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84 Computer Simulation Studies
in Condensed-Matter Physics XI
Editors: D.P. Landau and H.-B. Schüttler
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Preface

Besides turbulence there is hardly any other scientific topic which has been
considered as a prominent scientific challenge for such a long time. Although
turbulence is based on classical physics and the formulation of the basic equa-
tions seems reasonably straightforward, a deep general understanding remains
a mystery. To pronounce its importance the Clay Mathematics Institute (Cam-
bridge, Massachusetts) has defined turbulence as one of the seven Millennium
problems in Mathematics.

The special interest in turbulence is not only based on it being a difficult
scientific problem but also on its meaning in the technical world and our daily
life. For example, turbulence has an obvious significance in aeronautics, in
the mixing of chemicals in the pharmaceutical industry and even in the daily
weather forecast.

This broad interdisciplinary interest has in the past lead to an increas-
ing diversification of the research into distinct disciplines. Thus turbulence is
nowadays a topic in mathematics, physics, engineering, geosciences and com-
puter sciences and has lead to different research directions in these fields. In
Physics, e.g., the concepts of universality play a central role, whereas the phe-
nomena of real flow situations are partially neglected. For applied engineering
problems the famous k-ε model is often employed, although it is known that
this approach to turbulence describes physical features of several flow situa-
tions incorrectly.

In the last decades turbulence research in the fields of engineering and
physics has developed in parallel with a rather poor transfer of knowledge
between them. To close the gap between engineering and physical sciences
and to improve interchange of knowledge the interdisciplinary turbulence ini-
tiative was founded in 1999. In the framework of this initiative about twenty
projects each consisting of a cooperation between engineers and physicists are
funded by the German science foundation DFG. One important event of the
initiative was to organize an international conference which was held in Bad
Zwischenahn in September 2003. During the days of the conference an enthu-
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siastic and stimulating atmosphere of discussions and interchange between the
different disciplines prevailed.

To capture the different aspects and topics of the meeting the organizers
decided to put together a written collection of the contributions and hence
make them more accessible to a larger number of scientists. As the editors
of this book we decided to pool the contributions together under different
headlines to pronounce the different facets of the conference. The topics are
mathematical and other approaches to model turbulence, experimental ob-
servations, and different methods of simulations. The contributions document
the considerable progress made in all fields.

We would like to take the chance to thank all authors for their contribu-
tions, the Springer-Verlag, Heidelberg, especially Thomas Ditzinger for his
assistance and the DFG for the financial support. Finally we are very grateful
to George Khujadze for doing the tedious work of integrating all contributions
and giving the book its optical finish.

Oldenburg and Darmstadt J. Peinke, M. Oberlack,
Summer 2004 A. Kittel and S. Barth,
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4 Physics Department, Oldenburg University, 26111 Oldenburg, Germany
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Three-dimensional turbulence simulations are used to show that the turbu-
lent root mean square velocity is an upper bound of the speed of turbulent
diffusion. There is a close analogy to magnetic diffusion where the maximum
diffusion speed is the speed of light. Mathematically, this is caused by the
inclusion of the Faraday displacement current which ensures that causality
is obeyed. In turbulent diffusion, a term similar to the displacement current
emerges quite naturally when the minimal tau approximation is used. Simu-
lations confirm the presence of such a term and give a quantitative measure
of its relative importance.

1 Introduction

Since the seminal paper of Prandtl (1925), turbulent diffusion has always been
an important application of turbulence theory. By analogy with the kinetic
theory of heat conduction, the turbulent exchange of fluid elements leads to
an enhanced flux, F , of a passive scalar concentration that is proportional to
the negative mean concentration gradient,

F = −κt∇C (Fickian diffusion), (1)

where κt = 1
3urms�cor is a turbulent diffusion coefficient, urms is the turbulent

rms velocity, and �cor is the correlation length. Equation (1) leads to a closed
equation for the evolution of the mean concentration, C,

∂C

∂t
= κt∇2C. (2)

This is an elliptic equation, which implies that signal propagation is instan-
taneous and hence causality violating. For example, if the initial C profile
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is a δ-function, it will be a gaussian at the next instant, but gaussians have
already infinite support.

The above formalism usually emerges when one considers the microphysics
of the turbulent flux in the form F = u

∫
ċdt, where ċ ≈ −u · ∇C is the

linear approximation to the evolution equation for the fluctuating component
of the concentration. Recently, Blackman & Field (2003) proposed that one
should instead consider the expression

∂F/∂t = u̇c + uċ. (3)

On the right hand side, the nonlinear terms in the two evolution equations for
u and c are not omitted; they lead to triple correlations which are assumed
to be proportional to −F/τ , where τ is some relaxation time. Furthermore,
there is a priori no reason to omit the time derivative on the left hand side
of equation (3). It is this term which leads to the emergence of an extra time
derivative (i.e. a ‘turbulent displacement flux’) in the modified ‘non-Fickian’
diffusion law,

F = −κt∇C − τ
∂F
∂t

(non-Fickian). (4)

This turns the elliptic equation (2) into a damped wave equation,

∂2C

∂t2
+

1
τ

∂C

∂t
= 1

3u
2
rms∇2C. (5)

The maximum wave speed is obviously urms/
√

3. Note also that, after multi-
plication with τ , the coefficient on the right hand side becomes 1

3τu
2
rms = κt,

and the second time derivative on the left hand side becomes unimportant in
the limit τ → 0, or when the physical time scales are long compared with τ .

2 Validity of Turbulent Displacement Flux
and Value of τ

A particularly obvious way of demonstrating the presence of the second time
derivative is by considering a numerical experiment where C = 0 initially.
Equation (2) would predict that then C = 0 at all times. But, according to
the alternative formulation (5), this need not be true if initially ∂C/∂t �= 0.
In practice, this can be achieved by arranging the initial fluctuations of c such
that they correlate with uz. Of course, such highly correlated arrangement
will soon disappear and hence there will be no turbulent flux in the long time
limit. Nevertheless, at early times, 〈C2〉1/2 (a measure of the passive scalar
amplitude) rises from zero to a finite value; see Fig. 1.

Closer inspection of Fig. 1 reveals that when the wavenumber of the forcing
is sufficiently small (i.e. the size of the turbulent eddies is comparable to the
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Fig. 1. Passive scalar amplitude, 〈C2〉1/2, versus time (normalized by urmskf) for
two different values of kf/k1. The simulations have 2563 meshpoints. The results are
compared with solutions to the non-Fickian diffusion model.

Fig. 2. Strouhal number as a function of kf/k1 for different values of ReLS, i.e.
the large scale Reynolds number. The resolution varies between 643 meshpoints
(ReLS = 100) and 5123 meshpoints (ReLS = 1000).

box size), 〈C2〉1/2 approaches zero in an oscillatory fashion. This remarkable
result can only be explained by the presence of the second time derivative
term giving rise to wave-like behavior. This shows that the presence of the
new term is actually justified. Comparison with model calculations shows that
the non-dimensional measure of τ , St ≡ τurmskf , must be around 3. (In mean-
field theory this number is usually called Strouhal number.) This rules out the
validity of the quasilinear (first order smoothing) approximation which would
only be valid for St → 0.

Next, we consider an experiment to establish directly the value of St. We do
this by imposing a passive scalar gradient, which leads to a steady state, and
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Fig. 3. Visualizations of C on the periphery of the simulation domain at a time when
the simulation has reached a statistically steady state. kf/k1 = 1.5, ReLS = 400.

measuring the resulting turbulent passive scalar flux. By comparing double
and triple moments we can measure St quite accurately without invoking a
fitting procedure as in the previous experiment. The result is shown in Fig. 2
and confirms that St ≈ 3 in the limit of small forcing wavenumber, kf . The
details can be found in Brandenburg et al. (2004). A Visualization of C on the
periphery of the simulation domain is shown in Fig. 3 for kf = 1.5. Note the
combination of large patches (scale ∼ 1/kf) together with thin filamentary
structures.

Finally, we should note that equation (3) in the passive scalar problem was
originally motivated by a corresponding expression for the electromotive force
in dynamo theory, where the u̇ terms leads to the crucial nonlinearity of the
α-effect (Blackman & Field 2002).
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Extremalizing Vector Fields as Guides Toward
Understanding Properties of Turbulence

F.H. Busse

Institute of Physics, University of Bayreuth, D-95440 Bayreuth
busse@uni-bayreuth.de

1 Introduction

The theory of rigorous upper bounds on turbulent transports has just passed
its fortieth anniversary since it was in 1963 that Howard’s pioneering pa-
per has been published. The theory has progressed considerably since that
time and may still not have reached its full potential. Howard’s analysis[1]
provides upper bounds on the heat transport by turbulent convection in a
fluid layer heated from below and its methods have later been applied to
problems of transports of mass, linear momentum and angular momentum
[2, 3, 4, 5]. A significant progress was achieved through the discovery of the
multi-alpha-solutions of the variational problems in the case when the equa-
tion of continuity is imposed as constraint on the extremalizing vector fields
[6]. In the 1990ies the theory of upper bounds experienced a revival through
the independent development of the background field method [7, 8]. Although
the background field is initially introduced as a mathematical device to facil-
itate the derivation of bounds for various terms in the energy balance, when
optimized the method leads to the same bounds on turbulent transports as
the Howard-Busse method of solving Euler-Lagrange equations [9, 10, 11].
The equivalence of the two methods has been demonstrated in an important
paper by Kerswell [12].

While rigorous bounds on global properties of turbulent states of fluid flow
are welcome results, certain features of the extremalizing vector fields may be
of even deeper interest because of similarities with properties of the realized
turbulent velocity fields. In order to discuss these aspects of the optimum
theory of turbulence, - as the upper bound theory is sometimes called -, we
first have to outline its procedure. Thereafter we shall discuss the ways in
which solutions of the variational problems may help to understand proper-
ties of turbulent flows and relationships between different turbulent systems.
An example for the latter is relationship between the turbulent transport of
momentum and the turbulent resistivity in a layer of an electrically conducting
fluid that has recently been studied [13].
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2 Formulation of the Variational Problem for Turbulent
Couette Flow

In order to introduce the optimum theory of turbulence we consider the sim-
plest configuration for which a non-trivial solution of the Navier-Stokes equa-
tions of motion exists: the configuration of plane Couette flow. The Reynolds
number is defined in this case in terms of the constant relative motion U0i be-
tween the plates, Re = U0d/ν, where i is the unit vector parallel to the plates
and ν is the kinematic viscosity of the fluid. Using the distance d between
the plates as length scale and d2/ν as time scale the basic equations can be
written in dimensionless form,

∂

∂t
v + v · ∇v = −∇p + ∇2v, (1)

∇ · v = 0. (2)

We use a cartesian system of coordinates with the x, z-coordinates in the
directions of i and k, respectively, where k is the unit vector normal to the
plates such that the boundary conditions are given by

v = ∓1
2
Re i at z = ±1

2
. (3)

After separating the velocity field v into its mean and fluctuating parts, v =
U + v̌ with v = U, v̌ = 0, where the bar denotes the average over planes
z = const. we obtain by multiplying equation (1) by v̌ and averaging it over
the entire fluid layer (indicated by angular brackets)

1
2
d

dt
〈| v̌ |2〉 = −〈uw · ∂

∂z
U〉 − 〈| ∇v̌ |2〉. (4)

Here u denotes the component of v̌ perpendicular to k and w is its z− com-
ponent. If we define fluid turbulence under stationary conditions by the prop-
erty that quantities averaged over planes z = const. are time independent,
the equation for the mean flow U can be integrated to yield

d

dz
U = wu − 〈wu〉 − Re i (5)

where the boundary condition (3) has been employed. With this relationship
U can be eliminated from the problem and the energy balance

〈| ∇u |2〉 + 〈| uw − 〈uw〉 |2〉 = Re〈uxw〉 (6)

is obtained where the identity 〈uw2〉−〈uw〉2 = 〈|uw−〈uw〉|2〉 has been used.
Since the momentum transport in the x−direction between the moving

rigid plates is described by M = −dUx/dz |z=± 1
2
= 〈uxw〉 + Re we can con-

clude immediately that the momentum transport by turbulent flow always
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exceeds the corresponding laminar value because 〈uxw〉 is positive according
to relationship (6). Since a lower bound on M thus exists an upper bound µ on
〈uxw〉 as a function of Re is of primary interest. Following Howard [1] it can
be shown that µ(Re) is a monotonous function and it is therefor equivalent
to ask for a lower bound R of Re at a given value µ of 〈uxw〉. We are thus led
to the following formulation of the variational problem:

Find the minimum R(µ) of the functional

R(ṽ, µ) ≡ 〈| ∇ṽ |2〉
〈ũxw̌〉 + µ

〈|ũw̃ − 〈ũw̃〉|2〉
〈ũxw̃〉2 (7)

among all solenoidal vector fields ṽ = ũ + kw̃ that satisfy the boundary con-
dition ṽ = 0 at z = ±1

2 and the condition 〈ũxw̃〉 > 0.
The Euler–Lagrange equations as necessary conditions for an extremal

value of the functional are given by

w̃
d

dz
U∗ + k ũ · d

dz
U∗ = −∇π + ∇2ṽ, (8)

∇ · ṽ = 0, (9)

where d
dzU

∗ is defined by

d

dz
U∗ = ũw̃ − 〈ũw̃〉 − i(R − 〈| ∇ṽ |2〉

2〈ũxw̃〉 ). (10)

When equations (8),(9),(10) are compared with the equations for v̌ and for U
a strong similarity can be noticed. The variational problem does not exhibit
any time dependence, but the Euler–Lagrange equations may still be regarded
as the symmetric analogue of the Navier-Stokes equations for steady flow.

3 Properties of the Extremalizing Vector Fields

For lack of space this section must be kept brief and the reader is referred
to the review articles [14, 15] for details. The n-alpha-solutions of equations
(8),(9),(10) are characterized by a hierarchy of n boundary layers at each
plate and provide the upper bound sequentially with increasing R starting
with n=1. The extremalizing vector fields thus exhibit a bifurcation structure
similar to that found in many cases of the transition to turbulence. The thick-
nesses of the boundary layers decrease with increasing R and their ratio from
one layer to the next approaches the factor 4. The typical scale of motion
thus increases linearly with distance from the wall as assumed in Prandtl’s
mixing length theory. But the discreteness of the scales reflects the fact that
effective transports require preferred scales. Cloud patterns in the atmosphere
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and distinct scales of convection on the sun remind us that highly turbulent
systems do indeed exhibit spontaneous discrete scales.

Of particular interest is the mean flow U∗ which exhibits a finite shear of
the order −Re/4 in the interior. It has been a puzzle that a finite shear is
also observed in experiments on turbulent Couette flow [16] while in the case
of turbulent convection in a layer heated from below the mean temperature
becomes isothermal in the interior in experiments as well as for the extrema-
ling vector field. It appears that only part of the available imposed shear is
needed for the boundary layers in order to achieve a maximum transport of
momentum. Another case of good agreement between the profile U∗ and mea-
surements can be found in the case of turbulent flow between differentially
rotating coaxial cylinders [17, 15].

The close similarities between variational functionals for rather different
physical systems suggest analogous similarities between the respective turbu-
lent fields. The analogy between the fluctuating component of the temperature
in turbulent convection and the streamwise component of the fluctuating ve-
locity field in shear flow turbulence has been demonstrated in [4] and has been
applied in the theory of atmospheric boundary layer [18]. More properties of
the extremalizing vector fields become available for comparisons when addi-
tional constraints are imposed. For example, the energy balances for poloidal
and toroidal components of the velocity field can be applied separately [19].
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1 Introduction

In many Direct Numerical Simulations (DNS) of turbulence researchers inject
power into the fluid at large scales and then observe how it “propagates”
to the small scales [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. One such type of
stirring is to take the force f(x, t) to be proportional to the projection of the
velocity u(x, t) of the flow onto its lowest Fourier modes, while keeping the
rate of injected external power constant. In this paper we perform a simple but
rigorous analysis to establish bounds on the relationship between the energy
dissipation rate (which is the same as the injected power) and the resulting
Reynolds number. While this analysis cannot give detailed information of the
energy spectrum, it does provide some indication of the balance of energy
between the lower, directly forced, modes, and those excited by the cascade.
This work is an extension of the analysis in [13, 14, 15], where the force is
fixed (not a functional of the velocity).

Consider fluid in a periodic d-dimensional box of side length �. The allowed
wave vectors k are of the form k = 2π

� a, where a ∈ Z
d is a d-dimensional

vector with integer components. Let L be the subset of wave vectors that have
the smallest possible wavenumber (namely, 2π

� ); L consists of 2d elements:
L = {± 2π

� e1, . . . , ± 2π
� ed}. The operator P projects the vector field

u(x, t) =
∑

k

û(k, t) eik·x

onto the subspace spanned by the Fourier components with wave vectors in L:

Pu(x, t) =
∑

k∈L
û(k, t) eik·x . (1)

Obviously, P maps L2 into L2 vector fields; in fact, Pu is C∞ in the spatial
variables. The projection also preserves the incompressibility property. That
is, if ∇ · u(x, t) = 0, then ∇ · Pu(x, t) = 0.
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The Navier-Stokes equation is

u̇ + (u · ∇)u +
1
ρ
∇p = ν∆u + f , (2)

with f(x, t) taken in the form

f(x, t) = ε
Pu(x, t)

1
�d

‖Pu(·, t)‖2
2
. (3)

where ‖ · ‖2 stands for the L2-norm, ‖Pu(·, t)‖2 :=
[∫ |Pu(x, t)|2 ddx

] 1
2 .

This choice of forcing ensures that the input power is constant:
∫

u(x, t) · f(x, t) ddx = �dε . (4)

In this approach ε, ν and � are the (only) control parameters. On average, the
power input is the viscous energy dissipation rate:

ε :=
1
�d

∫
u(x, t) · f(x, t) ddx = ν

〈‖∇u‖2
2〉

�d
, (5)

where 〈·〉 stands for the long time average. The non-dimensional measure of
energy dissipation is defined as

β :=
ε�

U3 , (6)

which is a function of Re := U�
ν , the Reynolds number, where U is the r.m.s.

velocity defined by U2 := 〈‖u‖2
2〉

�d
, a measure of the total kinetic energy of the

fluid. Our analysis will establish limits on the relationship between β and Re.
Because we will study the “low-k” Fourier modes (i.e., modes with wave

vectors in L), we also introduce the r.m.s. velocity V contained in these modes,

V 2 :=
〈‖Pu‖2

2〉
�d

. (7)

The bounds on the dissipation β will be in terms of Re and the quantity

p :=
V

U
∼

√
“low-k” kinetic energy of the fluid
Total kinetic energy of the fluid

. (8)

The case p ≈ 1 corresponds to laminar flow, when the turbulent cascade is
inoperative.
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2 Derivation of the Bounds

2.1 Lower Bounds on the Energy Dissipation

To obtain lower bounds on the energy dissipation, we proceed as usual by
multiplying the Navier-Stokes equation (2) by u(x, t) and integrating over
the volume of the fluid to obtain the instantaneous power balance,

1
2

d
dt

‖u(·, t)‖2
2 = −ν ‖∇u(·, t)‖2

2 + �dε , (9)

where ‖∇u(·, t)‖2
2 :=

∫ ∣
∣
∣
∑d
j,m=1 ∂jum(x, t)

∣
∣
∣
2
ddx.

Now we use the facts that the lengths of wavevectors k /∈ L are at least
2π

√
2/�, and that ‖u(·, t) − Pu(·, t)‖2

2 = ‖u(·, t)‖2
2 − ‖Pu(·, t)‖2

2, to derive a
lower bound on ‖∇u(·, t)‖2

2:

‖∇u(·, t)‖2
2 =

∫
|∇u(x, t)|2 ddx = �d

∑

k

k2|û(k, t)|2

= �d

(
∑

k∈L
k2|û(k, t)|2 +

∑

k/∈L
k2|û(k, t)|2

)

≥ �d
4π2

�2

(
∑

k∈L
|û(k, t)|2 + 2

∑

k/∈L
|û(k, t)|2

)

=
4π2

�2
(‖Pu(·, t)‖2

2 + 2 ‖u(·, t) − Pu(·, t)‖2
2
)

=
4π2

�2
(
2 ‖u(·, t)‖2

2 − ‖Pu(·, t)‖2
2
)
. (10)

From (9) and (10) we obtain the differential inequality

1
2

d
dt

‖u(·, t)‖2
2 ≤ −ν

4π2

�2
‖u(·, t)‖2

2 + �dε ,

from which, using Gronwall’s inequality, we deduce

1
2

‖u(·, t)‖2
2 ≤ 1

2
‖u(·, 0)‖2

2 e− 8π2ν
�2

t + �dε
�2

8π2ν

(
1 − e− 8π2ν

�2
t
)

. (11)

The inequality (11) implies that ‖u(·, t)‖2
2 is bounded uniformly in time, which

in turn implies that the time average of the time derivative in (9) vanishes.
This ensures that the time-averaged power balance (assuming that the limit
associated with the long time average exists) is indeed given by (5).
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Taking the time average of (10), we obtain the bound

4π2ν

�2
(2U2 − V 2) ≤ ε ,

which in non-dimensional variables reads

4π2

Re
(2 − p2) ≤ β . (12)

2.2 Upper Bound on the Energy Dissipation

To derive an upper bound on β, we multiply the Navier-Stokes equation (2)
by Pu(x,t)

‖Pu(·,t)‖2
and integrate. The term with u̇ gives a total time derivative,

∫
u̇ · Pu

‖Pu‖2
ddx =

1
‖Pu‖2

∫
∂

∂t
(Pu) · Puddx =

1
2

d ‖Pu(·, t)‖2

dt
.

For the viscosity term we obtain (integrating by parts)

ν

∫
(∆u) · Pu

‖Pu‖2
ddx = −ν

‖∇Pu‖2
2

‖Pu‖2
= −ν

4π2

�2
‖Pu‖2 ,

while the forcing term gives �dε/‖Pu(·, t)‖2 (cf. (4)).
To estimate the inertial term, we introduce temporarily the notation

p(x, t) := Pu(x, t). We will make use of the uniform (in x and t) estimate

|∂jpm(x, t)|
‖p(·, t)‖2

≤
∑

k∈L

|kj | |ûm(k, t)|
‖p(·, t)‖2

≤ 2π

�1+
d
2

∑
k∈L |û(k, t)|

√∑
k′∈L |û(k′, t)|2 ≤ 2π

√
d

�1+
d
2

. (13)

Then the inertial term may be bounded (we use ∇ · p = 0):
∣
∣
∣
∣

∫
[(u · ∇)u] · p

‖p‖2
ddx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
u · ∇p

‖p‖2
· uddx

∣
∣
∣
∣

≤ 2π
√
d

�1+(d/2)

∫
|u|2 ddx =

2π
√
d

�1+(d/2) ‖u‖2
2 . (14)

This estimate, however, is obviously not going to be tight for small Re, when
the flow is not very turbulent. To improve this estimate so that it take into
account the fact that for small Re the energy does not “propagate” much
from the large to the small wavenumbers, we split the velocity u into a “low-
k” component, Pu, and a “high-k” one, u−Pu. We will still use the uniform
estimate (13) as well as the inequality ab ≤ 1

2 (za2 + 1
z b

2) which holds for any
z > 0:
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∣
∣
∣
∣

∫
[(u · ∇)u] · p

‖p‖2
ddx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
[p + (u − p)] · ∇p

‖p‖2
· [p + (u − p)] ddx

∣
∣
∣
∣

≤ 2π
√
d

�1+(d/2)

∫ (
2 |p| |u − p| + |u − p|2) ddx

≤ 2π
√
d

�1+(d/2)

∫ [
z|p|2 +

( 1
z + 1

) |u − p|2] ddx

≤ 2π
√
d

�1+(d/2)

[( 1
z + 1

) ‖u‖2
2 +

(
z − 1

z − 1
) ‖p‖2

2
]
. (15)

Putting together (14) and (15), we find

�dε
1

‖Pu(·, t)‖2
≤ 1

2
d ‖Pu(·, t)‖2

dt

+
2π

√
d

�1+(d/2) min
{‖u‖2

2,
( 1
z + 1

) ‖u‖2
2 +

(
z − 1

z − 1
) ‖Pu‖2

2
}

+ ν
4π2

�2
‖Pu(·, t)‖2 . (16)

Now take the time average of all terms in the above inequality. First note
that the average of the time derivative of ‖Pu(·, t)‖2 gives zero due to the
boundedness of ‖Pu(·, t)‖2 (which follows from the boundedness of ‖u(·, t)‖2;
see (11)). To estimate the other terms, we use Jensen’s inequality: if a function
θ is convex and 〈·〉 stands for averaging, then 〈θ ◦ g〉 ≥ θ (〈g〉) for any real-
valued function g. Applying this inequality to the case g(t) = ‖Pu(·, t)‖2 and
the convex function θ(t) = t2, we obtain (same as Cauchy-Schwarz)

〈‖Pu‖2〉 ≤
√

〈‖Pu‖2
2〉 = �d/2 V .

On the other hand, if we take θ(t) = 1
t for t > 0, we deduce

〈
1

‖Pu‖2

〉

≥ 1
〈‖Pu‖2〉 ≥ 1

√
〈‖Pu‖2

2〉
=

1
�d/2 V

.

Plugging these estimates into (16), we obtain

ε ≤ ν
4π2

�2
V 2 +

2π
√
d

�
min

{
U2V,

( 1
z + 1

)
U2V +

(
z − 1

z − 1
)
V 3} .

In terms of the non-dimensional energy dissipation rate (6), we can rewrite
this inequality in the form

β ≤ 4π2

Re
p2 + 2π

√
dφ(p, z) , (17)

where we have introduced the function

φ(p, z) := min
{
p,

( 1
z + 1

)
p +

(
z − 1

z − 1
)
p3} . (18)
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2.3 Compatibility of the Lower and Upper Bounds on β

Assembling the lower and upper bounds (12) and (17), we have

4π2

Re
(2 − p2) ≤ β ≤ 4π2

Re
p2 + 2π

√
dφ(p, z) . (19)

The compatibility of the two bounds on β imposes restrictions on the al-
lowed range of p, namely, p should satisfy the inequality

p2 +

√
dRe
4π

φ(p, z) − 1 ≥ 0 . (20)

In the interval p ∈ [0, 1], this inequality is satisfied for p ∈ [pmin(Re, z), 1],
where pmin(Re, z) ≈ 4π√

dRe
for large Re. Clearly, the lower bound on the range

of p is more meaningful for smaller Re.

2.4 Optimizing the Upper Bound on β

Since we do not have a priori control over p, we will derive an upper bound
for β by maximizing the upper bound in (19) over p, after which we use the
freedom in the choice of the parameter z > 0 to minimize for any given Re,
which results in

β ≤ min
z>0

max
p∈[pmin(Re,z),1]

[
4π2

Re
p2 + 2π

√
dφ(p, z)

]

. (21)

Although this procedure is not difficult to implement numerically, we will
analyze only the case of high Re where the analysis can be carried out an-
alytically. First notice that for high Re, the lower bound pmin(Re, z) is very
small, so the maximization over p can be taken in the entire interval [0, 1].
Thus φ(p, z) ≤ φ∗(z) := maxp∈[0,1] φ(p, z) = (1+z−z2)−1/2 for z ∈ [0, 1+

√
5

2 ).
Since for large Re the Re-independent term in the right-hand side of (21) is
dominating, we have the high-Re estimate

β ≤ min
z∈[0, 1+

√
5

2 )

[
4π2

Re
φ∗(z)2 + 2π

√
dφ∗(z)

]

=
16π2

5Re
+

4π
√
d√

5
. (22)

At high Re, the value or p maximizing φ(p, z) is 2√
5
. We remark that it is not

difficult to prove that the upper bound (22) is optimal (i.e., coincides with
(21)) for Re ≥ 8π

3
√

5d
.

3 Discussion

In dimension 3, the scaling of the upper bound is in accord with conventional
turbulence theory: at high Re, ε ∼ U3

� is independent of the molecular viscos-

ity. For the type of forcing considered here, we find β ≤ 4π
√

3
5 ≈ 9.7339 . . . .
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Fig. 1. Upper and lower bounds on β (solid and dashed lines, resp.)

A plot of the bounds is presented in Figure 1. At low Re, the upper and lower
bounds converge to each other. While it is difficult to compare these bounds
quantitatively with DNS results, we note from [7] that at high Re, values
of β are typically around 1. Hence, our rigorous analysis, while yielding the
expected scaling, overestimates the constants by about an order of magnitude.

In the 3-dimensional case, if we assume that the cascade is Kolmogorov,
i.e., the spectral density of the energy is given by EK(k) = Cε2/3k−5/3, we
can estimate the “Kolmogorov” value pK as follows:

Ekin, total ≈
∫ ∞

2π/�
EK(k) dk , Ekin, low k ≈ 2π

�
EK

(
2π
�

)

,

which gives pK ≈
√

2
3 . Plugging this value in (21) and minimizing over z, we

obtain the (approximate) estimate

β ≤ 8π2

3 Re
+ 2

√
2π ≈ 26.3

Re
+ 8.9 ,

which gives a slight improvement compared with the bounds (22).
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In this paper we consider a class of generalised diffusion equations which are
of great interest in mathematical physics. For some of these equations that
model fast diffusion new nonlocal potential symmetries are derived. These
nonclassical potential symmetries allow us to increase the number of solutions.
These solutions are not arising from classical potential symmetries.

1 Introduction

The diffusion processes appear in many physics processes such as plasma
physics, kinetic theory of gases, solid state and transport in porous medium [1,
13]. One of the mathematical models for diffusion processes is the generalised
inhomogeneous nonlinear diffusion equation

f(x)ut = [g(x)(unux]x. (1)

In (1) u(x, t) is a function of position x and time t and may represent the
temperature, f(x) and g(x) are arbitrary smooth functions of position and
may denote the density and the density-dependent part of thermal diffusion,
respectively. The special case with n = −1 emerges in plasma physics and
reveals a surprising richness of fast diffusion processes [13].

Lie classical symmetries admitted by nonlinear PDE’s are useful for finding
invariant solutions [11, 12]. Recently, the Lie classical symmetries for a variable
coefficient nonlinear diffusion-convection equation have been derived in [5].

Bluman and Cole [3] developed the nonclassical method to study the sym-
metry reductions of the heat equation. In previous works, we have obtained
nonclassical symmetries for a porous medium equation with absorption, and
for a porous medium with convection [10].

In [4], Bluman introduced a method to find a new class of symmetries for a
PDE when it can be written in a conserved form. These symmetries are non-
local symmetries which are called potential symmetries. Potential symmetries
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were obtained in [7] for the porous medium equation when it can be written
in a conserved form.

In a recent paper [14], C. Sophocleous has classified the potential symme-
tries of (1). He obtained that potential symmetries exists only if the parameter
n takes the values −2 or − 2

3 and also certain relations must be satisfied by
the functions f(x) and g(x).

In [9], we have derived for the special case of (1), with f(x) = 1 and g(x) = 1
a new class of potential symmetries called nonclassical potential symmetries,
which are realized as nonclassical symmetries of an associated system.

The aim of this work is to obtain for (1) nonclassical potential symmetries.
The nonclassical method applied to the corresponding associated potential
system lead to new symmetries nonclassical potential symmetries as well as
to new exact solutions.

2 Nonclassical Potential Symmetries

It was pointed out in [14] that the transformation

x′ =
∫

dx
g(x) = G(x), t′ = t, u′ = u (2)

connects equation (1), and the pde

g(G−1(x′))f(G−1(x′))ut = [(unux′ ]x′ , (3)

where G−1 is the inverse function of G. Although in in [14] the author states
that such choice does not simplify the analysis, it is clear that we can equiv-
alently use an equation of the form (3) and then transform the results for
equation (1) by using the corresponding point transformation.

Due to the fact that (2) connects equation (1) with (3) it happens that (2)
also connects

vx = f(x)u
vt = g(x)u−1ux,

(4)

with

vx′ = h(x′)u
vt = u−1ux′ ,

(5)

We are now considering the nonclassical symmetries of (5).
We consider the associated auxiliary system given by (5) augmented with

the invariance surface condition

ξvx′ + τvt − ψ = 0, (6)

which is associated with the vector field

V = ξ(x′, t, u, v)∂x′ + τ(x′, t, u, v)∂t + φ(x′, t, u, v)∂u + ψ(x′, t, u, v)∂v. (7)
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By requiring both (5) and (6) to be invariant under the transformation with
infinitesimal generator (7) one obtains an over determined, nonlinear sys-
tem of equations for the infinitesimals ξ(x′, t, u, v), τ(x′, t, u, v), ψ(x′, t, u, v),
φ(x′, t, u, v). When at least one of the generators of the group depend explicitly
of the potential , that is if

ξ2
v + τ2

v + φ2
v �= 0 (8)

then (7) yields a nonlocal symmetry of (1).
We can distinguish two different cases: τ = 0 and τ �= 0.
If τ �= 0, we set τ = 1 without loss of generality. The nonclassical method,
with τ �= 0, applied to (5), give rise to nonlinear determining equations for
the infinitesimals. If we require that ξu = ψu = 0, we obtain that

φ = −∂ξ

∂v
h u2 +

(
∂ψ

∂v
− ξ ∂h

∂x′

h
− ∂ξ

∂x′

)

u +
∂ψ
∂x′

h
(9)

and h(x′),ξ(x′, t, v) and ψ(x′, t, v) must satisfy the following conditions

∂2ξ

∂v2 − ξ
∂ξ

∂v
= 0

−h
∂2ψ

∂v2 −ξ h
∂ψ

∂v
+
∂ξ

∂v
hψ+

(

2
∂ξ

∂v

∂h

∂x′ + 2
∂2ξ

∂v∂x′ h
)

+
(

−ξ
∂ξ

∂x′ − ∂ξ

∂t

)

h = 0

−ξ h2 ∂ψ

∂x′ − 2h2 ∂2ψ

∂v∂x′ + h2 ψ
∂ψ

∂v
+ h2 ∂ψ

∂t
+

∂ξ

∂x′ h
2ψ

+

(

ξ h
∂2h

∂x′2 − ξ

(
∂h

∂x′

)2

+
∂2ξ

∂x′2 h2

)

= 0

(

hψ +
∂h

∂x′

)
∂ψ

∂x′ − h
∂2ψ

∂x′2 = 0

Despite the fact that the former equations are too complicated to be solved
in general, special solutions can be obtained:
1. For

h(x′) = k3e
k2x

′
, ξ = −2 k1 tanh (k1 v + k4 t + k5), ψ = −2k2 +

k4

k1

2. For

h = k2, ξ = k, ψ = −2k1tanh (k1(kt + x′)),

we obtain the similarity variable z = x′−t and the family of invariant solutions
is defined by

v = 1
2k (log 2 − log(cosh(2k 1(x′ − t)) + 1) − 1

k (log(sech (k 1(x′ + t)ζ2)) + k3.
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The corresponding exact solution of (1) adopts the form

u = −k2
1

k2

(

tanh
(

k1

∫
f(x)dx + k2t

)

+ tanh
(

−k1

∫
f(x)dx + k2t

))

(10)

3. For

h(x′) = k3e
k2x

′
, ξ = k1, ψ = −2k4 tanh (k4(x′ + k1t + k5)) − k2,

we obtain that the similarity variable is z = x′−k1t and the family of invariant
solutions for (1) with f(x) = k3e

k2x and g(x) = 1 is defined by

u = −e−k2x
(

tanh
(

2k3x + k3t + k5

4

)

− tanh
(

2k3x − k3t + k5

4

))

(11)

We point out that although in cases [2,3], the infinitesimals do not depend
on v =

∫
u(x)dx, and they do not correspond to a nonclassical potential

symmetry, solutions (10), (11) are new exact solutions of (1) which can not
be obtained by using classical potential symmetries of (1) [14].

These solutions, which describes an unusual diffusion process caused by
flux suction at infinity, has been derived by P.Rosenau in [13] for f(x) = 1
and g(x) = 1 using a different procedure, and looks like the elastic interaction
of two kinks giving a shrinking appearance to diffusion. Its derivative looks
like the interaction of two solitons solutions. These are of special interest since
such solutions are in general associated with integrable equations.

It is a pleasure to thank M. Oberlack for his useful suggestion.
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Lie group analysis is used to derive new scaling laws (exponential laws) for
ZPG turbulent boundary layer flow. A new scaling group was found in the two-
point correlation equations. DNS of such a flow was performed at Reθ = 2240
using a spectral method with up to 160 million grid points. The results of
the numerical simulations are compared with the new scaling laws and good
agreement is achieved.

1 Lie Group Analysis and New Scaling Laws

Lie group approach developed in [1, 2] applied to the fluctuation equations
will presently be applied to the two-point correlation equations to find their
symmetry groups. The present analysis is based on these equations with the
restricted mean velocity profile ū1 ≡ ū1(x2), where x2 is the wall normal
coordinate. The governing equations will be considered in the outer part of
boundary layer flow i.e. sufficiently apart from the viscous sublayer. For the
present problem we focus only on scaling symmetries:

Gs1 : x̃2 = x2e
c1 , r̃i = rie

c1 , ˜̄u1 = ū1e
c1 , R̃ij = Rije

2c1 , · · · (1)

Gs2 : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1e
−c2 , R̃ij = Rije

−2c2 , · · · (2)

Gs3 : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1, R̃ij = Rije
−c3 , · · · (3)

The variables c1 – c3 are the group parameters of the corresponding transfor-
mations. The dots denote that also higher order correlations are involved in
the corresponding transformations.

The most interesting fact with respect to the latter groups is that three in-
dependent scaling groups Gs1, Gs2, Gs3 have been computed. Two symmetry
groups, namely (1) and (2), correspond to the scaling symmetries of the Euler
equations. The first one is the scaling in space, the second one scaling in time.
The third group (Gs3) is a new scaling group that is a characteristic feature
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only of the one-dimensional turbulent boundary layer flow. This is in striking
contrast to the Euler and Navier-Stokes equations, which only admit two and
one scaling groups, respectively.

The corresponding characteristic equations for the invariant solutions (see
[1]) read

dx2

c1x2 + c4
=

dri
c1ri

=
dū1

(c1 − c2)ū1 + c5
=

dRij
[2(c1 − c2) + c3]Rij

= · · · , (4)

where c4 and c5 correspond to translation in space and Galilean invariance
respectively.

Imposing the assumption of symmetry breaking of the scaling of space
(c1 = 0) (for details see [1]) an extended set of scaling laws for the mean
velocity and two-pont correlations were obtained as follows:

ū1(x2) = k1 + k2e
−k3x2 , Rij(x2, r) = e−k4x2Bij(r), (5)

where k1 ≡ c5/c2, k3 ≡ c2/c4 and k2 is a constant of integration. k4 ≡
2c2 − c3/c14 is a constant comprising several group parameters and constants
of integration and Bij is a function of r only.

In normalized and nondimensional variables the exponential scaling law (5)
may be re-written in the following form

ū∞ − ū

uτ
= α exp

(
−β

x2

∆

)
,

u′
iu

′
j(x2)
u2
τ

= bij exp
(
−a

x2

∆

)
, (6)

where α and β are dimensionless parameters and ∆ = ū∞
uτ

δ∗ is the Rotta-
Clauser length scale, while δ∗ is the boundary layer displacement thickness.
The scaling laws for the Reynolds stresses were derived from equation (5) at
r = 0. bij and a are universal constants that should be found from DNS or
experiments.

2 DNS of Turbulent Boundary Layer Flow

The code for the DNS was developed at KTH, Stockholm (for details see [3])
using a spectral method. The simulation was done with N ≈ 158 million grid
points. All quantities are non-dimensionalised by the free-stream velocity u∞
and δ∗ at x = 0. The size of the computational box is 450δ∗ × 30δ∗ × 34δ∗.
Simulation was run for 4000δ∗/u∞ time units. The statistics accumulation was
performed during the last 3000 time units. The useful region was confined
to 150 − 300δ∗|x=0 which corresponds to Reθ from 1670 to 2240. Reynolds
stress components are shown in Fig. 1 (left plot). Results obtained by [4] are
compared to the present DNS data. For u′

1u
′
1 the peak is higher for present

DNS: (u′
1u

′
1)peak ≈ 7.48 at y+ ≈ 13.87.
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Fig. 1. Left figure: u′
iu

′
j in plus units for Reθ = 1410, 2240, from Spalart’s ( ) and

present DNS ( ). Right figure: R12, R21 and R22 for Reθ = 2240.

In addition, two-point correlation functions were calculated and R12(x2, r2),
R21(x2, r2) and R22(x2, r2) are plotted against r2 = x′

2 − x2 normalized by
the corresponding Reynolds stresses:

Rij(x2, r2) =
u′
i(x2)u′

j(x2 + r2)

u′
i(x2)u′

j(x2)

Two-point correlation functions R12, R21 and R22 are shown in Fig. 1 (right
plot) for Reθ = 2240 at point x2/∆ = 0.56.

log
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Fig. 2. Mean velocity profile in log-linear scaling (left plot). Close up (right plot)
view at different Reθ. theoretical (Eq. 6) result and present DNS.

The mean velocity of the turbulent boundary layer data is plotted in Fig.
2. As it is observed from the figure, DNS and theoretical results (Eq. 6) are in
good agreement in the region x2/∆ ≈ 0.01−0.15. After this region the velocity
defect law decreases more rapidly than what was derived from the theoretical
result. There may be two reasons for this behavior. First it might be the result
of the low Reynolds number phenomenon in the DNS while the theoretical
results were obtained for the large Reynolds number limit. Second, the non-
parallel effects become dominant in the outer part of the wake region, that
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Fig. 3. u′
1u

′
1 and R12, R12 and R22 versus x2/∆. DNS, theoretical result.

could lead to the deviation from the exponential law, because the theoretical
results were derived using fully parallel flow assumption (see [5]). The close
up plot of mean velocity profiles is presented in Fig. 2 (right plot) at different
Reynolds numbers Reθ = 1670, 1870, 2060, 2240. Good collapse of profiles in
the exponential region is seen from the plot.

In Fig. 3 u′
1u

′
1 and R12, R21, R22 are presented. The theoretical results are

compared to the DNS. Constants in the exponential scaling laws (see Eqs.
(5) and (6)) are different for the different variables. The last means that the
”coincidence region” for each variable is located in the different area of the
outer part of the boundary layer flow.

Conclusion: New symmetries of the two-point correlation equations are
found which were used to derive new scaling laws for two-point and Reynolds
stress quantities. DNS of turbulent boundary layer flow was performed for
Reθ = 2240 which shows the validity of the obtained new scaling laws.
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Summary. By using small deviations from the stationary solution of the Navier–
Stokes equation, the problem of linear instability of a plane submerged subsonic
jet is considered. In the approximation of weak divergence of the jet, this problem
reduces to a linear not self-adjoint boundary value problem with a given behavior
of the variables at large values of the transversal coordinate. The solution of this
boundary value problem allow us to calculate the gain factor and the phase velocity
of hydrodynamical waves as functions of frequency and of distance from the nozzle.
We have found that the dependence of the gain factor on the frequency has a resonant
character. As the distance from the nozzle increases, the dependence of the gain
factor on the frequency becomes more narrow and the maximum of that shifts into
the small frequency region. Hence, the hydrodynamical waves become more and
more coherent. The obtained results are in good agreement with experimental data.

1 Introduction

We consider a plane jet issuing from a nozzle of width 2d. Neglecting
compressibility, we may describe the processes in such a jet by the two-
dimensional Navier–Stokes equations for the stream function Ψ(t, x, y) and
vorticity Ω(t, x, y). In the dimensionless coordinates these equations are

Ω(t, x, y) = ∆Ψ(t, x, y) ,
∂Ω(t, x, y)

∂t
− ∂Ψ(t, x, y)

∂x

∂Ω(t, x, y)
∂y

+
∂Ψ(t, x, y)

∂y

∂Ω(t, x, y)
∂x

− 2
Re

∆Ω(t, x, y) = 0 , (1)

where ∆ is the Laplacian, Re = 2U0d/ν is the Reynolds number and U0 is
the longitudinal velocity component in the center of the nozzle. The stream
function Ψ(t, x, y) is related to the longitudinal (U) and transversal (V ) com-
ponents of the flow velocity by U(t, x, y) = ∂Ψ/∂y, V (t, x, y) = − ∂Ψ/∂x.
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This way we also get a dimensionless time and the circular frequencies are
measured in S = ωd/U0 ≡ πSt, where St is the Strouhal number.

In accordance with the idea on the nature of turbulence in nonclosed fluid
flows [1, 2], for the onset of turbulence some source of noise is necessary. This
source really exists at the nozzle exit. We can split a solution of (1) into
dynamical and stochastic constituents and set:

U(t, x, y) = ud(x, y) +
∂ψ(t, x, y)

∂y
, V (t, x, y) = vd(x, y) − ∂ψ(t, x, y)

∂x
,

Ω(t, x, y) = Ωd(x, y) + ∆ψ(t, x, y) , (2)

where ud(x, y), vd(x, y) and Ωd(t, x, y) are dynamical constituents of velocity
and vorticity, which are the solutions of the stationary Navier–Stokes equa-
tions.

In the case of a laminar issue from the nozzle, we set the profile of dynamical
longitudinal velocity such that, at the nozzle exit, the shape of the mixing
layer is close to that which is described by the Blasius equation [3]. Taking
into account the entrainment of some ambient fluid, we set:

ud(x, y) =
1
2

[

1 − tanh
(

q
|y| − 1
δ0(x)

− r(x)
)]

,

where q = 3, δ0(x) and r(x) are unknown functions of x, δ0(x) = δ1(x)+δ2(x)
is the mixing layer thickness. The internal and external boundaries of the
mixing layer are conditionally found from the relations: u0(x, 1 − δ1) = α and
u0(x, 1 + δ2) = 1 − α, where α is a certain number close to 1. The dynamical

Fig. 1. Profiles of ud(0, y) (a), vd(0, y) (b) and Ωd(0, y) (c).

constituents of the transversal velocity and vorticity can be obtained from the
continuity equation and the equation for Ωd(x, y) respectively (see fig. 1).

To find δ0(x) and r(x), we used the conservation laws for the fluxes of
momentum and energy [4]. As a result we obtain, that within the initial part
of the jet, r(x) ≈ r0 = 0.5 and depends on δ0(x) only slightly,
δ1(x) ≈ δ0(x)/3, δ2(x) ≈ 2δ0(x)/3, δ0(x) ≈

√
(32 q2x)/(3Re) + δ2

0(0).
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2 Linearized Equations

Substituting (2) in (1) and linearizing (1) for stochastic constituents we get:

∂∆ψ

∂t
+ ud(x, y)

∂∆ψ

∂x
+ vd(x, y)

∂∆ψ

∂y
(3)

−Ωdy(x, y)
∂ψ

∂x
+ Ωdx(x, y)

∂ψ

∂y
− 2

Re
∆∆ψ = 0 .

We suppose that the jet diverges slowly and seek a partial solution of (3) in
the form of running hydrodynamical waves of the frequency S with a slowly
varying complex wave number:

ψ(t, x, y) =
(

f0(S, x̃, y) +
1
λ
f1(S, x̃, y) + . . .

)

(4)

× exp

⎡

⎣iSt − i

x∫

0

(

Q0(S, x̃) +
Q1(S, x̃)

λ
+ . . .

)

dx̃

⎤

⎦ ,

where S is the wave frequency in the time scale given by us, Q(S, x̃) =
Q0(S, x̃) + Q1(S, x̃)/λ + . . . is the complex wave number, x̃ = x/λ is the
“slow” coordinate, λ =

√
Re, f(S, x̃, y) is an unknown function vanishing,

along with its derivatives with respect to y, at y = ±∞. Equating the terms
of the order of 1/λ and retaining only terms with the first derivatives with
respect to x̃, we yield the following equations for f0(S, x̃, y) and f1(S, x̃, y):

L0(Q0)f0 = 0, (5)
L0(Q0)f1 = Q1L1(Q0)f0 − L2(Q0)f0 , (6)

where L0(Q0), L1(Q0) and L2(Q0) are certain not self-adjoint differential
operators. We restrict ourself to the first approximation (i.e. we use only (5)).

Equation (5), with the boundary conditions indicated above, describes a
non self-adjoint boundary-value problem, where Q0 plays the role of an eigen-
value. It is convenient to solve (5) separately for three regions: Over region
1 (|y| ≤ y1(x)), where ud(x, y) ≈ 1, vd(x, y) ≈ 0 and Ωd(x, y) ≈ 0, and
over region 2 (|y| ≥ y2(x)), where ud(x, y) ≈ 0, vd(x, y) = vd(x,±∞),
Ωdx(x, y) ≈ Ωdx(x,±∞) and Ωdy(x,±∞) ≈ 0), we have found general
analytical solutions of (5) with arbitrary constants. Here y1(x) and y2(x)
are internal and external boundaries of the mixing layer. Over region 3
(y1(x) ≤ |y| ≤ y2(x)) all terms of (5) are of the same order. In this region
the general solution can be written as a sum of fundamental solutions, which
are obtained numerically, multiplying by an arbitrary constants. Sewing this
solution and its derivatives with general solutions, obtained in regions 1 and
2, at the points y = y1(x) and y = y2(x) correspondingly, we get a system of
linear equations for the arbitrary constants.



30 P. Landa, V. Ushakov, and J. Kurths

The eigenvalues can be found from the requirement that the determinant
of the system of linear equations is equal to zero. This determinant contains
the results of the subtraction of a large numbers. As a consequence, the value
of the determinant is random. To avoid this problem, we solve the differential
equations for these differences, instead of the initial equations. As a result,
we find the eigenvalues Q0(S, x̃), which are represented in Fig. 2. We set
Q0(S, x̃) = S/vph(S, x̃) + ıG(S, x̃), where vph(S, x̃) is the phase velocity of a
propagating hydrodynamical wave, and G(S, x̃) is the gain factor of this wave.
For each S we take the eigenvalue, corresponding to the maximal gain factor.

Fig. 2. Dependence of G(S, x̃) and vph(S, x̃) on the Strouhal number, for a different
distances from the nozzle.

It is seen from Fig. 2 that the gain factor maximum is shifted to the low-
frequency region as the distance from the nozzle increases. This effect corre-
sponds to the phenomenon of a shift of the velocity power spectrum, which is
observed experimentally. Usually this phenomenon is explained by the vortex
paring [5], however it can be obtained in the framework of our linear theory. In
line with this theory, the experimentally observed shift of the power spectrum
is caused by the divergence of the jet, but not by paring of vortices.
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One of the common views is that the behavior of passive objects in turbulent
flows is in many respects similar to that of genuine turbulence. However,
there exist a number of essential qualitative differences which require caution
in promoting analogies between the two and which may be misleading. Some
of these differences were summarized in [1]. It is the purpose of this note to
provide a critical update of these essential differences with the emphasis on
the aspects not given in [1] including the new results appeared after 2001.

1 Examples of Proposed Analogies

The story starts with the Reynolds analogy in 1874 on transport of momen-
tum and heat[2] and his proposal to study fluid motion by means of ‘color
bands’ [3], which can be seen as the foundation of flow visualization. The
next example concerns the frozenness of vorticity in the flow field in inviscid
flows thereby indicating the analogy between vorticity and (infinitesimal) ma-
terial lines [4], [5]. Batchelor [6] proposed an analogy between amplification
of vorticity and magnetic field in a turbulent flow of conducting fluid. Recent
statements are made in the same spirit. For example, it is that the advection-
diffusion equation, in conjunction with a velocity field model with turbulent
characteristics ,serves as a simplified prototype problem for developing theo-
ries for turbulence itself [7], and that the well established phenomenological
parallels between the statistical description of mixing and fluid turbulence itself
suggest that progress on the latter front may follow from a better understanding
of turbulent mixing Shraiman and Siggia [8].

2 Main Differences

However, momentum is not a passive contaminant; “mixing” of mean mo-
mentum relates to the dynamics of turbulence, not merely its kinematics [9].
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In other words, the differences are more than essential: the evolution of pas-
sive objects is not related to the dynamics of turbulence in the sense that
the dynamics of fluid motion does not enter in the problems in question -
the velocity field is prescribed a priory in all problems on evolution of passive
objects. Consequently the problems associated with the passive objects are lin-
ear ; whereas genuine turbulence is a strongly nonlinear problem - nonlinearity
is in the heart of turbulent flows and is underlying the main manifestations
of the differences between genuine and passive turbulence.

2.1 Is There a ‘Cascade’ of Passive Objects?

It is rather common to speak about cascade in case of passive objects. The
main argument is from some analogy, e.g. [8]. Indeed, for instance in any ran-
dom isotropic flow the rate of production of ‘dissipation’ (i.e. corresponding
field of derivatives) of both passive scalars and passive vectors is essentially
positive, which can be interpreted as a sort of ‘cascade’. However, the equa-
tions describing the behavior of passive objects are linear. Hence, there is no
interaction between modes of whatever decomposition of the field of a pas-
sive object: the principle of superposition is valid in case of passive objects1.
Therefore, more appropriate is to describe the process in terms of production
of the field of derivatives of the passive object, which is performed by the ve-
locity straining field, just like in case of velocity field [1]. Hence the extension
of Kolmogorov arguments and phenomenology to passive objects seems to be
not justified. No wonder that the phenomenological paradigms for the velocity
field failed in most cases when applied to passive objects.

2.2 Self-amplification of Velocity Derivatives

Nonlinearity of genuine turbulence is the reason for the self-amplification of
the field of velocity derivatives, both vorticity and strain. In contrast there
is no phenomenon of self-amplification in the evolution of passive objects2. It
should be stressed that the process of self-amplification of strain is a specific
feature of the dynamics of genuine turbulence having no counterpart in the
behavior of passive objects. In contrast, the process of self-amplification of
1 Here ‘mode’ is meant as a solution of the appropriate (linear) equation, e.g. of the

advection-diffusion equation. Use ‘modes’ that are not solutions of this equation,
such as Fourier modes, results in their interaction, since one of the coefficients of
the advection-diffusion equation, the velocity field, is not constant. This interac-
tion is interpreted frequently as a ’cascade’ of passive objects. Such interaction
is decomposition dependent, and therefore is not appropriate for description of
physical processes, which are invariant of our decompositions.

2 Such as material lines, gradients of passive scalar and solenoidal passive vectors
with finite diffusivity
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vorticity, along with essential differences3, has common features with analo-
gous processes in passive vectors; in both the main factor is their interaction
with strain, whereas the production of strain is much more ‘self’ [1]. A related
important difference is absence of pressure in case of passive objects.

2.3 Difference in Structure(s)

Along with some common features the mechanisms of formation of struc-
ture(s) are essentially different for the passive objects and the dynamical
variables. One of the reasons is the presence of Lagrangian chaos, which is
manifested as rather complicated structure of passive objects even in very
simple regular velocity fields4. Therefore one can expect that the structure
of passive objects in turbulent flows arises from two (essentially inseparable)
contributions: one due to the Lagrangian chaos and the other due to the ran-
dom nature of the velocity field itself 5. Among other reasons are differences in
sensitivity to initial (upstream) conditions (i.e. Lagrangian ‘memory’), ‘sym-
metries’, e.g. the velocity field may be locally isotropic, whereas the passive
scalar may not be and some other (see references in [1]. A recent result [10] for
turbulent flow in a plane channel is an interesting addition to the list of these
differences: although the vortical structure of the flow is the same, the scalar
streak spacing varies by an order of magnitude depending on the mean profile
of the scalar concentration. Moreover, passive scalar streaks were observed
even in an artificial ”structureless” flow field.

2.4 Kolmogorov 4/5 versus Yaglom 4/3 Laws

The Kolmogorov and the Yaglom laws are respectively S3(r) ≡
〈(

∆u‖
)3
〉

=

− 4
5εr, and

〈
∆u‖(∆θ)2

〉
= − 4

3εθr, where ∆u‖ ≡ [u(x + r) − u(5)] · r/r,
∆θ = θ(x + r) − θ(x), ε - is the rate of dissipation of kinetic energy and
εθ = D ∂θ

∂xi

∂θ
∂xi

- is the rate of dissipation of fluctuations of a passive scalar.
3 We would like to stress again that vorticity is an active vector, since it ‘reacts

back’ on the velocity (and thereby on strain) field. This is not the case with
passive objects - the process here is ‘one way’: the velocity field does not ‘know’
anything about the passive object.

4 On the other hand, e.g. the ramp-cliff structures of a passive scalar are observed
in pure Gaussian ‘structureless’ random velocity field, just like those in a variety
of real turbulent flows practically independently of the value of the Reynolds
number.

5 Therefore one cannot claim that statistical properties of this so-called ‘passive
scalar’ turbulence are decoupled from those of the underlying velocity field [8],
since the non-trivial statistical properties of scalar turn out to originate not only
in the mixing process itself but are inherited from the complexity of the turbulent
velocity field as well. Study of passive scalar turbulence is therefore not decoupled
from the still intractable problem of calculating the velocity statistics...
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The analogy between these two laws6, though useful in some respects [11] is
violated for a Gaussian velocity field. Namely, the 4/3 law remains valid for
such (as any other random isotropic) velocity field, whereas the 4/5 law is not,
because S3(r) ≡ 0 for a Gaussian velocity field. This difference is one of the
manifestations of the dynamical nature of the Kolmogorov law as contrasted
to the kinematical nature of the Yaglom law. It reflects the difference between
genuine turbulence as a dynamical phenomenon and the ‘passive’ turbulence
as a kinematical process.

2.5 Vorticity versus Passive Vectors. Material Lines

The common analogy is between vorticity in an inviscid flow and material
lines. It is true that in the absence of viscosity vortex lines are material lines.
However, these material lines are special in several respects. First, they are
not passive as all the other material lines which are passive. In other words,
the fact that vorticity is frozen in the inviscid flow field does not mean that
vorticity is the same as material lines, but the other way around: those mate-
rial lines which coincide with vorticity are like vorticity, because they are not
passive anymore as other material lines. Second, these special material lines
form a solenoidal vector field, whereas other material lines comprise infinitely
many vector fields which are not necessarily divergent-free and which conserve
the divl for infinitesimally small l’s. For more details see [1] and [12].

2.6 Vorticity versus Passive Vectors. Solenoidal Vector Fields with
Nonvanishing Diffusivity

The usual comparison is based on looking at the equations for vorticity ω and
the (solenoidal) passive vector, B, e.g. magnetic field in electrically conducting
fluids [6]

∂ω

∂t
= ∇×(u × ω) + ν∇2ω,

∂B
∂t

= ∇×(u × B) + η∇2B (1a, 1b)

Though a number of differences are known [1] these differences are hidden
when one looks at the equations for ω and B, which look quite ‘similar’.
However, a more ‘fair’ comparison should be made between the velocity field,
u, and the vector potential A, with B = ∇ × A, [13]. Such a comparison
allows to see immediately one of the basic differences between the fields u
and A (apart of the first obeying nonlinear and the second linear equation)
which is not seen from the equations (1). Namely, the Euler equations conserve
energy, since the scalar product of u ·(ω × u) ≡ 0. In contrast - unless initially
and thereby subsequently u ≡ A – the scalar product of A · (u × B) �≡ 0
(the coresponding equation for the vector potential A has the form ∂A/∂t+
6 The 4/5 Kolmogorov law follows by isotropy from the the 4/3 law for the velocity

field in the form
〈
∆u‖(∆u)2

〉
= − 4

3 〈ε〉 r.
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B × u = −∇pA). It is this term A · (u × B) ≡ −AiAksik + ∂/∂xk{AkAlul −
1
2ukA

2} which acts as a production term in the energy equation for A. In other
words the field A (and B), is sustained by the strain, sik, of the velocity field
- in contrast to the field u. This leads, in particular, to substantial differences
in amplification of vorticity, ω and B, e.g. in statistically stationary velocity
field (both NSE and Gaussian) the enstrophy ω2 saturates to some constant
value, whereas the energy of magnetic field B2 grows without limit. For more
details and other results concerning differences between ω and B see [13].

2.7 Vorticity versus Passive Vectors. Evolution of Disturbances

Important aspects of the essential difference between the evolution of fields
ω and B arising from the nonlinearity of the equation of ω and linearity of
the equation for B are revealed when one looks at how these fields amplify
disturbances. The reason is that the equation for the disturbance of vortic-
ity differ strongly from that for vorticity itself due to the nonlinearity of the
equation for the undisturbed vorticity ω, whereas the equation for the evo-
lution of the disturbance of B is the same as that for B itself due to the
linearity of the equation for B. Consequently, the evolution of disturbances of
the fields ω and B is drastically different. For example, in a statistically sta-
tionary velocity field the energy of the disturbance of B grows exponentially
without limit (just like the energy of B itself), whereas the energy of vorticity
disturbance grows much faster than that of B for some initial period until
it saturates at a value which is of order of the enstrophy of the undisturbed
flow. It is noteworthy that much faster growth of the energy of disturbances
of vorticity during the very initial (linear in the disturbance) regime is due to
additional terms in the equation for the disturbance of vorticity, which have
no analogues in the case of passive vector B. It is important to stress that
these additional ‘linear’ terms arise due to the nonlinearity of the equations
for the undisturbed vorticity. In this sense the essential differences between
the evolution of the disturbances of vorticity and the evolution of the distur-
bance of passive vector B with the same diffusivity can be seen as originating
due to the nonlinear effects in genuine NSE turbulence even during the linear
regime. For more details and other results concerning differences between the
evolution of disturbances of ω and B see [13].

3 Concluding Remarks

The essential differences in the behavior of passive and active fields described
above point to serious limitations on analogies between the passive and active
fields and show that caution is necessary in promoting such analogies. They
also serve as a warning that flow visualizations used for studying the struc-
ture of dynamical fields (velocity, vorticity, etc.) of turbulent flows may be
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quite misleading, making the question ”what do we see?” extremely nontriv-
ial. The general reason is that the passive objects may not ‘want’ to follow
the dynamical fields (velocity, vorticity, etc.) due to the intricacy of the rela-
tion between passive and active fields just like there is no one to one relation
between the Lagrangian and Eulerian statistical properties in turbulent flows
[1]. This does not mean that qualitative and even quantitative study of fluid
motion by means of ‘color bands’ [3] is impossible or necessarily erroneous.
However, watching the dynamics of material ‘colored bands’ in a flow may
not reveal the nature of the underlying motion, and even in the case of right
qualitative observations the right result may come not necessarily for the right
reasons. The famous verse by Richardson belongs to this kind of observation.
On the other hand there are properties of passive objects which do depend
on the details of the velocity field [1], [13]. Just these very properties can be
effectively used to study the differences between the real turbulent flows and
the artificial random fields, to gain more insight into the dynamics of real tur-
bulence. At present, however, the knowledge necessary for such a use is very
far from being sufficient. With few exceptions it is even not clear what can
be learnt about the dynamics of turbulence from studies of passive objects
(scalars and vectors) in real and ‘synthetic’ turbulence. This requires system-
atic comparative studies of both. As an attempt of such a comparative study
was made by Tsinober and Galanti [13]. This is a relatively small part of a
much broader field of comparative study of ‘passive’ turbulence reflecting the
kinematical aspects and genuine turbulence representing also the dynamical
processes.
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Summary. By means of the Howard-Busse method of the optimum theory of tur-
bulence we obtain numerical upper bound on the Nusselt number in a horizontal
heated from below layer of fluid of finite Prandtl number. We show that for low and
intermediate Rayleigh numbers the numerical bound is below the analytical bound
obtained by Howard. For large Rayleigh numbers the numerical bound approaches
the analytical asymptotic bound from below.

Turbulent flows are highly chaotic and disordered dissipative nonlinear flows
with many degrees of freedom and even the significantly increased computa-
tional power today do not allow us to perform direct numerical simulation
of industrial and geophysical flows at large Reynolds and Rayleigh numbers.
Thus other methods are also in use and very popular ones are the methods
based on closure schemes. The optimum theory of turbulence avoids the clo-
sure problem by exploiting a different philosophy. Instead of dealing directly
with the Navier-Stokes equations we can construct a variational problem on
the basis of several integral relationships derived from these equations. The
Euler-Lagrange equations of this variational problem lead to upper bounds on
some quantities of interest such as the convective heat transport. If we add
additional constraints in the variational problem we can tighten the bounds
[1].

Howard and Busse [2, 3] derived the first upper bounds on the transport of
heat by convection through a fluid layer by means of single-wavenumber and
multi-wavenumber solutions of the Euler-Lagrange equations of the variational
problem. Each of these solutions leads to upper bound on the convective
heat transport in some interval of Rayleigh numbers. For applications of the
Howard-Busse method to other problems of thermal convection see for an
example [4, 5, 6]. We note the successful attempt to lower the bounds by
using three- dimensional optimum fields instead of one-dimensional ones [1]
as well as the Doering-Constantin method [7, 8] which could lead to quick
estimates of the bounds on turbulence quantities.
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Let us consider a horizontally infinite layer of fluid heated from below and
let us use the model equations of the Boussinesq approximation. The thick-
ness of the layer d is unit for length and the time scale is d2/κ where κ is the
thermal diffusivity of the fluid. The fixed temperatures T1 and T2 at the upper
and lower boundaries of fluid participate in the unit for length (T2 − T1)/R
where R = (γ(T2 − T1)gd3)/(κν) is the Rayleigh number. g is the accelera-
tion of gravity, ν is the kinematic viscosity, and γ is the coefficient of thermal
expansion. Starting from the Boussinesq equations and denoting by q and 〈q〉
the averaging of q over the horizontal plane and over the fluid layer we can
obtain two momentum equations (for more details see [9]). When the con-
vection is under stationary conditions long after any external parameter has
been changed and all horizontally averaged quantities are time independent,
we can use the momentum equations for formulation of the following varia-
tional problem

Find the minimum R(µ,w, θ) of the functional

R(µ,w, θ) =
〈| ∇θ |2〉〈| ∇u |2〉

〈wθ〉2 + µ
〈(wθ − 〈wθ〉)2〉

〈wθ〉2 (1)

among all vector fields u = (u, v, w) and scalar fields θ which satisfy the
continuity equation and the rigid boundary conditions w = θ = ∂w/∂z = 0
at z = 0, 1.

The continuity equation is taken into account by means of poloidal-toroidal
representation of a solenoidal vector field and the Euler-Lagrange equations
of the variational problem are

〈| ∇1∇2φ |2〉∇2θ + w[R〈wθ〉 − µ(wθ − 〈wθ〉)] (2)

〈| ∇θ |2〉∇2
1∇4φ − ∇2

1θ[R〈wθ〉 − µ(wθ − 〈wθ〉)] = 0 (3)

The homogeneity of the functional and the special kind of nonlinearity of
the Euler-Lagrange equations allow us to impose the normalisation condi-
tions: 〈wθ〉 = 〈| ∇ × k∇2φ |2〉 = µ=R . Nu; 〈| ∇θ |2〉 = γµ, and to seek
N -wavenumbers solutions of following form: φ =

∑N
n=1 φn(x, y)α

−2
n wn(z),

θ =
∑N
n=1 φn(x, y)θn(z), where ∇2

1φn = −α2
nφn, φnφm = δnm, δnm is the

Kronecker delta symbol, wn(z) =
∑M
m=1 anm[cos(2(m − 1)πz) − cos(2mπz)],

and θn(z) =
∑M
m=1 bnm sin[(2m− 1)πz]. These solutions satisfy the boundary

conditions and the infinite sums must be truncated at sufficiently large value
of the truncation parameter M in order to obtain finite system of nonlinear
algebraic equations.

The results of the numerical investigations are presented in Fig. 1. Panel (a)
presents the optimum field w1(z) for the 1−α-solution of the Euler- Lagrange
equations of the variational problem for different values of Rayleigh number.
We observe a formation of a boundary layer. In addition two peaks develop
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Fig. 1. Panels (a) and (c): Optimum fields w1 and θ1 for the one-wavenumber solu-
tion of the Euler-Lagrange equations for the case of fluid layer with rigid boundaries.
From bottom to the top the profiles are plotted for the following values of Rayleigh
number: 5 · 104, 105, 2.5 · 105, 5 · 105, 106, 2.5 · 106, 5 · 106. Panels (b) and (d): Com-
parison between optimum fields for the cases of rigid and stress-free boundaries.
R = 5 · 106. Solid lines: Rigid boundaries. Dot-dashed lines: Stress-free boundaries.
Panel (e): Behavior of the wavenumbers α1,2. Dashed line: Asymptotic result of
Howard [2] for the single wavenumber solution of the Euler-Lagrange equations.
Circles: numerical results for the same case. Squares: α1,2 for the two-wavenumbers
solution; α1 (below the circles) and α2 (above the circles). Panel (f): Numerical and
analytical upper bounds Nu(R) on convective heat transport. Dashed line: asymp-
totic result of Howard [2]. Circles: Numerical result for the same case. Triangles:
upper bound given by the two-wavenumbers solution of the Euler-Lagrange equa-
tions.

slowly in the the function w1(z). These peaks are smaller in comparison to the
corresponding peaks for the case of stress-free boundary conditions -see panels
(b) and (d) for comparison between the two kinds of boundary conditions . In
addition an internal layer of almost constant w1 develops and its size increases
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with increasing Rayleigh number. An intermediate layer is formed between the
boundary layer and the intermediate layer. The development of such layers
and their behavior with increasing Rayleigh number are events supporting
the assumptions made in the analytical asymptotic theory. The field θ1(z) for
the 1−α-solution of the Euler-Lagrange equations of the variational problem
develops peaks very fast - panel (c) of Fig.1. The formation of internal, inter-
mediate, and boundary layers is much faster in comparison to the formation
of these layers for the field ω1(z). The formation of peaks and layers in θ1(z)
proceeds approximately with the same tempo as the formation of these struc-
tures for the case of fluid layer with stress-free boundaries -see panel (d). This
is despite the fact that θ1(z) for the rigid boundaries case has smaller values
in comparison to the same field for the case of stress-free boundaries. We note
that at the highest Rayleigh number for which numerical results have been
obtained the wave number of the 1 − α-solution begins to reach from below
its analytical asymptotic value α1 = 0.417R1/4 as obtained by Howard -panel
(e). Thus this is one direct numerical evidence for the validity of the analytical
asymptotic theory of Howard. The Euler-Lagrange equation of the variational
problem capture correctly also the critical Rayleigh number for the onset of
convection. After this Rayleigh number the single-wavenumber solution of
the Euler-Lagrange equations gives upper bound on the heat transport for
a decade of Rayleigh numbers. At higher Rayleigh this upper bound reaches
from below the upper bound Nu = 1 + 0.125R3/8 obtained by Howard. Thus
the analytical asymptotic results for the upper bound obtained by Howard are
confirmed. Finally panels (e) and (f) of Fig. 1 show also the development of
the optimum values α1,2 and the upper bound Nu(R) for the two-wavenumber
solution of the Euler-Lagrange equations. When calculated for large enough
Rayleigh numbers these quantities can be used to test the multi-wavenumber
theory of Busse [3].

The author thanks to Alexander von Humboldt Foundation for support of
his research, to Prof. F. H. Busse for stimulating discussions and to NATO
for the support through its Cooperative Science and Technology Sub-Program
Grant No. PST.CLG.979126.
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1 Introduction

The ”law of the wall” for the inner part of a turbulent shear flow over a solid
surface is one of the cornerstones of fluid dynamics, and one of the very few
pieces of turbulence theory where a simple analytic function for the mean
profile of the velocity or temperature can be given [1, 2, 3]. While there seems
to be ample experimental evidence for the logarithmic law of the wall there
continues to be a heated debate over the validity [4], about the numerical
factors that enter [5] and the regions for which it applies [6]. Some insight
into the origin of the law and possible alternatives can be obtained by a
Lie group analysis of the Navier-Stokes equations, as initiated by Oberlack
[7, 8]. The important conclusions from such an analysis are the identification
of alternative forms and the relation between continuous symmetries and the
functional form. Mean profiles that have been obtained include an algebraic
law in the center of a channel flow and in a near wall region, the viscous sub-
layer, the linear mean velocity in the center of a Couette flow, the linear mean
velocity in the center of a rotating channel flow, and an exponential mean
velocity profile for the outer part of a boundary layer flow over a flat plate.
The symmetry analysis elucidates the relation of these laws to symmetries
so that the various mean profiles can be motivated on the assumption that
the preferred state of the turbulent flow is the one with the highest degree
of symmetry compatible with boundary conditions and other constraints. It
is our aim here to summarize the results from a symmetry analysis of the
various relations for the advection of a passive scalar in a turbulent flow [9].

2 Symmetry Analysis

A scalar field Θ(x, t) transported by a velocity field v evolves in time according
to the advection-diffusion equation
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(∂t + v · ∇)Θ(x, t) = κ∇2Θ(x, t). (1)

For a passive scalar the dynamics of the velocity field v is not influenced by
Θ and is given by the Navier-Stokes (NS) equation,

∂tv + v · ∇v = −∇p + ν∇2v, (2)

for an incompressible (∇ · v = 0) fluid with kinematic viscosity ν and diffu-
sivity κ. We assume that in the velocity field there is a mean large scale shear
U = U(x2)e1, with x1 coordinate in the flow-direction, x2 the one in the direc-
tion of the shear and x3 the one in the spanwise direction. We then decompose
the velocity field v = U + u, with u(x, t) the turbulent velocity fluctuations.
Similarly, we decompose the scalar field into a mean part T (x2) and fluctu-
ations θ, such that Θ(x, t) = T (x2) + θ(x, t). Note that the dependence of
the mean scalar profile on the wall normal distance x2 is consistent with the
moving boundary assumption. For stationary mean profiles (∂U/∂t = 0 and
∂T/∂t = 0) the Reynolds averaged equations become [2, 1]

Ni ≡ ∂ui
∂t

+ U
∂u1

∂x1
+ δi,1u2

∂U

∂x2
− δi,1(γ + ν

∂2U

∂x2
2

) + δi,2
∂p̄

∂x2

+
∂uiuk
∂xk

+
∂p

∂xi
= 0, (3)

K ≡ ∂ui
∂xi

= 0, (4)

L ≡ (
∂

∂t
+ U

∂

∂x1
)θ + ui

∂θ

∂xi
− κ

∂2T

∂x2
2 + u2

∂T

∂x2
− κ∇2θ = 0, (5)

where γ is the mean pressure applied in the streamwise direction x1. The corre-
sponding decomposed continuity equation for U is trivially satisfied. Following
[7] we assume that the mean profiles adjust themselves so as to be invari-
ant under a maximum number of symmetries compatible with the boundary
conditions and external constraints. Moving across the boundary layer the
constraints and thus also the symmetries and the invariant profiles may vary.

3 Symmetry Profiles

The search for all possible continuous symmetries is considerably assisted by
tools developed within Lie’s theory of continuous symmetries for smooth dy-
namical systems described by vector fields [10]. Given the relevant symmetry
generators one may construct invariant manifolds of the set of dependent and
independent variables. Technically, they are obtained by integrating the char-
acteristic equations [10] of the infinitesimal generators. Under conditions of
stationarity the characteristic equations can be rewritten [7, 10] in the form
of differential equations for the mean profiles as a function of distance from
the wall,
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Table 1. Symmetry parameters and their physical meaning. Absence of a symmetry
implies that the corresponding parameter is set to zero.

Group parameters Physical meaning
a1 scaling of position
a4 scaling of time
a3 translation in space
a5 translation in time
b1 translation in velocity
α scaling of temperature
β shift in temperature

dU

dx2
=

(a1 − a4)U + b1
a1x2 + a3

, (6)

dT

dx2
=

αT + β

a1x2 + a3
. (7)

According to Table 1 each of the parameters appearing in the above differential
equation is attributed to one of the invariant groups of eqs. (3), (4) and
eq.(5). When symmetries are broken the corresponding group parameter is
put to zero. Translation symmetry in time is connected with stationarity and
is always present, whence a5 �= 0. Translation symmetry in space can be
broken near surfaces. Using the independence of the passive scalar dynamics
and building on the previous analysis for the turbulent boundary layer profiles
there are four cases for the velocity field, which can then be combined with
two possible parameter combinations for the temperature field, giving a total
of 8 combinations. The four cases for the velocity field are the well known
logarithmic profile, an exponential profile, a linear profile and a power law
profile. Similarly, there are linear, logarithmic, exponential and power law
mean profiles for the passive scalar. The symmetries can be broken due to
external scales in velocity, temperature or a prescribed length. The group
parameter corresponding to that broken symmetry then vanishes.

We obtain velocity and temperature profiles that are logarithmic for a1 = a4
or α = 0, and exponential for a1 = 0. In case none of the group parameters
vanishes both profiles are algebraic with an exponent that depends on the
parameters; for a1 = a4 = 0 and α = 0 linear laws result.

4 Profiles Across a Boundary Layer

Moving across a boundary layer several regions with different symmetries and
hence different scaling laws are encountered. Consider, as an example, the
case of Pr = ν/κ � 0(1). On the smallest scales we have the thickness of
the viscous boundary layer, δν = ν/u∗, and of the thermal boundary layer,
δκ = κ/u∗ [1, 2, 3]. For density ρ = 1, the friction velocity u∗ is related to the
shear stress τ at the surface by u∗ =

√
τ . On larger scales we have the overall
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thickness ∆ of the dynamic and ∆T of the thermal boundary layers. When
the momentum and thermal turbulent boundary layers [1, 2, 3] are developed
and the Prandtl number is of order one, then δν � δκ and ∆ � ∆T .

In a first regime, close to the wall, with x2 � δν � δκ, the spatial scaling
and velocity and temperature scaling symmetries are broken and the friction
velocity u∗ and temperature T∗ = Q/u∗, with Q the total heat flux across the
layer set the scales in that region. Both temperature and velocity increase lin-
early. In a second region, further out, for x2 � δν , the spatial scaling symmetry
is preserved while the mean velocity and scalar scales are still determined by
u∗ and T∗. It is in this regime then that a logarithmic profile develops. Moving
further out into the outer region of the boundary layer the thickness of ther-
mal and velocity boundary layers again break the spatial scaling symmetry
while the scalar and velocity are scale free. Then an exponential approach to
the externally imposed mean values can be expected. Between the logarithmic
and exponential region, another regime where the spatial symmetries and the
rescaling symmetries of velocity and temperature are realized. This is the re-
gion in which the maximum number of scaling symmetries are preserved and
where an algebraic law can be expected. Comparison to experimental data
indicates that an identification of such a regime may be difficult.

Further discussions of the various scaling regions will be given in [9].
Most experimental measurements deal with the logarithmic profile, both

in velocity and in temperature [3]. For the velocity field further scaling laws
have been determined [7, 8]. An experimental test of the profiles further out
would be most welcome.

This work was supported by the Deutsche Forschungsgemeinschaft.
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1 Introduction

The global analysis of energy flow and dissipation combined with a plausible
ansatz for the splitting of dissipation between bulk and boundary layers has
met with remarkable success in the case of a fluid layer heated from below
[1, 2, 3]. The system parameters are captured by the Prandtl number Pr
and the Rayleigh number Ra. The fluid responds to this external driving by
developing a velocity field that causes an increased vertical heat transport. The
velocity field is measured with a dimensionless Reynolds number Re and the
increase in heat transport by the Nusselt number Nu, the ratio of the actual
heat transport to the laminar one. The arguments proposed in [1-3] lead to
predictions for the relations Nu(Ra, Pr) and Re(Ra, Pr), most notably the
prediction of several different scaling regimes. A huge body of experimental
data can be captured by this analysis.

Attempts to transfer these ideas to turbulence in shear flows date back
to [4]. It was possible to fit experimental data for the pressure gradient in
pipe flow [5] and for the torque G in a Taylor-Couette flow [6, 7] with scaling
relations of the form G = c1Re

3/2+5ξ/2 + c2Re
2+3ξ, where the correction

ξ ≈ −0.05 for both flows. Dubrulle and Hersant [8] analyzed Taylor-Couette
flow further, included the geometry factors and suggested expressions with
logarithmic terms. More recent experimental data [9] in systems with smooth
and rough walls indicated a scaling compatible with ξ = 0 and a dependence
of the ratio c2/c1 on the roughness of the walls.

Ref. [8] recalls and expands on the long known similarity between thermal
convection and centrifugally unstable flows (e.g. [10]). The relation cannot be
exact, however, as the two flows have different numbers of independent fields.
It is the aim of the present note to analyze the similarities and differences be-
tween buoyancy and centrifugally driven flows in a simple situation where the
number of fields match and where no complications due to curved coordinates
matter: 2-d rotating flows.
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2 Flows in Confined Geometries

In the full 3-d geometries the Rayleigh-Bénard system is described by five
scalar fields: three velocity components, a temperature field and the pressure.
A rotating shear flow has only three velocity components and the pressure.
However, if thermal convection is confined to a 2-dimensional plane, the num-
ber of fields reduces to four. Similarly, in the rotating case we take a mean
flow in the azimuthal direction that varies radially and an azimuthally invari-
ant transversal flow. The analogy then associates the temperature field in the
Rayleigh-Bénard system with the azimuthal velocity field in the rotating flow.
Similarly, the wind in thermal convection and the transverse velocities in the
rotating flows are identified.

Consider first the Rayleigh-Bénard system with a velocity field in Boussi-
nesq approximation, u = (u(x, z) , 0 , w(x, z)) and a temperature field Θ(x, z).
The equations of motion are

∂tu + (u · ∇)u = −∂xp + ν∆u + βgΘ (1)
∂tw + (u · ∇)w = −∂zp + ν∆w (2)
∂tΘ + (u · ∇)Θ = κ∆Θ (3)

∂xu + ∂zw = 0 . (4)

The coordinates are such that the velocities are confined to the x− z plane
and gravitation acts along the x-direction.

The temperature is governed by a linear equation and appears linearly in
the buoyancy term in the equation for u. By rescaling, the temperature can
be replaced by a field that has dimensions of velocity. As units we take the
gap width d and the kinematic viscosity ν, so that velocities are measured in
units of ν/d and times in units of d2/ν.

The buoyancy term has dimensions of an acceleration. This suggests a field
v of dimension velocity, related to Θ by gβΘ = vν/d2. With this the equations
of motion become

∂tu + (u · ∇)u = −∂xp + ∆u + v (5)
∂tw + (u · ∇)w = −∂zp + ∆w (6)
∂tv + (u · ∇)v = (κ/ν)∆v (7)

∂xu + ∂zw = 0 (8)

The unperturbed convective temperature profile is linear, θ(x) = ∆(1 − x/d),
with ∆ the temperature by which the lower plate is warmer. This temperature
gradient then defines a velocity difference in v of size δv = (Ra/Pr)(ν/d),
with Rayleigh number Ra = gβd3∆/(κν) and Prandtl number Pr = ν/κ.
The velocity field is given by v = RaΘν/(Pr d∆).

The next step is to derive the dissipation-current relations [11]. The energy
density of the 2-component velocity field is E = (u2+w2)/2, and its dissipation
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εu = ν〈(∂xu)2+(∂xw)2+(∂zu)2+(∂zw)2〉V = ν
d2 〈uv〉V , where 〈. . . 〉V indicates

an average over volume and time.
Averaging the equation for the temperature over a plane perpendicu-

lar to the surface highlights the conserved heat current across the layer,
J = 〈uv〉A−κ∂x〈v〉A ,is constant, independent of height x. When averaged over
the vertical distance, the current becomes J = 〈uv〉V +κδv/d with δv the dif-
ference in v between bottom and top plate. Thus, 〈uv〉V = J−κδv/d . The dis-
sipation in the temperature field becomes εv = κ〈|∇v|2〉V = κ

∫
∂V

(v∇)vda =
(Raκ/d2)J . The Nusselt number is the thermal transport in units of the lam-
inar one, Jl = κδv/d, so that J = Nuκδv/d . Putting all terms together we
obtain

εu =
ν3

d4RaPr−2(Nu − 1) (9)

εv =
ν3

d4Ra
2Pr−3Nu . (10)

These relations resemble the ones for thermal convection, remembering that
v/(νd−1) = RaPr−1Θ/∆.

For the corresponding rotating flow we take cartesian coordinates where x
points in radial directions, z along the axis of rotation and y the direction of
the main flow. The analog of the temperature difference will be a difference
in the velocity in the y-direction at boundaries in the x-direction. The spatial
dependencies of the fields are limited to x and z. Then the equations for the
three velocity components u, v and w in x-, y- and z-direction, respectively,
in the presence of a rotation (rate Ω) become

∂tu + (u · ∇)u = −∂xp + ν∆u − Ωv (11)
∂tw + (u · ∇)w = −∂zp + ν∆w (12)
∂tv + (u · ∇)v = ν∆v + Ωu (13)

∂xu + ∂zw = 0 (14)

The rotation enters through the Coriolis terms only, the centrifugal terms
being absorbed in the pressure. The equations are almost identical to the
ones given above for the 2-d Rayleigh-Bénard system, when the azimuthal
component of the velocity field is identified with the temperature field. The
only difference is that in contrast to the temperature, which drives the u-
component only, the rotation also gives rise to a term in the v-equation. The
analogy also shows that the transverse velocity fields u and w are equivalent
to the wind in the Rayleigh-Bénard system.

The analog of the dissipation-current relations (9,10) follows immediately
with the same steps as before. We assume that v(x = 0) = δv and v(x =
d) = 0 and define an external Reynolds number Re0 = dδv/ν. Then there is
an equation for the transport of momentum across the layer, J = 〈uv〉A −
ν∂x〈v〉A = const. , one for the dissipation of the wind,
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εu = −Ω〈uv〉V (15)

and one for the dissipation in the mean shear profile,

εv =
ν

d2Re0J + Ω〈uv〉V . (16)

Assuming a situation as in Taylor-Couette with the inner cylinder rotating
and the outer one at rest, the velocity in the Reynolds number and in the rate
of rotation are the same, i.e. Ω = δv/d and Re0 = δv d/ν = Ωd2/ν. In the
laminar case the velocity field is linear and the momentum current becomes
J0 = −(ν2/d2)Re0. The equivalent of the Nusselt number is the momentum
current J divided by the laminar one, Nu = J/J0. In dimensionless units the
relations become

εu =
ν3

d4Re0(Ωd2/ν)(Nu − 1) (17)

εv =
ν3

d4

(
Re2

0Nu − Re0(Ωd2/ν)(Nu − 1)
)

(18)

The total dissipation becomes

εtot = εu + εv =
ν3

d4Re
2
0Nu (19)

and scales simply with Nu and Re0.
The relations (9) and (10) for the thermal system and (17) and (19) for

the rotating system have the same structure. For the evaluation of the scaling
relations of the momentum transport Nu and the wind Re with the Reynolds
number Re0 of the imposed shear flow in the case of bulk dominated turbu-
lence, we use the scaling Nu ∼ Re for the current, εtot = Re2

0Re for the total
dissipation and εu ∼ Re3 for the dissipation in the wind. The latter equa-
tion together with (17) implies that the wind scales with the external shear,
Re ∼ Re0. This implies the value ξ = 0, in accord with the recent data [9].

This work was supported by the EU within the Network Non-ideal turbu-
lence, HPRN-CT-2000-00162, and the Deutsche Forschungsgemeinschaft.
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1 Introduction to Fragmentation Under the Scaling
Symmetry

Fragmentation plays an important role in a variety of physical, chemical, and
geological processes. Although each individual action of fragmentation is a
complex process, the number of these elementary actions is large. Then it is
natural to abstract a simple ”effective” scenario of fragmentation and to rep-
resent its essential features. One of the model is the fragmentation under the
scaling symmetry: each breakup action reduces the typical length of fragments,
r ⇒ αr, by an independent random multiplier α (0 < α < 1), which governed

by the fragmentation intensity spectrum q(α),
1∫

0
q(α)dα = 1. This scenario

has been proposed by Kolmogorov [1], when he considered the breakup of
solid carbon particle. Describing the breakup as a random discrete process,
Kolmogorov stated that at latest times, such a process leads to the log-normal
distribution. The population balance in the case of fragmentation under the
scaling symmetry evolves according to the following integro-differential equa-
tion [2]:

∂f

∂t
= (Î+ − 1)νf (1)

where f(r, t) is the normalized distribution of size, ν is the breakup frequency,

Î+f =

1∫

0

f
( r

α

)
q(α)

dα

α
(2)

is the operator of fragmentation. To fulfill the evolution of distribution with
time, we consider q(α) to be different from delta function. The question is:
How does the distribution f(r, t) evolve? This question can not be completely
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answered since the solution of the evolution equation (1) requires knowledge of
the spectrum q(α), which is principally unknown function. At the same time,
the operator Î+ in (1) is invariant under the group of scaling transformations
(r → αr). Due to this symmetry, the evolution of the distribution f(r, t) goes
at least, through two intermediate asymptotics. Evaluating these intermediate
asymptotics does not require knowledge of entire function q(α) - only its first
two logarithmic moments and further only the ratio of these moments in
the long-time limit, determine the behavior of the solution of (1). These two
universalities are shown as follows.

2 First and Second Universalities

The asymptotic solution of (1) is [2]:

f(r, t → ∞) =
1
R

1
√

2π
〈
ln2 α

〉
νt

exp

(

− 〈lnα〉2
2
〈
ln2 α

〉νt

)

×

× exp

(

− 〈ln(r/R)〉2
2
〈
ln2 α

〉
νt

)(
R

r

)1−〈lnα〉/〈ln2 α〉
(3)

where R denotes the initial length scale. The expression (3) confirms the
main result of Kolmogorov [1]: the long-time limit distribution is log-normal
(first universality with two parameters, which are the first and the second
logarithmic moments of the fragmentation intensity spectrum). Further, it is
seen from (3), that as time progresses, the second exponential multiplier tends
to unity while the first one is decreasing. This implies that the final behavior
of the distribution is dominated by (second universality):

f(r, t → ∞) ∝
(

1
r

)1− 〈ln α〉
〈ln2 α〉

(4)

with only one universal parameter 〈lnα〉 / 〈ln2 α
〉
.

2.1 First Universality and Fokker-Planck Equation

The emerging corollary from the first universality is that changing of higher
moments

〈
lnk α

〉
, k > 2 in equation (1) does not affect its solution at times

sufficiently larger than the life time of the breaking fragment. Consequently,
the evolution equation (1) can be reduced exactly to the Fokker-Planck equa-
tion:

∂f(r)
∂t

=
[

− ∂

∂r
r 〈lnα〉 +

1
2!

∂

∂r
r
∂

∂r
r
〈
ln2 α

〉
]

νf(r) (5)



Turbulent Cascade with Intermittency 53

The solution of (5) verifies to be:

f(r, t) =
1
r

∞∫

0

1
√

2π
〈
ln2 α

〉
νt

exp

[

−
(
ln r0

r + 〈lnα〉 νt)2

2
〈
ln2 α

〉
νt

]

f0(r0)dr0 (6)

where f0(r0) is the initial distribution.

2.2 Second Universality, Fractals and Boltzman Distribution

The power distribution (4) implies the fractal properties of formed fragments
in the long-time limit. Setting in (4) x = ln r, one yields:

Φ(x) = r · f(r, t) ∝ e− x
h where h = −

〈
ln2 α

〉

〈lnα〉 (7)

From (7), one can see that the asymptotic power (fractal) distribution (4)
plays the same role as the Boltzmann distribution in problems of statistical
physics. This gives an idea to identify the parameter 〈lnα〉 / 〈ln2 α

〉
by making

analogy with theory of Einstein on the Brownian motion. One gets:
〈
ln2 α

〉

〈lnα〉 = ln
(
r∗
r0

)

(8)

where the typical length scale r∗ characterizes a measure of the collective
fracture resistance of material to the process causing the fragmentation.

3 Application to the Turbulent Cascade with
Intermittency

The cascade in the isotropic turbulence with intermittency may also be viewed
in the framework of fragmentation under the scaling symmetry. Here, the en-
ergy of larger unstable eddies is transferred to smaller one at the fluctuating
rate. Since the number of degrees of freedom to produce each turbulent struc-
ture is very large, it is clear that controlling of each elementary breakup of
eddy is a difficult task. The very simple way is again, to assume that at
each repetitive step of cascade, the probability to find the velocity scale of
a ”daughter” eddy is independent of the velocity scale of its ”mother” eddy;
i.e. when the turbulent length scale r gets smaller, the velocity increment,
δrv(x) = |v(x+ r) − v(x)|, is changed by independent positive random multi-
plier;

δrv = αδlv, with r ≤ l (9)

Such an expression can be found in papers of Castaing et al. [3, 4, 5, 6, 7].
These papers show: at progressively decreasing length scales, the PDF of δrv
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develops stretched tails with growing central peak. This implies that at small
length scales, the small amplitude events alternate with events of strong veloc-
ity variation. The intermittency is manifested in the same way: highest strain
in narrow (dissipative) regions of flow. By Taylor’s hypothesis of ”frozen turbu-
lence”, it is traditional to evaluate δrv-statistics by one-point measurements.
Consequently, the penetration towards smaller scale in the turbulent cascade
may be viewed as evolution ”in time” through τ∗ = ln(Lint/li), where Lint is
integral length scale and li is eddy length scale [8]. Using this ”time” and as-
suming Gaussian distribution at integral scale, equation (6) can be rewritten
for the symmetric part of δrv:

f(δτv, τ∗) =
1
δτv

∞∫

0

d(δintv)√
2π

〈
ln2 α

〉
τ∗

×

exp

⎡

⎢
⎣−

(
ln δintv

δτv
+ 〈lnα〉 τ∗

)2

2
〈
ln2 α

〉
τ∗

⎤

⎥
⎦G(δintv) (10)

The crucial problem in (10) is identification of the dimensionless cascade
parameter

〈
ln2 α

〉
/ 〈lnα〉. In view of discussion on (8), greater value of〈

ln2 α
〉
/ 〈lnα〉 corresponds to larger velocity increments that are involved into

formation of smaller eddies. Such a ”fluid resistance” to the process causing
the cascade, may be characterized by the collective effect of viscosity. In liter-
ature, the length scale starting from which the viscous effects are manifested,
is referred to as Taylor micro-scale. In this spirit:

〈
ln2 α

〉
/ 〈lnα〉 = ln(λ/Lint)

and 〈lnα〉 = const · ln(λ/Lint) where λ is scale close to the Taylor micro-scale
and const has to be adjusted by experiment. The evolution of (10), show the
progressive non-Gaussianity with development of stretched tails. The com-
puted pdf’s from (10) reproduce measurements given by [9].
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The inertial-range dynamics of fully developed turbulence is often character-
ized in terms of structure functions Sn(∆vl) = 〈∆vnl 〉 ∼ lξn . The velocity
increment ∆vl = (v(x+ l)−v(x)) · l/l is either taken as the component paral-
lel (x) or perpendicular (y) to the mean flow direction. For scales η � l � L,
where η is the dissipation scale and L the integral scale, the structure func-
tions reveal power-laws with scaling exponents ξn. However, depending on the
Reynolds number and the flow geometry, these scaling laws are either only
approximate or come with a rather narrow scaling range.

A different way to extract scaling exponents is proposed by the Refined
Similarity Hypothesis 〈∆vnl 〉 ∼ 〈εn/3l 〉ln/3, which relates structure functions
to integral moments 〈εnl 〉 ∼ l−τn of the energy dissipation and respective
exponents via ξn = n/3 − τn/3. The energy dissipation with viscosity ν is
defined as

ε =
ν

2

3∑

i,j=1

(
∂vi
∂xj

+
∂vj
∂xi

)2

(1)

and requires full knowledge about all three velocity components. Since in
experimental data only one, at most two components of the velocity field are
accessible, various surrogate forms are constructed:

εsur1(x) = 15ν(∂xvx(x))2 , (2)

εsur2(x) =
15
2
ν(∂xvy(x))2 , (3)

εsur3(x) =
15
4
ν
[
2(∂xvx(x))2 + (∂xvy(x))2

]
. (4)
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Upon assuming isotropy, all three constructions have the same mean value as
(1). Their coarse-grained amplitudes are determined via

εl(x) =
1
l

∫ x+l/2

x−l/2
ε(x′)dx′ . (5)

Fig. 1 illustrates the second-order moment based on (2) for an atmospheric
boundary layer record [1]. Its Reynolds number based on the Taylor microscale
λ =

√〈v2
x〉/〈(∂xvx)2〉 is Rλ = 9000, its estimated ratio between integral length

and dissipation scale is L/η = 5×104 and it comes with a longitudinal as well
as a transverse velocity component. The logarithmic local slope of 〈ε2

l 〉 turns
out to be constant only in the upper part of the inertial range, where it is
equal to τ2 = 0.20. The same outcome holds for the other two surrogate forms
(3) and (4). For a turbulent flow with such a large Reynolds number this result
is to some degree surprising and for the moment leaves open the question as
to why the scaling range does not extend more into the intermediate inertial
scale range.
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Fig. 1. Second-order integral moment 〈ε2l 〉 based on the surrogate energy dissipation
(2) for an atmospheric boundary layer with Rλ = 9000. The dashed straight line
has a logarithmic slope τ2 = 0.2. Inset shows the logarithmic local slope.

The second-order integral moment is closely related to the two-point cor-
relation function:

〈
ε2
l

〉
=

1
l2

∫

l

dx1

∫

l

dx2 〈εsur(x1)εsur(x2)〉 . (6)

Fig. 2 compares the two-point correlator obtained from the surrogate forms
(2), (3) and (4). All three variants reveal a rigorous power-law scaling behavior
within the extended inertial range 15η ≤ d ≤ 0.3L and the corresponding
scaling exponents are within τ2 = 0.20 ± 0.01, showing little differences. Only
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for small two-point distances d → η the two-point correlators begin to differ.
Whereas the variants based on (2) and (3) practically remain identical, the
two-point correlation based on (4) is weaker for d ≤ 10η; see inset of Fig. 2.
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Fig. 2. Normalized two-point correlation function of the surrogate energy dissipation
(2) (full line), (3) (dotted line with circles), and (4) (dot-dashed line). The dashed
straight line has a logarithmic slope τ2 = 0.2. Inset magnifies the behavior for short
separation distances.

When compared to the true energy dissipation, the expression (4) appears
to be closer to (1) than the other two variants (2) and (3). This allows to
speculate that if one adds more terms from the full list of (1), the extra-
strong two-point correlations at small separation distances d ≤ 15η reduce
further, perhaps even vanish once the surrogate field has converged to the
true field.

In numerical simulations the full velocity field is accessible. Therefore they
are particularly suitable for studying the difference between the true and sur-
rogate energy dissipation. For the analysis here a small data set from a shear
turbulence simulation [2] was available. Although the statistics are not very
high the result is convincing enough to stress the surrogacy issue. Fig. 3 com-
pares the two–point correlation of the dissipation obtained from the full field
(1) with the one obtained from the surrogate field (2). Although the Tay-
lor scale Reynolds number is only Rλ = 99 one can identify an approximate
power law scaling range and both, the surrogate and true dissipation are iden-
tical in this range. Only for very small distances the two curves differ, where
the correlator calculated from the surrogate field is showing the same extra-
strong correlations as in experimental data. Note, that the strong increase of
the correlation functions of the numerical data for the largest distances is an
artifact of the periodic boundary conditions used in the simulation. This find-
ing indicates the importance of the subtle surrogacy issue when interpreting
data. The surrogacy of the energy dissipation alters the small scale behavior
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Fig. 3. Two-point correlator obtained from a numerical simulation. For the line
with dots the true energy dissipation field (1) has been used and for the line with
the open circles the one–component surrogate (2) has been used.

of the two-point correlation; fortunately, this leaves the rigorous scaling over
the major part of the inertial range untouched.

In comparison with two-point correlations, the poor scaling of the integral
moments appears in a new light. The extra-strong small-distance behavior
of the two-point correlation can be roughly modeled with an additional δ-
function at d ≈ η, i.e. 〈ε(x + d)ε(x)〉 ≈ a(η/d)τ2 + bδ(d − η). Insertion into
(6) then leads to 〈ε2

l 〉 ≈ a′(η/l)τ2 + b′(η/l), resulting in a slowly decreasing
correction to the scaling term. This explains qualitatively the observed scale-
dependence of the second-order integral moment: only in the upper part of
the inertial range does the scaling term with exponent τ2 dominate, whereas
for the lower part strong deviations set in due to the small-distance behavior
of the two-point correlation function, caused by the surrogacy effect.

More details on the observational impact of the surrogacy effect can be
found in Ref. [3]. More follow-up discussions on two-point statistics of the
turbulent energy cascade are given in Refs. [4, 5].
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1 Introduction

The main shortcoming of Kolmogorov’s theory [1] on the statistics of veloc-
ity fluctuations in high Reynolds-number flows is that, however beautifully
simple, it does not take into account the inhomogeneity of intense velocity
gradients. The presence of sparse but violent shear zones causing dissipa-
tion is referred to as intermittency. A signature of intermittency is the pres-
ence of large tails in the histograms of velocity gradients. Note that equiv-
alently, the variance of velocity gradients is proportional to the dissipation
rate: ε = 1

2ν(∂ivj + ∂jvi)2 � 15ν(dv/dx)2.
Obukhov and Kolmogorov proposed in 1962 an improved version of this model
(K.O. 62) to take into account spatial fluctuations of the energy transfer rate
[2]. This is historically the first theory to address the scale-invariance symme-
try breaking of the velocity field, that is intermittency.

This model is based on the rather strong assumption that scale-invariance
would be recovered if only the regions of same value of the dissipation are
taken into account in the ensemble averaging. This is the so-called Refined
Similarity Hypothesis (R.S.H.).
The purpose of this study is to investigate experimentally those hypothesis
underlying the theory, instead of the consequences.

2 Gaussian Conditional Statistics

First, we confirm with higher accuracy that the velocity increments are Gaus-
sian at any inertial scale, if conditioned to the local average of the dissipation
at the same scale. We use the traditional surrogate εr(x) = 15ν

∫
r

(
dv
dx′

)2
dx′.

This fact has already been observed since a long time by different groups
[3, 4, 5]. The major improvement here is the use of a very clean data set
recorded together with C. Baudet in a jet flow in air at moderate Reynolds
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number (Rλ � 430). All details about the experimental conditions and the
resampling procedure can be found in [6].
One can see on fig.1 that the conditional histograms Pc(vr|εr) are indeed
Gaussian to a very good approximation.
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Fig. 1. (a) Conditional histograms Pc(vr|εr), at scale r = 100 η, for the following
values of εr : log(εr/ε∗r) = −2, 0, 2, where ε∗r denotes the most probable value of εr.
The original histogram P (vr) at the same scale is plotted for comparison. Curves
are artificially shifted along ordinates for clarity. (b) Skewness and flatness factors
of the conditional histograms Pc(vr|εr) vs. log(εr/ε∗r) at the same scale r = 100 η.

These histograms, for three different values of εr, have the same Gaussian
shape in the whole inertial range (but not dissipative). Therefore, the following
questions arise: – How do the 2 first conditional moments depend on r and
εr, which is the R.S.H. itself? – What are the statistics of εr and the scale
dependance of the variance (the mean being fixed by the energy conservation)?
However, these last two question are not considered in this article: it is shown
elsewhere that εr can be assumed log-normal to a very good approximation
[8, 9, 10]. Several models give predictions on the variance of log(εr) [2, 7, 8].

3 Conditional Mean and Variance

Pc(vr|εr) being Gaussian, are completely characterized by their two first mo-
ments: v0(εr, r) ≡ 〈vr|εr〉 and σ2(εr, r) ≡ 〈v2

r |εr〉 − 〈vr|εr〉2. Note that v0 and
σ characterize the asymmetry and the intermittency of vr respectively.
One can see in fig. 2 that v0(εr, r) and σ(εr, r) at different inertial scales all
collapse to a single curve, if rescaled à la Kolmogorov :

{
v0(εr, r) = 〈v2

L〉1/2 (− 1
3 log(εr/ε∗r)

)
(r/L)1/3 ,

σ(εr, r) = 〈v2
L〉1/2 (1 + 1

3 log(εr/ε∗r)
)

(r/L)1/3 .
(1)
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Far from the most probable values of log(εr) the conditional moments curve
tends to zero, when the statistical sample becomes small. (The curvature is
more visable for r large, where intermittency is small.)
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Fig. 2. A dimensional conditional mean velocity (v0(εr, r)/〈v2
L〉1/2)(r/L)−1/3 (a)

and conditional r.m.s. velocity (σ(εr, r)/〈v2
L〉1/2)(r/L)−1/3 (b) are plotted v.s.

log(εr/ε∗r) for several scales r in the inertial range and compared to the expressions
given in Eq. (1).

4 Discussion

To conclude, we confirm with an increased accuracy that the conditional his-
togram Pc(vr|εr) is Gaussian, and that its mean and standart-deviation scales
as r1/3, as predicted by K.O. 62. The two coefficients v0 and σ describe re-
spectively asymmetry and intermittency.

How can we interpret the fact that Pc(vr|εr) is Gaussian?
It seems that this can only be understood from the Lagrangian point of view.
The simplest Lagrangian model one can imagine for turbulence is that pro-
posed by the Obukhov and Landau in 1944 [11]. A fluid particle is performing
a Brownian motion, which expresses in the v-space as: 〈v2

τ 〉 ∝ 〈ε〉τv. In this
simplistic picture, vτ is the Lagrangian velocity increment over a time τv, the
mean dissipation 〈ε〉 stands for molecular diffusivity which would be propor-
tional to a temperature of the surrounding reservoir... if there were thermody-
namic equilibrium of some sort.
At small scale, dissipation is fluctuating. To generalise this simplistic model,
one can try to take into account these fluctuation as the R.S.H. for Eulerian
turbulence: the random walk is performed in regions where dissipation (tem-
perature) is not constant, giving rize to “anomalous diffusion”. Therefore, one
could recover “normal diffusion” characteristics in regions where εr takes the
same value. This can be expressed as 〈v2

τ |εr〉 ∝ εrτv, where εr is the average
dissipation in the region of size r that the particle is exploring during time τv.
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On this length r, εr must vary slower than vτ , so that the particle can ther-
malise. In other words, we must compare the time τv � rv/vτ based on La-
grangian velocity, and the evolution time τε of εr.
If we suppose that dissipation ε is passively advected by the turbulent field v
we get τε � rε/vτ , and find rε/rv � τε/τv.
As correlations of ε and v are approximately algebraic and exponential re-
spectively, it is likely that rε > rv ⇒ τε > τv. Therefore, the fluid particle has
time to thermalise, and therefore exhibits at fixed εr the Brownian properties:
〈v2
τ |εr〉 ∝ εrτ , and Pc(vr|εr) Gaussian.

The scales on which those arguments hold are limited on one side by the
small scales, on which the condition that εr is passively advected holds (that
is turbulent mixing dominates thermal diffusion), and on the other side by
the integral scales (on which εr � 〈ε〉). That is nothing but the inertial range
of scales.

Introducing intermittency this way seems to extend nicely the simplistic model
of 1944 in a similar way as the R.S.H. of 1962 did for the 1941 theory.
Those qualitative arguments are obviously not sufficient. A theory is badly
needed, that would link the Lagrangian and Eulerian pictures of turbulence,
and if possible explain the dependance in εr of the conditional moments v0
and σ. That would give a description of both intermittency and asymmetry.

References

1. A.N. Kolmogorov. Dokl. Akad. Nauk. SSSR., 30: 299, 1941.
2. A.M. Obukhov. J. Fluid Mech., 13: 77, 1962,

A.N. Kolmogorov. J. Fluid Mech., 13: 82, 1962.
L.-P. Wang et al. J. Fluid Mech., 309:113, 1996, and references therein.

3. G. Stolovitsky, P. Kailasnath, K. R. Sreenivasan. Phys. Rev. Lett., 69:1178,
1992.

4. Y. Gagne, M. Marchand, B. Castaing. J. Phys. II (France), 4:1, 1994.
M. Marchand, Doctoral thesis 1994, Univ. Grenoble, France, unpublished.

5. A. Naert Doctoral thesis 1995, Univ. Grenoble, France, unpublished.
A. Naert, B. Castaing, B. Chabaud, B. Hébral, J. Peinke. Physica D, 113:73,
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The understanding of the complex statistics of fully developed turbulence in
detail is still an open problem. One of the central points is to understand inter-
mittency, i.e. to find exceptionally strong fluctuations on small scales. In the
last years, the intermittency in different directions has attracted considerable
interest. It has been controversial whether there are significant differences in
intermittency between the different directions. More specifically one looks at
the statistics of increments [u(x + r) − u(x)] e, i.e. at the projection of the
differences between two velocities separated by the vector r in a certain direc-
tion e. Here we denotes longitudinal increments with u, for which r and e are
parallel and transverse increments with v for which r is perpendicular to e.

In a first step, one commonly investigates the statistics with the moments of
the increments, the so-called structure functions, and assumes that, according
to Kolmogorov, the structure functions obey a scaling law 〈un〉 ∝ rξn at
least for sufficient high Reynolds number. The intermittency problem is then
expressed by the deviation of the exponent ξn from the value n/3, the well-
known Kolmogorov (1941) scaling.

1 Multi-scale Statistics

In this paper, we focus on a different approach which enables to character-
ize multi-scale statistics. Recently it has been shown that it is possible to
get access to the joint probability distribution p(u(r1), u(r2), . . . , u(rn)) via a
Fokker-Planck equation, which can be estimated directly from measured data
[4, 3]. This method is more general than the above mentioned analysis by
structure functions, which characterize only the simple scale statistics p(u(r))
or p(v(r)). The Fokker-Planck equation (here written for vector quantities)
reads as
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−r
∂

∂r
p(u, r|u0, r0) = (1)

⎛

⎝−
n∑

i=1

∂

∂ui
D

(1)
i (u, r) +

n∑

i,j=1

∂2

∂ui∂uj
D

(2)
ij (u, r)

⎞

⎠ p(u, r|u0, r0).

(i labels the components of u, we fix i = 1 for the longitudinal and i = 2
for the transverse increments.) This representation of a stochastic process is
different from the usual one: instead of the time t, the independent variable
is the scale variable r. The minus sign appears from the development of the
probability distribution from large to small scales. In this sense, this Fokker-
Planck equation may be considered as an equation for the “dynamics” of
the cascade, which describes how the increments evolve from large to small
scales under the influence of deterministic (D(1)) and noisy (D(2)) forces. The
whole equation is multiplied without loss of generality by r to get power
laws for the moments in a more simple way. Both coefficients, the so-called
drift term D

(1)
i (u, r) and diffusion term D

(2)
ij (u, r), can be estimated directly

from the measured data using its mathematical definition. With the notation
∆ui(r,∆r) := ui(r − ∆r) − ui(r) the definitions read as:

D
(1)
i (u, r) = lim

∆r→0

r

∆r
〈∆ui(r,∆r)〉|u(r), (2)

D
(2)
ij (u, r) = lim

∆r→0

r

2∆r
〈∆ui(r,∆r)∆uj(r,∆r)〉|u(r). (3)

Here we extend the analysis to a two-dimensional Markov process, relating
the longitudinal and transverse velocity increments to each other. The re-
sulting Fokker-Planck equation describes the joint probability distribution
p(u(r1), v(r1); . . . ;u(rn), v(rn)).

2 The Experiment

The analysis is applied to a signal measured in a wake behind a cylinder
with 2 cm diameter. The mean free-stream velocity is 10 m/s resulting in a
Reynolds number of 13000. We have placed a X-wire 60 diameter behind the
cylinder to measure the stream wise velocity component u and the component
v perpendicular to the cylinder axis. Taylor’s hypothesis of frozen turbulence
is used to convert time lags into spatial displacements. With the sampling
frequency of 25kHz the spatial resolution does not resolve the Kolmogorov
length but the Taylor length λ = 4.85 mm, yielding the Taylor based Reynolds
number Rλ=180. The integral length is L = 137 mm.

3 Longitudinal versus Transverse Increments

From the measured data the drift and diffusion coefficients are estimated
according to eqs. (2) and (3) as described in [4]. To use the results in an
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analytical way, the drift and diffusion coefficient can be well approximated by
the following low dimensional polynoms,

D
(1)
1 (u, v, r) = du1 (r)u, D

(1)
2 (u, v, r) = dv2(r)v

D
(2)
11 (u, v, r) = d11(r) + du11(r)u + duu11 (r)u2 + dvv11(r)v2 (4)

D
(2)
22 (u, v, r) = d22(r) + du22(r)u + duu22 (r)u2 + dvv22(r)v2

The coefficients duu11 (r) and dvv22(r) are responsible for intermittency, the coef-
ficient du11(r) is essential for the skewness of the probability distribution (Kol-
mogorov’s 4/5-law). The verification of these coefficients will be presented in
a more detailed publication.

Comparing the d-coefficients of equation (4) one can see a remarkable dif-
ference of the longitudinal and transversal increments. The r-dependence of
related longitudinal and transverse d-coefficients (du1 and dv2 etc.) coincides if
the abscissa are rescaled: dlong(r) ≈ dtransv(2/3r), e.g. du1 (r) = dv2(2/3r) etc..
Only the coefficients which are responsible for the skewness and the coefficient
which is responsible for the intermittency deviate from this behavior.

Next, we give three examples, which show the consistency of the 2/3 rescal-
ing. First, plotting the corresponding structure functions with the 2/3 rescal-
ing we find that the longitudinal and transverse structure functions become
similar. Secondly, one can interpret the Kármán equation (isotropic relation)
as an Taylor expansion

〈v2(r)〉 = 〈u2(r)〉 +
1
2
r
∂

∂r
〈u2(r)〉 ≈ 〈u2(r +

1
2
r)〉 = 〈u2(

3
2
r)〉 (5)

to see again a rescaling of the scale variable r by the factor 2/3. This first
order Taylor expansion is correct within 4% over the whole inertia range.
Thirdly, let us suppose that the structure functions scale with a power law,
〈vn(r)〉 = cnt r

ξn
t and 〈un(r)〉 = cnl r

ξn
l . We can relate the structure functions

according to the above mentioned rescaling: 〈vn(r)〉 = 〈un( 3
2r)〉 = cnt r

ξn
t =

cnl (
3
2r)

ξn
l . We end up with the relation ξnl = ξnt and cn

t

cn
l

=
( 3

2

)ξn
l . Note that

the cn constants are related to the Kolmogorov constants. For n = 2 and 4
we obtain c2t/c

2
l ≈ 1.33 and c4t/c

4
l ≈ 1.72, which deviates less than 3% from

the value of c2t/c
2
l = 4/3 and c4t/c

4
l = 16/9 given in [1].

4 Extended Self Similarity of Longitudinal and
Transverse Increments

To study the intermittency in the framework of self-similarity, the scaling
exponent has to be measured. For low Reynolds number along with a short
scaling range this is possible by using the extended self-similarity method
(ESS) proposed by Benzi et al. [2] with the relations 〈un〉 ∝ 〈|u3|〉ξl,n and
〈vn〉 ∝ 〈|u3|〉ξt,n . A frequently discussed result is that ξt,n < ξl,n. This has
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been interpreted as a higher intermittency of the transversal increments, for
our data, see Fig. 1a). But if the transverse structure function is plotted as a
function of 〈|u3( 3

2r)|〉, this discrepancy vanishes, as shown in Fig. 1b). Notice
that these properties are only possible for a non-existing scaling behavior.
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Fig. 1. Extended self similarity (ESS) for the forth-Worder structure function. a)
ESS as it is usual applied for longitudinal and transverse structure functions. b)
as in a) but the transverse structure function plotted against 〈|u3( 3

2r)|〉 with the
abscissa stretched by the factor 2/3.

In conclusion, we have shown a new feature of the relation between the
longitudinal and transverse velocity increments, namely, that the statistics of
both quantities become similar if the relative “cascade speeds” between these
two directions are rescaled by a factor 2/3. This finding seems to be more
basic than the proposed scaling property of structure functions.
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1 Introduction

According to Kolmogorov’s similarity hypothesis (K41), the one-dimensional
energy spectrum has the following form in the inertial range[1],

E(k) = Ck 〈ε〉2/3 k−5/3 , (1)

where 〈ε〉 is the energy dissipation rate per unit mass and k is a wave number
defined as 2πf/U by the frequency f [Hz]. However, this scaling is not satisfied
completely. The spectrum indicates a power-law relation E(k) ∝ k−γ whose
slope is different from −5/3. When the power-law exponent is expressed by
γ ≡ −(5/3 +µ), µ is a very small quantity but has been thought to be on the
order of O(10−2). The spectral slope has not been examined directly so far
because the inertial range is too narrow to accurately measure the deviation
from −5/3 in moderate laboratory experiment or DNS.

Recently, the ultra simulation of box turbulence was performed by EARTH
SIMULATOR [2]. The Reynolds number based on the Taylor micro scale was
Rλ � 1200. They observed that the energy spectrum in the inertial subrange
almost follows the Kolmogorov scaling law, but the exponent is steeper than
−5/3 by about 0.1 within 0.008 ≤ kη ≤ 0.03. If this was an intermittency
correction µ, it would be too large. But no physical interpretation of this fact
was presented by the authors. Where is this large discrepancy coming from?
How can we interpret µ � 0.1? We address this question from an experimental
point of view by analyzing the high-Reynolds number data measured in the
atmospheric turbulent boundary layers [3].

2 Experimental Condition

The atmospheric data were measured in the observation tower at Brookhaven
National Laboratory (see Fig. 1 in reference [3]). The station is located about
35 m from the ground. We used I-type and X-type probes whose sensitive
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lengths are 0.7 mm with diameters of 5 µm. They are operated by a constant-
temperature anemometer. The velocity signals are sampled by 12-bit A/D
converter at 5 kHz ∼ 10 kHz frequency with a low-pass filter depending on
the flow conditions, and the measurements are continuous for one hour for
each data set. The probe was mounted on a 2 m-long moving device, and its
direction is arranged according to the flow condition. The Reynolds number
is 5000 ≤ Rλ ≤ 30000 and typical features of flow field are summarized in [3].
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Fig. 1. Energy spectrum E(k) normalized by the energy dissipation rate 〈ε〉 and
wave number k. kp is a peak wave number in the dissipation range. k0 ≤ k ≤ k3 and
k2 ≤ k ≤ k1 are defined as β-slope and α-slope region, respectively. γ-slope region
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decreases in the low wave number range. Solid line indicates the slope µ = 0.1.

Figure 1 shows an example of normalized spectra. η is defined by 〈ε〉 and
viscosity ν as 〈ε〉3/4 /ν1/4. There are more than three decades of inertial range,
and a fine resolution is achieved even in the dissipation range.

3 Power-Law Exponent of Energy Spectrum

It is actually observed that the energy spectrum is rather tilted in the range
of 0.002 ≤ kη ≤ 0.02. The solid line indicates the slope of µ = 0.1 as ob-
served by the ultra simulation. The flatter region, that is the spectral slope
closer to −5/3, exists in the lower wave-number range. For convenience, the
special wave numbers kp, k0, k1, k2, and k3 are introduced. kp is defined as
the peak of the normalized spectrum in the dissipation range. It is represen-
tative of the small-scale fluctuations. If kp is normalized by η, the ratio is
constant, kpη � 0.07, in this data set. Toward the lower wave number range
the spectrum decreases and then indicates the local minimum at k1 where k1
is approximately k1η = 0.02. k1 is located in the beginning of the bottleneck
region. Toward the lower frequency range, the normalized spectrum deviates
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from the power-law around the wave number of k0, and then the spectrum at-
tenuates. We think that k0 corresponds to the beginning of the inertial range
or it is representative of large-scale fluctuations. It is noted that k0 is not
constant even if it is normalized by η. Then the ratio kp/k0 represents how
far apart the small scale is apart from the large scale. We quantitatively char-
acterize the wave numbers k2 and k3. They are not determined empirically
but they are on the same order as the Taylor micro scale λ. For instance, λ
is 12.8cm or λ−1η = 0.0035 for the case of Rλ = 17060 in Fig. 1. That is,
k2 ≤ 1/λ ≤ k3. An overlap region should exist due to some uncertainty in
computing the spectrum. The spectral slope in k2 ≤ k ≤ k1 is expressed as
α and that of k0 ≤ k ≤ k3 is β. We call them the α-slope region and β-slope
region, respectively.

The slopes α and β are obtained by a least-square fit, and they are plot-
ted as a function of kp/k0 in Fig. 2. As indicated by the dashed line, α is
about 0.075 and β = 0.025 on average. β is actually smaller than α. Thus,
the power-law region closer to −5/3 in the range of k0 ≤ k ≤ k3 is con-
vincing. We assume that the α range corresponds to the power-law range
observed in the ultra simulation with µ = 0.1 [2]. α is slightly smaller than
0.1, but we think this is because the slope between k1 and kp is not as steep or
the spectral bump is not as clearly observed in one-dimensional spectra (ex-
periments) as in three-dimensional ones (DNS). This fact has been noticed,
and Dobler et al. propose that this difference is caused by means of trans-
forming the three-dimensional spectrum into one dimensional [4]. Once the
one-dimensional spectrum is computed from the three-dimensional data, the
spectral bump becomes less pronounced.

In ordinary laboratory experiments, Rλ is several hundreds at most, or
the inertial range is about one decade. The spectrum indicates almost −5/3.
This is commonly observed in DNS [5]. In this case, there is only the β-slope
region but the α-region does not exist. Here we remember that the α-region
was defined as the steep slope region where the deviation from −5/3 is the
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order of O(0.1). As the Reynolds number increases so Rλ is a thousand, the β-
region shifts into the low wave number range, and the α-slope region appears.
This is the condition of ultra simulation at Rλ � 1200.

Both α and β are thought to be an intermittency correction from K41.
Near the spectral bump, k2 ≤ k ≤ k1, the intermittency correction is more
significant. Thus, we have to take into account a different energy cascade
process in these instances. If the inertial range exists far from the dissipation
range in the sense of Kolmogorov, it should be regarded as a β-slope region.
A substantial β-slope region is realized for O(104) < Rλ. The existence of two
different scaling regions is interesting for itself, but we do not have enough
knowledge to reveal the phenomenology in the α-region.

It is difficult to confirm the difference between α and β-slope regions with-
out being motivated by the ultra simulation to look carefully into the en-
ergy spectrum. Usually, the spectral slope has been computed using the form
E(k) ∝ k−γ in the range of k0 ≤ k ≤ k1, or following the criterion that the
normalized spectra E(k)/k−γ shows the broadest flat region. The exponent
γ is plotted in Fig. 3. It is approximately 1.70 on average and independent
of the ratio kp/k0. So the intermittency correction is γ − 5/3 = 0.04. More
detailes are reported in [6].
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1 Introduction

The objective of this work has been to devise predictive algebraic expressions
with a theoretically based structure for fully developed turbulent flow and
convection in channels. These predictive expressions for flow are based on
numerically values obtained by integration of differential models that are exact
except for a semi-empirical correlative expression for the local time-averaged
turbulent shear stress. The predictive expressions for convection introduce
some idealizations but no further empiricism.

2 Development of the New Model

The starting point is the differential balance obtained by twice integrating the
time-averaged Navier-Stokes equations for fully developed flow with invariant
physical properties in a round tube,namely,

τw

(
1 − y

a

)
= µ

du

dy
− ρu′v′ (1)

Rather than introducing the eddy viscosity or the mixing-length to represent
−ρu′v′, and then devise correlative or predictive expressions for these heuristic
quantities, (1) was simply re-expressed as

(

1 − y+

a+

)[
1 − (

u′v′)++
]

=
du+

dy+ (2)

where
(
u′v′)++ ≡ −ρu′v′

τ is the fraction of the total local shear due to the
turbulent fluctuations. A correlating equation for this latter quantity is

(
u′v′)++

=

⎛

⎝

[

0.7
(
y+

10

)3
]8/7

+
∣
∣
∣
∣exp

{ −1
0.436y+

}

− 1
0.436a+

(

1 +
6.95y+

a+

)∣
∣
∣
∣

−8/7
)−7/8

(3)
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The 3rd-power dependence on y+ is from asymptotic expansion, and the co-
efficient of 0.0007 from direct numerical simulations. The exponential term
corresponds to the semi-logarithmic dependence of the time-averaged velocity
on y+,which was derived by Millikan[1] by speculative dimensional analysis.
The following term represents the wake. The coefficients 0.436 and 6.95 are
based on recent experimental measurements of the time-averaged velocity by
Zagarola [2]. The combining exponent of −8/7 is based on the measurements of
the fluctuating velocities in a parallel-plate channel by Wei and Willmarth [5].

3 Integral Formulations

Re-expressing (3) in terms of R = 1 − y+ and integrating formally yields

u+ =
a+

2

∫ 1

R2

[
1 − (

u′v′)++
]
dR2 =

a+

2
(
1 − R2) − a+

2

∫ 1

R2

(
u′v′)++

dR2 (4)

In turn, integrating u+ over the cross-section of the tube yields
(

2
f

)1/2

= u+
m =

∫ 1

0
udR2 =

a+

4

∫ 1

0

[
1 − (

u′v′)++
]
dR4

=
a+

4
− a+

4

∫ 1

0

(
u′v′)++

dR4 (5)

These two integral provide valuable insight, but stepwise integration of the
differential formulations is more efficient computationally.

3.1 Inter-relationships

Eliminating du+

dy+ between the differential energy balances in terms of (u′v′)++,

the eddy viscosity, and the mixing length reveals that µ1
µ = (u′v′)++

(1−u′v′)++ and

(�+) = (u′v′)++

(1− y
a )

[
1−u′v′++

]2 . Despite its heuristic origin the eddy viscosity is seen

to be a physically meaningful quantity whereas the mixing-length is proven,
perhaps for the first time, to be singular at the axis for all conditions because(
u′v′)++

is always finite.

3.2 Correlating Equation for the Fanning Friction Factor

The numerically computed values of u+
m are represented almost exactly, and

the experimental values of Zagarola [4] within 0.5%, by the following expres-
sion:

(
2
f

)1/2

= u+
m = 3.2 − 227

a+ +
(

50
a+

)2

+
1

0.436
ln{a+} (6)

No additional empiricism is introduced by (6). The unfamiliar terms in
(a+)−1and (a+)−2 are the first terms in an asymptotic expansion for the
effect of the viscous boundary layer as represented by u+ = y+.
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3.3 Other Geometries

Space does not permit a detailed description of the development of analogous
formulations and results for other geometries, but briefly: (1)-(3) are directly
applicable for a parallel-plate channel if ais replaced by b; (3) may be adapted
separately for the inner and outer regions of annuli; but empirical expressions
are required for the locations of the maximum in the velocity and the zero in
the shear stress. Equation (5) with a+

2 −a+
1 substituted for a+provides a good

approximation for annuli of all aspect ratios.

3.4 Analogous Expressions for Convection

The differential energy balance for a uniformly heated round tube may be
expressed as

(1 + γ)
(
1 − y+

a+

)

1 + Pr
Prt

(
(u′v′)++

1−(u′v′)++

) =
dT+

dy+ (7)

where T+ =
k (ρτw)1/2 (Tw − T )

µj
and 1 + γ =

1
R2

∫ R2

0

(
u+

u+
m

)

dR2

Formal integration of (7) results in

T+ =
a+

2

∫ 1

R2

(1 + γ) dR2

1 + Pr
Prt

(
(u′v′)++

1−(u′v′)++

) =
dT+

dy+ (8)

and
2a+

Nu
= T+

m =
a+

4

∫ 1

0

(1 + γ)2 dR4

1 + Pr
Prt

(
(u′v′)++

1−(u′v′)++

) =
dT+

dy+ (9)

Again, numerical integration of the differential formulations is more efficient
computationally.

3.5 The Utility of Analogies

Because of the insight provided by (8), the classical analogy of Reichardt [3],
after the correction of several errors, was recognized as equivalent to

1
Nu

=
(
Prt
Pr

)
1

Nu1
+

(

1 − Prt
Pr

)
1

Nu∞
(10)

with
Nu1 ≡ Nu{Prt = Pr} =

8
∫ 1
0 (1 + γ)2

[
1 − (

u′v′)++
]
dR4

=
Re f/2

(1 + γ)2wmR4

and

Nu∞ ≡ Nu{Pr −→ ∞} = 0.07343
(
Pr

Prt

)1/3 (
f

2

)1/2
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Equation (10) proved to provide a very good representation for the computed
values of Nu for all geometries, all thermal boundary conditions, and all values
ofPr > 0.7. However, a slightly modified analogy derived by Churchill [4],
which results in

Nu =

((
Prt
Pr

)[
1

Nu1
+

([
Pr

Prt

]2/3

− 1

)
1

Nu1∞

])−1

(11)

is effectively exact. An analogue of (11) for Pr ≤ Prt is

Nu1 − Nu

Nu1 − Nu0
=

(

1 +
(Prt/Pr)

1
8 (Nu1 − Nu0)Nu1

∞(
Prt

Pr − 1
) (

Nu1∞ − 2
3Nu1

)

)−1

(12)

where Nu0 ≡ Nu {Pr = 0} =
1
8

(∫
(1 + γ)2 dR4

)−1

=
1
8

(
(1 + γ)2mR4

)−1

Equations (11) and (12) have been found to represent the essentially exact
numerical solutions for Nu within 1% for all values of Pr,all values of Re in the
fully turbulent regime of flow in circular, concentric annuli of all aspect ratios
including the limiting cases of a round tube and a parallel-plate channel, and
all thermal boundary conditions that lead to fully developed convection (see
[5] and [6] for illustrations).

4 Summary

An algebraic correlating eqution for the local fraction of the total shear stress
due to the turbulent fluctuations allows prediction of the time-averaged ve-
locity distribution and mixed-mean velocity in all one-dimensional flows in
channels almost exactly for all values of Re. By virtue of an analogy between
momentum and energy transfer, results of comparable accuracy are obtained
without further empiricism for fully developed turbulent convection for all
values of Pr.
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1 Introduction

In a turbulent flow, the number of degree of freedom N can be gigantic, scaling
as the 9/4 power of the Reynolds number. In the atmosphere, this number
may reach N ∼ 1016, devastating our hope to implement all scales of the
climate system onto a computer. This juggling with numbers illustrates the
well known challenge posed by turbulent flows: is there a way to simulate,
or describe a turbulent flow, without taking into account all degrees of free-
dom? A similar question has been asked in the past by founders of statistical
mechanics. Specifically, it has been the kind of challenge met by Boltzman
and co-workers to describe the behavior of a gas made of billions of particles.
Of course, in the case of turbulence, an additional difficulty arises because
a turbulent flow is necessarily driven out of equilibrium by the energy input
mechanisms. Therefore, none of the well-known recipes of classical statistical
mechanics apply. Yet, we may learn something from our glorious ancestors by
closer inspection of their protocol: in a gas, the number of particles is so huge
that it is just hopeless trying to follow each of them individually. Whatever
our power of measurements, there will remain individual particles which we
will be unable to follow. Instead of starting an endless race towards finer and
finer measurements, aimed at decreasing their corresponding number, why
not accept this inherent ignorance, and replace it by something mimicking
its action, and which will be easy to handle? This is precisely the reasoning
followed by Langevin, upon modeling the Brownian motion by a simple Gaus-
sian white noise. Such simple rule achieved many successes. Can it be simply
translated to turbulent flows? This possibility is discussed in the present short
review. Additional point of view about this may be found in the contribution
by Friedrich in these proceedings.
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2 Langevin Models of Turbulence

2.1 Framework

Consider a turbulent flow, with velocity field vi(x, t), and introduce an (arbi-
trary) filtering procedure so as to separate it into a large-scale field Ui = vi
and a small-scale component ui = vi − Ui. Such small-scale motion varies
over time scale t, while large scale vary over time scale T . In any reasonable
turbulent flow, the ratio of the typical time scale of the two components varies
like a power of the scale ratio, as t/T ∼ (l/L)(U/u) ∼ (l/L)2/3. Therefore,
small scales vary much more rapidly than large scale. From the point of view
of the largest scales, the small scales may then be regarded as a noise. Hence
the idea to simply replace them by an a priori chosen noise, with well-defined
properties. One classical way is though a generalized Langevin equation:

u̇i = Aijuj + ξi, (1)

where A is a generalized friction operator, and ξ is a noise. In the sequel, we
explore various models characterized by different value of A and ξ.

2.2 Obukov Model

The simplest model one can imagine is to take A = 0 and ξ as a Gaussian
white noise, isotropic and homogeneous in space, with short time correlation:

< ξi(x, t)ξj(x′, t) >= 2∆δijδ(t − t′). (2)

This model has been first introduced in 1959 by Obukhov. It leads to a number
of interesting properties.

Richardson Law and Kolmogorov Spectrum

Consider for example a cloud of passive scalar particles, embedded in such a
flow. After a time t, this cloud of particles will have evolved into a situation
where its velocity distribution obeys a Gaussian statistics, with variance scal-
ing like square root of time: δu =

√
< u2 > − < u >2 ∼ t1/2. In parallel, the

cloud of particles experienced a spread by a factor r ∼ √
< x2 > − < x >2 ∼

t3/2. This last law is nothing but the famous Richardson law, an empirical
law describing the dispersion of passive tracers in the atmosphere. Moreover,
we may combine the two simple relation to obtain that δu ∼ r1/3, implying
a velocity spectrum E(k) ∼ k−5/3, i.e. the Kolmogorov spectrum. We see
that with virtually no effort, Obukhov model reproduces the two more robust
experimental results obtained so far in turbulence!
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Limitations

Richardson law and Kolmogorov spectra are representative of velocities which
do not differ from the mean by a large amount. The actual range of validity of
the Obukhov model arises when considering higher moments, involving rarer,
but more violent events. Since velocities in this model are Gaussian, their
moments obey a simple scaling relation :< u2n >∼< u2 >n, at variance with
the intermittency observed in real turbulent flows. This simple hierarchy law
disappears as soon as one allows for spatial or temporal correlation, as recently
proved in the Kraichnan model of turbulence.

2.3 Kraichnan Model

The Obukhov model is frictionless in essence. The Kraichnan model can be
viewed as the opposite limit, with a very large friction Aij = −γδij , γ � 1,
and a noise with spatial correlation

< ξi(x, t)ξj(x′, t) >= 2∆ij(x, x′)δ(t − t′). (3)

Due to the large friction, the inertial term in the Langevin equation becomes
negligible and the velocity adiabatically adjusts to the noise as: ui ∼ γξi. The
Kraichnan model is thus made of small-scale delta-correlated Gaussian white
noise, with spatial correlation.

Intermittency and Conservation Laws

Contrarily to Obukhov model, Kraichnan model leads to intermittency for the
high order moments. The physical reasons have been recently reviewed in [1].
They are rooted in the spatial correlation, which induce a memory effect onto
lagragian trajectories, and lead to the apparition of conservation laws within
sets of Lagrangian particles. Since the moment of order 2n is associated with
conservation laws of sets of 2n particles, and since conservation laws of sets
of particles of different sizes are not simply related, this induces a breaking of
the hierarchical structure of the moments.

Turbulent Transport

Another less well known property of Kraichnan model concerns turbulent
transport. Suppose we focus on the evolution of the vorticity in such a model.
In classical turbulence, the vorticity obeys the equation

∂tΩi = −vk∂kΩi + Ωk∂kvi + ν∂k∂kΩi, (4)

where ν is the molecular viscosity, and v is the sum of the large scale com-
ponent U and the (small-scale) noise. Because of the presence of noise, eq.
(4) admits stochastic solution, whose dynamic can be fully specified by the
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probability distribution function. Ignoring the viscosity and using standard
techniques [2], one can derive the evolution equation for P (Ω, x, t), the prob-
ability of having the field Ω at point x and time t:

∂tP = −Uk∂kP − (∂kUi)∂Ωi
[ΩkP ] + ∂k[βkl∂lP ] (5)

+ 2∂Ωi
[Ωkαlik∂lP ]

+ µijkl∂Ωi [Ωj∂Ωk
(ΩlP )]

For simplicity, we assumed homogeneity of the fluctuations and we introduced
the following turbulent tensors:

βkl = 〈ukul〉 (6)
αijk = 〈ui∂kuj〉
µijkl = 〈∂jui∂luk〉

Due to incompressibility, the following relations hold: αkii = µiikl = µijkk = 0.
To illuminate the signification of this complicated equation, let us consider

the first moment of eq. (5), obtained by multiplication with Ωi and integration:

∂t〈Ωi〉 = −Uk∂k〈Ωi〉 + (∂kUi)〈Ωk〉 − 2αkil∂k〈Ωl〉 (7)
+ βkl∂k∂l〈Ωi〉.

In addition to the standard vorticity advection and stretching by the large
scale, one recognize two additional effect: one proportional to α, resulting in
large-scale vorticity generation through the AKA instability [3]; one propor-
tional to β, akin to a turbulent viscosity. Within the Kraichnan model, one
therefore naturally recovers the well-known formulation of turbulent trans-
port, without resorting to scale separation [4]. In this very simple model,
where the viscosity has been ignored, one can show that the tensor β is al-
ways positive: the turbulent viscosity always enhances turbulent transport. In
actual viscid flows, the turbulent viscosity tensor is actually fourth order, and
can be negative [4].

Limitation

This digression about turbulent transport shows that the way we prescribe
velocity correlation in Kraichnan model somehow determines the turbulent
transport properties of the flow. It is a kind of adjustable parameter. In that
respect, it would be nice to devise a model devoid of this freedom of choice, by
ensuring for example that the turbulent transport somehow adjusts itself to
the way energy is injected and dissipated, as in real turbulence. In the sequel,
we present a model where the noise is dynamically computed at each time
scale, thereby removing the arbitrariness of the Langevin model.
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2.4 Stochastic RDT Model

Description

Our method is based on the observation that small scales are mostly slaved
to large scale via linear processes akin to rapid distortion. This observation is
substantiated by various numerical simulations and is linked with the promi-
nence of non-local interactions at small scale [5]. Specifically, let us decompose
our small-scale velocity field into wave packets, via a localized Fourier trans-
form:

ûi(x, k) =
∫

h(x − x′)eik(x−x′)ui(x′)dx′,

where h is a filtering function, which rapidly decays at infinity. Using in-
compressibility and non-locality of interaction, one can derive the following
equation of motion for the wave-packet [5, 6]:

ẋi = Ui,

k̇i = −kj∂jUi,

˙̂ui = −νtk
2ûi + ûj∂j

(

2
kikm
k2 Um − Um

)

+ ξ̂i. (8)

Here νt is a turbulent viscosity describing the local interactions between
small-scales, and ξ is a forcing stemming from the energy cascade. Its ex-
pression only involves large-scale non-linearities (in fact the aliasing) via
ξi = ∂j

(
UjUi − UiUj

)
. By eq. (8) the wave-packet is transported by the

large-scale flow, its local wavenumber is distorted by the large-scale veloc-
ity gradients, and its amplitude is modified through the action of local and
non-local interactions. The equation describing its amplitude evolution is a
generalized Langevin equation, with friction generated by turbulent viscosity
and with both multiplicative and additive noise stemming from interaction
with large scale. Because these two noises are of same origin, they are corre-
lated. One can show that this correlation is responsible for a skewness in the
probability distribution of the small scale [5]. Note also that in some sense,
our Langevin model can be viewed as a generalization of Rapid Distortion
Theory equation, with inclusion of turbulent viscosity and stochastic forcing.
No wonder, interesting analytical properties will be available in precisely the
same case where Rapid Distortion Theory is the most useful, namely rotating,
or stratified shear flows (see below).

Equation (8) shows that our model is specified by the knowledge of ξ and
Ui. The latter can be shown by mere filtering to obey the equation:

∂tUi + Uj∂jUi = −∂ip̄ + ν∆Ui + f̄i, (9)

where fi describes the backreaction of small scales onto large scales, and is
obtained through summation over wavepackets:
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fi(x) =
∫

dk∂j

(
Ui(x)ûj(x, k) + (ûi(x, k)Uj(x) + (ûi(x, k)ûj(x,−k)

)
.

The set of eqs. (8) and (9) is a strongly nonlinear system of coupled equations,
which defines our turbulence langevin model. In this method, the noises can
be dynamically computed at each time step by integration of the large -scale
equation. In the sequel, we present two application of this: one in which the
system is simplified by prescribing one of the forcing (namely ξ). This allows
the computation of general scaling laws for turbulent transport in various sys-
tems. One in which ξ is numerically computed using the large scale equation.
This allows for fast numerical simulations.

Turbulent Transport

We consider here a simplified version of our Langevin model where the func-
tion ξ is not computed, but prescribed as a Gaussian delta-correlated white
noise. The advantage of this simplification is that it allows for analytical com-
putation in special situation, where the geometry of the system is so simple
that it allows for explicit solution of the homogeneous (unforced) small-scale
equations. In some sense, our model with prescribed Gaussian model for ξ
can be viewed as a generalization of Kraichnan model of turbulence. One can
then expect this model to provide ”reasonable shape” for turbulent transport
(see Section 2.3), with ”free” parameter induced by the prescribed correlation
function for ξ. Working out the details, we found out that indeed, our model is
able to provide the scaling of the turbulent transport, as a function of control
parameters, up to a numerical prefactor, controlled by the intensity of the
correlation of the forcing ξ (the ”free parameter”).

Heat Transport in Convection

When a horizontal layer of fluid is heated from below, a heat exchange from
the top to the bottom occurs. The transport of heat depends on the interplay
between the thermal, viscous and integral scales of turbulence, and thus, on
both the Prandtl number and the Reynolds numbers. Our model can be used
to predict both the structure and the scaling laws in thermal convection [7].
In the boundary layer, the velocity profile is logarithmic and the tempera-
ture decays like the inverse of the distance to the wall. This has important
impact onto the heat transport. At low Reynolds numbers, when most of
the dissipation comes from the mean flow, we recover power classical scaling
regimes of the Nusselt versus Rayleigh number, with exponent 1/3 or 1/4.
At larger Reynolds number, velocity and temperature fluctuations become
non-negligible in the dissipation. In these regimes, there is no exact power
law dependence the Nusselt versus Rayleigh or Prandtl. Instead, we obtain
logarithmic corrections to the classical soft (exponent 1/3) or ultra-hard (ex-
ponent 1/2) regimes, in a way consistent with the most accurate experimental
measurements available nowadays. Example is given in the figure 1, showing
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the comparison between the data of the Castaing group in Helium, versus the
theoretical predictions (lines).
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Fig. 1. Illustration of the three scaling regimes found in convection in Helium
for Nusselt vs Rayleigh. The symbols are experimental measurements by [8]. The
lines are theoretical prediction by [7] using an analytical model of turbulent con-
vection. ”Soft” turbulence regime(mean flow dominated): power law Nu ∼ Ra1/4

(full line); ”Hard” turbulence regime: (velocity fluctuation dominated) Nu ∼
Ra1/3/(ln(Ra))2/3 (dotted line); ”Ultra-hard” turbulent regime: (temperature fluc-
tuations dominated) Nu ∼ Ra1/2/(ln(Ra))3/2 (dashed line)

The theory has also been extended to describe turbulent thermal convection
at large Prandtl number [9]. Two regimes arise, depending on the Reynolds
number Re. At low Reynolds number, NuPr−1/2 and Re are a function of Ra
Pr−3/2. At large Reynolds number NuPr1/3 and RePr are function only of
RaPr2/3 (within logarithmic corrections). In practice, since Nu is always close
to Ra1/3, this corresponds to a much weaker dependence of the heat transfer in
the Prandtl number at low Reynolds number than at large Reynolds number.
This difference may solve an existing controversy between measurements in
SF6 (large Re) and in alcohol/water (lower Re). These regimes may be linked
with a possible global bifurcation in the turbulent mean flow. A scaling theory
can be used to describe these two regimes through a single universal function.
This function presents a bimodal character for intermediate range of Reynolds
number. This bimodality can be explained in term of two dissipation regimes,
one in which fluctuation dominate, and one in which mean flow dominates.
Altogether, our results provide a six parameters fit of the curve Nu(Ra, Pr)
which may be used to describe all measurements at Pr > 0.7.
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Momentum Transport in Rotating Shear Flow

At sufficiently large Reynolds number, the fluid between co-rotating coaxial
cylinders becomes turbulent, and a significant momentum transport occurs
between the two cylinders. In the case with rotating inner cylinder and resting
outer one (the so-called Taylor-Couette flow), detailed measurements show
that the torque applied at cylinders by the turbulent flow is a function of
the Reynolds number R. Within the Langevin model, one can work out an
analogy between the problem of momentum transport and heat transport in
turbulent convection, to compute the torque in Taylor-Couette configuration,
as a function of the Reynolds number [10]. At low Reynolds numbers, when
most of the dissipation comes from the mean flow, we predict that the non-
dimensional torque G = T/ρν2L, where L is the cylinder length, scales with
Reynolds number R and ratio of inner cylinder to outer cylinder radius η =
ri/ro, G = 1.46η3/2(1 − η)−7/4R3/2. At larger Reynolds number, velocity
fluctuations become non-negligible in the dissipation. In these regimes, there
is no exact power law dependence the torque versus Reynolds. Instead, we
obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes:

G = 0.50
η2

(1 − η)3/2
R2

ln[η2(1 − η)R2/104]3/2
.

These predictions are found to be in excellent agreement with available ex-
perimental data (see figure 2).

Fast Numerical Simulations

We consider now the case where ξ is not prescribed, but dynamically computed
using the large scale equation. In that case, there is no free parameter in the
problem, except for the magnitude of the turbulent viscosity. By comparison
with direct numerical simulation, we found however [6] that in isotropic case,
the magnitude of this turbulent viscosity can be prescribed using the DSTA
model of Kraichnan

νt(k) = Ct

(
k

ki

)−4/3
√

E(ki)
ki

, (10)

where E is the energy spectrum, ki is a wavenumber in the inertial range
and Ct is a constant depending on a parameter β characterizing the degree
of non-locality of the interaction. For the contribution at k of all modes with
wavenumber greater than βk, it yields:

Ct(β) =
√

7/60 β−2/3 = 0.3416 β−2/3, (11)

with β depending on the ratio of the largest wave-number of the (resolved)
simulation onto the cut-of wavenumber as β = kmax/kc.
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Fig. 2. Torque vs Reynolds in Taylor-Couette experiments for different gap widths
η = 0.68, η = 0.85 and η = 0.935. The symbols are the data of [11]. The lines are
the theoretical formula obtained in the soft and ultra-hard turbulence regimes and
computed using the analogy with convection. Soft turbulence (full line); ultra-hard
turbulence (dotted line). There is no adjustable parameter in this comparison, all the
constants being fixed either by the analogy with convection, or by the comparison
with the data of [12].

With this prescription, we may then see our Langevin model as a parameter-
free model of turbulence. Its formulation is rather complex, but its advantage
lies in the possibility to use a semi-Lagrangian scheme of integration for the
small scale, thereby allowing for very large time steps. As a result, we obtain
a fast numerical simulation, with all scales being resolved, but with an inte-
gration time smaller by a factor 10 to 1000 with respect to traditional DNS
[13]! An example is provided on Figure 3 in the case of 2D turbulence.

3 Towards a LES Langevin Model?

In this short review, we hope to have convinced you of the interest of Langevin
models of turbulence. However, we did not yet fully achieve the goal we fixed
in the introduction: our model still retains infinitely many degrees of free-
dom, symbolized by unrestrained number of wave-packets we use. In some
situations, this feature is more than desirable: a peasant working on his crop
is seldom interested by the weather forecast at the level of his country, and
would like to know the hail forecast at the level of his field! However, in most
applications, one does not need such a wealth of details, and one would pre-
fer a Langevin model with very few degrees of freedom. Such a ”large eddy



86 B. Dubrulle, J-P. Laval, and S. Nazarenko

Fig. 3. Fast 2D numerical simulation. Left panel: vertical vorticity ωz = ∇×u · ez

computed using standrad spectral method. This simulation required 3 days to be
completed on our workstation. Right panel: same field, computed using our Langevin
method. This was obtained in only 30 minutes, on the same work station.

Langevin” model remains to be built. We are currently working in that direc-
tion.
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1 Outline

Recent experimental results on particle tracking have revealed the existence
of intermittent behaviour of turbulent Lagrangian velocity statistics [1, 2]. In
[3] attempts have been reported to derive the single particle statistics from
the Navier-Stokes equation. This approach is based on a closure of the hier-
achy of evolution equations for the probability d istribution functions (pdfs)
of Lagrangian particles. In the present article we point out the necessity of
performing a renormalized closure. This renormalized perturbation expansion
leads to solutions for the pdfs of the velocity increments that belong to the
class of continuous t ime random walks (ctrws).

2 Lagrangian Description of Turbulence

One of the many advantages of the Lagrangian approach to turbulence is
that due to the Newtonian form of the equations of motion any modelling
assumption for the acceleration field A will preserve the Galilean invariance
of the underlying hydrodynamic equations. The Lagrangian point of view
considers fluid motion as a transformation X(t;w,y), mapping the initial
position X(t = 0;w,y) = y of a fictious tracer particle with initial velocity w
onto its position X at later times t > 0. The equations of motion then take
the following form:

dX(t;w,y)
dt

= U(t;w,y) ,
dU(t;w,y)

dt
= A(t;w,y), (1)

where the particle’s acceleration A can be expressed in terms of the Eulerian
pressure and velocity field evaluated at the location of the particle [4]. Via
the acceleration the pressure term introduces long-range interactions between
distant particles.
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The main quantities of interest in the statistical theory of Lagrangian tur-
bulence are the pdfs of the fluid particles [5]. For a single particle whose
evolution is given by equation (1) the pdf is defined as

f(u,x, t) ≡ 〈δ(u − U(t;w,y))δ(x − X(t;w,y))〉 , (2)

where the brackets 〈·〉 denote a suitable average. All pdfs shall be normalized
to 1. The Eulerian statistics are obtained by integrating over all initial posi-
tions y. For incompressible flows the Jacobian det ∂Xi

∂yj
of the transformation

X(t;w,y) equals 1.

3 Evolution of Lagrangian pdfs

3.1 Hierachy of Evolution Equations

The starting point is an infinite set of evolution equations for the N particle
joint position-velocity pdf [4], which can be derived from the Navier-Stokes
equations in a similar way as the one for the Eulerian statistics considered
by Lundgren [6]. The Lagrangian pdf for a single particle as defined in equa-
tion (2) obeys the following equation:

(
∂

∂t
+ u · ∇x

)

f(u,x, t) = −∇u ·
∫

d3vd3rA(x − r,v)f(v, r, t;u,x, t).(3)

Here x, u again denote location and velocity of a Lagrangian particle while v
and r are Eulerian fields at time t. The acceleration A(x − r,v) is related to
the pressure and the dissipation term in the Navier-Stokes equation as

A(x − r,v) ≡ −∇ ∂2

∂xixj

1
4π|x − r|vivj + νδ (x − r)�rv. (4)

This evolution equation for the one-particle pdf entails higher order statistics
via the mixed Eulerian-Lagragian pdf f(v, r, t;u,x, t′) ≡ 〈δ(v − V(r, t), u −
U(t′,w,y),x − X(t′,w,y))〉. The evolution of this mixed pdf itself depends
on the higher order distribution function f(v′, r′, t′;v, r, t;u,x, t′), where v
and v′ are Eulerian fields at the points (r, t) and (r′, t′), respectively:

(
∂

∂t′
+ u · ∇x

)

f(v, r, t;u,x, t′) = −∇u ·
∫

d3v′d3r′A(x − r′,v′)

f(v′, r′, t′;v, r, t;u,x, t′). (5)

As in the case of the one-particle distribution in equation (3) no closed equa-
tion can be obtained for the higher order statistics.
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3.2 Renormalized Mean-Field Approach

The hierachy indicated by equations (3) and (5) can be closed by making as-
sumptions about the way in which distribution functions factorise. The sim-
plest closure assumption neglects three-point correlations, i.e.

f (v′, r′, t′;v, r, t;u,x, t′) ≈ f (v′, r′, t′;v, r, t )f(u,x, t′) . (6)

Inserting this approximation in equation (5), the right-hand side vanishes for
stationary turbulence when integrating over r and v. Therefore such a mean-
field approach can only be consistently made when at the same time the
”free propagator” G0(x,u, t; x̄, ū, t̄) =

(
∂
∂t + u · ∇x

)−1
δ (u − ū,x − x̄, t − t̄)

is replaced by the renormalized propagator G(x,u, t′; x̄, ū, t̄′) given via the
line-renormalized version of equation (5):

(
∂

∂t′
+ u · ∇x

)

f(v, r, t;u,x, t′) −
∫

d3x̄d3ūdt̄′Σ (x,u, t′; x̄, ū, t̄′) ·

f(v, r, t; x̄, ū, t̄′) = −∇u ·
∫
d3v′d3r′A(x − r′,v′)f(v′, r′, t′;v, r, t)f(u,x, t′).(7)

Integrating over the Eulerian field variables v and r leads to the line-
renormalized transport equation for the single-particle pdf f(u,x, t):

(
∂

∂t
+ u · ∇x

)

f(u,x, t) =
∫

d3x̄d3ȳdt̄ Σ (x,u, t; x̄, ū, t̄) f(ū, x̄, t̄) . (8)

This allows the identification of Σ with the self-energy of the system. Insert-
ing the solution of equation (7) into the original evolution equation of the
single-particle pdf (3) the contributions of the boundary and the homoge-
neous term vanish when we assume the initial conditions to have the form
f(v, r, t;u,x, t′ = 0) = f(v, r, t)f(u,x, t′ = 0). Then comparing equation (3)
to the renormalized equation (8) leads to an expression of the self-energy Σ
in terms of the renormlized propagator G:

Σ (x,u, t; x̄, ū, t̄) = ∇u〈A(x, t)A(x̄, t̄)〉G(x,u, t; x̄, ū, t̄)∇ū . (9)

The expression for Σ given in [3] contains the unrenormalized propagator G0
instead of the renormalized one.

If the acceleration-acceleration correlations 〈A(x, t)A(x̄, t̄)〉 are given, the
equation is closed since G is just the single particle pdf of a particle starting
at time t̄ at x̄. As a result, we see that a renormalized closure of the hierarchy
of evolution equations for Lagrangian particles yields nonlinear generalized
Fokker-Planck equations.
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4 Continuous Time Random Walks (CTRWs)

Starting from the line-renormalized
evolution equation for the single
particle pdf, equation (8), an anal-
ogy to ctrws can be drawn. In fact,
the evolution equation for the pdf
of the velocity increment V , h(V, t),
takes the same form as given in [3]
and the same reasoning can be taken
over to the renormalized equation.
We point out here that the underly-
ing stochastic process is a ctrw. It is
quite interesting to look at the solu-
tions of this equation, which are in
close relation to the pdfs obtained in
[7]:

Fig. 1. pdfs h for the velocity incre-
ment V : — theoretical values obtained
from equation (10), • experimental data
from [2].

h(V, t) =
∫

ds
1
α

t

s1+1/α lα

(
t

s1/α

)

e−V 2α/(4Q0α
2s) 1

(4Q0α2s)3/(2α) , (10)

where lα(ξ) denotes the one-sided Lévy distribution of order α (see [3]). Fur-
thermore it was shown in [3], how these solutions relate to the class of ctrws
as investigated in [8]. The pdfs for the velocity increments obtained from ex-
periment can be reproduced well by fixing the only free parameter in equation
(10), 0 < α < 1 (see fig.1).

Summarizing, we have outlined a renormalized closure approach for the
derivation of Lagrangian particle pdfs. It is hoped that such an approach will
lead to an assessement of the stochastic properties of Lagrangian particles in
turbulence.

References

1. LaPorta A, Voth G, Crawford AM, Alexander J, Bodenschatz E (2001) Nature
409:1017

2. Mordant N, Metz P, Michel O, Pinton J-F (2001) Phys Rev Lett 87:214501
3. Friedrich R (2003) Phys Rev Lett 90: 084501
4. Friedrich R (2003) arXiv:physics/0207015
5. Pope SB (2001) Turbulent Flows. University Press, Cambridge
6. Lundgren TS (1967) Phys Fluids 10:969
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1 Introduction

We reconsider the problem of shear free turbulent diffusion in a rotating frame,
rotating about x1. Therefore turbulence is generated at a vibrating grid in
the x2 − x3 plane and diffuses away from the grid in x1-direction. The flow
geometry is given in figure 1. An important property of this flow is that

Vibrating grid
u´

v´
Vibrating grid

No mean
flow

u´

v´

x

x

x

3

2

1

Fig. 1. Flow geometry

there is no mean flow-velocity. With the help of Lie-group methods Reynolds-
stress transport models can be analyzed for this kind of flow in a rotating
frame. From the analysis it can be found that the turbulent diffusion only
influences a finite domain. Insertion of this solution in the model equations
shows that even fully nonlinear Reynolds-stress transport models (nonlinear in
the Reynolds-stresses for the pressure-strain model) are insensitive to rotation
for this type of flow. To improve this serious shortcoming of these models, a
new model equation which is fully nonlinear in the mean-velocity gradient
is needed. There appears to be one one-point model which may account for
system rotation for this type of flow. It is the second-moment closure model by
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Sjögren and Johansson [3] which is nonlinear in the mean-velocity gradient.
Therefore new model equations for the pressure-strain-correlation and the
diffusion term have been developed along the lines of this model.

2 New Model of the Pressure-Strain-Term

In modelling the pressure-strain-correlation it is assumed, that this term de-
pends on the mean shear- (Sij), mean rotation- (Wij) and the Reynolds-stress
anisotropy-tensor (bij). It can be further split up into three parts which are
the classical return- and rapid-term and a new term which will be called
nonlinear-scrambling-term (nls).
To model the return- and rapid-term the Cayley-Hamilton-Theorem is ap-
plied leading to an approach which is nonlinear in bij . With the condition of
no mean flow velocity the model consists of five tensor invariants since Sij
is zero and Wij contains only Ωi. The coefficients are functions of the scalar
invariants. Introducing the variables

φnls
�

ij =
φnlsij
ε

, S�ij =
k

ε
Sij , W �

ij =
k

ε
Wij , b�ij = bij (1)

the non-liner-scrambling-term can be written in dimensionless form:

φnls
�

ij = β1

(

W �2
ij − 1

3
W �2
ll δij

)

+ β2

(

W �2
ik b

�
kj − 1

3
W �2
lk b

�
klδij

)

(2)

+ β3

(

W �2
ik b

�2
kj − 1

3
W �2
lk b

�2
kl δij

)

+ β4

(

W �2
ik b

�
klW

�
lj − 1

3
W �2
hkb

�
klW

�
lhδij

)

+ β5

(

W �2
ik b

�2
klW

�
lj − 1

3
W �2
hkb

�2
klW

�
lhδij

)

,

with

βi = f [ tr(b�ij), tr(b
�2
ij ), tr(b�3ij ), tr(W �2

ij ), tr(W �2
ij b

�
jk), (3)

tr(W �2
ij b

�2
jk), tr(W

�2
ij b

�
jkW

�
klb

�2
lh ) ] .

Note that in (2) only the mean rotation term Wij has been retained since
for the case of frame rotation to be considered below the mean shear Sij is
irrelevant.

3 Modelling of the Diffusion-Term

We consider the problem of turbulence generation by a vibrating grid in the
x2 − x3 plane with no mean velocity and rotating about x1. Analyzing the
multi-point correlation equations for this flow with the help of Lie-group meth-
ods we find the following set of invariant solutions (see [2]):
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x̃ = (x1 + xo)et/to , u′
iu

′
j(x1, t) = Ω2

1(x1 + xo)2ũ′
iu

′
j(x̃1), (4)

K = Ω2
1

1
2 (x1 + xo)2ũ′

iu
′
i(x̃1), ε = Ω3

1(x1 + xo)2ε̃(x̃1).

The surprising result for the present case is that even for t → ∞ the turbulent
diffusion only influences a finite domain due to the quadratic behavior of the
Reynolds stress tensor in (4). This case can not be modelled at all by one-
point models of classical form. For the correct prediction of this behavior the
classical LRR model constants must satisfy the equation

114CεC10CsCε2 − 9C2
10C

2
ε + 18C10C

2
ε + 135CεCsCε2 − 216C2

sC
2
ε2 = 0, (5)

in order to ensure a quadratic Reynolds stress tensor. Still this is rather ar-
tificial since frame rotation does enter the model equations. Since (5) is not
satisfied by the standard model constants it is necessary to modify them to
model the given flow case properly. The modelling of the diffusion-term as
well as the modelling of the pressure strain will account for the new solutions.

4 Investigation of the Finite Domain Diffusion Solution

Classical Reynolds-stress transport models augmented by the nonlinear-
scrambling-term have been investigated for their capability to account for
system rotation for the given flow geometry. In the following the Launder-
Reece-Rodi model (LRR) [1] is used as an example.

4.1 Model Equations

Introducing the nonlinear-scrambling-term, the model equations for the
Reynolds-stresses and the dissipation respectively are

∂u′
iu

′
j

∂t
= C4K (bikWjk + bjkWik) − C10bijε − 2

3
δijε + εφnls

�

ij (6)

+ Cs
∂

∂xk

(
K

ε

(

u′
iu

′
l

∂u′
ju

′
k

∂xl
+ u′

ju
′
l

∂u′
ku

′
i

∂xl
+ u′

ku
′
l

∂u′
iu

′
j

∂xl

))

(7)

− 2Ωk
[
ekliu′

ju
′
l + eklju′

iu
′
l

]
, (8)

∂ε

∂t
= −Cε2

ε2

K
+ Cε

∂

∂xk

(
K

ε
u′
ku

′
l

∂ε

∂xl

)

(9)

with

Wij =
1
2

(
∂ui
∂xj

− ∂uj
∂xi

)

+ emjiΩm. (10)

These equations are further simplified by the homogeneity in the x2 − x3
plane and the fact that there are no shear stresses occurring in the given flow.
Therefore u′

2u
′
2 becomes equal to u′

3u
′
3 and all off-diagonal elements of the

Reynolds-stress tensor become zero.
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Fig. 2. Dependence of the decreasing behavior on the rotation rate: −−−Ω = 0.5,
− · −Ω = 1, · · · Ω = 2 .

4.2 Results

Taking a closer look at the model equations it turns out that the rapid term of
the pressure-strain-correlation as well as the advection term do not contribute
to the solutions for the given flow geometry. Therefore only the nls term
accounts for rotation.
The LRR model augmented by the nls term has been investigated numerically
for the given flow geometry with the help of a numerical tool, called 1D solver
( c© S. Wallin, FOI). Thereby the coefficients in the nls term have all been put
to zero except for β2 which has been set to 0.5. It thus has been found that as
a consequence the nls term a finite domain diffusion is predicted. As a result
the turbulent kinetic energy K decreases to zero at a finite value of x1, later
called fixed point. However what can not be predicted by the model is the
quadratic decreasing behavior and the constant integral timescale which are
given by the invariant solutions. Assuming the quadratic decreasing behavior
one receives solutions for the Reynolds-stresses which are not realizable with
the standard model constants. Therefore these solutions can not be obtained
using physical reasonable boundary conditions.
In addition it is found that the position of the fixed point depends on the
rotation rate as can be seen from figure 2. The higher the rotation rate the
closer the fixed point lies towards the grid.
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Summary. In this paper we describe a new method for predicting PDFs of observ-
able quantities driven by stochastic processes with a local Markov property. The
method deals with large class of nonstationarities by overembeding the vector in the
conditional part of the conditional probabilities of the Markov chain which approx-
imates the Markov process. This allows an application of a Farmer-Sidorowich-like
prediction scheme [1] in the obtained vector space. Thus the conditional PDF of the
investigated quantity for the next time step can be estimated and various forecasts
can be performed. As an illustration the method is applied to the problem for the
short-term prediction of turbulent wind gusts which are the major danger for the
safe operation of wind energy turbines. Predicted gusts can be made innocent by
a simple change of the pitch angle of the rotor blades. Within a prediction horizon
of few seconds which is sufficient for this purpose the discussed method produces
meaningful results.

Stationary time series data with a dominant low-dimensional deterministic
component can be analysed and predicted by the methods of the nonlinear
time series analysis based on the concept of time delay embedding [2, 3, 4].
Following this concept we can convert a sequence of equidistant in time scalar
time series measurements into a sequence of m-dimensional vectors, composed
of successive time series elements, s = (sn, sn−1, sn−2, . . . , sn−m+1). For purely
deterministic low dimensional data, two such vectors at successive times are
related to each other by a unique deterministic map, if m > 2Df , where Df is
the dimension of the attractor on which the dynamics happens, and the map
can be extracted from the observed dynamics of the neighbouring points in
the reconstructed phase space.

Two reasons prevent the wide application of the time-delay embedding con-
cepts to field recorded time series: In many systems outside the laboratory the
stationarity is violated because parameters drift or fluctuate during the time
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of observation, and many observations do not represent a low-dimensional
deterministic system. We have to find another way to analyse and predict
nonstationary stochastic time series. Let us concentrate our efforts on phe-
nomena that are driven by some unknown vector valued Markov process. Our
choice is determined by the fact that in many practical situations the ape-
riodic time evolution is governed by deterministic nonlinear process coupled
with stochastic inputs to the system. An idealised physical description would
then consist of a vector valued Langevin equation [5, 6] .

For the investigated time series {vn} we assume that the measurements vn
are obtained by a time-discrete sampling of an instantaneous but otherwise
arbitrary projection of the state vectors x(tn) of the above Markov process.
We do not have any knowledge of this Markov process, and in addition, we
cannot expect that the recorded observable represents a one variable contin-
uous state Markov chain of finite order [6] ,even worse, in general we must
expect presence of infinite memory. Fortunately, in many situations correla-
tions decay fast with the time lag and for these cases we can approximate the
stochastic dynamics of v by a continuous state Markov chain, whose order m
is a model parameter we have to choose. We can estimate the probability one
step in the future by the following steps

1. The present state of the underlying Markov process x(tn) is replaced by
the last m measurements, i.e. the probability to observe v′ in the next
measurement is approximated by p(vn+1 = v′ | vn, vn−1, . . . , vn−m+1).
The vector (vn, vn−1, . . . , vn−m+1) = vn is formally identical to a delay
vector used in the time-delay embedding approach [2, 3]

2. We assume that a slow time dependence of the conditional probability
p(vn+1 | vn) can be traced back to the assumption of parameters a(t)
which have to be included as additional conditions. In general a(t) are
typically unknown and we replace them by an appropriate increase of the
dimension m of the conditioning vector, which is called overembeding [7],
p(vn+1 | vn,a(t)) ≈ p(vn+1 | vn, vn−1, . . . , vn−m−k+1). The overembeding
holds for stochastic Markov chain modelling only approximatively, i.e.,
despite the fact that formally infinitely many additional time lags have
to be included, we assume that a finite number yields a good approxima-
tion [7, 8]. This assumption is well justified for the cases when quantities
responsible for non-stationarity, such as surface and air temperatures or
pressures, fluctuate at low amplitudes on long time scales.

3. We choose a value m of the number of time steps representing the mem-
ory, which is assumed to include already extra k conditions needed to
compensate the non-stationarity.

4. We assume that similar conditions give rise to a similar probability dis-
tributions and hence the conditional probabilities are smooth in their ar-
guments vn. The current state vector vn is a point in an m dimensional
space. Neighbouring points in this space represent similar state vectors
and the observed ”futures” vk+1 of close neighbours vk form a random
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sample of the distribution p(vn+1 | vn). A histogram of this sample gives
a coarse grained view of the estimate of this distribution.

5. The histogram is obtained in the following way. We denote by Φε(vn) a
neighbourhood of small diameter ε around the vector vn. The number of
vectors vk in this neighbourhood taken from the past of the time series,
k < n, is denoted as |Φε(vn)|. For these vectors we inspect the future
values vk+1 and denote the number of these values which are in the interval
[v′, v′+∆v′] as N(v′, ∆v′). Then an estimate of the conditional probability
at the first future step is

p(v′ | vn)∆v′ ≈ N(v′, ∆v′)
|Φε(vn)| (1)

By means of p(v′ | vn) we can perform various predictions for the investigated
time series. Here are two examples

• The optimal prediction v̂ of vn+1, in the maximum likelihood sense, i.e.,
which in an ensemble average minimises the root mean square prediction
error, is given by the first moment of this estimated conditional probability,

v̂n+1 =
∫

dv′ v′p(v′ | vn) ≈ 1
|Φε(vn)|

∑

k∈Φε(vn)

vk+1 . (2)

• Prediction of the probability of an increment ∆vn+1 = vn+1 − vn larger
than g in the next time step is given by the following integral of the
probability distribution,

p(∆vn+1 > g) =
∫ ∞

vn+g
dv′ p(v′ | vn) (3)

We illustrate the method by its application for predictions of the proba-
bility of a turbulent wind gust to arrive at a measurement device, i.e., the
probability that the wind velocity exceeds its current value by more than g
m/s during the next 2 seconds. This prediction gives the possibility to make
such gusts innocent by a rather small correction of the pitch angle of the ro-
tor blades of the commercial wind turbines, once the occurrence of the gust
is predicted. Since wind speeds are correlated, predictions referring to time
intervals covering h time steps, h > 1, require a suitable generalisation of
p(v′|vn). It is straightforwardly given by the relative number of ε-neighbours
vk whose future fulfils our criterion to be a gust, i.e., whose maximum wind
velocity vmax between the time steps k and k + h exceeds vk + g (other gust
criteria can be used as well). As a result, for every time step n we create a
prediction p̂

(gust)
n of the probability of a turbulent gust to occur within the

following time window of h time steps, which could be used for the adjustment
of the pitch angle of the rotor blades.

As a practical application let us generate a “warning” at every time when
the predicted probability exceeds a critical value, p̂(gust)

n > pc, where we choose
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pc = 0.25. In Table 1 we report the relative number of warnings thus found for
about 50 000 predictions, sorted according to the actual maximum increase
of the wind speed. Evidently, with about 15 % false alarms we are able to
eliminate about 50 % of the gust events, and the stronger gusts are predicted
at a higher rate.

Table 1. The 53085 predictions made on a data set of one day are sorted according
to the true g ≤ vmax − vn < g + 1 during the prediction horizon of h = 12 steps
(=1.5 s) (first column). The second column reports the number of such events, the
third the absolute and the last the relative number of gust-warnings obtained in
each subsample. Larger pc gives a better prediction rate of gusts but introduces also
more false alarms.

Gust strength g [m/s] Number of events Number of warnings In percent

0 42181 6342 15%
1 8905 3134 35%
2 1651 807 49%
3 297 170 57%
4 49 30 61%
5 2 1 50%

Finally we note that the discussed method exploits nonlinear higher order
temporal correlations in stochastic data without computing them explicitly.
Predicting probabilities instead of mean values enables us to make meaningful
forecasts of turbulent time series. This scheme can be employed for all data
obtained from any stochastic process with local Markov property.
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1 Introduction

The instability of the Kolmogorov flow U = sin y has received a large interest
in the literature (see [8, 11, 2, 3, 7, 1, 12] and references therein). This flow
exhibits a large-scale instability of the negative viscosity type for Reynolds
Re <

√
2. For slightly supercritical conditions, the perturbation follows Cahn-

Hilliard equation characterized by an inverse cascade of metastable states with
scale growing in time. This cascade involves merging of jets until the gravest
mode is reached (or without limit in an unbounded system). It can be halted
by adding friction or dispersive effects like Rossby waves to generate a stable
solution with multiple alternated jets [5, 7, 6]. Such stabilizing mechanisms
have been advocated to explain features observed in the atmosphere of fast ro-
tating Jovian planets and in numerical simulations of turbulence on a rotating
sphere [9, 4].

The theory, however, is valid at very low Re while geophysical fluids are
characterized by very large Re. Finding rigorously large-scale instabilities at
large Re is a formidable task, probably out of reach at the moment. In this
paper we address the problem of Kolmogorov flow instability when molecular
viscosiy is replaced by one of the popular parameterization for small-scale tur-
bulence representing the motion at scales smaller than the Kolmogorov flow.
This is clearly a non rigorous approach, but it provides hints on large-scale
instabilities at large Re and, hopefully, on the character of such instabilities.

2 The Stability of a Turbulent Kolmogorov Flow in a
Clark-Smagorinsky Model

As in the standard problem [11], we use the framework of the two-dimensional
incompressible Navier-Stokes equation. Introducing the streamfunction ψ such
that (u = ∂yψ, v = −∂xψ), our basic equation is
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∂t∇2ψ − ∂(ψ,∇2ψ)
∂(x, y)

= −r∇2ψ + D + F (1)

where r is a friction and the dissipation D follows the Clark-Smagorinsky
model [10] often used in LES or atmospheric simulations:

D =
∆2

12
(
(∂xy3ψ + ∂x3yψ)(∂xxψ − ∂yyψ) + ∂xyψ(∂y4ψ − ∂x4ψ)

)

+Cs∆
2∂xy

(
4(S̄∂xyψ) + (∂yy − ∂xx)S̄(∂yyψ − ∂xxψ)

)

with S̄ =
√

4(∂xyψ)2 + (∂xxψ − ∂yyψ)2 + ν. In this model ∆ depends on the
filtering of the velocity and can be considered as a cutoff scale. The forcing
F is chosen in order to maintain Ψ(y) = A cos y with A > 0 as a stationary
solution of (1). In order to distinguish our case from the standard case where
this flow is maintained against molecular diffusion, we call it the turbulent
Kolmogorov flow. A small diffusion ν is added to regularize the solutions near
y = ±π/2

We assume scale separation between the Kolmogorov flow and the large-
scale flow, and introduce slow variables X = εx and T = ε2t. Then it turns
out that the flow depends only on (X, y, T ) and we expand ψ as

ψ(X, y, t) = Ψ(y) + φ0(X,T ) + εψ1(X, y, t) + ε2ψ2(X, y, t) + . . . . (2)

Equation (1) is then expanded in ε and the perturbation problem is solved at
successive orders. At each order n in the expansion we have to solve

Cs∆
2∂yy((2A| cos y| + ν)∂yyψn − rψn) = H , (3)

where H holds for a complicated expression involving solutions to lower order
equations in the perturbation expansion. In order to satisfy (3), the integral∫ 2π
0 Hdy must vanish for all (X,T ), thus providing solvability conditions for

each n.
Since the dissipation is a nonlinear function of the flow, the algebra of the

perturbative expansion is considerably more intricate than in the standard
problem. In practice it must be solved by symbolic calculations using Mathe-
matica. The output of these calculations would fill several printed pages. The
integrals appearing in the solvability conditions do not need to be calculated
except for those involved in the amplitude equation below. The numerous
other terms are found to vanish by the application of simple symmetry rules.

3 Results and Discussion

It turns out that the solvability conditions at order 0 and 1 are automatically
satisfied by (2). At order 2, we get a solvability condition

r =
4ACs∆2

π
,
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that is imposed to get rid of a spurious instability entirely due to the Clark-
Smagorinsky parameterization (i.e. without any coupling with the Jacobian
in (1)). This effect should be taken into account in numerical simulations of
the Kolmogorov flow.

The solvability condition is again satisfied at order 3 and, like in the stan-
dard problem, the solvability condition at order 4 provides the instability
condition for φ0. This equation is

∂X2Tφ0 = H∂X4φ0 + G(∂Xφ0)2∂X2φ0 , (4)

where H and G are two constants depending on the parameters (Cs, ∆, ν)
and on the solutions of the perturbation problem at orders 1 and 2.

It turns out that in the limit ν → 0

H =
2∆2ACs

π
− α

2∆2Cs

(

1 +
∆2

12

)

A ,

where the coefficient α is numerically calculated as α = 0.18935 . . . . If one
further take the usual value 0.23 for Cs, it is found that H < 0 for 0 < ∆ <
∆c = 1.341 . . . . Hence (4) exhibits negative viscosity for small enough cutoff
scale, a result that is very similar to the standard Kolmogorov instability.

The new feature here is that the amplitude equation provides an additional
nonlinear term that is absent in the standard problem where Cahn-Hilliard
equation appears at sixth order. In the limit ν → 0, the coefficient in front of
this term is

G =
1

ACs∆2

(

α1 +
(
α2

Cs
+

α3

C2
s

)
1
∆2 +

(
α4

C2
s

+
α5

C3
s

)
1
∆4 +

α6

C3
s∆

6

)

with numerical coefficients α1 = 0.012 . . . , α2 = −0.0052 . . . , α3 = −0.0029 . . . ,
α4 = −0.0026 . . . , α5 = 0.00073 . . . and α6 = 0.0084 . . . . It turns out that for
∆ = ∆c, we have G ≈ 0.219/A, that is G > 0.

In the instability range, (4) admits stationary solutions that can be obtained
in terms of elliptical functions. The dynamical study of (4) will be presented
elsewhere.

We have shown that a large-scale instability of the Kolmogorov flow is ob-
tained when a parameterized turbulent viscosity replaces the standard molec-
ular viscosity. This result is reached to the price of two scale separation hy-
pothesis, the first one between the Kolmogorov flow and the large-scale flow,
and the second one between the small-scale turbulence represented by the
Clark-Smagorinsky parameterization and the Kolmogorov flow. Nevertheless,
the result is encouraging for the generic existence of large-scale instabilities of
the negative viscosity type in fully turbulent flow. The robustness would need
to be tested with a variety of parameterizations and numerical simulation.
Our results also shows the necessity of damping spurious instabilities that
are purely generated by the parameterization and may have polluted previous
numerical investigations. We also find a new nonlinear term in the amplitude
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equation which is obtained without any assumption of slight supercriticality.
The term is cubic but differs from the nonlinearity in the Cahn-Hilliard equa-
tion. Again, robustness and significance of this result requires further studies.
This work has been supported by Project N.11397 CNR/CNRS 2002-2003
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Abstract

A conditional moment closure approach for modelling turbulent combustion is
proposed, based on two conditioning variables. The two conditioning variables
used here are mixture fraction and a second conserved scalar a, which is ini-
tialized perpendicular to the mixture fraction, such that the two conditioning
variables constitute a plane. With this we hope to capture important physi-
cal features of turbulent reacting flows which the single conditioning variable
approach cannot, including local ignition, extinction and re-ignition due to
small scale strain fluctuations. We propose to model the stress tensor with a
stochastic process to account for chaotic turbulent fluctuations.

1 Introduction

In models for turbulent combustion, in addition to the challenges in hy-
drodynamic turbulence, closure for the nonlinear chemical source-term in
the species balance equations is needed. The chemical source-term is gov-
erned by Arrhenius-type reaction constants with a pre-exponential factor:
k = A · TBeRT/E (A,B,R and E are constants). Therefore the average of
the chemical source-term ω̇r(T, cj) cannot be approximated by the chemical
source-term of the average temperature T and the average species concentra-
tions cj , ω̇I(T, cj) �= ω̇I(T , cj).

In Conditional Moment Closure (CMC)[5], closure is sought for terms in
the transport equations for the conditional moment of scalars (like tempera-
ture 〈T |Z〉). In non-premixed systems the most suitable conditioning variable
is the mixture fraction Z, which characterizes the mixedness of the reactants.
CMC gives good closure for the chemical source-term, but, when only one
conditioning variable and only one conditional moment is used, the model
cannot capture important physical phenomena such as ignition, extinction or
re-ignition. This is because the temperature can vary significantly along an
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isopleth of mixture fraction and one cannot capture these fluctuations using
only one conditioning variable.

−8

Z

T

Fig. 1. Scatter plot of the tempera-
ture for combustion in decaying tur-
bulence [2].

In Fig. 1 a scatter plot of the tempera-
ture over mixture fraction from a direct
numerical simulation (DNS) of decaying
isotropic turbulence with a reduced reac-
tion mechanism representing methane/air
combustion [2] is shown, as well as the
corresponding conditional moment. There
still are significant fluctuations of the ac-
tual temperature around the conditional
average, particularly towards low temper-
atures, due to local extinction and re-
ignition. These fluctuations can be at-
tributed to the effects of local fluctuations
in the rate of strain. In the hopes of capturing such effects, Bushe [1] proposed
to use a second conditioning variable to account for variations in local strain
along the isosurface of mixture fraction. Introducing a scalar a such that ∇a
is orthogonal to ∇Z the conditional average of a scalar YI (representing mass
fractions and temperature) with two conditioning variables becomes:

YI = YI |ζ, α = YI(ζ, α;xk, t) ≡ 〈YI(xk, t)|Z(xk, t) = ζ, a(xk, t) = α〉

2 Model

The basic assumptions in the model are:

• The mixture fraction Z and the scalar a are conserved:
∂Z
∂t + uk

∂Z
∂xk

− DI
∂2Z

∂xk∂xk
= 0 , ∂a

∂t + uk
∂a
∂xk

− DI
∂2a

∂xk∂xk
= 0

• Initially ∇a is orthogonal to ∇Z and it remains so on average.
• ρD ≈ constant.
• For an isotropic, homogeneous flow, all spacial derivatives of conditional

averages and their fluctuations vanish.

•
(
χZ

χa

)
≈ χZ

χa
and

(
χa

χZ

)
≈ χa

χZ
, where χZ = ∂Z

∂xk

∂Z
∂xk

and χa = ∂a
∂xk

∂a
∂xk

are
the scalar dissipations of mixture fraction and the scalar a, respectively.

Ruetsch and Maxey [6] provided a transport equation for scalar dissipation

∂χZ

∂t + uk
∂χZ

∂xj
= −2 ∂Z∂xi

∂Z
∂xj

Sij − 2D ∂2Z
∂xj∂xi

∂2Z
∂xj∂xi

+ D ∂2χZ

∂xj∂xj
, (1)

where Sij = 1
2

(
∂u
∂y + ∂v

∂x

)
is the strain tensor. Conditionally averaging the

transport equation for the scalars Yi and Eq. 1 under the basic assump-

tions mentioned before and neglecting the term u′
k
∂χ′

Z

∂xk
(these are fluctuations

around the conditional average) yields the model equations:
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ρ∂Y I

∂t = ω̇I + ∂2Y I

∂ζ2 ρDχZ + ∂2Y I

∂α2 ρDχa

∂χa

∂t = −2 ∂a
∂xi

∂a
∂xj

Sij − D
2

[(
∂χa

∂ζ

)2
+

(
∂χa

∂α

)2
χZ

χa
− 2∂

2χa

∂ζ2 χZ − 2∂
2χa

∂α2 χa

]

∂χZ

∂t = −2 ∂Z∂xi

∂Z
∂xj

Sij − D
2

[(
∂χZ

∂ζ

)2
+

(
∂χZ

∂α

)2
χa

χZ
− 2∂

2χZ

∂ζ2 χZ − 2∂
2χZ

∂α2 χa

]

.

Only the terms involving the stress tensor are unclosed in these equations.
A Coupled Map Lattice (CML) for the velocity increments in fully devel-

oped, isotropic turbulence modelling the energy cascade has been proposed
by Hilgers and Beck [4]. Using the following map, realizations of velocity in-
crements from the integral to the dissipation range can be generated.

xn+1(i) = T (xn(i)), T (x) = 1 − 2x2

u
(1)
n+1(i) = λ1u

(1)
n (i) + g

2d

(
∑

σ

u(1)
n (i + σ)

)

+ xn+1(i)

u
(k)
n+1(i) = λku

(k)
n (i) + g

2d

(
∑

σ

u(k)
n (i + σ)

)

+ Cξ(k−1)
n (i)(1 − λk−1)u(k−1)

n (i),

Fig. 2. A realization of the
strain Sij with the CML model.

where k = 2, ...,K, g is a coupling constant,
d the dimension, σ represents the next neigh-
bours, λk = e−γτk a damping constant and
γτ is proportional to the Reynolds number.
Two independent processes can be combined
to simulate velocity increments in two dimen-
sions, u and v (and three dimensions analo-
gously), from which the stress tensor can be
obtained. An example realization of the strain
is shown in Fig. 2. Figs. 3(a) and (b) show
the resulting fluctuations in χZ and χa respec-
tively.

We also propose an alternative model for the strain using a periodic force
with a random phase shift, based on a heuristic description of the large scales
of turbulence similar to the system used to approximate stirring in pseudo-
spectral DNS of homogeneous turbulence [3]. The strain resulting from a pe-
riodic force with a random phase shift is defined as

Sij =
n∑

i=1

Ψn ,with Ψn = An sin (ωnαα + θnα) sin (ωnζζ + θnζ) ,

where θ is a random force represented by Gaussian random numbers. This
leads to similar strain fields and scalar dissipations as in Figs. 2 and 3 but
requires considerably less computational effort.
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(a) χZ (b) χa

Fig. 3. Fluctuations in the scalar dissipations.

3 Summary and Conclusions

We have proposed an extension of Conditional Moment Closure including a
second conditioning variable to capture the effects of small scale fluctuations in
turbulent strain on ignition, extinction and re-ignition phenomena. The small
scale strain is modelled successfully using either a Coupled Map Lattice for
the simulation of velocity increments in isotropic, homogeneous turbulence
or a periodic force model. Further work is ongoing to study the respective
properties and to validate the model against DNS results.
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Stochastic Partial Differential Equations
as a Tool for Solving PDF Equations
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Probability density functions (PDF) present seducing features for modelling
turbulent reactive flows: they carry a detailed one-point statistical information
and allow to treat chemical source terms exactly. But to be able to take
full advantage of those modelling abilities, it is first necessary to possess an
efficient numerical method to solve PDF equations.

In this article, this issue is adressed in the frame of Eulerian Monte Carlo
methods: stochastic partial differential equations which are stochastically
equivalent to the PDF equations are proposed and applied to the calcula-
tion of the PDF of a reactive scalar.

1 On Lagrangian and Eulerian Monte Carlo Methods in
Turbulent Combustion

One particularity of PDF equations is their potential high dimensionality. As
a result, classical methods, such as finite differences, cannot be used, as their
computational cost increases exponentially with the number of dimensions.

Up to now, under the impulsion given by the seminal work of Pope [1],
PDF equations have mostly been solved using Lagrangian Monte Carlo (LMC)
methods: stochastic particles are evolved given prescribed stochastic ordinary
differential equations (SODE). The LMC approach yields a computational
cost increasing linearly with the number of dimensions and its efficiency has
been proven on many different configuration.

However, a few deficiencies have also been observed. In particular, the sam-
pling error is not always controlled with precision, as it depends on the parti-
cle distribution in the physical domain. Furthermore, to improve convergence
rates, it is often necessary to couple the LMC method to a eulerian RANS
solver; this can quickly result in a heavy tool to manipulate, due to the dif-
ferent nature (lagrangian/eulerian) of the solvers [7].

All of the mentionned shortcomings arise from the lagrangian nature of the
LMC method. By essence, a Eulerian Monte Carlo (EMC) approach would be
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devoid of them, and, as any Monte Carlo method, it would keep a computa-
tional cost increasing linearly with the number of dimensions. EMC methods
are based on stochastic eulerian fields that evolve from prescribed stochastic
partial differential equations (SPDE). EMC methods have been extensively
used in several domains [8, 9]. However, their application to the simulation of
turbulent reactive flows only seems to be dating back from the recent work
by Valiño [4].

Despite yielding correct equations, the derivation of the method proposed
in [4] seems to be suffering from several inaccuracies which might prejudice its
understanding and might limit its range of applicability. Thus, the derivation
is based on several restrictive hypothesis: the stochastic fields are required to
be smooth and twice differentiable in space. This is not necessary and not
consistant with the fact that discontinuities can be created by the equations
that are eventually obtained. An attempt is also undertaken to prove that the
stochastic fields and the PDF have “similar grade of spatial smoothness”. A
mapping is introduced to establish this property but the overall proof only
holds if the mapped fields are themselves smooth, which remains an hypoth-
esis. Besides, the procedure for obtaining the SPDE governing the stochastic
fields does not allow to gain any insight into the obtained equation: this equa-
tion is interpreted in [4] as a convection/diffusion equation whereas it can be
shown to be an advection equation. Finally, despite being a crucial step, no
analysis is carried out to show how to derive a numerical scheme from the
SPDE.

In this article, the application of EMC methods to the simulation of tur-
bulent reactive flows is considered under a new angle. This new vision stems
from a further interpretation given to the SODES of the LMC methods. As a
result, a new path is proposed to derive the SPDEs governing the stochastic
fields of EMC methods and a connection is established between Lagrangian
and Eulerian methods.

2 A Bridge Between Lagrangian and Eulerian Monte
Carlo Methods

Let us consider the Favre averaging PDF fc governing the one-point statistics
of a turbulent reactive scalar c [1]:

∂
∂t (〈ρ〉 fc) + ∂

∂xj

(
〈ρ〉 Ũjfc

)

= ∂
∂xj

(
〈ρ〉ΓT ∂fc

∂xj

)
+ ∂

∂c (〈ρ〉 〈ωc〉 (c − c̃)fc) − ∂
∂c (〈ρ〉S(c)fc)

(1)

In this equation, a gradient diffusion hypothesis with coefficient ΓT is used
to model turbulent advection. Micromixing is modelled using the IEM model
with scalar frequency 〈ωc〉. S(c) is the chemical source term, 〈ρ〉 the mean
density and Ũj is the Favre averaged velocity.
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The Fokker-Planck equation (1) is stochastically equivalent to the SODE
system with Ito interpretation [1]:

{ 〈ρ〉 dc = − 〈ρ〉 〈ωc〉 (c − c̃)dt + 〈ρ〉S(c)dt
〈ρ〉 dxj = 〈ρ〉 Ũjdt + ∂

∂xj
(〈ρ〉ΓT ) dt + 〈ρ〉√

2ΓT dW j(t) (2)

where W j(t) are independant brownian processes. In LMC methods, the
SODEs (2) are directly used to compute of lagrangian particle trajectories.

The key idea that is proposed here is to interpret the SODEs (2) as the
stochastic characteristics of the following hyperbolic generalised equation with
Stratonovitch interpretation (hereafter indicated with the symbol ◦):

〈ρ〉 ∂c∂tdt +
(
〈ρ〉 Ũj − 1

2
∂
∂xj

(〈ρ〉ΓT )
)

∂c
∂xj

dt + 〈ρ〉√
2ΓT ∂c

∂xj
◦ dW j(t)

= − 〈ρ〉 〈ωc〉 (c − c̃)dt + 〈ρ〉S(c)dt
(3)

As opposed to LMC methods, this hyperbolic equation is used to compute the
evolution of eulerian fields. A proof that equation (3) yields a correct evolution
for the PDF (1) has been given in [7], based on [3]. In these derivations, no
hypothesis is made about the smoothness, differentiability and length scale of
the stochastic field.

Equation (3) can be reformulated with an Ito interpretation:

〈ρ〉 ∂c∂tdt + 〈ρ〉 Ũj ∂c∂xj
dt + 〈ρ〉√

2ΓT ∂c
∂xj

dW j(t) − ∂
∂xj

(
〈ρ〉ΓT ∂c

∂xj

)

= − 〈ρ〉 〈ωc〉 (c − c̃)dt + 〈ρ〉S(c)dt
(4)

Despite the presence of a second order spatial operator, equation (4) remains
an advection equation: the last two terms on the left hand side are both
contributing to the advection of the stochastic field.

3 Numerical Aspects

The numerical analysis focuses on the equation with Ito interpretation (4). Its
numerical integration is considered in terms of weak convergence and accuracy.

As already mentionned, this equation is an advection equation and is dealt
with as so in the derivation of a numerical scheme. In particular, the scheme
is required to be monotone. Besides, because of the Ito interpretation, the nu-
merical scheme should preserve a zero correlation between the Wiener noise
and the first order derivative which multiplies it. From these considerations, a
second order monotone centered UNO scheme [5] is proposed for the derivative
that multiplies the Wiener noise and a simple second order centered scheme is
proposed for the diffusion-like term. This eventually yields a monotone advec-
tion Lax-Wendroff like scheme for the stochastic part of equation (4). Finally,
the deterministic part of equation (4) is treated with traditional techniques.

Temporal integration is adressed by recasting equation (4) in an SODE
form [7] which allows the use of traditional SODE techniques [2]. A first
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order explicit euler scheme is chosen. Thus, the resulting scheme is monotone,
explicit, first order in time and second order in space.

The proposed numerical method was tested on simplified monodimensional
cases with constant velocity and constant turbulent diffusion coefficient [7].
The orders of spatial and temporal accuracy were checked, as well as the
statistical convergence, for both stationary and unstationary problems. The
method was then applied to the calculation of a backward facing step in
combustion and the results were compared against experimental data. A good
agreement was obtained on temperature means and variances [7].

4 Conclusions

A new path is proposed to derive the SPDEs governing the fields of a Eulerian
Monte Carlo method. The notion of stochastic characteristic is introduced to
obtain hyperbolic SPDEs from the SODEs used in lagrangian approaches.
The numerical integration of the corresponding SPDEs is discussed and a
numerical scheme is adapted.

The overall procedure is then applied to the calculation of a turbulent
reactive scalar PDF. Numerical tests are carried out to check the accuracy of
the method. Finally, the simulation of a backward facing step in combustion
is performed.
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A rigorous asymptotic analysis concerning the phenomenon of non-uniqueness
of quasi-equilibrium turbulent boundary layers in the large Reynolds number
limit has recently been carried out in [2]. The approach contains the classical
asymptotic theory of wall-bounded turbulent shear flows, cf. [3], as a limit-
ing case. Compared to the latter, the novel theory allows for a moderately
large but still asymptotically small velocity defect with respect to the exter-
nal inviscid flow. Therefore, it applies to attached flow only which, however,
exhibits some properties known from separating turbulent boundary layers.
Here a first comparison of the theoretical results with numerical and experi-
mental data is presented. As a special aspect, the impact of the equilibrium
conditions on the associated external potential flow field is elucidated.

1 Fundamentals and Basic Concepts

Near-equilibrium nominally two-dimensional incompressible turbulent bound-
ary layers play an important role in many internal flow situations. An example
is provided by diffuser flows where the boundary layer has to sustain a (prefer-
ably) large pressure rise, exerted by the outer irrotational bulk flow. In order
to prevent separation it is then advisable to control the pressure gradient
such that the boundary layer globally is in an almost self-preserving state, or,
equivalently, remains close to equilibrium.

1.1 Classical Small-defect Theory

Let Re denote a suitably defined global Reynolds number. Classical analysis
on the basis of the Reynolds equations in the limit Re → ∞, cf. [3], then shows
that the main boundary layer characteristics may be expressed as

1 − u/Ue = κ(s) + εF ′
1(η) + O(ε2), η = y/δ(s, ε),

δ ∝ εs + O(ε2), Ue(s) ∝ sm, s = x − xv.
(1)
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Here u denotes the streamwise velocity component and Ue its value imposed
at the boundary layer edge by the external irrotational free-stream flow. The
principal perturbation parameter ε = O

(
(lnRe)−1

)
characterises the magni-

tude of the boundary layer thickness δ as well as the velocity defect 1 − u/Ue
in the fully turbulent outer main layer. Furthermore, F1 is the stream function,
and x, y are curvilinear coordinates along and normal to the surface consid-
ered, respectively, and xv denotes the virtual origin. The local curvature of
the surface contour is denoted by κ. All quantities in (1) are non-dimensional
with respect to a suitable global length and velocity scale, respectively.

Furthermore, we note that classical theory establishes the well-known con-
dition necessary for self-similarity in leading order that the inviscid surface slip
velocity Ue must vary as a power m of the streamwise coordinate x. Most im-
portant, it is argued in [2] by employing first principles that m > −1/3 whereas
the classical boundary layer structure applies only when µ ≡ m + 1/3 = O(1).

1.2 New Theory: Distinguished Limit µ3/2 lnRe = O(1)

As pointed out in [2], the breakdown of classical theory associated with the
limit µ → 0+ is prevented by considering a wake-type flow indicating a state of
incipient separation. Then (1) still holds but ε is seen to be of O

(
(lnRe)−2/3

)
.

However, the wall shear remains of O
(
(lnRe)−2

)
as in the classical case, thus

entering the analysis in second order only. Assuming quasi-equilibrium implies

m + 1/3 ∝ εµ̂(s) + O(ε2) and κ = k(s) + O(ε), k(s) = Λ/s. (2)

Herein Λ denotes a free constant with the values Λ = 0, Λ < 0, and Λ > 0
for a plain, concave, and convex surface, respectively. The condition (2) states
the remarkable result that the exponent m slightly depends on Re.

Restricting the investigation to flows having dµ̂/ds ≡ 0 agrees with the
requirement that the boundary layer is in equilibrium up to second order.
The necessary condition derived from the second-order integral momentum
balance without employing any turbulence closure represents one of the main
results of the analysis. Written in the canonical form (dashed curve in Fig. 1 a)

9D̂2µ̂ = 1 + D̂3 (3)

it provides a relationship between µ̂, the rescaled measure of the velocity defect
D̂ = O(1), and the wall shear stress which is scaled to 1. In the case Λ = 0
the quantity D̂3 is directly proportional to the shape factor G, see [3], if the
contributions of Reynolds normal stresses are neglected. Most interestingly,
(3) gives a theoretical explanation for the early experimental observations of
non-unique near-equilibrium flows for a given value of m, [1]. The solid curves
in Fig. 1 (a) refer to numerical solutions of the boundary layer equations for
finite values of Re having adopted a simple mixing-length shear stress closure,
see [2]. Due to the logarithmic dependence of ε on Re convergence for Re → ∞
to the limit given by (3) is rather slow. In Fig. 1 (b) these results are compared
with measurements of a flow approaching separation where m varies slowly.
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Fig. 1. (a) Canonical defect measure D̂, (b) data for G by [4] taken from [3]

2 Effect of Surface Curvature on External Bulk Flow

Outside the boundary layer the flow is inviscid and irrotational to the order
considered here. The latter property is expressed by the Laplace equation,
satisfied by the stream function ψ(x, y). If, as before, the flow is taken to be
in equilibrium, the slip velocity Ue at the solid surface is given by (1). Hence,

∂s(h−1∂sψ) + ∂y(h ∂yψ)y = 0,

h = 1 + κ(s) y, y = 0: ψ = 0, ∂yψ = Ue(s) ∝ sm.
(4)

Supplementing (4) with appropriate inflow and outflow as well as boundary
(symmetry) conditions prescribed at the opposite wall (the centerline) of a
duct, for example, then defines a well-posed elliptic problem determining ψ.
In general, one expects also the wall curvature κ(s) to be part of the solution.

In contrast, equilibrium in the limit m + 1/3 → 0+ considered here imposes
the additional condition for κ(s,Re) provided by (2). Note that by definition
κ ≡ dφ/ds, see Fig. 2 (b). Let X, Y denote Cartesian global coordinates such
that, without any loss of generality of the analysis, s = 1 and φ = 0 at the
origin X = 0, Y = 0. By integration of the second relation in (2) one then
obtains a representation X = Xc(s;Λ), Y = Yc(s;Λ) of the surface,

Xc =
(
s(Λ sinφ + cosφ) − 1

)
/λ, Yc =

(
s(Λ cosφ − sinφ) − Λ

)
/λ,

φ = Λ ln s, λ = 1 + Λ2.
(5)

For Λ �= 0 the spiral-type curves defined by (5) have their center in the singular
point S of the flow field where s = x − xv = 0 and y = 0, see Fig. 2 (b). In this
case, therefore, the equilibrium flows associated with these contours given by
(5) are assumed to take place sufficiently far downstream of s = 0.

Combining the specific similarity structure of the boundary layer, see (1),
and the condition in (2) for the wall curvature for any value of m suggests the
existence of self-similar solutions of (4) of the form ψ ∝ sm+1g(ζ;Λ), ζ = y/s.
Indeed, inserting this ansatz into (4) yields an ordinary initial value problem
for g. In the inviscid limit m = −1/3 the problem (4) is then rewritten as

h(h2 + ζ2)g′′ +
(
Λ(h2 − ζ2) + 2ζh/3

)
g′ + (4Λζ/9 − 2/9)g = 0,

h = 1 + Λζ, ζ = 0: g = 0, g′ = 1.
(6)
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Fig. 2. Streamlines ψ = 0, 0.25, 0.5, . . . and wall contour (bold): (a) Λ = 0, (b)
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Here primes denote derivatives with respect to ζ. The problem (6) admits the
closed-form solution g = 3/2 (1 + ζ2)1/3 sin(2/3 arctan ζ) which describes the
potential flow past a flat wall, i.e. Λ = 0, but has to be solved numerically in
general. Two representative results are depicted in Fig. 2 after applying the
transformation X = Xc + y sinφ, Y = Yc + y cosφ.

3 Conclusions and Further Outlook

An asymptotic analysis of turbulent equilibrium flows in the double limit
Re → ∞, m + 1/3 → 0+ has been presented. The results obtained appear to
be supported by existing experimental evidence. It has to be noted, however,
that experimental data which satisfy the theoretical requirements in a strict
sense appear not to be available at present, so that a more rigorous test of the
theoretical predictions has to wait for further experimental and/or numerical
efforts. In this connection we add that the potential flow solution for a flat wall,
i.e. Λ = 0, fixes a suction rate given by −∂xψ at an opposite wall Y = const
to be used in an experimental setup or in order to perform LES/DNS.

We also note that the solutions of (6) in the case Λ > 0 may be of en-
gineering relevance. For example, consider a spiral diffuser duct formed by
contours which collapse onto the convex curve y = 0 and a further potential
flow streamline where y > 0, respectively. The boundary layer adjacent to its
convex inner wall withstands the maximum pressure rise possible for a given
Reynolds number. Although the opposite boundary layer on the concave outer
wall is clearly not in equilibrium it is exposed to a weaker pressure gradient
(although over a longer distance) and thus has a smaller velocity defect. Hence,
it is supposed to be less sensitive to separation, but this remains to be shown.

This work was supported by the Austrian Science Fund (FWF) under grant number
P 16555-N.12.
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Summary. The measurements were performed in the 8 × 6 m2 test section of
the low-speed German-Dutch wind tunnel (DNW-LLF) at Reynolds numbers up
to Re = 50 × 106 in a zero pressure gradient turbulent boundary layer with a
maximum thickness of 150 mm. Two triple hot-wire probes were used, one of which
could be shifted in the vertical direction and the other one could be moved such
that geometrically a three-dimensional wedge-like zone above the surface of the flat
plate could be analyzed. Furthermore, 2C and 3C Particle-Image Velocimetry (PIV)
measurements were done to obtain the instantaneous flow structure in a complete
plane and to check the validity of fundamental assumptions such as the Taylor
hypothesis.

1 Introduction

Publications over the last fifteen years, e.g. [1] have stimulated the discus-
sion concerning the validity of the log-law and its constants of the normalized
mean velocity distribution especially in the high Reynolds number regime.
Since such flows are still out-of-reach for direct numerical simulations, reli-
able experiments are required to obtain a deeper understanding of the details
of a turbulent boundary layer at high Reynolds numbers. In 1994 [2] the mean
velocity and Reynolds stress profiles were measured at high Reynolds numbers
in the incompressible turbulent boundary layer with zero pressure gradient on
the smooth side wall of the DNW-LLF in the Netherlands. These measure-
ments provided a complete set of data of the turbulent stresses for Reynolds
numbers based on the momentum thickness up to Reθ = 60000. To ensure
the accuracy of the measurements two different hot-wire probes were simul-
taneously used and placed next to each other in the experimental set up. The
reason for the investigations discussed in this study is the undefined boundary
conditions in the previous experiments such as the unknown thickness of the
inflow boundary layer. Hence, the goal of these measurements is to get data
of a turbulent boundary layer at well defined and known boundary conditions
like an undisturbed flow in the test section, a defined length between the origin
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of the boundary layer, i.e., the leading edge, and the measurement location,
a hydraulically smooth surface of the flat plat, and no pressure gradient.

2 Experiment

2.1 Wind Tunnel Setup

The investigations were carried out in the 8 × 6 m2 test section of the DNW-
LLF at Reynolds numbers up to Reθ = 54600. An elliptical contour at the
leading edge guaranteed an completely attached flow. The distance from the
leading edge to the measurement position on the hydraulically smooth surface
of the plate was 13.5 m. The freestream velocity was varied between 40 m/s
and 60 m/s yielding a zero pressure gradient turbulent flat plate boundary
layer with a maximum thickness of 150 mm in the measurement cross section.

2.2 Measurement-Techniques

Two triple hot-wire probes, developed and manufactured at the Aerodynamis-
ches Institut Aachen, in combination with two TSI IFA 100 constant tem-
perature anemometers were used to investigate the velocity distribution and
the two-point correlations in the boundary layer. Both hot-wire probes were
calibrated against the freestream velocity measured with pressure transducer
mounted in the nozzle exit. The calibration procedure was repeated after each
measurement sequence to guarantee the validity of the calibration for the en-
tire set of hot-wire data. Two triple hot-wire probes were used, one of which
could be shifted in the vertical direction and the other one could be moved
in the normal, spanwise, and streamwise direction such that geometrically a
three-dimensional wedge-like zone above the surface of the flat plate could be
analyzed. To get as close as possible to the plate and to be able to minimize
the distance to the other hot-wire probe, the fixed probe was installed at an
angle of 4◦ between the streamwise probe axis and the surface of the flat plate
and the moving probe at an angle of 7◦.

Due to our cooperation with the University of Berlin the measured PIV
data, which were recorded under exactly the same experimental conditions,
could be used to compare turbulent structures based on single-point data
sampled at 10 kHz with plane data recorded at 1 Hz. A 2C-PIV and a 3C-
PIV setup with four CCD cameras at a resolution of 1280 x 1024 pixel were
used to measure the flow field of the complete boundary layer at x=13.5 m
downstream of the leading edge and in the near wall layer. The flow is seeded
locally with DEHS in the stagnation chamber at a location, which assures that
the seeding impinges upon the leading edge. Hence, the flow in the vicinity of
the flat plate contains enough particles with a diameter of 1-2 µm for the 2C-
and 3C-PIV measurements. A double Nd:YAG pulsed laser systems with an
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energy of 300 mJ per pulse is used for the light pulses with a period 10 µs and
8 µs at 40 m/s and 60 m/s, respectively. The statistics in each measurement
series is based on 5000 pictures, which are captured with a repetition rate of 1
Hz. The cameras were triggered simultaneously and for the 2C- and 3C-PIV
the same light sheet was applied.

3 Results

In Fig. 1 the boundary layer profiles for 40 m/s (Reθ = 41833) and 60 m/s
(Reθ = 56400) are shown. The distributions are scaled with the friction veloc-
ity, which was computed using the semi-empirical relation of Fernholz [2]. The
law of the wall is plotted with the standard values for the constants κ=0.4
and C=5.1 as a dashed line. It is evident that there is a difference between the
theoretical and the experimental distribution. In [3] Oesterlund and Johans-
son measured the friction velocity with laser oil interferometry in a flat plate
boundary layer with zero pressure gradient and showed a change of the con-
stants for the log law at high Reynolds numbers. This distribution of the log
law is presented as a solid line in Fig.1. The constants κ=0.36 and C=4.036
represent a close approximation of the findings introduced in [3] κ=0.38 and
C=4.1 in the range of the log layer 1000 ≤ y+ ≤ 5000 and as such they
confirm the deviation from the classical values at high Reynolds numbers.

The correlation coefficient Ruu in the wall-normal direction is determined
by the PIV and the hot-wire technique at y/δ = 0.1 and 0.3 at the freestream
velocity of 40 m/s. The comparison of Ruu in Fig. 2 shows a satisfactory agree-
ment between the PIV and hot-wire distributions corroborating the ability of
PIV to be used to determine distributions of the turbulent structures even at
a relatively low sampling rate in high Reynolds number flows. The comparison
between the Ruu data normal to the flat plate for y/δ = 0.1 and y/δ = 0.3
shows the normal turbulence length scale based on the Ruu distribution to be
nearly independent from the wall distance in the lower part of the boundary
layer.

Fig. 1. Boundary layer profile from
hot-wire data.

Fig. 2. Ruu hot-wire data and PIV
data.
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Fig. 3. Ruu contours determined by
PIV data.

Fig. 4. Ruu distribution in streamwise
direction.

In Fig. 3 Ruu contours at Reθ = 41833 centered at x/δ = 0.4 and y/δ = 0.1
are shown. From the shape of the isolines and from the orientation of the
overall structure it is evident that the turbulent Ruu based length scales differ
in the streamwise and the wall-normal direction. Furthermore, the maximum
scale occurs at a slight inclination angle, approximately 11◦, to the wall surface
illustrating the displacement effect of the wall on the turbulent field. Such a
displacement is not observed in a free shear layer.

Since the PIV data provide the instantaneous velocity field in the entire
x,y-plane these measurements are used to check the Taylor hypothesis. Fig. 4
contains the distribution of the streamwise two-point correlations based on the
hot-wire data, i.e., by applying the hypothesis, and on the PIV measurements.
The results, which belong to several normal distances of y/δ = 0.3, 0.6, and
0.8 are in excellent agreement, thus the Taylor hypothesis is valid at high
Reynolds numbers. Furthermore, the validity of the Taylor hypothesis in the
low Reynolds number regime is confirmed by LES data [4] for a flat plate
turbulent boundary layer at Reθ = 1410.
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1 Introduction

Extensive studies have been made to document the structures in turbulent
boundary layers. One way to gain additional insights about the structures in
the flow is to perturb the boundary layer and examine its response further
downstream. We have adopted this approach by applying concentrated suc-
tion through a porous suction strip. Suction has also been applied to reduce
the drag over airfoils and to control the transition to turbulence. Both ex-
perimental [1, 2, 3] and numerical [4] tools have been used by the previous
researchers to study suction. Antonia et al. [1] found that the skin friction
start increasing just upstream of the suction strip then decreases downstream
of the suction region before slowly relaxing to that of an undisturbed flat wall
value. Flow was found to be pseudo-laminar with large suction rate down-
stream of the suction strip. These measurements were confirmed by Oyewala
et al. [2] who also investigated the effect of Reynolds number on this flow.
Oyewala et al. [2] report that the maxima of turbulent stresses move towards
the wall, and there is a decrease in their normalized values. The numerical
investigation of [4] showed the pressure distribution with suction.

The purpose of the present study is to extend these earlier works with
the view to examine the response of the boundary layer to suction using
Laser Doppler Velocimetry (LDV) and Laser Induced Fluorescence (LIF).
The experiments were carried out in a closed-circuit vertical water tunnel
fabricated using Perspex. The water tunnel is 2 m long with a 250 mm square
working section. One of the section walls is used as the testing wall. Suction
is applied through a 20 mm porous strip located about 1 m downstream of
the leading edge of the wall. More details about the experimental facility can
be found in [5]. LDV measurements were undertaken to measure both the
streamwise U and wall-normal V velocity components. A continuous 4 W
Argon-Ion laser is used for illumination purposes. The Reynolds number Rθ
based on momentum thickness θ is ≈1000 and suction rate σ [1] is ≈ 3.3 for
these measurements.
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2 Results and Discussion

2.1 Near Suction Strip Region

In an effort to document the near-field effect of the disturbance caused by
suction, measurements were conducted in the vicinity of the suction strip (SS).
These measurements also provide the initial condition, and help us understand
development of the new layer downstream of the SS. Figure 1 indicates a
negative U from the wall up to y = 1.5 mm suggesting a backflow in this
region. This backflow is because of an adverse streamwise pressure gradient
near the trailing edge of the SS [4]. The flow-reversal region is about 1.5 mm
in the wall normal direction and 2.1 mm in the streamwise direction. The
flow starts to accelerate beyond the flow reversal region due to the deflection
of streamlines, which brings the faster moving fluid closer to the wall. Very
few studies have reported a negative U downstream of the suction region [3].
This might be because of the small dimensions of the flow reversal region
which renders its identification difficult. The suction rate employed here was
comparatively large, and our measurements were focused in this very small
region making its identification possible.

x (mm)

y
(m

m
)

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 1. Vector plot close to the suction strip. The plot is in physical units to give
an idea of the region under examination. The origin of the x-axis corresponds to the
trailing edge of the suction strip.

Examination of u′ (primes denote the fluctuating component) indicates a
reduction in rms away from the wall with suction and a large local increase
close to wall (i.e., for x < 1 mm) (Fig. 2). With suction, the maximum u′ is
about 2-3 times greater than without it. Therefore, suction deflects the region
of maximum turbulence closer to the wall. On the other hand, for x > 1 mm, u′

and u′/U are substantially reduced with suction. The profiles for v′ show the
same general trend as u′. However, v′/V actually reduces substantially with
suction. The profiles for Reynolds shear stress indicate a reversal in sign just
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beyond the trailing edge of the suction strip (x < 1 mm) (Fig. 2). A possible
reason for this is a corresponding reversal in the flow direction. However, the
sign of u′v′ recovers faster than U , i.e., at x = 1 mm instead of 2.1 mm.
Compared to no suction case, the magnitude of Reynolds shear stress is small
for x > 1 mm.
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Fig. 2. Streamwise velocity fluctuations (left) and Reynolds stress (right) close to
the suction strip

2.2 Streamwise Variation in Mean and rms Velocities

In this section, we will present results for streamwise variation in velocity at
y+ = 5, 11, 30, where y+ is the wall unit without suction. Figure 3 indicates
a large increase of Us/Uns (subscripts s and ns denotes suction and no suc-
tion, respectively) upstream of the SS, which is due to a favorable streamwise
pressure gradient generated by the suction. The figure also reveals that the
slower moving fluid closer to the wall is more strongly accelerated. The stream-
wise velocity presents a maximum (minimum) at about the leading (trailing)
edge. After the minima, U starts to recover with a slight overshoot, which is
somewhat smaller closer to the wall. Finally, Us/Uns appears to tend to 1.2 in-
dicating that the layer does not return to its non-disturbed state downstream
of the strip in agreement with [1, 2, 4]. This is explained by the fact that the
disturbed boundary layer is subject to a “new initial condition” as apparent
from the previous section. Figure 3 shows little change in V upstream of the
strip and a maximum V on the SS, and Vs/Vns tends to 1 downstream of the
SS. Due to the small value of Vns there is some experimental jitter on the
profiles.

Profiles for u′ show a decrease with suction with a minimum just down-
stream of the trailing edge of the SS. The recovery involves a slight overshoot,
and the final value appears to asymptote to 1. Acceleration due to suction and
relaminarization of the flow are attributed as the reasons for the decrease in
the rms upstream and downstream of the SS. The profiles for v′ is somewhat
similar to u′.
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Fig. 3. Streamwise variation in mean streamwise (left) and wall-normal (right)
velocities. δ0 is the boundary layer thickness without suction at the leading edge of
the strip.

2.3 LIF Image Analysis

LIF measurements, to visualize the low-speed streaks near the wall, were
accomplished by introducing a fluorescein dye into the flow trough a transverse
slit, and illuminating a plane of the test section with the laser. Results for
several suction rates were analyzed. The general observation was that suction
stabilizes the streaks, i.e., reduces their oscillation and makes them longer.
In other words, the tendency to lift-up and break is reduced as the rate of
suction increases, and the streaks remain coherent for a longer distance (or
time). These results were confirmed by a statistical analysis. The reduction
in lifting of streaks is partly because the hairpin structures responsible for
the generation of streaks have been removed. Suction also creates a favorable
pressure gradient which inhibits the natural tendency of eruption of these
streaks.

3 Conclusions

Measurements in the boundary layer over a flat plate with and without suc-
tion revealed a region of backflow close to the suction strip. Strong gradients
in mean and rms velocities are generated and the turbulent structures are
substantially affected due to suction. These measurements are consistent with
those of [1, 2, 3, 4] but have revealed more details about the flow.
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1 The Magnetorotational Instability

Rotating shear flows are very common in astrophysics. Rotation profiles of
stars, accretion disks, and galaxies are shear flows. The Rayleigh criterion
for stability of a given rotation profile requires an increasing specific angular
momentum with distance from the rotation axis. This criterion is fulfilled in
nearly all astrophysical objects. The rotation profile in accretion disks obeys
roughly Ω ∼ r−3/2, where r is the axis distance.

A powerful ingredient to rotating shear flows are magnetic fields, which
excite a linear instability even if they are weak in terms of energy compared
with the thermal energy. The magnetorotational instability (MRI) has been
proven by analytical and numerical studies to be very efficient in generating
turbulence. The turbulent flows emerging from the instability lead to outward
transport of angular momentum (see e.g. [1], [2], [3]). This is a very promising
finding for the problem of the formation of stars.

The MRI had not yet been observed in the laboratory at the time of the
Conference. Taylor-Couette (TC) experiments study the flow between two
coaxial cylinders with one of them, or both, rotating. If the inner cylinder is
rotating – by far the most often studied case in the laboratory – the rotation
profile Ω = A + B/r2 looks similar to the Keplerian one, but is Rayleigh
unstable whence not comparable to accretion disks. Nevertheless, the TC flow
bears the chance to reproduce the MRI in an experiment.

2 Magnetorotational Instability in a Taylor-Couette
Flow

The fact that Chandrasekhar did not report on this MHD instability in [4] is
due to his approximation of very low magnetic Prandtl numbers, Pm = ν/η,
where ν is the kinematic viscosity and η is the magnetic diffusivity. He had
good reasons for that, since fluid metals available have Pm ≈ 10−7 to 10−5.
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The standard TC flow with a rotating inner cylinder and a ratio of inner
radius to outer radius, Rin/Rout = 0.5, gets unstable at a Reynolds number of
Re = 68. Figure 1 shows the lines of marginal stability in dependence of the
imposed magnetic field, normalized to the Hartmann number Ha. If a fluid of
Pm = 1 would exist, a weak magnetic field can reduce the critical Reynolds
number by about 10%. At Pm = 10, the critical Reynolds number is as small
as 23 (left panel). Because such materials do not exist, we have to go another
way: instead of reducing the critical Re for the MRI, we may increase the
critical Re for the purely hydrodynamic flow.

Fig. 1. Lines of marginal stability for the magnetic TC flow with Rin/Rout = 0.5.
LEFT: for a resting outer cylinder; RIGHT: for an outer cylinder rotation of 33%
of the inner cylinder frequency.

While a rotating inner cylinder alone always means decreasing angular mo-
mentum with axis distance, a rotation of the outer cylinder can make the TC
flow Rayleigh stable. The change occurs when the outer cylinder rotates at
25% of the frequency of the inner cylinder. The critical Reynolds number of
the hydrodynamic case (ordinate crossing in the left panel of Fig. 1) moves to
infinity. The critical Reynolds number for the MRI does not move to infinity,
as it requires decreasing angular velocity . Such a profile is still given. Now we
can ask for the minimum of a curve at Pm = 10−5, since the hydrodynamic
instability does not exist. The right panel of Fig. 1 shows the line of marginal
stability for an outer-cylinder rotation rate of 33%. Although the necessary
Reynolds numbers are much higher than for Pm = 1, an experimental config-
uration for Re ∼ 106 may be possible with

f = 22 Hz/(Rin/10 cm)2 and B = 1170 Gauss/(Rin/10 cm), (1)

where f is the rotation rate of the inner cylinder and B is the magnetic field
threading the setup. Although the parameters are not readily achieved in an
experiment, especially since the fluid will most likely be liquid sodium, the
technical possibilities are about to be sufficient for a magnetic TC experiment
studying the MRI.
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The success of the experiment is based on the hydrodynamic stability of
the setup. Since there is controversy about the experimental stability of a
configuration with a rotating outer cylinder, a first experiment must address
the stability of the flow which is predicted by linear analysis and observed in
[5], but is not found in older experiments [6] and hitherto rarely investigated.

The MHD models also imply electric boundary conditions. The necessary
rotation rate for perfectly conducting boundaries is 50% higher than for insu-
lating boundaries. However, the excitation of nonaxisymmetric modes is then
possible. Since dynamo-generated magnetic fields must be non-axisymmetric,
the magnetic TC flow experiment thus provides the chance of driving a dy-
namo with a fully “self-determined” flow caused by the MRI. The energy will
solely be provided by the walls maintaining their rotation velocity.

Fig. 2. Lines of marginal stability for the TC flow with Hall effect.

3 Taylor-Couette Flow With Hall Effect

In astrophysical objects, shear flows often occur in thin plasma where the
full coupling between ions and electrons may not be given. The magnetohy-
drodynamic behaviour of the gas is then described by the Hall effect which
is an additional electric field due to the independent drift of electrons. The
induction equation can be modified to

∂B/∂t = curl (u × B) − curl (curlB × B) + Rb−1η�B , (2)

where u contains the shear flow and Rb is the Hall parameter combining the
magnetic background field, the electric conductivity, and the electron number
density. Together with the Navier-Stokes equation, we may ask whether the
MRI still exists in the Hall regime.

A linear analysis has been carried out on the TC flow [7]. The magnetic Hall-
shear instability is indeed found for a certain range of imposed magnetic fields.
Figure 2 shows the lines of marginal stability for various rotation profiles.



128 R. Arlt and G. Rüdiger

The left panel shows the cases where the outer cylinder rotates slower or
even in the opposite direction than the inner cylinder. The gradient dΩ/dr is
negative. The right panel shows the cases of higher outer rotation rate, whence
dΩ/dr > 0. The astonishing result is that the emergence of an instability now
depends on the direction of the magnetic field – parallel or antiparallel to Ω.

The finding is of importance in astrophysics, since concerns have been ex-
pressed as to whether or not the MRI is excited in thin gases where the
coupling between particles may not be sufficient. The analysis with Hall ef-
fect supports the MRI in very thin gas, although only for half of the possible
alignments of rotation axis and magnetic fields.

4 A Hall-Dynamo?

The last considerations regard the excitation of a kinematic dynamo from the
induction equation with Hall term. They are kinematic in the sense that the
flow is given by the laminar TC flow providing shear to the induction equation,
but the back-reaction of the magnetic fields is not considered, the Navier-
Stokes equation is not solved. The results will only be valid as long as the
magnetic energy is small compared to the kinetic energy. A one-dimensional
domain extends in the z-direction and is subject to a vertical magnetic field
Bz, normalized to the Hall parameter Rb. The linearized equations for such
a Hall dynamo read

∂Bx
∂t

=
∂2Bx
∂z2 + Rb

∂2By
∂z2 and

∂By
∂t

=
∂2By
∂z2 + CΩBx − Rb

∂2Bx
∂z2 , (3)

where CΩ = (duy/dx)R/η measures the shear in x-direction. A vacuum exte-
rior is assumed, whence Bx(±1) = By(±1) = 0 as boundary conditions.

Growing modes for the magnetic fields are found for a minimum shear of
CΩ > π2/2. At any stronger shear, a certain range of imposed magnetic fields
leads to growing solutions. Recent computations in two dimensions and with
galactic rotation profiles confirm the dynamo instability [8]. Future simula-
tions in 3D must show whether the mechanism serves as a real dynamo which
can amplify magnetic fields from arbitrarily small initial fields.
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Summary. Based on Patent application DE 198 22 125.8-52, we present a technical
description of a new temporal and spatial high resolving anemometer for gas and
liquid flows. The measurement principle is based on the technique of an atomic
force microscope where microstructured cantilevers are used to detect extreme small
forces. We show the sensor as a small compact unit and present first measurements
and characterizations.

Principles of Function

Based on the technique of atomic force microscopes (AFM) [1] we use mi-
crostructured cantilevers as sensitive element with a typical length l = 160µm,
a width w = 30µm and a height h = 1−3µm normally used to resolve atomic
distances and forces. To perform local velocity measurements in a fluid we use
the deflection s of the cantilever due to the drag force as the basic signal. Dif-
ferent to the normal application in atomic force microscopes we have surface
loads from the fluid instead of loads acting only on the tip of the cantilever.
The deflection s of the tip of the cantilever is therefore described by

s =
l3

8
F

E · Ia =
3 · l4 · cd · ρ2 · v2 · w

2 · E · w · h3 =
3 · cd · ρ · v2 · l4

4 · E · h3 . (1)

with the elasticity modulus E, force F , drag coefficient cd, fluid density ρ,
velocity v and the geometrical moment of inertia Ia which becomes Ia =
1
12hw

3 for a plate. Note that the deflection is independent of the width of the
cantilever. The value of the fluid velocity v is averaged over the cantilever.

To detect the deflection of the cantilever we focus a laser beam on the tip of
the cantilever and measure the position of the reflex spot with a psd element
(position sensitive detector), see figure 1.

The linear psd element of length LX which we use in this case to get the
position of the incident light yields two electric currents IX1 and IX2 at the
ends of the photosensitive surface (figure 2)
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IX1 = I0
LX − XB

LX
, IX2 = I0

XB

LX
, (2)

with I0 as the light intensity and LX , LB as different lengths [2]. The following
quantity

IX1 − IX2

IX1 + IX2
=

I0

(
LX−XB

LX
− XB

LX

)

I0

(
LX−XB

LX
+ XB

LX

) = 1 − 2
LX

XB . (3)

leads to an expression which is a linear function of the reflex position and
independent of the intensity I0. Any changes in the light intensity which are
acting on the whole psd element will not disturb the position measurement.
Thus our measurement is insensitive to the ambient light or variances in the
laser intensity.

Fig. 1. Cantilever deflection s with flow
(dashed lines) and without flow (solid
lines). Detected by a laser and a posi-
tion sensitive detector (PSD).

Fig. 2. Schematic illustration of the psd
element with the used nomenclature.

Construction

The construction of the LCA is shown in figure 3. At the tip of the sensor
a small arm is screwed. At its tip the cantilever is glued, see figure 4. A wa-
terproof enclosure contains the psd element with its amplifier electronics, the
laser with optical components and step motors to adjust the laser orientation.

To measure the velocity with high accuracy the chip which is the support
of the cantilever is designed as shown in figure 4. Etching a window into the
chip gives the advantage that the fluid can pass through the chip itself. The
cantilever is hold in position by two 20µm thick bridges. Thus the disturbance
of the flow around the cantilever is kept small.

The arm on which the cantilever chip is glued has a face surface that is not
bigger as the cantilever chip itself, see figure 4. The arm becomes thinner to
its top in three steps to reduce the dimensions as much as possible but still
keeping the mechanical stability.
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Fig. 3. 3D illustration of the LCA.
.

Fig. 4. Top view of the LCA and
the arm on which tip the cantilever
is glued. In the REM picture a
cantilever chip is shown. The can-
tilever is the rectangular at the tip
of the triangle.

First Measurements and Results

In this section first measurements and their results are compared with those
from a StreamLine CTA system with a hotwire probe (Dantec 55P01). In fig.
5 the calibration curve of the LCA is shown. Further measurements are based
on a freejet experiment with air into air: nozzle-diameter d = 8mm, velocity
at the nozzle exit v = 32.8ms , Re = 17500. Turbulence measurements at a
distance of 37.5d from the nozzle in the centre of the freejet with v̄ = 12.34ms
were performed.

Regarding the power spectrum of the air freejet (figure 6) one can see that
the LCA and the hotwire measurements coincide within the interial range
of − 5

3 (Kolmogorov law) and down to the dissipation range (f < 104Hz).
Note that there are a lot of interfering signals in the hotwire signal at high
frequencies (starting at 104Hz) which don’t appear in the cantilever signal
because of the shielded enclosure (inset in figure 6).
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Fig. 5. LCA calibration in the described
freejet experiment, performed directly in
the laminar flow of the nozzle exit.
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Fig. 6. Power spectrum of the freejet
experiment, cantilever: black line, hot-
wire: gray line.

Next we investigate the multiscaling properties of the turbulent signals.
This represents an advanced more detailed analysis. The multiscale analy-
sis corresponds to general two point correlation analysis. We calculated the
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probability distribution functions (pdfs) for different length scales of velocity
increments v(r) = v(x) − v(x + r) and their higher order structurfunctions
〈δv(r)n〉. To convert the time series in spatial structures we use Taylor’s hy-
pothesis. As one can see in figure 7 the pdfs coincide quite nicely. Note that
knowing the pdf we also know the 〈δv(r)n〉 moments.

A further characterization is done by using extended self-similarity (ESS)
[3], 〈δv(r)n〉 ∝ 〈|δv(r)3|〉ξn . In figure 8 the scaling exponent ξn of structure
functions of degree n is plotted. The LCA yields the same results as the
hotwire even for n > 8 where the estimation of the scaling exponent normally
becomes very uncertain.
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Fig. 7. Velocity increment pdfs of the
hotwire (crosses) and the LCA (circles)
for the length scales 1.97mm, 4.69mm
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Fig. 8. Scaling exponent ξn estimated
by extended-self similarity from the LCA
dataset (circles) and the hotwire dataset
(crosses). The solid line represents a fir
with Kolmogorov 1961.

Conclusion

A new type of anemometer based on microstructured cantilevers was pre-
sented. The principles, construction and first measurements were shown. The
first results were compared with a hotwire anemometer and the quality of the
results is comparable. The next steps will be investigations in water experi-
ments and further improvements in the technique.
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1 Introduction

Microgravity experiments of thermal convection in a spherical shell under
a central force field are important to understand of large scale astro- and
geophysical motions such in the outer core of the Earth. In the GEOFLOW-
experiment a thermal convection is produced by heating the inner sphere and
cooling the outer one. A central force field, similar to the one acting on planets,
is simulated using the dielectrophoretic effect [1]. To turn off the unidirectional
gravitation under terrestrial conditions, it is undertaken on the International
Space Station (ISS).
Beyond a critical Rayleigh number Ra, i.e. a critical temperature difference,
the basic state (“pure” conduction) becomes unstable. Generically one spher-
ical mode � is unstable, than only stationary or traveling waves solutions are
expected. But for a critical aspect ratio η (the ratio of the inner to the outer
radius of the shell) two consecutive modes (�, �+1) interact. Due to the spheri-
cal symmetry, the bifurcation diagram is very rich (time-dependent dynamics,
intermittencies...) and in particular, heteroclinic cycles connecting equilibria
occur. These motions are very reminiscent of the aperiodic reversal of the
Earth’s magnetic field in geological times.
The (1,2) interaction was thoroughly studied: first, in a numerical point of
view by Friedrich and Haken [2], but the systematically study of heteroclinic
cycles and their robustness was undertaken by Armbruster and Chossat in
[3] using group theoretic methods. Later, Chossat and Guyard [4] are given a
generic classification of heteroclinic cycles for the (�, � + 1) interactions. Be-
cause of experimental requirements the (1,2) interaction is not possible [5] and
in the (2,3) one, such heteroclinic cycles can only occur in the neighbourhood
of a critical Prandtl number Prc. As in [4], we are not able in [6] to observe
numerically the so-called type II heteroclinic cycle. So, we aim to finding such
cycles with an open basin of attraction by varying the Prandtl number.
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2 Mathematical Background

The governing equations for the perturbed system are the classical system
of PDE’s of Navier-Stokes in the Boussinesq approximation for the tempera-
ture, and with Dirichlet boundaries for the velocity (viscous fluid) and for the
temperature perturbation (imposed temperature) [5]. After a suitable nondi-
mensionalization, it appears three parameters for our problem: the aspect
ratio η, the Prandtl number Pr and the number λ, which is proportional to
the square root of the Ra number [5].
For (λc; ηc) � (14; 0.33), the basic state stability is undoing and the modes 2
and 3 interact, i.e. the eigenspace V is the direct sum of V2 ⊕ V3, where V�
is the 2� + 1-dimensional complexified space of spherical harmonics of order
�. We shall denote z�n, n ∈ {−�, ..., �} the coordinates of V� with the “reality”
condition z�−n = (−1)nz̄�n (see [5] for more precisions).
The original system of PDE’s is reduced on its center manifolds, which is pa-
rameterized by the space V . The dynamics near the onset can be examined
by varying the two system parameters λ and η. So, the bifurcation equations
is governed by a system of ODE’s which it consists of 5 equations for z(2)

n and
7 equations for z

(3)
n . For the numerical simulations, we use the Taylor series

expansion of the third order [5].
Yet, we focus on the cycles for which the heteroclinic connection between
equilibria lies in an invariant plane (cycles “forced” by the O(3) symmetry).
Then [4], the equilibria are the both axisymmetric solutions α± (with reversal
motions) of mode 2 (O(2) ⊕ Z2

c isotropy group). The invariant planes are the
fixed-point spaces corresponding to the subgroup of O(2) ⊕ Z2

c . The table 1
gives the three planes which can lead to a such heteroclinic cycle. Contrary to
the planes P2 and P3, the transition in P1 contains two other copies α2

±, α3
± of

α± deduced of it by the rotations of 2π/3 and −2π/3. In the physical space,
there are the three axisymmetric motions of the three orthogonal axis. So,
the transition connects two axisymmetric steady-states with different axis. A
cycle with a such transition is called of type II.
In order to obtain two equilibria α (pitchfork bifurcation), it is necessary that
the pure quadratic term a of the mode 2 is close to zero, this condition is
satisfied for Prc � 0.24. We have not observed this cycle in [6] for two reasons:
the existence domain of the type II is included in the type I and the contract-
ing eigenvalue of α in the plane P1 is very small compared to the others (it
is proportional to a). So the cycle of type II is destroyed by the other one.
Because a has to be small, we search a Prandtl number range for which the
existence domain of type II is not included in the type I.

3 Results

The stability analysis of the equilibria α in the plane Pi, i ∈ {1, 2, 3} shows
that the existence region of the type II cycle can be decomposed as R2 ∪ R3,
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Table 1. Partial isotropy lattice and corresponding fixed-point subspaces.

O(2) ⊕ Z2
c

�
�

�
�

D2 ⊕ Z2
c Dd

6 O(2)−

Σ Fix(Σ)

O(2) ⊕ Z2
c D = {z2

0}
D2 ⊕ Z2

c P1 = {z2
0 , Rez2

2}
Dd

6 P2 = {z2
0} ⊕ {Imz3

3}
O(2)− P3 = {z2

0} ⊕ {z3
0}

where R3 is the region of the cycle I, if the Prandtl number is in the range:

0.28 < Pr < 0.24 � Prc. (1)

In this case, the transition planes for the cycle I are P2 and P3 and for the
cycle II P1 and P2 (Tab. 1). If Pr � 0.28, the region R2 vanishes, and if
Pr � Prc, the coefficient a is zero. So, the choice of Pr is a compromise
between the attractivity of the cycle (a �= 0) and the size of R2. We have
given an example for Pr = 0.25. The width with respect the λ direction of
the region R2 is very thin: 0.1% (Fig. 1.) An example of cycle is showed in
the figure 2. The transition duration is very short compared to the stays near
the equilibria (Fig. 2-b). Because the contracting eigenvalue in P1 is small,
the transition in the plane P2 is faster than the one in P1. In agreement with
the theoretic results of [4], the cycle is robust against small perturbations.
The numerical simulation shows an important basin of attraction: for various
initial conditions, after some transients, the cycle is established. We are not
able to prove the orbital asymptotic stability with the criterion described in
[4]. However the strict inequality (8.1) of criterion of [4] is fast satisfied: it is
an equality in our case.
In the region 3, the cycles I and II can occur. We obtain intermittencies, which
are looking like the cycle II: connections between axisymmetric solutions of
different axis. This competition between cycles is the subject of a new study.
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Summary. Two series of visualization experiments were performed in the bound-
ary layer of Rayleigh–Bénard convection with the goal to get more information on
the behavior and characteristics of streaks elongated in the streamwise direction ob-
served in the boundary layers. These streamwise streaks are a new type of coherent
structures in the Rayleigh–Bénard convection.

1 Introduction

In the study of turbulent flow much attention is paid to understanding “co-
herent structures” in the boundary layers. Coherent structures are defined as
distinctive patterns of motion (in contrast to turbulent, unordered flow) which
occur repeatedly, during a limited period of time. The motivation for their in-
vestigation lies in the fact that their understanding helps in modeling and
controlling turbulent flows as well as in shedding light on the dynamics of the
flows [1]. The best known type of coherent structure in thermal convection is
the thermal plume (e.g. [2]). Swirls and waves living in the interface between
the boundary layer and the bulk have also been visualized [3]. In the present
work we present a new type of coherent structure in the boundary layer of
thermal convection. If the plate of the convection box is covered with a thin
layer of dye, the dye accumulates in streaks aligned with the large scale mean
flow. Qualitative (Sect. 3) and quantitative (Sect. 4) characteristics of the
streaks are presented together with an explanation of the observed statistics
of the streak separation. Section 2 explains the visualization method used.

2 Experimental Setup and Method

The experiments were performed in a cubic cell 20 cm in side and filled with
water. The sidewalls are made of 10 mm thick plexyglas whereas the top and
the bottom plates are 10 mm thick silver-coated plates. The upper plate is
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cooled by water circulating through pipes welded on the plate, and the lower
plate is heated by electrical heaters attached to it. The temperatures of the
plates are kept uniform in space and time to better then 0.1 K.

Flow is visualized using the “pH method” [4]: a pH indicator (in our case
“thymol blue”) is added to water and solution is titrated with HCl and NaOH
just to the acid side of the end point of the indicator. Then an electrical
potential difference is applied between the upper and lower plates, such that
the lower plate is used as cathode. Because of hydrolysis there is an increase
in pH in the vicinity of the cathode, which causes a change in color of the pH
indicator in that area (thymol blue changes color from orange to dark blue).
If a dyed fluid particle is carried away from the electrode, it looses through
diffusion its pH value and thus also the contrast to the surrounding fluid. In
that way only a narrow area in the very vicinity of the cathode (lower plate)
can be colored (depending on the voltage applied), making the method highly
convenient for visualization in the boundary layers.

3 Some Qualitative Characteristics of the Streaks

The first set of experiments was performed so that the amount of dye in the
cell was gradually increasing. In that way it was possible to observe the be-
havior of the flow in different parts of the cell in streamwise direction, as well
as at different distances from the plate. Figures 1–3 show three representative
examples of that set of experiments. The figures show the lower plate of the
cell. The mean large scale flow is from the lower left to the upper right corner
of the picture. The regular grid drawn on the plate is used for distance cali-
bration. On Fig. 1 a very thin layer near the lower plate was dyed, and in the
two subsequent figures the amount of dye is increased. The streaks are aligned
with the mean flow, they first appear at about half the way from one corner
to the other (Fig. 1) and they are advected by the mean flow. A streak is an
indicator of flow convergence. This requires upwelling of the fluid above the
streaks and downwelling in between them. If the streamlines of upwelling and
downwelling flow are closed is not yet clear. The pattern of closed streamlines
producing a single streak would be a pair of counterrotating vortices super-
posed on, and aligned with, the mean flow. This is a well known pattern in
isothermal shear flows, but in our case the Reynolds number of the boundary
layer is only about Re = 30, which is far below values typically found in the
flows where the streamwise vortices were observed. This indicates that the
mechanism of the streak production is not the same. No streaks perpendic-
ular to the mean flow are ever observed in the downstream part of the flow.
Figure 2 reveals some details of the upstream part of the flow and further away
from the plate (the dye layer is thicker). Here, circular patterns, or parts of it,
can be identified. They originate from downward plumes which hit the lower
plate and push the fluid outwards. This is the mechanism of wave production
described in detail and visualized using another technique in [3]. Also, the
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lifting of the streaks can be observed in the downstream part of the flow. In
the visualization shown in Fig. 3 more dye is produced than in the one in Fig
2. The circular patterns are here even better seen than in Fig. 2. The upward
flow (upward part of the large scale mean flow) in the downstream corner is
detectable as well.

Fig. 1. A few streamwise streaks
are marked by arrows

Fig. 2. More dye then in Fig. 1:
circular structures are identifiable
in the upstream part of the flow

4 Streak Separation

In the second set of experiments photographs similar to the one in Fig. 1
were analysed for different Rayleigh and Prandtl numbers (Table 1, first three
columns). Photographs are taken using a 5 Megapixel CCD camera every 60
seconds so that the pictures are statistically independent. The position of each
streak along the lines AB and CD (see Fig. 1) was determined manually. AB
is the main diagonal perpendicular to the mean flow and CD is parallel to the
AB and translated 2

√
2 cm downstream.
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Fig. 3. Even more dye is added
to the flow. Upwelling can be de-
tected downstream

Table 1. Minimal streak separation δ determined for different Ra and Pr according
to procedure described in the text

Ra Pr
Position
(see Fig. 1) δ (cm)

5.0 × 108 6.5 CD 1.0
1.3 × 109 6.7 CD 0.6
1.3 × 109 6.7 AB 0.8
1.4 × 109 3.6 CD 0.8
2.0 × 109 6.2 CD 1.0

The apparent spanwise periodicity in the statistical distribution of lateral
separation of the streaks (peak in the histogram in Fig. 4) could imply that
they result from a linear instability of the flow (combination of shear flow and
Rayleigh–Taylor instabilities).On the other hand, one can assume that the
streaks appear mutually independently, with the only constraint that they
may not appear closer to each other than their lateral size (otherwise they
merge). It can be shown that under these assumptions the histogram of streak
separations H(D) constructed based on Np photographs, with bin size ∆D
and with N streaks per photograph on average, and the probability P (n,L)
to find n streaks at any given time in an interval of length L are given by [5]:

H(D) =
{
L−D−δ
L−δ pe−p(D−δ)∆DNpN , δ < D < L − δ

0 , otherwise
(1)

P (0, L) =
{

1 , L < δ
e−p(L−δ) , L ≥ δ

P (n,L) =
{

0 , L < nδ
∫ L−δ
0 pe−pxP (n − 1, L − x − δ) dx , L ≥ nδ

(2)
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where L denotes the total length of the segment (in our case diagonals AB or
CD), δ is the lateral size of the streaks and pdx is the probability to find a
streak in an interval dx.
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The assumption that δ is equal for all structures is the reason that H(D)
equals zero for D < δ. In order to better reproduce the observed data in
the region D < δ, a more complex model using a distribution of δ instead
of its constant value could be employed. On the other hand, that procedure
would introduce more adjustable parameters, but would not contribute much
to illuminating the phenomenon. That is why we take for δ the D at which the
experimental histogram has its maximum and adjust p so that P (n,L) fits as
well as possible the experimental histogram for the relative number of streaks
in any moment. Then we use this p in the expression (1) for H(D) and verify
that it acceptably fits the experimental histogram for the distribution of streak
separation. Figures 4 and 5 show the results of this procedure together with
the experimental histograms for Ra = 1.4 × 109 and Pr = 3.6. Apart from
limitation of fixed δ, it is seen that the experimental data are satisfactorily
fitted by (1) and (2), that is, under the assumption of mutual independence
of the streaks.

Values for δ determined as the distance at which the separation distribution
has the peak are given in Table 1 for different values of Rayleigh and Prandtl
numbers. The experimental histograms are constructed with bin size 2 mm,
which slightly influences the determination of δ, nevertheless the important
point here is that for the modest range of parameters in our experiments there
is no evident tendency in change of δ with the parameters.
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5 Conclusion

A not yet described type of coherent structure — streamwise streaks — is
visualized in the boundary layer of Rayleigh–Bénard convection. Two sets of
experiments are performed: (1) by controlling the amount of dye in the flow
some qualitative characteristics of the streaks are observed, (2) the positions
of streaks are recorded and statistical analysis of their separation is performed.
Experiments are done for several values of Ra and Pr (Table 1) in a cell of the
aspect ratio 1. Finally, a theoretical explanation for the observed distribution
of the streak separation is proposed.

The streaks start to appear at about half the way from one corner of the cell
to the other, they are aligned with the large scale mean flow and appear to have
a preferred separation. This is suggested also by the statistical analysis — the
distribution of the streak separations has a pronounced peak. We explained
the distribution by assuming that the streaks appear at random and mutually
independently. The theoretical curves obtained that way fit the experimental
data satisfactorily.

Further experiments in a wider range of parameters (Ra, Pr, geometry)
are necessary to answer the remaining question: can linear stability analysis
predict the preferred streak separation; if yes, what is its scaling with the
parameters of the flow? Furthermore, it remained unclear if the streaks are
produced by pairs of counterrotating vortices, or whether the flow upwells
above the streaks and downwells over the broader area between the streaks.
In order to answer that question, another experimental technique or/and nu-
merical simulation should be employed.
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1 Introduction

The short range correlations, both in time and in space, carry information
about small scale coherent structures and their dynamics. Various kinds of
vortices, streaks or waves have been identified [1, 2] and considerable efforts
have gone into identifying their dynamical origins and evolution. In boundary
layers the non-normal amplification or lift-up effect [3, 4, 5, 6, 7, 8, 9] is often
an important source for coherent structures. The dynamics of the coherent
structures can be identified in temporal cross correlation functions between
vertical and streamwise velocity components [10], as can be easily seen from a
noise-driven linear system [11]. We will here analyze spatial correlation func-
tions in data from numerical simulations and PIV data from a wind tunnel
in order to gain further information about the typical size of these coherent
structures.

2 Correlators

We consider numerical simualtions of turbulent flows where a suitable body
force sustains a mean gradient [12]. The simulations use a pseudo-spectral
code with 128 × 64 × 128 nodes and a spatial domain [2π × 1 × 2π]. The
system is averaged over a time interval of length t = 20/S, where S is the
mean shear. Such long averaging times can only be achieved with the body
force driving that maintains a mean shear. The Taylor-Reynolds number is
about Reλ ∼ 45.

The experimental data are obtained from Particle Image Velocimetry (PIV)
measurements in the Large Low-speed Facility of the German Dutch Wind-
tunnel (DNW-LLF). The measurements were taken towards the end of a 15
m long test section, at a flow speed of 40 m/s. The boundary layer thickness
δ99 is about 160 mm. For further information about the experiment and the
flow, see [13, 14] and the contributions to these proceedings.
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Fig. 1. Correlation function Ruu
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from measurements in the DNW
for the same yP an in Fig. 1.

The main object of the present study is the behaviour of the spatial auto-
correlation function of the streamwise velocity,

Ruu(∆x, y|yP ) = 〈u(∆x, y)u(0, yP )〉 , (1)

where yP is the vertical position of the probe. The experimental data are aver-
aged over 2000 realizations. The numerical data are averaged over horizontal
planes and 100 time frames.

The correlation function is symmetric under the point symmetry (x, y) →
(−x,−y). The contour lines of the correlation function are ellipsoidal, with
the main axis not aligned with the coordinate axis, i.e., neither the stream-
wise direction nor the one for the shear. The angle varies between 11◦ − 13◦;
variations with Reynolds number seem to be weak.

The flow in the numerical simulations is not a boundary layer proper, but
a flow driven with a mean shear and bounded by two free-slip surfaces. Since
the profile has an inflection in the middle, the comparison should relate the
thickness of the boundary layer in the experiment δ99 to half the gap width
in the numerical simulation, Ly/2.
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Fig. 3. Normalized correlation function Ruu from DNS.

Fig. 4. Normalized cross correlation Rvu from DNS.

Fig. 5. Tilt angle of Ruu (dots) and of Rvu (diamonds) as a function of the position
between the plates in the DNS data. The angle was determined from an analysis of
the second moments for the contours at a given value.

3 Cross Correlations

Temporal cross correlations between vertical and streamwise velocity compo-
nents are proved to be useful in an analysis of the non-normal amplification
[10]. Their spatial counterpart can be expected to carry information about the
size of coherent regions responsible for vertical momentum transport. The ap-
propriate quantity is the cross-correlation between the vertical and streamwise
velocity component,

Rvu(∆x, y|yP ) = 〈v(∆x, y)u(0, yP )〉 , (2)
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obtained by a similar averaging procedure as above. Note that while Ruu has
a point symmetry, Rvu does not. The contours of the correlation function
are again ellipsoidal as the correlation lengths in streamwise and normal di-
rection are different. The full widths at half maximum in Rvu and Ruu in
streamwise and normal direction compare favorably. This shows that the co-
herent structures that dominate the vertical transport (as measured by Rvu)
are of the same size as the streaks in the streamwise velocity. But in contrast
to the auto-correlation function the contours of Rvu are not tilted with respect
to the axes: moving across the boundary layer there does not seem to be a
significant tilt, certainly not as strong as in Ruu (see Fig. 5).

4 Summary

The small scale correlations between streamwise and vertical velocities in tur-
bulent shear flows continue to provide insights into the small scale structures
and their dynamics. The decay of correlations gives an idea of the size of
the significant structures. Perhaps the most puzzling observation is the tilt in
orientation of the autocorrelation function for the streamwise velocity, which
seems to have an upward angle of about 10◦ with a weak Reynolds-number
dependence at best.

We are grateful to thank the Deutsche Forschungsgemeinschaft, the Neu-
mann Center for Computing at the Forschungszentrum Jülich and the Deutsch-
Niederländische Windkanal for support.
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A canonical turbulent boundary layer on a large flat plate has been investi-
gated for Reynolds numbers 4 × 104 ≤ Reδ2 ≤ 5.5 × 104. This experimental
investigation includes hot-wire measurements of the mean and fluctuating
velocity profiles and of two-point velocity correlations in the wall-normal di-
rection. Complementary Particle Image Velocimetry (PIV) measurements in
a plane given by the streamwise and the wall-normal direction provide addi-
tional information about the instantaneous velocity field.

The comparison between these two measuring techniques is of special im-
portance since we are not aware of published PIV measurements at compara-
ble Reynolds numbers. In addition, the validity of Taylor’s hypothesis towards
the high Reynolds-number range was investigated.

The project is part of the “High Reynolds Number Turbulence” group of
the “Initiative of Turbulence” and also provides experimental data for other
projects.

1 Experimental Setup

The experiments were performed in the low-disturbance environment of the
German-Dutch windtunnel (DNW-LLF) using measuring equipment of the
boundary layer group at the Hermann-Föttinger-Institut. The test runs had
free-stream velocities of approximately 40 and 60 m / s.

The boundary layer investigated developed along a large smooth-surface
flat plate (roughness 1.2 µm) with the measuring location about 13.5 m down-
stream of the ellipitical leading edge. The boundary layer thickness δ99 is
about 160 mm at this postion, the Reynolds numbers (based on momentum
thickness) Reδ2 are approximately 39200 and 54300 for the two test cases.

For the hot-wire measurements standard normal-wire and triple-wire minia-
ture probes were used which were calibrated in situ. The traverse gear could
move two probes independently of each other in the wall-normal direction in
order to obtain space correlations of the three fluctuating velocity components.
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The laser light sheet for the PIV measurements was aligned with the mean
flow (x -) direction and the wall-normal (y-) direction. Four PCO cameras, two
of them capturing the in-plane velocity components over the whole boundary
layer height, and two capturing the inner-most region in a three-component
stereo setup, were used. Each camera had 1280 × 1024 pixel and 12 bit reso-
lution. For the evaluation of turbulence quantities 5000 pictures were taken
with every camera for each test case.

2 Mean and Turbulence Quantities

Profiles of the mean velocity are plotted in inner-law scaling in Fig. 1. The
three sets agree very closely with each other and are – over a range of almost
two decades – well represented by the log law. The smaller range for the PIV
data is due to the chosen optical magnification which yields a higher resolution
in the inner part for the stereo setup.
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Fig. 1. Mean velocity profiles: PIV data sets are plotted with a constant offset and
only a few symbols for clarity

The rms values of the streamwise and wall-normal fluctuations u’ and v’ are
shown in Fig. 2 and Fig. 3, respectively. For the streamwise component, there
is reasonable agreement between hot-wire and PIV data. For the wall-normal
component, two reference data sets – one from hot-wire measurements at a
lower Reynolds number and one from LDV measurements [1] at a comparable
Reynolds number – are plotted. Hot-wire and LDV data – despite the different
Reynolds numbers – compare well in the log-law region while the PIV data
set is substantially lower. A closer examination of the distribution functions
of the PIV data (not shown here) reveals the influence of the discrete nature
of the data aquisition - often referred to as peak-locking. The small dynamic
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range and a mean value of zero for the wall-normal component contribute to
this underestimate of v’rms. Improved algorithms for the estimation of the
displacement at the sub-pixel level are expected to improve the accuracy and
are currently under investigation.

3 Velocity Correlations

Even if the magnitude of the Reynolds stresses for the PIV measurements is
not yet considered to be very accurate, the influence on the normalized corre-
lation functions is almost negligible (see e.g. the measurments of Grant [2]).
Two examples for the streamwise and the wall-normal component are shown
in Figs. 4 and 5 where e.g. Ruu, the normalized correlation function for the
u-component, is given by

Ruu = u′(x, t)u′(x + ∆x, t + ∆t) / (u′
rms(x)u′

rms(x + ∆x)) .

The different length scales between the two functions are clearly visible as is
the anisotropy of these functions which depends strongly on the wall distance
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(not shown here). The inclination of this structure with respect to the wall
suggests the use of different length scales (indicated by the black lines in Fig. 4)
than the commonly used scales Λx (parallel to the wall) and Λy (normal to
the wall). A comparision of hot-wire and PIV data is shown in Fig. 6 and 7.
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While the correlation function for the wall-normal direction can be exam-
ined directly, the hot-wire measurements do not allow a streamwise separation.
Instead, the plotted curve was calculated from the temporal autocorrelation
function using Taylor’s hypothesis with the local mean velocity as the convec-
tion velocity. The collapse of the curves proves the validity of the hypothesis
also in this Reynolds-number range.

4 Conclusions

The comparison of hot-wire and PIV measurements for a turbulent boundary
layer at Reδ2 = 39200 showed very good agreement for the mean velocity and
the streamwise velocity fluctuations. The spanwise component was underesti-
mated by the PIV due to the dynamic resolution of the data, but advanced
algorithms may improve the accuracy. The correlation functions were found
to be in good agreement and confirmed Taylor’s hypothesis for our test.
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1 Motivation

We study experiments of baroclinic instabilities in a different heated rotat-
ing annulus. Characteristic time series are measured with the optical Laser
Doppler Velocimetry (LDV) technique. The methods of nonlinear time series
analysis are used to investigate the dynamics of baroclinic waves, particulary
in transition zones between different flow regimes where complex flows as well
as steady waves are observed.

2 Experimental Setup

The rotating annulus has three concentric cylinders with free surfaces (Fig.
1). The experimental gap between the inner and outer chamber is filled with
de-ionised water (kin. viscosity ν=1.004 mm2 s−1). Here, a radial temperature
gradient is generated. The inner and outer radius is a=45 mm and b=95 mm
and the aspect ratio amounts to 4.4. The radial velocity component of the
flow is measured with the fixed LDV thereabout 0.02 m below the surface.

3 Experiments

Figure 2 shows regions of baroclinic waves in the parameter space for water
[1]. Different flow regimes are observed depending on the rotation rate and
temperature gradient. The Taylor number Ta and thermal Rossby number Ro
is defined as:

Ta =
4 × Ω2 × (b − a)5

ν2 × d
Ro =

g × d × ∆ 

 × Ω2 × (b − a)2

with d as the depth of the fluid, Ω as the angular velocity,  as the average
density of the fluid and g as the acceleration due to gravity.
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Schematic diagram Side view image

Fig. 1. Experimental setup

Our experiments focus particularly on the first transition zone from axi-
symmetric basic flow, denoted as upper and lower symmetrical in Fig. 2, to
steady baroclinic waves, where low dimensional chaotic flow as well as regular
flow occurs (cf. [2], [3], [4]). Here, ’amplitude vacillation’ (AV) and ’modulated
amplitude vacillation’ (MAV) waves are observed, which oscillation frequency
is not constant in contrast to AV-waves.
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transition zone is shaded (b) parameter space of LDV profile ∆T =5.0K (see Sect.4)

4 Nonlinear Time Series Analysis

Figure 2 shows the analysis of profile ∆T = 5.0 K. Hysteresis effects are found
at a wide range of the parameter space. The critical Taylor number Tac is
1.7 × 106, stable baroclinic waves with wave number up to 5 as well as AV-
waves are observed. The transition to turbulence sets in at Ta ≈ 1.22× 107.
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To characterize the nonlinear dynamics of baroclinic instabilities the phase
space is reconstructed with the method of time-delayed coordinates [5]. Dy-
namic variables, e.g. the largest Lyapunov exponent λ1, the correlation di-
mension (D2) and pointwise dimension (Dp) are then calculated to analyse
the complexity of the flow. Reccurrence Plots are also calculated.

Figure 3 shows the analysis of an amplitude vacillation wave (m=2, AV).
Here, λ1 is small but significant positive and Dp is calculated to 3.5, whereas
the plot of D2 give no clear result (cf. Fig. 3 f, g). Instead, Fig. 4 shows an
analysis of a steady flow state. Here, λ1 = 0.0, D2 = 1.2, Dp = 1.1. Note also
the difference in the autocorrelation function (ACF), the reconstructed at-
tractor (RA) and the recurrence plot (RP). Taking all results into account
low dimensional chaotic flow and regular flow respectively is found at these
parameter points.

The principle progression of flow regimes from axisymmetric to irregular
flow is portrayed by reconstructed attractors in Fig. 5 (from left: axisymmetric
flow, flow in first transition zone, steady wave regime). The complexity of the
flow at the first transition zone is significant in contrast to the regular flow
regime at higher Taylor numbers.

5 Conclusion

The methods of nonlinear time series analysis enable us to characterize the
dynamics of baroclinic instabilities. Both, stable, time dependent and complex
flows exist in the first transition zone. With increasing Taylor number, the flow
becomes regular before the transition to turbulence sets in.
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Fig. 3. Nonlinear analysis of an amplitude vacillation wave (m=2, AV): decaying
ACF (c), RP shows pointwise structure (d), RA: complex structure (e), non con-
verging plot of D2, dimE as embedding dimension (f, g)

Fig. 4. Nonlinear analysis of a steady baroclinic wave (m=4): periodic ACF (c), RP
shows parallel lines (d), RA: torus-like structure (e), converging plot of D2, dimE

as embedding dimension (f, g)

m=0 m=3 (AV) m=5
Ta=1.55×106 Ta=3.28×106 Ta=7.76×106

Ro=3.69 Ro=1.78 Ro=0.73

Fig. 5. Reconstructed attractors of flow regimes observed with increasing Taylor
number Ta (∆� = const). All Axes have the same dimension.
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The measurement of thermal fluctuations is important for the investigation of
the transport features of passive and active scalars in fluids. As an addition
to the established cold-wire technique we present a thermal sensor based on a
miniaturized coaxial thermocouple. The advantage of such a sensor is first of
all its size. The active area extends only a few hundreds of square nanometers
sitting at the tip of a thin glass rod of less than a micrometer in diameter.
The preferred field of application of this sensor are all measurement situa-
tions which require a high spatial resolution of temperature measurements for
example within the boundary layer [1]–[7]. The sensors coaxial setup results
from its fabrication as a micropipette and has the advantage of an intrinsic
shielding against external distortions. The glass micropipettes contain a core
of platinum and are coated with gold and are fabricated similar to the ones
in [8]. Because of its chemically inert coating, these sensors are applicable for
detecting temperature fluctuations in a large variety of liquids and gases. The
fabrication and characterization of these sensors is presented here.

1 Preparation of the Micropipettes

A micropipette puller normally used by microbiologists enables us to fabricate
microelectrodes with a metallic core of a few hundred nanometers in diameter
insulated by a glass film. These microelectrodes are mainly used in analytical
chemistry. A 1 mm thick borosilicate glass tube and a 25 µm platinum wire
are smelted and thinned out down to a core size of 200 nm. The achieved tip
diameters are 1 µm and less which enhance the spatial and temporal resolution
significantly. The heat is supplied via an 15 W cw infrared laser. The result of
this fabrication step is an ’open’ micropipette as shown in the SEM picture
in Fig. 1.

The bar shown on the right hand side of the picture represents a length of
500 nm. It is obvious that the diameter of the free standing Pt-wire sticking
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Fig. 1. The electron micrograph shows a free-standing end of a Pt-wire at the tip
of a micropipette surrounded by glass. At the left side of the picture the parameters
of the electron microscope are quoted.

out of the glass pipette is in the range of 100 nm. The surface of this wire
represents the active sensor area after coating the pipette with a 20 nm thick
gold film. Before the gold film is evaporated the pipette is glued in a gold
plated brass cone with an opening angel of 30◦. This design should have a
negligible influence on the flow in case of a higher mean velocity like in free-
jet experiments if the sensor is pointing against the mean flow. In principle
this detail of the design can be easily changed if one is interested in small
scale measurements in a boundary layer. Here it would be advantageous to
mount the glass capillary directly in the wall of the cell.

2 Design of the Measuring Head

Since we are interested in a as high as possible resolution in temperature
and time we have to deal with very small signals at a high bandwidth. To
face this challenge we had to bring the preamplifier as close as possible to
the sensor in a perfect shielded enclosure. Furthermore this preamplifier has
to possess extraordinary noise values. On the other hand an exchange of the
sensor should be easily performed. Our design meets these requirements by
screwing the cone with the glued sensor together with a tube in which a
printed circuit board with the preamplifier is fixed (see Fig. 2). The electrical
connections are made by spring loaded, gold plated contacts manufactured by
the company Ingun, Germany.

As a preamplifier we used an ultra low noise operational amplifier of the
type AD797 fabricated by Analog Device. The bandwidth of the preamplifier
is adjusted to the range from DC to 100 kHz, the spectral noise density is below
1.5 nV/

√
Hz, and the amplification is 1000. In addition the entire circuit is

supplied by batteries to reduce the noise.
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Fig. 2. The basic setup of the thermocouple is shown in the left sketch. The ther-
mocouple is mounted on a tube which serves as a enclosure for the preamplifier as
shown on the right.

3 Characterization and First Results

First we calibrated the sensor to determine the temperature from the mea-
sured signal. The thermoelectromotive force of a platinum-gold thermocouple
was referenced a standard K-type thermocouple in the temperature range of
20 – 100◦C. This was done using a drop of pump oil sitting inside a coil of
resistance wire. On one side the of the drop the sensor was sticking into it and
on the other side the commercial sensor. The thermoelectromotive force was
increasing almost linearly with temperature and the slope was in accordance
with value of 8 µV/K as reported in the literature.

The response time of the thermocouple was measured by means of a
chopped and focused 30 mW He-Ne laser. The amplified voltage signal was
referenced to the applied light pulse captured by a pin-photo diode. In this
case the applied heat pulse has to be redistributed inside the sensor and into
the surrounding air. The response time for a 3 µm thermocouple in air was
250 Hz

First measurements with a heated free-jet of water in water are shown
in Fig. 3. In the experiment a 2 mm nozzle was reaching from below in a
cylindrical water tank of 0.5 m diameter and 1 m height with a free surface.
The sensor was located at a distance of 200 mm right above the center of
the nozzle outlet pointing against the flow. The speed of the water at the
outlet was 4 m/s, 6 m/s, and 9 m/s from light to dark symbols in the diagram
of Fig. 3. One can clearly distinguish the inertial and the dissipation region
in the spectrum. We observe the extension of the inertial range to higher
frequencies in the power spectrum with increasing Re-number as described
in the relevant text books. At higher frequencies the white noise background
can be observed. As expected the response time of the sensor is increased
compared to measurements in air. The cut off frequency can not be seen
because the signal is already hitting the noise floor.
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Fig. 3. Power spectrum measured in a heated free-jet (water in water).

To conclude we have demonstrated that a miniaturized thermocouple can
be fabricated and used to measure temperatures in different fluids with a
superior spatial resolution. An important task for the future will be the en-
hancement of the resolution. The achieved resolution of Pt/Au-thermocouple
is relatively poor. By using semiconducting materials it should be possible
to increase the thermoelectromotive force by one order of magnitude. One
good candidate as material for the outer electrode will be tinoxide which can
be easily doped and is also chemically inert. Another challenge will be the
combination of a velocity sensor together with the temperature sensor in a
very close vicinity. This gives the opportunity to measure the temperature
and velocity at nearly the same position.
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1 Introduction

The objective of our paper is to investigate the temperature and the velocity
field in a large–scale Rayleigh–Bénard (RB) experiment at high Rayleigh num-
ber (Ra). The RB experiment, a closed box with a heated bottom plate and
cooled top plate, offers good conditions for a systematic study of thermal con-
vection. Measurements with high spatial and temporal resolution, especially
in the boundary layers, can help to verify predictions of various theoretical
models concerning the mechanism of the heat transport by highly turbulent
thermal convection.

In previous RB experiments at high Ra usually liquid helium or water was
used with the consequences, that the spatial dimensions and the thickness of
the boundary layers are relatively small. The new investigations at the large–
scale RB experiment allow precise measurements both at high Ra and at high
aspect ratio Γ .

Two different experimental tasks are to be solved: first the measurement
of velocity and temperature profiles in the boundary layer near the cooling
plate and the determination of mean value data, and second the recording of
long–term time series of velocity and temperature with the computation of
power density spectra and autocorrelation function.

2 Experiment

The results were obtained in the presence of passive side walls with a thickness
of 160mm, that do not allow a precise control of the thermal boundary condi-
tions. Therefore all results have preliminary character. In the case of velocity
and temperature profile measurements near the center line of the cylindrical
convection cell these influence can largely be neglected.

In the present RB experiment with a variable height between h = 0.1m
and 6.30m and a diameter of d = 7.15m we are able to study the velocity
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and the temperature field in great detail. We investigate profiles as well as
the statistical properties of both fields in the boundary layer of the air–filled
convection cell.

The velocity measurements were performed with a 1d Laser–Doppler–
Anemometer (LDA) through a small glass window located in the center of
the cooling plate. Two laser beams emitted from the LDA probe (Polytec)
pass the window and intersect in the measurement volume. Tracer particles,
inserted into the convection cell by a fog generator, scatter the laser light
from the measurement volume back to the receiver of the LDA probe. The
frequency of intensity modulated back-scattered light is proportional to the
velocity component perpendicular to the optical axis in the plane of incidence.

Because of the small size of the measurement volume (lmvz = 0.250mm,
dmvx = 0.050mm) in comparison to the thickness of the viscous boundary
layer, the spatial resolution of the velocity profile is higher than in previous
RB experiments. The LDA burst signal rate depends on the concentration of
white fog particles and varies between 1Hz and 20Hz.

In order to measure the velocity profile the LDA probe is moved by a PC
controlled traverse system with a positioning accuracy of 0.01mm in vertical
(z) direction through the boundary layer up to a depth of 425mm. The distance
between the 70 measuring points amounts to 0.1mm close to the wall and to
25mm in the bulk. The measuring time for each position averages 35min, for
the complete profile 2 days. The 1d LDA probe measures the velocity in the
dominant direction first, which we define as mean flow. After each profile
recording the LDA probe is turned at 90◦ to obtain the y-component, which
we call cross flow.

For the temperature measurement a glass encapsulated NTC thermistor
(Thermometrics) with a diameter of dth = 0.140mm and a response time of
120ms is used. The temperature probe is moved in vertical direction at the
same position and with equal measuring coordinates as the LDA measure-
ments. Together with a computer controlled measurement system based on
a HP3458 multimeter (8.5 digit, 100000 readings/s) temperature fluctuations
down to the smallest scales are detectable.

The measurement system allows a recording of temperature time series with
a sampling rate up to 333 Hz for each point. A recording time of 35min leads
to a total number of temperature data of 700000 per measurement point.

The complete set of experimental parameters for the velocity and temper-
ature measurements is listed in Tab.1.

3 Results and Discussion

3.1 Velocity Field Structure

One of the most important but until now unsolved problems is the characteri-
zation of the large-scale circulation (wind) in the bulk region of the convection
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Table 1. Experimental parameters of velocity and temperature measurements.

Ra 1010 1011 1012

Temperature
of heating plate 26.0◦C 37.2◦C 71.2◦C
Temperature
of cooling plate 19.9◦C 20.1◦C 22.0◦C
Height of cell 2.62m 4.00m 6.30m
Aspect ratio Γ 2.73 1.79 1.13

cell. In view of the mean flow hypothesis by Tilgner et al. [1] and Qui and
Tong [2] the investigations should answer the question whether the predicted
coherent single-roll structure still exist at an aspect ratio Γ = 2 or goes over
into a multi-roll flow at higher aspect ratio Γ > 2.

The measured long-term velocity data with a duration of 48h per profile
show a very different behavior dependent on Ra and Γ . At Ra = 1012 and
Γ = 1.13 we can clearly recognize a stable velocity profile in the viscous
boundary layer. The constant direction of the mean flow over a period of 48h
indicates the existence of a stable single roll.

By increasing Γ to 1.79 and decreasing Ra to 1011 the uniformity of the
mean flow direction is broken and no well defined velocity profile can be mea-
sured. This tendency culminates in a total breakdown of the coherent struc-
ture at Ra = 1010 and Γ = 2.73. In this case the steady mean flow velocity
component is completely substituted by large fluctuations in all directions.

3.2 Temperature Field Structure

The measured temperature profiles are overall smoother than the velocity pro-
files. There is little dependence of the profiles on Ra and Γ . In all cases we
get typical boundary layer profiles with a thermal boundary layer thickness of
1.6mm, 1.7mm and 1.8mm at Ra = 1012, Ra = 1011 and Ra = 1010 respec-
tively. These values are determined by the distance at which the extrapolation
of the linear portion of the mean profile equals the central mean temperature.

The comparison of temperature fluctuations and velocity profiles permits
an estimation of the viscous boundary layer thickness. Belmonte et al. [3]
described a method based on the determination of the cutoff frequency in the
temperature spectra. The highest cutoff frequency was found in a spectrum
at a position where the standard deviation of velocity has a maximum.

The investigation at the convection cell at Ra = 1012 shows a viscous
boundary layer thickness of 20mm determined by cutoff frequency, of 22mm
given by the maximum of the velocity standard deviation and 25mm measured
in the mean velocity profile. These results confirm previous measurements of
the Libchaber group [1].
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3.3 Coherent Oscillations

Coherent structures in Rayleigh-Bénard convection were objectives of several
experiments. Castaing et al [4] and Villermaux [5] describe them as a delayed
coupling of boundary layer instabilities caused by hot and cold plumes. Our
analysis of vx(t) and vy(t) should test this model and investigate the dynamic
behavior of velocity and temperature oscillations.

The autocorrelation functions of mean and cross flow velocity at Ra = 1012

show characteristic time scales of 20s and 40s. The dominant time scale of the
temperature signal corresponds also 40s and agrees with the turnover time of
the convection cell. Additionally to the short-term fluctuations one can find
a long-term oscillation with a period of 500s.

The physical interpretation of the measured coherent oscillations requires
further experimental investigations.

4 Conclusions

Our large-scale RB experiment permits high-resolution local measurements of
velocity and temperature at Ra >> 1. The velocity data at Ra = 1012 and
Γ = 1.13 indicate the existence of a turbulent boundary layer.

The detection of a single-roll mean flow structure at Γ = 1.13 is in a good
agreement with the theoretical predictions. For higher aspect ratio the single
mean flow roll appears to breakdown completely.

Coherent structures are detectable in both velocity and temperature time
series at Ra = 1012 and Γ = 1.13.

At the present time our RB experiment is being upgraded by the installation
of a counterheating system. Thus future results will be obtained with more
precise boundary conditions.
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The statistics and scaling properties of the velocity field in turbulent Rayleigh-
Bénard convection in water has been measured using both laser Doppler ve-
locimetry (LDV) and particle image velocimetry (PIV) techniques. It is found
that results from both techniques for the mean velocity and all the statistical
quantities examined agree with each other. The measurements reveal that the
pdfs for the velocity are non-Gaussian in the cell center but more close to
Gaussian near the cell boundaries. In addition, the Reynolds shear stress is
found to have different signs near the sidewall and near the plates of the cell,
suggesting that different mechanisms are responsible for driving the mean flow
at different locations of the cell. Moreover, our results confirm a prediction of
a recent model by Grossmann & Lohse, in which flow geometries are classified
according to the shape of the container.

1 Introduction

In 1987, Heslot, Castaing and Libchaber[1] carried out a high precision convec-
tion experiment in low temperature gaseous helium. Based on the properties
of global heat transport and local temperature field, the Chicago group di-
vided the Rayleigh-Bénard convection in the turbulent regime into the soft
turbulence state (Ra = 5×105 ∼ 4×107) and the hard turbulence state (Ra ≥
4×107). The division of soft and hard turbulence is an important contribution
to the Rayleigh-Bénard convection problem[2]. To understand the hard turbu-
lence regime in Rayleigh-Bénard convection, many experimental, numerical,
and theoretical efforts have been made in the last decade or so. For a recent
review on this subject, please see Grossmann and Lohse[3], and Kadanoff[4]for
a more pedagogical description, on the outstanding issues.

Despite many experimental studies of convective thermal turbulence since
the work of the Chicago group, many fundamental quantities that are im-
portant in “ordinary” hydrodynamic turbulence systems have not been mea-
sured in the Rayleigh-Bénard system. Very recently, we have measured for
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the first time many quantities of the two-dimensional velocity field in a rect-
angular shaped convection box[5], using the PIV technique. These include
the mean velocity field, rms velocity field, skewness field and the Reynolds
stress field. The main advantages of the PIV method are its ability to make
instantaneous velocity measurement for the whole flow field and making such
measurement equal-spaced in the time domain. But even for measuring time-
averaged flow properties, PIV’s ability of making simultaneous whole-field
measurement greatly reduces the time required for determining the spatial
structures of the velocity field. On the other hand, the large amount of infor-
mation produced by the whole-field measurement also gives rise to the main
disadvantage of the PIV, which is low data rate and short data acquisition
time as compared to the LDV method. This is caused by the relatively low
data transfer rate between the CCD camera and the computer and the lim-
ited memory space of the computer. Because of the very limited data rate of
the PIV technique, it is difficult to obtain a large data record, which makes
it impossible to examine the higher order statistical quantities. In this paper
we report measurements of the statistical and scaling properties of the ve-
locity field using both the LDV and PIV techniques, the results show that
the two methods are complimentary to each other in the study of convective
turbulence.

o

y, v

W

H

L

x, u

z, w

Fig. 1. Illustration of the convection cell and the coordinates of the experiment.

2 Experiment

Figure 1 shows a simple illustration of the convection cells used in the present
work, which have been described in detail elsewhere[5]. Two cells are used,
the dimensions, in unit of cm, of the large cell are L = 81, H = 81 and W =
20 and those of the small one are L = 25, H = 24 and W = 7. Also shown in
the figure is the experimental coordinate system, which is so defined that its
origin coincides with the cell center, its x-axis points to the right, the z-axis
points upward and the y-axis points inward. Given the geometry of the cell, the
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large-scale mean flow is expected to be confined mainly within the (x, z) plane,
where the relevant aspect ratio for the flow is unity. The Rayleigh number is
defined as Ra = αgH3∆T/νκ, with g being the gravitational acceleration,
and α, ν, and κ, respectively the volume expansion coefficient, the kinematic
viscosity, and the thermal diffusivity of the convecting fluid. The Prandtl
number is defined as Pr=ν/κ. In the results presented below, the LDV data
were taken at Ra = 5.4×1011 in the large cell and the PIV measurement was
made in both cells with Ra spanning from 9×108 to 9×1011, and the Prandtl
number Pr � 4.3 in all cases.

A two-component commercial LDV system (Dantec Ltd.) was used in the
local velocity measurement. The size of the LDV measuring volume was ap-
proximately 0.087 mm in diameter and 1.11 mm in length in water and the
fluid was seeded with neutrally buoyant 2.2-µm diameter latex spheres as scat-
terers. The data rate of the experiment was between 20−100 Hz, depending
on the location of measurement. As the typical cutoff frequency in our system
is only a few Hz, this data rate ensured that the smallest scales were detected
reliably. At every measuring point 1,048,576 statistically independent sam-
ples, or, alternatively, at least 5.2 hour-long time series, were acquired. The
PIV system and the measurement details have been described previously in
[5]. Briefly, it consists of a dual Nd:YAG laser, a lightsheet optics, a CCD
camera and a synchronizer. The seeding particles used in the experiment are
50 µm diameter polyamid spheres. A 2D velocity map is obtained by cross-
correlating two consecutive images separated by a time interval ranging from
20 to 100 ms that is selected optimally according to the flow speed. The mean
flow field is an average of 15,000 vector maps acquired at a sampling rate of
3 Hz.

3 Results and Discussion

3.1 Statistical Properties

As already mentioned, many quantities in the convection cell have been mea-
sured by the PIV technique and have been reported previously[5]. As a cross-
check between the results from the PIV measurement and the LDV measure-
ment, we show in Fig. 2 the probability density function (pdf) of the vertical
velocity w and the horizontal velocity u at various positions along the x-axis
(the x-scan), obtained respectively by the two methods: the left panel are
those from LDV and the right from PIV. It is seen from the figure that the
pdf’s obtained by the two methods show qualitatively the same features. In
fact all the statistical quantities, such as the rms, skewness and flatness values
obtained from the two techniques are qualitatively all the same for comparable
values of Ra. Thus, in the rest of Sec. 3.1, only LDV results will be presented.
From Fig. 2 we also see that the LDV result produces better statistics than
the PIV due to a much-longer data record. Fig. 2 reveals that the velocity
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Fig. 2. Probability density functions of w (upper panel) and u (lower panel) at
several locations along the x-axis; Left: LDV data (Ra = 5.4×1011). Right: PIV
data (Ra = 3.5×1010).

pdfs for both the vertical and horizontal velocity components at various po-
sitions change their shape from near Gaussian to nearly exponential as the
location moves from near sidewall to the cell center, similar features are also
seen for the z-scan (i.e. from the bottom plate to the cell center along z-axis).
Velocity pdfs have been measured previously by Qiu & Tong[8] in a cylindri-
cal cell, in which they observed that the pdf taken at the cell center is more
close to Gaussian than at other locations. Daya and Ecke have reported pre-
viously that the scaling properties of both the fluctuating temperature and
velocity fields can depend on the shape of the convection box[9]. It is thus
not surprising that the velocity statistics in the rectangular and cylindrical
cells are different, but it is surprising that in the rectangular case the pdf is
non-Gaussian in the center but Gaussian near the boundary.

We now examine in Fig. 3 the profiles of the skewness, Su = 〈(u−U)3〉/u3
rms

and Sw = 〈(w − W )3〉/w3
rms, and flatness Fu = 〈(u − U)4〉/u4

rms and Fw =
〈(w − W )4〉/w4

rms, of the horizontal and vertical velocities respectively, here
U = 〈u〉 and W = 〈w〉. Note that the value of the flatness should be 3 for
a Gaussian distribution. Fig. 3 thus shows that the velocity distribution is
close to Gaussian only in a small region near the top and bottom plates and
near the sidewalls, as already seen from Fig. 2. We have previously found
that an inner core-outer shell structure exists in the central of the convection
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Fig. 3. Skewness and flatness of the velocity components u and w measured in the
x-scan (left panel) and z-scan (right panel).

box[5]. Here we note that the peak positions of the skewness and flatness
correspond approximately to the boundary between the inner-core and outer
shell. This feature has already been discovered by the PIV measurement[5],
now the “profile-cut” from LDV measurement confirms it and makes it more
explicit.
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Fig. 4. Probability density function of u′w′ measured at several locations along (a)
x-scan and (b) z-scan.

With the simultaneous measurement of the two velocity components, we
can obtain the Reynolds stress, which is responsible for transporting energy
from the mean flow to the fluctuating turbulent flow and thus plays a sig-
nificant role in turbulent production. Therefor, a study of its characteristics
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Fig. 5. Profiles of the normalized Reynolds shear stress along the x-scan (left panel)
and z-scan (right panel).

is of great importance in understanding the mechanism of turbulent energy
transfer. Its role has been studied extensively in the channel, jet, shear flows,
and in boundary layers. However, few publications are available on the role of
the Reynolds stress in thermal turbulence. Without the third velocity com-
ponent v, we can discuss only one shear stress component τuw = 〈u′w′〉 here,
which is the dominant component of the Reynolds shear stress tensor in the
present case. Here u′(t) = u − U and w′(t) = w − W are the fluctuating
parts of u and w. In [5], we have measured the time-averaged two-dimensional
Reynolds stress field and found that regions of large τuw correspond to zones
where the hot and cold plumes start to accelerate along the sidewalls toward
the opposite plates. With the high sampling frequency and long data acquisi-
tion time afforded by the LDV measurement, we now examine the statistics
of the “instantaneous Reynolds stress” tensor u′(t)w′(t). Figure 4 plots the
pdf of u′w′ at several positions along the horizontal and vertical axes. The
figure shows that the Reynolds stress is more intermittent than the individual
velocity components as seen in Fig. 2, it also shows that u′w′ near the perime-
ter of the cell has much larger magnitude of fluctuations than in the central
region. Note also that u′w′ is skewed towards positive near the plates and
towards negative near the sidewalls. This feature can also be seen more ex-
plicitly from the profiles of the normalized Reynolds stress τuw/(u2

rms+w2
rms)

shown in Fig. 5. When taking into account the sign of the mean shear (which
can be obtained from the mean velocity profiles[5]), this implies that the tur-
bulent energy production P = −〈uiuj〉∂Ui/∂xj is negative in the regions near
conducting plates, whereas it is positive near the sidewalls. The production
dictates energy transfer between the mean flow and turbulence, a negative
production means the mean flow obtains energy from turbulent fluctuations
while a positive one implies that the mean flow supplies energy to the tur-
bulent fluctuations, which is the typical situation for most flows. Therefore,
near the sidewall turbulent fluctuations get their energy from the mean flow
which in turn are driven by buoyancy through the accelerating plumes. But
near the plates turbulent fluctuations provide energy to the mean flow which
is how the horizontal part of the mean flow obtains its energy. It has been sug-
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gested long ago that the mean flow is driven by Reynolds stresses associated
with tilting plumes[6], which implies a negative production P . Here we see
that on the horizontal plates, velocity fluctuations do indeed provide energy
to the mean flow, although P is overall positive in the cell, which means on
the whole the mean flow is not driven by fluctuations, as already found by
both the authors[5] and others[7].

3.2 Velocity Scaling in Confined Flow Geometries

It has been previously found that the viscous boundary layer at the thermally
insulating sidewall[10] is different in terms of its scaling properties from that
near the conducting plates[11, 12]. While it is expected that thermal boundary
layers should be different at the plates and at the sidewall, the fact that the
corresponding viscous boundary layers are also different came as a surprise,
as both are created by the shear of the same large-scale flow that circulates
around the periphery of the convection box. Based on volume flux conservation
of the mean flow, Grossmann and Lohse (GL) have put forward a model to
account for this discrepancy, in which the flow geometry is classified into
two cases according to the shape of the container: (a) laterally restricted
flow and (b) plate filling flow[13]. Experimentally, flow in our rectangular cell
corresponds to the former, while cylindrical and cubical cells would correspond
to the latter. A specific result of the GL model is that velocity near the sidewall
and the plates is the same if the aspect ratio in the flow plane is unity. With
the PIV-measured velocity field in the rectangular box, this can be checked
directly. In Fig. 6 we plot the normalized velocity UwH/κ and UpH/κ against
Ra, where Uw and Up are the velocities at positions 2 cm from the left sidewall
at mid-height and 2cm above the center of the bottom plate, respectively. The
results show clearly that the velocity near the sidewall and near the plates are
the same both in magnitude and in the scaling with Ra for flow in the (x, z)
plane in which the laterally restricted flow geometry applies.

4 Summary and Conclusion

We have measured the statistics and scaling properties of the velocity field in
high-Rayleigh number turbulent thermal convection in water, using rectangu-
lar-shaped containers. Both the LDV and the PIV techniques are used in the
experiment. It is found that results from both techniques for the mean velocity
and all the statistical quantities examined agree with each other. Specifically,
we found that the pdfs for the velocity are non-Gaussian in the cell center but
more close to Gaussian near the cell boundaries, which is in sharp contrast
to the findings for convection in cylindrical cells. The velocity skewness and
flatness results reveal that velocity fluctuations in the convection box are
highly anisotropic and spatially inhomogeneous. Moreover, the position of the
inner-core and outer-shell boundary is found to be a region with large values
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Fig. 6. Ra-dependence of the normalized velocity UwH/κ and UpH/κ from near-
wall and near-plate positions, respectively.

of skewness and flatness. The results from Reynolds shear stress suggest that
different locations of the cell have mechanisms for driving the mean flow.
Finally, the velocity measurements directly confirm a recent prediction of the
model by Grossmann & Lohse that classifies flow geometries according to the
shape of the container.
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Wall Models for LES

In LES, a key technology for the application to complex high–Re flows is an
appropriate wall modeling strategy. The credibility and costs of LES results
strongly depends on these wall models. In this contribution, we show how to
apply an a priori nonparametric estimation procedure to find generalized wall
models. In the approach of Schumann [1], the wall shear stresses τw,ij and the
velocity components in the first off-the-wall cell have been correlated directly.
The resulting system of model equations reads:

τw,xy = 〈τw〉/〈ū(Y )〉 ū , τw,yy = 0 , τw,zy = Re−1 w̄/Y , (1)

where x, y, z, t denote the streamwise, wall-normal, and spanwise coordinate
and time; τw,ij depends on (x, z, t) and the filtered streamwise and spanwise
velocity components, ū and w̄ depend on (x, Y, z, t) with Y the distance to
the wall. Brackets, 〈·〉, denote spatio-temporal averaging. This model contains
no adjustable parameters, but a slope which varies with 〈τw〉/〈ū(Y )〉. In the
following non-dimensional quantities are used:
τw �→ τw/〈τw〉, u �→ ū/〈ū(Y )〉, v �→ v̄/〈ū(Y )〉, ∂xp �→ ∂xp̄/(ρ〈ū(Y )〉2/δCh).

Many modifications and extensions of Schumann’s model have been pro-
posed. We use an algebraic model, which includes the models proposed in [2]
(“Piomelli’s model” and “ejection model”). Schumann‘s model relates τw and
u. Piomelli’s model takes into account inclined structures near the wall by
a streamwise shift, x �→ x + δ, such that ū, v̄, w̄ depend on (x + δ, Y, z, t).
The ejection model includes a dependency on the wall-normal velocity. We
additionally suggest a dependence of τw,xy on ∂xp and τw,zy on ∂zp. A non-
parametric, additive model then reads:

τw,xy = fu,1 (u(r, t)) + fv,1 (v(r, t)) + fp,1 (∂xp(r, t)) + ε1 , (2)
τw,zy = fu,3 (u(r, t)) + fv,3 (v(r, t)) + fp,3 (∂zp(r, t)) + ε3 , (3)

and additionally τw,yy = 0; here u,w depend on (r, t) = (x + δ, Y, z, t) and
ε1/3 denotes the model error with mean value zero. Below, we show that our
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analysis allows to measure the importance of modeling terms f·,i. The addition
of terms is understood as a tentative input to the analysis.

Nonparametric Stochastic Estimation

In stochastic estimation a least-square minimization procedure is applied to
data taken from DNS or measurements [3]:

E
[
ε2
]

= E

([
τw(r, t) − f̂u (u(r, t))

]2
)

= min. Here, f̂ is the optimal estimate

for fu. If fu(u) is linear or parametrized ,e.g. polynomial, one can use linear re-
gression tools. Consequently, the procedure has been called Linear Stochastic
Estimation, LSE [3]. If the function fu is a priori unknown, one can assume a
nonparametric, possibly nonlinear function. Now the minimization is achieved
by nonparametric regression [4]: The conditional expectation value operator
E(τw|u) [3] is applied. Then we obtain for f̂u (the hat is omitted below):

f̂u(u) = E(τw|u) =
∫

P (τ ′
w|u)τ ′

w dτ ′
w , (4)

where P (τ ′
w|u) denotes the conditional probability. Equivalently, one can max-

imize the correlation, C, used as criterion below. If additive models of the type
(2) or (3) are considered, the estimation procedure is slightly more compli-
cated and of iterative nature, since the problem is intrinsically nonlinear [4, 5].
To obtain a criterion for the importance of a single term, say fu,1 in (2), one
calculates τw,xy − fv,1 − fp,1 and correlates with fu,1:

C1 [fu,1, (τw,xy − fv,1 − fp,1)] . (5)

Data

We use instantaneous DNS and wall-resolved LES data from the second-order,
finite-volume code LESOCC [6]. For comparison with other results, we con-
sider the plane channel flow. To investigate Reynolds number effects, data are
generated for Re = 2800, Re = 4000 (DNS) and Re = 10, 935, Re = 22, 000
(wall-resolved LES). For the analysis a sub-domain in x, y, z has been taken
over 25 characteristic times, Ly/Ub. Details about the simulation, the channel
geometry, the data domain are found in [5] .

Results

We present the main NLSE results concerning different Re, NLSE/LSE cor-
relations and optimal functions. The analysis concerns (2) and (3). We will
focus on the first and briefly comment on the latter. Since Schumann’s, Pi-
omelli’s and the ejection model are subsets of (2), results for the respective
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Fig. 1. a) Correlations C0 for the gradient model and Schumann’s model, NLSE
and LSE (Re = 10, 935), b) Correlations C0–C3 for Re = 10, 935.

nonparametric generalizations can be read from the gradient model results.
For comparison, we plot correlations C against y+ = y · Re · 〈uτ 〉 for all
Reynolds numbers. The gradient model involves 4 terms, so we calculate 4
correlations C0 = C(τw,xy, fu,1 +fv,1 +fp,1), C1 = C(fu,1, τw,xy −fv,1 −fp,1),
C2 = C(fv,1, τw,xy − fu,1 − fp,1), and C3 = C(fp, 1, τw,xy − fu,1 − fv,1 − fp,1)
(see (5)). The details about C0–C3 and the optimal functions are shown for
Re = 10, 935. The other data sets yield similar results.

Correlations and Importance

From Fig. 1a), one reads that the correlations C0 increase with Reynolds
number. This holds as well from Re = 2800 to 4000, so we conclude that
it is not a result of DNS and LES differences. For Schumann’s model, LSE
yields slightly smaller correlation than NLSE; the bigger impact comes from
the addition of a delay. Figure 1b) shows that the major contribution comes
from fu,1 (C1, Piomelli’s model). The function fv,1 is unimportant close to the
wall, gains importance until a maximum at y+ � 18 to become unimportant
again for larger distances (C2, ejection model). Close to the wall fp,1 is highly
correlated (C3). This hints to the inclusion of similar terms in models for
separating flows (if the range of correlation extends to larger y+).

Optimal Functions

A plot of the optimal functions for the gradient model provides further insight.
For fu,1 (Fig. 2a), generalized Piomelli’s model) we find for small y+ a basically
linear function. For larger distances curvature occurs, indicating nonlinear
behavior; for large distances, correlation between the wall shear stress and the
velocity field is lost and fu,1 � const. Inspecting Fig. 2b) (ejection model) one
finds roughly fv,1 = α · v for v � 0 and fv,1 = const. for v � 0, corresponding
to sweeps. A linear regression is unable to find these details. With increasing
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Fig. 2. Optimal functions for the gradient model: (a) fu,1 (b) fv,1, and (c) fp,1

(Re=10,935).

y+, fv,1(v) → const. due to decorrelation. The function of the streamwise
pressure gradient (Fig. 2c) is approximately linear with negative slope for
very small y+ and goes over a concave shape to a constant for y+ � 20. In
brief, the results for the NLSE of (3) (τw,zy) are: the fu,3 term and the fp,3
are important, the latter term even dominates for y+ > 20. This confirms the
intuition that the pressure gradient is important for the dynamics.

Conclusions

A priori analysis with NLSE yields clearly higher correlations for nonlinear
and nonparametric modeling. For the implementation of models, one is, how-
ever, faced with the problem to find the correct asymptotics of generalized
functions. The first results of implementations let us hope that for more de-
tailed investigations, including correct filtering and possibly larger data sets,
better results are obtained. We think, that the true strength of the method
lies in its nonlinear character which can be used for models in separated flows.
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Summary. The generation of mean flows in horizontally periodic Rayleigh-Bénard
convection is studied using direct numerical simulations (DNS) with Rayleigh num-
bers up to 107. We present the spatial and temporal characteristics of this flow
component and its dependence on the parameters of the problem.

1 Introduction

Thermal convection is a very common phenomenon in fluid mechanics and
plays an important role in geophysical systems like the atmosphere and the
oceans, as well as in engineering applications. The Rayleigh-Bénard problem
in particular deals with thermal convection in a horizontal fluid layer that
is heated from below and cooled from above. It has long been one of the
preferred systems for the study of turbulence both experimentally, numerically
and theoretically. This is last but not least due to its rather localized flow
structures. On the largest scales, these flows are usually characterized by roll-
like or cellular patterns, which seem to persist up to the highest Rayleigh
numbers, as atmospheric observations suggest. It is known from laboratory
experiments [3] and numerical simulations [5] that the horizontal size of these
structures is of the order 1–10 times the layer depth and increases with Ra. The
question this paper addresses is whether thermal convection can in addition
to these flow patterns produce a large scale mean flow, as the experiments by
Krishnamurti and Howard [7] suggest.

2 Mathematical Formulation of the Problem

We consider the usual Rayleigh-Bénard problem: a fluid layer of depth d be-
tween two rigid horizontal plates of fixed temperatures. A positive temper-
ature difference ∆T is maintained between the lower and the upper plate.
Acceleration of gravity is acting in negative z direction. Periodic boundary
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Fig. 1. Temporal evolution of mean flow (solid), toroidal (dotted) and poloidal
(dashed) contributions to the kinetic energy in the case Ra = 106, Pr = 7, Γ = 10
(left figure). The two diagrams on the right show snapshots of mean flow profiles of
the same simulation at times t = 2.92629 and t = 2.93526, where Ux and Uy are
denoted by solid and dotted lines, respectively.

conditions are used in x and y directions with periodicity lengths lx and ly,
defining the aspect ratio as Γ = lx/d = ly/d. We use the Boussinesq ap-
proximation in the governing equations. The relevant fluid properties are the
kinematic viscosity ν, the thermal diffusivity κ, and the coefficient of thermal
expansion α. Using d, d2/κ, ∆T and ρκ2/d2 as units of length, time, tempera-
ture, and pressure, one obtains the equations for the non-dimensional velocity
v(x, y, z, t) and temperature T (x, y, z, t):

∂tv + (v · ∇)v = −∇p + Pr ∇2v + Ra Pr T ẑ, (1)

∂tT + (v · ∇)T = ∇2T, (2)

∇ · v = 0, (3)

which contain two dimensionless control parameters: the Rayleigh number
Ra = gαd3∆T/(κν) and the Prandtl number Pr = ν/κ. Since incompress-
ibility is assumed, the velocity field can be uniquely represented by a poloidal
scalar φ(x, y, z, t), a toroidal scalar ψ(x, y, z, t) and a mean flow U(z, t) [9]:

v = ∇ × ∇ × φẑ + ∇ × ψẑ + U. (4)

φ and ψ are bounded functions with vanishing averages over horizontal planes.
The z component of U vanishes. The resulting equations are numerically
solved by a spectral method [8, 6, 5, 4]. A fairly detailed description of the
numerical method can be found in [4]. Initial conditions for all simulations
was a fluid at rest with some random temperature disturbances.

3 Generation of Mean Flows

The notion “mean flow” in the context of this paper describes a horizontally
averaged flow represented by the velocity component U of equation (4). This
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of course is not to be confused with a time averaged flow, for which the term
mean flow is sometimes used as well. Indeed, U is highly time dependent ex-
cept for the most simple laminar cases. Several instabilities of laminar convec-
tion are known which generate mean flows. Examples include travelling wave
convection at Prandtl numbers of order unity with a symmeric mean flow
along the primary rolls [1], and the wavy oscillatory instability of bimodal
convection which produces an antisymmetric mean flow [2]. Here, symmetric
and antisymmetric refer to the symmetries with respect to the midplane of
the fluid layer (z = 0.5).

As a typical example, figure 1 shows a section of the time evolution of
the different contributions to the kinetic energy Ekin in the case of turbulent
convection at Ra = 106, Pr = 7, Γ = 10. The time interval shown corresponds
to approximately 50 convective time scales τ = (2Ekin)−1/2. Note the rather
small amplitude and high variability of the mean flow energy. Figure 1 also
presents some vertical profiles of the mean flow U at two different times
marked by the arrows in the left diagram. At a time when the mean flow
contribution is relatively large one observes a mainly antisymmetric mean
flow (middle diagram of figure 1). In fact, in all investigated Pr = 7 cases the
antisymmetric part dominiated the mean flow. The same is true for Pr = 0.7
except for small Rayleigh numbers below Ra = 3.2 × 104.

The Rayleigh number dependence of the kinetic energy distribution on the
various velocity components is plotted in figure 2. Note a striking difference
in behavior between Pr = 0.7 and Pr = 7. The mean flow energy Emf at
the lower Prandtl number is roughly 0.1 percent of the total kinetic energy,
independent of Rayleigh number. On the other hand, the Pr = 7 cases show
a strong increase of the relative mean flow energy with Ra, although it seems
that it might saturate at higher Rayleigh numbers. Further simulations are
under way to give a definitive answer.
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Fig. 3. Aspect ratio dependence of the mean flow energy Emf for Rayleigh number
Ra = 106 and Prandtl numbers Pr = 0.7 (triangles) and Pr = 7 (diamonds), again
plotted in fractions of the total kinetic energy Ekin.

In the last figure we present some results on the aspect ratio dependence of
the mean flow. A reduction of Γ strongly increases the kinetic energy of the
mean flow. Still, even at the smallest aspect ratio Emf accounts for less than
2 percent of the total energy (Pr = 0.7 case). The dominant flow structure is
still the convection roll and not the mean flow.
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1 Introduction

Turbulent boundary layers under strong adverse pressure gradients are of in-
terest in many technological applications. In the present investigation we focus
on the turbulent boundary layer over a flat plate, separating due to a strong
adverse pressure gradient. The effect of periodic excitation on the separation
bubble is studied by the means of direct numerical simulations. Separated tur-
bulent boundary flow over a flat plate was investigated using direct numerical
simulations (DNS) in a few previous studies by [7],[5], [6] and [4], however
none of them has studied the effect of periodic excitation on the separation
bubble. Periodic excitations have been studied mainly experimentally in sev-
eral other geometries as a means to influence separated flows. Greenblatt and
Wygnanski [1] review the control of flow separation by periodic excitation as
well as control and exploitation of airfoil and diffuser flows, including three-
dimensional and curvature effects. Important parameters such as the optimum
reduced frequencies and excitation levels are discussed.

2 Numerical Method

The simulations of a turbulent boundary layer exposed to an adverse to
favourable pressure gradient have been performed using a code developed
at the Department of Mechanics by Lundbladh et al. [3]. The inflow Reynolds
number is Reδ∗

0
= U∞δ∗

0/ν = 400 based on the displacement thickness δ∗
0 of

the boundary layer and the freestream velocity U∞ at the inflow x = 0. All
quantities are non-dimensionalized by U∞ and δ∗

0 at x = 0. At this position,
a laminar Blasius boundary layer profile is assumed. Downstream at x = 10
laminar-turbulent transition is triggered by a random volume force near the
wall. The computational box is 450 × 50 × 24. A resolution with 480 modes
in streamwise, 193 modes in wall-normal and 64 modes in spanwise direction
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is used, which gives a total of 6 million points. The boundary conditions are
no-slip at the wall. Due to the finite size of the computational domain, the
flow domain is truncated and an artificial boundary condition is applied at
the freestream.

To generate periodic excitation, we use an oscillating wall-normal body
force that exponentially decays from the boundary layer wall and is centred
around x0. We assume the force to be given by

Fy = f0e
−y/ce−[(x−x0)/xscale]2 cos(ωt) cos(βz), (1)

where f0 is the forcing amplitude, ω the oscillation frequency, xscale a pa-
rameter controlling the decay of the forcing in x-direction and c a parameter
controlling the wall normal decay. The force is causing a wall normal flow. If
the parameter β �= 0, the force is also varying in spanwise direction.

3 Results

The contours of constant levels of the mean streamwise velocity from -0.025
to 1.025 averaged in time and spanwise direction are shown for the simula-
tion without forcing in Fig. 1b. At the freestream, the streamwise velocity is
decelerating between x = 50 and x = 200 and than accelerating to the value
of the freestream velocity at the inlet. This imposes an adverse to favourable
pressure gradient on the boundary layer, creating a closed separation bubble.
Determining on the zeros of the skin friction coefficient shown in Fig. 1a (solid
line), the flow separates at xsep = 126 and reattaches at xatt = 247 for the
simulation without forcing, so the total reattachment length is lsep = 121.
The flow can be forced to stay attached in the separated region by applying
time-periodic forcing centred around x0 = 110 upstream the separated region
with a frequency ω = 0.09, which can be seen from the skin friction coeffi-
cient in Fig. 1a (dashed line). A close up on the region where the disturbances
are generated is shown in Fig. 2a. The isosurfaces of the wall-normal compo-
nent illustrate the two-dimensional character of the perturbations created by
the forcing. These structures decay only slowly while travelling downstream
and can be seen travelling upwards in the shear layer. This way, mixing is
enhanced. We found that the closer the forcing is placed with respect to the
separation point the more effective it is in suppressing separation. It is further
observed that sufficiently high amplitudes are necessary in order to reduce the
reattachment length, here an amplitude f0 = 0.1 has been used.

However, steady spanwise forcing turned out to be very effective in eliminat-
ing the separated region. The skin friction coefficient (Fig. 1 a, dashed-dotted
line) is affected significantly stronger if forcing is varying in the spanwise direc-
tion (ω = 0, β = 2π

24 ) with the same amplitude f0 = 0.1 as in the time-varying
case. The effect of the forcing on the flow is illustrated by the isosurfaces of
the wall-normal component shown in Fig. 2b. The isosurfaces are displayed
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Fig. 1. (a) Mean skin friction coefficient, (b) Contours of streamwise mean velocity
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(a)

(b)

for a higher value of v in Fig. 2b than in Fig. 2a because of the stronger effect
on the flow of the spanwise varying forcing. Even if half the forcing amplitude
was used in the case of the spanwise varying forcing, the flow was prevented
from separation.

The influence of a forcing which is varying in time and spanwise direction at
the same time was also investigated. The value of the skin-friction coefficient
for that case is shown in Fig. 1a (dotted line) and is located between the
curves for the forcing only varying in spanwise direction and for the one only
varying in time. Structures of both types of forcing can be seen in Fig. 2c.
The fact that spanwise varying forcing showed to be more effective in this flow
is probably due to the low Reynolds number in the simulations. At a higher
Reynolds number, time-varying forcing is expected to be more effective, since
the two-dimensional disturbances are then expected to be more unstable.

A more detailed analysis is subject of the current work considering the
linear stability of the flow and the response to spanwise varying forcing.
The work was funded by SAAB and Vinnova through the competence centre
PSCI at NADA, KTH.
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The temporal evolution of passive lines in turbulence of an incompressible
viscous fluid is simulated numerically for the Taylor-length Reynolds number
up to 252. The passive lines elongate in average exponentially in time. The
mean exponential stretching rate γ obeys the Kolmogorov scaling law, i.e.
γ = 0.17/τη, τη being the Kolmogorov time if it is estimated with chopped
lines of a fixed length of O(L), L being the energy-containing-eddy length.
However, the mean stretching rate estimated with natural (or unchopped)
passive lines increases with Reynolds number more rapidly than at the rate
of the Kolmogorov scaling law.

1 Introduction

Strong mixing is one of the most prominent dynamical properites of tur-
bulence. It is now commonly recognized that the coherent vortical structures
should play crucial roles in enhancement of mixing, but the precise mechanism
is not easy to reveal because of complexity of turbulent motions. We challenge
this problem by investigating numerically the motion and the statistics of pas-
sive lines in isotropic turbulence to throw light on the mixing phenomena.

It is often said that turbulence is composed of many vortical motions of
various shapes and different scales. But the identification of vortices is not
an easy task. Recently, an objective eduction scheme of vortices has been
proposed and applied to isotropic turbulence [1, 2]. The vortex is identified
as a low-pressure swirling region, which takes a long tubular form with high-
concentrated vorticity. The shape of the cross-section is different from place
to place, but the mean diameter is about 10η independent of the Reynolds
number, where η is the Kolmogorov length [3]. Another interesting observation
is that two vortices often tend to approach each other in an antiparallel manner
[4, 5, 6].

In this paper we show by direct numerical simulation that passive lines in
turbulence elongate in average exponentially in time and that the stretching
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rate obeys the Kolmogorov scaling law if it is estimated for chopped passive
lines of a fixed finite length but not for natural (or unchopped) passive lines.

2 Numerical Method

We consider the temporal evolution of passive lines in turbulence, whose ve-
locity field u(x, t) is governed by the Navier-Stokes equation,

(
∂

∂t
+ u(x, t) · ∇

)

u(x, t) = −1
ρ

∇p(x, t) + ν ∇2 u(x, t) + f(x, t) (1)

and the continuity equation,

∇ · u(x, t) = 0. (2)

Periodic boundary conditions are imposed in the three orthogonal directions.
Here, ρ is the constant density, p(x, t) is the pressure, ν is the kinematic
viscosity, and f(x, t) is an external forcing.

The velocity, the pressure and the forcing fields are expanded into Fourier
series. Then, (1) and (2) constitute evolution equations for the Fourier coef-
ficients, which are integrated numerically by the Runge-Kutta-Gill scheme.
The nonlinear terms are evaluated by the spectral method dealised by the
phase shift algorithm. The amplitudes of Fourier coefficients of velocity in a
low-wavenumber range, less than say

√
8, are kept constant in time to real-

ize a statistically stationary state of turbulence. We compare several cases of
different values of the Taylor-length Reynolds number,

Rλ(t) =
U(t) λ(t)

ν
=

√
20

3νε(t)
E(t), (3)

ranging between 57 and 252. Here, U(t) is the root mean square of a single
component of velocity, E(t) = 3

2U(t)2 is the kinetic energy per unit mass,
ε(t) is the energy dissipation rate, and λ(t) =

√
15νU(t)2/ε(t) is the Taylor

length.
A passive line is expressed by a set of node points, {x

(i)
n (t)}, where integers

n and i indicate the line and node numbers, respectively. Each node x
(i)
n (t) is

advected by the local velocity as

d
dt

x(i)
n (t) = u

(
x(i)
n (t), t

)
. (4)

The right-hand side of (4) is estimated by the 43-point Lagrangian in-
terpolation of u(x, t) at the grid points obtained by the numerical method
described above, and the time integration is carried out by the 4th order
Runge-Kutta scheme. In order to express a passive line accurately by a set of
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Table 1. Statistics of numerical turbulence. Here, τη, η and λ are the Kolmogorov
time, the Kolmogorov length and the Taylor length, respectively.

Runs N3 ν Rλ E ε τη η λ

7A 1283 5 × 10−3 56.5 0.544 0.124 0.202 0.0317 0.469
7B 1283 2.5 × 10−3 83.1 0.573 0.127 0.141 0.0187 0.336
8C 2563 1.25 × 10−3 121 0.586 0.124 0.101 0.0112 0.243
9D 5123 6.25 × 10−3 175 0.585 0.119 0.0726 0.00674 0.175
9E 5123 3.125 × 10−4 252 0.601 0.121 0.0509 0.00399 0.125

node points, the distance between any two adjacent nodes must be kept short
enough. Whenever the distance exceeds a threshold, 1.5 times the numerical
grid width, we add a new node point at a position between the two nodes
which is determined by the 4-point Lagrangian interpolation along the line.

3 Stretching Rate of Passive Lines

Numerical simulations with different values of viscosity are performed, and
the turbulence statistics are summarized in Table 1. By comparing these six
cases, we see that these physical quantities obey the Kolmogorov similarity
law, i.e. they vary with viscocity as

Rλ ∝ ν−1/2, E ∝ ν0, ε ∝ ν0, τη ∝ ν1/2, η ∝ ν3/4, λ ∝ ν1/2. (5)

The total length L(t) of a passive line is calculated by summing up the
length of the constituent segments as

L(t) =
I(t)∑

i=1

�(i)(t)
(
�(i)(t) = |l(i)(t)|), (6)

where l(i)(t) = x
(i+1)
n (t)−x

(i)
n (t), and I(t) is the total number of node points.

It is found that L(t) increases in average exponentially in time after an initial
transient period.

A quantitative estimation of the stretching rate of passive lines is obtained
from the mean value of the exponential stretching rate,

γ(t) =
d
dt

logL(t) , (7)

by taking the average over many passive lines. In order to obtain accurate
statistics we track simultaneously M (= 1282 for runs 7A, 7B, 8C, and = 642

for 9D, 9E) lines in each simulation.
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Fig. 1. Temporal evolution of stretching rate of passive lines. The time and the
stretching rate are normalized by the Kolmogorov time and its reciprocal, respec-
tively. Thick curve, run 7A; thin dotted, run 7B; thin, run 8C; thin dashed, run 9D;
thick dotted, run 9E [7].

3.1 Chopped Passive Lines

Since a passive line elongates in average exponentially in time, the number of
node points to describe it may increase soon beyond the capacity of computer
memory. In order to suppress the number of node points within the capacity,
each passive line is chopped at every time step to keep the length approxi-
mately constant of O(L) (see [7] for the algorithm). The temporal evolution
of the mean stretching rate calculated by taking the average over M lines and
over J (= 20) realizations is plotted in Fig. 1. The time and the stretching
rate are normalized by τη and τη

−1, respectively. The stretching rate starts
from zero, peaks around t ≈ 5τη, and settles down to a stationary value after
t >∼ 20τη. A constant value of stretching rate implies that the total length of
passive lines increases exponentially in time.

The temporal averages of γ(t) normalized by τη
−1 in the statistically sta-

tionary state (t >∼ 20τη) are listed in Table 2. Since there is no systematic
dependence of the average values on the Reynolds number, we may conclude
that the time scale of deformation of passive lines is around (1/0.17 = 5.9) τη,
which is also comparable to the time scale to forget the initial conditions, i.e.,
the time scale to settle down to the statistically stationary state (Fig. 1).

3.2 Unchopped Passive Lines

As seen in the preceding subsection the stretching rate of chopped passive lines
of a fixed length of O(L) obeys the Kolmogorov scaling law. In order to check
whether the stretching rate of natural passive lines obeys the same scaling
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Table 2. Stretching rate of chopped passive lines. The mean values of γτη are
shown for chopped and unchopped passive lines.

Runs Chopped Unchopped

7A 0.174 0.184
7B 0.174 0.189
8C 0.175 0.196
9D 0.169 0.222
9E 0.173 0.266

law, we trace the motion of unchopped passive lines. Because of the capacity
limit, however, only a single passive line can be simulated in a single run.
Then, we take an ensemble average of the stretching rate over 20 independent
realizations. The temporal evolution of the stretching rate of passive lines thus
obtained is plotted in Fig. 2 for five different values of the Reynolds number.
The ordinate and abscissa are normalized as in Fig. 1. It is clearly seen that
the stretching rate of unchopped passive lines is larger than that of chopped
ones and increases with Rλ.

0 20 40
0

0.1

0.2

0.3

Rλ = 57

Rλ = 252

t/τη

γ
τ η

Fig. 2. Stretching rates of unchopped passive lines.

4 Concluding Remarks

We have shown numerically that passive lines in turbulence elongate exponen-
tially in time. The stretching rate calculated by taking an average over many
passive lines of a finite length obeys the Kolmogorov scaling law, whereas that
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of natural passive lines increases with Reynolds number more rapidly than at
the rate of the Kolmogorov scaling law. This difference seems to be attributed
to the finiteness of the temporal memory of turbulent motions [8, 9]. The
portions of passive lines trapped by tubular vortices (mentioned in Introduc-
tion) are stretched strongly, which lasts during the trapped time much longer
than the Kolmogorov time. A more extensive study is necessary for qualitative
confirmation of this theory.

This work has been performed in collaboration with Dr. Susumu Goto under
a partial support by a Grant-in-Aid for Science Research on Priority Areas
(B) from the Ministry of Education, Culture, Sports, Science and Technology
of Japan.
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Introduction, Formulation and Methodology

The interaction of spherical and cylindrical particles with a turbulent ribbed
channel flow is numerically explored. Large Eddy Simulation (LES) is used to
solve the turbulent continuum fluid phase. For the particulate phase, a La-
grangian, one-way coupling, approach is adopted. A simple, potentially highly
general, model for cylindrical particles is also proposed, tested and applied to
the ribbed channel. Here an LES suitable code [1] is used with Smagorinsky’s
model. The governing equations are discretised in a centered, second-order,
staggered grid, finite-difference framework. The Crank-Nicholson scheme is
used to integrate the flow equations in time. A Lagrangian particle trajectory
approach with one-way coupling is used. The particles are treated as individ-
ual, small, rigid bodies. Spherical and cylindrical particles are injected ran-
domly in the computational domain. In order to calculate trajectories (both
for spherical and cylindrical particles), a fourth-order Runge Kutta method
is adopted. A sixth-order Lagrangian interpolation is used to evaluate the in-
stantaneous velocity of the fluid uf over the particles. For spherical particles,
gravity, drag and only when walls are present, Saffman lift forces are included.
At low particle Reynolds number, the equation of motion provided by Maxey
and Riley [2] is used. Cylinders are decomposed into a series of i−segments (in
the present case five). Each segment is treated as a cylinder of infinite length,
i.e. end effects are ignored. The total force acting on each i−portion of the
cylinder by the surrounding fluid, which is assumed uniform, is decomposed
into components perpendicular (D), and parallel (S), to the principal axis of
the cylinder d. In addition, D is also parallel to the plane composed by the
vectors d and (uf − up), where up is the velocity of the particle. The normal
component is modelled according the classical drag expression for a cylinder
of infinite length [3],

D =
1
2
Cdρf(uf − up)2⊥Dp ‖d‖ (1)
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where (uf − up)⊥ is the component of the relative velocity perpendicular to
d. The other symbols have their usual meanings. The parallel component is
modelled as the friction force acting on a flat plate of equivalent surface area
to the cylinder, whose module, per unitary surface, is (see for instance [3]):

S =
2.586
Re0.5

l

1
2
ρf(uf − up)2‖ (2)

where Rel are the Reynolds number based on the length of the cylinder,
(uf − up)‖ is the component of the relative velocity parallel to d. Only the
component normal to the principal axis generates a torque T. Here T = D(d×
j), where j is the unitary vector in the same direction as D. The components
Si and Di of all i−elements along the fibre are calculated, leading to the
following resultant total forces, S =

∑
Si D =

∑
Di and torque T =

∑
Ti.

The velocity uf is obtained by interpolating the flow field at the centre of each
segment. The total forces D and S cause translation of the cylinder. The torque
T causes rotation around the mass centre. Knowning the forces, the equation
of motion (translation and rotation) for a cylinder can be easily evaluated.
The extensive LES/particle transport code validation cases (homogeneous and
isotropic turbulence, a plane channel flow, and a free shear flow) can be found
in [4]. In order to validate basic elements of the cylindrical particle model, some
comparisons with analytical results of Cox [9] have been made. For example
Fig. 1 plots the dependence of the module of the force acting on the cylinder
(the paralled component) vs the angle θ between the cylinder and the flow
(note, unlike the current model, Cox’s model is not valid for sin θ ≈ 0). A
similar level of agreement has been obtained for the normal component.

Ribbed Channel

Finally, a LES simulation for a turbulent ribbed channel is made comparing
with the Re = 7000 measurements of [5]. Periodic boundary conditions are
applied in the streamwise (x) and spanwise z directions. Full numerical set-up
details can be found in [4]. Simulations, on fine and coarse grids (respectively
215×215×105 and 113×65×33 grid points), are carried out. However, it has
been observed that particle simulations on these show a similar qualitative be-
haviour [4]. Therefore, to reduce computational costs and allow more studies,
coarse grid results are mainly used. Figure 2 shows the instantaneous veloc-
ity field projected on a plane perpendicular to the spanwise direction, in the
proximity of the rib. Keeping the same notation of [5], the streamwise distance
x ( measured from the centre of the rib) and the wall-normal distance y, are
expressed in terms of the height of the rib h. Also shown in Fig. 2 are planar
weightless particle trajectories. Figure 3 plots the streamwise mean velocity
at different downstream locations near the rib, more precisely, x/h = −0.5,
x/h = 0.0, and x/h = 0.6. The velocity is normalized by the average flow
velocity uref . The recirculation (i.e. larger negative velocities) downstream of
the rib, are captured by the LES. Further downstream of the rib, the LES
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Fig. 2. Instantaneous velocity field and
fluid particle motions confined on a
plane perpendicular to the spanwise di-
rection. The different gray scale colors
correspond to the value of the vorticity
magnitude.

profiles have the same trends as the measurements. Cross-stream velocities in
the rib vicinity show a similar level of agreement (not shown). The streamwise
velocity fluctuations at x/h = −0.5, x/h = 0.0, and x/h = 0.6 can be seen in
Fig. 4. The measured 〈u′2〉 exhibits a sharp peak in the near wall rib region.
Generally, the finer grid (dashed line) overestimates this peak and coarse (full
line) underestimates it. Particle trajectory predictions for the ribbed channel
flow are also computed. Among other results, it has been observed, in general
agreement with the observations of Wells and Chamberlain [6], that spherical
particles tend to accumulate on the rib wall facing the flow direction (see Fig.
5, where the rib position is indicated). The region downstream the rib tends
to be particle free. In addition, it is found that particles tend to be trapped
in the corner recirculations by the side of the rib. This is suggested in Fig. 6,
where the two spikes correspond to the left and right wall of the rib vertical
faces. This effect is stronger for lighter particles. Cylindrical particles always
avoid the corner recirculations. Instead, except a small percentage that de-
posit onto the faces of the rib (in this region, the concentration of cylinders
is only ≈ 5% of that for spherical particles of the same density), they move
towards the central region of the channel between the consecutive ribs.

Conclusions and Recommendations

An LES based particle deposition strategy has been presented. The strategies
discussed encompassed the modelling of cylindrical particles using a relatively
easy to implement general approach. Essentially, qualitative particle deposi-
tion results were then given for a periodic Re = 7000 ribbed channel flow.
Of course many practical particles are neither perfect spheres nor cylinders.
To our knowledge, there is no clear way to model complex particle shapes. A



194 G.L. Iacono and P.G. Tucker

more detailed theoretical analysis for this subject is recommended. The model
for cylindrical particles needs more validation. At this stage it is only really
truly valid in the limit of an infinitely long cylinder, where no edge effects are
present. A more realistic approach ought to model this edge and the effect of
the complex flow developed in this region.
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Fig. 3. Streamwise mean velocity at
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1 Introduction

One of the most promising techniques for the prediction of turbulent flows
is Large Eddy Simulation (LES), in which an under-resolved representation
of the turbulence is simulated numerically by modeling the effects of the un-
resolved small-scales on the simulation. Such simulations have been applied
in several flows with reasonable success. However, there are several outstand-
ing problems that need to be addressed before LES can fulfill its promise as a
tool for turbulence prediction in engineering flows. The most serious problems
limiting the usefulness of LES are the representation of turbulence near walls
and other strong inhomogeneities. Other difficulties include the dependence
of models on the filter and/or numerical discretization, the treatment of in-
homogeneous filters and the lack of understanding of the modeling errors and
their impact.

The optimal LES formulation [4, 6, 5, 11, 12] provides a useful framework
in which to address these issues and to develop and analyze LES models
and simulations. It is this optimal formulation and its application to simple
turbulent flow that is the subject of this paper.

1.1 Background on Optimal LES

The optimal LES formulation is reliant on a statistical description of the effects
of the small scales. The validity of this statistical perspective depends on an
important subtlety regarding filtering. In LES, a spatial filter is commonly
used to precisely define the large scales to be simulated. However, there are
really two different filtering approaches that can be used in LES [12]:

1. Continuously Filtered LES: In this approach, a continuous filter, which
maps Navier-Stokes solutions to a space of smoother functions, is used.
Examples of such filters are the Gaussian and top-hat filters. Such filters
are commonly invertible, or nearly so; that is, the filtered fields contain
most if not all of the information required to reconstruct the unfiltered
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fields. In practice this is not possible, because the numerical discretization
of the field actually discards much of this information. For this reason,
the best LES models must depend on both the continuous LES filter and
the details of the numerical discretization. Indeed, the above discussion
suggests that the discretization may be more important, which leads to
consideration of the discrete filtering approach.

2. Discretely Filtered LES: In the discrete filter approach, the filter is
considered to be a mapping from the infinite-dimensional space in which
Navier-Stokes solutions reside to a finite-dimensional space which can be
represented numerically without further discretization. This avoids the
problems in continuously filtered LES by combining the filtering and dis-
cretization into a single non-invertible linear mapping. The mapping is
clearly many-to-one, so there are many (formally infinite) fields which all
map to the same filtered field. In the optimal LES approach, we consider
a statistical description of the evolution of all these fields.

An important mathematical result [4], which motivates the optimal LES
approach, is that an LES w will match the one-time statistics of filtered tur-
bulence ũ if and only if the model mi(w) of the subgrid model term Mi is
given by

mi(w) = 〈Mi(u)|ũ = w〉 (1)

This model also minimizes the difference between Mi and mi (in the mean-
square sense), and so this model has all the properties that one could ask of
a sub-grid model. We therefore call it the ideal sub-grid model.

Unfortunately, the conditional average in (1) cannot practically be deter-
mined, since the conditions are that the entire filtered velocity field match
the entire LES field. However, it can be estimated using stochastic estimation
[2] which is a well-established technique for estimating conditional averages.
Optimal LES is essentially the use of stochastic estimation for LES modeling,
which is an approach first proposed by Adrian [1].

Even stochastic estimation requires a large amount of statistical informa-
tion. Until recently, this has primarily come from direct numerical simulations
and experiments. However, for LES applications, this need for extensive em-
pirical data is unacceptable. The primary focus of recent efforts has been the
theory and modeling needed to replace this detailed data. Because practical
applications of LES are generally in complex geometries for which finite vol-
ume discretizations are commonly used, much of the effort is aimed at LES
representations based on these discretizations.

In the remainder of the paper, some Optimal LES results based on DNS sta-
tistical data are presented as a validation of the optimal modeling approach.
Then, an approach for the determination of optimal models without the use
of extensive data is presented, along with some preliminary results for mod-
els developed in this way. Finally, the prospect for developing practical LES
models using the Optimal LES approach are discussed.
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Fig. 1. The three dimensional energy spectrum, E(k), for filtered DNS and 323 LES
with an optimal linear model (L16), an optimal quadratic model (Q16), two cases of
a Smagorinsky model (Cs = 0.17 and Cs = 0.819) and the Dynamic Smagorinsky
model (Dynamic).

2 Results Based on DNS Statistical DATA

To validate the Optimal LES approach, models were constructed and LES
were performed for three different situations: 1) isotropic turbulence with
Fourier-cutoff filters, 2) turbulent channel flow with Fourier cutoff filters in the
directions parallel to the wall, and 3) isotropic turbulence with “finite-volume”
filters. In this section, example results from these studies are presented.

For isotropic turbulence, DNS data were obtained for a forced isotropic tur-
bulence, with forcing in the lowest three modes [4]. The micro-scale Reynolds
number was Reλ = 164, and the DNS were performed with 2563 points using
a Fourier spectral method like that of Rogallo [10]. A sharp Fourier cutoff
filter with cutoff wavenumber kc = 16 was used, to produce a 323 LES. Both
linear and quadratic Optimal LES models were developed using the DNS sta-
tistical data, and were tested. In figure 1 the three-dimensional spectrum for
the DNS, the Optimal LES and several other models are shown. It is clear
that the Optimal LES are in excellent agreement with the DNS, better than
for the other models.
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Fig. 2. Mean and rms velocity profiles in wall coordinates from Optimal LES based
on estimating subgrid stress in terms of velocity and first two wall-normal derivatives
( ), DNS ( ) filtered DNS ( ). Shown are (a) mean velocity, (b) rms
streamwise velocity urms.

In turbulent channel flow, DNS data from the Reτ = 590 simulation of
Moser et al [8] were used to develop optimal LES models. In this case, the
DNS representation used 384 Fourier spectral modes in the streamwise and
spanwise directions. Fourier cutoff filters in these directions were used to define
the LES, reducing the number of modes in each direction to 32. The effective
filter width in the spanwise and streamwise directions is then 58 and 116 wall
units respectively. There was no filtering in the wall-normal direction [11].
Linear optimal LES models were developed using the DNS statistical data,
but due to the inhomogeneity, the dependence of the model on the filtered
velocities was local in the wall-normal direction. Several optimal models were
developed which differed in the form of the model term (either the divergence
of subgrid stress or the stress itself) and in the model dependence (dependence
on wall-normal derivatives). Results for the mean and streamwise rms velocity
profiles are shown in figure 2 for one of the cases. See Volker et al [11] for results
from all the cases studied.

In this case the subgrid stress τij is modeled in terms of the velocities and
their first two wall-normal derivatives. Notice that the mean velocity almost
exactly matches the DNS, while the rms velocity is in reasonable agreement
with the profiles for the filtered DNS. Results for the other cases (not shown,
see Volker [11]) are much worse than for that shown here. The reason for
this difference is that by optimally modeling of τij , rather than its divergence
or other terms, the optimal model is constructed to correctly reproduce the
subgrid contribution to the wall-normal transport of resolved Reynolds stress
(∂u2τij/∂x2), when measured a priori [11]. In essence, the optimal model for
τij represents transport as well as transfer of energy and Reynolds stress to
small scales, while optimal modeling ∂τij/∂xj only represent transfer to small
scales.

Finally, the isotropic turbulence case is repeated, only this time the filter
is defined through averaging over finite volumes. The motivation for testing
this filter is that finite volume methods are much more appropriate for use in
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general geometries. Just as in a finite volume numerical method, the applica-
tion of the filter to the Navier-Stokes equations yields an expression for the
time-derivative of the volume-averaged velocity in terms of the momentum
fluxes through the volume faces. However, in the LES case, the volumes are
large compared to the small scales of turbulence, so standard finite volume
reconstructions cannot be used to determine the fluxes. Instead, we will use
optimal LES techniques to estimate the fluxes in terms of average velocities in
near-by volumes [12]. In this approach, there is no distinction between the nu-
merical representation of the Navier-Stokes equations, and the subgrid model.
Further, the estimation dependencies must at least include quadratics to be
able to represent the convective term.

The LES finite volume grid was 323, and the correlations required for the
optimal LES formulation were determined from the isotropic DNS simula-
tions described above. Various “stencils” defining the dependencies on velocity
components and neighboring volumes were used in the estimates. The results
shown in figure 2 indicate that for sufficiently large stencils (4-cells, 2 cells
on either side of each face), the LES results are in reasonable agreement with
the filtered DNS. In particular, the 4-cell stencil yields results superior to the
dynamic Smagorinsky model.

The validation test results described above indicate that the Optimal LES
approach to developing LES models yields remarkably good LES results, when
the models are appropriately constructed. In particular, it appears that for
strongly inhomogeneous flows, it is necessary for the model to correctly repre-
sent the subgrid contribution to terms in the Reynolds stress equations, such
as transport. The optimal modeling approach is well suited to constructing
models that do this [11].
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3 Theory-Based Optimal Models

While the DNS-based Optimal LES described above was very helpful in val-
idating the general modeling approach, if such models are to be useful for
practical simulations, the models must not depend on extensive empirical
input, such as the DNS correlations. Instead, theoretical considerations are
used to determine the correlations that go into the models. Here, the finite
volume filtering approach is used, because it is the most useful in practical
simulations. In the finite volume formulation, with quadratic dependencies,
the equations defining the model are:

M ′
ij =

∑

α

Lαijkw
α
k +

∑

α,β

Qαβ
ijkl(w

α
kw

β
l )′ (2)

〈wγmM ′
ij〉 =

∑

α

Lαijk〈wαkwγm〉 +
∑

α,β

Qαβ
ijkl〈(wαkwβl )′wγm〉 (3)

〈(wγmwδn)′M ′
ij〉 =

∑

α

Lαijk〈wαk (wγmw
δ
n)

′〉 (4)

+
∑

α,β

Qαβ
ijkl〈(wαkwβl )′(wγmw

δ
n)

′〉

where Mij is the surface flux of momentum component i through face j,
wαi is velocity component i averaged over volume α, Lαijk and Qαβ

ijkl are the
estimation coefficients and primes represent fluctuating components.

The inputs to the model are the multi-point correlations (< · > represents
expected value) among the LES variables wj on the right, and the correla-
tions of wj with the flux term Mi. Equations (3) and (4) must be solved for
the coefficients Lijk and Qijkl. Correlations on the right-hand side among
the wj are correlations among the LES state variables, and can in principle
be determined from a running LES. This is particularly important for the
triple correlations because the theory described below provides no guidance
for them. In contrast, the correlations on the left involve the unknown flux
terms, so they must be specified.

The flux correlations on the left are surface/volume integrals of the two-
point third-order velocity correlations and the three-point fourth-order veloc-
ity correlations. Thus, we only need theoretical results for these quantities.
If we assume that the Reynolds number is very large (particularly the cell
Reynolds number) and that the separations (i.e. the volume sizes) are in the
inertial range, it is justified to use the Kolmogorov expressions for these corre-
lations (the 2/3 law and the 4/5 law), as well as small-scale isotropy. Further,
despite difficulties in using the quasi-normal approximation in other contexts,
the quasi-normal approximation can be used for the fourth-order correlations.
Because we are not using the quasi-normal approximation to close statisti-
cal equations, such problems are not expected. With these assumptions, the
following expressions for the required correlations can be determined:
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〈ui(x)uj(x′)〉 = u2δij +
C1

6
ε2/3r−4/3(rirj − 4r2δij) (5)

〈ui(x)uj(x)um(x′)〉 =
ε

15
(
δijrm − 3

2 (δjmri + δimrj)
)

(6)

〈ui(x)uj(x)uk(x′)ul(x′′)〉 = 〈ui(x)uj(x)〉〈uk(x′)ul(x′′)〉
+ 〈ui(x)uk(x′)〉〈uj(x)ul(x′′)〉
+ 〈ui(x)ul(x′′)〉〈uk(x′)ul(x)〉 (7)

By integrating these expressions over appropriate volumes and faces, the cor-
relations required in (3-4) can be computed.

This theoretical approach was used in the isotropic turbulence case to deter-
mine all the correlations appearing in (3-4), except the third-order three-point
correlations that appears on the right of these equations. These three-point
third-order correlations were determined from the isotropic DNS described
above, because no theoretical expression for them is available. The LES re-
sults using these theoretical models for the 4-cell stencil are shown in figure 4
along with the DNS-based LES and the filtered DNS. The spectrum from the
theoretically-based LES is in somewhat poorer agreement with the filtered
DNS, but there is a slight inconsistency due to the use of the DNS data for
the third-order correlations, correcting this may improve the results.

The results from the theory-based Optimal LES described above are en-
couraging; however, there are a number of the improvements that are required
before these models can be deployed for use in practical simulations. First,
a dynamic procedure to determine the correlations on the right hand sides
of (3-4) from the running DNS is required, to eliminate the need for the last
bit of DNS data. Such a dynamic approach is currently being tested. Second,
the theory described above assumes that the small scales are approximately
homogeneous and isotropic. This will need to be generalized for use with
strongly inhomogeneous flows, such as near walls. An effort is currently un-
derway to characterize the near-wall correlations that are needed in terms of
a few empirically determined coefficients. A variety of theoretical approaches
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are available for this. These include: the anisotropy representations of Arad
et al [3] and L’vov et al [7], the log-layer similarity representation of Oberlack
[9], consistency with the two-point correlation equation, and the quasi-normal
approximation.

4 Conclusions

Optimal LES modeling [4, 5, 11, 12] yields remarkably good LES results. The
strengths of the approach are: 1) it provides a technique to design models to
represent important statistical properties; 2) it is perfectly general, applying
equally well near walls and to turbulence away from walls; and 3) it provides a
framework in which our knowledge of turbulence can be applied to LES mod-
eling. However, substantial multi-point correlation inputs are required. It was
shown that these inputs can be provided theoretically for isotropic inertial-
range small scales. However, near walls and other strong inhomogeneities,
other considerations are required. The correlations needed in the Optimal
LES modeling of near-wall turbulence are being developed.
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Summary. Direct numerical simulations (DNS) of turbulent Rayleigh-Bénard con-
vection for a liquid metal with Pr = 0.025 are used to perform statistical analysis,
in particular to evaluate the turbulent diffusion term in the temperature variance
equation. These results are compered with DNS based predictions by a standard
model of the turbulent diffusion term in the temperature variance equation and by
a model which was recently developed by the authors.

1 Introduction

Statistical turbulence closures serve currently as a basis of applied computa-
tional fluid dynamics (CFD). Common turbulent heat flux models are based
on the Reynolds analogy. Due to the large thermal and small viscous diffusiv-
ity of low Prandtl number fluids, like liquid metals, the statistical properties
of the momentum and the temperature fields are non-similar, so that the tur-
bulent heat flux models based on the Reynolds analogy cannot be applied (see
e.g. [6]). The development of improved statistical heat flux models needs in-
put from measurements, but because of some specific properties of these fluids
(like aggressive chemistry) we have still no sensors to measure accurately small
scale high frequency fluctuations of the velocity and of the cross-correlations
between velocity and temperature fluctuations. DNS is a tool which can pro-
vide such data to improve and to develop improved statistical turbulent heat
flux models as it was shown by realizations in a CFD code [1].

In this paper, results of the direct numerical simulation of the Rayleigh-
Bénard convection for the Prandtl number Pr = 0.025 (lead-bismuth) and
Rayleigh number Ra = 100, 000 are used to perform some statistical analysis
of turbulence in this convection type. The results are also used to compare the
performance of a standard and of a recently developed statistical turbulence
model for the turbulent diffusion of the temperature variance [6] with the
DNS results.
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2 Physical and Numerical Model

2.1 Rayleigh-Bénard Convection

A physical model for the investigation of heat transfer by natural convection
is the Rayleigh-Bénard convection. It is given by an infinite fluid layer which is
confined by two rigid horizontal isothermal walls. The lower one is heated and
the upper one is cooled. The physical problem is characterized by following
dimensionless numbers: The Rayleigh number Ra = gβ∆TD3

νκ ; the Prandtl
number Pr = ν

κ ; and the Grashof number Gr = Ra
Pr ; where g is the gravity; β

is the thermal expansion coefficient; ∆T is the wall temperature difference; D
is the distance between the two horizontal walls; ν is the kinematic viscosity;
and κ is the thermal diffusivity.

2.2 Direct Numerical Simulation of the Turbulent
Rayleigh-Bénard Convection

Direct numerical simulation is a method in which the three dimensional time
dependant conservation equations for mass, momentum and energy are solved
numerically such that all relevant physical processes are resolved by the grid
and by the computational domain. For an incompressible Newtonian fluid
with constant material properties the conservation equations can be written
in the following dimensionless form:

∂ui
∂xi

= 0, (1)

∂ui
∂t

+
∂(uiuj)
∂xj

= − ∂p

∂xi
+

1√
Gr

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)

− (Tref − T )δi3, (2)

∂T

∂t
+

∂(Tuj)
∂xj

=
1√

PrRa

∂2T

∂xj∂xj
, (3)

where Tref is a reference temperature and δij is the Kronecker delta. Equa-
tions (1)-(3) are normalized by the channel height D, velocity u0 =

√
gβ∆TD,

time D/u0, pressure ρu2
0, and difference between the temperatures of the two

walls ∆T . Simulations of Rayleigh-Bénard convection are performed with the
TURBIT code (see [3]). It is a finite volume code which allows for direct
numerical simulations of turbulent heat and mass transfer in simple channel
geometries. The boundary conditions use periodicity in both horizontal di-
rections, whereas the no slip condition and constant wall temperatures are
specified at the lower and upper wall. Here X1, X2 assign the horizontal and
X3 the vertical direction.
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3 Statistical Analysis

In the following we assign a time averaged quantity with X. Numerically
X is determined by averaging the data over both homogeneous horizontal
directions and over time. Here we denote with U = U + u, and T = T + θ the
Reynolds decomposition of velocity and temperature.

Fig. 1 shows the mean temperature profile evaluated from the DNS results.
We find very thick thermal boundary layers, so convection has a small influ-
ence on the heat transfer. Therefore, the Rayleigh number is obviously not
large enough to build up an area with a constant temperature in the mid-
dle of the channel. The temperature field is equallly influenced by both, by
conduction and by convection.

Modeling of the turbulent heat fluxes which is not based on Reynolds anal-
ogy usually considers the temperature variance θ2 (see e.g. [5]). A closure of
the transport equation for the temperature variance requires a model for the
turbulent diffusion Dt

θ = ∂
∂xi

uiθ2 (see e.g. [6]).
The vector uiθ2 is usually modeled using a generalized gradient diffusion

hypothesis (GGDH), first introduced by Daly and Harlow [2], as

uiθ2 = −CDθ
k

ε
uiuj

∂θ2

∂xj
, (4)

where the standard coefficient CDθ = 0.22 after Jones and Musonge [4] is
used. Recently a new model for the triple correlations uiθ2 is derived in [6]
resulting in:

uiθ2 = −Cθ

√
k

ε

θ2

εθ

[

2
√
νκ∆xuiθ2 + uiuj

∂θ2

∂xj

]

, (5)

where the coefficient Cθ = 0.11 is used.
Fig. 2 shows a comparison of the DNS results for the turbulent diffusion Dt

θ

and of the DNS based predictions by the models (4) and (5). The standard
model (eq. (4)) considers only the mechanical time scale k

ε . This modeling ap-
proach obviously does not account for the molecular fluid properties, resulting
in strong over-predictions of the DNS results. The model (5) accounts for the
molecular fluid properties and considers a mixed time scale k

ε
θ2

εθ
. This model

reproduces the DNS data very well.

4 Conclusion

Results of the direct numerical simulations of turbulent Rayleigh-Bénard con-
vection for Pr = 0.025, Ra = 105 are used to show that at these Rayleigh
and Prandtl numbers the temperature field is still influenced by conduction.
Results of statistical analysis are used to evaluate the turbulent diffusion term
in the temperature variance equation. These results are compered with DNS
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Fig. 1. Mean temperature profile for
Pr = 0.025, Ra = 100, 000
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Fig. 2. DNS evaluated vertical profile
of Dt

θ �; Predictions by the model (4)
· · · and by the model (5) —

based predictions by a standard and by a recently developed model which
accounts for the molecular fluid properties and therefor should be applicable
for a wide range of Prandtl numbers.
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A short review of numerical simulation approaches for transitional and turbu-
lent shear flows is presented. Some results using large-eddy simulation (LES)
are for canonical turbulent and transitional flows obtained with different
subgrid-scale (SGS) models such as a variant of the approximate deconvolu-
tion (ADM) and high-pass-filtered (HPF) eddy-viscosity model. Special focus
is the LES of transition in incompressible flow.

1 Introduction

The demand for turbulent flow computations has been increasing strongly in
the recent past, driven by the need for faster and more accurate flow pre-
dictions in numerous applications and by wide-spread access to exponentially
growing computing power.

The most accurate approach to solve turbulent flow problems is the direct
numerical simulation (DNS), in which all relevant length and time scales of
the flow are resolved on the numerical grid [9]. The required computation time
typically increases with the third power of the Reynolds number Re of the
flow, which severely limits the range of problems accessible to DNS.

Practical high Reynolds-number calculations thus need to be performed us-
ing simplified turbulence models. Conventionally, numerical computations of
engineering or geophysical turbulent flows are based on the Reynolds-averaged
Navier-Stokes (RANS) equations for which statistical turbulence models must
be chosen. Only statistical information about turbulence can be obtained by
such computations. Although this technique may require a number of ad-hoc
adjustments of the turbulence model to a particular flow situation, quite sat-
isfactory results can be obtained in many practical cases.

A technique with a level of generality in between DNS and RANS is the
large-eddy simulation (LES). The eddies (turbulent vortices) above a certain
size are completely resolved on the numerical grid, whereas the smaller scales
and their interaction with the resolved scales are modeled. The idea behind
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this scale-separation is that the smaller eddies are more homogeneous and
isotropic and depend little on the specific flow situation, whereas the energy-
carrying large-scale vortices are strongly affected by the particular flow con-
ditions, e.g. geometry, inflow, etc. For a LES, only a fraction of the computa-
tional cost compared to DNS is needed (typically of order 1%). The success of
LES is essentially dependent on the quality of the underlying sub-grid scale
(SGS) model and the applied numerical solution scheme. Substantial research
efforts during the past 20 years have led to more universal SGS models, see
e.g. [6, 1].

It is expected that LES will play a major role in the future for predic-
tion and analysis of certain complex turbulent flows in which a representation
of unsteady turbulent fluctuations is important, such as large-scale flow sep-
aration in aerodynamics, coupled fluid-structure interaction, turbulent flow
control, aeroacoustics and turbulent combustion.

2 Large-Eddy Simulation

The governing equations for transitional and turbulent flows are the Navier-
Stokes equations for the velocity components ui (i = 1, 2, 3) and the pressure p,
given here for an incompressible flow complemented with the incompressibility
constraint,

∂ui
∂t

+
∂ujui
∂xj

= − ∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

and
∂ui
∂xi

= 0 . (1)

In the traditional LES approach, these equations are spatially filtered by a
low-pass filter G with a filter width ∆. The filter operation yields the LES
equations

∂ui
∂t

+
∂ujui
∂xj

= − ∂p

∂xi
− ∂τij

∂xj
+

1
Re

∂2ui
∂xj∂xj

and
∂ui
∂xi

= 0 . (2)

The low-pass filtered velocity is given by

ui(x) := G ∗ ui :=
∫

V
G(x, x′, ∆)ui(x′)dx′ , (3)

where V is the computational domain. The LES equations govern the evolution
of the large, energy-carrying scales of motion. The effect of the non-resolved
small scales enters through a subgrid-scale (SGS) term

τij = uiuj − uiuj (4)

which is not closed (i.e. cannot be obtained from the computed quantities ui)
and must thus be modeled by a SGS model.
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The most widely used SGS models are the eddy-viscosity models, given by

τij − δij
3
τkk = −2νTSij , (5)

where Sij is the large-scale strain-rate tensor Sij = (∂ui/∂xj + ∂uj/∂xi)/2.
The eddy-viscosity νT is usually modeled according to [14] yielding the widely-
used Smagorinsky model

νT = (CS∆)2|S| , |S| = (2SijSij)1/2 . (6)

The model coefficient CS (“Smagorinsky constant”) has to be determined
empirically and is dependent on the particular flow situation.

Classical variants of eddy-viscosity models with constant model coefficients,
e.g. the above-mentioned Smagorinsky model as well as the popular structure
function model [8], are quite successful in certain flow situations. Neverthe-
less, for some flows, e.g. wall-bounded shear flows, transitional or intermittent
flows, ad-hoc remedies have to be used to get acceptable results (see section
3).

The application of spatial filters to separate the smaller resolved scales from
the large-scale flow was, e.g., successfully used in the filtered structure func-
tion model [2]. Alternatively, high-pass-filtered (HPF) eddy-viscosity models
have, recently and independently, been proposed in [21] and [19]. Here, the
computation of the strain-rate relies on high-pass-filtered quantities H ∗ u
with a suitable high-pass filter H. For the HPF Smagorinsky model proposed
in [19], one gets

νHPF
T = (CHPF

S,ωc
∆)2|S(H ∗ u)| , |S(H ∗ u)| = (2Sij(H ∗ u)Sij(H ∗ u))1/2

(7)

and

τij − δij
3
τkk = −2νHPF

T Sij(H ∗ u) . (8)

Similarly, this approach can be applied in conjuction with the (filtered) struc-
ture function (SF/FSF) model [19]. These models can be used equally well
for transitional and turbulent, incompressible and compressible flows [19, 15]
(see results presented in section 3).

Another widely-used option is to resort to dynamic LES models, which
were introduced in [3, 7]. These models, in particular the dynamic Smagorin-
sky model (DSMAG), attempt to adapt the (spatially and temporally varying)
local model coefficient automatically to different flow situations, e.g. laminar,
transitional, and turbulent flows. However, in general they do not correctly
predict a laminar base flow. Moreover, averaging of the dynamic model coeffi-
cient in the homogeneous directions has usually to be employed for turbulent
flows in order to minimize the occurrence of singularities.

Another recent modelling approach is the approximate deconvolution model
(ADM) which was proposed in [16] for the LES of incompressible and com-
pressible flows. The model is based on an approximate deconvolution of the
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Fig. 1. Transfer functions of the different filter (equidistant grid) with N = 5 and
ωc = 2π/3; Ĝ(ω), ĤN (ω) = 1 − Q̂N (ω)Ĝ(ω).

filtered data by a truncated series expansion of the inverse filter. Furthermore,
a relaxation term which acts only on the scales close to the numerical cut-off is
used to model the interaction of the resolved scales with those not represented
numerically.

The ADM SGS model to close equation 2 can be written as follows

∂τij
∂xj

=
∂u�ju

�
i

∂xj
− ∂ujui

∂xj
+ χ(I − QN ∗ G) ∗ ui . (9)

Here, a star denotes the approximately deconvolved quantities u�i := QN ∗
ui. G is the graded discrete primary low-pass filter and QN its approximate
inverse [16]

QN =
N∑

ν=0

(I − G)ν = (I − G)N+1 ≈ G−1 . (10)

The definition of G is given in [17], see Fig. 1. The model coefficient χ of
the relaxation term can be estimated from the instantaneous solution by a
dynamic procedure [17].

SGS modeling using ADM has been applied to a variety of different flows
showing very good agreement of the LES with filtered DNS results. In-
compressible transitional and turbulent channel flow has been considered in
[17, 13], compressible shock-turbulent-boundary-layer interaction in [18], and
a transitional/turbulent rectangular jet in [10]. The applicability of ADM in
low-order finite-volume CFD codes has been demonstrated in [20].

Based on equation 9, a variant of ADM can be formulated. The relaxation-
term (RT) model simply uses

∂τij
∂xj

= χ(I − QN ∗ G) ∗ ui . (11)

For spectral discretization of the governing equations this model shows very
good results for incompressible flows [13], even without the use of a dealiasing
procedure (3/2-rule) for the convective terms [12].
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3 LES of Plane Channel Flow Transition

3.1 LES of Laminar-Turbulent Transition

Transitional flows have been the subject of intense experimental and numerical
research for many decades. One of the first well-resolved simulations to calcu-
late from a basically laminar initial field through 3D transition and breakdown
into fully developed turbulence was presented in the DNS work of [4], who
considered fundamental K-type transition in plane Poiseuille flow. Compre-
hensive review articles on the numerical simulation of transition can be found
in [5] and [11].

A SGS model suitable to simulate transition should naturally be able to
deal equally well with laminar, transitional and turbulent flow states. The
model should leave the laminar base flow unaffected and only be effective, in
an appropriate way, when nonlinear interactions between the resolved modes
and the non-resolved scales become important. The initial slow growth of the
instability waves is mostly sufficiently resolved even on a coarse LES grid.
Due to the possibly intermittent character of transitional flows (e.g. spatial
simulations, bypass transition), spatial averaging of the model coefficients (a
common practice with the dynamic Smagorinsky model) should be avoided.
Furthermore, for the sake of generality, a three-dimensional formulation of
the model is required. Ideally, the SGS model should not rely on an ad-hoc
adaptation to a specific flow situation.

3.2 Simulation Results

As a LES test case, temporal incompressible K-type channel-flow transition
was studied using a fully-spectral method with the same parameters as in [4].

The initial disturbances consist of a two-dimensional (stable) Tollmien-
Schlichting (TS) wave and two superimposed weak oblique (stable) three-
dimensional waves. The Reynolds number based on bulk velocity and channel
half-width is Reb = 3333, the box dimensions are 5.61 × 2.99 × 2. For the
statistically stationary results of fully-developed turbulent channel flow the
data is statistically averaged over a non-dimensional time interval of 500−1000
well after transition.

For the results presented in this section, an LES resolution of 322 × 33 grid
points was chosen, whereas the reference DNS was performed on a 1602 × 161
grid. Results are presented for the models listed in Table 1. Note that the
resolution chosen for the LES is quite coarse [13]. The application of standard
ADM [17] at this resolution failed due to a further restriction of the resolved
scales by the filter G. However, at somewhat less coarse (especially in the
wall-normal direction) resolution ADM works well [13]. On the other hand,
the comparably good results obtained for the no-model calculation stems from
the fact, that a very robust non-dissipative spectral discretization scheme with
correction of aliasing errors has been used.



212 P. Schlatter, S. Stolz, and L. Kleiser

Table 1. Temporally and spatially averaged skin friction Reynolds number Reτ

obtained for the different simulations of fully developed turbulent channel flow.

Reb = 3333 Reτ caption

RT 322 × 33 208.9
HPF-SMAG 322 × 33 208.8
HPF-FSF 322 × 33 211.1
DSMAG 322 × 33 195.1

no-model LES 322 × 33 220.0
fully-resolved DNS 1602 × 161 208.2

grid-filtered to 322 × 33 208.4 •
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Fig. 2. Left: Evolution of Reτ averaged in wall planes during the transitional phase.
Right: Streamwise Fourier spectrum of the streamwise velocity component u for the
turbulent phase, averaged in y, z and t. Line caption see Table 1.

In Figure 2, the evolution of the skin friction Reynolds number Reτ is
shown during the transition phase. As expected, the no-model calculation
goes through transition earlier than the fully resolved calculation and the LES
involving additional SGS dissipation. The two HPF models are quite similar
to each other, whereas the RT model is clearly more dissipative during the
inital stages of transition (t ≈ 150). The dynamic Smagorinsky model shows
an accurate prediction of the transitional process until t ≈ 170, but fails to
show the well-know overshoot of Reτ of about 20% (t ≈ 175).

The one-dimensional streamwise spectrum is also given in Figure 2. The
strong influence of the relaxation term −χ(H ∗ u) can clearly be seen. Due
to the unfiltered strain rate used in the calculation of τij for the dynamic
Smagorinksy model, its dissipative influence is visible throughout the whole
wavenumber range.

Figure 3 presents some characteristics of the fully developed turbulent flow.
The mean wall-normal velocity profile u(z) and the Reynolds stresses are
predicted accurately for the RT and HPF models; the dynamic Smagorinsky
model is slightly too dissipative.
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4 Conclusions

In this short review, some recent LES techniques were presented and the basic
difficulties of LES of transitional flows have been discussed. Results of several
large-eddy simulations including a variant of the approximate deconvolution
model (ADM), the relaxation-term (RT) model, the high-pass filtered eddy
viscosity models, and the dynamic Smagorinsky model for transitional incom-
pressible channel flow were presented and compared to no-model LES and
fine-grid DNS calculations.

The results obtained indicate that it is well possible to simulate transitional
wall-bounded flows on the basis of both ADM and HPF eddy-viscosity mod-
els with constant model coefficient. During the early stages of transition, the
results of no-model LES calculations, which have sufficient resolution for this
stage of flow development, are recovered. This confirms that the LES model is
inactive there. During the rapid mean flow development, the model contribu-
tions are beginning to provide additional dissipation. The results demonstrate
that a proper treatment of each spatial direction should be used in order to
faithfully represent the relevant physical features such as the local gradients.

The LES models presented herein are completely dynamic in space and time
such that no ad-hoc constants or adjustments are needed. This self-adaptation
to the current local flow situation is very important for all types of transitional
flows.
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It is well-known that heat transport in Rayleigh-Bénard convection, which
can be expressed by the Nusselt number Nu, scales with the Rayleigh num-
ber Ra [1]-[2]. Chavanne et al compared numerous experimental results [3]
and showed that the obtained scaling law Nu vs. Ra depends on the as-
pect ratio a = H/R (where R denotes the radius and H - the height of the
cylinder) and the Prandtl number Pr = ν/κ. While most experiments were
conducted in a cylindrical confinement for practical reasons, the majority of
the so far performed numerical simulations were conducted for planar config-
urations [4]-[7]. Recently Verzicco and Camussi [8] presented results of Direct
Numerical Simulations (DNS) in a slender cylinder with a = 4 for Ra up to
1011. Our objective is to investigate turbulent Rayleigh-Bénard convection in
wide cylinders with the aspect ratio a < 1 by means of DNS.

Governing Equations and Computational Outline

Using R, R1/2(αg∆T )−1/2, αgR∆Tρ and ∆T = T̂1 − T̂2 (difference between
the temperatures T̂1 at the bottom and T̂2 at the top of the cylinder) as ref-
erence values for length, time, pressure and temperature, respectively, we re-
ceive the following dimensionless governing equations for the Rayleigh-Bénard
problem

ut + u · ∇u + ∇p = a3/2Pr1/2Ra−1/2∇2u + Tz, ∇ · u = 0, (1)

Tt + u · ∇T = a3/2Pr−1/2Ra−1/2∇2T,

where Ra = gαH3∆T/(νκ), u and ut are the velocity field and its time
derivative, T is the temperature, p is the pressure, ν is the kinematic viscosity,
κ is the thermal diffusivity, g is the gravitational acceleration, ρ is the density
and α is the termal expansion coefficient. On all boundaries of the cylindrical
container u = 0, while T varies from +0.5 at the bottom to −0.5 at the top of
the cylinder. Further, an adiabatic vertical wall is prescribed by ∂T/∂r = 0.

The DNS were performed on staggered grids with 128 · 512 · 192 nodes (for
higher Ra) and 96 · 256 · 128 nodes (for lower Ra) in (z, ϕ, r)-directions of
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the cylindrical coordinate sytem. A randomly disturbed linear temperature
distribution T = 0.5 − z/a and u = 0 served as the initial conditions. For
solving (1) we developed a finite volume method, which uses fourth order
accurate central differences in spatial directions and a hybrid explicit/semi-
implicit time stepping scheme as described in [9].

Instantaneous Snapshots of the Velocity Field

In Fig.1 instantaneuos snapshots of the axial velocity are depicted for z = a/2
and different Ra and a. Positive velocity values (the flow rises) correspond to
light and negative values - to dark areas. For Ra = 105, a = 0.2, elongated
structures can be observed. If Ra is increased to 107, fine flow structures
evolve on top of the large structure leading to a more corrugated large scale
flow. A further increase of Ra (a = 0.4) leads to a single large flow structure.
The latter is characterized by warm fluid rising in the center and cold fluid
descending close to the cylinder sidewall.

Ra = 105, a = 0.2 Ra = 107, a = 0.2 Ra = 108, a = 0.4

Fig. 1. Instantaneuos snapshots of the axial velocity uz for z = a/2

T = 0.25 T = 0.15

Fig. 2. The isotherms of the solution for Ra = 105, a = 0.2

In Fig.2 the side views of isosurfaces T = 0.15 and T = 0.25 for the case
Ra = 105, a = 0.2 are presented. It is observed that the warm fluid (T > 0)
reaches the upper cylinder wall in burr-like structures. Vice versa the cold fluid
(T < 0) reaches the vicinity of the bottom wall in the cracks-like stucture (not
shown).
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Mean Flow Characteristics

Time averaging was performed for more than 500 dimensionless time units un-
til no significant change of the absolut maximum velocity value was observed.
From contours of the mean (time averaged) axial velocity, presented in Fig.3
for central cross-sections and different Ra and a, we conclude a growth in size
of the mean flow structures with increasing Ra. Additionally averaging the
mean axial flow fields in azimuthal direction we receive two-dimensional flow
fields, which are presented in Fig.4. For all cases the mean flow rises in the
center of the cylinder.

Ra = 105, a = 0.2 Ra = 107, a = 0.2 Ra = 108, a = 0.4

Fig. 3. Contours of time averaged mean axial velocity component uz, z = a/2

< uz > < uz >

r = 0 r = 1 r = 0 r = 1

Ra = 105 �

a = 0.2

Ra = 107 �

a = 0.2

Ra = 108 �

a = 0.4

Fig. 4. Mean axial velocity < uz > averaged in time and in ϕ-direction

Finally, the scaling behaviour of Nu = 〈uzT 〉Hub/κ − a∂ < T > /∂z
with Ra, where < · > denotes the average over an arbitary horizontal cross
section of the cylinder, was investigated. Evaluation of the DNS data obtained
for a = 0.2 led to the following Nu-numbers: Nu = 4.29 for Ra = 105,
Nu = 8.81 for Ra = 106 and Nu = 18.13 for Ra = 107, which fit the scaling
law Nu = 0.117Ra0.313.
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Spatial and Temporal Resolution of the Solution

The mean mesh size h = max (∆z · r∆ϕ · ∆r)1/3 must be of the same order as
the Kolmogorov’s scale η = aPr1/2(Nu − 1)−1/4Ra−1/4, namely h = O(πη),
in order to resolve all relevant turbulent length scales in a DNS. For Ra = 105,
a = 0.2 this leads to πη = 2.19 · 10−2 and for Ra = 107, a = 0.2 we obtain
πη = 4.53 ·10−3. On the other hand, for the mesh with 96 ·256 ·128 grid points
in z-, ϕ-, r-directions, respectively, which we used in the DNS, h = 6.49 ·10−3.
Therefore, it is concluded that the spatial resolution used in the DNS is fine
enough for the cases Ra ≤ 107.

The temporal resolution requirements are the following: 1) the time step
must be smaller than the Batchelor scale ηT = a1/2Pr1/2(Nu − 1)−1/2 and
2) it has to be small enough to guarantee the numerical stability. In [10] the
sufficient condition for the von Neumann stability of the explicit time inte-
gration scheme based on central differences of any even order was presented.
For the fourth order accurate scheme the critical time step equals

∆t <
[
maxz,ϕ,r

{
3
2

[
|uz|
∆z + |uϕ|

r∆ϕ + |ur|
∆r

]
+ 16

√
a3Pr

3
√
Ra

[
1

∆z2 + 1
(r∆ϕ)2 + 1

∆r2

]}]−1
,

which is additionally multiplied by safety factor 0.5 to avoid nonlinear instabil-
ities. From this we obtained the time step ∆tDNS = min {ηT ; 0.5∆t} = 0.5∆t.

Conclusions and Outlook

DNS of turbulent Rayleigh-Bénard convection in cylindrical containers with
aspect ratios a = 0.4, a = 0.2 were performed for 105 < Ra < 108 on cylindri-
cal grids with up to 13 million grid points. It was shown that the spatial and
temporal resolutions were sufficient to resolve all relevant turbulent scales.
The instantaneous flow fields reveal large elongated flow structures, which
develop in the considered moderate Ra regime. Additionally, large flow struc-
tures grow with increasing Ra. More specifically, an increase of Ra from 107

to 108 leads to a transition from cell-like turbulent flow structures to a single
circulation, which rises in the center and descends close to the sidewall.
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1 Introduction

Since most turbulent flows possess far more eddies than can be computed from
the Navier-Stokes equations, an approximate description of the dynamics of
the ‘large-eddies’ is sought in which the ‘small-eddies’ need not be computed
explicitly. In large-eddy simulation (LES), this is achieved by applying a fre-
quency low-pass filter to the equations; see e.g. [1]. The interaction between
the large (filtered) and small (residual) eddies is then represented by the
commutator of the filter and the nonlinear term in the Navier-Stokes equa-
tions. Hence, this commutator has to be modeled in terms of the filtered
velocity to obtain the intended, approximate, large-eddy dynamics. For this,
one usually resorts to an eddy-viscosity model cf. [2]-[3], a (scale) similarity
model cf. [4]-[5], or a mix thereof cf. [6]. Similarity models have the proper
mathematical structure. Additionally, they correlate well with the real com-
mutator. Yet, their leading term has directions of negative diffusion [7]-[8]. In
this paper, we propose to stabilize similarity models by projecting them onto
an eddy-viscosity model. The projection eliminates the dynamically unstable
part and results in a self-calibrating eddy-viscosity. In comparison with mixed
models, we do not add a dissipative term to stabilize the similarity model,
but instead we remove the dynamically unstable art. The resulting projective
similarity/eddy-viscosity model is successfully tested for a turbulent channel
flow at Reτ = 2520 (based on the friction velocity and channel half-width).

2 Spatial Filter

We consider the elliptic, differential filter [9]

ū = Fu = u + α2∇2u, (1)

where α parameterizes the filter-length. The boundary conditions that sup-
plement the Navier-Stokes equations are applied to the filter too. This filter
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is generic in the sense that any symmetric convolution filter can be approx-
imated by (1), where the error is of the order α4. Additionally, it has been
shown in [10] that the approximate inverse of (1),

u ≈ ũ = F̃−1ū = (1 − α2∇2)ū, (2)

forms the essence of the recently proposed ‘alpha-model’.
The commutator of the filter (1) and the Navier-Stokes operator is given

by ∇ · τ , where the subfilter stress τ depends upon the velocity-gradient:

τij(∇u) = 2α2∇ui · ∇uj − α4∇2ui∇2uj . (3)

3 Projective Similarity/Eddy-Viscosity Model

Similarity models are based upon an approximate defiltering procedure. With
the help of the approximate defilter given by (2), we can model the subfilter
stress τij by replacing the velocity u in (3) by the right-hand side of (2). The
resulting similarity model τij(∇u) ≈ τij(∇F̃−1ū) possesses the correct math-
ematical structure; particularly, it satisfies all properties of a commutator.
Additionally, the correlation between the approximation τij(∇ũ) and τij(∇u)
is generally strong, typically between 0.6 and 0.9. Yet, this model is not un-
conditionally stable as the leading term of τij(∇ũ) has directions of negative
dissipation. Therefore, we propose to remove the dynamically unstable part
of τij(∇ũ) by means of a projection onto an eddy-viscosity model of the form

−τij(∇u) + 1
3δijτkk(∇u) ≈ ν(∂j ūi + ∂iūj), (4)

where the isotropic part 1
3δijτkk(∇u) need not be modeled, as it can be in-

corporated into the pressure. The projection results into a self-calibrating
eddy-viscosity ν(x, t) which is computed such that the best approximation of
−τij(∇ũ) + 1

3δijτkk(∇ũ) is obtained in least-square sense,

min
∫

eijeijdV, (5)

where integral extends over the entire flow domain, the residuals are eij =
τij(∇ũ) − 1

3δijτkk(∇ũ) − ν(∂j ūi + ∂iūj) and the minimum is computed (with
respect to ν) subject to the stability constraint ν + 1/Re > 0. The solution of
this constrained variational problem reads

ν =
(τij(∇ũ) − 1

3δijτkk(∇ũ))(∂j ūi + ∂iūj)
(∂nūm + ∂mūn)2

, (6)

if the right-hand side is larger than −1/Re; and ν = −1/Re otherwise.
In summary, the projective similarity/eddy-viscosity model is given by (4),

where the eddy-viscosity ν is computed according to (6), with ũ as in (2) and
τij as in (3).
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4 An a Posteriori Test: Turbulent Channel Flow

As a first step in application of the proposed model, it is tested for a turbulent
channel flow at Reτ = 2520 by comparing the results with those of Comte-
Bellots wind tunnel experiment [11]. Besides we will compare with experiments
by Wei and Willmarth [12], which were performed at lower Reτ (1025-1650),
and since making good near-wall measurements is difficult, we also make a
comparison with a direct numerical simulation (DNS) at Reτ = 590 [13].
Obviously, the comparison with DNS is to be restricted to the direct vicinity
of the wall, where Reynolds-number effects can be properly scaled.

As usual, the flow is assumed to be periodic in the stream- and spanwise
direction. The computational grid consists of 128 streamwise points, 64 span-
wise points and 300 points between the channel walls. All LES-results are
approximately defiltered by means of (2) in order to compare them directly
with the available experimental data. Details of the computational procedure
are discussed elsewhere [14]; here we focus on the principal results.

0.6

0.8

1.0

0 1

Experiment Comte-Bellot

LES with model

LES without model

y

u/u
c
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20
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Experiment Comte-Bellot
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Experiment Wei & Willmarth

DNS Moser, Kim & Mansour

Large-Eddy Simulation

y

u

+

+

Fig. 1. Mean streamwise velocity. In the left-hand side the velocity is normalized
by the centre-line velocity. The right-hand side figure shows u+ as function of y+.

The least to be expected from a LES is a good prediction of the mean
flow. As can be seen in Fig. 1 (left) the present LES satisfies that minimal
requirement: without any models the prediction of the mean flow worsens
significantly. With model, the agreement with the data of Comte-Bellot is
good. Yet, the friction velocities uτ differ. Comte-Bellot deduced uτ = 0.0416.
We have uτ = 0.0442, which is in good agreement with Dean’s result uτ =
0.0445. Therefore, we have rescaled the Comte-Bellots mean-velocity profile
with the help of our uτ. After this rescaling, the result of Comte-Bellot shows
an excellent agreement with the data in [12]-[13] and with the present LES.

As can be seen in Fig. 2, the turbulent intensities agree well, except for the
spanwise fluctuations, which agree fairly: the spanwise turbulence intensity of
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Fig. 2. The root-mean-square of the fluctuating velocity at Reτ = 2520. Here, the
results by Comte-Bellot are rescaled, like in Fig. 1. Near the wall (left-hand figure)
two experiments by Wei and Willmarth [12] are shown, namely at Reτ = 1650 and
Reτ = 1025. The DNS [13] has been performed at Reτ = 590. Note: for y+ > 30 the
comparison with low-Reτ data does not hold due to Reynolds-number effects.

Comte-Bellot is consistently higher than that of the LES. Near the wall there
also exists a good agreement between the streamwise intensity measured by
Wei and Willmarth (Reτ = 1650) and the present result. In summary, good
agreement with previously reported experimental results is observed.
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Summary. Direct numerical simulations (DNS) of turbulent supersonic channel
flow of air at Reynolds numbers ranging from Reτ = 180 to 560 and Mach numbers
ranging from M = 0.3 to 3.0 have been performed. The DNS data are used to
explain the reduction of the pressure-correlation terms due to compressibility, using
a Green’s function approach.

Compressibility Effects in Supersonic Channel Flow

Tables 1 and 2 show the parameters of the performed simulations. A homoge-
neous body force has been imposed on the momentum equation in streamwise
direction to drive the mean flow and to allow for periodic pressure bound-
ary conditions. The size of the domain has been adopted to be comparable
to that of Coleman et al. [1] and Moser et al. [5]. The walls are cooled and
kept at constant temperature to achieve supersonic flow, the passive scalar
concentration is kept fixed at both walls and of opposite sign, as shown for
the Favre averaged mean profiles in figure 1a. This corresponds to the intro-
duction of the scalar on one wall and its removal from the other. The Prandtl
and Schmidt numbers are 0.71 and 1, respectively.

Table 1. Simulation parameters (1/2)

Case M Reτ Re Lx1
h

Lx2
h

Lx3
h Nx1 Nx2 Nx3

M0.3 0.3 181 2850 9.6 6 2 192 160 129
M1.5 1.5 221 3000 4π 4π/3 2 192 128 151
M2.5 2.5 455 5000 2π 2π/3 2 256 128 201
M3.0 3.0 560 6000 2π 2π/3 2 256 128 221

Green’s Function Analysis of the Pressure Correlation Terms

As recognized earlier by Huang et al. [4], the most important compressibil-
ity effect in supersonic channel flow is due to mean property variation in the
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Table 2. Simulation parameters (2/2)

Case ∆x+
1 ∆x+

2 min ∆x+
2 max ∆x+

3 τw ρw, muw Tw

M0.3 14.46 1.12 4.19 7.23 7.555 1.210 0.0502 293
M1.5 14.46 0.85 5.02 7.23 30.993 0.023 1.91e-5 500
M2.5 11.16 1.23 7.46 7.44 79.710 0.035 1.91e-5 500
M3.0 13.37 0.89 10.22 8.91 110.156 0.042 1.91e-5 500
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Fig. 1. Favre averaged scalar profile. (b) Variation of mean density (symbols) and
mean viscosity (lines).

near wall region, as shown in figure 1b for cases M0.3 to M3.0. Huang et al.
[4] therefore suggested to replace in the compressible cases the wall scaling
usually adopted in incompressible channel flow by the so called semi-local scal-
ing, which uses the local values of density and viscosity. Despite its success in
scaling the mean velocity profiles, there are still discrepancies concerning the
various terms in the Reynolds stress and scalar flux budgets. As shown in [2]
and [3], the pressure correlation terms, for various Reynolds and Mach number
cases, show large differences when scaled in inner variables, although a good
collapse of the data for the streamwise production, dissipation and diffusion
terms is observed. These observations and the fact that the pressure-strain
correlation plays a key role in changing the turbulent stresses and their asso-
ciated anisotropy and is, like the pressure-scalar-gradient-correlation difficult
to model, make a more fundamental investigation necessary. To get further
insight into the pressure-scalar-gradient correlation and pressure-strain corre-
lation,

Πξ
i = p′∂ξ′′/∂xi and Πu

ij = p′s′
ij = p′(∂u′′

i /∂xj + ∂u′′
j /∂xi),

a starting point is to examine the compressible Poisson equation for the pres-
sure fluctuations ∇2p′ = ρ̄f , which reads

∇2p′ = −ρ̄(ui′′uj ′′ − ui′′uj ′′),ij − 2ρ̄ũ1,2u
′′
2,1 + σ′

ij,ij − 2ρ̄,2(u2
′′uj ′′ − u2

′′uj ′′),j

−ρ̄,22(u′′
2
2 − u′′

2
2) − 2ũ1,2(ρ′u2

′′),1 − (ρ′ui′′uj ′′ − ρ′ui′′uj ′′),ij − Dttρ
′.
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The first two terms on the rhs are labeled A1 (nonlinear fluctuation), A2
(mean shear) and occur in a similar way in the incompressible case. In com-
pressible flow A3 (viscous stress), B1 (density gradient), B2 (second density
gradient), and three terms involving the density fluctuation, labeled C1, C2
and C3, exist. One important assumption in the following analysis is to ne-
glect the density fluctuation terms, which are small ([3]), and normally lead
to a convected wave equation for the pressure. The pressure-correlation terms
can now be expressed as integrals over the Green’s function G of equation (1)

Πu
ij(y) =

∫ 1

−1
ρ̄(y′)G ∗ f ′(x1, y, x3; y′)s′

ij dy
′ + B′s′

ij (1)

Πξ
i (y) =

∫ 1

−1
ρ̄(y′)G ∗ f ′(x1, y, x3; y′)

∂ξ

∂xi

′′
dy′ + B′ ∂ξ

∂xi

′′
(2)

with G and B being the back-transform of the Green’s function in Fourier
space (k=

√
k2
1+k2

3, y is the wall normal coordinate with origin at the channel
centerline)

Ĝ(k, y; y′) = −cosh[k(y′ − 1)] cosh[k(y + 1)]
k sinh 2k

, y < y′

Ĝ(k, y; y′) = −cosh[k(y′ + 1)] cosh[k(y − 1)]
k sinh 2k

, y > y′

and of the boundary term B̂,

B̂ =
∂p̂/∂y

∣
∣
y=1 cosh(k(1 + y)) − ∂p̂/∂y

∣
∣
y=−1 cosh(k(1 − y))

k sinh 2k
,

respectively (see [3] for details). Figures 2a and 3a show a comparison of the
DNS results for the pressure-correlations and the results obtained with equa-
tions (1) and (2), for cases M0.3 and M1.5 (with similar Reτ ). Both indicate an
excellent agreement, justifying our ansatz for the pressure fluctuations. They
show furthermore, that the acoustic mode doesn’t contribute very much to the
pressure-correlation terms. In Figures 2b and 3b the influence of the different
source terms of equation (1) is shown, normalized by τwuav/h and χuav/h,
respectively (χ is the wall scalar flux). The nonlinear term A1 is clearly giving
the largest contribution, followed by the source term B1. To mimic the effect of
incompressibility, the mean density occurring in the source terms is replaced
by its wall value, indicated by the square symbol. The resulting curves then
clearly approach the incompressible solution (triangles) and suggest, that the
decrease in magnitude of the peak pressure-correlation amplitudes observed
in the compressible cases is caused to a large extent by the mean density
decrease.

Conclusions

Several DNS of passive scalar transport in turbulent supersonic channel flow
have been performed. An analysis using the Green’s function of the pressure-
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Fig. 2. (a) Comparison of the DNS data and Eq. (1) for the pressure-strain cor-
relation. (b) Contribution of different source terms, ρ̄f ′, on the rhs of the pressure
Poisson equation to Eq. (1) for Πu
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Fig. 3. (a) Comparison of the DNS data and Eq. (2) for the pressure-scalar-gradient
correlation. (b) Contribution of different source terms, ρ̄f ′, on the rhs of the pressure
Poisson equation to Eq. (2) for Πξ

1 in case M1.5.

fluctuation Poisson equation revealed, that the mean density decrease ac-
counts for most of the reduction of the pressure correlation terms in the com-
pressible case. Furthermore, it is seen, that the acoustic mode inherent in the
density fluctuations of the Poisson equation does not contribute very much
to the pressure correlation terms. To be able to better distinguish between
Mach and Reynolds number effects, simulations at higher Reynolds number
are currently performed.
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76 Computer Simulation Studies
in Condensed-Matter Physics VI
Editors: D.P. Landau, K.K. Mon,
and H.-B. Schüttler
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