logistic regres-
sion with matched data occurs when there are
variables other than thematched variables that
the investigator wishes to control.

EXAMPLE

R ¼ 4: Illustrating one stratum

E E

D 1 0 1

D 1 3 4

5

EXAMPLE (continued)

w2 �chi square 1 df
under H0: OR ¼ 1

P << 0.01, significant

dMOR ¼ X

Y
¼ 3; 95% CI : ð2:31; 6:14Þ
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Logistic model for matched data
includes control of variables not
matched

Stratified analysis inefficient:

Data is discarded

Matched data:

Use conditional ML estimation
(number of parameters large
relative to n)

Pair-matching:dORU ¼ ðdORCÞ2
"

overestimate

Principle
Matched analysis ) stratified
analysis

� Strata are matched sets, e.g.,
pairs

� Strata defined using dummy
(indicator) variables

E ¼ (0, 1) exposure

C1, C2, . . . , Cp control variables

For example, one may match on AGE, RACE,
and SEX, but may also wish to control for
systolic blood pressure and body size, which
may have also been measured but were not
part of the matching.

In the remainder of the presentation,we describe
how to formulate and apply a logistic model to
analyze matched data, which allows for the con-
trol of variables not involved in the matching.

In this situation, using a stratified analysis
approach instead of logistic regression will
usually be inefficient in that much of one’s
data will need to be discarded, which is not
required using a modeling approach.

The model that we describe below for matched
data requires the use of conditional ML estima-
tion for estimating parameters. This is because,
as we shall see, when there are matched data,
the number of parameters in the model is large
relative to the number of observations.

If unconditional ML estimation is used instead
of conditional, an overestimate will be obtained.
In particular, for pair-matching, the estimated
odds ratio using the unconditional approach
will be the square of the estimated odds ratio
obtained from the conditional approach, the
latter being the correct result.

An important principle about modeling
matched data is that such modeling requires
the matched data to be considered in strata. As
described earlier, the strata are the matched
sets, for example, the pairs in a matched pair
design. In particular, the strata are defined
using dummy or indicator variables, which we
will illustrate shortly.

In defining a model for a matched analysis, we
consider the special case of a single (0, 1) expo-
sure variable of primary interest, together with
a collection of control variablesC1,C2, and so on
up through Cp, to be adjusted in the analysis for
possible confounding and interaction effects.

EXAMPLE

Match on AGE, RACE, SEX
also, control for SBP and BODYSIZE
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� Some Cs matched by design

� Remaining Cs not matched

D ¼ ð0; 1Þ disease
X1 ¼ E ¼ ð0; 1Þ exposure

Some Xs: V1i dummy variables
(matched strata)

Some Xs: V2j variables (potential
confounders)

Some Xs: product terms EWj

(Note: Ws usually V2s)

The model:

logit PðXÞ ¼ aþ bE

þ~ g1iV1i|fflffl{zfflffl}
matching

þ ~ g2jV2j|fflffl{zfflffl}
confounders

þ E ~ dkWk|ffl{zffl}
interaction

We assume that some of these C variables have
been matched in the study design, either using
pair-matching or R-to-1 matching. The remain-
ing C variables have not been matched, but it is
of interest to control for them, nevertheless.

Given the above context, we now define the
following set of variables to be incorporated
into a logistic model for matched data. We
have a (0, 1) disease variable D and a (0, 1)
exposure variable X1 equal to E.

We also have a collection ofXswhich are dummy
variables to indicate the differentmatched strata;
these variables are denoted as V1 variables.

Further, we have a collection of Xs which are
defined from the Cs not involved in the match-
ing and represent potential confounders in
addition to thematched variables. These poten-
tial confounders are denoted as V2 variables.

And finally, we have a collection of Xs which
are product terms of the form E times W,
where theWs denote potential interaction vari-
ables. Note that the Ws will usually be defined
in terms of the V2 variables.

The logistic model for matched analysis is then
given in logit form as shown here. In this
model, the g1is are coefficients of the dummy
variables for the matching strata, the g2is are
the coefficients of the potential confounders
not involved in the matching, and the djs are
the coefficients of the interaction variables.

As an example of dummy variables defined for
matched strata, consider a study involving
pair-matching by AGE, RACE, and SEX, con-
taining 100 matched pairs. Then, the above
model requires defining 99 dummy variables
to incorporate the 100 matched pairs.

We can define these dummy variables as V1i

equals 1 if an individual falls into the ith
matched pair and 0 otherwise. Thus, it follows
that V11 equals 1 if an individual is in the first
matched pair and 0 otherwise, V12 equals 1 if
an individual is in the second matched pair
and 0 otherwise, and so on up to V1, 99, which
equals 1 if an individual is in the 99th matched
pair and 0 otherwise.

EXAMPLE

Pair-matching by AGE, RACE, SEX
100 matched pairs
99 dummy variables

V1i ¼ 1 if ith matched pair

0 otherwise

�
i ¼ 1; 2; . . . ; 99

V11 ¼ 1 if first matched pair

0 otherwise

�

V12 ¼ 1 if second matched pair

0 otherwise

�

..

.

V1; 99 ¼ 1 if 99th matched pair

0 otherwise

�
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Matched pairs model:

logit PðXÞ ¼ aþ bEþ~ g1iV1i

þ~ g2jV2j þ E~ dkWk

ROR ¼ exp bþ~dkWk

� �
Note: Two types of V variables are

controlled

V. An Application

Alternatively, using the above dummy variable
definition, a person in the first matched set will
have V11 equal to 1 and the remaining dummy
variables equal to 0; a person in the 99th
matched set will have V1, 99 equal to 1 and the
other dummy variables equal to 0; and a person
in the 100th matched set will have all 99
dummy variables equal to 0.

For the matched analysis model we have just
described, the odds ratio formula for the effect
of exposure status adjusted for covariates is
given by the expression ROR equals e to the
quantity b plus the sum of the dj times the Wj.

This is exactly the same odds ratio formula
given in our review for the E, V, W model.
This makes sense because the matched analy-
sis model is essentially an E, V, W model con-
taining two different types of V variables.

As an application of a matched pairs analysis,
consider a case-control study involving 2-to-1
matching which involves the following variables:

The disease variable is myocardial infarction
status, as denoted by MI.

The exposure variable is smoking status, as
defined by a (0, 1) variable denoted as SMK.

There are six C variables to be controlled.
The first four of these variables, namely age,
race, sex, and hospital status, are involved in
the matching.

The last two variables, systolic blood
pressure, denoted by SBP, and
electrocardiogram status, denoted by ECG,
are not involved in the matching.

EXAMPLE (continued)

1st matched set

V11 ¼ 1;V12 ¼ V13 ¼ � � � ¼ V1; 99 ¼ 0

99th matched set

V1; 99 ¼ 1;V11 ¼ V12 ¼ � � � ¼ V1; 98 ¼ 0

100th matched set

V11 ¼ V12 ¼ � � � ¼ V1; 99 ¼ 0

EXAMPLE

Case-control study
2-to-1 matching

D ¼ MI0; 1

E ¼ SMK0; 1

C1 ¼ AGE;C2 ¼ RACE;C3 ¼ SEX;C4 ¼ HOSPITAL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
matched

C5 ¼ SBP C6 ¼ ECG|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
not matched
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The study involves 117 persons in 39 matched
sets, or strata, each strata containing 3 per-
sons, 1 of whom is a case and the other 2 are
matched controls.

The logistic model for the above situation can
be defined as follows: logit P(X) equals a plus b
times SMKplus the sumof 38 terms of the form
g1i times V1i, where V1is are dummy variables
for the 39matched sets, plus g21 times SBP plus
g22 times ECG plus SMK times the sum of d1
times SBP plus d2 times ECG.

Here, we are considering two potential con-
founders involving the two variables (SBP and
ECG) not involved in the matching and also
two interaction variables involving these same
two variables.

The odds ratio for the above logistic model is
given by the formula e to the quantity b plus the
sum of d1 times SBP and d2 times ECG.

Note that this odds ratio expression involves
the coefficients b, d1, and d2, which are coeffi-
cients of variables involving the exposure vari-
able. In particular, d1 and d2 are coefficients of
the interaction terms E � SBP and E � ECG.

The model we have just described is the start-
ing model for the analysis of the dataset on 117
subjects. We now address how to carry out an
analysis strategy for obtaining a final model
that includes only the most relevant of the cov-
ariates being considered initially.

The first important issue in the analysis con-
cerns the choice of estimation method for
obtaining ML estimates. Because matching is
being used, the appropriate method is condi-
tional ML estimation. Nevertheless, we also
show the results of unconditional ML estima-
tion to illustrate the type of bias that can result
from using the wrong estimation method.

The next issue to be considered is the assess-
ment of interaction. Based on our starting
model, we, therefore, determine whether or
not either or both of the product terms SMK �
SBP and SMK�ECG are retained in themodel.

EXAMPLE (continued)

n ¼ 117 (39 matched sets)

The model:

logit P(X) = a + bSMK + Σ g 1iV1i

38

i=1

= g 21 SBP + g 22 ECG

+ SMK (d 1SBP + d 2ECG)

modifiers

confounders

ROR ¼ expðbþ d1SBPþ d2ECGÞ

b ¼ coefficient of E

d1 ¼ coefficient of E � SBP

d2 ¼ coefficient of E � ECG

Starting model

analysis strategy

Final model

Estimation method:
ü Conditional ML estimation
(also, we illustrate unconditional
ML estimation)

Interaction:

SMK � SBP and SMK � ECG?
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One way to test for this interaction is to carry
out a chunk test for the significance of both
product terms considered collectively. This
involves testing the null hypothesis that the
coefficients of these variables, namely d1 and
d2, are both equal to 0.

The test statistic for this chunk test is given by
the likelihood ratio (LR) statistic computed as
the difference between log likelihood statistics
for the full model containing both interaction
terms and a reduced model which excludes
both interaction terms. The log likelihood sta-
tistics are of the form �2 ln L̂, where L̂ is the
maximized likelihood for a given model.

This likelihood ratio statistic has a chi-square
distribution with two degrees of freedom. The
degrees of freedom are the number of para-
meters tested, namely 2.

When carrying out this test, the log likelihood
statistics for the full and reduced models turn
out to be 60.23 and 60.63, respectively.

The difference between these statistics is 0.40.
Using chi-square tables with two degrees of
freedom, the P-value is considerably larger
than 0.10, so we can conclude that there are
no significant interaction effects. We can,
therefore, drop the two interaction terms
from the model.

Note that an alternative approach to testing for
interaction is to use backward elimination on
the interaction terms in the initial model.
Using this latter approach, it turns out that
both interaction terms are eliminated. This
strengthens the conclusion of no interaction.

At this point, our model can be simplified to
the one shown here, which contains only main
effect terms. This model contains the exposure
variable SMK, 38 V variables that incorporate
the 39 matching strata, and 2 V variables that
consider the potential confounding effects of
SBP and ECG, respectively.

EXAMPLE (continued)

Chunk test:

H0 : d1 ¼ d2 ¼ 0;

where

d1 ¼ coefficient of SMK � SBP

d2 ¼ coefficient of SMK � ECG

LR ¼ �2 ln L̂R
� �� �2 ln L̂F

� �
R ¼ reduced model F ¼ full model

ðno interactionÞ ðinteractionÞ
Log likelihood statistics

�2 ln L̂

LR � w22
Number of parameters tested ¼ 2

� 2 ln L̂F ¼ 60:23

� 2 ln L̂R ¼ 60:63

LR ¼ 60.63 � 60.23 ¼ 0.40
P > 0.10 (no significant interaction)

Therefore, drop SMK � SBP and
SMK � ECG from model

Backward elimination: same
conclusion

logit PðXÞ ¼ aþ bSMK þ~g1iV1i

þ g21SBPþ g22ECG
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Under this reduced model, the estimated odds
ratio adjusted for the effects of the V variables
is given by the familiar expression e to the b̂,
where b̂ is the coefficient of the exposure vari-
able SMK.

The results from fitting this model and reduced
versions of this model which delete either or
both of the potential confounders SBP and
ECG are shown here. These results give both
conditional (C) and unconditional (U) odds
ratio estimates and 95% confidence intervals
(CI) for the conditional estimates only. (See
Computer Appendix.)

From inspection of this table of results, we see
that the unconditional estimation procedure
leads to overestimation of the odds ratio and,
therefore, should not be used.

The results also indicate a minimal amount of
confounding due to SBP and ECG. This can be
seen by noting that the gold standard esti-
mated odds ratio of 2.07, which controls for
both SBP and ECG, is essentially the same as
the other conditionally estimated odds ratios
that control for either SBP or ECG or neither.

Nevertheless, because the estimated odds ratio
of 2.32, which ignores both SBP and ECG in
the model, is moderately different from 2.07,
we recommend that at least one or possibly
both of these variables be controlled.

If at least one of SBP and ECG is controlled,
and confidence intervals are compared, the
narrowest confidence interval is obtained
when only ECG is controlled.

Thus, the most precise estimate of the effect is
obtained when ECG is controlled, along, of
course, with the matching variables.

Nevertheless, because all confidence intervals
are quite wide and include the null value of 1, it
does not really matter which variables are con-
trolled. The overall conclusion from this analysis
is that the adjusted estimate of the odds ratio for
the effect of smoking on the development of MI
is about 2, but it is quite nonsignificant.

EXAMPLE (continued)

dROR ¼ eb̂

Vs in model OR ¼ eb 95% CI

SBP and ECG 2.07C (0.69, 6.23)

U 3.38
SBP only C 2.08 (0.72, 6.00)

U 3.39
ECG only C 2.05 (0.77, 5.49)

U 3.05
Neither C 2.32 (0.93, 5.79)

U 3.71

C ¼ conditional estimate
U ¼ unconditional estimate

Minimal confounding:
Gold standard dOR ¼ 2:07,

essentially
same as other dOR

But 2.07 moderately different from
2.32, so we control for at least one of
SBP and ECG

Narrowest CI: Control for ECG only

Most precise estimate:
Control for ECG only

All CI are wide and include 1

Overall conclusion:
Adjusted dOR � 2, but is
nonsignificant
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VI. Assessing Interaction
Involving Matching
Variables

The previous section considered a study of the
relationship between smoking (SMK) andmyr-
ocardial infarction (MI) in which cases and
controls were matched on four variables:
AGE, RACE, SEX, and Hospital. Two addi-
tional control variables, SBP and ECG, were
not involved in the matching.

In the above example, interaction was evalu-
ated by including SBP and ECG in the logistic
regression model as product terms with the
exposure variable SMK. A test for interaction
was then carried out using a likelihood ratio
test to determine whether these two product
terms could be dropped from the model.

Suppose the investigator is also interested in
considering possible interaction between expo-
sure (SMK) and one or more of the matching
variables. The proper approach to take in such
a situation is not as clear-cut as for the previ-
ous interaction assessment. We now discuss
two options for addressing this problem.

The first option involves adding product terms of
the form E � V1i to the model for each dummy
variable V1i indicating a matching stratum.

The general form of the logistic model that
accommodates interaction defined using this
option is shown on the left. The expression to
the right of the equals sign includes terms for
the intercept, the main exposure (i.e., SMK),
thematching strata, other control variables not
matched on, product terms between the expo-
sure and the matching strata, and product
terms between the exposure and other control
variables not matched on.

EXAMPLE

D ¼ MI

E ¼ SMK

AGE, RACE, SEX, HOSPITAL:
matched

SBP, ECG: not matched

Interaction terms:

SMK � SBP, SMK � ECG

tested using LR test

Interaction between

SMK and matching variables?

Two options.

Option 1:
Add product terms of the form

E� V1i

logit PðXÞ¼ aþbEþ~
i

g1iV1iþ~
i

g2jV2j

þE~
i

d1iV1iþE~
k

dkWk;

where
V1i ¼ dummy variables for

matching strata
V2j ¼ other covariates (not

matched)
Wk ¼ effect modifiers defined from

other covariates
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Using the above (option 1) interaction model,
we can assess interaction of exposure with the
matching variables by testing the null hypoth-
esis that all the coefficients of the E� V1i terms
(i.e., all the d1i) are equal to zero.

If this “chunk” test is not significant, we could
conclude that there is no interaction involving
thematching variables. If the test is significant,
we might then carry out backward elimination
to determine which of theE� V1i terms need to
stay in the model. (We could also carry out
backward elimination even if the “chunk” test
is nonsignificant.)

A criticism of this (option 1) approach is that if
significant interaction is found, then it will be
difficult to determine which of possibly several
matching variables are effect modifiers. This is
because the dummy variables (V1i) in the
model represent matching strata rather than
specific effect modifier variables.

Another problem with option 1 is that there
may not be enough data in each stratum (e.g.,
when pair-matching) to assess interaction. In
fact, if there are more parameters in the model
than there are observations in the study, the
model will not execute.

A second option for assessing interaction
involving matching variables is to consider
product terms of the form E � W1m, where
W1m is an actual matching variable.

The corresponding logistic model is shown at
the left. This model contains the exposure vari-
able E, dummy variables V1i for the matching
strata, nonmatched covariates V2j, product
terms E � W1m involving the matching vari-
ables, and E � Wk terms, where the Wk are
effect modifiers defined from the unmatched
covariates.

EXAMPLE (continued)

Option 1:

Test H0: All d1i ¼ 0.
(Chunk test)

Not significant ) No interaction

involving matching

variables

Significant ) Interaction involving

matching variables

) Carry out backward

elimination of

E� V1i terms

Criticisms of option 1:
� Difficult to determine which of

several matching variables are
effect modifiers. (The V1i

represent matching strata, not
matching variables.)

� Not enough data to assess
interaction (number of
parameters may exceed n).

Option 2:
Add product terms of the form

E�W1m;

where W1m is a matching variable

logit PðXÞ¼ aþbE¼~
i

g1iV1iþ~
j

g2jV2j

þE~
m

d1mW1m

þE~
k

dkWk;

where
W1m ¼ matching variables in original

form
W2k ¼ effect modifiers defined from

other covariates (not matched)
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Using the above (option 2) interaction model,
we can assess interaction of exposure with the
matching variables by testing the null hypoth-
esis that all of the coefficients of the E � W1m

terms (i.e., all of the d1m) equal zero.

As with option 1, if the “chunk” test for interac-
tion involving the matching variables is not
significant, we could conclude that there is no
interaction involving the matching variables.
If, however, the chunk test is significant, we
might then carry out backward elimination to
determine which of the E � W1m terms should
remain in the model. We could also carry out
backward elimination even if the chunk test is
not significant.

A problem with the second option is that the
model for this option is not hierarchically well-
formulated (HWF), since components (W1m) of
product terms (E � W1m) involving the match-
ing variables are not in the model as main
effects. (See Chap. 6 for a discussion of the
HWF criterion.)

Although both options for assessing interaction
involving matching variables have problems,
the second option, though not HWF, allows
for a more interpretable decision about which
of the matching variables might be effect modi-
fiers. Also, even though the model for option
2 is technically not HWF, the matching vari-
ables are at least in some sense in the model
as both effect modifiers and confounders.

One way to avoid having to choose between
these two options is to decide not to match on
any variable that you wish to assess as an effect
modifier. Another alternative is to avoid asses-
sing interaction involving any of the matching
variables, which is oftenwhat is done in practice.

EXAMPLE (continued)

Option 2:

Test H0: All d1m ¼ 0.
(Chunk test)

Not significant ) No interaction

involving matching

variables

Significant ) Interaction involving

matching variables

) Carry out Backwards

Elimination of

E�W1m terms

Criticism of option 2:

The model is technically not HWF.

E � W1m in model but not W1m

Option 1 Option 2
Interpretable? No Yes

HWF? Yes No (but
almost
yes)

Alternatives to options 1 and 2:

� Do not match on any variable that
you consider a possible effect
modifier.

� Do not assess interaction for any
variable that you have matched
on.
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VII. Pooling Matching
Strata

To pool or not to poolmatched sets?

Case-control study:

� Pair-match on SMK (ever vs.
never)

� 100 cases (i.e., n ¼ 200)

� Smokers – 60 matched pairs

� Nonsmokers – 40 matched
pairs

Matched pair A Matched pair B

Case A – Smoker Case B – Smoker

Control A – Smoker $ Control B – Smoker

(interchangeable)

Controls for matched pairs A and B

are interchangeable

+
Matched pairs A and B

are exchangeable

ðdefinitionÞ

Smokers: 60 matched pairs are
exchangeable

Nonsmokers: 40 matched pairs are
exchangeable

Ignoring exchangeability

+
Use stratified analysis with

100 strata, e.g., McNemar’s test

Another issue to be considered in the analysis
of matched data is whether to combine, or
pool, matched sets that have the same values
for all variables being matched on.

Suppose smoking status (SMK), defined as
ever vs. never smoked, is the only matching
variable in a pair-matched case-control study
involving 100 cases. Suppose further that when
the matching is carried out, 60 of the matched
pairs are all smokers and the 40 remaining
matched pairs are all nonsmokers.

Now, let us consider any two of the matched
pairs involving smokers, say pair A and pair B.
Since the only variable being matched on is
smoking, the control in pair A had been eligible
to be chosen as the control for the case in pair
B prior to the matching process. Similarly, the
control smoker in pair B had been eligible to be
the control smoker for the case in pair A.

Even though this did not actually happen after
matching took place, the potential inter-
changeability of these two controls suggests
that pairs A and B should not be treated as
separate strata in a matched analysis. Matched
sets such as pairs A and B are called exchange-
able matched sets.

For the entire study involving 100 matched
pairs, the 60 matched pairs all of whom are
smokers are exchangeable and the remaining
40 matched pairs of nonsmokers are separately
exchangeable.

If we ignored exchangeability, the typical anal-
ysis of these data would be a stratified analysis
that treats all 100 matched pairs as 100 sepa-
rate strata. The analysis could then be carried
out using the discordant pairs information in
McNemar’s table, as we described in Sect. III.
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Ignore exchangeability? No!!!

Treating such strata separately
is artificial,

i.e., exchangeable strata are not
unique

Analysis? Pool exchangeable
matched sets

But should we actually ignore the exchange-
ability of matched sets? We say no, primarily
because to treat exchangeable strata separately
artificially assumes that such strata are unique
from each other when, in fact, they are not. [In
statistical terms, we argue that adding para-
meters (e.g., strata) unnecessarily to a model
results in a loss of precision.]

How should the analysis be carried out? The
answer here is to pool exchangeable matched
sets.

In our example, pooling would mean that
rather than analyzing 100 distinct strata with
2 persons per strata, the analysis would con-
sider only 2 pooled strata, one pooling 60
matched sets into a smoker’s stratum and the
other pooling the other 40 matched sets into a
nonsmoker’s stratum.

More generally, if several variables are involved
in the matching, the study data may only contain
a relatively lownumber of exchangeablematched
sets. In such a situation, the use of a pooled
analysis, even if appropriate, is likely to have a
negligible effect on the estimated odds ratios and
their associated standard errors, when compared
with an unpooled matched analysis.

It is, nevertheless, quite possible that the pool-
ing of exchangeable matched sets may greatly
reduce the number of strata to be analyzed. For
example, in the example described earlier, in
which smoking was the only variable being
matched, the number of strata was reduced
from 100 to only 2.

When pooling reduces the number of strata
considerably, as in the above example, it may
then be appropriate to use an unconditional
maximum likelihood procedure to fit a logistic
model to the pooled data.

EXAMPLE (match on SMK)

Use two pooled strata:

Stratum 1: Smokers (n ¼ 60 � 2)

Stratum 2: Nonsmokers (n ¼ 40 � 2)

Matching on several variables

+
May be only a few exchangeable

matched sets

+
Pooling has negligible effect on

odds ratio estimates

However, pooling may greatly reduce
the number of strata to be analyzed
(e.g., from 100 to 2 strata)

If no. of strata greatly reduced by pooling

+
Unconditional ML may be used

if ‘‘appropriate’’
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Summary on pooling:

Recommend:

� Identify and pool exchangeable
matched sets

� Carry out stratified analysis or
logistic regression using pooled
strata

� Consider using unconditional
ML estimation (but conditional
ML estimation always unbiased)

VIII. Analysis of Matched
Follow-up Data

Follow-up data:
Unexposed ¼ referent
Exposed ¼ index

Unexposed and exposed groups
have same distribution of match-
ing variables.

Exposed Unexposed

White male 30% 30%
White

female
20% 20%

Nonwhite
male

15% 15%

Nonwhite
female

35% 35%

Individual matching
or

Frequency matching (more
convenient, larger sample size)

By “appropriate,” we mean that the odds ratio
from the unconditional ML approach should
be unbiased, and may also yield a narrower
confidence interval around the odds ratio. Con-
ditional ML estimation will always give an
unbiased estimate of the odds ratio, however.

To summarize our discussion of pooling, we
recommend that whenever matching is used,
the investigator should identify and pool
exchangeable matched sets. The analysis can
then be carried out using the reduced number
of strata resulting from pooling using either a
stratified analysis or logistic regression. If the
resulting number of strata is small enough,
then unconditional ML estimation may be
appropriate. Nevertheless, conditional ML esti-
mation will always ensure that estimated odds
ratios are unbiased.

Thus far we have considered only matched
case-control data. We now focus on the analy-
sis of matched cohort data.

In follow-up studies, matching involves the
selection of unexposed subjects (i.e., the refer-
ent group) to have the same or similar distribu-
tion as exposed subjects (i.e., the index group)
on the matching variables.

If, for example, we match on race and sex in a
follow-up study, then the unexposed and
exposed groups should have the same/similar
race by sex (combined) distribution.

As with case-control studies, matching in fol-
low-up studies may involve either individual
matching (e.g., R-to-1 matching) or frequency
matching. The latter is more typically used
because it is convenient to carry out in practice
and allows for a larger total sample size once a
cohort population has been identified.

EXAMPLE (continued)

Unconditional ML estimation

‘‘appropriate’’ provided

ORunconditional unbiased

and

CIunconditional narrower than

CIconditional
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logit PðXÞ ¼ aþ bEþ~
i

g1iV1i

þ~
j

g2jV2j þE~
k

dkWk;

where
V1i ¼ dummy variables for

matching strata

V2j ¼ other covariates (not
matched)

Wk ¼ effect modifiers defined
from other covariates

Frequency matching

(small no. of strata)

+
Unconditional ML estimation may be

used if ‘‘appropriate’’

ðConditional ML always unbiasedg)

Four types of stratum:

Type 1

E �E

D 1 1
�D 0 0

1 1
P pairs

concordant

Type 2

E �E

D 1 0
�D 0 1

1 1
Q pairs

discordant

Type 3

E �E

D 0 1
�D 1 0

1 1
R pairs

discordant

Type 4

E �E

D 0 0
�D 1 1

1 1
S pairs

concordant

The logistic model for matched follow-up stud-
ies is shown at the left. This model is essentially
the same model as we defined for case-control
studies, except that the matching strata are
now defined by exposed/unexposed matched
sets instead of by case/control matched sets.
The model shown here allows for interaction
between the exposure of interest and the con-
trol variables that are not involved in the
matching.

If frequencymatching is used, then the number
of matching strata will typically be small rela-
tive to the total sample size, so it is appropriate
to consider using unconditional ML estimation
for fitting the model. Nevertheless, as when
pooling exchangeable matched sets results
from individual matching, conditional ML esti-
mation will always provide unbiased estimates
(but may yield less precise estimates than
obtained from unconditional ML estimation).

In matched-pair follow-up studies, each of the
matched sets (i.e., strata) can take one of four
types, shown at the left. This is analogous to
the four types of stratum for a matched case-
control study, except here each stratum con-
tains one exposed subject and one unexposed
subject rather than one case and control.

The first of the four types of stratum describes
a “concordant” pair for which both the exposed
and unexposed have the disease. We assume
there are P pairs of this type.

The second type describes a “discordant pair”
in which the exposed subject is diseased and an
unexposed subject is not diseased. We assume
Q pairs of this type.

The third type describes a “discordant pair” in
which the exposed subject is nondiseased and
the unexposed subject is diseased. We assume
R pairs of this type.
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Stratified analysis:

Each matched pair is a stratum

or

Pool exchangeable matched sets

E D

D D
E

P
R S

Q
D

Without pooling ! McNemar’s
table

dMRR ¼Pþ Q

Pþ R
dMOR ¼ Q

R

w2MH ¼ ðQ� RÞ2
Qþ R

dMOR and w2MH use discordant

pairs informationdMRR uses discordant and concordant

pairs information

The fourth type describes a “concordant pair”
in which both the exposed and the unexposed
do not have the disease. Assume S pairs of this
type.

The analysis of data from a matched pair fol-
low-up study can then proceed using a strati-
fied analysis in which each matched pair is
a separate stratum or the number of strata is
reduced by pooling exchangeable matched
sets.

If pooling is not used, then, as with case-
control matching, the data can be rearranged
into aMcNemar-type table as shown at the left.
From this table, a Mantel–Haenszel risk ratio
can be computed as (P þ Q)/(P þ R). Also, a
Mantel–Haenszel odds ratio is computed as Q/R.

Furthermore, a Mantel–Haenszel test of asso-
ciation between exposure and disease that
controls for the matching is given by the chi-
square statistic (Q � R)2/(Q þ R), which has
one degree of freedom under the null hypothe-
sis of no E–D association.

In the formulas described above, both the
Mantel–Haenszel test and odds ratio estimate
involve only the discordant pair information in
the McNemar table. However, the Mantel–
Haenszel risk ratio formula involves the
concordant diseased pairs in addition to the
discordant pairs.

As an example, consider a pair-matched follow-
up study with 4,830 matched pairs designed to
assess whether vasectomy is a risk factor for
myocardial infarction. The exposure variable
of interest is vasectomy status (VS: 0 ¼ no,
1 ¼ yes), the disease is myocardial infarction
(MI: 0 ¼ no, 1 ¼ yes), and the matching vari-
ables are AGE and YEAR (i.e., calendar year of
follow-up).

EXAMPLE

Pair-matched follow-up study 4,830
matched pairs

E ¼VS ð0 ¼ no; 1 ¼ yesÞ
D ¼MI ð0 ¼ no; 1 ¼ yesÞ

Matching variables: AGE and YEAR
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Criticism:

� Information on 4,790
discordant pairs not used

� Pooling exchangeable matched
sets more appropriate analysis

� Frequency matching more
appropriate than individual
matching

How to modify the analysis to con-
trol for nonmatched variables

OBS and SMK?

If no other covariates are considered other
than the matching variables (and the expo-
sure), the data can be summarized in the
McNemar table shown at the left.

From this table, the estimated MRR, which
adjusts for AGE and YEAR equals 20/16 or
1.25. Notice that since P ¼ 0 in this table, thedMRR equals the dMOR ¼ Q=R.

The McNemar test statistic for these data is
computed to be w2MH ¼ 0:44 ðdf ¼ 1Þ, which is
highly nonsignificant. Thus, from this analysis
we cannot reject the null hypothesis that the
risk ratio relating vasectomy to myocardial
infarction is equal to its null value (i.e., 1).

The analysis just described could be criticized
in a number of ways. First, since the analysis
only used the 36 discordant pairs information,
all of the information on the 4,790 concordant
pairs was not needed, other than to distinguish
such pairs from concordant pairs.

Second, since matching involved only two vari-
ables, AGE and YEAR, a more appropriate
analysis should have involved a stratified anal-
ysis based on pooling exchangeable matched
sets.

Third, a more appropriate design would likely
have used frequency matching on AGE and
YEAR rather than individual matching.

Assuming that a more appropriate analysis
would have arrived at essentially the same con-
clusion (i.e., a negative finding), we now con-
sider how the McNemar analysis described
above would have to be modified to take into
account two additional variables that were not
involved in the matching, namely obesity sta-
tus (OBS) and smoking status (SMK).

EXAMPLE (continued)

McNemar’s table:

VS = 0

P = 0 Q = 20

S = 4790R = 16

VS = 1

MI = 0MI = 1

MI = 1

MI = 0

dMRR ¼ Pþ Q

Pþ R
¼ 0þ 20

0þ 16
¼ 1:25

Note: P ¼ 0 ) dMRR ¼ dMOR.

w2MH ¼ ðQ� RÞ2
Qþ R

¼ ð20� 16Þ2
20þ 16

¼ 0:44

Cannot reject H0: mRR ¼ 1
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Matchedþ nonmatched variables

+
Use logistic regression

No interaction model:

logit PðXÞ ¼ aþ bVSþ~
i

g1iV1i

þ g21OBSþ g22SMK

4830totalpairs$36discordantpairs

sameresults

Need only analyze discordant pairs

Pair-matched case-control studies:

Use only discordant pairs

provided

no other control variables other than

matching variables

When variables not involved in the matching,
such as OBS and SMK, are to be controlled
in addition to the matching variable, we need
to use logistic regression analysis rather than
a stratified analysis based on a McNemar data
layout.

A no-interaction logistic model that would
accomplish such an analysis is shown at the
left. This model takes into account the expo-
sure variable of interest (i.e., VS) as well as
the two variables not matched on (i.e., OBS
and SMK), and also includes terms to distin-
guish the different matched pairs (i.e., the V1i

variables).

It turns out (from statistical theory) that the
results from fitting the above model would
be identical regardless of whether all 4,380
matched pairs or just the 36 discordant
matched pairs are input as the data.

In other words, for pair-matched follow-up
studies, even if variables not involved in the
matching are being controlled, a logistic regres-
sion analysis requires only the information on
discordant pairs to obtain correct estimates and
tests.

The above property of pair-matched follow-
up studies does NOT hold for pair-matched
case-control studies. For the latter, discordant
pairs should only be used if there are no other
control variables other than the matching vari-
ables to be considered in the analysis. In other
words, for pair-matched case-control data,
if there are unmatched variables being con-
trolled, the complete dataset must be used to
obtain correct results.
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Logistic Regression Chapters

1. Introduction
2. Important Special Cases

..

.

3 11. Analysis of Matched Data

12. Polytomous Logistic
Regression

13. Ordinal Logistic Regression

The reader may wish to review the detailed
summary and to try the practice exercises and
the test that follow.

Up to this point we have considered dichoto-
mous outcomes only. In the next two chapters,
the standard logistic model is extended to han-
dle outcomes with three or more categories.

IX. SUMMARY

This presentation:
� Basic features of matching
� Logistic model for matched

data
� Illustration using 2-to-1

matching
� Interaction involving matching

variables
� Pooling exchangeable matched

sets
� Matched follow-up data

This presentation is now complete. In sum-
mary, we have described the basic features of
matching, presented a logistic regression
model for the analysis of matched data, and
have illustrated the model using an example
from a 2-to-1 matched case-control study. We
have also discussed how to assess interaction
of the matching variables with exposure, the
issue of pooling exchangeable matched sets,
and how to analyze matched follow-up data.
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Detailed
Outline

I. Overview (page 392)

Focus:
� Basics of matching

� Model for matched data

� Control of confounding and interaction

� Examples

II. Basic features of matching (pages 392–394)

A. Study design procedure: Select referent group to
be constrained so as to be comparable to index
group on one or more factors:

i. Case-control study (our focus):
referent ¼ controls, index ¼ cases

ii. Follow-up study: referent ¼ unexposed,
index ¼ exposed

B. Category matching: If case-control study, find,
for each case, one or more controls in the same
combined set of categories of matching factors

C. Types of matching: 1-to-1, R-to-1, other

D. To match or not to match:

i. Advantage: Can gain efficiency/precision

ii. Disadvantages: Costly to find matches and
might lose information discarding controls

iii. Safest strategy: Match on strong risk factors
expected to be confounders

iv. Validity not a reason for matching: Can get
valid answer even when not matching

III. Matched analyses using stratification (pages
394–397)

A. Strata are matched sets, e.g., if 4-to-1 matching,
each stratum contains five observations

B. Special case: 1-to-1 matching: four possible
forms of strata:

i. Both case and control are exposed (W pairs)

ii. Only case is exposed (X pairs)

iii. Only control is exposed (Y pairs)

iv. Neither case nor control is exposed (Z pairs)

C. Two equivalent analysis procedures for 1-to-1
matching:

i. Mantel–Haenszel (MH): Use MH test on all
strata and compute MOR estimate of OR

ii. McNemar approach: Group data by pairs
(W, X, Y, and Z as in B above). Use
McNemar’s chi-square statistic (X – Y)2/
(X þ Y) for test and X/Y for estimate of OR

D. R-to-1 matching: Use MH test statistic andMOR
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IV. The logistic model for matched data (pages
397–400)

A. Advantage: Provides an efficient analysis when
there are variables other than matching
variables to control.

B. Model uses dummy variables in identifying
different strata.

C. Model form:

logit PðXÞ ¼ aþ bEþ~ g1iV1i þ~ g2jV2j

þ E~ dkWk;

where V1i are dummy variables identifying
matched strata, V2j are potential confounders
based on variables not involved in the matching,
and Wk are effect modifiers (usually) based on
variables not involved in the matching.

D. Odds ratio expression if E is coded as (0, 1):

ROR ¼ exp bþ~ dkWk

� �
:

V. An application (pages 400–403)

A. Case-control study, 2-to-1 matching, D ¼ MI
(0, 1), E ¼ SMK (0, 1),

four matching variables: AGE, RACE, SEX,
HOSPITAL,
two variables not matched: SBP, ECG,
n ¼ 117 (39matched sets, 3 observations per set).

B. Model form:

logit PðXÞ ¼ aþ bSMK þ ~
38

i¼1

g1iV1i þ g21SBP

þ g22ECGþ SMKðd1SBPþ d2ECGÞ:

C. Odds ratio:

ROR ¼ expðbþ d1SBPþ d2ECGÞ:

D. Analysis: Use conditional ML estimation;
interaction not significant

No interaction model:

logit PðXÞ ¼ aþ bSMK þ ~
38

i¼1

g1iV1i þ g21SBP

þ g22ECG:

Odds ratio formula:

ROR ¼ expðbÞ;
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Gold standard OR estimate controlling for SBP
and ECG: 2.07, Narrowest CI obtained when
only ECG is controlled: OR estimate is 2.08,
Overall conclusion: OR approximately 2, but not
significant.

VI. Assessing Interaction Involving Matching
Variables (pages 404–406)

A. Option 1: Add product terms of the form E� V1i,
where V1i are dummy variables for matching
strata.

Model : logit PðXÞ ¼ aþbEþ~g1iV1iþ~g2jV2j

þE~d1iV1iþE~dkWk;

where V2j are other covariates (not matched)
and Wk are effect modifiers defined from other
covariates.

Criticism of option 1:
� Difficult to identify specific effect modifiers

� Number of parameters may exceed n

B. Option 2: Add product terms of the form E �
W1m, where W1m are the matching variables in
original form.

Model : logit PðXÞ ¼ aþbEþ~g1iV1iþ~g2jV2j

þE~d1iW1mþE~dkWk;

where V2j are other covariates (not matched)
and Wk are effect modifiers defined from other
covariates.

Criticism of option 2:
� Model is not HWF (i.e., E � W1m in model

but not W1m)

But, matching variables are in model in
different ways as both effect modifiers and
confounders.

C. Other alternatives:

� Do not match on any variable considered as
an effect modifier

� Do not assess interaction for any matching
variable

VII. Pooling Matching Strata (pages 407–409)

A. Example: Pair-match on SMK (0, 1), 100 cases,
60 matched pairs of smokers, 40 matched pairs
of nonsmokers.

B. Controls for two or more matched pairs that
have same SMK status are interchangeable.

Detailed Outline 417



Corresponding matched sets are called
exchangeable.

C. Example (continued):

60 exchangeable smoker matched pairs.

40 exchangeable nonsmoker matched pairs.

D. Recommendation:

� Identify and pool exchangeable matched
sets.

� Carry out stratified analysis or logistic
regression using pooled strata.

� Consider using unconditional ML
estimation (but conditional ML estimation
always gives unbiased estimates).

E. Reason for pooling: Treating exchangeable
matched sets as separate strata is artificial.

VIII. Analysis of Matched Follow-up Data (pages
409–413)

A. In follow-up studies, unexposed subjects are
selected to have same distribution on matching
variables as exposed subjects.

B. In follow-up studies, frequency matching rather
than individual matching is typically used
because of practical convenience and to obtain
larger sample size.

C. Model same as for matched case-control studies
except dummy variables defined by exposed/
unexposed matched sets:

logit PðXÞ ¼ aþ bEþ~ g1iV1i þ~ g2jV2j

þ E~ dkWk:

D. Analysis if frequency matching used: Consider
unconditional ML estimation when number of
strata is small, although conditional ML
estimation will always give unbiased answers.

E. Analysis if pair-matching is used and no pooling
is done: Use McNemar approach that considers
concordant and discordant pairs (P,Q, R, and S)
and computesdMRR ¼ ðPþ QÞ=ðPþ RÞ; dMOR ¼ Q=R, and
w2MH ¼ ðQ� RÞ2=ðQþ RÞ.

F. Example: Pair-matched follow-up study with
4,830 matched pairs, E ¼ VS (vasectomy
status), D ¼ MI (myocardial infarction status),
match on AGE and YEAR (of follow-up);
P ¼ 0, Q ¼ 20, R ¼ 16, S ¼ 4790.dMRR ¼ 1:25 ¼ dMOR; w2MH ¼ 0:44ðN:S:Þ:
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Criticisms:
� Information on 4,790 matched pairs not

used

� Pooling exchangeable matched sets not used

� Frequency matching not used

G. Analysis that controls for both matched and
unmatched variables: use logistic regression on
only discordant pairs.

H. In matched follow-up studies, need only analyze
discordant pairs. In matched case-control
studies, use only discordant pairs, provided that
there are no other control variables other than
matching variables.

IX. Summary (page 414)
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Practice
Exercises

True or False (Circle T or F)

T F 1. In a case-control study, category pair-matching
on age and sex is a procedure by which, for each
control in the study, a case is found as its pair to
be in the same age category and same sex cate-
gory as the control.

T F 2. In a follow-up study, pair-matching on age is a
procedure by which the age distribution of
cases (i.e., those with the disease) in the study
is constrained to be the same as the age distri-
bution of noncases in the study.

T F 3. In a 3-to-1 matched case-control study, the num-
ber of observations in each stratum, assuming
sufficient controls are found for each case, is
four.

T F 4. An advantage of matching over not matching is
that a more precise estimate of the odds ratio
may be obtained from matching.

T F 5. One reason for deciding to match is to gain
validity in estimating the odds ratio of interest.

T F 6. When in doubt, it is safer to match than not to
match.

T F 7. A matched analysis can be carried out using a
stratified analysis in which the strata consists of
the collection of matched sets.

T F 8. In a pair-matched case-control study, the Man-
tel–Haenszel odds ratio (i.e., the MOR) is equiv-
alent to McNemar’s test statistic (X � Y)2/
(X þ Y). (Note: X denotes the number of pairs
for which the case is exposed and the control is
unexposed, and Y denotes the number of pairs
for which the case is unexposed and the control
is exposed.)

T F 9. When carrying out aMantel–Haenszel chi-square
test for 4-to-1 matched case-control data, the
number of strata is equal to 5.

T F 10. Suppose in a pair-matched case-control study,
that the number of pairs in each of the four
cells of the table used for McNemar’s test is
given by W ¼ 50, X ¼ 40, Y ¼ 20, and Z ¼ 100.
Then, the computed value of McNemar’s test
statistic is given by 2.

11. For the pair-matched case-control study described in
Exercise 10, let E denote the (0, 1) exposure variable
and let D denote the (0, 1) disease variable. State the
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logit form of the logistic model that can be used to
analyze these data. (Note: Other than the variables
matched, there are no other control variables to be
considered here.)

12. Consider again the pair-matched case-control data
described in Exercise 10 (W ¼ 50, X ¼ 40, Y ¼ 20,
Z ¼ 100). Using conditional ML estimation, a logistic
model fitted to these data resulted in an estimated
coefficient of exposure equal to 0.693, with standard
error equal to 0.274. Using this information, compute
an estimate of the odds ratio of interest and compare
its value with the estimate obtained using the MOR
formula X/Y.

13. For the same situation as in Exercise 12, compute the
Wald test for the significance of the exposure variable
and compare its squared value and test conclusion
with that obtained using McNemar’s test.

14. Use the information provided in Exercise 12 to com-
pute a 95% confidence interval for the odds ratio, and
interpret your result.

15. If unconditional ML estimation had been used instead
of conditional ML estimation, what estimate would
have been obtained for the odds ratio of interest?
Which estimation method is correct, conditional or
unconditional, for this data set?

Consider a 2-to-1matched case-control study involving 300
bisexual males, 100 of whom are cases with positive HIV
status, with the remaining 200 being HIV negative. The
matching variables are AGE and RACE. Also, the following
additional variables are to be controlled but are not
involved in the matching: NP, the number of sexual part-
ners within the past 3 years; ASCM, the average number of
sexual contacts per month over the past 3 years, and PAR, a
(0, 1) variable indicating whether or not any sexual part-
ners in the past 5 years were in high-risk groups for HIV
infection. The exposure variable is CON, a (0, 1) variable
indicating whether the subject used consistent and correct
condom use during the past 5 years.

16. Based on the above scenario, state the logit form of a
logistic model for assessing the effect of CON on HIV
acquisition, controlling for NP, ASCM, and PAR as
potential confounders and PAR as the only effect
modifier.

17. Using the model given in Exercise 16, give an expres-
sion for the odds ratio for the effect of CON on HIV
status, controlling for the confounding effects of AGE,
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RACE, NP, ASCM, and PAR, and for the interaction
effect of PAR.

18. For the model used in Exercise 16, describe the strat-
egy you would use to arrive at a final model that
controls for confounding and interaction.

The data below are from a hypothetical pair-matched case-
control study involving five matched pairs, where the only
matching variable is smoking (SMK). The disease variable
is called CASE and the exposure variable is called EXP. The
matched set number is identified by the variable STRA-
TUM.

ID STRATUM CASE EXP SMK
1 1 1 1 0
2 1 0 1 0
3 2 1 0 0
4 2 0 1 0
5 3 1 1 1
6 3 0 0 1
7 4 1 1 0
8 4 0 0 0
9 5 1 0 1

10 5 0 0 1

19. Howmany concordant pairs are there where both pair
members are exposed?

20. How many concordant pairs are there where both
members are unexposed?

21. How many discordant pairs are there where the case
is exposed and the control is unexposed?

22. How many discordant pairs are there where case is
unexposed and the control is exposed?

The table below summarizes the matched pairs informa-
tion described in the previous questions.

not D
E not E

D
E 1 2

not E 1 1

23. What is the estimated MOR for these data?

24. What type of matched analysis is being used with this
table, pooled or unpooled? Explain briefly.

The table below groups the matched pairs information
described in Exercises 19–22 into two smoking strata.
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SMK ¼ 1
E not E

D 1 1 2

not D 0 2 2

4

SMK ¼ 0
E not E

D 2 1 3

not D 2 1 3

6

25. What is the estimated MOR from these data?

26. What type of matched analysis is being used here,
pooled or unpooled?

27. Which type of analysis should be preferred for these
matched data (where smoking status is the only
matched variable), pooled or unpooled?

The data below switches the nonsmoker control of stratum
2 with the nonsmoker control of stratum 4 from the data set
provided for Exercises 19–22. Let W ¼ no. of concordant
(E ¼ 1, E ¼ 1) pairs, X ¼ no. of discordant (E ¼ 1, E ¼ 0)
pairs,Y ¼ no. of discordant (E ¼ 0,E ¼ 1) pairs, andZ ¼ no.
of concordant (E ¼ 0, E ¼ 0) pairs for the “switched” data.

ID STRATUM CASE EXP SMK
1 1 1 1 0
2 1 0 1 0
3 2 1 0 0
4 2 0 0 0
5 3 1 1 1
6 3 0 0 1
7 4 1 1 0
8 4 0 1 0
9 5 1 0 1

10 5 0 0 1

28. What are the values for W, X, Y, and Z?

29. What are the values of dMOR (unpooled) and dMOR
(pooled)?

Based on the above data and your answers to the above
Exercises:

30. Which of the following helps explain why the pooleddMOR should be preferred to the unpooled dMOR? (Cir-
cle the best answer)

a. The pooled dMORs are equal, whereas the unpooleddMORs are different.

b. The unpooled dMORs assume that exchangeable
matched pairs are not unique.

c. The pooled dMORs assume that exchangeable
matched pairs are unique.

d. None of the choices a, b, and c above are correct.

e. All of the choices a, b, and c above are correct.
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Test True or False (Circle T or F)

T F 1. In a category-matched 2-to-1 case-control study,
each case is matched to two controls who are in
the same category as the case for each of the
matching factors.

T F 2. An advantage of matching over not matching is
that informationmaybe lostwhennotmatching.

T F 3. If we do not match on an important risk factor
for the disease, it is still possible to obtain an
unbiased estimate of the odds ratio by doing an
appropriate analysis that controls for the
important risk factor.

T F 4. McNemar’s test statistic is not appropriate when
there is R-to-1 matching and R is at least 2.

T F 5. In a matched case-control study, logistic regres-
sion can be used when it is desired to control for
variables involved in the matching as well as
variables not involved in the matching.

6. Consider the following McNemar’s table from the
study analyzed by Donovan et al. (1984). This is a
pair-matched case-control study, where the cases are
babies born with genetic anomalies and controls are
babies born without such anomalies. The matching
variables are hospital, time period of birth, mother’s
age, and health insurance status. The exposure
factor is status of father (Vietnam veteran ¼ 1 or non-
veteran ¼ 0):

Case
E not E

Control E 2 121

not E 125 8254

For the above data, carry out McNemar’s test for the sig-
nificance of exposure and compute the estimated odds
ratio. What are your conclusions?

7. State the logit form of the logistic model that can be
used to analyze the study data.

8. The following printout results from using conditional
ML estimation of an appropriate logistic model for
analyzing the data:

95% CI for OR

Variable b sb P-value OR L U

E 0.032 0.128 0.901 1.033 0.804 1.326
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Use these results to compute the squared Wald test
statistic for testing the significance of exposure and
compare this test statistic with the McNemar chi-
square statistic computed in Question 6.

9. How does the odds ratio obtained from the printout
given in Question 8 compare with the odds ratio com-
puted using McNemar’s formula X/Y?

10. Explain how the confidence interval given in the print-
out is computed.
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Answers to
Practice
Exercises

1. F: cases are selected first, and controls are matched to
cases.

2. F: the age distribution for unexposed persons is con-
strained to be the same as for exposed persons.

3. T

4. T

5. F: matching is not needed to obtain a valid estimate of
effect.

6. F: when in doubt, matching may not lead to increased
precision; it is safe to match only if the potential
matching factors are strong risk factors expected to
be confounders in the data.

7. T

8. F: the Mantel–Haenszel chi-square statistic is equal to
McNemar’s test statistic.

9. F: the number of strata equals the number of matched
sets.

10. F: the computed value of McNemar’s test statistic is
6.67; the MOR is 2.

11. logit PðXÞ ¼ aþ bEþ ~
209

i¼1

g1iV1i,

where the V1i denote dummy variables indicating the
different matched pairs (strata).

12. Using the output, the estimated odds ratio is exp
(0.693), which equals 1.9997. The dMOR is computed
as X/Y equals 40/20 ¼ 2. Thus, the estimate obtained
using conditional logistic regression is equal to thedMOR.

13. The Wald statistic, which is a Z statistic, is computed
as 0.693/0.274, which equals 2.5292. This is significant
at the 0.01 level of significance, i.e., P is less than 0.01.
The squared Wald statistic, which has a chi-square
distribution with one degree of freedom under the
null hypothesis of no effect, is computed to be 6.40.
The McNemar chi-square statistic is 6.67, which is
quite similar to the Wald result, though not exactly
the same.

14. The 95% confidence interval for the odds ratio is given

by the formula exp

�
b̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar b̂
	 
r �

,

which is computed to be
exp (0.693 � 1.96 � 0.274) ¼ exp (0.693 � 0.53704),
which equals (e0.15596, e1.23004) ¼ (1.17, 3.42).
This confidence interval around the point estimate of
2 indicates that the point estimate is somewhat unsta-
ble. In particular, the lower limit is close to the null
value of 1, whereas the upper limit is close to 4. Note
also that the confidence interval does not include the
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null value, which supports the statistical significance
found in Exercise 13.

15. If unconditional ML estimation had been used, the
odds ratio estimate would be higher (i.e., an overesti-
mate) than the estimate obtained using conditional
ML estimation. In particular, because the study
involved pair-matching, the unconditional odds ratio
is the square of the conditional odds ratio estimate.
Thus, for this dataset, the conditional estimate is
given by dMOR equal to 2, whereas the unconditional
estimate is given by the square of 2 or 4. The correct
estimate is 2, not 4.

16.

logit PðXÞ ¼ aþ bCONþ ~
99

i¼1

g1iV1i þ g21NPþ g22ASCM

þ g23PARþ dCON� PAR;

where the V1i are 99 dummy variables indicating the
100 matching strata, with each stratum containing
three observations.

17. dROR ¼ exp b̂þ d̂PAR
	 


.

18. A recommended strategy for model building involves
first testing for the significance of the interaction term
in the starting model given in Exercise 16. If this test is
significant, then the final model must contain the
interaction term, the main effect of PAR (from the
Hierarchy Principle), and the 99 dummy variables
for matching. The other two variables NP and ASCM
may be dropped as nonconfounders if the odds ratio
given by Exercise 17 does not meaningfully change
when either or both variables are removed from the
model. If the interaction test is not significant, then
the reduced (no interaction) model is given by the
expression

logit PðXÞ ¼ aþ bCONþ ~
99

i¼1

g1iV1i þ g21NP

þ g22ASCMþ g23PAR:

Using this reduced model, the odds ratio formula is
given by exp(b), where b is the coefficient of the CON
variable. The final model must contain the 99 dummy
variables which incorporate the matching into the
model. However, NP, ASCM, and/or PAR may be
dropped as nonconfounders if the odds ratio exp(b)
does not change when one or more of these three
variables are dropped from the model. Finally, preci-
sion of the estimate needs to be considered by
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comparing confidence intervals for the odds ratio. If a
meaningful gain of precision is made by dropping a
nonconfounder, then such a nonconfounder may be
dropped. Otherwise (i.e., no gain in precision), the
nonconfounder should remain in the model with all
other variables needed for controlling confounding.

19. 1

20. 1

21. 2

22. 1

23. 2

24. Unpooled; the analysis treats all five strata (matched
pairs) as unique.

25. 2.5

26. Pooled.

27. Pooled; treating the five strata as unique is artificial
since there are exchangeable strata that should be
pooled.

28. W ¼ 1, X ¼ 1, Y ¼ 0, and Z ¼ 2.

29. mOR(unpooled) ¼ undefined; mOR(pooled) ¼ 2.5.

30. Only choice a is correct.
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Introduction In this chapter, the standard logistic model is extended to
handle outcome variables that have more than two cate-
gories. Polytomous logistic regression is used when the
categories of the outcome variable are nominal, that is,
they do not have any natural order. When the categories
of the outcome variable do have a natural order, ordinal
logistic regression may also be appropriate.

The focus of this chapter is on polytomous logistic regres-
sion. The mathematical form of the polytomous model and
its interpretation are developed. The formulas for the odds
ratio and confidence intervals are derived, and techniques
for testing hypotheses and assessing the statistical signifi-
cance of independent variables are shown.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (pages 432–433)

II. Polytomous logistic regression: An example with
three categories (pages 434–437)

III. Odds ratio with three categories (pages
437–441)

IV. Statistical inference with three categories
(pages 441–444)

V. Extending the polytomous model to G outcomes
and k predictors (pages 444–449)

VI. Likelihood function for polytomous model
(pages 450–452)

VII. Polytomous vs. multiple standard logistic
regressions (page 453)

VIII. Summary (page 453)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize the difference between nominal and
ordinal variables.

2. State or recognize when the use of polytomous logistic
regression may be appropriate.

3. State or recognize the polytomous regression model.

4. Given a printout of the results of a polytomous logistic
regression:

a. State the formula and compute the odds ratio
b. State the formula and compute a confidence

interval for the odds ratio
c. Test hypotheses about the model parameters using

the likelihood ratio test or the Wald test, stating the
null hypothesis and the distribution of the test
statistic with the corresponding degrees of freedom
under the null hypothesis

5. Recognize how running a polytomous logistic
regression differs from running multiple standard
logistic regressions.
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Presentation

I. Overview

Modeling
outcomes with
more than two

levels

FOCUS

Examples of multilevel outcomes:

1. Absent, mild, moderate, severe
2. In situ, locally invasive,

metastatic
3. Choice of treatment regimen

0 1

to

Change

One approach: dichotomize outcome

2

0 1 2

This presentation and the presentation that
follows describe approaches for extending the
standard logistic regression model to accom-
modate a disease, or outcome, variable that has
more than two categories. Up to this point, our
focus has been on models that involve a dicho-
tomous outcome variable, such as disease pres-
ent/absent. However, theremay be situations in
which the investigator has collected data on
multiple levels of a single outcome.We describe
the form and key characteristics of one model
for suchmultilevel outcome variables: the poly-
tomous logistic regression model.

Examples of outcome variables with more than
two levels might include (1) disease symptoms
that have been classified by subjects as being
absent, mild, moderate, or severe, (2) invasive-
ness of a tumor classified as in situ, locally
invasive, ormetastatic, or (3) patients’ preferred
treatment regimen, selected from among three
or more options.

One possible approach to the analysis of data
with a polytomous outcome would be to
choose an appropriate cut-point, dichotomize
the multilevel outcome variable, and then sim-
ply utilize the logistic modeling techniques dis-
cussed in previous chapters.

For example, if the outcome symptom severity
has four categories of severity, one might com-
pare subjectswith none or onlymild symptoms to
those with either moderate or severe symptoms.

EXAMPLE

Change

to

None Mild SevereModerate

None or
mild

Moderate or
severe
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Disadvantage of dichotomizing:
Loss of detail (e.g., mild vs. none?
moderate vs. mild?)

Alternate approach: Use model for
a polytomous outcome

Nominal or ordinal outcome?

Nominal: Different categories; no
ordering

Ordinal: Levels have natural
ordering

Nominal outcome ) Polytomous
model

Ordinal
outcome ) Ordinal model or poly-

tomous model

The disadvantage of dichotomizing a polyto-
mous outcome is loss of detail in describing
the outcome of interest. For example, in the
scenario given above, we can no longer com-
pare mild vs. none or moderate vs. mild. This
loss of detail may, in turn, affect the conclu-
sions made about the exposure–disease
relationship.

The detail of the original data coding can be
retained through the use of models developed
specifically for polytomous outcomes. The spe-
cific form that the model takes depends, in
part, on whether the multilevel outcome vari-
able is measured on a nominal or an ordinal
scale.

Nominal variables simply indicate different
categories. An example is histological subtypes
of cancer. For endometrial cancer, three possi-
ble subtypes are adenosquamous, adenocarci-
noma, and other.

Ordinal variables have a natural ordering
among the levels. An example is cancer tumor
grade, ranging fromwell differentiated tomod-
erately differentiated to poorly differentiated
tumors.

An outcome variable that has three or more
nominal categories can be modeled using poly-
tomous logistic regression. An outcome vari-
able with three or more ordered categories
can also be modeled using polytomous regres-
sion, but can also be modeled with ordinal
logistic regression, provided that certain
assumptions are met. Ordinal logistic regres-
sion is discussed in detail in Chap. 13.

EXAMPLE

Endometrial cancer subtypes:

� Adenosquamous
� Adenocarcinoma
� Other

EXAMPLE

Tumor grade:

� Well differentiated
� Moderately differentiated
� Poorly differentiated
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II. Polytomous Logistic
Regression: An
Example with Three
Categories

?

E D

When modeling a multilevel outcome variable,
the epidemiological question remains the
same: What is the relationship of one or more
exposure or study variables (E) to a disease or
illness outcome (D)?

In this section, we present an example of a
polytomous logistic regression model with
one dichotomous exposure variable and an
outcome (D) that has three categories. This is
the simplest case of a polytomous model. Later
in the presentation, we discuss extending the
polytomous model to more than one predictor
variable and then to outcomes with more than
three categories.

The example uses data from the National Can-
cer Institute’s Black/White Cancer Survival
Study (Hill et al., 1995). Suppose we are inter-
ested in assessing the effect of age group on
histological subtype among women with pri-
mary endometrial cancer. AGEGP, the expo-
sure variable, is coded as 0 for aged 50–64 or
1 for aged 65–79. The disease variable, histo-
logical subtype, is coded 0 for adenocarci-
noma, 1 for adenosquamous, and 2 for other.

There is no inherent order in the outcome vari-
able. The 0, 1, and 2 coding of the disease
categories is arbitrary.

The 3 � 2 table of the data is presented on the
left.

EXAMPLE

Simplest case of polytomous model:

� Outcome with three categories
� One dichotomous exposure

variable

Data source:
Black/White Cancer Survival Study

E¼AGEGP
0 if 50--64

1 if 65--79

�

D¼SUBTYPE

0 if Adenocarcinoma

1 if Adenosquamous

2 if Other

8<
:

SUBTYPE (0, 1, 2) uses arbitrary
coding.

AGEGP
50–64 65–79
E ¼ 0 E ¼ 1

Adenocarcinoma
D ¼ 0

77 109

Adenosquamous
D ¼ 1

11 34

Other
D ¼ 2

18 39
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Outcome categories:

A   B   C   D

Reference (arbitrary choice)

Then compare:

A vs. C, B vs. C, and D vs. C

Dichotomous vs. polytomous
model: Odds vs. “odds-like”
expressions

logit PðXÞ ¼ ln
PðD ¼ 1 jXÞ
PðD ¼ 0 jXÞ

� �

¼ aþ ~
k

i¼ 1

biXi

With polytomous logistic regression, one of the
categories of the outcome variable is desig-
nated as the reference category and each of
the other levels is compared with this refer-
ence. The choice of reference category can be
arbitrary and is at the discretion of the
researcher. See example at left. Changing the
reference category does not change the form of
the model, but it does change the interpreta-
tion of the parameter estimates in the model.

In our three-outcome example, the Adenocar-
cinoma group has been designated as the ref-
erence category. We are therefore interested in
modeling two main comparisons. We want to
compare subjects with an Adenosquamous out-
come (category 1) to those subjects with an
Adenocarcinoma outcome (category 0) and we
also want to compare subjects with an Other
outcome (category 2) to those subjects with an
Adenocarcinoma outcome (category 0).

If we consider these two comparisons sepa-
rately, the crude odds ratios can be calculated
using data from the preceding table. The crude
odds ratio comparing Adenosquamous (cate-
gory 1) to Adenocarcinoma (category 0) is the
product of 77 and 34 divided by the product of
109 and 11, which equals 2.18. Similarly, the
crude odds ratio comparing Other (category 2)
to Adenocarcinoma (category 0) is the product
of 77 and 39 divided by the product of 109 and
18, which equals 1.53.

Recall that for a dichotomous outcome vari-
able coded as 0 or 1, the logit form of the
logistic model, logit P(X), is defined as the nat-
ural log of the odds for developing a disease for
a person with a set of independent variables
specified by X. This logit form can be written
as the linear function shown on the left.

EXAMPLE (continued)

Reference group ¼ Adenocarcinoma

Two comparisons:

1. Adenosquamous (D ¼ 1)
vs. Adenocarcinoma (D ¼ 0)

2. Other (D ¼ 2)
vs. Adenocarcinoma (D ¼ 0)

Using data from table:

dOR1 vs: 0 ¼ 77� 34

109� 11
¼ 2:18

dOR2 vs: 0 ¼ 77� 39

109� 18
¼ 1:53
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Odds of disease: a ratio of
probabilities

Dichotomous outcome:

odds ¼ PðD ¼ 1Þ
1� PðD ¼ 1Þ ¼

PðD ¼ 1Þ
PðD ¼ 0Þ

Polytomous outcome
(three categories):

Use “odds-like” expressions for two
comparisons

(1) P(D = 1)
P(D = 0)

P(D = 2)
P(D = 0)

(2)

The logit form of model uses ln of
“odds-like” expressions

(1) ln
PðD ¼ 1Þ
PðD ¼ 0Þ

� �
(2) ln

PðD ¼ 2Þ
PðD ¼ 0Þ

� �

PðD ¼ 0Þ þ PðD ¼ 1Þ þ PðD ¼ 2Þ ¼ 1

BUT

PðD ¼ 1Þ þ PðD ¼ 0Þ 6¼ 1

PðD ¼ 2Þ þ PðD ¼ 0Þ 6¼ 1

Therefore:

PðD ¼ 1Þ
PðD ¼ 0Þ and

PðD ¼ 2Þ
PðD ¼ 0Þ

“odds-like” but not true odds
(unless analysis restricted to two
categories)

The odds for developing disease can be viewed
as a ratio of probabilities. For a dichotomous
outcome variable coded 0 and 1, the odds of
disease equal the probability that disease
equals 1 divided by 1 minus the probability
that disease equals 1, or the probability that
disease equals 1 divided by the probability
that disease equals 0.

For polytomous logistic regression with a
three-level variable coded 0, 1, and 2, there
are two analogous expressions, one for each
of the two comparisons we are making. These
expressions are also in the form of a ratio of
probabilities.

In polytomous logistic regression with three
levels, we therefore define our model using
two expressions for the natural log of these
“odds-like” quantities. The first is the natural
log of the probability that the outcome is in
category 1 divided by the probability that the
outcome is in category 0; the second is the
natural log of the probability that the outcome
is in category 2 divided by the probability that
the outcome is in category 0.

When there are three categories of the out-
come, the sum of the probabilities for the
three outcome categories must be equal to 1,
the total probability. Because each comparison
considers only two probabilities, the probabil-
ities in the ratio do not sum to 1. Thus, the two
“odds-like” expressions are not true odds.
However, if we restrict our interest to just the
two categories being considered in a given
ratio, wemay still conceptualize the expression
as an odds. In other words, each expression is
an odds only if we condition on the outcome
being in one of the two categories of interest.
For ease of the subsequent discussion, we will
use the term “odds” rather than “odds-like” for
these expressions.
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Model for three categories, one
predictor (X1 = AGEGP):

ln
PðD ¼ 1 jX1Þ
PðD ¼ 0 jX1Þ

� �
¼ a1 þ b11X1

ln
PðD ¼ 2 jX1Þ
PðD ¼ 0 jX1Þ

� �
¼ a2 þ b21X1

2 vs. 0

1 vs. 0

a1 b11

b21a2

III. Odds Ratio with Three
Categories

â1 â2

b̂11 b̂21

)
Estimates obtained

as in SLR

Special case for one predictor
where X1 ¼ 1 or X1 ¼ 0

Because our example has three outcome cate-
gories and one predictor (i.e., AGEGP), our
polytomous model requires two regression
expressions. One expression gives the log of
the probability that the outcome is in category
1 divided by the probability that the outcome is
in category 0, which equals a1 plus b11 times X1.

We are also simultaneouslymodeling the log of
the probability that the outcome is in category
2 divided by the probability that the outcome is
in category 0, which equals a2 plus b21 times X1.

Both the alpha and beta terms have a subscript
to indicate which comparison is being made
(i.e., category 1 vs. 0 or category 2 vs. 0).

Once a polytomous logistic regression model
has been fit and the parameters (intercepts
and beta coefficients) have been estimated,
we can then calculate estimates of the disease–
exposure association in a similarmanner to the
methods used in standard logistic regression
(SLR).

Consider the special case in which the only
independent variable is the exposure variable
and the exposure is coded 0 and 1. To assess
the effect of the exposure on the outcome, we
compare X1 ¼ 1 to X1 ¼ 0.
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Two odds ratios:

OR1 (category 1 vs. category 0)
(Adenosquamous vs.
Adenocarcinoma)

OR2 (category 2 vs. category 0)
(Other vs. Adenocarcinoma)

OR1 ¼ ½PðD¼1jX¼1Þ=PðD¼0jX¼1Þ�
½PðD¼1jX¼0Þ=PðD¼0jX¼0Þ�

OR2 ¼ ½PðD¼2jX¼1Þ=PðD¼0jX¼1Þ�
½PðD¼2jX¼0Þ=PðD¼0jX¼0Þ�

Adenosquamous vs. Adenocarci-
noma:

OR1 ¼ exp½a1 þ b11ð1Þ�
exp½a1 þ b11ð0Þ�

¼ eb11

Other vs. Adenocarcinoma:

OR2 ¼ exp½a2 þ b21ð1Þ�
exp½a2 þ b21ð0Þ�

¼ eb21

They are different!

OR1= eb11 OR2= eb21

We need to calculate two odds ratios, one that
compares category 1 (Adenosquamous) to
category 0 (Adenocarcinoma) and one that
compares category 2 (Other) to category 0
(Adenocarcinoma).

Recall that we are actually calculating a ratio of
two “odds-like” expressions. However, we con-
tinue the conventional use of the term odds
ratio for our discussion.

Each odds ratio is calculated in a manner sim-
ilar to that used in standard logistic regression.
The two OR formulas are shown on the left.

Using our previously defined probabilities of
the log odds, we substitute the two values of
X1 for the exposure (i.e., 0 and 1) into those
expressions. After dividing, we see that the
odds ratio for the first comparison (Adenos-
quamous vs. Adenocarcinoma) is e to the b11.

The odds ratio for the second comparison
(Other vs. Adenocarcinoma) is e to the b21.

We obtain two different odds ratio expressions,
one utilizing b11 and the other utilizing b21.
Thus, quantifying the association between the
exposure and outcome depends on which
levels of the outcome are being compared.
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General case for one predictor

ORg ¼ exp bg1 X**
1 � X*

1

� �h i
; where

g ¼ 1; 2

Computer output for polytomous
model:

Is output listed in ascending or
descending order?

The special case of a dichotomous predictor
can be generalized to include categorical or
continuous predictors. To compare any two
levels (X1 ¼ X**

1 vs. X1 ¼ X*
1) of a predictor, the

odds ratio formula is e to the bg1 times
(X**

1 � X*
1), where g defines the category of the

disease variable (1 or 2) being compared with
the reference category (0).

The output generated by a computer package
for polytomous logistic regression includes
alphas and betas for the log odds terms being
modeled. Packages vary in the presentation of
output, and the coding of the variables must be
considered to correctly read and interpret the
computer output for a given package. For
example, in SAS, if D ¼ 0 is designated as the
reference category, the output is listed in des-
cending order (see Appendix). This means that
the listing of parameters pertaining to the
comparison with category D ¼ 2 precedes the
listing of parameters pertaining to the com-
parison with category D ¼ 1, as shown on the
left.

The results for the polytomous model examin-
ing histological subtype and age are presented
on the left. The results were obtained from
running PROC LOGISTIC in SAS. See the
Computer Appendix for computer coding.

There are two sets of parameter estimates. The
output is listed in descending order, with
a2 labeled as Intercept 1 and a1 labeled as inter-
cept 2. If D ¼ 2 had been designated as the
reference category, the output would have
been in ascending order.

EXAMPLE

SAS

Reference category: D ¼ 0
Parameters for D ¼ 2 comparison
precede D ¼ 1 comparison.

Variable Estimate symbol

Intercept 1 â2
Intercept 2 â1
X1 b̂21
X1 b̂11

EXAMPLE

Variable Estimate S.E. Symbol

Intercept 1 �1.4534 0.2618 â2
Intercept 2 �1.9459 0.3223 â1
AGEGP 0.4256 0.3215 b̂21
AGEGP 0.7809 0.3775 b̂11
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The equation for the estimated log odds of
Other (category 2) vs. Adenocarcinoma (cate-
gory 0) is negative 1.4534 plus 0.4256 times age
group.

Exponentiating the beta estimate for age in this
model yields an estimated odds ratio of 1.53.

The equation for the estimated log odds of
Adenosquamous (category 1) vs. Adenocarci-
noma (category 0) is negative 1.9459 plus
0.7809 times age group.

Exponentiating the beta estimate for AGEGP
in this model yields an estimated odds ratio
of 2.18.

The odds ratios from the polytomous model
(i.e., 1.53 and 2.18) are the same as those we
obtained earlier when calculating the crude
odds ratios from the data table before model-
ing. In the special case, where there is one
dichotomous exposure variable, the crude esti-
mate of the odds ratio will match the estimate
of the odds ratio obtained from a polytomous
model (or from a standard logistic regression
model).

We can interpret the odds ratios by saying that,
for women diagnosed with primary endome-
trial cancer, older subjects (aged 65–79) relative
to younger subjects (aged 50–64) were more
likely to have their tumors categorized as Other
than as Adenocarcinoma (dOR2 ¼ 1:53) and were
even more likely to have their tumors classified
as Adenosquamous than as Adenocarcinoma
(dOR1 ¼ 2:18).

EXAMPLE (continued)

Other vs. Adenocarcinoma:

ln
P̂ðD¼2 jX1Þ
P̂ðD¼0 jX1Þ

" #
¼�1:4534

þð0:4256ÞAGEGP

dOR2¼exp½b̂21�¼expð0:4256Þ¼1:53

Adenosquamous vs. Adenocarcinoma:

ln
P̂ðD ¼ 1 jX1Þ
P̂ðD ¼ 0 jX1Þ

" #
¼� 1:9459

þ ð0:7809ÞAGEGP

OR1 ¼ exp½b̂11� ¼ expð0:7809Þ ¼ 2:18

Special case

One dichotomous exposure )
polytomous model ORs ¼ crude ORs

Interpretation of ORs

For older vs. younger subjects:

� Other tumor category more
likely than
Adenocarcinoma ðdOR2 ¼ 1:53Þ

� Adenosquamous even more
likely than
Adenocarcinoma ðdOR1 ¼ 2:18Þ
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Interpretation of alphas

Log odds where all Xs set to 0.

Not informative if sampling
done by outcome (i.e., “disease”)
status.

IV. Statistical Inference
with Three Categories

Two types of inferences:

1. Hypothesis testing about
parameters

2. Interval estimation around
parameters

Procedures for polytomous out-
comes or generalizations of SLR

95% CI for OR (one predictor)

exp b̂g1 X**
1 � X*

1

� �� 1:96 X**
1 � X*

1

� �
sb̂g1

n o

What is the interpretation of the alpha coeffi-
cients? They represent the log of the odds
where all independent variables are set to
zero (i.e., Xi ¼ 0 for i ¼ 1 to k). The intercepts
are not informative, however, if sampling is
done by outcome (i.e., disease status). For
example, suppose the subjects in the endome-
trial cancer example had been selected based
on tumor type, with age group (i.e., exposure
status) determined after selection. This would
be analogous to a case-control study design.
Although the intercepts are not informative in
this setting, the odds ratio is still a valid mea-
sure with this sampling method.

In polytomous logistic regression, as with stan-
dard logistic regression (i.e., a dichotomous
outcome), two types of statistical inferences
are often of interest: (1) testing hypotheses
and (2) deriving interval estimates around
parameters. Procedures for both of these are
straightforward generalizations of those that
apply to logistic regression modeling with a
dichotomous outcome variable (i.e., SLR).

The confidence interval estimation is analo-
gous to the standard logistic regression situa-
tion. For one predictor variable, with any levels
(X**

1 and X*
1) of that variable, the large-sample

formula for a 95% confidence interval is of the
general form shown at left.

Continuing with the endometrial cancer exam-
ple, the estimated standard errors for the
parameter estimates for AGEGP are 0.3215
for b̂21 and 0.3775 for b̂11.

EXAMPLE

Estimated standard errors:
(X1 ¼ AGEGP)

sb̂21 ¼ 0:3215; sb̂11 ¼ 0:3775
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Likelihood ratio test

Assess significance of X1

2 bs tested at the same time

+
2 degrees of freedom

The 95% confidence interval for OR2 is calcu-
lated as 0.82 to 2.87, as shown on the left. The
95% confidence interval for OR1 is calculated
as 1.04 to 4.58.

As with a standard logistic regression, we can
use a likelihood ratio test to assess the signifi-
cance of the independent variable in our
model. We must keep in mind, however, that
rather than testing one beta coefficient for an
independent variable, we are now testing two
at the same time. There is a coefficient for each
comparison being made (i.e., D ¼ 2 vs. D ¼ 0
and D ¼ 1 vs. D ¼ 0). This affects the number
of parameters tested and, therefore, the
degrees of freedom associated with the test.

In our example, we have a three-level outcome
variable and a single predictor variable, the
exposure. As the model indicates, we have two
intercepts and two beta coefficients.

If we are interested in testing for the signifi-
cance of the beta coefficient corresponding to
the exposure, we begin by fitting a full model
(with the exposure variable in it) and then com-
paring that to a reduced model containing only
the intercepts.

The null hypothesis is that the beta coefficients
corresponding to the exposure variable are
both equal to zero.

The likelihood ratio test is calculated as nega-
tive two times the log likelihood (ln L) from the
reduced model minus negative two times the
log likelihood from the full model. The result-
ing statistic is distributed approximately chi-
square, with degrees of freedom (df) equal to
the number of parameters set equal to zero
under the null hypothesis.

EXAMPLE

3 levels of D and 1 predictor

+
2 as and 2 bs

Full model:

ln
PðD ¼ g jX1Þ
PðD ¼ 0 jX1Þ

� �
¼ ag þ bg1X1;

g ¼ 1; 2

Reduced model:

ln
PðD ¼ gÞ
PðD ¼ 0Þ

� �
¼ ag; g ¼ 1; 2

H0: b11¼ b21¼ 0

Likelihood ratio test statistic:

� 2 ln Lreduced � ð�2 ln LfullÞ � w2

with df ¼ number of parameters set
to zero under H0

EXAMPLE (continued)

95% CI for OR2

¼ exp½0:4256� 1:96ð0:3215Þ�
¼ ð0:82; 2:87Þ

95% CI for OR1

¼ exp½0:7809� 1:96ð0:3775Þ�
¼ ð1:04; 4:58Þ
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Wald test

b for single outcome level tested

For two levels:

H0: b11 ¼ 0 H0: b21 ¼ 0

Z ¼ b̂g1
sb̂g1

� Nð0; 1Þ

In the endometrial cancer example, negative
two times the log likelihood for the reduced
model is 514.4, and for the full model is 508.9.
The difference is 5.5. The chi-square P-value
for this test statistic, with two degrees of
freedom, is 0.06. The two degrees of freedom
are for the two beta coefficients being tested,
one for each comparison. We conclude that
AGEGP is statistically significant at the 0.10
level but not at the 0.05 level.

Whereas the likelihood ratio test allows for the
assessment of the effect of an independent var-
iable across all levels of the outcome simulta-
neously, it is possible that one might be
interested in evaluating the effect of the inde-
pendent variable at a single outcome level.
A Wald test can be performed in this situation.

The null hypothesis, for each level of interest, is
that the beta coefficient is equal to zero. The
Wald test statistics are computed as described
earlier, by dividing the estimated coefficient by
its standard error. This test statistic has an
approximate normal distribution.

Continuing with our example, the null hypoth-
esis for the Adenosquamous vs. Adenocarci-
noma comparison (i.e., category 1 vs. 0) is
that b11 equals zero. The Wald statistic for b11
is equal to 2.07, with a P-value of 0.04. The null
hypothesis for the Other vs. Adenocarcinoma
comparison (i.e., category 2 vs. 0) is that b21
equals zero. The Wald statistic for b21 is equal
to 1.32, with a P-value of 0.19.

EXAMPLE

H0: b11 ¼ 0 (category 1 vs. 0)

Z ¼ 0:7809

0:3775
¼ 2:07; P ¼ 0:04

H0: b21 ¼ 0 (category 2 vs. 0)

Z ¼ 0:4256

0:3215
¼ 1:32; P ¼ 0:19

EXAMPLE

�2 ln L

Reduced: 514.4
Full: 508.9

Difference ¼ 5.5
df ¼ 2
P-value ¼ 0.06
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Conclusion: Is AGEGP significant?

) Yes: Adenocarcinoma vs.
Adenosquamous

) No: Other vs.
Adenosquamous.

Decision: Retain or drop both b11
and b21 from model

V. Extending the
Polytomous Model to G
Outcomes and k
Predictors

Adding more independent vari-
ables

ln
PðD ¼ 1 jXÞ
PðD ¼ 0 jXÞ

� �
¼ a1 þ ~

k

i¼ 1

b1iXi

ln
PðD ¼ 2 jXÞ
PðD ¼ 0 jXÞ

� �
¼ a2 þ ~

k

i¼ 1

b2iXi

Same procedures for OR, CI, and
hypothesis testing

At the 0.05 level of significance, we reject the
null hypothesis for b11 but not for b21. We con-
clude that AGEGP is statistically significant
for the Adenosquamous vs. Adenocarcinoma
comparison (category 1 vs. 0), but not for
the Other vs. Adenocarcinoma comparison
(category 2 vs. 0).

We must either keep both betas (b11 and b21)
for an independent variable or drop both betas
when modeling in polytomous regression.
Even if only one beta is significant, both betas
must be retained if the independent variable is
to remain in the model.

Expanding themodel to addmore independent
variables is straightforward. We can add k
independent variables for each of the outcome
comparisons.

The log odds comparing category 1 to category
0 is equal to a1 plus the summation of the k
independent variables times their b1 coeffi-
cients. The log odds comparing category 2
to category 0 is equal to a2 plus the summation
of the k independent variables times their
b2 coefficients.

The procedures for calculation of the odds
ratios, confidence intervals, and for hypothesis
testing remain the same.

To illustrate, we return to our endometrial can-
cer example. Suppose we wish to consider the
effects of estrogen use and smoking status
as well as AGEGP on histological subtype
(D ¼ 0, 1, 2). The model now contains three
predictor variables: X1 ¼ AGEGP, X2 ¼
ESTROGEN, and X3 ¼ SMOKING.

EXAMPLE

D ¼ SUBTYPE
0 if Adenocarcinoma
1 if Adenosquamous
2 if Other

(

Predictors

X1 ¼ AGEGP
X2 ¼ ESTROGEN
X3 ¼ SMOKING
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Recall that AGEGP is coded as 0 for aged 50–64
or 1 for aged 65–79. Both estrogen use and
smoking status are also coded as dichotomous
variables. ESTROGEN is coded as 1 for ever
user and 0 for never user. SMOKING is coded
as 1 for current smoker and 0 for former or
never smoker.

The log odds comparing Adenosquamous
(D ¼ 1) to Adenocarcinoma (D ¼ 0) is equal
to a1 plus b11 times X1 plus b12 times X2 plus
b13 times X3.

Similarly, the log odds comparing Other type
(D ¼ 2) to Adenocarcinoma (D ¼ 0) is equal to
a2 plus b21 times X1 plus b22 times X2 plus b23
times X3.

The output for the analysis is shown on the left.
There are two beta estimates for each of the
three predictor variables in the model. Thus,
there are a total of eight parameters in the
model, including the intercepts.

EXAMPLE (continued)

X1 ¼ AGEGP
0 if 50--64

1 if 65--79

�

X2 ¼ ESTROGEN
0 if never user

1 if ever user

�

X3 ¼ SMOKING

0 if former or never

smoker

1 if current smoker

8<
:

Adenosquamous vs. Adenocarcinoma:

ln
PðD ¼ 1 jXÞ
PðD ¼ 0 jXÞ

� �
¼ a1 þ b11X1 þ b12X2

þ b13X3

Other vs. Adenocarcinoma:

ln
PðD ¼ 2 jXÞ
PðD ¼ 0 jXÞ

� �
¼ a2 þ b21X1 þ b22X2

þ b23X3

Variable Estimate S.E. Symbol

Intercept 1 �1.2032 0.3190 â2
Intercept 2 �1.8822 0.4025 â1

AGEGP 0.2823 0.3280 b̂21
AGEGP 0.9871 0.4118 b̂11

ESTROGEN �0.1071 0.3067 b̂22
ESTROGEN �0.6439 0.3436 b̂12

SMOKING �1.7913 1.0460 b̂23
SMOKING 0.8895 0.5254 b̂13
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Suppose we are interested in the effect of
AGEGP, controlling for the effects of ESTRO-
GEN and SMOKING. The odds ratio for the
effect of AGEGP in the comparison of Adenos-
quamous (D ¼ 1) to Adenocarcinoma (D ¼ 0) is
equal to e to the b̂11 or exp(0.9871) equals 2.68.

The odds ratio for the effect of AGEGP in the
comparison of Other type (D ¼ 2) to Adenocar-
cinoma (D ¼ 0) is equal to e to the b̂21 or
exp(0.2823) equals 1.33.

Our interpretation of the results for the three-
variable model differs from that of the one-
variable model. The effect of AGEGP on the
outcome is now estimated while controlling
for the effects of ESTROGEN and SMOKING.

If we compare the model with three predictor
variables with the model with only AGEGP
included, the effect of AGEGP in the reduced
model is weaker for the comparison of Adeno-
squamous to Adenocarcinoma (dOR ¼ 2:18 vs.
2.68), but is stronger for the comparison of
Other to Adenocarcinoma (dOR ¼ 1:53 vs. 1.33).

These results suggest that estrogen use and
smoking status act as confounders of the rela-
tionship between age group and the tumor
category outcome. The results of the single-
predictor model suggest a bias toward the
null value (i.e., 1) for the comparison of Adeno-
squamous to Adenocarcinoma, whereas the
results suggest a bias away from the null for
the comparison of Other to Adenocarcinoma.
These results illustrate that assessment of con-
founding can have added complexity in the
case of multilevel outcomes.

EXAMPLE (continued)

Adenosquamous vs. Adenocarcinoma:

dOR1 ¼ exp½â1 þ b̂11ð1Þ þ b̂12ðX2Þ þ b̂13ðX3Þ�
exp½â1 þ b̂11ð0Þ þ b̂12ðX2Þ þ b̂13ðX3Þ�

¼ exp b̂11 ¼ expð0:9871Þ ¼ 2:68

Other vs. Adenocarcinoma:

dOR2 ¼ exp½â2 þ b21ð1Þ þ b̂22ðX2Þ þ b̂23ðX3Þ�
exp½â2 þ b̂21ð0Þ þ b̂22ðX2Þ þ b̂23ðX3Þ�

¼ exp b̂21 ¼ expð0:2823Þ ¼ 1:33

Interpretation of ORs

Three-variable vs. one-variable model

Three-variable model:

) AGEGP jESTROGEN;SMOKING

One-variable model:

) AGEGP jno control variables

Odds ratios for effect of AGEGP:

Model

Comparison

AGEGP

ESTROGEN

SMOKING

AGEGP

1 vs. 0 2.68 2.18
2 vs. 0 1.33 1.53

Results suggest bias for single-
predictor model:

� Toward null for comparison of
category 1 vs. 0

� Away from null for comparison of
category 2 vs. 0.
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The 95% confidence intervals are calculated
using the standard errors of the parameter esti-
mates from the three-variable model, which
are 0.4118 and 0.3280 for b̂11 and b̂12, respec-
tively.

These confidence intervals are calculated with
the usual large-sample formula as shown on
the left. For OR1, this yields a confidence inter-
val of 1.20 to 6.01, whereas for OR2, this yields
a confidence interval of 0.70 to 2.52. The confi-
dence interval for OR2 contains the null value
(i.e., 1.0), whereas the interval for OR1 does
not.

The procedures for the likelihood ratio test and
for the Wald tests follow the same format as
described earlier for the polytomous model
with one independent variable.

The likelihood ratio test compares the reduced
model without the age group variable to the full
model with the age group variable. This test is
distributed approximately chi-square with two
degrees of freedom. Minus two times the log
likelihood for the reduced model is 500.97, and
for the full model, it is 494.41. The difference of
6.56 is statistically significant at the 0.05 level
(P ¼ 0.04).

The Wald tests are carried out as before, with
the same null hypotheses. The Wald statistic
for b11 is equal to 2.40 and for b21 is equal to
0.86. The P-value for b11 is 0.02, while the
P-value for b21 is 0.39. We therefore reject the
null hypothesis for b11 but not for b21.

EXAMPLE (continued)

95% confidence intervals

Use standard errors from three-
variable model:

sb̂11 ¼ 0:4118; sb̂21 ¼ 0:3280

95% CI for OR1

¼ exp½0:9871� 1:96ð0:4118Þ
¼ ð1:20; 6:01Þ

95% CI for OR2

¼ exp½0:2832� 1:96ð0:3280Þ
¼ ð0:70; 2:52Þ

Likelihood ratio test

Wald tests

)
same procedures

as with one predictor

Likelihood ratio test

�2 ln L

Reduced: 500.97
Full: 494.41

Difference: 6.56
(� w2, with 2 df)
P-value ¼ 0.04

Wald tests

H0 : b11 ¼ 0 ðcategory 1 vs: 0Þ
Z ¼ 0:9871

0:4118
¼ 2:40; P ¼ 0:02

H0 : b21 ¼ 0 ðcategory 2 vs: 0Þ
Z ¼ 0:2832

0:3280
¼ 0:86; P ¼ 0:39
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Adding interaction terms

D ¼ (0, 1, 2)

Two independent variables (X1, X2)

log odds ¼ ag þ bg1X1 þ bg2X2

þbg3X1X2,

where g ¼ 1, 2

Likelihood ratio test

To test significance of interaction
terms

H0: b13 ¼ b23 ¼ 0

Full model: ag þ bg1X1 þ bg2X2

þ bg3X1X2

Reducedmodel: ag þ bg1X1 þ bg2X2,

where g ¼ 1, 2

Wald test

To test significance of interaction
term at each level

H0: b13 ¼ 0

H0: b23 ¼ 0

We conclude that AGEGP is statistically signif-
icant for the Adenosquamous vs. Adenocarci-
noma comparison (category 1 vs. 0), but not for
the Other vs. Adenocarcinoma comparison
(category 2 vs. 0), controlling for ESTROGEN
and SMOKING.

The researcher must make a decision about
whether to retain AGEGP in the model. If we
are interested in both comparisons, then both
betas must be retained, even though only one is
statistically significant.

We can also consider interaction terms in a
polytomous logistic model.

Consider a disease variable that has three cate-
gories (D ¼ 0, 1, 2) as in our previous example.
Suppose our model includes two independent
variables, X1 and X2, and that we are interested
in the potential interaction between these two
variables. The log odds could be modeled as
a1 plus bg1X1 plus bg2X2 plus bg3X1X2. The
subscript g (g ¼ 1, 2) indicates which compa-
rison is being made (i.e., category 2 vs. 0, or
category 1 vs. 0).

To test for the significance of the interaction
term, a likelihood ratio test with two degrees of
freedom can be done. The null hypothesis is
that b13 equals b23 equals zero.

A full model with the interaction termwould be
fit and its likelihood compared against a
reduced model without the interaction term.

It is also possible to test the significance of the
interaction term at each level with Wald tests.
The null hypotheses would be that b13 equals
zero and that b23 equals zero. Recall that both
terms must either be retained or dropped.

EXAMPLE (continued)

Conclusion: Is AGEGP significant?*

) Yes: Adenocarcinoma vs.
Adenosquamous

) No: Other vs. Adenosquamous.

*Controlling for ESTROGEN and
SMOKING

Decision: Retain or drop AGEGP from
model.
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Extending model to G outcomes

Outcome variable has G levels:
(0, 1, 2, . . . , G � 1)

ln
PðD ¼ g jXÞ
PðD ¼ 0 jXÞ

� �
¼ ag þ ~

k

i¼ 1

bgiXi;

where g ¼ 1, 2, . . . , G � 1

Calculation of ORs and CIs as
before

Likelihood ratio test

Wald tests

)
same

procedures

Likelihood ratio test

� 2 lnLreduced � ð�2 ln LfullÞ
� w2

with df ¼ number of parameters
set to zero under H0 (¼ G � 1 if
k ¼ 1)

Wald test

Z ¼ b̂g1
sb̂g1

� Nð0; 1Þ;

where g ¼ 1, 2, . . . , G � 1

The model also easily extends for outcomes
with more than three levels.

Assume that the outcome has G levels (0, 1,
2, . . . , G � 1). There are now G � 1 possible
comparisons with the reference category.

If the reference category is 0, we can define the
model in terms of G � 1 expressions of the
following form: the log odds of the probability
that the outcome is in category g divided by the
probability the outcome is in category 0 equals
ag plus the summation of the k independent
variables times their bg coefficients.

The odds ratios and corresponding confidence
intervals for the G � 1 comparisons of cate-
gory g to category 0 are calculated in the man-
ner previously described. There are now G � 1
estimated odds ratios and corresponding con-
fidence intervals, for the effect of each inde-
pendent variable in the model.

The likelihood ratio test and Wald test are also
calculated as before.

For the likelihood ratio test, we test G � 1
parameter estimates simultaneously for each
independent variable. Thus, for testing one
independent variable, we have G � 1 degrees
of freedom for the chi-square test statistic com-
paring the reduced and full models.

We can also perform aWald test to examine the
significance of individual betas. We haveG � 1
coefficients that can be tested for each inde-
pendent variable. As before, the set of coeffi-
cients must either be retained or dropped.
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VI. Likelihood Function
for Polytomous Model

(Section may be omitted.)

Outcome with three levels

Consider probabilities of three out-
comes:

PðD ¼ 0Þ;PðD ¼ 1Þ;PðD ¼ 2Þ

Logistic regression: dichotomous
outcome:

PðD ¼ 1 jXÞ ¼ 1

1þ exp � aþ ~
k

i¼ 1

biXi

� �� �
PðD ¼ 0 jXÞ ¼ 1� PðD ¼ 1 jXÞ

Polytomous regression: three-level
outcome:

PðD ¼ 0 jXÞ þ PðD ¼ 1 jXÞ
þ PðD ¼ 2 jXÞ ¼ 1

h1ðXÞ ¼ a1 þ ~
k

i¼ 1

b1iXi

h2ðXÞ ¼ a2 þ ~
k

i¼ 1

b2iXi

PðD ¼ 1 jXÞ
PðD ¼ 0 jXÞ ¼ exp½h1ðXÞ�
PðD ¼ 2 jXÞ
PðD ¼ 0 jXÞ ¼ exp½h2ðXÞ�

We now present the likelihood function for
polytomous logistic regression. This section
may be omitted without loss of continuity.

We will write the function for an outcome vari-
able with three categories. Once the likelihood
is defined for three outcome categories, it can
easily be extended to G outcome categories.

We begin by examining the individual prob-
abilities for the three outcomes discussed in
our earlier example, that is, the probabilities
of the tumor being classified as Adenocarci-
noma (D ¼ 0), Adenosquamous (D ¼ 1), or
Other (D ¼ 2).

Recall that in logistic regression with a dichot-
omous outcome variable, we were able to write
an expression for the probability that the out-
come variable was in category 1, as shown on
the left, and for the probability the outcome
was in category 0, which is 1 minus the first
probability.

Similar expressions can be written for a three-
level outcome. As noted earlier, the sum of the
probabilities for the three outcomes must be
equal to 1, the total probability.

To simplify notation, we can let h1(X) be equal
to a1 plus the summation of the k independent
variables times their b1 coefficients and h2(X)
be equal to a2 plus the summation of the k
independent variables times their b2 coeffi-
cients.

The probability for the outcome being in cate-
gory 1 divided by the probability for the out-
come being in category 0 is modeled as e to the
h1(X) and the ratio of probabilities for category
2 and category 0 is modeled as e to the h2(X).
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Solve for P(D ¼ 1 |X) and
P(D¼ 2 |X) in terms of P(D¼ 0 |X).

PðD¼ 1 jXÞ ¼ PðD¼ 0 jXÞexp½h1ðXÞ�
PðD¼ 2 jXÞ ¼ PðD¼ 0 jXÞexp½h2ðXÞ�

PðD¼ 0 jXÞ þPðD¼ 0 jXÞexp½h1ðXÞ�
þPðD¼ 0 jXÞexp½h2ðXÞ� ¼ 1

Factoring out P(D ¼ 0|X):

PðD¼ 0 jXÞ½1þ exph1ðXÞ
þ exph2ðXÞ� ¼ 1

With some algebra, we find that

PðD ¼ 0 jXÞ

¼ 1

1þ exp½h1ðXÞ� þ exp½h2ðXÞ�

and that

PðD ¼ 1 jXÞ

¼ exp½h1ðXÞ�
1þ exp½h1ðXÞ� þ exp½h2ðXÞ�

and that

PðD ¼ 2 jXÞ

¼ exp½h2ðXÞ�
1þ exp½h1ðXÞ� þ exp½h2ðXÞ�

L , joint probability of observed
data.
The ML method chooses parame-
ter estimates that maximize L

Rearranging these equations allows us to solve
for the probability that the outcome is in cate-
gory 1, and for the probability that the outcome
is in category 2, in terms of the probability that
the outcome is in category 0.

The probability that the outcome is in cate-
gory 1 is equal to the probability that the out-
come is in category 0 times e to the h1(X).
Similarly, the probability that the outcome is
in category 2 is equal to the probability that the
outcome is in category 0 times e to the h2(X).

These quantities can be substituted into the
total probability equation and summed to 1.

With some simple algebra, we can see that the
probability that the outcome is in category 0 is
1 divided by the quantity 1 plus e to the h1(X)
plus e to the h2(X).

Substituting this value into our earlier equa-
tion for the probability that the outcome is in
category 1, we obtain the probability that the
outcome is in category 1 as e to the h1(X)
divided by one plus e to the h1(X) plus e to the
h2(X).

The probability that the outcome is in category
2 can be found in a similar way, as shown on
the left.

Recall that the likelihood function (L) repre-
sents the joint probability of observing the
data that have been collected and that the
method of maximum likelihood (ML) chooses
that estimator of the set of unknown para-
meters that maximizes the likelihood.
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Subjects: j ¼ 1, 2, 3, . . . , n

yj0 ¼
1 if outcome ¼ 0

0 otherwise

�

yj1 ¼
1 if outcome ¼ 1

0 otherwise

�

yj2 ¼
1 if outcome ¼ 2

0 otherwise

�

PðD ¼ 0 jXÞyj0 PðD ¼ 1 jXÞyj1
� PðD ¼ 2 jXÞyj2

yj0 þ yj1 þ yj2 ¼ 1

since each subject has one outcome

Yn
j¼1

PðD¼ 0 jXÞyj0PðD¼ 1 jXÞyj1PðD¼ 2 jXÞyj2

Likelihood for G outcome cate-
gories:Yn
j¼ 1

YG�1

g¼ 0

PðD ¼ g jXÞyjg ;

where

yjg ¼
1 if the jth subject has D ¼ g

ðg ¼ 0; 1; . . . ;G� 1Þ
0 if otherwise

8><
>:

Estimated as and bs are those
which maximize L

Assume that there are n subjects in the dataset,
numbered from j ¼ 1 to n. If the outcome for
subject j is in category 0, then we let an indica-
tor variable, yj0, be equal to 1, otherwise yj0 is
equal to 0. We similarly create indicator vari-
ables yj1 and yj2 to indicate whether the sub-
ject’s outcome is in category 1 or category 2.

The contribution of each subject to the likeli-
hood is the probability that the outcome is in
category 0, raised to the yj0 power, times the
probability that the outcome is in category 1,
raised to the yj1, times the probability that the
outcome is in category 2, raised to the yj2.

Note that each individual subject contributes
to only one of the category probabilities, since
only one of the indicator variables will be non-
zero.

The joint probability for the likelihood is
the product of all the individual subject
probabilities, assuming subject outcomes are
independent.

The likelihood can be generalized to include G
outcome categories by taking the product of
each individual’s contribution across the G
outcome categories.

The unknown parameters that will be esti-
mated by maximizing the likelihood are the
alphas and betas in the probability that the
disease outcome is in category g, where g
equals 0, 1, . . . , G � 1.
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VII. Polytomous vs.
Multiple Standard
Logistic Regressions

Polytomous vs. separate logistic
models

Polytomous model uses data on all
outcome categories in L.

Separate standard logistic model

uses data ononly two outcome

categories at a time:

+
Parameter and variance estimates

may differ:

Special case: One dichotomous
predictor Polytomous and stan-
dard logistic models ) same
estimates

One may wonder how using a polytomous
model compares with using two or more sepa-
rate dichotomous logistic models.

The likelihood function for the polytomous
model utilizes the data involving all categories
of the outcome variable in a single structure. In
contrast, the likelihood function for a dichoto-
mous logistic model utilizes the data involving
only two categories of the outcome variable. In
other words, different likelihood functions are
used when fitting each dichotomous model
separately than when fitting a polytomous
model that considers all levels simultaneously.
Consequently, both the estimation of the para-
meters and the estimation of the variances
of the parameter estimates may differ when
comparing the results from fitting separate
dichotomous models to the results from the
polytomous model.

In the special case of a polytomous model with
one dichotomous predictor, fitting separate
logistic models yields the same parameter esti-
mates and variance estimates as fitting the
polytomous model.

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows. Then, do the practice exercises and
test.

VIII. SUMMARY

3 Chapter 9: Polytomous Logistic
Regression

This presentation is now complete. We have
described a method of analysis, polytomous
regression, for the situation where the out-
come variable has more than two categories.
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Chapter 10: Ordinal Logistic
Regression

If there is no inherent ordering of the outcome
categories, a polytomous regression model is
appropriate. If there is an inherent ordering of
the outcome categories, then an ordinal logis-
tic regression model may also be appropriate.
The proportional odds model is one such ordi-
nal model, which may be used if the propor-
tional odds assumption is met. This model is
discussed in Chap. 10.
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Detailed
Outline I. Overview (pages 432–433)

A. Focus: modeling outcomes with more than two
levels.

B. Using previously described techniques by
combining outcome categories.

C. Nominal vs. ordinal outcomes.

II. Polytomous logistic regression: An example with
three categories (pages 434–437)

A. Nominal outcome: variable has no inherent
order.

B. Consider “odds-like” expressions, which are
ratios of probabilities.

C. Example with three categories and one
predictor (X1):

ln
PðD ¼ 1 jX1Þ
PðD ¼ 0 jX1Þ

� �
¼ a1 þ b11X1;

ln
PðD ¼ 2 jX1Þ
PðD ¼ 0 jX1Þ

� �
¼ a2 þ b21X1:

III. Odds ratio with three categories (pages 437–441)

A. Computation of OR in polytomous regression is
analogous to standard logistic regression, except
that there is a separate odds ratio for each
comparison.

B. The general formula for the odds ratio for any
two levels of the exposure variable (X**

1 and X*
1) in

a no-interaction model is

ORg ¼ exp ðbg1 X**
1 � X*

1

� �h i
; where g ¼ 1; 2:

IV. Statistical inference with three categories
(pages 441–444)

A. Two types of statistical inferences are often of
interest in polytomous regression:

i. Testing hypotheses

ii. Deriving interval estimates

B. Confidence interval estimation is analogous to
standard logistic regression.

C. The general large-sample formula (no-
interaction model) for a 95% confidence interval
for comparison of outcome level g vs. the
reference category, for any two levels of the
independent variable (X**

1 and X*
1), is

exp b̂g1 X**
1 � X*

1

� �� 1:96 X**
1 � X*

1

� �
sb̂g1

n o
:
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D. The likelihood ratio test is used to test
hypotheses about the significance of the
predictor variable(s).

i. With three levels of the outcome variable,
there are two comparisons and two
estimated coefficients for each predictor

ii. The null hypothesis is that each of the 2 beta
coefficients (for a given predictor) is equal
to zero

iii. The test compares the log likelihood of the
full model with the predictor to that of
the reduced model without the predictor.
The test is distributed approximately chi-
square, with 2 df for each predictor tested

E. The Wald test is used to test the significance of
the predictor at a single outcome level. The
procedure is analogous to standard logistic
regression.

V. Extending the polytomous model to G outcomes
and k predictors (pages 444–449)

A. The model easily extends to include k
independent variables.

B. The general form of the model for G outcome
levels is

ln
PðD ¼ g jXÞ
PðD ¼ 0 jXÞ

� �
¼ ag þ ~

k

i¼ 1

bgiXi;

where g ¼ 1; 2; . . . ;G� 1:

C. The calculation of the odds ratio, confidence
intervals, and hypothesis testing using the
likelihood ratio and Wald tests remains the
same.

D. Interaction terms can be added and tested in a
manner analogous to standard logistic
regression.

VI. Likelihood function for polytomous model
(pages 450–452)

A. For an outcome variable with G categories, the
likelihood function isYn
j¼ 1

YG�1

g¼ 0

PðD ¼ g jXÞyig ; where

yjg ¼
1 if the jth subject has D ¼ g

0 if otherwise

�

where n is the total number of subjects and
g ¼ 0, 1, . . . , G � 1.
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VII. Polytomous vs. multiple standard logistic
regressions (page 453)

A. The likelihood for polytomous regression takes
into account all of the outcome categories;
the likelihood for the standard logistic model
considers only two outcome categories at a time.

B. Parameter and standard error estimates may
differ.

VIII. Summary (page 453)
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Practice
Exercises

Suppose we are interested in assessing the association
between tuberculosis and degree of viral suppression in
HIV-infected individuals on antiretroviral therapy, who
have been followed for 3 years in a hypothetical cohort
study. The outcome, tuberculosis, is coded as none (D ¼ 0),
latent (D ¼ 1), or active (D ¼ 2). The degree of viral suppres-
sion (VIRUS) is coded as undetectable (VIRUS ¼ 0) or
detectable (VIRUS ¼ 1). Previous literature has shown that
it is important to consider whether the individual has pro-
gressed to AIDS (no ¼ 0, yes ¼ 1), and is compliant with
therapy (COMPLIANCE: no ¼ 1, yes ¼ 0). In addition,
AGE (continuous) and GENDER (female ¼ 0, male ¼ 1)
are potential confounders. Also, there may be interaction
between progression to AIDS and compliance with therapy
(AIDSCOMP ¼ AIDS � COMPLIANCE).

We decide to run a polytomous logistic regression to ana-
lyze these data. Output from the regression is shown
below. (The results are hypothetical.) The reference cate-
gory for the polytomous logistic regression is no tubercu-
losis (D ¼ 0). This means that a descending option was
used to obtain the polytomous regression output for the
model, so Intercept 1 (and the coefficient estimates that
follow) pertains to the comparison of D ¼ 2 to D ¼ 0, and
Intercept 2 pertains to the comparison of D ¼ 1 to D ¼ 0.

Variable Coefficient S.E.

Intercept 1 �2.82 0.23
VIRUS 1.35 0.11
AIDS 0.94 0.13
COMPLIANCE 0.49 0.21
AGE 0.05 0.04
GENDER 0.41 0.22
AIDSCOMP 0.33 0.14

Intercept 2 �2.03 0.21
VIRUS 0.95 0.14
AIDS 0.76 0.15
COMPLIANCE 0.34 0.17
AGE 0.03 0.03
GENDER 0.25 0.18
AIDSCOMP 0.31 0.17

1. State the form of the polytomous model in terms of
variables and unknown parameters.

2. For the above model, state the fitted model in terms of
variables and estimated coefficients.

3. Is there an assumption with this model that the out-
come categories are ordered? Is such an assumption
reasonable?
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4. Compute the estimated odds ratio for a 25-year-old
noncompliant male, with a detectable viral load, who
has progressed to AIDS, compared with a similar
female. Consider the outcome comparison latent
tuberculosis vs. none (D ¼ 1 vs. D ¼ 0).

5. Compute the estimated odds ratio for a 25-year-old
noncompliant male, with a detectable viral load, who
has progressed to AIDS, compared with a similar
female. Consider the outcome comparison active
tuberculosis vs. none (D ¼ 2 vs. D ¼ 0).

6. Use the results from the previous two questions to
obtain an estimated odds ratio for a 25-year-old non-
compliant male, with a detectable viral load, who has
progressed to AIDS, compared with a similar female,
with the outcome comparison active tuberculosis vs.
latent tuberculosis (D ¼ 2 vs. D ¼ 1).

Note. If the same polytomous model was run with
latent tuberculosis designated as the reference cate-
gory (D ¼ 1), the output could be used to directly
estimate the odds ratio comparing a male to a female
with the outcome comparison active tuberculosis vs.
latent tuberculosis (D ¼ 2 vs. D ¼ 1). This odds ratio
can also indirectly be estimated with D ¼ 0 as the
reference category. This is justified since the OR
(D ¼ 2 vs. D ¼ 0) divided by the OR (D ¼ 1 vs. D ¼ 0)
equals the OR (D ¼ 2 vs. D ¼ 1). However, if each of
these three odds ratios were estimated with three sep-
arate logistic regressions, then the three estimated
odds ratios are not generally so constrained since the
three outcomes are not modeled simultaneously.

7. Use Wald statistics to assess the statistical signifi-
cance of the interaction of AIDS and COMPLIANCE
in the model at the 0.05 significance level.

8. Estimate the odds ratio(s) comparing a subject who
has progressed to AIDS to one who has not, with the
outcome comparison active tuberculosis vs. none
(D ¼ 2 vs. D ¼ 0), controlling for viral suppression,
age, and gender.

9. Estimate the odds ratio with a 95% confidence inter-
val for the viral load suppression variable (detect-
able vs. undetectable), comparing active tuberculosis
to none, controlling for the effect of the other covari-
ates in the model.

10. Estimate the odds of having latent tuberculosis vs.
none (D ¼ 1 vs. D ¼ 0) for a 20-year-old compliant
female, with an undetectable viral load, who has not
progressed to AIDS.
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Test True or False (Circle T or F)

T F 1. An outcome variable with categories North,
South, East, and West is an ordinal variable.

T F 2. If an outcome has three levels (coded 0, 1, 2),
then the ratio of P(D ¼ 1)/P(D ¼ 0) can be con-
sidered an odds if the outcome is conditioned on
only the two outcome categories being consid-
ered (i.e., D ¼ 1 and D ¼ 0).

T F 3. In a polytomous logistic regression in which the
outcome variable has five levels, there will be
four intercepts.

T F 4. In a polytomous logistic regression in which the
outcome variable has five levels, each indepen-
dent variable will have one estimated coefficient.

T F 5. In a polytomous model, the decision of which
outcome category is designated as the reference
has no bearing on the parameter estimates since
the choice of reference category is arbitrary.

6. Suppose the following polytomous model is specified
for assessing the effects of AGE (coded continuously),
GENDER (male ¼ 1, female ¼ 0), SMOKE (smoker
¼ 1, nonsmoker ¼ 0), and hypertension status (HPT)
(yes ¼ 1, no ¼ 0) on a disease variable with four out-
comes (coded D ¼ 0 for none, D ¼ 1 for mild,
D ¼ 2 for severe, and D ¼ 3 for critical).

ln
PðD ¼ g jXÞ
PðD ¼ 0 jXÞ

� �
¼ ag þ bg1 AGEþ bg2 GENDER

þ bg3 SMOKEþ bg4 HPT;

where g ¼ 1, 2, 3.

Use the model to give an expression for the
odds (severe vs. none) for a 40-year-old non-
smoking male. (Note. Assume that the expression
[P(D ¼ g | X / P(D ¼ 0 |X)] gives the odds for com-
paring group g with group 0, even though this ratio
is not, strictly speaking, an odds.)

7. Use the model in Question 6 to obtain the odds ratio
for male vs. female, comparing mild disease to none,
while controlling for AGE, SMOKE, and HPT.

8. Use the model in Question 6 to obtain the odds ratio
for a 50-year-old vs. a 20-year-old subject, comparing
severe disease to none, while controlling for GEN-
DER, SMOKE, and HPT.

9. For the model in Question 6, describe how you would
perform a likelihood ratio test to simultaneously test
the significance of the SMOKE and HPT coefficients.
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State the null hypothesis, the test statistic, and the dis-
tribution of the test statistic under the null hypothesis.

10. Extend the model from Question 6 to allow for inter-
action between AGE and GENDER and between
SMOKE and GENDER. How many additional para-
meters would be added to the model?

Answers to
Practice
Exercises

1. Polytomous model:

VIRUS

where g = 1, 2.

2.     Polytomous fitted model:

AIDS COMPLIANCE AGE

GENDER AIDSCOMP,

ln
P(D =  g | X)

P(D =  0 | X)
= ag bg1+ bg2+ bg3+ bg4+

bg5+ bg6+

P(D =  2 | X)

P(D =  0 | X)
= –2.82 +1.35VIRUS + 0.94AIDS + 0.49COMPLIANCEln

+ 0.05AGE + 0.41GENDER + 0.33AIDSCOMP,

P(D =  1 | X)

P(D =  0 | X)
= –2.03 + 0.95VIRUS + 0.76AIDS + 0.34COMPLIANCEln

 + 0.03AGE + 0.25GENDER + 0.31AIDSCOMP .

3. No, the polytomous model does not assume an ordered
outcome. The categories given do have a natural order
however, so that an ordinal model may also be appro-
priate (see Chap. 10).

4. dOR1vs0 ¼ expð0:25Þ ¼ 1:28.

5. dOR2vs0 ¼ expð0:41Þ ¼ 1:51:

6. dOR2vs1 ¼ expð0:41Þ= expð0:25Þ ¼ expð0:16Þ ¼ 1:17:

7. Two Wald statistics:

H0: b16 ¼ 0; z1 ¼ 0:31

0:17
¼ 1:82; two-tailed P-value : 0:07;

H0: b26 ¼ 0; z2 ¼ 0:33

0:14
¼ 2:36; two-tailed P-value : 0:02:

The P-value is statistically significant at the 0.05 level
for the hypothesis b26 ¼ 0 but not for the hypothesis
b16 ¼ 0. Since we must either keep or drop both inter-
action parameters from the model, we elect to keep
both parameters because there is a suggestion of inter-
action between AIDS and COMPLIANCE. Alternatively,
a likelihood ratio test could be performed. The likeli-
hood ratio test has the advantage that only one test
statistic needs to be calculated.
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8. Estimated odds ratios (AIDS progression: yes vs. no):

for COMPLIANCE ¼ 0 : expð0:94Þ ¼ 2:56;

for COMPLIANCE ¼ 1 : expð0:94þ 0:33Þ ¼ 3:56:

9. dOR ¼ expð1:35Þ ¼ 3:86; 95% CI : exp½1:35� 1:96ð0:11Þ�
¼ ð3:11; 4:79Þ:

10. Estimated odds ¼ exp[�2.03 þ (0.03)(20)]
¼ exp(�1.43) ¼ 0.24.
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Introduction In this chapter, the standard logistic model is extended to
handle outcome variables that have more than two ordered
categories. When the categories of the outcome variable
have a natural order, ordinal logistic regression may be
appropriate.

The mathematical form of one type of ordinal logistic
regression model, the proportional odds model, and its
interpretation are developed. The formulas for the odds
ratio and confidence intervals are derived, and techniques
for testing hypotheses and assessing the statistical signifi-
cance of independent variables are shown.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 466)

II. Ordinal logistic regression: The proportional odds
model (pages 466–472)

III. Odds ratios and confidence limits (pages 472–475)

IV. Extending the ordinal model (pages 476–478)

V. Likelihood function for ordinal model (pages
478–479)

VI. Ordinal vs. multiple standard logistic regressions
(pages 479–481)

VII. Summary (page 481)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize when the use of ordinal logistic
regression may be appropriate.

2. State or recognize the proportional odds assumption.

3. State or recognize the proportional odds model.

4. Given a printout of the results of a proportional odds
model:

a. State the formula and compute the odds ratio.
b. State the formula and compute a confidence

interval for the odds ratio.
c. Test hypotheses about the model parameters using

the likelihood ratio test or the Wald test, stating the
null hypothesis and the distribution of the test
statistic with the corresponding degrees of freedom
under the null hypothesis.
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Presentation

I. Overview

Modeling
outcomes with
more than two
ordered levels

FOCUS

Ordinal: levels have natural ordering

Ordinal outcome ) Polytomous
model or
ordinal
model

Ordinal model takes into account
order of outcome levels

II. Ordinal Logistic
Regression: The
Proportional Odds
Model

Proportional Odds Model/
Cumulative Logit Model

This presentation and the presentation in Chap.
12 describe approaches for extending the stan-
dard logistic regression model to accommodate
a disease, or outcome, variable that has more
than two categories. The focus of this presenta-
tion is on modeling outcomes with more than
two ordered categories. We describe the form
and key characteristics of one model for such
outcome variables: ordinal logistic regression
using the proportional odds model.

Ordinal variables have a natural ordering among
the levels. An example is cancer tumor grade,
ranging from well differentiated to moderately
differentiated to poorly differentiated tumors.

An ordinal outcome variable with three ormore
categories can be modeled with a polytomous
model, as discussed in Chap. 12, but can also be
modeled using ordinal logistic regression,
provided that certain assumptions are met.

Ordinal logistic regression, unlike polytomous
regression, takes into account any inherent
ordering of the levels in the disease or outcome
variable, thus making fuller use of the ordinal
information.

The ordinal logistic model that we shall
develop is called the proportional odds or
cumulative logit model.

EXAMPLE

Tumor grade:

� Well differentiated

� Moderately differentiated

� Poorly differentiated
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For G categories ) G�1 ways to
dichotomize outcome:

D � 1 vs. D < 1;

D � 2 vs. D < 2, . . . ,

D � G�1 vs. D < G�1

odds ðD � gÞ ¼ PðD � gÞ
PðD < gÞ ;

where g ¼ 1, 2, 3, . . . , G�1

Proportional odds assumption

Same odds ratio regardless of
where categories are dichotomized

To illustrate the proportional odds model,
assume we have an outcome variable with five
categories and consider the four possible ways
to divide the five categories into two collapsed
categories preserving the natural order.

We could compare category 0 to categories 1
through 4, or categories 0 and 1 to categories
2 through 4, or categories 0 through 2 to cate-
gories 3 and 4, or, finally, categories 0 through
3 to category 4. However, we could not com-
bine categories 0 and 4 for comparison with
categories 1, 2, and 3, since that would disrupt
the natural ordering from 0 through 4.

More generally, if an ordinal outcome variable
D has G categories (D ¼ 0, 1, 2, . . . , G�1), then
there are G�1 ways to dichotomize the out-
come: (D � 1 vs. D < 1; D � 2 vs. D < 2, . . . ,
D � G�1 vs. D < G�1). With this categoriza-
tion of D, the odds that D � g is equal to the
probability of D � g divided by the probability
of D < g, where (g ¼ 1, 2, 3, . . . , G�1).

The proportional odds model makes an impor-
tant assumption. Under this model, the odds
ratio assessing the effect of an exposure vari-
able for any of these comparisons will be the
same regardless of where the cut-point is
made. Suppose we have an outcome with five
levels and one dichotomous exposure (E ¼ 1,
E ¼ 0). Then, under the proportional odds
assumption, the odds ratio that compares cate-
gories greater than or equal to 1 to less than 1 is
the same as the odds ratio that compares cate-
gories greater than or equal to 4 to less than 4.

In other words, the odds ratio is invariant to
where the outcome categories are dichotomized.

EXAMPLE

OR (D � 1) ¼ OR (D � 4)
Comparing two exposure groups

e:g:;E ¼ 1 vs: E ¼ 0;

where

ORðD � 1Þ ¼ odds½ðD � 1Þ jE ¼ 1�
odds½ðD � 1Þ jE ¼ 0�

ORðD � 4Þ ¼ odds½ðD � 4Þ jE ¼ 1�
odds½ðD � 4Þ jE ¼ 0�
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Ordinal

Variable Parameter

Intercept a1, a2, . . . , aG�1

X1 b1

Polytomous

Variable Parameter

Intercept a1, a2, . . . , aG�1

X1 b11, b21, . . . , b(G�1)1

Odds are not invariant

Proportional odds model: G out-
come levels and one predictor (X)

PðD � g jX1Þ ¼ 1

1þ exp½�ðag þ b1X1Þ� ;

where g ¼ 1, 2, . . . , G�1

1� PðD � g jX1Þ
¼ 1� 1

1þ exp½�ðag þ b1X1Þ�
¼ exp½�ðag þ b1X1Þ�

1þ exp½�ðag þ b1X1Þ�
¼ PðD < g jX1Þ

This implies that if there are G outcome cate-
gories, there is only one parameter (b) for each
of the predictors variables (e.g., b1 for predictor
X1). However, there is still a separate intercept
term (ag) for each of the G�1 comparisons.

This contrasts with polytomous logistic regres-
sion, where there are G�1 parameters for each
predictor variable, as well as a separate inter-
cept for each of the G�1 comparisons.

The assumption of the invariance of the odds
ratio regardless of cut-point is not the same as
assuming that the odds for a given exposure
pattern is invariant. Using our previous exam-
ple, for a given exposure level E (e.g., E ¼ 0),
the odds comparing categories greater than or
equal to 1 to less than 1 does not equal the odds
comparing categories greater than or equal to 4
to less than 4.

We now present the form for the proportional
odds model with an outcome (D) with G levels
(D ¼ 0, 1, 2, . . . , G�1) and one independent
variable (X1). The probability that the disease
outcome is in a category greater than or equal
to g, given the exposure, is 1 over 1 plus e to the
negative of the quantity ag plus b1X1.

The probability that the disease outcome is in a
category less than g is equal to 1 minus the
probability that the disease outcome is greater
than or equal to category g.

EXAMPLE

odds(D � 1) 6¼ odds(D � 4)

where, for E ¼ 0,

oddsðD � 1Þ ¼ PðD � 1 jE ¼ 0Þ
PðD < 1 jE ¼ 0Þ

oddsðD � 4Þ ¼ PðD � 4 jE ¼ 0Þ
PðD < 4 jE ¼ 0Þ

but

ORðD � 1Þ ¼ ORðD � 4Þ
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Equivalent model definition

odds ¼ PðD � g jX1Þ
1� PðD � g jX1Þ ¼

PðD � g jX1Þ
PðD < g jX1Þ

¼
1

1 þ exp½�ðag þ b1X1Þ�
exp½�ðag þ b1X1Þ�

1 þ exp½�ðag þ b1X1Þ�

¼ expðag þ b1X1Þ

Proportional
odds model:

vs. Standard
logistic
model:

no g subscript

Proportional odds
model:

vs. Polytomous
model:

P(D ³ g | X) P(D = g | X)

Alternate model formulation:

key differences

odds =

where g = 1, 2, 3, ... , G–1
and D* = 1, 2, ... , G

P(D* £ g | X1)
P(D* > g | X1)

g subscript

bg1b1

= exp(a*
g – b∗

1X1),

Comparing formulations

b1 ¼ b*1
but ag ¼ �a*g

Themodel can be defined equivalently in terms
of the odds of an inequality. If we substitute the
formula P(D� g |X1) into the expression for the
odds and then perform some algebra (as shown
on the left), we find that the odds is equal to
e to the quantity ag plus b1X1.

The proportional odds model is written differ-
ently from the standard logistic model. The
model is formulated as the probability of an
inequality, that is, that the outcomeD is greater
than or equal to g.

The model also differs from the polytomous
model in an important way. The beta is not sub-
scripted by g. This is consistent with the propor-
tional odds assumption that only one parameter
is required for each independent variable.

An alternate formulation of the proportional
odds model is to define the model as the odds
of D* less than or equal to g given the exposure
is equal to e to the quantity a*g � b*1X1, where
g¼ 1, 2, 3, . . . ,G�1 and whereD* ¼ 1, 2, . . . ,G.
The two key differences with this formulation
are the direction of the inequality (D* � g) and
the negative sign before the parameter b*1. In
terms of the beta coefficients, these two key
differences “cancel out” so that b1 ¼ b*1. Conse-
quently, if the same data are fit for each formu-
lation of the model, the same parameter
estimates of beta would be obtained for each
model. However, the intercepts for the two
formulations differ as ag ¼ �ag

*.
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Formulation affects computer
output

� SAS: consistent with first

� SPSS and Stata: consistent
with alternative formulation

Advantage of (D � g):

Consistent with formulations of
standard logistic and
polytomous models

+
For 2-level outcome (D ¼ 0, 1),
all three reduce to same model.

Ordinal: Coding of disease
meaningful

Polytomous: Coding of disease
arbitrary

We have presented two ways of parameterizing
the model because different software packages
can present slightly different output depending
on the way the model is formulated. SAS soft-
ware presents output consistent with the way
we have formulated the model, whereas SPSS
and Stata software present output consistent
with the alternate formulation (see Appendix).

An advantage to our formulation of the model
(i.e., in terms of the odds of D � g) is that it is
consistent with the way that the standard logis-
tic model and polytomous logistic model are
presented. In fact, for a two-level outcome
(i.e., D ¼ 0, 1), the standard logistic, polyto-
mous, and ordinal models reduce to the same
model. However, the alternative formulation is
consistent with the way the model has histori-
cally often been presented (McCullagh, 1980).
Many models can be parameterized in differ-
ent ways. This need not be problematic as long
as the investigator understands how the model
is formulated and how to interpret its para-
meters.

Next, we present an example of the propor-
tional odds model using data from the Black/
White Cancer Survival Study (Hill et al., 1995).
Suppose we are interested in assessing the
effect of RACE on tumor grade among women
with invasive endometrial cancer. RACE, the
exposure variable, is coded 0 for white and 1
for black. The disease variable, tumor grade, is
coded 0 for well-differentiated tumors, 1 for
moderately differentiated tumors, and 2 for
poorly differentiated tumors.

Here, the coding of the disease variable reflects
the ordinal nature of the outcome. For exam-
ple, it is necessary that moderately differen-
tiated tumors be coded between poorly
differentiated and well-differentiated tumors.
This contrasts with polytomous logistic regres-
sion, in which the order of the coding is
not reflective of an underlying order in the
outcome variable.

EXAMPLE

Black/White Cancer Survival Study

E ¼ RACE

0 if white

1 if black

8<
:

D ¼ GRADE

0 if well differentiated

1 if moderately differentiated

2 if poorly differentiated

8><
>:
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Requirement: Collapsed ORs
should be “close”

E ¼ 0 E ¼ 1

D ¼ 0 45 30

D ¼ 1 40 15

D ¼ 2 50 60

The 3 � 2 table of the data is presented on the
left.

In order to examine the proportional odds
assumption, the table is collapsed to form two
other tables.

The first table combines the well-differentiated
and moderately differentiated levels. The odds
ratio is 2.12.

The second table combines the moderately and
poorly differentiated levels. The odds ratio for
this data is 2.14.

The odds ratios from the two collapsed tables
are similar and thus provide evidence that the
proportional odds assumption is not violated.
It would be unusual for the collapsed odds
ratios to match perfectly. The odds ratios do
not have to be exactly equal; as long as they are
“close”, the proportional odds assumption may
be considered reasonable.

Here is a different 3� 2 table. This table will be
collapsed in a similar fashion as the previous
one.

EXAMPLE (continued)

White (0) Black (1)

Well
differentiated

104 26

Moderately
differentiated

72 33

Poorly
differentiated

31 22

A simple check of the proportional
odds assumption:

White Black

Well þ moderately
differentiated

176 59

Poorly
differentiated

31 22

dOR ¼ 2:12

White Black

Well
differentiated

104 26

Moderately þ poorly
differentiated

103 55

dOR ¼ 2:14
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E ¼ 0 E ¼ 1 E ¼ 0 E¼1

D ¼ 0 þ 1 85 45 D ¼ 0 45 30

D ¼ 2 50 60 D ¼ 1þ2 90 75

dOR ¼ 2:27 dOR ¼ 1:25

Statistical test of assumption:
Score test
Compares ordinal vs. polytomous
models

Test statistic � w2 under H0

with df ¼ number of ORparameters
tested

Alternate models for ordinal data:

� Continuation ratio

� Partial proportional odds

� Stereotype regression

III. Odds Ratios and
Confidence Limits

ORs: same method as SLR to
compute ORs.

Special case: one independent
variable
X1 ¼ 1 or X1 ¼ 0

oddsðD � gÞ ¼ PðD � g jX1Þ
PðD < g jX1Þ

¼ expðag þ b1X1Þ

The two collapsed tables are presented on the
left. The odds ratios are 2.27 and 1.25. In this
case, we would question whether the propor-
tional odds assumption is appropriate, since
one odds ratio is nearly twice the value of the
other.

There is also a statistical test – a Score test –
designed to evaluate whether a model con-
strained by the proportional odds assumption
(i.e., an ordinal model) is significantly different
from the corresponding model in which the
odds ratio parameters are not constrained by
the proportional odds assumption (i.e., a poly-
tomous model). The test statistic is distributed
approximately chi-square, with degrees of free-
dom equal to the number of odds ratio para-
meters being tested.

If the proportional odds assumption is inap-
propriate, there are other ordinal logistic mod-
els that may be used that make alternative
assumptions about the ordinal nature of the
outcome. Examples include a continuation
ratio model, a partial proportional odds model,
and stereotype regressionmodels. Thesemodels
are beyond the scope of the current presenta-
tion. [See the review by Ananth and Kleinbaum
(1997)].

After the proportional odds model is fit and the
parameters estimated, the process for comput-
ing the odds ratio is the same as in standard
logistic regression (SLR).

We will first consider the special case where
the exposure is the only independent variable
and is coded 1 and 0. Recall that the odds
comparing D � g vs. D < g is e to the ag plus
b1 times X1. To assess the effect of the exposure
on the outcome, we formulate the ratio of the
odds of D � g for comparing X1 ¼ 1 and X1 ¼ 0
(i.e., the odds ratio for X1 ¼ 1 vs. X1 ¼ 0).
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OR ¼PðD � g jX1 ¼ 1Þ=PðD < g jX1 ¼ 1Þ
PðD � g jX1 ¼ 0Þ=PðD < g jX1 ¼ 0Þ

¼ exp ag þ b1ð1Þ
� �

exp ag þ b1ð0Þ
� � ¼ expðag þ b1Þ

expðagÞ

¼ eb1

General case
(levels X**

1 and X*
1 of X1)

OR ¼ expðag þ b1X
**
1 Þ

expðag þ b1X*
1Þ

¼ expðagÞ expðb1X**
1 Þ

expðagÞ expðb1X*
1Þ

¼ exp
h
b1ðX**

1 � X*
1Þ
i

CIs: same method as SLR to com-
pute CIs

General case (levels X**
1 and X*

1

of X1)

95% CI:

exp
h
b̂1ðX**

1 �X*
1Þ	1:96 X**

1 �X*
1

� �
sb̂1

i

This is calculated, as shown on the left, as the
odds that the disease outcome is greater than
or equal to g if X1 equals 1, divided by the odds
that the disease outcome is greater than or
equal to g if X1 equals 0.

Substituting the expression for the odds in
terms of the regression parameters, the odds
ratio for X1 ¼ 1 vs. X1 ¼ 0 in the comparison of
disease levels� g to levels < g is then e to the b1.

To compare any two levels of the exposure
variable, X**

1 and X*
1, the odds ratio formula is

e to the b1 times the quantity X**
1 minus X*

1.

Confidence interval estimation is also analo-
gous to standard logistic regression. The gen-
eral large-sample formula for a 95% confidence
interval, for any two levels of the independent
variable (X**

1 and X*
1), is shown on the left.

Returning to our tumor-grade example, the
results for the model examining tumor grade
and RACE are presented next. The results were
obtained from running PROC LOGISTIC in
SAS (see Appendix).

We first check the proportional odds assump-
tion with a Score test. The test statistic, with
one degree of freedom for the one odds ratio
parameter being tested, was clearly not signifi-
cant, with a P-value of 0.9779. We therefore fail
to reject the null hypothesis (i.e., that the
assumption holds) and can proceed to examine
the model output.

EXAMPLE

Black/White Cancer Survival Study

Test of proportional odds assumption:
H0: assumption holds
Score statistic: w2 ¼ 0.0008, df ¼ 1,
P ¼ 0.9779.
Conclusion: fail to reject null
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Interpretation of intercepts (ag)

ag ¼ log odds of D � g where all
independent variables equal
zero;

g ¼ 1; 2; 3; . . . ;G� 1

ag > agþ1

+
a1 > a2 > 
 
 
 > aG�1

With this ordinal model, there are two inter-
cepts, one for each comparison, but there is
only one estimated beta for the effect of
RACE. The odds ratio for RACE is e to b1. In
our example, the odds ratio equals exp(0.7555)
or 2.13. [Note: SAS’s LOGISTIC procedure was
used with a “descending” option so that Inter-
cept 1 compares D � 2 to D < 2, whereas Inter-
cept 2 compares D � 1 to D < 1].

The results indicate that for this sample of
women with invasive endometrial cancer,
black women were over twice (i.e., 2.13) as
likely as white women to have tumors that
were categorized as poorly differentiated vs.
moderately differentiated or well differentiated
and over twice as likely as white women to have
tumors classified as poorly differentiated or
moderately differentiated vs. well differen-
tiated. To summarize, in this cohort, black
women were over twice as likely to have a
more severe grade of endometrial cancer com-
pared with white women.

What is the interpretation of the intercept? The
intercept ag is the log odds of D � g where all
the independent variables are equal to zero.
This is similar to the interpretation of the inter-
cept for other logistic models except that, with
the proportional odds model, we are modeling
the log odds of several inequalities. This yields
several intercepts, with each intercept
corresponding to the log odds of a different
inequality (depending on the value of g). More-
over, the log odds of D � g is greater than the
log odds of D � (g þ 1) (assuming category g is
nonzero). This means that a1 > a2 
 
 
 > aG�1.

EXAMPLE (continued)

Variable Estimate S.E.

Intercept 1 (â2) �1.7388 0.1765
Intercept 2 (â1) �0.0089 0.1368
RACE 0.7555 0.2466

dOR ¼ expð0:7555Þ ¼ 2:13

Interpretation of OR

Black vs. white women with
endometrial cancer over twice as likely
to have more severe tumor grade:

Since dOR ðD � 2Þ ¼ dOR ðD � 1Þ ¼ 2:13
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Illustration

0 1

a1 = log odds D ³ 1

a2 = log odds D ³ 2

a4 = log odds D ³ 4

a3 = log odds D ³ 3

2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

As the picture on the left illustrates, with
five categories (D ¼ 0, 1, 2, 3, 4), the log odds
of D � 1 is greater than the log odds of D � 2,
since for D � 1, the outcome can be in cate-
gories 1, 2, 3, or 4, whereas for D � 2, the
outcome can only be in categories 2, 3, or 4.
Thus, there is one more outcome category (cat-
egory 1) contained in the first inequality. Simi-
larly, the log odds of D � 2 is greater than the
log odds of D � 3, and the log odds of D � 3 is
greater than the log odds of D � 4.

Returning to our example, the 95% confidence
interval for the OR for AGE is calculated as
shown on the left.

Hypothesis testing about parameter estimates
can be done using either the likelihood ratio
test or theWald test. The null hypothesis is that
b1 is equal to 0.

In the tumor grade example, the P-value for the
Wald test of the beta coefficient for RACE is
0.002, indicating that RACE is significantly
associated with tumor grade at the 0.05 level.

EXAMPLE (continued)

95% confidence interval for OR

95% CI ¼ exp½0:7555	 1:96 ð0:2466Þ�
¼ ð1:31; 3:45Þ

Hypothesis testing

Likelihood ratio test or Wald test
H0: b1 ¼ 0

Wald test

Z ¼ 0:7555

0:2466
¼ 3:06; P ¼ 0:002

Presentation: III. Odds Ratios and Confidence Limits 475



IV. Extending the Ordinal
Model

PðD � g jXÞ ¼ 1

1þ exp½�ðag þ ~
k

i¼ 1

biXiÞ�
;

where g ¼ 1, 2, 3, . . . , G�1

Note: P(D � 0 |X) ¼ 1

odds ¼ PðD � g jXÞ
PðD < g jXÞ

¼ expðag þ ~
k

i¼ 1

biXjÞ

OR ¼ exp(bi), if Xi is coded (0, 1)

Expanding themodel to addmore independent
variables is straightforward. The model with k
independent variables is shown on the left.

The odds for the outcome greater than or equal
to level g is then e to the quantity ag plus the
summation the Xi for each of the k independent
variable times its beta.

The odds ratio is calculated in the usual man-
ner as e to the bi, if Xi is coded 0 or 1. As in
standard logistic regression, the use of multi-
ple independent variables allows for the esti-
mation of an odds ratio for one variable
controlling for the effects of the other covari-
ates in the model.

To illustrate, we return to our endometrial
tumor grade example. Suppose we wish to con-
sider the effects of estrogen use as well as
RACE on GRADE. ESTROGEN is coded as 1
for ever user and 0 for never user.

The model now contains two predictor vari-
ables: X1 ¼ RACE and X2 ¼ ESTROGEN.

EXAMPLE

D ¼ GRADE ¼

0 if well differentiated

1 if moderately

differentiated

2 if poorly differentiated

8>>><
>>>:

X1 ¼ RACE ¼
0 if white

1 if black

8<
:

X2 ¼ ESTROGEN ¼
0 if never user

1 if ever user

8<
:

PðD � g jXÞ ¼ 1

1þ exp½�ðag þ b1X1 þ b2X2Þ� ;

where X1 ¼RACE ð0; 1Þ
X2 ¼ESTROGEN ð0; 1Þ
g ¼ 1; 2
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The odds that the tumor grade is in a category
greater than or equal to category 2 (i.e., poorly
differentiated) vs. in categories less than 2 (i.e.,
moderately or well differentiated) is e to the
quantity a2 plus the sum of b1X1 plus b2X2.

Similarly, the odds that the tumor grade is in a
category greater than or equal to category 1
(i.e., moderately or poorly differentiated) vs.
in categories less than 1 (i.e., well differen-
tiated) is e to the quantity a1 plus the sum of
b1X1 plus b2X2. Although the alphas are differ-
ent, the betas are the same.

Before examining the model output, we first
check the proportional odds assumption with
a Score test. The test statistic has two degrees
of freedom because we have two fewer para-
meters in the ordinal model compared to the
corresponding polytomous model. The results
are not statistically significant, with a P-value
of 0.64. We therefore fail to reject the null
hypothesis that the assumption holds and can
proceed to examine the remainder of themodel
results.

The output for the analysis is shown on the left.
There is only one beta estimate for each of the
two predictor variables in the model. Thus,
there are a total of four parameters in the
model, including the two intercepts.

EXAMPLE (continued)

odds =

different as same
bs

P(D ³ 2  X)
P(D < 2  X)

odds = P(D ³ 1  X)
P(D < 1  X)

= exp(a2 + b1X1 + b2X2)

= exp(a1 + b1X1 + b2X2)

Test of proportional odds assumption

H0: assumption holds
Score statistic: w2 ¼ 0.9051, 2 df,

P ¼ 0.64
Conclusion: fail to reject null

Variable Estimate S.E. Symbol

Intercept 1 �1.2744 0.2286 â2
Intercept 2 0.5107 0.2147 â1

RACE 0.4270 0.2720 b̂1
ESTROGEN �0.7763 0.2493 b̂2
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V. Likelihood Function for
Ordinal Model

odds ¼ P

1� P

so solving for P,

P ¼ odds

oddsþ 1
¼ 1

1þ 1
odds

� �

The estimated odds ratio for the effect of
RACE, controlling for the effect of ESTRO-
GEN, is e to the b̂1, which equals e to the
0.4270 or 1.53.

The 95% confidence interval for the odds ratio
is e to the quantity b̂1 plus or minus 1.96 times
the estimated standard error of the beta coeffi-
cient for RACE. In our two-predictor example,
the standard error for RACE is 0.2720 and the
95% confidence interval is calculated as 0.90 to
2.61. The confidence interval contains one, the
null value.

If we perform theWald test for the significance
of b̂1, we find that it is not statistically signifi-
cant in this two-predictor model (P ¼ 0.12).
The addition of ESTROGEN to the model has
resulted in a decrease in the estimated effect of
RACE on tumor grade, suggesting that failure
to control for ESTROGEN biases the effect of
RACE away from the null.

Next, we briefly discuss the development of the
likelihood function for the proportional odds
model. To formulate the likelihood, we need
the probability of the observed outcome for
each subject. An expression for these probabil-
ities in terms of the model parameters can
be obtained from the relationship P ¼ odds/
(odds þ 1), or the equivalent expression
P ¼ 1/[1 þ (1/odds)].

EXAMPLE (continued)

Odds ratiodOR ¼ exp b̂1 ¼ expð0:4270Þ ¼ 1:53

95% confidence interval

95% CI ¼ exp½0:4270	 1:96ð0:2720Þ�
¼ ð0:90; 2:61Þ

Wald test

H0 : b1 ¼ 0

Z ¼ 0:4270

0:2720
¼ 1:57; P ¼ 0:12

Conclusion: fail to reject H0
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P(D ¼ g) ¼ [P(D � g)]
� [P(D � g þ 1) ]

For g ¼ 2
P(D ¼ 2) ¼ P(D � 2) � P(D � 3)

Use relationship to obtain proba-
bility that individual is in given out-
come category.

L is product of individual contribu-
tions.Yn
j¼ 1

YG�1

g¼ 0

PðD ¼ g jXÞyjg ;

where

yjg ¼ 1 if the jth subject has D ¼ g
0 if otherwise

�

VI. Ordinal vs. Multiple
Standard Logistic
Regressions

Proportional odds model: order of
outcome considered.

Alternative: several logistic regres-
sion models

Original variable: 0, 1, 2, 3
Recoded:
� 1 vs. < 1, � 2 vs. < 2 , and
� 3 vs. < 3

In the proportional odds model, we model the
probability of D � g. To obtain an expression
for the probability of D ¼ g, we can use the
relationship that the probability (D ¼ g) is
equal to the probability of D � g minus the
probability of D � (g þ 1). For example, the
probability that D equals 2 is equal to the prob-
ability that D is greater than or equal to
2 minus the probability that D is greater than
or equal to 3. In this way we can use the model
to obtain an expression for the probability that
an individual is in a specific outcome category
for a given pattern of covariates (X).

The likelihood (L) is then calculated in the same
manner discussed previously in the section
on polytomous regression – that is, by taking
the product of the individual contributions.

The proportional odds model takes into
account the effect of an exposure on an ordered
outcome and yields one odds ratio summariz-
ing that effect across outcome levels. An alter-
native approach is to conduct a series of
logistic regressions with different dichoto-
mized outcome variables. A separate odds
ratio for the effect of the exposure can be
obtained for each of the logistic models.

For example, in a four-level outcome variable,
coded as 0, 1, 2, and 3, we can define three new
outcomes: greater than or equal to 1 vs. less
than 1, greater than or equal to 2 vs. less than
2, and greater than or equal to 3 vs. less than 3.
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Three separate logistic regressions

Three sets of parameters

a � 1 vs: < 1; b � 1 vs: < 1

a � 2 vs: < 2; b � 2 vs: < 2

a � 3 vs: < 3; b � 3 vs: < 3

Logistic models Proportional odds
model

(three parameters) (one parameter)

b � 1 vs. < 1

b � 2 vs. < 2 b

b � 3 vs. < 3

Is the proportional odds assump-
tion met?

� Crude ORs “close”?

(No control of confounding)

� Beta coefficients in separate
logistic models similar?

(Not a statistical test)

Is b�1 vs: <1 ffi b�2 vs: <2 ffi b�3 vs: <3?

� Score test provides a test of
proportional odds assumption

H0: assumption holds

With these three dichotomous outcomes, we
can perform three separate logistic regres-
sions. In total, these three regressions would
yield three intercepts and three estimated beta
coefficients for each independent variable in
the model.

If the proportional odds assumption is reason-
able, then using the proportional odds model
allows us to summarize the relationship
between the outcome and each independent
variable with one parameter instead of three.

The key question is whether or not the propor-
tional odds assumption is met. There are sev-
eral approaches to checking the assumption.
Calculating and comparing the crude odds
ratios is the simplest method, but this does
not control for confounding by other variables
in the model.

Running the separate (e.g., 3) logistic regres-
sions allows the investigator to compare the
corresponding odds ratio parameters for each
model and assess the reasonableness of the
proportional odds assumption in the presence
of possible confounding variables. Comparing
odds ratios in this manner is not a substitute
for a statistical test, although it does provide
the means to compare parameter estimates.
For the four-level example, we would check
whether the three coefficients for each inde-
pendent variable are similar to each other.

The Score test enables the investigator to per-
form a statistical test on the proportional odds
assumption. With this test, the null hypothesis
is that the proportional odds assumption holds.
However, failure to reject the null hypothesis
does not necessarily mean the proportional
odds assumption is reasonable. It could be
that there are not enough data to provide the
statistical evidence to reject the null.
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If assumption not met, may

� Use polytomous logistic model

� Use different ordinal model

� Use separate logistic models

Chapter 14: Logistic Regression for
Correlated Data: GEE

If the assumption does not appear to hold, one
option for the researcher would be to use a
polytomous logistic model. Another alternative
would be to select an ordinal model other than
the proportional odds model. A third option
would be to use separate logistic models. The
approach selected should depend on whether
the assumptions underlying the specific model
are met and on the type of inferences the inves-
tigator wishes to make.

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows. Then do the practice exercises and
test.

All of the models presented thus far have
assumed that observations are statistically
independent, (i.e., are not correlated). In the
next chapter (Chap. 14), we consider one
approach for dealing with the situation in
which study outcomes are not independent.

VII. SUMMARY

ü Chapter 13: Ordinal Logistic
Regression

This presentation is now complete. We have
described a method of analysis, ordinal
regression, for the situation where the out-
come variable has more than two ordered
categories. The proportional odds model was
described in detail. This may be used if the
proportional odds assumption is reasonable.
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Detailed
Outline

I. Overview (page 466)

A. Focus: modeling outcomes with more than two
levels.

B. Ordinal outcome variables.

II. Ordinal logistic regression: The proportional
odds model (pages 466–472)

A. Ordinal outcome: variable categories have a
natural order.

B. Proportional odds assumption: the odds ratio is
invariant to where the outcome categories are
dichotomized.

C. The form for the proportional odds model with
one independent variable (X1) for an outcome
(D) with G levels (D ¼ 0, 1, 2, . . . , G�1) is

PðD � g jX1Þ ¼ 1

1þ exp½�ðag þ b1X1Þ� ;

where g ¼ 1; 2; . . . ;G� 1

III. Odds ratios and confidence limits (pages 472–475)

A. Computation of the OR in ordinal regression is
analogous to standard logistic regression,
except that there is a single odds ratio for all
comparisons.

B. The general formula for the odds ratio for
any two levels of the predictor variable
(X**

1 and X*
1) is

OR ¼ exp½b1ðX**
1 � X*

1Þ�
for a model with one independent variable (X1).

C. Confidence interval estimation is analogous to
standard logistic regression.

D. The general large-sample formula for a 95%
confidence interval for any two levels of the
independent variable (X**

1 and X*
1) is

exp b̂1ðX**
1 � X*

1Þ 	 1:96ðX**
1 � X*

1Þsb̂1
h i

E. The likelihood ratio test is used to test
hypotheses about the significance of the
predictor variable(s).

i. There is one estimated coefficient for each
predictor.

ii. The null hypothesis is that the beta
coefficient (for a given predictor) is equal to
zero.

iii. The test compares the log likelihood of the
full model with the predictor(s) to that of
the reduced model without the predictor(s).
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F. The Wald test is analogous to standard logistic
regression.

IV. Extending the ordinal model (pages 476–478)

A. The general form of the proportional odds
model for G outcome categories and k
independent variables is

PðD � g jXÞ ¼ 1

1þ exp �ðag þ ~
k

i¼ 1

biXiÞ
� �

B. The calculation of the odds ratio, confidence
intervals, and hypothesis testing using the
likelihood ratio andWald tests remain the same.

C. Interaction terms can be added and tested in a
manner analogous to standard logistic
regression.

V. Likelihood function for ordinal model (pages
478–479)

A. For an outcome variable with G categories, the
likelihood function isYn
j¼ 1

YG�1

g¼ 0

PðD ¼ g jXyjgÞ;

where

yjg ¼ 1 if the jth subject has D ¼ g
0 if otherwise

n

where n is the total number of subjects, g ¼
0, 1, . . . , G�1 and
P(D ¼ g |X) ¼ [P(D� g |X)] � [P(D� gþ 1) |X)].

VI. Ordinal vs. multiple standard logistic regressions
(pages 479–481)

A. Proportional odds model: order of outcome
considered.

B. Alternative: several logistic regressions models

i. One for each cut-point dichotomizing the
outcome categories.

ii. Example: for an outcome with four
categories (0, 1, 2, 3), we have three possible
models.

C. If the proportional odds assumption is met, it
allows the use of one parameter estimate for the
effect of the predictor, rather than separate
estimates from several standard logistic models.
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D. To check if the proportional odds assumption is
met:

i. Evaluate whether the crude odds ratios are
“close”.

ii. Evaluate whether the odds ratios from the
standard logistic models are similar:

a. Provides control of confounding but is
not a statistical test.

iii. Perform a Score test of the proportional
odds assumption.

E. If assumption is not met, can use a polytomous
model, consider use of a different ordinal
model, or use separate logistic regressions.

VII. Summary (page 481)

484 13. Ordinal Logistic Regression



Practice
Exercises

Suppose we are interested in assessing the association
between tuberculosis and degree of viral suppression in
HIV-infected individuals on antiretroviral therapy, who
have been followed for 3 years in a hypothetical cohort
study. The outcome, tuberculosis, is coded as none
(D ¼ 0), latent (D ¼ 1), or active (D ¼ 2). Degree of viral
suppression (VIRUS) is coded as undetectable (VIRUS ¼ 0)
or detectable (VIRUS ¼ 1). Previous literature has shown
that it is important to consider whether the individual has
progressed to AIDS (no ¼ 0, yes ¼ 1) and is compliant
with therapy (COMPLIANCE: no ¼ 1, yes ¼ 0). In addi-
tion, AGE (continuous) and GENDER (female ¼ 0, male
¼ 1) are potential confounders. Also there may be interac-
tion between progression to AIDS and COMPLIANCE with
therapy (AIDSCOMP ¼ AIDS � COMPLIANCE).

We decide to run a proportional odds logistic regression to
analyze these data. Output from the ordinal regression is
shown below. (The results are hypothetical.) The descend-
ing option was used, so Intercept 1 pertains to the compar-
ison D � 2 to D < 2 and Intercept 2 pertains to the
comparison D � 1 to D < 1.

Variable Coefficient S.E.

Intercept 1 (a2) �2.98 0.20
Intercept 2 (a1) �1.65 0.18
VIRUS 1.13 0.09
AIDS 0.82 0.08
COMPLIANCE 0.38 0.14
AGE 0.04 0.03
GENDER 0.35 0.19
AIDSCOMP 0.31 0.14
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1. State the form of the ordinal model in terms of vari-
ables and unknown parameters.

2. For the above model, state the fitted model in terms of
variables and estimated coefficients.

3. Compute the estimated odds ratio for a 25-year-old
noncompliant male with a detectable viral load, who
has progressed to AIDS, compared with a similar
female. Consider the outcome comparison active or
latent tuberculosis versus none (D � 1 vs. D < 1).

4. Compute the estimated odds ratio for a 38-year-old
noncompliant male with a detectable viral load, who
has progressed to AIDS, compared with a similar
female. Consider the outcome comparison active tuber-
culosis versus latent or none (D � 2 vs. D < 2).

5. Estimate the odds of a compliant 20-year-old female,
with an undetectable viral load and who has not pro-
gressed to AIDS, of having active tuberculosis (D � 2).

6. Estimate the odds of a compliant 20-year-old female,
with an undetectable viral load and who has not pro-
gressed to AIDS, of having latent or active tuberculosis
(D � 1).

7. Estimate the odds of a compliant 20-year-old male,
with an undetectable viral load and who has not pro-
gressed to AIDS, of having latent or active tuberculosis
(D � 1).

8. Estimate the odds ratio for noncompliance vs. compli-
ance. Consider the outcome comparison active tuber-
culosis vs. latent or no tuberculosis (D � 2 vs. D < 2).
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Test True or False (Circle T or F)

T F 1. The disease categories absent, mild, moderate,
and severe can be ordinal.

T F 2. In an ordinal logistic regression (using a propor-
tional odds model) in which the outcome vari-
able has five levels, there will be four intercepts.

T F 3. In an ordinal logistic regression in which the out-
come variable has five levels, each independent
variable will have four estimated coefficients.

T F 4. If the outcome D has seven levels (coded 1,
2, . . . , 7), then P(D � 4)/P(D < 4) is an example
of an odds.

T F 5. If the outcome D has seven levels (coded 1, 2,
. . . , 7), an assumption of the proportional odds
model is that P(D � 3)/P(D < 3) is assumed
equal to P(D � 5)/P(D < 5).

T F 6. If the outcome D has seven levels (coded 1, 2,
. . . , 7) and an exposure E has two levels (coded
0 and 1), then an assumption of the propor-
tional odds model is that [P(D � 3|E ¼ 1)/
P(D < 3|E ¼ 1)]/[P(D � 3|E ¼ 0)/P(D < 3|E ¼ 0)]
is assumed equal to [P(D � 5|E ¼ 1)/P(D < 5|
E ¼ 1)]/[P(D � 5|E ¼ 0)/P(D < 5|E ¼ 0)].

T F 7. If the outcome D has four categories coded
D ¼ 0, 1, 2, 3, then the log odds of D � 2 is
greater than the log odds of D � 1.

T F 8. Suppose a four level outcome D coded D ¼ 0, 1,
2, 3 is recoded D* ¼ 1, 2, 7, 29, then the choice
of using D or D* as the outcome in a propor-
tional odds model has no effect on the parame-
ter estimates as long as the order in the
outcome is preserved.

9. Suppose the following proportional odds model is
specified assessing the effects of AGE (continuous),
GENDER (female ¼ 0, male ¼ 1), SMOKE (non-
smoker ¼ 0, smoker ¼ 1), and hypertension status
(HPT) (no ¼ 0, yes ¼ 1) on four progressive stages of
disease (D ¼ 0 for absent, D ¼ 1 for mild, D ¼ 2 for
severe, and D ¼ 3 for critical).

ln
PðD � g jXÞ
PðD < g jXÞ ¼ ag þ b1AGEþ b2GENDER

þ b3SMOKEþ b4HPT;

where g ¼ 1, 2, 3.
Use the model to obtain an expression for the odds of
a severe or critical outcome (D � 2) for a 40-year-old
male smoker without hypertension.
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10. Use the model in Question 9 to obtain the odds ratio
for the mild, severe, or critical stage of disease (i.e.,
D � 1)] comparing hypertensive smokers vs. nonhy-
pertensive nonsmokers, controlling for AGE and
GENDER.

11. Use the model in Question 9 to obtain the odds ratio
for critical disease only (D � 3) comparing hyperten-
sive smokers vs. nonhypertensive nonsmokers,
controlling for AGE and GENDER. Compare this
odds ratio to that obtained for Question 10.

12. Use themodel inQuestion 9 to obtain the odds ratio for
mild or no disease (D < 2) comparing hypertensive
smokers vs. nonhypertensive nonsmokers, controlling
for AGE and GENDER.

Answers to
Practice
Exercises

1. Ordinal model

ln
PðD � g jXÞ
PðD < g jXÞ

� �
¼ ag þ b1VIRUSþ b2AIDS

þ b3COMPLIANCEþ b4AGE

þ b5GENDER þ b6AIDSCOMP;

where g ¼ 1, 2
2. Ordinal fitted model

l̂n
PðD � 2 jXÞ
PðD < 2 jXÞ

� �
¼� 2:98þ 1:13VIRUSþ 0:82AIDS

þ 0:38COMPLIANCEþ 0:04AGE

þ 0:35GENDERþ 0:31AIDSCOMP;

l̂n
PðD � 1 jXÞ
PðD < 1 jXÞ

� �
¼� 1:65þ 1:13VIRUSþ 0:82AIDS

þ 0:38COMPLIANCEþ 0:04AGE

þ 0:35GENDERþ 0:31AIDSCOMP:

3. dOR ¼ expð0:35Þ ¼ 1:42

4. dOR ¼ expð0:35Þ ¼ 1:42

5. Estimated odds ¼ exp[�2.98 þ 20(0.04)] ¼ 0.11

6. Estimated odds ¼ exp[�1.65 þ 20(0.04)] ¼ 0.43

7. Estimated odds ¼ exp[�1.65 þ 20(0.04) þ 0.35] ¼ 0.61

8. Estimated odds ratios for noncompliant (COMPLI-
ANCE ¼ 1) vs. compliant (COMPLIANCE ¼ 0) subjects:

For AIDS ¼ 0: exp(0.38) ¼ 1.46

For AIDS ¼ 1: exp(0.38 þ 0.31) ¼ 1.99
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Introduction In this chapter, the logistic model is extended to handle
outcome variables that have dichotomous correlated
responses. The analytic approach presented for modeling
this type of data is the generalized estimating equations
(GEE) model, which takes into account the correlated
nature of the responses. If such correlations are ignored
in the modeling process, then incorrect inferences may
result.

The form of the GEE model and its interpretation are
developed. A variety of correlation structures that are
used in the formulation of the model are described. An
overview of the mathematical foundation for the GEE
approach is also presented, including discussions of
generalized linear models, score equations, and “score-
like” equations. In the next chapter (Chap. 12), examples
are presented to illustrate the application and interpreta-
tion of GEEmodels. The final chapter in the text (Chap. 13)
describes alternate approaches for the analysis of corre-
lated data.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (pages 492–493)

II. An example (Infant Care Study) (pages 493–498)

III. Data layout (page 499)

IV. Covariance and correlation (pages 500–502)

V. Generalized linear models (pages 503–506)

VI. GEE models (pages 506–507)

VII. Correlation structure (pages 507–510)

VIII. Different types of correlation structure (pages
511–516)

IX. Empirical and model-based variance estimators
(pages 516–519)

X. Statistical tests (pages 519–520)

XI. Score equations and “score-like” equations
(pages 521–523)

XII. Generalizing the “score-like” equations to form
GEE models (pages 524–528)

XIII. Summary (page 528)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize examples of correlated responses.

2. State or recognize when the use of correlated analysis
techniques may be appropriate.

3. State or recognize an appropriate data layout for a
correlated analysis.

4. State or recognize the form of a GEE model.

5. State or recognize examples of different correlation
structures that may be used in a GEE model.
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Presentation

I. Overview

Modeling
outcomes with
dichotomous

correlated
responses

FOCUS

Examples of correlated responses:

1. Different members of the same
house-hold.

2. Each eye of the same person.
3. Several bypass grafts on the

same subject.
4. Monthly measurements on the

same subject.

Observations can be grouped into
clusters:

Example
No.

Cluster Source of
observation

1 Household Household
members

2 Subject Eyes
3 Subject Bypass

grafts
4 Subject Monthly

repeats

In this chapter, we provide an introduction to
modeling techniques for use with dichotomous
outcomes in which the responses are corre-
lated. We focus on one of the most commonly
used modeling techniques for this type of anal-
ysis, known as generalized estimating equa-
tions or GEE, and we describe how the GEE
approach is used to carry out logistic regres-
sion for correlated dichotomous responses.

For the modeling techniques discussed previ-
ously, we have made an assumption that the
responses are independent. In many research
scenarios, this is not a reasonable assumption.
Examples of correlated responses include
(1) observations on different members of the
same household, (2) observations on each eye
of the same person, (3) results (e.g., success/
failure) of several bypass grafts on the same
subject, and (4) measurements repeated each
month over the course of a year on the same
subject. The last is an example of a longitudi-
nal study, since individuals’ responses are
measured repeatedly over time.

For the above-mentioned examples, the obser-
vations can be grouped into clusters. In exam-
ple 1, the clusters are households, whereas
the observations are the individual members
of each household. In example 4, the clusters
are individual subjects, whereas the observa-
tions are the monthly measurements taken on
the subject.

492 14. Logistic Regression for Correlated Data: GEE



Assumption:

Responses

correlated within

clusters

independent

between clusters :

8>>>><
>>>>:

Ignoring within-cluster correlation

+
Incorrect inferences

II. An Example (Infant
Care Study)

GEE vs. standard logistic regres-
sion (ignores correlation)

� Statistical inferences may differ

� Similar use of output

Data source: Infant Care Study in
Brazil

Subjects: 168 infants
136 with complete data

Response (D): weight-for-height
standardized (z) score

D ¼ 1 if z<�1 ð‘‘Wasting’’Þ
0 otherwise

�

Independent variables:
BIRTHWGT (in grams)

GENDER

DIARRHEA¼
1 if symptoms

present

in pastmonth

0 otherwise

8>>><
>>>:

A common assumption for correlated analyses
is that the responses are correlated within the
same cluster but are independent between dif-
ferent clusters.

In analyses of correlated data, the correlations
between subject responses often are ignored in
the modeling process. An analysis that ignores
the correlation structure may lead to incorrect
inferences.

We begin by illustrating how statistical infer-
ences may differ depending on the type of
analysis performed. We shall compare a gene-
ralized estimating equations (GEE) approach
with a standard logistic regression that ignores
the correlation structure. We also show the
similarities of these approaches in utilizing
the output to obtain and interpret odds ratio
estimates, their corresponding confidence
intervals, and tests of significance.

The data were obtained from an infant care
health intervention study in Brazil (Cannon
et al., 2001). As a part of that study, height
and weight measurements were taken each
month from 168 infants over a 9-month period.
Data from 136 infants with complete data on
the independent variables of interest are used
for this example.

The response (D) is derived from a weight-for-
height standardized score (i.e., z-score) based
on the weight-for-height distribution of a refer-
ence population. A weight-for-height measure
of more than one standard deviation below
the mean (i.e., z < �1) indicates “wasting”.
The dichotomous outcome for this study is
coded 1 if the z-score is less than negative 1
and 0 otherwise. The independent variables
are BIRTHWGT (the weight in grams at
birth), GENDER, and DIARRHEA (a dichoto-
mous variable indicating whether the infant
had symptoms of diarrhea that month).

Presentation: II. An Example (Infant Care Study) 493



Infant Care Study: Sample Data

From three infants: five (of nine)
observations listed for each

IDNO MO OUTCOME BIRTHWGT GENDER DIARRHEA

00282 1 0 2000 Male 0

00282 2 0 2000 Male 0

00282 3 1 2000 Male 1

� � � � �
00282 8 0 2000 Male 1

00282 9 0 2000 Male 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

00283 1 0 2950 Female 0

00283 2 0 2950 Female 0

00283 3 1 2950 Female 0

� � � � �
00283 8 0 2950 Female 0

00283 9 0 2950 Female 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

00287 1 1 3250 Male 1

00287 2 1 3250 Male 1

00287 3 0 3250 Male 0

� � � � �
00287 8 0 3250 Male 0

00287 9 0 3250 Male 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IDNO: identification number

MO: observation month (provides
order to subject-specific measure-
ments)

OUTCOME: dichotomized z-score
(values can changemonth tomonth)

Independent variables:

1. Time-dependent variable: can
vary month to month within a
cluster

DIARRHEA: dichotomized
variable for presence of
symptoms

2. Time-independent variables:
do not vary month to month
within a cluster

BIRTHWGT

GENDER

On the left, we present data on three infants to
illustrate the layout for correlated data. Five
of nine monthly observations are listed per
infant. In the complete data on 136 infants,
each child had at least 5 months of observa-
tions, and 126 (92.6%) had complete data for
all 9 months.

The variable IDNO is the number that identi-
fies each infant. The variable MO indicates
which month the outcome measurement was
taken. This variable is used to provide order for
the data within a cluster. Not all clustered data
have an inherent order to the observations
within a cluster; however, in longitudinal stud-
ies such as this, specific measurements are
ordered over time.

The variable OUTCOME is the dichotomized
weight-for-height z-score indicating the pres-
ence or absence of wasting. Notice that the
outcome can change values from month to
month within a cluster.

The independent variable DIARRHEA can also
change values month to month. If symptoms of
diarrhea are present in a given month, then the
variable is coded1; otherwise it is coded0.DIAR-
RHEA is thus a time-dependent variable. This
contrasts with the variables BIRTHWGT and
GENDER, which do not vary within a cluster
(i.e., donotchangemonth tomonth).BIRTHWGT
and GENDER are time-independent variables.
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In general, with longitudinal data,
independent variables may be
either

1. Time-dependent
or

2. Time-independent

Outcome variable generally varies
within a cluster

Goal of analysis: to account for out-
come variation within and between
clusters

Model for Infant Care Study:

logit PðD ¼ 1 jXÞ ¼ b0 þ b1BIRTHWGT

þ b2GENDER

þ b3DIARRHEA

GEE Model (GENMOD output)

Variable Coefficient

Empirical

Std Err

Wald

p-value

INTERCEPT �1.3978 1.1960 0.2425

BIRTHWGT �0.0005 0.0003 0.1080

GENDER 0.0024 0.5546 0.9965

DIARRHEA 0.2214 0.8558 0.7958

Interpretation of GEE model simi-
lar to SLR

OR estimates
Confidence intervals
Wald test statistics

9=
;Use same

formulas

Underlying assumptions

Method of parameter

estimation

9=
;Differ

Odds ratiodORðDIARRHEA ¼ 1 vs: DIARRHEA ¼ 0Þ
¼ expð0:2214Þ ¼ 1:25

In general, with longitudinal data, independent
variables may or may not vary within a cluster.
A time-dependent variable can vary in value,
whereas a time-independent variable does
not. The values of the outcome variable, in
general, will vary within a cluster.

A correlated analysis attempts to account for
the variation of the outcome from both within
and between clusters.

We state the model for the Infant Care Study
example in logit form as shown on the left.
In this chapter, we use the notation b0 to
represent the intercept rather than a, as a is
commonly used to represent the correlation
parameters in a GEE model.

Next, the output obtained from running a GEE
model using the GENMOD procedure in SAS is
presented. This model accounts for the corre-
lations among the monthly outcome within
each of the 136 infant clusters. Odds ratio esti-
mates, confidence intervals, and Wald test
statistics are obtained using the GEE model
output in the same manner (i.e., with the
same formulas) as we have shown previously
using output generated from running a stan-
dard logistic regression. The interpretation of
these measures is also the same. What differs
between the GEE and standard logistic regres-
sion models are the underlying assumptions
and how the parameters and their variances
are estimated.

The odds ratio comparing symptoms of diar-
rhea vs. no diarrhea is calculated using the
usual e to the b̂ formula, yielding an estimated
odds ratio of 1.25.
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95% confidence interval

95% CI ¼ exp½0:2214� 1:96ð0:8558Þ�
¼ ð0:23; 6:68Þ

Wald test

H0 : b3 ¼ 0

Z ¼ 0:2214

0:8558
¼ 0:259; P ¼ 0:7958

Standard Logistic Regression
Model

Variable Coefficient Std Err
Wald

p-value

INTERCEPT �1.4362 0.6022 0.0171
BIRTHWGT �0.0005 0.0002 0.0051
GENDER �0.0453 0.2757 0.8694
DIARRHEA 0.7764 0.4538 0.0871

Responses within clusters assumed
independent

Also called the “naive” model

Odds ratiodORðDIARRHEA¼ 1 vs: DIARRHEA¼ 0Þ
¼ expð0:7764Þ ¼ 2:17

95% confidence interval

95% CI ¼ exp½0:7764� 1:96ð0:4538Þ�
¼ ð0:89; 5:29Þ

The 95% confidence interval is calculated
using the usual large-sample formula, yielding
a confidence interval of (0.23, 6.68).

We can test the null hypothesis that the beta
coefficient for DIARRHEA is equal to zero
using the Wald test, in which we divide the
parameter estimate by its standard error. For
the variable DIARRHEA, the Wald statistic
equals 0.259. The corresponding P-value is
0.7958, which indicates that there is not
enough evidence to reject the null hypothesis.

The output for the standard logistic regression
is presented for comparison. In this analysis,
each observation is assumed to be indepen-
dent. When there are several observations per
subject, as with these data, the term “naive
model” is often used to describe a model
that assumes independence when responses
within a cluster are likely to be correlated. For
the Infant Care Study example, there are 1,203
separate outcomes across the 136 infants.

Using this output, the estimated odds ratio
comparing symptoms of diarrhea vs. no diar-
rhea is 2.17 for the naive model.

The 95% confidence interval for this odds ratio
is calculated to be (0.89, 5.29).
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Wald test

H0: b3 ¼ 0

Z ¼ 0:7764

0:4538
¼ 1:711; P ¼ 0:0871

Comparison of analysis
approaches:

1. dOR and 95% CI for DIARRHEA

GEE model SLR modeldOR 1.25 2.17
95% CI 0.23, 6.68 0.89, 5.29

2. P-Value of Wald test for
BIRTHWGT

GEE model SLR model

P-Value 0.1080 0.0051

Why these differences?

GEE model: 136 independent
clusters (infants)

Naive model: 1,203 independent
outcome measures

Effects of ignoring correlation
structure:

� Not usually so striking

� Standard error estimates more
often affected than parameter
estimates

� Example shows effects on both
standard error and parameter
estimates

The Wald test statistic for DIARRHEA in the
SLR model is calculated to be 1.711. The
corresponding P-value is 0.0871.

This example demonstrates that the choice
of analytic approach can affect inferences
made from the data. The estimates for the
odds ratio and the 95% confidence interval for
DIARRHEA are greatly affected by the choice
of model.

In addition, the statistical significance of the
variable BIRTHWGT at the 0.05 level depends
on which model is used, as the P-value for the
Wald test of the GEE model is 0.1080, whereas
the P-value for the Wald test of the standard
logistic regression model is 0.0051.

The key reason for these differences is the
way the outcome is modeled. For the GEE
approach, there are 136 independent clusters
(infants) in the data, whereas the assumption
for the standard logistic regression is that there
are 1,203 independent outcome measures.

For many datasets, the effect of ignoring
the correlation structure in the analysis is not
nearly so striking. If there are differences in
the resulting output from using these two
approaches, it is more often the estimated stan-
dard errors of the parameter estimates rather
than the parameter estimates themselves that
show the greatest difference. In this example
however, there are strong differences in both
the parameter estimates and their standard
errors.
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Correlation structure:

+
Framework for estimating:

� Correlations

� Regression coefficients

� Standard errors

Primary interest?

Regression
coefficients

Yes

Correlations Usually not

Infant Care Study example:

AR1 autoregressive correlation
structure specified

Other structures possible

To run a GEE analysis, the user specifies a
correlation structure. The correlation structure
provides a frame-work for the estimation of the
correlation parameters, as well as estimation
of the regression coefficients (b0, b1, b2, . . . , bp)
and their standard errors.

It is the regression parameters (e.g., the
coefficients for DIARRHEA, BIRTWGT, and
GENDER) and not the correlation parameters
that typically are the parameters of primary
interest.

Software packages that accommodate GEE
analyses generally offer several choices of
correlation structures that the user can easily
implement. For the GEE analysis in this exam-
ple, an AR1 autoregressive correlation struc-
ture was specified. Further details on the AR1
autoregressive and other correlation structures
are presented later in the chapter.

In the next section (Sect. III), we present
the general form of the data for a correlated
analysis.
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III. Data Layout

Basic data layout for correlated
analysis:

K subjects

ni responses for subject i

The basic data layout for a correlated analysis
is presented to the left. We consider a longitu-
dinal dataset in which there are repeated mea-
sures for K subjects. The ith subject has ni

measurements recorded. The jth observation
from the ith subject occurs at time tij with the
outcomemeasured asYij, andwith p covariates,
Xij1, Xij2, . . . , Xijp.

Subjects are not restricted to have the same
number of observations (e.g., n1 does not have
to equal n2). Also, the time interval between
measurements does not have to be constant
(e.g., t12 � t11 does not have to equal
t13 � t12). Further, in a longitudinal design, a
variable (tij) indicating time of measurement
may be specified; however, for nonlongitudinal
designs with correlated data, a time variable
may not be necessary or appropriate.

The covariates (i.e., Xs) may be time-indepen-
dent or time-dependent for a given subject. For
example, the race of a subject will not vary, but
the daily intake of coffee could vary from day to
day.
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IV. Covariance and
Correlation

Covariance and correlation are
measures of relationships between
variables.

Covariance

Population:

covðX; YÞ ¼ E½ðX � mxÞðY � myÞ�

Sample:dcovðX;YÞ
¼ 1

ðn� 1Þ ~
n

i¼1

ðXi�XÞðYi�YÞ

Correlation

Population: rxy ¼
covðX; YÞ

sxsy

Sample: rxy ¼
dcovðX; YÞ

sxsy

Correlation:

� Standardized covariance

� Scale free

X1 ¼ height
(in feet)

cov (X2, Y)
¼ 12 cov(X1, Y)

X2 ¼ height
(in inches)

BUT

Y ¼ weight rx2y ¼ rx1y

In the sections that follow, we provide an over-
view of the mathematical foundation of the
GEE approach. We begin by developing some
of the ideas that underlie correlated analyses,
including covariance and correlation.

Covariance and correlation are measures that
express relationships between two variables.
The covariance of X and Y in a population is
defined as the expected value, or average, of the
product of X minus its mean (mx) and Y minus
its mean (my). With sample data, the covariance
is estimated using the formula on the left,
where �X and �Y are sample means in a sample
of size n.

The correlation of X and Y in a population,
often denoted by the Greek letter rho (r), is
defined as the covariance of X and Y divided
by the product of the standard deviation of X
(i.e., sx) and the standard deviation of Y (i.e.,
sy). The corresponding sample correlation,
usually denoted as rxy, is calculated by dividing
the sample covariance by the product of the
sample standard deviations (i.e., sx and sy).

The correlation is a standardized measure of
covariance in which the units of X and Y are the
standard deviations of X and Y, respectively.
The actual units used for the value of variables
affect measures of covariance but not mea-
sures of correlation, which are scale-free. For
example, the covariance between height and
weight will increase by a factor of 12 if the
measure of height is converted from feet to
inches, but the correlation between height
and weight will remain unchanged.
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Positive correlation

On average, as X gets larger, Y gets
larger; or, as X gets smaller, Y gets
smaller.

Negative correlation

On average, as X gets larger, Y gets
smaller; or as X gets smaller, Y gets
larger.

Perfect
linearity

r = + 1 r = – 1

A positive correlation between X and Y means
that larger values of X, on average, correspond
with larger values of Y, whereas smaller values
of X correspond with smaller values of Y.
For example, persons who are above mean
height will be, on average, above mean weight,
and persons who are below mean height will
be, on average, below mean weight. This
implies that the correlation between indivi-
duals’ height and weight measurements is pos-
itive. This is not to say that there cannot be
tall people of below average weight or short
people of above average weight. Correlation is
a measure of average, even though there may
be variation among individual observations.
Without any additional knowledge, we would
expect a person 6 ft tall to weigh more than a
person 5 ft tall.

A negative correlation between X and Y means
that larger values of X, on average, correspond
with smaller values of Y, whereas smaller
values of X correspond with larger values of Y.
An example of negative correlation might be
between hours of exercise per week and body
weight. We would expect, on average, people
who exercise more to weigh less, and con-
versely, people who exercise less to weigh
more. Implicit in this statement is the control
of other variables such as height, age, gender,
and ethnicity.

The possible values of the correlation of X and
Y range from negative 1 to positive 1. A corre-
lation of negative 1 implies that there is a per-
fect negative linear relationship between X and
Y, whereas a correlation of positive 1 implies
a perfect positive linear relationship between
X and Y.

EXAMPLE

Height and weight

Height X

Y

X

(X, Y)

Weight Y

EXAMPLE

Exercise X

Hours of exercise
and body weight

Body Weight Y

Y

X

(X, Y)
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Perfect linear relationship

Y ¼ b0 þ b1X, for a given X

X and Y independent ) r ¼ 0

BUT

r ¼ 0 )
X and Y independent

or

X and Y have nonlinear

relationship

8>>><
>>>:

Correlations on same variable

ðY1; Y2; . . . ; YnÞ
rY1Y2 ; rY1Y3 ; . . . ; etc:

Correlations between dichotomous
variables may also be considered.

By a perfect linear relationship we mean that,
given a value of X, the value of Y can be exactly
ascertained from that linear relationship of
X and Y (i.e., Y ¼ b0 þ b1X where b0 is the
intercept and b1 is the slope of the line). If X
and Y are independent, then their correlation
will be zero. The reverse does not necessarily
hold. A zero correlation may also result from a
nonlinear association between X and Y.

We have been discussing correlation in terms
of two different variables such as height
and weight. We can also consider correlations
between repeated observations (Y1, Y2, . . . , Yn)
on the same variable Y.

Consider a study in which each subject has sev-
eral systolic blood pressure measurements over
a period of time. We might expect a positive
correlation between pairs of blood pressure
measurements from the same individual (Yj, Yk).

The correlation might also depend on the time
period between measurements. Measurements
5 min apart on the same individual might be
more highly correlated than measurements
2 years apart.

This discussion can easily be extended from
continuous variables to dichotomous vari-
ables. Suppose a study is conducted examining
daily inhaler use by patients with asthma. The
dichotomous outcome is coded 1 for the event
(use) and 0 for no event (no use). We might
expect a positive correlation between pairs of
responses from the same subject (Yj, Yk).

EXAMPLE

Daily inhaler use (1 ¼ yes, 0 ¼ no) on
same individual over time

Expect rYjYk
> 0 for same subject

EXAMPLE

Systolic blood pressure on same
individual over time

Expect rYjYk
> 0 for some j, k

Also,

t1 t2

Y1 Y2 Y3 Y4

t3 t4

(time)

Expect rY1Y2
or rY3Y4

>
rY1Y3

, rY1Y4
, rY2Y3

, rY2Y4
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V. Generalized Linear
Models

General form of many statistical
models:

Y ¼ f ðX1;X2; . . . ;XpÞ þ E;

where: Y is random
X1, X2, . . . , Xp are fixed

E is random

Specify:

1. A function ( f ) for the fixed
predictors, e.g., linear

2. A distribution for the random
error (E), e.g., N(0,1)

GLM models include:

Logistic regression
Linear regression
Poisson regression

GEEmodels are extensions of GLM

GLM: a generalization of the clas-
sical linear model

Linear regression
Outcome:

� Continuous

� Normal distribution

Logistic regression
Outcome:

� Dichotomous

� Binomial distribution:

EðYÞ ¼ m ¼ PðY ¼ 1Þ

Logistic regression used to model

PðY ¼ 1 jX1;X2; . . . ;XpÞ

For many statistical models, including logistic
regression, the predictor variables (i.e., inde-
pendent variables) are considered fixed and
the outcome, or response (i.e., dependent vari-
able), is considered random. A general formu-
lation of this idea can be expressed as Y ¼ f(X1,
X2, . . . , Xp) þ E where Y is the response vari-
able, X1, X2, . . . , Xp are the predictor variables,
and E represents random error. In this frame-
work, the model for Y consists of a fixed com-
ponent [f(X1, X2, . . . , Xp)] and a random com-
ponent (E).

A function ( f ) for the fixed predictors and
a distribution for the random error (E) are
specified.

Logistic regression belongs to a class of models
called generalized linear models (GLM). Other
models that belong to the class of GLM include
linear and Poisson regression. For correlated
analyses, the GLM framework can be extended
to a class of models called generalized esti-
mating equations (GEE) models. Before dis-
cussing correlated analyses using GEE, we
shall describe GLM.

GLM are a natural generalization of the classi-
cal linear model (McCullagh and Nelder, 1989).
In classical linear regression, the outcome is
a continuous variable, which is often assumed
to follow a normal distribution. The mean
response is modeled as linear with respect to
the regression parameters.

In standard logistic regression, the outcome is a
dichotomous variable. Dichotomous outcomes
are often assumed to follow a binomial distri-
bution, with an expected value (or mean, m)
equal to a probability [e.g., P(Y ¼ 1)].

It is this probability that is modeled in logistic
regression.
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Exponential family distributions
include:

Binomial
Normal
Poisson
Exponential
Gamma

Generalized linear model

gðmÞ ¼ b0 þ ~
p

h¼1

bhXh;

where: m is the mean response E(Y)
g(m) is a function of the
mean

Three components for GLM:

1. Random component
2. Systematic component
3. Link function

1. Random component

Y follows a distribution from
the exponential family

2. Systematic component

The Xs are combined in the
model linearly, (i.e., b0 þ SbhXh)

Logistic model:

P(X) =
1 + exp[–(b0 + Σ bhXh]

1

linear component

The binomial distribution belongs to a larger
class of distributions called the exponential
family. Other distributions belonging to the
exponential family are the normal, Poisson,
exponential, and gamma distributions. These
distributions can be written in a similar form
and share important properties.

Let m represent the mean response E(Y), and
g(m) represent a function of the mean response.
A generalized linear model with p independent
variables can be expressed as g(m) equals
b0 plus the summation of the p independent
variables times their beta coefficients.

There are three components that comprise
GLM: (1) a random component, (2) a system-
atic component, and (3) the link function.
These components are described as follows:

1. The random component requires the out-
come (Y ) to follow a distribution from the
exponential family. This criterion is met for
a logistic regression (unconditional) since the
response variable follows a binomial distri-
bution, which is a member of the exponential
family.

2. The systematic component requires that
the Xs be combined in the model as a linear
function ðb0 þ SbhXhÞ of the parameters. This
portion of the model is not random. This crite-
rion is met for a logistic model, since the model
form contains a linear component in its
denominator.
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3. Link function:

gðmÞ ¼ b0 þ~bhXh

g ‘‘links’’ EðYÞ with b0 þ~bhXh

Logistic regression (logit link)

gðmÞ ¼ log
m

1� m

� �
¼ logitðmÞ

Alternate formulation

Inverse of link function ¼ g�1

satisfies

g�1ðgðmÞÞ ¼ m

Inverse of logit function in terms
of (X, b)

g�1ðX; bÞ¼m

¼ 1

1þexp � aþ ~
p

h¼1

bhXh

 !" #;

where

gðmÞ¼ logit PðD¼ 1 jXÞ

¼b0þ ~
p

h¼1

bhXh

GLM:

� Uses ML estimation

� Requires likelihood function L
where

L ¼
YK
i¼1

Li

ðassumes Yi are independentÞ

If Yi not independent and not normal

+
L complicated or intractable

3. The link function refers to that function of
the mean response, g(m), that is modeled line-
arly with respect to the regression parameters.
This function serves to “link” the mean of the
random response and the fixed linear set of
parameters.

For logistic regression, the log odds (or logit) of
the outcome is modeled as linear in the regres-
sion parameters. Thus, the link function for
logistic regression is the logit function [i.e.,
g(m) equals the log of the quantity m divided by
1 minus m].

Alternately, one can express GLM in terms of
the inverse of the link function (g�1), which is
the mean m. In other words, g�1 (g(m)) ¼ m. This
inverse function is modeled in terms of the
predictors (X) and their coefficients (b) (i.e.,
g�1(X, b)). For logistic regression, the inverse
of the logit link function is the familiar logistic
model of the probability of an event, as shown
on the left. Notice that this modeling of the
mean (i.e., the inverse of the link function) is
not a linear model. It is the function of the
mean (i.e., the link function) that is modeled
as linear in GLM.

GLM uses maximum likelihood methods to
estimate model parameters. This requires
knowledge of the likelihood function (L),
which, in turn, requires that the distribution
of the response variable be specified.

If the responses are independent, the likeli-
hood can be expressed as the product of each
observation’s contribution (Li) to the likeli-
hood.

However, if the responses are not independent,
then the likelihood can become complicated,
or intractable.
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If Yi not independent but MV normal

+
L specified

If Yi not independent and not

MV normal

+
Quasi-likelihood theory

Quasi-likelihood:

� No likelihood

� Specify mean variance
relationship

� Foundation of GEE

VI. GEE Models

GEE: class of models for correlated
data Link function g modeled as

gðmÞ ¼ b0 þ ~
p

h¼1

bhXh

For Yð0; 1Þ ) logit link

gðmÞ¼ logit PðY¼ 1 jXÞ

¼ b0þ ~
p

h¼1

bhXh

For nonindependent outcomes whose joint dis-
tribution is multivariate (MV) normal, the like-
lihood is relatively straightforward, since the
multivariate normal distribution is completely
specified by themeans, variances, and all of the
pairwise covariances of the random outcomes.
This is typically not the case for other multi-
variate distributions in which the outcomes
are not independent. For these circumstances,
quasi-likelihood theory offers an alternative
approach for model development.

Quasi-likelihood methods have many of the
same desirable statistical properties that maxi-
mum likelihoodmethods have, but the full like-
lihood does not need to be specified. Rather,
the relationship between the mean and vari-
ance of each response is specified. Just as the
maximum likelihood theory lays the founda-
tion for GLM, the quasi-likelihood theory lays
the foundation for GEE models.

GEE represent a class of models that are often
utilized for data in which the responses are
correlated (Liang and Zeger, 1986). GEE mod-
els can be used to account for the correlation of
continuous or categorical outcomes. As in
GLM, a function of the mean g(m), called the
link function, is modeled as linear in the regres-
sion parameters.

For a dichotomous outcome, the logit link is
commonly used. For this case, g(m) equals logit
(P), where P is the probability that Y ¼ 1.
If there are p independent variables, this can
be expressed as: logit P(Y ¼ 1 |X) equals
b0 plus the summation of the p independent
variables times their b coefficients.
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Correlated vs. independent

� Identical model

but
� Different assumptions

GEE:

� Generalization of quasi-
likelihood

� Specify a “working” correlation
structure for within-cluster
correlations

� Assume independence between
clusters

VII. Correlation Structure

Correlation and covariance sum-
marized as square matrices

Covariance matrix for Y1 and Y2

V ¼ varðY1Þ covðY1; Y2Þ
covðY1; Y2Þ varðY2Þ

" #

The logistic model for correlated data looks
identical to the standard logistic model. The
difference is in the underlying assumptions of
the model, including the presence of correla-
tion, and the way in which the parameters are
estimated.

GEE is a generalization of quasi-likelihood
estimation, so the joint distribution of the
data need not be specified. For clustered
data, the user specifies a “working” correlation
structure for describing how the responses
within clusters are related to each other.
Between clusters, there is an assumption of
independence.

For example, suppose 20 asthma patients are
followed for a week and keep a daily diary of
inhaler use. The response (Y) is given a value of
1 if a patient uses an inhaler on a given day and
0 if there is no use of an inhaler on that day.
The exposure of interest is daily pollen level.
In this analysis, each subject is a cluster. It is
reasonable to expect that outcomes (i.e., daily
inhaler use) are positively correlated within
observations from the same subject but inde-
pendent between different subjects.

The correlation and the covariance between
measures are often summarized in the form
of a square matrix (i.e., a matrix with equal
numbers of rows and columns). We use simple
matrices in the following discussion; however,
a background in matrix operations is not
required for an understanding of the material.

For simplicity consider two observations, Y1

and Y2. The covariance matrix for just these
two observations is a 2 � 2 matrix (V) of the
form shown at left. We use the conventional
matrix notation of bold capital letters to iden-
tify individual matrices.

EXAMPLE

Asthma patients followed 7 days

Y: daily inhaler use (0,1)
E: pollen level
Cluster: asthma patient

Yi within subjects correlated

but

Yi between subjects independent
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Corresponding 2 � 2 correlation
matrix

C ¼ 1 corrðY1; Y2Þ
corrðY1; Y2Þ 1

" #

Diagonal matrix: has 0 in all non-
diagonal entries.

Diagonal 2 � 2 matrix with var-
iances on diagonal

D ¼ varðY1Þ 0

0 varðY2Þ

" #

Can extend to N � N matrices

Matrices symmetric: (i, j) ¼ ( j, i)
element

covðY1; Y2Þ ¼ covðY2; Y1Þ
corrðY1; Y2Þ ¼ corrðY2; Y1Þ

Relationship between covariance
and correlation expressed as

covðY1; Y2Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðY1Þ

p
½corrðY1; Y2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðY2Þ

p

Matrix version: V ¼ D
1
2CD

1
2;

where D
1
2 �D

1
2 ¼ D

Logistic regression

D ¼ m1ð1� m1Þ 0

0 m2ð1� m2Þ

" #
;

where

varðYiÞ ¼ mið1� miÞ
mi ¼ g�1ðX; bÞ

The corresponding 2� 2 correlation matrix (C)
is also shown at left. Note that the covariance
between a variable and itself is the variance
of that variable [e.g., cov(Y1, Y1) ¼ var(Y1)],
so that the correlation between a variable and
itself is 1.

A diagonal matrix has a 0 in all nondiagonal
entries.

A 2 � 2 diagonal matrix (D) with the variances
along the diagonal is of the form shown at left.

The definitions of V, C, and D can be extended
from 2 � 2 matrices to N � N matrices. A
symmetric matrix is a square matrix in which
the (i, j) element of the matrix is the same value
as the (j, i) element. The covariance of (Yi, Yj) is
the same as the covariance of (Yj, Yi); thus the
covariance and correlation matrices are sym-
metric matrices.

The covariance between Y1 and Y2 equals the
standard deviation of Y1, times the correlation
between Y1 and Y2, times the standard devia-
tion of Y2.

The relationship between covariance and cor-
relation can be similarly expressed in terms of
the matrices V, C, and D as shown on the left.

For logistic regression, the variance of the
response Yi equals mi times (1 � mi). The cor-
responding diagonal matrix (D) has mi(1 � mi)
for the diagonal elements and 0 for the off-
diagonal elements. As noted earlier, the mean
(mi) is expressed as a function of the covariates
and the regression parameters [g�1(X, b)].
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Block diagonal matrix: subject-
specific correlation matrices form
blocks (Bi)

B1 0

B2

0 B3

2
64

3
75 where Bi ¼ ith block

We illustrate the form of the correlation matrix
in which responses are correlated within sub-
jects and independent between subjects. For
simplicity, consider a dataset with information
on only three subjects in which there are four
responses recorded for each subject. There are
12 observations (3 times 4) in all. The correla-
tion between responses from two different sub-
jects is 0, whereas the correlation between
responses from the same subject (i.e., the jth
and kth response from subject i) is rijk.

This correlation matrix is called a block diago-
nal matrix, where subject-specific correlation
matrices are the blocks along the diagonal of
the matrix.

The correlation matrix in the preceding exam-
ple contains 18 correlation parameters (6 per
cluster) based on only 12 observations. In this
setting, each subject has his or her own distinct
set of correlation parameters.

EXAMPLE

18 rs (6 per cluster/subject) but 12
observations

Subject i: {ri12, ri13, ri14, ri23, ri24, ri34}

EXAMPLE

Three subjects; four observations each
Within-cluster correlation between jth
and kth response from subject i¼ rijk

Between-subject correlations ¼ 0

1 r112 r113 r114 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

r112 1 r123 r124

r113 r123 1 r134

r114 r124 1r134

1 r212 r213 r214

r212 1 r223 r224

r213 r223 1 r234

r214 r224 r234 1

r334 1

1 r312 r313 r314

r312 1 r323 r324

r313 r323 1 r334

r314 r324

blocks
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# parameters > # observations
) b̂i not valid
GEE approach: common set of
rs for each subject:

Subject i: {r12, r13, r14, r23, r24,
r34}

In general, for K subjects:
rijk ) rjk: # of rs # by factor of K

Example above: unstructured cor-
relation structure

Next section shows other structures.

If there are more parameters to estimate than
observations in the dataset, then the model is
overparameterized and there is not enough
information to yield valid parameter estimates.
To avoid this problem, the GEE approach
requires that each subject have a common set of
correlation parameters. This reduces the number
of correlation parameters substantially. This
type of correlation matrix is presented at
the left.

There are now 6 correlation parameters (rjk)
for 12 observations of data. Giving each subject
a common set of correlation parameters
reduced the number by a factor of 3 (18 to 6).

In general, a common set of correlation para-
meters for K subjects reduces the number of
correlation parameters by a factor of K.

The correlation structure presented above is
called unstructured. Other correlation struc-
tures, with stronger underlying assumptions,
reduce the number of correlation parameters
even further. Various types of correlation
structure are presented in the next section.

EXAMPLE

3 subjects; 4 observations each

1 r12 r13 r14 0 0 0 0 0 0 0 0

r12 1 r23 r24 0 0 0 0 0 0 0 0

r13 r23 1 r34 0 0 0 0 0 0 0 0

r14 r24 r34 1 0 0 0 0 0 0 0 0

0 0 0 0 1 r12 r13 r14 0 0 0 0

0 0 0 0 r12 1 r23 r24 0 0 0 0

0 0 0 0 r13 r23 1 r34 0 0 0 0

0 0 0 0 r14 r24 r34 1 0 0 0 0

0 0 0 0 0 0 0 0 1 r12 r13 r14
0 0 0 0 0 0 0 0 r12 1 r23 r24
0 0 0 0 0 0 0 0 r13 r23 1 r34
0 0 0 0 0 0 0 0 r14 r24 r34 1

2
6666666666666666664

3
7777777777777777775

Now only 6 rs for 12 observations:
# # rs by factor of 3 (¼ # subjects)

510 14. Logistic Regression for Correlated Data: GEE



VIII. Different Types of
Correlation
Structure

Examples of correlation structures:
Independent

Exchangeable

AR1 autoregressive

Stationary m-dependent

Unstructured

Fixed

Independent

Assumption: responses uncorre-
lated within clusters

Matrix for a given cluster is the
identity matrix.

With five responses per cluster

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
66664

3
77775

Exchangeable

Assumption: any two responses
within a cluster have same correla-
tion (r)

With five responses per cluster

1 r r r r
r 1 r r r
r r 1 r r
r r r 1 r
r r r r 1

2
66664

3
77775

We present a variety of correlation structures
that are commonly considered when per-
forming a correlated analysis. These correla-
tion structures are as follows: independent,
exchangeable, AR1 autoregressive, stationary
m-dependent, unstructured, and fixed. Soft-
ware packages that accommodate correlated
analyses typically allow the user to specify the
correlation structure before providing esti-
mates of the correlation parameters.

Independent correlation structure.

The assumption behind the use of the indepen-
dent correlation structure is that responses are
uncorrelated within a cluster. The correlation
matrix for a given cluster is just the identity
matrix. The identity matrix has a value of 1
along the main diagonal and a 0 off the diago-
nal. The correlation matrix to the left is for a
cluster that has five responses.

Exchangeable correlation structure.

The assumption behind the use of the
exchangeable correlation structure is that any
two responses within a cluster have the same
correlation (r). The correlation matrix for a
given cluster has a value of 1 along the main
diagonal and a value of r off the diagonal. The
correlationmatrix to the left is for a cluster that
has five responses.
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Only one r estimated

Order of observations within a
cluster is arbitrary.

Can exchange positions of observa-
tions.

K ¼ 14 schools

ni ¼ # students from school i

~
K

i¼1

ni ¼ 237

School i: exchange order# 2 $ # 9

+
Will not affect analysis

Number of responses (ni) can vary
by i

Autoregressive

Assumption: correlation depends
on interval of time between
responses

1 2 20

r1,2 > r1,20

Time
(in months)

As in all correlation structures used for GEE
analyses, the same set of correlation para-
meters are assumed for modeling each cluster.
For the exchangeable correlation structure,
this means that there is only one correlation
parameter to be estimated.

A feature of the exchangeable correlation
structure is that the order of observations
within a cluster is arbitrary. For example, con-
sider a study in which there is a response from
each of 237 students representing 14 different
high schools. It may be reasonable to assume
that responses from students who go to the
same school are correlated. However, for a
given school, we would not expect the correla-
tion between the response of student #1 and
student #2 to be different from the correlation
between the response of student #1 and stu-
dent #9. We could therefore exchange the
order (the position) of student #2 and student
#9 and not affect the analysis.

It is not required that there be the same num-
ber of responses in each cluster. We may have
10 students from one school and 15 students
from a different school.

Autoregressive correlation structure:
An autoregressive correlation structure is gen-
erally applicable for analyses in which there
are repeated responses over time within a
given cluster. The assumption behind an auto-
regressive correlation structure is that the cor-
relation between responses depends on the
interval of time between responses. For exam-
ple, the correlation is assumed to be greater for
responses that occur 1month apart rather than
20 months apart.
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AR1

Special case of autoregressive

Assumption: Y at t1 and t2:

rt1;t2 ¼ rjt1�t2j

Cluster with four responses at
time t ¼ 1, 2, 3, 4

1 r r2 r3

r 1 r r2

r2 r 1 r
r3 r2 r 1

2
664

3
775

Cluster with four responses at
time t ¼ 1, 6, 7, 10

1 r5 r6 r9

r5 1 r5 r6

r6 r5 1 r5

r9 r6 r5 1

2
664

3
775

With AR1 structure, only one r
BUT

Order within cluster not arbitrary

AR1 is a special case of an autoregressive cor-
relation structure. AR1 is widely used because
it assumes only one correlation parameter and
because software packages readily accommo-
date it. The AR1 assumption is that the corre-
lation between any two responses from the
same subject equals a baseline correlation (r)
raised to a power equal to the absolute differ-
ence between the times of the responses.

The correlation matrix to the left is for a
cluster that has four responses taken at time
t ¼ 1, 2, 3, 4.

Contrast this to another example of an AR1
correlation structure for a cluster that has
four responses taken at time t ¼ 1, 6, 7, 10. In
each example, the power to which rho (r) is
raised is the difference between the times of
the two responses.

As with the exchangeable correlation structure,
the AR1 structure has just one correlation
parameter. In contrast to the exchangeable
assumption, the order of responses within a
cluster is not arbitrary, as the time interval is
also taken into account.
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Stationary m-dependent

Assumption:
Correlations k occasions apart

same for k ¼ 1, 2, . . . , m

Correlations > m occasions
apart ¼ 0

Stationary 2-dependent, cluster
with six responses (m ¼ 2, ni ¼ 6)

1 r1 r2 0 0 0

r1 1 r1 r2 0 0

r2 r1 1 r1 r2 0

0 r2 r1 1 r1 r2
0 0 r2 r1 1 r1
0 0 0 r2 r1 1

2
6666664

3
7777775

Stationary m-dependent structure
) m distinct rs

Unstructured

Cluster with four responses
# r ¼ 4(3)/2 ¼ 6

1 r12 r13 r14
r12 1 r23 r24
r13 r23 1 r34
r14 r24 r34 1

2
664

3
775

n responses
+

n(n�1)/2 distinct rs,
i.e. rjk 6¼ rj0k0 unless j ¼ j0 and k ¼ k0

r12 6¼ r34 even if t2 � t1 ¼ t4 � t3

Stationary m-dependent correlation
structure:

Theassumptionbehind theuse of the stationary
m-dependent correlation structure is that cor-
relations k occasions apart are the same for
k ¼ 1, 2, . . . , m, whereas correlations more
thanm occasions apart are zero.

The correlation matrix to the left illustrates a
stationary 2-dependent correlation structure
for a cluster that has six responses. A station-
ary 2-dependent correlation structure has two
correlation parameters.

In general, a stationary m-dependent correla-
tion structure has m distinct correlation para-
meters. The assumption here is that responses
within a cluster are uncorrelated if they are
more than m units apart.

Unstructured correlation structure:

In an unstructured correlation structure there
are less constraints on the correlation para-
meters. The correlation matrix to the left is for
a cluster that has four responses and six corre-
lation parameters.

In general, for a cluster that has n responses,
there are n(n�1)/2 correlation parameters. If
there are a large number of correlation para-
meters to estimate, the model may be unstable
and results unreliable.

An unstructured correlation structure has a
separate correlation parameter for each pair
of observations ( j, k) within a cluster, even if
the time intervals between the responses are
the same. For example, the correlation
between the first and second responses of a
cluster is not assumed to be equal to the corre-
lation between the third and fourth responses.

514 14. Logistic Regression for Correlated Data: GEE



rijk ¼ ri0jk if i 6¼ i0

rA12 = rB12 = r12

different clusters

Order {Yi1, Yi2, . . . , Yik} not arbi-
trary (e.g., cannot switch YA1 and
YA4 unless all Yi1 and Yi4 switched).

Fixed

User specifies fixed values for r.

r ¼ 0.1 for first and fourth
responses; 0.3 otherwise

1:0 0:3 0:3 0:1
0:3 1:0 0:3 0:3
0:3 0:3 1:0 0:3
0:1 0:3 0:3 1:0

2
664

3
775

No r estimated.

Choice of structure not always
clear.

Like the other correlation structures, the same
set of correlation parameters are used for each
cluster. Thus, the correlation between the first
and second responses for cluster A is the same
as the correlation between the first and second
response for cluster B. This means that the
order of responses for a given cluster is not
arbitrary for an unstructured correlation struc-
ture. If we exchange the first and fourth
responses of cluster i, it does affect the analy-
sis, unless we also exchange the first and fourth
responses for all the clusters.

Fixed correlation structure.

Some software packages allow the user to
select fixed values for the correlation para-
meters. Consider the correlation matrix pre-
sented on the left. The correlation between
the first and fourth responses of each cluster
is fixed at 0.1; otherwise, the correlation is
fixed at 0.3.

For an analysis that uses a fixed correlation
structure, there are no correlation parameters
to estimate since the values of the parameters
are chosen before the analysis is performed.

Selection of a “working” correlation structure is
at the discretion of the researcher. Which struc-
ture best describes the relationship between
correlations is not always clear from the avail-
able evidence. For large samples, the estimates
of the standard errors of the parameters are
more affected by the choice of correlation
structure than the estimates of the parameters
themselves.
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IX. Empirical and Model-
Based Variance
Estimators

GEE estimates have desirable
asymptotic|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} properties.

K ! 1 (i.e., K “large”),
where K ¼ # clusters

“Large” is subjective

Two statistical properties of GEE
estimates (if model correct):

1. Consistent

b̂ ! b as K ! 1

2. Asymptotically normal

b̂ � normal as K ! 1

Asymptotic normal property allows:
� Confidence intervals

� Statistical tests

In the next section, we describe two variance
estimators that can be obtained for the fitted
regression coefficients – empirical and model-
based estimators. In addition, we discuss the
effect of misspecification of the correlation
structure on those estimators.

Maximum likelihood estimates in GLM are
appealing because they have desirable asymp-
totic statistical properties. Parameter esti-
mates derived from GEE share some of these
properties. By asymptotic, we mean “as the
number of clusters approaches infinity”. This
is a theoretical concept since the datasets that
we are considering have a finite sample size.
Rather, we can think of these properties as
holding for large samples. Nevertheless, the
determination of what constitutes a “large”
sample is somewhat subjective.

If a GEE model is correctly specified, then the
resultant regression parameter estimates have
two important statistical properties: (1) the
estimates are consistent and (2) the distribu-
tion of the estimates is asymptotically normal.
A consistent estimator is a parameter estimate
that approaches the true parameter value in
probability. In other words, as the number of
clusters becomes sufficiently large, the differ-
ence between the parameter estimate and the
true parameter approaches zero. Consistency
is an important statistical property since it
implies that the method will asymptotically
arrive at the correct answer. The asymptotic
normal property is also important since know-
ledge of the distribution of the parameter
estimates allows us to construct confidence
intervals and perform statistical tests.
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To correctly specify a GEE model:

� Specify correct g(m)
� Specify correct Ci

b̂h consistent even if Ci misspeci-
fied

but

b̂h more efficient if Ci correct

To construct CIs, needdvarðb̂Þ

Two types of variance estimators:

� Model-based

� Empirical

No effect on b̂

Effect ondvarðb̂Þ
Model-based variance estimators:

� Similar in form to variance
estimators in GLM

� Consistent only if Ci correctly
specified

To correctly specify a GLM or GEE model,
one must correctly model the mean response
[i.e., specify the correct link function g(m)
and use the correct covariates]. Otherwise,
the parameter estimates will not be consistent.
An additional issue for GEE models is whether
the correlation structure is correctly specified
by the working correlation structure (Ci).

A key property of GEE models is that parame-
ter estimates for the regression coefficients are
consistent even if the correlation structure is
misspecified. However, it is still preferable for
the correlation structure to be correctly speci-
fied. There is less propensity for error in the
parameter estimates (i.e., smaller variance) if
the correlation structure is correctly specified.
Estimators are said to be more efficient if the
variance is smaller.

For the construction of confidence intervals
(CIs), it is not enough to know that the param-
eter estimates are asymptotically normal. In
addition, we need to estimate the variance of
the parameter estimates (not to be confused
with the variance of the outcome). For GEE
models, there are two types of variance estima-
tor, called model-based and empirical, that can
be obtained for the fitted regression coeffi-
cients. The choice of which estimator is used
has no effect on the parameter estimate (b̂), but
rather the effect is on the estimate of its vari-
ance ½dvarðb̂Þ�.
Model-based variance estimators are of a
similar form as the variance estimators in
a GLM, which are based on maximum like-
lihood theory. Although the likelihood is
never formulated for GEE models, model-
based variance estimators are consistent esti-
mators, but only if the correlation structure is
correctly specified.
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Empirical (robust) variance esti-
mators:

� An adjustment of model-based
estimators

� Uses observed rjk between
responses

� Consistent even if Ci

misspecified

�
Advantage of empirical estimator

Estimation of b vs. estimation of
var(b̂)

� b is estimated by b̂
� varðb̂Þ is estimated bydvarðb̂Þ
The true value of b does not depend
on the study

The true value of var(b̂) does depend
on the study design and the type of
analysis

Choice of working correlation
structure

) affects true variance of b̂

Empirical (robust) variance estimators are an
adjustment of model-based estimators (see
Liang and Zeger, 1986). Both the model-based
approach and the empirical approach make
use of the working correlation matrix. How-
ever, the empirical approach also makes use
of the observed correlations between responses
in the data. The advantage of using the empiri-
cal variance estimator is that it provides a con-
sistent estimate of the variance even if the
working correlation is not correctly specified.

There is a conceptual difference between the
estimation of a regression coefficient and the
estimation of its variance [dvarðb̂Þ]. The regres-
sion coefficient, b, is assumed to exist whether
a study is implemented or not. The distribution
of b̂, on the other hand, depends on character-
istics of the study design and the type of analy-
sis performed. For a GEE analysis, the
distribution of b̂ depends on such factors as
the true value of b, the number of clusters, the
number of responses within the clusters,
the true correlations between responses, and
the working correlation structure specified
by the user. Therefore, the true variance of b̂
(and not just its estimate) depends, in part, on
the choice of a working correlation structure.
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Empirical estimator generally
recommended.

Reason: robust to
misspecification of
correlation structure

Preferable to specify working corre-
lation structure close to actual one:

� More efficient estimate of b
� More reliable estimate of varðb̂Þ

if number of clusters is small

X. Statistical Tests

In SLR, three tests of significance
of b̂hs:

� Likelihood ratio test

� Score test

� Wald test

In GEE models, two tests of b̂h:

� Score test

� Wald test

likelihood ratio test

For the estimation of the variance of b̂ in
the GEE model, the empirical estimator is
generally recommended over the model-based
estimator since it is more robust to misspecifi-
cation of the correlation structure. This may
seem to imply that if the empirical estimator
is used, it does not matter which correlation
structure is specified. However, choosing a
working correlation that is closer to the actual
one is preferable since there is a gain in effi-
ciency. Additionally, since consistency is an
asymptotic property, if the number of clusters
is small, then even the empirical variance esti-
mate may be unreliable (e.g., may yield incor-
rect confidence intervals) if the correlation
structure is misspecified.

The likelihood ratio test, the Wald test, and the
Score test can each be used to test the statistical
significance of regression parameters in a stan-
dard logistic regression (SLR). The formu-
lation of the likelihood ratio statistic relies on
the likelihood function. The formulation of the
Score statistic relies on the score function, (i.e.,
the partial derivatives of the log likelihood).
(Score functions are described in Sect. XI.)
The formulation of the Wald test statistic relies
on the parameter estimate and its variance
estimate.

ForGEEmodels, the likelihood ratio test cannot
be used since a likelihood is never formulated.
However, there is a generalization of the Score
test designed for GEE models. The test statistic
for this Score test is based on the generalized
estimating “score-like” equations that are solved
to produce parameter estimates for the GEE
model. (These “score-like” equations are
described in Sect. XI.) The Wald test can also
be used for GEE models since parameter
estimates for GEE models are asymptotically
normal.
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To test several b̂h simultaneously
use

� Score test

� Generalized Wald test

Under H0, test statistics approxi-
mate w2 with df ¼ number of para-
meters tested.

To test one b̂h, the Wald test statis-
tic is of the familiar form

Z ¼ b̂h
sb̂h

Next two sections:

� GEE theory

� Use calculus and matrix
notation

The Score test, as with the likelihood ratio test,
can be used to test several parameter estimates
simultaneously (i.e., used as a chunk test).
There is also a generalized Wald test that can
be used to test several parameter estimates
simultaneously.

The test statistics for both the Score test
and the generalized Wald test are similar to
the likelihood ratio test in that they follow an
approximate chi-square distribution under the
null with the degrees of freedom equal to the
number of parameters that are tested. When
testing a single parameter, the generalized
Wald test statistic reduces to the familiar
form b̂h divided by the estimated standard
error of b̂h.

The use of the Score test, Wald test, and
generalized Wald test will be further illustrated
in the examples presented in the Chap. 15.

In the final two sections of this chapter we dis-
cuss the estimating equations used for GLM
and GEEmodels. It is the estimating equations
that form the underpinnings of a GEE analysis.
The formulas presented use calculus and
matrix notation for simplification. Although
helpful, a background in these mathematical
disciplines is not essential for an understanding
of the material.
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XI. Score Equations and
“Score-like” Equations

L ¼ likelihood function

ML solves estimating equations
called score equations.

S1¼@ ln L

@b0
¼0

S2¼@ ln L

@b1
¼0

�
�
�

Spþ1¼@ ln L

@bp
¼0

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

pþ1 equations in

pþ1unknowns

ðbsÞ

In GLM, score equations involve
mi ¼ E(Yi) and var(Yi)

K ¼ # of subjects

p þ 1 ¼ # of parameters
(bh, h ¼ 0, 1, 2, . . . , p)

Yields p þ 1 score equations
S1, S2, . . . , Sp þ 1

(see formula on next page)

The estimation of parameters often involves
solving a system of equations called estimating
equations. GLM utilizes maximum likelihood
(ML) estimation methods. The likelihood is a
function of the unknown parameters and the
observed data. Once the likelihood is formu-
lated, the parameters are estimated by finding
the values of the parameters that maximize the
likelihood. A common approach for maximiz-
ing the likelihood uses calculus. The partial
derivatives of the log likelihood with respect to
each parameter are set to zero. If there are
p þ 1 parameters, including the intercept,
then there are p þ 1 partial derivatives and,
thus, p þ 1 equations. These estimating equa-
tions are called score equations. The maximum
likelihood estimates are then found by solving
the system of score equations.

For GLM, the score equations have a special
form due to the fact that the responses follow
a distribution from the exponential family.
These score equations can be expressed in
terms of the means (mi) and the variances
[var(Yi)] of the responses, which are modeled
in terms of the unknown parameters (b0, b1,
b2, . . . , bp), and the observed data.

If there are K subjects, with each subject con-
tributing one response, and p þ 1 beta para-
meters (b0, b1, b2, . . . , bp), then there are p þ 1
score equations, one equation for each of the
p þ 1 beta parameters, with bh being the
(h þ 1)st element of the vector of parameters.
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Sh+1 = [var(Yi)]
–1[Yi – mi] = 0

∂mi
bhi=1

K

Σ

partial
derivative

variance residual

Solution: iterative (by computer)

GLM score equations:

� Completely specified by E(Yi)
and var(Yi)

� Basis of QL estimation

QL estimation:

� “Score-like” equations

� No likelihood

var(Yi) = fV(mi)

scale
factor

function of m

� gðmÞ ¼ b0 þ ~
p

h¼1

bhXh

� solution yields QL estimates

Logistic regression: Y ¼ (0, 1)

m ¼ PðY ¼ 1jXÞ
VðmÞ ¼ PðY ¼ 1jXÞ½1� PðY ¼ 1jXÞ�

¼ mð1� mÞ

The (h þ 1)st score equation (Shþ1) is written
as shown on the left. For each score equation,
the ith subject contributes a three-way product
involving the partial derivative of mi with
respect to a regression parameter, times the
inverse of the variance of the response, times
the difference between the response and its
mean (mi).

The process of obtaining a solution to these
equations is accomplished with the use of a
computer and typically is iterative.

A key property for GLM score equations is that
they are completely specified by the mean and
the variance of the random response. The
entire distribution of the response is not really
needed. This key property forms the basis of
quasi-likelihood (QL) estimation.

Quasi-likelihood estimating equations follow
the same form as score equations. For this
reason, QL estimating equations are often
called “score-like” equations. However, they
are not score equations because the likelihood
is not formulated. Instead, a relationship
between the variance and mean is specified.
The variance of the response, var(Yi), is set
equal to a scale factor (f) times a function of
the mean response, V(mi). “Score-like” equa-
tions can be used in a similar manner as score
equations in GLM. If the mean is modeled
using a link function g(m), QL estimates can
be obtained by solving the system of “score-
like” equations.

For logistic regression, in which the outcome is
coded 0 or 1, the mean response is the proba-
bility of obtaining the event, P(Y ¼ 1 |X). The
variance of the response equals P(Y ¼ 1 |X)
times 1 minus P(Y ¼ 1 |X). So the relationship
between the variance and mean can be
expressed as var(Y) ¼ f V(m) where V(m) equals
m times (1 � m).
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Scale factor ¼ f
Allows for extra variation in Y:

varðYÞ ¼ fVðmÞ

If Y binomial: f ¼ 1 and
V(m) ¼ m(1 � m)

f > 1 indicates overdispersion

f < 1 indicates underdispersion

Equations
Allow extra
variation?

QL: “score-like” Yes
GLM: score No

Summary: ML vs. QL Estimation

Step
ML

Estimation
QL

Estimation

1 Formulate L –
2 For each b,

obtain
@ ln L

@b

–

3 Form score
equations:
@ lnL

@b
¼ 0

� �
Form “score-

like”
equations
using
var(Y)
¼ fV(m)

4 Solve for ML
estimates

Solve for QL
estimates

The scale factor f allows for extra variation (dis-
persion) in the response beyond the assumed
mean variance relationship of a binomial
response, i.e., var(Y) ¼ m(1 � m). For the bino-
mial distribution, the scale factor equals 1. If the
scale factor is greater (or less) than 1, then there
is overdispersion or underdispersion compared
to a binomial response. The “score-like” equa-
tions are therefore designed to accommodate
extra variation in the response, in contrast to
the corresponding score equations from aGLM.

The process of ML and QL estimation can be
summarized in a series of steps. These steps
allow a comparison of the two approaches.

ML estimation involves four steps:
Step 1. Formulate the likelihood in terms of the

observed data and the unknown parameters
from the assumed underlying distribution of
the random data

Step 2. Obtain the partial derivatives of the log
likelihood with respect to the unknown
parameters

Step 3. Formulate score equations by setting
the partial derivatives of the log likelihood
to zero

Step 4. Solve the system of score equations to
obtain the maximum likelihood estimates.

For QL estimation, the first two steps are
bypassed by directly formulating and solving
a system of “score-like” equations. These
“score-like” equations are of a similar form as
are the score equations derived for GLM. With
GLM, the response follows a distribution from
the exponential family, whereas with the
“score-like” equations, the distribution of the
response is not so restricted. In fact, the distri-
bution of the response need not be known as
long as the variance of the response can be
expressed as a function of the mean.
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XII. Generalizing the
“Score-like”
Equations to Form
GEE Models

GEE models:

� For cluster-correlated data

model parameters:

b and a

correlation
parameters

regression
parameters

Matrix notation used to describe
GEE

Matrices needed specific to each
subject (cluster): Yi, mi, Di, Ci,
and Wi

Y i ¼

Yi1

Yi2

..

.

Yini

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

vector of ith subject’s
observed responses

mi ¼

mi1

mi2

..

.

mini

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

vector of ith subject’s
mean responses

Ci ¼ working correlation matrix
(ni � ni)

The estimating equations we have presented so
far have assumed one response per subject.
The estimating equations for GEE are “score-
like” equations that can be used when there are
several responses per subject or, more gener-
ally, when there are clustered data that con-
tains within-cluster correlation. Besides the
regression parameters (b) that are also present
in a GLM, GEE models contain correlation
parameters (a) to account for within-cluster
correlation.

The most convenient way to describe GEE
involves the use of matrices. Matrices are
needed because there are several responses
per subject and, correspondingly, a correlation
structure to be considered. Representing these
estimating equations in other ways becomes
very complicated.

Matrices and vectors are indicated by the use
of bold letters. The matrices that are needed
are specific for each subject (i.e., ith subject),
where each subject has ni responses. The
matrices are denoted as Yi, mi, Di, Ci, and Wi

and defined as follows:

Yi is the vector (i.e., collection) of the ith sub-
ject’s observed responses.

mi is a vector of the ith subject’s mean
responses. The mean responses are modeled
as functions of the predictor variables and the
regression coefficients (as in GLM).

Ci is the ni � ni correlation matrix containing
the correlation parameters. Ci is often referred
to as the working correlation matrix.
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Di ¼ diagonal matrix, with vari-
ance function V(mij) on diagonal

Wi ¼ working covariance matrix
(ni � ni)

Wi ¼ fD
1
2

iCiD
1
2

i

GEE: form similar to score
equations

If K ¼ # of subjects
ni ¼ # responses of subject i

p þ 1 ¼ # of parameters
(bh; h ¼ 0, 1, 2, . . . , p)

GEEh+1 = [Wi]
–1[Yi – mi] = 0

∂mi

bhi=1

K

Σ

partial
derivative

covariance
residuel

where

Wi ¼ fD
1
2

i CiD
1
2

i

Yields p þ 1 GEE equations of the
above form

Di is a diagonal matrix whose jth diagonal
(representing the jth observation of the ith sub-
ject) is the variance function V(mij). An example
with three observations for subject i is shown
at left. As a diagonal matrix, all the off-diagonal
entries of the matrix are 0. Since V(mij) is a
function of the mean, it is also a function of
the predictors and the regression coefficients.

Wi is an ni � ni variance–covariance matrix for
the ith subjects’ responses, often referred to
as theworking covariancematrix. The variance–
covariance matrix Wi can be decomposed into
the scale factor (f), times the square root of Di,
times Ci, times the square root of Di.

The generalized estimating equations are of a
similar form as the score equations presented
in the previous section. If there are K subjects,
with each subject contributing ni responses, and
p þ 1 beta parameters (b0, b1, b2, . . . , bp), with
bh being the (h þ 1)st element of the vector
of parameters, then the (h þ 1)st estimating
equation (GEEhþ1) is written as shown on
the left.

There are p þ 1 estimating equations, one
equation for each of the p þ 1 beta parameters.
The summation is over the K subjects in the
study. For each estimating equation, the ith
subject contributes a three-way product involv-
ing the partial derivative of mi with respect to a
regression parameter, times the inverse of the
subject’s variance–covariance matrix (Wi),
times the difference between the subject’s
responses and their mean (mi).

EXAMPLE

ni ¼3

Di ¼
Vðmi1Þ 0 0

0 Vðmi2Þ 0

0 0 Vðmi3Þ

2
64

3
75
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Key difference GEE vs. GLM score
equations: GEE allow for multiple
responses per subject

GEE model parameters – three
types:

1. Regression parameters (b)
Express relationship between
predictors and outcome.

2. Correlation parameters (a)
Express within-cluster
correlation; user specifies Ci.

3. Scale factor (f)
Accounts for extra variation
of Y.

The key difference between these estimating
equations and the score equations presented
in the previous section is that these estimating
equations are generalized to allow for multiple
responses from each subject rather than just
one response. Yi and mi now represent a collec-
tion of responses (i.e., vectors) and Wi repre-
sents the variance–covariance matrix for all of
the ith subject’s responses.

There are three types of parameters in a GEE
model. These are as follows.

1. The regression parameters (b) express the
relationship between the predictors and the
outcome. Typically, for epidemiological ana-
lyses, it is the regression parameters (or regres-
sion coefficients) that are of primary interest.
The other parameters contribute to the accu-
racy and integrity of the model but are
often considered “nuisance parameters”. For
a logistic regression, it is the regression param-
eter estimates that allow for the estimation of
odds ratios.

2. The correlation parameters (a) express
the within-cluster correlation. To run a GEE
model, the user specifies a correlation struc-
ture (Ci), which provides a framework for the
modeling of the correlation between responses
from the same subject. The choice of correla-
tion structure can affect both the estimates
and the corresponding standard errors of the
regression parameters.

3. The scale factor (f) accounts for overdisper-
sion or underdispersion of the response. Over-
dispersion means that the data are showing
more variation in the response variable than
what is assumed from the modeling of the
mean–variance relationship.
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SLR: var(Y) ¼ m(1 � m)

GEE logistic regression

varðYÞ ¼ fmð1� mÞ
f does not affect b̂
f affects sb̂ if f 6¼ 1

f > 1: overdispersion

f < 1: underdispersion

a and b estimated iteratively:

Estimates updated alternately

) convergence

To run GEE model, specify:

� g(m) ¼ link function

� V(m) ¼ mean variance
relationship

� Ci ¼ working correlation
structure

GLM – no specification of a corre-
lation structure

GEE logistic model:

logit PðD ¼ 1jXÞ ¼ b0 þ ~
p

h¼1

bhXh

a can affect estimation of b and sb̂
but

b̂i interpretation same as SLR

For a standard logistic regression (SLR), the
variance of the response variable is assumed
to be m(1 � m), whereas for a GEE logistic
regression, the variance of the response vari-
able is modeled as fm(1 � m) where f is the
scale factor. The scale factor does not affect
the estimate of the regression parameters but
it does affect their standard errors (sb̂) if the

scale factor is different from 1. If the scale
factor is greater than 1, there is an indication
of overdispersion and the standard errors of
the regression parameters are correspondingly
scaled (inflated).

For a GEE model, the correlation parameters
(a) are estimated by making use of updated
estimates of the regression parameters (b),
which are used to model the mean response.
The regression parameter estimates are, in
turn, updated using estimates of the correla-
tion parameters. The computational process is
iterative, by alternately updating the estimates
of the alphas and then the betas until conver-
gence is achieved.

The GEE model is formulated by specifying a
link function to model the mean response as a
function of covariates (as in a GLM), a variance
function which relates the mean and variance
of each response, and a correlation structure
that accounts for the correlation between
responses within each cluster. For the user,
the greatest difference of running a GEE
model as opposed to a GLM is the specification
of the correlation structure.

A GEE logistic regression is stated in a similar
manner as a SLR, as shown on the left. The
addition of the correlation parameters can
affect the estimation of the beta parameters
and their standard errors. However, the inter-
pretation of the regression coefficients is the
same as in SLR in terms of the way it reflects
the association between the predictor variables
and the outcome (i.e., the odds ratios).
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GEE vs. Standard Logistic
Regression

SLR equivalent to GEE model
with:

1. Independent correlation
structure

2. f forced to equal 1
3. Model-based standard errors

Chapter 15: GEE Examples

With an SLR, there is an assumption that
each observation is independent. By using an
independent correlation structure, forcing
the scale factor to equal 1, and using model-
based rather than empirical standard errors
for the regression parameter estimates, we
can perform a GEE analysis and obtain results
identical to those obtained from a standard
logistic regression.

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows. Then, do the practice exercises and
test.

In the next chapter (Chap. 15), examples are
presented to illustrate the effects of selecting
different correlation structures for a model
applied to a given dataset. The examples are
also used to compare the GEE approach with
a standard logistic regression approach in
which the correlation between responses is
ignored.

XIII. SUMMARY

ü Chapter 14: Logistic Regression
for Correlated
Data: GEE

The presentation is now complete. We have
described one analytic approach, the GEE
model, for the situation where the outcome
variable has dichotomous correlated res-
ponses. We examined the form and interpre-
tation of the GEE model and discussed a
variety of correlation structures that may
be used in the formulation of the model. In
addition, an overview of the mathematical
theory underlying the GEE model has been
presented.

528 14. Logistic Regression for Correlated Data: GEE



Detailed
Outline

I. Overview (pages 492 – 493)

A. Focus: modeling outcomes with dichotomous
correlated responses.

B. Observations can be subgrouped into clusters.

i. Assumption: responses are correlated
within a cluster but independent between
clusters.

ii. An analysis that ignores the within-cluster
correlationmay lead to incorrect inferences.

C. Primary analysis method examined is use of
generalized estimating equations (GEE) model.

II. An example (Infant Care Study) (pages 493 – 498)

A. Example is a comparison of GEE to
conventional logistic regression that ignores the
correlation structure.

B. Ignoring the correlation structure can affect
parameter estimates and their standard errors.

C. Interpretation of coefficients (i.e., calculation of
odds ratios and confidence intervals) is the
same as for standard logistic regression.

III. Data layout (page 499)

A. For repeated measures for K subjects:

i. The ith subject has ni measurements
recorded.

ii. The jth observation from the ith subject
occurs at time tij with the outcome
measured as Yij and with p covariates,
Xij1, Xij2, . . . , Xijp.

B. Subjects do not have to have the same number
of observations.

C. The time interval between measurements does
not have to be constant.

D. The covariates may be time-independent or
time-dependent for a given subject.

i. Time-dependent variable: values can vary
between time intervals within a cluster;

ii. Time-independent variables: values do not
vary between time intervals within a cluster.

IV. Covariance and correlation (pages 500 – 502)

A. Covariance of X and Y: the expected value of
the product of X minus its mean and Y minus
its mean:

covðX; YÞ ¼ E½ðX � mxÞðY � myÞ�:
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B. Correlation: a standardized measure of
covariance that is scale-free.

rxy ¼
covðX; YÞ
sXsY

i. Correlation values range from �1 to þ1.

ii. Can have correlations between
observations on the same outcome variable.

iii. Can have correlations between
dichotomous variables.

C. Correlation between observations in a cluster
should be accounted for in the analysis.

V. Generalized linear models (pages 503 – 506)

A. Models in the class of GLM include logistic
regression, linear regression, and Poisson
regression.

B. Generalized linear model with p predictors is of
the form

gðmÞ ¼ b0 þ ~
p

i¼1

biXi;

where m is the mean response and g(m) is a
function of the mean

C. Three criteria for a GLM:

i. Random component: the outcome follows a
distribution from the exponential family.

ii. Systematic component: the regression
parameters are modeled linearly, as a
function of the mean.

iii. Link function [g(m)]: this is the function
that is modeled linearly with respect to the
regression parameters:

a. Link function for logistic regression:
logit function.

b. Inverse of link function [g�1 (X, b)] ¼ m.
c. For logistic regression, the inverse of the

logit function is the familiar logistic
model for the probability of an event:

g�1ðX;bÞ ¼ m ¼ 1

1þ exp � aþ ~
p

i¼1

biXi

� �� �

D. GLM uses maximum likelihood methods for
parameter estimation, which require
specification of the full likelihood.

E. Quasi-likelihood methods provide an
alternative approach to model development.
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i. A mean–variance relationship for the
responses is specified.

ii. The full likelihood is not specified.

VI. GEE models (pages 506–507)

A. GEE are generalizations of GLM.

B. In GEE models, as in GLM, a link function [g(m)]
is modeled as linear in the regression parameters.

i. The logit link function is commonly used for
dichotomous outcomes:

gðmÞ ¼ logit½PðD ¼ 1jXÞ� ¼ b0 þ ~
p

h¼1

bhXh

ii. This model form is identical to the standard
logistic model, but the underlying
assumptions differ.

C. To apply a GEE model, a “working” correlation
structure for within-cluster correlations is
specified.

VII. Correlation structure (pages 507 – 510)

A. A correlation matrix in which responses are
correlated within subjects and independent
between subjects is in the form of a block
diagonal matrix.

i. Subject-specific matrices make up blocks
along the diagonal.

ii. All nondiagonal block entries are zero.

B. In a GEE model, each subject (cluster) has a
common set of correlation parameters.

VIII. Different types of correlation structures
(pages 511–516)

A. Independent correlation structure

i. Assumption: responses within a cluster are
uncorrelated.

ii. The matrix for a given cluster is the identity
matrix.

B. Exchangeable correlation structure

i. Assumption: any two responses within a
cluster have the same correlation (r).

ii. Only one correlation parameter is
estimated.

iii. Therefore, the order of observations within
a cluster is arbitrary.

C. Autoregressive correlation structure

i. Often appropriate when there are repeated
responses over time.
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ii. The correlation is assumed to depend on the
interval of time between responses.

iii. AR1 is a special case of the autoregressive
correlation structure:

a. Assumption of AR1: the correlation
between any two responses from the
same subject taken at time t1 and t2 is
rjt1�t2j.

b. There is one correlation parameter, but
the order within a cluster is not arbitrary.

D. Stationary m-dependent correlation structure

i. Assumption: correlations k occasions apart
are the same for k ¼ 1, 2, . . . , m, whereas
correlations more than m occasions apart
are zero.

ii. In a stationary m-dependent structure,
there are m correlation parameters.

E. Unstructured correlation structure

i. In general, for n responses in a cluster, there
are n(n � 1)/2 correlation parameters.

ii. Yields a separate correlation parameter for
each pair (j, k, j 6¼ k) of observations within a
cluster.

iii. The order of responses is not arbitrary.

F. Fixed correlation structure

i. The user specifies the values for the
correlation parameters.

ii. No correlation parameters are estimated.

IX. Empirical and model-based variance estimators
(pages 516–519)

A. If a GEE model is correctly specified (i.e., the
correct link function and correlation structure
are specified), the parameter estimates are
consistent and the distribution of the estimates
is asymptotically normal.

B. Even if the correlation structure is misspecified,
the parameter estimates ðb̂Þ are consistent.

C. Two types of variance estimators can be
obtained in GEE:

i. Model-based variance estimators.

a. Make use of the specified correlation
structure.

b. Are consistent only if the correlation
structure is correctly specified.
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ii. Empirical (robust) estimators, which are an
adjustment of model-based estimators:

a. Make use of the actual correlations
between responses in the data as well as
the specified correlation structure.

b. Are consistent even if the correlation
structure is misspecified.

X. Statistical tests (pages 519 – 520)

A. Score test

i. The test statistic is based on the “score-like”
equations.

ii. Under the null, the test statistic is
distributed approximately chi-square with
df equal to the number of parameters
tested.

B. Wald test

i. For testing one parameter, the Wald test
statistic is of the familiar form

Z ¼ b̂
sb̂
:

ii. For testing more than one parameter, the
generalized Wald test can be used.

iii. The generalized Wald test statistic is
distributed approximately chi-square with
df equal to the number of parameters
approximate tested.

C. In GEE, the likelihood ratio test cannot be used
because the likelihood is never formulated.

XI. Score equations and “score-like” equations
(pages 521 – 523)

A. For maximum likelihood estimation, score
equations are formulated by setting the partial
derivatives of the log likelihood to zero for each
unknown parameter.

B. In GLM, score equations can be expressed in
terms of the means and variances of the
responses.

i. Given pþ1 beta parameters and bh as the
(hþ1)st parameter, the (h þ 1)st score
equation is

~
K

i¼1

@mi
bh

½varðYiÞ��1½Yi � mi� ¼ 0;

where h ¼ 0, 1, 2, . . . , p.

ii. Note there are pþ 1 score equations, with
summation over all K subjects.
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C. Quasi-likelihood estimating equations follow
the same form as score equations and thus are
called “score-like” equations.

i. For quasi-likelihood methods, a mean
variance relationship for the responses is
specified [V(m)] but the likelihood in not
formulated.

ii. For a dichotomous outcome with a
binomial distribution, var(Y) ¼ fV(m),
where V(m) ¼ m(1�m) and f ¼ 1; in general
f is a scale factor that allows for extra
variability in Y.

XII. Generalizing the “score-like” equations to form
GEE models (pages 524 – 528)

A. GEE can be used to model clustered data that
contains within cluster correlation.

B. Matrix notation is used to describe GEE:

i. Di ¼ diagonal matrix, with variance
function V(mij) on diagonal.

ii. Ci ¼ correlation matrix (or working
correlation matrix).

iii. Wi ¼ variance–covariance matrix (or
working covariance matrix).

C. The form of GEE is similar to score equations:

~
K

i¼1

@m0
i

bh
½Wi��1½Yi � mi� ¼ 0;

whereWi ¼ fD
1
2

iCiD
1
2

i andwhere h ¼ 0, 1, 2, . . . , p.

i. There are p þ 1 estimating equations, with
the summation over all K subjects.

ii. The key difference between generalized
estimating equations and GLM score
equations is that the GEE allow for multiple
responses from each subject.

D. Three types of parameters in a GEE model:

i. Regression parameters (b): these express
the relationship between the predictors and
the outcome. In logistic regression, the
betas allow estimation of odds ratios.

ii. Correlation parameters (a): these express
the within-cluster correlation. A working
correlation structure is specified to run a
GEE model.

iii. Scale factor (f): this accounts for extra
variation (underdispersion or
overdispersion) of the response.
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a. in a GEE logistic regression:
var(Y) ¼ fm(1�m).

b. if different from 1, the scale factor (f)
will affect the estimated standard
errors of the parameter estimates.

E. To formulate a GEE model, specify:

i. A link function to model the mean as a
function of covariates.

ii. A function that relates the mean and
variance of each response.

iii. a correlation structure to account for
correlation between clusters.

F. Standard logistic regression is equivalent to a
GEE logistic model with an independent
correlation structure, the scale factor forced to
equal 1, and model-based standard errors.

XIII. Summary (page 528)
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Practice
Exercises

Questions 1–5 pertain to identifying the following correla-
tion structures that apply to clusters of four responses each:

A

1 0:27 0:27 0:27

0:27 1 0:27 0:27

0:27 0:27 1 0::27

0:27 0:27 0:27 1

2
666664

3
777775

B

1 0:35 0 0

0:35 1 0:35 0

0 0:35 1 0:35

0 0 0:35 1

2
666664

3
777775

C

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775

D

1 0:50 0:25 0:125

0:50 1 0:50 0:25

0:25 0:50 1 0:50

0:125 0:25 0:50 1

2
666664

3
777775

E

1 0:50 0:25 0:125

0:50 1 0:31 0:46

0:25 0:31 1 0:163

0:125 0:46 0:163 1

2
666664

3
777775

1. Matrix A is an example of which correlation structure?

2. Matrix B is an example of which correlation structure?

3. Matrix C is an example of which correlation structure?

4. Matrix D is an example of which correlation structure?

5. Matrix E is an example of which correlation structure?

True or False (Circle T or F)

T F 6. If there are two responses for each cluster, then
the exchangeable, AR1, and unstructured work-
ing correlation structure reduce to the same
correlation structure.

T F 7. A likelihood ratio test can test the statistical sig-
nificance of several parameters simultaneously
in a GEE model.

T F 8. Since GEE models produce consistent estimates
for the regression parameters even if the correla-
tion structure is misspecified (assuming the
mean response is modeled correctly), there
is no particular advantage in specifying the cor-
relation structure correctly.

T F 9. Maximum likelihood estimates are obtained in
a GLM by solving a system of score equations.
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The estimating equations used for GEE models
have a similar structure to those score equations
but are generalized to accommodate multiple
responses from the same subject.

T F 10. If the correlation between X and Y is zero, then
X and Y are independent.

Test True or False (Circle T or F)

T F 1. It is typically the regression coefficients, not the
correlation parameters, that are the parameters
of primary interest in a correlated analysis.

T F 2. If an exchangeable correlation structure is spe-
cified in a GEE model, then the correlation
between a subject’s first and second responses
is assumed equal to the correlation between the
subject’s first and third responses. However,
that correlation can be different for each sub-
ject.

T F 3. If a dichotomous response, coded Y ¼ 0 and
Y ¼ 1, follows a binomial distribution, then
the mean response is the probability that Y ¼ 1.

T F 4. In a GLM, the mean response is modeled as
linear with respect to the regression para-
meters.

T F 5. In a GLM, a function of the mean response is
modeled as linear with respect to the regression
parameters. That function is called the link
function.

T F 6. To run a GEE model, the user specifies a work-
ing correlation structure which provides a
framework for the estimation of the correlation
parameters.

T F 7. The decision as to whether to use model-based
variance estimators or empirical variance esti-
mators can affect both the estimation of
the regression parameters and their standard
errors.

T F 8. If a consistent estimator is used for a model,
then the estimate should be correct even if
the number of clusters is small.

T F 9. The empirical variance estimator allows for
consistent estimation of the variance of the
response variable even if the correlation struc-
ture is misspecified.

T F 10. Quasi-likelihood estimates may be obtained
even if the distribution of the response variable
is unknown. What should be specified is a func-
tion relating the variance to the mean response.
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Answers to
Practice
Exercises

1. Exchangeable correlation structure

2. Stationary 1-dependent correlation structure

3. Independent correlation structure

4. Autoregressive (AR1) correlation structure

5. Unstructured correlation structure

6. T

7. F: the likelihood is never formulated in a GEE model

8. F: the estimation of parameters is more efficient [i.e.,
smaller varðb̂Þ] if the correct correlation structure is
specified

9. T

10. F: the converse is true (i.e., if X and Y are independent,
then the correlation is 0). The correlation is a measure
of linearity. X and Y could have a nonlinear depen-
dence and have a correlation of 0. In the special case
where X and Y follow a normal distribution, then a
correlation of 0 does imply independence.
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Introduction In this chapter, we present examples of GEE models
applied to three datasets containing correlated responses.
The examples demonstrate how to obtain odds ratios, con-
struct confidence intervals, and perform statistical tests on
the regression coefficients. The examples also illustrate the
effect of selecting different correlation structures for a
GEE model applied to the same data, and compare the
results from the GEE approach with a standard logistic
regression approach in which the correlation between
responses is ignored.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 542)

II. Example I: Infant Care Study (pages 542–550)

III. Example II: Aspirin–Heart Bypass Study (pages
551–555)

IV. Example III: Heartburn Relief Study (pages
555–557)

V. Summary (page 557)
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Objectives Upon completing this chapter, the learner should be able
to:

1. State or recognize examples of correlated responses.

2. State or recognize when the use of correlated
analysis techniques may be appropriate.

3. State or recognize examples of different correlation
structures that may be used in a GEE model.

4. Given a printout of the results of a GEE model:

i. State the formula and compute the estimated
odds ratio

ii. State the formula and compute a confidence
interval for the odds ratio

iii. Test hypotheses about the model parameters
using the Wald test, generalized Wald test, or
Score test, stating the null hypothesis and the
distribution of the test statistic, and
corresponding degrees of freedom under the
null hypothesis

5. Recognize how running a GEE model differs from
running a standard logistic regression on data with
correlated dichotomous responses.

6. Recognize the similarities in obtaining and
interpreting odds ratio estimates using a GEEmodel
compared with a standard logistic regression model.
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Presentation

I. Overview

Examples:
Modeling

outcomes with
dichotomous

correlated
responses

FOCUS

Three examples are presented:

1. Infant Care Study
2. Aspirin–Heart Bypass Study
3. Heartburn Relief Study

II. Example 1: Infant Care
Study

Introduced in Chap. 14

Response (D):

Weight-for-height standardized (z)
score

D ¼
1 if z < ---1 (‘‘Wasting’’)

0 otherwise

(

In this chapter, we provide examples of how
the GEE approach is used to carry out logis-
tic regression for correlated dichotomous
responses.

We examine a variety of GEE models using
three databases obtained from the following
studies: (1) Infant Care Study, (2) Aspirin–
Heart Bypass Study, and (3) Heartburn Relief
Study.

In Chap. 14, we compared model output from
two models run on data obtained from an
infant care health intervention study in Brazil
(Cannon et al., 2001). We continue to examine
model output using these data, comparing
the results of specifying different correlation
structures.

Recall that the outcome of interest is a dicho-
tomous variable derived from a weight-
for-height standardized score (i.e., z-score)
obtained from the weight-for-height distribu-
tion of a reference population. The dichoto-
mous outcome, an indication of “wasting,” is
coded 1 if the z-score is less than negative 1,
and 0 otherwise.
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Independent variables:

BIRTHWGT (in grams)

GENDER

DIARRHEA¼
1 if symptoms

present in
past month

0 otherwise

8><
>:

DIARRHEA

� Exposure of interest

� Time-dependent variable

Infant Care Study Model

logit PðD¼ 1jXÞ
¼ b0þb1BIRTHWGT

þb2GENDERþb3DIARRHEA

Five GEE models presented, with
different Ci:

1. AR1 autoregressive
2. Exchangeable
3. Fixed
4. Independent
5. Independent (SLR)

The independent variables are BIRTHWGT
(the weight in grams at birth), GENDER (1 ¼
male, 2 ¼ female), and DIARRHEA, a dichoto-
mous variable indicating whether the infant
had symptoms of diarrhea that month
(1 ¼ yes, 0 ¼ no). We shall consider DIAR-
RHEA as the main exposure of interest in this
analysis. Measurements for each subject were
obtained monthly for a 9-month period. The
variables BIRTHWGT and GENDER are time-
independent variables, as their values for a
given individual do not change month to
month. The variable DIARRHEA, however, is
a time-dependent variable.

The model for the study can be stated as shown
on the left.

Five GEEmodels are presented and compared,
the last of which is equivalent to a standard
logistic regression. The five models in terms
of their correlation structure (Ci) are as fol-
lows: (1) AR1 autoregressive, (2) exchangeable,
(3) fixed, (4) independent, and (5) independent
with model-based standard errors and scale
factor fixed at a value of 1 [i.e., a standard
logistic regression (SLR)]. After the output for
all five models is shown, a table is presented
that summarizes the results for the effect of the
variable DIARRHEA on the outcome. Addition-
ally, output from models using a stationary
4-dependent and a stationary 8-dependent cor-
relation structure is presented in the Practice
Exercises at the end of the chapter. A GEE
model using an unstructured correlation struc-
ture did not converge for the Infant Care data-
set using SAS version 9.2.
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Output presented:

� b̂h; sb̂h (empirical), and

Wald test P-values

� “Working” correlation matrix
(Ci) containing r̂

Sample:

K ¼ 168 infants, ni � 9, but

9 infants “exposed cases”:
(i.e., D ¼ 1 and
DIARRHEA ¼ 1 for any
month)

Two sections of the output are presented for
each model. The first contains the parameter
estimate for each coefficient (i.e., beta), its esti-
mated standard error (i.e., the square root of
the estimated variance), and a P-value for the
Wald test. Empirical standard errors rather
than model-based are used for all but the last
model. Recall that empirical variance estima-
tors are consistent estimators even if the corre-
lation structure is incorrectly specified (see
Chap. 14).

The second section of output presented for
each model is the working correlation matrix
(Ci). The working correlation matrix contains
the estimates of the correlations, which depend
on the specified correlation structure. The
values of the correlation estimates are often
not of primary interest. However, the examina-
tion of the fitted correlation matrices serves to
illustrate key differences between the underly-
ing assumptions about the correlation struc-
ture for these models.

There are 168 clusters (infants) represented in
the data. Only nine infants have a value of 1 for
both the outcome and diarrhea variables at any
time during their 9 months of measurements.
The analysis, therefore, is strongly influenced
by the small number of infants who are classi-
fied as “exposed cases” during the study period.
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Model 1: AR1 correlation structure

Variable Coefficient

Empirical

Std Err

Wald

p-value

INTERCEPT �1.3978 1.1960 0.2425

BIRTHWGT �0.0005 0.0003 0.1080

GENDER 0.0024 0.5546 0.9965

DIARRHEA 0.2214 0.8558 0.7958

Effect of DIARRHEA:dOR ¼ expð0:2214Þ ¼ 1:25

95% CI ¼ exp½0:2214� 1:96ð0:8558Þ�
¼ ð0:23; 6:68Þ

Working correlation matrix: 9 � 9

AR1 working correlation matrix

(9 � 9 matrix: only three columns shown)

COL1 COL2 . . . COL9

ROW1 1.0000 0.5254 . . . 0.0058

ROW2 0.5254 1.0000 . . . 0.0110

ROW3 0.2760 0.5254 . . . 0.0210

ROW4 0.1450 0.2760 . . . 0.0400

ROW5 0.0762 0.1450 . . . 0.0762

ROW6 0.0400 0.0762 . . . 0.1450

ROW7 0.0210 0.0400 . . . 0.2760

ROW8 0.0110 0.0210 . . . 0.5254

ROW9 0.0058 0.0110 . . . 1.0000

Estimated correlations:

r̂ ¼ 0:5254 for responses 1 month
apart (e.g., first and second)

r̂ ¼ 0:2760 for responses 2 months
apart (e.g., first and third,
seventh and ninth)

The parameter estimates for Model 1 (autore-
gressive – AR1 correlation structure) are pre-
sented on the left. Odds ratio estimates are
obtained and interpreted in a similar manner
as in a standard logistic regression.

For example, the estimated odds ratio for the
effect of diarrhea symptoms on the outcome
(a low weight-for-height z-score) is exp
(0.2214) ¼ 1.25. The 95% confidence interval
can be calculated as exp[0.2214 � 1.96
(0.8558)], yielding a confidence interval of
(0.23, 6.68).

The working correlation matrix for each of
these models contains nine rows and nine col-
umns, representing an estimate for the month-
to-month correlation between each infant’s
responses. Even though some infants did not
contribute nine responses, the fact that each
infant contributed up to nine responses
accounts for the dimensions of the working
correlation matrix.

The working correlation matrix for Model 1 is
shown on the left. We present only columns 1,
2, and 9. However, all nine columns follow the
same pattern.

The second-row, first-column entry of 0.5254
for the AR1 model is the estimate of the corre-
lation between the first and second month
measurements. Similarly, the third-row, first-
column entry of 0.2760 is the estimate of the
correlation between the first and third month
measurements, which is assumed to be the
same as the correlation between any two mea-
surements that are 2 months apart (e.g., row 7,
column 9). It is a property of the AR1 correla-
tion structure that the correlation gets weaker
as the measurements are further apart in time.
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r̂j; jþ1 ¼ 0:5254

r̂j; jþ2 ¼ ð0:5254Þ2 ¼ 0:2760

r̂j; jþ3 ¼ ð0:5254Þ3 ¼ 0:1450

Model 2: Exchangeable
correlation structure

Variable Coefficient

Empirical

Std Err

Wald

p-value

INTERCEPT �1.3987 1.2063 0.2463

BIRTHWGT �0.0005 0.0003 0.1237

GENDER �0.0262 0.5547 0.9623

DIARRHEA 0.6485 0.7553 0.3906

b̂3 for DIARRHEA ¼ 0.6485
(vs. 0.2214 with Model 1)

Exchangeable working correlation
matrix

COL1 COL2 . . . COL9

ROW1 1.0000 0.4381 . . . 0.4381

ROW2 0.4381 1.0000 . . . 0.4381

ROW3 0.4381 0.4381 . . . 0.4381

ROW4 0.4381 0.4381 . . . 0.4381

ROW5 0.4381 0.4381 . . . 0.4381

ROW6 0.4381 0.4381 . . . 0.4381

ROW7 0.4381 0.4381 . . . 0.4381

ROW8 0.4381 0.4381 . . . 0.4381

ROW9 0.4381 0.4381 . . . 0.4381

Only one r̂: r̂ ¼ 0:4381

Model 3: Fixed correlation
structure

Variable Coefficient

Empirical

Std Err

Wald

p-value

INTERCEPT �1.3618 1.2009 0.2568

BIRTHWGT �0.0005 0.0003 0.1110

GENDER �0.0304 0.5457 0.9556

DIARRHEA 0.2562 0.8210 0.7550

Note that the correlation between measure-
ments 2 months apart (0.2760) is the square
of measurements 1 month apart (0.5254),
whereas the correlation between measure-
ments 3 months apart (0.1450) is the cube of
measurements 1 month apart. This is the key
property of the AR1 correlation structure.

Next we present the parameter estimates and
working correlation matrix for a GEE model
using the exchangeable correlation structure
(Model 2). The coefficient estimate for DIAR-
RHEA is 0.6485. This compares with the
parameter estimate of 0.2214 for the same
coefficient using the AR1 correlation structure
in Model 1.

There is only one correlation to estimate with
an exchangeable correlation structure. For this
model, this estimate is 0.4381. The interpreta-
tion is that the correlation between any two
outcome measures from the same infant is
estimated at 0.4381 regardless of which
months the measurements are taken.

Next we examine output from a model with a
fixed, or user-defined, correlation structure
(Model 3). The coefficient estimate and stan-
dard error for DIARRHEA are 0.2562 and
0.8210, respectively. These are similar to the
estimates in the AR1 model, which were
0.2214 and 0.8558, respectively.
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Fixed structure: r prespecified, not
estimated

In Model 3, r fixed at 0.55 for con-
secutive months; 0.30 for noncon-
secutive months.

Fixed working correlation matrix

COL1 COL2 . . . COL9

ROW1 1.0000 0.5500 . . . 0.3000

ROW2 0.5500 1.0000 . . . 0.3000

ROW3 0.3000 0.5500 . . . 0.3000

ROW4 0.3000 0.3000 . . . 0.3000

ROW5 0.3000 0.3000 . . . 0.3000

ROW6 0.3000 0.3000 . . . 0.3000

ROW7 0.3000 0.3000 . . . 0.3000

ROW8 0.3000 0.3000 . . . 0.5500

ROW9 0.3000 0.3000 . . . 1.0000

Correlation structure (fixed) for
Model 3: combines AR1 and
exchangeable features

Choice of r at discretion of user,
but may not always converge

Allows flexibility specifying
complicated Ci

A fixed correlation structure has no correlation
parameters to estimate. Rather, the values of
the correlations are prespecified. For Model 3,
the prespecified correlations are set at 0.55
between responses from consecutive months
and 0.30 between responses from nonconsecu-
tive months. For instance, the correlation
between months 2 and 3 or months 2 and 1 is
assumed to be 0.55, whereas the correlation
between month 2 and the other months (not 1
or 3) is assumed to be 0.30.

This particular selection of fixed correlation
values contains some features of an autore-
gressive correlation structure, in that consecu-
tive monthly measures are more strongly
correlated. It also contains some features of
an exchangeable correlation structure, in that,
for nonconsecutive months, the order of mea-
surements does not affect the correlation. Our
choice of values for this model was influenced
by the fitted values observed in the working
correlation matrices of Model 1 and Model 2.

The choice of correlation values for a fixed
working correlation structure is at the discre-
tion of the user. However, the parameter esti-
mates are not guaranteed to converge for every
choice of correlation values. In other words,
the software package may not be able to pro-
vide parameter estimates for a GEE model for
some user-defined correlation structures.

The use of a fixed correlation structure con-
trasts with other correlation structures in that
the working correlation matrix (Ci) does not
result from fitting a model to the data, since
the correlation values are all prespecified. How-
ever, it does allow flexibility in the specification
of more complicated correlation patterns.
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Independent correlation structure:
two models

Model 4. Uses empirical sb̂;
f not fixed

Model 5. Uses model-based sb̂;
f fixed at 1

BUT

b not affected 

affectedbS

Independent working correlation
matrix

COL1 COL2 . . . COL9

ROW1 1.0000 0.0000 . . . 0.0000

ROW2 0.0000 1.0000 . . . 0.0000

ROW3 0.0000 0.0000 . . . 0.0000

ROW4 0.0000 0.0000 . . . 0.0000

ROW5 0.0000 0.0000 . . . 0.0000

ROW6 0.0000 0.0000 . . . 0.0000

ROW7 0.0000 0.0000 . . . 0.0000

ROW8 0.0000 0.0000 . . . 0.0000

ROW9 0.0000 0.0000 . . . 1.0000

Measurements on same subject
assumed uncorrelated.

Model 4: Independent correlation
structure

Variable Coefficient

Empirical Std

Err

Wald

p-

value

INTERCEPT �1.4362 1.2272 0.2419

BIRTHWGT �0.0005 0.0003 0.1350

GENDER �0.0453 0.5526 0.9346

DIARRHEA 0.7764 0.5857 0.1849

Next, we examine output from models that
incorporate an independent correlation struc-
ture (Model 4 and Model 5). The key difference
between Model 4 and a standard logistic
regression (Model 5) is that Model 4 uses the
empirical standard errors, whereas Model 5
uses the model-based standard errors. The
other difference is that the scale factor is not
preset equal to 1 in Model 4 as it is in Model 5.
These differences only affect the standard
errors of the regression coefficients rather
than the estimates of the coefficients them-
selves.

The working correlationmatrix for an indepen-
dent correlation structure is the identity matrix
– with a 1 for the diagonal entries and a 0 for
the other entries. The zeros indicate that the
outcome measurements taken on the same
subject are assumed uncorrelated.

The outputs for Model 4 and Model 5 (next
page) are shown on the left. The corresponding
coefficients for each model are identical as
expected. However, the estimated standard
errors of the coefficients and the
corresponding Wald test P-values differ for
the two models.
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Model 5: Standard logistic regres-
sion (naive model)

Variable Coefficient

Model-based

Std Err

Wald

p-value

INTERCEPT �1.4362 0.6022 0.0171

BIRTHWGT �0.0005 0.0002 0.0051

GENDER �0.0453 0.2757 0.8694

DIARRHEA 0.7764 0.4538 0.0871

b̂3 for DIARRHEA same but sb̂ and
Wald P-values differ.

Model 4 vs. Model 5

� Parameter estimates same

� sb̂ Model 4 > sb̂ Model 5

Other data: possible that
sb̂ (empirical) < sb̂ (model based)

Summary. Comparison of model
results for DIARRHEA

Correlation

structure

Odds

ratio 95% CI

1 AR(1) 1.25 (0.23, 6.68)

2 Exchangeable 1.91 (0.44, 8.37)

3 Fixed (user defined) 1.29 (0.26, 6.46)

4 Independent 2.17 (0.69, 6.85)

5 Independent (SLR) 2.17 (0.89, 5.29)

In particular, the coefficient estimate for
DIARRHEA is 0.7764 in both Model 4 and
Model 5; however, the standard error for DIAR-
RHEA is larger in Model 4 at 0.5857 compared
with 0.4538 for Model 5. Consequently, the P-
values for the Wald test also differ: 0.1849 for
Model 4 and 0.0871 for Model 5.

The other parameters in both models exhibit
the same pattern, in that the coefficient esti-
mates are the same, but the standard errors are
larger for Model 4. In this example, the empiri-
cal standard errors are larger than their model-
based counterparts, but this does not always
occur. With other data, the reverse can occur.

A summary of the results for each model for
the variable DIARRHEA is presented on the
left. Note that the choice of correlation struc-
ture affects both the odds ratio estimates and
the standard errors, which in turn affects the
width of the confidence intervals. The largest
odds ratio estimates are 2.17 fromModel 4 and
Model 5, which use an independent correlation
structure. The 95% confidence intervals for all
of the models are quite wide, with the tightest
confidence interval (0.89, 5.29) occurring in
Model 5, which is a standard logistic regres-
sion. The confidence intervals for the odds
ratio for DIARRHEA include the null value of
1.0 for all five models.
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Impact of misspecification

(usually)

OR

bS

For Models 1–5:dOR range ¼ 1:25�3:39

dOR range suggests model
instability.

Instability likely due to small num-
ber (nine) of exposed cases.

Which models to eliminate?

Models 4 and 5 (independent):
Evidence of correlated
observations

Model 2 (exchangeable):
If autocorrelation suspected

Remaining models: similar results:

Model 1 (AR1)dORð95% CIÞ ¼ 1:25ð0:23; 6:68Þ

Model 3 (fixed)dOR ð95% CIÞ ¼ 1:29ð0:26; 6:46Þ

Typically, a misspecification of the correlation
structure has a stronger impact on the stan-
dard errors than on the odds ratio estimates.
In this example, however, there is quite a bit of
variation in the odds ratio estimates across the
five models (from 1.25 for Model 1 to 2.17 for
Model 4 and Model 5).

This variation in odds ratio estimates suggests
a degree of model instability and a need for
cautious interpretation of results. Such evi-
dence of instability may not have been appar-
ent if only a single correlation structure had
been examined. The reason the odds ratio var-
ies as it does in this example is probably due to
the relatively few infants who are exposed
cases (n ¼ 9) for any of their nine monthly
measurements.

It is easier to eliminate prospective models
than to choose a definitive model. The working
correlation matrices of the first two models
presented (AR1 autoregressive and exchange-
able) suggest that there is a positive correlation
between responses for the outcome variable.
Therefore, an independent correlation struc-
ture is probably not justified. This would elim-
inate Model 4 and Model 5 from consideration.

The exchangeable assumption for Model 2 may
be less satisfactory in a longitudinal study if it
is felt that there is autocorrelation in the
responses. If so, that leaves Model 1 and
Model 3 as the models of choice.

Model 1 and Model 3 yield similar results, with
an odds ratio and 95% confidence interval of
1.25 (0.23, 6.68) for Model 1 and 1.29 (0.26,
6.46) for Model 3. Recall that our choice of
correlation values used in Model 3 was influ-
enced by the working correlation matrices of
Model 1 and Model 2.
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III. Example 2:
Aspirin–Heart Bypass
Study

Data source: Gavaghan et al., 1991

Subjects: 214 patients received up
to 6 coronary bypass grafts.

Randomly assigned to treatment
group:

ASPIRIN ¼ 1 if daily aspirin

0 if daily placebo

�

Response (D): Occlusion of a bypass
graft 1 year later

D ¼ 1 if blocked

0 if unblocked

�

Additional covariates:
AGE (in years)

GENDER (1 ¼ male, 2 ¼ female)

WEIGHT (in kilograms)

HEIGHT (in centimeters)

Correlation structures to consider:

� Exchangeable

� Independent

Model 1: interaction model

Interaction termsbetweenASPIRIN
and the other four covariates
included.

logit PðD ¼ 1jXÞ
¼ b0 þ b1ASPIRINþ b2AGE

þ b3GENDERþ b4WEIGHT

þ b5HEIGHT þ b6ASPIRIN � AGE

þ b7ASPIRIN �GENDER

þ b8ASPIRIN �WEIGHT

þ b9ASPIRIN �HEIGHT

The next example uses data from a study in
Sydney, Australia, which examined the efficacy
of aspirin for prevention of thrombotic graft
occlusion after coronary bypass grafting
(Gavaghan et al., 1991). Patients (K ¼ 214)
were given a variable number of artery
bypasses (up to six) in a single operation, and
randomly assigned to take either aspirin (ASPI-
RIN ¼ 1) or a placebo (ASPIRIN ¼ 0) every
day. One year later, angiograms were per-
formed to check each bypass for occlusion
(the outcome), which was classified as blocked
(D ¼ 1) or unblocked (D ¼ 0). Additional cov-
ariates include AGE (in years), GENDER (1 ¼
male, 2 ¼ female), WEIGHT (in kilograms),
and HEIGHT (in centimeters).

In this study, there is no meaningful distinc-
tion between artery bypass 1, artery bypass 2,
or artery bypass 3 in the same subject. Since
the order of responses within a cluster is arbi-
trary, wemay consider using either the exchan-
geable or independent correlation structure.
Other correlation structures make use of an
inherent order for the within-cluster responses
(e.g., monthly measurements), so they are not
appropriate here.

The first model considered (Model 1) allows for
interaction between ASPIRIN and each of the
other four covariates. The model can be stated
as shown on the left.
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Exchangeable correlation structure

Variable Coefficient
Empirical Std

Err

Wald
p-

value

INTERCEPT �1.1583 2.3950 0.6286
ASPIRIN 0.3934 3.2027 0.9022
AGE �0.0104 0.0118 0.3777
GENDER �0.9377 0.3216 0.0035
WEIGHT 0.0061 0.0088 0.4939
HEIGHT 0.0116 0.0151 0.4421
ASPIRIN

� AGE
0.0069 0.0185 0.7087

ASPIRIN
� GENDER

0.9836 0.5848 0.0926

ASPIRIN
� WEIGHT

�0.0147 0.0137 0.2848

ASPIRIN
� HEIGHT

�0.0107 0.0218 0.6225

Odds ratio(ASPIRIN¼1 vs. ASPIRIN¼0)

odds ¼ expðb0þb1ASPIRINþb2AGE

þb3GENDERþb4WEIGHT

þb5HEIGHTþb6ASPIRIN�AGE

þb7ASPIRIN�GENDER

þb8ASPIRIN�WEIGHT

þb9ASPIRIN�HEIGHTÞ

Separate OR for each pattern of
covariates:

OR ¼ expðb1þb6AGEþb7GENDER

þb8WEIGHTþb9HEIGHTÞ

AGE ¼ 60,GENDER ¼ 1,WEIGHT
¼ 75 kg, HEIGHT ¼ 170 cmdORASPIRIN¼ 1 vs: ASPIRIN¼ 0Þ

¼ exp½0:3934þ ð0:0069Þð60Þ
þ ð0:9836Þð1Þ þ ð�0:0147Þð75Þ
þ ð�0:0107Þð170Þ� ¼ 0:32

Chunk test

H0: b6 ¼ b7 ¼ b8 ¼ b9 ¼ 0

Likelihood ratio test

for GEE models

Notice that themodel contains a term for ASPI-
RIN, terms for the four covariates, and four
product terms containing ASPIRIN. An
exchangeable correlation structure is speci-
fied. The parameter estimates are shown on
the left.

The output can be used to estimate the odds
ratio for ASPIRIN ¼ 1 vs. ASPIRIN ¼ 0. If
interaction is assumed, then a different odds
ratio estimate is allowed for each pattern of
covariates where the covariates interacting
with ASPIRIN change values.

The odds ratio estimates can be obtained by
separately inserting the values ASPIRIN ¼ 1
and ASPIRIN ¼ 0 in the expression of the
odds shown on the left and then dividing one
odds by the other.

This yields the expression for the odds ratio,
also shown on the left.

The odds ratio (comparing ASPIRIN status) for
a 60-year-old male who weighs 75 kg and is
170 cm tall can be estimated using the output
as 0.32.

A chunk test can be performed to determine if
the four product terms can be dropped from
the model. The null hypothesis is that the betas
for the interaction terms are all equal to zero.

Recall for a standard logistic regression that
the likelihood ratio test can be used to simulta-
neously test the statistical significance of sev-
eral parameters. For GEE models, however, a
likelihood is never formulated, which means
that the likelihood ratio test cannot be used.
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Two tests:

� Score test

� Generalized Wald test

Under H0, both test statistics
approximate w2 with
df ¼ # of parameters tested.

Chunk test for interaction terms:

Type DF Chi-square P-value

Score 4 3.66 0.4544
Wald 4 3.53 0.4737

Both tests fail to reject H0.

Model 2: No interaction model
(GEE)

logit PðD ¼ 1jXÞ
¼ b0 þ b1ASPIRINþ b2AGE

þ b3GENDERþ b4WEIGHT

þ b5HEIGHT

Model 2 Output (Exchangeable)

Variable Coefficient
Empirical
Std Err

Wald
p-value

INTERCEPT �0.4713 1.6169 0.7707
ASPIRIN �1.3302 0.1444 0.0001
AGE �0.0086 0.0087 0.3231
GENDER �0.5503 0.2559 0.0315
WEIGHT �0.0007 0.0066 0.9200
HEIGHT 0.0080 0.0105 0.4448

There are two other statistical tests that can be
utilized for GEE models. These are the
generalized Score test and the generalized
Wald test. The test statistic for the Score test
relies on the “score-like” generalized estimat-
ing equations that are solved to produce the
parameter estimates for the GEE model (see
Chap. 14). The test statistic for the generalized
Wald test generalizes the Wald test statistic for
a single parameter by utilizing the variance–
covariance matrix of the parameter estimates.
The test statistics for both the Score test and
the generalized Wald test follow an approxi-
mate chi-square distribution under the null
with the degrees of freedom equal to the num-
ber of parameters that are tested.

The output for the Score test and the
generalized Wald test for the four interaction
terms is shown on the left. The test statistic for
the Score test is 3.66 with the corresponding
p-value at 0.45. The generalized Wald test
yields similar results, as the test statistic is
3.53 with the p-value at 0.47. Both tests indi-
cate that the null hypothesis should not be
rejected and suggest that a model without the
interaction terms may be appropriate.

The no interaction model (Model 2) is pre-
sented at left. The GEE parameter estimates
using the exchangeable correlation structure
are also shown.
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Odds ratiodORASPIRIN¼1 vs: ASPIRIN¼0 ¼ expð�1:3302Þ
¼ 0:264

Wald test

H0: b1 ¼ 0

Z ¼ �1:3302

0:1444
¼ �9:21; P ¼ 0:0001

Score test

H0: b1 ¼ 0

Chi-square ¼ 65.84, P ¼ 0.0001

Note:
Z2 ¼ (�9.21)2 ¼ 84.82,
so Wald 6¼ Score

Exchangeable working correlation
matrix

COL1 COL2 . . . COL6

ROW1 1.0000 �0.0954 . . . �0.0954

ROW2 �0.0954 1.0000 . . . �0.0954

ROW3 �0.0954 �0.0954 . . . �0.0954

ROW4 �0.0954 �0.0954 . . . �0.0954

ROW5 �0.0954 �0.0954 . . . �0.0954

ROW6 �0.0954 �0.0954 . . . 1.0000

r̂ ¼ �0:0954

Model 3: SLR (naive model)

Variable Coefficient

Model-based

Std Err

Wald

p-value

INTERCEPT �0.3741 2.0300 0.8538

ASPIRIN �1.3410 0.1676 0.0001

AGE �0.0090 0.0109 0.4108

GENDER �0.5194 0.3036 0.0871

WEIGHT �0.0013 0.0088 0.8819

HEIGHT 0.0078 0.0133 0.5580

SCALE 1.0000 0.0000

The odds ratio for aspirin use is estimated at
exp(�1.3302) ¼ 0.264, which suggests that
aspirin is a preventive factor toward throm-
botic graft occlusion after coronary bypass
grafting.

The Wald test can be used for testing the
hypothesis H0: b1 ¼ 0. The value of the z test
statistic is �9.21. The P-value of 0.0001 indi-
cates that the coefficient for ASPIRIN is statis-
tically significant.

Alternatively, the Score test can be used to test
the hypothesis H0: b1 ¼ 0. The value of the chi-
square test statistic is 65.34 yielding a similar
statistically significant P-value of 0.0001.

Note, however, that the w2 version of the Wald
text (i.e., Z2) differs from the Score statistic.

The correlation parameter estimate obtained
from the working correlation matrix is
�0.0954, which suggests a negative association
between reocclusion of different arteries from
the same bypass patient compared with reoc-
clusions from different patients.

The output for a standard logistic regression
(SLR) is presented on the left for comparison
with the corresponding GEE models. The
parameter estimates for the standard logistic
regression are similar to those obtained from
the GEEmodel, although their standard errors
are slightly larger.
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Comparison of model results for
ASPIRIN

Correlation
structure

Odds
ratio 95% CI

Exchangeable
(GEE)

0.26 (0.20, 0.35)

Independent
(SLR)

0.26 (0.19, 0.36)

In this example, predictor values
did not vary within a cluster.

IV. Example 3: Heartburn
Relief Study

Data source: Fictitious crossover
study on heartburn relief.

Subjects: 40 patients; 2 symptom-
provoking meals each; 1 of 2
treatments in random order

Treatment ðRXÞ ¼ 1 if active RX

0 if standard RX

�

Response (D): Relief from
symptoms after 2 hours

D ¼ 1 if yes
0 if no

�

Each subject has two observations

RX ¼ 1

RX ¼ 0

RX is time dependent: values
change for each subject (cluster)

A comparison of the odds ratio estimates with
95% confidence intervals for the no-interaction
models of both the GEE model and SLR is
shown on the left. The odds ratio estimates
and 95% confidence intervals are very similar.
This is not surprising, since only a modest
amount of correlation is detected in the work-
ing correlation matrix ðr̂ ¼ �0:0954Þ.

In this example, none of the predictor variables
(ASPIRIN, AGE, GENDER, WEIGHT, or
HEIGHT) had values that varied within a clus-
ter. This contrasts with the data used for the
next example in which the exposure variable of
interest is a time-dependent variable.

The final dataset discussed is a fictitious cross-
over study on heartburn relief in which 40 sub-
jects are given two symptom-provoking meals
spaced a week apart. Each subject is adminis-
tered an active treatment for heartburn
(RX ¼ 1) following one of themeals and a stan-
dard treatment (RX ¼ 0) following the other
meal in random order. The dichotomous out-
come is relief from heartburn, determined
from a questionnaire completed 2 hours after
each meal.

There are two observations recorded for each
subject: one for the active treatment and the
other for the standard treatment. The variable
indicating treatment status (RX) is a time-
dependent variable since it can change values
within a cluster (subject). In fact, due to the
design of the study, RX changes values in every
cluster.
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Model 1

logit PðD ¼ 1jXÞ ¼ b0 þ b1RX

ni ¼ 2 : ½AR1; exchangeable;
or unstructured�

) same 2� 2 Ci

Ci ¼
1 r

r 1

" #

Exchangeable correlation structure

Variable Coefficient
Empirical
Std Err

Wald p-
value

INTERCEPT �0.2007 0.3178 0.5278
RX 0.3008 0.3868 0.4368
Scale 1.0127 � �

dOR ¼ expð0:3008Þ ¼ 1:35

95% CI ¼ ð0:63; 2:88Þ

Exchangeable Ci

COL1 COL2

ROW1 1.0000 0.2634
ROW2 0.2634 1.0000

SLR (naive) model

Variable Coefficient
Model-
based Std Err

Wald
p-value

INTERCEPT �0.2007 0.3178 0.5278
RX 0.3008 0.4486 0.5826
Scale 1.0000 � �

dOR ¼ expð0:3008Þ ¼ 1:35

95% CI ¼ ð0:56; 3:25Þ

For this analysis, RX is the only independent
variable considered. The model is stated as
shown on the left. With exactly two observa-
tions per subject, the only correlation to con-
sider is the correlation between the two
responses for the same subject. Thus, there is
only one estimated correlation parameter,
which is the same for each cluster. As a result,
using an AR1, exchangeable, or unstructured
correlation structure yields the same 2 � 2
working correlation matrix (Ci).

The output for a GEEmodel with an exchange-
able correlation structure is presented on the
left.

The odds ratio estimate for the effect of
treatment for relieving heartburn is
exp(0.3008) ¼ 1.35 with the 95% confidence
interval of (0.63, 2.88). The working correlation
matrix shows that the correlation between
responses from the same subject is estimated
at 0.2634.

A standard logistic regression is presented
for comparison. The odds ratio estimate at
exp(0.3008) ¼ 1.35 is exactly the same as was
obtained from the GEE model with the
exchangeable correlation structure; however,
the standard error is larger, yielding a larger
95% confidence interval of (0.56, 3.25).
Although an odds ratio of 1.35 suggests that
the active treatment provides greater relief for
heartburn, the null value of 1.00 is contained in
the 95% confidence intervals for both models.
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Chapter 16: Other Approaches to
Analysis of Correlated Data

These examples illustrate the GEE approach
for modeling data containing correlated
dichotomous outcomes. However, use of the
GEE approach is not restricted to dichotomous
outcomes. As an extension of GLM, the GEE
approach can be used to model other types of
outcomes, such as count or continuous out-
comes.

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows. Then, do the practice exercises and
test.

The GEE approach to correlated data has been
used extensively. Other approaches to the anal-
ysis of correlated data are available. A brief
overview of several of these approaches is pre-
sented in the next chapter.

V. SUMMARY

ü Chapter 15: GEE Examples

This presentation is now complete. The focus
of the presentation was on several examples
used to illustrate the application and interpre-
tation of the GEE modeling approach. The
examples show that the selection of different
correlation structures for a GEE model
applied to the same data can produce differ-
ent estimates for regression parameters and
their standard errors. In addition, we show
that the application of a standard logistic
regression model to data with correlated
responses may lead to incorrect inferences.
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Detailed
Outline

I. Overview (page 542)

II–IV. Examples (pages 542–557)
A. Three examples were presented in detail:

i. Infant Care Study

ii. Aspirin–Heart Bypass Study

iii. Heartburn Relief Study

B. Key points from the examples:

i. The choice of correlation structure may
affect both the coefficient estimate and
the standard error of the estimate,
although standard errors are more
commonly impacted

ii. Which correlation structure(s) should be
specified depends on the underlying
assumptions regarding the relationship
between responses (e.g., ordering or time
interval)

iii. Interpretation of regression coefficients
(in terms of odds ratios) is the same as in
standard logistic regression

V. Summary (page 557)
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Practice
Exercises

The following printout summarizes the computer output
from a GEE model run on the Infant Care Study data and
should be used for Exercises 1–4. Recall that the data
contained monthly information for each infant up to 9
months. The logit form of the model can be stated as
follows:

logit PðXÞ ¼ b0 þ b1BIRTHWGTþ b2GENDER
þ b3DIARRHEA:

The dichotomous outcome is derived from a weight-for-
height z-score. The independent variables are BIRTHWGT
(the weight in grams at birth), GENDER (1 ¼ male, 2 ¼
female), and DIARRHEA (a dichotomous variable indicat-
ing whether the infant had symptoms of diarrhea that
month; coded 1 ¼ yes, 0 ¼ no).

A stationary 4-dependent correlation structure is specified
for this model. Empirical andmodel-based standard errors
are given for each regression parameter estimate. The
working correlation matrix is also included in the output.

Variable Coefficient
Empirical Std

Err
Model-based

Std Err

INTERCEPT �2.0521 1.2323 0.8747
BIRTHWGT �0.0005 0.0003 0.0002
GENDER 0.5514 0.5472 0.3744
DIARRHEA 0.1636 0.8722 0.2841

Stationary 4-Dependent Working Correlation Matrix

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9

ROW1 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000 0.0000 0.0000 0.0000

ROW2 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000 0.0000 0.0000

ROW3 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000 0.0000

ROW4 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000

ROW5 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334

ROW6 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722

ROW7 0.0000 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353

ROW8 0.0000 0.0000 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449

ROW9 0.0000 0.0000 0.0000 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000
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1. Explain the underlying assumptions of a stationary
4-dependent correlation structure as it pertains to
the Infant Care Study.

2. Estimate the odds ratio and 95% confidence interval
for the variable DIARRHEA (1 vs. 0) on a low weight-
for-height z-score (i.e., outcome ¼ 1). Compute the
95% confidence interval in two ways: first using the
empirical standard errors and then using the model-
based standard errors.

3. Referring to Exercise 2: Explain the circumstances in
which the model-based variance estimators yield con-
sistent estimates.

4. Referring again to Exercise 2: Which estimate of the
95% confidence interval do you prefer?

The following output should be used for Exercises 5–10
and contains the results from running the same GEE
model on the Infant Care data as in the previous questions,
except that in this case, a stationary 8-dependent correla-
tion structure is specified. The working correlation matrix
for this model is included in the output.

Variable Coefficient
Empirical
Std Err

INTERCEPT �1.4430 1.2084
BIRTHWGT �0.0005 0.0003
GENDER 0.0014 0.5418
DIARRHEA 0.3601 0.8122

Stationary 8-Dependent Working Correlation Matrix

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9

ROW1 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514 0.3507 0.4346 0.5408

ROW2 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514 0.3507 0.4346

ROW3 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514 0.3507

ROW4 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514

ROW5 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851

ROW6 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367

ROW7 0.3507 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951

ROW8 0.4346 0.3507 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255

ROW9 0.5408 0.4346 0.3507 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000

5. Compare the underlying assumptions of the stationary
8-dependent correlation structure with the unstruc-
tured correlation structure as it pertains to this model.

6. For the Infant Care data, how many more correlation
parameters would be included in a model that uses an
unstructured correlation structure rather than a sta-
tionary 8-dependent correlation structure?
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7. How can the unstructured correlation structure be
used to assess assumptions underlying other more
constrained correlation structures?

8. Estimate the odds ratio and 95% confidence interval
for DIARRHEA (1 vs. 0) using the model with the
stationary 8-dependent working correlation structure.

9. If the GEE approach yields consistent estimates of the
“true odds ratio” even if the correlation structure is
misspecified, why are the odds ratio estimates differ-
ent using a stationary 4-dependent correlation struc-
ture (Exercise 2) and a stationary 8-dependent
correlation structure (Exercise 8).

10. Suppose that a parameter estimate obtained from
running a GEE model on a correlated data set was
not affected by the choice of correlation structure.
Would the corresponding Wald test statistic also be
unaffected by the choice of correlation structure?
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Test Questions 1–6 refer to models run on the data from the
Heartburn Relief Study (discussed in Sect. IV). In that
study, 40 subjects were given two symptom-provoking
meals spaced a week apart. Each subject was administered
an active treatment following one of the meals and a stan-
dard treatment following the other meal, in random order.
The goal of the study was to compare the effects of an
active treatment for heartburn with a standard treatment.
The dichotomous outcome is relief from heartburn (coded
1 ¼ yes, 0 ¼ no). The exposure of interest is RX (coded
1 ¼ active treatment, 0 ¼ standard treatment). Addition-
ally, it was hypothesized that the sequence in which each
subject received the active and standard treatment could
be related to the outcome. Moreover, it was speculated that
the treatment sequence could be an effect modifier for the
association between the treatment and heartburn relief.
Consequently, two other variables are considered for the
analysis: a dichotomous variable SEQUENCE and the
product term RX*SEQ (RX times SEQUENCE). The vari-
able SEQUENCE is coded 1 for subjects in which the active
treatment was administered first and 0 for subjects in
which the standard treatment was administered first.

The following printout summarizes the computer output
for three GEE models run on the heartburn relief data
(Model 1, Model 2, and Model 3). An exchangeable corre-
lation structure is specified for each of these models. The
variance–covariance matrix for the parameter estimates
and the Score test for the variable RX*SEQ are included
in the output for Model 1.

Model 1

Variable Coefficient
Empirical
Std Err

INTERCEPT �0.6190 0.4688
RX 0.4184 0.5885
SEQUENCE 0.8197 0.6495
RX*SEQ �0.2136 0.7993

Empirical Variance Covariance Matrix
For Parameter Estimates

INTERCEPT RX SEQUENCE RX*SEQ

INTERCEPT 0.2198 �0.1820 �0.2198 0.1820
RX �0.1820 0.3463 0.1820 �0.3463
SEQUENCE �0.2198 0.1820 0.4218 �0.3251
RX*SEQ 0.1820 �0.3463 �0.3251 0.6388

Score test statistic for RX*SEQ ¼ 0.07
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Model 2

Variable Coefficient
Empirical
Std Err

INTERCEPT �0.5625 0.4058
RX 0.3104 0.3992
SEQUENCE 0.7118 0.5060

Model 3

Variable Coefficient
Empirical
Std Err

INTERCEPT �0.2007 0.3178
RX 0.3008 0.3868

1. State the logit form of the model for Model 1, Model 2,
and Model 3.

2. Use Model 1 to estimate the odds ratios and 95% confi-
dence intervals for RX (active vs. standard treatment).
Hint. Make use of the variance–covariance matrix for
the parameter estimates.

3. In Model 1, what is the difference between the working
covariance matrix and the covariance matrix for
parameter estimates used to obtain the 95% confidence
interval in the previous question?

4. UseModel 1 to perform theWald test on the interaction
term RX*SEQ at a 0.05 level of significance.

5. Use Model 1 to perform the Score test on the interac-
tion term RX*SEQ at a 0.05 level of significance.

6. Estimate the odds ratio for RX using Model 2 and
Model 3. Is there a suggestion that SEQUENCE is con-
founding the association between RX and heartburn
relief. Answer this question from a data-based perspec-
tive (i.e., comparing the odds ratios) and a theoretical
perspective (i.e., what it means to be a confounder).
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Answers to
Practice
Exercises

1. The stationary 4-dependent working correlation struc-
ture uses four correlation parameters (a1, a2, a3, and
a4). The correlation between responses from the same
infant 1 month apart is a1. The correlation between
responses from the same infant 2, 3, or 4months apart
is a2, a3, and a4, respectively. The correlation between
responses from the same infant more than 4 months
apart is assumed to be 0.

2. Estimated OR ¼ exp(0.1636) ¼ 1.18. 95% CI (with
empirical SE): exp[0.1636 � 1.96(0.8722)] ¼ (0.21,
6.51); 95% CI (with model-based SE): exp[0.1636
� 1.96(0.2841)] ¼ (0.67, 2.06).

3. The model-based variance estimator would be a con-
sistent estimator if the true correlation structure was
stationary 4-dependent. In general, model-based vari-
ance estimators are more efficient {i.e., smaller
var½dvarðb̂Þ�} if the correlation structure is correctly
specified.

4. The 95% confidence interval with the empirical stan-
dard errors is preferred since we cannot be confident
that the true correlation structure is stationary
4-dependent.

5. The stationary 8-dependent correlation structure uses
eight correlation parameters. With nine monthly
responses per infant, each correlation parameter
represents the correlation for a specific time interval
between responses. The unstructured correlation
structure, on the other hand, uses a different correla-
tion parameter for each possible correlation for a
given infant, yielding 36 correlation parameters.
With the stationary 8-dependent correlation struc-
ture, the correlation between an infant’s month 1
response and month 7 response is assumed to equal
the correlation between an infant’s month 2 response
and month 8 response since the time interval between
responses is the same (i.e., 6 months). The unstruc-
tured correlation structure does not make this
assumption, using a different correlation parameter
even if the time interval is the same.

6. There are ð9Þð8Þ
2

¼ 36 correlation parameters using the
unstructured correlation structure on the infant care
data and 8 parameters using the stationary 8-depen-
dent correlation structure. The difference is 28 corre-
lation parameters.

7. By examining the correlation estimates in the unstruc-
tured working correlation matrix, we can evaluate
which alternate, but more constrained, correlation
structures seem reasonable. For example, if the
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correlations are all similar, this would suggest that an
exchangeable structure is reasonable.

8. Estimated OR ¼ exp(0.3601) ¼ 1.43.
95% CI: exp[0.3601 � 1.96(0.8122)] ¼ (0.29, 7.04).

9. Consistency is an asymptotic property. As the number
of clusters approaches infinity, the odds ratio estimate
should approach the true odds ratio even if the corre-
lation structure is misspecified. However, with a finite
sample, the parameter estimate may still differ from
the true parameter value. The fact that the parameter
estimate for DIARRHEA is so sensitive to the choice of
the working correlation structure demonstrates a
degree of model instability.

10. No, because the Wald test statistic is a function of
both the parameter estimate and its variance. Since
the variance is typically affected by the choice of cor-
relation structure, theWald test statistic would also be
affected.

Answers to Practice Exercises 565



16 Other

Approaches

for Analysis

of Correlated

Data

n Contents Introduction 568

Abbreviated Outline 568

Objectives 569

Presentation 570

Detailed Outline 589

Practice Exercises 591

Test 595

Answers to Practice Exercises 597

D.G. Kleinbaum and M. Klein, Logistic Regression, Statistics for Biology and Health,
DOI 10.1007/978-1-4419-1742-3_16, # Springer ScienceþBusiness Media, LLC 2010

567



Introduction In this chapter, the discussion of methods to analyze out-
come variables that have dichotomous correlated res-
ponses is expanded to include approaches other than
GEE. Three other analytic approaches are discussed.
These include the alternating logistic regressions algo-
rithm, conditional logistic regression, and the generalized
linear mixed model approach.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 570)

II. Alternating logistic regressions algorithm (pages
571–575)

III. Conditional logistic regression (pages 575–579)

IV. The generalized linear mixed model approach
(pages 579–587)

V. Summary (page 588)
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Objectives Upon completing this chapter, the learner should be able to:

1. Contrast the ALR method to GEE with respect to how
within-cluster associations are modeled.

2. Recognize how a conditional logistic regression model
can be used to handle subject-specific effects.

3. Recognize a generalized linear mixed (logistic) model.

4. Distinguish between random and fixed effects.

5. Contrast the interpretation of an odds ratio obtained
from amarginal model with one obtained from amodel
containing subject-specific effects.
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Presentation

I. Overview

Other approaches
to modeling

outcomes with
dichotomous

correlated
responses

FOCUS

Other approaches for correlated
data:

1. Alternating logistic regressions
(ALR) algorithm

2. Conditional logistic regression
3. Generalized linear mixed

model

In this chapter, we provide an introduction to
modeling techniques other than GEE for use
with dichotomous outcomes in which the
responses are correlated.

In addition to the GEE approach, there are a
number of alternative approaches that can be
applied to model correlated data. These
include (1) the alternating logistic regressions
algorithm, which uses odds ratios instead of
correlations, (2) conditional logistic regres-
sion, and (3) the generalized linear mixed
model approach, which allows for random
effects in addition to fixed effects. We briefly
describe each of these approaches.

This chapter is not intended to provide a thor-
ough exposition of these other approaches but
rather an overview, alongwith illustrative exam-
ples, of other ways to handle the problem of
analyzing correlated dichotomous responses.
Some of the concepts that are introduced in
this presentation are elaborated in the Practice
Exercises at the end of the chapter.

Conditional logistic regression has previously
been presented in Chap. 11 but is presented
here in a some-what different context. The
alternating logistic regression and generalized
linear mixed model approaches for analyzing
correlated dichotomous responses show great
promise but at this point have not been fully
investigated with regard to numerical estima-
tion and possible biases.
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II. The Alternating
Logistic Regressions
Algorithm

Modeling associations:

GEE approach ALR approach

correlations ðrsÞ odds ratios ðORsÞ

ORijk ¼ PðYij ¼ 1; Yik ¼ 1ÞPðYij ¼ 0; Yik ¼ 0Þ
PðYij ¼ 1; Yik ¼ 0ÞPðYij ¼ 0; Yik ¼ 1Þ

GEE: as and bs estimated by alter-
nately updating estimates until
convergence

ALR: as and bs estimated similarly

BUT
ALR : a are log ORs
ðGEE : a are rsÞ

ALR ORjk > 1 , GEE rjk > 1

ALR ORjk < 1 , GEE rjk < 1

Same OR can correspond to differ-
ent rs

OR jk

rajk

rbjk

The alternating logistic regressions (ALR) algo-
rithm is an analytic approach that can be used
tomodel correlated data with dichotomous out-
comes (Carey et al., 1993; Lipsitz et al., 1991).
This approach is very similar to that of GEE.
What distinguishes the two approaches is that
with the GEE approach, associations between
pairs of outcome measures are modeled with
correlations, whereas with ALR, they are mod-
eled with odds ratios. The odds ratio (ORijk)
between the jth and kth responses for the ith
subject can be expressed as shown on the left.

Recall that in a GEE model, the correlation
parameters (a) are estimated using estimates
of the regression parameters (b). The regres-
sion parameter estimates are, in turn, updated
using estimates of the correlation parameters.
The computational process alternately updates
the estimates of the alphas and then the betas
until convergence is achieved.

The ALR approach works in a similar manner,
except that the alpha parameters are log odds
ratio parameters rather than correlation para-
meters. Moreover, for the same data, an odds
ratio between the jth and kth responses that is
greater than 1 using an ALR model corre-
sponds to a positive correlation between the
jth and kth responses using a GEEmodel. Sim-
ilarly, an odds ratio less than 1 using an ALR
model corresponds to a negative correlation
between responses.

However, the correspondence is not one-to-
one, and examples can be constructed in
which the same odds ratio corresponds to dif-
ferent correlations (see Practice Exercises 1–3).
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ALR: dichotomous outcomes only
GEE: dichotomous and other out-
comes are allowed

For many health scientists, an odds ratio mea-
sure, such as that provided with an ALRmodel,
is more familiar and easier to interpret than a
correlation measure. However, ALR models
can only be used if the outcome is a dichoto-
mous variable. In contrast, GEE models are
not so restrictive.

The ALRmodel is illustrated by returning to the
Aspirin–Heart Bypass Study example, which
was first presented in Chap. 15. Recall that in
that study, researchers examined the efficacy of
aspirin for prevention of thrombotic graft
occlusion after coronary bypass grafting in a
sample of 214 patients (Gavaghan et al., 1991).

Patients were given a variable number of artery
bypasses (up to six) and randomly assigned to
take either aspirin (ASPIRIN ¼ 1) or a placebo
(ASPIRIN ¼ 0) every day. One year later, each
bypass was checked for occlusion and the out-
comewas coded as blocked (D ¼ 1) or unblocked
(D ¼ 0). Additional covariates included AGE
(in years), GENDER (1 ¼ male, 2 ¼ female),
WEIGHT (in kilograms), and HEIGHT (in
centimeters).

Consider the model presented at left, with
ASPIRIN, AGE, GENDER, WEIGHT, and
HEIGHT as covariates.

EXAMPLE

GEE vs. ALR

Aspirin–Heart Bypass Study
(Gavaghan et al., 1991)

Subjects: received up to six coronary
bypass grafts

Randomly assigned to treatment
group:

ASPIRIN ¼
1 if daily aspirin

0 if daily placebo

8<
:

Response (D): occlusion of a bypass
graft 1 year later.

D ¼
1 if blocked

0 if unblocked

(

Additional covariates:

AGE (in years)
GENDER (1 ¼ male, 2 ¼ female)
WEIGHT (in kilograms)
HEIGHT (in centimeters)

Model:

logit PðXÞ ¼ b0 þ b1ASPIRINþ b2AGE

þ b3GENDERþ b4WEIGHT

þ b5HEIGHT
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Output from using the GEE approach is pre-
sented on the left. An exchangeable correlation
structure is assumed. (This GEE output has
previously been presented in Chap. 15)

The correlation parameter estimate obtained
from the working correlation matrix of the
GEE model is �0.0954, which suggests a nega-
tive association between reocclusions on the
same bypass patient.

Output obtained from SAS PROC GENMOD
using the ALR approach is shown on the left
for comparison. An exchangeable odds ratio
structure is assumed. The assumption underly-
ing the exchangeable odds ratio structure is
that the odds ratio between the ith subject’s
jth and kth responses is the same (for all j and
k, j 6¼ k). The estimated exchangeable odds
ratio is obtained by exponentiating the coeffi-
cient labeled ALPHA1.

EXAMPLE (continued)

GEE Approach (Exchangeable r)

Variable Coefficient
Empirical
Std Err

z Wald

p-value

INTERCEPT �0.4713 1.6169 0.7707
ASPIRIN �1.3302 0.1444 0.0001
AGE �0.0086 0.0087 0.3231
GENDER �0.5503 0.2559 0.0315
WEIGHT �0.0007 0.0066 0.9200
HEIGHT 0.0080 0.0105 0.4448
Scale 1.0076

Exchangeable Ci (GEE:  = –0.0954)r

ALR approach (Exchangeable OR)

Variable Coefficient
Empirical
Std Err

z wald

p-value

INTERCEPT �0.4806 1.6738 0.7740
ASPIRIN �1.3253 0.1444 0.0001
AGE �0.0086 0.0088 0.3311
GENDER �0.5741 0.2572 0.0256
WEIGHT �0.0003 0.0066 0.9665
HEIGHT 0.0077 0.0108 0.4761
ALPHA1 �0.4716 0.1217 0.0001�

expðALPHA1Þ ¼ cORjkðexchangeableÞ
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The regression parameter estimates are very
similar for the two models. The odds ratio for
aspirin use on artery reocclusion is estimated
as exp(�1.3302) ¼ 0.264 using the GEE model
and exp(�1.3253) ¼ 0.266 using the ALR
model. The standard errors for the aspirin
parameter estimates are the same in both mod-
els (0.1444), although the standard errors for
some of the other parameters are slightly larger
in the ALR model.

The corresponding measure of association
(the odds ratio) estimate from the ALR model
can be found by exponentiating the coeffi-
cient of ALPHA1. This odds ratio estimate is
exp(�0.4716) ¼ 0.62. As with the estimated
exchangeable correlation ðr̂Þ from the GEE
approach, the exchangeable OR estimate,
which is less than 1, also indicates a negative
association between any pair of outcomes
(i.e., reocclusions on the same bypass patient).

A 95% confidence interval for the OR can be
calculated as exp[�0.4716 � 1.96(0.1217)],
which yields the confidence interval (0.49,
0.79). The P-value for the Wald test is also given
in the output at 0.0001, indicating the statistical
significance of the ALPHA1 parameter.

For the GEE model output, an estimated stan-
dard error (SE) or statistical test is not given
for the correlation estimate. This is in contrast
to the ALR output, which provides a standard
error and statistical test for ALPHA1.

EXAMPLE (continued)

Odds ratios

dOR ASPIRIN ¼ 1 vs: ASPIRIN ¼ 0:

GEE ! expð�1:3302Þ ¼ 0:264

ALR ! expð�1:3253Þ ¼ 0:266

S.E. (Aspirin) ¼ 0.1444 (GEE and
ALR)

Measure of association ðdORjkÞdORjk ¼ expðALPHA1Þ
¼ expð�0:4716Þ ¼ 0:62

(Negative association:
similar to r̂ ¼ �0:0954

95% CI for ALPHA1

¼ exp½ð�0:4716� 1:96ð0:1217Þ�
¼ ð0:49; 0:79Þ

P-value ¼ 0.0001
) ALPHA1 significant

GEE (r) ALR (ALPHA1)

SE? No Yes

Test? No Yes
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Key difference: GEE vs. ALR

GEE: rjk are typically nuisance
parameters

ALR: ORjk are parameters of
interest

ALR: allows inferences about both
â and b̂s

III. Conditional Logistic
Regression

This points out a key difference in the GEE and
ALR approaches. With the GEE approach, the
correlation parameters are typically consid-
ered to be nuisance parameters, with the para-
meters of interest being the regression
coefficients (e.g., ASPIRIN). In contrast, with
the ALR approach, the association between
different responses is also considered to be of
interest. Thus, the ALR approach allows statis-
tical inferences to be assessed from both the
alpha parameter and the beta parameters
(regression coefficients).

Another approach that is applicable for certain
types of correlated data is a matched analysis.
This method can be applied to the Heartburn
Relief Study example, with “subject” used as
the matching factor. This example was pre-
sented in detail in Chap. 15. Recall that the
dataset contained 40 subjects, each receiving
an active or standard treatment for the relief of
heartburn. In this framework, within each
matched stratum (i.e., subject), there is an
exposed observation (the active treatment)
and an unexposed observation (the standard
treatment). A conditional logistic regression
(CLR) model, as discussed in Chap. 11, can
then be formulated to perform amatched anal-
ysis. The model is shown on the left.

This model differs from the GEE model for the
same data, also shown on the left, in that the
conditional model contains 39 dummy variables
besides RX. Each of the parameters (gi) for the
39 dummy variables represents the (fixed)
effects for each of 39 subjects on the outcome.
The 40th subject acts as the reference group
since all of the dummy variables have a value
of zero for the 40th subject (see Chap. 11).

EXAMPLE

Heartburn Relief Study
(“subject” as matching factor)

40 subjects received:

� Active treatment (“exposed”)
� Standard treatment

(“unexposed”)

CLR model

logit PðXÞ ¼ b0 þ b1RXþ ~
39

i ¼ 1

giVi;

where

Vi ¼
1 for subject i

0 otherwise

(

GEE model

logit PðXÞ ¼ b0 þ b1RX

CLR vs. GEE
# #

39 Vi

(dummy
variables)

no Vi
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CLR approach )
responses assumed independent

Subject-specific gi allows for conditioning by
subject

fixed effect

Responses can be independent if
conditioned by subject

When using the CLR approach for modeling
P(X), the responses from a specific subject are
assumed to be independent. This may seem
surprising since throughout this chapter we
have viewed two or more responses on the
same subject as likely to be correlated. Never-
theless, when dummy variables are used for
each subject, each subject has his/her own
subject-specific fixed effect included in the
model. The addition of these subject-specific
fixed effects can account for correlation that
may exist between responses from the same
subject in a GEE model. In other words,
responses can be independent if conditioned
by subject. However, this is not always the
case. For example, if the actual underlying
correlation structure is autoregressive, condi-
tioning by subject would not account for the
within-subject autocorrelation.

Returning to the Heartburn Relief Study data,
the output obtained from running the condi-
tional logistic regression is presented on the left.

With a conditional logistic regression, parame-
ter estimates are not obtained for the intercept
or the dummy variables representing the
matched factor (i.e., subject). These para-
meters cancel out in the expression for the
conditional likelihood. However, this is not a
problem because the parameter of interest is
the coefficient of the treatment variable (RX).

The odds ratio estimate for the effect of
treatment for relieving heartburn is exp
(0.4055) ¼ 1.50, with a 95% confidence interval
of (0.534, 4.214).

EXAMPLE (continued)

Model 1: conditional logistic
regression

Variable Coefficient
Std.
error

Wald
P-value

RX 0.4055 0.5271 0.4417

No b0 or gi estimates in CLR model
(cancel out in conditional
likelihood)

Odds ratio and 95% CIdOR ¼ expð0:4055Þ ¼ 1:50

95% CI ¼ ð0:534; 4:214Þ
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Estimation of
predictors

Analysis

Within-
subject

variability

Between-
subject

variability

Matched (CLR)
p

Correlated (GEE)
p p

No within-subject variability for an
independent variable

+
parameter will not be estimated

using CLR

The estimated odds ratios and the standard
errors for the parameter estimate for RX are
shown at left for the conditional logistic regres-
sion (CLR) model, as well as for the GEE and
standard logistic regression (SLR) discussed in
Chap. 15. The odds ratio estimate for the CLR
model is somewhat larger than the estimate
obtained at 1.35 using the GEE approach. The
standard error for the RX coefficient estimate
in the CLR model is also larger than what was
obtained in either the GEEmodel using empir-
ical standard errors or in the standard logistic
regression, which uses model-based standard
errors.

An important distinction between the CLR and
GEE analytic approaches concerns the treat-
ment of the predictor (independent) variables
in the analysis. Amatched analysis (CLR) relies
on within-subject variability (i.e., variability
within the matched strata) for the estimation
of its parameters. A correlated (GEE) analysis
takes into account both within-subject varia-
bility and between-subject variability. In fact,
if there is no within-subject variability for an
independent variable (e.g., a time-independent
variable), then its coefficient cannot be esti-
mated using a conditional logistic regression.
In that situation, the parameter cancels out in
the expression for the conditional likelihood.
This is what occurs to the intercept as well as
to the coefficients of the matching factor
dummy variables when CLR is used.

To illustrate the consequences of only includ-
ing independent variables with no within-
cluster variability in a CLR, we return to the
Aspirin–Heart Bypass Study discussed in the
previous section. Recall that patients were
given a variable number of artery bypasses in
a single operation and randomly assigned to
either aspirin or placebo therapy. One year
later, angiograms were performed to check
each bypass for reocclusion.

EXAMPLE

CLR with time-independent
predictors (Aspirin–Heart Bypass
Study)

Subjects: 214 patients received up to 6
coronary bypass grafts.

Treatment:

ASPIRIN ¼
1 if daily aspirin

0 if daily placebo

8><
>:

D ¼
1 if graft blocked

0 if graft unblocked

8><
>:

EXAMPLE (continued)

Model comparison

Model OR sb̂

CLR 1.50 0.5271
GEE 1.35 0.3868
SLR 1.35 0.4486
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All strata
concordant ) model will not run

Within-subject variability for one
or more independent variable

+
� Model will run

� Parameters estimated for only
those variables

Matched analysis:

� Advantage: control of
confounding factors

� Disadvantage: cannot separate
effects of time-independent
factors

Besides ASPIRIN, additional covariates
include AGE, GENDER, WEIGHT, and
HEIGHT. We restate the model from the previ-
ous section at left, which also includes 213
dummy variables for the 214 study subjects.

The output from running a conditional logistic
regression is presented on the left. Notice that
all of the coefficient estimates are zero with
their standard errors missing. This indicates
that the model did not execute. The problem
occurred because none of the independent
variables changed their values within any clus-
ter (subject). In this situation, all of the predic-
tor variables are said to be concordant in all the
matching strata and uninformative with
respect to a matched analysis. Thus, the condi-
tional logistic regression, in effect, discards all
of the data.

If at least one variable in the model does vary
within a cluster (e.g., a time-dependent variable),
then the model will run. However, estimated
coefficients will be obtained only for those vari-
ables that have within-cluster variability.

An advantage of using a matched analysis with
subject as the matching factor is the ability to
control for potential confounding factors that
can be difficult or impossible to measure.
When the study subject is the matched vari-
able, as in the Heartburn Relief example,
there is an implicit control of fixed genetic
and environmental factors that comprise each
subject. On the other hand, as the Aspirin–
Heart bypass example illustrates, a disadvan-
tage of this approach is that we cannot model
the separate effects of fixed time-independent
factors. In this analysis, we cannot examine the
separate effects of aspirin use, gender, and
height using a matched analysis, because the
values for these variables do not vary for a
given subject.

EXAMPLE (continued)

logit PðXÞ ¼ b0þb1ASPIRINþb2AGE

þb3GENDER

þb4WEIGHT

þb5HEIGHTþ ~
213

i¼ 1

giVi

CLR model

Variable Coefficient
Standard
Error

Wald
p-value

AGE 0 . .
GENDER 0 . .
WEIGHT 0 . .
HEIGHT 0 . .
ASPIRIN 0 . .
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Heartburn Relief Model:

(Subject modeled as fixed effect)

logit PðXÞ ¼ b0 þ b1RX

þ ~
39

i ¼ 1

giVi;

where

Vi ¼
1 for subject i

0 otherwise

(

Alternative approach:
Subject modeled as random effect

What if study is replicated?

Different sample
) different subjects

b1 unchanged (fixed effect)

g different

Parameters themselves may be
random (not just their estimates)

With the conditional logistic regression
approach, subject is modeled as a fixed effect
with the gamma parameters (g), as shown on
the left for the Heartburn Relief example.

An alternative approach is to model subject as
a random effect.

To illustrate this concept, supposewe attempted
to replicate the heartburn relief study using a
different sample of 40 subjects.Wemight expect
the estimate for b1, the coefficient for RX, to
change due to sampling variability. However,
the true value of b1 would remain unchanged
(i.e., b1 is a fixed effect). In contrast, because
there are different subjects in the replicated
study, the parameters representing subject
(i.e., the gammas) would therefore also be dif-
ferent. This leads to an additional source of
variability that is not considered in the CLR, in
that some of the parameters themselves (and
not just their estimates) are random.

In the next section, we present an approach for
modeling subject as a random effect, which
takes into account that the subjects represent
a random sample from a larger population.
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IV. The Generalized Linear
Mixed Model
Approach

Mixed models:

� Random effects

� Fixed effects

� Cluster effect is random
variable

Mixed logistic model (MLM):

Special case of GLMM

Combines GEE and CLR features

GEE

User specifies

g(m) and Ci

GLMM: subject-specific effects random

Subject-specific

effects

CLR

The generalized linear mixed model (GLMM)
provides another approach that can be used for
correlated dichotomous outcomes. GLMM is a
generalization of the linear mixed model.
Mixed models refer to the mixing of random
and fixed effects. With this approach, the clus-
ter variable is considered a random effect. This
means that the cluster effect is a random vari-
able following a specified distribution (typi-
cally a normal distribution).

A special case of the GLMM is the mixed logis-
tic model (MLM). This type of model combines
some of the features of the GEE approach and
some of the features of the conditional logistic
regression approach. As with the GEE
approach, the user specifies the logit link func-
tion and a structure (Ci) for modeling response
correlation. As with the conditional logistic
regression approach, subject-specific effects
are directly included in the model. However,
here these subject-specific effects are treated
as random rather than fixed effects. The
model is commonly stated in terms of the ith
subject’s mean response (mi).

We again use the heartburn data to illustrate
the model (shown on the left) and state it in
terms of the ith subject’s mean response, which
in this case is the ith subject’s probability of
heartburn relief. The coefficient b1 is called a
fixed effect, whereas b0i is called a random
effect. The random effect (b0i) in this model is
assumed to follow a normal distribution with
mean 0 and variance sb0

2. Subject-specific ran-
dom effects are designed to account for the
subject-to-subject variation, which may be
due to unexplained genetic or environmental
factors that are otherwise unaccounted for in
the model. More generally, random effects are
often used when levels of a variable are selected
at random from a large population of possible
levels.

EXAMPLE

Heartburn Relief Study

logit mi = b0 + b1RXi + b0i

b1 = fixed effect

b0i = random effect,

where b0i is a random variable
~ N(0, sb0

2)
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For each subject:

logit of baseline risk = (b0 + b0i)

b0i = subject-specific intercept

No random effect for RX
+

RX effect is same for each subject
i.e., exp(b1)

Mixed logistic model (MLM)

Variable Coefficient
Standard
Error

Wald
p-value

INTERCEPT �0.2285 0.3583 0.5274
RX 0.3445 0.4425 0.4410

Odds ratio and 95% CI:dOR ¼ expð0:3445Þ ¼ 1:41

95% CI ¼ ð0:593; 3:360Þ

Model comparison

Model dOR sb̂

MLM 1.41 0.4425
GEE 1.35 0.3868
CLR 1.50 0.5271

With this model, each subject has his/her own
baseline risk, the logit of which is the intercept
plus the random effect (b0 þ b0i). The sum
(b0 þ b0i) is typically called the subject-specific
intercept. The amount of variation in the
baseline risk is determined by the variance
sb0

2ð Þ of b0i.

In addition to the intercept, we could have
added another random effect allowing the
treatment (RX) effect to also vary by subject
(see Practice Exercises 4–9). By not adding this
additional random effect, there is an assump-
tion that the odds ratio for the effect of treat-
ment is the same for each subject, exp(b1).

The output obtained from running the MLM
on the heartburn data is presented on the left.
This model was run using SAS’s GLIMMIX
procedure. (See the Computer Appendix for
details and an example of program coding.)

The odds ratio estimate for the effect of treat-
ment for relieving heartburn is exp(0.3445) ¼
1.41. The 95% confidence interval is (0.593,
3.360).

The odds ratio estimate using this model is
slightly larger than the estimate obtained
(1.35) using the GEE approach, but somewhat
smaller than the estimate obtained (1.50) using
the conditional logistic regression approach.
The standard error at 0.4425 is also larger
than what was obtained in the GEE model
(0.3868), but smaller than in the conditional
logistic regression (0.5271).
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Typical model for random Y:

� Fixed component (fixed effects)

� Random component (error)

Random effects model:

� Fixed component (fixed effects)

� Random components (random
effects)

1. Random effects: b

VarðbÞ ¼ G

2. Residual variation: «

Varð«Þ ¼ R

Random components layered:

random
effects

residual
variation

Yij = 
1

1+exp –b0 +Σ bhXhij +boi

+eij

h = 1

p

The modeling of any response variable typi-
cally contains a fixed and random component.
The random component, often called the error
term, accounts for the variation in the response
variables that the fixed predictors fail to explain.

A model containing a random effect adds
another layer to the random part of the
model. With a random effects model, there are
at least two random components in the model:

1. The first random component is the
variation explained by the random effects.
For the heartburn data set, the random
effect is designed to account for random
subject-to-subject variation
(heterogeneity). The variance–covariance
matrix of this random component (b) is
called the G matrix.
2. The second random component is the
residual error variation. This is the
variation unexplained by the rest of the
model (i.e., unexplained by fixed or
random effects). For a given subject, this is
the difference of the observed and expected
response. The variance–covariance matrix
of this random component is called the R
matrix.

For mixed logistic models, the layering of these
random components is tricky. This layering
can be illustrated by presenting the model
(see left side) in terms of the random effect
for the ith subject (b0i) and the residual varia-
tion (eij) for the jth response of the ith subject
(Yij).
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eij ¼ Yij � PðYij ¼ 1jXÞ;

where

PðYij ¼ 1jXÞ ¼ m

¼ 1

1þ exp �ðb0 þ ~
p

h ¼ 1

bhXhij þ b0iÞ
" #

GLM GEE

Model Yi ¼ mi þ eij Yij ¼ mij þ eij
R Independent Correlated
G — —

GLMM: Yij ¼ g�1ðX; b; b0iÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mij

þ eij

User specifies covariance struc-
tures for R, G, or both

GEE: correlation structure speci-
fied

GLMM: covariance structure spe-
cified

Covariance structure contains
parameters for both the variance
and covariance

The residual variation (eij) accounts for the dif-
ference between the observed value of Y and
the mean response, P(Y ¼ 1|X), for a given sub-
ject. The random effect (b0i), on the other hand,
allows for randomness in the modeling of
the mean response [i.e., P(Y ¼ 1|X)], which is
modeled using both fixed (bs) and random (bs)
effects.

For GLM and GEE models, the outcome Y is
modeled as the sum of the mean and the resid-
ual variation [Y ¼ m þ eij, where the mean (m)
is fixed] determined by the subject’s pattern of
covariates. For GEE, the residual variation is
modeled with a correlation structure, whereas
for GLM, the residual variation (the R matrix)
is modeled as independent. Neither GLM nor
GEEmodels contain a Gmatrix, as they do not
contain any random effects (b).

In contrast, for GLMMs, the mean also con-
tains a random component (b0i). With GLMM,
the user can specify a covariance structure for
the G matrix (for the random effects), the R
matrix (for the residual variation), or both.
Even if the G and R matrices are modeled to
contain zero correlations separately, the com-
bination of both matrices in the model gener-
ally forms a correlated random structure for
the response variable.

Another difference between a GEE model and a
mixed model (e.g., MLM) is that a correlation
structure is specified with a GEE model,
whereas a covariance structure is specified
with amixedmodel. A covariance structure con-
tains parameters for both the variance and
covariance, whereas a correlation structure con-
tains parameters for just the correlation. Thus,
with a covariance structure, there are additional
variance parameters and relationships among
those parameters (e.g., variance heterogeneity)
to consider (see Practice Exercises 7–9).
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Covariance Þ unique correlation

Þbut correlation unique covariance

For ith subject:

� R matrix dimensions depend
on number of observations for
subject i (ni)

� Gmatrix dimensions depend on
number of random effects (q)

Heartburn data:

R ¼ 2 � 2 matrix

G ¼ 1 � 1 matrix (only one
random effect)

CLR vs. MLM: subject-specific
effects

CLR: logit mi ¼ b0 þ b1RX þ gi,
where gi is a fixed effect

MLM: logit mi ¼ b0 þ b1RX þ b0i,
where b0i is a random effect

Fixed effect gi: impactsmodeling of m

Random effect b0i: used to
characterize the variance

If a covariance structure is specified, then the
correlation structure can be ascertained. The
reverse is not true, however, since a correlation
matrix does not in itself determine a unique
covariance matrix.

For a given subject, the dimensions of the R
matrix depend on how many observations (ni)
the subject contributes, whereas the dimen-
sions of the G matrix depend on the number
of random effects (e.g., q) included in the
model. For the heartburn data example, in
which there are two observations per subject
(ni ¼ 2), theRmatrix is a 2� 2matrix modeled
with zero correlation. The dimensions of G are
1 � 1 (q ¼ 1) since there is only one random
effect (b0i), so there is no covariance structure
to consider for G in this model. Nevertheless,
the combination of the G and R matrix in this
model provides a way to account for correla-
tion between responses from the same subject.

We can compare the modeling of subject-
specific fixed effects with subject-specific ran-
dom effects by examining the conditional logis-
tic model (CLR) and the mixed logistic model
(MLM) in terms of the ith subject’s response.
Using the heartburn data, these models can be
expressed as shown on the left.

The fixed effect, gi, impacts the modeling of the
mean response. The random effect, b0i, is a
random variable with an expected value of
zero. Therefore, b0i does not directly contribute
to themodeling of themean response; rather, it
is used to characterize the variance of themean
response.
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GEE vs. MLM

GEE model: logit m = b0 + b1RX

No subject-specific
random effects (b0i)

Within-subject correlation specified
in R matrix

MLM model: logit mi = b0 + b1RX +

Subject-specific
random effects

b0i

Marginal model ) E(Y|X) not
conditioned on cluster-specific
information

(e.g., not allowed as X

� Earlier values of Y

� Subject-specific effects)

Marginal models (examples):

GEE

ALR

SLR

Heartburn Relief Study

b1 ¼ parameter of interest

BUT

interpretation of exp (b1) depends
on type of model

A GEE model can also be expressed in terms of
the ith subject’s mean response (mi), as shown
at left using the heartburn example. The GEE
model contrasts with the MLM, and the condi-
tional logistic regression, since the GEE model
does not contain subject-specific effects (fixed
or random). With the GEE approach, the
within-subject correlation is handled by
the specification of a correlation structure for
the R matrix. However, the mean response is
not directly modeled as a function of the indi-
vidual subjects.

A GEEmodel represents a type ofmodel called a
marginal model. With a marginal model, the
mean response E(Y|X) is not directly
conditioned on any variables containing infor-
mation on the within-cluster correlation. For
example, the predictors (X) in a marginal
model cannot be earlier values of the response
from the same subject or subject-specific effects.

Other examples of marginal models include the
ALR model, described earlier in the chapter,
and the standard logistic regression with one
observation for each subject. In fact, anymodel
using data in which there is one observation
per subject is a marginal model because in that
situation, there is no information available
about within-subject correlation.

Returning to the Heartburn Relief Study exam-
ple, the parameter of interest is the coefficient
of the RX variable, b1, not the subject-specific
effect, b0i. The research question for this study
is whether the active treatment provides
greater relief for heartburn than the standard
treatment. The interpretation of the odds ratio
exp(b1) depends, in part, on the type of model
that is run.
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Heartburn Relief Study:

GEE: marginal model

expðb̂1Þ is population dOR

MLM:

expðb̂1Þ is dOR for an individual

What is an individual OR?

Each subject has separate prob-
abilities

PðX ¼ 1jRX ¼ 1Þ
PðX ¼ 1jRX ¼ 0Þ

+
OR compares RX ¼ 1 vs. RX ¼ 0

for an individual

Goal OR

Population
inferences

) marginal

Individual
inferences

) individual

The odds ratio for a marginal model is the ratio
of the odds of heartburn for RX ¼ 1 vs. RX ¼ 0
among the underlying population. In other
words, the OR is a population average. The
odds ratio for a model with a subject-specific
effect, as in the mixed logistic model, is the
ratio of the odds of heartburn for RX ¼ 1 vs.
RX ¼ 0 for an individual.

What is meant by an odds ratio for an individ-
ual? We can conceptualize each subject as hav-
ing a probability of heartburn relief given the
active treatment and having a separate proba-
bility of heartburn relief given the standard
treatment. These probabilities depend on the
fixed treatment effect as well as the subject-
specific random effect. With this conceptualiza-
tion, the odds ratio that compares the active vs.
standard treatment represents a parameter
that characterizes an individual rather than a
population (see Practice Exercises 10–15). The
mixed logistic model supplies a structure that
gives the investigator the ability to estimate
an odds ratio for an individual, while simulta-
neously accounting for within-subject and
between-subject variation.

The choice of whether a population averaged
or individual level odds ratio is preferable
depends, in part, on the goal of the study. If
the goal is to make inferences about a popula-
tion, then a marginal effect is preferred. If the
goal is to make inferences on the individual,
then an individual level effect is preferred.
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Parameter estimation for MLM in
SAS:

GLIMMIX

� Penalized quasi-likelihood
equations

� User specifies G and R

NLMIXED

� Maximized approximation to
likelihood integrated over
random effects

� User does not specify G and R

� User specifies variance
components of G matrix and
assumes an independent R
matrix (i.e., R ¼ s2I)

Mixed models are flexible:

� Layer random components

� Handle nested clusters

� Control for subject effects

Performance of mixed logistic
models not fully evaluated

There are various methods that can be used for
parameter estimation with mixed logistic mod-
els. The parameter estimates, obtained for the
Heartburn Relief data from the SAS procedure
GLIMMIX use an approach termed penalized
quasi-likelihood equations (Breslow and Clay-
ton, 1993; Wolfinger and O’Connell, 1993).
Alternatively, the SAS procedure NLMIXED
can also be used to run a mixed logistic
model. NLMIXED fits nonlinear mixed models
by maximizing an approximation to the likeli-
hood integrated over the random effects.
Unlike GLIMMIX, NLMIXED does not allow
the user to specify a correlation structure for
the G and R matrices (SAS Institute, 2000).

Instead, NLMIXED allows the user to specify
the individual variance components within the
Gmatrix, but assumes that theRmatrix has an
independent covariance structure (i.e. 0s on
the off-diagonals of the R matrix).

Mixed models offer great flexibility by allowing
the investigator to layer random components,
model clusters nested within clusters (i.e., per-
form hierarchical modeling), and control for
subject-specific effects. The use of mixed linear
models is widespread in a variety of disciplines
because of this flexibility.

Despite the appeal of mixed logistic models,
their performance, particularly in terms of
numerical accuracy, has not yet been ade-
quately evaluated. In contrast, the GEE
approach has been thoroughly investigated,
and this is the reason for our emphasis on
that approach in the earlier chapters on corre-
lated data (Chaps. 14 and 15).
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Computer Appendix

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows.

A Computer Appendix is presented in the fol-
lowing section. This appendix provides details
on performing the analyses discussed in the
various chapters using SAS, SPSS, and Stata
statistical software.

V. SUMMARY

üChapter 16. Other Approaches
for Analysis of Cor-
related Data

The presentation is now complete. Several
alternate approaches for the analysis of cor-
related data were examined and compared to
the GEE approach. The approaches discussed
included alternating logistic regressions, con-
ditional logistic regression, and the gene-
ralized linear mixed (logistic) model.

The choice of which approach to implement
for the primary analysis can be difficult and
should be determined, in part, by the research
hypothesis. It may be of interest to use several
different approaches for comparison. If the
results are different, it can be informative to
investigate why they are different. If they are
similar, it may be reassuring to know the
results are robust to different methods of
analysis.
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Detailed
Outline

I. Overview (page 570)

A. Other approaches for analysis of correlated data:

i. Alternating logistic regressions (ALR)
algorithm

ii. Conditional logistic regression

iii. Generalized linear mixed model (GLMM)

II. Alternating logistic regressions algorithm (pages
571–575)

A. Similar to GEE except that

i. Associations between pairs of responses
are modeled with odds ratios instead of
correlations:

ORijk ¼ PðYij ¼ 1; Yik ¼ 1ÞPðYij ¼ 0; Yik ¼ 0Þ
PðYij ¼ 1; Yik ¼ 0ÞPðYij ¼ 0; Yik ¼ 1Þ :

ii. Associations between responses may also be
of interest, and not considered nuisance
parameters.

III. Conditional logistic regression (pages 575–579)

A. May be applied in a design where each subject
can be viewed as a stratum (e.g., has an exposed
and an unexposed observation).

B. Subject-specific fixed effects are included in the
model through the use of dummy variables
[Example: Heartburn Relief Study (n ¼ 40)]:

logit PðXÞ ¼ b0 þ b1RXþ ~
39

i ¼ 1

giVi;

where Vi ¼ 1 for subject i and Vi ¼ 0 otherwise.

C. In the output, there are no parameter estimates
for the intercept or the dummy variables
representing the matched factor, as these
parameters cancel out in the conditional
likelihood.

D. An important distinction between CLR and
GEE is that a matched analysis (CLR) relies on
the within-subject variability in the estimation
of the parameters, whereas a correlated
analysis (GEE) relies on both the within-
subject variability and the between-subject
variability.

IV. The generalized linear mixed model approach
(pages 579–587)

A. A generalization of the linear mixed model.

B. As with the GEE approach, the user can specify
the logit link function and apply a variety of
covariance structures to the model.
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C. As with the conditional logistic regression
approach, subject-specific effects are included
in the model:

logit mi ¼ PðD ¼ 1jRXÞ ¼ b0 þ b1RXi þ b0i;

where bi is a random variable from a normal
distribution with mean ¼ 0 and variance ¼ sb0

2.

D. Comparing the conditional logistic model and
the mixed logistic model:

i. The conditional logistic model:

logit mi ¼ b0 þ b1RXþ gi;where gi is a

fixed effect

ii. The mixed logistic model:

logit mi ¼b0 þ b1RXþ b0i;

where b0i is a random effect:

E. Interpretation of the odds ratio:

i. Marginal model: population average OR

ii. Subject-specific effectsmodel: individual OR.

V. Summary (page 588)
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Practice
Exercises

The Practice Exercises presented here are primarily
designed to elaborate and expand on several concepts
that were briefly introduced in this chapter.

Exercises 1–3 relate to calculating odds ratios and their
corresponding correlations. Consider the following 2 � 2
table for two dichotomous responses (Yj and Yk). The cell
counts are represented by A, B, C, and D. The margins are
represented by M1, M0, N1, and N0 and the total counts are
represented by T.

Yk ¼ 1 Yk ¼ 0 Total

Yj ¼ 1 A B M1 ¼ A þ B
Yj ¼ 0 C D M0 ¼ C þ D
Total N1 ¼ A þ C N0 ¼ B þ D T ¼ A þ B þ C þ D

The formulas for calculating the correlation and odds ratio
between Yj and Yk in this setting are given as follows:

CorrðYj; YkÞ ¼ AT �M1N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M0N1N0

p ; OR ¼ AD

BC
:

1. Calculate and compare the respective odds ratios and
correlations between Yj and Yk for the data summar-
ized in Tables 1 and 2 to show that the same odds ratio
can correspond to different correlations.

Table 1

Yk ¼ 1 Yk ¼ 0

Yj ¼ 1 3 1
Yj ¼ 0 1 3

Table 2

Yk ¼ 1 Yk ¼ 0

Yj ¼ 1 9 1
Yj ¼ 0 1 1

2. Show that if both the B and C cells are equal to 0, then
the correlation between Yj and Yk is equal to 1 (assum-
ing A and D are nonzero). What is the corresponding
odds ratio if the B and C cells are equal to 0? Did both
the B and C cells have to equal 0 to obtain this
corresponding odds ratio? Also show that if both the A
and D cells are equal to zero, then the correlation is
equal to �1. What is that corresponding odds ratio?

3. Show that if AD ¼ BC, then the correlation between Yj

and Yk is 0 and the odds ratio is 1 (assuming nonzero
cell counts).

Exercises 4–6 refer to a model constructed using the data
from the Heartburn Relief Study. The dichotomous
outcome is relief from heartburn (coded 1 ¼ yes, 0 ¼ no).
The only predictor variable is RX (coded 1 ¼ active treat-
ment, 0 ¼ standard treatment). This model contains two
subject-specific effects: one for the intercept (b0i) and the
other (b1i) for the coefficient RX. The model is stated in
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terms of the ith subject’s mean response:

logit mi ¼ PðD ¼ 1jRXÞ ¼ b0 þ b1RXi þ b0i þ b1iRXi;

where b0i follows a normal distribution with mean 0 and
variance sb0

2, b1i follows a normal distribution with mean
0 and variance sb1

2 and where the covariance matrix of b0i
and b1i is a 2 � 2 matrix, G.

It may be helpful to restate the model by rearranging the
parameters such that the intercept parameters (fixed and
random effects) and the slope parameters (fixed and ran-
dom effects) are grouped together:

logit mi ¼ PðD ¼ 1jRXÞ ¼ ðb0 þ b0iÞ þ ðb1 þ b1iÞRXi

4. Use the model to obtain the odds ratio for RX ¼ 1 vs.
RX ¼ 0 for subject i.

5. Use the model to obtain the baseline risk for subject i
(i.e., risk when RX ¼ 0).

6. Use the model to obtain the odds ratio (RX¼ 1 vs. RX¼
0) averaged over all subjects.

Below are three examples of commonly used covariance
structures represented by 3 � 3 matrices. The elements are
written in terms of the variance (s2), standard deviation
(s), and correlation (r). The covariance structures are pre-
sented in this form in order to contrast their structures
with the correlation structures presented in Chap. 14. A
covariance structure not only contains correlation para-
meters but variance parameters as well.

Variance Compound Unstructured
components symmetric

s21 0 0

s22 0

0 0 s23

2
4

3
5 s2 s2r s2r

s2r s2 s2r
s2r s2r s2

2
4

3
5 s21 s1s2r12 s1s3r13

s1s2r12 s22 s2s3r23
s1s3r13 s2s3r23 s23

2
4

3
5

The compound symmetric covariance structure has the
additional constraint that r � 0,

7. Which of the above covariance structures allow for
variance heterogeneity within a cluster?

8. Which of the presented covariance structures allow for
both variance heterogeneity and correlation within a
cluster.

9. Consider a study in which there are five responses per
subject. If a model contains two subject-specific ran-
dom effects (for the intercept and slope), then for sub-
ject i, what are the dimensions of the G matrix and of
the R matrix?
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The next set of exercises is designed to illustrate how an
individual level odds ratio can differ from a population
averaged (marginal) odds ratio. Consider a fictitious data
set in which there are only 2 subjects, contributing 200
observations apiece. For each subject, 100 of the observa-
tions are exposed (E ¼ 1) and 100 are unexposed (E ¼ 0),
yielding 400 total observations. The outcome is dichoto-
mous (D ¼ 1 and D ¼ 0). The data are summarized using
three 2 � 2 tables. The tables for Subject 1 and Subject
2 summarize the data for each subject; the third table pools
the data from both subjects.

Subject 1

E¼ 1 E¼ 0

D ¼ 1 50 25
D ¼ 0 50 75
Total 100 100

Subject 2

E ¼ 1 E ¼ 0

D ¼ 1 25 10
D ¼ 0 75 90
Total 100 100

Pooled subjects

E ¼ 1 E ¼ 0

D ¼ 1 75 35
D ¼ 0 125 165
Total 200 200

10. Calculate the odds ratio for Subject 1 and Subject 2 sep-
arately. Calculate the odds ratio after pooling the data
for both subjects. How do the odds ratios compare?

Note: The subject-specific odds ratio as calculated
here is a conceptualization of a subject-specific effect,
while the pooled odds ratio is a conceptualization of a
population-averaged effect.

11. Compare the baseline risk (where E ¼ 0) of Subject 1
and Subject 2. Is there a difference (i.e., heterogene-
ity) in the baseline risk between subjects? Note that
for a model containing subject-specific random
effects, the variance of the random intercept is a mea-
sure of baseline risk heterogeneity.

12. Do Subject 1 and Subject 2 have a different distribu-
tion of exposure? This is a criterion for evaluating
whether there is confounding by subject.

13. Suppose an odds ratio is estimated using data in
which there are many subjects, each with one obser-
vation per subject. Is the odds ratio estimating an
individual level odds ratio or a population averaged
(marginal) odds ratio?

For Exercise 14 and Exercise 15, consider a similar scenario
as was presented above for Subject 1 and Subject 2. How-
ever, this time the risk ratio rather than the odds ratio is the
measure of interest. The data for Subject 2 have been altered
slightly in order to make the risk ratio the same for each
subject allowing comparability to the previous example.
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Subject 1

E¼ 1 E¼ 0

D ¼ 1 50 25
D ¼ 0 50 75
Total 100 100

Subject 2

E ¼ 1 E ¼ 0

D ¼ 1 20 10
D ¼ 0 80 90
Total 100 100

Pooled subjects

E ¼ 1 E ¼ 0

D ¼ 1 70 35
D ¼ 0 130 165
Total 200 200

14. Compare the baseline risk (where E ¼ 0) of Subject 1
and Subject 2. Is there a difference (i.e., heterogene-
ity) in the baseline risk between subjects?

15. Calculate the risk ratio for Subject 1 and Subject
2 separately. Calculate the risk ratio after pooling the
data for both subjects. How do the risk ratios
compare?
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Test True or false (Circle T or F)

T F 1. A model with subject-specific random effects is
an example of a marginal model.

T F 2. A conditional logistic regression cannot be used
to obtain parameter estimates for a predictor
variable that does not vary its values within the
matched cluster.

T F 3. The alternating logistic regressions approach
models relationships between pairs of responses
from the same cluster with odds ratio para-
meters rather than with correlation parameters
as with GEE.

T F 4. A mixed logistic model is a generalization of the
generalized linear mixed model in which a link
function can be specified for the modeling of the
mean.

T F 5. For a GEEmodel, the user specifies a correlation
structure for the response variable, whereas for a
GLMM, the user specifies a covariance structure.

Questions 6–10 refer to models run on the data from the
Heartburn Relief Study. The following printout sum-
marizes the computer output for twomixed logistic models.
The models include a subject-specific random effect for the
intercept. The dichotomous outcome is relief from heart-
burn (coded 1¼ yes, 0¼ no). The exposure of interest is RX
(coded 1 ¼ active treatment, 0 ¼ standard treatment). The
variable SEQUENCE is coded 1 for subjects in which the
active treatment was administered first and 0 for subjects in
which the standard treatment was administered first. The
product term RX*SEQ (RX times SEQUENCE) is included
to assess interaction between RX and SEQUENCE. Only
the estimates of the fixed effects are displayed in the output.

Model 1

Variable Estimate Std Err

INTERCEPT �0.6884 0.5187
RX 0.4707 0.6608
SEQUENCE 0.9092 0.7238
RX*SEQ �0.2371 0.9038

Model 2

Variable Coefficient Std Err

INTERCEPT �0.6321 0.4530
RX 0.3553 0.4565
SEQUENCE 0.7961 0.564
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6. State the logit form of Model 1 in terms of the mean
response of the ith subject.

7. Use Model 1 to estimate the odds ratios for RX (active
vs. standard treatment).

8. Use Model 2 to estimate the odds ratio and 95% confi-
dence intervals for RX.

9. How does the interpretation of the odds ratio for RX
usingModel 2 compare to the interpretation of the odds
ratio for RX using a GEE model with the same covari-
ates (see Model 2 in the Test questions of Chap. 15)?

10. Explain why the parameter for SEQUENCE cannot be
estimated in a conditional logistic regression using
subject as the matching factor.
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Answers to
Practice
Exercises

1. The odds ratio for the data in Table 1 and Table 2 is 9.
The correlation for the data in Table 1 is
½ð3Þð8Þ�ð4Þð4Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4Þð4Þð4Þð4Þ
p ¼ 0:5, and for the data in Table 2, it is

½ð9Þð12Þ�ð10Þð10Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10Þð2Þð10Þð2Þ

p ¼ 0:4 So, the odds ratios are the same

but the correlations are different.

2. If B ¼ C ¼ 0, then M1 ¼ N1 ¼ A andM0 ¼ N0 ¼ D and T
¼ A þ D.

corr ¼ AT �M1N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M0N1N0

p ¼ AðAþ DÞ � ADffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðADÞðADÞp ¼ 1:

The corresponding odds ratio is infinity. Even if just
one of the cells (B or C) were zero, the odds ratio
would still be infinity, but the corresponding correla-
tion would be less than 1.
If A ¼ D ¼ 0, then M1 ¼ N0 ¼ B and M0 ¼ N1 ¼ C and
T ¼ B þ C.

corr ¼ AT �M1N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M0N1N0

p ¼ 0ðBþ CÞ � BCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðBCÞðBCÞp ¼ �1:

The corresponding odds ratio is zero.

3. IfAD¼BC, thenD¼ (BC)/A and T¼ AþBþ Cþ (BC)/A.

corr ¼ AT �M1N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M0N1N0

p

¼ A½Aþ Bþ Cþ ðBC=AÞ� � ½ðAþ BÞðAþ CÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M0N1N0

p ¼ 0

OR ¼ AD
BC ¼ AD

AD ¼ 1 (indicating no association between
Yj and Yk).

4. exp(b1 þ b1i)

5.
1

1þ exp½�ðb0 þ b0iÞ�
6. exp(b1) since bli is a random variable with a mean of 0

(compare to Exercise 4).

7. The variance components and unstructured covari-
ance structures allow for variance heterogeneity.

8. The unstructured covariance structure.

9. The dimensions of the G matrix are 2 � 2 and the
dimensions of the R matrix are 5 � 5 for subject i.

10. The odds ratio is 3.0 for both Subject 1 and Subject
2 separately, whereas the odds ratio is 2.83 after pool-
ing the data. The pooled odds ratio is smaller.

11. The baseline risk for Subject 1 is 0.25, whereas the
baseline risk for Subject 2 is 0.10. There is a difference
in the baseline risk (although there are only two sub-
jects).Note. In general, assuming there is heterogeneity
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in the subject-specific baseline risk, the population
averaging for a marginal odds ratio attenuates (i.e.,
weakens) the effect of the individual level odds ratio.

12. Subject 1 and Subject 2 have the same distribution of
exposure: 100 exposed out of 200 observations. Note.
In a case-control setting we would consider that there
is a different distribution of exposure where D ¼ 0.

13. With one observation per subject, an odds ratio is
estimating a population-averaged (marginal) odds
ratio since in that setting observations must be pooled
over subjects.

14. The baseline risk for Subject 1 is 0.25, whereas the
baseline risk for Subject 2 is 0.10, indicating that there
is heterogeneity of the baseline risk between subjects.

15. The risk ratio is 2.0 for both Subject 1 and Subject
2 separately and the risk ratio is also 2.0 for the pooled
data. In contrast to the odds ratio, if the distribution
of exposure is the same across subjects, then pooling
the data does not attenuate the risk ratio in the pres-
ence of heterogeneity of the baseline risk.
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Appendix:
Computer
Programs for
Logistic
Regression
In this appendix, we provide examples of computer programs to carry out uncondi-
tional logistic regression, conditional logistic regression, polytomous logistic regres-
sion, ordinal logistic regression, and GEE logistic regression. This appendix does not
give an exhaustive survey of all computer packages currently available, but rather is
intended to describe the similarities and differences among a sample of the most
widely used packages. The software packages that we consider are SAS version 9.2,
SPSS version 16.0, and Stata version 10.0. A detailed description of these packages is
beyond the scope of this appendix. Readers are referred to the built-in Help functions
for each program for further information.

The computer syntax and output presented in this appendix are obtained from
running models on five datasets. We provide each of these datasets on an accompa-
nying disk in four forms: (1) as text datasets (with a .dat extension), (2) as SAS
version 9 datasets (with a .sas7bdat extension), (3) as SPSS datasets (with a .sav
extension), and (4) as Stata datasets (with a .dta extension). Each of the four datasets
is described below. We suggest making backup copies of the datasets prior to use to
avoid accidentally overwriting the originals.

DATASETS

1. Evans County dataset (evans.dat)

The evans.dat dataset is used to demonstrate a standard logistic regression
(unconditional). The Evans County dataset is discussed in Chap. 2. The data are from
a cohort study in which 609 white males were followed for 7 years, with coronary
heart disease as the outcome of interest. The variables are defined as follows:

ID – The subject identifier. Each observation has a unique identifier since there
is one observation per subject.

CHD – A dichotomous outcome variable indicating the presence (coded 1) or
absence (coded 0) of coronary heart disease.
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CAT – A dichotomous predictor variable indicating high (coded 1) or normal
(coded 0) catecholamine level.

AGE – A continuous variable for age (in years).
CHL – A continuous variable for cholesterol.
SMK – A dichotomous predictor variable indicating whether the subject ever

smoked (coded 1) or never smoked (coded 0).
ECG – A dichotomous predictor variable indicating the presence (coded 1) or

absence (coded 0) of electrocardiogram abnormality.
DBP – A continuous variable for diastolic blood pressure.
SBP – A continuous variable for systolic blood pressure.
HPT – A dichotomous predictor variable indicating the presence (coded 1) or

absence (coded 0) of high blood pressure. HPT is coded 1 if the systolic
blood pressure is greater than or equal to 160 or the diastolic blood
pressure is greater than or equal to 95.

CH and CC – Product terms of CAT � HPT and CAT � CHL, respectively.

2. MI dataset (mi.dat)

This dataset is used to demonstrate conditional logistic regression. The MI dataset is
discussed in Chap. 11. The study is a case-control study that involves 117 subjects in
39 matched strata. Each stratum contains three subjects, one of whom is a case
diagnosed with myocardial infarction while the other two are matched controls. The
variables are defined as follows:

MATCH – A variable indicating the subject’s matched stratum. Each stratum
contains one case and two controls and is matched on age, race, sex, and
hospital status.

PERSON – The subject identifier. Each observation has a unique identifier since
there is one observation per subject.

MI – A dichotomous outcome variable indicating the presence (coded 1) or
absence (coded 0) of myocardial infarction.

SMK – A dichotomous variable indicating whether the subject is (coded 1) or is
not (coded 0) a current smoker.

SBP – A continuous variable for systolic blood pressure.
ECG – A dichotomous predictor variable indicating the presence (coded 1) or

absence (coded 0) of electrocardiogram abnormality.

3. Cancer dataset (cancer.dat)

This dataset is used to demonstrate polytomous and ordinal logistic regression. The
cancer dataset, discussed in Chaps. 12 and 13, is part of a study of cancer survival
(Hill et al., 1995). The study involves 288 women who had been diagnosed with
endometrial cancer. The variables are defined as follows:

ID – The subject identifier. Each observation has a unique identifier since there
is one observation per subject.

GRADE – A three-level ordinal outcome variable indicating tumor grade.
The grades are well differentiated (coded 0), moderately differentiated
(coded 1), and poorly differentiated (coded 2).

RACE – A dichotomous variable indicating whether the race of the subject is
black (coded 1) or white (coded 0).
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ESTROGEN – A dichotomous variable indicating whether the subject ever
(coded 1) or never (coded 0) used estrogen.

SUBTYPE – A three-category polytomous outcome indicating whether the
subject’s histological subtype is Adenocarcinoma (coded 0),
Adenosquamous (coded 1), or Other (coded 2).

AGE – A dichotomous variable indicating whether the subject is within the age
group 50–64 (coded 0) or within the age group 65–79 (coded 1). All 286
subjects are within one of these age groups.

SMK – A dichotomous variable indicating whether the subject is (coded 1) or is
not (coded 0) a current smoker.

4. Infant dataset (infant.dat)

This is the dataset that is used to demonstrate GEE modeling. The infant dataset,
discussed in Chaps. 14 and 15, is part of a health intervention study in Brazil (Cannon
et al., 2001). The study involves 168 infants, each of whom has at least five and up to
nine monthly measurements, yielding 1,458 observations in all. There are complete
data on all covariates for 136 of the infants. The outcome of interest is derived from a
weight-for-height standardized score based on the weight-for-height distribution of a
standard population. The outcome is correlated since there are multiple
measurements for each infant. The variables are defined as follows:

IDNO – The subject (infant) identifier. Each subject has up to nine observations.
This is the variable that defines the cluster used for the correlated analysis.

MONTH – A variable taking the values 1 through 9 that indicates the order of an
infant’s monthly measurements. This is the variable that distinguishes
observations within a cluster.

OUTCOME – Dichotomous outcome of interest derived from a weight-for-
height standardized z-score. The outcome is coded 1 if the infant’s z-score
for a particular monthly measurement is less than negative one and
coded 0 otherwise.

BIRTHWGT – A continuous variable that indicates the infant’s birth weight in
grams. This is a time-independent variable, as the infant’s birth weight does
not change over time. The value of the variable is missing for 32 infants.

GENDER – A dichotomous variable indicating whether the infant is male
(coded 1) or female (coded 2).

DIARRHEA – A dichotomous time-dependent variable indicating whether the
infant did (coded 1) or did not (coded 0) have symptoms of diarrhea that
month.

5. Knee Fracture dataset (kneefr.dat)

This dataset is used to demonstrate how to generate classification tables and receiver
operating characteristic (ROC) curves using logistic regression. The knee fracture
dataset discussed in Chap. 10 contains information on 348 patients of which 45
actually had a knee fracture (Tigges et al., 1999). The goal of the study is to evaluate
whether a patient’s pattern of covariates can be used as a screening test before
performing the X-ray. Since 1.3 million people visit North American emergency
departments annually complaining of blunt knee trauma, the total cost associated
with even a relatively inexpensive test such as a knee radiograph may be substantial.
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The variables are defined as follows:
FRACTURE – A dichotomous variable coded 1 for a knee fracture, 0 for no knee

fracture (obtained from X-ray)
FLEX–Adichotomousvariable for theability to flex theknee, coded0¼ yes,1¼no
WEIGHT – A dichotomous variable for the ability to put weight on the knee,

coded 0 ¼ yes, 1 ¼ no
AGECAT – A dichotomous variable for patient’s age, coded 0 if age <55, 1 if

age �55
HEAD – A dichotomous variable for injury to the knee head, coded 0 ¼ no,

1 ¼ yes
PETELLAR – A dichotomous variable for injury to the patellar, coded 0 ¼ no,

1 ¼ yes

We first illustrate how to perform analyses of these datasets using SAS, followed by
SPSS, and finally Stata. Not all of the output produced from each procedure will be
presented, as some of the output is extraneous to our discussion.

SAS

Analyses are carried out in SAS by using the appropriate SAS procedure on a SAS
dataset. Each SAS procedure begins with the word PROC. The following SAS proce-
dures are used to perform the analyses in this appendix.

1) PROC LOGISTIC – This procedure can be used to run logistic regression
(unconditional and conditional), general polytomous logistic regression, and
ordinal logistic regression using the proportional odds model.

2) PROCGENMOD – This procedure can be used to run generalized linear models
(GLM – including unconditional logistic regression and ordinal logistic
regression) and GEE models.

3) PROC GLIMMIX – This procedure can be used to run generalized linear mixed
models (GLMMs).

The capabilities of these procedures are not limited to performing the analyses listed
above. However, our goal is to demonstrate only the types of modeling presented in
this text.

Unconditional Logistic Regression

A. PROC LOGISTIC

The first illustration presented is an unconditional logistic regression with PROC
LOGISTIC using the Evans County data. The dichotomous outcome variable is CHD
and the predictor variables are: CAT, AGE, CHL, ECG, SMK, and HPT. Two interac-
tion terms, CH and CC, are also included. CH is the product: CAT �HPT, while CC is
the product: CAT � CHL. The variables representing the interaction terms have
already been included in the datasets.

The model is stated as follows:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1CATþ b2AGEþ b3CHLþ b4ECGþ b5SMK

þ b6HPTþ b7CHþ b8CC
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For this example, we shall use the SAS permanent dataset evans.sas7bdat. A LIB-
NAME statement is needed to indicate the path to the location of the SAS dataset. In
our examples, we assume the file is located on the C drive. The LIBNAME statement
includes a reference name as well as the path. We call the reference name REF. The
code is as follows:

LIBNAME REF ‘C:\’;

The user is free to define his/her own reference name. The path to the location of the
file is given between the single quotation marks. The general form of the code is

LIBNAME Your reference name ‘Your path to file location’;

All of the SAS programming will be written in capital letters for readability. How-
ever, SAS is not case sensitive. If a program is written with lower case letters, SAS
reads them as upper case. The number of spaces between words (if more than one)
has no effect on the program. Each SAS programming statement ends with a
semicolon.

The code to run a standard logistic regression with PROC LOGISTIC is as follows:

PROC LOGISTIC DATA ¼ REF.EVANS DESCENDING;
MODEL CHD ¼ CAT AGE CHL ECG SMK HPT CH CC / COVB;
RUN;

With the LIBNAME statement, SAS recognizes a two-level file name: the refer-
ence name and the file name without an extension. For our example, the SAS file
name is REF.EVANS. Alternatively, a temporary SAS dataset could be created
and used. However, a temporary SAS dataset has to be recreated in every SAS
session as it is deleted from memory when the user exits SAS. The following
code creates a temporary SAS dataset called EVANS from the permanent SAS
dataset REF.EVANS.

DATA EVANS;
SET REF.EVANS;
RUN;

The DESCENDING option in the PROC LOGISTIC statement instructs SAS that the
outcome event of interest is CHD ¼ 1 rather than the default, CHD ¼ 0. In other
words, we are interested in modeling the P(CHD ¼ 1) rather than the P(CHD ¼ 0).
Check the Response Profile in the output to see that CHD¼ 1 is listed before CHD¼ 0.
In general, if the output produces results that are the opposite of what you would
expect, chances are that there is an error in coding, such as incorrectly omitting (or
incorrectly adding) the DESCENDING option.

Options requested in the MODEL statement are preceded by a forward slash.
The COVB option requests the variance–covariance matrix for the parameter
estimates.
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The output produced by PROC LOGISTIC follows:

The LOGISTIC Procedure

Model Information

Data Set REF.EVANS
Response Variable chd
Number of Response Levels 2
Number of Observations 609
Link Function Logit
Optimization Technique Fisher's scoring

Response Profile

Ordered
Value CHD Count

1 1 71
2 0 538

Model Fit Statistics

Criterion
Intercept

Only
Intercept and
Covariates

AIC 440.558 365.230
SC 444.970 404.936
�2 Log L 438.558 347.230

Analysis of Maximum Likelihood Estimates

Parameter DF
Standard
Estimate Error Chi-Square Pr > ChiSq

Intercept 1 �4.0497 1.2550 10.4125 0.0013
CAT 1 �12.6894 3.1047 16.7055 <.0001
AGE 1 0.0350 0.0161 4.6936 0.0303
CHL 1 �0.00545 0.00418 1.7000 0.1923
ECG 1 0.3671 0.3278 1.2543 0.2627
SMK 1 0.7732 0.3273 5.5821 0.0181
HPT 1 1.0466 0.3316 9.9605 0.0016
CH 1 �2.3318 0.7427 9.8579 0.0017
CC 1 0.0692 0.0144 23.2020 <.0001

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits
CAT <0.001 <0.001 0.001
AGE 1.036 1.003 1.069
CHL 0.995 0.986 1.003
ECG 1.444 0.759 2.745
SMK 2.167 1.141 4.115
HPT 2.848 1.487 5.456
CH 0.097 0.023 0.416
CC 1.072 1.042 1.102
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Estimated Covariance Matrix

Variable Intercept cat age chl ecg

Intercept 1.575061 �0.66288 �0.01361 �0.00341 �0.04312
CAT �0.66288 9.638853 �0.00207 0.003591 0.02384
AGE �0.01361 �0.00207 0.00026 �3.66E-6 0.00014
CHL �0.00341 0.003591 �3.66E-6 0.000018 0.000042
ECG �0.04312 0.02384 0.00014 0.000042 0.107455
SMK �0.1193 �0.02562 0.000588 0.000028 0.007098
HPT 0.001294 0.001428 �0.00003 �0.00025 �0.01353
CH 0.054804 �0.00486 �0.00104 0.000258 �0.00156
CC 0.003443 �0.04369 2.564E-6 �0.00002 �0.00033

Variable smk hpt ch cc

Intercept �0.1193 0.001294 0.054804 0.003443
CAT �0.02562 0.001428 �0.00486 �0.04369
AGE 0.000588 �0.00003 �0.00104 2.564E-6
CHL 0.000028 �0.00025 0.000258 �0.00002
ECG 0.007098 �0.01353 �0.00156 �0.00033
SMK 0.107104 �0.00039 0.002678 0.000096
HPT �0.00039 0.109982 �0.108 0.000284
CH 0.002678 �0.108 0.551555 �0.00161
CC 0.000096 0.000284 �0.00161 0.000206

The negative 2 log likelihood statistic (i.e., �2 Log L) for the model, 347.230, is
presented in the table titled “Model Fit Statistics.” A likelihood ratio test statistic
to assess the significance of the two interaction terms can be obtained by running a
no-interaction model and subtracting the negative 2 log likelihood statistic for the
current model from that of the no-interaction model.

The parameter estimates are given in the table titled “Analysis of Maximum Likeli-
hood Estimates.” The point estimates of the odds ratios, given in the table titled
“Odds Ratio Estimates,” are obtained by exponentiating each of the parameter
estimates. However, these odds ratio estimates can be misleading for continuous
predictor variables or in the presence of interaction terms. For example, for continu-
ous variables like AGE, exponentiating the estimated coefficient gives the odds ratio
for a one-unit change in AGE. Also, exponentiating the estimated coefficient for CAT
gives the odds ratio estimate (CAT ¼ 1 vs. CAT ¼ 0) for a subject whose cholesterol
count is zero, which is impossible.

B. PROC GENMOD

Next, we illustrate the use of PROC GENMOD with the Evans County data. PROC
GENMOD can be used to run generalized linear models (GLM) and generalized
estimating equations (GEE) models, including unconditional logistic regression,
which is a special case of GLM. The link function and the distribution of the outcome
are specified in the model statement. LINK ¼ LOGIT and DIST ¼ BINOMIAL are
the MODEL statement options that specify a logistic regression. Options requested
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in the MODEL statement are preceded by a forward slash. The code that follows
runs the same model as the preceding PROC LOGISTIC:

PROC GENMOD DATA ¼ REF.EVANS DESCENDING;
MODEL CHD ¼ CAT AGE CHL ECG SMK HPT CH CC/LINK ¼ LOGIT DIST ¼ BINOMIAL;
ESTIMATE ‘OR (CHL ¼ 220, HPT ¼ 1)’ CAT 1 CC 220 CH 1/EXP;
ESTIMATE ‘OR (CHL ¼ 220, HPT ¼ 0)’ CAT 1 CC 220 CH 0/EXP;
CONTRAST ‘LRT for interaction terms’ CH 1, CC 1;
RUN;

The DESCENDING option in the PROC GENMOD statement instructs SAS that the
outcome event of interest is CHD ¼ 1 rather than the default, CHD ¼ 0. An optional
ESTIMATE statement can be used to obtain point estimates, confidence intervals,
and a Wald test for a linear combination of parameters (e.g., b1 þ 1b6 þ 220b7). The
EXP option in the ESTIMATE statement exponentiates the requested linear combi-
nation of parameters. In this example, two odds ratios are requested using the
interaction parameters:

1. exp(b1 þ 1b6 þ 220b7) is the odds ratio for CAT¼ 1 vs. CAT¼ 0 for HPT¼ 1 and
CHOL ¼ 220

2. exp(b1 þ 0b6 þ 220b7) is the odds ratio for CAT¼ 1 vs. CAT¼ 0 for HPT¼ 0 and
CHOL ¼ 220

The quoted text following the word ESTIMATE is a “label” that is printed in the
output. The user is free to define his/her own label. The CONTRAST statement, as
used in this example, requests a likelihood ratio test on the two interaction terms (CH
and CC). The CONTRAST statement also requires that the user define a label. The
same CONTRAST statement in PROC LOGISTIC would produce a generalized Wald
test statistic, rather than a likelihood ratio test, for the two interaction terms.

The output produced from PROC GENMOD follows:

The GENMOD Procedure

Model Information

Data Set WORK.EVANS1
Distribution Binomial
Link Function Logit
Dependent Variable chd
Observations Used 609

Response Profile

Ordered
Value chd

Total
Frequency

1 1 71
2 0 538

PROC GENMOD is modeling the probability that chd¼‘1’.
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Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 600 347.2295 0.5787
Scaled Deviance 600 347.2295 0.5787
Pearson Chi-Square 600 799.0652 1.3318
Scaled Pearson X2 600 799.0652 1.3318
Log Likelihood �173.6148

Algorithm converged

Analysis of Parameter Estimates

Parameter Estimate
Standard
Error

Wald 95%
Confidence Limits

Chi-
Square Pr > ChiSq

Intercept �4.0497 1.2550 �6.5095 �1.5900 10.41 0.0013
CAT �12.6895 3.1047 �18.7746 �6.6045 16.71 <.0001
AGE 0.0350 0.0161 0.0033 0.0666 4.69 0.0303
CHL �0.0055 0.0042 �0.0137 0.0027 1.70 0.1923
ECG 0.3671 0.3278 �0.2754 1.0096 1.25 0.2627
SMK 0.7732 0.3273 0.1318 1.4146 5.58 0.0181
HPT 1.0466 0.3316 0.3967 1.6966 9.96 0.0016
CH �2.3318 0.7427 �3.7874 �0.8762 9.86 0.0017
CC 0.0692 0.0144 0.0410 0.0973 23.20 <.0001
Scale 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Contrast Estimate Results

Label
L'Beta

Estimate
Standard
Error Confidence Limits

Chi-
Square

Pr >
ChiSq

Log OR (ch1 ¼ 220,
hpt ¼ 1)

0.1960 0.4774 �0.7397 1.1318 0.17 0.6814

Exp(LogOR(chl¼220,
hpt¼ 1))

1.2166 0.5808 0.4772 3.1012

Log OR (chl ¼ 220,
hpt ¼ 0)

2.5278 0.6286 1.2957 3.7599 16.17 <.0001

Exp(LogOR(chl¼220,
hpt¼ 0))

12.5262 7.8743 3.6537 42.9445

Contrast Results

Contrast DF Chi-Square Pr > ChiSq Type

LRT for interaction terms 2 53.16 <.0001 LR

The table titled “Contrast Estimate Results” gives the odds ratios requested by the
ESTIMATE statement. The estimated odds ratio for CAT ¼ 1 vs. CAT ¼ 0 for a
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hypertensive subject with a 220 cholesterol count is exp(0.1960) ¼ 1.2166. The
estimated odds ratio for CAT ¼ 1 vs. CAT ¼ 0 for a nonhypertensive subject with a
220 cholesterol count is exp(2.5278) ¼ 12.5262. The table titled “Contrast Results”
gives the chi-square test statistic (53.16) and p-value (<0.0001) for the likelihood ratio
test on the two interaction terms.

C. Events/Trials Format

The Evans County dataset evans.dat contains individual level data. Each observation
represents an individual subject. PROC LOGISTIC and PROC GENMOD also accom-
modate summarized binomial data in which each observation contains a count of the
number of events and trials for a particular pattern of covariates. The dataset EVANS2
summarizes the 609 observations of the EVANS data into eight observations, where
each observation contains a count of the number of events and trials for a particular
pattern of covariates. The dataset contains five variables described below:

CASES – number of coronary heart disease cases
TOTAL – number of subjects at risk in the stratum
CAT – serum catecholamine level (1 ¼ high, 0 ¼ normal)
AGEGRP – dichotomized age variable (1 ¼ age � 55, 0 ¼ age < 55)
ECG – electrocardiogram abnormality (1 ¼ abnormal, 0 ¼ normal)

The code to produce the dataset is shown next. The dataset is small enough that it can
be easily entered manually.

DATA EVANS2;
INPUT CASES TOTAL CAT AGEGRP ECG;
CARDS;
17 274 0 0 0
15 122 0 1 0
7 59 0 0 1
5 32 0 1 1
1 8 1 0 0
9 39 1 1 0
3 17 1 0 1
14 58 1 1 1
;

To run a logistic regression on the summarized data EVANS2, the response is put into
an EVENTS/TRIALS form for either PROC LOGISTIC or PROC GENMOD. The
model is stated as follows:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1CATþ b2AGEGRPþ b3ECG

The code to run the model in PROC LOGISTIC using the dataset EVANS2 is:

PROC LOGISTIC DATA ¼ EVANS2;
MODEL CASES/TOTAL ¼ CAT AGEGRP ECG;
RUN;
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The code to run the model in PROC GENMOD using the dataset EVANS2 is:

PROC GENMOD DATA ¼ EVANS2;
MODEL CASES/TOTAL ¼ CAT AGEGRP ECG / LINK ¼ LOGIT DIST ¼ BINOMIAL;
RUN;

The DESCENDING option is not necessary if the response is in the EVENTS/TRIALS
form. The output is omitted.

The CONTRAST and ESTIMATE statements still work in PROC GENMOD when
using EVENTS/TRIALS form. PROC LOGISTIC has a CONTRAST statement but
not an ESTIMATE statement. However, linear combinations of parameter estimates
can be calculated in PROC LOGISTIC using the ESTIMATE ¼ option within the
CONTRAST statement.

Suppose we wish to estimate the odds ratio comparing an individual with CAT ¼ 1
and AGEGRP ¼ 1 to an individual with CAT ¼ 0 and AGEGRP ¼ 0 controlling for
ECG. The odds ratio is exp(b1 þ b2). The code to estimate this odds ratio is shown
below with the CONTRAST statement:

PROC LOGISTIC DATA¼EVANS2;
MODEL CASES/TOTAL¼ CAT AGEGRP ECG;
CONTRAST ‘CAT¼1 AGEGRP ¼ 1 VS CAT¼0 AGEGRP¼0’ CAT 1 AGEGRP 1/
ESTIMATE¼EXP;
RUN;

The quoted text following the word CONTRAST is a “label” that is printed in the
output. The user is free to define his/her own label. The ESTIMATE ¼ EXP option
estimates exp(b1 þ b2). If instead we used the option ESTIMATE ¼ PARM we
would estimate b1 þ b2 without the exponentiation. We could also use the option
ESTIMATE ¼ BOTH to estimate the linear combination of parameters both expo-
nentiated and not exponentiated.

A common point of confusion with the CONTRAST statement in SAS occurs with the
use of commas. Consider the following code in which PROC LOGISTIC is run with
two CONTRAST statements.

PROC LOGISTIC DATA¼EVANS2;
MODEL CASES/TOTAL¼ CAT AGEGRP ECG;
CONTRAST ‘1 DEGREE OF FREEDOM TEST’ CAT 1 AGEGRP 1;
CONTRAST ‘2 DEGREE OF FREEDOM TEST’ CAT 1, AGEGRP 1;
RUN;

The first CONTRAST statement (CAT 1 AGEGRP 1) tests the hypothesis b1 þ b2 ¼
0 while the second CONTRAST statement which contains a comma (CAT 1,
AGEGRP 1) tests the hypothesis b1 ¼ 0 and b2 ¼ 0 simultaneously. These are not
the same tests. If b1 þ b2 ¼ 0, it does not necessarily mean that both b1 ¼ 0 and b2 ¼ 0.
The output follows:
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The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr > ChiSq

Intercept 1 �2.6163 0.2123 151.8266 <.0001
CAT 1 0.6223 0.3193 3.7978 0.0513
AGEGRP 1 0.6157 0.2838 4.7050 0.0301
ECG 1 0.3620 0.2904 1.5539 0.2126

Contrast Test Results

Contrast DF Wald Chi-Square Pr > ChiSq
1 DEGREE OF FREEDOM TEST 1 13.2132 0.0003
2 DEGREE OF FREEDOM TEST 2 13.4142 0.0012

A difference between the CONTRAST statements in PROC LOGISTIC and PROC
GENMOD is that with PROC LOGISTIC the default test is the WALD test while
with PROC GENMOD the default test is the likelihood ratio test.

D. Using Frequency Weights

Individual level data can also be summarized using frequency counts if the variables
of interest are categorical variables. The dataset EVANS3 contains the same infor-
mation as EVANS2 except that each observation represents cell counts in a four-way
frequency table for the variables CHD, CAT, AGEGRP, and ECG. The variable
COUNT contains the frequency counts. The code that creates EVANS3 follows:

DATA EVANS3;
INPUT CHD CAT AGEGRP ECG COUNT;
CARDS;
1 0 0 0 17
0 0 0 0 257
1 0 1 0 15
0 0 1 0 107
1 0 0 1 7
0 0 0 1 52
1 0 1 1 5
0 0 1 1 27
1 1 0 0 1
0 1 0 0 7
1 1 1 0 9
0 1 1 0 30
1 1 0 1 3
0 1 0 1 14
1 1 1 1 14
0 1 1 1 44
;
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Whereas the dataset EVANS2 contains eight data lines, the dataset EVANS3 contains
sixteen data lines. The first observation of EVANS2 indicates that out of 274 subjects
with CAT ¼ 0, AGEGRP ¼ 0, and ECG ¼ 0, there are 17 CHD cases in the cohort.
EVANS3 uses the first two observations to produce the same information. The first
observation indicates that there are 17 subjects with CHD ¼ 1, CAT ¼ 0, AGEGRP ¼
0 and ECG ¼ 0, while the second observation indicates that there are 257 subjects
with CHD ¼ 0, CAT ¼ 0, AGEGRP ¼ 0, and ECG ¼ 0.

We restate the model:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1CATþ b2AGEGRPþ b3ECG

The code to run the model in PROC LOGISTIC using the dataset EVANS3 is:

PROC LOGISTIC DATA¼EVANS3 DESCENDING;
MODEL CHD ¼ CAT AGEGRP ECG;
FREQ COUNT;
RUN;

The FREQ statement is used to identify the variable (e.g., COUNT) in the input
dataset that contains the frequency counts. The output is omitted.

The FREQ statement can also be used with PROC GENMOD. The code follows:

PROC GENMOD DATA¼EVANS3 DESCENDING;
MODEL CHD ¼ CAT AGEGRP ECG / LINK¼LOGIT DIST¼BINOMIAL;
FREQ COUNT;
RUN;

E. The Analyst Application

The procedures described above are run by entering the appropriate code in the
Program (or Enhanced) Editor window and then submitting (i.e., running) the
program. This is the approach commonly employed by SAS users. Another option
for performing a logistic regression analysis in SAS is to use the Analyst Application.
In this application, procedures are selected by pointing and clicking the mouse
through a series of menus and dialog boxes. This is similar to the process commonly
employed by SPSS users.

The Analyst Application is invoked by selecting Solutions ! Analysis ! Analyst from
the toolbar. Once in Analyst, the permanent SAS dataset evans.sas7bdat can be
opened into the spreadsheet. To perform a logistic regression, select Statistics !
Regression ! Logistic. In the dialog box, select CHD as the Dependent variable.
There is an option to use a Single trial or an Events/Trials format. Next, specify
which value of the outcome should be modeled using the Model Pr{} button. In this
case, wewish tomodel the probability that CHD equals 1. Select and add the covariates
to the Quantitative box. Various analysis and output options can be selected under the
Model and Statistics buttons. For example, under Statistics, the covariance matrix for
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the parameter estimates can be requested as part of the output. Click on OK in the
main dialog box to run the program. The output generated is from PROCLOGISTIC. It
is omitted here as it is similar to the output previously shown. A check of the Log
window in SAS shows the code that was used to run the analysis.

Conditional Logistic Regression

A conditional logistic regression is demonstrated using PROC LOGISTIC with the MI
dataset. The MI dataset contains information from a study in which each of 39 cases
diagnosed with myocardial infarction is matched with two controls, yielding a total
of 117 subjects.

The model is stated as follows:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1SMK þ b2SBPþ b3ECGþ ~
38

i¼1

giVi

Vi ¼ 1 if ith matched triplet
0 otherwise

�
i ¼ 1; 2; . . . ; 38

The model contains 42 parameters. The data contains 117 observations. The large
number of parameters compared with the number of observations indicates that an
unconditional logistic analysis will yield biased results.

The SAS procedure, PROC PRINT, can be used to view the MI dataset in the output
window. We first run a LIBNAME statement to access the permanent SAS dataset
(mi.sas7bdat) assuming that it is filed on the C drive:

LIBNAME REF ‘C:\’;

PROC PRINT DATA ¼ REF.MI; RUN;

The output for the first nine observations from running the PROC PRINT follows:

Obs MATCH PERSON MI SMK SBP ECG

1 1 1 1 0 160 1
2 1 2 0 0 140 0
3 1 3 0 0 120 0
4 2 4 1 0 160 1
5 2 5 0 0 140 0
6 2 6 0 0 120 0
7 3 7 1 0 160 0
8 3 8 0 0 140 0
9 3 9 0 0 120 0
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The matching factor is the variable MATCH which is coded 1 for a case and 0 for the
two matched controls for each case.

The code to run the conditional logistic regression follows:

PROC LOGISTIC DATA ¼ MI DESCENDING;
MODEL MI ¼ SMK SBP ECG;
STRATA MATCH;
RUN;

The distinguishing feature in terms of SAS syntax between requesting an uncondi-
tional and conditional logistic regression is the use of the STRATA statement for the
conditional logistic regression. The STRATA statement in this example declares
MATCH as the stratified (or conditioned) variable.

In earlier versions of SAS, conditional logistic regression could not be run with PROC
LOGISTIC. Instead, PROC PHREG was used and can still be used for conditional
logistic regression. However, PROC PHREG is primarily used to run Cox proportional
hazard models. Conditional logistic regression cannot be run with PROC GENMOD.

The output for the conditional logistic regression using PROC LOGISTIC follows:

The LOGISTIC Procedure

Conditional Analysis

Model Information

Data Set REF.MI
Response Variable MI
Number of Response Levels 2
Number of Strata 39
Model binary logit
Optimization Technique Newton-Raphson ridge

Strata Summary

Response
Pattern

MI Number of
Strata1 0 Frequency

1 1 2 39 117

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

AIC 85.692 69.491
SC 85.692 77.777
�2 Log L 85.692 63.491
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Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square

Pr >
ChiSq

SMK 1 0.7291 0.5613 1.6873 0.1940
SBP 1 0.0456 0.0152 8.9612 0.0028
ECG 1 1.5993 0.8534 3.5117 0.0609

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

SMK 2.073 0.690 6.228
SBP 1.047 1.016 1.078
ECG 4.949 0.929 26.362

The odds ratio estimate for SMK ¼ 1 vs. SMK ¼ 0 is exp(0.72906) ¼ 2.073.

Obtaining ROC Curves

Next, we demonstrate how to obtain classification tables and ROC curves using
PROC LOGISTIC with the knee fracture dataset. The knee fracture dataset contains
information on 348 patients of which 45 actually had a knee fracture. The logistic
model contains five dichotomous predictors and is stated below:

logit PðFRACTURE ¼ 1jXÞ ¼ b0 þ b1FLEXþ b2WEIGHTþ b3AGECAT

þ b4HEADþ b5PATELLAR

The SAS code is presented below. The model statement option, PPROB ¼.00
TO .50 BY .05 CTABLE, requests that a classification table be added to the
default output using cutpoints of predicted probabilities from 0 to 0.50 in increments
of 0.05.

PROC LOGISTIC DATA¼REF .KNEEFR DESCENDING;
MODEL FRACTURE¼ FLEX WEIGHT AGECAT HEAD PATELLAR / PPROB¼.00 TO .50 BY

.05 CTABLE;
RUN;

The output follows:

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr > ChiSq

Intercept 1 �3.4657 0.4118 70.8372 <.0001
FLEX 1 0.5277 0.3743 1.9877 0.1586

(continued)
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Parameter DF Estimate
Standard
Error

Wald
Chi-Square Pr > ChiSq

WEIGHT 1 1.5056 0.4093 13.5320 0.0002
AGECAT 1 0.5560 0.3994 1.9376 0.1639
HEAD 1 0.2183 0.3761 0.3367 0.5617
PATELLAR 1 0.6268 0.3518 3.1746 0.0748

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 71.8 Somers' D 0.489
Percent Discordant 22.9 Gamma 0.517
Percent Tied 5.3 Tau-a 0.111
Pairs 13635 c 0.745

Classification Table

Correct Incorrect Percentages
Prob
Level Event

Non-
Event Event

Non-
Event Correct Sensitivity Specificity

False
POS

False
NEG

0.000 45 0 303 0 12.9 100.0 0.0 87.1 .
0.050 39 93 210 6 37.9 86.7 30.7 84.3 6.1
0.100 36 184 119 9 63.2 80.0 60.7 76.8 4.7
0.150 31 200 103 14 66.4 68.9 66.0 76.9 6.5
0.200 22 235 68 23 73.9 48.9 77.6 75.6 8.9
0.250 16 266 37 29 81.0 35.6 87.8 69.8 9.8
0.300 6 271 32 39 79.6 13.3 89.4 84.2 12.6
0.350 3 297 6 42 86.2 6.7 98.0 66.7 12.4
0.400 3 301 2 42 87.4 6.7 99.3 40.0 12.2
0.450 2 301 2 43 87.1 4.4 99.3 50.0 12.5
0.500 0 303 0 45 87.1 0.0 100.0 . 12.9

The table in the output titled “Association of Predicted Probabilities and Observed
Responses” is now described. There are 45 cases and 303 noncases of knee fracture
yielding 45 � 303 ¼ 13,635 pair combinations (4th row, 1st column of output). For
these pairs, 71.8% had the case with the higher predicted probability (percent con-
cordant in the output), 22.9% had the noncase with the higher predicted probability
(percent discordant in the output), and 5.3% had the same predicted probability for
the case and noncase (percent tied in the output). If the percent tied is weighted as
half a concordant pair then the probability of having a concordant pair rather than a
discordant pair is estimated as 0.718 þ 0.5(0.053) ¼ 0.745. This is the value of the c
statistic (4th row, 2nd column of output) and is the estimate of the area under the
ROC plot.

The classification table uses the patients’ predicted outcome probabilities obtained
from the fitted logistic model to screen each patient. The probability levels (first
column) are prespecified cut points requested in the model statement. For example
in the third row, the cut point is 0.100. A cut point of 0.100 indicates that any patient
whose predicted probability is greater than 0.100 will receive an X-ray. In other
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words, if a patient has a predicted probability greater than 0.100, then the patient
tests positive on the screening test. Notice that if a 0.100 cut point is used (see third
row), then of the 45 patients that really had a knee fracture, 36 of them are correctly
classified as events and 9 are incorrectly classified as nonevents yielding a sensitivity
of 0.8 or 80%.

To produce an ROC plot, first an output dataset must be created using the OUTROC¼
option in the MODEL statement of PROC LOGISTIC. This output dataset contains a
variable representing all the predicted probabilities as well as variables representing
the corresponding sensitivity and 1 � specificity. The code to create this output
dataset follows:

PROC LOGISTIC DATA ¼ REF .KNEEFR DESCENDING;
MODEL FRACTURE ¼ FLEX WEIGHT AGECAT HEAD PATELLAR/OUTROC ¼ CAT;
RUN;

The new dataset is called CAT (an arbitrary choice for the user). Using PROC PRINT,
the first ten observations from this dataset are printed as follows:

PROC PRINT DATA ¼ CAT (OBS ¼ 10); RUN;

Obs _PROB_ _POS_ _NEG_ _FALPOS_ _FALNEG_ _SENSIT_ _1MSPEC_

1 0.49218 2 303 0 43 0.04444 0.00000
2 0.43794 3 301 2 42 0.06667 0.00660
3 0.35727 6 298 5 39 0.13333 0.01650
4 0.34116 6 297 6 39 0.13333 0.01980
5 0.31491 8 296 7 37 0.17778 0.02310
6 0.30885 13 281 22 32 0.28889 0.07261
7 0.29393 16 271 32 29 0.35556 0.10561
8 0.24694 16 266 37 29 0.35556 0.12211
9 0.23400 16 264 39 29 0.35556 0.12871
10 0.22898 22 246 57 23 0.48889 0.18812

The variable _PROB_ contains the predicted probabilities. The variables we wish to
plot are the last two, representing the sensitivity and 1� specificity (called _SENSIT_
and _1MSPEC_). PROC GPLOT can be used to produce a scatter plot in SAS, as
shown below. The statement PLOT Y*X will plot the variable Y on the vertical axis
and X on the horizontal axis. The SYMBOL statement is used before PROCGPLOT to
set the plotting symbols as plus signs (VALUE¼PLUS) and to plot a cubic regression
to smooth the shape of the plot (INTERPOL¼RC). The code and plot follow:

SYMBOL VALUE¼PLUS INTERPOL¼RC;

PROC GPLOT DATA ¼ CAT;
PLOT_SENSIT_*_1MSPEC_;
RUN;
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ROC Curve Using Knee Fracture Data

Sensitivity

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.0 0.1 0.2 0.3 0.4 0.5

1 – specificity

0.6 0.7 0.8 0.9 1.0

Polytomous Logistic Regression

A polytomous logistic regression is now demonstrated with the cancer dataset using
PROC LOGISTIC. If the permanent SAS dataset cancer.sas7bdat is on the C drive,
we can access it by running a LIBNAME statement. If the same LIBNAME statement
has already been run earlier in the SAS session, it is unnecessary to rerun it.

LIBNAME REF ‘C:\’;

First a PROC PRINT is run on the cancer dataset.

PROC PRINT DATA ¼ REF.CANCER; RUN;

The output for the first eight observations from running the proc print follows:

Obs ID GRADE RACE ESTROGEN SUBTYPE AGE SMOKING

1 10009 1 0 0 1 0 1
2 10025 0 0 1 2 0 0
3 10038 1 0 0 1 1 0
4 10042 0 0 0 0 1 0
5 10049 0 0 1 0 0 0
6 10113 0 0 1 0 1 0
7 10131 0 0 1 2 1 0
8 10160 1 0 0 0 0 0

PROC LOGISTIC can be used to run a polytomous logistic regression (PROC CAT-
MOD can also be used).

The three-category outcome variable is SUBTYPE, coded as 0 for Adenosquamous, 1
for Adenocarcinoma, and 2 for Other. The model is stated as follows:

ln
PðSUBTYPE ¼ gjXÞ
PðSUBTYPE ¼ 0jXÞ

� �
¼ ag þ bg1AGEþ bg2ESTROGENþ bg3SMOKING

where g ¼ 1; 2
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By default, PROC LOGISTIC assumes the highest level of the outcome variable is the
reference group. If we wish to make SUBTYPE ¼ 0 (i.e., Adenosquamous) the refer-
ence group we can use the DESCENDING option in a similar manner as we did when
we ran a standard logistic regression using PROC LOGISTIC. The code follows:

PROC LOGISTIC DATA ¼ REF.CANCER DESCENDING;
MODEL SUBTYPE ¼ AGE ESTROGEN SMOKING/LINK ¼ GLOGIT;
RUN;

The key difference in the syntax for specifying a polytomous rather than a standard
logistic regression using PROC LOGISTIC is the LINK ¼ GLOGIT option in the
MODEL statement. LINK ¼ GLOGIT requests a generalized logit link function for
the model. If a three (or more) level outcome is specified in the model statement
without using the LINK¼ option, the default analysis is an ordinal logistic regression
which uses a cumulative logit link function (see next section).

The output using PROC LOGISTIC for the polytomous analysis follows:

The LOGISTIC Procedure

Model Information

Data Set REF.CANCER
Response Variable SUBTYPE
Number of Response Levels 3
Model generalized logit
Optimization Technique Newton-Raphson

Number of Observations Read 288
Number of Observations Used 286

Response Profile

Ordered
Value SUBTYPE

Total
Frequency

1 2 57
2 1 45
3 0 184

Logits modeled use SUBTYPE¼0 as the reference category.

Model Fit Statistics

Criterion
Intercept

Only
Intercept and
Covariates

AIC 516.623 510.405
SC 523.935 539.653
�2 Log L 512.623 494.405
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Testing Global Null Hypothesis: BETA¼0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 18.2184 6 0.0057
Score 15.9442 6 0.0141
Wald 13.9422 6 0.0303

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

AGE 2 5.9689 0.0506
ESTROGEN 2 3.5145 0.1725
SMOKING 2 6.5403 0.0380

Analysis of Maximum Likelihood Estimates

Parameter SUBTYPE Estimate
Standard
Error

Wald
Chi-Square Pr > ChiSq

Intercept 2 �1.2032 0.3190 14.2290 0.0002
Intercept 1 �1.8822 0.4025 21.8691 <.0001
AGE 2 0.2823 0.3280 0.7408 0.3894
AGE 1 0.9871 0.4118 5.7456 0.0165
ESTROGEN 2 �0.1071 0.3067 0.1219 0.7270
ESTROGEN 1 �0.6439 0.3436 3.5126 0.0609
SMOKING 2 �1.7910 1.0463 2.9299 0.0870
SMOKING 1 0.8895 0.5253 2.8666 0.0904

Odds Ratio Estimates

Effect SUBTYPE
Point

Estimate
95% Wald

Confidence Limits

AGE 2 1.326 0.697 2.522
AGE 1 2.683 1.197 6.014
ESTROGEN 2 0.898 0.492 1.639
ESTROGEN 1 0.525 0.268 1.030
SMOKING 2 0.167 0.021 1.297
SMOKING 1 2.434 0.869 6.815

In the above output, there are two parameter estimates for each independent vari-
able, as there should be for this model. Since the response variable is in descending
order (see the response profile in the output), the first parameter estimate compares
SUBTYPE ¼ 2 vs. SUBTYPE ¼ 0 and the second compares SUBTYPE ¼ 1 vs.
SUBTYPE ¼ 0. The odds ratio for AGE ¼ 1 vs. AGE ¼ 0 comparing SUBTYPE ¼ 2
vs. SUBTYPE ¼ 0 is exp(0.2823) ¼ 1.326.

PROC GENMOD does not have a generalized logit link (link¼ glogit), and cannot run
a generalized polytomous logistic regression.
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Ordinal Logistic Regression

A. PROC LOGISTIC

Ordinal logistic regression is demonstrated using the proportional odds model.
Either PROC LOGISTIC or PROC GENMOD can be used to run a proportional
odds model. We continue to use the cancer dataset to demonstrate this model, with
the variable GRADE as the response variable. The model is stated as follows:

ln
PðGRADE � gjXÞ
PðGRADE < gjXÞ

� �
¼ ag þ b1RACEþ b2ESTROGEN where g ¼ 1; 2

The code using PROC LOGISTIC follows:

PROC LOGISTIC DATA ¼ REF.CANCER DESCENDING;
MODEL GRADE ¼ RACE ESTROGEN;
RUN;

The PROC LOGISTIC output for the proportional odds model follows:

The LOGISTIC Procedure

Model Information

Data Set REF.CANCER
Response Variable grade
Number of Response Levels 3
Number of Observations 286
Link Function Logit
Optimization Technique Fisher's scoring

Response Profile

Ordered
Value Grade

Total
Frequency

1 2 53
2 1 105
3 0 128

Score Test for the Proportional Odds
Assumption

Chi-Square DF Pr > ChiSq

0.9051 2 0.6360

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Chi-Square Pr > ChiSq

Intercept 1 �1.2744 0.2286 31.0748 <.0001
Intercept2 1 0.5107 0.2147 5.6555 0.0174
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Parameter DF Estimate Standard Error Chi-Square Pr > ChiSq
(continued)

RACE 1 0.4270 0.2720 2.4637 0.1165
ESTROGEN 1 �0.7763 0.2493 9.6954 0.0018

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits
RACE 1.533 0.899 2.612
ESTROGEN 0.460 0.282 0.750

The Score test for the proportional odds assumption yields a chi-square value of
0.9051 and a p-value of 0.6360. Notice that there are two intercepts, but only one
parameter estimate for each independent variable.

B. PROC GENMOD

PROC GENMOD can also be used to perform an ordinal regression; however, it does
not provide a test of the proportional odds assumption. The code is as follows:

PROC GENMOD DATA ¼ REF.CANCER DESCENDING;
MODEL GRADE ¼ RACE ESTROGEN/ LINK¼CUMLOGIT DIST¼MULTINOMIAL;
RUN;

Recall that with PROC GENMOD, the link function (LINK¼) and the distribution of
the response variable (DIST¼) must be specified. The proportional odds model uses
the cumulative logit link function, while the response variable follows the multino-
mial distribution. The LINK ¼ CUMLOGIT option could also be used with PROC
LOGISTIC but it is unnecessary since that is the default when the response variable
has three or more levels. The output is omitted.

C. Analyst Application

The Analyst Application can also be used to run an ordinal regression model. Once
the cancer.sas7bdat dataset is opened in the spreadsheet, select Statistics! Regres-
sion ! Logistic. In the dialog box, select GRADE as the Dependent variable. Next,
specify which value of the outcome should be modeled using the Model Pr{} button.
In this case, we wish to model the “Upper (decreasing) levels” (i.e., 2 and 1) against
the lowest level. Select and add the covariates (RACE and ESTROGEN) to the
Quantitative box. Various analysis and output options can be selected under the
Model and Statistics buttons. For example, under Statistics, the covariance matrix
for the parameter estimates can be requested as part of the output.

Click on OK in the main dialog box to run the program. The output generated is from
PROC LOGISTIC and is identical to the output presented previously. A check of the
Log window in SAS shows the code that was used to run the analysis.
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Modeling Correlated Dichotomous Outcomes with GEE

The programming of a GEEmodel with the infant care dataset is demonstrated using
PROC GENMOD. The model is stated as follows:

logit PðOUTCOME ¼ 1jXÞ ¼ b0 þ b1BIRTHWGTþ b2GENDERþ b3DIARRHEA

The code and output are shown for this model assuming an AR1 correlation struc-
ture. The code for specifying other correlation structures using the REPEATED
statement in PROC GENMOD is shown later in this section, although the output is
omitted.

First a PROC PRINT will be run on the infant care dataset. Again, the use of the follow-
ing LIBNAME statement assumes the permanent SAS dataset is stored on the C drive.

LIBNAME REF ‘C:\’;
PROC PRINT DATA ¼ REF.INFANT; RUN;

The output for one infant obtained from running the PROC PRINT is presented. Each
observation represents one of the nine monthly measurements.

IDNO MONTH OUTCOME BIRTHWGT GENDER DIARRHEA

244 1 0 2850 2 0
244 2 1 2850 2 1
244 3 1 2850 2 0
244 4 0 2850 2 0
244 5 0 2850 2 0
244 6 0 2850 2 0
244 7 0 2850 2 0
244 8 0 2850 2 0
244 9 0 2850 2 0

The code for running a GEE model with an AR1 correlation structure follows:

PROC GENMOD DATA¼REF.INFANT DESCENDING;
CLASS IDNO MONTH;
MODEL OUTCOME ¼ BIRTHWGT GENDER DIARRHEA / DIST¼BIN LINK¼LOGIT;
REPEATED SUBJECT¼IDNO / TYPE¼AR(1) WITHIN¼MONTH CORRW;
ESTIMATE ‘log odds ratio (DIARRHEA 1 vs 0)’ DIARRHEA 1/EXP;
CONTRAST ‘Score Test BIRTHWGT and DIARRHEA’ BIRTHWGT 1, DIARRHEA 1;
RUN;

The variable defining the cluster (infant) is IDNO. The variable defining the order of
measurement within a cluster is MONTH. Both these variables must be listed in the
CLASS statement. If the user wishes to have dummy variables defined from any
nominal independent variables, these can also be listed in the CLASS statement.

The LINK and DIST options in the MODEL statement define the link function and
the distribution of the response. Actually, for a GEE model, the distribution of the

622 Appendix: Computer Programs for Logistic Regression



response is not specified. Rather a GEE model requires that the mean–variance
relationship of the response be specified. What the DIST ¼ BINOMIAL option does
is to define the mean–variance relationship of the response to be the same as if the
response followed a binomial distribution (i.e., V(Y) ¼ m (1 � m)).

TheREPEATED statement indicates that aGEEmodel rather than aGLM is requested.
SUBJECT ¼ IDNO in the REPEATED statement defines the cluster variable as IDNO.
There aremany options (following a forward slash) that can be used in the REPEATED
statement. We use three of them in this example. The TYPE ¼ AR(1) option specifies
the AR1 working correlation structure, the CORRW option requests the printing of the
working correlation matrix in the output window, and the WITHIN ¼ MONTH option
defines the variable (MONTH) that gives the order of measurements within a cluster.
For this example, the WITHIN ¼ MONTH option is unnecessary since the default
order within a cluster is the order of observations in the data (i.e., the monthly
measurements for each infant are ordered in the data from month 1 to month 9).

The ESTIMATE statement with the EXP option is used to request the odds ratio
estimate for the variable DIARRHEA. The quoted text in the ESTIMATE statement is
a label defined by the user for the printed output. The CONTRAST statement requests
that the Score test be performed to simultaneously test the joint effects of the variable
BIRTHWGT and DIARRHEA. If the REPEATED statement was omitted (i.e., defining
a GLM rather than a GEE model), the same CONTRAST statement would produce a
likelihood ratio test rather than a Score test. Recall the likelihood ratio test is not valid
for a GEE model. A forward slash followed by the word WALD in the CONTRAST
statement of PROC GENMOD requests results from a generalized Wald test rather
than a Score test. The CONTRAST statement also requires a user-defined label.

The output produced by PROC GENMOD follows:

The GENMOD Procedure

Model Information

Data Set REF.INFANT
Distribution Binomial
Link Function Logit
Dependent Variable outcome
Observations Used 1203
Missing Values 255

Class Level Information

Class Levels Values

IDNO 136 00001 00002 00005 00008 00009 00010 00011 00012
00017 00018 00020 00022 00024 00027 00028 00030
00031 00032 00033 00034 00035 00038 00040 00044
00045 00047 00051 00053 00054 00056 00060 00061
00063 00067 00071 00072 00077 00078 00086 00089
00090 00092 . . .

MONTH 9 1 2 3 4 5 6 7 8 9
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Response Profile

Ordered
Value Outcome

Total
Frequency

1 1 64
2 0 1139

PROC GENMOD is modeling the probability that outcome¼‘1’.

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1199 490.0523 0.4087
Scaled Deviance 1199 490.0523 0.4087
Pearson Chi-Square 1199 1182.7485 0.9864

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 1199 1182.7485 0.9864
Log Likelihood �245.0262

Algorithm converged.

Analysis of Initial Parameter Estimates

Parameter DF Estimate
Standard
Error

Wald 95%
Confidence Limits

Chi-
Square

Pr >
ChiSq

Intercept 1 �1.4362 0.6022 �2.6165 �0.2559 5.69 0.0171
BIRTHWGT 1 �0.0005 0.0002 �0.0008 �0.0001 7.84 0.0051
GENDER 1 �0.0453 0.2757 �0.5857 0.4950 0.03 0.8694
DIARRHEA 1 0.7764 0.4538 �0.1129 1.6658 2.93 0.0871
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure AR(1)
Within-Subject Effect MONTH (9 levels)
Subject Effect IDNO (168 levels)
Number of Clusters 168
Clusters With Missing Values 32
Correlation Matrix Dimension 9
Maximum Cluster Size 9
Minimum Cluster Size 0

Algorithm converged.
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Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

Row1 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400 0.0210 0.0110 0.0058
Row2 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400 0.0210 0.0110
Row3 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400 0.0210
Row4 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400
Row5 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762
Row6 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450
Row7 0.0210 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760
Row8 0.0110 0.0210 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254
Row9 0.0058 0.0110 0.0210 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000

Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Parameter Estimate Standard Error 95% Confidence Limits Z Pr > |Z|

Intercept �1.3978 1.1960 �3.7418 0.9463 �1.17 0.2425
BIRTHWGT �0.0005 0.0003 �0.0011 0.0001 �1.61 0.1080
GENDER 0.0024 0.5546 �1.0846 1.0894 0.00 0.9965
DIARRHEA 0.2214 0.8558 �1.4559 1.8988 0.26 0.7958

Contrast Estimate Results

Label Estimate
Standard
Error

95% Confidence
Limits

Chi-
Square Pr>ChiSq

log odds ratio
(DIARRHEA 1 vs 0)

0.2214 0.8558 �1.4559 1.8988 0.07 0.7958

Exp(log odds ratio
(DIARRHEA 1 vs 0))

1.2479 1.0679 0.2332 6.6779

Contrast Results for GEE Analysis

Contrast DF Chi-Square Pr > ChiSq Type
Score Test BIRTHWGT and DIARRHEA 2 1.93 0.3819 Score

The output includes a table containing “Analysis of Initial Parameter Estimates.” The
initial parameter estimates are the estimates obtained from running a standard
logistic regression assuming an independent correlation structure. The parameter
estimation for the standard logistic regression is used as a numerical starting point
for obtaining GEE parameter estimates.

Tables for GEE model information, the working correlation matrix, and GEE
parameter estimates follow the initial parameter estimates in the output. Here,
the working correlation matrix is a 9 � 9 matrix with an AR1 correlation struc-
ture. The table containing the GEE parameter estimates includes the empirical
standard errors. Model-based standard errors could also have been requested
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using the MODELSE option in the REPEATED statement. The table titled “Con-
trast Estimate Results” contains the output requested by the ESTIMATE state-
ment. The odds ratio estimate for DIARRHEA ¼ 1 vs. DIARRHEA ¼ 0 is given as
1.2479. The table titled “Contrast Results for GEE Analysis” contains the output
requested by the CONTRAST statement. The p-value for the requested Score test
is 0.3819.

Other correlation structures could be requested using the TYPE ¼ option in the
REPEATED statement. Examples of code requesting an independent, an exchange-
able, a stationary 4-dependent, and an unstructured correlation structure using the
variable IDNO as the cluster variable are given below.

REPEATED SUBJECT¼IDNO / TYPE¼IND;
REPEATED SUBJECT¼IDNO / TYPE¼EXCH;
REPEATED SUBJECT¼IDNO / TYPE¼MDEP(4);
REPEATED SUBJECT¼IDNO / TYPE¼UNSTR MAXITER¼1000;

The ALR approach, which was described in Chap. 16, is an alternative to the GEE
approach with dichotomous outcomes. It is requested by using the LOGOR ¼ option
rather than the TYPE¼ option in the REPEATED statement. The code requesting the
alternating logistic regression (ALR) algorithm with an exchangeable odds ratio
structure is:

REPEATED SUBJECT ¼ IDNO / LOGOR ¼ EXCH;

The MAXITER ¼ option in the REPEATED statement can be used when the default
number of 50 iterations is not sufficient to achieve numerical convergence of the
parameter estimates. It is important that you make sure the numerical algorithm
converged correctly to preclude reporting spurious results. In fact, the ALR model in
this example, requested by the LOGOR ¼ EXCH option, does not converge for the
infant care dataset no matter how many iterations are allowed for convergence. The
GEEmodel, using the unstructured correlation structure, also did not converge, even
with MAXITER set to 1,000 iterations.

Generalized Linear Mixed Models with Dichotomous
Outcomes

Generalized linear mixedmodels (GLMMs) can be run in SAS using PROCGLIMMIX
or PROC NLMIXED. Our focus here is to illustrate PROC GLIMMIX. GLMMs are a
generalization of linear mixed models in that they allow for the inclusion of fixed and
random effects with nonnormally distributed outcome data. PROC GLIMMIX is a
flexible procedure that can run relatively simple or quite complex models. We begin
our illustration of PROC GLIMMIX by demonstrating how a standard logistic regres-
sion is run using the Evans County data. Typically, we would not use PROC GLIM-
MIX to run a standard logistic regression, but for illustration we present it here as a
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starting point for building more complicated models. The model is the same as used
earlier in this appendix and is repeated below:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1CATþ b2AGEþ b3CHLþ b4ECG þ b5SMK

þ b6HPTþ b7CHþ b8CC

For comparison, we show how to run this model using PROC GENMOD and then
using PROC GLIMMIX. Two ESTIMATE statements are used to request odds ratio
estimates derived from a linear combination of parameters and a CONTRAST state-
ment is used to request a chunk test for the two interaction terms using the
generalized Wald test. The default test with the CONTRAST statement in PROC
GENMOD is the likelihood ratio test (shown earlier), but because the CONTRAST
statement in PROC GLIMMIX does not produce a likelihood ratio test statistic, the
WALD option was used in PROC GENMOD for comparability. The CHISQ option in
the CONTRAST statement of PROC GLIMMIX requests a Wald chi-square test
statistic to be given in addition to the default F test. The code is shown below:

PROC GENMOD DATA¼REF.EVANS DESCENDING;
MODEL CHD ¼ CAT AGE CHL ECG SMK HPT CH CC/LINK¼LOGIT DIST¼BINOMIAL;
ESTIMATE ‘OR (CHL¼220, HPT¼1)’ CAT 1 CC 220 CH 1/EXP;
ESTIMATE ‘OR (CHL¼220, HPT¼0)’ CAT 1 CC 220 CH 0/EXP;
CONTRAST ‘WALD test for interaction terms’ CH 1, CC 1/WALD;
RUN;

PROC GLIMMIX DATA ¼ REF.EVANS;
MODEL CHD ¼ CAT AGE CHL ECG SMK HPT CH CC/DIST¼BIN LINK¼LOGIT SOLUTION
NOSCALE DDFM¼NONE;
ESTIMATE ‘OR (CHL¼220, HPT¼1)’ CAT 1 CC 220 CH 1/EXP;
ESTIMATE ‘OR (CHL¼220, HPT¼0)’ CAT 1 CC 220 CH 0/EXP;
CONTRAST ‘Wald test for interaction terms’ CH 1, CC 1/CHISQ;
RUN;

Notice that PROC GLIMMIX does not use the DESCENDING option (as does PROC
GENMOD) to indicate that CHD ¼ 1 is the value for an event rather than CHD ¼ 0.
Both procedures use the DIST¼ BIN and LINK¼ LOGIT in theMODEL statement to
indicate that the outcome follows a binomial distribution with a logit link function.
The SOLUTION option in PROCGLIMMIX requests that the parameter estimates for
the fixed effects appear in the output. Parameter estimates are given with PROC
GENMODby default. The NOSCALE and DDFM¼NONE options in PROCGLIMMIX
allow the test of significance (using a T test in PROC GLIMMIX) to be equivalent to
that given by PROC GENMOD (using a chi-square test). The ESTIMATE statements
do not differ in the two procedures.

The output is essentially the same as that given earlier in this appendix when PROC
GENMOD was first described and is omitted here.

PROC GLIMMIX can be used to run GEEmodels that allow random effects as well as
fixed effects. In the previous section, a GEEmodel was run using PROCGENMOD on
the infant dataset. We now consider the same model and demonstrate how PROC
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GLIMMIX can be used for GEE models. The model is restated below:

logit PðOUTCOME¼ 1jXÞ ¼ b0 þ b1BIRTHWGTþ b2GENDERþ b3DIARRHEA

To illustrate how a GEE model is run using PROC GLIMMIX, we compare the code
used to run PROC GENMOD for the samemodel described in the previous section on
GEE. This model only contains fixed effects. The code is shown first for PROC
GENMOD and then for PROC GLIMMIX. An AR1 structure is chosen as the working
correlation matrix in PROC GENMOD and as the working covariance matrix in
PROC GLIMMIX. The code follows:

PROC GENMOD DATA¼REF.INFANT DESCENDING;
CLASS IDNO MONTH;
MODEL OUTCOME ¼ BIRTHWGT GENDER DIARRHEA /DIST¼BIN LINK¼LOGIT;
REPEATED SUBJECT¼IDNO / TYPE¼AR(1) WITHIN¼MONTH CORRW;
ESTIMATE ‘log odds ratio (DIARRHEA 1 vs 0)’ DIARRHEA 1/EXP;
RUN;

PROC GLIMMIX DATA¼REF.INFANT EMPIRICAL;
CLASS IDNO MONTH;
MODEL OUTCOME ¼ BIRTHWGT GENDER DIARRHEA /DIST¼BIN LINK¼LOGIT SOLUTION
CHISQ;
RANDOM _RESIDUAL_ / SUBJECT¼IDNO TYPE¼AR(1) VCORR;
ESTIMATE ‘log odds ratio (DIARRHEA 1 vs 0)’ DIARRHEA 1/EXP;
RUN;

The DESCENDING option is not used in PROC GLIMMIX as it recognizes the value
OUTCOME ¼ 1 as an event and OUTCOME ¼ 0 as a nonevent. The EMPIRICAL
option in the PROC GLIMMIX statement requests empirical standard errors for the
parameter estimates. The options shown in the MODEL statement of PROC GLIM-
MIX were described in the previous example. The RANDOM statement with the key
word _RESIDUAL_ following it plays the same role in PROC GLIMMIX as the
REPEATED statement does in PROC GENMOD. The cluster variable in the infant
dataset, IDNO, is defined with the SUBJECT¼ option. The TYPE¼ option defines the
correlation structure for the residuals (the R matrix). The VCORR option requests
that the correlation matrix for the random error be printed in the output. The output
from PROC GLIMMIX follows:

The GLIMMIX Procedure

Model Information

Data Set REF.INFANT
Response Variable OUTCOME
Response Distribution Binomial
Link Function Logit
Variance Function Default
Variance Matrix Blocked By IDNO
Estimation Technique Residual PL
Degrees of Freedom Method Between-Within
Fixed Effects SE Adjustment Sandwich – Classical
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Class Level Information

Class Levels Values

IDNO 136 1 2 5 8 9 10 11 12 17 18 20 22 24 27 28 30 31
32 33 34 35 38 40 44 45 47 51 53 54 56 60 61
63 67 71 72 77 78 86 89 90 92 94 102 111 112
166 167 174 175 176 178 181 183 192 193 194
195 196 197 199 202 204 205 207 208 216 218
219 221 222 223 227 230 232 237 241 242 244
245 248 249 250 252 253 254 255 262 263 268
269 276 277 278 279 281 282 283 284 287 288
289 290 291 293 295 298 299 300 301 306 309
310 315 318 319 321 324 326 330 331 332 334
335 337 338 339 340 341 344 346 347 349 351
354 355

MONTH 9 1 2 3 4 5 6 7 8 9

Number of Observations Read 1458
Number of Observations Used 1203

Dimensions

R-side Cov. Parameters 2
Columns in X 4
Columns in Z per Subject 0
Subjects (Blocks in V) 136
Max Obs per Subject 9

Optimization Information

Optimization Technique
Dual Quasi-

Newton

Parameters in
Optimization

1

Lower Boundaries 1
Upper Boundaries 1

Optimization Information

Fixed Effects Profiled
Residual Variance Profiled
Starting From Data

Fit Statistics

�2 Res Log Pseudo-Likelihood 6668.60
Generalized Chi-Square 1164.06
Gener. Chi-Square / DF 0.97
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Estimated V Correlation Matrix for IDNO 1

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

1 1.0000 0.5370 0.2884 0.1549 0.08317 0.04467 0.02399 0.01288 0.006918
2 0.5370 1.0000 0.5370 0.2884 0.1549 0.08317 0.04467 0.02399 0.01288
3 0.2884 0.5370 1.0000 0.5370 0.2884 0.1549 0.08317 0.04467 0.02399
4 0.1549 0.2884 0.5370 1.0000 0.5370 0.2884 0.1549 0.08317 0.04467
5 0.08317 0.1549 0.2884 0.5370 1.0000 0.5370 0.2884 0.1549 0.08317
6 0.04467 0.08317 0.1549 0.2884 0.5370 1.0000 0.5370 0.2884 0.1549
7 0.02399 0.04467 0.08317 0.1549 0.2884 0.5370 1.0000 0.5370 0.2884
8 0.01288 0.02399 0.04467 0.08317 0.1549 0.2884 0.5370 1.0000 0.5370
9 0.006918 0.01288 0.02399 0.04467 0.08317 0.1549 0.2884 0.5370 1.0000

The GLIMMIX Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error

AR(1) IDNO 0.5370 0.02514
Residual 0.9709 0.05150

Solutions for Fixed Effects

Effect Estimate Standard Error DF t Value Pr > jtj
Intercept �1.3969 1.1949 133 �1.17 0.2445
BIRTHWGT �0.00049 0.000307 133 �1.61 0.1095
GENDER 0.004201 0.5549 133 0.01 0.9940
DIARRHEA 0.2112 0.8648 1066 0.24 0.8071

Type III Tests of Fixed Effects

Effect Num DF Den DF F Value Pr > F

BIRTHWGT 1 133 2.60 0.1095
GENDER 1 133 0.00 0.9940
DIARRHEA 1 1066 0.06 0.8071

Estimates

Label Estimate
Standard

Error DF t Value Pr> jtj
Exponentiated

Estimate

log odds ratio
(DIARRHEA 1
vs 0)

0.2112 0.8648 1066 0.24 0.8071 1.2352

The model results from PROC GLIMMIX are close but not exactly the same as was
obtained from PROC GENMOD in the previous section. The odds ratio estimate for
DIARRHEA ¼ 1 vs. DIARRHEA ¼ 0 derived from the ESTIMATE statement is given
as 1.2352 (last row at the end of the output). The odds ratio was estimated at 1.2479
using PROC GENMOD.

The default optimization method for parameter estimation in PROC GLIMMIX is a
residual pseudo-likelihood technique that utilizes a working covariance structure
provided by the user. The AR(1) covariance structure contains two parameters: a
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correlation parameter (estimated at 0.5370 in the output) and a variance parameter
(estimated at 0.9709 in the output). The AR1 correlation parameter using PROC
GENMOD was estimated at 0.5254 (slightly different form 0.5370 with PROC GLIM-
MIX). PROC GLIMMIX provides F test statistics (or equivalent T statistics) rather
than chi-square Wald chi-square statistics for the parameter estimates in the default
output. The CHISQ option in the MODEL statement will additionally add chi-square
test statistics in the output.

The output from PROC GLIMMIX uses the terminology R-side parameters for
covariance parameters of the residual matrix (R matrix) and G-side parameters for
the covariance parameters of the random effects (G matrix).

The next example demonstrates how to run a model containing a random intercept
for each subject. The model, shown below, assumes an R matrix with independent
correlation structure and a scalar (1 � 1) G matrix:

logit PðOUTCOME ¼ 1jXÞ ¼ ðb0 þ b0iÞ þ b1BIRTHWGTþ b2GENDER

þ b3DIARRHEA

where b0i represents the random effect for subject

i and is normally distributedwith mean ¼ 0

and variance ¼ ss2, i:e:; b0i � Nð0; ss2Þ

The code to run this model in PROC GLIMMIX follows:

PROC GLIMMIX DATA=REF.INFANT;
CLASS IDNO;
MODEL OUTCOME ¼ BIRTHWGT GENDER DIARRHEA / DIST ¼ BIN LINK ¼ LOGIT SOLUTION;
RANDOM INTERCEPT / SUBJECT ¼ IDNO;
RANDOM _RESIDUAL_;
RUN;

The first RANDOM statement is followed by the key word INTERCEPT. The SUB-
JECT ¼ option specifies the variable IDNO as the cluster variable. The second
RANDOM statement (RANDOM _RESIDUAL_) is optional and requests variance
estimates for the residual in the output but also provides parameter estimates identi-
cal to those provided by the SAS macro called GLIMMIX (a precursor of the GLIM-
MIX procedure). The output is omitted.

The next model includes a random slope for the variable DIARRHEA in addition to
the random intercept. The model is stated as follows:

logit PðOUTCOME ¼ 1jXÞ ¼ ðb0 þ b0iÞ þ b1BIRTHWGTþ b2GENDER

þ ðb3 þ b3iÞDIARRHEA

where b0i represents the random intercept for

subject i, and where b3i represents a random

slope with the variable DIARRHEA

for subject i, b0i � Nð0; ss2Þ and b3i � Nð0; sD2Þ
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The code to run this model with two random effects follows:

PROC GLIMMIX DATA ¼ REF.INFANT;
CLASS IDNO;
MODEL OUTCOME ¼ BIRTHWGT GENDER DIARRHEA / DIST¼BIN LINK¼LOGIT

SOLUTION;
RANDOM INTERCEPT DIARRHEA / SUBJECT¼IDNO TYPE¼UN GCORR;
RANDOM _RESIDUAL_;
ESTIMATE ‘log odds ratio (DIARRHEA 1 vs 0)’ DIARRHEA 1/EXP;
RUN;

The random effects (INTERCEPT and DIARRHEA) are listed after the key word
RANDOM. Since there is more than one random effect, we need to consider the
covariation between the random effects. The TYPE¼UN option requests an unstruc-
tured covariance structure for the working covariance structure for the random
effects (here a 2�2 G matrix). The GCORR option in the first RANDOM statement
requests that the correlation matrix for the G matrix be printed in the output. The
RANDOM _RESIDUAL_ statements request variance estimates for the residual (the R
matrix) in the output with its standard error. The SUBJECT¼IDNO identifies IDNO
as the cluster variable. The output follows:

The GLIMMIX Procedure

Model Information

Data Set REF.INFANT
Response Variable OUTCOME
Response Distribution Binomial
Link Function Logit
Variance Function Default
Variance Matrix Blocked By IDNO
Estimation Technique Residual PL
Degrees of Freedom Method Containment

Dimensions

G-side Cov. Parameters 3
R-side Cov. Parameters 1
Columns in X 4
Columns in Z per Subject 2
Subjects (Blocks in V) 136
Max Obs per Subject 9

Estimated G Correlation Matrix

Effect Row Col1 Col2

Intercept 1 1.0000 �0.2716
DIARRHEA 2 �0.2716 1.0000
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Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard
Error

UN(1, 1) IDNO 8.4913 1.3877
UN(2, 1) IDNO �2.5732 2.7473
UN(2, 2) IDNO 10.5707 4.6568
Residual (VC) 0.1578 0.006670

Solutions for Fixed Effects

Effect Estimate
Standard
Error DF t Value Pr > jtj

Intercept �4.4899 1.7238 133 �2.60 0.0102
BIRTHWGT �0.00046 0.000487 1038 �0.94 0.3453
GENDER 0.3695 0.6908 1038 0.53 0.5928
DIARRHEA 0.6999 0.9438 28 0.74 0.4645

Estimates

Label Estimate
Standard
Error DF t Value Pr > jtj

Exponentiated
Estimate

log odds ratio
(DIARRHEA 1 vs 0)

0.6999 0.9438 28 0.74 0.4645 2.0135

There are three G-side Covariance parameters estimated: the variance of the ran-
dom intercept, the variance of the random slope for DIARRHEA, and the covariance
of the random intercept and random slope. These estimates are in the table under
the heading “Covariance Parameter Estimates” and labeled by UN(1, 1), UN(2, 1),
and UN(2, 2) (the row and column of the unstructured G matrix). The estimated
correlation between the random intercept and slope is given at �0.4256 (under
the heading called “Estimated G Correlation Matrix”). There is also one R-side
variance parameter estimated (obtained when using the RANDOM_RESIDUAL_
statement).

The odds ratio estimate for DIARRHEA ¼ 1 vs. DIARRHEA ¼ 0, requested with the
ESTIMATE statement, is given as 2.0135 (last row at the end of the output). The
interpretation of this odds ratio is tricky because there is a random slope component.
The odds ratio for DIARRHEA for the ith subject is exp((b3 þ b3i), where b3i follows a
normal distribution of mean 0 and variance s20. The interpretation of b3 is the average
log odds ratio among all subjects.

Finally, we examine some complicated variations of the previousmodel. We show the
code but omit the output as with this data there were issues of model stability and
numerical convergence.

The previous model contained a random intercept and random slope as random
effects. The following code runs the same model but adds an autoregressive AR(1)
covariance structure for the residuals grouped by gender:
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PROC GLIMMIX DATA¼REF.INFANT;
CLASS IDNO;
MODEL OUTCOME ¼ BIRTHWGT GENDER DIARRHEA / DIST¼BIN LINK¼LOGIT

SOLUTION;
RANDOM INTERCEPT DIARRHEA / SUBJECT¼IDNO TYPE¼UN GCORR;
RANDOM _RESIDUAL_ / SUBJECT¼IDNO TYPE¼AR(1) GROUP¼GENDER VCORR;
RUN;

Here, there are two RANDOM statements, one for specifying the G matrix and the
other for the residuals (the R matrix). The GROUP ¼ GENDER option in the second
RANDOM statement requests a different set of AR(1) parameters to be estimated for
boy and girl infants. Typically, when a user specifies a covariance or correlation
structure, the values of the covariance parameters are assumed to be the same for
each cluster (subject) in the dataset. The GROUP ¼ option allows a different set of
covariance parameters to be estimated for specified subgroups.

PROCGLIMMIX also accommodates models with nested effects. As a hypothetical
example, suppose 30 daycare centers were randomly sampled and within each
daycare center 10 infants were sampled yielding 300 infants in all (30 � 10). Also,
each infant has monthly measurements over a 9-month period. In this setting, we
can consider three types of independent variables: (1) a variable like DIARRHEA
whose status may vary within an infant from month-to-month, (2) a variable like
GENDER which is fixed at the infant level (does not vary month-to-month), and
(3) a variable that is fixed at the daycare level such as the size of the daycare
center. Here we have a cluster of daycare centers and nested within each daycare
center is a cluster of infants. In the infant dataset, the variable identifying each
infant is called IDNO. Suppose the variable identifying the daycare center was
called DAYCARE (this variable does not actually exist in the infant dataset).
Consider a model with a random intercept for each infant as well as a random
intercept for each daycare center. We continue to use BIRTHWEIGHT, GEN-
DER, and DIARRHEA as fixed effects. The code to run such a model in PROC
GLIMIX is:

PROC GLIMMIX DATA¼REF.INFANT;
CLASS IDNO DAYCARE;
MODEL OUTCOME ¼ BIRTHWGT GENDER DIARRHEA / DIST¼BIN LINK¼LOGIT

SOLUTION;
RANDOM INTERCEPT/ SUBJECT¼IDNO;
RANDOM INTERCEPT/ SUBJECT¼DAYCARE(IDNO);
RUN;

The second RANDOM statement contains the option SUBJECT ¼ DAYCARE(IDNO)
which indicates that infants (IDNO) are nested within daycare centers. A random
slope parameter could be added to either RANDOM statement depending on whether
the slope is modeled to randomly vary by infant or by daycare center.

The SAS section of this appendix is completed. Next, modeling with SPSS software is
illustrated.
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SPSS

Analyses are carried out in SPSS by using the appropriate SPSS procedure on an
SPSS dataset. Most users will select procedures by pointing and clicking the mouse
through a series of menus and dialog boxes. The code, or command syntax, generated
by these steps can be viewed (and edited by more experienced SPSS users) and is
presented here for comparison to the corresponding SAS code.

The following five SPSS procedures are demonstrated:

LOGISTIC REGRESSION – This procedure is used to run a standard logistic
regression.

NOMREG – This procedure is used to run a standard (binary) or polytomous
logistic regression.

PLUM – This procedure is used to run an ordinal regression.
COXREG – This procedure may be used to run a conditional logistic regression

for the special case in which there is only one case per stratum, with one (or
more) controls.

GENLIN – This procedure is used to run GLM or GEE models.

SPSS does not perform generalized linear mixed models for correlated data in
version 16.0.

Unconditional Logistic Regression

The first illustration presented is an unconditional logistic regression using the Evans
County dataset. As discussed in the previous section, the dichotomous outcome
variable is CHD and the covariates are: CAT, AGE, CHL, ECG, SMK, and HPT. Two
interaction terms, CH and CC are also included. CH is the product: CAT�HPT, while
CC is the product: CAT � CHL. The variables representing the interaction terms have
already been included in the SPSS dataset evans.sav.

The model is restated as follows:

logit PðCHD ¼ 1jXÞ ¼b0 þ b1CATþ b2AGEþ b3CHLþ b4ECGþ b5SMK

þ b6HPTþ b7CHþ b8CC

The first step is to open the SPSS dataset, evans.sav, into the Data Editor window.
The corresponding command syntax to open the file from the C drive is:

GET
FILE¼ ‘C:\evans.sav’.

There are three procedures that can be used to fit a standard (binary) logistic
regressionmodel: LOGISTIC REGRESSION, NOMREG, or GENLIN. The LOGISTIC
REGRESSION procedure performs a standard logistic regression for a dichotomous
outcome, while the NOMREG procedure can be used for dichotomous or polytomous
outcomes. The GENLIN procedure can be used to run generalized linear models,
including a standard logistic regression model.
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To run the LOGISTIC REGRESSION procedure, select Analyze ! Regression !
Binary Logistic from the drop-down menus to reach the dialog box to specify the
logistic model. Select CHD from the variable list and enter it into the Dependent
Variable box, then select and enter the covariates into the Covariate(s) box. The
default method is Enter, which runs the model with the covariates the user entered
into the Covariate(s) box. Click on OK to run the model. The output generated will
appear in the SPSS Viewer window.

The corresponding syntax, with the default specifications regarding the modeling
process, is:

LOGISTIC REGRESSION VAR¼chd
/METHOD¼ENTER cat age ch1 ecg smk hpt ch cc
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

To obtain 95% confidence intervals for the odds ratios, before clicking on OK to run
the model, select the PASTE button in the dialog box. A new box appears which
contains the syntax shown above. Insert /PRINT¼CI(95) before the /CRITERIA line
as shown below:

LOGISTIC REGRESSION VAR¼chd
/METHOD¼ENTER cat age ch1 ecg smk hpt ch cc
/PRINT¼CI(95)
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Then click on OK to run the model.

The LOGISTIC REGRESSION procedure models the P(CHD ¼ 1) rather than
P(CHD ¼ 0) by default. The internal coding can be checked by examining the table
“Dependent Variable Encoding.”

The output produced by LOGISTIC REGRESSION follows:

Logistic Regression

Case Processing Summary

Unweighted casesa N Percent

Selected cases Included in analysis 609 100.0

Missing cases 0 .0
Total 609 100.0

Unselected cases 0 .0
Total 609 100.0

aIf weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original value Internal value

.00 0

1.00 1
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Model Summary

Step
�2 Log

likelihood
Cox & Snell
R square

Nagelkerke
R square

1 347.230 .139 .271

Variables in the Equation

B S.E. Wald df Sig.
Exp
(B)

95.0% C.I. for
EXP(B)

Lower Upper

Step 1a CAT �12.688 3.104 16.705 1 .000 .000 .000 .001

AGE .035 .016 4.694 1 .030 1.036 1.003 1.069
CHL �.005 .004 1.700 1 .192 .995 .986 1.003
ECG .367 .328 1.254 1 .263 1.444 .759 2.745
SMK .773 .327 5.582 1 .018 2.167 1.141 4.115
HPT 1.047 .332 9.960 1 .002 2.848 1.487 5.456
CH �2.332 .743 9.858 1 .002 .097 .023 .416
CC .069 .014 23.202 1 .000 1.072 1.042 1.102

Constant �4.050 1.255 10.413 1 .001 .017

aVariable(s) entered on step 1: CAT, AGE, CHL, ECG, SMK, HPT, CH, CC.

The estimated coefficients for each variable (labeled B) and their standard errors,
along with theWald chi-square test statistics and corresponding p-values, are given in
the table titled “Variables in the Equation.” The intercept is labeled “Constant” and is
given in the last row of the table. The odds ratio estimates are labeled EXP(B) in the
table, and are obtained by exponentiating the corresponding coefficients. As noted
previously in the SAS section, these odds ratio estimates can be misleading for
continuous variables or in the presence of interaction terms.

The negative 2 log likelihood statistic for the model, 347.23, is presented in the table
titled “Model Summary.” A likelihood ratio test statistic to asses the significance of
the two interaction terms can be performed by running a no-interaction model and
subtracting the negative 2 log likelihood statistic for the current model from that of
the no-interaction model.

Suppose we wish to estimate the odds ratio for CAT ¼ 1 vs. CAT ¼ 0 among those
with HPT ¼ 0 and CHOL ¼ 220. This odds ratio is exp(b1 þ 220b8). From the output,
this is estimated at exp(�12.688 þ 220 � .069). This is an example of an odds ratio
ascertained as a linear combination of parameters. Obtaining a linear combination
of parameter estimates along with the corresponding standard error and 95%
confidence interval is not straightforward in SPSS as it is in SAS (with an ESTI-
MATE statement) or in Stata (with the LINCOM command). However, there is a way
to “trick” SPSS into doing this. Since, in this example, we are interested in estimat-
ing the odds ratio for CAT among those who have a cholesterol level of 220 (CHL ¼
220), the trick is to create a new variable for cholesterol such that when the choles-
terol level is 220, the new variable takes the value zero. For that situation the
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parameter for the product termwill drop out in the calculation of the odds ratio. The
new variable we shall create will be called CHL220 and be equal to CHL minus 220.
We shall also create a product term CAT � CHL220. This can be accomplished using
the dialog box: Transform ! Compute Variable and then defining the new variable
or by using the following syntax:

COMPUTE chl220¼chl-220.
EXECUTE.

COMPUTE cc220¼ cat * chl220.
EXECUTE.

Now run the same model as before, except replace CHL220 for CHL and CC220 for
the product term CC. The desired odds ratio will be just exp(b1). The syntax is as
follows:

LOGISTIC REGRESSION VAR¼chd
/METHOD¼ENTER cat age chl220 ecg smk hpt ch cc220
/PRINT¼CI(95)
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

The output containing the parameter estimate follows:

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95.0% C.I. for
EXP(B)

Lower Upper

Step 1 cat 2.528 .629 16.170 1 .000 12.526 3.654 42.944

age .035 .016 4.694 1 .030 1.036 1.003 1.069
chl220 �.005 .004 1.700 1 .192 .995 .986 1.003
ecg .367 .328 1.254 1 .263 1.444 .759 2.745
smk .773 .327 5.582 1 .018 2.167 1.141 4.115
hpt 1.047 .332 9.961 1 .002 2.848 1.487 5.456
ch �2.332 .743 9.858 1 .002 .097 .023 .416
cc220 .069 .014 23.202 1 .000 1.072 1.042 1.102
Constant �5.250 .960 29.906 1 .000 .005

The first row of the output shows that the estimated odds ratio for CAT¼ 1 vs. CAT¼ 0
among those with HPT ¼ 0 and CHOL ¼ 220 using this new coding is exp(2.528) ¼
12.526 with corresponding 95% confidence interval (3.654, 42.944).

With the NOMREG procedure, the values of the outcome are sorted in ascending
order with the last (or highest) level of the outcome variable as the reference group. If
we wish to model P(CHD ¼ 1), as was done in the previous analysis with the
LOGISTIC REGRESSION procedure, the variable CHD must first be recoded so
that CHD ¼ 0 is the reference group. This process can be accomplished using the
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dialog boxes. The command syntax to recode CHD into a new variable called
NEWCHD is:

RECODE
chd
(1¼0) (0¼1) INTO newchd.

EXECUTE.

To run the NOMREG procedure, select Analyze ! Regression ! Multinomial Logis-
tic from the drop-down menus to reach the dialog box to specify the logistic model.
Select NEWCHD from the variable list and enter it into the Dependent Variable box,
then select and enter the covariates into the Covariate(s) box. The default settings in
the Model dialog box are “Main Effects” and “Include intercept in model.” With the
NOMREG procedure, the covariance matrix can be requested as part of the model
statistics. Click on the Statistics button and check “Asymptotic covariances of param-
eter estimates” to include a covariance matrix in the output. In the main dialog box,
click on OK to run the model.

The corresponding syntax is:

NOMREG
newchd WITH cat age chl ecg smk hpt ch cc
/CRITERIA ¼ CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)

PCONVERGE
(1.0E-6) SINGULAR(1.0E-8)
/MODEL
/INTERCEPT ¼ INCLUDE
/PRINT ¼ COVB PARAMETER SUMMARY LRT.

Note that the recoded CHD variable NEWCHD is used in the model statement. The
NEWCHD value of zero corresponds to the CHD value of one.

The output is omitted.

The GENLIN procedure can be used to run GLM and GEE models, including uncon-
ditional logistic regression, which is a special case of GLM. To run the GENLIN
procedure, select Analyze ! Generalized Linear Models ! Generalized Linear Mod-
els from the drop-down menus to reach a dialog box called “Type of Model.” Click on
Binary logistic under the heading called “Binary Response or Event/Trials Data.”
Next select a new dialogue box called “Response” and select the variable CHD in the
Dependent Variable box. Click on the box called “Reference Category” and select First
(lowest value) and click on Continue. Select a new dialogue box called “Predictors”
and enter the covariates in the Covariates box. Select a new dialogue box called
“Model” and enter the same covariates in the Model box. Click OK to run the
model. The corresponding syntax follows (output omitted):

GENLIN chd (REFERENCE¼FIRST) WITH age cat chl dbp ecg sbp smk hpt cc ch
/MODEL age cat chl ecg smk hpt cc ch INTERCEPT¼YES

DISTRIBUTION¼BINOMIAL LINK¼LOGIT
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/CRITERIA METHOD¼FISHER(1) SCALE¼1 COVB¼MODEL MAXITERATIONS¼100
MAXSTEPHALVING¼5
PCONVERGE¼1E-006(ABSOLUTE) SINGULAR¼1E-012 ANALYSISTYPE¼3(WALD)
CILEVEL¼95

CITYPE¼WALD
LIKELIHOOD¼FULL
/MISSING CLASSMISSING¼EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

Obtaining ROC Curves

The ROC procedure will produce ROC curves in SPSS. If we wish to use predicted
probabilities from a logistic regression as cutpoints for an ROC curve, we must first
run a logistic regression and save the predicted probabilities in our working dataset.
Then we can use the ROC procedure. This will be demonstrated with the knee
fracture dataset.

Open the dataset kneefr.sav in the Data Editor window. The corresponding com-
mand syntax is:

GET
FILE¼‘C:\kneefr.sav’.

The outcome variable is FRACTURE indicating whether the subject actually had a
knee fracture. The model follows:

logit PðFRACTURE ¼ 1jXÞ ¼ b0 þ b1AGECATþ b2HEADþ b3PATELLAR

þ b4FLEXþ b5WEIGHT

To run the LOGISTIC REGRESSION procedure, select Analyze ! Regression !
Binary Logistic from the drop-down menus to reach the dialog box to specify the
logistic model. Select FRACTURE from the variable list and enter it into the Depen-
dent Variable box, then select and enter the covariates AGECAT, HEAD, PATELLAR,
FLEX, and WEIGHT into the Covariate(s) box. Click on SAVE to create a new
variable in the knee fracture dataset. Check the box called “Probabilities” under the
heading “Predicted Values.” Select CONTINUE and then click on OK to run the
model. A new variable called PRE_1 will appear in the working dataset containing
each individual’s predicted probability. These predicated probabilities are used to
help generate the ROC curve.

The two key variables for producing an ROC curve using a logistic regression are the
predicated probabilities (called PRE_1 in this example) and the observed dichoto-
mous outcome variable (called FRACTURE in this example). To obtain an ROC curve
select Analyze ! ROC Curve, then select the variable Predicted probability (PRE_1)
in the box called “Test Variable” and select the outcome variable FRACTURE in the
box called “State Variable.” Type the value 1 in the box called “Value of State
Variable” since FRACTURE ¼ 1 indicates a fracture event. Click on OK to obtain
the ROC curve.
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The corresponding syntax, to run the logistic regression, create the new variable
PRE_1, and generate an ROC curve follows:

LOGISTIC REGRESSION VARIABLES fracture
/METHOD¼ENTER agecat head patellar flex weight
/SAVE¼PRED
/CLASSPLOT
/CRITERIA¼PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

ROC PRE_1 BY fracture (1)
/PLOT¼CURVE
/PRINT¼ COORDINATES
/CRITERIA¼CUTOFF(INCLUDE) TESTPOS(LARGE) DISTRIBUTION(FREE) CI(95)
/MISSING¼EXCLUDE.

The output containing the parameter estimates of the logistic regression as well as
the resultant ROC curve from the model follow:

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a agecat .556 .399 1.938 1 .164 1.744

head .218 .376 .337 1 .562 1.244
patellar .627 .352 3.175 1 .075 1.872
flex .528 .374 1.988 1 .159 1.695
weight 1.506 .409 13.532 1 .000 4.507
Constant �3.466 .412 70.837 1 .000 .031

aVariable(s) entered on step 1: agecat, head, patellar, flex, weight.

ROC Curve
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Area Under the Curve

Test Result Variable(s): Predicted probability

Area

.745

Conditional Logistic Regression

SPSS does not perform conditional logistic regression except in the special case in
which there is only one case per stratum, with one or more controls. The SPSS
survival analysis procedure COXREG can be used to obtain coefficient estimates
equivalent to running a conditional logistic regression.

Recall that the MI dataset contains information on 39 cases diagnosed with myocar-
dial infarction, each of which is matched with two controls. Thus, it meets the
criterion of one case per stratum. A time variable must be created in the data, coded
to indicate that all cases had the event at the same time, and all controls were
censored at a later time. This variable has already been included in the SPSS dataset
mi.sav. The variable has the value 1 for all cases and the value 2 for all controls.

The first step is to open the SPSS dataset, mi.sav, into the Data Editor window. The
corresponding command syntax is:

GET
FILE¼‘C:\mi.sav’.

To run the equivalent of a conditional logistic regression analysis, select Analyze !
Survival ! Cox Regression from the drop-down menus to reach the dialog box to
specify the model. Select SURVTIME from the variable list and enter it into the Time
box. The Status box identifies the variable that indicates whether the subject had an
event or was censored. For this dataset, select and enter MI into the Status box. The
value of the variable that indicates that the event has occurred (i.e., that the subject is
a case) must also be defined. This is done by clicking on the Define Event button and
entering the value “1” in the new dialog box. Next, select and enter the covariates of
interest (i.e., SMK, SBP, ECG) into the Covariate box. Finally, select and enter the
variable which defines the strata in the Strata box. For the MI dataset, the variable is
called MATCH. Click on OK to run the model.

The corresponding syntax, with the default specifications regarding the modeling
process follows:

COXREG
survtime /STATUS¼mi(1) /STRATA¼match
/METHOD¼ENTER smk sbp ecg
/CRITERIA¼PIN(.05) POUT(.10) ITERATE(20).
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The model statement contains the time variable (SURVTIME) followed by a back-
slash and the case status variable (MI) with the value for cases (1) in parentheses.

The output is omitted.

Polytomous Logistic Regression

Polytomous logistic regression is demonstrated with the cancer dataset using the
NOMREG procedure described previously.

The outcome variable is SUBTYPE, a three-category outcome indicating whether the
subject’s histological subtype is Adenocarcinoma (coded 0), Adenosquamous (coded
1), or Other (coded 2). The model is restated as follows:

ln
PðSUBTYPE ¼ gjXÞ
PðSUBTYPE ¼ 0jXÞ

� �
¼ ag þ bg1AGEþ bg2 ESTROGENþ bg3 SMOKING;

where g ¼ 1; 2

By default, the highest level of the outcome variable is the reference group in the
NOMREG procedure. If we wish to make SUBTYPE ¼ 0 (Adenocarcinoma) the
reference group, as was done in the presentation in Chap. 12, the variable SUBTYPE
must be recoded. The new variable created by the recode is called NEWTYPE and has
already been included in the SPSS dataset cancer.sav. The command syntax used for
the recoding was as follows:

RECODE
subtype
(2¼0) (1¼1) (0¼2) INTO newtype.

EXECUTE.

To run the NOMREG procedure, select Analyze ! Regression ! Multinomial Logis-
tic from the drop-down menus to reach the dialog box to specify the logistic model.
Select NEWTYPE from the variable list and enter it into the Dependent Variable box,
then select and enter the covariates (AGE, ESTROGEN, and SMOKING) into the
Covariate(s) box. In the main dialog box, click on OK to run the model with the
default settings.

The corresponding syntax is shown next, followed by the output generated by run-
ning the procedure.

NOMREG
newtype WITH age estrogen smoking
/CRITERIA ¼ CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)

PCONVERGE
(1.0E-6) SINGULAR(1.0E-8)
/MODEL
/INTERCEPT ¼ INCLUDE
/PRINT ¼ PARAMETER SUMMARY LRT.
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Nominal Regression

Case Processing Summary

N

NEWTYPE .00 57

1.00 45
2.00 184

Valid 286
Missing 2

Total 288

Parameter Estimates

B Std. error Wald df Sig.

NEWTYPE

.00 Intercept �1.203 .319 14.229 1 .000
AGE .282 .328 .741 1 .389
ESTROGEN �.107 .307 .122 1 .727
SMOKING �1.791 1.046 2.930 1 .087

1.00 Intercept �1.882 .402 21.869 1 .000
AGE .987 .412 5.746 1 .017
ESTROGEN �.644 .344 3.513 1 .061
SMOKING .889 .525 2.867 1 .090

Exp(B) 95% Confidence interval for Exp(B)

NEWTYPE Lower bound Upper bound

.00 Intercept
AGE 1.326 .697 2.522
ESTROGEN .898 .492 1.639
SMOKING .167 2.144E-02 1.297

1.00 Intercept
AGE 2.683 1.197 6.014
ESTROGEN .525 .268 1.030
SMOKING 2.434 .869 6.815

There are two parameter estimates for each independent variable and two intercepts.
The estimates are grouped by comparison. The first set compares NEWTYPE ¼ 0 to
NEWTYPE ¼ 2. The second comparison is for NEWTYPE ¼ 1 to NEWTYPE ¼ 2.
With the original coding of the subtype variable, these are the comparisons of
SUBTYPE ¼ 2 to SUBTYPE ¼ 0 and SUBTYPE ¼ 1 to SUBTYPE ¼ 0 respectively.
The odds ratio for AGE¼ 1 vs. AGE¼ 0 comparing SUBTYPE¼ 2 vs. SUBTYPE¼ 0 is
exp(0.282) ¼ 1.33.

Ordinal Logistic Regression

Ordinal logistic regression is carried out in SPSS using the PLUM procedure. We
again use the cancer dataset to demonstrate this model. For this analysis, the variable
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GRADE is the response variable. GRADE has three levels, coded 0 for well differen-
tiated, 1 for moderately differentiated, and 2 for poorly differentiated.

The model is stated as follows:

ln
PðGRADE � g*jXÞ
PðGRADE > g*jXÞ

� �
¼ a*g* � b*1RACE� b*2 ESTROGEN for g* ¼ 0; 1

Note that this is the alternative formulation of the ordinal model discussed in Chap.
13. In contrast to the formulation presented in the SAS section of the appendix, SPSS
models the odds that the outcome is in a category less than or equal to category g*.
The other difference in the alternative formulation of the model is that there are
negative signs before the beta coefficients. These two differences “cancel out” for the
beta coefficients so that bi ¼ b*i however, for the intercepts, ag ¼ �a*

g*
, where ag and bi,

respectively, denote the intercept and ith regression coefficient in the model run
using SAS.

To perform an ordinal regression in SPSS, select Analyze ! Regression ! Ordinal
from the drop-down menus to reach the dialog box to specify the logistic model.
Select GRADE from the variable list and enter it into the Dependent Variable box,
then select and enter the covariates (RACE and ESTROGEN) into the Covariate(s)
box. Click on the Output button to request a “Test of Parallel Lines,” which is a
statistical test that SPSS provides that performs a similar function as the Score test
of the proportional odds assumption in SAS. In the main dialog box, click on OK to
run the model with the default settings.

The command syntax for the ordinal regression model is as follows:

PLUM grade WITH race estrogen
/CRITERIA¼CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5)
PCONVERGE(1.0E-6) SINGULAR(1.OE-8)
/LINK¼LOGIT
/PRINT¼FIT PARAMETER SUMMARY TPARALLEL.

The output generated by this code follows:

PLUM – Ordinal Regression

Test of Parallel Lines

Model �2 Log likelihood Chi-square df Sig.

Null hypothesis 34.743

General 33.846 .897 2 .638

The null hypothesis states that the location parameters (slope coefficients) are the
same across response categories.
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Parameter Estimates

Estimate Std. error Wald df Sig.

Threshold [GRADE ¼ .00] �.511 .215 5.656 1 .017

[GRADE ¼ 1.00] 1.274 .229 31.074 1 .000
Location RACE .427 .272 2.463 1 .117

ESTROGEN �.776 .249 9.696 1 .002

Link function: Logit

95% Confidence interval

Lower bound Upper bound

�.932 �8.981E-02

.826 1.722
�.106 .960

�1.265 �.288

A test of the parallel lines assumption is given in the table titled “Test of Parallel
Lines.” The null hypothesis is that the slope parameters are the same for the two
different outcome comparisons (i.e., the proportional odds assumption). The results
of the chi-square test statistic are not statistically significant (p ¼ 0.638), suggesting
that the assumption is tenable.

The parameter estimates and resulting odds ratios are given in the next table. As
noted earlier, with the alternate formulation of the model, the parameter estimates
for RACE and ESTROGEN match those of the SAS output, but the signs of the
intercepts (labeled Threshold on the output) are reversed.

Modeling Correlated Dichotomous Data with GEE

The programming of a GEEmodel with the infant care dataset is demonstrated using
the GENLIN procedure. The model is stated as follows:

logit PðOUTCOME ¼ 1jXÞ ¼ b0 þ b1BIRTHWGTþ b2GENDERþ b3DIARRHEA

The dichotomous outcome variable (called OUTCOME) is derived from a weight-for-
height standardized score based on the weight-for-height distribution of a standard
population. The outcome is correlated since there are multiple measurements for
each infant. The code and output are shown for this model assuming an AR1 correla-
tion structure.

Open the dataset infant.sav in the Data Editor window. The corresponding com-
mand syntax is:

GET
FILE¼‘C:\infant.sav’.

To run GEE model using the GENLIN procedure, select Analyze ! Generalized
Linear Models ! Generalized Estimating Equations from the drop-down menus to
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reach a dialog box called Repeated (the word Repeated is highlighted in the upper
right corner). Select the variable IDNO in the box called “Subject variables” and select
the variable MONTH in the box called “Within-subject variables”. Under the heading
called “Covariance Matrix” there are two possible choices to click on: Robust Estima-
tor or Model-based Estimator. Keep it on the default Robust Estimator. Below that is
the heading called “Working Correlation Matrix.” To the right of the word Structure
is the default choice of an independent working correlation structure. Click on the
drop-down menu and you will see four other choices for the working correlation
structure: AR(1), Exchangeable, M-dependent, and Unstructured. Click on AR(1).

Next select a new dialog box called “Type ofModel.” Click on Binary logistic under the
heading called “Binary Response or Event/Trials Data.” Select a new dialogue box
called “Response” and select the variable OUTCOME in the Dependent Variable box.
Click on the box called “Reference Category” and select First (lowest value) and click
on Continue. Select a new dialogue box called “Predictors” and enter the variables
BIRTHWGT, GENDER, and DIARRHEA in the Covariates box. Select a new dialogue
box called “Model” and enter the same covariates in the Model box. Select a new
dialogue box called “Statistics.” Under the heading Print, many of the output statis-
tics are checked by default. Click on one that is not checked by default called
“Working correlation matrix” (bottom left) and click OK to run the model. The
corresponding syntax follows:

Generalized Estimating Equations.
GENLIN outcome (REFERENCE¼FIRST) WITH birthwgt gender diarrhea

/MODEL birthwgt gender diarrhea INTERCEPT¼YES
DISTRIBUTION¼BINOMIAL LINK¼LOGIT

/CRITERIA METHOD¼FISHER(1) SCALE¼1 MAXITERATIONS¼100
MAXSTEPHALVING¼5

PCONVERGE¼1E-006 (ABSOLUTE)
SINGULAR¼1E-012 ANALYSISTYPE¼3(WALD) CILEVEL¼95 LIKELIHOOD¼FULL
/REPEATED SUBJECT¼idno WITHINSUBJECT¼month SORT¼YES CORRTYPE¼AR(1)

ADJUSTCORR¼YES COVB¼ROBUST
MAXITERATIONS¼100 PCONVERGE¼1e-006(ABSOLUTE) UPDATECORR¼1
/MISSING CLASSMISSING¼EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION WORKINGCORR.

Selected output follows:

Model Information

Dependent Variable outcomea

Probability Distribution Binomial
Link Function Logit
Subject Effect 1 idno
Within-Subject Effect 1 month
Working Correlation Matrix Structure AR(1)

aThe procedure models 1.00 as the response, treating .00 as the reference category.
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Parameter Estimates

Parameter B
Std.
error

95% Wald confidence
interval Hypothesis test

Lower Upper
Wald

chi-square df Sig.

(Intercept) �1.398 1.1960 �3.742 .946 1.366 1 .243

birthwgt .0005 .0003 �.001 .000 2.583 1 .108
gender .002 .5546 �1.085 1.089 .000 1 .997
diarrhea .221 .8558 �1.456 1.899 .067 1 .796
(Scale) 1

Dependent Variable: outcome
Model: (Intercept), birthwgt, gender, diarrhea

Working Correlation Matrixa

Measurement

Measurement
[month
¼ 1.00]

[month
¼ 2.00]

[month
¼ 3.00]

[month
¼ 4.00]

[month
¼ 5.00]

[month
¼ 6.00]

[month
¼ 7.00]

[month
¼ 8.00]

[month
¼ 9.00]

[month ¼ 1.00] 1.000 .525 .276 .145 .076 .040 .021 .011 .006
[month ¼ 2.00] .525 1.000 .525 .276 .145 .076 .040 .021 .011
[month ¼ 3.00] .276 .525 1.000 .525 .276 .145 .076 .040 .021
[month ¼ 4.00] .145 .276 .525 1.000 .525 .276 .145 .076 .040
[month ¼ 5.00] .076 .145 .276 .525 1.000 .525 .276 .145 .076
[month ¼ 6.00] .040 .076 .145 .276 .525 1.000 .525 .276 .145
[month ¼ 7.00] .021 .040 .076 .145 .276 .525 1.000 .525 .276
[month ¼ 8.00] .011 .021 .040 .076 .145 .276 .525 1.000 .525
[month ¼ 9.00] .006 .011 .021 .040 .076 .145 .276 .525 1.000

Dependent Variable: outcome
Model: (Intercept), birthwgt, gender, diarrhea
aThe AR(1) working correlation matrix structure is computed assuming the measurements are
equally spaced for all subjects.

The output contains tables for GEE model information, GEE parameter estimates,
and the working correlation matrix. The working correlation matrix is a 9 � 9 matrix
with an AR1 correlation structure. The table containing the GEE parameter esti-
mates uses the empirical standard errors by default. Model-based standard errors
could also have been requested. The odds ratio estimate for DIARRHEA ¼ 1 vs.
DIARRHEA ¼ 0 is exp(.221) ¼ 1.247.

The SPSS section of this appendix is completed. Next, modeling with Stata software
is illustrated.

STATA

Stata is a statistical software package that has become increasingly popular in recent
years. Analyses are obtained by typing the appropriate statistical commands in the
Stata Command window or in the Stata Do-file Editor window. The commands used
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to perform the statistical analyses in this appendix are listed below. These commands
are case sensitive and lower case letters should be used. In the text, commands are
given in bold font for readability.

1. logit – This command is used to run logistic regression.
2. binreg – This command can also be used to run logistic regression. The

binreg command can also accommodate summarized binomial data in which
each observation contains a count of the number of events and trials for a
particular pattern of covariates.

3. clogit – This command is used to run conditional logistic regression.
4. mlogit – This command is used to run polytomous logistic regression.
5. ologit – This command is used to run ordinal logistic regression.
6. xtset – This command is used to define the cluster variable(s) for subsequent

analyses of correlated data using Stata commands beginning with xt.
7. xtgee – This command is used to run GEE models.
8. xtiogit – This command can be used to run GEE logistic regression models.
9. xtmelogit – This command is used to run logistic mixed models.

10. lrtest – This command is used to perform likelihood ratio tests.
11. lincom – This command is used to calculate a linear combination of

parameter estimates following a regression command.

Four windows will appear when Stata is opened. These windows are labeled Stata
Command, Stata Results, Review, and Variables. As with SPSS, the user can click
on File ! Open to select a working dataset for analysis. Once a dataset is
selected, the names of its variables appear in the Variables window. Commands
are entered in the Stata Command window. The output generated by commands
appears in the Results window after the enter key is pressed. The Review window
preserves a history of all the commands executed during the Stata session. The
commands in the Review window can be saved, copied, or edited as the user
desires. Commands can also be run from the Review window by double-clicking
on the command.

Alternatively, commands can be typed, or pasted into the Do-file Editor. The Do-file
Editor window is activated by clicking on Window ! Do-file Editor or by simply
clicking on the Do-file Editor button on the Stata tool bar. Commands are executed
from the Do-file Editor by clicking on Tools ! Do. The advantage of running com-
mands from the Do-file Editor is that commands need not be entered and executed
one at a time as they do from the Stata Command window. The Do-file Editor serves a
similar function as the Program Editor in SAS.

Unconditional Logistic Regression

Unconditional logistic regression is illustrated using the Evans County data. As
discussed in the previous sections, the dichotomous outcome variable is CHD and
the covariates are CAT, AGE, CHL, ECG, SMK, and HPT. Two interaction terms
CH and CC, are also included. CH is the product CAT �HPT, while CC is the product
CAT � CHL. The variables representing the interaction terms have already been
included in the Stata dataset evans.dta.
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The model is restated as follows:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1CATþ b2AGEþ b3CHLþ b4ECGþ b5SMK

þ b6HPTþ b7CHþ b8CC

The first step is to activate the Evans dataset by clicking on File!Open and selecting
the Stata dataset, evans.dta. The code to run the logistic regression is as follows:

logit chd cat age chl ecg smk hpt ch cc

Following the command logit comes the dependent variable followed by a list of the
independent variables. Clicking on the variable names in the Variable Window pastes
the variable names into the CommandWindow. For logit to run properly in Stata, the
dependent variable must be coded zero for the nonevents (in this case, absence of
coronary heart disease) and nonzero for the event. The output produced in the results
window is as follows:

Iteration 0: log likelihood ¼ �219.27915
Iteration 1: log likelihood ¼ �184.11809
Iteration 2: log likelihood ¼ �174.5489
Iteration 3: log likelihood ¼ �173.64485
Iteration 4: log likelihood ¼ �173.61484
Iteration 5: log likelihood ¼ �173.61476

Logit estimates Number of obs ¼ 609
LR chi2(8) ¼ 91.33
Prob > chi2 ¼ 0.0000

Log likelihood ¼ �173.61476 Pseudo R2 ¼ 0.2082

------------------------------------------------------------------------
chd Coef. Std. Err. z P>jzj [95% Conf. Interval]

------------------------------------------------------------------------
cat �12.68953 3.10465 �4.09 0.000 �18.77453 �6.604528
age .0349634 .0161385 2.17 0.030 .0033327 .0665942
cht �.005455 .0041837 �1.30 0.192 �.013655 .002745
ecg .3671308 .3278033 1.12 0.263 �.275352 1.009614
smk .7732135 .3272669 2.36 0.018 .1317822 1.414645
hpt 1.046649 .331635 3.16 0.002 .3966564 1.696642
ch �2.331785 .7426678 �3.14 0.002 �3.787387 �.8761829
cc .0691698 .0143599 4.82 0.000 .0410249 .0973146
_cons �4.049738 1.255015 �3.23 0.001 �6.509521 �1.589955
------------------------------------------------------------------------

The output indicates that it took five iterations for the log likelihood to converge at
�173.61476. The iteration history appears at the top of the Stata output for all of the
models illustrated in this appendix. However, we shall omit that portion of the output
in subsequent examples. The table shows the regression coefficient estimates and
standard error, the test statistic (z) and p-value for the Wald test, and 95% confidence
intervals. The intercept, labeled “cons” (for constant), is given in the last row of the

--
--
--
--
--
--
--
--
--
--
--
--
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table. Also included in the output is a likelihood ratio test statistic (91.33) and
corresponding p-value (0.0000) for a likelihood ratio test comparing the full model
with 8 regression parameters to a reducedmodel containing only the intercept. The test
statistic follows a chi-square distribution with 8 degrees of freedom under the null.

The or option for the logit command is used to obtain exponentiated coefficients
rather than the coefficients themselves. In Stata, options appear in the command
following a comma. The code follows:

logit chd cat age chl ecg smk hpt ch cc, or

The logistic command without the or option produces identical output as the logit
command does with the or option. The output follows:

Logit estimates Number of obs ¼ 609
LR chi2 (8) ¼ 91.33
Prob > chi2 ¼ 0.0000

Log likelihood ¼ �173.61476 Pseudo R2 ¼ 0.2082
------------------------------------------------------------------------
chd Odds Ratio Std. Err. z P> jzj [95% Conf. Interval]
------------------------------------------------------------------------
cat 3.08e-06 9.57e-06 �4.09 0.000 7.02e-09 .0013542
age 1.035582 .0167127 2.17 0.030 1.003338 1.068862
chl .9945599 .004161 �1.30 0.192 .9864378 1.002749
ecg 1.443587 .4732125 1.12 0.263 .7593048 2.74454
smk 2.166718 .709095 2.36 0.018 1.14086 4.115025
hpt 2.848091 .9445266 3.16 0.002 1.486845 5.455594
ch .0971222 .0721295 �3.14 0.002 .0226547 .4163692
cc 1.071618 .0153883 4.82 0.000 1.041878 1.102207
------------------------------------------------------------------------

The standard errors and 95% confidence intervals are those for the odds ratio
estimates. As discussed in the SAS section of this appendix, care must be taken in
the interpretation of these odds ratios with continuous predictor variables or inter-
action terms included in the model.

The vce command will produce a variance–covariance matrix of the parameter esti-
mates. Use the vce command after running a regression. The code and output follow:

vce
cat age chl ecg smk hpt _cons

------------------------------------------------------------------------
cat .12389
age �.002003 .00023
chl .000283 �2.3e-06 .000011
ecg �.027177 �.000105 .000041 .086222
smk �.006541 .000746 .00002 .007845 .093163
hpt �.032891 �.000026 �.000116 �.00888 .001708 .084574
_cons .042945 �.012314 �.002271 �.027447 �.117438 �.008195 1.30013

--
--
--
--
--
--
--
--
--
--
-
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The lrtest command can be used to perform likelihood ratio tests. For example, to
perform a likelihood ratio test on the two interaction terms, CH and CC, in the
preceding model, we can save the �2 log likelihood statistic of the full model in the
computer’s memory by using the command estimates store followed by a user
defined name called full in this example:

estimates store full

Now the reduced model (without the interaction terms) can be run (output omitted):

logit chd cat age chl ecg smk hpt

After the reduced model is run, type the following command to obtain the results of
the likelihood ratio test comparing the full model (with the interaction terms) to the
reduced model:

Lrtest full

The resulting output follows:

Logit: likelihood-ratio test chi2(2) ¼ 53.16
(Assumption . nested in full) Prob > chi2 ¼ 0.0000

The chi-square statistic with 2 degrees of freedom is 53.16, which is statistically
significant as the p-value is close to zero.

The lincom command can be used to calculate a linear combination of parameters. As
with the vce and lrtest commands, the lincom command is used directly after running
a model. Recall, the code to run the full model with the two interaction terms is:

logit chd cat age chl ecg smk hpt ch cc, or

Now suppose we wish to estimate the odds ratio for CAT ¼ 1 vs. CAT ¼ 0 among
those with HPT ¼ 1 and CHOL ¼ 220. This odds ratio is exp (b1 þ 1b6 þ 220b7), and
can be estimated using the lincom command as follows:

lincom cat*1 þ ch*1 þ cc*220, or

The or option requests that the linear combination of parameter estimates be expo-
nentiated. The output containing the odds ratio estimate using the lincom command
follows:

-------------------------------------------------------------------
chd Odds Ratio Std. Err. z P>jzj [95% Conf. Interval]
-------------------------------------------------------------------
(1) 1.216568 .5808373 0.41 0.681 .4772429 3.101226
-------------------------------------------------------------------

The Evans County dataset contains individual level data. In the SAS section of this
appendix, we illustrated how to run a logistic regression on summarized binomial
data in which each observation contained a count of the number of events and trials

--
--
--
--
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for a particular pattern of covariates. This can also be accomplished in Stata using
the binreg command.

The summarized dataset, EVANS2, described in the SAS section contains eight
observations and is small enough to be typed directly into the computer using the
input command followed by a list of variables. The clear command clears the
individual level Evans County dataset from the computer’s memory and should
be run before creating the new dataset since there are common variable names to
the new and cleared dataset (CAT and ECG). After entering the input command,
Stata will prompt you to enter each new observation until you type end.

The code to create the dataset is presented below. The newly defined five variables are
described in the SAS section of this appendix.

clear

input cases total cat agegrp ecg

cases total cat agegrp ecg
1. 17 274 0 0 0
2. 15 122 0 1 0
3. 7 59 0 0 1
4. 5 32 0 1 1
5. 1 8 1 0 0
6. 9 39 1 1 0
7. 3 17 1 0 1
8. 14 58 1 1 1
9. end

The list command can be used to display the dataset in the Results Window and to
check the accuracy of data entry.

The data is in binomial events/trials format in which the variable CASES represents
the number of coronary heart disease cases and the variable TOTAL represents the
number of subjects at risk in a particular stratum defined by the other three variables.
The model is stated as follows:

logit PðCHD ¼ 1Þ ¼ b0 þ b1CATþ b2AGEGRPþ b3ECG

The code to run the logistic regression follows:

binreg cases cat age ecg, n(total)

The n( ) option, with the variable TOTAL in parentheses, instructs Stata that TOTAL
contains the number of trials for each stratum. The output is omitted.

Individual level data can also be summarized using frequency counts if the variables
of interest are categorical variables. The dataset EVANS3, discussed in the SAS
section, uses frequency weights to summarize the data. The variable COUNT con-
tains the frequency of occurrences of each observation in the individual level data.
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EVANS3 contains the same information as EVANS2 except that it has sixteen obser-
vations rather than eight. The difference is that with EVANS3, for each pattern of
covariates there is an observation containing the frequency counts for CHD ¼ 1 and
another observation containing the frequency counts for CHD ¼ 0. The code to
create the data is:

clear

input chd cat agegrp ecg count

chd cat agegrp ecg count
1. 1 0 0 0 17
2. 0 0 0 0 257
3. 1 0 1 0 15
4. 0 0 1 0 107
5. 1 0 0 1 7
6. 0 0 0 1 52
7. 1 0 1 1 5
8. 0 0 1 1 27
9. 1 1 0 0 1
10. 0 1 0 0 7
11. 1 1 1 0 9
12. 0 1 1 0 30
13. 1 1 0 1 3
14. 0 1 0 1 14
15. 1 1 1 1 14
16. 0 1 1 1 44
17. end

The model is restated as follows:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1CATþ b2AGEGRPþ b3ECG

The code to run the logistic regression using the logit command with frequency
weighted data is:

logit chd cat agegrp ecg [fweight ¼ count]

The [fweight ¼ ] option, with the variable COUNT, instructs Stata that the variable
COUNT contains the frequency counts. The [fweight ¼ ] option can also be used
with the binreg command:

binreg chd cat agegrp ecg [fweight ¼ count]

The output is omitted.

Obtaining ROC Curves

The knee fracture dataset will be used to illustrate how ROC curves are generated in
Stata. Open the dataset kneefr.dta. The outcome variable is FRACTURE indicating
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whether the subject actually had a knee fracture: Five predictor variables will be used
to obtain predicted probabilities from a logistic regression for each individual in the
dataset. The model follows:

logit PðFRACTURE ¼ 1jXÞ ¼ b0 þ b1AGECATþ b2HEADþ b3PATELLAR

þ b4FLEXþ b5WEIGHT

The code to run this model is:

Logit fracture agecat head patellar flex weight, or

The output follows:

------------------------------------------------------------------------
fracture Odds Ratio Std. Err. z P>jzj [95% Conf. Interval]
------------------------------------------------------------------------
agecat 1.743647 .6964471 1.39 0.164 .7970246 3.814567
head 1.243907 .4678455 0.58 0.562 .595172 2.599758
patellar 1.871685 .6584815 1.78 0.075 .9392253 3.729888
flex 1.695114 .6345218 1.41 0.159 .8139051 3.530401
weight 4.50681 1.844564 3.68 0.000 2.020628 10.05199
------------------------------------------------------------------------
Directly after running this model an ROC curve can be generated by using the lroc
command. The code and output follows:

lroc

Logistic model for fracture

Number of observations ¼ 348
Area under ROC curve ¼ 0.7452
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The diagonal line across the plot serves as a reference line as to what would be
expected if the predicted probabilities were uninformative. The area under this
reference diagonal is 0.5. The area under the ROC curve is 0.745.

A slightlymore complicated butmore general approach for creating the same plot is to
use the roctab command with the graph option. After running the logistic regression,
the predict command can be used to create a new variable containing the predicted
probabilities (named PROB in the code below). The roctab with the graph option is
then used with the variable FRACTURE listed first as the true outcome and the newly
created variable PROB listed next as the test variable. The code follows:

logit fracture agecat head patellar flex weight, or
predict prob
roctab fracture prob, graph

The roctab command can be used to create an ROC plot using any test variable
against a true outcome variable. The test variable does not necessarily have to contain
predicted probabilities from a logistic regression. In that sense, the roctab command
is more general than the lroc command.

Conditional Logistic Regression

Conditional logistic regression is demonstrated with the MI dataset using the clogit
command. The MI dataset contains information from a case-control study in which
each case is matched with two controls. The model is stated as follows:

logit PðCHD ¼ 1jXÞ ¼ b0 þ b1SMK þ b2SPBþ b3ECGþ ~
38

i¼1

giVi

Vi ¼
(
1 if ith matched triplet

0 otherwise
i ¼ 1; 2; . . . ; 38

Open the dataset mi.dta. The code to run the conditional logistic regression in
Stata is:

clogit mi smk sbp ecg, strata (match)

The strata() option, with the variable MATCH in parentheses, identifies MATCH as
the stratified variable (i.e., the matching factor). The output follows:

Conditional (fixed-effects) logistic regression Number of obs ¼ 117
LR chi2 (3) ¼ 22.20
Prob > chi2 ¼ 0.0001

Log likelihood ¼ �31.745464 Pseudo R2 ¼ 0.2591
------------------------------------------------------------------------
mi Coef. Std. Err. z P>jzj [95% Conf. Interval]
------------------------------------------------------------------------
smk .7290581 .5612569 1.30 0.194 �.3709852 1.829101
sbp .0456419 .0152469 2.99 0.003 .0157586 .0755251
ecg 1.599263 .8534134 1.87 0.061 �.0733967 3.271923
--------------------------------------------------------------------------
--
--
--
--
--
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The or option can be used to obtain exponentiated regression parameter estimates.
The code follows (output omitted):

clogit mi smk sbp ecg, strata (match) or

Polytomous Logistic Regression

Polytomous logistic regression is demonstrated with the cancer dataset using the
mlogit command.

The outcome variable is SUBTYPE, a three-category outcome indicating whether
the subject’s histological subtype is Adenocarcinoma (coded 0), Adenosquamous
(coded 1), or Other (coded 2). The model is restated as follows:

ln
PðSUBTYPE ¼ gjXÞ
PðSUBTYPE ¼ 0jXÞ

� �
¼ ag þ bg1AGEþ bg2ESTROGEN þ bg3SMOKING

where g ¼ 1; 2

Open the dataset cancer.dta. The code to run the polytomous logistic regression
follows:

mlogit subtype age estrogen smoking

Stata treats the outcome level that is coded zero as the reference group. The output
follows:

Multinomial regression Number of obs ¼ 286
LR chi2(6) ¼ 18.22
Prob > chi2 ¼ 0.0057

Log likelihood ¼ �247.20254 Pseudo R2 ¼ 0.0355
------------------------------------------------------------------------
subtype Coef. Std. Err. z P>jzj [95% Conf. Interval]
------------------------------------------------------------------------
1
age .9870592 .4117898 2.40 0.017 .179966 1.794152
estrogen �.6438991 .3435607 �1.87 0.061 �1.317266 .0294674
smoking .8894643 .5253481 1.69 0.090 �.140199 1.919128
_cons �1.88218 .4024812 �4.68 0.000 �2.671029 �1.093331
------------------------------------------------------------------------
2
age .2822856 .3279659 0.86 0.389 �.3605158 .925087
estrogen �.1070862 .3067396 �0.35 0.727 �.7082847 .4941123
smoking �1.791312 1.046477 �1.71 0.087 �3.842369 .259746
_cons �1.203216 .3189758 �3.77 0.000 �1.828397 �.5780355
------------------------------------------------------------------------

(Outcome subtype ¼ ¼ 0 is the comparison group)

--
--
--
--
--
--
--
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Ordinal Logistic Regression

Ordinal logistic regression is demonstrated with the cancer dataset using the ologit
command. For this analysis, the variable GRADE is the response variable. GRADE
has three levels, coded 0 for well-differentiated, 1 for moderately differentiated, and
2 for poorly differentiated.

The model is stated as follows:

ln
PðGRADE � g*jXÞ
PðGRADE > g*jXÞ

� �
¼ a*g* � b*1AGE� b*2ESTROGEN for g* ¼ 0; 1

This is the alternative formulation of the proportional odds model discussed in
Chap. 13. In contrast to the formulation presented in the SAS section of the appendix,
Stata, as does SPSS, models the odds that the outcome is in a category less than or
equal to category g. The other difference in the alternative formulation of themodel is
that there are negative signs before the beta coefficients. These two differences
“cancel out” for the beta coefficients so that bi ¼ b*i however, for the intercepts,
ag ¼ �a*g* , where ag and bi, respectively, denote the intercept and ith regression
coefficient in the model run using SAS.

The code to run the proportional odds model and output follows:

ologit grade race estrogen

Ordered logit estimates Number of obs ¼ 286
LR chi2 (2) ¼ 19.71
Prob > chi2 ¼ 0.0001

Log likelihood ¼ �287.60598 Pseudo R2 ¼ 0.0331
------------------------------------------------------------------------
grade Coef. Std. Err. z P>jzj [95% Conf. Interval]
------------------------------------------------------------------------
race .4269798 .2726439 1.57 0.117 �.1073926 .9613521
estrogen �.7763251 .2495253 �3.11 0.002 �1.265386 �.2872644
------------------------------------------------------------------------
_cut1 �.5107035 .2134462 (Ancillary parameters)
_cut2 1.274351 .2272768
------------------------------------------------------------------------

Comparing this output to the corresponding output in SAS shows that the coefficient
estimates are the same but the intercept estimates (labeled_cut1 and _cut2 in the Stata
output) differ, as their signs are reversed due to the different formulations of themodel.

Modeling Correlated Data with Dichotomous Outcomes

Stata has a series of commands beginning with the prefix xt that are designed for the
analysis of longitudinal studies (sometimes called panel studies) with correlated
outcomes. The first of xt commands that is typically used for analysis is the xtset
command. This command defines the cluster variable and optionally a time variable
indicating the time the observation was made within the cluster. We demonstrate
some of the xt commands with the infant care dataset (infant.dta).

--
--
--
--
--
--
--
--
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The variable in the infant dataset defining the cluster (infant) is IDNO. The variable
defining the order of measurement within a cluster is MONTH. These variables can be
set and then used in subsequent analyses with the xtset command. The code follows:

xtset idno month

Now when other xt commands are run using this dataset, the cluster and time
variable do not have to be restated. The command xtdescribe can be typed to see
descriptive measures of the cluster variable.

Next, a GEE model is demonstrated with the infant care dataset. GEE models can be
executed with the xtgee command in Stata.

The model is stated as follows:

logit PðOUTCOME ¼ 1jXÞ ¼ b0 þ b1BIRTHWGTþ b2GENDERþ b3DIARRHEA

The code to run this model with an AR1 correlation structure is:

xtgee outcome birthwgt gender diarrhea, family (binomial)
link(logit) corr(ar1) vce(robust)

Following the command xtgee is the dependent variable followed by a list of the
independent variables. The link() and family() options define the link function and
the distribution of the response. The corr() option allows the correlation structure to
be specified. The vce(robust) option requests empirically based standard errors. The
options corr(ind), corr(exc), corr(sta4), and corr(uns), can be used to request an
independent, exchangeable, stationary 4-dependent, and an unstructured working
correlation structure respectively.

The output using the AR1 correlation structure follows:

GEE population-averaged model Number of obs ¼ 1203
Group and time vars: idno month Number of groups ¼ 136
Link: logit Obs per group: min ¼ 5
Family: binomial avg ¼ 8.8
Correlation: AR(1) max ¼ 9

Wald chi2(3) ¼ 2.73
Scale parameter: 1 Prob > chi2 ¼ 0.4353

(standard errors adjusted for clustering on idno)
------------------------------------------------------------------------

outcome Coef.
Semi-robust
Std. Err. z P > jzj [95% Conf. Interval]

------------------------------------------------------------------------
birthwgt �.0004942 .0003086 �1.60 0.109 �.0010991 .0001107
gender .0023805 .5566551 0.00 0.997 �1.088643 1.093404
diarrhea .2216398 .8587982 0.26 0.796 �1.461574 1.904853
_cons �1.397792 1.200408 �1.16 0.244 �3.750549 .9549655
--------------------------------------------------------------------------

--
--
--
--
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The output does not match the SAS output exactly due to different estimation
techniques but the results are very similar. If odds ratios are desired rather than the
regression coefficients, then the eform option can be used to exponentiate the
regression parameter estimates. The code and output using the eform option follow:

xtgee outcome birthwgt gender diarrhea, family (binomial)
link (logit) corr (ar1) robust eform

GEE population-averaged model Number of obs ¼ 1203
Group and time vars: idno month Number of groups ¼ 136
Link: logit Obs per group: min ¼ 5
Family: binomial avg ¼ 8.8
Correlation: AR(1) max ¼ 9

Wald chi2(3) ¼ 2.73
Scale parameter: 1 Prob > chi2 ¼ 0.4353

(standard errors adjusted for clustering on idno)
-----------------------------------------------------------------------

outcome Odds Ratio
Semi-robust
Std. Err. z P>jzj [95% Conf. Interval]

-----------------------------------------------------------------------
birthwgt .9995059 .0003085 �1.60 0.109 .9989015 1.000111
gender 1.002383 .5579818 0.00 0.997 .3366729 2.984417
diarrhea 1.248122 1.071885 0.26 0.796 .2318711 6.718423
-----------------------------------------------------------------------
The xtcorr command can be used after running the GEE model to output the
working correlation matrix. The code and output follow:

xtcorr

Estimated within-idno correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9
r1 1.0000
r2 0.5252 1.0000
r3 0.2758 0.5252 1.0000
r4 0.1448 0.2758 0.5252 1.0000
r5 0.0761 0.1448 0.2758 0.5252 1.0000
r6 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000
r7 0.0210 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000
r8 0.0110 0.0210 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000
r9 0.0058 0.0110 0.0210 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000

The same results could have been obtained with the xtlogit command. The xtlogit
command is designed specifically for logistic regression with clustered data. The
following code runs the same GEEmodel as shown above with the xtlogit command:

xtlogit outcome birthwgt gender diarrhea, pa corr(ar1) vce(robust) or

--
--
--
--
--
--
--
-
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The code is similar to that which was used with the xtgee command except that the
link() and family() options found with the xtgee command are unnecessary with the
xtlogit command as it is understood that a logistic regression is requested. The pa
option (for population averaged) in xtlogit requests that a GEEmodel be run. The or
option (for odds ratios) requests that the parameter estimates be exponentiated.

We have seen that the xtlogit command with the pa option requests a GEE model. If
instead the fe option is used (for fixed effects) then the xtlogit command requests a
conditional logistic regression to be run. Next, we consider a model with fixed effects
(dummy variables) for the cluster variable. The model is stated as follows:

logit PðOUTCOME ¼ 1jXÞ ¼ b0 þ b1BIRTHWGTþ b2GENDERþ b3DIARRHEA

þ ~
135

i¼1

giVi

Vi ¼
(
1 if ith matched triplet

0 otherwise
i ¼ 1; 2; . . . ; 135

The indicator variables in this model are fixed effects. The code to run this model is
shown two ways: first with the xtlogit command and then, for comparison, with the
clogit command that was previously shown in the section on conditional logistic
regression.

xtlogit outcome birthwgt gender diarrhea, fe or
clogit outcome birthwgt gender diarrhea, strata(idno) or

Both commands yield the same output. We show the output from the xtlogit com-
mand with the fe option:

note: 115 groups (1019 obs) dropped because of all positive or all negative
outcomes.

note: birthwgt omitted because of no within–group variance.
note: gender omitted because of no within–group variance.

Iteration 0: log likelihood ¼ �64.410959
Iteration 1: log likelihood ¼ �64.409171
Iteration 2: log likelihood ¼ �64.409171

Conditional fixed-effects logistic regression Number of obs ¼ 184
Group variable: idno Number of groups ¼ 21

Obs per group: min ¼ 7
avg ¼ 8.8
max ¼ 9

LR chi2(1) ¼ 1.26
Log likelihood ¼ �64.409171 Prob > chi2 ¼ 0.2615
-----------------------------------------------------------------------
outcome OR Std. Err. z P>jzj [95% Conf. Interval]
-----------------------------------------------------------------------
diarrhea 2.069587 1.320018 1.14 0.254 .5928878 7.224282
-------------------------------------------------------------------------
--
--
--
-
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What is noteworthy with this output is that there are no parameter estimates for the
variables BIRTHWGT and GENDER because the values of these variables do not vary
within a cluster (infant). This is a key feature of conditional logistic regression. An
intercept is not estimated for the same reason. As noted at the top of the output, even
the variable of interest DIARRHEA, did not vary within most (115) of the infants. The
data from only 21 infants were used for this analysis.

A model with a random effect for each infant can be run two ways in Stata: one way is
with the xtlogit command and the re option and the other way with the xtmelogit
command. A model with a random effect (a random intercept) for infant is stated as
follows:

logit PðOUTCOME ¼ 1jXÞ ¼ ðb0 þ b0iÞ þ b1BIRTHWGTþ b2GENDER

þ b3DIARRHEA;

where b0i represents the random effect for subject i and is normally

distributed with mean ¼ 0 and variance ¼ ss2 ði:e:; b0i � Nð0; ss2Þ

The code and output for the model using the xtlogit command with the re option (the
default option) follow:

xtlogit outcome birthwgt gender diarrhea, re or

The or option requests the parameter estimates be exponentiated. The output
follows:

Random–effects logistic regression Number of obs ¼ 1203
Group variable: idno Number of groups ¼ 136
Random effects u_i � Gaussian Obs per group: min ¼ 5

avg ¼ 8.8
max ¼ 9

Wald chi2(3) ¼ 3.69
Log likelihood ¼ �164.50654 Prob > chi2 ¼ 0.2973
------------------------------------------------------------------------
outcome OR Std. Err. z P>jzj [95% Conf. Interval]
------------------------------------------------------------------------
birthwgt .999352 .0005498 �1.18 0.239 .998275 1.00043
gender 1.59722 1.26687 0.59 0.555 .3374548 7.559861
diarrhea 2.638831 1.753562 1.46 0.144 .717413 9.706306
------------------------------------------------------------------------
/lnsig2u 2.360601 .276463 1.818743 2.902458
------------------------------------------------------------------------
sigma_u 3.255352 .4499922 2.482762 4.268358
rho .7631004 .0499785 .6520122 .8470451
------------------------------------------------------------------------
Likelihood–ratio test of rho ¼ 0: chibar2(01) ¼ 161.04 Prob > ¼ chibar2 ¼
0.000

The estimated odds ratio for DIARRHEA is 2.64, but it is not statistically significant
as the standard error is large at 1.75 (p-value ¼ 0.144). The standard deviation of the

--
--
--
--
--
--
--
--
--
--
--
-
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random effect, ss2, is estimated at 3.255 to the right of the heading “sigma_u.” The
estimated variance of the random effect can be found by squaring the standard
deviation (3.2552 ¼ 10.6). The natural log of the variance estimate is also given in
the output at 2.36, to the right of the heading “/Insig2u.” The estimated value for “rho”
is 0.763, which is the proportion of the total variance contributed by the subject
specific variance component. The likelihood ratio test for the random effect is highly
significant (chi-square ¼ 61.04) at the bottom of the output.

An alternative command for running this model is the xtmelogit command. The
xtmelogit command is designed to run mixed logistic models. That is, a mixing of
fixed and random effects. The code to run the random intercept model with the
xtmelogit command follows:

xtmelogit outcome birthwgt gender diarrhea || idno: , or intpoints(3)

The symbol || separates the fixed effects from the subject specific random effect. The
or option requests the parameter estimates for the fixed effects be exponentiated. The
intpoints(3) option sets the number of quadrature points to 3 for the numerical
estimation rather than the default 7. It is generally recommended to havemore rather
than fewer quadrature points for estimation. However, this model did not numeri-
cally estimate without this option to lower the default number, which likely indicates
a problem with model stability. The output follows:

Mixed-effects logistic regression Number of obs ¼ 1203
Group variable: idno Number of groups ¼ 136

Obs per group: min ¼ 5
avg ¼ 8.8
max ¼ 9

Integration points ¼ 3 Wald chi2(3) ¼ 4.26
Log likelihood ¼ �170.33099 Prob > chi2 ¼ 0.2352
------------------------------------------------------------------------
outcome Odds Ratio Std. Err. z P>jzj [95% Conf. Interval].
------------------------------------------------------------------------
birthwgt .9992259 .0005833 �1.33 0.185 .9980833 1.00037
gender 1.706531 1.450536 0.63 0.529 .3225525 9.028756
diarrhea 2.763684 1.856623 1.51 0.130 .7407258 10.31144
------------------------------------------------------------------------
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
------------------------------------------------------------------------
idno: Identity

sd(_cons) 2.732656 .5458486 1.847385 4.042153
------------------------------------------------------------------------

LR test vs. logistic regression: chibar2(01) ¼ 149.39 Prob> ¼ chibar2 ¼ 0.0000

The estimated odds ratio for DIARRHEA is 2.76, but is not statistically significant
(p-value ¼ 0.130). The standard deviation of the random effect, ss2, is estimated at 2.73
to the right of the heading “sd (_cons).” The results are similar but not identical to that
obtainedwith the xtlogit command as themethod of estimation is somewhat different.

--
--
--
--
--

--
--
--
--
--
--
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The next model includes a random slope for the variable DIARRHEA in addition to
the random intercept. The model is stated as follows:

logit PðOUTCOME ¼ 1jXÞ ¼ ðb0 þ b0iÞ þ b1BIRTHWGTþ b2GENDER

þ ðb3 þ b3iÞDIARRHEA;

where b0i represents the random intercept for subject i and where

b3i represents a random slope with the variable DIARRHEA for

subject ib0i � Nð0; ss2Þ and b3i � Nð0; s20Þ

This type of model cannot be run with the xtlogit command but can with the xtme-
logit command. The code for running this model with two random effects follows:

xtmelogit outcome birthwgt gender diarrhea || idno: diarrhea,
intpoints (3) covariance (uns) or

The code is similar to what was shown with the previous random intercept model
except that DIARRHEA is added as a random effect (after idno:) as well as a fixed
effect. Since this model contains more than one random effect we must consider the
covariance between the random effects. The covariance(uns) requests an unstruc-
tured covariance structure for the random effects. The default independent covari-
ance structure or the exchangeable covariance structure could also be requested for
the random effects. The output follows:

Mixed–effects logistic regression Number of obs ¼ 1203
Group variable: idno Number of groups ¼ 136

Obs per group: min ¼ 5
avg ¼ 8.8
max ¼ 9

Integration points ¼ 3 Wald chi2 (3) ¼ 2.10
Log likelihood ¼ �167.91199 Prob > chi2 ¼ 0.5511
------------------------------------------------------------------------
outcome Odds Ratio Std. Err. z P>jzj [95% Conf. Interval]
-----------------------------------------------------------------------
birthwgt .9993232 .0006149 �1.10 0.271 .9981188 1.000529
gender 1.829316 1.610209 0.69 0.493 .3258667 10.26922
diarrhea 9.50e�06 .0001605 �0.68 0.494 3.92e�20 2.30eþ09
------------------------------------------------------------------------
------------------------------------------------------------------------
Random–effects Parameters Estimate Std. Err. [95% Conf. Interval]
------------------------------------------------------------------------
idno: Unstructured

sd (diarrhea) 10.5301 12.99674 .9372181 118.3109
sd(_cons) 2.779649 .5656848 1.865359 4.142071

corr(diarrhea, _cons) .611977 .1909544 .11323 .8643853
------------------------------------------------------------------------
LR test vs. logistic regression: chi2(3) ¼ 154.23 Prob > chi2 ¼ 0.0000

Note: LR test is conservative and provided only for reference.

--
--
--
--
--
--
--
-

--
--
--
--
--
--
-
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This model is numerically very unstable and the confidence interval for DIARRHEA
is basically estimated from 0 to infinity, which is not useful. There are three rando-
m effect parameters estimated: the standard deviation of the random slope for
DIARRHEA, the random intercept, and the correlation between them. A likelihood
ratio test of the three random effect parameters is given at the bottom of the output.

The xtmelogit command does not allow autocorrelation of the residuals to be mod-
eled along with the random effects but rather assumes that the residuals have an
independent correlation structure. However, the xtmelogit command does provide
estimates for nested random effects. As a hypothetical example, suppose 30 daycare
centers were randomly sampled and within each daycare center 10 infants were
sampled yielding 300 infants in all (30 � 10). Also, each infant has monthly measure-
ments over a 9-month period. In this setting, we can consider three types of indepen-
dent variables: (1) a variable like DIARRHEA whose status may vary within an infant
from month-to-month, (2) a variable like GENDER which is fixed at the infant level
(does not vary month-to-month), and (3) a variable that is fixed at the daycare level
such as the size of the daycare center. Here we have a cluster of daycare centers and
nested within each daycare center is a cluster of infants. In the infant dataset, the
variable identifying each infant is called IDNO. Suppose the variable identifying
the daycare center was called DAYCARE (this variable does not actually exist in the
infant dataset). Consider a model with a random intercept for each infant as well as a
random intercept for each daycare center. We continue to use BIRTHWEIGHT,
GENDER, and DIARRHEA as fixed effects. The code to run such a model using the
xtmelogit command is:

xtmelogit outcome birthwgt gender diarrhea || daycare: || idno:

This model contains a random intercept at the daycare level and a random intercept
at the infant level. The symbol “||” separating the random effects indicates that the
random effect for infant (IDNO) is nested within DAYCARE. Random slope para-
meters could be listed after the code “|| daycare:” if they are to vary by daycare or
listed after the code “|| idno:” if they are to vary by infant.

This completes our discussion on the use of SAS, SPSS, and STATA to run different
types of logistic models. An important issue for all three of the packages discussed is
that the user must be aware of how the outcome event is modeled for a given package
and given type of logistic model. If the parameter estimates are the negative of what is
expected, this could be an indication that the outcome value is not correctly specified
for the given package and/or procedure.

All three statistical software packages presented have built-in Help functions which
provide further details about the capabilities of the programs. The web-based sites of
the individual companies are another source of information about the packages:
http://www.sas.com/ for SAS, http://www.spss.com/ for SPSS, and http://www.stata.
com/ for Stata.
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Test Answers

Chapter 1 True-False Questions:

1. F: any type of independent variable is allowed

2. F: dependent variable must be dichotomous

3. T

4. F: S-shaped

5. T

6. T

7. F: cannot estimate risk using case-control study

8. T

9. F: constant term can be estimated in follow-up study

10. T

11. T

12. F: logit gives log odds, not log odds ratio

13. T

14. F: bi controls for other variables in the model

15. T

16. F: multiplicative

17. F: exp(b) where b is coefficient of exposure

18. F:OR for effect ofSMKis exponential of coefficient ofSMK

19. F: OR requires formula involving interaction terms

20. F: OR requires formula that considers coding
different from (0, 1)

21. e. exp(b) is not appropriate for any X.

22. P ðXÞ ¼ 1=ð1þ expf� aþ b1ðAGEÞ þ b2ðSMKÞ½
þ b3ðSEXÞ þ b4ðCHOLÞ þ b5ðOCCÞ�gÞ:

23. P̂ðXÞ ¼ 1= 1þ exp � �4:32þ 0:0274ðAGEÞ½fð
þ 0:5859ðSMKÞ þ 1:1523ðSEXÞ
þ 0:0087ðCHOLÞ � 0:5309ðOCCÞ�gÞ:

24. logit PðXÞ ¼ �4:32þ 0:0274ðAGEÞ
þ 0:5859ðSMKÞ þ 1:1523ðSEXÞ
þ 0:0087ðCHOLÞ � 0:5309ðOCCÞ:
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25. For a 40-year-old male smoker with CHOL ¼ 200 and
OCC ¼ 1, we have

X ¼ ðAGE ¼ 40;SMK ¼ 1;SEX ¼ 1;CHOL
¼ 200;OCC ¼ 1Þ;

assuming that SMK and SEX are coded as SMK ¼ 1 if
smoke, 0 otherwise, and SEX ¼ 1 ifmale, 0 if female, and

P̂ðXÞ ¼ 1=ð1þ expf�½�4:32þ 0:0274ð40Þ þ 0:5859ð1Þ
þ 1:1523ð1Þ þ 0:0087ð200Þ � 0:5309ð1Þ�gÞ

¼ 1=f1þ exp½�ð�0:2767Þ�g
¼ 1=ð1þ 1:319Þ
¼ 0:431:

26. For a 40-year-old male nonsmoker with CHOL ¼ 200
and OCC ¼ 1, X ¼ (AGE ¼ 40, SMK ¼ 0, SEX ¼ 1,
CHOL ¼ 200, OCC ¼ 1)

and

P̂ðXÞ ¼ 1=ð1þ expf�½�4:32þ 0:0274ð40Þ þ 0:5859ð0Þ
þ 1:1523ð1Þ þ 0:0087ð200Þ � 0:5309ð1Þ�gÞ

¼ 1=f1þ exp½�ð�0:8626Þ�g
¼ 1=ð1þ 2:369Þ
¼ 0:297

27. The RR is estimated as follows:

P̂ðAGE¼ 40;SMK¼ 1;SEX¼ 1;CHOL¼ 200;OCC¼ 1Þ
P̂ðAGE¼ 40;SMK¼ 0;SEX¼ 1;CHOL¼ 200;OCC¼ 1Þ
¼ 0:431=0:297

¼ 1:45

This estimate can be interpreted to say smokers have
1.45 times as high a risk for getting hypertension as
nonsmokers, controlling for age, sex, cholesterol level,
and occupation.

28. If the study design had been case-control or cross-
sectional, the risk ratio computation of Question 27
would be inappropriate because a risk or risk ratio
cannot be directly estimated by using a logistic model
unless the study design is follow-up. More specifically,
the constant term a cannot be estimated from case-
control or cross-sectional studies.

29. dOR (SMK controlling for AGE, SEX, CHOL, OCC)

¼ eb̂ where b̂ ¼ 0:5859 is the coefficient of SMK in the

fitted model

¼ expð0:5859Þ
¼ 1:80
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This estimate indicates that smokers have 1.8 times as
high a risk for getting hypertension as nonsmokers,
controlling for age, sex, cholesterol, and occupation.

30. The rare disease assumption.

31. The odds ratio is a legitimate measure of association
and could be used even if the risk ratio cannot be
estimated.

32. dOR (OCC controlling for AGE, SEX, SMK, CHOL)

¼ eb̂;where b̂ ¼ �0:5309 is the coefficient of OCC in the

fitted model

¼ expð�0:5309Þ
¼ 0:5881 ¼ 1=1:70:

This estimate is less than 1 and thus indicates that
unemployed persons (OCC ¼ 0) are 1.70 times more
likely to develop hypertension than are employed
persons (OCC = 1).

33. Characteristic 1: the model contains only main effect
variables
Characteristic 2: OCC is a (0, 1) variable.

34. The formula exp(bi) is inappropriate for estimating
the effect of AGE controlling for the other four
variables because AGE is being treated as a
continuous variable in the model, whereas the
formula is appropriate for (0, 1) variables only.

Chapter 2 True-False Questions:

1. F: OR ¼ exp(c)

2. F: risk ¼ 1/[1 þ exp(�a)]

3. T

4. T

5. T

6. T

7. T

8. F: OR ¼ exp(b þ 5d)

9. The model in logit form is given as follows:

logit PðXÞ ¼ aþ bCONþ g1PARþ g2NPþ g3ASCM

þ d1CON� PARþ d2CON�NP

þ d3CON� ASCM:

10. The odds ratio expression is given by

expðbþ d1PARþ d2NPþ d3ASCMÞ:
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Chapter 3 1. a. ROR ¼ exp(b)
b. ROR ¼ exp(5b)
c. ROR ¼ exp(2b)
d. All three estimated odds ratios should have the

same value.
e. The b in part b is one‐fifth the b in part a; the b in

part c is one‐half the b in part a.
2. a. ROR ¼ exp(b þ d1AGE þ d2CHL)

b. ROR ¼ exp(5b þ 5d1AGE þ 5d2CHL)
c. ROR ¼ exp(2b þ 2d1AGE þ 2d2CHL)
d. For a given specification of AGE and CHL, all three

estimated odds ratios should have the same value.
e. The b in part b is one‐fifth the b in part a; the b in

part c is one‐half the b in part a. The same
relationships hold for the three d1s and the
three d2s.

3. a. ROR ¼ exp(5b þ 5d1AGE þ 5d2SEX)
b. ROR ¼ exp(b þ d1AGE þ d2SEX)
c. ROR ¼ exp(b þ d1AGE þ d2SEX)
d. For a given specification of AGE and SEX, the odds

ratios in parts b and c should have the same value.
4. a. logit P(X) ¼ a þ b1S1 þ b2S2 þ g1AGE þ g2SEX,

where S1 and S2 are dummy variables which
distinguish between the three SSU groupings, e.g.,
S1 ¼ 1 if low, 0 otherwise and S2 ¼ 1 if medium, 0
otherwise.

b. Using the above dummy variables, the odds ratio is
given by ROR ¼ exp(� b1), where X* ¼ (0, 0, AGE,
SEX) and X** ¼ (1, 0, AGE, SEX).

c. logit PðXÞ ¼ aþ b1S1 þ b2S2 þ g1AGEþ g2SEX
þd1ðS1 � AGEÞ þ d2ðS1 � SEXÞ
þ d3ðS2 � AGEÞ þ d4ðS2 � SEXÞ

d. ROR ¼ exp(�b1 � d1AGE � d2SEX)
5. a. ROR ¼ exp(10b3)

b. ROR ¼ exp(195b1 þ 10b3)
6. a. ROR ¼ exp(10b3 þ 10d31AGE þ 10d32RACE)

b. ROR ¼ expð195b1 þ 10b3 þ 195d11AGE
þ195d12RACEþ 10d31AGEþ 10d32RACEÞ

Chapter 4 True‐False Questions:

1. T

2. T

3. F: unconditional

4. T

5. F: the model contains a large number of parameters

6. T
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7. T

8. F: a is not estimated in conditional ML programs

9. T

10. T

11. F: the variance–covariance matrix gives variances
and covariances for regression coefficients, not
variables.

12. T

13. Because matching has been used, the method of
estimation should be conditional ML estimation.

14. The variables AGE and SOCIOECONOMIC STATUS
do not appear in the printout because these variables
have been matched on, and the corresponding
parameters are nuisance parameters that are not
estimated using a conditional ML program.

15. The OR is computed as e to the power 0.39447, which
equals 1.48. This is the odds ratio for the effect of pill
use adjusted for the four other variables in the model.
This odds ratio says that pill users are 1.48 times as
likely as nonusers to get cervical cancer after adjusting
for the four other variables.

16. The OR given by e to �0.24411, which is 0.783, is the
odds ratio for the effect of vitamin C use adjusted for
the effects of the other four variables in the model.
This odds ratio says that vitamin C is some‐what
protective for developing cervical cancer. In
particular, since 1/0.78 equals 1.28, this OR says that
vitamin C nonusers are 1.28 times more likely to
develop cervical cancer than users, adjusted for the
other variables.

17. Alternative null hypotheses:

1. The OR for the effect of VITC adjusted for the other
four variables equals 1.

2. The coefficient of the VITC variable in the fitted
logistic model equals 0.

18. The 95% CI for the effect of VITC adjusted for the
other four variables is given by the limits 0.5924 and
1.0359.

19. The Z statistic is given by Z ¼ �0.24411/
0.14254 ¼ �1.71

20. The value of MAX LOGLIKELIHOOD is the
logarithm of the maximized likelihood obtained for
the fitted logistic model. This value is used as part
of a likelihood ratio test statistic involving this
model.
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Chapter 5 1. Conditional ML estimation is the appropriate method
of estimation because the study involves matching.

2. Age and socioeconomic status are missing from the
printout because they are matching variables and
have been accounted for in the model by nuisance
parameters which are not estimated by the
conditional estimation method.

3. H0: bSMK ¼ 0 in the no interaction model (Model I), or
alternatively, H0: OR ¼ 1, where OR denotes the odds
ratio for the effect of SMK on cervical cancer status,
adjusted for the other variables (NS and AS) inmodel I;

test statistic: Wald statistic Z ¼ b̂SMK

Sb̂SMK

, which is

approximately normal (0, 1) under H0, or
alternatively, Z2 is approximately chi square with one
degree of freedom under H0; test
computation: Z ¼ 1:4361

0:3167 ¼ 4:53; alternatively,Z2 ¼ 20.56;
the one‐tailed P‐value is 0.0000/2 ¼ 0.0000, which is
highly significant.

4. The point estimate of the odds ratio for the effect of
SMK on cervical cancer status adjusted for the other
variables in model I is given by e1.4361 ¼ 4.20.

The 95% interval estimate for the above odds ratio is
given by

exp b̂SMK � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar b̂SMK

� �r� �
¼ expð1:4361� 1:96� 0:3617Þ ¼ e0:8154; e2:0568

� �
¼ ð2:26; 7:82Þ:

5. Null hypothesis for the likelihood ratio test for the
effect of SMK�NS:H0: bSMK � NS ¼ 0, where bSMK � NS

is the coefficient of SMK � NS in model II;

Likelihood ratio statistic: LR ¼ �2 ln L̂I � ð�2 ln L̂IIÞ
where L̂I and L̂II are the maximized likelihood
functions for models I and II, respectively. This
statistic has approximately a chi‐square distribution
with one degree of freedom under the null hypothesis.
Test computation: LR ¼ 174.97 � 171.46 ¼ 3.51. The
P‐value is less than 0.10 but greater than 0.05, which
gives borderline significance because we would reject
the null hypothesis at the 10% level but not at the 5%
level. Thus, we conclude that the effect of the interaction
of NS with SMK is of borderline significance.

6. Null hypothesis for the Wald test for the effect
of SMK � NS is the same as that for the likelihood
ratio test: H0: bSMK � NS ¼ 0 where bSMK � NS is the
coefficient of SMK � NS in model II;
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Wald statistic: Z ¼ b̂SMK�NS

sb̂SMK�NS

, which is approximately

normal (0, 1) under H0, or alternatively,
Z2 is approximately chi square with one degree of
freedom under H0; test computation:
Z ¼ �1:1128

0:5997 ¼ �1:856; alternatively, Z2 ¼ 3.44; the
P‐value for the Wald test is 0.0635, which gives
borderline significance.
The LR statistic is 3.51, which is approximately equal
to the square of the Wald statistic; therefore, both
statistics give the same conclusion of borderline
significance for the effect of the interaction term.

7. The formula for the estimated odds ratio is given
by dORadj ¼ expðb̂SMK þ d̂SMK�NS NSÞ ¼ expð1:9381
� 1:1128 NSÞ, where the coefficients come fromModel
II and the confounding effects of NS and AS are
controlled.

8. Using the adjusted odds ratio formula given in
Question 7, the estimated odds ratio values for NS ¼ 1
and NS ¼ 0 are

NS ¼ 1: exp[1.9381�1.1128(1)] ¼ exp(0.8253) ¼ 2.28;
NS ¼ 0: exp[1.9381�1.1128(0)] ¼ exp(1.9381) ¼ 6.95

9. Formula for the 95% confidence interval for the
adjusted odds ratio when NS ¼ 1:

exp l̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar l̂
� �q� �

; where l̂ ¼ b̂SMK þ d̂SMK�NSð1Þ

¼ b̂SMK þ d̂SMK�NS

and

dvar l̂
� � ¼ dvar b̂SMK

� �
þ ð1Þ2dvar d̂SMK�NS

� �
þ 2ð1Þdcov b̂SMK; d̂SMK�NS

� �
;

where dvar b̂SMK

� �
;dvar d̂SMK�NS

� �
, and

dcov b̂SMK; d̂SMK�NS

� �
are obtained from the printout of

the variance–covariance matrix.
10. l̂ ¼ b̂SMK þ d̂SMK�NS ¼ 1:9381þ ð�1:1128Þ ¼ 0:8253dvar l̂

� � ¼ 0:1859þ ð1Þ2ð0:3596Þ þ 2ð1Þð�0:1746Þ
¼ 0:1859þ 0:3596 � 0:3492 ¼ 0:1963:

The 95% confidence interval for the adjusted odds
ratio is given by

exp l̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar l̂
� Þ

q� �
¼ exp 0:8253� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1963

p� �
¼ expð0:8253� 1:96� 0:4430Þ
¼ e�0:0430; e1:6936

� � ¼ ð0:96; 5:44Þ:
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11. Model II is more appropriate than Model I if the test
for the effect of interaction is viewed as significant.
Otherwise, Model I is more appropriate thanModel II.
The decision here is debatable because the test result
is of borderline significance.

Chapter 6 True–False Questions:

1. F: one stage is variable specification

2. T

3. T

4. F: no statistical test for confounding

5. F: validity is preferred to precision

6. F: for initial model, Vs chosen a priori

7. T

8. T

9. F: model needs E � B also

10. F: list needs to include A � B

11. The given model is hierarchically well formulated
because for each variable in the model, every lower
order component of that variable is contained in the
model. For example, if we consider the variable
SMK�NS� AS, then the lower order components are
SMK, NS, AS, SMK�NS, SMK� AS, and NS� AS; all
these lower order components are contained in the
model.

12. A test for the term SMK � NS � AS is not dependent
on the coding of SMK because the model is
hierarchically well formulated and SMK � NS � AS is
the highest-order term in the model.

13. A test for the terms SMK � NS is dependent on the
coding because this variable is a lower order term in
the model, even though the model is hierarchically
well formulated.

14. In using a hierarchical backward elimination
procedure, first test for significance of the highest-
order term SMK � NS � AS, then test for significance
of lower order interactions SMK�NS and SMK� AS,
and finally assess confounding for V variables in the
model. Based on the hierarchy principle, any two-
factor product terms and V terms which are lower
order components of higher order product terms
found significant are not eligible for deletion from the
model.

15. If SMK � NS � AS is significant, then SMK � NS and
SMK � AS are interaction terms that must remain in
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any further model considered. The V variables that
must remain in further models are NS, AS, NS � AS,
and, of course, the exposure variable SMK. Also the V*

variables must remain in all further models because
these variables reflect the matching that has been
done.

16. The model after interaction assessment is the same as
the initial model. No potential confounders are
eligible to be dropped from the model because NS,
AS, and NS � AS are lower components of
SMK � NS � AS and because the V* variables are
matching variables.

Chapter 7 1. The interaction terms are SMK � NS, SMK � AS, and
SMK�NS� AS. The product termNS� AS is a V term,
not an interaction term, because SMK is not one of its
components.

2. Using a hierarchically backward elimination strategy,
one would first test for significance of the highest-order
interaction term, namely, SMK � NS � AS. Following
this test, the next step is to evaluate the significance of
two-factor product terms, although these terms might
not be eligible for deletion if the test for SMK�NS� AS
is significant. Finally, without doing statistical testing,
the V variables need to be assessed for confounding and
precision.

3. If SMK � NS is the only interaction found significant,
then the model remaining after interaction assessment
contains the V* terms, SMK, NS, AS, NS � AS, and
SMK�NS. The variable NS cannot be deleted from any
further model considered because it is a lower order
component of the significant interaction term SMK �
NS. Also, the V* terms cannot be deleted because these
terms reflect the matching that has been done.

4. The odds ratio expression is given by exp(b þ d1NS).

5. The odds ratio expression for the model that does not
contain NS � AS has exactly the same form as the
expression in Question 4. However, the coefficients b
and d1 may be different from the Question 4 expression
because the two models involved are different.

6. Drop NS � AS from the model and see if the estimated
odds ratio changes from the gold standard model
remaining after interaction assessment. If the odds
ratio changes, then NS � AS cannot be dropped and is
considered a confounder. If the odds ratio does not
change, then NS � AS is not a confounder. However, it
may still need to be controlled for precision reasons. To
assess precision, one should compare confidence
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intervals for the gold standard odds ratio and the odds
ratio for the model that drops NS � AS. If the latter
confidence interval is meaningfully narrower, then
precision is gained by dropping NS � AS, so that this
variable should, therefore, be dropped. Otherwise, one
should control for NS� AS because nomeaningful gain
in precision is obtained by dropping this variable. Note
that in assessing both confounding and precision,
tables of odds ratios and confidence intervals obtained
by specifying values of NS need to be compared
because the odds ratio expression involves an effect
modifier.

7. If NS � AS is dropped, the only V variable eligible to be
dropped is AS. As in the answer to Question 6,
confounding of AS is assessed by comparing odds ratio
tables for the gold standard model and reduced model
obtained by dropping AS. The same odds ratio
expression as given in Question 5 applies here, where,
again, the coefficients for the reduced model (without
AS and NS � AS) may be different from the coefficient
for the gold standard model. Similarly, precision is
assessed similarly to that in Question 6 by comparing
tables of confidence intervals for the gold standard
model and the reduced model.

8. The odds ratio expression is given by exp(1.9381 �
1.1128NS). A table of odds ratios for different values of
NS can be obtained from this expression and the results
interpreted. Also, using the estimated
variance–covariancematrix (not provided here), a table
of confidence intervals (CIs) can be calculated and
interpreted in conjunction with corresponding odds
ratio estimates. Finally, the CIs can be used to carry out
two-tailed tests of significance for the effect of SMK
at different levels of NS.

Chapter 8 1. a. The screening approach described does not
individually assess whether any of the control (C)
variables are either potential confounders or
potential effect modifiers.

b. Screening appears necessary because the number
of variables being considered (including possible
interaction terms) for modeling is large enough to
expect that either a model containing all main
effects and interactions of interest won’t run, or will
yield unreliable estimated regression coefficients.
In particular, if such a model does not run,
collinearity assessment becomes difficult or even
impossible, so the only way to get a “stable” model
requires dropping some variables.
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2. logit PðXÞ ¼ aþ b1Fþ b2BASE þ g1POST
þ g2PFþ g3OCCþ g4AGEþ g5GEN
þ d1F� BASE þ d2F� POST
þd3F� PFþ d4F�OCCþ d5F� AGE
þd6F�GENþ d7BASE � POST
þd8BASE� PFþ d9BASE�OCC
þd10BASE � AGEþ d11BASE �GEN

3. F 3 POST: EV

F 3 BASE: EE
POST 3 BASE: EV
PF 3 POST: Neither
BASE 3 PF: EV

4. Choices c and d are reasonable.

Choice a is not reasonable because the two
nonsignificant chunk tests do not imply that the
overall chunk test is nonsignificant; in fact, the overall
chunk test was significant.
Choice b is not reasonable because the corresponding
chunk test was more significant than the chunk test
for interaction terms involving BASE.

5. Using the model of question 2,
H0: d2 ¼ d3 ¼ d4 ¼ d5 ¼ d6 ¼ 0.

LR ¼ �2 ln LReduced � (�2 ln LFull) � approx w25
under H0,
where the Full Model is the model of question 2, and
the Reduced Model does not contain the product
terms F 3 POST, F 3 PF, F 3 OCC, F 3 AGE, and
F�GEN.

6. PF, AGE, andGEN are eligible to be dropped from the
model. These variables are V variables that are not
components of the three product terms found
significant from interaction assessment.

7. No. The variables POST and OCC are lower order
components of the product terms F 3 POST and
BASE 3 OCC found significant, and are therefore to
be retained in the model (from the hierarchy
principle). Tests of significance for POST and OCC
will depend on the coding of the variables in the
model, so such tests are inappropriate, since they
should be independent of coding.

8. a. logit PðXÞ ¼ aþ b1Fþ b2BASE þ g1POSTþ g2PF
þ g3OCCþ g4AGEþ g5GEN
þ d1F� BASE þ d2F� POST
þ d9BASE �OCC

b. X* ¼ (3, 1, POST, PF, OCC, AGE, GEN), whereas
X ¼ (2, 0, POST, PF, OCC, AGE, GEN),
so

OR ¼ exp½b1 þ b2 þ 3d1 þ d2POSTþ d9OCC�
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9. a. Seven subsets of possible confounders other than
all confounders (in the gold standard model):
{AGE, GEN}, {AGE, PF}, {PF, GEN}, {AGE},
{GEN}, {PF}, {no variables}.

b.
OCC ¼ 1 OCC ¼ 0

POST ¼ 1 dOR11
dOR10

POST ¼ 0 dOR01
dOR00

dOR ij ¼ exp½b̂1 þ b̂2 þ 3d̂1 þ d̂2POSTi þ d̂9OCCj�
c. The collection of ORs in a table controlling for a

given subset of confounders would be compared to
the corresponding table of ORs for the gold
standard model. Those tables that collectively give
essentially the “same” odds ratios as found in the
gold standard table identify subsets of confounders
that control for confounding. However, to decide
whether one table of ORs is collectively the “same”
as the gold standard, you typically will need tomake
a subjective decision, which makes this approach
difficult to carry out.

d. You would construct two tables of confidence
intervals, one for the gold standard model and the
other for the reduced model obtained when PF and
GEN are dropped from the model. Each table has
the same form as shown above in part 9b, except
that confidence intervals would be put into each
cell of the table instead of estimated ORs. You
would then compare the two tables collectively to
determine whether precision is gained (i.e.,
confidence interval width is smaller) when PF and
GEN are dropped from the model.

10. a. Just because a model runs does not mean that there
is no collinearity problem, but rather that there is
no “perfect” collinearity problem (i.e, a “perfect”
linear relationship among some predictor
variables). If a collinearity problem exists, the
estimated regression coefficients are likely to be
highly unstable and therefore may give very
misleading conclusions.

b. Focus first on the highest CNI of 97. Observe the
VDPs corresponding to this CNI. Determine which
variables are high (e.g., VDP > 0.5) and whether
one of these variables (e.g., an interaction term) can
be removed from the model. Rerun the reduced
model to produce collinearity diagnostics (CNIs
and VDPs) again, and proceed similarly until no
collinearity problem is identified.
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c. Yes. The high VDP value on F 3 BASE suggests
that this product term is involved in a collinearity
problem. Such a problem was not previously found
or even considered when using SAS’s LOGISTIC
procedure to evaluate interaction. If it is decided
that F 3 BASE is collinear with other terms, then it
should be dropped from the model before any
further modeling is carried out.

d. The “best” choice is iii.
11. a. Suggested strategy: For each subject in the dataset,

compute DeltaBetas for the variables F and BASE
in your initial model and in your final “best” model.
Using plots of these DeltaBetas for each model,
identify any subjects whose plot is “extreme”
relative to the entire dataset. Do not use Cook’s
distance‐type measures since such measures
combine the influence of all variables in the model,
whereas the study focus is on the effect of F and/or
BASE variables. One problem with using
DeltaBetas, however, is that such measures detect
influence on a log OR scale rather than an
OR ¼ exp[b].

b. Any subject who is identified to be an influential
observation may nevertheless be correctly
measured on all predictor variables, so the
researcher must still decide whether such a subject
should be included in the study. A conservative
approach is to drop from the data only those
influential subjects whose measurements have
errata that cannot be corrected.

12. There is no well‐established method for reducing the
number of tests performed when carrying out a
modeling strategy to determine a “best” model. One
approach is to drop from the model any collection of
variables found to be not significant using a “chunk”
test. Bonferroni‐type corrections are questionable
because the researcher does not know in advance how
many tests will be performed.

Chapter 9 1. The data listing is in subject-specific (SS) format.
Even though the data listing is not provided as part of
the question, the fact that one of the predictors is a
continuous variable indicates that it would not be
convenient or useful to try to determine the distinct
covariate patterns in the data.

2. There are 186 covariate patterns (i.e., unique profiles).
Themain reason for this is that themodel contains the
continuous variable AGE. If, instead, AGE was a
binary variable, the model would only contain 24 or 16
covariate patterns.

Chapter 9 679



3. No. The model is not fully parameterized, since it
contains five parameters whereas the number of
covariate patterns is 186.

4. No. The model does not perfectly predict the case/
noncase status of each of the 289 subjects in the data.

5. a. The deviance value of 159.2017 is not calculated
using the deviance formula
Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ.
In particular� 2 ln L̂c ¼ 279:317 and � 2 ln L̂max ¼ 0,
so Devðb̂Þ ¼ 279:317.

b. The other logistic model, i.e., Model 2, is the model
that is defined by the 186 covariate patterns that
comprise the fully parameterized model derived
from the four independent variables PREVHOSP,
AGE, GENDER, and PAMU. This model will
contain 185 predictor variables plus an intercept
term.

c. 159:2017 ¼ �2 ln L̂Model 1 � ð�2 ln L̂Model 2Þ,
where� 2 ln L̂Model 1 ¼ 279:3170
and � 2 ln L̂Model 2 ¼ 279:3170� 159:2017 ¼ 120:1153.

d. G ¼ # of covariate patterns ¼ 186 is large relative
to n ¼ 289.

6. a. The HL test has a P‐value of 0.4553, which is highly
nonsignificant. Therefore, the HL test indicates
that the model does not have lack of fit.

b. Models 1 and 2 as described in question 5b.
c. Choose Model 1 since it provides adequate fit and is

more parsimonious than Model 2. However, a LR
test cannot be performed since the deviance for
Model 1 is based on a large number of covariate
patterns.

d. Neither model perfectly fits the data, since neither
model is a saturated model.

7. Consider the information shown in the output under
the heading “Partition for the Hosmer and Lemeshow
Test.”

a. The 10 groups are formed by partitioning the 289
predicted risks into 10 deciles of risk, where, for
example, the highest (i.e., 10th) decile contains
approximately the highest 10% of the predicted
risks.

b. Because subjects with the same value for the
predicted risk cannot be separated into different
deciles.

c. For group 5:
Expected number of cases ¼ sum of predicted risks
for all 29 subjects in group 5.
Expected number of noncases ¼ 29 � expected
number of cases
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d. For group 5, term involving cases:
(10�9.98)2/9.98 ¼ 0.00004
term involving noncases:
(20�20.02)2/20.02 ¼ 0.00002

e. 20 terms in the sum, with 10 terms for cases
(mrsa ¼ 1) and 10 terms for noncases (mrsa ¼ 0).

8. No. The model is not fully parameterized, since it
contains eight parameters whereas the number of
covariate patterns is 186.

9. No. The model does not perfectly predict the case/
noncase status of each of the 289 subjects in the data.

10. a. The deviance value of 157.1050 is not calculated
using the deviance formula

Devðb̂Þ ¼ �2 lnðL̂c=L̂maxÞ:
In particular� 2 ln L̂c ¼ 277:221 and� 2 ln L̂max ¼ 0,
so Devðb̂Þ ¼ 277:221.

b. G ¼ no. of covariate patterns ¼ 186 is large relative
to n ¼ 289.

11. a. The HL test has a P-value of 0.9686, which is highly
nonsignificant. Therefore, the HL test indicates
that the model does not have lack of fit.

b. Although the Hosmer-Lemeshow test for the
interaction model is more nonsignificant
(P ¼ 0.9686) than the Hosmer-Lemeshow test for
the no-interaction model (P ¼ 0.4553), both models
adequately fit the data and these two P-values are
not sufficient to concludewhichmodel is preferable.

c. Perform a (LR) test of hypothesis that compares
interaction and no-interaction models.
H0: d1 ¼ d2 ¼ d2 ¼ 0 in the interaction model;

LR ¼ �2 ln L̂no interaction � ð�2 ln L̂interactionÞ
¼ 279:317� 277:221 ¼ 2:096
¼ DevModel 1 �DevModel 2 ¼ 159:2017� 157:1050
¼ 2:0967;

which has approximately a chi-square distribution
with 3 d.f. under H0. The P-value satisfies
0.50 < P < 0.60, which indicates that H0 should
not be rejected. Conclusion: No-interaction
model is preferred.

Chapter 10 1. a.

True (Observed) Outcome

cp 5 0.30 Y ¼ 1 Y ¼ 0

Predicted Y ¼ 1 nTP ¼ 98 nFP ¼ 68

Outcome Y ¼ 0 nFN ¼ 16 nTN ¼ 107

n1 ¼ 114 n0 ¼ 175
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b. Sensitivity % ¼ 100(98/114) ¼ 86.0
Specificity % ¼ 100(107/175) ¼ 61.1
1 � specificity % ¼ 100�61.1 ¼ 100(68/175) ¼ 39.9
False positive % ¼ 100(68/166) ¼ 41.0
False negative % ¼ 100(16/123) ¼ 13.0

c. The denominator for calculating 1 � specificity is
the number of true negatives (n0 ¼ 175) whereas
the denominator for calculating the false positive
percentage is 166, the total number of patients who
were classified as postitive from the fitted model
using the cut-point of 0.300.

d. Correct (%) ¼ 100(98 þ 107)/(114 þ 175) ¼ 70.9,
which gives the percentage of all patients (i.e., cases
and noncases combined) that were correctly
classified as cases or noncases.

e. The sensitivity of 86.0% indicates that the model
does well in predicting cases among the true cases.
The specificity of 61.1 indicates that the model does
not do very well in predicting noncases among the
true noncases.

f. A drawback to assessing discrimination exclusively
using the cut-point of 0.300 is that the sensitivity
and specificity that results from a given cut-point
may vary with the cut-point chosen.

2. Plots for the following cut-points: 0.000, 0.200, 0.400,
0.600, 0.800, and 1.000

1.0Sensitivity

1 – specificity

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
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3. a.

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Sensitivity

1 – specificity

b. AUC ¼ c ¼ 0.840; good discrimination (grade B).
c. 19,950 ¼ 114 � 175, where 114 is the number of

true cases and 175 is the number of true noncases.
Thus, 19,950 is the number of distinct case/noncase
pairs in the dataset.

d. AUC ¼ c ¼ wþ 0:5z

np

¼ 19; 950ð:838Þ þ 0:5ð19; 950Þð:004Þ
19; 950

¼ 0:840

4. a. Area within entire rectangle ¼ 114 � 715 ¼ 19,950,
which is the number of case/noncase pairs in the
dataset used to compute the AUC.

b. The area under the superimposed ROC curve is
16,758, which is the numerator in the AUC formula,
giving essentially the number of case/noncase pairs
in which the predicted risk for the case is at least as
large as the predicted risk for the corresponding
noncase in the pair (where ties are weighed by 0.5).

5. a. Yes, the model fits the data because the HL statistic
is highly nonsignificant. Also, the corresponding
observed and expected cases are very close in each
decile, as is the corresponding observed and
expected noncases.

b. The distribution of observed cases indicates that
the higher is the decile, the higher is the number of
observed cases. The distribution of observed
noncases indicates that the lower is the decile, the
higher is the number of observed noncases. This
indicates that the model provides good
discrimination of the cases from the noncases.

c. The table provided for this part indicates that the
model poorly discriminates cases from noncases
and also provides poor GOF. Both the observed
cases and the observed noncases appear to be
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uniformly distributed over the deciles. In contrast,
good discrimination would be indicated by an
increasing trend in the observed cases and a
corresponding decreasing trend in the observed
noncases as the deciles of predicted risk increase
from low to high. The table indicates poor GOF
since, when considered collectively, corresponding
observed and expected cases differ substantially
over most deciles; similarly corresponding observed
and expected and noncases also differ substantially.

d. The table provided for this part indicates that the
model discriminates poorly but provides good fit.
Poor discrimination is indicated by the uniform
distributions of both observed cases and noncases
over the deciles. Good fit is indicated by the
closeness of corresponding observed and expected
cases and noncases over the deciles.

e. Yes, it is possible that a model might provide good
discrimination but have poor fit. An example is
given of data in which there is interaction, but a
no-interaction model provides good discrimination
despite not having good fit:

V ¼ 1 V ¼ 0

E ¼ 1 E ¼ 0 E ¼ 1 E ¼ 0

D ¼ 1 13 12 D ¼ 1 38 70

D ¼ 0 8 171 D ¼ 0 12 102

cORV¼1 ¼ 23:16 cORV¼0 ¼ 4:61

Model: logit PðXÞ ¼ b0 þ b1Eþ b2V
From the edited output shown below it can be seen
that the AUC ¼ 0.759, which indicates “fair” discrimi-
nation (Grade C), whereas the Hosmer GOF test indi-
cates poor lack of fit (P ¼ 0.0416):

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Std Error
Wald
Chi‐Sq Pr > ChiSq

Intercept 1 �2.6484 0.2676 97.9353 <.0001
E 1 2.1026 0.3218 42.7024 <.0001
V 1 0.0872 0.3291 0.0702 0.7911

Odds Ratio Estimates

Effect Pt Estimate 95% Wald Confidence Limits
E 8.188 4.358 15.383
V 1.091 0.572 2.080
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Association of Predicted Probabilities and Observed Responses

Percent Concordant 65.2 Somers’ D 0.518
Percent Discordant 13.4 Gamma 0.660
Percent Tied 21.5 Tau‐a 0.144
Pairs 25205 c 0.759

Partition for the Hosmer and Lemeshow Test

Event Nonevent
Group Total Observed Expected Observed Expected
1 179 8 11.83 171 167.17
2 114 12 8.17 102 105.83
3 25 13 9.17 12 15.83
4 108 38 41.83 70 66.17

Hosmer and Lemeshow Goodness‐of‐Fit Test

Chi‐Square DF Pr > ChiSq
6.3576 2 0.0416

Chapter 11 True‐False Questions:

1. T

2. F: information may be lost from matching: sample
size may be reduced by not including eligible controls

3. T

4. T

5. T

6. McNemar’s chi square: (X � Y)2/(X þ Y) ¼
(125 �121)2/(125 þ 121) ¼ 16/246 ¼ 0.065, which is
highly nonsignificant. TheMOR equalsX/Y ¼ 125/121 ¼
1.033. The conclusion from this data is that there is no
meaningful or significant effect of exposure (Vietnam
veteran status) on the outcome (genetic anomalies of
offspring).

7. logit PðXÞ ¼ aþ bEþ �
8501

i¼1
g1iV1i;

where the V1i denote 8,501 dummy variables used to
indicate the 8,502 matched pairs.

8. The Wald statistic is computed as Z ¼ 0.032/0.128 ¼
0.25. The square of this Z is 0.0625, which is very close
to the McNemar chi square of 0.065, and is highly
nonsignificant.

9. The odds ratio from the printout is 1.033, which is
identical to the odds ratio obtained using the formula
X/Y.

10. The confidence interval given in the printout is com-
puted using the formula

exp b̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvar b̂
� �r� �

;

where the estimated coefficient b̂ is 0.032 and the square

root of the estimated variance, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarðb̂Þq
, is 0.128.
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Chapter 12 True-False Questions:

1. F: The outcome categories are not ordered.

2. T

3. T

4. F: There will be four estimated coefficients for each
independent variable.

5. F: The choice of reference category will affect the
estimates and interpretation of the model parameters.

6. Odds ¼ exp[a2 þ b21(40)þ b22(1)þ b23(0)þ b24(HPT)]
¼ exp[a2 þ 40b21 þ b22 þ (HPT)b24]

7. OR ¼ exp(b12)
8. OR ¼ exp[(50�20)b21] ¼ exp(30b21)
9. H0: b13 ¼ b23 ¼ b33 ¼ b14 ¼ b24 ¼ b34 ¼ 0

Test statistic: �2 log likelihood of the model without
the smoking and hypertension terms (i.e., the reduced
model), minus �2 log likelihood of the model contain-
ing the smoking and hypertension terms (i.e., the full
model from Question 6).
Under the null hypothesis the test statistic follows an
approximate chi-square distribution with six degrees
of freedom.

10. ln
PðD ¼ gjXÞ
PðD ¼ 0jXÞ

� �
¼ ½ag þ bg1AGEþ bg2GENDER

þbg3SMOKEþ bg4HPT

þbg5ðAGE�GENDERÞ
þbg6GENDER� SMOKEÞ�,

where g ¼ 1, 2, 3.
Six additional parameters are added to the interaction
model (b15, b25, b35, b16, b26, b36).

Chapter 13 True-False Questions:

1. T

2. T

3. F: each independent variable has one estimated coef-
ficient

4. T

5. F: the odds ratio is invariant no matter where the cut-
point is defined, but the odds is not invariant

6. T

7. F: the log odds (D � 1) is the log odds of the outcome
being in category 1 or 2, whereas the log odds ofD� 2 is
the log odds of the outcome just being in category 2.

8. T: in contrast to linear regression, the actual values,
beyond the order of the outcome variables, have no
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effect on the parameter estimates or on which odds
ratios are assumed invariant. Changing the values of
the independent variables, however, may affect the
estimates of the parameters.

9. odds ¼ exp (a2 þ 40b1 þ b2 þ b3)
10. OR ¼ exp [(1�0) b3 þ (1�0) b4] ¼ exp (b3 þ b4)
11. OR ¼ exp (b3 þ b4); the OR is the same as in Question

10 because the odds ratio is invariant to the cut-point
used to dichotomize the outcome categories

12. OR ¼ exp [�(b3 þ b4)]

Chapter 14 True-False Questions:

1. T

2. F: there is one common correlation parameter for all
subjects.

3. T

4. F: a function of themean response ismodeled as linear
(see next question)

5. T

6. T

7. F: only the estimated standard errors of the regression
parameter estimates are affected. The regression
parameter estimates are unaffected

8. F: consistency is an asymptotic property (i.e., holds as
the number of clusters approaches infinity)

9. F: the empirical variance estimator is used to estimate
the variance of the regression parameter estimates,
not the variance of the response variable

10. T

Chapter 15
1. Model 1: logit P (D¼ 1 jX)¼ b0þ b1RXþ b2SEQUENCE

þ b3 RX� SEQ

Model 2: logit P (D ¼ 1 j X) ¼ b0 þ b1RX
þ b2SEQUENCE

Model 3: logit P(D ¼ 1 j X) ¼ b0 þ b1RX
2. Estimated OR (where SEQUENCE ¼ 0)

¼ exp(0.4184) ¼ 1.52
95% CI: exp[0.4184 � 1.96(0.5885)] ¼ (0.48, 4.82)

Estimated OR (where SEQUENCE ¼ 1)
¼ exp(0.4184 � 0.2136) ¼ 1.23

95% CI : exp
	ð0:4184� 0:2136Þ

�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3463þ 0:6388� 2ð0:3463Þp 
 ¼ ð0:43; 3:54Þ
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Note: varðb̂1 þ b̂3Þ ¼ varðb̂1Þ þ varðb̂3Þ þ 2 covðb̂1; b̂3Þ.
See Chap. 5.

3. The working covariance matrix pertains to the covari-
ance between responses from the same cluster. The
covariance matrix for parameter estimates pertains to
the covariance between parameter estimates.

4. Wald test: H0: b3 ¼ 0 for Model 1

Test statistic: z2 ¼ (0.2136/ 0.7993)2 ¼ 0.069;
P-value ¼ 0.79
Conclusion: do not reject H0.

5. Score test: H0: b3 ¼ 0 for Model 1

Test statistic ¼ 0.07 test statistic distributed w21df
P-value ¼ 0.79
Conclusion: do not reject H0.

6. dOR ðfrom Model 2Þ: expð0:3104Þ ¼ 1:36;dOR ðfrom Model 3Þ: expð0:3008Þ ¼ 1:35:

The odds ratios for RX are essentially the same
whether SEQUENCE is or is not in the model, indicat-
ing that SEQUENCE is not a confounding variable by
the data-based approach. From a theoretical perspec-
tive, SEQUENCE should not confound the association
between RX and heartburn relief because the distri-
bution of RX does not differ for SEQUENCE ¼ 1
compared to SEQUENCE ¼ 0. For a given patient’s
sequence, there is one observation where RX ¼ 1, and
one observation where RX ¼ 0. Thus, SEQUENCE
does not meet a criterion for confounding in that it is
not associated with exposure status (i.e., RX).

Chapter 16 True-False Questions:

1. F: a marginal model does not include a subject-
specific effect

2. T

3. T

4. T

5. T

6. logit mi ¼ b0 þ b1RXi þ b2SEQUENCEi

þ b3RXi � SEQi þ b0i
7. dORðwhereSEQUENCE¼0Þ¼expð0:4707Þ¼1:60dORðwhereSEQUENCE¼1Þ¼expð0:4707�0:2371Þ¼1:26

8. dOR ¼ expð0:3553Þ ¼ 1:43
95% CI : exp½0:3553� 1:96ð0:4565Þ� ¼ ð0:58; 3:49Þ

9. The interpretation of the odds ratio, exp(b1), using the
model for this exercise is that it is the ratio of the odds
for an individual (RX ¼ 1 vs. RX ¼ 0). The interpreta-
tion of the odds ratio for using a corresponding GEE
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model (a marginal model) is that it is the ratio of the
odds of a population average.

10. The variable SEQUENCE does not change values
within a cluster since each subject has one specific
sequence for taking the standard and active treat-
ment. The matched strata are all concordant with
respect to the variable SEQUENCE.
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A
Additive interaction, 53, 77
Adjusted odds ratio, 26, 27, 82
ALR. See Alternating logistic

regressions
Alternating logistic regressions (ALR),

570–575
Area under the ROC curve (AUC),

355–365
c statistic formula, 359
geometrical approach, 362–365

Aspirin-Heart Bypass Study, 551–555,
572–575

Asymptotic properties, 516
Autoregressive correlation structure,

512
AR1, 498, 513, 545

B
Backdoor path, 177
Background odds, 20
Backward elimination approach,

184–185
criticized, 264
an option for screening variables, 263

Baseline odds, 20
Berkson’s bias, 178
“Best” model, guidelines for, 168
Biased estimates, 117, 123

in causal diagrams, 175–179
Binomial-based model, 112
Black/White Cancer Survival Study,

434, 470
Block diagonal matrix, 509
Bonferroni correction, 281–282

C
C measures, 274
Case-control study, 11–15, 392, 400–403

intercept in, 116
pair-matched, 109–111, 395, 400–401

Category matching, 393
Causal diagrams, 175–179

for common effect, 177–178
for confounding, 177
example with several exposures, 263

Change-of-estimate rule, 251, 255
Chi-square tests, 134, 138

Mantel–Haenszel, 134, 396
Chunk test, 207–208

several exposure variables, 248
Classification table, 348, 350–352
CLR. See Conditional logistic regression
Coding

for dichotomous variables, 77–82
tests dependent on, 183
tests independent of, 183–184

Collinearity, 270–275
condition indices, 271–273
EVW model, 173–174
diagnosing, 271
qualitative, 180
variance decomposition proportions

(VDP’s), 271–273
when screening variables, 263, 267

Common effect from two or more
causes, 177–178

conditioning on, 178
Complete separation of points, 358
Computer data sets, 599–602
Conditional estimate, 111, 403
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Conditional likelihood, 107–111,
115–116

Conditional logistic regression, 398, 403,
575–579

SAS and, 612–614
SPSS and, 642–643
Stata and, 656–657

Condition indices (CNI’s), 271
Confidence intervals, 121

estimation of, 120, 140–141
interactions and, 142–146
large-sample formula, 121, 447, 473
matching, 393
narrower, 214
odds ratios and, 141, 472–475
one coefficient, 140–142

Confounding
assessment, 171–172, 204–230
causal diagrams for, 177
change-of-estimate rule, 251, 255
general procedure, 216
interactions and, 215–223
modeling strategy for, 204–220
odds ratio and, 87–91, 221
potential, 56, 57, 60, 62, 399
precision and, 211
screening, 264
several exposure variables, 250–251, 254

Consistency, 516, 565
Controls, 392
Control variables, 55
Cook’s distance, 276
Cook’s distance-type measures, 274
Correlation. See also specific procedures,

parameters
autoregressive, 498, 512–513, 545
block diagonal matrix and, 509
covariance and, 500–502
defined, 500
effects of ignoring, 497
exchangeable, 511
fixed, 515
independent, 511
matrix forms, 507–509
stationary m-dependent, 514
structures, 507–510
types of, 511–516
unstructured, 510, 514–515

Covariance
correlation and, 500–502
defined, 500
matrix forms, 117–118, 132–133, 671

Covariate pattern, 307–310
number of covariate patterns (G),

307–308, 314–317
Cox proportional hazards regression,

169
Cross-sectional studies, 11–15
Cut-point (for classification), 348–352

D
Data layout for correlated analysis, 499
Data sets, computer. See Computer data

sets
Deciles of risk, 318–319
Degrees of freedom, 134, 449
Delta-beta, 275–276
Dependence, and coding, 182–183
Descriptive analyses, 181
Deviance, 312–317

events trials deviance (DevET), 314–315
subject specific deviance (DevSS),

315–317
Diagnostic table, 348
Diagonal matrix, 508
Dichotomous data, 5, 440, 502–503

coding schemes for, 77–82
GEE and, 646–648, 659–660

Discriminant function analysis, 107
Discrimination measures

c statistic, 359, 367–368
gamma, 367–368
Somer’s D, 367–368
Tau-a, 367–368

Discriminatory performance (DP),
304–305, 356

Dispersion, 523
Dummy variables, 82, 398, 399

interaction and, 405
matching and, 109

E
Effect modifiers, 57, 405
Eligible subsets, 214
Elimination, candidates for, 216
Epidemiologic study framework, 8
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Estimated variance-covariance matrix,
117–118, 132–133

Evans County Heart Disease Study, 61,
62, 118, 146, 158, 188, 223–230,
599

Events-trials (ET) format, 307
E, V, W model, 55–64

general, 56–57
logit form of, 76
several exposure variables, 85–92, 245–246

Exchangeable correlation structure, 511
Exchangeable sets, 407
Exposure variables, 4, 46

EVW model, 245–247
odds ratio for, 87–91
single, 45

Extra variation, 523

F
False negatives (FN), 350
False positive rate (FPR), 355

1–specificity (synonym for FPR), 349,
353, 355

False positives, (FP), 350
Family-wise error rate, 280
Fixed correlation structure, 515
Fixed effects, 576, 579
Follow-up studies, 11–15
Forward selection approach

an option for screening variables, 264
criticized, 264

Full model, 135
Fully parameterized model, 308–311

G
GEE. See Generalized estimating

equations
Generalized linear mixed model

(GLMM), 580–587
Generalized linear models (GLM),

503–506, 526
Generalizing estimating equations

(GEE) model, 492–538, 540–565
ALR model and, 569, 574
Aspirin-Heart Bypass Study, 551–555
asymptotic properties of, 516
defined, 506–507
dichotomous data and, 646–648, 658–660
GLM and, 526

Heartburn Relief Study, 555–557
Infant Care Study, 542–550
matrix notation for, 524–525
parameters in, 526
score-like equations and, 524–528
statistical properties of, 516

General odds ratio formula, 84
GLM. See Generalized linear models
GLMM. See Generalized linear mixed

model
Gold standard model, 212–215, 219
Goodness of fit (GOF), 304–325
Group prediction, 307, 310
Group saturated, 307, 310

H
Hat symbol, 9
Heartburn Relief Study, 555–557
Hierarchical backward-elimination

approach (HBWE), 184–185
Hierarchically well-formulated (HWF)

model, 181–184, 406
Hierarchy principle, 185

applying, 216
product terms and, 191
rationale for, 186
retained variables, 185–187

Hosmer–Lemeshow statistic, 318–325
examples, 320–325
formula, 320
table of observed and expected cases,

319
HWF. See Hierarchically well-

formulated model
Hypothesis Generating Model, 260
Hypothesis testing, 9, 117, 120, 132–153

I
Identity matrix, 511
Independent correlation structure, 511
Independent of coding tests, 182–183
Independent variables, 4–5
Indicator variables, 398–399
Individual prediction, 310
Infant care study, 493–498, 542–550, 559
Inference, statistical, 117–121, 130–153,

441–444. See also specific
methods

Influential observations, 173, 275–278
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Information matrix (I�1), 271
Interactions

additive, 51
assessment of, 170–171, 190, 207–210
coefficients of, 398
confidence interval estimation with,

142–146
confounding and, 215–223
dummy variables and, 405
likelihood ratio test, 150
matching, 404–406
modeling strategy for, 204–230
multiplicative, 49–55
no interaction, 51–52, 63, 211–215
odds ratio for several exposure variables

with, 87–91
precision and, 211–215
product terms, 405
screening, 265
several exposure variables, 246
variables for, 56
Wald tests, 448

Intercept term, 82, 116
Interval estimation. See Confidence

interval estimation
Interval variables, 79
Invariance, 467–468
Iterative methods, 113

J
Joint probability, 112, 114, 451

L
L. See Likelihood function
Large-sample formula, 121, 447, 473
Large versus small number of

parameters debate, 108–110
Least squares (LS) estimation, 106
Likelihood function (L), 111–117

for conditional method, 114, 115
for ordinal model, 478–479
for polytomous model, 450–452
for saturated model, 311
for unconditional method, 114

Likelihood ratio (LR) statistic, 134–138,
449, 519

carrying out, 148
defined, 120
interaction terms, 150

Likelihood statistic, log, 134
Linear regression, 169
Link function, 505, 506
Logistic function, shape of, 6–7
Logistic model, 5–8. See also Logistic

regression
application of, 9–11
defined, 8
follow-up study and, 14–15
interaction, 49–55, 84
matching and, 397–400
multiplicative interaction, 49–55
simple analysis, 43–46
special cases of, 42–66

Logistic regression. See also Logistic
model

ALR, 570–575
basic features of, 4–7
computing odds ratio in, 74–91
conditional, 398, 403, 575–579, 612–614,

642–643, 656–657
defined, 5
introduction to, 2–32
matching and, 392–406
multiple standard, 479–481
ordinal, 466, 481, 620–621, 644–646,

658
polytomous, 434–457, 617–619, 643, 657
statistical inferences for, 117–121,

130–153, 441–444
stratified analysis, 398
unconditional, 602–612, 635–640,

649–654
Logit form, of EVW model, 76
Logit transformation, 16–22

logistic model and, 17
log odds and, 19–21

Log likelihood statistic, 134
Log odds, logit and, 19–21
LR statistic. See Likelihood ratio
LS. See Least squares estimation

M
Main effect variables, 27, 53
Mantel–Haenszel odds ratio (MOR),

23, 396
Marginal model, 19, 20
Matching, 116

application of, 400–403
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basic features of, 392–394
case-control studies, 392–409
category matching, 393–394
cohort studies, 409–413
confidence intervals, 393
exchangeability and, 407–408
follow-up data, 409–413
interaction and, 404–406
logistic model and, 397–400
major disadvantage, 394
matching factors, 392
ML estimation and, 401
pooling, 407–409
precision and, 393
stratification, 394–397
validity and, 394

Mathematical models, 5
Matrix algebra, 117–118, 132–133,

507, 524
Maximum likelihood (ML) methods,

106–107
numerical example, 147–153
overview, 106
statistical inferences using, 130–153
subject-specific saturated model, 312
unconditional versus conditional,

107–109
McNemar test, 396–397, 412
Meaningful change in OR,

concept of, 217
Methicillin-resistance infection (MRSA)

example, 244
Method 0, 265–270
MI dataset, 600
Mixed logistic model (MLM),

580, 584
ML. See Maximum likelihood methods
MLM. See Mixed logistic model
Modeling strategy

confounding and, 203–230
example of, 188–192
guidelines for, 165–192
interaction and, 203–230
overview of, 169–173
rationale for, 168–169
several exposure variables, 244–262

Moderate samples, 121
MOR. See Mantel–Haenszel odds ratio
Multicollinearity, 172, 280

Multilevel outcomes, 432
Multiple linear regression, 169
Multiple standard logistic regressions,

453, 479–481
Multiple testing, 172
Multiplicative interaction, 49–53
Multivariable problem, 4–5

N
No interaction model, 63, 78–79, 83–85,

149–150, 152–153, 211–215
Nominal exposure variable, 82–84
Normal distribution, 141
Nuisance parameters, 116, 526, 575
Null hypotheses, 54, 280

O
Odds, 18–19
Odds ratio (OR), 11–13

adjusted, 26, 27, 77
computation of, 25–26, 64, 74–91
confidence limits, 141, 472–475
confounders and, 87–91, 221
correlation measure and, 571
examples of, 22–23
exchangeable, 573
as fixed, 60, 79
formula for, 22–25, 84
invariance of, 468
logistic regression and, 74–91
MOR and, 396
risk ratio and, 15–16
three categories, 437–441

One-to-one matching, 393
OR. See Odds ratio
Ordinal logistic regression, 466–472

SAS and, 620–621
SPSS and, 644–646
Stata and, 658

Ordinal models, 466–472
Ordinal variables, 79

P
Pair matching, 110–111, 393–398,

400–403
Parameterizing, of model, 470
Parameters, number of, 108
Pearson statistic, 322
Perfect fit, 305
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Perfect prediction, 310
Polytomous logistic regression, 434–437

adding variables, 444–448
extending, 444–449
likelihood function for, 450–452
odds ratios from, 440
ordinal model and, 472
proportional odds model, 468–469
SAS and, 617–619
SPSS and, 643–644
Stata and, 657

Pooling, 407–409
Potential confounders, 56, 57, 60, 65,

399
Precision

confounding and, 211
consideration of, 171, 222–223
gaining, 214
interaction and, 215–223
matching and, 393
validity and, 211–212

Predicted risk, 10
Prediction, 167
Probability, 6, 18–19, 45, 112
Product terms, 28, 62, 119, 174

hierarchy principle, 190–192, 196
interaction and, 210, 399, 405

Proportional odds model, 466–472
alternate formulation of, 469
polytomous model, 468–469

Q
Quasi-likelihood

estimating equations, 522
methods, 506

R
Random effects, 579–585
Rare disease assumption, 16
Receiver operating characteristic (ROC)

curve, 349, 355–358
SAS and, 614–617
SAS and, 640–642
SAS and, 654–656

Reduced model, 54, 135
Referent group, 50, 392
Retaining variables, 185–186
Risk, 10, 43
Risk estimates, 13

Risk odds ratio (ROR), 23–24
estimated, 26
general formula for, 47–48
product formula for, 25

Risk ratio (RR), 11–13, 15–16
Robust conditions, 12
ROR. See Risk odds ratio
RR. See Risk ratio
R-to-1 matching, 393

S
Sample size, 121
SAS software, 107, 553, 602–634
Saturated model, 305–307, 311
Scale factor, 522, 526–527
Score equations, 521–523
Score-like equations, 521–528
Score statistic, 140
Score test, 472–473, 480, 519–523
Screening variables, 263–270

assessing confounding, 264
assessing interaction, 264
collinearity, 264, 267

Sensitivity, 349
Simple analysis, 46–48
Single exposure variables, 45
Small samples, 121
Small versus large number of

parameters debate, 108–110
Software packages. See Computer data

sets; specific programs
Specificity, 349
SPSS software, 107, 553, 635–648
Standard error, estimated, 140–141
Standard logistic regression, 441
Stata software, 107, 553, 649–665
Stationary m-dependent correlation

structure, 514
Statistical inference, 117–121,

130–153
Statistical tests for GEE, 519–520
Stratification, 116, 398

logistic regression, 398
matching and, 394–397

Study variables, 4
Subject-specific effects, 580–585
Subsets, eligible, 214
Symmetric matrix, 508
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T
Test-wise error rate, 280
Threshold idea, 7
Time-dependent variables, 494
Time-independent variables, 494
Trapezoid method, 360, 363–364
True negatives (TN), 349
True positive rate (TPR), 355
True positives (TP), 349

U
Unbiased estimates, 117
Unconditional estimate, 403
Unconditional logistic regression

SAS and, 602–612
SPSS and, 635–640
Stata and, 649–654

Unconditional ML approach,
107–111

Unknown parameters, 8
Unstructured correlation structure, 510,

512–513

V
Validity, 169

matching and, 394
precision and, 171–172

Variable specification, 169, 173–175,
180–181, 245

Variables, retaining, 184–185
Variance-covariance matrix, 117–118,

121, 123, 132–133
collinearity assessment, 272

Variance decomposition proportions, 271
Variance estimators, 516–519

W
Wald tests, 138–140

carrying out, 148
defined, 120
GEE models and, 519
ordinal model and, 475
polytomous model and, 443, 448

Z
Z statistic, 139–140
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